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Abstract

In this thesis we study arithmetic and anabelian properties of the Galois group Gg s of the
maximal extension of a number field K unramified outside a set of primes S. The work can be
divided in two parts: the one part deals with finite and the other with infinite sets S.

The main idea of the part dealing with infinite sets S is to introduce a new class of sets of
primes in number fields — stable sets. These sets have positive, but arbitrary small Dirichlet
density. We give different examples of stable sets. This can be done in a rather explicit way.
For example, Chebotarev sets Py (o) with M /K finite Galois and o € Gj/k are often stable.

Stable sets generalize in some sense sets of density one. In particular, the most arithmetic
results, holding for sets with density one, also hold for them. We generalize certain Hasse
principles, Grunwald-Wang theorem, Riemann’s existence theorem and a statement about the
(strict) cohomological dimension from density one sets (cf. [NSW| Chapters IX and X) to stable
sets. Then we show that curves Spec Ok g with S stable are often K(7,1) (for p). In particular,
this gives many (explicit) examples of sets S of positive, but arbitrary small density, such
that Spec Ok s is an algebraic K(m, 1) (for all p simultaneously). Finally, we study anabelian
properties of curves Spec O g with S stable. It turns out that it is possible to generalize a part
of the birational anabelian theorem of Neukirch-Uchida to stable sets. More precise, we show
that if for ¢ = 1,2, a number field K; together with a stable set of primes S; is given, such that
K1/Q is normal, the groups G, g, and Gg, g, are isomorphic as topological groups and some
easy technical conditions are satisfied, then Ky = K.

In the part concerning finite sets S we consider some anabelian properties of the group Gg s.
In contrast to the situation with affine hyperbolic curves over finite fields, for which the Isom-
form of Grothendieck’s Anabelian Conjecture was proven by A. Tamagawa |Ta] some years ago,
very little is known about anabelian properties of Gk g in the number field case. It seems even
to be impossible to describe purely group-theoretically (by known methods) the location of the
decomposition groups at primes in S inside the group Gg,s. We show that this is possible if one
has given a bit more information, than simply the group Gg, 5. We prove that it is equivalent to
have the following pieces of information (additionally to Gg,s): the location of decomposition
groups at primes in S inside Gg g, the p-part x, of the cyclotomic character for some prime
pE O?(,S’ the collection of numbers §S(L), where L goes through all finite subextensions of
Kg/K, etc. In particular, if o: Gg, s, = Gk,.g, is an isomorphism, such that x2, 00 = x1,,
then one obtains a local correspondence at the boundary, i.e., for primes in S, S5.






Zusammenfassung

In der vorliegenden Arbeit studieren wir arithmetische und anabelsche Eigenschaften der
Gruppe Gg g, der maximalen auferhalb einer Stellenmenge S unverzweigten Erweiterung eines
Zahlkorpers K. Die Arbeit ldsst sich in zwei Teile gliedern: der eine Teil beschéftigt sich mit
endlichen Mengen S, der andere mit unendlichen.

Die Hauptidee des zweitgenannten Teils besteht darin, eine neue Klasse von Stellenmengen
in Zahlkorpern einzufiihren — stabile Mengen. Diese haben eine positive, aber beliebig kleine
Dirichlet Dichte. Auf eine relativ explizite Weise geben wir dann diverse Beispiele von stabilen
Mengen. Zum Beispiel sind Chebotarev Mengen der Form Py (0), wobei M /K eine endliche
Galois Erweiterung und o € Gy ist, oft stabil.

Stabile Mengen verallgemeinern im bestimmten Sinne Mengen mit Dichte eins. Insbeson-
dere gelten die meisten arithmetischen Satze, die fiir Mengen mit Dichte eins gelten, auch fiir
stabile Mengen. Wir werden bestimmte Hasse Prinzipien, den Satz von Grunwald-Wang, den
Riemannschen Existenzsatz und eine Aussage iiber die (strikte) kohomologische Dimension, die
allersamt fiir Mengen mit Dichte eins gelten (vgl. INSW| Kapitel IX und X) auf stabile Men-
gen verallgemeinern. Weiterhin zeigen wir, dat die Kurven Spec Ok g mit S stabil oft K(m, 1)
(fiir p) sind. AuRerdem stellt sich heraus, dass man den birationalen anabelschen Satz von
Neukirch-Uchida zumindest teilweise auf stabile Mengen verallgemeinern kann. Konkret werden
wir fogendes zeigen: angenommen, fiir ¢ = 1,2 ist ein Zahlkérper K; mit einer stabilen Stellen-
menge S; gegeben, so dass K7/Q normal ist, die Gruppen G, s, und Gg, g, isomorph sind und
einige einfache technische Bedingungen erfiillt sind. Dann gilt K; =~ Ko.

Im Teil der Arbeit, der sich mit endlichen Stellenmengen befasst, werden wir einige an-
abelsche Eigenschaften der Gruppe Gg g untersuchen. Im Gegensatz zur Situation mit affinen
hyperbolischen Kurven iiber endlichen Kérpern, fiir welche die Isom-Form der anabelschen Ver-
mutung von Grothendieck, einige Jahre zuvor von A. Tamagawa in [Ta| bewiesen wurde, ist nur
sehr wenig {iber anabelsche Eigenschaften von G g im Zahlképerfall bekannt. Es scheint zum
Beispiel unmoglich zu sein, mit Hilfe der bekannten Methoden die Lage der Zerlegungsgruppen
der Stellen in S in der Gruppe Gg s rein gruppentheoretisch zu beschreiben. Wir zeigen, dass
dies moglich ist, falls man ein wenig mehr Information als nur die Gruppe Gg s zur Verfiigung
hat. Wir werden sehen, dass es equivalent ist, folgende Informationen (zusétzlich zur Gruppe
Gk s) zu haben: die Lage der Zerlegungsgruppen von Stellen in S innerhalb der Gruppe Gg. g,
den p-teil x, des zyklotomischen Characters auf Gg g, fiir eine Primzahl p € (9}}’ g, die Zahlen
#S(L), wobei L endliche Untererweiterungen von Kg/K durchliuft, usw. Insbesondere, wenn
o: Gg,.5;, = Gk,,s, ein Isomorphismus ist, fiir den x2, 0 0 = X1, gilt, dann erhilt man eine
lokale Korrespondenz am Rand, d.h. fiir Stellen in Sy, .Ss.
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Introduction

Let K be an algebraic number ﬁel i. e. a finite extension of Q. We fix an algebraic closure K
of K and consider all extensions of K to lie in K. Let S be a set of primes of K, and assume for
simplicity that S contains the set Sy of all archimedean primes of K. Let Ok g be the ring of
S-integers of K and X = Spec Ok s the corresponding affine scheme. Then the functor sending
a finite extension L of K to the normalization of X in Spec L defines an equivalence of categories
between all finite extensions of K, which are unramified outside S and all finite étale connected
covers of X. With other words, we have the canonical isomorphism

m(X,z) = Gg.g,

where T = Spec K and G g is the Galois group of the maximal extension Kg of K, which is
unramified outside S. In this thesis we study various properties of this fundamental group. The
work consists of two parts: in the first part (Sections we study some anabelian properties
of the group Gg g with S finite. In the second part we introduce a new class of sets of primes of
K of positive Dirichlet density, the so called stable sets (Section |3) and perform a systematical
study of arithmetic (Sections and anabelian (Section @ properties of the group Gg g for S
lying in this class. These sets generalize in many aspects sets of primes with Dirichlet density 1.
Roughly speaking, we aim to generalize the following results, which are known for sets S with
Dirichlet density 1 to stable sets:

1. Hasse principles

2. Grunwald-Wang theorem

3. Riemann’s existence theorem
4. cdp(Gr,s) = scdp(Gr,s) = 2
5. algebraic K(m, 1)-property

6. (a part of) the Neukirch-Uchida theorem

The points 1-5 are closely related with each other. For example, once enough Hasse principles
are shown, points 2-4 follow from them in the same way as for sets with density 1. Sections
and [6] have much in common, both being of anabelian nature. Section [I, which is devoted to
intersections of decomposition groups inside Gg g, can be seen as a technical preparation for
them. At first we explain the arithmetic results of Sections and postpone the anabelian
geometry to the end of this introduction.

The notations in this thesis essentially coincide with the notations in [NSW| and are (at
least partially) self-explaining. A list of the most relevant notations can be found after the

introduction.

! Although we work only with number fields throughout this thesis, many of the statements are also true for
global fields in general. Moreover, some of the statements should also be true for arithmetic schemes, i.e., schemes
regular, separated and of finite type over SpecZ.
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Hasse principles

A Hasse principle or a local-global principle is a kind of statement which asserts the vanishing
of the subgroup of all classes in a global cohomology group, which are locally trivial at a certain
collection of closed points. Well-known results in this direction are the classical theorems of
Hasse-Minkowski and of Hasse-Brauer-Noether establishing a Hasse principle for quadratic forms
and for the Brauer group of global fields respectively.

Let Z/K be a possibly infinite Galois extension and T a set of primes of K. Let i > 0 and
let A be a G »/x-module. We can define the two groups III'(.Z/K, T; A) and coker' (L /K, T; A)
by exactness of the following sequence

0 — I (L/K, T; A) — H(G g i, A) — HLGT H'(%/Ky, A) — coker'(Z/K, T; A) — 0,

where ngT means the restricted product with respect to the unramified cohomology groups
H,, (% /K, A) € H(Z, /Ky, A) and the map in the middle is the product of restriction maps.
The Hasse principle is said to be satisfied for /K, T, A in dimension i if III*(.Z /K, T; A) = 0.
Various situations in which the Hasse principle holds for the extension Kg/K, a set of primes
T < S and a finite Gg g-module A are established in [NSW]| chapter IX §1. Here are three
representative examples in dimension 1 (similar results in dimension 2 are corollaries of them
and Poitou-Tate duality). Let dx(S) denote the Dirichlet density of a set S of primes of K.

Theorem 0.1 ( [NSW] 9.1.9, 9.1.15). Let K be a global field, T < S sets of primes of K and A
a finite G s-module. The Hasse principle for Kg/K, T, A in the first dimension holds, i.e.,

' (Ks/K,T; A) =0
in the following cases:
(i) A is a trivial module and o (T) > ]%, where p is the smallest prime divisor of A.

(i) A = p, with m = pi* ...plr, where p; are pairwise different prime numbers in N(S), and

1
Pil K (pyr) - K]

(5K(CS(K(Mp:i)/K) NnT) >

foralli=1,...,n, except, we are in the special case (K, m,T), where ' (L /K, T; ) =
Z)27.

(iii) A is simple and there is a prime p with pA = 0, the minimal extension K(A)/K trivializing
A is solvable and cs(K(A)/K) < T.

A common assumption in all of them is that the density of T must have some minimal value
depending on A, without which nothing can be achieved. The main ingredient in the proofs
of all these results is the Chebotarev density theorem. Let us for example prove (i): assume
there is some 0 # ¢ € II1'(Kg/K,T; A). Then ¢ can be interpreted as a group homomorphism
¢: Gg s — A which is trivial on the decomposition groups at all primes in 7". Then the extension
L := (Kg)¥(®) /K is of degree [L : K] = #im(¢) > p and completely decomposed in T'. Hence

14



126p(T)=|L: K|og(T nes(L/K)) =|L: K|og(T) > p- ]10 =1
gives a contradiction, which finishes the proof.

Using various Hasse principles along with Poitou-Tate duality as in [NSW]| chapter IX one
obtains further facts about the group Gg g, such as Grunwald-Wang theorem, Riemann’s exis-
tence theorem, a statement about the (strict) cohomological dimension and the algebraic K(m, 1)-
property of Spec Ok .

Stable and persistent sets

Now it is time to introduce the main objects of study in this thesis. For simplicity we assume
here that all sets we deal with have a Dirichlet density.

Definition Let S be a set of primes of K and .Z/K any extension.

(i) Let A > 1. A finite subextension .#/Lo/K is A-stabilizing for S for Z/K, if there
exists a subset Sy € S and some a € (0, 1], such that Aa > d.(Sp) = a > 0 for all finite
subextensions .%/L/Ly.

(ii) A finite extension .#/Lo/K is persisting for S for £ /K, if there exists a subset Sy € S,
such that 67,(Sp) = d1,(So) > 0 for all finite subextensions - /L/Ly.

We say that S is A-stable resp. persistent for .Z/K, if it has a A-stabilizing resp. persisting
extension for .2 /K. We say that S is stable for .Z/K if it is A-stable for .Z/K for some A > 1.
Finally, we say that S is A-stable resp. persistent if it is A-stable resp. persistent for Kg/K.

Clearly, persistent implies A-stable for all A > 1. In the applications the stability property is
essentially used in three different types of arguments: two times in the proof of the basic Hasse
principle (cf. Lemma Theorem and see also Proposition from which all other
arithmetic results follow, and once in the anabelian situation (cf. Proposition . Persistence
is not used in these arguments. Nevertheless, the most well-understood examples of stable sets
are persistent. But there are also examples of stable sets, for which we can neither prove nor
disprove persistence.

Now we show that there are plenty of examples of stable and persistent sets. This is an
immediate consequence of the following fact.

Proposition Let M /K be a finite Galois extension, L/K a finite extension and o € Gk
Let Lo := L~ M. Then:

tC(; GM/K) a GM/LO
8Ga/L,

or(Pyyk (o)) =

In particular, this value depends only on L n M, not on L itself. The following corollary is an
immediate consequence. For two sets S,T of primes of K, we write S = T', if S and T differ
only in a subset of density zero.

Corollary Let M/K be finite Galois and let 0 € Gy Let £ /K be any extension and
set Lo := M n.Z. Then a set S = Py (0) is persisting for £ /K if and only if C(o; Gpr/i) 0
Gar/no # - 1If this is the case, Lo is a persisting field for S for £ /K. In particular,
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(i) any set S = cs(M/K) is persistent for any extension L /K,
(ii) any set S = Py (o) is persistent for any extension £ /K with & n M = K.

For example, if M /K is totally ramified in a prime p of K, then for any o € Gur/rc, the set
S = Py (o) is persistent with persisting field K, provided p ¢ S (in particular, Py (o) itself
is).

When one starts to prove arithmetic results, then it is often not enough for S to be stable
for Kg/K. One needs the following stronger property, relative to a rational prime p < oo:

(x)stab S is p-stable for Ksys,0s,, /K with a stabilizing field contained in Kg

For p = o0, it means that S is stable (i.e., A-stable with some A\ > 1) for Kg g, /K with a
stabilizing field contained in Kg (moreover, that a A-stabilizing field is € Kg is automatically
satisfied for a well-chosen A; cf. Proposition . If S satisfies (*);tab, then such results as
Grunwald-Wang and Riemann’s existence theorem with respect to p hold for S. Let E5%P(S)

stab - (e remarkable fact

denote the set of all rational primes p for which S does not satisfy (x);

is the following:

Proposition Let S = Py (o) for some M/K and o € Gy If 0 ¢ Est2b(S) | then
Es%b(8) s finite.

From the viewpoint of whether certain arithmetic facts hold, stable sets generalize sets of
density 1. But there are also properties of sets of density 1, which stable resp. persistent sets
do not share in general (cf. Section . For example, the intersection of two sets of density
one again has density one, but the intersection of two persistent sets can be empty. A further
difference is that if dx(S) = 1, then there are infinitely many rational primes p invertible on
Spec Ok, s, but one can easily construct persistent sets S such that no rational prime is invertible
on Spec Ok s.

Arithmetic of stable sets

Now we turn to the applications of stable sets in the arithmetic context. Let G be a finite group,
A a G-module and i > 0. Following Jannsen |Ja|, we define the group H (G, A) by exactness of
the sequence:

0— HL(G,A) - H(G,A) > [[ H(H,A).

HSG
cyclic

Then we have the following Hasse principle for stable sets, which is the key result of Section [
Theorem Let K be a number field, T a set of primes of K and £ /K a Galois extension
with Galois group G. Let A be a finite G-module. Assume that T is p-stable for L /K, where

p is the smallest prime divisor of $A. Let L be a p-stabilizing field for T for /K. Write
A= Gy IfHL(A,A) = 0, then

(¥ /L,T; A) = 0.

16



Here is an outline of the proof: first one restricts (using p-stability) to the case where A is
trivial G ¢ p-module. Then one can interpret a non-zero element 0 # ¢ € I (Z/L,T; A) as a
non-zero homomorphism ¢: Gg,;, — A such that ker(¢) contains the decomposition groups of
all primes in T'. In particular, if M := Z*"(®) then [M : L] = fim(¢) = p and T € cs(M/K).
This implies

53i(T) = [M : LISL(T n es(M/L)) > por(T),

which is a contradiction to the p-stability property, as M is a subextension of .Z/L.

In particular, this theorem implies for (p-)stable sets all of the classical Hasse principles
holding for sets with Dirichlet density 1 (compare [NSW| chapter IX §1). Using the Hasse
principle for u, and Poitou-Tate duality, we obtain the following version of the Grunwald-Wang
theorem.

Theorem Let K be a number field, S a set of primes of K. Let Ty, T € S be two disjoint
subsets, such that Ty is finite. Let p be a rational prime and r > 0 an integer. Assume ST
1s p-stable for KSUSPUSTJ/K with p-stabilizing field Ly, which is contained in Kg. Then for any
finite Kg/L/Ly, such that we are not in the special case (L,p", S~ (To v T)), the canonical map

H'(GLs. Z/p'Z) > @ H'(%.Z/p'Z)® @ H'(S%,Z/p' )%
peTo(L) peT(L)
is surjective, where Sy S 9, = GK;ep/Lp 1s the inertia subgroup. If we are in the special case
(L,p", S~ (To uT)), then p =2 the cokernel of this map is of order 1 or 2.

In particular, if we assume 0x(S) = 1, x(T) = 0, we obtain [NSW] 9.2.7 as a particular case.
Using certain Hasse principles and Grunwald-Wang theorem, one obtains the following form of
Riemann’s existence theorem for stable sets.

Theorem Let K be a number field, p a rational prime, T 2 S 2 R sets of primes of
K. Assume that R is finite and S is p-stable for Kros,0s,, /K and has a p-stabilizing extension
contained in K&(p). Then the natural map

R ~
: % G « % I Nyl
P15 R OEE() Ko@)/ K * oy Ky(p)/Kp Kr(p)/KE(p)

is an isomorphism, where I /K, = GKP(p)/Kgr(p) < Gr,(p)/K, S the inertia subgroup.

P)
When 0 (S) = 1 we obtain the known version of the theorem.

Finally, there is a statement about the (strict) p-cohomological dimension of Gk g and

Gr,s(p), if S satisfies ()" (cf. Corollary [5.15). If K is a p-stabilizing field for S for

Ksus,us.. /K, this statement can be proven directly using all the results above as in [NSW]|
(cf. Theorem and Corollary |4.33)). The general case follows from the algebraic K(m, 1)-

property.

The properties “p-stable” and ()5t2P

P
example, let Z/K be a Galois extension, A a trivial p-primary G g x-module and T" a set of

are still too strong for such arithmetic results. For

primes of K. Then to obtain the very basic Hasse principle Il (.Z/K, T; A) = 0, one can require
(instead of p-stability of T for /K with p-stabilizing field K, as in Theorem the weaker
condition that there is a subset Ty € T' with 0.(7p) > 0 in the tower £ /K and such that there
are no subextensions .%/L'/L/K with %LL'((;;?)) = p. Thus we can pose the following question.

17



Question What is the most general condition, for which the same results as for p-stable sets

resp. sets satisfying (*);tab hold? Are there counterexamples to the Grunwald-Wang theorem or

even to the Riemann’s existence theorem, among the sets, which do not satisfy this condition?

Concerning this, we conjecture the following two things. Firstly, it is possible to find examples

stab
p

believe that Riemann’s existence theorem still holds for sets of primes, which are only p-stable
(or even stable?) and do not satisfy (*);tab. Finally, if this last statement would not be true,

of sets of primes, which do not satisfy (#)5?", and for which Grunwald-Wang fails. Secondly, we

and one could also find counterexamples to Riemann’s existence theorem, this would possibly
provide examples of curves Spec Ok g which are not K(, 1) for p (cf. Definition .

K(m, 1)-property

For the definitions of the (various) K(, 1)-properties we refer to Definition [5.2] Let

X = Spec Ok 5

with K a number field and S a set of primes of K. The following is well-known:

(i) if 6x(S) = 1, then X is algebraic K(m, 1) and pro-p K(m, 1) for each p,

(ii) if S 25y U Sy, then X is algebraic K(m, 1) for p and pro-p K(m, 1)

(here we assume that either p is odd K is totally imaginary). Furthermore, there is a powerful
recent result of A. Schmidt (cf. [Sch], [Sch2], cf. also [Sch3|) saying the following:

(iii) if p > 2 is a prime, S is arbitrary finite and T is a further arbitrary set of primes of K with
Ik (T') = 1, then one can choose a finite subset Ty < T such that X \ Ty = Spec Ok suT,
is pro-p K(m, 1).

We show the algebraic K(7, 1)-properties for Spec Ok g with S stable.

Theorem Let K be a number field, S 2 Sy a set of primes of K and p a rational prime.
Assume that either p is odd or K is totally imaginary.

(i) Assume that S is p-stable for Kgs,s,/K and has a p-stabilizing extension contained in
Ks(p). Then Spec Ok s is a pro-p K(m,1).

(i) Assume that S is stable and satisfies (*);tab. Then Spec Ok,s is algebraic K(m,1) for p.

In particular, part (i) of this theorem allows to give explicit examples of schemes Spec Ok g
which are algebraic K(m, 1) for all p and such that 0k (S) is arbitrary small. The assumption
that p is odd or K is totally imaginary is done for convenience.

Further, it is natural to ask, whether in the theorem of Schmidt mentioned above, one can
weaken the assumption on 7" from having density 1 to being p-stable for Kg_sg,/K and having
a p-stabilizing extension contained in Kg(p). We plan to treat this question in a later paper.
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Anabelian geometry
Neukirch-Uchida theorem

First we explain the theorem of Neukirch-Uchida (cf. [NSW]| chapter XII §2). Let Ki, Ko be
number fields. Choose algebraic closures K1, Ko and consider the corresponding absolute Galois
groups Gg,, Gg,. Consider the set

Isom(Gg,, Gk,)

of all (topological) isomorphisms of profinite groups and define

Outlsom(Gg,, Gk,) := Isom(Gk,, Gk, )/ Gk,,

where the action of Gg, on Isom(Gg,, Gkg,) is defined by composing with inner automorphisms
of Gg,. Now, Outlsom(Gg,, Gg,) does not depend on the choice of algebraic closures of K, Ko.
Then one has a natural map

OK, Ky Isom(Kq, K1) — Outlsom(Gg,, Gg,),

which is defined as follows: let a: K9 — K; be an isomorphism and let a: Ky — K; be some
extension of « to the algebraic closures. Then g — a~!ga defines an isomorphism Gy, — G, .
Forgetting the choice of @ over a corresponds then to the passage from Isom(Gg,,Gg,) to
Outlsom(Gg,, Gk,).

Theorem 0.2 (cf. [Ne|, [Ne2|, |Uc|). Let Ky, Ky be number fields. Then ¢k, K, is bijective.

This is the theorem of Neukirch-Uchida, which was also independently proven based on results
of Neukirch by Ikeda |Ik| and Iwasawa (unpublished). To prove it, one shows first the following
intermediate statement.

Claim 0.3. If K; is normal over Q and G, = Gg,, then K1 = Ks.

We give an outline of its proof. First, one establishes the local correspondence. Assume an
isomorphism o: Gg, = G, is given. Then there is a bijection

0w, Kyt 2Ky f > YKy, f

of the sets of all non-archimedean primes of K7 and of K5, which respects residue characteristics
and absolute degrees of primes and is compatible with taking open subgroups (more on the
method of proof of the local correspondence is said below). Let then P-1(K/Q) denote the set
of primes of Q, having at least one prime of degree 1 in K. From the local correspondence, one
obtains the following diagram:

cs(K1/Q)

P=1(K1/Q) == P=1(K2/Q)

A posteriori one obtains cs(K2/Q) = P=1(K2/Q), ie., K2/Q is also normal (by Chebotarev
density theorem). Finally, by a classical application of Chebotarev density theorem, the equality

cs(K2/Q)
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cs(K1/Q) = cs(K2/Q) implies K1 = Ko, as Kj, Ko are normal over Q. Also the injectivity of
K, K, (for arbitrary K, Ky) follows as a corollary from (the proof of) the local correspondence.
There are various extensions and generalizations of Neukirch-Uchida theorem:

e The corresponding result in the function field case was proven by Uchida in [Uc2|.

e The result remains true, if one replaces absolute Galois groups by their maximal pro-
solvable quotients ( [Ne2|, [Uc3|).

e The result is still true if one assumes K1, K5 to be infinite fields, which are finitely generated
over their prime fields. This was done by Pop ( |Pol|, |Po2|, [Po3]|, cf. also |Sz|).

e The corresponding result for affine curves over finite fields was shown by Tamagawa ( [Ta]).
Here one considers (instead of K;) the scheme X; = Spec Ok, s,, where K; is a function
field in one variable over a finite field and S; is a finite set of primes, and instead of Gg;
the étale fundamental group m1(X;) = Gg,.s;-

The result of Tamagawa (last one in the above list) for affine curves over finite fields is still out
of reach in the number field case: too little is known about the group 7 (Spec Ok 5) = Gk 505,
where K is a number field and S a finite set of primes of K. The failure of Tamagawa’s proof
in the number field case depends mainly on the lack of techniques: there is no everywhere
unramified extensions of the field of constants, no geometric fundamental group, etc. Also tools
like Grothendieck-Lefschetz trace formula and Weil conjectures are not available.

Neukirch-Uchida for Spec Ok g with S stable

Our aim is to generalize Theorem to the schemes Spec Ok ¢ where K is a number field and
S is stable (and so can have arbitrary small positive Dirichlet density). In this thesis, we only
generalize Claim [0.3] Further, we believe that the whole theorem can be generalized, at least
under an additional technical assumption. To simplify the situation, we consider the following
condition:

Dec(K, S) For every p € S¢, the decomposition group Dy € G g is the full local group

which is satisfied in several cases (cf. the beginning of Section |6.1]), and which is only necessary
to simplify the statement of the theorem (cf. Theorem in the text for the general case).

Theorem Fori = 1,2 let (K;,S;) be a number field and a set of primes of K;, such that
Dec(K;, S;) holds and

e K1 is normal over Q,
e fori=1,2 the set S; is stable and satisfies (*)Zgab for some odd prime ¢;,
e there are two odd rational primes under S1 and S, € 51,

e there is a rational prime under Ss.

If GK17S1 it GK%SQ, then K1 = Ko.
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The first step in the proof is the same as in the proof of Neukirch-Uchida: one establishes a
local correspondence at the boundary, i.e., out of an isomorphism o: Gg, s, = Gk,.s,, one

constructs a bijection

OwK, : S1,7(K1) — S f(K2),

which respects the residue characteristic and the local degree of primes (and is compatible with
taking subgroups). But now the argument finishing the proof above, can not be used anymore:
the sets Sy r (K1), So,r(K2) can simply be too small for an application of Chebotarev as above. An
additional obstruction is that sets of the form Py i (o) (which are in many cases stable) do not
determine the field M in general, i.e., there are examples of pairs (M, o) # (N, 7) of a finite Galois
extension of K together with an element in the Galois group, such that PM/K(U) o) PN/K(T),
but M # N.

At this point one has to find a new argument, showing that K7 =~ K5 under the assumptions
in the theorem. This argument consists of two parts and is the subject of Sections [6.3] and [6.4]
preceding the proof of Theorem To describe the idea behind this argument, embed the
fields K1 s,, K2 s, into a fixed algebraic closure of Q. Then using the local correspondence at
the boundary and the stability of Sy, one can show the existence of a certain uniform bound
N > 0 (depending on Kj, S;), such that if K; g, /M;/K; is a (not necessary finite) subextension,
which is normal over Q and Ms is a subextension corresponding to M; via the isomorphism
o: Gg,.s;, — Grk,,s,, then one has [M;y : My n Ms] < N. Using this bound for the extension
M := K1 s,(p), where p can be one of the primes lying under S, one can show that K € Ko.
Finally, using the fact that there is a rational prime under Sy, one shows [K; : Q] = [K2 : Q],
and hence K = Kos.

Anabelian properties of G ¢ with S finite

We consider first the birational case (the case of S stable is similar) and review briefly the local
correspondence, as needed for the proof of Neukirch-Uchida. Let K be a number field, Gg its
absolute Galois group. One shows that if H € G is a closed subgroup with H =~ G, where k
is a non-archimedean local field of characteristic zero, then there is a unique prime p of K, such
that H < Dﬁf K- In particular, one characterizes the decomposition groups at non-archimedean
primes of K purely group-theoretically as the set of all closed subgroups H € Gg, which are
maximal with the following property:

e H =~ G, where k is a non-archimedean local field of characteristic zero

This property is clearly invariant under topological isomorphisms and one obtains the local
correspondence as a corollary from this description.

Now, assume S is finite. Then the use of similar techniques leads only to weaker results. In
particular, no general Hasse principle for III? (with constant coefficients) is known, and one can
not show that a closed subgroup H < Gg g, such that H =~ G, with x non-archimedean local
field of characteristic zero, must be contained in a decomposition group Dj ¢, /i- But everything
one has to do, to obtain such a description, is to give a bit more information. For example, if one
has given the group Gk s together with the p-part of the cyclotomic character xp: Gk s — Zy,
where p is such that S, U S S S, then one can characterize the decomposition subgroups
at primes in Sy only in terms of the group theory of Gy s and x;. This is analogous in the
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geometric setup to the situation relative to a field k: one considerﬂ not simply the fundamental
group 71 (X) of a k-scheme X, but the pair

ﬂl(Y), Gk—>out(7T1(X))

consisting of the geometric fundamental group m1(X) together with the corresponding outer

Galois representation G — Out(71(X)), or which is equivalent, the fundamental group sequence

1->m(X) > m(X) > G,—1

of X/k. In particular, if k is finite, then the projection m1(X) — Gy describes the cyclotomic
character. This explains the motivation for the following main result of Section [2 However, the
Isom-form of the Anabelian Conjecture for curves over finite fields, proven by Tamagawa, is an
absolute result. In particular, the outer representation is encoded in the group theory of m (X).

Theorem Let K be a number field, S 2 So a finite set of primes. Assume at least two
rational primes lie in Of ¢, and p is one of them. Assume (Gg. g,p) are given. The knowledge
of one of the following extra structures is equivalent to any other:

(i) The embeddings v5: Dy — G g for p e S;.
(i1) The cyclotomic p-character xp: U — Zy on some open U S Gk g.
(i11) For all open U € Gk g with totally imaginary fized field, the group Clg(U).
(i11)" For all open U S G g with totally imaginary fized field, the number §Clg(U)/p.
(iv) For all open U < Gg,g, the number §S(U).

Assume Dec(K,S) holds. Then the knowledge of the above is also equivalent to the knowledge
of the following:

(i1)” The cyclotomic character on some open subgroup U < Gg,s.

This theorem allows in particular to state a local correspondence at the boundary for an iso-
morphism o: Gg, s, = Gk,.s,, which satisfies x1, = X2, 0 0. However, such a correspondence
is by no means so powerful as the local correspondences in the birational resp. stable cases are,
since S; is here only a finite set.
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Notation

Our notation will essentially coincide with the notation of [NSW|. There will be some minor
differences, explained in the context. Here we collect all important notations, used in this work.
First we have the following group-theoretical notations. Let G be a profinite group, H € G a
closed subgroup and p a rational prime.

e (), denotes a pro-p-Sylow subgroup of G

e G(p) denotes the maximal pro-p-quotient of G

e G denotes the maximal solvable quotient of G

e C(0;G) denotes the conjugacy class of an element o in G

e Ng(H) is the normalizer of H in G.
Assume G is finite.

e my = m% denotes the character of the G-representation Indg 1. It is a (Z-valued) class
function on G.

Let L be any field. We have the following Galois-theoretic notations.

e Gyyyp is the Galois group of a Galois extension of fields M /L

e L(p)/L is the maximal pro-p-extension of L

Usually we will denote by K a number field, i.e., a finite extension of Q. We fix an algebraic
closure K of K and consider all extensions of K to be contained in K. Let S, R be sets of primes
of K.

o Kg/K is the maximal extension of K unramified outside S

e Gs = Gg,g is the Galois group of Kg/K

e Kg(p)/K is the maximal pro-p-extension of K, contained in Kg/K

e Gg(p) = Gg s(p) is the Galois group of Kg(p)/K

e K g is the maximal extension of K unramified outside S and completely split in R
o K g(p) is the maximal pro-p extension of K, contained in K é«l

e if L/K is a Galois extension, p a prime of L, then Dy = Dj1/x S Gk denotes the
decomposition group of p. If p = p|x, the choice of p over p is unimportant and no
confusion is possible, we also will write Dy resp. D, 1/ instead of Dy resp. Dp 1/

e K" is the maximal unramified extension of the local field K}, for p a prime of K
e &, denotes the absolute Galois group of the local field K

e 7, C %, is the inertia subgroup
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Further, we have the following notations concerning sets of primes of K. Let S be a set of
primes of K (it can be either finite or infinite and contain non-archimedean primes as well as

archimedean).
e S, = Sp(K) is the set of primes of K lying over a rational prime p
® YK, YK f, S = So(K) is the set of all resp. all finite, resp. all archimedean primes of K
o Sp:=5\ 5%

e If S < ¥k and L/K is an algebraic extension, Sy, is the preimage of S under the restriction
Y1 — Y. We write sometimes S(L) or, if L is clear from the context, simply S, instead
of Sr.

e If M/K is a finite Galois extension and o € G/, we have the Chebotarev set
Py (o) = {p € Lk : p is unramified in M /K and (p, M/K) = C(o;Gp/k)},

where (p, M /K) denotes the conjugacy class of Frobenius elements corresponding to primes
of M lying over p.

e For any finite extension L/K we define:

P(L/K) := {peXr:p is unramified and has degree one over K}
cs(L/K) := {p€ Xg: pis completely split in L}
Ram(L/K) := {pe Xk:p isramified in L/K },

in particular, if L9% /K denotes the normal closure of L over K, then cs(L/K) = cs(L9"/K) =
PLgal/K(l).
e Oy is the Dirichlet density defined on suitable subsets of ¥

e Let T be a further set of primes of K. Then we define

SST & 6(S\T)=0
ST & (S<T)and (T <S9).

By a local field we usually mean a non-archimedean local field.
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Part 1
The group Gg with S finite






1 Intersections of decomposition subgroups

1.1 Overview

The goal of the present section is to study the intersections of decomposition subgroups of points
inside arithmetic fundamental groups. In the birational case, there is a well-known result by
F.K. Schmidt, which we give here together with a corollary:

Theorem 1.1. ( [NSW] 12.1.8 ) Let K be a global field and p, q two different primes of K.
Then Dy n Dy =1 in Gg.

This result can be applied to anabelian geometry: in fact, it provides the starting point to
Neukirch’s proof of a “local correspondence”, which is a functorial bijection between primes of
two global fields K7 and K», constructed out of a continuous isomorphism of the corresponding
absolute Galois groups. Technically speaking, one needs only the following corollary:

Corollary 1.2. (c¢f. [NSW] 12.1.4 )
(i) For all open subgroups H < Dy, one has Na, (H) S Ds.
(i) The intersection of two distinct decomposition subgroups is not open in each of them.

Proof of the corollary. (ii) follows from Theorem For (i), let x € Ng,(H), then H =
cHx™! C xDﬁx_l = D,p, hence H € D, n Dj is non-trivial, hence zp = p, i.e., x € Dj. O

If one changes from the birational setting to the arithmetic one, i.e., consider the group
Gg,s = m1(Spec Ok 5), with S 2 Sy, some finite set of primes, an analog of Theorem 1s still
unknown. But for an application to anabelian geometry (more precise: to obtain at least a local
correspondence at the boundary, i.e., for primes in S), it is enough to have a corollary as above.
It is possible to obtain such a result using only the maximal solvable quotient of Gg s and some
class field theory. This is the content of Section

In Section we study some easy properties and introduce a shortcut for the notion of
non-abelian pro-p Demushkin groups of rank 2. We call them groups of p-decomposition type. In
Section we consider the intersection of decomposition subgroups at primes outside S (“good”
primes). We can not give any definite statement about the intersection of Dy and Dj for any
p and q. But if p is given, there is, under very mild assumptions, a set of primes of Dirichlet
density 1, such that if q is in this set, Dy n D5 € Dy is not open.

1.2 Groups of p-decomposition type

One of the most frequently used objects in our investigations will be the p-Sylow subgroup of an
absolute Galois group of a non-archimedean local field with residue characteristic # p. Such a
group has a very special and easy structure: it is a non-abelian pro-p-Demushkin group of rank
two. To have a shortcut, we define:

Definition 1.3. A group of p-decomposition type is a non-abelian pro-p Demushkin group of
rank 2.

Thus a group of p-decomposition type is of the form Z, x Z, with Z, — Aut(Z,) = Z;
injective (this follows from [NSW| 3.9.9, 3.9.11). We need a description of all closed subgroups
of groups of p-decomposition type:
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Lemma 1.4. Let H be a group of p-decomposition type.
(1) A non-trivial closed subgroup of H is either isomorphic to Z;, or is of p-decomposition type.
(i) The open subgroups of H are exactly the subgroups of p-decomposition type.

(ii) H has a unique mazximal closed normal pro-cyclic subgroup, denoted H,. It is also the
unique closed normal subgroup, such that H/H, is infinite pro-cyclic.

(i) If N € H is open, then N, = N n H,,.

Proof. (i) + (ii): Obviously a closed subgroup of H, which is isomorphic to Z,, can not be
open. Assume now, N € H is a non-trivial closed subgroup, which is not isomorphic to Z,. We
have to show that it is open and of p-decomposition type. Let H, << H be a normal subgroup
of H, such that H, @ H/H, = Z,. If N n H, would be trivial, then N would inject into
H/H, =~ Z,, which is impossible due to our assumption. Thus N n H, < H,, is open, and
isomorphic to Z,. Consider the inclusion N/(N n H,) — H/H, =~ Z,. Since N # N n H,
(otherwise N = N n H, ~Z,), N/(N n H,) is a non-trivial, hence open and isomorphic to Z,,
subgroup of H/H,,. We have the following diagram with exact rows:

l1—NnH,—N—>N/NnH,——1

[

1 H, H H/H, ——1,
which produces the following equation of supernatural numbers:

(H:N)=(H/H,: N/(N ~ Hy))(Hy: N ~ Hy,)

Since both numbers on the right side are finite, also (H : N) is finite, i.e., N is open in H. Now,
N n H,, and N/N n H,, are both isomorphic to Z,. In particular, the upper sequence is split. It
remains to show that IV is not abelian. Otherwise we would have N = 7Z,, x Z,, and scd,,(IN) = 3.
But scd,(H) = 2 and scd,(N) < scd,(H). This leads to a contradiction.

(iii): Let Hy,, be as above. Assume Z, =~ H; < H is normal and Hy & H,. Then

Hl/(Hl N Hn) —> H/H =~ Zp,

ie., HH n H, =1. Now H,, H; are two normal subgroups of H with trivial intersection, i.e.,
H, x Hy € H. But H, x Hy £ Z, is not of p-decomposition type. This is a contradiction to
(i). Hence H,, is the unique maximal normal closed pro-cyclic subgroup of H.

Assume now, Hy< H is normal with H/Hy =~ Z, and Hy P H,,. As H,,/HynH,, — H/H; =~
Zy, we get Hp, n Hy = 1. The same reasoning as above gives a contradiction. Thus Hy 2 H,.
Then Hy = H,, follows easily.

(iv): Since N € H is open, N & H,, and we have an inclusion 1 # N/N n H,, — H/H,,
hence N/N n H, is infinite pro-cyclic. Thus by (iii), N n H, = N,,. O

To a group H of p-decomposition type we can associate a character

xu: H — H/H, — Z, = Aut(H,),

defining the semi-direct product. We use it only in Section below.
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1.3 Approach by class field theory

Let K be a number field and S 2 Sy, a set of primes. For a profinite group H, let H*" denote
the maximal solvable quotient of H.

Arguments in this section make only use of solvable extensions of K, so we work here with
the quotient G%OIV of Gg. Therefore, let K%Ol" denote the corresponding subfield of Kg. If p is
a prime of Kfq‘)l", we write Dy for the decomposition group Dy, Ky S GSSOIV. Throughout this

section, except Corollary p, q will denote primes of K;OIV.

1.3.1 Local situation

Let x be a non-archimedean local field with residue characteristic £ and let ¥, be its absolute
Galois group. It is well-known that the maximal tame quotient of ¥ is

Gt = 7w 2O,

where the action of Z on Z(*) is given by sending the Frobenius element to multiplication by
f%, the cardinality of the residue field. For p # ¢, the p-Sylow subgroups of 4% are of p-
decomposition type. Consider now a p-Sylow subgroup %, , € %,. Since p # £, the composition

tr
g“i?p - gﬁ - g}{

is injective, since the kernel of the second map is a pro-f-subgroup. Thus %, , is isomorphic to
a p-Sylow subgroup of 4% and hence is of p-decomposition type.

1.3.2 Metabelian covers

Lemma 1.5. Assume Sp U S © 5. Let p € (Sp N Sp)(K¥Y) and p = p|lk. Let %, denote the
absolute Galois group of K, and 9%, , a p-Sylow subgroup. Then the composition

¢ Gpp > G > Dp — Gfs?lv

is injective. In particular, any p-Sylow subgroup of Dy is of p-decomposition type.

Proof. Since p ¢ Sy, we have %, , = (%, p/Zp) X Fpp, Where both factors are isomorphic to
Z, and the second is the inertia subgroup. Due to the cyclotomic p-extension, which realizes
the maximal unramified p-extension at p and is unramified outside S, < S, the kernel of ¢ is
contained in .%, ,,. We show ker(¢) = 1, i.e., that for any n > 0, there is a solvable (moreover, this
extension is metabelian) extension of K, which is unramified outside S and whose ramification
degree at p is p” (in fact, if then U,, < G?IV is the corresponding subgroup, then (¢|fp7p)_1(Un) =
p"Ipp S Fpp, and we get ker(¢) < (), Up = 1).

Therefore, let Lo/K be the Hilbert class field of K and set L := LoK((pn). This is an abelian
extension of K, unramified outside S,,. The ideal p is on the one side unramified in L, and on
the other side principal (being principal already in Lg). Thus we can write

pOL = (€) = p1p2...pr,

with € € O, and p; unequal prime ideals of Or. We can assume that p|;, = p;. Since p € S, we
have € € Of 4, and the extension L(e'/?") is unramified outside Spu Sy € S. But since pqp is
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unramified, one has
vy, (€) = 1,

where vy, denotes the valuation corresponding to py. Thus the local extension Ly, (e/P") /Ly, is
tamely ramified of degree p”. Finally, since L/K and L(e"/?")/L are abelian (the second is Galois,
since pyn < L), the successive extension L(e'/P")/L/K is metabelian and hence solvable. O

&
K&Y,S~{p.a}
Choose some p-Sylow subgroups Dp,, S Dy resp. Dy, © Dg. Then Dpy, n Dy, is not open in

Proposition 1.6. Let p # q € Sp(K¥Y), such that there is a rational prime p € O

Dg . In particular, Dy n Dy is not open in Dg.

Proof. By Lemma D; p, resp. Dy, are groups of p-decomposition type. Let p = p|k, q = q|x.
By going up to a finite extension, we can assume p # q. Observe that the extension constructed
in the proof of the Lemma is Galois and unramified in q, as g ¢ S, U {p}. Thusif 1., < D.,
denotes the corresponding inertia subgroup, we have I, n I3, = 1.

Now assume Dp;, N Dy, © Dp ) is open. The second group is of p-decomposition type, hence
the first also is (Lemmal[l.4(ii)). Hence, again by Lemma [1.4]ii), the inclusion D5, Dgp S Dy p
is also open. The maximal normal pro-cyclic subgroup of D.,, is I.,. Thus by Lemma (iv)
applied to the both inclusions, the maximal normal pro-cyclic subgroup of D5, n Dy, is equal to
I, N Dy, and to Dy ) n I, simultaneously, i.e., these two intersections are equal. This implies
Dg, n Iy = I5p n Iy, = 1. But this group, being the maximal normal pro-cyclic subgroup of
a group of p-decomposition type must be isomorphic to Z,. This is a contradiction.

Finally, if Dy n Dg S D would be open, then also Dy, n D5 S Dj . But Dy, n Dyg is a
pro-p-subgroup of Dj, hence contained in a p-Sylow subgroup D%,p of it. Thus the intersection
Dgp N D%’p = D n D3 would also be open in Dy, which contradicts the already proven part
of the proposition. O

From this we obtain the following analog of Corollary for G%OIV:
Corollary 1.7.

(i) Ifpe Ok g.p € (5S¢~ S, KEY) and H € Dy a closed subgroup, such that H~Dg,, S Dy,
is open for some p-Sylow subgroup Dp, < Dp, then NGSSOIV(H) c D;.

(ii) Assume that at least three rational primes lie in O g. Then the intersection of two distinct

decomposition subgroups in GZ«OIV of primes in Sf(K§°1V) is not open in each of them.

Proof. (i): Let @ € Nggow(H). Then H = xHz ' € 2Dz~ = Dyp. Thus Dp N Dop 2 H
contains an open subgroup of a p-Sylow subgroup of Dj. Proposition implies xp = p, or
equivalently, x € Dg.

(ii): This follows directly from Proposition since the condition posed there is automati-
cally satisfied. O

Now consider the whole group Gg. All arguments from above (in particular the lemma and
the proposition) also apply, if one replaces G%OIV by Gg. Thus we get (in the following Ds < Gg
means again a decomposition group inside Gg):
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Corollary 1.8.

(i) If p€ Ok 5,0 € (Sy~\Sp)(Ks) and H Dy a closed subgroup, such that H n Dp;, S Dp
is open for some p-Sylow subgroup Dj,  Dj, then Ngg(H) < Ds.

(11) Assume that at least two rational primes lie in OF . Then the intersection of two distinct
decomposition subgroups in Gg of primes in Sf(Kg) is not open in each of them.

Proof. (i) is done as above. (ii): By Proposition the only case to consider, is S, U Sy < S,
p e Sy, qe S with p # ¢ (and there is no further prime to compare Dj with Dg). Assume
Ds n Dz < Dj is open. But by [CC| Theorem 5.1 both groups Dy and Dy are the full local
absolute Galois groups, hence also the open subgroup Dy n Dy of Dj is. Hence Dy n D5 contains
free pro-p-subgroups of any finite rank. But Dg does not, and we get a contradiction. O

1.4 Intersection of decomposition subgroups at good primes

Let K be a number field, and S 2 S, U Sy a finite set of primes. Arguments in this section
make only use of abelian p-extensions, so we work with ng’p instead of Gg. Let M = Kgb’p
denote the corresponding subfield of Kg. For short, we write Dy for Dy /x. We consider the
intersections of decomposition subgroups at primes outside S. Observe first, that if p € Xa; S,
then we have natural surjections:

Z%Dﬁ—»Zp.

Indeed, the first surjection holds, since p|x is unramified with finite residue field and the second
due to the assumption on S and the existence of the cyclotomic p-extension. We will use the
infinite version of the Chebotarev density theorem to prove the following result (in the following
dk denotes the Dirichlet density on K). Let Dy, € Dy denote the p-Sylow subgroup.

Proposition 1.9. Let p be a rational prime, S a finite set of primes of K with S, U S S S.
Assume that K is not totally real. Letp e Xpr NS and p = p|i. Then there is a set T, € X \ S
with 6 (Ty) = 1, such that for all q € T, and all extensions q of q to M, the following holds:

Dpr M Dq7p = 1'
In particular, the intersection of Dy and Dy is not open in each of them.

Proof. Since K is not totally real, the number of complex embeddings of K is ro(K) > 1 and
hence rkz, ng’p > 2 by [NSW| 10.3.20. Let H = Z2 be some quotient of sz’p, such that
p is not completely split in L, the subfield of M corresponding to H (such quotient exists
due to the cyclotomic extension). Since H is torsion-free, this implies that the composition
D;p — ng’p — H is injective, i.e., Djp — Dj /x is an isomorphism.

We have Z;, = D 1/ © H. Consider H — H®g, Qp, and let N := H " (Dj 1/x ®z,Qp), the
intersection taken in H ®z, Q. Then NN being compact and closed subgroup of Dj 1/x ®z, Q) =
Qp is isomorphic to Z,. Let u be the Haar measure on H, such that u(H) = 1. Then pu(N) =0
and hence u(H ~N) = 1 and u(¢(H n N)) = u(N) = 0. By Chebotarev density theorem for
infinite extensions, the set of primes T}, of K, lying outside S, whose Frobenius lies in H ~ N
has density 1. Then T}, satisfies the requirements of the proposition. ]
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2 Anabelian properties of Gg with S finite

In this section we study which properties of the field K and the set S of primes of K can be
reconstructed from the group Gg, if with S finite. Essentially, we find pieces of information,
such that the knowledge of each of them, together with the knowledge of the profinite group
Gg, determine the other ones.

2.1 Overview

Let K be a number field, S 2 Sy a set of primes of K. We want to study, which invariants of K
can be reconstructed from the group Gg. In Section we recall briefly, what can be done in
the local case. Then, in Section [2.3] we recover, under the assumption of Leopoldt’s conjecture
for K and all primes, the degree of K/Q, the number of real and complex embeddings, and the
set Z n O g of integers invertible in Ok g, if this set is contains at least one rational prime.
In Sections we want to study, how the decomposition subgroups at primes in S lie in
Gg. Roughly speaking, it turns out that it is equivalent to know one of the following data: the
embeddings (D — Gs)ﬁesf; the cyclotomic character on Gg; the S-class number of all finite
subfields Kg/L/K; the number $S(L) for all L. For the precise result, see Theorem Of
all these quantities, the numbers $S(L) seem to be the most accessible ones. In Section [2.10)
we show how one can reconstruct them from the group Gg, assuming the finiteness of certain
Shafarevich groups. The proof of Theorem is easier, if one assumes the following condition:

Dec(K, S) For every p € Sy, the decomposition group Dy S Gg is the full local group

on K and S, and requires some additional work in the general case. Further, in the Section [2.11]
we show an idea, how one can use the Dedekind zeta function to obtain some information on the
location in Gg of the decomposition groups of points of Spec Ok s (that is, primes of K lying
outside S). Throughout this section we use the following notation:

e ng,r1,r degree, the number of real resp. complex embeddings of K/Q,
® Xp: Gg — Zj the cyclotomic p-character for p € OF .

We write Clg(U),#S(U), etc. instead of Clg(L),#S(L), etc., if U € Gg is an open sub-
group with L = (Kg)V. We will sometimes assume that there are at least two rational primes
p1,p2 € Ok g, Le., that Sy, U Sp, © S. This assumption implies by |CC| Theorem 5.1, that the
decomposition groups in Gg of primes in S,, U Sy, are the full local groups. It does not imply
in general that this holds for all primes in S (but it still does for primes lying in the maximal
subset of S, defined over a totally real subfield: cf. [CC|] Remark 5.3(i)).

A local field means always a non-archimedean local field.

2.2 Warm-up: local invariants

In this subsection we recall the anabelian properties of local fields, i.e., which invariants of a
local field k can be recovered from its absolute Galois group G,. This material is also covered
by [NSW|. A good survey can be found in [SchS|. Local fields are not anabelian (cf. [NSW]|
Remark before 12.2.7). This means that one can construct two different local fields k 2 " with
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isomorphic absolute Galois groups: G, = G,/. Nevertheless, the following data can be recovered
from G,:

e the characteristic char

e the characteristic char & of the residue field & of x

e the cardinality & of &

e the absolute degree [k : Qp], if char(x) = 0, char(k) = p
e the inertia and the wild inertia subgroups V, < I, € G,
e the Frobenius class Frob, € G, /I,

e the multiplicative group A* of any finite extension \/k

e the cyclotomic character xcyc on Gg.

These invariants can be recovered using the cohomology with finite coefficients of G, the
local reciprocity law and the structure of the tame quotient of G,. Let us write

hi(Gy) = dimg, H(Gy, Z/pZ).

We have the following standard computations, where § = 1 if i, € k and 6 = 0 otherwise:

146 if i = 1, char(g) # p,
hi(Gy) = 1+6+[k:Qy ifi=1,char(k)=pand char(k) =0,
! 0 if i = 1, char(k) = p,
0 if i = 2.

Hence the characteristic of & equals 0, if h),(G,) < oo for all p and equals p, if hy(G) = oo (this
p is then necessarily unique). The residue characteristic of x is the unique prime p, such that
the set {h)(U) : U < G, open} is unbounded. We denote it by p in what follows. Further, the
norm residue symbol defines an exact sequence:

(2.1) 0—k* > G 5 7/7 — 1.
Let (p') denote the prime-to-p completion. Since Z/Z is uniquely divisible, we have

R* x> /J,(Iﬁ?)(p,) = (Fi*)glgr) = (Gib)(p)

tor

ie., fk = ﬁ(GZb)Ef;;) + 1. If k is p-adic, we obtain the absolute degree as the negative of the
Euler characteristic of Z/pZ: x(Gk,Z/pZ) = —[k : Qp]. The above argument also determines
the cardinality of the residue field of any finite separable extension of k, corresponding to an
(")

tor
Iy = ﬂ U7
U
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open subgroup U € G,. Let us write gy := (U??);?) + 1. We obtain the inertia subgroup as



where the intersection is taken over all U € G, open with qéi":U) = qu, and the wild inertia

subgroup V,; as the p-Sylow subgroup of I,,. Now it is a well-known fact, that as G, /I,-modules,
we have I,/V, = Z(J"')(l)7 where 1 denotes the first Tate twist. Thus by injectivity of the
cyclotomic character, Frob,, € Gy /I, is the unique element acting on I,,/V, via multiplication
with gg,.. Finally, the sequence determines k* as the preimage of the discrete subgroup
generated by Frob, under the projection Gib — Gy /I, = Gg. Since the same can be done for any
finite Galois extension of x in a functorial and Gg-equivariant way, this also determines the G-
module (k°P)*. In particular, this gives also the action of G, on its torsion pu(k*P) = (k5P)f ..
This determines the cyclotomic character on Gy.

Further we have a nice lemma, proven by Neukirch (cf. [NSW]| proof of 12.1.9).

Lemma 2.1. Let L, M be two local fields with L p-adic, and assume an injection G, € Gy is
given. Then M is p-adic too, and Gy, is of finite index in Gpr. Further [M: Qp| < [L: Qp].

Proof. Since L is p-adic, we have c¢dy(Gr) = 2 for all primes ¢, and therefore cdy(Gys) =
cde(Gpr) = 2 for all £ by [NSW]| 3.3.5. Hence by [NSW] 6.1.3, char M = 0. Since Gy 2 G,
contains pro-p-subgroups of any finite rank, M is p-adic. Further, for any prime ¢, we have
(*° {|Gp: Gr]. In fact, if this would not be the case, Lemma [2.2) would imply 2 = ¢d,(Gp) <
cde(Gar) = 2, a contradiction.

Assume G € Gy is not open. Let G, € U € Gy be open in Gy, with p1 (U : Gp) (since
p® 1 (G : Gr), there is a Uy € Gy open, such that this holds for all G, € U € Up). Then the
restriction HY(U, Z/pZ) — H'(GL,Z/pZ) is injective. But as the second group is finite and the
order of the first tends to infinity with (G, : U), this leads to a contradiction. Thus Gy € Gy
is open.

Finally, let M'/M be the finite extension corresponding to the subgroup G, € Gy;. Then

[M: Qp] < [M': Q| = —x(GL,Z/pZ) = [L: Qp). O

Lemma 2.2. (c¢f. Ezercise 8 in [NSW] III §7) Let G be a Poincaré group at p and H < G a
closed subgroup. Assume that p*|(G : H). Then cd,H < cd,G.

Proof. Let n := c¢d,G and let I be the dualizing module of G. To show that cd,H < n, it is
enough to show that for any finite H-module A with pA = 0 one has H*(H, A) = 0. Let A be
such a module. There is an open subgroup H < Uy € G, such that A lifts to a Uy-module. Then

HY(H,A) = H( lim U,A)
HcUCUg
= lim  HY(U,A)
HcUCUp,res
= limp  H"(G,Ind{j A)
HcU<Uy,res
= lim  H%G,Hom(Indg A,T))¥
HcUcUy,corY
-~ liy  H(U,Hom(A,I))"
HcUcUy,corY

the second to last equality being true, since res is dual to cor with respect to the duality pairing.
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Now I is isomorphic to Q,/Z, as an abelian group, hence Hom(A, I) is still finite. Thus it is
enough to show that if M is a finite Uy-module killed by p, then

lim MY =0.

HcUcUgp,corV

U, such that MY = MH for all
Uy, there isa H € V € U with

Since M is finite, we can choose an open H < U;
H c U € U;. But by our assumption, for any H € U
p|(U : V). Then

<
-
corg:NU/V:MV—)MU a— Z go

is the zero map, since MV = MV and in particular deU/V ga = (U : V)a = 0. Thus also
(cor¥)V is the zero map and the claim follows.

O]

2.3 Recovering some global invariants under Leopoldt

Proposition 2.3. Let S be a finite set of primes of K. Assume the Leopoldt conjecture is true
for K and for all rational primes. Assume S, U Se S S for at least one rational prime p. Then
Gg determines the set N(S) := Z n Of g, the degree n of K/Q and the numbers r1,72 of real
resp. complex embeddings of K.

Proof. First we show that Gg determines the number ro = r9(K) of complex embeddings of
K and the set N(S). For any rational prime p consider the number 7(p) := rkz, ng’p. The
Leopoldt conjecture says that ro + 1 = r(p) if S, U S © S. If S, & 5, then at least the
cyclotomic Zy-extension is not contained in Kg/K, thus in this case

r(p) = rkz, ng’p <r1kz, Ggggp =ry+ 1.

Since S, < S for at least one p, we obtain ry = max,{r(p)} — 1, and a prime lies in N(9) if and
only if r(p) is maximal.

Now it remains to recover n and r; from Gg. Once n is known, r; can be recovered as
n — 2ro. To recover n, observe that if K is totally imaginary, n = 2ry can be recovered together
with 75. We find an open subgroup U  Gg such that (Kg)Y is totally imaginary. Take a prime
p e N(S). Let 7 : Gg — ng be the natural projection, and set

U:=nY(im([(p— p]: GP — GP))

(we take (p—1)p only to cover the case p = 2: for all other primes (p—1) would be enough). Then
U is open in Gg. Indeed, by class field theory ( [NSW]| 8.3.21(ii)), the group ng is topologically
finitely generated, thus the cokernel of the multiplication with (p — 1)p on it is finite, and hence
im(G2P 22, Gaby ¢ Gab is open.

Let L be the subfield of Kg fixed by U. Then L contains every abelian subextension of
Ks/K of degree dividing (p — 1)p. In particular, L contains the p*-roots of unity, since they are
contained in Kg. Hence L is totally imaginary and [L : Q] = 2r2(L) can be recovered as above.
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Therefore
[L: Q]
(Gs:U)

can also be recovered from Gg. O

n=|K:Q|=

Remark 2.4. Observe that once a prime p € Z n Of 5 is known, one obtains rp(K) as the
negative of the Euler characteristic —x(Gg,Z/pZ) ( INSW]|, 8.7.5) and n(K),r1(K) as in the
proof, without assuming Leopoldt.

2.4 The result

Assume the group Gg is given. Then it seems not to be possible in a direct way, still assuming
Dec(K,S) (cf. Section , to extract out of Gg the decomposition subgroups of the primes in
S¢. The Brauer group argument of Neukirch (cf. [NSW| 12.1.9) fails because of the S-class group
obstruction to the Hasse principle. But with some extra pieces of information, the decomposition
subgroups at Sy can be recovered. Moreover, it turns out to be equivalent to give certain extra
pieces of information in addition to the profinite group Gg. This is the content of the following
theorem.

Theorem 2.5. Let K be a number field, S 2 S« a finite set of primes. Assume at least two
rational primes lie in Of g, and p is one of them. Assume (Gg,p) are given. The knowledge of
one of the following extra structures is equivalent to any other:

(1) The embeddings v5: Dy — Gg for pe Sy.
(i1) The cyclotomic p-character xp: U — Z,, on some open U < Gg.
(iii) For all open U S Gg with totally imaginary fized field, the group Clg(U).
(#ii)’ For all open U < Gg with totally imaginary fized field, the number §Clg(U)/p.
(iv) For all open U < Gg, the number §S(U).

Assume Dec(K,S) holds. Then the knowledge of the above is also equivalent to the knowledge
of the following:

(ii)” The cyclotomic character on some open subgroup U < Gg.

We will prove Theorem in the following sections. The plan is as follows: in Section [2.5
we prove some technical lemmas. In Sections [2.6] 2.7 we prove the theorem under the condition
Dec(K, S). In Section we give the argument needed in the general case. During the proof
of the theorem we will use the notations (x) v (y) resp. (x) < (y) for (x),(y) being from
the theorem. They will have the following meaning: if the data in (x) are known, then we can
deduce the data in (y) from them resp. the knowledge of (x) and (y) is equivalent.

Remarks 2.6.

(a) By Remark the datum (Gg,p) with p € Ok s determines the numbers
nK,Tl(K),T‘Q(K).
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(b)

(f)

In the arithmetic situation, to give Gg together with the cyclotomic character, corresponds
in the geometric situation over a finite field, in some sense, to give the fundamental group
of a curve together with the attached outer Galois representation.

If one of the data in the theorem is determined with respect to an open subgroup Uy € Gg,
then it is also determined for Gg. Indeed, it is enough to see this for (i). So, if the
embeddings into Up of the decomposition groups at Sy inside Uy are given, then (using
Corollary ii)) the whole projective system of continuous Gg-sets LjI—nUgUO,U<1Gs S¢(U)
is determined, and one obtains the decomposition groups Dy & Gg as the stabilizers of
points under the action of Gg on it.

It seems to be impossible to obtain the numbers §5¢(U) from the cohomology of Gg and its
subgroups with finite constant coefficients. In fact, let p € N(S), and assume for simplicity
that p, < K and K is totally imaginary if p = 2. Then for any U < Gg open with
corresponding field L, we have the exact sequence:

0 — Cls(L)/p — H*(Gs, Z/pZ) —» P Br(Ly)[p] — Z/pZ — 0,
peS(L)

from which one can obtain only the sum dimp, Cls(L)/p+S¢(L). Each of both terms alone
(determined for every U) would give enough information to reconstruct the decomposition
subgroups.

Of all extra pieces of information in the theorem, the numbers §S(U) seem to be the most
accessible ones. In Section [2.10] we give an approach how to reconstruct the numbers
$S¢(U) for all U < Uy < Gg with Uy small enough, under certain finiteness assumption.
Then remark (c) above allows to reconstruct the numbers §S¢(U) for all U < Gg open,
and the numbers §S,(U) are determined by (Gg,p) by remark (a).

One needs two rational primes in OJ ¢ in the theorem to separate the decomposition

groups inside Gg by Corollary

As a corollary we get the following local correspondence at S-primes.

Corollary 2.7 (Local correspondence at the boundary). For i = 1,2, let K;,S; be a number

field together with a finite set of primes containing S« . Assume that at least two rational primes

lie completely under S;, and assume that one of them, denoted p, lies under both. Let x; , denote

the p-cyclotomic character on G, s,. Let

o GrK1751 ? GK2,S2

be a topological isomorphism, such that x2, 0 0 = x1,p holds. Then for any p1 € S§(Kis,),

there is a unique prime o*(p1) € Sp(Kas,), such that o(Dg,) = Dy« (). This defines a Gk, s, -

equivariant bijection

o*: 51 p(K1,s,) — S2.5(Ka,s,),

which induces compatible bijections

40



oty S1,p(L1) — Sa,5(L2),

for any L1/K finite with corresponding subgroup Uy € G, s, and Uy = o(Uy) with correspond-
ing field Ly. If Dec(K1,S1) holds, oy, preserves the residue characteristic and the absolute
degree of primes.

Moreover, if p is odd and if for i = 1,2, there is an open subgroup U; < Gk, s,, such
that for all characters x: U; — Z,, the group I (U;, Qp/Zp(x)) is finite, then the condition
X2,p 00 = X1,p @5 automatically satisfied.

Proof. Everything except the last statement follows from the theorem. The last statement
follows from Remark [2.6(c) above and Proposition below. O

From now on, and until the end of Section [2.9, we permanently assume that at least two
rational primes lie in O}}}S, and that p denotes one of them.

2.5 Some lemmas

As in [NSW| 12.1.10, we have the following lemma.

Lemma 2.8. Let H € Gg be a closed subgroup, which is isomorphic to the absolute Galois
group of a local field of characteristic 0. Assume that there is an open subgroup Hy of H with
Hy € Dy for some pe S. Then H S Dy.

Proof. Taking the intersection over all H-conjugates of Hy, we can assume Hy to be normal in
H. Now, Hg being an open subgroup of a local absolute Galois group in characteristic 0, is itself
one. By Lemma Hj is thus an open subgroup of Dg. Let now x € H. Then x normalizes
Hy. By Corollary (i), x € Dj. O

Unfortunately, Lemma [2.8] with its easy proof can not be applied to the general case, in
which the condition Dec(K,S) is not assumed to be true. We need a more precise treatment.

Lemma 2.9. Let H € Gg be a closed subgroup of p-decomposition type. Assume that there is
an open subgroup Hy of H with Hy S Dy for some p € Sy. Then H < D.

Proof. Taking the intersection over all conjugates of Hy in H, we can assume Hy to be normal
in H. By Lemma Hj is of p-decomposition type. Since two rational primes lie in O}‘}’ g the
decomposition groups of primes in .S, < S are the full local groups. Hence by Lemmal[2.11} p ¢ S,
Further, Hy is a pro-p-subgroup of Dj, hence contained in a pro-p-Sylow subgroup Dj ;,, which
is again of p-decomposition type, since p ¢ S,. Thus, Hy S Dj,, are both of p-decomposition
type, hence the inclusion is open by Lemma Since H normalizes Hy, Corollary (1) implies
now, that H < Ds. O

Finally, we have to answer the following question: let H € Gg be a subgroup of p-decomposition
type and let D © Gg be the decomposition group of a prime p € S, (which is the full local
group). Can it happen that H € D;? The answer is negative and given in Lemma below.

Lemma 2.10. Assume H,,, H, are two Demushkin pro-p-groups of ranks m,n = 2 respectively.

If there is an inclusion H,, S H,, then it is automatically open and m = (H, : Hy,)(n — 2) + 2.
In particular, m = n.
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Proof. 1t Hy, < H,, is open, then m = (H,, : Hy,)(n — 2) + 2 > n, which is well-known (cf. [De|
or |An| for a purely group-theoretic proof). If H,,, & H,, is not open, then p® divides the index
(H, : H,,) and Lemma implies that cd,H,, < cd,H,, which is absurd, since both numbers
are equal to 2. O

Lemma 2.11. Let p be a rational prime. Let G, be the absolute Galois group of a local field,
H < G a subgroup of p-decomposition type. Then k is not p-adic.

Proof. Suppose & is p-adic. For an open subgroup U of Gy, let U®) denote the maximal pro-p-
quotient of U. First of all, we claim that one can choose H c U < G, with last inclusion open,
such that the image of H in U (®) is not (pro-)cyclic. Indeed, choose an open normal subgroup
V <G, such that H/H n'V is not (pro-)cyclic. Then let U be the preimage under G, — G, /V
of the p-subgroup H/H n'V.

Now, by [NSW] 7.5.11, U®) is either free or a Demushkin group of rank [\ : Q] +2 > 2,
where X is the local field corresponding to U. In both cases UP), being of finite cohomological
dimension, is torsion-free, hence the image of H in U® is torsion-free, hence H embeds into
U® (using Lemma one sees that the kernel of the map H — U® can only be the trivial
subgroup of H). Now, U®) can neither be free: this contradicts cd,(H) = 2, nor a Demushkin
group of rank > 2: this contradicts Lemma All together, we get a contradiction, which
proves the lemma. O

2.6 Cyclotomic character and the decomposition subgroups

Here we prove the equivalences (i) <~ (ii) e~ (ii)’ of Theorem under the condition
Dec(K,S). The direction (ii)’ v (ii) is trivial.

Proof of (i)~ (ii)’. Assume the (15: Dy — Ggs)pes, are given. Since we want to determine
the cyclotomic character only on an open subgroup of Gg, we can assume that K is totally
imaginary, i.e., the decomposition subgroups of archimedean primes are trivial. The cyclotomic
character on Dj is uniquely determined by the full local group Dy (cf. Section . We have
the following exact sequence from class field theory:

(2.2) 0-0kg— [[ D - G¥ - Cls(K) - 0.
peS(K)

The given datum determines this sequence, since it determines the map in the middle. Since
the global cyclotomic character factorizes through G2, it is determined by the local ones on the
open subgroup ker(Gg — Clg(K)) of Gg. O

Finally, (ii) v (i) follows from the next proposition, which characterizes, which subgroups
are the decomposition subgroups of primes in Sy, once the group Gg together with the cyclotomic
p-character x,: U — Zj; on an open U € Gg is given. We prove it, using a modified argument
of Neukirch (cf. [NSW| 12.1.9).

Proposition 2.12. Let H € Gg be a closed subgroup, isomorphic to an absolute Galois group
Gk of a local field k of characteristic 0. The following are equivalent:

(a) There is a prime p € Sy, such that H < Dg.
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(b) There is an open subgroup Hy S H such that xp|mH, is the p-cyclotomic character on H
coming from G.

The prime p in (a) is unique.
Lemma 2.13. Assume the following are given:
e q filtered category I
e foreachiel, a set S;
e for each i — j in I, a map N;j: S; — S; with finite fibres
e for each p € S;, an abelian group A,
e for each pair p € S;,q € Sj, such that i — j and \i;(q) = p, a homomorphism
Myq: Ap = Ag,

such that the collection of maps (Nij)i; and (mpq)p,q are compatible in the obvious way. Then
the natural homomorphism

o: im(P A) — [ (lig 4y)

el peS; i - P=(p;)
Pe!lmI S;
18 1njective.

Proof of Lemma[2.13. For each i € I and P = (p;)jer € liLn] S;i, there are natural homomor-
phisms

@ Ap = Ap, — lim Ay,

peS; P
which induce for each P the homomorphism h'_m)l @pesi Ay — li_II)IP Ap,, which in turn induce
¢. We have to show injectivity. Let a € liﬂiel(@pe& Ap) with ¢(a) = 0. There is an 4, such
that  comes from an element (ap)pes; € Dyes, Ap defined at the level i. As ap = 0 for almost
all p € S;, we can assume that o, = 0 unless p = po, where pg € 5; is arbitrary. We have to
show that there is some j € I with ¢ — j such that the image of (o )pes; in (—Bpesj A, vanishes.
Assume that there is no such j. For each ¢ — j define then the set

Tj(po) := {p € A (po) : mpgp(cpy) # 0} = A (po) € 5,

which is finite since )\;jl(po) is finite and non-empty by our assumption. Then the inverse

limit set LiI_nITj(po) is non-empty, and thus contains an element P. For this P, the image of

ap, in lim Pe(p) Ay, is non-zero by construction, which is a contradiction to the assumption
A\

P(a) = 0. O

Proof of Proposition[2.19 The uniqueness in (a) follows from Lemma and Corollary (ii).

(a) = (b): Assume H < Dj for some p € Sy. By Lemma H is open in Dj. There are
two cyclotomic characters on H: the one is the cyclotomic character of G, and the other is the
restriction of the one on Dj. By the discussion in Section they must coincide. This proves

(b).

43



(b) = (a): By Lemma we can assume that K is totally imaginary. Again by Lemma
it is enough to show that Hy S Dj for some p € S¢. Let x’ be the extension of k corresponding
to Hy € Gg. For 0 < m < n consider the following commutative exact diagram of Gg-modules

(where Of 1= O, o)
0 ppm oy " 0 0

N
0 ppn (o ILANYGY: 0.

Taking the long exact cohomology sequence gives:
0 —=H'(Gs, 0%)/p™ — H*(Gs, pipm) — pmH*(Gs, OF) —=0

|- | |

0 ——H'(Gs, 0%)/p" ——H*(Gs, ppn) —= pnH*(Gs, OF) —0.
Now pmH2(GS, O¢f) is the p™-torsion of the Brauer group, and it embeds into the direct sum of

the p™-torsion of the local Brauer groups at S. Hence the above diagram produces the following,
which again has exact rows:

O —— HI(GS, Oék)/pm —— :[—12((_\‘,‘187 ,Lme) E— @ p'mHQ(Dp, /,me)
peS(K)

pn—m J/

0 — H'(Gs, 0§)/p" —— H*(Gs, pipn) ——= @D  pnH* (D, p1pn).
peS(K)

We pass to the direct limit over all n. Since H'(Gg, O%) = Clg(K) is finite, we have

lig H' (Gs, 0%)/p" = Cls(K) ® Qp/Z; = 0.
Thus we obtain the injection

0 — H(Gs, i) > @ H2(Dy. e,
peS(K)
Now we can do the same for any open subgroup U € Gg, and pass to the direct limit over all
open U containing Hy. Let M denote the fixed field of Hy. By exactness of lim and by Lemma
[2.13 we obtain:

(2.3) 0— H*(Ho, ppe) > [ [ 2Dy xenis p=)-
pesS(M)

By (b), Xp|m, is the cyclotomic character on Hy coming from G,s. Thus H2(Hy, pp=) = Qp/Zp.
From sequence (2.3)), there is a prime p € Sy with H2(D’—,7KS/M,,upw) # 0. As HQ(D@KS/M,,up)
maps surjectively onto the p-torsion of H2(Dﬁ7KS/M, fp> ), We obtain H2(D,37KS/M, tp) # 0. Now,
we can finish the argument as in the original paper of Neukirch. In fact, we show that the prime
p = p|as is indecomposed in Kg/M, i.e., that Hy = Dj rcs/mr € Dp. Therefore, consider an open
subgroup H' € Hj with corresponding field M’. For any open H' € U € Gg with corresponding
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fixed field L, let T, /(U) be the (finite) set of all primes of L lying under a prime p’ € S,(M’).
Then we have the sequence

HQ(Ua iup) - @ H2(Dq,KS/L7 :U’p) -0,
qETp,H’ (U)
which is exact by [NSW]| 9.2.1, since there are still non-archimedean primes in S(L), which do
not enter the index set of the direct sum. Passing to the limit over all open U containing H'
gives the exact sequence:

(2.4) HX(H, pp) > P H2(Dp,7KS/M,,Mp)—>o.
p’eSp (M)

Again, since Y, is the p-cyclotomic character on Hy = G/, we have H*(H', up) = Z/pZ. Further,
Hz(Dp/,KS/M/,up) # 0. In fact, Dy gg/nr 1s conjugate to an open subgroup of Dy ro /. But
since HQ(D,—LKS/M, pp) # 0, also H2(V, up,) # 0 for any open subgroup V < Dj kg /nr (this follows
from [NSW]| 7.1.8 (i),(ii)). Finally, since is exact, there is only one prime lying over p in
any finite extension M’/M. Hence p|ps is indecomposed. O

Corollary 2.14. Assume Dec(K,S) is satisfied. A closed subgroup H € Gg is a decomposition
subgroup of a prime in Sy if and only if H is mazimal with the following two properties:

e H is isomorphic to an absolute Galois group Gy of a local field k of characteristic 0.
o The restriction of the p-part of the cyclotomic character of Gg to H is equal to the p-part

of the cyclotomic character on an open subgroup Ho S H, coming from Gg.

2.7 Class group obstruction and the decomposition subgroups
Here we proof (i) «x» (iii) > (iii)” ¢~ (iv) of Theorem assuming Dec(K,S). The
direction (iii) v (iii)’ is trivial.

Proof of (i) v (iii). Assume the (15: Dy — Gs)pes, are given. Then they are also given for
any open subgroup U € Gg. Let U be such that the corresponding field L is totally imaginary,
i.e., the decomposition groups of archimedean primes are trivial. By class field theory, we obtain
the following exact sequence:

H D;bL — U — Clg(U) — 0.
pes(U)

Thus the group Clg(U) is equal to the quotient of U by the closure of the normal subgroup
generated by the commutator and the images of ¢5 1, for p € S;. O

Proof of (i) v~ (). For any U, §S¢(U) is equal to the number of the U-conjugacy classes of
the subgroups Dy n U and §S,(U) is given by the number of real/complex embeddings, which
is known by the Remark (a). O

Lemma 2.15. Assume p, € K (and py < K if p = 2) in the theorem. Then (iii)” «~~> (iv).
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Proof. Since p, € K, we have for every U the exact sequence
0 — Cls(U)/p — H*(U, Z/pZ) — pH*(U, 0F) — 0, and

dimp, ,H*(U, 0%) = #S¢(U) — 1,

since K is totally imaginary. Thus dimg, H*(U, Z/pZ) + 1 = dimg, Cls(U)/p +§S¢(U). Since the
number on the left is known, the knowledge of one of the summands on the right is equivalent
to the knowledge of the other. O

It remains to prove (iii)’ v (i) and (iv) v (i). Since the knowledge of (i) for Gg is by
Lemma equivalent to the knowledge of (i) for any open U < Gg, we can assume p, < K
(and py € K, if p = 2), i.e., by Lemmam it is enough to prove that (iv) v (i).

Proof of (iv) v (i). We can assume pu, < K (and pg © K, if p = 2). For any open U with
corresponding field L, we can describe the Galois group of the maximal abelian unramified
extension of L, which is completely decomposed in S. By class field theory, it is canonically
isomorphic to Clg(U). In fact, an extension of L, corresponding to an open subgroup V € U is
completely decomposed in S, if and only if S(V) = (U : V)S(U). Observe that such extension
is automatically unramified, since it is unramified outside .S, as all groups are subquotients of
Gg, and also unramified in S, being completely decomposed there. Thus if we set

Vo= [V,

Vcu

where the intersection is taken over all normal open subgroups V' € U, such that
S(V)y=(U:V)SU)

and the quotient U/V is abelian, then U/V =~ Clg(U). Thus (iv) gives us the surjections
U — Clg(U) and in particular the surjections

mpu: U — Clg(U)/p

(notice that (iii)’ contains this information only implicitly!). Furthermore, for V€ U < Gg
open, the map Clg(U) — Clg(V) induced by inclusion on ideals, is encoded in the group theory
as the map induced by the transfer map U2 — V2b,

Proposition 2.16. Let H € Gg be a closed subgroup, isomorphic to an absolute Galois group
Gy of a local field k of characteristic zero. Assume that i, < Kk, K (or us € k, K if p=2). The
following are equivalent:

(a) H < Dj for some p € Sy.
(b) For H the following condition holds:
(*)par For any U € Gg open: H S U = H < ker(m,r: U — Cls(U)/p).

In (a) the prime p is unique.
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Proof. The uniqueness of p follows from Lemma and Corollary (ii).
(a) = (b): Let H € U < Gg with last inclusion open. Consider the commutative diagram:
H——DgnU———[U

N

(Dy nU)? Uab Cls(U)/p.
Since the composition of the maps in the lower row is zero by class field theory,

H < Ds nU S ker(U — Clg(U)/p),

ie., (*)p,m holds.
(b) = (a): Assume now (*), u holds. For any U 2 H open in Gg with corresponding field
L, we have p, © L, and hence I1*(U, Z/pZ) = Cls(U)/p. This gives us the exact sequence:

0 — Cls(U)/p —» H*(U,Z/pZ) > @ H*(Dyxyr,Z/pZ).
pes(U)

Set M = (Kg)" and consider the limit of these sequences over all open U 2 H:

0— liy Cls(U)/p > HX(H,2/pZ) > [[ H*(Dym,Z/pZ),

HcCUcCGg peS(M)
whose exactness follows from Lemma We claim that lim  _ Cls(U)/p = 0. For an
=Ux=bs

open H € U € Gg, let U’ := ker(U — Clg(U)/p). By the S-version of the principle ideal
theorem (cf. e.g. [Ko| Theorem 8.11; the argument is essentially the same as in the proof of the
Hauptidealsatz), the map Clg(U)/p — Clg(U’)/p, induced by inclusion on ideals, is zero. On the
other side, U’ appears in the index set of the limit due to (*), z. Thus lim Cls(U)/p = 0.

—>HcCUcCGg

Now the proof of (b) = (a) can be finished just as in [NSW] 12.1.9 or in Proposition O

Finally, (iv) v (i) follows from the Corollary [L.§|i) and the proposition. O

2.8 The general case

In this subsection we prove Theorem without the additional assumption Dec(K, S). Recall
that in Section We associated to any group H = Zj, x Z,, of p-decomposition type a character

*
p7
the p-cyclotomic character on Gg

xH: H — Z}, which describes the action of the first Z, on the second. Recall that x, denotes

Proposition 2.17. Let H S Gg be a closed subgroup of p-decomposition type. The following
are equivalent:

(a) H < Dj for some p e Sy~ Sp.
(b) For some open subgroup Hy € H, xp|H, = XH,-
If moreover p, < K, then they are also equivalent to

(¢) The condition (*), f (cf. Proposition[2.16) holds for H.

The prime p in (a) is unique.

47



Proof. It H © Dg, Dy with p,q € S¢~\.S), then H & Dj,, D,y for some p-Sylow-subgroups,
which are again of p-decomposition type. Hence by Lemma (ii), the last inclusions are open.
Proposition implies then p = . This proves the uniqueness of p in (a).

(a) = (b): After replacing Gg by an appropriate open subgroup containing H, we can assume
H = Dgp = Zy x Zyp is a p-Sylow subgroup of Dg. Then the first Z, acts on the second as the
unramified quotient on the inertia subgroup, i.e., by the p-cyclotomic character. This means
XH = Xp|H .

(b) = (a): exactly in the same way as in Proposition[2.12] one finds that (b) implies Hy < Dj
for some p € Sy. Then Lemma @ implies H < Dj. Since H is of p-decomposition type and the
groups Dg with q € S}, are the full local groups, Lemma implies p ¢ Sp.

(a) < (c): has the same proof as in Proposition except that now we have to argue
additionally that p ¢ Sp,. This is done as in the proof of (b) = (a).

O

Now we prove Theorem 2.5 (i) v (iii) v (iii)’ and (i) v (iv) work as before.

Proof of (i) v~ (it). Since we want to reconstruct the p-cyclotomic character x;, only on an
open subgroup of Gg, we can assume j, € K and K totally imaginary. Observe that x, on the
local groups Dy with p € S, is determined by the group structure, since Dy is the full local group
in this case (cf. Section . Ifpe Sy~ Sy, then Dy ), — D — Dép) is bijective (Section |1.3.1));
Xp is determined on Dj , (in fact, it is equal to the character associated to the p-decomposition
group D, ,,); and x,, factors through Dy — Dép ). Thus Xp 1s in this case also determined on Dj.
By the same argument as in Section (using the exact sequence ), Xp is thus determined
on an open subgroup of Gg. O

Proof of (ii) v~ (i), (i) v~ (i), (1v) v~ (7). Assume (ii), (iii)’ or (iv) is given. As we know
that the decomposition subgroups of primes over p are the full local groups and as the full local
group determines the residue characteristic, Propositions resp. imply that we can
reconstruct them from the given data.

Let U € Gg be an open (normal) subgroup, small enough, such that the corresponding fixed
field L contains the p-roots of unity and is totally imaginary. By Proposition [2.17] applied to U,
using Corollary (1) if necessary, we can decide, using the given information, whether a closed
subgroup H € U of p-decomposition type is contained in a decomposition subgroup of a prime in
St~ Sp. By Lemma and Lemma the maximal subgroups with this property are exactly
the p-Sylow subgroups of the groups Dj g /;, with p € S¢~\ S,. Thus we have reconstructed the
set

Syl,(U, 8¢\ Sp) = {H € U: H is a p-Sylow-subgroup of Dj g/, with p € Sy \ Sp}.

Now, U acts on this set by conjugation. We have an U-equivariant surjection (U acts trivially
on the right):

Y1 SyL,(U, Sy~ Sp) = (Sp N Sp)(U),

which sends H to the (unique by Proposition|1.6!) prime p|z, such that H € Dj /.- We want
to determine, when two elements have the same image under 9. For H € Syl (U, Sy . .S,) such
that H € Dj i/, 1s a p-Sylow subgroup, consider the restriction map
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resyr: H*(U, Z/pZ) — H*(H, Z/pZ),

which is surjective, being equal to the composition
H(U, Z/pZ) — H*(Dy kg1 Z/pL) = W (H, Z/pZ),

in which the first map is surjective by [NSW| 9.2.1, since §S¢(U) > 1, and the second is an
isomorphism, since p, < L.

Lemma 2.18. Let H,H' € Syl,,(U, Sy~ S,). Then:
Y(H) = (H') < ker(res?) = ker(res¥y).

Proof. Consider the commutative diagram with exact row:
0 —= (U, Z/pZ) —= H*(U, 2/pZ) —= (@es(z) H (Do 2/pL) ¥ —=0

T |

H2(H, Z/p7),
where ¥ = 0 means that we take the subspace of trace zero elements. The diagonal map factors
through the vertical one, since H € Syl,(U, Sy \ Sp). From this sequence we see, that if p =
¥(H), then the kernel of resY, is the extension of the subspace (Dyesr) - (3} H(Dy ko1, Z/PZ)) >~
of the space on the right side by II?(U, Z/pZ). Two such subspaces of H2(U, Z/pZ) correspond-
ing to p resp. p’ are equal if and only if p = p’. This finishes the proof. O

Remark 2.19. The necessity can also be seen in the following way. If p = ¢(H) = ¢ (H'), then
H and H’ lie in U-conjugate decomposition subgroups Dj rcs/r resp. Dy gg/r- Say gp = p’
with ¢ € U and let ¢4 denote the isomorphisms induced by conjugation. Then we have the

commutative diagram:

H%(U, Z/pZ) — H*(Dg x4 1., Z/PZ) —— H?(H, Z/pZ)

S
H%(U, Z/pZ) — H*(Dp ko1, Z/pZ) — H2(H', Z/pZ)

Now, the left vertical arrow is the identity, since g € U, and the second is an isomorphism, hence
the kernels of the (compositions of) horizontal maps are equal.

The lemma gives a purely group-theoretical criterion to decide, whether two elements of
Syl (U, Sy . Sp) lie in the same fibre of 1. If we define an equivalence relation on Syl, (U, Sy \ Sp)
by H ~ H' :& ker(resy) = ker(res?},), we get a bijective map induced by 1:

SyL,(U, Sy~ Sp)/ ~ —  (Sy~\Sp)(U).
If U' € U < Gg, then we get a (non-canonical!) mapping
a: Syl (U', Sy \.Sp) — Syl (U, Sy~ Sp),

which sends H' € Syl (U’, Sy~ Sp) to some H € Syl,(U, Sy~ Sp), such that H' € H (there is
at least one by construction). If H' € Hy, Ha, then Hy, Hy € Dj for some p by Proposition
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In particular, v induces a map

a: SyL,(U', Sy N Sp)/ ~— SylL,(U, Sy~ Sp)/ ~,

which is independent of the above choices. We obtain the following commutative diagram:
Syl,(U', Sp N Sp)/ ~ ——(Sy . Sp)(U)

la
Sylp(U7 SpNSp)) ~——= (5~ 5,)(U),
where horizontal maps are bijections induced by 1, and the vertical map on the right is the
restriction of primes.

If U <1 Gg is normal, then Gg acts on Syl (U, Sy ~\ S) by conjugation. It is easy to see that
this action induces via 1 an action on (Sy~\ S,)(U) and that this last action coincides with
the action of Gg on this set by permuting the primes. In this way we have reconstructed the
projective system of Gg-sets {(Sy~\Sp)(U): U < Uy, U < Gg}, where Uy < Gg is some open
subgroup. Now the decomposition subgroups of primes in Sy \ S}, are exactly the stabilizers in
Gg of elements in the Gg-set @UQUO,U<GS(SJC \Sp)(U). This finishes the proof of Theorem
O

2.9 Further invariants
Assume (Gg,p) and the equivalent data from Theorem are given. We investigate, which

further information can be recovered from this.

Proposition 2.20. Assume Dec(K,S) holds. Assume the datum (Gg,(Dy — Gg))jes, are
given. Then one can recover the following invariants of K and its extensions:

(i) For any U € Gg open with corresponding field totally imaginary, the class number C1(U).

(i1) For every U' < U < Gg open, with corresponding fields totally imaginary, the natural
maps Cl(U) — CI(U).

(i4) For U < Gg small enough, with L = (Kg)V, the roots of unity ju(L).
(iv) For any U € Gg open with L = (Kg)Y, the inertia and ramification degrees fo,/K and
ep,.r/K Of any p € Sy.
(v) The set N(S) :=Z n O g.
(vi) The degree |[K : Q].

Proof. (i) + (ii): If K is totally imaginary, one obtains the group Gg = Gg k., dividing Gg by
the closure of the normal subgroup generated by the inertia subgroups of all D, p € Sy. Then
canonically G%) =~ CI(K). The maps between two class groups are given by the transfer map in
the class field theory.

(iii) follows from (i) «~~ (ii)" in Theorem

(iv) follows from the discussion in Section [2.2]

(v) + (vi) : for any rational prime ¢, let n(¢) := >, [K, : Q¢]. This number can be
peSNSy

reconstructed from the given data. Further, £ € N(S) < n(¢) is maximal. If ¢ € N(S), then

[K : Q] =n(s). O
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2.10 The numbers Sy(U)

Here we present an approach, how the numbers S¢(U) can be reconstructed under a certain

finiteness assumption. Recall that we do not assume anymore that two primes lie in OF .

Proposition 2.21. Let p € (’)}‘(75. Assume that p is odd and p, c K. Assume, the following
holds: for any character x: Gs — Z; = Aut(Qp/Zy) whose restriction to %Z/Z is trivial, the
group I*(Gg, Q,/Zy(x)) is finite. Then for any such x, the group H*(Gs, Qp/Zy(x)) is of finite
corank and

(2.5) 85S¢ (K) = 1 + max,, corank(H?(Gs, Qp/Zp(x)))-

Proof. Recall that x, denotes the p-cyclotomic character, and that p, < K implies that its
image lies in ker(Aut(Q,/Z,) — Aut(]%Z/Z)). Assume x: Gg — Z; induces the trivial action
on %Z/Z. We claim first that if x|p;, = Xxp|p; for all p € S, then x = x;, on Gg. Indeed, x; X,
factor both through Gfgb. By class field theory we have the exact sequence:

H DS}DK — G - (Clg(K) — 0.
peS(K)

Thus on the one side, X_1®Xp factors through a map Clg(K) — ZF, i.e., its image is finite, and on
the other side the images of x and X, lie in the subgroup ker(Aut(Q,/Z,) — Aut(%Z/Z)) =~ L,
i.e., the image of Y™ ! ® Xp does too, and hence is torsion-free. Thus X' ® Xp is the trivial
character of Gg, or with other words x = x, on Gg.

The last part of the Tate-Poitou sequence for the Gg-modules Z/p"Z(x) gives, after changing
to the limit over all n > 0, the following exact sequence:

0 — II*(Gs, Qp/Zy(x)) — H*(Gs, Qp/Zp(x)) = D H?(Dyk, Qp/Zy(x)) — coker — 0,
peS(K)

where

: 1 . v . 1 _ v
coker = h_I)H[HO(Gs,p*nZ/Z(X Loxp) Y] = [Ll_HO(G&EZ/Z(X L@ =

[H(Gs, Zp(x ' @ xp))]" =

@p/Zp if x = Xp>
0 if x # xp

(the last equality holds, since the restriction map Aut(Z,) — Aut(p"Z,) is an isomorphism; thus
if x ' ® Xp is trivial on some open subgroup of Z,, then it is also trivial on Z,, i.e., x = xp)-
By our assumption, the corank (i.e., the Z,-rank of the Pontrjagin-dual) of the first term in the
sequence is zero. Thus the corank of the third term is equal to the sum of the coranks of the
second and the last terms. We have the two cases:

Case x = Xp. Then the corank of the third term is §5;(K) and the corank of the last term is 1.
Thus the corank of the second term is §57(K) — 1.

Case X # Xp- Then by the claim, x|p; # Xxp|p; for at least one p € Sy. By Lemma the
corank of the third term is < §S;(K) — 1, and the corank of the last term is 0. Thus the corank

51



of the second term is < §S¢(K) — 1. The proposition follows. O

Lemma 2.22. Let x be a local field, p # char(x) an odd prime. Let x: G, — Zy = Aut(Qy/Zp)
be a character. The following are equivalent:

(i) H*(Gy, Qp/Zp(x)) # 0.
(ii) x is the p-part of the cyclotomic character.

Proof of the lemma. Let X, denote the p-part of the cyclotomic character of G,. The local
duality gives:

H*(G, Qp/Zp(x)) = lig H*(H, Z/p"Z(x))

n

lim[H (G, Z/p"Z(x " ® xp)) "]

n

= [imH%(Gy, Z/p"Z(x ™ @ xp))]¥ = [H(G, Zp (x ' @ xp))]
_ {QP/ZP if x = xp
0 if x # xp-

The last equality holds by the same reasoning as in the proposition. ]

2.11 Appendix. Zeta function and primes of small norm
2.11.1 Zeta function and a formula of Landau

For a number field K let N := Ng g be the norm of K/Q. For any s € C with f(s) > 1, let

1
)= [] =
pEEK’f 1 - Np
be the Dedekind zeta-function of K. The series defining it converges for any s with R(s) > 1,
and (x(s) has a meromorphic continuation to the whole complex plain with a unique pole at
s = 1. We have the following equality for all s with R(s) > 1:

Zic(s) 1= _ Cx(s) _ Z log Np

CK(S) peTr s NpS —1

This is (up to a sign) the logarithmic derivative of (x(s). Set
A(K) = 7777"1(K)/2(27T)*7’2(K)|DK|1/2,
where Dy denotes the discriminant of K. There is a fractional decomposition of Z(s):

Proposition 2.23 ( |La] Satz 179).

Zie(s) = Yog A + 5 L)+ raB) )+ G+ ) - 7

where Zfo means the sum over the non-trivial zeros of Cx and the terms for p, p are summed
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together (otherwise the sum must not converge). In particular, if 11 (K) = 0, then we have

1 nK ng IV 1 1 ro1
2. Z = —log|D — log(2 —_— = - — .
(2:6) k() = 3 log D] + - log(2m) + - () + (S + 729 = 2, 5

We are only interested in totally complex fields, so the second formula is enough for us.

2.11.2 Naive criterion

Let an (infinite) Galois extension . of K be given. The proposition below describes a relation-
ship between a certain limes involving the Dedekind zeta functions of finite subfields of .£/K,
and the presence of primes of K of finite norm and finite ramification in .. In this context
it makes sense to index extensions of K by their degree. Thus, in particular, we work with an
ascending tower K = L1 & -+ & L, & ... of extensions of K, denoted (L),, and indexed such
that [L,, : K] = n, i.e., the index set is an infinite ascending subset of the natural numbers.

Proposition 2.24. Let K = L1 € -+ ¢ L, & -+ & £ = |, Ln be a tower of finite Galois
extensions of K, enumerated in the way, such that [Ly, : K| = n. For any real s > 1 the limit

Ag(s) := lim n 177, (s)

n—oo

exists. For any p € X ¢, let fy,ep denote the inertia degree resp. the ramification index of p in
L. Then

1 logNp
(2.7) Ao(s) = — e
pe;(,f ep Npfes — 1
€ep,fp <0

where the sum on the right is absolutely convergent. In particular, Ay (s) depends only on £
and on s, not on the L, ’s.

Proof. Fix an s > 1. First we show the existence of the limit. For a finite extension L/K, of
degree d and a prime p € Y f set:
log(N
BL,p — d_l Og( q) )

Ngs -1
q€x] alp

Then we have: d=1Zp(s) = ZpeEKf Br,p, where the series converges absolutely. Assume that
L/K is Galois. If r is the number of primes of L, lying over p, and if each of them has inertia
degree f and ramification index e, we have d = r fe. Therefore:

Bry=dt ¥ log(Ng) _ r flog(Np) _ 1 log(Np) _ log(Np) _
Lp Ngi—1 dNpfs—1 eNpfs—1  Nps—1 ~5F

€] alp

Taking L/K to be Ly, /L, shows that the sequence (n~'Zp, (s)), = (Xpesy ; By, p)n is mono-
tonically decreasing. On the other hand we have obviously '

n'Zp (s) >0
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for any n, i.e., the sequence is bounded from below. Thus it is convergent. Set

1 logNp

B N o s o if ep, fy < 0,
Leos,p .
0 if ep =00 or f, = o0.

Then ZpezK’f,ep,fp@o = ZpezK’f By, »- By the same reasoning as above, the series on the right
side of (2.7) converges.

Now we have to show the equality (2.7). Let e > 0. Take C' >> 0 big enough, such that
ZpeEKJ7Np>C Bgyp < §. Let now ng >> 0 be big enough, such that for all n > ng and for all
(finitely many!) p € Xk r with Np < C:

€

B - B <
| Ln,p L‘Y:,p| 2C

and we have

+

> Brow

Np>C

> Br.p—Br,p
Np<C

+

2 BL’vap

1 logNp
LBre= 2 ogheoq| S
p p Np>C

p:oep,fp<oo

€ €
< CHx+2-=e
2c "1
Immediately from the proposition we obtain:
Corollary 2.25. With the assumptions as in the proposition, the following are equivalent:
(i) Az(s) = 0.

(i) There is no non-archimedean prime of £ with finite degree and finite ramification index
over K.

We obtain the following criterion, which decides, whether a normal subgroup of Gg has a
big intersection with a decomposition subgroup of a prime p € X ;.

Corollary 2.26. Let H <« Gg be a closed normal subgroup. Let Gg 2 --- 2 U, 2 ..., indexed
by n — oo, such that (Gg: U,) = n be a series of open normal subgroups of Gg, such that
U, = H. Set L, = (Kg)V" and . = (Kg)™. For any real s > 1 the limit

n

A (s) == Ag(s)
exists and is independent of the choice of (Up)y. Further, the following are equivalent:
(i) Ar(s) =0.
(11) For any prime in ¥.¢ 5, ils inertia degree or its ramification index over K is infinite.

(1it) For any finite prime p of K and any extension p/p to Kg, the inclusion H n Dy < Dy is
not open.
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Proof. The equivalence of (i) and (ii) is just Corollary The equivalence of (ii) and (iii) is
evident. O

This corollary shows that if one could obtain information about the number Ay (s) only from
the group Gg g, then Gg g would determine intrinsically, whether H contains an open subgroup
of a decomposition group of a finite prime of Kg. However, as stated here, this method would
only work for closed subgroups H < G s with open normalizer in Gg g.

Further, one can hope to obtain some information on Ag(s) by using formula . Indeed,
with the notation as above, Ag(s) is the limit of of the numbers n™*Zy, (s), and by (2.6), each
of this numbers is determined by dr,,, nr, and (unfortunately) some term coming from the
zeta-zeros. Omne can hope to read off the first two of these three quantities (or at least their
growth behavior for n — o0) from intrinsic properties of Gg, as in the preceding sections. As for
the last one, we have no good idea how to obtain this quantity. At least there is a classical result
of Landau, giving an estimate of the number of the zeta-zeros: let Nx(T') denote the number of
zeros s = o + it of (x(s) in the region 0 < o < 1, 0 < t < T, counted with multiplicity. Then
[ [La] Satz 171] says that:

ﬂd}( — nK(l + 27‘(’)
2w

ng

N(T) = o=

TlogT +

T+ O(logT).
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Part 11
The group Gg with S stable






3 Stable and persistent sets of positive density

In this section we introduce the classes of stable and persistent sets of primes in number fields,
study their properties and give examples. The motivation for the definition of stable sets are the
arithmetic and anabelian results holding for them, which we prove in the subsequent sections.

3.1 Overview

The first goal of this section is to introduce a new class of sets of primes of positive density
in a number field K, which generalize sets of density 1, in the sense that certain arithmetic
and anabelian results (cf. Sections hold for them. Roughly speaking, we say that a set S
of primes of K is stable for an extension .Z/K, if it contains a subset Sy € S such that the
function of finite subextensions .#/L/K, given by L +— 01,(Sp) is positive and beginning from
some extension, does not oscillate very much. As a stronger version of the above, we call S
persistent, if this function becomes constant.

A further goal is to find many examples of stable and persistent sets. In particular, for
any finite Galois extension M /K, the set cs(M/K) is persistent for any extension /K and
for any o € G/, the set Py (o) is persistent for any extension £/K with & n M = K
(cf. Corollary . Also any set containing (up to a density zero subset) a persistent set, is
itself persistent. Clearly, if a set is persistent, then it is also stable. Most examples occurring in
nature are persistent, but to prove arithmetic and anabelian results, one only needs (p-)stability
property of a set. It is still not clear, whether there is a stable set, which is not persistent, cf.
Section Thus both notions have their right to exist.

We have to make the following technical restriction. Let & denote the set of all subsets
of ¥x. The Dirichlet density is not defined for all elements in &g, and moreover there are
examples of finite extensions L/K and S € Pk, such that S has a density, but the pull-back
St of S to L has no density. To omit dealing with such sets we make the following convention,
which holds until the end of this thesis.

Convention 3.1. If S € Py is a set of primes of K, then we assume implicitly that for all
finite extensions L/K, all finite Galois extensions M /L and all 0 € Gyyyp,, the set S0 Pyyr(0)
has a Dirichlet density.

In particular, all Chebotarev sets P, /K(J) satisfy this. More on this convention can be found
in Section [3.2.21

Finally, we want to refresh some notations, which will be used in this and the subsequent
sections. If G is a finite group and o € G, we write C(o; G) for the conjugacy class of o in G. If
further H is a subgroup, we denote by mp the character of the G-representation Indf] 1.

If S, T € ¥k are two sets of primes of a number field K, define

SST & 6g(S\T)=0
ST = (SS<T)and (T ~39).

In particular, if S and T differ only in a finite set of primes, then S « T. If M/K is a finite
Galois extension and o € G/ we write

Pric(0) = {p € i : p is unramified in M/K and (p, M/K) = C(0; Gpr/x) }-
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If L/K is a finite extension, then we write

P(L/K) := {peXp:pis unramified and has degree one over K}
cs(L/K) := {peXg:pis completely split in L}
Ram(L/K) := {pe Xk:p isramified in L/K }.

If L9 denotes the Galois closure of L over K, then cs(L/K) = cs(LI%/K).

In Section we recall briefly the definition and some properties of the Dirichlet density. In
Section we compute the density of certain Chebotarev sets (i.e., sets of the form P/ (0)).
In Section we define and study some properties of stable and persistent sets. Finally, in
Section [3.5] we give examples of stable sets. Therefore we use computations from Section

3.2 Dirichlet density

In this section we recall briefly the definition and some easy properties of the Dirichlet density,
which allow us to compute the density of certain pull-backs of Chebotarev sets in the next
section.

3.2.1 Recall of the definition

Definition 3.2. If S € Yk is a set of primes, its Dirichlet-density is defined as the limit

Np~—*
5K(S) = lim ZPESf —s?
s—1+ ZPEZK’f Np

if this limit exists (if not, the set has no Dirichlet-density).

For s — 1+, the series Zpesz Ny~ behaves like log (x(s), which in turn has the same

asymptotic behavior as log(s%l), i.e., one also can rewrite the limit:

Np~—*
(3.1) 5k(S) = lim Zpes, NP .
s—1+ log(s_—l)

Since log(s_%) — +0 for s — 14, the Dirichlet density of a set S does not change if one add (or
remove) finite subsets of X to (from) S. If S is a set of primes of K, having a Dirichlet-density,
then clearly 0 < 05 (S) < 1. A subset of a set with density 0 also has density 0; a superset of a
set of density 1 also has density 1. A set S has a Dirichlet density if and only if its complement
in X g has. Assume S1,S2 have Dirichlet densities. If one of the sets S7 n Se and S7 U S2 has a
density, then also the other one has and the following holds:

0r(S1) + 0k (52) = 0k (S1 N S2) + 0 (S1 U S2).

In particular, if S has a density and 7" has density 1, then S nT has a density and dx(SnT) =
Ik (S).

Let L/K be a finite extension. The set P'(L/K) (cf. Section has density 1 in L. Indeed,
if L/K/k, then P'(L/k) < P'(L/K), hence it is enough to assume K = Q. Then for any
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peS:=3%L s\ P(L/Q) wehave Np~* < p~2%, where p lies over the rational prime p and hence

as the denominator goes to +0o and the numerator is bounded, when s — 1+. The most
important result involving the Dirichlet density is the Chebotarev density theorem, which says
that given a finite Galois extension L/K and an element o0 € G = Gpr/K, one has:

_ 1C(0;G)

ok (Prk(0)) = R

3.2.2 Measurable sets

We discuss briefly Convention Recall that &Pk denotes the set of all subsets of X, which
is a g-algebra. The optimal way to omit sets having no density would be to find an appropriate
sub-o-algebra of Pk (for any K), such that the restriction of dx to it is a measure (and the
pull-back maps P — &1, attached to finite extensions L/K restrict to pull-back maps on these
sub-o-algebras). Unfortunately, there is no satisfactory way to find such o-algebra Ay, at least
if one requires that if S' € Py, then also T' € Bk for any T = S, or, which is weaker, that any
finite set of primes of K lies in £k . Indeed, countability of ¥ would imply B = Pk in this
case, but not all elements of Zk have a Dirichlet density.

However, Convention [3.1] is satisfied for all sets lying in the following rather big subset of

P

A S S ¥k: S22 Pryk,(0i)k for some K/K;/Q
K= and L;/K; finite Galois and o; € Gr./K; ’

where the unions are disjoint and countable (or finite or empty). This @k can not be closed
simultaneously under (arbitrary) unions and complements: otherwise it would be a o-algebra
and hence would be equal to H.

3.2.3 Further properties

Let now L/K be a finite extension of degree n (not necessarily Galois). For 0 < m < n, define

the following sets:
P (L/K) := {p € ¥k : p is unramified and has exactly m degree-1-factors in L}.

In particular, P,,(L/K) = c¢s(L/K), P,_1(L/K) = . Recall that if H € G are finite groups,
then my denotes the character of the G-representation Ind% 1. One has:

mp (o) = t{gH: (o)’ < H} = §{{o)gH: (o)’ < H},

where (o) € G denotes the subgroup generated by ¢ and (o) := g~'{(c)g. The equality on the
right follows immediately from the fact that if (¢)9 € H, then gH = {o)gH

Lemma 3.3. Let L/K be a finite extension and N/K a finite Galois extension containing L,
with Galois group G, such that L corresponds to a subgroup H < G. Then
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P (L/K) < {pe Pyn(L/K): p is unramified in N/K} = U Py /(o)

C(o;G)cG
my(o)=m

(disjoint union). In particular, P, (L/K) € @k and

Ox(Pn(L/K)) =tG™" Y #C(0;G).
C(o;G)cG
mp(o)=m

Proof. The proof of the first statement is an elementary exercise in Galois theory (if p is a prime
of K unramified in IV, then the primes of L lying over p are in one-to-one correspondence with
double cosets {(o)gH, where o is arbitrary in the Frobenius class of p; the residue field extension
of a prime belonging to the coset (c)gH over p has the Galois group {c)J/{c)¢ n H). The second
statement follows from the first and the Chebotarev density theorem. O

The following lemma describes how to compute the density of a pull-back of a set of primes.

Lemma 3.4. Let L/K be a finite extension of degree n and S a set of primes of K. Then

n

0p(S) = > még (S N Pn(L/K)),
m=1
or equivalently, if N/K is a Galois extension containing L, such that G := Gy/x 2 Gy, =: H,
then

or(S) = >, mu(0)dx(S n Pyk(0)).
C(o;G)cG

If, in particular, L/K is Galois, then
0r(S) =[L: K]ok(S ncs(L/K)).

Proof. Let Py, := P,(L/K), P' := P(L/K), and P!, := P' n P,, 1. Then 65(P') = 1 and
P =J" _, P, (disjoint union). We have:

m=1

/Np~s
5.(SAP) = lim M
s—1+ ZP’NP s

. Zm ZSLﬂPln Np™

lim
s—1+ Zm Zp;n Np_s
_ oy 2m M 2sap, NP7
= lim

s—1+ Zm mZPm Np_s
 2m ™M 2sap, NPT 2w, NP

= lim lim
s—1+ ZEK Np*s s—1+ Zm mZPm Npis
= (MK (S O Pu))(Q mdk (Pn)) ™

or(S)

It remains to show that >, mdx(Py,) = 1. Indeed, let N be the Galois closure of L/K,
G = Gy/k and H = Gy, and let {, )¢ denote the inner product on the space of class functions
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on G. Then by Lemma [3.3| we have:

Smok(Pa) = = Y mu(}C(o;C)

1G C(o;G)cG

= {mm, 1) = nd¥ 1y, 16)e = g, 1)y = 1,

by Frobenius reciprocity. O

To prove Lemma one does not need Lemma one can omit it by using the formula
and doing the same computation as in the beginning of the proof. However, the author thinks
that the given proof is more conceptual. Another treatment (using Dirichlet /Hecke-characters)
can be found in [Na|. In particular, [Na] Lemma 7.35(ii) shows > mdx(Pp) = 1.

3.3 Density of certain Chebotarev sets

The goal is to prove the following proposition, which is responsible for all examples of stable
and persistent sets we have:

Proposition 3.5. Let M /K be a finite Galois extension, o € Guyi and L/K any finite exten-
ston. Let Lo := L n M. Then:

#C (0o GM/K) A GM/LO
8Gr/L, '

or(Pyyr(o)r) =

Thus 61 (Pri(o)r) # 0 if and only if C(o; Gpr/i) N Garyr, # - In particular, this is always
the case if Ly = K or if o = 1.

Lemma 3.6 ( [Wi| Proposition 2.1). Let N/M/K be finite Galois extensions and o € G/ -
Then

Py (o) = {p € Py (0): p is unramified in N/K} = U Py /i (9),
C(Q§GN/K)’_’C(U§G1W/K)

where the (disjoint) union is taken over all conjugacy classes of G/, which lie over the con-
Jugacy class of o in Gpyk -

Proof of Proposition[3.5. Let N/K be a finite Galois extension with N 2 M L. Let H := G/
and H := Gjzr,- We have a natural surjection H — H. Let 1, denote the class function on
G/, which has value 1 on C(o;G M/K) and 0 outside. Finally, let my denote the character
on G := Gy/g of the induced representation Ind% 1. Then we have (the first equality below
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follows from Lemma and the second from Lemma :

or(Pyyr(o)r) = Z or(Pn/r(9)L)
C(g:G)—~C(0;G /i)
= > mu(9)0x (Pnyk(9))

C(g:G)—~C(0;Gn/x)

= S ma(gie9

C(g:G)—~C(0;G /i) he

1
= E 2 mu(g)
g’_’C(U§GIVI/K)
= <mH,inng/K 1,)¢

oreH
= <1H’lnfGM/K 10>H

= Qg lelmw
_ ﬁC(UsGM/K)ﬂH
tH ’

where the third to last equality sign is Frobenius reciprocity, and the second to last follows from
the easy fact that if H — H is a surjection of finite groups, x, p are two characters of H, then

(nfx, inf2 p) i = (x, P
O

3.4 Stable and persistent sets

In this section we define stable and persistent sets of primes in a number field, consider some
properties of them and give a further characterization of stable sets.

3.4.1 Definition and first properties

Let K be a number field and S a set of primes. Lemma implies that if §x(S) = 0 resp. =1,
then also 01,(S) = 0 resp. = 1 for all finite L/K. Now if 0 < dx(S) < 1, it can happen that
there is some finite L/K with d7,(S) = 0 (just start with some finite Galois extension L/K and
take S := Y \ cs(L/K), having the density 1 — [L : K]"! in K and density 0 in L). We want
to study situations, in which this possibility is excluded, and moreover the density of a subset
So € S considered as a function of extensions of K lies in an interval with logarithmic length
bounded by some constant resp. is itself constant.

Definition 3.7. Let S be a set of primes of K and .#/K any extension.

(i) Let A > 1. A finite subextension .¥/Lo/K is A-stabilizing for S for Z/K, if there
exists a subset Sp € S and some a € (0, 1], such that Aa > 6.(Sp) = a > 0 for all finite
subextensions .£/L/Ly.

(ii) A finite subextension .Z/Ly/K is monotone stabilizing for S for .Z/K, if there exists
a subset Sp € S, such that 67/(Sp) = d1(So) > 0 for all finite subextensions .£/L'/L/Ly.

(iii) A finite extension .Z/Ly/K is persisting for S for .Z /K, if there exists a subset Sy < 5,
such that d7,(So) = 01,(So) > 0 for all finite subextensions .Z/L/Ly.
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We say that S is A-stable resp. monotonic stable resp. persistent for £ /K, if it has a
A-stabilizing resp. monotone stabilizing resp. persisting extension for .£/K. We say that S is
stable for Z/K, if it is A-stable for .Z/K for some A > 1.

For short, we say that S is A-stable resp. monotonic stable resp. persistent, if it is
A-stable resp. monotonic stable resp. persistent for Kg/K. Observe that these notions are not
preserved under the equivalence relation S >~ 7' on subsets of X (since Kg # Kp in general),
whereas the notions from the definition are. Observe also that, apart from our convention that all
considered sets have a Dirichlet density, there is no reason to require a stable (resp. persistent)
set S to have a density: it is enough, when a stable (resp. persistent) subset Sy € S has. If
Z/K,S and A > 1 are as above, then we have:

S persistent = S monotonic stable = S A-stable.

The first implication is trivial. The second is easy (Proposition (iv)). We will give another
characterization of stable sets in Section [3.4.3] Now we give some basic properties.

Proposition 3.8. Let Z/K be an extension and S a set of primes of K.

(i) Let A = p > 1. If S is p-stable with u-stabilizing field Ly, then S is \-stable with \-
stabilizing field L.

(i) If Lo is A-stabilizing resp. monotone stabilizing resp. persisting field for S for £ /K, then
any finite subextension £ /L1/Lo has the same property.

(11i) Let S’ be a further set of primes of K. If S < S, and S is \-stable resp. monotonic stable
resp. persistent for £ /K, then S’ also has this property. Any \-stabilizing resp. monotone
stabilizing resp. persisting field for S has the same property for S’.

(iv) If S is monotonic stable for £ /K, then it is A-stable for £ /K for any A > 1.

(v) Let L) N [M/K be subextensions. If S is A-stable (resp. monotonic stable resp. persistent)
for L/K with \-stabilizing (resp. monotone stabilizing, resp. persisting) field Ly < A,
then Sy is A-stable (resp. monotonic stable resp. persistent) for N /M.

Proof. (i) - (iii) are immediate.

(iv): Let S be monotonic stable for .#/K and let Ly be monotone stabilizing for S for .Z/K
with respect to a subset Sy € S. Consider the set {01,(50): -Z/L/Lo finite} < [0,1]. This is a
bounded set of real numbers, which thus has a supremum, and we have d7/(Sp) = d1,(Sp) > 0 for
all finite Z/L'/L/Ly. Let £/L1/Lg be finite and such that a := 6, (Sp) > % SUP /1,/1,10L(S0)}-
This L; is A-stabilizing for S (with respect to the subset Sy and the real number a).

(v): Let S be A-stable for .Z/K with A-stabilizing field Ly € .#". Then Sy is A-stable
for /M with stabilizing field LoM, and hence also A-stable for .4"/M with stabilizing field
LoM < 4. For monotonic stable and persistent sets the proof is the same. ]

Remark 3.9. In the definition of stable/persisting sets we used the Dirichlet density, which
is a measure on 77, for any finite subextension .Z/L/K. For arithmetic applications there is
in fact no reason, why one should use exactly d;,. It is not clear, whether functions essentially
different from 7, can be constructed. Such a construction should work as follows: one considers
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an appropriate subset #;, € Z for each Z/L/K, such that the pull-back map &Z;, — P,
restricts to a pull-back %1, — %y, for any £ /L'/L/K and replace the formation (J1) ¢/ x in
the Definition [3.7] by any formation of functions

KL %L I [0, 1]

such that the following three conditions hold:

(i) pr(XL) =1,
(i) pr(SuT) = pr(S)+ pr(T) for any disjoint S, T € Ay,

(iii) (pull-back formula for Galois extensions) For any finite Galois subextension N of .Z/L one
has
i (S) = [N = Llpn(S  es(N/K)),

resp.

(iii’) (general pull-back formula) For any finite Galois subextension N of /L and any subex-
tension N/L'/L, with G := Gy, H := Gy, one has:

p(S) = > mu(o)uL(S n Pry(o)).
C(o;G)eq@

There are only few places in this and the following chapters, where we use the stability property of
a set directly. They are essentially in Proposition[3.11] Theorem [£.2] Lemma[4.4]and Proposition
By posing conditions (i),(ii) and (iii)’ on gz, one would have enough to use uz, instead of
§z, in all cases. By posing (i),(ii) and the weaker condition (iii), one would abandon Lemma [4.4]
and (the most general form of) Proposition but still have enough for (a slightly weaker
version of) Theorem and consequently all of the important results.

The conditions above are restrictive. In particular, uz, is determined by (i),(ii) and (iii)’ on
each set of the form Py, /L(a) for M being a finite Galois subextension of .Z/L, and coincides
with ¢, there. However, it is not clear, whether there are interesting choices of (%, pur)r such
that py does not coincide with 07, on the whole set ;. For example, one could try to define
wr as the limit

—S8
. ZpeSf7deg p>k Np
ue(S) = lim e
535 ZpeEL’f,degp>k p

where degp = log, Np (p is the residue characteristic of p) and the positive real sy is chosen in
a way such that denominator has a pole at sg.
3.4.2 Properties (x)

The first property which gets important in the arithmetic applications is the p-stability of a set
for some rational prime p. But it turns out that also the following refinement is important (in
particular for the Grunwald-Wang theorem):
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Definition 3.10. Let S be a set of primes of K and p a (finite or infinite) prime of Q.

(i) Assume S is persistent (i.e., persistent for Kg/K). We say that S satisfies property
(%)p°", if S is persistent for Kgo 5,05, /K with a persisting field contained in Kg.

(i)’ Assume S is persistent. We say that S satisfies property ()P, if S satisfies (x)b"" for
almost all p.

(ii) Assume S is stable. We say that S satisfies property (*);fab, if §'is p-stable for Ks_s,0s,. /K

with a p-stabilizing field contained in Kg (if p = o0, then this means that S is stable for
Kgsus, /K).

(ii)’ Assume S is stable. We say that S satisfies property ()5 if S satisfies (*)Ztab for
almost all p.

For S persistent resp. stable, define the exceptional set by

EP?3(S) := {p: S does not satisfy (x)0"},

resp. by

E*2(S) = {p: S does not satisfy (x)5*"},

Clearly, ()b resp. (x)P®™ is stronger than (*);tab resp. (#)**?P. Further a stable set S
satisfies (+)%2P if and only if E*2P(S) is finite (and similarly for (¥)P°™). In practice most of the
occurring stable sets are persistent and satisfy ()P (cf. Section 7 but to prove things, we
only use the stability property resp. (*);tab for various p.

3.4.3 Other characterization of stable sets

The following proposition gives another characterization of stable sets and shows in particular,
that if S is stable for £ /K, then any finite subfield £ /L/K is A-stabilizing for S with a certain
A > 1 depending on L.

Proposition 3.11. Let S be a set of primes of K and £ /K any extension. The following are
equivalent:

(i) S is stable for /K.
(ii) There exists some A > 1, such that S is A-stable for £ /K with \-stabilizing field K.
(iii) There exist some € > 0 such that 61,(S) > € for all finite £/L/K.

Proof. (iii) = (ii) = (i) are trivial. We prove (i) = (iii). Let A > 1 and let S be A-stable for
Z /K with A-stabilizing field Ly. Then there is some a > 0 and a subset Sy € S such that
a < 01(S0) < Aa for all Z/L/Ly. We want to find some € > 0 such that §1,(Sp) > € for all
Z/L/K. Suppose there is no such ¢ > 0. This implies that there is a family (M;), of finite
subextensions of .Z/K with dp,(So) — 0 as ¢ — c0. Then d; = [LoM; : M;] = [Lo : Lo n M;] is
bounded from above by [Lg : K] and hence
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d;
Sron, (So) = > mdag, (So A Prn(LoM;/M;)) < [Lo : K]6a,(S0) — 0

m=1

for ¢ — oo0. This contradicts to the A-stability of Sy with respect to the A-stabilizing field Lg. O

If S is stable for .Z/K, then 61,(S) > 0 for all finite Z/L/K. The converse is not true, as
an example in Section [3.5.4] shows.

3.5 Examples

Finally we consider examples of stable resp. persistent sets. There are plenty of examples of
persistent sets, but on the other side it is not really clear, whether there is a stable set, which is

not persistent. A construction which goes in this direction is also done here.

3.5.1 Sets of density one

Stable and persistent sets generalize sets of density one. In particular, every set of primes of K
of density one is persisting for any extension .#/K with persisting field K and satisfies ()p"
for each p. Nevertheless, sets of density one have some properties, which stable resp. persistent

sets do not have in general:

(i) the intersection of two sets of density one has again density one, which is not true for
stable and persistent sets: the intersection of two sets persistent for .Z/K can be empty
(cf. Corollary and explicit examples below).

(ii) if S € Yk has density one, then there are infinitely many primes p € Xq, such that S, < S
(otherwise, for all primes p € cs(//Q) one could choose a prime p € S, S of K and we
would have §(S) < 1—[K : Q]7!). On the other side, it is easy to construct a persistent
set S € Yk with S, & S for all p e Xg (cf. Section for an explicit example).

3.5.2 Almost Chebotarev sets

Definition 3.12. Let K be a number field. A Chebotarev set is a set of primes of K of the
form Py (o), where M /K is a finite Galois extension and o € Gpy/k. An almost Chebotarev
set is a set S of primes of K, such that there is a Chebotarev set Py (o) with S = Py (o).

Remark 3.13. It is natural to ask, whether M and C(0; Gy k) are unique in the definition.
This is false even in the easiest case: let N/K be an extension having as its Galois group the
permutation group S and let M be the subextension corresponding to the kernel of the quotient
7 S3 — Z/27. Let g € S3 denote any odd permutation. Then one has 7= (7 (g)) = C(g; S3)
and hence Py;/r(7(g)) = Pnyk(g) by Proposition . To study this question in general, let
(M, o) and (N, 7) be two finite Galois extensions of K together with an element in the Galois
group. Then we claim that Py i (o) = Py (7) if and only if in the diagram
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Guny/i

2N
GM/K GN/K
>

x
Gran/K

we have a]'(aa(7)) € C(0; Gpyx) and ay (e (0) € C(7;Gpr/i)- Indeed, by Lemma
Py (o) S Py (7) is equivalent to i (C(o; Guyk)) € ™ (C(7; Gp/k))- But this is equiva-
lent to o, (a1 (o)) € C(r; G /K ), which follows from the fact that the above diagram of groups
is a pull-back diagram, and the underlying diagram of sets is also a pull-back diagram, and from
the following general fact: if ax: X — Z,ay: Y — Z are maps of sets, X x 7Y is the pull-back
with projections denoted by 7mx, 7y, and X1 € X, Y1 € Y are subsets, then 71';(1 (Xy) c W;l(Yl)
if and only if a3y (ax(X1)) € Y. This proves our claim.

Let (M,o), (N, ) are given, and assume that h := apr(0) = an(7) € Gyran/kx (otherwise
Py (0) = Py (7) is impossible). We can reformulate the above criterion:

Py (o) 2 Py (1) < ajf (h) € C(o; Gayxe) and ay!(h) € C(3 Gy k)

This group-theoretic criterion allows to construct many further examples in which one has
Py (0) = Py (T) but M # N. For example, take any surjection of finite groups 7: G — H
and an element x € H, such that for some preimage g of h in G, one has 7~ '(h) € C(g,G)
(cf. for example the first paragraph of this remark). Then any extensions M, N/K such that
G/ = Gk = G (they have in particular the same degree over K), Gy~n/x = H gives such
an example.

On the other side, assume (M, o), (N, T) are given, such that o resp. 7 are central in
Gar/ie vesp. Guyi. Then Pyyi(o) = Py (1) < (M,0) = (N,7). Indeed, in this sit-
uation one has §C(0;Gpyx) = §C(7;Gnyx) = 1 and hence Pyy/i(0) = Pyyg(7) implies
that fker(G — Gp/x) = tker(G — Gy/x) = 1, i.e.;, M = N and hence also C(0;Gp/k)) =
C(1;Gy /K). This generalizes the classical application of Chebotarev, which is the special case
with 0 =7 =1 ( |[Ne3| Corollary 13.10).

Proposition shows that almost Chebotarev sets are often persistent:

Corollary 3.14. Let M/K be finite Galois and let o € Gy Let L/K be any extension and
set Lo := M n L. Then a set S = Py (o) is persistent for £ /K if and only if

C(o;Guyr) N Gy, # -
If this is the case, Lo is a persistent field for S for £ /K. In particular,
(i) any set S = cs(M/K) is persistent for any extension £ /K,
(ii) any set S = Py (o) is persistent for any extension £ /K with & n M = K.
We collect some properties of almost Chebotarev sets.

Proposition 3.15. Let S be an almost Chebotarev set and £ /K an extension. Then the fol-
lowing are equivalent:
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(i) S is stable for /K.
(ii) S is persistent for £/K.
(i13) 6r(S) > 0 for all finite £/L/K.

Proof. Let S = Py (o) with a finite Galois M/K and o € Gy/x. By Proposition the
density of S is constant and equal to some d = 0 in the tower . /Lo with Ly = £ n M. There
are two cases: either d =0 or d > 0. If d = 0, then S is not stable and hence also not persistent
for /K by Proposition i.e., (i), (ii) and (iii) do not hold in this case. If d > 0, then S
is obviously persistent for .#/K with persisting field Ly and hence also stable, i.e., (i),(ii),(iii)
hold.

O

Example 3.16 (A persistent set). Let K be a number field, M /K a finite Galois extension,
which is totally ramified in a prime p of K. Let 0 € Gyy/i and let S be a set of primes of K,
such that

[ S bt PM/K(O-)

°*pgs.

Then S is persistent with persisting field K. Indeed, we have Kg n M = K by construction,
and the claim follows from Corollary

Example 3.17 (Unramified extensions). Let M /K be a finite unramified Galois extension. Let
o € Gyyi and let S be a set of primes of K with S = PM/K(O'). If ¢ # 1, then S is never
stable. Indeed, one has M < Kg and the density of S is zero for all fields in the tower Kg/M

(cf. Proposition [3.15)).

3.5.3 Finiteness of £**"(S) and properties (*)

Proposition 3.18. Let S be an almost Chebotarev set.

(i) If o € E*2P(S), then E*?P(S) contains all rational primes. If oo ¢ ES2(S), then S
satisfies property (¥)52P i e., the set ES*(S) is finite.

(ii) If oo € EP™(S), then EP®(S) contains all rational primes. If o ¢ EP*'3(S) and one has
Ksous, "M < Kg, then EP?S(S) is finite.

Proof. (i): If oo € EP(S), then S does not have a stabilizing field for Kg, g, /K, which is
contained in Kg. This is by Proposition [3.11] equivalent to the fact that S is not stable for
Kgsys, /K, which in turn is equivalent by Proposition to the fact that 0.(S) = 0 for all
Kgsys, /L/Ly where Ly is some fixed subextension of Kg g, /K. From this immediately follows
that p € E5%P(S) for any rational prime p.

Now we prove that if oo € E5%P(S), then E5%2P(9) is finite. Let S = Py (o) with o € Gy k-
Let Ly := M n Kgus,, and L, := M n Ksus,us,- By Proposition the density of S is
constant in the towers Kg_ s, /Lo and K SUSpUSe /L, and equal to some real numbers dy and d,
respectively. Since S is stable for Kg g, /K, we have dy > 0.
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We claim that for almost all p’s we have L, = L. More precise, this is true for all p’s, such
that the set

{p e (Sp~S)L,: p is ramified in M /Ly}.

is empty. In fact, if this set is empty for p, then the extension L, /L is unramified in S, \. S(Lo),
since contained in M /Lg. But being contained in Kgys,.s,, and unramified in S, \ S(Lo), it is
contained in Kg.gs, , and hence also in M n Kg,s, = Lo, which proves our claim.

Let now p be such that L, = Lg. Then we claim that S is ([Lo : K]dy')-stable for
Ksus,us.. /K with ([Lo : K]do_l)—stabilizing field K. Indeed, as L, = Lg, we have d, = do > 0.
Let KSUSPUS%/N/K be any finite subextension. We have

Cl() = 5L0N(S) = [LON : N]5N(S M CS(L()N/N)) < [Lo : K]éN(S),

i.e., On(S) = [Lo : K] 'do for all N, and in particular our claim follows.

Finally, almost all primes satisfy p > [Lg : K]dgy L and L, = Ly and for them § is p-stable
for Ksus,us,, /K with stabilizing field K.

(ii): First, oo € EPS(S) is equivalent to the following fact: for all Sy = S and for all
Kg/L'/K, the density d.(Sp) does not get positive and constant in the tower Kgus, /L. In
particular, for all such Sy and L', the density d.(Sy) does not get constant and positive in the
bigger tower Kg_s,us.. /L' for any rational prime p. Hence p € EP“*(S).

Let now Lo, Ly,dy,d, be as in the proof of (i) and assume that oo ¢ EPS(S) and Lo =
Kgsys, n M < Kg. As in the proof of (i), we have L, = L¢ for almost all p’s. For such p’s we
have 61(S) = d, = do > 0 for all finite subextensions Kg_s,0s.,/L/Ly, i.e. p ¢ EP3(S). O

Remark 3.19. The proof also indicates which primes lie in £5'2P(S) for S « Pyr/ic(0), and in
which cases E*2P(S) is empty. If E5%P(S) = ¢, then Spec Ok g is an algebraic K(,1)-space

(cf. Corollary [5.14]).

Example 3.20 (Persistent sets with E5%2P(S) finite but non-empty). Let K be a totally imag-
inary number field and let M /K be a finite Galois extension extension, which satisfies the
following conditions:

e M /K is totally ramified in a prime p € S,(K),
e d:=[M:K]|>np.
Let 0 € Gy i and let S be a set of primes of K, such that
o 5= Py (o),
e Ram(M/K)~ S = {p}.

Then S is persistent (07(S) = d~! for all Kg/L/K) with persisting field K and does not satisfy
(*);tab, ie., p € B (S) (and oo ¢ ESP(S), ie., ESP(S) is finite). Indeed, M S Kgus,us,,
and there are two cases ¢ = 1 or 0 # 1. In the second case, the density of S in Kgus,us.,./K
is zero beginning from M, hence S is non-stable for this extension, and (*)Ztab is not satisfied.
In the first case, we have d.(S) = 1 for all Kgus,us,./L/M. Assume there is a p-stabilizing
field N € Kg for S for Ksus,05,./K, ie., there is some Sy < S and some a € (0,1] with
a < 01(S0) < pa for all Kg_s,0s,,/L/N. But this leads to a contradiction. Indeed,
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5MN(SO) = [MN : N]5N(50 N CS(MN/N)) = [M : K](SN(S()) = p(;N(So),
since NN M = K and Sy € S = cs(M/K).

Example 3.21 (Persistent sets with EP"S(S) = ¢F). Let M /K be a finite Galois extension of
degree d with K totally imaginary, which is totally ramified in at least two primes p resp. [ with
different residue characteristics ¢ resp. f2. Let S = Py /i (0) for some o € Gk, such that
p,l¢S. Then M n Kg = K, hence S is persistent with persisting field K. Let p be a rational
prime. Then M n Kgys,us, = K, since M /K is totally ramified over primes with different
residue characteristics ¢1 and ¢5. Hence S satisfies (x)5”" for every prime p and K is a persisting
field for S for Kgus,us.,. /K.

Example 3.22 (Persistent sets with EP™S(S) = ¢F). There is also another possibility to con-
struct sets S with EP®™(S) = (&, using the same idea as in the preceding example. Assume
for simplicity that K is totally imaginary. Let M, My/K be two Galois extensions of K, and
01 € G s T € Gogyyxc- Assume M /K is totally ramified in a non-archimedean prime p; of K,
such that the residue characteristics of py, p2 are unequal. Then let S be a set of primes of K,
such that

e S = PMl/K(Ul) v PMz/K(UQ)v
o {p1,p2} ¢ S.

Then, by the same reasoning as in the preceding example, S is persistent with persisting field
K and EP(S) = ¢J. Moreover for each rational prime p, the field K is persisting for S for
Ksos,us.,. /K.

Example 3.23 (Persistent set S with p € EP®S(S) ~\ E5P(S)). Let K be totally imaginary
and M /K a finite extension of degree d := [M : K| < p, which is totally ramified in a prime
pe Sy Let S« cs(M/K), such that p ¢ S. Then S is persistent with persisting field K,
since M n Kg = K. Further, p ¢ E5%P(S), as K is p-stabilizing field for S for Ksus,us,. /K
(with respect to Sp = S and a = d1). Moreover, p € EP®(S). Indeed, assume Ly S Kg
would be a persisting field for S for Ksos,05,./K. lLe., there would be a subset Sy < S with
01(S0) = 01,(S0) > 0 for all finite subextensions Ks,s,.s../L/Lo. In particular, this must hold
for L := M Lg, which is a proper extension of Ly, since M n Kg = K. But then we have

5ML0(SO) = [MLO : L0]5L0(S0 N CS(ML()/L())) > 5L0(SO)7
as [MLg: Lol > 1 and Sy € S = cs(M/K).

3.5.4 Stable but not persistent sets

It is not clear to the author how to construct a stable but not persistent set. The following
example goes in this direction, and by the way provides an example of a set S, such that
0r(S) > 0 for all finite Z/L/K but S not stable (i.e., S satisfies satisfies property (iii) of
Proposition [3.15] but does not satisfy (i)).

Let £/K be normal and infinite, let £ = U;’il L;2---2L; 2---2 L1 2 K be an infinite
tower of finite Galois subextensions. Write d; := [L; : K]. Let S; € ¢s(L;/K) ~\ cs(Li+1/K) be
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a subset with some density dx(S;) = a; = 0 (one can choose S; such that a; is arbitrary small).
Let S := U;il S;. Then

5[,1(5) = dZ(SK(S N CS(LZ/K)) = dl

Q-

08

7

Notice however, that if we still choose the a; above such that S is stable, but dr,(S) never gets
constant, it is still unclear, whether S is persistent or not (because of the freedom of choosing
So € 9).

To find a set with d1,(S) > 0 for all £/L/K, but S not stable, consider in the previous
example numbers a; > 0, such that Z??L:Z’ Ay < Hli, which is clearly possible (e.g. take a; < ﬁdz)
This gives 0 < 67,(S) < 1. Since £ = |2, L, it is easy to see that d,(S) > 0 for all finite
Z/L/K. The constructed set does not satisfy part (iii) of Proposition hence is not stable
for Z/K.

3.5.5 Stable sets with N(S5) = {1}

Let M/K/K( be two finite Galois extensions of a number field Ky. Then the natural map
Gar/i, = Aut(Gyy k) induces an exterior action

Gk /ro = Out(Garyk ),

thus inducing a natural action of Gg/f, on the set of all conjugacy classes of Gy . For any
9 € Gg/K, and o € Gk, we choose a representative of the conjugacy class 9.C(0; GM/K) and
denote it by g.o. Further, Gg g, acts naturally on Yk, and we have

9-Pryic(0) = Py (g.0).

Let Ko = Q and let 0 € G/ be an element, such that C(o; GM/K) is not a fixed point of the
action of G q. Let then

S = CS(K/Q)K M PM/K(U)

If pe ¥g N cs(K/Q), then Sn S, = . If pecs(K/Q) such that S, NS # F, then the
action of g € Gg/g,, chosen such that C(o;Gpx) # C(g.0;Gp/xc), defines an isomorphism
between the disjoint sets S, N Py (o) and Sp N Pryyi(g.0), hence the last of these two sets is
non-empty. From this we obtain S, ¢ S. Thus N(S) = 1. Moreover, if we choose o such that
the stabilizer of C(0;Gyr/x) in Gg g is trivial, then for any p the intersection S, N S is either
empty or contains exactly one element.

Now we have to choose M in a way such that S is stable. This is easy: for example take
M/K to be totally ramified in a fixed prime, which is (by definition of S) not contained in S.
Then Kgn M = K, ie., S is stable for Kg/K with stabilizing field K, as dx(cs(K/Q)x) = 1
and hence S = Py i (o).
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4 Arithmetic applications

In this section we prove certain arithmetic results for stable sets. Most of them are generalizations
of theorems shown in [NSW| Chapters IX and X for sets with density one to stable sets.

4.1 Overview

Our main result is Theorem which is a Hasse principle for III'. All other results in this
section make an essential use of this theorem (along with other inputs). Here are the theorems

we want to generalize.

1. Hasse principles

2. Grunwald-Wang theorem

3. Riemann’s existence theorem

4. cd, Gg = scd), Gg = 2

5. algebraic K(m, 1)-property

6. (a part of) the Neukirch Uchida theorem

Here is a rough scheme, how these statements depend on each other:
Poitou-Tate

l——=2

3 \7> 4 6
5
Essentially, in the pro-p case, 3 and 4 are equivalent to 5.

The two properties of a set S of primes of K, which deserve the most interest here, are the

p-stability of S and the property (*);tab. Roughly speaking, p-stability is enough for some Hasse

stab
p

the Grunwald-Wang theorem with respect to the rational prime p, etc.

The properties “p-stable” and (x)5%P

principles for IIT! and () is necessary for all further results, such as Hasse principles for 1112,
are still too strong for the results of this section, i.e.,
they can be weakened further, without changing the results. For example, let .Z/K be a Galois
extension, A a trivial p-primary G ¢,g-module and T a set of primes of K. Then to obtain the
very basic Hasse principle III' (. /K, T; A) = 0, one can require (instead of p-stability of T for
Z /K with p-stabilizing field K, as in Theorem the weaker condition that there is a subset

Ty € T with 6,(Tp) > 0 in the tower . /K and such that there are no subextensions .¢/L'/L/K

L 6(T)
with 6LL(T§)

= p. Thus we can pose the following question.

Question 4.1. What is the most general condition, for which the same results as for p-stable sets
resp. sets satisfying (*)Isfab hold? Are there counterexamples to the Grunwald-Wang theorem or
even to the Riemann’s existence theorem, among the sets, which do not satisfy this condition?

A positive answer to the second part of the question (it is by no means clear, whether one
should expect it) could possibly provide examples of curves Spec Ok g which are not K(r, 1) for

p (cf. Definition [5.2)).
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In Section [£:2] we prove our key result. In Sections [£.3][4.4] resp. [£.6] we apply it to obtain
certain Hasse principles, the Grunwald-Wang theorem resp. Riemann’s existence theorem for
stable sets. In Section we deal with the realization of local extensions by global ones. In
Section we consider the (strict) cohomological dimension of the groups Gg g resp. Gg s(p).
Up to here we generalized results from [NSW| for density 1 sets to stable sets. Further, in Section
we prove a Hasse principle in dimension 2, which is needed in the anabelian setting in the
Section [6] to prove the local correspondence. We must postpone this Hasse principle to Section
and do not prove it in Section since the proof uses all results shown so far. Finally, in
Section [£.9] we prove the finiteness of Shafarevich groups with divisible coefficients for stable
sets.

4.2 Stable sets and III': key result

Let K be a number field and /K a (possibly infinite) Galois extension with Galois group
Gk Let A be a finite G ¢/-module. Let p be a prime of K and let 3 be an extension of p

to Z. Let
R !
Z/K'/K finite
Choose an algebraic closure ?;B of £y, which is also an algebraic closure of Kj,. Then one has
natural homomorphisms

Gy = GE‘B/K;) — Dy o/ = Gk,

giving A a natural structure of ¢,-module, and hence giving rise to a restriction homomorphism

resh ot H (Z/K, A) — H (%, A).

The group H! (%, A) depends on the choice of 3 over p and on the choice of an algebraic closure
of Zy only up to a canonical isomorphism: assume 9,2 are two primes of £ lying over
p and y‘ﬁi is some algebraic closure of %y, (i = 1,2). Then 9B1,*Po are conjugate over K,
hence ?qgl,?qu are isomorphic. Let 1, v2 be two isomorphisms of ?&Bl,th over Ky. Then
homomorphisms induced by them in the cohomology are equal:

Vi =75 HY( Ly, /Kp, A) - H* (L, /Ky, A),

since inner automorphisms act trivial on the cohomology (indeed, consider 75 v e Gy‘n / Kp)'
1
It is immediate, that resﬁ%h ¥ /K,resfi;?’ 2K commute with this canonical isomorphisim. From
now on, we suppress the choice of the prime ‘B over p and of the algebraic closure £ in our
notation.
Let now T be a set of primes of K. Consider the i-th Shafarevich group with respect to
T:

II'(Z /K, T; A) := ker(res': H(Z/K,A) - [ [H(%,, A
peT

where 4, = G K:? /K, 15 the local absolute Galois group. We denote by K(A) the trivializing
extension for A, i.e., the smallest field between K and .2, such that the subgroup G ¢k (a) of
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G.g/k acts trivially on A. It is a finite Galois extension of K.
Let G be a finite group and A a G-module. Following |Ja|, let H.(G,A) be defined by
exactness of the following sequence:

0— HL(G,A) > H(G,A) > [ [ H(H,A).

HSG
cyclic

We have the following key result.

Theorem 4.2. Let K be a number field, T a set of primes of K and £ /K a Galois extension
with Galois group G. Let A be a finite G-module. Assume that T is p-stable for £ /K, where p
is the smallest prime divisor of $A. Let L be a p-stabilizing field for T for £ /K. Then:

' (Z/L,T; A) € HL(L(A)/L, A).
In particular, if H:(L(A)/L,A) = 0, then II*(Z/L,T; A) = 0.
All results in the following make use of this theorem in a crucial way.

Lemma 4.3. Let £/L/K be two Galois extensions of K and T a set of primes of K. Let A
be a Gy -module, such that for any p € T one has ASz/L = APv.2/L Then there is an exact
sequence

0 — I (L/K, T; AS#/m) — I (2 /K, T; A) — I (Z/L, T(L); A)

Proof. Recall that for a prime p of K the set Sy(L) consists of all primes lying over p in L. Let
B be any extension of p to L, and let P be an extension of B to .Z. The sequence

0 — H' (Ly /Ky, AP»-/0) — H' (% /Ky, A) — H'(Z /L, A),

is exact and the right map does not depend on the choice of 8 over p (cf. the beginning of this
section). Hence also the sequence

D
0 — H'(Ly/K,, AP»2) > H' (Z /Ky, A) » [ H'(Zy/La,A),
QeS, (L)
is exact, where the map on the right is the restriction into each component. Thus we obtain the
following commutative diagram with exact rows:

0 HY(L/K, AS2/1) HY(Z/K, A) H'(Z/L,A)

| | |

0— [T H'(Ly/Kp, APp2rn)  TIHY(Z/Kp, A) ] HY(Z/Ly, A).
peT peT peT (L)

The lemma follows by taking kernels of the vertical maps. O

Lemma 4.4. Let L/K be a finite Galois extension, T a set of primes of K, and A a finite
Gpr/i-module. Assume that T is p-stable for L/K with p-stabilizing field K, where p is the
smallest prime divisor of $A. Then

IY(L/K,T; A) € H. (L/K, A).
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Proof. We can assume that A is p-primary. Indeed, decompose A into ¢-primary components,
and observe that any p-stable set is ¢-stable for any ¢ = p. We have to show that any cyclic
p-subgroup of Gk is a decomposition subgroup of a prime in 7". This is content of the next
lemma. O

Lemma 4.5. Let L/K be a finite Galois extension, T a set of primes of K and p a rational
prime, such that T is p-stable for L/K with p-stabilizing field K. Then any cyclic p-subgroup of
G,k 1s the decomposition group of a prime in T

Notice that this shows automatically that there are infinitely many primes in 7', for which
the given cyclic group is a decomposition group.

Proof. Assume that the cyclic p-subgroup H S Gpk is not a decomposition group of a prime
in T'. Let pH < H be the subgroup of index p. Then one computes directly m,p(c) = pmp (o)
for any o0 € pH. Since H is not a decomposition subgroup of a prime p € T', no generator of H
is a Frobenius at T, i.e. PL/K( o)nT = ¢ for any 0 € H~ pH. By p-stability of T', there is
a subset Ty € T and an a > 0, such that pa > §1/(Ty) = a for all L/L'/K. Let Ly = L and
Ly = LPH. Then

Oro(To) = Y mu(0)dx(Prx(o) n Tp)
ceH

I
=
2
&
=

>
S

This contradicts our assumption on Tj.
O

Proof of the theorem. We can assume L = K. By applying Lemma[f.3to /K (A)/K and using
Lemma we are reduced to showing that if A is a trivial G-module, then IIT' (£ /K, T; A) = 0.
Let To € T and a > 0 be such that pa > 01/(Tp) = a for all Z/L'/L. Let GT be the quotient
of G, corresponding to the maximal subextension of .#/K, which is completely split in 7. We
have then

II'(Z£/K, T; A) = ker(Hom(G, A) — | [ Hom(%,, 4)) = Hom(G", A).
peT

If 0 # ¢ € Hom(G”, A), then M := £*"9)/K is a finite extension inside .Z/K with Galois
group im(¢) # 0 and completely decomposed in 7', and in particular in Ty. Thus

pa > oy (To) = [M : K)ok (To nes(M/K)) = $im(¢)dx (To) = pa,

since dx (Tp) = a. This is a contradiction, and hence we obtain
' (Z/K,T; A) = Hom(GT, A) = 0.
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This finishes the proof. ]

4.3 Some Hasse principles

Now we give first applications of Theorem Consider the case .Z = Kg, where S is some
further set of primes of K. Then we have the usual Shafarevich group (A is a Gk g-module and
T is a set of prime of K, not necessarily contained in S):

IT'(Kg/K, T; A) := ker(res’: H|(Kg/K,A) - [ [H(%,, A)).
peT

If S =T, we also write III*(Kg/K; A) instead of III(Kg/K,S; A). The Hasse principle for A
(in the i-th dimension, with respect to S and T') is said to be satisfied, if

IY(Ks/K,T; A) = 0.

Various conditions on S, T, A which imply the Hasse principle in dimensions 1 and 2 are consid-
ered in [NSW]| chapter IX, §1. We prove a generalization for stable sets.

Corollary 4.6. Let K be a number field, T, S sets of primes of K, A a finite Gg s-module.
Assume that T is p-stable for Kg/K, where p is the smallest prime divisor of §A. Let Ly be a
p-stabilizing field for T for Kg/K, which trivializes A. Then

I (Ks/L,T; A) =0
for any finite Kg/L/Ly.

Proof. Since Ly is a p-stabilizing field which trivializes A, any L lying between Kg/Ly is too.
Thus the corollary follows immediately from Theorem [4.2] O

Let ¢ be a full class of finite groups, in the sense of [NSW| 3.5.2. Let Kg(c¢)/K denote the
maximal pro-c-extension of K in Kg, and Gg g(c) its Galois group over K, i.e., the maximal
pro-c-quotient of Gx g. We have the pro-c-version of Corollary @l:

Corollary 4.7. Let ¢ be a full class of finite groups, K a number field, T, S sets of primes of
K, A a finite Gg s(c)-module. Assume that T is p-stable for Kg(¢)/K, where p is the smallest
prime divisor of $A. Let Lo be a p-stabilizing field for T' for Kg(c)/K, which trivializes A. Then

Y (Ks(c)/L, T; A) =0
for any finite Kg(c)/L/Ly.

A further consequence of Theorem [.2]is Corollary [£.9] below, which is, besides Poitou-Tate
duality, the key ingredient in the Grunwald-Wang theorem for stable sets. Before stating it, we
recall from [NSW| 9.1.5, 9.1.7 the definitions of the special cases:

Definition 4.8. Let k be a field, n = 2"n’ be a natural number prime to char(k) with n’ odd.

(i) We say that we are in the special case (k,n), if » > 2 and —1 is in the image of the
cyclotomic character Xcyel: Gy ) — (Z/27Z)*.
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(ii) Let further T be a set of primes of k. We say that we are in the special case (k,n,T), if
we are in the special case (k,n) and all primes p € T' decompose in k{uar)/k.

Corollary 4.9. Let K be a number field, S 2 Sy a set of primes, n € N(S) and let p be the
smallest prime divisor of n. Let T' be a further set of primes of K, which is p-stable for Kg/K,
and let Ly be a p-stabilizing field for T for Kg/K. Then

MY (Kg/L,T; i) = 0

for any finite Kg/L/Ly, such that we are not in the special case (L,n,T). In the special case
(L,n,T) we have I (Kg/L,T; puy) = Z/27.

Before proving this, we quote the following proposition:

Proposition 4.10 ( [NSW| 9.1.6). Let p be a prime, r € N and let k be any field with char(k) # p.
Then
H (k(ppr ) ke, pipr) = 0 for all i€ Z,

except, when p =2, r > 2 and we are in the special case (k,2"). In this case

H (k(uor) /K, por) = Z/2Z  for alli € Z.

Let p =2, r = 2. Then the special case (k,2") occurs if and only if
char(k) = 0 and Q(uar) N k is real,
or char(k) =¢=—1 mod 2" and Fy(uar) n k = Fy.

Proof of Corollary[{.9. We can assume n = p". If we are not in the special case (L,p"), Propo-
sition implies H' (L(pr)/L, pipr) = 0, i.e., we are done by Theorem . Assume we are in
the special case (L,p"). In particular, p = 2. Then H'(L(u2r)/L, por) = Z/2Z. Since

I (Ks/L(par), T par) = 0
by Theorem we see from Lemma
IY(Ks/L, T; par) = T (L(pgr) /L, T; piar).
If there is a prime p € T'(L), which is not decomposed in L(pgr)/L, then G,y = Gr,(ugr)/Ly

and hence I (L(ugr)/L, T; ugr) = 0. Otherwise, we are in the special case (L,2",T) and for
any p € T'(L), the restriction homomorphism

727 = H"(L(par) /L, pgr) — H' (L (pi2r ) /Ly, )

is zero, as the argument in the proof of [NSW| 9.1.9(ii) shows. Hence in this case one obtains
I (L(por) /L, T por) = Z,/27, . O

Now we turn to III?. For a Gg s-module A, such that §4 € N(S), we denote by
A" := Hom(A, O, s)

the dual of A. Asin [NSW| 9.1.10, we obtain the following corollary.
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Corollary 4.11. Let K be a number field, S 2 Sy a set of primes of K, A a finite Gk g-module
with $A € N(S). Assume that S is p-stable (i.e., p-stable for Ks/K ), where p is the smallest
prime divisor of {A. Let L be a p-stabilizing field for S for Kg/K, such that HL(L(A’)/L, A’) = 0.
Then

I1%(Ks/L; A) = 0.

In particular:

(i) If A is trivial G g-module, then I1%(Kg/L; A) = 0 for all fields L, which are p-stabilizing
for S.

(ii) Let n € N(S) with smallest prime divisor p. If L is a p-stabilizing field for S and we are
not in the special case (L,n,S), then NI?(Kg/L,Z/nZ) = 0. In the special case, we have
I2(Ks/L; Z/nZ) = Z,/2Z.

Remark 4.12. The condition A € N(S) is not necessary if A is trivial: we postpone the proof of
this until all necessary ingredients (in particular Grunwald-Wang theorem, Riemann’s existence
theorem and cd, Gg s = 2) are proven. Cf. Proposition m

Proof. By Poitou-Tate duality (this is the reason, why we need S 2 Sy and $4 € N(S)) we
have:

II1*(Ks/L, A) = W' (Ks/L, A")",

where XV := Hom(X,R/Z) is the Pontrjagin dual. An application of Theorem to Kg/K,
the sets S = T and the module A’ gives the desired result. (i) and (ii) follow from Corollaries

and [4.9] respectively. O

4.4 On the Grunwald-Wang theorem

In this section we consider the cokernel of the global-to-local restriction homomorphism

coker'(Ks/K,T; A) := coker(res’: H'(Kg/K, A) H H(%,, A)

where A is a finite Gg g-module and T'< S. If A is a trivial Gg g-module, then the vanishing
of this cokernel is equivalent to the existence of global extensions unramified outside .S, which
realize given local extensions at primes in T". If S has density 1, the set T is finite, A is constant
and we are not in a special case, this vanishing is essentially the statement of the Grunwald-
Wang theorem. Certain conditions on S, T, A, under which this cokernel vanishes are considered
in [NSW| chapter IX §2. All of them require S to have certain minimal density. We prove
analogous results for stable resp. persistent sets.

Corollary 4.13. Let K be a number field, T < S sets of primes of K with Soo < S. Let A
be a finite Gi g-module with §A € N(S). Assume that T is finite and S is p-stable, where p
is the smallest prime divisor of §A. For any p-stabilizing field L for S for Ks/K, such that
HL(L(A")/L,A’) = 0, we have:

coker! (Kg/L,T; A) = 0.
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First we reprove the following lemma:

Lemma 4.14 ( [NSW]| 9.2.2). Let K be a number field and S a set of primes of K. Assume
S € S and A € N(S). For any finite subextension Kg/L/K and any finite subset T < S, there
is an eract sequence

0 — I (Kg/L; A") — I (Kg/L, S\ T; A") — coker' (Ks/L,T; A)¥ — 0.

Proof of the lemma. Since Lg = Kg, we can assume L = K. We have the following commutative
exact diagram:

MY (Ks/K,S\T; A)——H'(Ks/K,A") —=[1's_+HY(%, A)

I (K5/K; 'Y H (Ks /K, A')

[TsH (%, A")

H'(Kg/K, A)V

[T H (%, A") [l H' (%, A)"

0 coker! (Kg,T; A)Y

0
where ]_[/ denotes the restricted product, with respect to the unramified cohomology subgroups
H}.(%,-). The two horizontal arrows on the right are given by Poitou-Tate and local duality
theorems. All other arrows follow from the definitions. Now the claim follows from the snake
lemma, applied to the second and the third columns in the diagram (the second column has to
be extended by zeros).
O

Proof of the Corollary[{.13. Since T is finite and S is p-stable for Kg/K, S\ T also is p-stable
for Kg/K, and the p-stabilizing fields for S and S\ T are equal. Let L be as in the corollary.
By Theorem applied to Ks/L, S~ T and A’, we obtain III*(Kg/L,S~T;A’) = 0. Then
Lemma implies coker!(Kg/L,T; A) = 0. O

Now we give a generalization of [NSW]| 9.2.7.

Theorem 4.15. Let K be a number field, S a set of primes of K. Let Ty, T € S be two disjoint
subsets, such that Ty is finite. Let p be a rational prime and r > 0 an integer. Assume ST
is p-stable for Kgus,us.,. /I with p-stabilizing field Lo, which is contained in Kg. Then for any
finite Kg/L/Ly, such that we are not in the special case (L,p", S~ (To v T)), the canonical map

H'(Ks/L,Z/pZ) » @ H' (%, Z/p'2)® P HY(A%,Z/pZ)%
pETo(L) PET(L)
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is surjective, where Sy S 9, = GKseP/Lp 1s the inertia subgroup. If we are in the special case
(L,p", S~ (Top uT)), then p =2 and the cokernel of this map is of order 1 or 2.

Remarks 4.16.

(i) Observe that if §x(T) = 0, the condition “S~\ T is p-stable for Kg,s,0s, /K with a
stab»

p-stabilizing field contained in K" is equivalent to “S stable and satisfies ()3

(i) If 6x(S) = 1 and dx(T) = 0, then Ly = K is a persisting field for S\ T for any £ /K and
the condition in the theorem is automatically satisfied. Thus our result is a generalization
of [NSW] 9.2.7.

(iii) To show that Theorem is a proper generalization of [NSW]| 9.2.7, we give the following
example. Let N/M /K be finite Galois extensions of K, such that N/K (and hence also
M /K) is totally ramified in a non-archimedean prime p of K, lying over the rational prime
. Let 0 € Gpy/i and let 6 € G/ be a preimage of 0. Let S 2 T' be such that

- SﬁPM/K(J)a
—p¢Sand

— T2 Py (o)~ Py (0).

Then SN\T = Py/g(6) is persistent for Kg_s,us, /K for any p # ¢, and moreover K
is a persisting field (indeed, this follows from Kg s,05, N N = K). Hence the sets
S D T satisfies the conditions of the theorem with respect to each p # £. Observe that
in this example T is itself persistent K SUSpUSy /K, with persisting field contained in Kg.
In [NSW] 9.2.7, the set 7" must have density zero.

Proof. We omit Z/p"7Z coefficients from the notation. Let Lo be as in the theorem. Let Kg/L/Lg
be a finite subextension, and Sy © S~ T a subset, such that there is an a > 0 for which
pa > 0p(So) = a holds for any finite Kgus,us,/M/L. Since Ty is finite, we can assume
SonTy = . We follows the same steps as in the proof of [NSW| 9.2.7. The unique non-
trivial extension of archimedean local fields is totally ramified, hence H'(%,) = H!(.%,)% for
archimedean primes. For all non-archimedean primes p, the group %,/.%, =~ 7 is of cohomological
dimension one, and Hochschild-Serre spectral sequence shows the surjectivity of the natural map
HY(%,) - H'(#)%. Thus we can move the finitely many primes of T'n (S, U Sx) to Ty, and
thus assume T N (S, U S) = . We first treat the

Case S 25, U Sy. Let 71 < T be a finite subset. S\ T is p-stable for Kg/L with p-
stabilizing field L, hence the same is true for the subextension L(s. 1y 1, /L-

We claim that cokerl(L(S\T)uTl/L, T v Ty;Z/p"Z) = 0, i.e., the localization map

H' (L myor, /L) > @ H(%)
pETouTl

is surjective, if we are not in the special case (L, p", S\ (Tp uT1)), and is of order 2 in the special

case. Indeed, Corollary implies
ml(L(S\T)uT1/L7 S\ (T o TO); UPT) =0
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if we are not in the special case, since L is a p-stabilizing field field for S~ (T" v Tp) for
Lis< 1yor /L (resp. I_HI(L(S\T)UTl/L, SN (To v T);ppyr) = Z/27 if we are in the special case)
and Lemma implies the claim.

Since the map H(%,) — H'(.%,)% is surjective, the natural map

H' (L myor,/L) > @ H' (%) @ @ H' ()%
peTo peT1

is also surjective if we are not in the special case (resp. has cokernel of order 1 or 2 otherwise).
For T7 € Ty <€ T we obtain a commutative diagram, where the vertical arrows are the inflation
maps:

1 1 %,
Hl(L(S\T)uTQ/L)HIG{?H (gp)@)g?H (jp) P

|

1 1 %,
Hl(L(S\T)uT1/L)*>76{?H (gp)®§?H (jp) P

Passing to the direct limit over all finite T7 € T we obtain the claim of the theorem.

General case. Let V' = (S, U Si) \S. By assumption, S\ T is p-stable for Kg v /L with
p-stabilizing field L. In particular, the assumptions of the theorem are satisfied for the extension
Ksov = Lsuy/L, and sets Ty o V,T < S u V. Then the already proven case implies that the
map

H'(Ls_v/L) » @ HY(%4) @@Hl (Fp)®
TouV
is surjective (resp. has cokernel of order 1 or 2 in the special case). Since L © Kg, we have
Ls = Kg and since any class a € H'(Lg_v/L) for which ay, € H. (%4,) for all p € V, lies already
in H'(Lg/L) = H'(Kg/L), we obtain the same statement for the map

H'(Kg/L) — @Hl (%) @@H (%) @@Hl I

This finishes the proof.
O

From this we obtain the following form of the Grunwald-Wang theorem. The proof is the
same as in [NSW| 9.2.8.

Corollary 4.17. LetT < S be sets of primes of a number field K. Let A be a finite abelian group.
Assume that T is finite and that for any prime divisor p of $A, S is p-stable for Ks,s,os.. /K
with stabilizing field K. For allp € T, let L,/K, be a finite abelian extension, such that its Galois
group can be embedded into A. Assume that we are not in the special case (K, exp(A),S~\T).
Then there exists a global abelian extension L/K with Galois group A, unramified outside S,
such that L has completion Ly, at pe T

Finally, we have two corollaries generalizing [NSW] 9.2.4 and 9.2.9 to stable sets.

Corollary 4.18. Let K be a number field, T < S sets of primes of K with T finite. Let Kg/L/K
be a finite Galois subextension with Galois group G. Let p be a prime and A = Fp[G]" a Gk s-
module. Assume S is p-stable for Kg s,0s.. /I with p-stabilizing field L. Then the restriction
map
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H'(Ks/K,A) > P HY (%, A)
peT

1S surjective.

Proof (c¢f. [INSW] 9.2.4). We have the commutative diagram, in which the vertical maps are
Shapiro-isomorphisms:

H'(Ks/K, A)

@ H' (%, A)
peT

H'(Ks/L,Fp) —= @ H'(%, FL)

PeT(L)
The lower map is surjective by Theorem and so is the upper. ]

Corollary 4.19. Let K be number field, S a set of primes of K. Let Ks/L/K be a finite Galois
subextension with Galois group G. Let p be a prime and A = F,[G]" a G, g-module. Assume
that S is p-stable for Ksus,0s../L with p-stabilizing field L. Then the embedding problem

Gk.s

|

1 A E G 1

1s properly solvable.

Proof (cf. [NSW] 9.2.9). We have H?(G, A) = 0, and hence the sequence in the lemma is split.
In particular, the embedding problem is solvable (cf. also [NSW| 3.5.9). Let ¢g: Gx g — E
denote a solution. Let p1,...,p, € cs(L/K) n S (observe that cs(L/K) n S has positive density
and, in particular, is infinite) be primes of K and let ¢;: 4,, — A be homomorphisms, the
images of which generate A. By Corollary the restriction homomorphism

H!'(Ks/K,A) @Hl (%, A

is surjective. Let ¢ € H!(Ks/K, A) be a preimage of (¢; — w0|Gpi)§:1. Then

Yi=¢-Yo: Ggs— E,

defined by 1(g) = ¢(g9)vo(g) (cf. INSW| 3.5.11) is a proper solution of the embedding problem.
]

4.5 Realizing local extensions

If p is any prime of K, one can ask, how big the local extensions (Kg)p/K, and (Ks(p))p/Kp
are. Motivated by the treatment in [NSW| 9.4.3, we study these questions in the case, when
S is stable. If R € S is a subset, we write K g for the maximal subextension of Kg/K, which
is completely split in R and K&(p) for the maximal pro-p-subextension of K/K. The next
proposition is a generalization of [NSW] 10.5.9.
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Proposition 4.20. Let K be a number field, R < S sets of primes of K, p a rational prime.
Assume R is finite and S is p-stable for Ksys,us,, /K and has a p-stabilizing extension contained
in KE(p). Then

Ky(p) ifpe S\R,

(KE )y = {K fpeR
P ) .

If, moreover, p ¢ S and S is p-stable for KSuSpuSmu{p}/K with a p-stabilizing field contained in
KE(p), then also

(K1) = K" (p)-

Proof. For p € R there is nothing to prove. Let Ly S Kg(p) be a p-stabilizing field for S for
Ksus,us.,./K. By Theorem for each finite subset T < S \ R and each finite subextension
KZE&(p)/L/Ly, the restriction map

H'(K§ (p)/L, 2/pZ) — @ H'(Ly, Z/pZ)
T(L)
is surjective (since HY(K&(p)/L,Z/pZ) = HY (K&/L,Z/pZ)). For p € S\ R and T = {p}, this
means that we can realize any local class ay, € H(Ly, Z/pZ) by an element o € H (K&(p)/L, Z/pZ).

This means that the field K&(p), has no p-extensions, and hence is equal to K,(p). The proof
in the case p ¢ S is similar. O

Corollary 4.21. Let K be a number field, R = S sets of primes of K, p a rational prime.
Assume R is finite and S is p-stable for Ksys,us,, /K and has a p-stabilizing extension contained
in KE (if R = &, then this condition is equivalent to “S is stable and satisfies (*);tab ”). Then
for anype S\ R:

(K&)p 2 Kp(p)
If, moreover, p ¢ S and S is p-stable for KSuSpuSmu{p}/K with a p-stabilizing field contained in
Kg, then also

(K 2 K" ().

Proof. Apply Proposition to a p-stabilizing field Lo of S for Kgys,0s.. /K, which is con-
tained in K g. O

Remarks 4.22.

(i) Observe that in the Corollary the assumption is weaker than in Proposition the
p-stabilizing field of S for Kgys,0s, must only lie in Kg, and not in Kg(p). We will use
it in Proposition [£.25] which is in turn used in Section to prove a local correspondence
at the boundary.

(ii) The above techniques also allow to construct some examples of sets of density 0, for which
the assertion of Proposition holds. Indeed, let S be a set of primes of K, with
p-stabilizing field K for Ksys,us,. /K, and let M/K be a Galois extension of p-power
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degree, such that dp/(S) = 0 and M n Kg = K (such K, M, S exist - take for example
M /K Galois of p-power degree and totally ramified in exactly one prime p ¢ S U S, U S,
and let S = Py (o) with 1 # 0 € Gpy/x). Then

Gir.s(®) = Garxrpym — Gis®),

and for any prime q € S\ R of K with extension ¢’ to M, one has Kq(p) = My (p), since
M/K has p-power degree. Hence M (p)y = My (p) for each q' € (S~ R)(M).

Now we consider the following concrete situation, which we need later on (cf. proof of
Proposition . Let p be a rational prime, S a set of primes of K and V := (S, U Sx) N\ S.
Let p € V be a prime of K over p. Assume S is p-stable for K¢ v /K with a p-stabilizing field
contained in Kg. Let Kg _y (p) be the maximal pro-p subextension of Kg v/Kg. Let further
Kg (p) be the maximal pro-p-extension of Kg,, and define

I,(p) = Gryp)/Ks,, -

Lemma 4.23. We have (Kg_y (p))y = K,(p). In particular, there is a natural isomorphism
Dy 1 yks = Ip(p) and (Kg v (p))y is p-closed.

SuV

Proof. The inclusion 'S’ is trivial. We show the inclusion '2’. Since (K% (p))p 2 Kgp, it
is enough to show that (K% (p))p is p-closed. Let Ly € Kg be a p-stabilizing field for S for
Kgsov/K. Then any finite subextension Kg . (p)/L/Lo is a p-stabilizing field for S U V for
Ks v/K. By Proposition we have for any such L:

Ly(p) = (Lsov(p)p € (Ks v (p))y-

This implies that (Kg,  (p))p is p-closed. O

Consider now the following extensions:

K v (p) Ky(p) < K,
I;(p) S
Kg Kgy < KJ'
Dy gk |9
K Ky Ky
By Lemma we have the commutative diagram with exact rows of local Galois groups:
1 A G 7 1
| i L
1 Iy (p) Dy, v 0/ —= Dy s — 1

Since Kg, contains the maximal unramified p-extension of K, the extension Ky(p)/Kg, is
purely ramified and in particular, the vertical arrow on the left is also surjective. In this situation
we have the following comparison of cohomology.

87



Lemma 4.24. Leti = 0 and r = 1 be two integers. We have canonical isomorphisms:

Hi(Dp,K'SUV(p)/Ka Z/prZ) = Hi(gpa Z/prZ)
Hi(Dp,KS/Ka Z/prZ) = Hi(gpnrv Z/prZ)

Furthermore, cdply(p) = cdpdy =1 and cdp Dy, gk = cdp%y™ = 1.

Proof. Proof of the first equality is similar to the proof of [NSW] 7.5.8. Let H denote the kernel
of Gy - Dy k1, (p)/x- Then cdpH < 1 by [NSW] 7.1.8 (i). Moreover, we have HY(H,Z/p'Z) = 0.
Indeed, (K§ i (p))p is p-closed by Lemmaand hence H has no non-trivial p-quotients. Thus
the first equality follows from the Hochschild-Serre spectral sequence for H and D,, Kl (0)/K

By Corollary Kg/K realizes the maximal unramified pro-p-extension at p. Thus the
order of the kernel of 4" — D, ./ is prime to p and the second equality again follows from
the associated spectral sequence. The statement about the p-cohomological dimension follows
from the fact that the p-Sylow subgroups of Dy g/ and of 4" are isomorphic to Zj,.

Finally, cd,.#, = 1 holds by [NSW] 7.1.8 (i). The group I(p) is the inverse limit of pro-p
intertia groups:

Lp) = lm  Grgyee),
Ks,p/L/Kp
which are free pro-p-groups as follows for example from [NSW| 7.5.11 using Lemma as the
index of Gy ne(p) in Grpy/r is p™. In particular, we obtain cd,I,(p) = 1 by [NSW] 3.3.2.
O

Using the Grunwald-Wang theorem we can easily deduce that the intersections of decom-
position subgroups inside Gg s are small (we will need this in Section to deduce a local
correspondence at the boundary):

Proposition 4.25. Let K be a number field, S a set of primes of K, p a rational prime. Assume
S is stable and satisfies (*);tab. If p is a prime of Kg, let D, © Dp denote a p-Sylow subgroup.
For any p1 # p2 € S(Kg) we have inside Gg s:

(Dpypt Dpyp 0 Dpy ) = 0.

and
(Dﬁll Dﬁl M Dm) = 00.

Proof. Write D; j, := Dg, . Assume for ¢ = 1,2, we have U; S D; ), an open subgroup, and we
have shown that (U;: U; n Us) = 0. We show that also (D1,: D1y n Dajp) = 0o, In fact, we
have (D;p: U;) < o0, hence (D1, N Doy D1y nUs), (D1 0 Doy Up 1 Dsyyy) < 00. Hence also
(D1p N Day: Uy nUs) < 0. Now (Up: Uy nUp) = oo implies

(Dl,pl Dl,p M D2,p)(D1,p M Dg,pi U1 M Ug) = (Dl’pi U1 M Ug) = 00,

and the second factor in the product is finite, hence we get (D1 p: D1, 0 Do) = 0.
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Using this, we can go up to a finite extension of K inside Kg, and thus assume that S is
p-stable for Ks_s,us,, /K with stabilizing field K and that p1|x # p2|x. Now an application of
Corollary with p = p1|x and R = {p2|x} shows that Dy, lies in the kernel of the projection

R
GK,S - GK7Sa

whereas D, has infinite image. Thus (D1p: D1y N Dayp) = (Dip: D1y n'V) = oo, where
V = ker(Gg,s — G% g). The second statement follows from the first in the same way as in
Proposition [1.6 O

4.6 Riemann’s Existence Theorem

The results from sections allow us to show the following version of Riemann’s existence
theorem, which generalizes [NSW| 10.5.8. The proof follows the same steps as in loc. cit.

Theorem 4.26. Let K be a number field, p a rational prime, T 2 S 2 R sets of primes of
K. Assume that R is finite and S is p-stable for Kros,0s,, /K and has a p-stabilizing extension
contained in K&(p). Then the natural map

R ~
. % G « * I aNyel
o7.5 ser(ingy OO ® L ey O Kr(p)/KE(p)

is an isomorphism, where I /K, = GKP(p)/K‘?r(p) < Gr,(p)/K, S the inertia subgroup.

In particular, since the groups Iy, /K, are free pro-p groups, we obtain the following corol-
lary.

Corollary 4.27. Under the assumptions as in Theorem [[.26, if R = &, then the group
Grr(p)/Ks(p) 1 @ free pro-p group.

Proof of Theorem[{.26. It suffices to show the theorem in the case T 2 S, U Se. Indeed, assume
this is done and 7' is arbitrary. Then the condition is still satisfied for T" replaced by T'U .S}, U S,
and the theorem in this case implies that ¢IT%U SpUSe,S is bijective. Then the bijectivity of (ﬁ% g
follows by dividing out the inertia subgroups at primes in (S, U Sx) T on both sides.

From now on we assume 7' 2 S, U Sy. All cohomology groups in the proof have Z/pZ-
coefficients and we omit them from the notation. Consider the maps induced by qb%s in the
cohomology

H{(¢%g): H(Kr(0)/KS() = H( % Gi,pyk, * * T, (p)/K, )
T, peR(KE(p)) p(P)/Kp pe(T  S)(KE(p)) p(P)/Kp

By [NSW] 1.6.15 it is enough to show that this map is bijective for i = 1 and injective for ¢ = 2.
By INSW]| 4.3.14, we have

peR(KE) POV syBpy

! i ! i
D vernierey T Cxmys) © D e sy B IKm)y/,);
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where @' means the restricted direct sum in the sense of the definition [NSW| 4.3.13. Now,
Hl(gﬁ%s) is injective since gb% g Is surjective: Gy ) JKE(p) is generated by the inertia subgroups
of primes in 7'\ S and the decomposition subgroups in R.

To show the surjectivity of H! (¢ o), let KE(p)/Lo/K be a p-stabilizing field for S for the
extension Kp/K. Let K&(p)/L/Lo be any finite subextension. Since 7' 2 S, U Sy, the natural
maps H'(Kr(p)/L) — H{(Kt/L) are isomorphisms for all i > 0 by [NSW| 10.4.8 (for i = 1,
this is obvious; we need this later also for i = 2). Analogously, H(K,(p)/Ly) — Hi(L,) are
isomorphisms for all ¢ > 0 by [NSW]| 7.5.8.

By Grunwald-Wang Theorem [4.15| the restriction map

(4.1) H'(Kr/L) > D H(ILy)e @O Hgy,

peR(L) pe(T~\S)(L)

is surjective (observe that for the module Z/pZ the special case, where the cokernel can be
non-trivial, never occurs). By the above considerations, we have H'(Kt/L) = H!(Kt(p)/L)
and H'(L,) = H'(K,(p)/Ly). For the last term we have L, & Kp*(p) if p € T~ S(L) and the
following computation:

G G

Kp/Kp* (p)

Hl( KT,/K,J) R = Hl( KT,/Kgr)

—~
e~
[\

S~—
12

HY (G ke ()
H (G, (p) /K2 (p)
H' (T, (py/k, )5

12

12

which follows by considering the Hochschild-Serre spectral sequences of the extensions of Galois
groups occurring in the following diagram:

e

Ky(p)
\
K

Finally, by Proposition the limit over KZ(p)/L/L¢ of L, for p € T\ S is equal to K" (p),
and hence the limit over L of the right summand of the term on the right in (4.1]) is equal to

N,
o

GRp/KE ()

! 1 ! 1
D verserenon B Tiy,) = @ per < ssnen B Trtoy/,)

Thus Hl(gb%s) is surjective. Finally, we show the injectivity of H2(¢PT{7S). Since S (and hence also
T) is p-stable for K7/K with p-stabilizing field Lo contained in K% (p), we obtain by Corollary

for any finite KZ(p)/L/Lo:

H? (K = D H*(Ky(p)/Ly)

peT
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is injective. After passing to the direct limit over all K (p)/L/Ly over restriction maps, only the
entries for p € R on the right survive, as Proposition shows. Since lim is exact on abelian
groups, the obtained map, which is exactly HQ((;S}% g) is injective. O

We can also replace K& (p) by KE:

Corollary 4.28. Let K be a number field, p a rational prime, T 2 S 2 R sets of primes of
K. Assume that R is finite and S is p-stable for K1ys,0s,. /K and has a p-stabilizing extension
contained in Kg. Let K!.(p) be the mazimal pro-p-subextension of KT/Kg. For p a prime of
K, let I(p) denote the Galois group of the mazimal pro-p extension Ky(p) of K§p~ Then the
natural map

R ! ~
: *x G * % I — G
¢T,S beR(KE) Ky(p)/Kyp beT ~ S(KE) p(p) Ki(p)/K§

1S an isomorphism.
Remark 4.29. If p € T\ S, then Ilg(p) = Ik, (p)/K,> the inertia group of Ky,(p)/K,, but if

peT NS, then I K,(p)/K, 1S In general a proper quotient of the group I,g (p), as the rank of
IKp (p)/K, STOWS with K.

Proof. We have
Lp)= lm Ir,q)rL,
Ks/L/K
and
Grryrr = Im Gpooyrrg)
KE/L/K

with natural transition maps coming from the diagram:

Kr(p)
Lr(p)
KT(p)/ K§
L§(p) =
K?(p)/ K¢
'
/
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Thus the corollary follows from Theorem [4.26]
O

Since the groups I (p) are free pro-p groups by Lemma we obtain the following corollary.
Corollary 4.30. Under the assumptions as in Corollary if R = (&, then the group

GK’T(p)/Ks s a free pro-p group.

4.7 Cohomological dimension

Theorem 4.31. Let K be a number field, S 2 R sets of primes of K and p a rational prime.
Assume p is odd or K is totally imaginary. If R is finite and S is p-stable for Ksus,os., /K
with K as a p-stabilizing extension, then

cd(GE 5(p)) = scd(GE s(p)) = 2.

Remark 4.32. In Section [5| we will remove the assumption that K is a p-stabilizing field for S
for Ksus,us,./K if R = .

Proof. We follow the same steps as in the proof of [NSW| 10.5.10. We omit the coefficients Z/pZ
from the notation. Let V := (S, U S) N S. If p is non-archimedean, then Gy, KR (p) and
G K (p)/K, are free. Thus Hochschild-Serre spectral sequence gives us a canonical isomorphism

(4.3) HY(Kp' (p)/Kp, H (K (p)/Kp" () — H2(Kp (p)/Kp).

Next consider the Hochschild-Serre sequence (Eﬁj ,5f£j ) for the Galois groups of the global
extensions Kg,v(p)/Ks(p)/K. By [INSW] 8.3.18 and 10.4.8, we have:

cd Gg,suv(p) < cdp Grsov < 2.

By Riemann’s existence theorem (cf. Corollary |4 the group Ggg . (p)/Ks(p) 18 free. In
particular, we have

coker(é%’l) = E??:,o = B3’ < H*(Gk suv(p)) = 0.

1,1 . . .
Le., §," is surjective.
Cohomological dimension, case R = ¢J. By Riemann’s existence theorem we have

1 G (p 1
pe

This and Shapiro’s lemma imply:

Ey' = H'(Ks(p)/K, H'(Ksov(p)/Ks(p)))

(4.5) = @ H(K) (p)/Kp, HU (Kp () /K" ()
peV
= @ H(Ky(p)/Kyp),
peV
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where the last equality is (4.3). Further we have the following commutative diagram with exact
rows and columns:

Ppes B (Kp(p)/Ky)

HO(Ks v /K, pp) Y

H2(Ksov (p)/K) > @ypesov B2 (Kp(p)/Kp) —= HO(Ksov /K, pip) ¥

| |

H' (Ks(p)/K, H' (Ksov(p)/Ks(p))) — = Dper H* (Kp(p)/Kyp)

iéé’l

H?(Ks(p)/K)
in which the second row comes from the Poitou-Tate long exact sequence. The first map in the
second row is injective by Corollary [4.11](ii) applied to K and S u V and from [NSW] 10.4.8.
The first map in the third row is an isomorphism by . The map in the first row is surjective,
since the dual map

p1p(K) = HO(Ks v/K, pp) — @gHQ(Kp(p)/Kp)V = El-gup(Kp)
pe pe

is injective. The Snake lemma for the second and the third row in the above diagram implies
H3(Ks(p)/K) = 0, and hence cd(G g s(p)) < 2 by [NSW] 3.3.2.

Cohomological dimension, general case. Now consider the Hochschild-Serre spectral sequence
for the Galois groups of Kg(p)/K g‘(p) /K. By Riemann’s existence theorem applied to
T := S 2 R, it follows that H(Ks(p)/K&(p)) are induced G%S(p)—modules for j > 1. Hence
E;j =0 for 4,5 = 1. Then

HY(K§ (p)/K) = ;" — H*(Ks(p)/K) = 0,

and hence H3(KE(p)/K) = 0. Again by [NSW]| 3.3.2 we conclude that cd(Gf;’S(p)) < 2.
Now we show equality. Since S is stable for Kg s,0s,. /K, we have

51c(S n es(K (11)/K)) = [K (1) + K]~ 5¢()(S) > 0,

hence there is a prime p € S\ (R U S, U Sy) with i, © K. By Proposition [4.20] the subgroup
Dy kr)/K of G% 5(p) is of cohomological dimension 2. Hence cd(G% s(p)) =2.

Now we turn to the strict cohomological dimension.

Strict cohomological dimension, case S 2 S, U Sy, and R = J (cf. [NSW]| 10.2.3).
Since cd Gg(p) = 2, by |[NSW]| 3.3.4 it is enough to show that H*(U,Q,/Zp) = 0 for all open
U < Gg,s(p). Since the assumptions carry over from Gg s(p) to U, we can assume U = Gk 5(p).
Except in the special case, we obtain from [NSW| 10.4.8 and from Corollary the injection

H*(Gk s(p), Z/p'Z) ~ H*(Gk s, Z/p'Z) — (PDH*(%,, Z/p"Z)
peS

for any r (recall that by our assumption, S is p-stable for Kgys,us, /K and not only for
Ksus,us.,. (p)/K). Passing to the limit over all r > 0 and using scd,(%,) = 2, we obtain
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the result. If we are in the special case, then p = 2 and ¢ ¢ K. Then by the same argument as
above, we get HQ(GK(i)’S,@Q/ZQ) = 0 and by |[NSW]| 3.3.11, the corestriction
0 = H*(Gx)s(2), Q2/Zs) — H*(Gk,3(2), Q2/Zs)

is surjective. This finishes the proof in the first case.
Strict cohomological dimension, general case. We omit the coefficients Q,/Z,, from the nota-

tion. From the Hochschild-Serre spectral sequence associated to the extension

1= GryovryrEep — Crsov(p) = GiEs(p) — 1,

and using scd,(Gg sov(p)) = 2, which implies H*(Ks_v(p)/K, Qp/Z,) = 0, we get an exact
sequence

R
(4.6) H' (Ksuv (p)/K) — H' (Ksov (p)/KE (p)) %5 — HA(KE (p)/K) — 0.
But by Riemann’s existence theorem

H' (KSUV(p)/KlS:{(p))G%*S(p) = (—BHl (gp) ) @ H! (jp)%,
R Vv

and hence by Grunwald-Wang theoremthe map on the left in the sequence (4.6]) is surjective,
except we are in the special case, in which the cokernel, which is isomorphic to HQ(G%S(p)) is
annihilated by 2. But since cd G% s(p) = 2, the group HQ(G%S (p)) is divisible, and hence trivial.
This is true for any extension of K in K& (p), hence we are done by [NSW| 3.3.4. O

As in [NSW]| 10.5.11, we obtain have the following corollary.

Corollary 4.33. Let K be a number field, S 2 R sets of primes of K and p a rational prime.
Assume that either p is odd or K is totally imaginary. If R is finite and S is p-stable for
Ksos,us.,. /K with stabilizing field K, then

cd, G%S = scd,, G%S = 2.

Proof. Write G = G% g Since the assumptions carry over from K to any finite subextension
KE/L/K, by Theorem we have cd,U(p) = 2 for any open subgroup U € G. Let G, € G
be a p-Sylow subgroup. Then

Gp= lim U(p)
GpUSG
Hence by [NSW]| 3.3.6 we have ¢d,G = ¢d,G, < 2 and scd,G = scd, G, < 2. Since G contains
(exactly as in the proof of Theorem [4.31]) subgroups of cohomological dimension 2, we obtain
cd,G = scd,G' = 2. O
4.8 Vanishing of IIT*(Gy; Z/pZ) without p € Oj ¢
We generalize Corollary for A = Z/pZ. The proof makes use of many facts proven before:

we will need Grunwald-Wang theorem, Riemann’s existence theorem and cd, Gg = 2 along with
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the result of Neumann showing the vanishing of certain cohomology groups.

Proposition 4.34. Let K be a number field, S a set of primes of K. Let p be a rational prime,
r > 0 an integer and assume that S is p-stable for Ksos,0s../K and has a p-stabilizing extension
Ly contained in Kg (i.e., S satisfies (*)Ztab). Assume p is odd or Ly totally imaginary. Then

*(Ks/L; Z/p"Z) = 0

for any finite Ks/L/Lg, such that we are not in the special case (L,p",S).

This result has one important consequence for anabelian geometry of schemes Spec Ok g
with S stable: to obtain a local correspondence at the boundary out of an isomorphism of étale

fundamental groups o: Gg, s, — Gk,.s,, one does not need to assume existence of a prime p

with S, = S; (cf. Section [6.2).

Proof. We can assume K = L. Let V := (S, U Sx)\ S. Let K% (p) be the maximal pro-p-
subextension of Kg v /Kg. Consider the following tower of extensions:

e KSUV

N

Kéuv(p)

Gsov H
Kg Gov(p)
Gs

~ K
with N = GKSuv/K'SUV(p)’ H = GK,SuV(p)/KS and GfSuV(p) = GK/Suv(p)/K. In the following,
we write H*(-) instead of H*(-,Z/p"Z) and III*(:,-) instead of III*(-,-;Z/p"Z). First of all we
claim that

(4.7) m*(K& v (p)/K,S v V) =4 Ks v/K,SuV).

Once we know that the infation map H?(G§ v (p)) — H?(Gsuv) is an isomorphism, the claim
follows from the definition of III?. To show this last assertion, consider the Hochschild-Serre
spectral sequence

EY = H(GY v (p), H(N)) = HH(Gsuv ).

A result of Neumann ( [NSW] 10.4.2) applied to Ks v /Kg, i (p) (the upper field is p— (S uV)-
closed, the lower is p — (S, U Sy )-closed and Kg v = (Kg)sov) implies By = 0 for j > 0,
hence the sequence degenerates in the second tableau and

H'(Gsuv (p)) = H(Gsov),

for ¢ = 0, proving our claim.
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For p e V, let Kj(p) denote the maximal pro-p extension of K. Let

() := Grypy/xcs,
(observe that if p € S, then Iy(p) = 1. Indeed, if p > 2, this is always the case, and if
p = 2, then Kg, = C using the assumption that Lg is totally imaginary). By Lemma m
we have Iy(p) = D, K., (p)/Ks- By Riemann’s existence theorem (Corollary applied to
K5 v (p)/Ks/K), we have

H

12

* I'(p
peV (Ks) (?)

In particular, H is a free pro-p-group by Corollary Thus c¢d,H < 1. Consider the exact

sequence
L H = Gy y(p) > Gs = 1,

and the corresponding Hochschild-Serre spectral sequence

BY = H\(Gs, H(H)) = H(G,v(p))

Since by Corollary we know that cd, Gg = 2, we have Eéj =0ifi>2o0rj > 1. Let us
compute the terms of this sequence. First of all, we have

! G
! H) = C—B V(Ks) H C—B IndDS Kg/K (I;(p)),

as Gg-modules, where Dy, i /x © Gg is the decomposition group at p, which is in particular
pro-cyclic and has an infinite p-Sylow subgroup (by Corollary |4.21)). Frobenius reciprocity resp.
Shapiro’s lemma imply:

Eyt = @ HY(T(p)Prxsr,
V(K)

E211 = @ Hl(Dp,KS/KaH @ H pKS v p)/K) C—D H2(gp)7
V(K) V(K) V(K)

where the second line follows from Lemma [4.24]

Let 6 := 09': E' — FE2° denote the differential in the second tableau. We obtain the
following exact sequence (the first five terms of which are the five-term long exact sequence of
Hochschild-Serre):

0 —— H!(Gs) —= H'(Gh y (p) — @ H([;(p)™ s/ ——
V(K)

—%~ H2(Gs) —= H2(Glv(p))

@ H* (%)

V(K)

We show that the map in the sequence preceding ¢ is surjective. Indeed, we have
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Hl( ,SuV(p)) GSUV %'?K Hl gp %()K)H pKS V )/K) — Hl(I;(p))DprS/K7
pe pe

where the second map is surjective by Grunwald-Wang theorem .15, and the second and the
third maps follow from Lemma [£.24] Hence § = 0 and we obtain the short exact sequence:

0 — H2(Gs) —= H*(G4 v (p)) 2= @ HX(%) —=0,
V(K)

which in turn gives the short exact sequence

0 —= MI2(Ks/K, §) —= WK%y (p)/K, ) 4~ @ HX(%,),
V(K)

Finally, by definition of the Shafarevich group, we have the short exact sequence

0 —= (KL (p)/K, S U V) — IIX(KY  (p)/K, ) ~L—~ V((@( ) H2(%,),

which shows that
IT*(Kg/K, S) =~ IT*(K§ .y, (p)/K,S v V) = II*(Ks,v/K,SuV) =0
the second equality being equation (4.7)), and the last equality following from Corollary O

We have the same statement in the pro-p case:

Proposition 4.35. Let K be a number field, S a set of primes of K. Let p be a rational prime,
r > 0 an integer and assume that S is p-stable for Ksus,0us../K and has a p-stabilizing extension
L contained in Kg(p). Assume p is odd or Ly totally imaginary. Then

I1*(Ks(p)/L; Z/p"Z) = 0
for any finite Ks(p)/L/Lg, such that we are not in the special case (L,p",S).

Proof. We can assume K = L. We omit the coefficients Z/p"Z from the notation. Let us write
V= (Sp, U Sx) N S. Consider Galois groups of the extensions Kg, v (p)/Ks(p)/K:

1= Gggoym)/Ksp) — Gsov(p) = Gs(p) — 1.

Using the corresponding Hochschild-Serre spectral sequence, cd Gk s(p) = 2, Grunwald-Wang
theorem and Riemann’s existence theorem, one obtains exactly as in the proof of Proposition
[4.34) the following short exact sequence:

(4.8) 0 — H2(Gs(p)) — HA(Gs,v(p) E(B) H?(Dp kv (o)) = 0.
V(K

Further one has:
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*(Ks(p)/K,S) = MI*(Ks v (p)/K,Su V) =1} Ks,y/K,SuV) =0,

where the first isomorphism follows from the sequence (4.8)) in the same way as in the proof of
Proposition the second follows form [NSW| 7.5.8 and 10.4.8 and the the last is Corollary
411l O

4.9 Stability and the order of III'.

Now we generalize the results from Section [4.3] and study the connection between stability and
the order of the first Shafarevich group with trivial coefficients.

Proposition 4.36. Let K be a number field, £ /K a Galois extension, p™ some rational prime
power (m = 1). Let T be a set of primes of K, which is p™-stable for £ /K, with p™-stabilizing
field Ly. Then

{1 (Z/L, T; 2/ Z) < p™

for any r > 0 and any finite £/L/Ly.

Proof. Let Ty < T and a > 0 be such that a < §1,(Tp) < p™a for all finite £/L/Lg. Let £/L/Lg
be a finite extension. Assume that §II1'(.Z/L, T;Z/p"Z) > p™. Then also

' (L/L, Ty; Z/p'Z) > p™
and we have:

W' (Z/L, To; Z/p"Z) = Hom(G, (p). Z/p"Z) = (G2, (0)™"/p")"-

Thus $1I1 (L /L, To; Z/p"Z) = p™ implies ﬂG?/L(p)ab/pT > p™, and if M/L is the subextension

of Z/L, corresponding to G@ /L(p)ab/pT, then it has a finite subextension M; of degree = p™,
which is completely split in Ty, hence oy, (To) = p"d1(Tp), which is a contradiction to p™-
stability of Tj. O

Corollary 4.37. Let K be a number field, £ /K a Galois extension, and T a set of primes of
K stable for £/K. Then Y (Z/K,T;Q,/Zy) is finite for any p.

Proof. Since lim is exact and commutes with cohomology, we have
(L /K, T;Qp/Zy) = iy N (L /K, T; Z/p" Z).
T
It is enough to show that #111*(.Z /K, T;Z/p"Z) is uniformly bounded for r > 0.
By Proposition [3.11] there is some m > 1, such that K is a p™-stabilizing field for T for

Z/K. Then Proposition implies 11 (% /K, T;7Z/p"7Z) < p™, which gives the required

uniform bound. O

Corollary 4.38. Let K be a number field, /K a Galois extension, T a set of primes of K
stable for /K. Then Y (Z/K,T;Q/Z) is finite.
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Proof. Clearly, II'(%/K,T;Q/Z) = @D, Y (Z/K,T;Qp/Z,). Previous corollary shows that
each of the summands is finite. Moreover, almost all are zero: there is some A > 1, such that
K is A-stabilizing field for T for /K. Thus for any p > A, the group IIY(Z/K,T;Q,/Z,)

vanishes. O
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5 K(m,1)-property of rings of integers

In this section we consider the K(m, 1) property of schemes Spec O s where K is a number
field and S is a set of primes. Essentially, we prove that if S satisfies (*);tab, then Spec Ok g is
K(m, 1) for p.

5.1 Overview

Let K be a number field, S a set of primes of K and p a rational prime. Assume that either p
is odd or K is totally imaginary and let

X = SpecOk.s.

We study under which conditions X is an algebraic K(7, 1) space (for p). While it is well known
that X is algebraic K(m,1) for p if either

e S25,uU Sy (“wild case”), or
e 0x(S) =1,

it is a challenging problem to determine whether X is K(m, 1) if S is finite and not necessarily
contains S, U Se. There are no (non-trivial) examples of K, S such that X is not a K(r,1) for
p, and until recently there were also no examples of (K, S) such that X is K(x, 1) for p or pro-p
K(m,1). Recent results of A. Schmidt ( [Sch], [Sch2|, cf. also |[Sch3|) show that the finite sets
S, such that X is a pro-p K(m, 1) are in some sense cofinal in the set of all primes of K. That
means, given K, S and p and any set T of primes of K of density 1, one can find a finite subset
Ty < T such that X \ Ty is pro-p K(m,1). The main ingredient in the proof is the theory of
mild pro-p groups, developed by Labute. Since stable sets generalize sets of density 1 in many
arithmetic aspects, the following question is quite natural.

Question 5.1. Can one replace the condition dx(7) = 1 in Schmidt’s work by the weaker

condition that T is stable (or p-stable or satisfies (*);tab)?

In the present section we enlarge the examples of such pairs (K, S), for which X is algebraic
K(m, 1) for p and prove essentially that if S satisfies (*)lsfab, then X is algebraic K(m, 1) for p. In
particular, if S is almost Chebotarev set and co ¢ E52P(S) (cf. Proposition and Example
, then X is algebraic K(r, 1) for almost all primes p, and if E5**"(S) = & (cf. Examples

and [3.22), then X algebraic K(m,1).

5.2 Definitions

There are many equivalent ways to define algebraic K(7r, 1)-spaces (cf. |St] Appendix A, where
they are discussed in detail). Without repeating all of them, we want to introduce a small
refinement of terminology, such that it is better adapted to formulate our results.

To begin with, let X be a connected scheme, Xg the étale site on X. Fix a geometric point
z € X and let 7 := m(X,Z) be the étale fundamental group of X. Let &7 denote the site
of continuous m-sets endowed with the canonical topology. Let further p be a rational prime,
and let Z7P denote the site of continuous 7(P-sets, where 7(®) is the pro-p completion of w. As
in [St] A.1, we have natural continuous maps of sites

101



BP
For a site Y, let #(Y’) denote the category of sheaves of abelian groups on Y, let .7 (Y);

be the subcategory of locally constant torsion sheaves, and ./(Y’), the subcategory of locally
constant p-primary torsion sheaves. Let A € ./ (Am)y resp. B € /(#nP),. Then we have the
natural transformations of functors id — R ~yxv* resp. id — R, 47, which induce maps in the
cohomology:

dy: Hi(mA)  — H'(Xer,7*A)
ch gt Hi(xP) B) — H(Xe,7iB)

Let X resp. X (p) denote the universal resp. the universal pro-p covering of X. Since

H! (Xet, A) = HY (X(p)er, B) = 0
for each A, B, the maps cf4 and c; p are isomorphisms for 4 = 0,1 and are injective for ¢ = 2.
Definition 5.2. Let X be a connected scheme.
(i) X is algebraic K(m,1) if ¢!, is an isomorphism for all A € /(%) for all i > 0.
(ii) X is algebraic K(m,1) for p if ¢4 is an isomorphism for all A € . (%), for all i > 0.
(iii) X is pro-p K(m, 1) if C;,B is an isomorphism for all B € ./(#n?),, for all i > 0.

Notice that we use a shift in the definitions compared with [Sch] or [Wi2|: what there is
called algebraic K(m, 1) for p, we call here pro-p K(m,1). Parts (i) and (iii) of our definition
coincide with the definition of K (m, 1) in |St] A.1.2. By decomposing any sheaf into p-primary
components we obtain:

Lemma 5.3. X is algebraic K(m, 1) if and only if it is algebraic K(m, 1) for all p.
A space is K(m,1) if and only if an étale covering is (for a proof cf. |[St] A.2.3):

Proposition 5.4. Let X be a connected scheme and'Y — X a connected pro-étale Galois cover.
Then

(i) X is algebraic K(m,1) & Y is algebraic K(m,1).
(i) X is algebraic K(m,1) for p < Y is algebraic K(w, 1) for p.
(iii) If Y — X is a pro-p cover, then: X is pro-p K(m,1) < Y is pro-p K(m, 1).
Lemma 5.5. Let X be a connected scheme. The following are equivalent:
(i) X is algebraic K(m, 1) for p.
(ii) the maps cf4 are isomorphisms for all i = 0 and all finite simple w-modules A such that

pA = 0.
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Proof. Dévissage into simple m-modules. O

Lemma 5.6 (cf. [Sch| Proposition 2.1 (iv) < (v)). Let X be a connected scheme. The following
are equivalent:

(i) X is pro-p K(m, 1).
(ii) the maps C;),Z/pZ are isomorphisms for all i = 0.

Proof. Dévissage into simple 7(-modules and the fact that the only simple module under a
pro-p group, which is killed by p, is trivial. O

5.3 Criterions for being K(m,1)

We repeat some well-known equivalent reformulations of K(m, 1) properties of rings of integers
Spec Ok, s, where K is a number field and S 2 Sy a set of primes.

5.3.1 Wild case

Let p be a rational prime, K a number field and S a set of primes of K. One says that one is
in the wild case, if S 2.5, U Se. The wild case is well-understood:

Proposition 5.7 (cf. [Zi] Proposition 3.3.1, cf. also |Sch| Proposition 2.3). Let K be a number
field and S 2 S, U Sw a set of primes of K. Assume that either p is odd, or K is totally
imaginary. Then Spec Ok s is a pro-p K(m,1) and an algebraic K(m, 1) for p.

Proof. That Spec Ok g is algebraic K(m, 1) is shown by Zink in |Zi|] Proposition 3.3.1. The pro-p
case follows using [NSW]| 10.4.8. O

5.3.2 A general criterion

For a scheme X let Fetx denote the category of all finite étale coverings of X. For a number
field K let

1 if pp € K,
0 =
0 otherwise.

Proposition 5.8. Let K be a number field, S 2 Sy a set of primes of K such that either 0 = 0
or Sy # . Assume that either p is odd or K is totally imaginary. Let X = Spec Ok 5. The
following are equivalent:

(i) X is an algebraic K(m,1) for p.
(ii) One has

lig H2(Ye, 2/p7) = 0.
YeFet x
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Proof. (i) = (ii) holds for any connected scheme and follows from [St] A.3.1 and Proposition
Indeed, if X is K(m, 1) for p, then any finite étale connected cover Y /X is and hence the
map
H*(Yer, Z/pZ) — liny H?(Zey, Z/pZ)
ZeFety

. . . 2 _
is zero. This shows h—n>1YeFetX H*(Yet, Z/pZ) = 0.

(ii) = (i). By |St] A.3.1 we have to show that for every ¢ > 0 and every locally constant
p-primary torsion sheaf A on Xg, the map

(5.1) HY(Xep, A) —  lim HY(Yer, Aly)
YeFetx

is zero. This would follow from the even stronger statement that

lim HY(Yer, Aly) =0
YeFet x
for each ¢ > 0 and A as above. But since A is trivialized on some Y € Fet x, we can assume that A
is constant. By dévissage we are reduced to the case A = Z/pZ. The elements of H'(Y¢t, Z/pZ)
can be interpreted as torsors, which kill themselves. Thus we have h_r)nygFetX HY (Y, Z/pZ) = 0.
Further by [SGA 4] Exposé X Proposition 6.1, HY(Yet, Z/pZ) = 0 for ¢ > 3. Lemma implies
the case ¢ = 3. Finally, the condition in (ii) gives the last piece of information, so that the map

(5.1)) is zero for any ¢, and thus X is a K(m, 1)-space. O

Lemma 5.9. Let K be a number field, S a set of primes primes of K. Assume p is odd or K
is totally imaginary. Let X = Spec Ok.g. If 5 =0 or S§ # &, then H3(Xet, Z/pZ) = 0.

Proof. Let X = SpecOk. We consider X as an open subscheme of X. The Artin-Verdier
duality (cf. [Ma] 2.4 if K is totally imaginary, and [Zi] Theorem 3.2 and Corollary 2.4 if p is
odd) implies a perfect pairing

H'(X,F) x Ext} "(F,G,, ) — H*(X,F),

for any constructible sheaf F on X (we are only interested in the case F' = Z/pZ). This can be
used to compute (compare [Ma] 2.4):

H*(X, Z/pZ) = pp(K)",

where ()Y denotes the Pontrjagin dual. Further, [Ma] 2.5 gives the exact sequence

(5.2) oo [T ()Y = pp(K)Y > H(X, Z/pZ) — 0.
peSy

Since 6 = 0 or Sy # &, the map ju,(K) — ]_[pesf pp(Ky) is injective, hence the map on the
left side in ([5.2) is surjective. Hence H3(X, Z/pZ) = 0. O

The same also holds in the pro-p case. Let Fet%) denote the category of finite étale pro-p

coverings of X.

104



Proposition 5.10. Let K be a number field, S 2 So a set of primes of K such that either
0k =0 or Sy # &. Let X = SpecOk 5. Assume p is odd or K is totally imaginary. The

following are equivalent:
(i) X is a pro-p K(m,1).

(ii) One has
lim H*(Yer,Z/pZ) = 0.
YeFet®)

Remark 5.11 (A criterion of Wingberg in the pro-p case, cf. [Wi2] Proposition 2.1 (i) < (iv)).
For rational prime p and a prime p of K, let I(p) S G, (p)/k, denote the inertia group of
Ky(p)/Kp. Assume that either p is odd or K is totally imaginary. Let S be a set of primes of

K. The following are equivalent:
(i) Spec Ok s is a pro-p K(m,1).
(ii) The following assertions hold:
- cdGgs(p) <2,
- 012)72 I is bijective.
(iii) The following assertions hold:

- CdGK7S(p) < 27
~ G
- H'(Ksus, (p)/Ks(p): Z/PZ) = Dyes, - s)ac) B Tp(0), Z/pZ) "5 @/
- dim coker! (Ks(p)/K, S; Z/pZ) = 0x.
Now (iii) is the most manageable list of conditions: there is “only” group cohomology of
Gk s(p) involved in it, and the second condition is a form of Riemann’s existence theorem.

In the case of the whole site Fetx an analogous criterion would be more complicate, since in
contrast to Gg s(p), a simple G g-module, which is killed by p is not necessarily trivial.

5.4 Results

Theorem 5.12. Let K be a number field, S 2 Sy a set of primes of K and p a rational prime.
Assume that either p is odd or K is totally imaginary.

(i) Assume that S is p-stable for Ksus,/K and has a p-stabilizing extension contained in
Kgs(p). Then Spec Ok s is a pro-p K(m,1).

(ii) Assume that S is stable and satisfies (*);tab. Then Spec Ok s is an algebraic K(m, 1) for
p.

Remark 5.13. In the pro-p case, the assumption Sy, € S is superfluous as Gg(p) = Gsus,,. (p):
if p > 2, then this is true in general and if p = 2, then this is true since we have assumed that
K is totally imaginary.
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Corollary 5.14. Let K be a number field, S 2 So a stable set of primes of K, satisfying ()52
(in particular S can be any stable almost Chebotarev set with S 2 Sy ). Then Spec Ok g is
algebraic K (m,1)-space for almost all primes p. If ES**P(S) = & and K is totally imaginary,
then Spec Ok s is algebraic K(m,1)-space.

Sets S with arbitrary small density and EP®™(S) = ¢ (and hence also E5**P(S) = &) can
be found in Examples [3.21] and [3.22] Thus the corollary shows that there are sets S of arbitrary
small density, such that Spec Ok g is an algebraic K(m,1).

Corollary 5.15. Let K be a number field, S 2 Sy a set of primes of K and p a rational prime.

Assume that either p is odd or K is totally imaginary.

(i) Assume that S is p-stable for Ks s,/K and has a p-stabilizing extension contained in
Ks(p). Then
cd GK,S(p) = scd GK’S(p) = 2.

(ii) Assume that S is stable and satisfies (+)5*". Then

Cdp GK,S = SCdp GK,S = 2.

Proof of Corollary[5.15 Since Sy # &, Spec Ok, g has cohomological dimension 2. From Theo-
rem we obtain that cd Gg s(p) < 2 (under (i)) resp. cd, Gg,s < 2 (under (ii)). By Theorem

in the case (i) resp. by Corollary in the case (ii), certain open subgroups of Gg g(p)
resp. Gg,s have cohomological dimension 2. This implies equality in both cases. The statements

about the strict cohomological dimension follow from [NSW| 3.3.5(ii) using Theorem resp.
Corollary ]

Proof of Theorem [5.13. We begin with part (ii). Let X := Spec O g. As L goes through finite
subextensions of Kg/K, the normalization Y of X in L goes through all finite étale connected
coverings of X. Let V := 5, S. For any such Y we have a decomposition

Y VLy &y

in an open and a closed part. Now Y \V is a K(m,1) for p by Proposition and since
T (Y \V) = G suv, we obtain

(5.3) ¢y H(Gpsov) — H((Y ~ Ve, A)

is an isomorphism for any ¢ > 0 and any p-primary G s y-module A. We have the Lerray
spectral sequence for j:

EP™ = H™(Y,R"j+Z/pZ) = H™ ™ (Y \ V,Z/pZ).

Let us compute the terms in this spectral sequence. First of all we have

77 ifn=0,
R LIPL = 3 @y HY( I Z/0Z) i = 1,
0 if n>1,
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where .#, € %, denotes the inertia subgroup of the full local Galois group at p. Thus

Ey' = @H'(A,Z/pD)%
peV

B}y = H'(Ye, ®H' (S, Z/pL)) = D H(%,, Z/pl)
pev pEV

and B3 =0ifn>1lorifn=1and m > 1 (as cdy(¥4,") = 1). Further, Ey0 =0 for m > 3,
as cd,Y < 3 and E3° = H%(Y,Z/pZ) = 0 by Lemma Further,

By’ = H'(Ye, Z/pZ) = H'(Grs,Z/pZ)

Thus we have the following non-zero entries in the second tableau:

(‘Bpev Hl (‘ﬂp: Z/pz)g;r @pev H2 (gpa Z/pZ) 0 0
591
7/ pT. H'(Gys,Z/pZ) H2(Yet, Z/pZ) 0

From this and the isomorphism ({5.3) we obtain the following exact sequence (from now on, we
omit the Z/pZ-coefficients):

50 1
gyr %

0—— H! (GL,S) —H (GL,SUV) - @pEV H! (fp)

—_— H2 (Yét) —_— HQ(GL,SUV)

@peV H2 (gp) — ()

By Proposition it is enough to show that lim H?(Ye;) = 0. Therefore, we can go up in

—>YeFetx
the tower and assume that L contains a p-stabilizing extension for S for Kg_s,us,, . For such L

the map preceding 69! is surjective by Grunwald-Wang Theorem i.e., 091 = 0 and hence

H?(Yey) = I*(Ksov/L, V; Z/p7Z).

To finish the proof consider the following commutative diagram with exact rows:

0 —=H*(GLs,v) — @pesov HH(%) — p1p(L)Y —0

| |

00— Bpey B*(%) —— Dpev H*(%) 0 0,

in which the exactness of the upper row follows from I*(Kg v /L,S v V;Z/pZ) = 0 (cf.
Corollary or Proposition |4.34)) and from the long exact Poitou-Tate sequence. Snake lemma
shows that

lig H?(Ye) = limy II*(Kgov/L,ViZ/pZ) € lig PH* (%),
YeFetx YeFetx YeFet x peS
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and the last limit vanishes as p®|[Kg, : Kp] for all p € S by Proposition [£.21] This finishes the
proof of (ii).

(i) has the the same proof as (ii), with the only difference that one has to use the pro-p
versions of corresponding results: one must use Proposition instead of Proposition and
Proposition [5.10| instead of Proposition [5.8 O

Remark 5.16. Part (i) of Theorem can also be shown using the criterionof Wingberg,
which itself follows from Lemma [5.6 The application of the analogous criterion to (ii) has the
drawback that, in contrast to the pro-p case, there are non-trivial simple Gg-modules killed by
p, i.e., only Lemma [5.5] is available, and the criterion gets accordingly more complicate.
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6 Anabelian geometry of curves Spec(Og g) with S stable

In this section we generalize the birational anabelian result of Neukirch |[Ne| to the case of
“almost arithmetic curves”, i.e., the curves Spec Ok g with S stable.

6.1 Overview

We will give two versions of the main theorem, with varying assumptions. Therefore, consider

the following condition on a number field K and a set S of primes of K:
Dec(K, S) For every p € Sy, the decomposition group Dy S Gg is the full local group

It is for example satisfied, if there is a totally real subfield Ky of K and a set Sy of primes of
Ko with S = Sy g (with other words, S is defined over a totally real subfield) and such that
S 2 Sy peoo for two different rational primes pq,ps (cf. [CC|] Theorem 5.1 and Remark 5.3(i)),
or if S is stable and E5#P(S) = ¥ (cf. Corollary [4.21).

Theorem 6.1 (Under Dec). Fori = 1,2, let K; be a number field and S; a set of primes of K;,
such that Dec(K;, S;) holds and

o Ky is normal over Q,
o fori=1,2, the set S; is stable and satisfies (*)Zgab for some odd prime £;,
e there are two odd rational primes under S1 and S, € 51,
e there is a rational prime under Ss.
If Gk, 5, = Gk,.5,, then K1 > K.

Theorem 6.2 (Without Dec). Fori = 1,2, let K; be a number field and S; a set of primes of
K;, such that

e K7 is normal over Q,
o fori=1,2, the set S; is stable and satisfies (+)542P,
e there are two different odd primes 1,0y ¢ ES(S;) such that pg, g, S K; g, forie{l,2},
e there are two odd rational primes under S1 and S S S1,
e there is a rational p with S, S Sy and p ¢ ES'3P(S;) for i € {1,2}.
If Gk, .5, = Gry,5,, then K1 = K.

In Section [6.2] we deal with the local correspondence at the boundary which is needed in the
proof of the above theorems. In sections [6.3] and we prepare two further arguments, and
finally in Section [6.5] we prove Theorems [6.1] and
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6.2 Local correspondence at the boundary
6.2.1 Definition

For ¢ = 1,2, let (K;,.S;) be a number field and a set of primes of K; and let

0. GK17S1 - GK2752

be a (topological) isomorphism. If U; is a closed subgroup of Gg, s, with fixed field L;, we
write Us for o(Uy) and Loy for its fixed field, etc. We say that the local correspondence at
the boundary holds, if the following conditions are satisfied:

(i) for any p1 € Sy f(Kis,), there is a unique prime o4(p1) € Sz (K2 s,), with o(Dp,) =
Dy, (5,), such that o induces a bijection

ow: S1p(K1,5,) — S2.1(Kas,).
which is Galois-equivariant, i.e.

ox(gp1) = o(g)ox(p1)

for each g € Gg, 5,01 € S1,¢(Ki,5). In particular, for any finite subextension L
of Ky 5,/Ki with corresponding open subgroup U; S Gk, g, if two primes py, q; €
S1,7(K1,s,) restrict to the same prime of Ly, then also o4 (p1),04(q1) restrict to the same
prime of Ls, and hence o, induces a bijection

0wy S1,p(L1) — Sa 5(La).

(ii) For all K ,/L1/K; finite with corresponding subgroup U; © Gk, s, and for all but
finitely many primes py € Sy f(L1), the residue characteristics and the local degrees of py
and o, 17, (p1) are equal.

6.2.2 Under condition Dec

Theorem 6.3. Let K be a number field and S a set of primes, such that Dec(K, S) is satisfied.
Assume S is stable and satisfies (*);tab for some p > 2. Then any subgroup of Gk g, which is
isomorphic to an absolute Galois group of a local field with characteristic zero, is contained in a
decomposition subgroup of a unique prime in Sy.

In particular, the decomposition subgroups in G g at primes in Sy are exactly the subgroups,

which are isomorphic to local absolute Galois groups in characteristic zero and mazimal with this
property.

(Recall that local field means a non-archimedean local field).

Lemma 6.4. Let K be a number field and S a set of primes. Assume S is stable and satisfies
(*);tab for some p. Then the following holds.
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(i) The intersection of two p-Sylow subgroups of two different decomposition groups inside
Gk, s is not open in each of them. The intersection of two different decomposition subgroups
at primes in Sy inside G g is not open in each of them.

(i1) Let H < Gg,g be a closed subgroup and Hy S H an open subgroup. If there is a prime
p € S¢(Ks) with Hy S Dg, then H < D;.

Proof. (i) is Proposition [4.25] (ii) follows from (i) in the same way as in Corollary [L.7](i). O

Proof of the theorem. Uniqueness follows from Lemma [6.4[i) and Lemma [2.1] Start with a

subgroup H < Gg g, which is isomorphic to a local absolute Galois group of a field & of

stab
po-

6.4{(ii), it is enough to show that an open subgroup of H is contained in a decomposition group.

characteristic zero. Let p > 2 be a rational prime such that S satisfies (x) By Lemma
By replacing H by the intersection of kernels of all homomorphisms H — Z/(p — 1)Z, we can
assume that p, < x. By Proposition .34} there is an open subgroup Uy € G, such that for
any open U € Uy, we have III?(U;Z/pZ) = 0. We can replace H by H n Uy. Let M := K£.
Taking the limit over all U € Uy, which contain H, we obtain by Lemma [2.13| an injection

H*(H,Z/pZ) — || H*(%, Z/pZ).
peS(M)

Since p, < k, i.e., H2(H, Z/pZ) = Z/pZ we obtain H*(%,,Z/pZ) # 0 for at least one p € S(M),
which must be non-archimedean, since p > 2. The same surjectivity argument as in [NSW]|
12.1.9 or in the proof of Proposition finishes the proof. We repeat the argument here for
the convenience of the reader. We have to show that the prime p = p|ys is indecomposed in
Kg/M, ie., that H = Dg ks/m © Dp. Therefore, consider an open subgroup H' € H with
corresponding field M’. For any open H € U < Gg with corresponding fixed field L, let
T, 1 (U) be the (finite) set of all primes of L lying under a prime p’ € S,(M’). Then we have
the sequence

H(U,Z/pZ) > @ H'(Dyxgen, Z/pZ) =0,
qETp,H’ ()
This sequence is exact by [NSW]| 9.2.1, since there are still non-archimedean primes in S(L),
which do not enter the index set of the direct sum. Passing to the limit over all open U containing
H’ gives the exact sequence:

(6.1) H*(H,Z/pZ) > B H* Dy xymw,Z/pZ) — 0.
p'eSp (M)

Let x'/k denote the finite extension of k corresponding to H'. We have p, < k € £’. Hence
H%(H',Z/pZ) =~ 7Z/pZ. Further, HQ(Dp/’KS/M/,Z/pZ) # 0. In fact, Dy gg/n is conjugate to an
open subgroup of Dy g/ But since HQ(D@KS/M,Z/pZ) # 0, also H?(V,Z/pZ) # 0 for any
open subgroup V' S Dy o /ns (this follows from [NSW| 7.1.8 (i),(ii)). Finally, since is exact,
there is only one prime lying over p in any finite extension M’/M. Hence p|js is indecomposed.

O

From this group-theoretic description we obtain the local correspondence at the boundary.
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Corollary 6.5 (Local correspondence at the boundary). Fori = 1,2 let K; be a number field
and S; a set of primes, such that Dec(K;, S;) holds. Assume S; is stable and satisfies (*)Is,iab for
some p; > 2. Let

o: G, .8 — Grk,y 5

be an isomorphism. Then the local correspondence at the boundary holds and moreover, for any
open Uy € Gk, s, with corresponding field L1, o preserves inertia subgroups and oy y, preserves
the residue characteristic and the absolute degree of all primes in Si ¢(L1) (and not only of all
but finitely many).

Proof. Theorem [6.3] allows to define o in an obvious way. We show the Galois-equivariance: let
g€ Gg, 5, and pe Sy s(Kq,5,). Then

DJ*(gﬁ) = O-(Dgﬁ) = U(gDﬁg_l) = J(g)G(Dﬁ)O-(g)_l = U(g)DJ*(ﬁ)U(g)_l = Do(g)a*(ﬁ)v

which by Lemma [6.4fi) implies that o.(gp) = o(g)o«(p). That o preserves inertia subgroups
and oy, preserves the residue characteristics and the absolute degree of all primes in S r(L1)
follows from Dec(K;, S;) and anabelian properties of local fields (cf. Section [2.2)).

O

6.2.3 General case

We refer to Section for the definition of a group of p-decomposition type.

Theorem 6.6. Let K be a number field and S a set of primes. Assume S is stable and satisfies
(*);tab for some p > 2. Assume further that p, < Kg. Then any subgroup of Gg s which is
isomorphic to a group of p-decomposition type, is contained in a decomposition subgroup of a
unique prime in (S¢~ Sp)(Kg).

Remark 6.7. The assumption p,  Kg is needed for technical reasons: we can not show that
for any p € Sy, we have p, © Kgp. But only in this case the decomposition group D, < Gg
with p € S is of p-cohomological dimension 2, which is a crucial point in the proof.

Proof of Theorem[6.6. Uniqueness follows from Lemma [6.4]i) and Lemma [1.4[ii). By Lemma
[6.4(ii) we can assume j, < K. Since now p, Ky for any p € S, it follows from Corollary
that for any p € Sy \ Sp(Kg), the composition

Gop = % — Dy — G g

is injective, or with other words, the p-Sylow subgroup of Dj is of p-decomposition type (cf.
Section . Let H be a closed subgroup of Gg g of p-decomposition type. By exactly the
same argument as in the proof of Theorem @ H is contained in a decomposition group Dj
of a prime p € Sf(Kg). Now, Lemma shows that p does not lie over p, which finishes the
proof. ]

Using the theorem one can reconstruct the decomposition subgroups at Sy~ S, from the
group Gg g exactly as in Section For the convenience of the reader, we repeat here the
construction. For any open U € G g with fixed field L, such that u, < L, let
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SyL,(U, Sy~ Sp) := {H < U: H is a p-Sylow-subgroup of Dj /1, with p € Sy~ Sy}

We claim that Syl,(U, Sy \ Sp) is exactly the set of all maximal subgroups of p-decomposition
type of U. Indeed, any H € Syl,(U, Sy~ Sp) with H S Dy is clearly of p-decomposition type
and if there is some H' 2 H, which is also of p-decomposition type, then this inclusion is open
by Lemma (ii)7 and by Lemma (ii) we get H' € Dy, i.e., H = H'. With other words, H
is maximal. Conversely, let H be a maximal subgroup of p-decomposition type. By Theorem
H < Dy for some prime p € Sy~ .S,. But then H is contained in a p-Sylow subgroup
of Dj, which is again of p-decomposition type, and since H is maximal, H is equal to this
p-Sylow subgroup. This proves our claim and shows that Syl,(U, Sy \ Sp) is determined by the
group-theoretic structure of Gg g. Further, U acts on this set by conjugation, and we have an
U-equivariant surjection, where U acts trivially on the right:

Y1 SyL,(U, Sy~ Sp) = (Sp \ Sp)(U),

which sends H to the (unique by Lemma (1)) prime p|z, such that H < Dy i,/ We want
to determine, when two elements have the same image under ¢. For H € Syl,(U, Sy \ S},) such
that H € Dj g4/ 1s a p-Sylow subgroup, consider the restriction map

resY: H(U, Z/pZ) — H?(H, Z/pZ).

It defines an equivalence relation on Syl,(U, Sy~ S,) by H ~ H' :& ker(resy;) = ker(resy,),

which is again determined by group structure of Gx g. By Lemma , we have
H~H < ¢(H) = y(H)

and we get a bijective map induced by :

SyL(U, S\ Sp)/ ~ —  (Sp~\Sp)(U).
If additionally U is normal in G s, then Gk s acts on Syl (U, Sy \. Sp) by conjugation, and via
t this induces an action on (Sf ~\ Sp)(U), which coincides with the natural action of Gg g on
this set. Thus the group-theoretic structure of Gg g encodes the projective system of G g-sets

{(Sf \Sp)(U): U c Uo,U<1 G[gs},

where Uy € G g is certain open subgroup. Now the decomposition subgroups inside Gg g of
primes in Sy \ S}, are exactly the stabilizers in G g of elements in the Gg g-set

m (S5~ Sp)(U),
UQU(),U<IGK75

Remark 6.8. It is not possible to treat the primes in S, N .S by the same method as above, as
we do not have a very good control over the p-Sylow subgroups G, of G, with x local p-adic:
they still have c¢d,(Gyp) = 2, but must not be isomorphic to the (well-understood) maximal
pro-p quotient G, (p) (and moreover the kernel of 4, ,, - %,(p) is infinitely generated).
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From this intrinsic description of the decomposition subgroups, we obtain the local corre-
spondence at the boundary.

Corollary 6.9 (Local correspondence at the boundary). Fori = 1,2 let K; be a number field
and S; a stable set of primes satisfying (+)*2P. Assume there are two different odd rational

primes p1,p2 ¢ ESP(S;) such that pip,p, < Ki s, fori=1,2. Let
0. GK1751 — GK2752

be an isomorphism. Then the local correspondence at the boundary holds. Moreover, for any
open Uy € Gk, 5, with corresponding field Ly, 0.1, preserves the residue characteristics and
absolute degrees of all primes p € Sy ¢(L1), which do not lie over rational primes contained in
the (finite) set E5P(S;) u E54P(Ss).

Proof. For p € {p1,p2}, the above considerations allow to define a bijection
Opt (S1,7 N Sp)(K1s,) — (S2,0  Sp) (K2,s,)

in an obvious way. Let p1 € (S1, 5\ Sp,p,)(K1,5,). Then we have

Dy, 1) =Dp) = Do) o51)s

which by Lemma [6.4(i) implies that op, «(p1) = 0p,«(P1), i, 0p,« and op, . coincide on
(S1,# N Spips)(K1,5,). By patching them together, we obtain the desired bijection

0w (S1,£)(K1,s,) — (S2,7)(K2,s,).

The Galois-equivariance of o, follows in the same way as in Corollary Observe that
the set EP(S1) U E52P(S,) is finite since Sy, Sy satisfy (#)*2P. It remains to show that for
any finite K g, /L1/K; with corresponding open subgroup U; and for all primes in Sy (L) not
lying over p € E5%P(S1) U E52P(S5), the map .y, preserves the residue characteristic and the
local absolute degree. We can assume L; = Kj. Since (¥)%**" holds for S; (i = 1,2), there
is a finite exceptional set T = E*%P(S;) U E5%2P(S,), such that for any rational prime ¢ ¢ T,
the set .S; satisfies (*)Ztab, and by Corollary the maximal local /-extension of Kj;, for any
prime p € S; is attained by K;g,. This means, in particular, that for all primes p € S; with
residue characteristic £ = £(p) ¢ T, the maximal (-extension of Kj;, is attained by K;g,. Let
p € S; be such a prime and p an extension to K;g,. Lemma shows that Dj encodes the
information about the residue characteristic and the absolute degree of p. Thus o, g, preserves
residue characteristic and local degree of all primes in S; N\ T(K). O

Lemma 6.10. Let k be a local field with characteristic zero and some residue characteristic ¢
and A\/k a Galois extension with Galois group D, which contains the mazimal pro-C-eztension of
k. Then D encodes the information about £ and [k : Qg].

Proof. Let %, be the absolute Galois group of k. We have the surjection 7: 4, — D, and for
any open U € ¥, a surjection U — 7(U), which for any rational prime p induces an injection
H!(7(U),Z/pZ) — H'(U,Z/pZ). For all primes p # ¢, the dimensions of the spaces on the right
(and hence also on the left) is bounded by 2, and for p = ¢, the dimension of the space on the
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left gets arbitrary big, if U gets arbitrary small. Thus D determines the residue characteristic
{. Further,
[k Qe = xe(%(0), Z/UZ) = xo(D(0), Z/IL). N

6.3 Uniform bound

Besides the local correspondence established before, the following argument plays a central role
in the proof of Theorems [6.1] and [6.2}

Proposition 6.11 (Uniform bound). Fori = 1,2 let K; be a number field and S; a set of primes
of K;, and let

o GKLSI - GK2,S2

be an isomorphism. Assume that the local correspondence at the boundary holds. Assume that
Sy is stable. Then there is some N > 0, such that for all (not necessarily finite) intermediate
subfields Ky,s,/Mi/K1, such that My is normal over Q, one has [My : My n My| < N, where
Ms/Ky corresponds to M /K1 via o.

Lemma 6.12. Let k be a field. If (V;)ier is a cofiltered system of k-vector spaces, such that
dim, V; <n, and V := li_r)nl Vi, then dim, V < n.

Proof of Lemma[6.13 Indeed, for any n vectors of V there is an ¢ € I, such that these vectors
has preimages in V;. These preimages are linearly dependent. Hence their images in V are
linearly dependent. O

Proof of Proposition[6.11. Since S; is stable, by Proposition [3.11] there is some N > 0, such
that §,(S1) > N1 for all finite subfields K1 5,/L1/K;. Let M; be a subextension of K g, /K1,
such that M;/Q is normal. By Lemma and since Mj is a union of finite extensions of K7,
which are normal over Q, we can assume M; /K finite. Let

i = Sl(Ml) M CS(Ml/Q)(Ml)
Since M;/Q is normal, dpz, (cs(M1/Q)(M1)) = 1 and hence

S, (S1) = 0ar, (S1) > N1

Lemma 6.13. Let S := 0,(S]). Then

(i) 5M2 (Sé) = 5M1 (Si)

(ii) Sé S CS(MlMg/MQ),
Proof of Lemma[6.13. (i): follows from the local correspondence at the boundary by explicitly
computing the density and using formula (3.1]), since o preserves the residue characteristic and
the absolute degree of almost all primes in S{ (and in particular, almost all primes in S} are
completely split over Q).

(ii): Let p; € S be such that o, preserves the residue characteristic and the absolute

degree of p1. Let po := ox(p1) € S5 and p := pa|ar~nn- The fibre O ®0n, k(p2) over
p2 in Spec Oy, is isomorphic to (O, ®0,y, 4u, K(P)) ®x(p) k(p2). By assumption, we have
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p2lo = pilo € cs(K1/Q) and hence p € cs(M1/Q) (M1 n M) < cs(My/My n My). This implies
that O, ®0,, Au, 1(P) is isomorphic to product of copies of £(p). Thus we obtain

OMIMZ ®0M1 ’{(pQ) = H”(pQ)’
i.e., po is completely decomposed in M Ma. O

Using Lemma and since Mj Msy/Ms is normal, we obtain:

[My: My A M7t = [MyMy: My]™
= Ipp,(cs(MyMa/My))
> O, (53)
= o, (S7)
> N1
This proves Proposition [6.11} O

6.4 Non-existence of lifts

Last but not least, Proposition proven in this section provides the last argument which we
need in the proof of Theorems and Let L/K be a Galois extension of global fields. We
want to study, under which conditions there is no Galois extension Ly/Kjp, such that L/K is a
base change of Lo/Ky, i.e., Ko = K n Ly and L = K Lg:

In this case the group Gp k sits in the sequence

1> G = G, = G/, — 1,

in which the right map splits, and the image Gpr, of this splitting is normal, i.e., one has
Gr/ry = Gy X Grr,- Thus we want to know, under which conditions Gp i does not fit into
such a diagram with K /K( non-trivial.

Proposition 6.14. Let K, Lg be two linearly disjoint Galois extensions of a global field Ky, and
set L = K Lg. Assume one of the following hold:

(a) — K is a totally imaginary number field and

— L = Kg,(p) for some prime number p, or

(b) There is a prime p of Ko, which is completely split in K, such that for any p1,p2 € Sp(L)
with ]31|K * ]52|K, we have Dﬁl,L/K #* Dﬁg,L/K'

Then K = Ky.
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We will only use part (a) of this proposition.

Proof. Assume (a) holds. Then L/K and Lo/K( are both Galois with Galois group isomorphic
to Gg,s,(p). By [NSW]| 10.3.20, the number of independent Z,-extensions of K satisfies

rkz, G?(kjsp (p) = 12(K) +1

Since Gp/x = Gy /K, the field Ko has at least r2(K) + 1 independent Z,-extensions. Assume
K # Ky. Then [K : Ky| > 2, and since K is totally imaginary, we obtain:

[K: Q]
2

TQ(K)+1= +1>[K0:@]+1>[K02@].
But by [NSW| 10.3.20, the number of independent Z,-extensions of Ky is < [Kp : Q]. This is a
contradiction, hence K = K{ (notice that we nowhere made use of Leopoldt’s conjecture!).
Assume (b) holds. Let ¢: Gp/k = Gp, /K, denote the canonical isomorphism obtained
by restriction. Assume there are two different primes p; # ps in K over p. Let g be some
prime of Lo over p. One can chose primes p; € Sp(L), such that p;|x = p; and p;|r, = q. As
p1,p2 are split over Ko, we obtain that ¢ maps Dj, 1k isomorphically to Dg 1, /k,- But by
assumption Dp, 1/ # Dy, /K, hence Dg /1y = V(D5 1/x) # V(Djy,1/x) = Dq,Lo/K,> Which
is a contradiction. Thus there is only one prime over p in K, and since p is completely split, we
obtain [K : Ky] = 1. O

6.5 Proof of Theorems [6.1] and [6.2]

We consider all occurring fields to be subfields of a fixed algebraic closure Q of Q.

Step 1 - Local correspondence. The assumptions in both versions of the theorem imply by
Corollary [6.5] resp. Corollary[6.9] that for o the local correspondence at the boundary holds: for
any open subgroup Uy € G, g, with fixed field L1, o induces a bijection

0'(*]1 : Slﬁf(Ll) = SZ,f(LQ)’

which preserves the residue characteristic and the absolute degree of all primes in Theorem
and almost all primes in Theorem We obtain [K3 : Q] < [K; : Q] from this. Indeed, under
the assumptions of Theorem @, it follows from the existence of some p with S, S So; in the
case of Theorem m there is a prime p with S, € Sy and p ¢ T = E53P(S;) U E52P(S,), and
hence o, preserves the residue characteristic and the absolute degree of primes in S,(K) by

Corollary

Step 2 - Totally tmaginary case. We assume that K is totally imaginary. We have two
rational primes py, p2, such that Sy, © S1, p; > 2, whose existence was required in the statement
of the theorems. So let p € {p1, p2}. The quotient Gy, s,(p) of Gk, s, is torsion-free (cf. [NSW]|
8.3.18 and 10.4.8). Since K; is normal over Q, S, is defined over Q and the maximal pro-p-
quotient of a profinite group is characteristic, we deduce that the field Ky g,(p) is normal over Q.
Let Lo, be the field corresponding to K1 g,(p) via o (a priori, Lg , must not be equal K3 5, (p)).
We have the following situation:
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Kis,(p) Loy,

Hy
K1.(Ky5,(p) n Lay)

Hy Ki5,(p) 0 Loy
K, Hy Ky
\
Kin Loy
Kin Ky

In this diagram the group H; is a subgroup of G, 5, (P)/ K15, (P) L2, and of G, g, (p). But
the first of these two groups is finite by Proposition [6.11], and the second is torsion-free. Hence
Hy =1,ie., Hy = Gg, 5,(p). By Proposition (a) we get K1 = K1 N Loy, ie., K1 S Loy.
Doing this for p = p1,p2, we get: K1 S Loy, N Loy, = Ko, the last equality being true, since
Ly p, /K2 is a pro-pj-extension for j = 1,2. Since by step 1 we have [Ky : Q] < [K; : Q], we
conclude that K7 = Ks.

Step 3 - General case. Now assume K is arbitrary. Let pi, ps be as in step 2. For j = 1,2
let K3 ; be the extension of K3 corresponding under o to the extension Ki(u,;)/K1. By the
preceding two steps, we see that Ki(u,;) = Kaj, since the assumptions carry over from Ky, Ky
to Kiy(up;), Kaj. Now Kq(up,) n Ki(pp,) = K1 and this is equivalent to the fact that the
subgroups of G, g, corresponding to these fields, generate Gg, s,, hence the same is true after
applying o, i.e., K21 N Koo = K>. Thus we get:

Ky = Ki(pp,) 0 K (ppy) = K21 0 Ko g = K.
This finishes the proof. O

Remark 6.15. The technical assumptions in both versions of the theorem are chosen such that

one can show
- the local correspondence at the boundary,
- [K2: Q] < [K71: Q)
- the existence of two linearly disjoint extensions M;/K; (j = 1,2), such that

(i) M;/Q is normal,

(i) Gk, is torsion-free.
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