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Summary 
 

 

In the dorsal diencephalon of all vertebrates, the habenular neurocircuit 

transfers cognitive information from the forebrain into the ventral mid- and 

hindbrain via long axon fibers in the stria medullaris (SM) and fasciculus 

retroflexus (FR) on both sides of the brain. How these axons navigate through 

the brain and whether communication between brain hemispheres is required 

during the formation of this neuronal network is still an open question. The 

bilaterally formed habenulae in the dorsal diencephalon in zebrafish consist of 

the asymmetrically formed dorsal habenula nucleus (dHb) and the symmetric 

ventral habenula nucleus (vHb). While development of the dHb has been well 

described, the origin of the vHb and the genetic cascades underlying its 

development are not known.  

We use the habenular network as a model to investigate how axon elongation 

is coordinated during embryonic development. This can best be done by 

recording its development in-vivo. As this neural circuit takes at least 4 days 

to develop and spans about 300 µm in anterior-posterior and dorso-ventral 

direction, we needed to develop a novel assay to investigate its development 

in the living zebrafish embryo. In our studies, we identified a transgenic line of 

zebrafish expressing GFP throughout the habenular neurocircuit development 

in all subnuclei and their efferent projections. Combining optimised in-vivo 2-

photon (2-PM) long-term image recording and colour code analysis with focal 

laser ablation of neurons, we discovered a neuronal network essential for 

dorsal habenular axon elongation and pathfinding. We present evidence that 

a bilateral cluster of early projecting neurons in the thalamus (ThEPC) 

functions as intermediate target for dHb axonal elongation via ipsilateral short- 

and contralateral long-range axonal communication between the two brain 

hemispheres. Moreover, we show that a subset of ThEPC neurons 

contributes to the forming ventral habenula, which development is controlled 

by tcf7l2 mediated Wnt/beta-catenin signalling.     
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Zusammenfassung 
 

 

 

Im dorsalen Dienzephalon aller Vertebraten findet sich das habenulare 

Neuralnetz, das cognitive Informationen vom Vorder- ins Mittel- und Hinterhirn 

leitet. Dies geschieht über lange Axonbündel, die stria medullaris und den 

fasciculus retroflexus auf beiden Seiten des Gehirns. Wie genau diese Axone 

durch das Gehirn navigieren und ob Kommunikation zwischen den 

Gehirnhälften während der Ausbildung des neuronalen Netzwerks erforderlich 

ist, ist noch nicht geklärt. Im Zebrafisch bestehen die bilateral geformten 

Habenulae aus dem asymmetrisch geformten dorsalen habenularen 

Subnukleus (dHb) und dem symmetrisch ausgebildeten ventralen Subnukleus 

(vHb). Während viel über die Entstehung und Lokalisation des dHb bekannt 

ist, weiß man so gut wie nichts über die Entstehung des vHb. 

Wir nutzen das habenulare Neuralnetz als Modellsystem, um herauszufinden, 

wie das Wachstum von Axonen auf beiden Seiten des Gehirns während der 

Embryonalentwicklung koordiniert wird. Dies kann am Besten im lebenden 

Organismus beobachtet werden. Da aber die Ausbildung des habenularen 

Netzwerks 4 Tage andauert und mit 300 µm Spannweite eines der Größten 

Netzwerke des Gehirns ist, mussten wir ein verfeinertes Imaging System 

entwickeln, um dessen Entwicklung “in-vivo” verfolgen zu können.  

In unseren Studien identifizierten wir eine neue transgene Zebrafischlinie, die 

GFP während der gesamten Entwicklung des habenularen Neuralnetzes in 

allen Subnuklei und ihren efferenten Projektionen expremiert. Das 

Kombinieren von optimierten 2-PM Langzeitaufnahmen, der automatischen 

Farbgebung von Strukturen entlang der Z-Achse und dem Ablatieren von 

Neuralzellen ermöglichte es uns, ein neues Neuralnetz während seiner 

Entwicklung zu filmen und zu zeigen, dass es wichtig für das Wachstum und 

die Orientierung der dHb Axone ist. Wir zeigen weiterhin, dass eine bilateral 

angelegte Gruppe von Neuronen im Thalamus (ThEPC) als sogenanntes 

“Intermediate Target” für dHb Axone fungiert und über kurze und lange 

Distanzen bis auf die andere Seite des Gehirns mit dHb Axonen 
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kommuniziert. Des Weiteren fanden wir heraus, dass einige dieser ThEPC 

Zellen die vHb formen und sich nur in der Gegenwart von tcf7l2 kontrollierter 

Wnt/beta-catenin Signalgebung ausbilden. 
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1 Introduction 
 

 
 

The zebrafish (Danio rerio) dorsal diencephalon is one of the best systems to 

study brain asymmetry and lateralization. In our studies, we found that the 

dorsal diencephalic conduction (DDC) system of zebrafish can be used to 

investigate intra- and interhemispheric communication processes important 

for coordinated axon elongation during brain development.  

The DDC system interconnects different brain structures localised along the 

anterior-posterior (A-P), dorso-ventral (D-V) and the left-right axis to establish 

a complex neuronal network implicated in behavior and cognitive function. In 

the last two decades, a lot of information on DDC system development has 

been collected using the zebrafish model. However, the lack in specific 

transgenic lines expressing fluorescent protein during the main events of DDC 

formation necessary for in vivo studies makes it rather difficult to draw 

conclusions about the key-dynamic processes important for network 

formation.  

Habenular efferent projections on either brain hemisphere travel in a 

seemingly coordinated manner about 300 µm far to reach their target in the 

ventral midbrain. How this is achieved is unknown, but it appears that the 

axons on either brain hemisphere communicate with each other. Axonal 

commissures connect brain hemispheres at multiple locations along the 

neuraxis, which could potentially allow for such exchange of information. 

However, studies on fixed embryos only revealed a prominent commissure 

connecting the habenulae themselves but not the ipsilaterally projecting 

axons. The potential contribution of the habenula commissure and or other 

components of the DDC system to axon guidance and elongation can best be 

studied in vivo. Therefore I established an optimised 2-PM based long-term 

time-lapse assay combined with computational colour coding of z-positions to 

follow DDC development over 4 days, the time by which habenular axons 

have innervated their targets. 
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In the following, I will give an overview on the history of studies on the 

habenular neural network and our current knowledge with a particular focus 

on the zebrafish model system.  
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1.1 Brain history and the discovery of brain asymmetry  
 

The studies of brain anatomy and brain function have fascinated scientists 

since thousands of years. The earliest evidences for brain research derive 

from ancient civilisation documents. The word "brain" was mentioned for the 

first time in an Egyptian papyrus, known as the Edwin Smith Surgical 

Papyrus, written around the year 1700 BC. This document is the first proof of 

brain studies in which 48 cases of brain injuries with different recommended 

treatments were collected (Breasted JH., 1930). Moving from the Egyptian 

papyrus throughout the scientific history, different hot spots in brain research 

can be found. The first one to be mentioned concerns the discoveries of 

Herophilus, “the father of Anatomy”, that wrote between 335 BC and 280 BC 

at least nine works about human body architecture. In the subsequent 1500 

years, many "scientists" described anatomical brain subdivisions, the cranial 

nerves, some mental diseases but one of the most fertile times for brain 

discovery was during the Renaissance. At this time, Leonardo da Vinci 

described with different models the brain structures and introduced the 

concept of anatomical brain asymmetry (Bell and Sons, 1897). The discovery 

of a functional brain asymmetry had to wait until the pioneering findings of 

Paul Broca; in his studies he proved the function of the left brain hemisphere 

in the language control (Broca, P., 1861). Since then, many anatomical brain 

structures have been carefully described in human and in many other 

vertebrate species proving a high conservation of functional brain 

lateralisation for sensory and cognitive processes. For instance, the 

discoveries of James Papez (1937) and the subsequent studies of Paul D. 

MacLean (1950) highlighted the cognitive and sensory function of limbic 

system making it an excellent model for neuronal networks investigations 

(Beretta et al., 2012). 
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1.2 DDC system connects the habenulae nuclei in the limbic 
forebrain with midbrain limbic structures 
 

The limbic system is a complex of structures in the forebrain and midbrain, 

which consists of several neurotransmitter pathways involved in behavior, 

emotion, memory and olfaction (Hikosaka, 2010). The main components of 

the limbic system are the prefrontal cortex, cingulate cortex, amygdaloid 

nuclear complex, limbic thalamus, hippocampal formation, nucleus 

accumbeus, anterior hypothalamus, ventral tegmental area and midbrain 

raphe nuclei (Figure 1.1); (Morgane PJ et all., 2005). Two major associated 

networks connect the limbic forebrain with the limbic structures located in the 

midbrain of vertebrate species. The medial forebrain bundle (MFB) 

interconnects the anterior olfactory areas (OA) with the lateral preoptic (LPO), 

lateral hypothalamic (LH) and ventral tegmental area (VTA). The DDC system 

exchanges information between the medial forebrain bundle and the 

habenulae nuclei (Hb) through the stria medullaris (SM) and connects the 

habenulae nuclei with the ventral midbrain area via axons of the fasciculus 

retroflexus (FR); (Figure 1.1); (Sutherland, 1982; Morgane et al., 2005).  

The stria medullaris, also known as stria medullaris thalami or stria 

habenularis, is part of the epithalamus and it mainly consists of a bundle of 

habenular afferent projections running along the lateral margin of the third 

ventricular surface, interconnecting the medial basal forebrain (anterior 

hypothalamus and septal nuclei) with the habenulae nuclei. The fasciculus 

retroflexus is a compacted bundle of efferent fibers arising in the habenulae 

nuclei and mainly target structures in the ventral midbrain/hindbrain, such as 

interpeduncular nucleus (IPN) and median raphe (MR). 

The DDC system functions in association with different limbic forebrain 

components and it was found that modifications in DDC neuronal network 

causes psychological alteration such as depression, anxiety, schizophrenia 

and neuropathological responses to addictive drugs (Caldecott-Hazard et al., 

1988; Ellison, 2002; Lecourtier et al., 2004; Yang et al., 2008; Agetsuma et 

al., 2011). Additionally, investigations on the DDC neuronal network 

demonstrated a function in the secretion of melatonin hormones, mediated by 

pineal organ connections, implicating a regulation of sleep and circadian 
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rhythm (Klein and Moore, 1979; Valjakka et al., 1998; Falcon et al., 1999). 

Moreover, DDC neurons act as a modulator of dopaminergic and GABAergic 

neurons and function in behaviors and learning processes (Lisoprawski et al., 

1980; Lee and Huang, 1988; Lecoutier and Kelly, 2005).  

The identified connections and functions carried out during the processing of 

stimuli make the DDC neuronal network an suitable model to investigate 

complex brain processes (Aramaki and Hatta, 2006). 

 

 
Figure 1.1: DDC neuronal network complexity in the mammalian brain. 
Simplified schematic diagram of the main afferent (green lines) and efferent 
connections (black lines) of the DDC system in the mammalian brain. Targets and 
origins of axons related to the lateral habenulae are highlighted in yellow; those of 
the medial habenulae in red. 	  
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DDB, nucleus of diagonal band; dScN, dorsal superchiasmatic nucleus; F, fornix; 
GP, globus pallidus (primate homologue of the teleost entopeduncular nucleus); IC, 
internal capsule; IThP, inferior thalamic peduncle; LH, lateral hypothalamic area; 
LPO, lateral preoptic area; NB, nucleus basalis; P, pineal; Pa, pallium; Sep, septum; 
Si, substantia innominate; Th, thalamic nuclei; VTA, ventral tegmental area of Tsai.  
(Modified from Beretta et al., 2012). 
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1.3 Habenular nuclei cell complexity  
 
A highly conserved neuronal networks described in the vertebrate brain is the 

DDC neurocircuit, which interconnects the habenulae nuclei with different 

brain targets located in the anterior forebrain and in the ventral midbrain and 

hindbrain (Figures 1.1,1.2); (Sutherland, 1982). The habenular structure 

consists of two bilaterally symmetric nuclei located dorsal to the posterior part 

of the thalamus adjacent to the third ventricle (Guillery, 1959; Cragg, 1961; 

Morgane et al., 2005). In mammalian, each habenula can grossly be 

subdivided into a medial and lateral nucleus corresponding to dorsal and 

ventral nuclei in amphibians, fish and reptiles respectively (Figures 1.1,1.2); 

(Concha and Wilson, 2001; Amo et al., 2010).  

The dorsal habenulae display a left-right asymmetry across the midline with 

respect to morphology, axonal projections and gene expression and can be 

subdivided into lateral and medial habenula subnuclei (Figure 1.2); 

(Goronowitsch, 1883; Concha and Wilson, 2001; Gamse et al., 2003, 2005; 

Guglielmotti and Cristino, 2006). Contrary to the dorsal habenula, the ventral 

habenula is symmetric in cell composition, gene expression and in the pattern 

of innervations in the ventral hindbrain target (Figure 1.2); (Amo et al., 2010). 

The efferent axonal targets of habenular nuclei were investigated in different 

vertebrate species using diverse approaches mainly based on horseradish 

peroxidase (HRP) injection, radioactive labelling, anterograde fibers 

degeneration experiments and lipophilic dye labelling (Beretta et al., 2012). 

Using these systems it was possible to identify the IPN and the MR as the 

main midbrain targets of habenulae nuclei efferent projections (Figures 

1.1,1.2). 
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1.4 Zebrafish as a model system to investigate neuronal 
networks formation 
 

In the last two decades, zebrafish became a suitable vertebrate model system 

to investigate in-vivo neuronal network formation. The advantages of 

zebrafish to follow developmental processes in living animals are related to 

the possibility to combine its transparency and external development with 

genetic tools and transgenesis. The availability of the several teleost genome 

sequences including zebrafish allows for comparative studies between 

vertebrate species and increases the potential applications of this model 

system to investigate complex developmental processes also in respect to 

evolutionary conservation. In zebrafish, DDC establishment requires 

approximately 4 days of development making the investigation of this system 

in-vivo, over the time, potentially reliable in comparison to other vertebrate 

models (Altman and Bayer, 1979). Unfortunately, the absence of transgenic 

tools to label habenular network components throughout their development 

and appropriate long-term imaging systems made it impossible until now to 

study its formation in living embryos (Beretta et al 2012). To acquire new 

knowledge on DDC system development and to understand more about the 

spatio-temporal events, new transgenic tools and imaging systems are 

necessary to record its formation in-vivo. This would allow to combine long-

term imaging with genetic manipulations (Del Bene and Wyart, 2011) to 

visualise and compare in-vivo the DDC neuronal network establishment 

between wild type and manipulated embryos. This would open avenues to 

understand and correlate neuronal network function and embryonic behavior.  
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1.4.1 Habenular cell complexity and main axonal innervations in the DDC 
system of zebrafish 
 

The habenular neurocircuit is conserved between vertebrate species. In fish, 

the habenular nuclei are subdivided in the dorsal (dHb) and ventral habenula 

(vHb) domain (Concha and Wilson, 2001; Amo et al., 2010). Several gene 

members of the potassium channel tetramerization domain (KCTD) familly are 

found to be expressed in the dHb asymmetrically across the left-right axis 

starting from 48 hpf (Gamse et al. 2003, 2005). Combining marker gene 

analyses with lipophilic dye labellings it was found that the lateral subnucleus 

is larger on the left brain side and it is manly sending axonal projections into 

the dorsal part of the IPN (dIPN). Conversely, the medial habenular 

subnucleus of the dHb is larger on the right hemisphere and its axons 

predominately target the ventral part of the IPN (vIPN). Therefore, left-right 

asymmetry displayed in the dHb is transformed during DDC system 

development into a dorso-ventral asymmetry in the midbrain target (Figure 

1.2); (Gamse et al., 2005; Aizawa et al., 2006; Bianco et al., 2009). 
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Figure 1.2: Habenular neuronal network in the zebrafish brain. 
Schematic of the habenular cell composition and efferent axonal projections 
innervating the interpeduncular nucleus (IPN) in 4 day old zebrafish embryos. The 
habenular nuclei are subdivided into lateral (red), medial (blue) and ventral (green) 
domains. Hb, habenula; dHbl, lateral dorsal habenula; dHbm, medial dorsal 
habenula; IPN, interpeduncular nucleus; MR, median raphe; P, pineal organ; PP, 
parapineal organ; d: dorsal; v, ventral. 
(Modified from Beretta et al., 2012). 
 

The zebrafish vHb has been discovery recently by applying tract-tracing 

techniques to identify axons that project to the MR, the main target of 

mammalian lateral efferent neurons (Herkenham and Nauta, 1979), 

homologous of vHb (Figure 1.2); (Amo et al., 2010). Gene expression analysis 

in zebrafish revealed that vHb neurons express symmetrically the cell-cell 

adhesion marker protocadherin 10a (Hirano et al., 2010). This gene is 

expressed specifically in the mammalian lateral habenular neurons indicating 

the evolutionary conservation of the vHb in zebrafish. Supporting this 

observation, the expression of vHb markers is localised only to neurons that 

target especially the MR nucleus (Amo et al., 2010). Previous studies 

performed in the mammalian lateral habenular were showing the 

serotoninergic character of the axons innervating the MR (Nishikawa T. and 

Scatton B., 1985). Anti-serotonin antibody stainings on fixed zebrafish 

embryos showed that the vHb is sending projection in the hindbrain to form 

serotoninergic synapsis with the MR nucleus (Amo et al., 2010).  

 

1.4.2 Habenular neurogenesis 
 

In the last two decades, the understanding of habenular neurocircuit formation 

and function increasingly attracted neuroscientists. Most of the data collected 

on the development of habenulae nuclei, the habenular neuronal network 

formation and the underlying genetic cascades were obtained mainly through 

labellings at fixed developmental stages in wild type embryos and in mutant 

lines (Halpern et al., 2003; Aizawa et al., 2007; Carl et al., 2007; Beretta et al., 

2012).  

The formation of dHb nuclei starts after somitogenesis from a bilateral 

symmetric pool of neuroectoderm progenitor cells located in the dorsal 
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diencephalon adjacent to the pineal organ (Aizawa et al., 2007, Roussigne et 

al., 2009). Using BrdU labellings it was found that the precursor cells on the 

left brain side start to proliferate at 24 hpf followed by the progenitor cells on 

the right brain hemisphere (Aizawa et al., 2007). The location of dHb 

precursor cells on the left and the right hemisphere was determined using 

cxcr4b as the only dHb precursor marker (Roussigne et al., 2009). Cxcr4b in-

situ stainings revealed that number of dHb precursor cells is early higher on 

the left brain hemisphere equalizing subsequently between the left and the 

right brain side. The reason for the asymmetric proliferation of the dHb 

precursor cells is unknown. However, these data support the hypothesis that 

the dHb nuclei formation may depend on an asymmetric proliferation process 

but do not exclude other possible mechanisms. To investigate, whether 

differentiation is involved during habenular nuclei neurogenesis, the early 

expression of lateral and medial marker genes and Brdu labeled embryos at 

different stages of development were analysed (Aizawa et al., 2007; 

Roussigne et al., 2009). Around 28 hpf, the progenitor cells located on the left 

and right brain hemispheres start to acquire the lateral character and build up 

the lateral subnuclei. Subsequent to the initial steps of lateral habenular 

(dHbl) formation, the medial habenulae (dHbm) neurons start to differentiate 

from a sub-cluster of dHb precursor cells to organise the medial habenula 

subnuclei. This data suggest that left-right asymmetry is not only dependent 

on asymmetric proliferation but also depends on the differentiation of dHb 

precursors cells. Indeed, the process of development of dHbl and dHbm cells 

is asymmetric between the left and the right axis. The entire process of 

habenular nuclei formation ends around 72 hpf. Simultaneously to the 

establishment of left-right asymmetry dHb efferent axons elongate starting 

around 45-48 hpf and innervate the IPN by 4 dpf (Aizawa et al., 2007; Bianco 

et al., 2008; Roussigne et al., 2009).  

Three molecular pathways have been identified involved in dHbl and dHbm 

formation: the Wnt/beta-catenin pathway (Carl et al, 2007), Notch pathway 

(Aizawa et al, 2007) and Nodal signaling pathway (Regan et al, 2009). Further 

investigations are still necessary to completely understand the mechanism 

underlying the establishment of left-right asymmetry. 
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Concerning the vHb nucleus neurogenesis nothing is known. The lack in 

appropriate transgenic tools and early molecular markers made it impossible 

to investigate the source of progenitor cells and the underlying molecular 

pathways. Therefore, the study of vHb origin is still a challenging task that 

neuroscientists have to investigate.   

 

1.4.3 Asymmetric dHb axonal targeting within the IPN 
 

dHb development has been well studied, but we only begin to understand dHb 

axonal elongation and targeting. In zebrafish, the dHb efferent axons form 

bundles on both hemispheres and they navigate through the brain for 

approximately 300 µm to reach the targets in the ventral midbrain. dHb 

efferent axon labellings using lipophilic dyes have shown that both habenular 

neurons located in the left and in the right hemisphere target the IPN nucleus. 

(Aizawa et al., 2005). The dHb efferent axons start to project simultaneously 

at 45-48 hpf from both habenulae nuclei and elongate in a coordinated 

process, which is completed at 5 dpf (Bianco et al., 2008). dHb efferent axons 

realised different types of neurotransmitters in the IPN. For instance, high 

levels of acetylcholine, choline acetyltransferase, acetylcholine esterase, 

GABA, monoamines, neuropeptides, serotonins and dopamine were found in 

the IPN (Hattori et al., 1977; Staines et al., 1980; Bianco and Wilson, 2009). 

Different studies on the genetics underlying the development of dHb nuclei 

asymmetry suggest that habenular efferent axons receive crucial targeting 

information from their respective unipolar projecting neurons. In wildtype 

embryos, the lateral subnucleus is larger on the left brain side and it is 

targeting the dIPN (Aizawa et al., 2005; Gamse et al., 2005). The medial 

habenular subnucleus of dHb is larger on the right brain hemisphere and its 

efferent axons are innervating the vIPN. The laterotopic segregation of these 

axons was shown to be absent in mutants in which dHb left-right asymmetry 

is converted in a symmetric lateral and medial predominate character (Carl et 

al 2007, Carl, personal communication). These findings support the 

hypothesis that dHb neurons specification is primary in the decision of which 

target will be innervated from their axons. However, the only known molecule 
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implicated in dHb neuronal pathfinding is neuropilin1a expressed in the left 

dHb neurons (Kuan et al., 2007). The identification of guidance components 

involved in dHb efferent axonal pathfinding is essential to understand indeed 

the entire process of IPN innervation. Unfortunately, our knowledge on 

development of habenular neural network is almost exclusively derived from 

the analysis of fixed samples in a wildtype and mutant background. Insights 

into the dynamic process of dHb neural network establishment for 

identification of key-events can only be obtained using an in-vivo system.  
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1.5 Axon elongation process during the establishment of 
brain neuronal networks 
 

During brain development the process of axonal elongation is influenced by a 

heterogeneous array of components and molecules, which function is 

essential for axonal guidance and pathfinding. The mechanisms of axonal 

elongation are well described in different neuronal networks, such as the 

corpus callosum (Mizuno et al., 2007), olfactory system (Raper and Mason, 

2010; Imai and Sakano, 2011; Miyasaka et al., 2012) and the retinotectal 

axons (Pittman et al., 2008; Raper and Mason, 2010).  

The information collected on these neuronal networks may be used to 

compare and contrast, how the dHb efferent axon navigate through the brain 

to reach their target in the ventral midbrain.   

 

1.5.1 Axonal guidance: pioneering neurons and molecular cues 
 

The process of axonal guidance was described for the first time in the studies 

of Ramon y Cajal, in which he recognised that axons grow towards their 

ultimate targets. He suggested that axonal guidance depends on molecular 

cues able to attract and guide the growing axons in the direction of their target 

(Ramon y Cajal, 1892; trans. English 1995). The preliminary results on the 

function of cues during axonal guidance obtained by Ramon y Cajal found 

confirmation for instance, in the studies of retinotectal axons, with the 

identification of the gradient of Ephs and ephrins necessary for axonal 

pathfinding of retina neurons (Cheng et al., 1995; Feldheim et al., 2000; 

Hindges et al., 2002; McLaughlin et al., 2003).  

The identification of the molecular cues, responsible for axonal guidance and 

targeting, opened important questions concerning the possible pioneering 

function of early projecting neurons. Preliminary observations in invertebrate 

species (Bate, 1976; Edwards, 1977; Keshishian, 1980) and studies 

performed in chicken (Tello, 1923) and in zebrafish embryos (Chitnis and 

Kuwada, 1990; Wilson et al., 1990; Ross et al., 1992) suggested that the early 

axons were growing along stereotyped routes to organise a scaffold for 

subsequent follower axons. For instance, ablation of pioneer neurons 
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perturbed the guidance of subsequently growing axons with a delay or 

misrouting of them (Edwards et al., 1981; Durbin, 1987; Pike et al., 1992; 

Hutter, 2003). However, in most of the experiments performed in invertebrate 

and vertebrate models, the follower axons were able to reach their 

appropriate targets and only in rare cases, a complete miss targeting of 

subsequently growing axons was observed (Raper and Mason, 2010). These 

findings suggest that the pioneer neurons are mainly increasing the targeting 

efficiency of the follower axons.  

A crucial question that neuroscientists tried to answer since the discovery of 

pioneer neurons was how their axons can find the route to reach their 

appropriate targets. Deflection experiments of pioneer trajectories in the leg of 

insect embryos demonstrated the essential function of intermediate neurons 

in the guidance of pioneer axons (Bentley and Caudy, 1983). Indeed, ablation 

of intermediate targets located on the route of trajectories of pioneer axons, 

cause abnormalities in their pathfinding suggesting that intermediate targets 

provide navigational information to the pioneers.  

Pioneer neurons are influenced by different molecular cues and construct a 

basic scaffold between different targets during the early stage of development 

(Raper et al., 1984; Bastiani et al., 1984). The definition of pioneer trajectories 

depends on short-range interactions between the pioneer axons and the 

intermediate targets that provide the navigation cues necessary for their 

correct pathfinding. Once the pioneer scaffold is organised, the follower axons 

can elongate on them guided by molecular gradients and by axon–axon 

interactions with the pioneer axons in the direction of the specific targets. For 

instance, in fly eye it was found that hemophilic adhesive interactions are 

essential to assemble axons belonging to the same ommatidial bundle. 

Conversely, repulsive/antifasciculation interactions between heterotypic 

bundles allow the segregation of fibers important to reach different targets 

(Chen and Clandinin, 2008).  
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1.5.2 Molecular guidance cues are essential for axonal pathfinding 
 

The existence of reproducible pattern of axonal innervation depends on a 

conserved mechanism able to guide axons in the direction of their targets 

independently from embryo to embryo. In the last two decades, many in-vivo 

and in-vitro assays were developed to identify molecules involved in axonal 

guidance. These experiments allowed the identification of at least four 

different categories of cues acting at various levels necessary for axonal 

guidance and pathfinding:  

 

1. Adhesion cues, such as extracellular matrix components (ECM) and 

cell adhesion molecules (CAMs) guide axons throughout permissive or 

nonpermissive substrates (Schmid and Manes, 2008).  

2. Trophic cues promote neuronal growth cone mobility, axon out-growth, 

directionality and neuronal survival (Connolly et al., 1985; O’Connor 

and Tessier-Lavigne, 1999; Marshak et al., 2007).  

3. Tropic cues, such as netrin, are influencing growth cone mobility and 

directionality (Colamarino and Tessier-Lavigne, 1995).  

4. Modulatory guidance cues modulate the axonal response to tropic cues 

(Dontchev and Letourneau, 2002). In general, these molecules interact 

with specific receptors located on the membrane of axons modulating 

the growth (Raper and Mason, 2010). 

 

1.5.3 Midline immature glia are necessary for interhemispheric axonal 
communication 
 

Midline glia cells are an essential source of molecular cues, necessary for 

midline axonal crossing for instance in the forebrain, optic chiasm and spinal 

cord. Glial cells at the midline express different types of molecules attracting 

or repelling incoming axons. For instance, during optic chiasm formation in 

mouse, a transient population of pioneer neurons is able to guide retinal 

axons through the midline (Mizuno et al., 2007). The pioneer axons interact 

with specialised radial glia cells at the optic chiasm midline promoting or 
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inhibiting the navigation across the midline of the follower retinal axons 

(Sretavan et al., 1994; Marcus et al., 1995 and Marcus and Mason, 1995). 

Several tropic guidance cues were found to be implicated in the attraction and 

repulsion of crossing axons. Netrin/unc6 is secreted in the ventral midline of 

vertebrate and invertebrate species promoting ipsilateral or contralateral 

axonal migration. In the spinal cord, the Deleted in Colon-rectal Carcinoma 

(DCC) receptor is expressed in the commissural axons and the interaction 

between netrin ligand and DCC receptors is essential for axonal guidance 

across the ventral midline (Serafini et al., 1996; Fazeli et al., 1997). 

As mentioned above, the midline glia express different molecules important 

for axonal attraction and repulsion. For instance, in the floor plate, netrin and 

shh genes are expressed in non-neuronal cells regulating the crossing of the 

incoming axons. An interesting aspect is how the crossed axons proceed in 

the direction of their target instead of crossing back again the midline. Data 

collected in fly show that the temporary regulation of protein compositions at 

the axonal tip before and after the crossing is essential to determine the 

axonal fate. For instance, in the floor plate pre-crossing axons express a 

functional form of Robo receptors that are immediately degraded after midline 

crossing (Keleman et al., 2002). A second mechanism identified in the ventral 

midline of vertebrate species is the silencing of netrin-mediated attraction. In 

the early stages of development, netrin is expressed in the ventral midline 

allowing midline crossings of DCC positive axons. Later in the development 

netrin is silenced and this inhibits axonal midline crossings (Nawabi and 

Castellani, 2011). These findings suggest that midline crossing is influencing 

the nature of pre-crossing and post-crossing axons, mainly regulating 

transcriptional and post-transcriptional levels. Moreover, midline properties 

can change over the time of embryonic development controlling the ipsilateral 

and contralateral axonal elongation behavior (Nawabi and Castellani, 2011).  

In summary, the successful establishment of neuronal networks across the 

midline depends on coordinated spatio-temporal expression of molecular cues 

and guidance receptors over the embryonic developmental time. 

 

In our studies, we combined long-term in-vivo 2 photon microscopy (2-PM) 

and colour code analysis to follow habenular neuronal network formation in a 



Introduction	  

	   	   26	  

novel enhancer trap transgenic line of zebrafish expressing GFP between 32 

hpf and at least 5 dpf. We identified a bilateral cluster of early projecting 

neurons with a thalamic origin, which neurons contribute to the vHb 

architecture under the influence of Wnt signialing, mediated by tcf7l2 gene 

activity.  

Additionally, we discovered that dHb efferent axons cross during DDC system 

formation a subset of ThEPC neurons. We suggest that ThEPC neurons 

function as intermediate target essential for axonal guidance of dHb efferent 

axons. For instance, unilateral ablation of ThEPC neurons followed by long-

term in-vivo 2-PM highlight the arrestment in the elongation of dHb efferent 

axons in both brain hemispheres. Our results are consistent with a model 

based on ThEPC interhemispheric axonal communication across the midline 

crucial for axonal elongation and pathfinding. We speculate that ThEPC 

axonal interhemispheric crossings may influence the midline proprieties 

influencing the ThEPC located in the bran counterpart and consequently the 

dHb axon elongation and pathfinding in both brain hemispheres. 
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2 Aim of the thesis 
 

 

 

Interhemispheric communication in the brain is one of the most fascinating 

fields in neuroscience. The identification of long-range guidance molecules 

and axonal commissures connecting the left and right brain hemispheres 

brought up the idea that brain hemispheres integrate incoming stimuli before 

responding to them. For instance, the brain hemispheres can be compared 

with computer disk driver systems composed of different logical units, in which 

every element functions on its own but also in concert with other units to 

generate a specific response to a certain stimulus. How these 

units/interhemispheric networks are organised and whether the 

communication between the two forming brain hemispheres influences the 

final architecture and function of the brain are fundamental questions.  

In my project, I overcame the limitations of analyzing fixed developmental 

stages by imaging a novel zebrafish Et(1.0otpa:mmGFP)hd1 transgenic line 

labelling the habenular neural network throughout its development. I 

developed a new protocol for long-term image recording to follow the 

formation of DDC neuronal network in living transgenic embryos using 2-

photon microscopy (2-PM). Combing the 2-PM and focal laser cell ablation 

with a new automatic colour code algorithm, I identified a so far unknown 

hemisphere spanning neuronal network essential for dorsal habenular (dHb) 

axon elongation and pathfinding mediated by a bilateral cluster of early 

projecting cells located in the thalamus (ThEPC). Using 2-PM, colour code 

analysis and laser ablation, I investigated the following aspects: 

 

• Spatial and temporal sequence of events during DDC formation in 

living embryos 

• ThEPC neural network formation and nature of ThEPC neurons 

• ThEPC neuron function in ipsilateral short- and contralateral long-range 

axonal communication for dHb axonal elongation and pathfinding 
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• Interhemispheric communication within the dHb network important for 

efferent axon elongation and targeting. 

 

The analysis of Et(1.0otpa:mmGFP)hd1 transgenic embryos provided a 

detailed description of the main events of DDC system formation and 

highlighted the crucial role of ThEPC long-range interhemispheric axonal 

communication for dHb axonal elongation and pathfinding. Moreover, ThEPCs 

consist of a heterogeneous assembly of neurons, some of which contribute to 

the ventral habenula (vHb). I established the photoswitchable mOrange 

protein system for the zebrafish and combined it with a newly colocalisation 

ImageJ macro to investigate the following aspects: 

 

• The origin of vHb neurons  

• Involvement of Wnt/beta-catenin pathway signalling in vHb formation 

 

Using this approach, I identified the source of vHb neurons in the ThEPCs 

and Wnt pathway gene tcf7l2 as the first gene involved during vHb 

development.  
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3 Results 
 

 

 

3.1 The Et(1.0otpa:mmGFP)hd1 transgenic embryos express 
GFP in all habenular subnuclei and their efferent projections 
during DDC system formation 
 

Available transgenic lines start to express GFP in the DDC (dorsal 

diencephalic conduction) system when the main events have already 

occurred and are not suitable to investigate in-vivo habenular network 

formation (Aizawa et al., 2007; Wen et al., 2008). In an enhancer trap screen 

in the laboratory of Soojin Ryu, Max Planck Institute Heidelberg, a novel 

transgenic line was identified, in which GFP is strongly expressed in the 

habenulae and their efferent projection.  

We initially analyzed GFP expression in the Et(1.0otpa:mmGFP)hd1 line at 4 

dpf (day post fertilization) by co-labelling GFP and α-acetylated tubulin. In 

these preliminary studies, we found that GFP positive neurons overlap with 

the habenular neuropil marker suggesting that GFP is potentially expressed in 

all habenular domains (Figure 3.1A). We further labeled the 

Et(1.0otpa:mmGFP)hd1 transgenic embryos with other habenular markers 

specific for the different habenular subpopulations. The dorso-lateral (dHbl) 

kctd12.1, the dorso-medial (dHbm) kctd8 (Gamse et al., 2003, 2005) and the 

ventral (vHb) kisspeptin-1 (Servili et al., 2011; Ogawa et al., 2012) habenular 

marker all overlap with hd1:GFP transgene expression, demonstrating that all 

habenulae sub-domains are labeled (Figures 3.1B-D).  

At 4 dpf, Hb axons innervate the interpeduncular nucleus (IPN) and the 

median raphe (MR) located in the mesencephalon and rhombencephalon 

respectively (Bianco et al., 2009 and Beretta et al., 2012). To investigate the 

innervation of these two targets, we imaged Et(1.0otpa:mmGFP)hd1 embryos 

using 2 photon microscopy (2-PM). Our experiments show axonal 

innervations of both structures confirming that GFP is expressed in all the 
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habenular subpopulations and in the major habenulae efferent axons (Figures 

3.1E-G).  

It is known that the dHb neurons start to differentiate around 32 hpf (hour post 

fertilization) from a cxcr4b expressing pool of progenitor cells located on both 

sides of pineal complex, in the center of the epithalamus (Aizawa et al., 2007; 

Roussigne et al., 2009). To assess GFP expression in the dHb precursor 

neurons in Et(-1.0otpa:mmGFP)hd1 transgenic embryos, confocal stacks 

were acquired at 32 hpf. Our analysis shows that GFP starts to be expressed 

at this stage in a bilateral cluster of projecting neurons posterior and lateral to 

the dHb cells domain (Figure 3.4A and movies S1,S2). To characterise this 

bilateral cluster of neurons, co-stainings using different diencephalic markers 

were performed at 32 hpf. These cells express the prosomere 2 marker lhx2b 

(Seth et al., 2006; Peukert et al., 2011), but not the prosomere 1 (pretectum) 

markers lhx1a (Toyama et al., 1995) and nr4a2a (Filippi et al., 2007; Blin et 

al., 2008) or Calretinin expressed in the nucleus of the medial longitudinal 

fascicle (Nmlf); (Castro et al., 2006); (Figure 3.1H and Figures 3.2A-C). 

Additional images acquired later during the DDC system development show 

that GFP starts to be expressed in the dHb domain around 45 hpf (Figure 

3.4C). To characterize these cell clusters, immuno in-situ stainings for cxcr4b 

and GFP were carried out and showed that GFP is expressed dorsally 

adjacent to cxcr4b positive dHb progenitor cells. This region has been shown 

to contain differentiated dHb cells (Gamse et al., 2003, 2005). These data 

indicate that in Et(-1.0otpa:mmGFP)hd1 transgenic embryos GFP is 

expressed in differenced cells of the dHb at this stage of development 

(Figures 3.2E-E’’). 

All these observations make the Et(-1.0otpa:mmGFP)hd1 transgenic line an 

excellent readout system to investigate the habenular neuronal circuit 

formation in-vivo. Moreover, we discovered a cluster of neurons which 

develops before and during the DDC system organisation. In agreement with 

the location of these neurons and the fact that they start projecting axons 

earlier than dHb axons, we refer to them as thalamic-epithalamic early 

projecting cluster (ThEPC).  
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Figure 3.1: All habenular domains and efferent projections innervating the 
ventral mid- and hindbrain are labelled in Et(-1.0otpa:mmGFP)hd1 transgenic 
embryos. 
(A-D) Dorsal views, MIP, anterior to the top, focussed on the habenular nuclei in the 
Et(1.0otpa:mmGFP)hd1 transgenic line. At 4 dpf, GFP expression overlaps with (A) 
acetylated tubulin, (B) the dHbl marker kctd12.1, (C) the dHbm marker kctd8 and (D) 
at 5 dpf with the vHb marker kisspeptin-1.  
(E) Scheme of habenular cell complexity and efferent axonal projections innervating 
IPN and MR in 5 dpf old embryos. The habenular nuclei are subdivided into lateral 
(red), medial (blue) and ventral (green) domains.  
(F) Lateral view, anterior to the left, MIP, of habenular efferent projections innervating 
their targets in the ventral midbrain at 4 dpf in Et(1.0otpa:mmGFP)hd1 transgenic 
embryos. 
(G) Dorsal view, anterior to the left, MIP, of MR innervating axonal projections in 3 
dpf Et(1.0otpa:mmGFP)hd1 embryos. The nuclei (blue) are labelled with H2A-CFP; 
the arrowheads highlight axons entering in the MR.  
(H) Lateral view, anterior to the left, MIP, immuno/in-situ labelling of 
Et(1.0otpa:mmGFP)hd1 transgenic embryos at 32 hpf. ThEPCs (arrowhead) are 
labelled in green. The thalamic marker lhx2b (red) colocalises with the GFP 
expressing ThEPC cells.  
(A-D, F-H) For all images, the scale bar is displayed in the right bottom corner. The 
gamma was corrected to values between 0.80 and 0.60 for display purposes. 
d, dorsal; dHbl, lateral dorsal habenula; dHbm, medial dorsal habenula; dpf, days 
post fertilization; hpf, hours post fertilization; IPN, interpeduncular nucleus; MR, 
median raphe; MIP, Maximum Intensity Projection; P, pineal; pp, parapineal; T, 
telencephalon; ThEPC, thalamic early projecting cluster; v, ventral. 
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Figure 3.2: Marker gene analysis of the ThEPC. 
(A-C) Lateral view focussed on the thalamic area, MIP of 32 hpf Et(-
1.0otpa:mmGFP)hd1 transgenic embryos co-labelled with (A) the calcium binding 
protein calretinin (Castro et al., 2009) and the pretectal markers (B,C) lim1 and nurr1 
in red. Arrowheads highlight the position of the ThEPC. 
(D-D’’) Dorsal view focussed on the thalamic area, MIP, anterior to the top, of a 48 
hpf Et(-1.0otpa:mmGFP)hd1 embryo stained for the serotonergic marker 5-HT (in 
red). From left to right: GFP channel, far-red channel and merged channels. White 
arrowheads highlight the co-labelled ThEPC 5HT positive neurons.  
(E-E’’) Dorsal view with anterior to the top, MIP, of a 52 hpf Et(-1.0otpa:mmGFP)hd1 
embryo labelled with cxcr4b expressed in dHb progenitor cells (in red). From left to 
right: GFP channel, FITC channel and merged channels. Arrowheads mark the 
ThEPCs and the cxcr4b positive cells located in the ldHb and rdHb nuclei. 
The scale bar is displayed in the right bottom corner of each image. The gamma was 
corrected to values between 0.60 and 0.80 using the software Fiji for display 
purposes. 
d, dorsal; Hb, habenula; l, left; MIP, Maximum Intensity Projection; Nmlf, nucleus of 
the medial longitudinal fascicle; PT, pretectum; r, right; ThEPC, thalamic early 
projecting cluster; VT, ventral thalamus. 
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3.2 Long-term 2-PM in-vivo microscopy can be used to follow 
the DDC system formation between 32 hpf and 5 dpf 
 

In zebrafish, the establishment of habenular nuclei and axonal projections 

requires around 4 days of development. The network extends over about 300 

µm in dorso-ventral direction and approximately 200 µm anterior-posteriorly 

(Bianco et al., 2009; Beretta et al., 2012). To investigate in-vivo the DDC 

formation in the Et(1.0otpa:mmGFP)hd1 transgenic line, we initially applied 

the CLSM (confocal laser scan microscopy). The key problems for the use of 

the CLSM are the phototoxicity due to the pinhole setting limitations and high 

laser power necessary to record habenular neurocircuit development in a Z-

range of several hundred micrometers (Squirrell et al., 1999). As a 

consequence of these technical/anatomical limitations, we were just able to 

follow the DDC system formation for less than 30 hours (Figure 3.3A-D); 

(Beretta et al., 2012). 
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Figure 3.3: CLSM cannot be used to follow DDC system formation for more 
then 30 hours.  
(A-D) Dorsal view, anterior to the left, of four developmental stages acquired by in-
vivo CLSM of Et(-1.0otpa:mmGFP)hd1 transgenic embryos. The time of recording 
(hh:mm:ss) is always shown in the left upper corner. The original stacks were 
cropped and the gamma was corrected between 0.45 and 0.65 for display purposes.  
(A-C) Arrowheads show the location of ThEPCs at 32 hpf and the bilateral 
expression of GFP in dHb neurons at 68 hpf. 
(C-D) CLSM imaging of the brain development results in the embryo dying after 
approximately 30 hours of recording due to phototoxicity. 
d, dorsal; Hb, habenula; l, left; r, right; Tec, optic tectum; ThEPC, thalamic early 
projecting cluster. 
 

To circumvent these problems and to elucidate in-vivo the spatio-temporal 

events during habenular network formation, we applied 2-PM in collaboration 

with the Nikon Imaging Center (NIC) of Heidelberg (Helmchen and Denk, 

2005; Svoboda and Yasuda, 2006). Using this approach, we were able to 

perform long-term time-lapse imaging on living Et(1.0otpa:mmGFP)hd1 

embryos between 32 hpf up to at least 5 dpf (movies S1,S2). 2-PM 

microscopy turned out to be far superior to CLSM and we developed a refined 

protocol to follow the entire DDC development using multi photon excitation.  

A main disadvantage of long-term imaging is the large amount of data 

obtained from each recording with a strong limitation in 3D visualisation and 

analysis. Therefore, to efficiently overcome this problem and to be able to 

follow and track single axons in a 3D volume, we developed an automatic 

script based on a depth colour coding algorithm. The first part of the script is 

detecting the first and the last slide in each stack containing useful information 

and saving them as slide and maximum intensity projection (MIP). The 

second part of the algorithm is applying a different colour code LUT (look up 

table) table to the MIP according to the depth of the recorded data (Figure 3.4; 

movie S1 and Appendix 7.3,7.4). 

This combination allowed us to describe the formation of DDC system in the 

living Et(1.0otpa:mmGFP)hd1 embryos in detail. Indeed, the bilateral dHb 

neurons start to express GFP around 45 hpf and their axons cross the 

ThEPCs before to elongate to the IPN. The tip of each dHb efferent axonal 

bundle defasciculate before to reach the IPN and at 5 dpf the IPN connections 

are established (Figures 3.4D-G and movies S1,S2); (Bianco et al 2009; 
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Beretta et al., 2012). Additionally, we observed the expression of GFP 

anteriorly bilateral in the olfactory bulb (OB), olfactory epithelium (OE) and 

posteriorly in the optic tectum (Tec) and spinal cord neurons (SCNs); (Figures 

3.4A,B,G).  

In summary, combining the 2-PM with the newly automatic ImageJ script, we 

were able to follow for the first time in-vivo the DDC development providing a 

detailed description in relation to space and time. Moreover, our time-lapse 

analysis identifies a connection between the habenular neuronal circuit and 

the bilateral cluster of early projecting neurons located in the thalamus (th); 

(Figure 3.4C).  

 

 
 
Figure 3.4: Long-term 2-PM in-vivo recording identifies interhemispheric 
axonal connections during habenular neural circuit development. 
(A-F) Dorsal view, anterior to the left, automatic Colour Code MIP, of six 
developmental stages acquired by in-vivo 2-PM of Et(-1.0otpa:mmGFP)hd1 
transgenic embryos. Left side, Colour Code Scale LUT displays the Z colour code 
table according to the depth of each slice. The time of recording (hh:mm:ss) is 
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always shown in the left upper corner. The original stacks were cropped and the 
gamma was corrected to 0.45 for display purposes.    
(A-B) Arrowheads show the location of ThEPCs at 32 hpf; red and green arrowheads 
mark two posterior bilateral clusters of projecting neurons. White and yellow dots and 
arrows mark the tips of ThEPC derived axons projecting contra- and ipsilaterally 
respectively. Red and green dots and arrows highlight tips of axons from the second 
and third cluster of contralaterally projecting neurons.  
(C) White arrowheads highlight the bilateral expression of GFP in dHb neurons at 49 
hpf. 
(D-E) White arrowheads highlight dHb efferent projections (D) navigating towards the 
midline before IPN innervation at 53 hpf and (E) thereafter at 65 hpf. 
(F) Architecture of the habenular neuronal circuit at 5 dpf; GFP is expressed in the 
lHb, in the rHb and in the Hb efferent projections innervating the IPN and MR.  
(G) Summary of the events during habenular neural circuit development between 
(top to bottom) 32 hpf and 44.5 hpf, 32 hpf and 53 hpf and 32 hpf and 5 dpf: ThEPCs 
(violet); Tec (yellow); second cluster of projection neurons (red); third cluster of 
projection neurons (green); ldHb/rdHb (white) and the main axonal projections 
tracked (black lines). 
d, dorsal; Hb, habenula; IPN, interpeduncular nucleus; l, left; LUT, Look Up Table; 
MR, median raphe; P, pineal; pp, parapineal; r, right; Tec, optic tectum; ThEPC, 
thalamic early projecting cluster; v, ventral. 
 
  



Results	  

	   	   37	  

3.3 Function of ThEPC neurons during the dHb network 
formation 
 

3.3.1 Long-term 2-PM in-vivo time-lapse discovers multiple 
interhemispheric connections during the habenular neuronal circuit 
establishment  
 

ThEPC neurons start to express GFP at 32 hpf and send their axonal 

projections ipsilaterally posteriorwards organising axonal bundles in the left 

and in the right brain hemisphere (Figures 3.4A,B and movies S1,S2). 

Concurrently, some ThEPC efferent axons migrate towards the midline to 

reach the ThEPC axon bundle in the contralateral brain side and follow their 

track (Figures 3.4A,B and Figure 3.5). These ThEPC axons slow down before 

to cross the midline to speed up again thereafter and apparently intermingle 

with the ThEPC axons on the contralateral side (Figure 3.5 and movies 

S1,S2). On their way posteriorly and down in the direction of the spinal cord, 

the ipsilateral axons pass two other GFP expressing neuronal clusters 

sending axons across the midline (Figures 3.5A,B; Figures 3.5C,D; Figures 

3.7C,D and movies S1,S2). These axons intermingle with the ThEPC derived 

axons on the contralateral side as well and follow their track (Figures 3.4B-

D,G). In detail, the first bilateral cluster of neurons is located approximately 80 

µm posterior to the ThEPCs and starts to send axons at 32 hpf (Figures 3.5A-

C; Figures 3.7A-C and movies S1,S2). The most posterior cluster is placed at 

200 µm of distance from the ThEPCs and around 100 µm from the first cluster 

of projecting neurons (Figures 3.4A) and it is starting to send axons around 44 

hpf (Figures 3.5E,F and movies S1,S2). 

In summary, the discovery of the three axonal projecting clusters suggests the 

existence of multiple intrahemispheric and interhemispheric axonal 

connections in at least three different regions of the brain as part of the 

ThEPC neural network. Our transgenic line does not label any potentially 

existing axonal connection within the habenular network. 
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Figure 3.5: ThEPC early axonal tracking. 
Dorsal view with anterior to the left, Colour Code MIP obtained from a total Z-height 
of 300 μm focussed on the ThEPC crossing axons in a Et(-1.0otpa:mmGFP)hd1 
transgenic embryo. Time points between 33 hpf and 49.5 hpf. Left side, Colour Code 
Scale LUT displays the Z colour code table according to the depth of each stack. The 
time of recording (hh:mm:ss) is shown in the left upper corner. The original stacks 
were cropped and the gamma was corrected to 0.45 for display purposes.    
(A,F) White arrowheads show the location of ThEPCs at 33 hpf; red and green 
arrowheads mark two posterior bilateral clusters of projecting neurons. Manual 
tracking, overlay of dots and lines was used to highlight the position of ThEPC axonal 
network and the axons originating from the second and third cluster of neurons. 
LUT, Look Up Table; Tec, optic tectum; ThEPC, thalamic early projecting cluster. 
 

3.3.2 ThEPC neurons located in one brain hemisphere are crucial for 
dHb axon migration and IPN targeting 
 

Through the analysis of Et(1.0otpa:mmGFP)hd1 transgenic embryos, we 

discovered a new cluster of cells, ThEPC, which seems to be interconnected 

with the later forming dHb efferent projections during the DDC system 

organisation. Consistently with what was found in other neuronal networks 

(Burrill and Easter, 1995; Chalupa et al., 1996; Whitlock and Westerfield, 

1998, 2000), we hypothesized that the ThEPC cells may function as pioneer 

neurons or intermediate structures in a short-range axonal communication 
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process necessary for dHb axonal guidance. To study the potential function of 

these cells, we performed 2-PM laser ablation experiments of ThEPC neurons 

on one side of the brain keeping the contralateral brain hemisphere as a 

control side. In our experiments, we unilaterally removed the ThEPC neurons 

at 32 hpf when the GFP positive cells can be easily detected and next, we 

monitored the neuronal network formation up to 6 dpf. ThEPCs on the ablated 

side cannot recover during the 5 days of recording, contrarily the contralateral 

ThEPC cells apparently developed unperturbed during the initial steps of 

network formation (Figure 3.6A and Figure 3.7A’).  

Our time-lapsis show that unilateral removal of one ThEPC causes dramatic 

consequences on the migration of dHb axons with the arrest of them on both 

brain hemispheres (Figures 3.6A-G and movies S3,S4).  

 

 
 
Figure 3.6: Unilateral ThEPC cell ablation causes the arrest of dHb efferent 
axons on both brain hemispheres. 
(A-F) Dorsal view, anterior to the left, automatic Colour Code MIP, of six 
developmental stages acquired by in-vivo 2-PM after complete unilateral ThEPCs 
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ablation at 32 hpf in an Et(-1.0otpa:mmGFP)hd1 transgenic embryo. Left side, Colour 
Code Scale LUT displays the Z colour code table in according to the depth of each 
slice. The original stacks were cropped and the gamma was corrected to 0.60 for 
display purposes.  
(A-G) Asterisk marks the location of the ablated ThEPC cells between 32 hpf and 5 
dpf. 
(A-B) Yellow dot and arrow mark the tip of an ipsilaterally projecting ThEPC axon. 
White dots and arrows mark tips of axons starting to migrate towards the midline, but 
regress subsequently. Red and green arrowheads highlight the predicted position of 
the second and the third cluster of usually contralaterally projecting neurons. 
(C) White arrowheads show the bilateral expression of GFP in the dHb. The white 
square highlights the area, in which dHb axon migration arrest as landmarked by 
tectal axons crossing the midline.  
(D-E) White arrowheads highlight the position of dHb efferent axons on the ablated 
side and on the contralateral hemisphere, which start to migrate towards the midline.  
(F) Architecture of the habenular neuronal circuit after left sided ThEPC cell ablation 
at 5 dpf. White arrowheads mark the ends of dHb efferent axons bundles on both 
sides of the brain. 
(G) Summary of events during habenular neural circuit development after complete 
unilateral ThEPC ablation between (up to bottom) 42 hpf and 52 hpf, 42 hpf and 62 
hpf and 42 hpf and 5 dpf. ThEPCs (violet); Tec (yellow); ldHb/rdHb (blue); rHb/lHb 
(white) and DDC axonal projections (black lines). 
d, dorsal; Hb, habenula; IPN, interpeduncular nucleus; l, left; r, right; Tec, optic 
tectum; ThEPC, thalamic early projecting cluster. 
 

Analyzing habenula neurocircuit formation in detail, we noticed that the dHb 

neurons start to express GFP normally in both brain hemispheres and their 

efferent axons pass unaffected the site of ablation (Figures 3.6B,C and 

Figures 3.7B’,C’). Similar to not ablated embryos, the left and the right dHb 

axonal bundles defasciculate at the tip, with the difference that axonal 

elongation is arrested for the remaining time of recording. Peculiarly, not only 

the dHb axons on the ablated side show the stop in their elongation but also 

the dHb axonal bundle located on the not ablated side (Figures 3.6D-G). 

Indeed, after the crossing of the ThEPC neurons, the dHb axons on the not 

ablated brain hemisphere arrested their migration at approximately the same 

A-P level such as dHb efferent projections located on the ablated side 

(Figures 3.6C-F). These data may suggest a guidance function of ThEPC 

neurons based on the existence of short-range axonal communication 

between ThEPC neurons and dHb cells. Furthermore, we observed that the 

ThEPC derived axons on the not ablated side fail to migrate to the 

contralateral side and regress after only few micrometers (Figures 3.7B-C’). 
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Therefore, we speculate that the impaired inter-hemisphere communication is 

the reason for dHb efferent axons elongation arrest in the control brain side.  

A second intriguing consequence of unilateral ThEPC ablation is related to the 

two posterior axonal clusters described in the subchapter 3.3.1. ThEPC 

unilateral ablations cause a partial reduction of GFP expression in the second 

and a complete absence of the third cluster of GFP positive neurons on both 

hemispheres and a reduction or absence of any midline crossing axons 

(Figures 3.7C-E’; movies S3,S4).  
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Figure 3.7: Habenular neuronal circuit development in normal and ThEPC 
ablated embryos. 
(A-D’) Dorsal view, anterior to the left, automatic Colour Code MIP, of four 
developmental stages acquired by in vivo 2-PM in (A-D) non-ablated and (A’-D’) 
unilateral ThEPC cell ablated Et(-1.0otpa:mmGFP)hd1 transgenic embryos – asterisk 
marks the ablated area.  
(A-D’) Left side, Colour Code Scale LUT displays the Z colour code table according 
to the depth of each stack. The original stacks were cropped and the gamma was 
corrected to 0.60 for display purposes.  
(A,A’) White arrowheads show the location of the ThEPCs, red arrowheads highlight 
the position of the second cluster of projection neurons.  
(B-C’) White dots and arrows mark the tips of ThEPC neuron derived contralaterally 
projecting axons, not present in C’. Yellow dots and arrow label the tips of 
ipsilaterally projecting ThEPC axons, while red dots and arrow mark axonal tips 
originating from the second cluster of projecting neurons, not seen in ablated 
embryos. White arrowheads show the location of the left and right dHb. 
(D-D’) White arrowheads highlight dHb efferent axons, green arrowheads and the 
green spot highlight the third cluster of projecting neurons and the axonal tip, not 
present in D’. The box marks the region at which dHb axon migration is arrested in 
D’.  
(E-E’) Summary of events observed during habenula neuronal circuit development in 
the non-ablated embryo and after unilateral removal of one ThEPC between 39.2 hpf 
and 58 hpf, 39.2 and 66 hpf. ThEPCs (violet); Tec (yellow); ldHb/rdHb (blue); rHb/lHb 
(white) and DDC axonal projections (black lines). 
d, dorsal; Hb, habenula; l, left; r, right; Tec, optic tectum; ThEPC, thalamic early 
projecting cluster. 
 

The results described above are based on 5 independent ThEPC ablation 

experiments with 4 of them resulting in similar phenotypes (nleft = 2/2; nright = 

2/3; Figure 3.9H) indicating consistency of the phenotype, which develops 

independently of the side of ablation.  

To further assess whether the guidance function is specific for the ThEPC 

neurons, we performed ablation experiments in the surrounding area of 

ThEPC cells. The failed ablation of ThEPC neurons does not affect the dHb 

efferent axonal migration and the ThEPC neuronal network itself suggesting 

that specifically ThEPC neurons function in short- and long-range axonal 

communication process required for the dHb axons elongation and targeting 

(Figure 3.8).   
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Figure 3.8: Failed ThEPC ablation does not affect ThEPC and dHb axon 
pathfinding. 
(A-D) Dorsal view, anterior to the left, automatic Colour Code MIP, of four 
developmental stages acquired by in vivo 2-PM after failed ThEPC cell ablation at 32 
hpf in an Et(-1.0otpa:mmGFP)hd1 transgenic embryo. Left side, Colour Code Scale 
LUT displays the Z colour code table according to the depth of each stack. The 
recording time (hh:mm:ss) and the scale bar are displayed in the left upper and the 
right bottom corner respectively. The original stacks were cropped and the gamma 
was corrected to 0.60 using the software Fiji for display purposes. 
 (A,A’) White and red arrowheads show the bilateral location of ThEPC neurons and 
the second cluster of projecting neurons respectively. The asterisks mark the ablated 
area next to the ThEPC neurons. (A’) The inset shows the position of ThEPC cells 
before failed ablation.  
(B) White dots and arrows highlight the axonal tips of contralateral projecting ThEPC 
axons and the yellow dot and arrow marks the tip of a ThEPC axon projecting 
ipsilaterally. Green arrowheads show the location of the third cluster of projecting 
neurons.  
(C) White arrowheads highlight the position of the ldHb and rdHb. 
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(D) DDC system architecture at 5 dpf. The IPN is normally innervated by dHb axons. 
d, dorsal; Hb, habenula; IPN, interpeduncular nucleus; l, left; LUT, Look Up Table; 
MIP, Maximum Intensity Projection; r, right; Tec, optic tectum; ThEPC, thalamic early 
projecting cluster. 
 

3.3.3 dHb axonal pathfinding errors depend on the number of ablated 
ThEPC neurons 
 

Most of the data collected on axonal guidance were based on the discovery of 

pioneer neurons in the olfactory system (Whitlock and Westerfield, 1998, 

2000) and in the retina (Meissirel and Chalupa, 1994; Burrill and Easter, 

1995). In these studies were found out that the severity of axonal pathfinding 

errors is correlated to the number of pioneer neurons ablated independently of 

the neuronal system examined. To assess whether incomplete ablation of 

ThEPC cells affects the pathfinding of dHb efferents, we performed 

incomplete ablations of ThEPC neurons checking each time for potential 

alterations in dHb axonal elongation and IPN pathfinding. To manipulate 

consistently the ThEPC neuronal network, we ablated each time between 2 

and 4 cells, immediately after the onset of GFP expression, in four 

consecutive experiments. Each round of ablation was performed always 

between 32 hpf and 40 hpf and to ensure the successful removal of ThEPC 

cells a stack was acquired after each ablation. After the ablations, newly GFP 

expressing neurons emerge in the ThEPC of the ablated side during DDC 

system formation. They projected axons ipsilaterally and contralaterally 

across the midline and the dHb efferent axons start to elongate normally in 

the direction of their ventral midbrain target (Figures 3.9A-D). By using 2-PM 

we acquired high-resolution stacks of IPN innervations at 4 dpf. We found that 

dHb axonal targeting was perturbed on the ablated side and in accordance 

with the dHb axon innervation phenotypes, we sorted embryos into two 

different categories: IPN reduced innervation (n=6/28) and IPN 

disorganisation (n=10/28; Figures 3.9E-H). Only in 2 of 28 independent 

experiments, we monitored a complete lack of IPN innervations (data not 

show). 

By following the DDC system formation in 3 ablated embryos, we discovered 

that ThEPC axons crossing the midline are affected in the ablated side and 
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slightly perturbed in the not ablated side. Moreover, we observed a reduction 

of GFP expression in the two posterior clusters with apparently modification of 

their crossing axons (Figures 3.9A-B; movies S5,S6). Consistent with our 

previous hypothesis, these data support the idea that ThEPC mediated short-

range communication is highly necessary for the correct pathfinding of dHb 

axonal on the ablated side. In addition, only in the absence of ThEPC derived 

commissures axon elongation is stalled on both hemispheres upon unilateral 

cell ablation. Incomplete ablations, which allow commissures to form does not 

evoke axon elongation defects.  

 

 
 
Figure 3.9: Incomplete unilateral ThEPC cell ablation causes dHb axon 
pathfinding errors. 
(A-D) Dorsal view, anterior to the left, automatic Colour Code MIP, of four 
developmental stages acquired by in vivo 2-PM after sequential, incomplete 
unilateral ThEPC cell ablation at 32 hpf in an Et(-1.0otpa:mmGFP)hd1 transgenic 
embryo. Left side, Colour Code Scale LUT displays the Z colour code table 
according to the depth of each stack. The original stacks were cropped and the 
gamma was corrected to 0.60 for display purposes. 
(A) White arrowheads mark the ThEPC neurons; red arrowheads mark the second 
posterior bilateral cluster of projecting neurons. Asterisk marks the ablated side.  
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(B) White arrowheads mark the left and the right dHb domain. White and yellow dots 
and arrows mark the tips of ThEPC neuron derived crossing axons and those 
projecting ipsilaterally, respectively; red dot and arrow marks an axon originating 
from the second cluster of projecting neurons. 
(C) White arrowheads show the dHb efferent projections entering the IPN. The white 
square highlights the area, in which dHb axon migration is arrested upon complete 
ThEPC cell ablation as landmarked by tectal axons crossing the midline (see Figure 
4).  
(D) Architecture of the habenular neuronal circuit at 5 dpf; GFP is expressed in the 
lHb, in the rHb and in the Hb efferent projections (white arrowheads).  
(E) The graph shows the classification of the different IPN innervation phenotypes 
observed after 28 independent sequential ThEPC cell ablations.  
(F-H) Dorsal views with anterior to the left focussed on the IPN. (F) Wildtype IPN 
innervation, (G-H) disorganisation and axons overshooting the IPN after unilateral 
sequential ThEPC neuron ablations.  
d, dorsal; Hb, habenula; IPN, interpeduncular nucleus; l, left; r, right; Tec, optic 
tectum; ThEPC, thalamic early projecting cluster. 
 
 

3.3.4 Unilateral dHb neuron ablation does not affect axonal IPN targeting 
on the contralateral side emphasising the specific importance of short- 
and long-range communication mediated by the ThEPC network  
 

To support our findings on the role of ThEPC neuronal network and to 

understand the importance of interhemispheric communication between the 

ThEPC cell clusters in dHb axonal pathfinding, we performed dHb ablation 

experiments on one brain hemisphere.  

We unilaterally ablated dHb neurons in the presence of the ThEPCs at 2 dpf 

and acquired high-resolution IPN stacks at 4 dpf (Figure 3.10). MIP and 3D 

reconstructions do not show any obvious difference in IPN innervations with 

axons from the contralateral side in the absence of IPN innervations with 

axons from the ablated side. Indeed, the left side dHb ablated embryos 

display a normal pattern of innervations from the rdHb (right dorsal habenula) 

in the ventral part of IPN (Figures 3.10A-C). Consistently, in the right side dHb 

ablated embryos the dHb efferent projections from the not ablated side mainly 

target the dorsal part of the IPN (Concha and Wilson, 2001), (Figures 3.10A’-

C’).  

The data obtained from dHb unilateral ablation experiments suggest that dHb 

axonal pathfinding does not depend on interhemispheric dHb axonal 
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communication. dHb neurons and axons do not require the other hemispheric 

counterpart for axonal elongation, targeting and shaping of dHb axons. 

Furthermore, our findings support the specific role of ThEPC neurons short- 

and long-range communication for dHb axon elongation and IPN targeting. 

 

 
 
Figure 3.10: Unilateral dHb cell ablation does not affect axonal targeting on the 
contralateral side. 
(A-B’) Dorsal view, anterior to the left, MIP of Et(-1.0otpa:mmGFP)hd1 transgenic 
embryos after complete dHb cell ablation. (A-A’) Asterisks mark the site of ablation, 
the anterior white arrowheads mark the not ablated dHb cells and the posterior 
arrowheads mark the ThEPC neurons.  
(B-B’) White arrowheads mark the habenula efferent projections entering the IPN on 
the non-ablated side.  
The original stacks were cropped and the gamma was corrected to 0.80 for display 
purposes. 
(C-C’) 3D reconstructions of dHb efferent projections innervating the IPN at 4 dpf 
from (up) dorsal and (down) lateral. White arrowheads highlight dHb efferent 
projections entering the (C) ventral IPN after ldHb cell ablation and the (C’) dorsal 
IPN after rdHb cell ablation. Note the characteristic crown shaped structure of dIPN 
innervating axons in C’.  
d, dorsal; Hb, habenula; IPN, interpeduncular nucleus; l, left; r, right; Tec, optic 
tectum; ThEPC, thalamic early projecting cluster; v, ventral.  
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3.4 ThEPC neurons contribute to the ventral habenula 
architecture  
 

3.4.1 ThEPCs consist of different neuronal populations 
 

To further characterise the early ThEPC neurons expressing GFP, high-

magnification time-laps images were acquired between 32 hpf and 52 hpf. 

Colour code MIP and manual cell tracking analysis revealed a mixture of 

dividing cells and postmitotic neurons sending out axonal projections (movie 

S7). In support of the idea that ThEPCs consist of a heterogeneous mixture of 

neuronal cell types, we found that both ipsilateral and contralateral axonal 

projections arising from these neurons (see above, Figure 3.5). Indeed, a 

subset of them express serotonin (see above, Figures 3.2D-D’’), while others 

are serotonin negative. 

As shown in subchapter 3.1, the Et(1.0otpa:mmGFP)hd1 transgenic line 

marks at 4/5 dpf the dorsal and the ventral habenular subpopulation. While 

the origin of the dorsal subpopulation has been well described, nothing is 

known about the early development of the ventral subpopulation (Aizawa et 

al., 2007; Roussigne et al., 2009). Looking at our time-lapse movies in detail, 

it appeared as if some ThEPC neurons migrate anteriorly towards the dHb 

region (Figures 3.4,3.5 and movies S1,S2). To investigate the potential 

contribution of ThEPC cells to the final habenular architecture, we initially 

analyzed at 4 dpf the overall habenula shape after unilateral ThEPC ablation. 

Comparing the left and the right habenula domains, we observed a reduction 

in the Hb size on the ablated side when compared with the control side. This 

preliminary evidence supports the hypothesis that ThEPC neurons may 

contribute to the final habenula architecture (Figure 3.11D). Therefore, to 

validate this observation, we analyzed at 4 dpf the habenular cell complexity 

after the unilateral ablation of the developing dHb using a nuclei marker for a 

better visualization of habenula morphology. Intriguingly, on the ablated side 

of each embryo (nleft = 3/3; nright = 3/3), we found a number of GFP expressing 

neurons localised in the lateral part of the habenula, precisely in the reported 

position containing the vHb neurons (Figure 3.11A-C); (Amo et al., 2010).  
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In summary, these first evidences support the potential contribution of one of 

the ThEPC neuronal sub-cluster to the final habenular architecture and in 

particular to the vHb domain. Unfortunately, no transgenic lines for the vHb 

neural population are currently available. Therefore, we developed a fate 

mapping system for GFP-transgenic zebrafish based on the photoconvertible 

fluorescent protein PSmOrange to further explore the origin of vHb neurons 

(Subach et al., 2011); (Figures 3.12A-D). 

 

 
 
Figure 3.11: Unilateral dHb and ThEPC ablation experiments suggest a 
contribution of ThEPC cells to the final habenula architecture. 
(A) Habenular nuclei organisation at 4 dpf. dHbl, lateral dorsal habenula (red); dHbm, 
medial dorsal habenula (blue); vHb, ventral habenula (green); P, pineal; pp, 
parapineal (yellow).  
(B,C) Dorsal view, MIP, anterior to the top, focussed on the habenular nuclei of 4 dpf 
embryos, after left and right dHb ablation at 2 dpf. Asterisk marks the ablated side 
and white arrowheads highlight neurons located in the predicted position of the vHb 
domain. The nuclei (in blue) are labelled with Sytox Orange for better orientation.  
(D) Dorsal view with anterior to the left, Colour Code MIP, showing habenula 
formation at 4 dpf in normal (top) and in ThEPC ablated Et(-1.0otpa:mmGFP)hd1 
embryos (bottom). The asterisk marks the ablated side. The habenula on the ablated 
side is reduced.  
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The gamma was corrected to 0.80 (B-C) and 0.45 (D) using the software Fiji for 
display purposes. l, left; r, right; ThEPC, thalamic early projecting cluster. 
 

3.4.2 ThEPC neurons contribute to the vHb subnucleus 
 

To investigate a potential contribution of ThEPC neurons to the vHb, we used 

the photoswitchable mOrange fluorescent protein (Subach et al., 2011). The 

main advantage of H2B-PSmOrange is related to the possibility to change the 

emission from orange to far-red upon a blue-green light illumination making 

this protein suitable for cell tracking in a GFP background. To evaluate the 

protein expression levels and the protein stability before and after 

photoconversion, we subcloned and injected the H2B-PSmOrange mRNA in 

wild type zebrafish embryos. We found that the not photoconverted form of 

the protein is highly expressed and stabled for at least 3 days. Moreover, we 

observed that after photoconversion the PSmOrange protein can be 

visualized for at least 2 days making it an excellent tool for cell tracking in 

living Et(1.0otpa:mmGFP)hd1 transgenic embryos.  

For our purpose, we photoconverted the protein in and around the ThEPC 

GFP positive neurons at 2 dpf and we analyzed the location of ThEPC cells in 

the brain of zebrafish after 2 days post photoconversion (4dpf). To 

unambiguously identify ThEPC neurons expressing both GFP and the 

photoconverted H2B-PSmOrange, we generated an automatic colocalisation 

ImageJ macro (Appendix 7.5). The macro is designed to detect all the ThEPC 

far-red photoconverted GFP positive cells and display them as a yellow region 

of interest (ROI) on the orange channel for a better orientation (Figure 3.12C). 

To avoid colocalisation mistakes and to understand the location of all GFP 

positive neurons and photoconverted cells, we additionally used green and 

red ROIs in the orange channel to locate not overlapping cells (Figures 3.12A-

C). Using our generated colocalisation tool, we found an average of 8 

photoconverted GFP expressing neurons (n=10) in the vHb domain (Figures 

3.12A-D and movie S8). Our data suggest that ThEPC neurons contribute to 

the final habenula architecture and in particular to the vHb domain.  

In support of our results, a co-staining for 5HT marker was performed at 2 dpf 

highlighting a cluster of ThEPC neurons positive for the serotoninergic marker 
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5HT consistent with the serotoninergic character of the vHb neurons (see 

above, Figures 3.2D-D’’); (Beretta et al., 2012).  

In summary, using the PSmOrange protein in combination with our 

colocalisation macro, we were able to confirm the preliminary ablation data 

and prove the contribution of ThEPC neurons to the vHb domain. 

 

 
 
Figure 3.12: ThEPC neurons contribute to the vHb architecture. 
(A-C) Dorsal views with anterior to the left of an image from a stack showing at 4 dpf 
the location of ThEPC neurons in Et(-1.0otpa:mmGFP) embryos after photoswitching 
of H2B-PSmOrange. Left corner to the bottom shows the MIP after ThEPCs 
photoconversion at 2 dpf; the circles in the insets highlight the area of 
photoconversion. The gamma was corrected after image analysis between 0.60 and 
0.90 for display purposes. Colocalisation studies were performed using a custom-
written automatic ImageJ Macro to identify the position of the photoconverted GFP 
positive ThEPC cells in the entire Z-stack.  
(A) Red ROIs show the position of the photoconverted cells in the green channel. 
(B) Green ROIs display the location of GFP positive cells in the far-red channel.  
(C) Red and green ROIs were combined in the red channel to visualise the position 
of GFP photoconverted ThEPC neurons in the habenular nuclei in yellow.  
(D) Model showing the contribution of ThEPC cells to the final vHb architecture in 
wild type embryos.  
(A-C) White arrowheads mark the position of a photoconverted ThEPC derived GFP 
positive cells in the wild type habenula.  
Hb, habenula; l, left; Ps, photoswitched; r, right; ROI, region of interest; ThEPC, 
thalamic early projecting cluster; v, ventral. 
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3.4.3 Tcf7l2 gene function is required for vHb development 
 

Most of the current understanding regarding the molecular mechanisms 

responsible for habenular neurocircuit establishment is related only to dHb 

development and still nothing is known about the signaling pathways involved 

during vHb formation (Aizawa et al., 2007; Carl et al., 2007; Doll et al., 2011).  

Recent results obtained in our lab were suggesting that Wnt/beta-catenin 

transcriptional regulator tcf7l2 is necessary for regulating dHb subnuclei 

asymmetry (M. Carl, personal communication). Based on this discovery and 

the widespread early tcf7l2 expression pattern in prosomere 2 of zebrafish, 

we speculate that this gene might also be required for the development of vHb 

(Young et al., 2002). To understand whether the tcf7l2 gene is contributing to 

vHb formation, we initially analyzed the expression of the vHb cell marker 

kisspetidin-1 (kiss-1) (Servili et al., 2011; Ogawa et al., 2012;) in the vHb at 5 

dpf in wild type and tcf7l2 homozygote mutant background (Muncan et al., 

2007; Figures 3.13A,C). Our stainings show that the expression of kiss-1 is 

lost in the absence of tcf7l2 function (Figure 3.13C). Moreover, the analysis of 

the main target of vHb efferent axons, the MR in the ventral hindbrain, shows 

the absence of innervations in the tcf7l2 mutants (Figure 3.13C’). tcf7l2 is a 

context dependent regulator of Wnt signaling, but ongoing studies in the lab 

indicate that the gene acts as an activator of Wnt signaling in the context of 

habenula development (M. Carl, personal communication). 

Therefore our data suggest that tcf7l2 is required for vHb formation and down 

regulation of the Wnt pathway causes the loss of vHb neurons. To test if also 

the down regulation of Wnt/beta-catenin signalling affects the establishment of 

the vHb sub-domain, we checked for kiss-1 expression and MR innervations 

in axin1/masterblind mutant embryos (Heisenberg et al., 2001). In contrast to 

what we observed in the tcf7l2 mutant, the up regulation of Wnt signaling 

does not influence vHb neuron formation and axonal innervations of the MR 

(Figures 3.13B,B’).    

In summary, our data suggest that down regulation of tcf7l2 mediated 

Wnt/beta-catenin signaling causes the loss of vHb neurons.   
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Figure 3.13: Tcf7l2 mediated Wnt/beta-catenin signaling is required for vHb 
development. 
(A-C) Dorsal views, anterior to the top. kisspeptin-1 expression in the vHb (circle) is 
not affected by the upregulation of Wnt/beta-catenin signalling in (A,B) 
Axin1/masterblind mutant embryos, but absent in (C) tcf7l2 mutants.  
(A’-C’) Dorsal views with anterior to the left, MIP, focussed on axonal innervation of 
the MR in Et(1.0otpa:mmGFP)hd1 transgenic embryos at 3 dpf. H2A-CFP marks the 
cell nuclei for orientation. (B’) Upregulation of Wnt signalling in Axin1 mutants does 
not affect MR innervation by vHb efferent axons. (C’) In tcf7l2 mutants, the MR are 
not innervated. White arrowheads and white squares highlight the location of MR 
innervating axons, absent in C’. 
The gamma was corrected between 0.70 and 0.80 for display purposes. 
Hb, habenula; MIP, Maximum Intensity Projection; v, ventral; MR, median raphe. 
 
 

3.4.4 The vHb cell subpopulation in ThEPCs is missing in tcf7l2 mutants 
 

In the subchapter 3.4.2, we discussed the contribution of ThEPC neurons to 

the vHb domain and in the last subchapter we collected evidences that vHb 

neuron formation depends on Wnt/beta-catenin pathway activity mediated by 

the tcf7l2 gene. These findings led us speculate that the tcf7l2 gene may 

influence early vHb neuron development within the ThEPCs.  

To corroborate our hypothesis, we photoconverted ThEPC/H2B-PSmOrange 

GFP positive neurons at 2 dpf in the tcf7l2-/- x Et(-1.0otpa:mmGFP)hd1 

transgenic line and we checked the location of photoswitched GFP expressing 

ThEPC neurons in the vHb region at 4 dpf. In our studies, we observed that 



Results	  

	   	   54	  

the number of GFP expressing ThEPC cells appears largely unaffected but 

consistent with our hypothesis the double fluorescent ThEPC neurons did not 

localise in the region of the vHb domain (Figures 3.14A’-D’ and movie S8).  

Our data indicate that vHb cells originate in the thalamus from a cluster of 

ThEPC neurons and that tcf7l2 mediated Wnt signaling is required for their 

formation.  

 

 
 
Figure 3.14: ThEPC neurons contribute to the vHb architecture under the 
influence of Wnt/beta-catenin pathway activity, tcf7l2 mediated. 
Dorsal views with anterior to the left of an image from a stack showing at 4 dpf the 
location of ThEPC neurons in Et(-1.0otpa:mmGFP) embryos after photoswitching of 
H2B-PSmOrange. Left corner to the bottom shows the MIP after ThEPCs 
photoconversion at 2 dpf; the circles in the insets highlight the area of 
photoconversion. 
(A’-C’) Dorsal views with anterior to the left of an image from a stack showing at 4 dpf 
the location of photoswitching H2B-PSmOrange positive cells in the thalamus of 
tcf7l2-/- x Et(-1.0otpa:mmGFP)hd1 embryos thalamus. Left corner to the bottom 
shows the MIP after ThEPCs photoconversion at 2 dpf; the circles in the insets 
highlight the area of photoconversion. The gamma was corrected after image 
analysis between 0.60 and 0.90 for display purposes. Colocalisation studies were 
performed using a custom-written automatic ImageJ Macro to identify the position of 
the photoconverted GFP positive ThEPC cells in the entire Z-stack.  
(A’) Red ROIs show the position of the photoconverted cells in the green channel. 
(B’) Green ROIs display the location of GFP positive cells in the far-red channel.  
(C’) Red and green ROIs were combined in the red channel to visualise the position 
of GFP photoconverted ThEPC neurons in the habenular nuclei in yellow.  
(A’-C’) Photoconverted GFP positive ThEPC cells are not found in the habenulae of 
tcf7l2 mutants.  
(D’) Model showing the absence of ThEPC cells in vHb region in tcf7l2 mutants.  
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Hb, habenula; l, left; Ps, photoswitched; r, right; ROI, region of interest; ThEPC, 
thalamic early projecting cluster; v, ventral. 
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Figure legends for Supplementary movies 
 

 

MovieS1: Long-term 2-PM in-vivo recording of habenular neuronal circuit 
development, related to Figure 3.4 and 3.5. 
Dorsal view with anterior to the left, Colour Code MIP obtained from a total Z-height 
of 300 µm focussed on the diencephalon in a Et(-1.0otpa:mmGFP)hd1 transgenic 
embryo. Time-lapse between 32 hpf and 5 dpf. Left side, Colour Code Scale LUT 
displays the Z colour code table according to the depth of each stack. The stacks 
were acquired every 30 minutes with Z-depth of 1.0 µm. Laser power correction was 
used to compensate for increasing depth.  
The MIPs and the colour coded MIPs were generated with our novel automatic 
MIP_ColourCode script for Fiji software (Gamma = 0.45).  
White arrowheads mark the ThEPCs, lHb, rHb, and dHb efferent projections; red and 
green arrowheads highlight the second and the third cluster of projecting neurons, 
respectively.   
d, dorsal; Hb, habenula; IPN, interpeduncular nucleus; l, left; r, right; Tec, optic 
tectum; ThEPC, thalamic early projecting cluster. 
 
MovieS2: Long-term 2-PM in-vivo recording of habenular neuronal circuit 
development (black and white), related to Figure 3.4 and 3.5. 
Original time-lapse movie from 32 hpf to 5 dpf (see movieS2) using black and white 
MIP. 
ThEPC, thalamic early projecting cluster. 
 
MovieS3: Complete unilateral ThEPC laser ablation followed by long-term 2-PM 
in-vivo recording of habenular neuronal circuit development, related to Figure 
3.6. 
Dorsal view with anterior to the left, Colour code MIP obtained from a total Z-height 
of 240 µm after complete unilateral ThEPC ablation on the left brain hemisphere 
followed by 2-PM in-vivo recording of habenular network development between 32 
hpf and 5 dpf. Left side, Colour Code Scale LUT displays the Z colour code table in 
according to the depth of each stack. The ablation was carried out using laser power 
of 200 to 300 mW at the objective output. The MIPs were generated with our novel 
automatic MIP_ColourCode Script for Fiji software (Gamma = 0.60). Each stack was 
acquired every 40 minutes with a Z-step of 1.0 µm. Laser power correction was used 
to compensate for increasing depth.  
The first time point shows the position of ThEPC cells at the onset of GFP expression 
before ablation. After ablation, the scar remains visible due to the auto-fluorescence 
of the dead cells. 
Asterisk marks the ablated side. White arrowheads mark the ThEPCs, lHb, rHb, and 
the dHb efferent projections; red and green arrowheads highlight the predicted 
position of the second and the third cluster of projecting neurons, respectively. 
d, dorsal; Hb, habenula; IPN, interpeduncular nucleus; l, left; r, right; Tec, optic 
tectum; ThEPC, thalamic early projecting cluster. 
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MovieS4: Complete unilateral ThEPC laser ablation followed by 2-PM in-vivo 
recording of habenular neuronal circuit development (black and white), related 
to Figure 3.6. 
Original time-lapse movie from 32 hpf to 5 dpf (see movieS3) using black and white 
MIP. 
MIP, Maximum Intensity Projection; ThEPC, thalamic early projecting cluster. 
 
MovieS5: Sequential unilateral ThEPC cell laser ablation followed by 2-PM in-
vivo recording of habenular neuronal circuit development, related to Figure 
3.7. 
Dorsal view with anterior to the left, Colour Code MIP obtained from a total Z-height 
of 250 µm. 2-PM in vivo recording of habenular network formation between 32 hpf 
and 5 dpf after sequential unilateral ThEPC cell ablation on the right brain 
hemisphere. Left side, Colour Code Scale LUT displays the Z colour code table 
according to the depth of each stack. 2-4 cells were ablated as they started to 
express GFP for 4 times over a period of 4 hours using 300 mW of laser power at the 
objective output.  
A stack was acquired every 40 minutes with a Z-depth of 1.08 µm. Laser power 
correction was used to compensate for increasing depth. The MIPs and the 
ColourCodeMIPs were generated using the automatic MIP_ColourCode Script for Fiji 
software (Gamma = 0.40).  
The first time point shows the position of ThEPC cells at the onset of GFP expression 
before ablation. Upon ablation, the scar remains shortly visible due to the auto-
fluorescence of the dead cells, but is covered subsequently by GFP expressing 
neurons. Note that the dHb axon bundles migrate more peripherally and the IPN 
innervations are “disorganised” (Figure 5). 
Asterisk marks the ablated side. White arrowheads mark the ThEPCs, lHb, rHb, Hb 
efferent projections; red and green arrowheads highlight the second and the third 
cluster of projecting neurons, respectively. 
d, dorsal; Hb, habenula; IPN, interpeduncular nucleus; l, left; r, right; Tec, optic 
tectum; ThEPC, thalamic early projecting cluster. 
 
MovieS6: Sequential unilateral ThEPC cell laser ablation followed by long-term 
2-PM in-vivo recording of habenular neuronal circuit development, related to 
Figure 3.7. 
Original time-lapse movie from 32 hpf to 5 dpf (see movieS5) using black and white 
MIP. 
MIP, Maximum Intensity Projection; ThEPC, thalamic early projecting cluster. 
 
MovieS7: The ThEPCs are composed of mixed populations of deviding cells 
and postmitotic neurons, related to Figure 3.1 and 3.2. 
Dorsal view with anterior to the left, Colour Code MIP obtained from a total Z-height 
of 200 µm. High magnification time-lapse focussed on the ThEPC located in the left 
brain hemisphere between 32 hpf and 52 hpf. Left side, the LUT shows the Z colour 
code table according to the depth of each stack. Stacks were acquired every 10 
minutes with a Z-step of 1.0 µm. Laser power correction was used to compensate for 
increasing depth.  
The MIPs were generated using the automatic MIP_ColourCode Script for Fiji 
software (Gamma = 0.60). The cells were tracked using the Fiji manual tracking 
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plugin and displayed as an overlay of dots and lines. The manual tracking identifies 
deviding ThEPC cells, while other GFP positive neurons send out efferent 
projections.  
ThEPC, thalamic early projecting cluster. 
 
MovieS8: A population of ThEPC cells contribute to the vHb and is absent in 
embryos mutant for tcf7l2, related to Figure 3.12 and 3.14. 
Dorsal view with anterior to the left, Z-stacks of Et(-1.0otpa:mmGFP)hd1 and tcf7l2-/- 
x Et(-1.0otpa:mmGFP)hd1 transgenic embryos at 4 dpf after photoconversion of the 
H2B-PSmOrange protein in the ThEPC region at 2 dpf. Each stack was acquired 
using the sequential scanning mode with a Z-step between 1.0 µm and 2.0 µm. The 
scale bar is displaye in the right bottom corner of each image and the gamma was 
corrected for display purposes for each channel between 0.60 and 0.90 using the 
software Fiji. 
The colocalisation studies were performed using an automatic ImageJ Macro for Fiji 
to identify the GFP positive, photoconverted ThEPC cells in the entire Z-stack. The 
red channel is used to visualise the habenular morphology due to the nuclear 
expression of not photoconverted H2B-PSmOrange protein at 4 dpf. Red ROIs 
display the location of the photoswitched positive cells, while green ROIs show the 
position of the GPF positive cells. Red and green ROIs were combined to display the 
position of ThEPC cells expressing both GFP and the photoconverted protein in 
yellow.  
Minor corrections and compression were performed using the software iMovie and 
Wondershare Video Converter Ultimate. 
Hb, habenula; ROI, region of interest; ThEPC, thalamic early projecting cluster; v, 
ventral. 
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4 Discussion 
 

 

 

Investigating dynamic processes during development of large structures over 

a long period of time in-vivo has been very challenging in the past. In our 

studies, we present a new method based on optimised 2-PM time-lapse 

imaging and automatic image code colouring analysis to follow DDC system 

development for more than 4 days. We identified in the new Et(-

1.0otpa:mmGFP)hd1 enhancer trap transgenic line of zebrafish a thalamic 

bilateral cluster of early projecting neurons (ThEPC) with a previously 

uncharacterized function. The ThEPC clusters are connected to habenula 

axons and project ipsilaterally posterior and contralaterally forming a 

hemisphere spanning neural network prior to the formation of the dHb neural 

circuit. To investigate the role of ThEPC neurons during habenular neuronal 

network formation, we combined the advantages of our method with unilateral 

2-PM laser ablation. In according to the number of ThEPC neurons ablated, 

we observed perturbation of dHb axonal elongation and dHb axonal 

misrouting in the ablated hemispheres and intriguingly also in the contralateral 

brain side. Our data show the importance of short- and long-range inter 

hemispheric axonal communication for DDC neural network formation. 

The ThEPC cluster is constituted of different cell sub-types. To follow the 

hypothesis that one of these subsets participate in the formation of vHb, we 

successfully developed for zebrafish a new system to track automatically 

photoconverted ThEPC neurons in a GFP background. The tracking of 

ThEPC neurons in wild type embryos and embryos mutant for the Wnt 

pathway gene tcf7l2 reveals the thalamic origin of vHb neurons, which only 

form in the presence of tcf7l2 gene activity.   
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4.1 Combining long-term 2-PM and automatic colour code 
labelling systems to study neuronal network formation in-vivo 
 

In the last two centuries, much progress has been made in the field of 

neuronal network formation during embryonic brain development (Beretta et 

al., 2012). However, most of the current knowledge is derived from data 

collected from fixed samples and cell culture experiments. Advances in the 

study of the highly dynamic processes during neuronal network formation 

under physiological conditions have been hampered due to missing labelling 

systems and imaging tools. To overcome these limitations and to understand 

more about the dynamic time sequence of events during DDC system 

formation, we combined the advantages of the rapidly developing transparent 

zebrafish embryo and 2-PM (Svoboda and Yasuda, 2006). 

The accessibility of the DDC system (Aramaki and Hatta, 2006) and the high 

GFP expression levels in all major components from early to late 

developmental stages in Et(-1.0otpa:mmGFP)hd1 transgenic embryos make it 

possible to use the habenular neural network as a model to investigate the 

formation of large neuronal networks in-vivo. However, the DDC system 

spans several hundred micrometers in A-P, D-V and left-right direction and 

the development of the entire neurocircuit requires a time of approximately 96 

hours (Bianco et al., 2009; Beretta et al., 2012). In our studies, we show that 

CLSM appears inefficient to acquire long-term high-resolution images of the 

entire DDC system development over a long period of time (Figure 3.3). The 

prerequisite to acquire high-resolution images using CLSM is related to the 

pinhole setting, which, in according to the aperture, can only allow fluorescent 

signal originating within a thin focal plane to reach the detector (Minsky M., 

1957). To just excite fluorescent molecules in a single plane, a small confocal 

pinhole has to be fixed and generally this causes inefficient fluorescence 

collection when imaging deeper into a thick tissue (Centonze and White, 

1998; Conchello and Lichtman, 2005). Laser power correction can be used to 

overcome this problem and to acquire images with good signal-to-noise ratio. 

However, high laser power accelerates photobleaching and phototoxicity 

(Squirrell et al., 1999) making the acquisition of images for long-term time-

lapse on living specimen impossible. To circumvent the limits of CLSM and to 
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be able to follow the DDC system formation, we successfully applied 2-PM 

confocal microscopy for long-term high-resolution time-lapse (Figure 3.4). 

Many reports show that 2-PM can be applied to follow different development 

biological processes occurring in thick tissue overcoming the main limitations 

discussed for the classical one-photon excitation microscopy (Squirrell et al., 

1999; Stosiek et al., 2003; Kamei and Weinstein, 2005; Kobat et al., 2009). 

Indeed, 2-PM is based on a non-linear excitation process with the quasi-

simultaneous absorption of two less energetic photons of longer wavelength. 

The advantage of this system is that the fluophores are only excited within a 

diffraction-limited of a spot, without out-of-focus stimulations (Denk et al., 

1990). The restricted excitation volume causes a reduction in background with 

an improvement of signal-to-noise ratio and thus also achieves the reduction 

of photobleaching and photodamage (Centonze and White, 1998). Since the 

2-PM excitation is localised in the focal plane, all the photons emitted by the 

fluophores represent valuable signal reaching the detector, without any 

pinhole constrictions. Moreover, the excitation of GFP with a longer 

wavelength (940 nm) reduced scattering and absorption by endogenous 

chromophores with a deeper penetration of the light in thick tissue (Helmchen 

and Denk, 2005).  

Combining all 2-PM features discussed above with the Et(-

1.0otpa:mmGFP)hd1 transgenic line, we were able to efficiently overcome the 

CLSM limitations to investigate in-vivo the DDC system formation for more 

than 4 days. 

The data size of each time-lapse acquired makes it generally rather difficult to 

investigate them and to display all the different structures imaged in a three 

dimensional space. To visualise our data, we initially developed an ImageJ 

script to build automatic the MIP obtained from each stack. The system 

allowed us to quickly process and display in 2D the large amount of data 

generated after each 2-PM recording. Furthermore, to be able to visualise 

each time lapse in 3D, we implemented our ImageJ script to automatically 

apply a colour code LUT in according to the Z-depth to each stack. Alternative 

methods are already published to generate in ImageJ pseudo-3D views 

however, we found them inefficiently for our purpose. Indeed, these scripts 

convert a stack to RGB colour and then compute a projection. The 
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consequences are not only an increment of the memory necessary for each 

analysis but also lead to unexpected results by creating an output image that 

combines maxima found within each colour channel individually, rather than 

from the original image intensities.   

In summary, this method overcomes time constrictions for data analysis and 

permits a fast two-dimensional reconstruction of 2-PM time-lapse stacks 

increasing the 3D perception of each image.   
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4.2 dHb axonal pathfinding depends on the ThEPC neuronal 
network    
 

Long-term in-vivo 2-PM and colour code imaging analysis allowed us to 

identify a bilateral cluster of neurons located in the thalamus (ThEPC) and to 

investigate their function during DDC system development.  

We find that ThEPC neuronal network establishment takes place before dHb 

axon migration. dHb axons cross the ThEPCs on either side of the brain 

before elongating towards their medially positioned target. This observation 

raised the possibility that ThEPCs might play a role in dHb axon growth 

and/guidance. Indeed, unilateral complete removal of ThEPC neurons 

followed by 2-PM time-lapse analysis reveals the arrest of dHb axon 

elongation and the absence of IPN innervations. Further, the unilateral 

incomplete ablation of ThEPC neurons causes misrouting of dHb axons, 

dependent on the number of neurons removed. 

The discovery of a connection between the dHb axon and the ThEPC cluster 

evokes a possible pioneering function of ThEPC neurons during the 

establishment of DDC system. Pioneering neurons are reported to be 

essential for axonal pathfinding during the development of retinotectal 

projections and olfactory system innervations (Whitlock and Westerfield, 

1998, Pittman et al., 2008; Imai and Sakano, 2011). In general, this 

specialised class of neurons provides guidance cues necessary for proper 

axonal pathfinding of follower axons. Deletion of pioneering neurons often 

induces perturbations in the guidance of their follower axons with a 

consequent delay or misrouting of them (Raper and Mason, 2010; Imai and 

Sakano, 2011; Miyasaka et al., 2012). For instance, the olfactory placode of 

zebrafish contains a transient class of neurons, which establishes the initial 

connection with the olfactory bulb to guide the follower olfactory neuronal 

axons in the direction of their target. Ablation experiments performed on the 

olfactory pioneering neurons demonstrated that they are necessary for the 

correct targeting of the incoming sensory neurons (Whitlock and Westerfield, 

1998). The absence of the olfactory transient neurons frequently causes the 

misrouting of olfactory neuronal axons and just in rare cases the complete 

mistargeting of them (Whitlock and Westerfield, 1998; Raper and Mason, 
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2010). This data show the essential function of pioneering neurons for axonal 

pathfinding during the development of a specific neuronal network. 

In accordance to the similarity between the olfactory pioneering neurons and 

the results obtained after ThEPC neurons ablation, we initially speculated on 

a possible pioneering function of ThEPCs. Indeed, the partial removal of 

ThEPC cells causes dHb axonal misrouting with the identification of two 

consistent categories of phenotypes within the IPN: delayed/IPN reduced 

innervation and IPN disorganisation. Conversely, the complete unilateral 

ThEPC ablation results in the stop of dHb axon elongation before reaching the 

IPN. These results are similar to less frequent observations in other neuronal 

network systems and highlight the crucial function of ThEPC neurons for dHb 

axonal pathfinding (Whitlock and Westerfield, 1998; Pittman et al., 2008; 

Raper and Mason, 2010).  

All the data collected are consistent with a possible pioneering function of 

ThEPC neurons. However, even with high magnification time-lapse images, 

we were not able to unambiguously demonstrate whether the ThEPC neurons 

guide the dHb axon in the direction of their target (data not shown). It appears 

that dHb axons contact the ThEPC neurons and/or axons only within the 

cluster but then follow their own way in the direction of IPN (Figure 3.4 and 

movies S1,S2). Therefore, we hypothesise that ThEPC neurons are unlikely 

to function as pioneering neurons but as intermediate targets involved in the 

sorting and topographic organisation of dHb axons, like reported for the 

thalamocortical system (Dufour et al., 2003; Bonnin et al., 2007; Powell et al., 

2008). Indeed, after incomplete unilateral ablation of ThEPC neurons, dHb 

axons start to project normally and just after the crossing of ThEPC ablated 

side, some of them become disorientated. Consistently, the complete 

unilateral ThEPC neurons ablation causes dHb axon arrest.  

In summary, ThEPC cells could be the intermediated target of dHb efferent 

axons, responsible of dHb axonal sorting and orientation. Therefore, ThEPC 

neurons may act as a local source of information necessary for dHb axon 

elongation and guidance. 

Our findings provide new functional evidences for a role of thalamic neurons 

during dHb axonal migration, but several questions still remain open for future 
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studies. For instance, which are the molecular signaling pathways in the 

thalamus that may mediate the function of ThEPC cells? 

In our studies we found that ThEPC neurons express the lhx2b gene. The 

Lhx2 transcription factor family has been reported to be essential for axonal 

guidance in zebrafish and in mice (Seth et al., 2006; Wilson et al., 2008; 

Nawabi and Castellani, 2011). In the foxd1 mutant mouse (Herrera et al., 

2004) and the Bella-donna/lhx2b mutant zebrafish, ipsilateral axons are 

increased due to the misexpression of genes such as slits, ephs, zic2 and 

foxg1 in the embryonic midline preventing axonal crossing in the optic chiasm.  

We may speculate that lhx2b gene function could be necessary for ThEPC 

neuron function and consequently influence dHb axonal migration. Studies 

performed on pioneering neurons located in the ventral telencephalon of lhx2-

/- mutant mice reported a perturbation in thalamic efferent axon guidance 

towards their telencephalic targets (Lekhina et al., 2007). Therefore, we 

support the hypothesis that lhx2b may regulate the intermediate target 

function of ThEPC neurons and consequently the dHb axon migration. This 

potentially makes lhx2b gene an attractive candidate for future investigation.   
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4.3 ThEPC neurons promote brain interhemispheric long 
distance axonal communication 
 

The brain is an extraordinary machine able to efficiently process and integrate 

information between the two brain hemispheres (Lindell, 2011; van der Knaap 

and van der Ham, 2011). The establishment of interhemispheric connections 

is well studied in the corpus callosum in which long-range efferent fibers 

derived from cortical neurons connect the left and the right cerebral 

hemispheres. During brain development, the callosal axons take a route to the 

midline and cross it to migrate through the white matter (WM) to precisely 

reach the contralateral target area of the neocortex (Mizuno et al., 2007). With 

our 2-PM in-vivo time-lapse, we acquired evidences that also during 

habenular neuronal circuit development, interhemispheric communication 

plays an essential role. Indeed, we discovered the existence of midline 

crossing axons originated from both ThEPC clusters. Intriguingly, the 

complete unilateral ablation of ThEPC neurons causes the loss of the ThEPC 

axonal crossing on the contralateral side. These axons regress after having 

elongated a short distance towards the midline. Moreover, on the ablated side 

and frequently on the not ablated side, we observed a lack of GFP expression 

in the two posteriorly bilateral clusters and their axonal bundles (Figures 

3.6,3.7,3.9 and movies S3,S4,S5,S6). This does not prove the absence of 

interhemispheric connections between them. However, this evidence may 

suggest that the contact between the ThEPC axons influences the genetic 

program within the neurons of these clusters on both brain hemispheres. 

As previously discussed, the unilateral complete ablation of ThEPC neurons 

causes the arrest of dHb efferent projection elongation evocating a possible 

function as intermediate target for these neurons during the early habenular 

neurocircuit development. In the unilateral absence of one ThEPC dHb 

elongation is affected on both sides of the brain. Since the communication 

between the ThEPC clusters located in the two brain hemispheres is affected 

earlier than dHb elongation and due to the functional evidences collected on 

the intermediate role of ThEPC neurons, we argue that the absence of long-

range interhemispheric ThEPC axonal communication is likely the reason for 

dHb axon elongation perturbations in the not ablated brain side.  
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Further, the unilateral incomplete ThEPC ablation experiments are consistent 

with our hypothesis. In the presence of a reduced number of ThEPC neurons, 

which connect to the contralateral side, dHb axons on the ipsilateral side are 

misrouted. ThEPC axons from the contralateral side cross the midline 

normally and the dHb axon targeting is unaffected. Additionally, we show that 

ThEPC neurons unilateral failed ablation does not affect, neither the short-

range intrahemispheric axonal communication, nor long-range 

interhemispheric axonal communication. These data are consistent with short-

range intrahemispheric communication between the ThEPC neurons and the 

dHb axons and a long-range interhemispheric axonal communication between 

the two bilateral ThEPC clusters.  

The identification of a long-range axonal communication during the habenular 

neurocircuit formation opens up a new challenging field for the investigation of 

the function of interhemispheric connections. It is still unclear how the ThEPC 

neurons transmit information to the other side of the brain.  

As mention above, the early establishment of cortical connections in mouse 

involved guidance factors and molecular cues allowing axons to cross 

properly the midline and reach their target in the contralateral neocortex 

(Lindwall et al., 2007). Recent progress in long distance axonal 

communication in the mammalian forebrain has demonstrated the key role of 

midline glia structure in commissural formation (Seth A. et al., 2006; Nawabi 

and Castellani, 2011). For instance, the formation of post-optic commissure in 

zebrafish depends on the function of sonic hedgehog (shh) and slit that 

regulate the expression of glia fibrillary acidic protein (GFAP) in the midline 

glia (Barresi MJ et al., 2005). Disrupting the slit signaling cascade causes 

disorganisation in the midline glia and several commissural axons are 

affected. Additional evidences demonstrating the importance of midline glia 

genes have been reported analysing the belladonna zebrafish mutant. The 

disruption of lhx2 gene function in this mutant causes a disorganisation of 

midline glia with a consequent disruption of post-optic and anterior 

commissure axonal crossing (Seth A. et al., 2006). Nawabi and Castellani 

reviewed that the embryonic midline glia express attracting and repulsive 

molecules, such as netrin used to discriminate between crossing axons and 

ipsilateral running axons (Nawabi and Castellani, 2011). Moreover, they 
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highlight that the midline properties change over the time in according to the 

input received from the incoming axons. Consistent with our observations, 

one may speculate that ThEPC crossing axons express different guidance 

receptors, such as DCC (Deleted in Colon-rectal Carcinoma) and Robo. The 

ablation of ThEPC neurons causes the absence of midline axonal crossing 

and this influences the glia midline properties. The consequent changes of 

glia midline gene expression, such as of netrin, shh, slit or lhx2, could affect 

the ThEPC axonal migration on the contralateral brain side. Modification in 

ThEPC neuron long-range axonal communication may cause changes in 

ThEPC gene expression on the contralateral side with a consequent effect on 

ThEPC neuronal network establishment. Since dHb axons cross the ThEPC 

neurons during the establishment of habenular neurocircuit, the change in 

ThEPC neuron properties may affect correct dHb axonal elongation and 

consequently axonal pathfinding. Alternatively, ThEPC neuron derived cues 

may send signals to or across the midline independently of axon 

commissures. The identification of molecules involved will shed light on this 

issue in the future. 

Our system allowed us to overcome the limitations studying developmental 

processes on fixed embryos and to follow the formation of DDC neuronal 

network for 4 days. Using high-resolution long-term in-vivo 2-PM, we identified 

a crucial role of long distance interhemispheric ThEPC communication for 

bilateral dHb axon elongation and targeting. However, the molecular 

mechanism responsible for long-range axonal communication during the DDC 

system development is still unknown and awaits future investigation. 
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4.4 Unilateral ablation of one habenula does not influence dHb 
axon elongation and pathfinding on the contralateral brain 
side 
 

The development of brain asymmetries is one of the most fascinating fields in 

neuroscience and it is not clear whether exchange of information between the 

two brain hemispheres is important for the formation of neuroanatomical 

asymmetries (Taylor et al., 2010). In the vertebrate brain, one of the best 

described systems used to study brain asymmetry is the habenular neuronal 

network of zebrafish (Aramaki and Hatta, 2006). The habenular commissure 

connects the asymmetric habenular nuclei located in the left and the right 

brain side and allows interhemispheric exchange of information (Hendricks 

and Jesuthasan, 2007). 

The dHb nuclei are subdivided in the lateral (dHbl) and medial habenula 

(dHbm), which show asymmetry in their cell composition, gene expression 

and neuropil density between the left and the right side of the brain (Gamse et 

al., 2003, 2005). During the formation of the DDC system, left-right dHb 

asymmetry is converted into a dorso-ventral asymmetry in that efferent 

habenular projections target dorso-ventrally distinct regions of the IPN 

(Concha and Wilson, 2001; Gamse et al., 2003; Aizawa et al., 2006; Bianco et 

al., 2009). 

The establishment of interhemispheric axonal connections between the 

habenulae could be a possible mechanism used to facilitate the asymmetric 

cell type organisation in the dHb and the coordinated elongation of their 

efferent projections. We show that unilateral ablation of early dHb neurons at 

the onset of axonal elongation (2dpf) does not influence the development of 

the contralateral habenular, the axon elongation and the targeting of their 

efferent axons. Indeed, high-resolution images of IPN innervation at 4 dpf 

show the characteristic shape of the axonal arbors within the IPN (Figure 

3.10). The absence of changes in IPN innervations after unilateral dHb 

ablation highlights the specific importance of ThEPC neurons for habenular 

neurocircuit formation. Therefore, interhemispheric dHb communication 

processes are not necessary for dHb axon elongation and pathfinding at least 

after 2 dpf.  However, we cannot exclude that early steps of dHb development 
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may influence habenular nuclei formation and axonal targeting. Indeed, the 

establishment of dHb subnuclei starts around 28 hpf (Aizawa et al., 2007) with 

the initial differentiation of dHbl sub-nucleus follow by dHbm development 

(Roussigne et al., 2009). Therefore, at the time of unilateral dHb ablation, 

many events responsible for dHbl and dHbm formation have already 

occurred.  

The first commissures between the habenular nuclei have been reported at 2 

dpf (Hendricks and Jesuthasan, 2007; Hendricks et al., 2008). However, we 

cannot completely preclude earlier communication events between the 

habenular neurons. One way to exclude the early contribution of 

interhemispheric dHb nuclei communication to dHb axonal elongation and 

pathfinding could be through the unilateral ablation of the dHb precursor cells. 

Unfortunately, the lack of transgenic lines expressing fluorescent proteins in 

the dHbl and dHbm precursor cells makes this investigation currently 

unrealistic.  
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4.5 Ventral habenular neurons originate in the thalamus and 
only develop in the presence of tcf7l2  
 

The mammalian habenular nuclei can be grossly subdivided into medial and 

lateral subnuclei mainly in according to the marker gene analysis, the sources 

of afferent axons and to the main targets innervated in the brain. The teleost 

dHb is homologous to the mammalian medial habenula and in the last two 

decades a lot of information has been collected about its origin and the 

underlying molecular pathways (Bianco et al., 2009; Beretta et al., 2012). In 

contrast, the teleost vHb, homologous to the mammalian lateral habenula, has 

been poorly characterised (Amo et al., 2010), although it recently became a 

model to investigate reward regulatory systems (Bromberg-Martin and 

Hikosaka, 2011; Matsumoto and Hikosaka, 2007, 2009a, b). The origin, 

development and the underlying genetic pathways are still completely 

unknown.  

We show that the hd1:mmGFP transgene is expressed in vHb neurons and 

their efferent axons innervating the MR. We observed that ThEPC clusters are 

composed of different types of neurons with differences in the mitotic activity 

and axonal targets. In accordance to the ThEPC neuron nature and to the 

expression of 5HT serotoninergic marker within a few ThEPC neurons, we 

investigated the ThEPC neuronal fate during the DDC system formation. 

Combining the photoswitchable PSmOrange with our automatic ImageJ 

colocalisation macro, we demonstrated that all the habenular neurons 

originate within the prosomer 2. Compared to the origin of dHb neurons in the 

proximity of the pineal complex (Roussigne et al., 2009), vHb cells originate in 

a more posterior and ventral part of prosomere 2. A fairly small number of 

cells co-expressing GFP and the photoconverted protein ended up in the vHb 

(Figure 3.12). However, other photoconverted cells did not coexpress the 

hd1:GFP transgene. This indicates on one hand that probably all vHb neurons 

originate in the posterior-ventral thalamic area. On the other hand not all the 

vHb neurons are initially labeled with GFP in the Et(-1.0otpa:mmGFP)hd1 

transgenic line.  

One of the most characterised pathways required for the specification of dHb 

is the Wnt/beta-catenin pathway (Carl et al, 2007). The up- or downregulation 
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of Wnt pathway activity results is the loss of asymmetry of dHb nuclei. Recent 

results obtained in our lab have shown that the loss of function in the tcf7l2 

gene causes modifications in the dHb nucleus and in the dHb efferent 

projections innervating the IPN (M. Carl, personal communication). The 

transcriptional regulator tcf7l2 acts as an activator during the establishment of 

habenular asymmetry and the loss of tcf7l2 gene causes an increment in the 

number of dHbl on the right brain hemisphere. Moreover, in tcf7l2 loss of 

function embryos, the dHb efferent axons innervate only the dorsal part of the 

IPN with a consequent alteration of dorso-ventral asymmetry (M. Carl, 

personal communication). 

Since nothing is known about the genetic pathways underlying the vHb 

neurons, we investigated whether the tcf7l2 gene has some functions during 

the vHb formation. Combining the PSmOrange with the automatic ImageJ 

macro in Et(-1.0otpa:mmGFP)hd1 line tcf7l2-/- mutant background (Muncan et 

al., 2007), we show that tcf7l2 functional gene is necessary for vHb 

development. Additionally, the analysis of the vHb axons innervation within 

the MR supports the role of Wnt/beta-catenin pathway during vHb 

development, mediated by tcf7l2 gene activity (Figures 3.13,3.14). 

In our studies, we have identified the source of vHb neurons in the thalamus 

and the first gene required during their development. Furthermore, ThEPC 

short-range and long-range axonal communication seems not to be affected 

in the tcf7l2 mutant (Muncan et al., 2007) and dHb axons target the IPN (M. 

Carl, personal communication). These findings indicate that ThEPC neurons 

responsible of the vHb origin are not required for dHb axon elongation and 

targeting.  

 

In conclusion, the application of techniques, such as the 2-PM to investigate 

neuronal network formation in living animals provides a better understanding 

of the spatio-temporal sequence of developmental events. We show a 

detailed description of DDC system neuronal network formation in-vivo and  

uncovered the importance of interhemispheric long-range axonal 

communication mediated by intermediate targets for dHb axons in the 

thalamus. These ThEPCs consist of different cell types. Combining the 

photoconvertible PSmOrange fluorescent protein with a new automatic 
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ImageJ Macro, we identified one subpopulation being vHb neurons. These 

only develop in the presence of tcf7l2 gene activity. 
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5 Experimental Procedures  
 

 

 

5.1 Fish lines and maintenance  
 
The zebrafish lines were maintained and bred according to standard 

procedures (Westerfield, 1995). AB and tupl wild-type lines and the Et(-

1.0otpa:mmGFP)hd1, tcf7l2exl (Muncan et al., 2007) x Et(-

1.0otpa:mmGFP)hd1 and masterblind/Axin1tm213 (Heisenberg et al., 2001) x 

Et(-1.0otpa:mmGFP)hd1 lines were used.  

The zebrafish embryos were raised in E3 medium and to inhibit pigmentation 

0.2 mM 1-phenyl-2 thiourea (PTU, Sigma) was added after gastrulation. The 

medium was changed twice per day.  

To collect different embryonic developmental stages, the embryos were 

anesthetized using 0.02% of ethyl 3-aminobenzoate methansulfonate 

(Tricaine, Sigma) and fixed in 4.0% paraformaldehyde (PFA, Sigma) in PBS 

at room temperature for 3 hours or at 4° C over night. After fixation, the 

embryos were washed three times in 1X PBST (PBS + 0.01% Tween 20, 

Sigma) and placed in a sterile petri dish under a light binocular microscope. 

The chorion was removed with tweezers (No. 5 Dumont & Fils), the larvae 

were rinsed two times for 5 minutes in 50% methanol in PBST and stored in 

100% methanol (Sigma) at -20° C in 1.5 ml sterile tubes (Eppendorf). 

 

E3 embryo medium: 

 

  5.0 mM NaCL (Sigma) 

  0.17 mM KCL (Sigma) 

  0.33 mM CaCL2 (Sigma) 

  0.33 mM MgSO4 (Sigma) 

  1.0% methylene blue (Sigma) 

 

Tricaine stock solution (15 mM, pH 7.0, 27° C): 
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 0.40 g ethyl 3-aminobenzoate methansulfonate salt (Sigma) 

 97.9 ml DD water 

 ∼2.1 ml 1M Tris HCL (pH 9.0, 27° C; Sigma) 

 

Paraformaldehyde (4%, pH 7.0, 27° C): 

 

  1.33 M Paraformaldehyde (Sigma) 

  1X PBS (Sigma) 

 

The pH was adjusted to 7.0 (27° C) adding 6.0 µl of 10 M NaOH (Sigma). 
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5.2 Tcf7l2exl x Et(-1.0otpa:mmGFP)hd1 genotyping 
 
The identification of tcf7l2exl (Muncan et al., 2007) homozygote adult and 

embryo mutants was performed by genotyping.  

 

5.2.1 Genomic DNA extraction 
 
The tcf7l2exl x Et(-1.0otpa:mmGFP)hd1 adult fish and embryos were 

anesthetized using a lower dose of tricaine and a small portion of the fin 

tissue was cut with a scalpel or a tweezers respectively and used for the 

genomic DNA extraction. The adult fish were kipped separately in mouse 

tanks and sorted in according to the result of each genotyping. For adult fish 

and embryos as well the excised tissue was incubated in 200 µl of GNT-K 

buffer containing 100 µg/ml of proteinase K (Sigma) at 56° C for 2 hours and 

heated at 95° C for 15 minutes. Each sample was briefly spun down and 500 

µl of 96% ethanol (Sigma) were added. The solution was centrifuged at room 

temperature for 30 minutes at 14000 rpm (Eppendorf 5424/5424R), the 

supernatant was carefully discarded and the pellet was dried in ice for 20 

minutes. The genomic DNA was resuspended in 25 µl of Milli-Q 

DNase/RNase free water and heated at 56° C for 20 minutes. The extracted 

DNA was stored at -20° C. 

 

GNT-K buffer: 

 

50 mM KCL (Sigma) 

1.5 mM MgCL2 (Sigma) 

10 mM Tris-HCL pH 8.5 (27° C; Sigma) 

0.01% Gelatin (Sigma) 

0.45% Nonidet® P-40 (Sigma) 

0.45% Tween® 20 (Sigma) 
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5.2.2 PCR  
 

Purified genomic DNA were amplified by PCR (Qiagen Multiplex PCR Kit) to 

identify the point mutation in the tcf7l2 gene using the following primers:  

 

Primer Forward:    

5’- AAAATGCCGCAGCTGAAC -3’  

Primer Revers:     

5’-	  CAACAACACGGTGCATCG -3’ 

 

The PCR reaction mix was prepared for each sample using: 

 

5x Taq Polymerized Buffer 5.0 µl 

Q-Solution 10 µl 

5.0 mM MgCL2 5.0 µl 

Primer Forward [100 µM] 0.50 µl 

Primer Revers [100 µM] 0.50 µl 

10 mM dNTPs Mix 1.0 µl 

Qiagen DNA Taq Polymerase  1.0 U 

Extracted Genomic DNA 2.0 µl 

 

The final volume of each reaction was adjusted with Milli-Q DNase/RNase 

free water to 50 µl.  

The polymerase chain reaction was performed under the following condition: 

 

95° C   2 min 

95° C  30 sec 

63° C  30 sec 

72° C  30 sec 

go to step 2, repeat the cycle 30 times 

72° C  5 min 
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4.0° C  forever 

 

To control the PCR product of each reaction 30 µl of PCR were loaded with 

6X loading dye (Fermentas) on 1.5% agarose gel (Sigma).  

 

5.2.3 BsajI restriction analysis  
 

The nonsense point mutation in tcf7l2 mutant gene disrupts a BsajI restriction 

site. Therefore, to identify the mutated base pair the BsajI restriction enzyme 

(New England Biolab, NEB) digestion was performed using:  

 

PCR Product 16 µl  

10X Buffer 4 (NEB) 2.0 µl 

BsajI (NEB) 2.0 µ (1.0 U)  

 

60° C, 4 hours 

 

The digestion products were loaded with 6X loading dye on 1.5% agarose gel. 
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5.3 In-situ hybridization procedures 
 

5.3.1 Plasmid preparations  
 

DNAs for whole-mount in-situ probes were cloned into the TOPO® TA vector 

(Invitrogen) or in the pBlueScript vector (pBSK, Addgene). Escherichia coli 

chemical competent cells (Invitrogen) were transformed using 0.5-1.0 µl of 

DNA (∼0.50 µg). The solution containing the plasmid DNA and the chemical 

competent cells was incubated in ice for 30 minutes and heated at 42° C for 

40 seconds without shaking. 250 µl of preheated SOC medium (Invitrogen) 

were added and the cells were grown at 37° C for one hour at 450 rpm 

(Thermomixer®, Eppendorf). 30-50 µl of each transformation were spread on 

preheated LB plates containing either 100 mg/ml of ampicillin or 50 mg/ml of 

kanamycin (Roche). Each plate was incubated at 37° C overnight and to 

ensure to pick up single colonies, sequential dilutions were prepared for each 

transformation.  

Next day, single colonies were picked up and incubated at 37° C for 6-8 hours 

in 3.0 ml of LB medium (Sigma) with the appropriate antibiotic containing 

either 100 mg/ml of ampicillin or 50 mg/ml of kanamycin. The bacterial 

solution was diluted (1:500) in LB medium containing the antibiotic and grown 

at 37° C over night at 180 rpm on a shaker incubator (Bionics®). The bacterial 

culture was centrifuged at 4° C for 20 minutes at 3200 rpm (Eppendorf 

5810/5810R) and the plasmid was isolated using the large-scale plasmid 

purification Qiagen Midi or Maxi Kit.  

The plasmid DNA was checked on 0.8-1.0% agarose gels and the 

concentration/purity was measured using Nanodrop system (Fisher). Each 

plasmid was stored at -20° C.   

 

LB medium (pH 7.0, 27° C) 

   

  1.0% Tryptone (Roth) 

  0.50% Yeast Extract (Roth) 

  1.0% NaCL 



Experimental Procedures	  

	   	   80	  

  0.30% Tween 20 (Sigma) 

  0.30% Glycerol (Sigma) 

 

The mixture was autoclaved on liquid cycle for 20 minutes and stored at 4° C. 

The antibiotics were added fresh each time. 

 

LB plates 

 

  LB Medium 

  + 15 g/l LB agar (Roth) 

 

5.3.2 In-situ probe transcription and purification 
 

Plasmids for whole mount in-situ hybridizations were linearized by restriction 

enzyme digestion using the following conditions: 

 
Circularized Plasmid DNA 3.0 µl (∼1.0 µg) 

10X Buffer (NEB) 2.0 µl 

Restriction Enzyme (NEB) 2.0 µl (1.0 U)  

DD Water 13.0 µl 

 

37° C, 3 hours 

 

The digestion was checked loading 2.0 µl of linearized plasmid with 6X 

loading dye on 1.0% agarose gel. 

To prepare in-situ probes, 3.0 µl of linearized plasmid were incubated with 16 

U RNAas inhibitors (NEB), 2.0 µl of 10X buffer (NEB) and 2.0 µl of DIG 

(digoxigenin) or FITC (fluorescein) labelling mix (Roche) in a total volume of 

20 µl. RNA transcription was initiated adding 10 U of the appropriated RNA 

polymerase and the mixture of reaction was incubated at 37° C for 3 hours. 

The RNA was cleaned up and concentrated using the RNeasy Cleanup Kit 

(Qiagen) according to the manufacturer’s instructions. To ensure higher 
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concentration levels, the in-situ probes were eluted in two steps with 30 ul of 

Milli-Q DNase/RNase free water. Each in-situ probe was checked by agarose 

gel electrophoresis and the concentration/purity was estimated using the 

Nanodrop system. The RNA probes were immediately used or stored at -20° 

C or at -80° C.  
 

In-situ Probes Linearization Enzyme RNA Polymerize References 

Kcdt12.1  EcoRI T7 Gamse et al., 2005 

Kcdt8 XhoI Sp6 Gamse et al., 2005 

Cxcr4b BamHI T7 
Roussigné et al., 

2009 

Lhx2b XbaI T7 
Peukert et al., 2011 

Seth et al., 2006 

Lhx1a BamHI T7 Toyama et al., 1995 

Nr4a2a HindIII T3 
Blin et al., 2008 

Filippi et al., 2007 

 

The kisspeptin-1 (Ogawa et al., 2012; Servili et al., 2011) in-situ probe was 

obtained by PCR using the following primers: 

 

Primer Forward:    

5’- ATGCTGCTTACTGTCATATTGATG -3’  

Primer Revers:   

5’- GGATCCATTAACCCTCACTAAAGGGAcacctaaaacatgaaggcaaatacc -3’ 

 

The lowercase characters on the reversed primer highlight the T3 polymerase 

DNA binding site.  

The RNA was extracted from 10-20 5 dpf (day post fertilization) old embryos 

using 1.0 ml of trizol reagent (Invitrogen) in 1.5 ml eppendorf tube. The tissue 

was homogenized by pipetting at room temperature for 5 minutes and 200 µl 

of chloroform (Sigma) were added. The solution was mixed for 15 seconds 
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and incubated at room temperature for 3 minutes. The samples were 

centrifuged at 4° C for 15 minutes at 14000 rpm and the supernatant was 

transferred in a new sterilized eppendorf tube. 500 µl of isopropanol (Sigma) 

were added to the mixture and the solution was incubated at room 

temperature for 10 minutes. Next, the samples were centrifuged at 4° C for 10 

minutes at 14000 rpm, the supernatant was carefully discarded and the pellet 

was washed using 300 µl of 70% ethanol (Sigma). The RNA was isolated by 

centrifugation and the pellet resuspended in 30 µl of of Milli-Q DNase/RNase 

free water. 2.0 µl of extracted RNA was loaded with 2X RNA loading dye 

(Fermentas) on 1.0% agarose gel and the concentration/purity was measured 

using Nanodrop system. The RNA was stored at -20° C or at -80° C.   

The RNA was reverse-transcribed to cDNA using the SuperScript® III 

Reverse Transcriptase Kit (Invitrogen) in according to the manufacturer’s 

instructions.  

The PCR reaction mix was prepared for each sample using: 

 

5x Taq Polymerized Buffer 5.0 µl 

Q-Solution 10 µl 

5.0 mM MgCl2 5.0 µl 

Primer Forward [100 µM] 0.50 µl 

Primer Revers [100 µM] 0.50 µl 

10 mM dNTPs Mix 1.0 µl 

Qiagen DNA Taq Polymerase  1.0 U 

Extracted Genomic DNA 2.0 µl 

 

The final volume of each reaction was adjusted with Milli-Q DNase/RNase 

free water to 50 µl.  

The polymerase chain reaction was performed under the following condition: 

 

95° C   2 min 

95° C  30 sec 
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63° C  30 sec 

72° C  60 sec 

go to step 2, repeat the cycle 29 times 

72° C  5 min 

4.0° C  forever 

 

The PCR product was loaded with 6X loading dye on 1.5% agarose gel. The 

PCR band with approximately 530 bp (base pair) was gel extracted (Gel 

Extraction Kit, Qiagen) and the RNA in-situ probe was transcribed using the 

T3 RNA polymerase (NEB) and stored as described above. 

 

5.3.3 In-situ hybridization labelling 
 

Whole mount in-situ hybridization labelling was performed in 1.5 ml sterilized 

eppendorf tubes. The embryos were rehydrated in 50% methanol/PBST for 15 

minutes and washed two times in PBST for 10 minutes. The embryos were 

incubated with 10 µg/ml of proteinase K (Sigma) in PBST for a different 

amount of time in according to the developmental stage. 

 

Developmental Stage  Proteinase K Incubation Time 

Prim-5 to Long-pec 20 minutes 

Long-pec to Protruding-mouth 40 minutes  

4 dpf  1 hour 

5 dpf 1 hour and 30 minutes 

 

After proteinase K digestion, the embryos were washed two times in PBST 

and fixed in 4% PFA for 20 minutes. The fixative was removed and the 

embryos were washed 5 times for 5 minutes with PBST. All the previous steps 

were performed at room temperature. Subsequently the embryos were rinsed 

in 1.0 ml of hybridization mix for 2 hours at 65-68° C. The in-situ probe was 

diluted 1:100 in hybridization mix and pre-incubated for 10 minutes at 65-68° 

C. The embryos were incubated with the in-situ probe overnight at 65-68 °C. 
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Next day, the samples were washed for 5 minutes in hybridization mix, 

incubated for 30 minutes in 50% hybridization mix in 2X SSC and washed two 

times in 0.2X SSC for 35 minutes. Each step was performed at 65-68° C. 

Next, the embryos were washed in 1:1 mixture of 0.2X SSC and MAB, 

equilibrated two times for 5 minutes in MAB and incubated in the blocking 

solution (MABL) at room temperature for 2 hours. Secondary antibody binding 

was performed using a mixture of anti-digoxigenin-alkaline phosphatase 

(1:5000) or anti-fluorescein-isothiocyanate phosphatase (1:1000) diluted in 

MABL. The binding was completed overnight at 4° C.  

The next day, the embryos were washed in MAB 4 times for 30 minutes at 

room temperature and equilibrated 3 times for 5 minutes in the staining buffer 

(DIG or FITC). The detection was performed incubating the samples in the 

developmental substrate at room temperature in the dark until the reaction 

was completed. For the DIG staining 1.0 ml of pre-mixed NBT/BCIP (Thermo 

Scientific) was used as developing substrate; for FITC reaction, the embryos 

were incubated at 28 °C with the Fast Red TR-Naphtol substrate (Sigma) in 

according to the manufacturer’s instructions. Each reaction was stopped by 

several washing steps in PBST and the staining was fixed in 4% PFA for 1 

hour. The stained samples were stored shortly in PBST at room temperature 

or for long time in 80% glycerol diluted in DD water at 4° C. 

 

Hybridization mix (pH 6.0, 27° C) 

   

  50% Formamide (Roth) 

  5X SSC 

250 µg/ml Torula RNA (Sigma) 

0.1% Tween 20 (Sigma) 

50 µg Heparin (Applichem) 

 

The pH was adjusted to 6.0 (27° C) adding 1.0 M of citric acid. 

 

20X SSC (pH 7.0, 27° C) 

 

  0.30 M Sodium Citrate (Sigma) 
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  3.0 M NaCL (Sigma) 

 

MAB (pH 7.5, 27° C) 

 

  100 mM Maleic Acid (Sigma) 

  150 mM NaCL (Sigma) 

  0.10% Tween 20 (Sigma) 

 

MABL (pH 7.5, 27° C) 

 

  MAB 

  + 2.0% Blocking Reagent (Roche)      

 

Staining buffer (DIG) 

 

  5.0 ml 1.0 M Tris HCL (pH 9.0, 27° C; Sigma) 

  1.0 ml 5.0M NaCL (Sigma) 

  2.5 ml 1.0 M MgCL2 (Sigma) 

  250 µl Tween 20 (Sigma) 

 

The volume was adjusted to 50 ml with DD water. 

 

Staining buffer (FITC) 

 

  0.10 M Tris HCL (pH 8.3, 27° C; Sigma) 

  0.10% Tween 20 (Sigma) 

 

5.3.4 Antibody staining 
 

Whole mount immunohistochemistry was performed in 1.5 ml sterilized 

eppendorf tubes. Embryo rehydration, proteinase K treatment and fixation 

were carried out as described in the previous subchapter.  
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After fixation, the embryos were washed 5 times in PBSTr for 10 minutes (1X 

PBS + 1.0% Triton-X-100; Roth) and incubated to block the unspecific 

antibody binding in PBS, 0.80% Triton X-100 (Sigma); 10% NGS (Normal 

Goat Serum; Invitrogen); 1.0% DMSO (Dimethyl Sulfoxide; Sigma) at room 

temperature for 2 hours on a shaking plate. The primary antibody was diluted 

in 500 µl of 1X PBS + 0.80% Triton X-100; 1.0% NGS; 1.0% DMSO and 

incubated overnight at 4° C on a shaking plate.  

Next day, the embryos were washed 5 times for 10 minutes with PBSTr and 

incubated in blocking solution (0.80% Triton X-100; 10% NGS; 1.0% DMSO) 

at room temperature for 2 hours. The secondary antibody was diluted in 500 

µl of 0.80% Triton X-100; 1.0% NGS; 1.0% DMSO and incubated overnight at 

4° C on a shaking plate.  

The samples were washed 4 times for 30 minutes with PBSTr and if 

necessary the nuclei were stained for 30 minutes with Sytox Orange 

(1:10000, Invitrogen) in PBS, 0.80% Triton X-100; 1.0% NGS. Embryos were 

washed 3 times for 5 minutes in PBSTr and immediately mounted and imaged 

by confocal laser scan microscopy (CLSM, see chapter 5.9). 

 
Antibody Dilution Brand 

Rabbit anti-GFP 1:1000 Torrey Pines Biolabs 

Rat anti-GFP 1:500 NacalaiTesque 

Mouse α-acetylated tubulin 1:500 Sigma 

Rabbit anti-5HT 1:1000 Sigma 

Rabbit/Mouse anti-Calretinin 1:1000 Swant 

Alexa Fluor 488 Goat Anti Rat 1:200 Molecular Probes 

Alexa Fluor 488 Goat Anti Rabbit 1:250 Molecular Probes 

AlexaFluor 647 Goat Anti Mouse 1:200 Molecular Probes 

AlexaFluor 647 Goat Anti Rabbit 1:200 Molecular Probes 
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5.3.5 Double fluorescence immuno-in-situ labellings  
 
Whole mount of double fluorescence immuno in-situ labellings were 

performed as described previously in the subchapters 5.3.3 and 5.3.4. 

Between the in-situ labelling and the antibody staining, the embryos were 

fixed at room temperature for maximum 20 minutes and washed 3 times with 

PBST on a shaking plate (Macdonald et al., 1994; Shanmugalingam et al., 

2000 and Carl et al., 2007). 

 

  



Experimental Procedures	  

	   	   88	  

5.4 Long-term 2 photon (2-PM) in-vivo microscopy 
 
Long-term 2-PM was applied to overcome the CLSM limitations to follow the 

entire DDC (dorsal diencephalic conduction) system development in the Et(-

1.0otpa:mmGFP)hd1 transgenic embryos between 32 hpf (hour post 

fertilization) and at least up to 4 dpf. 

 

5.4.1 Embryo embedding  
 
Dechorionated Et(-1.0otpa:mmGFP)hd1 transgenic embryos were mounted in 

the center of a disposable sterile polystyrene petri dish with following 

dimension: 88 mm of diameter x 12 mm of high. A ring of 1.5% low melting 

agarose gel (Sigma) with the size of 44 mm x 6.0 mm was built up in the 

center of each petri dish using a hollow circular mold. The embryos were 

mounted for an upright 2-PM microscope in a handmade well located in the 

center of each agarose gel ring with a diameter of 1.0 cm using 200 µl of 

0.50% - 0.80% low melting agarose gel preheated at 37° C for 20 minutes. 

The embryos were placed under the Leica binocular fluorescent microscope 

(MZ16F) and gently orientated dorsally using a pipet tip (Eppendorf). When 

the agarose was set (10 minutes), the petri dish was flooded with 15 ml of 

0.20 mM 1-phenyl-2 thiourea (PTU); 0.02% of ethyl 3-aminobenzoate 

methansulfonate (Tricaine) in sterilized E3 medium. 

 

5.4.2 Long-term 2-PM in-vivo microscopy - Experimental conditions 
 
The long-term in-vivo recording of the Et(-1.0otpa:mmGFP)hd1 transgenic 

embryos was performed with an excitation wavelength of 940 nm by LaVision 

Biotec TriM Scope multi photon upright microscope using the Nikon 16x water 

immersion long working distance (LWD) objective lens (NA 0.80). Each stack 

was acquired every 30-40 minutes for a range of time of at least 4 days with a 

total Z-height between 240 µm and 300 µm. To ensure higher resolution 

images, the pixel size was set up between 0.30 µm and 0.46 µm (x,y) with a 

Z-step of 1.0 µm and laser power correction was applied. 
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To prevent pigment formation and embryo shifting fresh sterilized fish water 

containing 0.20 mM of 1-phenyl-2 thiourea (PTU) and 0.02% of ethyl 3-

aminobenzoate methansulfonate (Tricaine) was added twice per day. 

 

5.4.3 Long-term 2-PM in-vivo microscopy vs long-term CLSM in-vivo 
microscopy 
 

To demonstrate the advantages of the 2-PM microscopy, DDC system 

development was recorded in Et(-1.0otpa:mmGFP)hd1 transgenic embryos 

between 32 hpf and 5 dpf using the LaVision Biotec TriM Scope multi photon 

upright microscope (Figure 3.4) and the inverted CLSM Nikon C2 Plus (Figure 

3.3).  

The following comparable settings were applied in each experiment: 

 
Parameters Lavision TriM Scope 2-PM C2 Plus Nikon 

Excitation Wavelength (nm) 940 nm 488 nm 

Laser Power (mW) 23 mW to 50 mW 2.0 mW to 6.0 mW 

Objective Lens Nikon 16x (NA 0.80) Nikon Plan Apo 20x (NA 0.75) 

Field of View (µm) 500 x 500 µm 419 x 419 µm 

Pixel size (µm) 0.388 µm 0.409 µm 

Z-Depth of each stack (µm)  300 µm 300 µm 

Z-Step (µm) 1.0 µm 1.0 µm 

Time Step (s) 1800 s 1800 s 

Total Time (hh:mm:ss) 94:30:00 89:30:00 

 

Laser power correction was used in both cases to compensate for increasing 

depth. The vitality of the embryos was investigated analyzing the normalized 

GFP fluorescence emission over the time (data not shown). 
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5.4.4 2-PM laser ablation in Et(-1.0otpa:mmGFP)hd1 embryos 
 
2-PM laser ablation of ThEPCs (thalamic early projecting cells) and dHb 

(dorsal habenula domain) were performed at 32 hpf and 2 dpf respectively by 

LaVision Biotec TriM Scope multi photon upright microscope at a wavelength 

of 740 nm with 200-300 mW of laser power using the Nikon 16x water 

immersion objective lens (NA 0.80).  

The position of the cell to be ablated was precisely marked by a point on an 

acquired image, and the laser parked accordingly by the software (ImSpector 

Pro, LaVison BioTec GmbH) for point ablation. Ablation was controlled by 

monitoring the increase of unspecific fluorescence at the treated site: after a 

certain threshold is reached, the duration of the treatment will define the size 

of the ablated region. Careful calibration of the laser power allows precise 

ablations of regions ranging from single cells up to cluster of multiple cells. 

Incomplete cell ablations were carried out removing 2-4 cells for 4 times. A 

stack of approximately 300 µm (Z-step of 1.0 µm) was acquired before and 

after each step of ThEPC cell ablation. 

IPN (interpeduncular nucleus) innervation of living and fixed embryos was 

imaged using a 60x objective lens (NA 1.0) with a total Z-height of 100-120 

µm. For higher resolution images, the pixel size was adjusted between 0.19 

µm and 0.20 µm (x,y) with a Z-step of 0.75 µm; laser power correction was 

applied. 

 

5.4.5 Image colour code analysis  
 
Our 2-PM in vivo long-term time-lapse experiments over five days generated 

datasets up to 800 GB. A customer MIP ColourCode script was written 

(Appendix 7.3,7.4) and allows us to quickly produce a 2D visualisation of the 

3D data, in which the brightness of each pixel is determined by making a 

maximum intensity projection of the stack, and pixel colours are assigned 

based upon the depth of the maximum value within the stack. To maximize 

the number of colours available to planes containing the sample and 

improving depth discrimination in the main region of interest, the script was 
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designed to detect automatically the first and last planes within the stack that 

contain a high density of maxima pixels.  

The script is capable of processing automatically 800 GB of data in less than 

3 hours using a 2 x 2.26 GHz Quad-Core Intel Xeon processor, after which it 

was possible to manually track single axons in 2-D images using the manual 

tracking plugin of the Fiji software (Schindelin et al., 2012). The Colour Code 

Scale LUT (Look Up Table), the scale bar and the time were inserted using 

the MIP_ColourCode Script.  

The movies were created automatically using the MIP ColourCode script and 

compressed using the software Wondershare Vide Converter Ultimate 

(Wondershare, Shenzhen, China). The frame title was added in each movie 

using iMovie software (Apple Inc., Cupertino, CA).  
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5.5 H2B photoswitchable monomeric orange (PSmOrange) 
subcloning  
 
The H2B-PSmOrange encoding DNA (Verkhusha et al., 2011) was subcloned 

into the pCS2+ vector using XbaI/XhoI and NotI/XhoI restriction enzymes 

respectively (NEB).  

The pCS2+ vector was initially digested at the 3’ end with XbaI restriction 

enzyme using the following protocol: 

 

pCS2+ Vector 3.0 µl (∼1.5 µg) 

10X Buffer 4 (NEB) 2.0 µl 

100X BSA (NEB) 0.2 µl 

XbaI (NEB) 2.0 µl (1.0 U)  

DD Water 12.8 µl 

 

37° C, 3 hours 

 

The digested DNA was purified using the PCR Purification Kit (Qiagen) in 

according to the manufacturer’s instructions. The purified product was blunted 

using the T3 Klenow DNA Polymerase (NEB) under the following conditions: 

 

Gel Extracted DNA 15.5 µl (∼100 ng) 

Buffer 2 (NEB) 2.0 µl 

dNTPs [2.0mM] 2.0 µl 

T3 Klenow DNA Polymerize (NEB) 0.5 µl (2.0 U) 

 

37° C, 30 minutes 

70° C, 10 minutes 

 

The Klenow treated product was digested at the 5’ end with XhoI restriction 

enzyme using the same reaction conditions described above.  
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The same approach was used to obtain the H2B-PSmOrange DNA fragment 

from the pN1 mammalian expression vector using NotI blunted and XhoI 

restriction enzymes respectively.  

The digested products were loaded in 1.5% agarose gel and the expected 

size bands were gel extracted using the Qiagen Gel Extraction Kit in 

according to the manufacturer’s instructions. 

The H2B-PSmOrange DNA fragment was ligated into the pCS2+ digested 

vector using the T4 Ligation Kit (NEB). The ligation conditions were the 

following: 

 

H2B-PSmOrange DNA Fragment 7.5 µl (5.0 ng) 

pCS2+ Digested Vector 1.0 µl (2.0 ng) 

T4 Ligation Buffer (NEB) 1.0 µl 

T4 Ligase (NEB) 0.5 µl (2.0 U) 

 

16° C, overnight 

65° C, 10 minutes 

 

Escherichia Coli chemical competent cells were transformed using 5.0 ng of 

ligated DNA for plasmid propagation as described in the subchapter 5.3.1 and 

the isolated clones were sequenced for confirmation (GATC Biotech AG).  
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5.6 mRNA in-vitro transcription, purification and injection 
 

5.6.1 mRNA in-vitro transcription  
 

The pCS2+ vector was linearized using the NotI restriction enzyme (NEB) and 

the mRNA for injection was prepared using the mMESSAGE mMACHINE® 

sp6 Kit (Ambion). 3.0 µl (∼1.0 µg) of linearized vector was incubated with 2.0 

µl of 2X transcription buffer, 10 µl of 10X ribonucleotides and 2.0 µl of 10X 

sp6 enzyme mix. The final volume of each reaction was adjusted with Milli-Q 

DNase/RNase free water to 20 µl and the mixture was incubated at 37° C for 

2 hours. After linearization the DNA was digested with 1.0 U of DNase I 

endonuclease (Fermentas) at 37° C for 10 minutes. 

The mRNA was cleaned up using the RNeasy Cleanup kit and additionally 

purified by mRNA precipitation. 6.0 µl of sodium acetate (3.0 M, pH 5.2, 

Sigma) and 150 µl of 96 % ethanol were added to mRNA solution. The 

mixture was incubated at -20° C for 30 minutes and centrifuged at 4° C for 30 

minutes at 14000 rpm. The pellet was dried and resuspended in 150 µl of 

70% ethanol. The solution was centrifuged at 4° C for 5 minutes at 14000 rpm 

and the pellet was dissolved in 20 µl of Milli-Q DNase/RNase free water. The 

mRNA was checked by agarose gel electrophoresis and the 

concentration/purity was estimated using Nanodrop system. The mRNA 

solution was immediately diluted for injection or stored at -20° C or at -80° C.  

 

5.6.2 mRNA injection in zebrafish embryos  
 

Using a microinjection machine (Eppendorf) 260 pg H2B-PSmOrange mRNA 

were injected into one cell stage embryos. The expression of H2B-

PSmOrange was monitored using a Leica binocular fluorescent microscope 

(MZ16F). 80% (n=150) of injected zebrafish embryos showed strong 

expression of the nuclear H2B-PSmOrange protein for up to at least 4 dpf.  

For in vivo nuclei labellings 130 pg H2A-CFP mRNA were injected in one cell 

stage old zebrafish embryos. Using the 2-PM, it was possible to visualise the 

H2A-CFP protein for up to at least 3 dpf.  
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5.7 H2B-PSmOrange photoconversion and image analysis 
 
50 hpf H2B-PSmOrange mRNA injected embryos were imaged using the 

inverted confocal microscope Nikon A1R. Before and after photoconversion, 

an image was acquired using the sequential scanning mode for the 488 nm, 

561 nm and 637 nm channels with the Nikon 20x air objective lens (NA 0.20). 

The pinhole was set to 24.7 µm (637 nm) to prevent spectral overlapping.   

For H2B-mOrange photoswitching, the photoconversion NIS-Elements AR 

software tool was used: 17-20 mW of 488 nm excitation laser power; 1/2 scan 

speed frequency; 20 to 28 rounds of stimulation. The photoconverted protein 

was visible up to at least 3 days after treatment. To determine the position of 

ThEPC cells, a Z-stack was acquired at 4 dpf with Z-intervals of 1.0-2.0 µm. 

The stacks were analyzed with our newly generated automatic FiJi ImageJ 

Macro (Appendix 7.5). To highlight the regions of interest (ROIs), different 

automatic thresholds were applied in the green and the far-red channel 

stacks. Each threshold area was detected with a fitting setting using the 

analyze particles tool and the overlapping ROIs displayed in yellow using the 

image calculator plugin. To speed up each analysis, the original stacks were 

convolved using the GaussianBlur plugin, the resulting smooth stacks were 

subtracted to the original stacks and the BachMode was set to “true” 

(Appendix 7.5). 
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5.8 Confocal Laser Scan Microscope (CLSM), image analysis 
and neuroanatomy 
 
For CLSM, embryos were mounted in 1.0% low melting agarose (Sigma) in a 

glass bottom dish (MatTek or LabTek). Confocal images and stacks were 

acquired with a Nikon A1R using the Nikon 20x air objective lens (NA 0.20) 

and with a Leica TCS SP5 using Leica 20x air objective (NA 0.70) or the Leica 

40x oil immersion objective (NA 1.3). Each Z-stack was acquired with 

intervals between 0.5 µm and 2.0 µm. 

3D reconstructions, stack analysis and image corrections were performed 

using the software FiJi, NIS-Element AR and Adobe Photoshop CS4. 

For the annotation of brain areas, we used traditional terminology consistent 

with the embryonic zebrafish atlas (Mueller and Wullimann, 2005) and took 

into account literature related to the markers used (Amo et al., 2010; Castro et 

al., 2006; Peukert et al., 2011; Puelles and Rubenstein, 2003). 
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7 Appendix  
 

7.1 List of Abbreviations 
 

A-P   anterior-posterior 

BC   before Christ  

bp   base pairs 

CANs   cell adhesion molecules 

cDNA   complementary DNA 

CFP   cyan fluorescent protein 

CLSM   confocal laser scan microscopy 

cxcr4b   C-X-C chemochin receptor 4b 

d   dorsal 

DCC   deleted in colon-rectal carcinoma 

DDC   dorsal diencephalic conduction system 

dHb   dorsal habenula 

dHbl    lateral dorsal habenula  

dHbm   medial dorsal habenula 

DIG   digoxigenin alkaline 

DMSO  dimethylsulfoxide  

DNA   deoxyribonucleic acid 

dNTP   deoxyribonucleosidtriphosphate 

dpf   day post fertilization 

D-V   dorso-ventral 

EDTA   ethylenediaminetetraacetate 

EPC   early projecting cell 

FITC   fluorescein isothiocyanate 

FP   floor plate 

FR   fasciculus retroflexus 

Gb   gigabyte  

GFP   green fluorescent protein  

GHz   gigahertz  

H2A   histone H2A protein  
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H2B   histone H2B protein 

hd1   heidelberg1 

hpf   hour post fertilization 

KCTD   potassium channel tetramerization domain 

IPN   interpeduncular nucleus 

LB   luria bertani 

LH   lateral hypothalamic 

LPO   lateral preotic 

LUT   look up table 

LWD   long working distance 

M   molarity  

mbl   masterblind 

MFB   medial forebrain bundle 

MIP   maximum intensity projection 

mmGFP  mammalian membrane GFP 

MR   median raphe   

mW   milliwatt  

NA   numerical aperture 

NGS    normal goat serum 

NIC   Nikon imaging center 

nm   nanometer 

OA   olfactory areas 

OB   olfactory bulb 

OE   olfactory epithelium  

P   Pineal  

PBS   phosphate buffer saline 

PCR   polymerase chain reaction 

PFA   paraformaldehyde 

pg   picogram  

2-PM   2 photon microscopy 

pp   parapineal   

PSmOrange  photoswitchable monomeric orange protein 

PTU   1-phenyl-2 thiourea 

RNA   ribonucleic acid 
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ROI   region of interest 

rpm   revolutions per minute 

SCNs   spinal cord neurons 

SM   stria medullaris 

Taq   Thermophilus aquaticus 

TCF   T-cell specific transcription factor 

Tec   optic tectum 

Tg   transgen 

Th   thalamus 

Tr   triton X-100 

Tricain  ethyl 3-aminobenzoate methansulfonate 

Tris   Tris(hydroximethil)aminomethan 

v   ventral 

vHb   ventral habenula 

VTA   ventral tegmental area 

wt   wildtype 

µm   micrometer  

WM   white matter 
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7.2 List of figure and movie legends  
 
Figure 1.1: DDC neuronal network complexity in the mammalian brain. ................... 13 
 
Figure 1.2: Habenular neuronal network in the zebrafish brain. ................................ 18 
 
Figure 3.1: All habenular domains and efferent projections innervating the ventral 
mid- and hindbrain are labelled in Et(-1.0otpa:mmGFP)hd1 transgenic embryos. .... 31 
 
Figure 3.2: Marker gene analysis of the ThEPC. ....................................................... 32 
 
Figure 3.3: CLSM cannot be used to follow DDC system formation for more then 30 
hours. ......................................................................................................................... 34 
 
Figure 3.4: Long-term 2-PM in-vivo recording identifies interhemispheric axonal 
connections during habenular neural circuit development. ....................................... 35 
 
Figure 3.5: ThEPC early axonal tracking. .................................................................. 38 
 
Figure 3.6: Unilateral ThEPC cell ablation causes the arrest of dHb efferent axons on 
both brain hemispheres. ............................................................................................ 39 
 
Figure 3.7: Habenular neuronal circuit development in normal and ThEPC ablated 
embryos. .................................................................................................................... 42 
 
Figure 3.8: Failed ThEPC ablation does not affect ThEPC and dHb axon pathfinding.
 ................................................................................................................................... 43 
 
Figure 3.9: Incomplete unilateral ThEPC cell ablation causes dHb axon pathfinding 
errors. ........................................................................................................................ 45 
 
Figure 3.10: Unilateral dHb cell ablation does not affect axonal targeting on the 
contralateral side. ...................................................................................................... 47 
 
Figure 3.11: Unilateral dHb and ThEPC ablation experiments suggest a contribution 
of ThEPC cells to the final habenula architecture. ..................................................... 49 
 
Figure 3.12: ThEPC neurons contribute to the vHb architecture. .............................. 51 
 
Figure 3.13: Tcf7l2 mediated Wnt/beta-catenin signaling is required for vHb 
development. ............................................................................................................. 53 
 
Figure 3.14: ThEPC neurons contribute to the vHb architecture under the influence of 
Wnt/beta-catenin pathway activity, tcf7l2 mediated. .................................................. 54 
 
MovieS1: Long-term 2-PM in-vivo recording of habenular neuronal circuit 
development, related to Figure 3.4 and 3.5. .............................................................. 56 
 
MovieS2: Long-term 2-PM in-vivo recording of habenular neuronal circuit 
development (black and white), related to Figure 3.4 and 3.5. .................................. 56 
 
MovieS3: Complete unilateral ThEPC laser ablation followed by long-term 2-PM in-
vivo recording of habenular neuronal circuit development, related to Figure 3.6. ..... 56 
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MovieS4: Complete unilateral ThEPC laser ablation followed by 2-PM in-vivo 
recording of habenular neuronal circuit development (black and white), related to 
Figure 3.6. ................................................................................................................. 57 
 
MovieS5: Sequential unilateral ThEPC cell laser ablation followed by 2-PM in-vivo 
recording of habenular neuronal circuit development, related to Figure 3.7. ............ 57 
 
MovieS6: Sequential unilateral ThEPC cell laser ablation followed by long-term 2-PM 
in-vivo recording of habenular neuronal circuit development, related to Figure 3.7. . 57 
 
MovieS7: The ThEPCs are composed of mixed populations of deviding cells and 
postmitotic neurons, related to Figure 3.1 and 3.2. ................................................... 57 
 
MovieS8: A population of ThEPC cells contribute to the vHb and is absent in 
embryos mutant for tcf7l2, related to Figure 3.12 and 3.14. ...................................... 58 
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7.3 Imagej Script: MIP_ColourCode.ijm 
 
// MIP_ColourCode Script 
// Create the MIP and the Slice from the original stacks  

 
showMessage("Running MIP", "<html>" 
     +"<font size=+2>MIP Script"); 
      
beep(); 
showStatus("Choose the INPUT directory"); 
dir_in = getDirectory("Choose the INPUT directory containing the source images"); 
if (lengthOf(dir_in) == 0) { 
 exit(); 
} 
beep(); 
showStatus("Create the OUTPUT root directory, i.e.:MIP"); 
dir_out = getDirectory("Choose the OUTPUT root directory"); 
if (lengthOf(dir_out) == 0) { 
 exit(); 
} 
 
dir_max = dir_out; 
dir_slices = dir_out; 
 

// Get a list of files in the input directory 
 
file_list = getFileList(dir_in); 
setBatchMode(true); 
 

// Loop through the files 
 
print("Number of files: " + file_list.length); 
for (i=0; i<file_list.length; i++) { 
 if (endsWith(file_list[i], '.tif')) { 
   
 // Open the image 
 
  open(dir_in + file_list[i]); 
 
  //----- 
  if (i == 0) { 
   setBatchMode(false); 
   run("Properties..."); 
   getVoxelSize(width, height, depth, unit); 
   setBatchMode(true); 
  } else { 
   setVoxelSize(width, height, depth, unit); 
  } 
  //----- 
   
  id_stack = getImageID(); 
   
 // Compute the maximum projection 
  
  run("Z Project...", " projection=[Max Intensity]"); 
  id_max = getImageID(); 
  title_max = getTitle(); 
 
 // Find the first slices containing the maxima 
 
  selectImage(id_stack); 
  run("NIC find values", "compare=["+title_max+"] choose=First"); 
  id_slices = getImageID(); 
  setVoxelSize(width, height, depth, unit); 
 
 // Write the Slices 
 
  saveAs("Tiff", dir_slices+"Slices_"+file_list[i]); 
  selectImage(id_max); 
 
 // Write the MIP 
 
  saveAs("Tiff", dir_max+"Max_"+file_list[i]); 
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 // Close the images, reclaim memory, and update the log 
  run("Close All"); 
  call("java.lang.System.gc"); 
  showStatus("Completed"); 
  print("Completed: " + file_list[i]); 
 } 
} 
setBatchMode(false); 
beep(); 
showMessage("Running MIP", "<html>" 
     +"<font size=+2>Finished MIP!"); 
      

// Apply the ColurCode to the MIP 
 
ColourCode = getBoolean("Do you want to run the Colour Code Script on the MIP?"); 
if (ColourCode) { 
 beep(); 
 showStatus("Choose the INPUT directory"); 
 dir_in = getDirectory("Choose the INPUT directory containing the source images"); 
 if (lengthOf(dir_in) == 0) { 
 exit(); 
 } 
 
 beep(); 
 showStatus("Create the OUTPUT root directory, i.e.:ColourMIP"); 
 dir_out = getDirectory("Choose the OUTPUT root directory"); 
 if (lengthOf(dir_out) == 0) { 
 exit(); 
 } 
 

// Read the maximum projection and slice stacks 
// Give these unique titles, so that they can be identified by Calculator Plus later 
 

 run("Image Sequence...", "open=[" + dir_in + "] scale=100 or=Max_.*.tif or=[] sort"); 
 id_max = getImageID(); 
 title_max = "Slices_"+abs(id_max)+getTitle(); 
 rename(title_max); 
 run("Image Sequence...", "open=[" + dir_in + "] scale=100 or=Slices_.*.tif or=[] sort"); 
 id_slices = getImageID(); 
 title_slices = "Slices_"+abs(id_slices)+getTitle(); 
 rename(title_slices); 
 

// Compute the neighbourhood range for slices 
// If a region is part of the specimen, it will tend to contain values in the MIP all obtained from the 
// same slice of the stack. However, background regions containing noise only will usually have  
// maxima from different slices. For better visual discrimination of depths, we want the LUT colours  
// to be distributed between slices in which the specimen is visible, with any extra slices acquired 
// above or below (containing noise/blur only) to be given the first or last LUT colours. 
// The following code achieves this automatically by looking for the highest and lowest slices in which// there 
are any regions containing stack maxima from the same slice or its immediate neighbours. 
 

 run("Duplicate...", "title=[Min slices] duplicate"); 
 run("Minimum...", "radius=1 stack"); 
 id_slices_min = getImageID(); 
 selectImage(id_slices); 
 run("Duplicate...", "title=[Range slices] duplicate"); 
 run("Maximum...", "radius=1 stack"); 
 id_slices_range = getImageID(); 
 imageCalculator("Subtract stack", id_slices_range, id_slices_min); 
 

// Get where the range is <= 3 
 

 setThreshold(0, 3); 
 run("Convert to Mask", "black"); 
 run("Max...", "value=1 stack"); 
 imageCalculator("Divide create 32-bit stack", id_slices, id_slices_range); 
 Stack.getStatistics(voxelCount, mean, slice_first, slice_last, stdDev); 
 

// Close images that are no longer needed 
 

 close(); 
 selectImage(id_slices_min); 
 close(); 
 selectImage(id_slices_range); 
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 close(); 
 

// Set the LUT 
 

 selectImage(id_slices); 
 setMinAndMax(slice_first, slice_last); 
 run("ColourCode"); 
 run("RGB Color"); 
 

// Create 8-bit version of maximum projection, and make it RGB to match the colour image 
 

 selectImage(id_max); 
 run("Enhance Contrast", "saturated=0.4 use"); 
 run("Gamma...", "value=0.75 stack"); 
 run("Enhance Contrast", "saturated=0.4 use"); 
 run("8-bit"); 
 run("RGB Color"); 
 

// Multiply the two images 
// Calculator Plus makes it possible to scale the result (by 1/255) to ensure it fits into a 24-bit RGB result 
 

 scale = 1/255; 
 getVoxelSize(width, height, depth, unit); 
 run("Calculator Plus", "i1=" + title_max + " i2=" + title_slices + " operation=[Multiply: i2 = (i1*i2) x k1 + k2] 
k1="+scale+" k2=0 create"); 
 setVoxelSize(width, height, depth, unit); 
 

// Add ScaleBar and TimeFrame on the ColourCodeMIP 
 

 run("Properties..."); 
 run("Gamma...", "value=0.75 stack"); 
 run("Scale Bar...", "width=50 height=4 font=24 color=White background=None location=[Lower Right] bold 
label"); 
 run("Label..."); 
 

// Save the result as ColourMIP.tiff and .avi 
 

 fileName = dir_out+"ColourMIP_Time_" + slice_first + "-" + slice_last; 
 saveAs("Tiff", fileName + ".tiff"); 
 saveAs("avi", dir_out + "ColourMIP.avi"); 
 close(); 
 

// Close LUT Image 
 

 selectImage(id_slices); 
 close(); 
 

// Add ScaleBar and TimeFrame on the MIP 
 

 run("Properties..."); 
 run("Scale Bar...", "width=50 height=4 font=24 color=White background=None location=[Lower Right] bold 
label"); 
 run("Label..."); 
 

// Save the result as MIP.tiff and avi 
 

 fileName = dir_out+"MIP_Time_" + slice_first + "-" + slice_last; 
 saveAs("Tiff", fileName + ".tiff"); 
 saveAs("avi", dir_out + "MIP.avi"); 
 close(); 
 

// Print out the slices that were used 
 

 print("First coloured slice: " + slice_first); 
 print("Last coloured slice: " + slice_last); 
 print("Total coloured slices: " + (slice_last - slice_first)+1); 
 
 beep(); 
 showMessage("ColourMIP", "<html>" 
 +"<font size=+2>Finished the Colour Code Script"); 
} else { 
 exit 
} 
 

// Add Spectrum Colour Bar to ColourCode.avi 
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beep(); 
ColourCodeBar = getBoolean("Do you want to add the ColourCodeBar?"); 
if (ColourCodeBar) { 
 newImage("ColourCodeBar", "8-bit Ramp", 1024, 25, 1); 
 run("ColourCode"); 
 run("Rotate 90 Degrees Right"); 
 beep(); 
 showStatus("Open ColourCode LUT"); 
 open(dir_out + "ColourMIP.avi"); 
 run("Add Image...", "opacity=100"); 
 

// Save the result as ColourCodeMIPBar.avi 
 

saveAs("avi", dir_out + "ColourCodeMIPBar.avi"); 
run("Close All"); 
print("Completed"); 
} else { 
 run("Close All"); 
 print("Completed"); 
}  
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7.4 NIC Find Maxima Plugin 
 
import java.util.Vector; 
 
import ij.gui.GenericDialog; 
import ij.gui.NewImage; 
import ij.plugin.PlugIn; 
import ij.process.ImageProcessor; 
import ij.IJ; 
import ij.ImagePlus; 
import ij.ImageStack; 
import ij.WindowManager; 
 
 
/** 
 * Plugin to identify the first or last slices in a stack in which particular values occur. 
 * The values being searched for can be constants, or vary according to each x,y coordinate. 
 *  
 * This is useful to help create a depth-colour-coded maximum intensity projection (MIP). 
 * The general process is as follows: 
 * - Compute the MIP using ImageJ's Z Project... command 
 * - Use find values plugin to identify the slices on which the maximum values occurred 
 * - Assign a suitable, colourful LUT to the slice image 
 * - Scale the brightness of the pixels in the slices image according to the MIP image values 
 *  
 * @author Peter Bankhead 
 * 
 */ 
public class NIC_find_values implements PlugIn { 
  
 protected ImagePlus imp; 
 protected boolean compareConstant = false; 
 protected float constant; 
 protected ImagePlus impCompare; 
 protected boolean findLast = false; 
 
 @Override 
 public void run(String arg) { 
  // Get the image stack to compare 
  imp = IJ.getImage(); 
  if (imp == null) { 
   IJ.noImage(); 
   return; 
  } 
   
  // Create dialog to choose 2D image/constant with which to compare 
  int width = imp.getWidth(); 
  int height = imp.getHeight(); 
  WindowManager.getIDList(); 
  Vector<String> namesCompare = new Vector<String>(); 
  namesCompare.add("Use Constant Value"); 
  int[] ids = WindowManager.getIDList(); 
  // Make a list of all the open images that have the same width and height, but 
a z and time depth of 1 
  for (int i = 0; i < ids.length; i++) { 
   ImagePlus impTemp = WindowManager.getImage(ids[i]); 
   if (impTemp != imp && impTemp.getWidth() == width && 
impTemp.getHeight() == height &&  
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     impTemp.getNSlices() == 1 && 
impTemp.getNFrames() == 1 &&  
     impTemp.getNChannels() == 1) { 
    namesCompare.add(impTemp.getTitle()); 
   } 
  } 
  GenericDialog gd = new GenericDialog("Find values along dimension"); 
  gd.addMessage("Dimension search for " + imp.getTitle()); 
  String[] strCompare = new String[namesCompare.size()]; 
  namesCompare.toArray(strCompare); 
  gd.addChoice("Compare with image", strCompare, strCompare[0]); 
  gd.addNumericField("Constant Value", 0, 5); 
  gd.addMessage("Constant Value will be ignored if comparing with an 
image"); 
  String[] strOccurrence = new String[]{"First", "Last"}; 
  gd.addChoice("Choose occurrence", strOccurrence, strOccurrence[0]); 
   
  // Show dialog 
  gd.showDialog(); 
  if (gd.wasCanceled()) 
   return; 
   
  // Get the image or constant with which to compare 
  String titleCompare = gd.getNextChoice(); 
  constant = (float)gd.getNextNumber(); 
  if (titleCompare.equals(strCompare[0])) 
   compareConstant = true; 
  else 
   impCompare = WindowManager.getImage(titleCompare); 
  // Determine whether are looking for the first or last instance of the values in 
the stack 
  findLast = gd.getNextChoice().equals("Last"); 
   
  // Create an output image - use 8-bit if the stack contains < 256 slices, 
otherwise 16-bit 
  ImagePlus impOutput; 
  if (imp.getStackSize() / imp.getNChannels() <= 255) 
   impOutput = NewImage.createByteImage("Find_" + imp.getTitle(), 
width, height, 1, NewImage.FILL_BLACK); 
  else 
   impOutput = NewImage.createShortImage("Find_" + imp.getTitle(), 
width, height, 1, NewImage.FILL_BLACK);    
   
  // Loop through the original image stack looking for the comparison values, 
 
  // and write the slices on which they occur to the output image 
  ImageStack stack = imp.getStack(); 
  ImageProcessor ipCompare = null; 
  if (!compareConstant) 
   ipCompare = impCompare.getProcessor(); 
  ImageProcessor ipOutput = impOutput.getProcessor(); 
  for (int s = 1; s <= stack.getSize(); s++) { 
   IJ.showProgress(s, stack.getSize()); 
   ImageProcessor ip = stack.getProcessor(s); 
   for (int i = 0; i < width * height; i++) { 
    float comp = compareConstant ? constant : 
ipCompare.getf(i); 
    if (ip.getf(i) == comp) { 
     if (findLast || ipOutput.getf(i) == 0) 
      ipOutput.set(i, s); 
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    } 
   } 
  } 
  // Show the output image 
  impOutput.show();  
 } 
} 

  



Appendix	  

	   	   121	  

7.5 Imagej Macro: Colocalisation_H2B-PSmOrange.ijm 
 

 
// Colocalisation H2B-PSmOrange 

 
setBatchMode(true); 
 
dir_out = getDirectory("Choose the OUTPUT root directory");  
if (lengthOf(dir_out) == 0) { 
 exit(); 
} 
 
run("Bio-Formats Importer", "color_mode=Default view=Hyperstack stack_order=XYCZT"); 
 
idOrig = getImageID(); 
run("Duplicate...", "duplicate channels=1"); 
idCh1 = getImageID(); 
run("Enhance Contrast", "saturated=0.35 stack"); 

 
// Detect on Channel 1 to make ROIs 

 
run("Duplicate...", "duplicate"); 
run("32-bit"); 
idCh1Filtered = getImageID(); 
run("Gaussian Blur 3D...", "x=6 y=6 z=1"); 
imageCalculator("Subtract stack", idCh1Filtered, idCh1); 
run("Multiply...", "value=-1 stack"); 
run("Gaussian Blur 3D...", "x=1 y=1 z=0.5"); 
setAutoThreshold("Triangle dark stack"); 
 

// Analyze Particles Channel 1 
// Exclude very small detections (< 5 pixels) 

 
run("Analyze Particles...", "size=5-Infinity circularity=0.00-1.00 show=Masks add in_situ stack"); 
roiManager("Show All without labels"); 
roiManager("Show All"); 
roiManager("Set Color", "green"); 
roiManager("Save", dir_out + "488_ROI.zip"); 
 

// Open Channel 3 and add the Channel 1 overlay 
 
selectImage(idOrig); 
run("Duplicate...", "duplicate channels=3"); 
idCh3 = getImageID(); 
roiManager("Show All without labels"); 
roiManager("Show All"); 
run("From ROI Manager"); 
run("Enhance Contrast", "saturated=0.35 stack"); 
saveAs("Tiff", dir_out + "C3_488_ROI.tif"); 
roiManager("Delete"); 
 

// Detect on Channel 3 to make ROIs 
 

run("Duplicate...", "duplicate"); 
idCh3Filtered = getImageID(); 
run("32-bit"); 
run("Gaussian Blur 3D...", "x=16 y=16 z=1"); 
imageCalculator("Subtract stack", idCh3Filtered, idCh3); 
run("Multiply...", "value=-1 stack"); 
run("Gaussian Blur 3D...", "x=1 y=1 z=0.5"); 
setAutoThreshold("Moments dark stack"); 
 

// Analyze Particles Channel 3 
// Exclude very small detections (< 3 pixels) 

 
run("Analyze Particles...", "size=3-Infinity circularity=0.00-1.00 show=Masks add in_situ stack"); 
roiManager("Set Color", "red"); 
roiManager("Save", dir_out + "637_ROI.zip"); 

 
// Select Channel 1 and add the Channel 3 overlay  

 
selectImage(idCh1); 
roiManager("Show All without labels"); 
roiManager("Show All"); 
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run("From ROI Manager"); 
saveAs("Tiff", dir_out + "C1_637_ROI.tif"); 
close(); 
 

// Find the detected regions overlapping in Channel 1 and Channel 3 
 

imageCalculator("AND stack", idCh1Filtered, idCh3Filtered); 
idOverlaps = idCh1Filtered; 
selectImage(idOverlaps); 
roiManager("Delete"); 
run("Analyze Particles...", "size=3-Infinity circularity=0.00-1.00 show=Nothing add stack"); 
roiManager("Set Color", "yellow"); 
roiManager("Save", dir_out + "Overlay_ROIs.zip"); 
roiManager("Delete"); 
 

// Add ROI C1/C3 in C2 Channel 
 

selectImage(idOrig); 
run("Duplicate...", "duplicate channels=2"); 
 
list = getFileList(dir_out); 
for (i=0; i<list.length; i++) { 
 if (endsWith(list[i], ".zip")) 
         roiManager("open", dir_out +list[i]); 
}  
 
roiManager("Show All without labels"); 
roiManager("Show All"); 
run("From ROI Manager"); 
run("Enhance Contrast", "saturated=0.35 stack"); 
saveAs("Tiff", dir_out + "Overlay_C2_ROIs.tif"); 
run("Close All"); 
call("java.lang.System.gc"); 
showStatus("Completed");  
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