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Summary

An aberrant expression of RAGE (receptor for advanced glycation end products)
and its ligands, especially the S100-calgranulins has been demonstrated in squa-
mous cell carcinoma of the upper aerodigestive tract. However, while S100-RAGE
signaling is commonly linked to the induction and maintenance of a cancer pro-
moting inflammation, the question whether RAGE-signaling is causally linked with
neoplastic transformation of keratinocytes in mucosal epithelia has not been ad-
dressed so far. The presence of S100-calgranulin positive infiltrating immune cells
as well as S100-calgranulin expression in tumor cells was assessed in oropharyngeal
squamous cell carcinoma (OPSCC) on tissue microarrays (TMAs) containing tu-
mor biopsies from 188 human patients and compared with the amount of CD66b
positive myeloid inflammatory cells on the same TMAs. To address the causal role
of S100-RAGE signaling in the onset of oral carcinogenesis, the well established
mouse model of 4-nitroquinoline-1-oxide (4-NQO) induced carcinogenesis was used
to investigate tumor development in control and RAGE deficient (Rage-/-) mice as
well as mice deficient in S100a9 (S100a9-/-). While patient tumors varied strongly
with regard to the amount of S100-calgranulin and CD66b positive immune cells as
well as the expression pattern of S100-calgranulins in tumor cells, these features did
not correspond with clinico-pathological parameters or prognosis. In the onset of
oral and esophageal cancer, driven by 4-NQO induced genotoxic stress and in the
absence of an additional inflammatory stimulus, both Rage and S100a9 expression
was dispensable for tumor development. In both cohorts, mice developed tumors in
the esophagus and tongue with similar incidence rates and comparable multiplicity.
Also a detailed analysis of tumor sections by histological and immunohistochemical
staining revealed no difference in size or histological architecture of 4-NQO induced
lesions, tumor cell proliferation and the number of inflammatory immune cells in
the tumor microenvironment. S100a8 and S100a9 were induced upon 4-NQO treat-
ment independent of the presence of RAGE, which may in part be explained by
induced transcript and protein levels of the Toll-like receptor 4 (Tlr4) in carcinogen
treated tissue, suggesting that signaling via the S100-TLR4 axis may compensate
for the lack of RAGE in early stages of tumor development. In summary, these data
point out that the impact of S100-RAGE signaling is critically depending on the
context. While important in inflammation associated cancer, S100-RAGE signaling
is dispensable in cancer caused by genotoxic stress without a promoting inflamma-
tion. With regard to therapy and prevention, this illustrates the need of a clear
stratification for the presence of a driving inflammation.
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Zusammenfasung

Eine aberrante Expression von RAGE (receptor for advanced glycation end prod-
ucts) und seiner Liganden, insbesondere der S100-Calgranuline ist beschrieben für
Plattenepithelkarzinome des oberen aerodigestiven Trakts. Während jedoch der S100-
RAGE Signalweg gemeinhin verknüpft ist mit dem Auslösen und der Aufrechterhal-
tung einer tumorfördernden Entzündung, wurde die Frage, ob RAGE abhängige Sig-
nalwege kausal mit der neoplastischen Transformation von Keratinozyten in Schleim-
häuten zusammenhängen, bisher nie adressiert. Das Vorhandensein S100-Calgranulin
positiver inflammatorischer Zellen in Plattenepithelkarzinomen des Oropharynx (OP-
SCC) wurde analysiert mittels Gewebe- Mikrochips (TMA), welche Gewebeproben
von 188 Patienten enthielten und mit der Anzahl CD66b positiver myeloider Entzün-
dungszellen auf den selben TMAs verglichen. Um die kausale Rolle des S100-RAGE
Signalwegs in der Entstehung von Kopf-Hals Tumoren auf einer funktionalen Ebene
zu adressieren wurde das gut etablierte Maus-Tumormodell der 4-Nitroquinolin-1-
Oxid induzierten oralen Karzinogenese verwendet, um Tumorentwicklung in Kon-
trollen, sowie RAGE defizienten (Rage-/-) und S100a9 defizienten (S100a9 -/-) Mäu-
sen zu ermitteln. Während die Tumore sich stark in der Anzahl der S100-Calgranulin-
, als auch der CD66b-positiven Immunzellen sowie den Expressionsmustern der S100-
Calgranuline unterschieden, deckten sich diese Beobachtungen nicht mit klinisch-
pathologischen Patientenparametern oder der Prognose. In der 4-NQO getriebenen
Entstehung von Krebs in der Mundhöhle und der Speiseröhre ohne einen zusät-
zlichen entzündlichen Stimulus war weder die Expression von RAGE noch von
S100a9 notwendig für die Entwicklung eines Tumors. In beiden Kohorten entwickel-
ten die Mäuse mit ähnlichen Inzidenzraten und vergleichbarer Multiplizität Tumore
auf Zunge und Ösophagus. Auch eine detaillierte histologische und immunhisto-
chemische Analyse der Gewebeschnitte zeigte keinen Unterschied in der Größe oder
histologischen Architektur der 4-NQO induzierten Läsionen, der Tumorzellprolifera-
tion und der Anzahl der Entzündungszellen in der Tumor-Mikroumgebung. S100a8
und S100a9 waren nach 4-NQO Behandlung unabhängig von der Gegenwart von
RAGE induziert, was teilweise exhilarate werden kann durch die Induktion von Toll-
like Rezeptor 4 (Tlr4) auf Transkript- und Proteinebene in Karzinogen-behandeltem
Gewebe und darauf hindeutet, dass S100-Tlr4 Signaltransduktion den Verlust von
RAGE in frühen Stadien der Tumorentwicklung kompensieren könnte. Zusammen-
fassend zeigen diese Daten, dass die Bedeutung der S100-RAGE Signalkaskade stark
kontextabhängig ist. Während er wichtig ist bei entzündungs-abhängiger Tumorge-
nese, ist der 100-RAGE Signalweg entbehrlich bei Tumoren welche durch genotox-
ischen Stress ohne treibende Entzündung verursacht werden. Bezüglich Therapie
und Prävention verdeutlicht dies die Notwendigkeit einer klaren Stratifizierung hin-
sichtlich des Vorhandenseins einer treibenden Entzündung.
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1 Introduction

1.1 The receptor of advanced glycation end
products and its ligands

Encoded by the Ager gene, the receptor of advanced glycation end procucts
(RAGE) is located within the major histocompatibility complex class III (MHC
III) region on human chromosome 6 and in mice on chromosome 17. It belongs
to the immunoglobulin superfamily of cell surface receptors and consists of a
short cytoplasmic domain, which is proposed to be responsible for signaling,
a transmembrane domain and a V-type and two C-type domains at the ex-
tracellular part [171, 183, 175]. First characterized 30 years ago [140], RAGE
was described and hence named for its ability to bind advanced glycation end
products (AGEs). AGEs are produced by non-enzymatic reactions of sugar
with free amino groups of cellular proteins, lipids and nucleic acids and accu-
mulate under conditions of metabolic disorders such as Diabetes mellitus [68].
Meanwhile, there is increasing experimental evidence supporting that RAGE
can function as a pattern recognition receptor for various ligands (Fig. 1.1),
many of which belonging to the group of damage associated molecular pat-
terns (DAMPs) which are released upon cellular stress conditions [175, 58].
Multiple proteins, such as advanced glycation end products (AGEs), S100
proteins, amyloid beta proteins, high mobility group box 1 (HMGB1), and
fibrillar protein aggregates trigger intracellular signaling pathways like Ras,
MAPK and PI3-Kinase/Akt, JNK/AP-1 or JAK/Stat3 signaling initiated at
RAGE and thereby regulate tissue homeostasis and regeneration as well as pro-
inflammatory responses in endothelial and epithelial cells, smooth muscle cells,
and mononuclear phagocytes [91, 105, 88, 199, 175]. Downstream transcrip-
tion factors are NF-κB, AP-1 and Stat3, all well described in the context of
inflammation and cancer. Signaling via RAGE induces pro-inflammatory me-
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Introduction

diators, including it’s ligands S100A8 and S100A9 via NF-κB activation [141]-
Containing a NF-κB binding site in it’s proximal promoter region, RAGE thus
also upregulates it’s own expression [120]. Of particular interest in the con-
text of inflammation are members of the S100 protein family. They are small
EF-Hand calcium binding proteins with a low molecular weight, named for
the 100% solubility in ammonium sulfate of its first described family members
S100A1 and S100B [134].

Figure 1.1: The receptor for advanced glycation end products (RAGE) and its
ligands. RAGE serves as a pattern recognition receptor for various groups of ligands,
such as advanced glycation end products (AGEs), protein aggregates like ß-sheet fibrils,
amyloid-ß Protein, several S100-proteins, most importantly S100A8/A9 and high mobility
box protein 1 (HMBG1). (Figure taken from Sims et al. 2011 [175]).

The human S100 protein family consists of 25 members with different tis-
sue specific expression patterns; functionally they all have specific tasks [40,
129, 58]. Several S100 Proteins like S100B, S100P, S100A1, S100A2, S100A4,
S100A5, S100A6 S100A7 and S100A8/A9, S100A12 and S100A13 are reported
to bind RAGE in vivo or in vitro [58]. In the context of inflammation and can-
cer prominent RAGE ligands among the S100-Proteins are the members of the
calgranulin family S100A8 and S100A9 and S100A12.

11



Introduction

1.2 RAGE in tissue development and homeostatis

While most studies focusing on RAGE address it’s function in inflammation
and in the context of human pathologies, little is known so far about the
physiologic function of RAGE. No or very low expression levels are detected
under physiological conditions in most tissues and cell types, yet during em-
bryonic development RAGE is continuously expressed [24]. In vitro studies
showed a contribution of RAGE in axon sprouting in neuronal development
[85, 92]. However, RAGE deficient mice do not show any obvious develop-
mental defect and have normal neural development. In general Rage-/- mice
appear normal and healthy showing no obvious alterations under physiologi-
cal conditions except a mild pro-inflammatory phenotype [122]. Furthermore,
while RAGE expression is downregulated in most organs during development,
in the adult lung RAGE is constitutively expressed at high level in the alve-
olar epithelia [24, 101]. RAGE was proposed to be critically involved in lung
development in the embryo and post-natal pulmonary morphogenesis [156].
Interestingly, during lung development, high levels of RAGE expression result
in severe lung hyperplasia and subsequently perinatal lethality [186]. Also in
the adult lung, RAGE hyper-expression results in alveolar destruction and a
persistent inflammatory status [52], arguing that RAGE expression levels need
to be tightly controlled during embryonic development. On the other hand,
in lung cancer patients pulmonary carcinogenesis is accompanied by a loss of
RAGE expression, suggesting a role for RAGE as a tumor suppressor in lung
[12]. However, RAGE deficient mice do not display a lung phenotype, the
lung develops normally and the animals do not show respiratory problems or
histological alterations. The specific role of RAGE in lung epithelia as well as
it’s physiological role in other tissues therefore remains puzzling.
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Introduction

1.3 RAGE in pathological conditions and cancer

As a DAMP receptor, RAGE may also serve in the clearance of AGEs and
other damage associated molecules [66]. Upon stress conditions, damage and
inflammation, RAGE is strongly upregulated in various tissues. Elevated levels
of RAGE and/or its ligands have been reported under pathological conditions
of late diabetic complications, acute and chronic inflammation, neurodegener-
ative disorders, as well as cancer [158, 18, 119]. While RAGE deficient mice
display a mild pro-inflammatory phenotype, the animals were efficiently pro-
tected against septic shock in a model of polymicrobial septic peritonitis, [122]
and resistant to lethality caused by Listeria monocytogenes infection [125].
Furthermore, RAGE is expressed in myeloid cells and lymphocytes which are
recruited at sites of damage and inflammation [19, 31]and has been shown to
induce human monocyte survival and differentiation [211].

Figure 1.2: The receptor for advanced glycation end products (RAGE) and its
ligands. RAGE is expressed on the different cell types of the tumor microenvironment,
enabling the crosstalk of there cells via it’s ligands (e.g. S100A8/A9) and thus modulating
inflammatory reactions. (Figure taken from Riehl et al. 2009 [158])
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Introduction

An association of RAGE with several human malignancies is well documented.
RAGE expression is thus linked to gastric cancer [113, 214], malignant neo-
plaisa of the bile duct [81], pancreatic cancer [194], and prostate cancer [100,
99]. Furthermore functional data from animal experiments as well as observa-
tions in human patients associate rage expression with inflammation associated
cancer [112, 201, 60, 175]. A persistent tumor promoting inflammation serves
as an enabling hallmark in the process of cancer formation [73]. While an anti-
tumor immune response reduces or prevents tumor growth, chronic inflamma-
tion fuels cancer formation. Damage signals like extracellular S100A8/A9 or
HMGB1 are proposed to create an inflammatory feed forward cycle via RAGE
as a central modulator, linking inflammatory effector cells as well as epithe-
lial cells and eventually driving the establishment of chronic inflammation
(Fig. 1.2) [91, 158]. The role of inflammatory cells of the tumor microenviron-
ment in pro-inflammatory RAGE signaling however is complex. Also, the exact
role of immune cells in cancer strongly depends on the composition of immune
cell subtypes. In particular intratumoral inflammatory cells of myeloid origin
can act as a double edged sword mediating anti-tumor immunity or promo-
tion a pro-tuumorigenic microenvironment [57, 178, 121, 154]. Furthermore the
composition of inflammatory cells also depends on the etiology of inflammation
associated cancer. While gastric cancer, caused by helibacter pylori infection
[46] or hepatocellular carcinoma induced by viral hepatitis [45] present an ac-
tive infection, chronic inflammation and damage, resulting in necrosis and the
release of DAMPs can likewise lead to a sterile, non-infections inflammation
and subsequent tumor formation [29, 175].
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1.4 Impact of RAGE signaling in mouse tumor
models

In inflammation associated cancer (Fig. 1.2) as well as other pro-inflammatory
pathological conditions, RAGE functions as a central hub, converting a tran-
sient inflammatory stimulus into sustained cellular dysfunction [17, 158]. In
the past, the analysis of several genetically-modified mouse models of intestinal
and pancreatic cancer provided experimental evidence that ablation of RAGE
on genomic level inhibits tumor development and progression [39, 77, 99].
Moreover, RAGE-deficient (Rage-/-) mice showed impaired tumorigenesis in
chemically induced models of inflammation-driven skin and colon carcinogen-
esis [60, 201]. Following a DMBA/TPA carcinogenesis protocol RAGE ligands
S100a8 and S100a9 were strongly induced in backskin keratinocytes of papillary
lesions of wild type mice [60], accompanied by a strong infiltration of S100a8
and S100a9 positive immune cells. While 9,10-dimethyl-1,2-benzanthracene
(DMBA) induces ras-mutations in backskin keratinocytes, the inflammatory
stimulus provided by the phorbol ester 12-O-tetradecanoylphorbol- 13-acetate
(TPA) promotes tumor development. In accordance with the reduction in
tumor incidence and multiplicity in these settings Rage-/- mice displayed re-
duced leukocyte recruitment and cytokine production during the initial phase
of tumor promotion, supporting the assumption that RAGE is a key player
in the establishment and maintenance of a pro-inflammatory tumor microen-
vironment [157]. Intriguingly, once activated RAGE-signaling can upregulate
both the expression of the receptor itself as well as its ligands, creating an
inflammatory feed-forward loop [60].
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1.5 Physiologic and pathologic roles of
S100-calgranulins

Among the family of S100 proteins, the calgranulins are well described as
inflammatory markers and play a distinct role as RAGE ligands in the con-
text of cellular stress conditions and inflammation. While the family of S100-
calgranulins consists of three family members, S100A8, S100A9 and S100A12
in humans, rodents lack the expression of S100A12 [155]. S100A12 functions
as a dimeric aniparallel homodimer but can also form hexamers under low
calcium conditions [136]. Also known as en-RAGE (extracellular newly iden-
tified RAGE binding protein) for its binding capacity to the receptor RAGE,
S100A12 is implicated in RAGE mediated inflammatory processes [40, 83].
While the main focus of research was on S100A8/A9, little is known about
the function of S100A12. It is mainly expressed in neutophilic granuolcytes
and to some extend in monocytes[69]. S100A12 is secreted by activated innate
immune cells and thus found as a serum marker in inflammatory conditions
[132]. Additionally, expression of S100A12 has been described in differentiating
mucosal keratinocytes [159].

Also named migration inhibitory factor-related protein 8 (MRP8) and MRP14,
S100A8 and S100A9 are well known for their expression in immune cells [207].
In vivo they preferentially form an antiparallel heterodimer, known as calpro-
tectin [37, 40]. While a complete knockout of S100a8 is embryonically lethal
[148], S100a9 deficient animals appear phenotypically normal [82]. However, in
peripheral leukocytes S100A8 protein stability critically depends on the pres-
ence of S100A9, suggesting that ablation of S100A9 may serve as a functional
calgranulin knockout in mice [82]. S100A8 and S100A9 are mainly expressed
in cells of myeloid origin, especially neutrophils but not in tissue-resident
macrophages [115]. Secreted, S100A8 and S100A9 serve as a proinflammatory
cytokine presenting danger signals for adjacent cells or immune cells. They
mediate neutrophil chemotaxis, macrophage recruitment, leukocyte adhesion
and transmigration, and trigger signal transduction via RAGE and Toll like
receptor 4 (TLR4) [65, 131, 164]. Extracellular S100A8/A9 can originate from
apoptotic neutrophils, but are also actively secreted. As both proteins lack
signal peptides for classical secretion by the ER-Golgi pathway, release occurs
in a Golgi-independent pathway [152, 182]. As indicated by it’s name “calpro-
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tectin”, at sites of tissue damage and wounding, S100A8/A9 exert important
anti-microbial functions [185]. Importantly, apart from their well described ex-
tracellular functions as damage signals, inducing signaling via DAMP receptors
like RAGE and toll like receptors (TLRs), S100-calgranulins have also intracel-
lular functions, ranging from myeloid cyotoskeletal rearrangement during cell
migration to their implication in arachidonic acid metabolism and NADPH-
oxidase regulation [59]. The heterodimer of S100a8/S100A9 functions as a
coregulator in the formation of reactive oxygen species [21] and is involved
in NFkB signaling [104, 141]. Under inflammatory conditions, S100A8/A9
are induced in endothelial and epithelial cells and are secreted by epidermal
keratinocytes [213, 102, 182]. Also, induction of S100A8/A9 expression in in-
flammatory disorders like psoriasis, arthritis, cystic fibrosis, multiple sclerosis,
and inflammatory bowel disease is often described. Accordingly, S100A8/A9
as well as S100A12 serum levels are commonly used as inflammatory biomark-
ers [128]. Furthermore, expression of RAGE ligands S100A8/A9 is detected
in a variety of tumors, including colon, prostate and lung cancer as well as
HNSCC ([59, 161].
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1.6 Head and neck squamous cell carcinoma

The term head and neck cancer relates to a variety of malignant neoplasias of
the upper aerodigestive tract. While adenoma and sarcoma only contribute to
a minor amount of cases, the vast majority of cases represent squamous cell
carcinoma of the head and neck (HNSCC). HNSCC mainly occur at the oral
cavity, tongue, larynx and pharynx (Fig. 1.3).

Figure 1.3: Anatomic sites and subunits of the head and neck.
image source: www.cancer.gov/PublishedContent/ Images/ cancertopics/factsheet/ Sites-

Types/headandneck-diagram.jpg.

The main risk factors in the western world are alcohol and tobacco consump-
tion, which synergistically account for a large proportion of HNSCC cases [145].
In south-east Asia and India betel quid chewing represents another important
risk factor for HNSCC [96]. Although inherited disorders such as Fanconi ane-
mia render a predisposition for the development of the disease [114], they play
only a minor role. In oropharyngeal cancer, HPV infection has been shown to
not only induce cancer but also form a molecular, epidemiological and clinical
distinct subgroup of OPSCC patients [62, 7, 84] and is meanwhile considered
an independent risk factor. With around 650.000 new cases each year, HNSCC
presents the 6th most common cause for cancer in man worldwide. Roughly
three times more men suffer from HNSCC than women. Variations in the
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incidence result from different lifestyle habits concerning the main risk fac-
tors. (Fig. 1.4) [147, 51, 23, 133]. In Germany, tumors of the oral cavity and
pharynx are the 5th most common cancer in the male population. The age
standardized rate per 100.000 inhabitants for tumors of the oral cavity and
pharynx was 18.7 for men and 5.7 for women, and laryngeal cancer 6.9 and
0.9 [107, 106].

Figure 1.4: Age-standardized incidence rate of head and neck cancer world
wide and standardized incidence and mortality rates in western Europe.
Included are tumors of the lip, oral cavity, nasopharynx and other pharynx as well as
larynx. . Incidence rates for HNSCC are in western Europe rates are age standardized
and calculated per 100,000 inhabitants. Data and image source: GLOBOCAN 2008;
Cancer Incidence and Mortality Worldwide in 2008 [50]

Only 40-50% of newly diagnosed patients survive 5 years after diagnosis. The
prognosis largely depends on the stage when patients are diagnosed with a
tumor. While early stage tumors can be treated effectively, the majority of
patients present with already advanced stages, often with lymph node involve-
ment [198, 145]. Advanced tumors are mainly treated by surgical resection of
the tumor in combination with adjuvant radio- and/or chemotherapy, however
in most cases with low clinical benefit. The majority of patients suffer either
from tumor recurrence within one to three years following first-line therapy
or the formation of secondary tumors, which are often more aggressive and
refractory to available treatment options [90].
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1.7 Molecular mechanisms of head and neck
squamous cell carcinoma

Head and neck squamous cell carcinoma present a heterogeneous disease. His-
tologically, pathologists differentiate between different types according to the
world health organization (WHO) classification of 2005, the conventional, ver-
rucous, basaloid, papillary, spindle cell, acantholytic, adenosquamous and the
cuniculatum type [11, 145]. On a molecular level, apart from the obvious
stratification into HPV positive and HPV negative tumors, especially within
the HPV negative group tumors differ strongly with regard to genetic muta-
tions and transcription profiles [33, 4, 187]. In almost all HNSCC patients
p53 and retinoblastoma (Rb) pathways are disrupted. In HPV negative HN-
SCC, the most common molecular genetic alterations are mutations of p53,
overexpression of Cyclin D1, hypermethylation of the p16 promoter and loss
of heterozygosity at several chromosomal regions, most importantly 3p, 17p13
and 9p21 [144, 205, 150, 118]. Interestingly, mutations in classical hotspot
regions like the PIK3CA gene or RAS proteins are less common in HNSCC. In
only about 10 % of cases, PI3-kinase is mutated [151, 163, 108]. Also mutations
in the RAS oncogene are often observed among the Indian population but less
frequently in HNSCC in the western world [166, 6, 163]. Even though treat-
ment options of many cancer entities have been improved mainly due to the
progress in basic and translational cancer research, over the last decades the
prognosis for HNSCC patients remains constantly poor. The epithelial growth
factor receptor (EGFR) is commonly overexpressed in HNSCC [167, 72], of-
ten due to genetic amplification [173], presenting an important therapeutic
target for targeted treatment options. Increased EGFR signaling leads to cell
cycle progression and enhanced proliferation via the Ras-MAPK, PI3K-PTEN-
AKT and phospholipase C pathways [34, 93]. As targeted therapy only EGFR
blocking antibodies such as Cetuximab are licensed for therapy of HNSCC, in
combination with classical treatment regimen [174]. Various pro-inflammatory
cytokines are deregulated in HNSCC tumors. Interleukin (IL) 1-α, IL-6 and
IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF) as well as
vascular endothelial growth factor (VEGF) are secreted by HNSCC cell lines
and found in HNSCC patient samples [32]. Also, key transcription factors
downstream of inflammatory processes like NF-κB and Stat3 have been shown
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to play an important role also in HNSCC [127, 180, 117, 3]. The expression
of another player in inflammatory reactions as well as human malignancies,
Prostaglandin E2 (PGE2), alongside with the expression of Cyclooxygenase-2
(Cox2) was shown to be increased in HNSCC [27, 1, 208]. Chemopreven-
tion using non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment
of HNSCC and more recently curcumin (diferuloylmethan) from the curcuma
longa plant, are under evaluation concerning treatment success in the clinics
[5, 2, 35].

Figure 1.5: Field cancerisation and local relapse.
Fields of genetically altered epithelial cells, originated from clonal expansion of a trans-
formed cell give rise to tumors. After resection, transformed cells from such a field can
stay behind as they appear macroscopically and cyctologically normal but with time give
rise to secondary tumors. (graphic modified after Leemans et al. 2011 [118])

Similar to other solid tumors, the pathogenesis of HNSCC represents a mul-
tistage process, which is characterized by the accumulation of genetic and
epigenetic aberrations, which finally lead to squamous hyperplasia and trough
advancing stages of dysplasia to invasive squamous cell carcinoma [118]. Al-
ready a half century ago the model of field cancerisation was proposed to
explain the high rate of local recurrence in patients with HNSCC [177]. Car-
cinomas arise within large areas of genetically altered cells which arise from
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the clonal expansion of a transformed preneoplastic cell (Fig. 1.5). While pre-
cancerous lesions such as leukoplakia or erythroplakia are easily recognized by
eye in the oral cavity, large areas of the mucosa can be transformed without
macroscopically appearing suspicious. Thus, the surgical margin may often
retain cells from the previously transformed field, giving rise to a local recur-
rence or second primary tumor. Furthermore, due to the etiological factors,
this concept of field cancerisation is not restricted to one, but often several
areas of the mucosal epithelium that become transformed and can in time give
rise to neoplastic lesions [26, 191, 118].

1.8 A mouse model for multistage carcinogenesis
of oral squamous epithelia using 4-NQO

Despite various advances in the field of cancer therapy, the high morbidity and
mortality in HNSCC remains a major challenge for basic and translational
cancer research. Therefore preclinical animal models are of fundamental im-
portance in order to better understand the underlying molecular mechanism
of the disease. In the past, several animal models have been developed to in-
vestigate the cellular and systemic mechanisms of HNSCC. While genetically
engineered mouse models are a common tool in biomedical research, for the
investigation of HNSCC few proved to be successful. Aberrant activation of
Akt in epithelial basal cells induces tumor formation [172] and was used in
combination with the epithelial ablation of p53 to study oral carcinogenesis in
mice [135]. Classical p53 knockout mice show a high susceptibility to tumor
formation, lesions develop spontaneously within 5 months [41], presenting seri-
ous limitations regarding their application in HNSCC. However in combination
with local DMBA administration, targeted induction of lesions in p53+/- mice
presents a model, which recapitulates both tumor formation and the develop-
ment of metastatic SCC [109]. Conditional activation of PI3K/Akt pathway
due to Pten inactivation is not sufficient to efficiently trigger NSCC forma-
tion. A novel promising genetic model system was proposed only recently by
Bian and colleagues, using a conditional epithelial specific Tgfbr1/Pten double
knockout, to reliably generate malignant lesions of the oral mucosa at a high
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incidence rate [16]. Furthermore, transgenic mice expressing the HPV-16 early
oncogenes E6 [179] and E7 are used to induce cancerous lesions in epithelial
cells [78, 179] and therefore also find use as cancer models of HNSCC in combi-
nation with chemical induction by 4-NQO [95]. Also, orthotropic mouse model
using injection of human tumor cells into the floor of mouth of immunocompro-
mised mice were used to study oral squamous cell carcinoma. Tumors develop
rapidly after injection and reach comparatively high tumor volumes [138, 13].
However, concerning etiology and histology of human HNSCC these mouse
tumor models only partially reflect the pathophysiological conditions and even
more importantly, the lack of a functional immune system is hampering the
analysis of anti- and pro-tumorigenic responses of the immune system. HN-
SCC develops in a multistage process, rising gradually from a transformed cell
into full-blown malignant squamous cell carcinoma.

Figure 1.6: Multistep oral carcinogenesis using 4-Nitroquinoline-1-oxide.
The mice are treated with 4-Nitroquinoline-1-Oxide (4-NQO) in drinking water for 16
weeks and then observed for another 12 weeks. Within this time, the development of oral
mucosal hyperplasia, dysplasia and the development of cancerous lesions is expected.
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A well established carcinogen driven animal model is the hamster cheek pouch
model using 7,12-dimethylbenzanthracene (DMBA) to induce cancers of the
buccal mucosa, which was also applied in mice, rats and non-human primates
[47, 63]. However, the cancers developing in this model only partially reflect the
situation in human oral carcinogenesis [139]. An elegant mouse tumor model,
which reflects the gradual development of oral cancer, takes profit of the car-
cinogen 4-Nitroquinoline 1-oxide (4-NQO) (Fig. 1.6). 4-NQO can be painted
with a brush onto soft palate or tongue or is administered to animals via the
drinking water [76, 195]. Within a timeframe of seven months, C57BL/6 mice
develop hyperplasia and dysplasia, papillioma and later on also carcinoma,
allowing a detailed investigation of oral squamous cell carcinogenesis. Tumor
incidence was higher with the carcinogen administration via the drinking wa-
ter as compared to painting protocol and after 2428 weeks 100 % of animals
developed lesions the tongue or in the esophagus [194]. Thus, 4-NQO can be
considered both a reliable as well as useful model for oral carcinogenesis.

1.9 The S100-RAGE axis in HNSCC and RAGE
as a target for therapy

In head and neck squamous cell carcinoma (HNSCC) it was shown on RNA as
well as on protein level, that S100A8 and S100A9 expression is inversely cor-
related with differentiation in HNSCC [161, 162]. Therefore S100A8/A9 was
proposed as a diagnostic marker to better discriminate between healthy and
premalignant mucosa and tumor tissue [64, 42]. In vitro, blockage of S100A8
protein in the laryngeal carcinoma cell line hep2 lead to inhibition of metasta-
sis by miR-24 [70]. In the context of head and neck squamous cell carcinoma,
both RAGE and its ligands S100A8 and S100A9 have been the focus of sev-
eral studies. For RAGE, however, available data are controversial, relying on
mere descriptive data from expression arrays and immunohistochemical data.
However, functional data on the causal link between RAGE function in the
pathogenesis and malignant progression of HNSCC are missing. In contrast,
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for oral cancer it was shown that RAGE is closely associated with invasive
disease [15], supported by another study, where it was shown that RAGE is
positively associated with depth of invasion and local recurrence, but not with
lymph node metastasis and differentiation [169]. The same group proposed
a driving role for RAGE in tumor angiogenesis [168]. On the other hand, a
more recent publication suggested a negative correlation between RAGE ex-
pression and differentiation, showing a relative reduction of RAGE staining
during malignant progression [116]. While obviously cancer-related inflamma-
tion is a promising target for therapeutic intervention, it proves a challenge
to balance the scales towards an anti-tumorigenic immunity. RAGE as a key
molecule in this context appears as a promising target. Aiming at breaking the
vicious cycle of S100-RAGE signaling, more and more studies introduce Rage
blocking antibodies, soluble RAGE (sRAGE) as a decoy receptor and other
RAGE antagonists to as a therapeutic option [87]. In the context of a mouse
model for diabetic atherosclerosis application of sRAGE showed beneficial ef-
fects [146] and inhibition of RAGE was shown to ameliorate neurotoxicity of
amyloid-beta proteins s[188], while in glioma cells, blockage of RAGE sup-
presses tumor growth and metastasis [192].

1.10 Study design and aims of the study

Even though obviously linked to the pathogenesis and malignant progression
of head and neck squamous cell carcinoma, the functional role of the S100-
RAGE axis especially under settings of genotoxic conditions versus chronic
inflammation remains elusive (sec. 1.6). Thus an important topic, which is
addressed in the present S100-RAGE axis and inflammation as a driver for
cancer formation was a focus of the study
RAGE function is so far well described in inflammation associated cancer and
has been studied extensively in inflammation driven mouse models [60, 201].
On the other hand, little is known about RAGE function in the context of
genotoxic stress in the absence extensive inflammatory promotion. Our current
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understanding of RAGE focuses mainly on the maintenance of an inflammatory
feed forward loop, without explaining whether and how RAGE is involved in
the onset and early development of cancer. However, upon genotoxic stress or
damage, cells produce stress signals and DAMPs are released from damaged
or apoptotic cells and may well activate RAGE early on in carcinogenesis. In
skin carcinogenesis, genotoxic stress by sequential DMBA application finally
leads to the formation of squamous cell carcinoma (SCC), which again show
infiltration by inflammatory cells [202, 49].

To shed further light on the role of S100-RAGE in head and neck squamous
cell carcinoma, a patient collective of 188 oropharyngeal squamous cell car-
cinoma (OPSCC) patients was screened for the distribution of inflammatory
cells, addressing the question whether patients can be stratified according to
the amount of inflammatory infiltrate as a predictor of clinical outcome. In a
more functional approach, RAGE deficient mice [122] were used in a 4-NQO
carcinogenesis protocol to address the role of RAGE in the onset and devel-
opment of oral squamous cell carcinogenesis. Furthermore, mice deficient in
S100a9 (S100a9 -/-) [82] were subjected to the 4-NQO protocol to specifically
focus on S100 calgranulins in HNSCC.

The main questions that were addressed are in this study are:

1. Is it possible stratify HNSCC cancer patients according to inflammatory
infiltrate to predict behavior?

2. What is the role of the receptor RAGE and it’s ligands, calgranulins S100A8
and S100A9 in a 4-NQO model of chemically induced oral squamous cell car-
cinogenesis?

26



2 Materials and Methods

2.1 Material

2.1.1 Consumables and equipment

Equipment and consumables Company

1.5 ml, 2 ml Reaction Tubes Eppendorf, Hamburg

2 ml Cryotubes Nunc

Adhesion slides Super Frost® Plus Menzel-Gläser, Braunschweig

AEC+ Substrate-Chromogen, Ready-to-Use Dako Cytomation, Hamburg

AlphaMetrix tissue punch AlphaMetrix Biotech, Rodgau

Autoklave VX95 Systec GmbH, Wettenberg

Centrifuge 5417R Eppendorf, Hamburg

Centrifuge Biofuge 13 Hereaus Instruments, Hanau

Centrifuge Varifuge 3.0R Hereaus Instruments, Hanau

Cover slips (24x36 mm and 24x50 mm) Knittel, Bielefeld

DAKO Pen Dako A/S Glostrup, Denmark

disposable scalpel Feather, Osaka (Japan)

Electrophoresis chamber for agarose gels Buddenberg, Mannheim

Epi Chem II Darkroom (Gel documentation) UVP, Upland (CA, USA)

Eppendorf research pipettes Eppendorf, Hamburg

Filtertips Biozym Scientific, Oldendorf

Fluoreszenzmikroskope BX50F Olympus Microscopy, Hamburg

Freezer Liebherr, Ochsenhausen

freezer -80°C Harris/Theromo Scientific

Fridge 4° Liebherr, Ochsenhausen

Hamamatsu NanoZoomer Scanner Hamamatsu Photonics GmbH
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Equipment and consumables Company

ice-machine AF20, Scotsman

Kryostat/Microtome blades C35 Feather, Osaka (Japan)

Kryotome 2800 Frigocut Leica, Nussloch

Microscope BX-50F Olympus, Hamburg

Microscope IX51 Olympus, Hamburg

Microwave Robert Bosch GmbH, Stuttgart

Milli-Q Millipore, Bedford (MA, USA)

MJ Mini Gradient Thermal Cycler Bio-Rad Laboratories, München

Nanodrop Spectrophotometer, ND-1000 PeqLab, Erlangen

Nuclease free reaction caps (safe-lock) Eppendorf, Hamburg

PCR stripes (8x0,2ml) NerbePlus, Wiensen/Luhe

PCR-Thermocycler (Gene Amp System 2400) Perkin Elmer, Wellesley (MA, USA)

pH-meter WTW, Weilheim

Pipettes Gilson-Abimed, Düsseldorf

Pipettips Micro-Bio-Tec Brand, Giessen

Pipettor Pipetboy acu Brand, Wertheim

Power supply Power Pac 300/3000 Bio-Rad Laboratories, München

Precision scales Sartorius, Göttingen

reaction caps (1,5 ml and 2 ml) Eppendorf, Hamburg

Scales Sartorius, Göttingen

SC30 (BF camera) Olympus, Hamburg

steam-cooker Braun, Kronberg

thermomixer Eppendorf, Hamburg

Tissue Tek VIP 5 Jr Sakura, USA

Trucount 15 ml, 50 ml Tubes Falcon, Greiner, Nunc

Vortex “Reax 2000” Heidolph, Kehlheim

Water baths GFL M&S Laborgeräte

XM10 (black/white camera) Olympus, Hamburg
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2.1.2 Glas and plasticware

Equipment Company

Glass beakers Fisherbrand, Schwerte

Glass bottles (50 ml-1l) Schott, Mainz

Glass container for histology, Schott, Mainz

Graduated cylinder plastic (100 ml – 2 l) Vitlab, Großostheim

Plastic beakers Vitlab, Großostheim

Graduated cylinder glas Brand, Wertheim

Graduated cylinder plastiv Brand, Wertheim

Erlenmeyer flasks Brand, Wertheim

2.1.3 Chemicals

Component Company

10x PCR buffer Genaxxon, Biberach

Acetic acid Merck, Darmstadt

Agarose SeaKem GTG Lonza, USA

β-Mercaptoethanol Merck, Darmstadt

BCA reagents Thermo Scientific, USA

Biotyinylated secondary antibody Vector Laboratories, Burlingame, USA

Boric acid Roth, Karlsruhe

Bromphenol Blue Sigma Aldrich, München

ECL reagent solutions AppliChem, Darmstadt

EDTA AppliChem, Darmstadt

Eosin Roth, Karlsruhe

Ethanol p.a. Merck, Darmstadt

Ethanol, denaturated 99,7% Roth, Karlsruhe

Eukitt Kindler, Freiburg

Formaldehyde 37% Sigma Aldrich, München

Glycerol AppliChem, Darmstadt

Haematoxylin AppliChem, Darmstadt

Hematoxylin according to Gill II Roth, Karlsruhe
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Component Company

GelRed Biotium, Hayward, CA

Hoechst H33342 Calbiochem/Merck, Darmstadt

Hydrochloric Acid Merck, Darmstadt

Hydrogen peroxide Merck, Darmstadt

Isopentan Roth, Karlsruhe

Isopropanol Roth, Karlsruhe

MgCl2 Genaxxon, Biberach

Microplate Reader Model 680 Bio-Rad Laboratories, München

Milk powder Roth, Karlsruhe

MnCl2 Roth, Karlsruhe

N, N, N‘, N‘, Tetramethyl-
Roth, Karlsruhe

ethylenediamine (TEMED)

Na2HPO4x2H2O Merck, Darmstadt

NaH2PO4xH2O Merck, Darmstadt

Natrium chloride Roth, Karlsruhe

Natrium-deoxycholat AppliChem, Darmstadt

NP-40 Sigma Aldrich, München

Nuclease-free water Gibco/Life Technologies, Darmstadt

Oligo-dT primers Fermentas, St. Leon-Rot

Paraffin Vogel, Giessen

Potassium Chloride Roth, Karlsruhe

Sodium Chloride Roth, Karlsruhe

Sodium Citrate Roth, Karlsruhe

Sodium hydroxide Merck, Darmstadt

Sodiumdodecylsulfate (SDS) Roth, Karlsruhe

Tris HCl Roth, Karlsruhe

Tris-base Roth, Karlsruhe

Triton X-100 AppliChem, Darmstadt

Tween 20 Roth, Karlsruhe

Xylene Roth, Karlsruhe

Xylene chyanol Sigma Aldrich, München

30



Materials and Methods

2.1.4 Enzymes and fine chemicals

Component Company

PCR buffer S Genaxxon, Biberach

Oligo(dT)18 Fermentas, St. Leon-Rot

Taq polymerase Genaxxon, Biberach

GeneRuler DNA ladder mix Fermentas St. Leon-Rot

dNTPs Fermentas, St Leon Roth

Revertaid M-MuLV Buffer Fermentas, St. Leon-Rot

Revertaid M-MuLV Reverse Transcriptase Fermentas, St. Leon-Rot

Riboblock RNase inhibitor Fermentas, Germany

2.1.5 Kits

Kit Company

RNase-free DNase Set Qiagen, Hilden

DAB kit Vector Laboratories, Burlingame, USA

DNaseI Digest Kit Qiagen, Hilden

ImmPRESS Anti-Rabbit Vector Laboratories, Burlingame, USA

RNeasy Mini Kit Qiagen, Hilden

Vectastain Elite-ABC-Peroxidase Vector Laboratories, Burlingame, USA

Cell proliferation Kit GE Healthcare Europe, Freiburg

All kits and reagents were used according to the manufacturer’s protocol unless otherwise stated.
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2.1.6 Buffers and Solutions

Blocking reagent for histology 0.1 % BSA

5 % host serum

in PBS

10x Citrat Buffer: 1.8 mM citric acid

8.2 mM sodium citrate

6x DNA loading buffer 0.25 % (v/v) Bromphenol blue

0.25 % (v/v) Xylene Cyanol

30 % (v/v) glycerol

4 % formaldehyde 4 % (v/v) formaldehyde in PBS

Mowiol 6 g glycerol

2.4g Mowiol 4-88

6 ml H2O

10 x PBS 1.5 M NaCl

24 mM KCl

82 mM Na2HPO4 x 2 H2O

17 mM NaH2PO4 x H2O

PCR reaction mix 1.1x PCR buffer S

1.7 mM MgCl2

220 µM dNTPs

tail lysis buffer 50mM Tris (pH 8,0)

100mM NaCl

100mM EDTA

1% SDS

10x TBE 1 M Tris

1 M Boric acid

20 mM EDTA
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2.1.7 Primers

Name Sequence TA Length [Bps]

mHPRT
for ctggttaagcagtacagcccc

62 °C 380
rev caaaagtctggggcgcagc

mRage
for acaggcgagggaaggaggtc

58 °C 200
rev tttgccatcgggaatcagaag

mTlr4
for tcagcaaagtccctgatg

56 °C 183
rev ttgagaggtgtgtaagc

2.1.8 Antibodies

Primary Antibodies

Antigen Host Clone Dilution Source

BrdU mouse BU-1 * GE Healthcate (RPN202)

Cytokeratin 13, (CK13) mouse 1C7 1:10 Progen (PC 10523)

Cytokeratin 14 (CK14) mouse LL002 1:20 Nova Costa (NCL-LL002)

Loricrin mouse polyclonal 1:2000 Covance (RBP 145-P)

Myeloperoxidase Ab-1 rabbit polyclonal 1:100 Thermo Fisher (RB-373)

mS100a8 goat polyclonal 1:200 Santa Cruz (Sc-8113)

hS100A8 goat polyclonal 1:200 Santa Cruz (Sc-8112)

mS100a9 goat polyclonal 1:200 Santa Cruz (Sc-8115)

hS100A9 goat polyclonal 1:200 Santa Cruz (Sc-8114)

hS100A12 goat polyclonal 1:100 Santa Cruz (Sc-8116)

Tlr4 goat polyclonal 1:100 Santa Cruz (Sc-16240)

* anti-BrdU antibody as part of the GE “Cell proliferation-Kit” was used according to manufacturer’s

instructions.
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Secondary antibodies

Antigen Host Label Dilution Source

Goat donkey Cy3 1:200 Dianova

Rabbit donkey Alexa488 1:200 Dianova

Rabbit goat biotin 1:500 Vector, (BA-100)

Goat donkey polymer * Vector, ImmPress anti-Goat

Mouse donkey polymer * Vector, ImmPress anti-Mouse

Rabbit donkey polymer * Vector, ImmPress anti-Goat

* polymer coupled secondary Antibody solution was used according to manufacturer’s protocol.

2.1.9 Human tissue blocks

Tissue from patients, diagnosed with a squamous cell carcinoma of the orphar-
ynx (OPSCC) and treated at the ENT Department of the University Hospital
Heidelberg, Germany, between 1990 and 2008 was used in the context of a
previous study [84]. All patients included in the study gave informed consent
for the usage of the biopsy material. The study was approved by the Ethics
Committee of the Medical Faculty of the University of Heidelberg, study code
176/2002. FFPE tissue with biopsies from routine diagnostic (fixed in forma-
lin and embedded in paraffin according to routine fixation precedures from the
institute of pathology) at the Institute of Pathology at the University Hospital
Heidelberg were assessed and kindly provided by the pathologist Dr. Christa
Flechtenmacher. Only tissue samples of primary tumors were included in the
present study.
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2.1.10 Software

Software

Program Distributor

Adobe Acrobat 9.0; Photoshop CS5; Illustrator CS5 Adobe, San Jose, USA

Adobe Photoshop CS5; Illustrator CS5 Adobe, San Jose„ USA

CellSens Dimension 1.5 Olympus, Hamburg

EasyControl 2.04 for Epi Chem II darkroom UVP, Upland (CA, USA)

Mendeley Desktop 1.7.1 Mendeley Ltd., London, UK

Hamamatsu NanoZoomer (NDP-Viewer) Hamamatsu Photonics, Herrsching

IBM SPSS Statistics 20 IBM Corporation, Somers NY, USA

Microsoft Office 2007 Microsoft Corp., Unterschleißheim

Microsoft Windows XP Microsoft Corp., Unterschleißheim

Sigma Plot 11 Systat Software, Erkrath

2.2 Methods

2.2.1 Analyses on human patient samples

2.2.1.1 Data acquisition and selection of patients

In the context of a retrospective study [84], human carcinoma of the oroharynx
region were chosen. From originally 188 tumor patients, for whom fresh frozen
tumor tissue was available, clinical data were extracted from the electronic
patient files of the university hospital Heidelberg and transferred to the labo-
ratory database. Birth date, gender, date of surgery, anatomic region of the
tumor, TNM-classification of the tumor, pathological staging, cause of death
(tumor dependent/independent) and secondary event were included. Detailed
information on alcohol consumption and smoking habits was not available in
most cases.The included data mainly refer to general information (yes/no)
without quantitative data. The HPV status was analyzed in a separate study
[84].
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2.2.1.2 Tissue microarray (TMA) production

Tissue microarrays (TMA) enable a high throughput analysis of a large num-
ber of tissue samples. A collections of 188 tumor biopsies of patients as well
as healthy uvula mucosa were spotted on the tissue microarray. Sections form
these biopsies were initially stained by hematoxilyn and eosin (H&E) and ex-
amind by the pathologist Dr. med. Christa Flechtenmacher. Punch biopsies
from the donor tissue blocks containing patient material (0.6 mm x 3 mm)
were transferred into a fresh recipient paraffin block using the AlphaMetrix
tissue punch. Several punch biopsies from differet regions of one tumor were
included on the TMA to ensure robust data. For better orientation, the TMA
contains an asymmetric grid (Fig. 2.1). The recipient block was subsequently
incubated at 37° C for one hour. Sectioning was performed with a cryostat at
-20° C with sequential 4 µm sections.

Figure 2.1: Example of a TMA section: overview of TMA018 (stained for
CD66b).

2.2.1.3 TMA Scoring

For statistical processing of the data, each spot was scored by eye by at least
three independent observers simultaneously. TMAs generally were scored for:

Score A: amount of stained tumor cells (quantity)
Score B: staining intensity in tumor cells (quality)
Score C: localization of cellular proteins or stromal/intratumoral localization
of immune cells
Score D: amount of immune cells with positive staining
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Figure 2.2: TMA scoring system.
(1) TMAs were scored by 3 independent observers simultaneously and the three values
per spot were subsequently combined using the median (2); in case of high heterogene-
ity between the scorers, spots were excluded. (3) Scores from TMA018, TMA019 and
TMA020 were aggregated and only primary tumors were selected. (4) Biopsies were fil-
tered for the date of resection and second resections were excluded. Further exclusion
criteria were previous chemo/radiation therapy and survival < 3 months after surgery. In
case the different spots per patients did not show high heterogeneity (median > standard
deviation) scores for spots from the same patient were combined for the final score per
patient (5).

Sections were stained for CD66b in order to quantify the amount of CD66b
positive immune cells in the tumor microenvironment. Only the C and the
D score were used as the protein is expressed only in granulocytes and not in
tumor cells. The location score C is used, depending on the protein of interest,
to determine intracellular localization of the staining, distribution in stromal
cells or the localization of immune cells within the tumor microenvironment.
In this study, the location score C was used to differentiate between CD66b
positive cells in the tumor stroma and intratumoral CD66b positive cells as
well as their amount (Tab. 2.10). The median value per spot for the three
observers was determined.

Only primary tumors were included into the analysis and intensity scores
from spots of the same patient were subsequently combined using the me-
dian. Further filtering excluded biopsies from second resections to exclude al-
terations in inflammatory parameters as well as patients who received neoad-
juvant radiation- or chemotherapy. Furthermore, patients who died within
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Table 2.10: TMA scores for CD66b

Score Intensity Meaning
C

Localization 1 No intratumoral CD66b positive cells
of immune 2 Few intratumoral CD66b positive cells

cells 3 Many intratumoral CD66b positive cells
D

amount of 1 No stromal immune cells
stroma immue 2 Few stromal immune cells
cell infiltration 3 Many stromal immune cells

TMAs were scored for intratumoral CD66b positive cells (C-score) and stromal
CD66b positive immune cells (D-Score).

three months after surgery as well as patients were excluded to avoid bias in
survival analysis due to complications from treatment regimen. Finally, to
aggregate score values per patient from different spots, median and standard
deviation were calculated and only patients showing homogeneous scoring val-
ues for all spots (median > standard deviation) were considered for further
analysis. From originally 188 patient tumors, 153 could be scored for CD66b
positive immune cells and used for further analysis.

2.2.1.4 Statistical testing

Statistical analyses were performed using the Sigma Plot statistics package and
the IMB SPSS Statistics 20 (statistical packages for social sciences) Software.
Differences between groups were assessed by χ2 (Chi-square) test and unpaired
Student’s t-test and Wilcoxon signed-rank test. A p-value lower then 0.05 was
considered statistically significant.
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2.2.1.5 Correlation analysis

The correlation coefficient describes the relationship between two or more vari-
ables. For a linear correlation, the correlation coefficient can take on values in
a range of “-1” till “+1” where 1 describes a perfect correlation and -1 an in-
verse correlation. Pearson correlation was used to test for a linear association
between normally distributed markers. For other variables, the Spearman’s
rank correlation was applied.

2.2.1.6 Survival analysis

To assess patient survival, Kaplan-Meyer graphs were used to visualize dif-
ferences in overall survival (OS) as well as progression free survival (PFS).
Patients were grouped according to observed parameters and statistical differ-
ences between groups were determined with the log-rank test. Tumor depen-
dent death within the observation period (OS) and progression to secondary
event (metastasis, recurrence, secondary tumor) respectively (PFS) were re-
garded as an event. Patients were censored in case they had not (yet) reached
the event. This could be due to either (i) a premature exit from the study
(‘lost to follow-up’), (ii) tumor independent death or (iii) no progress to event
(tumor dependent death; secondary event) within the period of record. Statis-
tical determination of differences between the groups was assessed by Log-Rank
test.
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2.2.2 Animal Experiments

Rage-/- animals in a C57Bl6 background as described previously (Liliensiek et
al., 2004) were used in this study and were housed at the DKFZ animal facility
in individually ventilated cages under specific pathogen-free conditions. Tem-
perature (21°C), light cycles and humidity (50-60°) were controlled and kept
constant. All experiments were performed with C57Bl6 wild type, heterozygous
(Rage+/-) (control group) and homozygous Rage knockout (Rage-/-) females.
The procedures for performing animal experiments were in accordance with
the principles and guidelines of the “Arbeitsgemeinschaft der Tierschutzbeauf-
tragten in Baden-Württemberg” and were approved by the German Regional
Council, Karlsruhe, Germany under the license number G-21/10.

2.2.2.1 4-NQO treatment of mice

A protocol of 4-nitroquinoline-1-oxide (4-NQO) administration via the drink-
ing water starting at 6 weeks of age. 4-NQO treatment was maintained for 4
months, followed by 2-3 months of observation. The 4-NQO group was treated
with 100µg/ml 4-NQO in 2 % polypropylene glycol in the drinking water ad li-
bitum, while the control group received 2 % polypropylene glycol (PPG) only.
Weight was controlled regularly and general health state was monitored to
be able to terminate the treatment in case of severe side effects. Mice were
sacrificed at the end of the observation period or at sign of severe weight loss.

2.2.2.2 In vivo BrdU incorporation

Mice were injected intraperitoneally with 100µl (1µg/µl) BrdU labeling agent
per gram body weight according to manufacturer’s protocol four hours before
sacrificing (cell proliferation kit GE healthcare, Little Chalfornt, UK). BrdU
incorporation was quantified on tissue sections by immuohistochemical staining
using an anti-BrdU antibody (GE healthcare, cell proliferation kit).
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2.2.3 Molecular biological methods

2.2.3.1 Total RNA isolation from tissue

Total RNA from tissues was prepared using the Rneasy Mini Kit (Qiagen).
Tissue was cut with the cryostat in 10 µm sections (Leika, 2800 Frigocut)
and directly transferred into RLT lysis buffer (Qiagen) containing ß-mercapto
ethanol. Tissue was lysed by pipetting and subsequent vortexing. For complete
homogenisation, the lysate was then transferred onto QIAshredder columns
(Qiagen) and centrifuged for 5 min at 14,000 rpm and 4 °C. RNA was pre-
cipitated through addition of equal volumes of 70 % ethanol. The reaction
batch was then loaded onto QIAamp RNA extraction columns and processed
according to manufacturer’s instruction. An additional on column DNase I
digest was performed to ensure pure RNA preparation without genomic DNA
contamination . For this, 10 µl DNase I stock solution were mixed with 70 µl
RDD buffer according to the kit instructions, loaded onto the QIAamp col-
umn and incubated for 15 min at room temparature. Samples were washed on
column and finally RNA was eluted with 40 µl of ddH2O.

2.2.3.2 Determination of nucleic acid concentration

Nucleic acid concentration and purity was measured with the Nanodrop Spec-
tophotometer according to manufacturer’s instructions at 260 nm. Sample
quality and contamination by proteins and aromatic compounds was deter-
mined using the OD 260/280 and the OD 260/230 ratio. OD values at 280 nm
(absorbance maximum for proteins) and at 260 nm (absorbance maxima for
aromatic compounds) should result in an OD 260/230 higher than 2.0 for RNA
and a OD 260/280 between 1.8 - 2.0.

2.2.3.3 cDNA synthesis

For cDNA synthesis, 5 µg of DNA were diluted in 35 µl nuclease free water
and 0,5 µl Oligo(dT)18 primer (100 µM, Fermentas) were added and incubated
at 70 °C for 5 min followed by 5 min at 4 °C. A reaction mix containing
10 µl RevertAidTM buffer, 2 µl dNTP mix, 2 µl RiboLockTM RNase Inhibitor
(40 u/µl) and 0,5 µl RevertAidTM M-MuLV reverse transcriptase (200 u/µl,
Fermentas) were added and incubated for reverse transcription at 42 °C for
60 min. Obtained cDNA was aliquoted and stored at -20 °C.
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2.2.3.4 Polymerase chain reaction (PCR)

Amplification of DNA fragments for semi-quantitative analysis of gene expres-
sion or the detection of specific genomic loci was performed on cDNA using
polymerase chain reaction (PCR). 3 µl of genomic DNA (10-500 ng) or 15 ng
cDNA were mixed with 45 µl OCR reaction mix (10 x PCR buffer S, 1.7 µM
MgCl2 (Genaxxon), 220 µM dNTPs (Fermentas)), 20 pmol primer (forward
and reverse) and 0,3 µl Taq-polymerase S (200 u/µl; Genaxxon) and ddH2O
was added to a final volume of 50 µl. Polymerase chain reaction was performed
according to the following protocol:

Denaturation 94 °C 5min

Denaturation 94 °C 30 sec
Primer hybridisation TA °C 30 sec 25 - 40 cycles
Elongation 72 °C 45 sec

Final elongation 72 °C 5min
hold 4 °C ∞

The PCR reaction was analyzed by agarose gel electrophoresis (sec. 2.2.3.5).
A complete list with primers, their respective TA and size of the amplicons is
listed in (Tab. 2.6).

2.2.3.5 Agarose gel electrophoresis

Agarose gel electrophoresis was used for the separation of nucleic acid frag-
ments according to their molecular size. DNA fragments migrate through
the electric field due to their negative charge; small fragments migrate more
quickly than large fragments due to physical interaction with the gel matrix.
For fragments between 100 bps and 400 bps a 2 % agarose gel in 1 x TBE
buffer was prepared and the intercalating DNA dye GelRed was added in a
1:20,000 ratio before casting of the liquid gel into a gel chamber. Samples were
loaded with 6 x loading buffer and electrophoretic separation was performed
at 120 V constant for 30 min. Fragment size was determined using a parallel
loaded DNA ladder. Bands are visualized under UV light.
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2.2.4 Histological methods

2.2.4.1 Tissue fixation and paraffin embedding

Tissues were taken directly after sacrificing of the animals and immediately
fixed in 4 % formaldehyde in PBS, pH 7.4 with agitation over night at 4 °C.
Samples were subsequently washed in PBS for 30 min at 4 °C, followed by
two washing steps in 0.85 % (w/v) NaCl for 30 min. For dehydration, the
tissue was incubated in 50 % (v/v) ethanol/ 0.85 % (w/v) NaCl and twice in
70 % (v/v) ethanol for 15 min at room temperature each. Tissue was either
further processed using the vacuum infiltration processor Tissue Tek VIP 5 Jr
or stored at 4°C. For further processing, samples were transferred in plastic
cassettes. The following program was used:

1 x 70 % EtOH 45 min 45° C
1 x 80 % EtOH 45 min 45° C
2 x 90 % EtOH 45 min 45° C
2 x 96 % EtOH 45 min 45° C
2 x Isopropanol 60 min 45° C
2 x Xylene 60 min 45° C
4 x Paraffin 45 min 60° C

Tissues were embedded in paraffin blocks manually. They were taken out the
plastic cassettes using tweezers, placed into a metal chill mold in the desired
orientation and molded with liquid paraffin. The tissue blocks were down
to 4° C and removed from the chill mold once completely solid and kept for
storage at room temperature.

2.2.4.2 Preparation of paraffin tissue sections

Paraffin blocks were kept at -20 °C for sectioning and cut in 5 µm sections
with the microtome RM2155. Sections were transferred into a waterbath at
40 °C and subsequently mounted onto SuperFrost object slides. Sections were
dried at 42 °C o/n and subsequently stored at room temperature.
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2.2.4.3 Preparation of cryosections

Tissues were taken directly after sacrificing of the animals and immediately
embedded with OCT in plastic molds. Tissues were taken from molds and
fixed with OCT on the edging table of the cryotome. 5 µm sections were cut
and mounted onto SuperFrost object slides. Cryosections were dried overnight
and fixed in aceton at -20 °C. For storage, sections were kept at -80 °C.

2.2.4.4 Hematoxylin and Esosin staining

Staining with hematoxylin and eosin (H&E) is commonly used to assess the
histology of tissue sections. Nuclei are stained blue (hematocylin) while intra-
and extracellular proteins are stained red (eosin). 5 µm sections from formalin
fixed and paraffin-embedded tissues were deparaffinized and rehydrated in a
descending ethanol series (100 %, 95 %, 90 %, 80 %, 70 %, 50 % and 30 % (v/v)
ethanol in ddH2O , 2 min each). Staining with hematoxylin was performed
for 8 min, followed by washing in H2O twice for 2 min. Subsequently, tissue
sections were washed in 70 % (v/v)ethanol/0.05 % (v/v) HCl for 20 seconds
and in ddH 2O for 10 minutes and then stained in 0.1 % eosin for 3 to 5 minutes.
Sections were dehydrated (incubation in 70 %, 90 %, and 100 % (v/v) ethanol),
followed by incubation in xylene and subsequent embedding in Eukitt.

2.2.4.5 Immunhistochemical staining

5 µm sections from formalin fixed and paraffin-embedded tissues were deparaf-
finized and rehydrated as described in (sec. 2.2.4.4), 5 µm cryosections were
dried overnight and fixed in aceton at -20 °C. Endogenous peroxidase was
blocked with 3 % H2O2 for 10 min and heat-mediated antigen retrieval was
performed in citrate buffer (pH 6) for 30 min in a steam-cooker. Sections
were blocked in horse serum (ImmPress, Vector Laboratories, Burlingame, CA,
USA) for 20 min and subsequently incubated with the primary antibody (listed
in Tab. 2.7) according to manufacturer’s instructions either 2 hours at room
temperature or overnight at 4 °C in a wet chamber. Afterwards, sections were
washed trice in PBS under agitation for 5 minutes, incubation for 30 min at
room temperature with the corresponding, peroxidase coupled secondary anti-
body (ImmPress) and again washed three time for 5 min each. Subsequently,
sections were incubated (1-5 min) with the DAB peroxidase substrate (brown
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staining signal) (Vector Laboratries Inc., CA 94010, USA) or AEC substrate
(red signal) (Vector Laboratories). Samples were counterstained with hema-
toxylin and mounted in Evanol or Eukitt (Kindler GmbH, Freiburg, Germany)
respectively.

2.2.4.6 Immunofluorescence (IF)

Parraffin-sections were deparaffinized as described above (sec. ) and blocked in
PBS containing 0.1 % (w/v) BSA and 5 % goat or donkey serum (depending on
the species, in which the secondary antibody was produced in). The primary
antibody was diluted (Tab. 2.7) in the blocking solution and incubated on the
section at 4 °C overnight in a wet chamber. After washing with PBS for 5 min
under agitation for 3 times a fluorophore-labeled secondary antibody (Tab. 2.7)
was added and incubated on the sections for 30 minutes protected from light
in a wet chamber. Sections were rinsed in PBS and incubated with Hoechst
H33342 for visualization of nuclei at a 1 : 1000 dilution in PBS in the dark at
room temperature for 15 minutes. After a final washing step (3 times, 5 min in
PBS, light protected), sections were embedded in Mowiol and stored at 4 °C.

2.2.5 Mikroskopy

Fluorescence labeled Samples were analyzed with an epi-fluorescence micro-
scope (Olympus IX51). Pictures were aquired using the Olympus CellSens
Dimension Software. For dark field (DF) images, the XM10 camera system
(Olympus) was used, bright field images were taken using the SC30 camera
(Olympus).

TMA images were acquired at the Nikon Imaging Center, Heidelberg and only
scans of the TMAs were used for the further analysis (Evaluatinon and scoring
as well as export of images) with the NDP-Viewer software (Hamamatsu).
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3 Results

3.1 Distribution of S100-calgranulin positive
immune cells positive immune cells in HNSCC

Even though inflammation is often described in the context of HNSCC [36,
210, 25, 211], our knowledge concerning its correlation with clinical and histo-
pathological charateristics as well as the clinic outcome remains limited. In the
past, several clinical and experimental studies demonstrated a functional link
between the S100-RAGE signaling axis and the paracrine crosstalk of tumor
and immune cells in setting of inflammation associated carcinogenesis [158].
In the context of a previous study (Sonja Funk, unpublished data), Calgran-
ulin expression was assessed in biopsies from OPSCC patients and compared
to clinic-pathological features. In this study, the expression of S100A8 an
S100A9 as well as S100A12, a third member of the calgranulin protein family,
which is absent in rodents was determined. Expression of all three calgran-
ulins was found in normal control mucosa, predominantly in suprabasal and
differentiating mucosal keratinocytes. Basal cells of the mucosa were nega-
tive for calgranulin expression. Calgranulin staining in tumors varied from
no staining to strong staining in almost all tumor cells. In addition to the
expected cytoplasmic staining keratinocytes of the normal mucosa showed a
prominent nuclear staining, which was also observed in about three quarters
of calgranulin positive tumors. Significant correlations between the expres-
sion of S100A8 and S100A9, S100A8 and S100A12 and between S100A9 and
S100A12 were found. However, S100-calgranulin expression in tumor cells was
not linked to patient survival. Furthermore, a large number of tumors showed
moderate to high infiltration of S100-calgranulin positive immune cells into the
tumor stroma. Even though no significant correlation between the number of
S100A9, S100A8 or S100A12 positive immune cells and any clinical outcome
was observed, a trend towards a better prognosis for patients with a high
number of S100A8 and S100A12 but not S100A9 positive immune cells was
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visible (unpublished Data, S. Funk). This may indicate a role for calgranulin
positive inflammatory cells, possibly independent of calgranulins staining in
tumor cells. Therefore, to assess the distribution of patients with and without
inflammatory infiltrate, I determined the percentage of patients with a high
number of S100-calgranuline positive immune cells in this OPSCC cohort.

Figure 3.1: Infiltration of S100-calgranulin positive immune cells in the stroma
of human OPSCC samples. Patients were stratified according to low (grey curve),
high (red curve) and medium (black curve) amount of CD66b positive stromal (A, C) and
intratumoral (B, D) immune cells. Overall survival (A, B) and progression free survival
(C, D) were determined by Kaplan-Meyer analysis. Lack of statistical significance (p >
0,05) was assessed by Log-Rank-Test.

64% of patients showed a high number of S100A8 positive infiltrating immune
cells, 54% of patients showed high numbers of S100A9 positive stromal cells,
whereas high amounts of S100A12 positive stromal cells was observed in 49%
of cases (Fig. 3.1). In summary around half of the patients show a high amount
of infiltrating, s100A8, S100A9 and S100A12 positive immune cells.
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3.2 Human OPSCC samples show a differential
pattern of CD66b positive immune cells
which correlates with S100-calgranulin
positive immune cells

Approximately half of the OPSCC patients display a high amount of S100-
calgranulin positive inflammatory infiltrate, however without a clear predic-
tive value concerning clinical outcome. This might be due to the differ-
ent subtypes and functions of the involved myeloid cells positive for S100-
calgranulins. Using a second independent marker specific for granulocytes, the
role of myeloid cell infiltration in the tumor microenvironment was assessed
in more detail. CD66b, also known as Carcinoembryonic antigen-related cell
adhesion molecule 8 (CEACAM 8) is an ahol [84] ctivation marker of human
granulocytes and is highly expressed in eosinophils and neutrophils [176, 43].
As CD66b is expected to be expressed on the same cells that are positive for
S100-calgranulins, the next focus was on a stratification of human OPSCC
patients with regard to CD66b positive cells as a more sepcific inflammatory
marker. Quantification of CD66b quantification of CD66b positive immune
cells on the same patients (same TMAs) were used to confirm the data on the
distribution of calgranulin positive inflammatory immune cells (sec. 3.1). In
close collaboration with the ENT department at the University Hospital Essen,
tissue microarrays (TMAs) comprised of OPSCC samples from 188 patients,
who were treated at the ENT Department of the University Hospital Hei-
delberg [84] were used for immunohistochemical staining for CD66b-positive
immune cells. TMAs were sent to Essen for immunohistochemical staining of
CD66b-positive immune cells. The stained sections were scanned in the tissue
imaging center at the Bioquant Heidelberg and were analyzed with the NDP
Viewer software by three independent observers.
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Figure 3.2: Distribution of CD66b positive inflammatory cells in human OP-
SCC samples. Immunohistochemical staining for CD66b-positive cells was performed
on tissue microarrays (TMAs) comprised of human OPSCC samples. Normal mucosa
(A and B) served as an internal control. The relative number of CD66b positive cells
was scored according to their distribution in the tumor stroma and within the tumor
mass. No/low numbers of CD66b positive immune cells C,D; moderate (E,F) and high
(I,J) infiltration of stromal CD66b positive immune cells and moderate (G,H) and high
(K,L) amount of intratumoral CD66b positive immune cells (red signal, arrows indicate
CD66b positive cells). Counterstaining was performed with Hematoxyline. The dotted
line separates (S) stroma from (T) tumor mass. Scale bar represents 50 µm.

No CD66b positive cells were observed in the stromal tissue of normal, healthy
mucosa (Fig. 3.2 A, B), and almost one third of the tumors did not show any
stromal infiltration of CD66b positive cells or CD66b positive cells within the
tumor mass (Fig. 3.2 C,D). In contrast, 65% of patients showed moderate to
high numbers of stromal CD66b positive infiltrating cells (Fig. 3.2 E and F)
and 63% showed moderate to high numbers of intratumoral CD66b positive
cells. In 24% of cases, high numbers of both stromal as well as intratumoral
CD66b positive cells were observed (Fig. 3.2 G and H, K and L). For statistical
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analysis, the relative amount of CD66b positive immune cells in the tumor
stroma (Score D, Tab. 2.10) and the presence of intratumoral CD66b positive
immune cells (C-Score, Tab. 2.10) was scored by three independent observers
without knowledge of the clinic-pathologicalfeatures of the individual patients.
Further statistical processing of the data was performed using the IBM SPSS
statistics package.

Table 3.1: Correlation of CD66b positive and S100A8, S100A9 and S100A12
stromal and intratumoral immune cells.

CD66b (C) CD66b (D)

p ρ p ρ

S100A8 A 0,5 -0,068 0,7 -0,039

S100A9 0,2 -0,125 0,2 -0,129

S100A12 0,5 -0,065 0,4 -0,076

S100A8 B 0,4 -0,089 0,6 -0,052

S100A9 0,1 -0,023 0,7 0,040

S100A12 0,1 -0,145 0,6 -0,056

S100A8 C 0,9 0,015 0,3 -0,113

S100A9 0,9 -0,008 0,2 -0,125

S100A12 0,9 0,008 0,6 -0,053

S100A8 D 0,000 0,394** 0,000 0,488**

S100A9 0,003 0,271** 0,002 0,284**

S100A12 0,008 0,257** 0,002 0,301**

Score legend: A number of positive epithelial (tumor) cells, B staining intensity in epithelial cells; C sub-

cellular/histological distribution of the staining signal; D amount of positive stromal immune cells. The

correlation coefficient ρ was determined by Spearman’s rank Korrelation, statistical significance (p) was

determined by χ2 test.

Since CD66b and S100-calgranulins represent markers for activated granulo-
cytes, a high degree of overlap between of CD66b positive and S100-calgranulin
staining in the tumor biopsies was expected. Thus, the expression scores for
CD66b (C and D-Score) was compared with data for S100A8, S100A9 and
S100A12 from the same TMAs. For all three calgranulins, calgranulin expres-
sion in both tumor cells and infiltrating immune cells was determined in a
previous study (Sonja Funk, unpublished data) The number of Calgranulin
expressing cells (A-score), the staining intensity (B-Score), the subcellular
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localization (C-Score) and the number of Calgranulin positive immune cells
(D-score) was assessed by three independent observers (internal Data, Sonja
Funk). The expression scores for S100A8, S100A9 and S100A12 were then cor-
related to the expression scores for CD66b. No correlation between the number
of CD66b positive stromal (D-Score) and intratumoral (C-Score) immune cells
and the number of S100A8, S100A9 and S100A12 positive tumor cells was
detected (Tab. 3.1, A-Score). Accordingly, neither for the staining intensity
(Tab. 3.1, B) a significant correlation was observed. While not explained in the
literature so far, the nuclear localization of the S100-calgranulin staining may
hint for the retaining of the protein inside the cell, which may consequently halt
the extracellular function of S100-calgranulins as a pro-inflammatory media-
tor. However, when comparing the number of CD66b positive immune cells,
no correlation to the subcellular localization of S100-calgranulins was found
(Tab. 3.1, C—Score). In summary, the number of CD66b positive immune
cells was independent of Calgranulin staining in the tumor. However, when
comparing the number of calgranulin positive immune cells (D-Score) with
the number of stromal (D), as well as intratumoral (C) CD66b positive cells, a
significant positive correlation was found for all three calgranulins. This obser-
vation is shown in representative OPSCC tumor samples as depicted in Figure
19. The highest correlation was observed with the number of S100A8 positive
immune cells for both the number of stromal CD66b positive cells (39.2 %)
and intratumoral CD66b positive cells (45.3 %). The data suggest, consider-
ing that both markers are supposed to detect the same cell compartment and
therefore a higher overlap would have been expected, that not all activated
myeloid cells detected by CD66b staining are also positive for expression of
S100-calgranulins.
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Figure 3.3: Infiltration of S100-calgranulin positive and CD66b positive im-
mune cells in the stroma of human OPSCC samples. No/low numbers of S100a8
(A,E), S100a9 (B,F), S100A12 (C,G) and CD66b (D,H) positive infiltrating cells and
moderate/high number of S100a8 (I,M), S100a9 (J,N), S100A12 (K,O) and CD66b (L,P)
positive immune cells in tissue samples from human OPSCC patients. Counterstaining
was performed with Hematoxyline. The dotted line separates (S) stroma from (T) tumor
mass. Scale bar represents 50µm.

Taken together, these data confirm the presence of a strong inflammatory
immune cell infiltration in a subgroup of OPSCC patients as detected by four
different myeloid markers, S100A8, S100A9, S100A12 and CD66b. However,
the abundance of myeloid cell in the tumor or the tumor microenvironment
did not correlate with the prognosis or other clinicopathological parameters.
Importantly, also no significant correlation between Calgranulin expression in
tumor cells and the amount of infiltrating myeloid cells was found.
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3.3 The number of CD66b positive myeloid cells
in OPSCC samples does not correlate with
survival or histopathological parameters

As the compartment of CD66b positive immune cells does not completely over-
lap with the S100-calgranulin positive cells, the number of CD66b positive stro-
mal cells, as well as the number of CD66b positive cells within the tumor mass
were separately tested as prognostic markers in OPSCC. Clinico-pathological
patient parameters were compared to the relative amount of both stromal and
intratumoral CD66b positive inflammatory infiltrate. Patients were stratified
according to high, moderate and low numbers of CD66b positive immune cells.
HPV 16 RNA status was included to make sure, that possible differences in
inflammatory cell numbers are not simply due to active viral infection. How-
ever neither for patient parameters, nor for the clinical features a significant
correlation with respect to either stromal or intratumoral CD66b positive cells
was observed (Tab. 3.1). Neither tumor size and pathological grading, nor
nodal involvement or distant metastasis showed any correlation to the num-
ber of CD66b positive immune cells. The same was true when patients were
stratified for alcohol and tobacco habits as major risk factors. Most of the
patients showed a history of alcohol and tobacco consumption, however, even
though both alcohol and tobacco can induce local inflammation, patients were
distributed homogeneously regarding CD66b immune cell count. Finally, also
the presence of an active HPV virus infection did not show any correlation to
the number of CD66b positive cells in the tumor stroma or inside the tumor
mass.
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Table 3.2: Clinico-pathological characterization of the distribution of stromal
and intra- tumoral CD66b positive cells in OPSCC tumors.

CD66b positive cells

intratumoral2 (C) stromal3 (D)

total
none few many p none few many p

(N = 153)

Gender

Male 114 37 46 31 0,31† 41 37 36 0,15 †

Female 39 16 17 6 17 16 6

Age

≤ 57 74 24 30 20 0,72† 27 25 21 0,47†

> 57 79 29 33 17 31 28 21

Oropharynx region

Tonsils 73 24 30 19 0,49 † 28 27 18 0,57 †

Base of tongue 29 14 9 6 14 8 7

Other 51 15 24 12 16 18 17

Tumor size

T1-T2 65 17 29 19 0,36 † 20 25 20 0,47 †

T3-T4 86 35 33 18 37 28 21

Missing1 2 1 1 1 1

Nodal Metastasis

N0 33 8 14 11 0,27 † 9 12 12 0,28 †

N+ 118 44 48 26 48 41 29

Missing1 2 1 1 1 0 1

Distant Metastasis

M0 141 50 59 32 0,34# 55 50 36 0,38#

M1 7 1 2 4 1 2 4

Missing1 5 2 2 1 2 1 2

Grading

GI 7 1 6 0 0,1 † 2 2 3 0,27
†

GII 66 28 23 15 29 17 20

GIII 56 14 26 16 16 26 14

Missing1 24 10 8 6 11 8 5

Smoking

Never 16 7 5 4 0,47 † 7 7 2 0,12 †

Former 18 36 52 27 39 44 32

Current 115 7 6 5 9 2 7

Missing1 4 3 0 1 3 0 1

Alcohol consumption

Never 12 2 8 2 0,32 † 3 6 3 0,26
†

Former 18 6 8 4 10 3 5

Current 119 42 47 30 42 44 33

Missing1 4 3 0 1 3 0 1
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CD66b positive cells

intratumoral2 (C) stromal3 (D)

total
none few many p none few many p

(N = 153)

HPV 16 status

non HPV driven 116 36 50 30 0,17 † 40 41 35 0,19 †

HPV driven 32 13 13 6 14 12 6

Missing1 5 4 0 1 4 0 1
1: missing data, no information available; 2: CD66b positive cells within the tumor mass; 3: CD66b

positive cells in the tumor stroma #: Fisher’s exact test; †: Chi-square-Test

However neither for patient parameters, nor for the clinical features a signifi-
cant correlation with respect to either stromal or intratumoral CD66b positive
cells was observed (Tab. 3.2). Neither tumor size and pathological grading, nor
nodal involvement or distant metastasis showed any correlation to the num-
ber of CD66b positive immune cells. The same was true when patients were
stratified for alcohol and tobacco habits as major risk factors. Most of the
patients showed a history of alcohol and tobacco consumption, however, even
though both alcohol and tobacco can induce local inflammation, patients were
distributed homogeneously regarding CD66b immune cell count. Finally, also
the presence of an active HPV virus infection did not show any correlation to
the number of CD66b positive cells in the tumor stroma or inside the tumor
mass. Overall survival was calculated according to the stratification into pa-
tients with low, moderate and high numbers of CD66b positive stromal and
CD66b positive intratumoral immune cells. No significant impact of CD66b
positive stromal cells (Fig. 3.4, A) on patient outcome was observed . Also
the number of CD66b positive immune cells within the tumor mass did not
influence patient survival (Fig. 3.4 B). Accordingly, all groups revealed a simi-
lar clinical outcome concerning progression-free or overall survival in a Kaplan
Meyer analysis (Fig. 3.4C and D).

In summary, the data confirm the presence of an inflammatory tumor microen-
vironment in a subpopulation of OPSCC patients, but the relative amount of
tumor infiltrating or stromal CD66b-positive cells do not correlate with clinico-
pathological features or the clincial outcome.
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Figure 3.4: Overall and progression-free survival dependent on the number of
intratumoral (C - score) and stromal CD66b positive immune cells (D - Score).
Patients were stratified according to low (grey curve), high (red curve) and medium (black
curve) amount of CD66b positive stromal (A, C) and intratumoral (B, D) immune cells.
Overall survival (A, B) and progression free survival (C, D) were determined by Kaplan-
Meyer analysis. Lack of statistical significance (p > 0,05) was assessed by Log-Rank-Test.
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3.4 S100a8 and S100a9 are induced in the murine
oral mucosa upon 4-NQO treatment

While the analysis of the OPSCC patient cohort revealed no major correlation
between the strength of myeloid infiltration and malignant progression or clin-
ical outcome, these data did not exclude the possibility that signaling via the
S100-RAGE axis affects neoplastic transformation and early onset of mucosal
carcinogenesis in setting of genotoxic stress. Therefore, the role of both S100-
clagranulins and RAGE was addressed in the mouse model of 4-NQO induced
carcinogenesis. In order to confirm, that 4-NQO treatment induces S100a8 and
S100a9 expression in the mucosal epithelium of the tongue and esophagus, wild
type female mice were treated for 4 months with 4-NQO in the drinking water
followed by a 3 months observation period. 4-NQO and Polypropylenglycole
(PPG) treated control mice were sacrificed, macroscopically inspected to moni-
tor tumor development and tongue and esophagus tissue specimens were taken
for further analysis. Immunohistochemical (IHC) staining was performed on
tongue and esophageal formaldehyde-fixed and paraffin embedded (FFPE) tis-
sue sections to determine S100a8 and S100a9 protein expression. IHC staining
revealed strong S100a8 and S100a9 protein induction in tissue sections of the
tongue and the esophagus from 4-NQO treated animals, as compared to normal
mucosa or PPG treated controls (Fig. 3.5, A-D and Fig. 3.5, A and C). Inter-
estingly, a prominent nuclear staining for both calgranulins was observed in
keratinocytes of the tongue and the esophagus after 4-NQO treatment, which
was absent in basal cells and most prominent in the stratifying layers of the
mucosal epithelium (Fig. 3.5, C and D). Moreover, S100a8 and S100a9 posi-
tive cells were observed in the stromal tissue of the tongue and esophagus of
4-NQO treated mice. Given their histological appearance and the calgranulin
positivity, these cells most likely represent infiltrating immune cells (Fig. 3.5;
sec. 3.2, E-F). Notably, only a slight increase in S100a8 and S100a9 positive
immune cells was observed upon 4-NQO treatment, suggesting the absence of
a strong proinflammatory tumor microenvironmen. Thus hardly any S100a8
and S100a9 positive stromal cells were observed in the PPG treated controls.
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Figure 3.5: S100a8 and S100a9 expression in PPG and 4-NQO treated tongue.
No/low numbers of S100a8 (A,E), S100a9 (B,F), S100A12 (C,G) and CD66b (D,H) posi-
tive infiltrating cells and moderate/high number of S100a8 (I,M), S100a9 (J,N), S100A12
(K,O) and CD66b (L,P) positive immune cells in tissue samples from human OPSCC
patients. Counterstaining was performed with Hematoxyline. The dotted line separates
(S) stroma from (T) tumor mass. Scale bar represents 50µm.

3.5 RAGE signaling is dispensable for tumor
formation and multiplicity

To address the question whether extracellular S100a8 and S100a9 is impli-
cated in neoplastic transformation of mucosal keratinocytes by the activation
of RAGE-dependent signaling, control (wildtype and Rage+/-) and Rage-/-

mice were treated with 4-NQO. After 4 months of 4-NQO administration via
the drinking water, mice were observed for a maximum of another 3 months
and were subsequently sacrificed to analyze tumor development. Both groups
showed a similar weight loss during and following 4-NQO administration (
as compared to PPG treated control animals Fig. 3.6, A), which was most
likely due to reduced food uptake. After an average of 25 weeks the 4-NQO
treated mice had to be sacrificed due to massive weight loss whereas the PPG
treated control group was kept for the whole observation period. In con-
trast to the 4-NQO treatment group, Rage-/- mice in the PPG treated group
showed a slightly increased body weight as compared to wild type and Rage+/-
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mice (Fig. 3.6, B).

Figure 3.6: Weight loss of wild type, Rage+/- and Rage-/- mice during and
after 4-NQO administration . (A). The filled symbols represent the weight of 4-NQO
treated cohorts at the indicated time points, while the empty symbols show weights of
the PPG treated mice. Macroscopic inspection of the animals after sacrificing shows
decreased body weight compared to the PPG treated animals in the indicated genotypes.

Total RNA was prepared from the tongue of PPG and 4-NQO treated mice
and semi-quantitative RT-PCR analysis confirmed RAGE expression only in
control animals, which was not affected by 4-NQO administration (Fig. 3.7, A).
The presence of neoplastic lesions was determined by macroscopic inspection
of the upper aerodigestive tract. In line with previous publications [194] al-
most all 4-NQO treated control mice developed papillary lesions on the tongue
and/or the esophagus, which were visible by eye (≥ 0.5 mm). Tumor incidence
on the tongue was 90 % in control mice and 70 % in Rage-/- animals , whereas
the incidence of esophageal lesions was 75 % in control and 90 % in Rage-/-

mice (Fig. 3.8, B). Only few lesions were observed on the soft palate and the
gingiva (data not shown). The median multiplicity of lesions at the tongue
(size between 1 3 mm in diameter) was two per animal, whereas the median
multiplicity of lesions at the esophagus (size between 0.5 1 mm in diameter)
was 2 3 per animal (Fig. 3.7, D and Fig. 3.8 C). However, no significant differ-
ence in tumor multiplicity between 4-NQO treated control and Rage-/- animals
was observed (Fig. 3.7, C; D and Fig. 3.8, C; D), suggesting that RAGE ex-
pression is dispensable for neoplastic transformation of mucosal keratinocytes
in a mouse tumor model that is driven by genotoxic stress.
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Figure 3.7: 4-NQO-induced tumorigenesis in the tongue of control and Rage-/-

mice Rage expression was determined by semi-quantitative RT-PCR with cDNA from
whole tongue (A). Detection of the Hprt amplicon served as control for cDNA quantity
and quality. Macroscopic inspection of the tongue (B) revealed no major difference in
tumor incidence (90 % in controls and 70 % in Rage-/-) (C) and no significant difference
in the multiplicity (D) between control and Rage-/- mice. n indicates the number of
of animals per group; lack of statistical significance (p > 0.05) was determined with
Wilcoxon signed-rank test.

Figure 3.8: 4-NQO-induced tumorigenesis in the esophagus of control and
Rage-/- mice. Macroscopic inspection of the esophagus (A) revealed similar tumor
incidence (B) and no significant difference in tumormultiplicity (C) between control and
Rage-/- mice. n indicates the number of animals per group; the lack of statistical signif-
icance (p > 0.05) was determined with Wilcoxon signed-rank test.
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3.6 Histology and proliferation of the mucosal
epithelia upon 4-NQO treatment

In the past, impaired epidermal hyperplasia and accelerated differentiation
was found in papilloma of Rage-/- mice as compared to control animals in a
chemically induced mouse model of skin carcinogenesis (Gebhardt et al., 2008).
Therefore, histology and tissue architecture was addressed on tissue sections
of 4-NQO treated Rage-/- and control mice. However, histological inspection
of H&E stained tongue and esophageal tissue sections derived from 4-NQO
treated control and Rage-/- mice revealed a similar grade of hyperplasia in
both groups as determined by epithelia thickness (Fig. 3.7 A-D, Fig. 3.8 A-D).
Moreover, the histological architecture of 4-NQO induced hyperplastic epithe-
lial and dysplastic lesions in both tongue and esophageal tissue was comparable
between control and Rage deficient animals (Fig. 3.7, E-F, Fig. 3.8, E-F). The
neoplastic lesions represented papillary lesions and no invasive squamous cell
carcinoma was observed in both groups.

Next, proliferation of mucosal keratinocytes in hyperplastic tissue and tumor
cells in neoplastic lesions was determined by a BrdU incorporation assay. As
expected, an increase of proliferative mucosal keratinocytes was detected in the
basal layer in 4-NQO treated tongue and esophageal tissues as compared to
PPG-treated controls (Fig. 3.9, G-L, Fig. 3.8, G-L). However, no obvious dif-
ference in cell proliferation was observed in 4-NQO treated control and Rage-/-

mice. Furthermore, the number of proliferative tumor cells in the papillary
lesions was similar in both groups (Fig. 3.9, I-L; Fig. 3.8, I-L).
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Figure 3.9: Histological staining and determination of keratinocyte prolifera-
tion in the tongue. Representative pictures for H&E staining of PPG treated normal
tongue (A, B) and 4-NQO induced hyperplastic (E, D) and dysplastic (E, F) tongue ep-
ithelium. Keratinocyte proliferation was detected by immunohistochemical staining for
BrdU incorporation (brown signal), revealing induced proliferation in 4-NQO treated hy-
perlastic (I, J) and dysplastic (K, L) tongue compared to PPG treated controls (G, H).
Counterstaining with hematoxyline. The scale bar represents 50 µm.
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Figure 3.10: Histological staining and determination of keratinocyte prolifer-
ation in the esophagus. Representative picture form H&E staining of PPG treated
normal esophagus (A, B) and hyperplastic (E, D) as well as dysplastic (E, F) epithe-
lium. Keratinocyte proliferation was determined by immunohistochemical staining for
BrdU incorporation (brown signal) in PPG treated controls (G, H) and 4-NQO treated
hyperplastic (I, J) and dysplastic (K, L) esophageal epithelial cells. Counterstaining with
hematoxyline. The scale bar represents 50 µm.
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3.7 Impact of RAGE expression on the number of
stromal immune cells and expression of
pro-inflammatory mediators

Several studies confirmed an important role of RAGE signaling in the recruit-
ment of inflammatory immune cells, specifically in mouse models of inflammation-
associated carcinogenesis [60, 201, 111, 175]. Hence, cryosections of the tongue
and the esophagus from PPG or 4-NQO treated control and Rage-/- mice were
stained for myeloperoxidase (MPO), an established marker for activated mono-
cytes and myeloid cells [149, 123], to monitor the amount of infiltrating immune
cells within the stromal tissue. Notably, only a mild increase in the overall
number of MPO-positive immune cells in the stroma of 4-NQO induced tu-
mors as compared to PPG treated controls was observed and no difference
between control and Rage-/- animals (Fig. 3.11, A; B) was found. RAGE lig-
ands S100a8 and S100a9 are well-known proinflammatory mediators that are
expressed in myeloid cells of the tumor stroma and induced in keratinocytes
under conditions of tissue activation and during tumorigenesis [59, 60, 141].
As shown before (Fig. 3.5) both S100a8 and S100a9 are induced upon 4-NQO
treatment in wild type mice. Interestingly, IHC staining of tongue and esoph-
agus tissue sections from Rage deficient and control animals revealed similar
expression of the pro-inflammatory mediators S100a9 and S100a8 (shown only
for S100a9) in mucosal keratinocytes of hyperplastic tissue and tumor cells
of neoplastic lesions upon 4-NQO treatment (Fig. 3.11, C-F and Fig. 3.11, A-
F). In line with the data from the MPO staining, comparable amounts of
S100a9-positive stromal immune cells (not shown for S100a8) (Fig. 3.11, C-
F and Fig. 3.11, C-F) were observed in the tongue and esophagus of 4-NQO
treated control and Rage-/- mice.
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Figure 3.11: Immunohistochemical staining for Myeloperoxidase-positive im-
mune cells and Calgranulin expression. Representative pictures for immunohis-
tochemical staining for Myeloperoxidase (MPO, red signal) shows minor but comparable
amounts of infiltrating inflammatory cells in the stroma of 4-NQO treated control (A)
and Rage-/- (B) mice. Representative picture for immunohistochemical staining of S100a9
expression (brown signal) after 4-NQO shows induced expression in hyperplastic and dys-
plastic tongues in both wild type (C, E) as well as Rage-/- ( mice (D, F). Counterstaining
with hematoxyline. Scale bar represents 50 µm.
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Figure 3.12: S100a9 expression in PPG and 4-NQO treated esophagus of con-
trol and Rage-/- mice. Representative pictures of immunohistochemical staining for
S100a9 (brown signal) shows induced expression in hyperplastic and dysplastic esophageal
tissue in both wild type ( C, D) as well as Rage-/- mice (E, F) as compared to PPG treated
tissue(A, B). Counterstaining with hematoxyline. The black bar represents 50µm.

3.8 Expression of the alternative S100a8/S100a9
receptor Tlr4 in 4-NQO induced tumors

Independent of the presence of RAGE, its ligands S100a8 and S100a9 were
induced upon 4-NQO treatment in this model (Fig. 3.11, Fig. 3.12). However,
RAGE is not the only receptor that is causally linked to the extracellular
function of the S100a8 and S100a9. Thus, the question was addressed whether
alternative receptors for calgranulins might compensate for the lack of RAGE
in the neoplastic transformation of mucosal keratinocytes during 4-NQO in-
duced tumorigenesis. One well-known receptor for S100a8 and S100a9 is the
Toll-like receptor 4 (Tlr4), which has been shown to promote tumor growth
by S100a9 [44]. Semi-quantitative RT-PCR analysis demonstrated induced
Tlr4 transcript levels in 4-NQO treated tongue in both genotypes as com-
pared to tongue tissue of PPG treated controls (Fig. 3.13, A). 4-NQO induced
Tlr4 expression was confirmed on protein level by IHC staining of tongue
tissue sections from PPG and 4-NQO treated control and Rage-/- animals
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(Fig. 3.13, B-E). While no staining for Tlr4 was observed in the PPG controls,
4-NQOtreated tongues showed a prominent staining for Tlr4 protein in mu-
cosal keratinocytes, which was independent of the genotype, suggesting that
Tlr4 signaling may compensate for the lack of RAGE in the mouse model of
4-NQO induced carcinogenesis.

Figure 3.13: 4-NQO induced Tlr4 expression in the tongue of control and
Rage-/- mice. Tlr4 transcript levels were determined by semi-quantitative RT-PCR
with cDNA from whole tongue in three different animals per group (A). Detection of the
Hprt amplicon served as control for cDNA quality and quantity. Representative pictures
of an immunohistochemical staining for Tlr4 protein (brown signal). Comparison between
PPG treated tongue (B, C) and 4-NQO treated tongue (D, E) revealed an increased stain-
ing for Tlr4 protein after 4-NQO treatment. Counterstaining with hematoxyline. Scale
bar represents 50 µm.
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3.9 S100a9 deficient mice show ablation of
S100a8 expression in myeloid cells but not
epidermal keratinocytes

S100a8 and S100a9 were shown to be markedly induced upon 4-NQO treat-
ment, independent of the expression of RAGE. Possibly alternative receptors
like TLR4 (sec. 3.8) or an intracellular, RAGE-independent function may ac-
count for this observation. Thus, I next focused on the role of the S100-
calgranulins in the mouse model of 4-NQO induced tumorigenesis. As a
S100a8 knockout is embryonically lethal, S100a9 knockout (S100a9-/-) mice
were used for further analysis. S100a9-/- mice have been postulated to rep-
resent a functional knockout of calgranulins, as S100a8 was described to be
destabilized upon S100a9 loss [82]. S100a9-/- mice as well as heterozygous
controls (S100a9+/-) were treated with 4-NQO over four months with an sub-
sequent observation period on normal drinking water for up to 3 months. The
PPG treated animals were sacrificed at the end of the maximal observation
time while the 4-NQO treated mice were sacrificed at signs of massive weight
loss or general aggravation of the health status. Tissues were taken and fur-
ther processed for freezing and paraffin embedding. First S100a8 and S100a9
expression was analyzed in FFPE tissue sections of the tongue by immunohis-
tochemical staining. As expected, S100a9 staining was absent in the tongue
tissue of S100a9-/- mice (Fig. 3.14 D), and in line with the data from the wild
type and Rage-/- cohort (3.1 and 3.3), tissue sections from tongues of 4-NQO
treated controls showed strong S100a9 staining for mucosal keratinocytes as
well as stromal immune cells (Fig. 3.14 A+B). No S100a8 positive immune
cell in stromal tongue tissue of 4-NQO treated S100a9-/- mice was detected
(Fig. 3.14 C), raising the question as to whether S100a9-/- animals exhibited
impaired immune cell activation and infiltration of myeloid cells upon 4-NQO
treatment. In order to proof this assumption, cryosections from 4-NQO treated
tongue tissue were stained for myeloperoxydase (MPO) a marker for myeloid
cells by immunohistochemistry (Fig. 3.14 E and F). MPO positive cells were
detected in samples of both 4-NQO treated control as well as S100a9-/- ani-
mals. The overall number of MPO positive cells was (as already seen in the
previous experiments with 4-NQO treated control and Rage-/- mice; Fig. 3.11
) rather low, supporting the lack of a strong inflammatory reaction.
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Figure 3.14: Calgranulin expression and stromal immune cell infiltration in
S100a9-/- mice upon 4-NQO treatment. Representative picture of IHC staining
for S100a8 and S100a9 proteins showing prominent expression in mucosal keratinocytes as
well as stromal immune cells upon 4-NQO treatment in control mice (A, C). No expression
of S100a9 is detected in tongue tissue from 4-NQO treated S100a9-/- mice, while a weak
staining for S100a8 is detected in mucosal keratinocytes (B, D). Stromal immune cells
positive for either S100a8 or S100a9 are not found in 4-NQO treated tissue of S100a9-
/- mice, even though myeloperoxidase (MPO) staining showed MPO positive stromal
immune cells in both control and S100a9-/- animals (E,F). Scale bar represents 50 µm.

Interestingly, S100a9-/- mice show a positive staining for S1008 protein in
mucosal keratinocytes of 4-NQO treated tongue (Fig. 3.14 C), which was less
prominent and more diffuse as compared to the controls (Fig. 3.14 C and D).

In summary, in consistence to preciously described data [82], a lack of S100a8
protein expression in S100a9-/- myeloid cells was observed, yet mucosal ker-
atinocytes still exhibited residual S100a8 protein levels upon 4-NQO treat-
ment.
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3.10 Impact of S100a9 deficiency on 4-NQO
induced tumorigenesis

In order to address the question whether lack of S100a9 has an impact on
tumor incidence and/or tumormultiplicity, S100a9-/- deficient mice as well as
S100a9+/- controls were treated with 4-NQO as described previously. While no
obvious difference was measured between PPG-treated control and S100a9-/-

mice concerning weight, latter animals responded to the 4-NQO treatment
with a more severe weight loss as compared to the controls (Fig. 3.15). Con-
sequently, 4-NQOtreated mice were sacrificed due to weight loss already 21
weeks after initiation of the treatment. Two animals in the 4-NQO treated co-
hort (one out of ten from each group) were found dead in the cage during the
observation period and were excluded from the statistical analysis. All PPG
treated controls survived until the end of the maximal observation period and
were sacrificed after 3 months of observation.

Figure 3.15: Weight loss of S100a9-/-mice and S100a9+/- controls upon
4-NQO treatment. The total weight of PPG and 4-NQO treated S100a9-/- and
S100a9+/- mice was determined at the indicated time points upon initiation of 4-NQO
treatment and the quantitative values are shown in the left panel as mean ± standard
deviation. The grey dashed line indicates the endpoint of 4-NQO administration. The
experiment was terminated at 21 weeks due to massive weight loss due to 4-NQO treat-
ment (right panel).
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Inspection of the upper aerodigestive tract revealed macroscopically visible
lesions of the tongue and esophagus (Fig. 3.16, A; B). Tumor size was be-
tween 0.5 - 2mm for the tongue and 0.5 - 1mm for the esophagus, and as
expected 4-NQO treated controls showed a high tumor incidence with 89% in
the tongue and 78% in the esophagus. No difference was found for the tumor
incidence of the tongue between 4-NQO treated control and S100a9-/- mice
(89%), but latter animals developed an even higher tumor incidence in the
esophagus (100%) (Fig. 3.16, C). However, both genotypes developed a me-
dian number of two macroscopically visible lesions at the tongue and two to
three tumors at the esophagus without a significant difference. In summary,
these data demonstrate no major difference in tumor incidence and multiplic-
ity between S100a9-/- and control animals and suggest that S100a9 expression
is dispensable for 4-NQO induced tumorigenesis.

Figure 3.16: 4-NQO induced oral and esophageal carcinogenesis in control and
S100a9-/- mice. Macroscopic inspection of tongues (A) and esophagi (B)
revealed a comparable tumorigenesis upon 4-NQO treatment, and no major
difference in tumor incidence (C) and tumor multiplicity (D) was found
between control and S100a9-/- mice.
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3.11 Histology, proliferation and differentiation of
4-NQO treated mucosal tissues from S100a9
deficient and control mice

S100a8 and S100a9 have previously been linked to cutaneous keratinocyte
differentiation, as the functional dimer is massively upregulated in psoriatic
skin, driving hyperproliferation and abnormal differentiation [14]. Moreover,
S100A8/A9 has been shown to promote differentiation of HaCaT keratinocytes
in vitro [209].

Figure 3.17: 4-NQO induced oral and esophageal carcinogenesis in control and
S100a9-/- mice. Histological staining of tongue specimens derived from 4-
NQO treated control and S100a9-/- mice. Representative pictures for H&E
staining of tongue tissue sections from PPG treated normal tongue (A, B)
and 4-NQO induced hyperplastic (E, D) and dysplastic (E, F) tongue ep-
ithelium. Scale bar represents 50 µm. Macroscopic inspection of tongues
(A) and esophagi (B) revealed a comparable tumorigenesis upon 4-NQO
treatment, and no major difference in tumor incidence (C) and tumor mul-
tiplicity (D) was found between control and S100a9-/- mice.
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Thus, the histological architecture of tongue tissue derived from PPG and
4-NQO treated S100a9-/- mice and heterozygous controls was compared on
FFPE tissue sections after staining with hematoxyline and eosine (H&E). For
both genotypes, prominent hyperplasia of mucosal epithalia and dysplasic le-
sion were observed following 4-NQO treatment (Fig. 3.17 A-D), and no major
difference in the histological architecture of the tissues were visible between
4-NQO treated S100a9-/- and control mice (Fig. 3.17 E-F). In line with the
data of the Rage cohort no invasive squamous cell carcinoma was observed in
both groups. Next, cell proliferation of keratinocytes in hyperplastic mucosal
epithelia and tumor cells of neoplastic lesion was determined by IHC detection
of BrdU incorporation. Both control and S100a9-/- animals showed an increase
of BrdU positive cells upon 4-NQO treatment in hyperplastic (Fig. 3.18 C,D)
and dysplastic (Fig. 3.18 E,F) tongue tissue as compared to PPG treated con-
trols. However, there was no significant difference between the two genotypes.
In summary neither proliferation nor tissue architecture were markedly altered
in 4-NQO treated S100a9-/- mice as compared to the S100a9+/- controls.

Figure 3.18: Cell proliferation in tissue sections of the tongue uopn 4-NQO
treatment.
Cell proliferation was detected by immunohistochemical staining for BrdU incorporation
(brown signal) and revealed increased amounts of BrdU positive cells in 4-NQO treated
hyperlastic (I, J) and dysplastic (K, L) tongue as compared to PPG treated controls (G,
H). Counterstaining was performed with hematoxyline. Scale bar represents 50 µm.
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Recently, a correlation between S100A8 and S100A9 expression and the dif-
ferentiation grade of tumors were demonstrated in human HNSCC [161], sug-
gesting a causal link between calgranulin expression and aberrant differentia-
tion in settings of mucosal tumorigenesis. To proof the assumption, that lack
of S100a9 expression is associated with aberrant differentiation, FFPE tissue
sections from tongue specimens of 4-NQO treated S100a9-/- and control mice
were stained by immunohistochemistry for early and intermediate epithelial
differentiation markers cytokeration 14 (K14) and cyteokeration 13 (K13) and
the late differentiation marker Loricrin. Cytokeratin 14 is a well established
marker for basal keratinocytes with proliferative activity, while cytokeratin 13
is preferentially expressed in the suprabasal layer of non-stratifying epithelia.

Figure 3.19: Cytokeratin 14 expression in PPG and 4-NQO treated tongue of
control and S100a9-/- mice.
Cytokeratin 14 expression in PPG and 4-NQO treated tongue of control and S100a9-/-

mice Keratin 14 is expressed in the basal layer of control and S100a9 deficient tongue
epithelia (A,B). After 4-NQO treatment, basal and parabasal expression was detected
(C,D). Counterstaining was performed with hematoxyline. Scale bar represents 50 µm.

Cytokeratin 14 expression was detected in the basal layer of the PPG treated
tongue epithelium of both genotypes (Fig. 3.19, A;B), and in line with the
increase of BrdU positive cells (Fig. 3.18, C;D) showed a broader pattern in
basal as well as parabasal keratinocytes after 4-NQO treatment (Fig. 3.19,
C;D). However, no obvious difference in staining intensity or the amount of
positive cells was found between S100a9-/- and control mice. Cytokeratin 13
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Figure 3.20: Expression of intermediate and late keratinocyte differentiation
makers in the tongue of 4-NQO treated control and S100a9-/- animals.
(Immunofluorescense staining was performed to detect Cytokeration 13 (K13) (A,B)

and Loricrin (C,D) protein expression. Epidermal (E) and stromal compartment (S) are
indicated by dashed lines. To compare layering of the two differentiation markers, pictures
were merged (E,F); nuclei were visualized with Hoechst H33342 staining (blue signal),
K13 (red signal), Loricrin (green signal). The scale bar represents 50 µm.

expression (Fig. 3.20; red signal) was detected by immunofluoreszence ananly-
sis in the suprabasal and intermediate layers of the tongue epithelium. Again,
tissue sections of 4-NQO treated S100a9-/- and control tongues revealed a sim-
ilar staining pattern. Finally, the expression of Loricrin, a well known marker
for late keratinocyte differentiation was analyzed, which also exhibited a com-
parable staining pattern on tissue sections from 4-NQO treated S100a9-/- and
control mice. (Fig. 3.20; green signal) Altogether, no significant alteration in
keratinocyte proliferation and epithelial differentiation was found for S100a9-/-

mice upon 4-NQO treatment as compared to controls.
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4 Discussion

4.1 Calgranulin expression in tumor cells does not
coincide with accelerated myeloid cell
infiltration in HNSCC

The current concept of the constitution of S100-RAGE signaling contributes
in epithelial malignancy is mainly based on preclinical model systems in which
RAGE acts as a signaling modulator in the paracrine communication between
cancer and immune cells, thereby promoting the establishment and mainte-
nance of a proinflammatory tumor microenvironment (Fig. 1.2). Accordingly,
S100A8/A9, which is released by infiltrating immune cells as well as tumor
cells, acts via RAGE and thus, while inducing both the expression of the re-
ceptor as well as their own expression via NF-κB, fuel this vicious cycle of
cancer related inflammation [60, 201, 158, 141].

The analysis of tumor sections from OPSCC patients, however, indicates that
in contrary to this model, infiltration of myeloid cells does not necessarily oc-
cur in parallel to S100-calgranulin expression in cancer cells. Indeed, distinct
subgroups of patients exist with either strong S100-calgranulin expression in
tumor cells but no or only minor amounts of S100-calgranulin positive immune
cells in the tumor microenvironment, or vice versa. Consequently, no signifi-
cant overlap linking calgranulin expression in the tumor and inflammatory cells
was detected (unpublished data, S. Funk). This finding was further supported
by the detection of CD66b-positive immune cells, representing activated granu-
locytes of the tumor stroma and inside the tumor mass (Fig. 3.2 and Tab. 3.2).
Although, a significantly correlation was observed with the number of cal-
granulin positive immune cells, CD66b-positive granulocytes did not correlate
with expression of S100A8, S100A9 or S100A12 in tumor cells, respectively.
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Finally, healthy human mucosa shows expression of all three calgranulins in
suprabasal as well as differentiated keratinocytes and no staining for either ac-
tivated CD66b positive granulocytes or S100A8, S100A9 or S100A12 immune
cells arguing for an intracellular, possibly inflammation independent mode of
action of 100-calgranulins in tissue homeostasis. In line with recent publica-
tions [48, 22], this study confirms the presence of a strong tumor infiltration
by myeloid cells in numerous HNSCC patients. However, while the amount
of tumor infiltrating myeloid cells have been shown to be associated with the
clinical outcome of HNSCC patients [75, 204], no significant correlation with
clinical and histopathological features or overall survival could be observed.
This may in part be due to the complex role inflammatory cells in general and
more specific myeloid cells in cancer [66, 56]. Thus, while this study describes
two distinct groups of patients (high vs. low levels of myeloid cell infiltration),
besides the quantity also the quality of inflammatory cells, which was not cov-
ered by the present analysis, critically determines the course of disease. A bias
simply caused by the immunemodulatory effect of an active HPV infection
in OPSCC seems unlikely, as for S100-calgranulin as well as CD66b positive
immune cells no association with HPV infection was observed in this cohort
(Tab. 3.2; unpublished Data S. Funk) .

Approximately half of the tumors in is cohort originated from the tonsillar
epithelium, 19 % from the base of tongue and 33 % from other anatomical
sites within the orophaynx region Tab. 3.2. As much as heterogeneity between
different HNSCC patients seems an obvious explanation different behavior and
outcome [187], intratumoral heterogeneity of HNSCC tumors might well be
an explanation for the lack of statistical significance to some extend [200].
However, by comprising several punches from different areas of one tumor per
patient on the tissue microarray, intratumoral heterogeneity with respect to the
measured markers could be reduced to a minimal amount. Relative expression
levels were scored by three independent observers. For statistical analyses
the mean expression score per patient was calculated and tumors with a high
divergence between the different spots were excluded from further analysis.

Supporting the observation in human patients, mice treated with 4-NQO
showed an induction of S100a8 and S100a9 protein expression in mucosal ep-
ithelial and tumor cells without major signs of inflammation (Fig. 3.11). This
is observed long after the acute treatment phase with the carcinogen, arguing
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for an induction through genotoxic stress. These findings suggest on one hand,
that induction and maintenance of high S100A8 and S100A9 expression oc-
curs after genotoxic stress in the absence of further stimulation of an immune
reaction, and on the other hand that their expression in keratinocytes does
not necessarily result in the establishment of a proinflammatory microenviron-
ment. In this context, S100a8 and S100a9 were found to be significantly up-
regulated upon UV irradiation in epidermal keratinocytes in response to ROS
production, however lacking major inflammatory cell recruitment [67, 130].
Thus S100calgranulin expression might simply be an indicator of stress and
epidermal regeneration without necessarily resulting in the induction of an
inflammatory milieu.

4.2 S100a8 and S100a9 are induced in 4-NQO
driven oral carcinogenesis independent of
RAGE

S100-RAGE signaling was identified as a central hub in different inflammation
associated cancer models, driving inflammatory reactions and cancer forma-
tion. In this context, RAGE deficiency effectively protected from tumor for-
mation in an inflammation driven mouse cancer model of the backskin and
in colitis associated colon carcinogenesis [60, 201]. However, little is known
so far concerning RAGE function in the absence of a strong inflammatory
stimulus. Therefore, Rage-/- mice in the 4-NQO model of genotoxic stress
driven oral carcinogenesis provide an elegant tool to have a more functional
view on RAGE in the onset of oral carcinogenesis in the absence of an actively
driving inflammation in vivo. 4-NQO treatment induced expression of S100a8
and S1009a proteins in mucosal keratinocytes of both Rage-/- mice and con-
trol animals (Fig. 3.5, Fig. 3.11 and Fig. 3.12), interestingly with a prominent
nuclear staining. Although damage signals induced by 4-NQO may provide
an inflammatory stimulus, the 4-NQO treated mice show only mild inflamma-
tory infiltration as shown by MPO positive stomal cells (Fig. 3.11) and S100a8
and S100a9 positive immune cells (Fig. 3.5 and Fig. 3.12) in both Rage-/- as
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well as control animals. S100-calgranulin secretion in the oral mucosa may be
regulated similar to other DAMP signaling molecules like HMGB1, where the
effector molecule is retained in the nucleus upon apoptotic cell death, yet gets
released to actively induce damage signaling upon severe damage and necrosis
and subsequently triggers inflammation [170, 175]. However, the tissue was
analyzed long after the 4-NQO treatment phase. Thus, while acute inflamma-
tion caused by 4-NQO is described, when the carcinogen is withdrawn, no mas-
sive signs of inflammation are expected [76]. S100-calgranulin induction was
independent of RAGE expression, in contrast, S100a8 and S100a9 transcript
levels were decreased in epidermal keratinocytes of TPA treated backskin from
Rage-/- mice as compared to wild type controls [60]. The latter however relies
on the secretion of S100a8/a9 into the tumor microenvironment to efficiently
mediate the recruitment of inflammatory immune cells and mediate signaling
via RAGE. While 4-NQO efficiently induces S100a8 and S100a9 expression in
mucosal keratinocytes it is unlikely that this induction also results in a release
of S100a8/a9 and thus enables their extracellular function as RAGE ligands.
Possibly, genotoxic stress induced by 4-NQO retains S100a8 and S100a9 in
mucosal keratinocytes, while an active inflammatory stimulus leads to the re-
lease of the dimer and subsequently the establishment of a RAGE modulated
inflammatory feed forward loop. It may therefore well be that the two models
represent two distinct modes of action of S100-Calgranulins in cancer.

4.3 RAGE function in cancer - a matter of
context?

Looking at the S100-RAGE axis in the context of genotoxic stress on one hand
and inflammation driven carcinogenesis on the other, it becomes clear that
the current model of S100-calgranulins in cancer as damage mediators and
RAGE ligands is not complete. While important for the establishment and
maintenance of inflammatory processes and tumor promotion in inflammation
associated cancer, the RAGE mediated inflammatory feed forward loop appar-
ently does not play a major role in settings of genotoxic stress or cell damage
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without an additional inflammatory stimulus (Fig. 4.1).

Figure 4.1: Model for the context-depentend role of RAGE in cancers.
RAGE functions as a modulator in inflammation associated cancer, translating extra-
cellular damage signals into a cellular response fueling inflammation (left panel). In
cancers driven mainly by genotoxic stress without a distinct inflammatory milieu and in
the absence of extracellular DAMPs, RAGE signaling via inflammatory mediators like
S100a8/a9 is not playing a major role.

Induction of S100-calgranulin expression in epithelial cells is regarded a sign
of stress which consequently leads to the establishment to a RAGE mediated
inflammatory feed forward cycle promoting cancer. While this is the case
in DBMA/TPA treated backskin, apparently 4-NQO induced damage in the
oral mucosa represents a fundamentally different process. While epithelial
expression of calgranulins in mucosal keratinocytes is observed regardless of
RAGE expression, this expression does not trigger the recruitment of myeloid
cells at the site of damage. Therefore, RAGE may not be required as a receptor
for S100a8/a9, explaining the lack of a phenotypic difference regarding S100-
calgranulin expression in Rage-/- mice as compared to wild type controls.
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4.4 RAGE is dispensable in the onset of oral
carcinogenesis in a 4-NQO driven mouse
tumor model

Regarding tumor formation, expression of RAGE was dispensable for tumor in-
cidence and multiplicity in the 4-NQO model of mucosal carcinogenesis. While
RAGE deficiency was shown to protect from tumor formation in other mouse
cancer models [201, 60, 39], in the present setup the loss of RAGE did not seem
to influence the onset of oral carcinogenesis. 4-NQO induced lesions develop
from Ras transformed cells after the end of the actual carcinogen treatment
[76] and thus more relate to protocols of sequential DMBA treatment, which
causes HA-ras mutations and finally cancer without an additional inflamma-
tory promoter [38]. RAGE deficient mice, however, were never subjected to a
sequential DMBA protocol, so a direct comparison is not possible. The em-
ployment of Rage-/- mice in a sequential DMBA model to more closely mimic
4-NQO carcinogenesis of the oral mucosa would therefore facilitate a direct
comparison between Rage-/- mice in backskin and oral carcinogenesis, expect-
ing again to see RAGE independent formation of tumors. In line with this,
Rage-/- mice develop less and smaller tumors in a mouse model of inflamma-
tion associated hepatocellular carcinogenesis, while no significant difference
was found in a mouse model of diethylnitrosamine (DEN) induced liver can-
cer, which is characterized by tissue damage and compensatory proliferation,
but only minor infiltration of inflammatory immune cells (unpublished data,
Tobias Pusterla and Peter Angel).
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4.5 RAGE independent intracellular function of
calgranulins

S100a8/a9 are mainly described in the context of damage and inflammation
and in fact used as serum markers for pathologic inflammatory conditions
([54, 182]. However, far less is known about their intracellular physiologic and
pathophysiological function in epithelial and tumor cells. It is commonly as-
sumed, that S100a8/a9, while constitutively expressed in myeloid cells, their
expression is induced upon stress signals in other cell types [182]. However,
in the normal human mucosa, S100a8, S100a9 and S100A12 are markedly ex-
pressed in suprabasal and differentiating keratinocytes (unpublished data, S.
Funk) suggesting a potential role for calgranulins in normal mucosal home-
ostasis. This is in line with the observation that S100-calgranulin expression
is lost during malignant progression in HNSCC [161]. Normal mucosa used in
this study originated from uvula tissue of patients undergoing surgery for sleep
apnea, however data concerning alcohol and tobacco consumption habits were
not available, leaving the possibility that S100-calgranulin expression in the
non-transformed control mucosa may result from damage through alcohol and
tobacco or more generally tissue irritation. Independent of the induction of
extracellular signals via RAGE, stress and DNA damage triggers NF-κB activ-
ity, which subsequently can induce the expression of S100a8/a9 [141]. NF-κB
activation following DNA damage by tobacco smoke in HNSCC patients fur-
thermore confirms the relevance of this pathway [124]. Moreover, overexpres-
sion of S100A8 and S100A9 in HaCaT keratinocytes was accompanied by an
increase of NF-κB activation [209]. Importantly, Voss and colleagues demon-
strated an increase in NF-κB p65 phosphorylation that was independent of
the release of S100A8/A9 and its extracellular function. This could explain
the paradoxical observation of induced expression of S100a8/a9 in mucosal
keratinocytes without simultaneous inflammation and serves as yet another
hint that in mucosal keratinocytes S100A8/A9 exert important intracellular
functions, contrasting the extracellular role of the complex as a inducer of cell
growth in keratinocytes in collaboration with inflammatory cytokines [143].
Several publications describe the intracellular role of S100a8 and S100a9 as
inducers of cellular reactive oxygen species (ROS) [158, 9]. The connection
of S100A8/A9 with reactive oxygen species and more detailed its impact on
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cancer is however not completely understood. While for liver carcinogenesis, a
S100A8/A9 mediated increase in ROS was detected, accompanied by enhanced
cell survival, proposing a role of S100A8/A9 in ROS-dependent promotion of
malignant progression [141], Ghavami and colleagues showed, that S100A8/A9
can induce apoptosis in colon cancer cells in vitro in a ROS dependent manner
[61]. Furthermore, Also, 4-NQO itself may indirectly interfere with the role of
S100A8/A9 in intracellular ROS production as the carcinogen was described
to generate reactive oxygen species [153, 8]. Moreover, prominent nuclear
staining of calgranulins was visible in human HNSCC Patients [161] as well
as after 4-NQO treatment in murine oral mucosa, which further argues for an
intracellular mode of action. So far, little is known about the regulation and
function of nuclear S100A8 and S100A9. Even though in prostate cancer cells,
S100A8 and S100A9 were previously described to be located in the nucleus
and nuclear localization in immunohistochemical staining is indeed observed
frequently [79, 203]. In addition, for several other members of the S100 protein
family like S100A1, S100A2, S100A4, S100A11 and S100A13, nuclear localiza-
tion has been shown [55, 193, 86, 165]. In the case of S100A4, while it is known
to be involved in the regulation of cell cycle progression and differentiation,
nuclear localization was linked to metastatic potential in cancer and more-
over was shown to mediate invasion and metastasis in esophageal squamous
cell carcinoma [53, 214] Another yet unsolved question is the mechanism, by
which S100A8 and S100a9 enter the nucleus. Neither protein has a nuclear
localization signal, leaving space for speculation on possible shuttling partners
and import/export mechanisms.
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4.6 Alternative receptors may compensate for the
lack of RAGE in 4-NQO treated mice

The RAGE independent induction of S100a8/a9 without simultaneous stromal
inflammation upon 4-NQO treatment may be simply attributed to the lack of
major levels of secreted S100a8/a9. On the pe hand, it could as well hint
to extracellular, yet RAGE independent functions of the heterodimer. Ex-
tracellular S100a8 and S100a9 may well trigger alternative receptors, such as
Tlr4 [206, 44] and thereby compensate for the lack of RAGE in early stages
of neoplastic transformation and tumor growth. While several studies focus
on TLR4 expression on immune cells [212, 184], in HNSCC the expression of
TLR4 in tumor cells was addressed only in few studies. TLR4 expression in
epithelial cells of head and neck tumors was connected to tumor progression
and aggressiveness in humans [189, 184]. Szczepanski and colleagues showed
TLR4 staining in well differentiated and moderately differentiated HNSCC,
supporting the observation of TLR4 expression in lesions induced in the 4-NQO
model (Fig. 3.13). The authors also detect TLR4 expression at low levels in
normal human mucosa. This may explain the results from mouse tongues
on RNA level, showing (mainly faint) signals for TLR4 also in PPG treated
tongues, while in the immunohistochemical staining no expression of TLR4
was detected (Fig. 3.13), possibly due to the lack of sensitivity of the antibody.
Furthermore, interaction of S100a9 with Tlr4 has recently been demonstrated
to promote tumor growth in a model of prostate cancer [98]. Interestingly, im-
paired tumor growth was found for both Tlr4 and S100a9 knockout mice, but
not in Rage deficient mice. Thus, while in literature S100A8/A9 are usually
closely connected to RAGE, the extracellular function of S100A8/A9 is not
restricted to this receptor. Moreover, only recently binding of S100A9 to the
cell surface glycoprotein EMMPRIN [80] was identified to promote metasta-
sis of melanoma cells independent of RAGE. Yet another potential receptor
binding to S100a8/a9, though not discussed in the context of canter is the scav-
enger receptor CD36[103, 28]. Finally the heterodimer can bind to heparin and
heparan sulfate glucosamineglycans on the cell membrane [160], in summary,
showing up several possible extracellular modes of action of S100a8/a9 that do
not require RAGE activation. Importantly, in our study mice were sacrificed
due to severe weight loss around three weeks before the planned endpoint of the
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experiment hampering the analysis of RAGE function in malignant progres-
sion into squamous cell carcinoma. While RAGE is apparently not required in
the onset of oral carcinogenesis, no conclusion about its role in malignant pro-
gression can be drawn. In this context, RAGE deficient mice showed smaller,
mainly low grade lesions in a mouse model of colorectal carcinogenesis in con-
trast to wild type mice, in which invasive adenoma developed [201]. The same
was seen for mice deficient in S100a9, while again, as already seen in wild type
and RAGE deficient mice (Fig. 3.7 and Fig. 3.8), papilloma were observed in
the majority of animals (Fig. 3.16 ), no invasive SCC were found, regardless
of the genotype. With regard to S100-calgranulins, this is an important issue
keeping in mind that S100-calgranulin expression is lost in advanced stages of
human HNSCC and nodal metastasis [161], and concerning the prognosis and
treatment of human HNSCC patients. Early stage HNSCC, which is reflected
in the present study, can be treated effectively and with a good prognosis.
However, patients often present with advanced stages of disease and therefore
are facing poor prognosis and limited treatment options [110, 163]. It may
therefore well be, that the S100-RAGE signaling axis is not required at early
stages of oral carcinogenesis but later on modulate important functions of the
tumor microenvironment [158] and become relevant for the maintenance of a
pro-tumorigenic milieu. In this context, RAGE antagonists were shown to re-
duce metastasis and cell growth in pancreatic cancer and glioma and suggested
for treatment of pulmonary metastasis [9] In fact, these data relativize the view
on s100-RAGE signaling and the function S100 calgranulins in cancer, opening
up room for further functional implications and regulatory interactions.
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4.7 S100a8 and S100a9 do not affect the onset of
oral carcinogenesis

While characterization of the Rage-/- mouse in the 4-NQO model of oral car-
cinogenesis did not reveal a role for the receptor RAGE in the onset of cancer
formation, RAGE ligands S100a8 and S100a9 were nevertheless induced in
mucosal keratinocytes of tongue and esophagus. It seems however, that the
extracellular role of S100a8 and S100a9 as RAGE ligands is either negligible
in this setup or that the heterodimer acts in an intracellular and RAGE inde-
pendent manner. Taking in consideration the obvious heterogeneous, yet fun-
damentally unclear observation of S100-calgranulin expression in human HN-
SCC tumors, the logical consequence was to further address S100-calgranulin
function in the mouse model. Applying the same protocol of 4-NQO induced
oral carcinogenesis to S100a9-/- mice however, did not result in an altered re-
sponse of the S100a9 deficient mice as compared to the controls (Fig. 3.16).
As expected, S100a9 protein expression in the tongue epithelium as well as in
stromal immune cells is lost in the S100a9-/- mice, however it is worth noting
that S100a8 expression is still detected in mucosal keratinocytes after 4-NQO
treatment Fig. 3.14. Previously, the S100a9 knockout was proposed to be a
functional calgranulin knockout due to protein instability of S100a8 in the ab-
sence of its dimerization partner S100a9. However, this was only shown for
the complex in myeloid cells [82] and in fact, looking at stromal immune cells,
while MPO positive cells are visible in the stroma of both genotypes, S100a8
positive immune cells are only seen in the tissue sections of S100a9+/- but
not in S100a9-/- animals Fig. 3.14. In mucosal keratinocytes, S100a8 protein
stability is most likely regulated differently as compared to myeloid cells. In
vitro studies already have shown that murine S100a8 can form homodimers
[74, 94]. Furthermore a negative association with S100a3 was reported on
expression level [89], while in a yeast-two-hybrid screen, S100a8 was identi-
fied as a binding partner for S100A3 and proposed as a molecular switch in
S100a8/a9 signaling [141]. Finally, while S100a8 is essential during embryonic
development [148], S100a9-/- mice develop normally, arguing for a stabilization
mechanism of S100a8 in the absence of S100a9 and emphasize an independent
role of S100a8. Therefore, it cannot be excluded that residual S100a8 protein
expression in mucosal keratinocytes mediates 4-NQO induced carcinogenesis in
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S100a9-/- mice. Previous studies showed, that S100a8 and S100a9 expression
is down-regulated during malignant progression in HNSCC [161, 162]. In line
with these data, in human and less prominent also in 4-NQO challenged mouse
mucosal epithelium S100-calgranulin expression was prominent in suprabasal
layers but not in the basal keratinocytes of the oral mucosa, (unpublished data
S. Funk and Fig. 3.5). Accordingly, it seems plausible that calgranulins are
functionally associated with keratinocytes differentiation, and an association
of S100A8/A9 expression and differentiation was confirmed in vitro, show-
ing that in HaCaT keratinocytes S100A8/A9 expression leads to a reduced
proliferation [209]. Furthermore, expression of S100A8/A9 was demonstrated
to trigger the expression of epidermal differentiation markers involucrin and
fillagrin. Therefore, over all histology, proliferation and differentiation was ad-
dressed in S100a9-/- mice as compared to S100a9+/- controls. Keratinocyte
proliferation as measured by BrdU incorporation, however, was induced in
both genotypes and keratinocyte differentiation markers Keratin 14, Keratin
13 and Loricrin showed the same expression and distribution in S100a9-/- mice
as compared to S100a9+/- controls. In the present setup no obvious genotype
specific alteration in mucosal differentiation markers was observed. Neither in
overall expression, nor in the spatial expression pattern (Fig. 3.19 and Fig. 3.20)
a significant difference was observed. As already discussed in the context of
mucosal carcinogenesis this may be due to the residual expression of S100a8
after 4-NQO treatment which may be sufficient to maintain mucosal differ-
entiation. Also, while in vitro data suggest an active part of S100a8/a9 in
keratinocyte differentiation [209], this neglects the complex communication of
epithelial cells with cells of the underlying connective tissue and immune cells
and has so far never been shown in vivo. In Summary, these observations in
S100a9-/- mice support the data from human OPSCC patients, suggesting a
diverse role of S100A8/A9 in head and neck cancer, depending on the etiol-
ogy and the presence of tumor supporting inflammation and that S100A8 and
S100A9 are dispensable for the onset of oral carcinogenesis, at least in setting
of genotoxic stress. SS100a9-/-.
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4.8 S100 calgranulins, RAGE and oral mucosal
homeostasis

As seen previously in wild type and Rage-/- mice, also S100a9-/- mice do not
show major signs of inflammatory cell recruitment upon carcinogen treatment.
It may, however, well be that while in backskin keratinocytes S100-RAGE sig-
naling is a physiologic response to stress and damage, the maintenance of
mucosal functions and tissue homeostasis are not involving S100-RAGE sig-
naling. Also generally, when concluding from data from backskin keratinocytes
on their mucosal counterparts, one has to keep in mind also the differences.
Depending on the localization, oral mucosal keratinocytes form keratinizing
and non keratinizing stratified epithelia. Mucosal keratinocytes show a higher
basal level of proliferation and turnover than their counterparts in the skin
[181]. While wounds in the oral mucosa do not only heal more quickly and
with minimal scar formation as compared to skin, these wounds also show far
less infiltration by inflammatory cells and a faster resolution of inflammation
[190, 126, 30]. This could explain why only moderate numbers of MPO pos-
itive immune cells were visible in the histological sections at the endpoint of
the 4-NQO experiment. Also, the oral mucosa continually gets in contact with
antigens through food, bacteria and airborne substances. Therefore, what
is commonly described as “oral mucosal tolerance” [142] may influence the
communication of stromal and epithelial cells and interfere with the damage
response in the oral mucosa. Also in this context the expression of S100-
calgranulins in normal human mucosa (unpublished data, Sonja funk) claims
for a RAGE independent epithelial function of S100-calgranulins in the oral
mucosa.
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4.9 Easing the rage – what does this mean for
therapeutic strategies?

A recent development concerning RAGE in various human disorders including
cancer is the use of RAGE blocking antibodies and small molecule drugs that
interfere with the pro-inflammatory RAGE signaling axis [20, 197, 137, 9].
However, the role of RAGE is not entirely understood, ranging from a tumor
suppressor in lung carcinogenesis [12] to an active driver of pro-tumorigenic
inflammation in backskin, liver and colorectal cancer [60, 201] and (Pusterla et
al., unpublished data) and malignant progression [9, 192]. Finally, this study
suggest, that in a situation driven by a merely genotoxic agent like 4-NQO,
the presence of RAGE does not play a major role with respect to the onset of
cancer. Both the RAGE deficient animals as well as the control mice developed
lesions. Also, no significant augmentation of inflammatory cells in the stro-
mal compartment of 4-NQO treated animals was observed, arguing against
a RAGE mediated pro-inflammatory feed forward loop in this model. Also
RAGE expression is inversely correlated with the progression of pulmonary
carcinogenesis and is regarded a tumor suppressor in the lung [12, 97], and a
negative association of RAGE expression and depth of invasion was shown for
esophageal cancer, moreover connecting RAGE expression with a better prog-
nosis [196]. Therefore a better understanding of RAGE function in general
and specifically a clear stratification for underlying and supporting inflam-
mation, genotoxic stress and further parameters, which may interfere with
damage signaling is of vital importance. Furthermore, even though expression
of S100-calgranulins greatly varies in human HNSCC tumor samples, as well as
inflammation as measured by S100-calgranulin positive stromal immune cells,
this does not seem to be correlated with any clinicopathological feature except
for tumor grading (unpublished Data, Sonja Funk), [161, 162]. Therefore, it is
questionable, whether interference with RAGE signaling will be beneficial for
HNSCC patients without clear stratification for inflammation and the induc-
tion of pro-inflammatory RAGE ligands like S100calgranulins or HMGB1. It
may well be that a subgroup of patients, who show both calgranulin expression
in tumor cells as well as a high number of infiltrating inflammatory cells will
profit from RAGE-targeted anti-inflammatory therapy. In summary, the data
highlight the need for careful stratification of patients with regard to tumor
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etiology and the presence of a supportive inflammatory microenvironment as a
prerequisite for efficient prevention and therapy of human malignancies, includ-
ing HNSCC via therapeutic targeting of receptor RAGE. While patients with
strong signs of stromal inflammation may well benefit from RAGE targeted
therapy, those who do not show an inflammatory tumor microenvironment
probably will not profit at all.

4.10 Conclusion and Perspective

The results from the present study point out that S100-calgranulins and the
receptor RAGE do not necessarily act together in head and neck cancer and
raise awareness for a more differentiated view on the S100-RAGE signaling
axis and its molecular components. In the onset of oral and esophageal can-
cer, driven by genotoxic stress in the absence of an additional inflammatory
stimulus, neither Rage expression nor S100a9 expression was essential for the
induction and development of cancer. As only papillary lesions were observed
in the mice after 4-NQO treatment, the model nicely provides insight in the
onset of oral carcinogenesis but does not allow conclusions on malignant pro-
gression as no invasive squamous cell carcinoma developed within the observa-
tion time. Therefore, while the S100-RAGE axis is dispensable in the onset of
oral and esophageal cancer in this model, it may be never the less interesting
to address its function in malignant progression. Expanding the S100-RAGE
network and looking at TLR4 in the 4-NQO mouse model, possibly also in
double knockout animals to better define the impact of the different nodes in
the network. Both S100a9/TLR4 as well as Rage/Tlr4 double knockout mice
could shed additional light on the complex function of myeloid cells in the
tumor stroma. Furthermore, considering the etiology of HNSCC, ethanol as
an additional stimulus and potent inducer of tissue damage and inflammation
in the 4-NQO model ca should considered to more closely define the role or
RAGE in oral cancer. Even after adjustment for smoking, there is a strong
association between oral cancer and ethanol consumption [10]. The effect of
ethanol in the 4-NQO model was demonstrated in a recent publication, addi-
tionally drawing a link to inflammation by associating ethanol consumption to
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the activation of the 5-Lox pathway of arachidonic acid metabolism [71]. Also
the cellular function of S100-calgranulins would be an interesting starting point
for further studies. In both men and mice, nuclear localization was detected in
mucosal keratinocytes, raising the obvious question, on the molecular function
of nuclear S100A8 and S100A9 in physiological as well as pathophysiological
conditions in mucosal epithelia. Conditional, tissue specific knockout of S100a8
and S100a9 via breeding K14-Cre mice to S100a8 or S100a9 mice containing
flanking lox P sites would provide an elegant tool to address calgranulins in
epithelial cells in a more functional approach. Generally, the current view of
S100-calgranulins and RAGE acting together in a vicious cycle needs to be
carefully revisited. A strict stratification for signals of an inflammatory mi-
croenvironment can help to assess the impact of the S100-RAGE axis in a
given environment in patients or animals.
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