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Summary 
 
Mast cells originate from hematopoietic stem cells and leave the bone marrow 

as early lineage progenitors. After entering peripheral tissues they 

differentiate into mature cells expressing the stem cell factor receptor Kit and 

the high-affinity receptor for immunoglobulin IgE FcεRI. Mast cells have long 

been recognized as the principle effector cells in IgE-mediated type I 

hypersensitivity. In recent years several lines of evidence have suggested that 

mast cells might be involved in other disease models as well, including 

autoimmune models for multiple sclerosis and rheumatoid arthritis. So far, 

these studies have relied on mice lacking mast cells due to naturally occurring 

mutations of the tyrosine kinase Kit. However, impaired Kit signalling as in 

KitW/Wv mice does not only result in mast cell deficiency, but causes many 

defects in multiple other cell types inside and outside of the immune system.  

Thorsten Feyerabend in our laboratory generated a new Cre knock-in strain 

by insertion of Cre recombinase into the mast cell carboxypeptidase A (Cpa3) 

locus. Surprisingly, Cpa3Cre/+ mice selectively lack mast cells in connective 

and mucosal tissues due to genotoxic effects of sustained Cre expression and 

hence represent a novel mast cell deficiency model with intact Kit function. 

The present study demonstrated the entire absence of mast cells in skin and 

peritoneal cavity by flow cytometry, histology and mRNA expression profiling. 

Cpa3Cre/+ mice were fully refractory to IgE-mediated anaphylaxis, and this 

defective response was rescued by reconstitution with cultured mast cells. 

With exception of the complete ablation of mast cells and a partial reduction in 

basophils, other hematopoietic lineages in Cpa3Cre/+ mice developed normally. 

Contrasting previous studies in KitW/Wv mice, Kit-proficient Cpa3Cre/+ mice were 

fully susceptible to antibody-mediated K/BxN arthritis and experimental 

autoimmune encephalomyelitis (EAE). The different results obtained from Kit 

mutant mice compared to selectively mast cell-deficient Cpa3Cre/+ mice call for 

a careful re-evaluation of the immunological function of mast cells beyond 

allergy. 
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Zusammenfassung 
 
Mastzellen stammen von hämatopoetischen Stammzellen ab und verlassen 

das Knochenmark als undifferenzierte Vorläuferzellen. Sie differenzieren erst 

im Gewebe zu reifen Zellen aus und exprimieren dann neben dem 

Stammzellfaktor-Rezeptor Kit auch den hochaffinen IgE-Rezeptor FcεRI auf 

ihrer Oberfläche. Mastzellen wurden bisher hauptsächlich als Effektorzellen in 

der IgE-vermittelten allergischen Reaktion vom Soforttyp wahrgenommen. Es 

gibt jedoch vermehrt Hinweise, dass Mastzellen auch in anderen 

Krankheitsmodellen, unter anderem in den experimentellen Autoimmun-

Modellen für Multiple Sklerose oder Rheumatoider Arthritis, involviert sein 

könnten. Diese Erkenntnisse beruhen auf Studien mit Mausstämmen, wie 

dem KitW/Wv Stamm, welche bedingt durch eine natürlich auftretende Mutation 

in der Rezeptor-Tyrosinkinase Kit keine Mastzellen besitzen. Allerdings führt 

die verminderte Signalweiterleitung durch den mutierten Kit-Rezeptor nicht 

nur zu Mastzell-Defizienz sondern verursacht auch Defekte in zahlreichen 

weiteren Zelltypen innerhalb und außerhalb des Immunsystems.  

Thorsten Feyerabend aus unserer Arbeitsgruppe hat einen neuen Cre knock-

in Stamm generiert, der Cre-Rekombinase unter Kontrolle des Mastzell-

spezifischen carboxypeptidase A (Cpa3) Lokus exprimiert. 

Überraschenderweise fiel bei histologischen Untersuchungen im 

Bindegewebe und in den Schleimhäuten von Cpa3Cre/+ Mäusen ein selektiver 

Verlust von Mastzellen auf, was auf die genotoxische Wirkung lang 

anhaltender Cre-Expression zurückgeführt werden kann. Somit repräsentiert 

der Cpa3Cre/+ Stamm ein neues Mastzell-defizientes Mausmodell mit 

funktionell intaktem Kit-Rezeptor. In der vorliegenden Arbeit wurde die 

komplette Mastzell-Ablation in Haut und Peritonealhöhle anhand von 

Durchflusszytometrie, Histologie und mRNA Expressions-Analysen 

demonstriert. Weiterhin konnte gezeigt werden, dass Cpa3Cre/+ Mäuse keine 

IgE-vermittelte Anaphylaxie-Reaktion ausbilden. Dieser Phänotyp konnte 

durch den adoptiven Transfer von kultivierten Mastzellen aufgehoben werden. 

Mit Ausnahme der kompletten Ablation der Mastzell-Linie und einer partiellen 

Reduktion von Basophilen, bildeten sich alle weiteren hämatopoetischen 
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Linien in Cpa3Cre/+ Mäusen normal aus. Im Gegensatz zu bisherigen Studien 

mit KitW/Wv Mäusen, entwickelten Kit-kompetente Cpa3Cre/+ Mäuse einen 

normalen Krankheitsverlauf in der experimentellen autoimmunen 

Enzephalomyelitis (EAE) und der K/BxN Serumtransfer-Arthritis. Aufgrund der 

unterschiedlichen Ergebnisse aus Experimenten mit Kit-Mutanten und selektiv 

Mastzell-defizienten Cpa3Cre/+ Mäusen sollte eine umfassende Re-Evaluierung 

der immunlogischen Funktion von Mastzellen außerhalb ihrer Beteiligung in 

allergischen Reaktionen vorgenommen werden.  
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Abbreviations 
 
ANP  atrial natriuretic peptide 

APC   allophycocyanin 

bio   biotinylated 

BMCP  basophil mast cell progenitor 

BMMC  bone marrow-derived mast cells 

bp   base pairs 

CAI  chronic allergic inflammation 

CD   cluster of differentiation 

CFA   complete Freund’s adjuvant 

CFSE   carboxyfluorescein succinimidyl ester 

CNS   central nervous system 

Cpa3    carboxypeptidase A 

CTMC  connective tissue mast cells 

Cy   cychrome 

DC   dendritic cell 

ddH2O  double distilled water 

DMEM  Dulbecco's Modified Eagle's Medium 

DNA   deoxyribonucleic acid 

DNP   dinitrophenyl 

dNTP   deoxynucleotide trisphosphate 

DT  diphtheria toxin 

DTR  diphtheria toxin receptor 

EAE   experimental autoimmune encephalomyelitis 

EDTA   Ethylenediaminetetraacetic acid 

ER  estrogen receptor 

ES-cells  embryonic stem cells 

FACS   fluorescence-activated cell sorting 

Fc   constant region of an immunoglobulin 

FcR  Fc (α,γ,ε) receptor 

FCS   fetal calf serum 

FITC   fluorescein 

fwd   forward (5’ PCR primer) 
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GPI    glucose-6-phosphate isomerase 

ham   hamster 

HBSS   Hank's Balanced Salt Solution 

hCD4   artificial chimeric human CD4 

HSA   human serum albumin 

HSC   hematopoietic stem cell 

IE  enhancer element 

IFN-γ   Interferon-gamma 

Ig   immunoglobulin 

IL   interleukin 

IMDM   Iscove's Modified Dulbecco's Medium 

KI   knock-in 

KO   knock-out 

Lin-   lineage negative 

loxP   locus of X-over P1 

LPS  lipopolysaccharide 

m   mouse 

MC   mast cell 

Mc-cpa  mast cell carboxypeptidase A 

Mcl-1  myeloid cell leukaemia sequence 1 

MCP  mast cell progenitor 

Mcpt   mast cell protease 

β-ME   2-mercaptoethanol 

MHC   major histocompatibility complex 

MFI  mean fluorescence intensity 

MMC   mucosal mast cells  

MOG   myelin oligodendrocyte glycoprotein  

mRNA  messenger ribonucleic acid 

MS   multiple sclerosis 

Nb  Nippostrongylus brasiliensis  

n.s.   nonsignificant 

OD   optical density 

o/n   overnight 

PAMPs pathogen-associated molecular patterns 
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PBS   phosphate-buffered saline 

PCA  passive cutaneous anaphylaxis 

PCR   polymerase chain reaction 

PE   phycoerythrin 

PEC   peritoneal exudate cells 

PMA  phorbol-12-myristate-13-acetate 

polyA   polyadenylation signal 

PSA  passive systemic anaphylaxis 

RA   rheumatoid arthritis 

rev   reverse (3’ PCR primer) 

RNA   ribonucleic acid  

RT   room temperature 

SCF   stem cell factor 

SEM   standard error of the mean 

Sl  steel locus 

SPF  specific pathogen-free 

TBE   Tris Borate EDTA 

TCR   T cell receptor 

Th cell  T helper cell 

TLR   toll-like receptor 

TNF-α  tumor necrosis factor alpha 

TRECK toxin receptor-mediated conditional knock-out 

Tris   Tris-(hydroxymethyl)-aminomethan 

w/o   without 

wt   wild type 
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1 Introduction 

1.1 A harmful relationship: Mast cells, histamine and IgE 
 
The mast cell research begins with Paul Ehrlich‘s description of aniline-reactive 

granular cells, which he found in connective tissues1. He emphasized that the 

identification of these cells should not solely be based on cell morphology but also 

consider their histochemical reactivity, a novel concept at that time. Basic aniline 

dyes like toluidine blue interact with the highly acidic glycosaminoglycan residues 

contained within mast cell granules. The resulting characteristic change in the colour 

of the staining dye is called metachromasy. This histochemical phenotype 

determines the unique purple staining characteristics of mast cells. Their prominent 

granules led Paul Ehrlich to the conclusion that these cells had a nutritional function 

for the surrounding tissue. For this reason, he coined the term ‘Mastzelle’ (mast cell) 

according to the German word ‘Mast’, which denotes a ‘fattening’ or ‘suckling’ 

function. Today, more than 130 years after their first description, it is clear that mast 

cells do not provide nutrients. They still remain one of the most enigmatic cells of the 

immune system.  

Studies in the 1950s recognized a link between mast cells, histamine and 

anaphylactic responses. Histamine increases the vascular permeability, causes 

smooth muscle contraction and decreases cardiac output. Effects of histamine are 

manifested as urticaria, hypotension, dyspnoea and abdominal cramps. A severe 

allergic reaction with these symptoms is also named anaphylaxis, a term that was 

introduced in 19022. Riley and West established mast cells as predominant source of 

histamine in many tissues3-5. The connection to anaphylaxis was established 

following reports that certain polymeric compounds like the so-called compound 

48/80 induced degranulation of mast cells, and the thereby released histamine- 

elicited symptoms of an anaphylactic shock6,7. At the same time, an independent line 

of experiments led to the conclusion that the aggregation of antibodies in antigen-

antibody complexes on the cell surface of tissue cells initiates passive cutaneous 

anaphylaxis8. About ten years later, the reaginic antibody in this reaction was finally 

identified by Kimishige and Teruko Ishizaka as immunoglobulin (Ig) E9.  
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In search for the corresponding receptor, Metzger and colleagues characterized the 

high-affinity Fc receptor for IgE (FcεRI), which is expressed on mast cell-tumor lines 

and normal mast cells10,11. Aggregation of just two or three receptors with chemically 

cross-linked dimers and higher oligomers of IgE triggered degranulation with 

histamine release of FcεRI-bearing cells12,13. These findings have directly linked 

mast cells and IgE-associated immune responses following secondary contact with 

allergens. Since then mast cells have been recognized as key effector cells in 

allergic conditions such as hay fever, asthma and anaphylactic shock. Focus of the 

current research is to understand the physiological function of mast cells beyond 

their role in allergic responses.  

 

1.2 Origin and development of mast cells 
 
Paul Ehrlich believed that mast cells differentiate from fibroblast and are therefore a 

component of the connective tissue. Only in the 1970s it was found that mast cells 

arise from pluripotent hematopoietic stem cells in the bone marrow14. The earliest 

committed mast cell precursor was identified in mouse fetal blood and was 

characterized as KithighThy-1loFcεR1– cells containing few metachromatic granules15. 

In 2005, three independent groups identified mast cell progenitors in adult murine 

hematopoiesis and proposed divergent mast cell developmental pathways16-18. 

Arinobu et al. characterized granulocyte/monocyte progenitor (GMP)-derived β7high 

cells in the spleen that gave rise only to basophil and mast cell colonies. This newly 

isolated population in the adult spleen was named basophil/mast cell progenitor 

(BMCP) and provided the formal proof for a common origin of the basophil and mast 

cell lineage. Furthermore, unipotent progenitors for either the basophil or the mast 

cell lineage were isolated from the bone marrow and the intestine, respectively18.  

Under physiological conditions, only very low frequencies of committed mast cell 

progenitors and no circulating mature mast cells are found in peripheral blood of 

adult mice19. These observations imply that in contrast to other cells of the 

hematopoietic stem cell lineage, mast cell precursors leave the bone marrow before 

their terminal maturation and become fully differentiated after entering diverse 

vascularized peripheral tissues (Figure 1). It has been shown that mature tissue-
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resident mast cells proliferate locally in certain situations20. Thus, mast cell 

populations in the peripheral tissues are controlled by the recruitment of committed 

progenitors from the bone marrow, maturation of tissue-resident precursors, and 

local proliferation. Once migrated into tissues, rodent mast cells can have a long 

lifespan. The cytokine stem cell factor (SCF) is essential for development and 

survival of mast cells in vivo. Mice carrying loss of function mutations in SCF or its 

receptor Kit suffer from a profound mast cell deficiency (see also chapter 1.5), 

emphasizing that mast cell development in vivo is critically dependent on the 

presence of SCF and functional Kit signalling21,22. Interleukin 3 (IL-3) is an important 

co-factor influencing the number and function of mast cells. In vitro, IL-3 is sufficient 

for the generation and maintenance of bone marrow-derived mast cells (BMMC), 

even from Kit mutant bone marrow cells23,24. The in vivo role of IL-3, however, is 

more complex. IL-3-deficient mice exhibit insufficiencies in the increase of tissue 

mast cell populations only during parasite infections, but show normal mast cell 

numbers under physiological conditions25.  

 

 
Figure 1   Mast cell development and tissue distribution 

Mast cells are derived from hematopoietic stem cells (HSCs), which give rise to mast cell 
progenitors (MCPs). Immature progenitors circulate in the blood and enter the peripheral 
tissues, where they undergo differentiation and maturation. Stem cell factor (SCF) is 
required to maintain mast cell survival in the tissues. The phenotype of mature mast cells 
can vary depending on microenvironmental factors such as IL-3. Mucosal mast cells (MMC) 
are found in the mucosa of the gut and can markedly increase during a Th2 response to 
parasitic infections. Connective tissue mast cells (CTMC) reside constitutively in the sub-
mucosa and muscularis propria (Figure modified from Galli et al.26).  
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1.3 Cell biology of mast cells 
 
Cross-linking of FcεRI on the surface of mast cells by IgE-bound antigen results in a 

signalling cascade that finally culminates in degranulation and rapid release of pre-

formed granule-associated mediators such as histamine, proteases27-29 and tumour 

necrosis factor (TNF) alpha30. Although proteases are the major protein constituents 

in mast cell granules, their biologically relevant substrates are not obvious. 

Experiments in mice suggest that mast cell-derived proteases enhance host 

resistance to reptile and insect venoms and might have an important role in limiting 

the harmful effects of endogenous toxic peptides like endothelin 1 or neurotensin31-

34. Exposure to these substances induces mast cell degranulation and rapid release 

of the stored mediators, some of which can degrade the activation causing peptides. 

Moreover, several lines of evidence implicate a role of mast cell proteases in the 

recruitment of neutrophils35 and in the innate protection against parasite 

infestation36,37 and bacterial peritonitis38. Upon activation, mast cells can also 

synthesize inflammatory lipid mediators (eicosanoids) including prostaglandins39 and 

leukotrienes40 and a large number of cytokines and chemokines41 which are all 

secreted in a delayed fashion. Their equipment with a wide variety of biologically 

active mediators and their potential to release pre-stored products very quickly, 

within seconds or minutes after activation, supports the idea that mast cells might be 

involved in the modulation of immune responses beyond allergic reactions.  

The observation of distinct histochemical staining properties42,43 of rodent mast cells 

led to the concept of mast cell ‘heterogeneity’. This idea was reinforced by 

heterogonous lipid mediator and glycosaminoglycan (e.g. heparin) contents in mast 

cell granules, as well as differences in the protease expression profiles of mast cells 

localized at distinct anatomical sites44. Mast cells in the mucosa of the small intestine 

express mast cell protease (Mcpt) 1 and Mcpt2 and have only little or no heparin, 

whereas those present in the intestinal sub-mucosa express Mcpt4, -5, -6 and mast 

cell carboxypeptidase A (Mc-cpa or Cpa3), and contain abundant heparin in their 

granules45,46. Based on their varied granule composition and their different tissue 

localization, the two sub-populations of mast cells are defined as mucosal mast cells 

(MMC) and connective tissue mast cells (CTMC)47,48 (Figure 1). A recent study 
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analyzing the mast cell phenotype in the lung and trachea revealed a more complex 

picture regarding the protease expression patterns in MMC and CTMC. Tracheal 

CTMC and intraepithelial MMC in the trachea displayed the same protease 

expression pattern whereas protease expression overlapped in both mast cell sub-

populations that are located in the large airways of the lung49. Hence, the tissue 

seems to determine the protease profile for CTMC and MMC, e.g. protease 

phenotype differences in the airways compared to those in the small intestine.  

Variations in the expression of proteoglycans account for the distinct histochemical 

staining properties of CTMC and MMC. But the two mast cell types also differ 

functionally with regard to their degranulation responses to pharmacological 

stimulation50 and their ability to proliferate in response to parasitic challenge51. 

Particularly, CTMC are constitutively present in connective tissues like skin and 

peritoneal cavity whereas the numbers of physiologically less abundant MMC can 

significantly increase upon Th2-driven allergic inflammation in the lung or during 

nematode infections in the intestine. It is likely that MMC and CTMC do not reflect 

fixed subclasses but that mast cell heterogeneity is rather shaped by the cytokine 

environment under normal and pathological conditions52. Collectively, the differences 

in mediator profiles and the diverse biological responses of MMC and CTMC point 

towards distinct functional roles of mast cell sub-populations, which might further 

change in the context of inflammation or infection.  

 

1.4 Mast cells as players in immune responses to pathogens 
 

Mast cells are widely distributed throughout peripheral tissues, such as the skin, the 

respiratory and gastrointestinal tract, and thus at interfaces to the environment. At 

these sites they are located in close proximity to blood vessels, lymphatic vessels 

and nerve fibres53. Their tissue location positions them to potentially function as 

sentinel cells in host defence and to interact effectively with the vasculature54 (Figure 

2). Multiple locally released mast cell-derived mediators, such as vasoactive amines 

and chemoattractant compounds, can regulate vascular permeability and selective 

recruitment of immune effector cells55. Furthermore, mediators that are produced by 
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mast cells can also modulate the behaviour of neighbouring cells that are resident in 

the same tissue sites, for example Langerhans cells in the epidermis of the skin56,57. 

The long lifespan of mast cells and thus their long-term location in pathogen-

exposed tissues would allow sustained effector functions in response to pathogens. 

Consistent with the proposed view of mast cells as sentinel cells in host defence54, 

they express a wide variety of cell surface receptors that directly detect pathogens or 

recognize molecules that are produced in the context of an ongoing immune 

response. Toll-like receptors (TLRs) directly interact with bacterial-, viral- or fungal- 

associated molecular patterns and are mainly expressed by antigen-presenting cells. 

Functional expression of TLR1, TLR2, TLR3, TLR4, TLR6, TLR7 and TLR9 has also 

been described for murine mast cells58,59. So far, a functional role of TLR activation 

on mast cells in vivo exists for TLR2, TLR3, TLR4 and TLR760-63. Altogether, 

activation of mast cells by ligand binding to TLRs results in the selective production 

of inflammatory cytokines and chemokines rather than degranulation59,60. Other 

receptors that are found on mast cells, such as Fc receptors64, complement 

receptors65, cytokine and chemokine receptors66, might sense by-products of the 

pathogen-specific immune response and may therefore indirectly activate mast cells 

during infections (Figure 2).   
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Figure 2   The location of mast cells in tissues 

Mast cells (MC) are common at sites of the body that are exposed to the environment, such 
as the skin. In these tissues, they are found in close proximity to blood vessels and local 
populations of antigen-presenting cells. Mast cells are activated by pathogens through 
receptors specific for pathogen-associated molecular patterns (PAMPs), IgE-bound antigen 
(Ag) and complement. Mast cell-derived mediators promote the maturation and migration of 
immature dendritic cells (DCs) from the skin to the lymph node (1), and can drive lymph 
node hypertrophy (2). Also, mast cell-derived products can regulate vascular permeability 
and recruitment of effector cells from the circulation (3) (Figure adopted from Dawicki and 
Marshall67). 
 

The majority of the described functional and structural features are not unique to 

mast cells. In particular, mast cells share localization, receptor expression, as well as 

cytokine and chemokine profiles with several other immune effector cells including 

macrophages and dendritic cells. But their ability for rapid mediator release has 

mainly pathogenic consequences, emphasizing the unique role of mast cells as key 

modulators in promoting harmful IgE-mediated type I hypersensitivity reactions. 

Nevertheless, it is an appealing idea that IgE-independent agonists, such as 

pathogen-associated molecules or inflammatory cytokines, might activate mast cells 

to rapidly and selectively respond to pathogens. However, the involved mechanisms 

were hitherto mainly examined in cell culture systems using phenotypically 



Introduction 

 8 

‘immature’ mast cells derived in vitro from mouse hematopoietic stem cells, and the 

reported in vivo studies relied on mouse models that are not selectively mast cell-

deficient (see chapter 1.5). The importance of mast cells in host defence against 

pathogens needs to be affirmed in an appropriate experimental system. 

 

1.5 Lessons learned from Kit mutant mouse models of mast cell 
function 

 

The in vivo functions of mast cells were widely studied in genetically mast cell-

deficient Kit mutant mouse models, such as WBB6F1-KitW/Wv and more recently the 

C57BL/6-KitW-sh/W-sh mice68,69. Both mouse strains carry spontaneous loss-of-function 

mutations in both alleles of the dominant white spotting (W) locus, which encodes for 

the receptor tyrosine kinase Kit. The transmembrane receptor Kit (CD117) binds the 

growth factor SCF, also known as steel factor, or Kit ligand. Ligand binding results in 

dimer formation of the Kit receptor, which turns on its intrinsic tyrosine kinase 

activity. The physiological kinase activation triggers signalling cascades like STAT 

and MAPK pathways and thereby regulates cell survival, proliferation and 

differentiation of Kit-expressing cells. The KitW allele contains a deletion mutation of 

78 amino acids, resulting in a truncated Kit protein, which lacks the transmembrane 

domain and is therefore not expressed on the cell surface. The KitWv allele encodes 

for a point mutation in the Kit tyrosine kinase domain that markedly decreases the 

kinase activity of the receptor. Therefore heterozygous KitW/Wv mice show reduced 

expression of a hypofunctional tyrosine kinase21. Kit is expressed on hematopoietic 

stem and progenitor cells and at all maturation stages of mast cells. Its expression is 

not restricted to the hematopoietic lineage because Kit is also found on melanocytes 

in the skin, germ cells, and interstitial cells of Cajal in the gastrointestinal tract. Since 

development and long term survival of mast cells is critically dependent on proper Kit 

signalling, Kit mutant mice are mast cell-deficient. However, they also suffer from 

additional phenotypic abnormalities inside and outside of the immune system that 

are unrelated to the mast cell deficiency. KitW/Wv mice exhibit macrocytic anaemia, 

neutropenia, and lack melanocytes, intraepithelial δγ T lymphocytes, and interstitial 

cells of Cajal (reviewed in Grimbaldeston et al.69). They also develop a high 
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incidence of spontaneous dermatitis70, squamous papillomas of the forestomach71, 

gastric ulcers72, and dilatation of the duodenum73. KitW/Wv mice have very low but 

measurable numbers of mast cells in the skin and numbers can be strongly 

increased following chemically induced chronic dermatitis74,75, demonstrating an 

active role of the KitWv protein in regulating mast cell numbers under steady-state 

and inflammatory conditions. Furthermore, KitW/Wv mice are sterile. Therefore colony 

maintenance and breeding of these animals are laborious. Restriction to the F1 WB 

x C57BL/6 (WBB6F1) background impedes crossing with other mouse strains 

carrying mutations of interest, or an inherent disease susceptibility that might help to 

define the in vivo roles of mast cells. Altogether, this limits the capability of KitW/Wv 

mice as a model of mast cell deficiency.  

During the last years, the use of mast cell-deficient KitW-sh/W-sh mice became 

increasing popular among mast cell researchers. The KitW-sh allele76 contains a large 

genetic inversion including the transcriptional regulatory elements upstream of the 

Kit transcription start site on chromosome five77,78. KitW-sh/W-sh mice are neither 

anaemic nor sterile, but they exhibit elevated numbers of neutrophils, 

thrombocytosis, splenomegaly, lack interstitial cells of Cajal and show significant bile 

reflux into the stomach79. However, they do not exhibit a high incidence of 

spontaneous pathology affecting the skin, stomach or duodenum as described for 

KitW/Wv mice69. In KitW-sh/W-sh mice like in KitW/Wv mice, melanocytes are deficient, 

resulting in animals with a white coat but black eyes. Mast cell ablation in KitW-sh/W-sh 

mice appears to be age-dependent as Kit-expressing mast cell can be found in the 

skin of embryonic stages80. In summary, Kit-related developmental abnormalities 

that affect lineages others than mast cells are milder in KitW-sh/W-sh mice. For that 

reason and because of their C57BL/6 strain background and their breeding,  

KitW-sh/W-sh mice are commonly used as mast cell-deficient mice. However, a recent 

report demonstrated that the Wsh inversion disrupts the gene corin, which encodes a 

cardiac protease responsible for the activation of atrial natriuretic peptide (ANP) that 

acts to reduce the systemic blood pressure79,81. Consistent with this result,  

KitW-sh/W-sh mice develop symptoms of cardiomegaly and may also display 

spontaneous hypertension, a condition associated to corin ablation79,82. Given the 
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size and the complexity of the genetic inversion, KitW-sh/W-sh mice may exhibit 

additional defects that have not been noticed yet.  

Mutations affecting the Kit ligand, which is encoded at the Steel (Sl) locus, also result 

in mast cell deficiency in WCB6F1/J-KitlSl/KitlSl-d mice that lack SCF on the surface of 

fibroblasts and other cells22,68,83. But mice with mutations affecting Kit rather than 

SCF are preferentially used to study mast cell functions because lack of mast cells in 

Kit mutant mice can be selectively corrected by adoptive transfer of cultured mast 

cells84. This so-called ‘mast cell knock-in’ approach is widely accepted in the field of 

mast cell research and is thought to allow for the separation of general Kit-

dependent abnormalities in Kit mutants from effects that might be exclusively 

attributed to their mast cell deficiency. Based on studies using the mast cell 

reconstitution system, mast cells have been implicated in a broad range of 

pathophysiologic processes beyond allergic diseases that range from allograft 

tolerance85 to angiogenesis in tissue repair86 and carcigonesis87, as well as vascular 

diseases88. In addition, contributions of mast cells to autoimmune diseases such as 

multiple sclerosis (MS) or rheumatoid arthritis (RA) belong to the still expanding 

catalogue of potentially harmful or protective mast cell functions (Figure 3).  

 
 
 
 
 
 
 
 
 
 
 
Figure 3   Overview of potential mast cell functions 

A complex picture of mast cell functions has emerged over the past decade, extending 
beyond their role in mediating allergy and asthma. See text for details and references.   
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The idea that mast cells might be involved in the pathogenesis of multiple sclerosis, 

a chronic inflammatory disorder of the central nervous system (CNS), was promoted 

by the frequently observed correlation between disease progression and localization 

of mast cells89,90. The first observation of mast cells in the CNS of patients with MS 

was made already shortly after the first description of mast cells91. The technical 

progress in clinical diagnostics allowed the identification of mast cell-associated 

transcripts in MS brain lesions92, accompanied by high levels of mast cell tryptase in 

the cerebrospinal fluid of MS patients93. A contribution of mast cells in inflammatory 

diseases of the CNS was also concluded from studies with experimental 

autoimmune encephalomyelitis (EAE) in mice. EAE is considered to be an 

experimental counterpart of MS and it is induced by immunization of genetically 

susceptible mice with myelin peptides in the context of complete Freund’s adjuvant. 

EAE and MS are characterized by a breach of the blood-brain barrier, massive 

infiltration of inflammatory cells into the CNS, and demyelination. The local 

inflammatory response in the CNS provokes tissue damage, leading to neurological 

deficits including paralysis. In acute EAE, the percentage of degranulated mast cells 

increases with the clinical onset of disease symptoms94. In addition, it has been 

reported that mast cell-stabilizing drugs can ameliorate the severity of EAE95. But the 

strongest evidence for the involvement of mast cells in EAE was the delayed onset 

and diminished severity of EAE in mast cell-deficient KitW/Wv mice96. The restoration 

of disease susceptibility by reconstitution of mice with in vitro-derived mast cells 

further supported the harmful role of mast cells in EAE.  

Rheumatoid arthritis (RA), a chronic inflammatory disease of the diarthrodial joints, 

also shows hallmarks of a mast cell-dependent autoimmune disease. Accumulations 

of mast cells in arthritic synovial fluid and production of several mast cell-associated 

inflammatory mediators in human patient samples indicate that mast cells might be 

involved in the disease development of RA97. Experiments in Kit mutant mast cell-

deficient mice corroborated this assumption since in contrast to wild type mice, 

KitW/Wv and KitlSl/KitlSl-d mice were resistant to disease induction when injected with 

serum from arthritic K/BxN mice98. Mice expressing the transgenic T cell receptor 

(TCR) KRN and the MHC class II allele I-Ag7 (K/BxN mice) uniformly develop a joint 

disorder that shares many similarities with RA99. Serum from these mice reliably 
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causes severe inflammatory arthritis in a wide range of recipient strains (serum 

transfer model) due to high titres of IgG antibodies against the glycolytic enzyme 

glucose-6-phosphate isomerase (GPI)100. The immune complexes consisting of GPI 

and autoantibodies aggregate at the surface of the articular cavity where they initiate 

an inflammatory cascade involving complement factor C5a, Fc receptors, 

neutrophils, and inflammatory cytokines, such as TNF-α and IL-1101,102. 

Reconstitution of KitW/Wv mice with cultured mast cells restored the sensitivity to 

disease induction by K/BxN serum transfer, suggesting an involvement of mast cells 

in this arthritis model. The observation of mast cell degranulation in the joints of wild 

type mice immediately after arthritogenic serum injection prompted the conclusion 

that mast cells might have an early, initiating role in this model of RA98. This 

conclusion was also supported by findings in other mouse models of arthritis. Mast 

cells, for example, accumulate in the swollen paws of mice suffering from collagen-

induced arthritis and inhibition of their degranulation by Salbutamol had a strong 

therapeutic effect on the disease progression in this model103. Moreover, a link 

between mast cells and inflammatory joint disease was demonstrated in a study 

showing that IL-33 exacerbates collagen-induced arthritis via activating mast cells104. 

But the pathogenic role of mast cells in animal models of MS and RA is not as clear 

as it might seem at first glance. Recent reports showed that mast cell deficiency in 

the context of KitW-sh/W-sh mice or in the context of modified experimental settings do 

not necessarily impair K/BxN serum-transferred arthritis or EAE105-108.  

Concerning the limitations of Kit mutant mast cell-deficient mouse models and the 

conflicting results obtained from experiments in these mice, new mouse strains 

exclusively deficient in mast cells would be advantageous for the field of mast cell 

research.  
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1.6 Kit-independent mast cell-deficient mouse models 
 
The recent technical progress in gene targeting and transgenesis stimulated the 

development of genetically defined mouse strains that lack mast cells independent of 

Kit mutations. These strains represent a new generation of mast cell-deficient mouse 

models for the identification and characterization of mast cell functions in vivo. In 

2011, four independent groups, including our own laboratory, published Kit-

independent mast cell-deficient mouse strains109-113. All four studies have chosen 

mast cell-specific gene loci for the manipulation of the mast cell lineage in vivo but 

they represent diverse mechanisms of cell ablation.  

Lineage-restricted expression of diphtheria toxin fragment A or the diphtheria toxin 

receptor represents an efficient method of toxin-mediated cell lineage ablation in 

transgenic mice114,115. Due to differences in cell surface receptors that recognize the 

DT-B fragment, humans and monkeys are sensitive to DT whereas the cells of mice 

and rats do not bind DT-B116. Transgenic expression of DT-A allows constitutive 

toxin-mediated cell ablation, whereas the expression of a human or simian diphtheria 

toxin receptor (DTR) in combination with DT administration is an effective method for 

inducible cell depletion. When combined with the Cre/loxP system, the expression of 

DT-A or DTR can be targeted to a specific cell type. The bacteriophage P1-derived 

Cre/loxP system is a genetic tool that is used to control site-specific recombination 

events in genomic DNA117. Cre/loxP recombination involves the targeting of so-

called loxP (locus of X-over P1) sequences and their recombining with the help of 

the enzyme Cre recombinase.  

Dudeck et al. generated mouse models of inducible and constitutive mast cell 

ablation by driving conditional expression of DT-A and DTR in the mast cell 

lineage109. Crossing the Mcpt5-Cre line to a Cre-inducible DTR transgenic strain 

(iDTR)118 renders mast cells diphtheria toxin-sensitive after Cre-mediated deletion of 

the loxP-flanked stopper cassette. This Cre-inducible system requires repeated 

administration of diphtheria toxin for efficient mast cell ablation. To generate a model 

of constitutive mast cell deficiency, Dudeck et al. crossed Mcpt5-Cre mice with the 

R-DTA line, which encodes DTA under control of a loxP-flanked stop cassette in the 

ubiquitously expressed ROSA26 locus119. In both models, Mcpt5-expressing mast 
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cells are ablated due to diphtheria toxin-mediated cell death. Since Mcpt5 is 

specifically expressed in CTMC, only mast cells in the peritoneal cavity, skin and 

sub-epithelial part of the intestine but not in the intestinal mucosa were efficiently 

depleted109. 

Otsuka et al. and Sawaguchi et al. also established an inducible DTR-based 

transgenic system of mast cell ablation, which they termed ‘toxin receptor-mediated 

conditional knock-out’ (TRECK)111,112. In their system, a human diphtheria toxin 

receptor is expressed under the control of a mast cell-specific intronic enhancer (IE) 

element, which normally regulates Il4 gene expression in mast cells (Mas-TRECK). 

However, repetitive injection of diphtheria toxin into Mas-TRECK mice does not only 

conditionally deplete connective tissue and mucosal mast cells, but also the basophil 

lineage, probably because it also uses the same Il4 enhancer112.  

Lilla et al. reported a toxin-independent approach of conditional cell ablation, which is 

based on the disruption of a gene required for the survival of the mast cell lineage. 

They developed transgenic mice that express Cre recombinase under the control of 

a 780 bp region of the mast cell carboxypeptidase A3 (Cpa3) promoter110. In order to 

selectively deplete mast cells in vivo, they mated Cpa3-Cre mice to mice bearing a 

floxed allele of the myeloid cell leukaemia sequence 1 (Mcl-1) gene, which serves as 

intracellular anti-apoptotic factor in a variety of hematopoietic cells including mast 

cells110,120. Indeed, conditional Cre-mediated deletion of Mcl-1 expression in Cpa3-

Cre x Mcl-1fl/fl mice resulted in significant but not complete mast cell deficiency. 

However, as in the Mas-TRECK system111, cell depletion is not entirely mast cell-

specific since Cpa3-Cre x Mcl-1fl/fl mice display also a marked reduction of basophils 

(58% - 78%)110.  

Our laboratory has chosen the Cpa3 locus for Cre-mediated manipulation of the 

mast cell lineage in vivo121. In contrast to Lilla et al., we used a gene targeting 

approach and thus introduced a Cre-expression construct into the first exon of the 

Cpa3 locus by homologous recombination in embryonic stem cells121,122. Originally, it 

was aimed to use Cpa3Cre mice to focus on mast cell development since their 

intercross with a Cre-inducible fluorescent protein reporter strain would result in a 

mast cell lineage reporter line. Surprisingly, gene targeted heterozygous Cpa3Cre/+ 

mice were deficient in mast cells122. An initial characterization confirmed the 
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histological absence of mast cells in peritoneal cavity, skin and small intestine122. 

Earlier reports of Cre-toxicity123,124 led to the conclusion that potential genotoxic 

effects of Cre result in constitutive mast cell ablation in Cpa3Cre/+ mice. This 

unexpected finding provided the basis to establish and characterize a novel mast 

cell-deficient mouse strain. Cpa3Cre/+ mice represent a promising tool to draw the yet 

open secrets from the ‘gorged cells’ that were initially described more then 130 years 

ago by Paul Ehrlich.  
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Aims of the study 
 
Mast cells have long been recognized as key effector cells in allergic disorders, but 

they receive increasing attention as crucial players of the immune system in general. 

Much of the groundwork for the understanding of mast cell functions in a broad 

range of diverse physiological and pathological conditions was established in mouse 

strains lacking mast cells due to defects in either stem cell factor or its receptor Kit. 

Major pro-pathogenic roles of mast cells had been reported in models of 

autoimmunity in Kit mutant mice. However, in addition to mast cells, defective Kit 

signalling affects many other lineages inside and outside of the immune system.  

Our laboratory has generated a new mouse strain that selectively lacks mast cells 

independent of Kit-related defects. Targeted insertion of Cre recombinase into the 

mast cell carboxypeptidase A locus constitutively deletes mast cells by a genotoxic 

mechanism in heterozygous Cpa3Cre/+ mice.  

 

The objectives of this study were:  

 

- Demonstration of the complete absence of mast cells in Cpa3Cre/+ mice by 

means of flow cytometry, histochemistry and gene expression analyses. 

- Analysis of IgE-driven anaphylactic reactions in the absence of mast cells in 

Cpa3Cre/+ mice. 

- Detailed comparison of immunological parameters in naïve Cpa3Cre/+ mice and 

wild type mice in search for immunological consequences of the absence of 

mast cells under steady-state conditions. 

- Investigation of the influence of mast cell deficiency under inflammatory 

conditions by subjecting CpaCre/+ mice to K/BxN serum transfer arthritis and 

experimental autoimmune encephalomyelitis (EAE). 
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2  Material and Methods 

2.1 Material 

2.1.1 Chemicals 
 
Unless otherwise noted, all standard chemicals not listed below were purchased 

from Riedel-de Haën, Merck and Fluka (liquid reagents) or Sigma-Aldrich (solid 

reagents) in ‘pro analysis’ grade. 

 
Reagent Company 
 
Agarose  
Bromphenol blue 
Complete Freund’s Adjuvant  
Chloroform 
DirectPCR Lysis Reagent Tail  
DNA molecular weight marker VI 
DNP11-OVA  
dNTPs (100mM each)  
Dynabeads Sheep Anti-Rat IgG 
EDTA disodium salt  
Ethidium bromide  
Eukitt  
Fast Garnet GBC Base solution 
Fluoromount G  
Heparin 
Ketavet 
Mycobacterium tuberculosis, H37Ra  
Naphthol AS-D Chloroacetate solution 
Paraformaldehyde 
PBS (Dulbecco’s)  
Percoll (1.130 g/ml) 
Pertussis toxin 
Readiload  
RNAzol 
Rompun 2 % 
Sodium chloride solution 9 % 
Sodium nitrite solution 
SYTOX Blue Dead Cell Stain 
Tris 
TRIZMAL 6.3 pH 
Trypanblue 
 

 
Biozym 
Merck 
Sigma-Aldrich 
Roth 
peqlab 
Roche 
BioCat 
GE Healthcare 
Invitrogen 
AppliChem  
AppliChem 
O. Kindler GmbH 
Sigma-Aldrich 
Southern Biotech 
Ratiopharm 
Pfizer 
Difco Laboratories 
Sigma-Aldrich 
Serva 
Gibco 
GE Healthcare 
List Biological Laboratories 
Invitrogen 
WAK-Chemie 
Bayer HealthCare 
Diaco 
Sigma-Aldrich 
Invitrogen 
USB 
Sigma-Aldrich 
Fluka 
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2.1.2 Kits 
 
Kit Company 
 
AmpliTaq DNA polymerase  
(incl. 10x buffer II, 25mM MgCl2)  
CFSE Cell Proliferation Kit  
Fixation/Permeabilization Kit with GolgiStop 
Foxp3 Staining Buffer Set  
innuPREP RNA Mini Kit  
LIVE/DEAD Fixable Dead Cell Staining Kit 
  

 
Applied Biosystems 
 
Invitrogen 
BD Bioscience 
eBioscience 
Analytik Jena AG 
Invitrogen 

 

2.1.3 Enzymes 
 
Enzymes Company 
 
Collagenase D  
Collagenase Type IV 
Dispase I 
DNase I 
Proteinase K 
 

 
Roche 
Sigma-Aldrich 
Roche 
Sigma-Aldrich 
Invitrogen 

 

2.1.4 Peptides 
 
Peptide Supplier 
 
MOG35-55 peptide  
(MEVGWYRSPFSRVVHLYRNGK) 

 
Charité - Institute for Medical 
Immunology, Berlin, Germany 
 

 

2.1.5 Oligonucleotides 
 
Synthetic oligonucleotides were purchased from ThermoHybaid Ulm and were 

delivered HPLC-purified and lyophilized. Oligonucleotides were dissolved at a 

concentration of 100 pmol/µl in ddH2O (HPLC grade). These stock solutions were 

stored at -20 ºC. 
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A combination of the following three oligonucleotides was used for genotyping of 

Cpa3Cre mice: 
common 5’: GGA CTG TTC ATC CCC AGG AAC C 

3’-WT: CTG GCG TGC TTT TCA TTC TGG 

3’-KI: GTC CGG ACA CGC TGA ACT TG;  

yielding 320 base pairs (Cpa3+) and 450 base pairs (Cpa3Cre) products. 

 

2.1.6 Antibodies and second steps 
 
Table 1   Antibodies, Sera and Second Step reagents 

Antibody Clone Working 
Dilution 

Isotype Supplier 

 
ChromPure Mouse IgG  
 
CD3-APC-Cy7  
CD4-PE-Cy7  
CD8-APC  
CD8-biotin  
CD8-PE-Cy7  
CD11b-PE-Cy7  
CD11c-FITC  
CD16-PE-Cy5.5  
CD19-PE-Cy5.5  
CD21-PE-Cy7  
CD34-APC  
CD44-PE-Cy5.5  
CD45-PE-Cy7  
CD45R-biotin  
CD62L-FITC  
CD93-APC  
CD117-APC-Cy7  
CD127-FITC  
F4/80-APC  
F4/80-APC-Cy7  
FcεRI-FITC  
Foxp3-PE  
IFN-γ-PE  
MHC class II-APC  
TCRγδ -APC  
Ter119-biotin 
Isotype control-PE  
Isotype control-PE 
CD4-APC  
CD11b-PE  
  

 
 
 
17A2 
GK1.5  
53-6.7  
53-6.7  
53-6.7  
M1/7  
N418  
93  
1D3  
8D9  
RAM34  
IM7  
30-F-11  
RA3-6B2  
MEL-14  
A4.1  
2B8  
A7R34  
BM8  
BM8  
MAR-1  
FJK-16s 
XMG1.2 
M5/114.15.2 
GL3  
Ter119 
eBRG1 
eBR2a 
RM4.5 
M1/70.15 
 

 
1:20 
 
1:25 
1:800 
1:100 
1:400 
1:400 
1:400 
1:100 
1:25 
1:400 
1:800 
1:25 
1:400 
1:400 
1:800 
1:1600 
1:400 
1:800 
1:25 
1:200 
1:50 
1:200 
1:100 
1:200 
1:1000 
1:50 
1:100 
1:200 
1:100 
1:400 
1:800 
 

 
mouse IgG 
 
ratIgG2b, k 
ratIgG2b, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2b, k 
hamsterIgG 
ratIgG2a, l 
ratIgG2a, k 
ratIgG2a, l 
ratIgG2a, k 
ratIgG2b, k 
ratIgG2b, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2b, k 
ratIgG2b, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2a, k 
hamsterIgG 
ratIgG2a, k 
ratIgG1, k 
ratIgG2b, k 
hamsterIgG 
ratIgG2b, k 
ratIgG1 
ratIgG2a 
ratIgG2a, k 
ratIgG2b, k 
 

 
Jackson 
ImmunoResearch 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all eBioscience 
Invitrogen 
Invitrogen 
 

 



Material and Methods 

 20 

Antibody Clone Working 
Dilution 

Isotype Supplier 

CD11b-biotin 
Sca-1-PE-Cy5.5  
CD135-biotin  
CD3-biotin  
CD3-PE  
CD3-PE-Cy7  
CD4-biotin  
CD4-FITC  
CD4-PE  
CD5-PE  
CD8-FITC  
CD8-PE  
CD11b-FITC  
CD11c-PE-Cy7  
CD16-biotin  
CD19-APC  
CD19-biotin  
CD19-FITC  
CD19-PE   
CD23-FITC  
CD25-PE-Cy7  
CD34-FITC  
CD45-APC-Cy7  
CD45-FITC  
CD45R-APC  
CD45R-FITC  
CD45R-PerCP-Cy5.5  
CD49b-APC  
CD117-APC  
CD125-PE  
FcεRI-PE  
Gr1-APC  
Gr1-biotin 
Gr1-FITC  
Gr1-PE  
humanCD4-PE-Cy7 
IgE-FITC  
IgM-PE  
Integrinβ7-PE  
NK1.1-APC  
Siglec-F-PE  
TCRβ-FITC  
Ter119-APC  
Ter119-FITC  
Ter119-PE 
Streptavidin-APC-Cy7 
Streptavidin-PE-Cy7   
DNP 
DNP 
K/BxN serum with 
anti-GPI antibodies 
 

M1/70.15 
D7 
A2F10 
500A2 
145-2C11 
145-2C11 
GK1.5 
H129.19 
H129.19  
53-7.3  
53-6.7  
53-6.7  
M1/70  
HL3  
2.4G2  
1D3  
1D3  
1D3  
1D3   
B3B4  
PC6 
RAM34  
30-F-11  
30-F-11  
RA3-6B2  
RA3-6B2  
RA-6B2  
HMa2  
2B8  
T21  
MAR-1 
RB6-8C5  
RB6-8C5  
RB6-8C5 
RB6-8C5 
SK3 
R35-72  
R6-60.2 
M293  
PK136  
E50-2440 
H57-597 
Ter119 
Ter119 
Ter119  
 
 
SPE-7 
U7.6 
 
 

1:500 
1:100 
1:100 
1:100 
1:25 
1:25 
1:300 
1:400 
1:200 
1:100 
1:200 
1:200 
1:800 
1:50 
1:100 
1:400 
1:400 
1:800 
1:200 
1:200 
1:1600 
1:25 
1:200 
1:400 
1:200 
1:50 
1:100 
1:800 
1:800 
1:50 
1:200 
1:400 
1:500 
1:800 
1:400 
1:25 
1:200 
1:50 
1:800 
1:100 
1:100 
1:200 
1:25 
1:100 
1:50  
1:200 
1:800 
 

ratIgG2b, k 
ratIgG2a, k 
ratIgG2a, k 
hamIgG2, k 
hamIgG1, k 
hamIgG1, k 
ratIgG2b, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2b, k 
hamIgG1, l 
ratIgG2b, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG1, l 
ratIgG2a, k 
ratIgG2b, k 
ratIgG2b, k 
ratIgG2a, k 
ratIgG2a, k 
ratIgG2a, k 
hamIgG1, k 
ratIgG2b, k 
ratIgG1, l 
hamsterIgG 
ratIgG2b, k 
ratIgG2b, k 
ratIgG2b, k 
ratIgG2b, k 
m IgG1, κ 
ratIgG1, k 
ratIgG2a, k 
ratIgG2a, k 
mIgG2a, k 
ratIgG2a, k 
hamIgG2, l 
ratIgG2b, k 
ratIgG2b, k 
ratIgG2b, k 
 
 
IgE  
IgG1 
mIgG 

Caltag Laboratories 
Caltag Laboratories 
BioLegend 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all BD Bioscience 
Sigma-Aldrich 
Ascites-produced125 
Diane Mathis, 
Boston100 
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2.1.7 Media and supplements for murine cells 
 
Media, buffers and supplement Supplier 
 
DMEM with GlutaMAX I   
FCS (fetal calf serum) 
HBSS  
IL-3 
 
IMDM with GlutaMAX I 
(with Glucose 4.5g/l, w/o Pyruvate) 
MEM non-essential amino acids (100x)  
MEM sodium pyruvate (100mM = 100x)  
β-mercaptoethanol  
PBS (Dulbecco’s w/o CaCl2, w/o MgCl2)  
Penicillin-Streptomycin 
(100x, 10.000U penicillin/ml,  
10.000 µg streptomycin/ml)  
Stem cell factor (SCF) 
 

 
Gibco 
HyClone 
Gibco 
Supernatant from an Il-3 gene 
transfected cell line126 
Gibco 
 
Gibco 
Gibco 
Gibco 
Gibco 
Gibco 
 
 
Supernatant from a cell line 
transfected with SCF cDNA 
 

 
Medium for bone marrow-derived mast cells (BMMC):  

 
10 % FCS 

100 µM MEM Non-essential amino acids 

1 mM MEM Sodium pyruvate 

100 U/ml Penicillin  

100 µg/ml Streptomycin 

50 µM β-mercaptoethanol  

1 % SCF conditioned medium 

1 % IL-3 conditioned medium  

in IMDM 
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Medium for murine spleen cells: 
 

10 % FCS 

100 U/ml Penicillin  

100 µg/ml Streptomycin 

50 µM β-mercaptoethanol  

in DMEM 

 

2.1.8 Buffers and solutions 
 

Blue loading buffer  30 % Glycerol 

    0.025 % Xylene cyanol FF 

    0.025 % Bromphenol blue 

 

Carnoy’s fixative  60 % Ethanol absolute 

    30 % Chloroform 

    10 % Acetic acid (conc.) 

 

Esterase staining solution 1 ml Fast Garnet CBG Base solution 

    1 ml Sodium Nitrite Solution 

    40 ml pre-warmed water 

    5 ml Trizmal pH 6.3 

    1 ml Naphthol AS-D Chloroacetate solution 

 

Kristensen’s solution 8 M formic acid 

    1 M sodium formate  

 

Paraformaldehyde  1x PBS 

4 % Paraformaldehyde 
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1x PBS    9.55 g/l of a D-PBS ready-to-use mixture (Gibco) 

8 g/l NaCl, 

0.2 g/l KCl 

1.15 g/l Na2HPO4 

0.2 g/l KH2PO4 

 
10x TBE    900 mM Tris 

900 mM Boric acid 

20 mM EDTA (pH 8) 

 

2.1.9 Cell lines and animals 
 

2.1.9.1 Eukaryotic cell lines 
 
CHO-SCF  CHO cells transfected with mouse SCF cDNA to produce the cytokine 

SCF, Genetics Institute, Boston 

 

X63-IL3  X63 myeloma cell line transfected with a mouse IL-3 cDNA construct to 

secrete large quantities of the cytokine IL-3126  

 

2.1.9.2 Mouse strains 
 
Inbred strains 
 
The inbred mouse strains C57BL/6 and BALB/c were originally obtained from 

Charles River or Harlan and maintained at the specific pathogen-free (SPF) mouse 

facilities of the University of Ulm or the DKFZ in Heidelberg. 

 
WB x C57BL/6J F1 KitW/Wv (WBB6F1 KitW/Wv) mice 
 
WB KitW/+ mice127 were originally purchased from Japan-SLC Inc., Japan, and 

intercrossed for maintenance. C57BL/6J KitWv/+ mice were purchased from Jackson 

Laboratories; Maine, USA, and crossed to C57BL/6 for maintenance. Heterozygous 
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offspring of both parental strains were identified by presence of a white belly spot127. 

For the generation of WBB6F1 KitW/Wv mice128, WB KitW/+ and C57BL/6J KitWv/+ mice 

were intercrossed. Animals of these three lines were kept under specific pathogen-

free (SPF) conditions in individually ventilated cages (IVC) at the animal facilities of 

the University of Ulm and the DKFZ in Heidelberg. 

 
Cpa3Cre mice 
 
Cpa3Cre mice were generated from targeted E14.1 ES-cells121. ES cell clones 

bearing the Cpa3Cre knock-in allele were injected into C57BL/6 blastocysts to 

produce chimeric mice. Subsequent crossing to C57BL/6 transmitted the targeted 

allele through the germline. Heterozygous offspring were then used to backcross the 

Cpa3Cre allele onto C57BL/6 and BALB/c background. Heterozygous mice on 

C57BL/6 background were intercrossed to obtain homozygous Cpa3Cre/Cre mice. All 

these strains were kept under specific pathogen-free (SPF) conditions at the animal 

facilities of the University of Ulm and the DKFZ in Heidelberg. 

 
Cpa3hCD4/hCD4 mice 
 
Cpa3hCD4/+ mice were generated from targeted E14.1 ES-cell clones following 

blastocyst injection. Heterozygous mice on C57BL/6 background were intercrossed 

to obtain homozygous Cpa3hCD4/hCD4 mice and they were kept under SPF conditions 

at the animal facilities of the University of Ulm and the DKFZ in Heidelberg. 
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2.1.10 Equipment 
 

Laboratory equipment Company 
 
Biophotometer  
Dial thickness gauge 
Cytospin3 (centrifuge)  
Digital thermometer Qtemp 200 
FACSCanto (FACS analyzer) 
Gel documentation - printer P93D  
Gel documentation - camera DNA Filter E55 
Heraeus Fresco 17 (benchtop centrifuge)  
Heraeus Megafuge 40R 
Inverse light microscope Primo Vert 
Light microscope DM LB2 
Light microscope Lab.A1 
LSRFortessa (FACS analyzer) 
T3000 Thermocycler (Biometra) 
Ultra Turrax T25 homogenizer 
 

 
Eppendorf 
Kaefer  
Shandon 
VWR International 
BD Bioscience  
Herolab/Mitsubishi 
Herolab 
Thermo Scientific 
Thermo Scientific 
Zeiss 
Leica  
Zeiss 
BD Bioscience 
Biometra 
IKA 

 

2.1.11 Computer analysis 
 
Flow cytometry data were acquired and analyzed with FacsDiva software (BD 

Bioscience). Microscopic images were acquired using Leica Application suite and 

further processed with Photoshop CS (Adobe). 

Statistical analyses were done using the free software environment R (version 

2.12.2), and graphs were generated with Prism 4.0c (Graphpad). Heat maps for the 

expression levels of selected genes were assembled with the Gene Pattern software 

package (Broad Institute, MIT). Hierarchical clustering was performed using Chipster 

CSC v1.4.7.  
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2.2 Methods 
 

2.2.1 Molecular Biology 
 

2.2.1.1 Genotyping of mice 
 

For genotyping of mice by PCR, DNA was extracted from tail biopsies. The tail 

biopsies were lysed in DirectPCR Lysis Tail Reagent (peqlab), supplemented with 

200 µg/ml Proteinase K (Invitrogen), according to manufacturer’s protocol. One µl of 

the lysate was directly used as template in the PCR reactions.  

Reagents from Applied Biosystems were utilized for PCR, and the total volume of the 

PCR was 25 µl with the following composition: 

 

1 µl Primer 5’ (10 pmol/ µl) 
 
1 µl Primer 3’ (10 pmol/ µl) 
 
1 µl Primer 3’ (10 pmol/ µl) 
 
2.5 µl 10x PCR buffer 
 
2 µl dNTP mix (0.2 mM final, each) 
 
1.5 µl MgCl2 (1.5 mM final) 
 
2.5 µl Readiload (Invitrogen) 
 
0.2 µl Taq polymerase 
 
12.3 µl H2O 
 
1.0 µl DNA template 
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The PCR reaction was performed on a T3000 Thermocycler (Biometra) using the 

following protocol:  Step1: 94 °C, 2 min 

Step2: 94 °C, 30 sec 

Step3: 62 °C, 45 sec 

Step4: 72 °C, 45 sec (35 repeats of steps 2 to 4) 

Step5: 72 °C, 2 min 

Step6:   4 °C, ∞ 

 

DNA fragments were separated according to their size by agarose (1 % in  

0.5 x TBE) gel electrophoresis. The gels contained 0.15 µg/ml ethidium bromide to 

visualize the separated DNA bands under UV light (312 nm).  

 

2.2.1.2 RNA extraction from cells and tissue samples 
 
RNA was extracted from ankle joints and spleens by using the innuPREP RNA Mini 

Kit from Analytik Jena AG. To homogenize ankle joints, the tissue was ground to a 

fine powder under liquid nitrogen using mortar and pestle. Spleens were processed 

into single cell suspensions, and 5 x 106 cells were applied as starting material for 

RNA isolation. Further working steps were performed according to manufacturer’s 

instructions. 

Total RNA from peritoneal exudates cells (PEC) and ear skin was extracted with 

RNAzol (Wak-Chemie). Up to 1.5 x 106 PEC were directly lysed in 300 µl RNAzol, 

and ear tissue was homogenized in 1 ml RNAzol using an Ultra Turrax T25 (IKA) 

homogenizer. Aqueous and organic phase separated after addition of 1/10 volume of 

chloroform. The samples were mixed, incubated for 5 min on ice, and centrifuged for 

15 min at 17000 g and 4 °C. Subsequently, the upper phase was extracted once with 

chloroform, and RNA was precipitated overnight at -20 °C by addition of an equal 

volume of isopropanol. The next day, the RNA was recovered by centrifugation for 

15 min at 17000 g and 4 °C. The RNA pellet was washed twice with 75 % ethanol 

and air-dried briefly. Finally, the RNA was re-dissolved in RNAse free water.  
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2.2.1.3 RNA expression analyses  
 

Microarray analyses were performed at the DKFZ Genomics and Proteomics Core 

Facility. RNA quality control was performed by total RNA Nano chip assay on an 

Agilent 2100 Bioanalyzer (Agilent Technologies GmbH). For microarray gene 

expression analyses, RNA was biotinylated and purified using the MessageAmp II 

aRNA Amplification kit (Ambion Inc.). Samples were hybridized to the Mouse WG-6 

v2.0 BeadChip (Illumina) and conjugated with streptavidin-Cy3 (Amersham 

Biosciences). Signals were read with an iScan Array scanner and normalized using 

the quantile normalization algorithm.  

 

2.2.2 Cell Culture  
 

2.2.2.1 General cell culture methods 
 

General cell culture conditions were 37 °C, 95 % humidity and 10 % CO2. Unless 

otherwise indicated, standard handling of the cells during experiments was as 

follows: Cells were kept on ice, standard washing buffer was PBS containing 5% 

FCS (PBS/5 % FCS). Standard centrifugation was 5 min at  

600 g (2500 rpm) in the Heraeus Fresco 17 centrifuge, or 5 min at 314 g  

(1200 rpm) in the Heraeus Megafuge 40R for 50-ml tubes and accordingly  

3 min at 1362 g (2500 rpm) for 96-well plates. Cells were centrifuged at 4 °C. 
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2.2.2.2 Determination of the cell number 
 

An aliquot of cells was diluted in an appropriate volume of PBS/5 % FCS and 10 µl 

of the cell suspension was further diluted with the same volume of trypan blue.  

Ten µl of this dilution were applied to a counting chamber. Cells in at least two of the 

four outer large squares were counted, but blue cells were excluded from counting. 

The cell number was calculated as follows: 

  

(number of counted cells x dilution factor x 104 chamber factor)/number of counted 

squares = number of cells/ml 

 

2.2.2.3 Ex vivo re-stimulation of MOG35-55-specific T cells 
 
Eleven days after immunization with CFA/MOG35-55 peptide, mice were killed and the 

spleens were harvested for single cell preparations. Bulk spleen cells were re-

suspended in complete DMEM medium containing 5 µM MOG35-55 peptide and  

5 x 105 cells per well were seeded into 96-well U-bottom plates, respectively.  Cells 

that were cultured in medium only served as controls. MOG35-55 re-stimulated cells or 

controls were analyzed for intracellular cytokine staining and proliferation response. 

Incubation time of the cells was chosen according to the intended purpose.  

For intracellular cytokine staining, the cells were incubated with MOG35-55 peptide in 

the presence of 0.7 µl/ml monensin (GolgiStop, BD Biosciences) overnight. To trace 

cell proliferation, CFSE-labeled cells were re-stimulated with 5 µM MOG35-55 peptide 

and incubated for 72 hours.  

 

2.2.2.4 Generation of bone marrow-derived mast cells (BMMC) 
 

Bone marrow cells were flushed out from tibia and femur of one hind limb with  

PBS/5 % FCS using a 25G needle. The cells were pelleted, re-suspended in  

1 ml BMMC medium and counted.  Cells were adjusted to 1 x 106 cells/ml in BMMC 

medium and plated into 6-well plates (3 ml/well). One ml medium was replaced by 
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fresh BMMC medium on a weekly basis. After two weeks non-adherent cells were 

transferred into new 6-well plates. After four to five weeks of culture the purity of the 

differentiated mast cells (FcεRI+ and Kit+) was at least 95 % as analyzed by flow 

cytometry. The optimal cell density is 0.5 - 1 x 106 cells/ml and BMMC were split 

accordingly.  

 

2.2.2.5 Loading Fcε-receptors of BMMC with DNP-specific IgE 
 

After six weeks of culture (2.2.2.4) BMMC were adjusted to 1 x 106 cells/ml in BMMC 

medium, and cells were incubated overnight with 0.15 µg/ml DNP-specific IgE 

monoclonal antibody (clone SPE-7, Sigma-Aldrich) in cell culture flasks. On the next 

day cells were harvested, washed twice in a large volume PBS, adjusted to  

33 x 106 cells/ml and prepared for intravenous injection (2.2.5.5).  

 

2.2.3 Preparation of cells from murine organs 
 

2.2.3.1 Preparing single cell suspensions from lymphatic organs 
 

Mice were killed by cervical dislocation. The organs were removed and stored in 

PBS/5 % FCS on ice. To obtain single cells from spleens and thymi, the organs were 

mechanically ground between the frosted parts of object slides. Femur and tibia were 

taken for the generation of single cells from the bone marrow. The bone marrow was 

flushed out with PBS/5 % FCS using a 25G needle, and single cell suspension was 

acquired by pipetting cells several times up and down. Cells were kept on ice until 

further use.  
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2.2.3.2 Recovery of peritoneal exudate cells (PEC) 
 

Mice were euthanized by CO2 asphyxiation. The peritoneum was freed and opened 

by a small cut. The peritoneal cavity was flushed successively with a total of 10 ml 

37 °C pre-warmed PBS/5 % FCS and the recovered PEC were collected on ice. 

 

2.2.3.3 Digestion of spleen and thymus for analysis of dendritic cells 
 

Spleens and thymi were minced and re-suspended in 500 µl PBS containing  

0.025 mg/ml DNase I (Sigma-Aldrich), 0.08 mg/ml dispase I (Roche) and  

0.2 mg/ml collagenase D (Roche). The minced tissues were incubated at  

37 °C under shaking at 700 rpm for 10 min. The supernatant, containing liberated 

cells, was collected on ice and 5 mM EDTA and 5 % FCS were added to inhibit 

remaining enzymatic activity. Undigested tissue clumps were subjected to further 

digestion rounds with fresh digestion mix until the tissues were completely digested. 

Finally, the cells were pelleted, re-suspended in PBS/5 % FCS and utilized for FACS 

analysis of dendritic cells.  

 

2.2.3.4 Isolation of leukocytes from the central nervous system 
 
Leukocytes were isolated from the central nervous system (CNS) of  

MOG35-55-immunized mice on day 11 post-immunization. Mice were euthanized by 

CO2 asphyxiation and were perfused through the left cardiac ventricle with cold 

heparinized (10 U/ml) PBS until the effluent ran clear. Subsequently, total brain and 

spinal cord were dissected, and the CNS tissue was minced in ice cold PBS. 

Pelleted (400 g, 10 min at 4 °C) tissue samples were re-suspended in 3 ml DMEM 

medium, supplemented with 10 % FCS, 1 mg/ml DNase I (Sigma-Aldrich) and  

2.5 mg/ml collagenase D (Roche), and were incubated for 30 min at 37 °C under 

constant stirring. 5 mM EDTA was added after digest, and the liberated cells were 

passed through a cell strainer (70 µm). Following centrifugation (400 g for 10 min at 

4 °C), the cells were re-suspended in 5 ml 40 % Percoll (GE Healthcare) and 
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carefully overlayed on 3 ml 70 % Percoll. Percoll gradient centrifugation was 

performed at 700 g for 30 min at RT with moderate deceleration. Leukocytes were 

collected from the 70 % to 40 % interface and washed twice in a large volume of 

PBS/5 % FCS before FACS analysis. 

2.2.3.5 Isolation of mononuclear cells from the small intestine 
 

The small intestines were removed, flushed with HBSS and opened alongside. The 

open intestines were rinsed three times in fresh ice cold HBSS and then chopped 

with two scalpels. The minced tissue was re-suspended in 20 ml complete IMDM 

medium, supplemented with 1 mg/ml collagenase type IV (Sigma-Aldrich), and 

incubated for 20 min at 37 °C under constant stirring. A total of three enzymatic 

digestion rounds were carried out. The undigested tissue clumps were collected after 

each digestion period and were subjected to another enzymatic digestion, while the 

liberated cells were processed for Percoll gradient centrifugation. Liberated cells 

were supplemented with 5 % FCS and 5 mM EDTA, passed through a cell strainer 

(70 µm), pelleted, re-suspended in 6 ml 44 % Percoll (GE Healthcare) and overlayed 

on 3 ml 67 % Percoll. Cells were spun at 400 g for 20 min at 4 °C, mononuclear cells 

were harvested from the interface and washed twice in a large volume  

PBS/5 % FCS. The cells from each digestion round were pooled and up to 3 x 106 

mononuclear cells were isolated from one intestine.  

 

2.2.3.6 Digestion of ear skin for the analysis of Kit+ cells 
 

Both ears from one mouse were pooled and minced. The minced tissue was re-

suspended in 20 ml complete IMDM medium, containing 2 mg/ml collagenase type 

IV (Sigma-Aldrich), and incubated for 20 min at 37 °C under constant stirring. 

Liberated cells were collected on ice, supplemented with 5 % FCS and 5 mM EDTA, 

passed through a cell strainer (70 µm), spun down and re-suspended in PBS/5 % 

FCS. Remaining tissue clumps were subjected to a second digestion round with 

fresh enzyme mix. The prepared cells were utilized for FACS analysis of skin-derived 

Kit+ cells.  
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Flow cytometry 
 

2.2.3.7 General antibody staining methods 
 

If not otherwise stated, all incubation steps were performed on ice and under light 

protection. Cells were stained in 96-well V-bottom plates or in 1.5-ml tubes. Up to  

5 x 106 cells were incubated in 50 µl PBS/5 % FCS, respectively. Prior antibody 

staining, cells were incubated for 20 min with 0.28 mg/ml mouse IgG (Jackson 

ImmunoResearch Laboratories) to block Fcγ-receptors. The blocked cells were spun 

down, re-suspended in PBS/5 % FCS with the diluted antibodies and incubated for 

45 min. After staining, cells were washed once with 1 ml PBS/5 % FCS in 1.5-ml 

tubes, or three times with 200 µl PBS/5 % FCS in 96-well plates. If necessary, cells 

were incubated for another 20 min with a secondary antibody and washed 

accordingly. The optimal working concentration for each antibody was determined by 

separate titration experiments and is listed under 2.1.6.  

Finally, cells were re-suspended in PBS/5 % FCS and analyzed on a FACSCanto or 

LSRFortessa (BD Bioscience). Data are displayed as dot plots or histograms using 

FACSDiva software (BD Bioscience).  

 

2.2.3.8 Labeling of dead cells 
 

To exclude dead cells from FACS analysis, 1 µM SYTOX Blue Dead Cell Stain 

(Invitrogen) was added to the cell samples 5 min before analysis, respectively. Since 

SYTOX penetrates the membranes of permeabilized cells, the LIVE/DEAD Fixable 

Dead Cell Staining Kit (Invitrogen) was applied for labeling of dead cells prior 

permeabilization. Briefly, cells were re-suspended in 1 ml PBS/5 % FCS and 1 µl 

fluorescent reactive dye was added. Cells were incubated on ice for 30 min in the 

dark and washed afterwards with 1 ml PBS/5 % FCS buffer. The labeled cells were 

further subjected to permeabilization and fixation for intracellular antibody staining. 
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2.2.3.9 Intracellular cytokine staining 
 

After live/dead staining with the LIVE/DEAD Fixable Dead Cell Staining Kit 

(Invitrogen) and staining of surface markers, cells were fixed and permeabilized 

using the Fixation/Permeabilization Kit from BD Biosciences according to 

manufacturer’s instructions. Briefly, cells were fixed in Cytofix/Cytoperm solution for 

20 min. Fixed cells were washed twice with Perm/Wash buffer  (BD Biosciences) and 

incubated with anti-IFN-γ antibody or the corresponding isotype control in 

Perm/Wash buffer for 1 hour at RT. Cells were washed twice in Perm/Wash buffer 

and re-suspended in PBS/5 % FCS for subsequent analysis. 

 

2.2.3.10 Intracellular Foxp3 staining  
 

After live/dead staining and staining of surface markers, cells were fixed and 

permeabilized using the Foxp3 Staining Buffer set from eBioscience according to 

manufacturer’s instructions. Briefly, cells were incubated in Fixation/Permeabilization 

Diluent for 30 min. Fixed cells were washed twice with Permeabilization Buffer and 

blocked with 2 % mouse IgG (Jackson ImmunoResearch Laboratories) in 

Permeabilization Buffer for 15 min. The Foxp3 antibody or its corresponding isotype 

control were directly added to the blocked cells, and cells were incubated with the 

antibodies for 30 min at 4 °C in the dark. Finally, cells were washed twice with 

Permeabilization Buffer and re-suspended in PBS/5 % FCS for subsequent FACS 

analysis. 

 

2.2.3.11 CFSE-labeling of spleen cells 
 
Labeling of cells was modified according to the CFSE Cell Proliferation Kit from 

Invitrogen. Briefly, single cell suspensions of bulk spleen cells were adjusted to  

2.5 x 106 cells/ml in PBS/0.1 % BSA. One µM CFSE was directly added to the cells, 

cell suspensions were mixed and incubated at RT for 3 min in the dark. The staining 

reaction was quenched by addition of five volumes PBS/10 % FCS and incubating 
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the cells for 5 min on ice. Cells were spun down and washed further two times with a 

large volume of PBS/10 % FCS to remove excess un-conjugated CFSE. Cells were 

re-suspended in complete DMEM medium and subjected to MOG35-55 peptide re-

stimulation (2.2.2.3).  

 

2.2.3.12 Depletion of lineage positive cells  
 
To enrich rare hematopoietic progenitor populations in spleen or bone marrow, cells 

expressing surface markers of hematopoietic lineage commitment were depleted. 

Single cells from whole spleen or bone marrow cells from two hind limbs were 

blocked with 0.28 mg/ml mouse IgG (Jackson ImmunoResearch Laboratories) in  

400 µl PBS/5 % FCS for 20 min at 4 °C. Cells were spun down and stained with 

lineage markers (CD3, CD4, CD8, CD19, CD45R, Gr1, Ter119) in 400 µl PBS/5 % 

FCS for 30 min at 4 °C, respectively. Afterwards, cells were washed twice, re-

suspended in 10 ml PBS/5 % FCS, and 2 x 108 magnetic beads (Dynabeads Sheep 

Anti-Rat IgG, Invitrogen), coated with polyclonal sheep anti-rat IgG antibodies, were 

added. After incubation for 1 hour at 4 °C in the dark under gentle rotation, bead-

bound lineage positive cells were separated from the unbound lineage negative 

fraction by magnetic field. The lineage negative cells in the supernatant were 

pelleted and utilized for further FACS analysis.  

 

2.2.4 Histology 
 

2.2.4.1 Cytospins 
 

Histochemical analyses of total PEC were done on cytospin preparations. Cell 

suspensions of 2 x 105 cells in 200 µl PBS/5 % FCS were cytospun onto glass slides 

at 28 - 55 g (500 - 700 rpm) for 5 min (Cytospin3, Shandon). The glass slides were 

air-dried, and cells were fixed according to the staining protocol. 
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2.2.4.2 Paraffin sections 
 

For chloroacetate esterase staining on ear skin sections, ears were incubated in 

Carnoy’s fixative at 4 °C overnight, followed by incubation in 100 % ethanol at 4 °C 

for 8 - 48 hours. Specimen were further processed and embedded in paraffin at the 

routine laboratory of the department for pathology at the University Clinic in Ulm. 

Haematoxylin and eosin staining on ankle joints was done on paraformaldehyde-

fixed and decalcified tissue. Therefore, tissue from the distal one-third of the tibia to 

the midpaw was collected and fixed in 4 % paraformaldehyde at 4 °C for 24 hours 

under gentle agitation. After fixation, ankles were decalcified in Kristensen’s solution 

for 48 hours at 4 °C under gentle agitation, dehydrated and embedded in paraffin. 

Paraffin embedded tissue was cut in 5-µm sections, respectively.  

 

2.2.4.3 Toluidine blue staining of cytospins 
 

Cytospins from PEC were stained with Toluidine blue. Air-dried cytospun cells were 

fixed with 50 % ethanol for 15 min and stained in 0.1 % Toluidine blue/30 % ethanol 

solution (Sigma-Aldrich) for 10 min, respectively. Finally, cells were washed with 

aqua dest, air-dried and mounted with Eukitt (O. Kindler GmbH). 

 

2.2.4.4 Chloroacetate esterase staining of ear sections  
 

Carnoy’s fixed paraffin sections were de-waxed and re-hydrated in xylol and a 

descending ethanol row. Subsequently, slides were incubated in esterase staining 

solution (Sigma-Aldrich) for 15 min at 37 °C in a water bath, counterstained with 

Mayer’s hemalum solution (Merck) for 2 min, washed with tap water and mounted 

with Fluoromount G (Southern Biotech). 
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2.2.4.5 Haematoxylin-Eosin (HE) staining of ankle sections 
 

Paraffin sections were de-waxed and re-hydrated as described in 2.2.4.4. The 

sections were stained in Mayer’s hemalum solution (Merck) for 7 min and washed 

afterwards in tap water about 5 min. Finally, slides were stained in 0.25 % Eosin/ 

50 % ethanol (Sigma-Aldrich), flushed shortly with aqua dest, de-hydrated in an 

ascending ethanol row and in xylol, air-dried and mounted with Eukitt (O. Kindler 

GmbH). 

 

2.2.5 Working with mice 
 

2.2.5.1 Maintenance and breeding   
 
Mice were kept under specific pathogen-free (SPF) conditions in individually 

ventilated cages in the animal facilities at the University of Ulm or the DKFZ. All 

animal experiments were approved by the local animal committees 

(Regierungspräsidien Tübingen and Karlsruhe) and were performed in accordance 

with institutional guidelines. Cpa3+/+ and Cpa3Cre/+ mice were littermates from at least 

12 backcrosses to C57BL/6 or the fourth backcross on Balb/c background. WB KitW/+ 

mice127 were crossed to C57BL/6JWv/+ mice. The resulting WB x C57BL/6J F1 KitW/Wv 

mice128 (referred to as WBB6F1 KitW/Wv) are black-eyed white animals. For all 

experiments, mice were age and sex-matched.  

  

2.2.5.2 Induction and assessment of EAE 
 

Complete Freund’s adjuvant (CFA, Sigma-Aldrich), containing 1 mg/ml heat 

inactivated Mycobacterium tuberculosis strain H37Ra, was further supplemented 

with additional M. tuberculosis (Difco Laboratories) to a final concentration of  

11 mg/ml. To get a viscous emulsion, equal volumes of M. tuberculosis-enriched 

CFA and in water dissolved murine MOG35-55 peptide (Charité, Berlin) were 
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squeezed several times through a 20G needle on ice. The correct consistency was 

reached when the produced emulsion did not disperse in water.  

Thirteen to fifteen weeks old mice were immunized subcutaneously on day 0 with 

100 µl emulsion containing 200 µg MOG35-55 peptide and CFA (with  

550 µg M. tuberculosis). Two injections per mouse (50 µl one on each side of the tail 

base) were given. In addition, the mice received 200 ng pertussis toxin (List 

Biological Laboratories) intravenously in 100 µl PBS on day 0 und 2 post-

immunization. Individual animals were monitored daily for clinical signs of disease 

and were scored according to their clinical severity of disease as follows:  

Table 2   Scoring system for EAE 

Clinical score Phenotype 

0 No signs of disease 

1 Limp tail or hind limb weakness 

2 Limp tail and hind limb weakness 

3 Partial hind limb paralysis 

4 Complete hind limb paralysis 

5 Moribund or dead 

 

Moribund animals were euthanized for ethical reasons. The data were plotted as the 

mean daily clinical score ± SEM for all animals in a particular group.  

 

2.2.5.3 Induction and evaluation of antibody-meditated arthritis 
 
Arthritis was induced in 12 weeks old recipient mice by intraperitoneal injection of 

150 µl pooled arthritogenic K/BxN serum100 (kindly provided by Mathis/Benoist lab, 

Harvard Medical School, Boston) on experimental days 0 and 2. Mice were 

monitored daily for arthritis severity. Thereby each paw was evaluated and scored 

individually, applying the following scoring system:  
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Table 3   Scoring system for arthritis 

Clinical score Phenotype 

0 No evidence of erythema and swelling 

1 Erythema and mild swelling 

2 Erythema and pronounced edematous swelling 

3 Ankylosis of the joint 

 

The data were plotted as mean daily clinical score (0 to 12 based on 0 - 3 scores for 

each of four paws) ± SEM for all animals in a particular group. Additionally, ankle 

thickness of the hind limbs was measured using a precision caliber (Kaefer, dial 

thickness gauge), and ankle thickening was calculated by subtracting the baseline 

ankle thickness of each hind limb from its subsequent measurements, respectively. 

  

2.2.5.4 Induction of passive systemic anaphylaxis 
 
To induce passive systemic anaphylaxis, mice were sensitized with an intravenous 

injection of 500 µg DNP-specific monoclonal IgG1 (U7.6) antibody or 20 µg DNP-

specific IgE monoclonal antibody (clone SPE-7, Sigma-Aldrich) in 100 µl PBS. Three 

hours after IgG injection or 24 hours after IgE injection, mice were intravenously 

challenged with 500 µg DNP30-40-HSA (Sigma-Aldrich) or 20 µg DNP11-OVA 

(BioCat), respectively. Following challenge, rectal temperature was monitored in 10 

min intervals with a digital thermometer (Qtemp 200, VWR International). 

 

2.2.5.5 Induction of systemic anaphylaxis in BMMC-transplanted mice 
 
For the transplantation with cultured mast cells, mice were intravenously injected 

with 10 x 106 IgE-loaded syngeneic BMMC (2.2.2.5) or 10 x 106 unloaded BMMC in 

300 µl PBS, respectively.  Four hours later, mice were intravenously challenged with 

20 µg DNP11-OVA (BioCat) and rectal temperature was measured in 10 min 

intervals.  
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2.2.5.6 Induction of passive cutaneous anaphylaxis 
 

For induction of passive cutaneous anaphylaxis, mice were first narcotized by an 

intraperitoneal injection of 100 mg/kg Ketamine (Pfizer) and 16 mg/kg Xylazine 

(Bayer HealthCare) in 0.9 % NaCl solution (Diaco). Narcotized mice were sensitized 

by intradermal injection of 20 ng DNP-specific IgE (Sigma-Aldrich), dissolved in 20 µl 

PBS, into the skin of one ear. As control, the opposite ear was treated with 20 µl 

PBS only. Twenty-four hours later, mice were intravenously challenged with 100 µg 

DNP11-OVA (BioCat) in 1 % Evan’s blue (Sigma-Aldrich) in 100 µl PBS. Mice were 

killed and their ears were dissected 15 min after challenge for the quantification of 

the extravasation of Evan’s blue. Ears were placed into tubes with 1.5 ml formamide 

and incubated at 55 °C overnight. The optical density of extracted Evan’s blue in the 

supernatant was measured at 620 nm.  

 

2.2.6 Statistical Analysis 
 

Unpaired t test and one-sample t test were performed with Prism 4 (GraphPad 

Software). p values are given in the figures, and p > 0.05 was considered 

nonsignificant (n.s.). A two-way ANOVA for longitudinal data was used to evaluate 

the differences in response curves of Cpa3+/+ and Cpa3Cre/+ mice in arthritis and EAE 

experiments. All computations were performed with the statistical software 

environment R, version 2.12.2. Values for p > 0.05 were considered nonsignificant. 

Differentially expressed genes were filtered by standard deviation (3 SDs = 99.7%), 

subjected to a several groups test (empirical Bayes method with Benjamini-Yakutieri 

test) and hierarchically clustered by Pearson correlation. 
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3 Results 

3.1 Complete absence of CTMC in Cpa3Cre/+ mice 
 
The Cpa3Cre strain was initially generated for genetic mapping of mast cell 

development pathways. The strategy was to combine mast cell-specific Cre 

expression in Cpa3Cre mice with a Cre-dependent reporter locus to create a mast cell 

lineage reporter mouse121. But to our surprise, first analyses of heterozygous 

Cpa3Cre/+ mice revealed a complete lack of mast cells in their peritoneal cavity, skin 

and intestinal mucosa122. These unexpected results led us to establish this mouse 

strain as novel mast cell-deficient mouse model.  

Initial experiments in the Cpa3Cre/+ mice focused on the histological verification of the 

absence of mast cells from peritoneal cavity, ear skin and small intestine. In the 

present study different independent methods were applied to examine whether mast 

cells were entirely absent in skin and peritoneal cavity. To this end, both anatomical 

sites, that are normally rich in mast cells, were analyzed by flow cytometry, histology 

and mRNA expression arrays.  

 

3.1.1 Analysis of CTMC by histology and flow cytometry 
 
The surface antigens Kit and FcεRI are markers, which are in combination commonly 

used to characterize mast cells by flow cytometry. In the peritoneal cavity, mast cells 

represent about 1 – 2 % of all peritoneal exudate cells (PEC). Accordingly, a distinct 

population of Kit+FcεRI+ cells was identified by flow cytometry on PEC of Cpa3+/+ 

mice (Figure 4A, left) whereas this population was absent in Cpa3Cre/+ mice (Figure 

4B, left). For a morphological confirmation of these findings cytospins of PEC were 

stained with toluidine blue. Highly granulated cells with the typical metachromatic, 

i.e. purple staining of mast cells were detected in Cpa3+/+, but not in Cpa3Cre/+ mice 

(Figure 4A and B, right side).  
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Figure 4   Histological and flow cytometric analyses of mast cells in peritoneal cavity 
and skin  

(A, B) Peritoneal exudate cells from Cpa3+/+ (A, left) and Cpa3Cre/+ (B, left) mice were 
analyzed by flow cytometry for the presence of Kit+FcεRI+ mast cells. FcεRI expression was 
detected by anti-IgE staining. Shown numbers represent the percentage of mast cells within 
total alive cells. Cytospins of total peritoneal exudate cells from Cpa3+/+ (A, right) and 
Cpa3Cre/+ (B, right) mice were stained with toluidine blue for metachromatic mast cells. The 
scale bar applies for both photographs. (C, D) Single cell suspensions from digested ear 
tissues of Cpa3+/+ (C, left) and Cpa3Cre/+ (D, left) mice were stained for Kit and CD45 and 
analyzed by flow cytometry. Numbers show percentages of gated Kit+CD45+ mast cells 
within total alive cells. Paraffin sections of ear skin from Cpa3+/+ (C, right) and Cpa3Cre/+ (D, 
right) mice were analyzed for chloroacetate esterase activity in mast cells. The shown scale 
bar in D applies for both photographs.  
 
Next, ear skin was analyzed for the presence of mast cells. To test the skin for 

hematopoietic-derived Kit-expressing cells by flow cytometry, the tissue was 

digested with collagenase, and liberated cells were stained for CD45 and Kit. By this 

approach, 1.3 % of acquired live cells from Cpa3+/+ mice were CD45+Kit+ skin-

resident mast cells (Figure 4C, left). In contrast, flow cytometry from skin of Cpa3Cre/+ 

mice revealed no Kit-expressing hematopoietic cells and hence further confirmed the 

ablation of skin mast cells in this mouse strain (Figure 4D, left). Furthermore, ear 
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sections from Cpa3+/+ and Cpa3Cre/+ mice were analyzed by histochemical staining 

for chloroacetate esterase activity. Positively stained mast cells were only identified 

in the dermis of wild type but not Cpa3Cre/+ mice (Figure 4C and D, right panel).  

In summary, mast cell deficiency of Cpa3Cre/+ mice was demonstrated for skin and 

peritoneal cavity by flow cytometry and histology.   

 

3.1.2 Cpa3Cre/+ mice lack expression of mast cell products in peritoneal 
cavity and ear skin 

 
A gene expression approach was chosen to comprehensively test normally mast 

cell-bearing tissues for the presence or absence of mast cell products. The results 

shown here were obtained in collaboration with Dr. Thorsten Feyerabend, who 

conducted RNA extraction. Total mRNAs were extracted from peritoneal lavage cells 

(Figure 5A) or ear skin homogenates (Figure 5B), and were analyzed by whole-

genome gene expression arrays. Expression profiling of the RNA samples was 

performed at the DKFZ Microarray Core Facility. Dr. Markus Feuerer and Martin 

Teichert assisted with the preparation of the heat maps. For a direct comparison of 

gene expression signatures in Cpa3Cre/+ mice and conventional mast cell-deficient Kit 

mutant mice, RNA samples of KitW/Wv mice were included.  

The CTMC-specific protease genes Cma2, Cpa3, Mcpt4, Mcpt5 and Mcpt6 were 

strongly expressed in peritoneal cells and skin from wild type mice but, consistent 

with the complete lack of mast cells, their expression was undetectable in Cpa3Cre/+ 

and KitW/Wv mice. As expected for connective tissues, protease transcripts of 

mucosal mast cells (Mcpt1, Mcpt2) or basophils (Mcpt8) as well as from mast cells of 

different anatomical sites e.g. the uterus (Mcpt9) were not detectable in peritoneal 

cavity or skin from any of the three analyzed strains. The mast cell products Kit and 

FcεRI were not expressed in the peritoneal cavity of Cpa3Cre/+ or KitW/Wv mice (Figure 

5A). In the skin, Kit expression was undetectable in KitW/Wv mice but only reduced in 

Cpa3Cre/+ mice compared to wild type mice (Figure 5B). Residual Kit expression in 

Cpa3Cre/+ skin is most likely derived from cells of the melanocyte lineage, which 

express Kit. Cpa3Cre/+ mice are on the C57BL/6 background and are wild type for Kit. 

In contrast to KitW/Wv mice, they should therefore have normal numbers of Kit-
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expressing skin-resident melanocytes. This is in agreement with the finding that the 

melanocyte-associated genes silver (Si) and dopachrome tautomerase (Dct) were 

expressed at normal levels in the skin of Cpa3Cre/+ mice but not in Kit mutant KitW/Wv 

mice (Figure 5B).  

 

Figure 5   Mast cell gene expression signature in peritoneal cavity and skin 

Total mRNAs were isolated from peritoneal lavage cells (A) and ear skin (B) of Cpa3+/+, 
Cpa3Cre/+ and KitW/Wv mice and analyzed by global gene expression arrays for differentially 
expressed genes. Analyzed genes are listed adjacent to the heat map in B. The heat maps 
in (A) and (B) are globally normalized for all shown genes and the color code at the bottom 
visualizes the corresponding differences in gene expression.  
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Further mast cell-associated genes like the transcription factor Gata2, which is 

important for mast cell development, and histidine decarboxylase (Hdc), which is 

involved in histamine metabolism in mast cells and other myeloid cells, were 

detected in wild type mice, but were similarly reduced in mast cell-deficient Cpa3Cre/+ 

and KitW/Wv mice. Transcripts of genes that are critically involved in phagocytic 

defence mechanisms (Lyzs and Ncf1) as well as Fcγ receptors (Fcgr2b, Fcgr3 and 

Fcgr4) and cytokines (Il4, Il6, Il9, Il10, Tnf, Ifng) were not differentially expressed in 

wild type mice or mast cell-deficient Cpa3Cre/+ or KitW/Wv mice (Figure 5).  

Taken together, mRNA expression analyses revealed a loss of mast cell-specific 

transcripts in the peritoneal cavity and ear skin of Cpa3Cre/+ mice, confirming their 

complete mast cell deficiency. The direct comparison of the expression profile of 

mast cell-specific transcripts in Cpa3Cre/+ and KitW/Wv mice revealed an equal extent 

of mast cell deficiency in both strains. Finally, Cre-mediated mast cell ablation did 

not influence the expression of the analyzed immune cell-associated parameters.  

 

3.1.3 Cpa3Cre/+ mice are resistant to IgE-mediated anaphylaxis 
 
Next, Cpa3Cre/+ mice were subjected to IgE-mediated anaphylaxis to functionally test 

for the absence of mast cells.  

Activation of mast cells via antigen-induced cross-linking of FcεRI-bound IgE 

molecules results in degranulation with rapid release of biologically active mediators 

including histamine, which increase vascular permeability and cause smooth muscle 

contraction. This severe type 1 hypersensitivity reaction is called anaphylaxis. 

Antigen-induced IgE-mediated anaphylaxis can be modeled in mice by first injecting 

an antigen-specific IgE antibody, which replaces FcεRI-bound endogenous IgE, 

followed by injection of the corresponding antigen. This so-called passive 

anaphylaxis can be induced locally or systemically.  
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Figure 6   IgE-mediated anaphylactic response in Cpa3Cre/+ mice 

(A) Passive cutaneous anaphylaxis (PCA) in Cpa3+/+ and Cpa3Cre/+ mice. Mice were 
sensitized by intradermal injection of DNP-specific IgE into one ear, and the opposite ear 
was injected with PBS. On the next day, mice were challenged by intravenous injection of 
DNP-Ovalbumin together with Evan’s blue. Extravasated Evan’s blue was extracted from ear 
tissue and optical density was measured at 620 nm. Data are shown as mean ± SEM for two 
mice per genotype. (B) Cpa3+/+ and Cpa3Cre/+ mice were subjected to passive systemic 
anaphylaxis (PSA). Mice were intravenously injected with anti-DNP IgE and challenged on 
the subsequent day by intravenous injection of DNP-Ovalbumin. Anaphylactic response 
following challenge was measured as drop in body temperature. Rectal temperatures were 
monitored in 10 min intervals and are expressed as temperature difference compared to 
starting temperature. Shown are the mean ± SEM for five animals per genotype. (C) Passive 
systemic anaphylaxis in mast cell-transplanted mice. Cpa3Cre/+ mice were intravenously 
reconstituted with DNP-specific IgE-loaded bone marrow derived mast cells (BMMC + IgE). 
The control group was injected with untreated mast cells (BMMC w/o IgE). After a rest of 
four hours, mice were intravenously injected with DNP-Ovalumbin. Cpa3+/+ mice that were 
subjected to PSA as described in (B) served as positive control (Cpa3+/+ + IgE). Drop in 
rectal temperature was recorded as in (B). Data are shown as mean ± SEM for three 
(Cpa3+/+) or five mice (BMMC transplanted) per group, respectively. 
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To elicit local passive cutaneous anaphylaxis (PCA), mice were first sensitized by 

intradermal injection of antigen-specific IgE into the skin of one ear. As negative 

control, the opposite ear was injected with PBS. Mice were challenged 24 hours later 

by intravenous injection of the multivalent antigen. Co-injected Evan’s blue served as 

tracer for the mast cell-triggered local increase of vascular permeability. Five minutes 

after antigenic challenge, dye extravasation was observed in IgE-injected  

(0.313 ± 0.02 OD) but not in control-injected ears of Cpa3+/+ mice (0.023 ± 0.02 OD). 

In Cpa3Cre/+ mice no extravasation of Evan’s blue was measured in IgE-sensitized 

ears (0.014 ± 0.0 OD), indicating the absence of mast cell-mediated anaphylactic 

response in these mice (Figure 6A). In addition, Cpa3Cre/+ mice were also subjected 

to a systemic anaphylaxis model. IgE-mediated passive systemic anaphylaxis relies 

on the same mechanisms as local anaphylaxis. However, release of vasoactive 

mediators from systemically activated mast cells results in a measurable drop of the 

body temperature due to systemic vasodilatation. To induce passive systemic 

anaphylaxis (PSA), mice were sensitized by intravenous injection of antigen-specific 

IgE and challenged one day later by intravenous antigen application. Cpa3+/+ mice 

responded with a transient drop in body temperature that peaked 30 minutes after 

antigenic challenge (-2.6 ± 1.07 K) whereas mast cell-deficient Cpa3Cre/+ mice were 

resistant to the induction of passive systemic anaphylaxis (Figure 6B). Of note, we 

noticed a slight increase in the body temperature in Cpa3Cre/+ mice, which is probably 

due to the repeated handling of the mice caused by the temperature measurements. 

To test whether defective systemic anaphylaxis was solely mast cell-dependent, 

Cpa3Cre/+ mice were transplanted with bone marrow-derived mast cells (BMMC) from 

wild type mice. In detail, cultured mast cells were incubated with antigen-specific IgE 

to allow loading of the high-affinity IgE receptor FcεRI. Ten million sensitized BMMC 

were intravenously injected into Cpa3Cre/+ mice. Control mice received cultured mast 

cells that were not pre-incubated with IgE. Finally, anaphylaxis was provoked in mast 

cell-transplanted Cpa3Cre/+ mice by systemic antigen challenge. Twenty minutes after 

antigen injection, Cpa3Cre/+ mice that were reconstituted with IgE-sensitized mast 

cells showed a temperature drop (-2.70 ± 1.50 K) that was comparable to wild type 

mice (-2.57 ± 0.65 K), which were subjected to normal passive systemic anaphylaxis. 

Body temperature did not decrease in Cpa3Cre/+ control mice that were injected with 
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non-sensitized mast cells, demonstrating that anaphylaxis is dependent on activated 

mast cells (Figure 6C). 

In summary, Cpa3Cre/+ mice were refractory to IgE-driven local and systemic 

anaphylaxis, confirming mast cell deficiency on a functional level. The defect in 

systemic anaphylactic response was repaired by mast cell transplantation.   

3.2 Characterization of the immunological status of Cpa3Cre/+ mice 
 
The previous experiments have established complete Cre-mediated mast cell 

ablation in Cpa3Cre/+ mice. The following analyses were intended to clarify whether 

other immunologically relevant cell types might be affected by the absence of mast 

cells or by Cpa3-driven Cre expression in the naïve hematopoietic system. To this 

end, heterozygous Cpa3Cre/+ mice were subjected to a systematic evaluation of their 

immunological status under non-immunized steady-state conditions. The detailed 

analysis of splenic immune cells included subpopulations of T and B cells, NK cells, 

and cells of the myeloid lineage including dendritic cell subsets.  
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3.2.1 Lymphoid cell subsets are normal in Cpa3Cre/+ mice 
 
Absolute numbers of lymphocyte subsets and NK cells from spleen samples of 

Cpa3Cre/+ mice were determined by flow cytometry and compared to samples from 

their wild type littermates. CD4+ and CD8+ T cell populations were further divided into 

naïve, activated or effector memory, and central memory cells by CD44 and  

L-selectin (CD62L) expression. A summary of the surface markers characterizing the 

respective cell subsets is depicted in Table 4:  

 

Table 4   Cell surface markers for the characterization of lymphoid subsets 

Cell population Surface markers 

Naïve T cells CD44–CD62L+ 

Activated or effector memory T cells CD44highCD62L– 

Central memory T cells CD44lowCD62L+ 

Regulatory T cells CD4+CD25+Foxp3+ 

Transitional type 1 B cells CD19+ CD93+IgM+CD23– 

Transitional type 2 B cells CD19+CD93+IgM+CD23+ 

Transitional type 3 B cells CD19+CD93+IgMlowCD23+ 

Marginal zone B cells  CD19+CD93–CD21highCD23– 

Follicular B cells CD19+CD93–CD21+CD23+ 

B-1a B cells CD19+CD93–CD5+ 

B-1b B cells CD19+CD93–CD5– 

NK cells CD19–CD3–NK1.1high 

NK T cells CD19–CD3lowNK1.1+ 
 
 

None of the T cell populations differed in numbers between Cpa3Cre/+ and wild type 

mice (Figure 7A and 7B). Total numbers of splenic TCRαβ and TCRγδ T cells, were 

similar between mast cell-deficient and control mice (Figure 7C). 
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Figure 7 Flow cytometric analysis of splenic T cell subsets  

(A - D) Spleen cells from naïve Cpa3+/+ and Cpa3Cre/+ mice were analyzed for various T cell 
subsets by flow cytometry. (A, B) Dot plots (left) demonstrate the representative gating 
strategy for naïve, activated and central memory CD4+ (A) and CD8+ (B) T cell populations. 
Quantification for each subset is displayed on the right. Shown are the mean ± SEM for 12 
mice per genotype. (C) CD3+ cells were analyzed for the expression of αβ and γδ T cell 
receptors. Quantified data are shown as mean ± SEM for eight mice per genotype. (D) 
Regulatory T cells were defined as CD4+CD25+Foxp3+ cells. Mean ± SEM of total cell 
numbers from eight mice per genotype are shown.  
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It hast been reported that mast cells can interact with regulatory T cells (Tregs) in 

several ways85,129,130. In naïve mast cell-deficient KitW-sh/W-sh mice, a decrease in the 

Treg frequency in lymphoid organs compared to wild type mice was observed106. 

However, the number of Tregs in the spleen of mast cell-deficient Cpa3Cre/+ mice 

was similar to the number of Tregs in wild type littermates (Figure 7D).  

The analyses for peripheral B cells included subsets of classical immature and 

mature B-2 cells as well as B-1 cells in the spleen (Figure 8). Immature B cells 

express CD93 and their maturation process in the periphery is characterized by a 

sequential series of discrete stages named transitional type 1, type 2, and type 3 B 

cells (Table 4). The analyses of these three developmental B cell stages revealed no 

significant alterations in Cpa3Cre/+ mice (Figure 8A). This holds also true for the 

mature CD93- B cell populations (Table 4), namely marginal zone B cells and 

follicular B cells (Figure 8B). Besides the conventional B-2 cells, the numbers of 

splenic B-1a and B-1b cells (Table 4) were investigated but no significant changes in 

numbers of these two subpopulations of B-1 cells were noticed in mast cell-deficient 

mice compared to wild type mice (Figure 8C). Since B-1 cells are predominantly 

enriched in the peritoneal cavity, peritoneal lavage cells were also analyzed for the 

presence of B-1 cells. The lack of peritoneal mast cells did not have an impact on 

cell numbers or composition of peritoneal B-1 cells in Cpa3Cre/+ mice (data not 

shown). 
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Figure 8   Flow cytometric analysis of splenic B cell subsets  

(A - C) Spleen cells from naïve Cpa3+/+ and Cpa3Cre/+ mice were analyzed for various B cell 
subsets by flow cytometry. (A) The dot plot (left) shows gates for flow cytometric 
characterization of T1, T2 and T3 cells within immature 19+CD93+ B cells. Quantified data 
are displayed on the right. (B) Gating for the population of CD19+ marginal zone and 
follicular B cells (left) and summary of total cell numbers (right). (C) B-1 cells were 
subdivided into B-1a and B-1b cells by means of their CD5 expression. Bar graphs (A - C) 
represent mean ± SEM of total cell numbers from 12 mice per genotype, respectively. 
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To further characterize lymphoid lineages, numbers of natural killer (NK) cells, and 

natural killer T cells (NKT), a cell type that co-expresses molecular markers of T cells 

and NK cells, were also determined (Table 4). No alterations in the abundance of NK 

and NKT cells were found in mast cell-deficient Cpa3Cre/+ mice (Figure 9). 

 

 

Figure 9   Flow cytometric analysis of NK and NKT cells 

Total numbers of splenic natural killer (NK) cells and natural killer T (NKT) cells were 
compared between Cpa3+/+ and Cpa3Cre/+ mice. The dot plot on the right shows the 
characterization of both subsets by means of their surface marker expression. Bar graphs 
show the mean ± SEM for eight mice per genotype.  
 

3.2.2 Numbers of myeloid cell subsets are normal in Cpa3Cre/+ mice 
except for a reduction in basophils 

 

To test an impact of mast cell deficiency on myeloid lineages, dendritic cells, 

macrophages and granulocytes were quantified. Dendritic cells (DCs) play a 

dominant role in the initiation and shaping of adaptive immune responses. They are 

classified into myeloid DCs, lymphoid DCs, and plasmacytoid DCs (Table 5).  

No significant differences were found in the spleen of Cpa3Cre/+ mice when compared 

to wild type spleens for either of the corresponding DC populations (Figure 10).  
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Figure 10 Flow cytometric analysis of dendritic cells 

Spleens from Cpa3+/+ and Cpa3Cre/+ mice were enzymatically digested for subsequent 
analyses of dendritic cell subsets. The shown dot plot is representative for the 
characterization of myeloid DCs (mDC) and lymphoid DCs (lDC). Plasmacytoid DCs (pDC), 
which are defined as MHCIIlowB220+CD11b–CD11c+ cells, are not depicted in the dot plot. 
Quantified data of all three analyzed subsets are expressed as mean ± SEM for nine mice 
per genotype. 

  
Table 5   Cell surface markers for the characterization of myeloid subsets 

Cell population Surface markers 

Myeloid dendritic cells MHCII+B220–CD11b+CD11c+ 

Lymphoid dendritic cells MHCII+B220–CD11b–CD11c+ 

Plasmacytoid dendritic cells MHCIIlowB220+CD11b–CD11c+ 

Macrophages F4/80+CD11b+ 

Neutrophils Gr1(Ly6G/Ly6C)highCD11b+ 

Eosinophils CD11c–FcεRIα–Gr-1lo–negCD11b+Siglec-F+ 

Basophils lin–FcεRI+DX5+ 
 
 
Finally, total cell numbers of macrophages and granulocytes, i.e. neutrophils, 

eosinophils, and basophils, were determined (Table 5). Compared to wild type 

littermates, normal numbers of macrophages, neutrophils and eosinophils were 

found in Cpa3Cre/+ mice (Figure 11A). Especially the unaffected neutrophil 

compartment in Cpa3Cre/+ mice is worth mentioning since Kit mutant KitW/Wv and  

KitW-sh/W-sh mice suffer from neutropenia131 and neutrophilia79, respectively. 
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Interestingly, splenic neutrophils are significantly increased in the recently published 

Kit-independent mast cell-deficient Cpa3-Cre x Mcl-1(fl/fl) mouse strain110. These mice 

also have a marked reduction of basophils (58 % - 78 %) in spleen and bone 

marrow110. Lately, a similar reduction of basophils in the peripheral blood of KitW/Wv 

mice was published108 whereas others reported normal numbers of basophils in 

KitW/Wv mice68,69. To unravel these yet conflicting results, KitW/Wv mice were added to 

our examination of basophils. The analysis revealed a significant reduction of 

basophils in the spleens of Cpa3Cre/+ mice compared to wild type mice and an even 

more pronounced reduction in KitW/Wv mice (Figure 11B). While Cpa3Cre/+ mice had 

about one-third (0.57 ± 0.23 x 105) of basophils compared to Cpa3+/+ mice  

(1.6 ± 0.61 x 105), in KitW/Wv mice the number of basophils was further reduced down 

to 11.25 % (Figure 11B).  

 

Figure 11   Flow cytometric analysis of macrophages and granulocytes  

Spleens from naïve Cpa3+/+ and Cpa3Cre/+ mice were analyzed for macrophages and 
granulocytes by flow cytometry. (A) Bar graphs show direct comparison of total numbers of 
basophils, eosinophils, neutrophils and macrophages between Cpa3+/+ and Cpa3Cre/+ mice. 
Data are expressed as mean ± SEM for 12 animals per genotype. (B) The scatter plot 
summarizes total numbers of splenic basophils in Cpa3+/+ (+/+), Cpa3Cre/+ (Cre/+) and KitW/Wv 

(W/Wv) mice. Analyses included 16 mice per genotype except for KitW/Wv mice (7 animals). 
Data were statistically analyzed by unpaired t test and were considered as significantly 
different.  
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In summary, physical and functional mast cell deficiency combined with a reduction 

of basophils was demonstrated in Cpa3Cre/+ mice. Apart from the basophil reduction, 

this mouse strain seems to have normal cellular elements in the steady-state 

immune system, since no difference in any lymphoid or other myeloid cell subset 

was found.  

3.2.3 Correlation between Cpa3-driven Cre expression and cell 
ablation in the basophil/mast cell lineages 

 
Based on the presumed developmental relationship between the basophil and mast 

cell lineages in adult murine hematopoiesis18, it is conceivable that Cpa3-driven Cre 

expression might influence the development and maintenance of both lineages and 

consequently account for the lack of mast cells and the reduction of basophils in 

Cpa3Cre/+ mice. To test for Cpa3 expression levels in both lineages, a Cpa3 knock-in 

reporter strain was used that was recently developed in our laboratory by Dr. 

Thorsten Feyerabend. In gene-targeted Cpa3hCD4/hCD4 mice, a human CD4 surface 

receptor (hCD4) was inserted into the Cpa3 locus (unpublished). The receptor 

expression can be specifically detected by anti-hCD4 antibody staining. Hence, 

Cpa3 locus transcription can be indirectly visualized by cell surface expression of 

hCD4.  

 

Table 6   Cell surface markers for the characterization of basophil and mast cell 
progenitors 

Cell population Surface markers 

Basophil/mast cell progenitors lin–kit+FcγRII/IIIhighβ7integrin+ 

Basophil progenitors  lin–CD34+FcεRIhighkit+ 

Mast cell progenitors  lin–CD45+CD34+β7integrin+FcγRII/IIIhigh 
 
 

Cpa3 expression was first evaluated in the known splenic bipotent basophil/mast cell 

progenitor (BMCP) (Table 6). The mean fluorescence intensity (MFI) of hCD4 

staining reflects the expression levels of the Cpa3 gene. Consistent with weak 
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expression of the Cpa3 locus, splenic BMCPs were present in normal numbers in 

Cpa3Cre/+ mice (1.34 ± 0.57 x 103) compared to wild type littermates  

(1.30 ± 0.56 x 103) (Figure 12A). Unipotent progenitors of the basophil and the mast 

cell lineage (Table 6) can be isolated from the bone marrow and the small intestine, 

respectively18. Compared to Cpa3 gene expression in BMCPs, expression levels 

were slightly increased in basophil progenitors (by a factor of 1.6) (Figure 12B) and 

in mast cell progenitors (by a factor of 1.3) (Figure 12C). While the abundance of 

basophil progenitors in the bone marrow was not affected by Cpa3-driven Cre 

expression (1.36 ± 0.50 x 103 in Cpa3+/+ mice and 1.52 ± 0.67 x 103 in Cpa3Cre/+ 

mice) (Figure 12B), intestinal mast cell progenitors were clearly reduced in Cpa3Cre/+ 

mice (1.61 ± 0.43 x 102) compared to Cpa3+/+ mice (14.03 ± 7.45 x 102) (Figure 

12C). Cpa3 expression levels were elevated weakly, i.e. by a factor of 1.6, from 

BMCPs to mature splenic basophils (Figure 12D), but very strongly, i.e. by a factor of 

14, between BMCPs and peritoneal mast cells (Figure 12E).  

It has been shown that high levels of Cre expression might have a toxic effect on 

mammalian cells in vitro132,133 and in vivo123,124,134. Cryptic (or pseudo) loxP sites in 

the mammalian genome can serve as functional Cre recombinase recognition 

sites135, and recombination between these sites might cause accidental 

chromosomal rearrangements and finally loss of the affected cells124. Thus, the 

partial or complete loss of cells of the basophil/mast cell lineages in Cpa3Cre/+ mice 

could be explained by Cre-mediated cellular toxicity. 

Altogether, analyses in Cpa3hCD4/hCD4 mice indicated not only high levels of Cpa3 

expression in peritoneal mast cells but also weak Cpa3 expression in common 

basophil/mast cell progenitors and in the basophil lineage. The progressive increase 

of Cpa3 expression and consequently also Cre expression within the development of 

the basophil/mast cell lineages correlated with a concomitant loss of cells due to 

Cre-mediated genotoxicity. Cell deficiency in the mast cell lineage was already 

evident at the progenitor level while in the basophil lineage only mature basophils 

were reduced in number. Hence, the mast cell lineage was stronger affected by Cre-

mediated cell ablation than the basophil lineage in Cpa3Cre/+ mice. 
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Figure 12   Correlation between Cpa3 expression and loss of cells in the 
basophil/mast cell lineages 
(A - E) Cells from Cpa3hCD4/hCD4 reporter mice were analyzed for Cpa3 expression levels by 
measuring the MFI of hCD4 expression (histograms in the center). Cells from Cpa3+/+ mice 
served as controls for the calculation of hCD4 background fluorescence (histograms on the 
left). Scatter plots on the right summarize numbers of cells comparing Cpa3+/+ (+/+) and 
Cpa3Cre/+ (Cre/+) mice at the corresponding developmental stages, respectively. MFI of 
hCD4 expression and cell numbers were analyzed for the following cell populations: (A) 
Basophil/Mast cell progenitors in the spleen, n = 10 per genotype. (B) Basophil progenitors 
in the bone marrow, n = 5 per genotype. (C) Mast cell progenitors in the small intestine, n = 
5 per genotype. (D) Mature basophils in the spleen, n = 12 per genotype. (E) Mature mast 
cells in the peritoneal cavity, n = 12 per genotype. 
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3.2.4 Basophil-dependent anaphylaxis is suppressed in Cpa3Cre/+ mice 
 

The partial reduction of basophils in mast cell-deficient Cpa3Cre/+ mice should be 

considered when immunological functions are assessed in this strain. To test the 

functional potential of the remaining basophils, Cpa3Cre/+ mice were subjected to a 

basophil-dependent IgG1-mediated anaphylaxis model. Homozygous Cpa3Cre/Cre 

mice, KitW/Wv mice as well as wild type mice were included as control groups.  

Under steady-state conditions, wild type mice have 1.74 ± 0.45 x 105 splenic 

basophils (Figure 13A). It was analyzed whether homozygous Cpa3-driven Cre 

expression might further diminish the number of splenic basophils. Indeed, a higher 

Cre dose resulted in about 50 % higher reduction of basophils in Cpa3Cre/Cre mice 

(0.29 ± 0.12 x 105) compared to basophil numbers in heterozygous Cpa3Cre/+ mice 

(0.62 ± 0.18 x 105). KitW/Wv mice had the fewest basophils (0.18 ± 0.05 x 105).  

As stated above, mast cells are the key players in IgE-mediated anaphylactic 

reactions (section 3.1.3). Recent reports demonstrated that an anaphylactic 

response could also be induced through the IgG/FcγR pathway. In this “alternative” 

mast cell-independent pathway of anaphylaxis, FcγR activation of basophils, 

macrophages, and neutrophils elicits anaphylaxis symptoms, including a drop in core 

body temperature136-138. To stimulate FcγR-bearing basophils by IgG-antigen 

complexes, mice were first intravenously injected with antigen-specific IgG1, 

followed by intravenous antigen challenge three hours later. Wild type mice 

responded to this treatment by a persistent and severe drop in body temperature by 

4 K. In contrast, IgG-mediated anaphylaxis was greatly suppressed in Cpa3Cre/+ 

mice, and consistent with their more severe basophil deficiency, Cpa3Cre/Cre mice 

were even more protected from symptoms of anaphylaxis (Figure 13B). Surprisingly, 

KitW/Wv mice, which, in addition to a lack of mast cells, suffer from a marked reduction 

in basophils, responded like wild type mice but recovered much faster from 

temperature drop (Figure 13B). Detailed comparisons of individual temperature 

measurements 30 min after antigen challenge demonstrated an equal temperature 

drop in wild type (-3.68 ± 0.96 K) and KitW/Wv mice (-3.93 ± 0.59 K). Heterozygous  

(-2.16 ± 1.95 K) and homozygous Cpa3Cre mice (-1.18 ± 1.66 K) were mostly 

resistant to IgG1-induced anaphylaxis (Figure 13C). In summary, direct comparison 
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of the body temperature 30 min after antigen challenge and basophil numbers 

revealed an inverse correlation of both parameters in all analyzed genotypes, except 

for KitW/Wv mice (Figure 13A and C).  

 

 

Figure 13 Correlation between IgG1-mediated anaphylactic response and basophil 
numbers 

(A) The scatter plot summarizes total numbers of splenic basophils in Cpa3+/+ (+/+), 
Cpa3Cre/+ (Cre/+), Cpa3Cre/Cre (Cre/Cre) and KitW/Wv (W/Wv) mice. Analyses included 7 mice 
per genotype. (B) Mice of the indicated genotypes were subjected to IgG1-mediated PSA. 
Mice were intravenously injected with anti-DNP IgG1 and challenged three hours later by 
intravenous injection of DNP-HSA. Anaphylactic response following challenge was 
measured as drop in body temperature. Rectal temperatures were monitored in 10 min 
intervals and are expressed as temperature difference compared to starting temperature. 
Shown are the mean ± SEM (n = 13 in Cpa3+/+, n = 17 in Cpa3Cre/+, n = 12 in Cpa3Cre/Cre and 
n = 13 in KitW/Wv mice). (C) The scatter plot summarizes data from temperature 
measurements of individual mice 30 min after anti-DNP IgG1/DNP-HSA treatment. Numbers 
of analyzed mice per genotype are stated under (B).  
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Diminished susceptibility of Cpa3Cre mice to IgG1-antigen treatment is compatible 

with the assumed involvement of basophils in IgG1-mediated anaphylaxis. The fact 

that KitW/Wv mice, which lack even more basophils compared to Cpa3Cre mice, were 

not resistant to IgG1-mediated anaphylaxis, suggests that in this mutant an unknown 

mechanism might overcome the deficiency of basophils.   

 

3.3 K/BxN serum transfer arthritis and experimental autoimmune 
encephalomyelitis in Cpa3Cre/+ mice 

 

In the past mast cells have been mainly recognized as primary responders in allergic 

reactions. Several recent studies stated that they might also have a pro-inflammatory 

role in autoimmune diseases. Particularly, mast cell contributions to the pathology of 

models of rheumatoid arthritis and multiple sclerosis have been claimed139. Due to 

the hitherto lack of alternative mast cell-deficient models, these reports were based 

on observations in Kit mutant mouse strains. The present study was therefore aimed 

for a re-evaluation of the role of mast cells in models of rheumatoid arthritis and 

multiple sclerosis in Kit-independent mast cell-deficient Cpa3Cre/+ mice on the 

C57BL/6 background.   

 

3.3.1 Cpa3Cre/+ mice are fully susceptible to K/BxN serum transfer 
arthritis 

 

IgG antibodies against glucose-6-phosphate isomerase (GPI), which are 

spontaneously produced in arthritic K/BxN mice, can passively induce a joint 

disorder that resembles many aspects of rheumatoid arthritis99 upon intraperitoneal 

injection into naïve recipient mice100. Mast cell-deficient KitW/Wv and KitlSl/Sl-d mice, 

however, are resistant to the induction of arthritis by transfer of antibodies against 

GPI98. These data led to the conclusion that mast cells are important elements in the 

disease process of arthritis, at least in this serum transfer model.   

To re-address disease susceptibility to serum-transferred arthritis in a mast cell-

deficient but Kit-proficient environment, Cpa3Cre/+ mice and wild type controls on 
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C57BL/6 background as well as KitW/Wv mice were treated with intraperitoneal 

injections of arthritogenic K/BxN serum. Because Cpa3Cre/+ mice and their Cpa3+/+ 

wild type littermates appear physically identical, genotype-blind disease scoring and 

thus elimination of bias was feasible. This approach is impossible when using KitW/Wv 

mice and C57BL/6 controls on the same time due to the different fur of both strains. 

Following serum injection, disease progression was evaluated by measuring the 

ankle thickening as well as by clinical scoring of individual paws. For clinical scoring, 

individual paws were evaluated with regard to signs of swelling and erythema, and 

limb scores for each mouse were summed up. Cpa3+/+ and mast cell-deficient 

Cpa3Cre/+ mice were fully susceptible to antibody-mediated arthritis as shown by the 

comparable rapid onset of symptoms in both genotypes. The progression of clinical 

disease was also similar. The extent of ankle swelling developed in parallel and 

peaked around days 11 to 12 in both strains (Figure 14A). In contrast to mast cell-

deficient Cpa3Cre/+ mice and in line with the literature98, KitW/Wv mice were almost 

resistant to disease induction. This strain showed only transient symptoms of ankle 

joint swelling and a lower clinical score (Figure 14A). The incidence of disease was 

also reduced in KitW/Wv mice compared to the other tested genotypes, which 

exhibited 100 % disease incidence (Table 7).  

 
Table 7   Incidence of K/BxN serum transfer arthritis 

Mouse genotype Incidence 

Cpa3+/+Kit+/+ 10/10 (100%) 

Cpa3Cre/+Kit+/+ 10/10 (100%) 

Cpa3+/+KitW/Wv 3/5 (60%) 
 
 

To evaluate differences in response curves, all data were analyzed by two-way 

ANOVA considering time and genotypes. The statistical analysis has been done in 

collaboration with Axel Benner from the biostatistics division. No significant 

differences between Cpa3+/+ and Cpa3Cre/+ genotypes were observed for clinical 

scores or ankle thickness (Figure 14A). A second independent experiment confirmed 

that mast cell-deficient Cpa3Cre/+ mice and wild type controls were comparably 



Results 

 63 

susceptible to serum transfer arthritis without significant differences in their response 

curves (Figure 14B).  

 

Figure 14 Clinical disease development in K/BxN serum transfer arthritis 

Kinetics of clinical scores (left) and ankle swelling (right) are shown. Mice of the indicated 
genotypes were treated with two intraperitoneal injections of arthritogenic K/BxN serum on 
day 0 and 2, respectively. The data were plotted as mean daily clinical score (0 to 12 based 
on 0 - 3 scores for each of four paws) ± SEM for all animals per group (left panels). 
Differences in ankle thickness were calculated by subtracting the baseline ankle thickness of 
both hind limbs from subsequent measurements, respectively. Data are shown as mean ± 
SEM (right panels). Data of Cpa3+/+ and Cpa3Cre/+ mice were statistically analyzed by two-
way ANOVA and no significant differences were found for clinical scores (A, p = 0.11 and B, 
p = 0.95) and ankle thickness (A, p = 0.38 and B, p = 0.81). (A) Cpa3+/+, Cpa3Cre/+, and 
KitW/Wv mice were compared (n = 5 for each genotype). (B) Cpa3+/+ and Cpa3Cre/+ mice were 
directly compared (n = 5 for each genotype).  
 
Altogether, Kit-proficient mast cell-deficient Cpa3Cre/+ mice developed severe signs of 

arthritis whereas mast cell-deficient KitW/Wv mice were largely protected from disease 

induction. Histopathological evaluation of affected ankle joints from arthritic mice 

further supported this conclusion. Particularly, histology of the swollen joints from 

Cpa3+/+ and Cpa3Cre/+ mice showed characteristic massive leukocyte infiltrations and 

pronounced synovial hyperplasia with erosion of the cartilage. None of these 

histopathological alterations were present in ankle joints from KitW/Wv or PBS-treated 

mice (Figure 15).  
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Figure 15 Histopathological analysis of ankle joints from arthritic mice  

Representative midsaggital ankle sections from Cpa3+/+, Cpa3Cre/+ and KitW/Wv mice taken ten 
days after the first injection of K/BxN serum are shown. Joins from PBS-injected wild type 
mice (PBS) served as controls. Hematoxylin/eosin stained sections from Cpa3+/+ and 
Cpa3Cre/+ mice show severe proliferative and granulomatous rheumatoid-like arthritis with 
tendovaginitis and granulocytic infiltration. In contrast, ankle joints from serum-injected 
KitW/Wv mice and controls show no pathology. The depicted scale bar applies to all 
photographs. 
 

3.3.2 Molecular responses to serum transfer arthritis 
 

Microarray analyses of RNA from ankle joints were performed to characterize 

molecular events underlying the pathology of K/BxN serum-transferred arthritis and 

to search for signs of inflammation-driven mast cell induction. Because mast cells 

might play an early coordinating role in the K/BxN serum transfer arthritis model98, 

early time points of disease were analyzed. To this end ankle tissue from Cpa3+/+ 

and Cpa3Cre/+ mice was collected at three time points: day 0 (baseline), day 3 

(disease onset) and day 7 (early disease), RNA was extracted and changes in 

mRNA expression were assessed. Expression profiling of the RNA samples was 

performed at the DKFZ Microarray Core Facility. Dr. Thorsten Feyerabend and 

Martin Teichert assisted with the analysis of the data.  Differentially expressed genes 

were analyzed by hierarchical clustering. Four distinct kinetic patterns were 

identified: (1) genes that are upregulated towards day 7, (2) genes that are 
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upregulated at day three and continue to be expressed at day 7, (3) genes that are, 

regardless of the time point, present in Cpa3+/+ but absent in Cpa3Cre/+ mice, and (4) 

genes that are downregulated towards day 7 (Figure 16). Differentially expressed 

genes of patterns 1, 2 and 4 represent diverse functional categories including 

cytokines, chemokines, proteases like metalloproteases and calcium-sensitive 

proteases, inflammatory markers like acute-phase reactants and S100 proteins, and 

extracellular matrix components. Similar categories and associated kinetic patterns 

of expression have been described in an earlier report about gene expression 

profiling in K/BxN serum transfer arthritis140.  

 

Figure 16   Gene expression profiling in ankle tissue during serum transfer arthritis 

RNA of ankle joints from naïve (day 0) Cpa3+/+ and Cpa3Cre/+ mice and from mice three (day 
3) and seven days (day 7) after first K/BxN serum injection was analyzed for kinetic changes 
in gene expression. For each genotype and time point, a total of five joints from three to four 
individual mice were analyzed. Differentially expressed genes were grouped by hierarchical 
clustering and four distinct kinetic patterns were identified as indicated on the left (I - IV). 
Pattern 3 shows lack of mast cell products in ankles from Cpa3Cre/+ mice at all analyzed time 
points. 
 

The gene expression patterns 1, 2 and 4 obtained from Cpa3+/+ and Cpa3Cre/+ mice 

were comparable and further supported the comparable clinical and 

histopathological findings that were monitored during the disease in these two 
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strains. However, genes of pattern 3, which encode for the mast cell proteases 

Mcpt4, Mcpt5 and Cpa3, were completely absent in Cpa3Cre/+ mice at any time point. 

Of note, they were only slightly expressed in joints of wild type mice and their 

expression did not change over time (Figure 16).  

Hence, induction of K/BxN serum-transferred arthritis did not provoke mast cell 

products in joints of Cpa3Cre/+ mice, confirming the absence of mast cells from this 

mouse strain even under these inflammatory conditions.  

Altogether, disease evaluation by clinical scoring, histopathology and gene 

expression analyses in Kit-proficient mast cell-deficient mice and comparison to the 

corresponding parameters of wild type littermates does not support the idea of a 

crucial role for mast cells in the antibody-mediated model of rheumatoid arthritis. 

 

3.3.3 Cpa3Cre/+ and KitW/Wv mice are fully susceptible to EAE 
 
Multiple sclerosis is a chronic inflammatory disease in which the immune system 

attacks the myelin sheaths around the nerve fibers of the CNS, leading to 

demyelination and scarring. Damage of myelin and the axons themselves results in 

impairment of axonal conduction in the CNS, which causes a broad spectrum of 

symptoms. Experimental autoimmune encephalomyelitis is a well-characterized 

murine model of multiple sclerosis that is extensively used to understand the role of 

specific molecules and cell subsets in disease pathology. EAE critically depends on 

pro-inflammatory T helper cells141, but experiments in mast cell-deficient KitW/Wv mice 

suggested also an essential role for mast cells in the pathogenesis of this 

autoimmune model. In particular, KitW/Wv mice develop EAE later and less severely 

than control mice in response to immunization with MOG35-55 peptide96. However, 

there are other reports of an even exacerbated EAE development in KitW/Wv mice 

compared to wild type mice105,106.  

These contradictory observations prompted us to re-evaluate the contribution of 

mast cells in MOG-induced EAE in Kit-proficient mast cell-lacking mice. To this end 

Cpa3+/+, Cpa3Cre/+ and KitW/Wv mice were immunized with MOG35-55 peptide in 

complete Freund’s adjuvant, and onset, severity, and incidence of disease as well as 
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the number of moribund mice were monitored. Cpa3+/+ and Cpa3Cre/+ mice were 

mixed littermates that were clinically scored without prior knowledge of their 

genotype. MOG-immunized wild type mice developed chronic progressive EAE in 

which first symptoms of disease were observed around day 11 post-immunization. 

Response curves of mast cell-deficient Cpa3Cre/+, KitW/Wv mice and wild type mice 

were nearly congruent, and thus all three genotypes were equally susceptible to EAE 

induction (Figure 17A). Based on a two-way ANOVA considering time and 

genotypes, no significant differences were found between any of the strains. A total 

of three independent experiments confirmed comparable days of onset, maximal 

clinical scores and 100 % incidence in all three mouse strains (Table 8). Of note, 

clearly more moribund animals were observed among KitW/Wv mice (46 %) compared 

to Cpa3Cre/+ mice (16 %) and wild type controls (21 %) (Figure 17B and Table 8). 

 

Figure 17   Clinical disease development in MOG-induced EAE 

Mice of the indicated genotypes were subjected to MOG-induced EAE and clinical scores 
were monitored over a period of 30 days. In detail, mice were subcutaneously immunized 
with MOG35-55 peptide in complete Freund’s adjuvant on day 0 and intravenously treated with 
pertussis toxin on experimental days 0 and 2, respectively. (A) Immunized mice were scored 
daily and data represent mean clinical score ± SEM. Data were obtained from five mice per 
genotype. Statistical analyses by two-way ANOVA considering time and genotype revealed 
no significant differences between tested strains (p = 0.92 for Cpa3+/+ versus Cpa3Cre/+, p = 
0.69 for Cpa3+/+ versus KitW/Wv and p = 0.74 for Cpa3Cre/+ versus KitW/Wv). (B) Mice that were 
not able to straighten up were considered as moribund (score 5) and were sacrificed during 
the ongoing experiment. The survival curve summarizes data from three independent 
experiments with 19 mice per genotype except for KitW/Wv mice (n = 11). 
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From these observations it can be concluded that initiation and progression of EAE 

occurs independently of mast cells. Furthermore, the lack of Kit expression has no 

protective effect in this disease model but rather seems to exacerbate the 

susceptibility to EAE induced morbidity.  

 
Table 8   Summary of MOG35-55-induced EAE in mast cell-deficient mouse strains 

Mouse 
genotype Incidence 

Day of onset 
(mean ± s.d.) 

Maximum clinical 
score (mean ± s.d.) Moribund 

Cpa3+/+Kit+/+ 19/19 (100%) 10.63 ± 1.12 3.68 ± 1.00 4/19 (21%) 

Cpa3Cre/+Kit+/+ 19/19 (100%) 11.05 ± 1.62 3.32 ± 0.89 3/19 (16%) 

Cpa3+/+KitW/Wv 11/11 (100%) 11.09 ± 0.94 3.82 ± 1.40 5/11 (46%) 
 
 

3.3.4 Neither mast cell nor Kit deficiency affect MOG-specific T cell 
responses 

 

Apart from clinical parameters, it was also examined whether the initial antigen-

specific T cell activation during EAE induction might be compromised in a mast cell-

deficient environment, as it was observed by others in KitW/Wv mice142. To answer this 

question, the proliferative potential and IFN-γ production of splenic MOG-specific T 

cells was evaluated in Cpa3+/+, Cpa3Cre/+ and KitW/Wv mice 11 days after 

immunization with MOG35-55 peptide. In detail, splenocytes from naïve and 

immunized mice were labeled with CFSE and re-stimulated ex vivo with MOG35-55 

peptide, which contains multiple CD4+ and CD8+ T cell epitopes143. Antigen re-

stimulated CD4+ and CD8+ T cells from immunized mice showed augmented 

proliferation compared to cells from naïve mice (Figure 18A). In naïve mice only two 

percent of the splenic CD4+ and CD8+ T cells proliferated in response to stimulation 

with MOG35-55 peptide, respectively. Generally, more CD8+ T cells (12 %) proliferated 

in response to MOG35-55 peptide than CD4+ T cells (6 %). MOG-specific CD4+ and 

CD8+ T cells from immunized mast cell-deficient Cpa3Cre/+ and KitW/Wv mice 

proliferated comparable to wild type controls (Figure 18A). To evaluate MOG-specific 

IFN-γ responses, cells were directly re-stimulated ex vivo with MOG35-55 peptide prior 

to analysis by intracellular staining and flow cytometry. A comparable frequency  
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(~ 3 %) of splenic CD4+ IFN-γ-producing T cells was found in MOG-primed mice 

from all three analyzed genotypes (Figure 18B). 

 

Figure 18 MOG-specific proliferation and IFN-γ response in the spleen 

Spleens from Cpa3+/+ (+/+), Cpa3Cre/+ (Cre/+) and KitW/Wv  (W/Wv) mice were harvested 11 
days after immunization with MOG35-55 peptide/CFA and splenocytes were re-stimulated ex 
vivo with MOG35-55 peptide prior to analyses for proliferation (A) and IFNγ production (B). 
Cells from naïve mice of the indicated genotypes served as controls. (A) Proliferative 
response of splenic CD4+ (left) and CD8+ T cells (right). Splenocytes were labeled with 
CFSE and re-stimulated with MOG35-55 peptide for three days. Proliferation was measured by 
analysis of CFSE dilution. (B) For analyses of MOG-specific IFNγ expression, splenocytes 
were re-stimulated with MOG35-55 peptide over night and intracellularly stained against IFN-γ. 
The percentage of IFN-γ+CD4+ T cells was analyzed by flow cytometry. Data in A - B 
summarize two independent experiments with a total of two naïve mice per genotype and six 
immunized mice per genotype. The indicated genotypes of all MOG-immunized mice were 
statistically compared by unpaired t test and none were found significantly different. 

  
Taken together, parameters of cellular activation of splenic MOG-specific T cells 

were not altered in immunized Cpa3Cre/+ or KitW/Wv mice compared to wild type mice. 

Thus, there was no evidence that mast cells or Kit signalling might influence the 

primary MOG-specific T cell response after MOG-immunization.  
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3.3.5 Mast cell and Kit deficiency have no impact on the inflammatory 
immune response in the CNS 

 

Recent studies led to the assumption that mast cell-derived mediators initiate the 

inflammatory cell influx of neutrophils and T cells into the central nervous system 

(CNS) and thus drive disease progression of EAE144. It was therefore tested whether 

mast cell-deficient Cpa3Cre/+ mice might show modified cell entry into the CNS 

despite normal disease progression. The composition of infiltrating immune cells in 

brain and spinal cord was analyzed in mast cell-deficient mouse strains and in 

control mice, and was compared to the naïve status. The analysis was performed 11 

days after immunization with MOG35-55 peptide. Hematopoietic cells in the CNS can 

be divided into CD45low resident microglia and infiltrating CD45high cells145. Under 

normal conditions, one finds only a minor population of infiltrating immune cells in the 

CNS. Indeed, an increase of CD45high cells was observed in the CNS of MOG-

immunized mice compared to naïve mice with all three analyzed mouse strains 

showing the same extent of CD45high CNS infiltrations (Figure 19A). Further analyses 

of the different subpopulations represented among these CD45high infiltrates revealed 

no significant differences in the total numbers of infiltrated activated (CD44+CD62L–) 

CD4+ and CD8+ T cells in Cpa3Cre/+, KitW/Wv or control mice (Figure 19B). As 

expected for an acute immune response, the percentage of T cells with an activated 

phenotype among all analyzed T cells was near 100 % (data not shown). Also 

neutrophils (Ly6G+Ly6Clow) and inflammatory monocytes (Ly6G–Ly6Chigh) make up a 

substantial proportion of the early cell inflammatory infiltrate in the CNS in acute 

EAE144,146-148. At day 11 the number of infiltrating myeloid Gr-1+ cells was not 

significantly different between Cpa3+/+, Cpa3Cre/+ or KitW/Wv mice (Figure 19C).  
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Figure 19   Inflammatory cell response in the CNS of MOG-immunized mice 

(A - C) Inflammatory cells were isolated from pooled brain and spinal cord samples by 
percoll gradient centrifugation and assessed by flow cytometry 11 days after MOG35-55 
peptide/CFA immunization. Naïve mice served as controls. (A) Dot plots on the left 
demonstrate CD45+ and CD45hight lymphocytes in the CNS of naïve and MOG-immunized 
wild type mice. Numbers represent percentage of CD45hight cells in the gated regions. 
Quantification of total CNS-infiltrating CD45hight lymphocytes in naïve (naïve) and MOG-
immunized (MOG) Cpa3+/+ (+/+), Cpa3Cre/+ (Cre/+) and KitW/Wv  (W/Wv) mice is shown on the 
right. (B) Total numbers of activated (CD44+CD62L-) CD4+ (left) and CD8+ (right) T cells 
were compared between naïve and immunized mice of the indicated genotypes. (C) Dot plot 
on the left demonstrates infiltrated CD45hightGr1+ cells in the CNS after MOG-immunization. 
Quantification of total CNS-infiltrated Gr1+ cells is shown on the left. Data in A - C 
summarize two independent experiments with a total of two naïve mice per genotype and six 
immunized mice per genotype. Bar graphs show the mean ± SEM. The indicated genotypes 
of all MOG-immunized mice were statistically compared by unpaired t test and none were 
found significantly different.   
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In the present study, the antibody clone RB6-8C5 was used to recognize infiltrating 

CD45high cells expressing the myeloid differentiation antigen Gr-1. Since this 

antibody reacts with a common epitope on Ly6G and Ly6C it does not allow a 

differentiation between neutrophils (Ly6G+Ly6Clow) and inflammatory monocytes 

(Ly6G-Ly6Chigh). However, according to the literature inflammatory monocytes in the 

CNS are highest on day four after immunization with MOG-peptide, whereas later in 

disease neutrophils become dominant147. Thus, the Gr1+ cells that were recognized 

in the CNS on day 11 were most likely neutrophils.  

Consistent with their full susceptibility to MOG-induced EAE, no diminution in the 

entry of inflammatory cells into the CNS of Cpa3Cre/+ or KitW/Wv mice was observed. In 

summary, these data lead to the conclusion that neither mast cell nor Kit deficiency 

affect immunological parameters and disease manifestation in EAE. 
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4 Discussion 
 

Although mast cells have been discovered already over 130 years ago, they are still 

one of the most mysterious cells of our immune system. Current research still 

concentrates on uncovering the physiological functions of mast cells, aside from their 

unfavourable involvement in allergic disorders.  

 

Selective mast cell deficiency models versus Kit mutants  
 

To investigate the function of cell lineages in vivo, selective lineage ablation models 

serve as important tools. In particular, an ideal mast cell ablation model for studying 

the immunological role of mast cells should meet the following criteria:  

 

I. Constitutive lack of CTMC and MMC under physiological and pathological 

conditions (e.g. inflammation) 

II. No developmental or functional defects in lineages other than the mast cell 

lineage 

 

The discovery that Kit mutant mice are genetically mast cell-deficient, gave new 

impetus to the field of mast cell research. KitW/Wv and KitW-sh/W-sh mice became 

standard tools for elucidating in vivo functions of the mast cell lineage68,69. Since Kit 

is not only expressed on mast cells, mutations affecting the functionality of this 

tyrosine kinase receptor cause defects in diverse cellular compartments. These 

global Kit-related defects might influence biological responses of the Kit mutants. 

That could lead to experimental misinterpretations in which defects are assigned to 

mast cells, which in fact are caused by Kit deficiency. Hence, the development of a 

Kit-independent mast cell-deficient mouse model would be a major advance in the 

field of mast cell research. 

Recent technical progress in transgenesis and gene targeting facilitated the 

development of genetically defined mutants that could meet the requirements for 

selective mast cell deficiency much better than the naturally occurring Kit mutated 
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strains. Prerequisite for the generation of genetically defined mast cell-deficient 

mouse mutants is the identification of genes selectively expressed in this cell 

lineage. Mast cell carboxypeptidase (Cpa3) is suited for genetic manipulation of the 

mast cell lineage because it is already strongly expressed in the earliest committed 

mast cell progenitor but not in hematopoietic stem cells15.  

 

Cpa3Cre/+ mice fulfil the criterion of complete mast cell deficiency  
 

In the newly generated Cpa3Cre/+ mice, Cpa3-driven Cre expression results in an 

entire and specific ablation of mast cells122. In this study, complete mast cell ablation 

in skin and peritoneal cavity of naïve Cpa3Cre/+ mice was demonstrated by several 

independent methods including flow cytometry, histology, and measurement of 

mRNA transcripts for mast cell products. Such a comprehensive search for mast 

cells and associated products has so far not been done in Kit mutant stains or other 

recently published mast cell ablation models (see chapter 1.6). Additionally, the 

unresponsiveness of Cpa3Cre/+ mice to IgE-mediated anaphylaxis and correction of 

this resistance by selective transfer of BMMC further confirmed the mast cell 

deficiency of this strain on a systemic level. 

To test whether Cpa3Cre/+ mice also remain mast cell-deficient under inflammatory 

conditions, they were subjected to chronic dermatitis and intestinal parasite infection. 

These experiments are not part of this thesis but are worth to be discussed here to 

complement the characterization of our new mast cell-deficient mouse model. 

Treatment of the skin with phorbol-12-myristate-13-acetate (PMA) induces chronic 

dermatitis and leads to strong increase of skin mast cell numbers in wild type mice 

but also in mast cell-deficient KitW/Wv mice74,75. Interestingly, the skin of Cpa3Cre/+ 

mice remained free of mast cells after repeated exposure to PMA122. Apparently, 

inflammatory signals can abrogate the block in mast cell development in the skin of 

KitW/Wv mice but do not overcome Cre-mediated mast cell ablation. In contrast to 

CTMC, which are constitutively present in the connective tissues under normal 

conditions, MMC require an inflammatory impulse to expand to a recognisable 

number. Particularly, the number of MMC increase significantly during a T helper 2 
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(Th2) type response to parasitic infections of the gut149,150. The expansion of mast 

cells in the gut may result from a combination of increased recruitment, survival 

and/or differentiation and maturation of mast cell progenitors, as well as proliferation 

of mature mast cells resident at that site. To examine whether intestinal mastocytosis 

can be induced in Cpa3Cre/+ mice, they were infected with the prototypic Th2 cell-

inducing helminth Nippostrongylus brasiliensis (Nb). As shown by histology as well 

as analysis of local and systemic levels of Mcpt1 expression, wild type mice 

generated a mucosal mast cell response to Nb infection122. In contrast, no MMC 

induction or MMC-specific marker expression was detectable in Cpa3Cre/+ mice upon 

Nb infection122. Additionally, the absence of mast cell-associated mRNA transcripts 

in the inflammatory joints of arthritic Cpa3Cre/+ mice is a further confirmation of their 

resistance to mast cell generation under inflammatory conditions.  

Altogether, Cpa3Cre/+ mice completely lack both subpopulations of mature mast cells, 

CTMC and MMC, under physiological as well as pathological conditions and 

therefore clearly fulfil the main criterion for a conclusive model of mast cell 

deficiency.  

 

Implications of reduced basophil numbers in Cpa3Cre/+ mice  
 
To meet the requirement of selectivity, Cpa3Cre/+ mice should lack only cells of the 

mast cell lineage without manifestation of any other defects. Given the unanticipated 

mechanism of Cre-mediated lineage ablation in Cpa3Cre/+ mice, a prudent 

characterization of common hematopoietic lineages was mandatory to find out 

whether Cpa3-driven Cre expression also affects the development of other cell 

populations. Moreover, it should be considered that the complete absence of the 

mast cell lineage might also influence the composition of other immune cell 

compartments. The analysis of numerous immune cell subsets in the spleen of naïve 

heterozygous Cpa3Cre/+ mice revealed a normal immune system. Thus, the lack of 

mast cells has no impact on the number and composition of all analyzed cell subsets 

of the lymphoid and myeloid lineage. An exception are basophils that were reduced 

to about 35 % compared with the number of basophils in wild type mice. In 

Cpa3Cre/Cre mice, which express two mutated Cpa3 alleles, basophils in the spleen 
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were further reduced to about 18 %. As mentioned above, KitW/Wv mice suffer from 

several hematopoietic aberrancies (reviewed in Grimbaldeston et al.69). However, 

regarding basophil numbers, the literature repeatedly stated that KitW/Wv mice exhibit 

no defects in the basophil compartment68,69. This statement was simply based on an 

older study that found equal numbers of peripheral blood basophils in KitW/Wv and 

wild type mice by means of morphological identification151. However, very recently 

Mancardi et al. reported a marked reduction of basophils in the peripheral blood of 

KitW/Wv mice based on the flow cytometric identification of DX5+Kit-FcεRI+ 

basophils108. Flow cytometry experiments in our laboratory revealed a 10-fold 

reduction of the number of basophils in the spleen of KitW/Wv mice, demonstrating 

basophil deficiency also in this peripheral lymphoid organ. 

A combined deficiency in the mast cell and basophil lineage is not unique for 

Cpa3Cre/+ mice but is also observed in the recently described Mas-TRECK mice111,112 

and Cpa3-Cre x Mcl-1fl/fl mice110. The toxin receptor-mediated conditional cell knock-

out (TRECK) system is based on transgenic expression of a diphtheria toxin receptor 

controlled by assumed mast cell-specific Il4 gene regulation. But diphtheria toxin 

treatment completely depletes mast cells and basophils in the Mas-TRECK 

system111,112. Lilla et al. generated a transgenic mouse strain that expresses Cre 

recombinase under the control of a 780 bp fragment of the Cpa3 locus110. Crossing 

of transgenic Cpa3-Cre mice to mice bearing a floxed allele of the anti-apoptotic 

factor Mcl-1 resulted in severe mast cell deficiency and marked reduction in basophil 

numbers. Consequently, mating Cpa3-Cre mice to reporter mice revealed high levels 

of Cpa3-driven Cre expression not only in peritoneal mast cells but also in splenic 

basophils110. Consistent with this observation, Cpa3 expression was identified in 

basophils that were purified from the lung of Nb infected mice152. Our laboratory 

generated a reporter strain that directly visualizes Cpa3 expression by a cell surface 

marker. In detail, the cell surface marker human CD4 (hCD4) was inserted into the 

Cpa3 locus by homologous recombination and thus Cpa3-driven human CD4 

expression reflects the transcription of this locus (unpublished data). Based on 

Cpa3hCD4 mice, cell surface expression of human CD4 was not only found in the 

mast cell lineage but also in hematopoietic progenitors of the basophil lineage as 

well as in mature splenic basophils. Notably, Cpa3 expression in the basophil and 
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mast cell lineage supports the model of a common origin of these two lineages in 

adult murine hematopoiesis, as it was proposed by Arinobu et al18. Alternatively, the 

two lineages express Cpa3 in independent progenitors for each lineage. Hence, Cre-

mediated cell ablation affects not only the mast cell lineage but also results in partial 

reduction of the basophil compartment in Cpa3Cre/+ mice.  

It should be examined whether the remaining basophils are functionally normal and 

whether their reduction may influence basophil-dependent immunological responses 

in Cpa3Cre/+ mice. The induction of IgE-dependent systemic anaphylaxis does not 

require basophils since adoptive transfer of cultured mast cells completely restored 

the defective anaphylactic response in Cpa3Cre/+ mice. Thus, mast cells are the key 

effector cells of this response, although basophils also express the high affinity IgE 

receptor FcεRI. Another model of an IgE-dependent allergic reaction, chronic allergic 

inflammation (CAI), has been shown to be solely dependent on basophils153 and this 

allergic response is abolished in several mouse models of basophil ablation110,112,134. 

It might be possible that CAI is also suppressed in Cpa3Cre/+ mice, what still needs to 

be examined. Instead of CAI, we tested IgG1-dependent passive systemic 

anaphylaxis in Cpa3Cre/+ mice to analyze the functional capacity of the remaining 

basophils. Passively administered IgG1-immune complexes induce anaphylaxis that 

depends exclusively on interaction with FcγRIII138. IgG1-mediated passive systemic 

anaphylaxis was not abrogated in mast cell-deficient KitW-sh/W-sh mice, whereas 

depletion of basophils decreased the severity of the anaphylactic response136. 

Hence, basophils have been supposed to be crucial players in this ‘alternative 

pathway of anaphylaxis’. Cpa3Cre/+ and Cpa3Cre/Cre mice, which lack about 65 % to  

80 % basophils respectively, were largely resistant to IgG1-mediated anaphylaxis. 

One would expect a similar reaction in KitW/Wv mice, which lack even 80 % to 90 % of 

basophils in peripheral blood108 and spleen, respectively. However, KitW/Wv mice 

responded by a drastic even though transient drop in body temperature in this 

anaphylaxis model. It is not known how many basophils are actually required to 

induce an efficient IgG1-mediated anaphylactic response. Possibly, remaining 

basophils in KitW/Wv mice are sufficient to orchestrate IgG1-dependent passive 

anaphylaxis whereas residual basophils in Cpa3Cre/+ mice are functionally abnormal 

in ways that limit their ability to induce an efficient anaphylactic response. 
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Alternatively, alterations of other cell lineages in Kit mutant KitW/Wv mice may 

compensate for the lack of basophils, rendering them responsive to IgG1-mediated 

anaphylaxis. In summary, Cpa3Cre/+ mice are not only mast cell-deficient but also 

exhibit a partial reduction in basophils, which should be considered when 

immunological functions are investigated in this strain. 

 

Considerations on the mechanism of lineage ablation in Cpa3Cre/+ 

mice 
 
What could be the mechanism underlying the loss of mast cells and the reduction of 

basophils? Cell ablation in Cpa3Cre/+ mice occurs in heterozygous gene-targeted 

mice independently of any introduced loxP sites, indicating that the lack of cells is 

unrelated to the disruption of the Cpa3 locus. In line with this conclusion, Cpa3-/- 

mice have normal numbers of mast cells154. It seems that Cre expression by itself is 

responsible for constitutive cell ablation in Cpa3Cre/+ mice. Consistent with this idea, 

high levels of Cre expression have been reported to be toxic in certain murine and 

human cell lines132,133,155. Adverse effects of Cre expression were also observed in 

vivo. Transgenic mice that express Cre in postmeiotic spermatids display aberrant 

chromosomal rearrangements in spermatids and suffer from male infertility123. 

Another report demonstrated that transgenic mice, which express Cre under control 

of a fragment of the rat insulin II gene promotor (RIP-Cre mice), display glucose 

intolerance even if no floxed alleles are targeted156. The authors of this study 

suggested that Cre toxicity might affect the function of pancreatic beta cells, which 

then results in impaired insulin secretion. A temporal regulation of Cre activity can be 

achieved by fusing Cre recombinase to the mutated ligand-binding domain of the 

estrogen receptor (ERT2), which is highly sensitive to the synthetic ligand tamoxifen. 

Transgenic mouse lines, in which CreERT2 was inserted into the Rosa26 locus 

(R26CreERT2 mice), showed reduced proliferation, increased apoptosis and 

illegitimate chromosomal rearrangement in hematopoietic lineages after tamoxifen 

administration124. The authors proposed that the observed haematological 

abnormalities were caused by Cre-mediated toxicity of systemic CreERT2 activation.  

Mammalian genomes contain cryptic (or pseudo) loxP sites, which can serve as 



Discussion 

 79 

functional recombinase recognition sites135. A bioinformatics evaluation estimated 

that such sites are present in the mouse genome at a frequency of 1.2 per 

megabase (about 3000 sites in the total mouse genome)157. Cre-induced 

recombination between cryptic loxP sites might account for chromosomal 

rearrangements and consequently for the frequently observed unintentional effect of 

aberrant Cre activity in vitro and in vivo. In particular, Higashi et al. demonstrated 

cleavage of a putative cryptic loxP site in the thymus genome of R26CreERT2 mice 

after the activation of CreERT2 124.  

Referring to our model, direct verification of Cre-mediated genotoxic effects on mast 

cells was not feasible in vivo due to the complete lack of this lineage in Cpa3Cre/+ 

mice. To investigate Cre toxicity in the mast cell lineage, bone marrow-derived mast 

cells were generated from Cpa3Cre/+ mice. Under normal culture conditions in the 

presence of IL-3 and SCF it was extremely inefficient to generate mast cells from 

Cpa3Cre/+ bone marrow compared to wild type bone marrow. Further analyses of 

Cpa3Cre/+ BMMC revealed genomic deletions and pseudotrisomy, which is supportive 

of a genotoxic mechanism of mast cell ablation122. The genotoxic cell ablation is p53-

dependent, as crossing of Cpa3Cre/+ mice to the p53 knock-out background rescued 

peritoneal and skin mast cells, at least partially122.  

Taken together, the Cre-mediated effect is strong and effective enough to result in a 

complete deletion of the mast cell lineage in Cpa3Cre/+ mice. The toxic effect of Cpa3-

driven Cre expression on mast cells is reminiscent of the constitutive and selective 

ablation of basophils in Mcpt8-Cre BAC transgenic mice134. Possibly, mast cells and 

basophils are more sensitive to Cre overexpression than other cell lineages and/or 

they may not be able to compensate the loss, e.g. through developmental selection 

and adaptation processes. However, mast cell ablation due to Cre-mediated toxicity 

is unique to Cpa3Cre/+ mice because other mouse strains that express Cre 

recombinase under control of mast cell-specific promoters, such as Mcpt5-Cre 

mice158, alpha-chymase-Cre transgenic mice (Chm:Cre)159 or even transgenic Cpa3-

Cre mice110 have normal mast cell numbers. What could be the reasons for the 

diverse phenotypes of these four different Cre-expressing mouse lines? First of all, in 

Cpa3Cre/+ mice Cre recombinase was inserted into the endogenous Cpa3 locus via 

gene targeting while Mcpt5-Cre, Chm:Cre and Cpa3-Cre mice are transgenic lines 



Discussion 

 80 

with random integration into the mouse genome. Transgenic Cpa3-Cre mice were 

constructed to express Cre under control of a 780 bp fragment of the Cpa3 

promotor110 and therefore do not contain all gene regulatory elements of the 

endogenous Cpa3 gene. In addition, codon-improved Cre recombinase (iCre), which 

is mutated according to mammalian codon usage160, was used for gene targeting in 

Cpa3Cre/+ mice. These differences in the construction of Cpa3Cre/+ mice could 

increase the expression strength of the Cre recombinase and thus account for Cre-

mediated mast cell ablation specifically in this strain.  

Finally, expression of the Cpa3 locus is very strong in mature mast cells as shown by 

the analysis of human CD4 surface expression in Cpa3hCD4/CD4 mice. The Cpa3 locus 

was weakly expressed in the bipotent basophil and mast cell progenitor (BMCP) and 

its expression level increased with further lineage development of both, mast cells 

and basophils. Progressive increase of Cpa3 expression was paralleled by the loss 

of cells. The observed correlation between Cpa3-driven Cre expression and cell loss 

indirectly confirms the conclusion that cell ablation in Cpa3Cre/+ mice occurs due to 

toxic effects of Cre activation. Of note, Cpa3 expression in progenitor T cells does 

not affect T cell development in Cpa3Cre/+ mice, they display normal numbers in all T 

cell subsets analyzed, probably because Cpa3 expression in the T cell lineage is 

very weak and only transient121. These findings, together with the detailed analysis of 

immune cell subsets, show that Cre activation in Cpa3Cre/+ mice does not exert an 

aberrant effect on cells aside from of the mast cell and basophil lineages.  

 

Kit deficiency rather than mast cell deficiency impacts 
susceptibility to K/BxN serum transfer arthritis 
 
The Cpa3Cre/+ strain represents a novel, in-depth characterized model of mast cell 

deficiency. Given its advantages over the Kit mutant mast cell-deficient mouse 

models, the Cpa3Cre/+ strain serves as valuable tool for the investigation of mast cell 

functions in vivo.  

Lee et al. reported that KitW/Wv mice were resistant to the development of joint 

inflammation in the K/BxN serum transfer arthritis98. Since BMMC engraftment 

restored disease susceptibility, mast cells were considered to be a key effector 
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population in the pathogenesis of this experimental model of rheumatoid arthritis98. 

Our own experiments with K/BxN serum-treated KitW/Wv mice confirmed the findings 

from Lee and colleagues that this mutant is highly resistant in this disease model. 

However, mast cell-deficient Cpa3Cre/+ mice were fully susceptible to serum transfer 

arthritis by clinical and histopathological criteria. In addition, wild type mice did not 

upregulate mast cell-associated products in the inflammatory joints during the 

disease course. In summary, these observations do not support the view that mast 

cells or their products are critically involved in the development of pathogenic arthritis 

in this model. In addition, a recent report demonstrated that KitW-sh/W-sh mice and 

FcγRI/IIB/IIIA−/−FcεRI/II−/− mice, whose mast cells could not be activated directly by 

autoantibodies from K/BxN serum, develop full-blown arthritis after serum 

injection108. The authors found that the activating IgG2 receptor FcγRIV, which is 

expressed by monocytes, macrophages and neutrophils, was the only Fc receptor 

required for disease induction108. Altogether, these findings further indicate that mast 

cells are not mandatory for the development of K/BxN serum-transferred arthritis. 

Different disease outcomes in KitW/Wv and KitW-sh/W-sh mice have also been reported in 

the context of anti-collagen/LPS-induced arthritis161. Injection of anti-collagen 

monoclonal antibodies and LPS resulted in full arthritis in KitW-sh/W-sh mice and full 

resistance in KitW/Wv mice161.  

KitW/Wv and KitW-sh/W-sh mice have hematopoietic abnormalities, which could influence 

the arthritic phenotype. Mainly, higher neutrophil161 and/or monocyte108 numbers in 

KitW-sh/W-sh than in KitW/Wv mice may explain the observed differences in arthritis 

susceptibility. In support of this hypothesis, it was recently reported that adoptive 

transfer of neutrophils is sufficient to induce serum transfer arthritis in KitW/Wv mice162. 

Lower than normal numbers of neutrophils in KitW/Wv mice161 may thus protect from 

K/BxN serum transfer arthritis. Under conditions of neutropenia, mast cells could 

play a role, since mast cell engraftment restored disease susceptibility in KitW/Wv 

mice98, and BMMC reconstitution of KitW/Wv mice failed to correct the peripheral 

neutropenia144. Alternatively, myeloid and megakaryocyte expansion in the  

KitW-sh/W-sh mice may compensate for the lack of mast cells79.  

Taken together, the different responses of Kit mutant KitW/Wv and KitW-sh/W-sh mice in 

models of antibody-mediated arthritis suggest that factors other than mast cell 
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deficiency can determine the disease development. To obtain unambiguous results, 

it is mandatory to review the findings from Kit mutant strains in mast cell-deficient 

models with intact Kit function. We observed that mast cell-deficient mice with a 

normal immune system were fully susceptible to serum-transferred arthritis, which 

led us to question the contribution of mast cells in this autoimmune model. 

 

EAE development is independent of mast cells and Kit signalling 
 

A report from the year 2000 initiated a series of studies on the functional role of mast 

cells in the context of experimental autoimmune encephalomyelitis. This report 

stated that KitW/Wv mice develop attenuated and delayed MOG-induced EAE, and 

that this phenotype could be reversed by reconstitution with wild type BMMC96. The 

access of neutrophils to the CNS, which is diminished in KitW/Wv mice, might be 

regulated by meningeal mast cell-secreted TNF-α144. Stelekati et al. published that 

EAE severity is also decreased in KitW-sh/W-sh mice which could be restored following 

mast cell reconstitution163. According to these reports, it seemed very clear that mast 

cells contribute significantly to disease development in EAE. However, recent studies 

illustrate a more complex picture. Bennett and colleagues were the first to show that 

mast cell-deficient Kit mutants are completely susceptible to the development of 

EAE105. Additionally, Li et al reported exacerbated disease severity in KitW-sh/W-sh 

mice compared to wild type controls107. Here we have shown that Cpa3Cre/+ mice as 

well as KitW/Wv mice developed full-blown EAE. Remarkably, we noticed more 

moribund mice in the KitW/Wv group than in wild type controls and mast cell-deficient 

Cpa3Cre/+ mice. Moreover, we observed the same extent of immune cell infiltration 

into the CNS and peripheral MOG-specific T cell response in mast cell-deficient 

strains and wild type animals.  

The divergent results obtained by different research groups might be related to 

different immunization protocols used to induce EAE. At least for the KitW/Wv model, it 

has been shown that the dose of adjuvant or peptide in the immunization protocol 

can affect the extent of mast cell involvement in experimental models of asthma164 

and contact hypersensitivity165. Accordingly, it was demonstrated that KitW/Wv mice 
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were differentially susceptible to EAE induction depending on the strength of the 

immunization protocol whereas KitW-sh/W-sh mice developed exacerbated EAE under 

all tested conditions of immunization106. We induced EAE in KitW/Wv mice under 

rather mild conditions similar to those described in the literature106, and observed an 

exacerbated disease course compared to wild type controls. However, in their recent 

publication Brown and colleagues also described reduced EAE severity in KitW/Wv 

mice when applying a milder immunization protocol144. Thus, different protocols of 

EAE induction seem to be not the only factor that determines the results obtained by 

different groups investigating EAE susceptibility in the KitW/Wv strain. Further factors, 

which might have an influence on the disease outcome in Kit mutant models, include 

age of the mice166, potential exposure of the mice to environmental stress or 

pathogens during disease course167,168, housing conditions, or the composition of the 

gut microflora169. Furthermore, the observed divergences between KitW/Wv  and  

KitW-sh/W-sh mice may depend on the complex and diverse hematopoietic alterations in 

these strains. In general, it is hard to draw a clear conclusion about the involvement 

of mast cells in EAE pathology when mast cell dependency varies with the 

experimental conditions or the impact of Kit mutation. Our results from EAE induction 

in Kit-proficient Cpa3Cre/+ mice do not support a major role of mast cells in this 

autoimmune model.  

 

In summary, the Cpa3Cre/+ strain is a new mouse model that constitutively lacks mast 

cells independent of Kit mutations or toxin applications. A detailed analysis of their 

immunological status under steady-state conditions revealed that Cpa3Cre/+ mice do 

not suffer from hematopoietic abnormalities except for a partial reduction in the 

number of splenic basophils. In contrast to published findings based on experiments 

with Kit mutant KitW/Wv mice, mast cell deficiency in Cpa3Cre/+ mice had no impact on 

disease susceptibility to antibody-mediated arthritis and EAE. This observation 

indicates that Kit deficiency rather than the lack of mast cells in KitW/Wv mice 

influences the disease outcome in these autoimmune models.  

Hence, Cpa3Cre/+ mice represent a new cornerstone in the field of mast cell research 

for the re-evaluation of the immunomodulatory functions of mast cells in a Kit-

proficient genetically mast cell-deficient environment. 
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