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Abstract

In their approach to higher-dimensional global class field theory, Kato and
Saito define the class group of a proper arithmetic scheme X̄ as an inverse
limit CKS(X̄) = lim←−I CI(X̄) of certain Nisnevich cohomology groups CI(X̄)

taken over all coherent ideal sheaves I 6= 0 of OX̄ . The ideal sheaves I
should be regarded as higher-dimensional analogues of the classical moduli
m on a global field K, which induce a filtration of the idele class group CK
of K by the ray class groups CK/Cm

K . In higher dimensions however, it is
not clear how the induced filtration of the abelian fundamental group can
be interpreted in terms of ramification.
In view of Wiesend’s class field theory, we define an easier notion of moduli
in higher dimensions only involving curves on the scheme. We then show
that both notions agree for moduli that correspond to tame ramification.





Zusammenfassung

Kato und Saito definieren in ihrem Zugang zur höherdimensionalen globalen
Klassenkörpertheorie die Klassengruppe eines eigentlichen arithmetischen
Schemas X̄ als einen über sämtliche kohärenten Idealgarben I 6= 0 von OX̄
gebildeten inversen Limes CKS(X̄) = lim←−I CI(X̄) gewisser Nisnevich-Koho-
mologiegruppen CI(X̄). Die Idealgarben I sollten als höherdimensionale
Analoga der klassischen Erklärungsmoduln m eines globalen Körpers K ver-
standen werden, welche eine Filtrierung der Idelklassengruppe CK von K

durch die Strahlklassengruppen CK/C
m
K induzieren. Im Höherdimension-

alen ist es jedoch nicht klar, wie die induzierte Filtrierung der abelschen
Fundamentalgruppe bezüglich Verzweigung zu interpretieren ist.
In Hinblick auf Wiesends Klassenkörpertheorie definieren wir einen einfache-
ren Begriff von höherdimensionalen Erklärungsmoduln, der lediglich die Kur-
ven auf dem Schema beinhaltet. Anschließend zeigen wir, dass beide Begriffe
übereinstimmen, wenn der Erklärungsmodul zu zahmer Verzweigung korre-
spondiert.
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Introduction

Background

It is content of classical one-dimensional global class field theory that the
idele class group CK of a global field K has a canonical filtration by moduli.
A modulus is a formal product

m =
∏
v

vnv

taken over all places v of K with integer exponents nv ≥ 0, which are zero
for all but finitely many v, and nv ∈ {0, 1} for real v and nv = 0 for complex
v. To m one associates the congruence subgroup Cm

K ⊂ CK mod m of the
idele class group CK of K.
If K is a number field, the ray class group CK/Cm

K mod m is finite and has
a classical ideal-theoretic interpretation. It is isomorphic to the quotient
Jm/Hm

0 of fractional ideals Jm of K coprime to m (where m is viewed as an
ideal of K by dropping the archimedean places) modulo the subgroup Hm

0

of principal ideals coprime to m.
The subgroup Cm

K of CK corresponds to a finite abelian extension Km of the
number field K, called the ray class field mod m. To every finite abelian
extension L|K there exists a modulus m such that L ⊂ Km. In particular,
one has a filtration

Gal(Kab|K) = lim←−
m

Gal(Km|K)

of the Galois group of the maximal abelian extension Kab|K. The modulus
m carries information about the ramification properties of Km|K. Given
a finite subset S of the set of all places of K containing all archimedean
places, let Kab

S |K be the maximal abelian extension of K unramified outside
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S. Then, by only taking the limit over those moduli m =
∏
v v

nv with nv = 0

if v /∈ S, one obtains

Gal(Kab
S |K) = lim←−

m

Gal(Km|K).

The ray class field mod m = 1 (i.e. the modulus m =
∏
v v

nv , with nv = 0

for all v) is the maximal abelian unramified extension of K and is called the
Hilbert class field of K. The ray class field mod m =

∏
v v

nv , with nv = 0

for v /∈ S and nv = 1 for v ∈ S, is the maximal abelian extension of K
unramified outside S and tamely ramified in S.

The goal of developing a description of abelian coverings of a higher di-
mensional arithmetic scheme solely by intrinsic information of the scheme
(i.e. "higher-dimensional global class field theory") was reached by Kato
and Saito in their work [KaS]. For a connected, normal and proper scheme
X̄ over SpecZ, they define a class group CKS(X̄) of X̄ and a reciprocity map

ρX̄ : CKS(X̄)→ Gal(Kab|K)

into the Galois group of the maximal abelian extension of the function field
K of X̄ (which, for simplicity, is assumed to have no embeddings K ↪→ R).
Notably, the class group CKS(X̄) is by definition an inverse limit

CKS(X̄) = lim←−
I6=0

CI(X̄)

taken over all non-zero coherent ideal sheaves I ⊂ OX̄ , and the reciprocity
map is defined as the limit of reciprocity maps

CI(X̄)→ Gal(KI |K)

into suitable quotients Gal(KI |K) of Gal(Kab|K). The I should be thought
of as higher-dimensional moduli and the CI(X̄) as generalized ray class
groups. If X̄ is flat over SpecZ, the reciprocity map ρX̄ is an isomorphism
and induces an isomorphism

lim←−
I|X=OX

CI(X̄)→ πab1 (X)

for any non-empty regular open subscheme X ⊂ X̄ by restricting the limit
to all ideal sheaves I ⊂ OX̄ with I|X = OX . For dimX = 1 one recovers

12



the classical theory for number fields described above. However, in higher
dimensions, the constructions of Kato and Saito are quite involved and based
upon Kato’s class field theory for higher-dimensional local fields. This makes
it rather difficult to relate the properties of I at the boundary X̄ \ X to
ramification behavior outside X.

The theory of Wiesend, which he started developing in [Wi1] and [Wi2], and
was later completed by Kerz-Schmidt in [KeS2], uses a comparatively easier
approach. The class group of a regular arithmetic scheme X is built upon
information only coming from closed points and curves on X. In view of this
theory, we define a different notion of higher-dimensional moduli by starting
with a given normal compactification X̄ of X and a coherent ideal sheaf
I ⊂ OX̄ with I|X = OX , and saying that a finite étale abelian covering
Y → X is ramified with Wiesend modulus I, if for any curve C on X the
induced covering of k(C) is ramified with modulus IC , obtained by pulling
back I to the regular compactification of the normalization C̃ of C.

Results

First, we show that this definition indeed gives us an exhaustive filtration of
πab1 (X).

Proposition. Let X ∈ Sch(Z) be a connected regular scheme and let X̄ be
a normal compactification of X. Let Y → X be an abelian étale covering.
Then there exists an ideal I ⊂ OX̄ with I|X = OX such that Y → X is
ramified with Wiesend modulus I.

It is then natural to ask, whether one can compare this filtration of πab1 (X)

with the one induced by the class field theory of Kato-Saito

lim←−
I|X=OX

CI(X̄)→ πab1 (X).

It turns out that we can make a comparison of the respective quotients of
πab1 (X) corresponding to a "tame modulus" I. On the side of Kato-Saito,
the modulus I gives us a condition for the codimension one points and in
case of a tame modulus this leads towards the notion of divisor-tameness.
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Theorem. Let X ∈ Sch(Z) be a connected regular scheme which is flat over
SpecZ and let X̄ be a normal compactification of X such that D = X̄ \X is
a square-free divisor on X̄. Assume that X(R) = ∅. Let KD be the maximal
abelian extension L|K such that XL → X is tamely ramified along the generic
points of D. Then for the ideal sheaf I = OX̄(−D) the reciprocity map of
Kato-Saito induces an isomorphism

CI(X̄)
∼→ Gal(KD|K).

On the other side, the tame Wiesend modulus condition is related to the
notion of curve-tameness. Although the induced condition on curves might
be weaker than just tame, we can show the existence of sufficiently many
good curves.

Theorem. Let X ∈ Sch(Z) be a connected regular scheme and let X̄ be a
regular compactification of X such that D = X̄ \ X is a normal crossing
divisor on X̄. Then for an abelian étale covering Y → X the following are
equivalent:

(i) Y → X is curve-tame.

(ii) Y → X is tamely ramified along D.

(iii) Y → X is ramified with Wiesend modulus OX̄(−D).

The equivalence (i) ⇔ (ii) (for not necessarily abelian coverings) is part of
the main result in [KeS1]. Finally, when D is a normal crossing divisor
on X̄, we can compare CI(X̄) and the quotient ChW,I(X) of the henselian
Wiesend class group ChW (X) corresponding to the maximal abelian covering
of X ramified with Wiesend modulus I = OX̄(−D).

Theorem. Let X ∈ Sch(Z) be a connected, regular, flat scheme over SpecZ
and let X̄ be a regular compactification of X such that D = X̄\X is a normal
crossing divisor on X̄. Assume that X(R) = ∅ and put I = OX̄(−D). Then
there is a canonical isomorphism

ChW,I(X)
∼→ CI(X̄).
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Structure of this thesis

In chapter one we begin by recalling the theory of moduli in dimension one.
Then we present results which are significant for understanding the theory
of Kato and Saito. This includes Nisnevich cohomology, Milnor K-theory
and Kato’s class field theory for higher-dimensional henselian local fields.

In the second chapter, after reviewing the definition of the Kato-Saito class
group, we turn towards the notion of Wiesend moduli and show the propo-
sition on existence of moduli.

The construction of the reciprocity map of Kato-Saito will be the content of
the first section of chapter three. Then we recall Wiesend’s class field theory
and show that there is a canonical map from the henselian Wiesend class
group to the Kato-Saito class group. In the last section we focus on tame
coverings and prove the theorems relating the different notions of tameness to
tame moduli. Finally, we show the isomorphism between the corresponding
quotients of the respective class groups.
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Notation

The group of units of a ring R is denoted by R× and in case R is an integral
domain, we write Q(R) for its field of fractions. If R is a local ring, then Rh

is its henselization.

The structure sheaf of a scheme X is denoted by OX . The function field of
X is denoted by k(X) and the residue field of a point x on X by k(x). For
n ≥ 0 the set of points of dimension n on X is denoted by Xn, and the set
of points of codimension n by Xn. The set of regular points of X is Xreg.
The normalization of X in a finite field extension of L of k(X) is denoted by
XL → X.

We write Sch(Z) for the category of separated schemes of finite type over
SpecZ.

Zariski-closed subsets are always endowed with the induced reduced scheme
structure. By an ideal sheaf of OX for a scheme X, we always mean a
quasi-coherent ideal sheaf. An étale covering is a finite étale morphism.
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Chapter 1

Preliminaries

In this chapter we recollect basic facts about the theory of moduli in one-
dimensional class field theory. Furthermore, we gather some results concern-
ing Nisnevich cohomology, Milnor K-theory and Kato’s class field theory for
higher-dimensional local fields that will be needed for studying the class field
theory of Kato-Saito.

1.1 One-dimensional class field theory

We begin by recalling the classical theory of moduli and conductors on global
fields as presented in [AT] Ch. 8, for instance.

Moduli
Let K be a global field. For a place v of K let Kv be the completion of K
at v. If v is finite, let Ov ⊂ Kv be its ring of integers and let Unv ⊂ O×v be
the subgroup of n-th principal units, n ≥ 1. We define U0

v = O×v for finite
and infinite v, and U1

v = R>0 ⊂ R× if v is real. Denote by IK (resp. CK)
the idele group (resp. idele class group) of K and let

ρK : CK → Gal(Kab|K)

be the reciprocity map.

Definition. A modulus m on K is a formal product

m =
∏
v

vnv
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Chapter 1: Preliminaries

taken over all places v of K, where the nv are integers ≥ 0, which are zero
for all but finitely many v. We further require that nv ∈ {0, 1} for real v and
nv = 0 for complex v.

So if K is a number field with ring of integers OK , a modulus m on K can
be viewed as an integral ideal of OK together with a subset of the set of real
places of K. If K = k(X) for a smooth projective curve X over a finite field,
then m is the same as an effective divisor on X or equivalently, a non-zero
ideal sheaf of OX .

To a modulus m we associate the subgroup

ImK =
∏
v

Unvv

of the idele group IK and denote its image ImKK
×/K× under the projection

IK → CK by Cm
K . One has to distinguish between the number field and the

function field case.

If K is a number field, the subgroup Cm
K ⊂ CK is of finite index and hence

corresponds to a finite abelian extension Km of K. The reciprocity map ρK
induces an isomorphism

CK/C
m
K
∼→ Gal(Km|K).

To every finite abelian extension L of K there exists a modulus m such that
L ⊂ Km and so we obtain an isomorphism

lim←−
m

CK/C
m
K
∼→ Gal(Kab|K).

In the function field case the subgroup Cm
K ⊂ CK has infinite index. It

is however contained as a subgroup of finite index in the degree zero part
C0
K = ker(deg : CK → Z) of CK and we have a short exact sequence

0→ C0
K/C

m
K → CK/C

m
K → Z→ 0.

Hence Cm
K corresponds to an abelian extension Km of K which is finite over

the Ẑ -subextension KF̄|K, where F̄ denotes the algebraic closure of the
constant field F of K. If L|K is a finite abelian extension, then there exists a
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1.1 One-dimensional class field theory

modulus m such that Km contains LF̄ and, in particular, L. This is summed
up by the short exact sequence

0→ lim←−
m

C0
K/C

m
K → Gal(Kab|K)→ Ẑ→ 0.

The conductor
There is an obvious notion of divisibility for moduli and m′| m implies that
Km′ ⊂ Km.

Definition. Let L|K be a finite abelian extension. The conductor fL|K of
L|K is the g.c.d. of all moduli m with L ⊂ Km.

Thus we have L ⊂ Km if and only if fL|K | m. Let v be a place of K. The
following definition is independent of the choice of a place w of L above v.

Definition. If v is a finite place, the local conductor fL|K,v of L|K at v is the
smallest non-negative integer n such that Unv is contained in the norm group
NLw|Kv(L

×
w). For infinite v we set fL|K,v = 0 if Lw = Kv, and fL|K,v = 1 if

Lw 6= Kv.

Local and global conductor are related by the formula

f(L|K) =
∏
v

vfL|K,v ,

which immediately follows from the equality

NL|K(CL) ∩K×v = NLw|Kv(L
×
w)

([AT] 8.1, Theorem 2). Now, by local class field theory we know that

v is unramified in Lw ⇔ U0
v ⊂ NLw|Kv(L

×
w) ⇔ fL|K,v = 0 ,

v is tamely ramified in Lw ⇔ U1
v ⊂ NLw|Kv(L

×
w) ⇔ fL|K,v ≤ 1

(cf. [Se] Ch. V). Hence we get the

Corollary 1.1.1. A finite abelian extension L|K of global fields is unramified
if and only if fL|K = 1. It is tamely ramified if and only if fL|K is square-free.
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Chapter 1: Preliminaries

1.2 Nisnevich cohomology

In this section we recall the existence of the coniveau spectral sequence for
Nisnevich cohomology.

Let X be a finite-dimensional noetherian scheme and let F be a Nisnevich
sheaf on X. For a closed subscheme Z of X let Hn

Z(XNis,F) denote the n-th
Nisnevich cohomology group of X with support in Z. For an arbitrary point
x ∈ X we define

Hn
x (XNis,F) = lim−→

U

Hn
U∩{x}(UNis,F),

where the direct limit is taken over all Zariski-open subschemes U of X
containing x.

Lemma 1.2.1. For any n ≥ 0 we have an isomorphism

Hn
x (XNis,F) ∼= Hn

x ((Xh
x )Nis,F),

where Xh
x = SpecOhX,x.

Proof. [Ni] 1.29.2. 2

The local cohomology groups H∗x(XNis,F) satisfy certain axioms that imply
the existence of the so-called coniveau spectral sequence:

Proposition 1.2.2. Let Zp(X) be the set of closed subschemes of X of
codimension ≥ p. The filtration by coniveau on H∗(XNis,F) defined by

F pH∗(XNis,F) =
⋃

Z∈Zp(X)

ker
[
H∗(XNis,F)→ H∗((X \ Z)Nis,F)

]
gives rise to a spectral sequence

Ep,q1 =
⊕
x∈Xp

Hp+q
x (XNis,F)⇒ Hp+q(XNis,F).

Proof. [Ni] 1.31. 2

Corollary 1.2.3. We have Hn(XNis,F) = 0 for all n > dimX, i.e. the
cohomological dimension of XNis is at most dimX.
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1.3 Milnor K-theory

Proof. This follows by induction on dimX using the above spectral sequence
and Lemma 1.2.1. (cf. [Ni] 1.32). 2

By this vanishing result the coniveau spectral sequence yields the following
isomorphism.

Corollary 1.2.4. Let d = dimX. Then we have an isomorphism

Hd(XNis,F) ' coker
[ ⊕
x∈Xd−1

Hd−1
x (XNis,F)→

⊕
x∈Xd

Hd
x(XNis,F)

]
.

1.3 Milnor K-theory

In this section we summarize some properties of (relative) Milnor K-groups
and -sheaves, particularly the existence of the norm map and the tame sym-
bol.

Milnor K-groups
For a commutative ring R with unit and n ≥ 1 letKM

n (R) be the n-th Milnor
K-group of R defined as the quotient of

R× ⊗ · · · ⊗R×︸ ︷︷ ︸
n times

by the subgroup generated by all elements a1⊗ · · · ⊗ an with ai + aj = 1 for
some i 6= j. Set KM

0 (R) = Z. For an ideal I ⊂ R define

KM
n (R, I) = ker

[
KM
n (R)→ KM

n (R/I)
]
.

The residue class of an element a1⊗· · ·⊗an under (R×⊗· · ·⊗R×)→ KM
n (R)

is denoted by {a1, . . . , an}.

Lemma 1.3.1. Let R be a finite product of local rings and let I ⊂ R be an
ideal. Then KM

n (R, I) coincides with the subgroup of KM
n (R) generated by

all symbols {a1, . . . , an}, with ai ∈ KM
1 (R, I) = ker(R× → (R/I)×) for some

1 ≤ i ≤ n.

Proof. [KaS] Lemma 1.3.1. 2

For a noetherian scheme X and n ≥ 1 define the Nisnevich sheaf KMn (OX)

as the quotient of
O×X ⊗ · · · ⊗ O

×
X︸ ︷︷ ︸

n times
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Chapter 1: Preliminaries

by the subsheaf generated locally by sections a1 ⊗ · · · ⊗ an with ai + aj = 1

for some i 6= j. We define KM0 (OX) as the constant sheaf Z. For an ideal
I ⊂ OX define

KMn (OX , I) = ker
[
KMn (OX)→ i∗KMn (OY )

]
,

where Y denotes the closed subscheme of X defined by I and i : Y → X the
closed immersion.

Norm map and tame symbol
Let L|K be a finite extension of fields. It is shown in [Ka2] § 1.7, that there
is a well-defined norm homomorphism

NL|K : KM
n (L)→ KM

n (K),

which is the usual norm
NL|K : L× → K×

for n = 1 and satisfies the projection formula

{a,NL|K(b)} = NL|K({a, b})

for a ∈ KM
n−m(K) and b ∈ KM

m (L).

Now let R be a discrete valuation ring with residue field k and fraction field
K. By [BT] I, § 4, there is an epimorphism

∂ : KM
n (K)→ KM

n−1(k),

n ≥ 1, called the tame symbol, which is the valuation for n = 1 and which is
uniquely characterized by the property that for a1, . . . , an−1 ∈ R× we have

∂({a1, . . . , an−1, π}) = {a1, . . . , an−1},

where π is a uniformizer of R and ai is the residue class of ai in k. We
define U0(KM

n (K)) ⊂ KM
n (K) as the subgroup generated by all symbols

{a1, . . . , an} with ai ∈ R× for i = 1, . . . , n. Then we have

U0(KM
n (K)) = ker(∂).

([BT] I, §4, Proposition 4.5).
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1.4 Class field theory of higher-dimensional henselian local fields

1.4 Class field theory of higher-dimensional hen-

selian local fields

In the following we present Kato’s class field theory for higher-dimensional
complete local fields. It requires some extra effort to obtain the correspond-
ing results for higher-dimensional excellent henselian local fields.

Higher dimensional henselian local fields

Definition. A valuation v on a field K is called a discrete valuation of rank
n if its value group is isomorphic (as an ordered group) to Zn (endowed with
the lexicographic order).

If V is a discrete valuation ring of rank n of K, i.e. V is the valuation ring
of a discrete valuation of rank n of K, then V has n+ 1 distinct prime ideals

p0 ) · · · ) pn = 0.

For 0 ≤ i ≤ n, the localization Vi of V at pi is itself a valuation ring of K of
rank n− i, and we have an inclusion of valuation rings

V = V0 ⊂ · · · ⊂ Vn = K.

Let ki be the residue field of Vi. Then for any i < j ≤ n the image of Vi in
kj is a discrete valuation ring of kj of rank j − i. The image V̄i of Vi in ki+1

is a discrete valuation ring of rank 1 with field of fractions ki+1 and residue
field ki.

Definition. A field K is called n-dimensional henselian local field if it is
the field of fractions of a henselian discrete valuation ring of rank n whose
residue field is finite.

There is an inductive henselization process V 7→ V h for a discrete valuation
ring V of rank n (cf. [KaS], 3.1). If V has a finite residue field, the field
of fractions of V h is an n-dimensional henselian local field and the ring V
is henselian if and only if for all 0 ≤ i < n the rings V̄i are henselian ([Ri]
F, Proposition 9). Hence one may also define higher-dimensional henselian
local fields as follows: A 0-dimensional henselian local field is a finite field
and an (n+ 1)-dimensional henselian local field is a field which is henselian
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Chapter 1: Preliminaries

under a discrete valuation of rank 1 whose residue field is an n-dimensional
henselian local field. Therefore, to an n-dimensional henselian local field K
we can associate a sequence

K = kn, kn−1, . . . , k0

of residue fields and ki is an i-dimensional henselian local field for each
0 ≤ i ≤ n. By abuse of notation we will sometimes refer to kn−1 as the
residue field of K. In the following, we call K an excellent henselian local
field if for all i the discrete valuation rings V̄i are excellent.

The reciprocity map
For an arbitrary field K, an integer m prime to the characteristic of K and
n ≥ 0 consider the Galois cohomology group

Hn(K,Z/mZ(n)),

where
Z/mZ(n) = µ⊗nm

denotes the n-th Tate twist of Z/mZ and µm the group of m-th roots of
unity of Ksep. We have a homomorphism

hnm,K : K× × · · · ×K×︸ ︷︷ ︸
n times

→ Hn(K,Z/mZ(n)),

which for n = 1 is defined as the projection

K× → K×/(K×)m

followed by the identification

K×/(K×)m ∼= H1(K,Z/mZ(1))

given by Kummer theory, and which for n > 1 is defined as the n-fold cup-
product h1

m,K ∪ · · · ∪ h1
m,K . We define h0

m,K to be the canonical projection

Z→ Z/mZ = H0(K,Z/mZ(0)).

For any n ≥ 0 the map hnm,K factors over KM
n (K) and the induced homo-

morphism
hnm,K : KM

n (K)→ Hn(K,Z/mZ(n))
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1.4 Class field theory of higher-dimensional henselian local fields

is called the Galois symbol. If char(K) = p > 0 and i ≥ j we define

H i(K,Z/prZ(j)) := H i−j(K,WrΩ
j
K,log),

whereWrΩ
j
K,log is the logarithmic part of the de Rham-Witt complexWrΩ

j
K

(cf. [Il] I. 5.7). In the case r = 1 we have the description

Hn(K,Z/pZ(n)) = ker
[
Ωn
K

F−1→ Ωn
K/dΩn−1

K

]
,

where

Ωn
K =

n∧
K

Ω1
K|Z

is the n-th exterior power of the differential module Ω1
K|Z,

d : Ωn−1
K → Ωn

K

the differential, and

F : Ωn
K → Ωn

K/dΩn−1
K

is defined by

F (a
a1

da1
∧ . . . ∧ an

dan
) = ap

a1

da1
∧ . . . ∧ an

dan
,

a ∈ K, a1, . . . , an ∈ K× (cf. [Ka3]). We have the differential symbol

hnpr,K : KM
n (K)→ Hn(K,Z/prZ(n)),

which for r = 1 is given by

{a1, · · · , an} 7→
a1

da1
∧ . . . ∧ an

dan
.

Finally, for char(K) = p > 0 and m = m′pr with (m′, p) = 1, define

Hn(K,Z/mZ(n)) := Hn(K,Z/m′Z(n))⊕Hn(K,Z/prZ(n))

and

hnm,K : KM
n (K)→ Hn(K,Z/mZ(n))

as the map induced by hnm′,K and hnpr,K . Define

H i(K,Q/Z(j)) := lim−→
m

H i(K,Z/mZ(j)).
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The cup-product induces a pairing

H1(K,Q/Z)×KM
n (K)→ Hn+1(K,Q/Z(n)).

The fundamental property of higher dimensional excellent henselian local
fields, which generalizes the isomorphism

Br(K) = H2(K,Q/Z(1)) ∼= Q/Z

for a one-dimensional henselian local field K, is as follows.

Theorem 1.4.1. Let K be an n-dimensional excellent henselian local field.
Then

Hn+1(K,Q/Z(n)) ∼= Q/Z.

Proof. Let K = kn, kn−1, . . . , k0 be the associated sequence of residue fields.
One shows that

Hn+1(kn,Q/Z(n)) ∼= Hn(kn−1,Q/Z(n− 1)).

This is done by Kato in [Ka2] § 1.1, Theorem 2, and § 3.2, Lemma 3, for the
case of an n-dimensional complete local field (i.e. each ki is complete with
respect to the induced discrete valuation of rank 1). The excellent henselian
case follows by an argument explained in [KaS] below Theorem 3.5. The
result then follows by induction:

Hn+1(kn,Q/Z(n)) ∼= · · · ∼= H2(k1,Q/Z(1)) ∼= H1(k0,Q/Z) ∼= Q/Z.

2

By this theorem, the pairing

H1(K,Q/Z)×KM
n (K)→ Hn+1(K,Q/Z(n)) ∼= Q/Z

induces a map

ρK : KM
n (K)→ Hom(H1(K,Q/Z),Q/Z) = Gal(Kab|K),

called the reciprocity map. It has the following properties.

Theorem 1.4.2. Let K be an n-dimensional excellent henselian local field
with residue field k = kn−1 and let L|K be a finite extension.
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1.4 Class field theory of higher-dimensional henselian local fields

(i) There is a commutative diagram

KM
n (K) Gal(Kab|K)

KM
n−1(k) Gal(kab|k)

∂

ρK

ρk

where the left vertical map is the tame symbol and the right vertical
map is the restriction to the Galois group of the residue field.

(ii) The diagram

KM
n (L) Gal(Lab|L)

KM
n (K) Gal(Kab|K)

NL|K

ρL

ρK

commutes, where the left vertical map is the norm of Milnor K-theory
and the right vertical map is the restriction.

(iii) The diagram

KM
n (K) Gal(Kab|K)

KM
n (L) Gal(Lab|L)

ρK

ρL

commutes, where the right vertical map is the transfer map.

Proof. For higher-dimensional complete local fields this is shown in [Ka2] §
3.2, Corollary 1 and 2. Only the definition of the reciprocity map is needed
and so the same arguments hold for the excellent henselian case. 2

In order to deduce the reciprocity law for higher-dimensional excellent hen-
selian local fields from the complete case, some additional arguments are
necessary.

Theorem 1.4.3. Let R be an excellent henselian discrete valuation ring and
R̂ its completion. Let X → SpecR be a scheme of finite type. Then we have

X(R̂) 6= ∅ ⇒ X(R) 6= ∅.
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Proof. Since R is excellent, the extension Q(R̂)|Q(R) is separable ([Liu] 8.2,
Corollary 2.40) and the claim follows from [Gr] 1, Corollary 2 to Theorem
1. 2

Corollary 1.4.4. Let R be an excellent henselian discrete valuation ring and
R̂ its completion. Let K = Q(R) and K̂ = Q(R̂). Assume that L|K is a
finite separable extension and L̂ the completion of L. Then for any x ∈ K×

we have

x ∈ NL̂|K̂(L̂×) ⇒ x ∈ NL|K(L×).

Proof. Let eL̂|K̂ (resp. eL|K) be the ramification index of L̂|K̂ (resp. L|K).
Then, since R is excellent, we have [L̂ : K̂] = [L : K] and eL̂|K̂ = eL|K .
Choose a uniformizer πL of L which also is a uniformizer of L̂. After mul-
tiplying x with a suitable power of NL|K(πL), we may assume that x ∈ R×

and that x ∈ NL̂|K̂(Ŝ×) ⊂ R̂×, where Ŝ denotes the valuation ring of L̂.
Now let Gm,R (resp. Gm,S) be the group scheme Gm over SpecR (resp. over
SpecS, where S = Ŝ ∩L is the valuation ring of L). Let WS|R(Gm,S) be the
Weil-restriction of Gm,S from SpecS to SpecR and

N : WS|R(Gm,S)→ Gm,R

the norm morphism. Define X as the base change

X WS|R(Gm,S)

SpecR Gm,R

N

x

where the bottom arrow is induced by the multiplication by x. The claim
then follows from the above theorem. 2

In the following, for a discrete valuation ring R with field of fractions K, we
denote the subgroup of n-th principal units of R× by UnK , n ≥ 1.

Corollary 1.4.5. Let R be an excellent henselian discrete valuation ring
and L a finite separable extension of K = Q(R). Then for n � 0 we have
UnK ⊂ NL|K(L×).
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1.4 Class field theory of higher-dimensional henselian local fields

Proof. We can pass to the completions L̂|K̂. The claim then follows from
[Se] Ch. V and [Ka1] § 1. 2

In [Ka1], Kato introduces the notion of a Bn-field:

Definition. Let n ≥ 0. A field K is called Bn-field if for any finite extension
E|K and any finite extension F |E, the norm NF |E : KM

n (F ) → KM
n (E) is

surjective.

Finite fields are obviously B1-fields. Hence by the following proposition, an
n-dimensional complete local field is a Bn+1-field.

Proposition 1.4.6. Let K be a complete discretely valued field with residue
field k. Then for n ≥ 0 the following are equivalent.

(i) k is a Bn-field.

(ii) K is a Bn+1-field.

Proof. [Ka2] § 3.3, Proposition 2. 2

Lemma 1.4.7. Let K be a Bn-field with char(K) = p > 0. Then we have
[K : Kp] ≤ pn.

Proof. [Ka2] § 3.3, Lemma 11. 2

Proposition 1.4.8. Let K be the field of fractions of an excellent henselian
discrete valuation ring with residue field k. Assume that k is a Bn-field.
Then K is a Bn+1-field. In particular, an n-dimensional excellent henselian
local field is a Bn+1 field.

Proof. Let K̂ be the completion of K. By the above proposition, K̂ is a
Bn+1-field. We have to show that for finite extensions F |E of K the norm
NF |E : KM

n (F ) → KM
n (E) is surjective. We can assume that E = K and

that [F : K] is a prime number. If F |K is separable, the claim follows from
Corollary 1.4.4. Assume that char(K) = p > 0 and that F |K is purely
inseparable of degree p. Since K̂ is a separable extension of K, we have

x ∈ K̂p ⇒ x ∈ Kp

for any x ∈ K. and therefore [K : Kp] ≤ [K̂ : K̂p]. Lemma 1.4.7 implies
that [K : Kp] = pm with m ≤ n + 1. By [Ka2] § 3.3, Lemma 12, the norm
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NF |K : KM
m (F ) → KM

m (K) is surjective. Hence NF |K : KM
i (F ) → KM

i (K)

is surjective for any i ≥ m. 2

With this in hand, we can prove the reciprocity law for higher excellent
henselian local fields.

Theorem 1.4.9. Let K be an n-dimensional excellent henselian local field.
Then for any finite abelian extension L|K the reciprocity map

ρK : KM
n (K)→ Gal(L|K)

induces an isomorphism

KM
n (K)/NL|K(KM

n (L))
∼→ Gal(L|K).

Proof. One has to revisit Kato’s proof of this statement in the complete case
([Ka2] § 3.1, Theorem 1 (1)). With Corollary 1.4.5 and Proposition 1.4.8
one shows the assertions (A) - (D) ([Ka2] § 3.3, proof of Proposition 2 and
Theorem 1) which then imply assertion (H). 2

Tamely ramified extensions
By Lemma 1.4.7 we have [K : Kp] ≤ pn+1 for an n-dimensional excellent
henselian local field K of characteristic p > 0. In fact, we have:

Lemma 1.4.10. Let K be an n-dimensional excellent henselian local field
with char(K) = p > 0. Then [K : Kp] ≤ pn.

Proof. Finite fields are perfect, hence the statement is true for n = 0.
Now assume that n ≥ 1 and that the statement holds for the (n − 1)-
dimensional residue field k of K. Let us first consider the case when K is
complete. It follows from the structure theory for equicharacteristic complete
discretely valued fields that K is the field of formal Laurent series k((t)). If
x1, . . . , xm is a system of representatives of k/kp, m ≤ pn−1, then (xit

j)i,j

with 1 ≤ i ≤ m and 0 ≤ j ≤ p − 1 is a system of representatives of K/Kp,
hence [K : Kp] ≤ pn. The excellent henselian case follows from the inequality
[K : Kp] ≤ [K̃ : K̃p], where K̃ is the completion (as n-dimensional local field)
of K. 2

Corollary 1.4.11. Let K be an n-dimensional excellent henselian local field
with char(K) = p > 0. Then the following holds.
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1.4 Class field theory of higher-dimensional henselian local fields

(i) KM
n+1(K) is p-divisible.

(ii) For a finite, purely inseparable extension E|K the norm

NE|K : KM
n (E)→ KM

n (K)

is surjective.

Proof. Assertion (i) follows from [Ka2] § 1.3, Lemma 7, and (ii) from [Ka2]
§ 3.3, Lemma 12. 2

Next, we give a rather self-contained proof of the fact that for tamely ramified
extensions of henselian local fields the principal one-units are norm elements.

Lemma 1.4.12. Let K be a field which is henselian under a discrete valua-
tion (of rank 1). Let L|K be a finite tamely ramified Galois extension. Then
we have

NL|K(U1
L) = U1

K .

Proof. Let us first consider the extension L|K ′, where K ′|K is the maximal
unramified subextension of L|K. We want to show that the Tate cohomology
group

Ĥ0(L|K ′, U1
L) = U1

K′/NL|K′(U
1
L)

vanishes. Let m = #GL|K′ . Since Ĥ0(L|K ′, U1
L) is an m-torsion group it is

enough to show that the multiplication by m

Ĥ0(L|K ′, U1
L)

m→ Ĥ0(L|K ′, U1
L)

is an isomorphism. For any n ≥ 1 (after choosing a uniformizer of L) we
have an exact sequence

0→ Un+1
L → UnL → `+ → 0

of Gal(L|K ′)-modules. Here `+ denotes the additive group of the residue
field ` of L. Since m is prime to the characteristic of ` we have

Ĥ i(L|K ′, `+) = 0

for any i ∈ Z, hence we get an isomorphism

Ĥ i(L|K ′, UnL) ∼= Ĥ i(L|K ′, U1
L).
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for any n ≥ 1. By [Ne2] § 2, Lemma 3.5, (which only uses the fact that L is
henselian and neither the completeness of L nor the finiteness of the residue
field) for any m ∈ N there exists an n� 0 such that taking the m-th power
induces an isomorphism

UnL
∼→ U

n+w(m)
L ,

where w denotes the valuation on L. Hence the right vertical arrow in the
commutative diagram

Ĥ0(L|K ′, UnL) Ĥ0(L|K ′, U1
L)

Ĥ0(L|K ′, Un+w(m)
L ) Ĥ0(L|K ′, U1

L)

m

∼

∼

m

∼

is an isomorphism.
In order to show the claim for the unramified extension K ′|K we have to
argue differently, because the above reasoning does not hold when K has
positive characteristic dividing the order of Gal(K ′|K).
Recall the following property of henselian local rings. Let X be a smooth
scheme over a henselian local ring R and residue field k. Then the canonical
map

X(R)→ X(k)

is surjective. This follows from [Mi] I, Proposition 3.42 (b) and Theorem 4.2
(d’). In particular, if Y → X is a smooth morphism of schemes over SpecR,
we have a surjection

YR(R)→ YR(k),

where YR = Y ×X SpecR.
Now let us return to the unramified extension K ′|K and consider the group
schemes Gm andWOK′ |OK (Gm) over SpecOK . Here OK (resp. OK′) denotes
the valuation ring of K (resp. K ′) and WOK′ |OK (Gm) is again the Weil-
restriction of Gm from SpecOK′ to SpecOK . The norm

NK′|K |OK′ : OK′ → OK

can be recovered from the norm

N : WOK′ |OK (Gm)→ Gm
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1.4 Class field theory of higher-dimensional henselian local fields

by taking OK-rational points. The latter can be shown to be a smooth map
since

SpecOK′ → SpecOK

is étale. The above remark then implies that for any x ∈ OK whose reduction
x̄ to the residue field k is in the image of the norm map

Nk′|k : (k′)× → k×,

say x̄ = Nk′|k(ȳ), there exists a lift y ∈ OK′ of ȳ with NK′|K(y) = x.
This applies in particular to the case where x ∈ U1

K , for its image in k is
x̄ = 1 = Nk′|k(1). 2

Let R be a discrete valuation ring with field of fractions K and residue field
k. As mentioned in 1.3, the kernel of the tame symbol

∂ : KM
n (K)→ KM

n−1(k)

is equal to the subgroup U0(KM
n (K)) of KM

n (K) generated by all symbols
{a1, . . . , an} with ai ∈ R× for i = 1, . . . , n. We define

U1(KM
n (K)) ⊂ KM

n (K)

as the subgroup generated by all symbols {a1, . . . , an} with ai ∈ K× for
i = 1, . . . , n and aj ∈ U1

K for some 1 ≤ j ≤ n.

Remark. Let π be a uniformizer of R. Then we have

U1(KM
n (K)) = im

[
KM
n (R, (π)) ⊂ KM

n (R)→ KM
n (K)

]
⊂ U0(KM

n (K)).

This can be seen as follows. The abelian group U1
K is generated by elements

of the form 1− πu, u ∈ R×. We have {1− πu, πu} = 0, hence

{1− πu, π} = −{1− πu, u},

which iplies the inclusion

U1(KM
n (K)) ⊂ im

[
KM
n (R, (π)) ⊂ KM

n (R)→ KM
n (K)

]
.

By Lemma 1.3.1 this is an equality.
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Proposition 1.4.13. Let K be an n-dimensional excellent henselian local
field, n ≥ 1, and let R ⊂ K be the induced discrete henselian valuation ring
of rank 1. Then for a finite abelian extension L|K the following holds.

(i) L|K is unramified (w.r.t. R) ⇔ U0(KM
n (K)) ⊂ NL|K(KM

n (L)).

(ii) L|K is tamely ramified (w.r.t. R) ⇔ U1(KM
n (K)) ⊂ NL|K(KM

n (L)).

Proof. Denote the (n− 1)-dimensional residue field of R by k. Let ` be the
residue field of L and ks ⊂ ` the maximal separable subextension of `|k. We
have Aut(`|k) = Gal(ks|k) and a canonical isomorphism

Gal(Knr|K)
∼→ Gal(ks|k),

where Knr is the maximal unramified extension of K in L. Hence L|K is
unramified if and only if the canonical surjection

Gal(L|K) � Aut(`|k)

is injective.
By Corollary 1.4.11 (ii) the norm N`|ks : KM

n−1(`) → KM
n−1(ks) is surjective.

Hence Theorem 1.4.9 gives us an isomorphism

KM
n−1(k)/N`|k(K

M
n−1(`))

∼→ Aut(`|k)

fitting into the commutative diagram

KM
n (K)/NL|K(KM

n (L)) KM
n−1(k)/N`|k(K

M
n−1(`))

Gal(L|K) Aut(`|k)

∼ ∼

(cf. Theorem 1.4.2). The upper horizontal map is induced by the tame
symbol ∂ : KM

n (K)→ KM
n−1(k) and its kernel is

U0(KM
n (K))/U0(KM

n (K)) ∩NL|K(KM
n (L)).

Hence it is injective if and only if U0(KM
n (K)) ⊂ NL|K(KM

n (L)). This
implies assertion (i).
In order to show (ii), let us first assume that char(k) = p > 0 and that
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1.4 Class field theory of higher-dimensional henselian local fields

[L : K] = pr for some r ≥ 0. Then L|K is tamely ramified if and only if it
is unramified. We have an exact sequence

0→ U1(KM
n (K))→ U0(KM

n (K))→ KM
n (k)→ 0

(cf. [BT] I, § 4, Proposition 4.3). By Corollary 1.4.11 KM
n (k) is p-divisible.

Hence under the reciprocity map

KM
n (K)→ Gal(L|K)

into the finite p-group Gal(L|K), the subgroup U1(KM
n (K)) maps to zero if

and only if U0(KM
n (K)) does and so the claim follows from (i).

Still in the case char(k) = p > 0, let now [L : K] be arbitrary. If L|K
is tamely ramified we have NL|K(U1

L) = U1
K by Lemma 1.4.12 and thus

U1(KM
n (K)) ⊂ NL|K(KM

n (L)) by the projection formula for the norm map.
For the converse, let K ′|K be the subextension of L|K such that [L : K ′] is
prime to p and [K ′ : K] is a p-power. If U1(KM

n (K)) ⊂ NL|K(KM
n (L)) then

in particular U1(KM
n (K)) ⊂ NK′|K(KM

n (K ′)) and from the above it follows
that K ′|K is tamely ramified. Hence L|K is tamely ramified.
If char(k) = 0 both conditions are always satisfied: L|K is tamely ramified
and U1(KM

n (K)) ⊂ NL|K(KM
n (L)) since NL|K(U1

L) = U1
K . 2
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Chapter 2

Moduli in higher dimensions

In this chapter we explain the construction of the Kato-Saito class group,
which by definition is a certain inverse limit taken over non-zero ideal sheaves
that can be considered as moduli in higher dimensions. Then, following an
idea of Alexander Schmidt, we present a different approach of defining moduli
by using curves. This leads us to Wiesend’s class field theory.

2.1 The class group of Kato-Saito

We briefly recall the definition of the class group of Kato-Saito and their main
result for arithmetic schemes. In the one-dimensional case, the filtration by
moduli agrees with the classical one described in 1.1.

Let X̄ ∈ Sch(Z) be a connected normal scheme which is proper and flat over
Z. Let K = k(X̄) be its function field and d = dim X̄. For simplicity we
assume that K has no embeddings into the reals. For any non-zero ideal
I ⊂ OX̄ and any n ≥ 0 let KMn (OX̄ , I) be the n-th relative Milnor K-sheaf
in the Nisnevich topology defined in section 1.3.

Definition. The Kato-Saito class group of modulus I of X̄ is defined as

CI(X̄) = Hd(X̄Nis,KMd (OX̄ , I)).

It is a finite group ([Ke] Theorem 10.2) and if J ⊂ I is another non-zero
ideal of OX̄ , the map

CJ (X̄)→ CI(X̄)
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induced by the injection

KMd (OX̄ ,J ) ↪→ KMd (OX̄ , I)

is surjective ([KaS] (1.4.4)).

Definition. The Kato-Saito class group of X̄ is defined as

CKS(X̄) = lim←−
I6=0

CI(X̄)

where the limit is taken over all non-zero ideals I ⊂ OX̄ .

In section 3.1 we will recall the construction of the reciprocity map

ρX̄ : CKS(X̄)→ Gal(Kab|K).

It has the following properties.

Theorem 2.1.1. Let X̄ ∈ Sch(Z) be a connected normal scheme which is
proper and flat over Z. Assume that the function field K = k(X̄) has no real
embeddings. Then the following holds.

(i) The reciprocity map

ρX̄ : CKS(X̄)→ Gal(Kab|K)

is an isomorphism.

(ii) For any non-empty regular open subscheme X ⊂ X̄ the reciprocity map
induces an isomorphism

CKS(X) := lim←−
I|X=OX

CI(X̄)
∼→ πab1 (X),

where I ranges over all ideal sheaves of OX̄ with I|X = OX .

Proof. Cf. [KaS] § 9. 2

By 1.2.4, setting F = KMd (OX̄ , I), we have an isomorphism

CI(X̄) ∼= coker
[ ⊕
x∈X̄1

Hd−1
x (X̄Nis,F)→

⊕
x∈X̄0

Hd
x(X̄Nis,F)

]
and the groups

H∗x(X̄Nis,F) ∼= H∗x((X̄h
x )Nis,F),

where we put X̄h
x = SpecOh

X̄,x
, can be computed by using the localization

sequence of cohomology.
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Example. (cf. [Ra] 6.3.) Let K be a global field. If K is a number field
with ring of integers OK , let X̄ = SpecOK . In the function field case, let X̄
be a smooth projective model of K. Let I ⊂ OX̄ be a non-zero ideal sheaf
and let S = suppOX̄/I. Put F = KM1 (OX̄ , I). We have

H1(X̄Nis,F) = coker
[
H0(K,F)→

⊕
x∈X̄0

H1
x((X̄h

x )Nis,F)
]

and
H0(K,F) = K×.

Let Kh
x denote the quotient field of Oh

X̄,x
. Consider the localization sequence

H0((X̄h
x )Nis,F)→ H0(Kh

x ,F)→ H1
x((X̄h

x )Nis,F)→ H1((X̄h
x )Nis,F).

Henselian local rings have trivial Nisnevich cohomology, hence the right term
vanishes and we have

H1
x((X̄h

x )Nis,F) ∼= coker
[
H0((X̄h

x )Nis,F)→ H0(Kh
x ,F)

]
∼= coker

[
KM

1 (OhX̄,x, IO
h
X̄,x)→ (Kh

x )×
]
.

For x /∈ S we have

KM
1 (OhX̄,x, IO

h
X̄,x) = (OhX̄,x)×,

hence
H1
x((X̄h

x )Nis,F) ∼= (Kh
x )×/(OhX̄,x)× ∼= Z.

For x ∈ S we have

KM
1 (OhX̄,x, IO

h
X̄,x) = 1 + IOhX̄,x ⊂ (OhX̄,x)×,

and therefore
H1
x((X̄h

x )Nis,F) ∼= (Kh
x )×/(1 + IOhX̄,x).

We conclude that

CI(X̄) ∼= coker
[
K× →

⊕
x/∈S

Z⊕
⊕
x∈S

(
(Kh

x )×/(1 + IOhX,x)
)]
.

The latter group does not change when we replace henselization by comple-
tion, and is therefore isomorphic to the ray class group CK/C

I
K of section
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1.1, where I is considered as a modulus on K. So if K is a totally imaginary
number field, Theorem 2.1.1 gives back the isomorphism

lim←−
I6=0

CK/C
I
K
∼→ Gal(Kab|K)

of section 1.1, as well as the isomorphism

lim←−
I|X=OX

CK/C
I
K
∼→ Gal(Kab

S |K) ∼= πab1 (X),

where X is the open complement of S in X̄.

2.2 Moduli using curves

In this section we define a different notion of moduli for higher-dimensional
arithmetic schemes. Essentially, a non-zero ideal sheaf is regarded as modu-
lus on any curve not lying entirely on the closed subscheme defined by the
ideal.

Let us introduce some notation:

• For a morphism f : Y → X of schemes and an ideal I ⊂ OX we let
IOY denote the image of f∗I under the canonical homomorphism

f∗I → f∗OX = OY .

• By a curve on a scheme X ∈ Sch(Z) we mean an integral closed
subscheme C ⊂ X of Krull dimension one.

• The normalization of a curve C ⊂ X in its function field is denoted
by C̃ and the regular compactification of C̃ by P (C̃). It is a regular
proper curve over SpecZ containing C̃ as a dense open subscheme.

• Let m be a modulus on a global field K and let L|K be a finite abelian
extension. Then we say that L|K is ramified with modulus m, if L is
contained in the field Km (cf. section 1.1).

We fix a connected, regular scheme X ∈ Sch(Z) and a normal compactifica-
tion X̄ ∈ Sch(Z) of X.
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For any curve C onX the morphism C̃ → X extends uniquely to a morphism
P (C̃)→ X̄ by the valuative criterion of properness:

C̃ X

P (C̃) X̄.

Let I ⊂ OX̄ be an ideal such that I|X = OX . For any curve C on X we pull
back I along the map P (C̃)→ X̄ to obtain an ideal IC := IOP (C̃) which we
consider as a modulus on the global field k(C) (ignoring the infinite part for
horizontal curves). By construction we have IC |C̃ = OC̃ . Hence coverings of
P (C̃) that ramify with modulus IC are unramified above C̃.

Definition. Let I ⊂ OX̄ be an ideal such that I|X = OX . We say that an
abelian étale covering Y → X is ramified with Wiesend modulus I if for any
curve C ⊂ X the associated finite abelian extension of k(C) is ramified with
modulus IC .

In the following, we show that there always exists a modulus that realizes a
given covering.

Let X be a noetherian, connected scheme. Recall that for a finite, flat
morphism f : Y → X of constant rank n, there is the discriminant ideal
δY |X ⊂ OX which is defined as follows. If U = SpecA is an affine open
subset of X such that B = Γ(f−1(U),OY ) is a free A-algebra with basis
(b1, . . . , bn), then Γ(U, δY |X) is the prinipal ideal generated by

det(TrB|A(bibj))1≤i,j≤n).

The map f : Y → X is unramified if and only if δY |X = OX (this follows
from [Mi] I, Proposition 3.1 (d)). If X and Y are curves with K = k(X) and
L = k(Y ), the discriminant δY |X coincides with the classical discriminant
δL|K as considered in [Se] Ch. III, for instance.
IfX is a normal scheme of dimension ≥ 2 and f : Y → X is the normalization
of X in a finite separable extension of k(X), then f is not flat in general.
We want to extend the notion of the discriminant ideal to morphisms of this
type.
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Chapter 2: Moduli in higher dimensions

Let A be a noetherian, integrally closed domain with field of fractions K.
Let B be a finite A-algebra such that L = B ⊗A K is an étale K-algebra,
i.e. a finite product of finite separable field extensions of K, and denote by
τ : B → L the canonical homomorphism. Since A is integrally closed, the
trace

TrL|K(τ(b))

of an element b ∈ B is contained in A. Let n = dimK L. For any b1, . . . , bn
we define

δb1,...,bn = det(TrL|K((τ(bibj))1≤i,j≤n)) ∈ A.

Definition. The discriminant δB|A is the ideal of A generated by all elements
δb1,...,bn with b1, . . . , bn ∈ B.

Clearly, for any multiplicative subset S ⊂ A we have

S−1δB|A = δS−1B|S−1A.

Hence we can sheafify the discriminant for any normal, connected scheme X
and any finite, generically étale morphism f : Y → X.

Definition. The discriminant δY |X is the coherent ideal on X defined by
Γ(U, δY |X) = δB|A for any affine open subset U = SpecA of X and B =

Γ(f−1(U),OY ).

If f is flat, then δY |X coincides with the usual discriminant ideal.

Lemma 2.2.1. Let Y → X be the normalization of X in a finite separable
extension of k(X). Then Y → X is étale if and only if δY |X = OX .

Proof. The map Y → X is unramified at all points above a given point
x ∈ X if and only if the fiber Y ×X Spec k(x) is a sum of spectra of finite
separable field extensions of k(x). Now a finite extension of fields is separable
if and only if the trace-form is non-degenerate. It follows that Y → X is
unramified at all points above x if and only if (δY |X)x = OX,x. If Y → X is
unramified, it is étale by [Mi] I, Theorem 3.21. 2

Lemma 2.2.2. Let X and Z be normal, connected schemes. Let Y → X

be a finite, generically étale morphism and let Z → X be a morphism, such
that Y → X is étale above the image of the generic point of Z in X. Then

δY |XOZ ⊂ δ(Y×XZ)|Z .
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2.2 Moduli using curves

Proof. This follows immediately from the definition of the discriminant. 2

Lemma 2.2.3. Let X be a normal, connected scheme and let Y → X be a
finite, generically étale morphism. Let η be the generic point of X. Assume
that Z → Y is a finite morphism which induces an isomorphism

Z ×X η → Y ×X η.

Then we have

δY |X ⊂ δZ|X .

Proof. This is again an immediate consequence from the definition of the
discriminant. 2

Proposition 2.2.4. Let X ∈ Sch(Z) be a connected, regular scheme and
let X̄ be a normal compactification of X. Let Y → X be an abelian étale
covering. Then there exists an ideal I ⊂ OX̄ with I|X = OX such that
Y → X is ramified with Wiesend modulus I.

Proof. Let Ȳ be the normalization of X̄ in k(Y ). We show that the
discriminant ideal I := δȲ |X̄ has the desired property. We clearly have
I|X = δY |X = OX . Let C be a curve on X and let P (C̃) → X̄ be the
induced morphism. By Lemma 2.2.2 we have

IC = δȲ |X̄OP (C̃) ⊂ δ(Ȳ×X̄P (C̃))|P (C̃).

LetDi run through the connected components of Ȳ ×X̄P (C̃). Then it follows
from Lemma 2.2.3, that we have an inclusion

δȲ×X̄P (C̃)|P (C̃) ⊂
∏
i

δP (D̃i)|P (C̃).

Using the notation
δk(Di)|k(C) = δP (D̃i)|P (C̃)

the proposition now follows from the following Lemma. 2

Lemma 2.2.5. Let L|K be a finite abelian extension of global fields and δL|K
its discriminant. Then we have an inclusion of ideals

δL|K ⊂ fL|K .
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Chapter 2: Moduli in higher dimensions

Proof. Recall the conductor-discriminant formula ([Ne1] VII, (11.9))

δL|K =
∏
χ

f(χ)χ(1),

where the product is taken over all irreducible characters χ of Gal(L|K)

and where f(χ) is the global Artin conductor of χ. For any injective one-
dimensional character χ : Gal(L|K) → C× we have an equality f(χ) = fL|K

([Ne1] VII, (11.10)). Hence the inclusion

δL|K ⊂ fL|K

holds if L|K is cyclic. The general abelian case follows from the cyclic case
taking into account that for any two finite abelian extensions L1 and L2 of
K we have

fL1L2|K = l.c.m.(fL1|K , fL2|K),

which is an immediate consequence of the transitivity of the norm, and

l.c.m.(δL1|K , δL2|K)| δL1L2|K .

The latter holds, since for finite extensions M |L|K of global fields we have

δM |K = δ
[M : L]
L|K NL|K(δM |L).

2

Definition. For an ideal I ⊂ OX̄ with I|X = OX let KI be the maximal
abelian extension L|K such that XL → X is ramified with Wiesend modulus
I.

By Proposition 2.2.4 we get the

Corollary 2.2.6. For X ⊂ X̄ as above we have

πab1 (X) = lim←−
I|X=OX

Gal(KI |K).
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Comparison results

We begin this chapter by describing the construction of the Kato-Saito reci-
procity map. Then we recall the class field theory of Wiesend before we
finally turn towards tame coverings. We will see that ramification with re-
spect to a "tame modulus" in the sense of Kato-Saito corresponds to the
notion of divisor-tameness, whereas for a Wiesend modulus, it means curve-
tameness.

3.1 The reciprocity map of Kato-Saito

We need to recall the construction of the reciprocity map of Kato and Saito
in detail. It is defined via the class field theory of the higher-dimensional
henselian local fields using the formalism of Parshin chains.

Definition. Let X be a noetherian scheme.

(i) A chain on X is a sequence P = (p0, . . . , pr) of points pi ∈ X such
that

{p0} ⊂ {p1} ⊂ . . . ⊂ {pr}.

(ii) A chain P = (p0, . . . , pr) on X is called Parshin chain if pi ∈ Xi for
0 ≤ i ≤ r. The integer r is called the length of P . The set of all
Parshin chains of length r on X is denoted by Pr(X).

(iii) Let r ≥ 1 and 0 ≤ s ≤ r. The set of all chains on X of the form

P = (p0, . . . , ps−1, ps+1, . . . , pr)
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Chapter 3: Comparison results

such that pi ∈ Xi for i ∈ {0, 1, . . . , s − 1, s + 1, . . . , r} is denoted by
Qr,s(X). We set Q0,0(X) = ∅.

(iv) For P = (p0, . . . , ps−1, ps+1, . . . , pr) ∈ Qr,s(X) let B(P ) be the set of
all points x ∈ Xs such that the extended chain

P (x) = (p0, . . . , ps−1, x, ps+1, . . . , pr)

is a Parshin chain.

For a chain P = (p0, . . . , pr) on X we define the semi-local ring OhX,P by
iterated henselizations and localizations as follows. If r = 0 we put OhX,P =

OhX,p0
. Let r > 0 and assume we have already defined R = OhX,P ′ for the

chain P ′ = (p0, . . . , pr−1). Let T be the finite set of all prime ideals of R
lying over pr. We set

OhX,P =
∏
p∈T

(Rp)
h.

Let Xh
P = SpecOhX,P . We define

k(P ) =
∏

x∈(Xh
P )0

k(x)

as the finite product of the residue fields of OhX,P . If P is a Parshin chain
of length r on a scheme X ∈ Sch(Z), the ring k(P ) is a finite product of
r-dimensional henselian local fields (cf. 1.4).

For a Nisnevich sheaf F and a chain P on X we define the group

Hq
P (XNis,F) =

⊕
x∈(Xh

P )0

Hq
x((Xh

P )Nis,F),

q ≥ 0. If P = (p0, . . . , pr) is a chain such that pr−1 is of codimension 1 in
{pr} the coniveau spectral sequence 1.2.2 gives us a homomorphism

δqP : Hq
P (XNis,F)→ Hq+1

P ′ (XNis,F)

for any q ≥ 0, where P ′ = (p0, . . . , pr−1). Composing the homomorphisms

Hq
P (XNis,F)

δqP→ . . .→ Hq+d
p0

(XNis,F)→ Hq+d(XNis,F)
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3.1 The reciprocity map of Kato-Saito

for a Parshin chain P ∈ Pd(X), d = dimX, and putting q = 0 we obtain a
homomorphism

cP : H0
P (XNis,F)→ Hd(XNis,F).

Repeatedly using the cokernel description of Corollary 1.2.4 and the local-
ization sequence of cohomology, we get the important

Lemma 3.1.1. Let X be a noetherian scheme of dimension d. For any
Nisnevich sheaf F on X and any abelian group A the homomorphism

Hom(Hd(XNis,F), A)→
∏

P∈Pd(X)

Hom(H0
P (XNis,F), A)

defined by

g 7→ (g ◦ cP )P∈Pd(X)

maps Hom(Hd(XNis,F), A) isomorphically onto the subgroup of all families
(gP )P∈Pd(X) of homomorphisms

gP : H0
P (XNis,F)→ A

satisfying the following condition:
For any 0 ≤ s ≤ d, any P ′ ∈ Qd,s(X) and any c ∈ H0

P ′(XNis,F) we have
gP ′(x)(cP ′(x)) = 0 for almost all x ∈ B(P ′) and∑

x∈B(P ′)

gP ′(x)(cP ′(x)) = 0.

Here cP ′(x) denotes the image of c under the canonical map

H0
P ′(XNis,F)→ H0

P ′(x)(XNis,F).

Proof. [KaS] Lemma 1.6.3. 2

In the following, let X̄ ∈ Sch(Z) be a connected, normal and proper scheme
over Z of dimension d with function field K = k(X̄). Recall that a discrete
valuation ring V of K of rank d comes together with a sequence

V = V0 ⊂ · · · ⊂ Vd = K.

of discrete valuation rings Vi of K rank d− i (cf. 1.4).
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Definition. Let P = (p0, . . . , pd) be a Parshin chain of length d on X̄. We
say that a discrete valuation ring V of K of rank d dominates P if for each
0 ≤ i ≤ d the valuation ring Vi dominates the local ring OX̄,pi .

The number of discrete valuation rings V dominating a Parshin chain is finite
and ≥ 1 (cf. the proposition below). The residue field of the valuation ring
Vi is a finite extension of k(pi) for each i. Let V h be the henselization of V
and let

V h = (V h)0 ⊂ · · · ⊂ (V h)d = KV

be the localizations at the prime ideals of V h. For any 0 ≤ i ≤ d the
residue field khi of (V h)i is the fraction field of an excellent henselian discrete
valuation ring and kh0 is a finite field. In particular, with the terminology of
section 1.4, khd = KV is a d-dimensional excellent henselian local field and
we have the reciprocity map

ρKV : KM
d (KV )→ Gal(Kab

V |KV )

(cf. section 1.4). Now fix a finite abelian extension L|K. By composing ρKV
with the natural maps

Gal(Kab
V |KV )→ Gal(LKV |KV )→ Gal(L|K)

we obtain homomorphisms

ρKV ,L : KM
d (KV )→ Gal(L|K).

Proposition 3.1.2. Let P = (p0, . . . , pd) be a Parshin chain of length d on
X̄ and let V range over all discrete valuation rings of rank d of K domi-
nating P . Let KV be the quotient field of V h and let RV = (V h)d−1 be the
localization of V h at the unique prime ideal of height one. Then we have

k(P ) =
∏
V

KV

and

OhX,P ′ =
∏
V

RV ,

where P ′ = (p0, . . . , pd−1).
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3.1 The reciprocity map of Kato-Saito

Proof. [KaS] Proposition 3.3 and its proof. 2

Let I ⊂ OX̄ be a non-zero ideal. By the Proposition above, taking the sum
over all discrete valuation rings V of rank d dominating P ∈ Pd(X̄) defines
a homomorphism

ρP,L : H0
P (X̄Nis,KMd (OX̄ , I)) ∼= KM

d (k(P ))→ Gal(L|K).

In order to induce a homomorphism

ρX̄,L : Hd(X̄Nis,KMd (OX̄ , I))→ Gal(L|K),

the family (ρP,L)P∈Pd(X̄) obtained this way has to satisfy the condition of
Lemma 3.1.1 concerning the compositions

H0
P ′(X̄Nis,KMd (OX̄ , I))→ H0

P ′(x)(X̄Nis,KMd (OX̄ , I))→ Gal(L|K)

for the chains P ′ ∈ Qd,s(X̄) and x ∈ B(P ′). For the cases 0 ≤ s < d this
condition is always satisfied regardless of the modulus I ([KaS] (3.7.4)). The
latter only has to be considered in the case s = d. For any P ′ ∈ Qd,d(X̄)

the set B(P ′) simply consists of the generic point η of X̄. The condition of
Lemma 3.1.1 means that

ρP ′(η),L : KM
d (k(P ′(η)))→ Gal(L|K)

has to annihilate the image of the canonical map

KM
d (OhX̄,P ′ , IO

h
X̄,P ′)→ KM

d (k(P ′(η))).

By Proposition 3.1.2 we have the

Corollary 3.1.3. The family (ρP,L)P∈Pd(X̄) induces a homomorphism

ρX̄,L : CI(X̄)→ Gal(L|K),

if and only if for any discrete valuation ring V of rank d of K dominating a
Parshin chain of length d on X̄ the composition

KM
d (RV , IRV )→ KM

d (KV )
ρKV→ Gal(Kab

V |KV )→ Gal(LKV |KV )

is zero, where KV is the quotient field of the henselization V h of V and RV
denotes the localization of V h at the unique prime ideal of height one.
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In the following, we simply say the reciprocity map

ρX̄,L : CI(X̄)→ Gal(L|K)

exists if the above condition holds.

Proposition 3.1.4. For any finite abelian extension L|K there exists a non-
zero ideal I ⊂ OX̄ such that the reciprocity map

ρX̄,L : CI(X̄)→ Gal(L|K)

exists.

Proof. [KaS] 3.7.1 and 3.7.4. 2

Definition. The reciprocity map of Kato-Saito

ρX̄ : CKS(X̄)→ Gal(Kab|K)

is defined by taking the limits over all finite abelian extensions L|K and all
non-zero ideals I ⊂ OX̄ .

The crucial point for using Nisnevich cohomology in the definition of the class
group is the exactness of the direct image functor f∗ : Sh(YNis)→ Sh(XNis)

for a finite morphism f : Y → X which allows us to define a norm map for
the class group. Without going into futher detail, we just mention that for
any finite surjective morphism Y → X of integral schemes X,Y ∈ Sch(Z)

and any non-zero ideal I ⊂ OX there exists a non-zero ideal J ⊂ OY , which
can be chosen to be J = IOY if X is normal, such that the norm maps of
Milnor K-theory induce a map

NY |X : CJ (Y )→ CI(X)

(cf. [KaS] § 4). It has the following property.

Theorem 3.1.5. Let X̄ be as before and let Ȳ be the normalization of X̄
in a finite abelian extension L|K. Let I ⊂ OX̄ be a non-zero ideal such that
the reciprocity map

ρX̄,L : CI(X̄)→ Gal(L|K)

exists and let J ⊂ OȲ be a non-zero ideal such that the norm

NȲ |X̄ : CJ (Ȳ )→ CI(X̄)
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3.2 Class field theory of Wiesend

is defined. Then the sequence

CJ (Ȳ )
NȲ |X̄−→ CI(X̄)

ρX̄,L−→ Gal(L|K) −→ 0

is exact.

Proof. [KaS] Theorem 4.6. 2

3.2 Class field theory of Wiesend

In this section we recall Wiesend’s class field theory and show that there is
a canonical map from the henselian Wiesend class group to the Kato-Saito
class group compatible with the reciprocity maps.

Let X ∈ Sch(Z) be a connected scheme. For any curve C ⊂ X let C∞ be
the finite set of places of k(C) corresponding to the closed points of P (C̃)\C̃
together with the archimedean places if k(C) is of characteristic zero. For
v ∈ C∞ let k(C)v be the completion of k(C) with respect to v.

Definition. The Wiesend idele group IW (X) of X is defined as

IW (X) =
⊕
x∈X0

Z⊕
⊕
C⊂X

⊕
v∈C∞

k(C)×v

endowed with the direct sum topology, where C ranges over all curves of X.

For any curve C ⊂ X, we obtain a natural map

k(C)× → IW (X)

induced by

• the embeddings k(C)× ↪→ k(C)×v for v ∈ C∞,

• the discrete valuations k(C)× → Z multiplied by [k(x̃) : k(x)] for v
corresponding to a closed point x̃ of C̃ mapping to x ∈ C ⊂ X.

Definition. TheWiesend class group CW (X) of X is defined as the cokernel
of the map ⊕

C⊂X
k(C)× → IW (X)

and it is endowed with the quotient topology.
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The maps

• rx : Z→ πab1 (X), 1 7→ Frobx, for x ∈ X0,

• rC : k(C)×v → Gal(k(C)abv /k(C)v) → πab1 (X), for a curve C ⊂ X and
v ∈ C∞, where the first arrow is the local reciprocity map,

induce a continuous homomorphism rX : IW (X) → πab1 (X) which factors
through CW (X) and we call

ρX : CW (X)→ πab1 (X)

the reciprocity map. The class group is functorial in X and for a finite
morphism Y → X in Sch(Z) we write

NY |X : CW (Y )→ CW (X)

for the induced map and call it the norm map. The main theorem of Wiesend
for flat schemes over SpecZ is as follows.

Theorem 3.2.1. Let X ∈ Sch(Z) be a connected, regular scheme which is
flat over SpecZ.

(i) The reciprocity map ρX : CW (X)→ πab1 (X) is surjective and its kernel
is the connected component of the identity of CW (X).

(ii) For any connected étale abelian covering Y → X the reciprocity map
induces an isomorphism of finite abelian groups

CW (X)/NY |XCW (Y )
∼→ G(Y |X).

(iii) The open subgroups of CW (X) are precisely the groups NY |XCW (Y )

for étale coverings Y → X.

Proof. [KeS2] Theorem 8.1. 2

For any curve C on X and any valuation v ∈ C∞ let k(C)hv be the henseliza-
tion of k(C) at v. We define the henselian version of the Wiesend idele group
by replacing the complete local fields k(C)v by their henselian counterparts

IhW (X) =
⊕
x∈X0

Z⊕
⊕
C⊂X

⊕
v∈C∞

(k(C)hv)×
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3.2 Class field theory of Wiesend

(with the direct sum topology) and, analogously, we define the henselian
class group ChW (X) as the cokernel of the natural map⊕

C⊂X
k(C)× → IhW (X).

Again we have a canonical norm map

NY |X : ChW (Y )→ ChW (X)

for a finite morphism Y → X and there is the reciprocity map

ρhX : ChW (X)→ πab1 (X)

defined in the same way as ρX . There is a natural continuous homomorphism
ChW (X)→ CW (X) making the diagram

ChW (X) CW (X)

πab1 (X)

ρhX
ρX

commute.

Lemma 3.2.2. The map ChW (X)→ CW (X) induces a bijection between the
open subgroups of ChW (X) and the open subgroups of CW (X).

Proof. [Ke] Lemma 10.1. 2

In [KaS] a local ring A is called nice if there is a smooth ring A′ over a
field or over an excellent Dedekind domain, such that A is ind-étale over
A′. An excellent scheme X is called nice if all its local rings are nice (cf.
[KaS], Definition 2.2). If P = (p0, . . . , pr) is a Parshin chain of length r on
a noetherian scheme X̄ of dimension d such that pr is contained in a nice
open subscheme of X̄, then for any non-zero ideal sheaf I ⊂ OX̄ we have a
canonical purity isomorphism

Hd−r
P (X̄Nis,KMd (OX̄ , I)) ∼= KM

r (k(P ))

by [KaS] Corollary 2.4.1.
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Proposition 3.2.3. Let X ∈ Sch(Z) be a connected, regular scheme which
is flat over SpecZ. Let X̄ be a normal compactification of X and assume
that X is nice and X(R) = ∅. Let I be an ideal of OX̄ such that I|X = OX .
Then the following holds.

(i) There exists a natural continuous surjective homomorphism

ChW (X)→ CI(X̄),

where CI(X̄) is given the discrete topology.

(ii) Let L be a finite abelian extension of K = k(X̄) such that the reciprocity
map

ρX̄,L : CI(X̄)→ Gal(L|K)

exists. Let Ȳ be the normalization of X̄ in L and assume that the base
change Y = Ȳ ×X̄ X → X is étale. Let J ⊂ OȲ be a non-zero ideal
such that the norm

NȲ |X̄ : CJ (Ȳ )→ CI(X̄)

is defined. Then we have a commutative diagram

ChW (Y ) ChW (X) Gal(L|K) 0

CJ (Ȳ ) CI(X̄) Gal(L|K) 0

NY |X

NȲ |X̄ ρX̄,L

with exact rows, where the second map in the upper row is induced by
the reciprocity map ρhX .

Proof. First observe that IhW (X) and ChW (X) may be expressed using Parshin
chains as follows. Let P1(X̄,X) be the set of Parshin chains on X̄ of the
form P = (p0, p1) with p0 ∈ X̄ \ X and p1 ∈ X. Denote the closed points
of X̄ lying on X temporarily by P0(X̄,X). With this notation we have the
equality

IhW (X) =
⊕

P∈P0(X̄,X)

KM
0 (k(P ))⊕

⊕
P∈P1(X̄,X)

KM
1 (k(P )).
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3.2 Class field theory of Wiesend

To see this, let P = (p0, p1) be a chain in P1(X̄,X) and define C ⊂ X as
the curve on X with generic point p1. Let C̄ be the closure of C in X̄. Then
P (C̃) is canonically isomorphic to the normalization of C̄ and we have

KM
1 (k(P )) =

∏
v 7→p0

(k(C)hv)×,

where the product is taken over the finitely many valuations v ∈ C∞ which
correspond to points in P (C̃) mapping to p0 ∈ C̄ under P (C̃) → C̄. Using
the notation of the previous section, the curves on X correspond bijectively
to the set of chains Q1,0(X). For P ′ = (p1) ∈ Q1,0(X) we have

k(P ′) = k(C),

where C is the closure of p1 in X. There is a natural map

KM
1 (k(P ′))→ IhW (X)

and the henselian class group ChW (X) is the cokernel of the induced map⊕
P∈Q1,0(X)

KM
1 (k(P ))→ IhW (X).

As mentioned above, for any Parshin chain P = (p0, . . . , pr) of length r on
X̄ with pr ∈ X we have a canonical isomorphism

KM
r (k(P )) ∼= Hd−r

P (X̄Nis,KMd (OX̄ , I))

by the assumption that X is nice. By composing this isomorphism with the
canonical map

Hd−r
P (X̄Nis,KMd (OX̄ , I))→ Hd(X̄Nis,KMd (OX̄ , I)) = CI(X̄)

we obtain a canonical homomorphism

KM
r (k(P ))→ CI(X̄).

By taking the sum over all Parshin chains P ∈ P0(X̄,X) ∪ P1(X̄,X), this
gives us a continuous homomorphism

IhW (X)→ CI(X̄).
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We have to show that for any P = (p1) ∈ Q1,0(X) the composition

KM
1 (k(P ))→ IhW (X)→ CI(X̄)

is zero. Let C be the closure of p1 in X. By [KaS] Theorem 2.9, there exists
an non-zero ideal J of OP (C̃) such that there is a map

CJ (P (C̃))→ CI(X̄)

fitting into a commutative diagram

KM
1 (k(P )) IhW (C̃) CJ (P (C̃))

KM
1 (k(P )) IhW (X) CI(X̄)

where the composite of the upper horizontal maps is zero since CJ (P (C̃))

is a quotient of the classical idele class group of the global field k(C) (cf.
section 2.1). The resulting map

ChW (X)→ CI(X̄)

is surjective since by [KaS] Theorem 2.5, this is already true for the map⊕
P∈P0(X̄,X)

Z =
⊕

P∈P0(X̄,X)

KM
0 (k(P ))→ CI(X̄).

This shows (i). By the compatibility of the norm NȲ |X̄ : CJ (Ȳ ) → CI(X̄)

with the norm on Milnor K-groups (cf. [KaS] (4.4.1)) and by [KaS] Lemma
4.8, we obtain that the square

ChW (Y ) ChW (X)

CJ (Ȳ ) CI(X̄)

NY |X

NȲ |X̄

commutes. The commutativity of the diagram

ChW (X) Gal(L|K)

CI(X̄) Gal(L|K)
ρX̄,L
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follows immediately from the definition of the reciprocity maps ρX̄,L and ρhX .
In both cases the map

Z = KM
0 (k(P ))→ Gal(L|K)

for a closed Point P = (p0) ∈ P0(X̄,X) is defined by mapping 1 ∈ Z to
Frobx, and for P = (p0, p1) ∈ P1(X̄,X) the arrow

KM
1 (k(P ))→ Gal(L|K)

is induced by the reciprocity map for one-dimensional henselian local fields.
2

Corollary 3.2.4. Let X ∈ Sch(Z) be a connected, regular and flat scheme
over SpecZ. Let X̄ be a normal compactification of X and assume that
X(R) = ∅. Then there is a natural continuous homomorphism

ChW (X)→ lim←−
I|X=OX

CI(X̄) = CKS(X)

such that the diagram

ChW (X) CKS(X)

πab1 (X)

ρhX ρKSX

∼

commutes, where ρKSX denotes the reciprocity map of Kato-Saito.

Proof. Let U ⊂ X be a nice, dense open subscheme. For any ideal sheaf
I ⊂ OX̄ with I|X = OX we have a canonical surjection

ChW (U) � CI(X̄)

by Proposition 3.2.3. It then follows from the construction that this map
factors through the natural surjection ChW (U) � ChW (X). 2

Definition. For an ideal I ⊂ OX̄ with I|X = OX and a curve C ⊂ X let
IC =

∏
v v

nv be the induced modulus on P (C̃). Let UI(X) ⊂ IhW (X) be the
subgroup generated by the nv-th group of principal units of all fields k(C)hv

for v ∈ C∞. Set ChW,I(X) = ChW (X)/im(UI(X)).
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Remark. Let KI be the maximal abelian extension L|K such that XL → X

is ramified with Wiesend modulus I. Then the reciprocity map induces an
isomorphism

ChW,I(X)
∼→ Gal(KI |K)

by Wiesend’s class field theory.

In the next section we show that ChW,I(X) and CI(X̄) are isomorphic when
I is a tame modulus.

3.3 Tame moduli

In [KeS1], the authors discuss several notions of tameness for coverings of
higher-dimensional schemes and show that these notions are basically equiv-
alent. Let us recall some definitions.

Definition. LetX ∈ Sch(Z) be a connected, normal scheme and letX ′ ⊂ X
be a dense open subscheme. Let x ∈ X \ X ′ be a point of codimension 1.
An étale covering Y ′ → X ′ is unramified along x if the discrete valuation of
k(X ′) associated to x is unramified in k(Y ′). Otherwise Y ′ → X ′ ramifies
along x.

In particular there is the notion of tame and wild ramification along a codi-
mension 1 point x ∈ X \X ′.

Definition. Let Y → X be an étale covering of normal, connected schemes
in Sch(Z).

(i) Assume that X is regular and has an open embedding into a regular,
proper scheme X̄ such that X̄ \X is a normal crossing divisor (NCD)
on X̄. Then Y → X is called tamely ramified along X̄ \ X if it is
tamely ramified along the generic points of X̄ \X.

(ii) The covering Y → X is curve-tame if for any curve C ⊂ X, the base
change Y ×X C̃ → C̃ is tamely ramified along P (C̃) \ C̃.

To this we will now add another notion of tameness for abelian coverings.
Let D =

∑
niDi be a divisor on a scheme X. We say that D is square-free

if ni = 1 for all i. In particular, a normal crossing divisor is square free.
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Definition. Let Y → X be an abelian étale covering of regular, connected
schemes in Sch(Z) and let X̄ be a normal compactification of X. We say
that Y → X is Wiesend modulus-tame if there exists a square-free divisor
D on X̄ with suppD ⊂ X̄ \X such that Y → X is ramified with Wiesend
modulus OX̄(−D).

If Y → X is modulus-tame, the induced modulus condition on k(C) for a
curve C on X is not necessarily tame. However, the following proposition,
which is a modified version of the "Key Lemma" 2.4 in [KeS1], ensures us a
tame condition on sufficiently many curves.

Proposition 3.3.1. Let X ∈ Sch(Z) be a normal, connected scheme. Let
X ′ ⊂ X be a dense open subscheme and let D ⊂ X \X ′ be a prime divisor.
Assume that Y ′ → X ′ and Z ′ → Y ′ are étale Galois coverings such that:

• Y ′ → X ′ is unramified along the generic point η of D.

• Z ′ → Y ′ is of prime degree p.

• The composition Z ′ → X ′ is ramified along η.

Then there exists a curve C on X meeting X ′ and intersecting D transversely
in a point x ∈ Creg such that Z ′ ×X′ C̃ ′ → C̃ ′ is ramified along x, where
C ′ = C ∩X.

Proof. Let Y (resp. Z) be the normalization of X in k(Y ′) (resp. k(Z ′)).
Choose an affine open neighborhood U = SpecA of η on X on which D

is given by the zero-set V (π) of some irreducible element π ∈ A. Let
V = SpecB (resp. W = SpecC) be the preimage of U in Y (resp. Z).
Note that there is no chance of confusing the algebra C with the curve we
are looking for. Choose a point ηV ∈ V above η and a point ηW ∈W above
ηV . After restricting to smaller affine open subsets we may assume that U ,
V andW are regular, that ηV is defined by π (considered as an element of B)
and that ηW corresponds to an irreducible element π′ ∈ C. By assumption
the extension of discrete valuation rings B(π)|A(π) is unramified, whereas
C(π′)|B(π) is ramified and of prime degree p. The following cases can occur:

1st case: vC(π′)(π) = p.
We have C(π′)

∼= B(π)[T ]/(f) where f ∈ B(π)[T ] is a monic Eisenstein poly-
nomial of degree p, i.e. f = T p+bp−1T

p−1+· · ·+b0 with π|bi for 0 ≤ i ≤ p−1
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and π2 - b0. Again, by restricting to smaller affine open neighborhoods we
may assume that already f ∈ B[T ], that C ∼= B[T ]/(f) and that the coeffi-
cients bi can be written as bi = πniui where ui ∈ B×, ni ≥ 1 for i 6= 0 and
n0 = 1. Now choose any closed point x of U ∩ D as well as a closed point
y ∈ V above x and a closed point z ∈ W above y. Replace the extension
A→ B → C by the localizations with respect to these points. Let d be the
dimension of the regular local ring A. We can find elements x1, . . . , xd−1 ∈ A
such that (x1, . . . , xd−1, π) is a regular sequence in A. Let (x′1, . . . , x

′
d−1, π)

be the image of (x1, . . . , xd−1, π) in B. It is again a regular sequence due
to the flatness of A → B. The x′1, . . . , x′d−1 generate a prime ideal p of B
of height d− 1 and the image π̄ of π in B/p is a uniformizer of the discrete
valuation ring B/p (cf. [Ma] §17, Theorem 36). By construction the polyno-
mial f̄ ∈ B/p[T ] induced by f is a π̄-Eisenstein polynomial. Hence, setting
K(p) = Q(B/p), it follows that K(p)⊗BC ∼= K(p)[T ]/f̄ has ramification in-
dex p over K(p). Now let C be the integral curve on X corresponding to the
prime ideal of A generated by the x1, . . . , xd−1. It intersects D transversely
in the point x ∈ Creg and C ′ = C∩X ′ 6= ∅. The base change Z ′×X′ C̃ ′ → C̃ ′

is ramified along x.
2nd case: vC(π′)(π) = 1.

After multiplication by a unit of C× we can assume that π′ = π. The
residue field extension kC |kB of C(π)|B(π) has to be purely inseparable of
degree p. We have kB = Q(B/(π)) and kC = Q(C/(π)) and may assume
that SpecA/(π), SpecB/(π) and SpecC/(π) are again regular. Choose a
codimension 1 point ȳ of SpecB/(π) and a uniformizer λ̄ of the local ring at
ȳ. Let z̄ be a point of SpecC/(π) above ȳ and let vz̄ be the discrete valuation
of kC corresponding to z̄. Again, there are two possibilities:

(i) vz̄(λ̄) = p.
We may arrange the situation as follows:

• λ̄ is already a uniformizer of the local ring of SpecA/(π) at the point
x̄ ∈ SpecA/(π) below ȳ.

• There exists a uniformizer θ̄ of the local ring of SpecC/(π) at z̄ such
that λ̄ = θ̄p.

• θ̄ is the reduction of an element θ ∈ C modulo π and the minimal
polynomial f = T p + bp−1T

p−1 + · · · + b0 ∈ B[T ] of θ over B has
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constant coefficient b0 ∈ A.

The reduction of f modulo π is equal to T p − λ̄, hence λ̄ is the image
of λ := −b0 in B/π. After another reduction step, we may assume that
for 1 ≤ i ≤ p − 1 the coefficients bi can up to units of B be written as
bi = πniλmi with ni > 0 and mi ≥ 0. We may also assume that B[T ]/(f)

and C are isomorphic. Now let z be a closed point of W ∩ {z̄}. Let x (resp.
y) be its image in U (resp. V ). Localize the extension A → B → C with
respect to these points and keep the above notation in the local situation.
Choose elements x1, . . . , xd−2 ∈ A, d = dimA, that extend π and λ − π

to a regular sequence (x1, . . . , xd−2, λ − π, π) in A. Again by the flatness
of A → B the image (x′1, . . . , x

′
d−2, λ − π, π) of (x1, . . . , xd−2, λ − π, π) is a

regular sequence in B. Let p be the prime ideal of B given by the elements
x′1, . . . , x

′
d−2, λ − π. Then the image π̄ of π is a uniformizer of B/(p) and

f̄ ∈ B/(p)[T ] is a π̄-Eisenstein polynomial. Put K(p) = Q(B/p). As in the
first case, it follows that K(p) ⊗B C ∼= K(p)[T ]/f̄ has ramification index p
over K(p). So the curve C on X corresponding to the ideal generated by
x1, . . . , xd−2, λ− π has the desired properties.

(ii) vz̄(λ̄) = 1.
In this case the residue field extension of z̄ over ȳ is again purely inseparable
of degree p. The residue fields of all points of codimension d = dimX

are finite, hence perfect. Therefore, after finitely many iterations of the
procedure above we have to end up with an extension that has ramification
index p and inertia degree 1. To be more precise, we can restrict to smaller
affine open subsets to obtain the following data:

• A sequence of points y(0), y(1), . . . , y(n) in SpecB, n ≤ d − 1, where
y(0) is the point corresponding to (π) and y(1) := ȳ, such that y(i+1) is
regular point of codimension 1 in {y(i)} ⊂ SpecB, 0 ≤ i ≤ n− 1.

• A sequence of points z(0), z(1), . . . , z(n) in SpecC, where z(0) is the
point corresponding to (π) and z(1) := z̄, such that z(i+1) is a regular
point of codimension 1 in {z(i)} ⊂ SpecC lying above y(i+1), 0 ≤ i ≤
n − 1. Moreover, the residue field extension of z(i) over y(i) is purely
inseparable of degree p for 0 ≤ i ≤ n − 1, and z(n) has ramification
index p over y(n).
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• A sequence of elements λ := λ1, λ2, . . . , λn ∈ A, where λi is a lift to B
of a uniformizer of the local ring at y(i) ⊂ {y(i−1)}, 1 ≤ i ≤ n, which
can be chosen to lie in A. Furthermore, λn can be chosen in a way
such that its image in B/In−1, where In−1 is the ideal corresponding
to y(n−1), is the p-th root of a uniformizer θz(n) of the local ring at z(n).

• A lift θ ∈ C of θz(n) to C.

• The minimal polynomial f = T p+bp−1T
p−1 + . . .+b0 ∈ B[T ] of θ over

B.

• A closed point x ∈ SpecA ∩ D and a closed point y ∈ SpecB above
x, as well as elements xi ∈ A, 1 ≤ i ≤ m := d− (n+ 1), and elements
x′i ∈ B, 1 ≤ i ≤ m, such that (x1, . . . , xm, λn − π, . . . , λ1 − π, π) is a
regular sequence at x and its image (x′1, . . . , x

′
m, λn − π, . . . , λ1 − π, π)

in B is a regular sequence at y. In addition, these points can be
chosen in a way such that f becomes an Eisenstein polynomial modulo
the prime ideal corresponding to the ideal generated by the elements
x′1, . . . , x

′
m, λn−π, . . . , λ1−π (with respect to the uniformizer induced

by π).

As in the previous cases, the curve C on X corresponding to the ideal gen-
erated by x1, . . . , xm, λn−π, . . . , λ1−π satisfies the required conditions and
the proof is finished. 2

Theorem 3.3.2. Let X ∈ Sch(Z) be a regular scheme and let X̄ be a regular
compactification of X such that D = X̄ \ X is a NCD on X̄. Then for an
abelian étale covering Y → X the following are equivalent:

(i) Y → X is curve-tame.

(ii) Y → X is tamely ramified along D.

(iii) Y → X is Wiesend modulus-tame.

Proof. The equivalence (i) ⇔ (ii) also holds for non-abelian coverings and is
part of [KeS1] Theorem 4.4.
Assume that Y → X is curve-tame. Put I = OX̄(−D). For any curve C
on X̄ such that C ′ := C ∩X 6= ∅ let IC =

∏
v v

nv be the modulus on k(C)

induced by I. For any place v of k(C) we have nv ≥ 1 if the point of C̃
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corresponding to v maps to C ∩ D under the normalization map C̃ → C,
and nv = 0 else. Since Y ×X C̃ ′ → C̃ ′ is tamely ramified along D ×X̄ C̃, we
obtain that the corresponding extension of k(C) is ramified with modulus
IC . This shows that Y → X is ramified with Wiesend modulus I.
We prove (iii) ⇒ (ii). Assume that Y → X is not tamely ramified along
a generic point η of D. In particular the residue charactaristic at η is a
prime p > 0. In order to show that Y → X is not ramified with modulus
I = OX̄(−D) (and hence with any tame modulus), it is sufficient to find a
curve C on X̄ meeting X and intersecting D in a point x ∈ Creg such that:

• The modulus-condition of IC at x is tame.

• The base change Y ×X C̃ ′ → C̃ ′ is wildly ramified along x, where
C ′ = C ∩ C.

The abelian group G = Gal(Y |X) equals the product of its Sylow subgroups
and therefore it suffices to consider the case when G is a finite p-group. Let
Ȳ be the normalization of X̄ in k(Y ). Let YG be the quotient of Y by
the action of the inertia group of some point of Ȳ above η and let ȲG be
the normalization of X̄ in k(YG). Then Y → X factors through the étale
covering YG → X and Y → YG is not tamely ramified along ȲG ×X̄ D. We
may assume that the degree of Y → YG is p. Now we are in the situation to
apply Proposition 3.3.1 which gives us the desired curve. 2

Next, we show that the modulus condition induced by the class group CI(X̄)

for the ideal sheaf I = OX̄(−D) corresponds to the notion of tame ramifi-
cation along the divisor D when D is square-free.

Theorem 3.3.3. Let X ∈ Sch(Z) be a connected, regular scheme which
is flat over SpecZ and let X̄ be a normal compactification of X such that
D = X̄ \X is a square-free divisor on X. Assume that X(R) = ∅. Let KD

be the maximal abelian extension L|K such that XL → X is tamely ramified
along the generic points of D. Then for the ideal sheaf I = OX̄(−D) the
reciprocity map induces an isomorphism

ρX̄,KD : CI(X̄)
∼→ Gal(KD|K).

Proof. Let L|K be a finite abelian extension such that XL → X is étale. Let
V be a discrete valuation ring of rank d of K dominating a Parshin chain
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P = (p0, . . . , pd) of length d on X. Then V comes together with a sequence

V = V0 ⊂ · · · ⊂ Vn = K

of discrete valuation rings ofK (cf. section 1.4) and by definition the discrete
valuation ring (of rank 1) Vd−1 dominates and hence is equal to OX̄,pd−1

. Let
KV be the quotient field of the henselization V h of V and RV the localiza-
tion of V h at the unique prime ideal of height one. By Corollary 3.1.3 the
reciprocity map

ρX̄,L : CI(X̄)→ Gal(L|K)

exists if and only if the composition

KM
d (RV , IRV )→ KM

d (KV )
ρV→ Gal(Kab

V |KV )→ Gal(LKV |KV )

is zero. For pd−1 ∈ X we have

KM
d (RV , IRV ) = KM

d (RV )

and LKV |K is unramified. By Proposition 1.4.13, we know that

im
[
KM
d (RV )→ KM

d (KV )
]
⊂ NLKV |KV (KM

d (L))

and so the composition

KM
d (RV )→ KM

d (KV )
ρV→ Gal(Kab

V |KV )→ Gal(LKV |KV )

is zero by Theorem 1.4.9. If pd−1 ∈ D = X̄ \X we have IRV = (πV ), where
πV is a uniformizer of RV . The morphism XL → X is tamely ramified along
pd−1 if and only if LKV |KV is tamely ramified (w.r.t. RV ). By Proposition
1.4.13, this is equivalent to

im
[
KM
d (RV , (πV ))→ KM

d (KV )
]
⊂ NLKV |KV (KM

d (L)).

Hence it follows from Theorem 1.4.9 that the reciprocity map

ρX̄,L : CI(X̄)→ Gal(L|K)

exists if and only if XL → X is tamely ramified along the generic points of
D.
Now by class field theory, the reciprocity map induces an isomorphism be-
tween CI(X̄) and Gal(L|K) for a finite abelian extension L|K such that
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XL → X is étale. It follows from the above that L has to be the function
field of the maximal abelian covering of X which is tamely ramified along
the generic points of D. 2

We can now compare the modulus conditions of Kato-Saito and Wiesend
corresponding to the ideal I = OX̄(−D) when D is a normal crossing divisor
on X̄.

Theorem 3.3.4. Let X ∈ Sch(Z) be a connected, regular, flat scheme over
SpecZ and let X̄ be a regular compactification of X such that D = X̄ \ X
is a NCD on X̄. Assume that X(R) = ∅ and put I = OX̄(−D). Then the
canonical map

ChW (X)→ CI(X̄)

induces an isomorphism

ChW,I(X)
∼→ CI(X̄).

Proof. Let KD be the function field of the maximal abelian extension of
X which is ramified along D. By Corollary 3.2.4 we have a commutative
diagram

ChW (X) CI(X̄)

Gal(KD|K),

∼ ρX̄,KD

and ρX̄,KD is an isomorphism by Theorem 3.3.3. Let KI be the maximal
abelian extension L|K such that XL → X is ramified with Wiesend modulus
I. By Theorem 3.3.2 we have

Gal(KI |K) = Gal(KD|K).
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So it follows from the commutative diagram

ChW (X)

ChW,I(X) CI(X̄)

Gal(KI |K) Gal(KD|K)

∼ ρX̄,KD

∼

that the map
ChW (X)→ CI(X̄)

factors through ChW,I(X) and that

ChW,I(X)→ CI(X̄)

is an isomorphism. 2
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