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SUMMARY 

Cell shape changes are of fundamental importance during morphogenesis. These changes 

are often initiated by the contraction or expansion of plasma membrane domains. During 

differentiation the plasma membrane also undergoes more complex functional re-organization 

that brings about specialized function such as absorption, secretion and photo-transduction. 

While the role of cytoskeleton elements in controlling the structure and dynamics of the plasma 

membrane is well-established, little is known about the contribution of membrane trafficking in 

this process. 

The aim of this thesis was to address the contribution of membrane trafficking in 

controlling cell shape changes during tissue morphogenesis. More specifically I have 

investigated the role of endocytosis in controlling the remodeling of the plasma membrane 

during cellularization, the transformation of the syncytial Drosophila embryo is 6000 

mononucleated cells. By following the early endocytic regulator Rab5, I identified two pools of 

endosomes.  Early during cellularization endosomes accumulate at the invaginating furrows. 

Towards the end of cellularization a second pool of endosomes appeared at the apical surface. 

This increase in apical endosomes coincides with changes in apical morphology. Blocking 

endocytosis by inhibiting dynamin function prevented the re-absorption of apical protrusions and 

subsequent membrane flattening. Using a novel genetically-encoded cargo uptake assay I 

discovered that during apical surface flattening endocytosis is up-regulated of approximately 

five-fold. Strikingly this assay also revealed that the primary entry route for soluble extracellular 

cargo is through long tubular intermediates that serve as platform for the generation of Rab5 

vacuolar endosomes. Blocking dynamin activity resulted in the complete inhibition of both 

tubular endocytosis as well as in the disappearance of Rab5 endosomes. These data collectively 

support a role for membrane trafficking in morphological remodeling. Surface flattening is thus 

an endocytosis-dependent morphogenetic process driven by the rapid internalization of large 

quantities of plasma membrane through tubular invagination and up-regulation of Rab5 

endosome production. To further characterize the molecular machinery controlling apical 

endocytosis during cellularization a biochemical approach was undertaken. I performed large-

scale affinity purification from 0-4 h embryos in order to identify Rab5 effectors operating 

during these early stages of embryonic development. This experiment led to the identification of 



Rabankyrin-5. Using a combination of live imaging and correlative light-electron microscopy I 

could show that Rabankyrin-5 controls the budding and processing of apical vacuoles from 

tubular plasma membrane invagination. 

 In conclusion, in this thesis I have identified a novel endocytic pathway and linked its 

function to the remodeling of the apical surface during epithelial morphogenesis. 

 

  



ZUSAMMENFASSUNG 

Während der Morphogenese spielen Veränderung von Form und Größe der Zelle eine 

enorme Bedeutung und werden zumeist durch Kontraktion oder Expansion bestimmter Bereiche 

der Plasmamembran eingeleitet. Bei der Differenzierung muss die Plasmamembran eine Reihe 

von Umstrukturierungen durchlaufen, die zu Spezialisierungen, wie Absorption, Sekretion und 

Phototransduktion führen können. Eine wichtige und bereits gut erforschte Rolle hat hierbei das 

Cytoskelett, das die Form und Strukturgebung der Plasmamembran beeinflusst. Im Gegensatz 

dazu ist nur sehr wenig über die Rolle des Membrantransports auf diesen morphogenetischen 

Prozess bekannt. 

Ziel dieser Arbeit war es, den Einfluss des vesikulären Membrantransports auf die  

Formgebung der Plasmamembran während der Morphogenese zu untersuchen. Im Speziellen ist 

hiermit die Rolle der Endozytose auf die Umgestaltung der Plasmamembran während der 

Zellularisierung des Drosophila Embryos gemeint. Während diesem Entwicklungsstadium wird 

aus einem 6000-zellkernigen Synzytium die erste Zellschicht mit individuellen Zellen gebildet. 

Hauptaugenmerk lag bei dieser Arbeit auf Rab5, einer GTPase welche in einem frühen Stadium 

der Endozytose involviert ist. Mit Hilfe von Live Imaging wurde endozytisches  Rab 5 verfolgt. 

Hierbei konnte ich feststellen, dass zwei unterschiedliche Gruppen endosomaler Strukturen 

vorliegen. Zu Beginn der Zellularisierung  akkumulieren Endosomen an  den Einstülpungen der 

Plasmamembran. Gegen Ende dieser Entwicklungsphase tauchte eine zweite Gruppe von 

Endosomen an der apikalen Oberfläche auf. Dieser Anstieg von Endosomen an der apikalen 

Oberfläche geht  mit einer Veränderung in der Morphologie der apikalen Seite einher. 

Blockieren der  Endozytose durch Inhibierung von Dynamin führte zur Ausbildung von apikalen 

Ausstülpungen und verhinderte das Abflachen der Plasmamembran.  Desweiteren konnte ich 

durch die Benutzung eines neuen ‚genetisch-codierten‘ Endozytose Assay zeigen, dass die 

Endozytoserate während des Abflachens der Plasmamembran um das Fünffache erhöht ist. 

Dieser Assay brachte auch zum Vorschein, dass der primäre Aufnahmeweg von flüssigen 

extrazellulären Transportstoffen durch lange tubuläre Intermediate erfolgt. Diese Intermediate 

dienen als Grundlage für die Herstellung von Rab5-Endosomen. Durch blockieren der Aktivität 

von Dynamin wurde sowohl die tubuläre Endozytose als auch das Auftreten von Rab5-

Endosomen gestoppt.  



Diese Daten zeigen den Einfluss von Membrantransport auf die Formgebung während 

der Morphogenese.  Ich konnte zeigen, dass das Abflachen der Membran ein 

Entwicklungsprozess darstellt, der Endozytose-abhängig ist und durch eine schnelle Aufnahme 

der Plasmamembran und vermehrte Produktion von Rab5-Endosomen bewerkstelligt wird. 

Desweiteren wurden biochemische Untersuchungen vorgenommen um die exakten molekularen 

Mechanismen, die diesem Prozess unterliegen, zu charakterisieren. Hierfür führte ich eine 

Proteinaufreinigung von 0-4 Stunden alten Embryos durch, um Interaktionspartner von Rab5 zu 

identifizieren, die während diesem Embryonalstadium aktiv sind. Hierbei wurde Rabankyrin-5 

als Interaktionspartner von Rab5 identifiziert. Durch Kombination von Live-Imaging und 

korrelativer Licht/Elektronen Mikroskopie konnte ich zeigen, dass Rabankyrin-5 das Abknospen 

und  Weiterverarbeiten von apikalen Vakuolen, die aus tubulären Plasmamembran-

Einstülpungen resultieren, kontrolliert.  

Zusammenfassend, konnte ich mit der vorliegenden  Arbeit einen neuen endozytischen 

Signalweg identifizieren und seine Funktion in Zusammenhang mit der Umgestaltung der 

apikalen Oberfläche während der embryonalen Morphogenes aufweisen.  
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In this introduction, I will first describe the initial steps of Drosophila embryogenesis and 

then discuss the general regulatory principles underlying endocytosis. In the last chapters 

I will summarize some of the key experiments illustrating how endocytosis controls 

development with a special focus on signalling and cellularization. 

 

 1.1 Early Drosophila development 

 

Early Drosophila development is a complex, yet highly reproducible process that 

includes massive nuclei replication, formation of a polarized ephitelium, and 

morphogenic movements. After fertilization, Drosophila embryo undergoes 13 nuclear 

divisions without cytokinesis (Foe and Alberts 1983; Turner and Mahowald 1976). All 

the nuclei are confided in a single cytoplasmic sack called syncytium, where astral 

microtubules organize the uniform distribution of the nuclei (Karr and Alberts 1986). At 

the division cycle 9 the first nuclei that progressively migrate towards the embryo cortex 

appear at the posterior pole, giving rise to the germ line (pole cells). At the cycle 10 all 

the remaining somatic nuclei anchor at the plasma membrane and formation of membrane 

pseudocleavage furrows can be observed (Foe and Alberts 1983; Turner and Mahowald 

1976). The next three nuclear divisions are progressively longer until cycle 14, when all 

the nuclei pause in interphase (Foe and Alberts 1983). At this point, a step that is 

common to all embryonic developmental programs occurs (both animal and plants), that 

is maternal to zygotic transition (Schier 2007; Tadros and Lipshitz 2009). During this 

transition many mRNAs provided in the egg by the mother are rapidly degraded and the 

transcription of new zygotic genes starts. The mechanisms underlying this transition are 

not completely understood. In zebra fish microRNAs control the degradation of the 

maternal mRNAs (Mathavan et al. 2005; Giraldez et al. 2006), while in mouse DNA 

methylation controls the switching of genes on or off at this time (Reik and Walter 2001). 

In Drosophila, recently the early transcription factor Zelda has been shown to regulate 

the robust expression of many zygotic genes (Nien et al. 2011). In particular, Zelda has 

been shown to control the expression of genes involved in cellularization, the 

transformation of the syncytial embryo in 6000 mononucleated polarized cells (Nien et 

al. 2011; Liang et al. 2008). 
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1.2 Cellularization 

 

During cellularization around 6000 polarized cells are formed by the invagination 

of the plasma membrane between single nuclei in close proximity to the embryo cortex 

(Foe and Alberts 1983; Turner and Mahowald 1976). A close interplay between 

cytoskeleton reorganization and membrane dynamics is necessary for the progression of 

the invaginating membranes (Warn and Warn 1986; Warn and Robert-Nicoud 1990). 

Cellularization lasts approximately 60-70 minutes and has been divided in four stages 

according to the organization of the furrow canals.  

Furrow canals are present at the bottom of the invaginating membranes and have 

similar function and protein composition to the cleavage furrows present during the 

standard cytokinesis (Crawford et al. 1998). Furrows are assembled in close proximity to 

the apical plasma membrane during the first 10 minutes of cellularization. At the end of 

cellularization the contraction of furrow canals will drive basal closure of the cells 

(Crawford et al. 1998; Young, Pesacreta, and Kiehart 1991) (Figure 1.1 a). At the 

molecular level, the plasma membrane domains of the furrows are enriched in actin and 

myosin II (Crawford et al. 1998; Young, Pesacreta, and Kiehart 1991). The initial 

assembly of actin/myosin II at the furrow canal is dependent on the activity of a 

RhoGEF2 (Rho guanine nucleotide exchange factor 2) and the formin Dia (Diaphanous) 

(Grosshans et al. 2005). Mutants of any of these two genes result in a decrease in the 

levels of actin and the myosin II at the base of the furrow and defects in cellularization. In 

addition, ultrastructural analysis revealed a disorganization and blebbing of the furrow 

canals (Grosshans et al. 2005). Similarly, inhibition of actin polymerization using 

cytochalasin abolishes assembly of the furrow canal, but surprisingly does not have a 

noticeable effect on later stages of cellularization (Royou, Field, and Sisson 2004). These 

results show that actin is responsible for the initial stabilization and assembly of the 

furrows, but not for completing cellularization.  

The assembly of furrow canals is controlled by the expression of slam (slow as 

molasses) (Thomas Lecuit, Samanta, and Wieschaus 2002; Stein et al. 2002). Slam 

protein localizes to the invaginating furrows and has been shown to associate with the 

RhoGEF2 (Rho guanine nucleotide exchange factor 2) (Wenzl et al. 2010). Hence the 
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slam/RhoGEF2 assembly regulates the Rho1 (ras homolog family member 1) activity at 

the leading membrane. However, slam mutants display phenotypes that are more severe 

from Rho mutants, therefore arguing that slam must have additional function. Indeed, in 

slam mutants the speed of membrane invagination does not increase and the furrows 

show irregular morphology with abnormal basal adherens junctions (BAJ) (Thomas 

Lecuit, Samanta, and Wieschaus 2002). BAJs are formed just above the furrow canals 

(Mazumdar and Mazumdar 2002; Thomas Lecuit 2004) and are composed of E-cadherin, 

alpha-catenin and Armadillo (the Drosophila homologue of beta-catenin). Furthermore, 

proper localization of BAJ is regulated by zygotic expression of the gene nullo (Hunter 

and Wieschaus 2000; Postner and Wieschaus 1994; Simpson and Wieschaus 1990). 

Removing nullo results in diffusion of Armadillo (Arm) into lateral membranes, 

destabilization of the furrow canals and regression of the lateral plasma membranes 

(Sokac and Wieschaus 2008b). As a consequence, many cells become multinucleated. 

Since Arm mutants show normal invagination, there must be a different mechanism for 

stabilization of the basal compartment. This function is provided by the gene nullo that 

organizes actin cytoskeleton at the furrow canal, and thus prevents destabilization of the 

basal membranes (Sokac and Wieschaus 2008b; Simpson and Wieschaus 1990; Postner 

and Wieschaus 1994). Another gene that has been shown to stabilize furrows is 

serendipity-alpha (Schweisguth, Lepesant, and Vincent 1990). This gene codes for a 

small peptide of unknown function. 

In the second phase of cellularization plasma membrane invaginates towards the 

base of the nuclei (Figure 1.1 a-b). This process is blocked by the colchicine and 

therefore is dependent on microtubules (Royou, Field, and Sisson 2004). In parallel to 

membrane growth, nuclei start to change shape by elongating along the apical-basal axis 

(Schweisguth, Lepesant, and Vincent 1990; Brandt et al. 2006; Turner and Mahowald 

1976). This process is also microtubule dependent and in addition requires reorganization 

of the nuclear envelope (Schweisguth, Lepesant, and Vincent 1990; Brandt et al. 2006). 

The change of the nuclear morphology might reflect a massive transcription initiation 

during cellularization but there is no evidence so far to prove this hypothesis. 

The third phase of cellularization starts when the furrow canal reaches the base of 

the nuclei (Figure 1.1 b-c). At this step apical adherens junctions (AAJ) are formed. 
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Simillar to BAJ, AAJ are not necessary during cellularization, but rather for the 

subsequent morphogenic movement (Thomas Lecuit 2004; Kölsch et al. 2007; Müller 

and Wieschaus 1996; Hunter and Wieschaus 2000). This phase of celullarization is also 

referred as the fast phase, since plasma membrane growth increases three times, from 

~0,3  to ~0,8 µm/min (Mazumdar and Mazumdar 2002). 

The last step of cellularization is characterized by the constriction of the furrow 

canals and formation of the basal membranes (Figure 1.1 c). This process is dependent on 

contractile actin-myosin rings present at the base of each cell (Royou, Field, and Sisson 

2004; Mazumdar and Mazumdar 2002). Similar to classical cytokinesis, furrow 

constriction is dependent on the Rho1 activity (Crawford et al. 1998). As mentioned 

before, Rho1 is recruited to the furrow by RhoGEF2 and activates Rho kinase that 

phosphorylates myosin II (Grosshans et al. 2005; Padash Barmchi, Rogers, and Häcker 

2005). Therefore disruption of the RhoGEF2 function or the myosin II activity prevents 

basal constriction. Furthermore, two non-receptor kinases Src64 (sarcoma oncogene at 

64B) and Tec29 (tyrosine-protein kinase tec at 29A) are needed for the proper closure 

(Roulier, Panzer, and Beckendorf 1998; Thomas and Wieschaus 2004).  

Although RhoGEF2, myosin II, and kinases are present at the furrow canal 

through cellularization, their activity must be precisely controlled to ensure proper cell 

growth. The timing of basal closure is controlled by bottleneck (bnk) (Schejter and 

Wieschaus 1993). Bnk is expressed only early during cellularization and localizes to the 

furrow.  Bnk is then degraded during the last phase of cellularization. In bnk mutants, the 

premature contraction of the furrows and trapping of the nuclei can be observed (Schejter 

and Wieschaus 1993). However, despite of activation of myosin II, the furrows are not 

constricting completely at the end of cellularization. There is still a connection between 

the cytoplasm and the yolk called the ‘yolk plug’ that is stabilized by the formin peanut 

(Adam, Pringle, and Peifer 2000). This connection persists till the next stage of the 

embryonic development called gastrulation. 

During cellularization in addition to the lateral membranes, also the apical surface 

undergoes morphological changes. Scanning EM analysis of the different stages of 

cellularization revealed a dramatic reorganization of the apical plasma membrane (Turner 

and Mahowald 1976). During stages I to III of cellularization apical plasma membrane is 
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covered with microvillar-like protrusions. These protrusions disappear during the last 

stage of cellularization (Turner and Mahowald 1976). Formation of apical protrusions 

and plasma membrane flattening is associated with actin dynamics driven by its regulator 

Abl (Abl tyrosine kinase) (Grevengoed et al. 2003). In Abl mutants, there is an excessive 

polymerization of actin at the apical surface of cellularizing embryos. This leads to 

massive formation villous protrusions and interferes with membrane flattening 

(Grevengoed et al. 2003). There is no detailed information about the dynamics of apical 

flattening during cellularization. 

 

 

 

 

Figure 1.1 Four phases of cellularization. 

Schematic view of cell morphology during cellularization. This process is divided into four stages 

that represent different points of membrane invagination and junction assembly. For more details 

see Chapter 1.2 
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1.3 Mechanisms of endocytosis 

 

In a developing organism every eukaryotic cell is in contact with the 

environment through the plasma membrane bilayer. Although some small molecules 

are able to cross this barrier simply by diffusion, many nutrients, signalling proteins 

and other substrates are uptaken by specialized vesicles in the process called 

endocytosis (Mellman 1996). At the basic level, endocytosis maintains cellular 

homeostasis by re-internalizing proteins and lipids inserted in the plasma membrane 

by ongoing secretion. Living organisms have developed many different forms of 

endocytosis, specific for different functions. Reuptake of synaptic contents by 

neurons (von Gersdorff 1994), engulfing pathogens by macrophages (Kinchen and 

Ravichandran 2008) and regulation of extracellular matrix (Shi and Sottile 2011) are 

only few examples that describe the many different endocytic functions. Moreover, 

in recent years it became evident a key role of endocytosis in mitosis (Fürthauer and 

González-Gaitán 2009), as well as in cell migration (Caswell and Norman 2008). 

Although, many basic regulators of endocytosis have been identified, the 

spatial-temporal regulation of endocytosis is less clear. In the next chapters I will 

present a general overview of the endocytic compartments and endocytic pathways.  

 

1.3.1 Endocytic compartments 

 

1.3.1.1 Early endosomes 

 

Internalized vesicles are targeted to form a distinct intracellular compartment 

called early endosome (EE) (Mellman 1996). This slightly acidic organelle receives 

material from different internalization routs and serves as a central point for sorting 

(Gruenberg et al. 1989).  EEs show a complex morphology. They are composed of 

big vacuolar structures (~400 nm diameter) with many tubulated membranes 

extending from them (~60 nm diameter) (Gruenberg 2001). While the material in the 

vesicular compartment will be targeted for degradation, tubulation of EE is 

associated with protein and lipid recycling back to the plasma membrane (Jean 
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Gruenberg 2001; Mellman 1996). This sorting mechanism is very important for 

internalized receptors bound to their ligands. Most of the ligands undergo 

degradation, while receptors are recycled back to the plasma membrane for the next 

round of signalling and endocytosis (Bleil and Bretscher 1982). The acidic part of 

EEs facilitate the dissociation of receptor-ligand complexes (Dautry-Varsat, 

Ciechanover, and Lodish 1983). 

 

1.3.1.2 Recycling endosomes 

 

Detailed morphological and kinetic analysis argues that there are two major 

recycling pathways acting in mammalian cell culture. Recycling can take place either 

directly from the early endosomes (fast route) or through the recycling endosomes 

(slow route) (van der Sluijs et al. 1992; Sönnichsen et al. 2000). Recycling endosome 

(RE) is a tubulated organelle associated with microtubules (Yamashiro et al. 1984) . 

Similar to the EEs, the sorting mechanism targeting cargo to the PM is based on the 

geometry of the compartment rather than specific sorting proteins. Nevertheless, 

sorting proteins are present on the RE, but their function is to target the cargo 

through the retrograde transport to the trans-Golgi network (Seaman 2004; Arighi et 

al. 2004). In addition, RE has higher pH comparing to the EE (~6.5) (Yamashiro et 

al. 1984). 

 

1.3.1.3 Late endosomes and lysosomes 

 

Late endosomes (LE) are derived from the vesicular domain of EEs. The 

lumen of LEs contains ligands decoupled from their receptors as well as proteins and 

solutes internalized with the fluid phase. LEs have a distinct morphological and 

biochemical composition from EEs (reviewed in Huotari & Helenius 2011). This 

leads to a robust degradation of their content. Prior to degradation, receptors targeted 

to the LE are modified on their cytoplasmic tail by an addition of a small protein 

called ubiquitin (Hicke and Riezman 1996; Hershkos et al. 1983; Kölling and 

Hollenberg 1994). Ubiquitinated transmembrane proteins induce formation of 
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intraluminal vesicles (Levkowitz et al. 1998; P. S. Lee et al. 1999). This process is 

required to down-regulate receptor signalling by cutting off the access for the 

receptor to the cytoplasm (Felder et al. 1990).  An additional role for the formation 

of the intraluminal vesicles is to expose the receptors to the acidic hydrolases present 

in the lumen (Futter et al. 1996). Activity of these degradative enzymes is dependent 

on a low pH (~4.9 - 6.0) that is maintained within LE. 

 Degradative endocytic pathway ends in the lysosomes. While most of the 

components of LEs will be degraded by fusion with lysosomes, some will contribute 

to the generation and maintenance of the new lysosomes (reviewed in Luzio et al. 

2007). 

 

It is worth noting that polarized cells have developed a system to segregate apical and 

basal endocytic machineries. Such separation of endocytic machineries has been studied 

in the polarized MDCK (Madin-Darby Canine Kidney) cells. The apical surface of 

MDCK cells is in contact with lumen, while the basolateral membrane interacts with the 

basement membrane. For this reason the polarized epithelium requires proper sorting and 

positioning of different apical and basal membrane components. In MDCK cells 

endocytic compartments originating from the apical and the basolateral PM are 

segregated and are not prone to heterotypic fusion (S. M. Leung et al. 2000; Bucci et al. 

1994). Rather they reside close to the source of internalization. Endocytosed materials 

from the apical and the basolatral compartments can transcytose, be recycled back to the 

apical PM or be degraded (Leonid and Mostov 1994; Casanova, Apodaca, and Mostov 

1991). This way endocytosis can be fine tuned to the requirements of the cell to sort 

properly its cargo and adds another level of complexity to the endocytic routes. 
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Figure 1.2 Organization of endocytic pathways in polarized cells. 

In polarized cells such as MDCK cells the early endocytic machinery is divided into the 

apical and the basolateral groups that do not intermix. Apically internalized cargo (a) can be 

recycled through recycling endosomes (b), undergo degradation (c-d) or be transcytosed to 

the basolateral membrane (d). Fluid uptaken from the basolateral membrane (f) usually is 

targeted for degradation. 

AEE = apical early endosome; BEE = basolateral early endosome; RE = recycling 

endosome; LE = late endosome; LYS = lysosome. 

 

 

1.3.2 Pathways of endocytic entry 

 

As mentioned in the previous chapter, endocytosis is characterized by de novo 

formation of intracellular vesicles from the plasma membrane. There are numerous 

forms of endocytosis that can be schematically divided in two groups: a 

clathrin-mediated and non clathrin-mediated endocytosis. The second group is 

composed of many pathways including caveolae-mediated endocytosis, 

macropinocytosis, phagocytosis and others. Although clathrin-mediated endocytosis 

is the best understood pathway, it accounts for less than 50 percent of ingested fluid 
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by the cell (Schnatwinkel et al. 2004; Lundmark et al. 2008). In next chapters I will 

describe the molecular mechanisms of different endocytic pathways that operate at 

the plasma membrane. 

 

1.3.2.1 Clathrin-mediated endocytosis 

 

 Most of the work has focused on clathrin-mediated endocytosis (CME), therefore 

it is one of the most understood pathways. CME is present in every eukaryotic cell and is 

defined by uptake of extracellular material by clathrin-coated vesicles (CCV) (Y.-W. Liu, 

Su, and Schmid 2012). Formation of CCV can be described in five stages based on 

ultrastructural and live-imaging studies (Kukulski et al. 2012; Taylor et al. 2011; 

reviewed in  Harvey T McMahon & Emmanuel Boucrot 2011) 

In the first step of CME a membrane invagination is formed (Figure 1.3 a). This 

involves assembly of the protein complex (so called nucleation module) at the plasma 

membrane. The protein complex is composed of the FCH domain only (FCHO) proteins, 

the EGFR pathway substrate 15 (EPS15) and the intersectins (Henne and Boucrot 2010; 

Reider et al. 2009; Stimpson and Toret 2009). A common feature of these proteins is their 

affinity to the lipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) present at the 

plasma membrane (Stimpson and Toret 2009; Henne and Boucrot 2010).  

 In the next step, this nucleation module recruits a conserved Adaptor Protein 2 

(AP2) to the membrane (Figure 1.3 b). AP2 binds both to PtdIns(4,5)P2 and the cargo 

(Collins et al. 2002; Kelly et al. 2008). In fact AP2 interacts with the cargo by directly 

binding to the cytoplasmic residues of the receptors or indirectly through additional 

accessory adaptor proteins (reviewed in Traub 2009). Cargo packaging is a highly 

redundant system operating with high fidelity. This is ensured by the overlapping 

functions of many of adaptor and accessory proteins. These protein interactions are also 

responsible for the generation of membrane curvature during vesicle formation 

irrespective of the cargo type (M. G. Ford et al. 2001; M. G. Ford et al. 2002). The 

function of AP2 at the PM is to recruit clathrin triskeleta from the cytoplasm to the 

vesicle assembly site (Ehrlich et al. 2004; Boucrot et al. 2010) (Figure 1.3 c). This step is 

necessary for the stabilization of the forming vesicle and recruitment of curvature 



Chapter 1 Introduction  18 

 

generators like epsin and EPS15 (epidermal growth factor receptor pathway substrate 15) 

at the neck of the invaginating membrane (H. Chen et al. 1999; H. Chen et al. 1998; 

Ehrlich et al. 2004). Once the clathrin cage is assembled, dynamin is recruited by the 

endophilin and the SNX9 (sortin nexin 9) at the base of the pinching vesicle (Sundborger 

et al. 2011; Lundmark and Carlsson 2003). Dynamin is a mechanochemical GTP-ase that 

changes its conformation upon nucleotide hydrolysis, that results in vesicle fission 

(Figure 1.3 d) (the function of dynamin is discussed in Chapter 1.3.3.4) (Sweitzer and 

Hinshaw 1998). Impairing dynamin activity causes an arrest in vesicle formation at either 

the clathrin assembly stage or scission (Kosaka and Ikeda 1983).   

Once the vesicle pinches off, the clathrin coat is disassembled by the ATP-ase 

HSC70 (heatshock cognate 70), and its cofactor, auxilin (Figure 1.3 e) (Ungewickell and 

Ungewickell 1995; Schlossman et al. 1984). This step is necessary for the fusion of 

vesicles with early endosomes. The clathrin complex is then reused to form new vesicles. 

A schematic view of the CCV formation is presented on the Figure 1.3, and the key 

proteins involved in the vesicle formation are listed in the Table 1.1 

 

 

 

Figure 1.3 Clathrin-mediated endocytosis.   

 

The five steps underlying the formation of clathrin coated vesicles are illustrated. See 

Chapter 1.3.2.1 for detailed information 
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Protein Drosophila homologue Function 

Clathrin Chc, Clc 
composed of three heavy and three light chains that 

form the clathrin triskelion 

FCHO CG8176 
nucleates clathrin-coated pits and generates the 

initial membrane curvature 

AP2 
α-Adaptin, Bap,  

AP-50, AP-2σ 

a heterotetrameric adaptor complex (α-, β2, μ2 and 

σ2 subunits) that links membrane cargo to clathrin 

and accessory proteins 

EPS15 Eps-15 AP2 clustering and scaffolding protein 

Intersectin Dap160 links various components of the clathrin machinery 

Epsin lqf 
a cargo-specific adaptor for monoubiquitylated 

receptors 

Amphiphysin Amph 
bends the membrane and recruits dynamin to 

clathrin-coated pits 

Sorting nexin 9 SH3PX1 binds AP2 and dynamin 

Dynamin shi triggers vesicle scission upon GTP hydrolysis 

Auxillin aux recruits HSC70 to clathrin cages for uncoating 

HSC70 HSC70-4 ATPase triggering uncoating of clathrin cages 

 

Table 1.1 Major components of the CME and their function.  

 

Table was adapted and modified from (McMahon and Boucrot 2011). 

 

1.3.2.2 Caveolae- and lipid raft mediated endocytosis 

 

Caveolae-mediated endocytosis involves the formation of large vacuolar carrier at 

the apical surface of epithelial cells (Yamada 1955). This endocytic process is dependent 

on lipid rafts, low-density detergent insoluble membrane domains that are enriched in 

cholesterol and sphingolipids (reviewed in Lingwood & Simons 2010). These endocytic 

sites are marked by the presence of a protein named Caveolin (Cav) (Rothberg et al. 

1992). Although many cell types do not express Cav, ultrastructural studies have shown 

that caveolar-like structures can also form in the absence of Caveolin (Mirre and 

Monlauzeur 1996). Thus it seems that Caveolin plays a facilitating role in formation of 

30-70 nm flask-shaped membrane invaginations that are then budding from the PM in a 

dynamin dependant manner (Henley et al. 1998; Oh, McIntosh, and Schnitzer 1998). 

Caveolae formation is initiated by local disruption of the actin cytoskeleton in response to 
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either extracellular cues (e.g. SV40 virus internalization) or by endogenous regulators 

(albumin internalization) (Pelkmans, Kartenbeck, and Helenius 2001; Bento-Abreu et al. 

2009; Y. Chen and Norkin 1999). Caveolae-mediated endocytosis might be important for 

regulation of signalling events by sequestering receptors or by promoting distinct 

signalling cascades than CME (Kong, Hasbi, and Mattocks 2007; Saldanha et al. 2012). 

 So far there is no evidence for caveolae formation in Drosophila. Although 

caveolae-mediated endocytosis received much attention in the recent years, many details 

regarding this process are still lacking solid experimental proofs. 

 

1.3.2.3 CLIC/GEEC mediated endocytosis 

 

 Electron microscopy studies have shown the existence of tubulo-vesicular 

pinocytic structures that do not contain clathrin, and have been named clathrin 

independent carriers (CLIC). These intracellular tubes are also not associated with 

Caveolin (Kirkham et al. 2005; Lundmark et al. 2008). It has been shown that CLICs are 

required for the internalization of bulk fluid, bacterial exotoxins as well as 

Glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-AP) (Kirkham et al. 2005). 

GPI-AP are enriched within cholesterol domains of the PM and their internalization leads 

to the formation of distinct GPI-enriched endosomal compartments (GEEC) (Kirkham et 

al. 2005). This endocytic pathway accounts for almost 50% of all fluid phase 

internalization in cultured mammalian cells (Lundmark et al. 2008). Moreover, recent 

studies suggest an important role of CLIC/GEEC endocytic pathway in turnover of 

adhesion components and regulation of cell migration (G. J. Doherty et al. 2011; Howes 

et al. 2010). In addition, this endocytic pathway has been linked to the proper myoblast 

differentiation and fusion in the Xenopus embryo (J. T. Doherty et al. 2011). 

A major regulator of this pathway is the Cdc42 (cell division control protein 42 

homolog), a small GTP-ase that controls actin polymerization (Nobes and Hall 1995). 

Indeed, disruption of Cdc42 activity results in the depletion of CLICs (Sabharanjak et al. 

2002). Actin polymerization by Cdc42 is directly linked with formation of tubular 

vesicles through GRAF1 (GTPase regulator associated with focal adhesion kinase 1). The 

N-terminal BAR (Bin–Amphipysin–Rvs) domain of GRAF1 generates membrane 
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curvature, the GAP (GTP-ase Activating Protein) domain exhibits GAP activity on 

Cdc42 (Lundmark et al. 2008). Moreover, GRAF1 can directly bind to dynamin, although 

scission CLIC tubes from the plasma membrane seems dynamin independent (Lundmark 

et al. 2008). It has been proposed that the activity of the dynamin might be important for 

the post-processing of the CLICs. CLIC/GEEC pathway has been also shown to be 

present in Drosophila (Gupta et al. 2009). 

 

1.3.2.4 Phagocytosis 

 

Phagocytosis and macropinocytosis represent endocytic pathways that are 

internalizing large volume of cargo (reviewed in Groves et al. 2008). Particles larger than 

1 µm, like microbes and apoptotic cells are uptaken by the cells through phagocytosis. 

This process is conserved from amoeba to vertebrate and in single cell organisms it is the 

major pathway to internalize nutrients from the extracellular environment. Multicellular 

organisms adapted this pathway for clearance of apoptotic cells during development as 

well as to protect the organism from invading pathogens (Franc et. al 1999).  

Phagocytosis begins upon binding of large particles to specific receptor on the cell 

surface. The most conserved receptor initiating phagocytosis is the lectin receptor that 

binds carbohydrate residues present on the surface of bacteria. Cells of the immune 

system express a variety of other receptors that recognize opsonized microbes, like Fc 

(fragment crystallisable) complement or scavenger receptors. All of these receptors 

activate a signalling cascade leading to actin reorganization and particle engulfment 

(Sánchez-Mejorada and Rosales 1998; Caron and Hall 1998; Maniak et al. 1995; 

Zigmond and Hirsch 1972; Groves et al. 2008). 

Formation of phagosomes require large surface of membrane. For example, 

macrophages are able to internalize membranes equivalent to their entire cell surface in 

only 30 minutes (Mellman, Plutner, and Ukkonen 1984; Michl and Unkeless 1983). This 

high rate of turnover is hallmarked by the delivery of new membranes via RE (Cox et al. 

2000). Increased surface in combination with actin cytoskeleton reorganization leads to 

the internalization of microbes or apoptotic cells. Next, a fully formed phagosome fuses 

with early endosomes, and is finally delivered to lysosome (Duclos et al. 2000; 



Chapter 1 Introduction  22 

 

Blanchette et al. 2009). This maturation process is necessary for the degradation of the 

phagosomal content. Phagocytosis have also a crucial role in the generation of adaptive 

immunity reviewed in Jutras & Michel Desjardins 2005. 

 

1.3.2.5 Macropinocytosis 

 

 Macropinocytosis is a nonselective route for the uptake of big amounts of solutes. 

It can be constitutive or induced by variety of growth factors. In fact little is known about 

the molecular mechanisms underlying macropinsome formation and maturation (Bar-Sagi 

et al. 1987; reviewed in Swanson 2008; Mercer & Helenius 2009). Macropinosomes are 

200 nm - 3000 nm vacuoles internalized upon ruffling of the plasma membrane. This 

dynamic morphological change of the PM is induced by the receptor tyrosine kinsases, 

that activate the Rac1 (ras-related C3 botulinum toxin substrate 1) and the Cdc42 

GTP-ases (Ridley et al. 1992; Garrett et al. 2000). Both the Rac1 and Cdc42 activate 

PAK1 (p21-activated Kinase-1), which in turn regulates actin dynamics and formation of 

ruffles at the plasma membrane (Edwards et al. 1999). PAK1 targets include also Dynein 

light chain, a component of microtubule motor complex (Vadlamudi et al. 2004). Dynein 

has been shown to be regulated during the first steps of pinosome formation (Yang, 

Vadlamudi, and Kumar 2005). Furthermore, up-regulation of Sorting nexin 5 (SNX5) 

stimulates macropinocytosis (Lim et al. 2008; Wang et al. 2010). SNX5 is a BAR domain 

and a PX domain containing protein, that is targeted to the endosomes through binding to 

the phosphatidylinositol 3-phosphate (PtdIns(3)P) (Worby and Dixon 2002). SNX5 

localizes to the early endosomes and macropinosomes and is involved in the maturation 

of the macropinosomes by inducing early tubulation of the vacuolar membrane (Kerr 

2006).  Similar to the EE, tubulation might be involved in the segregation of the cargo 

into subcompartments. However, instead recycling to the PM it cargo is delivered to the 

TGN (trans-Golgi network) (Kerr 2006; Jing Zhang et al. 2012).  

Maturation of macropinosomes is relatively fast. In the EGF (Epidermal Growth 

Factor) activated macrophages just 3-4 minutes after internalization vacuoles are enriched 

in late endosome and lysosomal markers (Racoosin and Swanson 1993; Kerr 2006).  
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1.3.3 Regulators of endocytosis 

 

In next chapters I will describe major regulators of endocytosis. I will focus first on actin, 

and then I will describe some of the proteins involved in vesicle fusion and scission as 

well as general regulatory machineries present on endocytic membranes. 

 

1.3.3.1 Actin 

 

 Actin is a necessary component of the endocytic process. For instance in yeast 

and plant cells CME sites are marked by an accumulation of actin and disruption of actin 

nucleation regulates in an immediate block of endocytosis (Kübler and Riezman 1993). 

Moreover, actin polymerization provides sufficient force for bending the plasma 

membrane. For example, after the initial deformation of a clathrin coated pit (check 

Chapter 1.3.2.1) actin drives its elongation and assists scission of the vesicle. This is 

crucial in both, yeast and plant cells as the intracellular pressure (turgor) in these cells is 

relatively high and exerts a constant tension at the PM (Aghamohammadzadeh and 

Ayscough 2009). Moreover, in yeast force generated on the PM by actin is sufficient for 

budding of CCVs (Kaksonen, Toret, and Drubin 2005; Chu, Pishvaee, and Payne 1996; 

Payne et al. 1988).  

 In mammalian cells actin is recruited to the sites of CCVs formation, however 

there are some differences. For instance, mammalian cells have relatively low turgor and 

the force generated by actin to form a vesicle is not obligatory (Fujimoto et al. 2000). 

However, actin was shown to be essential for CCV formation in the experiments where 

artificial increase of rigidity of the plasma membrane was generated (Boulant et al. 2011; 

Saffarian, Cocucci, and Kirchhausen 2009; A. P. Liu et al. 2009). Similarly to these 

experiments, mammalian cells do undergo increased PM tension during morphogenesis. 

For example, cortical accumulation of filamentous actin (F-actin) at focal adhesions and 

junctions generate force at the PM (reviewed in Lecuit et al. 2011). Although in these 

cellular domains CME is less abundant, vesicles that are formed are dependent on actin 

nucleation (Levayer, Pelissier-Monier, and Lecuit 2011). In contrast to yeast, force 
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generated by actin in mammalian cells is insufficient for the scission of the CCV and is 

generated by dynamin (Marks et al. 2001) (Chapter 1.3.3.4 ). 

 Actin dynamics is also involved in clathrin-independent endocytosis. Formation 

of large invaginations at the PM such as phagosomes and macropinosomes is dependent 

on actin remodelling (Mercer and Helenius 2009). For instance during the uptake of 

opsonized particles, actin surrounds the outer layer of the pinocytic cup (Coppolino et al. 

2001). This allows the large cargo to be completely surrounded by the PM and to be 

subsequently internalized. Similar actin structures are formed during macropinosome 

formation. Actin branching close to the PM results in formation of membrane ruffles. 

Upon the collapse of the ruffle on itself a macropinocytic cup is formed, ingesting the 

extracellular material (Mercer and Helenius 2009). 

 In addition, studies on Shiga toxin internalization by the lipid raft dependent 

endocytosis (CLIC) demonstrated a role for actin in the scission of endocytic tubes 

(Römer et al. 2010). It has been shown that formation of intracellular tubes are stable in 

the presence of monomeric actin, while polymerization of F-actin drives pinching in a 

dynamin independent manner (Römer et al. 2010). 

 Taken together, these data suggest that actin plays an important role in many 

aspects of vesicle formation and cells are able to utilize the force generated by actin 

polymerization to counteract PM rigidity and thus facilitate vesicle formation. 

 

1.3.3.2 Tethers and SNARE-s 

 

 Transport along endocytic pathways involves recognition and fusion of different 

endocytic organelles. The first step in this process is mediated by tethering proteins 

represented by two classes: the multisubunit tethering complexes and the coiled-coil 

tethers. Coiled-coil tethers are dimeric complexes with two globular head groups 

connected through a coiled-coil domain (Callaghan, Simonsen, and Gaullier 1999). This 

class forms long, rod-like structures connecting membranes up to 200 nm apart 

(Sapperstein et al. 1995; Barr and Short 2003). Coiled-coil tethers are recruited to the 

specific endocytic compartments via the Rab GTP-ases (Christoforidis, McBride, et al. 

1999).  
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 The second class of tethers is represented by the multi-subunit tethering 

complexes (MTC) bringing together endocytic structures in close proximity. For 

example, these complexes are important for the maturation of early endosomes into 

lysosomes (Markgraf, Ahnert, and Arlt 2009; Peplowska et al. 2007). Moreover, MTCs 

can interact directly with SNARE proteins (Siniossoglou and Pelham 2001; Conibear, 

Cleck, and Stevens 2003).  

 SNAREs (soluble NSF attachment protein receptor, where NSF stands for 

N-ethyl-maleimide-sensitive fusion protein) are the key players in vesicle fusion 

(reviewed in Ungar & Hughson 2003). Syntaxin-1, SNAP25 (synaptosomal-associated 

protein 25) and VAMP (vesicle-associated membrane protein) were identified as limiting 

factors for the fusion of synaptic vesicles (Trimble, Cowan, and Scheller 1988; Oyler et 

al. 1989; Bennett, Calakos, and Scheller 1992). These three proteins as well as their 

homologues gave rise to the SNARE hypothesis (Söllner et al. 1993). The hypothesis 

states that SNAREs are ubiquitous proteins that drive fusion of membranes. Furthermore, 

these proteins fall into two categories: v-SNAREs associated with vesicle and t-SNAREs 

present at the target membranes. More adequate classification of SNARE proteins is 

based on the conserved residues (R-, Qa-, Qb-, Qc-SNARE). In general the R-SNARE 

corresponds to the v-SNARE and the Q-SNARE to the t-SNARE (Fasshauer et al. 1998). 

 The function of SNAREs relies on its specific structure. Even though the 

individual SNARE proteins remain unfolded, when expressed together they are forming a 

stable four helix structure between two adjacent membranes (the trans-SNARE complex). 

Formation of the trans-SNARE complex generates an exergonic force responsible for 

bringing together and fusing two lipid bilayers. This fully zippered SNARE complex is 

called the cis-SNARE. Afterwards, SNARE proteins are retrieved from the cis- complex 

by the NSF ATP-ase in cooperation with the adaptor protein SNAP. SNARE proteins are 

then reused for another round of fusion (Clary, Griff, and Rothman 1990; Ungar and 

Hughson 2003). 

 SNAREs are regulated by the Sec1 (syntaxin binding protein 1)/Munc18 

(mammalian uncoordinated-18) complex, which has a dual role. First, it binds and 

stabilizes the closed conformation of syntaxin-1, which inhibits formation of the SNARE 
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complexes. Second, SM (Sec1/Munc18) acts as a catalyst for the trans-SNARE complex 

(Carr and Rizo 2010). This dual function of SM proteins is still not fully understood.  

In summary, tether molecules and SNAREs are the key regulators of membrane 

docking and membrane fusion in endocytic pathways. 

 

1.3.3.3 Rab GTP-ases and their effectors 

 

The high fidelity underlying membrane fusion and fission reactions implies that 

the activity of tethering proteins, SNAREs and actin must be spatially and temporally 

regulated. This spatial-temporal regulation is provided by guanidine triphosphate 

hydrolases (GTP-ases) of the Ras-super-family, including Ras (rat sarcoma), Rho, ARF 

(ADP-ribosylation factor), Sar (secretion-associated ras) and Rabs (ras-related in brain) 

(reviewed in Wennerberg et al. 2005).  

 Rab GTP-ases are the largest group of the Ras-like family and consist of over 60 

members in human and 31 in Drosophila (Pereira-Leal and Seabra 2001; Jun Zhang et al. 

2007). The different family members display a high degree of homology in their 

amino-acid sequence, especially in the region responsible for the GTP binding and 

hydrolysis (Pfeffer 2005). However, each member of this family localizes to specific 

intracellular compartment where it exerts its function (reviewed M Zerial & H. McBride 

2001). Rab proteins function as a ‚molecular switches’ meaning that they occupy two 

different conformational states, a GTP bound (referred as active) and a GDP bound 

(referred as inactive) (M.-T. G. Lee, Mishra, and Lambright 2009). Active Rabs act 

through their effectors (i.e. proteins preferentially binding to the active form), which 

control vesicle formation, motility, tethering and fusion. Importantly there is a distinct set 

of effectors for each Rab-pathway (Zerial and McBride 2001). 

 The life cycle of Rab proteins has been extensively studied. Upon translation, Rab 

proteins are bound by the Rab escort protein (REP) that transfers them to the Rab 

geranylgeranyl transferase (RabGGT) (Alexandrov et al. 1994) (Figure 1.4 a). RabGGT 

is an enzyme that adds a single or two geranylgeranyl lipid groups to the cysteins in the 

CAAX boxes close to the C-terminus of the Rab protein (Figure 1.4 b) (Farnsworth et al. 

1994). Following this reaction, GDP bound Rab is delivered to its target organelle 
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(Figure 1.4 c). This targeting depends on approximately 40 amino acids (usually referred 

to as the hyper-variable region) upstream of the CAXX box (Chavrier, Gorvel, and 

Stelzer 1991). Upon binding to the membrane, GDP is exchanged to GTP by guanine 

nucleotide exchange factors (GEF) (Figure 1.4 d). GTP hydrolysis is catalysed by 

GTP-ase activating proteins (GAP) (GEFs and GAPs are reviewed in Bos et al. 2007). 

Following GTP hydrolysis, Rab is extracted from the membrane by RabGDI 

(GDP-dissociation inhibitor) (Figure 1.4 e) (Luan et al. 1999). This cascade is important 

for the maturation of endocytic compartments as Rab proteins are progressively 

exchanged one by the other along the pathway (Rink et al. 2005). 

 

 

 
Figure 1.4 Rab GTP-ases membrane cycle. 

 

Schematic view of the proteins that regulate the localization and activity of Rab. For detailed 

description, see Chapter 1.1.3.3 
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1.3.3.3a Rab5 

 

 One of the best-characterized GTP-ases in the endocytic pathway is Rab5. Rab5 

controls both CCVs formation as well as early endosome biogenesis. It is involved in the 

uncoating of CCVs and their fusion with EEs. In addition, Rab5 controls EE motility, 

tethering, fusion and actin remodeling (Zerial and McBride 2001). Over-expression of the 

GTP-ase deficient Rab5 (active form) induces the formation of enlarged endosomes 

(Roberts et al. 1999), while knock-down of Rab5 results in loss of early and late 

endosomal compartments (Zeigerer et al. 2012).  

 Rab5 regulates a vast network of effectors and controls the production of 

PtdIns(3)P on early endosmal membranes. PtdIns(3)P is an important regulator of early 

endosome function and is generated by two Rab5 effectors, the hVps34 (vacuolar protein 

sorting 34) kinase and the PI3Kβ (phosphoinositide 3-kinase beta) (Christoforidis, 

Miaczynska, et al. 1999). hVps34 can directly generate PtdIns(3)P from PtdIns on the 

early endosome while PI3Kβ function is restricted to the PM (Simonsen, Lippe, and 

Christoforidis 1998; Christoforidis, Miaczynska, et al. 1999). Upon stimulation by 

signalling factors and in cooperation with a chain of phosphatases, PI3Kβ converts 

PtdIns(4,5)P2 into PtdIns(3)P (Shin et al. 2005). Local increase in PtdIns(3)P facilitates 

the recruitment of other Rab5 effectors containing a conserved protein motif (FYVE 

finger domain) that binds specifically to PtdIns(3)P (Kutateladze et al. 1999). For 

example, EEA1 and Rabenosin-5 are Rab5 effectors containing FYVE domain 

responsible for the homotypic fusion and maturation of the endocytic compartment 

(Nielsen et al. 2000; Gaullier et al. 2000). EEA1 (early endosome antigen 1) is a tethering 

protein that additionally binds to the syntaxin-6 (a SNARE), therefore enabling vesicle 

fusion (McBride et al. 1999). Another Rab5 effector is Rabaptin-5, a coiled-coil protein 

necessary for the homotypic fusion between early endosomes (Stenmark et al. 1995). In 

addition, Rabaptin-5 interacts also with Rab4, a GTP-ase presents on the tubular 

sub-domain of EEs and whose function has been linked to recycling back to the PM 

(Vitale et al. 1998; Sönnichsen et al. 2000). Thus Rabaptin-5 coordinates entry in and exit 

out of EEs.  
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 As mentioned above, Rab5 is involved also in the removal of the AP2 coat from 

CCVs. AP2 is a multi-subunit adaptor protein linking clathrin with cargo and other 

adaptor proteins. While the clathrin coat is removed by the combined action of the Hsc70 

and the auxilin, AP2 removal is controlled by the Rab5 GAP, RME-6 (Rab5-activating 

protein 6). RME-6 competes for the binding of the adaptor-associated protein kinase 1 

(AAK1) with the μ2 subunit of the AP2 complex and thus facilitates μ2 

dephosphorylation. In addition, Rab5 mediates also the reduction of PtdIns(4,5)P2 levels 

on the vesicle. This in turn facilitates uncoating as AP2 binding to membranes is 

PtdIns(4,5)P2-dependent (Sato et al. 2005; Semerdjieva et al. 2008).  

  Rab5 controls also the motility of EEs. Endosome motility is important for both 

their intracellular localization as well as for their maturation into late endosomes. Early 

endosomes move in two fashions, on long routs by binding to microtubules and on short 

routes by binding to actin. Microtubule movement of EEs is bidirectional with a 

preference for the minus-end direction. This movement is dependent on the function of 

the hVps34 that generates PtdIns(3)P and allows the recruitment of KIF16B (kinesin 

family member 16B), a plus end directed motor containing a FYVE finger domain 

(Hoepfner et al. 2005). To date there are no details about the Rab5 effectors regulating 

the minus end movement of endosomes on microtubules. A second type of movement of 

EEs is driven by actin. This type of endosome motility is regulated by the 

huntingtin/HAP40 (huntingtin-associated protein 40) complex that binds directly to Rab5. 

Huntingtin is responsible for the switch of the EE from the microtubule to the actin 

cytoskeletons, and over-expression of HAP40 leads do a significant decrease in 

movement of the Rab5-positive vesicles (Pal et al. 2006). 

 Rab5 is very important also for the regulation of clathrin independent pathways. 

For instance, Rab5 colocalizes and regulates membrane ruffles that are involved in the 

formation of macropinosome (Chapter 1.3.2.5). Membrane dynamics during 

macropinocytosis is regulated by RN-tre (USP6 N-terminal like protein), which acts both 

as a GAP and as an effector for Rab5. RN-tre interacts with actin and the actin 

cross-linker, actinin-4. Rab5, actin and actinin-4 together induce formation of membrane 

ruffles (Lanzetti et.al 2004). 
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1.3.3.3b Rabankyrin-5 

 

Another Rab5 effector involved in apical endocytosis and macropinocytosis is 

Rabankyrin-5. Rabankyrin-5 was identified as a 130kDa effector of Rab5 and is 

expressed in many tissues throughout mouse development (Ito et al. 1999). It consists of 

a BTB (BR-C, ttk and bab) domain responsible for homo- and heterodimerization, 21 

ankyrin repeats and a C-terminal FYVE finger domain (Schnatwinkel et al. 2004; Ito et 

al. 1999). Endogenous Rabankyrin-5 binds to the EEA1 positive endosomes and 

associates to newly formed macropinosomes. Association to these organelles is 

dependent on the FYVE domain as well as on other unidentified part of the protein. 

Importantly, knock down of Rabankyrin-5 reduces fluid phase uptake in NIH3T3 cells 

while its over-expression has a positive stimulus on this process. In addition, 

over-expression of Rabankyrin-5 in polarized MDCK cells induces specifically apical 

endocytosis. Moreover, Rabankyrin-5 is necessary for the homotypic fusion between EEs 

but not for the fusion between CCVs and the EEs (Schnatwinkel et al. 2004). In 

summary, Rabankyrin-5 is a Rab5 effector that controls both apical endocytosis and 

macropinocytosis and its function will be further described in the results section. 

 

1.3.3.4 Dynamin 

 

 Dynamin is a large GTP-ase involved in vesicle fission and was first identified in 

Drosophila as the gene coding for shibire, a gene whose temperature sensitive allele 

resulted in muscle paralysis (Suzuki et. al 1971; Kosaka and Ikeda 1983). In Drosophila 

and C. elegans dynamin is coded by a single gene while in mammals there are 3 isoforms 

that have distinct tissue expression patterns (Cao, Garcia, and McNiven 1998; Raimondi 

et al. 2011). This differential localization suggests that in mammals specific isoforms 

have evolved to fulfil the needs of different tissues. Structurally dynamin is composed of 

an N-terminal GTP-ase domain, an effector binding domain, a PH (pleckstrin homology) 

domain with affinity for PtdIns(4,5)P2, and a C-terminal SH3 (src homology 3) domain 

binding to actin regulatory partners (Muhlberg, Warnock, and Schmid 1997). 
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 As oppose to the other GTP-ases like Rab proteins, dynamin has low affinity for 

nucleotide binding. Therefore GAPs and GEFs are not necessary for the stability of the 

GTP in its binding pocket (Sever, Muhlberg, and Schmid 1999). Upon binding to GTP, 

dynamin self-polymerizes instead of interacting with down-stream effectors as it is the 

case for Ras-like small GTP-ases (Hinshaw and Schmid 1995, Warnock et. al 1996).  

Dynamin polymers form a helix around the neck of the forming CCV and thus facilitate 

vesicle scission (Takei, Schmid, and Camilli 1995). In vitro dynamin can polymerize 

spontaneously around synthetic liposomes and other tubular matrix through its 

curvature-sensing domain (Roux et al. 2006; Hinshaw and Schmid 1995). However, in 

vivo membrane curvature is generated by BAR domain containing proteins like 

amphiphysin, which facilitates the recruitment of dynamin to the neck of the pinching 

vesicle (Ferguson et al. 2009; Grabs et al. 1997). The main function of dynamin 

(generation of force on the membrane) is dependent on GTP hydrolysis (Takei, Schmid, 

and Camilli 1995). Hydrolysis generates change in conformation of dynamin propagated 

along the helix that results in squeezing of the membrane and pinching of the vesicle 

(Chappie et al. 2011). Therefore, mutants of dynamin characterized by their inability to 

hydrolyze GTP, result in the arrest of clathrin dependent endocytosis. Ultrastructural 

analysis of such mutants shows elongated intracellular membranes covered with dynamin 

helix unable to pinch off from the PM (Kosaka and Ikeda 1983; Takei, Schmid, and 

Camilli 1995). 

 Initial studies on dynamin function in Drosophila showed that dynamin mutants 

are characterized by impaired axon growth (Murphey 2003). This led to the hypothesis 

that dynamin might be involved in the regulation of actin cytoskeleton. Indeed dynamin 

was shown to bind directly to actin bundles though its effector binding domain or 

indirectly through the association of its SH3 domain with other actin regulators (reviewed 

in S. M. Ferguson & Pietro De Camilli 2012). This association with actin might be 

important for the generation of actin driven plasma membrane morphological changes. 

For example, blocking dynamin activity alters formation of phagocytic cups, invadopodia 

and podosomes (Gold et al. 1999; Ochoa et al. 2000; Baldassarre et al. 2003). In T-cell, 

dynamin has been shown to interact with the RhoGEF, and this interaction contributes to 

the reorganization of actin at the immunological synapse (Miletic et al. 2009). The impact 
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of dynamin on actin organization suggests that this GTP-ase plays important in cell 

physiology in addition to endocytosis 

 

 

1.4 Endocytosis-dependent regulation of developmental processes 

 

Endocytosis regulates many developmental processes including tissue patterning 

(by regulating cell signaling), maintenance of cell adhesion and establishment of cell 

polarity. Below I will describe three examples of how endocytosis controls development 

at the tissue and organismal level. I will describe the impact of endocytosis on 

morphogen gradient formation, on the regulation of signalling between neighbouring 

cells (Notch pathway) and on cytokinesis. In the last chapter I will focus on endocytic 

events taking place during cellularization in Drosophila embryo. 

 

1.4.1 Endocytosis in morphogen gradient formation 

 

In a developing multicellular organism differentiating cells acquire positional 

information through secreted proteins called morphogens. Morphogen molecules are 

secreted from a group of signalling cells and form a concentration gradient, which is 

interpreted by receiving cells in a concentration-dependent manner. For example, 

Hedgehog (Hh), Wingless (Wg) and Decapentaplegic (Dpp) are three important 

morphogens controlling tissue patterning and whose gradient formation requires 

endocytosis (reviewed in Tabata & Y. Takei 2004). In general, there are two main 

hypotheses that attempt to explain the establishment and stability of these concentration 

gradients. 

In the planar transcytosis hypothesis, morphogens are uptaken by the 

receptor-mediated endocytosis by cells close to the source and then secreted further. This 

would involve formation of endosomes able to transcytose their content across opposite 

lateral membranes. By multiple rounds of endocytosis and secretion a gradient would be 

formed. Support to this hypothesis came from studies aimed at understanding how the 

Dpp gradient forms in the imaginal wing disk of Drosophila. 
 
It has been shown that 
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blocking endocytosis in clone of cells limits the spreading of Dpp behind the clone 

(Entchev, Schwabedissen, and González-Gaitán 2000; Kicheva et al. 2007). 

 However, analysis of Wg distribution revealed that dynamin dependent 

endocytosis is not necessary to generate a stable gradient for this particular morphogen 

(Strigini and Cohen 2000). In contrast, ECM (extracellular matrix) components, 

especially heparan sulfate proteoglycans (HSPGs) and lipoproteins associated with them, 

are responsible for proper gradient formation (Esko and Selleck 2002; Nakato, Futch, and 

Selleck 1995; Baeg et al. 2001). This led to the restricted diffusion hypothesis, where 

morphogens are immobilized by binding to the HSPGs. According to this hypothesis, 

endocytosis controls only the internalization and degradation of the morphogen and 

contributes only indirectly to the formation of the gradient. For example, endocytosis and 

lysosomal degradation of Hh, via binding to its receptor Patched, limits the spreading of 

this morphogen (Callejo, Culi, and Guerrero 2008; Torroja, Gorfinkiel, and Guerrero 

2004). It is very likely that these two hypotheses are not mutually exclusive and that both 

endocytosis and ECM components together shape morphogen gradients during tissue 

patterning.  

 

1.4.2 Endocytic-regulation of Notch signaling 

 

Another example showing the importance of endocytosis in cell signalling during 

development is represented by the Delta/Notch signalling pathway. The Notch pathway is 

involved in developmental processes such as limb formation in mammals, wing 

patterning in Drosophila, specification of mesoectoderm and neurons in the early 

Drosophila embryo (Pan et al. 2005; Baonza and Garcia-Bellido 2000; De Renzis et al. 

2006). This signalling pathway is initiated by the interaction between two transmembrane 

proteins, the Notch receptor and its ligand Delta/Serrate/Lag2 . In contrast to morphogen 

gradient this interaction occurs between two neighboring cells and is therefore a 

short-distance signalling system (reviewed in Bray 2006). 

After the initial interaction with the transmembrane ligand, Notch undergoes two 

sequential cleavage events. First, an extracellular part of the receptor NECD (Notch 

extracellular domain) bound to the DSL is digested and subsequently an intracellular part 
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of Notch (NICD) is cleaved off. NICD then shuttles to the nucleus and acts as a 

transcription factor (Bray 2006).  

For proper signalling both the activated receptor and the ligand must undergo 

endocytosis (Parks et al. 2000). The second event is quite surprising since Delta 

endocytosis takes place in the signalling-sending cell. Recent studies in Drosophila 

proposed a new hypothesis that can explain this phenomenon. Because the interaction of 

Notch and Delta happens between two cells, it is possible that the internalization of Delta 

induces a pulling force on Notch (Parks et al. 2000; Meloty-Kapella et al. 2012). This 

would uncover the extracellular cleavage site of Notch leading to Notch processing and 

signalling in the receiving cell. In addition, Delta molecules might need to be activated in 

an endocytic compartment in order to interact with Notch. This hypothesis is based on the 

fact that Delta is ubiquitinated by the E3 ligase Neuralized (Deblandre et al. 2001; Emery 

et al. 2005). In general, ubiqiunated transmembrane proteins are internalized from the PM 

and delivered to endosomes (reviewed in Polo 2012). Trafficking of Delta through an 

endocytic compartment might lead to its activation. In addition, the amount of Delta at 

the PM might be important for a stoichiometric balance between ligand and receptor on 

the surface of signalling and receiving cells (Lyman and Yedvobnick 1995; Fanto and 

Mlodzik 1999).  

As mentioned before internalization of Notch is necessary to complete signalling. 

So far it is not known whether the intracellular part of Notch is cleaved at the PM or in an 

endocytic compartment. Studies on ESCRTI/II (endosomal sorting complex required for 

transport) mutants suggest that cleavage might take place on the endosomal surface. 

Blocking the ESCRT complexes, a key component of multivesicular body formation, 

leads to the hyperactivation of Notch signalling (Vaccari et al. 2009). This result suggests 

that the internalization of Notch into multivesicular body limits the amount of Notch 

molecules that can be processed on the limiting membrane of endosomes.  

The mechanisms controlling Notch and Delta internalization have been 

extensively studied in the early Drosophila embryo. During cellularization, Delta and 

Notch are specifically internalized in presumptive mesodermal cells. This trafficking 

pathway is regulated by Neuralized whose activity is restricted to mesodermal cells by a 

family of small peptides, the bearded proteins that are specifically expressed outside of 
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the mesodermal primordium (De Renzis et al. 2006; Bardin and Schweisguth 2006). 

Given that Bearded proteins inhibit Neuralized they also block Delta endocytosis (De 

Renzis et al. 2006; Bardin and Schweisguth 2006). As a result, signalling between Notch 

and Delta can occur only between the cells at the mesoderm border that act as a donor for 

the ligand and the cells adjacent to the mesoderm that receive the signal. This leads to the 

activation of Notch in a single stripe of cells, the mesoectoderm that will give rise to the 

nervous system at the later stages of development (Martín-Bermudo, Carmena, and 

Jiménez 1995; De Renzis et al. 2006; Bardin and Schweisguth 2006).  

In summary, formation of morphogen gradients and Notch signaling clearly 

demonstrate the importance of endocytosis in controlling tissue patterning. 

 

1.4.3 Endocytosis during cytokinesis 

 

The first experimental observation suggesting that endocytosis plays a role in 

cytokinesis comes from the discovery that the cell volume is rapidly decreasing before 

cell division (Boucrot and Kirchhausen 2007). This is due to an increase in chlorine ion 

efflux from the cells (Russell 2000). At the same time the surface of the PM is reduced 

leading to an accumulation of endocytic vesicles that are then redistributed to the 

cleavage furrow (Horgan et al. 2004). Indeed, during cytokinesis the site of new 

membrane insertion is at the cleavage furrow (Shuster and Burgess 2002; Goss and 

Toomre 2008). This membrane redistribution requires trafficking through recycling 

endosomes. In fact, studies on spermatocyte division in Drosophila revealed a role of 

Arf6, Rab11 and Rab4, three regulators of the endocytic-recycling pathway in this 

process (Giansanti et al. 2007; Dyer et al. 2007). Arf6 belongs to the same super-family 

of small GTP-ases as Rab proteins and it has been shown to be important for the rapid 

addition of membranes to the cleavage furrow in dividing spermatocytes (Dyer et al. 

2007; Schweitzer, Sedgwick, and D’Souza-Schorey 2011). Furthermore, mutations in this 

gene result in the formation of multinucleated cells. Additionally, Drosophila Rab11 

mutants show a similar phenotype to Arf6 mutant flies, suggesting that membrane 

recycling is necessary for the addition of new membrane to the cleavage furrow 

(Giansanti et al. 2007). Another recycling pathway required for cytokinesis is the one 
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regulated by Rab35. Indeed, genetic screens performed in Schneider 2 (S2) cells have 

shown that Rab35 is required for cytokinesis (Yu, Prekeris, and Gould 2007). Rab35 acts 

through its effector, OCRL (oculocerebrorenal syndrome of Lowe) phosophatase. OCRL 

accumulates at the cleavage furrow in late cytokinesis in a Rab35 dependent manner. The 

phosphatase activity of OCRL regulates the amount of Ptd(4,5)P2 at the furrow that is 

important for  proper actin cytoskeleton assembly at the division plane (Kouranti et al. 

2006; Dambournet et al. 2011; Chesneau et al. 2012). Dynamin has also been shown to 

be important for cell division. During cytokinesis dynamin accumulates preferentially at 

the ingressing furrow, probably on recycling endosomes (Wienke et al. 1999; Thompson 

et al. 2002). Because dynamin has also been shown to regulate actin cytoskeleton the 

possibility exists that the assembly of the contractile ring is also dynamin dependent 

(Schafer 2004). 

As mentioned before, the activity of the early endosome regulator Rab5 is also 

required for cell division. For instance, Rab5 knockdown results in formation of 

multinucleated cells (Yu, Prekeris, and Gould 2007). Moreover, Rab5 is tightly regulated 

during the cell cycle by the Cdc14 and the Cdk1 (cyclin-dependent kinase 1) kinases. 

During early mitosis Cdk1 phosphorylates RN-tre (see Chapter 1.3.3.3) leading to the 

down-regulation of Rab5 activity. During cytokinesis Cdc14 inactivates Cdk1 and as a 

consequence reactivates Rab5 (Lanzetti et al. 2007).  

Taken together these data demonstrate that trafficking along the 

endocytic-recycling pathway plays an important role during cytokinesis. However, we 

still do not know much about the specific routes responsible for the initial changes in PM 

organization during cytokinesis.  

 

1.4.4 Membrane trafficking and endocytosis during cellularization 

 

During cellularization the plasma membrane area increases of over 20 fold in one 

hour. As a result a polarized epithelium composed of approximately 6000 cells is 

established (Mazumdar and Mazumdar 2002). Therefore cellularization represents a good 

model system to study the mechanisms underlying plasma membrane remodeling during 

morphogenesis.  
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Injection of WGA (a lipid binding molecule) coupled to a fluorescent dye 

revealed that the addition of new membranes occurs in two different areas. During the 

slow phase of cellularization membranes are added to the apical domain of the growing 

cells. In contrast, the furrow canal seems to be devoted from new membrane materials. 

This situation changes during the fast phase when new membranes are delivered to the 

lateral PM. This result indicates that there are different two routs or two targeting 

mechanisms to the PM (T Lecuit and Wieschaus 2000). One important question relates 

with the source of the new membranes. Injection of Brefeldin A, a drug that inhibits 

Golgi function, results in the arrest of furrow ingression. Similar effects were obtained by 

inhibiting golgin Lava lamp, a protein responsible for the movement of the Golgi 

apparatus (Sisson et al. 2000; Papoulas, Hays, and Sisson 2005). Additional evidence for 

the role of the secretory pathway in membrane addition comes from the analysis of Sec5 

mutants. Sec5 is part of the exocyst complex and is responsible for the fusion of exocytic 

vesicles with the PM (He and Guo 2009). Experiments that took advantage of a 

temperature sensitive allele of Sec5 demonstrated that newly synthesized proteins 

accumulate in the Golgi complex and cellularization did not proceed (Murthy et al. 

2010). Surprisingly, in contrast to the WGA injection experiments, Sec5 localizes mostly 

apically and sub-apically during fast-phase without the expected strong localization to the 

basolateral surface. It is possible that exocyst controls only one of the two routs that are 

specific for the addition of new membranes.  

Research done in recent years demonstrated also that the endocytic-recycling 

pathway plays an important role during cellularization. As mentioned in Chapter 1.4.3, 

recycling endosomes positive for Rab11 are an important source for the addition of new 

membranes during cytokinesis. Indeed injection of recombinant dominant negative form 

of Rab11 into cellularizing embryos results in the arrest of cellularization. Moreover, 

accumulation of the neurotactin in intracellular vesicles could also be observed (Pelissier, 

Chauvin, and Lecuit 2003). However, it is hard to distinguish whether this cellularization 

phenotype is solely due to a defect in new membrane addition or is rather mediated by the 

miss-regulation of some other Rab11-dependent pathways, such as the regulation of actin 

dynamics at the furrow canal. 
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Rab5 regulates another pathway that is important for cellularization. Injection of 

the recombinant dominant negative mutant of Rab5 results in arrest of cellularization and 

furrow disassembly. Detailed analysis of the membranes in early cellularizing embryo 

labelled with WGA, revealed that endocytosis takes place at the furrow canal during the 

slow phase. Also, it was shown that in cellularizing embryos endocytosis at the furrow is 

dependent on actin. Disruption of actin at the furrow canal results in formation of long 

intracellular tubes. These structures originate from the bottom of the furrow canal (Sokac 

and Wieschaus 2008a). Similar to Rab5 phenotype can be also obtained in dynamin 

mutants (Pelissier, Chauvin, and Lecuit 2003).  

 Taken together, understanding the mechanisms that control membrane delivery 

and removal at the specific domains of the cellularizing embryo might bring us closer to 

understand a detailed role of endocytosis in controlling many aspects of cell and tissue 

morphogenesis. 
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2.1 Materials 

 

2.1.1 Equipment 

 
100x oil objective  Zeiss 

60x oil objective APO N  Olympus 

60x water objective LSM 780 NLO  Zeiss 

ABI PRISM 7500  Applied Biosystems 

Agarose gels electrophoresis chambers  Thermo Scientific 

Analytical scale TE412  Satorius 

Block thermostate  Grant 

Cell^R, multi-color TIRF  Olympus Biosystems 

Dissection microscope  Zeiss 

Heraeus Multifuge  Thermo Scientific 

Improvision Ultraview VoX Spinning disk 

confocal 

 
Perkin Elmer 

Incubator B15  Thermo Scientific 

Microcentrifuge 5415 and 5424  Eppendorf 

Microfluidizer M-110L  Microfluidics 

Microinjector  Eppendorf 

MicroPulser Electroporation Apparatus  Bio-Rad 

Nanodrop Spectrophotometer ND-1000  Nanodrop Tech. 

Optima L-100 XP Centrifuge  Beckman Coulter 

P-97 Flaming/Brown puller  Sutter Instrument 

PCR machine S1000  Bio-Rad 

Pipettes  Gilson 

Potter S Homogeniser  Satorius 

Power supply PowerPac HC  Bio-Rad 

Rotator with wheel SB3  Stuart 

SDS-PAGE chamber  Life Technologies 

Sorvall RC 6 Plus Superspeed Centrifuge  Thermo Scientific 

Trans-blot system  Bio-Rad 

Transilluminator  Life Technologies 

Two photon microscope LSM 780 NLO  Zeiss 
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Vortex  Neolab 

Water bath thermostate  Julabo 

Water bath WNB7  Memmert 

 

2.1.2 Consumables 

 
Amicon Ultra-0.5 Centrifugal Filter Unit  Millipore 

Borosilicate glass capillaries  Harvard Apparatus 

Electroporation cuvettes  Bio-Rad 

Filter paper  Whatmann 

Glass bottom microscopy dishes  MatTek 

Kodak Biomax MR film  Kodak 

Microscopy coverslips  Warner Instruments 

Microscopy slides  Thermo Scientific 

NuPAGE Novex 4-12% Bis-Tris Gel  Life Technologies 

PCR tubes  Bio-Rad 

PVDF membrane  Bio-Rad 

Tubes 1.5 mL, 2 mL  Eppendorf 

Tubes 15 mL, 50 mL  Falcon 

Vivaspin  GE Healthcare 

 

2.1.3 Chemicals 

 
2-mercaptoethanol 98%  Sigma-Aldrich 

Agarose  Life Technologies 

Ampicilin sodium salt  Applichem 

Aqua-Poly/Mount  Polysciences 

Bovine serum albumin  Sigma-Aldrich 

Bromophenol Blue  Sigma-Aldrich 

Chloramphenicol  Karl Roth 

Coomassie Brilliant Blue G250  Fluka 

Dextran, Alexa Fluor 647  Life Technologies 

DTT  Biomol 

EasyTag L-[
35

S]-Methionine  Perkin Elmer 

GDP sodium salt  Sigma-Aldrich 
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GTPγS lithium salt  Sigma-Aldrich 

Halocarbon oil 27  Sigma-Aldrich 

Halocarbon oil 700  Sigma-Aldrich 

IPTG  Biomol 

Kanamycin sulfate  Karl Roth 

Orange G  Sigma-Aldrich 

Paraformaldehyde 20% solution  Electron Microscopy Sciences 

pHrodo Red Dextran 10 000 MW  Life Technologies 

SDS  Life Technologies 

Sodium hypochlorite  Merck 

SYBR Safe  Life Technologies 

Triton X-100  Sigma-Aldrich 

Tween 20  Sigma-Aldrich 

 

All other common chemicals were obtained from Sigma-Aldrich and Merck. 

 

 

2.1.4 Reagents and Kits 

 
Complete protease inhibitor coctail  Roche 

GeneJET Purification Kit  Thermo Scientific 

Glutathione Sepharose 4B  GE Healthcare 

Ni-NTA  QIAGEN 

QIAfilter Plasmid Midi Kit  QIAGEN 

QIAprep Spin Miniprep Kit  QIAGEN 

QIAquick Gel Extraction Kit  QIAGEN 

QIAquick PCR Purification Kit  QIAGEN 

RNeasy Mini Kit  QIAGEN 

Western Lightning Plus ECL  Perkin Elmer 

 

2.1.5 Enzymes 

 
Crimson Taq DNA polymerase   New England Biolabs 

DNase I  Roche 

Gateway LR Clonase II   Life Technologies 

GoTaq  Green PCR Master Mix  Promega 
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pENTR™/D-TOPO® Cloning Kit  Life Technlologies 

Phusion Flash PCR Master Mix  Thermo Scientific 

Proteinase K  Thermo Scientific 

Restriction endonucleases  New England Biolabs 

RNase A  Roche 

SuperScript III First-Strand  Life Technologies 

SYBR Green PCR Master Mix  Life Technologies 

T4 DNA Ligase  New England Biolabs 

TNT  Quick Coupled Translation System  Promega 

 

2.1.6 DNA and protein markers 

 
1 Kb Plus DNA Ladder  Life Technologies 

Precision Plus Protein Dual Color   Bio-Rad 

 

2.1.7 Plasmids and vectors 

 
pENTR/D-TOPO Life Technologies 

pPGW T. Murphy 

pPHW T. Murphy 

D277M A. Brand 

pCa4G2B DGRC 

pEOC This study 

pGEX-4T GE Healthcare 

pET32 Novagen 

pCR2.1-TOPO TA Life Technologies 

pCR-XL-TOPO Life Technologies 

 

2.1.8 Bacterial strains 

 
Rosetta (DE3)  Novagen 

Top10   Life Technologies 

XL1-Blue  Stratagene 
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2.1.9 Primers 

 

To generate transgenic flies: 

 

α-adaptin  
sfGFP F CACCATGTCCAAGGGCGAGGAGCTG directional TOPO 

sfGFP R TCCCCCCGCACCGGCGCCATGGAGCCCTTGTACAGC overhang with α-adaptin 

Adaptin F GCTGTACAAGGGCTCCATGGCGCCGGTGCGGGGGGA overhang with sfGFP 

Adaptin R TTAGAATTGATCCGTCAACAGATCGCAGAT  

 

Rab11  
Rab11 F CACCATGGGT GCAAGAGAAGACGAGTACGAT TA directional TOPO 

Rab11 R TCACTGACAGCACTGTTTGCGC  

 

CG41099-PC 
CG41099 F CACCATGAAAACAGGTAGTAATGAGACGTTCTCC directional TOPO 

CG41099 R CTATGACAAGGAGCCATTTCC  

 

bcd-secYFP 
FOGYFP F ATGTCTCCGCCCAATTGTCTGCTGGCTGTTCTGGCGCT

CACGGTTTTCATAGGGGCCAACAACGCCGTGAGCAAGG

GCGAGG 

FOG signal peptide 

YFP R CTACTTGTACAGCTCGTCCATGCCGAG  

5’ bcd F CACACACCGAAACCGAACGAAAGAG  

5’ bcd R CAATTGGGCGGAGACATTTTCCCCAAACACTCCGCCGC FOG overhang 

FOG F GCGGCG GAGTGTTTGGGGAAAATGTCTCCGCCCAAT TG 5’ bcd overhang 

FOGYFP R CTCTCTAACACGCCTCTCATCCAGGTCACTTGTACAGCTCG

TCCATGCC 

3’UTR bcd overhang 

3’UTR bcd F GGCATGGACGAGCTGTACAAGTGACCTGGATGAGAGGCGT

GTTAGAGAG 

YFP overhang 

3’UTR bcd R ACTAGTGTTAA CTAGGTGTGATGAAGGGCACAGG  

 

αTub67C-secYFP 
Fog BamHI F GGATCCATGTCTCCGCCCAATTGTC BamHI 

YFP XhoI R CTCGAGCTACTTGTACAGCTCGTCCATGCCGAG XhoI 

 

secGFP and secmCherry 
Fog GFP F CACCATGTCTCCGCCCAATTGTCTGCTGGCTGTTCT

GGCGCTCACGGTTTTCATAGGGGCCAACAACGCCGT

GAGCAAGGGCGAGG 

directional TOPO, FOG 

signal peptide 

FOG Cherry F CACCATGTCTCCGCCCAATTGTCTGCTGGCTGTTCTGGC

GCTCACGGTTTTCATAGGGGCCAACAACGCCGTGAGCA

directional TOPO, FOG signal 

peptide 
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AGGGCGAGGAGG 

mCherry R CTACTTGTACAGCTCGTCCATGCCG  

 

Rab5 DN 
Rab5 F Fly CACCATGGCAACCACTCCACGCAG directional TOPO 

Rab5 R Fly TCACTTGCAGCAGT GTTCGTCGG  

QC Rab5DN 1 TCCGCTGTGGGCAAGAATTCACTGGTGCTGCGC Directional mutagenesis  

TTC to AAT 

QC Rab5DN 2 GCGCAGCACCAGTGAATTCTTGCCCACAGCGGA Directional mutagenesis  

TTC to AAT 

 

 

For GFP::Rab5 homologous recombination: 

 
Rab5 5’Arm F GCCGGCATAACTTCGTATAGCATACATTATACGAAG

TTATGCCGTCGACAAGCCCAGTTCAA 

NgoMIV, loxP 

Rab5 5’Arm R TGTTCCGCTCACTTGTATGTTCGC  

Rab5 3’Arm F GTACATATTGAACTGGGCTTGTCGACGGC  

Rab5 3’Arm R TGGGGAGCCTCCTTCGCCGGA  

Rab5 500 F GGGCAGCATGTTTTCAAGGG primer pair to test transgenic 

lines for insertion Rab5 500 R TCTGTGTCAGAAAGGCCGCA 

 

For recombinant protein expression: 

 

Rab5 
Rab5 F GAATTCATGGCAACCACTCCACGCAG EcoRI 

Rab5 R CTCGAG TCACTTGCAGCAGT GTTCGTCGG XhoI 

 

CG41099 (660-920 aa) 
Rabank5 

 Ab F 

CCATGGATGAAAACAGGTAGTAATGAGACGTTCTCC

GTAC 

NcoI 

Rabank5  

Ab R 

GGATCCCTATGACAAGGAGCCATTTCCACATTGTAGTA

C 

BamHI 

 

2.1.10 Antibodies 

 
Name Host Dilution Source 

anti-CG41099 Rabbit 1:1000 (WB) 1:500 (IF) This study 

anti-α-Tubulin, B-5-1-2 
Mouse 

monoclonal 
1:10000 (WB) Sigma Aldrich 

anti-rabbit IgG, Goat 1:500 (IF) Life 
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AlexaFluor 488 Technologies 

anti-rabbit IgG, HRP Donkey 1:5000 (WB) GE Healthcare 

 

2.1.11 Fly stocks 

 
Genotype Source 

OregonR Bloomington #5 

w, shi
1
 Bloomington #7068 

w;; P{UAS-GFP::Clc}/TM6B, Tb Bloomington #7109   

w; P{UAS-GFP::Rab11} Bloomington #8506 

y, w; P{αTub67C>Gal4}; {αTub67C>Gal4} E. Wieschaus 

y, w
1118

 Bloomington #6598 

y,w, P{UASp-secGFP} This study 

y,w; P{bcd>secYFP}attP40/CyO This study 

y,w;; P{sqh>GAP43-mCherry}attP2/TM3, Sb E. Wieschaus 

y,w; P{sqh>GAP43-mCherry}attP40/CyO E. Wieschaus 

y,w; GFP::Rab5 (endogenous locus) This study 

y,w; P{SuperFolderGFP::-adaptin}/CyO This study 

y,w; P{UASp-GFP::CG41099-PC}/CyO This study 

y,w;; P{UASp-GFP::CG41099-PC}/TM3, Sb This study 

y,w; P{UASp-GFP::Rab11}/CyO This study 

y,w;; P{UASp-secGFP}/TM3, Ser This study 

y,w;; P{UASp-secmCherry}/TM3, Ser This study 

y,w; P{UASp-YFP::Rab5} Bloomington #9775 

y,w; P{αTub67C>secGFP} This study 

y, sc, v;; P{CG41099 shRNA}attP2/TM3, Sb Bloomington #34883 

y, sc, v;; P{GFP shRNA}attP2/TM3, Sb Transgenic RNAi project 

y, w; If/CyO Bloomington #2 

y, w/P{hs-hid} Y;; P{hs-FLP}, {hs-SceI}/CyO, P{hs-hid} Bloomington #25680 

y, w;; P{loxP(w
+
)loxP-GFP::Rab5, 3xP3>mCherry}(donor) This study 

y, w/ P{Crey}; sco/CyO Bloomington #766 

 

 

 

 

 



Chapter 2 Materials and Methods 47 

 

2.1.12 Software 

 
Name Purpose Source 

CellProfiler Microscopy data quantification Broad Institute 

Illustrator Data presentation Adobe 

ImageJ Microscopy data analysis NIH  

Imaris 3D rendering and data visualization Bitplane 

MacVector DNA sequence analysis MacVector 

Photoshop Data presentation Adobe 

 

2.1.13 Buffers and solutions 

 

Bacteria lysis buffer  5 mM 

2 mM 

10 µg/ml 

10 µg/ml 

2x 

1x 

β-mercaptoethanol 

MgCl2 

DNase 

RNase 

Protease Inhibitor Cocktail 

PBS 

 

 

Column buffer  5 mM 

2 mM 

1x 

β-mercaptoethanol 

MgCl2 

PBS 

 

 

DNA loading buffer 10x  50%  

0.5x 

0.2% 

Glycerol 

TAE 

Orange G 

 

 

Elution buffer for affinity 

chromatography 

 100 mM 

1.5 M 

20 mM 

1 mM 

HEPES pH=7.4 

NaCl 

EDTA 

DTT 
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Embryo fixative solution  5 mL 

4 mL 

1 mL 

Heptane 

PBS  

20% paraformaldehyde 

 

 

LB 1x 

pH=7.2 

 10 g 

5 g 

5 g 

ad 1 L 

Bactotryptone 

Yeast extract 

NaCl 

dd H2O 

 

 

LB agar 1x  10 g 

5 g 

5 g 

15 g 

ad 1 L 

Bactotryptone 

Yeast extract 

NaCl 

Agar-Agar 

dd H2O 

 

 

Nucleotide exchange buffer  20 mM 

5 mM 

10 mM 

1 mM 

100 mM 

HEPES pH=7.4 

MgCl2 

EDTA 

DTT 

NaCl 

 

 

Nucleotide stabilization buffer  20 mM 

2 mM 

100 mM 

1 mM 

HEPES pH=7.4 

MgCl2 

NaCl 

DTT 

 

 

PBS 1X  137 mM NaCl 
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pH=7.4 2.7 mM 

10 mM 

2 mM 

KCl 

Na2HPO4  

KH2PO4 

 

 

PBST  1x 

0.1% 

PBS 

Tween 20 

 

 

PBSTX  1x 

0.1% 

PBS 

TritonX-100 

 

 

Protein loading buffer 5x  313 mM 

500 mM 

10% 

0.05% 

50% 

TRIS pH=6.8 

DTT 

SDS 

Bromophenol blue 

Glycerol 

 

 

SOC 1x  5 g 

20 g 

20 g 

10 mM 

2.5 mM 

10 mM  

ad 1 L 

Yeast extract 

Bactotryptone 

Dextrose 

NaCl 

KCl 

MgSO4 

dd H2O 

 

 

TAE 50x 

pH=8.4 

 2 M 

1 M 

50 mM 

TRIS 

Acetic acid 

EDTA 

 

TE 1x  1 mM TRIS pH=8.0 
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pH=8.0 1 mM EDTA 

 

 

Transfer buffer  25 mM 

192 mM 

0.01% 

20% 

TRIS 

Glycine 

SDS 

Methanol 
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2.2 Methods 

 

2.2.1 Standard molecular biology methods 

 

 

2.2.1.1 Isolation, purification and concentration measurements of plasmid DNA 

 

In order to extract small quantities of plasmid DNA (up to 20 g) from bacterial culture a 

QIAprep Spin Miniprep Kit was used according to the manufacturer’s protocol. For 

quantities above 20 g QIAfilter Plasmid Midi Kit was used. DNA concentration was 

measured by UV spectroscopy (260 nm) using NanoDrop spectrophotometer. 

 

2.2.1.2 Agarose gel electrophoresis 

 

This method was used to separate and purify DNA fragments. Typically 1% agarose gels 

in TE buffer were casted with addition of SYBIR safe DNA gel stain (1x). DNA solution 

was diluted with 10x DNA loading buffer and separated at 100 V for 30 minutes. Gels 

were analysed using UV- or blue-light transilluminator. When needed, DNA fragments 

were extracted and purified using QIAquick Gel Extraction Kit or MinElute Gel 

Extraction Kit. 

 

2.2.1.3 Polymerase chain reaction 

 

For preparative PCR, Phusion Flash DNA polymerase was used and for analytical PCR 

GoTaq DNA polymerase was used. Typically 20 L reaction was performed using 

Phusion Flash polymerase. The reaction was performed with 10 L polymerase master 

mix, 0.5 M of each primer, and 10 – 50 pg of plasmid DNA or 1 - 5 L of Drosophila 

genomic DNA. Typical amplification protocol using Phusion Flash DNA polymerase is 

presented in Table 2.1. 
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Cycle step Temperature 
Plasmid DNA Genomic DNA N of 

cycles Time Time 

Initial denaturation 98C 10 s 20 s 1 

Denaturation 98C 1 s 2 s 

30 Annealing 60C 5 s 15 s 

Extension 72C 15 s/1 kb 15 s/1 kb 

Final extension 72C 1 min 5 min 
1 

Incubation 4C hold hold 

Table 2.1 PCR protocol for the plasmid and genomic DNA templates. 

 

2.2.1.4 Restriction digest and ligation of DNA fragments 

 

Preparative restriction digests were performed in 30 L volume using typically 1 g of 

DNA and 10 U of appropriate enzyme. The reaction was incubated at 37C (55C for 

BsiWI) for 30 minutes. DNA fragments were separated and purified as described in the 

previous chapter. Purified fragments were ligated using T7 DNA ligase according to the 

manufacturer’s protocol. Typically a 10 L reaction was performed using 2 L of 

digested plasmid DNA, 6 L of insert DNA, 1 L of 10x ligation buffer and 1 L of T4 

ligase (3000 U). The ligation reaction was performed for 15 minutes at room temperature. 

Finally, 1 L of the ligation reaction was used to transform bacteria. 

 

2.2.1.5 TOPO TA cloning 

 

TOPO TA method was used for constructs amplified from genomic DNA or from cDNA 

library. Prior to the cloning reaction, PCR fragments were separated and purified form 

agarose gels. 3´ A-overhangs were added to the purified DNA fragments by incubation 

with Crimson Taq DNA polymerase. Typically 40 L reaction was performed with 5 U 

of Crimson Taq polymerase, 1x amplification buffer, 0.2 mM dNTPs and 30 L of 

purified PCR product. The TOPO cloning reaction was performed according to the 

manufacturer’s protocol. For PCR fragments < 4 kb the TOPO TA kit was used and for 
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larger fragments the TOPO XL kit was used. One Shot TOP10 bacteria were transformed 

with 1 L of the reaction. 

 

2.2.1.6 Gateway cloning 

 

Constructs to generate transgenic fly lines were constructed with Gateway cloning 

method. This method is divided into two steps: the Gateway TOPO cloning reaction and 

the LR reaction. 

  

2.2.1.6.a Gateway TOPO cloning 

 

The directional pENTR⁄D-TOPO Cloning Kit was used to generate donor vectors for the 

LR reaction. In order to do that, 5’ PCR primers were designed with a CACC overhang in 

front of an open reading frame. PCR was performed as described in Chapter 2.2.1.3 and 

purified as described in Chapter 2.2.1.2. Gateway TOPO cloning was performed 

according to the manufacturer’s protocol. One Shot TOP10 bacteria were transformed 

and DNA from single colonies was sequenced in order to check the fidelity of PCR. 

Plasmids were purified as described in Chapter 2.2.1.1. 

 

2.2.1.6.b Gateway LR reaction 

 

For the LR reaction 25 ng of DNA purified from pENTR clone and 75 ng of proper 

destination vector were used. Plasmids were diluted in TE buffer and 1 L of the LR 

Clonase II enzyme mix was added. Total volume of the cloning reaction was 5 L. The 

mixture was incubated at 25C for 1 hour and then stopped by adding of 1 L of 

Proteinase K and then incubated at 37C for 10 minutes. One Shot TOP10 bacteria were 

transformed with 1 L of the LR cloning reaction. DNA from single colonies was 

sequenced. 
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2.2.1.7 Transformation of bacteria 

 

Transformation of bacteria with plasmid DNA was performed using either 

electro-competent or chemically-competent cells. 50 L of chemically-competent 

bacteria were mixed with 1 L of ligation reaction followed by 30 minutes incubation on 

ice. Afterwards, bacteria were heat shocked at 42C for 45 seconds, and recovered in 

SOC medium for 1 hour at 37C. Solution was spread on LB agar plates supplemented 

with appropriate antibiotic. Electro-competent cells were transformed using MicroPulser 

electroporation apparatus using standard protocol.  

 

2.2.2 Drosophila methods 

 

2.2.2.1 Fly husbandry 

 

Flies were maintained at room temperature unless specified otherwise and kept in vials 

supplied with standard fly food. Flies crossed to Tub67c:Gal4 were kept at 18C for 

higher expression efficiency. 

 

2.2.2.2 Isolation of genomic DNA from adult flies 

 

Genomic DNA was prepared using the Fermentas GeneJET kit. The manufacturer’s 

protocol was modified. Five to ten adult flies were collected into an Eppendorf tube and 

frozen at -80C for 30 minutes. 180 L of digestion solution provided with the kit was 

added and samples were homogenized with a hand grinder for 10 seconds. 20 L of 

Proteinase K was added and samples were incubated at 56C over night. Next day, 

digestion solution was cooled to room temperature and incubated with 20 L of RNase A 

for 10 minutes. Next steps were performed according to the manufacturer’s protocol. 

Genomic DNA was eluted from the column with 50 L of preheated to 60C elution 

buffer provided with the kit. 
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2.2.2.3 Generation of cDNA library from Drosophila embryos 

  

To generate DNA template for standard PCR, a small volume of 0-4 hour embryos were 

used. Alternatively, one or ten cellularizing embryos were used for qPCR purposes. 

Collected embryos were frozen in liquid nitrogen and stored at -80C until processed. 

Total RNA was isolated with the RNeasy Mini Kit. Embryos were homogenized in 100 

L of RTL buffer provided with the kit and the grinding pestle was washed with 

additional 250 L of the buffer. Samples were treated according to the manufacturer’s 

protocol including DNA digest on the column. cDNA was synthesised using the 

SuperScript III First-Strand Synthesis System according to the manufacturer’s protocol. 

cDNA concentration was measured with a NanoDrop spectrophotometer. 

 

2.2.2.4 Cloning strategies 

 

2.2.2.4a UASp-GFP:-Adaptin 

 

This construct was generated by the overlap extension polymerase chain reaction. In 

order to ensure fast maturation of the fluorophore, a GFP variant (SuperFolder GFP) was 

used. -Adaptin-PA was amplified from Drosophila cDNA library (Chapter 2.2.2.3). 

Ligated GPF::-Adaptin was cloned into the pENTR plasmid and recombined with the 

pPW vector.  

 

2.2.2.4b UASp-GFP:CG41099-PC and UASp::GFP:Rab11 

 

CG41099-PC and Rab11 were amplified from Drosophila cDNA library and cloned into 

the pENTR vector. In order to add an N-terminal GFP tag, constructs were recombined 

with the pPGW vector using the Gateway cloning system. 
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2.2.2.4c UASt-HA:Rab5DN 

 

Rab5 sequence was amplified from the cDNA library and cloned into pENTR vector. The 

S43N mutation was introduced by site directed mutagenesis method. The TCC codon was 

replaced by the AAT. In the next step construct was recombined with pTHW vector using 

the Gateway system. 

 

2.2.2.4d UASp-secGFP and UASp-secmCherry 

 

A long 5’ primer was designed with sequence corresponding to the signalling peptide of 

Fog protein (MSPPNCLLAVLALTVFIGANNA). With this primer either GFP 

(amplified from the pPGW vector) or mCherry (Clontech) was amplified. Constructs 

were cloned into the pENTR plasmid and recombined with the pPW vector. 

 

2.2.2.4e Tub67c-secYFP 

 

This construct was designed analogously to the secGFP and the secmCherry. secYFP was 

cloned between BamHI and XhoI sites into the D277M vector containing Tub67c 

promoter. 

 

2.2.2.4f bcd-secYFP 

 

In order to drive expression of secYFP only in the anterior of embryos, the construct was 

fused with the bcd promoter. In addition, to ensure proper localization of RNA, the 

5’UTR and the 3’UTR sequences of bcd was added to the construct. These sequences 

were amplified from genomic DNA and fused together using an overlap extension 

polymerase chain reaction. Next, the construct was cloned into the pCa4G2B vector 

between the BamHI/SpeI restriction sites. 
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2.2.2.4g pEOC (pEndsOutmCherry) 

 

This vector was designed for more efficient screening of flies after the ‘ends out’ 

homologous recombination. The vector was made on a backbone of the pP{EndsOut2} 

vector. Two markers expressed in flies were introduced into the sequence. The white 

gene under the GMR (Glass Multimer Reporter)/hsp70 promoter and the 

3xP3:mCherry-SV40 construct.  The white gene is a positive marker for recombinants 

and resides between two homologous arms of the construct. The 3xP3:mCherry-SV40 

lies outside the recombination cassette and therefore is a negative marker for homologous 

recombination. In addition, the multiple cloning sites were replaced by the 

NotI/MluI/EcoRI/SphI/BglII/BsiWI and the AatII/NdeI/NaeI/NgoMIV sites. Detailed 

map of the vector can be found in the Appendix A. 

 

2.2.2.4h pEOC GFP::Rab5 for homologous recombination 

 

The 5’ (3.2 kb) and the 3’ (2 kb) homologous recombination arms were amplified from 

BACMID DNA containing the Rab5 locus (BACR22P10, BPRC). In addition, GFP with 

a Glycine-Alanine-Glycine-Alanine (GAGA) linker was inserted at the 5’ end of the 

Rab5 coding sequence. Homologous arms were cloned in the AatII/NgoMIV and the 

SphI/MluI restriction sites. In addition, two loxP sequences were introduced in order to 

excise the white gene from the intron of Rab5. 

 

2.2.2.5 Generation of transgenic flies 

 

All transgenic lines except the bcd:secYFP were generated using the P-element based 

method .These lines were generated in the y,w
1118 

background. The bcd:secYFP lines 

were generated using the PhiC31 integrase-mediated site-specific transgenesis in the 

attP2 and the attP40 lines. Plasmid injections were performed by Sandra Mueller and 

BestGene. 
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2.2.2.6 Homologous recombination 

 

In order to generate endogenously tagged Rab5 the ‘ends-out’ homologous recombination 

method was used. As a first step, a donor line was generated using the construct 

described in Chapter 2.2.2.4h. These lines were selected by screening for the white gene 

and for high expression of 3xP3>mCherry. Line with construct mapped to the third 

chromosome was taken for further consideration.  

In order to induce homologous recombination, the donor element needs to be mobilized 

and double strand DNA breaks need to be generated. Therefore, the donor line was 

crossed with the line expressing the FLP recombinase and the restriction enzyme SceI 

under the heat shock promoter. Approximately 200 females from the donor line were 

crossed to 40 males carrying hsp>FLP and hsp>SceI. These crosses were separated into 

40 vials and propagated into new tubes for 5 days. 24-hours-old embryos were heat 

shocked at 38C for 120 minutes in the water bath. To maximize the efficiency of this 

procedure, heat shock was repeated on 48-hours-old embryos.  

After hatching, positive selection for recombinants was performed. Virgin females 

hatched from the previous cross were mated with y,w
1118

 males. In the next generation, 

flies positive for the white gene were selected. At the same time a screen for 

false-positive recombinants was performed. These are the flies that carry the white gene, 

however, in their case the donor construct either did not mobilize or recombined in a 

locus different than Rab5. These flies carried the 3xP3>mCherry construct. Screening 

was performed under a dissecting microscope equipped with a fluorescent lamp. 

Proper localization of GFP::Rab5 was confirmed by PCR. In addition, the region of 

recombination was sequenced. In a final step, the white gene was removed from the Rab5 

intron by Cre recombination. 

 

2.2.2.7 Quantitative PCR 

 

qPCR was used to measure the efficiency of CG41099 knock-down with RNAi. As a 

control, embryos expressing GAL4 under the Tub67c promoter were used. Either single 

or ten cellularizing embryos were lysed and cDNA was generated as described in Chapter 
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2.2.2.3. qRT-PCR for CG41099 was performed with the SYBR Green PCR master mix 

using standard protocol and was normalised to the RPL32 gene. An Applied Biosystems 

7500 Real-Time PCR System was used. All PCR reactions were performed in triplicates. 

To exclude the presence of non-specific products, a melting curve for each primer pair 

was analysed.  To quantify the ratio between expression of CG41099 in control embryos 

and embryos expressing RNAi a comparative CT method (CT) was used. 

 

 

 

Figure 2.1 Crossing scheme for the Rab5 homologous recombination. 

 

 

2.2.2.8 Immunostaining 

 

Cellularizing embryos were dechorinated with 50% household bleach solution in water 

(2.5% sodium hypochlorite final) for three minutes and collected on a metal sieve. To 
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remove residual bleach, embryos were rinsed with water for few seconds and then blotted 

on a paper towel. Dechorinated embryos were transferred to a glass vial containing 10 

mL of fixative solution and incubated for 20 minutes with shacking. For devitellization, 

the aqueous phase was discarded. Then, 5 mL of methanol was added followed by 

energetic shacking for 20 seconds. Devitellinized embryos were collected in Eppendorf 

tubes and washed three times in methanol. Fixed embryos were stored in methanol at 

-20C. 

Before immunostaining, embryos were briefly washed with PBS and then equilibrated 

with PBSTX solution for 20 minutes. Equilibrated embryos were blocked with 10% BSA 

solution in PBTX for 1 hour. Next, primary antibodies diluted in 5% BSA solution in 

PBSTX were added, and embryos were incubated over night at 4C. Next day, embryos 

were washed three times for 10 minutes with PBSTX solution at room temperature. 

Secondary antibodies, diluted in 5% BSA in PBSTX were added followed by 45 minutes 

incubation at room temperature. After three times washing in PBSTX, embryos were 

fixed to microscopy slides using mounting medium. 

 

2.2.2.9 Perivitelline dextran injection 

 

10 000 MW Dextran labelled with Alexa647 or pHrodo Red were injected into the 

perivitelline space of cellularizing embryos as described previously (Levayer et al. 2011). 

Embryos were covered with a thin layer of halocarbon oil 700/27 (1:2). The coverslip 

was placed on a microscope slide platform and embryos were visualized using a standard 

18 upright microscope equipped with a 10x objective (Zeiss). Microinjection was carried 

out with an Eppendorf 5242 microinjector. 

Microinjection pipettes were pulled from borosilicate glass capillaries (1.2mm outer 

diamater x 0.94mm inner diamater), using a P-97 Flamming /brown puller. 20 mg/mL 

PBS solution of dextran was used.  

 

 

 

 



Chapter 2 Materials and Methods 61 

 

 

2.2.3 Biochemical methods 

 

2.2.3.1 Expression and purification of GST-Rab5 

 

Drosophila Rab5 was amplified from cDNA library and cloned into the pGEX-4T vector 

in the EcoRI/XhoI sites. Rosetta (DE3) cells transformed with the pGEX-4T Rab5 were 

grown (5 L) to express GST-Rab5. Overnight bacterial culture was diluted 1:200 with 

fresh LB medium supplemented with an antibiotic. Bacteria were grown at 37C until 

OD of 0.6. Cultures were induced by adding IPTG with final concentration of 1 mM. 

Bacteria were grown for 3 hours at 37C and then sedimented. Pellet was resuspended 

1:1 in lysis buffer and lysed using a microfluidizer under 7000 psi. In order to remove the 

insoluble fraction, lysate was pelleted by centrifugation at 210
5
 g for 45 minutes. The 

soluble fraction was decanted into a Falcon tube and then Glutathione Sepharose 4B 

beads were added. Beads were incubated for 2 hours at 4C with gentle rotation. Next, 

beads were washed four times with ten times beads volume of column buffer. 

Immobilized Rab5 protein was used in affinity chromatography in cellularizing embryos. 

 

2.2.3.2 Affinity chromatography of Rab5 effectors from cellularizing Drosophila 

embryos 

 

0-4 h old embryos were harvested, dechorionated for 2 minutes in 50% bleach solution in 

water, washed in PBS with addition of 0.1% Triton X-100. Embryos were frozen in 

liquid nitrogen and stored at -80C until needed. Thirty grams of packed embryos were 

diluted in 60ml of embryo lysis buffer and homogenized in the Potter S tissue 

homogeniser at 4C. In order to remove the insoluble fraction, lysate was pelleted by 

centrifugation at 510
5
 g for 45 minutes. The supernatant was carefully decanted and 

used for the affinity chromatography.  

Next, GST-Rab5 was loaded with a proper nucleotide. Purified GST-Rab5 immobilized 

on Gluthathione Sepharose resin (250 µL for each nucleotide) was washed twice with 

1.5 mL of nucleotide exchange buffer containing 100 µM GTPS or 100 µM GDP for 
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5 minutes followed by incubation in exchange buffer containing 1 mM GTPS or 

1 mM GDP for 20 minutes. The wash was repeated and the nucleotide binding was 

stabilized by incubation with stabilization buffer supplemented with 2 mM of appropriate 

nucleotide for 20 minutes. 

Resin with nucleotide bound Rab5 was transferred to 10 mL of embryo lysate and 

incubated for 2 h at 4C with gentle rotation. Next, resin was washed twice in 

stabilisation buffer for 5 minutes. In order to decrease unspecific binding, next wash was 

performed with stabilization buffer supplemented with 250 mM NaCl. Proteins bound to 

Rab5 were eluted for 20 minutes with 250 µL of elution buffer preheated to 37C. Eluted 

proteins were concentrated using the Amicon Ultra-0.5 column and resolved on the 

4-12% SDS-PAGE gel. Proteins bound to the GTPS loaded Rab5 were selected and 

analyzed by mass spectrometry. The specificity of binding was confirmed in the in vitro 

binding assay. 

 

2.2.3.3 In vitro affinity chromatography assay 

 

To confirm specific binding between active Rab5 and CG41099 the TNT T7 Quick 

coupled Transcription/Translation System was used. GST-Rab5 was prepared as 

described in Chapter 2.2.3.1 and loaded with nucleotide as described in Chapter 2.2.3.2. 

CG41099-PA protein was expressed and radiolabeled using the TNT-Rabbit Reticulocyte 

lysate. 50 L reaction was performed. 40 L of the TNT-Rabbit Reticulocyte lysate was 

diluted with 1 g of DNA template (pOT CG41099-PA, DGRC) solution and 20 Ci of 

35
S-Methionine. Reaction was incubated for 90 minutes at 30C. In the next step, the 

TNT reaction was mixed with 25 L of 20% BSA solution, 20 L of 50 mM nucleotide, 

50 L of Glutathione Sepharose 4B beads bound to GST-Rab5 and filled to 500 L with 

stabilization buffer. Next steps are identical to described in Chapter 2.2.3.2. Eluted 

proteins were resolved on the 4-12% SDS-PAGE gel. Detection was performed overnight 

by autoradiography on MR KODAK film. 
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2.2.3.4 Production of CG41099 antibody 

 

Fragment corresponding to amino acids 660 to 920 of CG41099-PC was cloned to the 

pET32 vector in the NcoI/BamHI sites. Rosetta (DE3) bacteria were transformed and 

overnight bacterial culture was diluted 1:200 with fresh LB medium supplemented with 

antibiotic. Bacteria (10 L) were grown at 37C until OD of 0.6. Cultures were induced by 

adding IPTG with final concentration of 1 mM. Bacteria were grown for 16 hours at 

18C and then sedimented. Pellet was resuspended 1:1 in lysis buffer and lysed using a 

microfluidizer under 7000 psi. In order to remove the insoluble fraction, lysate was 

pelleted by centrifugation at 210
5
 g for 45 minutes. Protein was purified using Ni-NTA 

agarose according to the manufacturer’s protocol. Protein was concentrated on the 

Vivaspin 15 columns and buffer was exchanged to PBS on the column. In order to check 

the purity of eluate, protein samples were resolved on SDS-PAGE and stained with 

Coomassie Brilliant Blue. Protein samples were frozen and sent to Eurogentec for 

antibody generation in rabbits. Antibodies were purified from serum by affinity 

chromatography.  

 

2.2.3.5 Protein gel electrophoresis and immunodetection 

 

To separate proteins, SDS polyacrylamide gel electrophoresis (SDS-PAGE) was used.   

Protein solution was diluted with protein loading buffer, boiled for 5 minutes and loaded 

on commercially available 4%-12% Novex gradient gels. Electrophoresis was performed 

with constant voltage (125 V) for 90 minutes. To detect the total amount of proteins, gels 

were stained with Coomassie Brilliant Blue solution for 15 minutes followed by 

incubation in destaining solution for 1 hour. 

For immunodetection, gels were washed briefly in ddH2O and incubated in transfer 

buffer for 15 minutes. Immobilon-P transfer PVDF membrane was activated by 

incubation in methanol for 15 seconds. Methanol was removed by washing in ddH2O and 

membrane was equilibrated in transfer buffer for 15 minutes. To transfer proteins to the 

PVDF membrane a semi-dry setup was used. The transfer was performed at 15 V for 45 

minutes. Next, membrane was blocked with 5% milk solution in PBST buffer for 1 hour 
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at room temperature. Incubation with primary antibody diluted in 5% milk solution (in 

PBST) was performed overnight at 4C. The membrane was washed three times in PBST 

for 10 minutes at room temperature. Washes were followed by incubation with secondary 

antibody conjugated with HRP. Antibody was diluted in 5% milk solution in PBST and 

incubated with the membrane for 30 minutes at room temperature. The membrane was 

washed three times in PBST for 10 minutes at room temperature. For signal detection, 

membrane was incubated in ECL solution for 1 minute and exposed in dark on MR 

KODAK film. 

  

2.2.4 Microscopy methods 

 

2.2.4.1 Confocal and two-photon microscopy 

 

For time-lapse imaging, embryos were dechorionated with 20% sodium hypochlorite 

solution in water. To ensure the close proximity to the coverslip, dishes were covered 

with thin silicon layer (Sigmacoat). Dechorinated embryos were positioned on glass-

bottom culture dishes (MatTek) in a drop of PBS solution. Imaging was performed on a 

PerkinElmer Improvision Ultraview VoX Spinning disk confocal using a 100x NA 1.3 oil 

immersion objective (Zeiss).  

Two photon imaging was performed using Zeiss LSM 780 NLO system using a 63x NA 

1.2 water immersion objective (Zeiss). Images were processed in ImageJ (NIH). 

 

2.2.4.2 TIRF microscopy 

 

Embryos were dechorionated with 20% sodium hypochlorite solution and positioned on 

glass-bottom culture dishes in a drop of PBS solution. In order to produce a uniform 

interface between the vitelline membrane and the coverslip, a thin slab (~ 5mm) of 2% 

agar was placed on top of embryos prior to imaging. Time-lapse TIRF imaging was 

performed on an Olympus Biosystems Cell^R TIRF system using an Olympus APO N 

60x oil objective (NA 1.49). The incident angle was set at the critical angle for total 

internal reflection with subsequent small, manual angular adjustments used to optimize 



Chapter 2 Materials and Methods 65 

 

signal from the apical membrane. All imaging was performed at room temperature unless 

stated otherwise. For experiments involving the temperature sensitive shibire mutant, 

either cold (18 ºC) or pre-warmed (32 ºC) PBS and agar were used for embryo mounting 

and live TIRF-M imaging was subsequently conducted in a temperature control chamber 

at either 18 ºC or 32 ºC.   

 

2.2.5 Quantification and statistics 

 

2.2.5.1 Quantification of GFP::Rab5 signal 

 

GFP::RAB5 signal at the apical plasma membrane was imaged over the course of 

cellularization using TIRF microscopy and subsequently quantified using CellProfiler 

Image analysis software. Briefly, 3 independent data sets were obtained each for both 

ectopically expressed YFP::RAB5 and for endogenous GFP::RAB5. Identification and 

segmentation of RAB5-positive puncta was accomplished using Cell Profiler, registration 

was verified manually, and the number and integrated intensity of puncta were quantified.  

Both the number and integrated intensity of puncta were normalized by expressing their 

value over cellularization as a ratio to the mean value of the first 20 frames in each 

sequence.  

 

2.2.5.2 Quantification of internalization assay 

 

Quantification of intracellular signal in UAS::secGFP/+; Tub67::GAL4/+; 

Tub67::GAL4/+ embryos was performed manually. Intracellular tubes and vesicles 

positive for GFP were counted from the Z-stack corresponding to the volume between 4 

to 5 microns under the apical membrane over the course of cellularization. Quantification 

was performed on 3 areas of 25 micron x  25 micron each in three different embryos. j 

 

2.2.5.3 Quantification of the rate of apical surface flattening 

 

This method was developed by Sebastian Streichan. First the images were corrected for 
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bleaching by fixing the mean intensity at each time point to that of the initial image. Then 

the images where filtered using a mexican hat filter with values sigmax = 7, sigmay = 1, 

which was rotated according to angles in an interval from 0 to pi. The response images 

form a stack, where each planecorresponds to an angle from the interval, enhancing 

protrusions along the given angle. The maximum intensity projection of that stack was 

then segmented using Ilastik (Ilastik: Interactive Learning and Segmentation Toolkit,  

Christoph Sommer,Christoph Straehle, Ullrich Koethe and Fred A. Hamprecht.  8th IEEE 

International Symposium on Biomedical Imaging, ISBI 2011) to yield a segmentation of 

the image. The skeleton of the image was then taken to compute the area in the image 

covered by protrusions. 
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3.1 Aim of the thesis 

 

The aim of this thesis was to address the contribution of membrane trafficking in 

controlling plasma membrane remodelling during cell and tissue morphogenesis. In 

particular, I focused on the role of endocytosis in regulating the re-structuring of the 

apical plasma membrane during cellularization, the transformation of the syncyitial 

Drosophila embryo in 6000 mononucleated epithelial cells. Early during cellularization 

the apical surface is covered with highly dynamic membrane protrusions that retract 

towards the end of cellularization. This morphogenetic process is commonly referred to 

as surface flattening and immediately precedes gastrulation.  

The mechanisms underlying surface flattening are still poorly understood and 

have been mainly linked to changes in actin organization. However, the reduction in 

apical surface area and changes in membrane organization accompanying surface 

flattening suggest that additional endocytic mechanisms might control this membrane 

remodelling process. To test this hypothesis, I developed multiple assays that allowed me 

to visualize, to quantify and to manipulate at the molecular level apical endocytosis 

during surface flattening. The molecular tools that I used are the large GTPase dynamin, 

which regulates vesicle formation at the plasma membrane, and the small GTPase Rab5, 

which regulates the biogenesis of early endosomes.  

In summary, my data demonstrate that apical surface flattening is a 

dynamin-dependent morphogenetic process associated with the up-regulation of several 

endocytic events. Taken together my results are consistent with a model in which surface 

flattening is an endocytosis dependent morphogenetic process driven by the rapid 

removal of large quantities of tubular membranes. This tubular endocytic pathway is 

dynamin-dependent and leads to the de novo formation of apical Rab5 endosomes. 
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4.1 The localization of Rab5 endosomes is developmentally modulated during 

cellularization 

 

Endocytosis has been shown to be crucial for cellularization. Blocking 

endocytosis at the early stage of cellularization by inhibiting dynamin and Rab5 activity 

results in the arrest of furrow progression (Pelissier, Chauvin, and Lecuit 2003). 

However, so far there is no information about the dynamics of endocytosis during 

cellularization. Therefore, I decided to closely analyze the spatial-temporal organization 

of endocytosis over the course of cellularization. To start with, I decided to follow Rab5 

dynamics during cellularization using live imaging. I took advantage of a UAS-Rab5 line 

tagged with an N-terminal YFP that was available from the Bloomington Stock Center. 

To drive expression of this construct I used a line expressing the GAL4 in the pattern of 

the αTub67C gene. The αTub67C promoter is active throughout oogenesis and therefore 

early embryos are loaded with GAL4 protein. YFP::Rab5 expressing embryos were 

imaged at one minute interval using a spinning disk confocal microscope with a 40x 

water objective. Rab5 signal was first detected at the invaginating furrow (Fig. 4.1 b-c) 

early during cellularization. Towards the end of cellularization, a second pool of Rab5 

endosomes appeared at the subapical plane (Fig 4.1 d). In order to overcome the 

limitation of the penetration depth of the spinning-disk confocal microscope, these 

observations were confirmed using two-photon microscopy (Fig. 4.1 e-g). Using this 

technique I could also observe that upon forming these large Rab5 vacuoles moved 

towards the base of the cells (Fig. 4.1 h-k). This result suggests that apical Rab5 

endocytosis is temporally regulated during development peaking during the fast phase of 

cellularization. Furthermore, this result prompted me to further investigate the role of 

apical endocytosis during this step of morphogenesis. 
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Figure 4.1 Rab5-mediated endocytosis is regulated in a spatial and temporal manner. 

 

(a) The corresponding genotype of the parental cross that gives rise to embryos maternally loaded 

with YFP::Rab5 protein. (b-d) Apical view of a 15 µm z-stack over the course of cellularization. 

During the slow phase of cellularization Rab5 signal accumulates at the furrow canal and travels 

towards the base of the nuclei (b-c). Towards the end of cellularization, additional 
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YFP::Rab5-positive structures appear at the apical surface of the embryo (d). (e-g) An optical 

section of a cellularizing embryo that expresses the YFP::Rab5 obtained by two-photon 

microscopy.  The YFP::Rab5 signal travels with the furrow (red arrows). During the fast phase of 

cellularization a clear YFP::Rab5 signal can be detected at the apical surface of the embryo (g, 

green arrows). Notice that most of the signal accumulates at the basal side of the embryo. A 

single plane was imaged. (h-k) Snapshots from a timecourse showing the apical Rab5 signal 

travelling to the base of the cell. Embryo was imaged 5 min prior to the gastrulation. White arrow 

marks a Rab5 positive signal moving down. A 3.5 µm z-stack is presented. 

 

4.2 Developing TIRFM (Total Internal Reflection Fluorescence Microscopy) for 

imaging the apical endocytic dynamics in cellularizing embryo 

 

To further investigate the role of apical endocytosis during cellularization I 

decided to apply TIRF microscopy to the early embryo in order to overcome two major 

limitations of confocal microscopy, namely the low time resolution and the high rate of 

photobleaching. TIRF microscopy allows the generation of a very narrow illumination 

plane that is created close to the coverslip (~ 100 nm). Using this technique, only a thin 

plane is illuminated at the time, so the photobleaching is reduced and at the same time 

temporal resolution is limited only by the acquisition speed of the camera. TIRFM is 

based on the principle that if there are two media of different optical density (n1 > n2) 

and the incident angle of the light path is greater or equal to the critical angle 

(αc=arcsin(n2/n1)), light does not go through the optically less dense medium, but is 

reflected at the interphase. This creates an evanescent wave that propagates in the n2 

medium. In the TIRFM setup evanescent wave is created between a glass coverslip and 

water media, therefore only fluorophores close to the plasma membrane are illuminated. 

For this reason TIRM is commonly used in cell culture to study endocytic and exocytic 

events at the plasma membrane. To adapt this method for imaging the apical surface of 

the early Drosophila embryo several factors had to be taken under consideration: 

 The Drosophila embryo is enclosed in the vitelline membrane, a lipid reach layer 

that protects the embryo from the extra-cellular environment.  

 The Drosophila embryo has an ellipsoidal shape that limits the surface that can be 

illuminated by TIRF; 

 The apical plasma membrane of the embryo is highly convoluted. 
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Because of these three majors constrains at the calculated critical angle only the 

surface of the vitelline membrane could be observed. Surprisingly by changing the angle 

of the laser beam, the signal of YFP::Rab5 was registered in a single illumination plane 

similar to the TIRF plane, arguing that an additional evanescent wave can be produced at 

the interphase between the vitelline membrane and the perivitelline fluid. To ensure 

proper attachment of the embryo to the coverslip and to increase the illuminated area I 

tried to immobilize the embryos using siliconized coverslips and glue. This method is 

commonly used for imaging embryos using confocal microscopy, but it was unsuitable 

for TIRFM as both glue and silicon interfere with the optical properties of the coverslip 

and prevents imaging. In a second attempt I decided to carefully place a thin slice of 2% 

agarose on the top of the specimen. This manipulation did not affect embryonic 

development or TIRF illumination. As a result a larger area of the embryo was touching 

the coverslip and therefore allowed to image more cells in a single embryo. Thus, this 

setup was ideal for high temporal resolution imaging of the surface of the Drosophila 

embryo. 

 

 

 

Figure 4.2 The experimental setup for the TIRF imaging of the Drosophila embryo. 

 

(a) Embryos are positioned in a glass bottom dish (1) and carefully covered with a small  block of 

2% agarose (2). The specimen is submerged in PBS buffer (3) and imaged with an inverted TIRF 

objective (4). (b) An evanescent wave is generated at the coverslip incident light is reflected at 

the interphase between two media with different optical densities (n1 and n2). This occurs when 

the incident angle of the light path is greater than or equal to the critical angle αc =arcsin (n2/n1). 

Under normal conditions, the calculated angle for the glass (n1) and buffer (n2) results in a 
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situation in which only the surface of the vitelline membrane is illuminated (αc1). However, by 

manually increasing the light angle a condition can be found in which the surface of the apical 

plasma membrane is illuminated (αc2). 

 

4.3 Apical Rab5 signal increases with the progress of cellularization 

 

In order to closely analyze the dynamics of apical endocytosis during 

cellularization, embryos expressing YFP::Rab5 were imaged using the TIRFM. At the 

beginning of cellularization Rab5 localized to the forming furrow (Fig. 4.3 a). During the 

following 30 minutes only a few apical puncta appeared at the surface of the embryo 

(Fig. 4.3 b). From this point on, Rab5 signal increased gradually reaching towards the end 

of cellularization approximately a four-fold increase (Fig. 4.3 c and Fig. 4.3 g). This 

increase was observed along both the dorsal-ventral and anterior-posterior axes.   

To test whether this increase is specific for the inward arm of endocytosis, I 

decided to analyze recycling endosome dynamics by following YFP tagged Rab11. To 

this end, I generated a transgenic Rab11 line tagged with GFP under the UASp promoter. 

I isolated two individual transgenic lines with detectable expression level and proceeded 

with the analysis. The Rab11 signal showed a significantly different pattern from that of 

Rab5. Most of the Rab11 positive recycling endosomes were concentrated around the 

nuclei and appeared only sporadically at the apical surface. Importantly the apical pool of 

Rab11 was constant during cellularization (Fig. 4.3 d-f). Therefore the up-regulation of 

endosomes at the apical surface during cellularization is specific for the Rab5 positive 

machinery.  

In summary, these results demonstrate that Rab5 endosome dynamics are spatially 

and temporally regulated during cellularization. In particular the biogenesis of apical 

Rab5 endosomes is specifically up-regulated during the fast phase of cellularization. 

Interestingly, this up-regulation of Rab5 endosomes coincides with the morphological 

remodelling of the apical surface. Therefore I decided to further investigate whether there 

is any functional link between surface remodelling and up-regulation of Rab5 endosomes.   
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Figure 4.3 Rab5 but not Rab11 is apically upregulated during the fast phase of 

cellularization. 

 

(a-c) TIRF view of YFP::Rab5 at the apical surface during cellularization. (a) At the beginning of 

cycle 14, Rab5 structures accumulate at the furrow canal. The dotted line represents the size of a 

single cell. (b) During the slow phase of cellularization Rab5 structures are lost from the apical 

surface. (c) A massive increase in the Rab5 signal is observed during the fast phase of 

cellularization. Red arrowheads indicate a subset of YFP::Rab5 puncta. (d-f) YFP::Rab11 

expressed in the early embryo does not increase at the apical surface during cellularization. Single 

frames representing sequential time points from a time-lapse sequence representing the early  (d), 

mid (e) and late stage (f) of cellularization. Most of the Rab11 signal is cytoplasmic. Sporadic 

YFP::Rab11-positive puncta can be observed at the apical surface (red arrowheads). (g) 

Quantification of YFP::Rab5 signal intensity over the course of cellularization from 4 unique 
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replicates. Quantification of each sample is represented by a different color (red, blue, green, 

violet). Notice a four-fold increase of the Rab5 signal at the time point corresponding to the end 

of cellularization.  

 

 

4.4 The apical surface of the embryo is highly dynamic and undergoes 

morphological remodeling during cellularization 

 

Previous electron microscopy data have shown that the apical surface of the early embryo 

is covered with a dense matrix of microvilli-like protrusions that are re-absorbed at the 

onset of gastrulation (Turner and Mahowald 1976). These data prompted me to ask 

whether the shift in endocytosis I observed was related to or even responsible for this 

morphological transformation of the apical surface. So far there is no information about 

the dynamics underlying surface remodelling. Therefore, I first decided to follow surface 

dynamics using TIRFM. I characterized the dynamics of the apical plasma membrane by 

imaging the fluorescent protein mCherry fused to the myristoylated peptide of GAP43, a 

well-established plasma membrane marker (Mavrakis et. al 2009). The result of this 

analysis showed that the apical PM undergoes various changes over the course of 

cellularization that can be classified in three stages. At the beginning of cycle 14 the 

apical membrane was covered with small, thin and highly dynamic protrusions (Stage 1, 

Fig. 4.4 a). These membrane protrusions first elongate and thicken at the beginning of 

fast phase (stage 2, Fig. 4.4 c) and then retracted at the onset of gastrulation (Stage 3, Fig 

4.4 c). This massive retraction of apical plasma membrane protrusions resulted in 

flattening of the apical surface, in all cells of the embryonic epithelium. However, a few 

small differences between the dorsal and the ventral side of the embryo could be 

observed. On the dorsal side flattening was not complete and few long protrusions 

persisted especially in the inter-cellular space (Fig 4.4 d). The apical surface of ventral 

cells appeared instead completely flat. This dorso-ventral difference in apical 

morphology might reflect the need of ventral cells to completely flatten their apical 

surface in preparation for the cell shape changes (apical constriction) driving gastrulation 

(ventral furrow formation). All of the above results were confirmed in embryos 

expressing the trans-membrane protein spider (gish) tagged with the GFP as an 

independent membrane marker (Morin et al. 2001).  
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Figure 4.4 Apical surface of the embryo is covered with microvilli-like protrusions that 

undergo a stereotypical morphological change. 

 

(a-c) Single frames from a timelapse TIRF acquisition of the apical plasma membrane (marked by 

GAP43::mCherry) over cellularization. (a) At the beginning of cycle 14, the apical surface is 

covered with small microvilli-like protrusions. (b) With time, apical protrusions elongate and 

thicken with some protrusions reaching a length of 5 µm (comparison to early cellularization). (c) 

At the onset of gastrulation, all of the cells flatten as a result of the retraction of protrusions. 

y,w*; sqh>GAP43::mCherry/+ flies were imaged on the lateral side. (d) View of the dorsal side 

of the embryo expressing spider::GFP. Following cell flattening some leftover protrusions can be 

observed (red arrowheads). 

 

4.5 The up-regulation of apical Rab5 endosomes immediately precedes surface 

flattening 

 

Since the increase in apical Rab5 endosomes and changes in apical membrane 

dynamics occur during the fast phase of cellularization, I decided to test if there was a 

correlation between these two processes. To analyze Rab5 and apical PM dynamics 
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together, the GAP43::mCherry and the Rab5::YFP were expressed at the same time. 

TIRFM imaging revealed that, during early cellularization, relatively few Rab5-positive 

endosomes exist at the apical plasma membrane (Fig. 4.5 a). In contrast, and consistent 

with a role for endocytosis in apical flattening, both the size and number of these 

Rab5-positive endosomes increased dramatically over the course of cellularization, 

reaching a peak immediately prior to apical flattening (Fig. 4.5 b). Furthermore, we could 

observe dynamic trafficking of Rab5-positive endosomes inside of individual protrusions 

prior to their retraction (Fig. 4.5 d). Importantly, over-expression of YFP::Rab5 did not 

alter the normal series of events observed in embryos expressing the plasma membrane 

marker alone. 

 

 

 

Figure 4.5 Increase of Rab5 at the apical surface of the embryo correlates with the 

elongation of protrusions. 

 

(a-c) TIRF view of embryos that express YFP::Rab5 (green) and a membrane marker -

GAP43::mCherry (grey). Single frames from a timelapse acquisition representing the early (a), 

the mid (b) and the late stage (c) of cellularization. (d) Zoom in on one of the protrusions marked 

with GAP43::mCherry (purple). YFP::Rab5 puncta travel inside the protrusions (green dots 

marked with arrowheads). (e) The genotype of the parental cross. 
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4.6 Analysis of endosome dynamics in endogenously tagged GFP::Rab5 expressing 

embryos 

 

The test whether the up-regulation of Rab5 apical endosomes was not the 

consequence of an over-expression artefact, I decided to follow Rab5 endogenous 

dynamics. To this end, I replaced the gene coding for Rab5 with a GFP tagged Rab5 

allele using the ‘ends-out’ homologous recombination technique (Huang et al. 2008). To 

perform this genetic manipulation I constructed a new targeting vector that significantly 

reduces the time needed to isolate positive transgenic flies (see Methods). I screened 

approximately 15 000 flies and I found 14 transgenic lines which had potentially Rab5 

GFP inserted in the correct locus. I screened 9 of these lines by PCR and 5 of them were 

positive for the insertion of GFP-Rab5 in the correct locus (Fig. 4.6 c). Sequencing of 

genomic DNA confirmed the correct insertion. Unfortunately only approximately 10% of 

flies develop to homozygous adults indicating that tagging Rab5 with GFP creates a 

hypomorphic allele. This is quite surprising as tagging Rab5 at its N-terminus with GFP 

is extensively used in cell culture experiments. Nonetheless, heterozygous flies were 

viable with no visible abnormalities and were therefore used for all the subsequent 

experiments. Live imaging demonstrated that the GFP::Rab5 labelled structures were 

very similar to the structures labelled by YFP::Rab5 (over-expressed using the UAS/Gal4 

system) (Fig. 4.6 d-f). Importantly, the number of GFP::Rab5 apical endosomes increased 

approximately four-fold over the course of cellularization (Fig. 4.7 a-c), thus confirming 

that the biogenesis of Rab5 endosomes is temporally regulated during development.   



Chapter 4 Results 80 

 

 

 

 

Figure 4.6 Generation of an endogenously tagged GFP::Rab5 transgenic fly line. 

 

(a) Pictorial representation of the genomic region corresponding to the Rab5 locus. The Rab5 

transcript has nine isoforms that have a common coding sequence (orange). A GFP tag was 

inserted in front of and in frame with the coding sequence the Rab5 (green line) by homologous 

recombination. (b) An image of a homozygous GFP::Rab5 adult female imaged under the 

fluorescent microscope showing GFP fluorescence. A particularly high level of GFP::Rab5 

expression is present in the eye and the abdomen. (c) Potential recombination-positive flies 

positive were verified by PCR. Primers flanking the first codon were designed. These primers 
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give a 500 bp PCR product from the genomic DNA of the wild type flies (second lane). 

Recombinant flies homozygous for GFP::Rab5 give approximately 1200 bp PCR product as a 

result of the introduction of the GFP tag (third lane). As a control, heterozygous flies were used 

and show two products corresponding in size to the wild type allele and the GFP::Rab5 knock-in 

(right lane). (d-f) Expression pattern of the endogenously tagged Rab5 during cellularization. 

Single frames from a two photon timelapse over the course of cellularization.  

 

 

 

 

Figure 4.7  Endogenously tagged Rab5 displays a similar pattern of apical localization to the 

overexpressing line. 

 

(a-c) Snapshots from the TIRF time course of the embryos expressing GFP::Rab5 under the 

endogenous promoter during early (a), mid (b) and late (c) stage of cellularization. Notice a 

significant increase in the GFP::Rab5 signal at the apical surface towards the end of 

cellularization. (d) Quantification of the number of the GFP::Rab5 particles over time. 

Quantification was performed for three different samples represented as three different colours 

(red, blue and green). At the end of cellularization a four to five fold increase in the number of 

GFP::Rab5 puncta can be observed. 
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4.8 Apically internalized fluid phase endocytic cargo localizes in apical Rab5 

endosomes 

 

Rab5 controls multiple steps along the endocytic pathway including endosome 

motility and fusion. To test whether the up-regulation of Rab5 endosomes corresponded 

to an actual endocytic event, the internalization of a fluid phase cargo was followed. To 

perform this experiment, I injected a solution of fluorescently labelled dextran into the 

perivitelline space. For technical reasons it was not possible to use TIRFM after injection, 

therefore, I used confocal microscopy. Upon injection, dextran diffused rapidly into the 

perivitelline space resulting in the counterstaining of the apical surface. Membrane 

protrusions appeared as dark non-fluorescent tubular extensions (Fig. 4.8 c).  Internalized 

dextran was detected in vacuolar structures close to the apical plasma membrane (Fig. 4.8 

a), as well as inside protrusions. To confirm that these structures represented bona fide 

endocytic events I performed two controls. First, I injected dextran into the embryo 

cytoplasm to check whether it can form aggregates that could appear as endosomes. This 

was clearly not the case. Second, I used pHrodo, a pH sensitive dextran that increases 

fluorescence in the acidic environment, and is therefore a suitable marker for acidified 

endocytic compartments. The fluorescence of the internalized pHrodo was clearly much 

higher than the non-internalized dextran residing in the perivitelline space (Fig. 4.8 b). In 

order to check if the internalized dextran localized to early endosomes I repeated this 

experiment in embryos expressing endogenously tagged GFP::Rab5. The result of this 

experiment clearly demonstrates that dextran was internalized into apical Rab5 positive 

vacuoles (Fig 4.8 d-f). 
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Figure 4.8  The shift in the apical GFP::Rab5 signal correlates with the uptake of the 

perivitelline fluid. 

 

(a)  Fluorescently labelled 10 000 MW dextran injected into the perivitelline space of a 

cellularizing embryo during the fast phase. Red arrowheads point to the internalized cargo. A 

single plane under the apical plasma membrane is presented. (b) pHrodo labelled 10 000 MW 

dextran injected into the perivitelline space of the wild type embryo. Internalized cargo is present 

in acidified compartments (red arrowheads) as the fluorescence is higher than in the perivitelline 

space (green arrowhead).  (c-f) pHrodo dextran injected into endogenously tagged GFP::Rab5 

embryos. (c) Rab5 positive structures (white arrowheads) are present in the apical protrusions 

counterstained with dextran. pHrodo accumulates under the plasma membrane (d) in 

GFP::Rab5-positive structures (e). (f) Merge of both channels. A single confocal plane was 

imaged. 

 

The apical endocytic pathway described above has never been observed before. 

Previous studies attempting to visualize endocytosis in the early embryo were conducted 

using fluorescently labelled WGA. WGA binds to glycosylated residues of proteins 

present at the PM and therefore it may mark only a sub-set of endocytic pathways. To test 

whether WGA is internalized at the apical surface I tried to inject it in the perivitelline 

space. Unfortunately WGA clustered close to the injection site where the embryo is 
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damaged and the imaging conditions were poor. Therefore these experiments were not 

conclusive.  

Next, I attempted to quantify the increase in apical endocytosis over time. 

Fluorescent labelled dextran was injected at the beginning of cellularization and embryos 

were imaged using confocal microscopy. This injection protocol turned out not to be 

suitable for long-term imaging and quantitative studies as a high number of embryos 

showed morphological abnormalities. 

 

4.9 Apical endocytosis increases over the course of cellularization 

 

In order to quantify apical endocytosis without damaging the embryo with 

perivitelline injection I thought of expressing a fluorescent secreted cargo in the embryo. 

I used both GFP and mCherry proteins fused to the signalling peptide of Fog (Fig. 4.9 a). 

Henceforth I will refer to this construct as secGFP. Fog is a signalling protein that is 

expressed and secreted during cellularization (Dawes-Hoang et al. 2005). Considering the 

fact that it might be difficult to distinguish fluorescent proteins that are undergoing 

secretion from the one that are being internalized I decided to spatially un-coupled 

secretion from endocytosis  by using the 5’ and 3’ UTR of the bicoid gene to drive 

expression of secGFP. Bicoid is a transcription factor that is responsible for the 

determination of the anterior part of the embryo (Kilchherr et al. 1986). The mRNA of 

bcd is produced in the germline and is localized to the anterior of the oocyte. Moreover, 

the expression of the protein is suppressed until cycle 10 of nuclear division. This 

suppression is dependent on the 3’ UTR of the bcd mRNA (Fig. 4.9 c-d) (Lasko 1999). I 

decided to drive the expression the secGFP–bcd 3’UTR construct under either the bcd or 

the αTub67C promoter (Fig 4.9 b). I generated transgenic flies and screened them for 

expression levels. The expression of the secreted GFP construct was detectable in the 

perivitelline space using two-photon microscopy (Fig. 4.9 e). The expression levels were 

however too low to perform time course experiments and no endocytic vesicles could be 

detected. Moreover, secGFP was often trapped intra-cellularly prior to cycle 14 (Fig. 4.9 

f). In conclusion this approach was not suitable to perform time course internalization 

assays. 
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Figure 4.9 Design strategies for production of a genetically encoded cargo internalization 

assay. 

 

(a) A cartoon representation of the secGFP protein. The fluorescent protein was fused to the first 

22 amino acids of the Fog protein, which correspond to the Fog signal peptide. (b) secGFP was 

fused to the bcd 3’UTR and the bcd or the αTub67C promoter. The bcd 3’UTR is responsible for 

localization and anchoring of mRNA close to the anterior part of the embryo (c). The protein 

would be secreted into the perivitelline space in the anterior part of the embryo (d) (dark green). 

The assay would focus on the internalized signal far from the anterior pole (light green). (e) 

secGFP accumulates in the perivitelline fluid (green arrowhead) as well as in the furrows of the 

cellularizing embryo (red arrowhead). A single plane image taken with the two photon 

microscope. (f) During cycle of nuclear division 10, secmCherry surrounds the nuclei. No 

perivitelline signal can be detected at this point. Note that an intracellular signal can be detected 

in the whole embryo. A single plane Image is shown taken with the spinning disk confocal 

microscope. 

 

The second approach I used was to express the same secreted GFP construct using 

the UAS/Gal4 system with the hope that maternally expressed proteins would accumulate 

in the perivitelline space prior to cellularization. Indeed using this approach, embryos 

secreted a sufficient amount of secGFP suitable for live imaging analysis. In addition, 
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most of the signal was detected in the perivitelline space at the beginning of 

cellularization and the signal in secretory compartments was below the detection limits. I 

therefore used this experimental condition to drive expression of secGFP and analyze 

apical endocytosis during cellularization. At the beginning of cycle 14, only few 

internalized structures positive for GFP signal could be detected (Fig 4.10 a’). As the 

embryo enters fast phase there was a dramatic increase in the number of internalized 

structures (Fig 4.10 b’-c’). Quantification of secGFP intracellular signal showed that 

apical endocytosis increased approximately five-fold from the beginning to the end of 

cellualrization. The timing of this increase perfectly correlated with the up-regulation of 

Rab5 apical endosomes (Fig 4.10 d). 
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Figure 4.10  The rate of apical endocytosis increases during the fast phase of cellularization. 

 

(a-c)(a’-c’) Internalization the secGFP at the apical surface of the embryo during cellularization. 

y,w*,UAS-secGFP/Y/+; αTub67C>Gal4/+; αTub67C>Gal4/+ flies were imaged. Apical view of 

the apical protrusions counterstained with secGFP present in the perivitelline space during early 

(a), mid (b) and late (c) stage of cellularization. (a’-c’) 1µm z maximum projection under the 

plasma membrane. At the beginning of cellularization no intracellular signal can be detected (a’). 

With the beginning of the fast phase intracellular vesicles can be detected (b’-c’) marked with red 

arrowheads. (d) Internalization of cargo increases four-fold during cellularization. Relative 
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amount of internalized secGFP over time. Plot represents the intracellular structures counted at a 

given time point normalized to the time point with the highest amount of structures. (N=12). 

Error bars correspond to standard deviation. 

 

This internalization assay also revealed that the major entrance route for soluble 

cargo is through tubular invagination of the plasma membrane (Fig. 4.11 a). Using 3D 

reconstruction I could show that these tubular invagination originate from the most apical 

surface of the PM (Fig 4.11 c-e) and in a single confocal plane they appeared as vacuoles 

rather than tubes (Fig 4.11 b). Importantly live imaging demonstrated that these tubular 

structures are pulled down from the PM and then pinch off forming vacuolar structures 

(Fig 4.11 d). Some of these vacuoles appeared as donut-like structures. Upon budding 

from the PM the GFP signal was very quickly quenched and it was therefore not possible 

to follow the fate of these vacuoles.  
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Figure 4.11 The main route for cargo internalization at the apical surface is through  

tubular endocytic intermediates. 

 

(a-b) secGFP enters the cells by tubular intermediates as well as vacuolar structures. (a) A tubular 

intermediate originating from the plasma membrane (white arrow). (b) Example of vacuolar 

structure filled with secGFP close to the apical plasma membrane. A single confocal plane is 

shown (c-e) 3D reconstruction of the tubular structures originating from the most apical surface 

of the PM. secGFP is shown in green. The cell volume is transparent. (c) At the beginning of 

cellularization no intracellular tubes can be detected. During mid (d) and late stages (e) of 

cellularization 4-5 µm length intacellular tubes filled with GFP can be detected (orange arrows). 

(d) Snapshots illustrating pinching of the tubular intermediates. White arrowhead points on the 
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tube that is elongating. Between the t=36s and the t=60s a vacuole is formed. 2 µm z-stack under 

the apical plasma membrane is shown. 

 

 

4.10 Dynamin activity is required for apical surface flattening  

 

Since the observed increase in apical endocytosis coincides in time with changes 

in apical membrane dynamics I thought of testing whether endocytosis is directly 

involved in surface remodelling. To perform this experiment I used a mutant of dynamin 

(shi
TS

) to block endocytosis. This well characterized temperature-sensitive mutation 

blocks dynamin activity at the non-permissive temperature (>29°C). Dynamin controls 

clathrin coated vesicles formation and it has been implicated also in other endocytic 

events including macropinocytosis (Chapter 1.3.3.4). Apical surface dynamics was 

analysed using TIRFM. Embryos carrying shi
TS

 and expressing GAP43::mCherry were 

covered with warm PBS (32°C) and transferred to a pre-heated microscopy chamber. 

Embryos that were heat shocked at the beginning of cellularization failed to form furrow 

canals and resulted in a rapid destruction of epithelial integrity. This result is consistent 

with previous reports (Pelissier, Chauvin, and Lecuit 2003). Embryos that were treated 

with warm PBS during the fast phase of cellularization still extended their lateral 

membranes. In this condition the growth of the cells was noticeably slower. Importantly, 

the apical surface of these embryos failed to flatten at the end of cellularization and the 

apical protrusions remained elongated (Fig. 4.13 d). These differences were quantified 

using a computational approach that was developed collaboration with Sebastian 

Streichan (Fig. 4.13 e-f).   

To test whether the altered apical flattening was not the consequence of an 

artefact I performed two controls. First, I tested the influence of high temperature on 

apical flattening in wild type embryos. The result of this experiment showed that at 32°C 

plasma membrane flattening was not inhibited (Fig. 4.13 b). The second control I 

performed was to image shi mutant embryos at room temperature. Also in this case 

surface flattening occurred normally (Fig. 4.13 g-i). Thus, these experiments demonstrate 

that surface flattening is a dynamin-dependent morphogenetic process.  
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Figure 4.13  Endocytosis controls remodeling of the apical plasma membrane. 

 

(a-b) TIRFM view of the apical surface of embryos expressing GAP43::mCherry imaged at 32°C. 

At the fast phase of cellularization the apical surface is covered with many protrusions (a) that 
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retract at the onset of gastrulation (b). (c-d) TIRFM view of the surface of shi
TS

 mutant embryos 

expressing GAP43::mCherry imaged at 32°C. (c) At the beginning of imaging at the non 

restrictive temperature the surface is covered with small protrusions. (d) In contrast, the apical 

surface of shi
TS

 mutant embryos remain covered with many protrusions at a time corresponding to 

when cells have flattened in wild type embryos. (e-f) Quantitative analysis of the apical 

protrusions in the wild type and shi
TS

 mutant embryos. (e)  An example image of the apical 

protrusions detected by the ‘mexican hat’ filter (see Methods). (f) Relative area covered by 

protrusions over time. Notice that in shi
TS

 mutant the area covered by protrusions does not change 

over time.  (g-i) Dynamin mutant embryos at room temperature do not show defect in apical 

flattening. View of the surface of shi
TS

 mutant embryos expressing secGFP imaged at room 

temperature. Mutant embryos imaged at early (g) mid (h) and late (i) stage of cellularization do 

not show defect in the morphology of apical plasma membrane. 

(a-b) y,w*; sqh>GAP43::mCherry/CyO (c-d) shiTS; sqh>GAP43::mCherry/CyO  

(g-i) shi
TS

; αTub67C>Gal4/+; UAS>secGFP/ αTub67C>Gal4 

 

4.11 Dynamin mediated endocytosis is responsible for apical upregulation of Rab5 

 

In the next steps I tested the hypothesis whether observed increase in Rab5 signal 

and apical surface flattening are controlled by dynamin dependent endocytosis. In order 

to do that I generated flies expressing endogenously tagged Rab5 in the shibire mutant 

background. Using time course microscopy I followed GFP::Rab5 signal during fast 

phase of cellularization at non-permissive temperature. 

 Surprisingly, upon switching to non-permissive temperature almost 

instantaneously all Rab5 signal was lost from endosomal structures. Only cytoplasmic 

signal could be detected. (Fig. 4.14 b). To confirm that loss of endocytic Rab5 signal is 

due to the dynamin activity I performed two controls. First, I checked if co-expressing 

GFP::Rab5 and shi
TS

 can affect the localization of Rab5 by imaging mutant embryos at 

18°C. As shown in Fig. 4.14, GFP::Rab5 was correctly localized. For my second control I 

checked if a temperature of 32°C has any effect on GFP::Rab5 localization. I imaged 

embryos expressing endogenously tagged Rab5 at 32°C and I could not detect any 

abnormality or difference compared to embryos imaged at room temperature or 18°C. 

These results suggest that blocking dynamin function results in depletion of Rab5 

positive endosomes. It also suggests that apical membrane flattening and increase in 

apical endocytosis are controlled by a single pathway dependent on dynamin. 
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Because tubular endocytic intermediates are the predominant form of apical 

endocytosis that can be detected, I asked whether dynamin controls budding of this type 

of vesicles and therefore controlled removal of apical plasma membrane. 

 

 

 

Figure 4.14 Dynamin controls biogenesis of Rab5 positive vesicles. 

 

Live imaging of GFP::Rab5 expressed at endogenous levels in shibire mutant embryos reared at 

the permissive temperature (18 ºC, panel a) and at the non-permissive temperature (32 ºC, panel 

b) during mid-cellularization. The punctate distribution of Rab5-positive endosomes was lost 

upon inhibition of dynamin activity and exhibited a diffuse cytoplasmic distribution. Scale bar, 

5 μm. 

 

 

4.12 Blocking dynamin activity prevents the formation of intracellular tubes during 

the fast phase of cellularization 

 

Having established that both surface flattening and apical endocytosis are 

dynamin-dependent, I next asked whether tubular endocytosis is also inhibited in shi
TS

 

mutant embryos. For this experiment, I generated embryos expressing secGFP in a shi
TS

 

background. Embryos were switched to 32°C during the fast phase of cellularization and 

imaged with the spinning-disk confocal microscope. Under these imaging conditions, 

membrane protrusions appeared as dark non-fluorescent elongated tubular extensions. 

Surprisingly no accumulation of vesicles could be observed upon switching to the 

non-permissive temperature (Fig 4.14 b). Moreover, no tubular structures were present 

inside the cells. This result demonstrates that dynamin activity is required for the 
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formation of tubular endocytic intermediates during surface flattening. The role of 

dynamin in tubular endocytosis must, however, be distinct from its role in vesicle fission. 

If dynamin were required for membrane fission, one would rather expect an elongation of 

tubular endocytic intermediates upon blocking dynamin.  

In previous reports that analyzed the influence of shi
TS

 on endocytosis the 

incubation at the non-permissive temperature was performed for approximately 20-30 

minutes. To reproduce these experiments, I performed time-course imaging and show 

that after approximately 15-20 min of incubation at 32°C small puncta did indeed 

accumulate under the apical plasma membrane (Fig 4.15 c). The size and the shape of 

these structures were compatible with that of CCVs. Thus, I conclude that in addition to 

its role in the formation of clathrin coated vesicle, dynamin controls also the activation of 

tubular endocytosis.  

 

 

 

Figure 4.15 shi
TS

 inhibits the formation of intracellular tubes during the fast phase of 

cellularization. 

 

(a) In the wild type embryos secGFP is detected in both tubular and vacuolar structures (red 

arrowheads) (b) In contrast, no intracellular structures are present at the non-permissive 

temperature in shi
TS 

mutant embryos. (c) 20 minutes after transfer to 32°C accumulation of small 

vesicles can be observed under the apical plasma membrane (red arrowheads). (a-c) 2 µm 

maximum intensity z-projection. (a) y,w*,UAS-secGFP/Y/+; αTub67C>Gal4/+; 

αTub67C>Gal4/+. (b-c) shi
TS

; αTub67C>Gal4/+; UAS-secGFP/ αTub67C>Gal4. 
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4.13 Blocking dynamin function during the slow phase of cellularization does not 

prevent tube formation 

 

Previous experiments had shown that blocking endocytosis at the beginning of 

cycle 14 resulted in the formation of long endocytic tubular structures originating from 

the invaginating furrows (Sokac and Wieschaus 2008a). This result suggests that there 

might be a similar mechanism controlling tube formation during the early stages at the 

furrow and during the late stage at the apical membrane. To test if shi controls formation 

of both endocytic structures I blocked dynamin in early cellularizing embryos. As readout 

for endocytosis I used secreted GFP.  In agreement with previous reports, blocking shi 

activity at the beginning of cellularization resulted in the retraction of lateral membranes 

and arrest of cellularization (Fig. 4.16 a). Differently from the behaviour of apical 

endocytic tubes, intracellular tubes emerging from the furrow could still be observed 

upon blocking dynamin activity. These structures formed and then rapidly retracted back 

without budding (Fig 4.16 b-d). Therefore, the effect of dynamin inhibition on tubular 

endosomes emerging from the apical PM and the furrows is different. The activity of 

dynamin at the furrow is compatible with its role in vesicle scission as blocking its 

activity resulted in the elongation of tubular structures and delay in budding. The activity 

of dynamin at the apical plasma membrane is instead required for the initiation of 

membrane tubulation suggesting the presence of different endocytic mechanisms 

operating at the apical plasma membrane (see next chapters).   
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Figure 4.15 shi
TS

 inhibits the budding of endocytic tubes during the slow phase of 

cellularization. 

 

(a) Blocking shibire function at the beginning of cellularization results in furrow regression. shi
TS

 

embryos (b-d) Snapshots from the time-course analysis of tube formation during the slow phase 

of cellularization. Intracellular tubes formed (b) retract back to the PM (c) and disappear (d). No 

pinching could be observed. Images from a single plane acquisition are shown. 

 

4.14 Rab5 localizes to tubular endocytic plasma membrane invagination 

 

The injection of fluorescent dextran into the perivitelline space showed that 

apically internalized cargo is promptly delivered to Rab5 positive endosomes (see 

Chapter 4.8). However, in this experiment I did not address the association between 

intracellular tubes and Rab5. One possibility is that the increase in Rab5 signal at the 

apical plasma membrane results from the budding off directly from the tubular 

intermediates. To test this hypothesis, I performed time-course analysis of tube formation 
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filled with secreted mCherry in embryos expressing endogenously tagged Rab5. This 

experiment revealed that intracellular tubes originating from the PM are marked with 

Rab5 (Fig. 4.16 a-c), which localizes to the distal part of the tubes (Fig. 4.16 b-c). At the 

beginning of the endocytic process, Rab5 signal accumulates at the apical plasma 

membrane (Fig. 4.16 d, t=0 min). Afterwards, only a distal part of the forming tube is 

marked with Rab5 (Fig. 4.16 d, t=1 min). In the next minute Rab5 positive vacuoles are 

formed (Fig. 4.16 d, t=2 min). Afterwards these vacuoles travel towards the base of 

nuclei (Fig. 4.16 d t=3 min). These results complement the data obtained with the dextran 

injection experiments and suggest that Rab5 associates and might function directly at the 

plasma membrane during surface flattening.  

In summary, the data collected so far demonstrates that apical endocytosis 

controls flattening of the apical membrane during the late stages of cellularization. This 

process is dynamin dependent. Dynamin controls the formation of tubular intermediates 

and tubular intermediates are the main route for the internalization of apical cargo. The 

formation of tubular endocytic intermediates coincides in time with the up-regulation of 

Rab5 endosomes and Rab5 itself localizes to the tip of this tubular invaginations. In order 

to address the role for Rab5 in regulating intracellular tubes it would be advantageous to 

block specifically Rab5 function at the apical PM during the fast phase of cellularization. 
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Figure 4.16 Rab5 associates with both tubular intermediates and nascent vacuoles. 

GFP::Rab5 is associated with apical tubulo-vacuolar structures. secCherry cargo is surrounded by 

GFP::Rab5 signal (arrowheads). A single confocal plane is presented (b) GFP::Rab5 signal is 
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present at the distal part of the pinching tube. White arrowhead points on the part of the tube that 

is not marked by GFP::Rab5. (c) 3D reconstruction of a representative GFP::Rab5-positive tube. 

A secCherry filled tube originating from the apical PM is surrounded by GFP::Rab5 signal (white 

arrowhead). (d) Time-course analysis of the association of GFP::Rab5 with a budding tubular 

intermediate. A 4 µm confocal z-projection under the apical PM is shown. At the time point t=0 

min only a small GFP::Rab5-positive domain is localized to the the apically formed tube. At time 

(t=1 min) this GFP::Rab5-positive domain expands on the tube and persists on the 

nascent/budded vacuole that moves towards the base of the nuclei (t= 2 min and t=3 min). 

Embryos were obtained from the following parental cross: (a-d) y,w*; GFP-Rab5/ 

αTub67C>Gal4; UAS-secmCherry/αTub67C>Gal4. 

 

4.15 Approaches to inactivate Rab5 during surface flattening 

 

 To investigate the role of Rab5 on formation of endocytic tubes and flattening of 

apical PM I tried two different approaches. First, I tried to over-express Rab5S43N 

mutant during the fast phase of cellularization.  The Rab5S43N mutation mimics the 

GDP bound conformation of Rab5 (see Chapter 1.3.3.3). Injection of recombinant 

Rab5S43N blocks cellularization and therefore it could be a useful tool to modulate Rab5 

activity (Pelissier, Chauvin, and Lecuit 2003). To avoid any possible artefacts caused by 

injection into embryos, I decided to ectopically express Rab5 mutant during 

cellularization. Transgenic Rab5S43N lines available from the Bloomington Stock Center 

do not yield necessary level of expression for this experiment; therefore I generated and 

tested eight new transgenic lines. Unfortunately, none of these lines expressed the 

construct, which was confirmed by western blot analysis.  

 In the second approach I wanted to take advantage of endogenously GFP-tagged 

Rab5 line that I generated (see Chapter 4.6).  I tried to develop chromophore-assisted 

light inactivation (CALI) in cellularizing embryo. This method is based on the principle 

that illumination of the fluorophore generates high amount of oxidative species. These 

are able to destroy proteins in close proximity to the illuminated fluorophore (McLean et 

al. 2009). In this case illumination of GFP would generate oxidative species that would 

affect Rab5 function. I used a two photon microscope to perform this experiment in 

embryos homozygous for GFP::Rab5. The main objective of the experiment was to find 

an appropriate laser power that would generate high amount oxidative species. Because 

previous reports (Pelissier, Chauvin, and Lecuit 2003) shown that Rab5 is necessary for 
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the furrow progression I tested different laser settings focusing on the furrow marked 

with Rab5.  The laser power setting tested in cell culture resulted in embryos lysis, 

probably due to the high thermal energy released in the focal plane. Therefore, I 

gradually lowered the laser power to the point when lysis was not observed. At this setup 

photobleaching of the Rab5 was prominent. Unfortunately, Rab5 signal recovered to the 

endocytic structures almost immediately. This suggests that Rab5 is exchanged very fast 

on endocytic structures. It also suggests that Rab5 is not a suitable target for CALI. 

 

 

4.16 The Drosophila homolog of human Rabankyrin-5 is an abundant Rab5 effector 

in the early developing embryo 

 

To gain further insight about the Rab5 specific function at the apical membrane, I 

decided to search for Rab5 effectors using affinity chromatography on a large pool of 

cellularizing embryos. For this experiment I collected 20 g of 0–4 hours old embryos and 

prepared a soluble cytoplasmic extract. This extract was incubated with recombinant 

GST-Rab5 loaded with either GTP-γ-S or with GDP as a control. Proteins that were 

bound specifically to the GTP form of Rab5 were sequenced by mass spectrometry Fig. 

4.17 a). Using this approach I found that the Drosophila homolog (CG41099) of human 

Rabankyrin-5 is the main binding factor of Rab5 during early embryonic development. 

Rabankyrin-5 localizes to different types of vacuolar structures that originate from the 

apical membrane in epithelial cells and fibroblasts (Chapter 1.3.3.3b).  Little is known 

about the underlying molecular mechanism of Rabankyrin-5 function in endocytosis. 

CG41099 transcripts have four isoforms. PA is the shortest one and does not 

contain the BTB domain. The isoforms PC and PD differ of only two amino acids at the 

N-terminus, while PB is 11 amino acids shorter than PC.  In the Rab5 chromatography 

experiment an approximately 120 kDa protein was identified that correspond to one of 

the longer isoforms. I chose CG41099-PC for further investigation (Fig. 4.17 b). I 

confirmed the direct interaction between Rab5-GTP and CG41099. Unfortunately, I was 

unable to express the long isoform with the in vitro translation protocol (see Methods). 

Instead I used CG41099-PA construct for this experiment (Fig. 4.17 c). 
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In the next steps I tested the hypothesis that Rabankyrin-5 control apical 

endocytosis during surface flattening. 

 

 

 

Figure 4.17  CG41099 is an abundant Rab5 effector expressed during the early Drosophila 

development. 

 

(a) Identification of Rab5 effectors expressed during early Drosophila development. Rab5 affinity 

chromatography on a soluble fraction from 0-4 h old embryos. A picture of an acrylamide gel 

with resolved proteins stained with coomasie brilliant blue. The first lane represents a protein 

molecular weight marker. The second lane represents proteins bound to Rab5 loaded with the 

GDP. The last lane represents proteins bound to Rab5 loaded with the GTP-γ-S. The red asterisk 

points to the band identified by mass spectrometry as CG41099. (b) A graphical representation of 

the CG41099-PC domains. (see chapter 1.3.3.3b) (c) CG41099 interacts directly with Rab5. 

Direct interaction between Rab5-GTP-γ-S and the CG41099-PA was confirmed using an in vitro 

translation protocol. In the first lane no binding can be observed between the CG41099-PA and 

GDP-bound Rab5. In the second lane a clear binding between the CG41099-PA and 

GTP-γ-S-bound Rab5 was detected. 

 

4.17 CG41099 localizes to apical vacuolar structures in the early embryo 

 

Because there was no information available on the Drosophila homolog of human 

Rabankyrin-5, I decided to closely characterize both protein localization and its role in 

endocytosis during cellularization.  To do that I generated transgenic flies expressing 
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CG41099-PC tagged with GFP on the N-terminus. I used the UASp promoter to express 

the transgene during oogenesis. 

First, I investigated if Drosophila Rabankyrin-5 can be detected close to the 

apical plasma membrane. I performed time course imaging with TIRFM and spinning 

disk confocal microscope. In the result, I could observe a clear CG41099 signal in apical 

protrusions (Fig. 4.18 a-c). In addition, a more prominent signal could be observed on big 

vacuolar structures close to the apical plasma membrane (Fig. 4.18 d-f).  

Interestingly, GFP::CG41099 signal does not localize uniformly on vacuolar 

membranes. The pattern resembles a diamond ring, where a bright domain is present on 

an otherwise uniformly stained vacuole. This pattern probably represents either 

accumulation of Rab5 or localization of PI3P domains on endosome. Moreover, detected 

signal persisted on vacuoles for short time. Additionally, homotypic fusion between 

Rabankyrin-5 positive vacuoles could be easily observed (Fig. 4.18 d-f). This result is in 

line with previous reports which showed that one role of human Rabankyrin-5 is to 

promote homotypic fusion between endosomes (Schnatwinkel et. al 2006) 

In next step I decided to investigate whether CG41099 is involved in apical 

endocytosis. In this experiment I followed secreted mCherry in the GFP::CG41099-PC 

expressing flies (Fig 4.18 g-i). During the slow phase of cellularization no 

CG41099-positive structures containing secreted mCherry could be observed. Just before 

cell flattening big vacuoles containing cargo appeared in the sub-apical region (Fig 4.18 

g-i).  

To analyze the behavior of these endocytic structures I focused on the region 

between 2 and 4 microns below the apical membrane. I could observe formation of 

Rabankyrin-5-positive structures originating from intracellular tubular structures. 

Because time resolution was a limiting factor in this experiment, it is not clear whether 

Rabankyrin-5 appears on tubes just before or immediately after the budding event.  

Studies performed in MDCK cells suggest that over-expression of Rabankyrin-5 

can induce apical endocytosis (Schnatwinkel et al. 2004). The test whether formation of 

Rabankyrin-5 positive structures was not the consequence of an over-expression artefact I 

generated a polyclonal antibody against the Drosophila Rabankyrin-5 and I performed 

immunochemistry on fixed wild-type embryos (Fig 4.18 k). I could confirm that vacuolar 
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structures positive for Rabankyrin-5 were present in the cellularizing embryos. These 

structures were present both at the apical and basal part of the cell. However, in general, 

only one or two vacuoles per cell could be detected. This is probably due to transient 

occupancy of Rabankyrin-5 on endosomes. 
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Figure 4.18 CG41099 localizes to apical vacuolar structures. 

 

(a-c) GFP::CG41099 is present at the apical surface during cellularization. (a) TIRF view of the 

GFP::CG41099 puncta that are present at the protrusion plane during cellularization. (b) Apical 

membrane marked with the GAP43::mCherry (c) Merge of both channels. (d-e) GFP::CG41099-

positive vacuoles are present under the apical membrane. Ectopically expressed GFP::CG41099 

was analyzed by confocal microscopy. Fusion between two individual vacuoles can be observed 

(arrowheads). Notice that the protein is distributed into domains on the vacuoles. 2 µm z-stack is 

presented. (g-i) GFP::CG41099 expressed together with secCherry colocalize in subapical 

vacuoles. 2 µm z-stack is presented. (g) Subapical vacuoles originated from the pinching tubular 

intermediates are marked with GFP::CG41099 (green arrowheads). (h) These vacuoles are filled 

with secCherry cargo (red arrowheads). (i) Merge of both channels. (k) Immunostaining against 

endogenous CG41099 in the cellularizing embryo. Fluorescence immunostaining with an 

antibody raised against CG41099 stains vacuolar structures in wild type cellularizing embryos 

(arrowheads). Notice that staining is not uniformly distributed on the vacuoles, rather it is 

heterogeneously distributed around them. 6 µm z-stack is presented. 

Parental crosses: 

(a-c) y,w*; sqh > GAP43::mCherry/ αTub67C > Gal4; UAS- GFP::CG41099-PC/ αTub67C > 

Gal4.  (d-f) y,w*; +/ αTub67C > Gal4; UAS-GFP::CG41099-PC/ αTub67C > Gal4. (g-i) y,w*; 

UAS-secCherry/ αTub67C > Gal4; UAS- GFP::CG41099-PC/ αTub67C > Gal4.  (k) OregonR. 

 

4.18 CG41099 controls the maturation of tubular intermediates at the apical plasma 

membrane 

 

In the next step, my goal was to establish a relationship between Rabankyrin-5 

and apical endocytosis. Because CG41099 gene is positioned in the heterochromatin 

region of the third chromosome, it is not possible to generate a mutant with the available 

genetic tools. In recent years a new tool for the gene knock down in the germ line was 

developed by Perrimon lab. It is based on the RNA interference with the use of the short 

hairpin constructs. This method was tested during the oogenesis and there is no 

information whether it is also suitable for cellularizing embryos (Ni, J-Q. et. al 2008) 

To test this method I expressed shRNA targeting CG41099 in female germline 

with UAS/Gal4 system. I tested the efficiency of this RNAi method in reducing both the 

mRNA and the protein levels. The qPCR analysis revealed that the RNA level coding for 

Rabankyrin-5 was reduced 95-99% (Fig. 4.19 a). To check the variability between the 

samples analysis were performed both on a single and 10 embryos. Detected variability 

was below 5%. 
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In order to analyze the protein level of the CG41099 in the cellularizing embryos, 

I took advantage of the antibody that was raised against the protein. There was almost 

complete reduction in protein level in the shRNA expressing line comparing to wild type 

embryos (Fig. 4.19 b).  

In the next step I analyzed the apical membrane and endocytic tubes in 

Rabankyrin-5 knock down embryos. I used secGFP to follow apical surface dynamics 

and endocytic vesicles. Surprisingly, the apical surface of cellularizing embryos was not 

affected. However, analysis of endocytic intermediates revealed that, while in control 

embryos vacuolar structures form rapidly (Fig. 4.19 d), in Rabankyrin-5-depleted 

embryos vacuoles form from long tubular membranes. These structures can extend for 

over 15 microns along the apico-basal axis of cell (Fig. 4.19 e). In addition, these 

extended membranes are budding in discrete portions. Instead, in the wild type embryos a 

single apical vacuole is budding from the apical plasma membrane. In both cases formed 

vacuoles travel towards the base of nuclei. 

Interestingly, this phenotype is particularly prominent in ventral cells. To test 

whether apical endocytosis is more abundant in the ventral region of the embryo I 

compared the amount of budding vesicles between dorsal and ventral cells. In agreement 

with the observation coming from previous experiment, the mean amount of vesicles in 

ventral cells in wild type embryos was three times higher in comparison to the dorsal 

region (Fig. 4.19 f). 
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Figure 4.19  CG41099 controls maturation of the apical tubules. 

 

(a) Expression of the Rabankyrin-5 shRNA reduces Rabankyrin-5 at both the mRNA and protein 

level. qRT-PCR shows a 98% reduction of Rabankyrin-5 mRNA in a shRNA-expressing line in 

comparison to the GAL4 driver line alone or to a line expressing GFP shRNA. (b) Western-blot 

analysis of the Rabankyrin-5 endogenous levels in Gal4 driver and in Rabankyrin-5 knock-down 

lines. Rabankyrin-5 protein level is undetectable in the cellularizing embryos expressing shRNA 

targeting the gene in comparison to GAL4 driver line embryos. Lower panel shows alpha-tubulin 

signal as a loading control. (c) Phenotypic characterization of ventral cells during cellularization 

in Rabankyrin-5 knock-down embryos. Single plane from the two-photon aquired image of the 

ventral cells of an embryo expressing Rabankyrin-5 shRNA and secGFP. Arrowheads indicate an 

elongated intracellular tube filled with secGFP. (d) Timecourse showing formation of the apical 

vacuoles in the embryos expressing secGFP. 5 micron z-projection stills from the ventral side of 

the embryo. Arrowheads indicate vacuoles filled with sec::GFP moving towards the base of the 

cells. Timepoints correspond to t=0s, t=100s, t=160s, t=190s, t=235s. 
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(e) Timecourse showing elongation of the intracellular tubes in the Rabankyrin-5 knock down 

embryos. 5 micron z-projection stills from the ventral side of the embryo expressing the 

Rabankyrin-5 shRNA and the secGFP. Arrowheads indicate maturation of the elongated 

intracellular tubes marked with the soluble GFP. Timepoints correspond to t=0s, t=225s, t=300s, 

t=525s, t=550s. Scale bar is 5 microns. 

Parental cross: 

(d) y,w*,UAS-secGFP/Y/+; +/ αTub67C > Gal4; +/ αTub67C > Gal4. 

(c),(e) y,w*,v
1
,UAS-secGFP/Y/+; /+; +/ αTub67C > Gal4; UAS-CG41099 shRNA/ αTub67C > 

Gal4. 

 

4.19 Ultrastructural analysis of endocytic structures in cellularizing embryos 

 

In order characterize the morphology of the endocytic structures involved in this 

novel pathway, Aleksandar Necakov performed correlative EM tomography on 

cellularizing embryos. 

 First, we analyzed the apical tubules coming from the apical region of the cells. 

These endocytic intermediates appeared as convoluted membrane structure. Similar to the 

3D reconstruction (presented in Fig. 4.20) intracellular tubes consist of a neck and a 

vacuolar regions. The diameter of the vacuolar part is about 500 nm. Moreover, many 

invaginations protruding inside the vacuolar parts that could be observed. The presence 

of an area of ribosomal clearing around these structures is indicative of actin 

polymerization. A typical endocytic intermediate is presented in Fig. 4.20 a,b.  

 Next, we analyzed the membranes positive for CG41099. Because antibody 

against the CG41099 did not work for immunolabelling, we took advantage of the 

transgenic line expressing GFP::CG41099. By the combination of fluorescent microscopy 

and EM tomography we were able to reconstruct GFP::CG41099 positive membranes. 

GFP::CG41099 localizes to convoluted membranes detected close to the apical surface 

(Fig. 4.20.c-d). 3D reconstruction of these membranes revealed their toroidal-like 

structure. This suggests that the budded tubular membranes are able to self-fuse in a 

process similar to autophagosome formation (Xie and Klionsky 2007). 
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Figure 4.20  CG41099 controls maturation of the apical tubules. 

 

(a-b) Endocytic tubular intermediates originating from the apical plasma membrane. EM 

tomography of an apical endocytic tubule showing multiple internal compartments in direct 

continuity with the apical plasma membrane. (a) A single section through an EM tomogram of a 

tubular endocytic structure in direct continuity with the apical plasma membrane. (b) Three-

dimensional surface rendering of the tubular endocytic volume from the corresponding volume 

generated by EM tomography demonstrating the continuity of the tubular-endosomal structure 

with the apical plasma membrane at top. (c-e) Correlative light-electron micrograph showing the 

overlay of GFP::CG41099 fluorescence onto a corresponding EM tomogram of the same region. 

(d) High-magnification view of a section of the EM tomogram corresponding to the region 

underlying the GFP::Rabankyrin-5-positive spot labelled in panel (c). (e) Three-dimensional 

surface rendering of the convoluted, tubular-membranous, GFP::Rabankyrin-5-positive structure 

underlying the fluorescence spot marked in panel (c.) Scale bar= 500 nm 
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5.1 The apical plasma membrane of cellularizing Drosophila embryo undergoes 

specific morphological changes during development 

 

The specialized function of many different epithelial cell types depends on the 

structural organization of their apical plasma membrane. Microvillous-like protrusions 

are involved in processes such as nutrient uptake, mechano- and photosensing, cell-to-

cell adhesion and communication between cells (Frolenkov et al. 2004; Pellikka et al. 

2002; Vasioukhin et al. 2000). Ruffling and formation of apical protrusions in the brush 

border of the gut and kidney epithelia control nutrient and solute uptake via 

macropinocytosis (Mercer and Helenius 2009). During embryonic development, for 

example in early starfish embryos, specialized apical protrusions are involved in 

stabilizing the position of the blastoderm inside the egg shell (Matsunaga et al. 2002). 

The shape and length of apical protrusions is tightly regulated and reflects their 

specialized function. For example, the length of mechano-sensory stereocilia present in 

the inner ear results in reception of specific wavelength of sound (Lin, Schneider, and 

Kachar 2005). While the length of apical microvilli originating from the follicle 

epithelium in maturing Drosophila egg chambers is necessary for the secretion of the 

vitelline components (Schlichting et al. 2006). These are only few examples of plasma 

membrane structures forming at the apical plasma membrane of polarized cells. In this 

thesis I focused on the mechanisms underlying the remodelling of the apical plasma 

membrane during early Drosophila development. 

Previous electron microscopy studies had shown the presence of many 

microvilli-like protrusions at the apical surface of the early Drosophila embryo, which 

disappear at the onset of gastrulation (Turner and Mahowald 1976). These observations 

led to the model that villous projections are the initial pool of membrane, which is 

redistributed during cellularization. In my analysis I did not observe a massive 

accumulation of apical membrane prior to cellularization as it was previously suggested. 

Instead, in the initial phase of cellularization cells have many small villi that are 

elongating and are moving dynamically with the progress of the membrane furrow. 

Towards the end of cellularization these villi are reabsorbed and the apical membrane 

becomes flat.  While the role of actin cytoskeleton in shaping the apical membrane is well 
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established, the organization of apical endocytosis during cell and tissue morphogenesis 

has been so far poorly investigated. Therefore, I addressed the contribution of membrane 

trafficking in controlling apical plasma membrane remodelling during cellularization. 

 

5.2 Endocytosis drives plasma membrane flattening during epithelial morphogenesis 

 

During the early stages of cellularization, endocytosis is particularly prominent at 

the invaginating furrow canals and is controlled by actin. (Sokac and Wieschaus 2008a) 

Cargo internalized at the furrow was detected in endocytic structures marked with Rab5. 

In addition, results presented by Pelissier et al. have shown that Rab5 has a crucial role in 

lateral membrane elongation during cellularization (Pelissier, Chauvin, and Lecuit 2003). 

However, these studies did not focus on the dynamics of the Rab5 machinery and did not 

address the role of endocytosis in apical remodelling during cellularization. By following 

the dynamics of endogenously tagged GFP::Rab5, I confirmed the results of Sokac, et al. 

The Rab5 signal is present at the furrow during first three stages of cellularization. 

However, during the fast phase of cellularization I discovered a second burst of 

endocytosis taking place at the apical surface that has never been described before. Rab5 

signal at the apical membrane increases four-fold towards the end of cellularization. 

These apical Rab5 endosomes are highly dynamic and move towards the basal side of the 

cell in close proximity to invaginating furrow. My results demonstrated that this increase 

in apical Rab5 endosomes can be observed along both the dorsal-ventral and anterior-

posterior axes, thus arguing for the presence of a general regulatory mechanism 

underlying the up-regulation of apical endocytosis. 

To test whether apical endocytosis plays a role in controlling the morphology of 

apical membrane I decided first to analyze embryos expressing both, Rab5 and a plasma 

membrane marker. I found that appearance of apical Rab5 positive carriers coincide with 

the remodelling of the protrusions. To test directly whether endocytosis control apical 

morphology, I took advantage of flies carrying a temperature sensitive dynamin mutant 

allele (shibire
TS

). I observed two phenotypes, first, blocking endocytosis resulted in the 

regression of the membrane furrow. This observation is consistent with previous reports 

showing that endocytosis is needed for furrow progression. Second, apical villi were 
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longer compared to wild type flies and the plasma membrane failed to flatten. The 

elongation of apical protrusions suggests that endocytosis plays an important role in 

controlling the shape of the apical membrane at the onset of gastrulation. Moreover, I 

showed that blocking dynamin activity during the fast phase of cellularization resulted in 

the complete depletion of Rab5 positive endocytic structures. This result indicates that 

dynamin activity is directly responsible for the up-regulation of Rab5 endosomes during 

membrane flattening. 

What is the role of membrane flattening during cellularization? The timing of 

apical surface flattening led to the model that villous projections act as membrane 

reservoir. However, so far there is no direct evidence supporting this hypothesis, because 

there are no available tools to visualize the redistribution of internalized membranes 

during cellularization. Although the work of Pelissier et. al demonstrated that shibire is 

necessary for cellularization and that injection of dominant negative Rab5 during slow 

phase leads to a delay in furrow progression, there is no clear experiment addressing 

whether this effect is due to the function of Rab5 at the furrow or at the apical surface 

(Pelissier, Chauvin, and Lecuit 2003). The same limitation applies to the experiments 

done in shibire mutant background. By following both Rab5 and a soluble cargo, I could 

show that endosomes originating at the apical plasma membrane travel towards the base 

of the cells. This in principle could indicate that endocytic membranes are transported 

from the apical surface to the furrow. 

One interesting observation is that endocytosis is more prominent in ventral cells. 

These cells will give rise to the mesoderm of the embryo. Ventral cells are 

morphologically distinct from the rest of the cellular blastoderm. They become longer 

during cellularization and the apical adherent junctions are located more apically 

comparing to their neighbours in the ectoderm (Leptin and Grunewald 1990). These cell 

shape changes immediately precede apical constriction and formation of ventral furrow. 

One possibility is that apical endocytosis could contribute to the redistribution of 

membranes in ventral cells during cell elongation. Another hypothesis is that membrane 

removal from the apical surface is necessary for proper apical constriction. Recent work 

by Lee et. al has shown that injection of dominant negative Rab5 or inhibition of 

dynamin activity results in apical constriction defects during Xenopus gastrulation (J.-Y. 
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Lee and Harland 2010). The same defects were observed in cells undergoing constricting 

during the morphogenesis of the neural tube. In addition, endocytosis was shown to 

control membrane removal during dorsal closure in Drosophila (Mateus et al. 2011). The 

data presented in this thesis show that the up-regulation of apical endocytosis precedes 

any visible change in the reduction of the apical surface area. Therefore, I hypothesis that 

endocytosis acts up-stream of apical constriction by removing membranes and thus 

facilitating the constriction of the actin-myosin network. Collectively all these data 

strongly argue that removal of apical membranes might be a general mechanism 

underlying apical constriction. To test this model it would be important to identify 

specific regulators of apical endocytosis. 

 

5.3 The primary entry route for apical endocytic cargo is through endocytic tubules 

 

To directly visualize apical endocytosis during surface flattening I developed a 

genetically encoded cargo uptake assay. Using this assay, I demonstrated the up-

regulation of Rab5 endosomes corresponds to a bona fide increase in apical endocytosis. I 

observed a significant accumulation of internalized, fluorescently labelled cargo, 

underneath the apical surface shortly before the end of cellularization. Strikingly, this 

experiment revealed that the primary entry route for soluble cargos is through tubular 

intermediates that, upon budding from the plasma membrane form vacuolar-like 

structures. These structures originate at the very apical and subapical part of the plasma 

membrane. These tubular intermediates can extend up to 5 microns in length are 

surrounded by actin filaments. More importantly formation of these tubules is dynamin 

dependent. Interestingly, recent work of Levayer et. al has identified similar apical 

endocytic structures during germ-band extension in Drosophila (Levayer, Pelissier-

Monier, and Lecuit 2011). These endocytic structures are involved in establishing planar 

polarity of apical adherence junctions during morphogenesis. They showed that tubular 

membranes serve as platforms for budding of clathrin-coated vesicles. My analysis of the 

apical tubular intermediates forming during cellularization revealed that these two 

structures are different. First, the structures described in this thesis bud off the plasma 

membrane as whole, and do not seem to serve as a platform for CCVs. Second, in the 
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analysis presented by Levayer et. al, blocking dynamin activity leads to accumulation of 

tubular intermediates at the plasma membrane. In contrast, apical endocytic structures 

present during cellularization are completely abolished in dynamin mutant. Interestingly, 

there is another type of tubular endocytic intermediates forming during cellularization. 

These structures were previously described by Sokac et. al. and their formation is 

restricted to the base of the furrow canal (Sokac and Wieschaus 2008a). In the shibire 

mutant these endocytic intermediates fail to detach from the plasma membrane, similar to 

the structures observed by Levayer et. al. Therefore the apical endocytic tubules present 

during cellularization form via a novel endocytic mechanism. Tubular endocytosis has 

been studied in mammalian cell culture and is associated, but not exclusive, for the 

internalization of GPI-anchored proteins. This pathway is referred to as the CLIC 

(clathrin-independent carriers) pathway and is controlled by the Rho GTPase 

(Sabharanjak et al. 2002; Lundmark et al. 2008). Ultra-structural analysis of the carriers 

presumably originating from endocytic tubes during cellularization revealed their 

complicated, doughnut-like shape. These endosomes resemble endocytic carriers 

previously associated to the CLIC pathway (Howes et. al 2010).  

Although CLIC carriers have many morphological similarities to the endocytic 

tubules described in this thesis they do differ in size. While the structures present in 

Drosophila have a diameter of approx. 200-500 nm, the CLIC structures present in cell 

culture are approx. 40 nm (Lundmark et al. 2008).  This might indicate that either these 

two endocytic structures do not represent the same pathway or that their morphology is 

not conserved between Drosophila and mammalian cells. One prominent regulator of the 

CLIC pathway is GRAF1. Therefore, the generation of GRAF1 knockout flies should 

help elucidating its in vivo function and a possible involvement of the CLIC pathway in 

regulating epithelial morphogenesis. Because tubular endocytosis has been observed also 

during germ-band extensions and dorsal closure, two key epithelial remodelling events 

required to complete embryogenesis in Drosophila, a detailed analysis of GRAF1 

mutants should also help to clarify whether these different examples of tubular 

endocytosis are all regulated in a similar manner and all have a similar function (Levayer, 

Pelissier-Monier, and Lecuit 2011; Mateus et al. 2011).  
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In this thesis I identified two regulators of tubular endocytosis: dynamin and 

Rabankyrin-5.  

 

5.4 The biogenesis of apical endocytic tubules is regulated by dynamin  

 

Dynamin has been shown to be involved both in CME as well as 

clathrin-independent pathways (see Chapter 1.3.3.4). The classical view on dynamin 

function is related to its role in vesicle scission. By forming a helix around the neck of the 

vesicle and conformational changes mediated through GTP hydrolysis, dynamin 

generates force necessary to separate vesicles from the plasma membrane. An additional 

role of dynamin is to regulate actin dynamics. Indeed dynamin was shown to bind 

directly to actin bundles though its effector binding domain and indirectly through the 

association of its SH3 domain with other actin regulators (Ferguson and De Camilli 

2012).  

In this work, formation of apical tubular intermediates is completely abolished in 

embryos expressing temperature sensitive mutant of dynamin. This result is intriguing as 

previous reports describing tubular endocytosis imply that dynamin is not necessary for 

generation of endocytic tubes. For example, work presented by Sokac et. al shows that 

the role of dynamin in tubular endocytosis present at the furrow is necessary for vesicle 

scission (Sokac and Wieschaus 2008a). Conversely, work of Roemer et. al on 

CLIC/GEEC pathway suggests that formation and scission of tubular endocytic 

intermediates is dynamin independent (Römer et al. 2010). They proposed that dynamin 

is involved in the processing of the budded tubes. My work shows yet another function of 

dynamin, which is in generation of endocytic intermediates. 

What could be the role of dynamin in this process? Because the role of dynamin 

in clathrin-independent endocytosis is associated with regulating actin dynamics, one 

hypothesis I put forward is that the role of dynamin in regulating apical endocytosis is 

also through regulation of actin. Elegant work in yeast has clearly demonstrated the 

requirement of actin during endocytosis, in particular for the invagination and scission of 

clathrin coated vesicles (Kaksonen, Toret, and Drubin 2005; Kübler and Riezman 1993). 

In polarized MDCK cells, actin has been recently shown to be required for apical 
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endocytosis under conditions that increase membrane tension (Boulant et al. 2011). 

Interestingly, during cellularizing, flattening of the apical surface is concomitant with the 

establishment of apical adherens junctions and a progressive lowering in the 

concentration of actin (Grevengoed et al. 2003; Thomas Lecuit 2004). The establishment 

of adherent junctions, which is expected to increase tension, in combination with the 

lower levels of actin could in principle favour membrane tubulation by delaying budding. 

Similar model would apply to the tubular structures identified by Levayer et. al during 

germ-band extension (Levayer, Pelissier-Monier, and Lecuit 2011). Because tubulation 

during cellularization can be observed not only at the plane of adherens junctions but also 

at the apical surface this model needs to take into account other factors. In my hypothesis 

formation of actin-rich apical protrusions would generate the spatially restricted tension 

of plasma membrane in order to promote tubular endocytosis.  

 

5.5 Rab5 and its effector Rabankyrin-5 controls the processing of tubular endocytic 

membranes during apical flattening 

 

The classical view on the role of Rab5 in endocytosis is that active Rab5 controls 

the fusion between CCVs and early endsomes. This is accomplished by Rab5 ability to 

recruit proteins to vesicles responsible for uncoating, fusion and motility (see Chapter 

1.3.3.3). Simultaneous imaging of GFP::Rab5 and secreted mCherry revealed that Rab5 

associates directly with cargo filled tubular invaginations. This indicates that Rab5 is able 

to form early endosomal structures directly at the plasma membrane. 

To get better insight about the molecular mechanism underlying Rab5 function at 

the plasma membrane, I established a method for the affinity-based purification of Rab5-

specific effectors operating during the early stages of embryonic development. I found 

that a Drosophila homolog of Rabankyrin-5 (CG41099) is the main effector of Rab5 in 

early embryos. In mammalian cell culture Rabankyrin-5 localizes to large vacuolar 

structures that correspond to macropinosomes (Schnatwinkel et al. 2004). However, the 

precise mechanism of Rabankyrin-5 in endocytosis is not known.  

In my analysis Rabakyrin-5 localizes to tubular intermediates originating from the 

apical plasma membrane and persists on budded vesicles. Ultrastructural analysis of 
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Rabankyrin-5-positive structures revealed the existence of doughnut shaped endocytic 

membranes present close to the apical plasma membrane. This result suggests that their 

biogenesis relates to the budding and circular folding of tubular elements. Moreover, live 

imaging of Rabankyrin-5 knock down line demonstrated that, while in control embryos 

vacuolar structures formed rapidly, in Rabankyrin-5 depleted embryos this step was 

delayed, resulting in the formation of long tubular membranes that can extend for over 15 

microns along the apico-basal axis of the cell. Therefore one of the roles of Rabankyrin-5 

at the plasma membrane is to promote budding of endocytic tubes from the plasma 

membrane. Surprisingly, depletion of Rabankyrin-5 did not affect flattening of the 

plasma membrane. It is likely that long endocytic tubes can compensate for plasma 

membrane removal and drive apical flattening. 

What could be the mechanism of Rabankyrin-5? Because there is no information 

about the interacting partners for Rabankyrin-5, its molecular function can be inferred 

only from its protein domain organization. Rabankyrin-5 contains 21 ankyrin repeats, 

which are protein domains associated with protein-protein interactions (Schnatwinkel et 

al. 2004). One possibility is that this Rab5 effector acts as a scaffolding protein linking 

budding factors to the plasma membrane. Another interesting hypothesis comes from the 

fact that ankyrin repeats have also mechano-sensing properties (G. Lee et al. 2006). It is 

proposed that ankyrin repeats are able to detect the tension of cytoskeleton and 

mechanically transfer this information onto other proteins. Therefore, Rabankirin-5 could 

take part in detecting and modulating tension of the plasma membrane leading to budding 

of intracellular tubes. Further experiments on Rabankyrin-5 are needed in order to 

elucidate its molecular function. 

The role of Rab5 at the apical plasma membrane might be to regulate the 

biogenesis of these structures. In this case, Rab5 would recruit factors responsible to 

induce tubulation of the plasma membrane. For example actin dynamics has been shown 

to be regulated by Rab5. Work of Lanzetti et al suggests that the activation of Rab5 and 

binding to its effector RN-tre leads to cross-linking of actin fibers close to the plasma 

membrane. This promotes ruffling of the plasma membrane and formation of 

macropinosomes (Lanzetti, Palamidessi, and Areces 2004). In cellularizing embryo 

activation of Rab5 could have similar effect on actin dynamics thus promoting formation 
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of endocytic tubes. This hypothesis is challenged by the fact that Rab5 is lost from the 

membranes in dynamin mutant. This result suggests that dynamin acts upstream of Rab5 

at the plasma membrane but does not exclude the possibility that Rab5 is also needed in 

this process. In order to address the role of Rab5 in generating endocytic tubes, there is a 

need for a tool to modulate Rab5 activity is spatial-temporal manner. This will be also 

important to separate the role of Rab5 at the furrow canal from the one at the apical 

plasma membrane. Unfortunately, my attempts to develop such approach did not yield 

positive results.  

Another intriguing question is what could be the mechanism to activate apical 

endocytosis during cellularization? Polarization of the endocytic machinery is a feature 

common to many cell types. In gut and kidney epithelial cells endocytosis is stably up-

regulated at the apical surface. This allows these cells to efficiently uptake solutes present 

in the environment.  A different situation is present during cytokinesis. In this processes 

the endocytic machinery is rapidly reorganized in order to increase membrane delivery to 

the cleavage furrow. This reorganization is partially regulated by proteins controlling cell 

cycle and the cytoskeleton (for details, see Chapter 1.4.3). In order to better understand 

the mechanisms controlling the rapid rearrangement of the endocytic machinery during 

cellularization, it will be necessary to dissect the mechanism controlling the shift of the 

endocytosis. There are several possible models that would account for the observed shift 

in endocytosis. The up-regulation of apical endocytosis occurs during the maternal to 

zygotic transition. One possibility is that the expression of positive regulators of 

endocytosis peaks during the fast phase of cellularization.  For example, the expression of 

an apically localized Rab5 GD/GTP exchange factor at cycle 14 could explain the 

gradual increase in apical endocytosis. Additional cues that promote endocytosis might 

be temporally regulated during cellularization. Prior to the apical endocytosis, actin 

dependent endocytosis can be detected at the furrow canals. The apical upregulation of 

endocytosis could be accomplished by shifting the localization of endocytic regulators 

from the furrow to the apical plasma membrane. For example Ras-related G proteins, 

including Rho1, Rac and Cdc42 could be involved in this process.  Another possibility is 

that the up-regulation of PtdIns(4,5)P2 during fast phase of cellularization drives the up-

regulation of apical endocytosis. PtdIns(4,5)P2 plays a crucial role in the recruitment of 
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endocytic components to the plasma membrane during CCV formation. It was also 

shown to promote formation of clathrin-independent structures like phagocytic cups 

(reviewed in van den Bout & Divecha 2009). Therefore the apical up-regulation of 

PtdIns(4,5)P2 would explain the observed increase in both clathrin-mediated endocytosis 

and clathrin-independent structures. Moreover, work on endocytosis in the female 

germline in Drosophila done by Compagnon et. al showed that PtdIns(4,5)P2 is 

promoting Rab5 association to membranes (Compagnon et al. 2009). Thus during 

cellularization, increasing amount of PtdIns(4,5)P2 would recruit Rab5 to endocytic 

intermediates originating from the apical plasma membrane. The up-regulation of the 

apical endocytic machinery during cellularization provides a framework for future studies 

aimed at characterizing the developmental mechanisms underlying the spatial-temporal 

activation of endocytosis during morphogenesis. 

 

5.6 Conclusions 

 

In summary the work presented in this thesis led to the identification of a novel 

endocytic mechanism underlying morphological remodelling during development. I 

demonstrate that apical surface flattening is a dynamin-dependent process associated with 

an increase in tubular endocytosis and formation of Rab5 endosomes. I found that cargo-

filled tubular invagination bud-off from the plasma membrane as a whole leading to the 

formation of vacuolar like structures. Importantly, my data show that Rab5 localizes 

directly to these tubular plasma membrane invaginations as well as to intracellular apical 

vacuoles. Blocking dynamin resulted in the complete inhibition of both membrane 

tubulation and formation of Rab5 endosomes. Thus, I propose that the activation of 

tubular endocytosis initiates the formation of vacuolar–like Rab5 positive endosomes 

directly at the plasma membrane in a dynamin dependent manner. The elongation of 

tubular endocytic membranes observed in the knock-down of Rabnkyrin-5 embryos 

indicates that one function of the Rab5 machinery in this process is to control budding. 

Collectively, the effect of dynamin inhibition on surface morphology and on tubular 

endocytosis suggest that one function of this endocytic pathway is to control the rapid 
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removal of large quantities of membranes to drive surface flattening during epithelial 

morphogenesis (see model in Fig. 5.1).  

 

 

 

Figure 5.1 A model for remodeling of the apical surface by tubular endocytosis.  

 

Early during cellularization (a) the apical surface is rich in villous protrusions. At this stage the 

abundance of tubular structures and apical Rab5 endosomes is low. During mid-cellularization (b) 

the upregulation of Rab5-positive tubular endocytic intermediates with a high surface to volume 

ratio allows for the rapid internalization of large amounts of membranes. These membranes are 

incorporated into Rab5-positive vacuoles that travel basally (green arrow, panel c), thus driving 

apical surface flattening (c). This tubular-endocytic pathway is dynamin dependent and controlled 

by the Rab5-effector Rabankyrin-5.  
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Changes in cell shape are of fundamental importance during embryonic 

development 1-4. Remodeling of cell morphology requires the expansion or 

contraction of plasma membrane domains, which in some instances also undergo 

more complex structural and functional reorganization that bring about 

specialized functions 5, 6. While the role of the cytoskeleton in driving plasma 

membrane remodeling is well established 7, whether membrane trafficking also 

contributes remains an open question. Here we have identified a novel 

mechanism underlying the re-structuring of the apical surface during epithelial 

morphogenesis in Drosophila. We show that the retraction of villous protrusions 

and subsequent apical plasma membrane flattening is an endocytosis driven 

morphogenetic process. Quantitation of endogenously tagged GFP Rab5 

dynamics revealed a massive increase in apical endocytosis that correlates with 

changes in apical morphology. By combining high-resolution imaging with a 

genetically encoded cargo uptake assay we show that this increase is 

accompanied by the formation of tubular plasma membrane invaginations that 

serve as platforms for the de novo generation of vacuolar Rab5-positive 

endosomes. We identify the Rab5 effector Rabankyrin-5 as a regulator of this 

pathway and demonstrate that blocking dynamin activity results in the complete 

inhibition of tubular endocytosis, in the disappearance of Rab5 endosomes and 

in the inhibition of surface flattening. These data collectively support a role for 

membrane trafficking in morphological remodeling. Surface flattening is thus an 

endocytosis-dependent morphogenetic process driven by the rapid 

internalization of large quantities of plasma membrane through tubular 

invagination and up-regulation of Rab5 endosome production. 
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The early Drosophila embryo is an ideal system for studying the mechanisms driving 

plasma membrane remodeling during epithelial morphogenesis. Over the course of 

one hour a syncitium of 6000 nuclei is sub-divided into an equal number of polarized 

epithelial cells through the invagination and growth of the apical plasma membrane 

by a process known as cellularization 8, 9. Scanning electron microscopy studies 

revealed that during this process the apical plasma membrane undergoes a dramatic 

morphological re-organization characterized by the retraction of villous protrusions 

and flattening of the apical surface 10. To characterize the membrane dynamics 

underlying surface flattening we applied Total Internal Reflection Fluorescence 

Microscopy (TIRF-M) to cellularizing Drosophila embryos (Fig. 1a) (see 

supplementary methods for a detailed description).  As a first step, we imaged 

embryos expressing the plasma membrane marker peptide GAP43 (amino acids 1-20) 

tagged with the fluorescent protein mCherry 11. Consistently with previous electron 

microscopy data 10, we observed a massive accumulation of membranes at the apical 

surface prior to cellularization. During the early phase of cellularization the apical 

surface of all blastoderm cells was densely covered with small, highly dynamic 

villous protrusions (Fig. 1b and Supplementary Movie S1). Over the course of 

cellularization these protrusions first began to elongate and broaden at mid-

cellularization (Fig.1c), and were ultimately reabsorbed towards the end of 

cellularization as the apical plasma membrane flattened (Fig. 1d).  

 Considering this reduction in apical surface and changes in membrane 

organization we next asked whether membrane flattening is causally linked to 

endocytosis. One key regulator of endocytosis is the large GTPase dynamin 12. 

Dynamin controls the scission of clathrin-coated vesicles from the plasma membrane 

13 and has also been implicated in the biogenesis of a distinct set of endocytic 
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structures, including macropinosomes 14. Using TIRF-M, we followed the dynamics 

of the GAP43-mCherry marked apical plasma membrane over the course of 

cellularization in embryos containing the shibirets mutation, a temperature sensitive 

allele of dynamin 15. Whereas wild-type embryos imaged at the restrictive temperature 

(32 0C) undergo apical surface flattening without any morphological abnormality 

(Fig. 1e,f), this process was severely compromised in shibirets  mutant embryos (Fig. 

1g,h). Upon shifting embryos to the restrictive temperature the apical plasma 

membrane failed to flatten and the retraction of membrane protrusions did not occur 

(Fig. 1h,i and Supplementary Movie S2).  This result shows that apical surface 

flattening is dynamin-dependent, suggesting that endocytosis might actively 

participate in this process.  

 To ask whether an increase in the rate of apical endocytosis might account for 

the decrease in the surface area of the plasma membrane during apical flattening, we 

developed a quantitative assay for monitoring the uptake of a soluble fluorescent 

tracer. To this end, we generated a genetically-encoded endocytic cargo consisting of 

EGFP fused to the secretion signal peptide of folded gastrulation (fog), a secreted 

signaling molecule expressed in early embryos 16. This fusion protein, henceforth 

referred to as sec::GFP, is secreted, filing the extracellular space/perivitelline fluid 

with a soluble fluorescent tracer prior to cellularization. Using this assay we show that 

the number of endocytic structures increased approximately 5-fold over the course of 

cellularization, reaching a maximum during surface flattening (Fig. 2a,b,j and 

Supplementary Movie S3). Strikingly, this experiment also revealed that the primary 

entry route for soluble cargos is through tubular intermediates that, upon budding 

from the plasma membrane, form vacuolar-like structures (Fig. 2c-f). These structures 

formed primarily towards the end of cellularization, were particularly prominent in 
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ventral cells and originated from both the apical and the subapical region of the cell. 

Injection of pH-Rhodamine-labeled dextran (a pH-sensitive fluorogenic dye whose 

fluorescence intensity increases as the pH of its surroundings drops) further 

demonstrated that the newly formed vacuolar structures are acidified endosomal 

compartments (data not shown).  

 Given these changes in endocytic activity, we next asked whether the 

endosomal machinery also undergoes dynamic regulation during apical surface 

flattening. To this end, we used a homologous recombination-based strategy 17 to 

‘knock in’ an enhanced GFP (EGFP) tag into the endogenous genomic locus of Rab5 

(a small GTPase, conserved from yeast to humans, that controls endosome biogenesis 

18). TIRF-M imaging revealed that, during early cellularization, relatively few Rab5 

positive endosomes exist at the apical plasma membrane (Fig. 2g,h and 

Supplementary Movie S4). In contrast, and consistent with a role of endocytosis in 

apical flattening, the number of these Rab5-positive endosomes increased three-fold 

during apical flattening (Fig. 2i,k and Supplementary Movie S4).  

 To test whether the apical increase in Rab5 did not simply result from an 

overall increase in expression levels, we imaged GFP-tagged-Rab5 expressing 

embryos over the entire apico-basal axis of the blastoderm during cellularization 

using two-photon microscopy. We observed no significant increase in Rab5 signal 

intensity over the course of cellularization (data not shown). In addition, we observed 

the formation of large Rab5 endosomes preferentially at the apical surface towards the 

end of cellularization (Supplementary Movie S5). Importantly, simultaneous imaging 

of GFP-Rab5 and secreted mCherry (sec::mCherry; a variant of sec::GFP in which the 

GFP was substituted with mCherry) revealed that Rab5 associates directly with cargo-

filled tubular invaginations (Fig. 3a-d). We further showed using electron tomography 
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that tubular invaginations of the plasma membrane exist as convoluted structures 

surrounded by an area of ribosomal exclusion, which is suggestive of actin 

polymerization (Fig. 3e,f).  

 The data presented demonstrate that apical surface flattening is a dynamin-

dependent morphogenetic process associated with an up-regulation of tubular 

endocytic intermediates and increasing levels of Rab5-positive endosomes. To 

identify proteins potentially involved in Rab-5 positive endosome biogenesis we 

carried out large-scale affinity chromatography in order to purify Rab5-specific 

effectors operating during these early stages of embryonic development. This 

experiment led to the identification of several proteins that were bound specifically to 

Rab5 in its active conformation (Fig. 4a). The most abundant effector identified by 

this approach was CG41099, the Drosophila homolog of human Rabankyrin-5 (Fig. 

4a), a Rab5 effector linked to apical endocytosis in polarized MDCK cells 19. In 

addition, Rabankyrin-5 has been shown to regulate macropinocytosis, a distinct form 

of endocytosis that involves the formation of large (0.2 - 10µm) vesicular structures 

19.  We therefore tested whether tubular endocytosis at the apical surface is associated 

with Rabankyrin-5. Simultaneous imaging of EGFP-Rabankyrin-5 and sec::mCherry 

revealed that Rabankyrin-5 associates with apical vacuolar structures positive for 

sec::mCherry (Supplementary Fig. 1a-c). This result was confirmed using an antibody 

against Drosophila Rabankyrin-5 (Supplementary Fig. 1d). Moreover, correlative 

light-electron microscopy showed that Rabankyrin-5 GFP positive membranes are 

organized as convoluted tubular structures (Supplementary Fig. 2). Live imaging 

demonstrated that, while in control embryos vacuolar structures formed at the plasma 

membrane and moved towards the basal side of the cell with long range movement 

which are presumably microtubule dependent, in embryos expressing shRNAs against 
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Rabankyrin-5 (the knock-down of Rabankyrin-5 was almost complete at both mRNA 

and protein levels, Supplementary Fig. 3a,b) this step was impeded resulting in the 

formation of long tubular membranes extending for over 15 microns along the apico-

basal axis of the cell (Fig. 4b and Supplementary Fig. S3c-l and Movies S6, S7). 

Using correlative light-electron microscopy we tracked one of these long tubular 

membrane filled with endocytic cargo (Fig. 4c). This long tubule extended parallel to 

microtubules and its basal tip appeared composed of multiple varicosities 

interconnected by a constricted membrane domain (Supplementary Fig. 4 and 

Supplementary Tomogram Movie, S8). We speculate that, at the functional level, this 

terminal region may serve as a platform for the budding and generation of vacuoles, 

in a process equivalent to the formation of vacuoles from the shorter tubular 

invaginations seen in wild-type embryos (Fig. 2c,f). In support of this hypothesis, we 

observed the sequential budding of vacuoles from the tip of elongated tubes by live 

imaging in Rabankyrin-5 depleted embryos (Supplementary Movie S7). The 

elongation of tubular endocytic membranes induced upon Rabankyrin-5 knock-down 

revealed that one role of the Rab5 machinery in this apical endocytic pathway is to 

control budding, and that other molecule/s must act upstream of Rabankyrin-5 in the 

initiation of tubular endocytosis.  

 Given the effect of dynamin inhibition on apical surface flattening we 

hypothesised that the high surface to volume ratio of tubular endocytic intermediates 

provides an efficient means by which to rapidly internalize large amounts of 

membrane in order to facilitate plasma membrane remodeling during morphogenesis. 

If this hypothesis is correct, then blocking dynamin activity, which inhibits membrane 

flattening, should also inhibit tubular endocytosis. To test this hypothesis we followed 

the internalization of sec::GFP in shibire mutant embryos. When embryos were heat-
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shocked prior to surface flattening, formation of sec::GFP-containing tubular 

structures was completely abolished (Fig. 4d,e). Although a clear reliance upon 

dynamin for clathrin-mediated endocytosis has been demonstrated previously 20, 21 13, 

22, its role in clathrin-independent endocytic pathways and in apical endocytosis is less 

clear. The above result shows that dynamin is required for tubular endocytosis. We 

asked whether dynamin is also directly linked to the formation of Rab5 endosomes. 

We generated embryos expressing endogenously tagged GFP-Rab5 in a shibire 

mutant background. Strikingly, shifting the embryos to the restrictive temperature 

during surface flattening resulted in the almost complete disappearance of Rab5-

positive endosomes within 2-5 min. (Fig. 4f,g). We conclude that dynamin is required 

for the initiation of tubular endocytosis and for the formation of Rab5 endosomes 

during surface flattening. The localization of Rab5 to tubular invaginations together 

with the rapid disappearance of Rab5 endosomes upon dynamin inhibition suggest 

that during surface flattening apical endosomes form directly at the plasma membrane 

rather than by fusion of incoming clathrin coated vesicles.  

 In summary, our data demonstrate that apical surface flattening is a dynamin-

dependent process associated with the dynamic regulation and functional re-

organization of both endocytosis and endosome biogenesis. Dynamin activity is 

required for both the initiation of tubular endocytosis as well as for de novo formation 

of apical Rab5 endosomes. The elongation of tubular endocytic membranes observed 

upon Rabankyrin-5 knock-down suggests that one role of the Rab5 machinery in this 

pathway is in mediating the formation of endosomes from tubular invaginations. 

Taken together these results are consistent with a model in which surface flattening is 

an endocytosis-dependent morphogenetic process driven by the rapid internalization 

of large quantities of plasma membrane via tubular endocytic intermediates.  Given 
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the conservation of tubular endocytosis across different species 23 we propose that this 

endocytic pathway represents a general regulatory mechanism underlying plasma 

membrane remodeling during morphogenesis (see model in Fig. 4h,j).  
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Figure Legends 
 
 
Figure 1.  Endocytosis drives plasma membrane flattening during epithelial 
morphogenesis 
 
(a) Schematic overview of TIRF imaging in the early Drosophila embryo. Embryos 
(cell membranes outlined in purple) are mounted such that the evanescent wave 
(green gradient) generated at the coverslip (blue rectangle) by total internal reflection 
of incident excitation light (dotted green lines) illuminates the apical plasma 
membrane (shown as purple protrusions). Nuclei are depicted as blue ovals.  
 
(b-d) Apical view of cellularizing embryos expressing GAP43::mCherry using TIRF 
microscopy at progressive stages through cellularization (b = early (~ 5 min. into 
cellularization); c = middle (~ 20 min. into cellularization); d = late (~ 40 min. into 
cellularization). During the early phase of cellularization the apical plasma membrane 
is covered with small fillopodial-like protrusions (b) that thicken and elongate as 
cellularization proceeds. These protrusions progressively retract as the apical plasma 
membrane flattens (dotted red outline) towards the end of cellularization (d). Scale 
bar, 5 μm 
 
(e-h) TIRF-M imaging of the apical plasma membrane in wt (e-f) and shibire mutant 
(g-h) embryos reared at 32 ºC over the course of cellularization. Progressive flattening 
of the apical plasma membrane was observed in wild type embryos (f), whereas 
surface flattening was impeded in shibire mutant embryos (h).  
Scale bar, 10 μm.  
 
(i) Quantification of the fractional surface area coverage by protrusions in wild type 
(pink line, +/- standard deviation) and shibire mutant (blue line, +/- standard 
deviation) embryos. Time zero corresponds to the timepoint at which embryos at mid-
cellularization were shifted to the restrictive temperature (32 ºC) 
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Figure 2. Apical Rab5 endocytosis is upregulated during cellularization and 
coincides precisely with the timing of apical flattening 
 
(a-b) Still frames from a time-lapse recording showing the upregulation of sec::GFP 
internalization. During early cellularization (a) sec::GFP localizes primarily to the 
extracellar space, whereas during late cellularization numerous internal sec:GFP-
positive structures could easily be detected (b, white arrows) 
Scale bar, 5 μm. 
 
(c-f) Still frames from a 3.5 μm z-projection time-lapse recording under the apical 
surface showing formation of an intracellular vacuole filled with sec::GFP from a 
tube originating at the plasma membrane.  
Timepoints correspond to (d) t=0s, (e) t=24s, (f) t=36s, (g) t=60s 
 
(g-i) Still frames from a time lapse TIRF recording showing the upregulation of apical 
endosomal structures marked by endogenously tagged GFP::Rab5. A progressive 
increase in the number of apical Rab5 puncta between early (g), middle (h), and late 
(i) cellularization was observed.  Scale bar, 5 μm. 
 
(j) Quantification of sec::GFP-positive endocytic structures (tubules and vacuoles) 
over the course of cellularization (Blue line) including standard deviation (black 
bars). The early (yellow), mid- (green), and late (purple) stages of cellularization are 
highlighted. The number of internal sec::GFP-positive structures (tubules and 
vacuoles) was quantified in five independent z-sections separated by 0.2 μm, in nine 
separate 625 μm2 surface regions, from three embryos (see methods for details). 
 
(k) Quantification of endogenously tagged Rab5 endosomes at the apical surface over 
the course of cellularization. The early (yellow), mid- (green), and late (purple) stages 
of cellularization are highlighted. GFP::Rab5 signal intensity is represented as the 
normalized number of Rab5 particles vs. time (dark blue line) including standard 
deviation (light blue bars). n=3 embryos (see methods for details).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 13 

 
Figure 3. The primary entry route for apical endocytic cargo is through 
endocytic tubules that interact directly with Rab5 
 
(a-d) sec::mCherry-positive endocytic structures (a) colocalize with endogenously 
tagged GFP::Rab5 (b). GFP::Rab5 (green), sec::mCherry (red) overlay (c). (d) Three 
dimensional rendering of a typical apical endocytic tubule labeled by sec::mCherry 
(red), co-labeled by endogenous GFP::Rab5 (green).  
Scale bar, 500 nm.  
 
(e-f) EM tomography of an apical endocytic tubule showing multiple internal 
compartments in direct continuity with the apical plasma membrane. A single section 
through an EM tomogram of a tubular endocytic structure in direct continuity with the 
apical plasma membrane (e). Three-dimensional surface rendering of the tubular 
endocytic volume from the corresponding volume generated by EM tomography 
demonstrating the continuity of the tubular-endosomal structure with the apical 
plasma membrane at top (f). 
Scale bar, 500 nm 
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Figure 4.  The biogenesis of apical endocytic tubules is regulated by dynamin and 
the Rab5 effector Rabankyrin-5.   
 
(a) Coomasie staining of GST-Rab5 affinity chromatography products using 0-4 h 
embryo cytosolic fractions. Lane 1 (Mw) corresponds to a protein molecular weight 
ladder (corresponding protein sizes, in kDa, are shown at left). Lanes 2 and 3 (Rab5 
GDP, Rab5 GTP) correspond to the proteins bound to GDP-loaded Rab5, and GTP-γ-
S-loaded Rab5, respectively. The red asterisk marks the protein band identified by 
mass spectrometry as CG41099, the Drosophila homolog of mammalian Rabankyrin-
5. 
 
(b) Rabankyrin-5 knock-down results in the elongation of endocytic tubules along the 
apico-basal axis. Single plane two-photon optical cross-section of a Rabankyrin-5 
siRNA embryo expressing sec::GFP showing a typical, elongated, sec::GFP-positive 
tubule (red arrow). 
Scale bar, 5 µm.  
 
(c) Ultrastructural characterization of an elongated endocytic tubule in a Rabankyrin-
5 siRNA embryo. A single section from an EM tomogram of a Rabankyrin-5-siRNA 
embryo showing a typical elongated tubule that extends past the base of the nucleus 
(blue arrow indicates a nuclear pore at the base of the nucleus). Scale bar, 500 nm. 
 
(d-e) Live imaging of internalized sec::GFP prior to cell flattening in shibire mutant 
embryos imaged at 18 ºC (d) and at 32 ºC (e), respectively . Multiple vacuolar and 
tubular structures were present in shibire mutant embryos imaged at 18 ºC (white 
arrowheads). In contrast, shibire mutant embryos reared at the non-permissive 
temperature (32 ºC) expressing sec::GFP showed no vacuolar or tubular structures.  
Scale bar, 5 μm.  
 
(f-g) Live imaging of GFP::Rab5 expressed at endogenous levels in shibire mutant 
embryos reared at the permissive temperature (18 ºC, panel f) and at the non-
permissive temperature (32 ºC, panel g) during mid-cellularization. The punctate 
distribution of Rab5-positive endosomes was lost upon inhibition of dynamin activity 
and exhibited a diffuse cytoplasmic distribution.  
Scale bar, 5 μm. 
 
(h-j) A model for remodeling of the apical surface by tubular endocytosis.  
Early during cellularization (h) the apical surface is rich in villous protrusions. At this 
stage the abundance of tubular structures and apical Rab5 endosomes is low. During 
mid-cellularization (i) the upregulation of Rab5-positive tubular endocytic 
intermediates with a high surface to volume ratio allows for the rapid internalization 
of large amounts of membranes. These membranes are incorporated into Rab5-
positive vacuoles that travel basally (green arrow, panel j), thus driving apical surface 
flattening (j). This tubular-endocytic pathway is dynamin dependent and controlled by 
the Rab5-effector Rabankyrin-5.  
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Methods 

 
TIRF microscopy 
Embryos were dechorionated with 20% sodium hypochlorite solution and positioned 
on glass-bottom culture dishes (MatTek) in a drop of PBS solution. In order to 
produce a uniform interface between the vitelline membrane and the coverslip, a thin 
slab (~ 5mm) of 2% agar was placed on top of embryos prior to imaging. Time-lapse 
TIRF imaging was performed on an Olympus Biosystems Cell^R TIRF system using 
an Olympus APO N 60x oil objective (NA 1.49). The incident angle was set at the 
critical angle for total internal reflection with subsequent small, manual angular 
adjustments used to optimize signal from the apical membrane. All imaging was 
performed at room temperature unless stated otherwise. For experiments involving the 
temperature sensitive shibire mutant, either cold (18 ºC) or pre-warmed (32 ºC) PBS 
and agar were used for embryo mounting and live TIRF-M imaging was subsequently 
conducted in a temperature control chamber at either 18 ºC or 32 ºC.   
 
Confocal and 2-photon microscopy 
Embryos were positioned on siliconized glass-bottom culture dishes (MatTek) and 
immersed in PBS solution. Imaging was performed with a spinning disk confocal 
Ultraview VOX system (Perkin Elmer) using a 100x NA 1.3 oil immersion objective 
(Zeiss). 2 photon imaging was performed using Zeiss LSM 780 NLO system using a 
63x NA 1.2 water immersion objective (Zeiss). 
 
Correlative Light-Electron Microscopy 
Correlative light-electron microscopy of Drosophila embryos was performed as 
previously described for yeast 24. Briefly, Rabankyrin::GFP-expressing embryos were 
first preserved at near-native conditions by high-pressure freezing using a high 
pressure freezing machine (HPM 010; Bal-Tec). Embryos were subsequently 
processed by freeze substitution (FS) and embedding in Lowicryl HM20 (Electron 
Microscopy Sciences, Hatfield, PA) in an automated freeze substitution machine 
(AFS2; Leica). FS was performed at -90°C for 48–54 h with 0.1% (wt/vol) uranyl 
acetate in glass-distilled acetone. The temperature was then raised to -45°C at a rate 
of +5°C per hour, and samples were washed with acetone and infiltrated with 
increasing concentrations (10, 25, 50, and 75%; 4 h each) of Lowicryl in acetone 
while the temperature was further raised to -25°C. 100% Lowicryl was exchanged 
three times in 10-h steps and samples were UV polymerized at -25°C for 48 h, after 
which the temperature was raised to 20°C at a rate of +5°C per hour and UV 
polymerization continued for 48 h. 300-nm sections were cut with a microtome 
(Ultracut UCT; Leica) and a diamond knife (Diatome) and picked up on copper-
palladium slot grids coated with separate layers of formvar and carbon. Blue 
(excitation 365 nm/ emission 415 nm)       100 nm TetraSpecks (Invitrogen) were 
pretreated (to reduce fluorescence intensity) with 0.1% Tween-20 for 10 min, washed 
twice by ultracentrifugation at 100,000 g, resuspended in PBS, and adsorbed to the 
EM grids by placing the grids section face-down onto a 15-μl drop of Tetraspecks for 
10 min. Grids were then washed with three drops of water and blotted with filter 
paper. Embryo sections mounted on EM grids were placed on a droplet of water 
sandwiched between two glass coverslips and imaged face-down at room temperature 
using a widefield fluorescence microscope (model IX81; Olympus) fitted with a 100x, 
NA 1.45 objective, a camera (Orca-ER; Hamamatsu Photonics), and electronic 
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shutters and filter wheels (Sutter Instrument Co.). Fluorescence microscopy was 
accomplished with a lamp (X-Cite 120PC; EXFO Life Sciences) using 470/22-nm, 
and 377/50-nm filters for excitation of GFP/TetraSpecks, and Tetraspecks alone, 
respectively. Emission was imaged using a 520/35-nm filter for GFP/ TetraSpecks, 
and a 520/35-nm filter for TetraSpecks alone. The CCD camera, filter wheels, and 
shutters were controlled by MetaMorph software (Universal Imaging Corp.). 
 
Electron tomography 
Grids carrying embryo sections were post-stained with 2% uranyl acetate in 70% 
methanol and Reynolds lead citrate for contrast enhancement. 15-nm protein A–
coupled gold beads were adsorbed on both sides of all grids as tomographic-fiducial 
markers. Grids were placed in a high-tilt holder (Model 2020; Fischione Instruments), 
and digital images were recorded on a camera (4k Eagle; FEI) as dual-axis tilt series 
over a -60° to 60° tilt range (1° increment) on a microscope (Tecnai TF30; FEI) 
operated at 300 kV. Tomograms were reconstructed using the IMOD software 
package (version 3.13.2; Kremer et al., 1996). Fiducial-based correlation was 
performed exactly as previously described 24. 
 
Fly stocks 
WT flies were Oregon-R; all stocks were maintained by standard methods at 25°C, 
unless otherwise specified.  
y,w*;P[UASp:YFP::Rab5] (BL-9775) 
y,w*; EGFP::Rab5/CyO (endogenous) 
y,w*;;P[UASp:secmCherry] 
y,w*,P[UASp:secGFP/Y] 
y,w*;;P[UASp:secGFP] 
y,sc*,v1; P[TRiP.HMS01228]attP2/TM3, Sb (CG41099 siRNA BL-34883) 
y,sc*,v1; P[YFP-RNAi]attP2 (TRIP) 
y,w*;P[UASp:EGFP::CG41099-PC] 
w*; P[matαTub-Gal4VP16];[matαTub-Gal4VP16] 
w*;; P[Sqh:Gap43mCherry] 
Shibire (BL-7068) 
 
GFP-Rab5 homologous recombination 
To generate GFP-Rab5 expressed at endogenous levels we adapted the ends-out 
homologous recombination method 17. An pEOC (pEndsOutmCherry) targeting vector 
was designed on the basis of the pRK1 vector by replacing the negative selection 
marker UAS-Rpr with 3xP3::mCherry 25 for more efficient screening purposes. In 
addition, the multiple cloning site was replaced by the 
NotI/MluI/EcoRI/SphI/BglII/BsiWI and the AatII/NdeI/NaeI sites. 5’ 3.2 kbp and 3’ 2 
kbp homologous recombination arms were amplified from BACMID DNA containing 
the Rab5 locus (BACR22P10, BPRC). In addition, EGFP with a terminal Glycine-
Alanine-Glycine-Alanine (GAGA) linker was inserted at the 5’ end of the Rab5 
coding sequence. Homologous arms were cloned into the pEOC vector and a 
homologous recombination targeting line on the third chromosome was generated. 
This targeting line was subsequently crossed to the 6939-hid line and the crossing 
scheme was followed as described 17. Recombinant flies with the white marker 
segregating to the second chromosome were selected. The selection of false-positive 
insertions was performed by a screen against mCherry expression in the 3xP3 
promoter pattern 26. The white marker was removed using the Cre/ loxP system. 



 17 

Correct insertion was confirmed by sequencing. 
 
Cloning and antibody generation 
UAS-secGFP and UAS-secmCherry were generated by fusion of the coding sequence 
of the folded gastrulation signal peptide (amino acids 1-22) to the fluorescent proteins 
EGFP and mCherry, respectively, and cloned into the pPW vector (DGRC) using the 
Gateway cloning system (Life Technologies). 
cDNA for CG41099-PC (D-Rabankyrin) was reverse-transcribed from total RNA 
extracted from 0-4h old embryos. D-Rabankyrin was cloned into the pPGW vector 
(DGRC) using the Gateway cloning system (Life Technologies). 
Antibodies against CG41099 were made in rabbit as follows: A fragment 
corresponding to amino acids 660-920 of CG41099-PC was cloned into the pET32 
vector (Novagen) using BamHI and XhoI restriction sites. Protein was purified from 
BL21 E.coli cells (Stratagene) and sent for antibody production (Eurogentec). 
Antibodies were subsequently purified using affinity chromatography. 
 
Western blot and Immunohistochemistry 
For detection of endogenous Rabankyrin-5 protein 10 cellularizing embryos were 
lysed in SDS lysis buffer. Western blotting was achieved using the Western Lightning 
ECL kit (Perkin Elmer) according to the manufacturer’s protocol. Rabbit anti-
CG41099 (1:5000) and mouse anti-alpha-Tubulin (1:10 000, Sigma Aldrich, clone B-
5-1-2) antibodies were used. Embryos were dechorionated for 3 min in 20% sodium 
hypochlorite solution and fixed in 4% paraformaldehyde (Electron Microscopy 
Sciences) and heptane (Sigma) for 20 min. Fixed embryos were incubated with an 
anti-CG41099 antibody (1:250). Alexa 488 (company) anti rabbit secondary 
antibodies were used (1:500). Imaging was performed with a spinning disk confocal 
Ultraview VOX system. 
 
Quantitative PCR 
RNA was extracted from 10 cellularizing embryos using the RNeasy Mini Kit 
(Qiagen) with additional DNA digestion performed ‘on-column’ using RNase-Free 
DNase (Qiagen). cDNA was synthesised with the Superscript III First strand synthesis 
System (Life Technologies). 
qRT-PCR for CG41099 was performed with the SYBR Green PCR master mix 
(Applied Biosystems) using standard protocol with the following primers:  
 
 CG41099_1 CAGGGTGCAGACATTACAGC  
 CG41099_2 CGGACCATAACGGTGATTCT 
 
and was normalised to the RPL32 gene with following primers:  
 
 RP49_1 GCTAAGCTGTCGCACAAA   
 RP49_2  TCCGGTGGGCAGCATGTG 
 
Using an Applied Biosystems 7500 Real-Time PCR System.  
 
Quantification and statistics 
Quantification of intracellular signal in UAS::secGFP/+; Tub67::GAL4/+; 
Tub67::GAL4/+ embryos was performed manually. Intracellular tubes and vesicles 
positive for sec::GFP were counted from the Z-stack corresponding to the volume 
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between 4 to 5 microns under the apical membrane over the course of cellularization. 
Quantification was performed on 3 areas of 25 µm x  25 µm each (625 µm2) in three 
different embryos.  
 
GFP::Rab5 Signal quantification 
GFP::RAB5 signal at the apical plasma membrane was imaged over the course of 
cellularization using TIRF microscopy and subsequently quantified using CellProfiler 
Image analysis software (www.cellprofiler.org). Briefly, 3 independent data sets were 
obtained  each for both ectopically expressed YFP::RAB5 and for endogenous 
GFP::RAB5. Identification and segmentation of RAB5-positive puncta was 
accomplished using Cell Profiler, registration was verified manually, and the number 
and integrated intensity of puncta was quantified.  
Both the number and integrated intensity of puncta were normalized by expressing 
their value over cellularization as a ratio to the mean value of the first 20 frames in 
each sequence.  
 
Cell Profiler Reference  
Lamprecht MR, Sabatini DM, Carpenter AE (2007) CellProfiler: free, versatile 
software for automated biological image analysis. Biotechniques 42(1):71-75. PMID: 
17269487  
(www.cellprofiler.org) 
 
Quantification of the rate of apical surface flattening 
First the images where corrected for bleaching by fixing the mean intensity at each 
time point to that of the initial image. Then the images where filtered using a mexican 
hat filter with values sigmax = 7, sigmay = 1, which was rotated according to angles 
in an interval from 0 to pi. The response images form a stack, where each plane 
corresponds to an angle from the interval, enhancing protrusions along the given 
angle. The maximum intensity projection of that stack was then segmented using 
Ilastik (ilastik: Interactive Learning and Segmentation Toolkit, Christoph Sommer, 
Christoph Straehle, Ullrich Koethe and Fred A. Hamprecht. 8th IEEE International 
Symposium on Biomedical Imaging, ISBI 2011) to yield a segmentation of the image. 
The skeleton of the image was then taken to compute the area in the image covered by 
protrusions.  
 
Purification of Rab5 effectors from cellularizing Drosophila embryos 
Rab5 effectors were purified as previously described 27 with the following 
modifications.  Briefly, 0-4h. embryos were harvested, dechorionated for 2 minutes in 
bleach, washed in PBS 0.1% Triton X-100 and frozen at -80 0C. Thirty grams of 
packed embryos were diluted in 60ml of lysis buffer and homogenized in a Dounce 
tissue grinder at 4 0C and processed as described in 27. Thereafter, the cytosolic 
fraction was divided in two aliquots and each aliquot was incubated with 1ml of 
packed GST-Rab5 beads loaded with either GDP (inactive) or GTP-γS (active). All 
the subsequent steps were performed as described in 2727.  
 
Dextran injections 
10 000 MW 647 Dextran, and pHrodo Red (Life Technologies) were injected into the 
perivitelline space of cellularizing embryos as described previously (Levayer et al. 
2011). Embryos were covered with a thin layer of halocarbon oil 700/27 (1:2) 
(Sigma). The coverslip was placed on a microscope slide platform and embryos were 
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visualized using a standard 18 upright microscope equipped with a 10X objective 
(Zeiss). Microinjection was carried out with an Eppendorf 5242 microinjector. 
Microinjection pipettes were pulled from borosilicate glass capillaries (1.2mm outer 
diamater x 0.94mm inner diamater, Harvard Apparatus), using a P-97 Flamming 
/brown puller (Sutter Instrument Co). 20 mg/m  in PBS solution of dextran was used.  
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