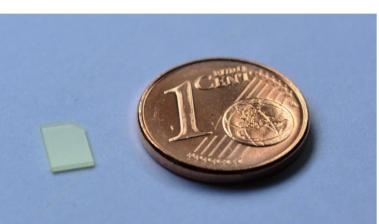

High-Accuracy Ion Range Measurements using Fluorescent Nuclear Track Detectors

GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

University of Heidelberg **Department of Physics**

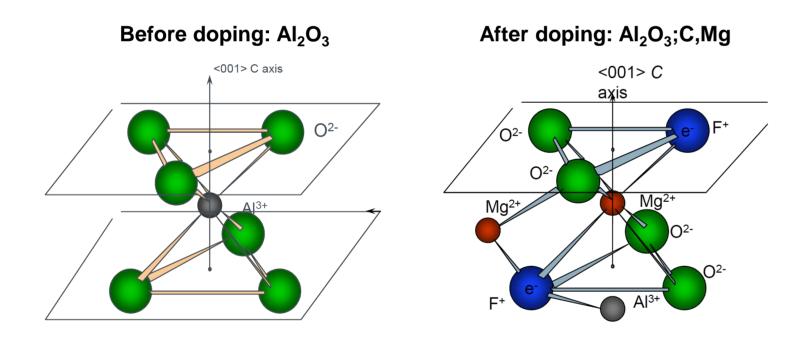


G. Klimpki^{1,2}, J.-M. Osinga^{2,3}, R. Herrmann⁴, M.S. Akselrod⁵, O. Jäkel^{2,6,7}, S. Greilich²

- ¹ Ruprecht-Karls-University Heidelberg, Department of Physics and Astronomy, Albert-Ueberle-Str. 3-5 2. OG Ost, 69120 Heidelberg, Germany
- ² German Cancer Research Center (DKFZ), Division of Medical Physics in Radiation Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- ³ Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences II Chemistry, Physics and Mathematics, von-Danckelmann-Platz 3, 06120 Halle, Germany
- ⁴ Aarhus University, Department of Physics and Astronomy, Ny Munkegade 120, 8000 Aarhus, Denmark
- ⁵ Landauer Inc., Stillwater Crystal Growth Division, 723 ¹/₂ Eastgate, Stillwater Oklahoma 74074, USA ⁶ Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- ⁷ Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany

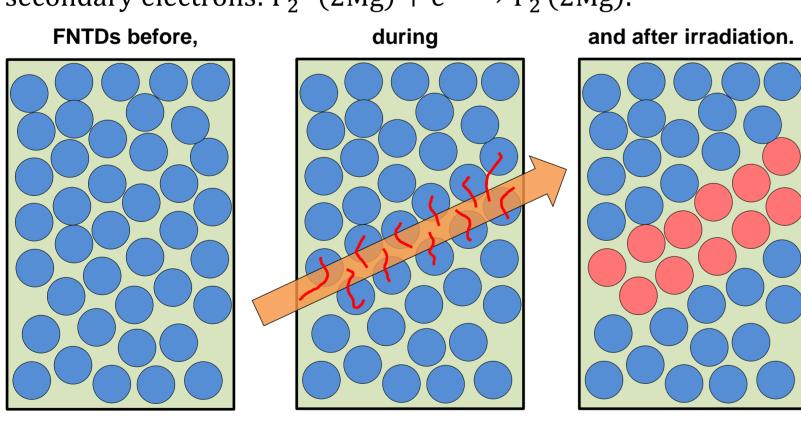
INTRODUCTION

- Fluorescent Nuclear Track Detectors (FNTDs) (Fig. 1) are based on biocompatible single aluminium oxide crystals doped with carbon and magnesium (Al_2O_3 ; C, Mg).
- Their superior spatial resolution allows for **monitoring single** particle tracks with a detection efficiency close to 100% for ions with LET greater than approximately 0.2 keV/μm [1].

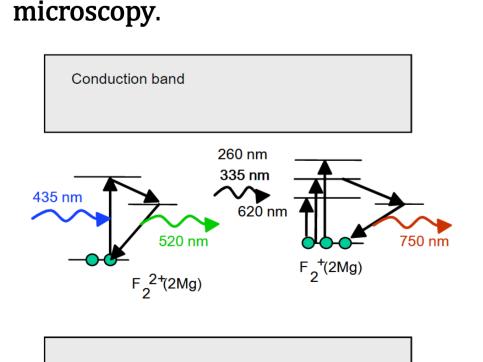


to a one cent coin

- Implanted detectors or detectors in body cavities can help accessing direct information on a radiation treatment such as ion fluences, energies or ranges.
- We therefore measured ion ranges for particle beams of low and clinical fluence in order to investigate the **feasibility of future in**vivo FNTD applications.


FNTDs

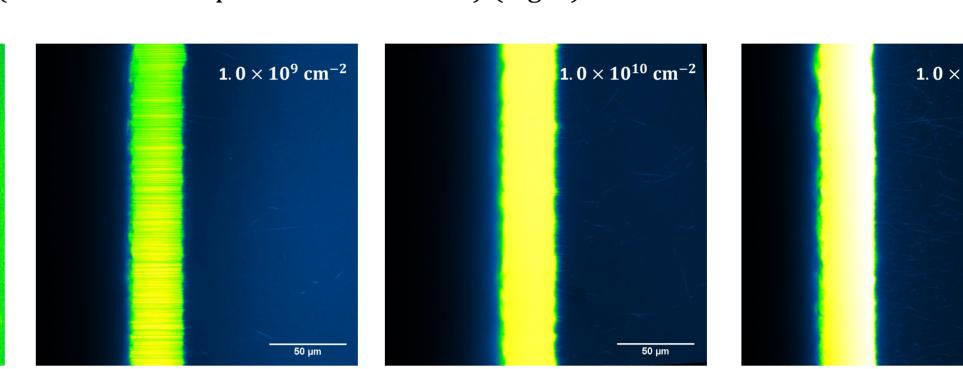
Because FNTDs are grown in a highly reduced atmosphere, they contain high concentration of clustered oxygen vacancy **defects** charge compensated by magnesium ions substituting aluminium ions in the crystal lattice (Fig. 2).


Crystal structure of corundum (left) and model of an aggregate oxygen vacancy defect (right); image courtesy of M.S. Akselrod (Landauer Inc.) [2]

Depicted $F_2^{2+}(2Mg)$ colour centres undergo radiochromic transformation under ionising radiation (Fig. 3) by capturing secondary electrons: $F_2^{2+}(2Mg) + e^- \rightarrow F_2^+(2Mg)$.

FNTD containing only untransformed colour centres (left); liberation and capture of secondary electrons under ionising irradiation (middle); radiochromic transformation (right)

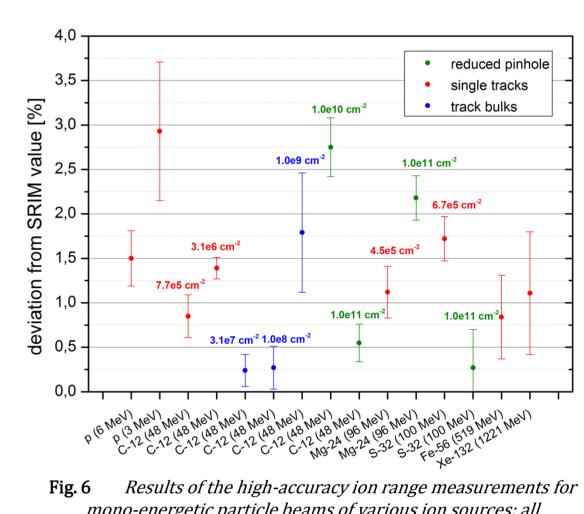
• Untransformed $F_2^{2+}(2Mg)$ (light blue) and untransformed F_2^+ (2Mg) colour centres (light red) have different absorption and emission bands (Fig. 4) which can be stimulated using confocal

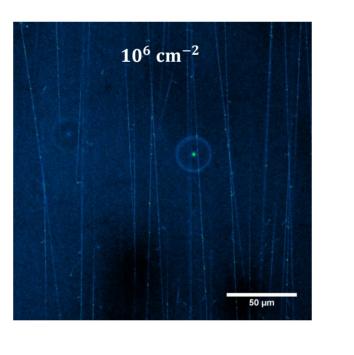


high quantum yield and short lifetime $(\tau = 75 \pm 5 \text{ ns})[1]$

Absorption and fluorescence of untransformed (left) and transformed colour centres; commercial confocal laser-scanning microscopy allows for fast and nondestructive detector readout; image courtesy of M.S. Akselrod (Landauer Inc.) [3]

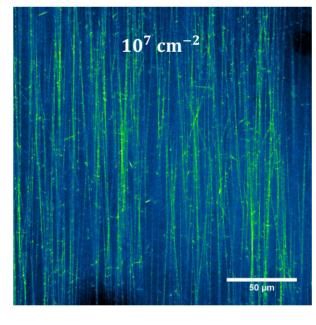
EXPERIMENT 1: Range measurements

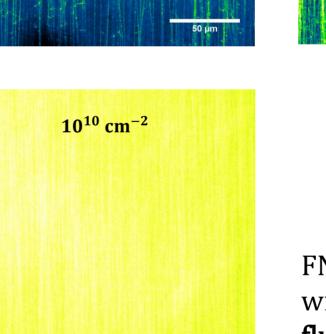

FNTDs were irradiated with mono-energetic ions using a broad range of particle types (hydrogen to xenon), kinetic energies, and particle fluences Φ (from 4.5 × 10⁵ up to 1.0 × 10¹¹ cm⁻²) (Fig. 5).

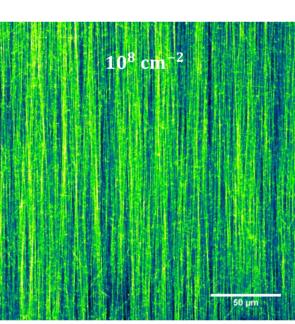

Comparison of carbon irradiated FNTDs; theoretical SRIM range of 33.05 μm [4] at a total kinetic beam energy of 48 MeV

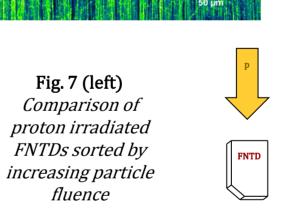
- Single track evaluation ($\Phi < 10^7 \text{ cm}^{-2}$): determine entrance and end point individually for each particle track yielding projected range and lateral straggling; time-consuming but precise measurement routine
- Track bulk evaluation ($\Phi > 10^7 \text{ cm}^{-2}$): determine inflection points in corresponding intensity profiles yielding projected range only; fast and automated measurement routine with the same level of precision (pinhole reduction advised for very high particle fluences)

All measured ranges deviate less than 3% from tabulated SRIM data [4] (Fig. 6). Measurement accuracy does not show any significant dependency on ion type, energy, fluence or LET.

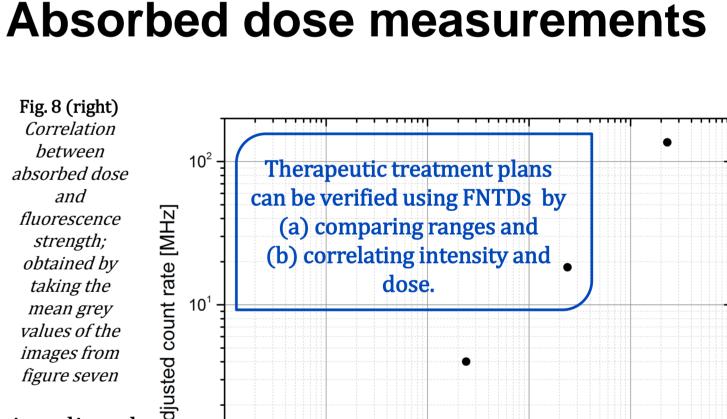



mono-energetic particle beams of various ion sources; all deviations from theory below 3%



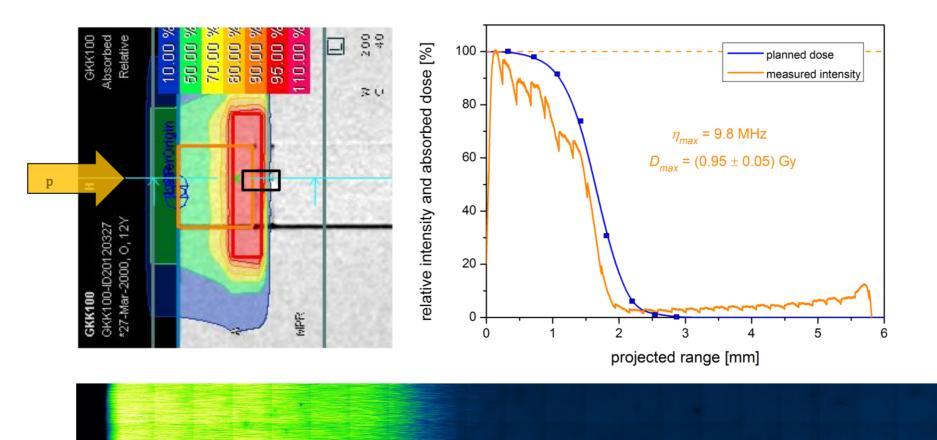

10⁹ cm⁻²

 3.1×10^6 cm



mean grey values of the images from figure seven FNTDs were homogeneously irradiated with 50 MeV/u to establish a dose**fluorescence relation** for this treatment

and

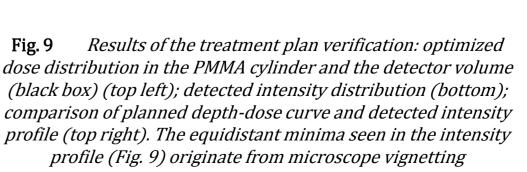


absorbed dose [Gy]

EXPERIMENT 2:

EXPERIMENT 3: Treatment plan verification

modality (Fig. 7, Fig. 8).


FNTDs were placed in a PMMA cylinder as a phantom undergoing clinical workflow. Based on computed tomography (CT) scans, a treatment plan (applying 1 Gy protons at the detector edge) was created at HIT (Fig 9). The planned depth-dose curve at 80 % was compared to the detected intensity profile.

500 μm

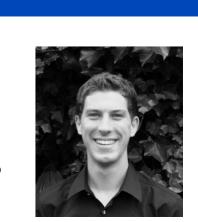
Detected and expected range agree within limiting CT slice thickness of 1 mm. **Correlating fluorescence** strength and absorbed

dose verifies the maximal planned dose. FNTDs appear as

potential fiducial marks in the CT.

Valance band

[1] G.M. Akselrod: A novel Al₂O₃ FNTD. *Instruments and Methods in Physics Research*, B 247 295-306 (2006).


[2] M.S. Akselrod: FNTD technology. Radiation Measurements, Vol. 46 1671-1679 (2011).

[3] M.S. Akselrod: Fluorescent Al₂O₃ Crystals. *Journal of Fluorescence*, Vol. 13/6 503-511 (2003).

[4] J.F. Ziegler, J.P. Biersack, M.D. Ziegler: SRIM. Lulu Press Co. (2009). [5] G. Klimpki: Towards in-vivo Ion Range Measurements using FNTDs. Bachelor thesis at DKFZ (2012). **Acknowledgements:**

We would like to thank Felix Bestvater (DKFZ LMF) for his support concerning detector readout, as well as Dr. Roland Repnow, Manfred König (both MPI-K) and our colleagues at HIT for the possibility of and the help with irradiation.

Grischa Klimpki g.klimpki@dkfz.de +49 (0)6221/42-2633

