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Summary 

 

Head and neck cancer is the sixth most common cancer worldwide and associated with a poor 

clinical prognosis, due to development of recurrent tumors and metastasis. Tumor recurrence 

and low patient survival are strongly linked with the ability of tumor cells to invade and infiltrate 

the surrounding tissue. Stress-activated protein kinases (SAPK), particularly p38, are known to 

regulate a wide range of cellular phenotypes, including cell invasion via the activity of secreted 

proteases. The proliferation-associated Forkhead box protein M1 (FOXM1) transcription factor, 

a p38 downstream target, plays a role in the development and growth of many cancer types. 

However, only very little is known about the role of p38 and FOXM1 in invasive processes of 

head and neck cancer and the exact mechanism underlying this process. In this work we 

examined the downstream events of p38 signaling primarily focusing on the role of FOXM1 

transcription factor in regulation of the urokinase-type plasminogen activator (uPA) gene and 

invasion of head and neck squamous cell carcinoma (HNSCC) cells. Using different HNSCC cell 

lines, we confirm that p38 regulates FOXM1 expression and provide evidence that p38 signaling 

driven in vitro invasion of HNSCC cells requires FOXM1 expression. Furthermore, siRNA-

mediated FOXM1 knockdown is sufficient to inhibit the invasive behavior of HNSCC cells in vitro. 

By using reporter gene assays, bioinformatical analysis of the publically available ChIP-Seq data, 

chromatin immunoprecipitation assays, and transplantation-based mouse model of oral cancer, 

we identified the molecular mechanism of FOXM1-mediated invasion of HNSCC cells. FOXM1 

controls the uPA-dependent invasion via activation of c-Fos and thus drives AP-1 activity on the 

uPA promoter, which enhances its expression and proteolytic activity. Further, an activated Ras 

signaling is necessary for a potent FOXM1-mediated uPA activity and tumor formation. The data 

are supported by a bioinformatical study, demonstrating concomitant up-regulation of FOXM1 

and uPA in oral dysplasia and SCCs of head and neck, oesophagus, lung and cervix. In the mouse 

model of oral cancer we show that uPA expression is upregulated in recurrent tumors compared 

to primary tumors, giving further evidence for a crucial role of the p38-FOXM1-uPA axis in the 

development of recurrent tumors. Taken together, we conclude that the stress signalling 

cascade requires a FOXM1-dependent intermediate step preceding the activation of AP-1 

transcription factor to enhance invasive behaviour of tumor cells. This novel mechanism 

promotes invasion of HNSCC and may provide a potential target for the adjuvant therapy of 

these highly invasive cancers. 
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Zusammenfassung 

 

Kopf-Hals-Krebs gehört zu der sechst häufigsten Krebsart weltweit und ist assoziiert mit einer 

schlechten klinischen Prognose, für welche die Entstehung von Rezidivtumoren die 

Hauptursache sind. Die Entstehung von Tumorrezidiven und die geringe Überlebensrate von 

Patienten hängen stark mit der Fähigkeit von Tumoren zusammen umliegendes Gewebe zu 

infiltrieren. Stress-aktivierte Protein Kinasen (SAPK), vor allem p38, sind dafür bekannt, dass sie 

eine Reihe von zellulären Phänotypen regulieren, darunter auch Zellinvasion mit Hilfe von 

Proteasen. Der Proliferations-assoziierte Forkhead box protein M1 (FOXM1) Transkriptions-

faktor, ein “Target“ von p38, spielt eine große Rolle in der Entwicklung und dem Wachstum von 

vielen Krebsarten. Jedoch ist nur wenig bekannt über die Rolle von p38 und FOXM1 bei 

invasiven Prozessen von Kopf-Hals-Tumoren und dem genauen Mechanismus hinter diesem 

Prozess. In dieser Arbeit haben wir Vorgänge unterhalb des p38 Signalweges untersucht und uns 

dabei auf die Rolle von FOXM1 bei der Regulation des Urokinase-Typ Plasminogen Activator 

(uPA) Gens und der Invasion von Plattenepithelkarzinomen des Kopf-Hals-Bereichs (HNSCC) 

konzentriert. Unter der Verwendung von mehreren HNSCC Zelllinien konnten wir bestätigen, 

dass p38 die Expression von FOXM1 reguliert, dass FOXM1 für p38-gesteuerte in vitro Invasion 

von Kopf-Hals-Tumoren benötigt wird und das eine Inhibierung von FOXM1 durch siRNA genügt 

um das invasive Verhalten von HNSCC Zellen in vitro herunterzuregulieren. Durch den Gebrauch 

von Reportergenuntersuchungen, bioinformatischen ChIP-Seq Daten, Chromatin Immuno-

prezipitation und Mausmodellen konnten wir den genauen molekularen Mechanismus der 

FOXM1-abhängigen Invasivitätsregulierung identifizieren. FOXM1 kontrolliert uPA-abhängige 

Invasion über eine erhöhte AP-1 Aktivität am uPA Promoter und erhöht so dessen Expression 

und proteolytische Aktivität. Ferner ist ein aktiviertes Ras Protein für eine starke FOXM1-

abhängige uPA Aktivität und Tumorformation nötig. Zur Stützung unserer Daten, konnten wir in 

bioinformatischen Studien beobachten, dass in Dysplasien und Plattenepithelkarzinomen des 

Kopf-Hals-Bereichs, Öesophagus, Lunge und Gebärmutterhals FOXM1 und uPA überexprimiert 

sind. In einem vorher etablierten Mausmodel konnten wir zudem zeigen, dass uPA in rezidiven 

Tumoren, verglichen mit Primären, überexprimiert ist, welches weiter die wichtige Rolle der 

p38-FOXM1-uPA Achse bei der Entwicklung von Rezidivtumoren bestärkt. Zusammenfassend 

folgern wir, dass Stress-induzierte Signalkaskaden einen FOXM1-abhängigen Zwischenschritt 

benötigt, welcher der Aktivierung von AP-1 Transkriptionsfaktoren vorangeht und welcher das 

invasive Verhalten von Tumoren fördert. Dieser neue Mechanismus begünstigt invasives 

Verhalten von Plattenepithelkarzinomen und könnte sich womöglich als potentielles Ziel für die 

adjuvante Therapie von solchen, hochinvasiven, Krebstypen anbieten. 
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1   Introduction 
 

 

 

 

1.1   Head and neck cancer 
 

 

 

1.1.1   Epidemiology and risk factors 

 

Head and neck cancer is the sixth most common cancer, worldwide affecting 650,000 new 

patients annually. In the United States approximately 50,000 new cases occur each year, with 

around nearly 10,000 deaths, accounting for over 3% of all incident malignancies (Jemal A et al., 

2007). The incidence rates vary internationally with the highest rates found in Melanesia, South-

Central Asia and Eastern Europe and lowest rates observed in Africa and Central America for 

both males and females (Jemal A et al., 2011). The term head and neck cancer characterizes all 

malignancies that can arise from various anatomic structures of the lip, tongue, nasopharynx, 

larynx, oropharynx, or hypopharynx (Figure 1), including tissue of craniofacial bones, soft tissue, 

salivary glands, the epithelium lining and mucosal membrane (Pai SL et al., 2009). Over 90% of 

all head and neck cancers are of squamous cell histology, arising from the squamous mucosa of 

the upper aerodigestive tract. Therefore this disease is generally often described as head and 

neck squamous cell carcinoma (HNSCC) (Shiboski CH et al., 2005). 

 

 

 
 

 

 

Figure 1: The head and neck 

region: HNSCC can arise from different 

structures within the head and neck 

region, including the oral cavity, 

nasopharynx, oropharynx, hypopharynx, 

and nasal cavity. Picture was taken from 

Raju Rao MD Radiation Oncology Center 

web page. 
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The most important risk factors for the development of head and neck cancer are tobacco use 

and alcohol consumption, which are implicated in 75% of all HNSCC and have a multiplicative 

combined effect (Tuyns AJ et al., 1988; Vineis P et al., 2004). For a subgroup of HNSCC, 

particularly for oropharyngeal squamous cell carcinoma, infection with high-risk types of 

human papilloma viruses (HPV) has been recognized as an increasingly important risk factor 

(Chaturvedi et al., 2011). While in the last couple of years the incidence of HNSCC from specific 

sites has declined, mainly due to a decrease in tobacco consumption, the incidence of HPV-

infection related cancers, like oropharyngeal cancer, has increased and is probably independent 

of other carcinogens (Rothenberg et al., 2012). Some sexual practices, because of their higher 

risk for transmitting the HPV virus, are also risk factors for the development of oropharyngeal 

cancer (Argiris A et al., 2008). 

 

 

 

1.1.2   Molecular mechanisms of HNSCC development 

 

It is generally accepted that the initiation and progression of HNSCC is a multistep process of 

accumulated genetic and epigenetic alterations, including the activation of proto-oncogenes 

and inactivation of tumor-suppressor genes, by deletion, point mutations, promoter 

methylation, and gene amplification (Califano J et al., 1996). Those particular genetic alterations 

are associated with the histopathological stages of HNSCC development from squamous 

hyperplasia, through graded dysplasia and carcinoma in situ, to invasive carcinoma (Pai SL et al., 

2009) (Figure 2). 

 

Especially loss of heterozytocity (LOH) of certain chromosomal regions can lead to genetic 

instability and upregulation of oncogenes, or downregulation of tumor-suppressor genes 

(Williams HK, 2000). In squamous dysplasia and HNSCC loss of chromosomal region 9p21, which 

harbors several tumor suppressor genes, is the most common genetic alteration, occurring in 

80% of all cases and appears to be an early event in the development of HNSCC (Nawrotz H et 

al., 1994). This region encodes the two transcripts p16 and p14ARF, which are important 

regulators of the cell cycle. Despite LOH, p16 can also be inactivated through promoter 

methylation, or point mutations (Reed AL et al., 1996).  

The loss of the chromosome region 17p, which harbors the TP53 tumor suppressor gene, 

appears to occur in the late progression from epithelial dysplasia to invasive carcinoma in 50% 

of all HNSCC (Nawrotz H et al., 1994). In addition to LOH the function of wild-type TP53 is often 

inactivated by other mechanisms, for example by inactivation through the HPV E6 protein, or 
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MDM2 overexpression. Mutations of the TP53 gene can be found in 50% to 80% of HNSCC, and 

are associated with a poor survival prognosis (Boyle JO et al., 1993; Poeta ML et al., 2007).  

Loss of the chromosomal region 3p is an early event in dysplasia and invasive HNSCC and is 

found in up to 70% of HNSCC. Yet, there is much controversy about the involved genes present 

in 3p and their impact on HNSCC development and has to be further examined (Hogg RP et al., 

2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Genetic progression model for head and neck cancer. The accumulation of several 

genetical aberrations promotes the transformation from normal healthy mucosa through the development of 

hyperplasia, dysplasia, and carcinoma in situ, to invasive carcinoma. The accumulated genetic alterations 

include inactivation or mutations of tumor-suppressors (e.g. PTEN, p16, and p53) or overexpression of 

oncogenes (e.g. Cyclin D1). Picture was taken from Pai SI, Westra WH, 2009. 

 

 

Despite the inactivation of tumor suppressors, the activation of oncogenes plays an important 

role in the development of HNSCC. The epidermal growth factor receptor (EGFR) has strongly 

been implicated in the pathogenesis of HNSCC. It is overexpressed in 90% of all head and neck 

cancers, compared to normal mucosa (Grandis JR et al., 2004) and is a negative predictor for 
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overall- and disease-free survival (Ang KK et al., 2002; Abhold EL et al., 2012) and radiotherapy 

resistance (Ang KK et al., 2004).  

Amplification of 11q13 and overexpression of Cyclin D1, which enables G1-S transition, is seen 

in 30% to 60% of HNSCC and associated with increased rate of lymph node metastasis and 

overall poor prognosis (Perez B et al., 2012).   

A link between HPV infection and HNSCC has been established recently. HPV DNA has been 

identified in 15% of HNSCC patients, of which HPV-16 is the most common subtype (95%) 

(D’Souza G et al., 2007). Patients with HPV-related HNSCC have a higher risk to develop oral- 

and orpharyngeal squamous cell carcinoma and usually are not smokers, are at a young age, and 

have a high lifetime number of heterosexual partners (Perez B et al., 2012). Surprisingly, the 

presence of HPV type 16 DNA is independently associated with a favorable prognosis including a 

lower disease specific mortality, compared to HPV-negative patients (Schwartz SR et al., 2001).  

Other commonly deregulated pathways in head and neck cancer are activation of the PI3K 

pathway through PTEN and TGF-β receptor deletion (Bian Y et al., 2012), overexpression of 

cyclooxigenase-2 (COX-2), vascular endothelial growth factor (VEGF), and matrix 

metalloproteinases (MMPs), leading to increased metastasis and angiogenesis (Mineta H et al., 

2000; Gallo O et al., 2001; Lim SC et al., 2003). 

 

 

 

1.1.3   Treatment and Outcome 

 

Even though most head and neck tumors are squamous cell carcinomas, recent insights reveal 

that HNSCC tumors in fact are unexpectedly heterogeneous depending on the localization and 

genetic composition of the tumor, hindering accurate prognostication, treatment planning and 

the identification of the causative cancer genes (Götte K et al., 2005). In addition primary tumor 

site, stage and respectability, as well as patient factors, including swallowing, airway 

considerations, and desire for organ preservation, require an appropriate management and the 

involvement of many specialists, including surgeons, medical oncologists, radiation oncologists, 

plastic surgeons, and dentists (Argiris A et al., 2008). Early-stage tumors are usually treated with 

surgery or radiotherapy (Stepnick D et al., 2010) and have a favorable prognosis, with survival 

curve rates ranging between 60% and 90%, depending on tumor site and extension of the 

disease. The recommended choice for the 60% of patients with advanced tumors at diagnosis is 

surgery combined with postoperative radiotherapy. The current standard for patients with an 

unresectable disease, or when organ preservation is desired, is concurrent cisplatin-based 

chemoradiation (Vermorken JB et al., 2010).  
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The quality of life for patients with HNSCC has increased in the recent years due to advanced 

surgical protocols, as well as the increased role of organ preservation- and reconstruction 

protocols, including free tissue transfer (Meyers LL et al., 2008). Other factors are the reduction 

of radiation-induced morbidity due to the use of new radiotherapeutic techniques, like 

intensity-modulated radiotherapy (Vergeer MR et al., 2008).  

Thanks to the growing understanding of the genetical mechanisms involved the development of 

HNSCC, new therapies targeting specific components of the signal machinery have been 

developed and the use of biological agents has entered the field (Moral M et al., 2008). Most 

notably is the application of the epidermal growth factor receptor (EGFR) - specific antibody 

cetuximab combined with chemotherapy, that has been shown to induce antitumor effects 

(Fung C et al. 2010; Leemans CR et al., 2011). Despite advances in conventional therapy 

including surgery, chemotherapy, and radiation, the 5-year survival rate for patients with head 

and neck cancer is still among the lowest of the major cancers (Carvalho AL et al., 2005; 

Leemans CR et al., 2011). Only 40-50% of patients will survive for 5 years, due to of the frequent 

development of regional and distant metastasis, as well as secondary primary tumors, and most 

importantly, because of the development of locoregional recurrences (Goerner M et al., 2010; 

Thomas SM et al., 2009).  

 

 

 

 

1.2   Recurrent tumors 
 

 

 

1.2.1   Clinical significance of recurrent tumor development 

 

The main cause for treatment failure of HNSCC is locoregional recurrence (Paleri V et al., 2008). 

The majority of more advanced HNSCC treated with a form of combined modality treatment, 

will eventually relapse, either locoregionally in 30% to 40% of patients, or form distant 

metastasis in 20% to 30% of patients (Marur S et al., 2008). The backbone of treatment for 

patients with recurrent or metastatic head and neck squamous cell carcinoma is chemotherapy 

combining different agents, like the epidermal growth factor receptor inhibitor cetuximab in 

combination with 5-fluorouracil and Cisplatin (Péron J et al., 2012). However, due to an 

aggressive phenotype and resistance against various therapies, the overall main survival for 

recurrent or metastatic tumors remains still less than 1 year. Only a small portion of patients 
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can successfully be treated, while for most of them palliative treatment is the only remaining 

option (Vermorken JB et al., 2010; Price KA et al., 2012). Regarding the success of treatment 

there is some evidence that HPV positive recurrent oropharynx tumors have a more favorable 

outcome than HPV negative tumors when treated with chemotherapy (Gillison ML et al., 2000).  

 

 

 

1.2.2   Molecular mechanisms of recurrent tumor development 

 

The molecular mechanisms that lie behind the development of recurrent head and neck cancer 

are not well examined yet. There is some evidence for an association between EGFR mediated 

Ras-PI3K signaling that confers radioresistance and has a negative impact on locoregional 

control as well as treatment outcome of head and neck cancer patients (Gupta AK et al., 2002). 

An important hallmark in the development of recurrent head and neck cancer is the process of 

local invasion and spread to regional lymph nodes, which is made possible by the highly invasive 

behavior of tumor cells and rich lymphatic drainage. Persistent invasion and migration into the 

surrounding tissue causes local dissemination, or penetration of lymphatics, which leads to the 

production of local recurrent tumors or distant metastasis (Kramer RH et al., 2005).  

In clinical investigations head and neck tumors from patients with a high risk to develop 

recurrence had a 5-year locoregional control of 58%, compared to 88% of low risk tumors. 

Those high risk tumors were characterized by parameters including positive surgical margins, an 

increased number of N3 lymph nodes, strong extranodal spread, and perineural invasion, which 

all suggest a highly invasive growth for these high-risk tumors (Fagan JJ et al., 1998; Langendijk 

JA et al., 2005;). For carcinoma of the oral cavity it has been shown that vascular invasion, 

perineural invasion, extracapsular extension, positive margins and T classification inversely 

correlate with the 5-year locoregional control (Hinerman RW et al., 2004). The development of 

occult metastasis or nodal metastasis of squamous carcinoma of the oral tongue can be 

associated with a muscle infiltration depth over 4mm and an infiltrating-type invasion front as 

well as a weakly defined invasion front consisting of disseminated tumor islands (Byers RM et 

al., 1998; Sparano A et al., 2004; Lim SC et al., 2004).  

 

Taken together, those experimental and clinical data strongly suggests that especially tumors 

with a highly invasive potential, consisting of disseminated tumor islands, which lost contact to 

the invasion front, tend to develop locoregional recurrences (Figure 3). Thus, to achieve a better 

locoregional control and increase patient survival, it is of crucial importance to examine the 

exact molecular mechanisms that promote invasion of head and neck tumor cells. 
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Figure 3: Invasion of tumor cells leads to local recurrence. Within one tumor, populations of highly 

invasive cells penetrate the mucosal membrane by destruction of the extracellular matrix and invade the 

surrounding mucosal tissue. After surgical resection, those highly invasive and aggressive cell populations remain 

inside the mucosal tissue out of which later the recurrent tumor arises. Picture taken and modified from CR 

Leemans et al., 2011. 

 

 

 

 

1.3   The process of cancer cell invasion 
 

 

 

1.3.1   Definition and clinical significance 

 

The term cancer cell invasion describes the penetration of cancer cells into neighboring tissue 

beyond the borders of their primarily tissue from which they originate, which is achieved by 

degradation of the surrounding extracellular matrix (ECM). Under normal conditions during the 

events of embryonic development, immune response, or wound healing the process of invasion 

is a tightly coordinated genetic program, triggered by extracellular signals like growth factors or 
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chemokines. This process requires a well-tuned expression and activity of signal molecules, 

transcription factors and other gene products, so that when the cell reaches its designated 

destination, the invasion program is terminated and the cell can differentiate (Ozanne BW et al., 

2006; Friedl P et al., 2011). In cancer cells these signal pathways, controlling the process of 

invasion, are often disturbed and invasion continues beyond the normal extend (Malliri et al., 

1998). As a consequence, cancer cell invasion is a crucial event for the transformation of a 

locally growing tumor into a spreading and life threatening disease. By the means of enhanced 

and uncontrolled invasion tumor cells are also able to enter into the circulation system of blood 

vessels and lymph node channels, by which they reach distant organs and form secondary 

tumors, called metastasis. The formation of distant metastasis is an important prognostic factor 

for some cancers like breast cancer (Parker B et al., 2003), whereas in other cancer types, like 

head and neck cancer, the process of local invasion and metastasis to locoregional lymph nodes 

is an important prognostic factor and associated with decreased patient survival (Rivelli V et al., 

2011). 

 

 

 

1.3.2   Molecular mechanisms involved in the process of invasion 

 

The biological mechanisms underlying the process of invasion have been well characterized in 

the recent years. It is the aberrant expression and activity of certain genes and signal pathways 

that leads to an invasive phenotype (Figure 4).  At the same time the function of those genes is 

not only restricted to the phenotype of invasion. Instead, there is a mutual relationship between 

invasion and other phenotypes like growth, differentiation, and survival, which can be regulated 

at the same time by one single gene (Mareel et al., 2002). 

One important type of regulators of tumor cell invasion are adhesion molecules consisting of 

several protein families, including Cadherins and Integrins. The transmembrane glycoprotein 

epithelial (E)-Cadherin, which is a subclass of the Cadherin family, controls the maintenance of 

intracellular junctions in epithelial tissues by a calcium dependent manner (Kim SA et al., 2011). 

For breast cancer it has been shown that tumor cells with impaired E-Cadherin expression tend 

to grow more infiltrative (Oka H et al., 1993). In colon cancer loss of α-Catenin, an essential 

element of the E-Cadherin invasion suppressor complex, is directly linked to the acquisition of 

an invasive phenotype of non-invasive cancer cells, thus pointing out the function of E-Cadherin 

as a suppressor of tumor invasion and a promoter of differentiation (Vermeulen SJ et al., 1999; 

Strumane K et al., 2004). N-Cadherin, another adhesion molecule, promotes motility and 

invasion. In squamous carcinoma cells transfection of N-Cadherin cDNA causes a decrease of E-

Cadherin expression and induces an invasive phenotype (Islam S et al., 1996).  
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Integrins mediate the interaction of tumor cells with the cytoskeleton structure of the ECM and 

are strongly implicated in invasion and metastasis of solid tumors (Desgrosellier JS et al., 2010). 

The membrane glycoprotein CD44 is widely expressed on lymphocytes and high expression of 

CD44 is associated with an increased capacity to produce metastasis in renal carcinoma 

(Bozzuto G et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A schematic diagram of cancer cell invasion. The aberrant expression of genes, including the 

upregulation of oncogenes and downregulation of tumor suppressor genes leads to cancer cell invasion. By 

destruction of the ECM, cells are able to cross the basal membrane and penetrate blood vessels or the mucosal 

tissue. By this means tumor cells can form distant metastasis or recurrent and secondary tumors. 

 

 

The degradation and remodeling of the extracellular matrix (ECM) is an essential step in the 

process of invasion. It is mainly achieved by two types of proteolytic enzymes, the plasminogen 

activator system components (uPA) and matrix metalloproteinases (MMPs) (Conese M et al., 

1995; Stamenkovic I et al., 2000). MMPs are highly conserved metal atom-dependent 

endopeptidases, which are capable of breaking down most of the basal membrane and ECM 

components by degradation of fibrillar collagen, which leads to enhanced invasion and 

metastasis (Curran S et al., 2000). Transcription factors like the activator protein 1 (AP-1) or the 

Smad (mothers against decapentaplegic homolog) proteins are able to modulate the expression 

of invasion-promoting genes like MMPs or uPA and are associated with tumor cell invasion and 

epithelial mesenchymal transition (EMT) (Davies M et al., 2005). Other important regulators of 

cancer cell invasion, which can be activated through mutation and become oncogenes 
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promoting invasion both in early and late stage of cancer development, are c-Met, epidermal 

growth factor receptor (EGFR), Ras proteins, the phosphates and tensin homologue (PTEN), 

RhoA/C, Cdc42, Rac1, Vimentin, or the SRC gene (Irby RB et al., 1999; Campbell PM et al., 2004; 

Sahai E et al., 2005;). MMPs, transcription factors, and other genes responsible for tumor 

invasion, can be regulated by growth factors and cytokines through the Mitogen-activated 

protein kinases, which thus play a crucial role in cancer cell invasion (Kumar B et al., 2010; 

Huang S et al., 2000). 

 

 

 

 

1.4   Stress- activated protein kinases (SAPKs) 
 

 

 

1.4.1   The Mitogen-activated protein kinase (MAPK) signaling cascade 

 

Mitogen-activated protein kinases (MAPKs) are evolutionary conserved signal transducing 

enzymes, which convert extracellular stimuli into a wide range of cellular responses, by 

connecting cell-surface receptors to critical regulatory targets within the cell. MAPKs play 

important roles in various cellular and multicellular processes like cell growth, differentiation, 

apoptosis, and migration (Roberts PJ et al., 2007). Aberrant activation of MAPK cascades is 

characteristic for many cancer types, even though their exact role in the development of cancer 

is complex and still confusing, due to several cross-talk reactions and feedback mechanisms   

(Engelberg et al., 2004).  

 

Protein kinases covalently attach phosphates to the side chain of serine, threonine, or tyrosine 

residues of specific proteins inside cells and thus control their activity or interaction with other 

molecules (Chang L et al., 2001; Johnson GL et al., 2002). The activation mechanism of MAPKs 

includes a G-protein working upstream of a core module consisting of three sequentially acting 

kinases. In response to a extracellular stimuli a GTP-binding protein of the Ras/Rho family 

interacts with a serine/threonine MAPK kinase kinase (MAPKKK) that phosphorylates and 

activates a MAPK kinase (MAPKK), which in turn activates the MAPK through dual 

phosphorylation on threonine and tyrosine residues (Figure 5) (Schaeffer HJ et al., 1999; Chen Z 

et al., 2001; Kyriakis JM et al., 2001). Such an arrangement provides signal amplification, and the 

possibility for regulatory interference, which allows the cells to precisely control the duration 

and amplitude of the signal strength (Kolch W et al., 2000). There are several distinct groups of 
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MAPKs that have been characterized. The three main types are extracellular signal-regulated 

kinase (ERK) 1/2, Jun N-terminal kinase (JNK)1/2 and the p38 isoforms α/β/γ/δ (Dhillon AS et al., 

2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: MAPK signaling in cancer cell. The diagram illustrates the various components of the 

most important MAPK signaling pathways that promote the malignant development of tumors. 

Though not indicated in the picture, there are numerous cross-talk reactions and feedback loops 

among all pathways. 

 

 

 

1.4.2   Extracellular signal-regulated kinases (ERK)  

 

ERK1/2 is a widely expressed 42-/44-kDa MAPK and mainly implicated in the regulation of cell 

proliferation, but is also involved differentiation, survival, and motility. The ERK pathway can be 
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activated mainly by growth factors and phorbol esters, but also by various cytokines or 

infections and carcinogens (Kohno M et al., 2006; McCubrey JA et al., 2007). The mammalian 

ERK1/2 module is a component of a three-kinase module that includes the MAPKKK c-Raf, B-Raf, 

or A-Raf, which are activated by the proto-oncogene Ras. The MAPKKK module activates the 

dual-specific MAPKK MEK1, and MEK2 which in turn phosphorylate ERK1/2 within a conserved 

Thr-Glu-Tyr motif inside of its activation loop (Crews CM et al., 1992; Marshall CJ et al., 1994; 

Kohno M et al., 2006). Activated ERK1/2 phosphorylates various downstream targets, including 

membrane proteins (Calnexin), nuclear substrates (Elk-1, c-Fos, c-Myc, FOXM1, STAT3), 

cytoskeletal proteins (Paxillin) and several mitogen kinases (MKs) (Babu GJ et al., 2000; Roux PP 

et al., 2004; Ng DC et al., 2011). Under normal physiological conditions the ERK MAP kinase 

module plays a central role in growth and survival of human cells. An auto-control mechanism 

associated with nuclear/cytoplasmic shuttling ensures the appropriate intensity and duration of 

ERK activity in response to growth factors and other extracellular stimuli (Lawlor MA et al., 

2000; Costa M et al., 2006).  

 

In cancer cells this fine-tuned mechanism is often disturbed (Pouysségur J et al., 2003). ERK is 

constitutively active in more than 36.2% of all tumors, which in most cases is due to the disorder 

and inappropriate activation of Raf or Ras (Avruch J et al., 1994; Hoshino R et al., 1999). In 

human lung cancer cells it has been shown that the ERK/MAPK pathway is crucial for cell 

migration and invasion of tumor cells upon growth factor stimulation (Lu Z et al., 2011). ERK1/2 

also promotes proliferation of colorectal cancer cells (Kress TR et al., 2010), and confers 

resistance to apoptosis in prostate cancer cells (Rasola A et al., 2010). Inhibition of ERK in gene 

based cancer therapies often was reported to act anti-cancerous in experimental systems and 

patients (Sebolt-Leopold JS et al., 1999; Ligresti G et al., 2008; Bartholomeusz et al., 2012; Ding Z 

et al., 2012). 

 

 

 

1.4.3   Stress-activated protein kinases (SAPK) 

 

The stress activated protein kinases JNK and p38 are usually activated by stress stimuli like 

osmotic shock, UV/IR irradiation, or cytokine stimulation and they play an important role in the 

regulation of cellular proliferation, differentiation, motility and apoptosis (Malemund; 2007).  

The JNKs were characterized as stress-activated protein kinases that bind and phosphorylate the 

DNA binding protein c-Jun, which is a component of the AP-1 transcription factor complex, and 

increase its transcriptional activity (Johnson GL et al., 2002). Further investigations show that 

the activation of c-Jun by JNK can be induced by UV light and is dependent on the oncogene Ha-
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Ras (Dérijard B et al., 1994). Upon mutation of the JNK phosphorylation sites within the c-Jun 

protein (JunS63AS73A) in mice, skin tumor development after induction of Ras and c-Fos was 

significantly impaired (Behrens A et al., 2000), pointing out an important role for JNK as a 

mediator of Ras and AP-1-mediated oncogenesis.  

The stress-activated MAPK p38 was originally identified as a kinase which is phosphorylated and 

activated by stimulation with endotoxic lipopolysaccharide cytokines (Han J et al., 1994) and 

mediates interleukin-1 induced pro-inflammatory activity (Lee JC et al., 1994). Beyond stress-

response p38 is involved in other cellular functions like oogenesis, differentiation, and survival 

(Nebreda AL et al., 2000). Recently it has been established that, upon transduction of 

extracellular signals into the nucleus and other cellular components, p38 turns on target genes 

which are involved in pro-oncogenic processes (Ono K et al., 2000). Upon activation, p38 

phosphorylates the transcription factor ATF-2 (Zayzafoon M et al., 2002) and further, p38 

activity is essential for Anisomycin- and ultraviolet (UV)-stimulated induction of c-Jun and c-Fos 

(Hazzalin CA et al., 1996). p38 also leads to the phosphorylation and activation of small heat 

shock protein hsp27 after both stress or growth factor stimulation, resulting in remodeling of 

the actin cytoskeleton (Guay J et al., 1997). In prostate cancer cells it has been shown that Il-6-

induced TGF-β stimulation, which leads to tumor progression, is mediated by multiple pathways 

including JNK, Ras and p38 (Park JI et al., 2003). 

 

 

 

1.4.4   The role of p38 in invasive processes of head and neck cancer 

 

The role of p38 in invasive processes of cancer cells has also been established. Using the p38 

inhibitor SB203580 in human epithelial breast cancer cells, it has been shown that p38 is the key 

mediator of H-Ras induced cell motility and that it leads to an invasive phenotype by 

upregulation of matrix metalloproteinase 2 (MMP-2) (Kim MS et al., 2003; Shin I et al., 2005). In 

prostate cancer cells p38 and ERK promote cell invasion via regulation of the G protein-coupled 

P2Y purinoreceptor (Chen L et al., 2004).  

p38 also exerts important functions in the tumor development and invasion of HNSCC. STAT3, 

which is normally overexpressed in head and neck cancer is and a strong promoter of malignant 

transformation via Il-6/8, displays a decreased activity upon inhibition of p38 (Riebe C et al., 

2011). Inhibition of the two p38 isoforms p38α/β reduced the SCC cell number and invasion, 

while inhibition of p38α, but not p38δ, resulted in apoptotic cell death (Juntilla MR et al., 2007). 

In HSNCC cell lines MMP-10 driven invasion and metastasis is partially dependent on p38 

activity (Deraz EM et al., 2011) and secretion of Il-8, which triggers angiogenesis, is significantly 

elevated after activation of p38 (Riebe C et al., 2007).  
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Exposure of HNSCC cells to Cisplatin and other platinum based compounds in an experimental 

setup markedly increased p38 activity, indicating an involvement of p38 in radiation-based 

therapy of HNSCC (Hérnandez LJ et al., 2003). In fact, p38α levels in the serum of HNSCC 

patients at cancer diagnosis were elevated significantly and correlated inversely with the 

success of radio-therapy, pointing out an important role of p38 as a suitable prognostic marker 

in the serum of HNSCC with respect to radio-therapy (Gill K et al., 2012).   

 

Even though there is a large body of evidence for the implication of p38 in invasive processes of 

HNSCC cancer cells, there is only little information available about the exact mechanisms and 

the role of p38, as well as for other MAPKs, in the development of recurrent tumors. Due to the 

fact that p38, as well as other MAPKs, often display cross-talks with other MAPK components, 

and beside oncogenic effects also exert tumor-suppressing functions, it is more feasible to 

search for further downstream targets in order to target invasion more specifically. 

 

 

 

 

1.5   The Forkhead box protein M1 (FOXM1) 
 

 

 

1.5.1   Expression and physiological function of FOXM1    

 

The Forkhead box protein M1 (FOXM1), also known as HFH-11/-3, MPP-2, Win, or Tridient 

(Laoukili J et al., 2007), is a transcription factor of the Forkhead family that share homology in 

their conserved winged-helix DNA-binding domain (Mardsen I et al., 1997). It was first identified 

by the three-dimensional structure of its winged-helix HNF-3/Forkhead DNA recognition motif, 

using X-ray crystallography (Clark KL et al., 1993). The human FOXM1 gene consists of 10 exons, 

spanning approximately 25kb on the 12p13-3 chromosome (Laoukili et al., 2006). Two exons are 

alternatively spliced, leading to the three different splice variants FOXM1-A, FOXM1-B, and 

FOXM1-C, of which only the isoforms B and C are transcriptionally active and regulate their 

target genes by two different mechanisms (Alves J et al., 2007). They both activate through 

binding to conventional FOXM1 binding sites 5'-AGATTGAGTA-3' (Yao KM et al., 1997), while 

FOXM1-C can additionally transactivate promoters by binding to the TATA boxes P1 (5’-

TATAATGC-3’) and P2 (5’-TATAAAG-3’) (Wierstra I et al., 2006). FOXM1-A has no transcriptional 

activity, but since it has retained its DNA binding properties it is believed to have a dominant 

negative effect on transcriptional activation (Ye H et al., 1997).  
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Figure 6: Functional domains within the FOXM1 protein. The graphic shows the most important 

components of the FOXM1 protein including its phosphorylation sites. Each domain has distinct functions 

regarding the DNA binding properties, expression, and transactivational activity of FOXM1. Picture was 

modified after Schwenen H et al., 2009. 

 

 

FOXM1 is a proliferation-specific gene whose expression is restricted to actively dividing cells of 

embryonic tissues (Korver W et al., 1997), or to highly proliferating adult tissues including the 

thymus and testis, whereas it is barely detectable in quiescent or terminally differentiated cells 

(Ye H et al., 1997). FOXM1 is a key regulator of the cell cycle, playing a critical role for G1/S 

transition, entry into mitosis (Wang IC et al., 2005), for the proper execution of mitosis and for 

chromosome stability (Laoukili J et al., 2005). FOXM1 deficient cells show severe defects in 

chromosome number and integrity. Depletion of FOXM1 in mouse embryos uncouples the S-

phase from mitosis and leads to postnatal death as a result of the development of polyploid 

cardiomyocytes and hepatocytes (Korver W et al., 1998). In addition, FOXM1-/- mice suffer from 

respiratory failure after birth due to inhibited lung maturation (Kalin V et al., 2008). Despite the 

orchestration of the cell cycle FOXM1 regulates the expression of genes involved in DNA 

damage repair (Tan Y et al., 2007), tissue regeneration (Ye H et al., 1997), organogenesis (Korver 

W et al., 1998) and the process of aging (Laoukili et al., 2006). 

 

 

 

1.5.2   Genetic regulation of FOXM1 expression and activity 

 

The activity of FOXM1 is regulated through phosphorylation by various kinases at different 

stages of the cell cycle, which determines its localization and activation state. Initial 

phosphorylation at its C-terminus occurs at the late G1/S-phase by Cyclin E/cdk2 (Major ML et 

al., 2004), followed by Ras-MEK-ERK1/2 mediated phosphorylation just before G2/M-entry, 
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which translocates FOXM1 to the nucleus and stimulates its transactivating activity (Ma RY et 

al., 2005). Additional hyperphosphorylation during the G2/M phase involving the Polo-like 

kinase-1 (PLK-1) and Cyclin B/Cdk1 increases FOXM1 transcriptional activity further (Fu Z et al., 

2008; Chen YJ et al., 2009) (Figure 7). At the end of M-phase FOXM1 becomes degraded by the 

anaphase-promoting complex/ cyclosome APC/C E3 ubiquitin ligase complex and its adaptor 

Cdh1 (Park HJ et al., 2008). FOXM1 expression and activity during the cell cycle is negatively 

controlled by p53 or p19ARF (Kalinichenko VV et al., 2004; Gusarova GA et al., 2007; Pandit B et 

al., 2009). 

 

FOXM1 itself controls the transcriptional activation of several target genes like the SCF ubiquitin 

ligase complex subunits Skp2 and Cks1, Kinase-interacting stathmin (KIS), and JNK1 during the 

G1/S phase (Petrovic V et al., 2007; Wang IC et al., 2008). At later stages of the cell cycle it 

regulates the transcription of a number of genes that are crucial for the G2/M progression, 

including Cyclin B, Cdc25B, Aurora B, PLK-1, Survivin, and CENP-A (Wonsey DR et al., 2005; Kim 

IM et al., 2005; Chen YJ et al., 2009). FOXM1 has also been shown to bind directly to genes 

involved in invasion, angiogenesis, and survival of tumors cells including c-myc, hsp70, MMP-2, 

VEGF, and c-Fos (Wierstra I et al., 2007; Wang IC et al., 2008; Ahmad A et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Regulation of FOXM1 during the cell cycle. The picture shows the various phosphorylation 

steps that regulate the activity of FOXM1 throughout the cell cycle. Within this process phosphorylation 

through cyclin dependent kinases and members of the Ras-MAPK pathway play an important role. Modified 

after Lakoukili J et al., 2006. 
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1.5.3   The role of FOXM1 in cancer progression 

 

Regulating such a broad range of genes, FOXM1 is considered as a proto-oncogene which plays 

a central role in the initiation, progression, motility and development of many cancer types 

(Figure 8). Its expression is upregulated in tumors of the liver, pancreas, colon, breast, lung, and 

prostate (Rayhaudhury P et al., 2011). In tumors the activity of FOXM1 is often deregulated by 

amplification of its chromosomal locus 12p13 (Weber RG et al., 1996; Sato Y et al., 2001) or by 

deregulation of its transcriptional activity through other genes or kinases like p38 or ERK (Teh 

MT et al., 2010; Behren A et al., 2010; Lok GT et al., 2011), leading to malignant phenotypes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Involvement of FOXM1 in the gene regulatory network of human cancers. 

FOXM1 is a crucial player in the genetic network that regulates various tumor phenotypes. Genes that 

regulated FOXM1 are often mutated, or deleted in tumors, leading to an aberrant FOXM1 activation. A 

deregulated activation of FOXM1 in turn, has a huge impact on tumor development, since FOXM1 regulates 

a wide range of downstream genes, which are involved in the promotion of tumorgenesis. 

 

FOXM1 has been shown to play an important role in stress-induced apoptosis during 

cancerogenesis (Park HJ et al., 2009; Halasi M et al., 2012), to promote angiogenesis via VEGF 

HPV 
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(Zhang Y et al., 2008), tumor growth (Li D et al., 2013), and epithelial-mesenchymal transition 

(Bao B et al., 2011). In clinical investigations it was shown that elevated FOXM1 expression leads 

to resistance against chemotherapy in breast cancer (Kwok JM et al., 2010; Carr JR et al., 2010), 

promotes metastatic processes in prostate cancer (Chandran UR et al., 2007), is essential for the 

development of hepatocellular carcinoma (Kalinichenko VV et al., 2004), and correlates with 

poor prognosis of patients with various other cancers (He SY et al., 2012; Xue YJ et al., 2012). 

The link between FOXM1 and invasion has recently been established. Glioma cells that possess 

elevated levels FOXM1 have an increased MMP-2 expression which enhances invasion and thus 

contributes to tumor progression (Dai B et al., 2007). In osteosarcoma cells FOXM1 enhances 

MMP-2/-9 dependent invasion via upregulation of JNK1 expression (Wang IC et al., 2008), while 

in ovarian cancer the ERK/FOXM1 cascade significantly increases invasion (Chan DW et al., 

2012).  

 

 

 

1.5.4   The role of FOXM1 in head and neck cancer 

 

FOXM1 has been shown to be significantly upregulated in human HNSCC as well as in 

premalignant dysplastic lesion (Singh B et al., 2001), where it is mainly expressed in the 

proliferative epibasal layer of the epithelium (Gemenetzidis E et al., 2010). Further, FOXM1-

mediated transformation of keratinocytes in HNSCC could be enhanced by nicotine, giving 

evidence for a striking role of FOXM1 in the early oncogenesis of HNSCC and as a potent marker 

of malignant conversion (Gemenetzidis E et al., 2009; Waseem A et al., 2010). A clinical 

relevance between FOXM1 and head and neck cancer has been established in laryngeal 

squamous cell carcinoma. Here, FOXM1 expression correlated with histological differentiation, T 

stage, lymph node metastasis, and inversely correlated with patient overall survival (Jiang LZ et 

al., 2011). There is also some evidence that FOXM1 is involved in invasive mechanisms of HNSCC 

cells, mainly via activity of MMP’s (Chen CH et al., 2009; Ahmed M et al., 2012).  

 

The regulation of such a wide spectrum of tumor-promoting phenotypes like growth or invasion 

indicates a central role for FOXM1 in the initiation and progression of head and neck cancer and 

the development of recurrent tumors. Nevertheless, the exact mechanisms of how FOXM1 and 

its downstream targets regulate invasion of HNSCC still remains unclear and has not been 

examined in detail.   
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1.6   Activator Protein 1 (AP-1) 
 

 

 

1.6.1   The AP-1 protein members and their regulation 

 

The Activator Protein 1 (AP-1) transcription factor is a dimeric complex that consists of protein 

members of the Fos (c-Fos, FosB, Fra-1, Fra-2), Jun (c-Jun, JunB, JunD) and the ATF family (Angel 

P and Karin, 1991) (Figure 9). It was discovered as a 12-O-tetra-decanoylphorbol-13-acetate 

(TPA)-inducible transcription factor, which binds to the enhancers of viral SV40 gene (Wagner EF 

et al., 2001). AP-1 proteins dimerize through a leucine-zipper motif and contain a basic domain 

for interaction with the DNA backbone through recognizing TPA-responsive elements (TRE) 

within AP-1 inducible promoters (Angel P et al., 1991). The AP-1 protein is implicated in a variety 

of biological processes including the proliferation, survival, differentiation, and transformation 

of cells and is induced by growth factors, cytokines, TPA, oncoproteins and physical or chemical 

stress (Lee W et al., 1987; Jochum W et al., 2001; Chang L et al., 2001; Shaulin E and Karin M, 

2002). 

 

 

 

 

 

 

Picture 9: The Activator Protein-1. 
The picture gives an overview of the main 

AP-1 protein families. The main 

components of the AP-1 complex are 

members of the Fos, Jun, and ATF family. 

Picture modifyed from Dipak P. Ramji et 

al., 2002. 

 

 

MAPKs play an import role in the activation of the AP-1 complex by enhancing its activity 

through increased expression or phosphorylation of their distinct substrates (Chang L et al., 

2001). ERK has been shown to increase the expression of the AP-1 members Fra-1 and Fra-2, 

leading to enhanced proliferation and DNA synthesis (Treinies I et al., 1999). ERK also accounts 

for the mitogen-induced transcription of c-Fos via of the ternary complex factor (TCF) members 
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Elk-1, and SRF by recruiting them to the serum response element (SRE) of c-Fos (Gille H et al., 

1992; Marais R et al., 1993; Monje P et al., 2005). 

DNA-damaging agents are also able to induce the expression of AP-1 members (Devary Y et al., 

1991). This type of AP-1 activation is mediated through pro-inflammatory cytokines and 

genotoxic stress involving the two SAPKs JNK and p38. Upon UV-irradiation JNK1 and JNK2 are 

both translocated to the nucleus where they phosphorylate c-Jun as well as Elk-1 and stimulate 

its transcriptional activity, which in turn leads to increased expression of c-Fos (Cavigelli M et al., 

1995). JNK has also been shown to activate ATF-2 after treatment of cells with pro-inflammatory 

cytokines or UV irradiation (Gupta S et al., 1995).  

p38 has been demonstrated to mediate UV-induced AP-1 transactivation and c-Fos expression 

in human keratinocytes (Silvers AL et al., 2003), and also leads to increased c-Jun gene 

transcription after lipopolysaccharide (LPS) stimulation (Han J et al., 1997). p38 regulates AP-1 

activity also through phosphorylation. In response to UV light p38 associates with c-Fos and 

phosphorylates the transactivation domain, initiating its translocation to the nucleus, which 

finally leads to enhanced AP-1 driven gene expression (Tanos T et al., 2005).  

 

 

 

1.6.2   The role of AP-1 in tumor development 

 

Deregulated expression of the AP-1 complex is a crucial factor in tumor development and 

progression. Transfection of the c-Fos oncogene into murine papilloma cells leads to a 

malignant conversion, involving the activation of Ha-Ras (Greenhalgh DA et al., 1988), while c-

Fos knockout mice were not able to develop Ha-Ras induced tumors (Saez E et al., 1995). In 

transgenic mice, that overexpress c-Fos, normal cell growth was disturbed, leading to the 

development of osteosarcomas (Grigoriadis AE et al., 1993). Another AP-1 member c-Jun plays a 

predominant role in the development of skin and liver tumors. Transactivation-mutant c-Jun 

mice displayed a dramatic inhibition of papilloma induction (Young MR et al., 1999), while 

primary hepatocytes lacking c-Jun had a decreased number and size of tumors due to an 

elevated p53 expression and increased apoptosis (Eferl R et al., 2003). AP-1 is also critical for 

invasion of cancer cells. In breast cancer tumors members of the Fos family (Fra-1, Fra-2, c-Fos) 

stimulated invasion of MCF7 cells via the upregulation of MMPs and components of the 

urokinase plasminogen activator (uPA) system (Milde-Langosch K et al., 2004). The role of AP-1 

in head and neck cancer has recently been established. In premalignant and malignant HNSCC 

cells stimulation with tobacco carcinogens upregulated AP-1 expression, which enhanced 

angiogenesis and invasion through increased Il-8 and VEGF expression (Swenson WG et al., 

2011). 
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1.7   Urokinase Plasminogen Activator (uPA) 
 

 

 

1.7.1   Synthesis and function of the Urokinase Plasminogen Activator 

 

The processes of organogenesis during embryonic development, inflammatory reactions, as well 

as malignant invasion and metastasis of tumors require cells to transcross the boundaries of 

their normal tissue and to migrate into other compartments of the body (Vassalli et al., 1985). 

This process involves the coordinated destruction of the extracellular matrix (ECM) and the 

breakup of cell-cell and cell-ECM contacts. Several protease systems including a board range of 

proteolytic enzymes with different activities and substrate specifities are capable to degradate 

ECM components, which pose a physical barrier for the migrating cells, and thus allow tumor 

cell movement and invasion (Pöllänen et al., 1990). 

 

Plasmin is a protease which facilitates the destruction of the ECM, by degredating several ECM 

components like fibronectin, laminin (Liotta LA et al., 1981), and converting other proteases 

(Salo T et al., 1982; Tryggvason K et al., 1987). Plasminogen activators are highly specific serine 

proteases that are capable of converting the zymogene form of plasminogen into the active 

serine protease plasmin. In mammals there are two main types of plasminogen activators; the 

tissue-type plasminogen activator (tPA), which is has important functions in vascular fibrinolysis, 

and the urinary-type plasminogen activator (uPA), which is more important for tissue 

remodeling and cell motility (Sidenus N et al., 2003). After transcription of the uPA gene, its 2.5 

kb mRNA (Verde P et al., 1984) is translated into the inactive, 50 kDa single chain zymogene 

form of uPA (pro-uPA), which is composed of three distinct regions (Kasai S et al., 1985). It is 

then secreted into the extracellular space and converted into the active two chain form (20 kDa 

+ 30 kDa) by catalytic activity of plasmin (Nielsen LS et al., 1982). Within the extracellular space 

uPA is almost exclusively localized at cell-cell contact sites and focal adhesion contacts within 

membrane-rich fractions (Pöllänen J et al., 1988).  

 

 

 

1.7.2   Members of the Urokinase Plasminogen Activator system 

 

uPA binds with high affinity to the glycosylphosphatidyl inositol (GPI) anchored glycoprotein uPA 

receptor (uPAR) and thereby alters its activation. The association of uPA to the uPAR accelerates 

the kinetics of plasmin conversion (Ellis V et al. 1991). Furthermore, due to its polarized 
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expression on the leading front of the cell-ECM or cell-cell contacts, uPAR can direct the uPA 

protein to specific compartments of the cell surface where invasion is required (Estreicher A et 

al., 1990). uPA/uPAR interactions are also important for the regulation of cell adhesion 

properties via Vitronectin (Hoyer-Hansen G et al., 1997) and invasion (Fazioli F et al., 1997). In 

some cell types the uPA/uPAR mediated increase of invasiveness is not due to enhanced 

proteolytics activity of uPA, but through uPA induced signal transduction via uPAR, involving the 

activation of tyrosine kinases (Resnati M et al., 1996).  

 

Beside uPA and uPAR, the plasminogen activator inhibitor (PAI-1), a 52 kDa glycoprotein, plays 

an important role in the biology of the uPA system. It is relatively specific for plasminogen 

activators and forms 1:1 complexes with the active form (two chains) of uPA and blocks its 

active site (Wun TC et al., 1987). PAI-1 alone, and in cooperation with uPA, also exerts tumor 

growth promoting functions like angiogenesis and migration of endothelial cells in breast 

tumors (Bajou K et al., 2002) (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The Urokinase Activator system. Receptor-bound uPA facilitates conversion of 

zymogenic Plasminogen into active Plasmin, which in turn degradates the extracellular matrix, making 

tumor cell migration and invasion possible. uPA expression and activity is enhanced by Raf-RAS-MAPK 

signaling, while at the same time receptor bound uPA can trigger the activation of MAPK signaling. 
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1.7.3   Implications of uPA in cancer progression 

 

uPA is implicated in the progression and aggressiveness of various cancer types (Minoo P et al., 

2010; Huang S et al., 2000). There is some evidence that uPA expression is induced by growth 

factor-mediated activation of the Ras-MAPK pathway (Bell SM et al., 1993; Pepper MS et al., 

1992). In pancreatic cancer cells ERK1/2 and p38 mediate HGF-induced uPA expression (Lee KH 

et al., 2003), while sustained ERK1/2 activity is necessary for Ha-Ras-mediated stimulation of the 

uPA promoter in ovary adenocarcinoma (Lengyel E et al., 1995). Further, it had been shown that 

p38 signaling enhances uPA expression (Shin BA et al., 2003) and that uPA is involved in p38- 

mediated migration of endothelial cells and invasion of breast cancer cells (Montero L et al., 

1999; Huang S et al., 2000; Yu J et al., 2004). uPA has also been shown to be regulated by the 

AP-1 protein, since AP-1 binding elements within the uPA promoter are necessary to induce 

phorbol ester and hepatocyte growth factor-induced expression of uPA (Nerlov C et al., 1992; 

Ried S et al., 1999).  

 

The role of uPA in the development of HNSCC has been examined in various studies. uPAR has 

been demonstrated to be upregulated in HNSCC compared with non-malignant tissue (Schmidt 

et al., 2000), while uPA levels and activity were also elevated in tumors from HNSCC patients 

compared to control samples (Petruzzelli GJ et al., 1993). In oral squamous cell carcinoma it has 

been demonstrated that uPA was upregulated in tumor tissue and lead to an invasive 

phenotype (Clayman G et al., 1993). With respect to those findings uPA might exert important 

functions in the development of recurrent head and neck tumors.  

 

 

 

 

1.8   Aims of this study 
 

 

The development of recurrent tumors is the main cause of treatment failure in head and neck 

cancer patients. The process of invasion has a significant impact on the formation of recurrent 

tumors and tumor metastasis. It is known that SAPKs can promote tumor invasion and also 

FOXM1 has been associated with cancer cell invasion in various tumors. However, the exact 

mechanism of how FOXM1 regulates invasion has not been examined yet. Since both, SAPKs 

and FOXM1, trigger a variety of phenotypes, they are not suitable targets for adjuvant cancer 

therapy. Therefore, identification of targets acting downstream of SAPKs and FOXM1 and 

regulating tumor cell invasion is necessary in order to block cancer cell invasion efficiently.  
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The aim of this thesis is to investigate the exact mechanism of how FOXM1 regulates invasion in 

HNSCC cells and to find a general mechanism for FOXM1-mediated regulation of invasion. To 

achieve this goal three HNSCC lines, FaDu, SCC-25, and CAL-27, will be used to analyze the 

effects of pharmacological inhibition of p38 SAPK signaling and siRNA-mediated FOXM1 

reduction on invasive behaviour of tumor cells in Matrigel-coated Boyden chambers. Reporter 

gene assays using full length and truncated versions of uPA promoter will help to study the role 

of FOXM1 in uPA gene regulation. Bioinformatic analysis of the publically available gene 

expression datasets will be employed to analyze the correlation between FOXM1 and uPA 

expression. To assess genome-wide nucleotide sequences of FOXM1 binding regions and to 

study binding of FOXM1 and c-Fos to the uPA promoter, the available FOXM1 ChIP-seq data will 

be analyzed and chromatin immunoprecipitation assays will be performed.  The long-term goal 

of this study is to understand mechanisms responsible for recurrent tumor development and to  

identify new potential targets for adjuvant cancer therapy.
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2   Material and Methods 
 

 

 

2.1   Materials  

 

 

2.1.1   Chemicals 

All chemicals used in this study were of analytical grade. They were purchased from Carl Roth 

(Karlsruhe, Germany), Invitrogen (Karlsruhe, Germany), and Sigma (Munich, Germany). 

 

 

2.1.2   Oligonucleotides 

Name Sequence/Company 

FOXM1 HS_FOXM1_1_SG QuantiTect (QT00000140) 

GAPDH 
5'-CGCTCTCTGCTCCTCCTGTT-‘3  

5'-CCATGGTGTCTGAGCGATGT-‘3 

FOXM1 FOXM1 Hs01073586_m1 (Applied Biosystems) 

uPA PLAU Hs01547054_m1 (Applied Biosystems) 

GAPDH TaqMan GAPDH Control Reagents 402869 (Applied Biosystems) 

ChIP Primer (B10) 5’-TCAGAGCCAACCTTGCTACTTCC-‘3 

ChIP Primer (B11) 5’-CTTCAGAGCCAACCTTGCTACTTC-‘3 

ChIP Primer (B12) 5’-GAGAGACTTCTGTGCTTGCTGAGC-‘3 

ChIP Primer (B7) 5’-GGAGACTGGAGGACAAAATAA-‘3 

ChIP Primer (F19) 5’-AACCTGGGAGTTTCGGGGTAA-‘3 

ChIP Primer (F4) 5’-GGTTCAAAATGACCCCAAGCC-‘3 
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2.1.3   Inhibitors 

Name Company 

uPA  Inhibitor II, UK122 Calbiochem (672152-5MG) 

P38 Inhibitor, SB203580 Sigma-Aldrich (S8307) 

Polo-like Kinase Inhibitor II, BTO-1 Santa Cruz (sc-204206) 

JNK Inhibitor, SP600125 Sigma-Aldrich (S5567) 

Mitomycin C from S. caespitosus Sigma-Aldrich (M0503) 

Siomycin A from S. sioyaensis Sigma-Aldrich (S6076) 

Phorbol 12-myristate 13-acetate Sigma-Aldrich (P1585) 

Anisomycin Sigma-Aldrich (A9789) 

 

 

2.1.4   siRNA 

Name Sequence/Company 

FOXM1 siRNA (h) Santa Cruz (sc-43769) 

FOXM1 siRNA (m) Santa Cruz (sc-44877) 

PLK-1 siRNA (m) Santa Cruz (sc-43769) 

c-Fos siRNA (h) Santa Cruz (sc29221) 

Control siRNA-A Santa Cruz (sc-37007) 

Neg. si Allstars siRNA AF Qiagen (1027284) 

 

 

2.1.5   Plasmids 

Name Characteristic trait Reference/Company 

pCAT3 Basic vector TRE Basic vector Promega (Germany) 

5x TRE CAT  Ap-1 5xTRE reporter Lengyel E et al., 1995 

uPA2345-CAT  wild-type uPA-CAT reporter Verde et al., 1988 

uPA2106-CAT  uPA del.(2106)-CAT reporter Verde et al., 1988 

uPA1963-CAT  uPA del.(1963)-CAT reporter Verde et al., 1988 

uPA1870-CAT  uPA del.(1870)-CAT reporter  Verde et al., 1988 

uPA1570-CAT  uPA del.(1570)-CAT reporter Verde et al., 1988 

uPA660-CAT  uPA del. (660)-CAT reporter Verde et al., 1988 

FOXM1 cDNA FOXM1 expression plasmid Origene (NM_021953) 
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2.1.6   Cell lines and bacterial strains 

Name Type Supplier 

NIH3T3 

 

murine wild-type NIH-3T3 

fibroblasts 

Cell lines service (Heidelberg, 

Germany) 

NIH3T3-Ha-RasEJ 

 

NIH3T3 expressing mutated Ha-

ras 

Cell lines service (Heidelberg, 

Germany) 

NIH3T3-MKK3b(E) 

 

NIH3T3 expressing MKK3 Behren et al., 2009 

SCC-4 human squamous cell 

carcinoma from the tongue 

ATCC 

SCC-25 human oral squamous 

carcinoma of the tongue 

ATCC 

SCC-9 human squamous carcinoma of 

the tongue 

ATCC 

SCC7 murine epithelial squamous cell 

carcinoma. 

ATCC 

FaDu human hypopharyngeal 

carcinoma 

ATCC 

Cal-27 human oral adenosquamous 

carcinoma cell line 

ATCC 

A549 human adenocarcinomic 

alveolar basal epithelial cells 

University of Cincinnati 

E. coli NEB5alpha chemically competent bacteria Stratagene, La Jolla, USA 

 

 

2.1.7   Antibodies 

Name Company Species Dilution 

FOXM1 (C-20) Santa Cruz (sc-502) Rabbit polyclonal 1:2000 

FOXM1 (K-19) Santa Cruz (sc-500) Rabbit polyclonal 1:1000 

uPA  American Diagnostica (3689) Mouse monoclonal 1:200 

uPA (C-20) Santa Cruz (sc-6830) Goat polyclonal 1:200 

uPA (H-140) Santa Cruz (sc-14019) Rabbit polyclonal 1:500 

PAI-1 (H-135) Santa Cruz (sc-8979) Rabbit polyclonal 1:200 

c-Fos Abcam (ab7963) Rabbit Polyclonal 1:500 

p-c-Fos (T232) Abcam (ab17933) Rabbit polyclonal 1:500 

p38 Cell Signaling (#9212S) Rabbit Polyclonal 1:1000 
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p-p38 (Thr180/Tyr182) Cell Signaling (#9211S) Rabbit Polyclonal 1:200 

JNK Cell Signaling (#9252S) Rabbit Polyclonal 1:500 

p-JNK (Thr183/Tyr185) Cell Signaling (#9251S) Rabbit Polyclonal 1:250 

β-actin (l-19) Santa Cruz (sc-1616) Rabbit polyclonal 1:1000 

β-actin  Abcam (sb 8226) Mouse monoclonal 1:5000 

αTubulin (E 19) Santa Cruz (sc-12462) Goat polyclonal 1:2000 

p-ATF2 (Thr71) Cell Signaling (#9221) Rabbit polyclonal 1:500 

p-ATF2 (F1) Santa Cruz (sc-8398) Mouse monoclonal 1:500 

c-Jun Abcam (ab5795) Rabbit polyclonal 1:1000 

p-c-Jun (T93) Abcam (ab28854) Rabbit Polyclonal 1:250 

PLK-1 Cell Signaling (#4535) Rabbit polyclonal 1:500 

PLK-1 (H-152) Santa Cruz (sc-5585) Rabbit polyclonal 1:1000 

p-PLK-1 (Thr210) Cell Signaling (#5472) Rabbit Polyclonal 1:500 

Cleaved-Caspase 3 (Asp175) Cell Signaling (#9661) Rabbit polyclonal 1:250 

Goat Anti-Rabbit IgG H&L Merck (401315) Goat monoclonal 1:5000 

Goat Anti-Mouse IgG H&L Merck (401215) Goat monoclonal 1:5000 

 

 

 

2.2   Methods - Cell biology  

 

 

2.2.1   Cell Culture Media and Supplements 

Name Company 

DMEM PAA, Cölbe, Germany 

MEM PAA, Cölbe, Germany 

PBS PAA, Cölbe, Germany 

Antibiotic/Antimycotic Invitrogen, Karlsruhe 

Fetal Bovine Serum Standard Quality  PAA, Cölbe, Germany 

L-Glutamine Invitrogen, Karlsruhe 

Trypsin PAA, Cölbe, Germany 

Optimem Invitrogen, Karlsruhe 

DMSO PAA, Cölbe, Germany 
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2.2.2   Cell lines  

Human HNSCC cell lines were purchased from ATCC. Cells were maintained in Dulbecco’s 

modified Eagle’s medium (SCC-25) or minimum essential medium (FaDu, CAL-27) supplemented 

with 10% fetal bovine serum (Invitrogen, Germany), 2mM L-Glutamine (Invitrogen, Germany) 

and antibiotics (50µg/ml Penicillin-Streptomycin, Invitrogen, Germany) in a humidified 

atmosphere of 6% CO2 at 37°C. Wild-type NIH3T3 and NIH3T3 cells expressing mutated Ha-Ras 

were purchased from CLS (Cell-Lines-Service, Heidelberg, Germany) and grown in Dulbecco’s 

modified Eagle’s medium supplemented with 10% fetal bovine serum and antibiotics. NIH3T3 

cells expressing MKK3b(E) were constructed by transfection of NIH3T3 cells with linearized 

vector DNA and subsequent treatment with growth media (DMEM supplemented with 10% fetal 

calf serum) containing 750µg/ml G418. Following two weeks of treatment with selection media, 

the surviving cell colonies were harvested and pooled. These cell lines were continuously grown 

in selection media up to passage 15. The cell line SCC7 was cultured as described (Behren et al., 

2010).  

 

 

2.2.3   Transient transfections 

In all cases cells were trypsinized 24 hours before transfection and seeded at a density of 2 x 105 

cells per 6-well or 10cm dish. Transfection of siRNA into HNSCC cell lines was carried out using 

HiPerFect Transfection Reagent (Qiagen) or LipofectamineTM 2000 (Invitrogen), while for 

transfections with expression plasmids LipofectamineTM 2000 was used. All solutions and 

vectors were diluted Opti-MEM® I reduced Serum Media (Invitrogen). Prior to transfection, cell 

media was exchanged with antibiotic-free media containing 0.5% FCS, which was again replaced 

with normal growth media 4-6 hours after transfection. All transfections were performed 

according to manufacturers’ optimized protocols at different doses as indicated for 48 hours 

before functional assays were carried out. Cell lines treated with transfection reagent alone or 

scrambled siRNA were included as mock controls. Transfection efficiency was measured by 

transfection with GFP-fused reporter plasmids.  
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2.2.4   Cell growth rate measurement 

For determining the growth rate HNSCC cell lines cells were trypsinized and viable cells were 

identified by staining with trypan blue (Sigma-Aldrich, Germany). For quantification the number 

of viable and unstained cells was counted using a Neubauer counting chamber. Samples were 

counted in triplicate over a period of five days. Cell number  standard deviation (s.d) versus 

days was plotted.  

 

 

2.2.5   Invasion assays 

For invasion assays 80.000 of the indicated cells were plated out in 500µl serum-free medium 

(SFM) in Matrigel-coated Boyden chambers (Beckton Dickinson, USA). The Boyden chambers 

were placed in 24-well companion plates with DMEM+ 10% fetal calf serum and incubated for 

24-36 hours. The media contained the inhibitors UK122, SB203580, or dimethylsulfoxide 

(DMSO), or nothing. After the invasion process cells were stained with DMEM/MTT solution. 

Cells remaining inside the Matrigel were removed using cotton swabs, and the membrane now 

containing only the infiltrated cells was cut out. Cotton swabs as well as membranes were 

placed in DMSO and the solution was densitometrically analyzed at 562nm against DMSO. The 

percentage of invasive cells was calculated as percentage optical density of membrane-

anchoraged cells versus overall optical density.  

 

 

2.2.6   Freezing and thawing of cells 

For freezing, cells were grown in cell T-75 culture flasks to approximately 90% cell density, 

washed twice in PBS and trypsinized. The cell suspension was centrifuged at 3000 rpm for five 

minutes and the pellet subsequently resuspended in freezing media (regular cell culture media 

containing 20% DMSO and 20% FBS). The cell suspension was then transferred to cryo-vials. 

Those were placed inside a cell freezer (Nunc, Germany) to allow a constant cooling rate of 1°C 

per minute and finally stored at -80°C or liquid nitrogen. 

Frozen cells were thawed in a 37°C water bath for 2 minutes and transferred to petri dishes 

containing the appropriate culture medium. After 12-18 hours medium was exchanged to 

remove the rest of DMSO from the media.  
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2.2.7   Nuclear staining 

For nuclear staining prior to microscopic investigation, cells were incubated with Hoechst-3342 

Dye (Sigma-Aldrich, Munich, Germany) for 30 minutes at 30°C, 5% CO2. 

 

 

 

2.3   Methods - Biochemistry 

 

 

2.3.1   Preparation of whole cell lysates 

 

RIPA buffer 

50 mM Tris-HCL, pH 7.4 

1% NP-40 

0.25% Na- deoxycholate 

150 mM NaCl 

1mM EDTA 

add 100ml bidest. H2O 

prior to use, phosohatase- and protease inhibitor cocktail (Invitrogen, Germany) is added 

 

Whole cell lysates were prepared by rinsing the cells twice in ice-cold PBS buffer. Cells were 

scrapped off in 1.5 ml ice-cold PBS into a 1.5ml Eppendorf tube and pelleted at 3000 rpm for 

five minutes at 4°C. The resulting pellet was resuspended in RIPA buffer, containing PMSF and a 

protease inhibitor cocktail. The suspension was kept on ice for 15-20 minutes with short 

vortexing each 5 minutes and was then centrifuged for 10 minutes at 13.000 rpm (4°C). The 

supernatant containing the protein solution was transferred into a new 1.5ml Eppendorf tube 

and stored at -20°C for short-term use. 
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2.3.2   Cell fractionation 

Cell fractionation was done using the NE-PER® Nuclear and Cytoplasmatic Extraction Reagents 

Kit (Thermo Scientific, Germany). The volume ration of CERI:CERII:NER reagents was 

200:11:100µl. Cells were washed twice in PBS and scraped off in 1ml PBS containing protease 

inhibitors. The cell solution was pelleted for 10 minutes at 3000 rpm at 4°C. Ice-cold CERI was 

added to the cell pellet (100µl per 10µl packed cell volume), vortexed at the highest setting for 

15 second until the pellet was fully suspended and put on ice for 10 minutes. Ice-cold CERII was 

added to the tube, vortexed for 5 seconds at highest settings and incubated on ice for 1 minute. 

Cells were again vortexed for 5 seconds at highest settings and centrifuged at maximum speed 

(13.000 rpm, 4°C) for 5 minutes in a microcentrifuge. The supernatant, containing the 

cytoplasmatic extract, was immediately transferred to a new, pre-chilled, tube. The insoluble 

pellet was suspended in ice-cold NER buffer and vortexed at the highest setting for 15 seconds. 

The sample was then placed on ice for 40 minutes including vortexing for 15 seconds at the 

highest setting every 10 minutes. After the incubation the samples were centrifuged for 15 

minutes at maximum speed (13.000 rpm, 4°C). The supernatant, containing the nuclear extract, 

was transferred to a new, pre-chilled, tube. Both cytoplasmatic, and nuclear extracts were 

stored at -80°C for further use.  

 

 

2.3.3   Protein concentration measurement 

Protein concentration was determined using the DC Protein Assay (Bio-Rad, Germany). For this 

purpose, 20µl of reagent S were added to 1ml of reagent A (=A1). 25µl A1 were mixed with 5µl 

protein lysate on a 96-well plate and subsequently 200 µl of reagent B was added to the 

mixture. The 96-well plate was incubated for 15 minutes at room temperature, prior to 

measuring the absorption at 595 nm.  

 

 

2.3.4   Immunoprecipitation 

For immunoprecipitation, Protein A Agarose (Pierce, Darmstadt, Germany) was used. Protein 

lysates were equalized in protein content and 30 µl of the 50% Agarose A slurry was added to 

500µl of cell lysate. The solution was precleared for 30 minutes at 4°C under rotation. The 

solution was centrifuged for 5 minutes at 2500 rpm at 4°C. Subsequently the supernatant was 
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transferred to a new microcentrifuge tube. The Agarose pellet containing unspecific bound 

protein was discharged and 1µg of antibody was added to the solution and incubated over night 

at 4°C under gentle rotation. After the overnight incubation 37 µl of the Protein A Agarose slurry 

were added to the solution and incubated for 4 hours at 4°C under rotation. 

Immunoprecipitates were pelleted at 2500 rpm at 4°C for 5 minutes. The pellets were washed 

4x with RIPA buffer. After the final wash the supernatant was discharged and the pellet 

resuspended in 60µl 2x sample buffer, boiled for 10 minutes and finally Agarose beads were 

pelleted by centrifugation. Samples were then analyzed using SDS-PAGE. 

 

 

2.3.5   CAT-ELISA 

Cells were seeded into 6-well plates and after 24 hours transfected with a chloramphenicol 

acetyltransferase (CAT) reporter construct fused to the wild-type or deleted fragments of the 

human urokinase promoter, or a 5xTRE-AP1 responsive element, together with the 

recommended amount of the desired expression plasmid or siRNA. For negative control, cells 

were transfected with the empty pCAT3 Basic vector. 48 hours after transfection cells were 

lysed and equalized for their protein amount and CAT activity was measured using the 

Colorimetric enzyme immunoassay for the quantitative determination of chloramphenicol 

acetyltransferase (CAT-ELISA) from Roche. The absorption was determined at 492nm using an 

Anthos 2010 multiplate reader (Anthos Mikrosysteme GmbH, Krefeld, Germany). All 

experiments were carried out as triplicates.  

 

 

2.3.6   Western Blot 

 

Solutions 

10X SDS Running Buffer 

144.0g Glycine 

30.2g Tris 

10.0g SDS 

ad 1L H2O 

for 1X SDS Running Buffer the 10X stock was diluted 1/10 in bidest. water 
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1x Transfer Buffer 

100ml 10X SDS Running Buffer 

200ml Methanol 

700ml H2O 

 

Washing Buffer (PBS-T) 

1x PBS 

0.005% Tween 20 

 

Blocking Buffer 

1x PBS-T 

5% skim milk 

 

Sample buffer (4X) 

0.25M Tris/HCL 6.9 

8% SDS 

40% Glycerol 

20% Mercaptoethanol 

0,002% Bromphenole blue 

 

 

SDS PAGE 

SDS PAGE was performed according to Laemmli (1970). Solutions needed were stored at 4°C 

until further use. Whole cell lysates were prepared by adding suitable amount of RIPA lysis 

buffer supplemented with a cocktail of protease and phosphatase inhibitors (Invitrogen, 

Germany) to the cell pellet. Equal amounts of proteins were suspended in SDS sample buffer 

and heated for 5 minutes at 95°C. The samples were put on ice for 5 minutes and then 

centrifuged for 10 minutes at maximum speed. 10-50µg protein lysate were loaded on a 10-12% 

SDS-Polyacrylamide Gel and run in a Gel running chamber (Bio-Rad, Munich, Germany) at 100 

Volts for approximately 90 minutes. For protein standard the Precision Plus Protein™ ALL Blue 

Standard (#161-0343, Biorad, United-States) was used. Prior to use, the marker was heated at 

95°C for 3 minutes and transferred immediately to ice after heating. 5µl marker was added to 

the SDS- Gel.  
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for one 10% gel Resolving Gel (ml) Stacking Gel (ml) 

30% Acrylamide 5.000 1.000 

1M Tris-HCL pH8 6.000 1.250 

10% SDS 0.200 0.100 

H2O 3.800 7.600 

APS 0.100 0.075 

TEMED 0.010 0.015 

 

Protein transfer 

After the SDS PAGE, proteins were transferred from the gel to an Immobilon-P PVDF membrane 

(Milipore, Schwalbach, Germany) using a MiniProtean II Wet Blot Chamber (Bio-Rad, Munich, 

Germany). Prior to the transfer, filter papers and membranes were cut, equaling approximately 

the size of the gel and the membrane was activated in methanol for 10 seconds and 

subsequently in water for 10 seconds before being equilibrated in transfer buffer (0.2M Glycin, 

0.025M Tris, 0.1% SDS). For blotting, sponges and filter papers were soaked in transfer buffer 

and everything was set up according to manufacturer’s recommendation. Proteins were 

transferred for 60 minutes at 100 Volts, while the running chamber was kept cool by placing it 

into a 4°C room and the usage of ice-blocks. 

 

Immunodetection of proteins 

After the electrotransfer, membranes were blocked for 1 hour at room temperature in 5% 

blocking buffer (5% skim milk in PBST + 0.005% Tween 20). After blocking, the membrane was 

incubated with the primary antibody, which was diluted at the appropriate concentration in 

blocking solution, over night at 4°C under slow rotation.  

After the incubation unbound antibody was removed from the membrane by washing it 3x 10 

minutes in washing solution (PBST + 0.005% Tween 20). The membrane was then incubated for 

1 hour at RT with the secondary antibody, diluted in blocking solution at the appropriate 

concentrations ranging from 1:4000 to 1:30.000. Unbound antibody was again removed by 

washing the membrane 3x10 minutes in washing buffer. The membrane was incubated with ECL 

Plus detection solution (GE Healthcare, Munich, Germany), which is based on 

chemoluminescent detection, for 5 minutes at room temperature. After the detection solution 

was squeezed out, Hyperfilm ECL films (GE Healthcare, Munich, Germany) were exposed to the 

membrane under red light in a darkroom for the appropriate time and subsequently developed 

in a HyperProcessor (GE Healthcare, Munich, Germany).  
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2.3.7   Immunohistostaining 

 

Reagents 

Peroxidase solution: 

1:100 dilution of 30% H2O2 solution in water 

 

Blocking solution: 

0.1% BSA/PBS 

0.2% Tween 20 

10.0% Serum 

 

Staining procedure for cryo sections 

Frozen slides were taken out from -80°C and air dried for 30 minutes. Tissue slides were fixed 

using ice-cold (-20°C) acetone for 10 minutes and rinsed three times in PBS (5 minutes each 

time). The tissue area was encircled using a hydrophobic PAP pen and washed twice in PBS. To 

block endogenous peroxidase activity, slides were incubated for 10 minutes in 0.3% H2O2/H2O 

under light protection and washed twice in PBS. To prevent unspecific labeling, tissue slides 

were incubated in blocking buffer for 30 minutes and subsequently washed twice in PBS. The 

primary antibody was incubated over night at 4°C in the appropriate dilution. After the 

incubation time, slides were washed three times in PBS and incubated with biotinylated 

secondary antibody of the same species as the primary antibody (1:200) for 30 minutes at room 

temperature and afterwards washed three times in PBS. The HRP-conjugated avidin-biotin 

complex (VECTASTAIN-ABC System) reagent (Vector Labs, United Kingdom), which was prepared 

exactly 45 minutes before use, was incubated for 30 minutes at room temperature under light 

protection. After washing three times in PBS, the antibody color was revealed using DAB 

Peroxidase substrate kit (Vector Labs, United Kingdom), until the desired color intensity was 

reached. The staining procedure was stopped by immersing the slides into tap water. Tissue 

slides were subsequently counterstained in haematoxylin solution for 1-2 minutes and washed 

briefly in distilled water. Cover slips were fixed using Mowiol solution and slides were examined 

under the light microscope. 

 

 

 



  
 Material and Methods 

 

 

37  

 

Staining procedure for paraffin sections 

For paraffin sections, samples were deparaffinised by incubating them twice in Xylol for 10 

minutes. For hydration samples were washed subsequently in EtOH 95%, 90%, 80%, 70%, 50%, 

30% and rinsed twice in water for 2 minutes each. For antigen retrieval, slides were immersed in 

a water bath containing sodium citrate pH 6.0 at 95°C for 20 minutes. Subsequently, the slides 

were removed from the water bath and placed at room temperature allowing them to cool for 

20 minutes. The tissue area was encircled using a hydrophobic PAP pen and the following steps 

were performed as for cryo sections.  

 

 

2.3.8   uPA activity Assay 

Cells were cultured in a six-well plate and transfected or stimulated with the indicated 

constructs, plasmids, and solutions. 48 hours after transfection/ stimulation the uPA activity in 

the 1:20-1:100 diluted supernatant was measured using the IMUBIND® uPA ELISA (No. 894) 

from American Diagnostica according to manufacturers’ protocols. 

 

 

 

2.4   Methods - Molecular Biology 

 

 

2.4.1   RNA Isolation 

Total RNA from cultured cells was extracted using the RNeasy Mini Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s protocol.  

 

2.4.2   Quantification of RNA and DNA samples 

The amount of DNA and RNA present in the samples was determined using a NanoDrop 

Biophotometer (PeqLab, Biotechnologie, Erlangen, Germany). 
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2.4.3   Reverse Transcription (RT)- PCR 

For reverse transcription the amount of RNA samples to compare was equalized with RNase-

free water. RT-PCR was carried out using the High Capacity cDNA reverse transcription kit 

(Applied Biosystems, Darmstadt, Germany) according to the manufacturer’s protocol using the 

supplied reagents. 

 

 

2.4.4   Quantitative End-point PCR 

Quantitative End-point PCR was carried out as described using the below depicted protocol and 

cycle numbers as appropriate for the respective gene. 

 

Reagent Amount in µl 

10x Buffer 2.5 µl 

10mM dNTPs    1 µl 

25mM MgCl2    1 µl 

Taq Polymerase    1 µl 

10mM forward Primer    1 µl 

10mM reverse Primer    1 µl 

H2O       15.5 µl 

DNA (2µg)    2 µl 

Total 25 µl 

 

Step Temperature in °C Time (minutes) 

1 94 2:00 

2 94 0:30 

3 AT* 0:30 

4 72 0:45 

5 72 4:00 

6 4 ∞ 

*= annealing temperature 

 

25-36 cycles 
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2.4.5   RQ-PCR  

For RQ-PCR, cDNA was prepared from the total RNA extracts (1µg) by using the High Capacity 

RNA-to-cDNA Kit from Applied Biosystems. The amount of each gene was determined using the 

TaqMan® Gene Expression Assay from Applied Biosystems. All reactions were run in triplicate 

and the number of copies of each gene was normalized with the expression of the 

housekeeping gene GAPDH. 

 

 

2.4.6   DNA Amplification 

DNA was amplified using a Bio-Rad Mini Thermocycler (Bio-Rad, Munich, Germany) and Taq 

Polymerase (New England Biolabs, Frankfurt/Main, Germany) with supplied buffer according to 

the manufactures’ recommendations and dNTPs purchased from Fermentas. Amplification was 

carried out according to the protocol described below: 

 

Step Temperature in °C Time (minutes) 

1 94 5:00 

2 94 0:30 

3 AT* 0:30 

4 72 0:30 

5 72 3:00 

6 4 ∞ 

*= annealing temperature 

 

2.4.7   Agarose Gel Electrophoresis 

Gel electrophoresis was carried out in horizontal electrophoresis chambers (Bio-Rad, Munich, 

Germany). 1% Agarose was prepared by dissolving Ultrapure Agarose (Invitrogen, Karlsruhe, 

Germany) in 1x Tris-acetate-EDTA (TAE) buffer and adding 10µl of ethidium bromide (1mg/ml) 

to each 150ml agarose solution. 10x loading buffer was added to the DNA samples for 

subsequent electrophoresis at 150V for 30 minutes depending on DNA size and gel 

concentration. After gel electrophoresis, DNA fragments were visualized under UV light (302 

nm) and photographed. 

25-36 cycles 
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2.4.8   ChIP-Assay 

 

Cell isolation and crosslinking 

Cells were cultured until reaching a density of 60%. Histones were crosslinked to the DNA by 

adding 37% Formaldehyde to 15ml of culture medium to a final concentration of 1% and 

incubation for 10 minutes under slow agitation. Crosslinking was stopped by adding Glycine to a 

final concentration of 0.125M and incubating for 5 minutes under slow agitation. Cells were 

washed 3x with PBS and scraped into a 1.5ml microcentrifuge with 1.5ml ice-cold PBS, 

supplemented with a protease inhibitor cocktail. Cells were pelleted at 2000 rpm for 5 minutes 

at 4°C. The cell pellet was then resuspended in 500µl RIPA buffer and incubated on ice for 15 

minutes. Cells were lysed by causing mechanical disruption (15 strokes with a needle) and 

aliquoted into 2ml graduated canonical tubes (Fisherbrant, Houston, USA). 

 

 

Sonification 

Cell lysates were sonified in water using a sonificator machine (Misonix Inc., USA) with the 

following settings: 

 

Sample Amplitude Pulse ON (sek.) Pulse OFF (sek.) Total ON (min.) 

Control 0 0 0 0 

Sample 30 30 30 08:00 

 

For checking the efficiency of sonification 150µl H2O, 8µl NaCl, 1µl 20µg/µl Proteinase K and 1µl 

of RNAse A were added to the sonified cell lysates and incubated over night at 65°C for 

crosslinking reversal. After the incubation, DNA was isolated using the DNA Isolation Kit (Qiagen, 

Düsseldorf, Germany). 10µl DNA were mixed with 1x DNA loading buffer and loaded on a 1% 

agarose gel.  

 

Immunoprecipitation 

Protein samples were centrifuged for 10 minutes at 13.000 rpm at 4°C. 100µl of the sonificated 

cell supernatant was diluted in 900µl of ChIP dilution buffer. The supernatant was precleared 

using 37µl Salmon Sperm DNA/Protein A Agarose Slurry-50% for 30 minutes at 4°C under 
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rotation. The pellet was centrifuged briefly at 2000 rpm at 4°C and discharged. 2µg antibody 

was added to the supernatant and incubated over night at 4°C under slow agitation. 

After the overnight incubation, 30µl Salmon Sperm DNA/Protein A Agarose Slurry-50% were 

added to the protein-antibody solution and incubated for 4 hours at 4°C under slow agitation. 

The agarose was pelleted at 2000 rpm for 5 minutes at 4°C and the supernatant containing 

unbound, non-specific DNA was carefully removed. The Protein A agarose/ antibody/ histone 

complex was washed for 5 minutes with 0.5ml of the following buffers in the order as given 

below under agitation: 

1. Low Salt Immune Complex Wash buffer, 1x wash, 4°C 

2. High Salt Immune Complex Wash buffer, 1x wash, 4°C 

3. LiCl Salt Immune Complex Wash buffer, 1x wash, 4°C 

4. 1x TE Buffer, 2x wash, RT 

 

100µl TE buffer containing 200mM NaCl, 0.1mg/ml Proteinase K was added to the Protein A 

agarose/ antibody/ histone complex and incubated at 65°C overnight. The next day the solution 

was centrifuged for 5 minutes at 13.000 rpm and the pellet was discharged. DNA was recovered 

by using the Qiagen purification kit and eluted in 50µl elution buffer. 

 

PCR reaction 

PCR was performed using 2.5µl of DNA and included 1/10 of the starting material as a positive 

loading control. The following PCR settings have been used 

 

Master-Mix: 

Reagent Amount in µl 

10x Buffer 2.5 µl 

10mM dNTPs    1 µl 

25mM MgCl2    1 µl 

Primer forward    1 µl 

Primer reverse    1 µl 

Taq Polymerase    1 µl 

H2O         15.5 µl 

DNA    2 µl 

Total  25 µl 
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PCR machine settings: 

Step Temperature in °C Time (in minutes) 

1 94 2 min 

2 94 30 sec 

3 AT* 45 sec (25-38x) 

4 72 30 sec 

5 72 5 min 

6 4 ∞ 

*= annealing temperature 

 

 

2.4.9   Transformation of Bacteria 

 

Preparation of chemically competent cells 

LB medium: 

10g Bacto-Tryptone 

  5g Bacto-yeast extract 

10g NaCl 

for LB-Agar 15g agar was added 

LB media was adjusted to pH 7.5 with NaOH and sterilized by autoclaving 

 

TFB I: 

Reagent Stock solution In 200 ml 

30 mM potassium acetate 0.5 M 12 ml 

50 mM mangane chloride 1.0 M 10 ml 

100 mM rubidium chloride 0.5 M 40 ml 

10 mM calcium chloride 0.5 M 04 ml 

15% glycerol  30 ml 

H2O bidest.  104ml 

Adjust to pH 5.8, Store at 4°C 
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TFB II: 

Reagent Stock solution In 200 ml 

10 mM NaMOPS 0.1 M 5.0 ml 

75 mM calcium chloride 0.5 M 7.5 ml 

10 mM rubidium chloride 0.1 M 1.0 ml 

15% glycerol  7.5 ml 

H2O bidest.  29 ml 

Adjust to pH 5.8, Store at 4°C 

 

2ml LB medium were inoculated with a single E.coli NEB5α- colony and incubated overnight on a 

rotary shaker (200 rpm). Two 5ml tubes with LB were each inoculated with 50µl of the overnight 

culture at 37°C and 200 rpm. At an OD600 of 0.8 each culture was added to a new flask 

containing 100ml pre-warmed LB-media. This main culture was incubated on a rotary shaker 

until it reached an OD600 of 0.5, subsequently transferred to sterile and chilled 50ml centrifuge 

tubes and kept on ice for 5 minutes. After centrifuging at 4000 rpm at 4°C for 5 minutes, the 

supernatant was decanted and tubes were placed back on ice. 10ml of TFBI was added to each 

of the tubes and cells were resuspended before centrifuging under the previously mentioned 

conditions. The supernatant was again decanted, the cells were carefully resuspended in 2ml 

TFBII and aliquoted into 50ml fractions which were shock-frozen in liquid nitrogen and stored at 

-80°C until further use.  

 

Transformation of cells 

E.coli NEB5α cells were thawed on ice. 0.8 µl β-mercaptoethanol was added to 100µl of bacteria 

suspension. The tubes were swirled gently and incubated on ice for 10 minutes with swirling 

every 2 minutes. Subsequently 0.1-50ng DNA was added to one cell aliquot. Tubes were swirled 

gently and incubated on ice for 30 minutes. Next, the tubes were heat-pulsed in a 42°C water 

bath for exactly 45 seconds and incubated on ice for 2 minutes. 0.9ml pre-warmed LB media 

was added and incubated for 1 hour at 37°C under shaking at 225-250 rpm. 100µl of the 

bacteria solution was plated on LB agar containing the desired selection-antibiotic. 
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2.4.10   Plasmid Purification 

Plasmid purification was carried out using either the QIAprep Spin Miniprep Kit or the QIAGEN 

Plasmid Midi Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. 

 

 

2.4.11   Isolation of genomic DNA from cells 

200 µl Phenol/Chloroform is added to 200µl of sample, vortexed and centrifuged for 5 minutes 

at maximum speed. The upper aqueous phase, containing the DNA, is taken out into a new 

Eppendorf microcentrifuge tube, mixed with 30µl of 2M sodium acetate (pH 5.2) and two 

volumes of 100% Ethanol. Samples were incubated for one hour at -20°C and centrifuged for 15-

30 minutes at 4°C at maximum speed. After centrifugation the pellet was washed twice in 70% 

Ethanol and air-dried. The pellet was finally resuspended in an appropriate amount of water. 

 

 

2.4.12   Bioinformatics 

Genomic positions of FOXM1 ChIP-Seq peaks from the human ECC-1, SK-N-SH, MCF7, GM12878 

and MDA-MB231 cell lines were retrieved from the ENCODE TF Binding track 

(http://genome.ucsc.edu/ENCODE/index.html) and GEO database (GSE40762 dataset). 

Intersection of FOXM1 peaks from the replicate experiments was calculated using GALAXY 

server. Overlap larger than 200 nucleotides was used as a threshold. Web-based CentDist 

program was used to identify the enriched TRANSFAC motifs within FOXM1 ChIP-Seq peaks and 

to plot their distribution. Gene expression datasets including lung (GSE19188 and GSE14814), 

cervix (GSE7803), esophagus (GSE20347) and oral (GSE30784 and GSE31056) tumor samples 

and the respective normal tissue samples were downloaded from GEO database and analyzed 

using web-based O-Miner program (Cancer Bioinformatics Group at the Barts Cancer Institute) 

or Bioconductor tools (http://www.bioconductor.org/). Statistical calculation and plotting was 

done using R (http://www.R-project.org/).  
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2.5   Statistics 

 

The experimental results presented in the figures are representatives of at least three or more 

observations. For each experimental data point the SEM from triplicate experiments was calculated as 

noted in the legends and is shown as error bars using the Microsoft Excel or Graph Pad Prism program. 

The significance of the in-vitro data was determined using the Students t test (2-tailed). P values of <0.05 

were considered statistically significant.  
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3   Results 
 

 

 

3.1   Regulation of FOXM1 expression by stress activated protein 

kinases 
 

 

 

3.1.1   Regulation of FOXM1 by p38 and Ha-Ras in mouse fibroblasts 

 

Ha-Ras has been shown to trigger invasion via the activation of downstream mitogen-activated 

protein kinases (MAPK) and stress-activated protein kinases (SAPK) (Behren et al., 2010). 

Fibroblasts, the major cell type in the stroma surrounding the tumor tissue, play an important 

role in cancer progression (Tyan et al., 2011). To determine the influence of p38 and Ha-Ras on 

FOXM1 expression in mouse fibroblasts, protein samples from wild-type NIH3T3 cells with 

constitutively activated and overexpressed Ha-RasEJ or MKK3act (Figure 11) were examined for 

their FOXM1 expression.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 11: Scheme for Ha-RasEJ/-MKK3act - activation in NIH3T3 

mouse fibroblasts. Ras and MKK3 (red circles) were constitutively activated 

by overexpression in mouse fibroblasts, where they trigger further downstream 

kinases (after Rincon M et al., 2000). 
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After isolation of whole cell protein lysates western blot analysis revealed that Ha-RasEJ- 

overexpression significantly increases FOXM1 protein expression and elevates level of phospho-

p38. MKK3act-expressing mouse fibroblasts had elevated FOXM1 protein levels as well, though 

the increase was weaker compared to the Ha-RasEJ-transfected cells (Figure 12). 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: p38 and Ha-Ras regulate FOXM1 expression in mouse 

fibroblasts. Whole protein lysates were isolated from Ha-Ras
EJ

- and MKK3
act

- 

activated NIH3T3 mouse fibroblasts and analyzed for FOXM1 protein 

expression and p38 phosphorylation levels. FOXM1 protein expression was 

normalized to the β-actin expression levels. Statistics was done by Students T-

test *p≤0.05. Bars show mean values ± SD from three independent 

experiments in triplicates. 

 

 

In order to ensure that the significant, Ha-RasEJ-mediated, elevation of FOXM1 protein level also 

was dependent on p38, the activity of p38 was blocked in Ha-RasEJ expressing mouse 
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fibroblasts, using the chemical p38-inhibitor SB203580. Subsequently, total mRNA was isolated 

and FOXM1 expression levels were measured by performing a real-time qPCR. As expected, 

FOXM1 mRNA levels were 2-fold elevated in Ha-RasEJ expressing mouse fibroblasts compared to 

wild-type NIH3T3 cells. This increase of FOXM1 mRNA levels in Ha-RasEJ-expressing mouse 

fibroblasts could be blocked significantly using the p38 inhibitor SB203580 (Figure 13). These 

data show that in mouse fibroblasts Ha-Ras and, to a less extent, p38 increase FOXM1 

expression. Furthermore, Ha-Ras induced FOXM1 expression depends on the activity of p38. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Ha-Ras induced FOXM1 expression is partially dependent on p38. 

Wild-type NIH3T3 and Ha-Ras
EJ

 activated NIH3T3 cells were incubated with SB203580 or 

treated with FOXM1 siRNA. mRNA was isolated and FOXM1 expression levels were quantified 

in a real-time qPCR. mRNA levels were normalized using the housekeeping gene GAPDH. 

Statistics were done by Students T-test *p≤0.05. Bars show mean values ± SD from three 

independent experiments in triplicates. 

 

 

 

 

 

 



  
 Results 

 

 

49  

 

3.1.2   The role of FOXM1 in p38-mediated in vitro invasion of mouse fibroblasts 

 

It is well established that p38 is able to induce in vitro invasion of mouse fibroblasts (Behren et 

al., 2005). As shown in Figure 1, p38 regulates FOXM1 expression in mouse fibroblasts. 

Therefore, we aimed to examine if FOXM1 is involved in p38-induced in vitro invasion of 

fibroblast cells. The invasion of NIH3T3 and NIH3T3-MKK3act cells was analyzed using Matrigel-

coated Boyden chambers. As expected, NIH3T3-MKK3act cells displayed a 1.5-fold higher 

invasion rate compared to wild-type NIH3T3 cells. Subsequently, FOXM1 was blocked in NIH3T3-

MKK3act cells by incubating them with different concentrations of the FOXM1 inhibitor Siomycin 

A, during the invasion process. Upon inhibition of FOXM1, the invasion of NIH3T3-MKK3act cells 

was significantly decreased, almost to the levels of wild-type NIH3T3 cells (Figure 14). This 

demonstrates that in NIH3T3 mouse fibroblasts FOXM1 is involved in p38-mediated in vitro 

invasion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: FOXM1 is necessary for p38-mediated in vitro invasion. 
Invasion of wild-type NIH3T3 and NIH3T3-MKK3

act
 cells was measured using 

Matrigel-coated Boyden chambers. FOXM1 expression in NIH3T3-MKK3
act

 cells 

was blocked by incubation with different concentrations of Siomycin A, prior to 

the invasion assay. Statistics was done by Students T-test *p≤0.05. Bars show 

mean values ± SD from three independent experiments in triplicates. 
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3.1.3   Regulation of FOXM1 expression by SAPKs in the epithelial SCC7 cell line 

 

To show that FOXM1 is regulated by stress-activated protein kinases (SAPK) in the epithelial 

SCC7 tumor cell line, which later was used for generation of the animal model for oral cancer, 

experiments were performed using reversible, ATP-competitive inhibitors of SAPKs. The 

inhibitors SB203580 and SP600125 already have been shown to block the activity of p38 (Young 

et al., 1997) and JNK (Brydon et al., 2001). To ensure, that these inhibitors effectively target the 

respective kinases in our experiments, western blots were performed to examine their influence 

on phosphorylation of the SAPK downstream targets c-Jun and ATF-2. To examine the 

effectiveness of the p38 inhibitor SB203580, which in further experiments would be used in the 

mouse model of oral cancer, SCC7 cells were treated with the p38 inhibitor SB203580 (10µM) 

for 1 hour and subsequently incubated with 10µg/µl of the SAPK activator Anisomycin for 15 

minutes. As western blots results show, Anisomycin-induced p38 activity in SCC7 cells could be 

efficiently blocked by SB203580 (Figure 15a).  

 

 

 
 

 

 

Figure 15: The SAPK inhibitors 

influence the activity of p38/ 

JNK and their downstream 

targets. SCC7 cells were treated 

with 1µM and 10µM of SB203580 for 

one hour and subsequently 

incubated for 15 minutes with 

Anisomycin (10µg/µl). Protein 

lysates were isolated and levels of 

phosphorylated p38 were detected 

in a western blot. β-actin expression 

indicates equal loading (a). SCC7 

cells were treated with 1µM and 

10µM of SB203580 and SP600125 

respectively for one hour and 

subsequently incubated for 15 

minutes with Anisomycin (10µg/µl). 

Protein lysates were isolated and the 

phosphorylation status of c-Jun and 

ATF-2 was detected in a western blot 

(b). 

a) 

b) 
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To further analyze the influence of the SAPK inhibitors on downstream targets of p38 and also 

JNK, SCC7 cells were incubated with SB203580 and SP600125 for 1 hour at different 

concentrations (1µM, 10µM). The cells were subsequently incubated with Anisomycin for 15 

minutes and the effect on phosphorylation of the p38/JNK downstream targets ATF2 and c-Jun 

was measured in a western blot. SB203580 efficiently blocked phosphorylation of the p38 

downstream target ATF-2, while SP600125 inhibited the phosphorylation of c-Jun upon stress 

induction (Figure 15b). Thus, both SAPK inhibitors block p38/JNK and their downstream targets 

efficiently and can be used for functional analysis of the two kinases.  

 

Since the specificity of the SAPK inhibitors was ensured, they were applied on epithelial SCC7 

mouse tumor cell line to examine if SAPKs have an influence on the expression of FOXM1. SCC7 

cells were incubated with 10µM of SB203580 and SP600125 for 24h and 48h. Whole cell lysates 

were isolated and FOXM1 protein levels were measured in a western blot. FOXM1 protein levels 

were significantly decreased after stimulation with both inhibitors. Upon p38 inhibition, FOXM1 

levels were 40% decreased after already 24 hours and 50% after 48 hours as compared to the 

vehicle treated samples. Using the JNK inhibitor, no changes in FOXM1 expression could be 

observed after 24 hours. After 48 hours FOXM1 levels were decreased for 60% (Figure 16).  

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

Figure 16: p38 and JNK regulate FOXM1 protein expression in SCC7 cells. SCC7 cells were 

treated with 10µM of SB203580 (a) and SP600125 (b) for 24 and 48 hours, respectively. Subsequently, protein 

lysates were isolated and FOXM1 protein expression was detected in a western blot. Results from three 

different western blots were quantified and plotted as bars. Bars show mean values ± SD from three 

independent experiments in triplicates. 

b) a) 
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To confirm the results on mRNA level, total mRNA from SCC7 cells, treated with both SAPK 

inhibitors for 48 hours, was collected and analyzed for FOXM1 expression in a semi-quantitative 

PCR reaction. FOXM1 mRNA levels were slightly decreased after 48 hours for both inhibitors, 

indicating that in SCC7 cell FOXM1 is regulated by SAPKs rather through protein stabilization 

than mRNA transcription (Figure 17). 

 

 

 

Figure 17: p38 and JNK regulate FOXM1 mRNA 

expression in SCC7 cells. SCC7 cells were treated with 

10µM of SB203580 and SP600125 for 48 hours, 

respectively. Subsequently, mRNA was isolated and FOXM1 

mRNA expression was detected in a PCR reaction. mRNA 

levels were equalized for h-lamin expression. 

 

 

 

3.1.4   Regulation of FOXM1 expression by SAPKs in human HNSCC cells 

 

In order to confirm the regulation of FOXM1 by SAPKs in human tumor cell lines, three human 

head and neck squamous cell carcinoma (HNSCC) cell lines (SCC-25, FaDu, CAL-27) were tested. 

Analysis of FOXM1 protein expression in these cell lines by western blot revealed that FOXM1 is 

differentially expressed on the protein level. Real-time qPCR analysis confirmed the differences 

observed on the protein levels also on the mRNA level (Figure 18). 

 

 

 

 

 

 

 

Figure 18: FOXM1 is differen-

tially expressed in human HNSCC 

cell lines. Protein and mRNA samples 

from three human HNSCC cell lines were 

isolated and examined for FOXM1 

expression by western blotting (a) and 

real-time qPCR (b).  

a) 

b) 
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To test if FOXM1 expression correlates with the expression and phosphorylation status of p38 

and JNK in the three human HNSCC cell lines, western blots for p38, JNK and their activated, 

phosphorylated forms were performed and compared with FOXM1 expression. p38 and JNK 

displayed differences in their activation status in the three HNSCC cell lines. SCC-25, which is 

featured by the highest FOXM1 expression, had high level of activated p38 and almost no 

detectable phospho-JNK. The two other cell lines, FaDu and CAL-27, which both expressed lower 

levels of FOXM1 had much lower p38 activity, but higher JNK activity. The expression levels of 

total p38 and total JNK were similar among all three cell lines (Figure 19a). 

The activity of SAPKs is rather determined by their phosphorylation status than by their 

expression levels (Wagner E F et al., 2009). Our gained data show that in human HNSCC cell lines 

FOXM1 expression directly correlates with the phosphorylation status and thus with the activity 

of p38, while the correlation with active JNK is inverse (Figure 19b).  

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 19: Expression and activity of SAPKs in human HNSCC cells. Protein samples from three 

human HNSCC cell lines were prepared and analyzed for the expression and phosphorylation status of the SAPKs 

p38 and JNK in a western blot experiment (a). Comparing the western blot data of FOXM1 expression and SAPK 

phosphorylation status in HNSCC cells, the expression of FOXM1 positively correlates with activity of p38 and 

negatively correlates with the activity of JNK (b). 

 

 

a) 

b) 
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To test in a functional analysis that FOXM1 expression indeed is dependent on p38, human 

HNSCC cell lines expressing detectable levels of FOXM1 were treated with the p38 inhibitor 

SB203580 for 24 and 48 hours, respectively. mRNA and protein samples were subsequently 

isolated and analyzed for FOXM1 expression by western blotting and real-time qPCR. Western 

blot data shows that inhibition of p38 in human HNSCC cells has no influence on the FOXM1 

protein expression after 24h. After 48h, however, FOXM1 levels were decreased significantly in 

both cell lines tested in the experiment (Figure 20). 

 

 

 

 

 

  

 

 

 

 

 

Figure 20: Influence of p38 on FOXM1 protein levels in human HNSCC cells. SCC-25 and FaDu cells 

were treated with the p38 inhibitor SB203580 for 24 and 48 hours. Protein samples were isolated and FOXM1 

expression was measured in a western blot. β-actin expression served as loading control.   

 

 

Results from the real-time qPCR analysis show that FOXM1 expression is also reduced on mRNA 

levels upon inhibition of p38 after 48 hours. In SCC-25 cells FOXM1 mRNA level was almost 40% 

lower compared to the DMSO-treated control cells. In FaDu cells FOXM1 mRNA level was 

significantly reduced down to 40% of the control expression level after 48 hours (Figure 21). The 

effects observed in the real-time qPCR analysis are not as significant as on protein level. Similar 

to the SCC7 mouse tumor cells, these data suggest that expression of FOXM1 is rather regulated 

through protein stabilization than on the mRNA level. 
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Figure 21: Influence of p38 on FOXM1 mRNA levels in human HNSCC cells. SCC-25 and FaDu 

cells were treated with the p38 inhibitor SB203580 for 24 and 48 hours. mRNA samples were isolated and 

FOXM1 protein expression was measured in a real-time qPCR. Statistics was done by Students T-test *p≤0.05. 

Bars show mean values ± SD from three independent experiments in triplicates.  

 

 

 

The gained data indicate that FOXM1 expression correlates with the activity of p38 in human 

HNSCC cell lines and that p38 partially mediates the induction of FOXM1 expression by 

oncogenic Ha-Ras. Further, functional analysis reveals that FOXM1 expression is regulated by 

p38 in mouse SCC7 cells and human HNSCC cell lines on protein and, less significant, on mRNA 

levels. FOXM1 is further involved in p38-mediated invasion of mouse fibroblasts. After the 

establishment of a regulatory link between p38 and FOXM1 expression in human HNSCC cells it 

has to be examined if FOXM1 has the ability to regulate invasion of squamous head and neck 

cancer cells and thus might contribute to the development of recurrent tumors.  
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3.2   Influence of FOXM1 on invasion of HNSCC cells 
 

 

 

3.2.1   Correlation of FOXM1 expression with invasiveness of HNSCC 

 

It has recently been demonstrated that p38 can induce invasion of head and neck squamous 

carcinoma cells (Juntilla et al., 2007). Since we have now shown that FOXM1 is a downstream 

target of p38 in head and neck squamous cancer cells, we aimed to examine if FOXM1 plays a 

role in invasive processes of those cells.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: FOXM1 is expressed at the edge of SCC7 induced tumors. Tumors grown from 

the transplanted SCC7 cells were harvested and analyzed by immunohistochemical staining of paraffin 

sections using antibodies directed against FOXM1.  
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Areas of high invasion are usually found within the edge of a tumor, where high expression 

patterns of invasive markers like MMP-2 or MMP-9 are detected (Guo P et al., 2007). 

Immunohistochemical staining of SCC7-induced mouse tumors for FOXM1 protein expression 

shows that it is mainly expressed at the edge area of the tumor and a predominantly nuclear 

location of FOXM1 indicates that it is in an active state (Figure 22). Those preliminary results 

obtained from the SCC7 tumor samples were a first indication that FOXM1 might be involved in 

invasive processes of HNSCC cells. 
 

Next, we analyzed in human HNSCC cell lines if FOXM1 correlates with such phenotypic features 

as cell proliferation and invasion. The invasive potential was quantified by the use of Matrigel-

coated Boyden chambers. Since all cell lines have different growth rates, prior to the invasion 

assay they were put under growth arrest by brief incubation with Mitomycin C, which efficiently 

induced growth arrest (Figure 23).  

 
 

 

 
 

 

 

 

Figure 23: Mitomycin C induces 

growth arrest in HNSCC cells. HNSCC 

cells were incubated with Mitomycin C for 15 

minutes, prior to the cell growth assay. Cell 

growth was measured using trypan blue dye 

exclusion and MTT reduction assay. Bars 

show mean values ± SD from three 

independent experiments in triplicates.   

 

 

 

To determine the proliferation rate of the HNSCC cell lines, the growth rate was measured over 

a period of 5 days by counting the number of living cells under the microscope. The results show 

that the cell lines differ in their growth properties. While SCC-25 has a relatively slow growth 

rate, CAL-27 and FaDu proliferate much faster (Figure 24b).  

In vitro invasion assays using Matrigel-coated Boyden chambers revealed that the HNSCC cell 

lines differ significantly in their capacities to invade the Matrigel matrix. While the cell line SCC-

25 displayed the highest invasion rate, FaDu and CAL-27 invade the Matrigel matrix to a lesser 

degree (Figure 24c). Taken together, comparison of FOXM1 expression with the proliferation 
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and invasion rates of the HNSCC cell lines shows that FOXM1 expression rather correlates with 

invasion than with proliferation of human HNSCC cells (Figure 24a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 24: FOXM1 expression correlates with invasiveness of human HNSCC cells. The HNSCC cells 

differ in their ability to grow and to invade. Analysis of growth and invasive properties of human HNSCC cells 

revealed that FOXM1 expression rather correlates with the invasiveness of human HNSCC cell lines than with their 

proliferative capacities (a). Cell growth was measured using trypan blue dye exclusion and MTT reduction assay 

over a period of five days (b). The in vitro invasiveness of HNSCC cell lines was measured using Matrigel-coated 

Boyden chambers. Prior to the assay, cell growth was arrested by incubation for 15 minutes with Mitomycin C (c). 

Bars show mean values ± SD from three independent experiments in triplicates.  

 

 

To further confirm that FOXM1 correlates with invasion of HNSCC cells, in vitro invasion assays 

in Matrigel-coated Boyden chambers with all three cell lines were performed. After separation 

of the invasive cell population from the non-invasive cells, mRNA was isolated and analyzed for 

FOXM1 expression. FOXM1 mRNA levels were significantly upregulated in invasive FaDu and 

a) 

b) 
c) 
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CAL-27 cells compared to the non-invasive cell populations. Invasive SCC-25 cells expressed also 

more FOXM1 mRNA than their non-invasive counterparts, but this difference was not significant 

(Figure 25).   

Those data clearly show that FOXM1 expression in HNSCC cells correlates with invasion and that 

FOXM1 expression is elevated in invasive cell populations compared to their non-invasive 

counterparts. This indicates that FOXM1 might directly regulate invasion of HNSCC cells. 

 

 

 

 

 

Figure 25: FOXM1 mRNA level is 

elevated in invasive HNSCC cells 

compared to their non-invasive 

counterparts. Invasive and non-invasive 

cells were separated in Matrigel-coated 

Boyden chambers. Subsequently, mRNA 

was isolated and examined for FOXM1 

expression. mRNA amount was normalized 

to GAPDH expression. Results are displayed 

as a heat map picture (experiment was 

performed in collaboration with Dr. Peter 

Hofner). 

 

 

 

 

 

 

3.2.2   FOXM1 directly regulates invasion of HNSCC cells 

 

It has been shown that FOXM1 regulates invasion of diverse human cancer cell lines derived 

from osteosarcoma (Wang et al., 2008), glioma (Dai et al., 2007), ovary (Chan et al., 2012), 

cervix (He et al., 2012), colorectum (Chu et al., 2012), pancreas (Huang et al., 2012), breast 

(Ahmad et al., 2010), and thyroid (Ahmed et al., 2012; Bellelli et al., 2012) tumors. To test in a 

functional analysis that FOXM1 regulates invasion of HNSCC cells, FOXM1 expression was 

blocked using the FOXM1 inhibitor Siomycin A, which has been shown to downregulate FOXM1 

expression and transcriptional activity (Radhakrishnan et al., 2006). HNSCC cells were incubated 

with Siomycin A for 36 hours, then protein lysates were isolated and examined for the 

expression of FOXM1 and the phosphorylation status of its downstream target PLK-1 (Fu Z et al., 

lower upper lower upper lower upper

Cal-27 Fadu SCC-25

lower upper lower upper lower upper

Cal-27 Fadu SCC-25
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2008). At concentrations of 10µM Siomycin A reduced FOXM1 expression significantly, leading 

also to a declined phosphorylation of the FOXM1 downstream target PLK-1 (Figure 26). 

 

 

 

 

 

Figure 26: Siomycin A reduces FOXM1 protein 

expression.  HNSCC cells were incubated with 10µM of 

Siomycin A for 36 hours. Protein lysates were isolated and 

protein expression levels of FOXM1 and the phosphorylation 

status of its known downstream target PLK-1 was examined by 

western blot. β-actin expression served as loading control. 

 

After it was shown that Siomycin A is able to efficiently reduce FOXM1 protein level, the effect 

of this down regulation on HNSCC invasion was examined. FaDu cells were incubated with 

Siomycin A in different concentrations and in vitro invasion was measured in Matrigel-coated 

Boyden chambers. Siomycin A was able to reduce invasion in a concentration dependent 

manner. Already 1µM and 10µM reduced the invasion of FaDu cells. 20µM of Siomycin A 

reduced in vitro invasion of FaDu cells significantly (Figure 27). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Siomycin A reduces invasion of HNSCC cells. FaDu cells were incubated with 

Siomycin A in the indicated concentrations for 36 hours. Cells were trypsinized and in vitro invasion assays 

using Matrigel-coated Boyden chambers were performed as previously described. Statistics were done by 

Students T-test *p≤0.05. Bars show mean values ± SD from three independent experiments in triplicates. 
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Since Siomycin A is an antibiotic thiazole compound it had to be assured that it acts specifically 

on FOXM1 without causing side effects, which might adulterate the results of the in vitro 

invasion assays. Furthermore, it has already been described that Siomycin A can induce 

apoptosis through FOXM1 depletion (Uppoor et al., 2009). Therefore, western blots were 

performed, to test the pro-apoptotic effect of Siomycin A and FOXM1 siRNA by detection of 

cleaved Caspase-3, which is a widely used marker for apoptosis (Nicholson DW et al., 1995).  

Siomycin A treatment has induced apoptosis in HNSCC cells, which was detected by elevated 

levels of cleaved Caspase-3. Treatment with FOXM1 siRNA did not induce cleaved Caspase-3 

activity. As a positive control for ongoing apoptosis, cells were also treated for 48 hours with 

Mitomycin C, which induced cleaved Caspase-3 activity clearly (Figure 28). Those data indicate 

that Siomycin A might not be suitable for performing invasion assays, since its apoptotic effects 

might interfere with the results of the in vitro invasion assays. Reducing FOXM1 expression via 

specific siRNA would be a better approach to analyze the effects for FOXM1 on invasion of 

HNSCC cells.  

 

 

 

    

 

 

 

 

 

 

 

Figure 28: Siomycin A induces apoptosis in HNSCC cells. FaDu cells were treated with FOXM1 

siRNA, Siomycin A (10µM) and Mitomycin C (10µg/µl) at the indicated time points. Protein lysates were 

equalized for β-actin expression and apoptosis was measured in a western blot by detection of cleaved 

Caspase-3. Sc= scrambled control, Mm=Mitomycin C.  

 

 

 

Transient knockdown of FOXM1 expression in all three cell lines was performed by using specific 

siRNA. Upon transfection with siRNA, in vitro invasion assays were performed using Matrigel-

coated Boyden chambers. Invasion was decreased in all three cell lines that were depleted in 

their FOXM1 expression. Whereas invasiveness of SCC-25 (p=0.0121) and FaDu (p=0.0180) cells 

was decreased significantly, invasion of CAL-27 cells, which express FOXM1 at very low level, 

was also decreased, but less significantly (Figure 29). 

 



  
 Results 

 

 

62  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: FOXM1 depletion via siRNA reduces invasion of HNSCC cells. The HNSCC cell 

lines SCC-25, FaDu and CAL-27 were transfected with FOXM1 siRNA and subsequently analyzed for 

their in vitro invasion using Matrigel-coated Boyden chambers. Statistics were done by Students T-test 

*p≤0.05. Bars show mean values ± SD from three independent experiments in triplicates. 

 

 

 

To confirm that the observed effects were FOXM1 specific, a rescue experiment, using a FOXM1 

expression plasmid was performed. For this purpose FaDu cells were co-transfected with 

FOXM1 siRNA and FOXM1 cDNA and subsequently examined for their in vitro invasion 

properties in Matrigel-coated Boyden chambers.  
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As expected, FOXM1 siRNA reduced in vitro invasion of FaDu cells significantly. Re-expression of 

FOXM1 via an expression plasmid restored the invasive phenotype of FaDu cells. Those results 

indicate that the observed effects of FOXM1 knockdown on invasion are FOXM1-specific, since 

re-expression of FOXM1 restores invasion of FOXM1 depleted cells (Figure 30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Decrease of invasion after FOXM1 knockdown can be rescued by re-expression of 

FOXM1. The HNSCC cell line FaDu was transiently transfected either with FOXM1 siRNA or FOXM1 siRNA plus 

FOXM1 expression plasmid. 48 hours after transfection cells were trypsinized and in vitro invasion was examined in 

Matrigel-coated Boyden chambers. Statistics were done by Students T-test *p≤0.05. Bars show mean values ± SD 

from three independent experiments in triplicates. 

 

 

 

Taken together, these data clearly show that FOXM1 plays a major role in the invasion of HNSCC 

cells. FOXM1 expression levels correlate with an invasive phenotype of human HNSCC cancer 

cells and FOXM1 is upregulated in invasive cell populations compared to non-invasive ones. 

Further functional analysis revealed that alteration of FOXM1 expression levels directly 

influences invasion of human HNSCC cells. Yet, the exact mechanism of how FOXM1 regulates 

invasion remains unclear. As a transcription factor FOXM1 can be directly involved in the 

invasive process as regulator of genes, for example encoding proteolytic enzymes, which in turn 

have the ability to directly modulate cell invasion.  
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3.3   FOXM1-regulated invasion via uPA 
 

 

 

3.3.1   uPA as a potential downstream target of FOXM1 

 

The serine protease urokinase plasminogen activator (uPA) has been implicated in the process 

of invasion and metastasis of a variety of human cancers (Dano K et al., 2005). uPA is also 

known to be activated by p38, an upstream activator of FOXM1 (Montero L et al., 1999). 

Furthermore, uPA promoter region contains several Forkhead-specific recognition sequences, 

which FOXM1 can potentially bind (Yao KM et al., 1997) (Figure 31a). Thus uPA represents a 

potential transcriptional downstream target for FOXM1-mediated invasion. Bioinformatic 

analysis of the publically available FOXM1 ChIP-Seq data confirmed FOXM1 binding within the 

uPA promoter. However, the exact position of FOXM1 binding peak differs from the ones 

predicted based on location of the Forkhead-specific recognition (Figure 31b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: FOXM1 binding sites within the uPA promoter. uPA promoter region contains two 

ATAAACAA sequence motifs specific for Forkhead family members (a). Snapshot from the UCSC Genome Browser, 

demonstrating FOXM1 binding peak upstream of the uPA transcription start site in the MDA-MB231 breast cancer 

cell line (ChIP-seq study GSE40762) (b). 

 

a) 

b) 
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First analysis of the HNSCC cell lines for uPA expression shows that uPA, like FOXM1, is 

upregulated in invasive HNSCC cells. The highly invasive cell line SCC-25 expresses the highest 

amounts of uPA, while the less invasive cell lines FaDu and CAL-27 express significantly lower 

levels of uPA. Thus in our examined HNSCC cells the expression of uPA correlates with FOXM1 

expression and in vitro invasion (Figure 32). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: uPA expression correlates with FOXM1 expression and invasiveness of HNSCC cell 

lines. Protein lysates of human HNSCC cell lines were examined for uPA and FOXM1 protein expression by western 

blot and compared with their invasiveness. β-actin expression served as a loading control. 

 

 

 

3.3.2   FOXM1 transactivates the uPA promoter in a Ras-dependent manner 

 

To test if FOXM1 has the ability to transactivate the uPA promoter, we used the uPA wild-type 

promoter (uPA-2345), placed in front of a chloramphenicol acetyltransferase (CAT) reporter gene 

(Figure 33). This construct was transfected into HNSCC cells together with a FOXM1 expression 

plasmid. The CAT signal was measured by an ELISA assay.  

 
 

 

Figure 33: uPA promoter reporter 

constructs.  The uPA wild-type promoter 

(2345 base pairs long) is fused to a chloram-

phenicol acetyltransferase (CAT) reporter. 

The activity of the uPA promoter was 

quantified by measurement of the CAT-signal 

using an ELISA assay.  



  
 Results 

 

 

66  

 

FaDu cells transfected with the uPA-2345 promoter reporter construct displayed a basal uPA 

promoter activity, which was over 2-fold higher than the negative CAT-Basic transfected control. 

CAL-27 cells showed a lower basal uPA promoter activity, in line with the fact that they express 

almost no uPA protein. Upon co-transfection with a FOXM1 expression plasmid the activity of 

the uPA promoter reporter was elevated up to 5-fold in FaDu cells and 3.5-fold in CAL-27 cells 

compared to control samples (Figure 34). This indicates that FOXM1 is able to transactivate the 

uPA promoter in HNSCC cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: FOXM1 transactivates the uPA promoter in HNSCC cells. FaDu and 

CAL-27 cells were transfected with the uPA wild-type promoter fused to a CAT reporter (uPA
-

2345
-CAT) or co-transfected with the uPA

-2345
-CAT reporter and a FOXM1 expression plasmid. 

Transfection with the CAT-Basic vector served as a negative control. CAT activity was 

measured using the CAT-Elisa Kit (Roche, Germany). Statistics was done by Students T-test 

*p≤0.05. Bars show mean values ± SD from three independent experiments in triplicates. 

 

 

Ha- and K-Ras signaling plays an important role in HNSCC. Especially K-Ras is often 

overexpressed in HNSCC cell lines, for example in FaDu cells (Hoa et al., 2002). In order to 

examine if Ras plays a role in FOXM1 mediated transactivation of the uPA promoter, we 

repeated the wild-type uPA-2345 promoter-CAT assays in NIH3T3 wildtype fibroblasts and NIH3T3 

cells with activated Ras. NIH3T3 wild-type cells almost showed no basal uPA promoter activity. 
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Additional transfection with the FOXM1 expression plasmid increased the uPA promoter activity 

up to 4-fold (Figure 35a). In NIH3T3 Ha-RasEJ cells, however, the basal uPA promoter activity was 

5-fold increased compared to negative control. Upon transfection with the FOXM1 expression 

plasmid this activity was further increased to over 10-fold (Figure 35b). Those data show that an 

activated Ras background is necessary for FOXM1 to transactivate the uPA promoter more 

efficiently.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: An activated Ras-background is necessary for FOXM1 to transactivate the uPA 

promoter efficiently. NIH3T3 wild-type mouse fibroblasts (a) and NIH3T3 cells with activated Ras protein (b) 

were transfected with the uPA
-2345

-CAT reporter alone or co-transfected with a FOXM1 expression plasmid. CAT 

activity was measured using the CAT-Elisa Kit (Roche, Germany). Statistics was done by Students T-test *p≤0.05. 

Bars show mean values ± SD from three independent experiments in triplicates. 

 

 

 

3.3.3   FOXM1 regulates uPA expression 

 

High uPA expression is associated with increased tumor cell invasion and EMT, as for example in 

breast cancer (Jo M et al., 2009; Li XF, Oncogene 2009). To check if FOXM1 regulates uPA 

expression, FOXM1 protein levels in HNSCC cells were downregulated by using siRNA 

knockdown. Protein lysates were isolated and uPA expression was examined in a western blot. 

The western blot data shows that the siRNA successfully decreased FOXM1 protein levels. Upon 

 

a) b) 
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inhibition of FOXM1 the expression of uPA was also clearly decreased (Figure 36). This 

demonstrates that in HNSCC cells FOXM1 regulates uPA expression on protein level. 

 

 

 

 
 

Figure 36: FOXM1 regulates uPA protein level. FaDu 

cells were transfected with FOXM1 siRNA. 48 hours after 

transfection protein lysates were isolated and uPA protein 

expression was measured in a western blot. Protein amounts 

were equalized using antibodies directed against β-actin. 

 

In order to analyze if FOXM1 regulates uPA transcription levels, mRNA from FOXM1 siRNA and 

FOXM1 cDNA transfected HNSCC cells was isolated and analyzed for uPA expression. FOXM1 

knockdown decreased uPA mRNA levels to almost 2-fold compared to the scrambled siRNA- 

treated control (Figure 37a). Conversely, expression of extopic FOXM1 increased uPA mRNA 

levels to almost 3-fold (Figure 37b). These data show that FOXM1 plays an important role in the 

transcriptional regulation of uPA. Altering FOXM1 levels influences uPA expression on mRNA 

and protein levels, which might contribute to the proteolytic uPA activity and invasion of HNSCC 

cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: FOXM1 regulates uPA expression on transcription level. FaDu cells were transfected 

with FOXM1 siRNA (a) and a FOXM1 expression plasmid (b), respectively. Subsequently, mRNA was isolated and 

uPA mRNA expression was measured by real-time qPCR. Statistics was done by Students T-test *p≤0.05. Bars 

show mean values ± SD from three independent experiments in triplicates. 
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3.3.4   FOXM1 regulates invasion via increased uPA activity 

 

uPA is secreted from cells and converts plasminogen to plasmin. Increased uPA proteolytic 

activity outside of the cells can promote cancer cell invasion and EMT (Shi X et al., 2008). To 

examine if the regulation of uPA by FOXM1 has an impact on uPA proteolytic activity and on 

cancer cell invasion, we first analyzed the influence of FOXM1 on activity of uPA secreted by 

HNSCC cells. For this purpose FaDu cells were treated with FOXM1 siRNA, p38 inhibitor 

(SB203580), and uPA inhibitor (UK122). 48 hours after stimulation/transfection cell 

supernatants were collected and uPA proteolytic activity was measured in an uPA activity ELISA.  

UK122, which served as a positive control for uPA inhibition, decreased uPA activity to under 

20% compared to DMSO treated control. Inhibition of FOXM1 and p38 decreased uPA activity to 

40% (Figure 38). This data indicates that FOXM1 as well as p38, which acts upstream of FOXM1, 

regulate uPA, secreted by HNSCC cells. Since FOXM1 regulates the expression and activity uPA, 

it is likely that FOXM1 mediated in vitro invasion of HNSCC cells depends on uPA activity. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: FOXM1 regulates the proteolytic activity of uPA in the supernatant of HNSCC cells. 
FaDu cells were transfected with FOXM1 siRNA, or incubated with the uPA inhibitor UK122 (100µM), or the p38 

inhibitor SB203580 (10µM). 48 hours after transfection cell supernatants were collected and proteolytic activity of 

uPA was measured using ELISA test (American Diagnostica, USA). Statistics was done by Students T-test *p≤0.05. 

Bars show mean values ± SD from three independent experiments in triplicates. 

 



  
 Results 

 

 

70  

 

To show that uPA, the downstream target of FOXM1, mediates FOXM1-induced invasion, in 

vitro invasion assays, using Matrigel-coated Boyden chambers, were performed. Prior to the 

assay, cells were transfected with the FOXM1 expression plasmid and the uPA inhibitor UK122, 

respectively.   

 

Transfection with the FOXM1 expression plasmid increased invasion of FaDu cells significantly as 

expected. After simultaneous inhibition of uPA, using the uPA inhibitor UK122, transfection with 

the FOXM1 expression plasmid did not increased invasion of FaDu cell significantly (Figure 39). 

This clearly shows that uPA is an important factor in FOXM1-mediated invasion of HNSCC cells. 

Without active uPA FOXM1 is no more able to increase invasion of HNSCC cells significantly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: FOXM1 mediated invasion of HNSCC cells is dependent on uPA. 

FaDu cells were transfected with FOXM1 siRNA and a FOXM1 expression plasmid and in 

vitro invasiveness was measured using Matrigel-coated Boyden chambers. As a control for 

uPA activity, prior to the invasion assay cells were incubated with the uPA inhibitor UK122 

(10µM). Statistics was done by Students T-test *p≤0.05. Bars show mean values ± SD from 

three independent experiments in triplicates. 
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Taken together, these data show that FOXM1 transactivates the uPA promoter in HNSCC cells, 

which in turn leads to an increased uPA mRNA and protein expression. To regulate uPA 

expression efficiently, FOXM1 requires an active Ras background. All these regulatory 

mechanisms increase uPA proteolytic activity in the surroundings of the tumor cells, which 

finally elevates in vitro invasion of HNSCC cancer cells. 

 

 

 

3.4   Regulation of uPA by FOXM1 via an AP-1 dependent 

mechanism 
 

 

 

3.4.1   FOXM1 activates the AP-1 transcription factor 

 

The activator protein 1 transcription factor (AP-1) as well as p38 are known regulators of uPA 

expression (Cuevas BD et al., 2005; Han Q et al., 2002). The uPA promoter possesses potential 

FOXM1 binding sites as well as AP-1 recognition motifs (Figure 40), suggesting that FOXM1 can 

either directly bind to the uPA promoter and enhance its expression or regulate it indirectly via 

modulation of AP-1.  

 

 

 

 

 

 

 

 

 

 
 

Figure 40: Transcription factor 

binding sites in the uPA promoter. 

The uPA promoter contains ATAAACAA 

sequence motifs, specific for Forkhead family 

members (blue) as well as AP-1 recognition 

sites (red). 
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Bioinformatic analysis of the publically available FOXM1 ChIP-Seq data from 5 different cancer 

cell lines shows that within the FOXM1 binding peaks, AP-1 consensus motifs are significantly 

enriched. The distribution of those sequences in FOXM1 bound DNA is not random, but is most 

dominant within the center of the FOXM1 binding peaks, where the binding of FOXM1 is 

expected to occur (Figure 41). This non-random distribution of the AP-1 recognition motif within 

FOXM1 binding peaks indicates that FOXM1 and AP-1 might act together.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Frequency graph of the AP-1 recognition motif in the FOXM1 ChIP-

seq peaks from five tumor cell lines. FOXM1 ChIP-seq peaks were analyzed for TF motif 

enrichment using CentDist program. The graphs show that AP-1 recognition motif occurs more 

frequent near the center of the FOXM1 binding peaks from the SK-N-SH, MCF7, GM12878, ECC- 1 

and MDA-MB231 cell lines. The sequence logos of the TRANSFAC V$AP1_C and V$AP1_Q4_01 are 

shown below the frequency graph. 

 

 

To test if FOXM1 per se is able to activate AP-1, a 5xAP-1 responsive element (5x-TRE) was fused 

to a CAT-reporter gene. HNSCC cells were transfected with the CAT-reporter plasmid and 

FOXM1 expression plasmid or FOXM1-siRNA, respectively. CAT activity was measured using a 
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CAT ELISA assay from Roche (Mannheim, Germany). Transfection with FOXM1 siRNA reduced 

5xTRE-CAT signal significantly to 60% as compared to control. Ectopic expression of FOXM1 lead 

to a significant increase of AP-1 activity, thus showing that FOXM1 has the ability to increase the 

activity of AP-1 (Figure 42).  

 

 

 

 

 

 

 

Figure 42: FOXM1 regulates the activity of AP-1. 

HNSCC cells were transfected with a 5xTRE-CAT reporter or co-

transfected with the 5xTRE-CAT reporter and FOXM1 siRNA or a 

FOXM1 expression plasmid, respectively. 48 hours after 

transfection cell lysates were collected and CAT activity was 

measured using the CAT-Elisa Kit (Roche, Germany). Statistics 

was done by Students T-test *p≤0.05. Bars show mean values ± 

SD from three independent experiments in triplicates. 

 

 

Phorbol 12-myristate 13-acetate (PMA) is a known activator of AP-1 (Roebuck KA et al., 1996). 

Prior to the CAT ELISA, cells were stimulated with 10nM of PMA for 12 hours and transfected 

with FOXM1 siRNA respectively. Stimulation with PMA increased AP-1 activity to 2.2-fold, as 

expected. Simultaneous inhibition of FOXM1 via siRNA was able to prevent PMA-mediated 

induction of AP-1 activity significantly, even though only to a low extent (1.8- fold) (Figure 43). 

 
 

 

 

Figure 43: FOXM1 is involved in PMA mediated 

activation of AP-1. HNSCC cells were transfected with a 

5xTRE-CAT reporter or co-transfected with the 5xTRE-CAT 

reporter and FOXM1 siRNA. Transfection with the CAT-

Basic reporter served as negative control. 12 hours prior to 

the assay, cells were stimulated with PMA (10nM). After 48 

hours post transfection, cell lysates were collected and CAT 

activity was measured using the CAT-Elisa Kit (Roche, 

Germany). Statistics was done by Students T-test *p≤0.05. 

Bars show mean values ± SD from three independent 

experiments in triplicates. 
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The AP-1 transcription factor is a heterodimer composed of several proteins. The two main 

members are proteins from the Jun and Fos families. Phosphorylation of those two molecules is 

necessary to stimulate AP-1 activity and transactivation of AP-1 responsive genes (Monje P et 

al., 2003).   

FOXM1 levels were altered using siRNA and cDNA transfection and the influence on the 

expression and phosphorylation status of c-Fos and c-Jun was analyzed in a western blot. 

Overexpression or depletion of FOXM1 has no effect on the expression levels of c-Fos and c-Jun. 

Phosphorylation levels of c-Fos and c-Jun, however, were clearly increased upon induction of 

FOXM1 (Figure 44). These results demonstrate that FOXM1 activates the AP-1 complex rather 

through phosphorylation than through elevated expression of the two main AP-1 members, c-

Fos and c-Jun. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: FOXM1 regulates phospho-

rylation of AP-1 members. A549 cells were 

transfected with FOXM1 siRNA and cDNA, 

respectively. Protein lysates were isolated and 

examined for expression levels of c-Fos, c-Jun, 

FOXM1 as well as for the phosphorylation status of 

c-jun and c-fos. Expression levels of the 

housekeeping gene β-actin served as a loading 

control. 

 

 

 

To test the role of AP-1 in FOXM1 mediated invasion, in vitro invasion assays using Matrigel-

coated Boyden chambers were performed. Transfection of FaDu cells with FOXM1 expression 

plasmid increased invasion significantly, as expected. Co-transfection with siRNA against one of 

the AP1 members (c-Fos) reverted this effect, indicating that AP-1 is necessary for FOXM1 

mediated invasion (Figure 45). 
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Figure 45: FOXM1 regulates invasion via AP-1. FaDu cells were co-transfected with FOXM1 

cDNA plus c-Fos siRNA or with c-Fos siRNA and FOXM1 cDNA, respectively. 48 hours after 

transfection, invasion assays were performed using Matrigel-coated Boyden chambers. Statistics was 

done by Students T-test *p≤0.05. Bars show mean values ± SD from three independent experiments 

in triplicates.  

 

 

 

 

3.4.2   Regulation of uPA via FOXM1 is mediated by AP-1 

 

To check if the AP-1 recognition sequence within the uPA promoter is necessary for FOXM1- 

mediated activation, deletion mutants of the wildtype uPA-2345 promoter lacking the AP-1 

binding sites were obtained (Figure 46a). 
 

The wild type uPA-2345-CAT and the uPA-1870-CAT reporter constructs were transfected into FaDu 

cells and FOXM1 was overexpressed using a FOXM1 expression plasmid. The intensity of the 

CAT signal was measured using a CAT-reporter Assay from Roche (Germany). FaDu cells 

transfected with the uPA-2345-CAT promoter displayed a basal uPA promoter activity of 5-fold as 

compared to the CAT-Basic transfected samples. This CAT-activity could further be elevated by 

FOXM1 overexpression. The uPA-1870-CAT deletion construct displayed a lower basal uPA 
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promoter activity. This basal activity could not be further increased by FOXM1 overexpression 

(Figure 46b). The gained data shows that the AP-1 binding within the uPA gene is necessary for 

FOXM1 mediated transactivation of the uPA promoter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46: The AP-1 binding site is necessary for FOXM1 mediated activation of the uPA 

promoter. The wild-type uPA
-2345

 promoter possesses Forkhead and AP-1 recognition motifs. The uPA
-1870

 

promoter construct lacks the AP-1 recognition motif (a). FaDu cells were transfected with the uPA
-2345

-CAT, uPA-
1870

-CAT reporter constructs alone or co-transfected with a FOXM1 cDNA expression plasmid. Protein lysates were 

isolated and CAT activity was measured using the CAT-ELISA kit (Roche, Germany). Transfection with the CAT-Basic 

vector served as a negative control. Statistics was done by Students T-test *p≤0.05. Bars show mean values ± SD 

from three independent experiments in triplicates (b). 

 

 

a) 

b) 
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The functional analyses using the CAT reporter constructs can not distinguish between direct 

and indirect action of  FOXM1 and AP-1 on transcription of the uPA promoter. The chromatin 

immunoprecipitation (ChIP) method is the method of choice to study DNA binding of 

transcription factors. A ChIP Assay, using antibodies against FOXM1 and AP-1 members, as well 

as primers spanning the AP-1 recognition motif and the Forkhead-specific sequence in the uPA 

promoter, was performed to examine if FOXM1 or AP-1 directly interact with the uPA promoter 

(Figure 47a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Induction of FOXM1 recruits c-Fos to the AP-1 binding site of the uPA 

promoter. Graph demonstrating positions of primers designed to measure FOXM1 and c-Fos binding in 

two regions of the uPA promoter by ChIP assay (a). ChIP assay was performed using A549 cells 

transfected in advance (24 hours) with a FOXM1 expression plasmidand antibodies against FOXM1 and c-

Fos proteins (b). Semi-quantitative PCR was used to detect FOXM1and c-Fos binding  (a) within the 

immunoprecipitated DNA fragments of the uPA promoter.  
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Using the primers spanning the Forkhead-specific sequence within the uPA promoter 

region B, it could be observed that FOXM1 does not bind the uPA promoter. Even as 

FOXM1 was overexpressed no FOXM1 binding was detected in that region of the uPA 

promoter. For c-Fos no binding to this region of the promoter could be observed. In 

contrast to region B, weak FOXM1 binding has been detected in region A, which could 

not be further increased by FOXM1 overexpression. In the control cells no binding of 

AP-1 at the promoter region A has been observed. However, upon overexpression of 

FOXM1 a very strong binding signal for AP-1 appears (Figure 47b), indicating that 

FOXM1 overexpression induces the binding of AP-1 to the uPA promoter region A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: Mechanism of FOXM1/AP-1 dependent activation of the uPA promoter. FOXM1 

activation leads to the phosphorylation of AP-1 members which recruits them to the AP-1 binding sites 

within the uPA promoter. As result, uPA expression and proteolytic activity is elevated, which this in turn 

enhances tumor cell invasion. 

 

According to our gained data, it becomes evident that FOXM1 regulates in vitro invasion of 

HNSCC cells via an AP-1-dependent modulation of uPA expression and activity. This is achieved 

by initial FOXM1 mediated activation of the main AP-1 members c-Fos and c-Jun via 

phosphorylation. Upon phosphorylation, AP-1 is recruited to the AP-1 binding site of the uPA 

promoter, where it is involved in the increase of uPA activity and expression, which finally leads 

to enhanced invasion (Figure 48). 



  
 Results 

 

 

79  

 

3.5   Influence of the FOXM1-uPA axis on cancer and recurrent 

HNSCC 
 

 

 

3.5.1   FOXM1 and uPA expression correlate in various cancer types 

 

After we established the link between FOXM1-dependent regulation of uPA, we aimed to proof 

that this mechanism is not limited to the analyzed cell lines, but represents a general 

mechanism for tumor progression in head and neck cancer as well as in other epithelial cancer 

types. For this purpose, FOXM1 and uPA expression were examined in publically available gene 

expression data sets of different tumors. Regarding the head and neck tumor entities, FOXM1 

and uPA were overexpressed in dysplastic lesions and, more dominant, in malignant tumors of 

the oral cavity (GSE30784; GSE31056) as compared to healthy tissue. There was no change in 

expression between healthy tissue and tumor margin. In esophageal squamous cell carcinoma 

(ESCC) FOXM1 and uPA were also overexpressed as compared to the healthy control (Figure 

49a).  
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Figure 49: FOXM1 are co-expressed in different epithelial tumors and preinvasive lesions. 

Expression of FOXM1 and uPA was analyzed in publically available gene expression data sets of preinvasive lesion 

and malignant tumors of the lung, cervix (b), esophagus, and oral cavity (a). Results are displayed as Box plot 

diagrams.  

 

 

In other cancer types, like cervix cancer, FOXM1 and uPA were both overexpressed in 

preinvasive, high grade cervical squamous intraepithelial lesions (HSIL) and more predominant 

in squamous cell carcinoma (SCC) of the cervix as compared to healthy tissue. In gene 

expression data sets from lung cancer FOXM1 and uPA overexpression positively correlated in 

squamous cell carcinoma (SCC) and adenocarcinoma (ADC). In lung cell undifferentiated 

carcinoma (LCUC) and large cell carcinoma (LCC), however, high expression levels of FOXM1 

were accompanied by low relatively levels of uPA expression (Analyzed in collaboration with 

Benjamin Otto) (Figure 49b). 
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3.5.1   Differential expression of FOXM1 and uPA in recurrent HNSCC tumors 

 

In order to examine if FOXM1 and uPA are differentially expressed between primary and 

recurrent head and neck tumors, we adapted a previously established mouse model (Behren et 

al., 2010). eGFP labeled SCC7 cells were injected into nude mice (2 million per mice). After 3 

weeks the developing tumor was resected and after another 2 weeks in 55% of mice developed 

recurrent tumors. The tumors samples were finally resected and together with the primary 

tumors further analyzed using immunohistochemistry and real-time qPCR (Figure 50). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50: Experimental setup for the development of SCC7 induced mouse tumors. eGFP- 

labeled SCC7 cells were injected into nude mice where a tumor develops after 3-4 weeks. After resection of the 

primary tumor, 55% of the mice developed a recurrent tumor after 2 weeks. The recurrent tumor is also resected 

and together with the primary tumor analyzed for the expression of the target genes using immunohistochemical 

staining and mRNA profiling. 

 

 

Staining of the p38 protein kinase did not show any significant difference between the primary 

and recurrent tumor samples (Figure 51a). FOXM1 staining also did not reveal any difference in 

the expression level between primary and recurrent tumors (Figure 51b). uPA, however, was 

significantly higher expressed in recurrent tumors, as compared to primary tumors (Figure 51c). 

Those data were also confirmed by real-time qPCR, (data not shown).  
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Figure 51: Differential expression of target genes between primary and recurrent SCC7 

tumors. SCC7 induced primary and recurrent mouse tumors were isolated and examined for p38 (a), FOXM1 (b)  

and uPA (c) expression using immunohistochemistry. 

 

 

a) b) 

c) 
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uPA which has been shown to be regulated by FOXM1 and AP-1, is significantly upregulated in 

recurrent tumors as examined by immunohistochemical staining and mRNA profiling (data not 

shown). These data implicate a strong importance for FOXM1, AP-1, and uPA in the 

development of recurrent tumors. 
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4   Discussion 
 

 

 

 

4.1   FOXM1 expression in HNSCC is regulated by SAPKs 
 

 

Suited within the reactive stroma, tumor cells are surrounded by a hostile microenvironment 

and subjected to various stress conditions like metabolite deficiency, hypoxia and the constant 

necessity to escape the immunological protection barrier of the tumor host. Invasion, which is a 

hallmark of tumor progression, is linked to stress conditions, since the destruction of the ECM, 

the breakup of cell-cell contacts, and the migration process itself, pose a critical mechanical 

stress to tumor cells. Further, invasion and metastasis enable the tumor to escape from stress-

induced damage in the primary tumor site (Kraning-Rush CM et al., 2012). Stress triggers the 

activation of SAPKs, like p38, leading to enhanced invasion, which in turn is the main cause for 

development of recurrent tumors. The exact mechanisms of how stress can induce invasion of 

tumor cells still remains unclear. 

 

In our previous investigations we identified possible downstream targets of p38 by a 

computational-based analysis, where FOXM1 was one of them (Behren et al., 2009). After 

constitutively activating the Ha-Ras and MKK3 (p38) pathways in mouse fibroblasts we 

confirmed that FOXM1 protein and mRNA expression levels were increased effectively. 

However, constitutively active Ha-Ras elevated FOXM1 protein levels much stronger than MKK3 

activation, where an elevation in FOXM1 protein level was barely detected. This could be 

related to the fact, that p38 activity in the MKK3- active cells was very weak, as western blots of 

MKK3-activated fibroblasts only showed faint elevation of phospho-p38 levels compared to 

wild-type NIH3T3 cells. Another explanation is that Ha-Ras operates upstream of MKK3 (Pelech 

SL et al., 1995; McDermott EP et al., 2002), and beside p38 also triggers other MAPK pathways, 

like ERK1/2, which is a very potent activator of FOXM1 (Lok GT et al., 2011). To confirm that p38 

is indeed involved in the regulation of FOXM1 expression, we applied the p38 inhibitor 

SB203580 in Ha-Ras activated NIH3T3 mouse fibroblasts, which have elevated FOXM1 mRNA 

levels compared to NIH3T3 wild-type cells. Upon p38 inhibition, FOXM1 mRNA levels were 

significantly decreased in Ha-Ras activated mouse fibroblasts, though they still remained higher 

than in wild-type NIH3T3 cells. This indicates that p38 is also involved, at least partially, in Ha-

Ras-mediated FOXM1 expression. Previous publications already demonstrated that ERK or p38, 
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both downstream of Ras, regulate the expression of FOXM1 (Behren et al., 2009; Chan DW et 

al., 2012).  

 

We hypothesized that p38-dependent regulation of FOXM1 in fibroblast cells, which usually are 

the main components of the tumor-surrounding stromal tissue (Bhowmick NA et al., 2004), is a 

general mechanism which also occurs in epithelial tumor cells as well as in human HNSCC cells. 

In epithelial SCC7 cells, which were later used in our animal experiments, inhibition of p38 

reduced FOXM1 protein levels markedly, while mRNA levels were decreased only marginally. 

The same observation could be made for human HNSCC cells lines. Upon p38 inhibition in the 

cell lines SCC-25 and FaDu, which express high and moderate levels of FOXM1, protein levels of 

FOXM1 were clearly reduced, whereas FOXM1 mRNA levels were reduced to a less degree. 

These results demonstrate that in epithelial tumors and human HNSCC FOXM1 is regulated via 

p38, preferentially on protein expression or stabilization and less through alterations of mRNA 

expression. Our results from human HNSCC and murine SCC7 cells reflect the known 

mechanisms by which the activity of FOXM1 is regulated through phosphorylation by various 

kinases and not necessarily through de novo synthesis (Fu Z et al., 2008). Further, in the course 

of tumor initiation of epidermal basal cell carcinoma, FOXM1 expression was upregulated upon 

UV light stress rather through protein stabilization and accumulation than through mRNA de 

novo synthesis (Teh MT et al., 2010). This mechanism of regulation makes it is possible for 

cancer cells to react to external stress stimuli faster and more flexible by protein modifications 

or phosphorylation, than by turning on the whole transcriptional machinery. 

 

 

 

 

4.2   FOXM1 enhances invasion of HNSCC cells 
 

 

The link between SAPKs and invasion has already been examined very well in the recent years 

by showing that stress-activated p38 and JNK MAP kinases enhance invasion and EMT of cancer 

cells (Denkert C et al., 2002; Shin I et al., 2005; Wang J et al., 2010). We confirmed the role of 

p38 in invasive processes of mouse fibroblasts by inhibiting p38 using the SB203580 inhibitor in 

MKK3 activated NIH3T3 cells, which decreased invasion almost to the levels of wild-type NIH3T3 

cells, pointing out the crucial role of p38 in invasive processes in those cell types.  

 

The role for FOXM1 in invasive processes of human HNSCC cells has not been examined yet. 

Though most head and neck tumors are squamous cell carcinomas, HNSCC turn out to be a very 
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heterogeneous malignancy, which makes a successful treatment very complicated (Bragado P et 

al., 2012). Different tumors from different HNSCC patients, as well as distinct cell populations 

within one tumor, vary in their genetic composition, expression of oncogenes, and in their 

phenotypes, like growth rate or invasion (Freier K et al., 2003; Song J et al., 2010; Prince ME et 

al., 2007). The cell lines SCC-25, FaDu, and CAL-27 used in our study, reflect this heterogeneity. 

They differ markedly with respect to their ability to grow and to invade. SCC-25 is highly invasive 

and slowly growing, while FaDu and CAL-27 invade less but grow relatively fast. Interestingly, 

the protein and mRNA expression of FOXM1, a well known cell cycle regulator, (Wierstra I et al., 

2007), correlate with the invasiveness of HNSCC cells and not with their growth rate. Besides, 

p38 activity also correlates with FOXM1 expression and invasion of HNSCC cells. The highly 

invasive cell line SCC-25 expresses the highest amounts of FOXM1 and also displays the highest 

p38 activity. FaDu and CAL-27 expresses less FOXM1, invade less, and also have a lower activity 

of p38. This results support recent findings that FOXM1 is not only exclusively involved in 

proliferation but also in the regulation of other phenotypes, like invasion and metastasis 

(Raychaudhuri et al., 2011) and further supports our hypothesis that the p38-FOXM1 axis is 

important for invasion and aggressiveness of HNSCC cells. By this means, in HNSCC tumors, 

subjected to stress conditions, p38-mediated invasion and metastasis via FOXM1 may represent 

a proper survival mechanism for HNSCC cells, to escape harmful stress-conditions within the 

primary tumor site and to avoid stress-induced damage. 

 

FOXM1 expression in immunohistochemical stainings of SCC7-induced mouse tumors was 

mostly limited to the tumors margins. Highly invasive cell populations are usually located at the 

border of tumors, where upon EMT, and loss of cell-cell contacts, they disseminate and invade 

the surrounding tissue or form metastasis (Zlobec I et al., 2009). A high expression of FOXM1 in 

those areas was another hint for the involvement of FOXM1 in invasion of epithelial tumor cells. 

Analysis of invasive and non-invasive cell populations of HNSCC cell lines revealed that FOXM1 

expression was upregulated in the invasive cell populations of all analyzed HNSCC cells, 

compared to their non-invasive counterparts. These data strongly indicate that FOXM1 is 

involved in the regulation of invasive phenotypes of HNSCC cells. In a functional analysis FOXM1 

expression was downregulated by Siomycin A. This treatment significantly inhibited invasion of 

HNSCC cells in a concentration depended manner, indicating that FOXM1 directly influences 

invasive properties of head and neck tumors. Siomycin A is a thiazole antibiotic, which 

previously has been shown to block FOXM1 transcriptional activity and expression (Bhat UG et 

al., 2009). Analysis of cleaved Caspase-3 in a western blot revealed that, in contrast to siRNA 

knockdown, Siomycin A induced apoptosis of HNSCC cells. Those results indicate that the 

observed decreased invasiveness of HNSCC cells, after FOXM1 knockdown via Siomycin A, could 

be due to elevated apoptosis and not necessarily due to altered invasion properties. Thus, we 
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conducted further FOXM1 knockdown experiments using specific siRNA, in order to confirm the 

results obtained with Siomycin A. Knockdown with siRNA decreased invasiveness in SCC-25 and 

FaDu cells significantly. In CAL-27 cells invasion was decreased as well, even though not 

significantly. This could be due to the fact that CAL-27 expresses less FOXM1 and have a low 

invasion rate making further depletion of FOXM1 less effective. In the conducted rescue 

experiment, where re-expression of FOXM1 reestablished invasion of FOXM1-depleted HNSCC 

cells, we demonstrated that our previously observed results were FOXM1-specific and not 

caused by off-target effects.  

 

FOXM1 has been implicated in invasive processes of cervical (He SY et al., 2012), pancreatic 

(Huang C et al., 2012), ovarian (Lok TM et al., 2011), colorectal (Chu XY et al., 2012), and breast 

(Ahmad A et al., 2010) cancer. Invasion of tumor cells into the surrounding tissue is a crucial 

process for the early development of head and neck tumors and for the development of 

locoregional recurrences (Fagan JJ et al., 1998; Hatano H et al., 2008). Since in our study we 

show that FOXM1 regulates invasion of head and neck cancer cells, it implicates that FOXM1 is 

involved in early carcinogenesis, and the development of recurrent head and neck tumors by 

enhanced invasion. Our findings were confirmed by other studies, suggesting a contribution of 

FOXM1 to early head and neck cancer carcinogenesis induced by tobacco (Gemenetzidis E et al., 

2009). The influence of FOXM1 in the development of recurrent tumors, however, still has not 

been examined.  

 

 

 

 

4.3   FOXM1 mediates invasion of HNSCC cells via the 

regulation of uPA 
 

 

Transcription factors are not able to directly modulate processes that are necessary for the 

destruction of the ECM, cell-cell-, and cell-ECM contacts. Instead, they trigger the activation of 

downstream genes which have the capability to degrade components of the ECM and by this 

means facilitate invasion and metastasis of tumor cells. The serine protease uPA, which is a 

known target of p38, has already been shown to induce invasion, especially in breast cancer 

(Montero L et al., 1999; Tang L et al., 2012).  

FOXM1 has been shown to regulate genes, probably through binding to the conventional 

FOXM1 binding sites (Wierstra et al., 2006). Analysis of the uPA promoter sequence revealed 
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that it possesses several of those binding sites. In addition new ChIP-Seq data confirmed the 

presence of FOXM1 binding peaks within the uPA promoter, making it a preferential target for 

FOXM1 mediated invasion. Further, western blot analysis showed that the expression of uPA 

correlates with FOXM1 expression. uPA protein is expressed at high levels in the invasive cell 

line SCC-25, which also has high FOXM1 levels, while it is less expressed in the cell lines FaDu 

and CAL-27. Together with the ChIP-Seq data, the correlation between invasiveness, uPA-, and 

FOXM1 expression suggested that uPA might be a transcriptional target of FOXM1.  

 

To examine if FOXM1 transactivates the uPA promoter in HNSCC, the cell lines FaDu and CAL-27 

were transfected with a plasmid, containing the wild-type uPA promoter, which was fused to a 

CAT reporter (uPA-2345-CAT). In FaDu cells the activity of the uPA promoter was almost 2-fold 

higher compared to the empty CAT-Basic vector control. uPA activity in CAL-27 cells was also 

elevated compared to the CAT-Basic transfected control, but less higher than in FaDu. 

Simultaneous overexpression of FOXM1 increased the activity of the uPA promoter in both 

HNSCC cell lines significantly compared to the uPA-2345-CAT transfected samples. Upon FOXM1 

transfection, the activity of the uPA promoter in FaDu cells was increased 5-fold, while in CAL-27 

cells only 3-fold. This can be explained by the fact, that CAL-27 cells have a lower uPA expression 

compared to FaDu cells, which makes an increased activation after FOXM1 overexpression less 

effective. More interestingly, according to the Cancer Cell Line Encyclopedia (CCLE) database, in 

CAL-27 the AP-1 member c-Fos has been shown to be mutated at the position p.E137K. 

 

Transactivation of a promoter region by transcription factors usually causes genes to be 

expressed. We tested if the observed transactivation of the uPA promoter by FOXM1 has any 

influence on uPA expression. FOXM1 levels in HNSCC were altered using siRNA-knockdown and 

overexpression via a FOXM1 expression plasmid. Inhibition of FOXM1 decreased uPA mRNA 

levels significantly, while overexpression of FOXM1 elevated uPA mRNA levels to a significant 

extent. Further, uPA protein levels were significantly affected after alteration of FOXM1 

expression levels. These data demonstrate that FOXM1 regulates transcription of uPA in HNSCC 

cells. FOXM1 overexpression leads to a transactivation of the uPA promoter, which in turn 

enhances its mRNA and protein synthesis.  

 

uPA induces invasion and EMT in cancer cells by converting plasminogen into its active form 

plasmin, which then degradates ECM components (Tryggvason K et al., 1987). For uPA to 

become active, tumor cells have to secrete the pro-uPA form into the extracellular space, where 

it binds the uPAR and is converted into its active form (Matsuoka H et al., 2006). In order to 

have a significant effect on invasion, the previously shown transcriptional regulation of uPA via 

FOXM1 should have an influence on the enzymatic activity of uPA in the cell culture 
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supernatant. Enzymatic based analysis makes it possible to measure the amount of active uPA in 

the supernatant of cultured cells. Upon inhibition of FOXM1 using siRNA, uPA activity in the 

supernatant of FaDu cells was decreased to a significant degree, proving that FOXM1 mediates 

regulation of uPA activity in HNSCC cells. Further, p38 inhibition, using the p38 inhibitor 

SB203580, had the same effect, confirming previous results from breast tumors, where it has 

been shown that p38 influences the enzymatic activity of uPA (Montero L et al., 1999).  

 

To confirm that the FOXM1-uPA axis regulates invasion of HNSCC cells, FOXM1 expression was 

upregulated in FaDu cells, which lead to a significant increase of invasiveness. After cells were 

simultaneously treated with the FOXM1 expression plasmid plus the uPA inhibitor UK122, there 

was no significant increase of invasion. Those data clearly show that uPA is necessary for 

FOXM1-mediated enhancement of invasiveness in HNSCC cells. However, upon inhibition of 

uPA, FOXM1 overexpression still elevated invasion to some extent, though this increase was not 

significant. A reasonable answer for this is the fact that FOXM1 has been shown to mediate 

invasion also via other pathways than uPA. In the oral cavity of squamous cell carcinoma MMP-2 

is involved in FOXM1-mediated invasiveness (Chen CH et al., 2009), in breast cancer cells VEGF 

plays an important role in invasive processes regulated by FOXM1 (Ahmad A et al., 2009).  

Our findings demonstrate that uPA is a critical factor in FOXM1 mediated invasiveness of HNSCC 

cells. FOXM1 transactivates the uPA promoter, leading to an increase of its expression and 

consequently enzymatic activity, and finally elevates in vitro invasion of HNSCC cells. However, 

the exact mechanism of FOXM1-mediated regulation of uPA still needs to be examined. 

 

 

 

 

4.4   FOXM1 regulates expression of uPA in a Ras-depended 

manner 
 

 

Transfection of mouse fibroblast NIH3T3 cells with the wild-type uPA promoter construct driven 

CAT reporter (uPA-2345-CAT), did not reveal any basal uPA promoter activity as compared to the 

control CAT-Basic vector. Overexpression of FOXM1 in the wild-type NIH3T3 cells elevated the 

activity of the uPA promoter, but not more than 2-fold. However, in NIH3T3 mouse fibroblasts 

with an active Ha-Ras background FOXM1 overexpression elevated uPA promoter activity to 

more than 10-fold compared to the negative control, indicating that active Ras is necessary for 

FOXM1 to activate the uPA promoter efficiently and that it plays an important role in FOXM1- 



  
 Discussion 

 

 

90  

 

mediated tumorgenesis. Generally, K-Ras mutations occur in only less than 5% of HNSCC 

patients (Langer CJ 2012), whereas Ha-Ras mutations were found in about 22% of HNSCC 

patients, predominantly in patients from India and Southeast Asia (Anderson AA et al., 1994; 

Kiaris H et al., 1995). While mutations rarely occur, overexpression of members of the Ras 

protein family is a relatively common event in HNSCC with 65% positive incidence for Ha-Ras, 

45% for K-Ras, and 32% for N-ras (McDonald JS et al., 1994). In total, amplification of wild-type 

Ha-Ras or K-Ras, together with mutations of Ras family members, occur in over 80% of HNSCC 

tumors (Bornstein et al., 2009). This deregulation of the Ras pathway plays an important role in 

the initiation and progression of HNSCC (Caulin C et al., 2004; Hoa M et al., 2002). These 

findings were further confirmed by results obtained together with our collaboration partners 

from Cincinnati. Tumors from transgenic mice which overexpress K-Ras, FOXM1, or K-Ras plus 

FOXM1 together, were analyzed for the expression of AP-1 members, uPA and for tumor 

growth. While with overexpression of FOXM1 or K-Ras alone there was no increase in uPA 

expression or tumor growth, mice with FOXM1 plus K-Ras overexpression displayed significantly 

elevated mRNA levels of uPA and increased tumor growth. Expression levels of AP-1 members 

remained unchanged in all three cohorts (Misetic et al., under submission). Recent publications 

from other groups support our findings. Bornstein et al. showed that in Smad4 knockout mice an 

additional activation of Ras (K-rasG12DSmad4+/-) is needed to develop HNSCC rapidly, while 

neither heterozygous deletion of Smad4 nor K-Ras mutations alone were able to induce HNSCC 

formation (Bornstein S et al., 2009). In another study activation of either K-Ras or H-Ras only in 

combination with TGFβRII deletion lead to the formation of HNSCC tumors, which displayed 

increased invasiveness, inflammation, and angiogenesis (Lu SL et al., 2006). In summary, these 

findings demonstrate that overexpression of FOXM1 or Ras alone is not sufficient for a strong 

induction of uPA expression and therefore tumor invasion. Instead a “second hit” is necessary to 

induce a malignant and invasive phenotype more efficiently.  

 

 

 

 

4.5   FOXM1 regulates uPA via AP-1 
 

 

The molecular mechanism of the FOXM1-mediated regulation of uPA expression remains to be 

clarified. Based on the occurrence of conventional Forkhead-specific recognition motifs in the 

promoter region of the uPA gene we assumed that FOXM1 binds to this sequence. However, our 

data from this study indicates that FOXM1 binds to another region, where also a well-known AP-

1 binding site is located (Verde P et al., 1988). Analyzing the public FOXM1 ChIP-Seq data from 
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five human tumor cell lines, strong enrichment of the AP-1 recognition motif has been obtained 

for this region. Additional bioinformatical data revealed that AP-1 recognition motifs are gerally 

more frequent near the center of FOXM1 binding peaks. In consideration of those new findings 

FOXM1 might either activate directly the uPA promoter or via AP-1 members. 

 

To examine if FOXM1 does influence AP-1 activity at all, we transfected HNSCC cells with a 

plasmid containing AP-1 responsive elements fused to a CAT reporter (5xTRE-CAT). FOXM1 

levels were altered using siRNA knockdown or overexpression via an expression plasmid. 

FOXM1 depletion decreased overall AP-1 activity significantly, while FOXM1 overexpression lead 

to a significant increase of AP-1 activity. Phorbol 12-myristate 13-acetate (PMA) is a well known 

potent AP-1 activator (Angel and Karin, 1991), which mediates a wide range of cancer-specific 

phenotypes via enhanced AP-1 activity, like transformation of epidermal cells (Dong Z et al., 

1994; Bruder JT et al., 1992), or cellular invasion (Dong Z et al., 1997). PMA has also been shown 

to involve the Ras or ERK in the activation of AP-1 (Katagiri et al., 1994; Frost JA et al., 1994). We 

hypothesized that FOXM1 might also be involved in PMA-mediated activation of AP-1. PMA 

stimulation of HNSCC cells elevated AP-1 significantly compared to control. Simultaneous 

inhibition of FOXM1 via siRNA inhibited PMA-induced AP-1 activity significantly, but only to a 

weak (0.4-fold) extent. We show that FOXM1 partially is involved in PMA-mediated activation of 

AP-1. The fact that FOXM1 knockdown only weakly decreased PMA-stimulated AP-1 activity, can 

be explained by the fact that PMA activates several pathways (Huang TS et al., 1995), which can 

activate AP-1 independently of FOXM1.  

 

The activity of AP-1 can be regulated through increased expression, phosphorylation of their 

subunits, or by other post-transcriptional modifications (Karin M et al., 1995; Ozolins et al., 

1999; Biswal S et al., 2002; Fujioka S et al., 2004). After it has been demonstrated that FOXM1 

enhances AP-1 activity, we raised the question if FOXM1 modulates AP-1 activity by increased 

transcription of its main protein members, or by mediating phosphorylation of its subunits. 

Observations from transgenic mice, obtained in cooperation with our partners from Cincinnati, 

revealed that neither K-Ras or FOXM1 overexpression, nor simultaneous overexpression of both 

genes increased the expression of the main AP-1 member’s c-Fos, c-Jun, or ATF-2 (Misetic et a., 

under submission). Therefore, we performed western blots in A549 cells where FOXM1 

expression was altered and checked the expression and phosphorylation status of the main AP-

1 members. After inhibition or upregulation of FOXM1, there was no change in expression levels 

of c-Fos or c-Jun, except a slight decrease of c-Jun expression after FOXM1 overexpression. 

However, after FOXM1 overexpression an increase in phosphorylation of c-Fos and c-Jun was 

observed. Those data indicate that FOXM1 leads to an activation of AP-1 via phosphorylation of 

its subunits and not via elevated expression levels. Our findings mirror other publications by 
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which activation of AP-1 via MAPKs is regulated through increased phosphorylation (Karin M et 

al., 1995). Further, it has been demonstrated that the AP-1 subunit c-Fos is phosphorylated by 

members of the p38 MAPK family (Tanos T et al., 2005), which in our work have been shown to 

regulate FOXM1, integrating it into this regulatory axis. Nevertheless, in further studies it still 

has to be examined which kinase is involved in the FOXM1 mediated phosphorylation of AP-1. 

 

After it has been demonstrated that FOXM1 regulates AP-1 activity and that the uPA promoter 

possesses several AP-1 binding sites, we obtained deletion mutants of the uPA wild-type 

promoter. The deletion mutant uPA-1870-CAT only possessed 1870 basepairs of the original 2345 

basepair long wild-type uPA promoter, and lacked the AP-1 binding sites. CAT-Assays showed 

that after deletion of this promoter region, uPA promoter activity dropped down significantly, 

and FOXM1 overexpression was not able to increase uPA promoter activity further. This 

demonstrated that the region 1870-2345 of the uPA region is crucial for its activation via 

FOXM1. Since several AP-1 binding sites are suited within this region, it becomes evident that 

AP-1 is necessary for FOXM1 mediated activation of the uPA promoter.  

 

To further prove our findings, we performed ChIP-Assays using antibodies against FOXM1, c-Fos 

and primers spanning the region where the AP-1 binding sites are located (Region A). In addition 

we used primers that also span a region further downstream (Region B) that harbors the 

putative Forkhead-specific recognition motifs, which were discovered by less precise random-

oligonucleotide sequencing (Yao KM et al., 1997). Analyzing Region B of the uPA promoter, no 

binding of either FOXM1 or c-Fos was observed. Since there are no AP-1 recognition motifs in 

this region, it is not surprising that no c-Fos binding was observed. The lack of FOXM1 binding in 

this region, though it contains the conventional Forkhead-specific recognition motif , could be 

due to the fact that the FOXM1 ‘winged helix’ DNA-binding domain lacks typical features 

required for DNA interaction and, as result, binds only weakly to TAAACA sequence specific for 

Forkhead family members, as it has recently been discovered (Littler et al., 2010). It is also very 

likely that there are no FOXM1 binding sites in this region at all, since bioinformatic analysis of 

the FOXM1 Chip-Seq data revealed that FOXM1 binding sites are located within the Region A 

and not B. Indeed, in A549 cells weak FOXM1 binding signal has been observed in the Region A. 

The binding intensity could not be further increased by overexpression of FOXM1, showing that 

FOXM1 weakly binds to this region and it is not involved directly in the activation of the uPA 

promoter. For c-Fos weak binding within this region in the A549 cells was observed as well. 

However, after FOXM1 overexpression the binding signal increased drastically, indicating that 

FOXM1 activation induces the binding of c-Fos to the uPA promoter. 

To confirm that AP-1 is involved in FOXM1 mediated invasion, we performed invasion assays 

where FOXM1 and c-Fos levels were modulated. Overexpression of FOXM1 increased 
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invasiveness of HNSCC cells as expected. Upon c-Fos inhibition FOXM1 was not anymore able to 

increase invasion of HNSCC cells, indicating that AP-1 is involved in FOXM1 mediated invasion. 

Taken together, we show that uPA possesses both AP-1 and FOXM1 binding sites within the 

promoter Region A. Overexpression of FOXM1 leads to phosphorylation of the main AP-1 

members, by a yet unknown mechanism. Upon phosphorylation, the AP-1 members are 

recruited to the AP-1 binding site of the uPA promoter, which is in direct proximity to the 

FOXM1 binding site, and initiate the transactivation of the uPA promoter.   

 

These observations suggest that FOXM1 does not bind as a single transcription factor and thus 

activates transcription of target genes. Due to its weak binding to the conventional TAAACA 

sequence (Littler et al., 2010), it is conceivable that transcriptional activity of FOXM1 relies on 

the interaction with other DNA-binding proteins, which recruit FOXM1 to its target genes. In 

that case, FOXM1 specificity is mainly determined by its interaction partners, for example by 

NfkB1 that interacts with FOXM1 upon doxorubicin treatment to confer drug resistance (Park YY 

et al., 2012) and or by the MMB transcriptional activator complex that together with FOXM1 

regulates cell cycle related genes (Chen X et al., 2013). This principal has also been discovered 

for other genes. For TGFβ-mediated invasion the interactions between Smad2/3 and Fra1 is 

required to induce the binding of Smad proteins to the promoter of PAI-1 and MMP-10 

(Sundqvist A et al., 2012). 

It would also explain why FOXM1 is often described as a “so-called” master regulator, playing a 

dual role enabling the regulation of proliferation and invasion and the transition between them. 

By interacting with different transcription factors and thereby binding different promoters, 

FOXM1 triggers different cellular actions, depending on the required phenotype. Thereby, 

FOXM1 contributes to a balance of invasively growing tumors, where individually migrating cells 

and groups of collectively moving cells can switch between ‘go’ and ‘growth’ states 

(Raychaudhuri P et a., 2011; Wierstra I et al., 2007).  
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4.6   The relevance of the FOXM1-uPA for cancer and tumor 

recurrence 
 

 

In our study, by the use of in vitro experiments and mouse models, we demonstrated that 

FOXM1-mediated invasion via uPA is a general mechanism, which could be observed in several 

cell systems. In order to examine the clinical significance of our findings, we analyzed several 

bioinformatical data sets from patients with different tumors and compared FOXM1 and uPA 

expression. Indeed, FOXM1 and uPA were concordantly upregulated in preinvasive lesions and 

malignant tumors of the oral cavity, esophagus, cervix, and lung. This confirms our findings, that 

FOXM1 dependent regulation of uPA is a general mechanism, underlying malignant progression 

in diverse tumor entities. Positive correlation between high FOXM1 and uPA levels in a broad 

range of tumors and preinvasive lesions substantitates FOXM1 and uPA as a prognostic factor 

for poor outcome, recurrent tumor development, and as a potential target for adjuvant therapy 

(Koo CY et al., 2012; Halasi M et al., 2013). 

 

Using our mouse model of oral cancer, based on transplantation of SCC7 cells, we wanted to 

examine if there is a differentiated expression of SAPKs, FOXM1, and uPA between SCC7-

induced primary tumors and recurrent tumors. Immunohistochemical staining did not reveal 

any differences in expression of FOXM1 and p38 in recurrent tumors compared to the primary 

tumors. uPA expression, however, was elevated in recurrent tumors. These data were all 

confirmed by RT-PCR analysis (performed by Dr. Peter Hofner; data not shown). We explain 

these observations by the fact that unlike uPA, MAPKs and FOXM1 are mainly regulated through 

phosphorylation than by change in their expressional level (Chen YJ et al., 2009; Shetty SK et al., 

2011), though for FOXM1 regulation via alteration of expression levels has also been shown to 

play a role (Behren et al., 2010; Millour J et al., 2011). Since antibodies for detection of the 

phosphorylated form of FOXM1 in paraffin sections are not available, it was not possible to 

measure phospho-FOXM1 levels in primary and recurrent mouse tumors. However, in 

immunohistostainings (performed by Babitha George; data not shown), an increase in phospho-

ERK and phospho-c-Jun levels in recurrent tumors has been observed. Since we have shown that 

FOXM1 regulates invasion of HNSCC tumors via elevated uPA expression and uPA mRNA and 

protein levels were upregulated in recurrent tumors, as well as phosphorylated members of the 

MAPK and AP-1 family, it is evident that the MAPK-FOXM1-AP1-uPA axis is involved in the 

development of recurrent head and neck tumors. Further experiments will be performed to 

abalyze the exact mechanism of how FOXM1 is involved in the development of recurrent 

tumors. 
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4.7   Conclusions 
 

 

The initial aim of this thesis was to analyze if p38 and FOXM1 regulate invasion of HNSCC 

tumors and to decipher the exact mechanism. We have been able to successfully provide 

compelling evidence for a crucial role of FOXM1 in transcriptional regulation of uPA, an 

important regulator of tumor invasion. Using chemical inhibitors, we identified FOXM1 as a 

downstream target of p38. We also showed that FOXM1 regulates invasion via enhanced 

expression, and proteolytic activity of uPA and that AP-1 is involved in this process. We 

therefore suggest a new mechanism by which stress-activated p38, through increasing FOXM1 

protein levels, directs FOXM1-dependent activation of the AP-1 complex through 

phosphorylation. This activation leads to the expression of AP-1-regulated genes like uPA, which 

facilitate the invasive phenotype of HNSCC cells (Figure 52).  

We confirmed our findings in several epithelial cancer cell lines by the use of in vitro and in vivo 

models and bioinformatics. Analyzing data sets from patients with different tumors entities, we 

observed a concordant upregulation of both FOXM1 and uPA in all preinvasive and malignant 

tumor samples, suggesting a general role for the FOXM1-uPA axis in tumor development. In 

recurrent tumors we observed an upregulation of uPA, indicating that the FOXM1-mediated 

invasion through upregulation of uPA expression plays a role in the development of recurrent 

HNSCC tumors. In vitro experiments, mouse models, bioinformatical analysis, clinical patient 

data all confirm our findings. Nevertheless, there are still unknown factors within the cascade 

that need to be further investigated. More importantly, the role of FOXM1 in the development 

of recurrent tumors has to be examined in more detail and to be proven by additional 

experiments. Once it the exact mechanisms underlying the MAPK-FOXM1-uPA cascade in 

recurrent tumor development have been completely revealed, biological agents, targeting these 

specific pathways, can be tested in order to decrease the incidence of recurrent tumor 

development and thus to improve the survival of head and neck cancer patients. 
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Figure 52: Summary of the findings gained within this work. The scheme illustrates a new 

mechanism, discovered in this work, of how the p38-FOXM1 axis regulates invasion of HNSCC cells. Under the 

control of Ras-MAPK(p38) signaling FOXM1 regulates its downstream target uPA via an AP-1-dependent 

mechanism. This mechanism potentiates invasiveness of HNSCC cells, contributing to the development of 

recurrent tumors. Recent data indicates that FOXM1 might also be involved in the process of EMT. Further 

studies have do be conducted to proof this hypothesis. 
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