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Summary	
  
 

Colorectal cancer is one of the leading cause of mortality in USA and worldwide. 

Colon cancer is a complex world of connective tissue epithelial, inflammatory and 

endothelial cell interactions. It s long known that patients with persistent colitis 

are at high risk of developing colon cancer, where the patients passes through a 

phase from colitis to colitis induced dysplasia and finally invasive cancer. Though 

a lot of efforts have been poured into understanding the mechanisms underlying 

the etiology of colon cancer, less has been known with respect to the changes 

happening at genomic and proteomic levels in the inflammatory compartment of 

the colon cancer with respect to interaction with the tumor epithelium and 

subsequent tumor progression.   

It is well known that the levels of PI3K/AKT and inflammatory cells mainly mast 

cells and macrophages are upregulated in the cancer. However, few efforts have 

been done to understand the pathogenesis in this direction, but they lacked in the 

correlative study of PI3K/AKT or immune infiltration in colon cancer or colitis and 

their spatial distribution with respect to cancer prognosis. Hence for the first time 

in this study a novel investigation was conducted where human patients were 

studied in the various stages of inflammation associated colonic illness i.e. colitis 

to dysplasia and invasive cancer and compared it to normal amongst 

themselves. The human-patient colonic tissue specimens were investigated for 

the spatial distribution of mast cells, macrophages and pAKT in the histological 

areas of musoca and submucosa. It was observed that mast cells, macrophages 

and pAKT levels incrementally rise from colitis to dysplasia to cancer in the 

submucosal tissues. In mucosal tissue, pAKT levels were found atleast 10 fold 

higher in the stromal cells in comparison with epithelial cells. The stromal and 

submucosal pAKT+ cells were found to be the macrophages that progressively 

infiltrate from colitis to dysplasia and invasive cancer, also mast cells were found 

to be high in pAKT activity.  

To investigate the role of PI3K/AKT in mast cells and macrophages biology and 
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their crosstalk with colonic epithelium a pan PI3K/AKT inhibitor used in clinical 

trials “LY2949002” was used. PI3K/AKT in mast cells was found to be critical for 

peripheral blood isolated human macrophage migration. LY294002 treatment of 

human and gut-derived murine mast cells restricted their ability to degranulate in 

dose-dependent manner. Moreover, inhibition of PI3K/AKT in human and mouse 

mast cells blocked the release of growth factors from them, and attenuated tumor 

proliferation and invasion promoting properties of mast cells. Also, PI3K/AKT 

inhibition in tumor infiltrating leukocytes isolated from colitis-associated patients 

lowered their soluble growth factor and cell-cell contact based tumor invasion 

promoting properties.  

Treatment of LY294002 using intra-peritoneal injections lowered the incidence of 

colitis associated invasive cancer development by day 56 in the Piroxicam 

treated IL-10-/- mice. LY294002 displayed a striking effect on the epithelial 

proliferation, induced tumor apoptosis and attenuated the pAKT levels. 

LY294002 showed special predilection for the pAKT+ stromal cells in comparison 

with pAKT+ epithelial cells. Moreover, frequencies of mast cells and granulocyte-

based inflammation were lowered after LY294002 treatment. Finally, the in situ 
degraunulating potential of mast cells was attenuated by LY294002 treatment. 

In conclusion, using in situ human patient specimen study, in vitro human and 

murine assays and in vivo mouse model system this study confirms the role of 

PI3K/AKT pathway in mast cells and tumor infiltrating leukocytes in crosstalk with 

the colonic epithelium and progression of colonic tissue from colitis.  
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Zusammenfassung	
  
 

Das kolorektale Karzinom ist eines der häufigsten Todesarten weltweit. Das 
Kolonkarzinom ist eine komplexe Krankheit aus konvektivem epithelialem 
Gewebe, Entzündungen und endothelialen Zellinteraktionen. Es ist bekannt, 
dass Patienten mit persistenter Kolitis ein höheres Risiko haben Darmkrebs zu 
entwickeln. Diese Patienten gehen durch verschiedene Stadien der Kolitis. Diese 
entwickeln sich über eine Kolitis, welche die Dysplasie induziert und danach 
gehen diese zu invasiven Karzinome über. Obwohl viele Arbeitsgruppen zum 
Verständnis des Mechanismus der Ätiologie des Kolonkarzinoms beitragen, ist 
bis zum heutigen Zeitpunkt immer noch sehr wenig über die Veränderungen in 
der Genetik und die Proteomik bekannt. Dies gilt vor allem in den entzündlichen 
Teilen des Kolonkarzinoms in Bezug auf die Interaktion mit dem Tumorepithelium 
und der nachfolgenden Tumorprogession. 

Es ist bekannt, dass PI3K/AKT und entzündlichen Zellen, welche hauptsächlich 
Mastzellen und Makrophagen sind, im Karzinom erhöht sind. Jedoch ist bis zum 
heutigen Zeitpunkt sehr wenig zum Verständnis der Pathogenese in diesem 
spezifischem Feld beigetragen worden. Bis zum jetzigen Zeitpunkt sind noch 
keine korrelativen Experimente von PI3K/AKT und der immunen Infiltration im 
Kolonkarzinom, oder bei Kolitis und deren räumlichen Verteilung in der 
Karzinom-Prognose durchgeführt wurden. In dieser Arbeit wurden in den 
Patienten die verschiedenen Phasen der Entzündung, die mit Kolitis assoziiert 
sind, die danach zur Dysplasie übergehen und zum Schluss in invasiven 
Karzinom endet, untersucht und mit normalen Gewebe verglichen. Die 
Patientenproben aus dem Darmgewebe wurden auf die räumliche Verteilung der 
Mastzellen, Makrophagen und dem pAKT Level in der Mukosa und Submukosa 
histologisch untersucht. Es konnte gezeigt werden, dass Mastzellen, 
Makrophagen und das pAKT Level schrittweise in der Kolitis über zur Dysplasie 
bis hin zum Karzinom im submukosalem Gewebe ansteigen. Im mukosalem 
Gewebe konnte ein über 10-facher Anstieg des pAKT Levels in den Stromazellen 
beobachtet werden im Vergleich zu dem Epithelzellen. Die Stroma- und 
submukosalen pAKT positiven Zellen wurden als Makrophagen identifiziert, 
welche schrittweise von der Kolitis über Dysplasie bis hin zum invasiven 
Karzinom infiltrieren. Des Weiteren wurde auch in den Mastzellen eine hohe 
pAKT Aktivität festgestellt. 

Um die Rolle von PI3K/AKT in Mastzellen und Makrophagen in Bezug auf deren 
Biologie und Wechselwirkung mit dem Kolonepithel zu untersuchen wurde der 
PI3K/AKT Inhibitor LY294002 verwendet, welcher auch in klinischen Trials zum 
Einsatz kommt. Das in Mastzellen gefundene PI3K/AKT wirkt sich kritisch auf die 
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humane Makrophagen Migration aus, die aus peripheren Blut isoliert wurden. Die 
Behandlung mit LY294002 in humanen und murinen Darm-Mastzellen 
beschränkt deren Eigenschaften zu degranulieren in einer dosisabhängigen 
Weise. Darüber hinaus blockiert die Inhibition von PI3K/AKT in humanen und 
murinen Mastzellen die Freisetzung von Wachstumsfaktoren und verringert die 
Tumorproliferation und die fördernden Eigenschaften zur Invasion. Außerdem 
verringert die Inhibition von PI3K/AKT die in Tumoren infiltrierenden Leukozyten, 
isoliert aus Kolitis-assoziierten Patienten, deren löslichen Wachstumsfaktoren 
und Zell-Zell-Kontakte basierend an deren fördernden Eigenschaften zur 
Tumorinvasion. 

Die Behandlung mit LY294002 durch intraperitonealen Injektionen verringert die 
Kolitis Inzidenz assoziiert mit der Entwicklung von invasiven Karzinomen ab dem 
56. Tag in IL-10-/- Mäusen, die mit Piroxicam behandelt wurden. LY294002 zeigte 
eine signifikanten Einfluss auf die epitheliale Proliferation, die Tumorinduzierte 
Apoptose und die Abnahme von pAKT. Darüber hinaus zeigte LY294002 eine 
spezielle Präferenz für die pAKT positiven Stromazellen im Vergleich mit den 
pAKT positiven Epithelzellen. Des Weiteren wurden die Frequenzen von 
Mastzellen und Granulozyten-basierende Entzündungen nach LY294002 
Behandlung verringert. Schließlich wurde das in-situ degranulierende Potential 
der Mastzellen verringert. 

Zusammenfassend bestätigt diese Arbeit die Rolle des PI3K/AKT Signalweg in 
Mastzellen und Tumor infiltrierende Leukozyten in der gegenseitigen 
Beeinflussung des Koloneptheliums und die Progression des Kolongewebes von 
Kolitis über zum invasiven Karzinoms. 
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PBS   Phosphate buffered saline 

PI3K   Phosphoinositol 3-Kinase 

PI3Kγ   Phosphoinositide 3-kinase-γ  

PNAG  4-nitrophenyl N- acetyl-β-D-glucosaminide  

rpm   Rounds per minute 

RPMI  Roswell Park Memorial Institute medium 

RTKs   Receptor tyrosine kinases  

SAA3  Serumamyloid A3  

SCF  Stem cell factor 

TAMs  Tumor-Associated Macrophages 

TGF  Transforming growth factor 

TILs  Tumor Infiltrating Leukocytes 

TLR/IL1Rs Toll-like/ IL-1 receptors  

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling  

U  Units 

UC  Ulcerative Colitis 

VEGF  Vascular endothelial growth factor 

X  Times 
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1.	
  Introduction	
  

1.1 Basics of cancer development 

Cancer is the outcome of outgrowth of a clonal population of transformed cells 

from tissue(Hanahan & Weinberg, 2000). Carcinogenesis is a process of cancer 

development that could be modeled and characterized in various ways. One way 

to describe this process is to characterize the essential features of both cancer 

cells and tumors called as the “hallmarks” of cancer(Hanahan & Weinberg, 

2000). Carcinogenesis requires the acquisition of six fundamental properties: 

insensitivity to anti-proliferative, signals, self-sufficient proliferation, unlimited 

replicative potential, evasion of apoptosis, persistent vascularization, and tissue 

invasion and metastasis needed for malignancy (Figure 1)(Hanahan & 

Weinberg, 2000). 
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Figure 1. Immunosurveillance, inflammation and mechanism of 

colorectal cancer progression (CRC) and effector functions of CRC. 

[Modified and adapted from(Terzic et al, 2010)] 

In another way carcinogenesis can be described with regard to a step-wise 

development, functionally grouped into three phases: initiation, promotion, and 

progression (Kinzler & Vogelstein, 1996). Initiation is a process characterized by 

genomic changes within the “cancer cell,” like gene deletion, point mutations, 

amplification and chromosomal rearrangements that lead to irreversible cellular 

changes(Kinzler & Vogelstein, 1996). Further tumor development is dependent 

on survival and clonal expansion of these “initiated” cells. Progression of cancer 

encompasses a substantial growth in size and either growth-related or mutually 

exclusive metastasis(Kinzler & Vogelstein, 1996). 

Accumulation of genetic lesions in cells is an essential step in the development of 

the cancer. These events eventhough are required for initiation but may also play 

a role in the promotion or progression of tumor development (Kinzler & 

Vogelstein, 1996). These genomic events include the inactivation of tumor 

suppressor genes or/and activation of cellular proto-oncogenes that act in a 

“cancer-cell intrinsic” manner bestowing these cells with neoplastic 

properties(Terzic et al, 2010). However, eventhough these cell autonomous 

properties are required for tumorigenesis, they are not sufficient. Scientific 

studies over the last two decades have ratified the concept that carcinogenesis 

and malignancy is the result of processes involving both the cancer cells 

themselves and non-cancer cells(Terzic et al, 2010). A clear example of this is 

reported by the requirement of neo-angiogenesis for tumor growth and 

progression, and thus the contribution of the vascular endothelial cells is 

vital(Folkman, 2002).  
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1.2 Colorectal cancer (CRC) 

Every year more than 1 million new cases of colorectal cancer (CRC) are 

diagnosed worldwide each year(Tenesa & Dunlop, 2009). Globally CRC is the 3rd 

most common malignancy and 4th most common cause of cancer 

mortality(Tenesa & Dunlop, 2009). Despite important advances in detection, 

surgery and chemotherapy CRC is the 2nd most common cause of cancer deaths 

in the United States and other developed countries(Jemal et al, 2009; Jemal et 

al, 2008). Colorectal cancer is caused by mutations that drive epithelial 

transformation through series of steps starting with pre-neoplasia to an 

intermediary dysplastic stage and finally invasive cancer (Muto et al, 1975; 

Powell et al, 1992). While inactivation of tumor suppressor genes and oncogenic 

mutations are necessary they are not sufficient for cancer progression (Kinzler & 

Vogelstein, 1998). However, only about 20% of CRC cases have a familial basis 

(Rustgi, 2007); some are associated with well-defined syndromes, such as 

familial adenomatous polyposis and hereditary non-polyposis colorectal cancer. 

Surprisingly, the largest fraction of CRC cases has been linked to environmental 

etiology rather than heritable genetic changes (Rustgi, 2007). Risk factors 

include specific intestinal commensals and pathogens, environmental and food-

borne mutagens and chronic intestinal inflammation that precede tumor 

development(Rustgi, 2007). 

1.2.1 Colitis-associated cancer (CAC) and colorectal cancer (CRC) 

Colitis-associated cancer (CAC) is an inflammatory bowel disease (IBD) 

associated CRC subtype, has high mortality, and is difficult to treat(Feagins et al, 

2009). Within 30 years of the onset of IBD more than 20% of IBD patients 

develop CAC, and more than 50% of them die from CAC(Lakatos & Lakatos, 

2008). Inspite of immune-mediated mechanistic link between IBD and 

CAC(Atreya & Neurath, 2008; Greten et al, 2004), CAC shares lot of similarities 

with other types of CRC that develop without any signs of persistent inflammatory 

disease. Non-inflammatory CRC and CAC both share some of the essential 
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stages of carcinogenesis that includes formation of aberrant crypt foci, dysplasia, 

adenomas, polyps, and carcinomas(Terzic et al, 2010). However, for CAC 

somewhat different pathogenic sequences have been proposed. The sequences 

include injury-dysplasia, carcinoma and chronic inflammation that arise without 

the formation of well-defined adenoma. Nonetheless, Wnt, β-catenin, K-ras, p53, 

transforming growth factor (TGF)-β, and the DNA mismatch repair (MMR) 

proteins, are common genetic and signaling pathways that are altered in sporadic 

CRC and CAC(Terzic et al, 2010), however the time points at which inactivation 

of p53 and Adenomatous Polyposis Coli (APC) and activation of K-Ras takes 

place can differ between CRC and CAC(Lakatos & Lakatos, 2008; Sheng et al, 

1998). Moreover, it has been reported in animal models that carcinogenesis in 

sporadic CRC and CAC is equally influenced by the gut microflora(Khazaie et al, 

2012; Terzic et al, 2010). Intriguingly, even colorectal tumors that are not 

associated with clinically detectable Inflammatory bowel disease (IBD) develop 

robust inflammatory cell infiltration and pronounced expression of 

proinflammatory cytokines(Atreya et al, 2008; Atreya & Neurath, 2008; Clevers, 

2004; Waldner & Neurath, 2008). 

1.2.2 Cancer and inflammation 

A link between the development of cancer and inflammation has been known for 

long(Balkwill & Mantovani, 2001; Coussens & Werb, 2002). Observing 

inflammation including leukocyte infiltration at tumors infected with microbes or at 

sites of chronic irritation is well known(Khazaie et al, 2012; Rakoff-Nahoum, 

2006). However Virchow in 1863 first time reported the presence of leukocytes in 

cancer and the link of inflammation to cancer. Further evidence for the role of 

inflammation has come from the use of non-steroidal anti-inflammatory drugs 

(NSAIDs) in the prevention of spontaneous tumor formation in people with 

familial adenomatous polyposis (FAP)(Ulrich et al, 2006). Also, wound repair or 

inflammatory gene expression often correlate negatively with cancer stage and 

prognosis(Chang et al, 2004; Galon et al, 2006; Wang et al, 2006). Thus, 
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inflammation and cancer are linked by epidemiology, histopathology, 

inflammatory profiles, and the efficacy of anti-inflammatory drugs in prophylaxis.  

Interestingly, several reports suggest that inflammatory and immune systems 

may inhibit the development of cancer (Figure 1). In tumor immunosurveillance, 

the host may develop a mechanism to perceive and eliminate transformed 

cells(Rakoff-Nahoum, 2006). Also, adaptive immune recognition of tumor-

associated and specific antigens may be an important means by which the 

immune system controls the development of cancer(Smyth et al, 2006). 

However, it seems that the net effect of the inflammation is to positively affect 

tumor development. The relationship between cancer and inflammation is 

complex and cannot be reduced to one grand theory.  

1.3 Inflammation can cause cancer 

It is well established that long-standing inflammation secondary to chronic 

infection or irritation predisposes to cancer(Cheon et al, 2011; Gounaris et al, 

2009; Gounaris et al, 2007; Gounaris et al, 2008; Khazaie et al, 2011; Strouch et 

al, 2010). The chronic inflammation associated with infection and irritation may 

lead to environments that foster genomic lesions and tumor initiation. One 

effector mechanism by which the host resists microbial infection is the production 

of free radicals such as reactive oxygen intermediated (ROI), hydroxyl radical 

(OH•) and superoxide (O₂-•) and reactive nitrogen intermediates (RNI), nitric 

oxide (NO•) and peroxynitrite (ONOO-)(Hussain et al, 2003). Primarily thought to 

be anti-microbial, these molecules are formed due to the activities of host 

enzymes such as NADPH oxidase, myeloperoxidase and nitric oxide that are 

regulated by inflammatory signaling pathways. Importantly, ROI and RNI lead to 

oxidative damage and nitration of DNA bases that increases the risk of DNA 

mutations(Hussain et al, 2003) . Cells have intrinsic mechanisms by which they 

avoid unregulated proliferation or the accumulation of DNA mutations. These 

mechanisms include but do not limit to tumor suppressor pathways that mediate 

cell cycle arrest, DNA repair, apoptosis and senescence. In the condition of DNA 
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damage or oncogenic activation, cells either repair their DNA and prevent 

mutations or initiated cells will undergo cell death(Rakoff-Nahoum, 2006). In the 

scenario of massive cell death as seen in infection or non-infectious tissue injury, 

lost cells gets repopulated by the expansion of other cells, often undifferentiated 

precursor cells such as tissue stem cells(Rakoff-Nahoum, 2006). There are two 

pre-requisites for this: Some cells amongst the dying population must survive the 

injury, and then these cells must expand to maintain cell numbers for a proper 

functioning tissue(Rakoff-Nahoum, 2006). Many inflammatory pathways play an 

important role to mediate these two prerequisites of tissue repair(Chen et al, 

2003; Wang et al, 2005). In a addition to its physiologic role in mediating tissue 

repair or as a strategy in host defense to infection, the inflammatory response 

may play an important role in providing survival and proliferative signals to 

initiated cells, thereby leading to tumor promotion(Rakoff-Nahoum, 2006). 

Direct evidence for a link between tumorigenesis and either host defense or 

tissue repair has been reported in numerous studies. (Rakoff-Nahoum, 2006). 

The Wnt/β-catenin pathway plays a vital role in both the maintenance of the 

steady-state proliferative compartment and tumorigenesis of tissues(Beachy et 

al, 2004). Molecules like COX-1 and -2, which are involved in the synthesis of 

prostaglandins that mediate the tissue repair process in the alimentary tract 

(Brown et al, 2007; Houchen et al, 2000; Morteau et al, 2000) play pivotal roles in 

tumor development at these sites(Chulada et al, 2000; Oshima et al, 1996). 

Moreover, key supportive evidence to support the role of these processes has 

come from studies showing that dedicated tissue injury and wound supports cell 

survival, tumor growth and neoplastic progression(Rakoff-Nahoum, 2006). 

Injection of Rous sarcoma virus (RSV) into chickens leads to the tumor growth at 

the site of injection, moreover sarcomas may form at other sites of the chicken if 

that site is wounded(Dolberg et al, 1985). The development of these wound-

related tumors can be attenuated by glucocorticoids and may be mediated by the 

actions of transforming growth factor-β (TGF-β) and fibroblast growth factors 

(FGFs) (Martins-Green et al, 1994; Sieweke et al, 1989; Sieweke et al, 1990). 
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Tumor growth is enhanced in wounded limbs by the experimental induction of 

paracrine factors such as TGF-β and bFGF in wound fluid, in a B16 melanoma 

adoptive transfer study(Hofer et al, 1998). 

Studies investigating the role of NF-κB (transcription factor central to the 

induction of inflammation) in tumorigenesis has provided some more detailed 

focus on the role of inflammation in tumor promotion. Greten et al. used a model 

of azoxymethane (AOM) induced colitis associated cancer (CAC),  which 

develops multiple rounds of inflammation and leukocyte tissue infiltration caused 

by colonic epithelial cell toxin, dextran sulfate sodium (DSS) 

administration(Greten et al, 2004). This mouse model system makes it very clear 

that chronic inflammation augments tumorigenesis, as when one dose of AOM is 

given without DSS cycling, no tumors arise in the mice(Rakoff-Nahoum, 2006). It 

was observed that inactivation of the classical NF-κB pathway in colonic 

epithelial cells by conditional deletion of the IκB kinase β (IKKβ) protein resulted 

in a substantial decrease in the frequency of visible tumors, indicating the one of 

the mechanisms of tumorigenesis(Greten et al, 2004). Importantly, NF-κ 

signaling in epithelial cells was necessary for the inhibition of apoptosis in short 

time after administration of one round of AOM and DSS, perhaps by the induction 

of anti-apoptotic factors like Bcl-XL(Rakoff-Nahoum, 2006). Thus after intestinal 

epithelial injury (DSS) and the addition of a mutagen (AOM), NF-κB provides a 

survival signal to the initiated cells. Importantly, IKKd of AOM and DSS, perhaps 

by the induction of anti-apoptoepithelial cell survival as a protection against both 

infectious and non-infectious injuries (Chae et al, 2006; Chen et al, 2003; Egan et 

al, 2004) and host defense pathways in the intestinal epithelium(Elewaut et al, 

1999). In another study, a similar role for NF-κB in survival of initiated cells was 

reported in Mdr2-deficient mice a chronic inflammation model of spontaneous 

hepatocellular carcinoma,(Pikarsky et al, 2004). In this model, NF-κB activation 

was restricted by selectively expressing super-repressor of degradation of IκB in 

hepatic epithelial cells. Increase in the number of apoptotic hepatocytes was 
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found that is correlated with a decreased frequency of tumors compared to Mdr2-

/- mice with degradable IκB (Pikarsky et al, 2004). 

Tumor promotion depends upon not only the survival of initiated cells, but also 

their exponential expansion. Various inflammatory mediators such as eicanosids, 

cytokines and chemokines are capable of stimulating the proliferation of both 

untransformed and tumor cells(Balkwill & Mantovani, 2001). Mice that lack in 

TNF have fewer skin tumors upon administration of the phorbol ester TPA and 

the mutagen DMBA(Moore et al, 1999). NF-κB activation in myeloid cells has 

been reported to play a critical role in the production of TNF as a inflammatory 

mediator of tumor growth in both the AOM/DSS model of CAC(Greten et al, 

2004) and mutagen-induced hepatocellular carcinoma upon administration of 

diethylnitroseamine (DEN)(Maeda et al, 2005). In both of these models, myeloid 

cells that were defective in activating NF-κB signaling via the classical pathway, 

there was impaired production of TNF and other inflammatory mediators, 

proliferation of dysplastic epithelium, and a reduction in both the frequency and 

size of tumors compared to the WT mice(Maeda et al, 2005).  

1.4 Mast cells in cancer 

1.4.1 Mast cell subsets and tissue distribution 

Mast cells (MC) are tissue-resident sentinel cells. MC progenitors (MCP) have 

been suggested to branch off very early from hematopoietic stem cells (Chen et 

al, 2005a) or alternatively to differentiate late in the myeloid lineage from the 

granulocyte monocyte progenitor and have a common precursor with 

basophils(Arinobu et al, 2009). At least two distinct subpopulations of rodent MC 

have been identified based on morphologic characteristics, tissue localization, 

and protease content(Befus et al, 1982; Enerback, 1966; Enerback et al, 1986; 

Metcalfe et al, 1997). Mucosal MC can be distinguished from connective tissue 

MC by expression of chymase instead of tryptase and for lower expression of 

heparin in the secretory granules. Human MC are also divided into two types 
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depending on the expression of tryptase, chymase, and other proteases in their 

granules(Irani et al, 1986). MC that contains only tryptase are referred to at MCT 

and typically colocalizes with T cells in the respiratory and intestinal mucosa. MC 

that contain tryptase, chymase, and other proteases, such as carboxypeptidase 

A and cathepsin G, are referred to as MCTC and are found in connective tissues, 

including skin, submucosa of the gastrointestinal tract, breast parenchyma, 

myocardium, lymph nodes, conjunctiva, and synovium. In mice, mature MC are 

rarely present outside the connective tissues. In the intestine, isolated MC are 

detected in the mid-crypt region along with epithelial stem cells. Affinity of mature 

MC to stem cells is also highlighted by their localization in the vicinity of hair 

follicle stem cells and their involvement in regulating the transformation from 

resting (telogen) follicle to active hair growth (anagen)(Arck et al, 2001). Other 

than these exceptions, MC normally migrate and reside in tissue as 

progenitors(Hallgren & Gurish, 2007). Both the intestine mucosa and hair follicles 

are rich sources of MCP(Gounaris et al, 2007; Kumamoto et al, 2003). 

Committed but undifferentiated MCP reside within the lymph hematopoietic 

system comprising the bone marrow, spleen, peripheral blood, mesenteric lymph 

node, and gut mucosa. These progenitors differentiate into chymase-expressing 

mature MC upon challenge(Chen et al, 2005a; Kasugai et al, 1995; Rodewald et 

al, 1996). Primary MC expanded ex vivo have characteristics of both connective 

and mucosal MC irrespective of the tissue source. Extensive work has 

demonstrated plasticity of MC subsets in tissues(Gurish et al, 1995), showing 

that subtype classifications are not rigid and may be shifting within the tumor 

microenvironment. For example, MC that mediate immunosuppression in mice in 

tolerant allografts have been suggested to be distinct from other MC(Lu et al, 

2006). Different subsets of MC infiltrate tumors at different stages of tumor 

progression. In benign adenomatous polyps of polyposis mouse strictly 

intraepithelial chymase-expressing MC are found(Gounaris et al, 2007), while 

MC infiltrating invasive carcinomas in mice are predominantly found in the 

invasive borders of tumors, as well as in tumor stroma, the muscularis mucosa 

and submucosa, and typically express tryptase(Maltby et al, 2009).  



23	
  
	
  

1.4.3 Mast cell arsenal of effector molecules 

MC produce three categories of effector molecules. One category includes those 

effector molecules, which are stored in granules such as serotonin, histamine, 

heparin, tryptase, and chymase(Khazaie et al, 2011). Another includes those that 

are synthesized de novo upon cell stimulation such as lipid mediators (PAF), 

prostaglandins (PDG2), and leukotrienes (LTB4, LTD4). Lastly, a large variety of 

cytokines that are Th1-associated (IFN-γ, IL-2, IL-3, GM-CSF, and TNF-α), Th2-

associated (IL-4, IL-5, IL-6, IL-10, IL-13, IL-33, and GM-CSF), or TH17-biased 

(TGF-β, IL-6, IL-1β, and TNF-α), chemokines and angiogenic factors including 

vascular endothelial growth factor(Boesiger et al, 1998) and tryptase(Blair et al, 

1997) as well as proteases including tryptases, chymases, cathepsins, and 

carboxypeptidase(Khazaie et al, 2011). Release of mediators by MC occurs 

either within minutes of activation (immediate acute) or over hours (delayed) 

depending on whether these are pre-made and stored in granules for immediate 

release or require de novo synthesis. IL-1β, IL6, and TNF-α released by MC are 

proinflammatory cytokines that can generate TH17 cells, inactivate Treg, or 

otherwise render them pro-inflammatory. MC are a source of preformed TNF-

α(Gordon & Galli, 1990), which also works as an autocrine MC stimulatory factor, 

and its elimination negatively impacts MC density in the gut(Gounaris et al, 2007). 

MC release TNF-α after incubation with bacteria, providing a potent chemotactic 

factor for neutrophils(Echtenacher et al, 1996; Malaviya et al, 1996; Mannel et al, 

1996). The MC-deficient W-sh mice have chronic intestinal inflammation while 

TNF-α-deficient mice have increased mortality in the “cecal ligation and puncture” 

model compared with wild-type mice(Maurer et al, 1998). Other MC-derived 

products that contribute to the influx of neutrophils and control microbes, include 

leukotriene B4 (LTB4), human tryptase βI, macrophage inflammatory protein 

(MIP)-1α (CCL3), MIP-1β, MIP-2, monocyte chemoattractant protein-1, RANTES 

(CCL5), and IL- 8 (CXCL8)(Feger et al, 2002). MC can produce large quantities 

of IL-1β(Bochner et al, 1990) that may be processed by MC chymase or 

potentially by caspase-1 in an Nlrp3 inflammasome-dependent manner(Nigrovic 
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et al, 2010). It is also known that MC can induce production of IL-1β by 

macrophages, at least in the pathogenesis of rheumatoid arthritis(Nigrovic et al, 

2010). IL-1β has a key role in chronic inflammatory reactions that help tumors 

flourish(Cook et al, 2010; Mantovani et al, 2008). IL-1β is also an important 

angiogenesis mediator regulating the synthesis of angiogenesis factors. A 

previous study has shown that human MC produce angiogenesis factor IL-8, 

when stimulated with IL-1β(Kim et al, 2010). It is tempting to speculate a 

connection between NLRP3 inflammasome activation in MC and cancer since 

NLPR3 and IL-1β are associated with environmental silica and asbestos 

carcinogenesis(Dostert et al, 2008). Of the long list of cytokines that can be 

released by MC, IL-10, and TGF-β deserve particular attention due to their role 

as immune-suppressive mediators that also generate induced Treg (iTreg). 

(Depinay et al, 2006). Secretion of IL-10 by MC has been implicated in down-

regulation of antigen-specific immune responses by mosquito bites(Depinay et al, 

2006). However, MC also respond to IL-10 differentially depending on the cellular 

source and level of activity. IL-10 can inhibit MC degranulation by suppressing 

MC IgE receptor expression and signaling (Kennedy Norton et al, 2008)while 

blocking antibodies to IL-10 can hinder antigen-induced recruitment of MCP to 

the lungs of C57BL/6 mice(Jones et al, 2010). In the mouse, at least five different 

chymases (mMCP-1, mMCP-2, MMCP-3, MMCP-4, and MMCP-5) and three 

different granule-associated tryptases (mMCP-6, mMCP-7, mMMP-

11/transmembrane tryptase) have been described(Huang et al, 1998). C57BL/6 

mice are defective in mMCP7 leaving them with mMCP6 as the major 

tryptase(Ghildyal et al, 1994). Expression of proteases in mouse MC is strictly 

related to the type of MC. Thus, mucosal MC express mMCP-1 and mMCP-2, 

whereas connective tissues MC express mMCP-3, mMCP-4 mMCP- 5, mMCP-6, 

mMCP-7, and carboxypeptidase(Miller & Pemberton, 2002; Stevens et al, 1994). 

MC have significant cyclooxygenase and lipoxygenase activity and generate 

inflammatory lipid metabolites of arachidonic acid(Khazaie et al, 2011). In mice, 

the major cyclooxygenase products of MC are prostanglandin-D2 (PGD2) and 

prostaglandin E2, and the major lipooxygenase products are LTC4, LTD4, and 
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LTE3 (Galli et al, 2005)LTB4 a MC product of 5-lypoxygenase is a 

chemoattractant for MC progenitors (Weller et al, 2005) and was recently shown 

to be a potent polyposis promoting factor in mice(Cheon et al, 2011). Human MC 

also produce LTB4, although in much smaller quantities than PGD2 or LCT4. MC 

are a source of platelet activating factor, and platelets are known to augment the 

growth and dissemination of primary tumors by promoting angiogenesis, immune 

evasion, and tumor extravasation(Jain et al, 2010). Release of certain mediators 

by MC requires degranulation (Khazaie et al, 2011. Degranulation is responsible 

for release of proteases as well as powerful anticoagulants such as heparin, 

chymase, and tryptase(Khazaie et al, 2011. Mechanisms of MC degranulation 

are best described in the context of the development of immediate 

hypersensitivity(Khazaie et al, 2011. The cross-linking of FcεRI, the high affinity 

IgE receptor, by allergen- or tumor-specific immunoglobulin IgE on MC is the 

primary trigger for the rapid release of their granules by exocytosis(Blank & 

Rivera, 2004). PI3K plays a key role in MC biology including degranulation 

(Figure 2) (Kim et al, 2008b).  

 

Figure 2. Downstream targets of phosphoinositide-3-kinase (PI3K) in 
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activated mast cells [Modified and adapted from (Kim et al, 2008b)] 

MC treated with LY294002 (PI3K inhibitor) or inhibition of PI3K by over-

expression of the dominant negative inhibitor Δp85 leads to a significant decline 

in MC degranulation via antigen-induced Ca2+ signals(Ching et al, 2001). MC 

may also be activated by “alternative,” IgE -independent pathways, such as 

aggregation of low-affinity FcγRIII IgG receptors by IgG/antigen complexes, c-Kit, 

and pattern recognition Toll-like receptor mechanisms, activation of the 

complement receptors (C3aR, C5aR, CR2, CR4) by exposure to chemokines, 

anaphylatoxins C3a and C5a, fragments of fibrinogen, and fibronectin (Johnson 

et al, 1975; Marshall, 2004; Prodeus et al, 1997; Wojtecka-Lukasik & Maslinski, 

1992). A recent study suggests that the release of microparticles from activated T 

cells induces MC degranulation and release of cytokines via the MAPK pathway 

independent of IgE(Shefler et al, 2010). These alternative pathways are thought 

to work through vesicle-mediated degranulation which involves small aliquots of 

granule-associated material that detach from the granule membrane for selective 

paracrine or endocrine transport to the cell exterior(Crivellato et al, 2010; Dvorak, 

2005). This degranulation pattern has frequently been observed in MC infiltrating 

areas of chronic inflammation or tumors (Dvorak & Kissell, 1991; Dvorak et al, 

1991). The alternative mechanism appears to be responsible for MC release of 

tumor-promoting cytokines and lipid mediators, particularly in early stages of 

cancer initiation such as in benign adenomatous polyps where degranulation of 

MC is not a major event(Gounaris et al, 2007).  

1.4.4 Human studies show correlation between mast cells and cancer 
progression 

A number of studies have documented correlations between the presence of MC 

and tumor development(Coussens et al, 1999; Imada et al, 2000; Ribatti et al, 

2000; Ribatti et al, 2003; Takanami et al, 2000; Terada & Matsunaga, 2000; 

Toth-Jakatics et al, 2000). MC infiltration in tumor is an independent prognostic 

factor and predictor of poor outcome in prostate cancer(Nonomura et al, 2007) 
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and has been heralded as a novel prognostic marker(Johansson et al, 2010). 

Expression of c-Kit has been shown to predict recurrent disease and is 

suggested to be a marker of fibro-epithelial phyllodes tumors of the breast(Tan et 

al, 2005), but a recent report attributes this expression to the presence of 

infiltrating MC(Djordjevic & Hanna, 2008). High MC score is associated with 

unfavorable prognosis in patients with follicular lymphoma treated with immune-

chemotherapy(Taskinen et al, 2008). Increased MC counts, tumor size, and 

lympho-vascular invasion are associated with an adverse prognosis in Merkel 

cell carcinomas(Beer et al, 2008). MC infiltration in Hodgkin lymphoma also 

demonstrated a poor prognosis associated with infiltration of CD30L-expressing 

MC(Molin et al, 2002). Intriguingly, this effect appears to occur independent of 

MC-mediated effects on angiogenesis(Glimelius et al, 2005), potentially via direct 

interaction between MC and Hodgkin and Reed–Sternberg cells expressing 

CD30. MC are etiologically associated with the formation of neurofibromas in 

human neurofibromatosis1 patients(Yang et al, 2006). Tumor promotion by MC is 

attributed to the release of mediators of angiogenesis and recruitment of 

macrophages, neutrophils, and eosinophils (Figure 3) (Maltby et al, 2009).  
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Figure 3. Schematic representation of mast cell functions at different 

stages in colonic polyp/tumor progression and formation [Modified and 

adapted from (Maltby et al, 2009)]. 

High MC density together with angiogenesis was predictive of poor clinical 

outcome in colorectal cancer(Acikalin et al, 2005; Gulubova & Vlaykova, 2009; 
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Yodavudh et al, 2008a), lung cancer(Imada et al, 2000), and pancreatic 

cancer(Strouch et al, 2010). Positive correlation between MC and microvessel 

densities was observed in colorectal cancer (Acikalin et al, 2005; Gulubova & 

Vlaykova, 2009; Yodavudh et al, 2008a)and lung cancer(Carlini et al, 2010; 

Ibaraki et al, 2005), supporting the involvement of MC in the tumor angiogenic 

process. MC tryptase can be detected in the peripheral blood of pancreatic 

cancer patients, presumably reflecting the abundance of tumor-infiltrating 

MC(Strouch et al, 2010). In hepatocellular carcinoma, higher peritumoral MC 

density was associated with worse clinical outcomes and shorter recurrence free 

survival, while higher density of MC was related to increased probability of early 

recurrence. Interestingly, peritumoral Treg were positively correlated with MC 

density and reversely related to clinical outcomes(Ju et al, 2009a; Ju et al, 

2009b). 

1.5 PI3K pathway in cancer 
PI3Ks are the lipid kinases that phosphorylate the 3′-hydroxy group of PtdIns 

(phosphatidylinositol) and phosphoinositides (phosphorylated derivatives of 

PtdIns)(Vanhaesebroeck et al, 2010). The mammalian PI3Ks include eight 

enzymes that possess diverse roles in both vesicle trafficking and signal 

transduction. These enzymes are categorized into the categories known as class 

I, class II and class III, on the basis of their substrate preference and structure. 

However, only the class I PI3Ks have the ability to use PtdIns(4,5)P2 as a 

substrate to generate the important second messenger PtdIns(3,4,5)P3(So & 

Fruman, 2012). Certain proteins that contain a PH (pleckstrin homology) domain 

can specifically bind Ptdins(3,4,5)P3 and be recruited to membranes where PI3K 

is active(Lemmon, 2008). Thus class I PI3K acts as a signaling hub at the 

plasma membrane to change the lipid composition in a way that links 

transmembrane receptors to the organization of multiprotein complexes, also 

known as signalosomes(Fruman et al, 2000). The composition of these 

signalosomes and the specific PH domain-containing PI3K effector proteins that 

are recruited to these assemblies varies according to the receptor that is 

engaged in this event(So & Fruman, 2012). In most cells, the serine/threonine 
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kinase Akt [also known as PKB (protein kinase B)] is the key PI3K effector 

molecule and Akt phosphorylation is used as a common readout of PI3K 

activation(Fayard et al, 2010). There are two amino acid residues in Akt that are 

phosphorylated in a PI3K-dependent manner; Ser473 by TORC [TOR (target of 

rapamycin) complex with rictor (rapamycin-insensitive companion of mammalian 

TOR) and other proteins] 2 and Thr308 by PDK-1 (phosphoinositide-dependent 

kinase-1)(Fayard et al, 2010).  

The phosphatidylinositol-3_-kinase (PI3K) signaling cascade is involved in the 

regulation of various key cellular processes that are necessary for tumorigenesis 

including glucose metabolism, protein synthesis, cell survival, cell growth and 

proliferation, cell repair, cell migration, and angiogenesis (Katso et al, 2001). 

PI3K Signaling is regulated in several ways, hormones (estrogen, thyroid 

hormones), including growth factors (EGF, IGF1, FGF), vitamins, integrins, 

intracellular calcium, and the ras-dependent MAPK pathway(Saif & Chu, 2010). 

The PI3 kinase superfamily is composed of 12 members, and PI3K is made-up of 

two subunits: a 110-kDa catalytic subunit and an 85-kDaadaptor subunit. Upon 

cellular activation, the p85 subunit is recruited at the intracellular part of the 

growth factor receptor(Saif & Chu, 2010). Followed by dimerization with the p110 

subunit, which results in full enzymatic activity of PI3K and subsequent 

generation of PIP3, a lipid “second messenger” that possess the capacity of 

binding and activating proteins with PH domains, localizing them to the cell 

membrane(Saif & Chu, 2010). Phospholipid phosphatases, such as the 

phosphatase and tensin homologue PTEN and the inositol 5_phosphatase-2 

SHIP2PI3K inversely regulate PI3K the level of PIP3. The mechanism of this 

regulation of PI3K is via dephosphorylation of PIP3 into its inactive PIP2 

form(Katso et al, 2001). Moreover, signaling via the PI3K pathway is controlled 

by cross-talk with other extracellular signals and pathways, including hormones 

(estrogen, thyroid hormones), vitamins, integrins, intracellular calcium, and the 

ras-dependent MAPK pathway(Katso et al, 2001). 

The PI3K signaling pathway is constitutively activated in various malignancies 
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including CRC, prostate cancer, breast cancer, hematologic malignancies, 

glioblastoma multiforme, and lung cancer(Vivanco & Sawyers, 2002). This 

signaling pathway is activated by various mechanisms that include, activating 

mutations of PIK3CA, which is the gene encoding catalytic subunit of PI3K, gain-

of-function mutations of oncogenes encoding positive regulators of PI3K (HER2, 

EGFR, and RAS, c-Src), loss-of-function mutations affecting negative regulators 

of PI3K such as PTEN (ie, loss of PTEN expression/function), 

amplification/overexpression of receptor tyrosine kinases, and mutations of 

genes encoding downstream effectors of the PI3K signaling cascade (eg, PDK-1, 

Akt/PKB, RPS6KB1) (Saif & Chu, 2010). Akt plays a vital role in the gene 

transcription by NF-kB pathway, regulation of apoptosis and cell cycle 

progression by inhibitory phosphorylation of Cdk inhibitors such as 

p21WAF1/CIP1 and p27KIP1(Saif & Chu, 2010). It is known that cancer cells 

express high levels of activated Akt, and phosphorylation of Akt at S473 was 

significantly associated with poor prognosis in several types of 

cancers(Downward, 2004). Alterations in PI3K levels have been identified in 

CRC, gastric cancer, breast cancer, and ovarian cancer, while Akt amplification 

of Akt1, Akt2, and Akt3 have been found in breast, gastric, ovarian, pancreatic, 

and prostate cancers, respectively. There is increasing evidence suggesting that 

activation of various components of the PI3K/Akt pathway has prognostic 

importance in various malignancies(Saif & Chu, 2010). In addition, activation of 

PI3K has been identified as a potential mechanism by which cancer resist to 

chemotherapy, hormonal therapy, radiation therapy, and to various therapies 

targeting certain signaling pathways, such as trastuzumab and lapatinib(Saif & 

Chu, 2010). In all together, the frequent activation of the PI3K/Akt pathway in 

tumor cells and its potential role as a determinant of cellular drug resistance has 

made several individual components of this pathway attractive therapeutic 

targets for drug development(LoPiccolo et al, 2007). 
 

However tumor is a complex system that contains but is not restricted to tumor 

cells. In addition to tumor cells, inflammatory cells, blood vessels and connective 
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tissue form a supplementary network to form the tumor. Whenever PI3K is 

studied, it is studied in a complete tumor inclusive of this supplementary network, 

however less is known in context specifically with the PI3K activity in the 

inflammatory component of the tumor(LoPiccolo et al, 2007).  

 

1.6. PI3K in mast cells 
 

Receptor-mediated mast cell growth, differentiation, homing to their target 

tissues, activation and survival are all controlled, to varying degrees, by PI3K-

driven pathways, and PI3K deficient mice are devoid of mast cells (Cho et al, 

2008). Mast cells express the class 1A p85α, p85β and p50α regulatory subunit 

isoforms(Tkaczyk et al, 2003) and (Lu-Kuo et al, 2000) in addition to all three 

class 1A PI3K catalytic subunit isoforms, p110α, p110β, and p110δ and the class 

1B p110γ catalytic subunit (Ali et al, 2004; Okkenhaug et al, 2007). As Kit and 

the FcɛRI of MC initiate their signaling processes through the activation of 

tyrosine kinases, either intrinsically or by recruitment of cytosolic kinases(Gilfillan 

& Tkaczyk, 2006; Roskoski, 2005), they use class 1A PI3Ks to mediate 

subsequent downstream signaling events, whereas GPCRs, such as those for 

adenosine, prostaglandin (PG)E2, sphingosine 1 phosphate (S1P) and 

complement component C3a, mediate their responses via class 1B PI3K 

(Wymann et al, 2003) . The PI3K inhibitors, wortmannin and LY294002, have 

been reported in various studies to inhibit antigen-mediated degranulation and 

cytokine production in both rodent and human mast cells(Kim et al, 2008a; 

Okayama et al, 2003; Tkaczyk et al, 2003). Ironically, in some reports at least in 

human mast cells, these compounds fail to completely inhibit degranulation 

suggesting that although PI3K is essential for optimal degranulation of mast cells, 

PI3K-independent pathways might also regulate this response(Kim et al, 2008b). 

Studies using mouse bone marrow–derived mast cells (BMMCs) expressing a 

kinase-inactive mutant isoform of the p110δ catalytic subunit have demonstrated 

that p110δ is the major isoform responsible for antigen-mediated degranulation 

and cytokine production in mast cells(Ali et al, 2004; Ali et al, 2008). This 



33	
  
	
  

conclusion is further endorsed by the ability of the selective p110δ inhibitor, 

IC87114, to inhibit antigen-mediated mast cell activation and by its ability to 

inhibit the enhancement of antigen-mediated degranulation by stem cell factor 

(SCF)(Ali et al, 2004). By contrast, mast cells that are derived from the bone 

marrow of p85α and p85β knockout mice show normal antigen-mediated calcium 

flux and degranulation (Lu-Kuo et al, 2000; Tkaczyk et al, 2003), suggesting that 

the p110 catalytic subunit may use alternative regulatory subunits for its 

interaction with phosphorylated Gab2(Kim et al, 2008b). 

 

In addition to its role in mast cell mediator release, PI3K is also vital for mast cell 

chemotaxis, adhesion and homeostasis. This has been evidenced by the ability 

of wortmannin and LY294002 to effectively attenuate SCF-mediated cell 

migration, adhesion to fibronectin-coated plates, proliferation and survival in 

human and mouse mast cell cultures (Kim et al, 2008a). In addition, reduction in 

the levels of mast cells is observed in the peritoneal cavity, but not dorsal skin, of 

mice expressing a mutation in the PI3K binding site on Kit (Kissel et al, 2000). As 

with degranulation, mast cell adhesion, chemotaxis and homeostasis seem to be 

mediated by specific PI3K isoforms. In bone marrow derived murine mast cells 

(BMMCs) inactive for p110δ, there is a dramatic defect in SCF-mediated mast 

cell adhesion and chemotaxis compared with the responses observed in wild-

type mast cells (Ali et al, 2004). In addition, the ability of SCF to promote mast 

cell growth is significantly reduced in cells that express defective p110δ(Tkaczyk 

et al, 2003). Moreover, these attenuated responses are similarly observed in 

wild-type mouse mast cells incubated with the p110δ-selective PI3K inhibitor, 

IC87114, but not in cells incubated with the p110γ inhibitor, AS-252424(Ali et al, 

2004; Ali et al, 2008). In vivo, there is a loss of gastrointestinal and peritoneal 

mast cells in p85α-deficient mice (Fukao et al, 2002) and reduction in the number 

of mast cells in the dermis of ear, but not in the back skin, of p110δ inactive 

mutant mice compared with wild-type mice(Ali et al, 2004).  
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1.7. PI3K in myeloid derived inflammatory cell population 
 

In primary macrophages stimulated with the tyrosine kinase ligand colony-

stimulating factor 1 (CSF1), all class IA PI3K isoforms get involved in the 

regulation of Rac1, whereas p110δ selectively controls the activities of Akt, RhoA 

and PTEN, in addition to controlling proliferation and chemotaxis (Schmid et al, 

2011; Vanhaesebroeck et al, 2010). The prominent role of p110δ in these cells is 

indicative of being the main PI3K isoform that is recruited to the activated CSF1 

receptor (CSF1R) (Schmid et al, 2011; Vanhaesebroeck et al, 2010). In 

immortalized BAC1.2F5 macrophages, however, the CSF1R also engages 

p110α, which takes up a more prominent role in CSF1R signaling, in processes 

including Akt phosphorylation and regulation of DNA synthesis(Schmid et al, 

2011; Vanhaesebroeck et al, 2010). Cell migration, however, remains dependent 

mainly on p110δ. In other immortalized macrophage cell lines, such as IC-21 and 

J774.2, p110α is also found to be more prominently involved in CSF1-induced 

Akt phosphorylation, at the expense of p110δ(Schmid et al, 2011; 

Vanhaesebroeck et al, 2010). These data show that PI3K isoforms can be 

differentially monitored in distinct cellular contexts, with the dominant role of the 

p110δ isoform in Akt phosphorylation and proliferation being lost upon cell 

immortalization (Papakonstanti et al, 2008; Vanhaesebroeck et al, 2010). 

 

 In addition, a range of chemo- attractants activating G protein-coupled receptors 

(GPCRs), receptor tyrosine kinases (RTKs) and Toll-like/ IL-1 receptors 

(TLR/IL1Rs) initiate tumor inflammation by activating the PI3K in Gr1+CD11b+ 

myeloid cells (Schmid et al, 2011). Tumor derived chemoattractants stimulating 

myeloid cell RTKs, TLR/IL1Rs, and GPCRs activate a single PI3-kinase isoform, 

p110g, and a single integrin, a4b1, to promote myeloid cell recruitment to tumors 

and tumor progression(Schmid et al, 2011). Myeloid cell p110g is unexpectedly 

activated by RTKs and TLR/IL1Rs via Ras and p87, refuting current dogma that 

p110g is activated only by GPCRs. Moreover PI3Kg is a single convergent point 

controlling tumor inflammation and progression. Selective inhibitors of p110g 
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could thus serve as therapeutics to suppress tumor malignancy by blocking 

diverse pathway promoting tumor inflammation (Schmid et al, 2011).  

 

Animal modeling has shown that inhibition of PI3K is protective in experimental 

colitis (Brown et al, 2010; Gonzalez-Garcia et al, 2010; Lee et al, 2010; Strouch 

et al, 2010). Knowledge of the PI3K activity in pre-neoplastic tissue and tumor 

microenvironment is therefore important for understanding mechanisms of 

carcinogenesis and mode of action of PI3K targeting drugs that are currently 

being tested for clinical treatment of cancer (Chappell et al, 2011). 

1.8 Role of LY294002 as a PI3K inhibitor  
 

LY294002 is a chemical inhibitor of PI3K that has been used alone or in 

combination with chemotherapeutic agent to control tumor cell growth in vitro and 

in experimental animal models (Balkwill & Mantovani, 2001; Bernstein et al, 

2001; Ching et al, 2001; Erez & Coussens, 2011; Heinemann et al, 2000; Makitie 

et al, 2001; Meng et al, 2006; Ng et al, 2001; Philp et al, 2001; Vlahos et al, 

1994a; Workman, 2004). LY294002 competitively inhibits ATP binding to the 

catalytic subunit of PI 3-kinases and does not inhibit PI4-kinase, DAG-kinase, 

PKC, PKA, MAPK, S6 kinase, EGFR or c-src tyrosine kinases and rabbit kidney 

ATPase (Fruman et al, 1998; Fruman et al, 1999; Garlich et al, 2008; Rameh & 

Cantley, 1999; Scharenberg et al, 1998; Vlahos et al, 1995; Vlahos et al, 1994b). 

However, LY294002 is too insoluble for clinical investigation as a drug, although 

a prodrug derivative, SF1126 (Figure 4) has now entered human clinical trials as 

a pan-PI3K inhibitor, targeting cell growth, proliferation and angiogenesis(Garlich 

et al, 2008). 
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Figure 4. Chemical structure of (A) LY294002 and (B) pro-drug of 

LY294002 (SF1126), [Modified and adapted from (Garlich et al, 2008)] 

LY294002 can directly affect cancer cells proliferation, invasion and metastasis 

(Lewis & Pollard, 2006).  

1.9 Aims of the study 
 

The aim of this project was to test the role of PI3K/AKT in the inflammatory 

subsets and investigate whether their tumor promoting properties are dependent 

of PI3K/AKT.  

For these studies a chemical PI3K inhibitor LY294002 was used, an isoform of 

LY294002 called as SF1126 a pan-PI3K inhibitor is in human clinical trials. The 

potential efficacy of this approach was tested in ex vivo and in vivo experimental 

models of colon cancer. 

Specific aims were  

i) To investigate the pattern and status of PI3K/AKT activity and 

inflammatory cells (mainly mast cells and macrophages) in normal 

human colon, colitis without dysplasia, colitis induced dysplasia and 

ulcerative colitis induced invasive cancer.  
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ii) ii) To investigate the mechanistic role of PI3K/AKT in inflammatory 

cells in crosstalk with the tumor epithelium in context with the tumor 

promoting properties. 

iii)  iii) To investigate in vivo role of PI3K/AKT in inflammatory cells in 

context with tumor promotion and invasion in an experimental colitis 

associated cancer mouse model.  
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2.  

Materials 
and Methods   
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2	
  Materials	
  and	
  Methods	
  

2.1 Equipment and consumables 

Equipment and consumables Source 

Analytic balance scale Chemlab, USA 

Cell Culture Flasks BD Biosciences, USA 

Centrifuge (high speed) Lavei Centrifuge, USA 

Centrifuge/Falcon tubes (15 and 50 ml) BD Biosciences USA 

CO2 incubator  Thermoscientific, USA 

Coverslips  Tedpella, USA 

Cryostat (CM 3050)  Leica Microsystems, USA 

Cryotubes Thermoscientific, USA 

FACS Canto BD Biosciences, USA 

Fluorescence Microscope Zeiss, USA 

Gel documentation system Bio-Rad, USA 

Gloves  VWR, USA 

Hemacytometer glasses  Fisher Scientific, USA 

Ice machine Fisher Scientific, USA 

Laminar flow hood Microflow, Airclean, USA 

Light microscope  Leica, USA 

Magnetic stirring hot plate  Biomega, USA 

Microcentrifuge tubes (1,5 ml)  USAScientific, USA 

Microscope slides  Thermofisher, USA 

Microwave Scientificamerican, USA 

Neubauer hemacytometer  Sigma, USA 

Parafilm M  SPI, USA 

Paraffin embedding cassettes Leica microsystems, USA 

Pasteur pipettes Sigma-Aldrich, USA 

pH-meter LIS, USA 

Pipette tips (20 µL, 200 µL, 1000 µL) USA Scientific, USA 

Pipettes Gilson Middleton, USA 
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2.2 Media, supplements and reagents for cell culture 

Media, supplements and reagents 
for cell culture 

Source 

BSA (Bovine Serum Albumin) Sigma, USA 

DMSO (Dimethylsulfoxide, >99%) Sigma-Aldrich, USA 

DMEM (Dulbecco’s Modified Eagle 

Medium, high glucose 

Invitrogen, USA 

Dulbecco’s phosphate buffered saline  Invitrogen, USA 

FBS (Fetal Bovine Serum)  Sigma,USA 

HBSS, Hank’s buffered salt solution 

(10x) 

Sigma, USA 

HEPES  Cellgro, USA 

Gentamicin-Sulphate Cellgro, USA 

Glutamax Cellgro, USA 

McCoy’s 5A medium Sigma-Aldrich, USA 

Scintillation counter  LKB RackBeta, USA 

Shaker (Unimax)  Heidolph, USA 

Spectrophotometer Labomed, USA 

Stericup-Filter (0,22 µm) Millipore, USA 

Thermomixer  Eppendorf, USA 

Tissue-tek based molds Sakura, USA 

TissueGnostics highthroughput imaging 

system 

TissueGnostics, USA 

Vortexer Gennie-2 LabX, USA 

Waterbath ISOTEMP Fisher Scientific, USA 

Weighing paper  VWR, USA 
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MEM non-essential amino acids Cellgro, USA 

PBS (Phosphate buffered saline)  Gibco/Invitrogen, USA 

Penicillin-Streptomycin  Cellgro, USA 

RPMI1640 Medium  Cellgro, USA 

Sodium chloride Sigma-Aldrich, USA 

Sodium Pyruvate CellGro, USA 

Stempro Lifetechnologies, USA 

Trypanblue Cellgro, USA 

Trypsin-EDTA Cellgro, USA 

 

 

2.3 Cytokines 

Cytokines Source 

Human Stem cell factor (SCF) for cell 

culture 

Sigma-Aldrich, USA 

Murine IL-3 Cell Signaling, USA 

Murine SCF Millipore, USA 

 

 

2.4 Kits 

DAB Kit  DAKO, USA 

Naphthol	
  AS-­‐D	
  Chloroacetate	
  (Specific	
  
Esterase)	
  Kit	
  	
  

Sigma-Aldrich, USA 

 

 

2.5 Invitro assay sytems 

Invitro assay sytems Source 

Chemo TX sytems Neuroprobe, USA 

LS column Miltenyi Biotech, USA 
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Matrigel based-Invasion assay plate 

(24 well/12 insert) 

BD Biocoat, USA 

 

2.6 Chemicals and Biochemical 

Chemicals and Biochemical Source 

Ammonium hydroxide Sigma-Aldrich, USA 

Antibody diluent Dako, USA 

Biotin-16-dUTP Roche Diagnostic, USA 

Boric acid Sigma-Aldrich, USA 

Bromodeoxyuridine (BRDU) Sigma-Aldrich, USA 

BSA (Bovine Serum Albumin) Sigma-Aldrich, USA 

Calcium Chloride (CaCl2)  

Carboxyfluorescein succinimidyl ester 

(CFSE) 

Sigma-Aldrich, USA 

Cobalt chloride, Hexahydrate Sigma-Aldrich, USA 

Collagenase type IV Worthington Biochemicals, USA 

Dabco Sigma-Aldrich, USA 

DNase Sigma-Aldrich, USA 

DAPI (4’,6-Diamidino-2-phenylindol 

Dihydrochlorid) 

Invitrogen, USA 

D-Glucose Sigma-Aldrich, USA 

Dinitrophenol-bovine serum albumin 

(DNP-BSA) 

Sigma-Aldrich, USA 

Dinitrophenol-human serum albumin 

(DNP-HSA) 

Sigma-Aldrich, USA 

Ethylenediaminetetraacetic acid 

(EDTA) 

Sigma-Aldrich, USA 

Eosin Y Sigma-Aldrich, USA 

Ethanol 100% Fisherscientific, USA 

Ficoll-paque GE-Healthcare, USA 
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Glacial acetic acid Sigma-Aldrich, USA 

Glycerin Sigma-Aldrich, USA 

Glycerol Sigma-Aldrich, USA 

Glycine Sigma-Aldrich, USA 

Heparin  StemCell Technologies Inc Canada 

Hematoxylin solution, (Mayer’s) Sigma-Aldrich, USA 

Hematoxylin solution, (Harris’s II) Sigma-Aldrich, USA 

Hematoxylin solution, (Gill’s II) Sigma-Aldrich, USA 

Hyaluronidase Sigma-Aldrich, USA 

Hydrochloric acid  Sigma-Aldrich, USA 

Isopropanol Sigma-Aldrich, USA 

Lithium carbonate Sigma-Aldrich, USA 

LY294002 Sigma-Aldrich, USA 

Magnesium Chloride (MgCl2) Sigma-Aldrich, USA 

Mercaptoethanol Sigma-Aldrich, USA 

Methanol Sigma-Aldrich, USA 

NP-40 Sigma-Aldrich, USA 

O.C.T. embedding medium for cryo-

sections 

Tissue-Tek, USA 

Paraffin wax Sigma-Aldrich, USA 

Percoll Sigma-Aldrich, USA 

Phloxine B Sigma-Aldrich, USA 

Phosphotase inhibitor I and II cocktail  Sigma-Aldrich, USA 

Piroxicam Sigma-Aldrich, USA 

Polyvinyl alcohol Sigma-Aldrich, USA 

PNAG (mM 4-nitrophenyl N- acetyl-β-

D-glucosaminide) 

Sigma-Aldrich, USA 

Potassium Phosphate (K2HPO4) Sigma-Aldrich, USA 

Potassium Chloride (KCl) Sigma-Aldrich, USA 

Protease Inhibitor Sigma-Aldrich, USA 
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Sodium Bicarbonate (NaHCO3) Sigma-Aldrich, USA 

Sodium Carbonate (Na2CO3) Sigma-Aldrich, USA 

Sodium Cacodylate Sigma-Aldrich, USA 

Sodium Citrate, Trihydrate Sigma-Aldrich, USA 

Sodium Chloride (NaCl) Sigma-Aldrich, USA 

Sodium Dodecyl Sulphate Sigma-Aldrich, USA 

Sodium Phosphate (Na2HPO4) Sigma-Aldrich, USA 

Sodium Tetraborate Sigma-Aldrich, USA 

Target-retrieval solution Dako, USA 

Terminal Transferase (TdT)  Roche Diagnostic, USA 

Thymidine 3[H] Amersham Biotech, USA 

Toluidine Blue powder Sigma-Aldrich, USA 

Tris-HCl Sigma-Aldrich, USA 

Triton X-100 Sigma-Aldrich, USA 

Wash Buffer 10X Dako, USA 

Xylene FisherScientific, USA 

Xylene-based mounting meium-

Micromount 

Leica microsystems, USA 

 

 

2.7 Antibodies 
 

2.7.1 Antibodies for FACS 

 

Rat anti human -PE CD11b, BD Pharmingen, USA 

Iso-type control -rat IgG2b K, BD Pharmingen, USA 

 

2.7.2 Antibodies for immunoblottting 



45	
  
	
  

 

Rabbit anti- human pAKTT308, Cell Signaling, USA 

Rabbit anti- human pAKTS473, Cell Signaling, USA 

Rabbit anti- human total AKT, Cell Signaling, USA 

Rabbit anti- human beta actin, Cell Signaling, USA 

Goat Anti-rabbit HRP, Dako, USA 

 

2.7.3 Antibodies for cell isolation 

Biotinylated anti-human CD11b alpha M chain, BD Biosciences, USA 

Streptavidin magnetic beads, Miltenyi Biotech, USA  

 

2.7.4 Antibodies for immunohistochemistry/immunofluorescence 

 

Rabbit anti- mouse/human pAKTT308, Cell Signaling, USA 

Mouse anti-human Tryptase, Neomarker-Labvision, USA 

Mouse anti-human CD68, Santacruz Biotech, USA 

Mouse anti-human Mac1, Santacruz Biotech, USA 

Anti-BRDU, Abcam, USA 

Goat anti-rabbit Alexafluor 488 (H+L), Life technologies, Invitrogen, USA 

Goat anti-mouse Alexafluor 594 (H+L), Life technologies, Invitrogen, USA 

Goat-anti Rabbit HRP, Dako, USA 

Streptavidin-HRP, Dako, USA 

 

 

2.2 Recipes 

 

2.2.1.Harris’ Hematoxylin and Eosin (H&E)  
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Acid Alcohol Solution (1%) 

• Hydrochloric acid, 1 ml 

• 70% ethanol, 50 ml 

• Mix well. 

Ammonia Water Solution (0.2%) 

• Ammonium hydroxide (concentrated), 2 ml 

• Distilled water , 1000 ml 

• Mix well. 

Lithium Carbonate Solution (Saturated): 

• Lithium carbonate 1.54 g 

• Distilled water 100 ml 

• Mix well. 

Eosin-Phloxine B Solution 

Prepare the stock solutions first, and then create the working solution as needed. 

Eosin Stock Solution 

• Eosin Y, 1 g 

• Distilled water, 100 ml 

• Mix to dissolve. 

Phloxine Stock Solution 

• Phloxine B, 1 g 

• Distilled water, 100 ml 

• Mix to dissolve. 
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Eosin-Phloxine B Working Solution 

• Eosin stock solution, 100 ml 

• Phloxine stock solution, 10 ml 

• Ethanol (95%), 780 ml 

• Glacial acetic acid, 4 ml 

• Mix well. 

Procedure: 

• Heat to dissolve. Add 50 ml of 10% alcoholic hematoxylin solution and 

heat to boil for 1 minute. 

• Remove from heat and slowly add 2.5 g of mercuric oxide (red). 

• Heat to the solution and until it becomes dark purple color. 

• Cool the solution in cold-water bath and add 20 ml of glacial acetic acid 

(concentrated). 

• Filter. 

 

2.2.2 TUNEL 
 
TdT Buffer Stock Solution (125mM Tris-HCl, 1M Sodium Cacodylate, 1.25mg/ml 

BSA, pH 6.6) 

• Tris-HCl (MW 157.6), 1.97 g  

• Sodium cacodylate, Trihydrate (MW 214.0), 21.4 g  

• BSA, 0.125 g  

• Distilled water, 100 ml  

Adjusted to pH to 6.6 and aliquot were stored at –20 ºC. 
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Cobalt Chloride Stock Solution (25mM Cobalt Chloride in Distilled Water) 

• Cobalt chloride, Hexahydrate (MW 237.9), 0.6 g  

• Distilled water, 100 ml  

• Mixed to dissolve.  

 

Aliquot were stored at –20 ºC.  

   

TdT Reaction Buffer (25mM Tris-HCl, 200 mM Sodium Cacodylate, 0.25 mg/ml 

BSA, 1mM Cobalt Chloride) 

• TdT Buffer Stock Solution, 40 ul  

• Cobalt Chloride Stock Solution, 8 ul  

• Distilled water, 160 ul  

Mixed well and stored at –20 ºC 

  

TdT Storage Buffer (60mM K-phosphate, pH 7.2, 150mM KCl, 1mM 2-

Mercaptoethanol, 0.5% Triton X-100, 50% glycerol) 

      To make the buffer:  

• K2HPO4 (MW174.18), 1.05 g 

• KCl (FW 74.55), 1.12 g  

• Distilled water, 50 ml 

      Stir to dissolve and adjust pH 7.2 using concentrated HCl. Add 50 ml of 

glycerin (100% glycerol), 0.5 ml of Triton X-100, and 8 ul of 2-Mercaptoethanol 

(99% Solution). Store at –20 ºC 
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Enzyme Reagent 

• Terminal Transferase (TdT) (Roche Diagnostic), 4 ul  

• TdT Storage Buffer, 100 ul  

      Mix well and store at –20 ºC  

   

Label Reagent:  

• Biotin-16-dUTP (Roche Diagnostic), 4 ul  

• TdT Reaction Buffer, 1 ml  

      Mix well and store at –20 ºC  

   

TdT Reaction Mixture: 

  

• Enzyme Reagent, 100 ul 

• Label Reagent, 900 ul  

       Mix just before use. The remaining 100 ul of Label Solution can be used for 

negative control.  

             

Stop Wash Buffer (300mM NaCl, 30mM Sodium Citrate) 

• NaCl (MW 58.44), 1.75 g  

• Sodium citrate, Trihydrate (MW294.11), 0.88 g  

• Distilled water, 100 ml  

Mix to dissolve and store at room temperature. 

 

2.2.3 Gelvatol  

Step I 

100 ml solution of: 0.14M NaCl 

0.01M KH2PO4/Na2HPO4, pH 7.2 
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To the 100 ml solution, slowly 25 g polyvinyl alcohol** was added while stirring 

(total volume will be more than 100ml) 

Stirred over night 

Adjusted pH to 7.2 the next day.  

Step II 

50ml Glycerol was added to the solution above and stir over night (at least 16 

Hours) 

Suspension was spinned to remove undissolved particles 

Aliquots were made and stored airtight, at least 4 C or colder.  

Store opened vials at RT. 

Before use: Dabco (Sigma) 100mg/ml final concentration was added. Vortexed 

well, then spun down in microfuge for 10 min at full speed.  

 

2.2.4 RIPA Buffer 

• Tris-Cl [pH 7.5], 10mM 

• NaCl, 500mM 

• SDS, 0.1 % 

• NP-40, 1% 

• Sodium deoxycholate,, 1% 

• EDTA, 2mM 

• and protease, phosphatase I and II inhibitor cocktail, 1% 
 

 2.2.5 Tyrode buffer 

• HEPES, 10 mM 

• NaCl, 130 mM   
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• D-glucose, 6.2 mM 

• KCl, 3.0 mM 

• CaCl2, 1.4 mM   

• MgCl2, 1.0 mM   

• and BSA, 0.1% 
 

2.2.5 Borate buffer  

• Sodium tetraborate , 7.6 g 

• Boric acid, 5.0 g 

Dissolve in in 4 L of water and adjust the pH to 8.5, which required 

approximately 100 µl of 10.0 m NaOH/L buffer. 

 

2.2.6 Carbonate buffer, 0.1 M, pH 9.0 

• 1.06 g Na2CO3 

• 0.840 g NaHCO3 

• Bring to 100 ml with distilled H2O 

• Filter sterilize through 0.22-µm nylon filter 

 

2.2.7 MACS Buffer 

• PBS pH 7.2,  

• EDTA, 2 mM 

• BSA, 0.5 % 
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2.3 Methods 

2.3.1 Primary and established cell lines 

2.3.1.1	
  LAD-­‐2	
  
 

LAD-2 cells are mature human leukemic cell lines. LAD-2 cells were gift from 

Cleaveland Clinic, USA. LAD-2 cells were grown in stempro medium (Sigma 

Aldrich) with 100 ng/ml Stem Cell Factor (SCF) at 37oC and 5% CO2.  

2.3.1.2	
  HT-­‐29	
  	
  
 

HT-29 is human colon adenocarcinoma cell line. Packaged HT-29 cells were 

obtained from American Type Culture Collection (Manassas, VA, USA). HT-29 

cells were cultures in McCoy’s 5A medium with 10% compliment-heat inactivated 

fetal bovine serum, 1% Penicillin-Streptomycin, 1% MEM non-essential amino 

acid, 1% sodium pyruvate and 1% Glutamax.  

2.3.1.3	
  CT44	
  
 

The tumor cell line CT44 was generated by transfecting CT26 cells (a cell line 

derived from a chemically induced murine colon carcinoma) with a fusion protein 

of influenza hemagglutinin and EGFP(Chen et al, 2005b) and was a gift from Dr. 

Weissleder Ralph. 

CT44 were cultured in DMEM (Life Techonolgies, USA) with 10% compliment-

heat inactivated fetal bovine serum, 1% Penicillin-Streptomycin, 1% MEM non-

essential amino acid, 1% sodium pyruvate and 1% Glutamax.  

2.3.1.4	
  Isolation	
  and	
  culture	
  of	
  gut	
  derived	
  mouse	
  mast	
  cells	
  (GMMCs)	
  
 

Primary cell culture of GMMCs was obtained by isolating mast cell progenitors 

from IL-10-/- mice colons. Mice colons were chopped using surgical blades and 

subjected to collagenase digestion in RPMI at 37oC for 20 min. The supernatant 

was centrifuged at 1600 rpm for 10 min at 37oC, pellet was mixed in 40 % Percoll 
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(made from 4 parts of 100% Percoll and 6 parts of 1X Hank's balanced salt 

solution) and underlayed with 60% Percoll (made from 6 parts of 100% Percoll 

and 4 parts of 1X Hank's balanced salt solution) and centrifuged at 2600 rpm for 

30 min (brake-off) at 37oC. Interphase was collected and plated in 25-cm2 flasks 

with complete RPMI 1640 complete (RPMI with 10% compliment-heat inactivated 

fetal bovine serum, 1% Penicillin-Streptomycin, 1% MEM non-essential amino 

acid and 1% Glutamax and 1% HEPES), 20 ng/mL IL-3 and 10 ng/mL stem cell 

factor (SCF) for 3 weeks. Purity of MC was checked using flow cytometry (Figure 
5).  

 

 
 
Figure 5. Purity checks of GMMCs gated at cKit+ScaI+FcerI+ cells. 

Figure depicts representative picture for GMMCs purity check. 

2.3.1.5	
  Isolation	
  and	
  culture	
  of	
  Tumor	
  infiltrating	
  Leukocytes	
  (TILs)	
  
To obtain tumor infiltrating leukocytes surgical colon cancer tissue samples from 

3 patients bearing UC associated colon cancer were washed with (DMEM with 

0.5% penicillin/streptomycin, 10 µg/mL gentamycin sulfate), minced with surgical 

blades, digested using (750 U/mL type IV collagenase, Worthington Bio- 

chemical; 500 U/mg hyaluronidase, Sigma; 0.1 µg/mL DNase, Sigma) and 

subjected to Percoll gradient centrifugation (40–80%) in 15 ml falcon tubes.  

Tubes were centrifuged at 2600 rpm for 30 min at 37oC brake-off. Interphase was 

collected washed 3X with complete RPMI and centrifuged at 1600 rpm for 10 min 

at 37oC, pellet was resuspended finally in complete RPMI and incubated at 37oC. 
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2.3.2 Culture of established cell lines 

Cells were cultured in an incubator at 37°C and 5% CO2. Media were 

supplemented, if not indicated differently, with 10% [v/v] FBS and 10% 

compliment-heat inactivated fetal bovine serum, 1% Penicillin-Streptomycin, 1% 

MEM non-essential amino acid and 1% Glutamax. Media were prewarmed at 

37°C prior to use. FBS was heat-inactivated for compliments for 30 min at 56°C. 

For quantification and determination of the number of viable cells, cell 

suspension was diluted in 1:1 ration in Trypan blue solution (0.125%). 

Cells were counted using Neubauer counting chamber and coverslip. 

2.3.2.1	
  Passaging	
  of	
  adherent	
  cell	
  lines	
  
 

Media from 70-90% confluent cell cultures were aspirated and cells were washed 

twice with 10 ml PBS. After aspirating PBS, 3 ml 1xTrypsin was added and cells 

were incubated at 37°C and 5% CO2 until they were completely detached. 

Trypsin was inactivated by addition of 10% FBS-supplemented culture medium. 

Cells were thoroughly resuspended followed by determination of cell 

concentration and split ratio. 

2.3.2.2	
  Cryostorage	
  of	
  eukaryotic	
  cell	
  lines	
  
 

Established cell lines were frozen at -80 °C short-term storage and at liquid 

nitrogen at 320 F for long-term storage. Cells were pelleted at 1600 rpm for 10 

min. Aliquots of 3x106-8x106 cells were resuspended in heat-inactivated FCS and 

10% (v/v) DMSO in a total volume of 1 ml in cryotubes. To allow a constant 

decrease in the temperature at a rate of 1 °C per minute, cryotubes were placed 

in a freezing container filled with isopropanol. Subsequently, cryotubes were 

immediately transferred to the -80 °C freezer for overnight and then liquid 

nitrogen for infinity. 

2.3.2.3	
  Thawing	
  of	
  cells	
  
 

In order to avoid the toxic side effects of DMSO in freezing medium, thawing of 
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cells was performed as fast as possible. Cryotubes were placed in the waterbath 

at 37°C until a small piece of ice was still visible in the cryotube. Prewarmed 

culture medium was added drop by drop in the cryotube and then sucked in the 

pipette and subsequently cell suspension was transferred to 15 ml falcon tube in 

total of 10 ml of volume. After centrifugation at 1600 rpm for 10 min, supernatant 

was removed and pellet was carefully washed two times in the culture medium 

and finally resuspended in fresh culture medium in a new culture flask. Media 

were changed 24 h later, in order to remove the remnants of toxic dimethyl 

sulphoxide (DMSO) and dead cells. Cells were passaged after 2-3 days 

depending on cell growth rate. 

2.3.2 Tissue and tumor specimens 

Paraffin embedded specimens of normal, non-inflamed colon from 8 patients who 

had surgery for non-malignant lesions like colonic AVM or diverticular disease 

were used as control [normal group]. Additionally, surgical specimens from 12 

UC patients with active colitis [colitis group], 7 UC patients with active colitis , 

dysplasia (dysplasia group) and 7 UC patients with colitis and  invasive colorectal 

cancer (cancer group) were obtained from Rush University Medical Center, 

Chicago. All procedures were approved by Rush University Medical Center 

Institutional Review Boards.  

2.3.3 Mice 

IL-10-/- mice and C57LB6 mice were obtained from Jackson laboratories. Mice 

were maintained under specific pathogen-free conditions at Northwestern 

University Animal Care Facility, and Animal Care Usage Committee of 

Northwestern University approved all experiments. IL-10-/- mice (6 weeks old) 

were transferred to conventional housing and allowed 1 week to acclimate. 

2.3.3.1	
  Piroxicam	
  and	
  LY294002	
  treatment	
  
 

To synchronize colitis, 6-week-old IL-10-/- mice were fed pellet-chow containing 
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piroxicam (Sigma) for 2 weeks; for first week 65mg/250g piroxicam was fed 

followed by 85 mg/250g the next week (Harlan Teklad custom diet). LY294002 

(Sigma) were IP-injected at 50 mg/kg dissolved in 20% dimethyl sulfoxide 

(Sigma) every other day (Figure 6). Untreated mice received dimethyl sulfoxide.  

 

 
 

Figure 6. Timeline of colitis induction with piroxicam in IL-10_/_ mice 

and LY294002 treatment [Modified and adapted from (Lee et al, 2010)]. 

2.3.3.2	
  Bromodeoxyuridine	
  (BRDU)	
  incorporation	
  
 

Mice were injected intra-peritoneally with 1 mg of bromodeoxyuridine (BrdU; 

Sigma) 2 hours before death. 

2.3.3.3	
  Fixing	
  and	
  embedding	
  of	
  mice	
  colon	
  

 Colons, were collected, cleaned for feces using PBS, fillet-laid opened and fixed 

in 10% formalin for 12 hours, followed by rolling and placing in embedding-

cassettes in 70% ethanol until paraffin embedding. Colons in embedding 

cassettes were dehydrated for paraffin embedding (water to paraffin) as per 

following steps:  

• Colons were passed through 70% ethanol, 2 changes, 1h each  
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• Followed by, 80% ethanol, 2 changes, 1h each  

• 95% ethanol, 2 changes, 1h each  

• 100% ethanol, 3 changes, 1h each  

• Xylene or substitute (i.e. Clear Rite 3), 3 changes, 1h each  

• Paraffin wax (56-58ºC), 2 changes, 1.5h each  

• and finally tissues  were embedded into paraffin blocks  

2.3.4 Chemical staining 

2.3.4.1	
  Hematoxylin	
  and	
  Eosin	
  staining	
  (H&E	
  staining)	
  

4 µm thick paraffin sections were cut and placed on charged glass slides, 

subsequently air-dried, baked in hot-air oven at 50oC for 30 min and 

deparaffinized in two changes of xylene for 10 minutes each. Next, sections were 

re-hydrated in 2 changes of absolute alcohol for 5 minutes each followed by 95% 

alcohol for 2 minutes and 70% alcohol for 2 minutes. Sections were washed 

briefly in distilled water and stained in Harris hematoxylin solution for 8 minutes. 

Subsequently the sections were washed in running tap water for 5 minutes and 

placed in 1% acid alcohol for 30 seconds followed again by washing with tap 

water for 1 minute. Next, bluing was performed using 0.2% ammonia water or 

saturated lithium carbonate solution for 30 seconds to 1 minute. Sections were 

washed in running tap water for 5 minutes, rinsed in 95% alcohol for 10 dips and 

counterstain in eosin-phloxine solution for 30 seconds to 1 minute. Finally, 

sections were dehydrated through 95% alcohol with 2 changes of absolute 

alcohol for 5 minutes each, cleared in 2 changes of xylene for 5 minutes each 

and mounted with xylene based mounting medium. 

2.3.4.2	
  Chloroacetate	
  esterase	
  staining	
  	
  

4 µm thick paraffin sections were cut and placed on charged glass slides, 

subsequently air-dried, baked in hot-air oven at 50oC for 30 min and 

deparaffinized in two changes of xylene for 10 minutes each. Next, sections were 

re-hydrated in 2 changes of absolute alcohol for 5 minutes each followed by 95% 
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alcohol for 2 minutes and 70% alcohol for 2 minutes. Sections were washed 

briefly in distilled water and sections were stained with Naphthol-AS-D 

chloroacetate for 20 min, washed in tap water for 5 min and counterstained with 

Hematoxylin Gills II for 30 seconds. Finally sections were washed in water and 

dehydrated through 95% alcohol with 2 changes of absolute alcohol for 5 

minutes each, cleared in 2 changes of xylene for 5 minutes each and mounted 

with xylene based mounting medium. 

2.3.4.3	
  Toluidine	
  Blue	
  Staining	
  

4 µm thick paraffin sections were cut and placed on charged glass slides, 

subsequently air-dried, baked in hot-air oven at 50oC for 30 min and 

deparaffinized in two changes of xylene for 10 minutes each. Next, sections were 

re-hydrated in 2 changes of absolute alcohol for 5 minutes each followed by 95% 

alcohol for 2 minutes and 70% alcohol for 2 minutes. Sections were washed 

briefly in distilled water and sections were stained with Toluidine Blue working 

solution for 20 minutes, washed in tap water for 5 min. Finally sections were 

washed in water and dehydrated through 95% alcohol with 2 changes of absolute 

alcohol for 5 minutes each, cleared in 2 changes of xylene for 5 minutes each 

and mounted with xylene based mounting medium. 

2.3.4.4	
  BRDU	
  staining	
  

4µm thick paraffin sections were cut and placed on charged glass slides, 

subsequently air-dried, baked in hot-air oven at 50oC for 30 min and 

deparaffinized in two changes of xylene for 10 minutes each. Next, sections were 

re-hydrated in 2 changes of absolute alcohol for 5 minutes each followed by 95% 

alcohol for 2 minutes and 70% alcohol for 2 minutes. Sections were washed 

briefly in distilled water. Sections were washed in 0.1M Phosphate Buffered 

Saline (PBS) (pH 7.4) with 1% Triton X100 (3x for 5 minutes). Sections were 

incubated in HCl (1N) for 10 minutes on ice to break open the DNA structure of 

the labeled cells. This was followed by HCl (2N) for 10 minutes at room 

temperature before moving them to incubator for 20 minutes at 37°C. 
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Immediately after the acid washes, Borate buffer (0.1M) is added to buffer the 

cells for 12 minutes at room temperature. Samples were then washed in 0.1M 

PBS (pH 7.4) with 1% TritonX100 (3x 5 minutes) at room temperature. Next, 

sections were incubated in 0.1M PBS (pH 7.4) + 1% TritonX100 + Glycine (1M) + 

1% BSA (1hr) prior to incubating overnight at room temperature with anti-BrdU. 

Following the incubation overnight sections were washed in 0.1M PBS (pH 7.4) 

with 1% TritonX100 (3x 5min). Finally, sections were labeled with HRP labeled 

secondary antibodies, washed in PBS 2x for 5 minutes, counterstained with 

Hematoxylin Gill’s II for 30 seconds, washed in water, dehydrated in 95% and 

100% ethanol, cleared in xylene and mounted in xylene based mounting 

medium.   

2.3.4.5	
  TUNEL	
  staining	
  

4 µm thick paraffin sections were cut and placed on charged glass slides, 

subsequently air-dried, baked in hot-air oven at 50oC for 30 min and 

deparaffinized in two changes of xylene for 10 minutes each. Next, sections were 

re-hydrated in 2 changes of absolute alcohol for 5 minutes each followed by 95% 

alcohol for 2 minutes and 70% alcohol for 2 minutes. Sections were washed 

briefly in distilled water. Sections were pretreated using proteinase K digestion 

method, followed by incubation of sections in 3% H2O2 in PBS for 10 minutes to 

block endogenous peroxidase activity, incubated in TdT Reaction Buffer for 10 

minutes, followed by TdT Reaction Mixture for 1-2 hours at 37-40 °C in 

humidified chamber. Reaction was stopped using stop wash buffer for 10 

minutes. Sections were incubated with Streptavidin-HRP in PBS for 20 minutes 

at room temperature, followed by DAB for 1-2 minutes, washed in running tap 

water for 5 minutes and counterstained with Gill's hematoxylin for 30 seconds. 

Sections were dehydrated through 95% ethanol for 5 minutes, 100% ethanol for 

2x for 3 minutes, cleared in xylene for 2x for 5 minutes and mounted with xylene 

based mounting medium. Sections were washed in intermittent steps with PBS-

Tween 20 for 3x for 2 minutes each. 
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2.3.5 Immunohistochemistry for pAKT or Tryptase staining 

4 µm thick paraffin sections were cut and placed on charged glass slides, 

subsequently air-dried, baked in hot-air oven at 50oC for 30 min and 

deparaffinized in two changes of xylene for 10 minutes each. Next, sections were 

re-hydrated in 2 changes of absolute alcohol for 5 minutes each followed by 95% 

alcohol for 2 minutes and 70% alcohol for 2 minutes. Sections were washed 

briefly in distilled water and antigen retrieval was performed at de-cloaking 

chamber at 120oC for 30 seconds and 90oC for 10 seconds using Dako target-

retrieval solution, peroxidase blocking was performed using Dako peroxidase 

block for 20 min and sections were additionally blocked using 1% bovine serum 

albumin (BSA).  Rabbit anti-mouse/human pAKT or Mouse anti-human Tryptase 

was applied for overnight at 1:50 dilution (in Dako antibody-diluent) at 4oC, next 

day washed with 2X with Dako wash buffer 5 minutes each and incubated with 

Dako anti-rabbit HRP or Dako anti-mouse HRP secondary antibodies for 1 hour 

at room temperature. Sections were washed 2X with Dako wash buffer 5 minutes 

each and DAB substrate was applied for 60 seconds and reaction was stopped in 

tap water for 5 minutes. Sections were finally counterstained using Gill’s II 

hematoxylin, washed in water, dehydrated through 95% ethanol for 5 minutes, 

100% ethanol for 2x for 3 minutes, cleared in xylene for 2x for 5 minutes and 

mounted with xylene based mounting medium. 

2.3.6 Double Immunofluorescence  

2.3.6.1	
  Double	
  Immunofluorescence	
  staining	
  for	
  CD68	
  and	
  pAKT	
  	
  

4 µm thick paraffin sections were cut and placed on charged glass slides, 

subsequently air-dried, baked in hot-air oven at 50oC for 30 min and 

deparaffinized in two changes of xylene for 10 minutes each. Next, sections were 

re-hydrated in 2 changes of absolute alcohol for 5 minutes each followed by 95% 

alcohol for 2 minutes and 70% alcohol for 2 minutes. Sections were washed 

briefly in distilled water and antigen retrieval was performed at de-cloaking 

chamber at 120oC for 30 seconds and 90oC for 10 seconds using Dako target-
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retrieval solution, peroxidase blocking was performed using Dako peroxidase 

block for 20 min and sections were additionally blocked using 1% bovine serum 

albumin (BSA).  Rabbit anti- human pAKT and Mouse anti-human CD68 was 

applied for overnight at 1:50 dilution (in Dako antibody-diluent) at 4oC, next day 

washed with 2X with Dako wash buffer 5 minutes each and incubated at 1:150 

dilutions with anti-rabbit Alexafluor488 and anti-mouse Alexafluor594 secondary 

antibodies for 1 hour at room temperature in dark. Sections were washed 2X with 

Dako wash buffer 5 minutes each incubated with 4',6-diamidino-2-phenylindole 

(DAPI) for 15 minutes. Sections were finally washed in PBS 3x for 5 minute each 

and mounted with Gelvatol.  

2.3.6.2	
  Double	
  Immunofluorescence	
  staining	
  for	
  Mac1	
  and	
  pAKT	
  	
  

5 µm thick frozen sections embedded in OCT were cut, placed on glass charged 

slides and incubated in PBS for 10 minutes or until sections are free from OCT at 

room temperature. Sections were fixed in ice-cold methanol at -20oC for 15 

minutes, washed 2x in PBS at room temperature and blocked with 1%BSA. ).  

Rabbit anti-human pAKT and Mouse anti-human Mac1 was applied for overnight 

at 1:50 dilution (in Dako antibody-diluent) at 4oC, next day washed with 2X with 

Dako wash buffer 5 minutes each and incubated at 1:150 dilutions with anti-

rabbit Alexafluor488 and anti-mouse Alexafluor594 secondary antibodies for 1 

hour at room temperature in dark. Sections were washed 2X with Dako wash 

buffer 5 minutes each incubated with 4',6-diamidino-2-phenylindole (DAPI) for 15 

minutes. Sections were finally washed in PBS 3x for 5 minute each and mounted 

with Gelvatol.  

2.3.7 TissueGnostics 

TissueGnostics Tissue/Cell High Throughput Imaging and Analysis System and 

semi-automated image acquisition microscope was used to acquire 200X 

magnification brightfield and fluorescence images throughout the section. Images 

were stitched in Adobe Photoshop Program and analyzed using ImageJ 

software. Total nuclei count was calculated using particle analysis software for 
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either hematoxylin or DAPI positive nuclei. 

2.3.8 Immunoblotting for MC and TILs 

LAD-2 MC or tumor infiltrating leukocytes (TILs) either treated with carrier DMSO 

or 10 µM LY294002 for 1 hour at 37oC were washed 3X in PBS for 5 minutes 

each and centrifuged at 1000 rpm for 10 minutes, pellet was used for 

immunobloting.  Whole-cell extracts were prepared in RIPA buffer. Proteins 

(30ug) were separated by SDS-PAGE, transferred following standard protocols. 

Immunoreactive proteins were detected with antibodies to phospho-AKT T308, 

phospho-AKT S473, total AKT (Cell Signaling) and beta-actin (Sigma) using the 

HRP-conjugated secondary antibodies and SuperSignal chemiluminescent 

reagent (Thermo Scientific). 

2.3.9 ß- hexososaminidase release (mast cell degranulation) assay 

For degranulation assays GMMCs were stimulated overnight using mouse anti-

DNP IgE 1ug/ml concentration and LAD-2 MC were stimulated overnight using 

human anti-DNP 1ug/ml concentration.  Next day cells were harvested, excess 

IgE was washed with Tyrode buffer and treated for 120 minutes either with 10 µM 

LY294002 or the carrier and subsequently challenged with DNP-BSA or DNP-

HSA from Sigma at 100ng/ml for 30 min. The supernatant was collected and 

stored at 4oC the pellet was lysed with 0.1% TritonX. The 20 µl of supernatant or 

pellet lysate were incubated with 1 mM 4-nitrophenyl N- acetyl-β-D-

glucosaminide (PNAG) for 60 minutes at 37oC and reaction was stopped with 

200 µl carbonate buffer (0.1 M, pH 10). ß-hexosaminidase release in the 

supernatant was measured at 405 absorbance and interpreted as the % of total 

cellular (lysate + supernatant) ß-hexosaminidase.  

2.3.10 Conditioned medium 

For the production of conditioned medium, 2x106/ml LAD-2 MC or GMMCs or 

1.5x106/750 µl TILs were treated with carrier DMSO or 10 µM LY294002 for 1 
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hour washed 4x with serum-free medium and kept in fresh culture for 1 week 

(LAD-2 MC or GMMCs) and 72 hours (TILs) at 37oC and 5% CO2. The 

conditioned medium was removed, filtered using 0.22-µm filters, and used for 

medium transfer experiments.  

2.3.11 Macrophage Migration assay  

2.3.11.1	
  Isolation	
  of	
  CD11b	
  from	
  blood	
  of	
  healthy	
  donors	
  
	
  

Peripheral blood from healthy donors was collected in heparinized vials. Blood 

was transferred in the 15 ml falcon tubes. Ficoll-Paque from GE Healthcare was 

underlayed and tubes were centrifuged at 1600 rpm for 20 minutes with break-off 

at 37oC. Interphase of mononuclear cells was collected, washed 2X in PBS with 

1% BSA. Mononuclear cells were incubated at 1:50 of anti-human biotinylated 

anti-CD11b, alpha M chain (BD Biosciences) on ice for 15 minutes. Cells were 

washed 3x in PBS with 1% BSA and centrifuged at 1600 rpm for 10 minutes. 

Pellet of mononuclear cells was brought up in streptavidin magnetic beads 

(Miltenyi Biotech) and incubated for 10 minutes in ice. Finally, cells were washed 

3x in PBS with 1% BSA and centrifuged at 1600 rpm for 10 minutes and finally 

resuspended in MACS buffer. LS column  (Miltenyi Biotic) was pre-wetted with 

MACS buffer 3x before passage of cells, cells in MACS buffer were passed 

through LS column, finally column was washed 3x with MACS buffer to remove 

any unbound cells from the column. Attached CD11b+ cells were collected in 

MACS buffer and checked for the purity using flow cytometry. 

2.3.11.2	
  Migration	
  assay	
  
 

For migration assay, CD11b+ cells were resuspended in serum-free RPMI at 

106/ml concentration in 22.5 µl and seeded in triplicates on top well of 5 micron 

uncoated 96-well Chemo TX system  (Neuro Probe, Gaithersburg, MD).  The 

bottom well was loaded with 29 µl of Stempro medium with 100 ng/ml SCF, or 

LAD-2 mast cell conditioned medium without or with 10µm LY294002, or 
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conditioned medium obtained from LAD-2 mast cells that were pretreated with 10 

µM LY294002.  After 3 hours of incubation at 37oC, the migrated CD11b+ cells 

were counted with trypan blue on hemocytometer. Assays were performed in 

triplicates and repeated three times with different healthy donors. 

 

2.3.12 Colon cancer epithelial cell proliferation assay 

2.3.12.1	
  Cell	
  harvestaion	
  
 

HT-29 cells or CT44 cells were allowed to grow to the confluency of 50-60% in 

75-cm2 cell culture flasks. Cells were washed 2x with 10 ml PBS pre-warmed at 

37oC in water bath, PBS was aspirated, 3 ml of 1x Trypsin was added cells to the 

cells and flask was incubated at 37oC until cells wells trypsinized and detached 

completely. 10 ml of complete McCoy’s 5A medium or complete DMEM was 

added to stop the action of trypsin on the respective cell lines and cell-number 

was counted using 10 µl of the cell suspension and 10 µl of the Trypan blue dye 

at (1:1 ratio) in the Neubauer’s Chamber. Cells were transferred to a 15 ml falcon 

tube and centrifuged for 1600 rpm for 10 minutes. Pellet was resuspended and 

washed 3x using 10 ml of McCoy’s 5A or complete DMEM and subsequent 

centrifugation at 1600 rpm for 10 minutes at 37oC.  

2.3.12.2	
  Epithelial-­‐cell	
  proliferation	
  assay	
  
 

Pellet obtained from cell harvestation was finally resuspended in the McCoy’s 5A 

or complete DMEM, such that final concentrations of cells were 1 x 104/ 100 µl.  

HT-29 cells were seeded in triplicates in 100 µl per well in a sterile 96 well flat-

bottom plate for 24 hours at 37oC and 5% CO2. For HT-29 proliferation assay 

studies, next day 100 µl of either fresh complete McCoy's 5A or Stempro with 

100 ng/ml SCF or LAD-2 mast cell conditioned medium or LAD-2 mast cell 

conditioned medium with 10 µM LY294002 or conditioned medium obtained after 
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10 µM LY294002 treatment of LAD-2 mast cells were added and incubated for 

24, 48 and 72 hours at 37oC and 5% CO2, separate 96 well plates were used for 

each time-point analysis. For CT44 epithelial proliferation assay, next day either 

100 µl of conditioned medium obtained from carrier DMSO or 10 µM LY294002 

treated GMMCs was added and incubated for 24, 48 and 72 hours at 37oC and 

5% CO2, separate 96 well plates were used for each time-point 

analysis.0.5mCurie of [3H] Thymidine was added to each well and incubated for 6 

hours after 24, 48 and 72 hours time points. HT-29 and CT44 cell proliferation 

was measured using a scintillation counter (LKB RackBeta; Wallac).  

2.3.13 Colon cancer epithelial cell invasion assay 

Cells were harvested as described in cell harvestation section of colon cancer 

epithelial cell proliferation assay.  

Matrigel-based invasion assay plates were kept at -20oC and were taken out only 

few hours before actual assay under sterile conditions in a Laminar-flow hood 

and were allowed to gain the room temperature. Inserts and invasion assay 

bottom chambers were added with 500 µl of pre-warmed, sterile serum-free 

respective medium  (McCoy’s 5A or DMEM) for 2 hours.  

2.3.13.1	
  Invasion	
  assay	
  for	
  the	
  study	
  of	
  the	
  role	
  of	
  PI3K/AKT	
  in	
  LAD-­‐2	
  MC	
  based	
  colon	
  
cancer	
  epithelial	
  invasion	
  
 

Pellet for HT-29 cells obtained from cell harvestation was resuspended in serum-

free McCoy’s 5A medium such that the final concentrations of cells in the cell 

suspension was 6x104 cells/ml. Next, 500 µl of serum-free McCoy’s 5A was 

aspirated from the invasion assay bottom chambers and inserts. To the bottom 

chamber 750 µl of the Stempro medium with 100 ng/ml SCF, or LAD-2 mast cell 

conditioned medium without or with 10µm LY294002, or conditioned medium 

obtained from LAD-2 mast cells that were pretreated with 10 µM LY294002 were 

added. 3x104 colon cancer epithelial cells HT-29 were seeded in triplicates in 500 

µl per well of serum-free McCoy's 5A in the top wells (inserts) in the 24 well (12) 
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insert invasion assay plate. After 48 hours of incubation at 37oC and 5% CO2 the 

invasion assay was stopped. Medium from the inserts was aspirated and non-

invaded cells were removed; the inserts were passed through 2X methanol for 5 

minutes each for fixing the invaded cells in the membrane and subsequently 

staining with Toluidine blue working solution for 5 minutes. Invading cells were 

counted using a brightfield microscope. 

2.3.13.2	
  Invasion	
  assay	
  for	
  the	
  study	
  of	
  the	
  role	
  of	
  PI3K/AKT	
  in	
  TILs	
  based	
  colon	
  cancer	
  
epithelial	
  invasion	
  
 

Invasion assay for TILS was performed in two different experimental setus. In 

setup 1, after warming the invasion assay plate and pre-wetting for 2 hours with 

serum-free DMEM, 3 x 104 CFSE labeled HT-29 cells were seeded in triplicates 

in the top wells (inserts) of invasion assay plate and in the lower chamber 

conditioned medium from TILs was added. In experimental setup 2, CFSE 

labeled 3 x 104 HT-29 cells were seeded either alone, or in 1:1 ratio with TILs 

untreated or treated with 10 µM LY294002 in the top wells for co-culture, the 

bottom wells were filled with complete McCoy’s 5A.  After incubating the invasion 

assay plate for 48 hours at 37oC and 5% CO2, tumor invasion was manually 

recorded and quantified as described in 2.3.13.1. 

2.3.13.3	
  Invasion	
  assay	
  for	
  the	
  study	
  of	
  the	
  role	
  of	
  PI3K/AKT	
  in	
  GMMC	
  based	
  mouse	
  
colon	
  cancer	
  epithelial	
  invasion	
  
 

3 x 104 CT44 cells were seeded in top wells in serum free DMEM in triplicates, in 

bottom wells conditioned medium obtained from LY294002 or carrier DMSO pre-

treated primary mouse mast cells (GMMCs) medium was added in the invasion 

assay chamber (BD biocoat). Remaining assay was performed as described in 

2.3.13.1. 

2.3.14 Statistical analysis 

All experiments were repeated 3 times and at least 10 mice were used in each 
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group. Comparison of groups was assessed using the Student t test. P values 

lower than 0.05 were considered statistically significant. 
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3	
  Results	
  
 

Stromal interactions that sustain chronic inflammation and predispose to cancer 

are poorly understood. Experimental models of colitis implicate the PI3K pathway 

in activation of gut enterocytes and tissue remodeling. While mouse models are 

important for gaining mechanistic insights into diseases that affect us, validation 

of the findings in humans remains the only way to evaluate their clinical 

relevance. Here, in this study it is shown that in contrast to mouse models of 

colitis by far the greatest fraction of PI3K active cells are tissue infiltrating pro-

inflammatory cells. A potent inhibitor of PI3K that is currently in clinical use, in 

combination with ex vivo assays and animal modeling was used in this study to 

elucidate the contribution of PI3K activity towards recruitment of inflammatory 

cells and predisposition to cancer. These findings point to the stromal 

interactions as the prime site of action of PI3K inhibitors in prevention and 

therapy of inflammation induced colon cancer. 

3.1: Characterization and selection of the paraffin embedded colonic tissue 
specimens from patients	
  
 

To understand the spatial distribution and kinetics of inflammation and PI3K 

activity in situ during progression from colitis to cancer, human surgical 

specimens were separated in four groups according to their histopathological and 

clinical findings namely 1) no colitis no dysplasia (designated “normal” in this 

study), 2) ulcerative colitis without dysplasia (colitis), 3) ulcerative colitis with 

dysplasia (dysplasia) and 4) ulcerative colitis with invasive colorectal cancer 

(cancer)(Figure 7A and Table 1-4) and the study was distributed in mucosal and 

submucosal findings (Figure 7B and 7C). For mucosal tissue data was analyzed 

from tissue above muscularis mucosa and extended to lumen, that included 

epithelium, lamina propria and mucularis mucosa. Tissue underneath muscularis 

mucosa was considered for the submucosal tissue analysis (Figure 7). 	
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Figure 7. Categorization of patient tissue specimens using Haematoxylin 

and Eosin staining. (A) Tissuegnostic acquired stitched images of Normal, 

Colitis, Dysplasia and Invasive cancer. (B) H&E staining of mucosal 

tissue of Normal, Colitis (black arrow indicates ulcer), Dysplasia (black 

arrow indicates dysplastic crypts) and Invasive cancer. (C) H&E staining 

of submucosal tissue of Normal, Colitis, Dysplasia and Invasive cancer 

(black arrow indicates invaded crypts). Red arrows show mucosal and 

submucosal tissue. Red scale bar = 50 µm. 
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In total 8 normal, 11 UC without Dysplasia, 7 UC with Dysplasia and 8 UC with 

invasive Cancer patient specimen were used in this study.	
  

	
   Sex	
   Mean 

Age	
  

Race	
   Disease 

Course (≥ 5 

years)	
  

PanColitis 	
   Active 

Colitis	
  

Controls	
   4/8	
   49.8 

(34-73)	
  

4/8	
   NA	
   NA	
   NA	
  

UC without 

Dysplasia	
  

4/11	
   39.2 

(19-66)	
  

6/11	
   7/11	
   10/11	
   8/11	
  

UC with 

Dysplasia	
  

4/7	
   53.4 

(25-75)	
  

6/7	
   3/7	
   6/7	
   6/7	
  

UC with CRC	
   6/7	
   51.4 

(37-71)	
  

6/7	
   5/7	
   7/7	
   4/7	
  

 

Table.1 Patient Cohorts.   Sex is defined as ratio of male over total. Age is 

defined as age at time of biopsy with range.  Race is listed as Caucasian 

race versus other.  Disease course is defined as a diagnosed presence ≥ 5 

years.  “Active Colitis” is defined at time of biopsy as equal to or greater 

to mild colitis but does not include “quiescent” or inactive colitis. 

Controls defined as no dysplasia and no evidence of colitis.  NA=not 

applicable 

3.1.1 Ulcerative colitis patients without dysplasia used in the study  

In total 11 patient samples were used for immunohistochemical analysis in this 

study.	
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Sex	
   Race	
   Age	
  
Disease Course 

(years)	
  
Disease Extent 	
   Severity of Colitis	
  

F	
   AA	
   40	
   5	
   Left	
   S	
  

F	
   C	
   58	
   2	
   Pan	
   S	
  

F	
   AA	
   33	
   2	
   Pan	
   S	
  

F	
   C	
   26	
   3	
   Pan	
   M	
  

F	
   C	
   21	
   7	
   Pan	
   M	
  

M	
   C	
   28	
   >10	
   Pan	
   M	
  

F	
   AA	
   66	
   >10	
   Pan	
   Q	
  

M	
   C	
   62	
   >5	
   Pan	
   Q	
  

M	
   H	
   44	
   3	
   Pan	
   Q	
  

F	
   C	
   19	
   5	
   Pan	
   M	
  

M	
   H	
   62	
   5	
   Pan	
   S	
  

 

Table 2. Ulcerative Colitis Patients Absent Colonic Dysplasia.  F=female, 

M=Male, C=Caucasian, AA=African American, H=Hispanic. Patients’ Age 

at time of biopsy is listed.  Colitis extent is defined as either “pan” colitis 

when extends proximally past the splenic flexure. Severity of colitis is 

defined as Q=quiescent, MI=mild, M=moderate, S=severe. 

3.1.2 Ulcerative Colitis patients with Dysplasia used in this study 

In total 7 patient samples were used for immunohistochemical analysis in this 

study.	
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Dysplasia	
   Sex	
   Race	
   Age	
  
Disease Course 

(years)	
  

Disease 

Extent 	
  

Severity of 

Colitis	
  

Low 	
   M	
   C	
   74	
   2	
   Pan	
   M	
  

Low 	
   F	
   H	
   54	
   >20	
   Pan	
   M	
  

High 	
   F	
   C	
   75	
   7	
   Pan	
   M	
  

Low 	
   M	
   C	
   46	
   NA	
   Pan	
   MI	
  

Low 	
   F	
   C	
   25	
   9	
   Pan	
   NA	
  

Low 	
   M	
   C	
   52	
   3	
   Left	
   M	
  

High	
   M	
   C	
   48	
   NA	
   Pan	
   M	
  

	
  

Table 3. Ulcerative Colitis patients with Dysplasia.  Patients’ degree of 

dysplasia is defined as high or low grade dysplasia based on the 

maximum degree of dysplasia identified.  F=female, M=Male. 

C=Caucasian, H=Hispanic. Age at time of colectomy is listed.  Colitis 

extent is defined as either “pan” colitis when extends proximally past the 

splenic flexure. Severity of colitis is defined as Q=quiescent, MI=mild, 

M=moderate, S=severe. 

	
  

3.1.3 Ulcerative Colitis patients with invasive cancer used in this study 

In total 7 patient samples were used for immunohistochemical analysis in this 

study.	
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Cancer	
   Stage	
  
Tumor 

differentiation	
  
Sex	
   Race	
   Age	
  

Length of 

Disease 

Course 

(years)	
  

Disease 

Extent	
  
Severity 

of Colitis	
  

Cancer 

1	
  
T2N0	
   M	
   M	
   C	
   71	
   >10	
   pan	
   Q	
  

Cancer 

2	
  
T3N0	
   P	
   F	
   C	
   45	
   2	
   pan	
   M	
  

Cancer 

3	
  
T2N0	
   M	
   M	
   AA	
   63	
   1	
   pan	
   M	
  

Cancer 

4	
  
T3N0	
   M	
   M	
   C	
   53	
   >10	
   pan	
   Q	
  

Cancer 

5	
  
T3N2	
   W	
   M	
   C	
   48	
   >10	
   pan	
   M	
  

Cancer 

6	
  
T3N1	
   M	
   M	
   C	
   43	
   >10	
   pan	
   S	
  

Cancer 

7	
  
T3N0	
   P	
   M	
   C	
   37	
   >10	
   pan	
   MI	
  

Table 4. Patients diagnosed with ulcerative colitis and associated 

colorectal cancers.  All cancers come from specimens with evidence of 

prior colitis in the location of the neoplasia at time of colectomy.  Tumor 

differentiation is defined as either W=well differentiated, M=moderately 

differentiated or p=poorly differentiated. Race defined as AA= African 

American, C=Caucasian. Age is defined as age at time of colectomy 

specimen. Disease extent= defined as pan=pancolitis extending 

proximally from the splenic flexure.  Severity of colitis is defined as 

Q=quiescent, Mi=mild, M=moderate, S=severe. 
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3.2 Immunohistological study of human patient tissue specimens 

3.2.1 Bone marrow derived pAKT positive cells progressively increase in 
colitis, dysplasia, and colon cancer 

Paraffin embedded tissue specimens from the patients (Table 1-4) were cut in 4 

µm thick sections and were stained using antibodies against pAKT. 

TissueGnostics high-throughput Imaging microscope was used to acquire 

pictures at 200X magnification of the entire tissue section. Images were stitched 

using Adobe Photoshop Program and mucosal and submucosal tissue-data 

analysis was performed using ImageJ software on 50 fields of vision. pAKT+ cells 

were detected by immunohistology in mucosa (Figure 8A) and sub-mucosa 

(Figure 8B).  

 

 
 

Figure 8. pAKT+ macrophages progressively infiltrate the colonic 

submucosa with progression to colitis and cancer. Representative 

immunohistochemical staining depicting pAKT+ (brown) cells in healthy 

and diseased human colonic (A) mucosa and (B) submucosa. Red scale 

bar = 50 µm. 
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The mean frequencies of epithelial pAKT+ cells in mucosa did not show 

significant differences when comparing normal (0.59 ± 0.23) to colitis (0.74 ± 

0.13) to dysplasia (0.69 ± 0.13) and to invasive cancer (1.10 ± 0.17)(Figure 9A). 

The frequency of stromal pAKT+ cells infiltrating the mucosa in all cases 

outnumbered pAKT+ epithelial cells (compare Figure 9A and 9B). Significant 

increases in pAKT+ cells were detected in the stroma of the mucosa when 

progressed from “normal” (2.33 ± 0.65) to colitis tissue (6.83 ± 1.12, *P<0.05), 

but thereafter plateaued (Figure 9B) with no significant differences from colitis to 

dysplasia (5.81 ± 1.27) to invasive cancer (8.27 ± 1.48). By contrast the 

frequency of pAKT+ cells were steadily and significantly increased in the 

submucosa with each transition from “normal” (2.33 ± 0.65), to colitis (6.56 ± 

0.80, *P<0.05), to dysplasia (16.19 ± 4.70, *P<0.05) and finally to cancer (37.87 

± 7.39, *P<0.05), with cancer having the highest density of pAKT+ cells (Figure 
9C). 	
  

	
  

	
  
 

Figure 9. Quantification of pAKT+ cells in colonic mucosa and 

submucosa with progression to colitis and cancer. Bar graphs shows 

quantification of % mean ± standard error of positively stained cells of 
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pAKT per total nuclei in (A) mucosal crypt-epithelium (B) mucosal stroma 

and (C) submucosa of normal and diseased human colonic tissue. * P < 

0.05 represents the result of Student t test. 

 

3.2.2 Mast cell frequencies increase with progression to colitis and then 
cancer 

MCs are sentinel cells that are activated early in the process of intestinal 

carcinogenesis, and contribute to cancer initiation (Khazaie et al, 2011). In 

mouse models of cancer, MCs orchestrate further inflammatory reactions by 

mobilizing tumor associate macrophages (TAMs) (Cheon et al, 2011; Gounaris et 

al, 2007; Gounaris et al, 2008) It is known for long that MC recruit TAMs in 

human pancreatic cancer (Brown et al, 2010). To relate tissue MC densities to 

mobilization of TAMs in colitis progression to cancer paraffin embedded tissues 

were stained for MC-tryptase (Figure 10A and 10B). Images from 50 fields of 

vision were recorded for quantification by Tissuegnostics high-throughput 

imaging microscope for each mucosa and submucosa.  MCs were detected in 

mucosa (Figure 10A) and sub-mucosa (Figure 10B), of samples with colitis, 

dysplasia, and cancer.  
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Figure 10 Tryptase+ mast cell densities progressively increase in the 

colonic submucosa with progression to colitis and cancer. Representative 

immunohistochemical staining depicting tryptase (brown) positive mast 

cells in healthy and diseased human colonic (A) mucosa and (B) 

submucosa Red scale bar = 50 µm 

 

Relative densities and sub-tissue distributions of MC mirrored that of pAKT+ cells. 

Thus, MC frequencies in mucosa increased significantly from normal colon (4.75 

± 0.56) to colitis (14.17 ± 1.82, *P<0.05), but did not increase further as the 

disease progressed from colitis to invasive cancer (colitis: 14.17 ± 1.82; 

dysplasia: 15.54 ± 3.07; invasive cancer: 19.44 ± 3.74) (Figure 11A). In contrast, 

mean MC frequencies in sub-mucosa increased steadily as the disease 

progressed from normal (6.34 ± 0.99) to colitis (12.35 ± 1.86, *P<0.05), to 

dysplasia (33.54 ± 8.55, *P<0.05) and to invasive cancer (59.99 ± 7.09, *P<0.05) 

(Figure 11B). 	
  

	
  

	
  
 
Figure 11. Quantification of tryptase positive cells in colonic mucosa and 

submucosa with progression to colitis and cancer. Bar graphs show 

quantification of % mean ± standard error of positively stained cells of 

human mast cell tryptase per total nuclei in (A) mucosa and (B) 
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submucosa of normal and diseased human colonic tissue. * P < 0.05 

represents the result of Student t test. 

3.2.3 Tumor Associated Macrophages frequencies increase with 
progression to colitis and then cancer 

MC are known to mobilize TAMs, and both critically contribute to tumor growth 

and invasion (Erreni et al, 2011; Khazaie et al, 2011; Maltby et al, 2009).To 

identify TAMs in tissue samples histologic sections were stained with antibodies 

to pan-macrophage antigen CD11b (Mac1) (Arnaout, 1990) and 

CD68(Heinemann et al, 2000; Strobl et al, 1995). Based on mouse modeling it 

has been suggested that chemo- attractants, growth factors, and pathogen 

associated molecular patterns initiate tumor inflammation by activating PI3-

kinase in CD11b+ myeloid cells (Schmid et al, 2011). To test this notion, double 

immunofluorescence staining for pAKT and macrophage markers was performed 

(Figure 12). The data was acquired and analyzed as described above for pAKT 

and Tryptase. There was abundant co-localization of pAKT with CD68 (Figure 
12A and 12B).  

 

 
 

Figure 12. CD68+ pAKT+ macrophages progressively infiltrate the colonic 
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submucosa with progression to colitis and cancer. Representative 

double-immunofluorescence staining depicting CD68 (Red), pAKT+ 

(Green), DAPI (blue) and CD68+ pAKT+ (Yellow) cells in healthy and 

diseased human colonic (A) mucosa and (B) submucosa. Red scale bar = 

50 µm. 

 

Densities of pAKT+ CD68+ TAMs were found in identical pattern with the 

densities of pAKT+ cells (Figure 13) in the mucosa when disease progressed 

from normal (2.33 ± 0.56) to colitis (4.77 ± 0.96), dysplasia (5.81 ± 1.27) and 

cancer (6.27 ± 1.14) (Figure 13A). Interestingly, the densities of pAKT+ CD68+ 

TAMs increased steadily from normal tissue (1.56 ± 0.44) to colitis (4.83 ± 0.67), 

dysplasia (12.58 ± 3.83) and cancer (34.54 ± 4.56) in the submucosa (Figure 
13B), showing the same pattern as pAKT+ cells. However, the recruitment of 

TAMs progressively in the disease was not restricted to pAKT+ CD68+ TAMs, but 

total CD68+ cell densities (inclusive of all pAKT±) also increased progressively in 

the submucosa from normal (2.13 ± 0.45), colitis (6.18 ± 0.84), dysplasia (18.81 ± 

4.23) to cancer (38.62 ± 4.51) (data not shown). In addition, the data was 

validated using total Mac1+ and Mac1+ pAKT+ cell densities in the disease 

progression, where similar pattern of recruitment to the total CD68+ and 

CD68+pAKT+ cell frequencies was observed (data not shown). 	
  

	
  
Figure 13. Quantification of CD68+ pAKT+ macrophages in colonic 

mucosa and submucosa with progression to colitis and cancer. Bar 
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graphs show quantification of % mean ± standard error of positively 

stained cells of human CD68+ pAKT+ macrophages per total nuclei in (A) 

mucosa and (B) submucosa of normal and diseased human colonic 

tissue. * P < 0.05 represents the result of Student t test. 

3.3 Role of PI3K/AKT in mast cells and macrophage migration  

3.3.1 LAD-2 mast cells posses phospho-AKT T308, phospho-AKT S473 

PI3K Is extremely necessary for mast cell biology, survival and function (Kim et 

al, 2008b). To ensure presence of PI3K/AKT and inhibition of PI3K activity by 

LY294002, first MC extracts were prepared for analysis of phospho-proteins. 

Proteins separated by gel electrophoresis and transferred to membrane were 

reacted with antibodies to phospho-AKT T308, phospho-AKT S473, total AKT 

(Cell Signaling) and beta-actin (Sigma). This analysis showed that pre-incubation 

of LAD-2 MC for 1 hour with 10 mM of LY294002 hindered T308-phosphorylation 

of AKT by 1.74 ± 0.15 fold and S473 by 4.01 ± 0.38 fold. (Figure 14A and 14B).  

 

	
  

Figure 14. LY294002 attenuates pAKT levels in LAD-2 mast cells. A) 
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Immunoblot of total and phosphorylated AKT (Threonie/T308) and 

(Serine/S473) in LAD-2 mast cells untreated and treated with 10 µM 

LY294002 or T308, S473, AKT and beta actin. Bar graphs indicate 

quantitation of (B) the ratio of LAD-2 MC band intensity with LAD-2 MC 

treated with 10µM LY294002. * P < 0.05 represents the result of Student 

t test. 

3.3.2 MC regulate macrophage migration via PI3K signaling 

MC orchestrate secondary inflammatory reactions by recruiting other bone 

marrow derived cells (Khazaie et al, 2011; Maltby et al, 2009), including TAMs 

that critically contribute to CRC progression (Erreni et al, 2011). The hypothesis 

was to test if PI3K activity in MC is needed for their chemotactic potential. To test 

this hypothesis, LAD-2 human mast cell line was used. LAD-2 MC were pre-

incubated in the presence or absence of LY294002, washed three times and 

added back into culture to collect conditioned medium. The chemotactic activity 

of conditioned media was then tested by measuring migration of CD11b+ 

macrophages freshly prepared from human peripheral blood mononuclear cells 

(PBMC) through Chemo TX system.	
  

To assay migration of macrophages the Chemo TX 5-µm pore size migration 

assay system was used. CD11b+ macrophages were isolated from the freshly 

drawn blood from healthy donors using anti-human CD11b-biotinylated antibody 

(BD Pharmingen) and columns (Miltenyi Biotech). Isolated CD11b+ cells were 

loaded in the top chamber and the conditioned mediums from LAD-2 mast cells 

were loaded in the bottom chamber. There was a significant migration of the 

CD11b+ macrophages to the bottom chamber as compared to similar setups 

where regular non-conditioned medium was used for comparison (*P<0.05) 

(Figure 15A, 15B and 15F).  Pre-treatment of LAD-2 MC with 10 mM LY294002 

abrogated the bioactivity of the conditioned medium in this assay and thus 

CD11b+ macrophage migration (*P<0.05, Figure 15C, 15D and 15F). Cd11b+ 

cells used in this study were at least 99% pure (Figure 15E).	
  



83	
  
	
  

 

Figure 15. LY294002 treatment attenuates mast cells associated 

macrophage migration. Representative images show the migration of 

CD11b macrophages in response to (A) Stempro + SCF (control/ LAD-2 

base growth medium), (B) CM (LAD-2 conditioned medium), (C) CM + 10 

µM LY294002 (CM with 10 µM LY294002) and (D) 10 µM LY pretreated 

CM (CM obtained after treatment of LAD-2 cells with 10 µM LY294002). 

(E) Purity of CD11b+ cells obtained after using either biotinylated Rat 

ant-human CD11b or biotinylated Rat IgG2bK (F) Quantification 

expressed in mean ± standard error of CD11b migration in response to 

conditions mentioned in (A-D) . Black arrows indicate migrated CD11b+ 

cells. Black scale bar = 20 µm. * P < 0.05 represents the result of Student 

t test. 
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3.4 PI3K activity in MC is indispensable for MC biological functions and MC 
dependent-tumor promoting properties 

3.4.1 PI3K/AKT is essential for the MC degranulation 

PI3K activity is essential for differentiation of MC, as well as their long-term 

survival and function (Kim et al, 2008b). Mature MCs produce various biologically 

active mediators, which are released either by secretion or by degranulation. In 

particular it has been reported that in mouse models of cancer, inhibiting MC 

degranulation abrogates tumor-promoting properties of MC (Soucek et al, 2007). 

Hence, next important investigation was to test the impact of different 

concentrations (5 and 10 µM) of LY294002 on MC degranulation, for this purpose 

human LAD-2 MC were used. Treatment of LAD-2 MC with LY294002 inhibited 

degranulation, the ß-hexososaminidase release (%) in carrier-treated/control 

(72.38 ± 5.78) was reduced after 5 µM LY294002 (47.76 ± 6.43, *P<0.05) and 10 

µM LY294002 treatment (39.82± 4.39, *P<0.05) (Figure 16).  

	
  

Figure 16. LY294002 treatment attenuates LAD-2 human mast cell 

degranulation. Figure depicts % ß-hexosaminidase release from LAD-2 
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mast cells before and after treatment of 5 or 10 µM LY294002. * P < 0.05 

represents the result of Student t test. 

3.4.2 PI3K/AKT is essential for the MC dependent tumor proliferation and 
tumor invasion 

MC produce array of cytokines, chemokines and various growth factors, that 

plays an important role in the survival of tumor epithelium and cancer 

progression(Maltby et al, 2009). Hence next question was to study whether the 

soluble factors produced by MC enhance the proliferation and invasion of 

epithelial cancer cells, and whether it is governed by PI3K/AKT in mast cells 

(Brown et al, 2010). Also, the role of PI3K/AKT in MC in context with the 

proliferative response of HT-29 colon cancer cells was studied using human 

LAD-2 MC (Kirshenbaum et al, 2003). 	
  

3.4.2.1	
  PI3K/AKT	
  is	
  essential	
  for	
  the	
  MC	
  dependent	
  ex	
  vivo	
  HT-­‐29	
  cell	
  proliferation	
  
 

LAD-2 cell conditioned medium enhanced the rate of proliferation of HT-29 cells 

progressively at 24 (Figure 17A), 48 (Figure 17B) and 72 hours (Figure 17C) 

(*P<0.05). Next investigation was to test the effect of inhibition of PI3K by treating 

LAD-2 cells with 10 µM LY294002 and preparing conditioned medium from 

washed cells. Pre-incubation with LY294002 significantly reduced the ability of 

the LAD2 conditioned medium to stimulate proliferation of HT-29 cells, measured 

at three separate time-points (*P<0.05, Figure 17). Furthermore, direct effect of 

LY294002 treatment on the proliferative responses of HT-29 cells was studied. 

LY294002 was found to have direct inhibitory effects on the tumor cells. 

However, even in the presence of this inhibitor LAD2 conditioned medium elicited 

a significant proliferative response in the tumor cells (Figure 17). These 

observations suggest that PI3K activity in MC contributes to tumor proliferation 

and its inhibition by LY294002 is a critical event in suppression of tumor growth. 
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Figure 17. LY294002 treatment attenuates mast cells associated HT-29 

tumor proliferation. Figure depicts quantitation expressed as mean ± 

standard error HT-29 proliferation (A) post 24 hrs, (B) post 48 hrs and 

(C) post 72 hrs in response to the treatment of McCoy’s 5A (negative 

control), Stempro + SCF (internal control for LAD-2 CM), CM (LAD-2 CM), 

CM+ 10 µM LY294002 (CM with 10 µM LY294002) and 10 µM LY 

pretreated CM (CM obtained after treatment of LAD-2 cells with 10 µM 

LY294002). * P < 0.05 represents the result of Student t test. 

3.4.2.2	
  PI3K/AKT	
  is	
  essential	
  for	
  the	
  MC	
  dependent	
  ex	
  vivo	
  HT-­‐29	
  tumor	
  invasion	
  
 

After establishing the role of PI3K/AKT in MC dependent HT-29 proliferation, next 

goal was to investigate whether PI3K activity and phosphorylation of AKT in MC 

contribute to tumor invasion. To test this hypothesis, in vitro invasion assays 

were performed with the HT-29 colon cancer cells in the presence or absence of 

LAD-2 conditioned medium. Since, LY294002 treated LAD2-CM attenuates HT-

29 proliferation by 40% at 48 hours, the HT-29 invaded cell count was 

normalized (reduced the cell number by 40% in Control/Stempto+SCF and LAD-

2CM groups for analysis and graphical representation). There was a significant 

increase in mean HT-29 cell invasion/well in Matrigel in response to LAD-2 MC 

conditioned medium (64.80 ± 6.92, *P<0.05) in comparison with the control 
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(11.40 ± 1.03 *P<0.05)  (Figure 18A and 18B). Invasion was attenuated when 

the conditioned medium was obtained from LAD-2 MC that had been previously 

treated with 10 µM LY294002 as described above (17.67 ± 1.45, *P<0.05, Figure 
17A and 17B). As with the proliferation response, LY294002 had direct inhibitory 

effect on the tumor cells. However, even in the presence of this inhibitor LAD2 

conditioned medium elicited a significant invasion response in the tumor cells 

(38.67 ± 4.91, *P<0.05, Figure 18A and 18B). These observations strongly 

suggest that MC promote tumor invasion and that this property of MC is PI3K 

dependent. Thus, release of tumor promoting agents by MC and potential 

contribution of MC to tumor growth and invasion were blocked by LY294002. 

	
  

 

Figure 18. LY294002 treatment attenuates mast cells associated HT-29 

tumor invasion. (A) Representative images of HT-29 invasion study in 

response to Stempro + SCF (internal control for LAD-2 CM), LAD-2 CM, 

CM + 10 µM LY294002 (LAD-2 CM with 10 µM LY294002) and 10 µM LY 

pretreated CM (CM obtained after treatment of LAD-2 cells with 10 µM 
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LY294002). Invaded cells can be seen as blue cells. (B) Quantification of 

mean ± standard error invaded HT-29 cells per well or chamber in 

response to conditions mentioned in (A). * P < 0.05 represents the result 

of Student t test. 

3.4.2.3	
  PI3K/AKT	
  in	
  TILs	
  promote	
  ex	
  vivo	
  HT-­‐29	
  tumor	
  invasion	
  
 

Next goal was to study the role of PI3K/AKT in tumor infiltrating leukocytes (TILs) 

that forms the tumor-stroma and investigate the link with tumor invasion. For this 

study, TILs were isolated from the freshly obtained ulcerative colitis associated 

cancer samples. TILs were checked for phosphorylation at Threonine 308 

residue (pAKT-T308) and Serine 473 residue of AKT (pAKT-S473), 10µM 

LY294002 treatment significantly attenuated pAKT-T308 1.62 ± 0.05 fold and 

pAKT-S473 3.53 ± 0.17 fold in comparison with the carrier treated pAKT-T308 

and pAKT-S473 (*P<0.05, Figure 19A and 19B).  
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Figure 19. LY294002 attenuates pAKT levels in TILs. A) Immunoblot of 

total and phosphorylated AKT (Threonine/T308) and (Serine/S473) in 

TILs untreated and treated with 10 µM LY294002. Bar graphs indicate 

quantitation of (B) the ratio of TILs band intensity with TILs treated with 

10 µM LY294002 for T308, S473, AKT and beta actin. * P < 0.05 

represents the result of Student t test. 

Next, tumor-infiltrating leukocytes (TILs) isolated from CRC tumors were 

measured for the ability to promote tumor cell invasion. By pretreating the TILs 

with LY294002 the dependence of the tumor invasion promoting activity on PI3K 

was tested. To address this question, TILs were isolated from fresh surgical 

specimens derived from tumors of colitis associated colon cancer patients. Two 

different setups were used. In the first setup tumor cells were added in top 

chamber and conditioned medium from the TILs (carrier or 10 µM LY294002 

pretreated) in the bottom chamber, and in the second setup the TILs were co-

cultured with the tumor cells. After normalization of HT-29 cell counts in 

Stempro+SCF, TILs CM and HT-29+TILs study groups, mean invasion of HT-29 

cells into matrigel was significantly enhanced by the TILs in both experimental 

setups (76.80 ± 5.67 for setup-1 and 133.80 ± 7.99 for setup-2, *P<0.05). 

Pretreatment of the TILs with 10 µM LY294002 significantly inhibited tumor 

invasion relative to treatment with CM from carrier-treated TILs or co-culture with 

carrier-treated TILs respectively (26.67 ± 6.93 for setup-1 and 57.00 ± 4.72 for 

setup-2, *P<0.05, Figure 20A, 20B and 20C). These results are compatible with 

those obtained with MC conditional medium and demonstrate that the PI3K 

inhibitor LY294002 inhibits production of mediators of tumor invasion by TILs, 

that include TAMs and MCs.  
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Figure 20. LY294002 treatment attenuates TILs associated HT-29 tumor 

invasion. (A) Representative images of CFSE labeled HT-29 invasion 

study in response to tumor infiltrating leukocytes (TILs) isolated from UC 

associated cancer patients. Red arrows show invaded HT-29. (B) 

Quantitation of mean ± standard error invaded HT-29 cells per well in 

the experimental setup-1 (HT-29 in top chamber and CM from TILs with 

or without 10 µM LY294002 pretreatment in bottom well) & (K) 

Quantitation of mean ± standard error invaded HT-29 cells per well in 

the experimental setup-2 (HT-29 in 1:1 coculture with TILs with or 

without 10µM LY294002 pretreatment in top chamber). Red scale bar = 

50 µm, * P < 0.05 represents the result of Student t test. 
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3.5 Pi3k/Akt inhibitor LY294002 attenuates mast cells, colitis, and cancer 
development in the IL-10-/- Piroxicam mouse model 
 

To further validate in vitro observations and to see if they also have central roles 

in progression of inflammation to cancer in the in vivo system, cancer prone 

colitis mice were treated with LY294002. IL-10-/- mice when treated with 

Piroxicam develop colitis with ulcers, followed by invasive cancer by day 56 

(mean invasive lesions 2.30 ± 0.26, Figure 21A and 21B) (Lee et al, 2010). 

LY294002 treatment reduced the incidence of invasive cancer in this model 

(0.100 ± 0.10, *P<0.05, Figure 21A and 21B).  

 

Figure 21. LY294002 attenuates development of cancer in IL-10-/- mice 

treated with Piroxicam. (A) Histological evaluation of IL-10-/- and IL-10-/- 

mice treated with LY294002. H & E staining at 100X & 200X 

magnification of IL-10-/- mice 56 days post Piroxicam ± LY294002 

treatment; black arrow indicates invaded colonic crypts. (B) Graphical 

representation of the mean frequencies ± error of invasive lesions in IL-

10-/- (10-/- treated with Piroxicam) and IL-10-/- mice+ LY (10-/- treated 
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with Piroxicam and LY294002. Red scale bar = 50 µm, * P < 0.05 

represents the result of Student t test. 

Also, LY294002 treatment reduced the frequency of Bromodeoxyuridine (BrdU) 

positive cells (*P<0.05, Figure 22A and 22E), increased apoptosis as measured 

by TUNEL (*P<0.05, Figure 22C and 22F), and reduced the pAKT levels within 

the crypt-epithelium (*P<0.05, Figure 22B and 22G) and stroma (*P<0.05, 

Figure 22D and 22H).  

	
  

 

Figure 22. LY294002 attenuates epithelial proliferation, induces 

apoptosis and restricts pAkt levels in IL-10-/- mice treated with 

Piroxicam. Histological evaluation of (A) BrdU staining in colon of IL-10-/- 

or IL-10-/- mice treated with LY294002 (note brown staining) (B) TUNEL 

staining on colon of IL-10-/- or IL-10-/- treated with LY294002 (C) pAkt 
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staining in colonic mucosal epithelium of IL-10-/- or IL-10-/- mice treated 

with LY294002. (D) pAkt staining in colonic stroma of IL-10-/- or IL-10-/-  

mice treated with LY294002. Graphical representation of the mean 

frequencies ± error of (E) % BRDU+, (F) %TUNEL+, (G) %pAkt+ epithelial 

and (H) %pAkt+ stromal cells per total nuclei in the colon of untreated 

and LY294002 treated Il-10-/- mice. Black arrows indicate pAkt+ cells. 

Red scale bar = 50 µm, * P < 0.05 represents the result of Student t test. 

In earlier studies a causative role for focal mastocytosis and pre-neoplasia in the 

mouse intestine has been reported (Gounaris et al, 2007; Khazaie et al, 2011). 

Thus, next goal was to investigate the effect of pi3k/akt inhibition on the 

frequencies of mast cells in the cancer. Chloroacetate esterase (CAE) staining 

was used to study the in vivo impact of LY294002 on MCs infiltrating the gut 

tissue. CAE is a cytochemical staining that stains MCs and granulocytes 

(Lichtman & Segel, 2005). LY294002 treatment inhibited the mean frequencies of 

tissue infiltrating CAE+ cell (0.262 ± 0.06) in comparison with control untreated 

mice (0.98 ± 0.09, *P<0.05, Figure 23A and 23B). 
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Figure 23. LY294002 attenuates the frequency of CAE positive cells in IL-

10-/- mice in vivo. (A) Representative images of CAE staining at 100X & 

200X magnification respectively of IL-10-/- mice 56 days post Piroxicam ± 

LY294002 treatment; black arrows indicate pink CAE positive cells. (B) 

Quantification of % mean ± standard error CAE+ cells per total nuclei in 

LY294002 untreated and treated IL-10-/- mice. Red scale bar in = 50 µm, 

* P < 0.05 represents the result of Student t test. 

Moreover, the effect LY294002 treatment on the in situ degranulating mast cells 

using Toluidine Blue staining was studied. Frequency of in situ degranulating MC 

(purple MCs), found predominantly in the sub-mucosa (site of invasion) was 

significantly attenuated (% mean 30.12 ± 2.98) in comparison with the non-

LY294002 treated mice  (85.02 ± 1.57, *P<0.05, Figure 24A and 24B).  

	
  

 

 

Figure 24. LY294002 attenuates in situ mast cell degranulation in IL-10-

/- mice (A) Representative images of toluidine blue staining at 100X & 
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1000X magnification respectively of IL-10-/- mice 56 days post Piroxicam 

± LY294002 treatment, black arrow indicates magnified, purple 

degranulating or blue non-degranulating mast cells. (B) Quantitation of 

% mean ± standard error in vivo mast cell degranulation per total mast 

cells in the colon of the LY294002 untreated or treated IL-10-/- mice (% 

in situ degranulation = total purple mast cells X 100 / total mast cells in 

LY294002 untreated or treated IL-10-/-). Red scale bar in = 50 µm, Black 

scale bar = 20 µm, * P < 0.05 represents the result of Student t test. 

 

3.6 Pi3k/Akt inhibitor LY294002 attenuates mast cell induced tumor 
proliferation and invasion 

3.6.1 Pi3k/Akt inhibitor LY294002 inhibits mouse MC degranulation 

In vitro assays were performed to validate inhibition of degranulation of the gut 

derived primary mouse mast cells by LY294002. The ß-hexososaminidase 

release (%) in carrier-treated GMMCs (33.75 ± 0.49) dropped after 5 µM 

LY294002 (11.28 ± 0.47, *P<0.05) and 10 µM LY294002 (6.86 ± 0.39, *P<0.05, 

Figure 25) treatment.  
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Figure 25. LY294002 attenuates in vitro murine primary mast cell 

degranulation in IL-10-/- mice. Figure depicts quantitation of % in vitro β-

hexosaminidase release from GMMCs after treatment of carrier or 5 µM 

or 10 µM LY294002. * P < 0.05 represents the result of Student t test. 

Next, pretreated conditioned medium (with 10 µM LY294002 or carrier) obtained 

from mouse mast cells to study the effect of PI3K inhibition on mouse MCs in 

context with CT44 mouse colon cancer proliferation and invasion. 	
  

3.6.2 Pi3k/Akt inhibitor LY294002 attenuates the rate of mouse MC induced 
CT44 proliferation 

LY294002 pretreated conditioned medium significantly attenuated the mean 

CT44 cell proliferation counts (8580.00 ± 1009) in comparison to conditioned 

medium obtained from carrier-treated mouse MCs at 24 hours time points 

(12910.00 ± 678.20, *P<0.05, Figure 26). However, at 48 and 72 hours time 

points there was no significant difference between the two groups (data not 

shown). 	
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Figure 26. LY294002 attenuates in vitro murine mast cell associated 

CT44 tumor cell proliferation. Figure depicts quantitation of mean ± 

standard error CT44 mouse colon cancer proliferation at 24 hour time 

point in response to carrier or 10 µM LY294002 treated GMMC 

conditioned medium. * P < 0.05 represents the result of Student t test. 

3.6.3 Pi3k/akt inhibitor LY294002 attenuates mouse MC induced CT44 
invasion 

Similarly, the mean CT44 cell invasion/well after normalization (CT44 invasion 

count number in carrier-treated study group only was normalized by reducing 

33.53% since at 24 hours the CT44 proliferation was attenuated by 33.53%) was 

significantly attenuated by 10 µM LY294002 pretreated conditioned medium 

(303.70 ± 16.70) in comparison with conditioned medium from carried-pretreated 

mouse mast cells (516.70 ± 45.18, *P<0.05, Figure 27A and 27B).  
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Figure 27. LY294002 attenuates in vitro murine mast cell associated 

CT44 tumor cell invasion. (A) Representative images of CT44 mouse 

colon cancer cell invasion in response to conditioned medium obtained 

either carrier or LY294002 treated GMMCs. (B) Quantification of mean ± 

standard error CT44 cell invasion/well in response to carrier or 10 µM 

LY294002 treated GMMC conditioned medium. * P < 0.05 represents the 

result of Student t test. 

These observations show that PI3K and phosphorylation of AKT are critical for 

mast cell functions that promote cancer and LY294002 inhibits the cancer 

promotion by inhibiting these properties. 
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4.	
  Discussions	
  
 

It has been known for long that inflammation plays an important role in cancer 

development. Ulcerative colitis patients with prolonged chronic inflammation are 

at high risk to develop invasive colon cancer. PI3K pathway has been a subject 

of interest in cancer development for researchers globally, however less is known 

about the role played by PI3K/AKT in the inflammatory component for the tumor 

development. The over-all aim of this project was to study the change in the 

pattern of PI3K/AKT and inflammation as disease progress from colitis to cancer, 

followed by a detailed investigation of the role of PI3K/AKT in inflammation and 

whether PI3K/AKT in inflammation regulate the tumor progression and cancer 

development using human patient specimens, in vitro assays and in vivo 

experimental colitis associated cancer mouse model system.  

 

4.1 Selection and characterization of patients based on histopathological 
study 
 

Inflammation plays a pivotal role in initiation and progression of colon cancer 

(Khazaie et al, 2011; Terzic et al, 2010). Chronic inflammation in UC patients 

increases the risk of rapidly progressing CRC (Allavena et al, 2008; Bargen & 

Gage, 1960; Bouma & Strober, 2003; Cho et al, 2008; Crivellato et al, 2008; 

Dostert et al, 2008; Ekbom et al, 1990; Gounaris et al, 2008; Gupta et al, 2007; 

Gyde et al, 1988; Itzkowitz & Yio, 2004; Karlen et al, 1999; Kobayashi et al, 

2006; Lakatos & Lakatos, 2008; Lemmon, 2008; Ransohoff, 1988; Taskinen et al, 

2008; Ullman, 2003; Yodavudh et al, 2008a; Yodavudh et al, 2008b). Hence, 

based on histopathological study patient specimens were chosen and grouped 

into 4 categories i.e. normal, colitis, dysplasia and cancer. The objective here 

was to study the immunopathological changes happening in the colon, when the 

disease is progressing from normal to colitis, dysplasia and cancer. Previous 

studies in colitis have majorly been restricted to either comparison between 
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normal versus colitis, or colitis versus colitis associated cancer (Coussens et al, 

1999; Imada et al, 2000; Johansson et al, 2010; Nonomura et al, 2007; Ribatti et 

al, 2000; Ribatti et al, 2003; Takanami et al, 2000; Terada & Matsunaga, 2000; 

Toth-Jakatics et al, 2000). For the first time a novel study pattern was decided 

where the pathological and immunological studies were correlated and studied 

from normal to inflammation-associated cancer development. 

4.1.1 PI3K in human colonic specimen study 

It is known that PI3K activity significantly rises in CRC and is associated with 

poor prognosis (Philp et al, 2001; Velho et al, 2005). Mouse models of UC have 

shown that PI3K activity is critical for progression to cancer (Brown et al, 2010; 

Gounaris et al, 2007; Jain et al, 2010; Kim et al, 2010; Lee et al, 2010; Nigrovic 

et al, 2010; Strouch et al, 2010). However, much of what is known is focused on 

the role of PI3K signaling in tumor cells; furthermore, the relevance to 

inflammation driven colon cancer in humans remains unclear (Brown et al, 2010; 

Cook et al, 2010; Gounaris et al, 2007; Jain et al, 2010; Kim et al, 2010; Lee et 

al, 2010; Nigrovic et al, 2010; Strouch et al, 2010).  

Hence, pAKT levels were studied using immunohistochemical staining and were 

differentially characterized at histological sites of mucosa (epithelial vs. stromal) 

and submucosa in a novel investigation of chronic inflammation associated 

colonic dysplasia and invasive cancer. By in situ staining of human surgical 

specimens, the first evidence found was that PI3K/AKT activity is found 

predominantly in the stromal infiltrates and submucosal inflammatory cells in 

comparison with the epithelium. Moreover, the mucosal pAKT levels did not 

change with the progression of disease from colitis to dysplasia and cancer. 

However, the submucosal pAKT levels increased progressively from normal to 

colitis, dysplasia and cancer. Hence, next step was to investigate what subsets of 

inflammatory cell population display PI3K/pAKT.  pAKT activity overlapped 

abundantly with CD68+ macrophages and tumor infiltrating inflammatory cells. 

These CD68+pAKT+ macrophage cell population showed identical pattern of 
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infiltration as total pAKT cells. They progressively rose in the submucosal areas 

from normal to colitis, dysplasia and cancer. These observations are indicative of 

production of macrophage-chemotactic factors in the submucosal area of active 

inflammation. These macrophages are recruited in the submucosal area and with 

them they bring in high pAKT activity incrementally in the colitis, dysplastic and 

invasive cancer submucosal area. Progressive rise of pAKT+ macrophages in the 

submucosal area with peak levels in the invasive cancer is indicative of highest 

levels of macrophage chemotactic factors being produced by the submucosa of 

invasive colon cancer. In a similar study of murine model for breast cancer, 

macrophages were recruited by the tumor cell-derived chemokine CCL5. When 

treated with the receptor antagonist met-CCL5, both the number of infiltrating 

macrophages and the size of the tumor were significantly reduced(Robinson et 

al, 2003). Moreover, TAMs are differentiated from monocytes via number of 

chemoattractants that are produced by tumor and stromal cells. For instance, 

tumor-derived chemokine CCL2, previously known as monocyte chemotactic 

protein (MCP), is critical for the recruitment of macrophages(Coussens & Werb, 

2002; Graves et al, 1989). Tumor cells, fibroblasts, and macrophages produce 

CCL2, and high CCL2 levels are correlated with increased numbers of TAMs and 

a poor cancer prognosis (Siveen & Kuttan, 2009). Other chemokines, such as 

CCL3, CCL4, CCL5, CCL7, CCL8, CXCL12, and cytokines, including vascular 

endothelial growth factor (VEGF), IL-10 and, platelet-derived growth factor 

(PDGF) are also reported to promote macrophage recruitment (Allavena et al, 

2008; Balkwill & Coussens, 2004; Murdoch et al, 2004; Solinas et al, 2009). In 

addition, another group of monocyte chemoattractants, called the alarmins, have 

been reported to promote the recruitment of monocytes and other myeloid 

cells(Coffelt & Scandurro, 2008). For example, the high mobility group box 

protein 1 (HMGB1), which is one of the molecules released by dying or apoptotic 

tumor cells, is found in the necrotic areas where TAMs preferentially reside. 

Other alarmins, such as S100A8, S100A9, serumamyloid A3 (SAA3), and 

fibronectin, have also been reported to attract CD11b+ myeloid origin cells(Coffelt 

et al, 2009). In total, it can be concluded that macrophages are driven to the area 
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of active inflammation, predominantly at submucosa of colon where an array of 

macrophage chemotactic factors are produced. 

4.1.2 Mast cells in human colonic specimen study 
 

In addition to tumor cells, MC the sentinel cells have been known to produce 

huge array of chemottractants for macrophages(Cheon et al, 2011; Crivellato et 

al, 2008; Khazaie et al, 2011; Maltby et al, 2009). Hence, the presence of MC in 

the patient tissue specimens was investigated. MC frequencies were found in 

identical pattern with pAKT and CD68+ macrophages. MC were found 

predominantly in the submucosa in a progressive pattern from normal to colitis, 

dysplasia and cancer. These results are in accordance with numerous 

observations and findings that report the increase in MC frequencies in 

cancer(Cheon et al, 2011; Crivellato et al, 2008; Khazaie et al, 2011; Maltby et al, 

2009), but this study for the first time report the spatial distribution of MC in the 

mucosal and submucosal areas, where other study have not been accurate to 

point the area of predilection for inflammation and pAKT.  Hence from above it 

can be understood that mast cells may recruit macrophages in the submucosal 

tumor microenvironment. 

4.2 Mast cells recruit macrophages and promote tumor proliferation and 
invasion in PI3K/AKT dependent manner 

4.2.1 PI3K/AKT in mast cells recruit macrophage migration 

MC are found predominantly in submucosa of cancer in this study; are sentinel 

cells that proliferate on activation at the site of inflammation and are known to 

recruit macrophages(Cheon et al, 2011; Crivellato et al, 2008; Khazaie et al, 

2011; Maltby et al, 2009), moreover PI3K is essential for the survival and 

biological functions of MC (Kim et al, 2008c), hence investigation was performed 

if MC associated macrophages recruitment is PI3K dependent? Conditioned 

medium obtained from MC promoted migration of healthy peripheral blood 
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derived macrophages. Next, addition of LY294002 to the conditioned medium 

attenuated macrophage migration. Moreover, the macrophage migration was 

attenuated significantly even further when the conditioned medium obtained after 

LY294002 pre-treated MC was used. These observations are first evidence for 

the role of PI3K/AKT signaling in the biology of MC in context with tumor 

promoting properties. Moreover, the soluble factors from MC are released in the 

tumor microenvironment in a PI3K dependent manner that recruits the 

macrophages and PI3K/AKT activity to the tumor. Addition of LY294002 to the 

conditioned medium has a direct effect on macrophage migration. Similar 

observations were reported for mouse and human macrophage migration using 

LY294002 (Baek et al, 2001). Moreover, soluble factors released by MC were 

tightly regulated by PI3K/AKT and blocking PI3K/AKT in MC attenuates the 

macrophage migration to the highest degree. Thus immunohistochemical-based 

spatial distribution study for pAKT, macrophages and MC was critical in 

understanding that MC might be at the central-axis of macrophage and PI3K/AKT 

recruitment to the tumor microenvironment and predominantly in the sub-

musoca, which is the site of crypt-invasion in invasive cancers. Moreover, these 

in vitro studies results were pivotal in understanding that PI3K upregulation seen 

in colitis-associated invasive colon cancer is attributed to the macrophages and 

the tumor infiltrating leukocytes that are recruited predominantly in the colonic 

submucosa. 

4.2.2 PI3K/AKT in mast cells regulate mast cell degranulation 

Mast cells release various factors by secretion and degranulation in the tumor 

microenvironment(Khazaie et al, 2011; Maltby et al, 2009). In addition to 

secretion PI3K regulates the degranulation of MC(Kim et al, 2008b). A dose-

dependent inhibition of the release of β-hexosaminidase (degranulation) was 

observed in the MC that were treated with LY294002. These observations are in 

agreement with various studies that have investigated the role of PI3K in mast 

cell biology(Kim et al, 2008b; Lam et al, 2008). The PI3K inhibitors, Wortmannin 

and LY294002, have been widely reported to inhibit antigen-mediated 
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degranulation and cytokine production in both human and rodent mast cells (Kim 

et al, 2008a; Okayama et al, 2003; Tkaczyk et al, 2003). Studies utilizing mouse 

bone marrow-derived mast cells (BMMCs) expressing a kinase-inactive mutant 

isoform of the p110δ catalytic subunit have shown that p110δ is the major 

isoform responsible for antigen-mediated degranulation and cytokine production 

in MC(Ali et al, 2004; Ali et al, 2008). This observation is further supported by the 

ability of the selective p110δ inhibitor, IC87114, to inhibit antigen-mediated MC 

activation and by its ability to inhibit the enhancement of antigen-mediated 

degranulation by stem cell factor (SCF)(Ali et al, 2004). By contrast, MC derived 

from the bone marrow of p85α and p85β knock out mice show normal antigen-

mediated calcium flux and degranulation(Lu-Kuo et al, 2000; Tkaczyk et al, 

2003), suggesting that the p110 catalytic subunit can utilize alternative regulatory 

subunits for its interaction with phosphorylated Gab2(Kim et al, 2008c) . 

4.2.3 PI3K/AKT in mast cells promote tumor proliferation 

MC are known to produce various growth factors and array of tumor promoting 

cytokines, chemokines and proteases that plays an vital role in tumor 

promotion(Maltby et al, 2009). MC release these growth factors in a PI3K/AKT 

dependent manner, hence the role of PI3K in MC dependent tumor proliferation 

and invasion was studied. MC conditioned medium that possess the soluble 

growth factors released by MC (Cheon et al, 2011; Strouch et al, 2010), when co-

cultured with tumor cells promoted ex vivo tumor proliferation at 24, 48 and 72 

hour time points. Whereas, when LY294002 was added to this conditioned 

medium for co-culture the rate of tumor proliferation was restricted. However, 

when LY294002 pre-treated MC conditioned medium was co-cultured with tumor 

cells, the rate of tumor proliferation was further significantly attenuated. These 

findings suggest that tumor proliferation was promoted via soluble factors 

released from MC that are regulated by PI3K. Moreover, reduction in the tumor 

proliferation rate by addition of LY294002 to the MC conditioned medium 

indicates that LY294002 targets the PI3K in the tumor cells directly and restricts 

their proliferation in the presence of active MC soluble factors. Finally, the 
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highest attenuation of tumor proliferation achieved with co-culture of LY294002 

pre-treated MC conditioned medium indicates that PI3K/AKT in MC regulate the 

release of MC soluble factors that promote tumor growth. In addition, this 

blockage of MC soluble factor release is very potent and strongly attenuates the 

tumor proliferation in comparison with the study group where LY294002 is added 

to the MC (non LY294002 pre-treated) conditioned medium for coculture with 

tumor cells, which could be attributable to the absence of any active MC soluble 

tumor-promoting growth factors in the former group. Similar observations were 

reported with MC conditioned medium induced tumor proliferation in pancreatic 

cells lines Panc-1, HPDE and AsPC1(Strouch et al, 2010), where increase in 

pancreatic cell proliferation was found using LAD-2 MC conditioned medium by 

all three cell lines at 24, 48 and 72 hours time points in comparison with non-

conditioned medium. Furthermore, in agreement to these observations another 

study demonstrated that APCΔ468 and wild type mouse MC conditioned medium 

promoted in vitro colonic epithelial proliferation incrementally at 24 hours, 48 

hours and 72 hours time point(Cheon et al, 2011). In a similar study aimed to 

investigate direct effect of LY294002 on cancer cells, LY294002 was found to be 

effective in vitro against a range of colon cancer cell lines including HT-29 and 

COLO-320 (Garman et al, 2008). Moreover, the tumor recurrence was 

significantly affected after LY294002 treatment (Garman et al, 2008). In another 

in vitro study LY294002 alone did not produce cytotoxic effects, however PI3K 

inhibition with LY294002 significantly radiosensitized the cervical cancer cells 

and showed significant time-dependent effects, increased apoptosis, and altered 

gene expression (Lee et al, 2006). In this study by Lee et al, no effect of 

LY294002 on tumor proliferation could be attributable to the different cancer 

lineages and acquired secondary mutations in the cervical cancer cell lines. 

However, in another study mixed results were seen on tumor growth using 

LY294002.  In this study, LY294002 demonstrated a remarkable growth-inhibitory 

and apoptosis-inducing effect in these colon cancer cell lines, with reduced 

expression of phosphorylated Akt (Ser473). However, there was a great 

discrepancy in between the sensitivity for LY294002 and the levels of expression 
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of pAKT. Although, the LoVo and Colo205 cells displayed high sensitivity to 

LY294002 with increased apoptosis, the DLD-1 and HCT15 cells did not 

exhibited rapid induction of apoptosis. The caspase-3 activity was significantly 

elevated in the LoVo cells but not in the DLD-1 cells. In the in vivo experiments 

using mouse xenografts, LY294002 administration was found effective in the 

suppression of tumor growth and induction of apoptosis, especially in the LoVo 

tumors, and therefore showed striking effectiveness in the mouse peritonitis 

carcinomatosa model. 

4.2.4 PI3K/AKT in mast cells promote tumor invasion 

In addition to tumor proliferation, tumor invasion is an important phenotype 

displayed by tumors, necessary for subsequent metastases. Tumor invasion and 

metastases constitute is a major problem in the treatment of carcinoma patients. 

About 30% of cancer patients with newly diagnosed solid tumors already have 

clinically detectable metastases. A metastatic colony is the result of a continuous 

process starting from the early growth of the primary tumor, and detachment of 

invasive tumor cells from the primary tumor leading to the colonization of other 

organs (Fidler et al. 1978, Fidler & Hart 1982, Weiss 1985, Fidler & Balch 1987). 

Tumor cell invasion is a complex process that involves genetic and cellular 

alterations leading to proteolysis and dispersion through three-dimensional 

biological barriers(Friedl & Wolf, 2003; Gehlsen et al, 1992; Mignatti & Rifkin, 

1993; Stetler-Stevenson et al, 1993). Extracellular matrix (ECM) including the 

type I collagen, which is the most abundant component of the extracellular matrix 

(ECM) forms a significant barrier for tumor cell dissemination into the lymphatics, 

vasculature, and surrounding areas(Sabeh et al, 2004; Seiki, 2003). Thus, in 

most cases, collagen and ECM must be degraded in order for tumor cells to 

spread into surrounding anatomic structures and metastasize(Chambers et al, 

2002). Cell migration, regulated by polarity and reorganization of the cellular 

cytoskeleton, is also an integral aspect of tumor cell invasion(Hanahan & 

Weinberg, 2000; Ridley et al, 2003). Dissecting the etiological factors governing 

the tumor cell migration and invasion is necessary because the latter, in 
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conjunction with metastasis, is a significant cause of morbidity and mortality in 

cancer patients (Sporn, 1996).  

Matrigel is the trade name for a gelatinous protein mixture secreted by 

Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells, which resembles the 

complex extracellular environment and ECM found in many tissues(Benton et al, 

2009; Hughes et al, 2010). Mast cells are rich source of metalloproteases that 

contribute the majority of proteolytic components necessary to break the ECM for 

tumor invasiveness(Cassano et al, 2006; Theoharides & Conti, 2004).  Mast cells 

can disturb normal stromal-epithelial communication and degrade matrix at sites 

of tumor invasion. Mast cells also generate and secrete IL-8, which can act as an 

angiogenic factor, as well as a tumor cell chemotactic factor and tumor 

mitogen(Moller et al, 1993). In fact, blocking of IL-8 by use of neutralizing 

antibodies reduces human non-small cell lung carcinoma progression in 

mice(Brew et al, 2000).  

Using in vitro experiments with human derived cell lines and MC soluble factors 

containing conditioned medium, studies were performed to investigate the role of 

PI3K in MCs in matrigel based invasion assays. Conditioned medium obtained 

from MCs promoted tumor invasion and migration in comparison with the non-

conditioned medium. Moreover, addition of LY294002 to MC conditioned medium 

attenuated tumor cell invasion. Furthermore, in line with the observations from in 

vitro assays discussed previously, conditioned medium obtained from MC 

pretreated with LY294002 attenuated the tumor invasion to the highest levels. In 

a similar study MC conditioned medium was reported to promote Pancreatic 

cancer cell invasion of Panc-1 and HDPE through the matrigel by upregulation of 

matrix metalloproease- 2 and -9(Strouch et al, 2010).  In another group of study, 

in an attempt to investigate direct effect of PI3K/AKT attenuation via LY294002 

on invasive potential of gastric cancer similar observations were found, where the 

in vitro invasion assay and the in vivo nude mice assay suggested that LY249002 

had the potential to inhibit the invasion and metastasis of gastric cancer(Xing et 

al, 2009). This inhibition could be a result of the decrease in the expression of 



109	
  
	
  

MMP-2, MMP-9, MVD and VEGF together with the cytotoxicity towards the tumor 

MMP-2, MMP-9, MVD and VEGF together with the cytotoxicity towards the tumor 

cells, both induced by LY294002 (Xing et al, 2009). In another study invasion 

assays were performed with or without LY294002 (10 µM for 48 hours) and a 

reduction in the invasion of melanoma cell line WM35RhoC was observed (Ruth 

et al, 2006). Finally in vitro direct effect of LY294002 on tumor invasion was 

reported extensively in HT1080 human fibrosarcoma cells, MDA-MB-231 breast 

cancer cells and B16F10 melanoma cells(Yoon et al, 2006), furthermore MMP-9 

based mechanism was reported as critical for these tumor invasions (Yoon et al, 

2006). 

4.2.5 PI3K/AKT in tumor infiltrating leukocytes promote tumor invasion 

In addition to MC, the role of PI3K/AKT in tumor infiltrating leukocytes (TILs) 

were investigated for in vitro matrigel based colon cancer invasion. Once the 

tumor is vascularized, it is infiltrated by leukocytes, a phenomenon seen in all 

solid cancers. The first observation of TILs was done by Rudolf Virchow in 1863 

(Dirkx et al, 2006)and was thought to be the result of chronic inflammation, which 

was already present before tumor development. However, now it is known that 

the presence of leukocytes is a consequence of an immune reaction to the tumor 

itself- first, innate, and later, specific immunity- as the immune system is able to 

recognize tumor-associated antigens(Brigati et al, 2002). In cancer patients, 

specific cytotoxic T lymphocytes recognizing tumor antigens have been reported, 

and the presence of these cells is associated with better prognosis. In addition, 

antibodies to tumor-associated antigens produced by B cells may also play a 

critical role in limiting tumor growth(Scanlan et al, 2001; Vaughan et al, 2004). 

Leukocyte infiltration in tumors is, therefore, often associated with better 

prognosis and overall better patient survival. However, the role of TILs in cancer 

progression and metastasis has been debated frequently. Although often 

considered to be associated with improved prognosis and leading to the 

enhanced survival in cancer patients, inflammatory cells have also been reported 

to assist the tumor’s capabilities to progress, proliferate, and metastasize. 
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Tumor-associated macrophages (TAMs), for instance, have been shown to be 

symbiotically related to tumor cells: Tumor cells recruit TAMs and provide them 

with survival factors, and TAMs in turn produce a variety of angiogenic factors in 

response to the tumor microenvironment(Allavena et al, 2008; Solinas et al, 

2009). 

TILs were isolated from the freshly obtained surgical tissues of ulcerative colitis 

associated cancer. TILs were found to be high in pAKT and LY294002 treatment 

attenuated both Ser473 and Thr308 pAKT. In vitro tumor invasion studies were 

performed mimicking the in vivo phenotype as seen in the immunohistochemical 

studies and spatial distribution of the TAMs and pAKT positive inflammatory 

cells. TAMs from UC patients associated cancer patients promoted HT-29 

invasion, either through their secreted soluble factors in the conditioned medium 

(experimental setup-1) or direct cell-cell contact (experimental setup-2). Indeed, 

when these cells were co-cultured invasion was even more pronounced 

(experimental setup-2). However, LY294002 treatment of Tumor Infiltrating 

Leukocytes reduced their ability to promote HT-29 invasion in both setups. In 

experimental setup-1 PI3K/AKT was found critical for the release of tumor 

invasion-promoting soluble factors from TILs. Whereas, in experimental septup-2 

cell-cell contact between TILs and tumor cells promoted tumor invasion and 

PI3K/AKT was vital in TILs for regulating this cell-cell contact with tumor cells for 

subsequent tumor invasion. In agreement with these observations T-cell 

exosomes were found to promote lung cancer cell invasion(Cai et al, 2012), while 

in another study freshly isolated peripheral blood granulocytes and peritoneal 

macrophages promoted tumor invasion of T-47D (human ductal breast 

carcinoma) and SW620 (human colon carcinoma), interestingly when 

granulocytes and macrophages were used together a synergistic effect on tumor 

invasion was seen(Barbera-Guillem et al, 1999). Moreover, macrophages were 

reported to promote tumor cell invasion by producing EGF ligands that stimulate 

tumor cell motility, especially along collagen fibers that macrophages help to 

fabricate. Macrophages also induce the formation of blood new vessels that are 
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sheaved in collagen, and thus, the migration of tumor cells tends to be focused 

toward these newly formed vessels, thereby directing tumor cells to sites of 

intravasation (Pollard, 2008). The latter process in turn is enhanced by 

macrophages that align upon the outside of the blood vessels that are elaborated 

under the influence of macrophages within the malignant areas and provide 

portals of escape for the tumor cells. All of these macrophage-promoted activities 

of increased angiogenesis as well as enhanced tumor cell migration, invasion, 

and intravasation results in increased metastatic capacity of the tumor (Pollard, 

2008). Few attempts have been made to coculture macrophages with the tumor 

cells in in vitro invasion assays and investigate the change in invasive potential of 

the tumor cell. The human breast cancer cell lines MCF-7, SK-BR-3 and the 

benign mammary epithelial cell line hTERT-HME1 were cocultured with 

macrophages(Hagemann et al, 2004). In agreement with results obtained from 

our current study, Hagemann et al, found that coculture enhanced invasiveness 

of the cancer cells on cell-cell contact, while hTERT-HME1, the benign 

counterpart remained non-invasive. Moreover, addition of the broad-spectrum 

matrix metalloprotease (MMP)-inhibitor FN 439, neutralizing MMP-9 or tumor 

necrosis factor-alpha (TNF-a) antibodies reduced invasiveness to basal 

levels(Hagemann et al, 2004). At basal levels, all cell lines produced low 

amounts of MMP-2, -3, -7 and -9, while basal MMP production by macrophages 

was significantly higher. Upon coculture, supernatant levels of MMPs -2, -3, -7 

and -9 increased significantly, paralleled by an increase of MMP-2 activation. Co-

culture of macrophages and hTERT-HME1 did not lead to MMP induction. In the 

cocultures, mRNAs for MMPs and TNF-a were significantly upregulated in 

macrophages, while the mRNA concentrations in the tumor cells remained 

unchanged. In conclusion, cell-cell contact of tumor cells with macrophages 

leads to enhancement in the invasiveness of the malignant cells due to TNF-a 

dependent MMP induction in the macrophages(Hagemann et al, 2004). In an 

extension to this study by Hageman et al, coculture of macrophages with ovarian 

or breast cancer cell lines led to TNF-α-dependent activation of JNK and NF-κB 

pathways in tumor cells, but not in benign immortalized epithelial cells. Tumor 
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cells with upregulation of JNK and NF-κB activity exhibited enhanced 

invasiveness. Blockage of the NF-κB pathway by TNF-α neutralizing Abs, an NF-

κB inhibitor, RNAi to RelA, or overexpression of IκB attenuated tumor cell 

invasiveness(Hagemann et al, 2005). Blockade of JNK also significantly 

restricted invasiveness, but blockade of p38 MAPK or p42 MAPK had no 

effect(Hagemann et al, 2005). Cocultured tumor cells when screened for the 

expression genes associated with inflammation and invasion that also contained 

an AP-1 and NF-κB binding site, EMMPRIN and MIF were found to be 

upregulated in cocultured tumor cells in a JNK- and NF-κB-dependent 

manner(Hagemann et al, 2005). Knocking down either MIF or EMMPRIN by 

RNAi in the tumor cells significantly attenuated tumor cell invasiveness and 

matrix metalloprotease activity in the coculture supernatant. Hence, in conclusion 

TNF-α, via NF-κB, and JNK induces MIF and EMMPRIN in macrophage to tumor 

cell cell-cell contact cocultures, leading to increase in the invasive potential of the 

tumor cells(Hagemann et al, 2005). 

4.3 PI3K/AKT inhibition attenuates in vivo cancer invasion, cancer-
associated inflammation and cancer promoting properties in mouse model 
 

Observations from in vitro studies were tested in the in vivo mouse model 

system. IL-10-/- mice treated with Piroxicam develop experimental colitis 

associated cancer by day 56 and were used to study the effect of LY294002 

treatment/PI3K inhibition on colitis-associated cancer.  In the IL10 deficient 

mouse model PI3K is required for induction of colitis, and its targeted genetic 

ablation (Brown et al, 2010; Cook et al, 2010; Gonzalez-Garcia et al, 2010; 

Gounaris et al, 2007; Jain et al, 2010; Kim et al, 2010; Lee et al, 2010; Nigrovic 

et al, 2010) or treatment of mice with the broad PI3K inhibitors Mesalamine 

(Brown et al, 2010) or  LY294002 (Brown et al, 2010; Cook et al, 2010; Gounaris 

et al, 2007; Jain et al, 2010; Kim et al, 2010; Lee et al, 2010; Nigrovic et al, 2010) 

protect against colitis. PI3K was described to mediate proliferation and activation 

of Akt resulting in Crypt architectural changes that predispose to colitis (Brown et 

al, 2010; Cook et al, 2010; Gounaris et al, 2007; Jain et al, 2010; Kim et al, 2010; 
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Lee et al, 2010; Nigrovic et al, 2010).  However, as described above using in situ 

staining of human colonic tissue sections that the relative frequency of detectable 

PI3K active cells in the stroma and submucosa is more than 10 fold above that in 

of epithelial cells and increases with colitis and cancer; by contrast, in the IL10-/- 

mouse colon this ratio is reversed. This difference between human and mouse 

tissue may have masked the significance of PI3K activity by tissue infiltrating 

cells in predisposition to colitis and progression to cancer. IL-10-/- that receives 

Piroxicam develops colitis followed by invasive lesions by day 56, however 

simultaneous LY294002 treatment attenuated the development of invasive lesion 

counts. Treatment of LY294002 inhibited epithelial and stromal pAkt counts, 

however LY294002 showed a striking attenuation of stromal pAkt in comparison 

with epithelial pAkt, reduction in the inflammatory scores with LY294002 

treatment could be partially responsible for this observation. Moreover, epithelial 

proliferation was reduced and tumor apoptosis was increased with LY294002 

treatment, which could be well correlated with the reduction in the invasive lesion 

counts. Furthermore, LY294002 treatment reduced granulocyte and mast cell 

frequencies and in situ mast cell degranulation.  In agreement with these 

observations in a similar experimental setup in another study, LY294002 

treatment reduced the frequency of dysplastic lesions, reduced epithelial 

proliferation, epithelial Akt and increased apoptosis (Lee et al, 2006). The critical 

role of phosphoinositide 3-kinase-γ (PI3Kγ) in inflammatory cell activation and 

recruitment makes it an attractive target for immunomodulatory therapy. A study 

with 5-Quinoxilin- 6-methylene-1,3-thiazolidine-2,4-dione (AS605240), a potent 

PI3K inhibitor, has been reported to ameliorate chronic inflammatory disorders 

including rheumatoid arthritis, systemic lupus erythematosus, and atherosclerosis 

and colitis(Peng et al, 2010). In this study therapeutic potential of AS605240 in 

mice with dextran sodium sulfate (DSS)- induced acute and chronic colitis were 

studied. AS605240 improved survival rate, disease activity index, and histological 

damage score in mice administered DSS in both preventive and therapeutic 

studies. AS605240 treatment also significantly inhibited the increase in 

myeloperoxidase levels, macrophage infiltration, and CD4 T-cell number in the 



114	
  
	
  

colon of DSS-fed mice (Peng et al, 2010). The DSS induced overproduction of 

colonic proinflammatory cytokines including interleukin (IL)-1β, tumor necrosis 

factor-α, and interferon-γ was significantly suppressed in mice undergoing 

AS605240 therapy, whereas colonic anti-inflammatory cytokines such as IL-4 

were up-regulated(Peng et al, 2010). The downregulation of the phospho-Akt 

level in immunological cells from the inflamed colon tissue and spleen of 

AS605240-treated mice was detected both by immunohistochemical analysis and 

Western blotting. These findings demonstrate that AS605240, another PI3K 

inhibitor, may represent a promising novel agent for the treatment of 

inflammatory bowel disease by suppressing leukocyte infiltration as well as by 

immunoregulating the imbalance between proinflammatory and anti-inflammatory 

cytokines (Peng et al, 2010). Another preferential p110α/γ PI3K inhibitor 

(compound 8C; PIK-75) that was found to be effective in inflammation-based 

assays, cell-based assays revealed that PIK-75 potently and dose dependently 

inhibits in vitro and in vivo production of TNF-α and IL-6, diminishes the induced 

expression of human endothelial cell adhesion molecules (E-selectin, ICAM-1, 

and VCAM-1), and blocks human monocyte-endothelial cell adhesion(Dagia et 

al, 2010). Most importantly, PIK-75, when given orally in a therapeutic regimen, 

significantly suppresses the macroscopic and histological abnormalities 

associated with dextran sulfate sodium-induced murine colitis. The efficacy of 

PIK-75 in attenuating experimental inflammation is mediated, at least in part, due 

to the downregulation of pertinent inflammatory mediators in the colon (Dagia et 

al, 2010).  

 

In addition to the investigation performed to dissect the role of PI3K in 

inflammatory cells using human in vitro and mouse in vivo system in cancer 

progression, in vitro role of PI3K in mouse system was performed to confirm and 

crosscheck the observations.  PI3K in gut-derived mouse MC was critical for 

degranulation and mouse colon carcinoma proliferation and invasion. LY294002 

treatment of MC attenuated in vitro degranulation, MC associated mouse colon 

cancer proliferation and invasion.  
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Tissue infiltrating MC and macrophages are sensitive to inhibition of PI3K and 

are abundantly present in increasing numbers during progression to colitis and 

cancer. Therapies that target the PI3K pathway need to take into account that 

tumor cells may not be the primary target cells. These findings demonstrate the 

role of PI3K in tumor infiltrating cells and their communication with tumor cells, 

drawing attention to the role of PI3K signaling in the tissue and tumor 

environment in predisposition to cancer.  
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