
 

 

 

 

 

 

 

Effects of A β Oligomers and State-Dependent Channel 

Blockers on High Voltage-Activated Calcium Channels  

 

 

 

 

 

 

 

 

 

David Hermann 

2013 

 





 

 

 

Dissertation  

 

 

submitted to the 

Combined Faculties for the Natural Sciences and for  Mathematics  

of the Ruperto-Carola University of Heidelberg, Ger many 

for the degree of  

Doctor of Natural Science 

 

 

 

 

 

 

 

presented by 

David Hermann, MSc in Neurosciences 

born in Erlangen 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Declarations according to § 8 (3) b) and c) of the doctoral degree regulations: a) I 

hereby declare that I have written the submitted dissertation myself and in this 

process have used no other sources or materials than those expressly indicated, b) I 

hereby declare that I have not applied to be examined at any other institution, nor 

have I used the dissertation in this or any other form at any other institution as an 

examination paper, nor submitted it to any other faculty as a dissertation. 

 

Darmstadt, ____________________ 

 



 

 

 

 

 

 

 

Effects of A β Oligomers and State-Dependent Channel 

Blockers on High Voltage-Activated Calcium Channels  

 

 

 

 

 

 

 

 

 

Referees:   Prof. Dr. Andreas Draguhn 

   Prof. Dr. Stephan Frings 

 





 

 

 

Referees Prof. Dr. Andreas Draguhn 

Department of Neuro- and Sensory Physiology 

Institute for Physiology and Pathophysiology 

University of Heidelberg 

Im Neuenheimer Feld 326, 69120 Heidelberg, Germany  

 Prof. Dr. Stephan Frings 

Department of Molecular Physiology 

Centre for Organismal Studies  

University of Heidelberg 

Im Neuenheimer Feld 504, 69120 Heidelberg, Germany 

Oral Examiners Dr. Johann Bollmann 

Department of Biomedical Optics 

Max Planck Institute for Medical Research 

Jahnstrasse 29, 69120 Heidelberg, Germany 

 Dr. Wolfgang Kelsch 

Department of Psychiatry and Psychotherapy 

Central Institute of Mental Health 

University Heidelberg 

J5, 68159 Mannheim, Germany 

Local Supervisor Dr. Volker Nimmrich 

Department of Pharmacology 

AbbVie GmbH & Co. KG 

Knollstraße 50, 67061 Ludwigshafen/Rhein, Germany  

 

Date of Oral Examination 

 



 

Acknowledgements 

This work was carried out at and supported by the AbbVie (former: Abbott) GmbH & 

Co. KG in Ludwigshafen and the Ruperto-Carola University of Heidelberg. 

First and foremost, I owe many thanks to my supervisor in Ludwigshafen, Dr. Volker 

Nimmrich who has given me excellent scientific and professional guidance and 

supported me throughout all the 4 years at AbbVie and beyond. I feel very privileged 

to have worked together with Michael Bahr, Tanja Georgi and Siena Kiess, who I 

admire not only for their expert technical knowledge and methodological skills. I 

would further like to express my gratitude to Dr. Karsten Wicke, who has been overly 

supportive and provided valuable senior scientific advice. This also holds true for 

Prof. Dr. Gerhard Gross whose efforts made funding of this project at AbbVie 

possible in the first place. Special thanks go to Dr. Mario Mezler, who had a major 

impact on this thesis by, among other things, providing the transfected cell lines and 

sharing his profound knowledge on assay development together with Dr. Andrew 

Swensen, located at Abbott Park in Illinois, U.S.A. I am also very thankful for 

constant high quality supply of Aβ globulomer provided by Andreas Striebinger from 

the lab of Dr. Stefan Barghorn and the remarkable technical support received from 

the whole Nanion Technologies GmbH team, especially Dr. Ali Obergrußberger. 

Success of this PhD project was only achievable because of the full, continuous and 

outstanding scientific, technical, and practical support by Prof. Dr. med. Andreas 

Draguhn and his department at the University of Heidelberg – from the very 

beginning to the very end. I am especially thankful for all expert remarks I received 

from Dr. Claus Bruehl regarding electrophysiological procedures and experimental 

design throughout the whole project. Furthermore, it needs to be emphasized that 

wrapping up this thesis was only possible because of the reliable cell culture 

maintenance by Nadine Zuber and the extraordinary efforts by Fabian Roth, giving 

me practical experimental training after closing time and on weekends. In addition, I 

would also like to thank Prof. Dr. Stefan Frings for investing his valuable time as my 

second referee. 

My family, especially Valeska, has always been a wonderful source of 

encouragement providing me with the determination and strength to overcome any 

obstacle, I love you. 



 

Contents  

List of Abbreviations xi  

Abstract xiii  

Zusammenfassung xv  

1 Introduction 1 

1.1 Alzheimer’s Disease (AD) ...................................................................................1 

1.1.1 Clinical and Socioeconomic Facts..........................................................1 

1.1.2 Histopathology of AD and Function of the Hippocampal Formation .......3 

1.1.3 Molecular Mechanisms...........................................................................6 

1.1.3.1 The Cholenergic and Glutamte Hypotheses: Rationale for 
Current Drug Treatment.....................................................................6 

1.1.3.2 The Amyloid Hypothesis ....................................................................9 

1.1.3.3 Ion Channel-Related Synaptic Pathophysiology..............................13 

1.2 High Voltage-Activated Calcium Channels........................................................18 

1.2.1 Structure and Pharmacological Characterization .................................19 

1.2.2 Terminology of Channel States and Transitions...................................23 

1.2.3 Function and Mechanisms of Inactivation.............................................24 

1.3 Drug Discovery Targeting Ion Channels ...........................................................28 

1.3.1 Ion Channels as Drug Targets..............................................................28 

1.3.2 High Throughput Methods ....................................................................30 

1.3.3 State-Dependent Channel Modulation..................................................32 

1.3.4 P/Q-type Calcium Channels as Potential Drug Target..........................35 

Aims of the Study 37 

2 Materials and Methods 39 

2.1 Chemicals and Biologics ...................................................................................39 

2.2 Generation of Cell Lines and High Throughput Screening ................................40 

2.3 Patch Clamp Recordings ..................................................................................42 

2.3.1 Manual Patch Clamp ............................................................................43 

2.3.1.1 Voltage-clamp..................................................................................43 

2.3.1.2 Current-clamp..................................................................................45 

2.3.2 Automated Patch Clamp.......................................................................46 

2.4 Hippocampal Slice Culture Preparation ............................................................48 

2.5 Field Potential Recordings ................................................................................50 



 

2.6 Data Analysis ....................................................................................................51 

2.7 Statistics............................................................................................................53 

3 Results 55 

3.1 Effects of Oligomeric Aβ on Synaptic Transmission are Calcium Channel-
Dependent.........................................................................................................56 

3.2 Oligomeric Aβ Modulates Recombinant Calcium Channels ..............................59 

3.2.1 Biophysical and Pharmacological Validation of Functional Channel 
Expression............................................................................................59 

3.2.2 Aβ Oligomers Facilitate Channel Activation at Intermediate 
Depolarized Potentials..........................................................................66 

3.2.3 Effects of Aβ Oligomers Appear to be Independent of Channel State..71 

3.3 Identification of Novel State-Dependent P/Q-type Calcium Channel Blockers..72 

3.3.1 Inactivation of Recombinant Channels Accumulates over Time...........73 

3.3.2 Channel Activation, but not Inactivation is Similar between Manual 
and Automated Patch Clamp................................................................77 

3.3.3 Compound Screening Reveals Novel Channel Blockers......................81 

3.3.4 Characterization of State-Dependency of Selected Compounds..........86 

3.4 State-Dependent Block of Calcium Channels Prevents Oligomeric Aβ-
induced Synaptic Deficits ..................................................................................88 

4 Discussion 91 

4.1 Overactivation of Presynaptic Calcium Channels as a Potential Molecular 
Mechanism in AD..............................................................................................92 

4.1.1 Presynaptic Calcium Channel Block Reverses Oligomeric 
Aβ-induced Deficits in Synaptic Transmission......................................93 

4.1.2 Oligomeric Aβ Augments Presynaptic Calcium Channel Currents .......95 

4.2 Development of State-Dependent P/Q-type Calcium Channel Blockers .........100 

4.2.1 Appropriate Screening Protocol Selection Depends on Disease- 
and Channel-Specific Properties ........................................................102 

4.2.2 Compound Screening Reveals Novel Channel Blockers....................105 

4.2.3 State-Dependent Calcium Channel Block Ameliorates Oligomeric 
Aβ-induced Deficits in Synaptic Transmission....................................109 

4.3 Conclusion and Outlook ..................................................................................110 

Publications 111 

Bibliography 113 

List of Tables and Figures 141 

 



xi 

List of Abbreviations 

Aβ   Amyloid-β 

AD    Alzheimer’s Disease 

APP   Amyloid Precursor Protein 

CA1/3   Cornu Ammonis 1/3 

CNS   Central Nervous System 

fEPSP  Field Excitatory Postsynaptic Potential 

FLIPR   Fluorometric Imaging Plate Reader 

GHK   Goldman-Hodgkin-Katz 

HVA   High Voltage-Activated 

LMW   Low Molecular Weight 

LTP   Long Term Potentiation 

NMDA   N-methyl-D-aspartate 

 





xiii 

Abstract 

Alzheimer’s disease (AD) is accompanied by increased brain levels of soluble 

amyloid-β (Aβ) oligomers (McLean et al., 1999). It has been suggested that Aβ 

oligomers directly impair synaptic function (Haass and Selkoe, 2007) and modulate 

high voltage-activated calcium channels (Sberna et al., 1997; Bobich et al., 2004; 

Nimmrich et al., 2008a). State-dependent drugs are hypothesized to target 

pathologically overactivated channels without altering physiological activity, which 

may reduce adverse side effects (Winquist et al., 2005). Here, the effect of 

Aβ globulomer, a synthetic, stable, and pathologically relevant oligomeric Aβ 

preparation (Barghorn et al., 2005; Gellermann et al., 2008), on high voltage-

activated calcium channels was further elucidated. Furthermore, it was tested 

whether novel state-dependent calcium channel blockers can ameliorate oligomeric 

Aβ-induced deficits in synaptic transmission. 

First, the effect of oligomeric Aβ on excitatory synaptic transmission was investigated 

in rat organotypic hippocampal slice cultures. Specific block of P/Q-type and N-type 

calcium channels by ω-agatoxin IVA and ω-conotoxin MVIIA, respectively, 

completely reversed Aβ oligomer-induced deficits. By contrast, (additional) L-type 

calcium channel block by nimodipine (Diochot et al., 1995; Furakawa et al., 1999), a 

potential antidementia medicine (Birks and López-Arrieta, 2002), was ineffective. As 

assessed by whole cell patch clamp analysis, oligomeric Aβ shifted the activation of 

P/Q-type and N-type calcium channels, recombinantly expressed in HEK293 cells, to 

more hyperpolarized values. Application of non-aggregated Aβ peptide had no effect. 

These findings suggest that overactivation of presynaptic calcium channels by 

oligomeric Aβ may lead to functional synaptic deficits, which can be prevented with 

presynaptic calcium channel blockers.  

In a second part of this work, novel state-dependent calcium channel blockers were 

identified (published in Mezler et al., 2012a) and their potential to protect from 

Aβ-induced functional deficits investigated. Compounds were initially detected by a 

fluorescence imaging plate reader-based primary high throughput screen (previously 

performed at Abbott) using HEK293 cells recombinantly expressing P/Q-type calcium 

channels. For subsequent compound validation using a more direct measure of 

channel function, an automated patch clamp secondary screening assay was 
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established and incorporated into the hit-to-lead cycle of a drug discovery process. 

Representative compounds out of this screen were characterized for state-dependent 

P/Q-type calcium channel block by manual patch clamp recordings. Finally, these 

blockers were able to protect from Aβ-induced functional decline in synaptic 

transmission similarly as the state-independent peptide toxins.  

Findings from this work hint towards the therapeutic potential of state-dependent 

presynaptic calcium channel block, which needs to be further elucidated in an in vivo 

model of AD. As P/Q-type calcium channel gain-of-function is also associated with 

migraine and epilepsy, novel specific channel blockers may also alleviate symptoms 

of other neurological diseases, beyond AD. 
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Zusammenfassung 

Die Alzheimer-Krankheit geht im Gehirn mit einem erhöhten Spiegel von löslichen 

Amyloid-ß (Aβ) Oligomeren einher (McLean et al., 1999). Es wird vermutet, dass Aβ 

Oligomere unmittelbar synaptische Funktion schädigen (Haass and Selkoe, 2007) 

und spannungsaktivierte Kalziumkänale beeinflussen (Sberna et al., 1997; Bobich et 

al., 2004; Nimmrich et al., 2008a). Für zustandsabhängige Wirkstoffe wird 

angenommen, dass diese auf pathologisch überaktivierte Kanäle wirken ohne deren 

physiologische Aktivität zu beeinflussen, was unerwünschte Nebenwirkungen 

reduzieren würde (Winquist et al., 2005). In der vorliegenden Arbeit wird der Effekt 

von Aβ Globulomer, einer synthetischen, stabilen und pathologisch relevanten 

oligomeren Aβ Präparation (Barghorn et al., 2005; Gellermann et al., 2008), auf 

spannungsaktivierte Kalziumkanäle weiter aufgeklärt. Darüber hinaus wurde 

getestet, ob neuartige zustandsabhängige Kalziumkanalblocker Aβ Oligomer-

induzierte Defizite der synaptischen Übertragung lindern können. 

Zuerst wurde der Effekt von oligomerem Aβ auf exzitatorisch synaptische 

Übertragung organotypischer hippocampaler Schnittkulturen der Ratte untersucht. 

Spezifischer P/Q-Typ und N-Typ Kalziumkanalblock, jeweils durch ω-agatoxin IVA 

beziehungsweise ω-conotoxin MVIIA, kehrte die Aβ Oligomer-induzierten Defizite 

vollständig um. Im Gegensatz dazu war (zusätzlicher) L-Typ Kalziumkanalblock 

durch nimodipine (Diochot et al., 1995; Furakawa et al., 1999), ein potenzielles 

Antidementivum (Birks and López-Arrieta, 2002), unwirksam. Durch Whole Cell 

Patch Clamp Untersuchungen wurde ermittelt, dass oligomeres Aβ die Aktivierung 

von – in HEK293 Zellen rekombinant exprimierten – P/Q-Typ und N-Typ 

Kalziumkanälen zu hyperpolarisierenden Spannungswerten verschoben wurde. 

Applikation von nicht aggregiertem Aβ Peptid hatte keinen Effekt. Diese Befunde 

lassen vermuten, dass Überaktivierung präsynaptischer Kalziumkanäle durch 

oligomeres Aβ zu funktionellen synaptischen Defiziten führen kann, die durch 

präsynaptische Kalziumkanalblocker verhindert werden können. 

Im zweiten Teil dieser Arbeit wurden neuartige zustandsabhängige 

Kalziumkanalblocker identifiziert (publiziert in Mezler et al., 2012a) und deren 

Potenzial untersucht Aβ-induzierte funktionelle Defizite zu verhindern. Substanzen 

wurden zunächst durch ein Fluorescence Imaging Plate Reader-basiertes primäres 
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Hochdurchsatz-Screening (im Vorfeld bei AbbVie durchgeführt) mittels HEK293 

Zellen identifiziert, die rekombinant P/Q-Typ Kalziumkanäle exprimieren. Für 

anschließende Substanzvalidierung wurde eine direktere Messung der Kanalfunktion 

etabliert, ein automatischer Patch Clamp Sekundärscreen, der in den Hit-To-Lead 

Zyklus eines Wirkstoffentwicklungsprogramms eingebettet wurde. Die 

Zustandsabhängigkeit des P/Q-Typ Kalziumkanalblocks repräsentativer Substanzen 

dieses Screenings wurde durch manuelle Patch Clamp Messungen charakterisiert. 

Letztlich waren diese Blocker in der Lage vor den Aβ-induzierten Defiziten in 

synaptischer Übertragung, ebenso wie die zustandsunabhängigen Peptidtoxine, zu 

schützen. 

Die Ergebnisse dieser Arbeit deuten auf das therapeutische Potential eines 

zustandsabhängigen präsynaptischen Kalziumkanalblocks hin, was durch ein in vivo 

Model der Alzheimer-Krankheit weiterer Aufklärung benötigt. Da erhöhte P/Q-Typ 

Kalziumkanalfunktion auch mit Migräne und Epilepsie in Verbindung gebracht wird, 

könnten neuartige spezifische Kalziumkanalblocker auch die Symptome anderer 

neurologischer Erkrankungen, neben der Alzheimer-Krankheit, lindern. 

  



 

1 

1 Introduction 

1.1 Alzheimer’s Disease (AD) 

The most common form of dementia, AD, which ultimately ends fatally, was initially 

described by Alois Alzheimer more than a century ago. Due to the worldwide 

increasing life expectancy, AD has been increasingly receiving attention by the 

scientific community and the public since the 1960s. The following chapter will 

provide an insight into the current and predicted number of demented patients, the 

detrimental effects of private caregiving to family members and the economical 

burden dementia imposes on governments around the world. Moreover, a brief 

overview is given about the clinical manifestations and disease progression of AD as 

well as the currently available pharmacological treatment options. The subsequent 

section will review the histopathological hallmarks of AD. As the hippocampal region 

is one of the primarily affected regions and is also utilized in experimental studies 

within this PhD work, a short introduction of its anatomical structure and function is 

included. In the last sections, the rationales and proposed mechanisms of action of 

the currently marketed drugs is elaborated in more detail. Finally, several currently 

proposed molecular mechanisms are reviewed focusing on ion channel-related 

synaptic pathophysiology of AD. 

 

1.1.1 Clinical and Socioeconomic Facts 

For 2010, worldwide 35.6 million people were estimated to be suffering from 

dementia, a serious loss of cognitive ability (Ferri et al., 2009). Usually this decline in 

brain function manifests progressively and affects memory, learning, orientation, 

language, comprehension, judgment and personality. Wimo and Prince (2010) 

predict the number of demented people to rise to 65.7 and 115.5 million in the years 

2030 and 2050, respectively. This report also estimated the current worldwide 

socioeconomic costs caused by dementia at 604 billion US dollars, with 70% of costs 

occurring in Western Europe and North America. Dementia has a tremendous impact 

on the ability to live independently and cognitive impairment was identified as one of 

the main predictors for institutionalization in the USA (Gaugler et al., 2007). 
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Moreover, the burden and emotional stress of private care, which is usually carried 

out by family members or friends of the demented patient, causes very high levels of 

psychological morbidity among the caregivers, increasing their rate of major 

depression by 2.8 to 38.7 times (Cuijpers, 2005). This report also emphasizes that by 

far the strongest factor correlated with dementia is age. The overall prevalence at 

age 60 and over was estimated at 5-7% in most regions of the world, and starting 

from age 65 the likelihood of developing dementia roughly doubles every 5 years. 

Based on a study about early onset dementia within the United Kingdom, Harvey et 

al. (2003) estimated that this doubling every 5 years already starts at age 35. 

Dementia can be caused by a single disease or a mixture of several underlying 

diseases including AD, vascular dementia, dementia with Lewy-Bodies, and others. 

AD is the leading cause for dementia, as it has been illustrated by post-mortem 

analysis of demented people, which identified AD-related pathology in 86% and pure 

(exclusive) AD pathology in 43% of the cohort (Jellinger, 2006). This is in line with a 

previous review by Nussbaum and Ellis (2003) stating that about two thirds of all 

dementias are caused by AD. 

Upon diagnosis of AD before age 90, Dodge et al. (2003) found that the remaining 

life years individuals from an American cohort decreased by about one third to one 

half. They also report that diagnosed AD patients are burdened with a significantly 

higher level of disability for the rest of their shortened life. Early phases of AD are 

marked by a subtle impairment of learning and memory including forgetfulness, 

whereas at the same time older episodic, semantic and implicit memory remains 

mostly intact. As cognitive impairments increase, everyday life activities become 

more and more challenging and the patient requires assistance by another person. 

As motor impairments manifest and cognitive impairments continue to worsen (e.g., 

not being able to recognize family members anymore), caregiving becomes 

increasingly demanding until the patient has to be institutionalized. Late stage AD is 

accompanied by loss of speech and the inability of patients to feed themselves. The 

ultimate cause of death often occurs by respiratory system diseases like an acquired 

inflammation of the lung (Förstl and Kurz, 1999; Brunnstrom and Englund, 2009). 

When comparing death rates in the USA from the year 2008 with 2000, deaths 

caused by AD increased by 66% whereas the number of other common causes of 
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death decreased including stroke, human immunodeficiency virus, prostate cancer, 

breast cancer, and heart disease (Thies and Bleiter, 2012).  

Unfortunately, as of today there is no causative treatment available for AD. First and 

second line medical treatment is obtained by acetylcholinesterase inhibitors 

(donepezil, rivastigmine, galantamine and tacrine) and the N-methyl-D-aspartate 

(NMDA) receptor antagonist memantine, respectively. As these drugs are only 

effective in about half of the patients slowing down cognitive decline by a mere 6-12 

months, they are only considered as symptomatic treatment which does not stop or 

even reverse the progression of the disease. Despite major investments into basic 

research and drug development have led to numerous clinical trials (Mangialasche et 

al., 2010), no new medication for AD has gained approval from regulatory authorities 

of the United States since 2003. 

Considering all of these factors, it is evident that AD is a detrimental disease for both 

the patient and their relatives. Due to the complete lack of effective therapeutic 

intervention, those affected have to inevitably face a terminal disease, which 

gradually diminishes cognitive functions and impacts the personality of the diseased, 

as well as intensive long-term caretaking, which is physically and emotionally 

extraordinarily demanding. Moreover, the associated high socioeconomic costs are 

increasingly becoming an issue for governments and institutions around the world. 

 

1.1.2 Histopathology of AD and Function of the Hipp ocampal Formation 

The diagnosis of AD today is defined by two histopathological hallmarks, which were 

already described by Alois Alzheimer (1907), after whom this disease was named. 

These hallmarks are senile plaques, mostly composed out of amyloid (Aβ) peptide, 

and neurofibrillary tangles, comprising hyperphosphorylated forms of the microtubule 

associated protein tau found especially in the cortex and hippocampus (Bouras et al., 

1994). In addition, neuronal cell death has been reported (Neary et al., 1986). 

However, a decrease in the number of neurons has also been observed for normal 

aging and AD may rather facilitate cell shrinkage within the hippocampus (Simic et 

al., 1997; Gosche et al., 2002). Even today AD can only be unambiguously confirmed 

post-mortem based on the demonstration of these Aβ plaques and neurofibrillary 

tangles along with amyloid deposits in the cerebral blood-vessels, reactive gliosis, 
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and neuronal atrophy. Prior to death medical history, mental tests, and exclusion of 

other diseases allow clinical diagnosis of AD (McKhann et al., 1984; McKhann et al., 

2011) with an averaged sensitivity of 81% and specificity of 70% (Knopman et al., 

2001). Current clinical diagnosis can, however, only be obtained if the disease has 

already progressed to a state where cognitive deficits have already manifested. In 

the future, earlier diagnosis of AD may be feasible with surrogate markers including 

immunoassays detecting Aβ and tau phosphorylated at specific epitopes in 

cerebrospinal fluid. These biomarkers may also serve as diagnostic markers for AD 

trials (reviewed by Hampel et al., 2010). 

The entorhinal cortex, appears be the first structure with histopathological changes in 

AD (Hyman et al., 1984; Braak et al., 1993; Gómez-Isla et al., 1996). This structure 

constitutes the main input to the hippocampal formation, which comprises the 

hallmarks of AD and is also already affected during early stages of the disease 

(Blennow et al., 1996). The role of the hippocampal region in AD was further 

supported by animal models of AD (reviewed by Fitzjohn et al., 2008).  

The function of the hippocampus in learning and memory was unambiguously 

demonstrated by Scoville and Milner (1957). After bilateral removal of the 

hippocampus for treatment of epilepsy, the patient H.M. suffered from permanent 

anterograde memory impairment hindering encoding of any new long-term 

memories. Interestingly, although H.M. could not encode new memories, he was still 

able to recall some retrograde memories especially ones from long ago. It has 

subsequently been observed in many patients that bilateral hippocampal damage 

induces severe loss of (at least) anterograde episodic memory (reviewed by Spiers et 

al., 2001). On a molecular level, learning and memory is associated with synaptic 

plasticity (Hebb, 1949). Within the hippocampus several forms of plasticity can be 

observed including long-term potentiation (LTP; Bliss and Lomo, 1973). Initial support 

for the theory of LTP as neurophysiological correlate of learning and memory has 

been collected by Morris et al. (1986), providing experimental evidence that 

hippocampal LTP measured in vitro is required for formation of memories in vivo. As 

a consequence, disturbances in LTP may contribute to the clinical symptoms in AD 

(Rowan et al., 2003). In addition to its function in memory, is noteworthy that the 

hippocampus is also involved in other tasks like spatial navigation, as initially 

described by O'Keefe and Dostrovsky (1971). 
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Another, more technical, reason why this region has been intensively studied is 

because of its relatively simple, three-layered anatomical structure and well-defined 

cytoarchitecture. Hippocampal circuitry is organized in a highly ordered manner with 

lamina-specific connections of afferent fibers. This also holds true for isolated 

hippocampal slice cultures, where termination of hippocampal afferents does not lead 

to significant translaminar sprouting of the remaining intrinsic fibers (Frotscher et al., 

1995; Frotscher et al., 1997). Furthermore, synaptic field potentials have symmetry 

along the septotemporal axis. Thus, slices taken from different transversal parts of 

the hippocampus show similar electrophysiological patterns increasing the 

reproducibility of the respective electrophysiological field recordings.  

In the following, the anatomy of the hippocampus is briefly reviewed (Amaral and 

Witter, 1989), focusing on its trisynaptic pathway. Anatomically, the hippocampus is 

located within the medial temporal lobe, is part of the limbic system and consists of 

the entorhinal cortex, dentate gyrus, cornu ammonis (CA1-3) fields, and subiculum. 

The major input afferent to the hippocampal formation arises from the perforant path 

fibers originating from the adjacent entorhinal cortex. They synapse in the outer 

molecular layer of the granule cells in the dentate gyrus and in the stratum 

lacunosum-moleculare at distal apical dendrites. Signals from the granule cells are 

conveyed via their axonal projections called mossy fibers to the pyramidal cell layer 

of the CA3 region. The signal is then further transduced via the Schaffer collateral, 

which innervate proximal apical dendrites in the stratum radiatum of pyramidal CA1 

cells by releasing the excitatory neurotransmitter glutamate. The stratum pyramidale 

comprises the cell bodies of the pyramidal neurons and synapses from a variety of 

interneurons. Recurrent connections of pyramidal cells within the CA1 region mainly 

synapse on the basal dendrites in the stratum oriens. In contrast, dendrites from 

different types of interneurons receive input from both stratum radiatum and stratum 

oriens (Buhl et al., 1996; Halasy et al., 1996). The CA1 region projects to the 

adjacent subiculum and the entorhinal cortex, thereby closing the loop between the 

entorhinal cortex and hippocampus. Most sensory input to the hippocampus is 

received through the entorhinal cortex, which after the loop in the hippocampus 

conveys the signal back to the same cortical area that it originally received the input 

from. Furthermore, a smaller fraction of subcortical afferents terminate diffusely on 

different kinds of target cells (Wyss et al., 1979). As a consequence, isolated studies 
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of transverse hippocampal sections still inherit a large portion of the hippocampal 

circuitry. 

Stimulation of the Schaffer collateral results in a negative shift in the extracellular 

field potential measured in the stratum radium (reflecting the current sink of the 

postsynapse) and a positive potential measured in the pyramidal layer (representing 

the corresponding current source close to the soma). The initial change in potential is 

solely due to excitatory transmission, since the Schaffer collateral fibers release the 

neurotransmitter glutamate. After a few milliseconds the excitatory potential is 

superimposed by feed forward and feed backward inhibitory currents of bistratified 

cells, innervating stratum radiatum, or basket cells which synapse perisomatically at 

the pyramidal cell layer (Buzsáki, 1984; Buhl et al., 1996; Halasy et al., 1996). 

 

1.1.3 Molecular Mechanisms 

Despite extensive studies especially within the last three decades, the precise 

molecular causes leading to AD have not been understood. Several competing 

mechanisms of actions have been proposed and (partially) evaluated in the clinic. 

This chapter will first review the scientific rationale which led to the drugs currently in 

clinical use for treatment of AD. Then, the amyloid hypothesis of AD will be 

introduced and discussed, also referring to findings from related clinical trials. Finally, 

based on this hypothesis, findings regarding ion channel-dependent synaptic 

pathophysiology will be reviewed. 

 

1.1.3.1 The Cholenergic and Glutamte Hypotheses: Ra tionale for Current 

Drug Treatment 

As of today, several competing hypotheses for mechanisms of action exist for AD; 

the first one was termed the cholinergic hypothesis and introduced by Bartus et al. 

(1982), who based this theory mainly on two sets of findings. On the one hand, the 

neurotransmitter acetylcholine plays an important role in learning and memory 

(Drachman and Leavitt, 1974). On the other hand, AD studies exhibited central 

nervous system (CNS) deficits in synthesis and release of acetylcholine, choline 



1.1  Alzheimer’s Disease (AD) 

7 

uptake, and loss of cholinergic neurons from the nucleus basalis pointing towards a 

substantial cholinergic deficit in AD (Bowen et al., 1976; Davies and Maloney, 1976; 

Perry et al., 1977; Whitehouse et al., 1982). These changes were observed by post-

mortem biopsy, correlated with the cognitive impairment of AD patients (Perry et al., 

1978) ,and were found within a year of the onset of symptoms of dementia (Bowen et 

al., 1982), suggesting that the deficit might be causative for AD.  

The therapeutic strategy of increasing acetylcholine levels in patients, through 

inhibition of acetylcholinesterase, has resulted in four of currently five approved drugs 

for the treatment of AD. However, cholinergic treatment is only considered to be 

symptomatic. In addition, the therapeutic benefit is limited as progression of AD is 

only postponed in a fraction of patients by several months after treatment of 

donepezil (Steele and Glazier, 1999). Although, there have been reports that positive 

long-term effects compared to placebo control are not detectable (Courtney et al., 

2004; Petersen et al., 2005), meta-analyses by Lanctot et al. (2003) and Birks (2006) 

concluded that increasing cholinergic levels through acetylcholinesterase inhibitors 

lead to a significant therapeutic effect. Recently, EVP-6124 (EnVivo 

Pharmaceuticals), a novel α7 nicotinic acetylcholine receptor partial agonist 

(Prickaerts et al., 2012), has recently shown efficacy in a phase 2b trial for 

symptomatic treatment of AD (Hilt et al., 2012). It remains to be seen in a larger 

cohort, if this positive modulation of acetylcholine-mediated transmission may be 

superior compared to acetylcholinesterase inhibitors for the treatment of AD or 

whether cholinergic-dependent treatment can be additive.  

Also, glutamatergic neurotransmission in the neocortex and hippocampus was found 

to be disrupted in AD patients (Maragos et al., 1987; Palmer and Gershon, 1990; 

Myhrer, 1998). In the hippocampus, glutamate levels as well as NMDA binding are 

decreased especially for pyramidal CA1 neurons (Greenamyre et al., 1987; Ulas et 

al., 1992). As glutamate is crucial for learning and memory (Bliss and Collingridge, 

1993; Riedel et al., 2003), alterations in the glutamatergic system has also been 

implicated as a contributor to the clinical symptoms of AD. Glutamate may be a 

secondary cause of neuronal damage in AD via excitotoxicity, which appears to be 

primarily NMDA receptor-mediated (reviewed by Greenamyre and Young, 1989; 

Harkany et al., 2000). NMDA receptor activation was also found to stimulate Aβ 
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production, which in turn affects synaptic transmission (reviewed by Butterfield and 

Pocernich, 2003). 

Several NMDA antagonists have failed in the clinic as neuroprotective agents for the 

treatment of AD due to side effects, including hallucinations, agitation, or anesthesia 

(Olney et al., 1991; Krystal et al., 1994). This was partly associated with high NMDA 

binding affinity also altering physiological channel function (Kornhuber and Weller, 

1997). Memantine, an uncompetitive low to moderate affinity NMDA blocker, showed 

neuroprotective potential in preclinical AD models in vivo (Barnes et al., 1996; 

Danysz and Parsons, 2003) and in vitro (Nimmrich et al., 2010). In the clinic, 

memantine has shown modest effects in moderate-to-severe AD (Reisberg et al., 

2003) and has exhibited no severe psychotomimetic adverse effects (Orgogozo et 

al., 1991; Winblad and Poritis, 1999). It was approved by regulatory authorities in 

Europe and the U.S. for the treatment of moderate to severe AD, respectively, and 

also exhibits beneficial effects in patients receiving donepezil (Tariot et al., 2004). 

Based on a recent meta-analysis by Schneider et al. (2011) there is no evidence that 

memantine is beneficial during earlier stages of AD and cognitive benefits during 

moderate AD are smaller than for acetylcholinesterase inhibitors. 

Moreover, other therapeutic approaches are being pursued for AD. For example, 

block of the serotonin 5-HT6 receptor enhances (e.g., cholinergic) neurotransmission 

(Upton et al., 2008; Rossé and Schaffhauser, 2010) and led to successful clinical 

phase 2 trials. For SB-742457 (GlaxoSmithKline) efficacy and tolerability was shown 

in mild-to-moderate AD patients (Maher-Edwards et al., 2010). Upon additive 

treatment with donepezil, this compound (Maher-Edwards et al., 2011) and the 

5HT-6 antagonist Lu-AE58054 (Press release, Lundbeck, 2012) also slowed 

cognitive decline of moderate AD patients. Other approaches include antioxidants 

like vitamin E (Petersen et al., 2005; Galasko et al., 2012), anti-inflammatory drugs 

like ibuprofen (Tabet and Feldmand, 2003), and acetylsalicylic acid (Jaturapatporn et 

al., 2012), which however have not resulted into new drug approvals. For example, 

dimebon, an antihistamine drug used in Russia with several additional mechanisms 

of action including neuroprotective effects on mitochondria and block of multiple ion 

channels (Bachurin et al., 2001; Bachurin et al., 2003), revealed very promising 

potential in a phase 2 study (Doody et al., 2008). Unfortunately, dimebon failed to 

show efficacy in the subsequent phase 3 trial (Jones, 2010). 
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1.1.3.2 The Amyloid Hypothesis 

Identification of the amino acid sequence of the main constituent of amyloid plaques 

by Glenner and Wong (1984) and Masters et al. (1985) set the stage for the amyloid 

hypothesis. It proposes that accumulation of Aβ constitutes the primary cause for AD 

pathology and suggests that tau pathology is a downstream event induced by an 

imbalance of Aβ production and clearance (Hardy and Allsop, 1991). In the following, 

the genetic evidence and results from animal models supporting this hypothesis are 

described. Subsequently, some clinical trials will briefly be summarized, which aimed 

at reducing Aβ plaque levels but have not so far resulted in any drug approval. 

Finally, converging evidence is presented, which suggests that AD pathology is only 

mediated by certain forms and epitopes of Aβ and not, as originally believed, by 

insoluble Aβ plaques - one hallmark of AD.  

Table 1 .1  Genetic factors predisposing to AD  (adapted from Selkoe, 1996) 

Gene defect Age of AD onset Aβ phenotype 

APP Early ↑ production of total Aβ or Aβ1-42 peptides 

Apolipoprotein E4 
polymorphism Late ↑ density of Aβ plaques and vascular deposits 

Presenilin-1 Early ↑ production of Aβ1-42 peptides 

Presenilin-2 Early ↑ production of Aβ1-42 peptides 

 

The Aβ hypothesis is strongly supported by genetic evidence (Table 1.1). As stated 

previously, AD is a predominately disease of the elderly, but there is also early-onset 

AD (before age 60 or 65), which makes up about 1-5% of all cases. Although only 

about 13% of these can be attributed to familiar forms in a dominant autosomal 

manner (Campion et al., 1999), these cases have been crucial in depicting 

pathogenic pathways of AD. Associated with early-onset are mutations in the genes 

encoding the amyloid precursor protein (APP), presenilin-1, and presenilin-2. Aβ 

generation occurs via cleavage of APP, an integral membrane protein involved in 

synaptogenesis (Wang et al., 2009), by the enzyme β-secretase and the protease 

complex γ-secretase. Mutations of the APP gene cause early onset AD (Chartier-

Harlin et al., 1991; Goate et al., 1991; Murrell et al., 1991) and lead to 

overexpression of total Aβ levels (Citron et al., 1992) or an increase in the 
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Aβ42-to-Aβ40 ratio (Suzuki et al., 1994). Mutations of the presenilin-1 and presenilin-2 

genes increase the production of Aβ42 by altering APP metabolism via interaction with 

γ-secretase and their mutations (Scheuner et al., 1996; Citron et al., 1997; De 

Strooper et al., 1998; Wolfe et al., 1999). Furthermore, the E4 allele of 

apolipoprotein, a cholesterol transport protein capable of binding to Aβ (Strittmatter et 

al., 1993), confers a higher likelihood especially for late-onset (after 60 or 65 of age) 

of AD (Corder et al., 1993). Creation of several transgenic mice models, which in part 

resemble AD-like pathology, has further supported the significance of these genetic 

alterations (reviewed by McGowan et al., 2006).  

It should be noted, however, that alterations of tau protein and Aβ levels in human 

cerebrospinal fluid (CSF) are not exclusively linked to AD, but also to other forms of 

dementia (Spillantini et al., 1998; Gloeckner et al., 2008). Moreover, it has not been 

unambiguously proven that Aβ induces tau pathology. For example, one conflicting 

finding is that tau pathology seems to correlate more closely with neuronal loss than 

Aβ plaques (Schmitz et al., 2004). However, experimental data from transgenic mice 

models of AD showed that clearance of Aβ also decreases levels of neurofibrillary 

tangles (Oddo et al., 2004), but not vice versa. In addition, application of Aβ in turn 

induced neurofibrillary tangles and thereby neuronal loss (Lewis et al., 2001). So it 

has been postulated that the pathological assembly of Aβ induces tau-related 

pathology and may lead to the development of AD (Oddo et al., 2006). Moreover, 

APP is located on chromosome 21 and patients with Down syndrome (trisomy 21) 

develop amyloid deposits and early onset AD until age 40 (Olson and Shaw, 1969; 

Glenner and Wong, 1984; Wisniewski et al., 1985; Teller et al., 1996; Lott and Head, 

2005). This is supportive of the hypothesis by Hardy and Allsop (1991) that Aβ 

deposition may be major events and precede tau pathology in AD. 

Aβ aggregation into insoluble plaques has long been associated with neurotoxicity 

(Lashuel et al., 2002). In turn, one therapeutic approach has been to lower the 

plaque load, which was supported by studies in APP-overexpressing transgenic mice 

(Schenk et al., 1999). However, this approach has not (yet) led to a successful drug 

approval. In 2002, active immunization with AN-1792 (Elan Pharmaceuticals) against 

Aβ in a phase 2b study successfully lowered Aβ plaque load. Unfortunately, the 

treated individuals still developed dementia as found in a follow-up study (Gilman et 

al., 2005; Holmes et al., 2008). Furthermore, this study had to be aborted due to the 
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severe side effect of meningitis in 6% of patients. Therefore, antibodies for passive 

immunization have been developed, which are less likely to induce an inflammatory 

response (McLaurin et al., 2002; Dodel et al., 2010). The follow-on project of 

AN-1792 is Bapineuzumab (also termed AAB-001 or ELN115727: Pfizer, Johnson & 

Johnson, and Elan) a monoclonal antibody, which was also designed to bind to and 

clear Aβ plaques in patients with mild to moderate AD. After promising results 

obtained in a 6 month long phase 2b study (ClinicalTrials.gov identifier 

NCT00663026, no significant effects were observed in the following 1.5 year long 

phase 3 studies on a total of 2,452 patients (NCT00574132, NCT00575055), leading 

to recent discontinuation of bapineuzumab (Press release Johnson&Johnson, 2012). 

Another monoclonal antibody directed against plaques, called Solanezumab 

(LY2062430, Lilly), has also failed its primary endpoints in a recent 1.5 year long 

phase 3 study on 2,050 patients with mild to moderate AD (Press release Lilly, 2012). 

However, significant effects of slowed cognitive decline were reported in a secondary 

subgroup analysis comprising only patients with mild AD. As a consequence, this 

implies that plaque load reduction may be efficacious only for mild AD. This in line 

with a hypothesis from Golde et al. (2011) trying to explain the observed failures in 

clinical development of candidate drugs for AD. This may be caused by the fact that 

candidates are optimized on preclinical models which represent prestages or milder 

forms of AD-like pathology compared to the enrolled patients with more advanced 

disease progression. Another promising drug candidate currently tested in multiple 

phase 3 studies is Gammagard (an immunoglobulin for intravenous administration, 

Baxter), containing antibodies extracted from human plasma which may lower Aβ 

plaque burden. A three year follow-up study on a previous, small scale phase 2 study 

revealed that AD patients, who have previously received the highest dose of 

gammagard, did not exhibit any progression of cognitive decline (Relkin et al., 2012).  

In parallel to efforts to facilitate Aβ clearance, other drug candidates aimed at 

decreasing Aβ production. For example, semagacestat (LY450139, Eli Lilly), a 

γ-secretase and β-secretase inhibitor, proceeded into two clinical phase 3 studies. 

However, studies had to be aborted as this candidate actually worsened disease 

progression (press release Eli Lilly, 2010). Unfortunately, these negative results 

concerning facilitated cognitive decline were again observed in a phase 2 study with 

avagcestat (BMS-708136, Brystol-Myers Squibb), a γ-secretase inhibitor which is 

effective in lowering Aβ concentrations (Coric et al., 2012). Other trials have also 
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failed to show efficacy (Green et al., 2009). These results question the therapeutic 

benefit of γ- and β-secretase inhibitors for AD and suggest that lowering overall 

levels of Aβ might even be malignant. This would imply that, under certain 

circumstances, Aβ may actually support neuronal function. In fact, a dual mechanism 

of action of Aβ as neurotrophic and neurotoxic agent has been described (Yankner et 

al., 1990; Zou et al., 2002; Atwood et al., 2003). 

Within the amyloid hypothesis, it has not been unambiguously elucidated which form, 

epitope, or accumulation of Aβ may lead to the cognitive decline. Aβ monomers 

assemble to form several soluble oligomeric, then fibrillar forms which gradually form 

insoluble plaques (Selkoe, 2002). At first functional deficits were primarily attributed 

to the insoluble Aβ plaques. However, there is now converging evidence that other 

forms or epitopes of soluble Aβ may to some extent or even predominantly affect 

neuronal function. This shift in paradigm was initially supported by findings which 

have shown that the severity of cognitive decline is only poorly correlated with plaque 

load, and some patients, who have many plaque deposits, show only mild cognitive 

impairment (Blennow et al., 1996). This was also observed in mouse models of AD. 

In the absence of Aβ plaques functional synaptic deficits (Hermann et al., 2009) and 

impairment of learning and memory were observed (Westerman et al., 2002) 

suggesting that soluble Aβ forms rather than plaques might be responsible for 

dementia (Hardy and Selkoe, 2002; Mattson, 2004; Haass and Selkoe, 2007; Mc 

Donald et al., 2010). This was supported by numerous studies showing that LTP is 

decreased and long-term depression facilitated by synthetic Aβ (Cullen et al., 1997; 

Barghorn et al., 2005) as well as Aβ derived from natural sources (Walsh et al., 2002; 

Klyubin et al., 2008; Shankar et al., 2008a) in vitro and in vivo. Both physiological 

parameters correlate with morphological alternations in spine density (Engert and 

Bonhoeffer, 1999; Matsuzaki et al., 2004; Zhou et al., 2004) and with deficits in 

learning and memory (Morris et al., 1986). In line with this, it was found that soluble 

Aβ was localized near synapses (Kokubo et al., 2005a; Noguchi et al., 2009) and 

may bind to neurons (Lacor et al., 2007). These findings studies suggest that 

alterations in synaptic transmission via soluble Aβ occur early in the disease 

progress causing synaptic decline, which finally leads to memory dysfunction. This 

refined amyloid hypothesis is supported by the fact that soluble Aβ and synapse loss 

is more strongly correlated with severity of dementia in AD compared to plaque load, 

neurofibrillary tangles, and cholinergic disturbances as reported by numerous studies 
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(DeKosky and Scheff, 1990; Masliah et al., 1990; Terry et al., 1991; DeKosky et al., 

1996; Lue et al., 1999; McLean et al., 1999; Wang et al., 1999).  

Of soluble Aβ forms, monomers do neither affect synaptic function in vitro (Nimmrich 

et al., 2008a) nor cognitive function in vivo (Cleary et al., 2005). Moreover, they are 

rather regarded as neurotrophic instead of neurotoxic (Zou et al., 2002; Atwood et al., 

2003; Giuffrida et al., 2009). This may in part explain, why efforts aiming at lowering 

overall Aβ levels, e.g., through modulation of the γ-secretase complex, have so far 

failed to show efficacy in a phase 3 study (see p.11). Consequently, overall reduction 

of the Aβ level might not be therapeutically beneficial. As mentioned above, it is an 

ongoing matter of debate what the toxic species Aβ is. On the one hand, the size of 

aggregated Aβ oligomers may constitute its function, as toxic effects have been 

attributed e.g., to Aβ dimers (Walsh et al., 2002; Klyubin et al., 2008), trimers 

(Townsend et al., 2006), dodecamers (Lesne et al., 2006), and higher molecular 

weight aggregates (Noguchi et al., 2009). However, Aβ may also undergo 

conformational changes (Ono et al., 2009). Such changes can result into different 

aggregation pathways, one of them resulting in a stable Aβ1-42 globulomer epitope 

formed by a loop of the Aβ amino acids 20-31 (Yu et al., 2009b) which distinguishes 

this epitope from other Aβ monomers, oligomers, and fibrils (Gellermann et al., 2008) 

and induces synaptic deficits (Barghorn et al., 2005; Nimmrich et al., 2008a; 

Nimmrich et al., 2010). Therefore, current (preclinical) therapeutic approaches also 

include exclusive clearance of toxic Aβ epitopes via conformation-specific antibodies 

(Hillen et al., 2010). 

 

1.1.3.3 Ion Channel-Related Synaptic Pathophysiolog y 

Besides lowering Aβ levels, an alternative approach for future AD therapeutics based 

on the amyloid hypothesis would be to antagonize the effects of oligomeric Aβ on its 

(synaptic) targets. Numerous targets for Aβ have been proposed causing synaptic 

alterations. Here, findings about the interaction of different forms of Aβ with ion 

channels, located in the plasma membrane are being described. Finally, a stable 

oligomeric Aβ preparation is introduced, which appears to be pathogenically relevant 

and well suited for studying the effects of oligomeric Aβ on ion channels and 

functional synaptic decline.  
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In recent years it has become apparent that oligomeric forms of Aβ rather than 

monomeric or fibrillar forms are causal to synaptic failure (Walsh and Selkoe, 2007). 

For example, synaptic spine densities decrease after prolonged exposure to toxic Aβ 

(Lacor et al., 2007). Moreover, oligomeric Aβ inhibits hippocampal LTP in vitro 

(Lambert et al., 1998; Barghorn et al., 2005; Townsend et al., 2006) and in vivo 

(Walsh et al., 2002). Recently, it has been shown that Aβ dimers, obtained from 

cerebrospinal fluid samples of AD patients, inhibit LTP, enhance long-term 

depression, and reduce dendritic spine density in the hippocampus of normal rodents 

(Klyubin et al., 2008; Shankar et al., 2008b). In addition, Aβ correlates with 

impairment of learning and memory in APP rodent models (Ashe, 2001; Cleary et al., 

2005). Yet, the precise mechanism of action is still being discussed. 

Among others, some ion channels are currently being proposed as synaptic targets. 

APP overexpression in slice cultures, which will also result in elevated Aβ levels, 

exerts both presynaptic and postsynaptic effects. Impaired vesicle recycling and 

silencing of amino-3-hydroxy-5-methyl-4-isoxazol-propionacid (AMPA) currents were 

found in cultured hippocampal neurons by Ting et al. (2007). Snyder et al. (2005) 

have found an Aβ-induced depression of NMDA currents in cortical neurons, which 

was attributed to facilitated endocytosis of the receptor in vitro. Aβ-induced deficits in 

LTP in vivo were also described as being NMDA-dependent (Kim et al., 2001).  

A number of recent studies report disturbances of the presynaptic neurotransmitter 

release machinery by oligomeric Aβ. This is supported by the finding that APP is 

transported to presynaptic terminals, in the hippocampus of transgenic mice, where it 

is subsequently cleaved to Aβ (Lazarov et al., 2002). Furthermore, oligomeric Aβ 

co-localizes to axon terminals in AD patients (Kokubo et al., 2005b; Ishibashi et al., 

2006; Noguchi et al., 2009). Kelly et al. (2005) reported that Aβ oligomers decrease 

dynamin 1 levels, which play a crucial part in endocytosis of synaptic vesicles, 

possibly caused by cleavage of the protein by calpain. This may lead to a depletion 

of the readily releasable vesicle pool, which is mediated by a downregulation of the 

dynamin 1 gene or (presynaptic) NMDA-receptors (Kelly and Ferreira, 2007; Shankar 

et al., 2007; Abramov et al., 2009), possibly leading to the fatal consequences in AD.  

Furthermore, disturbed neuronal intracellular (free) calcium levels were observed in 

models of aging and AD (Disterhoft et al., 1994). Aβ was found to alter calcium 

homeostasis in vitro (Mattson et al., 1992) and changes in calcium-dependent 
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enzymes were reported in AD patients (Green et al., 2007). Intracellular calcium 

overload may be caused by several mechanisms (Yu et al., 2009a), one of them 

being interaction of soluble Aβ with presynaptic voltage-gated calcium channels 

(reviewed by Nimmrich and Ebert, 2009; Demuro et al., 2010). As introduced later, 

these channels play a crucial role in intracellular calcium influx, vesicle release, and 

presynaptic plasticity (reviewed by Catterall and Few, 2008). 

Modification of all types of high voltage-activated (HVA) calcium channels by Aβ has 

been described in several studies, also producing conflicting results. Some studies 

investigated chronic effects of Aβ in rat cortical neurons. MacManus et al. (2000) and 

Ramsden et al. (2002) described an increase in HVA calcium channel currents by full 

length Aβ1-40 which was most likely mediated via N-type and P/Q-type calcium 

channels. By contrast, Ueda et al. (1997) chronically applied truncated Aβ25-35 and 

found decreased cell viability which could be attenuated by nimodipine, an 

unselective L-type calcium channel blocker, but not by specific N-type or P/Q-type 

calcium channel blockers. Moreover, after chronic exposure to Aβ25-35 they also found 

an increase in calcium currents which was also insensitive to specific N-type or 

P/Q-type calcium channel blockers, but could be attenuated by nimodipine. This 

finding was recently confirmed by Kim and Rhim (2011) who also recorded a current 

increase from recombinant L-type calcium channels in HEK293 cells after acute 

treatment with Aβ25-35. The conflicting results that Aβ affects different channels may 

be caused by the use of different preparations. Rovira et al. (2002) found that both 

Aβ25-35 and Aβ1-40 increased calcium currents in acute hippocampal slices, however 

the former preparation via L-type whereas the latter via non-L-type calcium channels. 

Which Aβ form is most relevant for the pathophysiology of AD has not been 

elucidated. The relevance of truncated Aβ25-35 for the pathogenesis of AD has been 

suggested by the fact that this form has been found in vivo (Kaneko et al., 2001) and 

exerts multiple toxic effects in vitro as reviewed by Millucci et al. (2010). Whereas full 

length Aβ1-40 and Aβ1-42 is most abundantly found in AD patients and the alteration of 

the Aβ1-42-to-Aβ1-40 ratio is associated with early onset AD (Suzuki et al., 1994; Duff 

et al., 1996; Scheuner et al., 1996), which strongly suggests the involvement of full 

length Aβ in the pathophysiology of AD. 

Because Aβ spontaneously forms aggregates, it needs to be emphasized that the 

studies cited above used poorly defined Aβ species for studying functional effects. 
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The well known rapid aging of Aß preparations can influence their biological function: 

fresh and aged (aggregated) Aβ1-40 can exert opposite effects by increasing (N-type 

and P/Q-type) and decreasing (only N-type) calcium channel currents, respectively 

(Ramsden et al., 2002). Similarly, the effects of Aβ1-42 can vary depending on the 

aggregation and oligomerization status (Innocent et al., 2010). Aβ species in more 

sophisticated preparations of Aβ1-42, like amyloid-derived diffusible ligands, are also 

poorly defined (Lambert et al., 1998; Hepler et al., 2006). Despite this shortcoming, 

such preparations have proved useful in identification of the pathological nature of 

oligomeric Aβ (Lacor et al., 2007). As of today, many different oligomeric forms of Aβ 

have been discovered. A comprehensive overview from Benilova et al. (2012) 

illustrates that numerous oligomers were found in AD patients, extracted from natural 

sources and synthetically prepared. To further add to this complexity, polymerization 

of Aβ is complex and may occur via metastable intermediates (Lee et al., 2011). 

Therefore, many oligomeric Aβ forms are metastable in aqueous solution (Figure 1.1) 

and may exert different biological effects.  

For the purpose of studying the characteristics of pathological Aβ oligomers in a 

controlled and reproducible manner, stable and well-defined oligomer preparations 

were created including Aβ globulomer, which is formed from synthetic Aβ1-42 

(Barghorn et al., 2005). This study showed that Aβ globulomer predominantly 

consists of 12-mer Aβ1-42 oligomers. Stability of this preparation was attributed to a 

conformational switch leading to an Aβ peptide epitope with a distinct aggregation 

pathway, independent of the pathway forming fibrils (Gellermann et al., 2008; see 

upper left corner of Figure 1.1). The fact that Aβ globulomer inhibits LTP in acute 

hippocampal slices and that Aβ globulomer epitopes are found in AD patients as well 

as in APP overexpressing mouse models, support the pathological relevance of this 

preparation for AD (Barghorn et al., 2005). It has to be noted that several Aβ forms 

have been detected ex vivo (Shankar et al., 2008a; Noguchi et al., 2009) and it 

appears likely that there are several pathologically relevant oligomeric Aβ species 

which induce different toxic effects as suggested by findings on different synthetic 

preparations (reviewed by Benilova et al., 2012). Furthermore, the neurotoxic 

properties of Aβ might depend on the mixtures with other Aβ species (Kuperstein et 

al., 2010). Keeping these considerations/limitations in mind, we focused on 

investigating the effects of Aβ globulomer in order to further elucidate molecular 

mechanisms of a stable, oligomeric, and non-fibrillar Aβ preparation.  
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Figure 1.1  Scheme of different natural and synthet ic Aβ assemblies  (from Benilova et 

al., 2012). Aβ monomers, oligomers, and fibrils exist in a complex equilibrium, sensitive to 

numerous external factors. Coexistence of several oligomeric populations that do or do not 

propagate into fibrils is possible. Despite the differences in structure, stability, and 

concentration, all oligomers may contribute to Aβ toxicity. ADDL: Aβ-derived diffusible 

ligands; ASPD: amylospheroids; TG2: Transglutaminase 2. 

Aβ globulomer was described to affect the frequency of postsynaptic currents in 

primary hippocampal cell cultures pointing towards a presynaptic target (Nimmrich et 

al., 2008a). This probably led to a decrease in presynaptic vesicle release, which was 

found to be caused by a decrease in P/Q-type calcium channel currents in vitro. 

These effects could be reversed by R-roscovitine, a P/Q-type calcium current 

modulator. In a direct approach of recombinantly expressed P/Q-type calcium 

currents in Xenopus oocytes Mezler et al. (2012a) showed that the α1A subunit of the 

channel was specifically modulated by Aβ globulomer leading to an increased 

calcium influx. It was speculated that this increase might cause excitotoxic synaptic 

degeneration. The reason for the bidirectional modulation of P/Q-type calcium 

channels by Aβ globulomer has not been resolved but might be caused by several 

factors (and will also be addressed in the discussion). For example, Koch et al. 

(2004) showed that a peptidic potassium channel blocker can enhance or reduce the 

potassium current depending on the channel state. Concentration and 
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state-dependent bidirectional effects have also been observed for R-roscovitine 

(Buraei and Elmslie, 2008). EVP-6124, a α7 nicotinic acetylcholine modulator and, as 

described previously, a clinical candidate for the treatment of AD showed 

concentration-dependent bidirectional effects probably due to a partial agonistic 

mechanism (Prickaerts et al., 2012). Moreover, the L-type calcium channel agonist 

Bay K 8644 can also inhibit cardiac calcium channels, which depends on the 

surrounding voltage (Kass, 1987; Schreibmayer et al., 1992). This indicates that 

subtle differences in the interaction of a compound with a channel can lead to 

different functional effects. Therefore, differences between expression systems might 

explain the bidirectional results from the Aβ globulomer studies. In fact, Aβ oligomers 

have been described to increase and decrease the frequency of postsynaptic 

currents (Shankar et al., 2007; Abramov et al., 2009), which may be a downstream 

effect of P/Q-type calcium channel modulation. Furthermore, Aβ can both increase 

and decrease LTP (Puzzo et al., 2008).  

To conclude, the mechanism of action of oligomeric Aβ has not yet been completely 

elucidated partially because many studies used poorly defined preparations (see 

above). So in this PhD work we tested the effect of a stable Aβ oligomer preparation 

on presynaptic calcium channels. In addition to recent findings obtained in Xenopus 

oocytes (Mezler et al., 2012a) and rat primary hippocampal cell cultures (Nimmrich et 

al., 2008a), we here study the effect of oligomeric Aβ on recombinant P/Q-type and 

N-type calcium channels in a human cell line. Moreover, possible state-dependent 

effects of Aβ oligomers are being investigated. On a systemic level, we also 

assessed whether block of P/Q-type, N-type, or L-type calcium channels bears 

therapeutic potential by preventing functional deficits in an in vitro model of Aβ 

oligomer-induced synaptic degeneration described in Nimmrich et al. (2010). 

 

1.2 High Voltage-Activated Calcium Channels 

This chapter covers theoretical considerations, which might support successful drug 

development of compounds influencing high voltage-gated calcium channels. First, a 

brief introduction into the basic properties of the voltage-gated calcium channel family 

including channel structure, physiological function, and pharmacological properties is 

provided. Second, the terminology of ion channel states and transitions is listed. 
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Third, a comprehensive overview is given regarding the mechanisms and kinetics of 

inactivation in HVA calcium channels. Last, the principle of state-dependence is 

introduced, as a drug property which probably increases its tolerability in humans, 

referencing to experimental findings, properties of clinically used substances, and 

current drug development efforts. 

 

1.2.1 Structure and Pharmacological Characterizatio n 

In this subchapter voltage-gated calcium channel structure, ion selectivity, subtype 

classification and nomenclature, pharmacology, localization, and function is 

introduced according to Catterall et al. (2005) and (in part) illustrated in Figure 1.2 

(p.21). 

As determined by studies using channel mutations, ion selectivity in calcium 

channels is obtained through a selectivity filter of a cluster of four glutamate residues 

(Yang et al., 1993), which are thought to project into the pore to sort calcium from 

other ions. The relative permeability sequence has experimentally been determined 

as calcium > barium > lithium > sodium > potassium > caesium (Hess et al., 1986). 

As calcium is favored over sodium by a factor of 1000, the calcium current is hardly 

affected by the extracellular sodium concentration (Polo-Parada and Korn, 1997). In 

many electrophysiological settings calcium is replaced by barium as a charge carrier, 

which diminishes (secondary) calcium-dependent effects and therefore unmasks 

voltage-dependent effects. 

Electrophysiological recordings identified voltage-activated calcium currents with 

distinct characteristics. Depending on the voltage necessary for channel opening, 

major categorization was carried out into low-voltage and HVA channels. The former 

comprises T-type calcium currents (also denoted as the CaV3.x family), which 

mediate cardiac pacemaker activity (Satoh, 2003) and thalamic oscillations (Perez-

Reyes, 2003)  and may be important drug targets for epilepsy and neuropathic pain 

(Nelson et al., 2006). However, these channels have received little attention as a 

potential treatment strategy for AD. In part, this is due to the fact that interaction of Aβ 

or tau with these channels has not been reported. In addition, in vitro data suggests 

that long-term neuroprotection is rather mediated via HVA (L-type) than T-type 

calcium channels (Wildburger et al., 2009). HVA channels activate at strongly 
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depolarized membrane potentials and are multi-subunit complexes. The channels 

have been further subdivided depending on pore forming subunit, channel kinetics, 

pharmacology, and cellular distribution (Tsien et al., 1991) yielding L-type, N-type, 

P/Q-type and R-type calcium channels.  

Unlike all other calcium channels, L-type calcium channels (also denoted as the 

CaV1.x family) are modulated by the agonist (-)-Bay K 8644. In addition, they are 

sensitive to dihydropyridines (e.g., nimodipine), phenylalkamines (verapamil), and 

benzothiazapines (diltiazem). However, these blockers can also act on other HVA 

calcium channels (Diochot et al., 1995; Ishibashi et al., 1995; Hockerman et al., 

2000). L-type calcium channels are expressed in all excitable and many types of 

non-excitable cells and are predominately located on cell bodies and proximal 

dendrites in neuronal cells (Hell et al., 1993). Channels were also found to interact 

with intracellular calcium stores (Dolmetsch et al., 2001; Thibault et al., 2007) and 

may regulate gene expression (Murphy et al., 1991). Upon prolonged membrane 

depolarization, channel inactivation is mostly calcium (Imredy, 1994) and to a lesser 

extent voltage-dependent (Tsien et al., 1991).  

By contrast, most N-type calcium channels (CaV2.2) display significant 

voltage-dependent inactivation (Nowycky et al., 1985). They are less sensitive to 

dihydropyridines, but are inhibited by the peptidic blockers ω-conotoxin extracted 

from predatory marine snails (Olivera et al., 1987). These channels seem to be 

exclusively expressed in neuronal tissue (Plummer et al., 1989), cluster at synaptic 

areas (Jones et al., 1989), are involved in neurotransmitter release (Dutar et al., 

1989), and are physically associated with proteins of the release machinery (Leveque 

et al., 1994; Sheng et al., 1994). However, especially for many synapses in the CNS, 

neurotransmitter release is not primarily controlled by this channel type (Luebke et 

al., 1993; Potier et al., 1993).  

Neurotransmitter release is also mediated via P/Q-type calcium channels (CaV2.1), 

especially in the CNS (Mori et al., 1991; Luebke et al., 1993; Stea et al., 1994). 

These channels are less sensitive to dihydropyridines and some ω-conotoxins, but 

are specifically blocked by the funnel web spider toxin ω-agatoxin IVA and 

ω-agatoxin TK, also termed ω-agatoxin IVB (Adams et al., 1993; Teramoto et al., 

1993; Olivera et al., 1994). Initially, P-type and Q-type currents were distinguished 

due to their different pharmacological affinity to ω-agatoxin-IVA and 
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electrophysiological properties. However, differences are most likely caused by 

different splice variants of the pore forming subunit and different complements of 

auxiliary subunits (Bourinet et al., 1999; Soong et al., 2002). 

A

B

 
Figure 1.2  Voltage-gated calcium channels  (from Dolphin, 2012). (A) Voltage-gated 

calcium channel α1 subunits have 24 transmembrane α-helices, organized into four 

homologous repeats (I–IV). The fourth transmembrane segment S4 of each repeat (red) has 

approximately five positively charged amino acids and, together with S1, S2, and S3, 

comprises the voltage-sensing domain of the channel. Yellow segments represent the pore 

loops. β subunits consist of an Src homology (SH3) domain (pink circle) and a guanylate 

kinase domain (purple circle), which binds to the intracellular linker between domains I and II 

of the α1 subunit. The α2δ subunit consists of α2 (red) disulphide-bonded to the δ subunit 

(orange). The site(s) of interaction between the α1 subunit and the α2δ subunit is poorly 

understood. (B) Dendrogram based on an alignment of the membrane-spanning regions and 

pore loops of the α1 subunits. CaV1 and CaV2 comprise the HVA and CaV3 the low-voltage-

activated (LVA) channels. Original names (blue), CaV nomenclature (red) and gene names 

(green) of the α1 subunits are given.  
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Even after application of dihydropyridines, ω-conotoxins, and ω-agatoxins a small 

residual HVA R-type calcium current (CaV2.3) remains (Zhang et al., 1993). Of the all 

HVA calcium currents the R-type has been least studied. Results from transgenic 

mice suggest that rather a family of channels than a single channel mediates this 

current (Wilson et al., 2000). Dietrich et al. (2003) reported that R-type calcium 

currents contribute to LTP induction in hippocampal mossy fibers but not to basal 

transmission or short-term plasticity, which suggests that these channels are 

remotely localized from the release machinery. 

HVA calcium channels are associated with the auxiliary β, α2δ (see Figure 1.2, p.21), 

and in some cases the γ subunit which modulate channel function. The β subunit 

(reviewed by Buraei and Yang, 2010) enhances expression of the HVA pore forming 

α1 subunits by promoting channel insertion into the membrane. The β subunit lacks 

transmembrane segments and binds to the intracellular I-II loop of the α1 protein. 

Four different β subunits have been described, which are encoded by distinct genes. 

Due to alternative splicing in total 15 different β subunit forms have been described; 

the β1b subunit was studied in this PhD thesis. β subunits also shift voltage-

dependence of activation and inactivation as well as channel kinetics (reviewed by 

Buraei and Yang, 2010). For example, the rate of voltage-dependent inactivation is 

increased for β1 and β3, whereas it is often decreased for the β2 subunit.  

Moreover, there are four different α2δ extracellularly located subunits, named α2δ1 

(which was studied in this PhD work), α2δ2, α2δ3, and α2δ4. (reviewed by Dolphin, 

2012). They consist out of two disulfide-linked proteins and might be anchored to the 

membrane by a glycosylphosphatidylinositol anchor (Davies et al., 2010). Recent 

studies by (Kadurin et al., 2012), however, suggest that this anchor is not 

indispensable for the function of α2δ. The main role of this subunit is to increase 

calcium currents by promoting trafficking of α1 to the plasma membrane and 

increasing its turnover time but can also modulate channel function depending on the 

type of the co-expressed α1 subunit. Moreover, α2δ subunits modulate presynaptic 

function by increasing the density of synaptic voltage-gated calcium channels and the 

neurotransmitter release probability (Hoppa et al., 2012). In line with this, the drugs 

gabapentin and pregabalin, used as antiepileptic agents, are supposed to interact 

with α2δ thereby reducing vesicle release and neuronal excitability (Fink et al., 2002; 

Taylor et al., 2007; Bauer et al., 2009). 
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In addition, eight different γ subunit genes have been identified. They often induce a 

slight hyperpolarizing and depolarizing effect of the voltage-dependence of 

inactivation and activation, respectively, thereby reducing calcium currents to some 

extent (Buraei and Yang, 2010). However, unlike the other subunits, the γ subunit is 

not co-expressed in all calcium channel complexes (especially in the CNS), 

predominantly associated with L-type calcium channels (Yang et al., 2011), and 

involved in other functions like regulation of trafficking, localization, and biophysical 

properties of other ionotropic glutamate receptors (reviewed by Milstein and Nicoll, 

2008). 

 

1.2.2 Terminology of Channel States and Transitions  

Characterization of e.g., inactivation kinetics is one prerequisite for the development 

of state-dependent HVA calcium channel blockers. Here, the nomenclature used to 

characterize transitions of channel states, like inactivation induced by conformational 

switches (Stotz et al., 2000; Bezanilla, 2002), is being briefly introduced. 

Ion channels can exist in an open (conducting) state or in non-conducting closed or 

inactivated states. The difference between the non-conducting closed and inactivated 

states is that for the latter the channel is unresponsive to an activating stimulus, 

comparable to the reduced response of a desensitized receptor. The transition from 

closed to open is denoted as activation, open to closed is called deactivation, open or 

closed to inactivated is called open and closed-state inactivation, respectively, and 

inactivated to open or closed is called recovery from inactivation (Figure 1.3). 

Figure 1.3  Nomenclature of channel state 

transitions.  HVA calcium channels can be 

present in the non-conducting closed (C) and 

inactivated (I) states or in the conducting open 

(O) state. Kinetics of each state transition depend 

on the surrounding membrane potential. For P/Q-

type and N-type calcium channels recovery from 

inactivation occurs more rapidly to closed (solid 

lines) than to open (dotted lines) states.  
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Ion channels can exist in an open (conducting) state or in non-conducting closed or 

inactivated states. The difference between the non-conducting closed and inactivated 

states is that for the latter the channel is unresponsive to an activating stimulus, 

comparable to the reduced response of a desensitized receptor. The transition from 

closed to open is denoted as activation, open to closed is called deactivation, open or 

closed to inactivated is called open and closed-state inactivation, respectively, and 

inactivated to open or closed is called recovery from inactivation (Figure 1.3). 

For a subgroup of calcium channels, denoted as voltage-dependent, the probability 

of being in a certain state depends on the voltage across the cell membrane. At the 

neuronal resting potential, the HVA calcium channels are mostly present in a closed 

state. The likelihood for activation increases upon membrane depolarization like 

action potential arrival. At the same time the probability of channel inactivation 

increases, which either causes an active decrease in ion conductivity (by open-state 

inactivation) or a decreased availability for subsequent channel opening (by closed-

state inactivation; Patil et al., 1998). For prolonged membrane depolarizations only 

residual P/Q-type and N-type calcium channel currents, if at all, can be detected 

(Hans et al., 1999). This implies that under depolarized conditions recovery from 

inactivation is much slower than inactivation. Thus, for P/Q-type and N-type calcium 

channels recovery from inactivated states predominantly occurs to closed states 

during hyperpolarized potentials. 

 

1.2.3 Function and Mechanisms of Inactivation 

An effective state-dependent screening protocol should induce stable inactivation. 

Moreover, as certain pathologies may induce inactivation in different ways as 

mentioned in the discussion, it might be beneficial for screening protocols to (some 

extent) mimic the disease-like state of interest. To achieve this, thorough 

understanding of physiological HVA calcium channel inactivation is a prerequisite. 

Thus, a comprehensive overview is provided regarding the function, mechanisms, 

and kinetics of inactivation in HVA calcium channels.  

As calcium channel activation occurs at a significantly faster rate than inactivation, 

membrane depolarization induces channel opening, thereby increasing intracellular 

calcium concentration. Calcium acts, for example, as a cytoplasmic messenger 
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activating signaling pathways leading to gene transcription (Dolmetsch et al., 2001) 

or by triggering neurotransmitter release (Wheeler et al., 1994; Sutton et al., 1999). 

At the same time calcium channel inactivation prevents prolonged and excessive rise 

in intracellular calcium concentrations, which may otherwise lead to detrimental 

cytotoxic effects like apoptosis (Choi, 1988; Orrenius et al., 1989; Cerella et al., 

2010). As a functional example, inactivation may contribute to the short-term 

depression of neurosecretion (Branchaw et al., 1997; Forsythe et al., 1998). Some 

naturally occurring mutations of the P/Q-type calcium channel were found in humans 

that modulate its inactivation properties, potentially contributing to respective clinical 

symptoms such as migraine and ataxia (Matsuyama et al., 1999; Kraus et al., 2000; 

Wappl et al., 2002). Inappropriate calcium channel inactivation may thus lead to CNS 

malfunction.  

Channel inactivation can be both calcium and voltage-dependent. Calcium 

dependent modulation is most strongly observed for L-type calcium channels 

(Peterson et al., 1999; Zuhlke et al., 1999), but is also present for presynaptic 

P/Q-type calcium channels (Lee et al., 1999). It is induced by a local rise in 

intracellular calcium concentration and is mediated by the calcium-sensing protein 

calmodulin which binds directly to multiple sequences of the α1 calcium channel 

subunit. This may induce conformational changes of the channel, which modify the 

probability of the channel to be in a conducting or non-conducting state. Calcium 

dependent inactivation and facilitation occurs within several milliseconds, and is 

thereby able to contribute to synaptic short-term plasticity (Forsythe et al., 1998). For 

presynaptic P/Q-type calcium channels, calcium-dependent modulation is absent if 

barium replaces calcium as a charge carrier or after intracellular application of 

BAPTA, a fast calcium chelator (Borst and Sakmann, 1998; Cuttle et al., 1998). This 

type of inactivation is also less pronounced with coexpression of the β1b subunit, 

used in this PhD study, than for other β subunits (Lee et al., 2000). Due to its 

mechanism of action, calcium-dependent inactivation mostly induces open-state 

rather than closed-state inactivation, which can take place without previous calcium 

influx.  

By contrast, voltage-dependent inactivation can also occur during depolarizations 

which are sub-threshold to channel opening (Patil et al., 1998). The onset of this type 

of inactivation can happen at a fast rate (in the range of ms to few s) and at a slow 
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rate (several s to min). Similar to the ball and chain model applicable to sodium and 

potassium channels (Armstrong and Bezanilla, 1973; Hoshi et al., 1990), fast 

voltage-dependent inactivation of calcium channels is induced by an intracellular 

residue plunging the pore of the channel, which was denoted as a hinged lid 

mechanism (Figure 1.4; Stotz et al., 2000).  

 
Figure 1.4  Hinged-lid model of fast voltage-depend ent inactivation of HVA calcium 

channels  (from Zamponi, 2005).(A) Possible model for calcium channel inactivation, which 

involves occlusion of the channel pore from the intracellular side by parts of the domain I-II 

linker of the α subunit. (B) Inhibition of inactivation was found to be mediated by: (a) the β2a 

subunit; (b) interaction of β subunits with the N-terminus and/or C-terminus indirectly 

affecting the I-II linker function; (c) In the absence of β subunits, interactions between the I-II 

and II-IV linker.  

Unlike for sodium and potassium channels, the mechanism of fast inactivation for 

calcium channels is hypothesized to underlie the intracellular domain I-II linker 

interacting with the S6 transmembrane regions (Stotz and Zamponi, 2001) thereby 

blocking ion permeability. This interaction can be modulated by other α1 cytoplasmic 

loops. For example, intramolecular interaction of the domain III-IV linker with the 

domain I-II linker was found to slow down inactivation (Geib et al., 2002). In addition, 
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fast inactivation is also strongly modulated by the auxiliary subunits, especially the 

β subunit (Varadi et al., 1991). For example, the β1b subunit, which was investigated 

in this PhD work, tends to increase the rate of inactivation (Isom et al., 1994; Qin et 

al., 1998). Mechanistically, β subunits may interact with the N-terminus or C-terminus 

of the α1 subunit, which in turn may influence the inactivation inducing domain I-II 

linker (Soldatov, 1998; Stephens et al., 2000; Sandoz et al., 2001). The α2δ subunits 

may also regulate inactivation (Klugbauer et al., 1999; Davies et al., 2007). When 

coexpressed with the β1b subunit, as in this PhD study, α2δ1 was found to significantly 

facilitate inactivation N-type calcium channel currents in Xenopus Oocytes (Canti et 

al., 2000).  

In contrast to fast voltage-dependent inactivation, slow inactivation has been 

described and understood in much less detail. A couple of studies have described 

the slow inactivation kinetics in detail. Mostly the inactivation of channels containing 

the β2 subunit is dominated by slow kinetics, but also channels with other β isoforms 

undergo slow inactivation. For example, in a study in Xenopus oocytes by Sokolov et 

al. (2000), on-rates of slow inactivation were calculated to be about a minute, but 

also depended on the auxiliary β subunit. By contrast, recovery from slow inactivation 

seemed to be independent of the length of the conditioning prepulse and the 

β subunit. However, the rate of recovery is slowed for more depolarized membrane 

holding potentials and inactivation was fully reversible at a holding potential of 

-80 mV or below, but not at -60 mV. Due to further point mutation studies, this report 

also suggested that slow inactivation can occur from both open and fast inactivated 

states (the relation to closed-state inactivation was not elucidated). A complete 

mechanism of action for slow inactivation has not yet been proposed, but might be 

similar to the ones of fast inactivation, since also for the slow inactivation point 

mutations within the cytoplasmic end of the S6 transmembrane regions can 

selectively abolish slow inactivation of L-type calcium channels (Shi and Soldatov, 

2002). Moreover, this study found that inhibition of one type of inactivation facilitates 

the other type, so fast and slow inactivation might actually be linked. 

Functionally, slow inactivation may have implications for synaptic short-term 

plasticity. For example, after strong physiological channel activation (after trains of 

action potentials) or pathological membrane depolarization including hypoxic or 
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ischemic events (Kristian and Siesjö, 1998), more channels are driven into this type 

of slowly recovering inactivation thereby preventing calcium overload.  

The membrane potential in neurons is most of the time too low for opening of HVA 

calcium channels. Hence, especially for these channels closed-state inactivation that 

regulates the availability of channels upon action potential arrival might be an 

important mechanism modulating synaptic transmission. In addition, since 

voltage-dependent channel inactivation, unlike calcium-dependent inactivation, can 

induce both open- as well as closed-state inactivation, it is currently perceived as the 

more relevant type of inactivation within drug development targeting calcium 

channels in the CNS (Winquist et al., 2005). 

 

1.3 Drug Discovery Targeting Ion Channels 

In the following, the general potential as well as possible pitfalls of ion channels as 

potential drug targets are being briefly described. Subsequently, current technical 

advances in patch clamp technology are presented which may overcome a key 

technical bottleneck in rational drug discovery associated with the limited throughput 

of manual electrophysiology. Thereafter, the potential of state-dependent target 

modulation to induce functional selectivity (Urban et al., 2007; Kaczorowski et al., 

2008) and to increase the tolerability of future drugs is discussed and exemplified by 

current N-type calcium channel drug development efforts. In the last subsection, the 

involvement of P/Q-type calcium channels in other diseases beyond their role for AD 

(see section 1.1.3.3 p. 13ff), is shortly reviewed along with unselective P/Q-type 

modulators, which are already in clinical use. Finally, an outlook is given how (more) 

selective and state-dependent P/Q-type calcium channel modulators might be 

identified. 

 

1.3.1 Ion Channels as Drug Targets 

Only about 22% of proteins in the human genome are located on the cell surface, but 

they make up 60% of the current drug targets (Overington et al., 2006). Many ion 

channels are located in the plasma membrane and are typically complex, multimeric, 

transmembrane proteins that consist of separate pore-forming and accessory 
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subunits (Ashcroft, 2006). They allow passive ion passage along the electrochemical 

gradient across cell membranes and exhibit a high degree of structural diversity. 

They comprise only around 1.3% of the human genome (Venter et al., 2001), but 

constitute about 13.9% of all drugs approved by regulatory authorities in the US 

being the second-most frequent targeted gene-family group after G-protein coupled 

receptors indicating that these channels are attractive drug targets (Overington et al., 

2006).  

Despite their validation as potential drug targets, only a small fraction out of 406 ion 

channels found in the human genome is so far targeted by approved drugs (Venter et 

al., 2001; Imming et al., 2006). The lack of exploitation of this target class is 

complicated by the inability to assess target occupancy in clinical trials, since 

adequate biomarkers are missing, which makes the interpretation of negative clinical 

results difficult (Kaczorowski et al., 2008). Moreover, the modulation of ion channels 

bears the risk of inducing significant side effects, as they are expressed in many cell 

types and play a major role in cellular ion homeostasis (Farrugia, 2008).  

The fact that up to now low molecular weight (LMW) compounds often do not exhibit 

sufficient selectivity between ion channel subtypes is obviously unfavorable in terms 

of drug tolerability (see for instance (reviewed by Yamamoto and Takahara, 2009). In 

contrast, for some HVA calcium channels selective peptide blockers have been 

found, as noted in section 1.2.1 (p.19ff). One of them, conotoxin MVIIA (ziconotide), 

an N-type calcium channel-specific blocker, was successfully approved for treatment 

of neuropathic pain (Schmidtko et al., 2010). However, other peptidic channel toxins 

(e.g., ω-agatoxin IVA and IVB) are not suited for clinical development. Reasons for 

this may include insufficient brain availability (no blood brain barrier penetration), lack 

of bioavailability and irreversible channel blockage (Adams et al., 1993). Although 

modifications of peptide toxins have led to somewhat improved biophysical properties 

(Craik and Adams, 2007), these pitfalls have not yet been overcome. Besides 

improving drug tolerability by molecular selectivity (towards a specific ion channel), 

current drug discovery approaches also focus on inducing functional selectivity by 

identifying state-dependent LMW molecules, as described in section 1.3.3 (p.32ff). 
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1.3.2 High Throughput Methods 

In rational drug discovery, identification and validation of an appropriate (e.g., ion 

channel) target is followed by large-scale compound screening, identification of 

(potential) modulators, and subsequent optimization of one or several promising 

chemical scaffolds (also called lead structures/compounds). Throughout this process 

many compounds are created, so that biological activity needs to be assessed in a 

high-throughput manner. Here, a brief overview is given about several existing 

methods and their respective shortcomings in supporting drug development, which 

may partially be overcome by automated patch clamp techniques. 

Historically, drug development has been hampered by technical constraints, namely 

the lack of adequate high-throughput methods for identification and validation of 

novel compounds (Clare, 2010). For functional channel and compound 

characterization, manual electrophysiology has served as the gold-standard over 

several decades. This is because of its direct readout of ion channel function via 

measurement of the current and voltage across the membrane, excellent temporal 

resolution to resolve fast channel kinetics and high sensitivity due to an exceptional 

signal-to-noise ratio. However, manual patch-clamp experiments have a low 

throughput and are labor-intensive, posing a significant bottleneck for ion channel 

drug development. To this end, there are higher throughput assays available which 

have been incorporated into drug discovery programs. Among these are methods 

using fluorescent dyes which are sensitive to the calcium-level (Benjamin et al., 

2006) or membrane-potential (Epps et al., 1994; Holevinsky et al., 1994). 

Furthermore, assays have been established which are fluorescence resonance 

energy transfer-based (Falconer et al., 2002) or measure ion fluxes (Terstappen, 

1999). Unfortunately, these methods lack fast temporal control of voltage, necessary 

for the precise control of voltage-gated ion channels. In addition, ion-channel activity 

is only indirectly measured making these assays susceptible to false positives (Tang 

et al., 2001). Direct measurements of ion fluxes have also been developed 

(Terstappen, 1999) but lack sufficient sensitivity (Rezazadeh et al., 2004). The 

limitations of the high throughput assays decrease the correlation of such data with 

data obtained from more direct electrophysiological methods (reviewed by Dunlop et 

al., 2008; Terstappen et al., 2010).  
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During the last decade, higher throughput automated, planar patch clamp systems 

became commercially available which attempt to bridge this gap. The development of 

the planar patch clamp technique dates back to early methodological approaches 

which replaced the patch pipette by a planar surface perforated with a hole mimicking 

the pipette opening (Krishtal and Pidoplichko, 1975). As reviewed in Behrends and 

Fertig (2007), this principle has not been further exploited due to technical difficulties 

in the manufacturing process until solid-state microstructuring technologies became 

more accessible in the late 1990s. In addition, ion channels have by then received 

more attention also as a target potentially causing adverse effects, since block of the 

human ether-à-go-go channel became associated with long QT syndrome which 

increases the risk for torsades de pointes, a life-threatening ventricular arrhythmia 

(Curran et al., 1995; Sanguinetti et al., 1995). As a consequence, the planar clamp 

patch technique has been refined and is nowadays utilized in several commercially 

available automated patch clamp systems comprising chips either based on polymer 

substrates (e.g., IonWorks Barracuda from Molecular Devices), silicon (e.g., Qpatch 

from Sophion, Ballerup, Denmark), or glass microstructuring (e.g., Patchliner from 

Nanion GmbH, see p.47). In manual electrophysiology electrical access to the cell is 

obtained through a micropipette, which must first be carefully manipulated by a 

skilled experimenter into direct vicinity of an (usually) adherent cell (Hamill et al., 

1981). By contrast, for automated electrophysiology suspended cells are positioned 

on a perforated planar surface by suction for subsequent gain of electrical access 

(Kiss et al., 2003). As this procedure does not require any interaction with the 

experimenter, several wells can be run in parallel. This, together with shorter 

preparation times between experiments by omitting fabrication, filling, and positioning 

of micropipettes, significantly increases the throughput compared to the manual 

patch clamp technique.  

Today, several automated patch clamp systems with different recording properties 

are available, but generally data quality tends to be higher (due to the direct 

functional recording of ion channels) and throughput lower compared to the 

alternative methods introduced above. Therefore, these different methodological 

approaches are somewhat complementary to each other and will most likely be used 

in parallel for current and future drug development programs (e.g., Mezler et al., 

2012b). Here, we used the Patchliner Platform for automated patch clamping (Farre 

et al., 2007), which enables medium-throughput (by simultaneous recordings from up 
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to four cells) and comprises a borosilicate chip surface enabling giga-seal formation. 

This is a prerequisite for precisely controlling the voltage of the patched cell, which is 

especially important for accurate measurements of voltage-gated channels. 

 

1.3.3 State-Dependent Channel Modulation 

Here, first the concept of tonic and non-tonic, namely use-, state-, and voltage-

dependent, channel inhibition is briefly described. Subsequently, the relevance of 

non-tonic channel block as means of inducing functional selectivity to potentially 

lower adverse side effects is introduced. Then this is discussed on the example of 

ongoing drug development activities to identify use- and state-dependent N-type 

calcium channel blockers for the treatment of neuropathic pain. 

On the one hand, pharmacological inhibition of ion channels can be tonic, i.e. 

irrespective of the channel conformation or factors like membrane potential. On the 

other hand, channels can also be modulated voltage-, state-, and use-dependently, 

so that the affinity for the channel depends on the surrounding conditions. By 

definition, the affinity of a voltage-dependent modulator to its target is sensitive to the 

surrounding membrane potential. A state-dependent modulator has differential 

affinities for certain channel states e.g., inactivated states, which can be 

experimentally assessed by constant (holding potential) or transient (prepulse) 

depolarization of the membrane potential prior to channel activation. A 

use-dependent modulator has different affinities due to several (rapid) transitions 

between states, which can be assessed by repetitive, high frequency channel 

stimulation. So in theory, a use-dependent blocker is also state-dependent, which in 

turn (for voltage-gated calcium channels) implies voltage-dependence, but not vice 

versa. 

Increased potency for inactivated states of ion channels is currently believed to aid 

the therapeutic potential of ion channel blockers by widening the therapeutic window 

through targeting overactive or pathologically depolarized cells while leaving 

physiological activity mostly unaltered (Winquist et al., 2005; Kaczorowski et al., 

2008). For example, tetrodotoxin (TTX) a highly potent marine biotoxin inhibits open 

and closed states from most sodium channels in the low nM range (Boccaccio et al., 

1998), thereby tonically suppressing action potential propagation, potentially leading 



1.3  Drug Discovery Targeting Ion Channels 

33 

to pulmonary arrest (Chang et al., 1990). Life-threatening poisoning occurs at plasma 

concentrations which are above the IC50 of TTX to sodium channels, but slight to 

moderate toxicity, including paralysis of extremities, is already observed at 

concentrations similar or even below the IC50 values (Zimmer, 2010). By contrast, 

several clinically used sodium channel blockers were found to be state-dependent. 

For example, lamotrigine, which is effectively used for the treatment of epilepsy, was 

found to stabilize the inactivated state of the sodium channel thereby suppressing 

high frequency repetitive firing rates with little or no effects on basal transmission (Xie 

et al., 1995; Kuo and Lu, 1997). These studies estimated the affinity to inactivated 

sodium channels to be 12 µM and 7 µM, respectively. This is in line with a study of 

Hirsch et al. (2004) stating that that plasma concentrations of about 20 µM are often 

efficacious in epilepsy patients, a concentration well tolerated by most patients. 

These findings support the hypothesis that functional selectivity through 

state-dependent channel block might decrease adverse effects. 

Block of NMDA receptors by memantine was also found to be voltage- and weakly 

use-dependent (Parsons et al., 1993; Bresink et al., 1996). This along with other 

properties like NMDA-subunit specificity and fast (un)binding kinetics may underlie 

the improved tolerability of memantine compared to other NMDA antagonists 

(reviewed by Rogawski and Wenk, 2003; Lipton, 2006). It needs to be noted, that the 

contribution of each property (e.g., voltage- vs. use-dependence) to the improved 

tolerability has not been described. 

Several dihydropyridine HVA L-type calcium channel blockers like verapamil, which 

is used against hypertension and cardiac arrhythmias, have been found to be 

voltage- and state-dependent as well, preferentially binding to inactivated states 

(Nawrath and Wegener, 1997). Notably, this effect was described in retrospective to 

its approval. Another example is the L-type calcium channel antagonist nitrendipine, 

which is also used to treat hypertension, and was found to preferentially bind to and 

block channels during voltage-dependent inactivation (Bean, 1984). Furthermore, 

another dihydropyridine, nimodipine, which is a weakly selective L-type blocker 

clinically used to treat hypertension (Diochot et al., 1995; Furukawa et al., 2003) also 

preferentially binds to inactivated channels. Interestingly, nimodipine exhibited 

antidementive effects in several short-term clinical trials while being well tolerated 

(reviewed by Birks and López-Arrieta, 2002). As many clinically used L-type calcium 
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channel blockers are voltage-dependent (Bean, 1984; Sanguinetti et al., 1986; Kamp 

et al., 1989; Hughes and Wijetunge, 1993; Uneyama et al., 1999) it is tempting to 

speculate that this property contributes to these drugs’ favorable therapeutic window. 

As a consequence, current ion channel drug development efforts focus on the 

discovery of new state-dependent molecules. For example, there is ongoing activity 

to develop N-type calcium channel blockers against neuropathic pain. The N-type 

specific compound conotoxin MVIIA (marketed as Prialt) blocks this channel 

regardless of the channel state, given that there is a physiological membrane 

potential (Stocker et al., 1997; Feng et al., 2003). As mentioned in the previous 

section, it is used for the treatment of severe chronic pain not responding to opioid 

treatment (Miljanich, 2004; Schmidtko et al., 2010). However, despite its efficacy, the 

clinical benefit of Prialt is greatly limited by two factors. First, due to severe 

orthostatic hypotension (McGuire et al., 1997) intrathecal instead of systemic 

application is mandatory. Second, Prialt has a narrow therapeutic window, which is 

defined as the ratio of the dose inducing toxicity compared to the efficacious dose, of 

only a factor of 1.5-2.1 in animals and humans (Brose et al., 1997; Mathur, 2000; 

Staats et al., 2004). Side effects include severe, but reversible CNS impairment, 

including hallucinations, memory impairments, and speech disorder causing 

significant drop-out rates of 49% in clinical long-term study (Wallace et al., 2008). 

The mechanisms of action for these adverse effects are not well understood. 

However, several factors, like site-specific frequency dependence of neurotransmitter 

release and differential probability of N-type calcium channels to inactivate, suggest 

that state-dependent compound properties might ameliorate at least some of the 

adverse effects (reviewed by Snutch, 2005; Winquist et al., 2005). Abbadie et al. 

(2010) reported state-dependent N-type calcium channel block by Trox-1, a novel 

calcium channel blocker in development for treatment of neuropathic pain, which 

supports this hypothesis. CNS and cardiovascular side effects appeared at 20- to 

40-fold higher plasma concentrations compared to the required efficacious plasma 

concentration for reversing inflammatory-induced hyperalgesia and allodynia induced 

by nerve injury, underscoring the potential of this state-dependent blocker for 

systemic tolerability. However, it has to be noted that increasing state-dependent 

properties to enhance tolerability is only a hypothesis which awaits confirmation from 

clinical trials.  
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1.3.4 P/Q-type Calcium Channels as Potential Drug T arget 

In the following, the involvement of P/Q-type calcium channels in channelopathies is 

briefly reviewed, which underlines the medical need for development of P/Q-type 

calcium channel modulators. However, up to now no P/Q-type selective calcium 

channel blocker is in clinical use. Therefore, possible approaches are mentioned 

which might aid the development of (selective) compounds.  

Mutations in CACNA1A, the α1A subunit encoding gene, are associated with three 

inherited human diseases: familiar hemiplegic migraine, episodic ataxia type 2 (EA2), 

and autosomal dominant spinocerebellar ataxia type 6 (reviewed by Pietrobon, 2010; 

Rajakulendran et al., 2012). Most mutations found in patients with familiar hemiplegic 

migraine, an autosomal-dominant disorder, lead to changes in the primary structure 

of the pore-forming α1A subunit. In mice these changes facilitate channel function and 

lower the threshold for cortical spreading depression (van den Maagdenberg et al., 

2004; Tottene et al., 2009), which is considered a pathophysiologcial correlate of 

migraine aura in humans (Hadjikhani et al., 2001). Specific block of P/Q-type calcium 

channels might have therapeutic potential in treatment of migraine as this can 

prevent spreading depression (Kunkler and Kraig, 2004; Tottene et al., 2011). On the 

contrary, several channel mutations have been reported causing impaired P/Q-type 

calcium channel function. Some of them lead to a higher susceptibility for absence 

epilepsy in mice (Fletcher et al., 1996; Ophoff et al., 1998) and humans (Jouvenceau 

et al., 2001). In line with this, P/Q-type calcium channel block was described to inhibit 

seizure activity in mice (Jackson and Scheideler, 1996). Other channel mutations, 

which can lead to complete loss of channel function, were identified in episodic ataxia 

type 2 patients (Guida et al., 2001). Moreover, expansion of the polyglutamine repeat 

at the C-terminus was found to facilitate P/Q-type calcium channel inactivation in 

recombinant channels (Toru et al., 2000) and was described to lead to degeneration 

of Purkinje cells and spinocerebellar ataxia 6 in humans (Zhuchenko et al., 1997). As 

there are no or only limited medications available for treatment of these disorders 

and P/Q-type calcium channel might also be involved in AD pathology (see section 

1.1.3.3, p.13), the development of P/Q-type calcium channel agonists and 

antagonists seems promising.  

The generation of specific P/Q-type calcium channel blockers, however, is obviously 

challenging: Only two selective blockers have been identified, ω-agatoxin IVA and 
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IVB, but this class of toxins does not meet the requirements for clinical development 

(see section 1.3.1, p.28ff). Nevertheless, development of peptidomimetics with an 

improved pharmacokinetic profile might overcome these issues, which was at least in 

part achieved for N-type calcium channel peptides (Menzler et al., 2000; Baell et al., 

2004). An alternatively strategy might be to screen LMW compound libraries using a 

selective ω-agatoxin-based radioligand displacement assay (Nimmrich and Gross, 

2012).  

This review also provides a comprehensive overview of drugs, which, to some extent, 

also block P/Q-type calcium channels, but are believed to exert their main 

therapeutic action via other targets. Examples of these drugs are: calcium channel 

antagonists and mood stabilizers (e.g., nimodipine; Diochot et al., 1995; Pazzaglia et 

al., 1998), antipsychotics (e.g., diphenylbutylpiperidines; Sah and Bean, 1994), 

anticonvulsants (e.g., gabapentin; Gee et al., 1996), anesthetics (e.g., isofluran; 

Study, 1994), and herbal medications (e.g., α-eudesmol; Horak et al., 2009). 

Development of novel more selective channel blockers with fewer side effects might 

benefit from an understanding from the precise off-target profile of these unselective 

drugs. 

As the P/Q-type calcium channel might be involved in AD and other disorders, this 

PhD work supported drug discovery efforts aimed at identifying novel P/Q-type 

calcium channel blockers (Mezler et al., 2012b). For this validation of a high 

throughput assay was supported via electrophysiological methods. In the light of the 

unselective profile of ion channel blockers in the clinic (see above) and results from 

previous and current drug discovery efforts on calcium channel blockers (Yamamoto 

and Takahara, 2009) we could not expect to identify compounds with calcium 

channel subtype selectivity. Therefore we focused on identification of functional 

selectivity (here, i.e. state-dependence). This PhD work designed an automated 

electrophysiological secondary screen to identify novel compounds which block 

inactivated P/Q-type calcium channels. Finally, state-dependent effects of two novel 

LMW compounds were quantified by manual electrophysiology.  
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Aims of the Study 

As reviewed in the introduction, AD is accompanied by increased brain levels of 

soluble Aβ, and the toxic effects of some Aß species may ultimately underlie the 

cognitive deficits observed in patients (Cleary et al., 2005). Aβ oligomers have been 

shown to impair hippocampal synaptic function (Cullen et al., 1997; Selkoe, 2002; 

Nimmrich et al., 2010), induce presynaptic deficits (reviewed by Nimmrich and Ebert, 

2009), and modulate presynaptic HVA calcium channels (Bobich et al., 2004; 

Nimmrich et al., 2008a). In drug development state-dependency of ion channel 

modulators is currently believed to improve their tolerability for clinical use. Thus, 

targeting presynaptic calcium channels with state-dependent blockers may be 

considered as a promising therapeutic strategy for AD.  

The overarching goals of the study were to further elucidate the effect of oligomeric 

Aβ on HVA calcium channels, aid the development of novel LMW calcium channel 

blockers, and to evaluate the therapeutic potential of state-dependent calcium 

channel block in a hippocampal in vitro model of AD. Specifically, this study 

comprised the following objectives: 

1. Characterize calcium channel-dependent effects of oligomeric Aβ on synaptic 

transmission. 

2. Elucidate effects of oligomeric Aβ on calcium channel function. 

3. Identify novel calcium channel blockers and characterize state-dependent 

properties. 

4. Test whether state-dependent calcium channel block reverses oligomeric Aβ-

induced synaptic deficits. 
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2 Materials and Methods 

2.1 Chemicals and Biologics 

The calcium channel reference compounds ω-agatoxin IVA (Alomone Labs, 

Jerusalem, Israel) and ω-conotoxin MVIIA (Sigma, St. Louis, MO, USA) were 

dissolved at 0.5 mM and 0.1 mM in water, respectively. Roscovitine (Sigma, St. 

Louis, MO, USA) was dissolved in dimethylsulfoxide (DMSO) at 10 mM. Stock 

solutions were immediately stored at -20°C until fu rther use. The polyclonal P/Q-type 

calcium channel antibody (sc-16228; Santa Cruz Biotechnology, Inc., Santa Cruz, 

CA, USA) was dialyzed (HiTrap Desalting Column, GE Healthcare Europe GmbH, 

Freiburg, Germany) against phosphate-buffered saline (PBS; Invitrogen, Darmstadt, 

Germany) and stored at 160 µg/mL in water at 4°C. 

Aβ globulomer was prepared (by the lab of Dr. Stefan Barghorn) as described in 

Barghorn et al. (2005). Synthetic Aβ1-42 peptide was dissolved in HFIP according to 

Stine et al. (2003), which was subsequently evaporated in a vacuum concentrator 

(SA-VC-300H; H. Saur Laborbedarf, Reutlingen, Germany). The peptide was then 

resuspended in DMSO and PBS containing 0.2% SDS. After 6 h incubation at 37°C 

the sample was further diluted with three volumes of water, incubated for 18 h at 

37°C and centrifuged at 3,000 g for 20 min, concent rated by ultrafiltration (30 kDa 

cut-off; Millipore, Billerica, MA, USA) and dialyzed against 0.25x PBS-buffer. This 

was centrifuged at 10,000 g for 10 min and the supernatant containing the 38/48-kDa 

Aβ oligomer, termed Aβ globulomer, aliquoted, and immediately stored at -80°C. The 

ultrafiltrate (5 kDa cut off; Millipore, Billerica, MA, USA) of Aβ globulomer, centrifuged 

at 3,000 g for 1 h, was used as a control for experiments. Synthetic Aβ1-42 peptide 

(H-1368; Bachem, Bubendorf, Switzerland) was dissolved in the respective solutions 

used for patch clamp experiments immediately prior to experiments. The molecular 

mass of the Aβ preparations was characterized through SDS-polyacrylamide gel 

electrophoresis (PAGE) using NuPAGE® 4-12% Bis-Tris gels and NuPAGE® MES 

SDS running buffers (Invitrogen, Darmstadt, Germany). Aβ globulomer 

concentrations are given with respect to the 12-mer complex, e.g., 83 nM of 

Aβ globulomer corresponds to a total concentration of 1 µM of monomeric Aβ1-42.  
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2.2 Generation of Cell Lines and High Throughput Sc reening 

In the following, the creation of HEK293 (human embryonic kidney 293) cell lines is 

described, which stably express the P/Q-type and N-type calcium channel. HEK293 

cells were initially derived from transformation of cultured human embryonic kidney 

cells with the human adenovirus type 5 (Graham et al., 1977; Louis et al., 1997) and, 

as in this study, have been widely used as a simple heterologous expression 

system. Interestingly, neuron-specific protein expression was found in HEK293 cells 

suggesting they might originate from a neuronal cell lineage (Shaw et al., 2002). 

Stable cell line generation was carried out as described in Mezler et al. (2012b). For 

this, the respective calcium channel gene constructs were cloned into two 

expression vectors, which are plasmids used to introduce genes into cells. One 

vector carries the gene encoding the pore forming subunit of the respective calcium 

channel and controls its transcription level via a tetracycline sensitive promoter. 

Thus, functional calcium channels can only be expressed in tetracycline-induced 

cells. The other vector induces constitutive transcription of the genes encoding the 

calcium channel subunits. Cloning of the channel subunits, generation of stable 

HEK293 cell lines and fluorometric imaging plate reader (FLIPR) measurements 

were carried out by the lab of Dr. Mario Mezler.  

In specific, the human β1.1 subunit hCACNB1 (accession number NM_000723) and 

α2δ1 subunit hCACNA2D1 (accession number NM_000722) were amplified by PCR, 

cloned into the expression vector pBUDCE4.1 (Invitrogen, Darmstadt, Germany), and 

sequence-verified. The human P/Q-type calcium channel α1A subunit CACNA1A 

transcript variant 2 (accession number NM_023035) and human N-type calcium 

channel α1B subunit CACNA1B transcript variant 1 (accession number NM_000718) 

were each cloned into an inducible vector pcDNA5/FRT/TO (Invitrogen, Darmstadt, 

Germany) and sequence-verified.  

Then, HEK 293 T-Rex cells (Invitrogen, Darmstadt, Germany) were transfected in 

two subsequent steps with the prepared expression plasmids in a similar fashion as 

previously described for the rat P/Q channel by Lam et al. (2007). HEK293 T-Rex 

cells were transfected with the PvuI-linearized 

pBudCE4.1/hCACNB1.1/hCACNA2D1 plasmid employing Lipofectamine as 

described by the manufacturer (Invitrogen, Darmstadt, Germany). Briefly, 2.5 x 106 

cells were seeded in 10 cm Petri dishes (Greiner Bio One, Frickenhausen, Germany) 
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with DMEM Glut HG medium (Invitrogen, Darmstadt, Germany) and incubated in a 

humidified incubator at 37°C, 5% CO 2 overnight. On the following day, 2 µg of the 

plasmid was dissolved in 100 µL Optimem Glutamax medium, and 12 µL 

Lipofectamine was dissolved in 100 µL Optimem Glutamax medium. After 5 min 

incubation at room temperature, the two samples were mixed and incubated for 

additional 20-30 min at room temperature. Subsequently 0.8 mL Optimem Glutamax 

medium (Invitrogen Darmstadt, Germany) was added and the mixture used 

immediately for transfection. For this, the cells in the Petri dishes were first washed 

twice with Optimem Glutamax medium, and 2 mL medium was added to each petri 

dish. 1 mL of the Lipofectamine/plasmid mixture was added to each dish and the 

cells incubated for 5 h at 37°C, 5% CO 2. The medium was changed to DMEM Glut 

HG medium, changed twice the following day, the cells split (1:5, 1:10, 1:50, 1:100, 

1:250, 1:500, 1:1000 and undiluted), and transferred to selection medium containing 

DMEM Glutamax HG + charcoal-treated and dextran-treated FBS (Thermo 

Scientific/HyClone, Logan, USA), with 5 µg/mL blasticidin (Invitrogen, Darmstadt, 

Germany) and 200 µg/mL zeocin (Invitrogen, Darmstadt, Germany). After 14-28 

days single cell clones were isolated, expanded, transiently transfected with the 

human CACNA1A.2 subunit in pcDNA3.1 (Invitrogen, Darmstadt, Germany), tested 

in FLIPR (see below) for activity, and the most active single cell clones were 

passaged further. Clone K8 demonstrated the most robust calcium signal after 

transient transfection of the pore forming subunit. Subsequently, the inducible α1A 

subunit - as a MunI linearized pCDNA5/TO/hCACNA1A.2 plasmid – and the 

inducible α1B subunit - as a MunI linearized pCDNA5/TO/hCACNA1B plasmid – were 

transfected into responsive cell clones including K8, as described above. After 

14-28 d in selection medium (DMEM Glutamax HG, 10% charcoal and dextran 

treated FCS, 5 µg/mL blasticidin, 200 µg/mL Zeocin, and 150 µg/mL hygromycin) 

single cell clones were selected and tested in the FLIPR assay (see below) and by 

patch clamp electrophysiology. The best clones were chosen, expanded for batch 

production and cryopreserved with Recovery Cell Culture Freezing (Invitrogen, 

Darmstadt, Germany) as described by the manufacturer. 

For characterization of clones in the FLIPR assay 40,000 cells per well from cell 

culture or 60,000 cells per well from frozen stock were seeded into 96-well plates 

(poly-D-Lysine coated BIOCOAT 96-well plates, Becton Dickinson, Heidelberg, 

Germany) in DMEM Glutamax HG medium, containing charcoal and dextran treated 
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FCS and 1 µg/mL tetracycline (Sigma, St. Louis, USA), and incubated at 37°C. After 

48 h the medium was exchanged for DMEM containing 1 µg/mL tetracycline, but 

without glutamine or serum. Cells were incubated for additional 2-3 h at 37°C, and 

loaded with the Calcium 4 Dye (Molecular Devices, Ismaning, Germany), pre-diluted 

1:2 in HBSS/HEPES with 12 mM Ca2+ and 5 mM Mg2+. Activation of the calcium 

channels was achieved through depolarization of the cells by adding KCl. 

Measurements were performed in a FLIPR384
 device (Molecular Devices, Ismaning, 

Germany). 

For high throughput screening (carried out by the lab of Dr. Sujatha Gopalakrishnan, 

Abbott Laboratories, Chicago), calcium measurements were performed using 

FLIPRTetra (Molecular Devices) and the use of the Calcium 5 Dye (Molecular 

Devices). Here, cell depolarization and channel activation was obtained by replacing 

the assay buffer (HBSS with 12 mM Ca2+ and 5 mM Mg2+, 20 mM HEPES) with a 

buffer containing a high KCl concentration (final concentration: 5 mM CaCl2, 60 mM 

KCl in HBSS without Ca2+, Mg2+, with 20 mM HEPES). 

 

2.3 Patch Clamp Recordings 

The patch clamp technique, which was first described by Neher and Sakmann 

(1976), enables functional analysis of ion channels (patch clamp technique reviewed 

by Numberger and Draguhn, 1996) and has been considered as the gold-standard 

for investigating direct ion channel modulation (Terstappen et al., 2010). Here, data 

was obtained by whole-cell recordings, which enable electrical access to the entire 

cell and, thus, record the current flow across multiple ion channels. Cells were 

patched at room temperature using a manual and an automated 4-channel Patchliner 

(Nanion GmbH, Munich, Germany) recording setup (see Figure 2.1, p.47).  

At least 7 d prior to the electrophysiological experiments, HEK293 T-Rex cells were 

thawed and cultured in poly-D-Lysine coated flasks (Greiner Bio-One GmbH, 

Frickenhausen, Germany) at 37°C and 7% CO 2. For passaging twice a week, cells 

were washed with PBS without calcium and magnesium (Invitrogen, Darmstadt, 

Germany), incubated with Accutase for 2 min at 37°C  (Sigma, St. Louis, MO, USA), 

lifted of the culture flask by gentle tapping, and diluted in selection medium. Culture 

density and quality was assessed using the electric-field counting system Casy 
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(Schärfe Systeme, Reutlingen, Germany) and cells were discarded if the viability fell 

below 90%. After counting, cells were transferred into new culture flasks containing 

selection medium. Cells were kept in culture for up to 20 splits post-thaw at an 

approximate confluency of 50-80%. Channel expression was induced 1-4 d prior to 

experiments with 1 µg/mL tetracycline, while the selection antibiotics zeocin and 

hygromycin were omitted.  

 

2.3.1 Manual Patch Clamp 

Prior to manual voltage-clamp and current-clamp experiments, cells were plated in 

24-well plates (Costar, Corning, NY, USA) at densities of 2 x 104 cells/well on 

uncoated, 12 mm diameter glass slides (Menzel, Braunschweig, Germany), which 

were previously washed with sterile water (Sigma, St. Louis, MO, USA). Prior to 

recordings, glass slides were washed in the respective external recording solution 

(see below), put into the manual recording chamber, which was situated within a 

faraday cage and mounted on a cushioning table (Science Products, Hofheim, 

Germany). All compounds were applied in a 1:3 fashion to the recording chamber. 

Pipette tips and cells were visualized by an inverted Olympus IMT-2 microscope 

(Olympus Deutschland, Hamburg, Germany). Pipette manipulators were electrically 

controlled by an SM1 control unit (Luigs & Neumann, Ratingen, Germany). Data was 

acquired and low pass filtered (4-pole Bessel) at 3 kHz with an Axonpatch 200B 

amplifier (Molecular Devices, Sunnyvale, CA, USA). Data was digitized by a 

Power1401 analog-digital converter at a sampling rate of 20 kHz, recorded by the 

Signal 3.14 software (both Cambridge Electronic Design, Cambridge, UK), and 

stored on a personal computer.  

 

2.3.1.1  Voltage-clamp 

After the patch pipette was manipulated onto a cell and a high resistance (GΩ) seal 

was formed, voltage-clamp whole-cell recordings were obtained by mechanically 

rupturing the cell surface. This causes the cytosolic solution to be passively replaced 

with the solution in the patch pipette. Moreover, due to a low series resistance (RS) 

(being only about 2-5 times larger than the initial pipette resistance) a good electrical 



2  Materials and Methods 

44 

access to the cell is obtained, which supports fast and accurate voltage control of the 

cell. Therefore, whole-cell voltage-clamp recordings were used to study the 

biophysical and pharmacological properties of P/Q-type and N-type calcium 

channels. 

For whole-cell experiments all solutions were filtered with a polyethersulfone 0.22 

µm unit (Millipore, Billerica, MA, USA), aliquoted, and stored at -20°C. Pipettes were 

filled with the following solution (in mM): 110 CsCl, 10 EGTA, 25 HEPES, 4 Mg-ATP, 

0.3 Na-GTP; pH 7.3 adjusted with CsCl; 295 mOsmol adjusted with sucrose. During 

experiments this solution was kept on ice and was again filtered during tip filling by a 

0.2 µM nylon filter unit (ThermoScientific, Rochester, NY, USA). The solution 

surrounding the exterior of the cell (here denoted as extracellular solution) was 

stored at 4°C, used for a maximum of 2 weeks, and c omprised (in mM): 130 NaCl, 

10 BaCl2, 20 glucose, 10 HEPES; pH 7.3 adjusted with NaOH; 305 mOsmol 

adjusted with sucrose.  

Borosilicate pipettes were prepared by a micropipette puller P-97 (Sutter Instrument, 

Novato, CA, USA) and their resistance of 2-4 MΩ was estimated in the recording 

chamber by application of a 5 mV biphasic square pulse and slight positive pressure 

within the pipette. Once the pressure was released and the pipette became cell 

attached the holding potential was switched from 0 to -80 mV which aided giga seal 

formation. Whole-cell conformation was then obtained through suction, which was 

immediately relieved after the square pulse-induced transient currents became 

significantly larger due to the increase in capacitance. Cells were equilibrated for at 

least 5 min before experiments were started to allow for the passive exchange of 

cytosolic with the solution of the pipette. After equilibration, voltage-dependent 

activation was assessed in each cell by generation of a current-voltage (I-V) 

relationship by measuring peak amplitudes during step depolarization at various 

potentials (as described in detail in chapter 2.6).  

Whole-cell recordings were discarded when series resistance (Rs) exceeded 10 MΩ 

during baseline conditions or 20 MΩ anytime during the experiment. Rs was 

compensated online by ~95%. As cells were excluded if seal resistance dropped 

below 200 MΩ anytime during the experiment (in most cases seal resistance 

remained above 1 GΩ throughout the experiment) the resulting ratio 50/ ≥seriesseal RR
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enabled us to neglect the voltage drop caused by the remaining uncompensated Rs. 

In rare cases experiments were discarded because channel activation occurred in a 

step-wise or non-exponential fashion during test pulse depolarizations. As this 

became more pronounced or more frequent when Rs compensation was disabled or 

interconnected cells were patched, this current shape was most likely due to 

technical artifacts like lack of temporal and/or spatial voltage control. Therefore, only 

single, isolated cells were recorded. 

Unless otherwise noted, the holding potential was set to -80 and -90 mV for the 

recombinant P/Q-type and N-type calcium channel, respectively. Different potentials 

were chosen, because at -80 mV slightly increased run-down was observed for N-

type currents and inactivation occurred at more hyperpolarized values for this 

channel. The test pulse was applied close to a potential inducing the maximum 

current response, which constitutes 20 and 10 mV for our recombinant P/Q-type and 

N-type calcium channel, respectively (see results). An intersweep interval of 12 s 

was used. For analysis of LMW compounds a 3 s prepulse was applied. The 

prepulse potential was set for each cell individually to induce about 30-70% of 

current inactivation. 

 

2.3.1.2  Current-clamp 

Current-clamp recordings were carried out in perforated whole-cell mode. In this 

configuration whole-cell access is not obtained by cell rupture but instead by small 

perforations of the membrane. Here this is obtained by the antibiotic gramicidin D 

(Sigma, St. Louis, MO, USA). It is supplemented to the solution of the pipette and 

upon contact with the plasma membrane forms transmembrane channels which are 

permeable for monovalent cations but not anions and larger cell contents (Kyrozis 

and Reichling, 1995; Tajima et al., 1996), which largely reduces cell dialysis. 

Consequently, this technique was applied to estimate the resting membrane 

potential as well as the potassium-induced depolarization of P/Q-type calcium 

channel expressing cells under near physiological conditions. 

Gramicidin D was dissolved in DMSO at 50 mg/mL and stored at -20°C. Pipettes 

were filled with solution containing 150 mM KCl and 10 mM HEPES, which was 

supplemented with 75 µg/mL gramicidin D, thoroughly vortexed, and sonicated for 
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7 min. Pipette tips were first filled with solution lacking and subsequently backfilled 

with solution containing the antibiotic. After seal formation, cells were held at -40 mV 

and Rs was constantly controlled. For Rs < 200 MΩ the patch was considered 

perforated and the experiment was started. After at least 5 min of baseline 

recordings, the KCl concentration was increased to 60 mM in the external HBSS 

solution (containing 10 mM CaCl2 and 20 mM HEPES; Invitrogen, Darmstadt, 

Germany) for 3 min before returning to the baseline KCl concentration in the HBSS 

medium (5.3 mM). After the experiment was finished, cells were excluded if Rs had 

dropped below 40 MΩ, which may be indicative of successful whole-cell formation. 

 

2.3.2 Automated Patch Clamp 

Voltage clamp whole-cell recordings were also obtained from automated patch 

clamp experiments. Unlike manual electrophysiology, where electrical access is 

established through manipulation of a pipette to an adherent cell, the Patchliner 

automated patch clamp system (Nanion GmbH, Munich, Germany) captures 

suspended cells through suction onto a small hole. This hole is situated on a planer 

borosilicate chip surface, which serves as the interface between the extracellular and 

intracellular compartment (i.e. having access to the extracellular and intracellular 

side of the cell, respectively) for whole-cell recordings. 

For preparation of automated planar patch clamp recordings, cells were dissociated 

and isolated with trypsin (Sigma, St. Louis, MO, USA) or Accutase for 2 min, spun 

for 2 min at 100x g and re-suspended in buffer containing (in mM): 140 NaCl, 4 KCl, 

1 MgCl2, 2 CaCl2, 5 glucose, 10 HEPES; pH 7.4 adjusted with NaOH; 298 mOsmol. 

Cells were kept in a storage chamber at an approximate density of 1 x 106 cells/mL 

and were periodically pipetted up and down to maintain viability and dispersion. 

Planar chips with a resistance of approximately 2-3 MΩ were used for recordings. 

The control of suction to obtain GΩ seals and whole-cell configuration between the 

glass chip and the cell membrane as well as the estimation of RS, Cslow, and Cfast 

values was performed using the PatchControlHT software (Nanion Technologies 

GmbH, Munich, Germany).  
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Figure 2.1  The Patchliner – an automated planar pa tch clamp system  (from Nanion 

GmbH, Munich, Germany). Top: Patch clamp platform including the robotic teflon-coated 

pipette arm, here positioned above the headstage. Lower left: Three-dimensional illustration 

of the extracellular (light blue shaded area) and intracellular (dark blue / grey shaded area) 

compartments from one individual chip. Cells are captured in a small hole at the intersection 

of these two compartments. The volumes around the openings of the two compartments 

comprise the respective waste reservoir. Lower right: Two-dimensional scheme of one chip 

including a cell depicted in whole-cell mode.  

Upon start of an experiment, the intracellular compartment of the chip was filled with 

a solution comprising (in mM): 50 CsCl, 10 NaCl, 60 CsF, 2 MgCl2, 20 EGTA, 5 

BAPTA, 5 Mg-ATP, 0.3 Na-GTP, 10 HEPES; pH 7.2 adjusted with CsOH; 290 

mOsmol. The extracellular compartment of the chip was filled with the following 

solution used for recordings (in mM): 105 NaCl, 20 TEA-Cl, 20 BaCl2, 10 mM glucose 

and 10 HEPES; pH 7.35 adjusted with NaOH; 305 mOsmol. Subsequently, cells 

were automatically dispensed into the extracellular compartment and captured to the 
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hole of the planar patch clamp chips by suction. For seal enhancement, the 

extracellular compartment was washed with a solution comprising (in mM): 80 NaCl, 

3 KCl, 35 CaCl2, 10 MgCl2, 10 HEPES; pH 7.4 adjusted with HCl; 298 mOsmol. 

Whole-cell formation is obtained by transient application of -100 mbar negative 

pressure, which is increased by steps of -50 mbar (to a maximum of -350 mbar) until 

Rs < 40 MΩ and Cslow > 2 pF is obtained. After successful whole-cell formation, 

solution of the extracellular compartment was again exchanged with the solution 

used for recordings (see above). Channels with Rseal < 200 MΩ or insufficient whole-

cell formation (Rs > 40 MΩ or Cslow < 2 pF) were excluded from the measurement. Rs 

was compensated online by 70-90%. 

The holding potential was set to -90 mV. Channel opening was elicited by stepping 

the potential to 20 mV for 20 ms each 12 s. I-V relationships were generated by 

measuring peak amplitudes during step depolarization to given potentials. For 

analysis of LMW compounds a 3 s prepulse was applied. The prepulse potential was 

set for each cell individually to induce about 30-70% of current inactivation. 

Compounds were dissolved in the recording solution and applied to the extracellular 

compartment by complete exchange of solution. Data acquisition was performed 

with an EPC10 amplifier and a PatchMaster software package (all HEKA Electronics, 

Lambrecht/Pfalz, Germany). As recordings were obtained from four independent 

chips in parallel a HEKA probe Selector (all HEKA Electronics, Lambrecht/Pfalz, 

Germany) was used to switch the amplifier control between these four independent 

channels. 

 

2.4 Hippocampal Slice Culture Preparation 

As described in the introduction, the hippocampal region has been an intensively 

investigated cortical structure due its well-structured cytoarchitecture and important 

physiological function including memory and learning. Hippocampal slice cultures are 

a well-studied in vitro model of the hippocampal region, which have been used to 

study several aspects of neuronal development or function including synaptic 

properties under non-pathological (Bonhoeffer et al., 1989) and pathological 

conditions (Nimmrich et al., 2010). Preparation of hippocampal slice cultures was 

performed by Tanja Georgi, Siena Kiess, and Michael Bahr. 
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Figure 2.2  The rat hippocampal formation (from Amaral and Witter, 1989). Bottom: 

Schematic drawing of the location and orientation of the rat hippocampus within the cortex. In 

this study, isolated hippocampi were chopped along the (orthogonal) transverse axis 

("TRANS"). "S" and "T" denote the septo-temporal axis. Top: Scheme of axonal projections 

(small letters) and histologically defined regions (capital letters) within a transversal 

hippocampal section. The Schaffer collateral (sc), which was stimulated in this study, 

transfers information from the hippocampal CA3 to the CA1 region. Abbreviations: DG, 

dentate gyrus; CA3, CA1, cornu ammonis fields of the hippocampus; S, subiculum; pp, 

perforant path fibers from entorhinal cortex; mf, mossy fibers from the granule cells. 

Organotypic hippocampal slice cultures were prepared as described by Nimmrich et 

al. (2010) from 9 to 12 day old Wistar rats (Janvier, Genest St.Ile, France), which 

were decapitated with sharp scissors without anesthesia. Hippocampi were isolated 

in Gey’s balanced salt solution (containing in mM: 138 NaCl, 4.9 KCl, 1.5 CaCl2, 

11 MgCl2, 333.3 glucose, 0.3 MgSO4, 0.2 KH2PO4, 0.8 NaH2PO4, 2.7 NaHCO3, and 

25 HEPES; pH 7.2; all chemicals from Invitrogen, Darmstadt, Germany, except 

HEPES from Sigma-Aldrich, Steinheim, Germany), which was previously cooled on 
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ice. Transverse, 400 µm thick hippocampal slices were prepared by using a tissue 

chopper (Mickle Laboratory Engineering, Gomshall, UK). 

Slices were cultured according to Stoppini et al. (1991) on millicell-CM membranes 

(Millipore, Billerica, MA, USA) in 40% basal medium Eagle (BME) with Earle’s salts, 

25% horse serum, 25% Earle’s balanced salt solution, 1 mM Glutamax I, 28 mM 

glucose, and 10% 250 mM HEPES in BME (all chemicals, except HEPES, from 

Invitrogen, Darmstadt, Germany) at 34°C, 5% CO 2. After 3 d media exchange was 

done with Neurobasal A medium (96.4% Neurobasal A medium, 2% B 27 

supplement, 1 mM Glutamax-I; all from Invitrogen Darmstadt, Germany) including 

25 mM D-glucose (Sigma-Aldrich, Steinheim, Germany). Media was previously 

filtered with a 0.2 µM polyethersulfone sterile filter unit (Thermo Scientific, Logan, 

USA). Hippocampal slices were cultured for 15-25 d before recording.  

All animal care and experimental procedures were according to the guidelines of the 

Association for Assessment and Accreditation of Laboratory Animal Care 

International (AAALAC) commission, and were approved by the government of 

Rhineland Platinate (Anzeige 2/92; AZ 889-13). 

 

2.5 Field Potential Recordings 

Within the hippocampal region, the Schaffer collateral - CA1 synapse has been 

widely studied, because of its laminar-organized structure exhibiting functional 

plasticity which correlates with cognitive measures like learning and memory, as 

previously noted in the introduction (Morris et al., 1986; Bonhoeffer et al., 1989). 

After simulation of the Schaffer collateral in organotypic hippocampal slice cultures, 

we used the strength of the resulting field excitatory postsynaptic potential (fEPSP) 

in the CA1 region to assess the functionality of synaptic transmission under several 

pharmacological conditions. 

Specific calcium channel toxins, Aβ globulomer, test compounds with potential 

effects on calcium channels and their respective controls were applied to the culture 

medium of organotypic hippocampal slice cultures 1 d prior recording. As control the 

corresponding vehicle concentration of water, DMSO, or Aβ globulomer ultrafiltrate 

was used. The P/Q antibody was applied 2 h prior to Aβ globulomer. 
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Slices were placed on in a Haas-type interface recording chamber (Harvard 

Apparatus, Hugstetten, Germany), which was supported by a cushioning table 

(Spindler & Hoyer, Göttingen, Germany). They were continuously perfused with 

substance-free artificial cerebrospinal fluid (composition in mM: 118 NaCl, 5 KCl, 

2 MgSO4, 2.5 CaCl2, 1.24 KH2PO4, 25.6 NaHCO3, 10 glucose, pH 7.4; gassed with 

carbogen (95% O2, 5% CO2)) at about 0.7 mL/min driven by a peristaltic Minipuls3 

pump (Gilson, Middelton, WI, USA). Slices were allowed to equilibrate in a 

humidified, carbogen-gassed atmosphere for at least 60 min at 32°C using a TC-10 

temperature control unit (npi electronic, Tamm, Germany). 

fEPSPs were recorded after stimulation of the Schaffer collateral as described by 

Nimmrich et al. (2010). The Schaffer collateral was stimulated with bipolar pulses 

(0.1 ms/phase) using a 0.5 MΩ bipolar tungsten electrode (WPI, Sarasota, FL, USA) 

at an interval of 60 s. Borosilicate glass recording electrodes (Harvard Apparatus, 

Hugstetten, Germany) were pulled by a vertical patch electrode puller (Ochotzki, 

Homburg/Saar, Germany) and filled with artificial cerebrospinal fluid. Their resistance 

was determined at 0.8-1.1 MΩ by a Omega tip-Z MΩ meter (WPI, Sarasota, Fl, USA). 

fEPSPs were recorded from the hippocampal CA1 region (see Figure 2.2 on p.49), 

after electrode placement by mechanical micromanipulators (Harvard Apparatus, 

Hugstetten, Germany). Signals were acquired by an Ext 10-2F amplifier (npi 

electronic, Tamm, Germany), 50 Hz noise reduced by a Hum-Bug (WPI, Sarasota, 

FL, USA), and digitalized at 10 kHz by a Power1401 (Cambridge Electronic Design, 

Cambridge, UK). Data was also visualized in parallel by a DL708E oscilloscope 

(Yokogawa Deutschland, Herrsching, Germany) to control for spontaneous 

discharges. In case of such discharges slices were excluded from analysis. 

 

2.6 Data Analysis 

Data from electrophysiological experiments was exported to Microsoft Excel 2003 

(Microsoft, Redmond, WA, USA) for offline analysis. For slice culture experiments 

input-output curves were created by plotting the fEPSP amplitude over stimulus 

intensity. For patch clamp experiments, command voltages were corrected offline for 

the liquid junction potential (Barry, 1994), which was calculated as 5.8 and 4.0 mV for 

manual and automated patch clamp solutions, respectively. Unless otherwise noted, 
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figures and calculated results were corrected for this offset, in contrast to the denoted 

voltage protocols.  

For I-V relationships, data was fitted with a combination of a first-order Boltzmann 

activation function and the Goldman-Hodgkin-Katz (GHK) current–voltage 

relationship (Kortekaas and Wadman, 1997): 
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with α = F/RT and gmax = αFP0[Ba+]out, where gmax is the maximal membrane 

conductance (which is proportional to the maximal permeability), Vh is the potential 

of half-maximal activation, and Vc is proportional to the slope of the curve at Vh. F 

represents the Faraday constant, R represents the gas constant, P0 is the maximal 

permeability, and T the absolute temperature. For these calculations the intracellular 

concentration of Ba2+ was assumed to be 10 nM. Assuming higher values of up to 

10 µM did not significantly change the results. For some illustrations I-V curves were 

normalized to the maximal response obtained from recordings in drug-free solution. 

Activation curves were calculated from ( )( )ch VVVVIVI /exp1/1)(/)( max −+=  applying 

the GHK constants calculated above. 

Inactivation curves were obtained by plotting the peak amplitude resulting from a test 

pulse against the potential of a proceeding prepulse. Similar to the activation curves, 

the voltage dependence of inactivation of the barium current was well described by a 

first-order Boltzmann function, which normalized the current as follows:  

( ) ( ) ( )







 −
+

==

C

inact

V

VV

I
VIwhere

I

VI
VN

exp1

, max

max

 

where N(V) denotes the level of inactivation determined from the current amplitude 

I(V) normalized to the maximum current Imax, V is the prepulse potential, Vinact is the 

potential of half-maximal inactivation, and Vc is a factor proportional to the slope of 

the curve at Vinact. For very short prepulses (< 1 s), potentials larger than 20 mV were 

not included in the fit. 

For pharmacological patch clamp experiments the last three responses of each 

incubation period were averaged for analysis and normalized to baseline level, which 
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was defined as the average of the last three drug-free responses. Unless otherwise 

noted, test pulses were applied at an interval of 12 s throughout the experiment. The 

equilibration period after obtaining whole-cell configuration was 5 min and baseline 

was recorded for another 2-5 min before pharmacological agents were applied. The 

compound incubation times were chosen to obtain (near) steady-state responses and 

are denoted in the results section for the respective experiment. Run-down correction 

was obtained using time-matched vehicle control cells, which resembled the exact 

application and incubation schemes of compound treated cells. For run-down 

correction, results from compound treated cells were normalized to time-matched 

controls: contolcpdcpd corrected /= . For example, if a given compound application yields 

20% of the initial baseline current and its time-matched control 80%, the resulting 

run-down corrected value was estimated at 25% of baseline level. As time-matched 

controls also exhibited variation, error propagation needs to be considered, meaning 

that the relative error of a ratio is given by the sum of the squared relative errors of 

the dividend and divisor. Here, this translates into ( ) ( )22
Controlcpdcorrected σσσ += , where 

σcorrected denotes the run-down corrected relative error, σcpd and σcontrol denote the 

relative error of the compound and time-matched control measurements, 

respectively.  

Statistical analysis and data fitting was done using GraphPad Prism 5.03 (GraphPad 

Software, La Jolla, USA) applying a three-parameter sigmoidal fit for concentration 

response curves to estimate the IC50 and exponential fits for rate and decay 

constants. Values are represented as average ± standard error of the mean 

(S.E.M.). Error bars are not visible if they are smaller than the data point symbol. 

 

2.7 Statistics 

For patch clamp experiments, statistical comparisons were made with Student's 

t-test, one-way ANOVA, or one-way repeated-measure (RM) ANOVA. When 

applicable, Dunnett's post hoc analysis was applied to compare against control 

application. Input-output relationships in slice cultures were compared using a 

two-way RM ANOVA with Holm-Sidak post hoc analysis to compare all groups. A 

p value < 0.05 was considered significant. 
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3 Results 

There is converging evidence for the pathological role of Aβ in AD, as indicated in the 

introduction. In this study we have, therefore, investigated the effect of a highly 

stable, oligomeric Aβ1-42 preparation, termed Aβ globulomer. The corresponding 

epitope is found in AD patients and inhibits LTP in vitro, a physiological correlate of 

learning and memory (Barghorn et al., 2005). 

Figure 3.1  Characterization of the A β globulomer 

preparation.  (A) Applying 4-12% Bis-Tris SDS-

polyacrylamide gel electrophoresis (PAGE) gels, 

Aβ globulomer exhibited strong bands at higher 

molecular weights corresponding to Aβ1-42 12-mers 

(”g”) as described in Barghorn et al. (2005). 

Monomeric and lower order forms were detected at 

considerably lower intensities. Lanes: 1, 

MagicMarkTM XP marker; 2, Aβ globulomer (50 pg); 

3, Aβ globulomer (250 pg). (B) Freshly dissolved Aβ1-42 

peptide exhibits mainly monomeric (“m”) and to a 

lower extent low order oligomeric fractions (“lo”) on the 

SDS-PAGE gel. Lanes: 4, Aβ1-42 peptide (450 pg); 5, 

Aβ1-42 peptide (4,500 pg); 6, SeeBlue® Plus2 marker. 

Before investigating the functional effects of Aβ globulomer (synthesized by Dr. 

Stefan Barghorn), we first validated this preparation by SDS-PAGE (Figure 3.1A). 

Upon qualitative analysis Aβ globulomer solution yielded the strongest bands at 

molecular weights corresponding to the published 38/48 kDa oligomeric complex 

(12-mer). In addition, at the higher Aβ globulomer concentration also low levels of 

~4 kDa (monomeric) and ~16 kDa (small oligomers) were detected. By contrast, the 

~4 kDa fraction was most prominent for the freshly dissolved Aβ1-42 peptide, which 

also exhibited lower levels of protein around ~16 kDa (Figure 3.1B). A smear was 

also detected at higher molecular weight levels in this gel, which appeared to be 

unspecific as it was independent of Aβ1-42 peptide concentration. Fibrillar aggregates, 

which hardly diffuse through the gel and thus remain adjacent to the gel pockets, 

were absent for both Aβ1-42 preparations. These results correspond well to the 
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described Aβ globulomer preparation published in Barghorn et al. (2005). We 

therefore used this preparation in our subsequent studies. 

 

3.1 Effects of Oligomeric A β on Synaptic Transmission are 

Calcium Channel-Dependent 

AD leads to progressive worsening of memory formation and retrieval in patients. 

One of the brain regions earliest affected by AD is the hippocampus (Scoville and 

Milner, 1957), a brain region necessary for memory and learning. Within the 

hippocampus, the excitatory, glutamatergic Schaffer collateral-CA1 synapse has 

been extensively studied. It is involved in activity-dependent plasticity such as short-

term and LTP and can be easily studied due to its laminar projections. Because of 

this, this synapse has served as a classical model for elucidating the basics of 

learning and memory (Bliss and Collingridge, 1993). 

Here it was investigated whether Aβ oligomer-induced functional deficits could be 

reversed by blocking calcium channels. To this end we examined extracellular field 

potentials from evoked synaptic responses in the CA1 region of the hippocampus 

after stimulation of the Schaffer collateral synapse in rat hippocampal organotypic 

slice cultures, as previously described by Nimmrich et al. (2010). (Data obtained from 

hippocampal slice cultures was partly generated by Tanja Georgi and Michaela 

Müller). Overnight incubation with 83 nM Aβ globulomer (corresponding to 1 µM 

monomeric Aβ1-42 peptide, see methods) was sufficient to decrease excitatory 

synaptic transmission compared to control application (Figure 3.2). Specific block of 

P/Q-type calcium channels with 500 nM ω-agatoxin IVA, a concentration above its 

IC50 value for P/Q-type calcium channels (Bourinet et al., 1999), successfully 

prevented synaptic decline (Figure 3.2A; p < 0.001, two-way RM ANOVA, Holm-

Sidak post hoc; n = 6-7 slices per group). By contrast application of 500 nM 

ω-agatoxin IVA alone did not change synaptic transmission. Next we collected 

evidence that preventing a direct interaction of Aβ globulomer with the P/Q-type 

calcium channel could ameliorate functional deficits in slice cultures. We saturated 

binding sites at the P/Q-type calcium channels with a polyclonal P/Q antibody for 2 h 

prior to Aβ globulomer treatment, which prevented deficits in synaptic transmission 

(Figure 3.2C; p < 0.05; n = 8-11 per group). Application of the antibody alone had no 
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significant effect on synaptic transmission (Figure 3.2D; p = 0.11; n = 10-11 slices per 

group). These data indicate that a direct interaction of Aβ globulomer with the P/Q-

type calcium channel causes synaptic impairment. 
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Figure 3.2  Effects of P/Q calcium channel modulati on on A β globulomer-induced 

functional synaptic deficits.  Organotypic slice cultures were treated overnight with 

Aβ globulomer and compounds. After washout excitatory synaptic transmission was 

investigated via input-output curves at the Schaffer collateral-CA1 synapse. fEPSP amplitude 

was decreased after application of 83 nM Aβ globulomer in A-C, indicating synaptic 

degeneration. All compounds were applied above their IC50 values. (A) The P/Q-type calcium 

channel specific blocker ω-agatoxin IVA (500 nM, constituting a concentration above the IC50 

value (Bourinet et al., 1999) reverses Aβ globulomer-induced deficits in excitatory synaptic 

transmission. This effect was not due to an intrinsic effect of 500 nM ω-agatoxin IVA. (B) 

Representative current trace examples from A. The stimulation artifact at the beginning of 

each trace is followed by the resulting fEPSP response, which decreases in amplitude after 

Aβ globulomer treatment. (C) Pre-saturation of slice cultures with 2 nM polyclonal P/Q 

antibody (sc-16228) for 2 h prevents Aβ globulomer-induced functional deficits in excitatory 

synaptic transmission. (D) Application of the P/Q antibody alone does not significantly alter 

neurotransmission. *p < 0.05, ***p < 0.001, two-way RM ANOVA; Holm-Sidak post hoc. 

(Adapted from  Hermann et al. (2013a), submitted) 
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Figure 3.3  Effects of N-type and L-type calcium ch annel blockers on A β globulomer-

induced functional deficits in synaptic transmissio n. (A) Specific N-type calcium channel 

blockade by 100 nM ω-conotoxin MVIIA protected from Aβ globulomer toxicity. (B) This 

concentration of ω-conotoxin MVIIA alone left fEPSP amplitude unaltered. (C) In contrast, 

10µM nimodipine, which preferentially blocks L-type calcium channels, did not reverse 

synaptic deficits induced by 83 nM Aβ globulomer. **p < 0.01, ***p < 0.001, two-way RM 

ANOVA; Holm-Sidak post hoc. (Hermann et al. (2013a), submitted). 

To test the specificity of this effect we also tested the potential of other calcium 

channel blockers on restoring synaptic transmission. Specific block of N-type calcium 

channels with 100 nM ω-conotoxin MVIIA, a concentration above published IC50 

values (Kaneko et al., 2002), also ameliorated Aβ globulomer-induced deficits in 

synaptic transmission (Figure 3.3A; p < 0.001; n = 8 slices per group). This 

concentration of ω-conotoxin MVIIA did not alter synaptic transmission when applied 

alone (Figure 3.3B; n = 8 slices per group). In contrast, 10 µM nimodipine, did not 

restore Aβ globulomer-induced deficits (Figure 3.3C; p = 0.21; n = 8 slices per 

group). This compound blocks L-type calcium channels at IC50s in the low single digit 

µM concentrations or below and possibly also other HVA calcium currents at 

2-10-fold higher concentrations (Diochot et al., 1995; Xu and Lipscombe, 2001). 
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In summary, specific block of P/Q-type and N-type calcium channels reversed 

Aβ globulomer-induced functional deficits in synaptic transmission, whereas block of 

L-type calcium channels was ineffective.  

 

3.2 Oligomeric A β Modulates Recombinant Calcium Channels  

From these and previous (Nimmrich et al., 2008a) findings, we attempted to further 

characterize the effect of Aβ globulomer on P/Q-type and N-type calcium channels. 

For this, we studied recombinant channels expressed in HEK293 cells. Before testing 

the effect of acute Aβ oligomers, we first validated functional channel expression by 

analysis of their standard biophysical and pharmacological properties applying patch 

clamp whole-cell analysis.  

 

3.2.1 Biophysical and Pharmacological Validation of  Functional Channel 

Expression 

We made use of several cell clones stably transfected with the accessory β1.1 and 

α2δ1 as well as the pore-forming tetracycline-inducible α1A subunit provided by Dr. 

Mario Mezler. Channel expression was previously tested in a FLIPR-based assay, by 

Dr. Mario Mezler, measuring intracellular calcium influx, which is triggered by raising 

the external KCl concentration. The FLIPR assay protocol and inducible channel 

expression was also functionally characterized by electrophysiological patch clamp 

recordings. 

In order to pre-select cell clones which potentially exhibit functional channel 

expression, initial screening of 80 single cell clones (carried out by Dr. Mezler) 

resulted in the identification of cell lines with high and reliable potassium-induced 

calcium signals (60 mM KCl and 10 mM CaCl2). Figure 3.4 shows the response of 

single clones after induction of channel expression with different tetracycline 

concentrations. For 3 selected cell subclones, K8-11, K1-19, and K1-33, Dr. Mezler 

evaluated the concentration/response-relation of KCl. These 3 lines were studied 

under both tetracycline-induced and non-induced conditions (Figure 3.4A; n = 2 per 

group). The EC50 values after tetracycline induction ranged from 35 to 40 mM for all 

three subclones. Notably, clones K8-11 and K1-33 responded only weakly to KCl 
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stimulation under non-induced conditions (maximal signal of 19% and 14% relative to 

induced response). In contrast the response of the clone K1-19 did not differ between 

induced and non-induced state (maximal signal 89% relative to induced response) 

indicating that transfection of the pore forming subunit resulted in loss or a silencing 

of the tetracycline-on promoter in this clone. 
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Figure 3.4  Characterization of selected cell lines  with inducible P/Q-type calcium 

channel expression.  (A) Concentration-response curve of KCl in three selected cell clones 

from FLIPR measurements. Tetracycline (Tet) induction is indicated by closed symbols, no 

induction (wo Tet) by open symbols. Cells were stimulated with buffer containing high 

potassium (60 mM KCl and 10 mM CaCl2). While cell clone K1-19 responds to KCl 

depolarization with or without tetracycline induction (■; □), clones K1-33 (▲; ∆) and K8-11 

(●; ○) demonstrate tetracycline-dependent responses. (B) Representative example traces 

from manual whole-cell recordings of non-tetracycline induced cells. Similar to the results 

obtained from A, cell clone K1-19 reveals inward currents without previous tetracycline 

induction unlike K1-33 and K8-11. The corresponding voltage protocol is shown in the upper 

panel. (A from Mezler et al. (2012b)) 

As part of this PhD thesis, functional channel expression was further validated by a 

more direct electrophysiological approach, namely by voltage and current clamp 

manual patch clamp recordings (Figure 3.4B). Without tetracycline induction clone 

K1-19 showed significant inward currents, whereas for clone K1-33 and K8-11 (n = 2 

each) no inward currents were detectable and only passive (leak) currents were 

measured. As a consequence, electrophysiological and FLIPR-based recordings 

yielded the similar result that K8-11 and K1-33 were two possible candidate 

subclones. Here, K8-11 was chosen for all further analysis. K1-33 may function as a 

backup cell line. 
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Figure 3.5  Basic biophysical characterization of P /Q-type calcium channels.  

Steady-state activation and open-state inactivation of P/Q-type calcium channels was 

recorded from tetracycline-induced HEK293 cells (clone K8-11), recombinantly expressing 

the full tripartite P/Q-type calcium channel, using manual whole-cell recordings. (A) Voltage 

protocol (upper inset) and corresponding raw traces applying 50 ms test pulses in voltage-

clamp mode. (B) Averaged I-V relationships. The line represents the fit obtained from the 

GHK-equation. (C) Representative current trace during a 1 s test pulse showing rapid 

activation and gradual inactivation. Upper inset: Corresponding voltage protocol. (D) Open-

state inactivation from four cells plotted as current (normalized to the peak amplitude) vs. 

depolarization time (grey = raw data, black = exponential fit). (Hermann et al. (2013b)) 

In order to further validate functional P/Q-type calcium channel expression, we 

analyzed the voltage-dependence of activation as well as the inactivation during 

sustained depolarization (open-state inactivation) applying manual whole-cell 

recordings. The obtained results were subsequently compared to data from previous 

reports on recombinantly expressed channels. Following tetracycline-induction, cells 

(clone K8-11) expressed voltage-dependent currents which qualitatively correspond 

to P/Q-type calcium channel characteristics (Bourinet et al., 1999), including the 
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expected kinetics of activation and open-state inactivation (Figure 3.5A, C). As 

shown in Figure 3.4B (p.60) and Figure 3.12A+B (p.78), without tetracycline-induction 

no inward currents could be recorded serving as negative expression control. 

I-V relationships from tetracycline-induced cells (Figure 3.5B; n = 26) exhibited that 

for each test pulse potential, the resulting peak current amplitude was reached within 

20 ms. The maximum of the I-V relationship was induced at command voltages 

between 10 and 20 mV (corresponding to 4.2 and 14.2 mV, respectively, after 

correction for liquid junction potential). In order to obtain a strong current amplitude 

and, thus, a low signal-to-noise ratio for future recordings, all subsequent 

experiments utilized depolarizing test pulses to 20 mV (14.2 mV if corrected for liquid 

junction potential). Prolonged test pulse potentials to 20 mV revealed strong open-

state inactivation by 93.7 ± 1.0% (Figure 3.5D; n = 4) of the initial peak amplitude 

after a depolarization time of 1 s. Current decay followed a single exponential 

function with an averaged decay time constant λ = 178 ± 19 ms, indicative of P/Q-

type calcium channel-like state transitions (Hans et al., 1999). These activation and 

open-state inactivation properties are comparable to previous reports on recombinant 

P/Q-type calcium channels using a similar splice variant and subunit composition 

(Bourinet et al., 1999; Hans et al., 1999).  

After initial current characterization we carried on with a pharmacological 

investigation of the recombinant P/Q-type calcium channel, in order to estimate the 

sensitivity of our calcium channel currents to reference compounds compared to 

reports from literature. In addition, the specificity of selective calcium channel 

blockers was tested on our recombinant cell lines. Using a test pulse potential to 

20 mV application of the P/Q-type calcium channel specific toxin ω-agatoxin IVA 

decreased currents with an IC50 = 237 nM (Figure 3.7A). In contrast, the N-type 

calcium channel specific blocker ω-conotoxin MVIIA, which blocks N-type currents in 

the low nanomolar range (Kaneko et al., 2002), did not decrease P/Q-type calcium 

channel currents up to a concentration of 30 µM (Figure 3.7A+B). Toxins were 

applied cumulatively with an 8 min incubation period for each concentration to obtain 

steady-state block. Currents were normalized to time-matched controls (Figure 3.7A; 

n = 5 / 4-6 / 7 for ω-agatoxin IVA / ω-conotoxin MVIIA / control per concentration).  



3.2  Oligomeric Aβ Modulates Recombinant Calcium Channels  

63 

C D

5 
µM

20
 µM

50
 µM was

h

0

50

100

150

200

250

300

*

***

ta
il 

cu
rr

e
n

t
(%

 t
o

 c
o

nt
ro

l)

20 mV

-55 mV

2 ms

200 pA

a
d

b
c

e

A

-60 -40 -20 0 20 40 60
-100

-80

-60

-40

-20

0

controlω-agatoxin IVA
ω-conotoxin MVIIA

membrane potential (mV)

P
/Q

-t
yp

e 
cu

rr
en

t
(%

 t
o 

pr
io

r 
ap

pl
ic

at
io

n)

20 ms

500 pA
before
application

0.1 µM

0.3 µM

1 µM  ω-agatoxin IVA

20 mV
-80 mV

0.01 0.1 1 10 100

0

20

40

60

80

100

ω-agatoxin IVA ω-conotoxin MVIIA

[compound] (µM)

P
/Q

-t
yp

e 
cu

rr
en

t
(%

 t
o 

co
nt

ro
l)

B

20 ms

-80 mV

20 ms

-80 mV

 
Figure 3.6  Pharmacological validation of P/Q-type calcium channels.  (A) 

Concentration-response curve of ω-agatoxin IVA and ω-conotoxin MVIIA obtained from 

manual whole-cell recordings on HEK293 cells recombinantly expressing the full tripartite 

P/Q-type calcium channel. Channels were activated by step depolarizations from -80 to 

20 mV for 50 ms. Currents were normalized to time-matched controls under buffer 

application. Right inset: Representative current response during depolarization to 20 mV of a 

cell before and after application of cumulative concentrations of ω-agatoxin IVA. (B) Channel 

activation (I-V relationship) of the recombinant P/Q-type calcium channel was suppressed by 

ω-agatoxin IVA, but not by ω-conotoxin MVIIA compared to control. Inset: Corresponding 

voltage protocol. (C) Enhancement of P/Q tail currents by roscovitine is illustrated by 

superimposed tail current traces from a representative cell induced by hyperpolarization from 

20 to -55 mV. Roscovitine was added in a cumulative fashion with the sequence a) control 

(dotted line), b) 5 µM roscovitine, c) 20 µM roscovitine, d) 50 µM roscovitine, e) washout 

(dashed line). (D) Quantitative results obtained from C. While 5 µM roscovitine only tended to 

increase the tail current, the increases at 20 and 50 µM were significant. Washout completely 

reversed the effect. *p < 0.05, ***p < 0.001, one-way ANOVA, Dunnett’s post hoc. (A+B from 

Hermann et al. (2013a, submitted); C+D from Mezler et al. (2012b))  
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The potency of ω-agatoxin IVA was in the expected range for recombinant P/Q-type 

calcium channels containing a –NP–  sequence at domain IV S3-S4 (Bourinet et al., 

1999) indicating that our recombinant cell line exhibits the expected sensitivity to 

pharmacological modulation by peptide channel toxins. Furthermore, 1 µM ω-

agatoxin IVA fully blocked currents across all voltage steps, while ω-conotoxin MVIIA 

treatment did not change the I-V relationship at any voltage applied compared to 

control (Figure 3.6B; n = 5 / 4 / 6 for ω-agatoxin IVA / ω-conotoxin MVIIA / control). 

This strongly indicates that the current recorded is fully mediated by P/Q-type 

calcium channels. 

In order to test if also LMW compounds affect the recombinant calcium channels 

properly we applied roscovitine, which has been described to enhance the tail current 

after quick hyperpolarization from a depolarized potential. This is because channel 

gating is modulated, including a slowing of the deactivation kinetics of the activated 

P/Q channel (Buraei et al., 2005). So this compound can provide hints about whether 

appropriate gating mechanisms are present in our recombinant channels. 

Roscovitine concentration-dependently enhanced the tail current in our P/Q-type 

calcium channel expressing cell line. The increase in tail current was significant at 

20 µM and 50 µM after 2 min of compound application (Figure 3.6D; 159 ± 13%* and 

260 ± 33%***; *p < 0.05, ***p < 0.001, one-way RM ANOVA, Dunnett’s post hoc; 

n = 13). After a washout of 1 min the tail current returned to baseline (102 ± 8%). 

Taken together, we conclude that following tetracycline-induction our P/Q-type 

calcium channel transfected cells express functional P/Q-type calcium channels, 

displaying proper characteristics comparable to published data. We therefore 

considered these cells suitable for investigating the effect of Aβ oligomers on 

P/Q-type calcium channels and to search for novel antagonists in drug screening 

efforts as recently published in Mezler et al. (2012b).  

After validation of the P/Q-type calcium channel expressing cell line, we similarly 

investigated our recombinant N-type calcium channel expressing cell line (Figure 

3.7). From FLIPR experiments cell clone 26 was pre-selected (by Dr. Mario Mezler, 

data not shown), which was used for all subsequent electrophysiological 

experiments. In order to examine functional channel expression, initial patch clamp 

experiments characterized channel activation. Upon depolarization, the shape of the 

raw trace and the resulting I-V relationship appeared qualitatively similar when 
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compared to the recombinant P/Q-type calcium channel (Figure 3.7A; n = 11). 

However, the maximum peak current of the N-type current occurred at slightly less 

depolarized values and was obtained around 10 mV step potential (4.2 mV when 

corrected for liquid junction potential). 
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Figure 3.7  Biophysical and pharmacological validat ion of N-type calcium channel 

channels.  (A) Channel activation of the full tripartite N-type calcium channel recombinantly 

expressed in HEK293 cells was investigated by I-V relationships using manual whole-cell 

recordings. The line represents the fit obtained from the GHK-equation. Inset: Corresponding 

voltage protocol. (B) Concentration-response curve of ω-conotoxin MVIIA on N-type currents. 

These were blocked by cumulative application (4 min per concentration) of ω-conotoxin 

MVIIA with an IC50 = 1.5 nM. N-type currents were evoked by depolarization from -90 to 

10 mV for 50 ms and normalized to time-matched controls under buffer application. Inset: 

Representative peak currents before and after cumulative application of ω-conotoxin MVIIA. 

(B from Hermann et al. (2013a, submitted)) 

We then investigated the pharmacological sensitivity of the cell line. As expected, in 

contrast to the P/Q-type calcium channel expressing cell line, currents in the cell line 

recombinantly expressing the N-type calcium channel were potently blocked after 4 

min application of the N-type specific toxin ω-conotoxin MVIIA with an IC50 = 1.5 nM, 

applying a step potential from -90 to 10 mV. Unlike for recordings on P/Q-type 

calcium channels, a holding potential of -90 mV was applied here, because increased 

run-down was observed at -80 mV for the recombinant N-type calcium channel 

currents. Values were normalized to time-matched controls (Figure 3.7B; n = 3-7 / 4 

for ω-conotoxin MVIIA / control per concentration). These findings compare well to 

previous findings on similar human N-type calcium channel splice variants (Kaneko 

et al., 2002) indicating that our recombinant N-type calcium channels are sensitive to 
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pharmacological modulation and fulfill the main distinguishing feature compared to 

P/Q-type calcium channels (through sensitivity to ω-conotoxin MVIIA, see chapter 

1.2.1). We consequently considered functional channel expression as validated and 

suitable for analyzing the effect of Aβ oligomers on N-type calcium channels. 

 

3.2.2 Aβ Oligomers Facilitate Channel Activation at Interme diate 

Depolarized Potentials 

After validation of functional P/Q-type and N-type calcium channel expression, we 

investigated whether and how Aβ globulomer modulates these channels. We 

revealed that acute, non-cumulative (i.e. one concentration of a pharmacological 

agent per cell) application of Aβ globulomer affected voltage-dependent activation 

but not inactivation of the recombinant P/Q-type calcium channels (Figure 3.8).  

The I-V relationship illustrates that the peak current amplitude was altered at some 

test potentials 10 min after application of 830 nM Aβ globulomer (corresponding to 

10µM Aβ1-42 peptide (see methods); Figure 3.8A; n = 5-7 cells per group). However, 

the maximum of the I/V relationship occurred at similar membrane voltages for all 

Aβ globulomer concentrations. These findings were supported by quantitative 

analysis using activation parameters obtained from the best fit of the GHK-equation. 

The voltage at half activation Vh was shifted to more hyperpolarized values for the 

steady-state activation curve after application of 830 nM Aβ globulomer (Figure 

3.8B+C; for control / 8 nM / 83 nM / 830 nM Aβ globulomer: Vh = 6.9 ± 2.3 mV / 3.0 ± 

1.6 mV / 4.7 ± 2.4 mV / -4.6 ± 2.1 mV**; **p < 0.01, Student's t-test). This indicates 

that Aβ globulomer modulates the voltage-dependence of activation and therefore 

channel gating of recombinant P/Q-type calcium channels. In contrast, both the 

maximum conductance gmax and the slope of the I-V relationship VC remained 

unchanged (Figure 3.8C; for control / 8 nM / 83 nM / 830 nM Aβ globulomer: gmax = 

133 ± 42 nS / 148 ± 26 nS / 229 ± 78 nS / 125 ± 36 nS; VC = -6.1 ± 0.2 mV / -6.4 ± 

0.3 mV / -5.9 ± 0.2 mV / -6,2 ± 0.3 mV). This suggests that the conductance of each 

channel and the voltage range in which channel opening occurs, seen by an 

unchanged slope of the activation curve in Figure 3.8B, remain unaltered. 

 



3.2  Oligomeric Aβ Modulates Recombinant Calcium Channels  

67 

A

10 ms
1 

nA

prior
application

830 nM

-80 mV
-10 mV

C

B

-60 -40 -20 0 20 40 60

-100

-80

-60

-40

-20

0

830 nM
83 nM
8 nM
control

Aβ globulomer

membrane potential (mV)

P
/Q

-t
yp

e 
cu

rr
en

t
(%

 t
o 

pr
io

r 
ap

pl
ic

at
io

n)

-60 -40 -20 0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

830 nM
83 nM
8 nM
control

Aβ globulomer

membrane potential (mV)

g/
g

m
a

x

co
ntr

ol

8,3
 nM

83
 nM

83
0 n

M

-10

-5

0

5

10 **

V
h

(m
V

)

co
ntr

ol

8,3
 nM

83
 n

M

83
0 n

M

-8

-6

-4

-2

0

V
c 

(m
V

)

co
nt

ro
l

8,3
 nM

 

83
 n

M 

83
0 n

M 

0

100

200

300

g
m

a
x
 (

nS
)

D E

20 mV
3 s

Δ10 mV

-80 mV

20 ms

-80 mV

20 ms

-80 mV

-120 -100 -80 -60 -40 -20 0 20 40

0.0

0.2

0.4

0.6

0.8

1.0

830 nM
Aβ globulomer

control

membrane potential (mV)

I/I
m

a
x

-60 -40 -20 0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

10 µM Aβ monomer

control

membrane potential (mV)

g/
g

m
a

x

 
Figure 3.8  Modulation of P/Q-type calcium channels  by Aβ globulomer . (A) The 

I-V relationship, obtained from manual patch clamp recordings on our P/Q-type calcium 

channel expressing cell line, was shifted to more hyperpolarized values after 10 min of 

Aβ globulomer application. Upper inset: Representative raw trace depolarized from -80 to 

-10 mV before and after application of 830 nM Aβ globulomer. Lower inset: Voltage protocol 

for I-V relationship. Cells were depolarized to the corresponding test potential for 20 ms. 

Each cell received only a single dose (n = 5-7 per concentration). (B) Steady-state activation 

curve of recombinant P/Q-type calcium channels generated with the parameters derived from 

the GHK-fit. 830 nM Aβ globulomer shifts the activation curve to more hyperpolarized 

potentials. (C) Activation parameters from the GHK-equation yield a difference in the voltage 
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at half activation Vh after application of 830 nM Aβ globulomer, but no differences in the 

maximum conductance gmax and the slope of the I-V relationship Vc for all concentrations 

tested. (D) Steady-state activation curve after 10 min of 10 µM Aβ1-42 monomer application 

(corresponding to 830 nM Aβ globulomer complex). Aβ1-42 monomer does not influence the 

voltage at half-activation Vh. (E) Steady-state inactivation curve after 10 min of 

Aβ globulomer application. Unlike the activation curve, the inactivation curve remained 

unchanged by 830nM Aβ globulomer when compared to control. Both the voltage at half 

inactivation as well as the slope of the inactivation curve was similar between treatments. 

**p < 0.01, one-way ANOVA, Dunnett’s post hoc vs. control. (Hermann et al. (2013a, 

submitted)) 

The corresponding concentration of freshly dissolved monomeric Aβ1-42 peptide 

(10 µM) did not influence the voltage at half activation Vh (Figure 3.8D; for control / 

Aβ1-42 monomer: Vh = 0.4 ± 0.8 mV / 1.1 ± 0.7 mV; n = 4 / 5 per group), the slope of 

the first-order Boltzmann equation Vc as well as the maximal conductance gmax (data 

not shown). This indicates that the previously observed effects on Vh were specific to 

Aβ globulomer and were not caused by the Aβ peptide per se. 

In order to reveal whether Aβ globulomer also modifies voltage-dependent channel 

inactivation, we also examined the inactivation curve after application of 830 nM 

Aβ globulomer. Inactivation was induced by 3 s prepulses, which is a duration 

commonly used to inactivate calcium channels (e.g., Nimmrich et al., 2008a) and 

was, here, sufficient to induce full inactivation (see also Figure 3.11, p.75). Prepulses 

were followed by a short 20 ms test pulse to 20 mV to activate the remaining, 

non-inactivated channels. As illustrated in Figure 3.8A+B, at this test potential no or 

very few effects are observed on channel activation, so that the resulting inactivation 

curve should not be altered due to effects on channel activation. This enabled us to 

exclusively study possible effects on voltage-dependent inactivation. We found that, 

unlike the voltage at half-activation Vh, the voltage at half-inactivation Vinact remained 

similar (Figure 3.8E; for control / 830 nM Aβ globulomer: Vinact = -34.9 ± 1.0 mV / 

-35.7 ± 0.8 mV), suggesting that voltage-dependent inactivation remains unaltered by 

Aβ globulomer.  

Taken together, this indicates that Aβ globulomer increases the probability of 

P/Q-type calcium channel opening at intermediately depolarized potential values 

(between -30 and 20 mV) without affecting channel inactivation. As Aβ globulomer 
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does not uniformly modulate all voltage-dependent properties of these channels 

unspecifically, these results would support a rather distinct mechanism of action. On 

a synaptic level, this modulation of P/Q-type calcium channel function would result in 

facilitated calcium influx upon action potential arrival at the presynapse and may 

increase neurotransmitter release. 

Since block of N-type calcium channels also rescued Aβ-induced functional synaptic 

deficits in hippocampal slice cultures illustrated in Figure 3.3 (p.58), we also tested 

the effect of Aβ globulomer on the closely homologous N-type calcium channel 

(Catterall et al., 2005). As noted previously, to minimize run-down for N-type calcium 

channel recordings a holding potential of -90 instead of -80 mV was applied. After 

10 min application of 830 nM Aβ globulomer, a shift in channel activation was 

observed as visualized by the I-V relationship and the activation curve (Figure 

3.9A+B; n = 5). Quantitative analysis of activation parameters yielded a significant 

shift of Vh (Figure 3.9C; for control / 830 nM Aβ globulomer: Vh = -0.9 ± 1.0 mV / 

-8.4 ± 4.7 mV**; **p < 0.01, Student’s t-test). As for the P/Q-type calcium channel, no 

difference in the slope of the I-V relationship and the maximal conductance was 

observed (Figure 3.9C; for control / 830 nM Aβ globulomer: Vc = -6.1 ± 0.1 mV / 

-6.4 ± 0.4 mV; gmax = 101 ± 25 nS / 106 ± 45 nS). In analogy to the results obtained 

from recombinant P/Q-type calcium channels, this suggests that voltage-dependent 

N-type calcium channel opening occurs at more hyperpolarized values. At the same 

time the relative voltage range in which channel opening can occur and the absolute 

conductivity of the channels is not affected. 

We subsequently investigated inactivation properties of the N-type calcium channel 

after application of 830 nM Aβ globulomer by application of 3 s prepulses. To 

maximize the signal-to-noise ratio a test pulse potential of 10 mV was applied. At this 

potential only minor effects of Aβ globulomer on channel activation are expected 

(Figure 3.9A+B) so that predominately effects of channel inactivation can be 

analyzed. We found no significant shift of the inactivation curve compared to control 

(Figure 3.9D; for control / 830 nM Aβ globulomer: -55.1 ± 0.7 mV / -56.7 ± 0.4 mV; 

n = 3). This suggests that voltage-dependent inactivation of the N-type calcium 

channel is not influenced by Aβ globulomer, as observed for the P/Q-type calcium 

channel.  
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Figure 3.9  Modulation of N-type calcium channels b y Aβ globulomer.  

(A) I-V relationship after 10 min of Aβ globulomer application is shifted to more 

hyperpolarized potentials as compared to control application using manual whole-cell 

recordings of our N-type calcium channel expressing cell line. Upper inset: Representative 

raw trace depolarized to a test potential of -10 mV before and after application of 830 nM 

Aβ globulomer. Lower inset: Voltage protocol for I-V relationship. Cells were depolarized to 

the test potential for 20 ms. (B) Steady-state activation curve of N-type calcium channels 

calculated from A illustrates a shift to more hyperpolarized potentials after application of 

830 nM Aβ globulomer. (C) Activation parameters derived from A using the GHK-equation 

yields a left shift in voltage at half activation Vh for 830 nM Aβ globulomer, but no differences 

in the maximum conductance gmax and the slope of the I-V relationship Vc were found. 

(D) The inactivation curve remains unaltered by application of 830 nM Aβ globulomer as 

compared to control. **p < 0.01, Student’s t-test. (Hermann et al. (2013a, submitted)) 

To conclude, Aβ globulomer shifted voltage-dependent activation to hyperpolarized 

values for both the N-type and P/Q-type calcium channel, without altering 

voltage-dependent inactivation. 
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3.2.3 Effects of A β Oligomers Appear to be Independent of Channel 

State 

In order to elucidate the effect of Aβ globulomer on P/Q-type calcium channels in 

further detail, we examined its time-course and tested for possible state-dependent 

effects. For this, we compared the effect of Aβ globulomer application on 

recombinant P/Q-type calcium channels while giving test pulses either directly from 

the holding potential of -80 mV (denoted as resting state) or after a depolarizing 3 s 

prepulse (denoted as inactivated state, Figure 3.10). The prepulse voltage was 

adjusted for each cell so that about 50% of the channels were inactivated. Test 

pulses were given at -10 mV, because at this potential a strong current increase can 

be expected after Aβ globulomer application (see Figure 3.8A, p.67, and Figure 3.9A, 

p.70). Here, Aβ globulomer was applied cumulatively and incubated for only 2 min, 

as the observed current increase already reached a steady state within one or two 

sweeps given at a 12 s interval (Figure 3.10A). This, on the one hand, validates that 

the incubation times for previous patch clamp experiments on Aβ globulomer were 

sufficient. On the other hand, the lack of accumulating current increase after 

subsequent sweeps does not suggest frequency-dependent effects using these 

intersweep intervals. As expected from the previous experiments, 830 nM 

Aβ globulomer significantly increased peak currents. This increase in peak current 

was similar for resting and inactivated states, regardless of whether the different 

protocols were compared directly (data not shown) or data was corrected for 

run-down against the corresponding time-matched control (Figure 3.10A). Likewise, 

statistical analysis of the peak currents 2 min after cumulative application of 

Aβ globulomer resulted in a significant increase at 830 nM, but no significant 

differences between the two protocols (Figure 3.10B). The increase in current 

amplitude was reversible upon wash out. Currents already tended to increase at 

83 nM for both protocols compared to baseline level without reaching statistical 

significance using a two-way RM ANOVA (resting / inactivated state protocol (% to 

control): I8nM = 102 ± 3% / 102 ± 5%; I83nM = 155 ± 12% / 169 ± 16%; I830nM = 379  ± 

82%*** / 451 ± 97%***; Iwash = 127 ± 31% / 154 ± 43%;  ***p < 0.001, two-way RM 

ANOVA, Dunnett’s post hoc vs. control; resting state: n = 7 / 4 for Aβ globulomer / 

control, inactivation protocol: n = 7 / 5 for Aβ globulomer / control). 
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Figure 3.10  Effect of A β globulomer on different P/Q-type calcium channel s tates.  

(A) Time course of the peak current response after stepping from -80 to a test potential of 

-10 mV during increasing doses of Aβ globulomer at time points 0, 2, and 4 min. These 

manual whole-cell recordings were carried out by applying an inactivation protocol (black) 

and resting state protocol (grey). Data was corrected for the corresponding time-matched 

control (n = 5 and n = 4), respectively. Upper inset: Corresponding voltage protocols. 

Inactivation is induced via a 3 s prepulse at a voltage X, which was set individually for each 

cell to induce about 50% inactivation. (B) Quantification of current increase at a test potential 

of -10 mV after Aβ globulomer application derived from A. The last 3 data points were 

averaged for each concentration. 830 nM Aβ globulomer significantly increases P/Q-type 

currents at a test potential of -10 mV compared to control application for both the resting and 

the inactivation protocol. ***p < 0.001; two-way RM ANOVA, Dunnett’s post hoc vs. control. 

(Hermann et al. (2013a, submitted) 

Combining all electrophysiological findings, these data indicate that Aβ globulomer 

leads to a rapid and state-independent increase of P/Q-type and N-type calcium 

channel currents at moderately depolarized potentials. 

 

3.3 Identification of Novel State-Dependent P/Q-typ e Calcium 

Channel Blockers 

After identification that block of presynaptic calcium channels can be 

synaptoprotective and that oligomeric Aβ augments presynaptic calcium channel 
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currents, a primary (FLIPR, Dr. Mario Mezler) and a secondary compound screen 

(manual and automated patch clamp) was developed to detect, validate, and 

functionally characterize novel channel blockers. As stated in the introduction, 

state-dependence is in many cases considered a desirable drug property because it 

may induce functional selectivity thereby improving the therapeutic window. This may 

in turn increase the tolerability of the drug and overall success for future clinical trials. 

Thus, for the development of novel calcium channel blockers, potential compounds 

should be investigated and ranked by their potency not only on closed and open 

channels, but also on inactivated channels. 

 

3.3.1 Inactivation of Recombinant Channels Accumula tes over Time 

As a prerequisite for state-dependent compound evaluation an appropriate screening 

protocol needs to be chosen, which depends on the inactivation properties of the 

channel of interest. Upon action potential arrival the amount of presynaptic calcium 

channels available for opening depends on the fraction of inactivated channels. As 

HVA calcium channels, given physiological conditions, are mostly present in 

non-conducting closed states, inactivation from closed states may be of special 

importance. Therefore, understanding the precise closed-state inactivation properties 

of heterologously expressed P/Q-type channels serves to optimize functional 

screening with the aim to identify compounds targeting the inactivated state of the 

channel. 

In order to determine voltage-dependent closed-state inactivation of P/Q-type 

calcium channels we applied various depolarizing prepulse durations and potentials 

(Figure 3.11). Varying prepulse potentials were utilized to create inactivation curves, 

to qualitatively examine the rate of inactivation from open and closed channel states, 

and to determine the voltage which induces half inactivation, which might be used for 

state-dependent compound characterization. Through the variation in prepulse 

duration we attempted to determine if steady-state inactivation was observed, which 

probably decreases variability between different experiments.  

We found that inactivation was dependent on prepulse voltage in a non-trivial 

manner. Strongest inactivation was reached at intermediate to slightly stronger 

depolarized potentials between 0 mV and 20 mV whereas even more positive 
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potentials caused weaker inactivation (Figure 3.11A; n = 4-8 per group). The 

resulting U-shaped inactivation curve suggests preferential inactivation from closed 

channel states as indicated in previous publications (Patil et al., 1998; Gera and 

Byerly, 1999). These studies attributed this phenomenon to complex transition 

kinetics between several closed and inactivated states, which occur at a faster rate 

than inactivation from open states. Physiologically, this mechanism probably 

underlies the faster inactivation of HVA calcium channels during trains of action 

potentials compared to sustained depolarizations; because this mechanism implies 

that (partial) hyperpolarization between action potentials would result in more 

channel inactivation compared to a constant sustained depolarization. Detection of 

this complex and physiologically relevant property indicates that our recombinant 

P/Q-type calcium channels exhibit proper state transitions.  

As Vinact, the voltage at half inactivation, was shifted depending on prepulse length in 

Figure 3.11A, we attempted to find out whether steady-state inactivation could be 

obtained with longer prepulses. For this, 10 s and 100 s prepulses were applied 

using an intersweep interval of 120 and 220 s, respectively, to allow for recovery from 

inactivation between sweeps. Even with these long prepulses, no steady-state 

inactivation was obtained, which is shown in Figure 3.11B by the linear correlation of 

Vinact with the logarithmic prepulse length (r2 = 0.97; slope = -13.9 ± 1.1). The linearity 

implies that a 10-fold increase in prepulse duration shifts Vinact by about -13.9 mV to 

more hyperpolarized values and that no steady-state inactivation can be obtained 

within the range of prepulse durations tested here. 

As elaborated in the discussion, for development of AD-related therapeutics we 

prefer to characterize state-dependent rather than use-dependent compound 

properties. To this end, it was determined whether the hyperpolarizing period to 

-80 mV between sweeps was sufficient for recovery from inactivation. Figure 3.11C 

shows a systematic comparison of inter-sweep intervals of 12 and 120 s in a protocol 

with prepulses of 3 s duration. The resulting inactivation curves were almost identical 

(Vinact = -22.6 ± 0.7 mV / -22.1 ± 0.7 mV for 12 / 120 s intersweep interval; n = 8 / 4). 

Thus, intervals of 12 s between depolarizing steps allow full recovery from 

inactivation at 3 s prepulses. Steady-state inactivation can involve multiple states, 

affecting the dependence of inactivation from prepulse duration. We therefore tested 

the degree of inactivation at different prepulse lengths (prepulse potential -30 mV). 
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Figure 3.11  Inactivation properties of P/Q-type ca lcium channels.  

(A) Voltage-dependent inactivation of peak currents applying manual whole-cell recordings at 

different prepulse lengths using test pulses from -80 to 20 mV for 20 ms (see inset). 

Inactivation curve dependency on prepulse length (in s: ● 3, ∆ 1, ▼ 0.3, ◊ 0.1, x 0.03). Solid 

lines represent first-order Boltzmann fit of data for prepulses from -80 up to 20 mV. Note 
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incomplete inactivation for short prepulses ≤ 1 sec and decrease of inactivation at highly 

depolarized prepulse potentials. (B) Potential of half-maximal inactivation Vinact’ (calculated 

from A and additional inactivation curves utilizing longer prepulse durations) vs. prepulse 

length (logarithmic scale). The solid line represents the best linear fit and reveals a strong 

correlation (r2 = 0.97). (C) Increasing the interpulse interval from 12 (●, black) to 120 s (○, 

grey) does not shift the inactivation curve at a prepulse length of 3 s. Lines represent the 

first-order Boltzmann fit. Inset: Corresponding voltage protocol. (D) Inactivation vs. prepulse 

duration (prepulse potential -30 mV, see inset). Increasing prepulse length from 1 to 300 s 

induced increasing levels of inactivation (n = 5-7). Data fit with a double exponential (solid 

line; r2 = 0.89) and single exponential (dotted line; r2 = 0.87) calculated from data points at 

prepulse lengths ≤ 10 s. (E) Recovery from inactivation after a 2 min re-polarization phase, 

same experiments as in D. Inactivation was fully reversible after 30 s prepulses, but not 

300 s. Inset: voltage protocol. **p < 0.01, Student’s t-test. (Hermann et al. (2013b)) 

Indeed, inactivation at prepulse length >10 s could only be poorly fit by a first order 

exponential equation (Figure 3.11D, dotted line; n = 5-7 per prepulse duration), in 

contrast to a double exponential equation (solid line). This suggests that inactivation 

might be mediated by two kinetically different processes, i.e. by fast and slow 

inactivation (see chapter 1.2.3, p.24ff). In the same experiment, we tested for 

recovery from prolonged inactivation. P/Q-type currents were inactivated by 

prepulses of 30 or 300 s duration, respectively. We then re-polarized the cell to -80 

mV for 2 min applying test pulses to 20 mV every 12 s (Figure 3.11E). Full recovery 

of the initial current amplitude was obtained for prepulses lasting 30 s, whereas 

prolonged prepulses of 300 s duration caused incomplete recovery (current recovery 

after inactivation: 101.0 ± 3.9% / 63.5 ± 7.3%** for 30 s / 300 s prepulse duration; 

**p < 0.01, Student’s t-test; n = 6 / 5; Figure 3.11E). Thus, prolonged depolarizing 

prepulses cause lasting inactivation of some fraction of the P/Q-type calcium channel 

mediated current indistinguishable from run-down. Although time-matched vehicle 

controls might compensate for that, this decay in current amplitude would 

nevertheless decrease the signal-to-noise ratio and increase cell-to-cell variability, 

which would be unfavorable for assay development.  

Taken together, our recombinant P/Q-type calcium channels resemble complex 

inactivation properties, which are a characteristic feature of functional HVA calcium 

channels (Patil et al., 1998). Moreover, kinetics and recovery of inactivation strongly 

depend on the choice of voltage- and time-parameters. We therefore decided to 
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apply 3 s prepulses for future studies, which is sufficient to induce complete but still 

reversible inactivation, 

 

3.3.2 Channel Activation, but not Inactivation is S imilar between Manual 

and Automated Patch Clamp 

On the basis of the previous characterization of the complex inactivation behavior of 

our recombinant cell line, we aimed to develop a protocol for reproducible and 

reversible channel inactivation, suited for pharmacological screening purposes. The 

more pharmacological patch-clamp experiments are carried out the higher the 

chance becomes to successfully identify novel, potent (state-dependent) compounds. 

In order to increase the number of functional pharmacological experiments, 

automated patch clamp is being applied, since manual electrophysiology lacks 

sufficient throughput. For this purpose we aimed to establish and validate a 

state-dependent screening protocol for automated patch clamp which mimics manual 

patch clamp conditions as closely as possible.  

We first implemented and validated measurements on recombinant P/Q-type calcium 

channels on the automated system using voltage clamp analysis. Initially there was a 

strong rundown observed which was alleviated by addition of 5 mM BAPTA to the 

internal solution (data not shown). Without induction of P/Q calcium channel 

expression by tetracycline no appreciable current was obtained at any voltage steps, 

whereas after tetracycline-induction current traces were observed with a similar 

shape compared to previous manual patch clamp experiments on P/Q-type calcium 

channels (Figure 3.12A; middle / lower panel, respectively). This was also true for the 

I-V relationship, which revealed the maximal peak current at depolarization steps 

from -80 to 10 or 20 mV (Figure 3.12B, n = 10 / 22 for non-induced / induced cells, 

respectively).  

After establishing the automated recordings from our P/Q-type calcium channel 

expressing cell line, we compared these measurements with manual patch clamp in 

detail. At first, we analyzed P/Q-type calcium channel activation by application of the 

same voltage protocols between the platforms, which yielded identical results for 

I-V relationships and the resulting activation curves (Figure 3.13A+B; data also 

shown in Figure 3.5B, p.61, and Figure 3.12B, below). Quantitative parameters were 
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not significantly different for the two patch-clamp approaches (Figure 3.13C): voltage 

at half activation (Vh) was 6.1 ± 0.8 mV (manual; n = 26) and 7.2 ± 1.0 mV 

(automatic; p = 0.39, Student’s t-test; n = 22); slope of the I-V relationship (Vc) was 

-5.8 ± 0.1 mV (manual, n = 26) and -6.2 ± 0.2 mV (automatic, n = 22; p = 0.10); and 

maximal conductance (gmax) yielded 230 ± 33 nS (manual) and 301 ± 32 nS 

(automatic; p = 0.14). This shows that automated patch clamp yields identical results 

regarding P/Q-type calcium channel activation compared to manual patch clamp and 

is therefore applicable for investigation of channel activation.  
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Figure 3.12  Automated electrophysiological recordi ngs from P/Q-type calcium 

channels.  (A) Superimposed current traces from cells without (middle panel) and 48 h after 

induction with tetracycline (lower panel) obtained from automated whole-cell recordings. 

Upper panel: Corresponding voltage protocol for I-V relationships during automated 

whole-cell recordings. (B) Comparison of I-V relationships from non-induced (∆) and 

tetracycline-induced cells (●). Only for the latter group inward currents were observed at 

potentials typical for HVA P/Q-type calcium channels. (Mezler et al. (2012b)) 

Likewise, inactivation properties were compared between both systems using the 3 s 

prepulse protocol. In contrast to the activation parameters, voltage at half inactivation 

(Vinact) was significantly more negative in the automatic patch clamp system (Figure 

3.13E; manual / automatic: Vinact = -22.5 ± 1.8 mV / -33.6 ± 0.9 mV***, ***p < 0,001, 

Student’s t-test; n = 8 / 5). In order to elucidate the mechanism underlying this 

difference, we also used the same recording solutions for both systems. However, 
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this did not abolish or reduce the difference in inactivation curves (Figure 3.13E; Vinact 

remaining at -23.8 ± 1.1 mV; n = 6). 
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Figure 3.13  Validation of the automated patch clam p recordings for secondary 

screening on P/Q-type calcium channels.  (A) Comparison of the I-V relationship of the 

manual (●, solid lines, data from Figure 3.5B) and the automated (Patchliner) system 

(□, dotted lines, data from Figure 3.12B) yield similar results across all voltage-steps applied. 

The lines represent the fit obtained from the GHK-equation. Inset: Corresponding voltage 

protocol. (B) Steady-state activation curves obtained from A. Lines were calculated from a 

first-order Boltzmann equation. No differences were observed between the systems. 

(C + D) Activation parameters Vh, Vc, and gmax obtained from A. Solid bars: manual patch 

clamp experiments; open bars: automatic patch clamp experiments. No significant 
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differences between both systems. (E) Inactivation curves can be different between the 

systems depending on the cell treatment prior to the experiment. Using the standard 

procedures (see methods), voltage at half inactivation (Vinact) occurs at about 10 mV more 

hyperpolarized potentials for automatic (□) as compared to manual (●) patch clamp 

experiments. Use of “Patchliner solutions” (see methods) in manual experiments does not 

eliminate this difference (∆). However, treatment of cells with Accutase (○) or trypsin (■) prior 

to manual recordings shifts Vinact to values similar to automatic patch clamp experiments. 

(F) Comparison of pharmacological modulation between both techniques. After 5 min 

application of the specific P/Q-type calcium channel blocker ω-agatoxin IVA currents were 

similarly blocked in both systems (● manual / □ automated: IC50 = 320 / 411 nM). (Hermann 

et al. (2013b)) 

We next tested for effects of the protease treatment, which was required to suspend 

the cells for automatic patch clamp recordings. When cells were dissociated with 

Accutase prior to manual recordings, Vinact was shifted to more hyperpolarized values 

similar to the results obtained with the automated system (Vinact = -33.6 ± 1.9 mV, n = 

4). A similar treatment of cells with trypsin also shifted inactivation voltage (Vinact = -

35.2 ± 1.5 mV, n = 3) to similar values as observed on the automated patch clamp 

platform. Thus, protease treatment of cells prior to recording causes a 

hyperpolarizing shift of about 10 mV in voltage-dependent inactivation properties of 

recombinant P/Q-type calcium channels. This shows that cell handling is crucial for 

the function of the P/Q-type calcium channel. These results further indicate that 

protocols designed to detect state-dependent compounds via induction of voltage-

dependent inactivation might need to be adjusted for automated patch clamp 

experiments 

In order to test whether protease cell treatment cells might also interfere with 

pharmacological modulation, we compared the potency of ω-agatoxin IVA (which 

binds to an extracellular domain) between manual (non-protease treatment) and 

automatic (protease treatment) recordings. Both approaches yielded similar 

concentration-dependent block of P/Q-type currents after 5 min of single-dose 

application (Figure 3.13F; manual / automated patch: IC50 = 320 ± 25 / 411 ± 111 nM, 

n = 4-7 / 4-6 per concentration). These values are in line with previous studies 

(Bourinet et al., 1999; Hans et al., 1999). This indicates that sensitivity to 

pharmacological modulation might not be altered due to protease cell treatment 
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implying that the automated patch clamp system is suited for pharmacological 

compound investigation. 

 

3.3.3 Compound Screening Reveals Novel Channel Bloc kers 

For detection of novel P/Q-type calcium channel modulators we established a 

screening cascade published in Mezler et al. (2012b). It comprises a FLIPR-based 

primary high throughput screening which identified 3262 validated hits, which 

inhibited the calcium signal below 10 µM in the respective concentration response 

evaluation. As part of this PhD thesis, depolarization of P/Q-type calcium channels 

under FLIPR assay conditions were validated electrophysiologically and following the 

determination of IC50 values by the FLIPR-based assay, an electrophysiological 

counter screen was established for post-hoc automated patch clamp analysis.  

Figure 3.14  Membrane potential of 

P/Q-type calcium channels during 

FLIPR assay conditions.  Investigation of 

the membrane potential under varying 

external KCl concentrations using manual 

perforated patch clamp recordings 

Increasing external KCl concentration of 

the standard HBSS solution to 60 mM led 

to profound membrane depolarization, 

which was reversible upon washout of 

KCl. (Mezler et al. (2012b)) 

The recombinant cell line (clone K8-11) was utilized for a FLIPR-based primary 

screening assay to detect novel LMW P/Q-type calcium channel blockers (performed 

by Dr. Sujatha Gopalakrishnan). To prepare for this assay, we tested if the respective 

cell stimulation with KCl results in a sufficient depolarization of the cell for opening of 

the P/Q-type calcium channels. Thus, we analyzed cells by using the perforated 

patch-technique in current-clamp mode (Figure 3.14). The baseline potential in 

external HBSS medium was recorded for at least 5 min after perforation of the 

membrane was obtained. Increasing the external concentration of KCl from 5.3 mM 

in the normal HBSS buffer to 60 mM resulted in a fast depolarization, which was fully 
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reversible upon KCl washout (Vmem = -30.8 ±1.8 mV / -7.6 ± 1.3 mV*** / -28.77 ± 1.7 

mV for HBSS / HBSS with 60 mM KCl / HBSS; One way ANOVA with Dunnett’s post 

test, ***p < 0.001; n = 6). Taken together with the voltage-dependence of P/Q-type 

calcium channel activation (Figure 3.5B, p.61), this demonstrates that the cells 

sufficiently depolarized for P/Q-type calcium channel opening after KCl-induction 

under FLIPR-assay conditions. Furthermore, these experiments also show that our 

cells have a rather depolarized resting membrane potential, typical for HEK293 cells 

(Thomas and Smart, 2005), before KCl-induction. Considering the voltage-

dependence of closed-state inactivation obtained from electrophysiological patch 

clamp experiments illustrated in Figure 3.11 (p.75), a large fraction of the channels is 

probably inactivated during FLIPR baseline conditions. This implies that compounds 

with high affinity to inactivated P/Q-type calcium channels are likely to be detected in 

the FLIPR assay. 

In order to detect compounds that bind to the inactivated state of the channel in a 

secondary electrophysiological screen, we designed an automated patch assay with 

inactivating prepulses to allow for the detection of both state-independent and state-

dependent compounds. Initial attempts to develop a protocol where inactivation was 

induced with a constant moderate depolarization (e.g., a depolarizing shift in holding 

potential) resulted in unstable currents which ran down over time (similar to manual 

patch clamp recordings; see Figure 3.11D, p.75). A series of experiments determined 

that a depolarizing prepulse length of 3 s caused channel inactivation while 

maintaining stable current induction (data not shown). As described in Figure 3.13E 

(p.79), protease cell treatment, applied to suspend cells prior to automated patch 

clamp recordings, shifts inactivation to hyperpolarized potentials by about -10 mV. 

We therefore decided to shift the holding potential from -80 to -90 mV. As the 

inactivation curve (induced by a single prepulse for each potential) showed no 

significant inactivation at -80 mV this hyperpolarizing shift to -90 mV might not have 

been necessary. However, on the one hand, we wanted to avoid any slow 

accumulating inactivation which would be indistinguishable from run-down as 

illustrated in Figure 3.11D+E (p.75). On the other hand, it can be speculated that 

measurements might become more comparable between the methods if the potential 

difference between holding potential and Vinact remain similar. The resulting final 

screening protocol is depicted in Figure 3.15A. Based on our previous findings 

illustrated in Figure 3.13A (p.79), test pulses were applied at 20 mV in order to yield 
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the maximum current amplitude and signal-to-noise ratio. A 12 s interpulse interval 

was chosen, because at this time no use-dependent inactivation was observed 

(Figure 3.11C, p.75). A prepulse duration of 3 s was chosen, which can be sufficient 

to fully inactivate the channel, but at the same time does not induce (a detectable 

amount of) irreversible slow inactivation or run-down (Figure 3.11A+E, p.75). 

However, it needs to be noted that this duration does not induce steady-state 

inactivation (Figure 3.11B, p.75). Individual inactivation of each cell was estimated 

based on the current amplitudes during the prepulse protocol relative to the currents 

produced during an initial baseline period where no prepulses were applied. If 

necessary, the exact prepulse potential was adjusted for each cell individually so that 

the resulting inactivation was around 50%.  

Three control washing steps applying extracellular bath solution were included: the 

first started 1 min after successful whole-cell formation, the next started 1 min after 

the first washing was finished and the last 1 min after the start of the prepulse 

protocol. These steps were implemented because changes in current amplitude were 

occasionally observed for the first control application (10-20% of cells). In rare cases 

changes were observed after the second or third control application. In this case, 

cells were excluded from the analysis (less than 5% of cells, data not shown). Some 

run-down of current still occurred over time, so time matched control cells were 

recorded for run-down correction. To further minimize artifacts, we chose to perform 

single dose experiments, avoiding a cumulative application protocol that is often used 

for screening purposes. 

The stability of the current under different concentrations of DMSO was also 

examined while continuously applying the prepulse protocol (Figure 3.15B). This was 

necessary because compound aliquots were dissolved at a concentration of 10 mM 

in 100% DMSO. We found that run-down remained unchanged after an application 

of DMSO for 2 min as the current amplitude did not further decrease significantly at 

any concentration, and only a (non-significant) trend was observed for 0.3% DMSO 

(100.3 ± 5.1% / 98.7 ± 3.7% / 86.2 ± 5.4%; for 0.01 / 0.1 / 0.3% DMSO; p = 0.17; 

one-way ANOVA; n = 21 / 51 / 26). Thus, 0.1% DMSO was used as a control for all 

compound applications up to 10 µM. Multiple additions of the same compound on 

the Patchliner did not significantly increase current block, suggesting that unspecific 

adsorption did not occur on the Patchliner chips or pipette. 
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Figure 3.15  Implementation of patch clamp recordin gs to support the discovery of 

novel P/Q-type calcium channel blockers.  (A) Experimental flow scheme including the 

voltage protocol for analysis of P/Q-type calcium channel block on the automated system. 

Washing steps were included to exclude application artifacts. The prepulse potential X was 

set so that about 30-70% of the current was inactivated and only one concentration was 

applied per cell. (B) Run-down was only mildly but not significantly affected by increasing 

concentrations of DMSO and compound concentrations up to 30 µM could be used in this 

electrophysiological assay (□ 0.01% DMSO, ■ 0.1% DMSO, ■ 0.3% DMSO). (C) Functional 

single-dose validation of high throughput screen and hit-to-lead hits on the automated 

system. Active compounds decrease currents compared to control application. IC50 values 
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were determined for compounds A-D using automated patch clamp. (D) Evaluation of 

inhibition of one selected compound (cpd A) by manual patch-clamp. The concentration-

dependent block was normalized to time-matched vehicle controls of 0.1% DMSO 

(● inactivation and ○ resting state protocol). The protocol is shown on the right. In this 

manual patch clamp experiment holding potential was set to -80 mV (as described in the 

text). (E) Correlation of IC50 values from automated voltage clamp recordings with FLIPR 

data. The solid line represents the best linear fit to the selected compounds (slope = 0.8 ± 

0.2; r2 = 0.81). Letters correspond to the compound labels shown in C. (Mezler et al. (2012b)) 

Using this inactivating prepulse protocol, we investigated a set of 27 compounds on 

the Patchliner, which were either previously identified as blockers by primary high 

throughput screening, or were representatives from the subsequent optimization 

cycles (Figure 3.15C; n = 3-9 per compound). Most compounds which blocked 

calcium influx in the FLIPR assay were active in this functional secondary 

electrophysiological analysis, which suggests that the calcium FLIPR assay is 

appropriate for identifying novel P/Q-type calcium channel inhibitors. However, a few 

compounds (4 out of 27; compound 12, 13, 23, 26), initially identified by the FLIPR 

screen did not block ≥ 25% of the current amplitude on the Patchliner at 10 µM. Due 

to this (arbitrary) cut off, these were considered as false positives from the FLIPR 

and were excluded from further analysis. To control whether our incubation time 

would be sufficient for reaching steady-state inhibition, we followed the time course of 

two compounds by manual patch clamp analysis, which were subsequently chosen 

for characterization of state-dependent properties. One example (compound A) is 

shown in Figure 3.15D (n = 3 per group) illustrating that a compound incubation time 

of 2 min turned out to be largely sufficient for reaching steady state inhibition 

especially when using the inactivated protocol. 

In order to validate the relevance of IC50 determination in the FLIPR assay, we 

compared IC50 values of compounds detected by the primary FLIPR-based screen 

with electrophysiologically determined potencies by automated patch clamp. IC50 

values measured on the automated patch clamp system correlated with the FLIPR 

results (Figure 3.15E, r2 = 0.81) and thus validated the use of FLIPR for analyzing the 

large amount of analogues during the hit-to-lead phase. In addition, compounds were 

more potent in the FLIPR screen compared to automated electrophysiology, which 

might be caused by different levels of inactivation as described in the discussion. 
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3.3.4 Characterization of State-Dependency of Selec ted Compounds 

Lead candidates deriving from the chemical compound optimization process were 

subsequently analyzed for level of state-dependence by manual patch clamp 

analysis and advanced into the downstream screening cascade. Searching for state-

dependent channel blockers requires protocols with high throughput, reliable 

inactivation, and fast recovery. For characterization of candidate substances, we 

therefore used prepulses of 3 s duration. Based on the recombinant P/Q-type 

calcium channel inactivation properties shown previously, this value represents an 

optimal compromise between full inactivation as well as fast and complete recovery. 

For assessment of state-dependent properties, we therefore we applied the prepulse 

and resting protocol illustrated in Figure 3.16A using manual patch clamp.  

The prepulse potential was adjusted for individual cells to induce about 50% of 

current inactivation. Two substances were tested for state-dependent inhibitory 

potency. They are termed A-1048400 and compound A (denoted as compound 1 and 

2 in Figure 3.15C, p.84, respectively) and were originally identified by 

pharmacological drug discovery on recombinant N-type and P/Q-type calcium 

channels (Mezler et al., 2012b; Scott et al., 2012). In manual patch clamp 

experiments, currents of sufficient amplitude were recorded for up to 6 min in drug-

free control solution (Figure 3.16B+C). To adjust for run-down, all amplitudes were 

corrected for the corresponding time-matched vehicle controls (n = 3 for each group). 

In a FLIPR-based screen the compound A-1048400, was found to decrease calcium 

influx with an IC50 = 1.2 / 2.1 µM  for recombinant P/Q-type / N-type / T-type calcium 

channels and compound A with an IC50 = 2.1 / 1.8 / 49 µM for recombinant P/Q-type / 

N-type / T-type calcium channels (data not shown). 

In our electrophysiological assessment A-1048400 blocked P/Q-type currents in a 

state-dependent manner. In resting conditions (without prepulse) and (partially) 

inactivated conditions the IC50 was estimated at 13.1 / 2.7 µM (Figure 3.16B; n = 3 

each) yielding a 5-fold shift in potency. For compound A, the amount of current block 

was less dependent on the channel state, reaching half-inhibiting concentrations of 

IC50 = 9.8 / 5.3 µM (~ 2-fold difference) for the resting / inactivated state, respectively 

(Figure 3.16C, n = 3 each). For comparison, the clinically used drug verapamil is 

considered to be state-dependent. After induction of ~ 50% closed-state inactivation 

as in this study, the state-dependence of verapamil was reported as ~3-4 fold for T-
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type calcium channels (Freeze et al., 2006). Data from Nawrath and Wegener 

(1997), who examined the block of verapamil on the open state including closed-

state and open-state inactivation in parallel for the L-type calcium channel, suggests 

more pronounced state-dependent effects (although not explicitly quantified). Trox-1, 

a state-dependent calcium blocker currently in development for neuropathic pain, 

was described as about 6-fold state-dependent by electrophysiological experiments 

(Abbadie et al., 2010). 
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Figure 3.16  Characterization of state-dependent pr operties of two novel P/Q-type 

calcium channel blockers.  (A) Experimental protocol including cumulative compound 

applications and pulse protocols. Pre-pulse voltage was adjusted to yield about 30-70% 

channel inactivation. For analysis of block at resting channel state, prepulses were omitted 

before stepping to the test potential at 20 mV. (B) The concentration-response curve 

obtained from manual patch clamp recordings on A-1048400 reveals a 5-fold difference in 

potency (○ resting / ● inactivation protocol: IC50 = 13 / 2.7 µM). The concentration dependent 

block was normalized to the corresponding time-matched vehicle control for both resting and 

inactivation conditions. (C) Concentration-response curve for compound A reveals a 

moderate 2-fold shift in potency between the protocols (○ resting / ● inactivation protocol: 

IC50 = 9.8 / 5.3 µM). (Hermann et al. (2013b)) 
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Our results indicate that this protocol is suitable to discriminate between P/Q-type 

calcium channel blockers with different state-dependent potencies. In addition, two 

state-dependent tool compounds were identified after primary and secondary 

screening efforts (Mezler et al., 2012b) which can be tested for their potential to 

reverse Aβ-induced synaptic deficits in hippocampal synaptic transmission. 

 

3.4 State-Dependent Block of Calcium Channels Preve nts 

Oligomeric A β-induced Synaptic Deficits 

Due to automated secondary screening and subsequent manual patch clamp 

analysis we were able to identify and validate two novel P/Q-type calcium channel 

blockers and quantify their state-dependent properties. Subsequently, it was 

addressed whether these compounds could also rescue Aβ globulomer-induced 

deficits in synaptic transmission in a similar fashion as the state-independent peptide 

toxins tested previously.  

Considering our previous patch clamp results on recombinant channels (see chapter 

3.3.4, p.86ff), we applied concentrations of the compounds slightly below their IC50 

for inactivated channel states. Assuming that compound potencies are similar for 

native channels, a significant fraction of inactivated channels, but only a minor 

fraction of closed channels should be inhibited in organotypic slice cultures.  

We found that 1 µM of compound A-1048400 and 3 µM of compound A was sufficient 

to completely prevent Aβ-induced functional deficits, respectively (Figure 3.17A+C; n 

= 8-9 per group each). The observed synaptoprotective effect was similar to the 

specific state-independent peptide blockers shown in Figure 3.2 (p.57) and Figure 

3.3 (p.58). Neither LMW compounds modulated synaptic transmission when applied 

alone (Figure 3.17B+D; n = 8-9 per group).  

In conclusion, Aβ-induced functional deficits in synaptic transmission can be reversed 

with state-independent as well as state-dependent calcium channel blockers. Thus, 

introducing state-dependence, which may represent a more favorable side effect 

profile, does not impair the synaptoprotective effect of calcium blockers. While 

maintaining their therapeutic potential, this may reduce unwanted effects on 
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physiological basal synaptic transmission and might be beneficial for drug 

development of novel AD drugs, as described in the introduction. 
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Figure 3.17  State-dependent P/Q-type calcium chann el block prevents A β globulomer-

induced functional synaptic deficits.  (A) Application of 1 µM compound A-1048400, a 

LMW compound which was previously identified as 5-fold state-dependent, fully prevents 

Aβ globulomer-induced deficits in excitatory synaptic transmission of organotypic 

hippocampal slice cultures. (B) 1 µM Compound A-1048400 does not alter synaptic 

transmission when applied alone. (C) Likewise, 3 µM compound A, which is only 2-fold state-

dependent, also reverses Aβ globulomer-induced deficits. (D) No intrinsic effects on the 

input-output curve were detected after application of 3 µM Compound A. *p < 0.05, two-way 

RM ANOVA, Holm-Sidak post hoc. (Hermann et al. (2013a, submitted)) 
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4 Discussion 

This study investigated a novel molecular mechanism of AD pathology, namely 

facilitation of presynaptic calcium channel currents by oligomeric Aβ. It furthermore 

showed that functional synaptic deficits can be prevented in nervous tissue by 

blocking presynaptic ion channels including the P/Q-type calcium channel. As this 

channel is preferably expressed in the CNS (Luebke et al., 1993; Stea et al., 1994), it 

would be particularly attractive to target this channel with future therapeutics. We 

therefore suggest P/Q-type calcium channel blockers as a possible therapeutic 

strategy for the treatment of AD.  

Beyond AD, P/Q-type calcium channels have also been implicated in a number of 

neurological diseases including migraine (Tottene et al., 2002) and epilepsy 

(Pietrobon, 2005). Block of P/Q-type calcium channels was also found to decrease 

seizure activity in mice (Jackson and Scheideler, 1996). At least for AD no effective 

therapy is available. Thus, this study here describes an electrophysiological 

secondary screen for the identification of novel P/Q-type calcium channel inhibitors.  

State-dependence of modulators, which predominantly bind to inactivated channels, 

might aid to achieve functional selectivity. This is because they are hypothesized to 

preferentially bind to pathologically overactivated channels rather than to 

physiologically activated channels. Therefore this property is believed to enhance the 

therapeutic potential of a drug candidate (Winquist et al., 2005). In order to detect 

state-dependent compounds, an appropriate (screening) protocol needs to be 

applied. Ideally, this protocol should closely mimic the pathological condition which 

often includes channel inactivation. This can only be achieved if inactivation of the 

respective channel complex has been previously characterized under (screening) 

assay conditions. We found that inactivation may be reversible or irreversible, 

depending on the applied depolarization protocol. In addition, channel activation was 

identical for manual and automated patch clamp, whereas voltage-dependent 

inactivation varied between the systems. Based on these results, we were able to 

establish a robust inactivation protocol suitable for screening, which in the end 

proved to be capable of detecting novel state-dependent P/Q-type calcium channel 

blockers. This functional assay was implemented into the hit-to-lead phase of an 
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active drug discovery program for the development of P/Q-type calcium channel 

blockers. 

 

4.1 Overactivation of Presynaptic Calcium Channels as a Potential 

Molecular Mechanism in AD 

Following the first suggestions that oligomeric Aβ aggregates may cause synaptic 

deficits in AD, there has been an extensive search for the underlying molecular 

mechanism (Walsh and Selkoe, 2007). As discussed below, several proteins that are 

involved in synaptic transmission have been suggested to be modulated in their 

function. 

Oligomeric Aβ was found to alter presynaptic function by an impairment of vesicle 

release at axon terminals in hippocampal neurons through depletion of dynamin 1, a 

protein involved in vesicle recycling (Kelly et al., 2005; Kelly and Ferreira, 2007). This 

finding was supported by detection of dynamin cleavage in APP-overexpressing mice 

(Kelly et al., 2005) and AD patients (Yao et al., 2003). This cleavage may in turn be 

mediated by calpain (Kelly et al., 2005), a protease also associated with 

neurodegeneration (Nimmrich et al., 2008b).  

NMDA receptors may represent another target for Aβ oligomers, as impaired 

presynaptic vesicle release can be prevented by NMDA receptor blockers (Kelly and 

Ferreira, 2006). This may be explained by findings that NMDA receptors are also 

located presynaptically (Berretta and Jones, 1996; Charton et al., 1999) affecting 

vesicle release (Woodhall et al., 2001). Moreover, after application of Aβ oligomers, 

Shankar et al. (2007) demonstrated an NMDA-mediated decrease in calcium influx 

into dendritic spines and Lacor et al. (2007) observed a downregulation of NMDA 

receptors. Furthermore, studies on Xenopus oocytes suggest that Aβ induces 

calcium influx through NMDA receptors in the absence of glutamate (Texido et al., 

2011) but does not facilitate calcium influx when glutamate is present (Mezler et al., 

2012a). These effects on NMDA receptor currents may both increase and decrease 

vesicle release. On the one hand, this might possibly induce vesicle release by a 

calcium influx even under non-excited conditions (in the absence of glutamate). On 

the other hand, constantly elevated intracellular calcium levels may decrease the 
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dynamic range of changes in calcium concentration during arrival of an action 

potential, which in turn may result in decreased vesicle release. Taken together, Aβ 

oligomers may modulate NMDA receptor function, thereby altering presynaptic 

vesicle release. 

The involvement of HVA calcium channels in the pathology of AD was suggested by 

Sberna et al. (1997). They described that the peptide fragment Aβ25-35 increased 

activity of acetylcholineesterase by facilitating calcium influx through L-type, but not 

P/Q-type and N-type calcium channels in embryonal carcinoma cells. In contrast, 

Bobich et al. (2004) observed an increase in neurotransmitter release probability 

which they attributed to an Aβ-mediated increase in N-type rather than P/Q-type and 

L-type calcium channel currents. In line with this, presynaptic modulation by Aβ was 

also reported to increase the release probability at presynaptic terminals leading to 

an increased network activity and lowered synaptic plasticity (Abramov et al., 2009). 

In addition, several studies in the past suggested that acute and chronic application 

of Aβ peptide influences calcium channel conductance (He et al., 2002). Both 

presynaptic P/Q-type and N-type (MacManus et al., 2000; Ramsden et al., 2002) as 

well as postsynaptic L-type voltage-gated calcium channel currents (Ueda et al., 

1997; Kim and Rhim, 2011) were reported to be modulated. As noted in the 

introduction, some of these conflicting results may be caused by the use of different 

Aβ fragments and poorly defined Aβ preparations probably containing a mixture of 

Aβ species, which may or may not be relevant in the pathology of AD. We here 

further investigated the functional relevance of these findings on the network and the 

cellular level, using Aβ globulomer, a stable, well-defined, and pathologically relevant 

oligomeric Aβ preparation (Barghorn et al., 2005; Gellermann et al., 2008). 

 

4.1.1 Presynaptic Calcium Channel Block Reverses Ol igomeric 

Aβ-induced Deficits in Synaptic Transmission 

On the network level we tested whether block of HVA calcium channels may protect 

from synaptic deficits induced by oligomeric Aβ in organotypic hippocampal slice 

cultures. Previously, Nimmrich et al. (2010) showed that overnight incubation of 

these slice cultures with Aβ globulomer causes synaptic decline, as observed by a 

decrease in evoked glutamatergic transmission. They proposed that such a 
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functional decline might be a consequence of several detrimental mechanisms 

including excitotoxicity, which was observed after Aβ application in vitro and in vivo 

(Harkany et al., 2000). Besides other mechanisms, this in turn may potentially be 

caused by overactivation of HVA calcium channels as observed by Mezler et al. 

(2012a). Therefore, an initial increase in calcium channel function can in the end lead 

to decreased excitatory synaptic transmission on the network level. If so, decreasing 

calcium influx through a specific silencing of overactivated (presynaptic) calcium 

channels might prevent these functional deficits. 

Here we found that specific block of either the presynaptic P/Q-type or N-type 

calcium channel could in fact prevent oligomeric Aβ-induced deficits in excitatory 

synaptic transmission in organotypic hippocampal slice cultures. This indicates that 

block of these calcium channels may compensate Aβ oligomer-mediated effects. 

These may either be specifically mediated via P/Q-type and N-type calcium 

channels, which are presynaptically expressed at the Schaffer collateral-CA1 

synapse (Westenbroek et al., 1992; Westenbroek et al., 1995), or via other 

(unrelated) mechanisms. The former hypothesis is supported by the observation that 

pre-application of a P/Q-type calcium channel antibody also prevented Aβ oligomeric 

deficits. This beneficial effect might have been mediated by direct channel inhibition 

or preoccupation of the possible Aβ globulomer binding site(s). These findings are in 

line with reports from other groups showing that block of presynaptic calcium 

channels can prevent functional deficits and neuronal decline. For example, 

neuroprotective effects of both peptidic and LMW calcium channel blockers have 

been demonstrated in several models, including neuronal ischemia in vitro (Small et 

al., 1995) and in vivo (Valentino et al., 1993) as well as brain injury (Verweij et al., 

1997; Berman et al., 2000). Moreover, a common downstream pathway for a wide 

variety of neurological disorders may be an increased release of excitatory amino 

acids (Lipton and Rosenberg, 1994), which can be inhibited by P/Q-type calcium 

channel blockers during neuronal overactivation in vivo (Wu et al., 1995). This may 

explain why P/Q-type calcium channel blockers also protect against several neuronal 

insults (Jackson and Scheideler, 1996; Asakura et al., 2000) and may also be 

relevant for AD. This is because diminishing neuronal spike activity by levetiracetam 

– which also decreases P/Q-type calcium currents – not only reverses synaptic 

deficits, but also ameliorates learning and memory impairment in APP-transgenic 

mice (Sanchez et al., 2012).  
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Next, we tested the effect of nimodipine (10 µM), which has shown limited efficacy in 

clinical trials regarding dementia (Birks and López-Arrieta, 2002). This LMW HVA 

calcium channel blocker was described both as specific (Furakawa et al., 1999) and 

non-specific (Diochot et al., 1995) for L-type calcium channels, which are 

predominantly located postsynaptically (Castillo et al., 1994; Wheeler et al., 1994). In 

contrast to the specific presynaptic calcium channel blockers, this compound did not 

prevent Aβ-induced functional deficits in slice cultures. The potency and selectivity of 

nimodipine greatly varies between previous reports. It has been claimed by 

Mansvelder et al. (1996) as up to eight orders of magnitude selective for L-type 

calcium channels in rat pituitary melanotropic cells (L-type IC50 = 3 pM; P/Q-type 

IC50 = 500 nM). Another study, which observed current block at 10 µM only for L-type 

but not other HVA calcium channels on recombinantly expressed channels in 

Xenopus oocytes, also reported nimodipine as selective (Furakawa et al., 1999). 

However nimodipine may be less selective, because Diochot et al. (1995) reported 

1 µM as IC50 for L-type calcium channels but also a 51% decrease in current 

amplitude at 10 µM from dorsal root ganglion neurons containing P/Q-type, N-type, 

and to a lesser extent L-type calcium channels. This may lead to two alternative 

interpretations, depending on the specificity of the compound at 10 µM in our system. 

Given that nimodipine preferentially blocked L-type calcium channels, this would 

imply that somato-dendritic intracellular calcium levels do not modulate or participate 

in the Aβ-mediated pathology of our in vitro model. Assuming that nimodipine 

unspecifically blocked all HVA calcium channels, this would suggest that additional 

postsynaptic L-type calcium channel block may dampen the beneficial effect of 

presynaptic calcium channel block. Testing another, more specific, L-type calcium 

channel blocker may address which hypothesis holds true in this in vitro model of AD. 

To conclude, based on this data it would be exciting to investigate whether more 

selective blockers may exceed the clinical efficacy of nimodipine, which could bring 

about a new generation of antidementive medicine. 

 

4.1.2 Oligomeric A β Augments Presynaptic Calcium Channel Currents 

After identification of presynaptic calcium channel block as a protective mechanism in 

oligomeric Aβ treated hippocampal slice cultures, this work attempted to elucidate the 

underlying molecular mechanism. It was recently shown that synthetic Aβ oligomers 
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(Aβ globulomer) increase P/Q-type calcium channel currents, which were expressed 

in Xenopus oocytes (Mezler et al., 2012a), suggesting that enhanced 

neurotransmitter release may underlie the decline of synaptic function following 

prolonged exposure to Aβ oligomers. We confirmed this finding in a stable 

recombinant expression system using a human-derived cell line (HEK293). We 

further found that Aβ oligomers modulate both presynaptic P/Q-type and N-type 

calcium channels. This implies that synaptic function can be altered in any brain 

region accessible to soluble oligomeric Aβ. Compared to the organotypic 

hippocampal slice culture experiments, significant effects on recombinant channels 

were only observed at a 10-fold higher concentration of Aβ (although a trend was 

observed already at similar concentrations (Figure 3.10, p.72)). The enhanced 

sensitivity of synaptic transmission to Aβ globulomer in the slice culture experiments 

may be, on the one hand, caused by the chronic and thereby longer incubation times. 

So it may be that already very subtle effects on presynaptic calcium influx will lead 

overnight to deficits in synaptic transmission. On the other hand, acute effects of Aβ 

globulomer might be more potent in native channels, as suggested by previous 

reports applying extracellular field (Barghorn et al., 2005) and patch clamp recordings 

(Nimmrich et al., 2008a). 

Before studying the effect of Aβ globulomer on calcium channel kinetics, functional 

recombinant channel expression was successfully characterized by manual whole 

cell patch clamp. The currents recorded from the α1A transfected HEK293 cell line 

after tetracycline-induction were similar to published recombinant P/Q-type calcium 

channel currents (Hans et al., 1999). Non-induced cells showed no appreciable 

current after depolarization, indicating that the current obtained in tetracycline-

induced cells was generated by charge movements through the recombinant 

P/Q-type calcium channel. Pharmacological modulation with ω-agatoxin IVA inhibited 

the depolarization-induced current within the range of published values (Bourinet et 

al., 1999; Hans et al., 1999). Roscovitine, a less specific channel modulator, slows 

deactivation kinetics thereby increasing tail currents (Buraei et al., 2007), which could 

also be reproduced using the α1A transfected cell line. This was taken as a further 

hint for the appropriate gating of the recombinant channels. Furthermore, the subtype 

specific blocker ω-conotoxin MVIIA did not block P/Q-type calcium channels but 

potently inhibited currents from the α1B transfected cell line, which compares well to 

previous findings on human N-type calcium channels (Kaneko et al., 2002). Taken 
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together, the currents generated by depolarization steps in our cell lines with 

inducible α1A and α1B expression are characteristic of P/Q-type and N-type calcium 

channels, respectively. We therefore considered these cell lines as suitable for 

analysis of potential effects of oligomeric Aβ on presynaptic calcium channels.  

After validation of proper channel expression, the effect of Aβ oligomers on 

presynaptic calcium channels was investigated. It was found that the current 

amplitude was increased at moderate depolarizations for both the P/Q-type and 

N-type calcium channels. This was attributed to a shift of the voltage at half-activation 

Vh to more hyperpolarized values. It needs to be noticed that in this study no 

evidence was collected that a similar mechanism is existent in patients with 

Alzheimer’s disease. However, this effect may be pathologically relevant as 

exemplified by P/Q-type calcium channel mutation-induced shifts in Vh which lower 

the threshold for cortical spreading depression, leading to migraine (Ayata et al., 

2000; Tottene et al., 2002). Here, the oligomeric Aβ-induced increase in P/Q-type 

calcium channel current amplitude (at depolarizations to -10 mV) was not modulated 

if part of the channels were previously inactivated. This suggests that the modulatory 

effect of oligomeric Aβ appeared to be independent of the previous channel state. 

Furthermore, it was found that application of oligomeric Aβ did not change Vinact, the 

voltage inducing half inactivation, for P/Q-type and N-type calcium channels. This 

implies that voltage-dependent inactivation kinetics are unaffected by application of 

oligomeric Aβ. Taken together, Aβ oligomers may specifically facilitate channel 

activation without altering other state transition kinetics, which would result in a tonic 

overactivation of the presynaptic calcium channels. 

As a result of this tonic modulation, oligomeric Aß will lead to faster activation of 

presynaptic calcium channels upon arrival of an action potential independent of 

previous synaptic activity. An overactivation of those channels by oligomeric Aβ may 

result in increased calcium levels and some form of synaptic “fatigue” without 

structural damage like e.g., loss of releasable vesicles (Kelly and Ferreira, 2007). 

Prolonged exposure to Aβ oligomers may also lead to retraction of spines and 

synaptic degradation (Shankar et al., 2007). Harkany et al. (2000) further reported 

that Aβ triggered extracellular accumulation of excitatory amino acids in vivo with 

subsequent neuronal loss, which may be a common final mechanism for neurological 

disorders (Lipton and Rosenberg, 1994). Recent in vitro studies by Nimmrich et al. 
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(2010) show that inhibition of calpain, a group of proteases which promote cell death, 

prevents NMDA-mediated excitotoxic cell death and restores oligomeric Aβ-induced 

functional deficits in synaptic transmission. The present data are compatible with 

these findings and suggest a possible molecular mechanism of Aβ-induced pathology 

in AD via overactivation of presynaptic calcium channels.  

Compared to this PhD study, Nimmrich et al. (2008a) observed different functional 

effects of synthetic oligomeric Aβ, namely a reduction in P/Q-type, but no effects on 

N-type calcium channel currents in cultured hippocampal neurons. In both studies the 

same oligomeric Aβ preparation and a similar methodology was used. As of today, 

there is no conclusive explanation concerning this discrepancy of data, but as noted 

in the introduction (see section 1.1.3.3), bidirectional effects have also been 

previously observed with other ion channel modulators (Koch et al., 2004). A 

bidirectional modulation of neuronal physiology has also been shown for Aβ 

oligomers. It has been shown that natural Aβ oligomers can both increase and 

decrease the frequency of miniature excitatory postsynaptic currents, which could be 

brought about by a reversal of ion channel regulation (Shankar et al., 2007; Abramov 

et al., 2009). Similarly, synthetic Aβ preparations can both increase and decrease 

LTP (Puzzo et al., 2008).  

Possible reasons for such effects may include concentration dependence, state-

dependence, or minor changes in the channel conformation. In our study we 

investigated concentrations ranging three fold in the order of magnitude but have not 

observed any hint for a possible concentration dependent effect on P/Q-type calcium 

channels. In addition, in the present study, the modulation of P/Q-type calcium 

channels by Aβ globulomer appeared to be tonic and therefore independent of 

channel state, which does not support the idea of a bidirectional modulation due to 

different states of the channel. Alternatively, oligomeric Aβ may have differential 

effects on native and recombinant channels. However, Rovira et al. (2002) reported 

that acute application of full length Aβ to acute hippocampal slices also increases 

P/Q-type and N-type calcium channel currents. Although this study used a poorly 

defined oligomeric Aβ preparation, this suggests that the bidirectional modulation of 

P/Q-type calcium channels between the studies is not solely caused by principal 

differences between native and recombinant channel expression. However, Mezler et 

al. (2012a) have shown that the effect of oligomeric Aβ on P/Q-type calcium channel 
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currents, expressed in Xenopus oocytes, is mediated by the auxiliary channel 

subunits. In the absence of these, only an increase in current amplitude, but no shift 

in channel activation was observed. Introducing the same auxiliary subunits, as used 

here, also led to a hyperpolarizing shift in channel activation, similarly as observed in 

this PhD study. This suggests that minor changes in the calcium channel complex, 

like a different pore forming splice variant or a different subunit composition, may 

modulate the effect of oligomeric Aβ. As P/Q-type calcium channels exist in a number 

of genetic variations (Soong et al., 2002; Tsunemi et al., 2002), the splice variant 

used in our recombinant systems may not need to be identical to the one(s) in 

hippocampal neurons. It remains to be shown whether this could actually lead to both 

a facilitation and depression of the calcium channel currents by Aβ oligomers and 

whether bidirectional modulatory effects, induced by a mixture of channel complexes 

expressed in a single cell, might potentially cancel each other out. A possible 

approach to address this would be to determine the splice variants and channel 

subunits of P/Q-type and N-type calcium channels (predominantly) expressed in the 

cultured hippocampal neurons. Subsequent comparison of the effect of oligomeric Aβ 

on these different calcium channel complexes within one study may test this 

hypothesis. 

The relevance of our findings of presynaptic calcium channels as a molecular target 

for Aβ oligomers is supported by the fact that oligomers are localized to presynaptic 

terminals in AD patients (Kokubo et al., 2005b; Noguchi et al., 2009). 

Immunocytochemical studies indicated that similar Aβ oligomer forms exist in AD 

brains. When antibodies were generated against a similar synthetic Aβ oligomer 

form, known as amyloid-derived diffusible ligands, oligomers were detected in 70-fold 

higher concentrations in Alzheimer’s disease than in control brains (Gong et al., 

2003). Also the Aβ1-42 globulomer epitope was detected in brain of AD patients 

(Barghorn et al., 2005). On a functional level, changes in calcium-dependent 

enzymes – which may be activated after excessive calcium entry – were reported in 

Aβ-overexpressing transgenic animals (Kelly et al., 2005) as well as in patients 

(Green et al., 2007). On a systemic level an increase of presynaptic calcium influx 

would result in enhanced neuronal excitability. Indeed, Palop et al. (2007) reported 

elevated neuronal activity and resulting seizure activity in transgenic mice with 

elevated Aβ levels. In line with this, increased seizure susceptibility was also 

detected in sporadic AD (Amatniek et al., 2006) and familiar AD patients (Cabrejo et 
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al., 2006). It has been recently shown in a mouse model of Alzheimer’s disease that 

prevention of seizure activity by levetiracetam reverses learning and memory deficits 

(Sanchez et al., 2012). Prolonged exposure to toxic Aβ inducing such functional 

effects may ultimately lead to the observed decrease in synaptic spine densities 

(Lacor et al., 2007; Shankar et al., 2007) and overall excitatory transmission 

(Hermann et al., 2009), which coincide with learning and memory impairments (Ashe, 

2001).  

 

4.2 Development of State-Dependent P/Q-type Calcium  Channel 

Blockers  

The data presented in the previous section does not clarify whether blocking 

presynaptic calcium channels may indeed slow down the progression of synaptic 

degeneration in AD patients. Yet, from a drug development perspective it may 

suggest an exciting avenue for novel therapeutics that deserves further testing, e.g., 

in transgenic animal models. Unfortunately, all available selective presynaptic 

calcium channel blockers are of natural origin, i.e. toxins of marine snails or other 

invertebrates. The peptidic nature of these toxins limits drug development efforts, 

partly because of their limited bioavailability and CNS penetration. Thus, the 

necessity for improved pharmacokinetics requires the development of LMW ion 

channel blockers that are readily absorbed and reach sufficient brain levels for 

achieving the desired effect. Furthermore, under physiological membrane potentials 

most peptide toxins like ω-agatoxin IVA (McDonough et al., 1997) and ω-conotoxin 

MVIIA (Feng et al., 2003) do not preferentially bind to inactivated channels and 

equally or even preferentially bind to closed channels. However, it is now state-of-the 

art in ion channel drug discovery to develop state-dependent molecules (see 

introduction; section 1.3.3), which preferentially target inactivated channel states. 

These compounds are hypothesized to block tonically overactive sites without 

altering normal levels of synaptic activity (Winquist et al., 2005).  

Besides a possible relevance for the treatment of AD, P/Q-type calcium channels 

have been implicated in a number of neurological diseases including migraine and 

epilepsy. Moreover, some clinically used calcium channel blockers modulate HVA 

calcium channels, including the P/Q-type calcium channel (Uchitel et al., 2010), 
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indicating that modulation of this channel is tolerated in humans. For example, 

gabapentin inhibits channel activity by interacting with the α2δ1 and α2δ2 subunit 

(Catterall et al., 2005). Gapapentin might be effective for migraine prevention as 

suggested by an in vitro (Hoffmann et al., 2010) as well as a clinical phase III study 

(Mathew et al., 2001). Although, to my knowledge, there is no study on pro-cognitive 

effects in AD patients, gabapentin may increase cognition in non-demented elderly 

people (Martin et al., 2001). Thus, development of selective P/Q-type calcium 

channel blockers may find therapeutic application.  

It appears that the development of selective calcium channels blockers remains a 

challenge (reviewed by Yamamoto and Takahara, 2009; Nimmrich and Gross, 2012) 

due to the sparse information on structure-activity relationships of blockers and the 

close homology among the HVA calcium channels. Therefore, development of 

selective compounds may benefit from sophisticated screening (including high 

throughput electrophysiological methods) as well as counterscreening. Despite these 

difficulties, due to recent advances in assay development and automated 

electrophysiological techniques the development of selective calcium channel 

blockers may be more readily achieved as functional data can now be obtained at a 

higher throughput supporting investigation of the structure-activity relationship for 

LMW channel blockers.  

The following sections will discuss the generation and results of our 

electrophysiological secondary screen (following a FLIPR-based primary screen) for 

the identification of novel P/Q-type calcium channel inhibitors. Moreover, it is 

discussed that effective development of an electrophysiological secondary screening 

assay benefits from theoretical considerations of the targeted pathophysiology as 

well as from detailed analysis of inactivation kinetics. It is subsequently described 

that recombinant channel inactivation may be reversible or irreversible, depending on 

the applied depolarization protocol. In addition, despite identical channel activation, 

P/Q-type calcium channel inactivation varies between manual and automated patch 

clamp, so that a screening protocol for inactivated channels needs to be adjusted 

between systems. Based on these results a robust inactivation protocol suitable for 

screening was established, which allowed the detection of both state-independent 

and state-dependent novel P/Q-type calcium channel blockers, as validated by 

manual electrophysiology. This electrophysiological screen was implemented into the 
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hit-to-lead cycle of a drug development plan. The final part of this section discusses 

the effect of these novel LMW compounds on preventing Aβ oligomer-induced 

synaptic deficits. 

 

4.2.1 Appropriate Screening Protocol Selection Depe nds on Disease- 

and Channel-Specific Properties 

In recent years a number of different protocols have been suggested for the detection 

of state-dependent ion channel blockers (Dai et al., 2008; Belardetti et al., 2009; 

Finley et al., 2010). Ideally, the appropriate protocol should be designed to reflect the 

pathophysiology of the disease of interest as well as the physiological function and 

the inactivation kinetics of the therapeutic target.  

Pain is hypothesized to be mediated by excessive firing of dorsal root ganglion 

neurons (Nordin et al., 1984). For development of pain therapeutics it may therefore 

be beneficial that the respective screening protocol reflects the repetitive activity of 

neurons by implementation of a use-dependent protocol (Winquist et al., 2005). 

Indeed, previous and current drug discovery efforts for pain therapeutics have 

included high-frequency stimulation protocols, inducing rapid changes in channel 

states where the on- and off-kinetics of compounds can have a greater influence 

(Finley et al., 2010; Swensen et al., 2012). In contrast, several P/Q-type calcium 

channel-related diseases exhibit a pathophysiology that involves a more sustained 

depolarization of neurons. For example, the underlying mechanism of some familiar 

migraines is a gain-of-function of the P/Q-channel, leading to cortical spreading 

depression (Tottene et al., 2009). This phenomenon is marked by a tonic 

depolarization of neurons that propagates through the cortex. Furthermore, we 

suggest here that AD is marked by presynaptic accumulation of soluble Aβ oligomers 

that might also tonically enhance P/Q-type calcium currents, potentially leading to 

increased neurotransmitter release and excitotoxic cell death discussed in previous 

publications (Lipton and Rosenberg, 1994; Harkany et al., 2000; Nimmrich et al., 

2010). For the development of P/Q-type calcium channel blockers we therefore 

decided to use a sustained prepulse which may be more relevant to the 

pathophysiology of Aß-mediated effects than rapid changes in membrane potential 

as e.g., during seizure activity.  
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Moreover, the P/Q-type calcium channel is expressed preferably in the CNS, which is 

composed of multiple types of neurons. Some of these, like fast spiking interneurons, 

exhibit high-frequency firing. Their signaling might be silenced by use-dependent 

P/Q-type calcium channel block, leading to disinhibition at the network level. 

Similarly, synaptic plasticity in pyramidal neurons may involve spiking coupled to 

oscillations like theta rhythms (O'Keefe and Recce, 1993; Buzsáki, 2002). One may 

speculate that an interruption of such a process can disturb the delicate process of 

memory formation in the brain. To potentially avoid such adverse effects, we 

confirmed that our prepulse protocol did not induce any use-dependent accumulation 

of inactivation. It needs to be noted that these analogies are largely hypothetical, 

especially as the recombinant test system is not identical to native neuronal cells 

which express a variety of splicing variants and subunit compositions (Soong et al., 

2002; Liao et al., 2009). 

In any case, precise knowledge of the biophysical inactivation properties of the 

channel is necessary for the design of an appropriate prepulse paradigm. State-

dependent compounds can be detected with a variety of protocols since inactivation 

can be induced either by short prepulses or by sustained depolarizations, as applied 

in Dai et al. (2008). In order to obtain a sensitive, robust screening assay, possibly 

resembling a pathological AD-like channel state, we examined whether a sustained 

inactivation protocol was best applicable for identification of novel P/Q-type calcium 

channel blockers. Thus, we studied the properties of voltage-dependent inactivation 

of the recombinant P/Q-type calcium channel in detail using manual 

electrophysiology.  

Steady-state inactivation of the recombinant P/Q-type calcium channel was not 

achieved under any prepulse condition (up to 5 min). With increasing prepulse 

lengths channel inactivation progressively shifted to more hyperpolarized values. 

However, the decay in current amplitude could only be fitted with a two-exponential 

relationship suggesting the existence of more than one molecular mechanism of 

inactivation. It may be that additional slow inactivated states of the channels become 

effective with longer prepulse durations. Slow inactivation kinetics of recombinant 

calcium channels have also been observed in previous studies. Bezprozvanny et al. 

(1995) reported slow inactivation of recombinant N-type and Q-type calcium 

channels, especially in the presence of syntaxin, a membrane protein triggering 
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vesicle fusion. Here, probably in the absence of such intracellular modulators, we 

also observed that the current amplitude keeps decaying even for long prepulses 

hinting at a very slow transition rate. In line with our findings, several biophysical 

studies on voltage-gated calcium channels reported the presence of several 

inactivated states including fast and slow transition rates (Patil et al., 1998; Degtiar et 

al., 2000). Which of these are most relevant for drug discovery has not been 

elucidated yet, but this may depend on the pathology of interest (see above).  

Furthermore, we found that inactivation induced by depolarizations of several 

minutes was no longer reversible. This might be explained by extremely slowly 

reversing inactivated states or, alternatively, by inactivation-unrelated effects, e.g., 

channel desensitization, phosphorylation, or internalization. Vortherms et al. (2011) 

described an automated patch clamp assay for the N-type calcium channel using 

prolonged depolarizations to induce inactivation. Attempts were made to reproduce 

this protocol for our P/Q-type cell line but currents were less stable over time when 

prepulse duration significantly exceeded 3 s. Although prolonged depolarizations 

may be present in AD, a favorable screening protocol for state-dependent P/Q-type 

calcium channel blockers should also be designed to deliver reproducible, robust 

results at an acceptable throughput. Therefore, a protocol was established using 3 s 

prepulses inducing approximately 50% inactivation represented the best balance 

between strong, reversible inactivation and non-saturating slow inactivation or run 

down. Although this inactivation protocol probably increases the potency of state-

dependent compounds, state-independent blockers can also be detected. In fact, 

using this protocol for automated patch clamp and subsequent manual patch clamp 

analysis, both state-dependent and state-independent blockers were detected (see 

results section 3.3.3 and 3.3.4).  

It should be noted that assays using short to moderate (up to several seconds long) 

depolarization prepulses may underestimate compound potency. This is because 

channel inhibition would either need to occur within the allotted prepulse time or be 

maintained sufficiently between test pulses to allow for accumulation of block. The 

protocol used here might especially underestimate the potency of molecules with 

very slow binding kinetics to the inactivated state. Thus, protocols utilizing longer 

depolarizations could be more sensitive to slow-binding state-dependent molecules 

and potentially detect more, and for some pathological states (e.g., migraine) also 
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more relevant channel modulators. However, prepulses over several minutes or 

constant depolarizations might be less favorable for state-dependent screening of 

P/Q-type calcium channel blockers. As observed here, this may induce effects 

precluding the reversal of inactivation (e.g., run-down, channel internalization), and 

may thus be unspecific.  

To conclude, multiple aspects should be considered when designing 

electrophysiological assays for identification and validation of calcium channel 

blockers. The electrophysiological protocol should be chosen adequately for the 

disease area of interest as well as take into account the inactivation kinetics of the 

recombinant channel.  

 

4.2.2 Compound Screening Reveals Novel Channel Bloc kers 

For initial detection of novel channel blockers, the P/Q-type calcium channel cell line 

was applied to a FLIPR-based high-throughput screen as published in Mezler et al. 

(2012b). For this method cells are loaded with a calcium sensitive fluorescent dye, 

which can be stimulated with an argon laser. Thus, the emitted fluorescent signal 

detected by the system is proportional to the intracellular calcium concentration. The 

signal could be transiently increased upon addition of KCl to the media surrounding 

the tetracycline-induced P/Q-type calcium channel transfected cells. A subset of 

potential channel blockers, identified by the high throughput screen, was 

subsequently validated by secondary screening using automated patch clamp 

recordings. 

Validation of the FLIPR calcium assay was supported in this PhD study by 

perforated whole-cell analysis in current-clamp mode. Depolarized resting 

membrane potentials (approximately -30 mV) were observed, which corresponds to 

published values for HEK293 cells (Thomas and Smart, 2005). This implies that 

during FLIPR-based compound screening a large fraction of channels is inactivated 

as demonstrated by the electrophysiologically determined inactivation curves. This 

may facilitate the detection of state-dependent inhibitors. However, these results are 

only accurate for the specific solution applied to the patch pipette (here: 150 mM KCl 

and 10 mM HEPES). In order to obtain a more exact estimation of the resting 

potential, intracellular recordings applying sharp electrodes are necessary which do 
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not (or at most hardly) alter ionic concentrations of the cytosol. The current-clamp 

experiments further revealed that an extracellular increase in KCl concentration to 

60 mM (as applied in the FLIPR calcium assay) sufficiently depolarizes the cells to 

induce P/Q-type calcium channel opening. Taken together, this suggests that the 

resting membrane potential seemed to be depolarized enough to induce channel 

inactivation during compound incubation in the FLIPR assay. However, the 

membrane potential was still sufficiently hyperpolarized that upon depolarization 

enough channels were available for opening, as observed by a robust increase in 

intracellular calcium concentration during FLIPR measurements. As a consequence, 

additional methods for adjusting the membrane potential, like pharmacological 

modulation or co-transfection with an inward rectifier, were not necessary (Dai et al., 

2008). Indeed, in that study assessment of inactivated state block for HVA calcium 

channels was carried out at resting membrane potentials which were similar to our 

values. It should, however, be noted that other calcium channel assays might require 

adjusted methods, such as the use of gramicidin for better control of the membrane 

potential, to produce adequately robust calcium signals for analysis (Belardetti et al., 

2009).  

In turn, a chemically diverse subset of Abbott’s compound library was screened at 

AbbVie and a large number of hits identified (about 2% of the screening set, 

corresponding to 3,262 validated hits of 150,000 compounds - with an IC50 between 

8 nM and 10 µM), which is comparable to analogous ion channel programs. For 

instance, 115,320 compounds were screened in a N-type calcium channel high 

throughput screen, resulting in 3,600 confirmed hits with >60% inhibition at 5 µM 

(Lubin et al., 2006). 

Subsequently, in order to exclude unspecific effects on intracellular calcium levels 

(possibly detected by the FLIPR-based assay) and to show functional activity on the 

P/Q-type calcium channel, several confirmed hits were validated 

electrophysiologically in this PhD study. In order to obtain higher throughput 

automated planar patch clamp recordings from a 4-channel Patchliner system were 

established and compared to manual patch clamp data.  

Here, this Patchliner system increased the throughput by roughly 3- to 5-fold 

compared to manual patch clamp. This is because usually two to three automated 

experiments could be successfully run in parallel. Definition of a successful 
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experiment included cell capture at the hole of the planar chip and establishment of a 

whole-cell configuration (Rseal ≥ 200 MΩ; Cs > 2 pF; Rs ≤ 20 MΩ). The additional 

increase in throughput was obtained by shortened preparation times between 

experiments, as noted in the introduction (section 1.3.2). Characterization of 

recombinant P/Q-type calcium channel activation and pharmacological sensitivity to 

ω-agatoxin IVA yielded identical results between the manual and automated 

Patchliner set up. Our values also compared well to previous reports of recombinant 

(Hans et al., 1999) and native channels (Mintz et al., 1992). This indicates that our 

cell line in combination with automated patch clamp is well suited for pharmacological 

analysis.  

However, for the automated system a hyperpolarizing shift in channel inactivation 

was observed. This was dependent on the protease treatment by trypsin or Accutase 

prior to automated experiments, as this shift could be reproduced in manual patch 

clamp recordings if cells were freshly dissociated prior to the measurements. In the 

process of cell dissociation, channel function may be altered through partial digestion 

of channel proteins or even simply by the loss of cell adhesion.  

Since protease treatment with either accutase or trypsin might be causal to the 

observed shift in voltage-dependence, alternative cell dissociation methods could be 

evaluated. Ideally, such methods would allow achieving an identical voltage-

dependence of inactivation compared to manual patch clamp (lacking prior protease 

cell treatment). Combination formulations, like the proteolytic, collagenolytic, and 

DNAse enzyme combination FACSmax, Detachin, or similar preparations could be 

used. Further, it may be worth testing whether preparation of cell suspensions 

required for the automated setup might be done by ethylenediaminetetraacetic 

(EDTA) treatment alone or even by simple mechanical dislocation of the cells. As the 

cell line used here is HEK293, also these more gentle methods could be successful. 

If the shift in the inactivation curve is due to the suspension of the cells and their loss 

of cellular adhesion, then alternative enzymatic or mechanic treatment would not 

change the outcome of the electrophysiological measurements. Importantly however, 

since the difference in inactivation kinetics can be accounted for by adjusting the 

screening protocol, further exploration of these methods was not mandatory for this 

study. In our case this was obtained by shifting the holding and prepulse potential by 

-10 mV to more hyperpolarized values in the automated system. Taken together, it 
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can be concluded that automated patch clamp is a valuable option for higher 

throughput compound analysis, given that shifts in inactivation kinetics are corrected 

between the manual and automated patch clamp system. 

The automated electrophysiological secondary screen was performed at a single 

concentration (applying 3 s prepulses) to assess the functional activity of a larger 

number of structures in order to adequately support the throughput needed within the 

hit-to-lead drug discovery phase. This phase attempts to identify - from the numerous 

compounds after screening - chemical scaffolds, which may be suitable for further 

optimization by medicinal chemistry. Out of 27 compounds tested in this secondary 

screening assay, 23 compounds confirmed appreciable P/Q-type calcium channel 

inhibition.  

The reason for the lack of P/Q-type calcium channel inhibition of the four compounds 

was not further investigated, but may arise from non channel-related lowering of 

cytosolic calcium levels detected in the FLIPR-based assay. This might be caused by 

compound-dye interactions (Wolff et al., 2003), calcium uptake from intracellular 

organelles, or effects on e.g., calcium transporters (Tang et al., 2001; Terstappen, 

2005). Electrophysiologically validated hits were transferred back to medicinal 

chemistry hit-to-lead program and potential lead structure candidates were examined 

for their level of state-dependence by manual patch clamp analysis and advanced 

into the downstream screening cascade. This secondary analysis further confirmed 

the ability of the FLIPR-based high throughput screen to detect novel P/Q-type 

calcium channel inhibitors.  

The depolarized resting membrane potential of the HEK293 cells could, on the one 

hand, explain why most compounds blocked P/Q-type calcium channels also in the 

secondary screen. This suggests that these compounds (also) block inactivated 

calcium channels, although this was not explicitly tested (for this the channel block 

would also need to be assessed omitting the depolarizing prepulse). On the other 

hand, compounds tended to be more potent in the FLIPR assay as compared to the 

electrophysiological recordings. This could partially be caused by the fact that cells 

were constantly depolarized during the 3 min incubation time in the FLIPR compared 

to a transient 3 s depolarization (at a 12 s interval) during the 2 min incubation in the 

automated patch clamp assay. Therefore, channel inactivation was most likely more 

pronounced and sustained in the FLIPR assay. This could explain the increased 
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potency in the FLIPR assay especially for slow binding and state-dependent 

modulators. 

 

4.2.3 State-Dependent Calcium Channel Block Amelior ates Oligomeric 

Aβ-induced Deficits in Synaptic Transmission 

As noted in the introduction, state-dependent molecules are believed to have a 

beneficial safety profile by leaving physiological resting state activity largely 

unaltered. However, if this is the case only inactivated channels are fully blocked 

whereas channels in other states are blocked only to a lesser extent. Therefore, the 

overall block of channel currents decreases, which might compromise the therapeutic 

efficacy. Therefore, the synaptoprotective potential of the two previously 

characterized mixed P/Q-type and N-type calcium channel blockers was tested. One 

compound hardly distinguishes between resting and inactivated channels; the other 

preferentially blocks inactivated channels at 5-fold lower IC50 compared to the resting 

channels. 

Based on the potencies determined by electrophysiological and FLIPR 

measurements, compounds were applied to hippocampal slice cultures at 

concentrations below or close to the IC50 determined for inactivated P/Q-type calcium 

channels. For the 5-fold state-dependent compound this concentration is expected to 

induce little block at presynaptic P/Q-type and N-type channels at resting state and 

no block at L-type calcium channels (Scott et al., 2012). We were able to show that 

both (state-independent and state-dependent) LMW blockers completely reversed 

Aβ globulomer-induced deficits in synaptic transmission. Indeed, the effect of both 

compounds was comparable to the rather state-independent toxins, which were even 

applied at concentrations (slightly) above their IC50. It can therefore be concluded 

that state-dependence of compounds does not compromise the therapeutic effect in 

this in vitro model of AD. However, it might coincide with a lower side effect profile as 

observed for the sodium channel blocker like lamotrigine (Xie et al., 1995) compared 

to TTX (Zimmer, 2010), for example. 
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4.3 Conclusion and Outlook 

This study revealed that block of presynaptic calcium channels by selective peptides 

protects against oligomeric Aβ-induced functional decline in synaptic transmission in 

organotypic hippocampal slice cultures. This might be brought about by inhibiting 

excessive neurotransmitter release and possibly decreasing synapse loss (Shankar 

et al., 2007). We further report that oligomeric Aβ increases calcium currents from 

recombinant P/Q-type and N-type calcium channels by shifting voltage activation to 

more hyperpolarized values in a state-independent manner. This probably promotes 

facilitated neurotransmitter release and functional synaptic decline, which may 

potentially lead to excitotoxicity. 

Moreover, an automated electrophysiological secondary screen was established to 

identify novel calcium channel blockers, which has not been described previously for 

the P/Q-type calcium channel. Proper functional assay development requires the 

complex analysis of biophysical inactivation properties of the recombinant ion 

channel. The design and optimization of an inactivation protocol for routine 

automated patch clamp recordings is reported by this thesis, based on an intensive 

study of voltage-dependent inactivation of the recombinant P/Q-type calcium 

channel. This protocol is appropriate for the detection and validation of P/Q-type 

calcium channel blockers and was successfully implemented into the hit-to-lead 

phase of an electrophysiological secondary screen of a drug development program 

(Mezler et al., 2012b). One out of two validated calcium channel blockers, which 

were subsequently analyzed by manual patch clamp, was identified as 

state-dependent. The discovery and further optimization of state-dependent P/Q-type 

calcium channel blockers may also lead to the development of new medications for a 

range of neurological disease indications beyond AD, like migraine and epilepsy.  

Finally, both LMW calcium channel blockers were able to reverse oligomeric 

Aβ-induced deficits in synaptic transmission. Thus, state-dependent P/Q-type and 

N-type calcium channel block may antagonize functional synaptic deficits in in vitro 

models of AD. It is unclear whether this in vitro data can be extrapolated to patients 

suffering from AD. It now needs to be shown whether such calcium channel block 

may alleviate synaptic loss and neurodegeneration in animal models of AD. 
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