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Zusammenfassung. Die vorliegende Dissertation beschäftigt sich mit
Tannaka-Kategorien, welche durch Faltung perverser Garben auf abelschen
Varietäten entstehen. Die Konstruktion dieser Kategorien ist eng verbunden
mit einem kohomologischen Verschwindungssatz, der ein Analogon zum
Satz von Artin-Grothendieck darstellt und als Spezialfall die generischen
Verschwindungssätze von Green und Lazarsfeld enthält. Die erhaltenen
Tannaka-Gruppen bilden interessante geometrische Invarianten, welche in
vielen Situationen eine Rolle spielen — nachdem die Grundlagen für das
Studium dieser Gruppen bereitgestellt sind, wird als ein wichtiges Beispiel
der Thetadivisor einer prinzipal polarisierten komplexen abelschen Varietät
behandelt. Durch Entartungsargumente wird die Tannaka-Gruppe für eine
generische abelsche Varietät bestimmt, welche wenigstens in Dimension 4
eine neue Antwort auf das Schottky-Problem liefert. Das Faltungsquadrat
des Thetadivisors in Dimension 4 hängt eng zusammen mit einer Familie
glatter Flächen vom allgemeinen Typ, und ein Studium dieser Familie führt
auf eine Variation von Hodge-Strukturen mit Monodromiegruppe W (E6),
die mit der Prym-Abbildung verbunden ist. Die Dissertation schließt ab mit
einer Rekursionsformel für den generischen Rang der durch Faltungen von
Kurven entstehenden Brill-Noether-Garben auf Jacobischen Varietäten.

Abstract. We study Tannakian categories that arise from convolutions of
perverse sheaves on abelian varieties. The construction of these categories
is closely intertwined with a cohomological vanishing theorem which is an
analog of the Artin-Grothendieck theorem and contains as a special case the
generic vanishing theorems of Green and Lazarsfeld. The arising Tannaka
groups form a powerful new tool applicable in many different geometric
contexts — after providing the framework for the study of these groups, we
consider as an important example the theta divisor of a complex principally
polarized abelian variety. Using degeneration techniques we determine the
associated Tannaka group for a generic abelian variety, and we show that in
dimension 4 this yields a Tannakian solution to the Schottky problem. The
convolution square of the theta divisor in dimension 4 is closely related to a
family of surfaces of general type, and a detailed study of this family leads
to a variation of Hodge structures with monodromy group W (E6) which is
connected with the Prym map. To conclude the dissertation, we provide a
recursive formula for the generic rank of Brill-Noether sheaves which arise
from the convolution of curves on Jacobian varieties.
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Introduction

The geometry of a smooth complex projective curve C with Jacobian
variety Jac(C) is governed, after the choice of a base point on the curve, by
the Abel-Jacobi morphism. In particular, the latter defines for each n ∈ N
a morphism Cn =C×·· ·×C −→ Jac(C) whose fibres correspond to linear
series of divisors on the curve, and the loci where the fibre dimension jumps
are the subvarieties W r

n ⊆ Jac(C) of special divisors that have been studied
extensively in classical Brill-Noether theory [6].

For smooth complex projective varieties Y of higher dimension one still
has the Albanese morphism

fn : Y n = Y ×·· ·×Y −→ X = Alb(Y ),

but here the situation is much harder to describe in general. For example, the
image f1(Y ) ↪→ X can have any dimension between zero and dim(X), and
there is no obvious substitute for Brill-Noether theory in general. In some
sense, the first three chapters of this thesis provide a possible framework for
such a substitute. More specifically, the properties of fn we are interested
in (such as the loci on X where the fibre dimension jumps) can be studied
via the higher direct images

Rifn∗(CY n) for i≥ 0,

which are constructible sheaves in the sense that there exists a stratification
of X into finitely many locally closed subvarieties over which they restrict
to locally constant sheaves. In general the geometry of these higher direct
image sheaves is rather involved, as we will see in a particular example in
chapter 5. However, we propose a simple description of such direct images
in terms of the representation theory of a reductive algebraic group that can
be attached to Y via the Tannakian formalism [33].

The basis for this Tannakian description will be a vanishing theorem for
constructible sheaves on abelian varieties which can be seen as an analog
of the Artin-Grothendieck affine vanishing theorem [7, exp. XIV, cor. 3.2]
and contains as a special case the generic vanishing theorems of Green and
Lazarsfeld [47]. For any character χ : π1(X ,0) −→ C∗ of the fundamental
group, let us denote by Lχ the corresponding local system on X . Then in
chapters 1 and 2 which are based on joint work with R. Weissauer [68],
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2 Introduction

we show that for any constructible sheaf F on X and a sufficiently general
character χ one has

H i(X ,F⊗C Lχ) = 0 for all i > dim(Supp(F)).

An independent proof of this result has also been given by C. Schnell [94],
using the Fourier-Mukai transform for holonomic D-modules. Our proof
is of a different flavour and is closely intertwined with the definition of the
Tannakian categories we are interested in. It is based on an abstract quotient
construction for semisimple tensor categories — we only use D-modules
at a single place in section 1.4 where we classify all perverse sheaves of
Euler characteristic zero (which will be precisely the objects which become
isomorphic to zero under the above quotient construction). At present we
do not know whether this classification extends to algebraically closed base
fields of positive characteristic p > 0, but otherwise all our arguments also
work for l-adic constructible sheaves on abelian varieties over the algebraic
closure of a finite field Fp for prime numbers l 6= p.

Our Tannakian results are best formulated in the framework of perverse
sheaves which has its historic roots in the theory of D-modules [57] and
in the sheaf-theoretic construction of intersection cohomology for singular
varieties [10]. Let us for convenience briefly recall some basic definitions
and notations from loc. cit. For any complex algebraic variety Z, we will
denote by Db

c (Z,C) the derived category of bounded C-sheaf complexes
whose cohomology sheaves are constructible for some stratification of Z
into Zariski-locally closed subsets. This is a triangulated category, and one
can define the full abelian subcategory

Perv(Z,C) ⊂ Db
c (Z,C)

of perverse sheaves to be the core of the middle perverse t-structure. More
explicitly, a sheaf complex K is said to be semi-perverse if its cohomology
sheaves H −i(K) satisfy the support estimate dim(SuppH −i(K)) ≤ i for
all i ∈ Z, and it is a perverse sheaf iff both K and its Verdier dual D(K) are
semi-perverse. For example, the perverse intersection cohomology sheaf is
by definition the intermediate extension

δZ = j!∗(CU [dim(Z)]) ∈ Perv(Z,C)
where j : U ↪→ Z denotes the inclusion of a smooth open dense subset. This
perverse sheaf is self-dual with respect to Verdier duality, and it does not
depend on the choice of the smooth open dense subset. Thus for smooth
varieties Z the perverse intersection cohomology sheaf δZ coincides with
the constant sheaf up to a degree shift. If Z is a closed subvariety of X with
embedding i : Z ↪→ X , then the direct image i∗ : Perv(Z,C) ↪→ Perv(X ,C)
is a fully faithful functor, and in this case we will by abuse of notation also
write δZ for the perverse sheaf i∗(δZ) ∈ Perv(X ,C).
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In the context of perverse sheaves, our above vanishing theorem can be
reformulated as the statement that for any perverse sheaf P ∈ Perv(X ,C)
and a general character χ : π1(X ,0) −→ C∗ the hypercohomology groups
satisfy the property

H i(X ,P⊗C Lχ) = 0 for all i 6= 0,

as we will explain in more detail in chapter 1. Our methods also allow
to determine the precise locus S (P) of characters χ for which the above
vanishing property fails. In section 1.5 we will see that this locus is a finite
union of translates of algebraic subtori of the character torus

Π(X) = Hom(π1(X ,0),C∗),
and that for perverse sheaves P ∈ Perv(X ,C) of geometric origin in the
sense of [10, sect. 6.2.4] the occuring translations can be taken to be torsion
points. Again this has been shown independently by C. Schnell in [94] with
a different argument. The two approaches seem to be complementary in
some sense — for example, whereas in the framework of loc. cit. the proof
of the statement about torsion points requires a deep result of C. Simpson,
the methods to be explained below allow to reduce it to a statement over a
finite field which can be checked directly by looking at the eigenvalues of
the Frobenius operator, see lemma 1.11.

We now come back to the Albanese morphism fn : Y n −→ X = Alb(Y )
of a smooth complex projective variety Y of arbitrary dimension. The group
law a : X ×X −→ X of the Albanese variety defines a convolution product
on the bounded derived category Db

c (X ,C) by the formula

K ∗M = Ra∗(K�M) for K, M ∈ Db
c (X ,C),

and in these terms the direct image of the constant sheaf can be written (up
to a degree shift) as the n-fold convolution

R fn∗(δY n) = R f1∗(δY )∗ · · · ∗R f1∗(δY )︸ ︷︷ ︸
n times

.

Our goal is to interpret this convolution as a tensor product in the category
of representations of some reductive algebraic group. To motivate this, let
us take a look at the case where Y = C is a curve. Then f1 : C ↪→ X is the
Abel-Jacobi embedding, and we are interested in the convolution powers of
the perverse sheaf δC ∈ Perv(X ,C). Although in general these convolution
powers are not perverse, it turns out that the failure of perversity only comes
from locally constant sheaves: In view of Gabber’s decomposition theorem
we can write

(δC)
∗n = δn ⊕ τn

where τn denotes the maximal direct summand all of whose cohomology
sheaves are locally constant on X , and then by [106, th. 7] the remaining
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direct summand δn is a perverse sheaf. Let us say that a perverse sheaf is
a Brill-Noether sheaf if it is a subquotient of δn for some n ∈ N. Then for
a suitable normalization of the Abel-Jacobi morphism, it has been shown
in theorem 14 of loc. cit. that the category of all Brill-Noether sheaves is
equivalent to the category of algebraic representations of the group

G(δC) =

{
Sp2g−2(C) if C is hyperelliptic,
Sl2g−2(C) otherwise,

and that the tensor product of representations is induced by the convolution
product of perverse sheaves. This Tannakian description reduces classical
geometric problems to simple computations in representation theory. For
example, if g denotes the genus of C, then the perverse sheaf δΘ attached
to the theta divisor Θ = Wg−1 ⊂ X corresponds via the above equivalence
to the g− 1st fundamental representation of G(δC). Using this one may
decompose the convolution δΘ ∗ δΘ into its irreducible constituents, which
leads to a new proof of Torelli’s theorem [111].

Alongside our proof of the vanishing theorem and still based on [68], in
chapter 2 we generalize the Tannakian constructions from above to the case
of semisimple sheaf complexes on arbitrary complex abelian varieties X . In
particular, we show that every convolution of semisimple perverse sheaves
is a direct sum of a semisimple perverse sheaf and a further sheaf complex
which is negligible in a suitable sense (for example, on a simple abelian
variety a complex is negligible iff all its cohomology sheaves are locally
constant). To any semisimple perverse sheaf P ∈ Perv(X ,C) we then attach
a reductive algebraic group G(P) whose representation theory governs the
decomposition of the convolution powers P∗n = P∗ · · · ∗P up to negligible
direct summands, see corollary 2.14.

We remark that for algebraic tori in place of abelian varieties, similar
results have been obtained by Gabber and Loeser in [41]. However, in their
case the essential problem is to define the correct notion of convolution in
the non-proper case, and once this has been done, the required properties
follow from Artin’s vanishing theorem for affine morphisms. By way of
contrast, in the case of abelian varieties the main point of the construction
is to find a proper analog of Artin’s theorem, which will be precisely the
vanishing theorem that we stated earlier.

The Tannaka groups G(P) attached to perverse sheaves P ∈ Perv(X ,C)
as above form an interesting family of new invariants which contain much
information about the geometry and the moduli of the underlying abelian
variety. So far the most efficient method to determine such Tannaka groups
has been to study degenerations of the abelian variety (an example for this
can be found in chapter 4). Even if one is only interested in semisimple
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perverse sheaves on abelian varieties, such degenerations naturally lead to
non-semisimple perverse sheaves on semiabelian varieties. In chapter 3 we
extend our Tannakian constructions to this more general case, combining
the results of Gabber and Loeser for tori with our vanishing theorem for
abelian varieties. We also give a Tannakian description for the functor of
nearby cycles for a family of abelian varieties which degenerates into a
semiabelian variety. Even though in the non-proper case the functor of
nearby cycles does not preserve the Euler characteristic, we will show that
the degenerate Tannaka group is a subgroup of the generic one whenever
one can possibly expect this to hold (see theorem 3.15).

In the remaining chapters we study in more detail the case where P= δΘ

is the perverse intersection cohomology sheaf associated with a symmetric
theta divisor of a principally polarized abelian variety X . In chapter 4 we
use a degeneration argument to show that for a general principally polarized
abelian variety (ppav) of dimension g one has

G(δΘ) =

{
SOg!(C) if g is odd,
Spg!(C) if g is even,

and that δΘ corresponds to the standard representation of this group, a result
that was conjectured in [67]. As an application we deduce that for g = 4 the
invariant G(δΘ) solves the Schottky problem in the sense that it detects the
locus of Jacobian varieties inside the moduli space A4 of ppav’s.

Once we know the Tannaka group G(δΘ), we can use representation
theory to decompose arbitrary convolution powers of the perverse sheaf δΘ

into their simple constituents. This produces a plethora of interesting simple
perverse sheaves which describe the Hodge theory of various subvarieties
of X . For example, consider the translate Θx = Θ+x of the theta divisor by
a point x ∈ X(C). The geometry of the intersections

Yx = Θ∩Θx

is closely connected with the moduli of the underlying ppav and has been
studied classically in relation with Torelli’s theorem [25], with the Schottky
problem [27] and with the Prym map [61]. The involution σ = −idX acts
on these intersections, and if the theta divisor is smooth, then for a general
point x ∈ X(C) the quotient variety

Y+
x = Yx/σ

will be smooth as well. We will see in chapter 5 that for varying x, the
variable part of the cohomology H•(Y+

x ,Q) can be identified naturally with
the stalk cohomology of the alternating resp. symmetric convolution square
of the perverse sheaf δΘ, depending on whether the dimension g = dim(X)
is even or odd. For a general ppav the Tannakian result of chapter 4 implies
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that this alternating resp. symmetric convolution square is irreducible up to
a skyscraper sheaf and negligible terms.

So for x varying in a Zariski-open dense subset of X(C), the variable
part of the cohomology of Y+

x defines a variation of Hodge structures whose
underlying local system is irreducible. The main topic of chapter 5 is a study
of this variation in the case where g = 4. In this case we are dealing with
a family of smooth surfaces of general type with a surprisingly explicit and
beautiful geometry. On the level of integral cohomology, we will determine
the Néron-Severi lattices

H2(Yx,Z) and H2(Y+
x ,Z)

of the respective surfaces and deduce that the local system underlying the
considered variation of Hodge structures essentially has the monodromy
group W (E6), see theorem 5.1. We will also see that the appearance of this
Weyl group in the present context is closely related to the ubiquitous 27
lines on a cubic surface — the link is provided by the Prym-embedded
curves on Yx which have been studied by E. Izadi in [61] and appear here as
glue vectors for the above Néron-Severi lattices.

In view of this example, it remains an intriguing question to ask for the
general relationship between the Tannaka group G(P) attached to a perverse
sheaf P ∈ Perv(X ,C) and the monodromy groups defined by the simple
perverse sheaves in the corresponding Tannakian category. At present this
relationship remains mysterious even for Brill-Noether sheaves on Jacobian
varieties. As a first step in this direction, we conclude this dissertation with
a recursive formula for the generic rank of Brill-Noether sheaves — in the
hope that this formula may be given a representation-theoretic and more
conceptual interpretation at some future time.



Some commonly used notations

Db
c (X ,Λ) derived category of bounded constructible sheaf complexes

on X as defined in [10], in the analytic sense if Λ =C and in
the l-adic sense if Λ is an extension of Ql

Perv(X ,Λ) the abelian subcategory of perverse sheaves in Db
c (X ,Λ)

H i(X ,K) i th hypercohomology group of K ∈ Db
c (X ,Λ)

H i
c(X ,K) i th compactly supported hypercohomology group of K

H i(K) i th cohomology sheaf of K
pH i(K) i th perverse cohomology sheaf of K

χ(K) Euler characteristic ∑i∈Z(−1)i dimH i(X ,K) of K

Supp(K) support of K

D(K) Verdier dual of K

K(i) i-fold Tate twist of K

δY = ICY [d] perverse intersection cohomology sheaf attached to a closed
subvariety Y ↪→ X of dimension d

ΛY constant sheaf with coefficients in the field Λ and support on
a closed subvariety Y ↪→ X

Π(X) group of all characters χ : π1(X ,0)−→Λ∗ of the topological
fundamental group, resp. of all continuous characters of the
tame étale fundamental group in the l-adic setting

Π(X)l maximal pro-l-subgroup of Π(X)

Lχ local system attached to a character χ ∈Π(X)

Kχ = K⊗Λ Lχ twist of a complex K ∈ Db
c (X ,Λ) by a character χ ∈Π(X)

S (P) spectrum of P ∈ Perv(X ,Λ) as defined in section 1.5

Ψ, Ψ1 functor of nearby cycles resp. its unipotent part

sp specialization functor as defined in section 4.3

G(P) Tannaka group attached to P ∈ Perv(X ,Λ) in corollary 3.10

An, Sn alternating resp. symmetric group of degree n

7





CHAPTER 1

Vanishing theorems on abelian varieties

As we mentioned in the introduction, our construction of Tannakian
categories will be closely intertwined with a vanishing theorem for perverse
sheaves on abelian varieties. In the first two chapters of this dissertation
which are based on joint work with R. Weissauer [68], we discuss various
incarnations of this vanishing theorem and explain how it may be proved in
an abstract Tannakian framework.

1.1. The main result

Let X be a complex abelian variety. For characters χ : π1(X ,0)−→ C∗
of the fundamental group we denote by Lχ the corresponding local system
of complex vector spaces on X of rank one, and for a bounded constructible
sheaf complex K ∈ Db

c (X ,C) we consider the twist Kχ = K⊗C Lχ . With
these notations, our vanishing theorem can be formulated as

THEOREM 1.1. Let P ∈ Perv(X ,C) be a perverse sheaf. Then for most
characters χ we have

H i(X ,Pχ) = 0 for i 6= 0.

Here we use the following terminology: For abelian subvarieties A ⊆ X
let K(A) be the group of characters χ : π1(X ,0) −→ C∗ whose restriction
to the subgroup π1(A,0)⊆ π1(X ,0) is trivial. We then say that a statement
holds for most characters χ if it holds for all χ in the complement of a thin
set of characters, where by a thin set of characters we mean a finite union
of translates χi ·K(Ai) for certain non-zero abelian subvarieties Ai ⊆ X and
suitable characters χi of π1(X ,0). The same terminology will be used in
theorems 1.4 and 1.5 below for line bundles L ∈ Pic0(X).

The statement of theorem 1.1 can be sharpened as follows. Let Π(X)
denote the group of characters χ of the fundamental group π1(X ,0); this is
a complex algebraic torus. For a perverse sheaf P ∈ Perv(X ,C) we define
the spectrum

S (P) =
{

χ ∈Π(X) | H i(X ,Pχ) 6= 0 for some i 6= 0
}

to be the locus of all characters χ ∈ Π(X) for which the vanishing in the
above theorem fails in some cohomology degree. We will see in section 1.5

9



10 Chapter 1 – Vanishing theorems on abelian varieties

below that the spectrum S (P) is not just contained in a thin subset but
actually equal to such a set, in other words

S (P) =
n⋃

i=1

χi ·K(Ai)

is a finite union of translates of algebraic subtori K(Ai)⊂ Π(X) for certain
abelian subvarieties Ai ⊆ X and χi ∈ Π(X). Furthermore, if the perverse
sheaf P is of geometric origin in the sense of [10, sect. 6.2.4], we will see
that the characters χi can be chosen to be of finite order.

Our proof of theorem 1.1 is based on two ingredients. The main part
is an abstract Tannakian argument to be given in chapter 2 below: Using a
general construction of André and Kahn [1] we show that a certain quotient
of the category of semisimple perverse sheaves on X is a rigid symmetric
monoidal semisimple abelian category, and via a criterion by Deligne [30]
we deduce that this category is super Tannakian in a sense to be explained
below. To see that in the case at hand the construction leads to a Tannakian
category in the usual sense, we require the second ingredient of the proof
which is of a more geometric flavour: A classification of perverse sheaves
on X with Euler characteristic zero. This classification is independent from
the Tannakian arguments and uses the theory of D-modules, extending the
results of Franecki and Kapranov [37]. We will discuss it in section 1.4,
and this is the only place where we need to work over the base field C. The
arguments of chapter 2 also work for l-adic perverse sheaves on abelian
varieties over the algebraic closure of a finite field.

Our theorem easily generalizes to a relative vanishing theorem for a
homomorphism of abelian varieties as we explain in section 1.2. From a
different point of view, it can also be reformulated as a statement about
constructible sheaves: Indeed, using dévissage for the perverse t-structure
together with Verdier duality one checks that the theorem is equivalent to
the statement that any semi-perverse complex K satisfies H i(X ,Kχ) = 0 for
all i > 0 and most characters χ . Note that for any constructible sheaf F the
degree shift K = F [dim(SuppF)] is a semi-perverse sheaf complex, so we
in particular obtain

THEOREM 1.2. Let F be a constructible sheaf on X. Then for most
characters χ we have

H i(X ,Fχ) = 0 for i > dim(SuppF).

This can be viewed as an analog of the Artin-Grothendieck affine vanishing
theorem in the same way as one can consider the generic vanishing theorem
of Green and Lazarsfeld [47, th. 1] as an analog of the Kodaira-Nakano
vanishing theorem. Motivated by this observation, in section 1.3 we explain
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how to recover a stronger version of the Green-Lazarsfeld theorem as a
special case of our result. In the remaining sections of this chapter we
then discuss perverse sheaves with Euler characteristic zero and, as a first
application, deduce from the obtained classification the statement about the
spectrum of a perverse sheaf mentioned above.

1.2. A relative generic vanishing theorem

Let A⊆ X be an abelian subvariety and f : X −→ B = X/A the quotient
morphism. Assuming theorem 1.1 only for the abelian variety A, we obtain
the following relative generic vanishing theorem. We remark that here the
quantifier most can be read in the slightly stronger sense that it does not
refer to the characters of π1(X ,0) but only to their pull-back to π1(A,0) as
we will explain in more detail at the end of section 1.5 below.

THEOREM 1.3. Let P ∈ Perv(X ,C). Then for most characters χ the
direct image R f∗(Pχ) is a perverse sheaf on B.

Proof. By Verdier duality it will be enough to show that for most χ the
direct image complex R f∗(Pχ) satisfies the semi-perversity condition

dim
(
Supp H −k(R f∗(Pχ))

)
≤ k for all k ∈ Z.

To check this condition, note that by lemma 2.4 and section 3.1 in [12] we
can find Whitney stratifications X = tβ Xβ and B = tαBα such that the
following properties hold:

(a) for all β , i, χ the cohomology sheaves H −i(Pχ) =H −i(P)⊗CLχ

are locally constant on the strata Xβ ,
(b) each f (Xβ ) is contained in some Bα ,
(c) for all α,β with f (Xβ )⊆Bα the morphism f : Xβ →Bα is smooth.

By theorem 4.1 of loc. cit. then the restriction H −k(R f∗(Pχ))|Bα
is locally

constant for all α , k and χ . Now there are only finitely many strata Bα ,
and we have H −k(R f∗(Pχ)) 6= 0 for only finitely many k. Hence it follows
that if the direct image complex R f∗(Pχ) were not semi-perverse for most
characters χ , then we could find α and k such that

(d) dim(Bα) > k (where as usual by the dimension of a constructible
subset we mean the maximum of the dimensions of the irreducible
components of its closure), and

(e) H −k(R f∗(Pχ))b 6= 0 for all points b ∈ Bα(C) and all χ in a set
of characters which is not thin in the sense of the introduction.

Indeed, if a property does not hold for most characters, then by definition it
fails on a set of characters which is not thin. Fixing α and k as above, we
now argue by contradiction.
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Choose a point b ∈ Bα(C). Consider the fibre Fb = f−1(b), and for
any character χ denote by Mb = Pχ |Fb the restriction of Pχ to Fb (in what
follows we suppress the character twist in this notation). For the perverse
cohomology sheaves

Mr
b = pH−r(Mb)

we have the spectral sequence

Ers
2 = H−s(Fb,Mr

b) =⇒ H−(r+s)(Fb,Mb) = H −(r+s)(R f∗(Pχ))b.

Theorem 1.1 for Fb
∼= A shows that for most χ we have H−s(Fb,Mr

b) = 0 for
all s 6= 0 and all r ∈ Z. For such χ the spectral sequence degenerates, i.e.

H −k(R f∗(Pχ))b = H0(Fb,Mk
b).

On the other hand, by (e) we can assume H −k(R f∗Pχ)b 6= 0. By the above
then Mk

b 6= 0. Since Mk
b = pH0(Mb[−k]), it follows by definition of the

perverse t-structure that

dim
(
Supp H −i(Mb)

)
= i− k ≥ 0 for some i ∈ Z.

Now by (a) the support of H −i(Pχ) is a union of certain strata Xβ , so using
the above dimension estimate and the definition of Mb = Pχ |Fb we find a
stratum Xβ ⊆ Supp H −i(Pχ) with dim(Fb∩Xβ ) = i− k. Since by (b), (c)
the stratum Xβ is equidimensional over Bα , it follows that

dim
(
Supp H −i(Pχ)

)
≥ dim(Xβ ) = i− k+dim(Bα).

But dim(Bα)> k by property (d), so it follows that the perverse sheaf Pχ is
not semi-perverse, a contradiction. �

Note that in the proof of theorem 1.3 we have only used theorem 1.1 for
the fibres f−1(b) ∼= A but not for X itself. Indeed, using this observation
and assuming theorem 1.1 only for simple abelian varieties, one can by
induction on the dimension deduce for arbitrary abelian varieties a slightly
weaker version of theorem 1.1 where most is replaced by generic [107].

1.3. Kodaira-Nakano-type vanishing theorems

From theorem 1.1 one easily recovers stronger versions of the generic
vanishing theorems of Green and Lazarsfeld as follows. Let Y be a compact
connected Kähler manifold of dimension d whose Albanese variety Alb(Y )
is algebraic, and denote by

f : Y −→ X = Alb(Y )

the Albanese morphism. To pass from coherent to constructible sheaves,
recall that every line bundle L ∈ Pic0(X) admits a flat connection; the
horizontal sections with respect to such a connection form a local system
corresponding to a character χ ∈Π(X) such that L ∼= Lχ ⊗C OX .
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For a given line bundle L ∈ Pic0(X), the set of all characters χ with the
above property is a torsor under the group H0(X ,Ω1

X). Indeed, this follows
from the truncated exact cohomology sequence

0 −→ H0(X ,Ω1
X) −→ H1(X ,C∗) −→ Pic0(X) −→ 0

attached to the exact sequence 0→ C∗X → O∗X → Ω1
X ,cl → 0 where Ω1

X ,cl
denotes the sheaf of closed holomorphic 1-forms. On the other hand, from
the point of view of Hodge theory it is better to restrict our attention to
unitary characters χ : π1(X ,0)→U(1) = {z ∈ C∗ | |z|= 1}, which has the
extra benefit of making the passage from coherent to constructible sheaves
unique: Comparing the exponential sequences 0→ZX→RX→U(1)X→ 0
and 0→ ZX → OX → O∗X → 0 one sees that the morphism

H1(X ,U(1))
∼=−→ Pic0(X)

is an isomorphism, so for every line bundle L ∈ Pic0(X) there is a unique
unitary character χ with L ∼= Lχ ⊗C OX . Concerning the applicability of
theorem 3.1 in this unitary context, we remark that the intersection of any
thin subset of Π(X) with the set of unitary characters is mapped via the
above isomorphism to a thin subset of Pic0(X).

In what follows, for n ∈N0 we put Xn = {x ∈ X | dim( f−1(x)) = n} and
consider the number

w(Y ) = min
{

2d− (dim(Xn)+2n) | n ∈ N0, Xn 6=∅
}
.

Notice that w(Y ) ≤ d (indeed, for some n the preimage f−1(Xn) is dense
in Y so that d = dim( f−1(Xn)) = dim(Xn)+n, hence 2d− (dim(Xn)+2n)
is equal to 2d− (d + n) = d− n ≤ d). Furthermore, by base change one
checks that for any local systems E of complex vector spaces on Y the
direct image

R f∗E[2d−w(Y )] is semi-perverse,

because for x ∈ Xn(C) the fibre F = f−1(x)⊆Y satisfies H i(F,E|F) = 0 for
all i > 2n. This being said, theorem 1.1 implies the following version of the
vanishing theorem given in [47, th. 2].

THEOREM 1.4. Let E be a unitary local system on Y . Then for most L
in Pic0(Y ) we have

H p(Y,Ωq
Y (E⊗C L )) = 0 if p+q < w(Y ).

Proof. The morphism f ∗ : Pic0(X) −→ Pic0(Y ) is an isomorphism by
construction of the Albanese variety [48, p. 553], so every coherent line
bundle L ∈ Pic0(Y ) arises as the pull-back of some M ∈ Pic0(X). As
explained above, there is a unitary character χ such that

M ∼= OX ⊗C Lχ .
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Then L ∼= f ∗(M ) ∼= OY ⊗C f ∗(Lχ). Since all the occuring local systems
are unitary, Hodge theory says that⊕

p+q=k

H p(Y,Ωq
Y (E⊗C L )) ∼= Hk(Y,E⊗C f ∗(Lχ)).

Putting K = R f∗E[2d−w(Y )] we can identify the cohomology group on the
right hand side with the group Hk−2d+w(Y )(X ,Kχ). Since the direct image
complex Kχ is semi-perverse, theorem 1.1 shows that for k > 2d−w(Y )
and most characters χ the above group vanishes. The theorem now follows
by an application of Serre duality. �

For a similar result in this direction, consider for n ∈ N0 the closed
analytic subsets

Xn = {x ∈ X | dim( f−1(x))≥ n} and Y n = f−1(Xn),

and put dn = dim(Y n) with the convention that dn = −∞ for Y n = /0. Then
our vanishing theorem implies the following

THEOREM 1.5. Suppose that p+ q = d− n for some n ≥ 1. Then for
most line bundles L ∈ Pic0(Y ),

H p(Y,Ωq
Y (L )) = 0 unless d−dn ≤ p,q ≤ dn−n.

Proof. By Serre duality the claim is equivalent to the statement that
if p+q = d+n for some n≥ 1, then H p(Y,Ωq

Y (L )) = 0 for most L unless
the Hodge types satisfy the estimates

d +n−dn ≤ p,q ≤ dn.

In fact it will suffice to establish the upper estimate p,q ≤ dn, the lower
estimate is then automatic since p+q = d +n by assumption.

The decomposition theorem for compact Kähler manifolds [90, th. 0.6]
says that R f∗CY [d]∼=

⊕
m Mm[−m] where each Mm is a pure Hodge module

on X of weight m+ d in the sense of [89]. Furthermore, for any unitary
character χ with complex conjugate χ̄ the local system Lχ⊕Lχ̄ of rank two
has an underlying real structure and hence can be viewed as a real Hodge
module of weight zero in a natural way. So for any real Hodge module M
on X also Mχ,χ̄ = Mχ ⊕Mχ̄ is a real Hodge module. This being said, by
theorem 1.1 we have

Hd+n(Y, f ∗(Lχ ⊕Lχ̄)) ∼= Hn(X ,(R f∗CY [d])χ,χ̄) ∼= H0(X ,(Mn)χ,χ̄)

for most unitary characters χ . The formalism of Hodge modules equips the
cohomology group on the right hand side with a pure R-Hodge structure of
weight n+d compatible with the natural one on the left hand side. We are
looking for bounds on the types (p,q) in this Hodge structure.
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One easily checks that Supp(Mn)⊆ Xn, so Mn[−n] is a direct summand
of R f∗CȲn

[d] by base change. To control the Hodge structure on twists of
the cohomology of this direct image, let π : Ỹ → Y be a composition of
blow-ups in smooth centers that gives rise to an embedded resolution of
singularities Ỹn = π−1(Y n)→ Y n, see [56] or [11, th. 10.7]. Then CY [d]
occurs as a direct summand of the complex Rπ∗CỸ [d] by the decomposition
theorem, so the restriction CY n

[d] is a direct summand of Rπ∗CỸn
[d]. It then

follows that Mn[−n] is a direct summand of R f∗Rπ∗CỸn
[d], and we get an

embedding

H0(X ,(Mn)χ,χ̄) ↪→ Hd+n(Ỹn,π
∗ f ∗(Lχ ⊕Lχ−1)).

But the Hodge types (p,q) on the right hand side satisfy p,q≤ dim(Ỹn)= dn
as one may check from the Hodge theory of compact Kähler manifolds with
coefficients in unitary local systems. �

The above result contains the generic vanishing theorem of Green and
Lazarsfeld [47, second part of th. 1] as the special case q = 0. Indeed, for
any p < dim( f (Y )) the number n = d− p is larger than the dimension of the
generic fibre of the Albanese morphism, hence dn < d so that H p(Y,L ) = 0
for most L by theorem 1.5. If Y is algebraic, the theorem also holds more
generally for H p(Y,Ωq

Y (E⊗C L )) with a unitary local system E on Y .

In general the bounds in the above theorem are strict: If d = 4 and if Y
is the blow-up of X along a smooth algebraic curve C ⊂ X of genus ≥ 2,
then one has w(Y ) = d1 = 3 but H2(Y,Ω1

Y (L )) 6= 0 for all non-trivial line
bundles L as explained in [47, top of p. 402].

1.4. Negligible perverse sheaves

A crucial ingredient for the proof of our vanishing theorem to be given
in section 2.7 will be a classification of all perverse sheaves on X of Euler
characteristic zero. To obtain this classification we use an index formula for
D-modules, extending the arguments of [37, cor. 1.4] which have shown
that on a complex abelian variety X every perverse sheaf P ∈ Perv(X ,C)
has Euler characteristic χ(P)≥ 0. As we mentioned earlier, this is the only
part of our proof of theorem 1.1 which so far only works over C.

PROPOSITION 1.6. Let P ∈ Perv(X ,C) be a simple perverse sheaf.
(a) One has χ(P) = 0 iff there exists an abelian subvariety A ↪→ X of

positive dimension with quotient morphism q : X � B = X/A such
that

P ∼= Lϕ ⊗q∗(Q)[dim(A)]
for some Q ∈ Perv(B,C) and some character ϕ ∈Π(X).

(b) One has χ(P) = 1 iff P is a skyscraper sheaf on X of rank one.
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Proof. Via the Riemann-Hilbert correspondence [57] we can consider P
as a D-module. For Z ⊆ X closed and irreducible, let ΛZ ⊆ T ∗X be the
closure in T ∗X of the conormal bundle in X to the smooth locus of Z. As in
loc. cit. we write the characteristic cycle of P as a finite formal sum

CC(P) = ∑
Z⊆X

nZ ·ΛZ with nZ ∈ N0,

where Z runs through all closed irreducible subsets of X . From CC(P) the
support of P can be recovered via SuppP =

⋃
nZ 6=0 Z. Furthermore, by the

microlocal index formula [44, th. 9.1] we have

χ(P) = ∑
Z⊆X

nZ ·dZ with dZ = [ΛX ] · [ΛZ] ∈ Z.

The intersection numbers dZ are well-defined even though ΛZ is not proper
for Z 6= X , see loc. cit. for details. Now if X is a simple abelian variety, then
lemma 1.8 below implies (a), and if we additionally assume dim(X) > 1,
also (b) follows in view of lemma 1.9 below. The non-simple case can be
reduced to the simple case, see [107]. �

The reduction to the case of simple abelian varieties in loc. cit. works for
ground fields k of characteristic p > 0 as well, but we do not know how to
deal with simple abelian varieties in that case. For k =C, Christian Schnell
has given in [94, cor. 3.11] a different proof of proposition 1.6(a) via the
Fourier-Mukai transform for D-modules.

COROLLARY 1.7. A simple perverse sheaf P ∈ Perv(X ,C) has Euler
characteristic zero iff H•(X ,Pχ) = 0 for most characters χ .

Proof. “⇐” holds by corollary 2.2. For “⇒” take a positive-dimensional
abelian subvariety A ↪→ X with quotient q : X� B = X/A and a character ϕ

such that P ∼= Lϕ ⊗ q∗(Q)[dim(A)] for some perverse sheaf Q on B as in
proposition 1.6(a). We can assume that the Euler characteristic of Q is not
zero. Then we claim that

H•(X ,Pχ) = H•(B,Rq∗(Pχ)) = H•(B,Rq∗(Lϕχ)⊗Q[dim(A)])

vanishes iff the restriction of the local system Lϕχ to A = ker(q) ⊆ X is
not trivial. Indeed, if this restriction is non-trivial, then by base change one
checks that Rq∗(Lϕχ) = 0 and hence a fortiori H•(X ,Pχ) = 0. On the other
hand, if this restriction is trivial, then Lϕχ = q∗(Lψ) for some character ψ

and then H•(X ,Pχ) = H•(A,C)⊗H•(B,Qψ)[dim(A)] is non-zero since the
Euler characteristic of Qψ is not zero. �

For completeness we include the following two elementary lemmas
about characteristic cycles that have been used, in the case of simple abelian
varieties, in the proof of proposition 1.6.
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LEMMA 1.8. With notations as above, dZ ≥ 0 for all Z. One has dZ = 1
iff Z is reduced to a single point. If X is simple, then dZ = 0 iff Z = X.

Proof. Put g = dim(X). The cotangent bundle T ∗X = X ×Cg is trivial,
and projecting from ΛZ ⊆ T ∗X onto the second factor Cg induces the Gauß
mapping p : ΛZ → Cg. By [37, prop. 2.2] the intersection number dZ is the
generic degree of p. In particular dZ ≥ 0 for all Z.

If dZ = 1, then ΛZ is birational to Cg, so by [75, cor. 3.9] there does not
exist a non-constant map from ΛZ to an abelian variety. So the image Z of
the composite map ΛZ ⊆ T ∗X −→ X consists of a single point.

If dZ = 0, then p is not surjective, so dim(p(ΛZ)) < g. Then for some
cotangent vector ω ∈ p(ΛZ) the fibre p−1(ω) is positive-dimensional, and
for Z 6= X we can assume ω 6= 0. Let Y ⊆ X be the image of p−1(ω)⊆ T ∗X
under the map T ∗X −→ X . Then dim(Y )> 0, and up to a translation we can
assume 0∈Y . By construction ω is normal to Y in every smooth point of Y ,
so the preimage of Y under the universal covering Cg −→ X =Cg/Λ lies in
the hyperplane of Cg orthogonal to ω . Accordingly the abelian subvariety
of X generated by Y is strictly contained in X , but not zero. This contradicts
our assumption that X is simple. �

LEMMA 1.9. Put g = dim(X), and assume P ∈ Perv(X ,C) is simple. If
there is a closed subset Y ⊂ X with dim(Y )≤ g−2 such that

CC(P) = nX ΛX + ∑
Z⊆Y

nZΛZ and nX > 0,

then P = Lχ [g] for some character χ , hence nX = 1 and nZ = 0 for Z 6= X.

Proof. Consider the open embedding j : U = X \Y ↪→ X . Since open
embeddings are non-characteristic for any DX -module, by [57, sect. 2.4]
we have CC( j∗(P)) = CC(P)∩T ∗U = nX ·ΛU . So we get j∗(P) = LU [g]
for a local system LU on U by prop. 2.2.5 in loc. cit. Since X is smooth,
the purity of the branch locus and dim(Y )≤ g−2 implies LU = j∗(L) for a
local system L on X . By simplicity of P it follows that P = L[g], and as an
irreducible representation of the abelian group π1(X ,0) the local system L
must have rank one. �

1.5. The spectrum of a perverse sheaf

Using the classification from the previous section, we now explain how
to determine for P ∈ Perv(X ,C) the spectrum

S (P) =
{

χ ∈Π(X) | H i(X ,Pχ) 6= 0 for some i 6= 0
}
.

As a refinement of theorem 1.1 we will show that S (P) is a finite union of
translates of proper algebraic subtori of Π(X) and that furthermore for P of
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geometric origin each of the occuring translations can be taken to be torsion
points of Π(X), see lemma 1.11 below. More generally, for semisimple
sheaf complexes K =

⊕
n∈Z

pH−n(K)[n] we define

S (K) =
⋃

n∈Z
S (pH−n(K)).

The definitions imply that S (Kχ) = χ−1 ·S (K) for all χ ∈Π(X), and for
all semisimple K1,K2 we have

S (K1 ∗K2) ⊆ S (K1)∪S (K2) = S (K1⊕K2),

where K1∗K2 denotes the convolution of K1 and K2 as defined in section 2.1
below. Note that the equality displayed on the right hand side reduces the
computation of the spectrum of semisimple sheaf complexes to the case
of simple perverse sheaves. Of course the spectrum S (P) may be empty,
for example if P is a skyscraper sheaf or, more interestingly, if P = i∗E[1]
where i : C ↪→ X is the embedding of a smooth curve in X and where E is
an irreducible local system on C of rank at least two.

Since π1(X ,0) ∼= Z2g, the character group Π(X) ∼= C2g is a complex
algebraic torus of rank 2g. Furthermore Π is a contravariant functor: For
any homomorphism h : X −→ B of complex abelian varieties, the pull-back
of characters gives rise to a homomorphism Π(h) : Π(B)−→Π(X) between
the corresponding algebraic tori.

REMARK 1.10. The functor Π has the following properties.

(a) Let h : X → B be an isogeny with kernel F. Then we have an exact
sequence

0 // Hom(F,C∗) // Π(B)
Π(h)

// Π(X) // 0.

For P∈ Perv(X ,C) we have h∗(P)∈ Perv(B,C), and Π(h) induces
a surjection

S (h∗(P))�S (P).

(b) Let i : A ↪→ X be an embedding of abelian varieties with quotient
morphism q : X → B = X/A. Then we have an exact sequence

0 // Π(B)
Π(q)

// Π(X)
Π(i)

// Π(A) // 0.

In this situation we denote by K(A)⊆Π(X) the image of Π(q).

Proof. The exactness of the considered sequences can be seen from the
description of a complex abelian variety as the quotient of a complex vector
space modulo a lattice. For the surjectivity S (g∗(P))�S (P) in part (a)
one can use that H i(X ,Pϕ) = H i(B,g∗(P)χ) for the pull-back ϕ = Π(g)(χ)
and that Π(g) is surjective. �
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In what follows, let E(X) be the class of all semisimple perverse sheaves
on X with Euler characteristic zero. We say that a perverse sheaf is clean
if it does not contain constituents from E(X). For x ∈ X(C) we denote
by tx : X→ X the translation morphism y 7→ x+y, and for K ∈Db

c (X ,C) we
consider the stabilizer

Stab(K) = {x ∈ X(C) | t∗x (K)∼= K}.

By constructibility of K this is an algebraic subset of X , and its connected
component Stab(K)0 ⊆ Stab(K) is an abelian subvariety of X . We can now
formulate the main result of the present section.

LEMMA 1.11. (a) Let P∈E(X) be a semisimple perverse sheaf of Euler
characteristic zero. Then a character χ lies in S (P) iff H•(X ,Pχ) 6= 0. In
particular, if P is simple, there exists a character ϕ such that

S (P) = ϕ
−1 ·K(A) for A = Stab(P)0

where K(A)⊂Π(X) is the algebraic subtorus from remark 1.10(b).

(b) For any semisimple perverse sheaf P on X there are non-zero abelian
subvarieties A1, . . . ,An ⊆ X and χ1, . . . ,χn ∈Π(X) such that

S (P) =
n⋃

i=1

χi ·K(Ai).

(c) If in part (b) the semisimple perverse sheaf P is of geometric origin in
the sense of [10, 6.2.4], then the χi can be chosen to be torsion characters.

Proof. (a) The first statement is obvious from proposition 1.6(a), and
the second one follows easily from the proof of corollary 1.7.

(b) The proof of this part is most conveniently formulated in terms of the
convolution product ∗ to be defined in section 2.1 below. For the time being
it suffices to know that the convolution of semisimple sheaf complexes is
again a semisimple sheaf complex by Gabber’s decomposition theorem, that
for K,M ∈ Db

c (X ,C) we have the Künneth formula

H•(X ,K ∗M) = H•(X ,K)⊗C H•(X ,M)

and that convolution is compatible with character twists in the sense that for
all χ ∈Π(X) we have (K ∗M)χ

∼= Kχ ∗Mχ , see proposition 2.1. Hence for
the g-fold convolution power of a semisimple perverse sheaf P∈ Perv(X ,C)
it follows from theorem 1.1 that P∗g = Q⊕

⊕
ν∈ZNν [ν ] where Q is a clean

semisimple perverse sheaf and the Nν are semisimple perverse sheaves
in E(X). So for any χ ∈Π(X) we obtain

(?) H•(X ,Pχ)
⊗g = H•(X ,Qχ) ⊕

⊕
ν∈Z

H•(X ,(Nν)χ)[ν ].
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If χ ∈S (P), then H•(X ,Pχ) is not concentrated in degree zero, so (?) is
non-zero in some degree d with |d| ≥ g. But Q is a clean perverse sheaf and
as such it does not contain the constant perverse sheaf, hence

Hd(X ,Qχ) = 0 for |d| ≥ g

by the adjunction property in [10, prop. 4.2.5]. So it follows from the above
that H•(X ,(Nν)χ) 6= 0 for some index ν and hence that χ ∈ S (Nν) by
part (a). Conversely, χ ∈ S (Nν) implies by proposition 1.6(a) that the
hypercohomology H•(X ,(Nν)χ) is non-zero in more than one cohomology
degree; then by (?) the same holds for H•(X ,Pχ), so χ ∈S (P). Altogether
this shows

S (P) =
⋃

ν∈Z
S (Nν),

and part (b) of our claim follows by applying part (a) to the Nν ∈ E(X).

(c) First we claim that a local system Lχ is of geometric origin iff χ

is a torsion character. For the non-trivial direction note that if Lχ is of
geometric origin, then X has a model XA over a subring A⊂C of finite type
over Z such that Lχ descends to a local system on XA, corresponding to a
continuous character

χA : π1(XA) −→ Q∗l .

Take a closed point of Spec(A) with finite residue field κ . Let V ⊂ C be
a strictly Henselian ring with A ⊂ V whose residue field is an algebraic
closure κ of κ . For XV = XA×A V the inclusion of the special fibre Xκ

induces an epimorphism π1(Xκ)� π1(XV ) by [51, exp. X, 1.6]. In view of
the commutative diagram

π1(X)

��

χ

��

π1(Xκ) // //

��

π1(XV )

��
π1(Xκ) //

χκ

11

π1(XA)
χA

""F
FF

FF
FF

FF

Q∗l

it then suffices to show that the pull-back χκ : π1(Xκ) −→ Q∗l is a torsion
character. But since κ is a finite field, this follows by a consideration of the
eigenvalues of the Frobenius operator as in [28, 1.3.4(i)]. This proves our
claim that Lχ is of geometric origin iff χ is a torsion character.
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Now for P of geometric origin the perverse sheaves Nν ∈ E(X) in (b)
and hence also all their simple constituents N are of geometric origin. Each
such constituent has the form N ∼= Lϕ ⊗ q∗(Q)[dim(A)] for suitable ϕ and
some abelian subvariety A ⊆ X as in proposition 1.6(a). In this situation
the pullback i∗(N) to A is an isotypic multiple of i∗(Lϕ) and of geometric
origin. Hence Π(i)(ϕ) is a torsion character. Writing S (N) = χ ·K(A) we
can take for χ−1 any torsion character in Π(i)−1(Π(i)(ϕ)). �

The above arguments can also be generalized to the relative setting of
theorem 1.3. For a homomorphism f : X → B of abelian varieties, define
the relative spectrum S f (P) of a perverse sheaf P ∈ Perv(X ,C) to be the
set of all χ ∈Π(X) such that R f∗(Pχ) is not perverse. By abuse of notation,
for χ ∈ Π(X) and ψ ∈ Π(B) we write χψ = χ · (Π( f )(ψ)) ∈ Π(X). Then
the projection formula shows

R f∗(Pχψ) = (R f∗(Pχ))ψ ,

hence S f (P) is invariant under Π(B). In particular, if B = X/A for an
abelian subvariety A ⊆ X , then S f (P) is determined by its image S f (P)
in Π(A) = Π(X)/Π(B). Furthermore, in the situation of theorem 1.3 the
assertion for most characters can be read in Π(A), i.e. in the stronger sense
that S f (P) is contained in a finite union of translates of proper algebraic
subtori of Π(A). Indeed we have

LEMMA 1.12. S f (P)⊆S (P) ·Π(B).

Proof. If a character χ is not in S (P) ·Π(B), then for any ψ ∈ Π(B)
we have χψ /∈S (P) and hence Hn(X ,Pχψ) = Hn(B,(R f∗(Pχ))ψ) 6= 0 for
some n 6= 0. By theorem 1.1 then R f∗(Pχ) is not perverse. �





CHAPTER 2

Proof of the vanishing theorem(s)

In this chapter we give an abstract Tannakian proof of theorem 1.1 based
on joint work with R. Weissauer [68]. As a geometric input we only require
the classification of perverse sheaves with Euler characteristic zero from
section 1.4. For this classification we have used the theory of D-modules,
and at present we do not know whether it also holds over a ground field
of positive characteristic. However, since this is the only reason why for
the time being the proof only applies to complex abelian varietes, in what
follows we formulate our arguments in a uniform way including also the
case of l-adic perverse sheaves in positive characteristic.

2.1. The setting

Let X be an abelian variety over an algebraically closed field k which
has characteristic zero or is the algebraic closure of a finite field. As in [10]
we consider the derived category Db

c (X ,Λ) of complexes of Λ-sheaves with
bounded constructible cohomology sheaves, where Λ is either a subfield
of Ql for some fixed prime number l 6= char(k) or a subfield of C if we are
working over the base field k = C. We denote by Perv(X ,Λ) ⊂ Db

c (X ,Λ)
the full abelian subcategory of perverse sheaves as defined in loc. cit., and
we write π1(X ,0) for the étale fundamental group, resp. for the topological
fundamental group in the complex case. By a character χ : π1(X ,0)−→ Λ∗

we mean in the étale setting a continuous character with image in a finite
extension field of Ql . Any such character defines a local system Lχ , and as
in the previous chapter we denote by Kχ = K⊗Λ Lχ the corresponding twist
of a complex K ∈ Db

c (X ,Λ).

Our Tannakian proof of theorem 1.1 relies on the notion of convolution
of sheaf complexes. Let a : X×X −→ X denote the group law, and consider
the convolution product

∗ : Db
c (X ,Λ)×Db

c (X ,Λ) −→ Db
c (X ,Λ), K1 ∗K2 = Ra∗(K1�K2).

It has been shown in [106, sect. 2.1] that the category Db
c (X ,Λ) equipped

with this convolution product is a symmetric monoidal category in the sense
of [73, sect. VII.7]. In other words, there exists a unit object 1 in Db

c (X ,Λ)

23
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such that we have natural unity constraints

K ∗1
∼=←− K

∼=−→ 1∗K

and natural commutativity and associativity constraints

SK,L : K ∗L
∼=−→ L∗K and AK,L,M : K ∗ (L∗M)

∼=−→ (K ∗L)∗M

for all objects K,L,M in Db
c (X ,Λ), and these constraints satisfy the usual

compatibilities, in particular the pentagon and hexagon axioms as well as
the symmetry property SL,K ◦ SK,L = idK∗L. The commutativity constraint
is defined as follows. The involution σ : X ×X −→ X ×X ,(x,y) 7→ (y,x)
together with the usual commutativity constraint for the tensor product of
complexes induces a natural isomorphism K�L ∼= σ∗(L�K), and SK,L is
defined by the following commutative diagram.

K ∗L
SK,L //

ooooooooooo

ooooooooooo
L∗K

PPPPPPPPPPPP

PPPPPPPPPPPP

Ra∗(K�L)
∼=

''NNNNNNNNNNN
Ra∗(L�K)

∼=

wwooooooooooo

Ra∗(σ∗(L�K)) Ra∗(σ∗σ∗(L�K))

The definition of the associativity constrains AK,L,M is similar, and the unit
object 1 of the category Db

c (X ,Λ) is the skyscraper sheaf δ0 of rank one with
support in the zero point of the abelian variety.

Furthermore, if we define the adjoint dual of a complex K ∈ Db
c (X ,Λ)

in terms of the Verdier dual D(K) by

K∨ = (−idX)
∗D(K),

then the symmetric monoidal category Db
c (X ,Λ) has been shown in [105] to

be rigid in the following sense: We have natural evaluation and coevaluation
morphisms

evK : K∨ ∗K −→ 1 and coevK : 1 −→ K ∗K∨

such that the composite morphisms

K
coevK∗idK // (K ∗K∨)∗K

A−1
K,K∨,K // K ∗ (K∨ ∗K)

idK∗evK // K

K∨
idK∨∗coevK∨ // K∨ ∗ (K ∗K∨)

AK∨,K,K∨ // (K∨ ∗K)∗K∨
evK∗idK∨ // K∨

are the identity morphisms. In passing we remark that every skyscraper
sheaf K = δx of rank one, supported in a point x ∈ X(C), is an invertible
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object in the sense that the morphism evK is an isomorphism. Over a base
field k of characteristic zero every invertible object has this form, indeed
from the Künneth formula [7, exp. XVII, sect. 5.4]

H•(X ,K ∗L) ∼= H•(X ,K)⊗Λ H•(X ,L)

one easily checks that every invertible object has Euler characteristic one,
so proposition 1.6 (b) applies. In what follows, if we want to stress the rigid
symmetric monoidal structure on Db

c (X ,Λ) we write (Db
c (X ,Λ),∗).

The most prominent examples of rigid symmetric monoidal categories
are the abelian categories (VectΛ,⊗) of finite-dimensional vector spaces and
more generally the abelian categories (RepΛ(G),⊗) of representations of
an affine group scheme G over Λ. Indeed, at the heart of the Tannakian
formalism lies the fact that a rigid symmetric monoidal Λ-linear abelian
category (C,∗) with EndC(1) = Λ is of the form (RepΛ(G),⊗) provided
that it admits a fibre functor, by which we mean a faithful exact Λ-linear
functor

ω : (C,∗) −→ (VectΛ,⊗)
which is a tensor functor ACU in the sense that it is compatible with the
symmetric monoidal structures on both sides [33, th. 2.11].

Now the Λ-linear rigid symmetric monoidal category Db
c (X ,Λ) is not

an abelian category but only triangulated; on the other hand, its full abelian
subcategory Perv(X ,Λ) does not inherit the structure of a rigid symmetric
monoidal category since in general the convolution of two perverse sheaves
is no longer perverse. However, for the full subcategory D⊆Db

c (X ,Λ) of all
direct sums of degree shifts of semisimple perverse sheaves, we will obtain
in section 2.4 by a general quotient construction due to André and Kahn [1]
a symmetric monoidal quotient category D which is indeed a semisimple
abelian category. Under the quotient morphism

D −→ D

an sheaf complex K ∈ D becomes isomorphic to zero in D iff all its simple
constituents have Euler characteristic zero. Over k = C the classification
in proposition 1.6 shows that this is the case if and only if H•(X ,Kχ) = 0
for most characters χ . Furthermore, via a characterization of semisimple
rigid symmetric Λ-linear abelian categories given by Deligne [30] we will
see in section 2.5 that the category D is a limit of representation categories
of reductive algebraic super groups over Λ.

It then turns out that the non-perversity of convolution products can be
controlled by central characters of these groups. This will imply via an
argument from representation theory that the semisimple perverse sheaves
define a full subcategory of D that is stable under convolution. So for any
semisimple perverse sheaf P and r ∈ N the convolution powers P∗r split
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by Gabber’s decomposition theorem into a sum of a perverse sheaf and a
complex Nr which is isomorphic to zero in the quotient category D. From
the Künneth isomorphism

H•(X ,P∗r) ∼= (H•(X ,P))⊗r

we will then deduce in lemma 2.11 the vanishing in theorem 1.1 for any
character χ with the property that H•(X ,(Nr)χ) = 0 for some r > g. Indeed
the vanishing theorem is closely connected to the Tannakian property of the
above categories — for the rigid symmetric abelian subcategory C = 〈P〉
generated inside D by a semisimple perverse sheaf P, we will see later on
that the functor

ω : C −→ VectΛ, K 7→ H0(X ,Kχ)

is a fibre functor for any character χ with the property in theorem 1.1. As
a first step in this direction, we will show in the next section that the twist
functor K 7→ Kχ is a tensor functor ACU.

2.2. Character twists and convolution

In this section we show that twisting by a character χ defines a tensor
functor ACU in the sense of [86, chapt. I, sect. 4.2.4] on the symmetric
monoidal category Db

c (X ,Λ) with respect to convolution. Recall that this
means that we have natural isomorphisms (K ∗L)χ

∼= Kχ ∗Lχ for all K,L
in Db

c (X ,Λ), compatible with the associativity, commutativity and unity
constraints. This observation will be crucial for lemma 2.11 below, but
its proof is rather formal and may be skipped at a first reading.

PROPOSITION 2.1. For any character χ , the auto-equivalence K 7→ Kχ

of the category Db
c (X ,Λ) defines a tensor functor ACU which is compatible

with degree shifts and perverse truncations.

Proof. The functor K 7→ Kχ preserves semi-perversity, so it is t-exact
with respect to the perverse t-structure since D(Kχ)∼= D(K)χ−1 . It remains
to check tensor functoriality. Clearly 1χ

∼= 1.

Depending on the context, put R = Zl , R = Z or R = Z/nZ, including
the case where p = char(k) divides n. We claim that in all these cases
the group law a : X ×X −→ X induces on the first cohomology groups the
diagonal morphism

a∗ : H1(X ,R)−→ H1(X×X ,R) = H1(X ,R)⊕H1(X ,R), x 7→ (x,x).

For R = Zl or R = Z this follows from the formula preceding lemma 15.2
in [75]. For a finite coefficient ring R = Z/nZ with p - n we have R ∼= µn
since the ground field k is algebraically closed; then our claim follows from
the identification H1(X ,µn) ∼= Pic0(X)[n] in [74, cor. III.4.18], since for
coherent line bundles L ∈ Pic0(X) one has a∗(L ) ∼= pr∗1(L )⊗ pr∗2(L )
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by [75, prop. 9.2]. It remains to deal with R = Z/nZ when n = pr for some
integer r ∈ N. In that case H1(X ,Z/nZ) ∼= H1(X ,Wr)

F by [95, prop. 13],
and our claim then follows by taking Frobenius invariants and using the
isomorphism H1(X×X ,Wr)∼= H1(X ,Wr)⊕H1(X ,Wr) of [98, p. 136].

Now, using [75, rem. 15.5] for R = Zl and [95, p. 50] for R = Z/nZ we
have in all cases a natural identification

H1(X ,R) = Hom(π1(X ,0),R),

where in the étale setting homomorphisms are required to be continuous. If
we write the group structure on fundamental groups additively, it follows
that

a∗ : π1(X ,0)×π1(X ,0) = π1(X×X ,0) −→ π1(X ,0)

is the addition morphism (x,y) 7→ x + y. For ψ ∈ Hom(π1(X ,0),R) this
implies ψ(a∗(x,y)) = ψ(x+ y) = ψ(x)+ψ(y), i.e. ψ ◦ a∗ = ψ �ψ as an
additive character on π1(X ,0)×π1(X ,0) = π1(X×X ,0). For multiplicative
characters χ : π1(X ,0)→ Λ∗ this implies

χ(a∗(x,y)) = χ(x+ y) = χ(x) ·χ(y), i.e. χ ◦a∗ = χ�χ.

Indeed, for Λ ⊆ C one has Hom(π1(X ,0),R)⊗R C∗ = Hom(π1(X ,0),C∗)
taking R = Z. For Λ ⊆ Ql any multiplicative character χ takes values in
E∗ ∼= Z×F∗×U , where F is the residue field of a finite extension field E
of Ql and U is its group of 1-units. By continuity we have χ = χF · χU for
certain characters χF and χU with values in F∗ resp. U . The character χU
can be handled as above, and the discussion for the character χF is covered
by the case R = Z/nZ with n = #F∗.

For the local system L = Lχ defined by a character χ : π1(X ,0)→ Λ∗

this gives an isomorphism of local systems on X×X

ϕ : a∗L ∼−→ L�L

which is uniquely determined up to multiplication by an scalar in Λ∗. In
what follows, we fix a choice of ϕ once and for all. The choice of ϕ will
not matter for the commutativity of the diagrams below, as long as we use
the same ϕ consistently. However, we remark that the datum of a tensor
functor consists not only of the underlying functor but also comprises the
isomorphisms that describe the compatibility of the functor with the tensor
product. In this sense, different choices of ϕ will lead to different (though
of course isomorphic) tensor functors. For us, it will be most convenient
to fix a trivialization λ : L0 ∼= Λ of the stalk L0 at the origin 0 of X , and to
require that the stalk morphism ϕ0 : a∗L(0,0) −→ (L�L)(0,0) = L0⊗Λ L0 at
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the origin (0,0) of X×X makes the following diagramm commutative:

(a∗L)(0,0)
ϕ0 // L0⊗Λ L0

λ⊗λ

��
L0

λ // Λ

Here L0 = e∗X(L) = e∗X×X(a
∗(L)) = (a∗L)(0,0) since a◦eX×X = eX holds for

the unit sections

eX : {0} −→ X and eX×X : {(0,0)} −→ X×X .

With the above normalization, the unique element v∈ L0 with λ (v) = 1 then
satisfies ϕ

−1
0 (α · v⊗β · v) = αβ · v for all α,β ∈ Λ.

Let A,B ∈ Db
c (X ,Λ), and let p1, p2 : X×X → X be the projections onto

the two factors. Using our fixed choice of ϕ , we get an isomorphism

ψ : (A∗B)χ

∼−→ Aχ ∗Bχ

defined by the commutative diagram

(A∗B)χ

ψ
// Aχ ∗Bχ

(Ra∗(A�B))⊗L Ra∗((A⊗L)� (B⊗L))

Ra∗((A�B)⊗a∗L)
Ra∗(id⊗ϕ)

// Ra∗((A�B)⊗ (L�L))

∼= Ra∗(id⊗S′⊗id)

OO

where by S′ : p∗2(B)⊗ p∗1(L)
∼−→ p∗1(L)⊗ p∗2(B) we denote the symmetry

constraint of the usual tensor product on the derived category.

The isomorphisms ψ are compatible with the symmetry constraint S of
the symmetric monoidal category (Db

c (X ,Λ),∗), i.e. for all A,B in Db
c (X ,Λ)

the diagram

(A∗B)χ

Sχ

��

ψ // Aχ ∗Bχ

S
��

(B∗A)χ

ψ // Bχ ∗Aχ

is commutative. Indeed, unravelling the definition of S in [106] one sees that
the commutativity of the above diagram is equivalent to the commutativity
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of the diagram

a∗L
ϕ

// L�L p∗1L⊗ p∗2L

σ∗a∗L
σ∗(ϕ)

// σ∗(L�L) p∗2L⊗ p∗1L

S′∼=
OO

where σ : X × X → X × X is the morphism (x,y) 7→ (y,x) and S′ is the
symmetry constraint of the ordinary tensor product. Since in any case our
diagram commutes up to a scalar in Λ∗, it suffices to check commutativity
on the stalks at the origin (0,0). There everything boils down to the fact
that (λ ⊗λ )(u⊗ v) = (λ ⊗λ )(v⊗u) for all u,v ∈ L0.

Next we claim that the isomorphisms ψ are also compatible with the
associativity constraint of the symmetric monoidal category (Db

c (X ,Λ),∗).
Indeed, by strictness [106, p. 11] the associativity constraints are the iden-
tity morphisms, so it suffices to show that the diagram

((A∗B)∗C)χ

ψ // ((A∗B)χ)∗Cχ

ψ∗id // (Aχ ∗Bχ)∗Cχ

(A∗ (B∗C))χ

ψ // Aχ ∗ ((B∗C)χ)
id∗ψ // Aχ ∗ (Bχ ∗Cχ)

commutes for all A,B,C ∈ Db
c (X ,Λ). Writing

((A∗B)∗C)χ = Ra∗R(a× id)∗(((A�B)�C)⊗ (a× id)∗a∗L)

and similarly for the other convolutions, the commutativity of the diagram
becomes equivalent to the commutativity of the diagram on X×X×X

(a× id)∗a∗L
(a×id)∗ϕ // (a× id)∗L�L = a∗L�L

ϕ�id // (L�L)�L

(id×a)∗a∗L
(id×a)∗ϕ // (id×a)∗L�L = L�a∗L

id�ϕ // L� (L�L)

Again it suffices to check the commutativity on stalks at (0,0,0). The upper
arrow becomes the composition

(ϕ⊗ id)◦ϕ : L0 −→ L0⊗Λ L0 −→ (L0⊗Λ L0)⊗Λ L0.

The inverse morphism maps (α · v⊗β · v)⊗ γ · v to (αβ )γ · v. By a similar
computation for the lower row, the commutativity of the diagram hence
boils down to the associativity law (αβ )γ = α(βγ) of the field Λ. �

As a trivial by-product, the tensor functoriality provides a simple proof
of the following result of [59].
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COROLLARY 2.2. For K ∈Db
c (X ,Λ) the Euler characteristic of Kχ does

not depend on the character χ .

Proof. In [106, lemma 8 on p. 28] it has been deduced from the Künneth
formula that hypercohomology defines a tensor functor ACU

H•(X ,−) : (Db
c (X ,Λ),∗) −→ (Vects

Λ,⊗s)

where the right hand side denotes the rigid symmetric monoidal category
of super vector spaces over Λ, i.e. Z/2Z-graded vector spaces where the
symmetry constraint is twisted by the usual sign rule. Hence the Euler
characteristic of K is equal, as an element of EndDb

c (X ,Λ)(1) = Λ, to the
composite morphism

1
coevK // K ∗K∨

SK,K∨ // K∨ ∗K
evK // 1,

and as such it is invariant under character twists by proposition 2.1. �

2.3. An axiomatic framework

Since the Tannakian constructions to be given below are of independent
interest also in more general situations than in the proof of theorem 1.1, for
the rest of this chapter we work in the following axiomatic setting. Consider
a Λ-linear rigid symmetric monoidal category (D,∗) whose unit object 1
satisfies EndD(1)∼= Λ, and let

rat : (D,∗) −→ (Db
c (X ,Λ),∗)

be a faithful Λ-linear tensor functor ACU. The notation rat is motivated by
the case where k =C, Λ =Q and where D = Db(MHM(X)) is the bounded
derived category of the category MHM(X) of mixed Hodge modules [89],
but our formulation also applies to other situations.

For K ∈D we denote by H•(X ,K) resp. by χ(K) the hypercohomology
resp. the Euler characteristic of the sheaf complex rat(K). Similarly we use
the notation H•(X ,Kχ)=H•(X ,rat(K)χ) for twists by characters χ . Notice
however that we do not assume the twisting functor lifts to the category D,
so the formal token Kχ does not refer to an object in D. Depending on the
context, we require the first four or all of the following axioms.

(D1) Degree shifts. We have an auto-equivalence K 7→ K[1] on D which
induces the usual shift functor on Db

c (X ,Λ).

(D2) Perverse truncations. For n ∈ Z we have endofunctors pτ≤n, pτ≥n
on D and natural morphisms

p
τ≤n(K) −→ K and K −→ p

τ≥n(K) for K ∈ D

which induce on Db
c (X ,Λ) the usual perverse truncations.
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Furthermore, the essential image P of the perverse cohomology
functors

pHn = p
τ≤n ◦ p

τ≥n : D −→ P

is a full abelian subcategory of D, and rat : P−→ Perv(X ,Λ) is an
exact functor between the respective abelian categories.

(D3) Perverse decomposition. For all K ∈ D we have a (non-canonical)
isomorphism

K ∼=
⊕
n∈Z

pH−n(K)[n].

(D4) Semisimplicity. In (D2) the abelian category P is semisimple.

(D5) Hard Lefschetz. In D there exists an invertible object 1(1) whose
image in Perv(X ,Λ) under rat is the Tate twist of 1. For all K,L
in D and all i≥ 0 we have functorial Lefschetz isomorphisms

pH−i(K ∗L) ∼= pH i(K ∗L)(i),

where the Tate twist (i) means i-fold convolution with 1(1).

We do not assume D to be triangulated, indeed we will later deal with the
following non-triangulated categories.

EXAMPLE 2.3. The axioms (D1) – (D5) hold if D ⊆ Db
c (X ,Λ) is the

full subcategory of all direct sums of degree shifts of semisimple perverse
sheaves which in case char(k)> 0 are defined over some finite field.

For k=C this follows from [35] together with [14], [43], or alternatively
from [87] and [78]. On the other hand, for char(k)> 0 one can invoke the
mixedness results of [69] and [10]. Note that in the above example we could
also replace the category D by the full subcategory of objects of geometric
origin in the sense of [10, sect. 6.2.4].

EXAMPLE 2.4. The axioms (D1) – (D5) hold for k = C and Λ = Q if
one takes D to be the full subcategory of Db(MHM(X)) consisting of all
direct sums of degree shifts of semisimple Hodge modules.

In the above setting we consider a full subcategory N of D consisting
of objects that are negligible for our purposes. In our later application this
will be the category of objects which become isomorphic to zero in the
André-Kahn quotient category D. Again, since we want to proceed as far
as possible over a base field of arbitrary characteristic, we formulate the
required properties as the following axioms.

(N1) Stability. We have N∗D⊆N, and N is stable under taking retracts,
degree shifts, perverse truncations and adjoint duals.
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(N2) Twisting. Every object K ∈ N satisfies H•(X ,Kχ) = 0 for most
characters χ of the fundamental group.

(N3) Acyclicity. The category N contains all K ∈ D with H•(X ,K) = 0.

(N4) Euler characteristics. The category N contains all simple objects
of P whose Euler characteristic vanishes.

The meaning of these axioms will become clear later on. For the time being
we content ourselves with the following

REMARK 2.5. Let Π be a set of characters of π1(X ,0), and N ⊆ D the
full subcategory of all K ∈ D such that rat(K) is a direct sum of degree
shifts of local systems Lχ with χ ∈Π. Then axioms (N1) and (N2) hold.

Proof. For any M ∈ Db
c (X ,Λ) we have Lχ ∗M = Lχ ⊗Λ H•(X ,Mχ−1)

by [106, p. 20], which in particular implies the stability property N∗D⊆N
so that axiom (N1) holds. For (N2) use that H•(X ,Lχ) = 0 if and only if the
character χ is non-trivial. �

2.4. The André-Kahn quotient

For the Tannakian arguments to be given below, we want to work with
rigid symmetric monoidal categories which are at the same time semisimple
abelian categories. To obtain such a category D that is as close as possible
to the triangulated category D, we will apply a general quotient construction
introduced by André and Kahn in [1]. In what follows we always assume
that axioms (D1) – (D4) from the previous section, i.e. all axioms except
for the hard Lefschetz axiom, are satisfied.

The construction of André and Kahn works as follows. By rigidity we
have for each K ∈ D an isomorphism HomD(K,K)

∼−→ HomD(1,K ∗K∨)
which in what follows we denote by f 7→ f ]. We then define the categorical
trace tr( f ) ∈ EndD(1) = Λ of an endomorphism f ∈HomD(K,K) to be the
composite morphism

tr( f ) : 1
f ] // K ∗K∨

SK,K∨ // K∨ ∗K
evK // 1

where as usual SK,K∨ denotes the symmetry constraint and evK denotes the
evaluation morphism. Following section 7.1 of loc. cit. we then define the
André-Kahn radical ND on objects K,L ∈ D by

ND(K,L) =
{

f ∈ HomD(K,L) | ∀g ∈ HomD(L,K) : tr(g◦ f ) = 0
}
.

This is an ideal of D in the sense that for all objects K,K′,L,L′ ∈ D and all
morphisms h1 ∈ HomD(K′,K), h2 ∈ HomD(L,L′) one can show

h2 ◦ND(K,L)◦h1 ⊆ ND(K′,L′).
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For any ideal one has the notion of the corresponding quotient category. By
definition, the quotient

D = D/ND

has the same objects as D, but the morphisms in D between two objects K,L
are defined by

HomD(K,L) = HomD(K,L)/ND(K,L).

We have a natural quotient functor q : D−→D that is given by the identity
on objects and by the quotient map on morphisms, and in what follows we
denote by P the essential image of P under this quotient functor. Recall that
ultimately we want to construct a semisimple abelian category; as a first
step towards this goal we have

LEMMA 2.6. The quotient functor q : D −→ D preserves direct sums,
and the category P is pseudo-abelian in the sense that every idempotent
morphism in it splits as the projection onto a direct summand.

Proof. The functor q preserves direct sums since it is Λ-linear. To see
that idempotents in P split, let P be an object of P. Since P is an abelian
category and hence in particular pseudo-abelian, it suffices to show that
every idempotent in

EndP(P) = EndP(P)/ND(P,P)

lifts to an idempotent in EndP(P). Since P is semisimple by axiom (D4),
passing to isotypic components we can assume P = Q⊕r for some simple
object Q of P and r ∈N. Then EndP(P) is the ring of r×r matrices over the
skew field EndP(Q). Since matrix rings over skew fields do not have proper
two-sided ideals, it follows that either ND(P,P) = 0 or ND(P,P) = EndP(P),
and in both cases the lifting of idempotents is obvious. �

It turns out that this is already enough to conclude that the quotient
category D has the desired properties:

PROPOSITION 2.7. The quotient category D is a semisimple abelian
Λ-linear rigid symmetric monoidal category.

Proof. By [1, lemma 7.1.1] the André-Kahn radical ND is a monoidal
ideal in the sense that idM ∗ND(K,L)⊆ND(M∗K,M∗L) for all K,L,M ∈D,
hence by sorite 6.1.4 of loc. cit. the quotient D = D/ND inherits from D
the structure of a Λ-linear rigid symmetric monoidal category whose unit
element satisfies EndD(1) = Λ.

The main part of the proof is to check that the category D is semisimple
abelian. For this we first claim that

(?) HomD(P[m],Q[n]) = 0 for all objects P,Q in P and m 6= n.



34 Chapter 2 – Proof of the vanishing theorem(s)

Indeed, for m > n we even have HomD(P[m],Q[n]) = 0 since under the
faithful functor rat this Hom-group injects into

HomDb
c (X ,Λ)(rat(P)[m],rat(Q)[n]) = Extn−m

Perv(X ,Λ)(rat(P),rat(Q))

which vanishes for m> n (for the above identification as an Ext-group recall
that Db

c (X ,Λ) is the derived category of Perv(X ,Λ)). On the other hand, in
the case m < n we have HomD(Q[n],P[m]) = 0, and then the definition of
the André-Kahn radical implies that

HomD(P[m],Q[n]) = ND(P[m],Q[n])

which is mapped to zero under the quotient functor q : D −→ D. In both
cases the claim (?) follows.

Now by the perverse decomposition axiom (D3) every object K of D
can be written as K =

⊕
n∈ZKn[n] with certain Kn in P. For such K the

vanishing in (?) implies

(??) EndD(K) =
⊕
n∈Z

EndD(Kn[n]) =
⊕
n∈Z

EndP(Kn).

In particular, every idempotent endomorphism of K in the category D is a
direct sum of idempotent endomorphisms of the summands Kn[n], and by
lemma 2.6 it follows that D is pseudo-abelian. Hence to show that D is a
semisimple abelian category, it will suffice by [1, A.2.10] to show that it is
a semisimple Λ-linear category in the sense of section 2.1.1 in loc. cit. For
this we use the following general result [2, th. 1].

Let F be a field and A an F-linear rigid symmetric monoidal category
with EndA(1) = F . Suppose there exists an F-linear tensor functor ACU
from A to an abelian F-linear rigid symmetric monoidal category V such
that dimΛ(HomV(V1,V2))< ∞ for all V1,V2 ∈ V. Then the quotient of A by
its André-Kahn radical NA is a semisimple F-linear category, and NA is the
unique monoidal ideal of A with this property.

In our case this applies for F = Λ, A = D and for the functor H•(X ,−)
from D to the abelian category V of super vector spaces over Λ. �

COROLLARY 2.8. The functors P→ P and P ↪→ D are exact functors
between semisimple abelian categories. The image of a simple object P ∈ P
inside P is either simple or isomorphic to zero, and if Λ is algebraically
closed, then the latter case occurs if and only if χ(P) = 0.

Proof. By proposition 2.7, D is a semisimple abelian category, and it
also follows from the proof of the proposition that P is a semisimple abelian
subcategory of D. Since the considered functors are additive, they are exact
by semisimplicity. If P is a simple object of P, then EndP(P) is a skew field,
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hence EndP(P) is a skew field or zero, and P is simple or zero in P. Over
an algebraically closed field Λ there exist no skew fields other than Λ itself,
hence in this case we have EndP(P) = Λ, and it follows that idP ∈ ND(P,P)
iff tr(idP) = 0, which is the case iff χ(P) = 0. �

COROLLARY 2.9. Let N⊆D be the full subcategory of all objects which
become isomorphic to zero in the quotient category D. If Λ is algebraically
closed, then N satisfies the stability axiom (N1), the acyclicity axiom (N3)
and the Euler axiom (N4), and an object K ∈D lies in the subcategory N iff
all simple constituents of all pHn(K) have Euler characteristic zero.

Proof. Property (N1) is obvious, property (N3) follows from (N4), and
the latter is immediate from corollary 2.8 by the perverse decomposition
axiom (D3) and the semisimplicity axiom (D4). �

2.5. Super Tannakian categories

Using a criterion of Deligne, we now show that the semisimple abelian
rigid symmetric monoidal category D from the previous section is almost
Tannakian: It is an inductive limit of super Tannakian categories, a notion
that we will recall below and in appendix A. In the case k = C we will
see later (in corollary 2.14, using that in this case the Euler characteristic
of perverse sheaves is non-negative) that D is in fact an inductive limit of
ordinary Tannakian categories, and this is closely related to our proof of
theorem 1.1. One may conjecture the same also for char(k)> 0.

Throughout this section we will always assume that Λ is algebraically
closed and that axioms (D1) – (D4) of section 2.3 hold. By semisimplicity
the convolution functor

∗ : D×D −→ D
is exact in each variable, and EndD(1) = Λ (this latter property is inherited
from D where it can be checked by applying the faithful functor rat). So D
is a catégorie Λ-tensorielle in the sense of [30, sect. 0.1].

Recall that a full subcategory of D is said to be finitely tensor generated
if it is the category 〈K〉 consisting of all subquotients of convolution powers
of K⊕K∨ for some fixed object K ∈ D. Our next goal is to show that any
such subcategory is super Tannakian in the following sense.

The framework of algebraic geometry is generalized to super algebraic
geometry by replacing the category of commutative rings with the category
of Z/2Z-graded super commutative rings. In particular one has the notion
of an algebraic resp. reductive super group and its super representations, see
appendix A. For an algebraic super group G over Λ and a point ε ∈ G(Λ)
with ε2 = 1 such that int(ε) is the parity automorphism of G, let us denote
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by RepΛ(G,ε) the category of all super representations V = V0⊕V1 of G
over Λ such that ε acts by (−1)a on Va for a = 0,1. Categories of this form
will be called super Tannakian, with Tannaka super group G.

THEOREM 2.10. Any finitely generated full tensor subcategory 〈K〉 ⊂D
is super Tannakian, and its Tannaka super group G = G(K) is reductive.

Proof. Since D is a catégorie Λ-tensorielle, for the first claim it suffices
by [30, th. 0.6] to see that for any object K ∈D and all n ∈N the number of
simple constituents of (K⊕K∨)∗n in the semisimple abelian category D is
at most Nn for some constant N = N(K) depending only on K. In the case
at hand one can take

N(K) = ∑
i∈Z

dimΛ(H i(X ,M))

for any object M ∈ D that becomes isomorphic to K⊕K∨ in D, using the
argument given in [110, top of p. 5]. Concerning reductivity, note that a
category RepΛ(G,ε) is semisimple iff G is reductive [108]. �

2.6. Perverse multiplier

We now introduce the notion of a multiplier. This will play an important
role in our proof of theorem 1.1, indeed the theorem essentially amounts
to the statement that any perverse sheaf on a complex abelian variety is a
multiplier. In this section Λ need not be algebraically closed, but we assume
as always that axioms (D1) – (D4) from section 2.3 hold.

Let N be a full subcategory of D satisfying the stability axiom (N1). We
then define an N-multiplier to be an object K ∈D such that for all r∈N0 and
all n 6= 0 the subquotients of pHn((K⊕K∨)∗r) all lie in N. The relevance of
this notion for theorem 1.1 is clear from

LEMMA 2.11. For P ∈ P the following holds.

(a) If the subcategory N satisfies the twisting axiom (N2) and if P is
an N-multiplier, then H•(X ,Pχ) is concentrated in degree zero for
most characters χ .

(b) Conversely, suppose that N satisfies the acyclicity axiom (N3) and
that the hard Lefschetz axiom (D5) holds. Then P is an N-multiplier
if H•(X ,P) is concentrated in degree zero.

Proof. (a) Put g = dim(X). The perverse decomposition axiom (D3)
shows that

P∗(g+1) =
⊕
m∈Z

Pm[m] for suitable Pm ∈ P .
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By assumption P is an N-multiplier, hence Pm ∈ N for all m 6= 0. Via the
twisting axiom (N2) it follows that for most characters χ and all n ∈ Z,

Hn(X ,P∗(g+1)
χ ) = Hn(X ,(P0)χ).

The right hand side vanishes for |n|> g since rat(P0)χ is perverse. But for
the left hand side we have

H•(X ,P∗(g+1)
χ ) = (H•(X ,Pχ))

⊗(g+1)

by proposition 2.1 and since H•(X ,−) is a tensor functor by the Künneth
theorem. So the above vanishing statement for |n|> g implies that H•(X ,Pχ)
is concentrated in degree zero.

(b) Put Q = (P⊕ P∨)∗r for any r ∈ N. Since hypercohomology is a
tensor functor by the Künneth theorem, with H•(X ,Pχ) also H•(X ,Q) is
concentrated in degree zero. Using the hard Lefschetz axiom (D5), one
then deduces that for all n 6= 0 one has H•(X , pHn(Q)) = 0 so that by (N3)
the subcategory N contains pHn(Q). Since this holds for arbitrary r ∈ N, it
follows that P is an N-multiplier. �

In view of part (a) of the lemma, to prove theorem 1.1 we want to show
that for a suitable subcategory N every object of P is an N-multiplier. For
this we will argue by contradiction, using the following

LEMMA 2.12. Suppose that N satisfies the stability axiom (N1) and the
Euler axiom (N4), that D satisfies all axioms (D1) – (D5) and that P ∈ P is
not an N-multiplier. Then for some r ∈ N the convolution power

(P∗P∨)∗r = (P∗P∨)∗ · · · ∗ (P∗P∨)

admits a direct summand of the form 1[2i](i) with an integer i 6= 0.

Proof. If P is not an N-multiplier, we can find integers a,b ∈ N such
that P∗a ∗ (P∨)∗b admits a direct summand Q[i] for some i 6= 0 and some
simple object Q ∈ P which is not in N. By the hard Lefschetz axiom (D5)
then Q[−i](−i) is a direct summand of P∗a ∗ (P∨)∗b as well. It then follows
that also the dual Q∨[i](i) is a direct summand of P∗b ∗ (P∨)∗a. Altogether
then the convolution product Q[i]∗Q∨[i](i) = Q∗Q∨[2i](i) will be a direct
summand of (P∗P∨)∗r for the exponent r = a+b.

It remains to show that 1 is a direct summand of Q ∗Q∨. For this note
that the trace map tr(Q) : 1 −→ Q ∗Q∨ ∼= Q∨ ∗Q −→ 1 is non-zero since
we have χ(Q) 6= 0 by axiom (N4). Now tr(Q) factors over pH0(Q ∗Q∨),
indeed HomD(P, pτ>0P) = HomD(

pτ<0P,P) = 0. So tr(Q) exhibits 1 as a
retract of pH0(Q∗Q∨) in the abelian category P, and we are done. �
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2.7. The main argument

To finish the proof of theorem 1.1 we will control the non-perversity of
convolution products such as in lemma 2.12 via central characters of the
Tannaka super group introduced in theorem 2.10. By dévissage we can
restrict ourselves to semisimple perverse sheaves as in example 2.3. So
suppose that Λ = C or Λ = Ql and that D satisfies all axioms (D1) – (D5)
of section 2.3. Consider the semisimple abelian rigid symmetric monoidal
quotient category D from section 2.4.

For the full subcategory N⊆D of all objects that become isomorphic to
zero in D, the stability axiom (N1), the acyclicity axiom (N3) and the Euler
axiom (N4) are satisfied as we have seen in corollary 2.9. In the setting of
example 2.3 presumably also the twisting axiom (N2) always holds; at least
over the base field k = C we have shown this in corollary 1.7. Hence in
the complex case part (a) of lemma 2.11 can be applied using the twisting
axiom (N2), and then theorem 1.1 follows from axioms (N1) and (N4) via
the following argument from representation theory.

THEOREM 2.13. Let N⊆D be a full subcategory satisfying the stability
axiom (N1) and the Euler axiom (N4). Then every P ∈ P is an N-multiplier.

Proof. Suppose that P ∈ P is simple and not an N-multiplier. Then for
some integer r ∈ N the convolution (P ∗P∨)∗r contains by lemma 2.12 a
direct summand L = 1[2i](i) with i 6= 0. In particular, it follows that the full
rigid symmetric monoidal subcategory D1 ⊂ D generated by the object P
contains the full rigid symmetric monoidal subcategory D0 ⊂ D generated
by the invertible object L.

Theorem 2.10 shows that for certain reductive super groups Gi over Λ

we have tensor equivalences ωi : Di
∼−→ RepΛ(Gi,εi) for i ∈ {0,1}, and by

the Tannakian formalism the inclusion of categories D0 ⊆ D1 defines an
epimorphism of reductive super groups

h : G1 � G0.

The category D0 consists of all direct sums of skyscraper sheaves L∗n with
integers n ∈ Z, where by a negative power we mean the corresponding
power of the dual. Since L∗n ∼= 1[2ni](ni) and i 6= 0, equation (??) in the
proof of proposition 2.7 implies that one has an isomorphism L∗n ∼= 1 in D
only if n = 0. Thus the tensor equivalence ω0 between D0 and RepΛ(G0,ε0)
is realized explicitly with G0 =Gm and ε0 =−1 via

L∗n 7→ (the character z 7→ zn of Gm).

In particular, the representation W0 = ω0(L) is non-trivial, corresponding to
the identity character z 7→ z of the multiplicative group Gm.
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But proposition A.3 in the appendix applies to the torus T0 = G0 =Gm,
so there exists a central torus T1 ∼=Gm in G1 such that h : G1�G0 restricts
to an isogeny T1→ T0. By Schur’s lemma the central torus T1 acts via some
character on the irreducible super representation W1 = ω1(P), so T1 acts
trivially on W1⊗W∨1 = ω1(P ∗P∨). Hence T1 acts trivially on the direct
summand

W0 ⊆ (W1⊗W∨1 )⊗r

and therefore also T0 acts trivially on W0 = ω0(L), a contradiction. �

COROLLARY 2.14. If the base field k is C, then the super group G(K)
in theorem 2.10 is a classical reductive algebraic group.

Proof. Corollary 2.9 and theorem 2.13 show that the category P is stable
under convolution. Using this one easily reduces our claim to the special
case where K lies inside P. In this case, all objects of RepΛ(G(K),ε) have
non-negative dimension because over the ground field k = C we have seen
in section 1.4 that χ(P) ≥ 0 for all perverse sheaves P ∈ Perv(X ,Λ). The
assertion then follows from [31, th. 7.1]. �





CHAPTER 3

Perverse sheaves on semiabelian varieties

The Tannaka groups in corollary 2.14 provide a new tool for the study
of smooth projective varieties with non-trivial Albanese morphism. Their
representation theory can be considered as a substitute for Brill-Noether
theory in higher dimensions, and they are also closely related to the moduli
of abelian varieties as we will discuss in chapter 4. However, in general
these Tannaka groups are hard to compute. At present the most effective
tool to determine them is to study degenerations of the underlying abelian
variety; even if one is only interested in semisimple perverse sheaves on
abelian varieties, this naturally leads to non-semisimple perverse sheaves
on semiabelian varieties. In this chapter we extend our previous Tannakian
constructions to this more general case, combining arguments of Gabber
and Loeser for tori [41] with the generic vanishing theorem 1.1 for abelian
varieties. For degenerations of abelian varieties into semiabelian varieties
we then show that the nearby cycles functor induces an embedding of the
degenerate Tannaka group into the generic one whenever one can possibly
expect this (see theorem 3.15). Finally, we also discuss how the obtained
Tannaka groups vary in families on abelian schemes.

Before we come to the details, let us begin with a brief overview over
the constructions that follow. Throughout we work over an algebraically
closed field k of any characteristic p≥ 0. Let X be a semiabelian variety, a
commutative group variety which is an extension

1−→ T −→ X −→ A−→ 1

of an abelian variety A by an algebraic torus T over k. Fixing a prime l 6= p,
we put Λ =Ql and denote by

D = D(X) = Db
c (X ,Λ) and P = P(X) = Perv(X ,Λ)

the triangulated category of bounded constructible Λ-sheaf complexes resp.
its full abelian subcategory of perverse sheaves. Let m : X ×k X −→ X be
the group law. In the non-proper case we have two different notions of
convolution which are given by

K ∗! L = Rm!(K�L) and K ∗∗ L = Rm∗(K�L)

for K,L ∈ D. In general the abelian subcategory P ⊂ D will of course not
be stable under these two convolution products. Motivated by the results of

41
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the previous chapter, we consider the full subcategory T ⊂ D of all sheaf
complexes K ∈ D which are negligible in the sense that for all n ∈ Z the
perverse cohomology sheaves pHn(K) have Euler characteristic zero. Over
the base field k = C we will see that

(a) the triangulated quotient category D = D/T exists (corollary 3.6),
(b) both ∗! and ∗∗ descend to the same bifunctor ∗ : D×D−→D which

preserves the essential image P⊂ D of P (theorem 3.8),
(c) with ∗ as its tensor product, the category P is an inductive limit of

neutral Tannakian categories (corollary 3.10).

Recall [33, th. 2.11] that a neutral Tannakian category is a category which
is equivalent to the category RepΛ(G) of linear representations of an affine
group scheme G over Λ. In particular, to any perverse sheaf P ∈ P we will
attach an affine algebraic group G = G(P) over Λ which corresponds to
the tensor subcategory 〈P〉 ⊂ P generated by P under convolution. Since Λ

is algebraically closed, the group G(P) is determined uniquely by P up to
isomorphism. These are the Tannaka groups we are interested in and whose
degeneration behaviour will be studied in theorem 3.15.

For algebraic tori X = T the properties (a) – (c) have been obtained
in [41, sect. 3.6 – 3.7] via the Mellin transform as a consequence of Artin’s
affine vanishing theorem, and our arguments in sections 3.1 through 3.4 are
heavily indebted by loc. cit. However, for abelian varieties X = A we no
longer dispose of Artin’s vanishing theorem. Over the complex numbers
we can instead apply our vanishing theorem 1.1 which is in fact closely
related with the Tannakian property as we have seen in chapter 2. Even
though at present we can prove this vanishing theorem only over k = C, it
is likely to hold in positive characteristic as well. So in what follows we
formulate it as an axiomatic assumption under which our arguments work
over an algebraically closed field k of arbitrary characteristic.

3.1. Vanishing theorems revisited

To formulate the generic vanishing axiom that generalizes theorem 1.1
to the non-proper case over a field k of arbitrary characteristic, we consider
characters of the tame fundamental group. As a base point we will always
take the neutral element 0 ∈ X(k). Recall from [97, sect. 1.3] that every
semiabelian variety X has a smooth compactification with a normal crossing
boundary divisor. The tame fundamental group π t

1(X ,0) classifies the finite
étale covers of X that are tamely ramified along each component of such
a boundary divisor, see [51, exp. XIII, sect. 2 and 5], [52] and [93]. In
particular π t

1(X ,0) is a quotient of the étale fundamental group π1(X ,0),
and equal to it if the field k has characteristic zero or if X is proper.
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The group Π(X) of continuous characters χ : π t
1(X ,0)−→ Λ∗ admits a

natural product decomposition

Π(X) = Π(X)l′×Π(X)l,

where
Π(X)l′ = { χ ∈Π(X) : χ

n = 1 for some n with l - n }

denotes the subgroup of all characters of finite order prime to l and where by
definition Π(X)l is the group of all characters that factor over the maximal
pro-l-quotient π1(X ,0)l = π t

1(X ,0)l . The latter is a free Zl-module of finite
rank [17]. So with the same arguments as in [41, sect. 3.2] the set Π(X)l
of pro-l-characters can be identified with the set of Λ-valued points of a
scheme in a natural way (even though as in loc. cit. the multiplication of
characters does not come from a group scheme structure). This being said,
we consider the set of all tame characters

Π(X) =
∐

χ∈Π(X)l′

χ ·Π(X)l

as the disjoint union of the infinitely many components χ ·Π(X)l indexed
by the torsion characters χ ∈Π(X)l′ , and we say that a statement holds for
a generic character if it holds for all characters in an open subset of Π(X)
that is dense in each of these components.

For sheaf complexes K ∈D(X) and characters χ ∈Π(X) we consider as
in the previous chapters the twist Kχ =K⊗Λ Lχ by the local system Lχ . Our
Tannakian constructions will be based on the following generic vanishing
assumption for such character twists.

ASSUMPTION GV(X). Let P ∈ P(X). Then for generic χ ∈ Π(X) the
forget support map

H•c (X ,Pχ) −→ H•(X ,Pχ)

is an isomorphism, and

H i(X ,Pχ) = H i
c(X ,Pχ) = 0 for all i 6= 0.

For complex abelian varieties this is precisely the content of the generic
vanishing theorem 1.1, the claim about the forget support map being trivial
in that case. At present we do not know whether the assumption GV (X) also
holds for abelian varieties over an algebraically closed field k of positive
characteristic p = char(k)> 0, but in any case the semiabelian version can
be deduced from the abelian one as follows.

THEOREM 3.1. If the maximal abelian variety quotient A = X/T of X
satisfies the assumption GV (A), then also GV (X) holds.
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Proof. We first claim that for any given perverse sheaf P ∈ P(X), the set
of all characters χ which violate the conditions in our assumption GV (X)
forms a closed subset of the scheme Π(X). To see this, consider the Mellin
transforms M!(P) and M∗(P) as defined in [41, sect. 3.3] (in loc. cit. the
definition is only given for algebraic tori, but it carries over verbatim to the
case at hand). These Mellin transforms are objects of the bounded derived
category of coherent sheaves on Π(X) with the property that for all i ∈ Z
and any character χ ∈Π(X) we have isomorphisms

H i
c(X ,Pχ) ∼= H i(Li∗χM!(P)),

H i(X ,Pχ) ∼= H i(Li∗χM∗(P)),

where iχ : {χ} ↪→Π(X) denotes the embedding of the closed point given by
the chosen character. Furthermore, we have a morphism M!(P)−→M∗(P)
which induces via the above identifications the forget support morphism on
cohomology. Since on a Noetherian scheme the support of any coherent
sheaf is a closed subset, it follows that the locus of all characters χ which
violate GV (X) forms a closed subset S (P)⊆Π(X) as claimed.

We must show that under the assumption GV (A) the complement of this
closed subset S (P) meets every irreducible component of Π(X). So we
must see that for at least one character χ in each component the properties
in GV (X) hold. To this end consider the exact sequence

0 −→ T i−→ X
f−→ A −→ 0

which defines the given semiabelian variety. Lemma 3.2 below will show
that every component of Π(X) contains a character χ such that the forget
support morphism

R f!(Pχ) −→ R f∗(Pχ)

is an isomorphism. In this case Artin’s vanishing theorem for the affine
morphism f also shows that these two isomorphic direct image complexes
are perverse [41, lemma 2.4]. For all ϕ ∈Π(A) and ψ = f ∗(ϕ) ∈Π(X) the
projection formula furthermore says

(R f!(Pχ))ϕ = R f!(Pχψ) and (R f∗(Pχ))ϕ = R f∗(Pχψ),

hence we are finished by an application of the vanishing assumption GV (A)
to these perverse direct images. �

To fill in the missing statement in the above proof, we consider the given
semiabelian variety as a torsor f : X −→ A under the torus T in the sense
of [74, sect. III.4]. The condition of being a torsor is satisfied since clearly
the morphism X ×k T −→ X ×A X , (x, t) 7→ (x,xt) is an isomorphism. The
result we are looking for only uses the structure as a torsor, and for its proof
it will be convenient to forget that our base A is an abelian variety. So we
will work in the following setting.
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Let B be an arbitrary variety over the field k, and let f : Y −→ B be a
torsor under the torus T . By remark 4.8 (a) in loc. cit. there exists an étale
covering B′ −→ B (not necessarily finite) over which our torsor admits a
trivialization.

Y ×B B′
∼= //

##G
GG

GG
GG

GG
T ×k B′

{{xx
xx

xx
xx

x

B′

Let us denote by i : Yb = f−1(b)−→Y the fibre over some chosen geometric
point b ∈ B(k). In what follows we fix a base point y ∈Yb(k) and denote the
group of all continuous characters of the tame fundamental group πt

1(Yb,y)
as above by Π(Yb), and similarly for Π(Y ). Since Yb is isomorphic to the
torus T , the character group Π(Yb) can be identified with the set of closed
points of a scheme as explained above. In particular, it makes sense to speak
about its irreducible components.

LEMMA 3.2. In the above setting, for every perverse sheaf P ∈ P(Y )
there exists a subset U ⊆ Π(Yb) which meets every irreducible component
and has the property that the forget support morphism

R f!(Pχ) −→ R f∗(Pχ)

is an isomorphism for all characters χ ∈Π(Y ) with pull-back i∗(χ) ∈U.

Proof. Let g : B′ −→ B be an étale covering which trivializes the given
torsor in the sense that the pull-back Y ′ = Y ×B B′ is isomorphic over B′

to the trivial torsor T ×k B′. Choosing a geometric point b′ ∈ B′(k) with
image g(b′) = b, we have a commutative diagram

Yb
i′ //

��

i

%%
Y ′

f ′

��

g′ // Y

f
��

Spec(k) b′ //

b

99B′
g // B

where the two squares are Cartesian. Since g is an étale covering, the forget
support morphism R f!(Pχ)−→ R f∗(Pχ) is an isomorphism iff its pull-back
under g∗ is an isomorphism. For the pull-back P′ = g′∗(P) and χ ′ = g′∗(χ)
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we have a commutative diagram

g∗(R f!(Pχ)) //

∼=
��

g∗(R f∗(Pχ))

∼=
��

R f ′! (P
′
χ ′) // R f ′∗(P

′
χ ′)

where the vertical arrows are isomorphisms due to the smooth base change
theorem [38, th. I.7.3]. Furthermore, by construction i′∗(χ ′) = i∗(χ). Hence
it will be enough to prove the lemma in the case of the trivial torsor, and this
has been done in [41, cor. 2.3.2]. �

Let us now return to our semiabelian variety X . For later reference it will
be convenient to reformulate the observation in theorem 3.1 in the following
equivalent way.

COROLLARY 3.3. Suppose that A = X/T satisfies axiom GV (A), and
let K ∈D(X) be a constructible sheaf complex. For all degrees r ∈ Z and a
generic character χ ∈Π(X) then

Hr
c(X ,Kχ) ∼= Hr(X ,Kχ) ∼= H0(X , pHr(K)χ),

where the first isomorphism is induced by the forget support morphism.

Proof. For the perverse cohomology groups Pr =
pHr(K) and χ ∈Π(X)

we have (Pr)χ = pHr(Kχ) since twisting by χ is a t-exact functor for the
perverse t-structure. Only finitely many Pr are non-zero, so for generic χ

and all r theorem 3.1 says that the hypercohomology groups Hs
c(X ,(Pr)χ)

and Hs(X ,(Pr)χ) will be isomorphic to each other via the forget support
morphism, and vanish for all s 6= 0. Then the spectral sequences

Ers
2 = Hs(X ,(Pr)χ) =⇒ Hr+s(X ,Kχ)

Ers
2 = Hs

c(X ,(Pr)χ) =⇒ Hr+s
c (X ,Kχ)

degenerate, and our claim follows since the forget support map between the
limit terms is induced from the one between the E2-terms. �

3.2. Some properties of convolution

Before proceeding further, it will be convenient to collect some basic
properties of convolution for later reference. As in [106, sect. 2.1] one sees
that the derived category D = D(X) is a symmetric monoidal category with
respect to the convolution product ∗! and also with respect to ∗∗. In both
cases the unit object 1 is the rank one skyscraper sheaf supported in the
neutral element of the group variety X . For K ∈ D we consider the Verdier
dual D(K) and define the adjoint dual by the formula K∨ = (−id)∗D(K)
where as usual −id : X −→ X denotes the inversion morphism.
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LEMMA 3.4. For all K,M ∈ D and χ ∈ Π(X) one has the following
natural isomorphisms.

(a) Adjoint duality:

HomD(1,K∨ ∗∗M) ∼= HomD(K,M) ∼= HomD(K ∗! M∨,1).

(b) Character twists:
(Kχ)

∨ ∼= (K∨)χ ,

(K ∗! M)χ
∼= Kχ ∗! Mχ and (K ∗∗M)χ

∼= Kχ ∗∗Mχ .

(c) Verdier duality:

D(K ∗! M) ∼= D(K)∗∗D(M), D(K ∗∗M) ∼= D(K)∗! D(M).

(d) Künneth formulae:

H•c (X ,K)⊗Λ H•c (X ,M)
∼−→ H•c (X ,K ∗! M),

H•(X ,K ∗∗M)
∼−→ H•(X ,K)⊗Λ H•(X ,M).

Proof. Part (a) follows from adjunction as in [41, p. 533]. In (b) the
first identity comes from RHom(Lχ ,ΛX) = Lχ−1 and (−id)∗(Lχ−1) = Lχ ,
and the other two follow as in proposition 2.1. Part (c) follows from the
compatibility of Verdier duality with exterior tensor products. Part (d) is
the Künneth isomorphism [7, exp. XVII.5.4] resp. its Verdier dual. �

3.3. The thick subcategory of negligible objects

In this and in the next section we always assume that for the abelian
variety A = X/T the vanishing assumption GV (A) of section 3.1 holds. We
have seen in theorem 3.1 that GV (X) then holds as well. Let S(X)⊂ P(X)
be the full subcategory of all perverse sheaves of Euler characteristic zero,
and T(X) ⊂ D(X) the full subcategory of all sheaf complexes K whose
perverse cohomology sheaves pHn(K) lie in S(X) for all degrees n ∈ Z. For
brevity we put

P = P(X), D = D(X), S = S(X) and T = T(X).

The following explains why we only use characters of the tame fundamental
group — we want the Euler characteristic χ(K) = ∑i∈Z dimΛ(H i(X ,K)) of
any complex K ∈ D to be invariant under character twists.

LEMMA 3.5. Let K ∈ D. Then χ(K) = χ(Kϕ) for all ϕ ∈Π(X), hence
the following three conditions are equivalent:

(a) The complex K lies in the full subcategory T.
(b) We have H•(X ,Kϕ) = 0 for generic ϕ ∈Π(X).
(c) We have H•c (X ,Kϕ) = 0 for generic ϕ ∈Π(X).
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Proof. To prove the twist invariance of the Euler characteristic, we can
by dévissage assume that the complex K is a constructible sheaf placed in
a single cohomology degree. Then [59, cor. 2.9] says that if j : X ↪→ X̄
denotes a smooth compactification, then j!(K) and j!(Kϕ) have the same
Euler characteristic (the assumptions of the corollary are satisfied since χ is
a tame character, see sect. 2.6 of loc. cit.). Since for the Euler characteristic
it makes no difference whether we use compactly supported or ordinary
hypercohomology [70], it follows that χ(K) = χ(Kϕ). The equivalence of
the three conditions (a) – (c) then follows via corollary 3.3. �

Recall that a full subcategory of an abelian category is said to be a Serre
subcategory if it is stable under the formation of arbitrary subquotients and
extensions. More generally, a full triangulated subcategory of a triangulated
category is called a thick subcategory if it has the following property: For
any morphism f : K → L which factors over an object of the subcategory
and has its cone in the subcategory, the objects K and L must both belong
to the subcategory as well.

COROLLARY 3.6. The subcategory S⊂ P is Serre, and T⊂ D is thick.

Proof. Let 0−→ P−→ Q−→ R−→ 0 be a short exact sequence in the
abelian category P. Theorem 3.1 says that for a generic character χ ∈Π(X)
the hypercohomology of the perverse sheaves Pχ , Qχ and Rχ is concentrated
in degree zero so that the long exact sequence in hypercohomology reduces
to a short exact sequence

0−→ H0(X ,Pχ)−→ H0(X ,Qχ)−→ H0(X ,Rχ)−→ 0.

Therefore lemma 3.5 shows that Q lies in S if and only if both P and R are
in S. Hence S ⊂ P is a Serre subcategory, and then the subcategory T ⊂ D
is thick by [41, prop. 3.6.1(i)]. �

In particular, localizing the abelian category P at the class of morphisms
whose kernel and cokernel lie in the Serre subcategory S we can form the
abelian quotient category P = P/S in the sense of [42, chap. III]. Note that
the category P has the same objects as P and that for any objects P1,P2
the elements of HomP(P1,P2) can be represented by equivalence classes of
diagrams in P of the form

Q
f1
zzuuuuuu f2

$$I
IIIII

P1 P2

where the kernel and cokernel of the morphism f1 lie in S. In the same
way, localizing the triangulated category D at the class of morphisms whose
cone lies in the thick subcategory T we can form the triangulated quotient
category D = D/T as described in [82, sect. 2.1].
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It has been shown in [41, prop. 3.6.1] that these quotient constructions
are compatible with each other in the sense that the perverse t-structure
on D induces on the triangulated quotient category D a t-structure whose
core is naturally equivalent to the abelian quotient category P. So we have
a commutative diagram

P � � //

����

D

����

P � � // D

where the rows are embeddings of full subcategories and the columns are
the quotient functors. It turns out that convolution behaves well with respect
to the above quotient constructions in the following sense.

LEMMA 3.7. Let K,M ∈ D.

(a) The cone of the morphism K ∗! M −→ K ∗∗M lies in T.

(b) If K or M lies in T, then K ∗! M and K ∗∗M are also in T.

(c) If both K and M are perverse, then pHn(K ∗! M) and pHn(K ∗∗M)
lie in the Serre subcategory S for all n 6= 0.

Proof. (a) Let C be the cone of the morphism K∗! M→K∗∗M. We want
to show that H•(X ,Cχ) = 0 for a generic character χ ∈ Π(X). Lemma 3.4
implies that for any character χ the twist Cχ is isomorphic to the cone of
the twisted morphism

Kχ ∗! Mχ −→ Kχ ∗∗Mχ ,

so it suffices to check that the induced morphism

H•(X ,Kχ ∗! Mχ) −→ H•(X ,Kχ ∗∗Mχ)

is an isomorphism for generic χ . By corollary 3.3 we can replace the left
hand side by the compactly supported hypercohomology of Kχ ∗! Mχ . So
we must see that the forget support map

fKχ�Lχ
: H•c (X×k X ,Kχ �Mχ) −→ H•(X×k X ,Kχ �Mχ)

is an isomorphism for generic χ . For this we go back to the definition
of compactly supported hypercohomology. For simplicity of notation we
will suppress the character twist in what follows, replacing K and L by
their twists Kχ and Lχ . Let j : X ↪→ X be a compactification, and consider
the following diagram where all the horizontal arrows are forget support
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morphisms (the vertical arrows will be discussed below).

H•c (X×k X ,K�L) fK�L // H•(X×k X ,K�L)

H•(X×k X ,( j, j)!(K�L)) //

(1)

H•(X×k X ,R( j, j)∗(K�L))

H•(X×k X , j!(K)� j!(L)) //

OO
(2)

H•(X×k X ,R j∗(K)�R j∗(L))

OO

H•(X , j!(K))⊗H•(X , j!(L)) //

OO
(3)

H•(X ,R j∗(K))⊗H•(X ,R j∗(L))

OO

H•c (X ,K)⊗H•c (X ,L) fK⊗ fL //

(4)

H•(X ,K)⊗H•(X ,L)

The horizontal arrow fK ⊗ fL on the bottom line is the tensor product of
the forget support morphisms for K and L, hence by corollary 3.3 it is an
isomorphism for generic χ . On the other hand, the horizontal arrow fK�L
on the top line is the forget support morphism we are interested in. So we
will be finished if we can show that the above diagram commutes and that
all the vertical arrows (to be defined yet) are isomorphisms.

The squares (1) and (4) are commutative by the very definition of fK�L
and fK ⊗ fL. The vertical arrows in (3) are the Künneth isomorphisms for
the proper morphism X → Spec(k), and the commutativity of this square
follows from the fact that the Künneth morphisms are natural in the involved
complexes. Finally, the square (2) is induced by the square

( j, j)!(K�L) // R( j, j)∗(K�L)

j!(K)� j!(L) //

ad−1
!

OO

R j∗(K)�R j∗(L)

ad∗

OO

where the morphisms

ad! : ( j, j)!(K�L) −→ j!(K)� j!(L)

ad∗ : R j∗(K)�R j∗(L) −→ R( j, j)∗(K�L)

are the natural morphisms which correspond via adjunction to the identity
morphism of

K�L = ( j, j)!( j!(K)� j!(L)) = ( j, j)∗(R j∗(K)�R j∗(L)).

Note that ad! is an isomorphism and that over U = X ×k X ↪→ X ×k X all
the morphisms in the above diagram restrict to the identity. In particular,
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the diagram is commutative because by adjunction there exists only one
morphism j!(K)� j!(L) −→ R( j, j)∗(K�L) which restricts over U to the
identity. By the same argument, the diagram

R j∗(K)�R j∗(L)
ad∗ // R( j, j)∗(K�L)

D( j!(D(K))� j!(D(L)))
D(ad!) // D(( j, j)!(D(K)�D(L)))

commutes. Since the lower row is an isomorphism (being the Verdier dual
of an isomorphism), it follows that ad∗ is an isomorphism as well, and this
finishes the proof of part (a) of the lemma.

(b) Suppose that K ∈ T, and take a generic character χ ∈ Π(X). We
know from lemma 3.5 that H•c (X ,Kχ) = 0, and the Künneth formula in
lemma 3.4 then implies that

H•c (X ,(K ∗! M)χ) = H•c (X ,Kχ)⊗Λ H•c (X ,Mχ) = 0

as well. So K ∗! M lies in T as required. The statement for K ∗∗M follows
in the same way or can be deduced via Verdier duality.

(c) For generic χ ∈Π(X) theorem 3.1 says that H•c (X ,Kχ)∼= H•(X ,Kχ)
and that this hypercohomology is concentrated in degree zero. The same
also holds with M in place of K. So lemma 3.4 shows that H•c (X ,K ∗! M)
and H•(X ,K ∗∗M) are concentrated in degree zero for generic χ , and our
claim follows from corollary 3.3. �

3.4. Tannakian categories

In this section we assume as before that for the semiabelian variety X
and its quotient A = X/T the axiom GV (A) and hence also GV (X) from
section 3.1 holds. The results of the previous section then imply

THEOREM 3.8. The two convolution products ∗! and ∗∗ descend to the
same well-defined bifunctor

∗ : D×D −→ D

which satisfies P ∗P ⊂ P and with respect to which both D and P become
symmetric monoidal Λ-linear triangulated categories.

Proof. By lemma 3.7 (b) both ∗! and ∗∗ descend to a bifunctor on D, and
part (a) of the lemma shows that these two bifunctors coincide. It follows
as in [106, sect. 2.1] that (D,∗) is a symmetric monoidal category. Part (c)
of lemma 3.7 furthermore shows that P ∗P ⊆ P so that (P,∗) inherits the
structure of a symmetric monoidal category as well. �
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It is sometimes convenient to have a lift of the quotient category P to
a category of true perverse sheaves. To obtain such a lift, consider the full
subcategory Pint ⊂ P of all perverse sheaves without subquotients in S. By
the same arguments as in [41, sect. 3.7] the functor P −→ P restricts to an
equivalence of categories between Pint and P, and via this equivalence the
convolution product ∗ induces a bifunctor

∗int : Pint×Pint −→ Pint

with respect to which Pint becomes a Λ-linear symmetric monoidal category
equivalent to P. The unit object 1 of Pint is the rank one skyscraper sheaf
supported in the neutral element of the group variety X .

As an application we show that the category P is rigid in the sense of
section 2.1, i.e. that we have a notion of duality which involves evaluation
and coevaluation morphisms with the properties familiar from the case of
finite-dimensional vector spaces or group representations.

THEOREM 3.9. The symmetric monoidal abelian category P is rigid.

Proof. Let P ∈ Pint be a perverse sheaf without constituents in S. Via
the adjunction property in lemma 3.4 the identity morphism idP : P −→ P
defines two morphisms 1 −→ P∨ ∗∗ P and P ∗! P∨ −→ 1 in D. Under the
quotient functor D−→D these induce morphisms in the full subcategory P
by lemma 3.7. Let us denote by

coev : 1−→ P∨ ∗int P and ev : P∗int P∨ −→ 1

the corresponding morphisms in Pint. By definition, rigidity means that for
all P ∈ Pint the composite morphism

γ : P = P∗int 1
id∗int coev // P∗int P∨ ∗int P

ev∗int id // 1∗int P = P

and its counterpart (id∗int ev) ◦ (coev∗int id) : P∨ −→ P∨ are the identity
morphisms. Since the argument is the same in both cases, we will only deal
with the morphism γ in what follows.

We must show γ − idP = 0. This assertion is invariant under character
twists, so by the generic vanishing property GV (X) we can assume that for
all subquotients Q of the perverse sheaf P the hypercohomology H•(X ,Q)
is concentrated in degree zero. Then H•(X ,−) behaves like an exact functor
on all short exact sequences which only involve subquotients of P. After a
suitable character twist we can furthermore assume that

H•(X ,P∨ ∗! P) = H•(X ,P∨ ∗int P) = H•(X ,P∨ ∗∗P)

and that the forget support morphism for these hypercohomology groups
is an isomorphism. Then for H = H•(X ,P) and H∨ = HomΛ(H,Λ) the
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diagrams in [41, appendix A.5.4] show that the morphism

Λ = H•(X ,1)
coev∗ // H•(X ,P∨ ∗int P) = H•(X ,P∨ ∗∗P) = H∨⊗Λ H

is the coevaluation in the category of vector spaces, and dually for ev. Since
the category of vector spaces of finite dimension over Λ is rigid, it follows
that on hypercohomology γ− idP induces the zero morphism. Accordingly
the perverse subquotient Q = P/ker(γ − idP) of P has H•(X ,Q) = 0. By
definition of Pint it follows that Q = 0 and hence that γ− idP = 0. �

This in particular allows to define the Tannaka groups we are interested
in, generalizing those in corollary 2.14. For P ∈ P we denote by 〈P〉 ⊂ P
the full subcategory of all objects which are isomorphic to subquotients of
convolution powers of P⊕P∨. Recall that full subcategories of this form
are said to be finitely tensor generated. By construction they inherit from P
the structure of a rigid symmetric monoidal Λ-linear abelian category, and
we claim that they are neutral Tannakian in the following sense.

COROLLARY 3.10. For every P ∈ P there exists an affine algebraic
group G = G(P) over Λ and an equivalence

ω : 〈P〉 ∼−→ RepΛ(G)

with the rigid symmetric monoidal Λ-linear abelian category RepΛ(G) of
finite-dimensional algebraic representations of G.

Proof. Consider P as an object of the lifted category Pint ⊂ P. By
theorem 3.1 there exists a character χ ∈ Π(X) such that all constituents
of all convolution powers

(P⊕P∨)χ ∗int · · · ∗int (P⊕P∨)χ

have their hypercohomology concentrated in degree zero (indeed these are
countably many conditions, and identifying Π(X)l as in [41, sect. 3.2] with
the set of Λ-valued points of the affine scheme Spec(Λ⊗Zl Zl[[t1, . . . , tn]])
for some n> 0 one checks that Π(X)l cannot be covered by countably many
proper closed subsets — for this one may proceed by induction on n, using
the description of ideals given in proposition A.2.2.3 of loc. cit.). For such
a character χ the functor Q 7→ H0(X ,Qχ) is a fibre functor from 〈P〉 to
the category of finite-dimensional vector spaces, and our corollary follows
from theorem 3.9 via the Tannakian formalism [33, th. 2.11]. �

The above fibre functor depends on the chosen character twist (though
all choices lead to isomorphic Tannaka groups), and this is the reason why
we have restricted ourselves to finitely tensor generated subcategories. For
a more canonical construction one may as in [41, th. 3.7.5] take the functor
which to a perverse sheaf assigns the generic fibre of its Mellin transform,
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but then the fibre functor is only defined over a large extension field of Λ,
and the descent to Λ again involves non-canonical choices.

REMARK 3.11. If P ∈ P(X) is a semisimple perverse sheaf, then G(P)
is a reductive algebraic group, and over k =C this group coincides with the
one that has been defined in corollary 2.14.

Proof. The group G(P) acts faithfully on the representation V = ω(P)
which in the case at hand is semisimple, whereas the unipotent radical of
an algebraic group acts trivially on every irreducible representation. So
the unipotent radical must be trivial, i.e. G(P) is reductive. The remaining
statement follows easily from the universal property of the localization D
together with the last statement of corollary 2.9. �

3.5. Nearby cycles

To describe the behaviour of the above Tannaka groups with respect to
degenerations, we work over the spectrum S of a strictly Henselian discrete
valuation ring with closed point s and generic point η . We assume that the
prime l is invertible on S. Fix a geometric point η over η , and denote by S
the normalization of S in the residue field of η .

Let X → S be a semiabelian scheme, i.e. a smooth commutative group
scheme over S whose fibres Xs and Xη are semiabelian varieties. In what
follows we always assume the generic fibre Xη is an abelian variety. We
put X = X×S S and write Xs = Xs and Xη for its geometric fibres.

Xs
i //

uuu
uu

uuu
uu

X
{{vvv

vv
Xη

joo

��

yysss
ss

Xs

��

i //

��
X

��

��
Xη

��

joo

s
ssssss
ssssss

// S
zzttttt

oo η

xxrrrrrr

s // S ηoo

Degenerations of constructible sheaves can in this setting be studied via the
functor of nearby cycles [32, exp. XIII-XIV]

Ψ : D(Xη) −→ D(Xs), Ψ(K) = i∗(R j∗(K)).

By [60, th. 4.2 and cor. 4.5] this functor commutes with Verdier duality and
restricts to an exact functor between the abelian categories P(Xη) and P(Xs)
of perverse sheaves. However, the following example illustrates that unlike
for abelian schemes, in the case of semiabelian schemes the functor Ψ in
general does not preserve the Euler characteristic.
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EXAMPLE 3.12. For n∈N consider the kernel X [n] of the multiplication
morphism [n] : X −→ X. This kernel is a quasi-finite group scheme over S
and decomposes as a disjoint union

X [n] = Y q Z

where Y is finite over S and where Z ∩Xs = ∅. In general Z 6= ∅, but the
perverse skyscraper sheaf

δZη
∈ P(Xη) satisfies Ψ(δZη

) = 0

since the support of the nearby cycles must be contained in Z∩Xs =∅.

For the rest of this section we will always assume that for all geometric
points t of S the fibre Xt satisfies the generic vanishing assumption GV (Xt)
from section 3.1. We can then consider the quotient categories

D(Xt) = D(Xt)/T(Xt) and P(Xt) = P(Xt)/S(Xt)

as defined in section 3.4. Note that the Euler characteristic is well-defined
on objects of these quotient categories.

LEMMA 3.13. The functor Ψ descends to a functor Ψ : P(Xη)→ P(Xs),
for all P,Q ∈ P(Xη) we have

0 ≤ χ(Ψ(P)) ≤ χ(P),(i)

0 ≤ χ(Ψ(P)∗Ψ(Q)) ≤ χ(Ψ(P∗Q)),(ii)

and Ψ(P)∗Ψ(Q) is a direct summand of Ψ(P∗Q) in the category P(Xs).

Proof. We begin with some preliminary remarks. Let f : Y → Z be a
homomorphism of semiabelian S-schemes. By abuse of notation we again
write f for any base change of it. Consider for Y = Y ×S S and Z = Z×S S
the commutative diagram

Ys
i //

f
��

Y

f
��

Yη

joo

f
��

Zs
i // Z Zη

joo

over S. For K ∈ D(Y ) this gives a commutative diagram

i∗(R f!(K))
bc! //

α

��

R f!(i
∗
(K))

β

��

i∗(R f∗(K))
bc∗ // R f∗(i

∗
(K))
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where α and β denote the forget support morphisms and where bc! and bc∗
are the base change morphisms. Let us briefly recall how these latter two
are defined — the direct image of the adjunction morphism K −→ i∗(i∗(K))
yields two morphisms

R f!(K) −→ R f!(i∗(i
∗
(K))) = i∗(R f!(i

∗
(K))),

R f∗(K) −→ R f∗(i∗(i
∗
(K))) = i∗(R f∗(i

∗
(K))),

and again by adjunction these give rise to the base change morphisms bc!
and bc∗ from above. We also remark [7, exp. XVII, th. 5.2.6] that as a
result of the proper base change theorem, the base change morphism bc! is
always an isomorphism. Putting K = R j∗(L) with L ∈ D(Yη), we obtain a
factorization

R f!(ΨY (L))
β

//

α◦(bc!)
−1 ''PPPPPPPPPPP

R f∗(ΨY (L))

ΨZ(R f∗(L))
bc∗

77nnnnnnnnnnnn

where ΨY and ΨZ denote the nearby cycles for Y → S resp. Z→ S. We will
apply this in the following two situations.

First we take f : X → S to be the structure morphism with Y = X , Z = S
and L = P. In this case the above diagram more explicitly says that the
forget support morphism β for the cohomology of the nearby cycles Ψ(P)
admits the following factorization.

H•c (Xs,Ψ(P))
β

//

''OOOOOOOOOOO
H•(Xs,Ψ(P))

H•(Xη ,P)

77ooooooooooo

Now consider a character χ of the tame fundamental group of X , and denote
by χt ∈Π(Xt) its pull-back to the fibre Xt over the special point t = s or over
the geometric generic point t = η . The projection formula (see section 3.6)
implies that we have

Ψ(Pχη
) = (Ψ(P))χs

for any such character. In lemma 3.16 we will see that χ can be chosen in
such a way that the characters χs and χη are both generic. By the generic
vanishing axiom GV (Xs) we can therefore assume that the forget support
morphism β is an isomorphism, in which case the above factorization shows
that H•(Xs,Ψ(P)) is a direct summand of H•(Xη ,P). Furthermore, by the
generic vanishing axiom GV (Xη) we can also assume that all the occuring
hypercohomology groups are concentrated in cohomology degree zero, in
which case it follows that 0 ≤ χ(Ψ(P)) ≤ χ(P). In particular, the nearby
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cycles functor Ψ then sends the Serre subcategory S(Xη)⊂ P(Xη) into the
Serre subcategory S(Xs)⊂ P(Xs) and hence induces a functor

Ψ : P(Xη)−→ P(Xs)

between the quotient categories. The property (i) of Ψ is inherited from the
corresponding estimate for Ψ shown above.

Secondly we take f = m to be the group law, with Y = X ×k X , Z = X
and L = P�Q. In D(Xs) we can identify ΨZ(R f∗(L)) with Ψ(P∗Q). Since
by [60, th. 4.7] the exterior tensor product � commutes with nearby cycles,
we can also identify R f∗(ΨY (L)) with Ψ(P)∗Ψ(Q). Then the factorization
of β from above shows that the nearby cycles Ψ(P∗Q) admit Ψ(P)∗Ψ(Q)
as a direct summand in P(Xs). Hence (ii) follows. �

In general we cannot expect Ψ to be a tensor functor since it does not
preserve the Euler characteristic (see example 3.12). In what follows we
will call a perverse sheaf P on Xη admissible if

χ(Ψ(P)) = χ(P).

Note that for an abelian scheme X → S every perverse sheaf is admissible
since the nearby cycles are compatible with proper morphisms.

LEMMA 3.14. The admissible objects form a rigid symmetric monoidal
full abelian subcategory

P(Xη)
ad ⊂ P(Xη)

which is stable under the formation of extensions and subquotients.

Proof. Any short exact sequence 0→ P1 → P2 → P3 → 0 in P(Xη) is
mapped under the nearby cycles functor to a short exact sequence in the
category P(Xs). Then in particular

χ(P2) = χ(P1)+χ(P3) and χ(Ψ(P2)) = χ(Ψ(P1))+χ(Ψ(P3))

because the Euler characteristic is additive in short exact sequences. But on
the other hand χ(Pi)≥ χ(Ψ(Pi)) for i = 1,2,3 by lemma 3.13 (i). Hence it
follows that

χ(Pi) = χ(Ψ(Pi)) holds for i = 2 iff it holds for i = 1 and i = 3.

In other words, the perverse sheaf P2 is admissible if and only if both P1
and P3 are admissible. So the category of admissible objects is stable under
the formation of extensions and subquotients.
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It remains to show that for admissible P1,P2 ∈ P(Xη) also P1 ∗ P2 is
admissible. This follows from

χ(P1 ∗P2) = χ(P1) ·χ(P2) (part (d) of lemma 3)

= χ(Ψ(P1)) ·χ(Ψ(P2)) (admissibility of P1, P2)

= χ(Ψ(P1)∗Ψ(P2)) (part (d) of lemma 3)

≤ χ(Ψ(P1 ∗P2)) (part (ii) of lemma 12)

≤ χ(P1 ∗P2) (part (i) of lemma 12)

which implies that the last two estimates must in fact be equalities. �

Concerning the failure of tensor functoriality it now follows that the
situation is as good as one could possibly hope for.

THEOREM 3.15. On the rigid symmetric monoidal abelian subcategory
of admissible objects, the nearby cycles define a tensor functor ACU

Ψ : P(Xη)
ad −→ P(Xs)

so that for P ∈ Pad
η we obtain a closed immersion G(Ψ(P)) ↪→ G(P).

Proof. Let P1,P2 ∈ P(Xη)
ad . The last statement in lemma 3.13 (ii) gives

a split monomorphism

Ψ(P1)∗Ψ(P2) ↪→ Ψ(P1 ∗P2)

in the abelian category P(Xs). But χ(Ψ(P1)∗Ψ(P2)) = χ(Ψ(P1 ∗P2)) as we
have seen in the proof of lemma 3.14. So the above monomorphism is an
isomorphism in P(Xs), and hence Ψ is a tensor functor on P(Xη)

ad . For the
statement about the Tannaka groups, recall that by definition every object
of 〈Ψ(P)〉 is a subquotient of the image under Ψ of some object in 〈P〉. So
our claim follows from the Tannakian formalism [33, prop. 2.21b)]. �

3.6. Specialization of characters

Let X −→ S be a semiabelian scheme as above. Since we assumed the
prime number l to be invertible on S, we know from [17] that the (tame)
pro-l fundamental groups

π1(Xη ,0)l = π
t
1(Xη ,0)l and π1(Xs,0)l = π

t
1(Xs,0)l

are free Zl-modules of finite rank. However, the basic example of abelian
varieties with semiabelian reduction illustrates that in general π1(Xs,0)l
will have strictly smaller rank than π1(Xη ,0). To complete the proof of
lemma 3.13 we thus need to justify why in passing from the generic to the
special fibre, we retain enough characters to apply the generic vanishing
assumption from section 3.1 on both fibres. To this end, let Π(X)l denote
the group of all continuous characters of π1(X ,x)l for any chosen geometric
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point x in X . The passage to a different choice of x corresponds to an inner
automorphism of the fundamental group, which is not seen on the level of
characters. So we have well-defined restriction homomorphisms

i∗ : Π(X)l −→ Π(Xs)l, χ 7→ χs,

j∗ : Π(X)l −→ Π(Xη)l, χ 7→ χη .

Any character χ ∈Π(X)l defines a local system Lχ on X , and for K ∈D(X)
the projection formula shows that

Ψ(Kχη
) = i∗(R j∗(K⊗Λ j∗(Lχ))) = i∗(R j∗(K)⊗Λ Lχ) = Ψ(K)χs.

To apply this formula in relation with the vanishing axiom from section 3.1,
one can use the following well-known result.

LEMMA 3.16. The pull-back homomorphisms i∗ and j∗ on characters
are an epimorphism resp. an isomorphism

Π(Xs)l Π(X)l
oooo ∼ // Π(Xη)l.

In particular, for all open dense subsets Us ⊆Π(Xs)l and Uη ⊆Π(Xη)l one
can find χ ∈Π(X)l such that

χs ∈ Us and χη ∈ Uη .

Proof. Choose any path from the point 0 in Xs to the point x in X . We
first claim that the corresponding homomorphism

i∗ : π1(Xs,0)l −→ π1(X ,x)l

is injective. To check this, we must by the criterion in [51, exp. V, cor. 6.8]
show that every finite étale cover

f : Y −→ Xs

of l-primary degree is dominated by a connected component Z0
s ⊆ Zs of the

special fibre Zs of some finite étale cover h̄ : Z −→ X of l-primary degree as
indicated in the following diagram.

Z0
s

��

� � // Zs
� � // Z

h̄

��

Y

f
��

Xs
� � // X

We can assume that Y is connected and that f is a Galois cover. Since
the prime l is invertible on S, it then follows that Y can be made into a
semiabelian variety such that f is an isogeny [17]. So by [15, th. 7.3.5]
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there exists an isogeny g : Xs −→ Y such that g ◦ f and hence also f ◦ g is
the multiplication by n = lν for some ν . Thus it suffices to treat the case
where Y = Xs and where f = [n] : Xs −→ Xs is the multiplication by n.

If we were dealing with an abelian scheme, we could now take Z = X
and define h̄ = [n] : X −→ X to be the multiplication by n. However, for a
semiabelian scheme the multiplication by n is in general not a finite étale
cover. To get around this problem we consider the Néron model of the
generic fibre Xη , which will allow to find a finite étale cover h : Z −→ X
whose base change under S −→ S gives the desired h̄. But before we can
carry out this idea, we need to perform a base change to make sure that the
Néron model does what we want.

Note that X and the special fibre Xs do not change if we replace the
given semiabelian scheme X −→ S by a base change X ′ = X ×S S′ −→ S′

where S′ denotes the normalization of S in a finite extension of the quotient
field κ(η). After such a base change we can assume that all n-torsion points
of the generic fibre Xη are defined over κ(η). Then the universal property
of the Néron model

N −→ S
of Xη implies that the multiplication morphism [n] : N −→ N has constant
fibre degree over its image and thus restricts to a finite étale cover over
the image. This image contains the connected component N0 which by
prop. 7.4.3 of loc. cit. is isomorphic to X . Hence if we define h : Z −→ X
via the fibre product in the Cartesian diagram

Z

h
��

� � // N

[n]
��

X � � // N

then h will be a finite étale cover of X . The special fibre Zs will in general
not be connected, but on the connected component

Z0
s = Zs∩N0

s = N0
s = Xs

the cover h restricts to the multiplication morphism f = [n] : Xs −→ Xs. So
we can put Z = Z×S S and take h̄ to be the base change of h.

Summing up, this shows that the homomorphism i∗ : π1(Xs)l −→ π1(X)l
is an embedding. With the same arguments as above one also checks that
the homomorphism j∗ : π1(Xη)l −→ π1(X)l is an isomorphism (surjectivity
is in this case clear because a finite étale cover of X is connected iff it
restricts to a connected cover of Xη ). From this one deduces that the induced
homomorphisms

Π(X)l −→ Π(Xs)l and Π(X)l −→ Π(Xη)l
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are an epi- resp. an isomorphism. The final statement then follows from the
observation that these homomorphisms come from morphisms between the
underlying schemes and that the intersection of any two Zariski-open dense
subsets of the irreducible scheme Π(X)l

∼= Π(Xη)l is non-empty. �

3.7. Variation of Tannaka groups in families

In this section we turn the local result from theorem 3.15 into a more
global statement. Under some mild finiteness assumptions we will see that
for a smooth family of varieties, the Tannaka groups of the fibres define a
constructible stratification of the base space. This will be used in chapter 4
to determine the Tannaka group for the theta divisor of a general principally
polarized complex abelian variety.

For technical reasons we will restrict ourselves to abelian rather than
semiabelian schemes. In what follows X −→ S always denotes an abelian
scheme whose base scheme S is an algebraic variety over an algebraically
closed field k of characteristic zero. Let

Y � � //

��?
??

??
??

? X

��
S

be a closed subscheme which is smooth of relative dimension d over the
base S, and for geometric points s in S consider the perverse intersection
cohomology sheaf

δYs = ΛYs[d] ∈ P(Ys) = Perv(Ys,Λ)

on the fibre Ys. We want to understand how the Tannaka groups G(δYs) vary
with the chosen point s. The following examples illustrate that in spite of
our smoothness assumption, this is in general a non-trivial problem which
involves the symmetry properties of the fibres Ys.

EXAMPLE 3.17. (a) If S = E is an elliptic curve and X = S×E, then
for the tautological subvariety Y = {(e,e) ∈ X | e ∈ E} we have

G(δYs)
∼=

{
Z/nZ if s is a torsion point in E of precise order n,
Gm if s is a point of infinite order in E.

(b) If Y → S is a smooth, projective family of curves of genus g ≥ 3 and is
embedded into its relative Picard scheme X = Pic0

Y/S in a suitable way, then
by [106, th. 14] we have

G(δYs)
∼=

{
Sp2g−2(Λ) if Ys is hyperelliptic,
Sl2g−2(Λ) otherwise.
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In particular, example (a) shows that without further assumptions the
Tannaka groups do not always define a constructible stratification of S. In
general we only have the following semicontinuity property.

LEMMA 3.18. Let η ∈ S be any scheme-theoretic point, s∈ {η} a point
in its closure, and consider geometric points η and s above these. Then we
have an embedding

G(δYs) ↪→ G(δYη
).

Proof. The statement is only concerned with the geometric fibres of the
families Y −→ S and X −→ S, so we can replace these families by their base
change under any quasi-finite morphism S′ −→ S whose image contains the
points s and η as indicated in the following diagram.

Y ′ //

xxqqqqqqqqq ;;

��;
;;

;;
;;

;

X ′

��

xxqqqqqqqqq

Y //

��:
::

::
::

::
::

::
X

��

S′

xxrrrrrrrrrr ∃s′1

xxqqqqqqqqqq
∃η ′0

wwppppppppp

S s η

In particular, replacing S by the reduced closed subscheme S′ = {η}red we
can assume S is irreducible with generic point η . By normalization we can
also achieve that S is a normal variety. Furthermore, passing to an open
neighborhood of the point s we can assume that

S = Spec(A)

is affine. Let p/A be the prime ideal corresponding to the point s. Without
loss of generality s 6= η , so we can find a non-zero element f ∈ p \ {0} in
our prime ideal. Then the vanishing locus

V ( f ) = Spec(A/( f )) ↪→ S = Spec(A)

is a proper closed subscheme of codimension one and contains s. Now take
any irreducible component D ↪→ V ( f )red of the underlying reduced closed
subscheme such that the point s lies on the Weyl divisor D, and let ηD be
a geometric generic point of this irreducible divisor. By induction on the
dimension dim(S) we have an embedding

G(δYs) ↪→ G(δYηD
),

hence it will be enough to prove our claim when s = ηD is the generic point
of an irreducible Weyl divisor D on S.

This being said, recall from the above that we can assume S to be normal
and hence regular in codimension one. In this case the one-dimensional
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local ring OS,s = Ap is a discrete valuation ring. Its residue field k(s) can be
identified naturally with the function field k(D) of the reduced irreducible
subvariety D ↪→ S via the diagram

A // //

��

A/p � � //

��

k(D)

Ap

55

// // Ap/pAp k(s)

∼=

OO

where the dotted arrows exist by the universal property of the localization
functor. Hence we can replace S by the strict Henselization Spec(Ash

p ) which
still has s and η as geometric points. From theorem 3.15 we then obtain an
embedding

G(Ψ(δYη
)) ↪→ G(δYη

)

for the nearby cycles on the corresponding abelian scheme, and our claim
follows because for a smooth morphism Y → S one has Ψ(δYη

) = δYs . �

To obtain a constructibility statement for the stratifications defined by
the Tannaka groups, we need to impose some finiteness conditions on the
perverse sheaves on the fibres. To simply the notation, let us temporarily
assume that X is an abelian variety over S = Spec(k). Let P ∈ P(X) be a
perverse sheaf, and consider the equivalence

ω : 〈P〉 ∼−→ RepΛ(G(P))

from corollary 3.10. In what follows we will be particularly interested in
the determinant character

det(ω(P)).
Like any character of the Tannaka group, this determinant corresponds by
part (b) of proposition 1.6 to a perverse skyscraper sheaf δx ∈ P(X) which
is supported on a closed point x ∈ X . In this context the following two
conditions are equivalent:

• the determinant det(ω(P)) is a torsion character of order n,
• the corresponding point x ∈ X is a torsion point of order n.

In many applications P is isomorphic to its adjoint dual P∨ = (−idX)
∗D(P)

so that ω(P) is self-dual and the above conditions hold with n = 2.

LEMMA 3.19. Let d,n ∈ N. Then there exists a finite set of subgroups
of Gld(Λ) with the property that for every simple perverse sheaf P ∈ P(X)
of Euler characteristic χ(P) = d with

det(ω(P))⊗n = 1,

the Tannaka group G(P) is isomorphic to one of these finitely many groups.
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Proof. Lemma B.1 and B.2 in the appendix show that up to conjugation
there are only finitely many possibilities for the Tannaka group G = G(P)
as a subgroup of Gld(Λ). �

Let us now return to the case of an abelian scheme p : X −→ S whose
base scheme is an arbitrary variety S over the algebraically closed field k
of characteristic zero. For any sheaf complex P ∈ D(X) and any geometric
point s of S we will denote by

Ps = i∗s (P) ∈ D(Xs)

the restriction to the geometric fibre is : Xs −→ X . Then the constructibility
result we are interested in can be formulated as follows.

PROPOSITION 3.20. Let n ∈N, and consider a complex P ∈D(X) such
that for each geometric point s of S, the restriction Ps is a simple perverse
sheaf with

det(ω(Ps))
⊗n = 1.

Then there are reductive algebraic groups G1, . . . ,Gm and a stratification
into locally closed subsets

S =
m⊔

i=0

Si such that G(Ps) = Gi for all geometric points s in Si.

Proof. Recall from [29, prop. 3.1(c)] that if V is a finite-dimensional
vector space over Λ, then any reductive algebraic subgroup of Gl(V ) is
determined uniquely by its subspaces of invariants in the tensor powers W⊗r

of W = V ⊕V∨ with r ∈ N. Furthermore, if we only want to distinguish
between finitely many given reductive subgroups up to conjugacy, then it
suffices to look at exponents r ≤ r0 for some fixed r0 ∈ N.

Hence in view of lemma 3.19 our claim will follow if we can show that
in a suitable sense, the tensor functor ω : 〈Ps〉 −→ RepΛ(G(Ps)) in the proof
of corollary 3.10 varies in a constructible way with the geometric point s
and that the subspaces of invariants — corresponding to the direct sum of
all direct summands 1 = δ0 in the convolution powers of Ps⊕P∨s — also
vary in a constructible way. More precisely, we would be done if we could
show that there exist

(a) a complex P∨ ∈ D(X) which on each geometric fibre Xs restricts
to the adjoint dual

P∨s = (−id)∗D(Ps),

(b) a character χ ∈Π(X) such that for the twist Q = Pχ⊕P∨χ the direct
image complex

W = Rp∗(Q)
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is a constructible sheaf on S which is concentrated in degree zero
and has geometric stalks

Ws = H0(Xs,Qs) = ω(Ps⊕P∨s ),

(c) for each r≤ r0 a constructible subsheaf of W ⊗r whose stalks at any
geometric point s coincide under the above identification with the
cohomology of the direct sum of all skyscraper summands 1 = δ0
in the convolution Q∗rs = Qs ∗ · · · ∗Qs.

In general this is too much to expect. However, since the groups Gs = G(Ps)
only depend on the geometric fibres of our abelian scheme and since for
the proof of constructibility we can argue by Noetherian induction on the
dimension dim(S), it will do no harm if we replace our original abelian
scheme by the base change

X ′ = X×S S′ −→ S′

under a quasi-finite étale morphism S′ −→ S and also replace P ∈ D(X)
by its pull-back P′ ∈ D(X ′). In particular, for the proof of the proposition
we are free to replace our base scheme S by arbitrary Zariski-open dense
subsets of S and also by finite étale covers of such subsets.

With this extra freedom, property (a) can be obtained from the general
fact [64, prop. 1.1.7] that for any morphism p : X → S of varieties with
smooth target variety S and any P ∈ D(X), there is a Zariski-open dense
subset S′ ↪→ S such that the formation of the relative dual

DX/S(P) = RH om(P, p!
ΛS)

commutes with every base change that factors over S′ ↪→ S. Property (b) will
be obtained in lemma 3.21 after a base change to a finite étale cover of some
Zariski-open dense subset of S, which is needed to make sure that there are
sufficiently many characters available. For part (c) consider the relative
convolution power Q∗r = Ra∗(Q�S · · ·�S Q) where a : X×S · · ·×S X −→ X
is the group law. We have a relative Künneth isomorphism

Rp∗(Q∗r)
∼=−→ (Rp∗(Q))⊗r = W ⊗r

as in the absolute case. Let Z ⊂ X be the zero section of our abelian scheme,
and consider the morphism

ϕ : Rp∗(RH om(ΛZ,Q∗r)) −→ RH om(ΛS,W
⊗r) ∼= W ⊗r

which corresponds by adjunction to the composite morphism ψ given by
the following diagram (where the diagonal arrow on the left comes from
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the adjoint of the relative Künneth isomorphism).

RH om(ΛZ,Q∗r)
ψ

//

((QQQQQQQQQQQQQ
p!(RH om(ΛS,W

⊗r))

RH om(p∗(ΛS), p!(W ⊗r))

∼=

55kkkkkkkkkkkkkk

As a candidate for the constructible subsheaf in part (c) we take the image of
the induced morphism H 0(ϕ) on the stalk cohomology sheaves in degree
zero. After shrinking S we can by loc. cit. assume that the occuring RH om
commute with base change. If we put

K = (Ps⊕P∨s )
∗r

and denote by χs the restriction of the character χ to the geometric fibre Xs,
then on stalks we obtain a commutative diagram

H0(Xs,RH om(δ0,Kχs))
H 0(ϕ)s // H0(Xs,Kχs)

⊕
i∈ZExti(δ0,

pH−i(K)χs)
// Hom(δ0,

pH0(K)χs)

OO

where the Ext and Hom in the lower row refer to the abelian category P(Xs)
and where the vertical identifications come from Gabber’s decomposition
theorem by which Kχs

∼=
⊕

i∈Z
pH i(K)χs[−i]. The fact that H 0(ϕ)s factors

over the projection in the lower row follows from the observation that by
part (b) we have H•(Xs,

pH−i(K)χs) = 0 for all i 6= 0. Hence (c) follows as
well, and we are done. �

In the above proof we have used that after a suitable quasi-finite étale
base change there exist enough characters χ ∈ Π(X) so that we can apply
the vanishing theorem from section 3.1 fibre by fibre. More precisely we
have the following result.

LEMMA 3.21. Let P ∈D(X) be a complex which restricts to a perverse
sheaf on each geometric fibre of the abelian scheme X → S, and suppose
that S is irreducible. Then there exists

• a quasi-finite étale morphism f : S′→ S,
• a character χ ∈Π(X ′) for the abelian scheme X ′ = X×S S′,

such that the direct image of P′ = (idX , f )∗(P) ∈ D(X ′) under the structure
morphism p : X ′→ S′ satisfies

H i(Rp∗(P′⊗Λ Lχ)) = 0 for all i 6= 0.
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Proof. Take a geometric generic point η of S. The set of all torsion
characters χη : π1(Xη ,0) −→ Λ∗ is dense in the character torus Π(Xη), so
by the generic vanishing theorem from chapter 1 we can find a character χη

of some finite order N ∈N with the property that H i(Xη ,Pη⊗Λ Lχη
) = 0 for

all i 6= 0. If we could extend this character to a global character χ ∈Π(X),
then the above vanishing property would mean that for the direct image
under p : X → S the generic stalk cohomology satisfies

H i(Rp∗(P⊗Λ Lχ))η = 0 for all i 6= 0.

Since the cohomology sheaves are constructible, the vanishing of their stalks
at the geometric generic point η would imply their vanishing over some
open dense subset U ⊆ S, and we would be done even without the need to
pass to a finite étale cover of the base variety S and without using that χη is
a torsion character of order N.

However, in general it may be impossible to find χη ∈ Π(Xη) with the
required property which lifts to some χ ∈ Π(X) (for example, think of the
universal abelian scheme X over a finite level cover S of the moduli space of
principally polarized abelian varieties — here the abelianized fundamental
group πab

1 (X) and hence also the group Π(X) is finite). To get around this
problem we perform a base change under a finite étale cover depending on
the chosen torsion character χη . Consider the split exact fibration sequence

0 // π1(Xη ,0) // π1(X ,0) // π1(S,η) //
xx

0

from [51, exp. XIII, prop. 4.3 and ex. 4.4], where the splitting comes from
the zero section of our abelian scheme. Via the splitting, the group π1(S,η)
acts by conjugation on π1(Xη ,0) and hence on the corresponding character
torus Π(Xη). Since the group of torsion points of order N in this torus
is finite, we can find a normal subgroup of finite index in π1(S,η) which
fixes every such torsion point. This normal subgroup defines a finite étale
cover S′ −→ S for which the character χη ∈ Π(Xη) can be extended to a
character χ ∈ Π(X ′). After a base change by this finite étale cover we can
then proceed as in the first part of the proof. �





CHAPTER 4

The Tannaka group of the theta divisor

The geometric relevance of the constructions in the previous chapters
is illustrated by the following example. Let X be a principally polarized
abelian variety (ppav) of dimension g over the complex numbers. The given
polarization determines an ample theta divisor Θ⊂ X up to a translation by
a point in X(C). For us it will be most convenient to choose a translation
such that the theta divisor is symmetric, i.e. stable under −idX . Then the
perverse intersection cohomology sheaf

δΘ = ICΘ[g−1]

will be isomorphic to its adjoint dual as defined in section 2.1. With this
normalization, consider the Tannaka group G(δΘ) which describes the rigid
symmetric monoidal abelian category generated by the convolution powers
of δΘ as in corollary 2.14 or equivalently in corollary 3.10. This Tannaka
group is a new invariant of the ppav, a reductive complex algebraic group
which behaves in a very different and much more rigid way than classical
invariants such as Mumford-Tate groups do.

For example, for the Jacobian variety X = JC of a smooth projective
curve C it has been shown in [106, p. 124 and th. 14] that

G(δΘ) =

{
Sp2g−2(C)/εg−1 if C is hyperelliptic,
Sl2g−2(C)/µg−1 otherwise,

where µg−1 ⊂ Sl2g−2(C) denotes the central subgroup of g− 1st roots of
unity in the special linear group and εg−1 = µg−1∩{±1} is its intersection
with the symplectic group. In a nutshell, this behaviour can be explained
as follows. For a suitable choice of the Abel-Jacobi embedding C ↪→ X one
can use Brill-Noether theory and arguments from representation theory to
show that the Tannaka group of the perverse sheaf δC ∈ Perv(X ,C) is

G(δC) =

{
Sp2g−2(C) if C is hyperelliptic,
Sl2g−2(C) otherwise,

and that δC corresponds to the standard representation of this group. Since
on a Jacobian variety X = JC the theta divisor Θ is birational to the g−1st

symmetric product of the curve C, one deduces that the perverse sheaf δΘ

corresponds on the Tannakian side to the g−1st fundamental representation

69
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of the group G(δC), and this implies that the Tannaka group G(δΘ) of the
theta divisor has the form given above.

The high fundamental representation in the above example is accounted
for by the particular symmetry of the theta divisor of Jacobian varieties, and
in general it is reasonable to expect the Tannaka groups G(δΘ) to be much
larger. One may speculate [110] whether among all ppav’s of dimension g
only Jacobian varieties have the above Tannaka groups — this would give
a Tannakian answer for the Schottky problem to characterize the locus of
Jacobian varieties in the moduli space

Ag = Hg/Sp2g(Z),

where Hg denotes the Siegel upper half space. More generally, one may
ask for the stratification of Ag defined by the invariant G(δΘ).

In this context, let us say that a statement holds for a general ppav of
dimension g if it holds for every ppav in a Zariski-open dense subset of
the moduli space Ag. For example, the theta divisor of a general ppav is
smooth by the results of Andreotti and Mayer [4]. For the open stratum
in the above-mentioned stratification of Ag we discuss in this chapter the
following conjecture which goes back to the preprint [67].

CONJECTURE 4.1. If X is a complex ppav of dimension g equipped with
a smooth symmetric theta divisor Θ⊂ X, then

G(δΘ) =

{
SOg!(C) for g odd,
Spg!(C) for g even,

and δΘ corresponds to the standard representation of this group.

Intuitively, this conjecture says that in marked contrast with the singular
situation for Jacobian varieties, for a smooth theta divisor Θ the Tannaka
group G(δΘ) should be as large as possible — see lemma 4.6 below. Let
us take a look at some small examples to begin with. The case g = 1 is
of course trivial. For g = 2 every ppav with a smooth theta divisor is the
Jacobian of a smooth hyperelliptic curve; then our conjecture holds by the
result of [106] quoted above. Similarly, for g = 3 every ppav with a smooth
theta divisor is the Jacobian of a smooth non-hyperelliptic curve, and in
this case the conjecture holds since the second fundamental representation
of Sl4(C)/µ2 corresponds to the standard representation of SO6(C) via the
exceptional isomorphism between these two groups. So the first open case
of our conjecture occurs for g = 4. This is the first case where the realm of
Jacobian varieties is left, hence also the first non-trivial case of the Schottky
problem, and indeed we will see in corollary 4.4 below that in this case the
invariant G(δΘ) determines the locus of Jacobian varieties in A4.
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To avoid case distinctions, from now on we put G(g) = SOg!(C) if g is
odd and G(g) = Spg!(C) if g is even. The main goal of this chapter is to
prove the following weaker version of our conjecture, extending ideas that
have been used in dimension g = 4 in the earlier preprint [67].

THEOREM 4.2. For a general complex ppav X of dimension g with a
symmetric theta divisor Θ one has

G(δΘ) = G(g),

and δΘ corresponds to the standard representation of this group.

As we have remarked above, this essentially means that for a general
ppav the Tannaka group of the theta divisor is as large as possible — the
main task will be to find sufficiently large lower bounds on this group. By
a constructibility argument it suffices to do this for the generic fibre of a
suitable family of ppav’s over a smooth complex algebraic curve S. So we
can apply degeneration methods: By theorem 3.15 the Tannaka group of the
generic fibre admits those of the perverse sheaves of nearby cycles on the
special fibres as subquotients. With this in mind, we collect in section 4.3
some general properties of the monodromy filtration that allow to control
the nearby cycles in concrete geometric situations. The crucial part of our
argument is then given in section 4.4 where we consider three degenerations
of a generic ppav — in one of them the theta divisor becomes nodal, and
in the other two the ppav degenerates into a product of ppav’s resp. into a
Jacobian variety. In each case the nearby cycles contain a large irreducible
constituent that can be controlled geometrically, and this will reduce the
proof of our theorem to arguments in representation theory to be worked
out in section 4.5.

4.1. The Schottky problem in genus 4

Before we come to the proof of theorem 4.2, let us briefly discuss its
connection with the Schottky problem. Recall that in dimension g ≥ 4 the
Andreotti-Mayer locus Ng ⊂ Ag of ppav’s with a singular theta divisor is
itself a divisor with precisely two irreducible components [26]. One of the
components is the locus θnull,g of all ppav’s with a vanishing theta null; the
other component contains the closure Jg of the locus of Jacobian varieties
and for g = 4 is equal to it [8]. This being said, in dimension g = 4 we can
sharpen the formulation of theorem 4.2 as follows.

THEOREM 4.3. For g = 4 the locus of all ppav’s with G(δΘ) 6= Sp24(C)
is contained in a Zariski-closed subset of A4 whose divisorial components
are precisely J4 and θnull,4.
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The proof of this will be given along with our proof of theorem 4.2,
based on the observation that every divisor on A4 intersects the locus of
Jacobian varieties — on the Tannakian side this information is encoded in
part (3) of proposition 4.12 below. Assuming the theorem, we recover the
following result of [67].

COROLLARY 4.4. For g = 4 the invariant G = G(δΘ) determines both
the Jacobian locus and the theta null locus

J4 ⊂ A4 and θnull,4 ⊂ A4.

Proof. Theorem 4.3 says that the closure of the locus of all ppav’s in A4
with G 6= Sp24(C) is a proper Zariski-closed subset, with J4 and θnull,4 as
its only divisorial components. By the result quoted at the beginning of this
chapter, the group G is equal to Sl6(C)/µ3 for a general ppav in the Jacobian
locus J4. By way of contrast, for a general ppav in θnull,4 the degeneration
argument in part (2) of proposition 4.12 below shows that the irreducible
representation W ∈ RepC(G) corresponding to the simple perverse sheaf δΘ

has dimension dim(W ) = g!− 2 = 22. In particular, for such a ppav the
group G is different from Sl6(C)/µ3 since by [3] the latter does not admit
an irreducible representation of dimension 22. �

In this context, we remark that the possible singularities of theta divisors
in dimension g = 4 can be described explicitly as follows. Let J4,hyp be
the closure of the locus of Jacobian varieties of hyperelliptic curves, and
denote by A4,dec ⊂ θnull,4 ∩J4 the locus of decomposable ppav’s. Then
the following types of singularities occur.

LEMMA 4.5. a) For ppav’s in J4 \ (θnull,4 ∩J4) the theta divisors
have precisely two singularities, both ordinary double points. b) For ppav’s
in θnull,4 \ (θnull,4∩J4) they have only one singularity, again an ordinary
double point. c) On (θnull,4 ∩J4) \ (J4,hyp ∪A4,dec) they have only one
singular point, and there the Hesse matrix of the Riemann theta function
has rank three. d) On J4,hyp \ (J4,hyp∩A4,dec) the singular locus of each
theta divisor has dimension one. e) On A4,dec it has dimension two.

Proof. It has been shown in [54, thm. 10 and cor. 15] that for a), b)
and c) the rank of the Hesse matrix at any singular point of the theta divisor
is the given one. In particular, in cases a) and b) only isolated singularities
occur. This also holds for c) since by Riemann’s singularity theorem the
singular locus of the theta divisor on a Jacobian variety is the Brill-Noether
subvariety W 1

g−1, which in the non-hyperelliptic case has dimension g−4 by
Martens’ theorem [6, th. 4.5.1]. The number of singularities can be obtained
from [20, sect. 10] and from [8] and [81, case b2, p. 55f]. Part d) follows
again from Martens’ theorem, and e) is trivial. �
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4.2. Nondegenerate bilinear forms

In the introduction to this chapter we have remarked that conjecture 4.1
essentially says that for a smooth theta divisor the associated Tannaka group
is as large as possible. To justify this interpretation, let X be a complex ppav
of dimension g≥ 2 and Θ⊂ X a symmetric theta divisor. For simplicity we
assume that the ppav X is indecomposable, in which case Θ is irreducible
and hence in particular normal by [36].

Then δΘ is a simple perverse sheaf, and by symmetry of the theta divisor
it is isomorphic to its adjoint dual (δΘ)

∨ = (−id)∗D(δΘ). On the Tannakian
side, if we denote by

ω : 〈δΘ〉
∼−→ RepC(G(δΘ))

the tensor functor in corollary 3.10, then it follows that V = ω(δΘ) is an
irreducible self-dual representation of G(δΘ). Any representation with these
properties is either orthogonal or symplectic, depending on whether the unit
object 1 = δ0 of our Tannakian category lies in the alternating square Λ2(V )
or in the symmetric square S2(V ). To decide which of the two possibilities
occurs, consider the commutativity constraint

S = SδΘ,δΘ
: δΘ ∗δΘ

∼−→ δΘ ∗δΘ

as defined in section 2.1. We claim that this constraint S acts by (−1)g−1

on the stalk cohomology group H 0(δΘ ∗ δΘ)0 at the origin. Indeed we
have δΘ = ICΘ[g− 1], so our claim amounts to the statement that S acts
trivially on the stalk cohomology group H 2g−2(ICΘ ∗ ICΘ)0. For this latter
statement one can use that since by assumption the theta divisor is normal,
we have a natural identification

H 2g−2(ICΘ ∗ ICΘ)0 ∼= H 2g−2(CΘ ∗CΘ)0

which allows to replace the intersection cohomology sheaf with the constant
sheaf. Then our claim easily follows via base change.

For the representation V = ω(δΘ) it follows from the above that the
unit object 1 lies in the alternating square Λ2(V ) if g is even, resp. in the
symmetric square S2(V ) if g is odd. This implies

LEMMA 4.6. If the theta divisor Θ ⊂ X is smooth, then there exists an
embedding

G(δΘ) ↪→ G(g) =

{
Spg!(C) for even g
SOg!(C) for odd g

such that ω(δΘ) is the restriction of the standard representation of G(g).
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Proof. Since Θ is smooth, the irreducible representation V = ω(δΘ) is
of dimension dimC(V ) = χ(δΘ) = g! by the Gauss-Bonnet formula, and we
have noted above that V is a symplectic resp. orthogonal representation if g
is even resp. odd. This proves the lemma with the full orthogonal group in
place of the special orthogonal group. It remains to show that det(V ) is the
trivial character of G(δΘ). If not, the character det(V ) would by part (b) of
proposition 1.6 correspond to a skyscraper sheaf δx supported in a 2-torsion
point x∈X(C)\{0}. For monodromy reasons it is impossible to select such
a 2-torsion point naturally on every ppav on an Zariski-open dense subset
of the moduli space Ag. So we can finish the proof by a specialization
argument, using that the Tannaka group defines a constructible stratification
of the moduli space (see the remarks preceding proposition 4.12 below) and
that by theorem 3.15 it only becomes smaller on closed subsets. �

4.3. Local monodromy

To find sufficiently large lower bounds on the Tannaka group of the theta
divisor on a general ppav, we will study degenerations of ppav’s in terms of
the nearby cycles functor. For this purpose we gather in the present section
some general facts about the monodromy filtration that allow to get hold on
the nearby cycles in concrete geometric situations. Throughout we work in
the following algebraic setting.

Let S be the spectrum of a strictly Henselian discrete valuation ring (in
our applications in proposition 4.12 it will be the strict Henselization of a
smooth complex algebraic curve in the moduli space of ppav’s). We denote
by s the unique closed point of S and fix a geometric point η above the
generic point η of S. For a separated S-scheme of finite type

f : Y −→ S

we consider as in section 3.5 the functor of nearby cycles

Ψ : P(Yη) = Perv(Yη ,Λ) −→ P(Ys) = Perv(Ys,Λ)

on perverse sheaves with coefficients in Λ = Ql for some fixed prime l
which is invertible on S. Here we consider perverse sheaves on Xη and
not just perverse sheaves on the geometric fibre Xη since we want to keep
track of the monodromy operation. By construction [32, exp. XIII], for any
perverse sheaf δ ∈ P(Yη) the local monodromy group G = Gal(η/η) acts
naturally on the nearby cycles Ψ(δ ) ∈ P(Ys). Since we are working over a
strictly Henselian base, this group coincides with the inertia group.

If p ≥ 0 denotes the residue characteristic of the point s, the inertia
group sits in an exact sequence 1→ P→ G→∏l′ 6=pZl′(1)→ 1 where the
pro-p-group P is the wild inertia group and where l′ runs through the set
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of all prime numbers other than p, including our fixed prime l. In what
follows we will always assume that the nearby cycles Ψ(δ ) are tame in the
sense that P acts trivially on them (in the application in proposition 4.12
we only work in characteristic p = 0 anyway). The perverse sheaf Ψ(δ )
is then equipped with a natural action of quotient Zl(1) of the tame inertia
group, and we denote by T : Ψ(δ )−→Ψ(δ ) the endomorphism induced by
a topological generator 2πi of Zl(1). In the abelian category Perv(Ys,Λ) we
have as in [85, lemma 1.1] a Jordan decomposition

Ψ(δ ) = Ψ1(δ )⊕Ψ6=1(δ ) with Ψ 6=1(δ ) =
⊕
α 6=1

Ψα(δ ),

where for each α ∈Λ the perverse subsheaf Ψα(δ ) is stable under the action
of T and killed by a power of T −α · id. We are particularly interested in
the case of the perverse intersection cohomology sheaf δ = δYη

.

REMARK 4.7. Suppose that the nearby cycles Ψ(δYη
) are tame. If

the morphism f : Y → S is proper and if the geometric generic fibre Yη

is smooth, then after replacing f by its base change under some finite
branched covering of S we can assume that

H•(Ys,Ψ6=1(δYη
)) = 0.

Proof. Let S′ → S be the normalization of S in a finite extension of
the residue field of η with generic point η ′ 7→ η , and denote by S→ S the
normalization in the residue field of η . For the base changes Y ′ = Y ×S S′

and Y = Y ×S S we then have a commutative diagram

Y s
// Y

��

Yη
oo

��

Y ′s // Y ′

��

Y ′
η ′

oo

��

Ys // Y Yη
oo

where the vertical identifications on the left hand side come from the fact
that we are working over a strictly Henselian base. In particular, as an
object of Perv(Ys,Λ) = Perv(Y ′s ,Λ) the nearby cycles Ψ(δYη

) do not change
if we replace our original family Y → S by the base change Y ′→ S′, though
of course the local monodromy operation and hence in the tame case the
Jordan decomposition is modified under this replacement. This being said,
our claim can be checked as follows.
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For each α ∈Λ some power of the endomorphism T−α · id acts trivially
on the perverse sheaf Ψα(δYη

) and hence also on its hypercohomology. In
particular, the Jordan decomposition

H•(Ys,Ψ(δYη
)) =

⊕
α

H•(Ys,Ψα(δYη
))

shows that H•(Ys,Ψ6=1(δYη
)) = 0 iff the action of T on H•(Ys,Ψ(δYη

)) is
unipotent. But this latter condition can be achieved after a finite branched
base change S′→ S as above: Indeed we have

H•(Ys,Ψ(δYη
)) = H•(Yη ,δYη

)

by proper base change, and if the geometric generic fibre Yη is smooth, then
Grothendieck’s local monodromy theorem [60, th. 1.4] implies that on this
cohomology group the generator T acts quasi-unipotently. �

Returning to an arbitrary perverse sheaf δ ∈ P(Yη) with tame nearby
cycles, to get hold on Ψ1(δ ) we consider the nilpotent operator

N = 1
2πi log(T ) : Ψ1(δ ) −→ Ψ1(δ )(−1).

Here 1
2πi ∈ Zl(−1) denotes the dual of our chosen generator 2πi ∈ Zl(1)

so that the morphism N is well-defined and equivariant under the Galois
action. By [28, sect. 1.6] there is a unique finite increasing filtration F• of
the perverse sheaf Ψ1(δ ) such that

N(Fi(Ψ1(δ ))) ⊆ Fi−2(Ψ1(δ ))(−1)

and such that for each i ≥ 0 the i-fold iterate Ni : Ψ1(δ ) −→ Ψ1(δ )(−i)
induces an isomorphism

Gri(Ψ1(δ ))
∼=−→ Gr−i(Ψ1(δ ))(−i)

of the graded pieces with respect to the filtration. Furthermore, if for i ≥ 0
we denote by P−i(δ ) the kernel of N : Gr−i(Ψ1(δ ))→Gr−i−2(Ψ1(δ ))(−1),
then by loc. cit. we have a decomposition

Gr−i(Ψ1(δ )) ∼=
⊕
k≥0

P−i−2k(−k).

We can represent this situation by a diagram of the following shape, where
each horizontal line of the triangle contains the composition factors of the
corresponding graded piece shown on the left (for the arrows labelled N one
must of course ignore the Tate twists in the diagram, which have only been
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inserted to be conform with the graded pieces on the left).

... . . .

Gr2(Ψ1(δ )) P−2(δ )(−2)

N∼=
��

Gr1(Ψ1(δ )) P−1(δ )(−1)

N∼=
��

. . .

Gr0(Ψ1(δ )) P0(δ ) P−2(δ )(−1)

N∼=
��

Gr−1(Ψ1(δ )) P−1(δ ) . . .

Gr−2(Ψ1(δ )) P−2(δ )

... . . .

The lower boundary entries P0(δ ),P−1(δ ),P−2(δ ), . . . of the triangle are the
graded pieces of the specialization

sp(δ ) = ker(N : Ψ1(δ )→Ψ1(δ )(−1)),

with P0(δ ) as the top quotient. Accordingly the graded pieces of sp(δ )
determine those of all the Gri(Ψ1(δ )). Furthermore, in the case of mixed
perverse sheaves of geometric origin in the sense of [10, chapt. 6] we have
the following result due to O. Gabber [9, th 5.1.2].

REMARK 4.8. If δ is pure of weight w, then each Gri(Ψ1(δ )) is pure
of weight w+ i so that the monodromy filtration coincides with the weight
filtration up to an index shift.

In this case, to compute the graded pieces Gri(Ψ1(δ )) we only need
to determine the specialization sp(δ ) and its weight filtration. Returning
again to the general case, let us denote by j : Yη ↪→ Y resp. i : Ys ↪→ Y the
embedding of the generic resp. special fibre. Recall [60, p. 48] that the
perverse t-structure on Y is defined by

K ∈ pD≤0(Y ) ⇐⇒ i∗K ∈ pD≤0(Ys) and j∗K ∈ pD≤−1(Yη),

K ∈ pD≥0(Y ) ⇐⇒ i!K ∈ pD≥0(Ys) and j∗K ∈ pD≥−1(Yη).

We denote by P(Y ) the abelian category of perverse sheaves which is the
core of the above perverse t-structure. By abuse of notation we also write δ

for the pull-back to P(Yη) of the perverse sheaf δ ∈ P(Yη). Then Artin’s
affine vanishing theorem implies that the direct image complexes R j!(δ [1])
and R j∗(δ [1]) are perverse, see loc. cit. This being said, we define the
intermediate extension

j!∗(δ [1]) = im
(
R j!(δ [1])−→ R j∗(δ [1])

)
to be the image of the natural morphism between these two direct image
complexes in the abelian category P(Y ).
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LEMMA 4.9. With notations as above, the specialization of δ is given
by the formulae

sp(δ ) = pH0(i∗R j∗(δ )) = i∗( j!∗δ [1])[−1].

Proof. We first claim that in the triangulated category D(Ys)=Db
c (Ys,Λ),

the cone of the morphism N is given by

(?) Cone
(
Ψ1(δ )

N−→Ψ1(δ )(−1)
)
= i∗R j∗(δ [1]).

Indeed, if we forget about weights, the cone of N on Ψ1(δ ) is isomorphic to
the cone of T −1 on Ψ(δ ) because T −1 is an isomorphism on Ψ 6=1(δ ) and
on Ψ1(δ ) its kernel and cokernel are isomorphic to those of N. Hence (?)
follows by the same argument as in [60, eq. (3.6.2) and thereafter], using
that by assumption the wild inertia group P acts trivially on Ψ(δ ). Now if
for n ∈ {0,1} we write

spn(δ ) = pHn(i∗R j∗(δ )),

we obtain from (?) an exact sequence of perverse sheaves

0−→ sp0(δ )−→Ψ1(δ )
N−→Ψ1(δ )(−1)−→ sp1(δ )−→ 0.

Hence the first equality in the lemma follows. For the second equality note
that we always have i∗ j!∗(δ [1]) = pτ<0i∗R j∗(δ [1]) by the basic properties
of the intermediate extension functor shown as in [65, sect. III.5.1], and
that again by (?) the sheaf complex i∗R j∗(δ [1]) is concentrated in perverse
cohomology degrees −1 and 0. �

To connect these local algebraic results to the more global setting of
section 4.4 below, it will be convenient to reset our notation. So let S be a
smooth complex algebraic curve and f : Y −→ S a morphism of complex
algebraic varieties which is smooth over the complement of some given
point s ∈ S(C). Consider the strict Henselization S̃ = Spec(O sh

S,s )−→ S of S
at the point s, and let η be the generic point of the strictly Henselian local
scheme S̃. Referring to the base change

f̃ : Ỹ = Y ×S S̃ −→ S̃

of the morphism f under this strict Henselization, we can form as above the
nearby cycles and specialization functors

P(Yη)

Ψ
))

sp
55
P(Ys)
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where Yη and Ys denote the generic resp. special fibres of f̃ . Note that Ys
can be naturally identified with the fibre f−1(s) ⊂ Y . In the case of the
perverse intersection cohomology sheaf the passage between the global and
the local picture is provided by the following observation, where we now
denote by i : Ys = f−1(s) ↪→ Y the global embedding.

COROLLARY 4.10. In the above situation,

sp(δYη
) = i∗(δY [−1]).

Proof. Our smoothness assumption on f implies that the generic fibre Yη

is smooth so that the perverse intersection cohomology sheaf δ = δYη
is

the constant sheaf up to a degree shift. From this one easily deduces that
the intermediate extension j!∗(δ [1]) which occurs in lemma 4.9 arises from
the perverse intersection cohomology sheaf δY on the total space Y via the
Henselization morphism Ỹ −→ Y . �

4.4. Degenerations of abelian varieties

To find sufficiently large lower bounds on the general Tannaka group
in theorem 4.2 we consider certain families of ppav’s whose theta divisor
degenerates. To construct these we fix an integer n ≥ 3 and work over the
moduli space Ag,n of ppav’s of dimension g with level n structure. It has
been shown in chapter 7.3 of [80] that this moduli space is representable by
a smooth quasi-projective variety over Q. Analytically it can be written as
the quotient

Ag,n(C) = Hg/Γg(n)

of the Siegel upper half space by the action of the principal congruence
subgroup Γg(n) = ker(Sp2g(Z)−→ Sp2g(Z/nZ)). Recall that for n≥ 3 this
action is free, which again explains why in this case the moduli space is
smooth. We denote by

p : X = Hg×Cg / Γg(n)nZ2g // Ag,n

the universal abelian scheme and by Θ ⊂X the divisor which is defined
on the universal covering Hg×Cg by the zero locus of the Riemann theta
function ϑ(τ,z). Thus for each point τ ∈ Ag,n(C) the fibre Xτ = p−1(τ)
is a complex ppav with Θτ = Θ∩Xτ as a symmetric theta divisor. More
generally, for any complex algebraic variety S with a morphism S−→Ag,n
we denote by

XS = X ×Ag,n S and ΘS = Θ×Ag,n S
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the corresponding abelian scheme resp. its relative theta divisor. For the
construction of families of ppav’s with degenerating theta divisors we will
use the following general observation.

LEMMA 4.11. For every point s ∈ Ag,n(C) there is a smooth complex
quasi-projective curve S ↪→ Ag,n, passing through the point s in a general
tangent direction, such that

(a) the generic fibre of the family ΘS→ S is smooth,

(b) the singular loci of the total space and of the special fibre of this
family satisfy

Sing(ΘS) ⊆ Sing(Θs).

If the theta divisor Θs contains a singular point of precise multiplicity two,
then the inclusion in part (b) is strict for a suitable choice of S.

Proof. Since the moduli space Ag,n is smooth and quasi-projective, for
any s ∈ Ag,n(C) we can find a smooth quasi-projective curve S ↪→ Ag,n
passing through the point s in a general tangent direction. We can assume
that our general curve S is not contained in the locus of ppav’s with singular
theta divisor, indeed by [4] this locus is itself a divisor in Ag,n. So after
shrinking S we can assume that for all t ∈ S(C) \ {s} the theta divisor Θt
is smooth. Then property (a) is clearly satisfied, and property (b) easily
follows from the fact that the total space ΘS is given locally in the smooth
variety XS as the zero locus of a single analytic function.

Explicitly, let ∆ ⊂ S be an analytic coordinate disk with coordinate w
centered at the given point s, and consider a local lift h : ∆→Hg of the
embedding ∆ ↪→ S ↪→ Ag,n. On the universal covering the divisor ΘS is
described as the locus{

(w,z) ∈ ∆×Cg | F(w,z) = 0
}
⊂ ∆×Cg

where the analytic function F(w,z) = ϑ(h(w),z) vanishes. If a point (w,z)
on this locus defines a singular point of the relative theta divisor ΘS, then
the gradient of F must vanish at this point. For the gradient in the variable z
this implies

0 = (∇zF)(w,z) = (∇zϑ)(τ,z) for τ = h(w).

Hence (τ,z) defines a singular point of the fibre Θt where t ∈ S(C) denotes
the image of the point τ . By our choice of the curve S the only singular
fibre Θt is the one over the point t = s, hence claim (b) follows.

This being said, if some point (τ,z) ∈Hg×Cg defines a singular point
of the theta divisor Θs with precise multiplicity two, then by definition the
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Hesse matrix (
∂ 2ϑ

∂ zα∂ zβ

(τ,z)
)

α,β=1,...,g

is non-zero. Then the heat equation

∂ϑ

∂ταβ

(τ,z) = 2πi · (1+δαβ ) ·
∂ 2ϑ

∂ zα∂ zβ

(τ,z)

implies for the gradient with respect to the variable τ that (∇τϑ)(τ,z) 6= 0
as well. Hence, taking S to be a curve which passes through the point s in
a sufficiently general tangent direction u, we obtain with notations as in the
preceding paragraph that

(∂F/∂w)(0,z) = (u ·∇τϑ)(τ,z) 6= 0

where F(w,z) = ϑ(h(w),z) is defined for w in some coordinate disk ∆⊂ S
by a suitable local lift h : ∆→Hg with h(0) = τ . In particular, since the
gradient of F does not vanish at the considered point, it follows that (τ,z)
defines a smooth point of the total space ΘS of our family. This shows that
the inclusion in claim (b) is strict. �

We will now use the above construction to obtain information about the
Tannaka groups G(δΘτ

) by varying the base point τ ∈Ag,n(C). In order to
apply the algebraic formalism of nearby cycles developed in section 4.3 we
consider perverse sheaves with coefficients in Λ = Ql throughout, but the
final result may as well be read in the category of analytic perverse sheaves
with coefficients in Λ = C. Anyway all the occuring perverse sheaves will
be of geometric origin in the sense of [10, sect. 6.2.4].

In general it is not clear how to put the perverse sheaves δΘτ
for the

various points τ ∈ Ag,n(C) into a global family because there is no good
relative notion of a perverse intersection cohomology sheaf. However, over
the Zariski-open dense locus U ⊂Ag,n of ppav’s with a smooth theta divisor
this is no issue — the shifted constant sheaf ΛΘ[g−1] restricts to δΘτ

on the
fibre Xτ for each geometric point τ in U . This being said, proposition 3.20
shows that there are finitely many reductive algebraic groups G1, . . . ,Gm
over Λ and a constructible stratification

U =
m⊔

i=0

Ui with G(δΘτ
) = Gi for all geometric points τ in Ui.

The hypotheses of the proposition are satisfied because for each geometric
point τ in U the divisor Θτ ⊂ Xτ is irreducible and symmetric. Indeed
these two conditions precisely say that the perverse sheaf δΘτ

is simple and
isomorphic to its adjoint dual.
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Let U0 ⊆U be the open dense stratum so that G0 ⊆G(g) is the Tannaka
group of the theta divisor on a generic ppav. By lemma 4.6 the perverse
intersection cohomology sheaf of such a theta divisor corresponds on the
Tannakian side to the restriction V |G0 of the standard representation V of
the special orthogonal or symplectic group G(g).

PROPOSITION 4.12. With notations as above, the following properties
hold for the Tannaka groups of smooth theta divisors.

(1) For g = g1 + g2 the generic Tannaka group G0 has a subquotient
which is isogenous to

G(g1)×G(g2),

provided that theorem 4.2 holds for the dimensions g1 and g2.

(2) There exists a connected subgroup H ↪→ G0 and an irreducible
representation W of H such that

V |H =

{
W ⊕1⊕1 if g is even,
W ⊕1 if g is odd,

where 1 denotes the one-dimensional trivial representation.

(3) For g ≥ 4 and any stratum Ui of codimension at most one in U
there exists a homomorphism

f : Sl2g−2(Λ) −→ Gi

such that f ∗(V ) contains the g−1st fundamental representation of
the special linear group as a direct summand.

Proof. Consider a morphism from a smooth irreducible quasi-projective
complex curve S to the moduli space Ag,n such that the generic point of S is
mapped into some stratum Ui in the above stratification, and fix a geometric
generic point η of S. Passing to the strict Henselization of S at s ∈ S(C)
we can form the perverse sheaf Ψ(δΘη

) ∈ Perv(Xs,C) of nearby cycles. By
theorem 3.15 we have an embedding

G(Ψ(δΘη
)) ↪→ G(δΘη

) = Gi ↪→ G(g)

such that Ψ(δΘη
) corresponds on the Tannakian side to the restriction of the

standard representation V to the subgroup G(Ψ(δΘη
)). We will apply this

remark in the following situations.

For part (1) take S ↪→Ag,n to be an embedding of a smooth curve which
meets the locus of decomposable ppav’s in a single point s∈ S(C) but which
is otherwise contained in the open dense stratum U0 and has the properties
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in lemma 4.11. We choose the point s such that the corresponding ppav and
its theta divisor have the form

Xs = X1×X2 resp. Θs = (Θ1×X2)∪ (X1×Θ2) ,

where for α ∈ {1,2} the Xα are general complex ppav’s of dimension gα

with a symmetric theta divisor Θα . In particular, like for any divisor with
two components which intersect each other transversally along a smooth
subvariety, we have an exact sequence

0 −→ δΘ1×Θ2 −→ ΛΘs[g−1] −→ δΘ1×X2⊕δX1×Θ2 −→ 0

of perverse sheaves. Restricting this short exact sequence to the open dense
subset

V = Xs \Sing(ΘS) ⊂ Xs

we get a monomorphism

δΘ1×Θ2|V ↪→ ΛΘs[g−1]|V = sp(δΘη
)|V

of perverse sheaves, where the last equality holds by the formula for the
specialization in corollary 4.10. Now by the last statement in lemma 4.11
we can assume that the singular locus Sing(ΘS) is a proper closed subset
of Sing(Θs) = Θ1×Θ2, and in this case the open dense subset V will have
non-empty intersection with Θ1×Θ2. Then via intermediate extension it
follows from the above that the semisimplification of sp(δΘη

) contains a
direct summand δΘ1×Θ2 . By the properties of the monodromy filtration
in section 4.3 the same then a fortiori holds for the semisimplification of
the perverse sheaf of nearby cycles Ψ(δΘη

). This being said, our claim
follows from the elementary observation that the Tannaka group G(δΘ1×Θ2)
is isogenous to G(δΘ1)×G(δΘ2).

For part (2) let s ∈ Ag,n(C) be a point which corresponds to a general
ppav Xs with a vanishing theta null, and let S ↪→ Ag,n be a general curve
which passes through s but is otherwise contained in the open stratum U0
and has the properties in lemma 4.11. For the special fibre with a vanishing
theta null we know from [26] with the correction given in [53, rem. 4.5],
or alternatively also from theorem 4.2 of loc. cit., that the theta divisor Θs
has an isolated ordinary double point e as its only singularity. Hence the
Picard-Lefschetz formula [32, exp. XV, th. 3.4] says that

χ(Θs) = χ(Θη) + (−1)g = (−1)g−1 · (g!−1)

because the generic theta divisor Θη is smooth of dimension g− 1 with
Euler characteristic (−1)g−1 · g! by the Gauss-Bonnet theorem. Now the
perverse intersection cohomology sheaf near an ordinary double point can
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be controlled explicitly, indeed lemma 4.16 below gives an exact sequence
of perverse sheaves

0 −→ κg −→ ΛΘs[g−1] −→ δΘs −→ 0

for the skyscraper sheaf

κg =

{
δe(−g−2

2 ) if g is even,
0 if g is odd.

Hence it follows that

χ(δΘs) = χ(ΛΘs[g−1])−χ(κg) =

{
g!−2 if g is even,
g!−1 if g is odd.

On the other hand, by remark 4.7 we can assume that the nearby cycles
for our degeneration coincide with the unipotent nearby cycles. Then from
the formula for the specialization in corollary 4.10 one deduces that the
semisimplification of the nearby cycles must have the form

Ψ(δΘη
)ss = δΘs⊕ γ

for some perverse skyscraper sheaf γ supported on the singular point e of
the special fibre. Looking at the above Euler characteristics, one sees that
this skyscraper sheaf γ must have rank two if g is even, resp. rank one if g
is odd. Now take a Levi splitting

Gs = G(δΘs) ↪→ G(Ψ(δΘη
)),

and let W be the irreducible representation of Gs which corresponds to the
simple perverse sheaf δΘs . In lemma 4.13 below we will see as a general
fact about irreducible theta divisors that the restriction of W to the connected
component H = G0

s ⊆ Gs remains irreducible, so our claim follows.

For part (3) consider the locus J ⊂Ag,n of Jacobian varieties of smooth
projective curves of genus g. If a stratum Ui ⊆U has codimension at most
one in the open subset U , then the closure U i ⊆ Ag,n has codimension at
most one in Ag,n. In this case it has been observed in [83, cor. (0.7)] that
the intersection J∩U i is nonempty and hence of codimension at most one
in J. We can then find a point t ∈U i(C) which corresponds to the Jacobian
variety of a non-hyperelliptic smooth curve (indeed the hyperelliptic locus
has codimension greater than one in J for g ≥ 4). Now consider in the
closure U i a curve which meets the Jacobian locus J in the chosen point t
and is otherwise contained in the open dense subset Ui ⊂U i. Define

ϕ : S −→ Ag,n

to be the normalization of this curve, and choose s ∈ S(C) to be any point
with ϕ(s) = t. Then XS→ S is a family of ppav’s whose geometric generic
fibre Xη is a ppav in the stratum Ui and whose special fibre Xs is the Jacobian
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of a smooth non-hyperelliptic curve. As in lemma 4.11 the singular loci of
the relative theta divisor ΘS and of the fibre Θs satisfy

Sing(ΘS) ⊆ Sing(Θs),

so it follows from corollary 4.10 that the specialization sp(δΘη
) admits the

simple perverse sheaf δΘs as a subquotient. Then the same holds for the
nearby cycles Ψ(δΘη

) as well, and this proves our claim since by the result
for Jacobian varieties in [106], the Brill-Noether sheaf δΘs corresponds to
the g− 1st fundamental representation of its Tannaka group which in the
non-hyperelliptic case is G(δΘs) = Sl2g−2(Λ)/µg−1. �

4.5. Proof of the main theorem

Let X be a complex ppav of dimension g and Θ⊂ X a symmetric theta
divisor defining the polarization. Consider the Tannaka group G = G(δΘ)
and its representation

V = ω(δΘ) ∈ RepC(G)

which corresponds to the perverse intersection cohomology sheaf δΘ un-
der the equivalence ω : 〈δΘ〉 −→ RepC(G) in corollary 3.10. The Tannaka
group does not have to be connected, but fortunately it is not very far from
being connected either. Indeed we have the following

LEMMA 4.13. If the theta divisor is irreducible, then V restricts to an
irreducible representation V |G0 of the connected component G0 ⊆ G.

Proof. The irreducibility of the theta divisor implies that δΘ is a simple
perverse sheaf, and accordingly V is an irreducible representation of the
Tannaka group G. But by the fundamental result of [109] the group G/G0

is abelian, hence if the claim of our lemma were not true, then by lemma B.4
in the appendix we would have an isomorphism V ⊗ χ ∼= V for a suitable
non-trivial character χ : G −→ C∗. The classification of perverse sheaves
with Euler characteristic one in proposition 1.6 shows that χ corresponds
to a skyscraper sheaf δx of rank one, supported in some closed point x 6= 0
of the ppav X . Hence the above isomorphism would on the geometric side
correspond to an isomorphism

δΘ ∗δx ∼= δΘ,

meaning that tx(Θ) = Θ for the translation tx : X → X ,y 7→ y+x. But this is
impossible for any point x 6= 0, indeed the morphism

X −→ Pic0(X), x 7→
[
OX(Θ− tx(Θ))

]
is an isomorphism since the theta divisor gives a principal polarization. �
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Now suppose that X is a general ppav. By lemma 4.6 the corresponding
Tannaka group admits an embedding

G = G(δΘ) ↪→ G(g) =

{
Spg!(C) for even g,
SOg!(C) for odd g,

and the representation V = ω(δΘ) arises as the restriction of the standard
representation of the classical group on the right hand side. For the proof
of theorem 4.2 we will show that for a general ppav the group G must be
as large as possible, using the lower bounds in proposition 4.12. We begin
with the following observation.

LEMMA 4.14. For a general ppav X with Tannaka group G = G(δΘ),
the connected component G0 ⊆ G is simple modulo its center.

Proof. Let us first introduce some notations. For any reductive complex
algebraic group H consider the derived group H0

der = [H0,H0]. This is a
connected semisimple group, and we denote by

H̃ � H0
der

its simply connected cover. The covering group H̃ is a product of simply
connected covers of simple algebraic groups. Furthermore, since by the
theory of reductive groups [100, cor. 8.1.6] the connected component H0 is
the product of its derived group and its center (with finite intersection), any
irreducible representation of H0 is also irreducible under H̃.

We now return to the Tannaka group G = G(δΘ) for a general ppav. To
prove the lemma we argue by contradiction. If the claim of the lemma is not
true, then the simply connected cover of this Tannaka group can be written
in the form

G̃ = G1×G2

for certain non-trivial simply connected groups G1 and G2. Furthermore,
for the representation V = ω(δΘ) we have seen in lemma 4.13 that V |G0 is
irreducible. Hence by the above remarks also G̃ = G1×G2 acts irreducibly
on V so that we can write

V |G̃ = V1⊗V2

with certain irreducible representations Vi ∈ RepC(Gi). Note that since V is
a faithful representation of G, it follows from the definition of the simply
connected covering group that the representations Vi are non-trivial and in
particular that dim(Vi)> 1. Now consider a connected subgroup H ↪→G as
in part (2) of proposition 4.12 so that

V |H = W ⊕

{
1⊕1 if g is even,
1 if g is odd,
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where W is some irreducible representation of the group H. Then via the
commutative diagram

H̃
∃ //

����

G̃ //

����

Gl(V1)×Gl(V2)

��

H � � // G � � // Gl(V ) Gl(V1⊗V2)

we can consider the restrictions of V1 and V2 to the covering group H̃, and
by construction we have

V1|H̃⊗V2|H̃ = V |H̃ = W |H̃⊕

{
1⊕1 if g is even,
1 if g is odd,

where W |H̃ is irreducible by the general remarks from the beginning of the
proof. This implies that both Vi|H̃ are irreducible because otherwise more
than one non-trivial direct summand would occur. But then, since

HomH̃(1,V1|H̃⊗V2|H̃) 6= 0,

adjunction shows V1|H̃ is isomorphic to the dual of V2|H̃ . In particular V1
and V2 have the same dimension. This is impossible since dim(V ) = g! is
not the square of a natural number for g > 1.

For g = 4 we can alternatively argue as follows, using only part (3) of
proposition 4.12. Here both V1 and V2 have dimension at most 12 since
their dimensions must be non-trivial divisors of dim(V ) = 24. So if instead
of our previous choice we now take the subgroup H ↪→ G to be isogenous
to Sl2g−2(C) = Sl6(C) with the property in part (3) of the proposition, then
by the classification of small representations in [3] each Vi|H̃ can contain
only trivial representations and 6-dimensional standard representations as
irreducible constituents. In particular, looking at V1|H̃ ⊗V2|H̃ one sees that
the third fundamental representation of Sl6(C) cannot occur as a constituent
of V |H , and this contradicts our choice of the subgroup H. �

Now recall that the Tannaka group G = G(δΘ) of a general ppav is in
any case a subgroup of the symplectic or special orthogonal group G(g),
hence to prove theorem 4.2 it will be enough to show that the connected
component G0 must be the full group G(g). Note that by lemma 4.13 this
connected component is an irreducible subgroup of G(g) in the sense that
for the standard representation V ∈ RepC(G(g)), the restriction V |G0 is still
irreducible. So we are in the situation of the following general lemma.
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LEMMA 4.15. Let H be an irreducible connected subgroup of G(g)
which is simple modulo its center. Then

dim(H) ≤ g! or H = G(g).

Proof. Let V denote the standard representation of the symplectic or
special orthogonal group G(g), and suppose dim(H)> g! = dim(V ). Then
by irreducibility the restriction of V to H must be one of the representations
in table 1 of [3]. Since dim(V ) is the factorial of a natural number, one of
the following cases must occur for some r ∈ N.

(a) The group H is of type Ar, Cr or Dr and acts on V via its standard
representation.

(b) The group H is of type Ar and acts on V via the symmetric or via
the alternating square of its standard representation.

Case (a) can only occur for H = G(g) since G(g) is itself the symplectic
or special orthogonal group with V as its standard representation. To deal
with case (b), note that by the criterion in [46, th. 3.2.14] the symmetric
square of the standard representation of Ar is self-dual only if r = 1, but
then it has dimension 3 6= dim(V ). In the same vein, the alternating square
of the standard representation of Ar is self-dual of dimension g! only in the
case (r,g) = (3,3) where H = G(g) = SO6(C) for dimension reasons. �

To complete the proof of theorem 4.2, all that remains to be done is to
show that on a general ppav X we have

dim(G) > g!

for the group G = G(δΘ) attached to the theta divisor. But this follows by
induction on the dimension g = dim(X). Indeed, we already know that the
theorem holds for g ≤ 3, so we can assume g ≥ 4. To start the induction,
for g = 4 we can use the subgroup in part (3) of proposition 4.12 since in
that case dim(Sl2g−2(C)) = 35 > g! = 24. This being settled, the induction
step from dimension g− 1 to dimension g is provided by part (1) of the
proposition because dim(G(g−1))> g! for g≥ 5. This finishes the proof of
the theorem. Going through the above arguments, one furthermore checks
that for g = 4 all we need is part (3) of proposition 4.12. Hence theorem 4.3
follows with the same proof.

4.6. Singularities of type Ak

For completeness we include in this section some remarks about double
points that have been used in the proof of part (2) of proposition 4.12. In that
proof we have only dealt with ordinary double points, but since this is hardly
more work, in what follows we place ourselves in a slightly more general
setting. Let Y ⊂ Cn+1 be a complex analytic hypersurface. For k ≥ 1, we
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say that a point e in Y is a singularity of type Ak if in a neighborhood of e
the hypersurface Y is defined by an equation of the form

(?) zk+1
0 + z2

1 + z2
2 + · · · + z2

n = 0

in suitable local analytic coordinates (z0, . . . ,zn) on Cn+1 centered at e. So
a singularity of type Ak is just an ordinary double point for k = 1 whereas
for k > 1 it is a double point of corank one.

Working as usual with coefficients in Λ = C or Λ =Ql in the algebraic
case, we want to describe the perverse intersection cohomology sheaf near
a singularity of type Ak.

LEMMA 4.16. Let Y ⊂ An+1(C) be a complex analytic hypersurface
whose only singular point e is a singularity of type Ak.

(a) If k or n is even, then δY = ΛY [n].
(b) Otherwise we have an exact sequence of perverse sheaves

0−→ δe(−n−1
2 )−→ ΛY [n]−→ δY −→ 0.

Proof. We can assume Y is defined by an equation (?). To compute
the blowup p : Ỹ −→ Y in the singular point e we choose z = (z0, . . . ,zn)
as coordinates on the affine space An+1 = An+1(C). The corresponding
coordinates on Pn = Pn(C) will be denoted u = [u0 : · · · : un]. Then the
blowup

Ỹ ⊂ Ãn+1 =
{
(z,u) ∈ An+1×Pn | z ∈ u

}
can be computed explicitly in the affine charts Ui = {(z,u) ∈ Ãn+1 | ui 6= 0}
with the standard coordinates (u0, . . . ,ui−1,zi,ui+1, . . . ,un) by putting ui = 1
and zj = zi uj for j 6= i. Thus

Ỹ ∩U0 =
{

zk−1
0 +u2

1 + · · ·+u2
n = 0

}
whereas for i > 0 one obtains that

Ỹ ∩Ui =
{

uk+1
0 zk−1

i +u2
1 + · · ·+u2

i−1 +1+u2
i+1 + · · ·+u2

n = 0
}
.

In particular, for k = 1 it follows that the blowup Ỹ is smooth. For k > 1 it
has an isolated singularity ẽ ∈ Ỹ ∩U0 of type Ak−2, and we get by induction
on k an exact sequence

0→ κnk→ ΛỸ [n]→ δỸ → 0 where κnk =

{
0 if 2 | nk,
δẽ(−n−1

2 ) if 2 - nk.
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Furthermore, by purity we can write

Rp∗(δỸ ) = δY ⊕ ε

where ε is a skyscraper complex supported on e and self-dual with respect
to Verdier duality up to a Tate twist. We now distinguish two cases.

If k = 1, the above calculations show that the exceptional divisor of the
blowup Ỹ is the smooth quadric Qn = {u∈ Pn | u2

0+u2
1+ · · ·+u2

n = 0}. The
cohomology of such a quadric has been computed in [32, exp. XII, th. 3.3],

H i(Qn,Λ) =


Λ(− i

2) if i ∈ {0,2, . . . ,2n−2}\{n−1},
Λ2(− i

2) if i = n−1 and n is odd,
0 otherwise.

Since by base change H i−n(δY ⊕ ε)0 = H i−n(Rp∗(δỸ ))0 = H i(Qn,Λ),
one then easily concludes the proof of the lemma by an application of the
hard Lefschetz theorem to the skyscraper summand ε .

If k > 1, the above calculations show that the exceptional divisor of the
blowup Ỹ is the singular quadric Q?

n = {u ∈ Pn | u2
1 +u2

2 + · · ·+u2
n = 0}. In

this case we will see below that

H i(Q?
n,Λ) =


Λ(− i

2) if i ∈ {0,2, . . . ,2n−2}\{n},
Λ2(− i

2) if i = n and n is even,
0 otherwise.

Now by base change H i−n(Rp∗(ΛỸ [n]))0 = H i(Q?
n,Λ), and combining this

with the distinguished triangle

Rp∗(κnk)−→ Rp∗(ΛỸ [n])−→ Rp∗(δỸ )︸ ︷︷ ︸
= δY ⊕ε

−→ ·· ·

one concludes the proof of the lemma as before by checking that the only
two possibly non-zero cohomology sheaves of δY are H −1(δY )=Rp∗(κnk)
and H −n(δY ) = ΛY in this case.

It remains to check that the cohomology of the singular quadric Q?
n has

the form given above. Consider the singular point p = [1 : 0 : · · · : 0] of this
quadric, with smooth complement E = Q?

n \{p}. By the excision sequence
for compactly supported cohomology we have H i

c(E,Λ) = H i(Q?
n,Λ) for

all i > 1, and in low degrees we have an exact sequence

0→ H0
c (E,Λ)→ H0(Q?

n,Λ)→ Λ→ H1
c (E,Λ)→ H1(Q?

n,Λ)→ 0.
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So it suffices to show

H i
c(E,Λ) =


Λ(− i

2) if i ∈ {2,4, . . . ,2n−2}\{n},
Λ2(− i

2) if i = n and n is even,
0 otherwise.

For this we use that the projection [u0 : u1 : · · · : un] 7→ [u1 : · · · : un] with
center p defines a rank one vector bundle

π : E −→ Qn−1 ⊂ Pn−1

over the smooth quadric Qn−1 = {[u1 : · · · : un] ∈ Pn−1 | u2
1 + · · ·+u2

n = 0}
of dimension n−2. Using Poincaré duality and the homotopy invariance of
cohomology, we thus obtain

H i
c(E,Λ) ∼= (H2n−2−i(E,Λ)(n−1))∨ ∼= (H2n−2−i(Qn−1,Λ)(n−1))∨

and the result follows by plugging in on the right hand side the cohomology
of the smooth quadric Qn−1. �





CHAPTER 5

A family of surfaces with monodromy W (E6)

Let X be a complex principally polarized abelian variety (ppav for short)
of dimension g ≥ 2, and fix a theta divisor Θ ⊂ X which defines the given
polarization and which is symmetric in the sense that it is stable under the
inversion morphism −idX : X −→ X . For points x ∈ X(C) let Θx = Θ+ x
denote the corresponding translate of the theta divisor. The geometry of the
intersections

Yx = Θ∩Θx

is closely connected with the moduli of the given ppav and has been studied
in relation with Torelli’s theorem [25], with the Schottky problem [27] and
with the Prym map [61]; these intersections are also among the few concrete
examples for varieties with ample cotangent bundle [24]. One of our goals
is to understand how their cohomology varies with the point x. As we will
see later on, this is closely related to the convolution square of the theta
divisor (in the sense of the previous chapters).

To set the stage for what follows, in section 5.1 we discuss some general
features of the intersections Yx. If the theta divisor is smooth or has at most
isolated singularities, then for general x ∈ X(C) a Bertini-type argument
will show that Yx is smooth and that the involution σx : Yx −→ Yx, y 7→ x− y
is étale so that the quotient

Y+
x = Yx/σx

is again a smooth variety. After a survey of the cases g ≤ 3 where a close
connection with the moduli of Prym varieties emerges, we focus on the
dimension g = 4. Here we are dealing with a family of smooth surfaces of
general type with a beautiful explicit geometry. We will see that the varying
part of the cohomology of these surfaces defines over a Zariski-open dense
subset U ⊂ X a variation of Hodge structures V+ of rank six whose fibres
are of pure Hodge type (1,1). One of the main results of this chapter will
be the proof of the following conjecture of R. Weissauer.

THEOREM 5.1. For a general complex ppav X of dimension g = 4, the
monodromy group G of the local system underlying V+ is either the Weyl
group W (E6) or its unique simple subgroup of index two which is the kernel
of the sign homomorphism sgn : W (E6)−→ {±1}.
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Here by the monodromy group G = Im(π1(U,x) −→ AutC(V+,x)) we
mean the image of the monodromy representation of the fundamental group
on the stalk of V+ at some chosen point x ∈U(C). Up to isomorphism this
image is of course independent of our choices.

We remark that the occurance of the Weyl group W (E6) in the present
context can be related to the 27 lines on a cubic surface via the work of
E. Izadi on Prym-embedded curves [61], though this relationship will not
be used in what follows (for more about this see section 5.5 below). For the
proof of theorem 5.1 a detailed guideline will be provided in section 5.2,
so let us here only mention the most important points. To show that the
monodromy group G must be a subgroup of W (E6), we give in section 5.3
and 5.4 a detailed study of the integral cohomology and of the Néron-Severi
lattices of the smooth surfaces Yx and Y+

x for general x ∈ X(C). Once this
has been done, the main task will be to find a sufficiently large lower bound
on the monodromy group. For this we use two ideas. On the one hand, in
section 5.6 we relate the variation of Hodge structures V+ to the convolution
square of the theta divisor — this allows to apply the Tannakian formalism
from chapters 2 and 3 and theorem 4.2 to conclude that for a general ppav
the monodromy group G acts irreducibly on the stalks. On the other hand, a
degeneration argument will show that in dimension g = 4 this monodromy
group contains as a subgroup the corresponding monodromy group for the
Jacobian variety JC of a general curve C.

For Jacobian varieties we have the following result. Let C be a smooth
complex projective curve of even genus g = 2n, and identify the symmetric
product

Cn = (C×·· ·×C)/Sn

with the set of effective divisors of degree n. We then have the difference
morphism

dn : Cn×Cn −→ JC = Pic0(C)

which sends a pair (D,E) of effective divisors of degree n on the curve C
to the isomorphism class of the line bundle OC(D−E). Using the Poincaré
formula we will see in section 5.8 that the morphism dn is generically finite
of degree N =

(2n
n

)
. In particular, over some Zariski-open dense subset

of X the difference morphism restricts to a finite étale cover, and it makes
sense to speak of its Galois group G(dn). An application of Brill-Noether
sheaves [106] to be explained in proposition 5.24 (b) shows that if C is
a non-hyperelliptic curve of genus g = 4, the Galois group G(d2) can be
identified in a natural way with the monodromy group of the local system
underlying V+ on the Jacobian variety. The desired lower bound for the
proof of theorem 5.1 is then given by the following observation.
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THEOREM 5.2. If C is a general curve of genus g = 2n, then G(dn) is
either the alternating group AN or the full symmetric group SN .

The proof of this in section 5.8 again uses a degeneration, this time
from a general curve into a hyperelliptic one. We also remark that if the
Galois group G(dn) in the above theorem is the full symmetric group SN ,
then also the monodromy group G in the previous theorem has to be the
full Weyl group W (E6) because it then contains a reflection. However, at
present we do not know how to decide whether this is indeed the case.

5.1. Intersections of theta divisors

Consider a complex ppav X of dimension g≥ 2 with a symmetric theta
divisor Θ ⊂ X as above. In this section we will always assume that Θ is
smooth or has at most isolated singularities, a situation in which we have
the following Bertini-type result.

LEMMA 5.3. If the theta divisor Θ is smooth or has at most isolated
singularities, then over some Zariski-open dense subset U ⊂ X there exists
a smooth proper family

fU : YU −→ U

whose fibre over any point x ∈U(C) is isomorphic to Yx = Θ∩Θx.

Proof. Recall the general fact [55, cor. III.10.7] that if f : V −→W is a
morphism of complex algebraic varieties and if V is smooth, then over some
Zariski-open dense U ⊆W the restriction fU = f | f−1(U) : f−1(U)−→U is
a smooth morphism. Since we can replace W by any Zariski-open dense
subset, this remains true if the smoothness assumption on V is replaced
by the weaker assumption that the singular locus Sing(V ) is mapped via f
into a proper closed subset of W . In the case at hand, we apply this to the
composite morphism

f : V = Θ×Θ
� � // X×X a // X = W

where a : X ×X −→ X denotes the group law. If the theta divisor has at
most isolated singularities, then Sing(V ) = (Sing(Θ)×Θ)∪ (Θ×Sing(Θ))
has dimension g−1 or is empty. In both cases the general fact from above
shows that over some Zariski-open dense subset U ⊂ X the restriction fU
is smooth of relative dimension g− 2. This being said, our claim follows
from the observation that the projection onto the first factor Θ×Θ −→ Θ

induces an isomorphism f−1(x)∼= Θ∩Θx for x ∈ X(C). �

We want to study the fibres Yx of the above family. In this context an
important role is played by the involution σx : X −→ X ,y 7→ x− y. Notice
that the intersection Yx = Θ∩Θx is mapped onto itself by this involution
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because we assumed the theta divisor to be symmetric. The above Bertini
argument yields the following

COROLLARY 5.4. If the theta divisor is smooth or has only isolated
singularities, then there exists a Zariski-open dense subset U ⊂ X such that
for all x ∈U(C) the quotient morphism

Yx −→ Y+
x = Yx/σx

is an étale double covering between smooth varieties of dimension g−2.

Proof. From lemma 5.3 we get a Zariski-open dense subset U ⊂ X such
that Yx is smooth of dimension g−2 for all x ∈U(C). Shrinking this open
dense subset we can furthermore assume that it does not contain points of
the form x = 2y with y ∈ Θ(C). Then the involution σx : Yx −→ Yx is étale
for all points x ∈U(C), and our claim follows. �

For the rest of this section we always fix a point x with the properties in
the above corollary, and we put

Y = Yx, Y+ = Y+
x and σ = σx

for brevity. Like for any étale double cover of smooth complex varieties,
the rational cohomology of the quotient Y+ coincides with the eigenspace
for the eigenvalue +1 in

H•(Y,Q) = H•(Y,Q)+⊕H•(Y,Q)−

where the upper index ± indicates that the involution σ acts by ±1 on the
respective two eigenspaces. Now recall the following version of the weak
Lefschetz theorem [71, rem. 3.1.29]: If W is a smooth complex projective
variety of dimension d, then for all ample effective divisors D1, . . . ,Dr the
restriction map Hn(W,Z) −→ Hn(D1 ∩ ·· · ∩Dr,Z) is an isomorphism in
degrees n < d − r and a monomorphism in degree n = d − r. Note that
the intersecting divisors are not required to be smooth or transverse to each
other. In our case, since Y is the intersection of two ample divisors on X it
follows that the restriction morphism

Hn(X ,Q) −→ Hn(Y,Q)

is an isomorphism for n < g− 2 and a monomorphism for n = g− 2. So
the interesting part of the cohomology of Y sits in the middle cohomology
degree n = g−2 and can be defined as the orthocomplement

V = Hg−2(X ,Q)⊥ ⊆ Hg−2(Y,Q)

with respect to the intersection form. The involution σ acts by ε = (−1)g

on Hg−2(X ,Q), hence

Hg−2(X ,Q) ⊆ Hg−2(Y,Q)ε =

{
Hg−2(Y,Q)+ for g even,
Hg−2(Y,Q)− for g odd.
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So the orthocomplement from above admits a decomposition V =V+⊕V−
into the eigenspaces

V−ε = Hg−2(Y,Q)−ε and Vε = Hg−2(X ,Q)⊥ ⊆ Hg−2(Y,Q)ε

where now ⊥ denotes the orthocomplement inside the ε-eigenspace. Since
the restriction morphism in the weak Lefschetz theorem is a morphism of
Hodge structures, V− and V+ are Hodge substructures of Hg−2(Y,Q). To
compute their Hodge numbers one can use the Hirzebruch-Riemann-Roch
theorem together with the following result, where [Θ] ∈ H2(X ,Q) denotes
the fundamental class of the theta divisor.

LEMMA 5.5. In terms of the restriction θ = [Θ]|Y ∈H2(Y,Q), the Chern
classes of Y are given by

ci(Y ) = (−1)i · (i+1) ·θ i ∈ H2i(Y,Q).

In particular, the variety Y is of general type with canonical class KY = 2θ .

Proof. By definition we have Y = Θ∩Θx for some point x ∈ X(C). The
embedding Y ↪→Θ gives an adjunction sequence

0−→TY −→TΘ|Y −→ OX(Θx)|Y −→ 0

where TY and TΘ are the tangent bundles to Y resp. Θ (note that this makes
sense also if the theta divisor has isolated singularities, provided that x is
chosen in such a way that Y does not meet the singularities). By restriction
of the adjunction sequence for the embedding Θ ↪→ X we also get an exact
sequence

0−→TΘ|Y −→TX |Y −→ OX(Θ)|Y −→ 0.
Since the tangent bundle TX is trivial, it follows from these two adjunction
sequences that the Chern polynomial ct(Y ) = 1+ c1(Y ) · t + c2(Y ) · t2 + · · ·
satisfies

1 = ct(Y ) · (1+θ t)2

since the Chern polynomial is multiplicative in short exact sequences. From
this identity our claim about the Chern classes follows by a comparison of
coefficients. By definition the canonical sheaf ωY is the top exterior power
of the cotangent bundle T ∗

Y , so for the canonical class we get

KY = c1(ωY ) = c1(Λ
g−2(T ∗

Y )) = c1(T
∗

Y ) = −c1(Y ) = 2θ

where in the third equality we have used that by the splitting principle the
first Chern class of a bundle coincides with the first Chern class of any of
its exterior powers [40, rem. 3.2.3(c)]. In particular, the canonical class KY
is ample and therefore also big in the sense of [71, sect. 2.2], so the smooth
variety Y is of general type. �

With notations as in the above lemma, to compute intersection numbers
between powers of Chern classes we only need to determine the image of
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the top power θ g−2 under the degree map degY : Hg−2(Y,Q) −→ Q. To
achieve this recall that Y is the intersection of two general translates of the
theta divisor. Since the intersection of cycles corresponds to the cup product
on cohomology, it follows that the fundamental class of Y is the cup product
square [Y ] = [Θ]2 ∈ H4(X ,Q). Hence

degY (θ
g−2) = degX([Θ]g−2 · [Y ]) = degX([Θ]g) = g!

where the last equality holds by the Poincaré formula [13, sect. 11.2.1]. As
a direct application we have the following

COROLLARY 5.6. For g≥ 2 the topological Euler characteristic of Y is
given by the formula

χ(Y ) = (−1)g · (g−1) ·g! .

Proof. By the Gauss-Bonnet theorem [48, p. 416] the topological Euler
characteristic of any compact complex manifold is equal to the degree of its
top Chern class. Hence χ(Y ) = degY (cg−2(Y )), and the claim follows from
lemma 5.5 and from the above formula for the degree degY (θ

g−2). �

To get a feeling for the geometry involved in the above constructions,
let us take a more explicit look at the situation for some small values of the
dimension g = dim(X) of the underlying ppav.

The case g = 2. Here Y consists of two points which are interchanged
by the involution σ so that we have the following picture.

s
s

p

q

A
AU

K

Θ

Θx

The fundamental classes p,q of the two interchanged points of Y form a
basis of H0(Y,Q), and the eigenspace

H0(Y,Q)+ = Q · (p+q) = H0(X ,Q)

equals the image of the weak Lefschetz embedding. Thus V+ = 0, and the
Hodge structure V− =Q · (p−q) of weight zero has rank one.

The case g = 3. In this case the morphism Y −→ Y+ is an étale double
covering of smooth projective curves. To any such covering one can attach
its Prym variety [79] [13, ch. 12]. Before we come to the specific example
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at hand, let us briefly recall the definition and some basic features of Prym
varieties in general, referring to loc. cit. for more details.

For any covering C̃ −→C of smooth projective curves we have a norm
homomorphism

NC̃/C : JC̃ −→ JC

between the corresponding Jacobian varieties, induced by the pushforward
morphism on divisors. This norm homomorphism is always surjective. For
an étale double covering its kernel has precisely two connected components,
and one defines the Prym variety

P = Prym(C̃/C) = (ker(NC̃/C))
0 ⊂ JC̃

to be the connected component which contains the origin. By construction
this is an abelian subvariety of JC̃. The special thing about étale double
covers of curves is that this Prym variety also comes along with a principal
polarization, indeed by loc. cit. the principal polarization on JC̃ restricts
on the Prym variety P to twice a principal polarization. Prym varieties are
useful in the study of ppav’s since they are more general than Jacobian
varieties but nevertheless still accessible in terms of algebraic curves. Note
that if the curve C has genus g+1 (say), then C̃ has genus 2g+1 due to the
Riemann-Hurwitz formula [55, cor. IV.2.4], and then the Prym variety has
dimension

dim(P) = (2g+1)− (g+1) = g.

Hence if we denote by Mg+1 the coarse moduli space of smooth projective
curves of genus g+ 1 and define Rg+1 to be the coarse moduli space of
étale double covers of such curves, then we have a diagram

Rg+1
ϕ

{{vvv
vv

vv
vv π

""D
DD

DD
DD

D

Mg+1 Ag

where ϕ is the forgetful morphism and where π is the morphism that assigns
to a double covering its Prym variety. Here the morphism ϕ is generically
finite of degree 2g+1− 1 because the étale double covers of a given curve
correspond bijectively to the non-trivial two-torsion points on its Jacobian
variety. The Prym morphism π plays an important role for the moduli of
abelian varieties and has been studied a lot in the literature; as the most
important results, we only mention that for g ≥ 6 it is generically finite of
degree one [39] but never injective [34]. In dimensions g < 6 the Prym
morphism π is no longer generically finite but its fibres have a surprisingly
rich geometric structure which is discussed in loc. cit.
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This brings us back to the étale double covering Y −→ Y+ defined by
the intersection of two general translates of the theta divisor on a complex
ppav X of dimension g = 3. Here the curve Y has genus 7 by corollary 5.6,
hence the Prym variety P = Prym(Y/Y+) is a complex ppav of dimension 3
as well. The following result has been obtained in [84] and [66].

THEOREM 5.7. For a general complex ppav X of dimension g = 3 the
following properties are satisfied.

(a) For general x ∈ X(C) the Prym variety P of the cover Yx −→ Y+
x

is isomorphic to the ppav X.
(b) Every étale double covering of smooth curves with Prym variety

isomorphic to X arises as above for some point x ∈ X(C), and the
coverings for two points x1,x2 are isomorphic iff x1 =±x2.

In other words, the above construction identifies the fibre of the Prym
morphism π : R4 −→ A3 over a general ppav X ∈ A4(C) with an open
dense subset of the Kummer variety

KX = X/〈±idX〉.
Fixing a general point x ∈ X(C), we now again use the notation Y = Yx
etc. The definition of the Prym variety P as a component of the kernel of
the norm epimorphism N : JY � JY+ shows that the Jacobian variety JY is
isogenous to P× JY+, which together with the identification in part (a) of
the above theorem implies

H1(Y,Q) = H1(X ,Q)⊕H1(Y+,Q).

Hence in this case we have V− = 0, and V+ = H1(Y+,Q) is a pure Hodge
structure of weight one and rank eight.

The case g = 4. Here Y −→ Y+ is an étale double covering of smooth
projective surfaces that will occupy us for the rest of this chapter. We claim
that V− has Hodge numbers h2,0 = h0,2 = 11 and h1,1 = 30 whereas V+ is
of pure Hodge type (1,1) and rank six. Indeed, bearing in mind the natural
identifications

H2(Y+,Q) = H2(Y,Q)+ = H2(X ,Q)⊕V+

this is a direct consequence of the numerical data in the following table.

LEMMA 5.8. For a complex ppav X of dimension g = 4 we have the
following Hodge numbers.

h2,0 = h0,2 h1,1 h1,0 = h0,1

Y 17 52 4
Y+ 6 22 0
X 6 16 4
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Proof. The last row follows from the Hodge decomposition for a ppav
of dimension g = 4 and has only been included for reference. Similarly,
the last column is clear because H1(Y,Q) = H1(Y,Q)− = H1(X ,Q) by the
weak Lefschetz theorem. It remains to compute the Hodge numbers of the
smooth surfaces Y and Y+ in cohomology degree two. Corollary 5.6 gives
the topological Euler characteristic χ(Y ) = 72, which implies h2(Y ) = 86
because h0(Y ) = h4(Y ) = 1 and h1(Y ) = h3(Y ) = 8. In the same way, via
lemma 5.5 the Hirzebruch-Riemann-Roch theorem gives the holomorphic
Euler characteristic

χ(OY ) = degY (c
2
1(Y )+ c2(Y ))/12 = degY ((−2θ)2 +3θ

2)/12 = 14.

Plugging in the values h0,0(Y ) = 1 and h0,1(Y ) = 4 we get h0,2(Y ) = 17, and
then h1,1(Y ) = 52 because the Hodge numbers in degree two must sum up
to the second Betti number h2(Y ) = 86.

To obtain from these numbers also the Hodge numbers of the quotient
surface Y+ =Y/σ we use that the quotient morphism q : Y →Y+ is an étale
double covering. In particular we have a commutative diagram

H2(Y+,Q)×H2(Y+,Q)
∪ //

q∗
��

H4(Y+,Q)
degY+ //

q∗
��

Q

2·
��

H2(Y,Q)×H2(Y,Q)
∪ // H4(Y,Q)

degY // Q

where the vertical arrow on the right hand side is multiplication with the
degree deg(q) = 2, and the Chern classes satisfy ci(Y ) = q∗(ci(Y+)) for
all i. This being said, the Gauss-Bonnet and Hirzebruch-Riemann-Roch
theorem show

χ(Y+) = χ(Y )/2 = 36 and χ(OY+) = χ(OY )/2 = 7.

Hence it follows that h2(Y+) = 36− 1− 1 = 34 and h0,2(Y+) = 7− 1 = 6
by similar computations as above, and we are done. �

As an immediate corollary we obtain that the intersection form has the
following signatures on the various occuring subspaces of H2(Y,Q), where
we denote by s+ and s− the dimension of maximal subspaces on which the
form is positive resp. negative definite.

COROLLARY 5.9. For g = 4 the intersection form has the following
signatures on the various subspaces of H2(Y,Q).

H2(Y,Q) H2(Y+,Q) H2(X ,Q) V− V+

s+ 35 13 13 22 0
s− 51 21 15 30 6
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Proof. The Hodge index theorem [103, th. 6.33] says that for a smooth
compact Kähler surface S with Kähler class ω ∈ H1,1(X)∩H2(X ,R) the
intersection form is

• positive definite on the subspace (H2,0(S)⊕H0,2(S))∩H2(S,R)
and also on the line R ·ω ,
• negative definite on the orthocomplement of the Kähler class ω

inside H1,1(S)∩H2(S,R).
In our case, taking S = Y and using the Hodge numbers in lemma 5.8 one
sees that on H2(Y,Q) = H2(Y,Q)+⊕V− and H2(Y,Q)+ = H2(X ,Q)⊕V+

the intersection form has the given signatures. �

In particular, it follows that on the subspace V+ the intersection form is
negative definite. In sections 5.3 and 5.4, working on the level of integral
cohomology we will determine the structure of the lattices whose signatures
have been listed above. But let us first say a few words about the variations
of Hodge structures defined by the above subspaces.

5.2. Variations of Hodge structures

So far we have mostly fixed a general point x ∈ X(C). Now let us see
what happens when this point varies. For the moment the dimension g can
be arbitrary, but as before we always assume that the theta divisor Θ⊂ X is
smooth or has only isolated singularities. To begin with, we put the Hodge
structures V± from section 5.1 into a family as follows.

LEMMA 5.10. Over some Zariski-open dense subset U ⊂ X there exists
for each integer n ≥ 0 a polarized variation of pure Hodge structures Hn

with stalks

Hn
x = Hn(Yx,Q),

and there are subvariations

V+ ⊂ Hg−2 and V− ⊂ Hg−2

whose stalks are precisely the subspaces V+ and V− defined in section 5.1.

Proof. Consider the Zariski-open dense subset U ⊂ X and the smooth
proper family fU : YU −→ U from lemma 5.3 and corollary 5.4. We can
then define

Hn = Rn fU∗(QYU ) for n≥ 0

since for any smooth proper family of complex varieties the direct images
define variations of Hodge structures whose stalks are the cohomology of
the fibres [103, chapt. III]. It remains to construct the subvariations V±. For
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this we consider the commutative diagram

YU
� � i //

fU %%JJJJJJJJJJJJ U×X

pU
��

U

where pU denotes the projection onto the first factor and where the closed
immersion i is defined by i(x,y) = (x+ y,y), recalling that YU ⊂ Θ×Θ by
construction. The adjunction morphism QU×X −→ i∗(QYU ) defines in each
degree n≥ 0 a morphism

Hn(X ,Q)⊗QQU = Rn pU∗(QU×X) −→ Rn fU∗(QYU )

of polarized variations of pure Hodge structures, and this morphism induces
on each fibre the restriction morphism that occurs in the weak Lefschetz
theorem. Furthermore, the involution

σ : U×X −→ U×X , (x,y) 7→ (x,x− y)

preserves YU and restricts on each fibre Yx to the involution σx. This being
said, we can perform the constructions from section 5.1 fibre by fibre to
obtain the subvariations V± ⊂Hg−2 with the desired property. �

As we mentioned in the introduction, one of the principal goals of this
chapter will be the proof of theorem 5.1. We now explain how this will
follow from the results to be discussed in the next sections. Let us for
convenience first recall the statement of the theorem.

THEOREM 5.1. For a general complex ppav X of dimension g = 4 the
monodromy group G of the local system V+ is either the Weyl group W (E6)
or its unique simple subgroup of index two which is the kernel of the sign
homomorphism sgn : W (E6)−→ {±1}.

Plan of the proof. To begin with, in sections 5.3 and 5.4 we give a
detailed study of the integral cohomology and the Néron-Severi lattices of
the smooth surfaces Yx = Θ∩Θx and Y+

x =Yx/σx for x ∈U(C). As a result
of the lattice computations it will in particular follow that if we view V+ as
a polarized variation of Z-Hodge structures, then its stalks can be identified
with the E6-lattice up to a rescaling of the bilinear form. Coming back to
the monodromy group G of the underlying local system, we then deduce in
proposition 5.18 that

G ≤ W (E6)

is a subgroup of the Weyl group. Once we have this upper bound, we can
proceed as follows. If equality holds, then we are done. If not, then G must
be contained in some maximal proper subgroup M <W (E6). Now the table
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of maximal subgroups in [23, p. 26] shows that any such subgroup M must
be conjugate to one of the following subgroups:

(a) the simple subgroup W+(E6) of index two which is the kernel of
the sign homomorphism sgn : W (E6)−→ {±1},

(b) the stabilizer of a line through some minimal vector in the dual
lattice E∗6 = {v ∈ E6⊗ZQ | 〈v,w〉 ∈ Z ∀w ∈ E6},

(c) the stabilizer of a line through some root vector inside E6, with the
symmetric group S6 as a subgroup of index two,

(d) three other subgroups, two of order 24 ·34 and one of order 27 ·39.

Furthermore, any proper subgroup of the simple group in (a) is by the table
of loc. cit. also contained in some of the maximal subgroups described in
cases (b), (c) or (d). So for the proof of theorem 5.1 it will suffice to show
that for a general ppav the monodromy group G cannot be contained in any
of the subgroups listed in (b), (c) and (d).

One tool for this will be the Tannakian formalism of convolution given
in chapters 2 and 3. Indeed, consider the perverse intersection cohomology
sheaf δΘ = CΘ[g− 1] ∈ Perv(X ,C). Over the open dense subset U ⊂ X it
turns out that the local system underlying V+ can be identified with a direct
summand of the convolution

δΘ ∗δΘ ∈ Db
c (X ,C),

as we will show in section 5.6. Since for a general ppav of dimension g = 4
we know the Tannaka group G(δΘ)= Sp24(C) from theorem 4.2, it will then
follow via the representation theory of the symplectic group that the local
system underlying V+ is irreducible — in other words, the monodromy
group G acts irreducibly on the stalks E6⊗Z C of this local system, see
proposition 5.23. Hence G cannot be contained in the stabilizer of a line as
described in the above cases (b) or (c).

The remaining cases cannot be excluded with the same argument, in fact
some of the subgroups in case (d) act irreducibly on E6⊗ZC. An example
is given in appendix C. However, a look at the group orders shows that the
maximal subgroups in case (d) do not contain the alternating group A6 as a
subgroup, so the proof of theorem 5.1 will be finished if we can show that
for a general ppav there exists an embedding

A6 ↪→ G.

For this we use a degeneration argument to fill in the dotted lines in the
following Hasse diagram, where G(d2) is the Galois group of the difference
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morphism for a general curve as in theorem 5.2.

W (E6)

G

��������
S6

???????

W+(E6) G(d2)

�������

A6

AAAAAAAA

More specifically, in lemma 5.28 we construct over some smooth complex
quasi-projective curve S a principally polarized abelian scheme XS −→ S
with a relative theta divisor ΘS ⊂ XS such that the following properties are
satisfied.

(1) For some point s0 ∈ S(C) the fibre Xs0 is the Jacobian variety of
a general curve of genus g = 4, but for all other points s 6= s0 the
theta divisor Θs ⊂ Xs is smooth.

(2) The relative addition morphism f : YS = ΘS×S ΘS −→ XS restricts
to a smooth proper morphism

fUS : f−1(US) −→ US

over some Zariski-open dense subset US ⊂ XS that surjects onto S.

We remark that the statement in (2) is nothing but the relative version of
the Bertini-type lemma 5.3. The proof of lemma 5.10 carries over verbatim
to this relative setting, so over the Zariski-open dense subset US ⊂ XS we
obtain two variations of Hodge structures

VS+ and VS−

which on the fibre over each point s ∈ S(C) restrict to the variations V±
from lemma 5.10. If for each such point we denote by G(s) the monodromy
group of the local system

VS+|Us on the fibre Us ⊂ Xs,

then a general result about degenerating monodromy representations, to be
recalled in lemma 5.27 below, says that for general s ∈ S(C) we have an
embedding

G(s0) ↪→ G(s).
So we will be finished if we can show that the monodromy group G(s0) for
the Jacobian variety Xs0 = JC of a general curve C of genus g = 4 contains
the group A6 as a subgroup. To achieve this we show in proposition 5.24
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via the theory of Brill-Noether sheaves that G(s0) coincides with the Galois
group of the difference morphism

d2 : C2×C2 −→ Pic0(C), (D,E) 7→ [OC(D−E)]

where C2 denotes the second symmetric product of the curve, identified with
the group of effective divisors of degree two. By theorem 5.2 (to be proven
in section 5.8 below) the Galois group G(d2) of this difference morphism
is either the alternating group A6 or the full symmetric group S6. This fills
in the dotted lines in the above Hasse diagram and thereby completes the
proof of theorem 5.1. �

5.3. Integral cohomology

Let X be a complex ppav of dimension g = 4 with a smooth symmetric
theta divisor Θ⊂ X . We fix a general point x ∈ X(C) and consider the étale
double covering of smooth surfaces

Y = Θ∩Θx −→ Y+ = Y/σ

for the involution σ = σx as in corollary 5.4. In this section we determine
the cohomology of these surfaces with integral coefficients, refining the
computations that we did with rational coefficients in section 5.1. The result
can be summarized in the following way.

PROPOSITION 5.11. The smooth projective surfaces Y and Y+ have the
following integral cohomology groups.

n 0 1 2 3 4
Hn(Y,Z) Z Z8 Z86 Z8 Z

Hn(Y+,Z) Z 0 Z34⊕ (Z/2Z)9 (Z/2Z)9 Z

Moreover, the quotient morphism q : Y −→ Y+ induces an epimorphism
onto the σ -invariants

q∗ : H2(Y+,Z) � H2(Y,Z)+ ⊂ H2(Y,Z)

and the kernel of this epimorphism is the torsion subgroup of H2(Y+,Z).

Proof. We will use the weak Lefschetz theorem in the following integral
form, see [76, cor. 7.3] and [104, th. 1.23]. Let V be a complex projective
variety of dimension n with an ample effective divisor W ⊂V with smooth
complement V \W . Then the restriction map

Hk(V,Z) −→ Hk(W,Z)
is an isomorphism for k < n− 1 and a monomorphism for k = n− 1, and
the pushforward map

Hk(W,Z) −→ Hk(V,Z)
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is an isomorphism for k < n−1 and an epimorphism for k = n−1. Applying
this first to the ample divisor Θ ⊂ X and then to the ample divisor Y ⊂ Θ,
we in particular obtain that

Hn(Y,Z) ∼= Hn(X ,Z) and Hn(Y,Z) ∼= Hn(X ,Z) for n < 2.

In particular, the weak Lefschetz theorem for cohomology implies that the
groups Hn(Y,Z) have the claimed form for n < 2. Similarly, for n > 2
the corresponding statement follows from the weak Lefschetz theorem for
homology because Hn(Y,Z) ∼= H4−n(Y,Z) by Poincaré duality. For any n
we furthermore have an exact sequence

0 −→ Ext(Hn−1(Y,Z),Z)︸ ︷︷ ︸
torsion group

−→ Hn(Y,Z) −→ Hom(Hn(Y,Z),Z)︸ ︷︷ ︸
torsion-free

−→ 0

by the universal coefficient theorem. Putting n = 2 and using that by the
weak Lefschetz theorem the group H1(Y,Z) ∼= H1(X ,Z) is torsion-free so
that Ext(H1(Y,Z),Z) = 0, we obtain that

H2(Y,Z) ∼= Hom(H2(Y,Z),Z)

is a free abelian group. The rank of this group is equal to h2(Y ) = 86 by
lemma 5.8. Altogether it then follows that the integral cohomology groups
of Y are those given in the table.

It remains to show that q∗ : H2(Y+,Z)−→H2(Y,Z) is an epimorphism
onto the σ -invariants whose kernel is the torsion subgroup, and to determine
the groups Hn(Y+,Z). In the computation of these cohomology groups we
can in fact restrict our attention to degrees n ≤ 2. Indeed, Poincaré duality
says that

Hn(Y+,Z) ∼= H4−n(Y+,Z)
for all n, hence by the universal coefficient theorem we have (non-canonical)
isomorphisms

Hn(Y+,Z) ∼= Hn−1(Y+,Z)tor⊕Hn(Y+,Z)free

∼= H5−n(Y+,Z)tor⊕H4−n(Y+,Z)free

where the subscripts tor and free refer to the maximal torsion subgroup and
the maximal free abelian subgroup, respectively. So for the computation of
the groups Hn(Y+,Z) it suffices to deal with degrees n≤ 2. This being said,
we can argue as follows.

Recall from topology [18, ex. VII.4(b)] that for every regular covering
map W −→W+ = W/Γ between connected, locally pathwise connected
topological spaces with Galois group Γ = Aut(W/W+), one has a spectral
sequence

E pq
2 = H p(Γ,Hq(W,Z)) =⇒ H p+q(W+,Z)
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where the left hand side denotes group cohomology with coefficients in the
Γ-module Hq(W,Z). We apply this for W = Y and Γ = 〈σ〉. To compute
in this case some of the E2-terms, recall that the group cohomology of any
module M under the cyclic group 〈σ〉 ∼= Z/2Z is given by

H p(〈σ〉,M) =


ker(σ −1) for p = 0,
ker(σ +1)/im(σ −1) for p > 0 odd,
ker(σ −1)/im(σ +1) for p > 0 even.

Let us plug in M =Hq(Y,Z) with q∈ {0,1,2}. Clearly on H0(Y,Z)∼=Z the
involution σ acts trivially, whereas by the weak Lefschetz theorem we know
that on H1(Y,Z) ∼= H1(X ,Z) ∼= Z8 the involution σ acts by −1. Hence in
this case we have

ker(σ +1 | Hq(Y,Z))
im(σ −1 | Hq(Y,Z))

∼=

{
0 for q = 0,
(Z/2Z)8 for q = 1,

ker(σ −1 | Hq(Y,Z))
im(σ +1 | Hq(Y,Z))

∼=

{
Z/2Z for q = 0,
0 for q = 1.

In other words, in the case at hand the E2-tableau of the spectral sequence
takes the following form.

q

...
...

...
...

2 H2(Y,Z)+

++WWWWWWWWWWWWWWWWWW ∗

**VVVVVVVVVVVVVVVVV ∗ ∗ · · ·

1 0

++WWWWWWWWWWWWWWWWWWWW (Z/2Z)8

++VVVVVVVVVVVVVVVVV 0 (Z/2Z)8 · · ·

0 Z 0 Z/2Z 0 · · ·
//

OO

0 1 2 3 p

In particular it follows that H0(Y+,Z) = Z and H1(Y+,Z) = 0. The zeroes
for (p,q) = (2,1),(3,0) furthermore show that for the graded object with
respect to the limit filtration we have

Gri(H2(Y+,Z)) =


H2(Y,Z)+ for i = 2,
(Z/2Z)8 for i = 1,
Z/2Z for i = 0,
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and the top quotient defines a surjection

H2(Y+,Z) = E2
∞ � E02

∞ = E02
2 = H2(Y,Z)+.

By construction of the spectral sequence this surjection coincides with the
map q∗ induced by the quotient morphism q : Y −→ Y+.

The spectral sequence also shows that the kernel K of this surjection is
an extension of (Z/2Z)8 by Z/2Z. In fact K = (Z/2Z)9 because K must be
a 2-torsion group: If we denote by

q! : H2(Y,Z) −→ H2(Y+,Z)
the Gysin map (i.e. the Poincaré dual to the pushforward on homology),
then q!q∗ is multiplication by the degree deg(q) = 2, hence for any α ∈ K
it follows that 2α = q!q∗(α) = q!(0) = 0 as claimed.

To conclude the proof, note that F = H2(Y+,Z)/K is a subgroup of
the free abelian group H2(Y,Z). As such the group F is torsion-free and
therefore equal to the free part of H2(Y+,Z), whose rank is h2(Y+) = 34
by the computation of Hodge numbers in lemma 5.8. �

5.4. Néron-Severi lattices

Recall that in the setting of the previous section we have embeddings of
free abelian groups

H2(X ,Z) ⊂ H2(Y,Z)+ ⊂ H2(Y,Z).
In what follows we equip these groups with the integral bilinear form that
is given by the intersection form on Y . The goal of the present section is to
determine the structure of the obtained integral lattices with respect to this
bilinear form, for which we first briefly recall from [22] some basic notions
from lattice theory that will be used throughout.

By a lattice we mean a pair consisting of a finitely generated free abelian
group L and a non-degenerate symmetric bilinear form b : L× L −→ Z,
though we will usually suppress the bilinear form in the notation. Such a
lattice is called even if b(λ ,λ ) ∈ 2Z for all λ ∈ L. For integers n 6= 0 we
denote by L(n) the lattice with the same underlying free abelian group as L
but with the bilinear form n ·b in place of b. As usual, by an embedding of
lattices we mean an embedding of free abelian groups which respects the
bilinear forms, and similarly for isomorphisms of lattices. For example, the
diagonal embedding

diag : L(2) ↪→ L2 = L⊕L

is given by λ 7→ (λ ,λ ). We also remark that any lattice can be defined with
respect to a chosen basis e1, . . . ,en of the underlying free abelian group by
the corresponding Gram matrix — the non-degenerate integral symmetric
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matrix (b(ei,ek))i,k=1,...,n of size n×n whose entries are the scalar products
between the basis vectors. The discriminant of a lattice is defined as the
determinant of its Gram matrix with respect to any chosen basis, and the
lattice is called unimodular if its discriminant is ±1. In what follows we
consider the lattice

Λ = Z4 with Gram matrix
(0 1 1 1

1 0 1 1
1 1 0 1
1 1 1 0

)
and the standard hyperbolic lattice U = Z2 with Gram matrix

(
0 1
1 0

)
. Note

that both Λ and U are even lattices and that U is unimodular whereas a direct
calculation shows that Λ has discriminant−3. This being said, consider the
even lattices

K = U12⊕Λ and L = U13⊕E8(−1).

In terms of these two lattices, the main result of the present section can be
formulated as follows.

PROPOSITION 5.12. There exists an isomorphism H2(Y,Z) ∼= L2⊕U9

of lattices which gives a commutative diagram

H2(X ,Z) � � //

∼=
��

H2(Y,Z)+ � � //

∼=
��

H2(Y,Z)

∼=
��

K(2) � � i(2)
// L(2) � � (diag,0)

// L2⊕U9

for some lattice embedding i : K ↪→ L with orthocomplement K⊥ ∼= E6(−1).

To complete the picture, we remark that with the above identifications
it follows that on the lattice L2⊕U9 the involution σ : Y −→ Y acts by the
formula

σ(λ1,λ2,u) = (λ2,λ1,−u) for u ∈U9 and λ1,λ2 ∈ L.

Indeed, looking at the eigenspace decomposition over the rational numbers
one sees that the involution σ must act by −1 on the orthocomplement of
the σ -invariant part H2(Y,Z)+ inside H2(Y,Z).

The proof of proposition 5.12 will occupy the rest of this section and
will also involve a study of the intersection form on H2(Y+,Z). Note that
since this latter cohomology group contains torsion, it is not a lattice in the
above sense. So let us introduce the following notations. For any smooth
complex projective surface S let

LS = H2(S,Z)/Torsion
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be the quotient of the finitely generated abelian group H2(S,Z) by its torsion
subgroup. Since the intersection form

b : H2(S,Z)×H2(S,Z) −→ Z

takes its values in the torsion-free group Z, it is clear that the intersection
pairing between any torsion class and any other class vanishes. Hence the
intersection form of the surface factors over a non-degenerate symmetric
bilinear form b : LS× LS −→ Z, and we view LS as a lattice with respect
to this bilinear form. Note that by Poincaré duality this lattice is always
unimodular. We also have the following well-known

LEMMA 5.13. If for some integral class α ∈ H2(S,Z) the first Chern
class satisfies c1(S)≡ 2α modulo torsion, then LS is an even lattice.

Proof. By naturality, the reduction map r : Z −→ Z/2Z gives rise to a
commutative diagram

H2(S,Z)×H2(S,Z) ∪ //

(r∗,r∗)
��

H4(S,Z)
degS //

r∗
��

Z

r
��

H2(S,Z/2)×H2(S,Z/2) ∪ // H4(S,Z/2)
degS // Z/2

where the degree maps degS are defined by evaluation on the fundamental
homology class of S. The composite of the upper horizontal arrows is the
intersection pairing we are interested in. Now the image of the first Chern
class c1(S) under the reduction map r∗ : H2(S,Z) −→ H2(S,Z/2Z) is the
Stiefel-Whitney class w2(S) by [77, p. 171], and for the intersection form
modulo two we have

degS(w2(S)∪ r∗(β )) = r(degS(β
2)) for all β ∈ H2(S,Z)

by the Wu formula [45, prop. 1.4.18]. Hence the claim follows. �

After this topological digression, let us now come back to the smooth
surfaces Y and Y+ defined by a general intersecion of translates of a smooth
theta divisor on a complex ppav X of dimension g= 4. Let us first determine
the abstract isomorphism type of the corresponding lattices.

LEMMA 5.14. With notations as above,

LY ∼= L2⊕U9 and LY+ ∼= L.

Proof. It follows from corollary 5.9 that the intersection form on the
lattices LY and LY+ is indefinite of signature (35,51) resp. (13,21). An even
unimodular lattice is determined uniquely by its rank and signature [96], so
it only remains to show that both LY and LY+ are even lattices. For this we
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can apply lemma 5.13. Indeed, the condition of the lemma holds for LY
because

c1(Y ) = 2α for the class α = −[Θ]|Y ∈ H2(Y,Z)

by lemma 5.5. Furthermore, by proposition 5.11 we can find α+ ∈ LY+

such that q∗(α+) = α where q : Y −→Y+ is the quotient morphism. It then
follows that

q∗(c1(Y+)−2α
+) = q∗(c1(Y+))−2q∗(α+) = c1(Y )−2α = 0

so that by proposition 5.11 the class c1(Y+)−2α+ is a torsion class. Hence
by lemma 5.13 also LY+ is an even lattice. �

Now that we have found the abstract isomorphism type of the lattices LY
and LY+ , the next thing to be done is to determine the relationship between
these two lattices. For this we denote by

L+
Y = H2(Y,Z)+ ⊂ LY = H2(Y,Z)

the invariants of LY under the action of the involution σ , i.e. the lattice
which occurs in the middle part of the diagram in proposition 5.12. The
relationship we are looking for is then given by

LEMMA 5.15. The pull-back under the quotient morphism q : Y −→Y+

gives rise to a lattice isomorphism

q∗ : LY+(2)
∼=−→ L+

Y ⊂ LY .

Proof. By proposition 5.11 the pull-back q∗ induces an isomorphism
of the underlying abelian groups. Via this isomorphism, the intersection
form on LY induces twice the intersection form on LY+ since q : Y → Y+

is an étale double cover: The degree maps for the top cohomology of our
surfaces satisfy

degY (q
∗(a)∪q∗(b)) = degY (q

∗(a∪b)) = 2degY+(a∪b)

for all cohomology classes a,b in H2(Y+,Z). �

From the above two lemmas we obtain the middle and the right vertical
isomorphism in the diagram of proposition 5.12. These isomorphisms can
be chosen in such a way that the square on the right hand side of the diagram
commutes, indeed we have the following

LEMMA 5.16. Let L1,L2 ⊂ LY be sublattices of rank r ≤ 34 which are
primitive in the sense that the quotients LY/L1 and LY/L2 are torsion-free
groups. Then any isomorphism ϕ0 : L1 −→ L2 of lattices extends to a lattice
automorphism ϕ : LY −→ LY .
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Proof. This is a direct application of the criterion for the extension of
lattice isomorphisms in [62]. Let us briefly check that the two conditions
in loc. cit. are satisfied in this case: The first condition is that the rank r
of the two primitive sublattices and the signature (s+,s−) = (35,51) of the
ambient lattice LY satisfy

2(r+1) ≤ (s++ s−)−|s+− s−|,

which in the present situation is granted by our assumption that r≤ 34. The
second condition concerns primitive vectors v ∈ LY which are characteristic
in the sense that b(v,w)≡ b(w,w) mod 2Z for all vectors w ∈ LY . But in the
case at hand this condition is void because an even unimodular lattice does
not contain any primitive characteristic vectors. So by loc. cit. the given
isomorphism ϕ0 can be extended to an automorphism ϕ as claimed. �

To finish the proof of proposition 5.12 it remains to deal with the square
on the left hand side in the diagram of that proposition. For this we need to
compute the image of the weak Lefschetz embedding, by which we mean
the sublattice

LX = H2(X ,Z) ⊂ L+
Y = H2(Y,Z)+.

Note that K =U12⊕Λ has signature (13,15) and discriminant −3 whereas
the even unimodular lattice L = U13⊕E8(−1) has signature (13,21). So
the orthocomplement K⊥ of any embedding

i : K ↪→ L

must be a negative definite even lattice of rank six with discriminant 3,
hence abstractly isomorphic to E6(−1) by the classification of lattices with
small discriminant in [21]. Thus the proof of proposition 5.12 is completed
by the following computation.

LEMMA 5.17. With notations as above, there exists an isomorphism of
lattices

LX
∼=−→ K(2).

Proof. Consider the embedding i : Y = Θ∩Θx ↪→ X . By definition the
Gysin morphism i! on cohomology is the Poincaré dual of the pushforward
morphism i∗ on homology, so we have a commutative diagram

Hn(Y,Z)
i! //

∼=
��

Hn+4(X ,Z)

∼=
��

H4−n(Y,Z)
i∗ // H4−n(X ,Z).
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If 1 ∈ H0(Y,Z) denotes the unit element of the cohomology ring of Y , the
fundamental cohomology class of Y in X is i!(1) = [Y ] ∈ H4(X ,Z). So the
projection formula shows

i!(i∗(γ)) = i!(i∗(γ)∪1) = γ ∪ i!(1) = γ ∪ [Y ]

for all cohomology classes γ ∈ H4(X ,Z). This being said, it follows from
the commutative diagram

H2(X ,Z)×H2(X ,Z) ∪ //

i∗
��

H4(X ,Z)
−∪[Y ]

//

i∗
��

H8(X ,Z)

degX
��

H2(Y,Z)×H2(Y,Z) ∪ // H4(Y,Z)
degY //

i!
77ooooooooooo

Z

that the intersection form on H2(Y,Z) restricts on the subspace H2(X ,Z) to
the bilinear form

b : H2(X ,Z)×H2(X ,Z)−→ Z, (α,β ) 7→ degX(α ∪β ∪ [Y ]).
We want to compute this bilinear form. Since the intersection product in
homology corresponds to the cup product in cohomology, the fundamental
class of Y in cohomology is

[Y ] = [Θ∩Θx] = [Θ]∪ [Θx] = [Θ]2.

To compute this class explicitly, we choose a basis of the cohomology ring
of X as follows. The principal polarization on X is given by an alternating
bilinear form on H1(X ,Z). Take an integral basis

λ1, . . . ,λ4,µ1, . . . ,µ4 ∈ H1(X ,Z) ∼= Z8

with respect to which this alternating form is given by (λi,λk)= (µi,µk)= 0
and (λi,µk) =−(µk,λi) = δik for all i, k, and denote by

x1, . . . ,x4,y1, . . . ,y4 ∈ H1(X ,Z) = Hom(H1(X ,Z),Z)

the dual basis. Since the Chern class [Θ] = c1(OX(Θ)) defines the principal
polarization, it follows that in the exterior algebra H•(X ,Z)=Λ•(H1(X ,Z))
this class is given by

[Θ] =
4

∑
i=1

xi∧ yi ∈ H2(X ,Z).

The cup product in cohomology corresponds to the wedge product in the
exterior algebra, so we get

[Y ] = [Θ]2 =
( 4

∑
i=1

xi∧ yi

)
∧
( 4

∑
j=1

x j∧ y j

)
= 2 ·∑

1≤i< j≤4
xi∧ yi∧ x j∧ y j.
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In particular, it follows that v∧ [Y ] = 0 for all vectors v ∈ H4(X ,Z) of the
form v = xk ∧ xl ∧ xm ∧ xn or v = xk ∧ xl ∧ xm ∧ yn or v = xk ∧ yl ∧ ym ∧ yn
or v= yk∧yl∧ym∧yn with arbitrary indices k, l,m,n, and also for all vectors
of the form v = xk ∧ xl ∧ ym ∧ yn with {k, l} 6= {m,n}. However, for k 6= l
one easily checks that

xk∧ xl ∧ yk∧ yl ∧ [Y ] = −2 ·ω
for the cohomology class

ω = x1∧ y1∧·· ·∧ x4∧ y4 = 1
4! · [Θ]4

mapped to 1 under the degree isomorphism degX : H8(X ,Z)−→ Z.

Now consider the basis of the lattice LX = Λ2(H1(X ,Z)) consisting of
the vectors uik = xi∧yk with i,k ∈ {1,2,3,4} and of the vectors vik = xi∧xk
and wik = yi ∧ yk with 1 ≤ i < k ≤ 4. It follows from the above that the
bilinear form b is non-zero only on those pairs of the above vectors whose
wedge product has the form ±xl ∧ xm ∧ yl ∧ ym with l 6= m. So the only
non-zero scalar products between our basis vectors are

b(uii,ukk) = xi∧ yi∧ xk∧ yk∧ [Y ] = 2 for i 6= k,

b(uik,uki) = xi∧ yk∧ xk∧ yi∧ [Y ] =−2 for i 6= k, and

b(vik,wik) = b(wik,vik) = yi∧ yk∧ xi∧ xk∧ [Y ] =−2 for i < k.

Hence we obtain an orthogonal sum decomposition

LX = 〈u11, . . . ,u44〉 ⊕
⊕

1≤i<k≤4

〈uik,uki〉⊕〈vik,wik〉

where 〈u11, . . . ,u44〉 ∼= Λ(2) and where 〈uik,uki〉 ∼= 〈vik,wik〉 ∼=U(2). �

5.5. The upper bound W (E6)

Let us now come back to the local system which underlies the variation
of Hodge structures V+ on the open dense subset U ⊂ X in lemma 5.10
for g = 4, assuming that the theta divisor of our ppav is smooth. Since
all constructions in the proof of that lemma make sense on the level of
integral cohomology, we can in fact consider V+ as a polarized variation
of Z-Hodge structures. Proposition 5.12 then allows to identify the fibres
of this variation of Hodge structures with the lattice K⊥ ∼= E6(−1) up to a
rescaling of the bilinear form by a factor two.

This being said, consider the monodromy group G of the local system
underlying V+. Since the monodromy action for any smooth proper family
of varieties preserves the intersection form on the cohomology of the fibres,
it follows from the above that G must be contained in the automorphism
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group Aut(E6) of the E6-lattice. Recall from [22, p. 126] that we have a
product decomposition

Aut(E6) = W (E6)×{±1}
where {±1} acts via multiplication by±1 on the E6-lattice. It turns out that
the monodromy group G is already contained in the Weyl group itself.

PROPOSITION 5.18. With notations as above, the monodromy group G
is contained in the subgroup

W (E6) < Aut(E6).

Proof. Let K and L be as in proposition 5.12, and for some x ∈U(C)
consider the monodromy operation of the group π1(U,x) on the σ -invariant
lattice H2(Y,Z)+ ∼= L(2). Notice that on the sublattice H2(X ,Z) ∼= K(2)
this monodromy operation is trivial. Dividing the bilinear forms by two, we
obtain from proposition 5.12 an embedding

M = K⊕E6(−1) ↪→ L = U13⊕E8(−1)

with an action of the fundamental group π1(U,x) on L which is trivial on
the sublattice K and which preserves the orthocomplement E6(−1) = K⊥

on which it defines the quotient morphism

π1(U,x) � G ↪→ Aut(E6)

we are interested in. We must show that the image G is already contained
in the subgroup W (E6)< Aut(E6). To this end we will consider the induced
action of G on the discriminant group of the E6-lattice.

Since the lattices L and M have the same rank, L is obtained from M by
adjoining certain glue vectors, by which we mean as in [22] vectors from
the dual lattice

M∗ =
{

m ∈M⊗ZQ | b(m,n) ∈ Z ∀n ∈M
}

= K∗⊕E6(−1)∗

where b denotes the bilinear form of the lattice M, extended to M⊗ZQ.
Now the lattice E6(−1) has discriminant 3 whereas L is unimodular, so
there exists in the sublattice L⊆M∗=K∗⊕E6(−1)∗ at least one glue vector
of the form

λ = k+ e with k ∈ K∗, e ∈ E6(−1)∗ but e /∈ E6(−1).

Fixing k as above, consider the set S = { f ∈ E6(−1)∗ | k+ f ∈ L}. This
set is stable under the monodromy operation, indeed this operation fixes k
because H2(X ,Z) ∼= K(2) is contained in the monodromy invariant part of
the cohomology. By construction S contains the coset e+E6(−1). On the
other hand, for any f ∈ S we have

f − e = (k+ f )− (k+ e) ∈ E6(−1)∗∩L = E6(−1)
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where the last equality uses that E6(−1) = K⊥ is primitive in L, being the
orthocomplement of a sublattice. Altogether then

S = e+E6(−1)

is a non-trivial coset of E6(−1) in E6(−1)∗ which is preserved by G. Since
the discriminant group

E6(−1)∗/E6(−1) ∼= E∗6/E6 ∼= Z/3Z
is generated by any non-trivial coset, it follows that G acts trivially on
this discriminant group. Now recall from [23, p. 27] that as a subgroup
of Aut(E6) =W (E6)×{±1} we have

W (E6) = ker(Aut(E6)−→ Aut(E∗6/E6)),

so the fact that the monodromy group G act trivially on the discriminant
group implies that G≤W (E6) as required. �

At this point let us briefly explain the connection of the above result with
the 27 Prym-embedded curves that have been studied by E. Izadi in [61],
although this will not be used in the sequel. For the basic definitions and
facts about Prym varieties we refer to the brief survey in section 5.1 and
to the references given there. Suppose that X is a general complex ppav
of dimension g = 4. Then by [8, prop. 6.4] it can be written as the Prym
variety

X ∼= Prym(C̃/C)

for some étale double cover of smooth projective curves of genus 9 and 5,
respectively. Consider then the covering involution ι : C̃→ C̃, and choose
any translate α : C̃ ↪→ JC̃ of the Abel-Jacobi map. Then the morphism

C̃ −→ JC̃, p 7→ α(p)−α(ι(p))

factors over the kernel of the norm homomorphism NC̃/C : JC̃→ JC, hence
the image of some translate of this morphism is contained in the connected
component

Prym(C̃/C) = (ker(NC̃/C))
0

of the identity. Via the chosen isomorphism X ∼= Prym(C̃/C) this defines
an embedding C̃ ↪→ X which up to a translation is determined uniquely by
the étale double cover. Embeddings of this form are known as Abel-Prym
embeddings, and by a Prym-embedded curve in X we mean the image of
any such embedding. Note that the étale double covering C̃→ C is by no
means uniquely determined by the ppav X , indeed a dimension count shows
that the general fibre of the Prym morphism

π : R5 −→ A4

has dimension two. In studying this Prym morphism, E. Izadi has observed
in [61, cor. 4.9] that for general x ∈ X(C), among all the Prym-embedded
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curves precisely 27 are contained in the surface Y = Yx = Θ∩Θx. This
number suggests a relationship with the E6-lattice in the cohomology of this
surface. Recall from [22] that the dual lattice E∗6 has precisely 27 pairs of
minimal vectors, with norm 4/3. It turns out that the fundamental classes of
Prym-embedded curves define such minimal vectors and are related to the
glue vector λ = k+e∈ L with components k ∈K∗ and e∈ E6(−1)∗ that we
studied in the proof of proposition 5.18.

LEMMA 5.19. The above glue vector λ = k+ e can be taken to be the
fundamental class

[C̃ ] ∈ H2(Y,Z)+ ∼= L(2)

of any Prym-embedded curve C̃⊂Y , and in this case the vector e∈E6(−1)∗

is a minimal vector with the norm b(e,e) =−4/3.

Proof. Any cohomology class λ ∈ H2(Y,Z)+ can be written uniquely
in the form

λ = α +β with α ∈ H2(X ,Q), β ∈ H2(X ,Q)⊥ ⊂ H2(Y,Q)+

and such a class defines a glue vector iff α /∈ H2(X ,Z). The integrality
of α can be checked via the Gysin morphism for the embedding i : Y ↪→ X
since i!(λ ) = α ∪ [Θ]2 ∈ H6(X ,Q) is the image of α under the Lefschetz
isomorphism in the following commutative diagram.

H2(X ,Q)
∼= //

i∗

''PPPPPPP
H6(X ,Q)

H2(Y,Q)+

i! 77nnnnnnn

H2(X ,Z)

''PPPPPPP

?�

OO

// H6(X ,Z)
?�

OO

H2(Y,Z)+

77nnnnnnn?�

OO

Now by [13, sect. 12.2] the fundamental class λ = α +β ∈H2(Y,Q)+ of a
Prym-embedded curve satisfies

α ∪ [Θ]2 = i!(λ ) = [Θ]3/3 /∈ H6(X ,Z)
and hence indeed provides a glue vector for our lattices. It also follows from
the above that

degY (α
2) = degX(α

2∪ [Θ]2) = degX([Θ]4/9) = 8/3

where the last equality is due to the Poincaré formula. Furthermore, by
definition λ ∈ H2(Y,Q) is the class of a Prym-embedded curve C̃ ⊂ Y and
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any such curve has genus gC̃ = 2g+1= 9. Hence the adjunction formula for
the genus of a smooth curve on a smooth projective surface [55, prop. V.1.5]
gives the intersection number

degY (λ
2) = 2gC̃−2−degY (KY |C̃) = 16−16 = 0,

indeed for the canonical class KY we have

degC̃(KY |C̃) = degY (λ ∪KY ) = degX(2 · [Θ]4/3) = 16

by the formula i!(λ ) = [Θ]3/3 from above and by lemma 5.5. We then also
obtain the intersection number degY (β

2) = degY (λ
2)−degY (α

2) =−8/3,
and to see that the vector e is a minimal vector all that remains to be done
is to divide the bilinear form by two. �

It seems a tempting idea to prove theorem 5.1 by looking directly at the
monodromy operation on the fundamental classes of the Prym-embedded
curves from above, but we have not seen how to do this. In what follows we
give a different proof which does not use the Prym construction, and from
this point of view the theorem can be seen as an independent result about
the monodromy operation on the 27 Prym-embedded curves.

5.6. Negligible constituents

We now justify our earlier statement that for a general ppav the local
systems underlying the variations of Hodge structures V+ and V− from
lemma 5.10 are irreducible. In fact we will obtain stronger results since we
will work with perverse sheaves on the whole ppav rather than with local
systems on a Zariski-open dense subset. This shift in perspective reveals a
close connection with the Tannakian formalism of convolution as developed
in chapters 2 and 3, which is of interest in its own right.

Recall that for any complex abelian variety X , the convolution product
on the derived category Db

c (X ,C) of bounded complexes of C-sheaves with
constructible cohomology sheaves in the sense of [10] is defined by

K ∗L = Ra∗(K�L) ∈ Db
c (X ,C) for K,L ∈ Db

c (X ,C),
where a : X ×X −→ X denotes the group law. One of the main results of
chapter 2 was that the full abelian subcategory Perv(X ,C) ⊂ Db

c (X ,C) of
perverse sheaves is almost stable under the convolution product: Let us say
that a perverse sheaf is negligible if all its perverse subquotients have Euler
characteristic zero; then theorem 2.13 shows that for all P,Q ∈ Perv(X ,C)
and all n 6= 0 the perverse cohomology sheaves

pHn(X ,P∗Q) ∈ Perv(X ,C)
are negligible. At the other end of the scale, we will say that a perverse
sheaf is clean if it does not have any negligible subquotients.
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Suppose now that X has dimension g ≥ 2 and is principally polarized
with a symmetric theta divisor Θ⊂X , and consider the perverse intersection
cohomology sheaf

δΘ = ICΘ[g−1] ∈ Perv(X ,C).

This is a semisimple perverse sheaf and arises via intermediate extension
from the constant sheaf on the smooth locus of the theta divisor. Thus we
have δΘ =CΘ[g−1] if the theta divisor is smooth, but later on we will also
deal with isolated singularities.

LEMMA 5.20. If the theta divisor Θ has at most isolated singularities,
then for every clean perverse sheaf P and all n ∈ Z, any simple negligible
subquotient of pHn(δΘ ∗P) is isomorphic to δX = CX [g].

Proof. By Verdier duality it suffices to show this for n ≤ 0. Since the
theta divisor is a local complete intersection, by [65, lemma III.6.5] the
shifted constant sheaf λΘ = CΘ[g− 1] is perverse, so we have an exact
sequence of perverse sheaves

0−→ κ −→ λΘ −→ δΘ −→ 0

where κ is a skyscraper sheaf supported on the finite set of singular points
of the theta divisor. Convolution with the clean perverse sheaf P yields a
distinguished triangle

κ ∗P // λΘ ∗P // δΘ ∗P
[+1]

// · · ·

where κ ∗ P is again a clean perverse sheaf. By the corresponding long
exact sequence of perverse cohomology groups, it will therefore suffice to
show that every simple negligible subquotient of pHn(λΘ∗P) for n≤ 0 must
be isomorphic to δX . But this follows as in [110, ex. 3] from the excision
sequence for the ample divisor Θ⊂ X with affine complement X \Θ, using
Artin’s vanishing theorem. �

Let us now consider the convolution square δΘ ∗ δΘ. Due to Gabber’s
decomposition theorem this is a direct sum of degree shifts of semisimple
perverse sheaves. So we can write

δΘ ∗δΘ = S2(δΘ)⊕Λ
2(δΘ)

where the symmetric square and the alternating square on the right hand side
are by definition the maximal direct summands on which the commutativity
constraint

S = SδΘ,δΘ
: δΘ ∗δΘ −→ δΘ ∗δΘ

from section 2.1 acts by +1 resp. by −1. We want to relate the above sheaf
complexes to the variations of Hodge structures V± in lemma 5.10. In this
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context, the contribution from the weak Lefschetz theorem will be described
by the complexes

L± =
⊕
µ∈ I±

Hg−2−|µ|(X ,C)⊗C δX [µ] with

{
I+ = 1+2Z,
I− = 2Z,

where by convention H i(X ,C) = 0 for i < 0. Strictly speaking certain Tate
twists should be inserted in the above definition so that L± become pure
complexes of weight 2g− 2 like δΘ ∗ δΘ, but to keep the notations simple
we will in what follows suppress all occuring Tate twists.

LEMMA 5.21. If Θ has at most isolated singularities, then there are
semisimple perverse sheaves δ± ∈ Perv(X ,C) such that

S2(δΘ) ∼= L+⊕δ+ and Λ
2(δΘ) ∼= L−⊕δ−,

and over the Zariski-open dense subset U ⊂ X from lemma 5.10 we have an
isomorphism

δ±|U ∼= V±ε [g] with a sign twist by ε = (−1)g−1.

Proof. Consider the smooth proper family fU : YU −→U that we defined
in lemma 5.3. By the construction in the proof of that lemma, we have a
cartesian diagram

YU = f−1(U)
� � //

fU
��

Θsm×Θsm � � // Θ×Θ

f
��

U � � // X

where Θsm ⊆ Θ is the smooth locus of the theta divisor and where f is
induced by the group law. From the definition of convolution we therefore
obtain natural identifications

(δΘ ∗δΘ)|U ∼= (CΘ[g−1]∗CΘ[g−1])|U ∼= R fU∗(CYU [2g−2]).

By Gabber’s decomposition theorem this is a direct sum of degree shifts of
semisimple perverse sheaves, hence

(δΘ ∗δΘ)|U ∼=
2g−4⊕
n=0

Hn[2g−2−n]

for the local systems Hn = Rn fU∗(CYU ) with stalks Hn
x = Hn(Yx,C). In

the proof of lemma 5.10 we have observed that these local systems contain
constant subsheaves whose stalks are the subspaces which are the images
of the restriction morphisms Hn(X ,C) −→ Hn(Yx,C). This being said, we
obtain that

(δΘ ∗δΘ)|U = (L+⊕L−)|U ⊕V[g]
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where V = V+⊕V− denotes the local system underlying the variations of
Hodge structures in lemma 5.10. Via Gabber’s decomposition theorem one
then deduces that

δΘ ∗δΘ = L+⊕L−⊕δ for some δ ∈ Db
c (X ,C).

But we know from theorem 2.13 that for all n 6= 0 the perverse cohomology
sheaves pHn(δΘ ∗δΘ) are negligible and are hence by lemma 5.20 multiples
of the constant perverse sheaf δX . Since over the open dense subset U ⊂ X
we have δ |U = V[g], it then follows that δ is a perverse sheaf.

Now consider the direct sum decomposition δ = δ+⊕δ− where δ± ⊂ δ

are defined as the maximal perverse subsheaves on which the commutativity
constraint S : δΘ ∗δΘ −→ δΘ ∗δΘ acts by±1. Going back to the definitions,
one checks that this commutativity constraint S induces on the stalks the
involution ε ·σ∗x : Hn(Yx,Q)−→Hn(Yx,Q) where σx : Yx −→Yx denotes the
involution that we defined in section 5.2 and where the twist by the extra
sign ε = (−1)g−1 comes from the degree shift in δΘ = ICΘ[g−1] because
of the Koszul rule for the tensor product of complexes. �

Recall that a perverse sheaf is said to be clean if it does not admit any
perverse subquotients which are negligible. For a smooth theta divisor we
claim that L± are the only negligible constituents in δΘ ∗δΘ.

LEMMA 5.22. If the theta divisor Θ⊂ X is smooth, then δ± are clean.

Proof. If this were not true, then by lemma 5.20 the semisimple perverse
sheaf δ+⊕δ− would contain δX as a summand. Then H−g(X ,δ+⊕δ−) 6= 0
and hence the inclusion

H−g(X ,L+⊕L−) ↪→ H−g(X ,δΘ ∗δΘ)

would be strict. However, the Künneth formula in lemma 3.4 and the weak
Lefschetz theorem for the smooth ample divisor Θ⊂ X show that

H−g(X ,δΘ ∗δΘ) =
g−1⊕
n=1

H−n(X ,δΘ)⊗Hn−g(X ,δΘ)

=
g−1⊕
n=1

Hg−1−n(X ,C)⊗Hn−1(X ,C)

which by direct inspection is equal to H−g(X ,L+⊕L−). �

Note that for a general complex ppav of dimension g the theta divisor
is smooth by the work of Andreotti and Mayer [4], so the above lemma
together with theorem 4.2 leads to the final result of this section.

PROPOSITION 5.23. If X is a general complex ppav of dimension g,
then the local systems underlying V± are irreducible.
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Proof. For a general ppav we know from theorem 4.2 that the Tannaka
group G(δΘ) is either a symplectic or a special orthogonal group and that
the perverse intersection cohomology sheaf δΘ corresponds to the standard
representation of this group. Now the symmetric and alternating square of
the standard representation are irreducible up to a trivial one-dimensional
representation, and this trivial representation corresponds to the skyscraper
sheaf δ0 of rank one supported in the origin. Furthermore, by corollary 2.9
each representation of the Tannaka group corresponds to a unique clean
perverse sheaf. Hence from lemma 5.22 we obtain that there exist clean
and simple perverse sheaves γ± ∈ Perv(X ,C) such that

δ+ =

{
γ+⊕δ0

γ+
and δ− =

{
γ−
γ−⊕δ0

if g is

{
odd,
even,

and by lemma 5.21 the simplicity of γ± in particular implies that the local
systems V± are irreducible. �

5.7. Jacobian varieties

Let us now see what happens if X = JC is the Jacobian variety of a
smooth complex projective curve C of genus g≥ 2. To formulate our results
in this case we first need to introduce some more notations. For n ∈ N we
will denote by

Cn = (C×·· ·×C)/Sn

the n-fold symmetric product of the curve and by Wn ⊂ X the image of Cn
under a suitable translate of the Abel-Jacobi map, normalized such that the
theta divisor Θ = Wg−1 becomes symmetric. We write fn : Cn −→Wn for
the Abel-Jacobi map and gn : Wn×Wn −→ X for the difference morphism
with gn(x,y) = y− x. Then the composite morphism

Cn×Cn
( fn, fn) //

dn

77
Wn×Wn

gn // X ∼= Pic0(C)

does not depend on the chosen normalization of the Abel-Jacobi map, and it
sends a pair (D,E) ∈Cn×Cn of effective divisors of degree n on the curve
to the isomorphism class of the line bundle OC(D−E).

In what follows we will be especially interested in non-hyperelliptic
curves of genus g = 4. For these we know from lemma 4.5 that the theta
divisor has only isolated singularities, so we can consider the variations of
Hodge structures V± from lemma 5.10 and the perverse sheaves δ± from
lemma 5.21. Here we have the following situation.
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PROPOSITION 5.24. Let X = JC be the Jacobian variety of a smooth
non-hyperelliptic complex projective curve C of genus g = 4.

(a) The above semisimple perverse sheaves δ+ and δ− each contain
the negligible constituent δX precisely once.

(b) After shrinking the open dense subset U ⊂ X in lemma 5.10 there
exists an isomorphism

V+
∼= d2∗(CC2×C2)|U .

Proof. (a) We must check for the lowest hypercohomology degree that
dim(H−g(X ,δ+)) = dim(H−g(X ,δ−)) = 1. For this we can use the same
computation as in lemma 5.22, the only difference is that for a Jacobian
variety the hypercohomology H•(X ,δΘ) is larger than the one for a general
ppav. Indeed it has been shown in [106, cor. 13(iii)] that if the curve C is
not hyperelliptic, then

H i(X ,δΘ) =

{
H i+3(X ,C) for i ∈ {−3,−2},
H i+3(X ,C)⊕H i+1(X ,C) for i ∈ {−1,0}.

Compared with the computation in lemma 5.22, for i =−1 the extra direct
summand H0(X ,C)⊂ H−1(X ,δΘ) gives a two-dimensional extra term

H0(X ,C)⊗H−3(X ,δΘ) ⊕ H−3(X ,δΘ)⊗H0(X ,C) ⊂ H−4(X ,δΘ ∗δΘ).

This extra term splits into two one-dimensional contributions, one in the
symmetric and one in the alternating tensor square. Hence

H−4(X ,S2(δΘ)) = H−4(X ,L+)⊕C,

H−4(X ,Λ2(δΘ)) = H−4(X ,L−)⊕C,

and our claim follows because S2(δΘ) = L+⊕δ+ and Λ2(δΘ) = L−⊕δ−.

(b) This is most conveniently checked in the setting of Brill-Noether
sheaves and will be done after the proof of lemma 5.25 below. �

Before we proceed further, let us recall from [106] some facts about
Brill-Noether sheaves. Here we are mainly interested in their Tannakian
description — more about their geometric construction can be found in the
brief survey in section 6.1 below. Let X = JC be the Jacobian variety of a
smooth non-hyperelliptic complex projective curve C of genus g ≥ 2, and
let C ↪→ X be a translate of the Abel-Jacobi map such that the corresponding
theta divisor Θ =Wg−1 is symmetric. Then by loc. cit. the convolutions of
the perverse intersection cohomology sheaf δC ∈ Perv(X ,C) are described
via corollary 2.14 by the Tannaka group

G(δC) = Sl2g−2(C).
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For partitions α = (α1,α2, . . .) such that 2g− 2 ≥ α1 ≥ α2 ≥ ·· · ≥ 0, one
can define the Brill-Noether sheaf

p
δ α ∈ Perv(X ,C)

as the simple perverse sheaf corresponding to the irreducible representation
of Sl2g−2(C) whose highest weight is given by the conjugate partition α t

in the basis of the weights defined by the diagonal entries of matrices. For
instance, the singleton partitions α = (α1) correspond to the fundamental
representations, and for these it has been shown in loc. cit. that

p
δ i ∼= δWi and p

δ 2g−2−i ∼= δ−Wi for 0≤ i≤ g−1,

where the second equality is due to the Riemann-Roch theorem. Now the
Tannakian formalism provides a means to decompose arbitrary convolution
products between these perverse intersection cohomology sheaves via the
combinatorial Littlewood-Richardson rule for the decomposition of tensor
products of irreducible representations of Sl2g−2(C), see [46, sect. 9.3.5]
and [106, sect. 5.4]. In the special case of fundamental representations this
gives the formula

p
δ m ∗ p

δ n ∼= τm,n ⊕
n⊕

i=0

p
δ (m+i,n−i) for m≥ n,

where τm,n ∈ Db
c (X ,C) is a negligible sheaf complex in the sense that all

its perverse cohomology sheaves have Euler characteristic zero. In fact it
has been shown in lemma 27 of loc. cit. that τm,n (and more generally any
negligible direct summand of a convolution of Brill-Noether sheaves) is a
direct sum of degree shifts of δX = CX [g]. As an application we have the
following result concerning the difference morphism.

LEMMA 5.25. Let X = JC be the Jacobian variety of a non-hyperelliptic
smooth projective curve of even genus g= 2n. Then over some Zariski-open
dense subset U ⊂ X there exists an irreducible local system LU of complex
vector spaces such that

dn∗(CCn×Cn)|U ∼= CU ⊕LU .

Proof. A Bertini-type argument like the one in lemma 5.3 shows that
over some Zariski-open dense subset U ⊂ X the morphism dn restricts to a
finite étale cover. Furthermore, if S denotes the singular locus of Wn, then
for dimension reasons the closed subset (S×Wn)∪ (Wn× S) ⊂Wn×Wn is
mapped under the difference morphism

gn : Wn×Wn −→ X

to a proper closed subset of X , so we can assume that g−1
n (U) is contained

in (Wn\S)×(Wn\S). The Riemann-Kempf singularity theorem [48, p. 348]
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says that the Abel-Jacobi morphism fn : Cn−→Wn restricts over the smooth
locus to an isomorphism

f−1
n (Wn \S)

∼=−→ Wn \S.

Putting everything together and using the commutative diagram

Cn×Cn
( fn, fn) //

dn

..

Wn×Wn

gn
��

� � (−in,in) // X×X

a

ppX

for the closed embedding in : Wn ↪→ X , we therefore obtain by the definition
of convolution an isomorphism

dn∗(CCn×Cn[g])|U ∼= (δWn ∗δ−Wn)|U .

To control the convolution on the right hand side, we use the formalism of
Brill-Noether sheaves. Recall that δWn =

pδ n and δ−Wn =
pδ 3n−2, where the

second equality is due to the Riemann-Roch theorem. Hence we get from
the Littlewood-Richardson rule that

δWn ∗δ−Wn
∼= p

δ n ∗ p
δ 3n−2 ∼= τ ⊕

n⊕
i=0

p
δ 3n−2+i,n−i

where τ is a direct sum of degree shifts of δX . In fact τ = δX as one may see
from the above isomorphism dn∗(CCn×Cn[g])|U ∼= (δWn ∗ δ−Wn)|U and from
the fact that dn is generically finite. Therefore our claim will follow for the
cohomology sheaf

LU = H −g(p
δ 3n−2,n)|U ,

provided that for all i > 0 the perverse sheaves pδ 3n−2+i,n−i are supported
on a proper closed subset of X . But this is indeed the case because by the
Littlewood-Richardson rule the perverse sheaf

n⊕
i=1

p
δ 3n−2+i,n−i ∼= p

δ n−1 ∗ p
δ 2g−(n−1)

∼= δWn−1 ∗δ−Wn−1

has the support dn−1(Cn−1×Cn−1)⊂ X of dimension 2(n−1)< g. �

Proof of part (b) in proposition 5.24. For this we again use Brill-Noether
sheaves. The perverse sheaf δΘ = δW3 =

pδ 3 corresponds by definition to
the third fundamental representation of the Tannaka group Sl6(C). One can
check that the alternating square of this representation decomposes into two
irreducible pieces of highest weight α t for α = (4,2) and α = (6). Hence
it follows that

δ− ∼= p
δ 4,2⊕ p

δ 6⊕ τ
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where τ ∈ Perv(X ,C) is some negligible perverse sheaf. In fact τ = δX by
part (a) of the proposition. Furthermore pδ 6 = δ0 is a skyscraper sheaf,
hence for U ⊂ X sufficiently small we have

V+
∼= H −4(δ−)|U ∼= H −4(p

δ 4,2⊕δX)|U ∼= d2∗(CC2×C2)

where the first isomorphism is due to lemma 5.21 and where the last one
comes from the proof of lemma 5.25 for n = 2. �

5.8. The difference morphism

Motivated by the previous section, let C be a smooth complex projective
curve of genus g = 2n with n ∈ N, and put

Cn = (C×·· ·×C)/Sn.

We want to study the difference morphism dn : Cn×Cn −→ X = JC from
above. To begin with, we claim that this morphism is generically finite and
has generic degree

N = deg(dn) =
(2n

n

)
.

Indeed, by birationality of the Abel-Jacobi map Cn→Wn it suffices to check
that the difference morphism gn : Wn×Wn→ X is generically finite of the
given degree. Note that the fibre of gn over a point x ∈ X(C) is isomorphic
to the intersection Z =Wn∩ (Wn+x). Now a Bertini-type argument and the
Poincaré formula [13, sect. 11.2.1] for the fundamental classes

[Wn] = [Wn + x] = 1
n! · [Θ]n ∈ Hn(X ,Z)

show that for a sufficiently general point x∈X(C) the intersection Z is finite
of cardinality

|Z| = degX
(
[Wn]∪ [Wn + x]

)
= g!

n!·n! = N.

So over some Zariski-open dense subset U ⊂ X the morphisms gn and dn
restrict to a finite étale cover of degree N as claimed.

Now pick x ∈ U(C), and consider the monodromy action of π1(U,x)
on the N distinct points of the fibre d−1

n (x). Labelling these points in any
chosen order, we get a homomorphism

π1(U,x) −→ SN

to the symmetric group, and we define the monodromy group G(dn) to
be the image of this homomorphism. A different choice of the labelling
only changes this subgroup by an inner automorphism of Sn. Our goal is
to determine the monodromy group G(dn) for a general curve C of even
genus g = 2n. For this we will study a degeneration into a hyperelliptic
curve, where we have the following situation.
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LEMMA 5.26. If C is a hyperelliptic curve of genus g = 2n, then the
above monodromy group G(dn) is isomorphic to the symmetric group S2n,
and its action on the N points of a general fibre of dn can be identified with
the action of S2n on the set of all n-element subsets of {1,2, . . . ,2n}.

Proof. If g1
2 denotes the hyperelliptic linear series on C, then for every

effective divisor D ∈ Cn the linear series n · g1
2−D contains an effective

divisor. Hence Wn is a translate of its negative −Wn, and it follows that
up to a translation the difference morphism dn coincides with the addition
morphism Cn×Cn → X . The latter factors as Cn×Cn → C2n → X where
the Abel-Jacobi morphism C2n → X is birational. So we must determine
the monodromy group H of the finite branched cover Cn×Cn→C2n. This
cover is not Galois, but it is dominated by the Galois cover with group S2n
in the following diagram.

C2n

S2n

%%

Cn×Cn

Sn×Sn
��

Cn×Cn

��

C2n

Take a point p1 + · · ·+ p2n ∈C2n with the pi ∈C all distinct. Via the first
projection Cn×Cn→Cn, the fibre F of the cover Cn×Cn→C2n over this
point is identified with the set of all n-element subsets of {p1, . . . , p2n}, and
the monodromy group H is the image of the homomorphism

ϕ : S2n −→ Aut(F)

which is given by the action of the Galois group S2n of C2n → C2n on
the fibre F via permutation of p1, . . . , p2n. Note that ϕ is injective: The
identity is the only permutation in S2n that fixes all n-element subsets of
the set {p1, . . . , p2n}. Hence the claim of the lemma follows. �

We can now also deal with a general curve, proving theorem 5.2 from
the introduction. Here the monodromy group G(dn) turns out to be almost
as large as possible — with the only drawback that we do not know whether
it contains an odd permutation.

THEOREM 5.2. If C is a general curve of genus g = 2n, then G(dn) is
either the alternating group AN or the full symmetric group SN .

Proof. By lemma 5.26 we can assume that g > 2. In particular then a
general curve C of genus g is non-hyperelliptic. Hence lemma 5.25 shows
that the monodromy representation of G(dn) splits into a direct sum of the
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one-dimensional trivial representation plus only a single further irreducible
representation. Now recall that by definition G(dn) is a subgroup of the
symmetric group SN . If V = CN denotes the permutation representation
of SN , then the monodromy representation of the subgroup G(dn) is simply
the restriction of V to this subgroup. Note that V = 1⊕W splits as the
direct sum of the one-dimensional trivial representation plus an irreducible
representation W of SN with dimension N−1. In these terms, the remarks
at the beginning of the proof amount to the statement that the restriction
of W to the subgroup G(dn)≤SN remains irreducible.

It is a general fact from the theory of permutation groups [91, th. 1(b)]
that any subgroup of SN with this irreducibility property is a 2-transitive
subgroup. So by lemma D.1 in the appendix it will suffice to show that for a
general curve C of genus g = 2n the monodromy group G(dn) contains the
hyperelliptic one from lemma 5.26. For this we consider a degeneration of
a general curve into a hyperelliptic curve.

Let p : C → S be a flat, projective family of smooth curves of genus g
over a smooth quasi-projective complex base curve S, and assume that the
fibre Cs = p−1(s) is hyperelliptic for some special point s = s0 ∈ S(C) but
non-hyperelliptic for all s 6= s0. The existence of such families follows
e.g. from [5, th. XII.9.1]. To rephrase our previous constructions in this
relative setting, let X be the relative Picard scheme of C over S as defined
in [15, sect. 8.2], and denote by Cn = (C ×S · · ·×S C )/Sn the n-th relative
symmetric product. Let L be a Poincaré bundle on C ×S×Cn so that for
all s ∈ S(C) and every divisor D ∈ Cn,s(C) we have L |Cs×{D}

∼= OCs(D).
If p1, p2 : C ×S Cn×S Cn → C ×S Cn denote the projections, then by the
universal property of the Picard scheme the line bundle p∗1(L )⊗ p∗2(L

−1)
determines a morphism dn : Cn×S Cn→X which on the fibres over each
point s ∈ S(C) restricts to the difference morphism from above.

This being said, take an open subset U ⊆X over which dn is finite étale
of degree N and such that over every point s ∈ S(C) the fibre Us =U ∩Xs
is dense in Xs. Applying the semicontinuity lemma 5.27 below to the local
system L = dn∗(CCn×SCn)|U , we obtain that the monodromy group of dn
for a general curve of genus g = 2n contains the hyperelliptic one from
lemma 5.26 as a subgroup. This finishes the proof. �

For the above degeneration argument we have made use of the following
semicontinuity property for monodromy groups in families. Let f : U → S
be a smooth morphism of complex algebraic varieties whose target is a
quasi-projective curve S, and consider a local system L of complex vector
spaces on U with finite monodromy group. For any point u ∈U(C) with
image s = f (u) we denote by

G(u) = Im
(
π1(Us,u) −→ AutC(Lu)

)
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the monodromy group of the restriction L|Us of the given local system L to
the fibre Us = f−1(s). Up to isomorphism the group G(u) of course only
depends on the image point s = f (u).

LEMMA 5.27. Let u0 ∈U(C). Then there is a non-empty Zariski-open
subset S′ ⊆ S with the following property: For all points u ∈ f−1(S′(C)),
any identification Lu0

∼= Lu of the stalks gives rise to an embedding of the
monodromy groups such that the following diagram commutes.

G(u0)
� � ∃ //_______

� _

��

G(u)
� _

��

AutC(Lu0)
∼= // AutC(Lu)

Proof. The inclusion Us0 ↪→U of the special fibre, followed by a path
from u0 to u to change the base points, induces on fundamental groups a
pushforward homomorphism

π1(Us0,u0) // π1(U,u0)
∼= // π1(U,u).

For any Zariski-open dense subset S′ ⊂ S with preimage U ′ = f−1(S′) and
all s ∈ S′(C) this leads to a commutative diagram

π1(Us0 ,u0) //

����

π1(U,u)

����

π1(U ′,u)oooo

����

π1(Us,u)oo

����

G(u0)
� � //

� _

��

GU� _

��

GU
_�

��

G(u)? _ioo
_�

��

AutC(Lu0)
∼= // AutC(Lu) AutC(Lu) AutC(Lu)

where GU ⊆ AutC(Lu) denotes the image of π1(U,u) under the monodromy
representation. Note that GU coincides with the image of π1(U ′,u) because
the embedding of any Zariski-open dense subset induces an epimorphism
on fundamental groups. The proof of the lemma would be finished if we
could show that the embedding i in the above diagram is an isomorphism
for a suitable choice of the Zariski-open dense subset S′ ⊆ S.

This need not be the case in general. However, since the statement of
the lemma only concerns the fibres of the family f : U −→ S and not the
total space, we can for the purpose of the proof replace the given family
by its base change under any quasi-finite branched cover of a Zariski-open
dense subset of S containing s0, accordingly replacing the local system L



5.9. A smooth global family 131

by its pull-back under this base change. In particular, since étale-locally
any smooth morphism admits a section, we can assume that there exists a
section σ : S −→U of our family f : U −→ S. Since by assumption L has
finite monodromy, we can after passing to a further branched cover assume
that the local system σ∗(L) is trivial. Now recall from [102, cor. 5.1] that
for any (not necessarily proper) morphism f : U −→ S of complex algebraic
varieties, there exists a Zariski-open dense subset S′ ⊆ S over which the
restriction U ′−→ S′ is a topologically locally trivial fibration in the analytic
topology. We then in particular have the exact fibration sequence

· · · // π1(Us,u) // π1(U ′,u) // π1(S,s) //

σ∗
xx

· · ·

for s ∈ S′(C) and u = σ(s). Hence the triviality of σ∗(L) implies that the
monodromy group

G(u) = Im
(
π1(Us,u) −→ AutC(Lu)

)
is mapped isomorphically onto the group

GU ′ = Im
(
π1(U ′,u) −→ AutC(Lu)

)
via the homomorphism i in the diagram from the beginning of the proof,
and hence the lemma follows. �

5.9. A smooth global family

To complete the proof of theorem 5.1 it remains to construct an abelian
scheme XS −→ S with the properties discussed in section 5.2, which will
allow to relate the monodromy group of the local system V+ for a general
ppav of dimension g = 4 to the corresponding monodromy group for the
Jacobian variety of a smooth non-hyperelliptic curve. To this end we fix an
integer n≥ 3 and work as in section 4.1 over the moduli space A4,n of ppav’s
of dimension 4 with a full level n structure, which by [80, chapt. 7.3] is
represented by a smooth quasi-projective variety. For subvarieties S ↪→A4,n
we denote by

ΘS
� � //

""D
DD

DD
DD

DD
XS

��

S

the corresponding abelian scheme with its relatively ample divisor which
on the universal covering is defined by the Riemann theta function. We are
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interested in the composite morphism

f : YS = ΘS×S ΘS
� � // XS×S XS

a // XS

where a denotes the group law of the abelian scheme. For each s ∈ S(C)
the restriction f |Xs : f−1(Xs) −→ Xs is the family of the intersections of
translates of the theta divisor for the corresponding ppav Xs as in the proof
of the Bertini-type lemma 5.3.

LEMMA 5.28. There exists a smooth quasi-projective curve S ⊂ A4,n
with the following properties.

(a) For some s0 ∈ S(C) the fibre Xs0 is the Jacobian variety of a general
curve, whereas for all other points s 6= s0 the theta divisor Θs ⊂ Xs
is smooth.

(b) The family f : YS −→ S of intersecting theta divisors restricts to a
smooth proper morphism

f |US : f−1(US) −→ US

over some Zariski-open subset US ⊂ XS which surjects onto S.

Proof. The locus of all ppav’s with a singular theta divisor is itself
a divisor in the moduli space A4,n, and it contains the locus of Jacobian
varieties as a component [4]. Hence if we take S ↪→ A4,n to be a smooth
quasi-projective complex curve which meets the locus of Jacobian varieties
in a general point s0 ∈ S(C) and is otherwise contained in the Zariski-open
dense locus of ppav’s with a smooth theta divisor, then (a) holds.

Consider then the corresponding morphism f :YS−→XS. By the generic
flatness theorem in the form of lemma 5.29 below, we find a Zariski-open
dense subset US ⊂ XS which maps surjectively onto S and furthermore has
the property that the restriction

f |US : f−1(US) −→ US

is a flat morphism. Now recall from lemma 4.5 that the theta divisor of the
non-hyperelliptic Jacobian variety Xs0 has only isolated singularities, so by
the Bertini-type lemma 5.3 we can find a point u in Us0 = US ∩Xs0 such
that the fibre Yu = f−1(u) is smooth. Furthermore, for any proper and flat
morphism of varieties over a field which has at least one smooth fibre, there
exists by [55, ex. III.10.2] a non-empty Zariski-open subset of the target
over which the morphism is smooth. In our case therefore f restricts to
a smooth morphism over some Zariski-open neighborhood of the point u
in US. We can replace US by such a neighborhood and accordingly shrink
the curve S in such a way that the special point s0 still lies in S(C) but that
now also the properties in claim (b) are satisfied. �
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For the sake of completeness we include the following version of the
generic flatness theorem that has been used in the above lemma.

LEMMA 5.29. Let V and W be two integral schemes which are locally
of finite type over a locally Noetherian, integral, regular base scheme S of
dimension one. Suppose that for every point s in S the scheme-theoretic
fibre Vs is non-empty and Ws is reduced. Let

V
f //

  A
AA

AA
A W

}}||
||

||

S

be an S-morphism of finite type. Then the flat locus

US = {w ∈W | f is flat at v for all v ∈V with f (v) = w}
is a Zariski-open dense subset of W which maps surjectively onto S.

Proof. Since V and W are integral schemes which dominate the integral
regular one-dimensional scheme S, they are automatically flat over S in view
of [55, prop. III.9.7]. So the fibre-wise flatness criterion [50, th. 11.3.10]
shows that the morphism f is flat over a point w in W if and only if the
restriction fs : Vs→Ws to the scheme-theoretic fibres over the image s ∈ S
of w is flat over w. Now the generic flatness theorem [49, th. 6.9.1] applies
on the one hand to the finite type morphism f : V →W and on the other
hand to its restriction fs : Vs→Ws. Since by assumption both W and Ws are
integral, it follows that the flat locus US is on the one hand a Zariski-open
dense subset of W and on the other hand meets every fibre Ws. �





CHAPTER 6

The generic rank of Brill-Noether sheaves

As the example in the previous chapter illustrates, one can consider the
Tannakian formalism as a device to construct interesting perverse sheaves
on abelian varieties. However, so far the connection between the Tannaka
group and the geometric properties of the arising perverse sheaves remains
rather mysterious even for Brill-Noether sheaves on Jacobian varieties. As
a first step towards a better understanding of this connection, we provide
in this chapter a recursion formula for the generic rank of Brill-Noether
sheaves — hoping for a future combinatorial interpretation of this formula
in terms of representation theory.

6.1. Brill-Noether sheaves

To set the scenery for what follows, let us briefly recall the construction
of Brill-Noether sheaves from [106]. Let C be a smooth complex projective
curve of genus g ≥ 2 with Jacobian variety X = JC, and let f : C ↪→ X be
a translate of the Abel-Jacobi map by some point in X(C). Via addition we
then obtain a morphism

fd : Cd −→ X , (p1, . . . , pd) 7→ f (p1)+ · · ·+ f (pd)

for each d ∈ N. The symmetric group Sd acts on Cd = C× ·· · ×C by
permutation of the factors, and the morphism fd factors over the smooth
quotient variety Cd =Cd/Sd so that we get a commutative diagram

Cd
fd //

qd !!D
DD

DD
DD

D
X

Cd

hd

=={{{{{{{{

where qd denotes the quotient morphism. By the Riemann-Roch theorem
we can choose the translate f of the Abel-Jacobi morphism in such a way
that the Brill-Noether subvarieties W r

d = {x∈X(C) | dim( f−1
d (x))≥ r} have

the symmetry property

W r
d = −W s

e for d + e = 2g−2 and r− s = d +1−g.

135
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With these normalizations, the following explicit description has been
given in loc. cit. for the Tannakian category generated by the convolution
powers of the perverse sheaf δC = δW1 ∈ Perv(X ,C). A complete set of
irreducible representations of the symmetric group Sd up to isomorphism
is given by the Specht modules σα where α runs through the partitions of
degree d, see [88]. So the direct image of the constant perverse sheaf under
the branched Galois cover qd : Cd −→Cd splits up under the action of Sd
as a direct sum

qd∗(δCd) =
⊕

deg(α)=d

σα � γα with certain γα ∈ Perv(Cd,C).

Consider now the direct image complexes δα = Rhd∗(γα). Each of these is
a retract of R fd∗(δCd) = δC ∗ · · · ∗ δC as one easily checks from the above
decomposition. By theorem 10 in loc. cit. we can write

δα = p
δ α ⊕ c

δ α

where pδ α is a semisimple perverse sheaf without constituents of Euler
characteristic zero and where the sheaf complex cδ α is a sum of degree
shifts of the constant perverse sheaf δX = CX [g]. In particular, cδ α is the
maximal direct summand of δα which lies in the full subcategory T(X)
of negligible objects from section 3.3. One can show that pδ α 6= 0 iff the
partition α = (d1, . . . ,dn) satisfies d1 ≤ 2g− 2. Let us call such partitions
admissible. The constituents of the perverse sheaves pδ α for the admissible
partitions α are called Brill-Noether sheaves. They are the simple objects
of the Tannakian category generated by δC in the sense of corollary 3.10,
and by loc. cit. the corresponding Tannaka group is

G(δC) =

{
Sp2g−2(C) if C is hyperelliptic,
Sl2g−2(C) otherwise.

If the curve C is not hyperelliptic, then for any admissible partition α it turns
out that the perverse sheaf pδ α corresponds to the irreducible representation
of Sl2g−2(C) whose highest weight is given by the conjugate partition α t

in the basis defined by the diagonal entries of matrices. For example, the
fundamental representations of Sl2g−2(C) correspond to partitions α = (d)
with a single part, and for these one has

p
δ d =

{
δWd for 0≤ d ≤ g−1,
δ−W2g−2−d for g≤ d ≤ 2g−2.

A similar interpretation holds in the hyperelliptic case, but here the pδ α

are in general no longer irreducible; their decomposition is obtained by
applying the restriction functor from representations of the group Sl2g−2(C)
to representations of the subgroup Sp2g−2(C).
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6.2. A formula for the generic rank

The main goal of the present chapter is to obtain a recursive formula
for the generic rank rα of the perverse sheaves pδ α , by which we more
precisely mean the rank

rα = dimC
(
H −g(p

δ α)η

)
of the lowest degree cohomology sheaf at the generic point η ∈ X . Note
that rα = 0 if and only if the perverse sheaf pδ α is supported on a proper
closed subset of X (indeed any simple perverse sheaf arises via intermediate
extension from a local system on an open dense subset of its support).

THEOREM 6.1. For partitions α = (d1, . . . ,dn) of degree d = deg(α)
the generic rank rα is given by the recursion

rα = ∑
c1+···+cn=g

0≤ci≤di

[ g!
c1!···cn! −1

] n

∏
k=1

(2(g−1−ck)
dk−ck

)
− ∑

β>α

deg(β )=d

Kβα · rβ .

where the Kβα are the Kostka numbers defined combinatorially below.

Here we use the following conventions: For any integers a,m ∈ Z the
binomial coefficient

(m
a

)
is defined as the coefficient of ta in the expansion

of (1+ t)m as a power series, hence it vanishes for a < 0 and is given for
exponents m < 0 by the formula

(m
a

)
= (−1)a ·

(a−m−1
a

)
. For partitions α

and β the notation β > α refers to the lexicographic ordering. Finally, we
recall that the Kostka numbers Kβα are non-negative integers which can be
defined combinatorially in the following way.

By a Young diagram of shape β = (e1, . . . ,em) we mean a diagram of m
left-aligned rows such that for each i the ith row consists of ei cells. If the
cells of the diagram are filled with the entries 1,2, . . . ,n and each entry j
occurs precisely d j times, the resulting array is called a Young tableau of
content α = (d1, . . . ,dn). A Young tableau is said to be semistandard if the
entries of the rows are weakly increasing from left to right and those of the
columns are strictly increasing from top to bottom; by definition the Kostka
number Kβα is the number of such tableaux of shape β and content α . For
example, we have K(3,2),(2,2,1) = 2 since

1 1 2
2 3

1 1 3
2 2

are the only semistandard tableaux of shape (3,2) and content (2,2,1). The
above definition also easily implies that the Kostka numbers satisfy Kαα = 1
and Kβα = 0 for all partitions β < α .



138 Chapter 6 – The generic rank of Brill-Noether sheaves

The Kostka numbers arise in the representation theory of the symmetric
group: Young’s rule [88, th. 2.11.2] says that for partitions α = (d1, . . . ,dn)
of degree d = deg(α) we have

(?) IndSd
Sd1×···×Sdn

(1) =
⊕
β≥α

Kβα ·σβ

where the left hand side denotes the representation induced from the trivial
representation 1 of the subgroup Sd1×·· ·×Sdn ≤Sd . Since Kαα = 1, it
follows that the dimensions of the Specht modules satisfy

(??) dim(σα) = d!
d1!···dn! − ∑

β>α

Kβα ·dim(σβ ).

This being said, let us take a look at the recursion formula in theorem 6.1 in
some explicit examples.

EXAMPLE 6.2. Let α be a partition of degree d. For d < g the first sum
in theorem 6.1 is empty so that rα = 0. More interestingly, in degree d = g
the recursion of the theorem says

rα = g!
d1!···dn! − 1 − ∑

β>α

Kβα · rβ

which together with (??) implies

rα =

{
dim(σα) if α 6= (g),
0 if α = (g).

We remark that this can also be checked directly as follows. For d < g
the subvariety Wd is a proper closed subset of X , and by construction it
contains the support of pδ α . Similarly, in degree d = g the Abel-Jacobi
morphism hd : Cd→ X is birational, and in this case our claim follows from
the observation that the perverse sheaf γα ∈ Perv(Cd,C) from section 6.1
has generic rank dim(σα) and contains the constant perverse sheaf if and
only if α = (g) is a singleton partition. However, for partitions of higher
degree the situation becomes increasingly complicated.

EXAMPLE 6.3. For g = 4 theorem 6.1 predicts that r6 = r5,1 = 0 and
more interestingly that

r4,2 = [ 4!
2!·2! −1] ·

(2
2

)
·
(2

0

)
= 5,

r3,3 = 2 · [ 4!
3!·1! −1] ·

(0
0

)
·
(4

2

)
+[ 4!

2!·2! −1] ·
(2

1

)
·
(2

1

)
− r4,2 = 51.
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In this case the vanishing r6 = r5,1 = 0 can again be checked directly,
using the observation that

p
δ 6⊕ p

δ 5,1 = p
δ 1 ∗ p

δ 5 = δW1 ∗δ−W1

must be supported on the two-dimensional closed subset W1−W1 ⊂ X . The
values r4,2 = 5 and r3,3 = 51 are less obvious from a geometric point of
view, but notice that they are one less than the generic ranks of the local
systems V± in chapter 5, in accordance with part (b) of proposition 5.24.

More numerical values for partitions of small degree can be found in
section 6.6 below. After these examples, let us now come to the proof of
the recursion formula in theorem 6.1. Consider the stalk cohomology of the
convolution product δ α = δd1 ∗· · ·∗δdn . For each i∈{1,2, . . . ,n} the Specht
module σdi is the trivial representation of the symmetric group Sdi , hence it
follows from equation (?) above and from the construction of Brill-Noether
sheaves in section 6.1 that

δ
α =

⊕
β≥α

Kβα ·δβ = p
δ

α ⊕ c
δ

α

where

p
δ

α =
⊕
β≥α

Kβα · pδ β and c
δ

α =
⊕
β≥α

Kβα · cδ β .

The stalk cohomology of a perverse sheaf at a general point x ∈ X(C) is
concentrated in degree −g, so to prove theorem 6.1 we can replace the
generic rank by (−1)g times the Euler characteristic of the generic stalk
cohomology. Thus it will suffice to show that for general x ∈ X(C),

∑
m∈Z

(−1)m+g dimC(H
m(δ α)x) = ∑

c1,...,cn≥0
c1+···+cn=g

g!
c1!···cn!

n

∏
k=1

(2(g−1−ck)
dk−ck

)
,

∑
m∈Z

(−1)m+g dimC(H
m(c

δ
α)x) = ∑

c1,...,cn≥0
c1+···+cn=g

n

∏
k=1

(2(g−1−ck)
dk−ck

)
.

The first of these equalities will follow from theorem 6.6 below since by
base change H •(δ α)x is equal to the cohomology of the fibre F = f−1

α (x)
of the Abel-Jacobi morphism fα : Cd1×·· ·×Cdn→ X . The second equality
rests on a computation of Betti polynomials, see corollary 6.8.

6.3. Computations in the symmetric product

In this section we compute some intersection numbers of cycle classes
in the cohomology ring of the symmetric products of C that will be needed
in the proof of theorem 6.6 below. For d ∈ N consider the Abel-Jacobi
morphism hd : Cd → X = JC as before. We will always work with rational
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cohomology unless otherwise stated, so we put H•(−) = H•(−,Q). Fixing
a point p∈C(C) we have embeddings {p} ↪→C ↪→C2 ↪→·· · ↪→Cd−1 ↪→Cd
given by addition of p. Via the last embedding, let

x = [Cd−1] ∈ H2(Cd)

be the fundamental class of Cd−1. Since the cup product in cohomology
corresponds to the intersection of cycles, we have xa = [Cd−a] in H2a(Cd)
for a = 1, . . . ,d. We also put

θ = h∗d [Θ] ∈ H2(Cd)

where [Θ] ∈ H2(X) denotes the class of a theta divisor Θ ⊂ X . Since [Θ]
is a principal polarization, the integral cohomology H1(X ,Z) ⊂ H1(X ,Q)
admits a symplectic basis λ1, . . . ,λ2g, i.e. a basis such that using the cup
product on H•(X) we have

[Θ] =
g

∑
i=1

λi ·λg+i .

Note that the construction of Jacobian varieties and the Künneth theorem
provide natural isomorphisms H1(X)∼= H1(C)∼= H1(Cd). So in the sequel
we will not distinguish notationally between the classes λ1, . . . ,λ2g ∈H1(X)

and their images inside H1(C) or H1(Cd).

For any complex variety Z we denote by degZ : H2dim(Z)(Z) −→ Q
the degree isomorphism given by evaluation on the fundamental homology
class of Z. For example, the classes

ηi = λi ·λg+i for 1≤ i≤ g

satisfy degX(η1 · · ·ηg) = degX([Θ]g/g!) = 1 by the Poincaré formula. In
what follows it will be convenient to use the shorthand notation

ηI = ηi1 · · ·ηic

for subsets I = {i1, . . . , ic} ⊂ {1, . . . ,g} of cardinality |I| = c, noting that
the ordering of the factors does not matter for ηI since the cup product is
commutative in even degrees.

LEMMA 6.4. Let a,b,c ∈ N0 with a+ b+ c = d, and let η ∈ H2c(Cd)
be a monomial in the classes λ1, . . . ,λ2g. Then

degCd

(
xa ·θ b ·η

)
=

{(g−c
b

)
·b! if η = ηI for some I,

0 otherwise.

Proof. Since H1(Cd) ∼= H1(X), any monomial in λ1, . . . ,λ2g ∈ H1(Cd)
can be written as the pull-back η = h∗d(µ) of some cohomology class µ
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in H2c(X). Then θ b ·η = h∗d([Θ]b · µ), so from the projection formula we
obtain the degree

degCd
(xa ·θ b ·η) = degX(hd!(xa) · [Θ]b ·µ)

where hd! : H2a(Cd) −→ H2(a+g−d)(X) denotes the Gysin morphism. We
can assume without loss of generality that b+ c ≤ g. For the fundamental
class xa = [Cb+c] then

hd!(xa) · [Θ]b = [Wb+c] · [Θ]b = 1
(g−b−c)! [Θ]g−c

by the Poincaré formula. This easily implies the claim of the lemma if one
uses that [Θ]g−c = (g− c)!∑|J|=g−c ηJ . �

COROLLARY 6.5. Let η ∈ H2c(Cd) be a monomial in λ1, . . . ,λ2g for
some c ∈ N0. Then

degCd

(
cd−c(Cd) ·η

)
=

{
(−1)d−c ·

(2(g−1−c)
d−c

)
if η = ηI for some I,

0 otherwise.

Proof. By [6, sect. VII.5] the Chern polynomial of Cd can be written
as the power series ct(Cd) = (1+ tx)d−g+1 · e−tθ/(1+tx). Writing out the
exponential series and then expanding the occuring powers of 1+ tx via the
binomial series, we obtain

ct(Cd) = ∑
b≥0

(−1)b

b! (tθ)b (1+ tx)d−g+1−b

= ∑
b≥0

∑
a≥0

(−1)b

b!

(d−g+1−b
a

)
· xa ·θ b · ta+b .

In particular, looking at the coefficient of td−c in the above series and using
lemma 6.4 we obtain that cd−c(Cd) ·η = 0 unless η = ηI for some I, in
which case

degCd

(
cd−c(Cd) ·η

)
= ∑

a+b=d−c

(−1)b

b!

(d−g+1−b
a

)
· xa ·θ b ·η

= ∑
a+b=d−c

(−1)b (d−g+1−b
a

)(g−c
b

)
= (−1)d−c

∑
a+b=d−c

(g−2−c
a

)(g−c
b

)
.

Up to the sign this last expression coincides with the coefficient of td−c in
the power series

∑
a≥0

(g−2−c
a

)
ta ·∑

b≥0

(g−c
b

)
tb = (1+ t)g−2−c(1+ t)g−c = (1+ t)2(g−1−c)

so we are done by binomial expansion of the right hand side. �
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6.4. The fibres of multiple Abel-Jacobi maps

For a partition α = (d1, . . . ,dn) of degree d consider now the partially
symmetrized product Cα = Cd1 ×·· ·×Cdn , and denote by qα : Cα −→ Cd
the quotient morphism. We have a commutative diagram

Cα

fα //

qα
""F

FF
FF

FF
FF

F X

Cd

hd

<<zzzzzzzzzz

given by the Abel-Jacobi morphism, and our goal is to compute the Euler
characteristic of the fibre F = f−1

α (x) for general x ∈ X(C). For k = 1, . . . ,n
let pk : Cα = Cd1 × ·· · ×Cdn −→ Cdk denote the projection onto the k-th
factor. By the Künneth theorem we have an isomorphism

H•(Cd1)⊗Q · · ·⊗Q H•(Cdn)
∼= // H•(Cα)

sending an element α1⊗ ·· ·⊗αn to the cup product p∗1(α1) · · · p∗n(αn). In
degree one this gives a commutative diagram

H1(X)
f ∗α

((QQQQQQQQQQQQQQQ

diag
��⊕n

k=1 H1(Cdk)
∼= // H1(Cα)

where the vertical arrow corresponds to the diagonal embedding diag under
the natural identifications H1(X) ∼= H1(Cdk) which as before we suppress
in the notation. In this sense we write

f ∗α(λ ) =
n

∑
k=1

p∗k(λ ) for cohomology classes λ ∈ H1(X).

The Künneth isomorphism is also compatible with the degree maps on top
cohomology, i.e. the diagram

H2d1(Cd1)⊗Q · · ·⊗Q H2dn(Cdn)

deg⊗···⊗deg
))TTTTTTTTTTTTTTTTTTTT

∼= // H2d(Cα)

deg
��

Q

commutes. Thus degree computations in the cohomology ring H•(Cα) can
be done in terms of the individual factors H•(Cdk) to which we can apply
the results of the previous section. This being said, we proceed as follows.
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THEOREM 6.6. There exists a Zariski-open dense subset U ⊆ X such
that for u ∈U(C) the fibre F = f−1

α (u) is smooth of Euler characteristic

χ(F) = (−1)d−g
∑

c1,...,cn≥0
c1+···+cn=g

g!
c1!···cn!

n

∏
k=1

(2(g−1−ck)
dk−ck

)
.

Proof. Since Cα is smooth, the morphism fα : Cα −→ X restricts to a
smooth morphism over some Zariski-open dense subset U ⊆ X . Then in
particular the fibre F = f−1

α (u) is smooth for all u ∈U(C). Furthermore,
if i : F ↪→ Cα denotes the embedding of such a fibre, we have an exact
sequence of tangent bundles

0−→TF −→ i∗(TCα
)−→ i∗( f ∗α(TX))−→ 0.

Since TX is the trivial bundle, it follows that ct(F) = i∗(ct(Cα)). Hence the
Gauss-Bonnet formula and the projection formula show that

(i) χ(F) = degF(cd−g(F)) = degCα
([F ] · cd−g(Cα))

where [F ] ∈ H2g(Cα) denotes the fundamental class of F . To compute the
Chern polynomial of Cα = Cd1 ×·· ·×Cdn , note that the tangent bundle of
this direct product splits as

TCα
= p∗1(TCd1

)⊕·· ·⊕ p∗n(TCdn
)

so that ct(Cα)=∏
n
k=1 p∗k(ct(Cdk)) in the ring H•(Cα)[t]. For the Chern class

in question this implies

(ii) cd−g(Cα) = ∑
c1,...,cn≥0

c1+···+cn=g

n

∏
k=1

p∗k(cdk−ck(Cdk)) .

Now consider the fundamental class [F ] of the fibre F = f−1
α (u). The class

of a point is [u] = 1
g! [Θ]g = η1 · · ·ηg by the Poincaré formula, using the

notations of the previous section. By the above remarks about the Künneth
isomorphism we have f ∗α(ηi) = f ∗α(λi) · f ∗α(λg+i) = ∑

n
k,l=1 p∗k(λi) · p∗l (λg+i)

so that

(iii) [F ] = f ∗α [u] =
n

∑
k1,...,kg=1
l1,...,lg=1

g

∏
i=1

p∗ki
(λi) · p∗li(λg+i) .

In view of corollary 6.5 the only summands in (iii) which possibly have a
non-zero cup product with (ii) are those with ki = li for all i. By the same
corollary, each of these summands gives in (i) the contribution

n

∏
k=1

(2(g−1−ck)
dk−ck

)
where ck = #{i | ki = k} .
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Finally, for c1, . . . ,cn ∈ N0 with c1 + · · ·+ cn = g there are precisely g!
c1!···cn!

partitions of {1, . . . ,g} into n disjoint subsets of size c1, . . . ,cn, so there are
precisely as many corresponding choices of k1, . . . ,kg. �

6.5. Betti polynomials

To finish the proof of theorem 6.1 it remains to compute the contribution
of the negligible complex cδ

α from the end of section 6.2. Recall that this
complex is a direct sum of degree shifts of δX , which will allow to control it
in terms of hypercohomology. More specifically, for any K ∈ Db

c (X ,C) we
have the Betti polynomial

h(K, t) = ∑
i∈Z

dimC(H i(X ,K)) · t i ∈ C[ t, t−1].

If K ∼= D(K) is isomorphic to its Verdier dual, then the polynomial h(K, t)
is invariant under the coordinate transformation t 7→ 1/t and hence can be
written as a polynomial p(K,ξ ) ∈ C[ξ ] in the new variable

ξ = t−1/2 + t1/2

where of course only even powers of ξ occur. Note that p(δX ,ξ ) = ξ 2g so
that this new variable is particularly useful for the detection of the direct
summands δX we are interested in.

LEMMA 6.7. For any d ∈ N0 we have

p(δd,ξ ) =
d

∑
c=0

(2(g−1−c)
d−c

)
·ξ 2c .

Proof. By definition δd = Rhd∗(δCd) = Rhd∗(CCd [d]) is the direct image
of the constant perverse sheaf under the Abel-Jacobi morphism hd : Cd→X ,
so its hypercohomology is

H•(X ,δd) = H•+d(Cd,C).
Now the cohomology of symmetric products of a curve has been computed
in [72, eq. 4.2]. For the Betti polynomial this gives

h(δd, t) =
d

∑
m=0

( 2g
d−m

)
Pm(t) where Pm(t) =

m

∑
c=0

t2c−m .

Hence it will suffice to check that

Pm = ∑
c≥0

(−1)m−c (m+1+c
m−c

)
·ξ 2c for all m≥ 0,(i) (2(g−1−c)

d−c

)
= ∑

m≥0
(−1)m−c ( 2g

d−m

)(m+1+c
m−c

)
for all c≥ 0.(ii)
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We first deal with (i). For m ∈ {0,1} this is easily verified. In general one
computes that (t−1+ t) ·Pm = Pm+1+Pm−1 and t−1+ t = ξ 2−2, so we have
the recursion formula

Pm+1 = (ξ 2−2) ·Pm − Pm−1.

Assuming by induction that we already know the lemma for Pm and Pm−1,
the coefficient of ξ 2c on the right hand side is

(−1)m+1−c [( m+c
m−c+1

)
+2
(m+1+c

m−c

)
−
( m+c

m−1−c

)]
.

The expression in square brackets is equal to
(m+2+c

m+1−c

)
due to the binomial

addition formulae(m+1+c
m−c

)
−
( m+c

m−1−c

)
=
(m+c

m−c

)
,

( m+c
m−c+1

)
+
(m+c

m−c

)
=
(m+1+c

m+1−c

)
,(m+1+c

m+1−c

)
+
(m+1+c

m−c

)
=
(m+2+c

m+1−c

)
.

This finishes the induction step and thereby proves equation (i). For (ii)
note that

(−1)m−c (m+1+c
m−c

)
=
(−2c−2

m−c

)
and that for m < 0 this binomial coefficient vanishes if c≥ 0. So it follows
that

∑
m≥0

(−1)m−c ( 2g
d−m

)(m+1+c
m−c

)
= ∑

m∈Z

( 2g
d−m

)(−2c−2
m−c

)
.

Now the sum on the right hand side is the coefficient of td−c in the power
series expansion of

(1+ t)2g(1+ t)−2c−2 = (1+ t)2(g−c−1)

so that equation (ii) follows by direct inspection. �

Using the above lemma we can compute the Euler characteristic of the
stalk cohomology of cδ

α for any partition α and thereby conclude our proof
of the recursion formula in theorem 6.1 as follows.

COROLLARY 6.8. For any x ∈ X(C) and any partition α = (d1, . . . ,dn)
we have the formula

χ
(
H •(c

δ
α)x
)

= (−1)g
∑

c1,...,cn≥0
c1+···+cn=g

n

∏
k=1

(2(g−ck−1)
dk−ck

)
.

Proof. We have already remarked above that the negligible complex cδ
α

is a direct sum of degree shifts of δX . Hence for any x ∈ X(C) we can write
it in the form

c
δ

α = H •(c
δ

α)x[−g]⊗C δX .
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Since the Betti polynomial of the constant perverse sheaf is p(δX ,ξ ) = ξ 2g

it follows that
p(c

δ
α ,ξ ) = ξ

2g ·q(ξ ),
where q ∈ C[ξ ] is determined by

q(t1/2 + t−1/2) = ∑
m∈Z

(−1)m+g dimC(H
m(c

δ
α)x) · tm .

In particular, the Euler characteristic we are interested in is (−1)g times the
coefficient of ξ 2g in p(cδ

α ,ξ ). To compute this coefficient, recall that by
definition we have a direct sum decomposition δ α = pδ

α ⊕ cδ
α where pδ

α

is a perverse sheaf without constituents δX . The latter property implies that
the coefficient of te in h(pδ

α , t) vanishes for all |e| ≥ g, hence p(pδ
α ,ξ ) is

a polynomial of degree less than 2g in ξ . In other words,

p(δ α ,ξ ) = p(c
δ

α ,ξ ) + terms of degree < 2g,

and it remains to note that in view of lemma 6.7 the coefficient of ξ 2g in the
polynomial h(δ α ,ξ ) = h(δd1,ξ ) · · ·h(δdn,ξ ) is given by the sum displayed
on the right hand side of the corollary. �

6.6. Some numerical values

The recursion formula in theorem 6.1 determines the generic rank rα for
any partition α . For future reference we include below a list of these generic
ranks for all partitions with 3≤ deg(α)≤ 9. For each degree d = deg(α) the
values of rα are listed in a table whose rows are labeled by the partition α

and whose columns are labeled by the genus g. For the sake of brevity we
denote multiplicities in a partition by exponents, so the notation [3^2,1]

refers to the partition (3,3,1). Of course it suffices to deal with genera g≤ d
since otherwise rα = 0 by example 6.2.

In the same example we have seen that in degree d = deg(α) = g the
generic rank rα is the dimension of Specht module σα . This allows to check
the last column in our tables by hand via the hook formula for the dimension
of Specht modules [88, sect. 3.10]. It seems reasonable to expect a similar,
though more complicated, combinatorial rule for the computation of the
generic ranks rα in general. For example, the tables suggest that

rα =
(3g−3+d

d−g

)
for the partition α = (d)t = (1,1, . . . ,1)︸ ︷︷ ︸

d parts

.

However, unfortunately such a formula cannot be proved directly from the
recursion in theorem 6.1 without a guess about the ranks rα also for all
other partitions, indeed the partition (1,1, . . . ,1) is minimal with respect to
the lexicographic ordering.
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alpha \ g 2 3

[3] 0 0

[2, 1] 0 2

[1^3] 6 1

alpha \ g 2 3 4

[4] 0 0 0

[3, 1] 0 0 3

[2^2] 0 8 2

[2, 1^2] 1 18 3

[1^4] 21 10 1

alpha \ g 2 3 4 5

[5] 0 0 0 0

[4, 1] 0 0 0 4

[3, 2] 0 2 22 5

[3, 1^2] 0 3 36 6

[2^2, 1] 0 69 38 5

[2, 1^3] 6 93 40 4

[1^5] 56 55 14 1

alpha \ g 2 3 4 5 6

[6] 0 0 0 0 0

[5, 1] 0 0 0 0 5

[4, 2] 0 0 5 42 9

[4, 1^2] 0 0 6 60 10

[3^2] 0 0 51 30 5

[3, 2, 1] 0 26 264 128 16

[3, 1^3] 0 28 246 100 10

[2^3] 0 132 153 50 5

[2^2, 1^2] 1 336 339 102 9

[2, 1^4] 21 360 291 70 5

[1^6] 126 220 105 18 1

alpha \ g 2 3 4 5 6 7

[7] 0 0 0 0 0 0

[6, 1] 0 0 0 0 0 6

[5, 2] 0 0 0 9 68 14

[5, 1^2] 0 0 0 10 90 15

[4, 3] 0 0 22 177 92 14

[4, 2, 1] 0 2 96 645 290 35

[4, 1^3] 0 1 76 510 200 20

[3^2, 1] 0 3 580 583 198 21

[3, 2^2] 0 69 824 751 222 21

[3, 2, 1^2] 0 162 1772 1485 410 35

[3, 1^4] 0 147 1252 905 210 15

[2^3, 1] 0 759 1454 849 188 14

[2^2, 1^3] 6 1218 2024 1062 212 14

[2, 1^5] 56 1155 1526 653 108 6

[1^7] 252 715 560 171 22 1
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alpha \ g 2 3 4 5 6 7 8

[8] 0 0 0 0 0 0 0

[7, 1] 0 0 0 0 0 0 7

[6, 2] 0 0 0 0 14 100 20

[6, 1^2] 0 0 0 0 15 126 21

[5, 3] 0 0 3 72 408 196 28

[5, 2, 1] 0 0 8 230 1272 544 64

[5, 1^3] 0 0 4 160 915 350 35

[4^2] 0 0 2 304 302 112 14

[4, 3, 1] 0 0 315 2680 2280 700 70

[4, 2^2] 0 8 414 2800 2228 616 56

[4, 2, 1^2] 0 18 843 5520 4140 1080 90

[4, 1^4] 0 10 533 3220 2165 490 35

[3^2, 2] 0 18 2101 3568 2112 504 42

[3^2, 1^2] 0 36 3662 5776 3228 728 56

[3, 2^2, 1] 0 468 6665 9480 4780 980 70

[3, 2, 1^3] 0 696 8744 11344 5272 992 64

[3, 1^5] 0 570 5249 5876 2343 378 21

[2^4] 0 1056 3386 3280 1302 224 14

[2^3, 1^2] 1 2844 8393 7712 2908 476 28

[2^2, 1^4] 21 3660 9323 7600 2580 380 20

[2, 1^7] 126 3234 6440 4308 1227 154 7

[1^8] 462 2002 2380 1140 253 26 1

alpha \ g 2 3 4 5 6 7 8 9

[9] 0 0 0 0 0 0 0 0

[8, 1] 0 0 0 0 0 0 0 8

[7, 2] 0 0 0 0 0 20 138 27

[7, 1^2] 0 0 0 0 0 21 168 28

[6, 3] 0 0 0 9 160 774 352 48

[6, 2, 1] 0 0 0 20 448 2205 910 105

[6, 1^3] 0 0 0 10 290 1491 560 56

[5, 4] 0 0 0 177 1276 1092 364 42

[5, 3, 1] 0 0 58 1395 7704 5904 1692 162

[5, 2^2] 0 0 60 1385 7080 5160 1360 120

[5, 2, 1^2] 0 0 114 2620 13236 9219 2310 189

[5, 1^4] 0 0 54 1405 6900 4410 980 70

[4^2, 1] 0 0 60 4345 6544 3822 952 84

[4, 3, 2] 0 2 1404 14055 18746 9681 2128 168

[4, 3, 1^2] 0 3 2352 22325 28326 13983 2928 216

[4, 2^2, 1] 0 69 3972 29485 35094 16071 3120 216

[4, 2, 1^3] 0 93 4956 34565 38544 16527 2982 189

[4, 1^5] 0 55 2724 16705 16766 6363 1008 56

[3^3] 0 1 2634 7346 7220 3066 588 42

[3^2, 2, 1] 0 162 16344 41343 37034 14553 2576 168

[3^2, 1^3] 0 214 16980 39490 32920 12120 2000 120

[3, 2^3] 0 759 14160 30865 24536 8694 1400 84

[3, 2^2, 1^2] 0 1977 34314 71097 54216 18432 2844 162

[3, 2, 1^4] 0 2372 35262 66080 46080 14385 2030 105

[3, 1^6] 0 1815 19068 30553 18424 4998 616 28

[2^4, 1] 0 4931 23532 33955 20644 5964 812 42

[2^3, 1^3] 6 8530 36912 49654 28380 7734 992 48

[2^2, 1^5] 56 9636 35700 42256 21660 5331 618 27

[2, 1^6] 252 8151 23184 22515 9746 2061 208 8

[1^7] 792 5005 8568 5985 2024 351 30 1
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The tables listed above have been obtained with the computer algebra
system SAGE [101], using for each table the function GenusList(d) which
is defined by the following source code.

def Initial(g, alpha):

n = len(alpha)

sum = 0

for c in IntegerVectors(g, n, outer = alpha):

product = [binomial(2*(g-1-c[k]), alpha[k]-c[k]) for k in range(n)]

product.append(multinomial(c)-1)

sum = sum + mul(product)

return sum

def GenericRank(g, d):

P = Partitions(d)

N = P.cardinality()

R = [Initial(g, beta) for beta in P]

for a in range(N):

for b in range(a):

Kostka = (SemistandardTableaux(P[b],P[a])).cardinality()

R[a] = R[a] - Kostka*R[b]

return R

def GenusList(d):

GR = [GenericRank(g,d) for g in range(2,d+1)]

P = Partitions(d).list()

N = len(P)

print ’%30s’ %’alpha \ g’,

for g in range(2,d+1):

print ’%8s’ %g,

print "\n"

for a in range(N):

print ’%30s’ %P[a],

for i in range(0,d-1):

print ’%8s’ %GR[i][a],

print "\n"

Here the function Initial(g, alpha) computes the leading term in the
recursion formula, i.e. the value

sum = ∑
c1+···+cn=g

0≤ci≤di

[ g!
c1!···cn! −1

] n

∏
k=1

(2(g−1−ck)
dk−ck

)
︸ ︷︷ ︸

mul(product)

.

The function GenericRank(g,d) then does the main work: It starts with
an array R consisting of the above initial values for all partitions α of the
given degree d, and using the recursion in theorem 6.1 it then step by step
transforms this array into an array of the generic ranks rα . Finally, the
function GenusList(d) prints out the obtained values on the screen in a
convenient form like in the above tables.





APPENDIX A

Reductive super groups

In this appendix we recall the definition of an algebraic super group and
collect some basic facts about these in the reductive case. Working over an
algebraically closed field Λ of characteristic zero, algebraic super groups
are built from algebraic groups by a “super commutative thickening” of
their Lie algebra: Let G = (G,g1,Q) be a triple consisting of

• a classical algebraic group G over Λ, for which we consider the
adjoint representation on the Lie algebra g0 = Lie(G),
• a finite-dimensional algebraic representation g1 of the group G

over Λ, given by a homomorphism Ad1 : G→ Gl(g1),
• a G-equivariant quadratic form Q : g1→ g0, for which we denote

by b : g1×g1→ g0 the corresponding symmetric Λ-bilinear form
with the property that Q(v) = b(v,v) for all v ∈ g1.

The “super commutative thickening” we are interested in is the super vector
space g= g0⊕g1. As usual for super vector spaces, the vectors x ∈ gα are
called homogenous of degree |x|= α for α ∈ {0,1}. The Lie bracket on g0
together with the bilinear form b and with the differential ad1 = Lie(Ad1)
of Ad1 define a Λ-bilinear map

[·, ·] : g×g −→ g such that [x,y] = (−1)|x||y| · [y,x]

for all homogenous x,y ∈ g. The triple G is called an algebraic super group
over Λ if for all homogenous x,y,z ∈ g the super Jacobi identity

(−1)|x||z| · [x, [y,z]] + (−1)|y||x| · [y, [z,x]] + (−1)|z||y| · [z, [x,y]] = 0

holds, so that g becomes a super Lie algebra in the sense of [92]. In the
present setting this is equivalent to the requirement that

ad1(Q(v))(v) = 0 for all v ∈ g1,

as one may check by plugging in v = ax+ by+ cz with fixed x,y,z ∈ g1
and with indeterminate coefficients a,b,c. Of course any classical algebraic
group G over Λ can be considered as the super group G = (G,0,0). A more
interesting class of examples can be constructed from affine super Hopf
algebras as we will explain below.
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The algebraic super groups over Λ form a category in a natural way: By
definition, a homomorphism

h : (G,g1,Q) −→ (H,h1,P)

of algebraic super groups over Λ is a pair h = ( f ,g) where f : G −→ H is
a homomorphism of algebraic groups and g : g1 −→ h1 is a Λ-linear map
which is equivariant with respect to f and satisfies P◦g= Lie( f )◦Q. Such a
homomorphism is a mono- resp. an epimorphism of algebraic super groups
iff both f and g are mono- resp. epimorphisms. The parity automorphism
of a super group G = (G,g1,Q) is defined as (id G,−idg1) : G−→G. These
notions are motivated by the following example.

Let A = A0⊕A1 be an affine super Hopf algebra over Λ, in other words,
a graded-commutative Z/2Z-graded Hopf algebra of finite type over Λ. A
linear map ∂ : A→ A is called a super derivation if it satisfies the product
rule ∂ (a ·b) = ∂ (a) ·b+(−1)|a| ·a ·∂ (b) for all homogenous a,b ∈ A. This
being said, let J E A be the ideal generated by A1. Then the quotient A/J is
an algebra of finite type over Λ, the spectrum

G = Spec(A/J)

is a classical algebraic group, and one can check that the left invariant super
derivations of A form a super Lie algebra g= g0⊕g1 with a natural action of
G extending the adjoint action on g0 = Lie(G). It has been shown in [108]
that the triple G = (G,g1,Q) is an algebraic super group over Λ and that
this realizes the opposite of the category of affine super Hopf algebras as
a full subcategory of the category of algebraic super groups. Hence for
algebraic super groups associated to affine super Hopf algebras, the notions
introduced here are compatible with those in [30].

A particular instance is the general linear super group G = Gl(V ) on a
super vector space V =V0⊕V1 of finite dimension over Λ. In this case the
underlying classical group is defined to be the group G = Gl(V0)×Gl(V1)
of all Λ-linear automorphisms of V that preserve the grading, whereas

g1 = HomΛ(V0,V1)⊕HomΛ(V1,V0) ⊂ EndΛ(V )

consists of all endomorphisms that switch the grading. Here g1 is equipped
with the adjoint action of G, and one takes Q(A⊕B) = AB+BA. The affine
super Hopf algebra corresponding to Gl(V ) can be defined as in the classical
case, with the appropriate sign modifications.

For an algebraic super group G = (G,g1,Q) over Λ let G0 = (G0,g1,Q)
denote its Zariski connected component, and define its super center to be
the classical group Z(G) = (Z,0,0) where Z ⊆ Z(G) is the largest central
subgroup of G that acts trivially on g1. Note that every element g ∈ G
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induces an interior automorphism int(g) = (g−1 (−)g,Ad1(g)) of G and
that Z ⊆ G is the subgroup of all g ∈ G with int(g) = idG.

By a super representation of an algebraic super group G over Λ we mean
an algebraic homomorphism ρV : G→Gl(V ) for a super vector space V of
finite dimension over Λ. By definition, a homomorphism between super
representations ρV and ρW is a homomorphism V → W of super vector
spaces which preserves the gradings and intertwines ρV with ρW . One can
show that the category RepΛ(G) of all super representations of G over Λ is
an abelian Λ-linear rigid symmetric monoidal category with respect to the
super tensor product. We also have Schur’s lemma:

LEMMA A.1. For an irreducible super representation ρV : G→Gl(V ),
every endomorphism of ρV has the form λ · idV with some scalar λ ∈ Λ.

Proof. The proof works as in the classical case. Note that by definition
we only consider endomorphisms which preserve the grading; otherwise
Schur’s lemma would have to be modified, see [92, prop. 2, p. 46]. �

In particular, the super center Z(G) must act on any irreducible super
representation of G by a character χ : Z(G)→ Λ∗ (recall that Z(G) is a
classical commutative algebraic group and that each of its elements defines
an endomorphism of any given super representation of G).

An algebraic super group G=(G,g1,Q) is called reductive if the abelian
category RepΛ(G) is semisimple. The reductive algebraic super groups
have been classified in [108]. Every classical reductive algebraic group
G is also reductive when viewed as the super group G = (G,0,0). Another
example of reductive super groups is given by the orthosymplectic super
groups SpoΛ(2r,1) for r ∈ N which can be defined as follows: Let J be a
non-degenerate antisymmetric 2r×2r matrix J = (Jik) over Λ. In terms of
the classical symplectic group SpΛ(2r,J) = {g ∈ GlΛ(2r) | gtJg = J} we
then put

SpoΛ(2r,1) = (SpΛ(2r,J), Λ
2r,Q),

where Λ2r is equipped with the standard action of SpΛ(2r,J) and where the
quadratic map Q : Λ2r→ Lie(SpΛ(2r,J)) is defined by Q(v)ik = ∑

2r
l=1 vivlJlk

in the standard coordinates. In particular, we have a natural representation
of the super group SpoΛ(2r,1) on the super vector space V = V0⊕V1 with
even part V0 = Λ2r and odd part V1 = Λ. On the odd part of the super Lie
algebra this representation is given by

Λ
2r 3 v 7→

(
(1 7→ v)⊕ (w 7→ wtJv)

)
∈ HomΛ(V1,V0)⊕HomΛ(V0,V1).

Of course a different choice of the non-degenerate antisymmetric matrix J
will result in an isomorphic super group SpoΛ(2r,1).
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It turns out that the above examples essentially exhaust all reductive
algebraic super groups over Λ. Indeed, by theorem 6 of loc. cit. an algebraic
super group G over Λ is reductive iff there are a classical reductive group H
and integers N ∈ N0, ni,ri ∈ N such that G is isomorphic to a semidirect
product

G =
( N

∏
i=1

(
SpoΛ(2ri,1)

)ni
)
oH

with respect to a homomorphism π0(H)→∏
N
i=1Sni where each symmetric

group Sni acts on
(
SpoΛ(2ri,1)

)ni by permutation of the factors.

COROLLARY A.2. For a reductive algebraic super group G over Λ, the
underlying classical group G is reductive as well; furthermore, the super
center Z(G) is a subgroup of finite index in the classical center Z(G).

Proof. By the above it suffices to show this in case G = SpoΛ(2r,1) for
some r ∈ N. But then G = SpΛ(2r), and Z(G) = µ2 is finite. �

PROPOSITION A.3. Let h : G1→ G0 be a homomorphism of reductive
super groups over Λ which induces an epimorphism

f : G1 � G0

on the underlying classical groups. If the super center Z(G0) contains a
classical torus T0, then also Z(G1) contains a classical torus T1 such that
the epimorphism f restricts to an isogeny p : T1→ T0.

Proof. The category of tori (or diagonalizable groups) over Λ, up to
isogeny, is equivalent to the category of finite vector spaces over Q via the
cocharacter functor T 7→ X(T ) = Hom(Gm,T )⊗ZQ. If π is a finite group
acting on T , then we have

X((T π)0) = (X(T ))π

for the invariants of the action on the torus resp. on its cocharacters.

For reductive super groups G we have Z(G)0 = Z(G)0 by corollary A.2.
On Z(G0) the group G acts by conjugation, and this action factors over the
finite group π = π0(G). By definition we have Z(G)0 ⊂ Z(G0)π , and this is
a subgroup of finite index: This follows by an application of the cocharacter
functor since X(Z(G)0) = X(Z(G0))π .

For the proof of the proposition it suffices to show that T0 is contained
in the image of Z(G1)

0. By assumption h induces an epimorphism of the
underlying classical groups, hence an epimorphism f : (G1)

0 → (G0)
0 of

their connected components. By the theory of connected reductive classical
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groups, the torus T = Z((G0)
0)0 is the image of S = Z((G1)

0)0. Now f
restricts to a homomorphism

f : S −→ T

and this homomorphism is equivariant for the action of π = π0(G1) on S
and T , where by the action on T we mean the one induced by the natural
homomorphism π0(G1) → π0(G0). We claim that f : (Sπ)0 → (T π)0 is
surjective: Indeed, the functor of invariants under a finite group π is right
exact on finite-dimensional vector spaces over Q. Since (Sπ)0 ⊂ Z(G1)

0

and T0 ⊂ (T π)0 this completes the proof. �





APPENDIX B

Irreducible subgroups with bounded determinant

In this appendix we discuss the facts from representation theory that
have been used to obtain the finiteness result in lemma 3.19. The basis for
this is the following extended version of the fundamental result of [109],
where by P(X) = Perv(X ,C) we denote as before the category of perverse
sheaves on a complex abelian variety X .

LEMMA B.1. Let P ∈ P(X) be a semisimple perverse sheaf, G = G(P)
the associated Tannaka group and H = G0 its connected component. Then
the group π = G/H of connected components is a finite abelian group
whose conjugation action is trivial on the torus Hab = H/[H,H].

Proof. By loc. cit. the group π = G/H of connected components is a
finite abelian group, and its characters correspond to skyscraper sheaves δx
supported on torsion points x∈X . Thus the group Hom(π,C∗) of characters
can be identified in a natural way with a finite subgroup K ⊆ X of torsion
points. Consider then the étale isogeny

f : X −→ Y = X/K.

Since |K|= [G : H], lemma 1 in loc. cit. shows that the component H = G0

coincides with the Tannaka group H = G( f∗(P)) of the direct image and
that the adjoint functors

P(X)

f∗
))
P(Y )

f ∗
ii

correspond to RepC(G)

ResG
H
++
RepC(H).

IndG
H

kk

Now put m = |K|. For any closed point y∈Y the pull-back f ∗(δy) is a direct
sum of rank one skyscraper sheaves supported on the m distinct point of the
fibre f−1(y), hence f∗( f ∗(δy)) = (δy)

⊕m is an isotypic multiple of δy. In
other words

ResG
H(IndG

H(χ)) is isotypic for all χ ∈ Hom(H,C∗).
Going back to the construction of induced representations, it follows that
every character χ : H −→ C∗ is invariant under conjugation by G. Via the
equivalence between connected tori and their character groups this implies
that G/H acts trivially on the torus Hab = H/[H,H]. �

157



158 Appendix B – Irreducible subgroups with bounded determinant

With this input from geometry, the rest of the argument for the desired
finiteness result will be an exercise in representation theory. Recall that a
complex algebraic group G is reductive iff the abelian category RepC(G)
of its finite-dimensional representations over C is semisimple, which is the
case iff G admits a faithful irreducible representation. This is in particular
the case for any irreducible subgroup G ↪→Gl(V ) of the general linear group
attached to a finite-dimensional complex vector space V , where as usual by
an irreducible subgroup we mean a subgroup which acts irreducibly on the
given vector space. The result we are looking for is the following.

LEMMA B.2. Fix an integer n ∈ N, and let V be a finite-dimensional
complex vector space. Then up to conjugacy there exist only finitely many
irreducible algebraic subgroups G ↪→ Gl(V ) such that

(a) the quotient π = G/H by the connected component H = G0 is a
finite abelian group, and

(b) via conjugation π acts trivially on Hab = H/[H,H], and
(c) the determinant det(V ) is a character of G of order at most n.

Proof. Using the structure theory of connected reductive groups and
the fact that every such group has at most finitely many representations
of any given dimension, one checks that up to conjugation there are only
finitely many connected reductive algebraic subgroups H ↪→ Gl(V ). So it
will be enough to show that for any given H there exist only finitely many
irreducible subgroups G ↪→Gl(V ) with connected component G0 = H such
that (a) – (c) hold. For this we will show that every such subgroup G can
be recovered from the connected component G0 = H together with certain
finite data. We proceed in the following steps.

Step 1. Let G∗⊆G be a normal subgroup of finite index, and decompose
the restriction of the given representation as V |G∗ =

⊕m
i=1Vi with irreducible

representations Vi ∈ RepC(G
∗). Then we claim that for each index i the

determinant character

det(Vi) : G∗ −→ C∗

is a character of order at most m · n. Indeed, by the bound in (c) it will be
enough to show that det(Vi) does not depend on i. Note that each g ∈ G
defines an automorphism int(g) : G∗ −→ G∗, and since V is an irreducible
representation of G, all the irreducible constituents Vi of the restriction V |G∗
are conjugate to each other by such inner automorphisms. Hence it follows
from assumption (b) that the restriction det(Vi)|H does not depend on the
index i. Again by the bound in (c) this restriction is then a torsion character
of the connected group Hab and as such it must be trivial. Thus all the
det(Vi) are characters of the quotient group G∗/H. By assumption (a) the
adjoint action of G on this quotient group is trivial, so our claim follows.
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Step 2. We now apply step 1 as follows. Let U ⊆V |H be an irreducible
constituent of the restriction of V to the connected component G0 = H, and
consider the stabilizer

G∗ =
{

g ∈ G | gU ∼= U in RepC(H)
}
⊆ G.

We define the isotypic part W ⊆V |H to be the sum of all subrepresentations
of V |H which are isomorphic to the chosen representation U . Then W is a
representation of G∗, and a version of Mackey’s lemma shows that

V ∼= IndG
G∗(W )

is isomorphic to the representation induced from W . Since V ∈ RepC(G)
is irreducible, it follows that W ∈ RepC(G

∗) is irreducible as well. But
the group π∗ = G∗/H of connected components is abelian by (a) and the
restriction W |H is isotypic, hence lemma B.3 below shows that even W |H
is irreducible. Hence in step 1 we can take V1 = W , and accordingly each
of the conjugate representations V1, . . . ,Vm is stable under the group G∗ and
irreducible. For the centralizer of the subgroup H in G then

ZG(H) ↪→ ZG∗(H) ↪→
m

∏
i=1

C∗ · idVi,

where the first inclusion comes from the fact that the centralizer preserves
each isotypic component and is therefore contained in G∗ and where the
second inclusion comes from Schur’s lemma. So each element of ZG(H)
acts on each Vi by a scalar, and by step 1 this scalar is a root of unity of
bounded order. Hence ZG(H) is a finite group of bounded order.

Step 3. This being said, let us fix as before a connected and reductive
subgroup H ↪→ Gl(V ). By [99, cor. 2.14] the short exact sequence of inner
and outer automorphism groups admits a splitting

1 // Int(H) // Aut(H) // Out(H) //

∃s
xx

1

with some section s. In what follows we will fix such a section once and
for all. If G ↪→ Gl(V ) is an irreducible algebraic subgroup with G0 = H
and such that (a) – (c) hold, we want to show that G can be recovered
from certain finite data involving H and s. To achieve this, consider the
conjugation action

int : G −→ Aut(H)

and denote by F = int−1(Im(s)) ⊂ G the preimage of the section s. By
construction we have an exact sequence

1 // ZG(H) // F
ϕ
// Out(H)
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where ZG(H) = ker(ϕ) denotes the centralizer of H in G. By Step 2 this
centralizer and hence also F is finite of bounded order. Furthermore, from
the definitions one checks that the homomorphism

π : H oϕ F −→ G, (h, f ) 7→ h f

is an epimorphism and that ker(π) ⊆ Z(H)oϕ F where Z(H) denotes the
center of H. Note that by Schur’s lemma this center acts by a scalar on each
isotypic component of V |H , in particular Z(H) is a finite group of bounded
order in view of the bound for the determinant in step 1.

Thus any irreducible algebraic subgroup G ↪→ Gl(V ) with G0 = H and
with properties (a) – (c) is isomorphic to a quotient

G ∼= (H oϕ F)/K

where F is a finite group of bounded order, acting on the group H via a
homomorphism ϕ : F → Aut(H) with image in the finite group s(Out(H)),
and where K is a subgroup of the finite group Z(H)oϕ F . Hence for the
isomorphism type of G there are only finitely many possibilities.

Finally, for (F,ϕ,K) as above, any embedding (H oϕ F)/K ↪→ Gl(V )
which extends the given embedding of H is determined uniquely by the
homomorphism ρ : F −→ Gl(V ) it induces. We claim that under the given
conditions there exist only finitely many such ρ . Indeed, if ρ̃ is any other
such homomorphism, then for any f ∈ F one computes that

ρ( f ) · ρ̃( f )−1 ∈ ZGl(V )(H) =
m

∏
i=1

C∗ · idVi

where the last equality holds by Schur’s lemma, and in view of the bound
on the determinant in step 1 the centralizer ZGl(V )(H) is finite. �

In step 2 of the above proof we have used the following fact, where we
reset our notations and replace G∗ by G for simplicity.

LEMMA B.3. Let W be a finite-dimensional complex vector space, G
an irreducible subgroup of Gl(W ) whose group G/G0 of components is
abelian, and H ↪→G a subgroup of finite index such that the restriction W |H
is isotypic. Then in fact W |H is irreducible.

Proof. By dévissage for the finite abelian group G/H it will be enough
to show this when G/H ∼= Z/mZ is a finite cyclic group. Furthermore, by
the assumption of being isotypic we can write

W |H = U⊗Cn

for some irreducible representation U ∈ RepC(H) and some n ∈ N. We
must show n = 1. Since G/G0 is abelian, the finite index subgroup H ⊆ G
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is automatically a normal subgroup. Hence

G ↪→ NGl(W )(H) = NGl(U)(H)⊗Gln(C)
where the last equality follows via a block matrix calculation from Schur’s
lemma; here the tensor product on the right hand side denotes the image of
the natural homomorphism f : NGl(U)(H)×Gln(C) −→ Gl(U ⊗Cn). Now
let G̃ = f−1(G). If 1 denotes the trivial subgroup of Gln(C), then we have
an epimorphism

G̃/(H×1) � G/H
with central kernel (this follows from the fact that f has central kernel). But
by assumption the group G/H is cyclic, and any central extension of a cyclic
group is an abelian group — being generated by a central subgroup together
with a single further element. Hence G̃/(H × 1) is an abelian group. On
the other hand this abelian group must act irreducibly on Cn because G acts
irreducibly on W . So it follows that n = 1. �

We conclude this appendix with the following result which does not
directly depend on the above but also involves a Mackey-type argument
and has been used in lemma 4.13 to control the possible non-connectedness
of the Tannaka group attached to the theta divisor.

LEMMA B.4. Let G be a complex reductive group whose group G/G0

of connected components is abelian, and let V ∈ RepC(G) be an irreducible
representation. If the restriction V |G0 is reducible, then for some non-trivial
character χ : G−→ C∗ there exists an isomorphism V ∼=V ⊗C χ .

Proof. Consider the tensor product W = V ⊗C V∨ ∈ RepC(G) of the
given representation with its dual. We must show that this tensor product
contains a non-trivial one-dimensional representation χ : G −→ C∗ as a
direct summand. Note that since H = G0 is a normal subgroup of G, the
space of H-invariants

W H = {w ∈W | hw = w ∀h ∈ H} ⊂ W

is stable under the action of G and hence defines a representation of the finite
abelian group G/H. As such it splits into a direct sum of one-dimensional
representations. Among these the trivial representation 1 occurs precisely
once because by adjunction dimC(HomG(1,W )) = dimC(HomG(V,V )) = 1,
using that V is an irreducible representation of G so that Schur’s lemma
applies. So it will be enough to show that

dimC(W H) > 1 if V |H is reducible.

But this follows from the observation that if the restriction U = V |H splits
into n direct summands, then W |H =U ⊗CU∨ contains at least n copies of
the one-dimensional trivial representation. �





APPENDIX C

An irreducible subgroup of W (E6)

In the computation of the monodromy group in section 5.2, we have
remarked that the Weyl group W (E6) has subgroups M < W (E6) of index
greater than two which act irreducibly on E6⊗ZC. An example of such a
subgroup can be obtained as follows. Take a system α1, . . . ,α6 of simple
roots for E6 such that as in [16, ch. VI, no. 4.12] we have the extended
Dynkin diagram

u u u u u
u
e

α1 α3 α4 α5 α6

α2

−ϖ2

where ϖ2 = α1 +2α2 +2α3 +3α4 +2α5 +α6 is the highest root. Then we
have an embedding

A2⊕A2⊕A2 ∼= 〈α1,α3〉⊕〈α6,α5〉⊕〈−ϖ2,α2〉 ⊂ E6

of three mutually orthogonal copies of the root system A2. The symmetric
group S3 acts on the left hand side by permutation of these three copies via
the identifications α1←→ α6←→−ϖ2 and α3←→ α5←→ α2. We also
remark that the root system E6 is obtained from A2⊕A2⊕A2 by adjoining
the root vector

α2 = −1
3

(
(α1 +2α3)+(α6 +2α5)+(−ϖ2 +2α2)

)
.

Hence the action of S3 extends to the whole root system E6, and we get an
embedding

M =
3

∏
i=1

W (A2) o S3 ↪→ W (E6)

where the semidirect product on the left hand side is formed with respect to
the action of S3 which permutes the three factors. Each factor W (A2)∼=S3
acts irreducibly on the corresponding direct summand in

3⊕
i=1

A2⊗ZC ∼= E6⊗ZC,

so M acts irreducibly on E6⊗ZC. But clearly |M|= 24 ·34 < |W (E6)|.
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APPENDIX D

Doubly transitive permutation groups

In this appendix we verify the fact about 2-transitive permutation groups
that has been used in the proof of theorem 5.2. For n∈N consider the set of
all n-element subsets of {1,2, . . . ,2n}. The symmetric group S2n permutes
these N =

(2n
n

)
subsets transitively, so we have an embedding

ϕ : S2n ↪→ SN

as a transitive subgroup. Consider the stabilizer of {1,2, . . . ,n}, i.e. the
subgroup Sn×Sn ⊂ S2n. This stabilizer fixes precisely two n-element
subsets, viz. {1,2, . . . ,n} and {n+1,n+2, . . . ,2n}. The same holds for the
subgroup A = An×{1} ⊂Sn×Sn.

LEMMA D.1. Let G be a 2-transitive subgroup of SN containing ϕ(A).
Then either G = AN or G =SN .

Proof. By [19, prop. 5.2] the 2-transitive permutation group G has a
unique minimal normal subgroup H which is either elementary abelian or
simple. In the elementary abelian case the degree N of the permutation
representation would be a prime power by theorem 4.1 of loc. cit., which is
not the case for N =

(2n
n

)
with n > 1. So H is simple, and by loc. cit.

H ⊆ G ⊆ Aut(H)

where H is one of the finite simple groups in the following list.

H N
a) AN arbitrary
b) PSld(q) (qd−1)/(q−1)
c) PSU3(q) q3−1
d) Sz(q) q2 +1
e) R(q) q3 +1
f ) Sp2d(q) 2d−1(2d±1)
g) further cases 11,12,15,22,23,24,176,276

We must show that under the assumptions of our lemma, the only possible
case is a). Let us assume first that n > 4. Clearly f ) and g) cannot occur
since in these cases N is not a binomial coefficient

(2n
n

)
, see remark D.2

below. To exclude the remaining cases we use that the group ϕ(A)∼= An is
simple for n> 4. Since the outer automorphism group Out(H) =Aut(H)/H
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is known to be solvable for H a finite simple group [23], it follows that the
composite ϕ(A) ↪→ G ↪→ Aut(H)� Out(H) is zero. In other words, ϕ(A)
is already contained in the subgroup H ⊆ G.

Now recall that the permutation group ϕ(A) ⊂SN stabilizes precisely
two distinct points, corresponding to {1, . . . ,n} and {n+ 1, . . . ,2n}. Thus
cases c), d) and e) cannot occur – in these cases the stabilizer in H of two
distinct points is a cyclic group [63] and hence cannot contain ϕ(A)∼= An.

In case b) the group H = PSld(q) acts as a permutation group via its
natural action on the points or on the hyperplanes of Pd−1(Fq). By duality
it suffices to deal with the action on points. Recall that ϕ(A) fixes precisely
two distinct points. Let v1,v2 ∈ Fd

q be vectors whose classes [vi]∈ Pd−1(Fq)
are these two points. Consider the preimage B ⊂ Sld(q) of ϕ(A) under
the epimorphism Sld(q)� PSld(q) = H. Since ϕ(A) fixes the points [vi]
in projective space, the group B acts by scalars on the vectors vi. So the
commutator subgroup C = [B,B] acts trivially on the vi. In particular, C
fixes the whole plane spanned by v1 and v2. However, since ϕ(A) ∼= An
and n > 4 we have ϕ(A) = [ϕ(A),ϕ(A)], so with B also the commutator
subgroup C surjects onto ϕ(A). Hence ϕ(A) fixes the whole projective line
through [v1] and [v2], which is impossible since ϕ(A) fixes only two points.

It remains to deal with the cases n≤ 4. For n∈ {3,4} the corresponding
value N ∈ {20,70} does not occur in cases b) - g) of the above list, so we
can assume n = 2. Then N = 6 and hence G is a 2-transitive subgroup of
the symmetric group S6. By [58, th. II.4.7] the only such subgroups other
than S6 and A6 are the exceptionally embedded subgroups S5 and A5.
The exceptional embedding S5 ↪→ S6 is given by the permutation action
of S5 on the set of its six 5-Sylow groups. Suppose that an element σ 6= 1
of the exceptionally embedded S5 fixes one of these 5-Sylow groups, say
the 5-group generated by the cycle α = (12345) ∈ S5. Then there exists
an r ∈ {1,2, . . . ,5} such that σ(i) ≡ i+ r mod 6 for all i, i.e. σ = αr. In
particular, σ lies inside the 5-Sylow subgroup which it stabilizes. Since the
intersection of any two distinct 5-Sylow subgroups is trivial, it follows that
every non-trivial element of S5 fixes at most one 5-Sylow subgroup. But
we assumed that G contains the non-trivial subgroup ϕ(A)∼=A2 which fixes
two distinct points! So this case does not occur either. �

REMARK D.2. 2d−1(2d±1) 6=
(2n

n

)
for all (d,n) ∈ N2 \{(2,2)}.

Proof. For n ∈N and a prime p, let a = ap(n) denote the biggest natural
number such that pa divides n!. Then ap(n) = ∑e≥1bn/pecwhere the Gauss
bracket bn/pec counts how many of the numbers 1,2, . . . ,n are divisible
by pe. In particular, for p = 2 this formula implies a2(2n) = n+a2(n).
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Now suppose that 2d−1(2d±1) =
(2n

n

)
. Then 2d−1 is the highest power

of two dividing this binomial coefficient. Since this binomial coefficient
equals (2n)!/(n!)2, it follows that d − 1 = a2(2n)− 2a2(n), so from the
above formulae for a2(2n) and a2(n) we obtain

d−1 = a2(2n)−2a2(n) = n−a2(n) ≤ n−bn/2c−bn/4c.
For n≥ 8 it would follow that d−1 < n/2−1 and hence 2d < n, giving the
contradiction

2d−1(2d±1) ≤ 22d < 2n <
n−1

∏
i=0

2n−i
n−i =

(2n
n

)
.

So we must have n < 8. Then
(2n

n

)
∈ {2,20,70,252,924,3432}. Since 2d−1

must be the maximal power of two dividing this binomial coefficient, it
follows by direct inspection that d = n = 2 with 2 · (22− 1) =

(4
2

)
is the

only possibility. �
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Séconde partie, Publ. Math. Inst. Hautes Études Sci. 24 (1965), 5–231.
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partie, Publ. Math. Inst. Hautes Études Sci. 28 (1966), 5–255.
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