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Reproducing Biologically Realistic Regimes on a Highly-Accelerated

Neuromorphic Hardware System

Analog implementations of neural networks have several advantages over computer
simulations: they are usually faster, more energy efficient and fault-tolerant. How-
ever, compared to purely digital systems, analog hardware is subject to transistor
size mismatches. For neuromorphic systems, and in particular for neuron circuits,
this means that there will be neuron-to-neuron variations on the chip, resulting in
a different behavior for each hardware neuron. This is why a calibration step is
necessary to compensate these variations, and guarantee a correct operation of all
neuron circuits.

This thesis presents a software framework to automatically convert the parameters
of a neuron models written in a description language, PyNN, to parameters which
will be used to configure the hardware system, while making sure that the hardware
neurons behave in the same way that their theoretical counterparts. After a theoret-
ical analysis, this framework is applied both on transistor-level level simulations of
the hardware as well as on the hardware system itself. Finally, the software frame-
work is used to emulate some simple neural networks on the neuromorphic hardware
system.
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1. Introduction

1.1. Neuromorphic engineering : Opportunities and

challenges

Global interest in the domain of computational neuroscience has been growing
dramatically over the last years. Understanding how the human brain works is
not only very interesting in itself, but it can also have several applications: for
example, it can give us new clues about how to cure brain diseases [1], or about
how to design better control algorithms for robots [2]. One of the approaches taken
by computational neuroscience to understand the brain is to study the behavior of
neural networks [3]. Neurons and synapses are described by mathematical models
which quantify the behavior of their biological counterparts. Plasticity rules are
then added to describe the evolution of synaptic weights. Typically, these models
are implemented in specific simulators dedicated to neural networks, and are then
simulated using high-performance computers [4].

However, this approach is highly inefficient and can only be scaled to large neural
networks by using powerful computers. Indeed, neural networks are inherently
parallel, whereas typical computers are built using the Von-Neumann architecture
which is intrinsically a serial architecture [5]. Therefore, we can think about other
approaches to evaluate the behavior of large-scale neural networks. One of this
approach is to use neuromorphic engineering, a term which was first used by Carver
Mead in the late 1980s [6]. Neuromorphic engineering is the concept of designing
electronic circuits that mimic the organization of the brain. By using electronic
circuits to reproduce all components of neuron and synapse models, it is possible to
integrate large numbers of these circuits on VLSI chips.

Compared to simulations on high-performance computers, the neuromorphic ap-
proach has several advantages. The fundamental advantage is that a neuromorphic
chip is massively parallel by nature, whereas typical Von-Neumann systems have
a serial architecture. This allows neuromorphic systems to be much more energy
efficient than a simulation a neural network on a typical Von-Neumann computer.
Then, compared to biology, the components used to model neurons and synapses
(like resistors and capacitors) can have very small values in neuromorphic systems,
which leads to small intrinsic time constants for these systems. Therefore, the
neural networks present in neuromorphic chips can be highly accelerated compared
to biological real time. Simulations that would take days on a computer can then
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1. Introduction

be executed in seconds on a neuromorphic system. This allows to rapidly explore
many network topologies and parameter settings. Also, in contrast to typical com-
puters, these systems can have built-in learning capabilities. The last advantage is
a technological one: like the human brain, neuromorphic systems are fault-tolerant.
Indeed, even if some neuron or synapse circuits are not working on a neuromorphic
chip, the rest of the chip is still usable. This can be a great advantage as the yield
of modern fabrication processes is constantly going down.

Several research groups are also working on practical applications of such systems,
mainly in pattern recognition tasks and computer vision [7]. Neuromorphic systems
are for example used to classify datasets in [8]. Others have used neuromorphic
hardware circuits to optimize the the power consumption in integrated circuits [9].
Commercial applications are also being developed, for example for automated face
recognition [10] or vehicle license plate recognition [11].

Yet, there are many challenges left to solve in order to build and then use such
chips. First, most of these systems are mixed-signal integrated circuits, which are
much more complicated to design and to verify than a standard digital system. So
already the design step is a challenge in itself. Then, a neuromorphic chip cannot be
programmed to run a simulation like a typical computer. Instead, starting from a
given neural network that has to be emulated on the chip, several steps are necessary
to configure the chip: mapping, routing, and parameter translation. The first two
steps deals with how to assign a given hardware neuron to a neuron in the model,
and then route connections between neurons on the chip in an optimal way while
respecting the original network description. The last step, parameter translation,
consists in converting the parameters from the model into parameters usable by the
neuromorphic substrate, so that both behave in a similar way. This last step is the
main focus of this thesis.

1.2. Related work

Several research groups are developing neuromorphic systems and thus several
different approaches exist to deal with the parameter translation question. A first
possibility is to calibrate the whole system for a given neural network model, without
really taking care of the dynamics at the neuron level [12]. This approach focuses on
obtaining given input-output characteristics, or a given functionality of the network.
However, this approach is not adapted for the BrainScaleS hardware system, which
has been built to be an universal emulator for neural networks, and therefore should
be immediately usable by people without knowing what neural network model they
want to emulate.

Another possibility is to fit the membrane potential of each hardware neuron to
a given biological recording or a given model simulation using conventional opti-
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1.3. Objectives

mization algorithms. This approach has also been tested with the hardware neuron
circuits [13] by using a particle swarm algorithm [14]. This approach is used in some
research groups working on small-scale neuromorphic systems [15]. However, this
approach is also not suited to configure a large-scale neural network, as we want to
sweep rapidly through different parameter settings, without having to run the whole
optimization algorithm again every time we want to use the system with a different
configuration.

For these reasons, another approach had to be taken for this thesis. Indeed, one
key characteristic that the BrainScaleS hardware system system should possess is
to be fully configurable via the modeling language PyNN [16]. PyNN is meant to
describe a neural network and then to automatically simulate it on commonly used
software simulators or to emulate it on neuromorphic integrated circuits, without
having knowledge of the details of the hardware systems. A similar approach has
already been taken for the previous generation of neuromorphic chips developed in
the FACETS project [17].

At the neuron level, this means that a translation mechanism has to be found to
automatically translate the neuron model parameters to a set of parameters usable
by the hardware system, in order to get the same behavior in the model and on the
hardware. For this purpose, a software framework to automatically calibrate the
hardware system and translate neuron parameters had to be developed.

1.3. Objectives

Compared to the simulation approach, emulation of neural networks on neuromor-
phic chips arises several challenges. Beyond the steps of actually designing and
fabricating the neuromorphic system, configuring such systems is a challenge in
itself. This thesis focuses on the calibration and configuration of the neuron circuits
present in the BrainScaleS neuromorphic hardware. In other words, how can we
translate neuron model parameters so that the results of the emulation of a neuron
on the hardware is as close as possible to the software simulation of the same neuron
model.

In order to answer this question, this thesis is organized in several chapters going
from biological concepts to emulation of neural networks. Chapter 2 will introduce
the biological background of this thesis, as well as the theoretical neuron model that
is used in the hardware system. The details about the implementation of the neuron
model can be found in chapter 3. Then, chapter 4 introduces the software framework
that was developed in this thesis. This software is first applied on transistor-level
simulations in chapter 5. It is then also used to calibrate the hardware system in
chapter 6 and to emulate single cells. Finally, examples of using the framework with
simple neural networks are presented in chapter 7.
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2. Theoretical neuroscience

This first chapter introduces the basic concepts of neuroscience that will be used
through all this thesis. It starts with a brief introduction to the world of neuroscience,
with a description of the main elements that compose most of the nervous systems
found in nature. Already in this part, the focus is laid on neurons as the main topic
of this thesis. Then, the different neuron and synapse models that will be used later in
this thesis are introduced, such as the Leaky Integrate-and-Fire model and the Adap-
tive Exponential Integrate-and-Fire (AdEx) model. A more detailed analysis of the
AdEx model is done, as it is the model implemented on the BrainScaleS hardware sys-
tem. The analysis of the AdEx model is also extended to multi-compartment neurons,
with a detailed analysis on what patterns we can reproduce with multi-compartments
AdEx neurons. Finally, the parameters of the AdEx model are discussed in order to
evaluate which parameter ranges are needed on the neuromorphic hardware system.

2.1. Organization of the brain

This section introduces the fundamentals of biological nervous systems, as well as
their different components like neurons and synapses.

2.1.1. Nervous systems

The nervous system is the part of the body that processes the sensory input that it
receives from the rest of the body. Then, in response to this stimulus, it coordinates
the movement of the body. The fundamental elements of nervous systems are
specialized cells called neurons, which are connected together via synapses to form
complex networks. Figure 2.1 shows a sample taken from the human brain with a
pyramidal neuron from the hippocampus. We can identify the soma of the neurons,
as well as the long axons that will connect to other neurons. The connection be-
tweens neurons are done in three dimensions, thus allowing the creation of complex
networks and a very high connectivity. For example, every cubic millimeter in
the human cerebral cortex contains approximately one billion synaptic connections
[18]. The human brain for example has about 1011 neurons each of which make
connections with thousands of other neurons.

The neurons communicate among each other by sending electrical pulses, called
spikes [19]. The synapses are there to transmit the spikes between neurons. Not only
do they propagate the activity of neurons, but they can also modulate the strength
of the impulse to the target neuron via a mechanism called synaptic plasticity [20].
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2. Theoretical neuroscience

Dendrite

Soma

Axon

Figure 2.1.: Stained pyramidal neuron in the hippocampus. 40 times magnification.
Picture taken from Methoxyroxy / CC-BY-SA-2.5

Then, when a neuron receives incoming spikes from other neurons, its membrane
potential starts to increase or to decrease, depending on the synapse type. When a
neuron receives enough excitation from the network it will emit a spike at some point.
This section gives an overview of the biology of nervous systems. More information
about nervous systems can be found in [21].

2.1.2. Neurons

Neurons are very specialized and complex cells, and they are unique compared to
other cells of the body. They are basically composed of a main body, called the
soma, where most of the spikes are initiated. The input of the neuron arrives via a
complex tree of dendrites that are connected to synapses, which is used to collect
the spikes from the rest of the network. At the output side, the neuron propagates
spikes to the rest of the network via a long axon. All these characteristics of a
neuron are detailed in Figure 2.2.

The fundamental function of a neuron is to accumulate the inputs from the den-
drites and to emit spikes to the rest of the network. Most of this signaling process
depends on the properties of the neuron’s membrane. As for all cells, the membrane
of neurons is composed of a bilayer of lipids, which creates an insulating layer, with
some proteins structures embedded in it. A particularly important class of such
proteins in the context of neural information processing are the so-called ion chan-
nels, which allow charges to go into and out of the neuron. Some of these channels
are voltage-gated, which means they will turn on and off depending on the volt-
age across the membrane. Other are ligand-gated, which means their state depends
on the presence of certain chemicals. Another important class of such proteins are
ion pumps, which move the ions across the membrane against their concentration
gradient. These interactions between ion channels and ion pumps create a voltage
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2.1. Organization of the brain

Figure 2.2.: Schematic view of a complete neuron.

difference across the membrane, and in certain conditions these interactions will
produce a spike.

2.1.3. Synapses

Synapses are the contact zones that connect neurons with each other. Some synapses
rely on electricity to transmit spikes, and are called electrical synapses, but most of
them are chemical synapses and rely on the release of neurotransmitters to propagate
the information. Basically, a synapse consists of two parts: a presynaptic part which
lies on the axon of one neuron, and a postsynaptic part which connects to a dendrite
or directly to the soma of a target neuron.

A synapse will act on the target neuron, which has a negative potential. A synapse
can be excitatory, which means it will tend to depolarize the target neuron when
propagating a spike event. On the opposite, if a synapse tends to hyperpolarize the
target neuron, thus preventing it from spiking, it will be called an inhibitory synapse.

Not only do synapses transmit the information between neurons, but they can also
modulate the strength of the postsynaptic potential, and can also keep track of the
history of usage [22]. This last mechanism is described in the next section.

2.1.4. Plasticity

For now we described the fundamental elements of a nervous system, with neurons
and synapses. But we still have to describe how learning occurs in the brain. Indeed,
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2. Theoretical neuroscience

animals must face an ever-changing environment and must continuously adapt in
order to survive. Learning is mostly due to a change of the strength of synaptic
connections, via a mechanism called synaptic plasticity. The term synaptic plasticity
denotes many different mechanisms, on different timescales. Mechanisms acting on
short timescales, in the order of seconds or less, are usually called Short-Term
Plasticity or STP [23]. The effect of these mechanisms vanish after some seconds,
and thus are not responsible for long-term learning. This kind of plasticity only
depends of the presynaptic activity: each incoming spike either increases (synaptic
facilitation) or decreases (synaptic depression) the efficiency of the synapse. When
no spikes are received after a given time, the strength of the synapse returns to its
original state.

The second kind of plasticity induces much longer lasting effects and is called Long-
Term Plasticity or LTP, described for example in [24]. A very simple interpretation of
learning in synapses was is the law proposed by Donald Hebb [25]. Basically, it says
that when two neurons connected by a synapse fire together (the presynaptic neuron
first and then the postsynaptic neuron), the efficiency of the synapse is increased. On
the contrary, when the postsynaptic neuron fires first the efficiency of the synapse is
decreased. This phenomenon was measured in biology and one of its simplest form
is called Spike-timing-dependent plasticity or STDP [26].

2.2. Modeling biology

This section introduces the field of computational neuroscience and why it is so
important to understand the behavior of nervous systems.

2.2.1. Modeling neural networks to understand biological systems

A possible way to gain understanding of the brain and nervous systems is to do
in-vivo and in-vitro experiments. Over the last decades, many new techniques have
been developed to get a better insight of nervous systems. For example, the patch
clamp technique allows precise recordings from single ion channels on neural cells
[27]. Spike triggered averaging methods also allow more precise measurements of the
activity in nervous systems [28]. Other devices like Multi-Electrode Arrays (MEA)
allows low-noise recordings from many neurons at the same time [29]. However,
because it involves living systems, all these techniques are difficult to apply, costly
and time-consuming. Also, all these techniques can only capture information from
a few neurons simultaneously. For this reason, in order to study the computa-
tional properties of nervous systems described in the previous section, it is much
more convenient to create accurate models to explore different neural architectures,
typically by simulating a set of equations on powerful computers. This field of
neuroscience is called computational neuroscience, and links neuroscience, psychol-
ogy, mathematics, and computer science. Basically the nervous systems of most
animals can be simplified, modeled and broken down into three basic components:
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2.2. Modeling biology

Figure 2.3.: Example of representation of a simple neural network. The circles rep-
resent the neurons, and the arrows between them are the synapses.

neurons, synapses and plasticity rules. A database was also created to store all the
computational neuroscience models so they can be used by different research groups
[30]. The topology of neural networks can also be represented as graphs. Such a
representation of a neural network can be found in Figure 2.3.

This section is an introduction to the field of computational neuroscience, more
details can be found in [31]. Special software simulators have been developed to
simulate neural networks on a computer. These simulators facilitate neural networks
simulations by encapsulating network elements like neurons and connections in in-
tuitively usable objects. This is for example the case of the simulators NEST [32] or
BRIAN [33], which will be used for the software simulations in this thesis.

2.2.2. Modeling neurons

We saw that neurons are complex cells, and can be difficult to model. So how do we
find a good neuron model ? There are basically two approaches to model neurons.
The first approach is to build a very detailed model of neurons, by modeling the
neuron at the level of ion channels. This was the approach taken by Hodgkin and
Huxley when they developed their famous model [34]. These kind of models are
usually very accurate and can reproduce most details and behaviors observed in
real biological neurons. Sometimes they also have many compartments to simulate
the propagation of electrical pulses over the soma, the dendrites and the axon
[35]. Obviously, they are usually very computationally expensive when simulated on
a computer. These kind of models are for example used in the Blue Brain Project [36].

The second approach is to propose a simplified set of equations describing the
behavior of a neuron [37]. A good model should reproduce the computational
properties of the neuron. Basically, a model is proposed, which is a set of differential
equations with tunable parameters. A fitting procedure is then done on neuron
recordings to find the value of these parameters, which have or do not have a
biological significance [14]. This is the case for the models that will be used in this
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thesis, and that are usually used in computer simulations because they are easier to
simulate. They are also used in neuromorphic hardware systems because they can
have a compact implementation in silicon.

A competition is organized each year by the International Neuroinformatics Co-
ordinating Facility (INCF) [38] to evaluate how good the different neuron models
really are, by comparing their ability to predict the response that was measured on
a real, biological neuron. More information about this competition can be found in
[39].

2.3. Concepts used in this thesis

The models that will be used later in this thesis are all introduced in this section
with detailed examples.

2.3.1. The Leaky Integrate-and-Fire model

One of the simplest neuron models that can be found in the literature is the so-called
Leaky Integrate-and-Fire model (LIF). The origins of this model can be traced back
to the beginning of last century [40], and is extensively studied in [41]. It is used
in most of spiking neural networks simulation, for example in [42], [43] or [44]. It
basically consists of describing the charge of a capacitance, which represents the
membrane of the cell, associated with a resistance in parallel that represents the
leakage through the membrane. The model is described by the following equation:

C
dV

dt
= −gL(V − EL) + I (2.1)

which is completed by one equation for the reset condition if the threshold voltage
is crossed:

V → Vreset (2.2)

To illustrate the simplicity of this model, a simulation was made with an LIF
neuron stimulated by a constant current. The result from this simulation can be
found in Figure 2.4.

This model is used for networks simulations, but it fails to reproduce many fea-
tures observed in biological neurons, such as spike-frequency adaptation, or rebound
spiking.

2.3.2. The AdEx model

Between all the available neuron models, the Adaptive Exponential Integrate-and-
Fire model has been chosen to be implemented on the hardware, so it will be
described in more details in this paragraph. This model has first been introduced by
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Figure 2.4.: Response of an LIF neuron stimulated with a step current which is in-
jected at 50 ms.

Brette and Gerstner in [45]. In this paper, they introduce a model with two main
additions to the LIF model: a smooth spike initiation zone, with an exponential raise
of the membrane potential when crossing this spike initiation zone. The model also
has an adaptation capability. Their idea was to develop the equations of the model,
and then find the parameters via a parameter fitting on neurons’ recordings. A
mathematical analysis of the model is done in [46]. This model is a good compromise
between the simple Integrate-and-Fire model which cannot reproduce all the typical
firing patterns seen in biology, and the Hodgin-Huxley model which would take too
much space for an hardware implementation.

From a mathematical point of view, the model is similar to the Integrate-and-Fire
model described in 2.3.1, with an additional term for the exponential spike initiation
mechanism, and a second variable w to describe the adaptation mechanism. There
are two equations describing the model:

C
dV

dt
= −gL(V − EL) + gL∆T e

V −Vth
∆T + I − w (2.3)

τw
dw

dt
= a(V − EL)− w (2.4)

These equations are completed by two reset conditions if the threshold voltage is
crossed:

V → Vreset ; w → w + b (2.5)

Many spiking patterns that were observed in biology can be reproduced with this
model. The probably most basic pattern, which can also be reproduced by LIF
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neurons, is tonic spiking, which is the pattern when the neuron spikes at a given
frequency. One pattern that is crucial and can be reproduced with the AdEx model
is spike-frequency adaptation. This means that when stimulated with a constant
current, the neuron will first spike at a high rate. After some time, the rate will
decrease and stabilize around a given value: the neuron is adapting to the stimulus.
These two patterns can be found in Figure 2.5.
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Figure 2.5.: Basic spiking patterns of the AdEx model. The figure on the left is tonic
spiking, and the one on the right is spike-frequency adaptation.

The AdEx model can also reproduce more complex spiking patterns. One example
is the so-called phasic spiking: it is similar to spike-frequency adaptation, but in this
case the neuron will emit only one spike when stimulated with a constant current.
This would be impossible with the LIF model, which would either spike at a given
frequency or not at all. Another behavior that is not possible with the LIF model is
bursting. This is a pattern that is observed in biology and consists of short groups
of spikes, or bursts, that are emitted periodically [47]. Both of these patterns are
shown on Figure 2.6.

Compared to the LIF model, the AdEx model also displays threshold variability
features due to its adaptation properties. This means that when stimulated with
a strong negative current pulse, an AdEx neuron can produce a spike when being
relaxed back to a null stimulus. This behavior is called rebound spiking, and is
shown on the left figure on Figure 2.7. To demonstrate this behavior, first a small
current pulse is applied to the neuron, which does not lead to a spike. Then, a
strong negative pulse is applied, followed by the same small positive pulse again. The
second time, the neuron spikes, thus showing threshold variability. This behavior is
shown on the right part of Figure 2.7.

There are other features of the AdEx model beyond spiking patterns. For example,
the model can reproduce realistic sub-threshold oscillations when the input is not
strong enough to produce a spike. To reproduce these oscillations on the model a
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Figure 2.6.: Complex patterns that can be reproduced with the AdEx model. Phasic
spiking is on the left, and regular bursting is on the right.
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Figure 2.7.: Threshold variability features of the AdEx model. Rebound spiking
pattern on the left, threshold variability on the right. In this case the
injected current was represented at the bottom of each figure.

positive current pulse was applied to the neuron. The results are shown in Figure 2.8.

2.3.3. Conductance-based synapses

Now that we have models for point neurons, we also need to have a model for synapses
in order to be able to fully describe a neural network with a set of equations. The
model that will be used, and which is also used in the hardware system, consists in
conductance based synapses. This model is widely used and is for example described
in [48] and in [49]. The post-synaptic current that is sent to a neuron after one
synapse has received a spike follows the following equation:
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Figure 2.8.: Subthreshold oscillations with the AdEx model.
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Figure 2.9.: Response of the neuron after receiving a spike at 100 ms.

Isyn(t) = gsyn(t)(u −Esyn) (2.6)

The conductance itself is time-dependent and follows an exponential decay when
a spike is received at the synapse:

gsyn(t) =
∑

f

gsyne
−(t−t(f))Θ(t− t(f)) (2.7)

To illustrate this model, a simple simulation was made with an AdEx neuron
receiving one spike which creates a PSP on the membrane. The result is shown in
Figure 2.9.
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2.3.4. Multi-compartment models

We have reviewed how to model point neurons and synapses, where the dendrites,
the soma and the axon are modeled as a single block. But real neurons are much
more complicated and cannot be accurately described with just one compartment.
For this reason, it was decided to create a new neuromorphic chip that can emulate
multi-compartment neuron models [50]. In this chip, different neuron circuits which
emulate a part of a neuron (like a soma or a dendrite) can be connected together
with adjustable resistors to emulate the connection between compartments.

This part analyzes multi-compartment AdEx models from a theoretical point of
view. This work was done during a one month visit at the Laboratory of Computa-
tional Neuroscience in Lausanne under the supervision of Prof. Wulfram Gerstner.
Most of the work was inspired by the work on multi-compartment models done in
[37]. Indeed, there is not much literature about multi-compartments AdEx neurons.
One of the few studies that was published uses two-compartments AdEx neurons [51].

All the simulations presented in this section were done using the AdEx model
and conductance-based synapses. As no simulators are available to simulate multi-
compartment AdEx neurons, all the code for the simulations was written specifically
for this chapter using the programming language Python.

The first step is to simulate a simple two-compartment neuron, with a passive
dendrite connected to a second compartment that will represent the soma. The
conductance between the two compartments was 50 nS.

The result from this basic simulation in Figure 2.10 illustrates the behavior of both
compartments. The first compartment is stimulated with a constant current, which
results in a raise of the compartment’s membrane potential. The first compartment
then pulls the membrane of the second compartment, which results in a spike at the
soma. We can notice that no spikes are produced in the dendrite, which is expected
as it is modeled as passive.

But more interesting effects can be created with an active dendrite. For the AdEx
model that we are using, it means using the exponential term in the equations,
as well as allowing the dendrite to initiate spikes. One interesting effect that I
focused on with this active dendrite is the so-called dendritic-somatic ping-pong
effect described in [52]. Basically, the effect starts by stimulating either the dendrite
or the soma with constant current. Then, with the right set of parameters, the
spike initiated at the first compartment will be strong enough to initiate another
one at the other compartment, and so on, creating a ping-pong effect between
the two compartments. This effect was reproduced using the Izhikevich model
in [37], and I wanted to verify that it was also possible to reproduce it with the
AdEx model. The simulation corresponding to this effect can be found in Figure 2.11.
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Figure 2.10.: Response of the two-compartment neuron to a constant current stimu-
lus. The solid line is the soma, the dashed line is the dendrite.
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Figure 2.11.: Dendritic-somatic ping-pong effect with two compartments using an
active dendrite. The solid line is the soma, the dashed line is the
dendrite. The figure on the right is a zoom on the location of the
ping-pong effect.

This simulation confirms that this ping-pong effect can also be reproduced by the
AdEx model.

After these experiments with two-compartments neurons, simulations were also
made with more complex dendritic trees. For all the remaining of this section, the
multi-compartment neuron had one soma and seven dendrites, connected together
as a tree (see Figure 2.12).
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In a first experiment, the neuron was stimulated with three excitatory Poisson
sources and one inhibitory Poisson source, each applied on one of the input dendrites.
The result of the simulation is presented in Figure 2.12.

0 50 100 150 200 250 300
Time [ms]

−60

−55

−50

−45

−40

−35

−30

−25

−20

M
em

br
an

e 
po

te
nt

ia
l [

m
V]

Figure 2.12.: Simulation of a neuron with a dendritic tree. The tree is represented
on the left, and the simulation results on the right. The solids line are
the soma and the last compartment, whereas the other dashed lines
represent the dendrites on the left side of the tree.

One effect that was also measured on biological neurons is the amplification of
inhibition trough the dendritic tree, as described in [53]. These measurements
showed that injecting a inhibitory stimulus at the root of a dendritic tree actually
amplified the inhibitory effect, compared to the case where this stimulus would be
applied directly at the soma. In order to reproduce this effect with our model, two
experiments were made using the same dendritic tree as in the previous experiment.
Again, Poisson spike trains were used as stimuli. The first one was just the repetition
of the previous experiment, with the inhibitory stimulus injected at the right input
dendrite, but only between 150 and 200 ms. The second experiment was the same
but with the inhibitory stimulus injected directly at the soma. The comparison
between these two experiments is shown in Figure 2.13.

Intuitively, we might expect that the inhibition would be stronger if it was ap-
plied directly at the soma. But with the set of parameters that were used in these
experiments, the contrary is happening: the effect is stronger when the stimulus
is applied at the input dendrite, thus confirming the possibility to reproduce the
dendritic amplification effect with the multi-compartment AdEx model.

2.4. Neuron parameters: what do we need ?

This section discusses the needed parameters ranges for the implemented AdEx neu-
ron on the hardware system.
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Figure 2.13.: Simulation of a neuron with a dendritic tree. The tree is represented
on the left, and the simulation results are on the right. The figure on
the right is the comparison between injecting the inhibitory stimulus
at the right dendrite or directly at the soma.

2.4.1. Biological and hardware parameter ranges

In the equations of the AdEx model described in 2.3.2, the parameters of the model
can have arbitrary values. However, on a neuromorphic hardware system, the pa-
rameters will have a limited range. This ranges are given by the design of the neuron
circuit, and will be later determined both on transistor-level simulations and on the
real hardware system. In order to evaluate the potential effects of these hardware
limitations, it is required to first see what parameter values are needed to reproduce
most of the simulations that are typically done on high-performance computers.

2.4.2. Required parameters for the AdEx model

The starting point to find out about the required parameters for the BrainScaleS
neuromorphic hardware system is to look at the standard parameters of the AdEx
model in PyNN, as this will be the most commonly used interface for the neuromor-
phic system. These parameters are the following:

neuron_params = { ’cm’ : . 2 , # nF
’tau_m ’ : 20 . , # ms
’e_rev_E ’ : 0 . , # mV
’ e_rev_I ’ : −80. , # mV
’ v_thresh ’ : −50. , # mV
’ v_spike ’ : 0 . , # mV
’tau_syn_E ’ : 1 0 . , # ms
’ v_rest ’ : −70. , # mV
’ tau_syn_I ’ : 1 0 . , # ms
’ v_reset ’ : −70. , # mV
’ tau_refrac ’ : 2 . , # ms
’a ’ : 2 . , # nS
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’b ’ : 0 . 1 , # nS
’ delta_T ’ : 2 . , # mV
’tau_w ’ : 30 . # ms

}

From the simulations usually done using the AdEx model [54], we can extract a
list of typical values for each parameter of the AdEx model. For each parameter, the
minimum, maximum and mean value were extracted. Also, the default PyNN values
for the AdEx model are given as an example [55]. The results of this analysis are
given in the following table:

Parameter Minimum Maximum Mean PyNN value

v_rest [mV] -70 -58 -64.3 -70
v_reset [mV] -58 -46 -52.8 -70
v_spike [mV] 0 0 0 0
g_leak [nS] 1.7 18 9.35 10
tau_refrac [ms] 0 2 1 2
a [nS] -0.8 4 1.9 2
tau_w [ms] 16 300 133 30
b [pA] 0 120 51.8 100
delta_T [mV] 0.8 3 2.3 2
v_thresh [mV] -56 -42 -50 -50
e_rev_E [mV] 0 0 0 0
e_rev_I [mV] -80 -80 -80 -80
tau_rev_E [ms] 10 10 10 10
tau_rev_I [ms] 10 10 10 10

To say that the neuromorphic hardware is suitable for emulation of biologically
realistic networks, the mean value of each parameter has to be reached by the hard-
ware, as well as the default PyNN value. Also, the parameter ranges defined in
this table have to be similar to the parameter ranges of the hardware. This will be
verified with transistor-level simulations in chapter 5.
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This chapter starts by introducing the field of neuromorphic engineering, with an
overview of the field and some history. Also, the advantages and disadvantages of
using such an approach in engineering are discussed. A simple example of emulating
a single neuron cell is also described. In a second part of this chapter, the Brain-
ScaleS Hybrid Multiscale Facility (HMF) is described in details. The HMF is the
neuromorphic system on which all the experiments done in this thesis rely on. This
part includes a description of the HMF itself, and also of the demonstrator setup
which was the system available at the time this thesis was written. Finally, the chap-
ter ends with a detailed description of each component of the neuromorphic chip that
is at the core of the HMF, with a particular attention for the neuron circuits.

3.1. Neuromorphic engineering

This section is a general introduction to the field of neuromorphic engineering. It
starts with an overview of the principles of neuromorphic engineering and some
history of the field. An example about how to emulate a single neuron cell using
electrical components is also introduced.

3.1.1. Principles

Neuromorphic engineering is the science of getting inspiration from the realm of neu-
roscience in order to build better electronic systems. It is an highly interdisciplinary
field, mixing electrical engineering, computer science, neuroscience and mathematics.

There are basically two different angles to see the field of neuromorphic engineer-
ing, and the first one is technology. It is well known that Moore’s law, which says
that the number of transistors that can be placed in an integrated circuit doubles
approximately every two years, will soon become very hard to follow [56]. Of course,
one solution is to move away from the traditional CMOS fabrication processes
and to go for new technologies like CMOL or memristors [57]. CMOS fabrication
processes can also be modified to improve the yield of these modern processes. For
example, techniques such as tri-gate transistors, double patterning, or immersion
lithography are now widely used in modern processes [58]. But still, even with these
new technologies, fabrication processes will become more and more unreliable, which
means the yield of integrated circuits will drop drastically [59].
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A change of paradigm is therefore also needed at the architecture level. Indeed,
most of the computing devices we are currently using rely on the Von Neumann
architecture, where the computation is done with a computing unit and a memory
which exchange data. Two problems emerge from this architecture when we want
to achieve faster computation. We already saw the first one, which is related to
the yield problem. Indeed, just one defect component in such an architecture
leads to a failure of the whole system. For this reason, we need new architectures
that can cope with the inherent yield problem of these new fabrication processes.
Creating defect-tolerant computer architectures has been a challenge for more than
ten years [60]. Also, in modern processors the communication channel between the
processor and the memory is rapidly becoming a bottleneck. Indeed, we can create
faster processors and faster memories, but as they have to quickly exchange huge
amounts of data the communication between them is becoming a strong limitation.
Parallel computing is one answer to this problem [61], but existing software has to
be partially rewritten to benefit from multi-processors architectures. All these chal-
lenges are currently being tackled by the industry, but most of them are still unsolved.

This is where neuromorphic engineering kicks in. Indeed, we already know a
system that is massively parallel, low-power, and defects tolerant: our own brain.
Neuromorphic engineering proposes to replicate the architecture of the human brain
on silicon chips, emulating neurons and synaptic connections between them. The
result will be a new class of integrated circuits that works in a massively parallel
way, are defect tolerant, and consumes much less power than the current integrated
circuits used for computation [62]. These systems can also have built-in learning
capabilities, for example by implementing STDP mechanisms [63]. Also, even with
beyond CMOS components like memristors, neuromorphic architecture are strongly
considered because of the bad yield of these devices [64] [65].

This is how neuromorphic engineering can help creating new electronic devices.
However, we can look at this field with another angle, as it can also help in the field
of computational neuroscience. Indeed, analog emulation of neural networks can be
inherently faster than their computer simulated counterparts [66]. Therefore, neuro-
morphic systems can also be used to explore neural architecture and to understand
the brain, much faster than any supercomputer will do. This last approach is the
main motivation behind the BrainScaleS project.

3.1.2. Overview of the field

The term of neuromorphic engineering first appeared with the research of Carved
Mead when he was working at Caltech in the late 1980s. Indeed, he was the first
to describe how we could use analog electronic circuits to create integrated circuits
that would mimic the basic components of the brain, like neurons and synapses.
In one of his books [6], he describes how to actually build these components us-
ing the technologies available at that time. He was also the first to describe how
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we can build a silicon retina by looking at how biology realizes the same function [67].

After that, the field of neuromorphic engineering remained pretty silent during
more than a decade, mainly because the fabrication technology available at that
time did not allow the fabrication of large neural networks on integrated circuits,
and also because there was still a lot to be done using the well-known Von Neumann
architecture.

It was only with the work of Kwabena Boahen and his group at Stanford that
the field took a fresh start [68]. The goal of this group is to build an affordable
supercomputer based on the organization of the human brain. With each core
containing 256x256 analog neurons, the system from Stanford called Neurogrid aims
to offer a cheap option to realize brain simulations and to propose a new computing
architecture.

There is also the research done by the INI group at the ETHZ in Zürich [69].
They are building analog, real-time neuromorphic chips, but are more focused on
practical applications with medium-sized neural networks. Some of the circuits they
are building are not even based on neurons and synapses, but are simply circuits
inspired from biology. For example, one of their principal invention is the silicon
retina that uses spike-based computation to work as a very efficient artificial vision
sensor [70].

Another project at the University of Manchester, called SpiNNaker, introduced a
twist in the original concept of Carver Mead [71]. Instead of using analog circuits
for neurons and synapses, the SpiNNaker chip is entirely digital. It uses many
ARM1 [72] cores on a single chip to allow fast and low-power simulations of neural
networks. Compared to other real-time analog neuromorphic systems, it provides a
great flexibility of usage, similar to a pure software simulation of neural networks.

The neuromorphic system that will be used in this thesis, which is part of the
BrainScaleS project, proposes another approach. The neurons are analog circuits like
it was originally proposed by Carver Mead, but it uses the possibility of integrating
small capacitances and resistances on an electronic substrate to create a large-scale,
highly-accelerated system. More details about the BrainScaleS hardware can be
found in section 3.2.

3.1.3. Emulating a neuron

In order to get a better understanding at the philosophy behind neuromorphic
engineering, and the basics of the neuron circuit that will be used in through all this
thesis, we can simply look at the emulation of a single neuron. Indeed, a neuron can

1Advanced RISC Machine
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basically be modeled as a RC circuit.

In the simplest model possible, an electrical capacitance can represent the total
capacitance of the membrane, and a resistance can represent the leakage of charges
through the membrane. To extend this simple model, more ion channels can be
added to emulate more complex neuron models. These additional ion channels can
have non linear behaviors.

In order to artificially replicate the behavior of a neuron, there are two possibil-
ities. The first one, which is the more widely used in the theoretical neuroscience
community, is to write a set of differential equations for each neuron and solve them
using a computer. This approach is very convenient as well-known programming
languages can be used, as well as typical computers if the network size is small. It
is also possible to use dedicated neural networks simulators to make things even
easier. However, this approach is highly inefficient on a Von Neumann computer, as
neural networks as massively parallels systems by nature. As the network size grows
in size, or when learning functions are involved, simulations start to require huge
computing power to complete in reasonable times.

The second approach, which is at the heart of neuromorphic engineering, is to say
that the components of the model (resistors, capacitors ...) are electrical components
and thus can be emulated by a physical implementation of the model. For example,
the membrane capacitance can directly be implemented with an electrical capaci-
tance on a microchip. In a similar way, the leakage term of the Integrate-and-Fire
model can be implemented with an Operational Transconductance Amplifier (OTA).

For this idea of hardware emulation, several approaches exist. The first one is to
simply observe biology and try to come with a circuit that approaches the behavior
of biological neurons, but without trying to reproduce a given model or a given set
of differential equations. This approach leads to low-power, compact circuits but
often fail to accurately reproduce the behavior of a given model. This is for example
the approach taken in [73] and in [74].

The second approach, which is the one used for the hardware system described
in this thesis, is to carefully design each component of the neuron circuits so that
they emulate terms of the differential equations of a given model. For example,
the leakage term of the LIF model would be implemented with an OTA2. Inside
this category, again two approaches have to be distinguished. One is to use a
complex neuron model, which models individual ion channels, and to reproduce it
as accurately as possible at the detriment of the circuit area. Such neuron circuits
are usually operating at biological real-time. This is the approach described in [75]
and was characterized in [76].

2Operational Transconductance Amplifier.
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The other approach is to exit the world of biological real-time and make neuron
circuits as compact as possible, with small capacitances and resistances, while still
staying close to the differential equations of the chosen neuron model. This approach
leads to dense integration of neuron circuits on a single chip, with neural networks
running at several orders of magnitude faster than biological real-time. This allows
very fast emulation of neural networks compared to a typical computer simulation.
This is the approach taken for the neuron circuits of this thesis and is described
in [77]. A detailed comparison between some of these implementations of silicon
neurons can be found in [78].

3.2. The BrainScaleS neuromorphic hardware

This section is an overview of the different neuromorphic hardware platforms that
are available within the BrainScaleS project.

3.2.1. The BrainScaleS Wafer-Scale System

One of the main goals of the BrainScaleS project is to develop an Hybrid Multiscale
Facility (HMF), a collaboration between the research teams the Heidelberg Univer-
sity and the TU Dresden [79]. The HMF is composed of two parts: a neuromorphic
part hosts all the circuits responsible for the very fast emulation of neural networks.
Secondly, a more conventional High Performance Computing (HPC) part can run
classical computer simulation of neural networks. Furthermore, it can also be used
to simulate a virtual environment that can be used for the neuromorphic part. A
picture of the current state of the HMF, with a cluster of computers and one wafer
module, is shown in Figure 3.2.

The neuromorphic part of the HMF will contain up to 6 wafer modules, and will
be able to emulate neural networks of up to 1.2 Million neurons and over 260 million
synapses, all running at a nominal speed of 10.000 times faster than biological
real-time. An exploded view of one wafer module can be found in Figure 3.2, with
the wafer itself, the system PCB and the communication subgroups.

Each of these wafer modules is composed of several parts. The central part of
each module is a 20 cm silicon wafer, fabricated using the UMC 180 nm process.
This wafer module contains the neuromorphic chips. 384 of these chips, called
HICANNs3, are present on each wafer. The HICANNs on the wafer are organized
in groups of 8 chips, which are called reticles. The originality of the project is
that the wafer is not cut so that each chip can be packaged separately; instead,
the wafer is left uncut, and the neuromorphic chips are connected to each other
directly on the wafer via a post-processing step [80]. This allows to obtain the

3HICANN: High Input Count Analog Neural Network
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High Performance 

Computing Part
Neuromorphic

Part

Figure 3.1.: The current Hybrid Multiscale Facility (HMF). On the neuromorphic
part, the wafer mounted on a Printed Circuit Board (PCB) is in the
middle of the rack, whereas all the bottom part of the structure is hosting
the necessary power supplies and controllers for the wafer module.

Figure 3.2.: The Wafer-Scale System.
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desired communication bandwidth between the neuromorphic chips that would more
expensive and difficult to reach otherwise using more conventional methods. For
example, the chips could be individually packaged and mounted on a PCB4. More
informations about this Wafer-Scale Integration (WSI) can be found in [81].

The wafer is connected to a custom-made PCB via elastomeric connectors. This
PCB provides all the necessary power for the wafer, as well as the connections to the
digital communication part. This last part, which was developed at the TU Dresden,
is composed of digital ASICs5 and custom FPGA boards with a Virtex 5 FPGA
from Xilinx [82]. Each of these digital ASICs, called DNCs6 [83], connects with one
reticle on the wafer module, making the interface between the neuromorphic chips
on the wafer and the rest of the system. There is a total of 48 DNCs per wafer module.

These DNCs are grouped together on the custom FPGA boards. In total, there
are 12 of these boards per wafer module. These FPGAs provide the buffering and
routing capabilities of the system, and are for example responsible for routing the
spike events to another wafer module, and to return events back to the host computer.
They also introduce the possibility to retain spike events for a given period of time,
thus allowing to introduce delays into the implementation of neural networks. Each
of these FPGA boards have two Gigabit Ethernet connection to the host computer,
four 10 Gbit/s Aurora connections with other FPGA boards, and 4 DNC interfaces.

3.2.2. Demonstrator platform

Because the Wafer-Scale System was not available during a large part of this the-
sis, most of the work that is presented in this thesis was done using the so-called
demonstrator platform. The demonstrator platform aims to reproduce the behavior
of one reticle of the Wafer-Scale System.

The usual setup with an oscilloscope connected to the platform analog outputs
is represented in Figure 3.3. The whole platforms hosts one custom FPGA board
with a Virtex 5 FPGA, 4 DNCs and up to 8 HICANNs. In this case the HICANN
chips are cut out from the wafer, and are soldered to a small test PCB. These
HICANN chips mounted on PCBs (2 HICANNs can be mounted on a single PCB)
are then plugged into a board called the iBoard. This board provides the necessary
voltages and clock for the chip, and provides two analog outputs which can be used
to read analog signals from the neuron circuit on the HICANN chips. This board is
connected to the custom FPGA board, which is linked to a computer via Ethernet.
At the beginning of this thesis, these two analog outputs were connected to an
oscilloscope for analog measurements. Later, an ADC board was used for faster and
more convenient measurements. The software framework used to control this setup

4Printed Circuit Board
5ASIC: Application Specific Integrated Circuit
6DNC: Digital Network Chip
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Figure 3.3.: The demonstrator platform.

is also the same one used for the Wafer-Scale System. Therefore, all results obtained
on this setup can be transposed to the Wafer-Scale System without a lot of efforts.
More informations about the demonstrator system can be found in [84].

3.2.3. USB-FPGA platform

It is also planned to create a much more portable platform with the form of an
USB board. This platform includes one or two HICANN chip, directly interfaced
with a Xilinx Spartan 6 FPGA. In this case, the digital interface to the HICANNs
(which is realized with the DNC chip in the other platforms) is directly included in
the FPGA design. The analog acquisition of neurons membrane potentials is done
via an on-board ADC. The power is also directly supplied via the USB connector.
This platform was not available when this thesis was written, but all the calibration
methods presented in this thesis can be applied to this new board without major
issues.

3.3. The HICANN chip

This section is a description of the architecture of the neuromorphic chip used in this
thesis, with particular details on the neuron circuitry.

3.3.1. Overview

The neuromorphic chip which was used through all this thesis is called the HICANN
chip. A picture from the top of the chip can be found in Figure 3.4.
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3.3. The HICANN chip

Figure 3.4.: Photograph of the HICANN chip.

The different parts of the chip can be easily identified on this picture. The neuron
circuits and floating gate cells are in the middle of the chip. They are surrounded
by the two synapse arrays that occupy most of the space on the chip. This core
of the chip is surrounded by the digital part of the chip, denoted as bus system on
Figure 3.4. The chip is a full-custom mixed-signal microchip built using the UMC
180 nm process. It features 512 neuron circuits emulating the Adaptive Exponential
Integrate-and-Fire model which was described in 2.3.2. More details about the actual
implementation of the AdEx model are given in 3.3.3. The HICANN also has 115.000
synapse circuits that can be used to connect the neurons together, allowing nearly
arbitrary neural networks to be mapped onto the chip. These synapse circuits are
also capable of emulating synaptic plasticity, like STP and STDP. The detailed
specifications of the chip are described in [85].

3.3.2. Digital circuitry

The routing of the spikes inside the chip is done using conventional digital circuitry.
Within the chip, the spikes are routed using an on-chip network called layer 1, or L1.
It is composed of several parallel LVDS7 lines to guarantee the necessary bandwidth
and to lower the power consumption for communication. To route a spike from a
neuron output to the desired target neuron inside the same chip, the event has to
travel through several digital components.

It first has to go through the merger tree, which is composed of several merger
modules and connect to the repeaters inside the chip, or to the DNC interface. As-
suming we want to route the spike inside the chip, the spike will first travel through
a repeater, and will then be routed to the correct synapse driver via crossbars and
switch matrices. The information is then relayed by the synapse driver to a synapse
circuit, and then transmitted to the target neuron.

7Low Voltage Differential Signaling.
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Figure 3.5.: Simplified schematic of the neuron circuit. This figure was taken from
[86].

The spikes can also take another path and be routed outside of the chip for analysis,
or to introduce a delay before going to a given synapse. For this purpose, the
HICANN chip also has a connexion to the L2 layer. This allows a transmission of
digital events to and from the DNC at a rate of 10 Gbit/s. This connexion can also
be used to receive spikes from the host computer through the FPGA.

3.3.3. Neuron implementation

The neuron circuits are located in the analog part of the chip, called ANNCORE8.
There are two ANNCOREs on each HICANN chip, each containing 256 neuron
circuits. The basic neuron circuit is called a denmem and can be connected to
224 synapses. By connecting several denmems together, it is possible to emulate a
neuron with more synaptic inputs. The maximum input count possible inside one
HICANN chip is 14.000 inputs. In this case, the number of usable neurons in one
chip is reduced to 8. With the same mechanism it is possible to create neurons that
have several adaptation time constants for example.

The architecture of a neuron circuit is modular. Basically, one denmem is com-
posed of several sub-blocks, which can be seen in Figure 3.5. Each of these blocks
emulates a part of the AdEx model, whether it is a term of the equations of the
model or a part of the reset mechanisms. These blocks are described in detail in the
following list:

• The leakage block, which is at the heart of the neuron circuit and emulates
most of the I&F model

• The adaptation block, which adds the adaptive properties to the neuron

• The exponential block, which adds the sharp exponential raise of the membrane
potential

8Analog Neural Network Core.
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E_leak

V_membrane

I_membrane

Figure 3.6.: Simplified schematic of the leakage circuit.

• The excitatory synaptic input block

• The inhibitory synaptic input block

• The spike generation and reset block, which sends a digital pulse to the L1
network and resets the neuron

• The input/output block, where current can be applied to the neuron and where
the membrane potential can be forwarded the analog output for visualization

Most of these blocks, like the leakage block, are based on the principle previously
described in 3.1.3. For example, the leakage block is basically an OTA, where one
of the input represents the membrane voltage, and the other one the membrane
resting potential. The input representing the membrane potential is also directly
connected to the output. As a result, the output current of the OTA is equivalent
to the leakage current of the LIF model. This is represented in Figure 3.6.

The readout functionalities of the neuron are very important for this thesis, as
many analog and digital measurements will be necessary to characterize the neuron
circuits. The HICANN chip has two analog readout channels, so two neurons can be
simultaneously readout from the chip, via 50 Ohm buffers that drive the membrane
potential signals out of the chip. For digital measurements, which means measuring
the spiking frequency from the spike times only, the connection to the L1 bus will
be used.

The output of each neuron circuit is connected to the L1 buses via a merger
tree, which can merge output spikes from neurons and from the on-chip Background
Event Generators. The output spikes are synchronized to the reference clock, which
implies that the time resolution of spikes is limited to 4 ns, which translates to 40 µs
in biological time at the typical acceleration factor of 10.000. The spikes can then
be transmitted to the DNC, the FPGA and then to the host computer. This digital
readout of spikes will largely be used by the calibration software to quickly readout
the spiking frequencies of the neurons.
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All the parameters of the neuron circuits are stored in analog floating gates which
then bias the circuits. Compared to other solutions used to store analog values, the
floating gates do not have to be refreshed over time, as their values only decay with
the timespan of several hours. For this reason, they also provide very stable biases
during an experiment with the chip. However, they are quite slow to program: it
takes around 20 seconds to program all floating gate cells on a chip. More information
about the behavior of these analog floating gate circuits can be found in [87]. Except
for some parameters which are global like the reset voltage, all neurons get individual
parameters via this floating gates array. There are two types of analog memory cells,
for voltages and currents. Voltage cells can deliver up to 1.8 V, and current cells
up to 2.5 uA. Both are controlled digitally with a precision up to 10 bits. The
floating gate cells are organized in 4 arrays, each containing 129 columns with 24
lines of floating gate cells. 128 of these columns are used for neuron parameters,
the remaining one is for STDP and other global parameters like maximum synaptic
weights. More informations about the implementation of the neuron circuit can be
found in [88] and in [86].

3.3.4. Synapse implementation

The role of the synapse circuits is to receive spikes as digital events at their inputs,
and send them to the neuron circuits. These circuits are also responsible for the
learning capability of the neuromorphic chip, by implementing STP9 and STDP10.
Each synapse circuit acts on two different ways on the incoming spike: the ampli-
tude is multiplied by a given factor which acts as a synaptic weight, and the pulse
duration is modulated to emulate the STP mechanism. The synaptic weight itself
is controlled by two parameters: the maximum conductance gmax and a four bit
digital weight. The maximum conductance is set in the global parameters column
in the floating gate array, and directly influence the synapses drivers. The other
way to change the synaptic weights is the digital weight, which can be set for each
synapse circuit. At the output of the synapse circuit, when a spike has been received,
the amplitude of the current pulse that flows to the neuron is equal to weight x gmax.

The synapses also implements a basic STDP mechanism. Indeed, after a neuron
emits a spike, it is also propagated back to the synapse array for the STDP mecha-
nism. In the current implementation only very basic STDP rules can be emulated,
but it is planned for a future revision of the HICANN chip to implement a digi-
tal plasticity processor to emulate more complex plasticity mechanisms [89]. The
implementation of the synapse circuit is detailed in [90].

9Short Term Plasticity.
10Spike Timing Dependent Plasticity.
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neuromorphic hardware

The goal of this chapter is to define the foundations of the parameters translation
framework that will be used through all this thesis. This translation framework is
first described in theory, along with its software implementation and a basic example
of parameters translation. Some recordings from hardware neurons are also presented
to justify the need of a calibration procedure. Then, the calibration algorithms are
explained for each parameter of the AdEx model and evaluated using software simu-
lations.

4.1. Concept of parameters translation

This section gives an overview about the parameters translation framework from
a theoretical point of view, along with some basic examples. It also contains a
description of the software implementation that will be used in the following chapters
of this thesis.

4.1.1. Overview of the framework

One of the key feature of the BrainScaleS Hybrid Multiscale Facility, which combines
neuromorphic hardware and high-performance computers, is to be fully configurable
from the meta-language language PyNN. PyNN is a language based on Python, and
has been created to describe and simulate neural networks, independently from the
software simulator or hardware system used. In other terms, running an experiment
with a neural network on the neuromorphic hardware system should be as easy as
running the same experiment with a classical computer simulator. In the end, using
the neuromorphic hardware platform with PyNN should not require any hardware
expertise.

Before a neural network can actually be emulated on the BrainScaleS hardware
system, some additional steps are necessary compared to a conventional computer
simulation: there is no program to load like on a Von Neumann computer. In
contrast, the neural network to be emulated has to be mapped on the hardware
system. To realize this non conventional operation, a neuromorphic flow has been
developed withing the FACETS and the BrainScaleS projects to automatically map
a network on the hardware platforms. The schematic view of this flow can be found
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Figure 4.1.: Schematic of the hardware configuration process. The parameter trans-
lation step is included in step (c).

in Figure 4.1.

The flow is actually similar to the flow used to configure FPGAs from VHDL1

or Verilog code. The first step is the placing step, which consists in associating a
given neuron of the model to one or several neuron circuits on the hardware system.
This step is strongly coupled with the next one, the routing, which establishes
the connection between neurons on the hardware system using the different digital
components on the neuromorphic chips, as well as the connections to the external
world. The goal of these two steps is that the network mapped on the hardware is
as close as possible to the network described in the model.

The last step before actually emulating the neural network is called parameters
translation. This step consists in computing the correct parameters for the hardware
neurons used in the network. The objective of this part is that the response of
the network is as close as possible to the response of the computer simulation of

1VHSIC Hardware Description Language
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the network. This last step is at the center of this thesis, and is analyzed from a
conceptual point of view in the rest of this section.

The process to convert neuron model parameters to parameters which will be
used by the hardware system can be described in two steps. The first step consists
in simply scaling the parameters from the model to match the hardware voltage
range and time domain. The second step then consists in converting these scaled
parameters in parameters usable by the hardware system.

4.1.2. From model parameters to scaled parameters

The first step of the parameters translation flow is a pure mathematical operation.
It consists in converting the parameters of a neuron model to a scaled domain. This
conversion takes into account the time acceleration factor inherent to the hardware
system, as well as the different voltage range of the hardware neuron compared to bi-
ological neurons. Indeed, regarding time, the hardware system is highly-accelerated
due to the small capacitances and small resistances used for the neuron circuits. It
means it runs at a factor 1.000 to 100.000 compared to biological real time. Con-
cerning voltages, the usual voltage ranges for the AdEx model is between -70 mV
and 0 mV, whereas the neuron circuits implemented in the hardware have a voltage
range of 0 to 1.8 V. A first translation step is therefore necessary to accommodate
for these differences.

To convert the parameters, only the transformation for the voltages has to be
defined. All other transformations are then the result of this simple definition. This
parameters scaling step is in a sense comparable to the work done in [46]. So for
voltages, a simple linear transformation is applied with two parameters vscale and
vshift:

voltagescaled = voltagemodel ∗ vscale + vshift (4.1)

vscale corresponds to the actual scaling between the voltage range of the reference
model and the scaled model, and vshift corresponds to the voltage difference needed
to fit in the hardware system voltage range. This transformation is valid for the
following parameters: El, vreset, vpeak, Vth, Erev,e and Erev,i. Usually, this scaling
factors are chosen so that there is a voltage amplitude of about 200 mV between the
reset and the threshold voltages on the hardware system.

The parameter that controls the slope of the exponential rise, ∆T , has to be
multiplied by the scaling factor vscale:

∆Tscaled
= ∆Tmodel

∗ vscale (4.2)

The next step is to compute the scaled membrane time constant τmscaled
. At this

point, we have to introduce the time acceleration factor tacc. Indeed, the neuromor-
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phic hardware system used in this thesis is highly-accelerated compared to biological
real time. Therefore, all time constants of the neuromorphic system have to be
multiplied by tacc to get their biological equivalent. Using this definition, the trans-
formation for the membrane time constant simply consists in the following relation:

τmscaled
=

τmmodel

tacc
(4.3)

In case the membrane time constant is not already defined in the model, it can be
calculated from the membrane capacitance Cmmodel

and from the membrane leakage
conductance gleakmodel

:

τmmodel
=

Cmmodel

gleakmodel

(4.4)

The scaled membrane leakage conductance can then be calculated:

gleakscaled =
Cmscaled

τmscaled

(4.5)

In a similar manner, the other time constants of the system can be calculated:

τwscaled
=

τwmodel

tacc
(4.6)

τsyn,escaled =
τsyn,emodel

tacc
(4.7)

τsyn,iscaled =
τsyn,imodel

tacc
(4.8)

The adaptation terms a and b now have to be scaled, according to the following
equations:

ascaled = amodel

gleakscaled
gleakmodel

(4.9)

bscaled = bmodel ∗ vscale
gleakscaled
gleakmodel

(4.10)

In order to illustrate and verify the proposed scaling of the AdEx model, two soft-
ware simulations were made. The first one consists in simulating a set of parameters
for the AdEx model in the biological domain using PyNN and the Brian simulator
[91] as a back-end. The parameters used in the biological domain were the following:

neuron_params = { ’cm’ : . 2 , # nF
’tau_m ’ : 20 . , # ms
’e_rev_E ’ : 0 . , # mV
’ e_rev_I ’ : −80. , # mV
’ v_thresh ’ : −50. , # mV
’ v_spike ’ : 0 . , # mV
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’ tau_syn_E ’ : 1 0 . , # ms
’ v_rest ’ : −70. , # mV
’ tau_syn_I ’ : 1 0 . , # ms
’ v_reset ’ : −70. , # mV
’ tau_refrac ’ : 2 . , # ms
’ a ’ : 2 . , # nS
’b ’ : 0 . 1 , # nS
’ delta_T ’ : 2 . , # mV
’tau_w ’ : 30 . # ms

}

Then, the previous equations have been implemented in a Python file which will
later be used in the full model-to-hardware framework. This Python script was then
used to automatically generate the corresponding scaled parameters:

neuron_params = { ’C ’ : 2 . 6 , # pF
’gL ’ : 1300 .0 , # nS
’Esynx ’ : 1200 .0 , # mV
’ Esyni ’ : 400 .0 , # mV
’Vexp ’ : 700 .0 , # mV
’Vt ’ : 1200 .0 , # mV
’ tausynx ’ : 1 . 0 , # us
’EL ’ : 500 .0 , # mV
’ tausyni ’ : 1 . 0 , # us
’ Vreset ’ : 500 .0 , # mV
’ taure f ’ : 0 . 2 , # us
’ a ’ : 520 .0 , # nS
’b ’ : 130 .0 , # nS
’dT ’ : 40 . 0 , # mV
’tw ’ : 10 . 0 , # us

}

These parameters were then simulated with a single-neuron simulator that was
written for this thesis. This is the same software simulator that will be used in the
rest of this thesis when hardware measurements have to be compared to software
simulations.

The results of these two simulations are shown in Figure 4.2. From these results,
it is clear that both simulations exhibit similar behaviors, thus validating this first
step of the parameters translation process.

4.1.3. From scaled parameters to hardware parameters

Once this first step of converting a set of model parameters to a set of scaled
parameters is done, the latter still has to be converted to useful parameters for the
neuromorphic hardware system. At the level of a single neuron, this means that the
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Figure 4.2.: Response of an AdEx neuron to a constant current stimulus. The figure
on the left is the simulation in the biological domain, and the one on the
right is the simulation in the scaled domain.

parameters from the AdEx model have to be converted in a set of parameters usable
by the hardware system. There are 24 hardware parameters for each neurons, but
many of them are biases that will be set as constants in this process. For the other
parameters, the general approach which is presented in this thesis is to find a set
of simple mathematical functions that will be used to convert a set of parameters
from the scaled domain to the hardware domain. In the ideal case, these functions
will be the same for all neurons. However, we will see that on the hardware sys-
tems these functions will be specific to each neuron due to transistor size mismatches.

The methods to find these relations are specific to each parameter. For this reason,
the method presented in this thesis is restricted to the calibration on an implemen-
tation of the AdEx model. However, they could perfectly be applied to any subset of
the AdEx model, for example the widely used LIF neuron model. All the algorithms
to find the parameters of the AdEx neuron model are detailed in section 4.3. Then,
these methods are first applied to transistor-level simulations, and the results are
presented in chapter 5. These results from the real hardware systems are detailed in
chapter 6. The crucial software component to realize this second step is called the
calibration framework, and is described is the next part of this chapter.

4.2. Calibration framework

This section describes the so-called calibration framework, with the different algo-
rithms that will be used to calibrate each parameter of the AdEx model on the
neuromorphic hardware system. In order to evaluate each of these algorithms, they
were all tested using software simulations to get an idea about their accuracy in the
ideal case.
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Figure 4.3.: Response of 10 neuron circuits to the same current step.

4.2.1. Motivation

The neuron circuits of the neuromorphic chip that was used in this thesis are analog
circuits, and are therefore subject to transistor size mismatches. There are not
so many publications about mismatches in the UMC 180 nm process, but some
information on capacitances mismatches can be found in [92]. However, in this
thesis the effects of mismatches were not calculated starting from the transistor
level, but evaluated on the neurons behaviors, on the actual neuromorphic system.
These mismatches could also have been evaluated on transistor-level simulations
of the neuron circuit, by performing Monte Carlo simulations. To qualitatively
evaluate the impact of these mismatches on the behavior of the neuron circuit, an
experiment was made by injecting a current step into 10 neuron circuits configured
with the exact same hardware parameters. After each experiment, the membrane
potential was recorded. The result can be found in Figure 4.3.

From Figure 4.3 it is clear that there are non-negligible mismatches between the
neuron circuits.

To quantify these mismatches now in terms of neuron behavior, and not just by
measuring a voltage trace, another experiment was made by configuring all neurons
on a HICANN chip so that they fire continuously, by setting their resting potential
above the threshold voltage. Then, the distribution of spiking frequencies was
measured using the digital interface to the HICANN chip. The histogram showing
the result can be found in Figure 4.4.

Whereas on a classical software simulator we could expect a distribution with
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Figure 4.4.: Measured spiking frequency on all neurons on a HICANN chip.

zero dispersion, the hardware neurons spike at different frequencies with a large
dispersion.

Looking at the previous results, it is clear that a calibration step is necessary:
configuring different neurons with the same set of hardware parameters leads to very
different behaviors on the chip. Thus, it is impossible to use the same set of formulas
to get from the scaled domain to the hardware domain: these formulas have to be
adapted to each neuron circuit. For this reason, the main focus of this thesis was
to develop a software framework to automatically realize this calibration step. The
architecture and the functions of this software are described in the next section.

4.2.2. Software framework

This part describes the software framework that was developed in this thesis.
The goal of this framework is to automate the determination of the translation
parameters between the scaled domain and the hardware domain. This software
automatically does all the configuration and the measurements on the hardware
system that are required for calibration. The whole software was written using the
programming language Python [93]. An overview of this calibration software can be
found in Figure 4.5.

Looking at Figure 4.5, we can see that the calibration procedure is orchestrated
by a central software component, called the Calibration Controller. It has several
interfaces with other software modules used to control all parts of the setup, includ-
ing the measurement devices.
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Figure 4.5.: Schematic view of the calibration software.

The first component, called HardwareInterface, has been developed to configure
the neuromorphic hardware system, mainly to program the floating gates array
present in the HICANN chip in order to give the desired behavior to the neuron
circuits. It can also configure the digital part of the chip, for example set the desired
analog output of a neuron circuit, or connect an internal Poisson source to the
desired neuron. It also instantiates the correct object to make analog measurements
from the neuromorphic chip, which can be a network-connected oscilloscope or an
Analog-to-Digital Converter (ADC) board. This component has an option to auto-
matically interface with the correct hardware system, choosing from the wafer-scale
system, the demonstration platform, or the USB-FPGA board. For example, in
the demonstrator case, this component will define an interface to the demonstrator
setup hardware, and also instantiate an object to control a network oscilloscope to
automatically measure the membrane potential of a neuron present on the chip.

The interface to the network oscilloscope was largely inspired by the work done
previously in [17]. The interface was developed using the functions defined in [94].
This interface has been extended with higher level functions, for example functions
to automatically set the oscilloscope to have the most precise read out possible, or
to automatically get the average spiking frequency of the signal.

The calibration controller can also communicate with a database which stores
the results from the calibration procedure, but also stores information about the
hardware system availability and the defects of each component of the neuromorphic
system. This same database will then be used automatically by PyNN to configure
the system, when a user is performing an experiment. More details about this
database are given in section 4.2.3.

41



4. From the neuron model to the neuromorphic hardware

Initialize

Measure

Process

Store

S

E

Figure 4.6.: Main phases of the calibration procedure.

The calibration controller can also access a custom software simulator of the AdEx
neuron model to compare measurements and simulations. This simulator has been
developed specifically for this task, as it can only simulate the behavior of one AdEx
neuron. It also supports the simulation of multi-compartment AdEx neurons.

The whole calibration procedure has to be initiated for a given set of parameters
to be calibrated, which are organized into models. The hardware system supports
the full AdEx model, but can be calibrated and used for the LIF model, LIF with
adaptation, or for the full AdEx model. Being able to calibrate the system for
less complex models can save a lot of time when using the full AdEx model is not
necessary. For test purposes, it is also possible to calibrate the system for only one
parameter at a time.

For a given parameter, the typical calibration procedure consists in four main
steps: Initialization, Measurement, Processing, and Storage. In the rest of this
section a typical calibration procedure for one parameter will be described for each
of the calibration phases. The general overview of the calibration procedure is shown
in Figure 4.6.

The initialization phase consists in generating an input array that contains the
values of the parameter to be calibrated. Also, in this phase the configuration
is generated for all the neurons to be calibrated, if necessary based on previous
calibration results. For example, measuring the membrane time constant requires
that the threshold, the resting and the reset voltages have already been calibrated
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Figure 4.7.: Initialization phase of the calibration algorithm.

beforehand. A description of the different steps of the initialization phase is shown
in Figure 4.7.

The measurement phase is the central part of the calibration procedure and the
one that is the most time consuming. It consists of several nested loops to configure
and perform measurements on the chip. The main loop consists in going through
the input array, and configuring the chip accordingly for each value of the parameter
to be calibrated. The next loop consists in performing several repetition with the
same value on the chip in order to get rid of the trial-to-trial variability caused
by the reprogramming of the floating gates. For simple voltages parameters like
the resting potential El, 2 repetitions of each experiment are sufficient for a good
calibration. Other parameters like the membrane leakage conductance gl need as
much as 5 repetitions to obtain satisfactory results. In this loop, at each step
the chip is reconfigured and then measured. Finally, the actual measurement loop
goes through all the neurons that have to be calibrated on the different chips and
performs the adequate measurements. In this part the measurements can be either
digital or analog. For example, the resting potential is directly measured on the
oscilloscope or the ADC board, whereas the membrane time constant is measured
via a digital measurement of the spiking frequency. As we do not want to save too
much data later, after each set of repetitions only the mean value and the stan-
dard deviation for each neuron are kept. Figure 4.8 describes the measurement phase.

In the process phase, the raw results have to be transformed into actual neuron
parameters. For some values, like the resting potential, nothing has to be done as
the measured value is the same as the neuron parameter. For other parameters, like
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Figure 4.8.: Measurement phase of the calibration algorithm.
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Figure 4.9.: Process phase of the calibration algorithm.

the membrane leakage conductance, a frequency is measured and then has to be
transformed into the actual leakage conductance. The transformation methods for
each neuron parameter are detailed in section 4.3. The process phase is described in
Figure 4.9.

The last part of the calibration procedure is to store the results into the calibration
database, and compute the translation factors. The input array is first stored into the
database for each neuron, as well as all the measurements. A fit is then done between
the input and the output sequences to find the translation factors. The equation of
the fitting function for each parameter was found in transistor-level simulations of
the neuron circuit. However, simulations showed that for most of the parameters
a quadratic fit is sufficient to fit the data. The translation factors are then stored
in the database and can be recalled to translate biological parameters to hardware
parameters. The typical algorithm for the store phase is described in Figure 4.10.

4.2.3. The calibration database

Calibration results are stored in the calibration database, which uses the open source
database MongoDB [95]. This database reproduces the architecture of the currently
used hardware systems, allowing to set an arbitrary number of wafers, FPGAs,
DNCs, and HICANNs. The database stores calibration results, but also more gen-
eral information about each component of the neuromorphic hardware system, for
example the FPGAs IP addresses, the DNCs ports, or the HICANNs coordinates.
This database is also used to store defect elements, like defect HICANN chips or
defects inside a chip, for example repeaters, background generators, or synapses.

Regarding the calibration results, for a given HICANN chip the database contains
an entry for each neuron present on the chip. Then, each neuron has an entry for
each parameter of the neuron model. Finally, each neuron parameter has 3 different
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Figure 4.10.: Storage phase of the calibration algorithm.

attributes:

• Mean values of the measurements

• Standard deviations of the measurements

• Translation factors

4.3. Calibration methods

In this part, the objective is to describe and evaluate the set of algorithms that will be
used to determine parameters of the AdEx model given the membrane potential or the
output spikes of a neuron. For this purpose, these algorithms will be evaluated with
pure software simulations of the AdEx model. The custom Python AdEx simulator
that was developed along with this thesis will be used. All the values used in this
part for the AdEx parameters are in the scaled domain, for more coherence with the
next chapter. These algorithms will then be used both in transistor-level simulations
and on the real hardware system. For every parameter of the AdEx model, different
values of the parameter will be tried in each simulation. For each value of the
parameter, the calibration algorithm will be applied to try to find back the original
parameter that has been applied. The series of parameters find with the calibration
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algorithm will then be plotted again the series of input parameters. In the ideal
case, the resulting plot will be a straight line with a slope of 1, as the results should
match exactly with the input parameters. For this reason, the RMSE2 indicator will
be used to evaluate the accuracy of every algorithm.

4.3.1. Leaky Integrate-and-fire parameters

For each parameter of the AdEx model, and in particular for the LIF model, a soft-
ware method was developed in order to deduce the corresponding model parameter
from a measurement in the transistor-level simulation and later on the hardware
system. This section presents the algorithms used to determined the parameters of
the LIF model, and tested using the custom AdEx simulator.

The first set of parameters to calibrate are the parameters that define the Leaky
Integrate-and-Fire (LIF) model. These parameters are the resting potential El, the
reset voltage vreset, the peak voltage vpeak, the membrane leakage conductance gl,
and the refractory time constant τref .

For the first three parameters El, vreset, and vpeak no results will be shown, as
the algorithms to determine them are trivial. The first parameter to calibrate is the
resting potential El. No particular method is required here, as it can be directly
measured from the membrane potential when no current stimulus or synaptic input
is applied on the neuron. To be sure that the neuron will not spike, the peak voltage
vpeak is set to be superior to El.

Then, the reset voltage vreset and peak potential vpeak have to be found by mea-
suring the membrane potential over time. For this purpose the neuron is set in a
continuous spiking state. As vreset and vpeak are respectively the minimum and the
maximum of the voltage trace, they can be measured easily.

The membrane leakage conductance gl is measured by setting the neuron in the
same configuration as before, with the resting potential higher than the peak voltage,
so that the neuron is always spiking. The neuron spiking frequency can then be
measured, and converted to the corresponding membrane conductance as the other
parameters of the model are known.

Indeed, the relation between the frequency and the leakage conductance gl can be
directly calculated from the equation of the LIF model:

C
dV

dt
= −gL(V − EL) (4.11)

Starting with V (0) = vreset, the differential equation can be integrated in:

2Root Mean Squared Error.
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Figure 4.11.: Input leakage conductance versus the leakage conductance found with
the calibration method.

V (t) = (vreset − EL) ∗ e
−t∗gL

C + EL (4.12)

We are looking for the time T at which the membrane potential crosses the spiking
threshold, so V (T ) = vpeak:

vpeak = (vreset − EL) ∗ e
−T∗gL

C + EL (4.13)

The last equation can be expressed as:

T =
C

gL
ln(

vreset − EL

vpeak − EL

) (4.14)

Finally, we arrive to the relation between gL and the frequency f :

gL = fCln(
vreset − EL

vpeak − EL

) (4.15)

The last equation means we can expect a linear dependency between the measured
frequency and gL.

Figure 4.11 shows the results by plotting the values that were found by the
algorithm against the values that were given to the simulator. The RMSE in this
case is very small, at 0.45 nS, which indicates that the proposed algorithm is very
accurate to determine the values of gl. The mean value of gl for this experiment was
900 nS.
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Figure 4.12.: Input refractory period versus the refractory period found with the
calibration method.

Finally, the refractory period τref has to be deduced from measurements. The
same configuration is used, with the neuron constantly spiking in absence of stimu-
lation. For a given value of τref , the spiking frequency is measured and compared to
a reference frequency corresponding to τref = 0. The relation between the measured
frequency can be deduced from the calculations done for gL.

We first measure the spiking period T without any refractory period:

T =
C

gL
ln(

vreset − EL

vpeak − EL

) (4.16)

Then the period Tref is measured, which is the period with a refractory period
τref :

Tref = T + τref (4.17)

We can then deduce the desired relation:

τref = Tref − T =
1

fref
−

1

f
(4.18)

The results are shown in Figure 4.12. For the parameter τref , the RMSE is also
very small at 3 ns.

4.3.2. Adaptation parameters

The next step is to calibrate the adaptation terms, which are the sub-threshold
adaptation factor a, the adaptation time constant τw and the spike-frequency adap-
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tation factor b.

The method used to find a is similar to the one used previously to determine the
membrane leakage conductance gl. The neuron is set in the continuously spiking
state by setting the resting potential above the peak voltage, and the frequency is
measured. Knowing the value of all the other neuron parameters except a, the re-
sulting frequency can be compared to the software simulation and the corresponding
a can be found. Of course, at this point of the calibration of the hardware system,
the value of τw is still unknown, and this parameter has an influence on the spiking
frequency. However, if τw is close to 0, it can be proven that the spiking frequency
is then independent of τw.

Indeed, without the exponential term, the equations of the AdEx model become:

C
dV

dt
= −gL(V − EL)− w (4.19)

τw
dw

dt
= a(V −EL)− w (4.20)

By combining these two equations, we get:

τwτm
d2V

dt2
+ (τm + τw)

dV

dt
+ (1 +

a

gL
)(V − EL) = 0 (4.21)

In the case where τw is close to 0, the equation becomes:

τm
dV

dt
+ (1 +

a

gL
)(V − EL) = 0 (4.22)

Which is similar to the equation we already saw for gL. We can define an effective
time constant τeff , which can be determined with the same method as for gL:

τeff =
τm

(1 + a
gL
)

(4.23)

The results using this method are shown in Figure 4.13.

Because of the approximation done in this method, the results are not as good as
the results of other methods described so far, with an RMSE at 9.87 nS. Still, the
algorithm works quite well and will be used for the rest of this thesis.

The value of τw is found by using membrane potential recording directly and by
looking at the sub-threshold regime. For this purpose the peak voltage is set to the
maximum value to ensure that the neuron doesn’t spike during the experiment. The
neuron is excited with a square current stimulus, and the response of the neuron is
recorded during the time when the current is on. A fitting procedure is then applied
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Figure 4.13.: Input sub-threshold factor versus the sub-threshold factor found with
the calibration method.

to the membrane potential to find the value of τw.

We start again from the combined equation that was used for a:

τwτm
d2V

dt2
+ (τm + τw)

dV

dt
+ (1 +

a

gL
)(V − EL) = 0 (4.24)

This is a typical second order linear differential equation, of which we can find the
general solution by removing the constant term:

τwτm
d2V

dt2
+ (τm + τw)

dV

dt
+ (1 +

a

gL
)V = 0 (4.25)

This equation was used to fit the membrane potential when the neuron was stim-
ulated with a current step. An example of such a fit is shown in Figure 4.14. The
results for different values of τw can be found in Figure 4.15.

In this case, the results from the algorithm were also good with an RMSE at 0.18
us. The mean value of τw in this case was around 10 us.

Then, knowing a and τw, the calibration of the last adaptation parameter b is
quite easy, as it is similar to the calibration of a. The values of a and τw are set, and
the neuron is set in the continuously spiking state by setting the resting potential
above the peak voltage. The spiking frequency is then measured, and compared to
the software simulation to determine b. Results are shown in Figure 4.16.

For the spike-frequency adaptation parameter b, the RMSE was at 0.6 nA, for a
mean value of 25 nA. As these results were satisfactory, all these algorithms will be
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Figure 4.14.: Example of fitting the membrane potential to find τw.
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Figure 4.15.: Input adaptation time constant versus the adaptation time constant
found with the calibration method.
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Figure 4.16.: Input spike-frequency adaptation factor versus the spike-frequency
adaptation found with the calibration method.

used on the neuromorphic hardware to determine the adaptation parameters.

4.3.3. Exponential terms

Two terms have to be determined for the exponential part of the model: the expo-
nential slope factor ∆T and the exponential threshold Vth. As for the adaptation
parameters, a method had to be found to determine the value of these parameters
separately.

The first step of the method is to determine the slope factor ∆T . This parameter
is determined directly by doing some calculations on the membrane potential trace.
Indeed, the exponential current in the model is given by:

Iexp = gL∆T exp
V − Vth

∆T

(4.26)

As we do not have a direct access to this current on the hardware neuron, the
method to get ∆T is to first calculate the exponential current from the membrane
potential. Then, we can simply take the natural logarithm of this current to obtain
the following equation:

Log(Iexp) = Log(gL∆T exp
V − Vth

∆T

) = Log(gL∆T ) +
V − Vth

∆T

(4.27)

This last formula is a linear relation between the logarithm of Iexp and the inverse
of ∆T . From this point, finding ∆T gets easy as it is the inverse of the slope of this
linear function. A simple first order polynomial fit is done to find ∆T . An example
of this procedure can be found in Figure 4.17, and the result for different values of
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Figure 4.17.: Fitting of the logarithm of the exponential current.

∆T can be found in Figure 4.18.

The method for this parameter is really accurate as the RMSE is 0.22 uV, with a
mean value for ∆T of 12 mV.

Knowing the parameter ∆T , the exponential threshold voltage can be determined.
Again, it uses a spike-based method by measuring the spiking frequency of the
neuron and deducing the corresponding parameter Vth. The result can be found in
Figure 4.19.

As there is no linear dependency between the spiking frequency and the exponential
threshold Vth, the results can be expected to be worse than in previous frequency-
based methods. However, the RMSE of this method was quite good at 3 mV.

4.3.4. Synaptic input terms

Finally, the synaptic input terms have to be calibrated, which includes the synaptic
reversal potentials Erev,e and Erev,i, as well as the synaptic time constants τsyn,e
and τsyn,i, for the excitatory and inhibitory terms, respectively. As the calibration
procedure is the same for excitatory and inhibitory terms, only the method explain-
ing how to find the excitatory term will be detailed.

The calibration of Erev,e is based on the fact that when Erev,e = El, then an
incoming spike will have no effect at all on the neuron’s membrane potential. Indeed,
the synaptic current has the following value:

54



4.3. Calibration methods

8 10 12 14 16
Input dT [mV]

8

10

12

14

16

Ou
tp

ut
 d

T 
[m

V]

Figure 4.18.: Input exponential slope factor versus the exponential slope factor found
with the calibration method.
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Figure 4.19.: Input exponential threshold voltage versus the exponential threshold
voltage found with the calibration method.
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Figure 4.20.: PSP fitting algorithm applied with a given synaptic time constant.

Isyn(t) = gsyn(t) ∗ (V (t)− El) (4.28)

Or, when the neuron is at rest, its membrane has the value El. Therefore the
synaptic current is always 0, for every values of gsyn.

To find the synaptic time constant τsyn,e, spikes are sent to the neuron, and one
PSP3 is recorded. A fitting algorithm is then applied to the measured PSP. Indeed,
it has be shown [96] that the time course of a PSP for an Integrate-and-Fire neuron
in high-conductance states follows this equation:

V (t) =
wsyn ∗ (Esyn − Veff )

gtot ∗ τeff
∗ (e

−t
τeff − e

−t
τsyn ) (4.29)

The demonstration of this relation is not made in this thesis but can be found in
[96]. Here we are not always in a high-conductance state, but the approximation of
high-conductance state should still be valid in all cases if the PSP is small relatively
to the synaptic reversal potential Erev,e, which will be the case here. Figure 4.20
shows an example of a PSP fitted using the described fitting algorithm.

Finally, Figure 4.21 shows the results for different values of τsyn,e.

For this last parameter of the model, the RMSE was equal to 0.04 us, for mean
value of 3 us. Therefore this method is also valid to determine the values of τsyn,e
and τsyn,i.

3PSP: Post-Synaptic Potential

56



4.4. Discussion

0 1 2 3 4 5 6
Input tausynx [us]

0

1

2

3

4

5

6

Ou
tp

ut
 ta

us
yn

x 
[u

s]

Figure 4.21.: Results of the algorithm to find the synaptic time constant by fitting
the PSPs.

4.4. Discussion

In this chapter the software that was developed in this thesis to automatically cali-
brate and configure the neuron circuits was presented. All the calibration methods
to find AdEx parameters from simple measurements were also presented and tested
against software simulations. Overall it was proven that these methods are valid to
determine AdEx parameters. The software and all the calibration methods will now
be tested on transistor-level simulations in chapter 5. It will then be applied to the
real neuromorphic hardware system in chapter 6.
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transistor-level simulations

Before using the calibration methods that were detailed in chapter 4 on the hardware
system, all the calibration methods were first evaluated on transistor-level simulations
of the hardware neuron. This step is important for two reasons. First, it is convenient
to validate the calibration methods that will later be used on the hardware system. It is
also essential at the hardware design stage to determine the parameter ranges that can
be expected on the real hardware system, and to check whether all the firing patterns
of the AdEx model can be reproduced. The first part of this chapter consists in finding
the relations between the model and the hardware parameters. It basically consists
in applying the methods that were developed in 4.3. Then, the rest of the chapter is
dedicated to applying these relations back into the transistor-level simulator, in order
to reproduce some typical firing patterns. These results will then be compared to pure
software simulations.

5.1. Individual parameters calibration

The goal of this section is to apply the calibration algorithms to each parameter of
the hardware system and to find the equations between the hardware and the model
parameters.

5.2. Methods

All the simulations which are present in this chapter were done using the Cadence
Virtuoso environment in version 6.1.5, and specifically with the Virtuoso Analog
Design Environment (ADE), as all the simulations were transient analog simulations
of the neuron circuit.

All the simulations were done using the same schematic file named denmem_top_-

2neuron_test. This file contains a test bench that was developed to test the analog
functionalities of the hardware neuron circuit. In this test bench it is possible to di-
rectly set each of the analog parameters that normally comes from the floating gates
array, and to monitor the membrane potential but also internal voltages and currents
like the adaptation current. This test bench includes direct current injection into
the membrane, as well as the possibility of applying a stimulus on the synaptic inputs.
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In all this chapter the simulations will be made in the scaled domain, which means
time will be accelerated with a factor of 10.000 compared to biological real time,
and the voltages will be scaled in the hardware range. This is done to maintain a
coherence with the transistor-level simulations.

To evaluate the results presented in this section, the coefficient of determination
R2 as defined in [97] will be used in the whole section, to illustrate the accuracy
of the fit between the applied hardware parameters hi and the calculated hardware
parameters mi. To calculate the coefficient of determination, two quantities have to
be calculated first. The first one is the total sum of squares SStot:

SStot =
∑

i

(mi −m)2 (5.1)

The second one is the total sum of residuals SSerr:

SSerr =
∑

i

(mi − hi)
2 (5.2)

The coefficient of determination is then calculated with the following equation:

R2 = 1− SSerr/SStot (5.3)

5.2.1. Hardware parameters

There are 24 hardware parameters, and 14 model parameters are necessary for the
AdEx model and for the synaptic inputs of the neuron. The neuron circuit was
designed so that each model parameter has its equivalent in the hardware domain.
Thus, there are also 14 hardware parameters that have a direct relation to the model
parameters. The other 10 parameters will be considered as biases and kept to default
values through all the experiments. The following table describes the equivalence
between the model and the hardware parameters.
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Model parameter Hardware parameter

v_rest EL
v_reset V reset
v_spike V t
g_leak IgL
tau_refrac Ipulse
a Igladapt
tau_w Iradapt
b Ifireb
delta_T Irexp
v_thresh V exp, Irexp
e_rev_E Esynx
e_rev_I Esyni
tau_rev_E V syntcx
tau_rev_I V syntci

We can see that at the exception of the exponential term, all other parts of the
model have their equivalent in the hardware domain. This special case will be dis-
cussed in the section dedicated to the measurement of the exponential term in 5.2.4.

5.2.2. Leaky Integrate-and-fire parameters

As described in 4.3, finding the individual parameters of the neuron circuit always
start with the LIF model parameters, meaning the resting potential El, the reset
voltage vreset, the peak voltage vpeak, the membrane leakage conductance gl, and
the refractory time constant τref .

Applying the methods that were described in 4.3.1, all the parameters were
determined for the hardware neuron.

The first two voltages are trivial to measure and to calibrate. To get the relation
between the hardware parameter EL and the model parameter vrest, the hardware
parameter V t that controls the peak voltage of the circuit was set to the maximum.
The average value of the membrane potential was then extracted using the integrated
calculator in Virtuoso.

For the peak voltage vpeak, the hardware parameter EL was set above the peak
voltage V t so that the neuron circuit always spikes. The maximum voltage of the
neuron was then extracted with the Virtuoso calculator.

The reset voltage, as it is a global parameter in the HICANN chip, will not be
determined here. However, the technique to find this value consists in measuring
the minimum of the membrane potential when the neuron is spiking, so it is also a
trivial method.
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Figure 5.1.: Measured gl values depending on the current IgL.

The next parameter to determine using the calibration methods is the membrane
leakage conductance gl. In the hardware neuron circuit, this parameter is controlled
by the current IgL. The method here consists in sweeping for several values of IgL,
and measuring the resulting spiking frequency via the calculator module integrated
to the Virtuoso environment. After applying the corresponding calibration method,
the relation between gl and IgL can be determined and is plotted in Figure 5.1.

This figure clearly indicates that in the case of the membrane leakage conductance
gl, there is a second order polynomial relation between gl and the control current
IgL. In this case the R2 is very good and nearly equal to 1 at 0.999. This result
was expected from the analysis of the leakage OTA done in [88].

The last parameter to determine for this part of the circuit is the refractory period
τref , which is controlled by the hardware current Ipulse. The behavior of this pa-
rameter is actually different from the other parameter we saw so far: the refractory
period becomes smaller when the value of Ipulse becomes larger. Again here the
spiking frequency of the circuit was extracted with the integrated calculator module
from Virtuoso.

For a better visualization of the results, the values of Ipulse have been inverted
in Figure 5.2. The results from this experiment indicates a linear relation between
the refractory period and the inverse of Ipulse. This means there is an inverse
relation between the control current Ipulse and the refractory period τref , which was
expected from the design of the circuit. Here again the result is very good, with a
R2 of 0.999.

The relations between model and hardware parameters were saved and used for
the next parts. A list that summarizes all these formulas can be found in 5.2.6.
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Figure 5.2.: Measured τref values depending on the current Ipulse.

5.2.3. Adaptation parameters

We can now apply the same methodology to the adaptation parameters. All the
methods to determine the adaptation parameters from measurements are described
in 4.3.2 and were already successfully tested on software simulations.

The first adaptation parameter to be determined is always the sub-threshold adap-
tation parameter a. This parameter is also controlled by a current called IgLadapt.
Again here the spiking frequency of the neuron circuit was used to determined the
value of a. After applying the corresponding calibration algorithm, the relation
between a and IgLadapt can be determined and is plotted in Figure 5.3.

Again the results here indicates that a second order polynomial is suitable to fit
the data, which is not surprising at all as it is by design the same circuit as for the
parameter gl. Here is the R2 is at 0.999, indicating again a very good fit of the data.

The next parameter that was extracted from transistor-level is the adaptation
time constant τw, which is controlled by the current Iradapt. Again, as described in
the calibration algorithm in 4.3.2, a fit is done on the membrane potential to extract
the time constant. This is also a good way to verify if the sub-threshold oscillations
of the AdEx model can also be reproduced with the transistor-level simulations.
Also, for this parameter, the value of τw gets smaller when Iradapt gets higher. Here
for this fit the simulation parameter had to be changed in order to have a constant
time step for the simulation (by default, UltraSim uses variable time steps). An
example of such a fit on transistor-level simulation is shown in Figure 5.4.

On this figure we can clearly identify the sub-threshold oscillations of the AdEx
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Figure 5.3.: Measured a values depending on the current IgLadapt.
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Figure 5.4.: Example of fitting a membrane potential to find τw.
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Figure 5.5.: Measured τw values depending on the current Iradapt.

model. We can also see that the theoretical formula fits well the oscillations that
are observed in transistor-level simulations. This procedure was repeated for several
values of Iradapt, and the result is shown in Figure 5.5.

It was expected from the design of the adaptation circuit that there is an inverse
relation between τw and Iradapt. Again, for a better presentation of the results, the
inverse of Iradapt is represented in Figure 5.5. Indeed an inverse relation is found
between the two parameters, even if in this case the R2 is a bit worse at 0.998. Still,
this is a very good fit of the data and thus such method will be used for the real
hardware system.

The last adaptation parameter is the spike-frequency adaptation parameter b,
which is controlled by the current Ifireb. Here again the spiking frequency was
used to extract b from the simulation results. The result can be found in Figure 5.6.

For this last parameter of the adaptation term the fit is very good, with a R2 of
0.999.

5.2.4. Exponential terms

All methods to determine the exponential parameters from measurements are de-
scribed in 4.3.3.

However for the exponential terms the extraction of parameters is not as straight-
forward as for other parameters. Indeed, two parameters exists in the neuron circuits
to control the exponential factor: Irexp and V exp. V exp controls the exponential
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Figure 5.6.: Measured b values depending on the current Ifireb.

threshold Vth, but Irexp influences both ∆T and Vth. Whereas so far we only saw
one-to-one relations between model and hardware parameters, here there is clearly
a cross-dependency between parameters. This is due to the fact that to reproduce
an exponential behavior for the neuron circuit a MOS transistor in sub threshold
regime was used during the design of the circuit. It allows a very compact solution
to generate an exponential dependency between the current and the voltage, but
due to a voltage divider used in the circuit it also introduces this cross-dependency
between parameters. More details about the exponential circuit can be found in [88].

For calibration, it means that another technique has to be found, as the expo-
nential threshold will change every time the parameter ∆T is modified. For this
reason, a two-steps technique was used for this thesis. The first step is to extract
the parameter ∆T , which is controlled by the hardware parameter Irexp. Then, the
calibration procedure to find Vth is repeated several times for different values of ∆T .
This approach is valid because usually the value of ∆T is constant in most papers
about the AdEx model [54]. The results from the extraction of ∆T are in Figure
5.7. For this parameter the fit is good, with a R2 of 0.998.

Then, the next step is to extract the relation between Vth and V exp. The parame-
ter ∆T was fixed at 8 mV for the experiment. The results can be found in Figure 5.8.

For this last parameter of the exponential term the fit is excellent, with a R2 nearly
at 1. The relation between the two parameters is linear. This is not surprising as it
is also a voltage, but it confirms the accuracy of the algorithm used to extract this
parameter.
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Figure 5.7.: Measured ∆T values depending on the current Irexp.
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Figure 5.8.: Measured Vth values depending on the voltage V exp for ∆T = 8 mV
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Figure 5.9.: Example of membrane potential fitting to find τsyn,e.

5.2.5. Synaptic input terms

The last step in this section is to determine the parameters of the synaptic input
circuit. All methods to determine these synaptic parameters from membrane record-
ings are described in 4.3.4. This section will focus on extracting the synaptic time
constants τsyn,e and τsyn,i from the simulated membrane potential. As the same
circuit is used for both parameters, only the extraction of the excitatory synaptic
time constant τsyn,e is shown in this section. The synaptic time constant is controlled
by a voltage called V syntcx.

As described in 4.3.4, the algorithm is based on a fit of the membrane potential
of the neuron when it is stimulated by an incoming excitatory spike. Again here the
simulator was configured with fixed time steps in order to apply the fitting algo-
rithms. An example of such fitting procedure applied to data from transistor-level
simulations is shown in Figure 5.9.

Figure 5.9 indicates that there is a very good fit between the simulated PSP and
the theoretical formula found in 4.3.4. This is another indication of the fidelity of
the neuron circuit to the original AdEx model. The final result for several values of
V syntcx is shown in Figure 5.10.

Again, looking at the design of the synaptic input circuit it is expected that there
is an inverse relation between V syntcx and τsyn,e. However, here the R2 is only at
0.987, which is not a perfect fit. This is probably due to the fact that the PSPs
generated by the hardware circuit don’t have exactly the shape of the PSPs in the
model for larger synaptic time constants. However, the fit is relatively good and the
method will also be used during the calibration of the real hardware system.

68



5.2. Methods

0 1 2 3 4 5
Tau_syn [us]

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

Vs
yn

tc
 [m

V]

Figure 5.10.: Measured τsyn,e values depending on the voltage V syntcx.

5.2.6. Relations

Finally, all the relations that were found in this chapter can be put into equations.
These equations will be used in the rest of this chapter to reproduce biologically
realistic regimes in transistor-level simulations, but it will also serve as a reference
parameter translation for PyNN when no calibration data is available. These equa-
tions are all listed below.

EL = 1.02 ∗ El − 8.58 (5.4)

V t = 0.998 ∗ vpeak − 3.55 (5.5)

IgL = 5.52 × 10−10
∗ g2l + 0.24 ∗ gl + 0.89 (5.6)

Ipulse = 1/(0.025 ∗ τref − 0.0004) (5.7)

V syntcx = −3.94 ∗ τ2syn + 37 ∗ τsyn + 1382 (5.8)

IgLadapt = 4.93e − 5 ∗ a2 + 0.26 ∗ a− 0.66 (5.9)

Iradapt = 1/(−4.4e − 6 ∗ τ2w + 0.00032 ∗ τw − 0.0005) (5.10)

Iadaptb = −0.14 ∗ a2 + 45 ∗ a+ 54.75 (5.11)
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Irexp = 9.2385890861 ∗∆2
T + 66.3846854343 ∗∆T − 94.2540733183 (5.12)

V exp = 93.15 + 0.64 ∗ Vth (5.13)

5.3. Reproducing realistic patterns

Using the relations found in the previous paragraphs, we can quantitatively reproduce
typical firing patterns seen in biology and that can be reproduced with the AdEx
model. Such patterns are described in [98] and were simulated in this thesis with the
AdEx model in 2.3.2. In this part, the results from the simulations of the previous
chapter will be compared to pure software simulations using the software simulator
NEST.

5.3.1. Using the biology to hardware framework

For the calibration of the real hardware system, all results are automatically stored
into the calibration database to be recalled later when the system has to be used.
However, in this chapter, we want to do the same using the result we found from
transistor-level simulations. For this purpose, a separate Python file was created
containing all the equations found in 5.1 and replacing the calibration database in
this case. Apart from that, all the functions used to translate the parameters from
the model to hardware parameters are similar to the functions used with the real
neuromorphic system.

5.3.2. Tonic spiking with the I&F model

The first pattern you can think of for any point neuron model is the so-called tonic
spiking, which is just a neuron spiking at a fixed frequency when stimulated with
a strong enough constant stimulus. First, this pattern is reproduced without the
exponential capabilities of the AdEx model, thus just emulating an I&F model.
The starting point of the experiment was a set of scaled parameters that has to be
emulated with the transistor-level simulations:

neuron_params = {"EL" : 750 .0 , # mV
"gL" : 1000 .0 , # nS
"Vt" : 700 .0 , # mV
"Vreset " : 600 .0 , # mV
"C" : 2 . 6 , # pF
" tau r e f " : 0 . # us
" tausynx " : 1 . 0 , # us
" tausyni " : 1 . 0 , # us
"Esynx" : 1000 .0 , # mV
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Figure 5.11.: Comparison between the transistor-level simulation and the NEST sim-
ulation for a LIF neuron model.

"Esyni " : 200 .0 # mV
}

The results from the previous section can then be used to calculate the correspond-
ing hardware parameters, as described in 5.3.1. The transistor-level simulation was
run again, and the result was compared to the software simulation on the same plot.
Due some differences in the initial value, the time axis of the software simulation was
adjusted to match on the first spike of the transistor-level simulation. The result is
shown in Figure 5.11.

It is clear that the results are similar, thus proving that the relations obtained in
the previous section are accurate for the LIF model.

5.3.3. Synaptic stimulus

We can now take the exact same parameters as in 5.3.2 and send exactly one spike to
the neuron, and record the response. We can then compare the software simulation
and the transistor-level simulation. Again, the translation method described in
5.3.1 was used. Exactly one spike was send on both the software simulator and the
transistor-level simulator, at the same point in time. The result can be found in
Figure 5.12.

In this case of synaptic input stimulation, both curves are similar, even if there is
a small difference in the shape of the PSPs. This is something we already observed
when extracting the synaptic time constant from the transistor-level simulations.
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Figure 5.12.: Comparison between the transistor-level simulation and the NEST sim-
ulation. In both cases the neuron was stimulated with an excitatory
incoming spike.

5.3.4. Tonic spiking with the ELIF model

The next step can be to reproduce the tonic spiking pattern, but this time by also us-
ing the exponential term of the neuron circuit. In this case the neuron will also spike
at a fixed frequency, but the membrane potential will be more realistic compared to
a real neuron. The parameters are similar to the parameters in 5.3.2:

neuron_params = {"EL" : 900 .0 , # mV
"gL" : 1000 .0 , # nS
"Vt" : 900 .0 , # mV
"Vreset " : 800 .0 , # mV
"C" : 2 . 6 , # pF
" tau r e f " : 0 . # us
" tausynx " : 1 . 0 , # us
" tausyni " : 1 . 0 , # us
"Esynx" : 1000 .0 , # mV
"Esyni " : 200 .0 , # mV
"dT" : 8 . 0 , # mV
"Vexp" : 820 .0 # mV
}

The result is shown in Figure 5.13.

In this case even if the spiking frequencies are similar there is a mismatch between
both curves in the sub-threshold regime. This can be explained by the approximation
done on the parameter ∆T as explained in 5.2.4.
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Figure 5.13.: Comparison between the transistor-level simulation and the NEST sim-
ulation for a ELIF neuron model

5.3.5. Spike-frequency adaptation

The same can now be done for the so-called spike-frequency adaptation pattern.
Compared to tonic spiking, when stimulated with a current stimulus a neuron ex-
hibiting spike-frequency adaptation will first spike rapidly, and then will adapt itself
to the stimulus by decreasing gradually the spiking frequency. To reduce the com-
plexity of the experiment, the exponential capabilities of the circuit were also disabled
here. The parameters used for this experiment were the following:

neuron_params = {"EL" : 900 .0 , # mV
"gL" : 1000 .0 , # nS
"Vt" : 900 .0 , # mV
"Vreset " : 800 .0 , # mV
"C" : 2 . 6 , # pF
" tau r e f " : 0 . # us
" tausynx " : 1 . 0 , # us
" tausyni " : 1 . 0 , # us
"Esynx" : 1000 .0 , # mV
"Esyni " : 200 .0 , # mV
"dT" : 8 . 0 , # mV
"Vexp" : 820 .0 # mV
"a" : 1000 . , # nS
"tw" : 5 . 0 , # us
"b" : 20 . 0 , # nA
}
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Figure 5.14.: Comparison between the transistor-level simulation and the NEST sim-
ulation, exhibiting spike-frequency adaptation

The result can be found in Figure 5.14.

Again there is a good fit between the transistor-level simulation and the NEST
simulation. This confirms that the methods to determine the adaptation parameters
for transistor-level simulations are accurate.

5.3.6. Other spiking patterns

Using the same method to convert parameters from the model to the hardware
domain, other spiking patterns can be reproduced with transistor-level simulations.
The example from 5.3.5, showing spike-frequency adaptation, is reproduced here
with the exponential term activated, emulating the whole AdEx model. If we take
the same parameters and just reduce the input current, at a given point the neuron
will only spike once. This pattern is called phasic spiking and can also be reproduced
using transistor level simulations. These two patterns really illustrates the kind of
spiking patterns that are possible to reproduce with this implementation of the
AdEx model and that would be impossible to reproduce with an implementation of
the LIF model. These two patterns are shown on Figure 5.15.

The AdEx model can also reproduce sub-threshold oscillations. Using the for-
mulas that were developed in the beginning of this chapter, I wanted to verify if it
was possible to reproduce these oscillations with the implemented hardware neuron,
These type of oscillations are often observed in real neurons [99]. These oscillations
were also reproduced with transistor-level simulations using the parameter transfor-
mation method developed in this thesis, and the results are shown on Figure 5.16.
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Figure 5.15.: Different spiking patterns that can be produced using the parameters
translation software with transistor level simulations. The figure on the
left is again spike-frequency adaptation with the full AdEx model, and
the figure on the right is phasic spiking.
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Figure 5.16.: Different kind of sub-threshold oscillations that can be reproduced with
the neuron circuits using transistor-level simulations.

5.3.7. Parameter ranges of the current neuron implementation

The parameter calibration in transistor-level simulations done in this chapter not only
gives us the relations between the model parameters and the hardware parameters,
but it also gives us the ranges that are possible for each parameter. We can directly
compare these results with the results from 2.4. For this purpose, the results from this
chapter have been converted back to parameters in the biological domain, using the
scaling methods described in 4.1.2. The following table summarizes the parameter
ranges on the hardware system and compare them to the results from 2.4:
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Parameter Min model Max model Min hardware Max hardware

v_rest [mV] -70 -58 -125 45
v_reset [mV] -58 -46 -125 45
v_spike [mV] 0 0 -125 45
g_leak [nS] 1.7 18 1.9 22.2
tau_refrac [ms] 0 2 0 10
a [nS] -0.8 4 0 10
tau_w [ms] 16 300 20 780
b [pA] 0 120 0 86
delta_T [mV] 0.8 3 0.4 3
v_thresh [mV] -56 -42 -125 45
e_rev_E [mV] 0 0 -125 45
e_rev_I [mV] -80 -80 -125 45
tau_rev_E [ms] 10 10 6 47
tau_rev_I [ms] 10 10 6 47

After the analysis done in this section, we can identify some limitations of the
current implementation of the AdEx model. For the most important parameters, like
the parameters of the LIF model and the synaptic input parameters, all hardware
parameters are in range. An obvious limitation comes from the parameter a: the
value on the neuromorphic hardware can only be positive, whereas negative values
are used in the model. As a consequence, some spiking patterns like delayed spiking
are impossible to reproduce on the neuromorphic hardware system. Also, the upper
limit of b is a bit low compared to what we would need for some neuron models,
but the range for b will be extended in the next revision of the HICANN chip. The
parameters cross-dependencies of the exponential term is also a limitation of the
current circuit, as it induces more complexity in the parameters translation process.

5.4. Discussion

The goal of this chapter was to use the calibration methods described in chapter 4 to
calibrate the transistor-level model of the neuron circuit. The next step was then to
apply the results in order to reproduce some common patterns seen in biology. All
the algorithms that were first tested on the model alone were successfully applied
to the transistor-level model of the neuron, with a satisfactory accuracy. However,
during the course of these experiments several modifications were applied to the
general calibration routine to adapt to the specificities of the present implementation
of the AdEx model. Whereas the calibration methods could be applied directly for
the parameters in the leakage, the adaptation terms, and the synaptic input circuits,
it was not the case for the parameters of the exponential term due to a cross-
dependency between parameters. However, at the cost of a small approximation,
a simple method was found to get around this problem and will also be applied
to the calibration of the real hardware system. For each parameter of the neuron
model, the results of these experiments were used to fit a second order polynomial
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function. From these fits, translation formulas were created that link parameters of
the model and hardware parameters. At this point I also noticed that a second order
polynomial fit was sufficient to correctly describe all the relations between the model
and the hardware parameters. For some parameters like voltages, usually a first
oder polynomial was sufficient. For example, the results that were obtained for El

and vpeak clearly indicate that there is only a small voltage offset for these two values.

In the second part of this chapter these relations were used to reproduce firing
patterns in the transistor-level simulator. Patterns like tonic spiking, spike-frequency
adaptation and bursting could be reproduced with the results of the first part. Most
of the transistor-level simulations were similar to the simulations of the model.
For example, the results from this section indicates that the LIF model is easy to
reproduce with the hardware neuron. The same applies to the adaptation features
of the neuron circuit. However, there were some exceptions. The PSP which was
reproduced using the transistor-level simulator was not exactly of the same shape as
the one defined in the model. This can be explained by two factors. First, the circuit
is of course only an approximation of the behavior that is defined in the model.
Also, the hardware parameter that controls the synaptic time constant has a very
small range. This might have induced distortions in the results for this parameter.
These measurements indicate that this parameter will also be difficult to calibrate
on the real hardware platform.

The same kind of remarks apply to the exponential term. Experiments that
involved the exponential term showed a difference between the transistor-level
simulation and the model. This is also due to the fact that the extraction of the
exponential term parameters relies on a fitting procedure that might introduce some
distortions. However, globally I demonstrated that most of the behavior of the AdEx
model can be quantitatively reproduced with the neuron circuit.

Now that we established this reference with the transistor-level simulations, the
next step is to apply the same methodology to the real neuromorphic hardware
system. The main difference will be that each of the neuron circuits in the real
hardware system is different, so the methods described in this section will have to
be applied individually to each neuron circuit.
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neuromorphic hardware

This chapter presents the results that were produced after using the software described
in 4. In this chapter, we extend the methods seen in 4 to several neurons circuits.
This is where we will not only talk about parameters translation, but introduce the
term calibration because all neurons will have slightly different behaviors. The first
part is about testing individual components of the calibration software on the real
neuromorphic system. This first part includes testing the analog acquisition scripts,
the interface to the neuromorphic hardware itself, and the usage and the exploration of
the calibration database, which is used to store and recall the results of the calibration
procedure. For the database, examples from the calibration of a single HICANN chip
are given. Then, the actual calibration procedure is evaluated and discussed in detail
for some parameters on a single HICANN chip. Finally, the last part describes single
neuron experiments that were made on the neuromorphic hardware system in order
to reproduce typical firing patterns of the AdEx model.

6.1. Testing individual components

This section presents the practical tests of the individual components that are part
of the calibration software. It includes the interface to the hardware and to the
measurement devices, but also to the calibration database that is used to store all
calibration results.

6.1.1. Measurement bench

Most of the measurements described in this chapter were done on the demonstrator
setup which was described earlier in 3.2.2. The analog measurements were mostly
done first using a LeCroy WaveRunner XS oscilloscope, and later using a custom
ADC board. All analog measurements were entirely automated via Python and
C++. The digital measurements were done using the high-speed interface of the
setup, which means all the spikes and spiking frequencies were measured digitally.
For all this section one HICANN chip was entirely calibrated for all parameters using
the method described in the previous chapters. The HICANN chip that was used
for most of the results in this chapter is the chip denoted as #14.6.
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(a) Using the oscilloscope interface.
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(b) Using the interface to the ADC board.

Figure 6.1.: Example of analog data acquisition.

6.1.2. Analog measurements from Python

The calibration software uses a Python interface to measure analog signals coming
from the neuromorphic hardware. To test their functionalities, a simple experiment
was done on the neuromorphic hardware, consisting in just one neuron stimulated
by a periodic current source.

There are two systems which can be used to measure an analog signal: the
oscilloscope, and the ADC board. Both have an interface which has been written
in Python, and it only takes a single line of code to start the acquisition of the
desired signal. Figure 6.1 is an example of such acquisition of a membrane potential
recordings with both systems. It can be noticed that there is an offset between
both recordings: this is due to the fact that the ground was not the same in both
experiments. However, only one system is used for a given calibration run, so this
was never an issue. We can also note the higher resolution of the ADC board: the
ADC on the board has 12 bits of resolution, whereas the oscilloscope is limited to 8
bits.

Regarding time, the ADC responds faster than the oscilloscope: the acquisition
from Figure 6.1, done with the same sample rate of 100kS/s, took in average 2 seconds
on the oscilloscope, whereas it took only 0.2 seconds with the ADC board. This is due
to the fact that the ADC board is directly connected via USB to the host computer,
with a dedicated software. However, for the oscilloscope the communication is done
using a network connection so a significant amount of time is lost because of the
overhead and the network latency.

6.1.3. Interfacing to the neuromorphic hardware

As the PyNN access was not available at the beginning of this thesis, and as it would
not have been fast enough anyway for calibration operations, a custom Python
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Figure 6.2.: Example of digital spiking frequencies acquisition from all neurons on
one HICANN chip.

interface had been developed for calibration purposes. Most of the configuration of
the neuromorphic hardware was done using the JTAG1 [100] access to the chip. In
particular, this Python interface allows a fast readout of spiking frequencies of all
neurons on a given HICANN chip, and returns the results as a standard Python
array. To test this feature, all neurons on a chip were configured to always spike,
with their resting potentials above their threshold voltages.

Figure 6.2 shows the results of this experiment. Already there it is clear that a
calibration phase is needed to use the neuromorphic hardware system, as all neurons
behave differently whereas they were configured with the same set of parameters.

6.1.4. Operating the calibration database

The calibration database has to match the architecture of the hardware system that
is currently being used, defining the correct number of wafers, FPGAs, DNCs, and
HICANNs. For this purpose, three option exists in the script DatabaseInterface.py
when creating the database:

• The demonstrator preset, which correspond to the iBoard associated with the
custom FPGA board, will instantiate 1 FPGA, 1 DNC, and 8 HICANNs.

• The WSS preset, which correspond to the whole Wafer-Scale system, will in-
stantiate 12 FPGAs, 48 DNCs, and 384 HICANNs.

• The USB preset, which correspond to the USB-FPGA board, will instantiate
1 or 2 HICANNs.

1Joint Test Action Group
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6. Biologically realistic regimes on the neuromorphic hardware

Figure 6.3.: Example of recalling one parameter for one neuron circuit.

To visualize the structure of the database, and also to make it usable by the PyNN
interface, an automatic export to JSON files has been created. This allows an user
to use the data that was generated by the calibration procedure without having a
database server running on his machine.

At each step of the calibration procedure measurements have to be stored for
a later recall to calibrate the hardware neuron circuits. This is also done via the
Python interface defined in DatabaseInterface.py. Functions have been created
to modify a precise parameter of a given neuron, to insert the result of a measure-
ment as Python arrays, and also to store the translation factors that results of the
measurements. Any parameter stored into the database can be easily recalled via
the Python interface defined in DatabaseInterface.py.

To have a better view of what is measured and calculated during the calibration
procedure, a function was created to plot the measurement points, the error for
each point, and the translation factors, for one or many neurons, on one or many
HICANN chips. This function simply plots the points corresponding to the mean
values that were measured. It also plots error bars that represent the trial-to-trial
variability, and also plots the interpolated curve calculated from the translation
factors. An example of such a plot for one neuron is represented in Figure 6.3.

The data stored in the calibration database is highly complex: for a single HI-
CANN chip and for each neuron parameter, all measurements are stored, for many
repetitions and for many values, as well as the translation factors. However, one
convenient way to visualize the calibration database is to look at one chip, for
one parameter, and to plot one histogram for each value that was applied to the
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Figure 6.4.: Histogram representing all the results of the calibration of the resting
potential for one HICANN chip. The four different histograms represent
four different values of the hardware parameter EL.

hardware system. This gives an idea of the neuron-to-neuron variability on this
given HICANN chip. To illustrate this method, two parameters have been chosen as
examples: the resting potential and the leakage conductance. The calibration was
made on one whole HICANN chip using the standard parameters.

The data for the parameter El is shown in Figure 6.4. We can see that in this
case, 4 different values have been used during the calibration procedure. Also, the
dispersion of resting potentials is quite low, around 36 mV. It can also be noted that
this dispersion is nearly constant for the different values of El.

Things are quite different for the membrane leakage conductance gl, as it can be
seen in Figure 6.5. Here the histograms are overlapping each other, with neuron-
to-neuron variability going from 256 nS to 521 nS. It can also be noted that the
neuron-to-neuron variability strongly depends on the value of gl.

We can also compare these first results with another chip, in order to see if the
results are comparable and if the same methods can apply. For this purpose, the
Figure 6.4 was reproduced on another HICANN chip, denoted as #14.12. The com-
parison is represented in Figure 6.6. From this figure, it is clear that the calibration
results are similar for both chips.
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6. Biologically realistic regimes on the neuromorphic hardware

Figure 6.5.: Histogram representing all the results of the calibration of the leakage
conductance for one HICANN chip. The six different histograms repre-
sent six different values of the hardware parameter IgL.
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(a) HICANN #14.6
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(b) HICANN #14.12

Figure 6.6.: Comparison of measurements of the resting potential on two different
HICANN chips.
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6.1.5. Possible limitations: data volume and calibration time

One possible limitation of the approach presented in this thesis is the volume of
data that the final calibration database is taking. Indeed, we have to know how
big will the database be if we scale the system to several wafers. For this purpose,
an experiment was made by creating a database for the wafer scale system and
filling it with dummy data. The database was then exported to JSON files, which
can be directly used by the PyNN interface. The database is organized in different
collections for each component of the system: one collection for the wafers, one for
the DNCs, etc ... For one full Wafer-Scale System, the JSON files for wafers, FPGAs
and DNCs were all very small, around 10 kB. The JSON file for the HICANNs,
which contains all the calibration information, occupied 2.5 GB on the hard drive.
This means that for a single neuron, the information occupies 13.3 kB. Scaling it
up, the calibration database would occupy 20 GB for a 8 wafers system like it is
planned in BrainScaleS project, and 2.4 TB for a system composed of 10.000 wafers
as it is planned in the Human Brain Project (HBP) [101]. Even with a very large
number of wafers the database could be stored using typical computer hard drives.

Another important criterion is the time it takes to calibrate a given neuromorphic
system. The calibration procedure was developed to make the best use of the
parallel features of the system. Basically, all the operations under the FPGA level
can be run in parallel, for any number of wafers. The strategy to calibrate a whole
wafer module for example is to simply run 12 instances (for 12 FPGAs boards) of
the calibration software. Therefore, given that there are enough host computers to
process the data and run the calibration software, the total calibration time for a
large system is given by the time to calibrate one FPGA block, or 32 HICANNs. To
estimate this calibration time, we can identify the two operations that takes most
of the time: programming the floating gates array, and measuring the neurons. We
have to distinguish two cases to estimate the time needed for measurements: the
time required for parameters that require analog measurements (like the resting
potential), and the time for parameters that require digital measurements (like the
membrane time constant). After measurements using the current version calibration
software, it takes 16 s to program the floating gates array, 450 s to measure the
required membrane potential trace for all neurons on the chip, and 105 s to measure
all spiking frequencies from all neurons on a chip. With the current state of the
software, the whole calibration will take around 22 days.

However, these estimations were done based on a single chip measurements and
a lot of improvements are possible. On the Wafer-Scale System, the writing of the
floating gates can be done in parallel for the whole wafer, as well as the readout
of the spiking frequencies. This puts the total time to measure frequencies at the
level of a single chip to less than one second. Also, the analog measurements will
be much faster without using the debug interface that was used in this thesis. This
will make the total time for analog measurements on a single chip equal to 118 s.
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6. Biologically realistic regimes on the neuromorphic hardware

Summing up, the total time we can estimate for a whole wafer module is around 5
days. Also, we can imagine situations where we just need to emulate LIF neurons,
and not the whole AdEx model. This would reduce the time to calibrate the whole
wafer system to less than a day. The following table recapitulates the current and
estimated calibration times for each cases, for one wafer:

Model Current calibration time (days) Planned calibration time (days)

AdEx 22.8 4.9
ALIF 10.89 2.38
LIF 3.99 0.88

6.2. Hardware neurons calibration

This section presents the whole calibration of one HICANN chip, for every parameter
of the AdEx model. It is similar to the work that was presented for transistor-
level simulations in 5.1, with the main difference that the calibration algorithms are
applied to every neuron circuits on the chip. As in 5.1, the parameters calibration
is broken down into each parts of the AdEx model: leakage, adaptation, exponential
and synaptic inputs.

6.2.1. Leaky Integrate-and-fire parameters

Following the structure of the two previous chapters, we first have to calibrate
the parameters corresponding to the Leaky Integrate-and-fire model: the resting
potential El, the reset voltage vreset, the peak voltage vpeak, the membrane leakage
conductance gl, and the refractory period τref . The major difference in this section
is that each neuron on the hardware system is different, so the calibration step has
to be done for all neurons. All the results presented in this chapter will be about
calibrating a whole HICANN chip, which means 512 neuron circuits. Also, for each
parameter that is presented in this section, results will be presented before and after
calibration, in order to evaluate the impact of calibration. For the case that doesn’t
use calibration, the parameters translation will use the ideal translation factors that
were found using the transistor-level simulations that were presented in the previous
chapter.

The first parameter to calibrate is always the resting potential El. Figure 6.7
summarizes the results of the experiment. For this experiment, in each cases (non-
calibrated and calibrated) two repetitions were made, and the mean values over
all repetitions are displayed on the histograms. The target value for EL was -65
mV in the biological domain. For the non-calibrated case the mean value over all
neurons was 49.44 mV, whereas with calibration this value was -65.26 mV. For
the standard deviation of the experiment, which represents the neuron-to-neuron
variability, the value was 3.39 mV in the non-calibrated case, and 0.80 mV with
calibration. Already with this basic experiment, we can see that calibration helps
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Figure 6.7.: Measured neuron-to-neuron variability for the membrane resting poten-
tial El. The histograms display the values of El for all neurons on a
chip.

to reduce the neuron-to-neuron variability and to reach the desired value.

The trial-to-trial variability was also measured during this experiment. This is
the error that is induced by reprogramming the floating gate array between two
runs. Already with this basic parameter, calibration adds a significant difference
by helping to get closer to the target value and by greatly reducing the neuron-
to-neuron variability. This trial-to-trial variability for El is represented in 6.8.
Here, calibration also seems to help reducing the trial-to-trial variability, but this is
probably an artifact due to the low number of trials.

Things are different for the second parameter of the LIF model, vreset. Indeed,
the reset voltage is a global parameter on the hardware system and therefore cannot
be represented for each neuron. Instead, it is measured and used to determine the
voltage offset of the output amplifier on the chip. A profile of the offsets is then
obtained, and use to compensate the other voltages so that the dynamic range is
always correct for every neuron. The procedure to compensate other voltages is
described in the section about the leakage conductance gl.

The results for the peak voltage vpeak are quite similar to the results for El. Figure
6.9 summarizes the results of the experiment. Again, two repetitions were made for
this experiment. The target value was -70 mV in the biological domain, and the
mean reached value was -56.5 mV without calibration, and -71.2 mV with calibration.
Calibration also reduced the neuron-to-neuron variability, from a standard deviation
of 2.85 mV without calibration to 0.49 mV using calibration.

The next parameter that was calibrated is the leakage conductance gl. The
exact values of gl were not measured in this experiment. To evaluate calibration
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Figure 6.8.: Measured trial-to-trial variability for El. The histograms display the
variability of El when the chip is configured again.
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Figure 6.9.: Measured neuron-to-neuron variability for the peak voltage vpeak. The
histograms display the values of vpeak for all neurons on a chip.
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Figure 6.10.: Measured neuron-to-neuron variability for the membrane leakage con-
ductance gl. The histograms display the resulting frequencies that were
measured for all neurons on a chip.

in that case, the neurons are all put to a continuous spiking state, similar to the
procedure used for the calibration of gl described in 4.3.1. For this experiment
5 repetitions were made. The spiking frequency is then measured for every neu-
ron, and the results are summarized in Figure 6.10. Here we can immediately see
that the errors made without calibration are more important than for previous
parameters. This is easily explained by the fact that the spiking frequencies that
we are measuring depend on four parameters (El, vreset, vpeak, gl), whereas in
previous experiments only a single voltage was measured. Here the target frequency
for the experiment was 35 Hz, and the mean value that was reached during the
experiment was 95.6 Hz without using calibration, and 35.3 Hz using calibration.
The neuron-to-neuron variability was also greatly reduced, from 20.15 Hz to 2.68 Hz.

In this experiment the trial-to-trial variability was also measured. This trial-to-
trial variability for gl is represented in Figure 6.11.

Finally, the last parameter in the LIF model is the refractory period τref .
Again here, after the calibration phase, the spiking frequency is measured for every
neuron on the chip to evaluate the calibration. The results are shown on Figure 6.12.

In this case the results are quite interesting, as in the non calibrated case for many
neurons no spikes where detected at all. This is due to the fact that low currents
were programmed for the hardware parameter Ipulse, which can result in very long
refractory periods. As a consequence, if some neurons spike at very low frequencies
it is possible that their spikes were not read out in this experiment. It results in a
mean frequency of 2.3 Hz and a standard deviation of 2.1 Hz. For the calibrated
case, the mean frequency is at 21.1 Hz, with a standard deviation of 5.4 Hz. Even if
the neuron-to-neuron variability seems larger for the calibrated case, it must be kept
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Figure 6.11.: Measured trial-to-trial variability for gl. The histograms display the
variability of frequencies when the chip is configured again.
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Figure 6.12.: Measured neuron-to-neuron variability for the refractory period τref .
The histograms display the resulting frequencies that were measured
for all neurons on a chip.
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Figure 6.13.: Measured neuron-to-neuron variability for the parameter a. The his-
tograms display the resulting frequencies that were measured for all
neurons on a chip.

in mind that in the non-calibrated case the standard deviation is nearly as large as
the average value.

6.2.2. Adaptation parameters

For the adaptation term, the first parameter to calibrate is the sub-threshold adap-
tation parameter a. For this case, the adaptation time constant τw was set close
to 0, and the parameter b was also set to 0 so these parameters do not influence
the frequency measurements in this part. Again the neuron was set in a continuous
spiking state, and the resulting spiking frequencies were used to evaluate calibration.
The target frequency for this first adaptation parameter was 50 Hz. Results are
shown in Figure 6.13. With calibration, the mean value of the spiking frequencies
was at 51.3 Hz, whereas the mean value reached 84.3 Hz without using calibration.
Again calibration helped to reduce the neuron-to-neuron variability, from 16.7 Hz
to 5.3 Hz. Here it can be noted that the results are worse than for the parameter gl
for example. This is due to the fact that there are 5 parameters here that influence
the result, whereas the results for gl were only influenced by 4 parameters.

The next parameters to be evaluated are τw and b. In this case the calibration of
both parameters was tested in the same time, as the spiking frequency of the neuron
at this stage depends on both τw and b. Again the neuron was put into a continuous
spiking state to evaluate the accuracy of the calibration procedure. Results are
shown in Figure 6.14.

The non-calibrated case displays a large standard deviation of 30.5 Hz. This can
be easily explained: here the spiking frequency depends on many parameters (all
the leakage parameters except the refractory period plus all adaptation parameters)
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Figure 6.14.: Measured neuron-to-neuron variability for the parameters τw and b.
The histograms display the resulting frequencies that were measured
for all neurons on a chip.

which are all subject to mismatch, thus resulting in a large spread of the measured
frequencies. In the calibrated case, the standard deviation is reduced to 12.3 Hz.
With now nearly all leakage parameters and all adaptation parameters influencing
the result, we can see that there is a significant neuron-to-neuron variability that is
left after calibration. However, even in this extreme case calibration helps to reduce
this variability by a factor of 3.

6.2.3. Exponential terms

For the exponential terms, the method described in 5.2.4 was used because of a
cross-dependency between parameters. The parameters of the system were adjusted
so that ∆T is equal to 10 mV. The neuron is put into a continuous spiking state,
with the exponential term activated, and the adaptation circuits deactivated. Here
the accuracy of the calibration of ∆T and Vth is evaluated in one step, as they both
influence the spiking frequencies of the neurons. Results are shown in Figure 6.15.

These results for the exponential terms are also interesting. In the non-calibrated
case we can clearly see two zones: one low-frequency zone on the left, where all
neurons basically spike at the same frequency. This means that due to mismatch
the exponential threshold was above the spike detection threshold and the neuron
circuits just behave as LIF neurons. In the right part, the exponential term was
below the threshold, which resulted in higher spiking frequencies with a lot of
dispersion due to the mismatches of the exponential terms. For this non-calibrated
case, the mean frequency was of 183.7 Hz, and the standard deviation was significant
at 238.7 Hz. The significant standard deviation is caused in this case by the two
zones of operation that can be observed.
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Figure 6.15.: Measured neuron-to-neuron variability for the parameters ∆T and Vth.
The histograms display the resulting frequencies that were measured
for all neurons on a chip.

In the calibrated case, things were better with a mean frequency of 199.6 Hz and
a standard deviation of 28.1 Hz. Here the neuron-to-neuron deviation is quite high
even for the calibrated case. This is due to the fact that many parameters are here
influencing the spiking frequency of the neuron circuits, including the calibration of
∆T which depends on a fitting procedure that can easily be perturbed by noise.

6.2.4. Synaptic input terms

The last part to calibrate is the synaptic input terms. In this part I will describe
the calibration experiments for the synaptic time constant τsyn,e and τsyn,i. As these
parameters are implemented with the same circuit on the chip, only the results for
τsyn,e will be discussed here.

The calibration method for this parameter relies on sending spikes to each neuron
and fitting the membrane potential recordings against a function that describes
the resulting PSP on the neuron. On the hardware system, the internal Poisson
Background Event Generators (BEG) were used to generate the incoming spikes.
Because the noise level on the membrane potential recordings was significant com-
pared to the amplitude of the PSPs to be measured, Spike-Triggered Averaging
was used. This method consists in extracting many portions of the recording
for a given time window around each incoming spike. Then, all these individual
portions of the initial recording are averaged. In the present case, there was no
independent recording of the incoming spikes. Therefore, the Poisson Background
Event Generators (BEG) were configured in a regular spiking mode. This way,
by finding the position of just one PSP it becomes easy to determine the timings
of all the other incoming spikes, as the input spiking frequency is known. Figure
6.16 shows an example that was taken from the calibration routine. Several PSPs
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Figure 6.16.: Example of measured PSPs on a given hardware neuron, with different
values of the hardware parameter V syntcx.

were recorded on one hardware neuron, for different values of the parameter V syntcx.

However, the fitting method described in 4.3.4 and successfully applied on
transistor-level simulations in 5.2.5 gave incoherent results on these recordings from
the neuromorphic hardware. Indeed, except of showing a clear increase of the synap-
tic time constant τsyn,e with V syntcx, the results indicated a constant value for
τsyn,e, but increasing synaptic weights. This can be due to the synaptic drivers
that were not correctly configured, or to an error in the software that controls the
neuromorphic hardware.

6.3. Reproducing realistic patterns on the neuromorphic

hardware

This section focuses on using the data that was acquired during the calibration of
one HICANN chip to reproduce spiking patterns on the neuromorphic hardware
platform. It is in some sense similar to the section 5.3 of the previous chapter. The
main difference will be that on contrary to the transistor-level simulations, in this
chapter each parameter will be subject to several sources of noise that can distort
the results. First, calibration is not perfect. The trial-to-trial variability is the main
cause that leads to imperfect calibration results. Also, in the section the simple
fact of reprogramming the chip again will change the results slightly. Finally, the
membrane potential itself is subject to Gaussian noise plus crosstalk from other parts
of the chip.
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6.3.1. Using the biology to hardware framework

Now that we have calibration data for all the parameters of the neuron circuit, we
can use it to reproduce patterns that are commonly seen in biology. For now on, the
scripting language PyNN will be used to configure the hardware, automatically using
the data from the calibration database. At this point, neither placing nor routing are
involved, it is only experiments with a single neuron. For each pattern, the hardware
emulation will be compared to a reference software simulation.

6.3.2. Tonic spiking

The most basic pattern that the hardware neuron can reproduce is tonic spiking. It
was already described in 5.3.2. This pattern will be reproduced using only a limited
numbers of parameters, corresponding the LIF model described in 2.3.1. The neuron
will be stimulated via a periodic current stimulus. The period of the stimulus in the
software simulation was chosen to accommodate with the possible periods on the
hardware system. The reference software simulation is shown on Figure 6.17.
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Figure 6.17.: Software simulation of a LIF neuron. The resulting spikes are repre-
sented on the left figure, and the membrane potential is on the right.

Due to the trial-to-trial variability induced by the reprogramming of the floating
gate array, the hardware result does not exactly match the simulation, whether
it is regarding the spiking frequency or the minimum or maximum voltages. The
difference in the spiking frequency could also be explained by the difference of the
current that is injected in the neuron on the hardware system. However, the results
are still quite similar: the spiking frequency during one current pulse was 50.8 Hz,
whereas it was 57 Hz for the hardware emulation.

6.3.3. Spike-frequency adaptation

The next pattern we can think about, and which uses one key feature of the im-
plemented AdEx model, is spike-frequency adaptation. It was already reproduced
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Figure 6.18.: Hardware emulation of a LIF neuron. The resulting spikes are repre-
sented on the left figure, and the membrane potential is on the right.

using transistor-level simulations in 5.3.5. In this experiment the exponential term
of the AdEx model is turned off. Again, the neuron will be stimulated via a periodic
current stimulus. The period of the stimulus was chosen to accommodate with the
possible periods on the hardware system. The reference software simulation is shown
on Figure 6.19.
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Figure 6.19.: Software simulation of an ALIF neuron. The resulting spikes are rep-
resented on the left figure, and the membrane potential is on the right.

The same set of parameters was used to reproduce this pattern on the neuromor-
phic hardware system, and the result is represented in Figure 6.20. Again, due to
trial-to-trial variability the simulation and the hardware emulation do not match
exactly. However, the voltages level are similar, as well as the number of spikes in
each case.

96



6.3. Reproducing realistic patterns on the neuromorphic hardware

0 100 200 300 400 500 600
Time [ms]

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
S
p
ik

e
 o

u
tp

u
t

0 100 200 300 400 500 600
Time [ms]

−70

−65

−60

−55

−50

−45

−40

−35

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l 
[m

V
]

Figure 6.20.: Hardware emulation of an ALIF neuron. The resulting spikes are rep-
resented on the left figure, and the membrane potential is on the right.
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Figure 6.21.: Software simulation of an AdEx neuron. The resulting spikes are rep-
resented on the left figure, and the membrane potential is on the right.

6.3.4. AdEx model

The next logical step is to combine take the parameters from the last paragraph, and
to enable the exponential term in order to emulate the whole AdEx model. Again,
the neuron is stimulated via a periodic current stimulus. The period of the stimulus
was chosen to accommodate with the possible periods on the hardware system. The
reference software simulation is shown on Figure 6.21.

The result from the hardware emulation are represented in Figure 6.22. Again the
simulation and the emulation do not match exactly, but in both cases the voltages
levels are similar. We can note that on the software simulation, the membrane
potential reaches a maximum of -20 mV, whereas it goes up to around 0 mV on the
hardware. This is not a calibration error, as it was actually set to 0 mV in the PyNN
script, but it is simply an artifact from the simulation due to the limited number of
points to compute the exponential in the AdEx model.
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Figure 6.22.: Hardware emulation of an AdEx neuron. The resulting spikes are rep-
resented on the left figure, and the membrane potential is on the right.
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Figure 6.23.: Recording of phasic spiking on the neuromorphic hardware.

6.3.5. Reproducing other spiking patterns

Similarly to the experiments done in section 5.3.6 for the transistor-level simulations,
we can also reproduce other interesting patterns on the hardware system by using
the parameters translation framework.

The first one is the phasic spiking pattern that was already reproduced using
transistor level simulations in 5.3.6. The hardware recording is shown in Figure
6.23. Being able to reproduce this pattern on the hardware systems proves that this
implementation of the AdEx model has functionalities that would be impossible to
reproduce with a typical implementation of the LIF model.

Finally, sub threshold oscillations can also be observed on the neuromorphic plat-
form. The neuron was configured using the same parameters that were used for the
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Figure 6.24.: Recording of sub threshold oscillations on the neuromorphic hardware.

spike-frequency adaptation pattern, except that the amplitude of the injected current
was lower. The hardware recording is shown in Figure 6.24. Again, such oscillations
are easy to reproduce with the hardware neuron circuit.

6.4. Discussion

The goal of this chapter was to apply the software and the methods developed in
this thesis to the neuromorphic hardware system. A full calibration routine was
successfully run on one HICANN chip, either on the demonstrator setup or on the
Wafer-Scale system. In a first part the operation of the individual components of the
calibration software were shown, including the operation of the calibration database.
The Python interface to the chip and to the analog acquisition chain was successfully
demonstrated. During the course of this thesis the calibration database was devel-
oped that satisfies the needs of the present neuromorphic platform. This database
can store all the necessary information about the whole Wafer-Scale neuromorphic
system, and can easily scale to a system containing several wafer modules. The
database interface contains functions to store and recall results from the calibration
procedure, and also some functions to easily visualize the calibration results. The
data volume of the calibration database for very large neuromorphic systems was
also discussed, and will stay in a reasonable range even for 10.000 wafers. The
calibration time is currently an issue, but it will go down to around 5 days by using
the correct software to access the neuromorphic hardware. Because of the highly
parallel features of the hardware system, we saw that this calibration time will not
grow with the number of wafer modules.

The calibration of individual parameters confirmed the results from the previous
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chapters: all relations between hardware and model parameters could be fitted with
second order polynomial function. The measured neuron-to-neuron variability was
expected from the design of the neuron circuit, the main cause for these variabilities
being the variability of the transistors in the OTAs that are present in the circuit.
The main parameter that causes this variability is the transistors’ threshold voltages.
Overall, the calibration procedure clearly reduces the neuron-to-neuron variability.
The measurements in this chapter showed that even with the simplest parameter like
the resting potential was influenced a lot by the transistor mismatch. The results
obtained in this chapter also confirmed that the more dependencies one parameter
has, the greater the neuron-to-neuron variability will be even after calibration. The
calibration of the synaptic input parameters will have to be investigated further,
along with the calibration of synapses and synaptic drivers.

Finally, the calibration results were used to reproduce some firing patterns on
the hardware neuron. These experiments showed that even after calibration, there
are still differences between the software simulation and the hardware emulation.
This is mainly due to the trial-to-trial variability caused by the floating gates array.
However, the behavior of neurons in both case is similar, and this is what matters
the most when emulating whole networks.
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The goal of this chapter is to use the calibration software to fill the database for one
HICANN chip, and then to use the calibration data from PyNN to perform neural net-
work experiments on the neuromorphic hardware system. To have a reference point,
the results will be compared to a reference software simulation when it is applicable.
The results will also be compared to the non-calibrated case to observe the effects of
the calibration step. For this purpose the simulator-independent language PyNN will
be used, and will automatically gather the results from the calibration database if they
are available. The chapter starts with an explanation of the PyNN workflow, and how
the calibration database is integrated in this flow. Experiments will start with simple
neural networks, as simple as 2 neurons connected to each other, and will extend
to more sophisticated networks which propagate activity between populations. The
chapter ends with a preparatory study on the possibility of emulating neural sampling
with the BrainScaleS hardware.

7.1. Configuring neural networks on the BrainScaleS

hardware with PyNN

All the experiments in this chapter were done using the PyNN workflow that is used
for all experiments on the BrainScaleS hardware. This flow starts on the user side,
by defining a given neural network in a Python script. There are functions to create
populations of neurons, set parameters, and connect them together. Some other
options can also be set, such as the total experiment time, or the variables to be
recorded. One main advantage of this flow is that the same script can also be run
on a classical software simulation. When the script is started from the user side, it
calls the mapping software to convert all the network description to a configuration
usable by the hardware. The details about this mapping step are described in 4.1.1.
However, at the time these experiments were done, there were still some imperfections
and limitations in the PyNN interface. For example, the Poisson spike trains used
to excite the neurons could not be recorded. Another problem was that there was
no trigger available for the experiments so it was always difficult to match a spike
train with the corresponding membrane recording. Also, only 4096 spikes could be
recorded in one experiment, which in return limited the number of neurons that can
be used in one experiment.
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Figure 7.1.: Schematic of the connectivity for the two neuron network. All arrows
represents excitatory connections.

7.2. Simple 2 neuron network

One of the simplest network experiment that can be imagined to run on neuromorphic
system is a network composed of two neurons, connected via one synapse, one neuron
(called the source neuron) sending the output events to the other neuron (called the
sink neuron). The motivation behind the emulation of this simple case is to verify
that the basics of PyNN are working. Also, one goal is to understand precisely the
behavior of the system if any bug was detected at this stage. In order for the source
neuron to spike, it is stimulated by a step current input, which is available in the
hardware system. Figure 7.1 represents the connectivity of this simple network.

neuron_params = { ’cm’ : . 2 , # nF
’tau_m ’ : 20 . , # ms
’e_rev_E ’ : 0 . , # mV
’ e_rev_I ’ : −80. , # mV
’ v_thresh ’ : −40. , # mV
’tau_syn_E ’ : 2 0 . , # ms
’ v_rest ’ : −65. , # mV
’ tau_syn_I ’ : 2 0 . , # ms
’ v_reset ’ : −65. , # mV
’ tau_refrac ’ : 0 . 1 , # ms

}

The single synapse that makes the link between the two neurons was set with
the maximum weight allowed by PyNN for the hardware system, excitatory, and
without delays.

The network was first simulated using a software simulator, here BRIAN with
PyNN as a front-end. The result can be found in Figure 7.2.

The same experiment was repeated on the hardware system. For the hardware
emulation, some manual adjustments of parameters were necessary. Indeed, at
the time this experiment was performed no calibration of the synapse circuits was
available. Because the synaptic weight of the synapse between the two neurons
had to be set to some value, this weight was adjusted manually so that the sink
neuron behave like in the software simulation of Figure 7.2. This manual adjustment
of the synaptic weight will minimize the importance of the comparison between
the simulation and the emulation, as the results for the sink neuron are expected
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Figure 7.2.: Result of the simulation of two neurons connected via an excitatory
synapse. The source neuron is in green and was stimulated with a step
current stimulus. For visualization reasons, 30 mV were subtracted from
the membrane potential of the source neuron.

to match. However, it will allow later to compare the behavior of the calibrated
network to the non-calibrated network on the neuromorphic hardware. The result
can be found in Figure 7.3.

We can note that for the hardware emulation, looking at the membrane potentials
the timing does not seen to match between the source and the sink neuron. Indeed,
at the time this experiment was performed, it was not possible to record the mem-
brane potentials from two neurons at the same time. For this reason, both neurons
were recorded separately, and the membrane potentials were plotted on the same
graph afterwards, which explains the fact that a given spike on the source neuron
does not produce a PSP on the sink neuron.

We can also note that the spikes does not seem to match the spikes seen on
the membrane recordings. This is due to the fact that there was no trigger on
the hardware system, so it was not possible to know when the experiment started.
For this reason, the spikes on the left of Figure 7.3 do not match the membrane
recordings seen on the right.

To quantitatively compare the results, the firing rates were compared between
the software simulation and the hardware emulation, for both neurons. In the
hardware case there were significants variations for each current pulse, which can be
seen on Figure 7.3. However, on the hardware the pulse is always repeating itself,
and this was used to get statistics over 100 repetitions of the current pulse. For
the source neuron, the average firing rate was 42.6 Hz for the simulation, whereas
it was at 45.1 Hz for the emulation. This is similar to the results obtained in
the single-neuron experiment in 6.3.2. For the sink neuron, the firing rate was
13.3 Hz for the simulation, and 13.6 Hz for the emulation. Again the average firing
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Figure 7.3.: Result of the hardware emulation of two neurons connected via an exci-
tatory synapse. The source neuron is in green and was stimulated with a
step current stimulus. For visualization reasons, 30 mV were subtracted
from the membrane potential of the source neuron.

rates are similar, which was expected because the synatic weight was chosen by hand.

The same experiment was done again on the hardware platform, but this time
without using the calibration data. The goal of the last experiment was to evaluate
the impact of calibration on this simple network. This was done by simply shutting
down the calibration database before starting the experiment. The synaptic weight
of the synapse were the same as in the previous experiment. The results can be
found in Figure 7.4. We can see that not only the firing rate of the source neuron is
not the same (now at 30.1 Hz), the sink neuron doesn’t spike at all. This can also be
seen on the membrane potential of the sink neuron: there are PSPs on this neuron,
but they are not strong enough to make the neuron spike.

7.3. Population activity

The next experiment I designed to test the neuromorphic hardware system was
to propagate spiking activity not only from one neuron to another, but from a
population of neurons to another population. The goal here was also to test the
parameters transformation framework with pyNN with populations of neurons. For
this purpose a simple experiment was made on one HICANN chip. The network
that was emulated in this part was composed of three populations of 10 neurons
each. Each population was connected to the next one with all-to-all connectivity,
and the first population was stimulated by 4 Poisson sources located inside the
HICANN chip. Inside a given population, each neuron is connected to all the other
neurons. 10 neurons seems to be a low number as one HICANN chip has 512 neuron
circuits, but at the time the experiment was done the memory which stores the
spike events on the FPGA board was limited to 4096 events. This strongly limits
the number of neurons that can be used during an experiment. The reason is the
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Figure 7.4.: Result of the hardware emulation of two neurons connected via an ex-
citatory synapse. The source neuron is in green and was stimulated
with a step current stimulus. For visualization reasons, 30 mV were sub-
tracted from the membrane potential of the source neuron.In this case
the hardware was not calibrated.

Figure 7.5.: Schematic representing the connectivity of the three populations neural
network. Each population is composed of 10 neurons all connected to
each other, and the Poisson stimulus is composed of 4 Poisson sources.
All arrows represents excitatory connections.

following: because the number of recorded spikes is limited, if a large number of
neurons are used it is possible that spikes from neurons that are spiking the most
will be recorded As a result, the final recording will totally miss the spikes that come
from the neurons with lower activity. The experiment was repeated twice: once
with the calibration database stopped, which means no calibration was used, and
one with the calibration database running. The network’s connectivity is described
in Figure 7.5, and the results can be found in Figure 7.6.

In both cases some activity is propagated from the first population to the third.
We can note that in the calibrated case the third population exhibits more activity
than in the non-calibrated case. This is the desired effect, as the synaptic weights
were set to the maximum allowed by PyNN. Also in the non-calibrated case some
neurons are always firing at a regular rate, which might indicated that their resting
potentials are above their threshold voltages. For this experiment it does not really
make sense to compare the hardware emulation to a software simulation. Indeed, for
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Figure 7.6.: Propagation of activity through three populations of 10 neurons each.
The non-calibrated case is shown on the left, and the calibrated case is
on the right.

the mapping of this network no data about the availability of the different routing
elements (repeaters, crossbars/switches, synapse drivers, synapses). This can be
clearly seen in the results: whereas in theory all neurons exhibit a similar level of
activity, here there is a significant amount of neuron-to-neuron variation due to the
variation in the connecting elements, for example the strength of the synapse drivers.

7.4. Towards hardware neural sampling

For the networks seen so far, the neuron parameters were in a biological range.
However, it is planned in the BrainScaleS project to emulate neural networks which
lies beyond the realm of biological neuroscience. It is for example the case for
neural sampling. The theory of neural sampling will not be developed here, as this
paragraph is only a study to see if the necessary parameters for neural sampling
can be reached by the hardware system. One particularity of the neural sampling
is that the neurons in the original theory can only take two states: an ’off’ state,
and an ’on’ state. When going in the ’on’ state, the neuron will stay there for a
given period of time. To represent this with integrate-and-fire neurons as we have in
the BrainScaleS hardware system, we need to use the refractory periods of neurons
to represent the ’on’ state of a neuron after a spike. To stay close to the theory,
these refractory periods should be much larger than the total delay it takes from
a spike to affect a target neuron. On the hardware system, this delay includes the
delay to propagate the spike from the source neuron to the target neuron, and the
time to charge the membrane which is linked the target neuron’s time constants. It
was estimated that this total delay could be set to 3 ms in biological time. To be
sure that the refractory periods are larger than this delay, we will aim for refractory
periods which are 10 times larger than this delay.

To realize this condition, we need refractory periods of at least 30 ms on the
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Figure 7.7.: Example of results from the measurements for one given floating gate
value Ipulse.

hardware neurons to be on the safe side. This is out of the nominal range of the
hardware neuron circuits described in 5.3.7. However, it is possible to program the
floating gate parameter Ipulse, which controls the value of the refractory period, to
very low currents. This should allow the emulation of long refractory times on the
hardware system. Transistor-level simulations confirmed that reaching a refractory
period of 30 ms is possible with the current neuron implementation. The problem
is that at these low currents, the neuron-to-neuron variability and trial-to-trial
variability could be both quite high. To see if it is possible to reach the value of
30 ms, and to have an idea about the parameter variability described before, the
refractory periods were measured on one HICANN chip while programming low
current for Ipulse. It is also sure that not all neurons will reach the desired value:
we also have to evaluate how many neurons will reach it for a given tolerance interval.

To perform this experiment, the neurons were first set in a continuous spiking
state, with Ipulse set to the maximum so that the refractory period is 0. The spiking
frequencies of all neurons were measured 10 times. Then, several values of Ipulse
were tested and for each of them the frequencies were measured 10 times again.
From all these measurements the corresponding refractory times were deduced. An
example of such measurement is presented in Figure 7.7. In this example, most
of the refractory periods are around 20 ms, but some neurons reach the value of 30 ms.

To have a better understanding of the results, the average and the standard
deviation over the 10 repetitions were calculated for each neuron. Then, the average
values where sorted per floating gate values, and again the average and standard
deviation over all neurons were calculated. The result is shown on Figure 7.8.
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Figure 7.8.: Result of the experiment, where the mean value and the standard devi-
ation of the refractory period for all neurons on a chip are represented
in function of the floating gate value Ipulse.

By looking Figure 7.8, it is clear that the value of 30 ms can be reached by several
neurons on the hardware system. With this representation of the data we can easily
extract the number of neurons that reach 30 ms. If we accept an interval of refractory
periods going from 29 ms to 31 ms, there are approximately 80 neurons per chip that
could be used for neural sampling. Extrapolating for a whole wafer module, that is
around 30.000 neurons that are suitable for neural sampling.

7.5. Discussion

In this chapter, the results from the calibration software were applied to emulation
of neural networks on one HICANN chip. The goal was to verify that PyNN was
capable of configuring neural networks on the BrainScaleS hardware system while
using the calibration database. But it was also an opportunity to measure the
impact of calibration on the behavior of a network. For the simplest possible neural
network, which was composed of two neurons connected by only one excitatory
synapse, the impact of calibration could clearly be seen. Whereas the emulated and
calibrated network had a slightly different behavior than the software simulation,
the non-calibrated network had a completely different behavior in term of spiking
rates, thus confirming the positive impact of the calibration step.

When observing the propagation of neural activity from population to popula-
tion, it was no longer possible to quantitatively evaluate the impact of calibration.
However, it was clear that in the calibrated network the activity propagated well
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better than in the non-calibrated network.

Finally, the study about the possibility to realize neural sampling on the Brain-
ScaleS neuromorphic hardware indicated that it should be possible for around 30.000
neurons on a wafer unit.
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8.1. Conclusion

In this thesis, a software framework was developed to automatically translate pa-
rameters from the AdEx model to parameters that can be used by the BrainScaleS
neuromorphic hardware system, so that the behavior of the model and of the
hardware system are similar. Several interfaces were developed to automatically
access all the components of the system : the neuromorphic hardware itself, but
also laboratory measurement devices for analog measurements, a neuron simulator
to compare results to the model, and a database to store the results. For each
parameter of the AdEx model, a corresponding algorithm was created to find this
parameter from voltage or frequency measurements. These algorithms were all
successfully tested using software simulations.

The parameter translation framework was then applied to transistor-level simu-
lations of the neuron circuit. Again, even if some discrepancies were found when
comparing the behavior of the hardware neuron to the original model, all cali-
bration methods could be transposed to the simulation of the hardware neuron.
After applying the calibration methods, a parameter transformation scheme was
found for transistor-level simulations. This led to two results. Firstly, it allowed
to determine the ranges that are possible to emulate with the hardware system.
These simulations proved that except for two parameters, most of the usually needed
set of neuron model parameters can be reproduced on the BrainScaleS hardware
platform. Secondly, all these parameter translation formulas were used to reproduce
some typical spiking patterns of the AdEx model on the simulated hardware neuron,
like spike-frequency adaptation or phasic spiking. Using the translation formulas,
we were able to prove that the hardware neuron can successfully reproduce these
spiking patterns in a very similar way compared to the software simulation of the
model.

After the success with the transistor-level simulation, the software developed in
this thesis was applied to the neuromorphic hardware system. Here, the goal was not
only to determine the parameters of the neurons, but also to calibrate the system,
as every hardware neuron has a different behavior. The software components to
access all the measurement devices, the neuron simulator and the database were
first individually tested. Then, the software was applied to calibrate every neuron
parameters on one neuromorphic chip. For each parameter, test cases were created
to evaluate the accuracy of the calibration procedure. Overall, it was proven that
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the calibration step helps to reach the target value for a given parameter, but also
that it greatly reduces the neuron-to-neuron variability. As expected, it was also
observed that the results worsen when more parameters came into play, for example
for the adaptation parameters. Once one neuromorphic chip was calibrated, PyNN
was used to get the calibration results and use them to configure single neurons on
the hardware. As for the transistor-level simulations, typical patterns from the AdEx
model could be reproduced on the hardware system with a behavior comparable to
the software simulation of the model.

Finally, the calibration results were used along with PyNN to emulate neural
networks on the neuromorphic hardware. Because the software chain from PyNN
to the hardware system was still in an early development phase at this time this
thesis was done, only simple networks could be emulated on the hardware system.
I started with a simple two neuron network, where a source neuron was making a
target neuron spike. The calibrated network was compared to a software simulation,
and also to the non-calibrated case. In this experiment the impact of calibration was
clearly demonstrated, as in the non-calibrated case the target neuron was not spiking
at all. To compare the calibrated and non-calibrated case, another experiment was
made showing the activity propagating from a population of neurons to another. In
this case the comparison is only qualitative, but it was clear that the activity was
propagating better in the calibrated case. Finally, a case study was presented that
proved that neural sampling, which lies beyond the realm of biological neuroscience,
should be possible to run on the BrainScaleS neuromorphic hardware system.

8.2. Outlook

At the time this thesis was written, it was only possible to emulate small-scale
neural networks on the presented neuromorphic hardware system. In the future,
it will be possible to emulate larger neural networks on the hardware, which will
have well-defined functionalities, both low-level (gain functions, spikes rates as a
function of time ...) as well as high-level (patter completion, classification ...). With
these kind of neural networks, it will be possible to better evaluate the impact of
calibration on larger systems. The calibration software that was developed in this
thesis can already handle an arbitrary number of neuromorphic chips. Of course,
as the systems grow in complexity, it is not expected that there is a 1-to-1 match
between the emulated network and its simulated software counterpart. Indeed,
we saw that at the level of thousands of neurons, calibration helps to reduce the
neuron-to-neuron variability, but doesn’t aim to reduce this variability to zero. For
this reason, the focus with large-scale networks using calibration should me more on
reproducing the same global behavior of the network, more than the behavior of a
given neural cell in the network.

Lots of new developments are also planned for the existing neuromorphic system.
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First, there will be a new prototype chip that allows multi-compartment neurons
emulation. This will extend the possibilities of the neuromorphic system to emulate
more complex neuron models and generate new behaviors. To prepare for this
chip, a theoretical analysis was made at the beginning of this thesis. A calibration
method was also developed to calibrate the resistance between two compartments.
The neuromorphic chip that was used in this thesis, the HICANN chip, will also
receive some improvements. In the future, the HICANN chip will receive a digital
plasticity processor, which will allow to implement more complex plasticity rules
than the simple STDP rule which is currently implemented. The range of some
neuron parameters will also be extended according to the measurements done in this
thesis.

Finally, there is the question of scaling to larger systems, which are possibly com-
posed of several thousands of neuromorphic wafers units. We already saw that storing
all the calibration data would not be a problem. The challenge will be more on the
side of the actual calibration process. However, all the calibration processes can
be done in parallel. So assuming the associated computing power will scale with
the number of wafers, the calibration process should scale as well without problems.
And this should indeed be the case as it is planned to have the necessary comput-
ing power to generate simulated environments where virtual agents controlled by the
neuromorphic systems could interact. Therefore, the approach developed in this the-
sis is scalable for the future developments of the BrainScaleS neuromorphic systems.
Other approaches are also currently developed to use such very large-scale neuromor-
phic systems. One would be to use the system in-the-loop, which means optimizing
the parameters of the system so that it performs a certain task, for example using
genetic algorithms. Even in this case, calibration can be used to establish a starting
point before optimizing it with more complex algorithms.
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A. Appendix

A.1. Calibration documentation

This section is a detailed how-to to run the calibration framework on the demonstra-
tor setup. Section A.1.1 gives an overview about the whole calibration procedure,
and section A.1.2 explains in details the prerequisites that are necessary to run the
calibration framework. Then, section A.1.3 describes how to practically calibrate the
neurons on the hardware system.

A.1.1. About calibration

Neurons on the HICANN chip are implementing the Adaptive Exponential Integrate-
and-Fire model (AdEx) using analog circuits, and are therefore subject to transistor
mismatch. For this reason, a calibration step is necessary to guarantee a correct
operation of the analog components of the chip.

The main concept of the calibration framework is to apply a given set of parame-
ters on the chip, take series of measurements for each parameter of the AdEx model,
compare the measurements to a software simulation, and then compute translation
factors via a fitting between the input parameters and the parameters obtained from
the measurements. These translation factors, along with the measurements, are
then stored in a database.

Finally, when the system has to be configured, the parameters from the model
are automatically converted to hardware parameters by recalling these translations
factors from the database.

A.1.2. Prerequisites

Required software packages

The calibration framework was mainly tested with Ubuntu 10.04, although it should
work fine with other Linux distributions. Here is the list of the software packages
that are required to run the calibration software :

• mongoDB

• python 2.x

• numpy
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• pylab

• pymongo

• lxml

Symap2ic repository

To use the calibration framework, the symap2ic repository has to be cloned and
configured with the pymappinghw config (which implies using calibration, hicann-
system, mappingtool, rcflib and pynnhw).

This can be done by using :

> waf set_config pymappinghw

Then, it has to be compiled with the –stage=stage2 option, using the following
command :

> waf configure –stage=stage2 build install

FPGA design

The FPGA presents in the setup also has to be configured with the correct bit file
using iMPACT. The necessary bitfile for the demonstrator setup can be found in
the following SVN repository :

http://hpsn.et.tu-dresden.de/svn/p_facets/s_fpgaproto/trunk

System Demonstrator Board configuration

The System Demonstrator Board now has to be configured correctly in order to
communicate with the HICANN chip. This is done automatically before starting
any calibration run.

Connecting the scope

The two analog outputs of the iBoard, AREADOUT0 and AREADOUT1, have to be con-
nected to the oscilloscope channels 1 and 2, respectively. Tests have shown that the
calibration software works well with WaveRunners and WaveSurfers LeCroy models,
as well as with Serial Data Analyzers (SDA) of the same brand. The oscilloscope
has to be connected to the local network, and should be visible on the network by
the computer where the calibration script will run.
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A.1.3. Calibrating the demonstration setup

Overview

The demonstration setup aims to show the operation of the whole hardware chain
present in the Wafer-Scale System, composed of an FPGA, several DNCs and HI-
CANNs. This section focuses on how to practically calibrate a HICANN chip present
in this setup. In all this section, it will be assumed that there is a DNC in the chain,
and that the whole system is accessed via the JTAG over Ethernet interface.

Starting the calibration database

Before any calibration can happen, the calibration database based on MongoDB has
to be started. Simply start the service as root by typing the command :

> sudo mongod

If you are trying to calibrate a whole new system, and no database already exists,
it will be automatically created at the first start of the calibration framework.

Calibration parameters

The final step before starting the calibration of the chip is to set the parameters of
the calibration software. The following parameters have to be set :

• IP address of the oscilloscope

• Logical number of the FPGA board

• Number of neurons to calibrate

• Type of neuron model to calibrate

For then neuron model type one can choose one of the following: Leaky Integrate-
and-Fire (LIF), Adaptive Leaky Integrate-and-Fire (ALIF), or Adaptive Exponen-
tial Integrate-and-Fire (AdEx). All these parameters are defined in the Python file
named calibration_start.py, which is located in the root folder of the calibration
software.

Starting calibration

After all the previous steps have been completed, the calibration can be started via
the file calibration_start.py, which is located in the folder :

$SYMAP2IC_PATH/components/calibration/Scripts/
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Then the following command will start the calibration procedure :

python calibration_start.py

A.1.4. Calibrating the Wafer-Scale System

The calibration of the Wafer-Scale System is similar to the calibration of the demon-
strator setup. The calibration is the same that for the demonstrator setup, the
software just instantiating a calibration thread per FPGA subgroup.

The script to start the calibration of the Wafer-Scale System is called WSS_-

calibration_start.py, and is also located in :

$SYMAP2IC_PATH/components/calibration/Scripts/

Inside this script, the main difference with the demonstrator setup calibration is
that you have to specify a list of FPGA subgroups to run calibration on. Also,
there is no need to specify a scope address as all analog measurements are done via
Analog-Digital Converters (ADCs).

The following command will start the calibration procedure :

python WSS_calibration_start.py

A.1.5. Calibration Process Progress

When starting a calibration run, several outputs are displayed on the screen. First,
the numbers of the HICANN to be calibrated and the number of neurons per HI-
CANN are displayed. Also, for each phase of the calibration process (Initialization,
Measurement, Processing, Storage) the start and the end are indicated, as well as the
total time it took for that given phase. For analog measurements, all the measured
values are also displayed.

A.2. Source code, documentation and licenses

This section describes where to find the source for all the software components that
have been used for this thesis. Most of the software is available on the BrainScaleS
repository and is only available to the members of the BrainScaleS project. If you
want to access the software and are not authorized to do so, please contact the author
directly (marcolivier.schwartz@gmail.com).

A.2.1. Calibration software

The calibration software that was developed in this thesis can be found at the
following address :
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https://brainscales-r.kip.uni-heidelberg.de/projects/calibration

A.2.2. PyNN

The simulator-independent language PyNN was used several times in this thesis to
configure neural networks on the neuromorphic hardware system. PyNN can be
downloaded at the following address :

http://neuralensemble.org/trac/PyNN

A.2.3. NEST

Along with PyNN, the simulator NEST was also used this thesis for the software
simulations of neural networks. NEST can be downloaded at the following address :

http://www.nest-initiative.org/

A.2.4. Transistor-level simulations

All the transistor-level simulations were done using the same test bench, which is
called denmem_top_2neuron_test. The repository where this file is located can be
found at the following address :
https://brainscales-r.kip.uni-heidelberg.de/projects/ncf-hicann-fc

A.2.5. Software licenses

• All components of PyNN can be downloaded from the PyNN project homepage
and are published under the CeCILL license (CeCILL 2009).

• The simulator NEST is published under the GNU General Public License (GNU
GPL v2, 1991).

• Until not officially published, the copyright of the complete software framework
presented in Chapter 4 is owned by the University of Heidelberg, Germany.
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