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Zusammenfassung

Diese Arbeit beschäftigt sich mit der ersten experimentellen Beobachtung des pionischen
Zweikörperzerfalls von 3

ΛH und 4
ΛH in Ni+Ni-Kollisionen bei 1.91A GeV. Das Experiment

wurde mit dem FOPI Spektrometer am SchwerIonen - Synchrotron SIS18 an der GSI
durchgeführt. Der analysierte Datensatz besteht aus 56×106 Ereignissen, die den zen-
traleren Anteil von etwa 60% des gesamten Reaktionswirkungsquerschnittes ausmachen.
Die rekonstruierte invariante Masse von 3

ΛH beträgt 2.9926± 0.0017 GeV/c2 und hat eine
Signalbreite von 5.6±1.0 MeV/c2. Bei 4

ΛH wurde eine invariante Masse von 3.9226±0.0010
GeV/c2 und eine Breite von 4.0 ± 1.6 MeV/c2 gemessen. Die 3

ΛH- und 4
ΛH-Signale wur-

den nur in bestimmten Phasenraumbereichen in der pt/m− ylab−Ebene beobachtet. Die
statistische Signifikanz dieser Signale beträgt 5.6 für 3

ΛH und 4.2 für 4
ΛH. Unter Anwen-

dung der differentiellen Zerfallszeiteffizienz, die mittels einer vollständigen MonteCarlo
Simulation des Experimentes bestimmt wurde, konnte für 3

ΛH eine mittlere Lebensdauer
von 263±64(sta)±44(sys) ps und für 4

ΛH eine von 196±75(sta)±43(sys) ps ermittelt wer-
den. Die Produktionsraten pro Ereignis für 3

ΛH und 4
ΛH liegen unter Berücksichtigung

der jeweiligen Zerfallsbreite und der Rekonstruktioneffizienz bei 7.5×10−4 und 1.3×10−4.
Als Produktionsmechanismus wird die Koaleszenz von Λ Hyperonen mit den Spektator-
fragmenten in den Ni+Ni Kollisionen bei 1.91A GeV diskutiert. Es wird gezeigt, dass die
Voraussagen mit dem gemessene Ergebnis nicht übereinstimmen. Des weiteren werden die
3
ΛH/3He und 4

ΛH/4He Produktionsverhältnisse mit Vorhersagen des statistischen Modells
zur Teilchenproduktion verglichen.

Abstract

3
ΛH and 4

ΛH are identified from their two-body π−-decay channel in Ni+Ni collisions at
1.91A GeV for the first time. The experiment was performed by the FOPI spectrometer
at the SIS18 of GSI. The analyzed data sample consists of 56×106 events covering the
most central 60% of the total reaction cross section. The reconstructed invariant mass
of 3

ΛH is 2.9926 ± 0.0017 GeV/c2 with a width of 5.6 ± 1.0 MeV/c2, and the one of
4
ΛH is 3.9226±0.0010 GeV/c2 with a width of 4.0 ± 1.6 MeV/c2. The significance of the
3
ΛH and 4

ΛH signal is 5.6 and 4.2, respectively. The 3
ΛH and 4

ΛH signal is observed in a
certain phase space region in the pt/m − ylab plane only. By applying the differential
decay time efficiency obtained from MC simulation, the mean lifetime of 3

ΛH and 4
ΛH is

found to be 263±64(sta)±44(sys) ps and 196±75(sta)±43(sys) ps, respectively. By taking
reconstruction efficiency and the decay branching ratio into account, the yield of 3

ΛH and
4
ΛH for the analysed event sample is 7.5×10−4 and 1.3×10−4 per event, respectively. The
3
ΛH and 4

ΛH production in Ni+Ni at 1.91A GeV via coalescence process is naively discussed
and it is shown that the observed results are not compatible with the expectations. The
yield ratio of 3

ΛH/3He and 4
ΛH/4He is compared with the predictions of the thermal model

for hadron chemistry.
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Overview

This thesis presents the results of 3
ΛH and 4

ΛH production in relativistic heavy-ion collisions
at a beam energy of 1.91A GeV in the Ni+Ni system. The experiment was carried
out in March of 2008 with the FOPI detector at the ‘Schwerionensynchrotron’(SIS) of
‘Gesellschaft für Schwerionenforschung’ (GSI), Darmstadt.

In the first chapter of the thesis, the general motivations for studying heavy-ion collisions
(HICs) are briefly reviewed. The kinematics of HICs and the scenarios for hypernuclei
productions in HICs are described. The current measurement status of the strangeness
bound states, e.g. the hypernuclei and kaonic bound states, is presented.

In chapter two, the geometrical configuration and the performance of the sub-detectors of
the FOPI spectrometer are described. In chapter three, the variables, used to characterise
the events, are introduced. The particle identification methods are described here as well.

In chapter four, the procedure used to reconstruct the invariant mass of particles decaying
into two charged products, and the mixed event technique, used to reproduce the com-
binatorial background, are explained. The selection criteria for the two-body π−-decay
of 3

ΛH and 4
ΛH are introduced. With those selection cuts, the invariant mass spectrum of

(π−,3He) and (π−,4He) pairs in various phase space regions is obtained. The significance
of the 3

ΛH and 4
ΛH signal and its dependence on the production options is evaluated.

In the fifth chapter, the results of the Geant simulation and analysis of the background and
the signal events are shown. The detection efficiency of 3

ΛH and 4
ΛH in various phase space

regions is derived. In order to extract the mean lifetime of 3
ΛH and 4

ΛH, the differential
decay time efficiency of 3

ΛH and 4
ΛH is obtained, respectively.

Chapter six presents the final results of this work. Firstly, the yields of the charged
particles, Λ hyperon, 3

ΛH and 4
ΛH in the phase space regions concerned are finalized.

The mean lifetime of 3
ΛH and 4

ΛH is obtained by applying the corresponding differential
decay time efficiency. The favored impact parameter range for 3

ΛH and 4
ΛH production is

discussed. Afterwards, the coalescence scenario for the hypernuclei production in HICs is
naively discussed, based on the measured particle yields. The yield ratio of 3

ΛH/4He and
4
ΛH/4He are compared with the thermal predictions.

In the last chapter, the results and the conclusions of this work are summarised. The
future perspectives and the still open questions are discussed.
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Chapter 1

Introduction

Heavy-ion collisions (HICs) are considered to be a powerful tool in studying the properties
of strongly interacting matter. Matter with extreme temperature and density is created
during a heavy-ion collision, typically referred to as “fireball”. In HICs at the SIS18
accelerator of GSI, where beam energies of 1 - 2 GeV/nucleon are available, the density
inside the fireball can reach values of 2-3·ρ0 with ρ0 = 0.17 fm−3 representing the ground
state density of nuclear matter as it is found in the center of large nuclei. The available
energy is sufficiently high that a new quark degree of freedom called “strangeness” can be
created. Mesons like π, K, ρ, φ and baryons like Λ, Σ, ∆, N∗ are produced in the fireball.
Inevitably, those particles would interact with the surrounding hadronic matter and may
eventually bind with conventional nucleons forming new few-body states, like hypernuclei
or K−-nucleus bound states. Since these reactions happen in an environment of non-
zero baryon density and the properties of hadrons may be modified by the surrounding
medium, cross sections and reaction rates could be modified as well. Therefore, HICs
provide a possibility to study the in-medium properties of hadrons by investigating the
production of hypernuclei and K−-nucleus bound states. Like the nucleon-nucleon (NN)
interaction, the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interaction are of
fundamental interest in hadron physics. Due to the short lifetime of the hyperons, the YN
or YY interaction can not be well investigated in hyperon scattering experiments. The
study of hypernuclei is the only effective way to access the YN and YY interaction.

In this chapter, first the properties of hadronic matter and its equation of state are briefly
reviewed. The kinematics of HICs and the collective behavior of particle emission are
discussed. In the second part, the historical developments and the basic properties of
single-Λ hypernuclei are presented. For completeness concerning the probes of in-medium
properties of hadrons, the status of the search for kaonic bound states is briefly described.

1.1 Hadronic matter

The bulk properties of hadronic matter are the macroscopic features of a many-body
system, which can be characterised by thermodynamic parameters, e.g. temperature
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Figure 1.1: Phase dia-
gram of hadronic matter
in the plane of tempera-
ture T and baryon chem-
ical potential µb. The red
points are the thermo-
dynamic parameters de-
termined from the exper-
iments at RHIC, SPS,
AGS and SIS. The figure
is taken from [1].

T , pressure P and baryon chemical potential µb. Under different conditions, hadronic
matter appears in various forms, which are called the phases of hadronic matter. This is
in analogy to the description of water that for different temperatures and pressures exists
in the form of ice, liquid and vapor.

1.1.1 Phases of hadronic matter

High-energy HIC experiments provide a unique opportunity to explore the phases of
strongly interacting matter in the laboratory. In HICs at RHIC/LHC energies, the
hadrons are expected to be dissolved leading to a deconfined phase of free quarks and
gluons. This state is referred to as a quark-gluon plasma (QGP). The properties of QGP
are the main research topic at ultra-relativistic energies. In HICs at moderate energies
like those available or planned for at SIS, AGS, SPS and FAIR, a first-order phase tran-
sition between hadronic and partonic matter is expected to occur. Exploring the phase
boundary and the properties of the hadrons in the nuclear medium are the main research
topics.

The phases of hadronic matter and the experimental data from HICs are connected by
the quantities of the statistical model [1]. A phase diagram expressed in the temperature
T and baryon chemical potential µb plane is shown in Fig. 1.1. The red filled circles
depict the parameter pairs determined by a thermal analysis of hadron multiplicities
measured in central Pb+Pb or Au+Au collisions at SIS, AGS, SPS and RHIC energies.
All data points are in close vicinity to the solid curve (magenta), corresponding to a
constant baryon density of nb = 0.12 fm−3. This suggests that the chemical freeze-out
takes place at a constant total baryon density. The dashed and the dashed-dotted line
are representing the predictions from lattice QCD and bag model calculations for the
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1.1. Hadronic matter

first-order phase transition from the hadron gas phase to the QGP phase.

In the region above the freeze-out line at moderate temperatures and high baryon density,
a quarkyonic phase is suggested in [2,3]. In this phase, the quarks are still confined inside
the hadrons. The high energy density is mainly due to the excitation of quarks from the
deep Fermi sea, which could allow the system to reach chemical and thermal equilibrium
faster.

In the region below the freeze-out line the hadronic matter is in a hadron gas phase, which
exists until the hadrons liquefy. The liquid phase is found in normal nuclei described by
the thermodynamic parameters T=0 and µ = mN(∼1 GeV). When the nuclei are heated
up to tens of MeV, the nucleons are evaporated from the liquid phase to the hadron gas
phase. The first order phase transition line ends in a critical point beyond which the phase
separation between liquid and gas phase disappears. The critical end point temperature
of this phase transition is measured to be about 5-10 MeV [4]. The matter in the interior
of neutron stars is in the high chemical potential and low temperature phase, which is
indicated by the black band in the lower-right corner of Fig. 1.1.

1.1.2 Nuclear equation of states

The nucleon-nucleon (NN) interaction is attractive at a distance of 1 to 2 fm and becomes
repulsive at small separation distance (< 0.5 fm). The nuclear equation of state (EOS)
describes the compressional energy as a function of nuclear matter density. The EOS
governs the interior structure of the neutron stars and the supernova explosions. In an
equilibrated nuclear matter system with density ρ and temperature T , the total energy
per nucleon can be decomposed into a thermal contribution Et and a compressional part
Ec [6],

E(ρ, T ) = Ec(ρ) + Et(ρ, T ) + E0 (1.1)

where, E0 ∼ 931 MeV is the rest energy of a nucleon at equilibrium density. The EOS is
characterized by the incompressibility κ∞, which is defined by the following formula,

κ∞ = 9ρ2
0

(
d2(E/A)

dρ2

)
ρ=ρ0

, (1.2)

where E is the total energy of the system, A is the number of participating nucleons and
ρ is the nuclear density. The average density of normal nuclei is ρ0 = 0.17 fm−3. The
binding energy of the nucleus is given by the Weizsäcker formula. For an infinite system of
symmetric hadronic matter at temperature T = 0, in the absence of Coulomb interactions,
the energy per nucleon has a minimum energy of -16 MeV that is obtained from the volume
term of the Weizsäcker mass formula [7]. The EOS can be probed by various experimental
techniques, e.g. the giant monopole resonance, the observation of supernovae and neutron
stars, the collective flow, the meson (π±, kaon) production in HICs and so on. Hitherto, κ
has been constrained to a range of 200-400 MeV [8,9,10,11,12]. If κ > 250 MeV, this case
is called “hard” EOS while if κ < 250 MeV the EOS is named “soft”. EOS curves with
different values of the incompressibility are sketched in Fig. 1.2, the green line represents
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Chapter 1: Introduction

Figure 1.2: Energy per
baryon as a function of
baryon density ρ. Equa-
tions of state with differ-
ent incompressibility val-
ues of κ = 210 MeV
(green line), 380 MeV (red
line) and 380 MeV with a
high-density phase transi-
tion (blue line) at T=0 are
shown. The binding en-
ergy of the ground states is
E = −16 MeV and ρ = ρ0.
The figure is taken from
[7].

a “soft” EOS with κ = 210 MeV, the red line is given by a “hard” EOS with κ = 380
MeV, the blue line is found using κ = 380 MeV while taking the contribution of a phase
transition into account.

Since a wide range of nuclear density can be created by HICs at different energies, HICs
are a suitable tool to investigate the EOS. For example, in HICs at SIS18 energies, the
central density of the collisions can reach 2-3ρ0. For Au+Au collisions at incident energies
of 20 - 30A GeV, the density in the overlap region is expected to reach up to 8ρ0. Different
EOS would influence the collective behavior of emitted particles in HICs effectively. By
comparing the measured data to transport model calculation, e.g. BUU [13] and IQMD
[14], the incompressibility can be extracted. Currently, the measured data from the HICs
can not be described by the theory with a single κ value [7].

1.1.3 Heavy-ion collisions

In the past decades, HICs became a powerful tool to investigate the properties of strongly
interacting matter under extreme conditions [10] , which are otherwise inaccessible. The
heavy-ion reactions at various energies have been investigated by many fixed target exper-
iments at BEVALAC/SIS(∼2A GeV), AGS(∼12A GeV) and SPS(∼160A GeV) energies,
and by collider experiments at RHIC(∼200A GeV) and LHC (∼4A TeV) energies. In
non-central HICs, the matter that does not participate in the fireball creation, is referred
to as spectator matter. At different energies, the interaction strength between the fireball
and the spectator is different, which is strongly related to the possible hypernuclei and
K̄-nucleus bound states production in HICs.

In order to illustrate how strong the fireball interacts with the spectators in non-central

6



1.1. Hadronic matter

Figure 1.3: Excitation function of the sideflow (left), the dashed line is a calculation under
the assumption that a constant force acts on the spectators during the passage time, the
figure is taken from [17]. Excitation function of integral elliptic flow (right) in Au+Au
system, the figure is taken from [19].

HICs, generally two time scales need to be considered in the center of momentum frame:
(a) the passing time of spectators tpass and (b) the expansion time texp of the fireball. The
passing time of spectators is calculated by

tpass =
Rp + Rt

γbeam·βbeamc
, (1.3)

where Rp and Rt are the radii of projectile and target nucleus respectively, β is the velocity
of the spectator, γ is the corresponding Lorentz factor and c is the speed of light in vacuum.
If tpass is far less than texp, the fireball would expand according to its internal pressure
gradient and temperature. If tpass is slower compared to texp, then the spectators would
prevent the fireball from expanding in the direction with the largest pressure gradient.
The matter in the fireball would be emitted perpendicular to the reaction plane. The
reaction plane is spanned by the impact parameter (the distance between the center of
the two involved nuclei in the transverse plane) and the velocity direction of the incident
particle. In both cases, i.e. “tpass < texp” and “tpass > texp”, the spectator matter and
the fireball matter are moving exhibiting common trends, referred to as “collective flow”.
From the pattern of the final azimuthal angular distribution, these two cases can be
distinguished.

The azimuthal angular distribution of emitted particles in HICs can be expanded into a
Fourier series [15, 16], the coefficients of the first and the second order term are called
the sideflow and the elliptic flow, respectively. The sideflow quantifies how strong the
spectator-like matter is deflected in the reaction plane, the elliptic flow is the measure of
particle anisotropic emission in the transverse plane [17].

The left panel of Fig. 1.3 shows the excitation function of baryon sideflow [17]. The
dashed line is calculated under the assumption that a constant force acts on the spectators
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Chapter 1: Introduction

during the passage time. A decreasing sideflow with increasing beam energy means that
the “force” integral, as felt by the spectators, from the overlapping zone is decreasing
with increasing beam energy due to the decreasing passage time. An excitation function
of elliptic flow in Au+Au system [18, 19] is shown in the right panel of Fig. 1.3. By
increasing the incident beam energies (>1 GeV/A), the pattern of elliptic flow changes
substantially and its sign turns from negative to positive, which means that the impact
of the spectators on the fireball expansion gets weaker with increasing beam energy.

The emission pattern of sideflow and elliptic flow vividly illustrates that the hot fireball
matter strongly interacts with the cold spectator matter in HICs at SIS18 energies (1-2A
GeV). In HICs at these energies, the hadrons, like the pion, the kaon, the Λ hyperon
and etc. abundantly produced in the fireball, strongly interact with the cold spectator
matter in the nuclear medium. Since the properties of hadrons may be modified by the
nuclear medium, the cross sections and reaction rates of reactions with such particles
may be modified as well. It is also possible that these hadrons may be absorbed by the
cold spectator matter, a few-body system with a special composition can be formed. The
hypernuclei and the kaonic bound states could be the probes for such in-medium processes.
Contrarily, in HICs at high energies, since the interaction strength between the fireball
matter and the spectator matter becomes weaker with increasing beam energy, such exotic
states production by the interactions between the spectator and the fireball is less likely
to happen. The research status of these concerned exotic clusters, i.e. hypernuclei and
kaonic bound states, is briefly described in the following sections.

1.2 Strangeness bound states

Interactions between the hadrons are the fundamental building-blocks of hadron physics.
The nucleon-nucleon (NN) interaction is extensively investigated by NN scattering ex-
periments and the bound states only containing conventional “u” and “d” quarks are
satisfactorily explained by phenomenological methods and meson-exchange interactions.
Due to the short lifetime of hyperons, the hyperon-nucleon (YN) and hyperon-hyperon
(YY) interaction can not be investigated well within the hyperon scattering experiment.
An interesting and important question is whether the NN interaction can be extended from
the quark flavor of SU(2) to SU(3). Fortunately, one or more hyperon(s) (Λ, Σ, Ξ, Ω,. . .)
could bind with conventional nuclei, referred to as hypernuclei. Investigating the proper-
ties of hypernuclei, such as binding energy, lifetime, decay mode and so on, gives access
to YN and YY interactions. Beside the bound states with a strange baryon, K− may be
trapped by a normal nucleus and form a deeply bound kaonic state.

This section is composed of two parts. In the first part, the historical developments and
the basic properties of hypernuclei are briefly presented. The connection between the YN
interaction and neutron stars is reviewed as well. The experimental and theoretical status
of hypernuclei production in HICs is described. In the second part, the research status of
deeply bound kaonic states is reviewed briefly.
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1.2. Strangeness bound states

Figure 1.4: First hypernu-
clear event. The track
P is an incident cosmic
ray, which interacted with
a nucleus of an emulsion
at point A. The track “f”
is the produced hypernu-
cleus. After flying about
600 µm, it decayed into
three charged particles at
B. The short thick trajec-
tory 1 is a heavy cluster,
thick track 2 is a heavy
energetic particle, the thin
track 3 is most probably a
pion. The figure is taken
from [20].

1.2.1 Λ hypernuclei

A hypernucleus is designated by the symbol A
Y Z, where Z is the symbol of the chemical

element, A is the total number of baryons (i.e. the number of nucleons and hyperon(s)),
and Y is the symbol of the corresponding hyperon. For example, 3

ΛH represents a bound
state of a proton, a neutron and a Λ hyperon.

Since a hyperon inside the nucleus is not subject to the Pauli principle, it can be placed
in the interior of nucleus. On the other hand, due to the presence of the hyperon, the
mean field of the nucleons changes. This allows one to study the possible new structures
and properties of nuclei, like magic numbers. Meanwhile, the hypernuclei also provide
information about the in-medium properties of the YN interaction. With this new degree
of freedom, the nuclei chart can be extended into another dimension. The single-Λ hy-
pernuclei are widely investigated and the YN interaction is obtained by spectroscopically
investigating the Λ hypernuclei. YN and YY interactions are important in understanding
the structure and the composition of compact stellar objects, like neutron star.

In this section, a historical overview of Λ hypernuclei is presented firstly. Secondly, the
basic properties of single-Λ hypernuclei are described. In the third part, the connection
between the hypernuclear physics and the neutron star is presented. In the last part, the
experimental and theoretical status of hypernuclei production in HICs is reviewed.

Historical overview

The hypernucleus was first discovered by the Polish physicists Marion Danysz and Jerzy
Pniewski in 1952 [20], the observed event is shown in Fig. 1.4. A high energy proton
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Chapter 1: Introduction

Figure 1.5: Schematic presentation of three Λ hyperon producing reactions, e.g. the
strangeness exchange reaction (upper), the π-induced reaction (middle) and (e, e′K+)
reaction (lower). The figure is taken from [31].

(track P) collided with a nucleus of an emulsion at point A. A large number of fragments
were produced. One fragment (track f) flew about 600 µm, and decayed into three charged
particles at point B. The short thick trajectory 1 is a heavy cluster, thick track 2 is an
energetic heavy particle and the thin track 3 is most probably a pion. This fragment
is assigned to be a hypernucleus. This weakly decaying particle marked the start of
hypernuclear physics.

About 20 years after the first hypernuclear observation, about 22 different hypernuclear
species, produced by secondary pion and K− beam, were measured by emulsion and
bubble chambers. The Λ binding energies and the decay mode of light hypernuclei (3 <
A < 16) were investigated [21]. In the early 1970’s, K− beams were used at CERN, and
later on at BNL, the strangeness exchange reaction (K−N→Λπ, see Fig. 1.5) was used
to produce hypernuclei. For the strangeness exchange reaction (K−, π−), the Λ hyperon
can only be populated at substitutional states due to small momentum transfer, i.e. the
neutron at the outer shell is converted into a Λ hyperon. This is a powerful tool to
study the structure of p-shell hypernuclei [22, 23], but these kinds of experiments were
often limited by poor statistics and low beam energy resolution. In the middle of the
1980’s, the π+ beam was used to explore the Λ hypernuclear spectroscopy at AGS [24,25]
and KEK [26, 27]. The hypernuclear spectroscopy was established based on the high-
quality single-Λ hypernuclear data. Comparing to the strangeness exchange reaction, the
(π+, K+) reaction has a larger momentum transfer. Λ hyperon can populate the inner
shells of nuclei. In 2002, the (e,e’K+) production was first realised at the Thomas Jefferson
National Accelerator Facility (JLab) [28]. The beam energy resolution was significantly
improved from the few MeV of K−, π+ beam to a few hundred keV, which can resolve
the spin-orbit spiltting of a Λ hyperon inside the nucleus.

A schematic presentation of the strangeness exchange reaction (K−, π−) and associated
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1.2. Strangeness bound states

Figure 1.6: Hypernuclear
production cross section for
various reactions versus mo-
mentum transfer. The figure
is taken from [31].

production reactions of (π+, K+) and (e, e′K+) are shown in Fig. 1.5. The typical hyper-
nuclear production cross section for various reactions versus the transfered momentum is
sketched in Fig. 1.6. For the (K−, π−) reaction, a recoilless Λ hyperon can be produced
at the so called “magic momentum” of an incident kaon at about pK− = 0.55 GeV/c [29].
For the (π+, K+) reaction, the cross section peaks at pπ+ = 1.05 GeV/c, where the cross
section is about one order of magnitude smaller than the cross section of strangeness
exchange reactions [30,31].

A large number of single-Λ hypernuclei, from the lightest 3
ΛH to the heaviest 208

Λ Bi, have
been observed, these are compiled in Fig. 1.7 [31]. The abscissa is the mass number and
the y-axis is the charge of the hypernucleus. The employed experimental techniques i.e.
(K−, π−), (π±, K+), (e, e′K+), γ-induced reaction and emulsion data are indicated.

Λ−N interaction

The nucleon-nucleon (NN) interactions can be described by the one-pion-exchange (OPE)
model [32]. Due to the fact that the isospin (I) of Λ hyperon is I = 0, a single pion with
isospin I=1 can not be exchanged between a Λ hyperon and a normal nucleon with isospin
I = 1/2. The exchange of particles with zero isospin, like η, ω, and the strange mesons,
like K, K∗, are allowed. These mesons are much heavier than a pion, therefore only within
certain distances which is shorter than the one of the reactions with pion exchange, the
Λ−N interaction becomes effective.

In the absence of the Pauli effect for a Λ hyperon inside the nucleus, the Λ hyperon
behaves like an independent particle relative to the core nucleus. The Hamiltonian of the
hypernuclei can be written as

H = HCore + TΛ +
∑

veffective
ΛN , (1.4)

where HCore is the Hamiltonian for the core nucleus, TΛ is the kinetic energy of the Λ
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Figure 1.7: Λ hypernuclear chart. The employed experimental techniques, i.e. (K−, π−.)
reaction, (π±, K+), (e, e′K+), γ-induced reaction and emulsion data, are shown. The
figure is taken from [31].

hyperon and
∑

veffective
ΛN is the sum of ΛN interactions. Phenomenologically, the shell

model has successfully explained the nuclear transition and the fine structure of a normal
nucleus. In the same manner, a Λ hyperon with spin 1/2 in a single-particle orbit cou-
ples with a nuclear core state. The effective potential of a p-shell Λ hypernuclei can be
parameterized as [33,34],

VΛN = V0(r) + Vσ(r)·sN ·sΛ + VΛ(r)·LΛN ·σΛ + VN(r)·LΛN ·σN + VT (r)·s12 (1.5)

where, V0(r) is the averaged central interaction, Vσ(r) is the spin-spin interaction, VΛ(r)
is the Λ-spin-orbit interaction, VN(r) is the core-spin-orbit interaction, LΛN is the relative
orbital angular momentum, VT (r) is the tensor interaction and s12 is the tensor operator
defined by,

s12 = 3(σn·r)(σΛ·r)− σΛ·σN . (1.6)

These calculations describe the experimental data quite reasonably, especially for the Λ
binding energy and its γ-transitions. The effective interactions can be calculated by one-
boson-exchange (OBE) models such as those of Nijmegen [35] and Jülich interactions [36],
the parameters used in the models are constrained by the ΛN and ΣN scattering data.
These kinds of studies are essential to understanding the YN interaction in low medium
density (ρ < ρ0) environment. In dense hadronic medium however the YN interaction is
still unknown.
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1.2. Strangeness bound states

Figure 1.8: Λ binding en-
ergy BΛ obtained from
π+, K− beam and early
emulsion data as a func-
tion of A−2/3, where A is
the mass number of the core
nucleus. The curves are
the solutions obtained for
a Woods-Saxon well with a
depth of 28 MeV and a ra-
dius parameter r0 = 1.128+
0.439A−2/3 [38]. The figure
is taken from [39].

Λ Binding Energy

A single-Λ hypernucleus can be treated as a core nucleus plus an additional Λ hyperon.
The mass of a hypernuclus (Mhyp) is derived from the measured momentum vectors of
the incident particle, for instance π+ and outgoing particle K+ (see Fig. 1.5), which is
expressed as the following

Mhypc
2 =

√
(Eπ+ + MAc2 − EK+)2 − [(pπ+c)2 + (pK+c)2 − 2c2pπ+pK+cosθ], (1.7)

where MA is the mass of the target nucleus, Eπ+ and EK+ are the total energy of the
incident π+ and outgoing K+ respectively, θ is the scattering angle of the kaon with
respect to the incident direction of the π+. The Λ binding energy BΛ is deduced by
assuming that the core nucleus is in its ground state,

BΛ = Mcorec
2 + MΛc2 −Mhypc

2 (1.8)

where Mcore is the mass of the core nucleus, and MΛ = 1.1156 GeV/c2 is the mass of the Λ
hyperon. In general, the single-Λ hypernuclear potential can be expressed in Woods-Saxon
form as [37]

UΛ = V Λ
0 f(r) + V Λ

LS

(
h

mπc

)2
1

r

df(r)

dr
(~l·~s) (1.9)

with

f(r) =
1

1 + exp
(

r−R
a

) , (1.10)

where R = 1.1(A − 1)1/3 fm, a = 0.6 fm, V Λ
0 = −30 MeV, V Λ

ls = 2.0 MeV. The item
~l·~s is the contribution of the spin-orbit coupling. Taking this coupling into account, the
fine structures in the measured excitation spectra of Λ hypernuclei can be satisfactorily
described.
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Figure 1.9: Possible com-
position of neutron star
matter as a function of
baryon density. The hy-
peron appears above den-
sity 2ρ0 with a repulsive
Σ potential. The figure is
taken from [45].

The Λ binding energies of hypernuclei measured by K−, π+ induced reactions and early
emulsion experiments versus A−2/3 are shown in Fig. 1.8, where A is the mass number of
the core nucleus [38] (the data points were updated in [39]). The curves are the solution
obtained for a pure Woods-Saxon well with a depth of 28 MeV and a radius parameter
r0 = 1.128+0.439A−2/3. The determined hypernuclear potential depth is close to 30 MeV,
which is about 2/3 of a normal nuclear potential by extrapolating the binding energies to
nuclear matter.

Hypernuclei and neutron stars

The neutron star is a type of stellar remnant that results from the gravitational collapse
of a massive star. Neutron stars are the densest objects in existence in the universe with
typical radii of about 10 km and masses of about 1-2 solar mass. The density of the
neutron star increases from outer crust to the inner layers. The density in the center of
a neutron star is expected to be several times higher than the normal nuclear density
(ρ0 = 0.17 fm−3). The pressure caused by gravity is balanced by the Fermi pressure
originating from the Pauli exclusion principle and the short-range repulsion between the
nucleons. The maximum mass of a neutron star is constrained by the stiffness of the EOS.
A stiffer EOS can sustain more gravitational force, which allows a neutron star to have
a larger mass. Thus, the masses of observed neutron stars provide a stringent constraint
on the EOS.

By increasing the nuclear density, various forms of matter are predicted to appear in the
interior of a neutron star, such as hyperonic matter [40], kaon condensation [41, 42], and
color superconductor [43, 44]. These new degrees of freedom would soften the EOS, and
reduce the maximum mass of a compact star. The particle composition in the core of a
neutron star is not known precisely. A possible composition of neutron star matter as a
function of baryon density is shown in Fig. 1.9 [45]. The red line represents the fraction
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of the Λ hyperon. The Λ hyperon is predicted to appear at nuclear densities exceeding
2ρ0. The fraction of hyperonic matter is governed by the strength of the YN interaction
in the nuclear medium.

Recently, the mass of the binary millisecond pulsar J1614-2230 was measured to be
1.97±0.04 solar masses [46]. The mass-radius diagram of neutron stars is depicted in
Fig. 1.10, the horizontal bands are the observed neutron star masses. The curves are
giving the mass as a function of the radius under various EOS assumptions. The authors
conclude that non-nucleonic components in the neutron star are unlikely.

This result is rather puzzling. On the one hand, the theory predicts that the Λ hyperon
would appear at baryon density exceeding 2ρ0, which is consistent with hypernuclear data.
On the other hand, the presence of Λ hyperons would soften the EOS, and it reduces the
maximum mass of a neutron star to be about 1.5M� [47]. So far, the role of the Λ hyperon
in the neutron star is still an open question.

One possible underlying reason is the missing three-body force for nucleons and hyperons
(NNN, YNN, YYB and YYY), which gives an additional repulsive contribution. This
kind of information can be extracted by investigating the properties of double hypernuclei
[45,47]. In-medium YN interaction would play an important role for the composition and
structure of the neutron stars [48,49]. Since no such data is available at this moment, the
results strongly depend on the theoretical models.

Hypernuclei production in HICs

The Λ hyperon and other mesons like π±, ρ,K+ are abundantly produced in the fireball of
HICs at intermediate energies. A particular feature of non-central HICs at such energies
is that the fireball matter strongly interacts with the spectator matter, which has been
described in section 1.1.3. In the course of these interactions, hypernuclei could be formed
by following processes:
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Figure 1.11: Predicted differential cross section of 3
ΛH (upper left), 4

ΛH (upper right), 4
ΛHe

(low left) and 5
ΛHe (low right) (solid red line) and their core nucleus (dashed black line)

as a function of scaled rapidity distribution in 12C+12C at 2A GeV. The figure is taken
from [13].

� Coalescence process: a Λ hyperon produced in the fireball may stick with a
cluster from the surrounding medium, especially those from the spectator matter.

� Meson-induced reaction: mesons like pions and kaons produced in the fireball
may interact with the spectator matter. The hypernuclei can be formed by the
strangeness exchange reaction (K, π) or the associated pion-induced reaction (π, K).

� Direct reaction: the produced Λ hyperon may directly react with the spectator
matter to form a hypernucleus, such as the strangeness exchange reaction and the
knock-out reaction. The knock-out reaction has been used to probe the rare isotopes
of conventional hadronic matter [50, 51], one or more nucleons in a nucleus can be
replaced by an injected Λ hyperon.

The coalescence picture was first proposed by Kerman and Weiss [52] theoretically in
the 1970’s. Later, more sophisticated coalescence models [53, 54, 55] were developed.
Recently, the combined transport model GiBUU [56] and statistical multi-fragmentation
model (SMM) [57, 58] are used to predict the yield of light hypernuclei, by taking the
contributions from both Λ-fragment coalescence and meson induced reaction into account.
Basically, the produced Λ hyperon and other fragments are propagated in momentum and
coordinate space. The hypernuclei production probability depends on two coalescence
parameters: the momentum radius pC and the spatial radius rC , which are correlated
by the relation rC = ~/pC [59]. The strength of pC depends on the strength of the YN
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Figure 1.12: Predicted hypernuclei yields as a function of energy (left). Energy depen-
dence of various yield ratios (right). Lines are the predictions and symbols in the left
panel are the measured data. The figures are taken from [65].

interaction. Typically this is fitted from the measured experimental data. Due to the
shortage of hypernuclear production data from HICs and the poor knowledge about the
YN and YY interactions, the parameter pC is not well constrained so far.

Fig. 1.11 shows the differential cross section of 3
ΛH (upper left), 4

ΛH (upper right), 4
ΛHe

(low left) and 5
ΛHe (low right) (solid red line) and their core nucleus (dashed black line) as

a function of scaled rapidity y0 (defined by (ylab−ycm)/ycm, where ycm is the rapidity of the
collision system in laboratory frame) in 12C+12C collisions at 2A GeV, predicted by the
GiBUU+SMM model [13]. The estimated hyperfragment production is about 5∼6 orders
of magnitude lower than its core nucleus production. For the 4

ΛH yield prediction, the π-
induced reaction contributes about 12% of the total 4

ΛH production, while the contribution
from anti-kaon-induced reaction is neglected in the prediction. The third production
scenario has not been discussed at all, since no Λ hyperon beam is available to investigate
such reactions.

The spectator-like clusters are involved in all the above mentioned processes, properly
describing the phase space distribution of light spectator-like fragments is as important
as describing the one for particles produced in the fireball. An obstacle that should be
mentioned is that the fraction and the phase space distribution of spectator-like fragments
in HICs at energy E >1A GeV can not be properly described by transport models.
However the velocity distribution of heavy fragments from the HICs with energies E<1A
GeV [60,61] can be reasonably described by the SSM model [13] and the empirical formula
[62].

Another model considered is the thermal model [63, 64]. This model can successfully
reproduce the particle yield ratios in central relativistic HICs by only two parameters, i.e.
the temperature T and the baryon chemical potential µb. The thermal model is one of
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Figure 1.13: Invariant mass spectrum of measured (π−,3He) pairs (black dots) from
Au+Pt at 11.5A GeV and MC simulation (solid red line) (left), the figure is taken
from [69]. Invariant mass distribution of (π−,3He) pairs in Au+Au at 200A GeV (right).
The open circles are the measured data, the solid line is the background. The dashed
line is the summed result of fitted Gaussian (signal) and double-exponential (background)
function. The figure is taken from [70]

the most direct approaches to investigate the hadron production in HICs, assuming that
the whole system reaches a thermal and chemical equilibrium.

The left panel of Fig. 1.12 shows the yield ratios of baryons predicted by the thermal
model as a function of the center of mass energy [65]. The lines are the predictions and the
symbols are the measured data. The yield ratio of Λ/p and d/p is well reproduced by the
model. The right panel of Fig. 1.12 shows the predicted yields of various particles at mid-
rapidity per million central collisions as a function of the center of mass energy [65]. From
this model, not only the single strangeness hypernuclei are predicted, but also the multi-
strangeness hypernuclei 5

ΛΛH, 6
ΛΛHe, 7

ΛΛΞHe are predicted. It is interesting to compare the
yield of 3He and 3

ΛH, as they have comparable phase space distributions. At low center of
mass energy (

√
sNN < 3 GeV), the yield ratio of 3

ΛH/3He drops rapidly. At
√

sNN > 10
GeV, the yield ratio of 3

ΛH/3He is almost a constant.

Experimental status of hypernuclei production in HICs

The hypernucleus productions in HICs have been measured by several experiments. The
first attempt to produce the hypernucleus via HICs was implemented at LBL in the
1970’s [66]. The 16O beam at 2.1A GeV impinged on a polyethylene target. It was claimed
that more than 20 16

Λ H’s were observed. Late the 80’s, light hypernuclei were measured
at the JINR [67, 68] with a streamer chamber. Light-ion beams (3He,4 He,6 Li and 7Li)
impinged on a polyethylene target, the cross sections and the mean lifetimes of 3

ΛH and
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1.2. Strangeness bound states

4
ΛH were measured. Note that both above experiments have no particle identification. A
2.5σ level 3

ΛH signal and the upper limit of 4
ΛH production were measured by the E864

collaboration [69] from 1.3×1010 most central (10%) Au+Pt collisions at 11.5A GeV. The
measured invariant mass spectrum of (π−,3He) pairs and Monte Carlo (MC) simulation
result is shown in the left panel of Fig. 1.13. Recently, the signal of 3

ΛH and anti-3ΛH
were observed in Au+Au collisions at 200A GeV by the STAR collaboration [70]. About
157 ± 30 3

ΛH and 70 ± 17 anti-3ΛH were observed from about 89 million minimum-bias
events. The invariant mass spectrum of (π−,3He) pairs from the measurement is shown in
the right panel of Fig. 1.13. The open circles represent the measured data, the background
spectrum (solid line) is obtained by a method in which the heavier daughter particle is
rotated by 180o in the azimuthal plane. The background and signal is fitted by a double-
exponential function and a Gaussian function respectively. The dashed line is the summed
result of both functions. The result of both the E864 and the STAR collaboration is
interpreted as a coalescence result of Λ hyperons, protons and neutrons from the fireball.
More recently, 3

ΛH and 4
ΛH signals were observed by the HypHI collaboration by colliding

6Li beam at 2A GeV on a carbon target [71]. The invariant mass of the Λ hyperon,
3
ΛH and 4

ΛH was reconstructed, and their means were shifted, which was attributed to a
poor quality in their track fitting process.

1.2.2 K̄-bound states

An attractive K̄-nucleus potential was derived from the scattering length of low energy
K− scattering experiments [72, 73, 74, 75] and the level shifts of kaonic hydrogen X-ray
measurements at the KEK-PS [76], DEAR [77] and SIDDHARTA [78]. The theoretical
prediction for the depth of the K−-nucleus potential at normal hadronic matter density
can be classified as a deeply attractive potential of -ReVopt(ρ0) ≈150-200 MeV [79,80] and
a shallower attractive potential of -ReVopt(ρ0) ≈50-70 MeV [81, 82, 83, 84]. Based on the
strongly attractive potential in isospin I = 0 K−N interaction, the proton-rich deeply
bound kaonic states, such as pK−(Λ 1405), ppK− and ppnK−, are predicted by Akaishi
and Yamazaki [85,86,87]. Fig. 1.14 depicts the calculated K̄N and K̄-nucleus potentials
and their bound levels. An interesting feature of the prediction is that the size of the
K̄-nucleus would shrink due to the strong attractive K−N potential. In particular, the
Λ(1405) is assumed to be a bound state of a K− and a proton, which is the fundamental
building block for studying the property of K̄ in various many-body systems. The two-
pole structure of Λ(1405) was predicted in [88], since the Λ(1405) mass is located between
the πΣ and K̄N threshold with isospin I=0 and strangeness S=-1. One pole is located at
higher energy around 1426 MeV with a narrower width of 32 MeV and mostly couples to
K̄N , another one sits at lower energy around 1390 MeV with a larger width 132 MeV and
mostly couples to πΣ. The nominal Λ(1405) is not a single resonance but a superposition
of these two states with the same quantum numbers.

Experimentally, there are several measurements interpreted as evidence for deeply bound
kaonic states. The first experimental evidence of a kaonic bound state was observed by
the FINUDA collaboration [89]. The low momentum K− from φ decay were stopped
on 6Li, 7Li and 12C nuclei. The back-to-back emitted (p, Λ) pairs in the lab frame are
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Figure 1.14: Theoretically predicted several deeply bound kaonic states in light nuclei by
coupled-channel calculations. The figure is taken from [85].

selected and their invariant masses were reconstructed. The results are shown in the left
panel of Fig. 1.15. The bump in the spectrum was interpreted as a bound state composed
of a kaon and two protons, abbreviated as ppK−. From the spectrum after acceptance
correction (insert of Fig. 1.15), the binding energy and width of this hypothetical ppK−

bound state is 115+6
−5(stat)+3

−4(syst) MeV and 67+14
−11(stat)+2

−3(syst) MeV, respectively. This
result was alternatively interpreted as final state interactions (FSI). The FSI effect on the
proton and Λ hyperon after a quasi free absorption would reduce the invariant mass of the
Λ-p system [90]. The FSI effect can not, however, explain the angle correlation of back-
to-back emitted Λ hyperon and p. Another measurement in the p + p→K+X reaction at
2.85 GeV was performed by the DISTO experiment [91]. The deviation of missing-mass
spectra (DEV) of K+ were achieved by selecting the large-angle proton (|cosθcm(p)| < 0.6)
and the small-angle proton (|cosθcm(p)| > 0.6). In both cases, the polar angle of the K+

was restricted to a range of −0.2 < cosθcm(K+) < 0.4. The DEV is the ratio of the
measured spectrum and the simulated spectrum, bin by bin. The simulation spectrum
was calculated from a reference reaction, i.e. pp→pK+Λ, with a uniform phase space
distribution. The DEV of K+ with a large-angle proton cut is shown in the right panel
of Fig. 1.15. The mean and width of the broad peak is 2267 ± 3(sta.) ± 5(sys.) MeV/c2

and 118± 8(sta.)± 10(sys.) MeV, respectively. This was claimed as being a K−pp cluster
with a large binding energy of BK=103 MeV. More recently, in elementary pp reactions
at 3.5 GeV, the feasibilities of Λ(1405)→Σ±π∓ have been demonstrated by the HADES
collaboration [92].

Beside the elementary reactions, the information of the K̄N potential can be extracted
from HICs as well. In HICs at energy larger than 2.5A GeV, K− can be produced
by direct reaction NN→NNK+K−. The HICs at energies below the K− production
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1.2. Strangeness bound states

Figure 1.15: Invariant mass spectrum of the Λ-p pairs in the stopped K− reacting on
various nuclei measured by the FINUDA experiment (left), the figure is taken from [89];
K+ missing mass spectrum in pp→pΛK+ reaction at 2.85 GeV measured by the DISTO
experiment (right), the figure is taken from [91].

threshold energy, K− can be produced via multi-step reactions (mostly by πY→NK−

[93]). At SIS18 energies, the measured K− overall yield of Ni+Ni at 1.93A GeV is about
1×10−3 [94]. Due to the attractive K̄N potential, the K− may be absorbed by the
surrounding hadronic matter, especially by the cold spectator matter in non-central HICs
at intermediate energies. In Al+Al collisions at 1.91A GeV and Ni+Ni collisions at
1.93A GeV measured by the FOPI detector, an excess was observed in the invariant mass
spectrum of Λ-p pairs [95]. The invariant mass spectra of Λ− p pairs from Al+Al system
(left) and Ni+Ni system (right) are shown in Fig. 1.16. In the upper figure of each panel,
the black solid spectrum and red-dashed histogram are the signal and the mixed-event
background spectrum, respectively. The invariant mass spectrum after subtracting the
background is shown in the lower figure of each panel. The excess was fitted by a Gaussian
distribution. The fitted mean and width of the excess in the Al+Al system were 2121±10
MeV/c2 and 25±5 MeV/c2, respectively. For the Ni+Ni system, the fitted mean and width
were 2140 ± 10 MeV/c2 and 25 ± 5 MeV/c2 respectively. In both cases, the significance
of the signal is larger than 5σ. Note that the measured mean of the excesses is different
from the Λ-p invariant mass located in 2.22-2.33 GeV/c2 measured by the FINUDA [89]
and the DISTO [91] collaborations. Similarly, in the analysis of Λ-d correlations in Ni+Ni
collisions at 1.93A GeV measured by the FOPI apparatus, an excess is found at 3.137
GeV/c2, which could be a bound state of ppnK− [96]. It is worth mentioning that the
K̄N potential is predicted to change with the medium density [97, 98, 99]. The influence
of this effect on the formation of deeply bound kaonic states is still unknown.
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Figure 1.16: Invariant mass spectra of Λ-p pairs from Al+Al at 1.91A GeV (left) and
Ni+Ni at 1.93A GeV (right), for detailed descriptions see the text. The figures are taken
from [95].

1.3 Thesis objective

In order to explore the possible hypernuclei productions in HICs at SIS energies, we
attempt to identify the light hypernuclei 3

ΛH and 4
ΛH via their two-body π−-decay channel,

i.e. 3
ΛH→π− +3 He and 4

ΛH→π− +4 He.

In the FOPI experiment, all of the decay products of the above reactions can be identified
by a single or combined sub-detector(s). The CDC has a good transverse spatial resolu-
tion, which allows to constrain the quantities representing the distance measurements, for
instance, the flight distance of the candidates, the transverse impact parameter of light
charged particle and so on (for details see section 4.2), which can be used to suppress the
background effectively.

The first goal of this work is to identify the 3
ΛH and 4

ΛH in Ni+Ni collisions at 1.91A GeV,
by reconstructing their invariant masses and with the as large as possible statistical sig-
nificances. Secondly, the yields, the phase space distribution and the lifetime are expected
to be derived. Thirdly, by combining the yield of possible hypernuclei and the yield of
hadrons like Λ, p, d, t, 3He and 4He, the possible hypernuclei production mechanism in
HICs can be discussed. Finally, these results can be used to constrain the parameters in
theoretical models, and contribute to the knowledge of YN interaction.
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Chapter 2

The FOPI detector and the S325e
experiment

2.1 Introduction

The FOPI detector, designed for fixed target experiments, is located at the ‘Schwerionen-
synchrotron’ (SIS) of the ‘Gesellschaft für Schwerionenforschung’ (GSI) in Darmstadt,
Germany. The FOPI detector covers a solid angle of almost 4π, as shown in Fig. 2.1. The
charged particles (e.g. π±, K±, p, d, t,3He and 4He) produced in HICs can be identified.
Since the complete information of charged particles from the collisions is measured, this
makes the FOPI spectrometer an appropriate tool for investigating the properties of com-
pressed nuclear matter formed by heavy-ion collisions at energies from 0.1A GeV to 2.0A
GeV [100]. In the past twenty years, the FOPI spectrometer has been upgraded several
times. A wide range of physics topics of HICs at SIS energies have been investigated,
like the EOS [19], nuclear fragmentation [101, 102], meson production (pion, kaon and
so on) [103, 104, 105] and the production of strange baryons (Λ, Σ) [106, 107] . In order
to improve the particle identification (PID) capability for charged kaons, a new shell of
Multi-strip Multi-gap Resistive-Plate Counter was added in 2008. This allows to study
and verify the existence of the in-medium properties of charged kaons via the collective
flow analyses.

In this chapter, the configuration and performance of the FOPI sub-detectors are de-
scribed. The experimental conditions of the data sample relevant for this analysis are
introduced at the end of this chapter.

2.2 The FOPI detector

The FOPI detector is composed of several azimuthally symmetrical sub-detectors. The
central drift chamber (CDC) is located innermost of the FOPI detector. The CDC is
surrounded by two Time-Of-Flight (TOF) detectors, i.e. the older plastic scintillator
barrel (PLB) and the newly installed Multi-gap Multi-strip Resistive Plate Chamber
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Chapter 2: The FOPI detector and the S325e experiment

Figure 2.1: Schematic drawing of the FOPI detector.

(MMRPC, abbreviated as RPC). Another drift chamber called the HELITRON is located
in front of the CDC. The CDC and the HELITRON are placed inside a super-conducting
solenoid magnet. The plastic wall (PLW) and the zero degree detector (ZDD) are placed
in front of the HELITRON. In the following subsections, the geometrical configuration
and the performance of these sub-detectors are briefly described.

2.2.1 The magnet

The FOPI magnet is a superconducting solenoid magnet, which produces a homogeneous
magnetic field parallel to the beam axis with a strength of 0.6 Tesla. The length and the
diameter of the magnet are 3.3 m and 2.4 m, respectively. Two drift chambers (the CDC
and the HELITRON) and the time-of-flight (TOF) detectors (the PLB and the RPC) are
placed inside the magnet. The magnetic field is used to deflect the charged particles. The
curvature of the helical trajectories in the transverse plane and the associated polar angle
can be fitted from the hits recorded by the drift chambers. With the obtained curvature
and polar angle, the momentum of the charged particles can be reconstructed.

2.2.2 The start counter and the veto detector

The start counter provides a time reference for all sub-detectors. In the S325e experiment
(see section 2.3), the start detector was made out of poly-crystalline diamond, and was
mounted in the vacuum of the beam pipe about 2 m in front of the target. The size of
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the start detector was 2×2 cm2 with an active area of 1 cm2 and a thickness of 150 µm.
The resolution of the start counter was σt < 55 ps [108].

In order to reject beam particles which were not focused on the target, two veto detectors,
i.e. Halo 1 and Halo 2, were placed 200 cm and 10 cm in front of the target. The
veto detectors were built by four scintillator bars and read out by the photomultipliers
surrounding the beam pipe with a rectangular shape. The signals of Halo 1 and Halo 2
were put into an anti-coincidence with the one of the start counter.

2.2.3 The Central Drift Chamber (CDC)

The CDC is the main tracker of the FOPI detector and is responsible for the measurement
of energy loss and the trajectory of the charged particles. The momenta of charged
particles can be derived from the curvatures of the found arcs in the transverse plane
and the associated polar angles fitted from the hits in the (r, z)-plane. The light charged
particles can be identified by correlating the recorded energy losses by the CDC and the
reconstructed momenta. In this sub-section, the geometrical configuration of the CDC
and its observables are described.

Technical Details

The CDC is a jet-type drift chamber. This configuration was used by many experiments
like JADE [109] and OPAL [110,111]. The CDC has conical end caps, the inner and outer
radii are 0.2 m and 0.8 m from the beam axis, as shown in the left panel of Fig. 2.2. The
polar angle acceptance of the CDC is in a range of 23o to 113o with respect to a new target
position, which is shifted upstream by 40 cm with respect to the nominal target position.
This aims to enlarge the acceptance of the CDC and the RPC barrel. The CDC covers
the entire azimuthal angular range and is subdivided into 16 sectors in the transverse
plane, shown in the right panel of Fig. 2.2. The sectors are delimited by the field wire
planes, which are composed of 252 cathode wires each with 125 µm diameter spaced in
0.5 cm intervals. Each sector consists of 61 potential wires (with 125 µm diameter) and
60 sense wires (with 20 µm diameter) spaced 0.5 cm alternately. The sense, potential and
cathode wires are parallel to the beam axis. In order to eliminate the mirror tracks, the
cathode wire plane and sense wire plane are tilted by 8o. Additionally, the sense wires
are displaced alternately by 200 µm with respect to the anode plane (see the right panel
of Fig. 2.2).

The drift voltage of -15 kV is distributed to the cathode wire via a voltage divider chain,
which produces a homogeneous drift field of about 800 V/cm. The voltage applied on the
potential wires is -1040 V. The sense wires are set to the ground potential. The operating
gas of the CDC is a mixture of 88% Ar, 10% Isobutane, and 2% CH4, which flows at one
atmospheric pressure. The Isobutane and the CH4 act as quenchers, which are used to
absorb the feedback photons. Further details about the CDC are described in [100].
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Figure 2.2: Longitudinal (left) and transversal (right) cross section drawings of the CDC.
The target is shifted 40 cm upstream with respect to its nominal target position.

Observables measured by the CDC

The CDC is placed in a homogeneous magnetic field. When a charged particle passes
through the CDC gas volume, it is bent by the field and leaves a helical trajectory in the
space. The electron-ion pairs are created along the trajectory and they are separated by
the electric field and drift to the sense wires and the field wires, respectively. The energy
loss of a charged particle is described by the Bethe-Bloch formula (see appendix A). Due
to the presence of the magnetic field perpendicular to the electric field, the accelerated
electrons would be bent by the magnetic field. The electrons scatter on the atoms or the
molecules of gas mixture and lose a part of their kinetic energy. Since the kinetic energy,
gained by the electron between two successive collisions is not high enough to ionize the
gas molecules, no additional electron is produced.

Finally, the drift path is no longer parallel to the electric field but has a tilt angle αL,
which is the so called Lorentz angle (illustrated in Fig. 2.3). An average drift velocity
along the drift path is then acquired. For the CDC, the averaged drift velocity of the
electrons is about 4.5 cm/µm. The average velocity of the ions is about 1000 times lower.
The longest drift path in the drift cell is about 22 cm, which follows a maximum drift
time of about 5 µs.

The strength of the electric field around the sense wires follows a 1/r behavior. When an
electron is drifting close to the sense wire, this electron can accumulate enough energy to
ionise atoms or molecules in a short distance. This process develops into an avalanche.
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2.2. The FOPI detector

Figure 2.3: Illustration of the electric field (upper left), the avalanche multiplication field
(upper right) and the drift trajectories of electrons (lower left) in a CDC sector. The
figure is taken from [112] .

The charges which arrived initially are amplified about 103 − 104 times. The amplified
charges are picked up by the pre-amplifier at both ends of the sense wires. After the
pre-amplifier, the signals are sampled by flash-ADC’s (FADC) with a sampling frequency
of 100 MHz.

In order to assign the hits in (x, y)-plane into the continuous arcs, the average drift
velocity vd, the Lorentz angle αL and the time offset t0 have to be calibrated. A detailed
explanation can be found in [113]. The z-coordinate of the hits is reconstructed by the
charge division method. The position resolution of hits is about 300 µm in the transverse
plane and a few cm in the z-direction. After the calibration, the curvature ρ and the polar
angle θ of the track are fitted by the track fitting procedures. Fig. 2.4 shows a typical
event in Ni+Ni collisions at 1.91A GeV. The momentum of charged particles is derived
from the following expressions,

pt = 0.3·B·ρ·|z| (GeV/c) (2.1)

p =
pt

sinθ
(GeV/c) (2.2)

where, B=0.6 T is the strength of magnetic field, ρ is the curvature of trajectory in the
transverse plane and z is the charge number of the particle.
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Figure 2.4: A typical event of Ni+Ni at 1.91A in the transverse plane. The inner part is
the CDC. The RPC barrel is the layer outside of the CDC composed of 28 super modules.
The outermost ring is the plastic barrel. The red points are the reconstructed hit positions
in the CDC, the detected tracks are depicted by the solid arcs. The hits in the RPC and
the PLB are labelled by the magenta circles and the filled squares, respectively.

2.2.4 The Plastic Barrel (PLB)

The plastic barrel is a time-of-flight (TOF) sub-detector, which measures the velocities
of charged particles. The PLB is composed of 180 scintillator bars with a dimension of
150×4×3 cm3, grouped in 30 modules with 6 bars each. The PLB surrounds the CDC,
it covers about 80% of the full azimuthal angle and the polar angle from 54o to 110o.
The scintillation light, produced by a charged particle, is read out by a photomultiplier
(PMT) at both ends. At each end, the information of the arrival time t associated with
a start time t0 and the charge Q is recorded. The z-position of the hit zhit and the flight
time ttof can be derived by following formulas,

ttof =
t1 + t2 − l/vpropa

2
, (2.3)
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zhit =
t1 − t2

c
·vpropa, (2.4)

where t1 and t2 are the measured arrival time of the upstream and downstream PMT with
respect to t0 respectively, l(= 150 cm) is the length of scintillator bars and vpropa(=16.5
cm/ns) is the propagation velocity of light inside the scintillator. Typical time resolution
of the PLB is about 300 ps, corresponding to a position resolution of about 8 cm. The
azimuthal angle resolution is about 2o given by the dimension of the scintillator. The
velocity of the charged particle can be derived from the following formula,

β =
L

ttof

(2.5)

where L is the total length of the helix in space and ttof is the derived flight time. If two
particles carry the same momentum with mass mA and mB, the difference of their flight
time is calculated by the following expression [114],

∆t = |tA − tB| =
L

c

∣∣∣∣∣∣
√

1 +

(
mAc

p

)2

−

√
1 +

(
mBc

p

)2

∣∣∣∣∣∣ (2.6)

With the approximation
√

1 + (mc/p)2 ≈ 1 + (mc)2/2p2, a separation power of the TOF
detector can be defined as the following,

nσTOF
=
|tA − tB|

σTOF

=
Lc

2p2σTOF

|m2
A −m2

B| (2.7)

where σTOF is the time resolution of the TOF detector. In the high momenta range,
particle misidentification would occur, as the difference of flight time becomes comparable
to the time resolution of the detector.

2.2.5 The Multi-strip Multi-gap Resistive Plate Chamber (MM-
RPC) Barrel

The MMRPC barrel is another TOF sub-detector, abbreviated as RPC. Comparing to
the existing scintillator barrel, the RPC has a superior time resolution and a higher
granularity. The PID capability for charged kaons is improved significantly. This allows
to study the in-medium properties of kaons and anti-kaons [97, 98] via their collective
flow [115].

The MMRPC barrel contains 28 Super-Modules (SMs) (fully azimuthal coverage can
accommodate 32 SMs, due to the existence of the CDC mechanical support, only 30 SMs
can be mounted), which covers the polar angle from 30o to 52o. About 75% of the full
azimuthal range is covered. 28 SMs surround the CDC with a radial distance of 94 cm to
the beam axis. The single MMRPC counter is in a common double-stack configuration
of 2×4 gaps with the anode in the center, the gaps are set by spacers of 220 µm diameter
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Chapter 2: The FOPI detector and the S325e experiment

fishing line. The stacks contain 1.1 mm and 0.55 mm thick window glass plates in an
alternating array, as shown in the left panel of Fig. 2.5. Each SM is composed of 5
MMRPC counters, which share the same gas environment and high voltage. In order
to cover the space in between the MMRPCs, the counters were arranged in a staggered
configuration. A photo of a single super module with the readout electronics is shown in
the right panel of Fig. 2.5.

The chambers operate with a gas mixture of 80% C2H2F4, 15% SF6 and 5% Iso-C4H10,
which allows one to operate the counters at high fields without the problems related with
streamers [116]. The HV is applied to the up and down copper foil. At moderate voltages
of U ≤ 10 kV, the strength of the electric field between the gaps reaches about E≥100
kV/cm. The readout electronics consist of the front-end electronics (FEE) followed by
the Time-to-Amplitude Converter (TAC) based digitizer (TACQUILA). The FEE is an
amplifier/discriminator card with high gain(∆G∼160) at a high bandwidth(δf∼1.3 GHz)
and an excellent electronic time resolution (σFEE≤18 ps). The TACQUILA digitizer is
operated in common stop mode with a free running 40 MHz clock as a stop signal. The
total time resolution of the electronics is 25 ps. After the walk and wiggle (intrinsic non-
linearity of the TAC chip) correction, the full-system resolution for the MMRPC barrel
alone is σbar≤70 ps, including the time reference from our in-beam start counter, the total
resolution is σTof≤90 ps.

Figure 2.5: Cross-section view of an MMRPC counter (left), the read out electrodes sit
in the middle of the counter and the glass layers are spaced by the fishing lines. A photo
of a single super module with the readout electronics below (right). The figures are taken
from [108].

2.2.6 The Plastic Wall (PLAWA)

The PLAWA covers the polar angle in a range of 7o to 25o, it is made of 512 plastic
scintillator bars grouped into eight sectors. Each sector is composed of 64 strips. The
scintillation light produced by a charged particle is read out by a photo multipliers at
both ends. Like the PLB, each strip affords the two time parameters (tL, tR) and two
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energy parameters (EL, ER). The time of flight and the hit position can be calculated
from Eq. 2.3 and 2.4. The time resolution is linked to the active length of the scintillator
strip, thus it varies from 80 ps for the innermost strips to 120 ps for the outermost strips.
The corresponding position resolution varies from 1.2 cm to 2.0 cm along the strip.

2.2.7 The HELITRON

The HELITRON is a radial drift chamber which covers the full azimuthal angle and
the polar angles from 10o to 22o. The HELITRON is subdivided into 24 sectors in the
transverse plane. Each sector contains 54 sense and 53 potential wires, which extend
radially from the inner radius to the outer radius of the chamber. When the charged
particles pass through the chamber, the physics processes are same as these described in
the case of the CDC. The HELITRON can provide information about the momenta and
the energy losses of the charged particles. Typically, the chamber is operated with a gas
mixture of 88% Argon, 10% Iso-C4H10, and 2% CH4. The voltage applied on the drift
wires is -12.5 kV and the voltage applied on the potential wires is -1600 V.

2.2.8 The Zero Degree Detector (ZDD)

The ZDD covers the polar angle from 1o to 7o, which contains 252 plastic scintillator
strips grouped into 7 concentric rings. Each ring contains 36 trapezoidal shaped plastic
scintillators. Every scintillator is read out by one photo-multiplier and delivers the energy
loss and the time of flight information of charged particle. The time resolution of this
detector is about 200 ps.

2.3 The S325 and S325e experiments

The experiments S325 and S325e were performed in September 2007 and in March 2008
respectively. According to the original experiment schedule, these two runs should be
done in one time block. Due to a dysfunction of the accelerator, the experiment had to
be separated into two parts. S325e means the extended part of the experiment S325.
About 21.6×106 and 56×106 events were collected from the S325 and S325e experiments,
respectively. The experimental results presented in the following chapters are from the
data sample of the S325e experiment only.

2.3.1 The beam and target

A 58
28Ni beam at 1.91A GeV impinged on a 405 µm thick 58

28Ni enriched target (>95%) with
a density of 360 mg/cm2. In order to increase the geometrical acceptances of the CDC
and the RPC, the target was shifted 40 cm upstream with respect to the nominal FOPI
target position. The average beam intensity was about 3.5 ×106 ions/spill, the duration
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time of a spill was about 10 s. Based on a sharp cut-off assumption, the interaction
probability can be estimated by the following,

Prec = ρ·d·NA

A
·σtot

= ρ·d·NA

A
·πr2

0(
3
√

Ap + 3
√

At)
2

= 360mg/cm2·6.022×1023/mol

58g/mol
·π(1.2×2× 3

√
58)2

≈ 1%

(2.8)

where, ρ is the target density, r0(= 1.2 fm) is an empirical constant to calculate the radius
of the nucleus, NA is Avogadro’s constant, A is the mass number of the target and σtot is
the geometrical cross section of reaction system.

2.3.2 The trigger

The trigger is the combined experiment conditions to mark the specific type of collisions.
Typically, the fast detectors like the TOF detector are used to build the trigger conditions.
In the FOPI experiment, the trigger conditions were built by combining the information
from the start counter and the TOF detectors (PLB, RPC and PLW). In the S325e
experiment, the bias trigger conditions were built by requiring the PLW hit multiplicity
PMUL≥5 and the PLB hit multiplicity BMUL≥1. Under this trigger condition, most
central collisions corresponding to the 60% of the total geometrical cross section were
selected. The details are discussed in chapter 6 (section 6.4).
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Data analysis

The first step of the data analysis is to reconstruct the space location and the reaction
geometry of the collision, which are characterized by the vertex and the reaction plane,
respectively. The vertex and the reaction plane are the reference for the position and the
azimuthal angle measurements. The locations of collisions are distributed in the area of
the beam profile. The reaction geometry of the collisions is randomized in the azimuthal
plane. These quantities can be reconstructed from the fitted tracks in each event. To
identify the rare probes like 3

ΛH and 4
ΛH in HICs at SIS18 energies, the precision of the

reconstruction vertex is crucial, because several key cuts used to suppress the background
represent the measured lengths. The detailed selection and reconstruction method for
identifying 3

ΛH and 4
ΛH from their two-body π−-decay channel is described in the next

chapter.

In this chapter, the centrality of the S325e experiment is discussed first. Then the proce-
dures for reconstructing the vertex and the reaction plane are described. In the following
sections, the methods for identifying charged particles in the FOPI data are described. In
the last part, the geometrical acceptance of the CDC and the TOF barrel is illustrated
by the phase space distribution of π− and 3He, respectively.

3.1 Centrality selection

The impact parameter of a collision is the distance between the center of the two involved
nuclei in the transverse plane. The centrality is a quantity inversely linked to the impact
parameter. In collisions with a small impact parameter, more nucleons of the system
are involved, and more products are expected. The number of emitted particles is called
multiplicity, which is an experimentally measurable quantity. Due to the fluctuation of
produced particles, the impact parameter can not be finely resolved. Therefore, experi-
mentally, the centrality is characterized by the particle multiplicity instead of the impact
parameter.

For the FOPI spectrometer, only the charged particles can be detected directly. In an
event, the number of reconstructed tracks in the CDC is referred to as the track multi-
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plicity TMUL. The number of registered hits in the PLW in one event is called PMUL.
Fig. 3.1 depicts the distribution of the TMUL (left) and the PMUL (right) of the S325e
experiment. For 3

ΛH and 4
ΛH reconstructions, the substantial constraints for TMUL and

PMUL are introduced, which are described in the next chapter.
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Figure 3.1: Distribution of the track multiplicity TMUL (left) measured by the CDC and
hit multiplicity PMUL (right) measured by the PLW.

3.2 Vertex reconstruction

The primary vertex can be reconstructed by extrapolating the reconstructed tracks back
to the target position or to the beam line. For the FOPI experiment data, each event
only has one reaction location. The pile-up events are discarded by applying a cut on
the charge information of the start counter. The detailed description of this step can be
found in [112]. Imposing the constraints on the vertex, the off-target reactions can be
discarded, they are the reactions of the beam particle with other material along the beam
line, such as the start counter or gas molecules.

For the current analysis, the vertex is reconstructed by an iteration procedure. In the first
interaction, the reconstruction is carried out in the FOPI detector frame with the origin
at the target position. In the (x, y)-plane, the intersecting points of each two tracks are
calculated. Since the primary vertex should be around the origin, the relevant points are
those with the distance to the origin less than a transverse acceptance distance of 2.5 cm.
The vertex coordinates in the transverse plane are the averaged coordinates of the accepted
intersecting points. The standard deviation σt of the newly obtained vertex is calculated.
In the (r, z)-plane, the intersect point between each track and the z-axis is calculated.
The z-coordinate of the vertex is the averaged value of the intersecting distances in z-
axis, while only the points with distance to the origin less than a longitudinal acceptance
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3.3. Reaction plane reconstruction

distance of 4 cm are accepted. Similarly, a standard deviation σz of those points at the
obtained z-coordinate is calculated. After this step, the beam profile can be reconstructed.
The reconstructed beam profile of the S325e experiment in the transverse plane is shown
in the left panel of Fig. 3.2, where Ox and Oy is the coordinate of the primary vertex in
the x-axis and the y-axis, respectively. Afterward, the tracks are shifted into the frame
with the origin at the newly obtained vertex coordinate. The characteristic parameters of
each track, like transverse impact parameters d0 (shortest distance from the fitted track
to the primary vertex in the (x, y)-plane), intersecting distance in the z-axis z0 and the
coordinates of the circle’s center in the transverse plane are recalculated.

In the next iteration, the whole procedure is repeated in the frame with the origin at the
newly derived vertex. The transverse and longitudinal acceptance distance are updated
to 1.5 times that of the obtained σt and σz, respectively. After several iterations, the
vertex position in the (x, y)-plane and the (r, z)-plane can be localized. The coordinate
distribution of the primary vertex in the y-axis under 1st-6th iteration is demonstrated
in the right panel of Fig. 3.2. The iteration order is marked by a different color. The
vertex distribution of the first iteration (red) is quite broad, as the width of the beam
spot is included. After the second iteration, the reconstructed vertex coordinates show
no significant change. The RMS of the reconstructed primary vertex is about few mm.

For the weakly decaying particles, like Λ hyperon and other single-Λ hypernuclei, the
mean flight distance 〈βγcτ〉 (τ is the mean lifetime, c is the speed of light in vacuum)
is in the order of a few centimeters when β is in order of 0.5c. Therefore, the decay
vertex of these particles can be well resolved from the primary vertex. The cuts on the
distance between the secondary vertex and the primary vertex is an effective measure in
suppressing the background particles coming from the primary vertex. For example, the
transverse impact parameter of a track (see section 4.2.1) carries the information of its
“birth history”. If the impact parameter is a large value, it is highly probable that this
particle originated from an off-vertex source, and vice versa. The longitudinal spatial
resolution of the CDC is in the order of a few centimeters, thus the longitudinal impact
parameter can not be used as a strong constraint. A detailed description of the selection
criteria for Λ, 3

ΛH and 4
ΛH reconstruction is described in next chapter.

3.3 Reaction plane reconstruction

The reaction plane is spanned by the impact parameter (~b) and the beam direction, which
can not be controlled experimentally and is randomly distributed over the azimuthal angle.
The collective behavior of emitted particles in HICs can only be investigated with respect
to the reaction plane of each event. The reaction plane can be reconstructed by the
transverse momentum method proposed by Danielewicz and Odyniec [117]. Generally, a
~Q vector is constructed event by event by summing up the transverse momenta of the
associated particles. The reaction plane is defined by the angle φR between the ~Q and
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Figure 3.2: Reconstructed beam profile of the S325e experiment in the transverse plane
(left). Vertex distributions in the y-axis (right) under the 1st-6th iteration.

the x-axis. The ~Q is calculated by,

~Q =

(
Q cosφR

Q sinφR

)
=

N∑
k=1

ωk·~pk (3.1)

where, ωk is a weight factor and its value is defined by the following function,

ωk =


+1 for y0 > ∆y

0 for |y0| < ∆y

−1 for y0 < −∆y

(3.2)

where y0 is the scaled rapidity, defined by (ylab − ycm)/ycm, ycm is the mid-rapidity in the
laboratory frame. The particles located in region −∆y < y0 < ∆y are excluded from the
calculation, as they are not sensitive to the reaction plane. In this analysis, the ∆y is set
to be 0.3.

In the backward hemisphere of the collisions, covered by the CDC and the TOF barrels
(RPC and PLB), only the baryons are used to calculate the reaction plane angle φR. The
mesons which do not carry the information of the initial reaction geometry, like π, K, are
excluded. In the forward hemisphere, all of the hits, recorded by the PLW, are taken into
account. Fig. 3.3 shows the distribution of the reconstructed reaction plane angle φR.
This distribution is not isotropic due to the fact that the detection efficiencies among the
sectors of the CDC are not uniform. From the collective flow analysis, this effect has been
investigated, and it turns out this effect would not impose a big influence on the final
results, details thereof are presented in [115](p84).
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(o)

Figure 3.3: Reaction
plane angle φR distri-
bution of the S325e
experiment.

Due to the high particle multiplicity in HICs, the candidates for the Λ hyperon and
other single-Λ nuclei, can be formed by the uncorrected particles, which are called the
combinatorial background. This background can be reproduced by a mixed event method
(see section 4.2.3). Rotating each event into its reaction plane is necessary in order to
obtain a mixed-event background spectrum, which can satisfactorily describe the shape
of the combinatorial background. Ultimately, this background will be subtracted from
the overall spectrum. The procedure for reconstructing the mixed event background is
described in the next chapter.

3.4 Particle Identification (PID)

PID is one of the basic steps in data analysis. With the FOPI detector, the particles
like π±, K±, p, d, t, 3He and 4He can be identified. The short-lived particles, like the
φ meson, Λ hyperon, Σ hyperon etc., can be identified by reconstructing their invariant
mass from the charged decay channel.

According to the Bethe-Bloch formula (see appendix A), the energy loss of a slow moving
charged particle is proportional to (z/β)2, where z is the charge number and β is the
velocity. The total energy loss for charged particles inside the CDC is the sum of measured
energy losses of all associated drift volumes. By correlating the total energy loss dE/dx
and the reconstructed momenta, the mass of the charged particles can be extracted. The
left panel of Fig. 3.4 shows the correlation of log(dE/dx) and the charge number scaled
momentum p/z. The different bands represent the different particle species. The solid
lines are the parameterized Bethe-Bloch formula, i.e. the energy loss as a function of
charge-scaled momentum. |z| = 1 particles, like π±, p, d as well as t at high momenta,
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are well separated from each other. However, for t, 3He and 4He identification, only
the CDC information (mCDC) is not sufficient any more, because the measured charge
is not recorded properly, especially at the lower momentum region, due to the FADC
being saturated by the huge signals. The mass spectrum extracted from this correlation
is shown in the right panel of Fig. 3.4, the vertical lines indicate the nominal mass of π±,
p, d and t.

Figure 3.4: Correlation of log(dE/dx) and charge scaled momentum p/z (left). The curves
are the parameterized Beta-Bloch formula for different particle species. Mass spectrum
extracted from the left correlation (right), the vertical lines indicate the nominal mass of
π±, p, d and t.

The information of a particle’s velocity can be derived from its flight time, measured by
the TOF detectors. The hit(s) on the TOF barrel used to calculate the flight time is
matched with the CDC track. By combining the velocities and the associated momenta,
the mass of the particles can be uniquely determined by following formulas

p = mc2·β·γ, β = v/c, γ =
1√

1− β2
, (3.3)

where m is the mass of the charged particle, β is the normalized velocity, γ the Lorentz
factor and c is the speed of light in vacuum. The correlation of charge number scaled
momentum p/z and associated velocity is shown in Fig. 3.5. The different bands represent
the different particle species. The solid lines are the first formula of Eq. 3.3 with different
masses. The particles with the charge |z| = 1 are well separated from each other, the K+

band is clearly visible due to the excellent time resolution of the RPC barrel. For charge
z = 2 particles, 3He band is located between the bands of p and d, the 4He band overlaps
with that of the deuteron. Therefore, in order to properly identify the charge z = 2
particles, the additional information of the charge is needed. The charge determination
is presented in the next sub-section.
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3.5. Charge determination

Figure 3.5: Correlation of
the charge number scaled
momentum, measured by
the CDC, and the associ-
ated velocity, measured by
the RPC. The curves are
the momentum and velocity
correlation assuming differ-
ent particle masses.

3.5 Charge determination

The magnetic field is aligned with the beam direction. In the transverse plane, the
positive particles are deflected in a clock-wise direction, the negative particles are bent
in a counter-clock-wise direction. From the curling trend of the fitted arcs, the sign of
their charge can be determined. For particles with low velocity, the energy loss in the
medium is independent of the mass, but it is proportional to a z2. With a given velocity,
the energy loss of a z = 2 particle is about four times larger than the one of a |Q| = 1
particle.

The correlation of the energy loss measured by the CDC and the velocity measured by the
RPC barrel after having applied PID selection cuts is shown in the left panel of Fig. 3.6.
The lower band represents |z| = 1 particles, the upper band is for |z| = 2 particles. The
profile of the lower band is fitted by a function with a form of y = a·x−1 + b·x−2 + c·x−3,
where a, b and c are the fitting parameters. By comparing the energy loss with this fitting
function at a given momentum, the charge number of particle can be determined. The
determined charge number as a function of the RPC mass is shown in the right panel of
Fig. 3.6. Clearly, all charged particle species are well separated.

3.6 Detector acceptance

The CDC is the only tracking detector used in this analysis, which covers the full azimuthal
range and the polar angle from 23o to 113o. The light charged particles can be identified by
the CDC alone, while for identifying the heavy charged particle like 3He, 4He, additional
information from the velocity measurement by the TOF detector is required. The phase
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Figure 3.6: Correlation of log(dE/dx) measured by the CDC and associated velocity β
measured by the RPC (left). The lower band is for |z| = 1 particles. Correlation of the
determined charge and RPC mass (right), after having applied PID selection cuts.

space distribution of the π− in Ni+Ni at 1.91A GeV is shown in the left panel of Fig. 3.7,
which is displayed in the plane of mass scaled transverse momentum pt/m and rapidity in
laboratory frame ylab (see Appendix B). The dashed curves are the polar angle acceptance
of the CDC, the horizontal line is a transverse momentum cut at pmin

t,π− = 0.06 MeV/c,
which is used to exclude tracks spiralling inside the CDC. The phase space distribution
of 3He is shown in Fig. 3.7. The dashed-dotted lines show the polar angle acceptance of
the RPC (30o < θ < 52o) and the PLB (54o < θ < 110o). The gap between the RPC
and the PLB is also visible from this distribution. The mid-rapidity yAA is at 0.89 and
marked by a black arrow.
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Figure 3.7: Phase space distribution of the π− in the pt/m− ylab plane (left). The dashed
curves are the polar angle acceptance of the CDC (22o < θ < 110o). The horizontal line
is the minimum transverse momentum cut with pmin

t,π− = 0.06 GeV/c. The phase space

distribution of 3He (right). The curves indicate the polar angle acceptance of the RPC
(30o < θ < 52o) and the PLB (54o < θ < 110o). yAA indicates the mid-rapidity of the
collision.
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Particle reconstruction

The four-momenta of particles like π±, K±, p, d, t,3He and 4He can be directly measured
by the FOPI detector. The short-lived particles, like Λ, Σ and so on, can be identified
through their charged decay products. Due to the high particle multiplicity in HICs, a
huge amount of randomly combined particles have similar features, such as the decay
products of these short-lived particles. These kinds of particle pairs are referred to as
the combinatorial background of a considered decay channel. In order to suppress the
combinatorial background, a series of geometrical and kinematic selection conditions are
designed according to the decay properties of the particles under consideration. Before
extracting the physics results, the combinatorial background has to be eliminated.

In this chapter, the procedures for reconstructing the weakly decaying particles are de-
scribed. A mixing event method, used to build the combinatorial background spectrum, is
described. The procedures are demonstrated by reconstructing the Λ hyperon via its de-
cay channel Λ→π−+p. Afterwards, the selection criteria for identifying 3

ΛH and 4
ΛH from

their two-body π−-decay channel, and the obtained invariant mass spectra in various
phase space regions are presented. The significance of the observed 3

ΛH and 4
ΛH signal

is evaluated as well. In the last section, the detected yields of various particles in the
concerned phase space regions are summarized.

4.1 Properties of 3
ΛH and 4

ΛH

Identifying 3
ΛH and 4

ΛH via their two-body π−-decay channel is the first objective of this
work. Before presenting the selection cuts, it is necessary to have a look at these prop-
erties of 3

ΛH and 4
ΛH, as the selection cuts are tightly connected to the properties. The

measurement status of the properties of 3
ΛH and 4

ΛH is compiled in table 4.1, where BΛ is
the binding energy between the Λ hyperon and the core nucleus, τ is the mean lifetime
and η is the decay branching ratio of the two-body π−-decay among the total mesonic
decay channels. The lifetime of 3

ΛH, 4
ΛH and Λ is of the same order, corresponding to a

mean flight distance 〈βγcτ〉 of a few centimeters when β is in order of 0.5c (c=3.0×108

m/s). The mass of the hypernuclei can be calculated according to Eq. 1.7, yielding
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Table 4.1: Properties of 3
ΛH and 4

ΛH.
Particle core BΛ (MeV) τ (ps) spin η

3
ΛH 2H 0.13±0.05 [21] 100-300 [70] 1/2 [118] (0.3-0.41)±0.07 [119]
4
ΛH 3H 2.08±0.08 [21,120,121,122] 194+24

−26 [123] 0 [118] 0.69±0.02 [118]

m3
ΛH =2991.2±0.1 MeV/c2 and m4

ΛH =3922.8±0.1 MeV/c2.

4.2 Reconstruction method

First step of the reconstruction is to select the proper decay products. According to
the properties of weakly decaying hypernuclei, the selected particle pairs have to fulfill
geometrical and kinematic constraints. In this step, the selection criteria are called pre-
selection cuts. These cuts are used to create a database, in which each event contains a
particle pair fulfilling the selection conditions. This step aims to shorten the data scan
time, since the size of the new database is significantly reduced compared to the one of
the original data sample. Afterwards, the more restricted cuts are evaluated based on
this new database.

In this section, the quantities used to select the decay products are presented first. In the
second part, the geometrical constraints for decay products and candidates are described.
In the third part, the mixed-event technique is introduced. In last part, the reconstruction
procedure is demonstrated by reconstructing the invariant mass of the Λ hyperon via its
decay channel Λ→π−+p.

4.2.1 Particle selection

The PID methods have been presented in section 3.4. The identity of the particles is
determined by the derived mass and charge. The trajectory of the charged particles in
space is decomposed into the (x, y)-plane and the (r, z)-plane. In the transverse plane
((x, y)-plane), the quantities, i.e. curvature rc, azimuthal angle φ, coordinate of the arc’s
center and transverse impact parameter d0, are defined for the reconstructed arcs, as
sketched in the left panel of Fig. 4.1. In the (r, z)-plane, the defined quantities are
the intersecting distance along the z-axis z0 and the polar angle θ, sketched in the right
panel of Fig. 4.1. For a particle, leaving a hit in the TOF barrel, additional information
from the TOF detectors is available. This can substantially improve the selection and
reconstruction quality. In the following, the used quantities and their role for the single
particle selection are described individually:

• CDC mass mCDC , extracted from the correlation of energy loss and momentum (see
Fig. 3.4) measured by the CDC. The charged particles, like π±, p, and d are mainly
constrained by this quantity.

• Barrel mass mbar, derived from the momentum-velocity correlation (see Fig. 3.5).
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Figure 4.1: Schematic drawing of the track fitting in the transverse plane (left) and in
the (r, z)-plane (right).

The heavy clusters like 3He and 4He are selected by mbar combined with the deter-
mined charge information.

• The hit multiplicity HMUL, the number of fired CDC wires associated to a track.
Typically, more hits means a longer lever arm, which would result in better fitting
precision.

• Transverse impact parameter d0, the shortest distance from the fitted track to the
reconstructed primary vertex in the transverse plane (see left panel of Fig. 4.1).
d0 is calculated by d0 = rc − D, where rc is the curvature of the arc and D is the
distance from the center of the arc to the primary vertex. If d0 has a large value,
most probably this track is originated from an off-primary-vertex source, and vice
versa.

• The intersecting distance of the track in the z-axis z0, depicted in the right panel
of Fig. 4.1. The resolution of z0 is dominated by the spatial resolution of the CDC
in the (r, z)-plane and the primary vertex resolution along the z-axis. Due to the
spatial resolution of the CDC along the z-direction being in the order of a few cm
(comparable to the mean flight distance of the hypernuclei), the quantity z0 can not
be used as an effective cut.

• The polar angle θ. For charge |Q| = 1 particles, the polar angle is fitted from the hits
in the (r, z)-plane. For Q = 2 particles, due to the existence of the overflow effect
in flash ADC (FADC), i.e. the amplitude of the signals (the charge information)
above the upper limit of the FADC range were not recorded properly. This leads
to an incorrect polar angle reconstruction. For the particles, leaving a hit in the
TOF barrel, the polar angle can be recalculated from the hit in the TOF detector
with respect to the primary vertex in the (r, z)-plane. As a comparison, the position
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Chapter 4: Particle reconstruction

resolution of the RPC counter is given by rσ = vsignal×σt = 16.5 cm/ns×80 ps =
1.32 cm, where vsignal is the propagation velocity of the signal in the read-out strip
of the RPC and σt is the time resolution of the RPC barrel. If one extrapolates this
resolution to r = rs, we have

σz,rs = rσ×
rs

rRPC

, (4.1)

where rRPC=96 cm is the radius of the RPC barrel. At rs = 7.9 cm (mean flight
distance of the Λ hyperon), the corresponding position resolution is about 0.1 cm,
which is far better than the spatial resolution of the CDC in the (r, z)-plane.

The pre-selection cuts for selecting the decay products of the Λ hyperon, 3
ΛH and 4

ΛH are
listed in table 4.2. For the heavy clusters 3He and 4He, constraints on the RPC mass have
to be introduced.

Table 4.2: Pre-selection cuts for the two-body π−-decay products of the Λ hyperon, 3
ΛH and

4
ΛH.

P Dec.
HMUL mCDC mTOF |d0| Q

- [GeV/c2] [GeV/c2] [cm] [e]

Λ
π− 24 0 < · · · < 0.6 — 2 < · · · < 20 |Q + 1| < 0.35
p 24 0.54 < · · · < 1.4 — 0.55 < · · · < 20 |Q− 1| < 0.35

3
ΛH

π− 34 0 < · · · < 0.5 — 1 < · · · < 20 |Q + 1| < 0.35
3He 34 1.7 < · · · < 3.9 1 < · · · < 1.8 — Q > 1.5

4
ΛH

π− 34 0 < · · · < 0.5 — 1 < · · · < 20 |Q + 1| < 0.35
4He 34 1.7 < · · · < 4.7 2.1 < · · · < 2.7 — Q > 1.5

4.2.2 Reconstruction topology

The decay products of the primary particle are emitted the spatial point, i.e. the secondary
vertex. For the decay of 3

ΛH and 4
ΛH, the secondary vertex can be a few centimeters away

from the primary vertex. As the primary vertex resolution in the transverse plane is in
the order of a few mm, the secondary vertex can therefore be well resolved. Under the
pre-selection cuts listed in table 4.2, the concerned particle pairs whose tracks intersect
with each other, are sought in the transverse plane, and only those with the distance to
the primary vertex larger than a certain value are taken into the next analysis step.

The search procedure is sketched in Fig. 4.2. The point O(xp, yp) represents the primary
vertex. The point O1(x1, y1) and O2(x2, y2) are the centers of the two tracks in the
transverse plane, and r1 and r2 are their radii, respectively. P1 and P2 are their intersecting
point. The distance D between the center of the two arcs is given by,

D =
√

(x1 − x2)2 + (y1 − y2)2 (4.2)
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Figure 4.2: Schematic view of
the obtainment of the intersec-
tion points of two tracks in the
transverse plane.

If D > r1 + r2, means these two particles do not intersect with each other, those pairs are
thus discarded. If D≤r1 + r2, the coordinate of the intersecting points is calculated by

xs = x1 + r1·cos(±α)

ys = y1 + r1·sin(±α)
(4.3)

where α is the angle defined by the line(O1, O2) and the line (O1, P1)(see Fig. 4.2), which
is calculated by

α = cos−1

(
r2
1 + D2 − r2

2

2·r1·D

)
. (4.4)

At each intersecting point, several geometric and kinematic quantities are defined. These
quantities are described in the following:

• rs and φs, the distance from the intersecting point to the primary vertex in the
transverse plane, and the azimuthal angle defined by the intersecting point and the
primary vertex, calculated by

rs =
√

(xp − xs)2 + (yp − ys)2 and φs = tan−1

(
yp − ys

xp − xs

)
. (4.5)

In order to suppress the combinatorial background, a lower and an upper limit for
rs are introduced.

• ∆z, the difference of the z-coordinate of particle 1 and particle 2 at r = rs in the
(r, z)-plane (see the left panel of Fig. 4.3), defined by ∆z = z1 − z2, which qualifies
how far apart two tracks are from each other at r = rs in the (r, z)-plane.

• pt,Hyp and φHyp, the transverse momentum of the hypernucleus candidate and its
azimuthal angle, calculated by

pt,Hyp = ~pt,1 + ~pt,2, φHyp = tan−1

(
py,1 + py,2

px,1 + px,2

)
, (4.6)
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Figure 4.3: Schematic view of the reconstruction of the weakly two-body π−-decay parti-
cles in the (x, y) (left) and (r, z)-planes (right). The cut quantities used to constrain the
particle pairs are illustrated. For detailed descriptions see the text.

where ~pt,1 = (px,1, py,1) and ~pt,2 = (px,2, py,2) are the transverse momentum vectors
of the two involved particles at the intersecting point (see the left panel of Fig. 4.3).

• pz,Hyp, the longitudinal momentum of the hypernucleus candidate, defined by
pz,Hyp = pz,1 + pz,2, where pz,1, pz,2 are the longitudinal momenta of the decay
products.

• dφ, defined by dφ = φHyp − φs, which quantifies how well the momentum vector of
candidate points to the primary vertex.

• θHyp and zs, the polar angle and the z-coordinate of the secondary vertex. For
Λ→π−+p reconstruction, since the polar angles of decay products are measured by
the CDC, these two quantities are calculated by the following expressions

θHyp = tan−1

(
pt,c

pz,c

)
, zs =

σ1·zs1 + σ2·zs2

zs1 + zs2

, (4.7)

where σ1 and σ2 are the fitting variance of track 1 and track 2 in the (r, z)-plane. For
two-body π−-decay of 3

ΛH and 4
ΛH, the polar angle of π− is measured by the CDC,

but the polar angle of 3He/4He can not be directly calculated from the associated hit
on the RPC with respect to the primary vertex, because the 3He/4He that decays
from 3

ΛH/4
ΛH does not originate from the primary vertex. Since the mass difference

of the two-body π−-decay products of 3
ΛH/4

ΛH is rather large (mπ−/m3He ∼5%), the
momentum of 3

ΛH or 4
ΛH is mostly carried by the heavier decay product. Therefore,

the polar angle of 3He and 4He calculated from the hit on the RPC barrel with
respect to the primary vertex is a good approximation. In this case, the polar angle
of 3He/4He can be approximately considered to be the polar angle of 3

ΛH/4
ΛH, i.e.

θHyp = θ3,4He, zs = rs · cotθHyp. (4.8)
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Figure 4.4: Schematic view of the track refitting procedure for Λ reconstruction (left)
and 3,4

Λ H reconstruction (right). The blue arrows indicate the longitudinal profile of the
CDC. The solid arrows denote the free-fit tracks and the dashed lines indicate the refitted
tracks. For detailed description see the text.

The validity of this polar angle approximation is cross-checked in chapter 6.

• minv, the invariant mass of the particle pair, calculated by the following formula,

minvc
2 =

√
E2

tot − (−→p totc)2 =
√

(E1 + E2)2 − (−→p 1c +−→p 2c)2 (4.9)

where (E1,
−→p 1c), (E2,

−→p 2c) are the four momenta of the two “daughter” particles.

• yHyp, the rapidity of the hypernucleus candidate in the laboratory frame (see Ap-
pendix B).

For Λ reconstruction, in the (r, z)-plane the polar angle of the involved particles is refitted
by using the coordinate of the secondary vertex (rs, zs) and another point at r = 50 cm
on the old track, sketched in the left panel of Fig. 4.4. The polar angles of the “daughter”
particles can be recalculated, and their momenta in the z-direction are recalculated as
well, e.g. pz = pt·tan(θ). After refitting the polar anlges, the width of the reconstructed
Λ hyperon invariant mass is improved [112]. For 3

ΛH and 4
ΛH reconstruction, since zs is

calculated from the track of 3He and 4He, only the polar angle of π− is refitted. This is
sketched in the right panel of Fig. 4.4.

In order to discard the pairs which are not likely to be the decay products of a primary
particle, the pre-selection cuts for a few quantities of candidates are introduced. The
pre-selection cuts for the candidate selections of the Λ hyperon, 3

ΛH and 4
ΛH are listed in

table 4.3.
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Table 4.3: Pre-selection cuts for the candidates of the Λ hyperon, 3
ΛH and 4

ΛH.

P
rs ∆z dφ

[cm] [cm] [o]
Λ 2. < · · · < 30 −28 < · · · < 28 −10 < · · · < 10

3
ΛH 1. < · · · < 30 −38 < · · · < 38 −10 < · · · < 10
4
ΛH 1. < · · · < 30 −38 < · · · < 38 −10 < · · · < 10

4.2.3 Combinatorial background

Due to the high particle multiplicity in HICs, not all of the selected pairs are the real decay
products of the primary particle. Before extracting the physics results, the contributions
from the combinatorial background have to be eliminated.

The combinatorial background is composed by the uncorrelated particles, which fulfil
the geometric and kinematic constraints. Via transplantation of one particle (π− in this
work) of the selected pairs to another similar event, the results of random combination
would be the same. This kind of method is called the mixed-event method [124, 125].
Since the particle pairs, found under such an operation, are taken from the different
events, the possible correlation is destroyed explicitly. In order to ensure that the random
combination probability is at a similar level, the events used for mixing are belonged the
same PMUL class (PMUL distribution, i.e. Fig 3.1(b), is sorted into five classes). One
thing that should be mentioned is that the tracks of an event are rotated into its particular
reaction plane before the mixing, which keeps the angular correlation between the single
particle and the reaction plane. This step is necessary to obtain a proper mixed-event
spectrum, which can describe the shape of the combinatorial background.

In the analysis, the centrality class is defined by the PLW hit multiplicity. The events
belonging to the same class are stored in a database. In order to increase the statistics of
mixed-events, each event in the database is used 20 times. Finally, the number of mixed
events is about 20 times more than the one of combinatorial background. Therefore,
the number of mixed events has to be downscaled to a proper level of the combinatorial
background. This step is demonstrated in the following sections in more detail.

4.3 Λ reconstruction

Λ hyperons are abundantly produced in HICs at SIS18 energies. The Λ reconstruction is
of great importance for investigating 3

ΛH and 4
ΛH production: (a) as the decay kinematics

of Λ→π−+p is quite similar to the two-body π−-decay of 3
ΛH and 4

ΛH, reconstructing the
Λ hyperon is a good reference to understand the detector behavior and the reconstruction
method; (b) the lifetime of the Λ hyperon is well measured, which can be used as a bench-
mark to verify the consistency between the experimental data and the MC simulation; (c)
as discussed in chapter 1, hypernuclei can be produced by the Λ hyperon induced reaction
in HICs. Therefore, it is necessary to reconstruct the Λ hyperons first.
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4.3. Λ reconstruction

In this section, the selection criteria for reconstructing the Λ hyperon via its two-body
π− decay are described first, then the invariant mass of the Λ hyperon is reconstructed.

4.3.1 Selection criteria

As with the procedures described in the previous sections, all of the geometrically corre-
lated (π−,p) pairs are sought in each real and mixed event by applying the pre-selection
cuts. Then the more restricted selection criteria are applied to the candidates for the Λ
hyperon. The cut quantities and their constraints for π−, p, and Λ hyperon candidacy
are listed in table 4.4.

Table 4.4: Selection cuts for π−, p and candidates of the Λ hyperon.
Particle quantity unit cut meaning

π−

|d0| cm 1.5< · · · <20 transverse impact parameter
mCDC GeV/c2 0.05< · · · <0.7 CDC mass
HMUL - > 24 hit multiplicity

Q e -1.5< · · · <-0.5 charge
pt GeV/c > 0.05 transverse momentum

p

|d0| cm 0.55< · · · <20 transverse impact parameter
mCDC GeV/c2 0.7< · · · <1.5 CDC mass
HMUL - > 24 hit multiplicity

Q e 0.5< · · · <1.5 charge
pt GeV/c > 0.1 transverse momentum

Λ

rs cm 3< · · · <30 dis. of V1,2 in the (x, y)-plane
|dφ| [o] < 10 φHyp − φs

|d0| cm < 0.5 transverse impact parameter
∆z cm <70. |z1 − z2|
pt GeV/c > 0.2 transverse momentum

minv GeV/c < 1.27 maximum invariant mass

4.3.2 Λ invariant mass reconstruction

Applying the selection cuts listed in table 4.4, the invariant mass of selected (π−,p) pairs
is calculated according to Eq. 4.9. In Fig. 4.5(a), the invariant mass spectrum of the Λ
candidates is depicted, a clear peak is visible on top of a continuous background spectrum.
The invariant mass spectrum of (π−,p) pairs from the mixed events is shown in Fig.
4.5(b). Since all of the combined π− and p are from different events, no peak is present.
Because each event is used 20 times, the mixed-event invariant mass spectrum has to be
normalized to the one of Λ hyperon candidate in the non-signal region. The normalization
(downscale) factor is a ratio of the integrated counts in the signal spectrum and the one
in the mixed-event spectrum in the same normalization region(s). For Λ reconstruction,
the normalization regions are shown by the hatched areas in both upper panels. The
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Figure 4.5: (a) Invariant
mass distribution of corre-
lated (π−,p) pairs. (b) In-
variant mass distribution of
(π−,p) pairs from mixed-
events, the hatched regions
are the chosen normaliza-
tion regions. (c) Super-
position of the signal spec-
trum (solid red line) and the
normalized background spec-
trum (dashed blue curve).
(d) Invariant mass spectrum
after subtracting the back-
ground, the peak is fitted by
a Gaussian distribution.

invariant mass spectrum of the Λ candidates (solid red line) and the normalized mixed-
event background spectrum (dashed blue curve) are shown in Fig. 4.5(c). Fig. 4.5(d) is
the invariant mass spectrum after subtracting the background spectrum. A clear peak is
present around the nominal mass of the Λ hyperon, while the remaining counts in other
parts of the spectrum are almost zero. This implies that the mixed-event method works
reasonably well. The peak is fitted by a Gaussian function, with a mean and a width of
1.1154 GeV/c2 and 3.6 MeV/c2, respectively. The obtained Λ mass is in a good agreement
with the PDG value.

4.4 3
ΛH reconstruction

The procedure for finding the 3
ΛH candidate from its two-body π−-decay channel, i.e.

3
ΛH→π− +3 He, is the same as the one of the Λ hyperon reconstruction described in last
section. 3

ΛH and 4
ΛH are very rare probes, in order to find a significant signal from a huge

combinatorial background, more stringent selection cuts are necessary. The π− populate
the full geometrical acceptance of the CDC, while the phase space of the heavier decay
product 3He, is much more limited. The detectable phase space of 3

ΛH is constrained by
the one of its heavier decaying product 3He, thus before going into any details of the
3
ΛH reconstruction, it is instructive to inspect the phase space distribution of 3He.

In this section, the phase space distribution of 3He is discussed first. Then the selection
criteria for 3

ΛH reconstruction are described. Afterwards, the invariant mass spectrum of

52



4.4. 3
ΛH reconstruction

Figure 4.6: 3He phase
space distribution from
the S325e experiment in
the plane of pt/m − ylab.
yAA indicates the mid-
rapidity of Ni+Ni colli-
sion at 1.91A GeV.

3
ΛH and the mixed-event background spectrum are presented. In last part, the significance
of the obtained signal is evaluated in terms of different production options.

4.4.1 Phase space distribution of 3He

The phase space distribution of 3He in the pt/m (the mass scaled transverse momentum )
and ylab (rapidity in laboratory frame) plane is depicted in Fig. 4.6, where yAA = 0.894 is
the mid-rapidity of Ni+Ni collisions at 1.91A GeV and ylab = 0 is the target rapidity. The
blue dashed curves indicate the polar angle acceptance of the RPC barrel (30o < θ < 52o)
and the PLB (54o < θ < 110o). As described in section 3.4, 3He can only be identified
by combining the information measured by the CDC and the TOF detector. This causes
several detection limitations on its phase space distribution, which are listed below.

(a) The lowest transverse momentum of 3He is constrained by the radial distance of the
TOF barrels, it has a value of 0.17 GeV/c according to Eq. 2.1.

(b) The RPC barrel and the plastic barrel do not cover the full azimuthal angle. For the
RPC barrel, beside the vacancy of the 4 super-modules, there are gaps between the
installed super modules. The RPC barrel covers about 70% of the full azimuthal
angle. Gaps also exist in between the strips of the PLB. The PLB covers about 80%
of the total azimuthal angle. There is also a gap between the RPC barrel and the
plastic barrel. It spans from about 52o to 54o, which is visible in Fig. 4.6.

(c) In the RPC acceptance, the 3He with low momenta are stopped in a certain glass
layer of the RPC counter. In this case, only a weak signal or even no signal is
induced on the RPC readout electrodes. Even the induced weak signal may be cut
away by the threshold of pre-amplifiers, which are designed to suppress the low
amplitude noise. In Fig. 4.6, the population of 3He dramatically decreases in the
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low momentum region of the RPC acceptance, and a clear edge is visible from the
high population region to the low population region. The edge is described by the
black dotted line, which corresponds to a fixed momentum of p=0.9 GeV/c. As the
detection efficiency of these low momenta particles is not straightforward, in the
current analysis, only those 3He with a total momenta larger than 0.9 GeV/c are
taken into account.

For the convenience of presenting 3
ΛH results, four phase space regions need to be intro-

duced, depicted by the green lines in Fig. 4.6. These phase space regions are called A1,
A2, A3 and A4, respectively. Their boundary conditions are listed in table 4.5. The
reason for defining these regions is because the signal of 3

ΛH is only observed in the phase
space region A1, while in the other regions there is no significant signal observed. Detailed
results are presented in the following sections.

Table 4.5: Boundaries of the phase space region A1, A2, A3 and A4.
A1 A2 A3 A4

ylab 0.2-0.4 0.4-0.6 0.0-0.25 0.0-0.25
pt/m 0.2-0.4 0.4-0.6 0.2-0.4 0.4-0.6

θ 30o < θ < 54o 30o < θ < 54o 56o < θ < 110o 56o < θ < 110o

4.4.2 Selection criteria for 3
ΛH reconstruction

π−-mesons are registered in the CDC. In order to discard the π−’s with low momenta
spiraling inside the CDC, the minimum transverse momentum of the accepted π− is
0.06 GeV/c. In order to discard the bulk π−’s originating from the primary vertex, the
transverse impact parameter is an effective quantity in achieving this goal. The measured
mean of the transverse impact parameter of π− in the S325e experiment is about -0.4 cm,
this is caused by the imperfect azimuthal angle reconstruction. A modified transverse
impact parameter d′0 = d0 − 0.4 is used to select the off-vertex π−.

The hit multiplicity (HMUL) of π− and 3He is required to be larger than 34. This
ensures the precision of the extracted curvatures. The polar angle of 3He is given by the
hit on the TOF barrel with respect to the primary vertex, which is limited in the polar
angle acceptance of the TOF detectors. A hit in the TOF detector is matched with the
extrapolated CDC track in the transverse plane. Unlike the selected proton in the Λ
reconstruction, the transverse impact parameter d0 of 3He does not provide any useful
information, thus its range is rather open. The minimum momentum of 3He is pmin = 0.9
GeV/c, for the reason discussed in the last sub-section.

For the 3
ΛH candidates, the quantity rs is constrained in a range from 1.5 cm to 15 cm.

Since the mean lifetime of 3
ΛH is similar to the mean lifetime of the Λ hyperon, about 96%

of the Λ hyperon would decay in a flight distance of 15 cm assuming they have a mean
velocity of β = 0.5c, c is the speed of light in vacuum. The quantity ccnt is the number of
intersection points between two tracks inside the drift volume of the CDC. The tracking
inefficiencies for crossing and neighbouring tracks are reduced, this effect is not present
in mixed events [126], therefore, pairs crossing each other inside the CDC are excluded

54



4.4. 3
ΛH reconstruction

from the reconstruction. The quantity ∆φ12, the azimuthal angle difference of π− and
3He, is required to be larger than 20 degrees. In the analysis, the (π−,3 He) pairs with the
invariant mass larger than 4.2 GeV/c2 are excluded, as it is much larger than an nominal
mass of 3

ΛH. All constraints discussed above, and the meaning of the cut quantities are
listed in table 4.5.

During the evaluation of the invariant mass of 3
ΛH candidates, we found that it is not

enough to obtain a significant signal by only applying the cuts described above. The
constraints for the phase space of candidates are necessary to observe a clear signal. The
phase space region A1-A4 are defined in table 4.5 (also depicted in Fig. 4.6). The signal
of 3

ΛH is only observed in the phase space region A1. The variables used to define the
region A1 are listed in table 4.6 as well. Noting that in calculating the variable pt/m,
pt is the transverse momentum of the 3

ΛH candidate and m is the nominal mass of 3
ΛH,

i.e. m3
ΛH=2.9913 GeV/c2. And additional multiplicity cuts, i.e. 20 < TMUL < 60 and

50 < PMUL < 45, are necessary to obtain a significant signal of 3
ΛH, which are listed

in the lowest columns of table 4.6. The corresponding impact parameter range of these
centrality constraints is further discussed in chapter 6.

4.4.3 Invariant mass of 3
ΛH

By applying the cuts listed in table 4.6, the invariant mass spectrum of the 3
ΛH candidates

(open circles) and the normalised mixed-event background spectrum (solid curve) are
obtained, as shown in Fig. 4.7(A1.a). The normalization region is depicted by a horizontal
arrow, which goes from 3.2 to 4.2 GeV/c2. The invariant mass spectrum, after subtracting
the mixed-event background, is shown in Fig. 4.7(A1.b), in which an excess is present
around the nominal mass of 3

ΛH. The excess is fitted by a Gaussian distribution, with a
mean of 2.9927 ± 0.0017 GeV/c2 and a width of 5.6 ± 1.0 MeV/c2. The fitted mean is
compatible with the nominal mass of 3

ΛH.

By just replacing the constraints of the phase space A1 to these of the phase space A2,
A3 and A4, as given in table 4.5, the invariant mass spectrum of the 3

ΛH candidates (open
circles) and the normalised mixed-event background distribution (solid curve) in the phase
space region A2-A4 are obtained, depicted in the panel (A2.a), (A3.a) and (A4.a) of Fig.
4.7. The spectrum after subtracting the background is shown in the panel (A2.b), (A3.b)
and (A4.b) of Fig. 4.7, respectively. Unlike in the region A1, in the other regions there is
no clear excess visible in the final invariant mass spectrum. The error bars in the spectra
represent the statistical error only.

As a reference, using the selection cuts listed in table 4.4 and the phase space constraints
of phase space region A1, A2, A3 and A4, the invariant mass spectrum of the Λ hyperon
candidates and the normalized mixed-event background are obtained, as shown in the
panel (A1.a), (A2.a), (A3.a) and (A4.a) of Fig. 4.8. The spectrum after the background
subtraction in each region is shown in the panel (A1.b), (A2.b), (A3.b) and (A4.b) of
Fig. 4.8, respectively. In the final invariant mass spectra, the peak around the invariant
mass of the Λ hyperon is fitted by a Gaussian distribution. The fitted mean in the region
A1, A2, A3 and A4 is 1115.6±0.2 MeV/c2, 1115.4±0.6 MeV/c2, 1115.8±0.3 MeV/c2
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Table 4.6: 3
ΛH selection cuts in the phase space region A1.

Particle quantity unit cut meaning

π−

pt GeV/c > 0.06 transverse momentum
mCDC GeV/c2 0.05< · · · <0.4 CDC mass
|d0 − 0.4| cm 1.5< · · · <10. transverse impact parameter

z1 cm -10.< · · · <25. z-coordinator at r = rs

θ [o] 40.< · · · <130. polar angle
Q e -1.5< · · · <-0.5 charge

HMUL - > 34 hit multiplicity

3He

mCDC GeV/c2 1.8< · · · <3.5 CDC mass
2×mBAR GeV/c2 2.3< · · · <3.2 barrel mass, Q=2
|d0| cm <1. transverse impact parameter
z2 cm 2.< · · · <25. z-coordinator at r = rs

θ [o] 30.< · · · <54. polar angle
Q e >1.5 charge

HMUL - > 34 hit multiplicity

3
ΛH

ccnt - 0 cross count in the CDC
rs cm 1.5< · · · <15. dis of V1,2 in the (x, y)-plane
zs cm 2.< · · · <25. dis of V1,2 in the (r, z)-plane
|d0| cm -1.< · · · <1. transverse impact parameter
θ [o] 30.< · · · <52. polar angle

∆z cm -30.< · · · <20. z1 − z2

|dφ| [o] <10. φHyp − φs

|∆φ12| [o] >20. |φ1 − φ2|
minv GeV/c2 <4. invariant mass

p GeV/c >0.82 momentum
ylab - 0.15< · · · <0.35 rapidity in lab frame

pt/mhyp c 0.2< · · · <0.4 mass scaled transverse momentum

TMUL - 20.< · · · <60. CDC track multiplicity
PMUL - 5.< · · · <45. PLW hit multiplicity

and 1116.3±0.2 MeV/c2, respectively. The fitted widths are around 3 MeV/c2. In the
concerned phase space region A1 and A2, the combinatorial background is well described
by the mixed-event distribution. This implies that the π− and p are properly detected in
these two phase space regions. In the phase space region A3 and A4, the invariant mass
of the Λ hyperon is reasonably reconstructed, but a deviation between the invariant mass
spectrum of the Λ candidates and that of the mixed events is observed at a lower mass
region. The reason for this still needs to be understood.

The number of identified Λ hyperons in each phase space region is the integrated counts
from the final spectrum in a range of mean±3σ, which are listed in table 4.10.
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Figure 4.7: Invariant mass distribution of π−−3He pairs (open circles) and mixed-event
background (solid curve) from region A1, A2, A3 and A4 are shown in the panel (A1.a),
(A2.a), (A3.a) and (A4.a), the horizontal arrows depict the normalization region. In-
variant mass distributions after subtracting the normalized mixed-event background are
depicted in the panel (A1.b), (A2.b), (A3.b) and (A4.b), respectively. In the panel (A1.b),
the excess is fitted by a Gaussian function.
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Figure 4.8: Invariant mass distribution of (π−-p) pairs (solid red curve) and normalized
mixed-event background (dashed blue curve) in the phase space region A1, A2, A3 and A4
are shown in the panels of (A1.a), (A2.a), (A3.a) and (A4.a). Invariant mass distribution,
after subtracting the corresponding normalized mixed-event background, is shown in the
panel (A1.b), (A2.b), (A3.b) and (A4.b), respectively. In each panel, the excess is fitted
by a Gaussian distribution.
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4.4.4 Significance evaluation

The significance is a statistical quantity used to quantify the degree of confidence that
the measured result is a new phenomenon or the known background. For a counting
experiment, the significance can be calculated by the following formula [127]

snf =
S√

S + B
, (4.10)

where S and B are the integrated signal and background counts in a given region. For
3
ΛH reconstruction, S is the signal counts integrated in a given region of the final invariant
mass spectrum. B is the number of background counts, which is integrated from the
normalized mixed-event spectrum in the same region. Formally they are given by the
following expressions

S =
∑
i∈Ω

(Si −Bi×η), B =
∑
i∈Ω

(Bi×η), (4.11)

where Ω is the selected signal region, Si is the number of counts in i-th bin, Bi is the
number of counts of i−th bin in the original mixed-event spectrum and η is the normal-
ization factor. The normalization factor η is a ratio of integrated counts from the signal
and the mixed-event spectrum in a certain non-signal region. Obviously, the significance
of the signal is influenced by the following factors: (a) the shape of the signal and the
mixed-events spectrum; (b) the normalization factor η; (c) the range of the signal region.
Under given production conditions, the spectrum of the signal and the mixed-event back-
ground is almost fixed, as the possible particle combinations are fixed by the total number
of events. In the following, the dependence of the significance on the normalization factor
and the range of the signal region are discussed.

Normalization factor optimization

The normalization factor is calculated by the following expressions

η =
S ′

B′ , S ′ =
∑
i∈Ω′

Si, B′ =
∑
i∈Ω′

Bi,mix, (4.12)

where Ω′ is the chosen normalization region (non-signal region), S ′ and B′ are the inte-
grated counts from the final signal spectrum and the mixed-event spectrum in Ω′.

If the mixed-event background can describe the shape of the combinatorial background
spectrum, by applying a proper normalization factor, the counts in the non-signal re-
gion of the background-subtracted spectrum should fluctuate around zero. As having
demonstrated in the Λ reconstruction (see the lower panel of Fig. 4.5), the counts in the
non-signal region fluctuate marginally around zero in the final invariant mass spectrum,
except the invariant mass peak of the Λ hyperon.

In some cases, if choosing a different normalization region, the obtained normalization
factor may be different. This effect can be caused by the large count fluctuation of some
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bins or the mixed-event spectrum has a minor deviation from the combinatorial back-
ground spectrum. For the rare probe identification, this kind of effect becomes important
because the combinatorial background is orders of magnitude larger than the signal, which
may dramatically influence the significance of the signal. In order to obtain a most stable
signal, an optimization of the normalization factor is necessary.

If the obtained normalization factor deviates from the optimal normalization factor, the
counts in the non-signal region of the final spectrum would fluctuate around a non-zero
value. Therefore, inspecting the counts in the non-signal region of the final spectrum
can afford information about how well the normalized mixed-event spectrum describes
the combinatorial background. Since one does not know in which non-signal range the
obtained normalization factor is at its optimum, the optimization is done by an iteration
procedure.

Fig. 4.9 is an example which demonstrates this procedure. In the first step, the initial
normalization factor η is calculated in the normalization region from 3.02 to 3.2 GeV/c2

(depicted by a horizontal arrow in the upper panel of Fig. 4.9). The invariant mass
spectrum of 3

ΛH after the background subtraction is shown in the middle panel of Fig.
4.9. An excess in the spectrum is fitted by a Gaussian function, with a mean of 2.9927
GeV/c2 and a variance of 5.6 MeV/c2. Although the optimal normalization factor may
differ from the current one, the mean and the width of the excess should not change
significantly. Therefore, it is safe to choose the region of 3.5σ away from the fitted mean
as the non-signal region, i.e. the region ΩL and ΩH in the middle panel of Fig. 4.9. While,
only the counts in the non-signal ΩH are used to evaluate the normalization factor. As in
the region ΩL, the counts may contain the (π−,3He) pairs which decayed from the other
hypernucleus, such as 4

ΛH →π− + p+3He. The lower panel of Fig. 4.9 shows the count
distribution in the non-signal region ΩH . The mean and the RMS of the distribution are
0.86 and 12, respectively.

In the second step, in order to find out the optimal normalization factor, the normalized
mixed-event spectrum of the first step is multiplied by a series of factors from -10% to
10% with a step of 0.25%. At each step, the newly obtained background spectrum is
subtracted from the signal spectrum. The mean and the RMS of the counts in the non-
signal region ΩH are calculated. The extracted mean and the RMS as a function of the
multiplication factor is plotted in the upper panel of Fig. 4.10, the RMS of each step
is shown by the error bar. In order to find the optimised normalization factor with the
minimum mean and the narrowest RMS, a score factor W is introduced as the following

W (i) =
√

(〈M〉i)2 + (RMSi/10)2 , (4.13)

where, W (i), 〈M〉i and RMSi are the score, the mean and the RMS at i-th step. The
weight of the RMS is taken into account only if 〈M〉i is in the region close to zero,
therefore the RMS gains a scaled factor of 10, which is of the order of the RMS values.
The correlation of the obtained score as a function of the multiplication factor is shown
in the lower panel of Fig. 4.10. The minimum of the score i.e. the combined minimum of
the mean and the RMS, is obtained. The corresponding multiplied factor is an optimal
factor referring to the normalization factor obtained in the first iteration. The optimized
factor ηopt = 0.9975, means that the mixed-event background should be about 0.25%
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Figure 4.9: Invariant mass spectrum of 3

ΛH candidates (open circles) and the normalized
mixed-event background spectrum (solid curve) of (π−,3He) pairs in the phase space region
A1 (upper). The resulting spectrum after subtracting the background (middle), the excess
is fitted by a Gaussian distribution. The region ΩL and ΩH are the non-signal regions.
Distribution of counts in the non-signal region ΩH (lower).

lower than the one obtained in the first step. All of the mixing-event spectra obtain in
the first iteration e.g. the distributions of the decay time, the rapidity distribution and
so on, are scaled by the optimal factor.

Signal range evaluation

Applying the optimised normalization factor, the invariant mass spectrum of the 3
ΛH cand-

idates (open circles) and the mixed-event background distribution (solid curve) in the
phase space region A1 are obtained, shown in the upper panel of Fig. 4.11. The invariant
mass after subtracting the background is shown in the lower panel of Fig. 4.11. The
excess is attributed to the decay of 3

ΛH, it is fitted by a Gaussian distribution with a
mean of 2.9927± 0.0017 GeV/c2 and a width of 5.6± 1.0 MeV/c2. Within the error, the
reconstructed invariant mass agrees with the nominal mass of 3

ΛH.

Since the number of signal and background counts depends on the range of the signal
region, the significance depends on the range of the signal region as well. In order to
investigate the dependence of the significance on the range of the signal region, the lower
and upper boundary of the signal regions are symmetric around the fitted mean, which
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Figure 4.11: Invariant
mass of 3

ΛH candidates
(open circles) and the
mixing-event spectrum
after the normalization
factor optimization
(solid curve) (upper).
Invariant mass spectrum
after subtracting the
background (lower).
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Figure 4.12: Number of integrated signal counts (upper left) and background counts
(upper right), the significance (lower left) and the signal-to-background (SOB) (lower
right) as a function of the width of signal region, which is in units of σ.

are expressed as M̄ − i×σ/N and M̄ + i×σ/N , where M̄ and σ is the fitted mean and the
width of the excess, N is the bin number in one sigma range and i is the i-th signal region.
In order to minimise the uncertainties from the different bin size, the final background
spectrum is fitted by a third order polynomial function in a range of M̄±3σ. The signal
counts S and the background counts B are integrated from the fitted Gaussian and poly-
nomial function, respectively. In each range, the significance of the signal is calculated
with Eq. 4.10.

The number of integrated signal counts (upper left) and the background counts (upper
right), the significance (lower left) and the signal-over-background ratio (SOB) (lower
right) as a function of the width of the signal region are shown in Fig. 4.12. The width of
the signal region is in unit of σ. The integrated signal count saturates at about 363. The
background counts increase by enlarging the range of the signal region. The significance
increases by opening the range of the signal region. At about 1.5σ, the significance reaches
a maximum value of about 5.6. The SOB is decreasing by opening the width of the signal
region.
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4.4.5 Production option dependence

As presented in Chapter 3, the vertex and the reaction plane are the reference for the
position and the angle measurements, respectively. The vertex can be reconstructed by
the different iteration time (see section 3.2). The reaction plane can be reconstructed
from the quantities measured by the CDC and/or the PLW. The reconstruction processes
are steered by the several production options. In order to ensure that the observed signal
is a general effect rather than one triggered by a special combination, inspecting the
dependence of the final results like mean, width and significance of the signal on those
production options is necessary.

The primary vertex is reconstructed by an iteration procedure. The number of iterations
is controlled by a production option called “shift”, as described in chapter 3. The selected
particle pairs are treated as the “decay” products from the secondary vertex. Additionally,
one or more particles can be excluded from the primary vertex reconstruction, aiming to
improve the precision of the primary vertex. The exclusive level is controlled by an option
called “vi”. The reaction plane can be reconstructed by the CDC and/or the PLW, which
is controlled by an option “rp”. The meaning and the possible value of the production
options are summarised in table 4.7.

Table 4.7: Value and meaning of the production options.
Quantity option value action

Vertex

shift 1-6 iteration times
0 no track is excluded

vi 1 π− is excluded
2 both π− and 3He are excluded

Reaction plane
0 PLW

rp 1 CDC + PLW
2 CDC

For each option combination, the quantities used to quantify the signal, like the mean,
the width and the significance, are extracted. The fitted mean and width (error bar)
of the excess (first column) and the significance (second column) as a function of the
“shift” option are shown in Fig. 4.13. In the first column, a reference mean of 2.9926
GeV/c2 and a reference width of 6 MeV/c2 are shown by the red dashed line and the blue
dashed lines, respectively. The significances are calculated within the signal region range
of Mean±1.5σ, as the significance reaches the maximum value in this range. The figures
in the upper, middle and lower row of Fig. 4.13 are obtained with the option rp=0, 1
and 2, respectively. In each panel, there are three histograms produced with option vi=0
(red), 1 (green) and 2 (blue).

Within all of the possible combinations of production options, the fitted mean and width
of the excess are quite stable. Keeping the other options the same, the significance
obtained with vi=1 is consistent with the one obtained with vi=2, while the significance
obtained with vi=0 has a large difference to the results obtained with option vi=1 or
vi=2. This is understandable, because for option vi=1 or vi=2, the π− which belongs to
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a 3
ΛH candidate is excluded from the primary vertex reconstruction. This π− has a large

impact on the position of the primary vertex, because it has a large impact parameter.
The impact parameter of 3He is rather small, therefore it has a minor influence on the
position of primary vertex. From this exercise, we can conclude that under all kinds of
production option combinations, similar results of the 3

ΛH signal can be derived. The
results of 3

ΛH presented in this work are produced with the option combination of shift=2,
vi=1 and rp=1.

Figure 4.13: The fitted mean and the width (depicted by the error bar) of 3
ΛH signal (first

column) and the significance (second column) as a function of the “shift” option. The
significance is calculated within the signal region range of Mean±1.5σ. The histograms in
the upper, middle and lower row are produced under the “rp” options 0,1 and 2. In each
sub-panel, the data points were produced under that “vi” equals to 0, 1 and 2 and are
depicted by the red, green and solid curves (first column) or symbols (second column),
respectively.

4.5 4
ΛH reconstruction

The procedure for reconstructing 4
ΛH from its two-body π−-decay channel, i.e. 4

ΛH→π−+4

He, is almost identical to the 3
ΛH reconstruction except for an exchange of the 3He by 4He.

In this section, the phase distribution of 4He is inspected first, then the selection criteria
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Figure 4.14: Phase space
distribution of 4He in
the pt/mα − ylab plane
from the S325e experi-
ment. The dashed lines
show the polar angle ac-
ceptance of the RPC and
the PLB.

of 4
ΛH are described. In the third part, the reconstructed invariant mass spectrum of 4

ΛH in
various phase space regions is present in the spectrum. In the last part, the dependences
of the significance of the signal on the production options are discussed.

4.5.1 Phase space distribution of 4He

The phase space distribution of 4He in the pt/mα − ylab plane is shown Fig. 4.14, mα

is the mass of 4He, the blue dashed lines show the polar angle acceptance of the RPC
barrel (30o < θ < 52o) and the PLB (54o < θ < 110o). Quite similar to the phase space
distribution of 3He, the population of 4He decreases dramatically in the low momentum
region of the RPC acceptance. An edge between the high population and the low pop-
ulation is at a total momentum of plab = 1 GeV/c, indicted by the black curve in Fig.
4.14. This is because these 4He with low momenta are stopped in a certain glass layer, a
similar feature was discussed in the description of the 3He phase space distribution. As
the detection efficiencies of those stopped particles are hard to estimate, in the current
4
ΛH reconstruction, the momentum of 4He is required to be larger than 1.0 GeV/c.

Like the 3
ΛH reconstruction, a significant signal of 4

ΛH is only observed in a certain region
of the phase space. The boundaries of the concerned phase space region B1, B2, B3 and
B4 are listed in table 4.8, as depicted by the solid curves in Fig. 4.14. During the invariant
mass evaluation, a significant signal of 4

ΛH is only observed in the phase space region B1,
the detailed results are presented in the following sections.

4.5.2 Selection criteria for 4
ΛH reconstruction

The selection criteria for the channel: 4
ΛH→π− +4 He are quite similar to those used to

reconstruct 3
ΛH from its two-body π−-decay channel. The constraints for π− are the same
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Table 4.8: Boundaries of the phase space region B1, B2, B3 and B4.
Region B1 B2 B3 B4

ylab 0.15-0.4 0.4-0.6 0.-0.25 0.-0.25
pt/m 0.15-0.35 0.35-0.55 0.2-0.4 0.4-0.6

θ 30o < θ < 54o 30o < θ < 54o 56o < θ < 110o 56o < θ < 110o

as those used for 3
ΛH reconstruction. The cuts of π−, 4He and the 4

ΛH candidate, as well
as the constraints for the phase space region B1 are listed in table 4.9. In deriving the
quantity pt/m, the m4

ΛH =3.9928 GeV/c2 is used. The last two columns of table 4.9 are
the centrality constraints for the track multiplicity in the CDC and the hit multiplicity
in the PLW, i.e. 30 < TMUL < 50 and 10 < PMUL < 35.

Table 4.9: Selection criteria for 4
ΛH reconstruction.

particle quantity unit cut meaning

π−

pt GeV/c > 0.06 transverse momentum
mCDC GeV/c2 0.05< · · · <0.25 CDC mass
|d0 − 0.4| cm 1.5< · · · <10. transverse impact parameter

z1 cm -5.< · · · <25. z-coordinator at r = rs

θ [o] 40.< · · · <115. polar angle
Q e -1.5< · · · <-0.5 charge

HMUL - > 34 Hit multiplicity

4He

mCDC GeV/c2 2.7< · · · <4.7 CDC mass
2×mBAR GeV/c2 3.2< · · · <4.2 Barrel mass, Q=2
|d0| cm <1. transverse impact parameter
z2 cm 1.< · · · <20. z-coordinator (z1 + z2)/2
θ [o] 30.< · · · <54. polar angle
Q e >1.5 charge

HMUL - > 34 Hit multiplicity

4
ΛH

ccnt - 0 cross count in the CDC
rs cm 1.5< · · · <12. dis of V1,2 in (x, y)-plane
zs cm 1.< · · · <20. dis of V1,2 in (r, z)-plane
|d0| cm -0.8< · · · <0.8 transverse impact parameter
θ [o] 30.< · · · <52. polar angle

∆z cm -30.< · · · <15. z1 − z2

dφ [o] -7.< · · · <12. φHyp − φs

|∆φ12| [o] >10. |φ1 − φ2|
minv GeV/c2 <4.1 invariant mass
p GeV/c >0.95 momentum

ylab - 0.15< · · · <0.35 rapidity in lab frame
pt/m c 0.15< · · · <0.4 mass scaled pt

TMUL - 30.< · · · <50. CDC track multiplicity
PMUL - 10.< · · · <35. PLW hit multiplicity
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4.5.3 Invariant mass of 4
ΛH

By applying the cuts listed in table 4.9, the invariant mass spectrum of the 4
ΛH candidates

(open circles) and the normalized mixed-event background distribution (solid curve) in
the phase space region B1 are obtained, see Fig. 4.15(B1.a). The normalization range
is marked by a horizontal arrow in the range of 3.953 to 4.1 GeV/c2. After subtracting
the background, the spectrum is shown in Fig. 4.15(B1.b). The excess in the spectrum
is fitted by a Gaussian distribution, the obtained mean and width are 3.9924 GeV/c2

and 4.6 MeV/c2, respectively. Replacing the phase space constraints of B1 by those of
B2, B3 and B4, the invariant mass spectrum of the 4

ΛH candidates (open circles) and
the normalized mixed-event spectrum (solid curve) are obtained, as shown in the panels
(B2.a), (B3.a) and (B4.a) of Fig. 4.15. The spectra after the background subtraction
are shown in the panels (B2.b), (B3.b) and (B4.b), respectively. The counts in the final
invariant mass spectra, obtained in the region B2, B3 and B4, are comparable with the
statistic fluctuations, no significant signal of 4

ΛH is observed.

In the phase space region B1, the normalization factor is optimised by the procedure
presented in section 4.4.4. The non-signal regions are 3.5σ away from the fitted mean
and only the high mass part is taken into account (like ΩH in Fig. 4.9). In the first step,
the normalization factor is calculated in a range of 3.953 to 4.1 GeV/c2. In the second
step, the normalized background is multiplied by a factor from -10% to 10% with a step
of 0.25%. In each step, the mean and the RMS of the counts in the considered non-signal
region are calculated. The obtained mean and RMS as a function of the multiplication
factor is shown in the upper panel of Fig. 4.16, the RMS are indicated by the error bars.
The score factor is calculated in each step according to Eq. 4.13. The score as a function
of the multiplication factor is shown in the lower panel of Fig. 4.16. The minimum value
of the score is located at ηopt = 0.989, which represents the combined minimum of the
mean and the RMS. This means that all of the mixed-event spectra need to be downscaled
by 1.1% with respect to the normalized mixed-event spectra in the first iteration.

By applying the optimized normalization factor, the invariant mass spectrum of the
4
ΛH candidates (open circles) and the final mixed-event background distribution (solid
curve) are obtained, shown in the upper panel of Fig. 4.17. The invariant mass, after
subtracting the background, is displayed in the lower panel of Fig. 4.17. The excess near
the nominal mass of 4

ΛH, is attributed to the decay of the 4
ΛH. The excess is fitted by a

Gaussian distribution, the mean and the width of Gaussian function are 3.9226± 0.0010
GeV/c2 and 4.0± 1.6 MeV/c2.

Like in case of 3
ΛH, the significance of the 4

ΛH signal is evaluated in a series of signal
regions. The lower and upper boundaries of the i-th signal region are M̄ − i×σ/N and
M̄ + i×σ/N , where M̄ and σ are the fitted mean and the width of the excess and N is
the number of bins in one sigma range. In order to minimize the binning uncertainty, the
final mixed-event background spectrum is fitted by a third order polynomial function in
a range of M̄±3.0σ. The signal counts S and the background counts B are integrated
from the fitted Gaussian and polynomial function. In each signal range, a significance of
the signal is calculated according to Eq. 4.10.
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Figure 4.15: Invariant mass distribution of π−−4He pairs (open circles) and the mixed-
event background (solid curve) in the phase space region B1, B2, B3 and B4 are shown
in the panels B1(a), B2(a), B3(a) and B4(a), the horizontal arrows depict the normalized
regions. Invariant mass distribution after subtracting the normalized mixing-event back-
ground are shown in the panels B1(b), B2(b), B3(b) and B4(b), respectively. In the panel
B1(b), the excess is fitted by a Gaussian function.

69



Chapter 4: Particle reconstruction

Figure 4.16: Mean and
width (error bar) of the
counts in the non-signal
region as a function of
the multiplication factor
(upper). Dependence of
the score on the multipli-
cation factor (lower).
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Figure 4.17: Invariant
mass spectrum of
(π−,4 He) (open circles)
and optimized mixed-
event background (solid
curve) (upper). Invari-
ant mass spectrum after
background subtraction
(lower), the excess is
fitted by a Gaussian
function.
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Figure 4.18: Counts of the 4
ΛH (upper left) and the background (upper right), significance

(lower left) and signal-over-background ratio (SOB) (lower right) as a function of the
width of the signal regions, the width is in units of the fitted standard deviation σ.

The integrated counts of 4
ΛH (upper left) and the counts of the background (upper right),

the significance (lower left) and the signal-over-background (SOB) (lower right) as a func-
tion of the width of the signal region are shown in Fig. 4.18. The width of signal region is
in units of σ. The number of identified 4

ΛH signals saturate at 73. The background counts
increase by enlarging the range of the signal region. The significance increases for a small
width of the signal regions and it reaches a maximum value of 4.2 for the signal region at
M̄±1.5σ. The signal-over-background ratio decreases by opening the signal region.

4.5.4 Production option dependence

The necessity of evaluating the dependence of the final results on the production options
has been presented in section 4.4.5. A similar analysis for investigating the dependence
of the 4

ΛH signal on the production options is made.

The mean and the width (shown by the error bar) of the 4
ΛH invariant mass peak (first

column) and the significance (second column) as a function of the “shift” option are shown
in Fig. 4.19. The significances are obtained within the range of the signal region M̄±1.5σ.
The first, second and third row of Fig. 4.19 are obtained with option “rp”=0, 1 and 2,
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respectively. In each panel, there are three histograms obtained with the option “vi”=0
(red), 1 (green) and 2 (blue).

The mean and the width of the excesses are quite stable in all kinds of option combina-
tions. The dependence of the significance on various production options is quite similar
to the 3

ΛH case. The results of 4
ΛH presented in this work are produced under the option

combination: “shift”=2,“vi”=1 and “rp”=1.

Figure 4.19: Mean and width of the 4
ΛH signal (first column) and significance (second

column) as functions of the “shift” option, rp=0 (first raw), 1 (second raw) and 2 (third
raw) and vi=0 (red), 1 (green), 2(blue).

4.6 Detected yields of charged particles

Investigating the yield of particles is the most direct way to study reaction and production
mechanisms. In HICs, the hypernuclei are produced by secondary processes mostly, which
has been discussed in chapter 1. Therefore, comparing the yields of 3

ΛH and 4
ΛH to the

yields of other relevant particles may give information on how they are produced.

The detected yields of p, d, t, 3He, 4He, Λ hyperon, 3
ΛH and 4

ΛH in various phase space
regions of the S325e data sample (about 56×106 events) are listed in table 4.10. The
signal number of 3

ΛH and 4
ΛH in the concerned phase space regions and its statistic error
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are listed in the last two columns of table 4.10 as well. The phase space regions A1-
A4 (B1-B4), relevant for 3

ΛH (4
ΛH) reconstruction, are defined in table 4.5 (4.8). These

detected yields have to be corrected by the reconstruction efficiencies, which are obtained
by the MC simulation and presented in the next chapter. After the efficiency correction,
the yield ratios between the hypernuclei and the relevant particles can be derived. This
is discussed in chapter 6.

Table 4.10: Detected yields of p, d, t, 3He, 4He, Λ hyperon, 3
ΛH and 4

ΛH in various phase
space regions in the pt/m− ylab plane.

P
Detected yield (phase space region)

A1 A2 A3 A4 B1 B2 B3 B4
p 3.8×10−1 5.6×10−1 4.1×10−1 4.7×10−1 3.1×10−1 5.7×10−1 4.1×10−1 4.7×10−1

d 1.4×10−1 1.1×10−1 1.8×10−1 7.7×10−2 1.4×10−1 1.3×10−1 1.8×10−1 7.7×10−2

t 2.3×10−2 1.0×10−2 3.9×10−2 6.3×10−3 3.1×10−2 1.3×10−2 3.9×10−2 6.3×10−3

3He 1.7×10−2 1.0×10−2 1.6×10−2 5.9×10−3 1.5×10−2 1.3×10−2 1.6×10−2 5.9×10−3

4He 4.5×10−3 1.2×10−3 5.4×10−3 7.9×10−4 5.0×10−3 1.8×10−3 5.4×10−3 7.9×10−4

Λ 2.1×10−5 6.8×10−5 1.1×10−5 2.4×10−5 1.6×10−5 6.8×10−5 1.1×10−5 2.4×10−5

3
ΛH 6.5×10−6 - - - - - - -
4
ΛH - - - - 1.3×10−6 - - -
3
ΛH 363±128 -5±79 139±104 63±61 - - - -
4
ΛH - - - - 73±36 -22±27 14±29 3±14
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Chapter 5

Monte Carlo (MC) simulation

Geant simulation is an indispensable tool in high-energy nuclear experiments to estimate
the detection efficiency and to study the feasibility of the physics goals. It can be con-
sidered as a virtual experiment with controllable physics inputs and detector responses
to correct or to predict the experimental results. The geometrical configuration and the
material composition of detectors are described in the Geant environment. All kinds of
physics processes like ionization, multiple scattering, hadronic interaction, particle de-
cay and so on can be included. When a particle passes though the detector material,
the interaction products entering the active volume of the detector are transformed into
detectable signals according to its particular detection mechanism. In order to achieve
realistic simulation results, the detector resolution needs be adjusted to a proper level,
which is similar to the detector performance during the experiment.

As for the simulation of the FOPI detector, the geometry configuration and the detection
response of all sub-detectors are implemented in Geant (version 3.12) [128], which is
written in FORTRAN and maintained as a part of CERNLIB [129]. All sub-detectors are
described in three dimensions, taking the perspective material composition into account.
At the outset of of this chapter, the CDC and the RPC simulation are briefly presented.
Following this, the event generator for background events is introduced and these events
are analysed in terms of the PID, the Λ hyperon and the background of the channel
3
ΛH →π− +3 He. Afterwards, the reconstruction efficiency and the differential decay time
efficiency of 3

ΛH and 4
ΛH in the concerned phase space regions are derived, respectively. In

the last part, the reconstruction efficiencies of ordinary particles like p, d, t, 3He and 4He
in various phase space regions are presented.

5.1 CDC performance alignment

In Geant, the particles propagate a small distance (call a step) each time until they vanish
in the scope of detectors. All of the possible interactions within this “step” are calculated
according to the cross section of the relevant physics processes. Technique design of the
CDC has been described in section 2.2.3, the most relevant physics process for a drift
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chamber is ionization. In each step, hit position and the deposited energy are calculated
by Geant.

The CDC digitizer is used to model the processes starting from the ionized electrons in
the drift volume up to the final recorded signal. With the hit position, the drift path can
be calculated by taking the Lorentz angle into account. Since the mean drift velocity is
known, the mean drift time can be determined. When the electrons, ionized from the gas
molecules by charged particles, drift to the vicinity of a sense wire, they are amplified by
an avalanche process. This amplification is realised by a gain factor in Geant. Pursuant
to the z-position of the avalanche, the amplified charge is distributed to both ends of the
sense wire. Subsequently, the signal is digitized by the flash-ADC (FADC) and written
to a file with the same storage format used for experimental data. A detailed description
about the CDC digitizer can be found in [113].

In order to obtain the proper corrections for the experimental results, several parameters
used to characterize the CDC performance need to be smeared to a level, such that the
physical performance of the CDC during the experiment is reasonably reflected. These
parameters are the drift time resolution (equivalent to the position resolution in the trans-
verse plane), the z-position resolution and the energy loss fluctuation. After tuning these
parameters, the correlations between these characteristic quantities and a few measured
CDC observables obtained from the measured (red) and simulated (blue) data are com-
pared in Fig. 5.1. The distributions in the figure represent the profile of the energy loss
resolution σdE/dx (first column), the z-position resolution σz (second column) and the
transverse position resolution σxy (third column) of the tracks against their total energy
loss dE/dx (first row), polar angle θ (second row), azimuthal angle φ (third row), CDC
hit multiplicity HMUL (fourth row) and curvature rc in the transverse plane (fifth row).
All charged particles are included in the above correlations. A clear deviation of the σz at
high hit multiplicity is found, other correlations from experimental data are satisfactorily
reproduced by simulated data. This implies that most of the characteristic features of the
CDC are well described by the MC software.

5.2 RPC simulation

The geometrical configuration of the RPC super-module and the layout of the single RPC
counter have been described in section 2.2.5. The cross-sectional view of a RPC super-
module realized in Geant is shown in Fig. 5.2, it contains five RPC counters. In each RPC
counter, the red layer corresponds to the sensitive volume, the glass layers are indicated
by the light blue boxes and the PVC supports are depicted by the green boxes.

When a charged particle passes through a RPC counter, it ionizes the gas molecules in
between the glass layers. The ionised electrons are accelerated by the strong electric
field, and they ionize other molecules. Eventually, this develops into an avalanche. The
propagation of this electron cloud induces a current on the pickup electrode(s). Since the
FOPI RPC counter has a multi-gap configuration, the induced signal is the joint effect
from all gaps.
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5.2. RPC simulation

Figure 5.1: Correlations of the characteristic quantities of the CDC from the measured
data (red) and simulated data (blue). For detailed descriptions see the text.

In the MC simulation, these complicated processes are simplified by using a scintillator-
like layer in the middle of the counter (see Fig. 5.2). When a charged particle traverses this
layer, the energy loss, the hit position and the flight time are provided by Geant precisely.
The avalanche process is simply modeled by introducing a gain factor. Then, the flight
time and the hit position are smeared by a Gaussian distribution with the typical time
and position resolution, respectively. The typical time resolution is σt = 90 ps (including
the time resolution of the start counter) and the position resolution is σt×vsignal, where
vsignal=16.5 cm/ns is the propagation velocity of signals in the strip.
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Figure 5.2: Configuration
of a RPC super-module re-
alized in Geant, which con-
tains five RPC counters.
For detailed descriptions see
the text.

5.3 Background events simulation

For reconstructing rare probes like 3
ΛH and 4

ΛH, it is necessary to evaluate the selection cri-
teria on the pure background events, because an unphysical resonance could be produced
in a massive particle environment as created by HICs, if the selection cuts are over-biased.

In this section, first the components of the background events for the two-body π−-
decay of 3

ΛH and 4
ΛH are introduced. Secondly, the correlations used for PID of the

background events are illustrated. In order to further check the consistency between the
experimental and simulated data, the lifetime of the Λ hyperon is extracted from its decay
time distribution by applying the differential decay time efficiency obtained from the MC
simulation. Afterwards, the selection cuts for 3

ΛH reconstruction are evaluated on these
background events.

5.3.1 Background events generator

The combinatorial background events for the two-body π−-decay of 3
ΛH and 4

ΛH, are the
accidentally combined π− and 3,4He produced in Ni+Ni collisions. For the background
events, a proper description of the bulk properties of Ni+Ni collisions at 1.91A GeV and
the phase space distribution of π− and 3,4He are essential requirements. Each background
event is composed of three components. These are briefly introduced in the following

• An Isospin-dependent Quantum Molecular Dynamics (IQMD) [130] event of Ni+Ni
collisions at 1.9A GeV. The IQMD model is one of the most commonly used models
to study the reaction kinematics and the bulk properties of HICs, e.g. the collective
motion, the particle yields and the phase space distribution of various particles. The
version we use in this work contains only light particles, like π±, p, d and a small
fraction of t and 3He. They form the body of background events, which provides a
massive particle environment.

• A thermal Λ hyperon source. Since the mean lifetime of the Λ hyperon, 3
ΛH and

4
ΛH is of the same order, the Λ hyperon is an ideal source to provide the off-vertex
π−. Moreover, as the mean lifetime of the Λ hyperon has been measured to good
precision, it can be used as a benchmark to verify how well the MC simulation mim-
ics the experimental setup. Thus, a Λ hyperon, sampled from a Siemens-Rasmussen
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distribution [131], is embedded into each IQMD event. The Siemens-Rasmussen dis-
tribution is an empirical formula to describe the momentum distribution of particles
in a thermal system, which is expressed as

dσ

dp
= (pc)2exp

(
−γ

E

T

) [(
γ +

T

E

)
sinhα

α
− T

E
coshα

]
(5.1)

E =
√

(m0c2)2 + (pc)2, γ =
1√

1− β2
, α =

βγpc

T
,

where T is the temperature, β is the expansion velocity, γ is the Lorentz factor
associated with β, m0 is the nominal mass of the Λ hyperon, p is the total momentum
and c is the speed of light in vacuum. In this work, the temperature T = 90 MeV
and the expansion velocity β = 0.3 are used, in conformity with the published data
measured by the FOPI detector in Ni+Ni at 1.93A GeV [106].

• An external 3He and 4He source. As IQMD events do not contain adequate heavy
clusters like 3He and 4He, a 3He and a 4He, sampled from a Siemens-Rasmussen-like
distribution, are embedded into each IQMD event, separately. For 3He, the chosen
temperature and expansion velocity are T=110 MeV and β=0.35, respectively. For
4He, we pick the temperature T=125 MeV and the expansion velocity β = 0.35.
In both of the above distributions, the mean value of ylab is shifted to ylab = 0.15.
The reason for selecting these parameter combinations is to make a phase space
distribution of 3He and 4He, which are similar to the phase space distribution of
3He and 4He in the measured data. Fig. 5.3 shows the distributions of rapidity
ylab (left panel) and transverse momentum pt (right panel) of 3He from measured
data (red curve) and simulated data (blue curve) within the RPC acceptance. Each

Figure 5.3: Comparisons of ylab (left) and pt (right) distributions between the measured
(red curve) and simulated data (blue curve) within the RPC acceptance.
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histogram is normalized by its entries. As shown in the figures, the distribution of
rapidity and transverse momentum from measured data are similar to ones from
MC data.

5.3.2 PID of simulated events

Filtering the above background events through the Geant package, the trajectories of
charged particles are fitted based on the hits left inside the CDC. Like with experimental
data, the total energy loss of a track inside the CDC corresponds to the summed dE/dx of
all associated drift volumes. Light charged particles can be identified from the correlation
of momentum and total energy loss, which is shown in the left panel of Fig. 5.4. The
black curves show the parameterized Bethe-Bloch formula for different particle species.
The used parameters are the same as those used for experimental data. Heavier particles
like t, 3He and 4He can only be identified by combining the measured momentum and the
associated velocity provided by the TOF detectors, which is shown in the right panel of
Fig. 5.4. The curves represent the formula p = mβγ, where m is adjusted to the desired
particle mass.

Figure 5.4: Correlation of energy loss and momentum from the MC events (left). Corre-
lation of momentum and velocity (right). For detailed descriptions see the text.

5.3.3 Λ reconstruction

The yield of the Λ hyperon is important to understand the possible production mechanism
of the single-Λ hypernuclei in HICs, since the coalescence scenario is one of possible
processes to produce such particles. In order to obtain the total yield, the detected yield
needs to be corrected, due to the efficiency of selection cuts and the detector acceptance.
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In this subsection, first the invariant mass of the Λ hyperon is reconstructed, and its
reconstruction efficiencies in various phase regions are obtained. Next, the procedure used
to obtain the differential decay time efficiency is presented. By applying this differential
efficiency, the mean lifetime of the Λ hyperon is extracted from the decay time distribution.

Λ invariant mass and reconstruction efficiency

The reconstruction procedure for the decay channel Λ→π− + p has been described in
section 4.3. All geometrically correlated (π−, p) pairs are sought from the input events
under the pre-selection cuts. From these events containing a Λ candidate, the mixed
events are built with the mixed-event procedure. Applying the selection criteria listed
in table 4.4, the invariant mass distribution of the Λ candidates (solid red curve) and
the normalized mixed-event invariant mass spectrum (dashed blue curve) are obtained,
as shown in the upper panel of Fig. 5.5. The invariant mass spectrum after subtracting
the background is presented in the lower panel of Fig. 5.5. The Λ invariant mass peak is
fitted by a Gaussian function, with a mean and a width of 1.1164 GeV/c2 and 4.6 MeV/c2,
respectively. The invariant mass of the Λ hyperon is shifted to the high mass side by
about 0.8 MeV/c2, and the width of the peak is wider than the one from experimental
data by about 1 MeV. These effects may be caused by an imperfect description of the
azimuthal angle reconstruction in the experimental data by the MC simulation. Although
the azimuthal angles in the experimental data are also not perfectly reconstructed, one
piece of evidence is that the mean of d0 distribution of π− is shifted to the negative side.

The reconstruction efficiency of the Λ hyperon within the RPC acceptance is about 4.5%,
which is a ratio between the number of input Λ hyperons within the RPC acceptance and
the integrated counts from the final invariant mass spectrum within a 3σ range around the
fitted mean. By adding the phase space constraints for the Λ candidates and the input Λ
hyperons, the obtained Λ reconstruction efficiencies in the phase space region A1-A4 are
1.6%, 3.1%, 2.5% and 4.5%, and in the phase space region B1-B4 are 1.3%, 2.7%, 2.5%
and 4.5%, respectively.

Differential decay time efficiency of Λ

The decay time distribution carries the lifetime information of a particle. The decay time
t is calculated by the expression

t =
l

γβc
, γ =

1√
1− β2

, (5.2)

where l is the flight distance, γ is the Lorentz factor, β is the particle’s velocity in the
lab frame and c is the speed of light in vacuum. Regarding the FOPI detector, the decay
time can only be calculated from the directly measured quantities in the transverse plane,
as only in this plane can one resolve the secondary vertex. Consequently, the decay time
t is calculated by

t =
rs

(γβc)t

, with (γβc)t =
pt

m
. (5.3)
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Figure 5.5: Invariant mass
spectrum of the Λ hyperon
candidates (solid red curve)
and normalized mixed-
event background (dashed
blue curve) (upper). Invari-
ant mass spectrum after
background subtraction
(lower). The peak is fitted
by a Gaussian distribution.

In the above formula, rs is the distance between the secondary vertex and the primary
vertex in the transverse plane, βt, γt, pt and m are the transverse velocity, the transverse
Lorentz factor, the transverse momentum and the nominal mass of the Λ hyperon. Particle
decays follows an exponential law, expressed by

N(t) = N0·exp

(
− t

τ

)
, (5.4)

where τ is the mean lifetime of the particle, N0 the number of particles at t = 0 and N(t)
the number of intact particles at a given time t.

Applying the selection cuts listed in table 4.4, the decay time distribution of the Λ candi-
dates (red curve) and the normalized decay time distribution from the mixed events (blue
curve) are obtained and plotted in Fig. 5.6(a). After subtracting the background spec-
trum, the obtained result is shown in Fig. 5.6(b). Since the coordinate of the secondary
vertex and the momentum vector of the input Λ hyperons are provided by Geant pre-
cisely, their decay time distribution can be obtained based on Eq. 5.3. The corresponding
distribution is shown in Fig. 5.6(c). This spectrum is fitted by Eq. 5.4, where N0 and
τ are the free parameters. The exponential function is depicted by a straight black line.
The fitted value of τ is 262.8± 0.2 ps, which agrees with the input mean lifetime of the Λ
hyperon. The Fig. 5.6(d) shows the differential decay time efficiency, which is the ratio of
the spectrum in Fig. 5.6(b) and the one in Fig. 5.6(c) bin by bin. The error bars present
the statistical error only.

For the S325e experimental data, the spectrum of the decay time (solid red curve) of the
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Figure 5.6: (a) Decay time distribution of the Λ candidates (solid red curve) and nor-
malized mixed-event background (dashed blue curve) from MC data. (b) The decay time
distribution after subtracting the background spectrum. (c) The decay time distribution
of the input Λ hyperons. (d) The differential decay time efficiency.

Λ candidates and the normalized mixed-event background spectrum (dashed blue curve)
are depicted in Fig. 5.7(a). The decay time distribution after background subtraction is
shown in Fig. 5.7(b). Fig. 5.7(c) is the differential decay time efficiency obtained from
the MC simulation, which is the same spectrum displayed in Fig. 5.6(d). The decay time
distribution of the Λ hyperon after applying the differential decay time efficiency bin by
bin, is shown in Fig. 5.7(d). The spectrum is fitted by Eq. 5.4, the exponential function
is depicted by a straight black line. The fitting range is 200-1500 ps. The first nonzero
point is excluded from the fit, this is because the φ reconstruction of the experimental
case is not fully described by the MC simulation (φ has a large impact for the small
rs). The extracted slope parameter τ equals 262.3 ± 6 ps, which agrees with the mean
lifetime of the Λ hyperon quoted by the PDG [132]. This result once again proves that
the performance of the CDC is well described by the MC software.
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Figure 5.7: (a) Decay time distribution of the Λ candidates (solid red curve) and normal-
ized decay time distribution from the mixed events (dashed blue curve) from the S325e
experiment data. (b) Decay time distribution after subtracting the background spectrum.
(c) Differential decay time efficiency. (d) The decay time distribution after applying the
MC differential decay time efficiency. The straight line is the fitted exponential function,
exhibiting a mean lifetime of the Λ hyperon of 262±6.0 ps.

5.3.4 Background simulation for 3
ΛH→π−+3He

Since an unphysical resonance could be produced by over-biased selection cuts in HICs,
it is necessary to inspect the outcome of pure background events by applying the very
selection criteria used to reconstruct the rare probes like 3

ΛH.

The procedures, used to reconstruct 3
ΛH, have been presented in section 4.4. For simulated

data, the very same analysis is carried out. The geometrically correlated (π−,3He) pairs
are sought from the input events as well as the mixed events. By applying the selection
cuts listed in table 4.6 (in the phase space region A1), the invariant mass distribution of
the 3

ΛH candidates (open circles) and the normalized invariant mass spectrum from the
mixed events (solid blue line) are obtained and plotted in the upper panel of Fig. 5.8. The
normalization region is indicated by a horizontal arrow. Note that a comparable amount
of the 3

ΛH candidates are accumulated comparing to the spectrum from the experimental
data (see Fig. 4.7(A1.a)). After the background subtraction, the resulting spectrum is
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Figure 5.8: Invariant
mass spectra of the
3
ΛH candidates from the
background events (open
circles) and mixed events
(solid curve) in the phase
space region A1. The
normalization region is
indicated by a horizontal
arrow (upper). Invariant
mass distribution after
subtracting the background
(lower). For detailed
descriptions see the text.

shown in the lower panel of Fig. 5.8. The count in the signal region indicated by two blue
vertical dot-dashed lines is -139±133(sta.). No excess is found around the nominal mass
of 3

ΛH. At this level, we can conclude that the selection criteria for 3
ΛH reconstruction

would not produce an unphysical resonance.

5.4 3
ΛH→π−+3He simulation

3
ΛH is created in Geant with a mass of 2.9912 GeV/c2 and a mean lifetime of 245 ps, which
fully decays into π− and 3He. Such a 3

ΛH, sampled from a flat phase space distribution in
pt/m-ylab plane, is embedded into each background event.

In this section, first the reconstruction efficiency of 3
ΛH in the various phase space regions

is derived. Then, the distribution of cut quantities from the experimental data and
simulated data are compared. Afterwards, the differential decay time efficiency of 3

ΛH in
the phase space region A1 is obtained.

5.4.1 Reconstruction efficiency of 3
ΛH

In order to obtain the total yield of 3
ΛH, the detected yield needs to be corrected due to the

detection and reconstruction efficiency. The geometrically correlated (π−,3He) pairs are
sought in the input events and mixed events under the pre-selection cuts, which is the same
procedure used to reconstruct 3

ΛH in the experimental data. By applying the selection
criteria listed in table 4.6 (in the phase space region A1), the invariant mass distribution
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Figure 5.9: Invariant
mass spectrum of
3
ΛH candidates (open cir-
cles) and the normalized
mixed-event background
(solid curve) (upper).
The horizontal arrow
indicates the normaliza-
tion region. Invariant
mass spectrum after
background subtraction
(lower), the peak is fitted
by a Gaussian function.

of 3
ΛH candidates (red open circles) and the normalized mixed-event background spectrum

(solid blue line) are obtained, drawn in the upper panel of Fig. 5.9. The normalization
region is depicted by the horizontal arrow. After subtracting the background spectrum,
the resulting spectrum is shown in the lower panel of Fig. 5.9. The peak, around the
nominal mass of 3

ΛH, is fitted by a Gaussian distribution, with a mean of 2.9942 GeV/c2

and a width of 6.8 MeV/c2. The mean of the reconstructed 3
ΛH invariant mass is shifted

to the high mass side of about 3 MeV compared to the input 3
ΛH mass of 2.9913 GeV/c2.

The width of the peak is wider than the one from the experimental data. This may be
caused by the imperfect azimuthal angle reconstruction, which is the same effect observed
in the Λ hyperon invariant mass reconstruction in the MC data (see section 5.3.3).

The number of reconstructed 3
ΛH is the integrated counts within the 3σ range around the

fitted mean in the final invariant mass spectrum. The reconstruction efficiency of 3
ΛH is

the ratio of identified 3
ΛH over the number of input 3

ΛH in a given phase space region. The
reconstruction efficiency of 3

ΛH in the phase space region A1 is about 2.4%. In the same
manner, by replacing the constraints of the phase space A1 in table 4.6 to those of other
regions, the obtained reconstruction efficiency of 3

ΛH in the phase space region A2, A3
and A4 is 3.6%, 2.2% and 2.7%, respectively.

5.4.2 Comparison of cut quantities

In order to further inspect the consistency between the experimental data and MC data,
the distributions of cut quantities under the selection criteria listed in table 4.6 from
measured data and simulated data are compared. In this subsection, the red histograms
represent the distributions from measured data, the blue histograms are for the MC data.
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Figure 5.10: Distributions of cut quantities for π−’s, associated with 3
ΛH candidates, from

the measured data (red curve) and simulated data (blue curve). The concerned quantities
are mCDC , HMUL, d0, pt and z0. For detailed descriptions see the text.

In order to make a direct comparison, all histograms are normalized by their particular
entries.

The distributions of cut quantities for π−, associated with 3
ΛH candidates, are shown in Fig.

5.10. The concerned quantities are mCDC (CDC mass), HMUL (CDC hit multiplicity),
d0 (transverse impact parameter), z0 (intersecting distance of the track and z-axis in the
(r − z)-plane) and pt (transverse momentum). The CDC mass resolution of π− from
the simulated data is narrower than the one from the experimental data. This is caused
by the imperfect description of the energy loss fluctuation in the simulation. Since the
constraints for this quantity are rather loose, this would not lead to a loss of 3

ΛH detection
efficiency. The CDC hit multiplicity of π− in the measured data is larger than the one
in the simulated data, this feature has not been fully understood yet. It is considered as
an important source for systematic errors (discussed in chapter 6). The distribution of
d0 and z0 from the experimental data is in good agreement with the simulated spectrum.
The distribution of pt in MC data is wider than the one from the experimental case. This
means the phase space distribution of π− from the measured data is not fully described
by IQMD events.

The distributions of cut quantities for the selected 3He are shown in Fig. 5.11. The
concerned quantities are mCDC , HMUL, d0, pt, z0, mbar (RPC barrel mass), ylab (rapidity
in laboratory frame) and θ (polar angle). The CDC mass distribution of 3He from the
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Figure 5.11: Experimental (red) and simulated (blue) spectra of the cut quantities for
3He, which belongs to a 3

ΛH candidate. Concerned quantities are mCDC , HMUL, d0, pt,
z0, mbar, ylab and θ, the detailed descriptions see the text.

measured data agrees with the one from the MC data. The tracking hit multiplicity of 3He
in the MC data is slightly higher than the experimental one. This may have caused the
imperfect description of the energy loss fluctuation. In both case, HMUL is well above
the cut limit of 34, this would not reduce the final reconstruction efficiency of 3

ΛH. The d0

distribution of 3He in the simulated data is wider than the one in the experimental case.
This is because the azimuthal angle resolution of 3He from the MC data is worse than
the one in the experimental data, and this is the reason for the relatively wider invariant
mass peak of 3

ΛH in MC data. The distribution of pt, z0 and ylab from the measured data
is consistent with the corresponding one from the MC data. The RPC mass resolution of
3He in experimental and MC data agree with each other. The polar angle distribution of
3He in the measured data is reproduced by simulated data, since the polar angle of 3He is
given by a hit in the RPC barrel which is matched with a CDC track. This implies that
the matching between the CDC tracks and the RPC hits is properly realized in the MC
simulation.

Distributions of the cut quantities for the 3
ΛH candidates are shown in Fig. 5.12. The

quantities of concern are rs (distance between the secondary vertex to the primary vertex
in the transverse plane), pt , ylab, d0, zs, and dφ (φHyp − φs). Detailed definitions of these
quantities are described in section 4.2.2. Distributions of rs and zs from the simulated
data exceed the corresponding experimental ones for small values of rs and zs. Most
probably, because the phase space distribution of π− and/or 3He in the data is not fully
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Figure 5.12: Experimental (red curve) and MC (blue curve) distribution of cut quantities
for 3

ΛH candidates. The concerned quantities are rs, pt, ylab, d0, z0 and dφ. For detailed
descriptions see the text.

described by the MC events and more combinatorial pairs were found in the MC data
than exist in this data. Since the mixed-event background needs to be extracted from the
rs distribution, this would not influence the final differential decay time efficiency. The
distributions of pt, ylab, d0, z and dφ are satisfactorily reproduced by the corresponding
distributions from the MC data.

5.4.3 Differential decay time efficiency of 3
ΛH

The lifetime is one of the most important characteristics for a particle. By applying
the differential decay time efficiency spectrum, the mean lifetime of 3

ΛH can be extracted
from its decay time distribution. The procedure for obtaining the differential decay time
efficiency has been demonstrated in section 5.3.3. Since the 3

ΛH signal is only observed in
the phase space region A1, the spectra, presented in this subsection, are obtained under
the cuts listed in table 4.6.

The decay time of the 3
ΛH candidates is calculated following Eq. 5.3, where rs is the

corrected distance (arc length) between the secondary vertex and the primary vertex in
the transverse plane, m is the nominal mass of 3

ΛH (2.991 GeV/c2) and pt is the transverse
momentum. The decay time distribution of 3

ΛH candidates from the MC events (solid red
curve) and the normalized decay time distribution from the mixed events (blue curve)
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Figure 5.13: (a) The decay time distribution of the 3
ΛH candidates (solid red curve) and

the normalized decay time distribution from the mixed events (dashed blue curve). (b)
The decay time distribution after subtracting the mixed-event background. (c) The decay
time distribution of the input 3

ΛH’s. (d) The differential decay time efficiency.

are depicted in Fig. 5.13(a). The resulting spectrum after background subtraction is
shown in Fig. 5.13(b). The decay time distributions of the input 3

ΛH, calculated from the
flight distance provided by Geant and its momentum, are depicted in Fig. 5.13(c). The
spectrum is fitted by Eq. 5.4, shown by a straight black line. The fitted slope parameter
τ equals 244.8±0.2 ps, which agrees with the input value of 245 ps. The differential decay
time efficiency of 3

ΛH is the ratio of Fig. 5.13(b) and Fig. 5.13(c) bin by bin, shown in Fig.
5.13(d), noting that the error bars represent the statistical error only. By applying this
differential decay time efficiency, the mean lifetime of 3

ΛH can be extracted. The result is
presented in chapter 6.

5.5 4
ΛH→π−+4He simulation

The 4
ΛH is created in the Geant environment with a mass of 3.9228 GeV/c2 and a lifetime

of 245 ps, fully decaying by the two-body π−-decay channel. Like in the 3
ΛH simulation,

a 4
ΛH, sampled from a flat pt/m − ylab distribution, is embedded into each background

event. In this section, first the reconstruction efficiency of 4
ΛH in various phase space

regions is obtained. Then, the spectra of the cut quantities from the experimental data
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Figure 5.14: Invariant
mass distribution of
4
ΛH candidates (open
circle) and normalized
mixed-event background
spectrum (solid line) from
MC events (upper panel).
The normalization region
is depicted by a horizontal
arrow. Resulting invariant
mass spectrum after sub-
tracting the background
(lower panel). The peak
is fitted by a Gaussian
distribution.

and simulated data are compared. In the last part, the differential decay time efficiency
of 4

ΛH in the phase space region B1 is derived.

5.5.1 Reconstruction efficiency of 4
ΛH

The reconstruction procedure for 4
ΛH has been presented in section 4.5. By applying

the selection cuts listed in table 4.9 (in the phase space regions B1), the invariant mass
spectrum of the 4

ΛH candidates (red circles) and the normalized mixed-event background
spectrum (solid blue line) in the phase space region B1 are obtained, shown in the upper
panel of Fig. 5.14. The spectrum after subtracting the background distribution is depicted
in the lower panel of Fig. 5.14. Apart from the 3

ΛH mass peak, the counts in other regions
of the spectrum are almost flat around zero. The peak is fitted by a Gaussian distribution.
The obtained mean and width are 3.9240 GeV and 7.0± 0.3 MeV, respectively. As in the
3
ΛH case, the mean is also shifted to the high mass side by about 1.2 MeV, and the width
of the peak is also larger than the one observed from the experimental data.

The number of reconstructed 4
ΛH is the integrated counts in the final invariant mass

spectrum in a 3σ range around the fitted mean. The reconstruction efficiency in the
region B1 is found to be 1.4%, which is the ratio of the number of identified 4

ΛH over the
number of input 4

ΛH in the region B1. Similarly, the determined reconstruction efficiencies
of 4

ΛH in the phase space region B2-B4 is 2.0%, 0.6% and 0.7%, respectively. The reason
for the relatively low reconstruction efficiency of 4

ΛH in the phase space region B3 and B4
is not fully understood at the moment.
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Figure 5.15: Experimental (red curve) and simulated (blue curve) distributions of cut
quantities for the π−, associated with the 4

ΛH candidates. The quantities of concern are
mCDC , HMUL, d0, pt and z0.

5.5.2 Comparison of cut quantities

The necessities to compare the spectra of cut quantities between the measured date and
simulated data have been presented in section 5.4.2. In this section, the distributions of
the cut quantities for selected π− and 4He, as well as 4

ΛH candidates from the experimental
data (red curve) and MC data (blue curve) are compared. The distributions are obtained
under the selection cuts listed in table 4.9 (in the phase space region B1). In order to
compare the distributions directly, each spectrum is normalized by its respective number
of entries.

The distributions of cut quantities for π−, associated with the 4
ΛH candidates, are shown in

Fig. 5.15. The concerned quantities are mCDC , HMUL, d0, pt and z0. The distributions
of π− from the MC data looks quite similar to those in the 3

ΛH simulation case. Therefore
the conclusions, regarding a comparison of the spectra from the experimental data and
simulated data, are the same as those presented in section 5.4.2.

The spectra of cut quantities for the 4He in the selected pairs from the experimental data
(red curve) and the simulated data (blue curve) are plotted in Fig. 5.16. The concerned
quantities are mCDC , HMUL, d0, pt, z0, mbar, ylab and θ. The CDC mass distribution of
4He from the simulated data is comparable with the one from the measured data. The
mean HMUL of 4He in simulated data is a bit larger than the one in experimental data.
The d0 distribution from the simulated data is wider than the one from the measured data
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Figure 5.16: Experimental (red curve) and simulated (blue curve) spectra of the cut
quantities for 4He from the selected pairs. The concerned quantities are mCDC , HMUL,
d0, pt, z0, mbar, ylab and θ.

and has a small shift to the negative side. This is due to the imperfect azimuthal angle
reconstruction of 4He in MC data. The RPC barrel mass distribution of 4He from the
measured and simulated data agrees with each other. The rapidity distribution of 4He in
the simulated data is nearly the same as that of the experimental data. The distribution
of the polar angle θ from the measured data is well reproduced by the simulated data as
well.

The distributions of cut quantities for 4
ΛH candidates are shown in Fig. 5.17. The con-

cerned quantities are rs, pt, ylab, d0, z and dφ, the meaning of these quantities are the
same as those discussed in section 5.4.2. The distribution of rs and zs from the simulated
data is higher than the corresponding experimental distribution at small rs and zs. The
reason and the possible influence are quite similar to those discussed in section 5.4.2. The
distributions of pt, ylab, d0, zs and dφ from experimental data are well reproduced by the
MC data.

5.5.3 Differential decay time efficiency of 4
ΛH

The decay time of the 4
ΛH candidates is calculated by Eq. 5.4. The obtained decay time

distribution of the 4
ΛH candidates (red curve) and the normalized mixed-event background

(blue curve) are depicted in Fig. 5.18(a). The decay time distribution after subtracting
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Figure 5.17: Experimental (red curve) and MC (blue curve) distributions of the cut
quantities for 4

ΛH candidates. The concerned quantities are rs, pt, ylab, d0, zs and dφ. For
detailed descriptions see the text.

the background spectrum is shown in Fig. 5.18(b). Fig. 5.18(c) depicts the decay time
distribution of the input 4

ΛH. The distribution is fitted by Eq. 5.4, shown by a straight
black line, its slope parameter τ equals to 244 ps, which is consistent with the assigned
mean lifetime of the 4

ΛH in Geant. The differential decay time efficiency is plotted in Fig.
5.18(d), which is the ratio of the reconstructed decay time spectrum (Fig. 5.18(b)) and
the one of the input 4

ΛH’s (Fig. 5.18(c)) bin by bin, where the error bars represent the
statistical error only.

This differential decay time efficiency can be applied to the experimental decay time
spectrum directly. Detailed results of extracting the mean lifetime of 4

ΛH are presented in
next chapter.

5.6 Detection efficiencies of charged particles

Particle yield ratios can provide the information about how hypernuclei are produced in
HICs. In order to obtain the absolute yields of charged particles, their detection efficiency
have to be applied. The background events (see section 5.3.1), with additional deuteron
and triton embedded therein, are filtered through the Geant package and reconstruction
routines. The triton and 3He share the same set of parameters, as described in section
5.3.1. The deuteron is sampled from a Siemens-Rasmussen-like (Eq. 5.1) distribution
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Figure 5.18: (a) Decay time distribution of 4
ΛH candidates (red curve) and normalized

mixed-event background (blue curve). (b) Decay time distribution after subtracting the
background spectrum. (c) Input decay time distribution of 4

ΛH, the straight black line is
the fitted exponential function. (d) Differential decay time efficiency of 4

ΛH.

with T=60 MeV, β=0.3 and the mean of the rapidity distribution is shifted to y=0.15 as
well.

The detection efficiency is the ratio between the number of identified particles and the
number of corresponding input particles. The selection criteria for those particles are
listed in table 5.1. Since the PID of heavy clusters like t, 3He and 4He need the velocity
information provided by the TOF detectors, the constraints on the barrel (the PLW and
the RPC) mass are essential. The derived detection efficiencies of these particles in the
phase space region A1-A4 and B1-B4 are listed in table 5.2. Note that the detection effi-
ciency of triton in the phase space region A2 and B2 are lower than those of other particles
in the corresponding phase space region, this needs to be clarified. For completeness, the
detection efficiencies of the Λ hyperon, 3

ΛH and 4
ΛH in the concerned phase space regions

are listed as well.
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Table 5.1: Selection cuts for p, d, t, 3He and 4He.
Particle Charge: Q [e] mCDC [GeV/c2] mBAR [GeV/c2]

p |Q− 1| < 0.5 |mCDC − 0.94| < 0.4 –
d |Q− 1| < 0.5 |mCDC − 1.88| < 0.4 –
t |Q− 1| < 0.5 1.8 < mCDC < 3.5 2.3 < mbar < 3.2

3He Q > 1.5 1.8 < mCDC < 3.5 2.3 < 2·mbar < 3.2
4He Q > 1.5 3.2 < mCDC < 4.5 3.2 < 2·mbar < 4.5

Table 5.2: Detection efficiency of p, d, t, 3He and 4He in various phase space regions.

Particle
Reconstruction efficiency(%)

A1 A2 A3 A4 B1 B2 B3 B4
p 65.9% 66.2% 76.6% 78.8% 54.6% 64.9% 76.6% 78.8%
d 69.0% 60.7% 78.2% 74.1% 67.4% 63.2% 78.2% 74.1%
t 64.8% 38.6%∗ 76.2% 61.1% 66.9% 43.7%∗ 76.2% 61.1%

3He 73.5% 71.2% 83.2% 84.6% 63.6% 72.0% 83.2% 84.6%
4He 71.1% 58.8% 75.1% 75.3% 64.6% 62.8% 75.1% 75.3%
Λ 1.6% 3.1% 2.5 % 4.5% 1.3 % 2.7 % 2.5% 4.5%

3
ΛH 2.4% 3.6% 2.2% 2.7% - - - -
4
ΛH - - - - 1.4% 2.0% 0.6% 0.7%
∗ see the text.
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Results

In the previous chapters, the raw yield and the reconstruction efficiencies of 3
ΛH, 4

ΛH, Λ, d,
t, 3He and 4He in the various phase space regions were discussed. In this chapter, firstly
the total yield or the upper production limit of these particle species in the concerned
phase space regions are finalised. In the second part, the systematic error of the yield of
3
ΛH and 4

ΛH is estimated. In the third part, the mean lifetime of 3
ΛH and 4

ΛH is extracted
from the decay time distribution, respectively. In the fourth part, the impact parameter
range corresponding to the centrality selections for the 3

ΛH and 4
ΛH production in Ni+Ni

collisions at 1.91A GeV is discussed. In the last part, the coalescence scenario for the
hypernuclei production in HICs is naively discussed and the yield ratio of 3

ΛH/3He and
4
ΛH/4He are compared with thermal predictions.

6.1 Yields of particles

As presented in chapter 4, 373±112 (sta.) 3
ΛH and 73±36 (sta.) 4

ΛH, are observed in
the phase space regions A1 and B1, respectively. After applying the detection efficiency
listed in table 5.2, the total yield of 3

ΛH and 4
ΛH in the corresponding phase space regions

Table 6.1: Efficiency-corrected yield of 3
ΛH, 4

ΛH, Λ, p, d, t, 3He and 4He in various phase
space regions.

P
Efficiency-corrected yield

A1 A2 A3 A4 B1 B2 B3 B4
p 1.0 1.2 8.5×10−1 9.0×10−1 1.2 1.3 8.5×10−1 9.0×10−1

d 3.3×10−1 3.0×10−1 3.6×10−1 1.8×10−1 3.7×10−1 3.3×10−1 3.6×10−1 1.8×10−1

t 6.6×10−2 6.7×10−2 7.7×10−2 2.0×10−2 8.2×10−2 7.3×10−2 7.7×10−2 2.0×10−2

3He 3.7×10−2 2.0×10−2 2.9×10−2 9.9×10−3 4.4×10−2 2.5×10−2 2.9×10−2 9.9×10−3

4He 1.1×10−2 3.4×10−3 1.2×10−2 1.6×10−3 1.4×10−2 4.6×10−3 1.2×10−2 1.6×10−3

Λ 2.0×10−3 3.4×10−3 6.9×10−4 8.3×10−4 1.9×10−3 3.9×10−3 6.9×10−4 8.3×10−4

3
ΛH 7.7×10−4 — — — — — — —
4
ΛH — — — — 1.3×10−4 — — —
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are obtained, see table 6.1. The efficiency-corrected yield of the Λ hyperon and other
charged particles in various phase space regions is listed in the table as well. The 35%
decay branching ratio of 3

ΛH →π−+3He is taken into account, which is averaged from
the measured data [119] (see table 4.1) and it has an error of about 5-7%. The 69%
decay branching ratio of 4

ΛH→π−+4He is included with a relatively small error of about
2% [118]. For the yields of the Λ hyperon, the 64% decay branching ratio of Λ → π−+p is
applied. The numbers are normalised to the total event number of the S325e experiment,
i.e. 56×106 events.

Since no significant signal of 3
ΛH (4

ΛH) is observed in the phase space region A2-A4 (B2-
B4), the upper limit of 3

ΛH and 4
ΛH production in these regions is estimated. The observed

signal counts NSIG and the background counts NBCK in the corresponding signal region
(see Fig. 4.7 and 4.15) are listed in table 6.2. In the considered phase space region, the
total counts NTOT are the summed value of the signal counts and the background counts,
i.e. NTOT = NSIG +NBCK , which is assumed to follow a Gaussian distribution (since Ntot

is a large number). The mean and the variance of the Gaussian distribution are Ntot and√
Ntot, respectively. A number NCL, obtained by integrating from −∞ to NCL, equals

95% of the area of the Gaussian distribution. The upper limit of the 3
ΛH or 4

ΛH counts
NSIg,CI at the 95% confidence level is NSIG,CI = NCI − NBCK . As an example, the Ntot

distribution for estimating the upper limit of the 3
ΛH signal at the 95% confidence level in

the phase space region A2 in the considered signal region (see section 4.4.3) is shown in
Fig. 6.1. The dashed vertical line indicates the position of NCL=95% = 2509. The upper
limit of the 3

ΛH production in the phase space region A2 is N3
ΛH = NCL=95% − Nbck=71,

under the selection criteria listed in table 4.6 (in the phase space region A2). In the same
manner, the upper limit of the 3

ΛH production in the phase space region A3-A4 and that
of the 4

ΛH production in the phase space region B2-B4 are estimated. The numbers and
the corresponding upper limit of the production yields (the reconstruction efficiency and
decay branching ratio are included) are listed in table 6.2. In this estimation, the upper
yield limit of 3

ΛH and 4
ΛH in the phase space region A3 and B3 is close to the corresponding

yield in the phase space region A1 and B1, respectively. These suggest that the 3
ΛH and

4
ΛH signal may populate the phase space region A3 and B3, but due to the worse detection
resolution (mostly from the old plastic barrel), no clear signal could be observed. Beware
that the lower detection efficiency of 4

ΛH in the phase space region A3 is used.

Table 6.2: Upper production limit of 3
ΛH and 4

ΛH at 95% confidence level in the phase
space region A2-A4 and B2-B4, respectively.

Particle 3
ΛH 4

ΛH
Region A2 A3 A4 B2 B3 B4
NSIG -5 139 63 -10 15 4
NBCK 2438 2651 899 184 200 46

N<SIG|Cl=95%> 71 225. 113. 11. 39. 15.
Y<SIG|Cl=95%> 1.0E-04 5.2E-04 2.1E-04 1.4E-05 1.7E-04 5.6E-05

98



6.2. Systematic error estimation

a
.u Figure 6.1: Assumed

Gaussian distribution
of the total counts
(3
ΛH signal counts

plus the background
counts) in the phase
space region B2. The
area from −∞ to the
vertical dashed line
corresponds to 95% of
the distribution.

6.2 Systematic error estimation

The systematic error of the yield of 3
ΛH and 4

ΛH is estimated by comparing the number of
reconstructed 3

ΛH and 4
ΛH in the data and the MC simulation by varying the cut conditions.

The critical cut quantities for 3
ΛH reconstruction are listed in the first column of table 6.3.

In the second column, “L” and “U” indicate the variation applied in the lower or upper
cut limit of the corresponding quantity. For each concerned cut, the boundary is varied
by a value of ∆+ and ∆− with respect to the original cut value. The value of ∆+ and ∆−
for each quantity is listed in table 6.3. In the units column, the σd0,π− is the variance of
the d0 distribution of π−, it has a value of 0.45 cm. For the other quantities without a
clear reference, the cut condition varies by about 10-20%. Among the evaluations, only
one cut condition is changed each time, the others are kept the same.

Under each cut variation, a relative change in the number of identified 3
ΛH is calculated,

i.e. ∆N± = (N± − Nori)/Nori, where N± is the number of identified 3
ΛH with the ∆+

or ∆− variation, Nori is that under the original selection criteria (listed in table 4.6).
For each cut condition, ∆N+ and ∆N− can be viewed as a different sample around the
original cut condition. The relative change of identified 3

ΛH under these two variations is
their averaged value, i.e. ∆N = (∆N+ + ∆N−)/2. Under the same cut variation, a ∆N
can be derived from both the experimental data and the simulated data, substituted as
∆exp and ∆MC . Their values are listed in table 6.3. The systematic error contribution
of each concerned cut condition is given by ∆NE−M = ∆NExp-∆NMC , which quantifies
the matching quality between the experimental data and the MC data. The another
systematic error source comes from the normalization factor, which has been discussed in
chapter 4. For 3

ΛH, the error of the normalization factor is about 0.25%. The SOB ratio
is about 1/10 for the signal region: mean±1.5σ (see Fig. 4.9), this results in about 2.5%
relative change of the signal number.

Since the number of identified 3
ΛH is a common effect from all contributions, the systematic
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error of the final yield of 3
ΛH is the quadratic sum of all contributions. It has a value

of about 19%. Finally, the number of identified 3
ΛH in the phase space region A1 is

363±128(sta.)±87(sys.). The systematic error of the final yield of 4
ΛH is estimated in the

same manner as in the case of 3
ΛH. The error sources and their contributions are listed in

table 6.4. The systematic error for the yield of 4
ΛH is about 32%. Therefore, the number

of identified 4
ΛH in the phase space region B1 is 73±36 (sta.)±23(sys.).

Table 6.3: Systematic error sources of yield and lifetime of 3
ΛH.

Variable edge
Variation ∆Nexp ∆NMC ∆NE−M ∆τ

∆+ ∆- unit (%) (%) (%) (ps)
d0,π− L -0.5 0.5 σd0,π− -11.8 0.1 -11.9 21.0

HMULπ− L 2 4 - -10.0 -6.3 -3.7 -2.0
pt,π− L 0.005 0.01 GeV/c -2.5 -3.3 0.8 25.0
rs L -0.10 0.10 cm -2.4 0.2 -2.6 15.0
rs U -2.00 2.00 cm -1.5 0.1 -1.6 -9.0

pt/m
† L -0.02 0.02 [c] -11.0 -0.8 -10.2 10.0

pt/m
† H -0.02 0.02 [c] -1.4 -1.3 -0.1 -2.5

ylab
† L -0.02 0.02 - -3.1 -0.9 -2.2 -1.5

ylab
† U -0.02 0.02 - -6.7 -1.3 -5.4 2.0

PMUL L -3 3 - -3.1 0.0 -3.1 -2.0
PMUL U -3 3 - -5.2 0.0 -5.2 -1.0
TMUL L -2 2 - -3.8 0.0 -3.8 16.0
TMUL U -2 2 - -2.6 0.0 -2.6 -13.0

η 2.5 - 2.5 -
Total 19.% 44.

† 3He related variables

6.3 Determination of the mean lifetime of 3
ΛH and 4

ΛH

The lifetime is one of the most important properties for a particle species. So far, the
measured lifetime of 3

ΛH and 4
ΛH is of the same order as the lifetime of the Λ hyperon,

but both are not precisely measured (see table 4.1). In this section, the mean lifetime
of 3

ΛH and 4
ΛH is derived from their decay time distribution, and the extracted result is

compared to the other measurements, respectively.

6.3.1 The mean lifetime of 3
ΛH

The procedure used to extract the mean lifetime from the decay time spectrum was
demonstrated in section 5.3.3, where the mean lifetime of the Λ hyperon was extracted.
The decay times of the 3

ΛH candidates are calculated with Eq. 5.3, in which rs is the arc
length between the primary vertex and the secondary vertex, pt represents the transverse
momentum of the 3

ΛH candidate and m is the nominal mass of 3
ΛH.
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Table 6.4: Systematic error sources of yield and lifetime of 4
ΛH.

Variable edge
Variation ∆Nexp ∆NMC ∆NE−M ∆τ

∆+ ∆- unit (%) (%) (%) (ps)
d0,π− L -0.3 0.3 σd0,π− -15.5 0.5 -16.0 5.0

HMULπ− L 2 4 - -4.9 -6.0 1.1 -0.5
pt,π− L 0.005 0.01 GeV/c -7.0 -1.2 -5.8 -8.0
rs L -0.10 0.10 cm -7.0 -0.8 -6.2 -14.5
rs U -2.00 2.00 cm 1.4 -1.1 2.5 0.0

pt/m
† L -0.02 0.02 [c] 0.0 0.0 0.0 0.0

pt/m
† H -0.02 0.02 [c] 0.0 0.0 0.0 0.0

ylab
† L -0.02 0.02 - 0.0 -0.4 0.4 -0.5

ylab
† U -0.02 0.02 - -7.0 -3.1 -3.9 25.5

PMUL L -3 3 - 0.7 -4.1 4.8 -2.0
PMUL U -3 3 - -4.9 0.7 -5.6 -6.0
TMUL L -2 2 - -5.6 -0.3 -5.3 28.5
TMUL U -2 2 - -2.1 0.5 -2.6 8.0

η 2.5 - 2.5 -
Total 21.% 43.

† 4He related variables

In the S325e data, under the selection cuts listed in table 4.6 (in the phase space region
A1), the decay time distribution of the 3

ΛH candidates (red line) and the normalized decay
time distribution obtained from the mixed events (blue line) are obtained, see Fig. 6.2(a).
After subtracting the background spectrum, the decay time spectrum is plotted in Fig.
6.2(b). The differential decay time efficiency of 3

ΛH obtained from the MC simulation
is shown in Fig. 6.2(c). The decay time distribution is corrected bin by bin by the
differential efficiency spectrum, and the resulting spectrum is drawn in Fig. 6.2(d). The
spectrum is fitted by Eq. 5.4, which is depicted by a straight black line. The extracted
lifetime of 3

ΛH is 263±64 ps.

As a cross check, the flight distance in the z-direction of the 3
ΛH candidates can be recal-

culated by zs = rs/tan(θ), from a known rs and θ (polar angle). By using an expression
similar to Eq. 5.3, the decay time tz can be derived from the variable zs and pz, where
pz is the longitudinal momentum of the 3

ΛH candidate. Similarly, the total flight distance
s in space can be calculated, i.e. s =

√
r2
s + z2

z . The decay time ts can be derived by
using the variables s and p (the total momentum of the 3

ΛH candidate) as well. The decay
time t used in the previous chapters, derived from the variables in the transverse plane,
is substituted as tt. Since the spectrum of tt, tz and ts carries the lifetime information of
the same particle species, the extracted results should be consistent with each other.

Fig. 6.3 shows the decay time distributions of tt (circles), tz (triangles) and ts (crosses).
Each spectrum is corrected by a corresponding differential efficiency distribution and
fitted by an exponential function (Eq. 5.4). The slope parameter extracted from the tt,
tz and ts spectrum are 263±64 ps, 245±52 ps and 256±55 ps, respectively. The quoted
errors are the statistical errors. The mean lifetimes of 3

ΛH extracted from the tt, ts and ts
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Figure 6.2: (a) Decay time distribution of the 3
ΛH candidates (solid red line) and normal-

ized mixed event background (open circles). (b) Decay time distribution after subtracting
the background spectrum. (c) The differential decay time efficiency. (d) Decay time dis-
tribution after the efficiency correction, the straight black line is the fitted exponential
function.

distributions are consistent each other within the errors. It implies that the polar angle of
the 3

ΛH candidates assigned from the one corresponding to 3He is a good approximation.

The systematic error of the extracted mean lifetime of 3
ΛH is estimated by the same pro-

cedure as described in section 6.2. Under each cut variation, a mean lifetime is extracted
from an efficiency-corrected tt distribution. Noting that both the decay time spectrum
and the differential efficiency spectrum are obtained under the same cut variation. The
quantity ∆τ listed in table 6.3, is the averaged mean lifetime change under the ∆+ and
∆− actions, i.e. ∆τ = (∆τ− + ∆τ+)/2, where ∆τ± = τ± − τori, τ− and τ+ are the ex-
tracted mean lifetime of 3

ΛH under ∆− or ∆+ variation and τori is that under the original
selection criteria. The systematic error of the mean lifetime of 3

ΛH is the quadratic sum
of all contributions, it has a value of 44 ps. Therefore, the mean lifetime of 3

ΛH extracted
in this work is 263±64(sta.)±44(sys.) ps.

The lifetime of 3
ΛH was measured by the early emulsion and bubble chamber experiments

with large uncertainties. More recently, the lifetime of 3
ΛH was measured by the STAR [70]

and the HypHI [71] collaboration. The uncertainties of these results are comparable to
the old measurements. The mean lifetime of 3

ΛH, extracted from this work, is compatible
with other measurements within the margin of error. The measurements are compiled in
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Figure 6.3: Decay
time distribution of
tt (circles), tz (trian-
gles) and ts (crosses)
of identified 3

ΛH.
Lines are the fitted
exponential functions.

table 6.5. As a reference, the lifetime of the Λ hyperon is also listed in the last column of
table 6.5.

Table 6.5: Compilation of the measured mean lifetimes of 3
ΛH.

A τ (ps) Ref. Technique

3
ΛH

90+220
−40 [133] Emulsion

232+45
−34 [134] Bubble chamber

285+127
−105 [135] Emulsion

128+35
−26 [136] Emulsion

264+84
−52 [137] Bubble chamber

246+62
−41 [119] Bubble chamber

191+62
−41 [70] HICs

231+112
−75 [71] HICs

263±64±44 This work HICs
Λ 263±2 [132] PDG value

6.3.2 The mean lifetime of 4
ΛH

The procedure for extracting the mean lifetime of 4
ΛH is the same as the one presented

in the previous section. The decay time distribution of tt (circles), tz (triangles) and ts
(crosses) of the 4

ΛH candidates is depicted in Fig. 6.4, respectively. Each distribution is
corrected by a corresponding differential efficiency spectrum and fitted by an exponential
function (Eq. 5.4). The extracted slope parameter from the tt, tz and ts spectrum is
196±78 ps, 243±110 ps and 247±128 ps, respectively. The quoted errors are the statistical
error only. The systematic error of the measured mean lifetime of 4

ΛH is estimated in
the same manner as the one in the 3

ΛH case. The systematic errors contributed by the
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considered cut variations are listed in the ∆τ column of table 6.4. The systematic error of
the mean lifetime of 4

ΛH is the quadratic sum of all contributions, it has a value of 45 ps.
Therefore, the final measured mean lifetime of 4

ΛH in this work is 196±78(sta.)±43(sys.)
ps.

C
o
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n
ts

Figure 6.4: Decay
time distribution of tt
(circles), tz (triangles)
and ts (crosses) of 4

ΛH.
Lines are the fitted
exponential functions.

The lifetime of 4
ΛH was measured by the early emulsion and bubble chamber data with

large uncertainties as with the lifetime of 3
ΛH. However the lifetime of 4

ΛH was better
constrained by the K−-stopped experiment at the KEK [138]. The measurement status
is compiled in table 6.6. The mean lifetime of 4

ΛH extracted in this work is compatible
with the other measurements within the margin of error.

Table 6.6: Compilation of the measured mean lifetimes of 4
ΛH.

A τ (ps) Ref. Technique

4
ΛH

180+250
−70 [133] Bubble chamber

268+166
−107 [139] Emulsion

194+24
−26 [138] Stopped K−

162+99
−73 [71] HICs

196±78±43 This work HICs
Λ 263±2 [132] PDG value

6.4 Impact parameter range for 3,4
Λ H production

In the FOPI experiment, the centrality of the collisions is characterized by the CDC track
multiplicity TMUL and the PLW hit multiplicity PMUL. The distributions of TMUL
and PMUL of the S325e experiment are depicted in Fig. 3.1. As mentioned in chapter
3, the dependence of the number of emitted particles in HICs on the impact parameter
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can not be expressed in an analytic fashion. However, with a given particle multiplicity
range, the corresponding impact parameter range can be estimated by comparing the
measured multiplicity to the one given by the transport model calculation. In the model
calculation, the dependence of the number of the emitted particles on the impact param-
eters can be connected. Usually, it is easier to use the impact parameter rather than the
measured multiplicity to compare the centrality conditions to the other measurements or
the theoretical predictions. Therefore, the impact parameter range, corresponding to the
centrality constraints for TMUL and PMUL of 3

ΛH and 4
ΛH production, is discussed via

comparing the measured particle multiplicities to the IQMD calculations.

The constraints for TMUL and PMUL are necessary for observing a significant signal of
3
ΛH and 4

ΛH. It implies that these hypernuclei are produced in a certain favored impact
parameter range. Since TMUL and PMUL are the measured particle multiplicities of the
same event in the different solid angle range, a total multiplicity, i.e. SMUL=TMUL +
PMUL, is used in the following discussion.

The impact parameter and the particle multiplicity are known for each IQMD event.
Filtering such events through the Geant software and the data analysis routines, the
distribution of SMUL is obtained, which is depicted by the blue line in Fig. 6.5(a). The
cyan line represents the SMUL distribution of IQMD events with application of the trigger
conditions of the S325e experiment, i.e. PMUL≥5 and BMUL≥1 (the PLB multiplicity)
(see section 2.3.2). It is in good agreement with the measured SMUL distribution of the
S325e experiment (red), corresponding to about 61% of the most central events. In the
figure, the SMUL distribution of the S325e experiment is normalized to that of the
IQMD events in a range of 40 < SMUL < 80. The constrained SMUL distribution for
3
ΛH (green) and 4

ΛH (magenta) production is about 51% and 21% of the S325e events,
respectively.

By applying the experimental constraints to the IQMD events, the corresponding impact
parameter ranges can be obtained. The impact parameter distribution of IQMD events
(blue), IQMD events with the trigger condition of the S325e experiment (cyan) and with
the SMUL constraints for 3

ΛH (green) and 4
ΛH (magenta) production are drawn in Fig.

6.5(b).

The mean of the corresponding impact parameter range for 3
ΛH and 4

ΛH production is
b̄3

ΛH=3.7 fm and b̄4
ΛH=3.3 fm, respectively, shown by the vertical dashed green and magenta

line. Comparing the impact parameter range (up to 9 fm) of Ni+Ni collisions, the favored
impact parameter range for 3

ΛH and 4
ΛH production in Ni+Ni collisions lies between the

most-central events and semi-central collisions. As a reference, the vertical dotted-dashed
line near b=2 fm and b=5.5 fm indicate the upper impact parameter limit of the integrated
5% and 40% of the most central events, respectively.

6.5 Production mechanism discussion

In non-central HICs at SIS18 energies, the particles, like π±, K− and hyperon Λ produced
in the fireball, strongly interact with the spectators. In the course of these interactions,
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(a) (b)

Figure 6.5: (a) SMUL distribution of filtered IQMD events (blue), IQMD events with
the trigger conditions of the S325e experiment (cyan), S325e experimental data (red)
and the constrained SMUL distribution for 3

ΛH (green) and 4
ΛH (magenta) production.

(b) Impact parameter distribution of IQMD events (red), IQMD events with the trigger
conditions of the S325e experiment (cyan) and with SMUL constraints for 3

ΛH (green)
and 4

ΛH (magenta) production.

the hypernuclei can be produced by several scenarios, as discussed in chapter 1 (section
1.2.1). Due to the shortage of available data, the production probability of those processes
are unknown so far. In this section, firstly the hypernuclei production via the coalescence
process is naively discussed. In the second part, the yield ratios of 3

ΛH/3He and 4
ΛH/4He

are compared with the thermal predictions.

6.5.1 Coalescence scenario

The coalescence scenario for the hypernuclei production in HICs is the earliest and most
discussed scenario. Hypernucleus formation by this process can be expressed as Λ +A

X→A+1
Λ X, where X is the core nucleus and A is its mass number. From this picture,

3
ΛH (4

ΛH) are the coalescent products of the Λ hyperons and the deuterons (tritons).
The particles, populated in the same phase space cell in the pt/m − ylab plane, have a
similar velocity vector. Assuming the particles in the same phase space cell have the same
probability to “stick” together during the emission, the production probability of 3

ΛH or
4
ΛH should be proportional to the production probability of a Λ hyperon and a deuteron
or triton, i.e. Y (3

ΛH) ∝ Y (Λ)·Y (d) and Y (4
ΛH) ∝ Y (Λ)·Y (t).

The efficiency-corrected yield of Λ and d(t) in the phase space region A1 (B1) and A2 (B2)
is listed in table 6.7. The joint yield of Y (Λ)·Y (d) in the phase space region A2 is about
1.5 times higher than that in the phase space region A1. If the above assumption is true,
the yield of 3

ΛH in the phase space region A2 should be about 1.5 times higher than the one
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Table 6.7: Yield of Λ and d(t) in the phase region A1 (B1) and A2 (B2).
Region Y(Λ) Y(d) Region Y(Λ) Y(t)

A1 1.3× 10−3 3.3× 10−1 B1 1.2× 10−3 6.6× 10−2

A2 2.2× 10−3 3.0× 10−1 B2 2.3× 10−3 6.7× 10−2

in the phase space region A1. In other words, more than 500 3
ΛH are expected in the phase

space region A2, since the detection efficiencies in both regions are comparable. Similarly,
the joint yield of the Λ hyperon and triton, i.e. Y (Λ)·Y (t) in the phase space region
B2 is about 2 times higher than that in the phase space region A1. About 150 4

ΛH are
expected in the phase space region B2. These naive expectations are not compatible with
the experimental observations, i.e. no clear signal of 3

ΛH and 4
ΛH is observed in the phase

space regions A2 and B2 in the data, respectively.

From these simple estimations, we can not rule out the coalescence scenario for the 3
ΛH and

4
ΛH production in Ni+Ni collisions at 1.91A GeV, because the relative positions of the
considered particles during the emission are unknown. This means that the assumption
made at the beginning of this section may be not valid.

6.5.2 Yield ratios and thermal model predictions

The statistic model is a successful approach to describe the hadron production in HICs
with the assumption of the whole system reaching a thermal and chemical equilibrium.
In a thermal system with a given temperature and baryon chemical potential, the yield of
the conventional particles is only related to their masses. For the yield of clusters with the
strangeness in HICs at SIS18 energies, a suppression factor, due to the local strangeness
conservation, has to be taken into account. The yield ratios of the particles with similar
masses are of particular interest, like the yield ratio of 3

ΛH and 3He, as well as that of
4
ΛH and 4He. In the thermal production, the yield ratio of the considered pairs is the same
in the whole phase space. Therefore, in the given phase space region, the yield ratios of
3
ΛH/3He and 4

ΛH/4He predicted by the thermal model are valid.

The yield ratio of 3
ΛH/3He (4

ΛH/4He) in the phase space region A1 (B1) and its upper limit
(at the 95% confidence level) in the phase space region A2 (B1) are listed in table 6.8
(table 6.9). The reconstruction efficiencies and the decay branching ratios are included in
those numbers, while noting that the yield of 3

ΛH and 4
ΛH is normalized to the centrality

constrained events, which are about a half and 20% of all S325e events, respectively
(see section 6.4). The used yield of 3He and 4He is obtained from the events, which are
constrained by the corresponding centrality conditions for 3

ΛH and 4
ΛH reconstruction.

The statistic error of the yield ratio of 3
ΛH/3He in the phase space region A1 is dominated

by the statistic error of 3
ΛH, which is about 35%. Its systematic errors, contributed by

3He, are cancelled out. Therefore, only the contributions from the variables which do not
directly relate to 3He (see table 6.3) are taken into account. By taking the 5-7% decay-
branching uncertainty of channel 3

ΛH→π−+3He, the systematic error of this yield ratio is
about 16%. The yield ratio of 4

ΛH/4He in the phase space region B1 and the upper limit of
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the ratio in the phase space region B2 are listed in table 6.9. The statistical error of this
ratio is about 49%, and its systematic error is the quadratic sum of those contributions
which do not directly relate to 4He. The total systematic error has a value of 17%. The
uncertainty of the decay branch of two-body π−-decay of 4

ΛH is relatively small with a
value of 0.2% (see table 4.1).

Table 6.8: Yield ratio of 3
ΛH/3He in the phase pace regions A1 and A2.

Region 3
ΛH 3He 3

ΛH/3He Error(sta.) Error(sys.)
A1 1.5× 10−3 5.3× 10−2 2.9× 10−2 35% 15%
A2 < 2.0× 10−4 3.4× 10−2 < 6.0× 10−3 — —

Table 6.9: Yield ratio of 4
ΛH/4He in the phase pace regions B1 and B2.

Region 4
ΛH 4He 4

ΛH/4He Error(sta.) Error(sys.)
B1 6.4× 10−4 2.3× 10−2 2.8× 10−2 49% 20%
B2 < 6.9× 10−5 1.0× 10−2 < 6.7× 10−3 — —

These yield ratios are compared to the thermal calculations. Fig. 6.6(a) shows the yield
ratio of 3

ΛH/3He as a function of the baryon chemical potential µb. The symbols are
the predicted yield ratios for a Ni+Ni system at different temperatures, i.e. T = 80
MeV (circles), T = 70 MeV (square), T = 64 MeV (pentagram) and T = 60 MeV
(triangles) [140]. The freeze-out parameters are for the HICs at SIS18 energies (see Fig.
1.1). The measured yield ratio of 3

ΛH/3He in the phase space region A1 is depicted by a
black horizontal line, and the cross-hatched-line blue band indicates its statistical error.
The upper limit at the 95% confidence level of the ratio 3

ΛH/3He in the phase space region
A2 is indicated by a horizontal red line.

The Fig. 6.6(b) shows the yield ratio 4
ΛH/4He as a function of the baryon chemical

potential. The symbols have the same meaning as those in Fig. 6.6(a). The yield ratio of
4
ΛH/4He in the phase space region B1 is shown by a black horizontal line, and its statistical
error is shown by the cross-hatched-line blue band. The red line is the upper limit of the
yield ratio at 95% confidence level of 4

ΛH/4He in the phase space region B2.

The yield ratio of 3
ΛH/3He in the phase space region A1 and that of 4

ΛH/4He in the phase
space region B1 can be produced by the thermal prediction with the large temperature
and/or the small baryon chemical potential. The upper limit of the yield ratio of 3

ΛH/3He
in the phase space region A2 and that of 4

ΛH/4He in the phase space region B2 are close
to the predictions with the lower temperature and/or the high baryon chemical potential.

Since the phase space region A2 and B2 are closer to the mid-rapidity in Ni+Ni collisions
at 1.91A GeV, comparing to the phase space region A1 and B1, intuitively the temperature
in the region A2 (B2) should be higher than the one in the phase space region A1 (B1).
Therefore, it is not possible to describe these yield ratios by the thermal model at the same
time. This implies that thermal predictions are not applicable to hypernuclei production
in HICs at SIS energies directly. This may be because the nuclear matter at the regions
where the hypernuclei were produced, does not reach thermal and chemical equilibrium.
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Figure 6.6: Yield ratio of 3
ΛH/3He (a) and 4

ΛH/4He (b) as a function of baryon chemical
potential µb. The blue band is the yield ratio of 3

ΛH/3He (4
ΛH/4He) in the phase space

region A1 (B1). The red line is the upper limit of the corresponding yield ratio in the
phase space region A2 (B2). The symbols are the yield ratios of 3

ΛH/3He (a) and 4
ΛH/4He

(b) at various temperatures predicted by the thermal model. For detailed descriptions
see the text.
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Summary and outlook

A spectacular feature of non-central HICs at SIS18 energies is that the fireball matter
strongly interacts with the spectator matter. This feature is vividly illustrated by the
collective behaviors of the emitted particles, i.e. the strong sideflow and the out-of-plane
elliptic flow. In the course of the interactions between the fireball matter and the spectator
matter, the hadrons with the “s” quark, like Λ, Σ and K− produced in the fireball, may get
absorbed by the cold spectator matter. Hadronic matter with special compositions may
be created. Hypernuclei and kaonic bound states are possible expectations. Therefore,
the HICs in this energy regime provide a unique environment to study the hyperon-
nucleon (YN) interaction and the in-medium properties of the kaon. The advantage of
HICs for investigating the Λ-hypernuclei is that the produced hypernuclei have relatively
large momenta, which can be used to determine the lifetime of the hypernuclei precisely.
However, the drawback of HICs is their high background.

In this work, the production of 3
ΛH and 4

ΛH in Ni+Ni collisions at a beam energy of
1.91A GeV, performed with the FOPI spectrometer, is investigated. The analysed decay
channel to identify 3

ΛH and 4
ΛH is their two-body π−-decay channel, i.e. 3

ΛH→π−+3He and
4
ΛH→π−+4He. The (π−,3He) and (π−,4He) pairs are sought according to geometrical and
kinematic constraints. Due to the high particle multiplicity in HICs, most of the selected
pairs are accidental combinations. In order to eliminate the combinatorial background,
a mixed-event technique is used to reconstruct this background. The full procedure is
demonstrated by reconstructing the invariant mass of the Λ hyperons.

For the first time, evidence of 3
ΛH and 4

ΛH production in the heavy system at SIS18
energies is obtained from the invariant mass spectrum of (π−,3He) and (π−,4He), respec-
tively. However, these signals are only populated in a certain phase space region in the
pt/m-ylab plane. Under a set of stringent geometrical and centrality constraints, about
363±128(sta.)±87(sys.) 3

ΛH are identified in a restricted phase space region (called A1 in
the text) from the data sample, which consists of 56×106 events covering the most-central
60% of the total reaction cross section. The excess in the final invariant mass spectrum
of (π−,3He) pairs is fitted by a Gaussian function, with a mean of 2.9927±0.017 GeV/c2

and a width of 5.6±1.6 MeV/c2. Within the margins of error, the reconstructed invariant
mass is consistent with the nominal mass of 3

ΛH. The significance of the excess depends on
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the range of the signal region, and it reaches its maximum value of 5.6 within the signal
region: M̄±1.5σ. By applying the very same selection criteria in three other phase space
regions (called A2, A3 and A4 in the text), no significant signal is observed.

Similarly, about 73±36(sta.)±23(sys.) 4
ΛH are identified in a certain phase space region

(called B1 in the text) with a set of geometrical and centrality constraints. The excess,
around the nominal mass of 4

ΛH, in the final invariant mass spectrum of (π−,4He) pairs is
fitted by a Gaussian distribution, the mean and the width of the excess are 3.9926±0.001
GeV/c2 and 4.0±1.6 MeV/c2, respectively. Within the signal region of about M̄ ± 1.5σ,
the significance of the excess reaches its maximum, and it has a value of 4.2. As with the
3
ΛH case, applying the very same selection cuts in three other phase space regions (called
B2, B3 and B4 in the text) in the pt/m-ylab plane, no significant signal of 4

ΛH is observed.

The detection efficiency of 3
ΛH and 4

ΛH is estimated by a full Geant simulation. 3
ΛH and

4
ΛH signals, sampled from a flat distribution in the pt/m-ylab plane, are embedded into
background events. After filtering such events through the Geant package and the re-
construction routines, the detection efficiency of 3

ΛH in the phase space region A1-A4 is
determined to be 2.4%, 3.6%, 2.2% and 2.7%, respectively. That of 4

ΛH in the phase space
region B1-B4 is 1.4%, 2.0%, 0.6% and 0.7%. In order to cross check the consistency be-
tween the experimental data and the simulated data, a differential decay time efficiency of
the Λ hyperons, obtained from the MC simulation, is applied to the measured decay time
spectrum of the Λ hyperons. The extracted mean lifetime of the Λ hyperon is 262± 7 ps,
which is in good agreement with the PDG value. By applying the similar differential decay
time efficiency obtained from the MC simulation, the extracted mean lifetime of 3

ΛH and
4
ΛH is 263±64(sta.)±44(sys.) ps and 196±78(sta.)±43(sys.) ps, respectively. Within the
error, the values agree with other lifetime measurements available in the literature.

By applying the obtained detection efficiency and its decay branching ratio, the obtained
total yields of 3

ΛH in the phase region A1 and the one of 4
ΛH in the phase space region

B1 are 7.5×10−4 and 1.3×10−4, respectively. In the phase space region A2-A4 and B2-
B4, the upper production limit of 3

ΛH and 4
ΛH at the 95% confidence level is estimated,

based on the signal counts and the background counts in the signal region, respectively.
From this estimation, we found that the upper limit of the yield of 3

ΛH and 4
ΛH in the

phase space region A3 and B3 (lower momentum region close to the target rapidity) is
close to the corresponding yield in the signal phase space region A1 and B1, respectively.
The systematic errors, quoted for the yield and the mean lifetime of 3

ΛH and 4
ΛH, are

estimated by varying the cut conditions and comparing the variation of results between
the experimental data and the simulated data.

The impact parameter range for 3
ΛH and 4

ΛH production in Ni+Ni collisions at 1.91A
GeV is obtained by comparing the particle multiplicity from the measured data and
filtered IQMD events. It is found that the favored impact parameter range for 3

ΛH and
4
ΛH production lies between the very central (5%) and the moderately central collisions
(40%).

Based on the measured particle yields, the hypernuclei production via the coalescence
process is naively discussed. According to the coalescence scenario, the 3

ΛH (4
ΛH) are the

coalescent products of the Λ hyperons and the deuterons (tritons). Assuming that the
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particles, populated in the same phase space cell in the pt/m−ylab plane (velocity space),
have the same probability to “stick” together during the emission. Comparing the yield of
Λ and d(t) in the phase space region A1 (B1) and A2 (B2), the number of 3

ΛH in the phase
space region A2 and that of 4

ΛH in the phase space region B2 are expected to be about 1.5
times and 2 times higher than the corresponding observation in the phase space region
A1 and B1, respectively. These expectations are not compatible with the experimental
observations.

Yield ratios of 3
ΛH/3He (4

ΛH/4He) in the phase space region A1 (B1) and the upper limit of
the ratio in the phase space region A2 (B2) are obtained from those events, constrained by
the centrality cuts of the 3

ΛH (4
ΛH) reconstruction. These ratios are compared with thermal

predictions with various temperatures and baryon chemical potentials. It is found that
the yield ratio of 3

ΛH/3He (4
ΛH/4He) in the phase space region A1 (B1) can be reproduced

by the thermal model with high temperature and/or low baryon chemical potential. The
upper limit of the yield ratio of 3

ΛH/3He (4
ΛH/4He) in the phase space region A2 (B2)

can be described by a thermal calculation as well, but with lower temperature and/or
higher baryonic chemical potential. This trend is counterintuitive, since the temperature
of the spectator matter is expected to be colder than the one of participate matter. This
could be a evidence that the thermal predictions are not directly applicable to hypernuclei
production in HICs at SIS energies.

Since the phase space coverage of the current FOPI setup is limited by the detector ac-
ceptance, it is possible that the formed hyperclusters populate a wider rapidity range
and lower transverse momentum region. This question can be taken up by the future
heavy-ion experiment setup, like CBM@FAIR [141], which has an excellent spatial reso-
lution and a high rate capability. It would act as a hypernuclei factory and would allow
to investigate the decay branching, lifetime and decay mode of the single-Λ hypernuclei
precisely. Meanwhile, investigating the properties of even more rare probes, like the Σ-
hypernuclei and double-strangeness hypernuclei, is also possible. More theoretical inputs
are necessary for clarifying the mechanism of hypernuclei production in HICs.
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Appendix A

The Bethe-Bloch Formula

The mean energy loss of a moderately relativistic charged heavy particle passing through
the material is described by the Bethe-Bloch formula [142],

−dE

dx
= 4πNAr2

emec
2ρ

Z

A

z2

β2

[
1

2
ln

(
2mec

2β2γ2Tmax

I2

)
− β2 − δ(βγ)

2

]
(A.1)

where,

Na: Avogadro’s number = 6.022×1023 mol−1

re: Classical electron radius = 2.818 fm

mec
2: The mass of electron = 511 keV

Z,A: Atomic number and atomic mass of absorber

ρ: Density of absorber

z: Charge of the incident particle

β: Velocity of incident particle = v/c, γ = 1/
√

1− β2

I: Mean excitation energy ('10 eV)

Tmax: The maximum kinetic energy can be imparted to a free electron

δ(βγ): Density effect correction to ionization energy loss

The energy loss -dE/dx is usually given in units of MeV·g−1cm2. The energy loss is
related with the velocity of incident particle, but independent of its mass. For a particle
with low velocity, the mean energy loss is proportional to 1/β2, i.e.

−dE

dx
∝ z2

β2
. (A.2)

By correlating the velocities of the charged particles, measured by the TOF detectors
(PLW, PLB and RPC) and the dE/dx information measured by the CDC, the charges
of the particles can be determined. For the CDC alone, besides the dE/dx information,
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the charge scaled momentum p/z is measured. With assuming z = 1, 2, · · · , we have
β2 = p2/(p2 + m2). Eq. A.2 can then be rewritten as the following,

−dE

dx
∝ z2

β2
= z2

(
p2 + m2

p2

)
= z2(1 +

m2

p2
) = z2 +

m2

(p/z)2
. (A.3)

Noting that from the above expression, the mass of the particle is required. Sine the
masses of heavy clusters like 3,4He can not be well defined by the CDC alone, their charge
can also not be derived precisely.
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Appendix B

Kinematic Variables

In relativistic heavy-ion collisions, if the beam is moving along the z direction towards a
fixed target, then the center of mass frame moves along the z-direction. For simplicity,
in this section units are used in c = h̄ = 1. For the convenience of transforming the
kinematic variables between the laboratory frame and the center of mass frame, instead
of the longitudinal velocity βz = vz, the rapidity y is defined by the total energy E and
the longitudinal momentum pz, i.e.

y =
1

2
ln

(
E + pz

E − pz

)
= tanh−1βz. (B.1)

Although this variable depends on the reference frame, it shows a very convenient be-
haviour under a Lorentz transformation. Namely, the rapidity can be used like a number
to calculate the final result. For example, a particle with rapidity y in laboratory frame,
which needs to be transformed into the center-of-mass frame with the ycm relative to the
lab frame, the rapidity of the particle in center-of-mass frame is y′ = y − ycm.

Initially, there is no energy in the transverse plane, the transverse momentum pt is in-
variant under a Lorentz transformation along the beam direction. A variable called the
transverse mass is defined by the transverse momentum and the mass,

mt =
√

p2
t + m2. (B.2)

By using the Eq. B.2, the total energy E and the longitudinal momentum pt can be
expressed by the transverse mass and the rapidity,

E = mt·cosh(y), (B.3)

pz = mt·sinh(y). (B.4)

For Ni+Ni collisions at 1.91A GeV, the rapidity of the fixed target is zero in the lab frame.
The total energy and the longitudinal momentum of the beam particle have the following
forms

E = Ebeam + mamu, (B.5)
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p =
√

E2 −m2
amu, (B.6)

where Ebeam is the kinetic energy of the beam per unit mass mamu = 0.9315 GeV. Since
this is a symmetrical reaction, the rapidity of the center-of-mass frame can be calculated
as the following,

ycm =
ytar + ybeam

2
=

0. + 1.78

2
= 0.89 (B.7)

Typically, the phase space of the particles in HICs is shown in the plane of mass scaled
transverse momentum pt/m and rapidity ylab.

Two useful relations:

a) Transverse momentum pt as a function of rapidity ylab with a given polar angle θ.
This is used quite frequently to indicate the polar angle acceptance of the detectors. The
relation can be derived from Eq. B.4 by using pz = pt/tanθ,

pt =
m√(

sinh(y)
tan(θ)

)2

− 1

. (B.8)

b) Transverse momentum pt as a function of rapidity ylab with a given total momentum,

which can be derived from Eq. B.3 by using the relation E =
√

p2
tot + m2,

pt =

√
p2

tot + m2[1 + cosh2(y)]

cosh2(y)
= m·

√
(ptot/m)2 + 1 + cosh2(y)

cosh2(y)
. (B.9)
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