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INTRODUCTION EXPERIMENT 1. Range measurements

Fluorescent Nuclear Track Detectors (FNTDs) (Fig. 1) are based on FNTDs were irradiated with mono-energetic ions using a broad range of particle types (hydrogen to
biocompatible single aluminium oxide crystals doped with carbon xenon), Kinetic energies, and particle fluences ® (from 4.5 x 10° up to 1.0 x 10! cm~?) (Fig. 5).
and magnesium (Al,03; C, Mg).

Their superior spatial resolution
allows for monitoring single
particle tracks with a detection
efficiency close to 100% for ions
with LET greater than
approximately 0.2 keV/um [1].

Fig. 1 Size of a FNTD compared
to a one cent coin
Implanted detectors or detectors in body cavities can help
accessing direct information on a radiation treatment such as ion

fluences, energies or ranges.

Fig.5 Comparison of carbon irradiated FNTDs; theoretical SRIM range of 33.05 um [4] at a total kinetic beam energy of 48 MeV
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» Single track evaluation (® < 107 cm™%):  determine entrance and end point , } +  single tracks
individually for each particle track yielding projected range and lateral straggling; tooen? L Teckhls
time-consuming but precise measurement routine
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We therefore measured ion ranges for particle beams of low and

clinical fluence in order to investigate the feasibility of future in-
vivo FNTD applications. Track bulk evaluation (® > 107 cm™2): determine inflection points in

corresponding intensity profiles yielding projected range only; fast and automated
measurement routine with the same level of precision (pinhole reduction advised for
very high particle fluences)
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All measured ranges deviate less than 3% from tabulated SRIM data [4] (Fig. 6). 1) 000000633 3o @ o) o) o o
QQ\’L\ '\’L\%\i\b‘%\%\&b\'la\&%ﬂ»\ g on o of 'L\'\ngb@ o
VASVARVASVASVAS B e
F N T D S energy' ﬂuence or LET. Fig.6  Results of the high-accuracy ion range measurements for
mono-energetic particle beams of various ion sources; all
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Measurement accuracy does not show any significant dependency on ion type, 9
deviations from theory below 3%

Because FNTDs are grown in a highly reduced atmosphere,
they contain high concentration of clustered oxygen vacancy
defects charge compensated by magnesium ions substituting
aluminium ions in the crystal lattice (Fig. 2).

Before doping: Al,O4 After doping: Al,O4;C,Mg
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Fig. 3 FNTD containing only untransformed colour centres (left); liberation and capture of

secondary electrons under ionising irradiation (middle); radiochromic transformation (right) 33 e ~ SR & > 2 FNTDs were pl aced in a PMMA ﬁ)etected and expected

adjusted count rate [MHZz]

planned dose

messured infonsy cylinder as a phantom undergoing range agree within
clinical workflow. Based on computed limiting CT slice
tomography (CT) scans, a treatment thickness of 1 mm.
plan (applying 1 Gy protons at the Correlating fluorescence
detector edge) was created at HIT strength and absorbed

(Fig 9). The planned depth-dose dose verifies the
high quantum yield

o d chort lifetime - curve at 80 % was compared to the maximal planned dose.
TN - - ' 3 3 i ' detected intensity profile.
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Untransformed F5*(2Mg) (light blue) and untransformed

FJ (2Mg) colour centres (light red) have different absorption and
emission bands (Fig. 4) which can be stimulated using confocal
microscopy.

relative intensity and absorbed dose [%]
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Conduction band

750 nm

fluorescence of untransformed
(left) and transformed colour

centres; commercial confocal s = : Fig.9 Results of the treatment plan verification: optimized
laser-scanning microscopy — dose distribution in the PMMA cylinder and the detector volume
allows for fast and non- ' (black box) (top left); detected intensity distribution (bottom);
destructive detector readout; - = comparison of planned depth-dose curve and detected intensity
Valance band image courtesy of M.S. ' == — profile (top right). The equidistant minima seen in the intensity
Akselrod (Landauer Inc.) [3] = E— profile (Fig. 9) originate from microscope vignetting
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