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Abstract

In this thesis we study arithmetic and anabelian properties of the Galois group GK,S of the
maximal extension of a number field K unramified outside a set of primes S. The work can be
divided in two parts: the one part deals with finite and the other with infinite sets S.

The main idea of the part dealing with infinite sets S is to introduce a new class of sets of
primes in number fields – stable sets. These sets have positive, but arbitrary small Dirichlet
density. We give different examples of stable sets. This can be done in a rather explicit way.
For example, Chebotarev sets PM{Kpσq with M{K finite Galois and σ P GM{K are often stable.

Stable sets generalize in some sense sets of density one. In particular, the most arithmetic
results, holding for sets with density one, also hold for them. We generalize certain Hasse
principles, Grunwald-Wang theorem, Riemann’s existence theorem and a statement about the
(strict) cohomological dimension from density one sets (cf. [NSW] Chapters IX and X) to stable
sets. Then we show that curves SpecOK,S with S stable are often Kpπ, 1q (for p). In particular,
this gives many (explicit) examples of sets S of positive, but arbitrary small density, such
that SpecOK,S is an algebraic Kpπ, 1q (for all p simultaneously). Finally, we study anabelian
properties of curves SpecOK,S with S stable. It turns out that it is possible to generalize a part
of the birational anabelian theorem of Neukirch-Uchida to stable sets. More precise, we show
that if for i � 1, 2, a number field Ki together with a stable set of primes Si is given, such that
K1{Q is normal, the groups GK1,S1 and GK2,S2 are isomorphic as topological groups and some
easy technical conditions are satisfied, then K1 � K2.

In the part concerning finite sets S we consider some anabelian properties of the group GK,S .
In contrast to the situation with affine hyperbolic curves over finite fields, for which the Isom-
form of Grothendieck’s Anabelian Conjecture was proven by A. Tamagawa [Ta] some years ago,
very little is known about anabelian properties of GK,S in the number field case. It seems even
to be impossible to describe purely group-theoretically (by known methods) the location of the
decomposition groups at primes in S inside the group GK,S . We show that this is possible if one
has given a bit more information, than simply the group GK,S . We prove that it is equivalent to
have the following pieces of information (additionally to GK,S): the location of decomposition
groups at primes in S inside GK,S , the p-part χp of the cyclotomic character for some prime
p P O�K,S , the collection of numbers 7SpLq, where L goes through all finite subextensions of
KS{K, etc. In particular, if σ : GK1,S1

�
Ñ GK2,S2 is an isomorphism, such that χ2,p � σ � χ1,p,

then one obtains a local correspondence at the boundary, i.e., for primes in S1, S2.





Zusammenfassung

In der vorliegenden Arbeit studieren wir arithmetische und anabelsche Eigenschaften der
Gruppe GK,S , der maximalen außerhalb einer Stellenmenge S unverzweigten Erweiterung eines
Zahlkörpers K. Die Arbeit lässt sich in zwei Teile gliedern: der eine Teil beschäftigt sich mit
endlichen Mengen S, der andere mit unendlichen.

Die Hauptidee des zweitgenannten Teils besteht darin, eine neue Klasse von Stellenmengen
in Zahlkörpern einzuführen – stabile Mengen. Diese haben eine positive, aber beliebig kleine
Dirichlet Dichte. Auf eine relativ explizite Weise geben wir dann diverse Beispiele von stabilen
Mengen. Zum Beispiel sind Chebotarev Mengen der Form PM{Kpσq, wobei M{K eine endliche
Galois Erweiterung und σ P GM{K ist, oft stabil.

Stabile Mengen verallgemeinern im bestimmten Sinne Mengen mit Dichte eins. Insbeson-
dere gelten die meisten arithmetischen Sätze, die für Mengen mit Dichte eins gelten, auch für
stabile Mengen. Wir werden bestimmte Hasse Prinzipien, den Satz von Grunwald-Wang, den
Riemannschen Existenzsatz und eine Aussage über die (strikte) kohomologische Dimension, die
allersamt für Mengen mit Dichte eins gelten (vgl. [NSW] Kapitel IX und X) auf stabile Men-
gen verallgemeinern. Weiterhin zeigen wir, daß die Kurven SpecOK,S mit S stabil oft Kpπ, 1q

(für p) sind. Außerdem stellt sich heraus, dass man den birationalen anabelschen Satz von
Neukirch-Uchida zumindest teilweise auf stabile Mengen verallgemeinern kann. Konkret werden
wir fogendes zeigen: angenommen, für i � 1, 2 ist ein Zahlkörper Ki mit einer stabilen Stellen-
menge Si gegeben, so dass K1{Q normal ist, die Gruppen GK1,S1 und GK2,S2 isomorph sind und
einige einfache technische Bedingungen erfüllt sind. Dann gilt K1 � K2.

Im Teil der Arbeit, der sich mit endlichen Stellenmengen befasst, werden wir einige an-
abelsche Eigenschaften der Gruppe GK,S untersuchen. Im Gegensatz zur Situation mit affinen
hyperbolischen Kurven über endlichen Körpern, für welche die Isom-Form der anabelschen Ver-
mutung von Grothendieck, einige Jahre zuvor von A. Tamagawa in [Ta] bewiesen wurde, ist nur
sehr wenig über anabelsche Eigenschaften von GK,S im Zahlköperfall bekannt. Es scheint zum
Beispiel unmöglich zu sein, mit Hilfe der bekannten Methoden die Lage der Zerlegungsgruppen
der Stellen in S in der Gruppe GK,S rein gruppentheoretisch zu beschreiben. Wir zeigen, dass
dies möglich ist, falls man ein wenig mehr Information als nur die Gruppe GK,S zur Verfügung
hat. Wir werden sehen, dass es equivalent ist, folgende Informationen (zusätzlich zur Gruppe
GK,S) zu haben: die Lage der Zerlegungsgruppen von Stellen in S innerhalb der Gruppe GK,S ,
den p-teil χp des zyklotomischen Characters auf GK,S , für eine Primzahl p P O�K,S , die Zahlen
7SpLq, wobei L endliche Untererweiterungen von KS{K durchläuft, usw. Insbesondere, wenn
σ : GK1,S1

�
Ñ GK2,S2 ein Isomorphismus ist, für den χ2,p � σ � χ1,p gilt, dann erhält man eine

lokale Korrespondenz am Rand, d.h. für Stellen in S1, S2.
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Introduction

Let K be an algebraic number field1, i. e. a finite extension of Q. We fix an algebraic closure K
of K and consider all extensions of K to lie in K. Let S be a set of primes of K, and assume for
simplicity that S contains the set S8 of all archimedean primes of K. Let OK,S be the ring of
S-integers of K and X � SpecOK,S the corresponding affine scheme. Then the functor sending
a finite extension L of K to the normalization of X in SpecL defines an equivalence of categories
between all finite extensions of K, which are unramified outside S and all finite étale connected
covers of X. With other words, we have the canonical isomorphism

π1pX, x̄q � GK,S ,

where x̄ � SpecK and GK,S is the Galois group of the maximal extension KS of K, which is
unramified outside S. In this thesis we study various properties of this fundamental group. The
work consists of two parts: in the first part (Sections 1,2) we study some anabelian properties
of the group GK,S with S finite. In the second part we introduce a new class of sets of primes of
K of positive Dirichlet density, the so called stable sets (Section 3) and perform a systematical
study of arithmetic (Sections 4, 5) and anabelian (Section 6) properties of the group GK,S for S
lying in this class. These sets generalize in many aspects sets of primes with Dirichlet density 1.
Roughly speaking, we aim to generalize the following results, which are known for sets S with
Dirichlet density 1 to stable sets:

1. Hasse principles

2. Grunwald-Wang theorem

3. Riemann’s existence theorem

4. cdppGK,Sq � scdppGK,Sq � 2

5. algebraic Kpπ, 1q-property

6. (a part of) the Neukirch-Uchida theorem

The points 1-5 are closely related with each other. For example, once enough Hasse principles
are shown, points 2-4 follow from them in the same way as for sets with density 1. Sections 2
and 6 have much in common, both being of anabelian nature. Section 1, which is devoted to
intersections of decomposition groups inside GK,S , can be seen as a technical preparation for
them. At first we explain the arithmetic results of Sections 3-5 and postpone the anabelian
geometry to the end of this introduction.

The notations in this thesis essentially coincide with the notations in [NSW] and are (at
least partially) self-explaining. A list of the most relevant notations can be found after the
introduction.

1Although we work only with number fields throughout this thesis, many of the statements are also true for
global fields in general. Moreover, some of the statements should also be true for arithmetic schemes, i.e., schemes
regular, separated and of finite type over SpecZ.
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Hasse principles

A Hasse principle or a local-global principle is a kind of statement which asserts the vanishing
of the subgroup of all classes in a global cohomology group, which are locally trivial at a certain
collection of closed points. Well-known results in this direction are the classical theorems of
Hasse-Minkowski and of Hasse-Brauer-Noether establishing a Hasse principle for quadratic forms
and for the Brauer group of global fields respectively.

Let L {K be a possibly infinite Galois extension and T a set of primes of K. Let i ¥ 0 and
let A be a GL {K-module. We can define the two groups XipL {K,T ;Aq and cokeripL {K,T ;Aq

by exactness of the following sequence

0 ÑXipL {K,T ;Aq Ñ HipGL {K,Aq Ñ
¹1

pPT
HipLp{Kp,Aq Ñ cokeripL {K,T; Aq Ñ 0,

where
±1

pPT means the restricted product with respect to the unramified cohomology groups
Hi

nrpLp{Kp,Aq � HipLp{Kp,Aq and the map in the middle is the product of restriction maps.
TheHasse principle is said to be satisfied for L {K,T,A in dimension i if XipL {K,T ;Aq � 0.
Various situations in which the Hasse principle holds for the extension KS{K, a set of primes
T � S and a finite GK,S-module A are established in [NSW] chapter IX §1. Here are three
representative examples in dimension 1 (similar results in dimension 2 are corollaries of them
and Poitou-Tate duality). Let δKpSq denote the Dirichlet density of a set S of primes of K.

Theorem 0.1 ( [NSW] 9.1.9, 9.1.15). Let K be a global field, T � S sets of primes of K and A
a finite GK,S-module. The Hasse principle for KS{K,T,A in the first dimension holds, i.e.,

X1pKS{K,T ;Aq � 0

in the following cases:

(i) A is a trivial module and δKpT q ¡ 1
p , where p is the smallest prime divisor of 7A.

(ii) A � µm with m � pr11 . . . prnn , where pi are pairwise different prime numbers in NpSq, and

δKpcspKpµprii
q{Kq X T q ¡

1

pirKpµprii
q : Ks

for all i � 1, . . . , n, except, we are in the special case pK,m, T q, where X1pL {K,T ;µmq �

Z{2Z.

(iii) A is simple and there is a prime p with pA � 0, the minimal extension KpAq{K trivializing
A is solvable and cspKpAq{Kq

�
� T .

A common assumption in all of them is that the density of T must have some minimal value
depending on A, without which nothing can be achieved. The main ingredient in the proofs
of all these results is the Chebotarev density theorem. Let us for example prove (i): assume
there is some 0 � φ P X1pKS{K,T ;Aq. Then φ can be interpreted as a group homomorphism
φ : GK,S Ñ A which is trivial on the decomposition groups at all primes in T . Then the extension
L :� pKSq

kerpφq{K is of degree rL : Ks � 7impφq ¥ p and completely decomposed in T . Hence

14



1 ¥ δLpT q � rL : KsδKpT X cspL{Kqq � rL : KsδKpT q ¡ p �
1

p
� 1

gives a contradiction, which finishes the proof.
Using various Hasse principles along with Poitou-Tate duality as in [NSW] chapter IX one

obtains further facts about the group GK,S , such as Grunwald-Wang theorem, Riemann’s exis-
tence theorem, a statement about the (strict) cohomological dimension and the algebraic Kpπ, 1q-
property of SpecOK,S .

Stable and persistent sets

Now it is time to introduce the main objects of study in this thesis. For simplicity we assume
here that all sets we deal with have a Dirichlet density.

Definition 3.7. Let S be a set of primes of K and L {K any extension.

(i) Let λ ¡ 1. A finite subextension L {L0{K is λ-stabilizing for S for L {K, if there
exists a subset S0 � S and some a P p0, 1s, such that λa ¡ δLpS0q ¥ a ¡ 0 for all finite
subextensions L {L{L0.

(ii) A finite extension L {L0{K is persisting for S for L {K, if there exists a subset S0 � S,
such that δLpS0q � δL0pS0q ¡ 0 for all finite subextensions L {L{L0.

We say that S is λ-stable resp. persistent for L {K, if it has a λ-stabilizing resp. persisting
extension for L {K. We say that S is stable for L {K, if it is λ-stable for L {K for some λ ¡ 1.
Finally, we say that S is λ-stable resp. persistent if it is λ-stable resp. persistent for KS{K.

Clearly, persistent implies λ-stable for all λ ¡ 1. In the applications the stability property is
essentially used in three different types of arguments: two times in the proof of the basic Hasse
principle (cf. Lemma 4.4, Theorem 4.2 and see also Proposition 4.36) from which all other
arithmetic results follow, and once in the anabelian situation (cf. Proposition 6.11). Persistence
is not used in these arguments. Nevertheless, the most well-understood examples of stable sets
are persistent. But there are also examples of stable sets, for which we can neither prove nor
disprove persistence.

Now we show that there are plenty of examples of stable and persistent sets. This is an
immediate consequence of the following fact.

Proposition 3.5. Let M{K be a finite Galois extension, L{K a finite extension and σ P GM{K .
Let L0 :� LXM . Then:

δLpPM{Kpσqq �
7Cpσ; GM{Kq XGM{L0

7GM{L0

In particular, this value depends only on L XM , not on L itself. The following corollary is an
immediate consequence. For two sets S, T of primes of K, we write S w T , if S and T differ
only in a subset of density zero.

Corollary 3.14. Let M{K be finite Galois and let σ P GM{K . Let L {K be any extension and
set L0 :�M XL . Then a set S w PM{Kpσq is persisting for L {K if and only if Cpσ; GM{KqX

GM{L0
� H. If this is the case, L0 is a persisting field for S for L {K. In particular,
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(i) any set S w cspM{Kq is persistent for any extension L {K,

(ii) any set S w PM{Kpσq is persistent for any extension L {K with L XM � K.

For example, if M{K is totally ramified in a prime p of K, then for any σ P GM{K , the set
S w PM{Kpσq is persistent with persisting field K, provided p R S (in particular, PM{Kpσq itself
is).

When one starts to prove arithmetic results, then it is often not enough for S to be stable
for KS{K. One needs the following stronger property, relative to a rational prime p ¤ 8:

p�qstab
p S is p-stable for KSYSpYS8{K with a stabilizing field contained in KS

For p � 8, it means that S is stable (i.e., λ-stable with some λ ¡ 1) for KSYS8{K with a
stabilizing field contained in KS (moreover, that a λ-stabilizing field is � KS is automatically
satisfied for a well-chosen λ; cf. Proposition 3.11). If S satisfies p�qstab

p , then such results as
Grunwald-Wang and Riemann’s existence theorem with respect to p hold for S. Let EstabpSq

denote the set of all rational primes p for which S does not satisfy p�qstab
p . One remarkable fact

is the following:

Proposition 3.18. Let S w PM{Kpσq for some M{K and σ P GM{K . If 8 R EstabpSq, then
EstabpSq is finite.

From the viewpoint of whether certain arithmetic facts hold, stable sets generalize sets of
density 1. But there are also properties of sets of density 1, which stable resp. persistent sets
do not share in general (cf. Section 3.5.1). For example, the intersection of two sets of density
one again has density one, but the intersection of two persistent sets can be empty. A further
difference is that if δKpSq � 1, then there are infinitely many rational primes p invertible on
SpecOK,S , but one can easily construct persistent sets S such that no rational prime is invertible
on SpecOK,S .

Arithmetic of stable sets

Now we turn to the applications of stable sets in the arithmetic context. Let G be a finite group,
A a G-module and i ¥ 0. Following Jannsen [Ja], we define the group Hi

�pG,Aq by exactness of
the sequence:

0 Ñ Hi
�pG,Aq Ñ HipG,Aq Ñ

¹
H�G
cyclic

HipH,Aq.

Then we have the following Hasse principle for stable sets, which is the key result of Section 4.

Theorem 4.2. Let K be a number field, T a set of primes of K and L {K a Galois extension
with Galois group G. Let A be a finite G-module. Assume that T is p-stable for L {K, where
p is the smallest prime divisor of 7A. Let L be a p-stabilizing field for T for L {K. Write
∆ :� GLpAq{L. If H1

�p∆,Aq � 0, then

X1pL {L, T ;Aq � 0.

16



Here is an outline of the proof: first one restricts (using p-stability) to the case where A is
trivial GL {L-module. Then one can interpret a non-zero element 0 � φ P X1pL {L, T ;Aq as a
non-zero homomorphism φ : GL {L Ñ A such that kerpφq contains the decomposition groups of
all primes in T . In particular, if M :� L kerpφq, then rM : Ls � 7impφq ¥ p and T � cspM{Kq.
This implies

δM pT q � rM : LsδLpT X cspM{Lqq ¥ pδLpT q,

which is a contradiction to the p-stability property, as M is a subextension of L {L.
In particular, this theorem implies for (p-)stable sets all of the classical Hasse principles

holding for sets with Dirichlet density 1 (compare [NSW] chapter IX §1). Using the Hasse
principle for µn and Poitou-Tate duality, we obtain the following version of the Grunwald-Wang
theorem.

Theorem 4.15. Let K be a number field, S a set of primes of K. Let T0, T � S be two disjoint
subsets, such that T0 is finite. Let p be a rational prime and r ¡ 0 an integer. Assume SrT

is p-stable for KSYSpYS8{K with p-stabilizing field L0, which is contained in KS. Then for any
finite KS{L{L0, such that we are not in the special case pL, pr, Sr pT0YT qq, the canonical map

H1pGL,S,Z{prZq Ñ
à

pPT0pLq

H1pGp,Z{prZq `
à

pPTpLq

H1pIp,Z{prZqGp

is surjective, where Ip � Gp � GKsep
p {Lp

is the inertia subgroup. If we are in the special case
pL, pr, Sr pT0 Y T qq, then p � 2 the cokernel of this map is of order 1 or 2.

In particular, if we assume δKpSq � 1, δKpT q � 0, we obtain [NSW] 9.2.7 as a particular case.
Using certain Hasse principles and Grunwald-Wang theorem, one obtains the following form of
Riemann’s existence theorem for stable sets.

Theorem 4.26. Let K be a number field, p a rational prime, T � S � R sets of primes of
K. Assume that R is finite and S is p-stable for KTYSpYS8{K and has a p-stabilizing extension
contained in KR

S ppq. Then the natural map

φRT,S : �

pPRpKR
S ppqq

GKpppq{Kp
� �

pPT rSpKR
S ppqq

IKpppq{Kp

�
ÝÑ GKT ppq{K

R
S ppq

is an isomorphism, where IKpppq{Kp
� GKpppq{Knr

p ppq � GKpppq{Kp
is the inertia subgroup.

When δKpSq � 1 we obtain the known version of the theorem.
Finally, there is a statement about the (strict) p-cohomological dimension of GK,S and

GK,Sppq, if S satisfies p�qstab
p (cf. Corollary 5.15). If K is a p-stabilizing field for S for

KSYSpYS8{K, this statement can be proven directly using all the results above as in [NSW]
(cf. Theorem 4.31 and Corollary 4.33). The general case follows from the algebraic Kpπ, 1q-
property.

The properties “p-stable” and p�qstab
p are still too strong for such arithmetic results. For

example, let L {K be a Galois extension, A a trivial p-primary GL {K-module and T a set of
primes of K. Then to obtain the very basic Hasse principle X1pL {K,T ;Aq � 0, one can require
(instead of p-stability of T for L {K with p-stabilizing field K, as in Theorem 4.2) the weaker
condition that there is a subset T0 � T with δ�pT0q ¡ 0 in the tower L {K and such that there
are no subextensions L {L1{L{K with δL1 pT0q

δLpT0q
� p. Thus we can pose the following question.
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Question 4.1. What is the most general condition, for which the same results as for p-stable sets
resp. sets satisfying p�qstab

p hold? Are there counterexamples to the Grunwald-Wang theorem or
even to the Riemann’s existence theorem, among the sets, which do not satisfy this condition?

Concerning this, we conjecture the following two things. Firstly, it is possible to find examples
of sets of primes, which do not satisfy p�qstab

p , and for which Grunwald-Wang fails. Secondly, we
believe that Riemann’s existence theorem still holds for sets of primes, which are only p-stable
(or even stable?) and do not satisfy p�qstab

p . Finally, if this last statement would not be true,
and one could also find counterexamples to Riemann’s existence theorem, this would possibly
provide examples of curves SpecOK,S which are not Kpπ, 1q for p (cf. Definition 5.2).

Kpπ, 1q-property

For the definitions of the (various) Kpπ, 1q-properties we refer to Definition 5.2. Let

X :� SpecOK,S

with K a number field and S a set of primes of K. The following is well-known:

(i) if δKpSq � 1, then X is algebraic Kpπ, 1q and pro-p Kpπ, 1q for each p,

(ii) if S � Sp Y S8, then X is algebraic Kpπ, 1q for p and pro-p Kpπ, 1q

(here we assume that either p is odd K is totally imaginary). Furthermore, there is a powerful
recent result of A. Schmidt (cf. [Sch], [Sch2], cf. also [Sch3]) saying the following:

(iii) if p ¡ 2 is a prime, S is arbitrary finite and T is a further arbitrary set of primes of K with
δKpT q � 1, then one can choose a finite subset T0 � T such that X rT0 � SpecOK,SYT0

is pro-p Kpπ, 1q.

We show the algebraic Kpπ, 1q-properties for SpecOK,S with S stable.

Theorem 5.12. Let K be a number field, S � S8 a set of primes of K and p a rational prime.
Assume that either p is odd or K is totally imaginary.

(i) Assume that S is p-stable for KSYSp{K and has a p-stabilizing extension contained in
KSppq. Then SpecOK,S is a pro-p Kpπ, 1q.

(ii) Assume that S is stable and satisfies p�qstab
p . Then SpecOK,S is algebraic Kpπ, 1q for p.

In particular, part (ii) of this theorem allows to give explicit examples of schemes SpecOK,S
which are algebraic Kpπ, 1q for all p and such that δKpSq is arbitrary small. The assumption
that p is odd or K is totally imaginary is done for convenience.

Further, it is natural to ask, whether in the theorem of Schmidt mentioned above, one can
weaken the assumption on T from having density 1 to being p-stable for KSYSp{K and having
a p-stabilizing extension contained in KSppq. We plan to treat this question in a later paper.
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Anabelian geometry

Neukirch-Uchida theorem

First we explain the theorem of Neukirch-Uchida (cf. [NSW] chapter XII §2). Let K1,K2 be
number fields. Choose algebraic closures K1,K2 and consider the corresponding absolute Galois
groups GK1 ,GK2 . Consider the set

IsompGK1 ,GK2q

of all (topological) isomorphisms of profinite groups and define

OutIsompGK1 ,GK2q :� IsompGK1 ,GK2q{GK2 ,

where the action of GK2 on IsompGK1 ,GK2q is defined by composing with inner automorphisms
of GK2 . Now, OutIsompGK1 ,GK2q does not depend on the choice of algebraic closures of K1,K2.
Then one has a natural map

φK1,K2 : IsompK2,K1q ÝÑ OutIsompGK1 ,GK2q,

which is defined as follows: let α : K2 Ñ K1 be an isomorphism and let ᾱ : K2 Ñ K1 be some
extension of α to the algebraic closures. Then g ÞÑ ᾱ�1gᾱ defines an isomorphism GK1 Ñ GK2 .
Forgetting the choice of ᾱ over α corresponds then to the passage from IsompGK1 ,GK2q to
OutIsompGK1 ,GK2q.

Theorem 0.2 (cf. [Ne], [Ne2], [Uc]). Let K1,K2 be number fields. Then φK1,K2 is bijective.

This is the theorem of Neukirch-Uchida, which was also independently proven based on results
of Neukirch by Ikeda [Ik] and Iwasawa (unpublished). To prove it, one shows first the following
intermediate statement.

Claim 0.3. If K1 is normal over Q and GK1 � GK2, then K1 � K2.

We give an outline of its proof. First, one establishes the local correspondence. Assume an
isomorphism σ : GK1

�
Ñ GK2 is given. Then there is a bijection

σ�,K1 : ΣK1,f
�
ÝÑ ΣK2,f

of the sets of all non-archimedean primes of K1 and of K2, which respects residue characteristics
and absolute degrees of primes and is compatible with taking open subgroups (more on the
method of proof of the local correspondence is said below). Let then P¥1pK{Qq denote the set
of primes of Q, having at least one prime of degree 1 in K. From the local correspondence, one
obtains the following diagram:

cspK1{Qq cspK2{Qq� _

��
P¥1pK1{Qq P¥1pK2{Qq

.

A posteriori one obtains cspK2{Qq � P¥1pK2{Qq, i.e., K2{Q is also normal (by Chebotarev
density theorem). Finally, by a classical application of Chebotarev density theorem, the equality
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cspK1{Qq � cspK2{Qq implies K1 � K2, as K1,K2 are normal over Q. Also the injectivity of
φK1,K2 (for arbitrary K1,K2) follows as a corollary from (the proof of) the local correspondence.

There are various extensions and generalizations of Neukirch-Uchida theorem:

• The corresponding result in the function field case was proven by Uchida in [Uc2].

• The result remains true, if one replaces absolute Galois groups by their maximal pro-
solvable quotients ( [Ne2], [Uc3]).

• The result is still true if one assumesK1,K2 to be infinite fields, which are finitely generated
over their prime fields. This was done by Pop ( [Po1], [Po2], [Po3], cf. also [Sz]).

• The corresponding result for affine curves over finite fields was shown by Tamagawa ( [Ta]).
Here one considers (instead of Ki) the scheme Xi � SpecOKi,Si , where Ki is a function
field in one variable over a finite field and Si is a finite set of primes, and instead of GKi

the étale fundamental group π1pXiq � GKi,Si .

The result of Tamagawa (last one in the above list) for affine curves over finite fields is still out
of reach in the number field case: too little is known about the group π1pSpecOK,Sq � GK,SYS8 ,
where K is a number field and S a finite set of primes of K. The failure of Tamagawa’s proof
in the number field case depends mainly on the lack of techniques: there is no everywhere
unramified extensions of the field of constants, no geometric fundamental group, etc. Also tools
like Grothendieck-Lefschetz trace formula and Weil conjectures are not available.

Neukirch-Uchida for SpecOK,S with S stable

Our aim is to generalize Theorem 0.2 to the schemes SpecOK,S where K is a number field and
S is stable (and so can have arbitrary small positive Dirichlet density). In this thesis, we only
generalize Claim 0.3. Further, we believe that the whole theorem can be generalized, at least
under an additional technical assumption. To simplify the situation, we consider the following
condition:

DecpK,Sq For every p̄ P Sf , the decomposition group Dp̄ � GK,S is the full local group

which is satisfied in several cases (cf. the beginning of Section 6.1), and which is only necessary
to simplify the statement of the theorem (cf. Theorem 6.2 in the text for the general case).

Theorem 6.1. For i � 1, 2 let pKi, Siq be a number field and a set of primes of Ki, such that
DecpKi, Siq holds and

• K1 is normal over Q,

• for i � 1, 2 the set Si is stable and satisfies p�qstab
`i

for some odd prime `i,

• there are two odd rational primes under S1 and S8 � S1,

• there is a rational prime under S2.

If GK1,S1 � GK2,S2 , then K1 � K2.

20



The first step in the proof is the same as in the proof of Neukirch-Uchida: one establishes a
local correspondence at the boundary, i.e., out of an isomorphism σ : GK1,S1

�
Ñ GK2,S2 , one

constructs a bijection

σ�,K1 : S1,f pK1q
�
ÝÑ S2,f pK2q,

which respects the residue characteristic and the local degree of primes (and is compatible with
taking subgroups). But now the argument finishing the proof above, can not be used anymore:
the sets S1,f pK1q, S2,f pK2q can simply be too small for an application of Chebotarev as above. An
additional obstruction is that sets of the form PM{Kpσq (which are in many cases stable) do not
determine the fieldM in general, i.e., there are examples of pairs pM,σq � pN, τq of a finite Galois
extension of K together with an element in the Galois group, such that PM{Kpσq w PN{Kpτq,
but M � N .

At this point one has to find a new argument, showing that K1 � K2 under the assumptions
in the theorem. This argument consists of two parts and is the subject of Sections 6.3 and 6.4,
preceding the proof of Theorem 6.1. To describe the idea behind this argument, embed the
fields K1,S1 ,K2,S2 into a fixed algebraic closure of Q. Then using the local correspondence at
the boundary and the stability of S1, one can show the existence of a certain uniform bound
N ¡ 0 (depending on Ki, Si), such that if K1,S1{M1{K1 is a (not necessary finite) subextension,
which is normal over Q and M2 is a subextension corresponding to M1 via the isomorphism
σ : GK1,S1

�
Ñ GK2,S2 , then one has rM1 : M1 XM2s   N . Using this bound for the extension

M1 :� K1,Spppq, where p can be one of the primes lying under S1, one can show that K1 � K2.
Finally, using the fact that there is a rational prime under S2, one shows rK1 : Qs ¥ rK2 : Qs,
and hence K1 � K2.

Anabelian properties of GK,S with S finite

We consider first the birational case (the case of S stable is similar) and review briefly the local
correspondence, as needed for the proof of Neukirch-Uchida. Let K be a number field, GK its
absolute Galois group. One shows that if H � GK is a closed subgroup with H � Gκ, where κ
is a non-archimedean local field of characteristic zero, then there is a unique prime p̄ of K, such
thatH � Dp̄,K{K . In particular, one characterizes the decomposition groups at non-archimedean
primes of K purely group-theoretically as the set of all closed subgroups H � GK , which are
maximal with the following property:

• H � Gκ, where κ is a non-archimedean local field of characteristic zero

This property is clearly invariant under topological isomorphisms and one obtains the local
correspondence as a corollary from this description.

Now, assume S is finite. Then the use of similar techniques leads only to weaker results. In
particular, no general Hasse principle for X2 (with constant coefficients) is known, and one can
not show that a closed subgroup H � GK,S , such that H � Gκ with κ non-archimedean local
field of characteristic zero, must be contained in a decomposition group Dp̄,KS{K . But everything
one has to do, to obtain such a description, is to give a bit more information. For example, if one
has given the group GK,S together with the p-part of the cyclotomic character χp : GK,S Ñ Z�p ,
where p is such that Sp Y S8 � S, then one can characterize the decomposition subgroups
at primes in Sf only in terms of the group theory of GK,S and χp. This is analogous in the
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geometric setup to the situation relative to a field k: one considers2 not simply the fundamental
group π1pXq of a k-scheme X, but the pair

π1pXq, Gk Ñ Outpπ1pXqq

consisting of the geometric fundamental group π1pXq together with the corresponding outer
Galois representation Gk Ñ Outpπ1pXqq, or which is equivalent, the fundamental group sequence

1 Ñ π1pXq Ñ π1pXq Ñ Gk Ñ 1

of X{k. In particular, if k is finite, then the projection π1pXq � Gk describes the cyclotomic
character. This explains the motivation for the following main result of Section 2. However, the
Isom-form of the Anabelian Conjecture for curves over finite fields, proven by Tamagawa, is an
absolute result. In particular, the outer representation is encoded in the group theory of π1pXq.

Theorem 2.5. Let K be a number field, S � S8 a finite set of primes. Assume at least two
rational primes lie in O�K,S, and p is one of them. Assume pGK,S , pq are given. The knowledge
of one of the following extra structures is equivalent to any other:

(i) The embeddings ιp̄ : Dp̄ ãÑ GK,S for p̄ P Sf .

(ii) The cyclotomic p-character χp : U Ñ Z�p on some open U � GK,S.

(iii) For all open U � GK,S with totally imaginary fixed field, the group ClSpUq.

(iii)’ For all open U � GK,S with totally imaginary fixed field, the number 7ClSpUq{p.

(iv) For all open U � GK,S, the number 7SpUq.

Assume DecpK,Sq holds. Then the knowledge of the above is also equivalent to the knowledge
of the following:

(ii)’ The cyclotomic character on some open subgroup U � GK,S.

This theorem allows in particular to state a local correspondence at the boundary for an iso-
morphism σ : GK1,S1

�
Ñ GK2,S2 , which satisfies χ1,p � χ2,p � σ. However, such a correspondence

is by no means so powerful as the local correspondences in the birational resp. stable cases are,
since Si is here only a finite set.
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Notation

Our notation will essentially coincide with the notation of [NSW]. There will be some minor
differences, explained in the context. Here we collect all important notations, used in this work.
First we have the following group-theoretical notations. Let G be a profinite group, H � G a
closed subgroup and p a rational prime.

• Gp denotes a pro-p-Sylow subgroup of G

• Gppq denotes the maximal pro-p-quotient of G

• Gsolv denotes the maximal solvable quotient of G

• Cpσ;Gq denotes the conjugacy class of an element σ in G

• NGpHq is the normalizer of H in G.

Assume G is finite.

• mH � mG
H denotes the character of the G-representation IndGH 1. It is a (Z-valued) class

function on G.

Let L be any field. We have the following Galois-theoretic notations.

• GM{L is the Galois group of a Galois extension of fields M{L

• Lppq{L is the maximal pro-p-extension of L

Usually we will denote by K a number field, i.e., a finite extension of Q. We fix an algebraic
closure K of K and consider all extensions of K to be contained in K. Let S,R be sets of primes
of K.

• KS{K is the maximal extension of K unramified outside S

• GS � GK,S is the Galois group of KS{K

• KSppq{K is the maximal pro-p-extension of K, contained in KS{K

• GSppq � GK,Sppq is the Galois group of KSppq{K

• KR
S is the maximal extension of K unramified outside S and completely split in R

• KR
S ppq is the maximal pro-p extension of K, contained in KR

S

• if L{K is a Galois extension, p̄ a prime of L, then Dp̄ � Dp̄,L{K � GL{K denotes the
decomposition group of p̄. If p � p̄|K , the choice of p̄ over p is unimportant and no
confusion is possible, we also will write Dp resp. Dp,L{K instead of Dp̄ resp. Dp̄,L{K

• Knr
p is the maximal unramified extension of the local field Kp for p a prime of K

• Gp denotes the absolute Galois group of the local field Kp

• Ip � Gp is the inertia subgroup
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Further, we have the following notations concerning sets of primes of K. Let S be a set of
primes of K (it can be either finite or infinite and contain non-archimedean primes as well as
archimedean).

• Sp � SppKq is the set of primes of K lying over a rational prime p

• ΣK ,ΣK,f , S8 � S8pKq is the set of all resp. all finite, resp. all archimedean primes of K

• Sf :� SrS8

• If S � ΣK and L{K is an algebraic extension, SL is the preimage of S under the restriction
ΣL � ΣK . We write sometimes SpLq or, if L is clear from the context, simply S, instead
of SL.

• If M{K is a finite Galois extension and σ P GM{K , we have the Chebotarev set

PM{Kpσq � tp P ΣK : p is unramified in M{K and pp,M{Kq � Cpσ; GM{Kqu,

where pp,M{Kq denotes the conjugacy class of Frobenius elements corresponding to primes
of M lying over p.

• For any finite extension L{K we define:

P 1pL{Kq :� tp P ΣL : p is unramified and has degree one over Ku

cspL{Kq :� tp P ΣK : p is completely split in Lu

RampL{Kq :� tp P ΣK : p is ramified in L{K u,

in particular, if Lgal{K denotes the normal closure of L overK, then cspL{Kq � cspLgal{Kq �

PLgal{Kp1q.

• δK is the Dirichlet density defined on suitable subsets of ΣK

• Let T be a further set of primes of K. Then we define

S
�
� T :ô δKpSrT q � 0

S w T :ô pS
�
� T q and pT �

� Sq.

By a local field we usually mean a non-archimedean local field.
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Part I

The group GS with S finite





1 Intersections of decomposition subgroups

1.1 Overview

The goal of the present section is to study the intersections of decomposition subgroups of points
inside arithmetic fundamental groups. In the birational case, there is a well-known result by
F.K. Schmidt, which we give here together with a corollary:

Theorem 1.1. ( [NSW] 12.1.3 ) Let K be a global field and p̄, q̄ two different primes of Ksep.
Then Dp̄ XDq̄ � 1 in GK .

This result can be applied to anabelian geometry: in fact, it provides the starting point to
Neukirch’s proof of a “local correspondence”, which is a functorial bijection between primes of
two global fields K1 and K2, constructed out of a continuous isomorphism of the corresponding
absolute Galois groups. Technically speaking, one needs only the following corollary:

Corollary 1.2. (cf. [NSW] 12.1.4 )

(i) For all open subgroups H � Dp̄, one has NGK pHq � Dp̄.

(ii) The intersection of two distinct decomposition subgroups is not open in each of them.

Proof of the corollary. (ii) follows from Theorem 1.1. For (i), let x P NGK pHq, then H �

xHx�1 � xDp̄x
�1 � Dxp̄, hence H � Dxp̄ XDp̄ is non-trivial, hence xp̄ � p̄, i.e., x P Dp̄.

If one changes from the birational setting to the arithmetic one, i.e., consider the group
GK,S � π1pSpecOK,Sq, with S � S8 some finite set of primes, an analog of Theorem 1.1 is still
unknown. But for an application to anabelian geometry (more precise: to obtain at least a local
correspondence at the boundary, i.e., for primes in S), it is enough to have a corollary as above.
It is possible to obtain such a result using only the maximal solvable quotient of GK,S and some
class field theory. This is the content of Section 1.3.

In Section 1.2 we study some easy properties and introduce a shortcut for the notion of
non-abelian pro-p Demushkin groups of rank 2. We call them groups of p-decomposition type. In
Section 1.4 we consider the intersection of decomposition subgroups at primes outside S (“good”
primes). We can not give any definite statement about the intersection of Dp̄ and Dq̄ for any
p̄ and q̄. But if p̄ is given, there is, under very mild assumptions, a set of primes of Dirichlet
density 1, such that if q̄ is in this set, Dp̄ XDq̄ � Dp̄ is not open.

1.2 Groups of p-decomposition type

One of the most frequently used objects in our investigations will be the p-Sylow subgroup of an
absolute Galois group of a non-archimedean local field with residue characteristic � p. Such a
group has a very special and easy structure: it is a non-abelian pro-p-Demushkin group of rank
two. To have a shortcut, we define:

Definition 1.3. A group of p-decomposition type is a non-abelian pro-p Demushkin group of
rank 2.

Thus a group of p-decomposition type is of the form Zp 
 Zp with Zp ãÑ AutpZpq � Z�p
injective (this follows from [NSW] 3.9.9, 3.9.11). We need a description of all closed subgroups
of groups of p-decomposition type:
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Lemma 1.4. Let H be a group of p-decomposition type.

(i) A non-trivial closed subgroup of H is either isomorphic to Zp or is of p-decomposition type.

(ii) The open subgroups of H are exactly the subgroups of p-decomposition type.

(iii) H has a unique maximal closed normal pro-cyclic subgroup, denoted Hn. It is also the
unique closed normal subgroup, such that H{Hn is infinite pro-cyclic.

(iv) If N � H is open, then Nn � N XHn.

Proof. (i) + (ii): Obviously a closed subgroup of H, which is isomorphic to Zp, can not be
open. Assume now, N � H is a non-trivial closed subgroup, which is not isomorphic to Zp. We
have to show that it is open and of p-decomposition type. Let Hn �H be a normal subgroup
of H, such that Hn � H{Hn � Zp. If N X Hn would be trivial, then N would inject into
H{Hn � Zp, which is impossible due to our assumption. Thus N X Hn � Hn is open, and
isomorphic to Zp. Consider the inclusion N{pN X Hnq ãÑ H{Hn � Zp. Since N � N X Hn

(otherwise N � N XHn � Zp), N{pN XHnq is a non-trivial, hence open and isomorphic to Zp,
subgroup of H{Hn. We have the following diagram with exact rows:

1 // N XHn� _

�

// N� _

�

// N{N XHn� _

�

// 1

1 // Hn
// H // H{Hn

// 1,

which produces the following equation of supernatural numbers:

pH : Nq � pH{Hn : N{pN XHnqqpHn : N XHnq

Since both numbers on the right side are finite, also pH : Nq is finite, i.e., N is open in H. Now,
N XHn and N{N XHn are both isomorphic to Zp. In particular, the upper sequence is split. It
remains to show that N is not abelian. Otherwise we would have N � Zp�Zp and scdppNq � 3.
But scdppHq � 2 and scdppNq ¤ scdppHq. This leads to a contradiction.

(iii): Let Hn be as above. Assume Zp � H1 �H is normal and H1 � Hn. Then

H1{pH1 XHnq ãÑ H{Hn � Zp,

i.e., H1 X Hn � 1. Now Hn, H1 are two normal subgroups of H with trivial intersection, i.e.,
Hn � H1 � H. But Hn � H1 � Zp is not of p-decomposition type. This is a contradiction to
(i). Hence Hn is the unique maximal normal closed pro-cyclic subgroup of H.

Assume now, H2�H is normal with H{H2 � Zp and H2 � Hn. As Hn{H2XHn ãÑ H{H2 �

Zp, we get Hn XH2 � 1. The same reasoning as above gives a contradiction. Thus H2 � Hn.
Then H2 � Hn follows easily.

(iv): Since N � H is open, N � Hn and we have an inclusion 1 � N{N X Hn ãÑ H{Hn,
hence N{N XHn is infinite pro-cyclic. Thus by (iii), N XHn � Nn.

To a group H of p-decomposition type we can associate a character

χH : H � H{Hn ãÑ Z�p � AutpHnq,

defining the semi-direct product. We use it only in Section 2.8 below.

30



1.3 Approach by class field theory

Let K be a number field and S � S8 a set of primes. For a profinite group H, let Hsolv denote
the maximal solvable quotient of H.

Arguments in this section make only use of solvable extensions of K, so we work here with
the quotient Gsolv

S of GS . Therefore, let Ksolv
S denote the corresponding subfield of KS . If p̄ is

a prime of Ksolv
S , we write Dp̄ for the decomposition group Dp̄,Ksolv

S {K � Gsolv
S . Throughout this

section, except Corollary 1.8, p̄, q̄ will denote primes of Ksolv
S .

1.3.1 Local situation

Let κ be a non-archimedean local field with residue characteristic ` and let Gκ be its absolute
Galois group. It is well-known that the maximal tame quotient of Gκ is

G tr
κ � Ẑ
 Ẑp`

1q,

where the action of Ẑ on Ẑp`1q is given by sending the Frobenius element to multiplication by
7κ̄, the cardinality of the residue field. For p � `, the p-Sylow subgroups of G tr

κ are of p-
decomposition type. Consider now a p-Sylow subgroup Gκ,p � Gκ. Since p � `, the composition

Gκ,p ãÑ Gκ � G tr
κ

is injective, since the kernel of the second map is a pro-`-subgroup. Thus Gκ,p is isomorphic to
a p-Sylow subgroup of G tr

κ , and hence is of p-decomposition type.

1.3.2 Metabelian covers

Lemma 1.5. Assume Sp Y S8 � S. Let p̄ P pSf rSpqpK
solv
S q and p � p̄|K . Let Gp denote the

absolute Galois group of Kp and Gp,p a p-Sylow subgroup. Then the composition

φ : Gp,p ãÑ Gp � Dp̄ ãÑ Gsolv
S

is injective. In particular, any p-Sylow subgroup of Dp̄ is of p-decomposition type.

Proof. Since p R Sp, we have Gp,p � pGp,p{Ip,pq 
 Ip,p, where both factors are isomorphic to
Zp and the second is the inertia subgroup. Due to the cyclotomic p-extension, which realizes
the maximal unramified p-extension at p and is unramified outside Sp � S, the kernel of φ is
contained in Ip,p. We show kerpφq � 1, i.e., that for any n ¡ 0, there is a solvable (moreover, this
extension is metabelian) extension of K, which is unramified outside S and whose ramification
degree at p is pn (in fact, if then Un � Gsolv

S is the corresponding subgroup, then pφ|Ip,pq
�1pUnq �

pnIp,p � Ip,p, and we get kerpφq �
�
n Un � 1).

Therefore, let L0{K be the Hilbert class field of K and set L :� L0Kpζpnq. This is an abelian
extension of K, unramified outside Sp. The ideal p is on the one side unramified in L, and on
the other side principal (being principal already in L0). Thus we can write

pOL � pεq � p1p2 . . . pr,

with ε P OL, and pi unequal prime ideals of OL. We can assume that p̄|L � p1. Since p P S, we
have ε P O�L,S , and the extension Lpε1{pnq is unramified outside Sp Y Sp � S. But since p1|p is
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unramified, one has
vp1pεq � 1,

where vp1 denotes the valuation corresponding to p1. Thus the local extension Lp1pε
1{pnq{Lp1 is

tamely ramified of degree pn. Finally, since L{K and Lpε1{pnq{L are abelian (the second is Galois,
since µpn � L), the successive extension Lpε1{pnq{L{K is metabelian and hence solvable.

Proposition 1.6. Let p̄ � q̄ P Sf pK
solv
S q, such that there is a rational prime p P O�

Ksolv
S ,Sr tp̄,q̄u.

Choose some p-Sylow subgroups Dp̄,p � Dp̄ resp. Dq̄,p � Dq̄. Then Dp̄,p X Dq̄,p is not open in
Dp̄,p. In particular, Dp̄ XDq̄ is not open in Dp̄.

Proof. By Lemma 1.5, Dp̄,p resp. Dq̄,p are groups of p-decomposition type. Let p � p̄|K , q � q̄|K .
By going up to a finite extension, we can assume p � q. Observe that the extension constructed
in the proof of the Lemma 1.5 is Galois and unramified in q, as q R Sp Y tpu. Thus if I�,p � D�,p

denotes the corresponding inertia subgroup, we have Ip̄,p X Iq̄,p � 1.
Now assume Dp̄,pXDq̄,p � Dp̄,p is open. The second group is of p-decomposition type, hence

the first also is (Lemma 1.4(ii)). Hence, again by Lemma 1.4(ii), the inclusion Dp̄,pXDq̄,p � Dq̄,p

is also open. The maximal normal pro-cyclic subgroup of D�,p is I�,p. Thus by Lemma 1.4(iv)
applied to the both inclusions, the maximal normal pro-cyclic subgroup of Dp̄,pXDq̄,p is equal to
Ip̄,pXDq̄,p and to Dp̄,pX Iq̄,p simultaneously, i.e., these two intersections are equal. This implies
Dp̄,p X Iq̄,p � Ip̄,p X Iq̄,p � 1. But this group, being the maximal normal pro-cyclic subgroup of
a group of p-decomposition type must be isomorphic to Zp. This is a contradiction.

Finally, if Dp̄ X Dq̄ � Dp̄ would be open, then also Dp̄,p X Dq̄ � Dp̄,p. But Dp̄,p X Dq̄ is a
pro-p-subgroup of Dq̄, hence contained in a p-Sylow subgroup D1

q̄,p of it. Thus the intersection
Dp̄,p XD1

q̄,p � Dp̄,p XDq̄ would also be open in Dp̄,p, which contradicts the already proven part
of the proposition.

From this we obtain the following analog of Corollary 1.2 for Gsolv
S :

Corollary 1.7.

(i) If p P O�K,S , p̄ P pSf rSpqpK
solv
S q and H � Dp̄ a closed subgroup, such that HXDp̄,p � Dp̄,p

is open for some p-Sylow subgroup Dp̄,p � Dp̄, then NGsolv
S
pHq � Dp̄.

(ii) Assume that at least three rational primes lie in O�K,S. Then the intersection of two distinct
decomposition subgroups in Gsolv

S of primes in Sf pKsolv
S q is not open in each of them.

Proof. (i): Let x P NGsolv
S
pHq. Then H � xHx�1 � xDp̄x

�1 � Dxp̄. Thus Dp̄ X Dxp̄ � H

contains an open subgroup of a p-Sylow subgroup of Dp̄. Proposition 1.6 implies xp̄ � p̄, or
equivalently, x P Dp̄.

(ii): This follows directly from Proposition 1.6, since the condition posed there is automati-
cally satisfied.

Now consider the whole group GS . All arguments from above (in particular the lemma and
the proposition) also apply, if one replaces Gsolv

S by GS . Thus we get (in the following Dp̄ � GS

means again a decomposition group inside GS):
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Corollary 1.8.

(i) If p P O�K,S , p̄ P pSf rSpqpKSq and H � Dp̄ a closed subgroup, such that H XDp̄,p � Dp̄,p

is open for some p-Sylow subgroup Dp̄,p � Dp̄, then NGS pHq � Dp̄.

(ii) Assume that at least two rational primes lie in O�K,S. Then the intersection of two distinct
decomposition subgroups in GS of primes in Sf pKSq is not open in each of them.

Proof. (i) is done as above. (ii): By Proposition 1.6, the only case to consider, is Sp Y S` � S,
p̄ P Sp, q̄ P S` with p � ` (and there is no further prime to compare Dp̄ with Dq̄). Assume
Dp̄ X Dq̄ � Dp̄ is open. But by [CC] Theorem 5.1 both groups Dp̄ and Dq̄ are the full local
absolute Galois groups, hence also the open subgroup Dp̄XDq̄ of Dp̄ is. Hence Dp̄XDq̄ contains
free pro-p-subgroups of any finite rank. But Dq̄ does not, and we get a contradiction.

1.4 Intersection of decomposition subgroups at good primes

Let K be a number field, and S � Sp Y S8 a finite set of primes. Arguments in this section
make only use of abelian p-extensions, so we work with Gab,p

S instead of GS . Let M � Kab,p
S

denote the corresponding subfield of KS . For short, we write Dp for Dp,M{K . We consider the
intersections of decomposition subgroups at primes outside S. Observe first, that if p̄ P ΣM rS,
then we have natural surjections:

Ẑ� Dp̄ � Zp.

Indeed, the first surjection holds, since p̄|K is unramified with finite residue field and the second
due to the assumption on S and the existence of the cyclotomic p-extension. We will use the
infinite version of the Chebotarev density theorem to prove the following result (in the following
δK denotes the Dirichlet density on K). Let Dp,p � Dp denote the p-Sylow subgroup.

Proposition 1.9. Let p be a rational prime, S a finite set of primes of K with Sp Y S8 � S.
Assume that K is not totally real. Let p̄ P ΣM rS and p � p̄|K . Then there is a set Tp � ΣK rS

with δKpTpq � 1, such that for all q P Tp and all extensions q̄ of q to M , the following holds:

Dp̄,p XDq̄,p � 1.

In particular, the intersection of Dp̄ and Dq̄ is not open in each of them.

Proof. Since K is not totally real, the number of complex embeddings of K is r2pKq ¥ 1 and
hence rkZp Gab,p

S ¥ 2 by [NSW] 10.3.20. Let H � Z2
p be some quotient of Gab,p

S , such that
p is not completely split in L, the subfield of M corresponding to H (such quotient exists
due to the cyclotomic extension). Since H is torsion-free, this implies that the composition
Dp̄,p ãÑ Gab,p

S � H is injective, i.e., Dp̄,p � Dp̄,L{K is an isomorphism.
We have Zp � Dp̄,L{K � H. Consider H ãÑ HbZpQp, and let N :� HXpDp̄,L{KbZpQpq, the

intersection taken in HbZpQp. Then N being compact and closed subgroup of Dp̄,L{KbZpQp �

Qp is isomorphic to Zp. Let µ be the Haar measure on H, such that µpHq � 1. Then µpNq � 0

and hence µpH rNq � 1 and µpBpH X Nqq � µpNq � 0. By Chebotarev density theorem for
infinite extensions, the set of primes Tp of K, lying outside S, whose Frobenius lies in H rN

has density 1. Then Tp satisfies the requirements of the proposition.
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2 Anabelian properties of GS with S finite

In this section we study which properties of the field K and the set S of primes of K can be
reconstructed from the group GS , if with S finite. Essentially, we find pieces of information,
such that the knowledge of each of them, together with the knowledge of the profinite group
GS , determine the other ones.

2.1 Overview

Let K be a number field, S � S8 a set of primes of K. We want to study, which invariants of K
can be reconstructed from the group GS . In Section 2.2 we recall briefly, what can be done in
the local case. Then, in Section 2.3, we recover, under the assumption of Leopoldt’s conjecture
for K and all primes, the degree of K{Q, the number of real and complex embeddings, and the
set Z X O�K,S of integers invertible in OK,S , if this set is contains at least one rational prime.
In Sections 2.4-2.9, we want to study, how the decomposition subgroups at primes in S lie in
GS . Roughly speaking, it turns out that it is equivalent to know one of the following data: the
embeddings pDp̄ ãÑ GSqp̄PSf ; the cyclotomic character on GS ; the S-class number of all finite
subfields KS{L{K; the number 7SpLq for all L. For the precise result, see Theorem 2.5. Of
all these quantities, the numbers 7SpLq seem to be the most accessible ones. In Section 2.10
we show how one can reconstruct them from the group GS , assuming the finiteness of certain
Shafarevich groups. The proof of Theorem 2.5 is easier, if one assumes the following condition:

DecpK,Sq For every p̄ P Sf , the decomposition group Dp̄ � GS is the full local group

on K and S, and requires some additional work in the general case. Further, in the Section 2.11
we show an idea, how one can use the Dedekind zeta function to obtain some information on the
location in GS of the decomposition groups of points of SpecOK,S (that is, primes of K lying
outside S). Throughout this section we use the following notation:

• nK , r1, r2 degree, the number of real resp. complex embeddings of K{Q,

• χp : GS Ñ Z�p the cyclotomic p-character for p P O�K,S .

We write ClSpUq, 7SpUq, etc. instead of ClSpLq, 7SpLq, etc., if U � GS is an open sub-
group with L � pKSq

U . We will sometimes assume that there are at least two rational primes
p1, p2 P O�K,S , i.e., that Sp1 Y Sp2 � S. This assumption implies by [CC] Theorem 5.1, that the
decomposition groups in GS of primes in Sp1 Y Sp2 are the full local groups. It does not imply
in general that this holds for all primes in S (but it still does for primes lying in the maximal
subset of S, defined over a totally real subfield: cf. [CC] Remark 5.3(i)).

A local field means always a non-archimedean local field.

2.2 Warm-up: local invariants

In this subsection we recall the anabelian properties of local fields, i.e., which invariants of a
local field κ can be recovered from its absolute Galois group Gκ. This material is also covered
by [NSW]. A good survey can be found in [SchS]. Local fields are not anabelian (cf. [NSW]
Remark before 12.2.7). This means that one can construct two different local fields κ � κ1 with
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isomorphic absolute Galois groups: Gκ � Gκ1 . Nevertheless, the following data can be recovered
from Gκ:

• the characteristic charκ

• the characteristic char κ̄ of the residue field κ̄ of κ

• the cardinality 7κ̄ of κ̄

• the absolute degree rκ : Qps, if charpκq � 0, charpκ̄q � p

• the inertia and the wild inertia subgroups Vκ � Iκ � Gκ

• the Frobenius class Frobκ P Gκ {Iκ

• the multiplicative group λ� of any finite extension λ{κ

• the cyclotomic character χcycl on Gκ.

These invariants can be recovered using the cohomology with finite coefficients of Gκ, the
local reciprocity law and the structure of the tame quotient of Gκ. Let us write

hippGκq :� dimFp HipGκ,Z{pZq.

We have the following standard computations, where δ � 1 if µp � κ and δ � 0 otherwise:

hippGκq �

$'''''&
'''''%

1� δ if i � 1, charpκ̄q � p,

1� δ � rκ : Qps if i � 1, charpκ̄q � p and charpκq � 0,

8 if i � 1, charpκq � p,

δ if i � 2.

Hence the characteristic of κ equals 0, if h1
ppGκq   8 for all p and equals p, if h1

ppGκq � 8 (this
p is then necessarily unique). The residue characteristic of κ is the unique prime p, such that
the set th1

ppUq : U � Gκ openu is unbounded. We denote it by p in what follows. Further, the
norm residue symbol defines an exact sequence:

(2.1) 0 Ñ κ� Ñ Gab
κ Ñ Ẑ{ZÑ 1.

Let pp1q denote the prime-to-p completion. Since Ẑ{Z is uniquely divisible, we have

κ̄� � µpκqpp
1q � pκ�q

pp1q
tor � pGab

κ q
pp1q
tor ,

i.e., 7κ̄ � 7pGab
κ q

pp1q
tor � 1. If κ is p-adic, we obtain the absolute degree as the negative of the

Euler characteristic of Z{pZ: χpGκ,Z{pZq � �rκ : Qps. The above argument also determines
the cardinality of the residue field of any finite separable extension of κ, corresponding to an
open subgroup U � Gκ. Let us write qU :� pUabq

pp1q
tor � 1. We obtain the inertia subgroup as

Iκ �
£
U

U,
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where the intersection is taken over all U � Gκ open with q
pGκ:Uq
Gκ

� qU , and the wild inertia
subgroup Vκ as the p-Sylow subgroup of Iκ. Now it is a well-known fact, that as Gκ {Iκ-modules,
we have Iκ{Vκ � Ẑpp1qp1q, where 1 denotes the first Tate twist. Thus by injectivity of the
cyclotomic character, Frobκ P Gκ {Iκ is the unique element acting on Iκ{Vκ via multiplication
with qGκ . Finally, the sequence (2.1) determines κ� as the preimage of the discrete subgroup
generated by Frobκ under the projection Gab

κ � Gκ {Iκ � Gκ̄. Since the same can be done for any
finite Galois extension of κ in a functorial and Gκ-equivariant way, this also determines the Gκ-
module pκsepq�. In particular, this gives also the action of Gκ on its torsion µpκsepq � pκsepq�tor.
This determines the cyclotomic character on Gκ.

Further we have a nice lemma, proven by Neukirch (cf. [NSW] proof of 12.1.9).

Lemma 2.1. Let L,M be two local fields with L p-adic, and assume an injection GL � GM is
given. Then M is p-adic too, and GL is of finite index in GM . Further rM : Qps ¤ rL : Qps.

Proof. Since L is p-adic, we have cd`pGLq � 2 for all primes `, and therefore cd`pGM q ¥

cd`pGLq � 2 for all ` by [NSW] 3.3.5. Hence by [NSW] 6.1.3, charM � 0. Since GM � GL

contains pro-p-subgroups of any finite rank, M is p-adic. Further, for any prime `, we have
`8 - rGM : GLs. In fact, if this would not be the case, Lemma 2.2 would imply 2 � cd`pGLq  

cd`pGM q � 2, a contradiction.
Assume GL � GM is not open. Let GL � U � GM be open in GM , with p - pU : GLq (since

p8 - pGM : GLq, there is a U0 � GM open, such that this holds for all GL � U � U0). Then the
restriction H1pU,Z{pZq Ñ H1pGL,Z{pZq is injective. But as the second group is finite and the
order of the first tends to infinity with pGM : Uq, this leads to a contradiction. Thus GL � GM

is open.
Finally, let M 1{M be the finite extension corresponding to the subgroup GL � GM . Then

rM : Qps ¤ rM 1 : Qps � �χpGL,Z{pZq � rL : Qps.

Lemma 2.2. (cf. Exercise 3 in [NSW] III §7) Let G be a Poincaré group at p and H � G a
closed subgroup. Assume that p8|pG : Hq. Then cdpH   cdpG.

Proof. Let n :� cdpG and let I be the dualizing module of G. To show that cdpH   n, it is
enough to show that for any finite H-module A with pA � 0 one has HnpH,Aq � 0. Let A be
such a module. There is an open subgroup H � U0 � G, such that A lifts to a U0-module. Then

HnpH,Aq � Hnp limÐÝ
H�U�U0

U,Aq

� limÝÑ
H�U�U0,res

HnpU,Aq

� limÝÑ
H�U�U0,res

HnpG, IndG
U Aq

� limÝÑ
H�U�U0,cor_

H0pG,HompIndG
U A, Iqq_

� limÝÑ
H�U�U0,cor_

H0pU,HompA, Iqq_

the second to last equality being true, since res is dual to cor with respect to the duality pairing.
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Now I is isomorphic to Qp{Zp as an abelian group, hence HompA, Iq is still finite. Thus it is
enough to show that if M is a finite U0-module killed by p, then

limÝÑ
H�U�U0,cor_

MU � 0.

Since M is finite, we can choose an open H � U1 � U , such that MU � MH for all
H � U � U1. But by our assumption, for any H � U � U1, there is a H � V � U with
p|pU : V q. Then

corUV � NU{V : MV ÑMU α ÞÑ
¸

gPU{V

gα

is the zero map, since MV � MU and in particular
°
gPU{V gα � pU : V qα � 0. Thus also

pcorUV q
_ is the zero map and the claim follows.

2.3 Recovering some global invariants under Leopoldt

Proposition 2.3. Let S be a finite set of primes of K. Assume the Leopoldt conjecture is true
for K and for all rational primes. Assume SpYS8 � S for at least one rational prime p. Then
GS determines the set NpSq :� Z X O�K,S, the degree n of K{Q and the numbers r1, r2 of real
resp. complex embeddings of K.

Proof. First we show that GS determines the number r2 � r2pKq of complex embeddings of
K and the set NpSq. For any rational prime p consider the number rppq :� rkZp Gab,p

S . The
Leopoldt conjecture says that r2 � 1 � rppq if Sp Y S8 � S. If Sp � S, then at least the
cyclotomic Zp-extension is not contained in KS{K, thus in this case

rppq � rkZp Gab,p
S   rkZp Gab,p

SYSp
� r2 � 1.

Since Sp � S for at least one p, we obtain r2 � maxptrppqu � 1, and a prime lies in NpSq if and
only if rppq is maximal.

Now it remains to recover n and r1 from GS . Once n is known, r1 can be recovered as
n� 2r2. To recover n, observe that if K is totally imaginary, n � 2r2 can be recovered together
with r2. We find an open subgroup U � GS such that pKSq

U is totally imaginary. Take a prime
p P NpSq. Let π : GS � Gab

S be the natural projection, and set

U :� π�1pimprpp� 1qps : Gab
S Ñ Gab

S qq

(we take pp�1qp only to cover the case p � 2: for all other primes pp�1q would be enough). Then
U is open in GS . Indeed, by class field theory ( [NSW] 8.3.21(ii)), the group Gab

S is topologically
finitely generated, thus the cokernel of the multiplication with pp� 1qp on it is finite, and hence

impGab
S

pp�1qp
ÝÝÝÝÑ Gab

S q � Gab
S is open.

Let L be the subfield of KS fixed by U . Then L contains every abelian subextension of
KS{K of degree dividing pp� 1qp. In particular, L contains the p2-roots of unity, since they are
contained in KS . Hence L is totally imaginary and rL : Qs � 2r2pLq can be recovered as above.
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Therefore
n � rK : Qs �

rL : Qs
pGS : Uq

can also be recovered from GS .

Remark 2.4. Observe that once a prime p P Z X O�K,S is known, one obtains r2pKq as the
negative of the Euler characteristic �χpGS ,Z{pZq ( [NSW], 8.7.5) and npKq, r1pKq as in the
proof, without assuming Leopoldt.

2.4 The result

Assume the group GS is given. Then it seems not to be possible in a direct way, still assuming
DecpK,Sq (cf. Section 2.1), to extract out of GS the decomposition subgroups of the primes in
Sf . The Brauer group argument of Neukirch (cf. [NSW] 12.1.9) fails because of the S-class group
obstruction to the Hasse principle. But with some extra pieces of information, the decomposition
subgroups at Sf can be recovered. Moreover, it turns out to be equivalent to give certain extra
pieces of information in addition to the profinite group GS . This is the content of the following
theorem.

Theorem 2.5. Let K be a number field, S � S8 a finite set of primes. Assume at least two
rational primes lie in O�K,S, and p is one of them. Assume pGS , pq are given. The knowledge of
one of the following extra structures is equivalent to any other:

(i) The embeddings ιp̄ : Dp̄ ãÑ GS for p̄ P Sf .

(ii) The cyclotomic p-character χp : U Ñ Z�p on some open U � GS.

(iii) For all open U � GS with totally imaginary fixed field, the group ClSpUq.

(iii)’ For all open U � GS with totally imaginary fixed field, the number 7ClSpUq{p.

(iv) For all open U � GS, the number 7SpUq.

Assume DecpK,Sq holds. Then the knowledge of the above is also equivalent to the knowledge
of the following:

(ii)’ The cyclotomic character on some open subgroup U � GS.

We will prove Theorem 2.5 in the following sections. The plan is as follows: in Section 2.5
we prove some technical lemmas. In Sections 2.6, 2.7 we prove the theorem under the condition
DecpK,Sq. In Section 2.8 we give the argument needed in the general case. During the proof
of the theorem we will use the notations (x) ù (y) resp. (x) ú (y) for (x),(y) being from
the theorem. They will have the following meaning: if the data in (x) are known, then we can
deduce the data in (y) from them resp. the knowledge of (x) and (y) is equivalent.

Remarks 2.6.

(a) By Remark 2.4, the datum pGS , pq with p P O�K,S determines the numbers
nK , r1pKq, r2pKq.
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(b) In the arithmetic situation, to give GS together with the cyclotomic character, corresponds
in the geometric situation over a finite field, in some sense, to give the fundamental group
of a curve together with the attached outer Galois representation.

(c) If one of the data in the theorem is determined with respect to an open subgroup U0 � GS ,
then it is also determined for GS . Indeed, it is enough to see this for (i). So, if the
embeddings into U0 of the decomposition groups at Sf inside U0 are given, then (using
Corollary 1.8(ii)) the whole projective system of continuous GS-sets limÐÝU�U0,U�GS

Sf pUq

is determined, and one obtains the decomposition groups Dp̄ � GS as the stabilizers of
points under the action of GS on it.

(d) It seems to be impossible to obtain the numbers 7Sf pUq from the cohomology of GS and its
subgroups with finite constant coefficients. In fact, let p P NpSq, and assume for simplicity
that µp � K and K is totally imaginary if p � 2. Then for any U � GS open with
corresponding field L, we have the exact sequence:

0 Ñ ClSpLq{p Ñ H2pGS,Z{pZq Ñ
à

pPSpLq

BrpLpqrps Ñ Z{pZÑ 0,

from which one can obtain only the sum dimFp ClSpLq{p�7SfpLq. Each of both terms alone
(determined for every U) would give enough information to reconstruct the decomposition
subgroups.

(e) Of all extra pieces of information in the theorem, the numbers 7SpUq seem to be the most
accessible ones. In Section 2.10 we give an approach how to reconstruct the numbers
7Sf pUq for all U � U0 � GS with U0 small enough, under certain finiteness assumption.
Then remark (c) above allows to reconstruct the numbers 7Sf pUq for all U � GS open,
and the numbers 7S8pUq are determined by pGS , pq by remark (a).

(f) One needs two rational primes in O�K,S in the theorem to separate the decomposition
groups inside GS by Corollary 1.8.

As a corollary we get the following local correspondence at S-primes.

Corollary 2.7 (Local correspondence at the boundary). For i � 1, 2, let Ki, Si be a number
field together with a finite set of primes containing S8. Assume that at least two rational primes
lie completely under Si, and assume that one of them, denoted p, lies under both. Let χi,p denote
the p-cyclotomic character on GKi,Si . Let

σ : GK1,S1

�
ÝÑ GK2,S2

be a topological isomorphism, such that χ2,p � σ � χ1,p holds. Then for any p̄1 P Sf pK1,S1q,
there is a unique prime σ�pp̄1q P Sf pK2,S2q, such that σpDp̄1q � Dσ�pp̄1q. This defines a GK1,S1-
equivariant bijection

σ� : S1,f pK1,S1q
�
ÝÑ S2,f pK2,S2q,

which induces compatible bijections
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σ�U1
: S1,f pL1q

�
ÝÑ S2,f pL2q,

for any L1{K1 finite with corresponding subgroup U1 � GK1,S1 and U2 � σpU1q with correspond-
ing field L2. If DecpK1, S1q holds, σU1 preserves the residue characteristic and the absolute
degree of primes.

Moreover, if p is odd and if for i � 1, 2, there is an open subgroup Ui � GKi,Si , such
that for all characters χ : Ui Ñ Z�p , the group X1pUi,Qp{Zppχqq is finite, then the condition
χ2,p � σ � χ1,p is automatically satisfied.

Proof. Everything except the last statement follows from the theorem. The last statement
follows from Remark 2.6(c) above and Proposition 2.21 below.

From now on, and until the end of Section 2.9, we permanently assume that at least two
rational primes lie in O�K,S, and that p denotes one of them.

2.5 Some lemmas

As in [NSW] 12.1.10, we have the following lemma.

Lemma 2.8. Let H � GS be a closed subgroup, which is isomorphic to the absolute Galois
group of a local field of characteristic 0. Assume that there is an open subgroup H0 of H with
H0 � Dp̄ for some p̄ P S. Then H � Dp̄.

Proof. Taking the intersection over all H-conjugates of H0, we can assume H0 to be normal in
H. Now, H0 being an open subgroup of a local absolute Galois group in characteristic 0, is itself
one. By Lemma 2.1, H0 is thus an open subgroup of Dp̄. Let now x P H. Then x normalizes
H0. By Corollary 1.8(i), x P Dp̄.

Unfortunately, Lemma 2.8 with its easy proof can not be applied to the general case, in
which the condition DecpK,Sq is not assumed to be true. We need a more precise treatment.

Lemma 2.9. Let H � GS be a closed subgroup of p-decomposition type. Assume that there is
an open subgroup H0 of H with H0 � Dp̄ for some p̄ P Sf . Then H � Dp̄.

Proof. Taking the intersection over all conjugates of H0 in H, we can assume H0 to be normal
in H. By Lemma 1.4, H0 is of p-decomposition type. Since two rational primes lie in O�K,S , the
decomposition groups of primes in Sp � S are the full local groups. Hence by Lemma 2.11, p̄ R Sp.
Further, H0 is a pro-p-subgroup of Dp̄, hence contained in a pro-p-Sylow subgroup Dp̄,p, which
is again of p-decomposition type, since p̄ R Sp. Thus, H0 � Dp̄,p are both of p-decomposition
type, hence the inclusion is open by Lemma 1.4. Since H normalizes H0, Corollary 1.8(i) implies
now, that H � Dp̄.

Finally, we have to answer the following question: letH � GS be a subgroup of p-decomposition
type and let Dp̄ � GS be the decomposition group of a prime p̄ P Sp (which is the full local
group). Can it happen that H � Dp̄? The answer is negative and given in Lemma 2.11 below.

Lemma 2.10. Assume Hm, Hn are two Demushkin pro-p-groups of ranks m,n ¥ 2 respectively.
If there is an inclusion Hm � Hn, then it is automatically open and m � pHn : Hmqpn� 2q � 2.
In particular, m ¥ n.

41



Proof. If Hm � Hn is open, then m � pHn : Hmqpn� 2q � 2 ¥ n, which is well-known (cf. [De]
or [An] for a purely group-theoretic proof). If Hm � Hn is not open, then p8 divides the index
pHn : Hmq and Lemma 2.2 implies that cdpHm   cdpHn, which is absurd, since both numbers
are equal to 2.

Lemma 2.11. Let p be a rational prime. Let Gκ be the absolute Galois group of a local field,
H � Gκ a subgroup of p-decomposition type. Then κ is not p-adic.

Proof. Suppose κ is p-adic. For an open subgroup U of Gκ, let U ppq denote the maximal pro-p-
quotient of U . First of all, we claim that one can choose H � U � Gκ with last inclusion open,
such that the image of H in U ppq is not (pro-)cyclic. Indeed, choose an open normal subgroup
V �Gκ such that H{H XV is not (pro-)cyclic. Then let U be the preimage under Gκ � Gκ {V

of the p-subgroup H{H X V .
Now, by [NSW] 7.5.11, U ppq is either free or a Demushkin group of rank rλ : Qps � 2 ¡ 2,

where λ is the local field corresponding to U . In both cases U ppq, being of finite cohomological
dimension, is torsion-free, hence the image of H in U ppq is torsion-free, hence H embeds into
U ppq (using Lemma 1.4, one sees that the kernel of the map H Ñ U ppq can only be the trivial
subgroup of H). Now, U ppq can neither be free: this contradicts cdppHq � 2, nor a Demushkin
group of rank ¡ 2: this contradicts Lemma 2.10. All together, we get a contradiction, which
proves the lemma.

2.6 Cyclotomic character and the decomposition subgroups

Here we prove the equivalences (i) ú (ii) ú (ii)’ of Theorem 2.5 under the condition
DecpK,Sq. The direction (ii)’ù (ii) is trivial.

Proof of (i)ù (ii)’. Assume the pιp̄ : Dp̄ ãÑ GSqp̄PSf are given. Since we want to determine
the cyclotomic character only on an open subgroup of GS , we can assume that K is totally
imaginary, i.e., the decomposition subgroups of archimedean primes are trivial. The cyclotomic
character on Dp̄ is uniquely determined by the full local group Dp̄ (cf. Section 2.2). We have
the following exact sequence from class field theory:

(2.2) 0 Ñ O�K,S Ñ
¹

pPSpKq

Dab
p̄ Ñ Gab

S Ñ ClSpKq Ñ 0.

The given datum determines this sequence, since it determines the map in the middle. Since
the global cyclotomic character factorizes through Gab

S , it is determined by the local ones on the
open subgroup kerpGS � ClSpKqq of GS .

Finally, (ii)ù (i) follows from the next proposition, which characterizes, which subgroups
are the decomposition subgroups of primes in Sf , once the group GS together with the cyclotomic
p-character χp : U Ñ Z�p on an open U � GS is given. We prove it, using a modified argument
of Neukirch (cf. [NSW] 12.1.9).

Proposition 2.12. Let H � GS be a closed subgroup, isomorphic to an absolute Galois group
Gκ of a local field κ of characteristic 0. The following are equivalent:

(a) There is a prime p̄ P Sf , such that H � Dp̄.
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(b) There is an open subgroup H0 � H such that χp|H0 is the p-cyclotomic character on H0

coming from Gκ.

The prime p̄ in (a) is unique.

Lemma 2.13. Assume the following are given:

• a filtered category I

• for each i P I, a set Si

• for each iÑ j in I, a map λij : Sj Ñ Si with finite fibres

• for each p P Si, an abelian group Ap

• for each pair p P Si, q P Sj, such that iÑ j and λijpqq � p, a homomorphism
mp,q : Ap Ñ Aq,

such that the collection of maps pλijqi,j and pmp,qqp,q are compatible in the obvious way. Then
the natural homomorphism

φ : limÝÑ
iPI

p
à
pPSi

Apq Ñ
¹

PPlimÐÝI
Si

p limÝÑ
P�ppiq

Apiq

is injective.

Proof of Lemma 2.13. For each i P I and P � ppjqjPI P limÐÝI Si, there are natural homomor-
phisms

à
pPSi

Ap Ñ Api Ñ limÝÑ
P

Apj ,

which induce for each P the homomorphism limÝÑI

À
pPSi

Ap Ñ limÝÑP
Apj , which in turn induce

φ. We have to show injectivity. Let α P limÝÑiPI
p
À

pPSi
Apq with φpαq � 0. There is an i, such

that α comes from an element pαpqpPSi P
À

pPSi
Ap defined at the level i. As αp � 0 for almost

all p P Si, we can assume that αp � 0 unless p � p0, where p0 P Si is arbitrary. We have to
show that there is some j P I with iÑ j such that the image of pαpqpPSi in

À
pPSj

Ap vanishes.
Assume that there is no such j. For each iÑ j define then the set

Tjpp0q :� tp P λ�1
ij pp0q : mp0,ppαp0q � 0u � λ�1

ij pp0q � Sj ,

which is finite since λ�1
ij pp0q is finite and non-empty by our assumption. Then the inverse

limit set limÐÝI Tjpp0q is non-empty, and thus contains an element P . For this P , the image of
αp0 in limÝÑP�ppjq

Apj is non-zero by construction, which is a contradiction to the assumption
φpαq � 0.

Proof of Proposition 2.12. The uniqueness in (a) follows from Lemma 2.1 and Corollary 1.8(ii).
(a) ñ (b): Assume H � Dp̄ for some p̄ P Sf . By Lemma 2.1, H is open in Dp̄. There are

two cyclotomic characters on H: the one is the cyclotomic character of Gκ, and the other is the
restriction of the one on Dp̄. By the discussion in Section 2.2, they must coincide. This proves
(b).
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(b) ñ (a): By Lemma 2.8 we can assume that K is totally imaginary. Again by Lemma 2.8
it is enough to show that H0 � Dp̄ for some p̄ P Sf . Let κ1 be the extension of κ corresponding
to H0 � Gκ. For 0   m ¤ n consider the following commutative exact diagram of GS-modules
(where O�S :� O�KS ,S):

0 // µpm //

��

O�S
pm //

�

��

O�S //

pn�m

��

0

0 // µpn // O�S
pn // O�S // 0.

Taking the long exact cohomology sequence gives:

0 // H1pGS,O�Sq{pm //

pn�m

��

H2pGS, µpmq //

��

pmH2pGS,O�Sq //

��

0

0 // H1pGS,O�Sq{pn // H2pGS, µpnq //
pnH2pGS,O�Sq // 0.

Now pmH2pGS,O�Sq is the pm-torsion of the Brauer group, and it embeds into the direct sum of
the pm-torsion of the local Brauer groups at S. Hence the above diagram produces the following,
which again has exact rows:

0 // H1pGS,O�Sq{pm //

pn�m

��

H2pGS, µpmq //

��

À
pPSpKq

pmH2pDp, µpmq

��

0 // H1pGS,O�Sq{pn // H2pGS, µpnq //
À

pPSpKq
pnH2pDp, µpnq.

We pass to the direct limit over all n. Since H1pGS,O�Sq � ClSpKq is finite, we have

limÝÑ
n

H1pGS,O�Sq{pn � ClSpKq bQp{Zp � 0.

Thus we obtain the injection

0 Ñ H2pGS, µp8q Ñ
à

pPSpKq

H2pDp, µp8q,

Now we can do the same for any open subgroup U � GS , and pass to the direct limit over all
open U containing H0. Let M denote the fixed field of H0. By exactness of limÝÑ and by Lemma
2.13 we obtain:

(2.3) 0 Ñ H2pH0, µp8q Ñ
¹

pPSpMq

H2pDp,KS{M, µp8q.

By (b), χp|H0 is the cyclotomic character on H0 coming from Gκ1 . Thus H2pH0, µp8q � Qp{Zp.
From sequence (2.3), there is a prime p̄ P Sf with H2pDp̄,KS{M, µp8q � 0. As H2pDp̄,KS{M, µpq

maps surjectively onto the p-torsion of H2pDp̄,KS{M, µp8q, we obtain H2pDp̄,KS{M, µpq � 0. Now,
we can finish the argument as in the original paper of Neukirch. In fact, we show that the prime
p � p̄|M is indecomposed in KS{M , i.e., that H0 � Dp̄,KS{M � Dp̄. Therefore, consider an open
subgroup H 1 � H0 with corresponding fieldM 1. For any open H 1 � U � GS with corresponding
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fixed field L, let Tp,H 1pUq be the (finite) set of all primes of L lying under a prime p1 P SppM
1q.

Then we have the sequence

H2pU, µpq Ñ
à

qPTp,H1 pUq

H2pDq,KS{L, µpq Ñ 0,

which is exact by [NSW] 9.2.1, since there are still non-archimedean primes in SpLq, which do
not enter the index set of the direct sum. Passing to the limit over all open U containing H 1

gives the exact sequence:

(2.4) H2pH1, µpq Ñ
à

p1PSppM1q

H2pDp1,KS{M1 , µpq Ñ 0.

Again, since χp is the p-cyclotomic character on H0 � Gκ1 , we have H2pH1, µpq � Z{pZ. Further,
H2pDp1,KS{M1 , µpq � 0. In fact, Dp1,KS{M 1 is conjugate to an open subgroup of Dp,KS{M . But
since H2pDp̄,KS{M, µpq � 0, also H2pV, µpq � 0 for any open subgroup V � Dp̄,KS{M (this follows
from [NSW] 7.1.8 (i),(ii)). Finally, since (2.4) is exact, there is only one prime lying over p in
any finite extension M 1{M . Hence p̄|M is indecomposed.

Corollary 2.14. Assume DecpK,Sq is satisfied. A closed subgroup H � GS is a decomposition
subgroup of a prime in Sf if and only if H is maximal with the following two properties:

• H is isomorphic to an absolute Galois group Gκ of a local field κ of characteristic 0.

• The restriction of the p-part of the cyclotomic character of GS to H is equal to the p-part
of the cyclotomic character on an open subgroup H0 � H, coming from Gκ.

2.7 Class group obstruction and the decomposition subgroups

Here we proof (i) ú (iii) ú (iii)’ ú (iv) of Theorem 2.5, assuming DecpK,Sq. The
direction (iii)ù (iii)’ is trivial.

Proof of (i)ù (iii). Assume the pιp̄ : Dp̄ ãÑ GSqp̄PSf are given. Then they are also given for
any open subgroup U � GS . Let U be such that the corresponding field L is totally imaginary,
i.e., the decomposition groups of archimedean primes are trivial. By class field theory, we obtain
the following exact sequence:

¹
pPSpUq

Dab
p,L Ñ Uab Ñ ClSpUq Ñ 0.

Thus the group ClSpUq is equal to the quotient of U by the closure of the normal subgroup
generated by the commutator and the images of ιp̄,L for p̄ P Sf .

Proof of (i)ù (iv). For any U , 7Sf pUq is equal to the number of the U -conjugacy classes of
the subgroups Dp̄ X U and 7S8pUq is given by the number of real/complex embeddings, which
is known by the Remark 2.6 (a).

Lemma 2.15. Assume µp � K (and µ4 � K if p � 2) in the theorem. Then (iii)’ú (iv).
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Proof. Since µp � K, we have for every U the exact sequence

0 Ñ ClSpUq{p Ñ H2pU,Z{pZq Ñ pH2pU,O�Sq Ñ 0, and

dimFp pH
2pU,O�Sq � 7SfpUq � 1,

since K is totally imaginary. Thus dimFp H2pU,Z{pZq�1 � dimFp ClSpUq{p�7SfpUq. Since the
number on the left is known, the knowledge of one of the summands on the right is equivalent
to the knowledge of the other.

It remains to prove (iii)’ ù (i) and (iv) ù (i). Since the knowledge of (i) for GS is by
Lemma 2.8 equivalent to the knowledge of (i) for any open U � GS , we can assume µp � K

(and µ4 � K, if p � 2), i.e., by Lemma 2.15, it is enough to prove that (iv)ù (i).

Proof of (iv)ù (i). We can assume µp � K (and µ4 � K, if p � 2). For any open U with
corresponding field L, we can describe the Galois group of the maximal abelian unramified
extension of L, which is completely decomposed in S. By class field theory, it is canonically
isomorphic to ClSpUq. In fact, an extension of L, corresponding to an open subgroup V � U is
completely decomposed in S, if and only if SpV q � pU : V qSpUq. Observe that such extension
is automatically unramified, since it is unramified outside S, as all groups are subquotients of
GS , and also unramified in S, being completely decomposed there. Thus if we set

V0 :�
£
V�U

V,

where the intersection is taken over all normal open subgroups V � U , such that

SpV q � pU : V qSpUq

and the quotient U{V is abelian, then U{V0 � ClSpUq. Thus (iv) gives us the surjections
U � ClSpUq and in particular the surjections

πp,U : U � ClSpUq{p

(notice that (iii)’ contains this information only implicitly!). Furthermore, for V � U � GS

open, the map ClSpUq Ñ ClSpVq induced by inclusion on ideals, is encoded in the group theory
as the map induced by the transfer map Uab Ñ V ab.

Proposition 2.16. Let H � GS be a closed subgroup, isomorphic to an absolute Galois group
Gκ of a local field κ of characteristic zero. Assume that µp � κ,K (or µ4 � κ,K if p � 2). The
following are equivalent:

(a) H � Dp̄ for some p̄ P Sf .

(b) For H the following condition holds:

(*)p,H For any U � GS open: H � U ñ H � kerpπp,U : U � ClSpUq{pq.

In (a) the prime p̄ is unique.
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Proof. The uniqueness of p̄ follows from Lemma 2.1 and Corollary 1.8(ii).
(a) ñ (b): Let H � U � GS with last inclusion open. Consider the commutative diagram:

H
� � / Dp̄ X U � � /

����

U

���� $$ $$JJJJJJJJJJJ

pDp̄ X Uqab // Uab // // ClSpUq{p.

Since the composition of the maps in the lower row is zero by class field theory,

H � Dp̄ X U � kerpU � ClSpUq{pq,

i.e., (*)p,H holds.
(b) ñ (a): Assume now (*)p,H holds. For any U � H open in GS with corresponding field

L, we have µp � L, and hence X2pU,Z{pZq � ClSpUq{p. This gives us the exact sequence:

0 Ñ ClSpUq{p Ñ H2pU,Z{pZq Ñ
à

pPSpUq

H2pDp,KS{L,Z{pZq.

Set M � pKSq
H and consider the limit of these sequences over all open U � H:

0 Ñ limÝÑ
H�U�GS

ClSpUq{p Ñ H2pH,Z{pZq Ñ
¹

pPSpMq

H2pDp,M,Z{pZq,

whose exactness follows from Lemma 2.13. We claim that limÝÑH�U�GS
ClSpUq{p � 0. For an

open H � U � GS , let U 1 :� kerpU � ClSpUq{pq. By the S-version of the principle ideal
theorem (cf. e.g. [Ko] Theorem 8.11; the argument is essentially the same as in the proof of the
Hauptidealsatz), the map ClSpUq{p Ñ ClSpU

1q{p, induced by inclusion on ideals, is zero. On the
other side, U 1 appears in the index set of the limit due to (*)p,H . Thus limÝÑH�U�GS

ClSpUq{p � 0.
Now the proof of (b) ñ (a) can be finished just as in [NSW] 12.1.9 or in Proposition 2.12.

Finally, (iv)ù (i) follows from the Corollary 1.8(i) and the proposition.

2.8 The general case

In this subsection we prove Theorem 2.5 without the additional assumption DecpK,Sq. Recall
that in Section 1.2 we associated to any group H � Zp
Zp of p-decomposition type a character
χH : H Ñ Z�p , which describes the action of the first Zp on the second. Recall that χp denotes
the p-cyclotomic character on GS

Proposition 2.17. Let H � GS be a closed subgroup of p-decomposition type. The following
are equivalent:

(a) H � Dp̄ for some p̄ P Sf rSp.

(b) For some open subgroup H0 � H, χp|H0 � χH0.

If moreover µp � K, then they are also equivalent to

(c) The condition (*)p,H (cf. Proposition 2.16) holds for H.

The prime p̄ in (a) is unique.
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Proof. If H � Dp̄, Dq̄ with p̄, q̄ P Sf rSp, then H � Dp̄,p, Dq̄,p for some p-Sylow-subgroups,
which are again of p-decomposition type. Hence by Lemma 1.4(ii), the last inclusions are open.
Proposition 1.6 implies then p̄ � q̄. This proves the uniqueness of p̄ in (a).

(a)ñ (b): After replacing GS by an appropriate open subgroup containingH, we can assume
H � Dp̄,p � Zp 
 Zp is a p-Sylow subgroup of Dp̄. Then the first Zp acts on the second as the
unramified quotient on the inertia subgroup, i.e., by the p-cyclotomic character. This means
χH � χp|H .

(b)ñ (a): exactly in the same way as in Proposition 2.12, one finds that (b) implies H0 � Dp̄

for some p̄ P Sf . Then Lemma 2.9 implies H � Dp̄. Since H is of p-decomposition type and the
groups Dq̄ with q̄ P Sp are the full local groups, Lemma 2.11 implies p̄ R Sp.

(a) ô (c): has the same proof as in Proposition 2.16, except that now we have to argue
additionally that p̄ R Sp. This is done as in the proof of (b) ñ (a).

Now we prove Theorem 2.5. (i)ù (iii)ù (iii)’ and (i)ù (iv) work as before.

Proof of (i)ù (ii). Since we want to reconstruct the p-cyclotomic character χp only on an
open subgroup of GS , we can assume µp � K and K totally imaginary. Observe that χp on the
local groups Dp̄ with p̄ P Sp is determined by the group structure, since Dp̄ is the full local group
in this case (cf. Section 2.2). If p̄ P Sf rSp, then Dp̄,p ãÑ Dp̄ � D

ppq
p̄ is bijective (Section 1.3.1);

χp is determined on Dp̄,p (in fact, it is equal to the character associated to the p-decomposition
group Dp,p); and χp factors through Dp̄ � D

ppq
p̄ . Thus χp is in this case also determined on Dp̄.

By the same argument as in Section 2.6 (using the exact sequence (2.2)), χp is thus determined
on an open subgroup of GS .

Proof of (ii)ù (i), (iii)’ù (i), (iv)ù (i). Assume (ii), (iii)’ or (iv) is given. As we know
that the decomposition subgroups of primes over p are the full local groups and as the full local
group determines the residue characteristic, Propositions 2.12 resp. 2.16 imply that we can
reconstruct them from the given data.

Let U � GS be an open (normal) subgroup, small enough, such that the corresponding fixed
field L contains the p-roots of unity and is totally imaginary. By Proposition 2.17, applied to U ,
using Corollary 1.8(i) if necessary, we can decide, using the given information, whether a closed
subgroup H � U of p-decomposition type is contained in a decomposition subgroup of a prime in
Sf rSp. By Lemma 1.5 and Lemma 2.9, the maximal subgroups with this property are exactly
the p-Sylow subgroups of the groups Dp̄,KS{L with p̄ P Sf rSp. Thus we have reconstructed the
set

SylppU, Sf rSpq � tH � U : H is a p-Sylow-subgroup of Dp̄,KS{L with p̄ P Sf rSpu.

Now, U acts on this set by conjugation. We have an U -equivariant surjection (U acts trivially
on the right):

ψ : SylppU, Sf rSpq� pSf rSpqpUq,

which sends H to the (unique by Proposition 1.6!) prime p̄|L, such that H � Dp̄,KS{L. We want
to determine, when two elements have the same image under ψ. For H P SylppU, Sf rSpq such
that H � Dp̄,KS{L is a p-Sylow subgroup, consider the restriction map
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resUH : H2pU,Z{pZq� H2pH,Z{pZq,

which is surjective, being equal to the composition

H2pU,Z{pZq� H2pDp̄,KS{L,Z{pZq
�
Ñ H2pH,Z{pZq,

in which the first map is surjective by [NSW] 9.2.1, since 7Sf pUq ¡ 1, and the second is an
isomorphism, since µp � L.

Lemma 2.18. Let H,H 1 P SylppU, Sf rSpq. Then:

ψpHq � ψpH 1q ô kerpresUHq � kerpresUH 1q.

Proof. Consider the commutative diagram with exact row:

0 // X2pU,Z{pZq // H2pU,Z{pZq

resUH **UUUUUUUUUUUUUUUUU
// p
À

qPSpLq H2pDq,KS{L,Z{pZqq
Σ�0 //

��

0

H2pH,Z{pZq,
where Σ � 0 means that we take the subspace of trace zero elements. The diagonal map factors
through the vertical one, since H P SylppU, Sf rSpq. From this sequence we see, that if p �
ψpHq, then the kernel of resUH is the extension of the subspace p

À
qPSpLqr tpu H2pDq,KS{L,Z{pZqq

Σ�0

of the space on the right side by X2pU,Z{pZq. Two such subspaces of H2pU,Z{pZq correspond-
ing to p resp. p1 are equal if and only if p � p1. This finishes the proof.

Remark 2.19. The necessity can also be seen in the following way. If p � ψpHq � ψpH 1q, then
H and H 1 lie in U -conjugate decomposition subgroups Dp̄,KS{L resp. Dp̄1,KS{L. Say gp̄ � p̄1

with g P U and let cg denote the isomorphisms induced by conjugation. Then we have the
commutative diagram:

H2pU,Z{pZq

cg

��

// H2pDp̄,KS{L,Z{pZq

cg

��

� // H2pH,Z{pZq

H2pU,Z{pZq // H2pDp̄1,KS{L,Z{pZq
� // H2pH1,Z{pZq

Now, the left vertical arrow is the identity, since g P U , and the second is an isomorphism, hence
the kernels of the (compositions of) horizontal maps are equal.

The lemma gives a purely group-theoretical criterion to decide, whether two elements of
SylppU, Sf rSpq lie in the same fibre of ψ. If we define an equivalence relation on SylppU, Sf rSpq

by H � H 1 :ô kerpresUHq � kerpresUH 1q, we get a bijective map induced by ψ:

SylppU, Sf rSpq{ �
�
ÝÑ pSf rSpqpUq.

If U 1 � U � GS , then we get a (non-canonical!) mapping

α : SylppU
1, Sf rSpq Ñ SylppU, Sf rSpq,

which sends H 1 P SylppU
1, Sf rSpq to some H P SylppU, Sf rSpq, such that H 1 � H (there is

at least one by construction). If H 1 � H1, H2, then H1, H2 � Dp̄ for some p̄ by Proposition 1.6.
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In particular, α induces a map

α : SylppU
1, Sf rSpq{ �Ñ SylppU, Sf rSpq{ �,

which is independent of the above choices. We obtain the following commutative diagram:
SylppU

1, Sf rSpq{ �

α
��

� // pSf rSpqpU
1q

��
SylppU, Sf rSpq{ �

� // pSf rSpqpUq,

where horizontal maps are bijections induced by ψ, and the vertical map on the right is the
restriction of primes.

If U �GS is normal, then GS acts on SylppU, Sf rSpq by conjugation. It is easy to see that
this action induces via ψ an action on pSf rSpqpUq and that this last action coincides with
the action of GS on this set by permuting the primes. In this way we have reconstructed the
projective system of GS-sets tpSf rSpqpUq : U � U0, U � GSu, where U0 � GS is some open
subgroup. Now the decomposition subgroups of primes in Sf rSp are exactly the stabilizers in
GS of elements in the GS-set limÐÝU�U0,U�GS

pSf rSpqpUq. This finishes the proof of Theorem
2.5.

2.9 Further invariants

Assume pGS , pq and the equivalent data from Theorem 2.5 are given. We investigate, which
further information can be recovered from this.

Proposition 2.20. Assume DecpK,Sq holds. Assume the datum pGS , pDp̄ ãÑ GSqqp̄PSf are
given. Then one can recover the following invariants of K and its extensions:

(i) For any U � GS open with corresponding field totally imaginary, the class number ClpUq.

(ii) For every U 1 � U � GS open, with corresponding fields totally imaginary, the natural
maps ClpUq Ñ ClpU1q.

(iii) For U � GS small enough, with L � pKSq
U , the roots of unity µpLq.

(iv) For any U � GS open with L � pKSq
U , the inertia and ramification degrees fp,L{K and

ep,L{K of any p P Sf .

(v) The set NpSq :� ZXO�K,S.

(vi) The degree rK : Qs.

Proof. (i) + (ii): If K is totally imaginary, one obtains the group GH � GKH{K , dividing GS by
the closure of the normal subgroup generated by the inertia subgroups of all Dp̄, p̄ P Sf . Then
canonically Gab

H � ClpKq. The maps between two class groups are given by the transfer map in
the class field theory.

(iii) follows from (i)ú (ii)1 in Theorem 2.5.
(iv) follows from the discussion in Section 2.2.
(v) + (vi) : for any rational prime `, let np`q :�

°
pPSXS`

rKp : Q`s. This number can be

reconstructed from the given data. Further, ` P NpSq ô np`q is maximal. If ` P NpSq, then
rK : Qs � np`q.
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2.10 The numbers Sf pUq

Here we present an approach, how the numbers Sf pUq can be reconstructed under a certain
finiteness assumption. Recall that we do not assume anymore that two primes lie in O�K,S .

Proposition 2.21. Let p P O�K,S. Assume that p is odd and µp � K. Assume, the following
holds: for any character χ : GS Ñ Z�p � AutpQp{Zpq whose restriction to 1

pZ{Z is trivial, the
group X2pGS ,Qp{Zppχqq is finite. Then for any such χ, the group H2pGS,Qp{Zppχqq is of finite
corank and

(2.5) 7Sf pKq � 1�maxχ corankpH2pGS,Qp{Zppχqqq.

Proof. Recall that χp denotes the p-cyclotomic character, and that µp � K implies that its
image lies in kerpAutpQp{Zpq � Autp1

pZ{Zqq. Assume χ : GS Ñ Z�p induces the trivial action
on 1

pZ{Z. We claim first that if χ|Dp̄ � χp|Dp̄ for all p̄ P S, then χ � χp on GS . Indeed, χ, χp
factor both through Gab

S . By class field theory we have the exact sequence:

¹
pPSpKq

Dab
p,K Ñ Gab

S Ñ ClSpKq Ñ 0.

Thus on the one side, χ�1bχp factors through a map ClSpKq Ñ Z�p, i.e., its image is finite, and on
the other side the images of χ and χp lie in the subgroup kerpAutpQp{Zpq� Autp1

pZ{Zqq � Zp,
i.e., the image of χ�1 b χp does too, and hence is torsion-free. Thus χ�1 b χp is the trivial
character of GS , or with other words χ � χp on GS .

The last part of the Tate-Poitou sequence for the GS-modules Z{pnZpχq gives, after changing
to the limit over all n ¡ 0, the following exact sequence:

0 ÑX2pGS ,Qp{Zppχqq Ñ H2pGS,Qp{Zppχqq Ñ
à

pPSpKq

H2pDp,K,Qp{Zppχqq Ñ coker Ñ 0,

where

coker � limÝÑ
n

rH0pGS,
1

pn
Z{Zpχ�1 b χpqq

_s � rlimÐÝ
n

H0pGS,
1

pn
Z{Zpχ�1 b χpqqs

_ �

� rH0pGS,Zppχ
�1 b χpqqs

_ �

#
Qp{Zp if χ � χp,

0 if χ � χp

(the last equality holds, since the restriction map AutpZpq Ñ AutppnZpq is an isomorphism; thus
if χ�1 b χp is trivial on some open subgroup of Zp, then it is also trivial on Zp, i.e., χ � χp).
By our assumption, the corank (i.e., the Zp-rank of the Pontrjagin-dual) of the first term in the
sequence is zero. Thus the corank of the third term is equal to the sum of the coranks of the
second and the last terms. We have the two cases:
Case χ � χp. Then the corank of the third term is 7Sf pKq and the corank of the last term is 1.
Thus the corank of the second term is 7Sf pKq � 1.
Case χ � χp. Then by the claim, χ|Dp̄ � χp|Dp̄ for at least one p̄ P Sf . By Lemma 2.22, the
corank of the third term is ¤ 7Sf pKq � 1, and the corank of the last term is 0. Thus the corank
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of the second term is ¤ 7Sf pKq � 1. The proposition follows.

Lemma 2.22. Let κ be a local field, p � charpκq an odd prime. Let χ : Gκ Ñ Z�p � AutpQp{Zpq
be a character. The following are equivalent:

(i) H2pGκ,Qp{Zppχqq � 0.

(ii) χ is the p-part of the cyclotomic character.

Proof of the lemma. Let χp denote the p-part of the cyclotomic character of Gκ. The local
duality gives:

H2pGκ,Qp{Zppχqq � limÝÑ
n

H2pH,Z{pnZpχqq � limÝÑ
n

rH0pGκ,Z{pnZpχ�1 b χpqq
_s

� rlimÐÝ
n

H0pGκ,Z{pnZpχ�1 b χpqqs
_ � rH0pGκ,Zppχ

�1 b χpqqs
_

�

#
Qp{Zp if χ � χp

0 if χ � χp.

The last equality holds by the same reasoning as in the proposition.

2.11 Appendix. Zeta function and primes of small norm

2.11.1 Zeta function and a formula of Landau

For a number field K let N :� NK{Q be the norm of K{Q. For any s P C with <psq ¡ 1, let

ζKpsq �
¹

pPΣK,f

1

1�Np�s
.

be the Dedekind zeta-function of K. The series defining it converges for any s with <psq ¡ 1,
and ζKpsq has a meromorphic continuation to the whole complex plain with a unique pole at
s � 1. We have the following equality for all s with <psq ¡ 1:

ZKpsq :� �
ζ 1Kpsq

ζKpsq
�
¸

pPΣK,f

log Np

Nps � 1
,

This is (up to a sign) the logarithmic derivative of ζKpsq. Set

ApKq :� π�r1pKq{2p2πq�r2pKq|DK |
1{2,

where DK denotes the discriminant of K. There is a fractional decomposition of ZKpsq:

Proposition 2.23 ( [La] Satz 179).

ZKpsq � logApKq �
r1pKq

2

Γ1

Γ
ps{2q � r2pKq

Γ1

Γ
psq � p

1

s
�

1

s� 1
q �
¸1

ρ

1

s� ρ
,

where
°1
ρ means the sum over the non-trivial zeros of ζK and the terms for ρ, ρ̄ are summed
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together (otherwise the sum must not converge). In particular, if r1pKq � 0, then we have

(2.6) ZKpsq �
1

2
log |DK | �

nK
2

logp2πq �
nK
2

Γ1

Γ
psq � p

1

s
�

1

s� 1
q �
¸1

ρ

1

s� ρ
.

We are only interested in totally complex fields, so the second formula is enough for us.

2.11.2 Naive criterion

Let an (infinite) Galois extension L of K be given. The proposition below describes a relation-
ship between a certain limes involving the Dedekind zeta functions of finite subfields of L {K,
and the presence of primes of K of finite norm and finite ramification in L . In this context
it makes sense to index extensions of K by their degree. Thus, in particular, we work with an
ascending tower K � L1 � � � � � Ln � . . . of extensions of K, denoted pLnqn, and indexed such
that rLn : Ks � n, i.e., the index set is an infinite ascending subset of the natural numbers.

Proposition 2.24. Let K � L1 � � � � � Ln � � � � � L �
�
n Ln be a tower of finite Galois

extensions of K, enumerated in the way, such that rLn : Ks � n. For any real s ¡ 1 the limit

λL psq :� lim
nÑ8

n�1ZLnpsq

exists. For any p P ΣK,f , let fp, ep denote the inertia degree resp. the ramification index of p in
L . Then

(2.7) λL psq �
¸

pPΣK,f
ep,fp 8

1

ep

log Np

Npfps � 1
,

where the sum on the right is absolutely convergent. In particular, λL psq depends only on L

and on s, not on the Ln’s.

Proof. Fix an s ¡ 1. First we show the existence of the limit. For a finite extension L{K, of
degree d and a prime p P ΣK,f set:

BL,p � d�1
¸

qPΣfL,q|p

logpNqq

Nqs � 1
.

Then we have: d�1ZLpsq �
°

pPΣK,f
BL,p, where the series converges absolutely. Assume that

L{K is Galois. If r is the number of primes of L, lying over p, and if each of them has inertia
degree f and ramification index e, we have d � rfe. Therefore:

BL,p � d�1
¸

qPΣfL,q|p

logpNqq

Nqsi � 1
�
r

d

f logpNpq

Npfs � 1
�

1

e

logpNpq

Npfs � 1
¤

logpNpq

Nps � 1
� BK,p.

Taking L{K to be Ln{Lm shows that the sequence pn�1ZLnpsqqn � p
°

pPΣK,f
BLn,pqn is mono-

tonically decreasing. On the other hand we have obviously

n�1ZLnpsq ¡ 0
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for any n, i.e., the sequence is bounded from below. Thus it is convergent. Set

BL8,p �

$&
%

1
ep

log Np

Npfps�1
if ep, fp   8,

0 if ep � 8 or fp � 8.

Then
°

pPΣK,f ,ep,fp 8
�
°

pPΣK,f
BL8,p. By the same reasoning as above, the series on the right

side of (2.7) converges.
Now we have to show the equality (2.7). Let ε ¡ 0. Take C ¡¡ 0 big enough, such that°

pPΣK,f ,Np¡CBK,p  
ε
4 . Let now n0 ¡¡ 0 be big enough, such that for all n ¡ n0 and for all

(finitely many!) p P ΣK,f with Np ¤ C:

|BLn,p �BL8,p|  
ε

2C
.

and we have

������
¸
p

BLn,p �
¸

p : ep,fp 8

1

ep

log Np

Npfps � 1

������ ¤

�����
¸

Np¤C

BLn,p �BL8,p

������
�����
¸

Np¡C

BLn,p

������
�����
¸

Np¡C

BL8,p

�����
  C

ε

2C
� 2

ε

4
� ε.

Immediately from the proposition we obtain:

Corollary 2.25. With the assumptions as in the proposition, the following are equivalent:

(i) λL psq � 0.

(ii) There is no non-archimedean prime of L with finite degree and finite ramification index
over K.

We obtain the following criterion, which decides, whether a normal subgroup of GS has a
big intersection with a decomposition subgroup of a prime p P ΣK,f .

Corollary 2.26. Let H �GS be a closed normal subgroup. Let GS � � � � � Un � . . . , indexed
by n Ñ 8, such that pGS : Unq � n be a series of open normal subgroups of GS, such that�
n
Un � H. Set Ln � pKSq

Un and L � pKSq
H . For any real s ¡ 1 the limit

λHpsq :� λL psq

exists and is independent of the choice of pUnqn. Further, the following are equivalent:

(i) λHpsq � 0.

(ii) For any prime in ΣL ,f , its inertia degree or its ramification index over K is infinite.

(iii) For any finite prime p of K and any extension p̄{p to KS, the inclusion H XDp̄ � Dp̄ is
not open.
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Proof. The equivalence of (i) and (ii) is just Corollary 2.25. The equivalence of (ii) and (iii) is
evident.

This corollary shows that if one could obtain information about the number λHpsq only from
the group GK,S , then GK,S would determine intrinsically, whether H contains an open subgroup
of a decomposition group of a finite prime of KS . However, as stated here, this method would
only work for closed subgroups H � GK,S with open normalizer in GK,S .

Further, one can hope to obtain some information on λHpsq by using formula (2.6). Indeed,
with the notation as above, λHpsq is the limit of of the numbers n�1ZLnpsq, and by (2.6), each
of this numbers is determined by dLn , nLn and (unfortunately) some term coming from the
zeta-zeros. One can hope to read off the first two of these three quantities (or at least their
growth behavior for nÑ8) from intrinsic properties of GS , as in the preceding sections. As for
the last one, we have no good idea how to obtain this quantity. At least there is a classical result
of Landau, giving an estimate of the number of the zeta-zeros: let NKpT q denote the number of
zeros s � σ � it of ζKpsq in the region 0 ¤ σ ¤ 1, 0   t ¤ T , counted with multiplicity. Then
[ [La] Satz 171] says that:

NpT q �
nK
2π

T log T �
7dK � nKp1� 2πq

2π
T �Oplog T q.
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Part II

The group GS with S stable





3 Stable and persistent sets of positive density

In this section we introduce the classes of stable and persistent sets of primes in number fields,
study their properties and give examples. The motivation for the definition of stable sets are the
arithmetic and anabelian results holding for them, which we prove in the subsequent sections.

3.1 Overview

The first goal of this section is to introduce a new class of sets of primes of positive density
in a number field K, which generalize sets of density 1, in the sense that certain arithmetic
and anabelian results (cf. Sections 4-6) hold for them. Roughly speaking, we say that a set S
of primes of K is stable for an extension L {K, if it contains a subset S0 � S such that the
function of finite subextensions L {L{K, given by L ÞÑ δLpS0q is positive and beginning from
some extension, does not oscillate very much. As a stronger version of the above, we call S
persistent, if this function becomes constant.

A further goal is to find many examples of stable and persistent sets. In particular, for
any finite Galois extension M{K, the set cspM{Kq is persistent for any extension L {K and
for any σ P GM{K , the set PM{Kpσq is persistent for any extension L {K with L XM � K

(cf. Corollary 3.14). Also any set containing (up to a density zero subset) a persistent set, is
itself persistent. Clearly, if a set is persistent, then it is also stable. Most examples occurring in
nature are persistent, but to prove arithmetic and anabelian results, one only needs (p-)stability
property of a set. It is still not clear, whether there is a stable set, which is not persistent, cf.
Section 3.5.4. Thus both notions have their right to exist.

We have to make the following technical restriction. Let PK denote the set of all subsets
of ΣK . The Dirichlet density is not defined for all elements in PK , and moreover there are
examples of finite extensions L{K and S P PK , such that S has a density, but the pull-back
SL of S to L has no density. To omit dealing with such sets we make the following convention,
which holds until the end of this thesis.

Convention 3.1. If S P PK is a set of primes of K, then we assume implicitly that for all
finite extensions L{K, all finite Galois extensions M{L and all σ P GM{L, the set SLXPM{Lpσq

has a Dirichlet density.

In particular, all Chebotarev sets PM{Kpσq satisfy this. More on this convention can be found
in Section 3.2.2.

Finally, we want to refresh some notations, which will be used in this and the subsequent
sections. If G is a finite group and σ P G, we write Cpσ;Gq for the conjugacy class of σ in G. If
further H is a subgroup, we denote by mH the character of the G-representation IndGH 1.

If S, T � ΣK are two sets of primes of a number field K, define

S
�
� T :ô δKpSrT q � 0

S w T :ô pS
�
� T q and pT �

� Sq.

In particular, if S and T differ only in a finite set of primes, then S w T . If M{K is a finite
Galois extension and σ P GM{K we write

PM{Kpσq � tp P ΣK : p is unramified in M{K and pp,M{Kq � Cpσ; GM{Kqu.
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If L{K is a finite extension, then we write

P 1pL{Kq :� tp P ΣL : p is unramified and has degree one over Ku

cspL{Kq :� tp P ΣK : p is completely split in Lu

RampL{Kq :� tp P ΣK : p is ramified in L{K u.

If Lgal denotes the Galois closure of L over K, then cspL{Kq � cspLgal{Kq.
In Section 3.2 we recall briefly the definition and some properties of the Dirichlet density. In

Section 3.3 we compute the density of certain Chebotarev sets (i.e., sets of the form PM{Kpσq).
In Section 3.4 we define and study some properties of stable and persistent sets. Finally, in
Section 3.5 we give examples of stable sets. Therefore we use computations from Section 3.3.

3.2 Dirichlet density

In this section we recall briefly the definition and some easy properties of the Dirichlet density,
which allow us to compute the density of certain pull-backs of Chebotarev sets in the next
section.

3.2.1 Recall of the definition

Definition 3.2. If S � ΣK is a set of primes, its Dirichlet-density is defined as the limit

δKpSq � lim
sÑ1�

°
pPSf

Np�s°
pPΣK,f

Np�s
,

if this limit exists (if not, the set has no Dirichlet-density).

For s Ñ 1�, the series
°

pPΣK,f
Np�s behaves like log ζKpsq, which in turn has the same

asymptotic behavior as logp 1
s�1q, i.e., one also can rewrite the limit:

(3.1) δKpSq � lim
sÑ1�

°
pPSf

Np�s

logp 1
s�1q

.

Since logp 1
s�1q Ñ �8 for sÑ 1�, the Dirichlet density of a set S does not change if one add (or

remove) finite subsets of ΣK to (from) S. If S is a set of primes of K, having a Dirichlet-density,
then clearly 0 ¤ δKpSq ¤ 1. A subset of a set with density 0 also has density 0; a superset of a
set of density 1 also has density 1. A set S has a Dirichlet density if and only if its complement
in ΣK has. Assume S1, S2 have Dirichlet densities. If one of the sets S1 X S2 and S1 Y S2 has a
density, then also the other one has and the following holds:

δKpS1q � δKpS2q � δKpS1 X S2q � δKpS1 Y S2q.

In particular, if S has a density and T has density 1, then SXT has a density and δKpSXT q �
δKpSq.

Let L{K be a finite extension. The set P 1pL{Kq (cf. Section 3.1) has density 1 in L. Indeed,
if L{K{k, then P 1pL{kq � P 1pL{Kq, hence it is enough to assume K � Q. Then for any
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p P S :� ΣL,f rP 1pL{Qq we have Np�s ¤ p�2s, where p lies over the rational prime p and hence

δpSq ¤ lim
sÑ1�

rL : Qs
°
p p

�2s°
p p

�s
� 0,

as the denominator goes to �8 and the numerator is bounded, when s Ñ 1�. The most
important result involving the Dirichlet density is the Chebotarev density theorem, which says
that given a finite Galois extension L{K and an element σ P G � GL{K , one has:

δKpPL{Kpσqq �
7Cpσ;Gq

7G
.

3.2.2 Measurable sets

We discuss briefly Convention 3.1. Recall that PK denotes the set of all subsets of ΣK , which
is a σ-algebra. The optimal way to omit sets having no density would be to find an appropriate
sub-σ-algebra of PK (for any K), such that the restriction of δK to it is a measure (and the
pull-back maps PK Ñ PL attached to finite extensions L{K restrict to pull-back maps on these
sub-σ-algebras). Unfortunately, there is no satisfactory way to find such σ-algebra BK , at least
if one requires that if S P BK , then also T P BK for any T w S, or, which is weaker, that any
finite set of primes of K lies in BK . Indeed, countability of ΣK would imply BK � PK in this
case, but not all elements of PK have a Dirichlet density.

However, Convention 3.1 is satisfied for all sets lying in the following rather big subset of
PK :

AK :�

#
S � ΣK : S w

�
i PLi{KipσiqK for some K{Ki{Q

and Li{Ki finite Galois and σi P GLi{Ki

+
,

where the unions are disjoint and countable (or finite or empty). This AK can not be closed
simultaneously under (arbitrary) unions and complements: otherwise it would be a σ-algebra
and hence would be equal to PK .

3.2.3 Further properties

Let now L{K be a finite extension of degree n (not necessarily Galois). For 0 ¤ m ¤ n, define
the following sets:

PmpL{Kq :� tp P ΣK : p is unramified and has exactly m degree-1-factors in Lu.

In particular, PnpL{Kq � cspL{Kq, Pn�1pL{Kq � H. Recall that if H � G are finite groups,
then mH denotes the character of the G-representation IndGH 1. One has:

mHpσq � 7tgH : xσyg � Hu � 7txσygH : xσyg � Hu,

where xσy � G denotes the subgroup generated by σ and xσyg :� g�1xσyg. The equality on the
right follows immediately from the fact that if xσyg � H, then gH � xσygH

Lemma 3.3. Let L{K be a finite extension and N{K a finite Galois extension containing L,
with Galois group G, such that L corresponds to a subgroup H � G. Then
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PmpL{Kq w tp P PmpL{Kq : p is unramified in N{Ku �
¤

Cpσ;Gq�G

mHpσq�m

PN{Kpσq

(disjoint union). In particular, PmpL{Kq P AK and

δKpPmpL{Kqq � 7G�1
¸

Cpσ;Gq�G

mHpσq�m

7Cpσ;Gq.

Proof. The proof of the first statement is an elementary exercise in Galois theory (if p is a prime
of K unramified in N , then the primes of L lying over p are in one-to-one correspondence with
double cosets xσygH, where σ is arbitrary in the Frobenius class of p; the residue field extension
of a prime belonging to the coset xσygH over p has the Galois group xσyg{xσygXH). The second
statement follows from the first and the Chebotarev density theorem.

The following lemma describes how to compute the density of a pull-back of a set of primes.

Lemma 3.4. Let L{K be a finite extension of degree n and S a set of primes of K. Then

δLpSq �
ņ

m�1

mδKpS X PmpL{Kqq,

or equivalently, if N{K is a Galois extension containing L, such that G :� GN{K � GN{L �: H,
then

δLpSq �
¸

Cpσ;Gq�G

mHpσqδKpS X PN{Kpσqq.

If, in particular, L{K is Galois, then

δLpSq � rL : KsδKpS X cspL{Kqq.

Proof. Let Pm :� PmpL{Kq, P 1 :� P 1pL{Kq, and P 1m :� P 1 X Pm,L. Then δLpP
1q � 1 and

P 1 �
�n
m�1 P

1
m (disjoint union). We have:

δLpSq � δLpS X P 1q � lim
sÑ1�

°
SLXP 1

Np�s°
P 1 Np�s

� lim
sÑ1�

°
m

°
SLXP 1m

Np�s°
m

°
P 1m

Np�s

� lim
sÑ1�

°
mm

°
SXPm

Np�s°
mm

°
Pm

Np�s

� lim
sÑ1�

°
mm

°
SXPm

Np�s°
ΣK

Np�s
lim
sÑ1�

°
ΣK

Np�s°
mm

°
Pm

Np�s

� p
¸
m

mδKpS X Pmqqp
¸
m

mδKpPmqq
�1.

It remains to show that
°
mmδKpPmq � 1. Indeed, let N be the Galois closure of L{K,

G � GN{K and H � GN{L and let x, yG denote the inner product on the space of class functions
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on G. Then by Lemma 3.3 we have:

¸
m

mδKpPmq �
1

7G

¸
Cpσ;Gq�G

mHpσq7Cpσ;Gq

� xmH ,1GyG � xIndGH 1H ,1GyG � x1H ,1HyH � 1,

by Frobenius reciprocity.

To prove Lemma 3.4, one does not need Lemma 3.3: one can omit it by using the formula (3.1)
and doing the same computation as in the beginning of the proof. However, the author thinks
that the given proof is more conceptual. Another treatment (using Dirichlet/Hecke-characters)
can be found in [Na]. In particular, [Na] Lemma 7.35(ii) shows

°
mmδKpPmq � 1.

3.3 Density of certain Chebotarev sets

The goal is to prove the following proposition, which is responsible for all examples of stable
and persistent sets we have:

Proposition 3.5. Let M{K be a finite Galois extension, σ P GM{K and L{K any finite exten-
sion. Let L0 :� LXM . Then:

δLpPM{KpσqLq �
7Cpσ; GM{Kq XGM{L0

7GM{L0

.

Thus δLpPM{KpσqLq � 0 if and only if Cpσ; GM{Kq XGM{L0
� H. In particular, this is always

the case if L0 � K or if σ � 1.

Lemma 3.6 ( [Wi] Proposition 2.1). Let N{M{K be finite Galois extensions and σ P GM{K .
Then

PM{Kpσq w tp P PM{Kpσq : p is unramified in N{Ku �
¤

Cpg;GN{KqÞÑCpσ;GM{Kq

PN{Kpgq,

where the (disjoint) union is taken over all conjugacy classes of GN{K , which lie over the con-
jugacy class of σ in GM{K .

Proof of Proposition 3.5. Let N{K be a finite Galois extension with N �ML. Let H :� GN{L

and H :� GM{L0
. We have a natural surjection H � H. Let 1σ denote the class function on

GM{K , which has value 1 on Cpσ; GM{Kq and 0 outside. Finally, let mH denote the character
on G :� GN{K of the induced representation IndGH 1H . Then we have (the first equality below
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follows from Lemma 3.6 and the second from Lemma 3.4):

δLpPM{KpσqLq �
¸

Cpg;GqÞÑCpσ;GM{Kq

δLpPN{KpgqLq

�
¸

Cpg;GqÞÑCpσ;GM{Kq

mHpgqδKpPN{Kpgqq

�
¸

Cpg;GqÞÑCpσ;GM{Kq

mHpgq
7Cpg;Gq

7G

�
1

7G

¸
g ÞÑCpσ;GM{Kq

mHpgq

� xmH , infGGM{K
1σyG

� x1H , infHGM{K
1σyH

� x1H ,1σ|HyH

�
7Cpσ; GM{Kq XH

7H
,

where the third to last equality sign is Frobenius reciprocity, and the second to last follows from
the easy fact that if H � H is a surjection of finite groups, χ, ρ are two characters of H, then
xinfH

H
χ, infH

H
ρyH � xχ, ρyH .

3.4 Stable and persistent sets

In this section we define stable and persistent sets of primes in a number field, consider some
properties of them and give a further characterization of stable sets.

3.4.1 Definition and first properties

Let K be a number field and S a set of primes. Lemma 3.4 implies that if δKpSq � 0 resp. � 1,
then also δLpSq � 0 resp. � 1 for all finite L{K. Now if 0   δKpSq   1, it can happen that
there is some finite L{K with δLpSq � 0 (just start with some finite Galois extension L{K and
take S :� ΣK r cspL{Kq, having the density 1� rL : Ks�1 in K and density 0 in L). We want
to study situations, in which this possibility is excluded, and moreover the density of a subset
S0 � S considered as a function of extensions of K lies in an interval with logarithmic length
bounded by some constant resp. is itself constant.

Definition 3.7. Let S be a set of primes of K and L {K any extension.

(i) Let λ ¡ 1. A finite subextension L {L0{K is λ-stabilizing for S for L {K, if there
exists a subset S0 � S and some a P p0, 1s, such that λa ¡ δLpS0q ¥ a ¡ 0 for all finite
subextensions L {L{L0.

(ii) A finite subextension L {L0{K is monotone stabilizing for S for L {K, if there exists
a subset S0 � S, such that δL1pS0q ¥ δLpS0q ¡ 0 for all finite subextensions L {L1{L{L0.

(iii) A finite extension L {L0{K is persisting for S for L {K, if there exists a subset S0 � S,
such that δLpS0q � δL0pS0q ¡ 0 for all finite subextensions L {L{L0.
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We say that S is λ-stable resp. monotonic stable resp. persistent for L {K, if it has a
λ-stabilizing resp. monotone stabilizing resp. persisting extension for L {K. We say that S is
stable for L {K, if it is λ-stable for L {K for some λ ¡ 1.

For short, we say that S is λ-stable resp. monotonic stable resp. persistent, if it is
λ-stable resp. monotonic stable resp. persistent for KS{K. Observe that these notions are not
preserved under the equivalence relation S � T on subsets of ΣK (since KS � KT in general),
whereas the notions from the definition are. Observe also that, apart from our convention that all
considered sets have a Dirichlet density, there is no reason to require a stable (resp. persistent)
set S to have a density: it is enough, when a stable (resp. persistent) subset S0 � S has. If
L {K,S and λ ¡ 1 are as above, then we have:

S persistent ñ S monotonic stable ñ S λ-stable.

The first implication is trivial. The second is easy (Proposition 3.8 (iv)). We will give another
characterization of stable sets in Section 3.4.3. Now we give some basic properties.

Proposition 3.8. Let L {K be an extension and S a set of primes of K.

(i) Let λ ¥ µ ¡ 1. If S is µ-stable with µ-stabilizing field L0, then S is λ-stable with λ-
stabilizing field L0.

(ii) If L0 is λ-stabilizing resp. monotone stabilizing resp. persisting field for S for L {K, then
any finite subextension L {L1{L0 has the same property.

(iii) Let S1 be a further set of primes of K. If S �
� S1, and S is λ-stable resp. monotonic stable

resp. persistent for L {K, then S1 also has this property. Any λ-stabilizing resp. monotone
stabilizing resp. persisting field for S has the same property for S1.

(iv) If S is monotonic stable for L {K, then it is λ-stable for L {K for any λ ¡ 1.

(v) Let L {N {M{K be subextensions. If S is λ-stable (resp. monotonic stable resp. persistent)
for L {K with λ-stabilizing (resp. monotone stabilizing, resp. persisting) field L0 � N ,
then SM is λ-stable (resp. monotonic stable resp. persistent) for N {M .

Proof. (i) - (iii) are immediate.
(iv): Let S be monotonic stable for L {K and let L0 be monotone stabilizing for S for L {K

with respect to a subset S0 � S. Consider the set tδLpS0q : L {L{L0 finiteu � r0, 1s. This is a
bounded set of real numbers, which thus has a supremum, and we have δL1pS0q ¥ δLpS0q ¡ 0 for
all finite L {L1{L{L0. Let L {L1{L0 be finite and such that a :� δL1pS0q ¡

1
λ supL {L{L0

tδLpS0qu.
This L1 is λ-stabilizing for S (with respect to the subset S0 and the real number a).

(v): Let S be λ-stable for L {K with λ-stabilizing field L0 � N . Then SM is λ-stable
for L {M with stabilizing field L0M , and hence also λ-stable for N {M with stabilizing field
L0M � N . For monotonic stable and persistent sets the proof is the same.

Remark 3.9. In the definition of stable/persisting sets we used the Dirichlet density, which
is a measure on AL for any finite subextension L {L{K. For arithmetic applications there is
in fact no reason, why one should use exactly δL. It is not clear, whether functions essentially
different from δL can be constructed. Such a construction should work as follows: one considers
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an appropriate subset BL � PL for each L {L{K, such that the pull-back map PL Ñ PL1

restricts to a pull-back BL Ñ BL1 for any L {L1{L{K and replace the formation pδLqL {L{K in
the Definition 3.7 by any formation of functions

µL : BL ÝÑ r0, 1s

such that the following three conditions hold:

(i) µLpΣLq � 1,

(ii) µLpS Y T q � µLpSq � µLpT q for any disjoint S, T P BL,

(iii) (pull-back formula for Galois extensions) For any finite Galois subextension N of L {L one
has

µN pSq � rN : LsµLpS X cspN{Kqq,

resp.

(iii’) (general pull-back formula) For any finite Galois subextension N of L {L and any subex-
tension N{L1{L, with G :� GN{L, H :� GN{L1 , one has:

µL1pSq �
¸

Cpσ;Gq�G

mHpσqµLpS X PL1{Lpσqq.

There are only few places in this and the following chapters, where we use the stability property of
a set directly. They are essentially in Proposition 3.11, Theorem 4.2, Lemma 4.4 and Proposition
4.36. By posing conditions (i),(ii) and (iii)’ on µL one would have enough to use µL instead of
δL in all cases. By posing (i),(ii) and the weaker condition (iii), one would abandon Lemma 4.4
and (the most general form of) Proposition 3.11, but still have enough for (a slightly weaker
version of) Theorem 4.2 and consequently all of the important results.

The conditions above are restrictive. In particular, µL is determined by (i),(ii) and (iii)’ on
each set of the form PM{Lpσq for M being a finite Galois subextension of L {L, and coincides
with δL there. However, it is not clear, whether there are interesting choices of pBL, µLqL such
that µL does not coincide with δL on the whole set BL. For example, one could try to define
µL as the limit

µLpSq :� lim
sÑs�0

°
pPSf ,deg p¡kNp�s°

pPΣL,f ,deg p¡kNp�s
,

where deg p � logp Np (p is the residue characteristic of p) and the positive real s0 is chosen in
a way such that denominator has a pole at s0.

3.4.2 Properties p�q

The first property which gets important in the arithmetic applications is the p-stability of a set
for some rational prime p. But it turns out that also the following refinement is important (in
particular for the Grunwald-Wang theorem):
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Definition 3.10. Let S be a set of primes of K and p a (finite or infinite) prime of Q.

(i) Assume S is persistent (i.e., persistent for KS{K). We say that S satisfies property
p�qpers

p , if S is persistent for KSYSpYS8{K with a persisting field contained in KS .

(i)’ Assume S is persistent. We say that S satisfies property p�qpers, if S satisfies p�qpers
p for

almost all p.

(ii) Assume S is stable. We say that S satisfies property p�qstab
p , if S is p-stable forKSYSpYS8{K

with a p-stabilizing field contained in KS (if p � 8, then this means that S is stable for
KSYS8{K).

(ii)’ Assume S is stable. We say that S satisfies property p�qstab, if S satisfies p�qstab
p for

almost all p.

For S persistent resp. stable, define the exceptional set by

EperspSq :� tp : S does not satisfy p�qpers
p u,

resp. by

EstabpSq :� tp : S does not satisfy p�qstab
p u,

Clearly, p�qpers
p resp. p�qpers is stronger than p�qstab

p resp. p�qstab. Further a stable set S
satisfies p�qstab if and only if EstabpSq is finite (and similarly for p�qpers). In practice most of the
occurring stable sets are persistent and satisfy p�qpers (cf. Section 3.5), but to prove things, we
only use the stability property resp. p�qstab

p for various p.

3.4.3 Other characterization of stable sets

The following proposition gives another characterization of stable sets and shows in particular,
that if S is stable for L {K, then any finite subfield L {L{K is λ-stabilizing for S with a certain
λ ¡ 1 depending on L.

Proposition 3.11. Let S be a set of primes of K and L {K any extension. The following are
equivalent:

(i) S is stable for L {K.

(ii) There exists some λ ¡ 1, such that S is λ-stable for L {K with λ-stabilizing field K.

(iii) There exist some ε ¡ 0 such that δLpSq ¡ ε for all finite L {L{K.

Proof. (iii) ñ (ii) ñ (i) are trivial. We prove (i) ñ (iii). Let λ ¡ 1 and let S be λ-stable for
L {K with λ-stabilizing field L0. Then there is some a ¡ 0 and a subset S0 � S such that
a ¤ δLpS0q   λa for all L {L{L0. We want to find some ε ¡ 0 such that δLpS0q ¡ ε for all
L {L{K. Suppose there is no such ε ¡ 0. This implies that there is a family pMiq

8
i�1 of finite

subextensions of L {K with δMipS0q Ñ 0 as iÑ8. Then di � rL0Mi : Mis � rL0 : L0 XMis is
bounded from above by rL0 : Ks and hence
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δL0MipS0q �
di̧

m�1

mδMipS0 X PmpL0Mi{Miqq ¤ rL0 : KsδMipS0q Ñ 0

for iÑ8. This contradicts to the λ-stability of S0 with respect to the λ-stabilizing field L0.

If S is stable for L {K, then δLpSq ¡ 0 for all finite L {L{K. The converse is not true, as
an example in Section 3.5.4 shows.

3.5 Examples

Finally we consider examples of stable resp. persistent sets. There are plenty of examples of
persistent sets, but on the other side it is not really clear, whether there is a stable set, which is
not persistent. A construction which goes in this direction is also done here.

3.5.1 Sets of density one

Stable and persistent sets generalize sets of density one. In particular, every set of primes of K
of density one is persisting for any extension L {K with persisting field K and satisfies p�qpers

p

for each p. Nevertheless, sets of density one have some properties, which stable resp. persistent
sets do not have in general:

(i) the intersection of two sets of density one has again density one, which is not true for
stable and persistent sets: the intersection of two sets persistent for L {K can be empty
(cf. Corollary 3.14 and explicit examples below).

(ii) if S � ΣK has density one, then there are infinitely many primes p P ΣQ, such that Sp � S

(otherwise, for all primes p P cspK{Qq one could choose a prime p P SprS of K and we
would have δpSq ¤ 1� rK : Qs�1). On the other side, it is easy to construct a persistent
set S � ΣK with Sp � S for all p P ΣQ (cf. Section 3.5.5 for an explicit example).

3.5.2 Almost Chebotarev sets

Definition 3.12. Let K be a number field. A Chebotarev set is a set of primes of K of the
form PM{Kpσq, whereM{K is a finite Galois extension and σ P GM{K . An almost Chebotarev
set is a set S of primes of K, such that there is a Chebotarev set PM{Kpσq with S w PM{Kpσq.

Remark 3.13. It is natural to ask, whether M and Cpσ; GM{Kq are unique in the definition.
This is false even in the easiest case: let N{K be an extension having as its Galois group the
permutation group S3 and letM be the subextension corresponding to the kernel of the quotient
π : S3 � Z{2Z. Let g P S3 denote any odd permutation. Then one has π�1pπpgqq � Cpg;S3q

and hence PM{Kpπpgqq w PN{Kpgq by Proposition 3.6. To study this question in general, let
pM,σq and pN, τq be two finite Galois extensions of K together with an element in the Galois
group. Then we claim that PM{Kpσq w PN{Kpτq if and only if in the diagram
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GMN{K

πN

%% %%KKKKKKKKK
πM

yyyyssssssssss

GM{K

α1

%% %%KKKKKKKKKK
GN{K

α2

yyyysssssssss

GMXN{K

we have α�1
1 pα2pτqq � Cpσ; GM{Kq and α�1

2 pα1pσqq � Cpτ ; GM{Kq. Indeed, by Lemma 3.6,
PM{Kpσq � PN{Kpτq is equivalent to π�1

M pCpσ; GM{Kqq � π�1
N pCpτ ; GN{Kqq. But this is equiva-

lent to α�1
2 pα1pσqq � Cpτ ; GM{Kq, which follows from the fact that the above diagram of groups

is a pull-back diagram, and the underlying diagram of sets is also a pull-back diagram, and from
the following general fact: if αX : X � Z,αY : Y � Z are maps of sets, X�Z Y is the pull-back
with projections denoted by πX , πY , and X1 � X, Y1 � Y are subsets, then π�1

X pX1q � π�1
Y pY1q

if and only if α�1
Y pαXpX1qq � Y1. This proves our claim.

Let pM,σq, pN, τq are given, and assume that h :� αM pσq � αN pτq P GMXN{K (otherwise
PM{Kpσq w PN{Kpτq is impossible). We can reformulate the above criterion:

PM{Kpσq w PN{Kpτq ô α�1
M phq � Cpσ; GM{Kq and α�1

N phq � Cpτ ; GN{Kq

This group-theoretic criterion allows to construct many further examples in which one has
PM{Kpσq w PN{Kpτq but M � N . For example, take any surjection of finite groups π : G� H

and an element x P H, such that for some preimage g of h in G, one has π�1phq � Cpg,Gq

(cf. for example the first paragraph of this remark). Then any extensions M,N{K such that
GM{K � GN{K � G (they have in particular the same degree over K), GMXN{K � H gives such
an example.

On the other side, assume pM,σq, pN, τq are given, such that σ resp. τ are central in
GM{K resp. GN{K . Then PM{Kpσq w PN{Kpτq ô pM,σq � pN, τq. Indeed, in this sit-
uation one has 7Cpσ; GM{Kq � 7Cpτ ; GN{Kq � 1 and hence PM{Kpσq w PN{Kpτq implies
that 7kerpG� GM{Kq � 7kerpG� GN{Kq � 1, i.e., M � N and hence also Cpσ; GM{Kqq �

Cpτ ; GN{Kq. This generalizes the classical application of Chebotarev, which is the special case
with σ � τ � 1 ( [Ne3] Corollary 13.10).

Proposition 3.5 shows that almost Chebotarev sets are often persistent:

Corollary 3.14. Let M{K be finite Galois and let σ P GM{K . Let L {K be any extension and
set L0 :�M XL . Then a set S w PM{Kpσq is persistent for L {K if and only if

Cpσ; GM{Kq XGM{L0
� H.

If this is the case, L0 is a persistent field for S for L {K. In particular,

(i) any set S w cspM{Kq is persistent for any extension L {K,

(ii) any set S w PM{Kpσq is persistent for any extension L {K with L XM � K.

We collect some properties of almost Chebotarev sets.

Proposition 3.15. Let S be an almost Chebotarev set and L {K an extension. Then the fol-
lowing are equivalent:
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(i) S is stable for L {K.

(ii) S is persistent for L {K.

(iii) δLpSq ¡ 0 for all finite L {L{K.

Proof. Let S w PM{Kpσq with a finite Galois M{K and σ P GM{K . By Proposition 3.5, the
density of S is constant and equal to some d ¥ 0 in the tower L {L0 with L0 � L XM . There
are two cases: either d � 0 or d ¡ 0. If d � 0, then S is not stable and hence also not persistent
for L {K by Proposition 3.11, i.e., (i), (ii) and (iii) do not hold in this case. If d ¡ 0, then S
is obviously persistent for L {K with persisting field L0 and hence also stable, i.e., (i),(ii),(iii)
hold.

Example 3.16 (A persistent set). Let K be a number field, M{K a finite Galois extension,
which is totally ramified in a prime p of K. Let σ P GM{K and let S be a set of primes of K,
such that

• S w PM{Kpσq

• p R S.

Then S is persistent with persisting field K. Indeed, we have KS XM � K by construction,
and the claim follows from Corollary 3.14.

Example 3.17 (Unramified extensions). Let M{K be a finite unramified Galois extension. Let
σ P GM{K and let S be a set of primes of K with S w PM{Kpσq. If σ � 1, then S is never
stable. Indeed, one has M � KS and the density of S is zero for all fields in the tower KS{M

(cf. Proposition 3.15).

3.5.3 Finiteness of EstabpSq and properties p�q

Proposition 3.18. Let S be an almost Chebotarev set.

(i) If 8 P EstabpSq, then EstabpSq contains all rational primes. If 8 R EstabpSq, then S

satisfies property p�qstab, i.e., the set EstabpSq is finite.

(ii) If 8 P EperspSq, then EperspSq contains all rational primes. If 8 R EperspSq and one has
KSYS8 XM � KS, then EperspSq is finite.

Proof. (i): If 8 P EstabpSq, then S does not have a stabilizing field for KSYS8{K, which is
contained in KS . This is by Proposition 3.11 equivalent to the fact that S is not stable for
KSYS8{K, which in turn is equivalent by Proposition 3.15 to the fact that δLpSq � 0 for all
KSYS8{L{L0 where L0 is some fixed subextension of KSYS8{K. From this immediately follows
that p P EstabpSq for any rational prime p.

Now we prove that if8 P EstabpSq, then EstabpSq is finite. Let S w PM{Kpσq with σ P GM{K .
Let L0 :� M X KSYS8 and Lp :� M X KSYSpYS8 . By Proposition 3.5, the density of S is
constant in the towers KSYS8{L0 and KSYSpYS8{Lp and equal to some real numbers d0 and dp
respectively. Since S is stable for KSYS8{K, we have d0 ¡ 0.
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We claim that for almost all p’s we have Lp � L0. More precise, this is true for all p’s, such
that the set

tp P pSprSqL0 : p is ramified in M{L0u.

is empty. In fact, if this set is empty for p, then the extension Lp{L0 is unramified in SprSpL0q,
since contained in M{L0. But being contained in KSYSpYS8 and unramified in SprSpL0q, it is
contained in KSYS8 , and hence also in M XKSYS8 � L0, which proves our claim.

Let now p be such that Lp � L0. Then we claim that S is prL0 : Ksd�1
0 q-stable for

KSYSpYS8{K with prL0 : Ksd�1
0 q-stabilizing field K. Indeed, as Lp � L0, we have dp � d0 ¡ 0.

Let KSYSpYS8{N{K be any finite subextension. We have

d0 � δL0N pSq � rL0N : N sδN pS X cspL0N{Nqq ¤ rL0 : KsδN pSq,

i.e., δN pSq ¥ rL0 : Ks�1d0 for all N , and in particular our claim follows.
Finally, almost all primes satisfy p ¡ rL0 : Ksd�1

0 and Lp � L0 and for them S is p-stable
for KSYSpYS8{K with stabilizing field K.

(ii): First, 8 P EperspSq is equivalent to the following fact: for all S0 � S and for all
KS{L

1{K, the density δ�pS0q does not get positive and constant in the tower KSYS8{L
1. In

particular, for all such S0 and L1, the density δ�pS0q does not get constant and positive in the
bigger tower KSYSpYS8{L

1 for any rational prime p. Hence p P EperspSq.
Let now L0, Lp, d0, dp be as in the proof of (i) and assume that 8 R EperspSq and L0 �

KSYS8 XM � KS . As in the proof of (i), we have Lp � L0 for almost all p’s. For such p’s we
have δLpSq � dp � d0 ¡ 0 for all finite subextensions KSYSpYS8{L{Lp, i.e. p R EperspSq.

Remark 3.19. The proof also indicates which primes lie in EstabpSq for S w PM{Kpσq, and in
which cases EstabpSq is empty. If EstabpSq � H, then SpecOK,S is an algebraic Kpπ, 1q-space
(cf. Corollary 5.14).

Example 3.20 (Persistent sets with EstabpSq finite but non-empty). Let K be a totally imag-
inary number field and let M{K be a finite Galois extension extension, which satisfies the
following conditions:

• M{K is totally ramified in a prime p P SppKq,

• d :� rM : Ks ¡ p.

Let σ P GM{K and let S be a set of primes of K, such that

• S w PM{Kpσq,

• RampM{KqrS � tpu.

Then S is persistent (δLpSq � d�1 for all KS{L{K) with persisting field K and does not satisfy
p�qstab

p , i.e., p P EstabpSq (and 8 R EstabpSq, i.e., EstabpSq is finite). Indeed, M � KSYSpYS8

and there are two cases σ � 1 or σ � 1. In the second case, the density of S in KSYSpYS8{K

is zero beginning from M , hence S is non-stable for this extension, and p�qstab
p is not satisfied.

In the first case, we have δLpSq � 1 for all KSYSpYS8{L{M . Assume there is a p-stabilizing
field N � KS for S for KSYSpYS8{K, i.e., there is some S0 � S and some a P p0, 1s with
a ¤ δLpS0q   pa for all KSYSpYS8{L{N . But this leads to a contradiction. Indeed,
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δMN pS0q � rMN : N sδN pS0 X cspMN{Nqq � rM : KsδN pS0q ¥ pδN pS0q,

since N XM � K and S0 � S w cspM{Kq.

Example 3.21 (Persistent sets with EperspSq � H). Let M{K be a finite Galois extension of
degree d with K totally imaginary, which is totally ramified in at least two primes p resp. l with
different residue characteristics `1 resp. `2. Let S w PM{Kpσq for some σ P GM{K , such that
p, l R S. Then M XKS � K, hence S is persistent with persisting field K. Let p be a rational
prime. Then M X KSYSpYS8 � K, since M{K is totally ramified over primes with different
residue characteristics `1 and `2. Hence S satisfies p�qpers

p for every prime p and K is a persisting
field for S for KSYSpYS8{K.

Example 3.22 (Persistent sets with EperspSq � H). There is also another possibility to con-
struct sets S with EperspSq � H, using the same idea as in the preceding example. Assume
for simplicity that K is totally imaginary. Let M1,M2{K be two Galois extensions of K, and
σ1 P GM1{K , τ P GM2{K . Assume Mi{K is totally ramified in a non-archimedean prime pi of K,
such that the residue characteristics of p1, p2 are unequal. Then let S be a set of primes of K,
such that

• S �
� PM1{Kpσ1q Y PM2{Kpσ2q,

• tp1, p2u R S.

Then, by the same reasoning as in the preceding example, S is persistent with persisting field
K and EperspSq � H. Moreover for each rational prime p, the field K is persisting for S for
KSYSpYS8{K.

Example 3.23 (Persistent set S with p P EperspSqrEstabpSq). Let K be totally imaginary
and M{K a finite extension of degree d :� rM : Ks   p, which is totally ramified in a prime
p P Sp. Let S w cspM{Kq, such that p R S. Then S is persistent with persisting field K,
since M X KS � K. Further, p R EstabpSq, as K is p-stabilizing field for S for KSYSpYS8{K

(with respect to S0 � S and a � d�1). Moreover, p P EperspSq. Indeed, assume L0 � KS

would be a persisting field for S for KSYSpYS8{K. I.e., there would be a subset S0 � S with
δLpS0q � δL0pS0q ¡ 0 for all finite subextensions KSYSpYS8{L{L0. In particular, this must hold
for L :�ML0, which is a proper extension of L0, since M XKS � K. But then we have

δML0pS0q � rML0 : L0sδL0pS0 X cspML0{L0qq ¡ δL0pS0q,

as rML0 : L0s ¡ 1 and S0 � S w cspM{Kq.

3.5.4 Stable but not persistent sets

It is not clear to the author how to construct a stable but not persistent set. The following
example goes in this direction, and by the way provides an example of a set S, such that
δLpSq ¡ 0 for all finite L {L{K but S not stable (i.e., S satisfies satisfies property (iii) of
Proposition 3.15, but does not satisfy (i)).

Let L {K be normal and infinite, let L �
�8
i�1 Li � � � � � Li � � � � � L1 � K be an infinite

tower of finite Galois subextensions. Write di :� rLi : Ks. Let Si � cspLi{Kqr cspLi�1{Kq be
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a subset with some density δKpSiq � ai ¥ 0 (one can choose Si such that ai is arbitrary small).
Let S :�

�8
i�1 Si. Then

δLipSq � diδKpS X cspLi{Kqq � di

8̧

m�i

am.

Notice however, that if we still choose the ai above such that S is stable, but δLipSq never gets
constant, it is still unclear, whether S is persistent or not (because of the freedom of choosing
S0 � S).

To find a set with δLpSq ¡ 0 for all L {L{K, but S not stable, consider in the previous
example numbers ai ¡ 0, such that

°8
m�i am   1

idi
, which is clearly possible (e.g. take ai ¤ 1

2iidi
).

This gives 0   δLipSq  
1
i . Since L �

�8
i�1 Li, it is easy to see that δLpSq ¡ 0 for all finite

L {L{K. The constructed set does not satisfy part (iii) of Proposition 3.11, hence is not stable
for L {K.

3.5.5 Stable sets with NpSq � t1u

Let M{K{K0 be two finite Galois extensions of a number field K0. Then the natural map
GM{K0

Ñ AutpGM{Kq induces an exterior action

GK{K0
Ñ OutpGM{Kq,

thus inducing a natural action of GK{K0
on the set of all conjugacy classes of GM{K . For any

g P GK{K0
and σ P GM{K , we choose a representative of the conjugacy class g.Cpσ; GM{Kq and

denote it by g.σ. Further, GK{K0
acts naturally on ΣK , and we have

g.PM{Kpσq � PM{Kpg.σq.

Let K0 � Q and let σ P GM{K be an element, such that Cpσ; GM{Kq is not a fixed point of the
action of GK{Q. Let then

S :� cspK{QqK X PM{Kpσq.

If p P ΣQ,f r cspK{Qq, then S X Sp � H. If p P cspK{Qq such that Sp X S � H, then the
action of g P GK{K0

, chosen such that Cpσ; GM{Kq � Cpg.σ; GM{Kq, defines an isomorphism
between the disjoint sets Sp X PM{Kpσq and Sp X PM{Kpg.σq, hence the last of these two sets is
non-empty. From this we obtain Sp � S. Thus NpSq � 1. Moreover, if we choose σ such that
the stabilizer of Cpσ; GM{Kq in GK{Q is trivial, then for any p the intersection Sp X S is either
empty or contains exactly one element.

Now we have to choose M in a way such that S is stable. This is easy: for example take
M{K to be totally ramified in a fixed prime, which is (by definition of S) not contained in S.
Then KS XM � K, i.e., S is stable for KS{K with stabilizing field K, as δKpcspK{QqKq � 1

and hence S w PM{Kpσq.
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4 Arithmetic applications

In this section we prove certain arithmetic results for stable sets. Most of them are generalizations
of theorems shown in [NSW] Chapters IX and X for sets with density one to stable sets.

4.1 Overview

Our main result is Theorem 4.2, which is a Hasse principle for X1. All other results in this
section make an essential use of this theorem (along with other inputs). Here are the theorems
we want to generalize.

1. Hasse principles

2. Grunwald-Wang theorem

3. Riemann’s existence theorem

4. cdp GS � scdp GS � 2

5. algebraic Kpπ, 1q-property

6. (a part of) the Neukirch Uchida theorem

Here is a rough scheme, how these statements depend on each other:

1
Poitou-Tate //

�other things

++VVVVVVVVVVVVVVVVVVVVVVVVVV

��

2

wwpppppppppppppp

��
3 //

��>>>>>>> 4

���������
6

5
Essentially, in the pro-p case, 3 and 4 are equivalent to 5.

The two properties of a set S of primes of K, which deserve the most interest here, are the
p-stability of S and the property p�qstab

p . Roughly speaking, p-stability is enough for some Hasse
principles for X1 and p�qstab

p is necessary for all further results, such as Hasse principles for X2,
the Grunwald-Wang theorem with respect to the rational prime p, etc.

The properties “p-stable” and p�qstab
p are still too strong for the results of this section, i.e.,

they can be weakened further, without changing the results. For example, let L {K be a Galois
extension, A a trivial p-primary GL {K-module and T a set of primes of K. Then to obtain the
very basic Hasse principle X1pL {K,T ;Aq � 0, one can require (instead of p-stability of T for
L {K with p-stabilizing field K, as in Theorem 4.2) the weaker condition that there is a subset
T0 � T with δ�pT0q ¡ 0 in the tower L {K and such that there are no subextensions L {L1{L{K

with δL1 pT0q
δLpT0q

� p. Thus we can pose the following question.

Question 4.1. What is the most general condition, for which the same results as for p-stable sets
resp. sets satisfying p�qstab

p hold? Are there counterexamples to the Grunwald-Wang theorem or
even to the Riemann’s existence theorem, among the sets, which do not satisfy this condition?

A positive answer to the second part of the question (it is by no means clear, whether one
should expect it) could possibly provide examples of curves SpecOK,S which are not Kpπ, 1q for
p (cf. Definition 5.2).
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In Section 4.2 we prove our key result. In Sections 4.3,4.4 resp. 4.6 we apply it to obtain
certain Hasse principles, the Grunwald-Wang theorem resp. Riemann’s existence theorem for
stable sets. In Section 4.5 we deal with the realization of local extensions by global ones. In
Section 4.7 we consider the (strict) cohomological dimension of the groups GK,S resp. GK,Sppq.
Up to here we generalized results from [NSW] for density 1 sets to stable sets. Further, in Section
4.8 we prove a Hasse principle in dimension 2, which is needed in the anabelian setting in the
Section 6 to prove the local correspondence. We must postpone this Hasse principle to Section
4.8 and do not prove it in Section 4.3, since the proof uses all results shown so far. Finally, in
Section 4.9, we prove the finiteness of Shafarevich groups with divisible coefficients for stable
sets.

4.2 Stable sets and X1: key result

Let K be a number field and L {K a (possibly infinite) Galois extension with Galois group
GL {K . Let A be a finite GL {K-module. Let p be a prime of K and let P be an extension of p
to L . Let

LP :�
¤

L {K1{K finite

K 1
P|K1

.

Choose an algebraic closure L P of LP, which is also an algebraic closure of Kp. Then one has
natural homomorphisms

Gp :� GL P{Kp
� DP,L {K ãÑ GL {K ,

giving A a natural structure of Gp-module, and hence giving rise to a restriction homomorphism

res�P,L {K : H�pL {K,Aq Ñ H�pGp,Aq.

The group HipGp,Aq depends on the choice of P over p and on the choice of an algebraic closure
of LP only up to a canonical isomorphism: assume P1,P2 are two primes of L lying over
p and L Pi is some algebraic closure of LPi (i � 1, 2). Then P1,P2 are conjugate over K,
hence L P1 ,L P2 are isomorphic. Let γ1, γ2 be two isomorphisms of L P1 ,L P2 over Kp. Then
homomorphisms induced by them in the cohomology are equal:

γ�1 � γ�2 : H�pL P1{Kp,Aq Ñ H�pL P2{Kp,Aq,

since inner automorphisms act trivial on the cohomology (indeed, consider γ�1
2 γ1 P GL P1

{Kp
).

It is immediate, that res�P1,L {K , res�P2,L {K commute with this canonical isomorphism. From
now on, we suppress the choice of the prime P over p and of the algebraic closure L P in our
notation.

Let now T be a set of primes of K. Consider the i-th Shafarevich group with respect to
T :

XipL {K,T ;Aq :� kerpresi : HipL {K,Aq Ñ
¹
pPT

HipGp,Aqq,

where Gp � GKsep
p {Kp

is the local absolute Galois group. We denote by KpAq the trivializing
extension for A, i.e., the smallest field between K and L , such that the subgroup GL {KpAq of
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GL {K acts trivially on A. It is a finite Galois extension of K.
Let G be a finite group and A a G-module. Following [Ja], let Hi

�pG,Aq be defined by
exactness of the following sequence:

0 Ñ Hi
�pG,Aq Ñ HipG,Aq Ñ

¹
H�G
cyclic

HipH,Aq.

We have the following key result.

Theorem 4.2. Let K be a number field, T a set of primes of K and L {K a Galois extension
with Galois group G. Let A be a finite G-module. Assume that T is p-stable for L {K, where p
is the smallest prime divisor of 7A. Let L be a p-stabilizing field for T for L {K. Then:

X1pL {L, T ;Aq � H1
�pLpAq{L,Aq.

In particular, if H1
�pLpAq{L,Aq � 0, then X1pL {L, T ;Aq � 0.

All results in the following make use of this theorem in a crucial way.

Lemma 4.3. Let L {L{K be two Galois extensions of K and T a set of primes of K. Let A
be a GL {K-module, such that for any p P T one has AGL {L � ADp,L {L. Then there is an exact
sequence

0 ÑX1pL{K,T ;AGL {Lq ÑX1pL {K,T ;Aq ÑX1pL {L, T pLq;Aq

Proof. Recall that for a prime p of K the set SppLq consists of all primes lying over p in L. Let
P be any extension of p to L, and let P̃ be an extension of P to L . The sequence

0 Ñ H1pLP{Kp,A
DP,L {Lq Ñ H1pLP̃{Kp,Aq Ñ H1pLP̃{LP,Aq,

is exact and the right map does not depend on the choice of P over p (cf. the beginning of this
section). Hence also the sequence

0 Ñ H1pLP{Kp,A
DP,L {Lq Ñ H1pLP̃{Kp,Aq Ñ

¹
QPSppLq

H1pLQ̃{LQ,Aq,

is exact, where the map on the right is the restriction into each component. Thus we obtain the
following commutative diagram with exact rows:

0 // H1pL{K,AGL {Lq //

��

H1pL {K,Aq //

��

H1pL {L,Aq

��

0 //
±
pPT

H1pLp{Kp,A
Dp,L {Lq //

±
pPT

H1pLp{Kp,Aq //
±

pPT pLq

H1pLp{Lp,Aq.

The lemma follows by taking kernels of the vertical maps.

Lemma 4.4. Let L{K be a finite Galois extension, T a set of primes of K, and A a finite
GL{K-module. Assume that T is p-stable for L{K with p-stabilizing field K, where p is the
smallest prime divisor of 7A. Then

XipL{K,T ;Aq � Hi
�pL{K,Aq.
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Proof. We can assume that A is p-primary. Indeed, decompose A into `-primary components,
and observe that any p-stable set is `-stable for any ` ¥ p. We have to show that any cyclic
p-subgroup of GL{K is a decomposition subgroup of a prime in T . This is content of the next
lemma.

Lemma 4.5. Let L{K be a finite Galois extension, T a set of primes of K and p a rational
prime, such that T is p-stable for L{K with p-stabilizing field K. Then any cyclic p-subgroup of
GL{K is the decomposition group of a prime in T .

Notice that this shows automatically that there are infinitely many primes in T , for which
the given cyclic group is a decomposition group.

Proof. Assume that the cyclic p-subgroup H � GL{K is not a decomposition group of a prime
in T . Let pH � H be the subgroup of index p. Then one computes directly mpHpσq � pmHpσq

for any σ P pH. Since H is not a decomposition subgroup of a prime p P T , no generator of H
is a Frobenius at T , i.e., PL{Kpσq X T � H for any σ P H r pH. By p-stability of T , there is
a subset T0 � T and an a ¡ 0, such that pa ¡ δL1pT0q ¥ a for all L{L1{K. Let L0 � LH and
L1 � LpH . Then

δL0pT0q �
¸
σPH

mHpσqδKpPL{Kpσq X T0q

�
¸
σPpH

mHpσqδKpPL{Kpσq X T0q

� p�1
¸
σPpH

mpHpσqδKpPL{Kpσq X T0q

� p�1δL1pT0q.

This contradicts our assumption on T0.

Proof of the theorem. We can assume L � K. By applying Lemma 4.3 to L {KpAq{K and using
Lemma 4.4, we are reduced to showing that if A is a trivial G-module, then X1pL {K,T ;Aq � 0.
Let T0 � T and a ¡ 0 be such that pa ¡ δL1pT0q ¥ a for all L {L1{L. Let GT be the quotient
of G, corresponding to the maximal subextension of L {K, which is completely split in T . We
have then

X1pL {K,T ;Aq � kerpHompG,Aq Ñ
¹
pPT

HompGp, Aqq � HompGT , Aq.

If 0 � φ P HompGT , Aq, then M :� L kerpφq{K is a finite extension inside L {K with Galois
group impφq � 0 and completely decomposed in T , and in particular in T0. Thus

pa ¡ δM pT0q � rM : KsδKpT0 X cspM{Kqq � 7impφqδKpT0q ¥ pa,

since δKpT0q ¥ a. This is a contradiction, and hence we obtain

X1pL {K,T ;Aq � HompGT , Aq � 0.
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This finishes the proof.

4.3 Some Hasse principles

Now we give first applications of Theorem 4.2. Consider the case L � KS , where S is some
further set of primes of K. Then we have the usual Shafarevich group (A is a GK,S-module and
T is a set of prime of K, not necessarily contained in S):

XipKS{K,T ;Aq :� kerpresi : HipKS{K,Aq Ñ
¹
pPT

HipGp,Aqq.

If S � T , we also write XipKS{K;Aq instead of XipKS{K,S;Aq. The Hasse principle for A
(in the i-th dimension, with respect to S and T ) is said to be satisfied, if

XipKS{K,T ;Aq � 0.

Various conditions on S, T,A which imply the Hasse principle in dimensions 1 and 2 are consid-
ered in [NSW] chapter IX, §1. We prove a generalization for stable sets.

Corollary 4.6. Let K be a number field, T, S sets of primes of K, A a finite GK,S-module.
Assume that T is p-stable for KS{K, where p is the smallest prime divisor of 7A. Let L0 be a
p-stabilizing field for T for KS{K, which trivializes A. Then

X1pKS{L, T ;Aq � 0

for any finite KS{L{L0.

Proof. Since L0 is a p-stabilizing field which trivializes A, any L lying between KS{L0 is too.
Thus the corollary follows immediately from Theorem 4.2.

Let c be a full class of finite groups, in the sense of [NSW] 3.5.2. Let KSpcq{K denote the
maximal pro-c-extension of K in KS , and GK,Spcq its Galois group over K, i.e., the maximal
pro-c-quotient of GK,S . We have the pro-c-version of Corollary 4.6:

Corollary 4.7. Let c be a full class of finite groups, K a number field, T, S sets of primes of
K, A a finite GK,Spcq-module. Assume that T is p-stable for KSpcq{K, where p is the smallest
prime divisor of 7A. Let L0 be a p-stabilizing field for T for KSpcq{K, which trivializes A. Then

X1pKSpcq{L, T ;Aq � 0

for any finite KSpcq{L{L0.

A further consequence of Theorem 4.2 is Corollary 4.9 below, which is, besides Poitou-Tate
duality, the key ingredient in the Grunwald-Wang theorem for stable sets. Before stating it, we
recall from [NSW] 9.1.5, 9.1.7 the definitions of the special cases:

Definition 4.8. Let k be a field, n � 2rn1 be a natural number prime to charpkq with n1 odd.

(i) We say that we are in the special case pk, nq, if r ¥ 2 and �1 is in the image of the
cyclotomic character χcycl : Gkpµ2r q{k Ñ pZ{2rZq�.
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(ii) Let further T be a set of primes of k. We say that we are in the special case pk, n, T q, if
we are in the special case pk, nq and all primes p P T decompose in kpµ2rq{k.

Corollary 4.9. Let K be a number field, S � S8 a set of primes, n P NpSq and let p be the
smallest prime divisor of n. Let T be a further set of primes of K, which is p-stable for KS{K,
and let L0 be a p-stabilizing field for T for KS{K. Then

X1pKS{L, T ;µnq � 0

for any finite KS{L{L0, such that we are not in the special case pL, n, T q. In the special case
pL, n, T q we have X1pKS{L, T ;µnq � Z{2Z.

Before proving this, we quote the following proposition:

Proposition 4.10 ( [NSW] 9.1.6). Let p be a prime, r P N and let k be any field with charpkq � p.
Then

Ĥipkpµprq{k, µprq � 0 for all i P Z,

except, when p � 2, r ¥ 2 and we are in the special case pk, 2rq. In this case

Ĥipkpµ2rq{k, µ2rq � Z{2Z for all i P Z.

Let p � 2, r ¥ 2. Then the special case pk, 2rq occurs if and only if
charpkq � 0 and Qpµ2rq X k is real,

or charpkq � ` � �1 mod 2r and F`pµ2rq X k � F`.

Proof of Corollary 4.9. We can assume n � pr. If we are not in the special case pL, prq, Propo-
sition 4.10 implies H1pLpµprq{L, µprq � 0, i.e., we are done by Theorem 4.2. Assume we are in
the special case pL, prq. In particular, p � 2. Then H1pLpµ2rq{L, µ2rq � Z{2Z. Since

X1pKS{Lpµ2rq, T ;µ2rq � 0

by Theorem 4.2, we see from Lemma 4.3

X1pKS{L, T ;µ2rq �X1pLpµ2rq{L, T ;µ2rq.

If there is a prime p P T pLq, which is not decomposed in Lpµ2rq{L, then GLpµ2r q{L � GLppµ2r q{Lp
,

and hence X1pLpµ2rq{L, T ;µ2rq � 0. Otherwise, we are in the special case pL, 2r, T q and for
any p P T pLq, the restriction homomorphism

Z{2Z � H1pLpµ2rq{L, µ2rq Ñ H1pLppµ2rq{Lp, µ2rq

is zero, as the argument in the proof of [NSW] 9.1.9(ii) shows. Hence in this case one obtains
X1pLpµ2rq{L, T ;µ2rq � Z{2Z .

Now we turn to X2. For a GK,S-module A, such that 7A P NpSq, we denote by

A1 :� HompA,O�KS ,Sq

the dual of A. As in [NSW] 9.1.10, we obtain the following corollary.
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Corollary 4.11. Let K be a number field, S � S8 a set of primes of K, A a finite GK,S-module
with 7A P NpSq. Assume that S is p-stable (i.e., p-stable for KS{K), where p is the smallest
prime divisor of 7A. Let L be a p-stabilizing field for S for KS{K, such that H1

�pLpA
1q{L,A1q � 0.

Then

X2pKS{L;Aq � 0.

In particular:

(i) If A1 is trivial GK,S-module, then X2pKS{L;Aq � 0 for all fields L, which are p-stabilizing
for S.

(ii) Let n P NpSq with smallest prime divisor p. If L is a p-stabilizing field for S and we are
not in the special case pL, n, Sq, then X2pKS{L,Z{nZq � 0. In the special case, we have
X2pKS{L;Z{nZq � Z{2Z.

Remark 4.12. The condition 7A P NpSq is not necessary if A is trivial: we postpone the proof of
this until all necessary ingredients (in particular Grunwald-Wang theorem, Riemann’s existence
theorem and cdp GK,S � 2) are proven. Cf. Proposition 4.34.

Proof. By Poitou-Tate duality (this is the reason, why we need S � S8 and 7A P NpSq) we
have:

X2pKS{L,Aq �X1pKS{L,A
1q_,

where X_ :� HompX,R{Zq is the Pontrjagin dual. An application of Theorem 4.2 to KS{K,
the sets S � T and the module A1 gives the desired result. (i) and (ii) follow from Corollaries
4.6 and 4.9 respectively.

4.4 On the Grunwald-Wang theorem

In this section we consider the cokernel of the global-to-local restriction homomorphism

cokeripKS{K,T ;Aq :� cokerpresi : HipKS{K,Aq Ñ
¹1

pPT
HipGp,Aqq,

where A is a finite GK,S-module and T � S. If A is a trivial GK,S-module, then the vanishing
of this cokernel is equivalent to the existence of global extensions unramified outside S, which
realize given local extensions at primes in T . If S has density 1, the set T is finite, A is constant
and we are not in a special case, this vanishing is essentially the statement of the Grunwald-
Wang theorem. Certain conditions on S, T,A, under which this cokernel vanishes are considered
in [NSW] chapter IX §2. All of them require S to have certain minimal density. We prove
analogous results for stable resp. persistent sets.

Corollary 4.13. Let K be a number field, T � S sets of primes of K with S8 � S. Let A
be a finite GK,S-module with 7A P NpSq. Assume that T is finite and S is p-stable, where p
is the smallest prime divisor of 7A. For any p-stabilizing field L for S for KS{K, such that
H1
�pLpA

1q{L,A1q � 0, we have:
coker1pKS{L, T ;Aq � 0.
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First we reprove the following lemma:

Lemma 4.14 ( [NSW] 9.2.2). Let K be a number field and S a set of primes of K. Assume
S8 � S and 7A P NpSq. For any finite subextension KS{L{K and any finite subset T � S, there
is an exact sequence

0 ÑX1pKS{L;A1q ÑX1pKS{L, SrT ;A1q Ñ coker1pKS{L, T ;Aq_ Ñ 0.

Proof of the lemma. Since LS � KS , we can assume L � K. We have the following commutative
exact diagram:

0

X1pKS{K,SrT ;A1q
� � // H1pKS{K,A

1q //±1
SrT H1pGp,A

1q

OO

X1pKS{K;A1q
� � //

?�

OO

H1pKS{K,A
1q //±1

S H1pGp,A
1q //

OO

H1pKS{K,Aq
_

±
T H1pGp,A

1q

OO

� //±
T H1pGp,Aq

_

OO

0

OO

coker1pKS , T ;Aq_

OO

0

OO

where
±1 denotes the restricted product, with respect to the unramified cohomology subgroups

H�
nrpGp, �q. The two horizontal arrows on the right are given by Poitou-Tate and local duality

theorems. All other arrows follow from the definitions. Now the claim follows from the snake
lemma, applied to the second and the third columns in the diagram (the second column has to
be extended by zeros).

Proof of the Corollary 4.13. Since T is finite and S is p-stable for KS{K, SrT also is p-stable
for KS{K, and the p-stabilizing fields for S and SrT are equal. Let L be as in the corollary.
By Theorem 4.2, applied to KS{L, SrT and A1, we obtain X1pKS{L, SrT ;A1q � 0. Then
Lemma 4.14 implies coker1pKS{L, T ;Aq � 0.

Now we give a generalization of [NSW] 9.2.7.

Theorem 4.15. Let K be a number field, S a set of primes of K. Let T0, T � S be two disjoint
subsets, such that T0 is finite. Let p be a rational prime and r ¡ 0 an integer. Assume SrT

is p-stable for KSYSpYS8{K with p-stabilizing field L0, which is contained in KS. Then for any
finite KS{L{L0, such that we are not in the special case pL, pr, Sr pT0YT qq, the canonical map

H1pKS{L,Z{prZq Ñ
à

pPT0pLq

H1pGp,Z{prZq `
à

pPTpLq

H1pIp,Z{prZqGp
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is surjective, where Ip � Gp � GKsep
p {Lp

is the inertia subgroup. If we are in the special case
pL, pr, Sr pT0 Y T qq, then p � 2 and the cokernel of this map is of order 1 or 2.

Remarks 4.16.

(i) Observe that if δKpT q � 0, the condition “SrT is p-stable for KSYSpYS8{K with a
p-stabilizing field contained in KS” is equivalent to “S stable and satisfies p�qstab

p ”.

(ii) If δKpSq � 1 and δKpT q � 0, then L0 � K is a persisting field for SrT for any L {K and
the condition in the theorem is automatically satisfied. Thus our result is a generalization
of [NSW] 9.2.7.

(iii) To show that Theorem 4.15 is a proper generalization of [NSW] 9.2.7, we give the following
example. Let N{M{K be finite Galois extensions of K, such that N{K (and hence also
M{K) is totally ramified in a non-archimedean prime p of K, lying over the rational prime
`. Let σ P GM{K and let σ̃ P GN{K be a preimage of σ. Let S � T be such that

– S w PM{Kpσq,

– p R S and

– T w PM{KpσqrPN{Kpσ̃q.

Then SrT w PN{Kpσ̃q is persistent for KSYSpYS8{K for any p � `, and moreover K
is a persisting field (indeed, this follows from KSYSpYS8 X N � K). Hence the sets
S � T satisfies the conditions of the theorem with respect to each p � `. Observe that
in this example T is itself persistent KSYSpYS8{K, with persisting field contained in KS .
In [NSW] 9.2.7, the set T must have density zero.

Proof. We omit Z{prZ coefficients from the notation. Let L0 be as in the theorem. Let KS{L{L0

be a finite subextension, and S0 � SrT a subset, such that there is an a ¡ 0 for which
pa ¡ δM pS0q ¥ a holds for any finite KSYSpYS8{M{L. Since T0 is finite, we can assume
S0 X T0 � H. We follows the same steps as in the proof of [NSW] 9.2.7. The unique non-
trivial extension of archimedean local fields is totally ramified, hence H1pGpq � H1pIpq

Gp for
archimedean primes. For all non-archimedean primes p, the group Gp{Ip � Ẑ is of cohomological
dimension one, and Hochschild-Serre spectral sequence shows the surjectivity of the natural map
H1pGpq � H1pIpq

Gp . Thus we can move the finitely many primes of T X pSp Y S8q to T0, and
thus assume T X pSp Y S8q � H. We first treat the

Case S � Sp Y S8. Let T1 � T be a finite subset. SrT is p-stable for KS{L with p-
stabilizing field L, hence the same is true for the subextension LpSrT qYT1

{L.
We claim that coker1pLpSrT qYT1

{L, T1 Y T0;Z{prZq � 0, i.e., the localization map

H1pLpSrTqYT1
{Lq Ñ

à
pPT0YT1

H1pGpq

is surjective, if we are not in the special case pL, pr, Sr pT0YT1qq, and is of order 2 in the special
case. Indeed, Corollary 4.9 implies

X1pLpSrT qYT1
{L, Sr pT Y T0q;µprq � 0
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if we are not in the special case, since L is a p-stabilizing field field for Sr pT Y T0q for
LpSrT qYT1

{L (resp. X1pLpSrT qYT1
{L, Sr pT0 Y T q;µprq � Z{2Z if we are in the special case)

and Lemma 4.14 implies the claim.
Since the map H1pGpq� H1pIpq

Gp is surjective, the natural map

H1pLpSrTqYT1
{Lq Ñ

à
pPT0

H1pGpq `
à
pPT1

H1pIpq
Gp

is also surjective if we are not in the special case (resp. has cokernel of order 1 or 2 otherwise).
For T1 � T2 � T we obtain a commutative diagram, where the vertical arrows are the inflation
maps:

H1pLpSrTqYT2
{Lq //

À
T0

H1pGpq `
À
T2

H1pIpq
Gp

H1pLpSrTqYT1
{Lq //

OO

À
T0

H1pGpq `
À
T1

H1pIpq
Gp

OO

Passing to the direct limit over all finite T1 � T we obtain the claim of the theorem.
General case. Let V � pSp Y S8qrS. By assumption, SrT is p-stable for KSYV {L with

p-stabilizing field L. In particular, the assumptions of the theorem are satisfied for the extension
KSYV � LSYV {L, and sets T0 Y V, T � S Y V . Then the already proven case implies that the
map

H1pLSYV{Lq Ñ
à

T0YV

H1pGpq `
à
T

H1pIpq
Gp

is surjective (resp. has cokernel of order 1 or 2 in the special case). Since L � KS , we have
LS � KS and since any class α P H1pLSYV{Lq for which αp P H1

nrpGpq for all p P V , lies already
in H1pLS{Lq � H1pKS{Lq, we obtain the same statement for the map

H1pKS{Lq Ñ
à
T0

H1pGpq `
à
V

H1
nrpGpq `

à
T

H1pIpq
Gp .

This finishes the proof.

From this we obtain the following form of the Grunwald-Wang theorem. The proof is the
same as in [NSW] 9.2.8.

Corollary 4.17. Let T � S be sets of primes of a number field K. Let A be a finite abelian group.
Assume that T is finite and that for any prime divisor p of 7A, S is p-stable for KSYSpYS8{K

with stabilizing field K. For all p P T , let Lp{Kp be a finite abelian extension, such that its Galois
group can be embedded into A. Assume that we are not in the special case pK, exppAq, SrT q.
Then there exists a global abelian extension L{K with Galois group A, unramified outside S,
such that L has completion Lp at p P T .

Finally, we have two corollaries generalizing [NSW] 9.2.4 and 9.2.9 to stable sets.

Corollary 4.18. Let K be a number field, T � S sets of primes of K with T finite. Let KS{L{K

be a finite Galois subextension with Galois group G. Let p be a prime and A � FprGsn a GK,S-
module. Assume S is p-stable for KSYSpYS8{K with p-stabilizing field L. Then the restriction
map
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H1pKS{K,Aq Ñ
à
pPT

H1pGp,Aq

is surjective.

Proof (cf. [NSW] 9.2.4). We have the commutative diagram, in which the vertical maps are
Shapiro-isomorphisms:

H1pKS{K,Aq

�

��

// À
pPT

H1pGp,Aq

�

��

H1pKS{L,Fn
pq //

À
PPT pLq

H1pGP,Fn
pq

The lower map is surjective by Theorem 4.15, and so is the upper.

Corollary 4.19. Let K be number field, S a set of primes of K. Let KS{L{K be a finite Galois
subextension with Galois group G. Let p be a prime and A � FprGsn a GK,S-module. Assume
that S is p-stable for KSYSpYS8{L with p-stabilizing field L. Then the embedding problem

GK,S

����
1 // A // E // G // 1

is properly solvable.

Proof (cf. [NSW] 9.2.9). We have H2pG,Aq � 0, and hence the sequence in the lemma is split.
In particular, the embedding problem is solvable (cf. also [NSW] 3.5.9). Let ψ0 : GK,S Ñ E

denote a solution. Let p1, . . . , pr P cspL{Kq X S (observe that cspL{Kq X S has positive density
and, in particular, is infinite) be primes of K and let φi : Gpi Ñ A be homomorphisms, the
images of which generate A. By Corollary 4.18, the restriction homomorphism

H1pKS{K,Aq Ñ
rà

i�1

H1pGpi ,Aq

is surjective. Let φ P H1pKS{K,Aq be a preimage of pφi � ψ0|Gpi
qri�1. Then

ψ :� φ � ψ0 : GK,S Ñ E,

defined by ψpgq � φpgqψ0pgq (cf. [NSW] 3.5.11) is a proper solution of the embedding problem.

4.5 Realizing local extensions

If p is any prime of K, one can ask, how big the local extensions pKSqp{Kp and pKSppqqp{Kp

are. Motivated by the treatment in [NSW] 9.4.3, we study these questions in the case, when
S is stable. If R � S is a subset, we write KR

S for the maximal subextension of KS{K, which
is completely split in R and KR

S ppq for the maximal pro-p-subextension of KR
S {K. The next

proposition is a generalization of [NSW] 10.5.9.
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Proposition 4.20. Let K be a number field, R � S sets of primes of K, p a rational prime.
Assume R is finite and S is p-stable for KSYSpYS8{K and has a p-stabilizing extension contained
in KR

S ppq. Then

pKR
S ppqqp �

#
Kpppq if p P SrR,

Kp if p P R.

If, moreover, p R S and S is p-stable for KSYSpYS8Ytpu{K with a p-stabilizing field contained in
KR
S ppq, then also

pKR
S ppqqp � Knr

p ppq.

Proof. For p P R there is nothing to prove. Let L0 � KR
S ppq be a p-stabilizing field for S for

KSYSpYS8{K. By Theorem 4.15, for each finite subset T � SrR and each finite subextension
KR
S ppq{L{L0, the restriction map

H1pKR
S ppq{L,Z{pZq Ñ

à
TpLq

H1pLp,Z{pZq

is surjective (since H1pKR
S ppq{L,Z{pZq � H1pKR

S {L,Z{pZq). For p P SrR and T � tpu, this
means that we can realize any local class αp P H1pLp,Z{pZq by an element α P H1pKR

S ppq{L,Z{pZq.
This means that the field KR

S ppqp has no p-extensions, and hence is equal to Kpppq. The proof
in the case p R S is similar.

Corollary 4.21. Let K be a number field, R � S sets of primes of K, p a rational prime.
Assume R is finite and S is p-stable for KSYSpYS8{K and has a p-stabilizing extension contained
in KR

S (if R � H, then this condition is equivalent to “S is stable and satisfies p�qstab
p ”). Then

for any p P SrR:

pKR
S qp � Kpppq

If, moreover, p R S and S is p-stable for KSYSpYS8Ytpu{K with a p-stabilizing field contained in
KR
S , then also

pKR
S qp � Knr

p ppq.

Proof. Apply Proposition 4.20 to a p-stabilizing field L0 of S for KSYSpYS8{K, which is con-
tained in KR

S .

Remarks 4.22.

(i) Observe that in the Corollary 4.21 the assumption is weaker than in Proposition 4.20: the
p-stabilizing field of S for KSYSpYS8 must only lie in KR

S , and not in KR
S ppq. We will use

it in Proposition 4.25, which is in turn used in Section 6.2 to prove a local correspondence
at the boundary.

(ii) The above techniques also allow to construct some examples of sets of density 0, for which
the assertion of Proposition 4.20 holds. Indeed, let S be a set of primes of K, with
p-stabilizing field K for KSYSpYS8{K, and let M{K be a Galois extension of p-power
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degree, such that δM pSq � 0 and M X KS � K (such K,M,S exist - take for example
M{K Galois of p-power degree and totally ramified in exactly one prime p R SYSpYS8,
and let S w PM{Kpσq with 1 � σ P GM{K). Then

GR
M,Sppq� GM.KR

S ppq{M
�
Ñ GR

K,Sppq,

and for any prime q P SrR of K with extension q1 to M , one has Kqppq � Mq1ppq, since
M{K has p-power degree. Hence MR

S ppqq1 �Mq1ppq for each q1 P pSrRqpMq.

Now we consider the following concrete situation, which we need later on (cf. proof of
Proposition 4.34). Let p be a rational prime, S a set of primes of K and V :� pSp Y S8qrS.
Let p P V be a prime of K over p. Assume S is p-stable for KSYV {K with a p-stabilizing field
contained in KS . Let K 1

SYV ppq be the maximal pro-p subextension of KSYV {KS . Let further
K 1

pppq be the maximal pro-p-extension of KS,p, and define

I 1pppq :� GK1
pppq{KS,p

.

Lemma 4.23. We have pK 1
SYV ppqqp � K 1

pppq. In particular, there is a natural isomorphism
Dp,K1

SYV ppq{KS
� I 1pppq and pK 1

SYV ppqqp is p-closed.

Proof. The inclusion ’�’ is trivial. We show the inclusion ’�’. Since pK 1
SYV ppqqp � KS,p, it

is enough to show that pK 1
SYV ppqqp is p-closed. Let L0 � KS be a p-stabilizing field for S for

KSYV {K. Then any finite subextension K 1
SYV ppq{L{L0 is a p-stabilizing field for S Y V for

KSYV {K. By Proposition 4.20, we have for any such L:

Lpppq � pLSYV ppqqp � pK 1
SYV ppqqp.

This implies that pK 1
SYV ppqqp is p-closed.

Consider now the following extensions:

K 1
SYV ppq K 1

pppq

I 1pppq

� Kp

Ip

KS KS,p

Dp,KS{K

� Knr
p

G nr
p

K Kp Kp

By Lemma 4.23 we have the commutative diagram with exact rows of local Galois groups:

1 // Ip //

��

Gp //

����

G nr
p

//

����

1

1 // I 1pppq // Dp,K1
SYV ppq{K

// Dp,KS{K
// 1

Since KS,p contains the maximal unramified p-extension of Kp, the extension K 1
pppq{KS,p is

purely ramified and in particular, the vertical arrow on the left is also surjective. In this situation
we have the following comparison of cohomology.
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Lemma 4.24. Let i ¥ 0 and r ¥ 1 be two integers. We have canonical isomorphisms:

HipDp,K1
SYVppq{K

,Z{prZq � HipGp,Z{prZq

HipDp,KS{K,Z{p
rZq � HipG nr

p ,Z{prZq

Furthermore, cdpI
1
pppq � cdpIp � 1 and cdpDp,KS{K � cdpG nr

p � 1.

Proof. Proof of the first equality is similar to the proof of [NSW] 7.5.8. Let H denote the kernel
of Gp � Dp,K1

SYV ppq{K
. Then cdpH ¤ 1 by [NSW] 7.1.8 (i). Moreover, we have H1pH,Z{prZq � 0.

Indeed, pK 1
SYV ppqqp is p-closed by Lemma 4.23 and henceH has no non-trivial p-quotients. Thus

the first equality follows from the Hochschild-Serre spectral sequence for H and Dp,K1
SYV ppq{K

.
By Corollary 4.21, KS{K realizes the maximal unramified pro-p-extension at p. Thus the

order of the kernel of G nr
p � Dp,KS{K is prime to p and the second equality again follows from

the associated spectral sequence. The statement about the p-cohomological dimension follows
from the fact that the p-Sylow subgroups of Dp,KS{K and of G nr

p are isomorphic to Zp.
Finally, cdpIp � 1 holds by [NSW] 7.1.8 (i). The group I 1pppq is the inverse limit of pro-p

intertia groups:

I 1pppq � limÐÝ
KS,p{L{Kp

GLppq{Lnrppq,

which are free pro-p-groups as follows for example from [NSW] 7.5.11 using Lemma 2.2, as the
index of GLppq{Lnrppq in GLppq{L is p8. In particular, we obtain cdpI

1
pppq � 1 by [NSW] 3.3.2.

Using the Grunwald-Wang theorem we can easily deduce that the intersections of decom-
position subgroups inside GK,S are small (we will need this in Section 6.2, to deduce a local
correspondence at the boundary):

Proposition 4.25. Let K be a number field, S a set of primes of K, p a rational prime. Assume
S is stable and satisfies p�qstab

p . If p̄ is a prime of KS, let Dp̄,p � Dp̄ denote a p-Sylow subgroup.
For any p̄1 � p̄2 P SpKSq we have inside GK,S:

pDp̄1,p : Dp̄1,p XDp̄2,pq � 8.

and
pDp̄1 : Dp̄1 XDp̄2q � 8.

Proof. Write Di,p :� Dp̄i,p. Assume for i � 1, 2, we have Ui � Di,p an open subgroup, and we
have shown that pU1 : U1 X U2q � 8. We show that also pD1,p : D1,p XD2,pq � 8. In fact, we
have pDi,p : Uiq   8, hence pD1,p XD2,p : D1,p X U2q, pD1,p XD2,p : U1 XD2,pq   8. Hence also
pD1,p XD2,p : U1 X U2q   8. Now pU1 : U1 X U2q � 8 implies

pD1,p : D1,p XD2,pqpD1,p XD2,p : U1 X U2q � pD1,p : U1 X U2q � 8,

and the second factor in the product is finite, hence we get pD1,p : D1,p XD2,pq � 8.
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Using this, we can go up to a finite extension of K inside KS , and thus assume that S is
p-stable for KSYSpYS8{K with stabilizing field K and that p̄1|K � p̄2|K . Now an application of
Corollary 4.21 with p � p̄1|K and R � tp̄2|Ku shows that D2,p lies in the kernel of the projection

GK,S � GR
K,S ,

whereas D1,p has infinite image. Thus pD1,p : D1,p X D2,pq ¥ pD1,p : D1,p X V q � 8, where
V :� kerpGK,S � GR

K,Sq. The second statement follows from the first in the same way as in
Proposition 1.6.

4.6 Riemann’s Existence Theorem

The results from sections 4.3-4.5 allow us to show the following version of Riemann’s existence
theorem, which generalizes [NSW] 10.5.8. The proof follows the same steps as in loc. cit.

Theorem 4.26. Let K be a number field, p a rational prime, T � S � R sets of primes of
K. Assume that R is finite and S is p-stable for KTYSpYS8{K and has a p-stabilizing extension
contained in KR

S ppq. Then the natural map

φRT,S : �

pPRpKR
S ppqq

GKpppq{Kp
� �

pPpT rSqpKR
S ppqq

IKpppq{Kp

�
ÝÑ GKT ppq{K

R
S ppq

is an isomorphism, where IKpppq{Kp
� GKpppq{Knr

p ppq � GKpppq{Kp
is the inertia subgroup.

In particular, since the groups IKpppq{Kp
are free pro-p groups, we obtain the following corol-

lary.

Corollary 4.27. Under the assumptions as in Theorem 4.26, if R � H, then the group
GKT ppq{KSppq is a free pro-p group.

Proof of Theorem 4.26. It suffices to show the theorem in the case T � SpYS8. Indeed, assume
this is done and T is arbitrary. Then the condition is still satisfied for T replaced by TYSpYS8,
and the theorem in this case implies that φRTYSpYS8,S is bijective. Then the bijectivity of φRT,S
follows by dividing out the inertia subgroups at primes in pSp Y S8qrT on both sides.

From now on we assume T � Sp Y S8. All cohomology groups in the proof have Z{pZ-
coefficients and we omit them from the notation. Consider the maps induced by φRT,S in the
cohomology

HipφR
T,Sq : HipKTppq{K

R
S ppqq Ñ Hip �

pPRpKR
S ppqq

GKpppq{Kp
� �

pPpTr SqpKR
S ppqq

IKpppq{Kp
q

By [NSW] 1.6.15 it is enough to show that this map is bijective for i � 1 and injective for i � 2.
By [NSW] 4.3.14, we have

Hip �

pPRpKR
S ppqq

GKpppq{Kp
� �

pPpTrSqpKR
S ppqq

IKpppq{Kp
q �

à1

pPRpKR
S ppqq

HipGKpppq{Kp
q `

à1

pPpT rSqpKR
S ppqq

HipIKpppq{Kp
q,
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where
À1 means the restricted direct sum in the sense of the definition [NSW] 4.3.13. Now,

H1pφR
T,Sq is injective since φRT,S is surjective: GKT ppq{K

R
S ppq

is generated by the inertia subgroups
of primes in T rS and the decomposition subgroups in R.

To show the surjectivity of H1pφR
T,Sq, let K

R
S ppq{L0{K be a p-stabilizing field for S for the

extension KT {K. Let KR
S ppq{L{L0 be any finite subextension. Since T � Sp Y S8, the natural

maps HipKTppq{Lq Ñ HipKT{Lq are isomorphisms for all i ¥ 0 by [NSW] 10.4.8 (for i � 1,
this is obvious; we need this later also for i � 2). Analogously, HipKpppq{Lpq Ñ HipLpq are
isomorphisms for all i ¥ 0 by [NSW] 7.5.8.

By Grunwald-Wang Theorem 4.15 the restriction map

(4.1) H1pKT{Lq Ñ
à

pPRpLq

H1pLpq `
à

pPpTr SqpLq

H1pIKp{Lp
q
GKp{Lp

is surjective (observe that for the module Z{pZ the special case, where the cokernel can be
non-trivial, never occurs). By the above considerations, we have H1pKT{Lq � H1pKTppq{Lq

and H1pLpq � H1pKpppq{Lpq. For the last term we have Lp � Knr
p ppq if p P T rSpLq and the

following computation:

H1pIKp{Kp
q
GKp{K

nr
p ppq � H1pGKp{Knr

p
q
GKp{K

nr
p ppq

� H1pGKp{Knr
p ppq

q(4.2)

� H1pGKpppq{Knr
p ppq

q

� H1pIKpppq{Kp
q,

which follows by considering the Hochschild-Serre spectral sequences of the extensions of Galois
groups occurring in the following diagram:

Kp

uuuuuuuuuu

GGGGGGGGG

Kpppq

IIIIIIIII
Knr

p

wwwwwwww

Knr
p ppq

Finally, by Proposition 4.20, the limit over KR
S ppq{L{L0 of Lp for p P T rS is equal to Knr

p ppq,
and hence the limit over L of the right summand of the term on the right in (4.1) is equal to

à1

pPT rSpKR
S ppqq

H1pIKp{Kp
q
GKp{K

nr
p ppq �

à1

pPTrSpKR
S ppqq

H1pIKpppq{Kp
q.

Thus H1pφR
T,Sq is surjective. Finally, we show the injectivity of H2pφR

T,Sq. Since S (and hence also
T ) is p-stable for KT {K with p-stabilizing field L0 contained in KR

S ppq, we obtain by Corollary
4.11 for any finite KR

S ppq{L{L0:

H2pKTppq{Lq ãÑ
à
pPT

H2pKpppq{Lpq
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is injective. After passing to the direct limit over all KR
S ppq{L{L0 over restriction maps, only the

entries for p P R on the right survive, as Proposition 4.20 shows. Since limÝÑ is exact on abelian
groups, the obtained map, which is exactly H2pφR

T,Sq, is injective.

We can also replace KR
S ppq by K

R
S :

Corollary 4.28. Let K be a number field, p a rational prime, T � S � R sets of primes of
K. Assume that R is finite and S is p-stable for KTYSpYS8{K and has a p-stabilizing extension
contained in KR

S . Let K 1
T ppq be the maximal pro-p-subextension of KT {K

R
S . For p a prime of

K, let I 1pppq denote the Galois group of the maximal pro-p extension K 1
pppq of KR

S,p. Then the
natural map

φRT,S : �

pPRpKR
S q

GKpppq{Kp
� �

pPT rSpKR
S q
I 1pppq

�
Ñ GK1

T ppq{K
R
S

is an isomorphism.

Remark 4.29. If p P T rSp, then I 1pppq � IKpppq{Kp
, the inertia group of Kpppq{Kp, but if

p P T X Sp, then IKpppq{Kp
is in general a proper quotient of the group I 1pppq, as the rank of

IKpppq{Kp
grows with K.

Proof. We have

I 1pppq � limÐÝ
KS{L{K

ILpppq{Lp
.

and

GK1
T ppq{K

R
S
� limÐÝ

KR
S {L{K

GLT ppq{L
R
S ppq

with natural transition maps coming from the diagram:

K 1
T ppq

LT ppq

uuuuuuuuu

KT ppq KR
S

�LRS ppq

vvvvvvvvv

KR
S ppq KR

S

L

sssssssssss

K
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Thus the corollary follows from Theorem 4.26.

Since the groups I 1pppq are free pro-p groups by Lemma 4.24, we obtain the following corollary.

Corollary 4.30. Under the assumptions as in Corollary 4.28, if R � H, then the group
GK1

T ppq{KS
is a free pro-p group.

4.7 Cohomological dimension

Theorem 4.31. Let K be a number field, S � R sets of primes of K and p a rational prime.
Assume p is odd or K is totally imaginary. If R is finite and S is p-stable for KSYSpYS8{K

with K as a p-stabilizing extension, then

cdpGR
K,Sppqq � scdpGR

K,Sppqq � 2.

Remark 4.32. In Section 5 we will remove the assumption that K is a p-stabilizing field for S
for KSYSpYS8{K if R � H.

Proof. We follow the same steps as in the proof of [NSW] 10.5.10. We omit the coefficients Z{pZ
from the notation. Let V :� pSp Y S8qrS. If p is non-archimedean, then GKpppq{Knr

p ppq and
GKnr

p ppq{Kp
are free. Thus Hochschild-Serre spectral sequence gives us a canonical isomorphism

(4.3) H1pKnr
p ppq{Kp,H

1pKpppq{K
nr
p ppqqq

�
ÝÑ H2pKpppq{Kpq.

Next consider the Hochschild-Serre sequence pEi,jn , δi,jn q for the Galois groups of the global
extensions KSYV ppq{KSppq{K. By [NSW] 8.3.18 and 10.4.8, we have:

cd GK,SYV ppq ¤ cdp GK,SYV ¤ 2.

By Riemann’s existence theorem (cf. Corollary 4.27) the group GKSYV ppq{KSppq is free. In
particular, we have

cokerpδ1,1
2 q � E3,0

3 � E3,0
8 � H3pGK,SYVppqq � 0.

I.e., δ1,1
2 is surjective.

Cohomological dimension, case R � H. By Riemann’s existence theorem 4.26 we have

(4.4) H1pKSYVppq{KSppqq �
à
pPV

Ind
GK,Sppq
Dp,KSppq{K

H1pIKpppq{Kp
q.

This and Shapiro’s lemma imply:

E1,1
2 � H1pKSppq{K,H

1pKSYVppq{KSppqqq

�
à
pPV

H1pKnr
p ppq{Kp,H

1pKpppq{K
nr
p ppqqq(4.5)

�
à
pPV

H2pKpppq{Kpq,
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where the last equality is (4.3). Further we have the following commutative diagram with exact
rows and columns: À

pPS H2pKpppq{Kpq� _

��

// // H0pKSYV{K, µpq
_

�

��
H2pKSYVppq{Kq

� � //

��

À
pPSYV H2pKpppq{Kpq // //

����

H0pKSYV{K, µpq
_

��
H1pKSppq{K,H

1pKSYVppq{KSppqqq
� //

δ1,1
2����

À
pPV H2pKpppq{Kpq // 0

H3pKSppq{Kq

in which the second row comes from the Poitou-Tate long exact sequence. The first map in the
second row is injective by Corollary 4.11(ii) applied to K and S Y V and from [NSW] 10.4.8.
The first map in the third row is an isomorphism by (4.5). The map in the first row is surjective,
since the dual map

µppKq � H0pKSYV{K, µpq Ñ
à
pPS

H2pKpppq{Kpq
_ �

à
pPS

µppKpq

is injective. The Snake lemma for the second and the third row in the above diagram implies
H3pKSppq{Kq � 0, and hence cdpGK,Sppqq ¤ 2 by [NSW] 3.3.2.

Cohomological dimension, general case. Now consider the Hochschild-Serre spectral sequence
for the Galois groups of KSppq{K

R
S ppq{K. By Riemann’s existence theorem 4.26 applied to

T :� S � R, it follows that HjpKSppq{K
R
S ppqq are induced GR

K,Sppq-modules for j ¥ 1. Hence
Ei,j2 � 0 for i, j ¥ 1. Then

H3pKR
S ppq{Kq � E3,0

2 ãÑ H3pKSppq{Kq � 0,

and hence H3pKR
S ppq{Kq � 0. Again by [NSW] 3.3.2 we conclude that cdpGR

K,Sppqq ¤ 2.
Now we show equality. Since S is stable for KSYSpYS8{K, we have

δKpS X cspKpµpq{Kqq � rKpµpq : Ks�1δKpµpqpSq ¡ 0,

hence there is a prime p P Sr pRY Sp Y S8q with µp � Kp. By Proposition 4.20, the subgroup
Dp,KR

S ppq{K
of GR

K,Sppq is of cohomological dimension 2. Hence cdpGR
K,Sppqq � 2.

Now we turn to the strict cohomological dimension.
Strict cohomological dimension, case S � Sp Y S8 and R � H (cf. [NSW] 10.2.3).

Since cd GSppq � 2, by [NSW] 3.3.4 it is enough to show that H2pU,Qp{Zpq � 0 for all open
U � GK,Sppq. Since the assumptions carry over from GK,Sppq to U , we can assume U � GK,Sppq.
Except in the special case, we obtain from [NSW] 10.4.8 and from Corollary 4.11 the injection

H2pGK,Sppq,Z{prZq � H2pGK,S,Z{prZq ãÑ
à
pPS

H2pGp,Z{prZq

for any r (recall that by our assumption, S is p-stable for KSYSpYS8{K and not only for
KSYSpYS8ppq{K). Passing to the limit over all r ¡ 0 and using scdppGpq � 2, we obtain
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the result. If we are in the special case, then p � 2 and i R K. Then by the same argument as
above, we get H2pGKpiq,S,Q2{Z2q � 0 and by [NSW] 3.3.11, the corestriction

0 � H2pGKpiq,Sp2q,Q2{Z2q Ñ H2pGK,Sp2q,Q2{Z2q

is surjective. This finishes the proof in the first case.
Strict cohomological dimension, general case. We omit the coefficients Qp{Zp from the nota-

tion. From the Hochschild-Serre spectral sequence associated to the extension

1 Ñ GKSYV ppq{K
R
S ppq

Ñ GK,SYV ppq Ñ GR
K,Sppq Ñ 1,

and using scdppGK,SYV ppqq � 2, which implies H2pKSYVppq{K,Qp{Zpq � 0, we get an exact
sequence

(4.6) H1pKSYVppq{Kq Ñ H1pKSYVppq{K
R
S ppqq

GR
K,Sppq Ñ H2pKR

S ppq{Kq Ñ 0.

But by Riemann’s existence theorem 4.26,

H1pKSYVppq{K
R
S ppqq

GR
K,Sppq �

à
R

H1pGpq `
à
V

H1pIpq
Gp ,

and hence by Grunwald-Wang theorem 4.15 the map on the left in the sequence (4.6) is surjective,
except we are in the special case, in which the cokernel, which is isomorphic to H2pGR

K,Sppqq is
annihilated by 2. But since cd GR

K,Sppq � 2, the group H2pGR
K,Sppqq is divisible, and hence trivial.

This is true for any extension of K in KR
S ppq, hence we are done by [NSW] 3.3.4.

As in [NSW] 10.5.11, we obtain have the following corollary.

Corollary 4.33. Let K be a number field, S � R sets of primes of K and p a rational prime.
Assume that either p is odd or K is totally imaginary. If R is finite and S is p-stable for
KSYSpYS8{K with stabilizing field K, then

cdp GR
K,S � scdp GR

K,S � 2.

Proof. Write G � GR
K,S . Since the assumptions carry over from K to any finite subextension

KR
S {L{K, by Theorem 4.31 we have cdpUppq � 2 for any open subgroup U � G. Let Gp � G

be a p-Sylow subgroup. Then

Gp � limÐÝ
Gp�U�G

Uppq.

Hence by [NSW] 3.3.6 we have cdpG � cdpGp ¤ 2 and scdpG � scdpGp ¤ 2. Since G contains
(exactly as in the proof of Theorem 4.31) subgroups of cohomological dimension 2, we obtain
cdpG � scdpG � 2.

4.8 Vanishing of X2pGS;Z{pZq without p P O�K,S
We generalize Corollary 4.11 for A � Z{pZ. The proof makes use of many facts proven before:
we will need Grunwald-Wang theorem, Riemann’s existence theorem and cdp GS � 2 along with
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the result of Neumann showing the vanishing of certain cohomology groups.

Proposition 4.34. Let K be a number field, S a set of primes of K. Let p be a rational prime,
r ¡ 0 an integer and assume that S is p-stable for KSYSpYS8{K and has a p-stabilizing extension
L0 contained in KS (i.e., S satisfies p�qstab

p ). Assume p is odd or L0 totally imaginary. Then

X2pKS{L;Z{prZq � 0

for any finite KS{L{L0, such that we are not in the special case pL, pr, Sq.

This result has one important consequence for anabelian geometry of schemes SpecOK,S
with S stable: to obtain a local correspondence at the boundary out of an isomorphism of étale
fundamental groups σ : GK1,S1

�
Ñ GK2,S2 , one does not need to assume existence of a prime p

with Sp � Si (cf. Section 6.2).

Proof. We can assume K � L. Let V :� pSp Y S8qrS. Let K 1
SYV ppq be the maximal pro-p-

subextension of KSYV {KS . Consider the following tower of extensions:

KSYV

N

GF

@A

GSYV

K 1
SYV ppq

H

ED

BC
G1
SYV ppqKS

GS

K

with N :� GKSYV {K
1
SYV ppq

, H :� GK1
SYV ppq{KS

and G1
SYV ppq :� GK1

SYV ppq{K
. In the following,

we write H�p�q instead of H�p�,Z{prZq and X�p�, �q instead of X�p�, �;Z{prZq. First of all we
claim that

(4.7) X2pK 1
SYV ppq{K,S Y V q �X2pKSYV {K,S Y V q.

Once we know that the infation map H2pG1
SYVppqq Ñ H2pGSYVq is an isomorphism, the claim

follows from the definition of X2. To show this last assertion, consider the Hochschild-Serre
spectral sequence

Eij2 � HipG1
SYVppq,H

jpNqq ñ Hi�jpGSYVq.

A result of Neumann ( [NSW] 10.4.2) applied to KSYV {K
1
SYV ppq (the upper field is p�pSYV q-

closed, the lower is p � pSp Y S8q-closed and KSYV � pKSqSYV ) implies Eij2 � 0 for j ¡ 0,
hence the sequence degenerates in the second tableau and

HipG1
SYVppqq � HipGSYVq,

for i ¥ 0, proving our claim.
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For p P V , let K 1
pppq denote the maximal pro-p extension of KS,p. Let

I 1pppq :� GK1
pppq{KS,p

(observe that if p P S8, then I 1pppq � 1. Indeed, if p ¡ 2, this is always the case, and if
p � 2, then KS,p � C using the assumption that L0 is totally imaginary). By Lemma 4.23
we have I 1pppq � Dp,K1

SYV ppq{KS
. By Riemann’s existence theorem (Corollary 4.28 applied to

K 1
SYV ppq{KS{K), we have

H � �
pPV pKSq

I 1pppq.

In particular, H is a free pro-p-group by Corollary 4.30. Thus cdpH ¤ 1. Consider the exact
sequence

1 Ñ H Ñ G1
SYV ppq Ñ GS Ñ 1,

and the corresponding Hochschild-Serre spectral sequence

Eij2 � HipGS,H
jpHqq ñ Hi�jpG1

SYVppqq

Since by Corollary 4.33, we know that cdp GS � 2, we have Eij2 � 0 if i ¡ 2 or j ¡ 1. Let us
compute the terms of this sequence. First of all, we have

H1pHq �
à1

VpKSq
H1pI1pppqq �

à
VpKq

IndGS
Dp,KS{K

H1pI1pppqq,

as GS-modules, where Dp,KS{K � GS is the decomposition group at p, which is in particular
pro-cyclic and has an infinite p-Sylow subgroup (by Corollary 4.21). Frobenius reciprocity resp.
Shapiro’s lemma imply:

E01
2 �

à
V pKq

H1pI1pppqq
Dp,KS{K ,

E11
2 �

à
V pKq

H1pDp,KS{K,H
1pI1pppqqq �

à
VpKq

H2pDp,K1
SYVppq{K

q �
à

VpKq

H2pGpq,

where the second line follows from Lemma 4.24.

Let δ :� δ01
2 : E01

2 Ñ E20
2 denote the differential in the second tableau. We obtain the

following exact sequence (the first five terms of which are the five-term long exact sequence of
Hochschild-Serre):

0 // H1pGSq // H1pG1
SYVppqq

//
À
V pKq

H1pI1pppqq
Dp,KS{K //

δ // H2pGSq // H2pG1
SYVppqq

d //
À
V pKq

H2pGpq // 0.

We show that the map in the sequence preceding δ is surjective. Indeed, we have
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H1pG1
SYVppqq � H1pGSYVq�

à
pPVpKq

H1pGpq �
à

pPVpKq

H1pDp,K1
SYVppq{K

q� H1pI1pppqq
Dp,KS{K ,

where the second map is surjective by Grunwald-Wang theorem 4.15, and the second and the
third maps follow from Lemma 4.24. Hence δ � 0 and we obtain the short exact sequence:

0 // H2pGSq // H2pG1
SYVppqq

d //
À
V pKq

H2pGpq // 0,

which in turn gives the short exact sequence

0 // X2pKS{K,Sq // X2pK 1
SYV ppq{K,Sq

d //
À
V pKq

H2pGpq,

Finally, by definition of the Shafarevich group, we have the short exact sequence

0 // X2pK 1
SYV ppq{K,S Y V q // X2pK 1

SYV ppq{K,Sq
d //

À
V pKq

H2pGpq,

which shows that

X2pKS{K,Sq �X2pK 1
SYV ppq{K,S Y V q �X2pKSYV {K,S Y V q � 0

the second equality being equation (4.7), and the last equality following from Corollary 4.11.

We have the same statement in the pro-p case:

Proposition 4.35. Let K be a number field, S a set of primes of K. Let p be a rational prime,
r ¡ 0 an integer and assume that S is p-stable for KSYSpYS8{K and has a p-stabilizing extension
L0 contained in KSppq. Assume p is odd or L0 totally imaginary. Then

X2pKSppq{L;Z{prZq � 0

for any finite KSppq{L{L0, such that we are not in the special case pL, pr, Sq.

Proof. We can assume K � L. We omit the coefficients Z{prZ from the notation. Let us write
V :� pSp Y S8qrS. Consider Galois groups of the extensions KSYV ppq{KSppq{K:

1 Ñ GKSYV ppq{KSppq Ñ GSYV ppq Ñ GSppq Ñ 1.

Using the corresponding Hochschild-Serre spectral sequence, cd GK,Sppq � 2, Grunwald-Wang
theorem and Riemann’s existence theorem, one obtains exactly as in the proof of Proposition
4.34 the following short exact sequence:

(4.8) 0 Ñ H2pGSppqq Ñ H2pGSYVppqq Ñ
à

VpKq

H2pDp,KSYVppq{Kq Ñ 0.

Further one has:
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X2pKSppq{K,Sq �X2pKSYV ppq{K,S Y V q �X2pKSYV {K,S Y V q � 0,

where the first isomorphism follows from the sequence (4.8) in the same way as in the proof of
Proposition 4.34, the second follows form [NSW] 7.5.8 and 10.4.8 and the the last is Corollary
4.11.

4.9 Stability and the order of X1.

Now we generalize the results from Section 4.3, and study the connection between stability and
the order of the first Shafarevich group with trivial coefficients.

Proposition 4.36. Let K be a number field, L {K a Galois extension, pm some rational prime
power (m ¥ 1). Let T be a set of primes of K, which is pm-stable for L {K, with pm-stabilizing
field L0. Then

7X1pL {L, T ;Z{prZq   pm

for any r ¡ 0 and any finite L {L{L0.

Proof. Let T0 � T and a ¡ 0 be such that a ¤ δLpT0q   pma for all finite L {L{L0. Let L {L{L0

be a finite extension. Assume that 7X1pL {L, T ;Z{prZq ¥ pm. Then also

7X1pL {L, T0;Z{prZq ¥ pm

and we have:

X1pL {L, T0;Z{prZq � HompGT0

L {Lppq,Z{p
rZq � pGT0

L {Lppq
ab{prq_.

Thus 7X1pL {L, T0;Z{prZq ¥ pm implies 7GT0

L {Lppq
ab{pr ¥ pm, and if M{L is the subextension

of L {L, corresponding to GT0

L {Lppq
ab{pr, then it has a finite subextension M1 of degree ¥ pm,

which is completely split in T0, hence δM1pT0q ¥ pmδLpT0q, which is a contradiction to pm-
stability of T0.

Corollary 4.37. Let K be a number field, L {K a Galois extension, and T a set of primes of
K stable for L {K. Then X1pL {K,T ;Qp{Zpq is finite for any p.

Proof. Since limÝÑ is exact and commutes with cohomology, we have

X1pL {K,T ;Qp{Zpq � limÝÑ
r

X1pL {K,T ;Z{prZq.

It is enough to show that 7X1pL {K,T ;Z{prZq is uniformly bounded for r ¡ 0.
By Proposition 3.11, there is some m ¥ 1, such that K is a pm-stabilizing field for T for

L {K. Then Proposition 4.36 implies 7X1pL {K,T ;Z{prZq   pm, which gives the required
uniform bound.

Corollary 4.38. Let K be a number field, L {K a Galois extension, T a set of primes of K
stable for L {K. Then X1pL {K,T ;Q{Zq is finite.
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Proof. Clearly, X1pL {K,T ;Q{Zq �
À

pX
1pL {K,T ;Qp{Zpq. Previous corollary shows that

each of the summands is finite. Moreover, almost all are zero: there is some λ ¡ 1, such that
K is λ-stabilizing field for T for L {K. Thus for any p ¥ λ, the group X1pL {K,T ;Qp{Zpq
vanishes.
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5 Kpπ, 1q-property of rings of integers

In this section we consider the Kpπ, 1q property of schemes SpecOK,S where K is a number
field and S is a set of primes. Essentially, we prove that if S satisfies p�qstab

p , then SpecOK,S is
Kpπ, 1q for p.

5.1 Overview

Let K be a number field, S a set of primes of K and p a rational prime. Assume that either p
is odd or K is totally imaginary and let

X � SpecOK,S .

We study under which conditions X is an algebraic Kpπ, 1q space (for p). While it is well known
that X is algebraic Kpπ, 1q for p if either

• S � Sp Y S8 (“wild case”), or

• δKpSq � 1,

it is a challenging problem to determine whether X is Kpπ, 1q if S is finite and not necessarily
contains Sp Y S8. There are no (non-trivial) examples of K,S such that X is not a Kpπ, 1q for
p, and until recently there were also no examples of pK,Sq such that X is Kpπ, 1q for p or pro-p
Kpπ, 1q. Recent results of A. Schmidt ( [Sch], [Sch2], cf. also [Sch3]) show that the finite sets
S, such that X is a pro-p Kpπ, 1q are in some sense cofinal in the set of all primes of K. That
means, given K,S and p and any set T of primes of K of density 1, one can find a finite subset
T1 � T such that X rT1 is pro-p Kpπ, 1q. The main ingredient in the proof is the theory of
mild pro-p groups, developed by Labute. Since stable sets generalize sets of density 1 in many
arithmetic aspects, the following question is quite natural.

Question 5.1. Can one replace the condition δKpT q � 1 in Schmidt’s work by the weaker
condition that T is stable (or p-stable or satisfies p�qstab

p )?

In the present section we enlarge the examples of such pairs pK,Sq, for which X is algebraic
Kpπ, 1q for p and prove essentially that if S satisfies p�qstab

p , then X is algebraic Kpπ, 1q for p. In
particular, if S is almost Chebotarev set and 8 R EstabpSq (cf. Proposition 3.18 and Example
3.20), then X is algebraic Kpπ, 1q for almost all primes p, and if EstabpSq � H (cf. Examples
3.21 and 3.22), then X algebraic Kpπ, 1q.

5.2 Definitions

There are many equivalent ways to define algebraic Kpπ, 1q-spaces (cf. [St] Appendix A, where
they are discussed in detail). Without repeating all of them, we want to introduce a small
refinement of terminology, such that it is better adapted to formulate our results.

To begin with, let X be a connected scheme, Xét the étale site on X. Fix a geometric point
x̄ P X and let π :� π1pX, x̄q be the étale fundamental group of X. Let Bπ denote the site
of continuous π-sets endowed with the canonical topology. Let further p be a rational prime,
and let Bπp denote the site of continuous πppq-sets, where πppq is the pro-p completion of π. As
in [St] A.1, we have natural continuous maps of sites
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Xét
γ //

γp ##FFFFFFFF Bπ

��
Bπp

For a site Y , let S pY q denote the category of sheaves of abelian groups on Y , let S pY qf
be the subcategory of locally constant torsion sheaves, and S pY qp the subcategory of locally
constant p-primary torsion sheaves. Let A P S pBπqf resp. B P S pBπpqp. Then we have the
natural transformations of functors id Ñ R γ�γ

� resp. id Ñ R γp,�γ
�
p , which induce maps in the

cohomology:

ciA : Hipπ,Aq ÝÑ HipXét, γ
�Aq

cip,B : Hipπppq,Bq ÝÑ HipXét, γ
�
pBq

Let X̃ resp. X̃ppq denote the universal resp. the universal pro-p covering of X. Since

H1pX̃et,Aq � H1pX̃ppqet,Bq � 0

for each A,B, the maps ciA and cip,B are isomorphisms for i � 0, 1 and are injective for i � 2.

Definition 5.2. Let X be a connected scheme.

(i) X is algebraic Kpπ, 1q if ciA is an isomorphism for all A P S pBπqf for all i ¥ 0.

(ii) X is algebraic Kpπ, 1q for p if ciA is an isomorphism for all A P S pBπqp for all i ¥ 0.

(iii) X is pro-p Kpπ, 1q if cip,B is an isomorphism for all B P S pBπpqp for all i ¥ 0.

Notice that we use a shift in the definitions compared with [Sch] or [Wi2]: what there is
called algebraic Kpπ, 1q for p, we call here pro-p Kpπ, 1q. Parts (i) and (iii) of our definition
coincide with the definition of Kpπ, 1q in [St] A.1.2. By decomposing any sheaf into p-primary
components we obtain:

Lemma 5.3. X is algebraic Kpπ, 1q if and only if it is algebraic Kpπ, 1q for all p.

A space is Kpπ, 1q if and only if an étale covering is (for a proof cf. [St] A.2.3):

Proposition 5.4. Let X be a connected scheme and Y � X a connected pro-étale Galois cover.
Then

(i) X is algebraic Kpπ, 1q ô Y is algebraic Kpπ, 1q.

(ii) X is algebraic Kpπ, 1q for p ô Y is algebraic Kpπ, 1q for p.

(iii) If Y � X is a pro-p cover, then: X is pro-p Kpπ, 1q ô Y is pro-p Kpπ, 1q.

Lemma 5.5. Let X be a connected scheme. The following are equivalent:

(i) X is algebraic Kpπ, 1q for p.

(ii) the maps ciA are isomorphisms for all i ¥ 0 and all finite simple π-modules A such that
pA � 0.
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Proof. Dévissage into simple π-modules.

Lemma 5.6 (cf. [Sch] Proposition 2.1 (iv)ô (v)). Let X be a connected scheme. The following
are equivalent:

(i) X is pro-p Kpπ, 1q.

(ii) the maps cip,Z{pZ are isomorphisms for all i ¥ 0.

Proof. Dévissage into simple πppq-modules and the fact that the only simple module under a
pro-p group, which is killed by p, is trivial.

5.3 Criterions for being Kpπ, 1q

We repeat some well-known equivalent reformulations of Kpπ, 1q properties of rings of integers
SpecOK,S , where K is a number field and S � S8 a set of primes.

5.3.1 Wild case

Let p be a rational prime, K a number field and S a set of primes of K. One says that one is
in the wild case, if S � Sp Y S8. The wild case is well-understood:

Proposition 5.7 (cf. [Zi] Proposition 3.3.1, cf. also [Sch] Proposition 2.3). Let K be a number
field and S � Sp Y S8 a set of primes of K. Assume that either p is odd, or K is totally
imaginary. Then SpecOK,S is a pro-p Kpπ, 1q and an algebraic Kpπ, 1q for p.

Proof. That SpecOK,S is algebraic Kpπ, 1q is shown by Zink in [Zi] Proposition 3.3.1. The pro-p
case follows using [NSW] 10.4.8.

5.3.2 A general criterion

For a scheme X let FetX denote the category of all finite étale coverings of X. For a number
field K let

δK �

#
1 if µp � K,

0 otherwise.

Proposition 5.8. Let K be a number field, S � S8 a set of primes of K such that either δK � 0

or Sf � H. Assume that either p is odd or K is totally imaginary. Let X � SpecOK,S. The
following are equivalent:

(i) X is an algebraic Kpπ, 1q for p.

(ii) One has
limÝÑ

Y PFetX

H2pYét,Z{pZq � 0.
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Proof. (i) ñ (ii) holds for any connected scheme and follows from [St] A.3.1 and Proposition
5.4. Indeed, if X is Kpπ, 1q for p, then any finite étale connected cover Y {X is and hence the
map

H2pYét,Z{pZq Ñ limÝÑ
ZPFetY

H2pZét,Z{pZq

is zero. This shows limÝÑY PFetX
H2pYét,Z{pZq � 0.

(ii) ñ (i). By [St] A.3.1 we have to show that for every q ¡ 0 and every locally constant
p-primary torsion sheaf A on Xét, the map

(5.1) HqpXét,Aq Ñ limÝÑ
YPFetX

HqpYét,A|Yq

is zero. This would follow from the even stronger statement that

limÝÑ
Y PFetX

HqpYét,A|Yq � 0

for each q ¡ 0 and A as above. But since A is trivialized on some Y P FetX , we can assume that A
is constant. By dévissage we are reduced to the case A � Z{pZ. The elements of H1pYét,Z{pZq
can be interpreted as torsors, which kill themselves. Thus we have limÝÑY PFetX

H1pYét,Z{pZq � 0.
Further by [SGA 4] Exposé X Proposition 6.1, HqpYét,Z{pZq � 0 for q ¡ 3. Lemma 5.9 implies
the case q � 3. Finally, the condition in (ii) gives the last piece of information, so that the map
(5.1) is zero for any q, and thus X is a Kpπ, 1q-space.

Lemma 5.9. Let K be a number field, S a set of primes primes of K. Assume p is odd or K
is totally imaginary. Let X � SpecOK,S. If δK � 0 or Sf � H, then H3pXét,Z{pZq � 0.

Proof. Let X̄ � SpecOK . We consider X as an open subscheme of X̄. The Artin-Verdier
duality (cf. [Ma] 2.4 if K is totally imaginary, and [Zi] Theorem 3.2 and Corollary 2.4 if p is
odd) implies a perfect pairing

HrpX̄,Fq � Ext3�r
X̄
pF,Gm,X̄q Ñ H3pX̄,Fq,

for any constructible sheaf F on X̄ (we are only interested in the case F � Z{pZ). This can be
used to compute (compare [Ma] 2.4):

H3pX̄,Z{pZq � µppKq
_,

where p�q_ denotes the Pontrjagin dual. Further, [Ma] 2.5 gives the exact sequence

(5.2) . . .Ñ
¹
pPSf

µppKpq
_ Ñ µppKq

_ Ñ H3pX,Z{pZq Ñ 0.

Since δK � 0 or Sf � H, the map µppKq Ñ
±

pPSf
µppKpq is injective, hence the map on the

left side in (5.2) is surjective. Hence H3pX,Z{pZq � 0.

The same also holds in the pro-p case. Let Fet
ppq
X denote the category of finite étale pro-p

coverings of X.
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Proposition 5.10. Let K be a number field, S � S8 a set of primes of K such that either
δK � 0 or Sf � H. Let X � SpecOK,S. Assume p is odd or K is totally imaginary. The
following are equivalent:

(i) X is a pro-p Kpπ, 1q.

(ii) One has
limÝÑ

Y PFet
ppq
X

H2pYét,Z{pZq � 0.

Remark 5.11 (A criterion of Wingberg in the pro-p case, cf. [Wi2] Proposition 2.1 (i) ô (iv)).
For rational prime p and a prime p of K, let Ipppq � GKpppq{Kp

denote the inertia group of
Kpppq{Kp. Assume that either p is odd or K is totally imaginary. Let S be a set of primes of
K. The following are equivalent:

(i) SpecOK,S is a pro-p Kpπ, 1q.

(ii) The following assertions hold:

- cd GK,Sppq ¤ 2,

- c2
p,Z{pZ is bijective.

(iii) The following assertions hold:

- cd GK,Sppq ¤ 2,

- H1pKSYSpppq{KSppq,Z{pZq
�
ÝÑ
À

pPpSp r SqpKq H1pIpppq,Z{pZqGKpppq{Kp ,

- dim coker1pKSppq{K,S;Z{pZq � δK .

Now (iii) is the most manageable list of conditions: there is “only” group cohomology of
GK,Sppq involved in it, and the second condition is a form of Riemann’s existence theorem.
In the case of the whole site FetX an analogous criterion would be more complicate, since in
contrast to GK,Sppq, a simple GK,S-module, which is killed by p is not necessarily trivial.

5.4 Results

Theorem 5.12. Let K be a number field, S � S8 a set of primes of K and p a rational prime.
Assume that either p is odd or K is totally imaginary.

(i) Assume that S is p-stable for KSYSp{K and has a p-stabilizing extension contained in
KSppq. Then SpecOK,S is a pro-p Kpπ, 1q.

(ii) Assume that S is stable and satisfies p�qstab
p . Then SpecOK,S is an algebraic Kpπ, 1q for

p.

Remark 5.13. In the pro-p case, the assumption S8 � S is superfluous as GSppq � GSYS8ppq:
if p ¡ 2, then this is true in general and if p � 2, then this is true since we have assumed that
K is totally imaginary.
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Corollary 5.14. Let K be a number field, S � S8 a stable set of primes of K, satisfying p�qstab

(in particular S can be any stable almost Chebotarev set with S � S8). Then SpecOK,S is
algebraic Kpπ, 1q-space for almost all primes p. If EstabpSq � H and K is totally imaginary,
then SpecOK,S is algebraic Kpπ, 1q-space.

Sets S with arbitrary small density and EperspSq � H (and hence also EstabpSq � H) can
be found in Examples 3.21 and 3.22. Thus the corollary shows that there are sets S of arbitrary
small density, such that SpecOK,S is an algebraic Kpπ, 1q.

Corollary 5.15. Let K be a number field, S � S8 a set of primes of K and p a rational prime.
Assume that either p is odd or K is totally imaginary.

(i) Assume that S is p-stable for KSYSp{K and has a p-stabilizing extension contained in
KSppq. Then

cd GK,Sppq � scd GK,Sppq � 2.

(ii) Assume that S is stable and satisfies p�qstab
p . Then

cdp GK,S � scdp GK,S � 2.

Proof of Corollary 5.15. Since Sf � H, SpecOK,S has cohomological dimension 2. From Theo-
rem 5.12 we obtain that cd GK,Sppq ¤ 2 (under (i)) resp. cdp GK,S ¤ 2 (under (ii)). By Theorem
4.31 in the case (i) resp. by Corollary 4.33 in the case (ii), certain open subgroups of GK,Sppq

resp. GK,S have cohomological dimension 2. This implies equality in both cases. The statements
about the strict cohomological dimension follow from [NSW] 3.3.5(ii) using Theorem 4.31 resp.
Corollary 4.33.

Proof of Theorem 5.12. We begin with part (ii). Let X :� SpecOK,S . As L goes through finite
subextensions of KS{K, the normalization Y of X in L goes through all finite étale connected
coverings of X. Let V :� SprS. For any such Y we have a decomposition

Y rV
j
ãÑ Y

i
Ðâ V

in an open and a closed part. Now Y rV is a Kpπ, 1q for p by Proposition 5.7 and since
π1pY rV q � GL,SYV , we obtain

(5.3) ciA : HipGL,SYVq
�
ÝÑ HippYrVqét,Aq

is an isomorphism for any i ¥ 0 and any p-primary GL,SYV -module A. We have the Lerray
spectral sequence for j:

Emn2 � HmpY,Rnj�Z{pZq ñ Hm�npYrV,Z{pZq.

Let us compute the terms in this spectral sequence. First of all we have

Rnj�Z{pZ �

$''&
''%
Z{pZ if n � 0,À

pPV H1pIp,Z{pZq if n � 1,

0 if n ¡ 1,
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where Ip � Gp denotes the inertia subgroup of the full local Galois group at p. Thus

E01
2 �

à
pPV

H1pIp,Z{pZqG
nr
p

E11
2 � H1pYét,

à
pPV

H1pIp,Z{pZqq �
à
pPV

H2pGp,Z{pZq

and Emn2 � 0 if n ¡ 1 or if n � 1 and m ¡ 1 (as cdppG nr
p q � 1). Further, Em0

2 � 0 for m ¡ 3,
as cdpY ¤ 3 and E30

2 � H2pY,Z{pZq � 0 by Lemma 5.9. Further,

E10
2 � H1pYét,Z{pZq � H1pGL,S,Z{pZq

Thus we have the following non-zero entries in the second tableau:

À
pPV H1pIp,Z{pZqG

nr
p

δ01
2

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

À
pPV H2pGp,Z{pZq 0 0

Z{pZ H1pGL,S,Z{pZq H2pYét,Z{pZq 0

From this and the isomorphism (5.3) we obtain the following exact sequence (from now on, we
omit the Z{pZ-coefficients):

0 // H1pGL,Sq // H1pGL,SYVq //
À

pPV H1pIpq
G nr
p

δ01
2 //

// H2pYétq // H2pGL,SYVq //
À

pPV H2pGpq // 0

By Proposition 5.8 it is enough to show that limÝÑY PFetX
H2pYétq � 0. Therefore, we can go up in

the tower and assume that L contains a p-stabilizing extension for S for KSYSpYS8 . For such L
the map preceding δ01

2 is surjective by Grunwald-Wang Theorem 4.15, i.e., δ01
2 � 0 and hence

H2pYétq �X2pKSYV {L, V ;Z{pZq.

To finish the proof consider the following commutative diagram with exact rows:

0 // H2pGL,SYVq //

��

À
pPSYV H2pGpq //

��

µppLq
_ //

��

0

0 //
À

pPV H2pGpq
� //

À
pPV H2pGpq // 0 // 0,

in which the exactness of the upper row follows from X2pKSYV {L, S Y V ;Z{pZq � 0 (cf.
Corollary 4.11 or Proposition 4.34) and from the long exact Poitou-Tate sequence. Snake lemma
shows that

limÝÑ
Y PFetX

H2pYétq � limÝÑ
Y PFetX

X2pKSYV {L, V ;Z{pZq � limÝÑ
Y PFetX

à
pPS

H2pGpq,
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and the last limit vanishes as p8|rKS,p : Kps for all p P S by Proposition 4.21. This finishes the
proof of (ii).

(i) has the the same proof as (ii), with the only difference that one has to use the pro-p
versions of corresponding results: one must use Proposition 4.35 instead of Proposition 4.34 and
Proposition 5.10 instead of Proposition 5.8.

Remark 5.16. Part (i) of Theorem 5.12 can also be shown using the criterion 5.11 of Wingberg,
which itself follows from Lemma 5.6. The application of the analogous criterion to (ii) has the
drawback that, in contrast to the pro-p case, there are non-trivial simple GS-modules killed by
p, i.e., only Lemma 5.5 is available, and the criterion gets accordingly more complicate.
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6 Anabelian geometry of curves SpecpOK,Sq with S stable

In this section we generalize the birational anabelian result of Neukirch [Ne] to the case of
“almost arithmetic curves”, i.e., the curves SpecOK,S with S stable.

6.1 Overview

We will give two versions of the main theorem, with varying assumptions. Therefore, consider
the following condition on a number field K and a set S of primes of K:

DecpK,Sq For every p̄ P Sf , the decomposition group Dp̄ � GS is the full local group

It is for example satisfied, if there is a totally real subfield K0 of K and a set S0 of primes of
K0 with S � S0,K (with other words, S is defined over a totally real subfield) and such that
S � Sp1p28 for two different rational primes p1, p2 (cf. [CC] Theorem 5.1 and Remark 5.3(i)),
or if S is stable and EstabpSq � H (cf. Corollary 4.21).

Theorem 6.1 (Under Dec). For i � 1, 2, let Ki be a number field and Si a set of primes of Ki,
such that DecpKi, Siq holds and

• K1 is normal over Q,

• for i � 1, 2, the set Si is stable and satisfies p�qstab
`i

for some odd prime `i,

• there are two odd rational primes under S1 and S8 � S1,

• there is a rational prime under S2.

If GK1,S1 � GK2,S2, then K1 � K2.

Theorem 6.2 (Without Dec). For i � 1, 2, let Ki be a number field and Si a set of primes of
Ki, such that

• K1 is normal over Q,

• for i � 1, 2, the set Si is stable and satisfies p�qstab,

• there are two different odd primes `1, `2 R EstabpSiq such that µ`1`2 � Ki,Si for i P t1, 2u,

• there are two odd rational primes under S1 and S8 � S1,

• there is a rational p with Sp � S2 and p R EstabpSiq for i P t1, 2u.

If GK1,S1 � GK2,S2 , then K1 � K2.

In Section 6.2 we deal with the local correspondence at the boundary which is needed in the
proof of the above theorems. In sections 6.3 and 6.4 we prepare two further arguments, and
finally in Section 6.5 we prove Theorems 6.1 and 6.2.
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6.2 Local correspondence at the boundary

6.2.1 Definition

For i � 1, 2, let pKi, Siq be a number field and a set of primes of Ki and let

σ : GK1,S1

�
Ñ GK2,S2

be a (topological) isomorphism. If U1 is a closed subgroup of GK1,S1 with fixed field L1, we
write U2 for σpU1q and L2 for its fixed field, etc. We say that the local correspondence at
the boundary holds, if the following conditions are satisfied:

(i) for any p̄1 P S1,f pK1,S1q, there is a unique prime σ�pp̄1q P S2,f pK2,S2q, with σpDp̄1q �

Dσ�pp̄1q, such that σ induces a bijection

σ� : S1,f pK1,S1q
�
ÝÑ S2,f pK2,S2q.

which is Galois-equivariant, i.e.

σ�pgp̄1q � σpgqσ�pp̄1q

for each g P GK1,S1 , p̄1 P S1,f pK1,S1q. In particular, for any finite subextension L1

of K1,S1{K1 with corresponding open subgroup U1 � GK1,S1 , if two primes p̄1, q̄1 P

S1,f pK1,S1q restrict to the same prime of L1, then also σ�pp̄1q, σ�pq̄1q restrict to the same
prime of L2, and hence σ� induces a bijection

σ�,U1 : S1,f pL1q
�
ÝÑ S2,f pL2q.

(ii) For all K1,S1{L1{K1 finite with corresponding subgroup U1 � GK1,S1 and for all but
finitely many primes p1 P S1,f pL1q, the residue characteristics and the local degrees of p1

and σ�,U1pp1q are equal.

6.2.2 Under condition Dec

Theorem 6.3. Let K be a number field and S a set of primes, such that DecpK,Sq is satisfied.
Assume S is stable and satisfies p�qstab

p for some p ¡ 2. Then any subgroup of GK,S, which is
isomorphic to an absolute Galois group of a local field with characteristic zero, is contained in a
decomposition subgroup of a unique prime in Sf .

In particular, the decomposition subgroups in GK,S at primes in Sf are exactly the subgroups,
which are isomorphic to local absolute Galois groups in characteristic zero and maximal with this
property.

(Recall that local field means a non-archimedean local field).

Lemma 6.4. Let K be a number field and S a set of primes. Assume S is stable and satisfies
p�qstab

p for some p. Then the following holds.
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(i) The intersection of two p-Sylow subgroups of two different decomposition groups inside
GK,S is not open in each of them. The intersection of two different decomposition subgroups
at primes in Sf inside GK,S is not open in each of them.

(ii) Let H � GK,S be a closed subgroup and H0 � H an open subgroup. If there is a prime
p̄ P Sf pKSq with H0 � Dp̄, then H � Dp̄.

Proof. (i) is Proposition 4.25. (ii) follows from (i) in the same way as in Corollary 1.7(i).

Proof of the theorem. Uniqueness follows from Lemma 6.4(i) and Lemma 2.1. Start with a
subgroup H � GK,S , which is isomorphic to a local absolute Galois group of a field κ of
characteristic zero. Let p ¡ 2 be a rational prime such that S satisfies p�qstab

p . By Lemma
6.4(ii), it is enough to show that an open subgroup of H is contained in a decomposition group.
By replacing H by the intersection of kernels of all homomorphisms H Ñ Z{pp � 1qZ, we can
assume that µp � κ. By Proposition 4.34, there is an open subgroup U0 � GK,S , such that for
any open U � U0, we have X2pU ;Z{pZq � 0. We can replace H by H X U0. Let M :� KH

S .
Taking the limit over all U � U0, which contain H, we obtain by Lemma 2.13 an injection

H2pH,Z{pZq ãÑ
¹

pPSpMq

H2pGp,Z{pZq.

Since µp � κ, i.e., H2pH,Z{pZq � Z{pZ we obtain H2pGp,Z{pZq � 0 for at least one p P SpMq,
which must be non-archimedean, since p ¡ 2. The same surjectivity argument as in [NSW]
12.1.9 or in the proof of Proposition 2.12 finishes the proof. We repeat the argument here for
the convenience of the reader. We have to show that the prime p � p̄|M is indecomposed in
KS{M , i.e., that H � Dp̄,KS{M � Dp̄. Therefore, consider an open subgroup H 1 � H with
corresponding field M 1. For any open H 1 � U � GS with corresponding fixed field L, let
Tp,H 1pUq be the (finite) set of all primes of L lying under a prime p1 P SppM

1q. Then we have
the sequence

H2pU,Z{pZq Ñ
à

qPTp,H1 pUq

H2pDq,KS{L,Z{pZq Ñ 0,

This sequence is exact by [NSW] 9.2.1, since there are still non-archimedean primes in SpLq,
which do not enter the index set of the direct sum. Passing to the limit over all open U containing
H 1 gives the exact sequence:

(6.1) H2pH1,Z{pZq Ñ
à

p1PSppM1q

H2pDp1,KS{M1 ,Z{pZq Ñ 0.

Let κ1{κ denote the finite extension of κ corresponding to H 1. We have µp � κ � κ1. Hence
H2pH1,Z{pZq � Z{pZ. Further, H2pDp1,KS{M1 ,Z{pZq � 0. In fact, Dp1,KS{M 1 is conjugate to an
open subgroup of Dp,KS{M . But since H2pDp̄,KS{M,Z{pZq � 0, also H2pV,Z{pZq � 0 for any
open subgroup V � Dp̄,KS{M (this follows from [NSW] 7.1.8 (i),(ii)). Finally, since (6.1) is exact,
there is only one prime lying over p in any finite extension M 1{M . Hence p̄|M is indecomposed.

From this group-theoretic description we obtain the local correspondence at the boundary.
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Corollary 6.5 (Local correspondence at the boundary). For i � 1, 2 let Ki be a number field
and Si a set of primes, such that DecpKi, Siq holds. Assume Si is stable and satisfies p�qstab

pi for
some pi ¡ 2. Let

σ : GK1,S1

�
ÝÑ GK2,S2

be an isomorphism. Then the local correspondence at the boundary holds and moreover, for any
open U1 � GK1,S1 with corresponding field L1, σ preserves inertia subgroups and σ�,U1 preserves
the residue characteristic and the absolute degree of all primes in S1,f pL1q (and not only of all
but finitely many).

Proof. Theorem 6.3 allows to define σ� in an obvious way. We show the Galois-equivariance: let
g P GK1,S1 and p̄ P S1,f pK1,S1q. Then

Dσ�pgp̄q � σpDgp̄q � σpgDp̄g
�1q � σpgqσpDp̄qσpgq

�1 � σpgqDσ�pp̄qσpgq
�1 � Dσpgqσ�pp̄q,

which by Lemma 6.4(i) implies that σ�pgp̄q � σpgqσ�pp̄q. That σ preserves inertia subgroups
and σ�,U1 preserves the residue characteristics and the absolute degree of all primes in S1,f pL1q

follows from DecpKi, Siq and anabelian properties of local fields (cf. Section 2.2).

6.2.3 General case

We refer to Section 1.2 for the definition of a group of p-decomposition type.

Theorem 6.6. Let K be a number field and S a set of primes. Assume S is stable and satisfies
p�qstab

p for some p ¡ 2. Assume further that µp � KS. Then any subgroup of GK,S which is
isomorphic to a group of p-decomposition type, is contained in a decomposition subgroup of a
unique prime in pSf rSpqpKSq.

Remark 6.7. The assumption µp � KS is needed for technical reasons: we can not show that
for any p P Sf , we have µp � KS,p. But only in this case the decomposition group Dp � GS

with p P S is of p-cohomological dimension 2, which is a crucial point in the proof.

Proof of Theorem 6.6. Uniqueness follows from Lemma 6.4(i) and Lemma 1.4(ii). By Lemma
6.4(ii) we can assume µp � K. Since now µp � Kp for any p P S, it follows from Corollary 4.21
that for any p̄ P Sf rSppKSq, the composition

Gp,p ãÑ Gp � Dp̄ ãÑ GK,S

is injective, or with other words, the p-Sylow subgroup of Dp̄ is of p-decomposition type (cf.
Section 1.3.1). Let H be a closed subgroup of GK,S of p-decomposition type. By exactly the
same argument as in the proof of Theorem 6.3, H is contained in a decomposition group Dp̄

of a prime p̄ P Sf pKSq. Now, Lemma 2.11 shows that p̄ does not lie over p, which finishes the
proof.

Using the theorem one can reconstruct the decomposition subgroups at Sf rSp from the
group GK,S exactly as in Section 2.8. For the convenience of the reader, we repeat here the
construction. For any open U � GK,S with fixed field L, such that µp � L, let
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SylppU, Sf rSpq :� tH � U : H is a p-Sylow-subgroup of Dp̄,KS{L with p̄ P Sf rSpu.

We claim that SylppU, Sf rSpq is exactly the set of all maximal subgroups of p-decomposition
type of U . Indeed, any H P SylppU, Sf rSpq with H � Dp̄ is clearly of p-decomposition type
and if there is some H 1 � H, which is also of p-decomposition type, then this inclusion is open
by Lemma 1.4(ii), and by Lemma 6.4(ii) we get H 1 � Dp, i.e., H � H 1. With other words, H
is maximal. Conversely, let H be a maximal subgroup of p-decomposition type. By Theorem
6.6, H � Dp̄ for some prime p̄ P Sf rSp. But then H is contained in a p-Sylow subgroup
of Dp̄, which is again of p-decomposition type, and since H is maximal, H is equal to this
p-Sylow subgroup. This proves our claim and shows that SylppU, Sf rSpq is determined by the
group-theoretic structure of GK,S . Further, U acts on this set by conjugation, and we have an
U -equivariant surjection, where U acts trivially on the right:

ψ : SylppU, Sf rSpq� pSf rSpqpUq,

which sends H to the (unique by Lemma 6.4(i)) prime p̄|L, such that H � Dp̄,KS{L. We want
to determine, when two elements have the same image under ψ. For H P SylppU, Sf rSpq such
that H � Dp̄,KS{L is a p-Sylow subgroup, consider the restriction map

resUH : H2pU,Z{pZq� H2pH,Z{pZq.

It defines an equivalence relation on SylppU, Sf rSpq by H � H 1 :ô kerpresUHq � kerpresUH 1q,
which is again determined by group structure of GK,S . By Lemma 2.18, we have

H � H 1 ô ψpHq � ψpH 1q

and we get a bijective map induced by ψ:

SylppU, Sf rSpq{ �
�
ÝÑ pSf rSpqpUq.

If additionally U is normal in GK,S , then GK,S acts on SylppU, Sf rSpq by conjugation, and via
ψ this induces an action on pSf rSpqpUq, which coincides with the natural action of GK,S on
this set. Thus the group-theoretic structure of GK,S encodes the projective system of GK,S-sets

tpSf rSpqpUq : U � U0, U �GK,Su,

where U0 � GK,S is certain open subgroup. Now the decomposition subgroups inside GK,S of
primes in Sf rSp are exactly the stabilizers in GK,S of elements in the GK,S-set

limÐÝ
U�U0,U�GK,S

pSf rSpqpUq.

Remark 6.8. It is not possible to treat the primes in Sp X S by the same method as above, as
we do not have a very good control over the p-Sylow subgroups Gκ,p of Gκ with κ local p-adic:
they still have cdppGκ,pq � 2, but must not be isomorphic to the (well-understood) maximal
pro-p quotient Gκppq (and moreover the kernel of Gp,p � Gpppq is infinitely generated).
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From this intrinsic description of the decomposition subgroups, we obtain the local corre-
spondence at the boundary.

Corollary 6.9 (Local correspondence at the boundary). For i � 1, 2 let Ki be a number field
and Si a stable set of primes satisfying p�qstab. Assume there are two different odd rational
primes p1, p2 R E

stabpSiq such that µp1p2 � Ki,Si for i � 1, 2. Let

σ : GK1,S1

�
ÝÑ GK2,S2

be an isomorphism. Then the local correspondence at the boundary holds. Moreover, for any
open U1 � GK1,S1 with corresponding field L1, σ�,U1 preserves the residue characteristics and
absolute degrees of all primes p P S1,f pL1q, which do not lie over rational primes contained in
the (finite) set EstabpS1q Y EstabpS2q.

Proof. For p P tp1, p2u, the above considerations allow to define a bijection

σp,� : pS1,f rSpqpK1,S1q
�
ÝÑ pS2,f rSpqpK2,S2q

in an obvious way. Let p̄1 P pS1,f rSp1p2qpK1,S1q. Then we have

Dσp1,�pp̄1q � σpDp̄1q � Dσp2,�pp̄1q,

which by Lemma 6.4(i) implies that σp1,�pp̄1q � σp2,�pp̄1q, i.e., σp1,� and σp2,� coincide on
pS1,f rSp1p2qpK1,S1q. By patching them together, we obtain the desired bijection

σ� : pS1,f qpK1,S1q
�
ÝÑ pS2,f qpK2,S2q.

The Galois-equivariance of σ� follows in the same way as in Corollary 6.5. Observe that
the set EstabpS1q Y EstabpS2q is finite since S1, S2 satisfy p�qstab. It remains to show that for
any finite K1,S1{L1{K1 with corresponding open subgroup U1 and for all primes in S1,f pL1q not
lying over p P EstabpS1q YEstabpS2q, the map σ�,U1 preserves the residue characteristic and the
local absolute degree. We can assume L1 � K1. Since p�qstab holds for Si (i � 1, 2), there
is a finite exceptional set T � EstabpS1q Y EstabpS2q, such that for any rational prime ` R T ,
the set Si satisfies p�qstab

` , and by Corollary 4.21 the maximal local `-extension of Ki,p for any
prime p P Si is attained by Ki,Si . This means, in particular, that for all primes p P Si with
residue characteristic ` � `ppq R T , the maximal `-extension of Ki,p is attained by Ki,Si . Let
p P Si be such a prime and p̄ an extension to Ki,Si . Lemma 6.10 shows that Dp̄ encodes the
information about the residue characteristic and the absolute degree of p. Thus σ�,K1 preserves
residue characteristic and local degree of all primes in S1 rT pKq.

Lemma 6.10. Let κ be a local field with characteristic zero and some residue characteristic `
and λ{κ a Galois extension with Galois group D, which contains the maximal pro-`-extension of
κ. Then D encodes the information about ` and rκ : Q`s.

Proof. Let Gκ be the absolute Galois group of κ. We have the surjection π : Gκ � D, and for
any open U � Gκ, a surjection U � πpUq, which for any rational prime p induces an injection
H1pπpUq,Z{pZq ãÑ H1pU,Z{pZq. For all primes p � `, the dimensions of the spaces on the right
(and hence also on the left) is bounded by 2, and for p � `, the dimension of the space on the
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left gets arbitrary big, if U gets arbitrary small. Thus D determines the residue characteristic
`. Further,

rκ : Q`s � χ`pGκp`q,Z{`Zq � χ`pDp`q,Z{`Zq.

6.3 Uniform bound

Besides the local correspondence established before, the following argument plays a central role
in the proof of Theorems 6.1 and 6.2:

Proposition 6.11 (Uniform bound). For i � 1, 2 let Ki be a number field and Si a set of primes
of Ki, and let

σ : GK1,S1

�
Ñ GK2,S2

be an isomorphism. Assume that the local correspondence at the boundary holds. Assume that
S1 is stable. Then there is some N ¡ 0, such that for all (not necessarily finite) intermediate
subfields K1,S1{M1{K1, such that M1 is normal over Q, one has rM1 : M1 XM2s   N , where
M2{K2 corresponds to M1{K1 via σ.

Lemma 6.12. Let κ be a field. If pViqiPI is a cofiltered system of κ-vector spaces, such that
dimκ Vi   n, and V :� limÝÑI

Vi , then dimκ V   n.

Proof of Lemma 6.12. Indeed, for any n vectors of V there is an i P I, such that these vectors
has preimages in Vi. These preimages are linearly dependent. Hence their images in V are
linearly dependent.

Proof of Proposition 6.11. Since S1 is stable, by Proposition 3.11, there is some N ¡ 0, such
that δL1pS1q ¡ N�1 for all finite subfields K1,S1{L1{K1. Let M1 be a subextension of K1,S1{K1,
such that M1{Q is normal. By Lemma 6.12 and since M1 is a union of finite extensions of K1,
which are normal over Q, we can assume M1{K1 finite. Let

S11 :� S1pM1q X cspM1{QqpM1q.

Since M1{Q is normal, δM1pcspM1{QqpM1qq � 1 and hence

δM1pS
1
1q � δM1pS1q ¡ N�1.

Lemma 6.13. Let S12 :� σ�pS
1
1q. Then

(i) δM2pS
1
2q � δM1pS

1
1q.

(ii) S12
�
� cspM1M2{M2q.

Proof of Lemma 6.13. (i): follows from the local correspondence at the boundary by explicitly
computing the density and using formula (3.1), since σ� preserves the residue characteristic and
the absolute degree of almost all primes in S11 (and in particular, almost all primes in S12 are
completely split over Q).

(ii): Let p1 P S11 be such that σ� preserves the residue characteristic and the absolute
degree of p1. Let p2 :� σ�pp1q P S

1
2 and p :� p2|M1XM2 . The fibre OM1M2 bOM2

κpp2q over
p2 in SpecOM1M2 is isomorphic to pOM1 bOM1XM2

κppqq bκppq κpp2q. By assumption, we have
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p2|Q � p1|Q P cspK1{Qq and hence p P cspM1{QqpM1 XM2q � cspM1{M1 XM2q. This implies
that OM1 bOM1XM2

κppq is isomorphic to product of copies of κppq. Thus we obtain

OM1M2 bOM1
κpp2q �

¹
κpp2q,

i.e., p2 is completely decomposed in M1M2.

Using Lemma 6.13, and since M1M2{M2 is normal, we obtain:

rM1 : M1 XM2s
�1 � rM1M2 : M2s

�1

� δM2pcspM1M2{M2qq

¥ δM2pS
1
2q

� δM1pS
1
1q

¡ N�1.

This proves Proposition 6.11.

6.4 Non-existence of lifts

Last but not least, Proposition 6.14 proven in this section provides the last argument which we
need in the proof of Theorems 6.1 and 6.2. Let L{K be a Galois extension of global fields. We
want to study, under which conditions there is no Galois extension L0{K0, such that L{K is a
base change of L0{K0, i.e., K0 � K X L0 and L � KL0:

L

||||||||

K L0

||||||||

K0

In this case the group GL{K sits in the sequence

1 Ñ GL{K Ñ GL{K0
Ñ GK{K0

Ñ 1,

in which the right map splits, and the image GL{L0
of this splitting is normal, i.e., one has

GL{K0
� GL{K �GL{L0

. Thus we want to know, under which conditions GL{K does not fit into
such a diagram with K{K0 non-trivial.

Proposition 6.14. Let K,L0 be two linearly disjoint Galois extensions of a global field K0, and
set L � KL0. Assume one of the following hold:

(a) – K is a totally imaginary number field and

– L � KSpppq for some prime number p, or

(b) There is a prime p of K0, which is completely split in K, such that for any p̄1, p̄2 P SppLq

with p̄1|K � p̄2|K , we have Dp̄1,L{K � Dp̄2,L{K .

Then K � K0.
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We will only use part (a) of this proposition.

Proof. Assume (a) holds. Then L{K and L0{K0 are both Galois with Galois group isomorphic
to GK,Spppq. By [NSW] 10.3.20, the number of independent Zp-extensions of K satisfies

rkZp Gab
K,Sp

ppq ¥ r2pKq � 1

Since GL{K � GL0{K0
, the field K0 has at least r2pKq � 1 independent Zp-extensions. Assume

K � K0. Then rK : K0s ¥ 2, and since K is totally imaginary, we obtain:

r2pKq � 1 �
rK : Qs

2
� 1 ¥ rK0 : Qs � 1 ¡ rK0 : Qs.

But by [NSW] 10.3.20, the number of independent Zp-extensions of K0 is ¤ rK0 : Qs. This is a
contradiction, hence K � K0 (notice that we nowhere made use of Leopoldt’s conjecture!).

Assume (b) holds. Let ψ : GL{K
�
Ñ GL0{K0

denote the canonical isomorphism obtained
by restriction. Assume there are two different primes p1 � p2 in K over p. Let q be some
prime of L0 over p. One can chose primes p̄i P SppLq, such that p̄i|K � pi and p̄i|L0 � q. As
p1, p2 are split over K0, we obtain that ψ maps Dp̄i,L{K isomorphically to Dq,L0{K0

. But by
assumption Dp̄1,L{K � Dp̄2,L{K , hence Dq,L0{K0

� ψpDp̄1,L{Kq � ψpDp̄2,L{Kq � Dq,L0{K0
, which

is a contradiction. Thus there is only one prime over p in K, and since p is completely split, we
obtain rK : K0s � 1.

6.5 Proof of Theorems 6.1 and 6.2

We consider all occurring fields to be subfields of a fixed algebraic closure Q of Q.
Step 1 - Local correspondence. The assumptions in both versions of the theorem imply by

Corollary 6.5 resp. Corollary 6.9, that for σ the local correspondence at the boundary holds: for
any open subgroup U1 � GK1,S1 with fixed field L1, σ induces a bijection

σ�U1
: S1,f pL1q

�
Ñ S2,f pL2q,

which preserves the residue characteristic and the absolute degree of all primes in Theorem 6.1
and almost all primes in Theorem 6.2. We obtain rK2 : Qs ¤ rK1 : Qs from this. Indeed, under
the assumptions of Theorem 6.1, it follows from the existence of some p with Sp � S2; in the
case of Theorem 6.2, there is a prime p with Sp � S2 and p R T � EstabpS1q Y EstabpS2q, and
hence σ� preserves the residue characteristic and the absolute degree of primes in SppK1q by
Corollary 6.9.

Step 2 - Totally imaginary case. We assume that K1 is totally imaginary. We have two
rational primes p1, p2, such that Spj � S1, pj ¡ 2, whose existence was required in the statement
of the theorems. So let p P tp1, p2u. The quotient GK1,Spppq of GK1,S1 is torsion-free (cf. [NSW]
8.3.18 and 10.4.8). Since K1 is normal over Q, Sp is defined over Q and the maximal pro-p-
quotient of a profinite group is characteristic, we deduce that the field K1,Spppq is normal over Q.
Let L2,p be the field corresponding to K1,Spppq via σ (a priori, L2,p must not be equal K2,Spppq).
We have the following situation:
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K1,Spppq

H1

HHHHHHHHHHHHHHHHHHHHHHH
L2,p

�������������������

K1.pK1,Spppq X L2,pq

SSSSSSSSSSSSSSS

H2 K1,Spppq X L2,p

H2K1

TTTTTTTTTTTTTTTTTT

IIIIIIIIIIIIIIIIIIIIIII K2

������������������

K1 X L2,p

K1 XK2

In this diagram the group H1 is a subgroup of GK1,Sp ppq{K1,Sp ppqXL2,p
and of GK1,Spppq. But

the first of these two groups is finite by Proposition 6.11, and the second is torsion-free. Hence
H1 � 1, i.e., H2 � GK1,Spppq. By Proposition 6.14(a) we get K1 � K1 X L2,p, i.e., K1 � L2,p.
Doing this for p � p1, p2, we get: K1 � L2,p1 X L2,p2 � K2, the last equality being true, since
L2,pj{K2 is a pro-pj-extension for j � 1, 2. Since by step 1 we have rK2 : Qs ¤ rK1 : Qs, we
conclude that K1 � K2.

Step 3 - General case. Now assume K1 is arbitrary. Let p1, p2 be as in step 2. For j � 1, 2

let K2,j be the extension of K2 corresponding under σ to the extension K1pµpj q{K1. By the
preceding two steps, we see that K1pµpj q � K2,j , since the assumptions carry over from K1,K2

to K1pµpj q,K2,j . Now K1pµp1q X K1pµp2q � K1 and this is equivalent to the fact that the
subgroups of GK1,S1 corresponding to these fields, generate GK1,S1 , hence the same is true after
applying σ, i.e., K2,1 XK2,2 � K2. Thus we get:

K1 � K1pµp1q XK1pµp2q � K2,1 XK2,2 � K2.

This finishes the proof.

Remark 6.15. The technical assumptions in both versions of the theorem are chosen such that
one can show

- the local correspondence at the boundary,

- rK2 : Qs ¤ rK1 : Qs,

- the existence of two linearly disjoint extensions Mj{K1 (j = 1,2), such that

(i) Mj{Q is normal,

(ii) GMj{K1
is torsion-free.
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