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Abstract

In the first part of this thesis we develop an investment-consumption model
with convex transaction costs and optional stochastic returns for a finite time
horizon. The model is a simplified approach for the investment in a port-
folio of commodity related assets like real options or production facilities.
In contrast to common models like [Awerbuch, Burger 2003] our model is a
multi time step approach that optimizes the investment strategy rather then
calculating a static imaginary optimal portfolio. On one hand, our numerical
results are consistent with the well-known investment-consumption theory in
the literature. On the other hand, this is the first in-depth numerical study
of a case with convex transaction costs and optional returns. Our focus in
the analyses is the form of the investment strategy and its behavior with
respect to model parameters.

In the second part, an algorithm for solving continuous-time stochastic op-
timal control problems is presented. The numerical scheme is based on the
Stochastic Maximum Principle (SMP) as an alternative to the widely studied
dynamic programming principle (DPP). By using the SMP, [Peng 1990] ob-
tained a system of coupled forward-backward stochastic differential equations
(FBSDE) with an external optimality condition. We extend the numerical
scheme of [Delarue, Menozzi 2005] by a Newton-Raphson method to solve
the FBSDE system and the optimality condition simultaneously. This is the
first fully implemented algorithm for the solution of stochastic optimal con-
trol problems through the solution of the corresponding extended FBSDE
system. We show that the key to its success and numerical advantage is the
fact that it tracks the gradient of the value function and an adjusted Hes-
sian backwards in time. The additional information is then exploited for the
optimization.
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Zusammenfassung

Im ersten Teil dieser Arbeit wird ein Investition-und-Konsum Modell mit
konvexen Transaktionskosten und optionalem stochastischen Ertrag entwick-
elt. Der Betrachtungshorizont ist endlich. Dies ist ein vereinfachter Ansatz
für die Modellierung von Investitionen in ein Portfolio von rohstoffverarbei-
tenden Industrieanlagen oder Realen Optionen. Im Unterschied zu bisheri-
gen Ansätzen wie in [Awerbuch, Burger 2003] benutzt das Modell mehrere
Zeitschritte. Dadurch berechnet es kein statisches und imaginäres, optimales
Portfolio, sondern es optimiert die Investitionsstrategie über den gesamten
Zeithorizont. Die Ergebnisse sind einerseits konsistent mit der Theorie über
bekannte Investition-und-Konsum Modelle in der Literatur. Andererseits ist
unsere Studie die erste grundsätzliche Untersuchung der Fälle von konvexen
Transaktionskosten und optionalem Ertrag. Unser Hauptaugenmerk ist das
Verhalten der Investitionsstrategie mit Blick auf die Wahl von Modellparam-
etern.

Im zweiten Teil dieser Arbeit wird ein Algorithmus zur Lösung von stochastis-
chen Kontrollproblemen in kontinuierlicher Zeit vorgestellt. Das numerische
Schema basiert auf dem stochastischen Maximums Prinzip (SMP) als eine Al-
ternative zu der weit erforschten Dynamischen Programmierung (DPP). Bei
der Studie des SMP fand [Peng 1990] ein System von stochastischen, gekop-
pelten vorwärts-rückwärts Differentialgleichungen (FBSDE) mit externer Op-
timalitätsbedingung. In der vorliegenden Arbeit wird das numerische Schema
von [Delarue, Menozzi 2005] um eine Newton-Raphson Methode erweitert,
um die FBSDE und die Optimierung simultan zu lösen. Dies ist der erste,
vollständig implementierbare Algorithmus für die Lösung von stochastischen
Kontrollproblemen durch die Lösung des entsprechenden gekoppelten FB-
SDE Systems. Der Schlüssel für den Erfolg und die Vorteile des Algorithmus
liegen darin begründet, dass der Algorithmus den Gradienten und eine ad-
justierte Hessian bei der Rückwärtsinduktion berechnet. Diese zusätzliche
Information wird dann zur Lösung des Optimierungsproblems ausgenutzt.
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0 Introduction

From a financial point of view, every machine, production facility and com-
mercial service can be seen as a production asset that is owned by a company.
The asset refines raw commodities to enhanced products or it is a service that
turns labor and materials into commercial products. In general, the produc-
tion asset transforms inputs into outputs and by doing so, it produces a
return. In this thesis:

1. We apply financial portfolio theory to these commodity related assets
that are held by a single company. The goal is to maximize the compa-
nies’s risk averse utility through an optimal investment strategy over a
given future time horizon.

2. We also investigate a numerical method that is based on the Stochastic
Maximum Principle in order to approximate solutions of the resulting
stochastic optimal control problem.

0.1 History and literature

Driven by the deregulation of commodity and energy markets all over the
world in recent years, financial theory has become an important tool for
commodity processing companies to optimize their business. Complex com-
modity derivatives replicate production scheduling to some extend in order to
give the commodity processing companies more opportunities to hedge their
risks. More recently, companies start to assess the value of their physical
facilities (production assets) from a financial market point of view. Due to
the assets’s flexibility (optional production) the valuation method is called
real option valuation. The next obvious step is to consider the interaction of
several production assets in a company’s portfolio in order to optimize future
investment.

Portfolio optimization for production assets has been studied in literature
recently. In most cases, a standard portfolio model from the stock mar-
ket is applied to production assets on a one-to-one basis. For example,
[Awerbuch, Burger 2003], [Awerbuch, Stirling, Jansen, Beurskens 2005] or
[Kleindorfer, Li 2004] discuss the optimal power plant portfolio in industrial-
ized countries using modern portfolio theory. On one hand, each paper con-
siders properties of production assets and their physical nature in a different
way. On the other hand, all approaches are single time step (deterministic)
optimizations and the result is then an imaginary, static, optimal portfolio.
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0 INTRODUCTION

This means that a company knows the optimal portfolio but there is no in-
dication about the speed of adjustment or the investment process.

In contrast to the single time step approach, the consideration of the full
investment strategy over a certain time horizon leads to a multi-dimensional
stochastic optimal control problem. Common numerical approaches - like the
Dynamic Programming Principle (DPP), see [Kushner, Dupuis 2001] - are
expensive in higher dimension. Recently, the Stochastic Maximum Principle
(SMP) got attention in the stochastic optimal control community. It was
first formulated by [Peng 1990] and it leads to a system of forward-backward
stochastic differential equations (FBSDE) coupled through an optimality con-
dition. Also recently, numerical methods became available that find approxi-
mative solutions of FBSDE systems. The first fully implementable algorithm
is the stochastic forward-backward algorithm from [Delarue, Menozzi 2005].
It uses an explicit backward iteration. A different approach is proposed in
[Bender, Zhang 2008] which uses a global (Picard) iteration.

0.2 Overview and main results

This thesis consists of four parts. In Part I we present the preliminaries
which lay the foundation of our portfolio approach of commodity related as-
sets. The preliminaries are a synthesis of fundamental concepts in mathemat-
ical finance and carefully synthesized from diverse literature. They include
modeling approaches for general commodities in Section 1, energy commodi-
ties in Section 2 and portfolio theory in Section 3.

In Part II we derive and analyze our model for optimal portfolio alloca-
tion of commodity related assets. First, we develop a discrete-time portfolio
model that considers all common aspects of real options in Section 4. This
includes, in particular, operation flexibility and constraints. In contrast to
the approaches in the literature, our model considers the today’s actual port-
folio and optimizes the future allocation process over time. This yields better
practical results than a static portfolio. Additionally, we account for market
illiquidity through a convex (transaction) cost term. The interactions along
the production chain, competition and supply & demand are not modeled
explicitly. These aspects are rather encapsulated in the commodity price dy-
namics. Our general discrete-time model, serves as a template that can be
utilized by companies from various industry sectors to estimate their portfo-
lio value of production assets and optimize their future investment strategy.
It is formulated in Problem 1 (4.20 - 4.29)
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0.2 Overview and main results

Second, we reduce the complex discrete-time model to a continuous-time
investment-consumption model in order to analyze the model’s dynamics
in general in Section 5. The resulting model is formulated in Problem 2
(5.13) - (5.16). It is similar to Merton’s investment-consumption model
[Merton 1971] with the following three extensions:

● Each asset yields a stochastic return Rt which is a simplified version of
the asset’s production spread.

● The returns are optimized through max(Rt,−M) (M denotes the fixed
costs) in order to account of the real option nature of the production
assets.

● A convex transaction cost must be paid for the allocation of assets due
to market illiquidity.

In Section 6 we consider analytical solutions of the extended investment-
consumption model for one asset. We perform a comparative analysis of
special cases for which there exist results in the literature and derive a new
analytical solution for the case of stochastic returns. In the case of stochastic
returns, we found that the optimal proportion of wealth invested in assets
π∗ depends linearly on the return rate Rt:

π∗(Rt) =
Rt + µ̃ − r

σ2
, (0.1)

where µ̃ is the adjusted asset price’s drift and σ is the asset price’s volatil-
ity. So, in contrast to Merton’s original model without returns, the optimal
proportion π∗ is not constant but rather stochastic. The case of quadratic
transaction costs is much more challenging because the value function loses
its homogeneity (6.5) and therefore the model cannot be simplified by a
reduction of variables. The problem must be analyzed by numerical simula-
tions.

In Section 7, we present numerical results of our reduced continuous-time
model (Problem 2) in the case of one asset. In particular, the case of convex
transaction costs has not been studied in the literature. We found that:

● The optimal consumption χ∗t (defined in Section 3.1.5) is reduced in
comparison to Merton’s original case. We obtain that the reduction is
almost proportional to the quadratic transaction costs.

● The optimal allocation rate α∗t is continuous and directs towards the
optimal portfolio. In particular, it is not a bang-bang control as in the
case of proportional transaction costs.

3
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● The optimal portfolio consists of fewer assets as in Merton’s original
model. The reason may be the asymmetry in the model: all consump-
tion takes place from the bank account. When an assets is sold, the
portfolio owner must pay transaction costs to consume the income.

● A higher return volatility σR increases the value function v and the
amount of assets held in the optimal portfolio. The reason is the in-
trinsic option max(Rt,−M). The positive effect of higher volatility is
reduced for assets with higher fixed costs M .

● The model is consistent with the analytical solutions of our comparative
analysis.

In Section 8 we consider a portfolio of two production assets in order to
show the applicability of our continuous-time model to multiple asset. Our
controlled forward-backward (CFB) algorithm from Part III provides us the
ability (in terms of performance) to study this multi-dimensional convex
stochastic optimal control problem numerically. A detailed study of a cer-
tain business case is left to further research.

In Part III we investigate a new numerical method to solve stochastic op-
timal control problems that have the following two characteristic properties.
These type of problems typically appear in mathematical finance and eco-
nomics. A general formulation is given in Section 10:

● The stochastic state variable Xt is controlled, i.e., the SDE that de-
scribes the state’s dynamic depends on the control πt.

● The gain function f(t, x) is concave w.r.t the state variable x.

The general stochastic algorithm is based on the Stochastic Maximum Princi-
ple (SMP) which we introduce in Section 11 and leads to a system of forward-
backward stochastic differential equations (FBSDE) coupled through an ex-
ternal optimality condition. We present the connections between the dynamic
programming and the maximum principle for the deterministic and stochas-
tic case in an comparative manner in Table 9. Additionally, we provide a
link between the SMP and HJB theory by showing that the adjoint variables
Yt and Zt of the backward equation are related to the value function v(t, x)
that satisfies the HJB equation:

( Yt(Xt), Zt(Xt) ) = ( ∂xv(t,Xt), σ(t,Xt, πt)∂2
xxv(t,Xt) ) (0.2)

In Section 12 we synthesize the SMP together with a numerical scheme for
FBSDE systems in order to obtain an implementable algorithm (12.36) -

4



0.2 Overview and main results

(12.41). In particular, we extend [Delarue, Menozzi 2005]’s forward-backward
stochastic algorithm by a Newton-Raphson method in order to handle the
coupled optimality condition. As far as we are aware, this is the first stochas-
tic approach for the solution of stochastic optimal control problems through
the solution of the corresponding extended FBSDE system. Therefore, we
call the scheme controlled forward-backward (CFB) algorithm. We transfer
the convergence results from the FBSDE case to the CFB algorithm in Sec-
tion 13.

The significance of our algorithm is that we track approximations of Yt (the
gradient of the value function v) and Zt (the adjusted Hessian of v, see (0.2))
in the backward iteration instead of tracking vt only. Therefore we can exploit
the (additional) information provided in Yt and Zt for the optimization. In
particular, due to the special choice of predictors, we can pre-calculate the
optimal control π∗ in a separate step, before the backward calculations of Y
and Z. In Section 14 we show that this method leads to an additive effort
(computational cost) for the optimization instead of a multiplicative effort
when the optimization and the backward iteration are done simultaneously.
The numerical complexity is:

Ld +Kr < LdKr (0.3)

where Ld is the number of operations needed to calculate an expectation and
Kr is the number of operations needed to solve the optimization problem.
The parameter d denotes the number of sources of randomness and r denotes
the dimensions of the control space. This advantage is key to the success of
the CFB algorithm as an alternative to dynamic programming. We confirm
these theoretical studies with results from an application in Section 15. In
particular, we compare the performance between our CFB scheme and the
DP scheme for the valuation of swing options with penalties and market
feedback. We see clearly the structural advantage of (0.3). We published
these results in [Ludwig et al. 2012].

InPart IV we present the implementation details for our controlled forward-
backward algorithm of Part III applied to our model for optimal portfolio
allocation of generation assets in Part II. We show the applicability of the
CFB-algorithm to the corresponding stochastic optimal control problem in
Section 16 and formulate the complete CFB algorithm for the specific prob-
lem in Section 17. We discuss implementation issues in Section 18.

5



0 INTRODUCTION

0.3 The outline

In Part I, we introduce all concepts of financial theory that are necessary to
understand the portfolio model for commodity related assets. In particular,
we define commodities from a financial point of view in distinction to stan-
dard stocks in Section 1. We also present common commodity derivatives
and the valuation for physical assets there. Section 2 is dedicated to the
energy market as an important but complicated commodity market. Section
3 presents basic approaches in portfolio theory.

In Part II, we introduce our model on optimal portfolio allocation of commod-
ity related assets. After discussing briefly the classification of the model we
develop its general formulation in detail. This includes the choice of the util-
ity function, the description of the state dynamics, the definition of decision
variables and the determination of constraints in Section 4. The mathemat-
ical formulation is a high dimensional, non-linear stochastic optimal control
problem, which is too complex for a meaningful analysis. Therefore, we per-
form a model reduction in Section 5. In Section 6 we present analytical
solutions of the reduced model for simple cases and in Section 7 numerical
solutions for the one-asset case. Additionally, we present numerical results
of a multi-asset case from the energy sector in Section 8.

In Part III, we develop our controlled forward-backward algorithm for stochas-
tic optimal control problems that is based on the SMP. In Section 10 we in-
troduce the general problem statement. Then we show the connection of the
SMP and the HJB theory in Section 11. We develop our algorithm in Section
12 and show its convergence in Section 13. Section 14 is dedicated to the
discussion of the advantages of our new method compared to the Dynamic
Programming method and Section 15 presents a performance comparison of
an application in order to show that the advantages are obtained in practice.

In Part IV, we describe implementation issues that arose when we applied our
controlled forward-backward algorithm to our portfolio model. We show the
applicability of the CFB-algorithm to the stochastic optimal control prob-
lem in Section 16 and formulate the complete CFB algorithm for the specific
problem in Section 17. The implementation issues are presented in Section
18.

In the Appendix A.1 we state a few basic definitions about probability spaces
and stochastic processes.
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0.3 The outline

Since this interdisciplinary thesis compose several scientific areas (e.g. math-
ematical finance, operation research, stochastic control and numerics) we use
different notation for different contexts.
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Part I

Preliminaries to commodity
markets, mechanisms in energy
production and portfolio theory
The following is a basic introduction into commodity markets, with a special
emphasis on energy markets, and portfolio theory. We present fundamental
concepts from diverse parts of the literature, which we synthesize later in the
approach to an model in order to show how portfolio theory can be applied
to commodity related assets.

1 Commodity markets

In the following section we present an overview of commodity markets and
appropriate valuation techniques in contrast to standard stock or bond mar-
kets. An extensive introduction into commodity markets and price models
can be found in [Geman 2005].

1.1 Definition of commodities

A commodity is a generic, relatively unprocessed, homogeneous good that
can be processed and resold. It is interchangeable with other commodities
of the same type. Most commodities are used as inputs for the production
of goods and services, but often the output of processes can still be clas-
sified as commodities. Examples are precious metals, base metals, energy
sources, agricultural products, timber, livestock, minerals, plastics, chemi-
cals and refined products like gasoline. In contrast, electronic equipment
is not a commodity because the properties differ from product to product
depending on the producer. However, standardized electronic semiconduc-
tors could be regarded as a commodity. Similar definitions can be found at
[the free dictionary].

In contrast to stock or bond markets, commodity prices depend on the spe-
cific location, the specific time and the specific quality of the physical good.
To make this clearer, two commodities of the same type are different as-
sets, if one of these three key properties - location, time, quality - are not
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equal. In order to trade commodities in a liquid market environment, stan-
dardized future contracts are available at commodity exchanges. Futures
specify the three key properties in the contract agreements, through the
place of delivery, the time of delivery and the quality of the delivered good.
Examples of contract specifications can be found at the web page of the
[CME Group, Webpage 2011].

According to [Geman 2005], commodity market prices are always determined
by the intersection of supply & demand. Therefore, let us take a closer look
on how various supply & demand patters - at different locations, times and
for different quality products - influence market prices.

● Location: The price of a commodity depends on its location. More
precisely, on the local demand-supply relation. At one location there
might be an over-supply while there is a supply shortage at another
location. For example crude oil of equal quality may have different
prices in Europe, North America, Middle East and Asia at the same
time.

The effect of location is smoothed through an efficient transportation
network and open markets. In particular, a price difference between
two locations can be regarded as a lower bound of transportation costs
for the commodity. The reason is that lower transportation costs would
immediately activate a physical shipping into the appropriate direction.

● Time: The price of a commodity depends on the time of exchange.
This effect can be observed through the differences between spot prices
and prices for Futures. [Geman 2005] states that ”demand for com-
modities is generally inelastic to prices, given the indispensable nature
of the good.” In particular, essential goods like food and energy are in-
dispensable on a daily basis. This explains why commodity prices show
periodic patterns when supply & demand oscillate over seasons. Exam-
ples for seasonal supply are agricultural commodities like soybeans or
corn according to harvest seasons. Also irregular supply fluctuations
may arise through good or bad weather conditions. An example for
seasonal demand is natural gas. The consumption of natural gas for
heating purposes increases in winter and decreases in summer while
supply does not depend on seasons.

The effect of time is smoothed through appropriate storage capacities,
whenever the commodity can be stored. Inventories allow the owner

9



1 COMMODITY MARKETS

to meet unexpected demand and balance disruptions in supply. One
the one hand, the holder must pay the cost of storage. One the other
hand, he has a benefit of holding the physical commodity available.
[Kaldor 1939] and [Working 1948] define the notion of convenience yield
as a benefit that ”accrues to the owner of the physical commodity
but not to the holder of a forward contract.” Both effects must be
considered when we compare spot and forward prices.

● Quality: The price of a commodity depends also on its quality. Ac-
cording to our definition above, a commodity is a homogeneous good or
at least essentially uniform across producers. Nevertheless, the quality
of a commodity may differ slightly in reality and some commodities are
more heterogeneous than others. Exchanges try to standardize com-
modities by defining grades. To receive a certain grade, the quality
attributes of a commodity must lay within defined intervals. Wheat
for example has many potential quality attributes, including protein
content, hardness, foreign matter, toxins. The grade differentials for
wheat Futures that are traded at the Chicago Board of Trade (CBOT)
can be found at [CME Group, Wheat Future 2011]. In addition to the
quality of supply, in some cases there is a need for different grades on
the demand side too. For example cars, ships and airplanes need gaso-
line, diesel and jet-fuel, respectively.

In some cases, the quality of a commodity can be changed through a
refinement and the price differences can be regarded as a lower bound
of refinement costs. This is often the case for energy sources. On the
other side, exchanges sometimes mix commodities with different grades
and issue a fixed premium for the delivery of low quality products or
a discount for high quality products. This is done in order to keep
contracts standardized and liquid, especially in agricultural markets.

In some cases, a commodity can be replaced by an alternative com-
modity that fulfills the same purpose. To some extend, the alternative
can be regarded as a similar commodity with different quality. Exam-
ples are a daily switch from oil to gas in a dual-fired power plant or a
long-term change from oil to gas driven power plants.

However, a high price correlation can be observed in commodity markets
between one physical good at different locations, different delivery times and
different quality grades as well as its alternatives, see [Geman 2005].
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1.2 Modeling commodity prices

1.1.1 Standardized financial commodity markets

The specific properties may be one reason why the largest amount of com-
modities is traded over the counter (OTC). Nevertheless, exchanges installed
liquid financial commodity markets in the past where also third parties can
get involved. To make liquid trading possible, exchanges must offer stan-
dardized contracts, i.e., decrease the number of different instruments and si-
multaneously increase the traded volume of each instrument. In order to do
so, exchanges merge locations into areas, delivery times into delivery periods
and quality into quality groups. Moreover, the settlement of these contracts
is in cash and not physically. These arrangements establish liquid trading of
standard instruments like Futures and options. For example a Light Sweet
Crude Oil (WTI) Future at the New York Mercantile Exchange (NYMEX)
has a delivery period of one month and the delivery may take place at several
locations in the U.S., see [CME Group, WTI Future 2011].

Beside producers and consumers, also haulers, storage offerers and refining
companies trade standardized spread options to hedge their risk exposure
due to location, time and quality, respectively. The underlying of these
options are price spreads like location spreads, calendar spreads and quality
spreads. Examples are the crack spread (difference between crude and refined
petroleum products) and the spark spread (difference between power and
needed fuel). Therefore, spread options have become one of the most traded
derivatives at standardized commodity exchanges. We introduce spread op-
tions in more detail in section 1.3.2.

1.2 Modeling commodity prices

Stochastic models for commodity prices differ from stock and bond price
models. In this subsection, we first explain the fundamental price drivers of
commodities that can be observed at standardized markets. Then we discuss
different approaches for modeling commodity prices and show examples of
spot price models and forward curve models, which are most often used in
literature.

1.2.1 Fundamental price drivers

The following four effects are commonly observed at standardized commodity
markets over time. We explain how each effect is related to the three key
properties - location, time and quality - of Section 1.1 through supply &
demand.

11
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● Price shocks and mean-reversion of spot prices: On one hand,
short term demand for commodities is inelastic to prices. If supply or
demand outmatch the limited storage capacity, spot prices decrease or
increase to extremes within a short time period. This is called price
shock or price spike. On the other hand, average consumption is rel-
atively constant or changing only slightly in the long run. Moreover,
supply adjusts to demand patterns and vice versa. This gives reason-
ing to the observable effect of mean-reversion, where commodity prices
fluctuate around some equilibrium price, which is stable or slightly
changing over long-term. The equilibrium price can be regarded as the
marginal cost of production. Such behavior has appreared a number of
times in the literature, see for instance, [Pindyck 2001] for the case of
energy and [Geman, Nguyen 2002] for agricultural commodities.

● Backwardation and contango of forward prices: Next to short
term effects, the outlook of future supply & demand plays an impor-
tant role in commodity markets too. The market’s expectations can
be observed through the forward prices (Future prices). In case that
forward prices decrease with respect to time-to-maturity, the effect is
called backwardation. In case that they increase with respect to time-
to-maturity, the effect is called contango. It is reasonable that back-
wardation indicate a fear of oversupply while contango indicate a fear
of supply shortage. But note that in both cases, the cost of storage and
the introduced convenience yield must be subtracted from the forward
prices first, before analyzing supply & demand expectations.

● Seasonality: As mentioned above, soft commodities are subject to
seasonal supply fluctuations due to harvest and seed times; in particular
because agricultural goods perish over time. Other commodities are
subject to seasonal demand fluctuations since they are hardly storable
(e.g. natural gas) or not storable at all (e.g. power). Both effects lead
to seasonal price patterns and are analyzed for different commodities in
more detail in [Geman 2005] chapter 7-11 and [Xu 2004] for example.

● Inter-sector correlations: Many commodities are similar to or even
replaceable by alternatives. More precisely, commodities are related to
each other in case they satisfy the same demand category as food, en-
ergy or working material. Therefore, high correlation of prices between
alternatives or related commodities are observable at markets. For ex-
ample [Sieczka, Holyst 2009] provides clear evidence for the existence
of strong correlations of commodities within a given sector and even
for ”inter-sector correlations, depending on the level of similarity”.
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1.2 Modeling commodity prices

There is a vast amount of literature about modeling the price dynamics
of commodities and how to design models that capture the described price
drivers. In the following paragraphs, we present the most common stochas-
tic price models. An extended introduction into modeling commodity price
behavior can be found for example in [Burger, Graeber, Schindlmayr 2007]
chapter 3 or [Geman 2005] chapter 3.

1.2.2 Different model approaches

Basically, there are two different categories of stochastic models for commod-
ity prices. The first category is called fundamental models. They consider
fundamental price drivers and market mechanisms in order to derive the price
from the intersection of supply & demand, where the uncertain supply & de-
mand curves are stochastic variables. These models usually assume some
general equilibrium setting, such as Pareto efficiency. The disadvantage of
such an approach is that extensive and complete data from production and
consumption must be available. Otherwise market mechanisms and their pa-
rameters are hard to identify. Moreover, complex business connections and
side effects from production or consumption need to be taken into account
like resource mining, transportation, storage, capacities, physical constraints,
alternatives and others. This may be one reason why fundamental models
are more common in power markets than in other markets, since there is
transparency of data. We give an example of a fundamental model for power
prices in Section 2.3.

The second category is called reduced-form models. These models describe
prices or price changes over time as a stochastic process directly. The form
of the process attempts to capture the distribution of returns observed in
current and historic data. These models are preferred when it comes to pric-
ing derivatives. Once the model parameters are calibrated to market data
of plain vanilla instruments, one can obtain prices (often as closed from so-
lutions) for derivatives. This method is called mark-to-market pricing. In
the following paragraphs we present examples of reduced-form models that
are commonly used in the literature, or that I observed in practice at dif-
ferent financial institutions in Europe during my work as risk-management
consultant at d-fine GmbH1. In particular, we show how these reduced-form
models capture the fundamental price drivers described in Section 1.2.1.

A thrid less common category is the one of game theoretical models. Exam-

1www.d-fine.com
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ples can be found in [Kannan, Zavala 2010].

1.2.3 Spot price models

Let St denote the spot price of a certain commodity at time t. In general,
St is assumed to be a stochastic process on a well-defined probability space
(Ω, F,P ). By well-defined we mean that the probability space can be aug-
mented with a filtration Ft = {Ft, t > 0} that is naturally generated by all
uncertain factors of the specific price model. Loosely speaking, Ft contains
all information available until time t. A brief introduction into probability
spaces, stochastic processes and related definitions that are used in the thesis
can be found in the Appendix A.1.

In the following, Wt always denotes a Wiener process in an appropriate di-
mension that is compatible to the filtration Ft.

Vasicek model

[Vasicek 1977] introduced the first continuous time model that represents
the random evolution of short-term interest rates using a so-called Ornstein-
Uhlenbeck process, see [Ornstein, Uhlenbeck 1930]:

dSt = κ (µ − St)dt + σdWt, (1.1)

where κ, µ, σ are positive constants. If St > µ, the expected change is neg-
ative. If St < µ, the expected change is positive. In general, the process is
always reverting towards the mean level µ where the parameter κ controls the
relative speed of reversion. Therefore, the model is very appropriate to de-
scribe the mean-reverting effect of commodity spot prices and it is frequently
used in literature.

Schwartz one factor model

To preclude negative values [Schwartz 1997] applied the Ornstein-Uhlenbeck
process to the log price, lnSt, and obtained the following SDE:

dSt = κ (µ − ln(St))Stdt + σStdWt. (1.2)

A special feature of the Schwartz model is that at time t, lnST is normally
distributed for all T > t. Moreover, a closed form solution of forward prices
Ft(T ) with time-to-maturity T is available:

Ft(T ) = E [ST ∣ Ft] = exp [e−κT lnSt + (1 − e−κT )α + σ2

4κ
(1 − e−2κT )] , (1.3)
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1.2 Modeling commodity prices

where E [⋅∣ Ft] denotes the conditional expectation and α is a derived param-
eter. One draw-back of Schwartz’s model is that the volatility of Ft(T ) is
decreasing with time-to-maturity:

σFt(T ) = σe−κ(T−t). (1.4)

A decay of volatility is not observable in all commodity markets and the
user may struggle to capture the volatility of contracts with long maturities.
Another draw-back is that the mean-reverting level is fixed while in reality
the level may change in the long run.

Schwartz-Smith two factor model

[Schwartz, Smith 2000] proposed a two factor model combining mean-reverting
behavior on a short time scale (variations) with a non-reverting behavior on
a long time scale (dynamics):

lnSt = χt + ξt,

dχt = −κχtdt + σχdW
χ
t ,

dξt = µξdt + σξdW
ξ
t ,

dW
χ
t dW

ξ
t = ρdt,

(1.5)

where κ, σχ, µ, σξ are positive constants and ρ ∈ [0,1] defines the correlation
between dW

χ
t and dW

ξ
t . [Schwartz, Smith 2000] showed that the model is

equal to the Schwartz one factor model with a ”stochastic mean-reversion
level”. The spot price St itself is log-normally distributed and closed-form
solutions for forward and option prices can be derived. The model gives
more flexibility to the possible shapes of forward curves and time-dependent
volatilities. Nevertheless, the model is not sufficient to match an arbitrary
shape of volatility curves, which are observable in some commodity markets.

Stochastic volatility models

[Trolle, Schwartz 2009] observed that ”volatility is largely unspanned by the
Futures contracts” and therefore they introduced a stochastic volatility model
to be able to fully capture market prices of options. [Eydeland, Geman 1998]
extend this model to commodities such that it also includes the effect of
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mean-reversion:

dSt = κ1 (µ1 − ln(St))Stdt + σtStdW
1
t ,

dΣt = κ2 (µ2 −Σt) + e√ΣtdW
2
t ,

dW 1
t dW

2
t = ρdt,

(1.6)

where Σt = σ2
t and κ1, κ2, µ1, µ2, e are positive constants. The correlation

coefficient ρ is usually negative since, in contrast to stock prices, ”the volatil-
ity of commodity prices tend to decrease with prices - the inverse leverage
effect” as discussed in [Geman 2005] chapter 5.

Adding jumps

[Merton 1976] introduced a jump-diffusion model to describe the observations
of violent movements of stock markets as a consequence of the arrival of
good or bad news. Jumps are observed in commodity markets also for other
reasons, see [Geman 2005]. The dynamics of the most simple jump-diffusion
model are:

dSt = µSt + σStdWt +UtStdNt, (1.7)

where Nt denotes a Poisson process with intensity λ, Ut is a normally dis-
tributed random variable and µ, σ are positive constants. All previously
introduced models can be extended by jumps which leads for example to
a mean-reverting jump-diffusion model. One draw-back of adding jumps is
that the spot price St is not normally distributed anymore. On the contrary,
jumps are often incorporated in models to account for fat tails in the price
distributions.

Adding seasonality

To account for seasonality, many authors simply add an extra term to their
model. For example [Sorensen 2002] introduced the following general model
for agricultural commodities:

lnSt = s(t) + χt + ξt,

s(t) = K∑
k=1

γk cos(2πkt) + γ∗k sin(2πkt), (1.8)

where χt, ξt are arbitrary stochastic processes and γk, γ∗k , for k = 1, ...,K, are
constant parameters to be estimated.
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Regime switching models

Many economic time series occasionally exhibit dramatic breaks in their be-
havior that are associated with events such as financial crises, see for example
[Jeanne, Masson 2000]. A mixed regime model is able to capture different
behavior of economic variables during these periods. It appears that these
types of models have been analyzed first by [Lindgren 1978].

Except for the occurance of dramatic economic changes, high price periods
of short duration (spikes) are observable in commodity markets and regime
switching models were introduced by many researchers to fit the shape of
these spikes.2 The simplest form of a regime switching model has two possible
states, Rt ∈ {1,2}, as presented in [Hamilton 1989], where the log-price is
given by:

lnSt =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

X1
t if Rt = 1,

X2
t if Rt = 2,

(1.9)

and a transition matrix is given by:

P =
⎛⎜⎝
p11 p12

p21 p22

⎞⎟⎠ =
⎛⎜⎝

p11 1 − p11

1 − p22 p22

⎞⎟⎠ , (1.10)

where X1
t , X

2
t are stochastic state variables. The pij ’s denote the probability

of change from state i to state j.

There is extensive literature on other multi-factor models combining mean-
reversion, stochastic convenience yields, stochastic volatility, jumps, regime
switches, seasonality and seasonal volatilities.

In applications, one has to keep in mind that the more features a model cap-
tures, the more parameters are needed. The problem is that the parameters
need to be estimated from often sparse market data. I gained experience
with parameter estimation for spot price models from the analysis of more
than 45 different commodities at a large German bank. I saw that on the
one hand, almost every commodity needs its own adapted pricing model to
adequately price traded contracts at commodity exchanges. On the other

2Spikes are hard to capture with jump diffusion models, since the duration of high
price regimes is short compared to the duration of ”normal” price regimes. For exam-
ple [Weron, Bierbrauer, Trueck 2004] compared a jump-diffusion and a regime switching
model for the spot electricity prices from the Nordic power exchange and found that the
regime switching model leads to better estimates and better modeling performance.
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hand, models are neither robust nor applicable in practice whenever they
have more parameters than there are liquid (daily observable) contracts in
the market.

1.2.4 Forward curve models

Usually a commodity is not traded at spot markets at all but only through
forward contracts (e.g. standardized Futures). In particular, when a physi-
cal good needs time to be exchanged, a spot price makes no sense. In most
cases, a commodity market consists of several tradeable forward contracts
with different maturities. Therefore, a number of authors proposed to model
the dynamics of the whole forward curve {Ft(T )∣ T ≥ t} directly, instead of
modeling the spot price St.

[Clewlow, Strickland 1999] argued that the volatility and covariance struc-
ture of commodity markets are similar to interest rate markets and adapted
the moel of [Heath, Jarrow, Morton 1992] (HJMmodel) to commodities. The
HJM model describes the dynamics of the forward prices Ft(T ) by:

dFt(T ) = µt(T )Ft(T )dt + n∑
i=1

σi
t(T )Ft(T )dW i

t , (1.11)

where n is the number of risk factors and the Wiener processes W i
t , for

i = 1, ..., n, are possibly correlated. The key of the HJM model is that, no
drift estimation is needed. Indeed, assuming an arbitrage free market, there
exists a risk-neutral probability measure Q that makes the forward price
Ft(T ) = EQ [ST ∣ Ft] a Q-martingale. Thus, under a Q-measure, µt(T ) van-
ishes for all t and T .

HJM-type models capture the full dynamics of the entire forward rate curve,
while short-rate models only capture the dynamics of a point on the curve.
In particular, in equation 1.11, the drift and the volatility depend on two
time variables t and T , in contrast to spot price models where there is only
one time dependency. Nevertheless, a theoretical spot price can be obtained
by St = Ft(t) and its dynamics are given by:

dSt =
∂Ft(T )
∂T

∣
T=t

dt + dFt(T )∣T=t. (1.12)

St is log-normally distributed but non-Markovian since the drift part depends
on the realized path of the Brownian motion.
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One feature of the direct modeling of forward curves is that all option price
formulas, derived from the [Black 1976] model, can be used to price op-
tions on forward contracts. Since commodities are always traded in forward
contracts and therefore all options are written on these underlying forward
contracts (e.g. standardized options are written on standardized Futures),
this feature is often exploited for pricing commodity options.

When choosing the HJM framework to model a commodity forward curve,
one may ask how many parameters such a model needs in reality. [Geman 2005]
chapter 3.7 states that n = 3 factors ”explain 97% of yield curve moves histor-
ically observed in various counties”. The factors can be identified through a
Principal Component Analysis (PCA) of the forward curve. Therefore, three
to four parameters should be enough in most cases.

1.3 Commodity derivatives

In stock and bond markets, exotic3 derivatives often attract speculators by
providing individual leverage effects for them. In contrast, exotic derivatives
on commodities often mirror the physical processing of goods and therefore
provide producers and trading companies an opportunity to hedge their risk
exposure due to their commodity holdings.

In the following paragraphs, we introduce several commodity derivatives. We
start with basic contracts and then increase complexity. This prepares us for
the valuation of physical assets (e.g. a complete production facility) in the
next Subsection 1.4. Before we start, we briefly describe the risk neutral
valuation of exotic derivatives.

1.3.1 Risk neutral valuation of derivatives

Let us assume a market in the Black-Scholes world (BS market) which 1) is
arbitrage free, 2) is complete 3) has a constant interest rate r and 4) is perfect
in terms of continuously liquid trading without transaction costs. The first
fundamental theorem of asset pricing states, that there exists an equivalent
martingale measure Q ∼ P , often called risk neutral measure, such that the

3The term exotic means that a financial instrument is non-standard or difficult to
evaluate. There is no general definition of the term exotic since even standard instruments
become more complex over time. In spite of that, an option is most often called exotic
if it has one or more of the following properties: 1) the pay-off at maturity T is path-
dependent, 2) there exists more than one exercise possibility (multiple exercise option), 3)
the option has more than one underlying (multi-asset option).
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net present value of a derivative Vt with payoff hT (ST ) at time T is equal to
the expected discounted cash-flow of the payoff under Q:

Vt = EQ[e−rThT (ST )∣Ft]. (1.13)

The second fundamental theorem of asset pricing states, that if and only if the
market is complete, the risk measure Q is unique. Assuming a log-normally
distributed spot price in these settings, [Black, Scholes 1973] derived the fa-
mous Black-Scholes formula for option pricing.

In view of the Black-Scholes formula, price models are often designed in a
way that the spot prices are log-normally distributed. This is even the case
for commodity spot price models in order to provide analytical solutions for
option and forward contracts. The reason is that the model’s parameter need
to be calibrated to market data of liquid (standard) contracts and analytical
solutions make the corresponding parameter estimation feasible in practice.
Note, since the underlyings of commodity options are Futures, one has to use
[Black 1976]’s formula instead of the original Black-Scholes formula. If there
is no analytical solution available, numerical simulations have to be used to
approximate the expected value in (1.13).

1.3.2 Exotic derivatives

Due to the physical nature of commodity markets, European type options
are not feasible instruments for market participants and therefore are rarely
traded. In the following we present the most commonly traded types of exotic
options and explain how production companies use them for hedging.

Asian options

The underlying of an Asian type option is the arithmetic average of an index
- representing the spot price in most cases - over a historic time horizon.
Asian options became famous in currency markets where companies receive
daily cash flows of similar amount in foreign currency. [Geman 2005] states
that ”in the case of oil, the quantity of time elapsed between the day a tanker
leaves the production site and reaches its destination explains why oil indexes
are arithmetic averages; accordingly, most options on oil are Asian.” Other
commodity indexes developed similarly.

In detail, an Asian contract defines the time points of measurement ti ∈ [0, T ],
i = 1, ...,N over a certain time horizon. Practitioners call them fixing points.
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The pay-off hT of an Asian type call option at maturity T is then given by:

hT (St1 , .., StN ) =max [( 1
N

N∑
i=1

Sti) −K,0] (1.14)

where St is the index price at time t and K is the strike. The pay-off depends
on the path of the price process between t1 and tN . The valuation of Asian
options has been a challenge for a long time since the arithmetic average is
not (log-)normally distributed for most price models. [Geman, Yor 1993] to-
gether with [Eydeland, Geman 1995] provided an analytical solution method
for Asian option prices by 1) finding the Laplace transformation with re-
spect to maturity of the Asian option price and 2) showing how to invert this
Laplace transform.

Other path-dependent options commonly traded in commodity markets are
barrier or digital options which are used e.g. to hedge against a catastrophic
natural event. I know from my experience at a commodity sales desk, that
most corporate clients buy barrier and digital options only on an Asian type
underlying these days.

Swaps and swaptions

Swaps on underlying indexes are very common in commodity markets. The
pay-off of a swap is equal to a strip of forward contracts on the underlying
with maturities Ti ∈ [0, T ] i = 1, ...,N and fixed strike K:

hTi
(STi
) = STi

−K, ∀i = 1..N (1.15)

At every Ti the buyer of the swap pays the fixed amount K of cash and re-
ceives the underlying spot price STi

, making the instrument path-dependent.
A typical buyer of a swap needs the underlying commodity as an input for
his production. He purchases the commodity physically for the price STi

but
gets STi

−K back if the price is higher. Thus, he pays the fixed price K and is
able to establish a constant margin from production. With the rise of swaps,
swaptions - options on swaps - became a commonly traded instrument too.

Exchange options

The holder of an exchange option has the right to exchange a given amount
of one commodity for another. [Geman 2005] states that ”The spread be-
tween two quantities is probably the most traded instrument in the world
of commodities. Spread options come into play in the valuation of power
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plants, oil refineries, storage facilities and transmission lines.” Exchange op-
tions are mostly used to trade the differences of the three key properties -
time, location and quality - introduced in Section 1.1. A typical pay-off of
an exchange option has one of the following structures:

hT (S1
T , S

2
T ) =max (S1

T − S
2
T ,0) , location spread,

hT (S1
T , S

2
T ) =max (S1

T − kS
2
T ,0) , quality spread,

hT (S1
T , S

2
T ) =max ((S1

T − kS
2
T ),K) , minimum spread,

hT (FT (T 1), FT (T 2)) =max (FT (T 1) − FT (T 2),0) , calendar spread.

(1.16)
Here, S1

t , S
2
t are spot prices or prices of Asian underlyings at time t. FT (T 1),

FT (T 2) denote prices of Futures at T with maturity T 2 > T 1 > T and k, K
are positive constants. The first pay-off in (1.16) occurs in spread options
which are used to hedge the spread between a commodity and another similar
commodity at a different location or of different quality. The second pay-off
incorporates a weighting (production) factor k and reflects the margin be-
tween output S1 and input S2. The third pay-off ensures a fixed minimum
margin K for the holder. The last pay-off is called calendar spread and is
popular for hedging seasonality.

Note that an exchange option is a multi-asset option and the correlation
of prices is a key factor for its valuation. Analytical solutions and optimal
exercise regions for a wide range of American type exchange options can be
found in [Broadie, Detemple 1994].

Swing options

In the energy sector, volume flexibility in contracts is an essential feature
to adjust the production to fast changing demand. Swing options provide
this volume flexibility and its holder is able to hedge volume risks. For later
purposes, we describe them in more detail now.

Definition 1.1 (Swing option)
A Swing option is a multi-exercise option on a given time interval [0, T ]
with exercise times ti ∈ [0, T ], i = 1, ...,N and fixed strikes Kti. The option
agreement leaves the exchanged quantities (volume) open to the option holder
but defines volume bounds or penalties. There are lower and upper bounds,
m and M , for each single (local) exercise and also lower and upper bounds,
A and B, for the total (global) volume. On each exercise time ti, the option
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1.4 Valuation of production assets

holder has the right to request a quantity qti such that:

m ≤ qti ≤M,

A ≤ ∑N
i=1 qti ≤ B.

(1.17)

The value of a swing option at time t therefore is:

Vt(St,Qt) =max
q

E
q
t [ N∑

i=1
e−r(ti−t)(Sti −Kti) qti ∣ St, Qt] , (1.18)

where Qt ∶= ∑ti≤t qti is the total volume already called and:

q ∈ {{qti}Ni=1 ∣ m ≤ qti ≤M, A ≤ Qt ≤ B} . (1.19)

In practice m is the minimal (daily) must run volume and M is the capacity
limit. To fix the total amount recalled, issuers can just set A = B. Instead of
sticking to the fixed bounds m,M,A and B, some issuers introduce (convex)
penalties if (1.17) is violated.

Note that at any time t ∈ [0, T ], the contract has two states - the underlying
price St and the total quantity already taken Qt = ∑ti<t qti - plus one con-
trol variable qt. Therefore, the pricing of a Swing option turns out to be a
stochastic optimal control problem. We price Swing options in Section 15
as a test application for our later introduced controlled forward-backward
stochastic algorithm. For more details about the valuation of Swing options
see [Bodea 2012].

1.4 Valuation of production assets

The structure of the above derivatives replicate mechanisms of industrial
processes where commodities are produced, transported, refined, stored and
sold. Going one step further, a production facility or a processing service
itself can be analyzed from a financial point of view and a net present value
(NPV) of the physical asset, that processes commodities, can be estimated.
In the following paragraphs, we briefly introduce how to valuate production
facilities as financial assets in commodity markets. We call them production
assets.

1.4.1 Discounted cash flow approach

The most common method to valuate production assets is the discounted cash
flow (DCF) approach. In DCF, all expected future cash flows are summarized

23



1 COMMODITY MARKETS

and discounted to the present. In detail, let cti , for i = 1, ...,N , denote the
(uncertain) cash flows of an asset during time [ti−1, ti). Here, tN is the lifetime
of the production asset. Then the NPV at t0 is approximated by:

V DCF
t0

= E [ N∑
i=1

e−r(ti−t0) cti ∣Ft0] . (1.20)

The merit of DCF is its simplicity and applicability to a large class of valua-
tion problems. The drawbacks are 1) the difficult estimation of all expected
future cash flows given todays information, 2) the assessment of the influ-
ential (risk-adjusted) discount factor r and 3) the fact that DCF does not
account for the optionality to adjust operation to optimal levels as soon as
more information is provided (intrinsic options). In other words, the flexibil-
ity to react on the developments of uncertain variables has no value in DCF.
Thus, the DCF value V DCF

t0
can be seen as a lower bound of the NPV of pro-

duction assets. More about the DCF method can be found in [Geman 2005].

1.4.2 Strip of options approach

In the previous paragraph we learned that operational adjustments are a
unique feature of production assets. In order to account for these intrinsic
optionalities, a production asset can be modeled as a strip of spread options
(SSO). Let us assume that a facility refines one input commodity to one out-
put commodity. Let S1

t denote the price of the output and S2
t the price of the

input. Let OMt denote the cost of operation and maintenance, k the pro-
duction factor and a the facility’s capacity. Then, the NPV is approximated
through a SSO by:

V SSO
t0
= E [ N∑

i=0
e−r(ti−t0) max(S1

ti
− kS2

ti
−OMti ,0)a ∣ Ft0] . (1.21)

Since the operator of the facility has the ability to stop production whenever
it is not profitable, negative net cash flows vanish. The advantage of the
SSO approach is that, assuming a complete market, we can use risk-neutral
valuation and the risk free interest rate to calculate V SSO

t0
. A drawback of

this approach is that it neglects any physical constraints of the production
process and assumes perfect flexibility. Thus, the SSO value V SSO

t0
can be

seen as an upper bound of the NPV of production assets.

1.4.3 Real option approach

In reality, changes in operations are restricted by physical constraints. For
example, a production line can not be restarted immediately after a shut

24



1.4 Valuation of production assets

down decision since each change in operation takes at least some time. In
general, the possibility to change depends on the current state xt of the
system. Therefore, an advanced model must include variables that represent
this current state. Usually, the current state xti depends on the previous
state xti−1 and the operator’s decision uti :

xti = xti(xti−1 , uti). (1.22)

Let us assume the example facility from Section 1.4.2. Let uti denote a
ramping decision at ti and let xti ∈ [0, a] denote the operation level during[ti, ti+1). Then, the NPV of the production asset in state x0 at time t0 is
given by:

V RO
t0
(x0) = max

{uti
}N
i=1

E [ N∑
i=0

e−r(ti−t0) (S1
ti
− kS2

ti
−OMti) xti ∣ Ft0] , (1.23)

where every decision uti have to be feasible according to all physical con-
straints. The following list shows examples of physical constraints for pro-
duction assets. We present these constraints in more detail for the specific
case of fuel fired power plants in Section 2.4.

● Time that is necessary to change the operation level (ramping time).

● Waiting time after a shut down of production before new decisions can
be made (minimum down time).

● Waiting time after a start up of production before new decisions can
be made (minimum up time).

● Minimal operational level (must-run level).

● Maximal operational level (capacity).

We call the valuation approach (1.23) a real option approach. The main dif-
ference between the real option approach and a strip of spread options (SSO)
approach in Section 1.4.2 is, that real decisions are not reversible and affect
future states and decisions. Therefore, the maximum operator in (1.23) is
outside the expectation operator because we can not anticipate future; com-
pare the SSO approach (1.21).

Note that a Swing option (1.18) can be seen as a replication of a real option
(1.23) - when replacing Sti −Kti with S1

ti
−kS2

ti
−OMti - but it only accounts

for volume/operation level constraints. Since there are a lot of different
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1 COMMODITY MARKETS

interpretations of the term real option in the literature and in practice, we
clarify its meaning in our context through the following definition, which is
based on [Ronn 2002].

Definition 1.2 (Real option)
A real option is an exotic financial multi-exercise option, where a single ex-
ercise decision affects the future state of the option and possible future deci-
sions. The real option approach takes the supremum of the expectation value
over all feasible control policies.

A big advantage of the real option approach is that its solution V RO
t0
(x0)

also provides an optimal commitment policy {u∗ti}Ni=1. Operators can use this
optimal decision path as long as no new information arrives. A drawback of
the real option approach is that it leads to a (complex) stochastic optimal
control problem.

Note, the name option does not imply that a real option is a commodity
derivative liquidly tradable at exchanges. In contrast, a production assets
is a highly illiquid commodity related asset. [Geman 2005] propose to use
rather the real probability measure for pricing real options instead of the
risk-neutral measure.

In practice, the real option approach is used to value power generation assets,
naphtha crackers, software development projects and restructuring projects.
A state of the art model for valuing flexible, gas-fired power plants under
emission trading can be found in [Ludwig 2010]. Examples for applying the
real option approach to general power plants (generation assets) can be found
in [Deng, Johnson, Sogomonian 2001] or [Clewlow et al. 2009]. An extended
introduction into real options can be found for example in [Ronn 2002].
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2 Energy markets

In this section we introduce some unique properties of energy and power
markets and show their implications to reduced-form price models. We also
present a fundamental price model for power that is based on a deterministic
supply curve and inelastic stochastic demand. Last but not least, we discuss
power plants as real options and state specific physical constraints.

2.1 Fossil energy sources

Fossil energy sources are scarce and exist as persistent natural reserves only
in a few regions of the world. Nevertheless, fossil resources are the primary
source of energy in almost every nation and huge amounts of them are trans-
ported and stored around the world. Let us take a closer look at the three
key properties, location, time and quality, for fossil energy sources:

● Location: Transportation of fossil energy sources is expensive because
of their sizes and their toxic nature. For example, coal can be trans-
ported only by ship or train, oil tankers need special shells to prevent
environmental damage, transportation of gas needs pipelines or costly
liquefiers, biomass needs trucks because of the widespread planting area
and uranium needs secured transport. The transportation from the ac-
tual source or mine to the power plants in different nations may take
weeks, up to months. To establish power security, there is a need for
well organized transportation networks and supply chain management
to match the variable energy demand on time.

● Time: Fossils are storable but storage capacities are expensive or lim-
ited: oil needs silos, natural gas needs big underground caverns, ura-
nium needs secured boxes, and biomass matures. Seasonality comes
into play when energy sources are essential for heating or cooling. Es-
pecially the natural gas market shows different price levels in summer
and winter times due to seasonal demand.

● Quality: Even if energy sources from different locations have different
levels of quality (energy content), they can be regarded as homogeneous
goods. Otherwise, they can be mixed up to an average quality level.
Refined products differ in quality. For example, crude oil is split into
driving fuel, jet fuel or heating fuel. This is done in so-called crack-
ers, and that is where the name crack-spread comes from. Since the
type of output can be adjusted in those crackers, there is a high price
correlation among the refined products and the original energy source.
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2 ENERGY MARKETS

Most authors apply reduced-form models to price energy commodities. The
models usually take the above properties into account and are similar to
the models of Section 1.2. Particular examples can be found in [Deng 2000]
and [Trolle, Schwartz 2009] for general energy commodities and [Xu 2004]
for natural gas.

2.2 Power and renewables

Power has become a indispensable good in industrial nations. In the past,
power markets were regulated by authorities to ensure supply stability to
inelastic consumer demand. Even after the deregulation of power markets in
Europe, North America and some Asian countries4, a large amount of power
is still pre-sold to customers at a constant price. This fixed price policy
strongly supports the inelasticity of demand.

In consequence, power spot trading has become of major interest for energy
companies and also power intensive industries. Simultaneously, there is in-
creasing research in power price models and mathematical analysis of price
risks. Before we deal with price models, let us take a closer look at the three
key properties, location, time and quality, for power and renewables.

● Location: Transmission of power through high voltage power lines is
fast but limited to the transmission capacity. To make power available
for consumers after transmission, high voltage power must be trans-
formed into low voltage power by power transformators. Therefore, in
most countries with open power markets, a few operators control the
complex network of high voltage transmission and low voltage transfor-
mation to prevent power outages and network damage. Furthermore,
power losses occur proportional to the distance of transmission. Thus,
whenever a location for a new power plant needs to be chosen, it is
always a trade-off between stable service, environmental issues and ef-
ficiency.

● Time: Power itself is non-storable and supply & demand have to match
exactly at every time. Hydro pump storages can be regarded as power
storages but their capacity is limited to the number and size of suitable
locations. In Germany for example, estimates showed that maximal 6.7

4Also Brazil 1998, Argentina 1991, Republic of South Africa 2000, Australia 1994
and New Zeland 1994. Source: The International Association of Engineering Insurers,
http://www.imia.com/.
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2.3 A fundamental market model for power

GW can be provided by hydro pump storage5. That is around 0.5% of
the daily average power demand (1440 GW6) in Germany.

Moreover, an increased installation of renewables is amplifying the
problem to match supply & demand. The reason is that renewables
are not controllable and hardly predictable since they utilize the forces
of nature such as wind and solar beams. On the other hand their op-
eration costs are close to zero so that renewables are must-run units
(in Germany by law). Renewable power can be regarded as negative
inelastic demand which is highly fluctuating according to weather con-
ditions.

The non-storability of power together with an inelastic seasonal demand
and weather dependent renewable power input explain the special shape
of power price time series observable in open power markets. Typical
patterns are spikes and seasonal variations over the course of the day,
week and year. Even negative values occur.

● Quality: Electricity itself is a homogeneous good. Nevertheless, power
from renewables has a better ecological quality than power from fuel
fired power plants. Authorities impose payments for emissions from
power generation which is similar to a fee for low quality products.
So far authorities have raised taxes, defined emission limits and es-
tablished auction markets for emission allowances. Furthermore, eco-
logically aware customers ask for special tariffs to receive power from
renewable generation even if prices are higher.

There are a lot of reduced-form models for power prices in the literature,
see [Burger, Graeber, Schindlmayr 2007] for an overview. The models are
similar to those introduced in Section 1.2 and try to respect the properties
above. This leads to names like ’seasonal regime-switching mean-reversion
model with jumps’.

2.3 A fundamental market model for power

Fundamental market models consider industrial mechanisms, demand pat-
terns and other drivers to estimate (stochastic) demand & supply curves
and derive the market price at the intersection of both. A comprehensive

5VDI Nachrichten: http://www.vdi-nachrichten.com/artikel/Die-deutsche-
Renaissance-der-Pumpspeicher/55356/2.

6Bundesnetzagentur: Auswirkungen des Kernkraftwerk-Moratoriums auf die
Übertragungsnetze und die Versorgungssicherheit, Aktualisierung 26. Mai 2011.
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2 ENERGY MARKETS

introduction into fundamental market models can be found for example in
[Burger, Graeber, Schindlmayr 2007] section 4, which we follow here.

2.3.1 Merit order curve and equilibrium price estimation

A merit order curve is a cost based description of the fundamental supply
curve. It is constructed by plotting the operation costs of power generation
for each technology over the cumulative available capacity in increasing order.
Let ajti , j = 1..N

J , denote the total available capacity of technology j and c
j
ti

its operation costs during a certain time interval [ti, ti+1). Without loss of
generality, let us assume that k < j whenever ckti ≤ c

j
ti
. Then, the merit order

curve mocti ∶ R→ R, supply ↦ cost, during [ti, ti+1) is given by:

mocti(x) = Nj∑
j=1

c
j
ti
1{∑j−1

l=1
al
ti
<x≤∑j

l=1
al
ti
}. (2.1)

In general, operation costs and available capacities change over time and
hence the shape of the merit order curve. The index ti indicates this time
dependency. Figure 1 provides an example of a merit order curve. Next to
the merit order curve, the price inelastic demand ’curve’ at time t ∈ [ti, ti+1) is
plotted in Figure 1 by a strait vertical line at the given demand level dt. The
equilibrium spot price pPt at time t ∈ [ti, ti+1) is the intersection of demand
and supply:

pPt =mocti(dt) ∀t ∈ [ti, ti+1). (2.2)

An example of a fundamental market model with stochastic demand can be
found in [Kramer, 2009].
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Figure 1: A typical merit order curve in an open power market and an
inelastic demand curve. The equilibrium spot price is the intersection of
both curves.
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2.3 A fundamental market model for power

A similar approach to determine the market spot price is called peak load
pricing. In peak load pricing, the lowest bids from the supply side are ac-
cepted as long as there is an outstanding demand. The market spot price
is fixed then by the lowest bid from the supply side that fulfills the current
demand completely. [Coulon, Howison 2009] analyzed the so-called bid-stack
curve and proposed a bid stack spot price model.

Note that the differences between the actual operation costs (including a
requested profit) on the merit order curve and the real market price from
peak load pricing could be interpreted as a risk premium or as scarcity costs,
see [Burger, Graeber, Schindlmayr 2007] section 4.3.

2.3.2 Optimal load

The merit order curve does not only provide an equilibrium spot price, but
also an optimal choice - optimal in terms of lowest cost - for the amount
of generation (load) q

j
t . Power plants of technologies j with c

j
ti
< mocti(dt)

operate at maximum capacity; plants with c
j
ti
>mocti(dt) do not operate at

all and plants with c
j
ti
= mocti(dt) operate at the level that is required to

meet the remaining gap of demand dt:

q
j
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a
j
ti

if c
j
ti
<mocti(dt),

0 if c
j
ti
>mocti(dt),

dt −∑NJ

j a
j
ti
1{cjti<mocti

(dt)} if c
j
ti
=mocti(dt).

(2.3)

In reality, physical constraints need to be taken into account to estimate the
optimal load like limited flexibility, limited availability and capacity reserves.

2.3.3 Load and price duration curves

The load duration curve is a re-sorted and aggregated description of the

cumulative load qt ∶= ∑NJ

j=1 q
j
t = dt over [ti, ti+1). It can be used whenever

the chronological order of load is less relevant. The purpose is to avoid
modeling hourly load changes by assuming that the merit order curve stays
fixed over a certain time interval (e.g. [ti, ti+1)). The load duration curve
ldcti ∶ [ti, ti+1) → R, t ↦ qt is constructed out of the load {qt}t∈[ti,ti+1) by
sorting the values in descending order such that:

∀t ∈ [ti, ti+1) ∶ ldcti(t) ≥ ldcti(T ) ∀T ∈ (t, ti+1) (2.4)
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Figure 2: Typical load duration curve for one year

Figure 2 shows a typical load duration curve. The resulting price duration
curve pdcti ∶ [ti, ti+1) → R, t ↦ pPt is determined by the equilibrium prices
using the fixed merit order curve:

pdcti(t) =mocti(ldcti(t)) ∀t ∈ [ti, ti+1) (2.5)

If the merit order curve is unknown, the price duration curve can be esti-
mated also by an analysis of historic market prices. As mentioned above,
fundamental models take the mix of available power plants into account.
Therefore, they are especially suitable when it comes to the optimization of
power plant portfolios.

2.4 Power plant mechanisms

Power plants have special physical constraints that should be considered in
a real option approach. The effect of these constraints depend on the type
of facility (e.g. coal, gas, nuclear or biomass) but the constraints themselves
are quite similar among all type of fuel fired power plants. The following list
provides constraints that are commonly taken into account in a real option
valuation of fuel fired power plants according to [Ludwig 2010]. We also show
examples of how the constraints could be modeled.

Let us recall the real option approach from Section 1.4.3. Remember that
xti ∈ [amin, amax] denotes the operation level during [ti, ti+1) and uti denotes
the ramping decision at ti. Additionally, let yti ∈ {0,1} denote the off and on
state of the plant during [ti, ti+1) and πti ∈ {0,1} the switch-off and switch-on
decision, respectively. Then, the NPV of a power plant in state (x0, y0) at
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time t0 is given by:

V RO
t0
(x0, y0) = max

{uti
, πti
}N
i=1

E [ N∑
i=1

e−r(ti−t0)g(Sti , xti) yti ∣ Ft0] , (2.6)

where g is the gain function from operation and St is the price vector of the
involved energy commodities. Since we focus on the constraints here, the
particular form of the gain function g and the price dynamics dSt is of minor
interest. Possible constraints are:

● Shut-down and Start-up costs: A complete shut-down of a hot power
plant and also a start-up from a cold plant produces extra costs. They
can be included into the model for example by replacing g(Sti , xti) in
(2.6) by:

g̃(Sti , xti , yti−1 , πti) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if yti−1 = 0, πti = 0

g(Sti , xti) + cu if yti−1 = 0, πti = 1

cd if yti−1 = 1, πti = 0

g(Sti , xti) if yti−1 = 1, πti = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (2.7)

where cd and cu are the shut-down and start-up costs, respectively.

● Minimum down time and minimum up time: After a complete shut-
down, the plant cannot be restarted again immediately. The plant may
need several hours to cool off before it can be restarted. There is an
associated (usually shorter) effect after a start-up. Let τ d and τu denote
the minimum down time and minimum up time, respectively. Then:

πt = 1 for t ∈ [ti, ti + τu] if yti−1 = 0, πti = 1,

πt = 0 for t ∈ [ti, ti + τ d] if yti−1 = 1, πti = 0.
(2.8)

● Ramp-rates: The speed at which the operation level can be adjusted is
called ramp-rate. Let rd > 0 and ru > 0 denote the rate of ramp down
and ramp up, respectively. Then for all ti:

uti ∈ [−rd[ti, ti+1), ru[ti, ti+1)],
xti+1 = xti + uti .

(2.9)

One could also adjust the gain function g to account for the ramping
effect.
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● Scheduled outages: From time-to-time, a plant needs to be shut down
in order to do necessary inspections or repairs. That simply means
that πti = 0 is fixed in advance for all ti in the set of scheduled outage
periods:

πti = 0 when ti ∈ {scheduled outage periods}. (2.10)

● Unscheduled outages: Due to operation failures or other circumstances
a power plant must be shut down sometimes out of schedule. An ex-
ample to model unscheduled outages is the following. Suppose that
unscheduled outages are exponentially distributed with intensity λ and
let {π̃ti}Ni=0 be a discrete Poisson process. Then the power plant is
forced to shut-down for every occurrence of an event:

πti = 0 when π̃ti > π̃ti−1 . (2.11)

● Minimum operation level: Some power plants must operate at least at
a minimum level and cannot operate at lower levels:

if yti = 1, then xti ≥ amin > 0. (2.12)

● Over-firing: Power plants can operate at higher levels than their normal
capacity. But an over-firing event usually requires additional mainte-
nance and repairers. For example, let λt denote the time-dependent in-
tensity of the above Poisson process π̃ti for unscheduled outages. Then
xt ∈ [amin, amax−over], amax−over > amax and:

λt > λti for t > ti, when xti > amax. (2.13)

Otherwise, we can extend the set {scheduled outage periods} in a par-
ticular way whenever xti > amax.

● Outside temperature: Nuclear power plants, in particular, depend on
the outside temperature. The hotter it is, the better is the efficiency.
But above a certain maximum temperature Tmax, the cooling water is
too hot and the plant cannot operate at all. For example let Tti denote
the outside temperature at time ti. Tt is a discrete stochastic process
with locally adjusted temperature values and distribution. Then the
gain function is dependent on Tt:

g = g(Sti , xti , Tti), πti = 0 when Tti > Tmax. (2.14)

More details about power plant properties can be found in [Ludwig 2010] or
[Burger, Graeber, Schindlmayr 2007].
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In this section we give a brief introduction into portfolio theory. The gen-
eral aim of portfolio theory is to optimize investment under given utility or
risk preferences. We present this framework and show how utility functions
describe special risk preferences. Then we introduce the concept of modern
portfolio theory and its progression to advanced portfolio theory using dif-
ferent risk measures. We also show how a portfolio model can account for
transaction costs and illiquid markets. At the end of the section we have a
brief discussion about how the value of market share could be considered in
a portfolio model.

3.1 Optimal investment under utility

To clarify the differences between investment and risk-neutral pricing & hedg-
ing, let us first recall a basic statement from risk-neutral pricing & hedging
of contingent claims.

Definition 3.1 (Perfect market)
A perfect market is frictionless and competitive and there exits continuous
trading. A frictionless market is one that has no transaction costs and a
competitive market is one where unlimited quantities of each security can be
traded without changing the security’s price. Trading is continuous when each
trade is carried out instantaneously at any time.

Let us assume an arbitrage-free and complete perfect market. A contingent
claim X is a specified random payoff usually representing wealth. Mathemat-
ically speaking, X is a random variable on a probability space (Ω, F,P ). In
a complete, arbitrage-free market, every contingent claim X can be perfectly
replicated (hedged) by a self-financing portfolio of traded assets. Thus, a
risk-neutral price of X can be determined by the unique price of the repli-
cating (hedging) portfolio, see Section 1.3.1 for risk-neutral valuation.

3.1.1 Risk preferences

In contrast to pricing & hedging, investment decisions of individual market
agents are shaped by preferences over different contingent claims. The in-
vestors preferences in algebraic notation X > Y says that claim X is preferred
to claim Y . Naturally, the investors preferences are transitive: if X > Y and
Y > Z than X > Z. A standard example is a risk averse investor who prefers
the certain payment of 50 to the 50/50% chance of getting 100 or nothing,
even if both claim’s expectation is 50. In contrast, a risk-neutral investor
would be indifferent.
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3.1.2 Utility functions

A basic assumption in portfolio theory is that an investor’s preference with
respect to wealth can be expressed through a monotone increasing utility
function U ∶ R→ [−∞,∞), X ↦ U(X). So the properties of the utility func-
tion must encapsulate the investor’s risk preferences.

For example, a risk averse investor has a concave utility. Indeed, for a concave
utility function U , Jensen’s inequality:

E[U(X)] ≤ U(E(X)), (3.1)

shows that an agent will prefer the certain payment of the claim’s expected
value to the expectation of the claim’s uncertain payment. If U is linear, the
agent is risk-neutral and if U is convex, the agent is risk-seeking.

One can prove that the investor’s choice stays the same under affine transfor-
mations of expected utility function. Therefore [Arrow 1965] and [Pratt 1964]
developed two measures of risk aversion that stay constant with respect to
these affine transformations:

λ1 = −
U ′′

U ′
, λ2 = −

X U ′′

U ′
. (3.2)

λ1 is the Arrow-Pratt coefficient of absolute risk-aversion (ARA) and λ2 is
the Arrow-Pratt coefficient of relative risk aversion (RRA). A good overview
about risk aversion and the corresponding utility functions can be found in
[wikipedia, risk aversion].

3.1.3 HARA utility functions

In the literature, the most discussed class of utility functions is Hyperbolic
Absolute Risk Aversion (HARA). HARA means that the Arrow-Pratt co-
efficient of absolute risk aversion λ1 is positive and hyperbolic in wealth.
[Merton 1971] showed that all members of the HARA family can be expressed
as:

U(X) = 1 − α

α
( βX

1 − α
+ ν)α , (3.3)

with the restrictions:

α ≠ 1, β > 0, ( βX

1 − α
+ ν) > 0, ν = 1 if α = ±∞. (3.4)

Despite of its name, the class of HARA utility consists of a wide range of
utility functions including increasing, decreasing and constant, absolute and
relative risk aversion. The most common cases in the literature are:
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3.1 Optimal investment under utility

● Negative exponential utility U(X) = 1−e−γX
γ

, with γ > 0. It has constant
absolute risk aversion (CARA) with λ1 = γ. The parameters are β = γ,
ν = 1, α =∞.

● Power utility Xγ

γ
, with γ < 1 and γ ≠ 0. It has constant relative risk

aversion (CRRA) with λ2 = 1 − γ. The parameters are β = (1 − γ) γ−1γ ,
ν = 0, α = γ. CARA utility is sometimes called iso-elastic utility in the
literature.

● The logarithmic utility u(x) = log(x), as the limiting case of power
utility when γ → 0. It has constant relative risk aversion with λ2 = 1.

We will consider these special utility functions in our applications in Part II.

3.1.4 The optimal investment problem

An optimal investment problem under utility is mathematically formulated
as follows. Suppose a perfect market of n assets with prices Pt follow an Itô
process (continuous-time Markov process):

dPt = µ(t, Pt)dt + σ(t, Pt)dWt, P0 = p0, (3.5)

where µ, p0 are n-dimensional vectors, σ is an n × n matrix and Wt is a n-
dimensional Brownian motion. Furthermore, let [0, T ] be the time interval of
interest and let {Ft}t∈[0,T ] denote the filtration on (Ω, F,P ) generated by Wt,
which represents the information set at each time t ∈ [0, T ]. Let x denote the
agent’s initial wealth at time 0 and let a ∈ A denote his investment strategy
in the market during [0, T ]. Here, A is the set of all feasible, Ft-adapted7

strategies for self-financing8 portfolios.

By Xa
T we denote the random terminal wealth at time T that is generated

using the strategy a. The agent seeks the optimal investment strategy a∗

that maximizes his expected utility of terminal wealth. This leads to the
following stochastic optimal control problem:

sup
a∈A

E[U(Xa
T )∣F0], (3.6)

subject to the SDE (3.5). Note that if Xt and at are Markov processes, then
we can replace F0 by X0 = x and P0 = p0 in the conditional expectation.

7For a definition see Appendix A.6.
8Self-financing means that there is no other source of income.
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3 PORTFOLIO THEORY

3.1.5 The investment-consumption model

In a slightly different approach, an agent additionally derives utility prior to
T through consuming wealth. Let χt denote the consumption from wealth
Xt and let δ ≥ 0 denote a discount rate that quantifies impatience. Then the
investor’s utility is given by:

U(Xa) = ∫ T

0
e−δtU1(χa

t )dt + e−δTU2(Xa
T ), (3.7)

where U1, U2 are utility functions. In the literature, this model is called
investment-consumption problem or Merton’s problem, see [Merton 1969].
Note that in this approach, the consumption {χt,0 ≤ t ≤ T} is part of the
investment strategy a ∈ A.

Two common hypotheses in perfect markets are, that asset prices Pt are log-
normally distributed and that market agents are risk-averse having a strictly
concave utility function. Under these assumptions [Merton 1971] showed for
the investment-consumption model that ”there exists a unique pair of mutual
funds constructed from linear combinations of the assets such that, indepen-
dent of preferences, wealth distribution, or time horizon, individuals will be
indifferent between choosing from a linear combination of these two funds
or a linear combination of the original n assets.” Furthermore, he showed
that the prices P ∗t of the mutual funds are log-normally distributed. This is
referred to as the mutual fund theorem in literature.

3.1.6 A note on utility indifference pricing in incomplete markets

In incomplete markets, the number of uncertainties is, roughly speaking,
greater than the number of available underlyings. In particular, there is
no risk-free replication for every contingent claim and there exists neither a
unique pricing measure nor a unique price. Then, pricing & hedging become
similar to investments since the risk preference of an investor is needed to
price the non-hedgeable risks. Roughly speaking, the choice of the utility
function defines the pricing measure out of all possible risk neutral mea-
sures. A good introduction of utility indifference pricing (& hedging) in
incomplete markets can be found in [Monoyios 2004] and the recent book
[Carmona 2008].

In the literature, investment problems in incomplete markets are commonly
analyzed by martingale and duality theory. A general presentation can be
found in [Karatzas, Lehoczky, Shreve, Xu 1991].
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3.2 Modern portfolio theory

3.2 Modern portfolio theory

According to the mutual fund theorem (see Section 3.1.5), whenever log-
normal distributed prices are assumed, the investment-consumption problem
can be reduced to the analysis of two mutual funds. In a complete market,
without loss of generality, one of the two funds can be chosen to be the risk-
free asset, i.e., non-stochastic. This asset is often called bank account. Then,
the other mutual fund is called the composite risky asset whose prices P ∗t
are subject to:

dP ∗t = µ∗P ∗t dt + σ∗P ∗t dW ∗
t , (3.8)

where µ∗, σ∗ and dW ∗ depend only on the distribution parameters of the
n assets. So every investor has to deal with only two mutual funds - the
risk-free and the composite risky asset- instead of n assets.

[Merton 1971] stated that the proportions of wealth that are invested in the
risk-free and the risky asset are derived by ”finding the locus of points in
the mean - variance space of composite returns which minimize variance for
a given mean, and then by finding the point where a line drawn from the
risk-free asset is tangent to the locus”, see Figure 3. The locus point is often
called market portfolio. This analysis is analogous to Modern Portfolio The-
ory (MPT) which was first introduced by [Markowitz 1952].
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Figure 3: Typical mean-variance diagram of the assets opportunity set with
the bank account and the capital market line.

MPT compares the portfolio’s means µ and variances σ2 out of the opportu-
nity set of all possible portfolios that consists of risky assets. The efficient
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3 PORTFOLIO THEORY

frontier is defined by the portfolios X that maximize the expression:

u(X) = u(µX , σX) = µX − λσ
2
X , (3.9)

for different λ. Here, λ represents the trade-off between the two conflicting
goals of 1) achieving a high mean return µ and 2) minimizing ”risk” σ2. If
the market contains a risk-free asset that can be short-sold, the opportunity
set is extended by the line through the risk-free asset that is tangent to the
efficient frontier in the mean-variance space. Since all optimal portfolios lie
on that line, it is called capital market line and its slope is the market price
of risk. The point of contact is the market portfolio, see Figure 3.

MPT provides a neat separation between the capital market opportunities
and the agent risk preferences. The former is given by the mean-variance
set of possible portfolios and it’s efficient frontier or the capital market line
whenever there is a risk-free asset in the market. The latter is the choice of
risk preference λ.

Transfered to investment under utility in complete markets, the actual op-
timal portfolio is chosen on the capital market line according to the risk-
preferences of the investor. His utility function can be visualized by utility
indifference curves (contour lines) in the mean-variance diagram. For con-
cave utility functions the curves are increasing and convex. Therefore, the
optimal investment is the point where the indifference curve is tangent to the
capital market line, see Figure 4.
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Figure 4: Typical mean-variance diagram of the capital market line with the
agent’s utility indifference curves and his optimal portfolio.
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3.3 Advanced portfolio theory

The concept of a unique market portfolio and a certain market price of risk
motivates the well-known capital asset pricing model (CAPM), which was
originated by [Treynor 1962] earlier in an unpublished manuscript but pub-
lished 1999.

In summary, MPT in complete markets has two major aspects:

● A reduction of the portfolio analyis onto two assets, the risky market
portfolio and the risk-free asset.

● A separation between market opportunities and the choice of the opti-
mal portfolio according to individual risk preferences.

Therefore, we will concentrate on the two-asset case in our application Part
II when we discuss analytical examples in Section 6.

3.3 Advanced portfolio theory

Apart from investment-consumption theory, modern portfolio theory has be-
come of interest for many users in the banking sector - maybe because of its
clear separation between the role of the analysts (opportunity set) and the
role of traders (risk preferences). A more general framework for MPT arose
where the utility function has the following general shape:

u(X) = profit(X) − λ risk(X). (3.10)

Here, profit(X) denotes the expected profit of the portfolio X and risk(X)
denotes a measure of risk while λ is a risk-aversion coefficient. To make a
clear separation to the original MPT, we call this framework advanced port-
folio theory here.

Advanced portfolio theory provides more variety to choose the profit function
and the risk measure than MPT. Moreover, the portfolio drivers X ∈ Rn do
not need to be normally distributed. We present several commonly used risk
measures after the next paragraph.

Absolute and relative perspectives

If X denotes the absolute wealth of the portfolio, one criticism of the ap-
proach (3.10) is that the absolute amount of risk increases with wealth. The
parameter λ then denotes absolute risk-aversion. Therefore, especially in a
multi-period setting, it is desirable to switch to a relative perspective. Let
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3 PORTFOLIO THEORY

a
j
t = X

j
t /Xt denote the proportions of wealth invested in asset j to the com-

posite portfolio Xt. Clearly, ∑N
j=1 a

j
T = 1 for all t. Then a relative approach

is to maximize:
u(a) = return(a) − λ risk(a), (3.11)

where λ is a relative risk-aversion coefficient.

3.3.1 Risk measures

Now we introduce several risk measures that are commonly used in advanced
portfolio theory.

Variance

The classical [Markowitz 1952] portfolio model measures risk through the
variance of the returns. Together with the expected mean as return it is also
called mean-variance portfolio:

max
a∈RN

µTa − λaTΣ2a. (3.12)

Here, µ ∈ RN denotes the vector of means of returns and Σ2 denotes the
co-variance matrix of returns. Since Σ2 is symmetric positive (semi-) definite
the utility function is concave and the quadratic optimization problem is well
behaved and easy to solve. It is also possible to state an analytical expression
for the efficient frontier.

A drawback of the variance approach is, that it is applicable only for normally
distributed return structures and does not take into consideration higher
moments. Moreover, the measure is symmetric and counts positive outcomes
as risk”.

Value at Risk

Another risk measure developed by practitioners is the Value at Risk (VaR)
that was strongly supported by J.P.Morgan 19949. Let L(x,w) denote the
loss of an investment x under the outcome w ∈ Ω and let Ψ(x, γ) ∶= P [L(x,w) ≤
γ] be the cumulative distribution function of L(x, ⋅) for a fixed x. Then, for
any α ∈ [0,1] the VaR on a confidence level α is defined as

V aRα(x) ∶=min
γ∈R

γ, (3.13)

9J.P. Morgan launched the RiskMetrics methodology 1992 and outsourced it into the
RiskMetrics Group 1998. The Group was acquired by MSCI Inc. 2010.
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3.3 Advanced portfolio theory

such that
Ψ(x, γ) ≥ α. (3.14)

The merit of the VaR measure is, that it defines a tangible monetary value
as risk and that it is a purely down-side risk measure, accounting only for
losses. The drawbacks of the VaR are:

● The portfolio optimization becomes a bilevel optimization problem
which typically is NP-hard to solve.

● The VaR is often non-smooth and has many local minimizers.

● The VaR does not satisfy the sub-additivity inequality f(x1 + x2) ≤
f(x1)+ f(x2), which encapsulates the idea that diversification reduces
risk.

● The VaR pays no attention to the magnitude of losses when they occur.

A recent example that includes empirical analysis on U.S. stock and bond
markets can be found in [Campbell, Huisman, Koedijk 2001].

Conditional Value at Risk

To overcome the VaR’s drawbacks, the concept of Conditional Value at Risk
(CVaR), also called Expected Shortfall (ES), has been developed:

CV aRα(x) ∶= 1

1 − α ∫w∶L(x,w)≥V aRα(x)
L(x,w)P [dw]. (3.15)

CVaR considers the magnitude of losses, satisfies the subadditivity inequality
and is a smooth function. Altogether, CVaR is a coherent10 risk measure.

Nevertheless, calculating CVaR appears to require the calculation of VaR.
To overcome this drawback, [Rockafellar, Uryasev 2000] showed that the op-
timization problem can be reformulated by introducing the function

Fα(x, γ) ∶= γ +∫
Ω

(L(x,w) − γ)+
1 − α

P [dw], (3.16)

and the fact that Fα(x,V aRα(x)) = CV aRα(x). Knowing that V aR is a
minimizer of the problem (minγ Fα(x, γ)), the portfolio optimization problem
minxCV aRα(x) is equal to the problem:

min
x,γ

Fα(x, γ). (3.17)

10A risk measure that satisfies the properties monotonicity, sub-additivity, homogeneity,
and translational invariance.
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3 PORTFOLIO THEORY

This is not a bilevel optimization anymore and omits the calculation of VaR
altogether.

Limits of modern portfolio theory

The original optimal investment model in Section 3.1.4 aims to find an op-
timal (time-continuous) trading strategy over a specified time horizon [0, T ]
which leads to a stochastic optimal control problem. The reader may have
noticed that in contrast, modern portfolio theory and advanced portfolio the-
ory are single-period models. Both profit and risk are integral functions over
the probability space Ω and the actual optimization is non-stochastic.

The connection between Merton’s investment-consumption model and MPT
was provided by the mutual fund theorem using the assumption of perfect
markets. Unfortunately, as soon as we take transaction costs or illiquidity
effects (imperfect markets) into account, a single-period analysis (e.g. MPT)
is not possible anymore.

3.4 Illiquidity and transaction costs

So far we assumed a perfect market according to Definition 3.1 in Section
3.1. Now we discuss modeling approaches for pricing & hedging and portfolio
theory when the frictionless and competitive market hypotheses are relaxed.

3.4.1 Transaction costs

Markets are not frictionless anymore when transaction costs compensate the
dealer’s effort for trading activities. Usually, transaction costs f ∶ R → R−
are charged proportional to the amount of stock traded α ∈ R:

g(α) = −c ∣α∣, (3.18)

where c > 0. So the agent’s total payment ∆B for the trade α is:

∆B = −αS − g(α)S, (3.19)

where S denotes the asset’s price. When transaction costs are taken into
account, the problem of pricing & hedging as well as optimal portfolio allo-
cation become more complex. The main issue is that a Brownian motion has
infinite variation. So it would be infinitely costly to balance a hedging port-
folio for a contingent claim (or an investment portfolio) continuously when
the underlying follows an Itó process.
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3.4 Illiquidity and transaction costs

In order to price contingent claims under transaction costs, [Leland 1985]
proposed to balance the hedging portfolio only at discrete time points. He
proposed a Black-Scholes style formula with an adjusted volatility when using
a fixed hedging time scale δt. Another method (known as super-replication)
requires that the hedging portfolio dominates, rather than replicates, the
claim’s payoff at maturity. For incomplete markets, [Monoyios 2003] and
[Monoyios 2004b] analyzed marginal utility-based pricing under transaction
costs. This approach was first proposed by [Davis 1997] and it is similar to
the utility indifference pricing, see Section 3.1.6.

Besides pricing & hedging, optimal portfolio allocation is affected by transac-
tion costs too. [Davis, Norman 1990] analyzed Merton’s original investment-
consumption problem in continuous time under linear transaction costs. They
showed that the space spanned by the amount of risky assets and the amount
of risk-less asset held in the portfolio divides into three regions: a buy-, a
sell- and a hold-region11. The portfolio is only balanced back to the hold-
region when it goes outside to the buy- or the sell-region. More recent lit-
erature on pricing & hedging and portfolio theory with transaction costs is
[Barles, Soner 1998] or [Constantinides, Zariphopoulou 1999] for example.

3.4.2 Illiquidity

The relaxation of the competitive market hypothesis introduces the notion of
liquidity. Roughly speaking, imperfect liquidity (illiquidity) is an additional
cost due to the timing and size of a trade.

Illiquidity is commonly believed to be a major effect in financial markets.
Emperical evidence of temporary illiquidity is provided through the Bid-
Ask spreads of standard instruments at financial exchanges. Moreover, per-
manemt price changes after the anouncement of large trades must be con-
sidered as illiquidity effects too, whenever no other new information arrived
the market.

So there exist two common phenomena due to illiquidity: temporary illiquid-
ity cost and permanent price impacts. [Rogers, Singh 2010] argue that both
can be considered as effects of supply & demand on price, but the temporary
illiquidity cost ”arises because of the need to clear a market over a short
time spell, whereas the permanent price impact comes from the clearing of
the market” from large trades ”over long periods.”

11As proposed before by [Magill, Constantinides 1976].
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Temporary illiquidity costs

By temporary illiquidity costs we mean that an agent, however small, may
face costs in trying to trade rapidly but does not affect the price of the un-
derlying asset. In other words, his trading affects the price at which he will
trade the asset but not the asset’s market price itself.

The following examples show how temporary illiquidity cost are modeled in
the literature.

● [Touzi, Astic 2007] introduced a liquidation function that ”exhibits a
bid-ask spread for each portfolio, which includes any transaction cost
that the agent may have to pay to a broker”. Thus, their model does
not separate the liquidity cost from transaction costs.

● [Cetin, Jarrow, Protter 2004] hypothesize ”the existence of a stochastic
supply curve for a security’s price as a function of trade size, for which
agents act as price takers.” Their supply curve is independent of the
agent’s past actions, endowments, risk aversion, or beliefs. An example
for a stochastic supply curve S is:

S(t, αt) = f(αt)S(t,0), (3.20)

where S(t,0) ∈ R+ denotes the asset’s market price at current time
t, αt ∈ R denotes the current trade size and f ∈ R+ is a stochastic
illiquidity factor. A positive αt means buying assets and a negative
αt means selling assets. The function f ∈ C2(R,R+) must be positive,
convex and increasing w.r.t. αt, with f(0) = 1 , f(αt) < 1 for αt < 0,
and f(αt) > 1 for αt > 0.

● [Rogers, Singh 2010] argue that ”the faster an agent wants to buy (sell)
the asset, the deeper into the limit order book he will have to go, and
higher (lower) will be the price for the later units of the asset bought
(sold). However, once a rapid transaction is completed, we suppose that
the limit order book quickly fills up again and that the rapid transaction
has no lasting effect on the price of the underlying.” Therefore they
modeled the stochastic factor f(⋅) in (3.20) through an integration of
the order book:

S(t, αt) = ∫ αt

0
xρ(x)dx S(t,0), (3.21)

where ρ(x) denotes the density of quotes at relative price x.
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[Rogers, Singh 2010] and other authors understand illiquidity as nonlinear
transaction costs. Let us briefly show how the supply curve model (3.20) can
be interpreted as transaction costs. First, let us consider the agent’s total
payment ∆B for a trade αt by:

∆B = −αtS(t, αt) = −αtf(αt)S(t,0). (3.22)

Now, let us split this payment into the value of the assets αtS(t,0), which the
agent holds after his purchase, and the additional cost for illiquidity. Then
(3.22) becomes:

∆B = −αtS(t,0) − αtf(αt)S(t,0) + αtS(t,0)
= −αtS(t,0) − (f(αt) − 1)αt S(t,0)
= −αtS(t,0) − g(αt)S(t,0),

(3.23)

where the function g(α) = (f(α) − 1)α denotes the pure transaction costs
relative to the asset’s price; compare to (3.19). From the properties of f we
derive that:

● g(⋅) ≥ 0; so g is positive,

● g(0) = 0; so there are no transaction cost when there is no trade,

● ġ(0) = 0, ġ(α) < 0 when α < 0 and ġ(α) > 0 when α > 0; so g has its
global minimum at 0,

● g̈(α) < 0 as long as α > − f̈+ḟ
f̈
; so g is locally convex around 0.

We see that g(⋅) fulfills all realistic assumptions of a (nonlinear) transaction
cost function.

The Flash Crash as an example of temporary illiquidity effects

The Flash Crash [Wallstreet 2010] was a stock market crash on Thursday
May 6, 2010 in which the Dow Jones Industrial Average plunged about
1000 points (about 9%) and recovered most of those losses within about
20 minutes. Many investigators mentioned that the illiquidity of the mar-
ket (caused through high market fragmentation12) made the Flash Crash
first possible. For example, using intraday trade data from January 1994 -
September 2011, [Madhavan 2011] found ”that fragmentation now is at the
highest level recorded”.

12Market fragmentation is defined as ”emergence of new segments (in a previously ho-
mogeneous market) which have their own distinct needs, requirements, and preferences.
These fragments reduce the effectiveness of mass marketing techniques and erode brand
loyalty”, see [businessdictionary].
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Permanent price impacts

By permanent price impacts we mean that an agent’s trading activity affect
the asset’s market price. Since trading decisions are made depending upon
the assen’s price, but the trade simultaneously influence this price, the phe-
nomenon is called market feedback in literature. [Papanicolaou, Sircar, 1998]
for example present a class of pricing models that accounts for the feedback
effect from the Black-Scholes dynamic hedging strategies on the price of the
asset, and from there back onto the price of the derivative.

An asset price model that accounts for permanent price impacts could have
the following form:

dSt = µ(t, St, αt)dt + σ(t, St, αt)dWt, (3.24)

compared to the standard Itô process 3.5 in Section 3.1.4. We will consider
the valuation of swing options under permanent price impacts as an example
application in Part III, Section 15.

Nevertheless, the proper treatment of permanent price impact is problem-
atic. [Rogers, Singh 2010] mentioned that, ”if the actions of a single trader
will shift the price, then logically the actions of every trader will shift the
price, and in order to understand this effect fully we would have to build a
model which accounted for the behavior of all the agents in the market.”

For example, [Schönbucher, Wilmott 2000] consider ”the free round trip phe-
nomenon, where the large agent rapidly sells and then buys back a large
amount of stock, forcing the price instantaneously to drop, and if this round
trip is not costly, then the large agent could make profits by selling down-
and-out calls and subsequently knocking them out by a round trip.”

3.4.3 Other costs

In literature, the concept of transaction costs is transfered to a variety of
other costs. [Lobo, Fazel, Boyd 2007] stated for example that ”transaction
costs can be used to model a number of costs such as brokerage fees, bid-ask
spreads, taxes or even fund loads”. We will use the concept of transaction
cost to account for temporary illiquidity effects in our model for optimal
portfolio allocation of commodity related assets in Section 4.4.3.

Note that in practice, transaction costs indirectly keep the investor away
from unrealistically frequent changes of his portfolio. Nowadays, the Eu-
ropean government discusses about introducing artificial transaction costs
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to prohibit high frequency trading of banks. Uncontrolled high frequency
trading is supposed to disrupt financial markets.

3.5 Market share

Next to maximizing profits and minimizing risks, gaining market share is also
an important goal of a company’s decision maker. [investopedia, market share]
defines market share as the percentage of an industry or market’s total sales
that is earned by a particular company over a specified time period. The
measure gives a general idea about the relative size of a company in compar-
ison to its competitors.

The true reasons for increasing market share may be the association of sta-
bility and bargaining power. However, an economic reason is given by the
concept of economy of scale. It says that, the greater the operation scale,
the more efficient and profitable is the production process. There are many
empirical studies that have questioned the validity and generalizability of the
relationship between market share and profitability.

[Szymanski, Bharadwaj, Varadarajan 1993] provided a literature overview by
performing a meta-analysis on 276 market share-profitability findings from
48 studies. The studies use different factors to describe how market share
affects profitability and estimate the correlation between both.

Common models use the following relationship between market share S and
profitability P :

P = β0 + β1S +
N

∑
i=2

βiFi, (3.25)

where Fi, i = 2, ...,N denote appropriate economic factors and βi ∈ R are
coefficients to be estimated by regression. Factors that indicate marketing
expenses or the duration of a product’s live cycle can influence the change of
market share S over time.

On the one hand, a portfolio model could account for market share through
simply adding (3.25) to the profit function. On the other hand, increasing
market share may be a separate goal for investors next to increasing prof-
itability. Then, a measure of market share (mshare) could be added to the
portfolio’s objective function:

u(X) = profit(X) − λ risk(X) + γmshare(X), (3.26)

where γ is a coefficient that indicates the power addiction of the investor.

49



Part II

Optimal portfolio allocation of
commodity related assets
In this part of the thesis we develop and analyze our model for optimal port-
folio allocation of commodity related assets. By commodity related assets
we mean every physical (or financial) assets that involves (or replicates) pro-
duction, transportation, processing, storage or trading of commodities. We
sometimes refer to these assets in a shorter way as production assets.

In Section 4 we develop the general discrete-time model. In Section 5 we
reduce the complex discrete-time model to an analyzable continuous-time
model. We present analytical solutions for simple cases in Section 6 and
numerical solutions for the general one asset case in Section 7. Furthermore,
we apply the reduced continuous-time model to a special case from the energy
sector, a portfolio of power plants, and present numerical results in Section
8.

4 A discrete-time model for general produc-

tion assets

We classify first our portfolio approach and place it in the vast portfolio
literature. We define the special type of commodity related assets that we
are dealing with, their allocation and the term portfolio owner. Further we
clarify the type of portfolio optimization that we focus on, the distinction
between production asset and commodity trading and the limits of our model
approach. We then list a few real-world applications.

4.1 Classification

Let us first explain what we mean by the term production asset.

Definition 4.1 (Production asset)
A production asset is the financial view of a machine, a facility or a produc-
tion process which transforms several inputs into several outputs. The trans-
formation can be a result of production, transportation, processing, storage
or trading. The major inputs and outputs must be homogeneous goods (com-
modities) which are tradeable at open exchanges in a free market economy.

50
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Production assets differ in their location (e.g. countries, states, nations or
continents), their time of availability (e.g. 24-7, at daytime, seasonal or
weather dependent) and their technology (e.g. operation flexibility, physical
constraints, quality or effectiveness). Note that these three properties of pro-
duction assets correspond to the the three key properties of location, time
and quality which we introduced in the preliminaries in Section 1.1. Typ-
ical examples for production assets are power plants that transform energy
sources into electricity.

Definition 4.2 (Allocation)
By allocation we mean the following possible actions to change the capacities
of production assets:

1. relocate an asset physically,

2. upgrade an asset to a new technology in order to improve operation
flexibility or time of availability,

3. maintain or fully replace an old assets that shows weak,

4. build a new asset from scratch or reassemble an old asset in order to
increase or decrease capacities, respectively,

5. buy or sell an asset in order to increase or decrease capacities, respec-
tively.

In reality, each type of allocation is an investment decision of the company.
Investment decisions are usually made at regular time intervals, e.g. on a
monthly, quarterly or yearly basis.

Definition 4.3 (Portfolio owner)
The portfolio owner is a company (an organization or a person) that owns and
operates several production assets. It also holds a bank account and is able to
save and borrow money with interest. The company has a specified utility (risk
preference) and is able to change its portfolio over time through allocations.
We suppose that the organization is small compared to the market, such that
these allocations do not influence the market conditions.

For example, a power producer holds a portfolio of power plants and aims to
maximize its return through optimal investments while considering possible
risks. In another example, the portfolio is the sum of all production assets of a
nation or community. Then the portfolio owner is the population, represented
by an authority, and aims to minimize costs and pollution while considering
energy security.
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4.1.1 Type of portfolio optimization

Our goal is to maximize a company’s utility through an optimal allocation
of production assets over a specified time horizon. For this purpose we uti-
lize the concept of portfolio theory from mathematical finance, see Section
3. Our main questions is:

What is the optimal rate a company should invest in different types
of production assets, given an initial capital?

Our portfolio approch has the following properties:

● Utility is gaind from consumption of wealth over time that is taken
out of the bank account, as well as from terminal wealth.

● The company starts with a given initial portfolio at time 0 and
searches for an optimal strategy until a fixed time horizon T . So we
start with the actual portfolio of the company and optimize its fu-
ture investments. Other approaches search for the portfolio that is
optimal today and simply advice the portfolio holder to shift its capac-
ity towards this imaginary optimal portfolio through allocation in the
future. It is clear that our approach is much closer to reality since it
accounts for the real allocation process over time.

● The capacity allocation over the time interval [0, T ] is a multi-step
discrete-time process. At every time step, a new investment decision
is made. This is different to other approaches which only consider a
single-step model like modern portfolio theory.

● The uncertainties (risk drivers) are commodity price changes and
changes of the assets’ value over time. All other risk factors like
political or economical risks as well as competition are encapsulated in
the commodities price and assets value changes.

● We consider temporary illiquidity costs for allocations in the market
of production assets.

4.1.2 Distinction between production assets and their underlying
commodities

The important specialty of our model is that we are not trading commodities
but rather the commodity processing production assets, which are operat-
ing in the commodity market. The two main differences between trading
production assets and their underlying commodities are:
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● Owning a production assets one can use the operation flexibility to
optimize returns.

● One has to account for essential industrial mechanisms of the pro-
duction asset like construction costs, deterioration, variable operation
costs, fixed maintenance costs and physical limitations of operation.

Therefore, each production asset is a real option according to our Definition
1.2 in Section 1.4.3.

Figure 5 is an example flow chart that visualizes the portfolio allocation of
production assets and their operation in commodity markets. Both markets
are uncertain. The blue arrows mean illiquid trading while the red arrows
mean liquid trading. The red arrow inside the capacity boxes indicate the
operation flexibility.

Figure 5: Example flow chart for portfolio allocation of generation assets
which operate in the energy and power market.
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4.1.3 Limits of our model

Details about pre-processing of inputs or further processing of outputs are
out of scope. The corresponding intersections in the commodity chain are
modeled by uncertain market prices. Figure 6 shows an example of a power
producer. Not considered are 1) mining or pre-refinement of commodities
2) transportation or storage of inputs and outputs 3) the precise physical or
chemical reactions and 4) short-term operation scheduling.

Figure 6: Commodity chain for power generation from mining fossil energy
sources to power consumption. The blue markers on the time line indicate
the limits for a generation assets portfolio.

Note that we leave aside the issues of foreign exchange rates and insurance
fees. However, both financial aspects could be included in an intuitive man-
ner. We also do not consider the investment of money into other industry
sectors or markets. Nevertheless, each out-of-scope topic may already be ad-
dressed in literature by other research groups, technical engineers or facility
operators.

4.1.4 Possible applications

The model is especially applicable for companies in the heavy industry sec-
tors where homogeneous goods are refinement and processed (e.g. metal
sublimation, chemical refinement, cracking oil, power generation and food
processing). Our business case in Section 8 deals with a portfolio of power
plants.

The model can be applied also to companies dealing with commodities trans-
portation. There a portfolio consists of tankers, ships, pipelines, trucks, stor-
ages facilities and reloading stations where each asset has its specific capacity
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and properties. For example the oil shipping from Saudi Arabia to Europe is
a production process. Inputs are oil at the exporting harbors (Saudi Arabia)
and outputs are oil at the importing harbors (Europe).

Another suitable application from the service sector is a provider of online
computing capacity or storage space. The company’s production assets are
their hardware servers. The main inputs are local power and local labor
while the main output is the globally available server capacity. All three
are homogeneous goods. Besides technical properties, assets mainly differ in
their location. This implies different power and labor costs, political risks,
risk of social stability or power outage risk. A web company like Google13

needs a tremendous amount of computing power and should optimally choose
their server locations in the world.

4.1.5 A comment on modern portfolio theory approaches

We introduced modern portfolio theory (MPT) and advanced portfolio the-
ory in Sections 3.2 and 3.3, respectively. Both approaches are only applicable
in perfect markets but some authors applied them to portfolios of production
assets, see [Awerbuch, Stirling, Jansen, Beurskens 2005] for a case on power
generation assets. In order to do so, they calculated the mean and the vari-
ance of the discounted cash flows (DCFs, see Section 1.4.1) of each production
asset. Assuming that the DCFs are normally distributed, they treated pro-
duction assets like standard financial assets and applied the single-step MPT.
In contrast we deal explicitly with the specific properties of production assets
and the process of portfolio allocation over time. We discuss this aspects in
more detail in our Literature review in Section 8.1.

4.2 Definition of variables

Let [0, T ] denote the fixed time horizon of interest. Sine investment decisions
are made on a regular time frequency, let:

{ti ∈ [0, T ], i = 0, ...,NT ∣ t0 = 0, tNT = T} (4.1)

denote an equidistant time grid with step size ∆t = T /NT .

4.2.1 Capacities and prices of production assets

Let us suppose that an industry sector consists of NA different kinds of
production assets. Let ati ∈ RNA

+ denote the amount of assets held by the

13www.google.com
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company during the time interval [ti, ti+1). The amount of assets is measured
in operation capacities. Let pAti ∈ R

NA

+ denote the asset’s market price for one
unit of capacity. The market price is less related to the construction costs
but rather to a fair value for which assets are exchanged, like in mergers &
acquisitions. Let ãti and b̃ti ∈ RNA

+ denote the amount of capacities purchased
and sold through a transaction at time ti, respectively.

4.2.2 Bank account and consumption

In addition to investment into production assets, the company can put its
money into a secure bank account that pays a constant (risk-free) interest
rate r. So, let Bti ∈ R denote the amount of money held in the company’s
bank account. When Bti is negative, the company is borrowing money. Let
χti ∈ R+ denote the consumption of money out of the bank account during[ti, ti+1). The consumption could be a dividend payment to the share holders
or a payout to the private owners.

4.2.3 Commodity prices and uncertainties

Let (Ω,F , P ) denote a probability space endowed with a filtration F ∶={Ft}t∈[0,T ] and let XN[0, T ] denote the space of all time-continuous Markov
processes over [0, T ], that areN -dimensional, F-measurable and real-valued.14

Let us suppose the industry sector deals with NP different outputs (prod-

ucts) and NC different inputs (commodities). Let pP ∈ XNP [0, T ] and pC ∈
XNC [0, T ] denote the price processes of outputs and inputs, respectively. The
introduced filtration F is generated by all uncertain factors of the model.15

Roughly speaking, Ft represents the information set at time t. Additionally,
let q ∶ [0, T ]→ RNA

+ denote the operation level for each asset type. Note that
pP , pC and q may not be constant over [ti, ti+1).
In order to simplify notation we introduce the following discrete-time state
sequences:

● the portfolio capacity a ∶= {ati ∈ RNA}NT

i=0 ,

● the production asset price pA ∶= {pAti ∈ RNA}NT

i=0
14The definitions of probability space, filtration and Markov processes can be found in

the appendix A.1.
15A brief introduction about the generation of a filtration out of random variables can

be found in the appendix A.1.
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● the bank account B ∶= {Bti ∈ R}NT

i=0

and the following discrete-time control sequences:

● the buying rate ã ∶= {ãti ∈ RNA

+ }NT

i=0 ,

● the selling rate b̃ ∶= {b̃ti ∈ RNA

+ }NT

i=0 ,

● the consumption rate χ ∶= {χti ∈ R+}NT

i=0 .

We also have the following continuous-time state processes:

● the price processes of outputs pP ∈ XNP [0, T ],
● the price processes of inputs pC ∈ XNC [0, T ],

and the following continuous-time control process:

● the operation level q ∶ [0, T ]→ RNA

+

4.3 The optimization problem

Let us assume that the company starts with an initial portfolio of assets a0
and bank account B0, and use the fixed allocation policy χ. Then, the bank
account evolves in time by:

Bti+1 = Bti + rBti − χti + profitti(ati , ãti , b̃ti , pAti , pPti , pCti), (4.2)

and the amount of assets evolves in time by:

ati+1 = ati + ãti − b̃ti − r
detati . (4.3)

Here, the function profitti ∶ R
NA

+ ×RNA

+ ×RNA

+ ×RNA

+ ×RNP

+ ×RNC

+ → R denotes
the expected profits over [ti, ti+1) that are gained from the asset’s portfolio.
The expactation depends on the initial prices pAti , p

P
ti
and pCti at ti. The rate

rdet ∈ [0,1]NA
denotes the average depreciation rate of the assets.

The objective is to maximize the portfolio owner’s utility. Let U1, ∶ R+ → R

denote the utility out of consumption χti and let U2, ∶ R+ → R denote the
terminal utility out of terminal wealth aTpT+BT . Then the objective function
is given by:

J(a0,B0, χ, ã, b̃) = Eχ,ã,b̃

⎡⎢⎢⎢⎢⎣
NT

∑
i=0

e−δtiU1(χti) + e−δTU2(aTpT +BT )
RRRRRRRRRRRF0

⎤⎥⎥⎥⎥⎦ , (4.4)
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where δ ≥ 0 denotes the discount rate for deferment and Eχ[] denotes the
expectation when using the fixed control policies χ. Note that we use a
constant discount factor e−δti for each [ti, ti+1). The value of the portfolio is
given by:

V (a0,B0) = sup
χ,ã,b̃

J(a0,B0, χ, ã, b̃). (4.5)

Note that the estimation of the portfolio’s value (4.5) imposes a multi-
dimensional stochastic optimal control problem.

4.3.1 The choice of the utility functions

In the preliminaries Section 3, we introduced the concept of utility functions
and how they encapsulate the investor’s risk preferences. For our portfolio
allocation model we consider the class of HARA utility:

U(x) = 1 − α

α
( β x

1 − α
+ ν)α , (4.6)

with the restrictions:

α ≠ 1, β > 0, ( β x

1 − α
+ ν) > 0, ν = 1 if α = ±∞. (4.7)

HARA utility includes a wide range of different risk-aversion cases like in-
creasing, decreasing, and constant, absolute and relative risk aversion, see
Section 3.1.3.

Another reason is that HARA utility is widely used in the literature. There-
fore we can compare our results for commodity related assets with already
analyzed cases for standard financial assets. In particular, [Merton 1971] ob-
tained analytical solutions for the standard investment-consumption problem
in case of HARA utility while assuming a perfect market and log-normally
distributed prices. We discuss analytical solutions in Section 6.

The actual utility function must be chosen from the HARA class appropri-
ately to the specific business case. In our business example in Section 8 we
use the case of negative exponential utility:

U1(x), U2(x) = 1 − exp(−γ x)
γ

, γ > 0. (4.8)

Negative exponential utility has constant absolute risk aversion (CARA)
where the Arrow-Pratt coefficient of absolute risk aversion is λ1 = γ, see
Section 3.1.2. Other HARA utility functions can be applied in the same
manner. Note that in particular business cases the shape of terminal utility
U2 may slightly differ from U1.
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Empirical studies on utility functions

On the one hand, experimental and empirical evidence is mostly consistent
with decreasing absolute risk aversion, see [Friend, Blume 1975]. It means
that as the investor’s wealth increases, his aversion to risk decreases. CRRA
implies a decreasing absolute risk aversion for example.

On the other hand, it may not be always true in practice that the risk aver-
sion increases with decreasing wealth; especially not in the limit case. For
example, log-utility with λ = 1 is a CARA utility function but it converges
to −∞ when consumption converges to zero.

From empirical studies, [Kallberg, Ziemba 1984] ”find that utility functions
with similar levels of Arrow-Pratt absolute risk aversion result in similar op-
timal portfolios irrespective of the functional form of the utility.” Therefore,
negative exponential utility is a reasonable choice for practical cases when
total wealth stays in a reasonable order of magnitude.

4.4 Profit from the asset portfolio

The monetary profit from a portfolio of production assets is the sum of:

1. Gains from operations. Thus, let gainti
∶ RNA

+ ×RNP

+ ×RNC

+ → R denote
the expected gain from operations during [ti, ti+1).

2. Fixed costs that arise from the pure holding of production assets. Thus,
let costfixti ∶ R

NA

+ → R denote the fixed costs of the portfolio during[ti, ti+1), that are independent from operation.

3. Costs due to the allocation process. Thus let costallocti
∶ RNA

+ × RNA

+ ×
RNA

+ → R denote these total costs from buying and selling assets at
time ti.

Summarizing these components, the portfolio profit is given by:

profitti(ati , ãti , b̃ti , pAti , pPti , pCti) =
gainti

(ati , pPti , pCti) − costfixti (ati) − costallocti
(ãti , b̃ti , pAti).

(4.9)

Note that the function gainti
(ati , pPti , pCti) depends only on the initial prices

pPti , p
C
ti
at time ti. This is crucial since the company makes allocation deci-

sions at time ti without the knowledge of the explicit price paths pPt , p
C
t for
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t ∈ [ti, ti+1). Now, we define the three components of (4.9) in more detail.

We state the unit of each variable in the following paragraphs, such that
the reader is able to check consistency. Basically, we distinguish between
two different types of units, capacity unit [cap] and operation unit [op]. The
operation unit is equal to the capacity unit integrated over time, [op] = [cap]
[t]. The specific commodity unit is indicated by [unit].

4.4.1 Operation gains

First let us take a closer look at the composition of gains from operation and
their cash-flows.

Estimation of earnings

Earnings are made solely from selling goods or services that are produced
during operation. We define operation earnings in terms of money per op-
eration unit ( /[op]) and assume an instantaneous selling of the outputs at
market prices. Thus, the operation earnings at time τ ∈ (ti, ti+1] are given
by:

eearningτ ∶= pPτ QP(qτ),
where QP ∶ RNA

+ → RNP×NA
denotes the output production matrix in terms

of the output’s unit per operation unit ([unit]/[op]). Note that pP is given in
terms of money per commodity unit ( /[unit]). Note also that QP depends
on the current operation level qτ . An additional time dependency of the
operation matrix QPt could account for technology advancements towards
more effective production over time. We leave this aspect aside for the sake
of simplicity.

Estimation of variable costs

By definition, variable costs occur only through operation. We define variable
costs in terms of money per operation unit ( /[op]), in the same way as
earnings, and assume an instantaneous buying of the inputs at market prices.
The variable costs at time τ ∈ (ti, ti+1] are given by:

cvarτ ∶= pCτ QC(qτ) + cop(qτ),
where QC ∶ RNA

+ → RNC×NA
denotes the input processing matrix in terms

of the input’s unit per operation unit ([unit]/[op]). Note that pC is given in
terms of money per commodity unit ( /[unit]). The function cop ∶ RNA

+ →
RNA

+ denotes the usual operation costs per operation unit ( /[op]). In c
op
τ
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we include all incremental costs that are not proportional to the input, e.g.
repairing costs due to wearing, energy costs, start-up and shut-down costs
and labor costs - if these are not considered as an own input variable already.
Note also that QP and cop depend on the current operation level qτ .

The real option approach

The operation gain during [ti, ti+1) is the expected accumulated spread be-
tween earnings and variable costs, assuming optimal operation. The expecta-
tion is conditional to commodity prices pPti and pCti at ti. It turns out that the
operation gain is a real option according to Definition 1.2 in Section 1.4.3.
Using this approach, the optimal gain is given by:

gainti
(ati , pPti , pCti) =

sup
q∈A(ati)

E
q
ti
[∫ tt+1

ti

(pPτ QP(qτ) − pCτ QC(qτ) + cop(qτ)) qτ dτ ∣pPti , pCti] ,
(4.10)

where A(ati) denotes the set of applicable operation policies:

A(ati) = {{qτ , τ ∈ [ti, ti+1)} ∣ feasible according to ati} (4.11)

Note that qτ is defined in terms of capacity units [cap] and the function gainti

has the unit . Note also that we replaced Fti by pPti , p
C
ti
in the conditional

expectation, since both stochastic processes are assumed to be Markov and
the controls only depend on the current states at ti.

Physical constraints of operation policies

The control {qτ , τ ∈ [ti, ti+1)} must lay in the set of applicable operation poli-
cies A(ati). In (4.11) the term feasible indicates that physical constraints may
limit the control space. We already presented common physical constraints
of real options in Section 1.4.3 and particular constraints for generation as-
sets in Section 2.4. The proper selection of physical constraints depends on
the specific business case.

4.4.2 Fixed costs

Maintenance and investment costs must be payed in advance for availability
of capacities, no matter what the operation is. Since these costs are inde-
pendent of operation qτ they are called fixed costs. The average fixed costs
during time interval [ti, ti+1) are proportional to the capacity ati and given
by:

costfixti (ati) ∶= (cmain
ti
+ cinvti

) ati , (4.12)
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where cmain
t ∈ RNA

+ denotes the fixed maintenance costs and cinvt ∈ RNA

+ de-
notes the annuities of the investment costs. Note that cmain

ti
and cinvti

are given
in terms of money per capacity unit ( /[cap]) and the capacity ati naturally
has the unit [cap].

Note that we consider investment costs in the form of annuities in our model.
This approach has the following four advantages:

1. Construction costs for a machine or even a huge facility are not paid all
at once in operation. They are rather financed through credit with a
risk-adjusted credit rate rcred ∈ [0,1] - including a potential risk spread
- and payed back in annuities over the full lifetime.

2. The commissioning and the decommissioning of single production as-
sets must not to be retraced over time. Therefore, we do not need
additional state variables that trace the state of the assets life cycle.
Moreover, we do not need to separate similar assets but consider only
the sum of their capacities.

3. The investment is independent of former states of the system. This
fact ensures that the decision variable ati is a Markov control.

4. We need not be concerned with a terminal value or terminal costs of
an asset at the time of disposal. All these costs are payed as annuities
during each holding period.

The annuities can be derived in the following way. Assume an asset of type j
that is commissioned at time t. Let C invest,j

t ∈ R+ denote the net present value
of investment costs that includes all costs for construction, commissioning
and decommissioning. Let Dcred

t = 1
(1+rcred)t be the discount factor for the

corresponding credit. Furthermore let T j denote the average lifetime for an
asset of type j. Then, the annuities cinv,jti

for all ti are given by16:

c
inv,j
ti
= C invest,j

ti

Dcred
∆t − 1(Dcred

T j − 1)Dcred
∆t

.

Additionally, let us consider the deterioration rate rdet,j ∈ [0,1] from equation
(4.3). Then the annuities can account for deterioration by:

c
inv,j
ti
= C invest,j

ti

Dcred
∆t (1 − rdet,j) − 1(Dcred

T j (1 − rdet,j)T j
− 1)Dcred

∆t (1 − rdet,j) . (4.13)

16Deduced from C invest = ∑
n

k=1
cinvDk = cinvD

n

−D

D−1
.
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Note that the time dependency of cmain
ti

and C
invest,j
ti

expresses possible tech-
nology advancements towards cheaper construction and maintenance.

4.4.3 Allocation costs

For the allocation of production assets the company has to pay the asset’s
market price. Furthermore, we assume that an initiator of a trade faces costs
costillti ∶ R

NA

+ ×RNA

+ ×RNA

+ → R+ due to temporary illiquidity in the market of
production asset:

costallocti
(ãti , b̃ti , pAti) = (ãti − b̃ti)pAti + costillti (ãti − b̃ti). (4.14)

We explain these additional costs and possible other costs in the following
paragraphs.

Temporary illiquidity costs

Whenever a production asset is bought from a competitor or sold to him,
the counterparties have to negotiate the price. One the one side, we assumed
that there exists a ”fair” market price (value) pA of the considered asset. On
the other side, commodity markets are usually illiquid, see [Geman 2005],
and the market for production assets is naturally less liquid that the market
of their underlying commodities. From demand & supply theory it is clear
that, the more assets are demanded at the same time, the higher will be the
price per asset.

The same price effect occurs when a large amount of the same production
assets should be build over a short time period. Here, costs increase with the
speed of installation. An example is the realization of renewable energy in
Germany where the authorities aim is a fast installation of wind wheels and
solar panels. High subvention fees have been paid to increase the willingness
to install solar panels in recent years. Also, a fast installation of underwater
transmission lines for off-shore wind wheels is expected to be a very costly
venture, see [Bloomberg New Energy Finance 2012], section 5.

It is clear that the described costs depend on the total allocation rate ãti − b̃ti
of the company while the allocation rate itself does not influence the market
value pA of the assets. Therefore the concept of temporary illiquidity costs,
which we introduced in Section 3.4.2 in the preliminaries, is an appropriate
way to account for this cost effect.
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Let us assume that the costs for the allocation of different assets are inde-
pendent among each other:

costillti (ãti − b̃ti) = NA

∑
j=1

costill,jti
(ãjti − b̃jti), (4.15)

Then, according to equation (3.23) in Section 3.4.2, the temporary illiquidity
costs have to following properties for each asset j = 1, ...,NA:

● costill,jti
is smooth, positive and convex,

● costill,jti
has its global minimum at zero with costill,jti

(0) = 0.
Note that we modeled the temporary illiquidity costs in the form of absolute
convex transaction costs (i.e., not relative to the assets price pA). We believe
that a global convexity property is more suitable than a local convexity prop-
erty as in [Cetin, Jarrow, Protter 2004] or [Rogers, Singh 2010], see Section
3.4.2. Also [Pennanen, Penner, 2010] assumed convex transaction costs for
commodity claims with physical delivery in order to model the temporary
illiquidity effect.

The assumption of convex transaction costs ensures that the optimal portfolio
changes ãti−b̃ti are bounded while they still discourage frequent small changes
in the portfolio, in compliance with reality. Moreover, convex transaction
costs avert practically unrealistic bang-bang controls, which occur for linear
transaction costs as shown by [Davis, Norman 1990]. We will discuss this
effect in more detail in Section 6.3.

Transaction costs

We introduced the concept of real17 transaction costs in the preliminaries
in Section 3.4.1. Transaction costs are usually proportional to the size of
the trade and compensate the broker’s effort. Since production assets are
not traded at exchanges, an allocation does not impose brokerage fees. Nev-
ertheless, buying and selling production assets is a project for which costs
arise from negotiations, location site examination, application for permits,
risk analysis, advisory services and other efforts. These costs also arise when
a new production asset is built from scratch and could be modeled as pro-
portional transaction costs.

costtrans(ãti , b̃ti) = d1 ãti + d2 b̃ti , (4.16)

17In difference to illiquidity costs that are modeled as transaction costs

64



4.5 Price dynamics

where d1, d2 > 0 are constants. Since we have no empirical evidence or lit-
erature references we do not include proportional transaction cost into our
general model of production assets. However, we include a brief analysis
in our business case in Section 7.3 that shows the effect of an additional
proportional transaction cost.

4.5 Price dynamics

In our model, the uncertainties are described by random variables. As defined
in Section 4.2, the input prices pC and the output prices pP are continuous-
time stochastic Markov process and their dynamics are given by stochastic
differential equations (SDE). The asset prices pA is a discrete-time stochastic
process.

The dynamics of the stochastic processes depend on the asset’s industry
sector and the corresponding commodities. In the preliminaries Section 1.2,
we introduced several commodity price models. In most cases the SDEs are
of the form:

dpPt = µP (t, pPt )dt + σP (t, pPt )dW P
t ,

dpCt = µC(t, pCt )dt + σC(t, pCt )dWC
t ,

(4.17)

and the discrete-time processes are of the form:

∆pAti = µ
A(ti, pAti)∆t + σA(ti, pAti)∆WA

ti
, (4.18)

where each µ denotes the drift and each σ denotes the volatility of the accord-
ing process. We choose the particular price models according to our business
cases in the corresponding Section 8.

4.6 Bankruptcy constraints

Naturally, an optimal allocation strategy must consider the case of bankruptcy
of the company. We say a company is bankrupt when the outstanding credits
are equal or higher than the value of the owned assets; i.e., the net equity18

is equal or less than zero. Thus, the following inequality must hold for all
i = 0, ...,NT to avoid bankruptcy:

Bti − costallocti
(0, ati , pAti) > 0. (4.19)

In case the net equity reaches zero, our exit strategy is to sell all production
assets immediately. This strategy prevents unbounded losses in the case of
bankruptcy.

18Which means Eigenkapital in German.
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4.7 The complete optimization problem

Let us summarize all aspects of the above paragraphs in order to get a clear
view of the discrete-time model of optimal portfolio allocation for general
production assets.

Problem 1 (Discrete-time portfolio allocation of production assets)
Starting with an initial portfolio (a0,B0), our goal is to find the value function
V and the optimal allocation strategies19 χ∗, ã∗, b̃∗ that maximizes:

V (a0,B0) = sup
χ,ã,b̃

J(a0,B0, χ, ã, b̃). (4.20)

The objective function is given by (4.4):

J(a0,B0, χ, ã, b̃) = Eχ

⎡⎢⎢⎢⎢⎣
NT

∑
i=0

e−δtiU1(χti) + e−δTU2(aTpT +BT )
RRRRRRRRRRRF0

⎤⎥⎥⎥⎥⎦ , (4.21)

and subject to the state dynamics (4.2), (4.3):

ati+1 = ati + ãti − b̃ti − r
detati ,

Bti+1 = Bti + rBti − χti + profitti(ati , ãti , b̃ti , pAti , pPti , pCti),
(4.22)

and price dynamics (4.17), (4.18):

dpPt = µP (t, pPt )dt + σP (t, pPt )dW P
t ,

dpCt = µC(t, pCt )dt + σC(t, pCt )dWC
t ,

∆pAti = µA(ti, pAti)∆t + σA(ti, pAti)∆WA
ti
,

(4.23)

and the bankruptcy constraint (4.19):

Bti − costallocti
(0, ati , pAti) > 0, (4.24)

given the initial price values pP0 , p
C
0 and pA0 at time t0.

19If they exist.
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4.7 The complete optimization problem

The portfolio profit is given by (4.9):

profitti(ati , ãti , b̃ti , pAti , pPti , pCti) =
gainti

(ati , pPti , pCti) − costfixti (ati) − costallocti
(ãti , b̃ti , pAti),

(4.25)

and the single components are given by (4.10):

gainti
(ati , pPti , pCti) =

sup
q∈A(ati)

E
q
ti
[∫ tt+1

ti

(pPτ QP(qτ) − pCτ QC(qτ) + cop(qτ)) qτ dτ ∣pPti , pCti] ,
(4.26)

and (4.12):
costfixti (ati) ∶= (cmain

ti
+ cinvti

) ati , (4.27)

and (4.14), (4.15):

costallocti
(ãti , b̃ti , pAti) = (ãti − b̃ti) pAti + NA

∑
j=1

costill,jti
(ãjti − b̃jti), (4.28)

where A(ati) denotes the set of applicable operation policies (4.11):

A(ati) = {{qτ , τ ∈ [ti, ti+1)} ∣ feasible according to ati} , (4.29)

and costill,jti
is smooth, positive, convex w.r.t ãjti, −b̃

j
ti
, and has its global min-

imum at zero with costill,jti
(0,0, pA,j

ti
) = 0.

Note that the gain function in (4.26) is an inner optimization problem for
each ti conditional to pPti and pCti and may be subject to physical constraint
A(ati). So our discrete-time optimal portfolio allocation model for general
production assets is a bi-level stochastic optimal control problem.
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4 A DISCRETE-TIME MODEL FOR GENERAL PRODUCTION
ASSETS

4.8 Possible extensions

The model could be extended in the following way.

● We could allow the utility function to be depend on a measure of market
share. A high market share demonstrates power and strength which
has a certain utility itself and may be a separate goal for investors,
see our discussion in Section 3.5. Thus, a measure of market share
Um ∶ R

NP

+ → RNP
could be added to the objective :

Ũ1(χti ,mshareti) = U1(χti) + γ Um (νti) , (4.30)

where γ ∈ RNP
denote the power addiction of the company for all

NP products. The market share νk
ti
of product k = 1, ...,NP could be

estimated through:

νk
ti
= Eq

ti
[∫ tt+1

ti

QPk
ti
qkτ

dkτ
dτ] , ∀i = 0, ...,N, (4.31)

where dkτ denotes the total market demand.

In addition to power, higher market share leads to higher profitability
due to the economies of scale, bargaining strength and other market
advantages. Therefore the profit function could be extended by Equa-
tion (3.25) from Section 3.5 in order to account for the market share
effect.

● We could introduce an additional supply constraint into the allocation
problem such that a certain (or stochastic) peak demand dti ∈ R+ can
be satisfied at all times:

NA

∑
j=1

a
j
ti
≥ dti , ∀i = 0, ...,N. (4.32)

This would be necessary when the company is an essential supplier for
contractual customers in the market and must provide enough supply.
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5 A reduced continuous-time model

Our general discrete-time model (Problem 1) (4.20 - 4.29) of Section 4 pro-
vides a template for optimal portfolio allocation. It can be utilized by com-
panies from various industry sectors to estimate their portfolio value of pro-
duction assets and their future investment strategy.

On the one hand, providing of such a template is one aim of our thesis and a
case analysis for a specific company can be performed if the necessary data
is available. On the other hand, we are more interested in a quantitative
analysis of the model. By quantitative analysis we mean the quantitative
understanding of the model’s dynamics and its dependence on independent
variables and fixed parameters.

In order to get this quantitative understanding, we reduce our discrete-time
model to a simpler continuous-time model (Problem 2) (5.13 - 5.16) in this
section. In particular and in contrast to other authors, we start from first
principles and use only a few transformations to derive an elaborate model
for optimal portfolio allocation of commodity related assets that is similar to
known investment-consumption models in literature.

We perform a comparative analysis of the known investment-consumption
models in Section 6 and analyze our derived model in Section 7.

5.1 Complexity of the problem

The reasons for the model reduction to a simpler continuous-time model are
the following.

● In discrete-time we can not use mathematical tools from continuous
analysis or utilize derivatives, which are desirable tools for optimization
problems.

● Even in continuous-time, it is rather difficult to find an analytical solu-
tion so we need to perform numerical approximations. But our model
suffers from the so-called curse of dimensionality in no less than three
ways:

1. Each state variable a, B, pA, pP , pC adds NA, 1, NA, NP , NC

dimensions to the problem, respectively. When it comes to nu-
merical sampling20, there is an exponential increase in volume

20Discretization of a space onto sample points.
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5 A REDUCED CONTINUOUS-TIME MODEL

associated with adding extra dimensions to a mathematical space.

2. The prices pAt , pPt , pCt are stochastic variables and stochastic
simulations like Monte Carlo converge with 1√

M
, where M is the

number of sample points in each dimension. It means that qua-
drupling the number of sampled points in each dimension halves
the error.

3. To solve a dynamic optimization problems by numerical back-
ward induction, the objective function must be computed for each
combination of values. Moreover, for each single optimization,
the dimension of the control space increases proportionally
to the number of assets NA. This is a significant obstacle when
the dimension of the state variable is large.

To show the exponential increase of the problem’s complexity w.r.t. di-
mensions let us consider the simplest case for which a portfolio analy-
sis makes sense. Imagine only two different types of production assets
NA = 2 with one input and one output commodity each NP = NC = 2.
In this case, the problem has nine space dimensions, six random vari-
ables, five control dimensions and must be calculated for each point in
the time dimension. In a numeric calculation with 100 sample points
for each state, 100 simulations for each random variable and 100 test
points for each control the problem ends up with 1042 evaluations.

● In addition to the above optimization, the problem includes a nested
optimization for the operation scheduling at for each evaluation point,
due to the real option approach (4.26).

Problem 1 is a high-dimensional, bi-level discrete-time stochastic optimal
control problem. In order to perform a quantitative analysis we reduce it to
a simpler continuous-time problem in the next sections.

5.2 Model reduction

In the next paragraphs we make the following simplifications that tackle the
three difficulties from above:

● We switch from discrete-time to continuous-time, which is a common
approach for financial market models in the literature and in practice.

● We make a change of variables by considering the monetary amount
of assets At ∶= (at ⋅ pAt ) and state the model in relative terms w.r.t the
assets prices. Thereby we reduce the number of state variables for each
amount-price pair from two to one.
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5.2 Model reduction

● We summarize the buying rate ã and the selling rate b̃ into a total
investment rate α = (ã − b̃). Thereby we reduce the number of control
variables for each production asset from two to one.

● We replace the real option gaint(at, pPt , pCt ) in (4.26) by a stochastic
variable Rt which models the relative return from operation. In par-
ticular, we summarize the input and output commodities - while re-
specting the production matrices - to one state variable (their relative
production spread). Thereby we reduce the number of state variables
and stochastic variables for each input-output pair form two to one and
simplify the nested optimization.

Beside the above simplifications we specify the dynamics of the assets prices
pAt in (4.23) and the dynamics of the return Rt which replaces the dynamics
for the commodity prices pPt , p

C
t in (4.23).

5.2.1 Basic definitions for the continuous-time model

Throughout the following let {Wt, 0 ≤ t ≤ T} denotes a d-dimensional, stan-
dard F-Brownian motions over [0, T ] where F denotes the naturally generated
filtration on the probability space (Ω,F , P ). Furthermore, let L2([0, T ],Rn)
denote the set of all Lebesgue measurable functions ϕ ∶ [0, T ] → Rn such

that ∫ T

0
∣ϕ(t)∣2dt <∞ and let L2

F
([0, T ],Rn) denote the set of all F-adapted

processes X ∶ [0, T ] ×Ω→ Rn such that E ∫ T

0
∣Xt∣2dt <∞.21

Furthermore let n ∶= NA and let (x ⋅ y) ∶ Rn×d ×Rn → Rn×d denote a row-wise
multiplication of matrix x ∈ Rn×d and vector y ∈ Rn, i.e., a component wise
multiplication in case x ∈ Rn and y ∈ Rn are both vectors.

From now on we switch all discrete-time state variables ati , Bti , pAti and

control variables ãti , b̃ti , χti of the original model - listed in Section 4.2.3 -
to continuous-time variables at, Bt, pAt , ãt, b̃t and χt.

5.2.2 A change of variables

Let us specify the dynamics of the asset prices pAt and assume that they are
given by the following n-dimensional stochastic process:

dpAt = (µA
⋅ pAt )dt + (σ ⋅ pAt )dWt, pA0 = p0,

21An introduction into probability theory can be found in the appendix A.1.
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5 A REDUCED CONTINUOUS-TIME MODEL

where µA ∈ Rn+, p0 ∈ Rn+ and σ ∈ Rn×d. Note that this continuous-time SDE
is in compliance with our discrete-time price process (4.23) of our original
model. Note also that pAt > 0 for all t.

Now, we make a change of variables by defining At ∶= (at ⋅ pAt ) as the port-
folio owner’s monetary amount of assets in continuous-time. According to
equation (4.22) the monetary amount of assets evolves by:

dAt = (dat ⋅ pAt ) + (dpAt ⋅ at)
= ((ãt ⋅ pAt ) − (b̃t ⋅ pAt ) − (rdet ⋅At)) dt + (µA ⋅At)dt + (σ ⋅At)dWt

= (((ãt − b̃t) ⋅ pAt ) + ((µA − rdet) ⋅At)) dt + (σ ⋅At)dWt.

5.2.3 Investment rate and deterioration adjusted drift

Since we omit linear transaction costs, our Problem 1 depends not on the sin-
gle buying and selling rates rather on the total investment rate ãt − b̃t. Thus
we can replace the buying and selling rates by the total monetary amount
of investment per time αt ∶= (ãt − b̃t)pAt . If αt > 0 the company buys assets,
if αt < 0 the company sells assets. We also define the deterioration adjusted
drift of the assets value by µ ∶= µA − rdet ∈ Rn .

Then the monetary amount of assets At evolves according to the following
forward stochastic differential equation (SDE) for all t ∈ [0, T ]:

dAt = ((µ ⋅At) + αt) dt + (σ ⋅At)dWt, A0 = a, (5.1)

where a ∶= (a0 ⋅ pA0 ) ∈ Rn+ denotes the initial value of A0. We may refer to
b̃A(t,At, αt, βt) ∶= ((µ ⋅At) + αt) as the drift term and to σ̃A(t,At) ∶= (σ ⋅At)
as the diffusion term of At.

Note that the adjusted drift µ may be negative when the assets’s value de-
creases due to depreciation.22

5.2.4 Illiquidity costs for investments

Furthermore, let the function ft ∶ Rn → R+ denote the illiquidity costs for
investments αt at time t. The function ft is equal to the term costillti in (4.28)
but we assume that the costs depend on the absolute amount of investment

22According to our Definition 4.2, the term allocation could mean a scheduled mainte-
nance, in order to prevent depreciation.
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5.2 Model reduction

αt instead the rates ãt − b̃t.

According to the required properties of each component costill,jt , see Section
4.4.3, the components f j

t must be positive, convex, f j
t (⋅) ∈ C2(R,R+) and f

j
t

has its global minimum at zero with f
j
t (0) = 0 for all j = 1, ..., n.

Now let us approximate f j
t by its second order Taylor expansion around zero:

f
j
t (αj) = cj0t + c

j
1t α

j
+ c

j
2t α

jαj.

where c
j
0t = f

j
t (0), cj1t = ∂αjf

j
t (0) and c

j
2t =

1
2
∂2
αjf

j
t (0). In order to satisfy the

above properties, cj0t = c
j
1t = 0 and c

j
2t ≥ 0. Thus we end up with a quadratic

illiquidity costs function, given by:

f(αt) = c⊤2t (αt ⋅ αt), c2t ≥ 0. (5.2)

5.2.5 Fixed costs per asset value

Let Mt ∈ Rn denote the fixed costs per asset value for holding the corre-
sponding assets at time t. Mt replaces the fixed costs cmain

t + cinvt in (4.27),
divided23 by the assets value pAt . In this reduced model, we assume that Mt

is deterministic, which means that the fixed costs exactly follows the asset’s
price dynamics.

Then, according to (4.22), the bank account Bt evolves in continuous-time
by:

dBt = (rBt − χt + gain(at, pPt , pCt )
−M⊤

t At − 1⊤αt − c
⊤
2t(αt ⋅ αt))dt, B0 = b,

where b is the initial value in the portfolio and 1Rn denotes the identity
vector.

5.2.6 Operation gain per asset value

Let Rt ∈ Rn denote the operation gain (return) rates per asset value. Intro-
ducing the return rate Rt, we replace the operation’s input-output spreads
per [op] in equation (4.26), divided by the asset values pAt per [op], by a single
stochastic variable:

Rt =
pPτ
⊤
QP(qτ) − pCτ ⊤QC(qτ) + cop

pAt
. (5.3)

23Componentwise.
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5 A REDUCED CONTINUOUS-TIME MODEL

Since the company optimizes its asset’s operations, the gain function in (4.26)
becomes:

gainti
(ati , pPti , pCti) =max(Rt,0)⊤At.

Compared to the real option approach in (4.26), the only simplifications we
made are:

1. the set of applicable operation policies A(ati) in (4.29) is only restricted
by the capacity:

A(ati) = {{qτ , τ ∈ [ti, ti+1)} ∣ qt ≤ at} . (5.4)

This means that the production assets are fully flexible.

2. the operation spread is increasing with the operation level q. Then each
production asset is shut down instantaneously whenever its operation
spread is negative and driven at full capacity otherwise.

Examples for Rt in practice are the so called crack spread for cracking oil
or spark spread for power production, see Section 1.1.1 in the preliminaries.
These and other spreads are frequently traded through exchange options at
commodity markets, see Section 1.3.2.

Modeling the return rates

In Section 1.2.1 we stated that commodities prices usually show a mean-
reversion behavior and so do their spreads. Moreover, since the return rate
of operation reflect the operation gain that must compensate the operation
costs, a reversion of the return to a mean level is even more natural. There-
fore, we use Vasicek’s model for the return rates which we introduced in the
preliminaries Section 1.2.3.

Let κ ∈ Rn+ denote the speed of reversion and let R̄ ∈ Rn denote the return’s
mean value. Then Rt evolves according to the following forward SDE with
the initial return c ∈ Rn:

dRt = (κ ⋅ (R̄ −Rt)) dt + σR dWR
t , R0 = c, (5.5)

where σR ∈ Rn×d is constant. Here, b̃R(t,Rt) = κ ⋅ (R̄ −Rt) is the drift term
and σ̃R(t,Rt) = σR is the diffusion term. Note that Rt can attain negative
values.

Since the return rate Rt depends on the asset’s price pAt in (5.3), we assume in
the reduced model that each asset’s value Ai

t is correlated to its own spreads
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5.2 Model reduction

Ri
t. The cross-correlations are negligible. Therefore we use the diagonal

matrix ρ to denote the correlations between the Brownian-motions:

dWtdW
R
t = ρdt, (5.6)

where ρii ∈ [−1,1] and ρij = 0, for all i ≠ j.

Summarizing the above statements, the dynamics of the bank account Bt

become:

dBt = (rBt +max(Rt,0)⊤At −M
⊤
t At

−χt − 1⊤αt − c
⊤
2t(αt ⋅ αt))dt, B0 = b.

(5.7)

Comment

Throughout this thesis, we refer to the term max(Rt,0) −M as optimized
returns in order to indicate its origin, namely the optimization of flexible
operation. However note that, considering the term regardless of its origin,
the name optional return would be more suitable. In particular, the term
max(Rt,0) −M is the payoff of a standard option with underlying Rt −M

and strike −M . Moreover, we will see in our numerical results in Section 7.5,
that the behavior of the optimized retun model shows some typical features
of options.

5.2.7 Constraints in continuous-time

Now we transfer the constraints in Section 4.6 from the discrete-time model
to the continuous-time model.

No short-selling of production assets

Short-selling of production assets is unrealistic, see (4.3). The following
constraint prohibits the holding of negative amounts of assets in the portfolio:

At ∈ Rn
+, ∀t ∈ [0, T ]. (5.8)

Note that there exists always a control policy {αt, 0 ≤ t ≤ T} such that (5.8)
is satisfied. If, for example, we set αt = 0, the process At is a geometric
Brownian motion which will not approach negative values by itself. Note
also that the bank account Bt can take negative values. This feature allows
the portfolio holder to assume credit.
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5 A REDUCED CONTINUOUS-TIME MODEL

Limited allocation and consumption rate

Furthermore, we assume that the controls (αt, χt) must stay in a bounded
(convex and compact) cube:

A = [αmin, αmax] × [0, χmax] ⊂ Rn
×R1

+. (5.9)

It means that the allocation and consumption rate are limited.

Bankruptcy constraint

All admissible control policies must satisfy the above state constraints (5.8).
Additionally, the portfolio must satisfy a bankruptcy constraint as in (4.24).
Imagine that a company declares bankruptcy at time τ and sells all its assets
Aτ at an appropriate rate 0 < αbry ≤ αmax to prevent unpredictable further
losses. The selling would persist during the time period Aτ

αbry
. Assuming the

assets price Aτ stays fixed over this sellout period, the earnings from selling
would be:

Aτ − f(αbry) Aτ

αbry

= (1 − (c2t ⋅ αbry))At.

Following [Davis, Norman 1990], let us define a closed solvency region by:

Lt(αbry) = {(x, y) ∈ Rn
+ ×R

1 ∣ y + n

∑
j=1
(1 − (cj2t αj

bry))xj ≥ 0} . (5.10)

Whenever the state process (At,Bt) leaves the solvency region Lt(αbry) the
company is forced to sell its assets at the rate αbry ∈ Rn+ and stop consump-
tion χt = 0 for t ∈ [τ, T ]. We call this an exit policy.

Note that it is impossible to prevent losses since it is unrealistic to sell all
assets instantaneously with an infinite selling rate as [Davis, Norman 1990]
suggested. But we believe the the solvency region Lt(αbry) defines a good
indicator when to start an exit strategy and prevent uncertain further losses
after the sellout period Aτ

αbry
. Note, the higher αbry, the smaller the solvency

region Lt(αbry). In other words, the shorter the sellout period should be, the
’earlier’ the company has to enter the exit policy.

5.2.8 Admissible control policies

Let us denote the bankruptcy time (time entering the exit strategy) τbry =
inf {t ≥ 0∣ (At,Bt) ∉ Lt(αbry)}. Regarding the above constraints, we define the
set of all admissible control policy for investment-consumption up to time T .
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5.3 An investment-consumption model with quadratic transaction costs
and optimized stochastic returns

Definition 5.1 (Set of admissible control policies)
The set of admissible control policies is defined by:

A0,T = {(αt, χt), 0 ≤ t ≤ T} , (5.11)

such that:

1. (αt, χt) is Ft-adapted,

2. (αt(ω), χt(ω)) ∈ A for all ω ∈ Ω, see (5.9),

3. At ≥ 0 almost surely,

4. (αt, χt) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−αbry,0), if (At,Bt) ∉ Lt(αbry) ∧ At > 0,

(0,0), if (At,Bt) ∉ Lt(αbry) ∧ At = 0,
∀t ∈ [τbry, T ].

Starting with an endowment (a, b) ∈ Lt(αbry) at time t = 0, it is easy to show
that A0,T is non-empty, because A0,τbry is non-empty and we use the exit
policy for all t ∈ [τbry, T ].
5.2.9 Objective function in continuous-time

The portfolio owner’s goal is to maximize his expected utility from con-
sumption over a given time horizon [0, T ]. Thus, let u1 ∈ C2(R+,R) and
u2 ∈ C2(R,R) denote his concave utility functions for consumption and ter-
minal wealth, respectively. According to (4.21) the objective function J in
continuous-time is given by:

J(t, a, b, c, α,χ) = Eα,χ
t [∫ T

t
e−δsu1(χs)ds + e−δTu2(AT +BT ) ∣ a, b, c] ,

(5.12)
where δ ≥ 0 measure the owner’s discount for consumption and E

α,χ
t [ ⋅ ∣a, b, c]

denotes the expectation at time t given the initial endowment At = a, Bt = b,
Rt = c and using the control policy (α,χ).
5.3 An investment-consumption model with quadratic

transaction costs and optimized stochastic returns

Let us summarize the reduced continuous-time model for optimal portfolio
allocation of commodity related assets.
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5 A REDUCED CONTINUOUS-TIME MODEL

Problem 2 (Continuous-time portfolio alloc. of production assets)
We search for the optimal control policy (α∗, χ∗) ∈ A0,T , (5.11), that maxi-
mizes the objective function (5.12):

J(0, a, b, c, α,χ) = Eα,χ
0 [∫ T

0
e−δtu1(χt)dt + e−δTu2(AT +BT ) ∣ a, b, c] ,

(5.13)
under the state dynamics (5.1), (5.5), (5.6) and (5.7):

dAt = ((µ ⋅At) + αt) dt + (σ ⋅At)dWt, A0 = a,

dRt = (κ ⋅ (R̄ −Rt)) dt + σR dWR
t R0 = c,

dBt = (rBt +max(Rt,0)⊤At −M
⊤
t At

−χt − 1⊤αt − c
⊤
2t(α ⋅ αt)) dt, B0 = b,

(5.14)

where u1 ∈ C2(R+,R) and u2 ∈ C2(R,R) are concave functions and where:

dWt dW
R
t = ρdt. (5.15)

We define the value function v for the continuous-time model for all t ∈ [0, T ]
by:

v(t, a, b, c) = max
(α,χ)∈At,T

J(t, a, b, c, α,χ). (5.16)

It turns out that our continuous-time model for optimal portfolio allocation of
commodity related assets is an investment-consumption problem (see Section
3.1.5) with convex transaction costs and stochastic returns24. The main
distinctions between our production asset portfolio and a standard financial
equity portfolio are:

1. the assets yield a stochastic, mean-reverting return rate Rt,

2. the returns are optimized by max(Rt,0) while there is a deterministic
holding fee Mt,

3. the allocations yield quadratic transaction costs.

Note again that we derived our model for optimal portfolio allocation of
commodity related assets from first principles and used only a few transfor-
mations to turn it into an investment-consumption model.

By considering the reduced Problem 2 (5.13 - 5.16), we can compare it to
other investment-consumption models in Section 6 and then perform a quan-
titative analysis in Section 7.

24In the literature the returns are sometimes called dividends or income too.
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5.3 An investment-consumption model with quadratic transaction costs
and optimized stochastic returns

5.3.1 Existence of unique strong solutions

Since Problem 2 is the model we deal with in the following, we briefly show
that the objective function (5.13) is well-defined (bounded) and that there
exists solutions for the forward SDEs (5.14), (5.15). The existence of solu-
tions for the stochastic optimal control Problem 2, (5.13) - (5.16), is handled
in more detail in in Part III of the thesis.

Recall that the time interval [0, T ] is fixed and finite and that the values
αt and χt of an admissible control policy are bounded. Now let π ∈ A0,T ,
πt = (αt, χt), be an arbitrary but fixed admissible control policy. Then we
have the following properties:

● The forward SDEs (5.14) are of Markovian type, see Appendix A.10.

● The drift term b̃A(t,At, πt) and the diffusion term σ̃A(t,At) of the pro-
cess At in (5.14) are Lipschitz continuous w.r.t At. Moreover, since
πt ∈ A is bounded for all t ∈ [0, T ], it follows that ∣̃bA(t,0, πt)∣+∣σ̃A(t,0)∣ ∈
L2([0, T ],Rn).
● The drift term b̃R(t,Rt) and the diffusion term σ̃R(t,Rt) of the process
Rt in (5.14) are Lipschitz continuous w.r.t Rt (the diffusion term σR is
constant). Moreover, ∣bR(t,0)∣ + ∣σR∣ ∈ L2([0, T ],Rn).
● The Ornstein-Uhlenbeck process Rt is asymptotically bounded almost
surely, see appendix A.13. Since the drift term has at most linear
growth and the diffusion term is constant, Rt is bounded on the finite
time interval [0, T ] almost surely. Moreover, Rt is independent of At,
Bt and πt.

Thus the drift term b̃B(t,At,Bt,Rt, πt) of the process Bt in (5.14) is
Lipschitz continuous w.r.t At and Bt. We also obtain that the drift∣bB(t,0,0,0, πt)∣ ∈ L2([0, T ],Rn).

Theorem 5.2 (Existence of SDEs and the objective function)
Let Xt ∶= (At,Bt,Rt)⊤ denote the state processes, x ∶= (a, b, c)⊤ the initial
values, π ∶= (α,χ) the control policies and let (5.14) be written as:

dXt = b̃(t,Xt, πt)dt + σ̃(t,Xt)dWt, X0 = x. (5.17)

Then for any fixed π ∈ A0,T , the process Xt admits a unique strong solution:

X (t) = x +∫ t

0
b̃(x,Xs, πt)ds +∫ t

0
σ̃(s,Xs)dWs, (5.18)

and the objective function J(t, x) in (5.13) is bounded for all t ∈ [0, T ].
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5 A REDUCED CONTINUOUS-TIME MODEL

Proof 5.3
We showed that for any fixed π ∈ A0,T there exists a constant LT > 0 such
that: ∣̃b(t, x, πt) − b̃(t, x̂, πt)∣ + ∣σ̃(t, x) − σ̃(t, x̂)∣ ≤ LT ∣x − x̂∣,

∀t ∈ [0, T ], x, x̂ ∈ Rn,

∣̃b(⋅,0, π(⋅))∣ + ∣σ̃(⋅,0)∣ ∈ L2([0, T ],R).
Then Theorem 10.3 in Section 10 provide the existence of a unique strong
solution (5.18).

Moreover, since u1 is twice continuously differentiable and the control values
χt are bounded, the integral ∫ T

0
e−δtu1(χt)dt in (5.13) is bounded. Since u2 is

also twice continuously differentiable and At,Bt admit strong solutions, the
expectation Eπ

0 [e−δTu2(AT +BT ) ∣ a, b, c] <∞. Thus the objective function is
bounded, see Theorem 10.2 in Section 10.
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6 Analytical solutions for simplified cases

Before we consider numerical solutions for Problem 2 (5.13) - (5.16), we
perform a comparative analysis of special cases for which there exists results
in the literature or for which we can find analytical solutions. The purpose
of analyzing special cases before deploying numerical schemes for the general
case is threefold:

1. Analytical solutions of simple cases reveal the basic behavior of the
original problem’s solution and some of its properties without numerical
approximations.

2. They bring forth whether the original problem may have a singular
control or a bang-bang control, or whether there are discontinuities in
the value function. Therefore, the knowledge of analytical solutions of
simple cases can assist in the choice of the numerical algorithm for the
complex problem.

3. Analytical solutions of simple cases provide test cases which can be
easily used to assess numerical implementations. One needs analytical
solutions to measure the error to the exact solution and to estimate
convergence.

In Section 6.1 and 6.3 we present known analytical solutions of Problem
2 for the standard Merton case and the proportional transacton cost case,
respectively. In Section 6.2 we derive a new analytical solution for the case
of stochastic returns and in Section 6.4 we explore the case of quadratic
transaction costs.

6.1 Merton’s investment-consumption model

We start with [Merton 1969]’s original investment-consumption model. It is
the simplest form of our continuous-time model for optimal portfolio allo-
cation of commodity related assets, Problem 2, disregarding the transaction
costs and the stochastic returns.

6.1.1 The problem

So let us consider the 1-dimensional case n = d = 1. Let the return rate be
constant, κ = σR = 0, and let the transaction costs be zero, c2t = 0. Also, let
the control space A be unbounded. Then we define the new drift µ̃ = µ+c−M .
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6 ANALYTICAL SOLUTIONS FOR SIMPLIFIED CASES

Since the utility function in our model is of HARA type, see Section 3.1.3,
we consider the following three examples here:

● log utility u(x) ∶= log(x), having constant relative risk aversion λ2 = 1,

● power utility u(x) = 1
γ
xγ with γ < 1 and γ ≠ 0, having constant relative

risk aversion λ2 = 1,

● negative exponential utility u(x) = 1−e−γX

γ
with γ > 0, having constant

absolute risk aversion λ1 = 1.

In order to obtain analytical solutions, we assume that the well-posedness
conditions are satisfied:

δ > 0, for log utility,

δ > γ[r + (µ̃ − r)2/σ2(1 − γ)], for power utility,

δ > 0, for negative exponential utility.

(6.1)

6.1.2 Finding solutions

Following [Merton 1969], we define the total wealth process Xt ∶= At + Bt,
the proportion of wealth invested in assets π ∶= At/Xt and the proportional
consumption χ̃t = χt/Xt. Using this change of variables, (5.14) becomes:

dXt = ((µ̃ − r)πt + (r − χ̃t))Xtdt + σπtXtdWt, X0 = x. (6.2)

Note that the allocation rate αt disappear and the new control is πt. Note
also that the dimension is reduced from two (At,Bt) to one Xt dimension.
The objective function (5.13) becomes:

J(t, x, π,χ) = Eπ
t [∫ T

t
e−δtu(χ̃tXt)dt + e−δTu(XT )∣Xt = x] , (6.3)

and the value function (5.16) becomes:

v(t, x) =max
π,χ

J(t, x, π,χ). (6.4)

[Merton 1971] constructed optimal control policies π∗, χ∗ and a general an-
alytical solution v(t, x) ∈ C1,2([0, T ] × R+,R) for the class of HARA utility
functions. He used the well-known Hamilton-Jacobi-Bellman (HJB) theory
and the fact that the value function v is homogeneous in x:

v(t, p x) = 1
δ
log(p) + v(t, x), for u(χ) = log(χ), ∀p > 0,

v(t, p x) = pγv(t, x), for u(χ) = χγ

γ
, ∀p > 0,

v(t, p + x) = e−d(t)p v(t, x), for u(χ) = e−γχ

γ
, ∀p > 0,

(6.5)
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6.1 Merton’s investment-consumption model

where d(t) is a function only depending on time and known parameters. The
HJB equation of the investment-consumption problem is given by:

−∂tv(t, x) = sup
c∈R+
[e−δtu(cx) + (r − c)x∂xv]

+ sup
π∈R
[(µ − r)πx∂xv + σ2

2
π2x2 ∂xxv] ,

v(T,x) = e−δtu(x).
(6.6)

Now let us compare the solutions of the three examples: log, power and
negative exponential utility.

6.1.3 Analytical solutions

We define:

K ∶= (r − δ) + (µ̃ − r)2
2σ2

,

δ̄ ∶=
1

1 − γ
(δ − γ (1

2

(µ̃ − r)2(1 − γ)σ2
+ r)) ,

β(t) ∶= 1 + (δ − 1)e−δ(T−t)
δ

, β̄(t) ∶= 1 + (δ̄ − 1)e−δ̄(T−t)
δ̄

, β(T ) = β̄(T ) = 1,
b(t) ∶= (δ − 1

δ
(T − t) − 1

δ2
) e−δT , b(T ) = 1

δ2
e−δT ,

a ∶=
(δ − r) + 1

2

(µ−r)2
σ2

rγ
,

d(t) ∶= γr

1 − (1 − r)e−r(T−t) , d(T ) = γ,
ā(t) ∶= γ

d(t) exp (−aγ(1 − e−r(T−t))) , a(T ) = 1.
Table 1 shows the solutions of the three examples for the infinite-time horizon
case, T =∞, and the finite-time horizon case, T <∞, in a compact form. We
derived the finite-time solutions by hand in consideration of the solution for
general HARA utility provided in [Merton 1971]. As an example, we present
the derivation of the solution for negative exponential utility in Appendix
A.2.
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6 ANALYTICAL SOLUTIONS FOR SIMPLIFIED CASES

Infinite-time horizon Finite-time horizon

Log

utility

v(x) = 1
δ
ln(δx) + 1

δ2
K,

π∗ = µ̃−r

σ2 , χ̃∗ = δ.

v(t, x) = e−δt (β(t) ln( x
β(t)) + 1

δ2
K)

+b(t)K,

π∗ = µ̃−r

σ2 , χ̃∗t = β(t)−1.
Power

utility

v(x) = 1
γ
xγ δ̄γ−1,

π∗ = (µ̃−r)
(1−γ)σ2 , χ̃∗ = δ̄.

v(t, x) = e−δt 1
γ
xγβ̄(t)1−γ,

π∗ = (µ̃−r)
(1−γ)σ2 , χ̃∗t = β̄(t)−1.

Neg.

expo.

utility

v(x) = 1
δγ
−

1
rγ
e−aγe−rγx,

π∗x = µ−r

rγσ2 , χ̃∗x = rx + a.

v(t, x) = e−δt

γ
[1
δ
− ā(t)e−d(t)x]

+
1
γ
(1 − 1

δ
)e−δT ,

π∗x = µ−r

d(t)σ2 ,

χ̃∗t x =
d(t)x
γ
+ a(1 − e−r(T−t)).

Table 1: Solutions of Merton’s investment-consumption problem for three
HARA utility functions and different time horizons.

6.1.4 Conclusions

Constant relative risk aversion

Comparing the value functions v of the log and power utility case (CRRA)
with infinite-time and finite-time horizon, we notice that the structure of
the solutions are the same. Since the latter case is time dependent, the
discounting factor e−δt appears and δ is replaced by β−1(t). Furthermore,
an additional time dependent term b(t)K is needed in order to match the
specific terminal value u(T ) at T . In the power utility case δ is replaced by
δ̄. Note that the log utility case is the limit of the power utility case for γ → 0.

The optimal control π∗, which denotes the proportion of wealth invested
in the risky asset, is constant over time. Starting at a non-optimal point(At,Bt), Xt = At +Bt, it is optimal to immediately shift the portfolio such
that A∗t = π∗Xt, B∗t = (1−π∗)Xt. When the optimal point (A∗t ,B∗t ) is reached,
the allocation stops. This is called a bang-bang control:

α∗t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞, if At

At+Bt
< π∗,

0, if At

At+Bt
= π∗,

−∞, if At

At+Bt
> π∗.

(6.7)
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6.1 Merton’s investment-consumption model

Note that the optimal portfolios (π∗Xt , (1 − π∗)Xt ) for all Xt ∈ R+ is a line
in the (A,B) space. For later purpose we call it Merton’s CRRA line π̄.

The optimal consumption χ∗tXt is proportional to the current wealth Xt

in all four cases. In the infinite-time horizon case the rate is constant, in
the finite-time horizon case the rate increases with time and reaches 1 at
terminal time T .

Constant absolute risk aversion

In case of negative exponential utility (CARA), not the optimal control π∗t
but rather the optimal monetary amount of wealth invested in the
risky asset π∗t Xt is independent of Xt. In particular, it only depends on
time T − t when T <∞. This means that as an investor becomes wealthier,
the proportion of his wealth invested in the risky asset falls.

In contrast to CRRA utility, the optimal portfolios (π∗t Xt , (1 − π∗t )Xt ) =(A∗t ,Xt − A
∗

t ) for negative exponential utility have a fixed optimal amount
of assets A∗t for all Xt ∈ R+. This is a vertical line in the (A,B) space, see
Figure 7. In particular, A∗t only depends on T − t when T < ∞. For later
purpose we call this optimal point Merton’s CARA portfolio A∗t .
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Figure 7: Examples of Merton’s CRRA line and Merton’s CARA portfolio
in the (A,B) space at a fixed time point.

The optimal consumption χ∗tXt is no longer proportional to the current
wealth Xt but still linear in wealth. In the finite-time horizon case, the
additional term decrease with time while the overall rate χ∗t increases and
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6 ANALYTICAL SOLUTIONS FOR SIMPLIFIED CASES

reaches 1 at terminal time T . This is similar to the log and power utility
cases.

Comment

An outstanding feature of Merton’s investment-consumption model is the
constant25 allocation ratio π∗ that occurs in all cases. It means a continiously
rebalancing of the portfolio to maintain the optimal ratio.

6.2 Investment-consumption model with stochastic re-
turns

Now we consider the investment-consumption Problem 2 with the stochastic
return rate Rt but without transaction costs.

6.2.1 The problem

Again, let us consider the 1-dimensional case n = d = 1 of Problem 2 and let
the transaction costs be zero, c2t = 0. But this time, let the mean-reversion
speed κ, the mean-reversion level R̄, the volatility σR and the initial rate z

be positive constant.

Since we do not optimize the returns here, we replace max(Rt,0) with Rt in
(5.14). Also, let the control space A be unbounded and let the well-posedness
condition (6.1) be satisfied. We re-define the drift by µ̃ = µ −M .

6.2.2 Finding solutions

Using the same change of variables as in the previous subsection, our SDE
system (5.14) becomes:

dXt = ((Rt + µ̃ − r)πt + (r − χ̃t))Xtdt + σπtXtdWt, X0 = x,

dRt = κ(R̄ −Rt)dt + σRdW
R
t , R0 = z,

(6.8)

where ρ = dWtdW
R
t denotes the correlation between Wt and WR

t . The value
function becomes:

v(t, x, z) =max
π,χ

J(t, x, z, π, χ). (6.9)

25Time dependent in case of negative exponential utility.
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6.2 Investment-consumption model with stochastic returns

Note that the SDE for Xt (6.8) is linear w.r.t Xt and thus the value function
v is homogeneous in x (6.5), as in the case of no returns in the previous Sec-
tion 6.1.2. Note also that we use z (instead of c) as the initial value of R0 here.

In the following paragraphs we investigate finding an analytical solution for
the log-utility case. We believe that there exist also analytical solutions for
the power and the negative exponential utility cases. The problem is to find
a good guess of the value function’s shape which could be inserted into the
HJB equation.

Infinite-time horizon case

We start with the infinite-time horizon case. This is the easier case because
we do not have to deal with time. So let us assume that there exists a
smooth value function v(x, z) ∈ C2(R+ ×R,R). Using Bellman’s principle of
optimality, it is well known that v must satisfy the HJB equation:

−δv(x, z) + sup
π,χ∈R×R+

[u(χx) +Aπ,χv(x, z)] = 0, (6.10)

where the generator Aπ,χ is given by:

Aπ,χ v ∶= [(r − χ) + (z + µ̃ − r)π]x∂xv + σ2

2
π2x2 ∂xxv

+κ(R̄ − z)∂zv + σ2

R

2
∂zzv + ρσRσ πx∂xzv.

(6.11)

In the log utility case, u(x) = log(x), we make a change of variables y ∶=
log(x). Then x must be replaced by ey in the HJB equation (6.20) and the
generator becomes:

Aπ,χv ∶= [(r − χ) + (z + µ̃ − r)π − σ2

2
π2] ∂yv + σ2

2
π2 ∂yyv

+κ(R̄ − z)∂zv + σ2

R

2
∂zzv + ρσRσ π ∂yzv.

(6.12)

In view of the solutions in Table 1 and by considering the fact that the value
function v is homogeneous in x (6.5), we suppose that v is of the following
form:

v(y, z) = β (y − log(β)) + f(z),
∂yv(y, z) = β,

∂zv(y, z) = ∂zf(z).
(6.13)
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6 ANALYTICAL SOLUTIONS FOR SIMPLIFIED CASES

Plugging this Ansatz into the HJB equation, we get:

0 = −δβ (y − log(β)) − δf(z) + sup(π,χ)∈R×R+ [log(χ) + y
((r − χ) + (z + µ̃ − r)π − σ2

2
π2) β

+ κ(R̄ − z)∂zf(z) + σ2

R

2
∂zzf(z)] .

(6.14)

Since this equation must hold for arbitrary y, we determine β = 1
δ
. The opti-

mal controls π∗, χ∗ can be found by considering the first derivatives w.r.t. π
and χ:

0 = 1
χ
−

1
δ
,

0 = (z + µ̃ − r) − σ2π.

Since χ,σ > 0, the second derivatives are less than zero and the following
controls are optimal:

π∗ =
z + µ̃ − r

σ2
, χ∗ = δ. (6.15)

Plugging the optimal controls π∗ and χ∗ back into (6.14), we get the following
algebraic equation:

0 =
σ2
R

2
∂zzf(z) + κ(R̄ − z)∂zf(z) − δf(z) + (r − δ)

δ
+
(z + µ̃ − r)2

2δσ2
. (6.16)

The variable z appears only in the first and second power in (6.16). Therefore,
we suppose f(z) to be of the following form:

f(z) = az2 + bz + c,

∂zf(z) = 2az + b,

∂zzf(z) = 2a.

(6.17)

We plug this Ansatz into (6.16) and sort by the terms of same power:

0 = (−δa + 1
2σ2δ
− 2κa) z2 + (2κR̄a − (δ + 1)b + (µ̃−r)

σ2δ
) z

+σ2
Ra + κR̄b − δc +

(r−δ)
δ
+
(µ̃−r)2
2δσ2 .

Since this equation must hold for arbitrary z, we determine a, b, c as:

a = 1
2δ(δ+2κ)σ2 ,

b = 2κR̄a
δ+1
+

(µ̃−r)
δ(δ+1)σ2 ,

c = σ2

Ra

δ
+

κR̄b
δ
+
(r−δ)
δ2
+
(µ̃−r)2
2δ2σ2 .

(6.18)
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6.2 Investment-consumption model with stochastic returns

Combining (6.13), (6.15), (6.17) together with the definition of (a, b, c) in
(6.18), we obtain the following solution of the investment-consumption model
with stochastic return:

v(x, z) = 1
δ
log(δx) + az2 + bz + c,

π∗ = z+µ̃−r

σ2 , χ∗ = δ.

(6.19)

Finite-time horizon case

Let us assume that there exists a smooth value function v(t, x, c) ∈ C1,2([0, T ]×
R+ ×R,R). Using Bellman’s principle of optimality, it is well known that v
must satisfy the HJB equation:

∂tv(t, x, z) + sup
(π,χ)∈R×R+

[e−δtu(χx) +Aπ,χ v(t, x, z)] = 0,
v(T,x, z) = e−δTu(x), (6.20)

where the generator Aπ,χ is given by:

Aπ,χv ∶= [(r − χ) + (z + µ̃ − r)π]x∂xv + σ2

2
π2x2 ∂xxv

+κ(R̄ − z)∂zv + σ2

R

2
∂zzv + ρσRσ πx∂xzv.

(6.21)

In the log utility case u(x) = log(x) we make a change of variables y ∶= log(x).
Then x must be replaced by ey in the HJB equation (6.20) and the generator
becomes:

Aπ,χv ∶= [(r − χ) + (z + µ̃ − r)π − σ2

2
π2] ∂yv + σ2

2
π2 ∂yyv

+κ(R̄ − z)∂zv + σ2

R

2
∂zzv + ρσRσ π ∂yzv.

(6.22)

In view of the solutions in Table 1 and by considering the fact that the value
function v is homogeneous in x (6.5), we suppose that v is of the following
form:

v(t, y, z) = e−δt [β(t)(y − log(β(t))) + f(t, z)] ,
β(T ) = 1, f(T, z) = 0. (6.23)

Plugging this Ansatz into the HJB equation, we get:
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6 ANALYTICAL SOLUTIONS FOR SIMPLIFIED CASES

0 = β̇(t)e−δty − δβ(t)e−δty
+δe−δtβ(t) log(β(t)) − e−δtβ̇(t) log(β(t)) − e−δtβ(t) β̇

β(t)

+∂tf(t, z)e−δt − δf(t, z)e−δt
+κ(R̄ − z)∂zf(t, z)e−δt + σ2

R

2
∂zzf(t, z)e−δt,

+ supχ [log(χey) + (r − χ)β(t)] e−δt
+ supπ [(z + µ̃ − r)π − σ2

2
π2] β(t)e−δt.

(6.24)

The optimal controls π∗t , χ
∗

t can be found by considering the first derivatives
w.r.t. π and χ:

0 = 1
χ
− β(t),

0 = (z + µ̃ − r) − σ2π.

Since χ,σ > 0, the second derivatives are less than zero and the following
controls are optimal:

π∗t =
z + µ̃ − r

σ2
, χ∗t =

1

β(t) . (6.25)

Plugging the optimal controls π∗ and χ∗ back into (6.24) and divide by e−δt,
we get:

0 = (β̇(t) − δβ(t) + 1) (y − log(β(t)))
− (β̇ − rβ(t) + 1)
+∂tf(t, z) − δf(t, z)
+κ(R̄ − z)∂zf(t, z) + σ2

R

2
∂zzf(t, z),

+β(t) (z+µ̃−r)2
2σ2 .

(6.26)

Since this must be true for arbitrary y, β(t) must satisfy the ODE:

β̇(t) = δβ(t) − 1, β(T ) = 1,
with the solution26:

β(t) ∶= 1 + (δ − 1)e−δ(T−t)
δ

. (6.27)

(6.26) becomes:

0 = (r − δ)β(t) + β(t) (z+µ̃−r)2
2σ2

+∂tf(t, z) − δf(t, z) + κ(R̄ − z)∂zf(t, z) + σ2

R

2
∂zzf(t, z). (6.28)

26Same β(t) as in Merton’s original problem.

90



6.2 Investment-consumption model with stochastic returns

The variable z appears only in the first and second power in (6.28). Remem-
bering that f(T, z) = 0, we suppose f(t, z) to be of the following form:

f(t, z) = a(t)z2 + b(t)z + c(t), a(T ), b(T ), c(T ) = 0, (6.29)

with

∂tf(t, z) = ȧ(t)z2 + ḃ(t)z + ċ(t),
∂zf(t, z) = 2a(t)z + b(t),
∂zzf(t, z) = 2a(t).

We plug this Ansatz into (6.28), compare terms of same power and obtain
that a(t), b(t), c(t) must satisfy the ODE system:

ȧ(t) = (δ + 2κ)a(t) − β(t)
2σ2 , a(T ) = 0,

ḃ(t) = (δ + 1) b(t) − 2κR̄a(t) − β(t)(µ̃−r)
σ2 , b(T ) = 0,

ċ(t) = δc(t) − σ2
Ra(t) − κR̄b(t) − β(t) ( (µ̃−r)2

2σ2 + r − δ) , c(T ) = 0.
(6.30)

The derivation of the solution of the ODE system is provided in Appendix
A.3. Combining (6.23), (6.25), (6.27), (6.29) together with the solutions of
the ODE system (6.30) in Appendix (A.22 - A.27) we obtain the following
solution of the investment-consumption model with stochastic return:

v(t, x, z) = e−δt [β(t) (log( x
β(t)) + a(t)z2 + b(t)z + c(t)] ,

π∗(z) = z+µ̃−r

σ2 , χ∗t =
1

β(t) ,
(6.31)

where:

a(t) = (−(ka + ha)e−2κ(T−t) + ka) e−δ(T−t) + ha,

b(t) = [−(lb + kb + hb)e−(T−t) + lbe−2κ(T−t) + kb] e−δ(T−t) + hb,

c(t) = (mc e−(T−t) + lc e−2κ(T−t) + kc (T − t) − (mc + lc + +hc) ) e−δ(T−t) + hc,

(6.32)
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6 ANALYTICAL SOLUTIONS FOR SIMPLIFIED CASES

and the parameters are defined by:

ha ∶= 1
2δ(δ+2κ)σ2 , ka ∶= δ−1

2κ2δσ2 ,

hb ∶= 2κR̄ha

δ+1
+

(µ̃−r)
δ(δ+1)σ2 , kb ∶= 2κR̄ka +

(µ̃−r)
σ2

(δ−1)
δ

, lb ∶=
2κR̄(ka+ha)

2κ−1
,

hc ∶=
σ2

Rha

δ
+

κR̄hb

δ
+

1
δ2
( (µ̃−r)2

2σ2 + r − δ) ,
kc ∶= σ2

Rka + κR̄kb +
(δ−1)

δ
( (µ̃−r)2

2σ2 + r − δ) ,
lc ∶=

σ2

R(ka+ha)
2κ

−
κR̄lb
2κ

, mc ∶= κR̄(lb + kb + hb).

(6.33)

We observe that the solution of the finite-time horizon case (6.31) converges
to the solution of the infinite-time horizon case (6.19) when T goes to infinity.
In detail, we have ha = a, hb = b, hc = c and thus (a(t), b(t), c(t)) → (a, b, c)
when T →∞.

It is reasonable that the value function v is quadratic with respect to the
returns Rt. Plugging the optimal control π∗t into the SDE for Xt, we obtain
that the optimal wealth process Xt has a quadratic drift w.r.t. Rt:

dXt =
(Rt + µ̃ − r)2

σ2
+ (r − χ̃t))Xtdt +

(Rt + µ̃ − r)
σ

XtdWt.

6.2.3 Optimized stochastic returns

Let us consider the case of optimized stochastic returns with the term max(Rt,0)
in (6.8). By using the same Ansatz (6.29) as above, on one hand, the optimal
controls become:

π∗(z) = max(z,0) + µ̃ − r
σ2

, χ∗t =
1

β(t) .
On the other hand, the parameters a(t), b(t) and c(t) have to satisfy the
following ODE system whenever z < 0:

ȧ(t) = (δ + 2κ)a(t), a(T ) = 0,
ḃ(t) = (δ + 1) b(t) − 2κR̄a(t), b(T ) = 0,
ċ(t) = δc(t) − σ2

Ra(t) − κR̄b(t) − β(t) ( (µ̃−r)2
2σ2 + r − δ) , c(T ) = 0.

(6.34)
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6.2 Investment-consumption model with stochastic returns

It is easy to verify that the only solutions are a(t) = b(t) ≡ 0 and the solution
for c(t) is given by:

c(t) = ((δ − 1)
δ
(T − t) − 1

δ2
)Ke−δ(T−t) +

K

δ2
, ∀t ∈ [0, T ]. (6.35)

Plugging (6.35) into (6.31) we see that the value function v is equal to the
value function for the finite-time horizon case without returns in Table 1. So
for z < 0 we get:

v(t, x) = e−δt (β(t) ln( x
β(t)) + 1

δ2
K) + b(t)K,

π∗ = µ̃−r

σ2 , χ̃∗t = β(t)−1. (6.36)

When we combine the solutions (6.31) for z > 0 and (6.36) for z < 0, the value
function v(t, x, z) is not continuous at z = 0 and not differentiable w.r.t. z at
z = 0. It follows that we can not use the Ansatz (6.23) to construct a closed
form solution for the value function v in the case of optimized stochastic
returns.

Instead, if v ∈ C2, the optimal control π∗t would have the following form:

π∗t (z) = [max(z,0) + µ̃ − r
σ2

∂yv + ρ
σR

σ
∂2
yzv] / [∂yv − ∂2

yy] . (6.37)

Note that the optimal control π∗t (z) may not be differentiable w.r.t. z at
z = 0.

6.2.4 Analytical solutions

Table 2 shows the analytical solutions for the stochastic return case. We
believe that it is not possible to find a closed form solution for the optimized
return case.

Infinite-time horizon Finite-time horizon

Log

utility

v(x, z) = 1
δ
log(δx)
+az2 + bz + c,

π∗(z) = z+µ̃−r

σ2 , χ∗ = δ.

v(t, x, z) = e−δt [β(t) (log( x
β(t))

+a(t)z2 + b(t)z + c(t)] ,
π∗(z) = z+µ̃−r

σ2 , χ∗t =
1

β(t) .

Table 2: Solutions of the investment-consumption problem with stochastic
returns for log utility and different time horizons.

93



6 ANALYTICAL SOLUTIONS FOR SIMPLIFIED CASES

6.2.5 Conclusions

In the case of stochastic returns, the first terms of the value functions v

in Table 2 are equal to the original Merton (constant return) case in Table 1.
The additional second term is a quadratic polynomial in z and independent
of x. The splitting of x and z in two separate terms is only the case for log
utility. Consequently, the correlation ρ disappears in the solution because
∂xzv(x, z) = 0. No solutions for other utilities are known yet.

The optimal proportion of wealth invested in assets π∗(z), depends
linearly on the return rate Rt and therefore it becomes stochastic:

π∗(Rt) = Rt + µ̃ − r

σ2
.

In contrast to the fixed Merton line π̄, the transition from investment α∗t > 0,
to de-investment, α∗t < 0 now depends linearly on the stochastic return Rt.
Note that π∗(Rt) depends only on the current state of Rt, but not on the
return’s volatility σR or on its mean-reversion parameters κ and R̄.

The optimal consumption χ∗t is equal to the constant return case and
does not depend on the stochastic returns at all. Moreover, the infinite-time
horizon case is the limit of the finite-time horizon case when T →∞.

In the case of optimized stochastic returns we are not able to derive a
closed form solution for the optimized return case. We analyze this case in
our numerical studies in Section 7.5. There we use our controlled forward-
backward algorithm from Part III, which utilizes the Stochastic Maximum
Principle (instead of the HJB theory) and therefore requires less smoothness
of v.

6.3 Investment-consumption model with proportional
transaction costs

Now we consider the investment-consumption Problem 2 with proportional
transaction costs while returns are neglected. It is well-known that there
exists no analytical solution for this problem. Instead, this section presents
the known analytical insights and numerical results. The section serves as a
preparation for our numerical studies on quadratic transaction costs in the
following Section 7.
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6.3 Investment-consumption model with proportional transaction costs

6.3.1 The problem

Again, let us consider the 1-dimensional case n = d = 1 of Problem 2 and let
the return rate Rt and the fixed costs Mt be zero. This implies κ, R̄, σR, c = 0.
But this time, let the quadratic transaction costs term c2tα2 in (5.14) be
replaced by a proportional transaction costs term c1∣αt∣. Also, let the control
space A be unbounded and let the well-posedness condition (6.1) be satisfied.
Then the state system (5.14) becomes:

dAt = (µAt + αt) dt + σAt dWt, A0 = a,

dBt = ( rBt − χt − αt − c1∣ αt∣ ) dt, B0 = b,
(6.38)

where c1 > 0. In the case of proportional transaction costs, transaction
charges are imposed equal to a constant fraction of the amount transacted.
We discussed the relevance of proportional transaction costs for our discrete-
time model in Section 4.4.3.

Facing transaction costs, we can not eliminate the allocation rate αt by mak-
ing the usual change of variables At +Bt ↦ Xt, At/Xt ↦ πt. On one hand,
we have to deal with both dimensions At and Bt separately instead of one
dimension Xt. On the other hand, the control variables αt and χt appear
only in the drift terms in the SDEs (6.38) but not in the diffusion terms.

6.3.2 Infinite-time horizon

Assuming that there exists a smooth value function v(a, b) ∈ C2(R ×R,R),
the HJB equation reads:

−δv(a, b) + sup
π,χ∈R×R+

[u(χx) +Aα,χv(a, b)] = 0, (6.39)

where the generator Aα,χ is given by:

Aα,χv(a, b) ∶= [µa + αt] ∂av + σ2

2
a2 ∂aav

+ (rb − χ − αt − c1 ∣αt ∣) ∂bv. (6.40)

Since the HJB equation is linear in α for both regions α > 0 and α < 0,
the optimal control is of bang-bang type. Moreover, since both derivative
∂av and ∂bv are naturally positive, the optimal allocation rate α∗ is given as
follows:

α∗ =∞, if ∂av ≥ (1 + c1)∂bv,
α∗ = 0, if (1 + c1)∂bv > ∂av > (1 − c1)∂bv,
α∗ = −∞, if ∂av ≤ (1 − c1)∂bv.

(6.41)
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6 ANALYTICAL SOLUTIONS FOR SIMPLIFIED CASES

Note that the bang-bang control splits the state space (a, b) into three re-
gions: a buy, a hold and a sell region. The allocation policy (6.41) states
that an investor immediately shifts his portfolio to the boundary of the hold
region where ∂av = (1+c1)∂bv or ∂av = (1−c1)∂bv when his portfolio is in the
sell or the buy region, respectively.

It turns out that the proportional transaction costs model is a free-boundary
problem. Let X = A + B denote the total wealth of the investor and let π

denote the proportion of wealth invested in the risky asset A. Then, the
problem is to find the proportions π∗b and π∗s such that the boundaries of the
buy and the sell regions are given by (π∗bX, (1−π∗b )X) and (π∗sX, (1−π∗s )X)
in the (a, b) space, respectively.
[Davis, Norman 1990] showed for the case of constant relative risk aversion
(CRRA) that the boundaries are straight lines in the (a, b) space and the
hold region is a wedge containing Merton’s CRRA line π∗ = µ−r

σ2 , see Figure
8.
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Figure 8: Examples of buy, hold and sell regions in the (A,B) space for
CRRA (power) utility and CARA (negative exponential) utility.

They exploited the fact that the value function v is concave and homogeneous
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6.3 Investment-consumption model with proportional transaction costs

in (a, b), ∀p > 0:
v(pa, pb) = pγv(a, b), for u(χ) = χγ

γ
,

v(pa, pb) = 1
δ
log(p) + v(a, b), for u(χ) = log(χ), (6.42)

and showed that there exists a smooth solution for the value function v(a, b) ∈
C2(R ×R) and that the control policy α∗ in (6.41) is optimal.

The most noticeable feature of the model’s behavior according to the trans-
action cost factor c1 is that:

1. πs is strictly increasing w.r.t c1 but the rate of increase is decreasing
with higher c1. πb is decreasing w.r.t c1 accordingly, see Figure 9.

2. Merton’s CRRA line π∗ is not the center of πs and πb (green line in
Figure 9). In contrast, the lower (buy) boundary πb is decreasing faster
than the upper (sell) boundary πx is increasing for higher c1.

[Davis, Norman 1990] state that ”this is probably due to the asymmetry in
the model: all consumption takes place from the bank, so stock must be sold
(and transaction charges paid) before it can be realized for consumption.”
So it may not be worthwhile to invest in stocks and then reselling them if
transaction costs are high. This is why πb is decreasing faster, see Figure 9.
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Figure 9: Example of the sell and the buy boundaries, πs and πb, plus Mer-
ton’s CARA line π∗ for different c1 > 0.
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6 ANALYTICAL SOLUTIONS FOR SIMPLIFIED CASES

Besides [Davis, Norman 1990], many authors studied numerical schemes to
calculate the free boundaries. [Muthuraman, Kumar 2006] for example adapt
a finite element method and use an iterative procedure that converts the free
boundary problem into a sequence of fixed boundary problems.
[Tourin, Zariphopoulou 1997] considered viscosity solutions and used finite
differences and dynamic programming to obtain numerical results while more
recent papers like [Janecek, Shreve 2005] consider ”an heuristic derivation of
the asymptotic expansion of the value function”.

[Akian, Sequier, Sulem 1995] showed that the hold region converges to Mer-
ton’s CRRA line when c1 → 0, see Figure 9.

6.3.3 Finite-time horizon

Constant relative risk aversion

The finite-time horizon case with constant relative risk aversion CRRA as
been studied only recently for example by [Dai, Jiang, Li, Yi 2009]. They
present an analytical approach to analyze the behaviors of the free bound-
aries. Note that the finite-time horizon is more challenging since the corre-
sponding free boundaries vary with time. They used the terminal utility:

e−δTu ( (1 − c1)AT +BT ) (6.43)

and found the following results. Let τ = T −t denote the time until T , and let
x = b

a
denote the proportion between the bank account b and the monetary

amount of assets a. Let xs(τ) and xb(τ) denote the boundaries of the sell
and the buy region, respectively and let xM denote the point on Merton’s
CRRA line. Then for all τ > 0:

xs(τ) ≤ (1 − c1)xM ,

xb(τ) ≥ (1 + c1)xM ,

xb(τ) =∞ if and only if τ ≤ τ0,

(6.44)

where τ0 = 1
µ−r

log (1+c1
1−c1
). The strict distance between xs, xb and xM even

for τ close to zero is due to the choise of the terminal utility in (6.43).
[Dai, Jiang, Li, Yi 2009] state that the third equation in (6.44) ”indicates
that there is a critical time τ0 after which it is never optimal to purchase
stocks.” ”If the investor does not have a long enough expected horizon to
recover at least the transaction costs, then s/he should not purchase any
additional stock.”
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6.3 Investment-consumption model with proportional transaction costs

Neglecting consumption, [Gennotte, Jung 1992] numerically show that the no
transaction region narrows and converges rapidly to the infinite horizon limit
as the time horizon increases. They used a standard dynamic programming
approach on the binominal model of asset returns. [Oksendal, Sulem 2002]
analysed the case that additionally involves a fixed transaction cost c0 > 0 by
considering viscosity solutions.

Constant absolute risk aversion

[Liu 2004] considers the optimal intertemporal consumption and investment
policy of a constant absolute risk aversion (CARA) investor who faces pro-
portional and also fixed transaction costs when trading multiple risky assets.
In the case of porportional transaction costs, he showed that the boundaries
of the hold region As and Ab are independent of the holdings in the bank
account, see the second chart in Figure 8.

He also observes that Merton’s CARA portfolio A∗ lies inside the hold region
and that the boundaries As, Ab show the same increasing, decreasing effect
for higher c1 as in the CRRA case, see Figure 9.

6.3.4 Conclusions

In the case of proportional transaction costs c1∣α∣, the allocation rate αt can
not be eliminated through a change of variables. On one hand, analytical
solutions cannot be derived anymore. On the other hand, the value function
is still homogeneous (6.42) and therefore the problem can be turned into
a free boundary problem. Numerical methods are available to compute
solutions.

The (A,B) space splits into three region: a buy region, a hold region and
a sell region, see Figure 8. The optimal allocation rate α∗ is ∞ in the
buy region, 0 in the hold region and −∞ in the sell region. This is a bang-
bang control. Roughly speaking, trading only takes place at the boundary
of the hold region. Whenever the portfolio leaves the hold region, the infi-
nite allocation rate immediately brings it back to the hold region’s boundary.

In case of CRRA (CARA) utility, the boundaries πs and πb (As and Ab) of the
sell and buy region diverges from Merton’s CRRA line π∗ (Merton’s CARA
portfolio A∗) with increasing transaction cost factor c1, see Figure 9.
The divergence slows down for larger c1 and it is not symmetric due to
the asymmetry of the problem: the consumption is only taken out of the
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bank account.

The optimal consumption χ∗ = u̇−1 (eδt∂bv) has a similar functional form
as the optimal consumption in Merton’s original model but it depends on
∂bv instead of ∂xv.

The finite-time horizon case is more challenging since the corresponding
free boundaries varies with time. Numerical results show that the model
behaves similar to it’s infinite-time horizon version and converges to it when
T →∞.

6.4 Investment-consumption model with quadratic trans-
action costs

The motivation for quadratic transaction costs comes from the second order
Taylor expansion of convex temporary illiquidity effects in Section 5.2.4. In
addition to commodity markets, the illiquidiy of stock markets has become
of more interest in recent years after the financial crices in 2008.

Again, let us consider the 1-dimensional case n = d = 1 of Problem 2 and
neglect the return rate and the fixed costs (κ, R̄, σR, c,M = 0) in order to
focus on the quadratic transaction costs c2 > 0. Also, let the control space A
be unbounded and let the well-posedness condition (6.1) be satisfied. Then
the state system (5.14) becomes:

dAt = (µAt + αt) dt + σAt dWt, A0 = a,

dBt = ( rBt − χt − αt − c2α2 ) dt, B0 = b.
(6.45)

Let us assume that there exists a smooth value function v(t, a, b) ∈ C1,2([0, T ]×
R ×R,R). Then the generator Aα,χ of the HJB equation (6.39) becomes:

Aα,χv(t, a, b) ∶= [µa + αt] ∂av + σ2

2
a2 ∂aav

+ (rb − χt − αt − c2α
2
t ) ∂bv. (6.46)

The optimal controls α∗t , χ
∗

t can be found by considering the first derivatives
of the HJB equation w.r.t. α and χ:

0 = ∂av − ∂bv − 2c2α∂bv,

0 = e−δtu̇(χt) − ∂bv. (6.47)
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Since ∂av, ∂bv are naturally positive and the utility function u is strictly
concave the following controls are optimal:

α∗t =
1
2c2

∂av−∂bv
∂bv

,

χ∗t = u̇−1 (eδt∂bv) . (6.48)

From (6.48) we observe that the optimal allocation rate α∗t is not of bang-
bang type but rather smooth and differentiable when v ∈ C2. We also observe
that the optimal allocation is zero when both partial derivatives attain the
same value. So the optimal portfolio is the set of points {A∗t ,B∗t } in the(A,B) space where α∗t = 0:

{A∗t ,B∗t } = {(A,B) ∈ R+ ×R ∣ α∗t = 0 (∂av = ∂bv)} . (6.49)

On one hand, even though we gained a lot of experience on finding an ap-
propriate Ansatz of a possible value function, we are not able to construct
an analytical solution in the quadratic transaction costs case. The main rea-
son is that the value function is no longer homogeneous (6.5) because of the
quadratic term.

On the other hand, the quadratic (convex transaction costs) term provides a
convexity property to the problem. Therefore, our CFB algorithm of Section
12 can be applied to it. Actually, besides the illiquidity issue in commodity
markets, the convexity property of the problem is one reason why we choose
the convex transaction costs model.

6.4.1 Adding stochastic returns

Now, let us add the stochastic return rate Rt to the investment-consumption
model with quadratic transaction costs (κ, R̄, σR,M > 0). Then the state
system (5.14) becomes:

dAt = (µAt + αt) dt + σAt dWt, A0 = a,

dBt = ( rBt +RtAt −MAt − χt − αt − c2α2 ) dt, B0 = b,

dRt = κ (R̄ −Rt) dt + σR dWR
t , R0 = c.

(6.50)

Let us assume that there exists a smooth value function v(t, a, b, c) ∈ C1,2([0, T ]
×R×R×R,R). Then the generator Aα,χ of the HJB equation (6.39) becomes:

Aα,χv(t, a, b, c) ∶= [µa + αt] ∂av + σ2

2
a2 ∂aav

+ (rb + ca −Ma − χt − αt − c2α
2
t ) ∂bv

+κ(R̄ − c)∂cv + σ2

R

2
∂ccv + ρσσRa∂acv.

(6.51)
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The optimal controls α∗t , χ
∗

t can be found by considering the first derivatives
of the HJB equation w.r.t. α and χ:

α∗t =
1
2c2

∂av−∂bv
∂bv

,

χ∗t = u̇−1 (eδt∂bv) . (6.52)

Note that (6.52) is equal to (6.48) since the return rate is a non-controlled
diffusion.

We present numerical results in the following Section 7.
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7 Numerical results for the general one asset

case

In this section we present numerical results of our reduced continuous-time
model (Problem 2) (5.13)-(5.16) in the case of one asset. The single asset
could be interpreted as the market portfolio in Merton’s mutual fund theo-
rem, see Section 3.1.5 in the preliminaries.

Considering quadratic transaction costs is much more challenging than pro-
portional transaction costs which we present in Section 6.3. The reason is
that the value function loses its homogeneity (6.5) and therefore the model
cannot be simplified by a reduction of variables27. Moreover, since there are
no up-front analytical insights about the solution, the model must be ana-
lyzed fully by numerical simulations.

As far as we know, the case of convex (quadratic) transaction costs has not
been studied in the literature. A reason may be the numerical complexity
of the multi-dimensional stochastic optimal control problem. In the case of
just one asset, we are actually dealing with three dimensions: the asset, the
bank account and the return rate.

Our controlled forward-backward (CFB) stochastic algorithm from
Part III gives us the ability (in terms of performance) to study this convex
problem numerically. All following results are generated with this method.
The CFB algorithm is developed in Part III and all details about the imple-
mentation are given in Part IV of this thesis.

The outline is as follows. We define one asset case in Section 7.1 and analyze
the pure quadratic transaction cost case in Section 7.2 in detail. After a
short aside on proportional transaction costs in Section 7.3, we add stochastic
returns in Section 7.4 and then consider optimized returns in Section 7.5.

27In the case of proportional transaction costs the reduction is made through (a, b) ↦ a

b
.
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7.1 Definition of the problem for one asset

Throughout the section we use the negative exponential (CARA) utility in
formulas and examples for simplicity and numerical convenience28:

u(χ) = 1 − e−γχ

γ
.

We leave other HARA utility function to future research. Now, let us recall
Problem 2 (5.13)-(5.16) with negative exponential utility for one asset.

Problem 3 (Continuous-time problem for one asset)
Let the objective function be given by:

J(t, a, b, c, α,χ) = Eα,χ
t [∫ T

t
e−δs

1 − e−γχs

γ
ds + e−δT

1 − eγ(AT+BT )

γ
∣ a, b, c] ,

(7.1)
and let the states evolve according to:

dAt = (µAt + αt) dt + σAt dWt, A0 = a,

dRt = (κ(R̄ −Rt)) dt + σR dWR
t R0 = c,

dBt = (rBt +max(Rt,0)At −MAt

−χt − αt − c2α2) dt, B0 = b,

(7.2)

where:
dWt dW

R
t = ρdt. (7.3)

We search for the optimal allocation policy α∗(t, a, b, c) and the optimal con-
sumption policy χ∗(t, a, b, c):

(α∗(t, a, b, c), χ∗(t, a, b, c)) = argmax
(α,χ)

J(t, a, b, c, α,χ), (7.4)

and the value function v(t, a, b, c):
v(t, a, b, c) = max

(α,χ)
J(t, a, b, c, α,χ),

v(T, a, b, c) = g(a, b, c), (7.5)

for any given initial time t ∈ [0, T ] with initial monetary amounts of assets
a ∈ [Amin,Amax] ⊂ R+, initial money in the bank account b ∈ [Bmin,Bmax] ⊂ R

28Negative exponential utility is defined on the whole R space, in contrast to log utility
which is only defined on R+.
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7.2 Quadratic transaction costs

and initial return rates c ∈ [Rmin,Rmax] ⊂ R.
The state and control constraints are:

At ≥ 0, αt ∈ [αmin, αmax], χt ∈ [0, χmax], (7.6)

and the exit strategy in case of bankruptcy is given by:

(αt, χt) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−αbry,0), if (At,Bt) ∉ Lt(αbry) ∧ At > 0,

(0,0), if (At,Bt) ∉ Lt(αbry) ∧ At = 0,
(7.7)

where:
L(αbry) = {(x, y) ∈ R+ ×R ∣ y + (1 − c2αbry)x ≥ 0} . (7.8)

In Problem 3, all parameters are given as positive constants: T, δ, γ, µ, σ, c2 >
0 and κ, R̄, σR, r,M, ρ,αbry ≥ 0. In order to avoid short-selling naturally, we
assume that µ is sufficiently larger than r.

The region of interest defined by Amin,Amax, Bmin,Bmax, Rmin and Rmax is
part of the problem’s statement with the only restriction that Amin ≥ 0. The
bounds of the control space αmin, αmax and χmax are not part of the problem’s
statement but rather of technical nature to indicate that the controls are
bounded.

7.2 Quadratic transaction costs

Let us at first drop all state and control constrains. Also let us neglect the
return rate and the fixed costs (κ, R̄, σR, c,M = 0) in order to focus on the
quadratic transaction costs c2 > 0. Then the state system (7.2) becomes:

dAt = (µAt + αt) dt + σAt dWt, A0 = a,

dBt = ( rBt − χt − αt − c2α2 ) dt, B0 = b.
(7.9)

From our analyses in Section 6.4, we assume that we have a smooth value
function and the optimal controls are given by equation (6.48):

α∗t =
1
2c2

∂av−∂bv
∂bv

,

χ∗t = u̇−1 (eδt∂bv) . (7.10)

In particular, the optimal allocation is not singular (bang-bang) but rather
smooth due to the convexity of the problem: the gain function is concave in
χ and the costs are convex (quadratic) in α. The following numerical results
support this assumption.
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7.2.1 Basic parameter set up

Let us fix the parameters for a basic set up to start with our study. All
further analyses are variations of this basic set up. The region of interest is:

a ∈ [0,2], initial monetary amount of asset in e,

b ∈ [−1,1], initial monetary amount in bank account in e,

c ∈ [−0.3,0.3], initial return of asset in 100%.

(7.11)

The model parameters of the basic set up are defined in Table 3. Note that
all parameters are constant over time [0, T ] and that the return Rt and the
fixed costs M are zero in the basic set up.

T γ δ r µ σ c2 M R̄ κ σR ρ

2 1 0.01 0.02 0.06 0.2 0.1 0.0 0.0 0.0 0.0 0.0

Table 3: Parameters of the basic set up for the one asset case.

The market in Table 3 has a low interest rate r while the asset’s drift and
volatility are high. Gamma is chosen such that the utility has a significant
curvature in the region of interest (a, b) ∈ [0,2] × [−1,1]. We choose values
that are observable at current equity exchanges and that are commonly used
in the literature.

7.2.2 Approximation parameters

Let h denote our approximation parameter. For our calculations, we use
the time step size ∆t = h. All other grid step sizes A,B,R and the number
of simulations of the Brownian increments ∆W,∆WR are derived from h.
In particular, they are optimized according to equation (13.12) in Section
13.2 in Part III, in order to provide linear convergence of our CFB algorithm
when h→ 0. In the following we use the superscript h to indicate a numerical
approximation χh of the opitmal solution χ∗.

7.2.3 Shape of solutions at time t = 0

In order to get a first impression of the solution’s behavior in the (a, b)-space,
we present the surfaces of vh, χh and αh at time t = 0. Figure 10 shows the
value function vh(0, a, b) and the optimal consumption rate χ∗h0 (a, b).
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7.2 Quadratic transaction costs

Consistent with the results of Section 6.3, the value function is increasing
and concave w.r.t. the amount of assets a and the bank account b. We also
observe that χh

0 is almost linear in a + b.
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Figure 10: Value function vh(0, a, b) and optimal consumption rate χh
0(a, b)

at initial time 0, for h = 0.1.

Figure 11 shows the optimal allocation rate αh
0(a, b). It appears that

αh
0(a, b) is independent of b and decreases almost linearly w.r.t. a, at least in

the neighbourhood of the optimal portfolios {Ah
0 ,B

h
0} (αh

0 = 0). We observe
that Ah

0 = 1.70 is smaller than Merton’s CARA portfolio A∗0 = 2.92.
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Figure 11: Optimal allocation rate α∗h0 (a, b) for all (a, b) ∈ [0,2] × [−1,1] at
initial time 0, for h = 0.1.
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7.2.4 Behavior of solutions over time t ∈ [0, T ]
In order to get an impression of the solution’s behavior over time, we present
vh, χh and αh at five selected (fixed) space points (a, b) ∈ [0,2]× [−1,1] over
t ∈ [0, T ]. For this paragraph we set T = 4 in order to observe the evolution
over a longer time period.

Figure 12 shows the evolution of the value function vh(t, a, b). Naturally,
vh is strictly decreasing with time t since the remaining time [t, T ] becomes
shorter. We also observe that the level of the value function is strongly
related to the total wealth a + b.
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Figure 12: Evolution of the value function vh(t, a, b) for selected (a, b) ∈[0,2] × [−1,1] over t ∈ [0,4], for h = 0.2.
Figure 13 shows the evolution of the optimal relative consumption rate
χ∗ht (a,b)

a+b
. All rates are greater than zero and approach the value 1 when t→ T .

Also, the relative consumption rates seems to be almost equal for the different
points.

Figure 14 shows the evolution of the optimal allocation rate α∗ht (a, b). We
observe that αh

t → 0 when t → T . Again, the allocation rate seems to be
almost equal for equal amounts of assets a and independent of b.

The most varying curve in Figure 14 is the green one where (a, b) = (2,0). We
observe that on one hand, an investor with this portfolio (a = 2.0) should buy
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Figure 13: Evolution of the optimal relative consumption rate
χ∗ht (a,b)

a+b
for

selected (a, b) ∈ [0,2] × [−1,1] over t ∈ [0,4], for h = 0.1.
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Figure 14: Evolution of the optimal absolute allocation rate α∗ht (a, b) for
selected (a, b) ∈ [0,2] × [−1,1] over t ∈ [0,4], for h = 0.2.
assets to profit from the drift µ > r when the time horizon T is sufficiently far
away. On the other hand, an investor with the same portfolio but closer to
T should sell assets in order to reduce the risk through σ. This is an effect of
the negative exponential utility and consistent with the decreasing Merton’s
CARA portfolio:

A∗t =
µ − r

γrσ2
(1 − (1 − r)e−r(T−0)),

see Table 1 in Section 6.1. When a < A∗t assets are bought, when a > A∗t
assets are sold. Very close to T the optimal allocation goes back to zero,
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since the terminal value u(AT +BT ) does not treat money in the assets AT

and money in the bank BT differently.

7.2.5 Reduction of consumption proportional to quadratic trans-
action costs

From the first spot, it seems that the consumption rate χh
t is almost equal

to the analytical solution χ∗t of Merton’s original model without transaction
costs:

χ̄t =
d(t)(a + b)

γ
+ ā(1 − e−r(T−t)), (7.12)

see Table 1 in Section 6.1. In particular, the observed linearity of χh in a+ b

in Figure 10 and the similarity of the relatives rates
χ∗ht (a,b)

a+b
, as well as their

convergence to one at t = T in Figure 13, would be consistent with (7.12).

So, in order to analyze the difference between the consumption in the case of
quadratic transaction costs and consumption in Merton’s original model, we
look at the differences between χh

t (a, b) and χ∗t (a, b) at time t = 0 for several
points in the (a, b) space:

1. ǫ
χ
0(1,0) = ∣χh

0(1,0) − χ∗0(1,0)∣ , in the buy region,

2. ǫ
χ
0(2,0) = ∣χh

0(2,0) − χ∗0(2,0)∣ , close to the optimal portfolio,

3. ǫ
χ
0(3,0) = ∣χh

0(3,0) − χ∗0(3,0)∣ , in the sell region,

4. ǫ
χ
0(max) =max

a,b
∣χh

0(a, b) − χ∗0(a, b)∣ , maximum over region.

Table 4 shows the four values ǫ
χ
0 for different h. We observe that ǫ

χ
0(max)

gets smaller for smaller h but the single χh
0(a, b) do not converge29 exactly

to χ∗0(a, b) in all 3 cases. In other words, ǫχ0 > 0 is not just an approximation
error.

Figure 15 shows the differences χ∗0(a, b)−χh
0(a, b) for all (a, b) ∈ [1,3]×[−1,1].

We observe that χ∗0 − χ
h
0 is always positive and smallest near the optimal

portfolio {Ah
0 ,B

h
0}, (αh

0 = 0). For higher or lower amounts of assets a, (αh
0 < 0

or αh
0 > 0), the difference χ∗0 − χ

h
0 becomes larger but stays independent of

the bank account b. We can say that the optimal consumption χh is reduced
compared to χ∗ when the allocation ∣αh∣ is raised.

29The algorithm has linear convergences in h, see Section 13.
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ǫ
χ
0(1,0), buy region

h = 1/4 h = 1/8 h = 1/12 h = 1/16 h = 1/20
0.0093 0.0054 0.0048 0.0046 0.0045

ǫ
χ
0(2,0), close to the opt. portfolio

h = 1/4 h = 1/8 h = 1/12 h = 1/16 h = 1/20
0.0140 0.0068 0.0060 0.0057 0.0055

ǫ
χ
0(3,0), sell region

h = 1/4 h = 1/8 h = 1/12 h = 1/16 h = 1/20
0.0326 0.0217 0.0205 0.0198 0.0195

ǫ
χ
0(max), maximum over region

h = 1/4 h = 1/8 h = 1/12 h = 1/16 h = 1/20
0.0342 0.0218 0.0206 0.0199 0.0198

Table 4: Differences between the consumptions χh
0 (with quadratic transac-

tion costs) and χ∗0 (without transaction costs) for different h.

Figure 15: Reduction of consumption χ∗0(a, b)−χh
0(a, b) for all (a, b) ∈ [1,3]×[−1,1] at initial time 0, for h = 0.05.
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Let us go one step further and compare the actual transaction costs c2(αh
0)2

and the reduction of consumption χ∗0 − χ
h
0 . Figure 16 shows that the re-

duction of consumption is almost proportional to the quadratic transaction
costs. The consumption is also shifted since the optimal portfolio Ah ≠ A∗ is
shifted too, see next paragraph.

It turns out that the optimal consumption χh
t decreases (almost) pro-

portional to the quadratic transaction costs (αh)2t compared to the
optimal consumption χ∗0 with no transaction costs.
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Figure 16: Reduction of consumption χ∗0(a,0) − χh
0(a,0) compared to trans-

action costs c2(αh)2t scaleld by a factor 0,12 for a ∈ [−2,8] at initial time 0;
with c2 = 5e − 3 and h = 0.03.

Note that the small differences between the five curves (optimal relative
consumption rate) in Figure 13 are not due to the different values of b. They
rather occur due to the different allocation rates (compare to Figure 14) and
due to the second term in (7.12), which is not proportional to the total wealth
a + b but goes to zero when t → T . The latter argument explains why the
portfolio with the smallest total wealth a+b (yellow curve) shows the highest

relative consumption
χ∗ht (a,b)

a+b
.

112



7.2 Quadratic transaction costs

7.2.6 Discounted continuous allocation towards a smaller amount
of assets

We observe two main effects for the optimal allocation rate αh
t due to quadratic

transactin costs.

First, we already observed that αh
t is smooth in (a, b) and also smooth in

t, see Figure 11 and 14. In particular, it is not of bang-bang type as in
the proportional transaction costs case but rather decreases almost linearly
w.r.t. a. Roughly speaking, having a non-optimal portfolio, the investor still
trades towards the optimal portfolio, but the shift is not made immediately
rather decelerated due to the quadratic transaction costs (temporary illiq-
uidity costs).

In the case of negative exponential (CARA) utility, αh
t (a, b) is independent

of b and therefore the optimal portfolio (αh
0 = 0) is given at a fixed point

a = Ah
t regardless of b, for any fixed time point t ∈ [0, T ]. This is consistent

with Merton’s CARA portfolio:

A∗t =
µ − r

γrσ2
(1 − (1 − r)e−r(T−0)), (7.13)

see Table 1 in Section 6.1.

Second, the optimal portfolio Ah
t is smaller than A∗t . For example, using the

parameters of Table 3, Merton’s CARA portfolio A∗0 ≈ 2.92 but Ah
0 ≈ 1.70.

This effect is probably due to the following two reasons:

1. The asymmetry in the model: all consumption takes place from the
bank account, so stock must be sold (and transaction charges paid)
before it can be realized for consumption. We observed this effect for
proportional transaction costs too.

2. The combination of facts where the shift towards the optimal portfolio
is decelerated and needs some time, and the optimal portfolio A∗t in
(7.13) decreases with time. Roughly speaking, the investor keeps his
optimal amount of assets A slightly smaller in order to save future
transaction costs, since the optimal portfolio decreases in time.

7.2.7 Model behavior w.r.t. the transaction costs factor c2

Let us analyze the model’s behavior with respect to the quadratic transac-
tion costs factor c2.
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Figure 17 shows the optimal portfolio Ah
t at time t = 0 for several transaction

costs factors c2. The parameters are taken from Table 3 but with T = 1. We
observe that the decrease of the optimal portfolio Ah w.r.t c2 has a similar
form as the (green) center line of the hold region for proportional transaction
costs in Figure 9 in Section 6.3.

0 0.005 0.01 0.015 0.02 0.025
1

1.5

2

2.5

transaction cost factor c
1

 

 

optimal portfolio A*

Figure 17: Optimal portfolio Ah
t for different transaction costs factors c2 at

b = 0 and time t = 0 with h = 0.05.

Figure 18 shows the optimal portfolio Ah
t over the full time horizon t ∈ [0,1]

for several transaction costs factors c2. Again, the parameters are taken
from Table 3 but with T = 1. The optimal portfolio Ah

t drifts away from A∗t
backwards in time, or: Ah

t → A∗t when t→ T . We already mentioned that this
effect occurs because our terminal value u(AT + BT ) does not treat money
in the assets AT and money in the bank BT differently. Moreover, on one
hand, Ah

t → A∗t when c2 → 0. On the other hand, Ah decreases very slowly
when we increase c2 > 0.01, see Table 5.

c2 0.0 0.0005 0.001 0.0025 0.005 0.01 0.1 1.0

Ah
0 1.97 1.72 1.64 1.525 1.46 1.43 1.39 1.38

Table 5: Values of Figure 17.
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Figure 18: Evolution of the optimal portfolio A∗t for different transaction
costs factors c2 over t ∈ [0,1], for h = 0.05.
7.2.8 Model behavior w.r.t. other parameters

We also performed several studies in order to analyze the model’s behavior
due to changes on its parameters. We observed that the optimal consumption
χh
t and the optimal portfolio Ah

t behave accordingly to their solutions for
Merton’s original model χ∗t and A∗t , respectively:

χ∗t (a, b) = d(t)(a+b)
γ
+ ā(1 − e−r(T−t)),

A∗t =
µ−r

γrσ2 (1 − (1 − r)e−r(T−0)). (7.14)

Since we do not observe other effects, the results are not shown here.

7.2.9 Conclusions

In the pure quadratic transaction costs case:

● The value function v(t, a, b) is increasing and concave w.r.t. a and b for
all t ∈ [0, T ].
● The optimal consumption χh

t (a, b) behaves similar to Merton’s original
case (7.14). But, in comparison to χ∗t , the optimal consumption χh

t

shows a reduction that is almost proportional to the quadratic
transaction costs. It is also shifted toward the optimal portfolio
Ah

t ≤ A∗t .

● The optimal allocation rate αh
t (a, b) is continuous in (t, a, b)

and directs towards the optimal portfolio Ah
t . In the case of negative
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exponential (CARA) utility, αh
t (a, b) is independent of b and almost

linearly w.r.t. a. Compared to the proportional transaction costs case,
αh
t is discounted due to the temporary illiquidity costs.

● The optimal portfolio Ah
t is smaller than Merton’s CARA portfolio

(7.14). The reasons are probably the asymmetry in the model (all
consumption takes place from the bank account) and the decrease of the
optimal portfolio Ah

t in time, combined with discounted allocation
(future transaction costs are lowered).

● When c2 is increased, the optimal portfolio Ah decreases in a similar
form as the center line of the hold region for proportional transaction
costs. In particular, Ah

t → A∗t when c2 → 0 and Ah decreases slower
when c2 is increased to higher values. With respect to time, the
optimal portfolio Ah

t → A∗t when t→ T .

● The parameter dependency of the optimal consumption χh
t and the

optimal portfolio Ah
t is similar to Merton’s original model χ∗t and

A∗t in (7.14), respectively.

7.3 Quadratic and proportional transaction costs

Let us briefly consider the previous quadratic transaction costs case but also
add proportional transaction costs. Then the state system (7.2) becomes:

dAt = (µAt + αt) dt + σAt dWt, A0 = a,

dBt = ( rBt − χt − αt − c1∣ α∣ − c2α2 ) dt, B0 = b.
(7.15)

From our analyses in Section 6.3 and 6.4, we assume a smooth value function
and the optimal controls to be given by:

α∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2c2

∂av − (1+c1)∂bv
∂bv

, if ∂av ≥ (1 + c1)∂bv,
0, if (1 + c1)∂bv > ∂av > (1 − c1)∂bv,

1
2c2

∂av − (1−c1)∂bv
∂bv

, if ∂av ≤ (1 − c1)∂bv.
χ∗t = u̇−1 (eδt∂bv) .

(7.16)

Figure 19 shows the optimal allocation rate αh
t (a, b) for (a, b) ∈ [−2,3]×[−2,2]

at time t = 0. We observe the following two effects:
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● On one side, there is a hold region where αh
t = 0 as in the case of pure

proportional transaction costs. In particular, the optimal portfolio Ah
t

from the case of pure quadratic transaction costs lies inside this hold
region.

● On the other hand, in the sell and buy region, the allocation αh
t > 0 is

not of bang-bang type as in the case of pure proportional transaction
costs. It is rather discounted, continuous and almost linear w.r.t. a as
in the case of pure quadratic transaction costs. At the boundaries of
the sell and buy region, αh

t goes to zero.
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Figure 19: Optimal allocation rate αh
t (a, b) for (a, b) ∈ [−2,3]×[−2,2] at time

t = 0, considering linear and quadratic transaction costs c1 = 0.1 and c2 = 0.1.

7.3.1 Conclusions

The quadratic and proportional transaction costs case combines the segmen-
tation into a buy, hold and sell region from pure proportional transaction
costs and the smooth allocation rate from quadratic transaction costs.
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7.4 Quadratic transaction costs with stochastic returns

Now let us add the stochastic return rate Rt to the problem. We still neglect
the state and control constrains. Then the state system (7.2) becomes:

dAt = (µAt + αt) dt + σAt dWt, A0 = a,

dRt = (κ(R̄ −Rt)) dt + σR dWR
t R0 = c,

dBt = ( rBt +RtAt − χt − αt − c2α2 ) dt, B0 = b.

(7.17)

According to our analyses in Section 6.4, we assume a smooth value function
and the optimal controls to be given by equation (6.48):

α∗t =
1
2c2

∂av−∂bv
∂bv

,

χ∗t = u̇−1 (eδt∂bv) . (7.18)

Since we studied the pure quadratic transaction costs case extensively in
Section 7.2, we only analyze the main differences to it at this time. We also
use the same parameters as in Section 7.2.1, Table 3 but add the parameters
for the return rate Rt. Table 6 shows these parameters.

T γ δ r µ σ c2 M R̄ κ σR ρ

2 1 0.01 0.02 0.06 0.2 0.1 0.0 0.05 0.5 0.05 0.0

Table 6: Parameters of the basic set up for the one asset case.

7.4.1 Shape of solutions at time t = 0

Figure 20 shows the optimal consumption χh
0(a, b,0) and the optimal alloca-

tion αh
0(a, b,0) for (a, b) ∈ [1.6,2.3] × [−1,1] and c = 0 at time t = 0. Overall,

the shape of consumption and allocation do not change when adding returns.
However, we observe a slightly b dependency in the the allocation rate αh.

Figure 21 shows the optimal consumption χh
0(a,0, c) and the optimal allo-

cation αh
0(a,0, c) for (a, c) ∈ [1.6,2.3] × [−0.1,0.1] and b = 0 at time t = 0.

We observe that the optimal consumption χh and allocation αh increase with
higher (initial) returns c. In particular, αh

t seems to depend linearly on the
initial return level c.
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Figure 20: Optimal consumption χh
0(a, b,0) and the optimal allocation

αh
0(a, b,0) at c = 0 and time t = 0, for h = 0.1.
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Figure 21: Optimal consumption χh
0(a,0, c) and the optimal allocation

αh
0(a,0, c) at b = 0 and time t = 0, for h = 0.1.

However, it is interesting to note that the first derivative of the value function
w.r.t. the amount of assets ∂a vh does not vary much in c (initial return rate)
but the first derivative of the value function w.r.t. the bank account ∂b vh do
vary in c, see Figure 22. Note that αh ∼ ∂a vh/∂b vh from (7.18).

It means that the sensitivity of the value function w.r.t. the bank account
depends on the return rates, while the sensitivity w.r.t. the amount of assets is
less dependent on c. A possible reason for this counter intuitive phenomenon
may be the asymmetry of the problem, namely that the consumption is taken
out of the bank account only.
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Figure 22: First derivatives ∂a vh(a,0, c) and ∂b vh(a,0, c) at b = 0 and time
t = 0, for h = 0.1.

7.4.2 Model behavior w.r.t. the return’s volatility σR

In this study we set the return’s drift κ(R̄ − Rt) to zero and variate only
the volatility σR > 0. All other parameters are kept constant according to
Table 6. Note that σR is the absolute volatility of the returns Rt in (7.17).
In particular, it is not a relative volatility (σRRt) as in the SDE for At.

Figure 23 shows the optimal allocation αh
t (a,0,0) for all a ∈ [0.5,3.0], b = 0

and c = 0 for several values of σ at time t = T /2. We observe that a change
of the return’s volatility σR leads to a parallel shift of the optimal allocation
rate αh

0 . A higher volatility σR lowers the allocation αh
t and the optimal

portfolio Ah
t (αh

t = 0). This behaviour of the model occur due to the risk
aversion of the investor (concave utility function).

Figure 24 shows the optimal allocation αh
t (A∗t ,0, c) for all c ∈ [−0.15,0.15],

a = A∗t and b = 0 for several values of σ at time t = T /2. A∗0 is Merton’s
CARA portfolio at time t = 0. So it is the same situation as in Figure 23
but regarded from the c-dimension while a and b are fixed. We again observe
that a change of σR leads to a parallel shift of the allocation rate αh

0 , also in
this dimension. Moreovere, it seems that αh

0 in linear in c.
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Figure 23: Optimal allocation αh
t (a,0,0) for all a ∈ [0.5,3.0], b = 0 and c = 0

at time t = T /2, for h = 0.1.
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Figure 24: Optimal allocation αh
t (A∗t ,0, c) for all c ∈ [−0.15,0.15], a = A∗t and

b = 0 at time t = T /2, for h = 0.1.
7.4.3 Model behavior w.r.t. the return’s mean-reversion level R̄

In this study we variate the mean-reversion level R̄ > 0. All other parameters
are kept constant according to Table 6. In particular we set the mean-
reversion speed κ = 0.5 and the volatility σR = 0.05.

Figure 25 shows the optimal allocation αh
t (a,0,0) for all a ∈ [0,2.5],b = 0,

c = 0 and αh
t (A∗t ,0, c) for all c ∈ [−0.15,0.15], a = A∗t , b = 0 at time t = T /2.

We observe that a change of the mean-reversion level R̄ leads to a parallel
shift of the allocation rate αh

t . A higher mean-reversion level R̄ leads to a
higher allocation αh

t and a higher optimal portfolio Ah
t (αh

t = 0).
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Figure 25: Optimal allocation αh
t (a,0,0) for all a ∈ [0,2.5] and αh

t (A∗t ,0, c)
for all c ∈ [−0.15,0.15] at time t = T /2, for h = 0.1.

7.4.4 Model behavior w.r.t. the return’s mean-reversion speed κ

In this study we vary the mean-reversion speed κ. All other parameters are
kept constant according to Table 6. In particular we set the mean-reversion
level R̄ = 0.05 and the volatility σR = 0.05.

Figure 26 shows the optimal allocation αh
t (a,0,0) for all a ∈ [0.5,2.5],b = 0,

c = 0 and αh
t (A∗t ,0, c) for all c ∈ [−0.15,0.15], a = A∗t , b = 0 at time t = T /2.

On one hand, we observe that a change of the mean-reversion speed κ leads
to a parallel shift of the allocation rate αh

t when c is fixed. In particular,
starting at c = 0 < R̄ here, a higher mean-reversion speed κ leads to a higher
allocation rate αh

t and a higher optimal portfolio Ah
t .

On the other hand, we observe that a change of the mean-reversion speed κ

leads to a tilt in the allocation rate αh
t regarded from the c-dimension, see

the right chart in Figure 26. The truning point is the mean-reversion level
R̄ = 0.05 here.

Naturally, when starting at a c > R̄, a higher mean-reversion speed κ leads
to a faster drop of the expected returns towards R̄ and therefore to a lower
consumption. The other way round, when starting at a c < R̄, a higher mean-
reversion speed κ leads to a faster rise of the expected returns towards R̄ and
therefore to a higher consumption. This affects the allocation rates αh

t and
the optimal portfolio Ah

t in a synchron manner.
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Figure 26: Optimal allocation αh
t (a,0,0) for all a ∈ [0,2.5] and αh

t (A∗t ,0, c)
for all c ∈ [−0.15,0.15] at time t = T /2, for h = 0.1.
7.4.5 Conclusions

In the case of quadratic transaction costs with stochastic returns:

● The optimal consumption χh and allocation αh increase with higher
returns c. In particular, αh seems to depend linearly on the (initial)
return level c.

● The optimal allocation αh
t and optimal portfolio Ah

t decreases
with higher return volatility σR. This is intuitively due to the risk
aversion of the investor (concave utility function).

● The value function v, the optimal consumption χh
t , the optimal allo-

cation αh
t and the optimal portfolio Ah

t increases with higher mean-
reversion level R̄.

● A change of the mean-reversion speed κ leads to a tilt in the allocation
rate αh

t . The turning point is the mean-reversion level R̄.

7.5 Quadratic transaction costs with optimized returns

By optimized returns we refer to the term max(Rt,0) −M as a simplified
model of optimized flexible operation of production assets. The derivation
from first principles was provided in Section 5.2.6. Note also our discussion
about the terminology optional returns there.
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7 NUMERICAL RESULTS FOR THE GENERAL ONE ASSET CASE

Optimized returns basically means that the total losses from an asset are
bounded below at the asset’s fixed costs −M . To make this clearer, let us
split the total return (loss) Rtotal into the return from operation Rop and the
fixed cost M : Rtotal = Rop −M . Then, the optimized outcome of flexible
operation is: max(Rop,0) −M = max(Rtotal,−M). So the total return (loss)
is bounded below at −M .

Now let us consider the optimized stochastic return case. Let M ≥ 0 denote
the proportional fixed costs and let Rt denote the return from operation. We
still neglect the state and control constrains. Then the state system (7.2)
becomes:

dAt = (µAt + αt) dt + σAt dWt, A0 = a,

dRt = (κ(R̄ −Rt)) dt + σR dWR
t R0 = c,

dBt = ( rBt +max(Rt,0)At −MAt − χt − αt − c2α2 ) dt, B0 = b.
(7.19)

In the case of optimized returns, we can not assume that the value function
v(t, a, b, c) is continuously differentiable at the critical point c = 0, see our
discussion about this issue in Section 6.2.3. In consequence, the second order
HJB equation can not be utilized here. Nevertheless, from our analyses in
Section 6.4 and 6.4.1, we assume that the optimal controls are still given by
equation (6.48) as in the non-optimized stochastic return case:

α∗t =
1
2c2

∂av−∂bv
∂bv

,

χ∗t = u̇−1 (eδt∂bv) . (7.20)

The reason is that the return rate Rt is not controlled (the SDE for Rt does
not depend on α nor on χ) and therefore Rt plays no role in the optimization
of α and χ in (7.20). Moreover, the violation of the HJB condition (the term
max(c,0) is not differentable at c = 0) does not harm the CFB algorithm,
which is based on the Stochastic Maximum Principle. In particular, the CFB
algorithm does not rely on any partial derivatives. So it does not struggle
with the non-differentiability of the value function at c = 0. The assumption
(7.20) is also supported by the numerical results that we obtained.

Since we studied the pure quadratic transaction costs case extensively in
Section 7.2 and the stochastic return case in Section 7.4, we present only the
main differences to these cases here. We use the same parameters as before,
see Section 7.4 Table 6. In particular, we set the fixed costs M = 0 for the
first analyses.
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7.5 Quadratic transaction costs with optimized returns

7.5.1 Higher consumption and portfolio value

Figure 27 shows the difference of the value functions v(0, a,0, c) and the
optimal consumption rates χ0(a,0, c) between the optimized return case and
the stochastic return case, at time t = 0. Note that M = 0 in both cases. We
observe that the consumption (and therefore the value function) is higher in
the optimized return case. The differences are small for c >> 0 but increase
when c decreases below zero.

1.5

2

2.5 −0.1
0

0.1

0

0.02

0.04

0.06

 

return rate c

diff in value function

asset amount a
 1.5

2

2.5
−0.1

0

0.1

0

0.05

0.1

 

return rate c

diff in consumption

asset amount a 

0.01

0.02

0.03

0.04

0.05

0.02

0.04

0.06

0.08

Figure 27: Difference of the value functions v(0, a,0, c) and the optimal con-
sumption rates χ0(a,0, c) between the optimized return case and the stochas-
tic return case at t = 0, for h = 0.1.

7.5.2 Flattened allocation and a discontinuity in ∂cv

Figure 28 shows the optimal allocation rate αh
0(a,0, c) and the first derivative

of the value function w.r.t. the return rate ∂cv(0, a,0, c), at time t = 0.

We observe that for initial return rates c close to zero, the allocation rate
αh
0 is not linear in a (amount of assets) anymore, as it was in the stochastic

return case in the previous section, see Figure 21. Instead, αh
0 flattens out

when the initial return rate c < 0.

We also observe that there is a discontinuity in ∂cv at c = 0. The reason is
that the evolution of the bank account in (7.19) is not differentiable w.r.t. Rt

at Rt = 0. Nevertheless, the other partial derivatives ∂av and ∂bv and both
controls αh

t and χh
t are still smooth as in the previous cases. This fact sup-

ports our assumption (7.20) that the controls do not depend on ∂cv.
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Figure 28: Optimal allocation rate αh
0(a,0, c) and the first derivative

∂cv(0, a,0, c), at b = 0 and time t = 0, for h = 0.05.

Figure 29 shows the optimal allocation rate αh
0(A∗0, b, c) and the first deriva-

tive of the value function w.r.t. the return rate ∂cv(0,A∗0, b, c), at time t = 0.
Here, the amount of assets a is fixed at Merton’s CARA portfolio. So it
shows the same situation as Figure 28 but in the dimensions (b, c). Again,
the allocation rate αh

0 flattens out when the initial return rate c < 0 and we
observe a discontinuity in ∂cv at c = 0.
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0(A∗0, b, c) and the first derivative
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7.5 Quadratic transaction costs with optimized returns

7.5.3 Model behavior w.r.t. the return’s volatility σR

In this study we variate the volatility σR > 0. We set the return’s drift
κ(R̄ − Rt) to zero in order to focus on the parameter σR and get clearer
results. All other parameters are kept constant according to Table 6. Note
that σR is the absolute volatility of the returns Rt in (7.19). In particular,
it is not a relative volatility (σRRt) as in the SDE for At. In consequence,
assuming an average return of 0.05, a volatility of 0.05 would be 100%.

The left chart of Figure 30 shows the optimal allocation αh
t (a,0,0) for several

values of σR, for a ∈ [0,2.5], b = 0 and c = 0 at time t = T /2. We observe
that a change of the return’s volatility σR leads to a parallel shift of the
allocation rate αh

0 in the a-dimension. In contrast to the non-optimized
stochastic return case (see Figure 24 in Section 7.4.2), a higher volatility
σR increases the allocation αh

t and the optimal portfolio Ah
t (and also the

optimal consumption χh
t and value function v). This may be counter intuitive

considering the risk aversion of the investor.
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Figure 30: Optimal allocation αh
t (a,0,0) for all a ∈ [0.5,3.0], b = 0 and c = 0

at time t = T /2, for h = 0.1.
The right chart of Figure 30 shows the optimal allocation αh

t (A∗t ,0, c) for
several values of σR, for c ∈ [−0.15,0.15], a = A∗t and b = 0 at time t = T /2.
Again, a higher volatility σR increases the allocation αh

t .

Taking a closer look at the chart in the c-dimension, we observe that the
curves are comparable to the value of a call option on Rt with strike zero.
So the char reveals the intrinsic option max(Rt,0) on the asset’s returns.
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Remember, this feature originates from the flexible operation of production
assets, see Section 5.2.6. Note also our discussion about the terminology
optional returns there.

An interesting fact is, that this feature does not only occur in the shape the
value function v (value of the portfolio/option), rather it is transfered to the
shape of the optimal allocation rate αt too.

Adding fixed costs

Now we perform the same study on σR but change M = 0.0 ↦ 0.03 and
R̄ = 0.05 ↦ 0.08. So the average total return Rt −M does not change rather
the loss boundary changed from 0.0 ↦ −0.03. This case represents a produc-
tion asset with (high) fixed costs M .

Figure 31 shows the optimal allocation αh
t (a,0,0) and αh

t (A∗t ,0, c) for several
values of σR at time t = T /2. On one hand, we observe the same effects as
we did for the case without fixed costs (Figure 30). On the other hand, the
values of αh

t (a,0,0) and αh
t (A∗t ,0, c) are shifted downwards. The shift seems

to be almost parallel. The reason is that the value of the intrinsic option is
less worth since losses are possible up to an amount of M .
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Figure 31: Optimal allocation αh
t (a,0,0) for all a ∈ [0.5,3.0], b = 0 and c = 0

at time t = T /2, for h = 0.1.
In order to compare the right charts of Figure 30 and Figure 31, we need
to shift the latter chart from operation returns Rt to total returns Rt −M :
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7.6 Considering constraints

c ↦ c−M = −0.03. Then, roughly speaking, the strike of the intrinsic option
is at c = −M and its payoff for c < −M is negative since money is lost.

7.5.4 Conclusions

In the case of quadratic transaction costs with optimized returns:

● The optimal consumption χh and allocation αh is higher than in the
non-optimized stochastic return case.

● The optimal allocation αh
0 flattens out when the initial return rate c < 0

and there is a discontinuity in ∂cv at c = 0.

● A higher volatility σR increases the the optimal consumption
χh, the value function v, the optimal allocation αh

t and the
optimal portfolio Ah

t . The reason is the operation flexibility (intrinsic
option max(Rt,0)) of the asset.

● The positive effect of higher volatility is reduced for assets
with (high) fixed costs M .

7.6 Considering constraints

Last but not leat, we analyse the constrainted case of Problem 3 (7.6) -
(7.8). In order to focus on the constraints, we consider the pure quadratic
transaction costs case which we studied extensively in Section 7.2. So let
us neglect the return rate and the fixed costs (κ, R̄, σR, c,M = 0). Then the
state system (7.2) becomes:

dAt = (µAt + αt) dt + σAt dWt, A0 = a,

dBt = ( rBt − χt − αt − c2α2 ) dt, B0 = b.
(7.21)

According to our analyses in Section 6.4, we assume a smooth value function
and the optimal controls to be given by equation (6.48):

α∗t =
1
2c2

∂av−∂bv
∂bv

,

χ∗t = u̇−1 (eδt∂bv) . (7.22)
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7.6.1 State constraints

The state constraint of Problem 3 is the short-selling prohibition:

At ≥ 0. (7.23)

This constraint is automatically satisfied whenever the optimal holdings in
the asset A∗t ≥ 0. The reason is the following. When the investor do not
allocate assets (α = 0), then the SDE (7.21) is log-normally distributed and
never attains negative values. So short-selling will not occur when the port-
folio is left unchanged. Additionally, as we saw in all previous studies, the
optimal allocation α∗t shifts the amount of assets At in the direction towards
the optimal portfolio A∗t ≥ 0. So whenever the parameter setup fulfill A∗t ≥ 0,
the optimal allocation rate α∗ keeps the amount of assets At positive.

On one hand, all our parameter setups in the previous studies fulfill this
assumption, as we see a posteriori. On the other hand, we can not predict
the optimal portfolio A∗ a priori. Therefore, we simulate Problem 3 also for
initial amounts of assets a < 0. Note that the short-selling prohibition purely
comes for the real world application of production (physical) assets and is
not a technical constraint of the model. So our numeric scheme does not
need any adjustment for a < 0.

7.6.2 Control constraints

The control constraints of Problem 3 are:

αt ∈ [αmin, αmax], χt ∈ [0, χmax], (7.24)

In contrast to the short-selling constraint, the control constraints are not
given through the problem setup. They are rather technical constraints and
guarantee the boundedness of the controls. In all previous studies, the op-
timal controls αt(a, b, c) and χt(a, b, c) are continuous (smooth) functions
w.r.t. a, b, c and t. Therefore, αt and χt are bounded whenever the initial
values a, b, c and the time horizon T are finite. Moreover, whenever we kept
parameter values reasonable in the previous studies, the optimal consump-
tion χt stayed positive.

In summary, we can neglect the state (short-selling) and the control con-
straints in our numerical scheme. They are automatically fulfilled whenever
we choose reasonable parameters.
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7.6 Considering constraints

7.6.3 Bankruptcy constraints

We discussed the bankruptcy constraints for the time-discrete model in Sec-
tion 4.6 and for the continuous-time model in Section 5.2.7. The result is the
following exit strategy in order to prevent bankruptcy with uncertain losses:

(αt, χt) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−αbry,0), if (At,Bt) ∉ Lt(αbry) ∧ At > 0,

(0,0), if (At,Bt) ∉ Lt(αbry) ∧ At = 0,
(7.25)

where:
L(αbry) = {(x, y) ∈ R+ ×R ∣ y + (1 − c2αbry)x ≥ 0} . (7.26)

Figure 32 shows the optimal consumption χh
t (a, b) and allocation αh

t (a, b) at
time t = 0 for the constrained case with cbry = 0.2. One can clearly see the
region where the exit strategy is forced to be exercised. The other region
seems to be similar to the unconstrained case, see Figure 11.

Figure 32: Optimal consumption χh
t (a, b) and allocation αh

t (a, b) at time
t = 0, for h = 0.07.

Figure 33 shows the differences of the optimal consumption χh
t (a, b) and

allocation αh
t (a, b) between the unconstrained and the constrained case at

time t = 0. We observe that consumption and allocation is reduced close to
the exit region in order to preserve an entering into it.

7.6.4 Conclusions

Considering constrains for the case of quadratic transaction costs the con-
sumption and allocation is reduced close to the exit region in order to preserve
an entering into it.
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Figure 33: Differences of optimal consumption χh
t (a, b) and allocation

αh
t (a, b) between the unconstrained and the constrained case at time t = 0.

7.7 Considering correlation

Since the return rate Rt is not controlled (i.e., it does not depend on α nor
χ), the optimal controls:

α∗t =
1
2c2

∂av−∂bv
∂bv

,

χ∗t = u̇−1 (eδt∂bv) .
do not depend on the correlation ρ, see our discussion in Section 6.4.1. There-
fore we do not analyze the effect of correlations here.

7.8 Summary

We introduced the quadratic transaction costs as second order Taylor ex-
pansion of temporary illiquidity costs in Section 3.4.2. In contrast to the
bang-bang control and the hold region under proportional transaction costs,
the allocation strategy under quadratic transaction costs is smooth and the
optimal portfolio A∗t is a sharp curve in the (a, b)-space for all t ∈ [0, T ]. On
the other hand, the model’s behavior is very similar to the original Merton’s
model without transaction costs.

The optimal allocation rate α∗t (a, b) is linear in a, independent of b and sen-
sitive to the transaction cost factor c2. The optimal portfolio A∗t is smaller
than in Merton’s original case due to the asymmetry of the problem. The
optimal consumption is reduced proportional to the transaction costs c2α∗t

2.
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7.8 Summary

The introduction of stochastic returns shift the solutions v, χ∗ and α∗ up-
wards as long as the mean return R̄ is positive. On the other hand, a higher
return volatility σR decreases the values due to the risk aversion of the in-
vestor (concave utility function). In contrast, when the stochastic returns are
optional max(Rt,−M), a higher volatility is favorable as long as the asset’s
fixed costs M are small.

Enforcing an exit strategy to prevent bankruptcy, the allocation rate and the
consumption rate are reduced close to the exit region in order to preserve
the entering into it.

7.8.1 Economical applications

The two unique aspects of our model are the consideration of temporary
illiquidity (quadratic transaction) costs and the optimized returns. Possible
real world applications are huge transactions and peak power plants.

The temporary illiquidity effect is very important for transactions at frag-
mented (commodity) markets (see Section 3.4.2). In reality, bigger transac-
tions are placed by computer based algorithms. These algorithms use slow
(smooth) allocation rates to avoid high costs for illiquidity that are only trig-
gered due to the allocation process itself. Disregarding illiquidity costs could
easily lead into a new Flash Crash [Wallstreet 2010].

A peak-power plant (see Section 2) is a perfect example of an production asset
with optimized returns and low fixed costs. Those plants have usually high
production costs and makes their profits only through the high volatility of
power markets. The investment strategy in those assets should be considered
according to the volatility.
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eration assets

In this section we present a multi-dimensional case of our continuous-time
model for optimal portfolio allocation of commodity related assets, Problem
2 (5.13)-(5.16). In particular, we consider a portfolio of generation assets.
Portfolio theory is applicable to power generation because: 1) energy sources
and power are homogeneous goods30 and 2) power generation is smoothly
scalable because generation assets of the same technology have similar prop-
erties.

The purpose of this section is to show the applicability of our
continuous-time model for optimal portfolio allocation of commod-
ity related assets to multiple asset portfolios. Our controlled forward-
backward (CFB) algorithm from Part III provides us the ability
(in terms of performance) to study this multi-dimensional convex
stochastic optimal control problem numerically. A detailed study of
a certain business case is left to further research.

In Section 8.1 we give a short overview of recent literature on generation
portfolios. In Section 8.2 we introduce different types of generation assets
and their properties. Then we state the problem for two assets in Section
8.3. The results are presented in Section 8.4.

8.1 Literature review

[Awerbuch, Burger 2003] firstly applied a one time step Mean-Variance Port-
folio (MVP) model31 to generation assets. The assets returns are the in-
verses of the expected levelised generation costs. The variances are measured
through the standard deviation of historic annual outlays for fuel, operation
& maintenance and construction period costs. So these outlays are assumed
to be normally distributed. [Awerbuch, Stirling, Jansen, Beurskens 2005]
combine the MVP approach with a multi-criteria diversity index (developed
by [Stirling 1994]) to study a so called full-spectrum risk measure. They point
out the importance of renewable energy for risk reduction of a nation wide
generation portfolio.

30See preliminaries, Section 2 and 1.1.1.
31See preliminaries, Section 3.2.

134



8.1 Literature review

[Roques, Newbery, Nutttall 2007] propose the following two-step approach
to find the optimal generation portfolio. In the first step they calculate the
Net Present Values (NPV) of several generation assets by using a Discounted
Cash Flow (DCF) method32 and Monte Carlo simulations. The DCF method
is based on probability distributions for fuel prices, carbon taxes and power
prices, and a constant average operation level that is derived through the
peak load pricing concept33. In the second step they measure the mean and
the variance from these simulations in order to apply a one time step MVP
analysis on NPV

capacity
. They found out that ”high degrees of correlation between

gas and electricity prices - as observed in most European markets - reduce
the risk of gas power plants and make portfolios dominated by gas power
plants more attractive”. The high correlation is an effect of the peak load
pricing concept, where the power price is derived from the highest marginal
costs among all power plants. Typically gas power plants have the highest
marginal costs.

[Huang, Wu, 2007] are searching the optimal generation mix for Thailand
with an one time step MVP model. The goal is to minimize total genera-
tion costs for the country, instead of maximizing profits for a company. In
particular, their model integrates portfolio theory into an electricity planning
framework: each power plant’s yearly output is derived through a the load du-
ration curve34 (fixed step function) that satisfy the countries’s demand. The
merit order35 is fixed. Fuel prices, technological changes and capital cost are
assumed to be normally distributed. Additional considerations are transmis-
sion loss, average utilization rate, average out of service times for maintenance
and gas import constraints. Similar to [Awerbuch, Burger 2003], they found
that ”replacing fossil fuel with renewable energy helps reduce generating cost
risk”.

[Weber, Sunderkoetter 2009] also apply a one time step MVP analysis to
generation assets in an electricity planning (peak-load pricing) framework.
Their approach combine conceptual elements of peak-load pricing and MVP,
where the operation level of each technology is derived from a biding process
on the load duration curve. The load duration curve is fixed and the merit
order curve excludes reversals. The source of uncertainty are the fuel prices.
Their main contribution is an analytical solution of the problem but it pro-
vides less new insights for practice.

32See preliminaries, Section 1.4.1.
33See preliminaries, Section 2.3.1.
34See preliminaries, Section 2.3.3.
35See preliminaries, Section 2.3.1.
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[Delarue 2010] considers a one time step MPV model that minimizes total
operation costs. Both, the installed capacity and the generation levels of
each technology are optimized in this so-called integrated portfolio invest-
ment model. In particular, the mean and the variance of the MVP model are
sums of means and variances, respectively, to account for different time pe-
riods of the year. In order to do so, fuel costs, hourly demand, wind output
and the values for certain risk categories are deterministic from historical
data for each period. The approach explicitly accounts for dispatch con-
straints and thus emphasis the variability of wind power. However, he found
out that the risk reduction through the installation of wind power is smaller
then proposed in earlier papers. The reason is the requirement of sufficient
fast rampable technologies to compensate the wind fluctuation.

According to our literature research, all found portfolio analyses for gener-
ation assets are one time step approaches. In contrast, our discrete-time
model in Section 4 and our continues-time model in Section 5 are multi step
approaches that start with the current portfolio and consider the allocation
process in the future.

8.2 Types of assets

In order to keep the number of dimensions low, we need to cluster generation
assets into categories. According to [Burger, Graeber, Schindlmayr 2007]
page 183, a clustering of generation assets into base load, peak load and re-
newables is advisable when considering fundamental market models for power
prices, see Section 2.3. Therefore, let J ∶= {J base,J peak,J renew} denote the
set of generation assets available in the market, where:

J base ∶= {nuclear, brown-coal, black-coal, ...},
J peak ∶= {gas, GCCT36, biomass, ...},
J renew ∶= {wind, solar, hydro, ...}. (8.1)

The assets in each category have different technologies but the generation
properties of theses technologies are similar:

1. Base load power plants, by definition, provide the basic all-time de-
mand. In particular, their operation does not depend on the daily de-
mand periods. Base load plants have stable return rates. One reasons
is that their fuel’s market prices (Uranium, Lignite and Anthracite)
are relatively stable compared to oil or gas. Moreover, in most mar-
kets base load plans provide the biggest share of power and the average
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power price is likely to follow their operation costs. The fixed costs
for operation & maintenance and construction are relatively low due to
long lifetimes and permanent operation.

One the other side, base load power plants face high political and eco-
nomical risks. Coal plants produce a high amount of emissions. Nuclear
plants produce nuclear waste and face a risk of reactor melt-down. In
recent years, authorities introduced taxes for the emission of pollutants
and fees on nuclear waste. In some countries (like the U.K.) authorities
even limit the amount of nuclear or coal power produced. Moreover,
operation failures or safety issues could lead to a forced phase out of
a power plant. In consequence, considering the high construction and
de-construction costs, the monetary amount of base load assets are
volatile even they have stable returns.

2. Peak load power plants are usually highly flexible natural gas plants
or biomass plants. On one hand, their returns are more uncertain
than base load returns because of higher fuel (gas) price volatility and
uncertain peak demand. On the other hand, the plants produce less
emissions and face less political risks.

3. Renewables like wind, solar, and riverside hydro power plants have no
fossil fuel input and negligible operation costs. The operation of renew-
ables depend on weather effects like natural water flow from melting
snow, wind penetration or sunshine. In consequence, renewables op-
erates whenever they can because it would be a wastage of energy to
shut off renewable power generation. In some countries (like Germany)
it is even prohibited by law to intervene into renewable power gener-
ation. Nevertheless, the average annual insolation, wind intensity and
amount of snow fall are quite stable. Together with government guar-
anteed feed-in prices, the returns of renewables are quite stable.

On the other hand, renewables are less efficient compared to their con-
struction costs and their support in society are not guaranteed: water-
pump-reservoirs destroy landscape, solar panels take farming land away
and wind-turbines are ugly in the landscape, loud near cities and influ-
encing the wild life.

The above properties are justified in a heuristic way. Nevertheless, they
are carefully chosen for different sources to approximate the reality properly
and are mostly consistent with [Burger, Graeber, Schindlmayr 2007]. Table
7 summarizes the properties with relation to the parameter of our model, .
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total retrun retrun volatility asset volatility
R̄ −M σR σ

base load high low high

peak load medium high low

renewables low low medium

Table 7: Properties of generation assets in relation to each other.

8.3 Problem statement for base and peak load plants

In this thesis we consider the case of two generation assets, namely a general
base load and a general peak load asset. The analysis for more assets are
open to further research. So let AB

t and AP
t denote the monetary amount of

base load and peak load assets in the portfolio, respectively, and let us recall
Problem 2 (5.13)-(5.16) with negative exponential utility for this two assets
case.

Problem 4 (Portfolio problem in case of two generation assets)
Let the objective function be given by:

J(t, aB, aP , b , c , αB, αP , χ) =
E

αB ,αP ,χ
t [∫ T

t
e−δs 1−e

−γχs

γ
ds + e−δT 1−eγ(A

B
T
+AP

T
+BT )

γ
∣ aB, aP , b, c] , (8.2)

and let the states evolve according to:

dAB
t = (µBAB

t + α
B
t ) dt + σBAB

t dWB
t , AB

0 = aB,

dAP
t = (µPAP

t + α
P
t ) dt, AP

0 = aP ,

dRt = (κ(R̄P −Rt)) dt + σR dWR
t R0 = c,

dBt = (rBt + (R̄B −MB)AB
t +max(Rt −MP ,−MP )AP

t

−χt − α
B
t − α

P
t − c

B
2 α

B2
− cP2 α

P 2) dt, B0 = b,

(8.3)

where:
dWB

t dWR
t = 0. (8.4)
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We search for the optimal allocation policies αB∗, αP∗ and the optimal con-
sumption policy χ∗:

(αB∗(t, aB, aP , b, c), αP∗(t, aB, aP , b, c), χ∗(t, aB, aP , b, c)) =
argmax(αB ,αP ,χ) J(t, aB, aP , b , c , αB, αP , χ), (8.5)

and the value function v:

v(t, aB, aP , b, c) = max
(αB ,αP ,χ)

J(t, aB, aP , b , c , αB, αP , χ),
v(T, aB, aP , b, c) = g(aB, aP , b, c), (8.6)

for any given initial time t ∈ [0, T ].
In Problem 4 all parameters are given as positive constants: T, r, δ, γ ≥ 0,
µB, µP , σB, cB2 , c

P
2 , R̄

B, R̄P ,MB,MP ≥ 0 and κ, σR ≥ 0. Note that we neglect
the state and control constraints in this study. Note also that the peak load
asset’s volatility as well as the correlations are assumed to be zero. The base
load’s return rate is constant. This setup is consistent with our heuristic
analysis of Table 7.

8.3.1 Basic parameter set up

Our region of interest is:

aB, aP ∈ [0,2], initial monetary amount of assets in e,
b ∈ [−1,1], initial monetary amount in bank account in e,
c ∈ [−0.2,0.2], initial return of asset in 100%.

(8.7)

The model parameters are defined in Table 8. Note that all parameters are
constant over time [0, T ].

T γ δ r µB σB cB2 R̄B MB

2 1 0.01 0.02 0.02 0.2 0.1 0.05 0.0

µP cP2 R̄P MP κ σR ρ

0.02 0.1 0.06 0.02 0.5 0.05 0.0

Table 8: Parameters of the two generation assets case.

The market in Table 8 has a low interest rate r, a low discounting rate δ and
low asset’s drift rates µB, µP . On one hand, the total return of base load
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assets R̄B −MB = 0.05 is constant and higher than the total mean return
of peak load assets R̄P −MP = 0.04. On the other side the base load asset
is volatile σB = 0.2 while the peak load asset has volatile retuns σR = 0.05.
Gamma is chosen such that the utility has a significant curvature in the
region of interest (aB, aP , b) ∈ [0,2] × [−1,1].
8.3.2 CFB algorithm and approximation parameters

Our controlled forward-backward (CFB) algorithm from Part III provides
us the ability (in terms of performance) to study this convex problem nu-
merically. All following results are generate with this method. The CFB
algorithm is developed in Part III and all details about the implementation
are given in Part IV of this thesis.

Let h denote our approximation parameter. For our calculations, we use the
time step size ∆t = h. All other grid step sizes AB,AP ,B,R and the number
of simulations of the Brownian increments ∆WB,∆WR are derived from h.
In particular, they are optimized according to equation (13.12) in Section
13.2 in Part III, in order to provide linear convergence of our CFB algorithm
when h→ 0. In the following, we use the superscript h to indicate a numeric
approximation χh of the opitmal solution χ∗.

8.4 Numerical results

Figure 34 shows the value function V h and the optimal consumption χh at
time t = 0 when starting with a bank account B0 = b = 0.0 and a (peak load)
return rate R0 = c = 0.0. The axes are the initial amount of base load assets
AB

0 = aB and peak load assets AP
0 = aP . We observe that the value function

V h
0 (aB, aP ,0,0) is increasing and concave w.r.t. aB and aP . The optimal

χh
0(aB, aP ,0,0) consumption is increasing and linear w.r.t. aB and aP . This

is consistent with the one asset case.

Figure 35 shows the optimal allocation rates αB,h and αP,h at time t = 0
when starting with a bank account B0b = 0.0 and a (peak load) return rate
R0 = c = 0.0. The axes are the initial amount of base load assets AB

0 = aB
and peak load assets AP

0 = aP . On one hand, we observe that the optimal
allocation rate α

B,h
0 (aB, aP ,0,0) depends (linearly) on aB but it is indepen-

dent of aP . On the other hand, the optimal allocation rate α
P,h
0 (aB, aP ,0,0)

depends (linearly) on aP and also on aB.
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Figure 34: Value function V h
0 (aB, aP ,0,0) and optimal consumption

χh
0(aB, aP ,0,0) at time t = 0, for h = 0.1.

Extrapolating the allocation rates, the optimal portfolio (AB∗
0 ,AP∗

0 ) is ap-
proximately at (1.6,4.5). So the optimal portfolio holds three times more
peak load assets AP∗ than base load assets AB∗ at time t = 0. However,
the allocation towards the optimal amount of peak load AP∗ is much slower
than the allocation towards the optimal amount of base load AB∗, given the
current (peak load) return rate R0 = 0.
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Figure 35: Optimal allocation rates α
B,h
0 (aB, aP ,0,0) and α

P,h
0 (aB, aP ,0,0)

at time t = 0, for h = 0.1.

Figure 36 shows the optimal allocation rates αB,h at time t = 0 when starting
with an amount of peak load assets AP

0 = aP = 1.0 and a bank account
B0b = 0.0. The axes are the initial amount of base load assets AB

0 = aB and
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the (peak load) return rate R0 = c. We observe that the optimal allocation
α
B,h
0 (aB, aP ,0,0) decrease linearly for increasing aB but it is independent of

the (peak load) return rate c. This is consistent with the one asset case.
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Figure 36: Optimal allocation rates α
B,h
t (aB,1,0, c) and α

p,h
t (aB,1,0, c) at

time t = 0, for h = 0.1.

Figure 37 shows the optimal allocation rates αP,h at time t = 0 when starting
with an amount of base load assets AB

0 = aB = 1.0 and a bank account
B0b = 0.0. The axes are the initial amount of peak load assets AP

0 = aB and its
return rate R0 = c. We observe that the optimal allocation α

B,h
0 (aB, aP ,0,0)

depends (linearly) on the return rate c but the dependency of the initial
amount of assets aP is comparatively low. This is different to the one asset
case.
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t (1, aP ,0, c) and α

p,h
t (1, aP ,0, c) at

time t = 0, for h = 0.1.
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In particular, the allocation rate αP
t - the speed of portfolio changes towards

the optimal portfolio AP∗
t - highly depends on the (optimized) stochastic

returns rates Rt and less on the current amount of assets AP
t which are

non-stochastic. Further investigation is needed in order to understand the
observed effects and the dynamics of the problem. For now, we leave this to
future research.

8.5 Numerical complexity of the two asset case

The presented two asset case, Problem 4 (8.2) - (8.6), is a stochastic optimal
control problem in four state dimensions and three control dimensions. The
numerical treatment of this multi-dimensional problem is a complex task.
Common methods utilize the Hamilton-Jacobi-Bellman (HJB) equation (a
second order non-linear parabolic PDE) or use a stochastic method to solve
the related dynamic programming (DP) equation. The crux of the problem
is the intrinsic optimization. For every step towards an optimal control in the
control space, the HJB equation (or the DP equation) must be solved. The
optimization multiplies the numerical complexity and amplify the curse of
dimensionality, especially when the control spaced is also multi-dimensional.

In the next Part III of this thesis, we present a fairly new stochastic ap-
proach that we used to obtain the above results. The approach is based on
the Stochastic Maximum Principle (SMP) and considers the problem as a
forward-backward SDE coupled through an optimality condition. Therefore
we call it a controlled forward-backward (CFB) algorithm. Besides intro-
ducing the theoretical background of the SMP and developing the CFB al-
gorithm, we show in Section 15 that the CFB algorithm is less exposed the
multiplication of complexity caused by the optimization. We also perform
test calculations to compare this effect between the CFB and a DP algorithm
in Section (14).
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Part III

A controlled forward-backward
algorithm for stochastic
optimal control problems

9 Overview

9.1 Motivation

Our Problem 2 in Part II Section 5 of this thesis (reduced continuous-time
model for optimal portfolio allocation of commodity related assets) is a
stochastic optimal control problem. The two characteristic properties of the
problem are:

● the stochastic state variable Xt is controlled, i.e., the SDE that de-
scribes the state dynamics dXt depends on the control πt,

● the gain function f(t, x) is concave w.r.t. the state variable x.

These types of problems typically appear in mathematical finance and eco-
nomics but also in other areas. A standard example is portfolio theory where
the investor’s allocation affects the stochastic evolution of his wealth. The
concavity is provided whenever the investor is risk-averse, i.e., his utility
function is concave.

The numerical treatment of such stochastic control problems is little ex-
plored. Standard methods are widely explored for the case of non-controlled
SDEs but they become numerically expensive in the case of controlled SDEs,
even in low dimensions. The sticking point is that the stepwise approach to
an optimal control point πk

t → π∗t , k = 1,2, ..., in the control space is influenc-
ing the stochastic state variable Xt(πk

t ). Therefore, the state simulations for
Xt(πk

t ) must be adjusted or repeated after each optimization step k until a
fixed point is found. This effect is also called feedback control.

9.2 Current state of the art

Currently, the Dynamic Programming Principle (DPP) is the most common
method to solve stochastic optimal control problems.
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9.3 A new stochastic approach

9.2.1 Deterministic approach

In continuous time, the DPP theory leads to the well-known Hamilton-
Jacobi-Bellman (HJB) equation, a second order parabolic, partial differential
equation (PDE) which describes the dynamics of the value function v(t, x).
In order to solve the PDE, various numerical schemes use a finite approxima-
tion of the value function and its derivatives (e.g. finite differences) and plug
these approximations into the HJB equation. Applied to our problem, the
crux of the matter is the optimization operator maxπt

(⋅) in the HJB equation
which makes it highly non-linear.

9.2.2 Stochastic approach

Other schemes take advantage of the DDP’s discrete version, the Dynamic
Programming (DP) equation. Theses schemes are based on an iteration back-
wards in time in order to calculate the value function. At each time step,
one simulates the future state variable Xt+1 (e.g. using Monte Carlo methods)
and then exploits the knowledge of the value function v(t + 1,Xt+1) on the
ahead time point for all outcomes Xt+1. Applied to our problem where the
state variable is controlled, the crux of the matter is the above mentioned
feedback control Xt+1(πt).
Note that the HJB-based schemes are deterministic approaches because the
considered PDEs are hiding the stochastic nature of the problem. In partic-
ular, the approach does not include the calculation of any expectation value.
In contrast, the DP-based schemes are stochastic approaches, and they do
include the calculation of expectation values. A comprehensive reference to
numerical methods for stochastic control problems and Dynamic Program-
ming is [Kushner, Dupuis 2001].

9.3 A new stochastic approach

In this part of the thesis, we propose a general stochastic algorithm
that is based on the Stochastic Maximum Principle (SMP). The
algorithm solves stochastic optimal control problems of the above
type efficiently by utilizing the adjoint variables and exploiting the
concavity of the problem.

It is well known that the SMP theory leads to a system of forward-backward
stochastic differential equations (FBSDE) coupled through an external opti-
mality condition. This was first studied by [Peng 1990]. The coupling arises
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through the dependency of the state process Xt on the control π.

Recently, only a few authors proposed numerical schemes for pure FBSDE
systems. By pure we mean that the FBSDE system does not include an opti-
mality condition. They basically studied two types of approaches: the deter-
ministic four-step scheme in [Yong, Zhou 1999] and the stochastic forward-
backward algorithm from [Delarue, Menozzi 2005]. The latter is originally
designed to solve quasi-linear PDEs.

Our attempt is to synthesize the SMP together with a numerical
scheme for FBSDE systems in order to obtain an implementable stochas-
tic algorithm for stochastic optimal control problems. In particular, we ex-
tend [Delarue, Menozzi 2005]’s forward-backward stochastic algorithm by a
Newton-Raphson method in order to handle the coupled optimality condi-
tion.

As far as we are aware, this is the first stochastic approach for the solution of
stochastic optimal control problems through the solution of the correspond-
ing extended FBSDE system. Therefore, we call the scheme controlled
forward-backward (CFB) algorithm.

9.4 Outline

First, we define the general problem statement for the special class of stochas-
tic optimal control problems in Section 10. Second, we briefly review the
DPP and the SMP in Section 11. In particular, we show the connection
of both principles by deducing the FBSDE representation directly from the
HJB equation. We also state a verification theorem for the SMP’s sufficient
conditions. In Section 12, we discretize the time-continuous FBSDE which
arises in the SMP. Then, we develop our numerical scheme - the CFB algo-
rithm - using a Newton-Raphson method for the optimization. Afterwards,
we comment on convergence and stability issues in Section 13.

In Section 14, we show the structural advantage of our CFB algorithm for the
specific problem class by comparing the complexity (computational costs) of
our CFB scheme and a plain DP scheme. Finally, we present a performance
study for the valuation of Swing options in order to support the theoretical
advantages of our CFB scheme in Section 15. Alongside we show that our
CFB algorithm is still considerable, but less efficient, when the state variable
is non-controlled.
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9.5 Notation

9.5 Notation

In this Part III of the thesis we use a different notation than in Part I and
Part II in order to formulate the CFB algorithm in a general way. The reason
is that our CFB algorithm is not limited to a specific problem. Instead, it can
be easily applied to other examples of the same problem class. Therefore,
we consider a general continuous-time stochastic optimal control problem
where the state variable X is a controlled process of Markovian type, and
the objective function J depends on the state X and on the control π.
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10 Problem statement

Throughout the following, let (Ω,F , P ) denote a probability space, endowed
with a d-dimensional Brownian motion {Wt, t ≥ 0}, whose natural filtration
is denoted by F = {Ft, t ≥ 0}, see Appendix, Definition A.8 and A.9. Now,
let us consider the following general problem.

10.1 General problem and basic conditions

Problem 5 (General problem)
The dynamics of a controlled Markov37 process Xt, which represents the state
of our system, are given by:

dXt = b(t,Xt, πt)dt + σ(t,Xt, πt)dWt, X0 = x ∈ Rn, (10.1)

where b ∶ [0, T ] ×Rn ×A → Rn and σ ∶ [0, T ] ×Rn ×A → Rn×d are real-valued
functions and A ⊂ Rr is a convex and compact set. The goal is to maximize
a given objective function J , which is defined on a finite time interval [0, T ],
over the set of all admissible38 control policies:

At,T ∶= {{πs ∈ Rr, t ≤ s ≤ T} ∣ πs ∈ A, π is F-adapted } . (10.2)

The objective function is defined for all (t, x) ∈ [0, T ] ×Rn and π ∈ At,T as:

J(t, x, π) ∶= Eπ
t [∫ T

t
f(s,Xs, πs)ds + g(XT )∣Xt = x] , (10.3)

where f ∶ [0, T ] ×Rn ×A→ R and g ∶ Rn → R are real-valued functions.

Here, the operator Eπ
t [⋅] denotes the conditional expectation w.r.t. Ft, while

using the fixed control policy π. Note that we assume the control-value set
A ⊂ Rr to be convex and compact. This is an important property which we
utilize in further theory.

If one exists, we define an optimal control policy by:

π∗(t, x) ∶= arg max
π∈At,T

J(t, x, π), ∀(t, x) ∈ [0, T ] ×Rn, (10.4)

and the value function by:

v(t, x) ∶= sup
π∈At,T

J(t, x, π), ∀ (t, x) ∈ [0, T ] ×Rn,

v(T,x) ∶= g(x), ∀x ∈ Rn.
(10.5)

37See Appendix, Definition A.10
38See Appendix, Definition A.7
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10.1 General problem and basic conditions

In summary, the goal is to maximize (10.3) over (10.2) subject to (10.1).

Problem 5 is a general setup for a stochastic optimal control problem. In
particular, it does not state any assumption on the involved coefficient b, σ, f
and g. Therefore, we can neither guarantee a solution of the SDE (10.1) nor
the existence of the objective function (10.3). In order to do so, we introduce
the following basic conditions.

Conditions 10.1 (Basic conditions)

1. Let the maps b ∶ [0, T ] × Rn × A → Rn and σ ∶ [0, T ] × Rn × A → Rn×d

be measurable in t ∈ [0, T ], uniformly Lipschitz continuous w.r.t. x,
continuous w.r.t. π, and bounded in L2([0, T ],R). So there exists a
fixed constant L > 0, such that:

∣b(t, x, πt) − b(t, x̂, πt)∣ + ∣σ(t, x, πt) − σ(t, x̂, πt)∣ ≤ L∣x − x̂∣,
∀t ∈ [0, T ], ∀x, x̂ ∈ Rn, ∀π ∈ A0,T ,

∣b(⋅,0, π(⋅))∣ + ∣σ(⋅,0, π(⋅))∣ ∈ L2([0, T ],R) ∀π ∈ A0,T .

(10.6)

2. The maps f ∶ [0, T ] × Rn × A → R and g ∶ Rn → R are measurable in
t ∈ [0, T ], continuous w.r.t. π and satisfy a quadratic growth condition
w.r.t. x, i.e., there exists a fixed constant C ≥ 0, such that:

∣g(x)∣ + ∣f(t, x, π)∣ ≤ C(1 + ∣x∣2) ∀(t, x, π) ∈ [0, T ] ×Rn
×A. (10.7)

Here, the notation ∣ ⋅ ∣ denotes the operator norm. From standard theory
of stochastic differential equations, the SDE (10.1) has a unique F-adapted
solution Xt with continuous sample path and bounded moments. In con-
sequence, the quadratic growth Condition 2 for the gain functions f and g

ensures the finiteness of the objective function J in (10.3).

Theorem 10.2 (Existence of a unique solution of the SDE)
Let Condition 1 of the Basic conditions 10.1 hold. Then, for all π ∈ A0,T ,
there exists a unique F-adapted continuous solution Xt of the controlled for-
ward SDE (10.1):

X0 = x a.s.,

Xt =X0 + ∫ t

0
b(s,Xs, πs)ds + ∫ t

0
σ(s,Xs, πs)dWs, ∀t ∈ [0, T ], a.s.,

(10.8)
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10 PROBLEM STATEMENT

with:

∫
t

0
∣ b(s,Xs, πs)∣2 + ∣σ(s,Xs, πs)∣2 ds < ∞, a.s. (10.9)

The solution has bounded moments:

E[ sup
t∈[0,T ]

∣Xt∣m] <∞, ∀m ≥ 1. (10.10)

A proof can be found in [Yong, Zhou 1999] chapter 1, theorem 6.3. and
corollary 6.4. The key of the proof is a fix-point theorem for the contraction
mapping ξ →Xt = x+∫ t

0
b(s, ξ, πs)ds+∫ t

0
σ(s, ξ, πs)dWs on a Banach space.39

The bounded moments are obtained through the Burkholder-Davis-Gundy
inequality, [Burkholder, Davis, Gundy 1972].

Theorem 10.3 (Boundedness of the objective function)
Let the Basic conditions 10.1 hold. Then, for all (t, x) ∈ [0, T ] × Rn and
π ∈ At,T :

Eπ
t [∫ T

t
∣f(s,Xs, πs)∣ds + ∣g(XT )∣ ∣Xt = x] <∞.

A proof can be found in [Pham 2009] chapter 3.2, remark 3.2.1. The key
of the proof is the boundedness of E[supt ∣Xt∣2] together with the quadratic
growth condition on f .

In certain cases, the existence of an optimal solution pair (X̂, π∗) of our
stochastic optimal control problem can be guaranteed when the Basic con-
ditions 10.1 hold. For example, the following theorem provides existence of
solutions for a special linear-concave problem case.

Theorem 10.4 (Existence of an optimal control for a special case)
Assume that the Basic conditions 10.1 hold. Additionally, assume that b, σ, f
are autonomous, i.e. they do not depend on time, that f, g are concave
w.r.t. (x, π) and that b, σ are linear w.r.t. (x, π), i.e., ϕ = b, σ are of the
form:

ϕ(xt, πt) = Axt +Bπt,

where A and B are matrices of suitable size. Then the General problem 5
admits an optimal control π∗ ∈ AT and an according solution X̂t.

39In our case, we have to extend the proof by a time dependent constant KT for the
contraction mapping in [Yong, Zhou 1999] equation 6.12. Since our time horizon T is
finite, we can use their proof on a one-to-one basis replacing K with KT . We even could
extent the existence and uniqueness of a solution to the limit T →∞.
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10.2 HJB conditions and existence of solutions

Proof 10.5
The proof for this linear-concave40 case can be found in [Yong, Zhou 1999]
chapter 2, theorem 5.2. It utilizes the fact that the control domain A is
convex and compact. Then, using Mazur’s theorem, a minimizing sequence
πj ∈ A0,T has a subsequence that converges strongly in L2

F
([0, T ],Rd). Due

to the linearity of b and σ, the uniform convergence of the according Xj can
be shown via the convergence of the subsequence πj. The optimality is given
due to the concavity of f and g.

Comments

● In Condition 1, the Lipschitz continuity together with the boundedness
of b, σ imply a linear growth condition w.r.t x.

● In Condition 2, the first integral in (10.8) is a usual Lebesgue integral
and the second is an Itô integral. (10.9) ensures that both integrals are
well-defined.

● The fact that the set of control values A is compact and b, σ, f are
continuous w.r.t. π implies that b, σ, f attain their maximum w.r.t. π
according to the extreme value theorem. Therefore, no π-terms are
needed on the right hand side of (10.6) and (10.7).

● Since A is compact, all F-adapted control policies π ∈ A0,T are admis-
sible, see Appendix, Definition A.7.

10.2 HJB conditions and existence of solutions

Let us consider a set of conditions in order to guaranty the existence of so-
lutions for the general stochastic optimal control Problem 5.

In the next Section 11.1, we will state a necessary and a sufficient condition of
optimality from the standard HJB theory. Roughly speaking, the necessary
condition states that if the value function v in (10.5) is sufficiently smooth,
v ∈ C1,2([0, T ]×Rn), then it satisfies the well-known HJB equation, a second-
order PDE:

∂tv(t, x) + sup
π∈A

G (t, x, π,∇xv(t, x),∇2
xxv(t, x)) = 0, ∀ (t, x) ∈ [0, T ] ×Rn,

v(T,x) = g(x), ∀x ∈ Rn.

(10.11)

40Linear-convex for minimization problems.
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10 PROBLEM STATEMENT

where the generator of the diffusion is defined by:

G(t, x, π, p,M) ∶= b(x, π)p + 1

2
tr [σσ′(x, π)M] + f(t, x, π). (10.12)

The sufficient condition states that π∗ ∈ At,T is an optimal control if:

π∗(t, x) = argmax
π∈A

G (t, x, π,∇xv(t, x),∇2
xxv(t, x)) . (10.13)

In order to guaranty the existence of a solution of Problem 5, we state
conditions under which the HJB equation (10.11) attains a solution v ∈
C1,2([0, T ] ×Rn) and that satisfies (10.13).

Conditions 10.6 (HJB conditions)

3. Let b, σ, f be continuously differentiable w.r.t. t, twice continuously dif-
ferentiable w.r.t. x, continuous w.r.t. π, and let all partial derivatives
be bounded:

b, σ, f ∈ C1,2,0
b ([0, T ] ×Rn

×A). (10.14)

4. Let g be three-times continuously differentiable w.r.t. x and let all par-
tial derivatives be bounded:

g ∈ C3
b (Rn). (10.15)

5. Let σ(t, x, π) be an (n × n)-matrix such that for all (t, x, π) ∈ [0, T ] ×
Rn ×A and c > 0:

n

∑
i,j=1

σi,j(t, x, π)ξiξj ≥ c∣ ξ∣2, ∀ξ ∈ Rn, (10.16)

or,

let σ(t, x) be a nonsingular (n × n)-matrix such that for all (t, x) ∈[0, T ] ×Rn and c > 0: ∣ σ(t, x)−1∣ ≤ c. (10.17)

Theorem 10.7 (Existence of solutions)
Let the HJB conditions 10.6 hold. Then, the HJB equation (10.11) admits a
unique solution v ∈ C1,2

b ([0, T ] ×Rn).
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10.3 SMP conditions

The proof can be found in [Fleming, Soner 2005] in chapter IV, theorem 4.2.
It is based on standard theory for second order nonlinear parabolic PDEs as
well as on results of [Krylov 1980] about the existence of solutions to SDEs
with measurable coefficients.

Theorem 10.8 (Value function and optimal control)
Let the HJB conditions 10.6 hold. Then the unique classical solution v(t, x)
∈ C1,2

b ([0, T ] ×Rn) of the HJB equation (10.11) is the value function (10.5)
of Problem 5 for all (t, x) ∈ [0, T ] ×Rn.

Moreover, the control π∗(t, x) ∈ A0,T defined by (10.13) exists and is of
Markovian41 type. Therefore, π∗(t, x) is an optimal control (10.4) of Problem
5 for all (t, x) ∈ [0, T ] ×Rn.

The proof can be found in [Fleming, Soner 2005] in chapter IV, theorem 4.4.

Comments

● Condition 5 implies that a ∶= [σσ⊤] is uniformly parabolic for all (t, x, π) ∈[0, T ] ×Rn ×A:

n

∑
i,j=1

ai,j(t, x, π)ξiξj ≥ c∣ ξ∣2, ∀ξ ∈ Rn. (10.18)

Therefore, the HJB equation becomes a second order nonlinear parabolic
PDE. If the coefficients do not depend on time, the HJB equation is
uniformly elliptic.

● If σ(t, x) does not depend on the control, the HJB equation turns into
a second order quasi-linear parabolic PDE.

● Note also that the HJB theory deals with a whole family of optimal
control problems, one problem for every pair of initial values (t, x) ∈[0, T ] ×Rn.

10.3 SMP conditions

Our CFB algorithm, which we introduce in section 12, is based on the
Stochastic Maximum Principle (SMP), which we introduce in Section 11.
However, the SMP framework utilizes the theory of stochastic calculus whereas
the HJB framework basically utilizes PDE theory. Therefore, the SMP needs
different conditions than the HJB framework. We call them SMP conditions.

41See Appendix, Definition A.11
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Conditions 10.9 (SMP conditions)

6. Let b, σ, f and g be continuously differentiable w.r.t. x and π:

b, σ, f, g ∈ C0,1,1([0, T ] ×Rn
×A). (10.19)

7. Let f and g be uniformly Lipschitz continuous w.r.t. x and bounded,
i.e., there exists a fixed constant L > 0, such that:

∣ f(t, x, π) − f(t, x̂, π)∣ + ∣ g(x) − g(x̂)∣ ≤ L∣x − x̂∣,
∀t ∈ [0, T ], ∀x, x̂ ∈ Rn, ∀π ∈ A,

∣ f(t,0, π)∣ + ∣ g(0)∣ ≤ L ∀t ∈ [0, T ], ∀π ∈ A,
(10.20)

and let also ϕ = bx, σx, fx, gx be uniformly Lipschitz continuous w.r.t. x,
i.e., there exists a fixed constant L > 0, such that:

∣ϕ(t, x, π) −ϕ(t, x̂, π)∣ ≤ L∣x − x̂∣,
∀t ∈ [0, T ], ∀x, x̂ ∈ Rn, ∀π ∈ A.

(10.21)

8. Let g be concave w.r.t x and for any fixed y ∈ Rn and z ∈ Rn×d let the
function:

H(t, x, π) = b(t, x, π)y + tr[σ(t, x, π)⊤z] + f(t, x, π),
be uniformly concave w.r.t. x and π for all t ∈ [0, T ].

Comments

● Comparing the HJB conditions 3 and 4 with the SMP conditions 6
and 7, we observe that the SMP theory needs less smoothness and no
boundedness of the coefficients. Instead, it requires global Lipschitz
continuity of the coefficients and their derivatives.

● The HJB condition 5 states a parabolic PDE property in order to guar-
antee smooth solutions. Instead, the SMP imposes the concavity Con-
dition 8 on the Hamilton function H and the terminal value function
g in order to be sufficient for optimality, see Section 11.3.

154



10.4 A class of concave problems

10.4 A class of concave problems

The concavity Condition 8 characterizes the specific class of stochastic opti-
mal control problems on which we focus in this thesis. We refer to it as the
class of concave problems. Our CFB algorithm is designed especially for this
problem class which we define as follows.

Problem 6 (Concave problem)
The goal is to maximize (10.3) over (10.2) subject to (10.1) while the Basic
conditions 10.1 and the SMP conditions 10.9 are satisfied.

A rigorous proof of the existence of solutions for the general class of Concave
problems 6 is similar to providing the existence of a solution for a general
second order nonlinear PDE. This for sure goes far beyond the scope of this
thesis. Nevertheless we state the following hypothesis and a promising outline
of a hypothetical proof.

Hypothesis 10.10 (Existence of solutions for Concave problems)
The Concave problem 6 admits an optimal state-control pair:

(X̂, π∗) ∈ (L2
F([0, T ],Rn),A0,T ).

A proof could have the following outline. As in the proof of Theorem 10.4, we
utilize the fact that the control domain A is convex and compact plus Mazur’s
theorem to provide a converging sequence πj → π∗ ∈ AT . Moreover, for every
πj ∈ AT , we can provide an unique strong solution Xj ∈ L2

F
([0, T ],Rn) by

Theorem 10.2. We denote the solution under π∗ by X̂. The optimality is
given via the SMP due to the concavity of H and g, see Section 11.

Comments

● If we additionally assume that the HJB conditions 10.6 hold, in par-
ticular the parabolic property, then the existence of solutions is given
due to Theorem 10.8 and the connection between the HJB theory and
SMP theory, which we present in the following Section 11.
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11 The Stochastic Maximum Principle

In this section, we review the Stochastic Maximum Principle (SMP) in order
to find solutions to stochastic optimal control problems. The SMP formulates
a necessary condition for optimality. Together with a concavity42 assump-
tion, the condition is sufficient and lays the foundation of our CFB algorithm
in Section 12.

We also compare the SMP with the Dynamic Programming Principle (DPP).
The DPP is most common to numerically solve stochastic optimal control
problems and serves as a landmark for us to measure the efficiency of our
CFB algorithm. The DPP also states necessary and sufficient conditions of
optimality. We put an emphasis on the comparison of the SMP and the DPP
in order to clarify the connections between both and to show the transfer-
ability of theoretical results. One of our main contributions in this thesis
is the conceivable overview of SMP and DDP theory in Table 9 and their
connection through Theorem 11.14.

Before we start, we briefly review the Dynamic Programming Principle (DPP)
and Pontryagin’s maximum principle (PMP), which is the deterministic foun-
dation of the SMP, in Section 11.1 and 11.2, respectively. In both reviews,
we basically follow the book of [Yong, Zhou 1999].43

11.1 Brief review of dynamic programming

The well known Bellman principle of optimality [Bellman 1957] states that
the value function v(t, x) in (10.5) satisfies the following dynamic program-
ming (DP) equation for any (t, x) ∈ [0, T ] ×Rn:

v(t, x) = sup
π∈At,τ

Et [∫ τ

t
f(s,Xπ

s , πs)ds + v(τ,Xπ
τ )∣Xt = x] , (11.1)

where At,τ is the set of all admissible control policies over the time interval[t, τ] and Xπ
t is the solution of the SDE (10.1) while using the control π.

Using Ito’s formula [Ito 1951] and the Feynman-Kac formula, one can derive
the well-known HJB equation out of the DP equation and state the following
necessary and sufficient conditions.

42Convexity when minimizing the objective function.
43This means that informal statements without proofs are cited from this book or are

otherwise referenced appropriately.
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11.1 Brief review of dynamic programming

Theorem 11.1 (Necessary condition)
Let the Basic Conditions 10.1 hold. Also, let f and g be uniformly Lipschitz
continuous w.r.t. x and bounded, i.e., there exists a fixed constant L > 0, such
that: ∣ f(t, x, π) − f(t, x̂, π)∣ + ∣ g(x) − g(x̂)∣ ≤ L∣x − x̂∣,

∀t ∈ [0, T ], ∀x, x̂ ∈ Rn, ∀π ∈ A,

∣ f(t,0, π)∣ + ∣ f(t,0, π)∣ ≤ L ∀t ∈ [0, T ], ∀π ∈ A,
(11.2)

If the value function v(t, x) of Problem 5 is in C1,2([0, T ] × Rn), then it
satisfies the HJB equation:

∂tv(t, x) + sup
π∈A

G (t, x, π,∇xv(t, x),∇2
xxv(t, x)) = 0, ∀ (t, x) ∈ [0, T ] ×Rn,

v(T,x) = g(x), ∀x ∈ Rn.

(11.3)
where the generator of the diffusion is defined by:

G(t, x, π, p,M) ∶= b(x, π)p + 1

2
tr [σσ′(x, π)M] + f(t, x, π). (11.4)

Theorem 11.2 (Sufficient condition)
Let the Basic Conditions 10.1 hold and let f and g be uniformly Lipschitz
continuous w.r.t. x and bounded. Assume that the value function v(t, x) ∈
C1,2([0, T ]×Rn). An admissible control policy π∗ ∈ AT is an optimal control
of Problem 5, if it satisfies the following optimality condition for all t ∈ [0, T ]:

G(t, X̂t, π
∗

t , vx(t, X̂t), vxx(t, X̂t)) =max
π∈A

G(t, X̂t, πt, vx(t, X̂t), vxx(t, X̂t)),
(11.5)

where X̂t is the solution of the SDE (10.1) while using the optimal control
π∗ and starting at X̂0 = x.

The proofs for the above conditions to be necessary and sufficient for opti-
mality can be found for example in [Yong, Zhou 1999] chapter 4, proposition
3.5. and chapter 5, theorem 5.1, respectively. The latter optimality condition
is often called verification. It is a sufficient condition such that a solution
v(t, x) of the HJB equation (11.3) provides the optimal controls through
(11.5). Remember, in Theorem 10.7 we showed that the HJB equation has a
unique solution v ∈ C1,2([0, T ] ×Rn) whenever the HJB conditions 10.6 are
satisfied.

11.1.1 DPP based schemes to find solutions

Now we take a look on how to find (numerical) solutions of our stochastic
optimal control Problem 5 by using the DPP (HJB equation).
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11 THE STOCHASTIC MAXIMUM PRINCIPLE

The three-step scheme

In order to solve a stochastic optimal control problem via the HJB equation,
one needs to perform the following three steps.

1. Step: Find the solution v(t, x) ∈ C1,2 of the HJB equation (11.3) for all(t, x) ∈ [0, T ] ×Rn.

2. Step: Find the optimal control π∗(t, x) via the optimality condition
(11.5) for all (t, x) ∈ [0, T ] ×Rn.

3. Step: Solve the state equation (10.1) for Xt, using the optimal control
π∗(t,Xt).

Especially the first step in the tree-step scheme could be a complex task since
the HJB equation is a non-linear second-order parabolic PDE. In the case
that no analytical solution can be provided, numerical methods need to be
considered.

Numerical schemes

As outlined in the introduction (Section 9) there are two basic approaches
to solve a stochastic optimal control problem numerically via the DPP.

● Deterministic approach: By using finite approximations of the value
function and its derivatives, e.g. finite differences or finite elements,
one can calculate solutions v(ti, xj) of the HJB equation (11.3) for
a finite number of points (ti, xj) ∈ [0, T ] ×Rn, i = 1, ...,N , j = 1, ...,M .
Once knowing the value function v(ti, xj), step 2 and 3 of the tree-step
scheme can be performed to obtain an approximative optimal control
policy π∗(ti, xj) and the according state process X̂t(ti, xj) for any initial
pair (ti, xj).
● Stochastic approach: Starting with v(T,x) = g(x) at time T , one
can calculate an approximative solution of the value function on a dis-
crete time grid ti ∈ [0, T ], i = 1, ...,N , using the DP equation (11.1).
This is often called a backward iteration. Common methods to cal-
culate approximations of the expectation operator in the DP equation
are Monte Carlo methods, Quantization methods and Markov-chain
approximations. In this approach, the optimal control policy π∗ and
the state X̂t are calculated on the way backwards in time.

Both approaches require an optimization over the control space A. There
are two ways to solve the optimization.
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● In the direct approach one discretizes the control space A ⊂ Rr into a
finite number of controls πj ∈ A, j = 1, ...,K, and compares the solutions
for every point πj. The crux of the matter is, that this approach leads
to a discretization of 1×n× r dimensions in total, which is numerically
complex.

● On the other hand, an indirect approach discretizes only the state
space only and uses a numerical optimizer to search the optimal control
values π∗ in A. In view of our Problem 5, this is also numerically
complex because of the feedback control Xt(π). For example, using the
stochastic approach and a line-search algorithm, one has to calculate
the expectation value Eπk[⋅] in the DP equation (11.1) multiple times
at every optimization step πk in order to find the next appropriate
search direction k + 1 in the control space A. In the case of a feedback
control, one has to simulate Xt(πk) repeatedly for each optimization
step πk.

In best practice, supplementary methods are used to reduce the computa-
tional costs. Common tools are global grid-refinement iterations (which work
good in the deterministic case, but worse in the stochastic case), importance
sampling and variance reduction (which may not be appropriate for feedback
controls), predictor-corrector methods or least-square Monte Carlo simula-
tions. We do not want to go into any further detail here. All methods are
subject to plenty of research papers.

11.1.2 Summary

The intention of the above review of dynamic programming is to remember
the reader that:

● the DPP/HJB theory states a necessary and a sufficient condition of
optimality.

● one can derive deterministic and stochastic approaches to find numer-
ical solutions through the HJB equation and the DP equation, respec-
tively.

● the resulting numerical schemes are complex and expensive, especially
in the case of feedback controls.

Before we consider an alternative approach that utilizes the Stochastic Max-
imum Principle (SMP), we review its deterministic version, the well-known
Pontryagin’s maximum principle (PMP).
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11.2 Brief review of Pontryagin’s maximum principle

Let us briefly consider the following deterministic optimal control problem.

Definition 11.3 (Deterministic problem)
Let the functions f, g and b are given by the General problem 5 (10.1) -
(10.3). The goal is to maximize the objective function:

J(t, x, π) =max
π
∫

T

t
f(s,Xs, πs)ds + g(XT ), (11.6)

over a given admissible control set At,T and under the condition:

Ẋt = b(t,Xt, πt), X0 = x. (11.7)

For these type of problems, the well-known Pontyagin’s maximum principle
(PMP) gives a set of first-order necessary conditions on optimal solution pairs(X̂, π∗).
Theorem 11.4 (Necessary condition)
Let the Basic Conditions 10.1 and the SMP Conditions 10.9, 6 - 7 hold.
Assuming that (X̂, π∗) is an optimal state-control pair of Problem 11.3, there
exits a process Y ∶ [0, T ]→ Rn satisfying the following backward SDE:

Ẏt = −∇xH(t, X̂t, π
∗

t , Yt), YT = ∇xg(X̂T ), (11.8)

and the optimality condition:

H(t, X̂t, π
∗

t , Ŷt) =max
π∈A

H(t, X̂t, π, Ŷt), (11.9)

where the Hamilton H is defined as:

H(t, x, π, y) ∶= b(t, x, π)y + f(t, x, π). (11.10)

Yt is called adjoint variable and the backward ODE (11.8) is called first-
order adjoint equation. Equation (11.9) is an equivalent formulation of the
variational inequality.

Theorem 11.5 (Sufficient condition)
Let the Basic Conditions 10.1 and the SMP Conditions 10.9, 6 - 8 hold
(i.e., g and H are uniformly44 concave w.r.t. x and π). Let (X̂, π∗) be an
admissible state-control pair that satisfies equation (11.7) and (11.9) while Yt

is the corresponding adjoint variable satisfying (11.8). Then the state-control
pair (X̂, π∗) is an optimal solution of Problem 11.3.

The proofs for the above conditions to be necessary and sufficient for opti-
mality can be found in [Yong, Zhou 1999], chapter 3.2.

44That means concave for all t ∈ [0, T ].
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11.2 Brief review of Pontryagin’s maximum principle

Further remarks

● Pontyagin’s maximum principle (PMP) states a necessary and a suffi-
cient condition similar to the DPP.

● The sufficient condition of the PMP needs the concavity conditions for
the terminal function g and for the Hamilton function H. In contrast,
the sufficient condition of the DPP needs the assumption that v(t, x) ∈
C1,2. This assumption can be guaranteed through Theorem 10.7 when[σσ′] is uniformly parabolic.

● The main steps in the proof for the necessary and the sufficient con-
ditions of the PMP are a first-order Taylor expansion and a duality
relation, respectively.

● In economic theory, the adjoint variable Yt corresponds to the so-called
shadow price for the resource Xt.

● In Lagrange theory, the adjoint variable Yt corresponds to the Lagrange
multiplier, commonly denoted by λ.

11.2.1 A two-point boundary problem

By using the PMP, we can find solutions of Problem (11.6)-(11.7), Definition
11.3, through the solutions of the forward ODE (11.7) and the backward
adjoint equation (11.8):

Ẋt = b(t,Xt, π
∗

t ), X0 = x,

Ẏt = −∇xH(t,Xt, π
∗

t , Yt), YT = ∇xg(XT ), (11.11)

where the optimal control π∗ ∈ At,T must satisfy the optimality condition:

H(t, X̂t, π
∗

t , Ŷt) =max
π∈A

H(t, X̂t, π, Ŷt). (11.12)

System (11.11) is a two-point boundary problem coupled through an opti-
mality condition (11.12). Solving this two-point boundary problem, one can
obtain an optimal state-control pair (X̂, π∗) without considering the value
function v(t, x). Moreover, knowing the optimal (X̂, π∗), one can easily cal-
culate v(t, x) via the simplified Dynamic Programming equation:

v(t, x) = ∫ τ

t
f(s,Xπ∗

s , π∗s )ds + v(τ,Xπ∗

τ ), Xt = x. (11.13)
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11.2.2 Summary

The intention of the above subsection is to remember the reader that:

● the PMP states a necessary and a sufficient condition of optimality,

● the PMP needs concavity conditions for g and H, while the DPP can
be used when [σσ′] is uniformly parabolic.

● the PMP leads to a two-point boundary problem.

After our review of the DPP and the PMP, we are now prepared to take a
closer look at the Stochastic Maximum Principle (SMP).

11.3 The Stochastic Maximum Principle

Now, let us consider the stochastic Problem 5 (10.1) - (10.3) where the state
variable is stochastic:

dXt = b(t,Xt, πt)dt + σ(t,Xt, πt)dWt, X0 = x ∈ Rn. (11.14)

Let Sn denote the set of all symmetric (n × n)-matrices. We define the
Hamilton function of the stochastic problem that will appear in the SMP.

Definition 11.6 (Hamiltonian)
The Hamiltonian H ∶ [0, T ]×Rn×A×Rn×Rn×d → R of the stochastic optimal
control Problem 5 is defined by:

H(t, x, π, y, z) ∶= b(t, x, π)y + tr[σ(t, x, π)⊤z] + f(t, x, π). (11.15)

Now we state the general Stochastic Maximum Principle (SMP). We will see
later that a reduced version of the SMP is sufficient for many applications.
The SMP states that a state-control pair (X̂, π∗) must satisfy the following
necessary conditions to be optimal.

Theorem 11.7 (Necessary condition)
Let the Basic Conditions 10.1 and the SMP Conditions 10.9, 6 - 7 hold.
Additionally, let b, σ, f and g be twice continuously differentiable w.r.t. x and
let there exist a modulus of continuity w̄ ∶ [0,∞) → [0,∞) such that for
ϕ = b, σ, f, g, we have:

∣ϕxx(t, x, π) −ϕxx(t, x̂, π̂)∣ ≤ w̄(∣x − x̂∣),
∀t ∈ [0, T ], ∀x, x̂ ∈ Rn, ∀π, π̂ ∈ A.

(11.16)
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11.3 The Stochastic Maximum Principle

If (X̂, π∗) is an optimal state-control pair of Problem 5, then there exist pairs
of F-adapted processes45:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Y,Z) ∈ L2

F
([0, T ],Rn) × (L2

F
([0, T ],Rn))d ,

(P,Q) ∈ L2
F
([0, T ], Sn) × (L2

F
([0, T ], Sn))d , (11.17)

which satisfy the first-order adjoint equation:

dYt = −∇xH(t, X̂t, π
∗

t , Yt, Zt)dt +ZtdWt,

YT = ∇xg(X̂T ), (11.18)

and the second-order adjoint equation:

dPt = − [∇xb(X̂t, π
∗

t )⊤Pt + Pt∇xb(X̂t, π
∗

t )
+∑d

j=1∇xσj(X̂t, π
∗

t )⊤Pt∇xσj(X̂t, π
∗

t )
+∑d

j=1∇xσj(X̂t, π
∗

t )⊤Qj
t +Q

j
t∇xσj(X̂t, π

∗

t )
+∇2

xxH(t, X̂t, π
∗

t , Yt, Zt)]dt +∑d
j=1Q

j
tdW

j
t ,

PT = ∇2
xxg(X̂T ),

(11.19)

for all t ∈ [0, T ], respectively, such that the following optimality condition
hold:

H̃(t, X̂t, π
∗

t , Yt, Zt, Pt) =max
π∈A

H̃(t, X̂t, π, Yt, Zt, Pt), ∀t ∈ [0, T ]. (11.20)

Here, the function H̃ is defined as:

H̃(t, x, π, Yt, Zt, Pt) ∶=H(t, x, π, Yt, Zt) − 1
2
tr [σ(X̂t, π

∗

t )σ(X̂t, π
∗

t )⊤Pt]
+

1
2
tr [[σ(x, π) − σ(X̂t, π

∗

t )][σ(x, π) − σ(X̂t, π
∗

t )]⊤Pt] .
(11.21)

Note that the adjoint variables Yt and Pt must be adapted to the filtration F

through (11.17). This is an important condition in the above theorem. The
condition ’determine’ the processes Zt and Qt. Let us now state the sufficient
conditions of optimality.

45The definition of L2

F
is given in Section 5.2.1.
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11 THE STOCHASTIC MAXIMUM PRINCIPLE

Theorem 11.8 (Sufficient condition)
Let the Basic Conditions 10.1 and the SMP Conditions 10.9, 6 - 8 hold (i.e., g
and H are uniformly46 concave w.r.t. x and π). Let (X̂, π∗) be an admissible
state-control pair that satisfies (11.14) and (11.20) while Yt, Zt, Pt,Qt are the
corresponding adjoint variables satisfying (11.17), (11.18) and (11.19). Then
the state-control pair (X̂, π∗) is an optimal solution of Problem 5.

The proofs for the above conditions to be necessary and sufficient for optimal-
ity can be found in [Yong, Zhou 1999] chapter 3, section 4 and 5, respectively.

A stochastic backward SDE has a solution pair

Comparing the deterministic and the stochastic case, the reader may wonder
why there are four adjoint variables in (11.17) but only two equations (11.18)
and (11.19) for them. The reason is that Yt and Pt must satisfy an additional
condition, namely they must be adapted to the given filtration F according
to (11.17).

For an ordinary differential equation, under the usual Lipschitz condition,
both an initial value problem (11.7) and a terminal value problem (11.8) are
well-posed. In particular, they become equal through a time reversion. This
is fundamental different in the stochastic case (11.18) and (11.19) since the
solutions Yt and Pt must be adapted to the given filtration F. So the time
can not be easily reverted. Therefore, the variables Zt and Qt are needed to
ensure that Yt and Pt are F-adapted, respectively.

[Yong, Zhou 1999] states that ”it is the second component (Zt and Qt) that
corrects the possible ”non-adaptiveness” caused by the backward nature of
the equations, including the given terminal value of the first component. The
solution pair has an interesting interpretation in functional analysis and du-
ality analysis. It is nothing but the (unique) Riesz Representation of a certain
functional on the Hilbert space L2

F
([0, T ],Rn) ×L2

F
([0, T ],Rn×d) defined via

a forward SDE that is dual to the backward SDE.”

In consequence, under the SMP Conditions 10.9, both backward SDEs (11.18)
and (11.19) admit a unique adapted solution pair (Yt, Zt) and (Pt,Qt), re-
spectively. A proof can be found in [Yong, Zhou 1999] chapter 7, Theorem
3.2.

46That means concave for all t ∈ [0, T ].
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11.3 The Stochastic Maximum Principle

Further remarks

● The proof of the SMP needs a second-order Taylor expansion since dW
is only of the order

√(ǫ) when using variations. The PMP needs only
a first-order Taylor expansion.

● We can not reverse time in the stochastic case, as it would destroy the
non-anticipativness of the solutions. Therefore, each adjoint equation
consists of a tuple of adjoint variables.

● In economic theory, Yt is the random shadow price process and Zt is
the instantaneous standard deviation of the depreciation rate of the
random shadow price process.

● Nevertheless, the shadow price deviation pair (Yt, Zt) is not able to
fully characterize the trade between the costs and control gain in an
uncertain, non-concave environment. The optimality condition must
be extended by a risk adjustment, and thus the second-order adjoint
variable (Pt,Qt) becomes necessary, see [Yong, Zhou 1999], page 116-
118 for details on this.

11.3.1 Simplifications of the SMP

Lemma 11.9 (Simplification for non-controlled diffusions)
If the diffusion σ(x, π) = σ(x) does not depend on the control variable, then
the optimality conditions (11.20) over H̃ simplify to an optimality condition
over H:

H(t, X̂t, π
∗

t , Yt, Zt) =max
π∈A

H(t, X̂t, π, Yt, Zt), ∀t ∈ [0, T ]. (11.22)

This follows from the definition of H̃ in (11.21). In consequence, the second-
order adjoint variables (Pt,Qt) are not needed when solving the stochastic
control problem.

Lemma 11.10 (Simplification for concave problems)
Consider the Concave problem 6 of Section 10.4 (i.g. the Basic Conditions
10.1 and the SMP Conditions 10.9 hold). Then the optimality condition
(11.20) in the necessary conditions simplifies to:

H(t, X̂t, π
∗

t , Yt, Zt) =max
π∈A

H(t, X̂t, π, Yt, Zt), ∀t ∈ [0, T ]. (11.23)
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11 THE STOCHASTIC MAXIMUM PRINCIPLE

Proof 11.11
[Yong, Zhou 1999], page 120, show that, when the control domain A is convex
and all coefficients b, σ, f and g are continuously differentiable w.r.t. π, then
the optimality condition (variational inequality) (11.20) implies a local form:

⟨∂πH(t, X̂t, π
∗

t , Yt, Zt), π − π∗t ⟩ ≤ 0, ∀t ∈ [0, T ], ∀π ∈ A.
Moreover, when the Hamiltonian H is concave w.r.t. π, (11.11) is equal to:

H(t, X̂t, π
∗

t , Yt, Zt) =max
π∈A

H(t, X̂t, π, Yt, Zt).
qed.

Note that in both cases, the simplified optimality conditions (11.22) and
(11.23) do not involve the second-order adjoint processes Pt and Qt. When
the second order adjoint variables (Pt,Qt) can be neglected, the proof of
the SMP does not need the twice continuous differentiability of b, σ, f and g

w.r.t. x in (11.16). Instead, the C1-property is enough to apply the SMP.

[Yong, Zhou 1999] states that ”when the Hamiltonian H(t, x, π, y, z) is al-
ready concave in π, the second-order adjoint process Pt plays no role at all.
This is because the concavity of H reflects the risk adjustment already.” We
summarize this result in the following section.

11.3.2 A stochastic two-point boundary problem

Using SMP’s necessary and sufficient condition, the forward state SDE (10.1)
together with the backward adjoint equations (11.18) and (11.19) build a sys-
tem of forward-backward stochastic differential equations (FBSDE) coupled
through the optimality condition (11.20). This is a stochastic version of the
two-point boundary problem that we faced in Pontryagin’s maximum prin-
ciple in Section 11.2.1.

Theorem 11.12 (Coupled FBSDE system)
Our Concave Problem 6 (i.g. the Basic Conditions 10.1 and the SMP Con-
ditions 10.9 hold) is equivalent to searching for the F-adapted quadruple(X̂t, π

∗

t , Yt, Zt), which satisfies the following coupled FBSDE system:

dXt = b(t,Xt, π
∗

t )dt + σ(t,Xt, π
∗

t )dWt, X0 = x ∈ Rn,

dYt = −∇xH(t, X̂t, π
∗

t , Yt, Zt)dt +ZtdWt, YT = ∇xg(XT ),
π∗t = argmax

πt∈A
H(t,Xt, πt, Yt, Zt).

(11.24)
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11.4 Solving a coupled FBSDE system

This follows from the the Necessary Condition 11.7 and the Sufficient Con-
dition 11.8 of the SMP together with Lemma 11.10.

By solving the stochastic two-point boundary problem, the optimal state-
control pair (X̂, π∗) can be found without considering the value function
v(t, x). However, knowing the optimal solution-pair (X̂, π∗), the value func-
tion v(t, x) can be calculated via the simplified Dynamic Programming equa-
tion:

v(t, x) = Eπ∗

t [∫ τ

t
f(s, X̂s, πs)ds + v(τ, X̂τ)∣Xt = x] ,

v(T,x) = g(x). (11.25)

11.3.3 Summary

The intention of the above subsection is to remember the reader that:

● the SMP states a necessary and a sufficient condition of optimality,

● the SMP needs concavity conditions for g and H, while the DPP can
be used when [σσ′] is uniformly parabolic.

● the SMP leads to a stochastic two-point boundary problem, namely a
FBSDE system coupled through an optimality condition.

11.4 Solving a coupled FBSDE system

Now we take a closer look on how to solve a coupled FBSDE system. Yet,
there does not exist a numerical scheme for stochastic optimal control prob-
lems that operates via the SMP. However, methods are available that find
numerical solutions of FBSDE systems for different degrees of coupling. To
apply these methods to our problem, let us assume for a moment that
the optimal control process π∗t can be expressed as a measurable function
π∗ ∶ [0, T ] × Rn × Rn × Sn → A, π∗t = π∗(t, X̂t, Yt, Zt). Then we search for
an F-adapted solution triple (Xt, Yt, Zt) for the following coupled FBSDE
system for t ∈ [0, T ]:

dXt = b̃(t,Xt, Yt, Zt)dt + σ̃(t,Xt, Yt, Zt)dWt X0 = x,

dYt = f̃(t,Xt, Yt, Zt)dt +ZtdWt, YT = g̃(XT ), (11.26)

where:

b̃(t, x, y, z) ∶= b(x, π∗(t, x, y, z)), σ̃(t, x, y, z) ∶= σ(x, π∗(t, x, y, z)),
f̃(t, x, y, z) ∶= ∇xH(t, x, π∗(t, x, y, z), y, z), g̃(x) ∶= ∇x g(x).
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11 THE STOCHASTIC MAXIMUM PRINCIPLE

Using these reformulation, we can find solutions of the stochastic optimal
control problem through appropriate solution schemes for FBSDE systems.
Therefore, let us review the analytical four-step scheme for FBSDE systems
and briefly discuss a few numerical schemes.

11.4.1 The four-step scheme

The most common method is called four-step scheme and converts a FBSDE
back to a parabolic PDE. It was proposed by [Ma, Protter, Young 1994].
They assumed that the relationship between the state variable Xt and the
adjoint variable Yt can be expressed by a function Φ ∈ C1,2([0, T ] ×Rn,Rn)
via Yt = Φt(Xt). Using this relationship and assuming that there exists a
solution of the coupled FBSDE system (11.26), the solution may be found
through the following four steps:

1. Step: Find a function z(t, x, y, p) which satisfies the following relation:

z(t, x, y, p) = pσ̃ (t, x, y, z(t, x, y, p)) ,
∀(t, x, y, p) ∈ [0, T ] ×Rn ×Rn ×Rn×n.

(11.27)

2. Step: Use the function zt = z(t, x,Φt,∇xΦt) obtained above to solve the
following parabolic PDE for Φt(x):

∂tΦl
t +

1
2
tr[σ̃σ̃⊤(t, x,Φt, zt)∇2

xxΦ
l
t] + b̃(t, x,Φt, zt)∇xΦl

t

−f̃ l(t, x,Φt, zt) = 0, ∀(t, x) ∈ [0, T ] ×Rn, l = 1, ..., n,

ΦT (x) = g̃(x), ∀x ∈ Rn.

3. Step: Replace Yt and Zt by Φt and zt obtained in step 1-2, respectively,
and solve the forward SDE in (11.26) for Xt:

Xt = x +∫
t

0
b̄(s,Xs)ds +∫ t

0
σ̄(s,Xs)dWs,

where:

b̄(t, x) ∶= b̃(t, x,Φt(x), z(t, x,Φt(x),∇xΦt(x))),
σ̄(t, x) ∶= σ̃(t, x,Φt(x), z(t, x,Φt(x),∇xΦt(x))).

4. Step: Set:

Yt = Φ(t,Xt),
Zt = z(t,Xt,Φt(Xt),∇xΦt(Xt)).
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11.4 Solving a coupled FBSDE system

The crucial parts of the four-step scheme are 1) to find a function z in step
one, if it exists, and 2) to find a solution of the quasi-linear, second order
parabolic PDE in step two.

11.4.2 Numerical schemes

As for Dynamic Programming (Section 11.1.1), there exists two basic ap-
proaches to solve a FBSDE system numerically.

● Deterministic approach: One follows the four-step scheme above
and uses finite approximations of the function Φt (e.g. finite differ-
ences or finite elements) in order to solve the quasi-linear, second order
parabolic PDE in step two. Examples for this method can be found in
[Douglas, Ma, Protter 1996] or [Milstein, Tretyakov 2006].

● Stochastic approach: Only recently, a few authors proposed stochas-
tic schemes to find numerical solutions of coupled FBSDE systems.
Most schemes are extensions of schemes for uncoupled FBSDE sys-
tems. However, with an extensive literature research, we found only
two fully traceable algorithms for coupled FBSDEs:

1. [Delarue, Menozzi 2005] proposed a backward iteration on a dis-
cretized time interval [0, T ] and state space Rn. Their explicit
backward iteration starts at time T with YT (ξj) = g̃(ξj) and
ZT (ξj) = ∇xg̃(ξj), for all state space points ξj, j = 1...Mn. Then
it calculates Yt and Zt for all time points t = ti, i = N − 1, ...,1,
backward in time, using the previous values. We will explain this
method in much more detail in Section 12.

2. [Bender, Zhang 2008] proposed a numerical algorithm to simulate
high-dimensional coupled FBSDEs under weak coupling or mono-
tonicity conditions. Their method is based on a global Picard
iteration, commonly used for BSDEs. In contrast to Delarue and
Menozzi’s scheme, the method does not discretize the state space
Rn.

Note that, a part of any stochastic scheme is the calculation of expec-
tation values. Common methods to calculate these expectation values
are Monte Carlo simulations, Quantization methods, Markov-chain ap-
proximations or Least-Square Monte-Carlo techniques. The choice of
the method usually depends on the specific problem and its parameters
but it does not affect the general stochastic scheme.
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We want to emphasize that both stochastic schemes are developed re-
cently and the proofs for convergence are known only for special, weak
coupling conditions so far. Nevertheless, we will apply the first scheme
to problems with stronger coupling conditions and discuss the results
and convergence in Part IV. We believe that algorithms for stronger
coupling conditions will be provided and proofed in the near future.

11.5 Connection between the DPP and the SMP

In the previous paragraphs we already saw a few similarities between the DPP
and the SMP. In this section we show a direct connection. First, we formally
show analogies between the optimal control case and the non-controlled47

case. In the latter, the FBSDE system is a Hamilton system and the HJB
equation is the Hamilton-Jacobi equation. These analogies provide the reader
a more intuitive understanding of the connection between the DPP and the
SMP theory. We then formaly show this connection by deriving the SMP’s
necessary condition of optimality out of the HJB equation and by proving
the SMP’s sufficient condition via the HJB verification.

11.5.1 Analogies

● The deterministic, non-controlled case: The classical Hamilton-
Jacobi theory tells us, that a linear, parabolic first-order PDE can be
represented as a finite system of ODEs. The PDE is called Hamilton-
Jacobi equation and the system of backward ODEs (BODE) is called
Hamilton system. The method of characteristics is used to solve the
PDE via the system of ODEs. Vice versa, one can use complete inte-
grals and the implicit function theorem to tansform the ODE system
into a PDE. See [Evans 2002] chapter 3 for details.

● The deterministic, optimal control case: The classical Hamilton-
Jacobi-Bellmann theory tells us, that an optimal control problem can
be expressed by the HJB equation, a non-linear, parabolic first-order
PDE. The non-linearity arises through the intrinsic optimization. On
the other hand, Pontryagin’s maximum principle (see Section 11.2)
provides the theory to solve an optimal control problem via a system
of forward-backward ODEs (FBODE), which is a two-point boundary
problem. See [Evans 2002] chapter 10 for details.

47There is no control variable and no optimization.
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11.5 Connection between the DPP and the SMP

● The stochastic, non-controlled case: It is the well-known Feynman-
Kac theorem that tells us that a special type of linear, parabolic second-
order PDEs can be represented as a system of backward SDEs (BS-
DEs48) and vice versa. See [Klebaner 2005] chapter 6 for details.

● The stochastic, optimal control case: An extension of the Feynman-
Kac formula tells us that also a quasi-linear, parabolic second-order
PDE can be represented as a system for coupled FBSDEs including
a (first-order) adjoint equation. However, this FBSDE representation
cannot be directly applied to stochastic optimal control problems. Here
the HJB equation (11.3) is a fully non-linear, parabolic second-order
PDE. Instead, by using the SMP, we obtain a system of second-order
FBSDEs coupled through an optimality condition (11.24), a stochastic
two-point boundary problem. See [Pham 2009].

Non-controlled case Optimal control case

Deterministic Hamilton system: Pontryagin’s maximum principle:

case system of first-order system of first-order FBODEs

BODEs + external optimality condition

HJ equation: HJB equation:

linear, first-order PDE non-linear, first-order PDE

with inherent optimization

Stochastic Hamilton system: Stochastic Maximum Principle:

case system of second-order system of second-order FBSDEs

BSDEs + external optimality condition

HJ equation: HJB equation:

linear, second-order PDE non-linear, second-order PDE

with inherent optimization

Table 9: Analogies of the ODE-PDE representation between the non-
controlled and optimal control case for the deterministic and stochastic case.

48BSDEs are uncoupled FBSDEs. By uncoupled we mean that the forward SDE for Xt

does not depend on the adjoint variables (Yt, Zt) of the backward SDEs.
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We obtain that going form the non-controlled to the optimal control case,
we switch from linear to non-linear equations. Moreover, going from the de-
terministic to the stochastic case, we switch from first-order to second-order
equations, see Table 9.

Now we show a direct connection between the DPP and the SMP by deriving
the SMP’s necessary condition of optimality from the HJB equation.

11.5.2 Derivation of the SMP’s necessary condition from the DPP

Following [Pham 2009], let us suppose there exists a unique solution v ∈
C1,3([0, T ) ×Rn) ∩C0([0, T ] ×Rn) of the value function (10.5) and an opti-
mal control π∗ ∈ AT described in (10.4) with an associated controlled diffusion
X̂t satisfying (10.1). Then we can derive the adjoint equations of the SMP
out of the HJB equation through the following three steps.

First, we know from the HJB theory that:

∂tv(t, X̂t) +G(t, X̂t, π
∗

t ,∇xv(t, X̂t),∇2
xv(t, X̂t)) = 0. (11.28)

where the generator G ∶ [0, T ] ×Rn ×A ×Rn ×Rn×n → R is given by:

G(t, x, π, p,M) ∶= b(t, x, π)p + 1

2
tr [σσ′(t, x, π)M] + f(t, x, π). (11.29)

In detail, to obtain (11.28) we represent:

v(t, X̂t) = Eπ̃∗

t [∫ T

t
f(s, X̂s, π∗s )ds + g(X̂T )∣Ft]

= − ∫ t

0
f(s, X̂s, π∗s )ds +Eπ̃∗

t [∫ T

0
f(s, X̂s, π∗s )ds + g(X̂T )∣Ft] . (11.30)

The second term of the last equation is a martingale. Therefore, we apply
Ito’s formula to v(t, X̂t) and identify the terms in dt with (11.30). This yields
(11.28).

Second, we use (11.28) together with the HJB equation to derive ∀(t, x) ∈[0, T ] ×Rn:

∂tv(t, X̂t) +G(t, X̂t, π
∗

t ,∇xv(t, X̂t),∇2
xv(t, X̂t)) = 0

= ∂tv(t, x) + sup
π∈A

G(t, x, π,∇xv(t, x),∇2
xv(t, x))

≥ ∂tv(t, x) +G(t, x, π∗t ,∇xv(t, x),∇2
xv(t, x)).
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Since v ∈ C1,3 this implies:

∂x (∂tv(t, x) +G(t, x, π∗t ,∇xv(t, x),∇2
xv(t, x)))∣x=X̂t

= 0. (11.31)

Third, we apply Ito’s formula to ∇xv(t, X̂t) and plug the result into (11.31).
After a few calculations and using the fact that v(T,x) = g(x), we obtain the
(adjoint) equations:

−d∇xv(t, X̂t) = ∇xH(t, X̂t, π
∗

t ,∇xv(t, X̂t),∇2
xv(t, X̂t)σ(X̂t, π

∗

t ))dt
−∇2

xv(t, X̂t)σ(X̂t, π
∗

t )dWt,

∇xv(T, X̂T ) = ∇xg(X̂t),
(11.32)

where the so called Hamiltonian H ∶ [0, T ]×Rn×A×Rn×Rn×d → R is defined
by:

H(t, x, π, y, z) ∶= b(t, x, π)y + tr[σ′(t, x, π)z] + f(t, x, π). (11.33)

Furthermore, we assume that b, σ, f, g and thus G are continuously differen-
tiable with respect to π. Since matrix multiplication is associative and the
trace operator is invariant under cyclic permutations, we obtain that:

∂πG(t, x, π,∇xv(t, x),∇2
xv(t, x)) = ∂πH(t, x, π,∇xv(t, x),∇2

xv(t, x)σ(x, π)),
∀(t, x) ∈ [0, T ] ×Rn.

Since this is true for all π ∈ A, H attains a maximum whenever G attains
one. Since the optimal control π∗ fulfills the optimality condition of the
DPP (11.5), we obtain the optimality condition of the SMP (11.20). Let us
summarize this result.

Theorem 11.13 (Connection between DPP and SMP)
Let the Basic Conditions 10.1 and the SMP Conditions 10.9, 6 - 7 hold. If
there exists a unique solution v ∈ C1,3([0, T ) × Rn) ∩ C0([0, T ] × Rn) of the
value function (10.5) and an optimal state-control pair (X̂t, π∗) satisfying
(10.1) and (10.4), respectively, then for all t ∈ [0, T ] the triple:

(X̂t, Yt, Zt) ∶= (X̂t,∇xv(t, X̂t),∇2
xv(t, X̂t)σ(X̂t, π

∗

t ))
∈ L2

F
([0, T ],Rn) ×L2

F
([0, T ],Rn) × (L2

F
([0, T ],Rn))d ,
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11 THE STOCHASTIC MAXIMUM PRINCIPLE

is the unique solution to the coupled FBSDE system:

X̂t = x + ∫ t

0
b(s, X̂s, π∗s )ds + ∫ t

0
σ(s, X̂s, π∗s )dWs,

Yt = ∇xg(XT ) + ∫ T

t
∇xH(s, X̂s, π∗s , Ys, Zs)ds

− ∫ T

t
ZsdWs,

(11.34)

such that the following optimality condition holds:

π∗t = argmax
π∈A

H(t, X̂t, π, Yt, Zt). (11.35)

11.5.3 Derivation of the SMP’s sufficient condition from DPP

Now we show the connection between SMP and DPP by proving the SMP’s
sufficient condition via the HJB verification (sufficient condition).

Theorem 11.14 (Connection between DPP and SMP 2)
Let the Basic Conditions 10.1 and the SMP Conditions 10.9, 6 - 8 hold (i.e.,
g and H are uniformly49 concave w.r.t x and π). Let (X̂, Yt, Zt) and the
control policy π∗ = {π∗t , t ∈ [0, T ]} be associated solutions to the FBSDE sys-
tem (11.34) such that the optimality condition (11.35) holds. Furthermore,
suppose that there exists a unique solution v ∈ C1,3([0, T ]×Rn,R) of the value
function (10.5). Then:

1. (X̂t, π∗) is the optimal state-control pair of the Concave Problem 6
(10.1) - (10.3).

2. The solutions (Yt, Zt) of the first-order adjoint equation are the first
derivative and an adjusted second derivative of the value function v

(10.5), respectively:

(Yt, Zt) = (∇xv(t, X̂t),∇2
xv(t, X̂t)σ(X̂t, π

∗

t )) . (11.36)

Proof 11.15
The first statement is the SMP’s sufficient condition. An alternative proof,
which uses the DPP, can be found in [Pham 2009], theorem 6.5.4. In order to
prove the second statement, we define a function u(t, x) ∈ C1,3([0, T ]×Rn,R)
through its first derivatives ∇xu(t, X̂x

t ) ∶= Y x
t and its terminal value u(T,x) ∶=

49That means concave for all t ∈ [0, T ].
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11.5 Connection between the DPP and the SMP

g(x). The superscript x at X̂x
t or Y x

t indicates the solution of (11.34) when
starting at time t with X̂t = x50. Then we apply Ito’s formula to ∇xu:

dYt = d∇xu = ∂t∇xudt +∇2
xxudX +

1
2
tr(σσ′∇2

xx)∇xudt

= (∂t∇xu +∇2
xxub +

1
2
tr(σσ′∇2

xx)∇xu)dt +∇2
xxuσ dWt.

Comparing the diffusion term of the above equation with the diffusion term
of the BSDE for Y x

t in (11.34), we obtain that Zx
t = ∇2

xxu(t, X̂x
t )σ(X̂x

t , π
∗,x
t ).

Comparing the drift terms of these equations, we get a third-order PDE:51

0 = ∇xH(t, X̂x
t , π

∗,x
t , Y x

t , Z
x
t ) + ∂t∇xu +∇2

xxub +
1
2
tr[σσ′∇2

xx]∇xu

= bxY x
t +∇tr[σ′xZx

t ] + fx + ∂t∇xu +∇2
xxub +

1
2
tr[σσ′∇2

xx]∇xu

= bx∇xu +∇tr[σ′x∇2
xxuσ] + fx + ∂t∇xu +∇2

xxub +
1
2
tr[σσ′∇2

xx]∇xu

= ∂t∇xu + bx∇xu +∇2
xxub + 2

1
2
∇tr[σσ′x∇2

xxu] + 1
2
tr[σσ′∇2

xx]∇xu + fx

= ∇x (∂tu +∇xub +
1
2
tr[σσ′∇2

xxu] + f) .
The last term is the gradient of the HJB equation w.r.t x. Since the solution
of this PDE is unique, and equation (11.31) holds for the value function v,
it follows that u(t, x) = v(t, x). qed.
In the above theorem, we started with solutions X̂t, Yt, and Zt of the FBSDE
system (11.34) and constructed a function that is equal to the solution of the
HJB equation, if it exists. A further reasearch topic would be to investigate
the following Hypothesis:

Hypothesis 11.16
If the Basic Conditions 10.1 and the SMP Conditions 10.9 hold (i.e., g and
H are uniformly concave w.r.t x and π), then the HJB equation has a unique
solution v(t, x) ∈ C1,2([0, T ] ×Rn).
11.5.4 Summary

The analogies in Table 9 show the connection between the SMP and the DPP.
Moreover, Theorems 11.14 and 11.13 reveal the transferability of necessary
and sufficient conditions in the smooth case. We obtain that:

(X̂t, Yt, Zt) = (X̂t,∇xv(t, X̂t),∇2
xv(t, X̂t)σ(X̂t, π

∗

t ))
50By definition, X̂x

t
= x.

51Note that bx is a (n × n)-matrix, fx is a vector, and ∇tr[σ′
x
⋅] indicates the derivative

of the trace operator component-by-component.
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11 THE STOCHASTIC MAXIMUM PRINCIPLE

In consequence, if the according conditions are satisfied, one can use either
way to search for solutions of the stochastic optimal control Problem 5 (10.1)
- (10.3).

The concavity of H and g is important for the SMP’s sufficient conditions to
hold. This concavity condition mainly specifies the problem class for which
we can apply the SMP theory, namely the class of Concave Problems 6.
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12 A controlled forward-backward algorithm

In this section, we propose a numerical scheme for concave stochastic opti-
mal control problems (Problem 6 in Section 10) by utilizing the Stochastic
Maximum Principle (Section 11). We call our scheme Controlled forward-
backward (CFB) algorithm because it is based on the forward-backward
stochastic algorithm proposed by [Delarue, Menozzi 2005].

We already showed in Theorem 11.12 that the Concave Problem 6 is equiva-
lent to the problem of searching for the F-adapted quadruple (X̂t, π

∗

t , Yt, Zt),
which satisfies the following coupled FBSDE system:

dXt = b(t,Xt, π
∗

t )dt + σ(t,Xt, π
∗

t )dWt, X0 = x ∈ Rn,

dYt = −∇xH(t, X̂t, π
∗

t , Yt, Zt)dt +ZtdWt, YT = ∇xg(XT ),
π∗t = argmax

πt∈A
H(t,Xt, πt, Yt, Zt),

(12.1)

whereH(t, x, π, y, z) ∶= b(t, x, π)y+tr[σ′(t, x, π)z]+f(t, x, π) is concave w.r.t. x
and π. To give the reader an upfront idea of the CFB algorithm, we summa-
rize the main steps in the following informal Statement 12.1.

Statement 12.1 (Controlled forward-backward algorithm)
Let {tk, k = 0, ...,N} be a discretization of the time interval [0, T ] and let{Ch

k , k = 0, ...,N} be an according sequence of spartial grids in Rn, such that
Ch

k ⊂ Ch
l , for all k < l. Then, for every point (tk, ξj) on the time-space

grid, we can approximate an optimal control πj
k for the Concave problem 6,

together with approximations Y h
k and Zh

k , by using the following controlled
forward-backward algorithm:

Starting at time T and going backwards in time for k = N, ...,0, the control
π
j
k on each discrete space-point ξj can be approximated through the routine:

ξ̂
j
k = ξj + σ(tk, ξj, πj

k+1)∆Wk,

Ẑ
j
k = Ek [Zh

k+1(ξ̂jk)] ,
π
j
k = argmax

π∈A
H(tk, ξj, π, Y j

k+1, Ẑ
j
k),

ξ
j
k+1 = ξj + b(tk, ξj, πj

k)∆tk + σ(tk, ξj, πj
k)∆Wk,

Z
j
k =

1
∆tk

Ek
[Y h

k+1(ξjk+1)∆W ⊤
k
] ,

Y
j
k = ∇xH(tk, ξj , πj

k, Y
j
k+1, Z

j
k)∆tk + Ek

[Y h
k+1(ξjk+1)] ,

(12.2)
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12 A CONTROLLED FORWARD-BACKWARD ALGORITHM

The reader may immediately see that this algorithim is explicit because ev-
ery variable on the right hand side is known. We suggest a Newton-Raphson
method to perform the optimization and a Quantization method to simulate
the expectation values.

Now let us develop the CFB algorithm step-by-step. However, we do not state
every detail of [Delarue, Menozzi 2005]’s paper since this would be extensive
without revealing new insights. We rather provide the reader all main fea-
tures of the algorithm in an understandable way, while keeping mathematical
correctness, and such that the CFB algorithm can be implemented. For the
interested reader, we recommend to read through [Delarue, Menozzi 2005] to
get all details.

12.1 FBSDE approximation

Following [Kushner, Dupuis 2001], let us define a fixed, scalar approximation
parameter h > 0. Throughout the following, the superscript h denotes the
dependency on this approximation parameter.

12.1.1 Time discretization

As in every numerical scheme, we discretize the time horizon [0, T ] into N −1
intervals [tk, tk+1] =∆thk, such that for k = 0, ...,N − 1:

t0 ∶= 0, t1 ∶=∆th0 , tk ∶=
k−1

∑
i=0

∆thi , tN ∶= T, (12.3)

and:

∆thk → 0 as h→ 0.

Now we introduce the set of piecewise constant, admissible control policies
by:

Ah
T = {π ∈ AT ∣πt is constant over [tk, tk+1), ∀k ≤ N − 1} . (12.4)

Note that we do not discretize the control space here but rather keep the
control constant over each time interval ∆thk.
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12.1 FBSDE approximation

12.1.2 Localization

Let π∗ ∈ AT denote an optimal control policy. The local evolution of Xt and
Yt in (12.1) over each time interval [tk, tk+1) is given by:

Xk+1 =Xk + ∫ tk+1
tk

b(s,Xs, π∗s )ds + ∫ tk+1
tk

σ(s,Xs, π∗s )dWs,

Yk = Yk+1 + ∫ tk+1
tk
∇xH(s,Xs, π∗s , Ys, Zs)ds − ∫ tk+1

tk
ZsdWs.

(12.5)

So, starting from a known point Xk at tk, the state Xk+1 can be simulated
forward through the first equation in (12.5). In order to calculate the adjoint
variable Yk backwards from Yk+1, which is a random variable at time tk, we
take the expectation of the second equation in (12.5) conditional to Fk:

Yk = Eπ∗

k [Yk]
= Eπ∗

k [Yk+1] +Eπ∗

k
[∫ tk+1

tk
∇xH(s,Xs, π∗s , Ys, Zs)ds] . (12.6)

In order to calculate the adjoint variable Zk backwards in a similar way, we
first integrate the second equation in (12.5) by ∫ tk+1

tk
⋅ dW ⊤

l and then take
the expectation conditional to Fk:

0 = YkE
π∗

k
[(Wk+1 −Wk)⊤] = YkE

π∗

k
[∫ tk+1

tk
dW ⊤

l
] = Eπ∗

k
[∫ tk+1

tk
Yk dW

⊤
l
]

= Eπ∗

k
[∫ tk+1

tk
Yk+1 dW

⊤
l + ∫ tk+1

tk ∫ tk+1
tk
∇xH(s,Xs, π∗s , Ys, Zs)dsdW ⊤

l
]

−Eπ∗

k
[∫ tk+1

tk ∫ tk+1
tk

Zs dWs dW
⊤
l
]

= Eπ∗

k
[Yk+1 (Wk+1 −Wk)⊤] −Eπ∗

k
[∫ tk+1

tk
Zs ds] +O([tk+1 − tk] 32 ).

The remaining term O([tk+1 − tk] 32 ) is a consequence of the boundedness of
∇xH(s,Xs, π∗s , Ys, Zs). This follows from the definition of H and the SMP
Conditions 10.9. Thus we obtain:

Eπ∗

k [∫ tk+1

tk

Zs ds] = Eπ∗

k [Yk+1 (Wk+1 −Wk)⊤] +O([tk+1 − tk] 32 ). (12.7)

12.1.3 Approximations

Now, let πh∗ ∈ Ah
T denote a piecewise constant control policy and let Xh, Y h

and Zh denote the corresponding approximations of the state and adjoint
processes that are piecewise constant over [tk, tk+1) for all k = 0, ...,N − 1.
Let ∆Wk =Wk+1 −Wk denote the Brownian increments. Then, the standard
Euler approximation of the state process (12.5) is given by:

Xh
k+1 =X

h
k + b(tk,Xh

k , π
h∗
k )∆thk + σ(tk,Xh

k , π
h∗
k )∆Wk, (12.8)
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and the corresponding piecewise constant approximations of the adjoint pro-
cesses can be derived from (12.6) and (12.7), for all 0 ≤ k < N , as:

Zh
k =

1

∆th
k

Eπh∗

k
[Y h

k+1∆W ⊤
k
] ,

Y h
k = ∇xH(tk,Xh

k , π
h∗
k , Ȳ h

k , Z
h
k )∆thk + Eπh∗

k
[Y h

k+1
] , (12.9)

where Ȳ h
k denotes a constant predictor of {Ys, s ∈ [tk, tk+1]} that needs to be

defined. We also have:

Y h
N = ∇xg(Xh

N),
Zh

N = ∇xxg(Xh
N)σ(Xh

N , π
h∗
N ). (12.10)

Note that we switched the order of calculation such that we can use Zh
k as con-

stant predictor on the right hand side. Note also that Zh
k is not just any ap-

proximation of Ztk but the best constant approximation of {Zs, s ∈ [tk, tk+1]}
in the L2

F
([tk, tk+1]) sense when we neglect the term O([tk+1−tk] 32 ), see (12.7).

Furthermore, we say that πh∗ is an approximation of the optimal control
policy if it satisfies the following optimality condition:

πh∗
k = argmax

π∈A
H(tk,Xh

k , π, Ȳ
h
k , Z̄

h
k ), ∀0 ≤ k ≤ N. (12.11)

Here, Z̄h
k denotes a constant predictor of {Zs, s ∈ [tk, tk+1]} that needs to be

defined. Zh
k would definitely be the best choice but Zh

k again depends on a
πh∗
k , see (12.9).

Note that in contrast to the DDP, it is not necessary to calculate an ap-
proximation of the value function Vk ∶= v(tk,Xk) when using the SMP. Nev-
ertheless, in some applications the value function is of major interest. In
compliance with DPP, we can calculate an approximation of the value func-
tion V h by dynamic programming for k = N − 1, ...,0 via:

V h
k = f(tk,Xh

k , π
h∗
k )∆thk + Eπh∗

k [V h
k+1] , V h

N = g(Xh
N). (12.12)

12.2 State space discretization

A key point in Delarue and Menozzi’s method for pure FBSDEs is the in-
troduction of spatial grids Ch

k for each time point k, together with an it-

eration backward in time that calculates the approximations Y
j
k = Y h

k (ξj),
Z

j
k = Z

h
k (ξj) on all grid points ξj ∈ Ch

k , for all k = N −1, ...,0. When the back-
ward iteration is finished, the process Xh can be easily simulated forward in
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12.3 State transition

time by using the approximation values Y j
k and Z

j
k.

We extend this method by means of an optimization method that calculates
the optimal control πj

k = π
h∗
k (ξj) additionally on every grid point, during the

backward iteration. In order to simulate the process Xh afterwards, we must
only store the optimal control values πj

k and can discard Y
j
k and Z

j
k.

In detail, for each 0 ≤ k ≤ N , let Ink ⊂ Nn, ∣Ink ∣ =Mk, denote a n-dimensional,
finite index set and let us define the spatial grids by:

Ch
k = {ξj ∈ Rn ∣ j ∈ Ink } ⊂ Rn, (12.13)

such that Ch
j ⊂ Ch

i , for all j < i.

Note that due to the finiteness of the index set, the state space Rn is trun-
cated at some point. Several truncation procedures may be considered, but
all should consider the specific drift and geometry of the forward diffusion Xt.

When it comes to the choice of a grid, a Cartesian grid is the most natural
one. In particular, because of the strong coupling of the FBSDE system,
little is known on the behavior of the path for the forward process. Hence,
we cannot compute a kind of optimal grid for X, see [Delarue, Menozzi 2005]
section 3.4.

12.3 State transition

Given a spatial grid, there exists several methods to calculate the transition
of the state process (12.8) from a point ξk ∈ Ch

k to a point ξk+1 ∈ Ch
k+1 and

thereby the expectation values in (12.9) and (12.12). Delarue and Menozzi’s
choice is a Quantization method. They claim that standard Monte Carlo
methods are inefficient because of their slow convergence. A contra argu-
ment would be that there exist efficient Monte Carlo methods like impor-
tance sampling. On the other hand, these methods are commonly used only
for uncontrolled processes and, roughly speaking, the strong coupling of the
forward and backward equations prohibits an optimization of Monte Carlo
methods.

Thus, we will use the Quantization method here. In order to present an
alternative to Quantization anyway, we outline the method of Markov-chain
approximations in the next subsection, too.
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12 A CONTROLLED FORWARD-BACKWARD ALGORITHM

12.3.1 Quantization

Quantization consists in approximating a random variable by a suitable dis-
crete law. In particular, it replaces the Brownian increments ∆Wk ∼ N(0,1d)
appearing in (12.8) by its projection ∆W h

k onto a finite grid:

Λh
k = {yl ∈ Rd ∣ l ∈ Ld

k} ⊂ Rd, (12.14)

where Ld
k ⊂ Nd, ∣Ld

k∣ = Lk, denotes a d-dimensional, finite index set for each
0 ≤ k ≤ N . The associated probability weights are:

P h
k = {pl , l ∈ Ld

k} . (12.15)

The set P h
k is equal to a probability measure on Rd with finite support Λh

k. In
order to measure the error associated to the grid Λh

k, we refer to the so-called
p-distortion:

D∆Wk,p(∆W h
k ) ∶= ∣∣∆Wk −∆W h

k ∣∣Lp(P ), p ≥ 1, (12.16)

see the monograph of [Graf, Luschgy 2000] for details. We will discuss the
measurement of the error and the choice of optimal discrete grids Λh

k in Sec-
tion 13.

If we start at a grid point ξj ∈ Ck and simulate the state process (12.8)
one time step forward with the above Quantization method, then the sim-
ulated points ξ

j
k+1 does not necessarily lie on the grid Ck+1. Therefore, let

Πk ∶ R
n → Ck denote a projection mapping onto the grid Ck for all 0 ≤ k ≤ N .

We use the orthogonal projection in the hypercube here.

Then, for all ξj ∈ Ck, let us define the propagation of the state process up to
time tk+1 conditional to the Brownian increment yl by:

ξ
k,j
k+1(πj

k ∣ yl) = Πk+1 [ξj + b(ξj, πj
k)∆thk + σ(ξj, πj

k) yl] ∈ Ck+1, ∀l ∈ Λh
k.

(12.17)
Using these transitions and the associated probability weights pl ∈ P h

k , the
expectations appearing in the induction schemes (12.9) and (12.12) become
computable finite sums. To make this clearer, let us suppose our backward
algorithm has reached time point tk and grid point ξj ∈ Ch

k and we already
know the values Y i

k+1, Z
i
k+1 and V i

k+1 for all i ∈ Ink+1. Then the induction
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schemes (12.9) and (12.12) read:

Z
j
k =

1

∆thk
∑
l∈Ld

k

pl Y h
k+1 (ξk,jk+1(πj

k ∣ yl)) yl⊤,
Y

j
k = ∇xH(tk, ξj, πj

k, Ȳ
j
k , Z

j
k)∆thk + ∑

l∈Ld
k

pl Y h
k+1 (ξk,jk+1(πj

k ∣ yl)) ,
V

j
k = f(tk, ξj, πj

k)∆thk + ∑
l∈Ld

k

pl V h
k+1 (ξk,jk+1(πj

k ∣ yl)) .
(12.18)

and the optimality condition (12.11) becomes:

π
j
k = argmax

π∈A
H(tk, ξj, π, Ȳ j

k , Z̄
j
k). (12.19)

(12.17) - (12.19) formulate an implicit forward-backward iteration that cal-
culates the values πj

k on all grid points ξj ∈ Ck for k = N − 1, ...,0.

12.3.2 Markov-chain approximations as an alternative to Quanti-
zation

Markov-chain approximation is an alternative method to Quantization which
we do not implement. We want to present it anyway in order to show how an
alternative method work. Therefore, let pljk (πj

k) = P (ξl ∣ ξj, πj
k) denote fixed,

discrete transition probabilities of the state process from point ξj ∈ Ch
k at

time tk to point ξl ∈ Ch
k+1 at time tk+1 while the fixed control πj

k is used. If

∑l∈In
k
p
lj
k (πj

k) = 1, then we can say for the process ξ that:

∀k = 0, ...,N − 1, ∀ξj ∈ Ch
k , ∀ξ

l ∈ Ch
k+1,

ξk = ξj → ξk+1 = ξl with probability p
lj
k (πj

k). (12.20)

Moreover, if πj
k = πh(tk, ξj, Y j

k , Z
j
k) is a Markov control52, then the transition

probabilities p
lj
k (πj

k) depend only on information of the current time tk too
and (12.20) defines a so-called Markov-chain approximation of process (10.1)
with increments ∆ξk = ξk+1 − ξk.

The discrete Markov chain approximation ξ converges to the real state pro-
cess X in (10.1) as h→ 0 if the following local consistency conditions hold:

Ek [∆ξk] = b(ξk, πk)∆thk + o(∆thk),
Vark [∆ξhk ] = [σσ⊤](ξk, πk)∆thk + o(∆thk),
sup
k<N

sup
ω∈Ω
∣∆ξk∣→ 0, as h→ 0,

(12.21)

52It depends only on information of the current time k.
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where Ek[ ⋅ ] is the conditional expectation given all information up to time
k and Vark[ ⋅ ] is the conditional variance accordingly. The proof and methods
to derive proper transition probabilities can be found in [Kushner, Dupuis 2001].

One limitation of using Markov chain approximations in our algorithm is that
σ needs to be invertible. Only then we can calculate the discrete Brownian
increments yl, when starting at ξj, via:

yl = σ−1(ξj, πj
k) (ξl − ξj − b(ξj, πj

k)) , ∀l ∈ Λh
k. (12.22)

The Brownian increments are needed to calculate Z in (12.18). This also
means that d = n.

As before, let us now suppose our backward algorithm reached time point tk
and grid point ξj ∈ Ch

k and we already know the values Y i
k+1, Z

i
k+1 and V i

k+1

for all i ∈ Ink+1. Then the inductions (12.9) and (12.12) read:

Z
j
k =

1

∆thk
∑
l∈In

k

p
lj
k (πj

k) Y h
k+1 (ξl)) yl⊤,

Y
j
k = ∇xH(tk, ξj, πj

k, Ȳ
j
k , Z̄

j
k)∆thk + ∑

l∈In
k

p
lj
k (πj

k) Y h
k+1 (ξl) ,

V
j
k = f(tk, ξj, πj

k)∆thk + ∑
l∈In

k

p
lj
k (πj

k) V h
k+1 (ξl) ,

(12.23)

where yl is calculated via (12.22) and the optimality condition (12.11) be-
comes:

π
j
k = argmax

π∈A
H(tk, ξj, π, Ȳ j

k , Z̄
j
k). (12.24)

With (12.23) and (12.24) we formulate an alternative implicit iteration to
calculate the value π

j
k on all grid points ξj ∈ Ck backwards in time for k =

N − 1, ...,0.

12.4 Choice of predictors

We need to find adequate predictors Ȳ h
k and Z̄h

k in order to implemented the
scheme (12.17) - (12.19). The second key of Delarue and Menozzi’s method
is the special choice of predictors in order to make the scheme explicit.

In detail, let us suppose again that the algorithm has already calculated the
approximations Y h

k+1(⋅), Zh
k+1(⋅) for all spatial grid points ξj ∈ Ch

k+1 at time

tk+1. At time tk and grid-point ξj ∈ Ch
k , we replace Ȳ

j
k and Z̄

j
k on the right

hand side of (12.18) and (12.19) with the values Y
j
k+1 and Z

j
k+1 as natural
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predictors, respectively. Remember that Ch
k ⊂ Ch

k+1, so this replacement is
applicable.

Now we transfer this technique to our controlled FBSDE system and ob-
tain the following explicit scheme: Starting at terminal time T and going
backwards in time, at time tk and for every grid point ξj ∈ Ck, we first
pre-calculate the optimal control value by:

π
j
k = argmax

π∈A
H(tk, ξj, π, Y j

k+1, Z
j
k+1). (12.25)

Then, we use this pre-calculated π
j
k together with the natural predictors Y j

k+1

and Z
j
k+1 on the right hand side of (12.17) - (12.19) which become:

ξ
k,j
k+1(πj

k ∣ yl) = Πk+1 [ξj + b(ξj, πj
k)∆thk + σ(ξj, πj

k) yl] , ∀l ∈ Λh
k,

Z
j
k =

1

∆thk
∑
l∈Ld

k

pl Y h
k+1 (ξk,jk+1(πj

k ∣ yl)) yl⊤,
Y

j
k = ∇xH(tk, ξj, πj

k, Y
j
k+1, Z

j
k)∆thk + ∑

l∈Ld
k

pl Y h
k+1 (ξk,jk+1(πj

k ∣ yl)) ,
V

j
k = f(tk, ξj, πj

k)∆thk + ∑
l∈Ld

k

pl V h
k+1 (ξk,jk+1(πj

k ∣ yl)) .
(12.26)

The scheme (12.25) - (12.26) is fully explicit and thus it can be implemented
now.

12.4.1 An intermediate predictor to improve convergence

In order to improve convergence [Delarue, Menozzi 2005] introduced an inter-
mediate ”regularized” predictor Ẑj

k that replaces Zj
k+1 as predictor. Applied

to our Quantization method, the regularized predictor is calculated via:

ξ̂
j
k(πj

k ∣ yl) = Πk+1 [ξj + σ(ξj, πj
k) yl] , ∀l ∈ Λh

k,

Ẑ
j
k = E

π
j
k

k
[Zh

k+1(ξ̂jk)] = ∑
l∈Ld

k

plZh
k+1 (ξ̂jk(πj

k ∣ yl)) ,
(12.27)

Therefore, in our CFB-algorithm, we replace Z
j
k+1 by Ẑ

j
k in (12.25).
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12.5 Separate optimization

Regarding the optimization, the difference between the CFB-algorithm and
the standard dynamic programming algorithm is that in the former method
the optimization does not have to be performed over an expectation operator.
Instead, for a fixed time and space tuple (tk, ξj), the optimization (12.25) is
performed over a known function H, which is given by:

H(π) = b(ξj, π)Y j
k+1 + tr[σ′(ξj, π)Ẑj

k] + f(tk, ξj, π). (12.28)

In the following section, we want to make this optimization concrete. There-
fore, we consider a Newton-Raphson method together with a line search
algorithm in order solve the optimization.

12.5.1 Line search with Newton-Raphson

Let us briefly recapitulate the line search method. Suppose we have the
unconstraint optimization problem:

min
π∈A

f(π), (12.29)

for a scalar-valued function f ∶ Rr → R. Note that we can use min−f to
solve a max f problem. Now let π0 ∈ A be a starting point for the search
of an optimal control value π∗. The following iteration is called line search
method. For i = 1, ...,K do:

πi+1 = πi
+ aipi. (12.30)

The ai > 0 are called step lengths and the pi ∈ Rr are called search directions.
The key of the line-search algorithm is to choose the pi’s and ai’s such that
the decent f(πi)→ f(πi+1) is sufficiently small for each i. A common criteria
for a sufficient decent is the fulfilling of the Wolf conditions, which are defined
by:

f(πi+1) ≤ f(πi) + c1ai∇πf(πi)⊤pi,
∇πf(πi+1)pi ≥ c2∇πf(πi)⊤pi, (12.31)

where 0 < c1 < c2 < 1 are constants.

Theorem 12.2 (Wolf conditions)
If f is smooth enough, ∇πf is Lipschitz continuous in π and the Wolf condi-
tions are fulfilled, then the Newton-Raphson line-search converges to a local
minimum.
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12.5 Separate optimization

The proof can be found for example in [Nocedal, Wright 2006], Theorem 3.2.
The most popular choice for a search direction pi is such that pi satisfies the
following equation:

Bipi = −∇πf(πi),
where Bi is a symmetric and nonsingular matrix. Examples are the so-
called steepest descent method, where Bi is simply the identity matrix I,
the Newton method, where Bi is the exact Hessian matrix ∇2

πf(πi), and
the quasi-Newton methods, where Bi is an approximation to the Hessian
which is updated in an iterative manner by means of a low-rank formula.
For illustrative purpose, we use the exact Newton method with step length
ai = 1 here. Then (12.30) becomes:

πi+1 = πi + pi

∇2
πf(πi)pi = −∇πf(πi), for i = 1, ...,K.

(12.32)

Theorem 12.3 (Convergence of the optimization)
If the Hessian ∇2

πf(πi) is positive definite in a region close to the optimal
solution and also Lipschitz continuous, then the following is true:

● If the starting point π0 is sufficiently close to π∗, the sequence of iterates{πi} converges to π∗;

● The rate of convergence of the sequence {πi} is quadratic;
● The sequence of gradient norms {∣∇πf(πi)∣} converges quadratically to
zero.

The proof can be found for example in [Nocedal, Wright 2006], Theorem 3.5.
The book also includes a good introduction into optimal control theory and
further details.

12.5.2 Back to our optimization problem

Remember that for the Concave Problem 6, the SMP Conditions 10.9 hold,
i.e. H(t, ⋅, ⋅, y, z) and g(⋅) are concave w.r.t. x and π. Now, suppose our
backward algorithm reached time point tk and grid point ξj ∈ Ch

k . Then, we

select πj 0
k = π

h∗
k+1(ξj) ∈ A as starting point and perform the following iteration:

π
j i+1
k = πj i

k + p
i, for i = 1, ..,Kj

k. (12.33)

We choose the search direction pi as the solution of the linear system:

∇
2
ππH̃

j
k(πj i

k )pi = −∇πH̃
j
k(πj i

k ). (12.34)
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where:

∇πH̃
j
k(π) ∶= bπ(ξj, π)Y j

k+1 + ∑
a,b

σab
π (ξj, π) Ẑab

k + fπ(tk, ξj, π),
∇

2
ππH̃

j
k(π) ∶= bππ(ξj, π)Y j

k+1 + ∑
a,b

σab
ππ(ξj, π) Ẑab

k + fππ(tk, ξj, π), (12.35)

Here we denote the gradient ∇πφ by φπ for all functions φ = b, σ, f, g and
the Hessians by φππ correspondingly. We repeat the iteration in (12.33) until∣πj i+1

k − π
j i
k ∣ = ∣pi∣ ≤ ǫh. The parameter K denotes the number of iterations.

Theorem 12.4 (Convergence for our concave maximization)
The above iteration converges to the unique global maximum π∗ and the rate
of convergence is quadratic.

Proof 12.5
According to the SMP Conditions 10.9, bπ, σπ, fπ, bππ, σππ, fππ are smooth
functions and locally Lipschitz continuous w.r.t. π. Also, H,g are concave
w.r.t. π. Thus H is smooth in π, ∇πH̃

j
k(⋅), ∇2

ππH̃
j
k(⋅) are locally Lipschitz

continuous and ∇2
ππH̃

j
k(⋅) is positive definite. If we choose h small enough,

such that the starting value π
j 0
k = π

h∗
k+1(ξj) is close enough to πh∗

k (ξj), we can
apply Theorem 12.3 and receive quadratic convergence.

If b, σ, f are too complex to derive the first or second derivatives by hand, one
can use methods of automatic differentiation to calculate them. An introduc-
tion into these methods can be found for example in [Nocedal, Wright 2006]
chapter 8.

12.6 Full CFB-algorithm

Now, let us consider our Concave Problem 6, i.e., equation (10.1) - (10.5)
while the Basic Conditions 10.1 and the SMP Conditions 10.9 hold. Then,
we propose the following controlled forward-backward algorithm in order to
find an approximation π

j
k of the optimal control on every time-space grid

point (k, j) via the following iteration:

∀ξj ∈ Ch
N calculate:

π
j
N = argmax

π∈A
G(tN , ξj, π,∇xg(ξj),∇2

xxg(ξj)),
V

j
N(ξj) = g(ξj),

Y
j
N = ∇xg(ξj),

Z
j
N = ∇2

xxg(ξj)σ(ξj, πj
N).

(12.36)
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Then, ∀k = N − 1, ...,0,

∀ξj ∈ Ch
k,

∀l ∈ Λh
k, calculate:

ξ̂
j
k(πj

k ∣ yl) = Πk+1 [ξj + σ(ξj, πj
k) yl] ,

Ẑ
j
k = ∑

l∈Ld
k

plZh
k+1 (ξ̂jk(πj

k ∣ yl)) .
(12.37)

Then set πj 0
k = π

j
k−1, and

for i = 1, ...,Kj
k,

solve until ∣pi∣ ≤ ǫh :

∇2
ππH̃

j
k(πj i

k )pi = −∇πH̃
j
k(πj i

k ),
π
j,i+1
k = π

ji
k + p

i.
(12.38)

where ∇πH̃
j
k and ∇2

ππH̃
j
k are defined by:

∇πH̃
j
k(π) = bπ(ξj, π)Y j

k+1 + ∑
a,b

σab
π (ξj, π) Ẑab

k + fπ(tk, ξj, π),
∇

2
ππH̃

j
k(π) = bππ(ξj, π)Y j

k+1 + ∑
a,b

σab
ππ(ξj , π) Ẑab

k + fππ(tk, ξj, π). (12.39)

Then set πj
k = π

j,i+1
k .

Now, ∀l ∈ Λh
k , calculate:

ξ
k,j
k+1(πj

k ∣ yl) = Πk+1 [ξj + b(ξj, πj
k) + σ(ξj, πj

k) yl] ∈ Ck+1, (12.40)

and then set:

V
j
k = f(tk, ξj, πj

k)∆thk + ∑
l∈Ld

k

pl V h
k+1 (ξk,jk+1(πj

k ∣ yl)) ;
Z

j
k =

1

∆thk
∑
l∈Ld

k

pl Y h
k+1 (ξk,jk+1(πj

k ∣ yl)) yl⊤,
Y

j
k = ∇xH(tk, ξj, πj

k, Y
j
k+1, Z

j
k)∆thk + ∑

l∈Ld
k

pl Y h
k+1 (ξk,jk+1(πj

k ∣ yl)) .
(12.41)
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After this procedure we can simulate a sample path Xt: We start with
X0 = x ∈ Ch

0 at time t0 and simulate the process Xtk forward using the Euler
approximaton (12.8) and an appropriate interpolation of the stored optimal
controls {πj

k ∈ A ∣ j ∈ Ink } for each k = 1, ...,N .

Note that, in the case σ(x, π) depends on the control π, we use the gen-
erator G (11.29) to solve the optimization problem at terminal time T . If
σ(x) is independent of π, we first set up YT and ZT and then optimize overH.

12.6.1 Comments

A key point of our CFB algorithm is that we approximate V , Y , and Z back-
wards in time via (12.41). In contrary, the dynamic programming scheme
approximates only V backward in time, based on the DP equation (11.1). By
doing so, we are able to exploit the additional information provided in Y and
Z - the first and the adjusted second derivative of V - for the optimization.

In particular, by utilizing the SMP we obtain an optimality condition as an
autonomous equation in (12.1) that depends only on Y and Z. Therefore, the
optimization for π∗k can be performed in a separate step (12.38). Because of

the special choice of (explicit) predictors Yk+1 and Ẑk, this optimization step
is done previously to the backward calculations of Zk, Yk and Vk in (12.41).

As a consequence, the autonnomous optimization procedure does not involve
the calculation of expectation values, which is the crux of the matter in dy-
namic programming (DP). In particular, this feature reveals an structural
advantage in the complexity (operation count) of the CFB algorithm, com-
pared to DP algorithms. We will analyze this performance advantage in
Section 14.

12.7 Summary

In the last section, we proposed a complete stochastic algorithm (12.36) -
(12.41) to solve optimal control problems through the associated FBSDE
system. By complete we mean that the algorithm explicitly includes the
optimization step. Therefore we call it controlled forward-backward (CFB)
algorithm.

Our main contribution is that we applied an Euler scheme for pure FBSDE
systems, that was pre-studied by [Delarue, Menozzi 2005], and adapted it to
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the case of controlled FBSDE systems, which arise through the Stochastic
Maximum Principle. Therfore we are able to solve a stochastic optimal con-
trol problem through a FBSDE representation.

The significance of our algorithm is that we transfer approxima-
tions of Yt and Zt backwards in time instead of approximations of
Vt. We then exploit the (additional) information provided in Yt

and Zt - the first and the adjusted second derivative of Vt - for the
optimization. This is an alternative to dynamic programming.

As a consequence of the special choice of (explicit) predictors, we can pre-
calculate the optimal control πh∗

k (ξj) in a separate step (12.38), previous
to the backward calculations of Zk, Yk and Vk in (12.41). This is different
to dynamic programming and the performance advantages will be outlined
more precisely in Section 14.

12.8 Extensions

The following extensions can be considered:

● [Zhang, Elliott, Siu 2012] state a SMP for a Markov regime-switching
jump-diffusion model, recently. The CFB algorithm may be extended
to this type of processes. The convergence analysis would be much
harder.

● To allow for constraints on the control variables (and to some extend
on the state variables) in the CFB algorithm, we can use a method for
constrainted optimization instead of the exact Newton line-search. An
example would be the active set method. However, in a discrete time
setting, we can not guarantee to satisfy the state constraints almost
surely, even when we use a constraint optimization. This fact is due to
the stochastic nature of the states.

In general, little is known about problems with state constraints in
stochastic control theory and even less about the SMP; see for example
the discussion in [Yong, Zhou 1999] section 6. In spite of that, using
a fixed finite discretization of the Brownian increments (like a Quan-
tization), one could check the state constraints for every realization
of the state variable in the optimization procedure. If the state hits
the boundary for any realization, the control constaints become active.
This drastically increases the complexity of the problem.
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13 Convergence

In this section we discuss the convergence of our CFB algorithm. Using
a particular choice of grids for the time intervall, the state space and the
Quantization, we can achieve linear convergence in some cases. To obtain
this result, we start with the convergence results of [Delarue, Menozzi 2005]’s
algorithm for pure FBSDE systems and transfer them to our controlled FB-
SDE system. The outline is as follows.

In Section 13.1, we choose the discretization for time, state space and Quan-
tization, which is crutial for convergence analysis. In Section 13.2, we state
[Delarue, Menozzi 2005]’s convergence results for a pure FBSDE system,
which basically involve the transfer of PDE regularity estimates to the stochas-
tic case. In Section 13.3, we show how the estimates can be transfered from
the pure FBSDE case to our Concave (stochastic optimal control) Problem
6. In particular, we introduce additional conditions to the coefficients b, σ,
f and g in order to apply the results from the pure FBSDE case. In sec-
tion 13.4, we comment on possible relaxations of these additional conditions
such that the convergence analysis still holds. We close with a summary
and state other possible extensions of our CFB algorithm which can improve
convergence.

13.1 Choice of the grids

In general, the convergence of an algorithm crucially depends on the choice of
the discretization. Therefore, we specify fixed time, space and Quantization
grids before we start with the convergence analysis.

13.1.1 Time grid

Let us fix the scalar approximation parameter h > 0 and consider an equidis-
tant time grid ∆thk = h, for all 0 ≤ k ≤ N :

t0 ∶= 0, t1 ∶= h, tk ∶= kh, tN ∶= T. (13.1)

Note that we used our approximation parameter h as time step size. There-
fore, all further discretization parameters are orientated to the time step size.
However, sometimes we drop the index h in order to keep notations clear and
simple.
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13.1.2 Spatial grid

For a fixed parameter δh > 0, we choose Rh > 0 and ρh > 0 as multitudes of
δh and define the spatial grids on every time point tk by:

Ch
k = δZn ∩∆ρ, ∀0 < k ≤ N,

Ch
0 = δZn ∩∆0, k = 0,

(13.2)

where:
∆ρ
∶= {ξ ∈ Rn ∣∀1 ≤ i ≤ n, −(R + ρ) ≤ ξi ≤ R + ρ} . (13.3)

So Ch is basically a Cartesian grid of a n-dimensional cube in Rn. The
radius of Ch

0 in each coordinate is R and the radius of Ch
k is R + ρ for all

k > 0. The minimal radius R bounds the area on which we look for solutions.
The extended radius R + ρ is needed to take the influence of outside points
into account. Thus, ρ regulates the truncation error. Using this Cartesian
grid, the i’s coordinate of the projection mapping Πk[⋅] in (12.17) is given,
for every ξ inside the grid, by:

(Πk[ξ])i = δ ⌊δ−1ξi + 1/2⌋ . (13.4)

In literature, Πk[⋅] is sometimes called nearest neighbor method. Note that
the number of grid points for Ch

k is Mk = ∣Ink ∣ = (2R+ρ

δ
+ 1)n. Since Mk is

constant for all k > 0, we denote it simply by M .

13.1.3 Quantization grid

Remember that the Quantization grid Λh
k = {ylk ∈ Rd ∣ l ∈ Ld

k} (12.14) is the
finite support of the discrete Brownian increment ∆W h

k . In our discretization,

we use a constant Quantization grid Λh for all 0 ≤ k ≤ N . Therefore, let L̃h ∈ N
denote a fixed number and let us define a partial grid in one dimension by:

Λ̃+ = { 1
L̃
,
2

L̃
, ...,

L̃ − 2

L̃
,
L̃ − 1

L̃
,1,

L̃

L̃ − 1
,

L̃

L̃ − 2
, ...,

L̃

2
, L̃} .

Then, our d-dimensional Quantization grid Λh is given by:

Λh = [−Λ̃+ ∪ Λ̃+]d =∶ {yl ∈ Rd ∣ l ∈ Ld} , (13.5)

where Ld is a d-dimensional index set. The number of Quantization points
is Ld = ∣ Ld ∣ = 2d(2L̃h − 1)d. So L = 4L̃h − 2.
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For the fixed Quantization grid Λh, we can calculate the associated proba-
bility weights:

P h = {pl , l ∈ Ld} , (13.6)

once for all k, by using a Monte Carlo method and the nearest neighbor
method as projection mapping onto the grid Λh. For this choice of Quanti-
zation, [Delarue, Menozzi 2005] showed that for every p ≥ 1:

E [∣yl(∆W h) −∆W h∣p]1/p ≤ Cp,d h
1/2L−1/d, (13.7)

where Cp,d is a constant only depending on the dimension of the Brownian
motion d and the p-distortion of the projection ∆W h onto the finite grid Λh

in (12.16). Note that other optimal grids can be used for the Quantization, as
long as they fulfill the estimate (13.7). Now we can analyze the convergence
of the CFB algorithm for this grid choice.

13.2 Convergence of the pure FBSDE case

Let us consider the following pure FBSDE system:

dXt = b(Xt, Yt, Zt)dt + σ(Xt, Yt)dWt, X0 = x ∈ Rn,

dYt = f̃(X̂t, Yt, Zt)dt +ZtdWt, YT = g̃(XT ), (13.8)

where, b, f̃ , g̃ ∈ Rn, Wt is a d-dimensional Brownian motion and σ,Zt ∈ Rn×d

are matrices. Note that σ is independent of Zt here. The consequences of
this simplification in view of our optimal control problem are pointed out in
the next paragraph.

The following theorem holds when we apply our CFB algorithm (12.36) -
(12.41) in Section 12.6 to the pure FBSDE system (13.8) with the above
discretization (13.1) - (13.6). In the pure FBSDE case, the optimization step
(12.38) - (12.39) of the CFB algorithm can be neglected.

Theorem 13.1 (Convergence FBSDE)
Assume b, σ, f̃ and g̃ are bounded w.r.t x, have at most linear growth w.r.t. y, z,
and are uniformly Lipschitz continuous w.r.t x, y, z. Also assume that σσ⊤

is positive definite and g̃ is bounded in C2+α(Rn) for α > 0. Then, for p ≥ 2,
there exist constants c,C1 and C2, only depending on p, T and other known
parameters, such that, for h < c, δ2 < h, L−2/d < h and ρ ≥ 1:

sup
ξ∈Ch

0

∣Yt0 − Y
h
0 ∣2 ≤ C1 E2(global), (13.9)
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and, where τ is the first exit time of Xh
t leaving the radius R+ρ of the spatial

grid Ch
τ :

E [ sup
k∈{1,...,N}

∣Xtk −X
h
k ∣2 1{tk=τ}] +E [ sup

k∈{1,...,N}
∣Ytk − Y

h
k ∣2 1{tk=τ}]

+h
N−1

∑
k=0

E [∣Ztk −Z
h
k ∣2 1{tk<τ}] ≤ C2 E2(global),

(13.10)

where E2(global)
= E2(time) +E2(space) +E2(trunc) +E2(quantiz) +E2(gradient)
= h +h−2δ2 +

R2

(R+ρ)2 +h−1L−
2

d +hp+ d
2
−1L−

2p

d δ−2p−d.

The proof can be found in [Delarue, Menozzi 2005] theorem 4.1, theorem 4.2
and theorem 4.3. for the case that f̃ , g̃, Yt ∈ R1, Z ∈ R1×d and d = n.

13.2.1 Multi-dimensional case

In order to transfer the results to the multi-dimensional case n > 1, note that
the fundamental theorem used in their convergence analysis is the Hölder
regularity for parabolic PDEs, theorem 2.1. It states that for u(t, x) = Y t,x

t :

∣u(t, x)∣ + ∣∇xu(t, x)∣ + ∣∇2
xxu(t, x)∣ + ∣∂tu(t, x)∣

+ sup
t′∈[0,T ],t≠t′

[∣t − t′∣−1/2 ∣∇xu(t, x) −∇xu(t′, x)∣] ≤ C,
(13.11)

where C > 0 is a constant. Since this Hölder regularity and Gronwall’s lemma
also holds in n-dimensions, [Delarue, Menozzi 2005]’s convergence analysis
can be transfered to the case when Y ∈ Rn.

Moreover a change from d = n to d ≤ n affect only their lemma 6.3. and
imply no difficulties. In contrast, the Quantization error E2(quantiz) reduces
to h−1L−

2

d ≤ h−1L−
2

n for d ≤ n.

13.2.2 Choice of discretization parameter

The referenced paper provides more details about the nature of the different
errors E2(time), E2(space), E2(trunc), E2(quantiz) and E2(gradient). We do
not repeat them here. Instead, let us set:

ρ = Rh−
1

2 , δ = h
3

2 , L−
2

d = h2+
(d+2)

p . (13.12)
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13 CONVERGENCE

Then we obtain:

E2(global) = h + h + h
1

(1 +√h)2 + hh
(d+2)

p + h ≤ 5h. (13.13)

Therefore, we can provide the following corollary.

Corollary 13.2 (Rate of convergence)
Using the parameterization (13.12), the rate of convergence for Xh

k → Xtk

and Y h
k → Ytk is h, in the sense of (13.9) and (13.10) inside the boundaries

of the spartial grid Ch
k.

13.3 Convergence of an uncontrolled-diffusion case

Now, let us transfer the convergence results from the previous pure FBSDE
case to the stochastic optimal control case when the diffusion is not con-
trolled, i.e., σ is independent from π. Therefore, let us consider our Concave
Problem 6 (Section 10.4) and its Hamilton function:

H(t, x, π, y, z) = b(t, x, π)y + tr[σ(t, x)⊤z] + f(t, x, π),
∇πH(t, x, π, y) = ∇π (b(t, x, π)y) +∇πf(t, x, π),
∇2

ππH(t, x, π, y) = ∇2
ππ (b(t, x, π)y) +∇2

ππf(t, x, π).
It is clear that ∇πH(t, x, π, y) and ∇2

ππH(t, x, π, y) are independent of z when
σ(t, x) is independent of π. In consequence, the optimization step (12.38) -
(12.39) of the CFB algorithm does not involve the adjoint variable Zt and
we can define the optimal control without loss of generality at z = 0 by:

π∗(t, x, y) ∶= argmax
π∈A

H(t, x, π, y,0). (13.14)

As a result, by using our CFB-algorithm from Section 12.6 with an exact
optimization and the discretization from Section 13.1, the following theorem
holds.

Theorem 13.3 (Convergence uncontrolled diffusion)
Consider the Concave Problem 6 (Section 10.4) and let p ≥ 2. Additionally
assume that:

1. b, σ, f do not explicitly depend on time,

2. b is linear w.r.t (x, π), i.e., b is of the form b(x, π) = Ax +Bπ +C,
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13.3 Convergence of an uncontrolled-diffusion case

3. σ is independent of π and linear w.r.t. x,

4. ∇xf has at most linear growth w.r.t. π,

5. π∗ depends linearly on y.

Then, the convergence results of Theorem 13.1 hold for Xt, Yt and Zt. In
particular, if we choose the parameters δ, ρ,M according to (13.12), then the
rate of convergence for Xh

t → X̂t and πh
t → π∗t is h inside the spatial grid Ch

t .

Proof 13.4
First, we note that the problem admits a unique solution due to Theorem 10.4
as a special linear case. Second, the problem’s parameters have the following
properties:

● g: due to the Basic Conditions 10.1, g has at most quadratic growth
and is continuous differentiable. Thus ∇xg has at most linear growth
w.r.t. π and is bounded in C2(Rn).
● σ: due to the SMP Conditions 10.9, σσ⊤ is positive definite. By as-
sumption, σ is independent of π and linear w.r.t. x.

● b: By assumption, b is linear w.r.t (x, π). Together with the assumption
that π∗(t, x, y) has at most linear growth w.r.t. y, we get that b is linear
w.r.t. y.

● ∇xH: since b is linear w.r.t. (x, π), bx is independent of π. By assump-
tion, σx is independent of π and fx has at most linear growth w.r.t. π.
Together with the assumption that π∗(t, x, y) has at most linear growth
w.r.t. y, we get that ∇xH has at most linear growth w.r.t. y and z.

● ∇xH: due to Conditions 10.1, f has at most quadratic growth w.r.t. x
and it is continuous differentiable. Thus ∇xH has at most linear growth
w.r.t. x.

Using these properties, we can apply Theorem 13.1 to the FBSDE system of
the control problem (12.1), which is coupled through an optimality condition.
Moreover, since π∗(t, x, y) has at most linear growth w.r.t. y and we assume
an exact inner optimization, we can transfer the convergence analysis from
Xh

t and Y h
t to πh

t . qed.
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13 CONVERGENCE

Comments

When σ does not depend on π, ∇πH does not depend on z and therefore the
gradient error E2(gradient) in (13.10) disappers.

We already defined growth and global Lipschitz conditions in our Concave
Problem 6 through Conditions 10.1 and 10.9. Considering these conditions
together with the compactness and the convexity of the control set A, the
additional linearity assumptions 2 and 3 in Theorem 13.3 are neglectable. In
particular, when σ is independent of π, the coefficients b and σ do not depend
on the adjoint variable Zt. Moreover, [Delarue, Menozzi 2005]’s lemma 6.3
(and all connected statements) rely on the boundedness of the drift b w.r.t
y. Since π ∈ A and A is compact, b is already bounded in y.

Considering assumption 1 in Theorem 13.3, [Delarue, Menozzi 2005] stated
(but did not prove) that their convergence analysis should hold for time de-
pendent b, σ and f , too. Therefore, we make the following statement without
a rigorous proof.

Statement 13.5 (Convergence uncontrolled diffusion 2) Consider our
Concave Problem 6 (Section 10.4) and let p ≥ 2. Additionally assume that:

1. σ is independent of π,

2. π∗ depends linearly on y.,

3. ∇xf has at most linear growth w.r.t. π.

Then the results of Theorem 13.3 hold. In particular, our CFB algorithm
(12.36) - (12.41) in Section 12.6 obtain linear convergence when h → 0 for
Xh

t →Xt and πh
t → π∗t inside the spatial grid Ch

t .

Note that we did not analyze the effect of the optimization error ∣π∗tk − πh
k ∣

to the overall convergence. Since b and ∇xf have at most linear growth
w.r.t. π, the above convergence result should hold until ∣π∗tk −πh

k ∣ < ch, where
the constant 0 ≤ c ≤ 1 is small enough.

13.4 Convergence for the general case

Little is known for the case when the diffusion is controlled, i.e., σ(x, π)
depends on π. We remark that a general proof for the existence and con-
vergence in the controlled diffusion case would be analogous to proving the
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existence, the uniqueness of a fully nonlinear PDE and the according con-
vergence of the algorithm. Such a proof is far beyond the scope of this thesis.

Nevertheless, our CFB algorithm can be applied to controlled diffusion prob-
lems without any changes. Doing so, the CFB algorithm provides a strategy
to calculate a best-known optimized control πh that is likely to be close to an
optimal control, if it exists.

13.5 Summary

● For a subclass of linear-concave stochastic optimal control problems
with uncontrolled diffusion, the convergence of our proposed CFB algo-
rithm (12.36) - (12.41) in Section 12.6 can be rigorously proved through
Theorem 13.3.

● For the subclass of Concave Problems 6 (Section 10.4) with uncon-
trolled diffusion, the convergence analysis holds through Statement
13.5, too.

● Little is known about the convergence of the CFB algorithm for general
Concave Problems with controlled diffusion but technically, it could be
applied without any changes.

● In the convergence analysis, five different type of errors can be distin-
guished; the error due to:

– time discretization E2(time),
– space discretization E2(space),
– truncation of the state space E2(trunc),
– discrete quantization E2(quantiz),
– gradient approximation E2(gradient).

● Using an appropriate choice of the discretization parameters as in
(13.12), the convergence rate of our CFB algorithm to the optimal so-
lution (X̂t, π

∗

t ) (in the sense of (13.9) and (13.10)) is linear in h inside
the boundaries of the spartial grid Ch when h→ 0.

13.5.1 Possible improvements

In order to improve the convergence we propose to implement an inner loop
that calculates πj

k, V
j
k , Y

j
k and Z

j
k in (12.37) - (12.41) multiple times for all

ξj ∈ Ch
k in an iterative way, before continuing with the next time step k − 1.
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14 Comparison and advantages between the

CFB scheme and the DP scheme

In this section we compare the complexity of our controlled forward-backward
(CFB) scheme with the dynamic programming (DP) scheme through an op-
eration count. We choose the DP scheme for comparison because it is a
stochastic approach like the CFB scheme and therefore more comparable
then a discrete approach, see Section 11.1.1. Moreover, using the right choice
of discretization parameters (e.g. ∆t and ∆x), both schemes have the same
convergence rate. We refer to [Pages, Pham, Printems 2004] for a general
DP scheme using Quantization.

It may be clear how to compare the performance of different techniques of the
same numerical scheme, but there is no standard way to compare the general
complexity of different numerical schemes. We choose the operation count
because it: 1) does not depend on a specific problem and parameters, 2) it is
independent of the used hardware (CPU performance, number of cores, cash
memory) and 3) it is independent of the used software library and coding
technique. In contrast, an operation count is an adequate measure for com-
plexity because it reveals the order, with which each discretization parameter
contributes to the numerical effort (computational cost).

On one hand, we obviously cannot state that our CFB algorithm (SMP
approach) superiors a DP algorithm (DPP approach) in general. On the
other hand, we can definitely state that there is a structural difference in the
number of operations between both schemes, according to the theoretical
considerations in this section. In consequence, for certain problem classes,
the SMP approach performs better than the DPP approach. A practical
example of this performance improvement is presented in the next Section
15.

14.1 Operation count

We briefly recall the parameter settings. Let n denote the number of state
dimensions, Xt ∈ Rn, let d denote the number of uncertainties, Wt ∈ Rd and
let r denote the dimension of the control space πt ∈ Rr. Furthermore, let
N denote the number of time steps and let M denote the fixed number of
discretization points of the spatial grid Ch

k for each dimension, ∣Ink ∣ =Mn for
all k = 1, ...,N . Let L denote the fixed number of discretization points for the
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14.1 Operation count

Quantization grid Λh
k for each dimension, ∣Ld

k∣ = Ld for all k = 1, ...,N .53 Last
but not least let K denote the average number of steps in the line-search that
are necessary to reach the accuracy level ǫh for the optimal control values.

Since both schemes are stochastic approaches, we suppose the same Quanti-
zation method (Section 12.5.1) with the same number of Quantization points
L in order to calculate the appearing expectation values. Moreover, we sup-
pose the same optimization method (Section 12.3.1) with the same average
number of iterations K for the inner optimization step in both schemes. Note
that advanced techniques like iterative grids or advanced Monte Carlo meth-
ods can be applied to both schemes in a similar way. Thus, these advanced
techniques do not affect our structural comparison of complexity.

14.1.1 Operation count for the DP scheme

Now we calculate the number of operations for a dynamic programming al-
gorithm, where the Quantization method of Section 12.5.1 and the Newton
line-search method of Section 12.3.1 are used. The discrete backward itera-
tion of the DP scheme is given by:

For all k = N − 1, ...,0,

for all j = 1, ...,Mn,

V
j
k =max

π∈A
(f(tk, ξj, π)∆thk + ∑

l∈Ld

pl V h
k+1 (ξk,jk+1(π ∣ yl))) , (14.1)

where:

ξ
k,j
k+1(π ∣ yl) = Πk+1 [ξj + b(ξj, π) + σ(ξj, π) yl] ∈ Ck+1, ∀l ∈ Λh

k , (14.2)

Equation (14.1) imposes (on average) K line-search steps in order to find
an approximation of the optimal control π∗. One line-search is executed for
all Mn grid points at each of the N time steps. Thus, the DP algorithm
executes N ⋅Mn ⋅K line-search steps to solve the optimization (14.1).

For each line search step, the exact Newton method builds up a system
(12.32), where H = f(tk, ξj , π)∆thk + ∑l∈Ld pl V h

k+1
(ξk,jk+1(π ∣ yl)) is the objec-

tive function (see (14.1)). The gradient ∂πH in (12.32) has r entries and
the Hessian ∂2

ππH has r2 entries. When each entry is approximated through

53There is no structural difference between CFB and DP through the choice of a Quan-
tization method, a Markov-chain approximation or a Monte Carlo method.
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finite differences of H, the DP algorithm evaluates H 2(r2 + r) times.

One evaluation of H imposes Ld simulations of ξk,jk+1(π ∣ yl) (see (14.2)) to
evaluate the expectation E[V h

k+1] (the second term ∑l∈Ld pl V h
k+1 on the right

hand side of equation (14.1)). The number of operations to evaluate the
first term f∆thk are neglectable. So one evaluation of H imposes cLd (c > 1)
operations. In summary, the DP algorithm imposes:

#operationsDP = c ⋅N ⋅Mn
⋅Ld
⋅K ⋅ r2, c > 1. (14.3)

Note that we do not consider the costs for the solution of the optimization
i.e., the linear system (12.32). These costs should be of similar order for the
DP and the CFB scheme. When a direct optimization (see Section 11.1.1)
is used, the control space is discretized into K̃r points. For the operation
count, we only need to replace K ⋅ r2 in (14.3) by K̃r then.

Now let us consider the choice of the discretization parametersN , M and L in
order to obtain a linear convergence rate. In [Pages, Pham, Printems 2004],
equation 5.3 shows the convergence rate of the DP scheme using quantization.
When we set M ∼ N2 and L ∼ N2 (this is δ ∼ 1/n2 and N ∼ n2 in the paper’s
notations) then the scheme converges linearly in h = ∆t = T /N . In view of
the operation count (14.3) we obtain:

#operationslinDP = c ⋅N2n+1
⋅Ld
⋅ K̃r. (14.4)

14.1.2 Operation count for the CFB scheme

Now let us consider our controlled forward-backward algorithm of Section
12.6. As for the DPP approach, the backward iteration calculates expecta-
tion values E[⋅] (17.6) for all Mn grid points at each of the N time steps.
There are (1 + n + nd) expectation values (for V , Y , Z) in (17.6) and each
expectation imposes cLd operations to simulate ξk,jk+1(π ∣ yl) (14.2). Thus, the
CFB algorithm executes c ⋅N ⋅Mn ⋅ (1 + n + nd)Ld operations so far.

The CFB algorithm also performs K line-search steps for all Mn grid points
at each of the N time steps, in order to approximate the optimal control
π∗. Again, each Newton line-search step builds up a linear system (12.38)
with (r2 + r) entries. Each entry is calculated via (12.35) and thus imposes
operations in the order of n⋅d. So the optimization needs c⋅N ⋅Mn⋅K ⋅(r2+r)⋅nd
operations. Adding both numbers, the CFB algorithm imposes:

#operationsCFB = c ⋅N ⋅Mn
⋅ nd(Ld

+Kr2), c > 1. (14.5)
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When using a direct optimization, we replace K ⋅ r2 in (14.5) by the number
of points K̃r in the control space A ⊂ Rr.

Now let us consider the discretization parameters N , M and L according to
(13.12). This means that M ∼ N2 and L ∼ N . By using these parameters,
equation (13.13) shows that the CFB scheme converges linearly in h = ∆t =
T /N . In view of the operation count (14.5) we obtain:

#operationslinCFB = c ⋅N2n+1
⋅ (Ld

+ K̃r). (14.6)

14.1.3 Comparison

By comparing (14.4) and (14.6) we see the difference between the DP and
the CFB schemes in terms of complexity. The separate optimization of the
Hamiltonian H (12.28) in the SMP scheme leads to an addition of K̃r for
every grid point. In contrast, the optimization (14.1) of the value function’s
expectation E[V ] in the DP scheme leads to a multiplication with K̃r for
every grid point.

In return, the CFB scheme needs to calculate (1+n+nd) expectation values
for V , Y and Z. However, n and d are relatively small in comparison to
the number of discretization points K̃r. In summary, our comparison of
complexity between the DP and the SMP schemes illustrates the advantages
of the latter when h→ 0 (N →∞) if:

Ld
+ K̃r < Ld

⋅ K̃r. (14.7)

It is clear that the CFB scheme has significantly lower computational costs
if a nontrivial number of optimization steps K̃ are required. Once again,
the advantage of the CFB algorithm is that we do not need to optimize over
the value function’s expectation E[V ], which requires the recalculation of
the expectations for each optimization step K. Instead, one calculates the
expectations for V , Y and Z once and then optimize the Hamiltonian, which
is a much simpler procedure. In particular, the optimization does not include
the calculation of expectations.

14.2 Additional advantages

In many applications, the SMP approach has additional advantages compared
to the DPP approach:

● The DPP approach deals with the value function V while the SMP
approach deals with the adjoint functions Y and Z, the first and an
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adjusted second derivative of V , respectively. Remember, V is not
needed at all for the calculation of the optimal control π∗ in the CFB
algorithm.

If V is smooth but non-linear w.r.t x, the derivatives Y and Z may
be simpler (flatter) functions w.r.t x than V itself. It is clear that
the projection mapping Πk+1 in (12.40) - which projects the simulated
ξk+1 ∉ Ch

k+1 onto the grid Ch
k+1, also known as nearest neighbor method

- yields better results for flatter functions. This is also true when an
interpolation method is used instead of the projection mapping.

● Moreover, if the functions Y and Z are flatter (closer to linear) w.r.t x,
then a (multi-dimensional) linear extrapolation for points outside the
truncated grid Ch

k+1 yields better approximations and the truncation
error is smaller.

We do not show these advantages theoretically since they depend on the
specific parameters of the stochastic optimal control problem. However, we
will see the advantage of the linear inter- and extrapolation in our case studies
on portfolio optimization in Part IV. In portfolio optimization and other
applications in finance, the value function V is often increasing and concave
w.r.t. x (wealth) due to the risk aversion of the agent. Thus, the derivatives
of V are flatter (almost linear) functions.
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15 Application and performance evaluation

of the CFB-algorithm to Swing option val-

uation under market feedback

In this section, we compare the performance between our CFB scheme and
the DP scheme for a problem from finance. In the previous Section 14, we
showed through an operation count, that there is a structural difference in the
complexity between both schemes. Now we support these theoretical analy-
ses with results from application. We choose an easy example from finance
such that the reader can keep the focus on the numerical scheme instead of
dealing with issues of the problem. In particular, we consider the valuation
of swing options with penalties. These options are standard instruments in
commodity and energy markets, see Section 1.3.2 in the preliminaries.

The outline is as follows. In Section 15.1, the case of a non-controlled state
process (small investor without market feedback) is presented where the DP
algorithm performs quite well. Then, in Section 15.3, the case of a controlled
process (large investor with market feedback) is presented where the CFB
algorithm yields a huge performance improvement. This section also gives a
first insight on how to apply the CFB algorithm in practice and how to deal
with implementation issues.

15.1 Case 1: small investor

A Swing option gives the holder the opportunity to buy an underlying asset
at time t with price St for a fixed price (strike) K over the whole exercise
horizon [0, T ]. The buyer is free to choose the amount of assets (volume)
πt to buy at each time point t. Nevertheless, the option has a local target
volume a for each time t and a global target volume A (for the total amount
of assets requested over [0, T ]). If the requested volume differs from the tar-
gets, local and global penalties must be paid, respectively. For more details
on Swing options see Section 1.3.2 in the preliminaries.

Now, let [0, T ] denote the exercise horizon of the Swing option, St ∈ R+ the
underlying asset, Qt ∈ R+ the total requested volume until time t and πt ≥ 0
the current requested rate. Let us assume that the underlying’s price follows
a geometric Brownian motion. In the case of a small investor, we assume
that the request of assets πt has no influence on the price changes dSt.
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Then, the states dynamics are given by:

dSt = µStdt + σStdWt, S0 = x,

dQt = πtdt, Q0 = 0,
(15.1)

where µ,σ > 0. Now, let p(π), P (q) ∶ R+ → R+ denote the local and global
penalties, respectively. We assume that p(π) and P (q) are convex functions.
Let Π denote the set of all admissible control policies:

Π = {{πt, t ∈ [0, T ]} ∣πt is feasible, πt > 0} . (15.2)

Then, for a fixed control policy π ∈ Π, the option’s future payoff starting at
time t ∈ [0, T ] with St = x and Qt = q is given by:

Jπ(t, x, q) = Eπ
t [∫ T

t
e−rs[πs(Ss −K) − p(πs)]ds − e−rTP (QT ) ∣ St = x,Qt = q] ,

(15.3)
where r denotes the ”risk less” interest rate in the market and K denotes
the strike. The price of the Swing option at time t ∈ [0, T ] with St = x and
Qt = q is given by:

v(t, x, q) = sup
π∈Π

Jπ(t, x, q). (15.4)

Now we define the local and global penalty functions of the swing option.
Let a(t) denote the local target volume and A ∶= ∫ T

0
a(t)dt denote the global

target volume. Then the penalty functions are defined by:

p(π) = c(t) (π − a(t))2 , P (q) = C (q −A)2 . (15.5)

where c(t), C > 0. Note that the problem has no state constraints.

15.1.1 Applying the SMP

The problem satisfies the Basic Conditions 10.1 and the SMP Conditions
10.9. The only exception is the fact, that the terminal function g(x, q) =
−e−rTC(q − A)2 is not global Lipschitz continuous w.r.t q but quadratic.
However, the optimal control π∗t stays bounded over the finite time [0, T ] be-
cause the gain functions f, g → −∞ if π∗ →∞. In consequence, QT = ∫ T

0
π∗t dt

is bounded and therefore ∂qg(XT ,QT ) is bounded. Thus the Lipschitz con-
tinuity w.r.t. q is satisfied for the problem.

The Hamilton function is given by:

H(t, x, q, π, yx, yq, zx) = µxyx+πyq +σxzx+e−rt [π(x −K) − c(t) (π − a(t))2] ,
(15.6)
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and its derivatives are:

∂xH = µyx + σzx + e−rtπ,

∂qH = 0,

∂πH = yq + e−rt [(x −K) − 2c(t) (π − a(t))] ,
∂ππH = −2e−rt c(t).

(15.7)

We see that H is concave w.r.t. π, linear w.r.t. x and constant in q, and
the terminal function is concave. Thus the SMP Conditions 10.9 hold and
we can apply the SMP, see Section 11.3. We obtain the following FBSDE
system:

dY x
t = (µY x

t + σZ
x
t + e

−rtπ∗t )dt +Zx
t dWt, Y x

T = 0,

dY
q
t = Z

q
t dWt, Y

q
T = 2 e−rT C (QT −A) .

(15.8)
Since ∂ππH < 0, we obtain the optimal control for the Swing option by setting
∂πH = 0:

π∗t =
ertY

q
t + (St −K)
2c(t) + a(t). (15.9)

The forward equations (15.1) and the backward equations (15.8) build a
FBSDE system that is coupled through the optimality condition (15.9).

15.1.2 Applying the CFB algorithm

Now let us apply the CFB algorithm of Section 12.6 to system (15.1), (15.8)
and (15.9). We define the approximation parameter h, discretize the time
and state space according to Section 13.1 and use the discretization parame-
ters according to (13.12). The optimal control π∗t in (15.9) is linear w.r.t. St

and Yt. Thus the conditions of Theorem 13.3 are satisfied and the CFB algo-
rithm converges linearly w.r.t. to the approximation parameter h. The CFB
algorithm reads:

For all time steps k = N, ...,1,

for all grid points j = 1, ...,M2,
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π
j
k =

erk∆tY
q,j
k+1
+(Sj

k
−K)

2ck
+ ak,

S
k,j
k+1 = µS

j
k∆t + σS

j
k∆Wt,

Q
k,j
k+1 = Q

j
k + π

j
k,

Zx
k =

1
∆t
E[Y x,j

k+1∆Wk ∣Sj
k, Q

j
k],

Y
x,j
k = (µY x,j

k+1 + σZ
x,j
k + e

−rtπ
j
t )∆t +E[Y x

k+1 ∣Sj
k, Q

j
k],

Y
q,j
k = E[Y q

k+1 ∣Sj
k, Q

j
k],

V
j
k = e−rk∆t (πj

k(Sj
k −K) − ck (πj

k − ak)2)∆t +E[Vk+1 ∣Sj
k, Q

j
k].

(15.10)

15.1.3 Implementation issues CFB

● Instead of using the projection mapping Π(⋅) in (13.4) (nearest neigh-
bor method), we implement a linear inter- and extrapolation of the
functions Y x

k+1, Y
q
k+1 and Vk+1 to calculate their values at the simulated

points Sk,j
k+1.

● The time step size is ∆t = h. We choose a larger state grid step size
∆S = ∆Q = h1/2 than in (13.12) (h3/2) because of the linear inter- and
extrapolation.

● We use the constant Quantization ∆W and the grid boundary extension
ρ according to (13.12). The space and Quantization grids are equal for
every time point k = N, ...,1.

● We implement a second inner iteration, which we introduced in Section
13.5.1 in order to improve the convergence.

● The algorithm is executed on an eighth core machine. The paralleliza-
tion is done by sharing the space grid between the cores.

● The values of Y x
k+1 and Zx

k+1 in (15.10) are not necessary to obtain the

optimal control πj
k. Therefore, the calculation of Y x

k+1 and Zx
k+1 could

be omitted in the algorithm.

● The test problem’s parameters are: T = 2, r = 0.01, µ = 0.05, σ = 0.2,
a = 5, K = 3, c = 0.1, C = 0.2.
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15.1 Case 1: small investor

15.1.4 Performance evaluation CFB

In order to compare the performance of the DP and the CFB algorithm, let
us consider the [4,6] × [4,6] cube in the S ×Q space as the area of interest.
First, using a fine grid, we calculate approximative ”true solutions” V ∗ and
π∗. Then, we calculate approximations Ṽ and π̃ for several coarser grids
i = 1, ...,9 with approximation parameters hi and compare the maximum
absolute error over [4,6] × [4,6] for time t = 0:

ǫV =max(x,q)∈[4,6]×[4,6] ∣V ∗0 (x, q) − Ṽ0(x, q)∣,
ǫπ =max(x,q)∈[4,6]×[4,6] ∣π∗0(x, q) − π̃0(x, q)∣. (15.11)

Table 10 shows the calculation times and the errors of each test run.

i hi time ǫV ǫπ

1 0.1000 2.41s 3.1944 0.0364

2 0.0500 10.0s 0.5006 0.0238

3 0.0333 27.0s 0.0662 0.0145

4 0.0250 57.4s 0.0292 0.0093

5 0.0200 103s 0.0192 0.0060

6 0.0167 178s 0.0127 0.0038

7 0.0143 286s 0.0079 0.0022

8 0.0125 442s 0.0039 0.0010

* 0.0111 636s - -

Table 10: Calculation time and error ǫV , ǫπ for the CFB algorithm on the
cube (S,Q) ∈ [4,6] at time t = 0 for the approximation parameter hi, i =
1, ...,9.

15.1.5 Dynamic programming

We presented the dynamic programming principle in Section 11.1 and dis-
cussed the numerical treatment in Section 11.1.1. Our implementaion of
the DP algorithm is based on [Pages, Pham, Printems 2004], which we dis-
cussed in Section 14.1.1. Therefore, let us discretize an appropriate interval
in the control space R+, where πo, o = 1, ...,O denote the grid points. Using
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the same notation as in the previous paragraphs, we derive the DP algorithm:

For all time steps k = N, ...,1,

for all space grid points j = 1, ...,M2,

for all control grid points o = 1, ...,O,

S
k,j
k+1 = µS

j
k∆t + σS

j
k∆Wt,

Q
o,j
k+1 = Q

j
k + π

o
k,

V
o,j
k = e−rk∆t (πo(Sj

k −K) − ck (πo − ak)2)∆t +E[Vk+1 ∣Sj
k, Q

j
k, π

o
k].
(15.12)

Then we set:

V
j
k =max

o
V

o,j
k . (15.13)

15.1.6 Implementation issues DP

● [Pages, Pham, Printems 2004] used a projection mapping (nearest neigh-
bor method) similar to the projection mapping Π(⋅) in (13.4). Here,
we implement a linear inter- and extrapolation of the function Vk+1 to
calculate its values at the simulated points Sk,j

k+1, instead.

● The time step size is ∆t = h. We choose a larger space grid step
size ∆S =∆Q = h1/2 than [Pages, Pham, Printems 2004] recommended
(h3/2 see Section 14.1.1) because of the linear inter-, extrapolation.

● We use the constant Quantization ∆W and the grid boundary extension
ρ according to (13.12). The space and Quantization grids are equal for
every time point k = N, ...,1.

● The algorithm is executed on an eighth core machine. The paralleliza-
tion is done by sharing the space grid between the cores.

● We use the same parameters as for the CFB algorithm: T = 2, r = 0.01,
µ = 0.05, σ = 0.2, a = 5, K = 3, c = 0.1, C = 0.2.

● After a few test calculations we obtained that the optimal control π∗t
does not exceed the value πmax ∶= Smax ∗ 6 where Smax ∶= 6 + ρ is the
maximal point of the spaced grid. Therefore we set the control interval
to [0, πmax].
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15.1 Case 1: small investor

● Since we choose to discretize the control space in a direct approach (see
Section 11.1.1) in order to solve the optimization, we set the control
grid step to ∆O = 2∆S.

Iteration improvement for the DP

We implement the following iteration improvement for the DP algorithm
(15.12). Let us assume that the backward algorithm is at time step tk
and grid point Sj. First we pre-calculate the expectation values E

j
k[V l] ∶=

Ek [Vk+1 ∣Sj
k, Q

l
k, π = 0] for all grid points Ql, l = 1, ...,MQ. When we proceed

with the above DP algorithm on every grid point Ql l = 1, ...,MQ and every
control grid point πo

k, o = 1, ...,O, we can use the pre-calculated values Ej
k[V l]

to interpolate Ek [Vk+1 ∣Sj
k, Q

l
k, π

o
k
] in (15.12). This improvement is possible

because only the ODE for the volume Q in (15.1) is controlled (it depends
on π) but the SDE for the price process St is not controlled.

15.1.7 Performance evaluation DP

Again, let us consider the [4,6]× [4,6] cube in the S ×Q space as the area of
interest. We use the same approximative ”true solutions” V ∗ and π∗ as for
the CFB algorithm in Section 15.1.4 and calculate approximations Ṽ and π̃

for several grids i = 1, ...,6 with approximation parameters hi and compare
the maximum absolute error (15.11) over [4,6] × [4,6] for time t = 0. Table
11 shows the calculation times and the errors of each test run.

i hi time ǫV ǫπ

1 0.1000 2.82s 11.5590 5.4185

2 0.0500 13.7s 1.5602 1.2718

3 0.0333 39.8s 0.2576 0.6084

4 0.0250 87.1s 0.0463 0.3901

5 0.0200 162s 0.0136 0.3363

6 0.0167 280s 0.0070 0.3283

Table 11: Calculation time and error ǫV , ǫπ for the DP algorithm on the cube(S,Q) ∈ [4,6] at time t = 0 for the approximation parameter hi, i = 1, ...,8.
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15.2 Performance comparison between CFB and DP

Figure 38 shows the error ǫV (15.11) in relation to the calculation time for
the CFB and the DP algorithm on a logarithmic scale. We see that the
performance of both algorithms are quite similar. In particular, their error
- calculation-time relations have the same slope when h decreases. The DP
algorithm performs slightly better for small h than the CFB algorithm.

Since the stochastic variable St does not depend on the control π, the algo-
rithms do no need to repeat the path simulations of the stochastic variable St

for different control values πo, o = 1, ...,O. Therefore, we can implement an
iteration improvement for the DP algorithm which we described in Section
15.1.6. The CFB performance would not be affected by a similar iteration
improvement because it does not variate the control π but calculate it directly
through (15.9). In consequence, the DP algorithm and the CFB algorithm
have similar complexity (operation count), see Section 14.
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Figure 38: Comparison of the error ǫV in relation to the calculation time
between the CFB and DP algorithm on the cube (S,Q) ∈ [4,6] at time t = 0
for the approximation parameter hi, i = 1, ...,8.

15.3 Case 2: big investor with market feedback

Now we assume that the investor’s trading activity is influencing the market,
i.e., the investors strategy has an impact on the evolution of the asset prices.
This effect is called market feedback and especially observable in commodity
markets because the prices of physical goods depend on supply and demand,
see our discussion in Section 2 in the preliminaries. If demand is lower or
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15.3 Case 2: big investor with market feedback

higher than the expected demand, the market has an over supply or a sup-
ply shortage, respectively. We assume that the underlying’s price increases
linearly when the option’s holder requests more volume than the expected
volume a. It decreases when the option’s holder requests less volume than
expected. Therefore, we replace the SDE (15.1) by:

dSt = (µSt + κ(πt − a))dt + σStdWt, S0 = x,

dQt = πsds, Q0 = 0.
(15.14)

Here, κ > 0 is a fixed weight which describe the impact power of the agent to
the market. We call it market impact or market strength of the trader. In
the test runs we set κ = 0.05. Everything else is equal to case 1 of Section
15.1. The main difference is, that the stochastic variable St is controlled now,
i.e., it depends on the control π.

15.3.1 Applying the CFB algorithm

The extended problem also satisfies the Basic Conditions 10.1 and the SMP
Conditions 10.9. The optimal control π∗t stays bounded if the penalty coeffi-
cient c(t) in (15.5) is high enough compared to the market power coefficient
κ in (15.14). Thus the conditions of Theorem 13.3 are satisfied and the CFB
algorithm converges linearly w.r.t. to the approximation parameter h.

The Hamilton function of the extended problem is given by:

H(t, x, q, π, yx, yq, z1) = µ (x + κ(π − a)) yx + πyq + σxz1
+e−rt [π(x −K) − c(t) (π − a(t))2] , (15.15)

and thus we obtain the FBSDE system:

dY 1
t = (µY 1

t + σZ
1
t + e

−rtπ∗t )dt +Z1
t dWt, Y 1

T = 0,

dY 2
t = Z2

t dWt, Y 2
T = 2 e−rT C (QT −A) ,

(15.16)
with the optimal control given by:

π∗t =
ert (µκY 1

t + Y
2
t ) + (St −K)

2c(t) + a(t). (15.17)

The CFB algorithm is equal to (15.10) but replacing π∗k and Sk+1 with:

π∗k =
erk∆t(µκY 1

k+1+Y
2

k+1)+(Sk−K)
2ck

+ ak,

Sk+1 = µ (Sk + κ(π∗k − a))∆t + σSk∆Wt.
(15.18)
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15.3.2 Performance evaluation CFB

In order to compare the performance of the DP and the CFB algorithm, let
us consider the [4,6] × [4,6] cube in the S ×Q space as the area of interest.
First, using a fine grid, we calculate approximative ”true solutions” V ∗ and
π∗. Then, we calculate approximations Ṽ and π̃ for several coarser grids
i = 1, ...,9 with approximation parameters hi and compare the maximum
absolute errors ǫV and ǫπ (15.11) over [4,6] × [4,6] for time t = 0. Table 12
shows the calculation times and the errors of each test run.

i hi time ǫV ǫπ single op. time

1 0.1000 5.00s 5.0476 0.0206 9,154E-05

2 0.0500 24.4s 1.0460 0.0060 7,513E-05

3 0.0333 67.5s 0.2300 0.0033 7,082E-05

4 0.0250 145s 0.0463 0.0019 7,012E-05

5 0.0200 266s 0.0234 0.0014 7,163E-05

6 0.0167 457s 0.0162 0.0008 7,396E-05

7 0.0143 722s 0.0108 0.0005 7,526E-05

8 0.0125 1121s 0.0054 0.0002 7,831E-05

* 0.0111 1573s - - 8.031E-05

Table 12: Calculation time and error ǫV , ǫπ for the CFB algorithm on the
cube (S,Q) ∈ [4,6] at time t = 0 for the approximation parameter hi, i =
1, ...,9.

The last column shows the calculation time divided by the number of oper-
ations (iterations) according to our operation count (14.5) in Section 14.1:

single op. time =
time

NM2L
.

This is the time needed for a ’single’ operation. Note that K = 0 since the
optimal control is obtained directly through (15.17). We see that the values
are of the same order (around 7.5E − 05) for all test runs i = 1, ...,9. This
supports the fact that our theoretical operation count is a good estimate of
the algorithm’s complexity and thus a performance indicator.
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15.3 Case 2: big investor with market feedback

The calculation times for the market feedback case in Table 12 are approxi-
mately 2 to 2.5 times higher than the calculation times for the case without
market feedback in Table 10. The reason it that the adjoint variables Y x

t

and Zx
t can be neglected in the latter and only the variables Vt and Y

q
t are

considered. In consequence, the number of variables is doubled in the market
feedback case.

15.3.3 Dynamic programming

We use the same algorithm as in Section 15.1.5 but replacing (15.12) with:

S
k,j
k+1 = µ (Sj

k + κ(πo
k − a))∆t + σS

j
k∆Wt,

Q
o,j
k+1 = Q

j
k + π

o
k,

V
o,j
k = e−rk∆t (πo(Sj

k −K) − ck (πo − ak)2)∆t +E[Vk+1 ∣Sj
k, Q

j
k, pi

o
k].
(15.19)

Note that in the market feedback case, we can do an iteration improvement
as in case 1, i.e., pre-calculate the expectations. The reason is that the
stochastic variable St is controlled, i.e., it depends on the control π.

15.3.4 Performance evaluation DP

Again, let us consider the [4,6] × [4,6] cube in the S × Q space and the
approximative ”true solutions” V ∗ and π∗ of Section 15.3.2. We compare
the maximum absolute error (15.11) over [4,6] × [4,6] for time t = 0 for
several grids i = 1, ...,6. Table 13 shows the calculation times and the errors.

i hi time ǫV ǫπ single op. time

1 0.1000 95s 28.6180 13.4540 1,15951E-05

2 0.0500 1,059s 4.6294 3.2666 1,23517E-05

3 0.0333 4,411s 0.9408 1.1027 1,26842E-05

4 0.0250 12,546s 0.2342 0.5093 1,26842E-05

5 0.0200 27,744s 0.0803 0.3838 1,30044E-05

6 0.0167 56,138s 0.0296 0.3300 1,34571E-05

Table 13: Calculation time and error ǫV , ǫπ for the DP algorithm on the cube(S,Q) ∈ [4,6] at time t = 0 for the approximation parameter hi, i = 1, ...,8.
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The last column shows the calculation time divided by the number of oper-
ations (iterations) according to our operation count (14.3) in Section 14.1:54

single op. time =
time

NM2LO
.

Again, all (single op. time) values are of the same order (around 1.27E − 05)
for all test runs i = 1, ...,6. This supports the fact that our theoretical op-
eration count is a good estimate of the algorithm’s complexity and thus a
performance indicator.

The average time of a single operation (iteration) in the DP algorithm (1.27E−
05) is about 6 times faster than the average time in the CFB algorithm
(7.5E−05). The reason is that the CFB calculates multiple variables (V,Y,Z)
(15.10) in each iteration, while the DP calculates only V (15.12).

15.4 Performance comparison between CFB and DP

Figure 39 shows the error ǫV (15.11) in relation to the calculation time for
the CFB and the DP algorithm on a logarithmic scale.
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Figure 39: Comparison of the error ǫV in relation to the calculation time
between the CFB and DP algorithm on the cube (S,Q) ∈ [4,6] at time t = 0
for the approximation parameter hi, i = 1, ...,8.

We see that the slope of the CFB algorithm is still similar to the slope of
the DP algorithm but the CFB algorithm clearly superiors the DP algorithm
in the market feedback case. In particular, to achieve an ǫ ≈ 0.03, the CFB

54Here, the number of control space points is O instead of K.
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algorithm needs about 266s, while the DP algorithm needs about 56138s.
This is a factor of 210.

15.5 Conclusions

The examples show the structural advantage of the CFB algorithm in terms
of complexity (operation count) as we discussed in Section 14.1. In partic-
ular, when the stochastic variable is not controlled, the DP and the CFB
perform similar. When the stochastic variable is controlled, the CFB algo-
rithm superiors the DP algorithm due to lower complexity (operation count).

We also showed that the operation count is a good measure for performance.
We even could measure the minor disadvantage of the CFB algorithm - the
handling of multiple variables - in this example.
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Part IV

Application of the controlled
forward-backward algorithm to
optimal portfolio allocation
In this part of the thesis, we present details about how we applied our con-
trolled forward-backward (CFB) algorithm (12.36) - (12.41) to our model of
optimal portfolio allocation of commodity related assets, in order to obtain
the numerical results of Section 7 and 8. First, in Section 16, we show the
applicability of the CFB algorithm to the stochastic optimal control Problem
2 (5.13) - (5.16). Then, in Section 17, we formulate the CFB algorithm for
the specific case of Problem 2 and finally, in Section 18, we state some imple-
mentation issues. The notation in this part is based on the model’s notation
of Part II.

16 Applicability of the CFB algorithm

In this section, we show the applicability of the CFB algorithm (12.36) -
(12.41) to our continuous time model for optimal portfolio allocation of pro-
duction assets that is defined through Problem 2 (5.13) - (5.16). By appli-
cability we mean that the model must be a Concave Problem 6 (see Section
10.4) in order to apply our CFB algorithm. In particular, the model must
satisfy the Basic Conditions 10.1 and the SMP Conditions 10.9 of Section 5.

In Section 5.3.1 we already showed that the Basic Conditions 10.1 are satis-
fied. We proved the existence of a strong unique solution of the SDEs and the
boundedness of the objective function through Theorem 5.2. In the follow-
ing, we prove that the SMP Conditions hold too. For notational simplicity,
we consider the one asset case with negative exponential utility. The results
can be transfered to the multiple asset case without extensions and they
also hold for other HARA utility function. Now, let us repeat the reduced
continuous-time model for optimal portfolio allocation of production assets,
Problem 2 (5.13) - (5.16) for the one asset case.
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16.1 Definition of the adjoint variables and the Hamilton function

Problem 7 (Continuous-time portfolio alloc. of production assets)
We search for the Ft-admissible, optimal control policy (α∗, χ∗) ∈ R2 × [0, T ],
that maximizes the objective function:

J(0, a, b, c, α,χ) ∶= Eα,χ
0 [∫ T

0
e−δt

1 − e−γχt

γ
dt + e−δT

1 − eγ(AT+BT )

γ
∣ a, b, c] ,

(16.1)
under the state dynamics:

dAt = (µAt + αt) dt + σAt dWt, A0 = a ∈ R+,

dRt = κ (R̄ −Rt) dt + σR dWR
t R0 = c ∈ R,

dBt = (rBt + (Rt −Mt)At

−χt − αt − c2α
2
t ) dt, B0 = b ∈ R,

(16.2)

where:

dWt dW
R
t = ρdt. (16.3)

Note that there are no state constraints and no control constraints in Problem
7 . In Section 7.6, we already showed that the state (short-selling) constraint
and the control constraints of the original Problem 2 (5.13) - (5.16) are au-
tomatically fulfilled through the problem setup.

Note also that we do not consider the maximum operator max(Rt,0) on
the right hand side of the thrid equation for dBt in (16.2) because there is
no theory for non differentiable terms. However, since the term max(Rt,0)
is continuous, we can approximate it by a C2(R,R)-function in order to
make the term differentiable. The numerical consequences are minimal. We
already showed in Section 7.5 that we still can run the CFB algorithm when
the termmax(Rt,0) is considered because the derivative of the value function
w.r.t. the return rate ∂cv is not needed in the algorithm.

16.1 Definition of the adjoint variables and the Hamil-
ton function

Let us define Xt ∶= (At,Rt,Bt) and πt ∶= (αt, χt) as the state and control
variables. Let Yt ∈ R3 and Zt ∈ R2×2 denote the first-order adjoint variables.
Then, according to Definition 11.6 in Section 11.3, the Hamilton function
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16 APPLICABILITY OF THE CFB ALGORITHM

H ∶ [0, T ] ×R3 ×R2 ×R3 ×R2×2 → R for our Problem 7 is given by:

H(t, x, π, y, z) = (µa + α) y1 + κ(R̄ − c) y2
+ (rb − χ + (c −M)a − α − c2α2) y3
+σaz11 + σRρz21 + σR

√
1 − ρ2z22

+e−δt 1−e
−γχ

γ
,

(16.4)

where x = (a, c, b) ∈ R3 and π = (α,χ) ∈ R2. The terminal function g ∶ R3 → R

of Problem 7 is given by:

g(x) = e−δT 1 − e−γ (a+b)
γ

. (16.5)

For later purpose, we define the discounted gain function f ∶ [0, T ] ×R→ R:

f(t, χ) = e−δt1 − e−γχ
γ

. (16.6)

Lemma 16.1
For a fixed c ∈ R, the Hamilton function H is concave (linear) w.r.t. the state
pair (a, b) ∈ R2, it is concave w.r.t. the control π = (α,χ) ∈ R2 and linear
w.r.t the adjoint variables y and z. Furthermore, the terminal function g is
concave w.r.t. x = (a, c, b) ∈ R3.

Proof
First, the Gradient of the Hamilton function w.r.t (a, b) are given by:

∇(a,b)H(t, x, π, y, z) = ⎛⎜⎝
µy1 + (c −M)y3 + σz11

ry3

⎞⎟⎠ , (16.7)

and the Hessian of the Hamilton function w.r.t. (a, b) are given by:

∇
2
(a,b)(a,b)H(t, x, π, y, z) = ⎛⎜⎝

0 0

0 0

⎞⎟⎠ .

So the Hamilton H is concave (linear) w.r.t. (a, b).
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16.2 SMP Conditions

Second, the Jacobian of the Hamilton function w.r.t π is given by:

∇πH(t, x, π, y, z) = ⎛⎜⎝
y1 − (1 + 2c2α) y3

e−δte−γχ − y3

⎞⎟⎠ , (16.8)

and the Hessian of the Hamilton function w.r.t. π is given by:

∇
2
ππH(t, x, π, y, z) = ⎛⎜⎝

−2c11y
3 0

0 −γe−δte−γχ

⎞⎟⎠ .

We showed in Theorem 11.14, that y3 is the first derivative of the value func-
tion v w.r.t. the bank account. So y3 ≥ 0 naturally. Since c2 > 0 too, all
eigenvalues of ∇2

ππH are negative (i.e., ∇2
ππH is negative definite). Thus, H

is concave w.r.t. π.

Third, the Hamilton function H is linear w.r.t. y and z by its definition in
(16.4).

Fourth, the Hessian of the terminal function g w.r.t. x = (a, c, b) is given by:

∇
2
xxg(a, c, b) =

⎛⎜⎜⎜⎜⎝

ē 0 ē

0 0 0

ē 0 ē

⎞⎟⎟⎟⎟⎠
, (16.9)

where

ē = −γe−δT e−γ(a+b).

The only non-zero eigenvalue of ∇2
xxg is 2ē < 0. Thus, ∇2

xxg is negative-
semidefinite and g is concave w.r.t x. qed.

16.2 SMP Conditions

Now we show that Problem 7 (16.1) - (16.3) satisfies the SMP Conditions
10.9, 6 - 8:

6. The drift terms µa + α, κ(R̄ − c) and rb + (c −M)a − χ − α − c2(α2),
and also the diffusion terms σa and σR are all continuous differentiable
w.r.t. t, x and π. This yields also for the gain function f in (16.6) and
the terminal condition g in (16.5).
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16 APPLICABILITY OF THE CFB ALGORITHM

7. The first derivatives of the drift terms and the diffusion terms w.r.t .x,

⎛⎜⎜⎜⎜⎝

µ 0 0

0 −κ 0

c −M a r

⎞⎟⎟⎟⎟⎠
,
⎛⎜⎝
σ 0

0 0

⎞⎟⎠, respectively, are Lipschitz continuous w.r.t

x. The gain function f , the terminal condition g and their derivatives
w.r.t. x are only locally Lipschitz continuous w.r.t x. However, in Sec-
tion 5.3.1 we showed that the return process Rt, R0 = c is bounded
over the finite time interval. Additionally, we saw in Section 7.6 that
the controls α and χ stays bounded and therefore the process Xt, with
X0 = x stays bounded on a finite time interval. Note that a locally Lips-
chitz continuous function is globaly Lipschitz continuous on a bounded
interval.

8. Through Lemma 16.1, we already showed that the Hamilton function
H is concave w.r.t. the state pair (a, b), that H is concave w.r.t. the
control pair π = (α,χ) and that H is linear w.r.t the adjoint variables y
and z. We also showed that the terminal condition g is concave w.r.t. x.
Thus, condition 8 is almost satisfied. The only thing missing is, that
H is not concave w.r.t. c. However, we do not need H to be concave
w.r.t. c for the SMP theory, because the the return process Rt with
R0 = c is not controlled (i.e., it does not depend on the controls α or
χ) (see Section 5.3.1).

In summary, Problem 7 (16.1) - (16.3) satisfies only a local Lipschitz condi-
tion for f and g and the Hamilton is concave with respect to a and b only.
However, the SMP Conditions 10.9 hold for both controlled state processes
when they - starting at initial values (a, c, b) ∈ R3 - stay bounded over the fi-
nite time interval [0, T ]. In consequence, our CFB algorithm (12.36) - (12.41)
of Section 12.6 is applicable to Problem 7. Remember that Problem 7 is an
adjusted version of the original Problem 2 (5.13) - (5.16).
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17 Formulation of the CFB algorithm

In this section we formulate the specific CFB algorithm of Problem 2 (5.13)
- (5.16) (optimal portfolio allocation of production assets) for the one-asset
case according to the general CFB scheme (12.36) - (12.41).

17.1 Adjoint variables and optimal controls

Through Lemma 16.1, we know thatH and g are concave w.r.t (a, b) ∈ R2 and
π = (α,χ) ∈ R2. Therefore we can apply Theorem 11.12 (SMP’s necessary
conditions) and obtain the following backward SDE for the adjoint variables
Yt ∈ R3 and Zt ∈ R2×2:

dYt = −∇xH(t,Xt, πt, Yt, Zt)dt +ZtdWt,

YT = ∇xg(AT ,BT ).
where the Gradient of the Hamilton function H w.r.t. x = (a, c, b) ∈ R3 is
given by:

∇xH(t,Xt, πt, Yt, Zt) =
⎛⎜⎜⎜⎜⎝

µY 1
t + (max(Rt,0) −M)Y 3

t + σZ
11
t

AtY
3
t 1Rt≥0 − κY 2

t

rY 3
t

⎞⎟⎟⎟⎟⎠
, (17.1)

and the terminal condition ∇xg is given by:

∇xg(AT ,BT ) =
⎛⎜⎜⎜⎜⎝

e−δT e−γ (AT+BT )

0

e−δT e−γ (AT+BT )

⎞⎟⎟⎟⎟⎠
. (17.2)

The adjoint variable Y 2
t is not continuous at Rt = 0 when we use the op-

timized return max(Rt,0) instead of Rt. However, the variable Y 2
t is not

needed for the calculation of the optimal controls (α∗t , χ∗t ) via (17.3) and
therefore we need not calculate Y 2

t in the CFB algorithm.

According to Theorem 11.8 (SMP’s sufficient conditions), we obtain the op-
timal controls by setting the Gradient of Hπ (16.8) to zero:

α∗t =
1
2c2
(Y 1

t

Y 3
t
− 1) ,

χ∗t = −
1
γ
(δt + ln (Y 3

t )) .
(17.3)
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17 FORMULATION OF THE CFB ALGORITHM

17.2 The complete CFB algorithm

Now we state the specific CFB algorithm of Problem 2 (5.13) - (5.16). In the
following, we use the notations of Section 12. In particular, Ch

k ⊂ R3 denotes
the space grids and Λh

k ⊂ R2 denotes the discrete Brownian motion, for all
time points tk, k = 1, ...,N of the discretized time interval [0, T ]. The grid
Ch

k consists of the points (Ai,Rj,Bm), i = 1, ..., Ik, j = 1, ..., Jk, q = 1, ...,Qk.
The equidistant time step size is ∆t > 0.

In order to keep notation clear, we change the notation for the adjoint vari-
ables through (Y A

k , Y R
k , Y B

k ) ∶= (Y 1
k , Y

2
k , Y

3
k ) and simplify notation through

V
i,j,m
k ∶= Vk(Ai,Rj,Bm). Then, the full CFB algorithm reads:

∀(Ai,Rj,Bm) ∈ Ch
k ,

V
i,j,m
N = e−δT (1 − e−γ(Aj

+Bm)) ,
Y A
N

i,j,m = e−δT e−γ(Aj
+Bm)

Y B
N

i,j,m = e−δT e−γ(Aj
+Bm)

α
i,j,m
N = 1

2c2
(Y Ai,j,m

N

Y Bi,j,m
N

− 1) ,
χ
i,j,m
N = − 1

γ
(δT + ln(Y B

N

i,j,m

γ
)) ,

(17.4)

∀k = N − 1, ...,0,

∀(Ai,Rj,Bm) ∈ Ch
k ,

∀l ∈ Λh,

Āi
k+1(yl) = Πk+1 [Ai + (µAi + α

i,j,m
k+1 )∆t + σAiyl1] ,

R̄
j
k+1(yl) = Πk+1 [Ai + κ(R̄ −Rj)∆t + ρσRyl1 +

√
1 − ρ2σRyl2] ,

B̄m
k+1(yl) = Πk+1 [Bm + (rBm +max(Rj,0)Ai −MAi − χ

i,j,m
k+1 − α

i,j,m
k+1

−c2α
i,j,m
k+1

2)∆t] .
(17.5)
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17.2 The complete CFB algorithm

and then set:

V
i,j,m
k = e−δtk

1 − e−γχ
i,j,m
k+1

γ
∆t + ∑

l∈Ld
k

pl Vk+1 (Āi
k+1(yl), R̄j

k+1(yl), B̄m
k+1(yl)) ,

ZAA
k

i,j,m =
1

∆t
∑
l∈Ld

k

pl Y A
k+1 (Āi

k+1(yl), R̄j
k+1(yl), B̄m

k+1(yl)) yl1.
(17.6)

Y A
k

i,j,m = µY A
k+1

i,j,m
+ ((max(Rj,0) −M)Y A

k+1

i,j,m
+ σZAA

k

i,j,m) ∆t

+ ∑l∈Ld
k
pl Y A

k+1
(Āi

k+1(yl), R̄j
k+1(yl), B̄m

k+1(yl))
Y B
k

i,j,m = rY Bi,j,m
k+1 + ∑l∈Ld

k
pl Y B

k+1
(Āi

k+1(yl), R̄j
k+1(yl), B̄m

k+1(yl)) .
(17.7)

α
i,j,m
k = 1

2c2
(Y Ai,j,m

k

Y Bi,j,m
k

− 1) ,
χ
i,j,m
k = − 1

γ
(δtk + ln(Y B

k

i,j,m

γ
)) ,

(17.8)

Through this backward algorithm, we obtain the values V i,j,m
k and π

i,j,m
k for

all (Ai,Rj,Bm) ∈ Ch
k for all k = N − 1, ...,0. Afterwards, we can start at time

t0 with (A0,R0,B0) = (a, c, b) and then simulate the processes (At,Rt,Bt)
forward by projecting the stored optimal controls πi,j,m

k on Ch
k to the current

state.

Note again that Y R
k is not considered because this variable is not needed for

the calculation of the optimal controls.
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18 Implementation issues

In this section, we discuss implementation issues of the problem-specific CFB
algorithm (17.4) - (17.8) of Section 17.2. As we mentioned above, all numer-
ical results in Section 7 and 8 are obtained by using this algorithm.

In the implementation, we used an optimal grid by selecting the discretization
parameters according to (13.12):

ρ = Rh−
1

2 , δ = h
3

2 , L−
2

d = h2+
(d+2)

p , (18.1)

where h denotes the time step size, R denotes the radius of the truncated
state space of interest, ρ denotes the extension of this radius to reduce the
truncation error, δ denotes the state space step size in each dimension and
L denotes the number of discretization points of the optimal Quantization
of the Brownian motion in each dimension. Note that in the considered
Problem 2, the number of Brownian motions is d = 2. Then we have:

1. The number of time steps N = T /h.
2. The radius of the state spacesR = Amax−Amin

2
= Bmax−Bmin

2
= 10Rmax−Rmin

2
,

3. The radius extension ρ = R/√T /N . For example, the considered A-
state space is [Amin − ρ, Amax + ρ].

4. The number of space pointsM = 2R ((N
T
)3/2 + (N

T
)2) in each dimension.

5. The number of Quantization points L = (N
T
) in each dimension.

18.1 Linear Interpolation

When we use the projection mapping (nearest neighbor method) Πk (17.5)
in our example calculations, we obtain a rough surface for the value func-
tion V0(a, c, b) and the controls α0(a, c, b), χ0(a, c, b) over the state space(a, c, b) ∈ [Amin,Amax] × [Rmin,Rmax] × [Bmin,Bmax]. This is a crucial issue

because the optimal allocation αk is calculated through a division of
Y A
k

Y B
k

in

(17.8). The division amplifies the error. It is clear that the roughness is
reduced when the approximation parameter h is smaller. However, when we
replace the nearest neighbor method by a multi-dimensional linear inter- and
extrapolation method for V and Y in (17.6) and (17.7), then the roughness
disappears completely.
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18.2 Convergence rate

By using the linear inter- and extrapolation, we exploit an additional advan-
tage of the SMP approach, see Section 14.2. In particular, the controls α

and χ are calculated through Y . The first derivative Y is a simpler (flatter)
functions w.r.t x than the value function V itself. In our cases, Y is almost
linear. Therefore we can use the simple linear interpolation to obtain smooth
solutions (surfaces). A linear extrapolation also reduces the truncation er-
ror. If we work only with the non-linear value function V like in Dynamic
Programming, a higher order interpolation methods or finer grids may be
necessary to obtain smooth solutions. Then we would also need to define a
multi-dimensional, non-linear extrapolation method which is a difficult task.

18.2 Convergence rate

As an example, we show the error convergence for the CFB algorithm (17.4)
- (17.8) with linear-interpolation for the one-asset case with fixed returns.
The results of this case are presented and discussed in Section 7.2.

To measure the error we used the region of interest (A,B) ∈ [0,1]×[−0.5,0.5].
The error ǫVmax is defined as the maximum absolute difference to the best
numeric solution V 36

0 over all points (Ai,Bm) ∈ Ch
0 at time t = 0:

ǫVmax ∶= max
(Ai,Bm)∈Ch

0

∣V 36
0 (Ai,Bm) − V N

0 (Ai,Bm)∣, (18.2)

where N is the refinement level i.e., number of time steps used in the approx-
imation. The errors ǫχmax, ǫαmax, ǫ

YA
max, and ǫYB

max are defined in the same way.
We used the discretization parameters according to (18.1) and the model
parameters of Table 14:

T δ γ r µ σ R̄ c1 M

4 0.01 0.03 0.1 0.0 0.2 0.07 0.2 0.02

Table 14: One asset parameters

Table 15 shows the approximation errors according to the refinement level
N . We obtain a linear convergence in dt for ǫχmax, ǫαmax, ǫ

YA
max, and ǫYB

max as we
proposed in Section 13.

227



18 IMPLEMENTATION ISSUES

N dt dA ǫVmax ǫ
χ
max ǫαmax ǫYA

max ǫYB
max

4 1.000 1.000 0.02336 0.56199 2.912e−2 7.42e−3 5.79e−3

8 0.500 0.333 0.00165 0.10021 0.746e−2 1.38e−3 1.01e−3

12 0.333 0.192 0.01314 0.05224 0.452e−2 0.76e−3 0.54e−3

16 0.250 0.125 0.00338 0.03335 0.273e−2 0.47e−3 0.34e−3

20 0.200 0.089 0.00542 0.02460 0.187e−2 0.34e−3 0.25e−3

24 0.167 0.068 0.00620 0.01958 0.145e−2 0.27e−3 0.20e−3

28 0.143 0.054 0.00798 0.01874 0.109e−2 0.25e−3 0.20e−3

32 0.125 0.044 0.00354 0.00910 0.050e−2 0.12e−3 0.09e−3

36 0.111 0.037 - - - - -

Table 15: Maximum absolute differences to the best numeric solution V 36
0

over all points (Ai,Bm) ∈ Ch
0 at time t = 0.
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A Appendix

A.1 Basics about probability spaces and stochastic pro-
cesses

In this subsection, we state a few basic definitions about probability spaces
and stochastic processes. Since probability theory is not the focus of this
thesis, we do not go into more detail here. For an appropriate introduction
into probability theory we refer to [Grimmett, Stirzaker 1992]. The most
definitions are taken from [Yong, Zhou 1999].

Definition A.1 (Probability space)
A probability space is usually defined by (Ω,F , P ). Here, Ω denotes a non-
empty sample space, F denotes a sigma-field on Ω, and P denotes a proba-
bility measure on (Ω,F). A point ω ∈ Ω is called a sample.

Definition A.2 (Probability measure)
A map P ∶ F → [0,1] is called a probability measure on (Ω,F) if:

P (φ) = 0, P (Ω) = 1,
Ai ∈ F , Ai⋂Aj = φ, i, j = 1,2, ..., i ≠ j,

⇒ P (⋃∞i=1Ai) = ∑∞i=1P (Ai) .
(A.1)

Definition A.3 (Filtration)
A filtration F ∶= {Ft, t ≥ 0} on a probability space (Ω,F , P ) is a monotone
sequence of sub-sigma-fields Ft ⊆ F which satisfies Ft ⊆ Fτ , for all t ≤ τ .

Definition A.4 (Stochastic process)
Let I be a non-empty index set. A family {X(t), t ∈ I} of random variables
from (Ω,F , P ) to Rn is called a stochastic process and denoted by Xt. For
any ω ∈ Ω, the map t→X(t, ω) is called a sample path.

Definition A.5 (Measurable process)
A stochastic process X ∶ [0, T ]→ Rn is called measurable, if the map (t, ω)→
X(t, ω) is (B[0, T ] ×F) /B(Rn)-measurable:

X−1t (B(Rn)) ⊆ B[0, T ] ×F , (A.2)

where B(⋅) is the Borel σ-field.
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A APPENDIX

Definition A.6 (F-adapted process)
A measurable process X ∶ [0, T ]→ Rn is called F-adapted, if for all t ∈ [0, T ],
the map (s,ω) → X(s,ω) from [0, t] × Ω into Rn is (B[0, t] × Ft) /B(Rn)-
measurable.

Definition A.7 (admissible process)
A F-adapted process π ∶ [0, T ]→ A ⊂ Rr is called admissible, if:

E [∫ T

0
∣πt∣mdt] <∞ for m = 1,2,⋯. (A.3)

If A is compact, then ∣πt∣ ≤M for some M <∞ and A.3 automatically holds.

Definition A.8 (Brownian motion)
A F-Brownian motion W (⋅) is a time-homogeneous, F-adapted stochastic pro-
cess with continuous paths. Furthermore, for all 0 ≤ s < t, W (t) −W (s)
is independent of Ft and normally distributed with mean 0 and covariance(t − s). W (⋅) is called standard if W (0) = 0 almost surely. We usually say
that {Wt, t ≥ 0} denotes a standard F-Brownian motion over [0,∞).
Lemma A.9 (Generation of a filtration)
A Brownian motions Wt naturally generates a filtration F on the probabil-
ity space (Ω,F , P ). The specific construction of this generated filtration is
showed for example in [Yong, Zhou 1999] chapter 1, section 2.2. Loosely
speaking, the set Ft contains all information up to time t.

Definition A.10 (Markov process)
A stochastic process Xt adapted to the filtration F is said to possess the
Markov property w.r.t. F if, for each x ∈ Rm and each s, t ∈ I:

P (Xt = x∣Fs) = P (Xt = x∣Xs) . (A.4)

A stochastic process is called a Markov process if it satisfies the Markov
property w.r.t. its natural filtration.

Definition A.11 (Markov control)
A control policy π is called Markov control if it has the following form: πt =
p(t,Xt) where p ∶ [0, T ] × Rn → A is a measurable function and Xt is the
stochastic process. Roughly speaking, πt only depends on the current time t

and the current state Xt. If the stochastic process Xt itself is controlled by
π, then it is called feedback controlled process. Here, the feedback controlled
process would still be a Markov process since it satisfies (A.4).
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A.2 Analytical solution for negative exponential utiliy

Definition A.12 (Orenstein-Uhlenbeck process)
An Ornstein-Uhlenbeck process Xt satisfies the following SDE:

dXt = κ(µ −Xt)dt + σdWt, X0 = x0, (A.5)

where κ,µ, σ, x0 > 0. The process is stationary and has:

E0[Xt] =X0e−κt + µ (1 − e−κt) ,
V ar[Xt] = σ2

2κ
.

(A.6)

The expectation goes to µ when time goes to infinity and the variance does
not depend on time, see [Ornstein, Uhlenbeck 1930].

Theorem A.13 (Boundedness of the Orenstein-Uhlenbeck process)

Let Xt be a solution of (A.5). Then, for any α < κ :

lim sup
t→∞

∣Xt∣√
ln t
≤

σ√
α
, almost surely. (A.7)

Proof A.14 (Boundedness of the Orenstein-Uhlenbeck process)

For a fixed α < κ and a fixed ρ < κ2µ2

4(κ−α) we have:

xκ(µ − x) ≤ −αx2
+ ρ. (A.8)

Now we use [Li 2008]55 Theorem 1 to complete the proof. qed.

A.2 Analytical solution for negative exponential utiliy

The negative exponential utility function:

u(t, c) = e−δt1 − e−γc
γ

, γ > 0,

and the terminal fuction:

u(T,x) = e−δT 1 − e−γx
γ

, γ > 0,

have constant absolute risk aversion λ1 = 1. We suppose a solution of the
value function v is of the form:

55Originally, the theorem was poposed by [Mao 1992].
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v(t, x) = e−δt [a(t)eb(t)x + k(t)] . (A.9)

with

a(T ) = −1
γ
, b(T ) = −γ, k(T ) = 1

γ
.

By using the HJB equation:

0 = ∂tv(t, x) +maxc∈A [e−δtu(cx) + (r − c)x∂xv]
+maxπ∈A [(µ − r)πx∂xv + σ2

2
π2x2 ∂xxv] .

(A.10)

and plugging in our Ansatz (A.9), we get:

0 = −δ(aebx + k) + (ȧ + aḃx)ebx + 1
γ
+maxc∈A [−e−γcx

γ
+ (r − c)xabebx]

+maxπ∈A [(µ − r)πxabebx + σ2

2
π2x2ab2ebx] .

(A.11)

Then, we can obtain the following optimal controls by setting the according
derivatives to zero:

c∗x = −
1

γ
(log(ab) + bx), (A.12)

π∗x = −
(µ − r)
σ2b

. (A.13)

For k we get the following ODE:

k̇ +
1

γ
− δk = 0, k(T ) = 1

γ
.

thus we set:

k =
1

γδ
+ (1

γ
−

1

γδ
)e−δ(T−t)).

which solves the ODE. Substituting these optimal control into the HJB equa-
tion and divide by ebxwe can obtain:

0 = −δa + (ȧ + aḃx) + [−ab
γ
+ rxab + ab

γ
(log(ab) + bx)] − (µ−r)2

2σ2 a. (A.14)

In order to emiminate the x we must have:

ḃ + rb +
b2

γ
= 0, b(T ) = −γ
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A.2 Analytical solution for negative exponential utiliy

We try the following ansatz:

b = −
γr

1 − (1 − r)e−r(T−t) ,
which solve the above ODE. Plugging this into the HJB we get:

ȧ

a
− r log(ab) = δ − r

1 − (1 − r)e−r(T−t) + 1

2

(µ − r)2
σ2

, a(T ) = −1
γ

Therefore we try the following ansatz:

a =
1

b
e∆(t)/r, ∆(T ) = 0.

This solves the above ODE when:

∆ = (r − δ − 1

2

(µ − r)2
σ2

) (1 − e−φ(T−t)) = q(1 − e−φ(T−t)).
Because we get:

[−ḃ
b2

e∆(t)/r +
1

b
e∆(t)/r∆̇(t)/r] /1

b
e∆(t)/r

−∆(t) − b

γ
= δ +

1

2

(µ − r)2
σ2

,

which is:

[−ḃ
b
+ ∆̇(t)/r] − r + qe−φ(T−t) − b

γ
= 0,

and

[−ḃ
b
− qφe−φ(T−t)/r] − r + qe−φ(T−t) − b

γ
= 0,

setting φ = r we get:

ḃ + rb +
b2

γ
= 0,

which is exactly what b solves.
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A.2.1 Solution

π∗x =
(µ − r)
rγσ2

(1 − (1 − r)e−r(T−t)) , π∗(T )x = µ − r

γσ2
(A.15)

c∗x =
rx

1 − (1 − r)e−r(T−t) +
⎡⎢⎢⎢⎢⎣
δ − r +

(µ−r)2
2σ2

γr

⎤⎥⎥⎥⎥⎦ (1 − e
−r(T−t)), c∗(T )x = x (A.16)

and

ã =
1 − (1 − r)e−r(T−t)

r
exp([(r − δ) − 1

2

(µ − r)2
σ2

](1 − e−r(T−t))/r)

v(t, x) = e−δt

γ
[1
δ
− ã exp (− γr

(1−(1−r)e−r(T−t))x)] + 1
γ
(1 − 1

δ
)e−δT . (A.17)

At Terminal time T we have:

v(T,x) = e−δT

γ
[1
δ
− exp (−γx)] + 1

γ
(1 − 1

δ
)e−δT . (A.18)

v(T,x) = e−δT

γ
[1 − exp (−γx)] . (A.19)

A.3 Analytical solution of the ODE systems

In this section we derive the analytical solutions of the ODE system (6.30) for
the investment-consumption model with stochastic return in Part II, Section
6.2. Remember that β(t) is defined as:

β(t) ∶= 1 + (δ − 1)e−δ(T−t)
δ

, β(T ) = 1. (A.20)

The ODE system is given by:

ȧ(t) = (δ + 2κ)a(t) − β(t)
2σ2 , a(T ) = 0,

ḃ(t) = (δ + 1) b(t) − 2κR̄a(t) − β(t)(µ̃−r)
σ2 , b(T ) = 0,

ċ(t) = δc(t) − σ2
Ra(t) − κR̄b(t) − β(t) ( (µ̃−r)2

2σ2 + r − δ) , c(T ) = 0.
(A.21)
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A.3 Analytical solution of the ODE systems

First: We suppose that the solution for a(t) is of the following form:

a(t) = y(t)e−δ(T−t) + z,
ȧ(t) = (ẏ(t) + δy(t))e−δ(T−t).

Plugging this Ansatz into (A.21) we get:

(ẏ(t) + δy(t))e−δ(T−t)
= (δ + 2κ)y(t)e−δ(T−t)
+(δ + 2κ)z − 1

2δσ2 −
1

2δσ2 (δ − 1)e−δ(T−t).
Since this equation must hold for arbitrary t, we determine z = 1

2δ(δ+2κ)σ2 .

Dividing by e−δ(T−t) we get:

ẏ(t) = 2κy(t) − δ − 1

2δσ2
, y(T ) = −z.

The unique solution for this ODE is:

y(t) = −(z + 1

2κ

δ − 1

2δσ2
)e−2κ(T−t) + 1

2κ

δ − 1

2δσ2
.

Now, if we define:

ha ∶=
1

2δ(δ + 2κ)σ2
, ka ∶=

δ − 1

2κ2δσ2
, (A.22)

then the solution for a(t) is given by:

a(t) = (−(ka + ha)e−2κ(T−t) + ka) e−δ(T−t) + ha. (A.23)

Second: Since the ODE for b(t) has a similar structure as the ODE for a(t),
we suppose that the solution for b(t) is of the following form:

b(t) = (we−(T−t) + xe−2κ(T−t) + y) e−δ(T−t) + z,
ḃ(t) = δ (we−(T−t) + xe−2κ(T−t) + y) e−δ(T−t)

+ (2κxe−2κ(T−t) + uwe−(T−t)) e−δ(T−t).
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We plug this into (A.21) to get:

δ (we−(T−t) + xe−2κ(T−t) + y) e−δ(T−t)
+ (2κxe−2κ(T−t) +we−(T−t)) e−δ(T−t)
= (δ + 1) [(we−(T−t) + xe−2κ(T−t) + y) e−δ(T−t) + z]
−2κR̄ [(−(ka + ha)e−2κ(T−t) + ka) e−δ(T−t) + ha]
−
(µ̃−r)
σ2

(δ−1)
δ

e−δ(T−t) − (µ̃−r)
δσ2 .

Since this equation must hold for arbitrary t, we determine z = 2κR̄ha

δ+1
+
(µ̃−r)

δ(δ+1)σ2 .

Dividing by e−δ(T−t) we get:

δ (we−(T−t) + xe−2κ(T−t) + y)
+ (2κxe−2κ(T−t) +we−(T−t))
= (δ + 1) [we−(T−t) + xe−2κ(T−t) + y]
−2κR̄ [−(ka + ha)e−2κ(T−t) + ka]
−
(µ̃−r)
σ2

(δ−1)
δ

.

Using the same argument we determine y = 2κR̄ka +
(µ̃−r)
σ2

(δ−1)
δ

. We get:

((δ + 1)x + 2κR̄(ka + ha) − δx − 2κx) e−2κ(T−t)
= (δ + 1 − δ − 1) we−(T−t) = 0.

Since et > 0 we determine x = 2κR̄(ka+ha)
2κ−1

. Since b(T ) = 0 we determine
w = −(x + y + z). Thus, if we define:

hb ∶= 2κR̄ha

δ+1
+

(µ̃−r)
δ(δ+1)σ2 ,

kb ∶= 2κR̄ka +
(µ̃−r)
σ2

(δ−1)
δ

,

lb ∶=
2κR̄(ka+ha)

2κ−1
,

(A.24)

236



A.3 Analytical solution of the ODE systems

then the solution for b(t) is given by:

b(t) = [−(lb + kb + hb)e−(T−t) + lbe−2κ(T−t) + kb] e−δ(T−t) + hb. (A.25)

Third: Since the ODE for c(t) has a similar structure as the ODE for b(t),
we suppose that the solution for c(t) is of the following form:

c(t) = (we−(T−t) + xe−2κ(T−t) + y(t)) e−δ(T−t) + z,
ċ(t) = δ (we−(T−t) + xe−2κ(T−t) + y(t)) e−δ(T−t)

+ (we−(T−t) + 2κxe−2κ(T−t) + ẏ(t)) e−δ(T−t).
Plugging this Ansatz into (A.21) we get:

δ (we−(T−t) + xe−2κ(T−t) + y(t)) e−δ(T−t)
+ (we−(T−t) + 2κxe−2κ(T−t) + ẏ(t)) e−δ(T−t)
= δ [(we−(T−t) + xe−2κ(T−t) + y(t)) e−δ(T−t) + z]
−σ2

R [(−(ka + ha)e−2κ(T−t) + ka) e−δ(T−t) + ha]
−κR̄ [[−(lb + kb + hb)e−(T−t) + lbe−2κ(T−t) + kb] e−δ(T−t) + hb]
−ν
(δ−1)e−δ(T−t)

δ
−

ν
δ
,

where ν ∶= (µ̃−r)
2

2σ2 + r − δ. Since this equation must hold for arbitrary t, we

determine z = σ2

Rha

δ
+

κR̄hb

δ
+

ν
δ2
. Dividing by e−δ(T−t) we get:

(we−(T−t) + 2κxe−2κ(T−t) + ẏ(t))
= −σ2

R [−(ka + ha)e−2κ(T−t) + ka]
−κR̄ [−(lb + kb + hb)e−(T−t) + lbe−2κ(T−t) + kb]
−ν
(δ−1)

δ
.
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Using the same argument we determine ẏ(t) = −σ2
Rka − κR̄kb − ν

(δ−1)
δ

. Since
c(T ) = 0, y(t) is given by:

y(t) = [σ2
Rka + κR̄kb + ν

(δ − 1)
δ
] (T − t) − (w + x + z).

Then the equation becomes:

+ (w − κR̄(lb + kb + hb)) e−(T−t)
= (σ2

R(ka + ha) − κR̄lb − 2κx)e−2κ(T−t).
Again, this equation must hold for arbitrary t. Thus, x = σ2

R(ka+ha)
2κ

−
κR̄lb
2κ

and
w = κR̄(lb + kb + hb). Now, if we define:

hc ∶=
σ2

Rha

δ
+

κR̄hb

δ
+

1
δ2
( (µ̃−r)2

2σ2 + r − δ) ,
kc ∶= σ2

Rka + κR̄kb +
(δ−1)

δ
( (µ̃−r)2

2σ2 + r − δ) ,
lc ∶=

σ2

R(ka+ha)
2κ

−
κR̄lb
2κ

,

mc ∶= κR̄(lb + kb + hb),

(A.26)

then the solution for c(t) is given by:

c(t) = (mc e
−(T−t)

+ lc e
−2κ(T−t)

+ kc (T − t) − (mc + lc + +hc) ) e−δ(T−t) + hc.

(A.27)
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