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1.1 Summary 
 

In sexual plants meiosis gives rise to recombined and reduced gametes. In 
diplosporous accessions of the North American genus Boechera meiotic processes are 
circumvented (i.e. apomeiosis) which lead to a supressed recombination and to 
production of clonal unreduced male and female gametes. Unreduced male gametes in 
diplosporous Boechera are required to produce balanced endosperm. The objective of 
this study was to identify and characterize candidate genetic factors for unreduced 
pollen formation, and to analyze their genus-wide dynamics in order to contrast the 
hypotheses whether apomeiosis expression was induced through interspecific 
hybridization or if it could be an older characteristic of the genus (i.e. pre-Pleistocene). 
Apomictic Boechera demonstrated high variability for reduced and unreduced meiocyte 
production. Early flower developmental staging and flow-cytometric analyses together 
led to the selection of a single pollen mother cell stage at the onset of meiosis for 
microarray-based comparative gene expression analyses between diploid sexual and 
diploid apomictic genotypes, and led to the identification of a single highly-upregulated 
factor (BspUPG-2) which is highly conserved among apomictic Boechera but has no 
homologue in sexual Boechera or in other taxa. BspUPG-2 exhibits four intron-exon 
structure variants which suggest alternative splicing, and lack of a prominent open 
reading frame and no overall sequence homology to known genes suggests that 
BspUPG-2 belongs to the novel class of long regulatory non-coding mRNA-like RNAs. 
BspUPG-2 has apparently arisen through a three-step process initiated by ancestral gene 
duplication of the original non-genic BspUPG-1 locus, followed by sequential 
insertions of segmentally duplicated gene fragments which led to its chimeric structure 
and neofunctionalization in apomictic Boechera. Its genesis reflects the hybridization 
history which characterizes the genus Boechera. Computational analysis demonstrated 
that portions of BspUPG-2 form secondary structures which were classified as potential 
primary microRNAs (pri-miRNAs) according to their minimal folding free energy index 
(MFEI≥0.70) and their A+U content (≥56.70%). One such structure is highly similar to 
the third exon of a GTP-binding elongation factor Tu/1-A family homolog from 
Arabidopsis (AT4G02930, E-value=7.00E-24) which could be a potential regulatory 
target. Two other sequence fragments at the 5`-end of BspUPG-2 are also homologous 
to known protein-coding genes (AT5G19960 and AT1G18260), hence supporting the 
hypothesized regulatory function of BspUPG-2. The apomixis-specificity of BspUPG-2 
enabled a genus-wide analysis which demonstrated its ubiquity in all Boechera lineages, 
including the ancient AB haplotype and two single individuals each of one closely-
related genus.  These results attest to BspUPG-2’s hypothesized importance unreduced 
pollen formation and hence for balanced endosperm formation, and point to a single 
origin of this factor which coincides with the root of the genus Boechera dating to the 
middle of the Pleistocene.  
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13 Zusammenfassung 

1.2 Zusammenfassung 
 

In sexuell reproduzierenden Pflanzen führen Meiosen zu Gameten mit 
rekombinierten und reduzierten Chromosomensätzen. Bei diplosporen Akzessionen der 
nordamerikanischen Gattung Boechera bleibt die Reduktionsteilung und die damit 
einhergehende Rekombination mütterlicher und väterlicher Chromosomensätze aus 
(d.h. Apomeiose), und führt zu klonalen und unreduzierten weiblichen und männlichen 
Gameten. Diplospore Boechera Akzessionen benötigen unreduzierte männliche 
Gameten zur Balancierung der elterlichen Chromosomensätze im Endospermgewebe. 
Ziel dieser Dissertation war es, Kandidatengene für die Formierung unreduzierter 
männlicher Gameten zu identifizieren, charakterisieren und mittels geeigneter 
Kandidategene die Hypothese zu testen, ob Apomeiose in Boechera durch 
interspezifische Hybridisierungen induziert wurde oder ein älteres Charakteristikum der 
Gattung Boechera ist (d.h. pre-Pleistozän). Die Formierung von reduzierten und 
unreduzierten Meiocyten war hoch-variabel in apomiktische Boechera Akzessionen. 
Die Analyse von Stadien der frühen Blütenentwicklung, zusammen mit 
durchflusszytometrischer Analyse von Pollenkernen und Samen führte zur 
Identifikation eines spezifischen Pollenmutterzellstadium am Eintritt zum 
Meioseprozess, welches zur Mikroarray-gestützen vergleichenden Transkriptomanalyse 
von diploiden sexuellen und diploiden apomiktischen Akzessionen genutzt wurde. Es 
konnte ein einziges hochgradig exprimiertes Gen (BspUPG-2) identifiziert, welches mit 
hoch konservierter Sequenz spezifisch in apomiktischen Akzessionen vorkommt und 
dort prevalent in Antheren exprimiert wird. BspUPG-2 zeigte weder Homologien zu 
Genen in sexuellen Boechera Akzessionen noch zu Genen anderen Taxa. Insgesamt vier 
Transkriptvarianten wurden für das BspUPG-2 Gen identifiziert, was auf differenzielle 
Spleißvorgänge bei der Transkription schließen lässt. Obwohl BspUPG-2 auch 
Merkmale protein-kodierender Gene (z.B. Polyadenylierung) besitzt, deutet ein 
fehlender Leserahmen bei einer Transkriptlänge von ca. 2648 Nukleotiden auf eine 
Klassifizerung als neuartige regulatorische lange nicht-kodierende mRNA-typische 
RNA hin. BspUPG-2 entwickelte sich offensichtlich aus einem dreistufigen Prozeß, der 
durch eine Genduplikation des originalen Lokus BspUPG-1 initiiert wurde. 
Anschließend kam es zur schrittweisen Insertion duplizierter Genfragmente und zur 
Ausprägung einer Intron-Exon-Struktur. Dieser Vorgang führte zu einer Chimärstruktur 
von BspUPG-2 und zu einer potentiellen Neofunktionalisierung des Gens in 
apomiktischen Boechera Akzessionen. Mittels bioinformatischer Methoden wurde 
gezeigt, dass bestimmte Sequenzbereiche des BspUPG-2 Gens Sekundärstrukturen 
formen können deren Eigenschaften primären microRNAs (pri-miRNAs) gleichen 
(MFEI≥0.70, A+U content ≥56.70%). Eine dieser Strukturen ist homolog zum dritten 
Exon des GTP-bindenden Elongationfaktor Tu/1-A Homolog aus Arabidopsis 
(AT4G02930, E=7.00E-24) welches vermutlich ein regulatorisches Zielgen ist. Die 
Homologie zweier weiterer Fragmente des BspUPG-2 Gens zu bekannten protein-
kodierenden Genes (AT5G19960 und AT1G18260), unterstreicht nochmals die 
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vermutete regulatorische Funktion des BspUPG-2 Gens. Das spezifische Vorkommen 
von BspUPG-2 in apomiktischen Boechera Akzessionen ermöglichte die marker-
gestützte Klassifizierung von apomiktischen und sexuellen Boechera Akkzessionen und 
zeigte, dass BspUPG-2 in allen Boechera Chloroplasten-Haplotypenlinien vorkommt 
und sowohl im evolutionär ältesten Chloroplasten-Haplotyp (AB) als auch in zwei 
Individuen nahverwandter Gattungen detektiert wurde. Diese Ergebnisse unterstützen 
die vermutete potentielle Bedeutung von BspUPG-2 für die Formierung unreduzierter 
männlicher Gameten und damit auch für die Ausbildung eines funktionierenden 
Endosperms in apomiktischen Boechera Akzessionen und deuten darüber hinaus auf 
einen singulären Ursprung des Kandidatengens BspUPG-2 hin, welcher mit dem 
Ursprung der Gattung Boechera koinzidiert. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

15 Introduction and Literature Review 

2. Introduction and Literature Review 
2.1 Development and function of the male germline in flowering plants 

2.1.1 Developmental steps 

The “quartet model”, a revised version of the classical ABC model, explains the 

coordinated developmental transition from the vegetative to the reproductive phase in 

flowering plants (Haughn and Sommerville 1988; Theissen and Saedler 2001). The 

determined differentiation pattern of flower organs occurs after the plant hormone-

mediated switch of the shoot apical meristem (SAM) and its lateral organs from 

vegetative to generative growth, and involves a few homeotic genes (Steeves and 

Sussex 1989; Coen and Meyerowitz 1991; Yanofsky 1995; Laux et al., 1996; Blázquez 

et al., 1998; Fletcher et al., 1999; Brand et al., 2000; Lenhard et al., 2002). Thereby 

sepals are derived from the A function (APETALA genes AP1 and AP2), petals from the 

A and B function, the gynoecium from the C function and stamens from the B and C 

functions. All interact with the E function, containing the SEPALLATA1, 2, 3 and 4 

(SEP) genes, which are flower-specific MADS-box transcription factors as described 

for the B (DEFICIENS (DEF) and GLOBOSA (GLO) in Antirrhinum and AP3 and 

PISTILLATA (PI) in Arabidopsis) and C functions (AGAMOUS (AG) and PLENA 

genes). In Brassicaceae, flower buds are generally simply structured with a calyx of four 

separated sepals, a corolla of four petals, and four long centered and two short lateral 

stamens surrounding the gynoecium (Smyth et al., 1990). Flower buds typically emerge 

at the flanking side of apical meristems in a whorl pattern, whereby the age of a bud is 

related to its distance from the whorl center (Smyth et al., 1990).  

The developmental reference points of male reproductive organs (stamens) were 

described in detail for Arabidopsis thaliana (Smyth et al., 1990), Brassica napus (Scott 

et al., 1991) and tobacco (Koltunow 1990; Goldberg 1993). Thereby, stamen 

development is initiated by the stamen primordia which are located in the third whorl 

within the bud (Coen and Meyerowitz 1991). Stamen development is characterized by 

the elongation of its filament after differentiation in an epidermal cell layer and vascular 

bundle, but is ultimately dominated by differentiation of the multiple specialized cell 

types in the anthers which are linked to the filament via the anther connective. In 

Arabidopsis the SPOROCYTELESS (SPL)/NOZZLE (NZZ) gene, which is partly under 

the control of the AG gene, is one of the few examined genes promoting early stamen 

differentiation (Schiefthaler et al., 1999; Yang et al., 1999). Anther development can be 

divided into several stages which can be grouped into two phases. Phase one includes 
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early stages, where anthers undergo major histodifferentiation events such as cell 

specification, tissue differentiation, meiosis and microspore formation, whereas in phase 

two anthers massively elongate, pollen grains differentiate while other tissues 

degenerate (e.g. tapetum), and anther development finally ends with dehiscence and 

pollen release (Koltunow 1990; Smyth et al., 1990). All stamen tissues derive from 

three initial “germ” layers: L1 giving rise to the epidermis, L2 developing into the 

pollen mother cells (PMCs), the endothecium and the outer tapetum, and L3, which 

differentiates into the connective, the inner tapetum and the vascular bundle (Goldberg 

1993). The fully differentiated anther is structured in the vascular bundle surrounding 

anther connective which joins four microsporangia consisting each of four somatic 

layers: epidermis, endothecium, middle layer(s) and tapetum. Two microsporangia are 

clustered in a lobe and separated by two additional nonreproductive tissues: the circular 

cell cluster and the stomium. Each of the four microsporangia forms a locule that houses 

the gametophyte initials (PMCs or meiocytes). Differentiation of the tapetum and the 

meiocytes is thereby putatively controlled by antagonistic expression levels of the 

EXCESS MALE SPOROCYTES1 (EMS1) gene and the TAPETUMDETERMINANT1 

(TPD1) gene in the precursor cells (Zhao et al., 2002; Yang et al., 2003; Ma 2005). 

The essential step from the sporophyte to the gametophyte, which hosts the male 

germline, occurs during gametogenesis, a two-part process. It starts with 

microsporogenesis where the enlarged, interconnected (e.g. via plasmodesmata) and 

dedifferentiated diploid PMCs undergo one round of DNA replication followed by one 

meiotic reductional and one mitosis-like equational division to form four haploid 

(reduced) microspores. The onset of meiosis is accompanied with callose deposition 

along the plasma membranes which is guided by microtubule arrays within the 

cytoplasm (Cresti et al., 1992). During the second part, microgametogenesis, thickening 

of the callose wall at the end of the second meiotic division and final endo-(1,3)-ß- 

glucanase-mediated callose dissolution separates the four haploid microspores from 

each other. Each undergoes a vacuolation- and nuclear migration phase, whereby 

unequational mitotic division leads to a binucleate pollen grain (Scott et al., 2004). 

Thereby one reduced gamete (generative cell or sperm cell) is separated from the 

vegetative cell. In some angiosperms, including Arabidopsis, the generative cell 

additionally divides into two isomorphic sperm cells before germination of the pollen 

tube, but in about 70% of the angiosperms the second division appears after germination 

(pleisomorphic bicellular pollen), which has been shown to be a phylogenetically 
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rudimentary form of pollen formation (Brewbaker 1967; McCormick 1993). During 

microgametogenesis pollen grains form a multilayered pollen wall supporting its 

function as carrier of the male gametes. The pollen wall consists of a pectocellulosic 

intine layer which is surrounded by a tapetum-derived sporopollenin-based exine, 

containing two layers, the inner nexine and the outer sexine. The tectum, as the 

outermost sexine layer, is highly variable between species and reflects the mode of 

dispersal. The tectum is fragmented by precisely positioned germinal apertures and 

arrays of columellae forming interlocking lacunae which function as sites of 

germination and play a part in harmomegathy (Erdtman 1947, 1952; Cresti et al., 1992; 

Scott et al., 2004).  

Anther development ends with dehiscence, a process of tissue degeneration (e.g. of 

the septum, the tapetum and the circular cell cluster) that forms a bilocular anther in the 

first step and disruption of the stomium in a second step. In Arabidopsis the 

DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) gene, which initiates the 

biosynthesis of jasmonic acid (JA), and the transcription factor MYB26 are involved in 

dehiscence. JA may regulate programmed cell death (Zhao and Ma 2000) and is 

involved in water transport and up-take in anthers, synchronizing pollen maturation and 

anther dehiscence (Ishiguro et al., 2001). In interacton with the JA function as regulator 

of water fluxes, MYB26 activates the phenylpropanoid pathway in endothecial cells to 

provide lignin residues for wall thickening, allowing the endothecium cells to become 

turgid, thereby disrupting the neighboring stomium and leading to pollen release (Scott 

et al., 2004). 

 

2.1.2 The role of male gametes 

The role of pollen grains is to deliver the generative (sperm) cells to the embryo sac 

to undergo cell fusion with the egg and central cells. This task is divided into three 

phases, (1) transfer of the pollen from the anther to the stigma of the pistil by biotic and 

abiotic vectors (pollination), (2) pollen tube initiation and guided growth (germination), 

and (3) fusion of the male and female gametes (fertilization). Competition between 

single pollen during pollination is thereby one major driver for the evolutionary success 

of flowering plants. 

Pollen-pistil recognition on the stigma surface of the gynoecium involves at least 

three essential pollen coat-specific genes (CER1, CER3 and CER6) which were 

identified in the eceriferum mutant of Arabidopsis and which represent various classes 
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of long-chain lipids whose combinations are necessary for pollen recognition 

(Hülskamp et al., 1995). Additional lipophilic molecules in the exine wall are assumed 

to play a role in species-specific adhesion between pollen and stigma cells (Zinkl et al., 

1999). Moreover, strong pollen competition underlies these steps to inhibit incompatible 

pollen, and increase progeny fitness (Armbruster and Gobeille Rogers 2004), although 

this is strongly modulated by the progeny growth environment (Kalla and Ashman 

2002). The various levels of pollen competition include pollen position on the stigma 

(Thomson 1989), the number of pollen grains (Mulcahy and Mulcahy 1975), the 

distance of pollen growth (McKenna and Mulcahy 1993), pollen mentor effects 

(Michurin 1950), heteromorphic self-incompatibility (HSI, Darwin (1877); East (1940)) 

or various other types of self-incompatibility (SI) barriers (e.g. cryptic- (CSI), 

sporophytic- (SSI), gametophytic- (GSI) or gametophytic-sporophytic-SI (GSSI)). In 

many Brassicaceae SSI prevents self-fertilization after deposition of the pollen grain on 

the stigma surface (Schierup et al., 1998). Similar to the tightly linked S-RNase gene 

and the S-locus F-box (SLF) gene as determinants of SI at the S (sterility) locus in 

Petunia (Indriolo and Goring 2010), the S locus of outcrossing A. lyrata contains 

various S haplotypes of three tightly linked genes, the stigma-specific S locus receptor 

kinase (SRK) gene, the pollen-specific S locus cysteine-rich protein (SCR) gene and the 

papilar cell-specific S locus glycoprotein (SLG). The S haplotype variants of these genes 

with similar specificity, lead to inhibition of pollen germination on the stigma surface 

(Schopfer et al., 1999; Kusaba et al., 2001). In contrast, this process of competitive 

interaction is limited in the self-compatible A. thaliana, which is caused by a lack of 

polymorphism at the SCR locus (Bechsgaard et al., 2006).  

After circumvention of the SI barrier the vegetative cell, which is a storage cell, 

initiates pollen tube formation (germination) for delivery of the nonmobile male germ 

unit (MGU), composed of the two sperm cells. Thereby, the pollen tube emerges after 

rehydration and aperture opening of the pollen grain and penetrates into the transmitting 

tissues of the stylar canal. A complex network of genes is involved in pollen tube 

guidance through the stylar canal via the septum and the funiculi to the ovules. In 

tomato, pectin degrading enzymes (Wing et al., 1989) allow pollen tube growth, and the 

plasma membrane localized leucine rich repeat (LRR) receptor-like kinases, LePRK1 

and LePRK2 (Muschietti et al., 1998), play a role in signal transduction important for 

growth coordination and direction. In Arabidopsis the TIP1 and KIP genes play a role in 

initiation and maintenance of growth in pollen tube tip-growing cells (Schiefelbein et 
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al., 1993; Ryan et al., 1998; Procissi et al., 2003). Mutant screening in Arabidopsis 

additionally identified genes influencing γ-aminobutyric acid (GABA) concentration in 

female tissues (POP2) or the Ca2+ gradient in pollen tubes (D-serine activated glutamate 

receptors (GLRs)), all of which are necessary to avoid pollen tube guidance defects.  

The involvement of intracellular messengers like GABA and Ca2+ shows that, 

similar to the female gametophyte, the male gametophyte must control a complex 

molecular machinery of signal perception, signal transduction and cellular response to 

control chemical signals from sporophytic tissues and the female gametophyte 

(Geitmann and Palanivelu 2007). Signal perception, for example is mediated from a 

large group of pollen-specific LRR receptor kinases (Muschietti et al., 1998; Kim et al., 

2002), via channel-guided mechanical-sensitive calcium uptake (Feijó et al., 1995; 

Malhó et al., 1995), inward K+ channels (Fan et al., 2001) or other putative voltage 

gated ion channels (Wang et al., 1989). Cytosolic calcium plays a major role in signal 

transduction (Malhó et al., 1994; 1995) via activation of calcium-dependent protein 

kinases (CDPK; Estruch et al., (1994)) and induction of the synthesis of secondary-

messengers like calmodulin (Vogel 1994) or inositol 1,4,5-triphosphate (IP3) and 

diacylglycerol (DAG) via phophatidylinositol 4,5-bisphosphate (PIP2) hydrolysis (Dowd 

et al., 2006). Another class of signal transducers are Rho-related GTPases, which play a 

critical role for pollen tube tip growth (Lin and Yang 1997; Li et al., 1998). Geitmann 

and Palanivelu (2007) reviewed the manyfold cellular signal responses of the male 

gametophyte, and allude to changes in growth rate, growth direction and adhesion 

ability of the pollen tube involving the spatial control of the cytoskeleton via actin-

binding proteins (e.g. Profilin; Staiger et al. (1997)), or via redirecting of cell wall 

softeners, such as methyl-esterifed pectin.  

In angiosperms the pollen tube enters the ovule through the micropylar pole into one 

of the two synergids. The MYB98 gene (Higashiyama et al., 2001), which encodes a 

transcription factor modulating the secretion of chemoatractants from the filiform 

apparatus, and ZmEA1 (Márton et al., 2005), a small secreted protein in maize, are two 

of only a few known genetic factors involved in chemotaxis guiding of the pollen tube 

to the synergids. Finally, the pollen tube arrests at the synergids, which is mediated by 

the FERONIA/SIRENE (FER/SRN) signaling pathway (Huck et al., 2003; Escobar-

Restrepo et al., 2007) and multiple other genes, like the LORELEI gene (Capron et al., 

2008). Hereafter, ion channels, e.g. KZM1 in maize (Amien et al., 2010) and ACA9 in 

Arabidopsis (Schiott et al., 2004), are strongly involved in the rupture of the pollen tube 
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tip. The pollen tube rupture initiates the released of both sperm cells into the eight-

nucleate embryo sac which contains the egg cell, the binucleate central cell and three 

antipodal cells at the chalazal pole (Reiser and Fischer 1993).  

Similarly to pollen tube guidance through the style, cell-cell communication plays a 

mandatory role during double fertilization (Borges et al., 2008), with a complex 

signalling network between the pollen tube, the synergids, sperm cells, the egg cell and 

the central cell, preventing polyspermy and misguidance of the male gametes inside the 

female gametophyte. Double fertilization refers to the process where one haploid 

generative nucleus migrates towards and fuses with the haploid egg cell to form the 

diploid (2C) zygote, whereas the second generative nucleus fertilizes the binucleate 

central cell to form the triploid (3C) endosperm.  

Double fertilization starts with the entrance of the pollen tube into the synergids, 

which is controlled by secreted chemical attractants (see above; Higashiyama et al. 

(2001)). Besides chemical signaling from synergids, signaling from the egg cell plays a 

central role in selective fertilization of the egg cell with a single sperm cell, as was 

shown using the polyspermic tetraspore (tes) mutant of Arabidopsis (Scott 2008) and 

observed in an Arabidopsis mutant having only one sperm cell based on a CDC2A (i.e. 

gene cell division cycle 2 homolog A for the catalytic subunit p34 of a conserved protein 

kinase in Arabidopsis which is a key regulator of the cell cycle) deficiency, which 

showed exclusive fertilization of the egg cell (Nowak et al., 2006). Nowak et al. (2006)  

provided three alternatives to explain this preferential fertilization: advantageous 

positioning of the egg cell versus the central cell, predetermined fertilization of the egg 

cell or active signaling from the egg cell. The strong influence of egg cell signaling on 

the whole embryo sac during double fertilization was demonstrated using the 

LACHESIS mutant from Arabidopsis in which failure of homotypic nuclei fusion in the 

central cell blocks endosperm formation (Völz et al., 2012). Despite the strong influence 

of egg cell signaling, the acquisition of specific functions by the central cell was 

documented through the molecular characterization of the Arabidopsis mutant glauce, 

in which the expression of a BAHD acyl-transferase enables the active promotion of the 

central cell’s own fertilization by the sperm cell through a signaling mechanism 

(Leshem et al., 2012). 

Besides the activity of the female gametophyte in sperm cell guidance, the male 

gametes shed their immobility, which they gained during pollen tube guidance, and 

initiate actomyosin-mediated active migration towards the female gamete (Márton and 
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Dresselhaus 2008). Once the sperm cell reaches the egg cell, the fusion of both gametes 

is initiated. Little is known about the molecular background of this step, but the sperm 

cell-specific and membrane-localized HAP2/GCS1 of Arabidopsis was identified as one 

key regulator for the membrane merger step between male and female gametes in higher 

plants, Chlamydomonas, and Plasmodium (Liu et al., 2008). Cell cycle arrest prior to 

fertilization of the central cells seems to be controlled by a Polycomb group complex 

(PgC) which mediates epigenetic gene silencing, whereas the egg cell arrest might be 

mediated by the tumor suppressor retinoblastoma (RBR; reviewed in Guitton & Berger 

(2005)). No preferential egg cell fusion with either sperm cell could be detected 

(Ingouff et al., 2009; Hamamura et al., 2011), but fast blocking of the egg cell 

(polyspermy block) is proposed as a model to explain the directed fertilization of the 

endosperm with the remaining sperm cell (Hamamura et al., 2011). The endosperm, 

which develops in parallel with the embryo, has mainly a storage and nutritive function, 

but could be a source of signals important for embryogenesis by regulating trophic 

interactions between mother and embryo (Berger 1999).  

After fusion of the parental genetic material during karyogamy, re-initiation of cell 

processes within the zygote takes place and the paternal genome is clearly involved in 

these processes in some plant species (Meyer and Scholten 2007) rather than silenced as 

proposed earlier (Vielle-Calzada et al., 2000). Tracking of the paternal histone H3.3 

during double fertilization in Arabidopsis for example, suggests parental genomic 

imprinting based on the observed divergent development of H3.3 in the zygote and the 

endosperm (Ingouff et al., 2007). The expression of imprinted paternal alleles after 

fertilization is sufficient to provide biological functions during early plant 

embryogenesis (Weijers et al., 2001), and their activity hence underlines the importance 

of the male gamete. 

 

2.1.3 The genetic control of male meiosis and pollen fate 

Despite a relatively simplified morphological structure of the haploid male 

gametophytes of most gymnosperms and angiosperms, the various “tasks” of pollen 

grains described in the previous section demonstrate complex molecular programs in 

pollen which differentiate them from somatic cells.  

Comparative transcriptome approaches were used to detect these programs and have 

mainly focused on the gametophytic control of postmeiotic developmental steps. It is 

speculated that the number of anther-specific genes involved in gametogenesis reaches 
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up to 37% of the mRNA population at any particular phase (Kamalay and Goldberg 

1980). Besides a 60-90% overlap in genes expressed in mature pollen and somatic 

tissue, 20 000 to 24 000 unique mRNAs were estimated for mature pollen grains in 

maize (Willing et al., 1988). More recent transcriptome analyses in Arabidopsis, 

excluding the male gametophytic-sporophytic overlap, estimate approximately 5.6% 

(789 genes; Twell et al., (2006)) to 33% (7 177 genes; Borges et al. (2008)) of the total 

number of expressed genes in pollen to be pollen-specific. In line with this, comparative 

transcriptome analysis in Arabidopsis revealed higher estimates for pollen-specific 

genes compared to any other plant tissue, where approximately 3% of genes show 

tissue-specific expression (Ma 2005). Including the complete pollen developmental 

series in Arabidopsis, the expression of approximately 14 000 genes was reported, with 

decreasing gene activity as pollen mature (Honys and Twell 2004).    

Comparative transcriptome profiling of male gametes in Arabidopsis has shown (1) 

enrichment of genes responsible for DNA repair, cell cycle and chromosome 

organization, (2) underrepresentation of the RNA-processing machinery (Pina et al., 

2005; Borges et al., 2008), and (3) a developmental stage-specific switch of active 

transcript sets progressing from the uninuclear microspore towards the mature pollen 

grain (Mascarenhas 1989; Honys and Twell 2004). Separate sets of active transcripts in 

pollen grains and sporophytic tissues likely reflects natural selection for nonoverlapping 

sets of genes to avoid the proliferation of deleterious changes e.g. from uncontrolled 

pollen competition (Haldane 1932; Mulcahy and Mulcahy 1987).  

Mutagenesis analyses have provided the most insights into the molecular genetic 

mechanisms of early gamete formation (e.g. meiosis, Harrison et al. (2010)). Such 

studies have focused on the genetic control of germline cell fate and differentiation 

patterns on the one hand, and cell cycle processes and control of meiosis on the other.  

Meiosis is the central process defining the alternation between the diploid and 

haploid phases of plants, and generates genetic diversity and plasticity in progeny 

through chromosomal recombination. Male and female meiosis are conserved processes 

which are often not synchronized, in contrast to meiosis between the PMCs and between 

the megaspore mother cells (Armstrong and Jones 2001). Cytological events 

differentiating meiosis from ameiotic and somatic mitosis are (1) homolog pairing, (2) 

recombination, (3) the suppression of sister-chromatid separation during the first 

division, and (4) the absence of chromosome replication at the start of the second 

division (Wilkins and Holliday 2009). 
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Important components of meiosis have been studied via loss of function mutants, 

many of them from Arabidopsis, maize and lily (e.g. Baker et al. (1976); Ross et al. 

(1997); Siddiqi et al. (2000) and Mercier et al.(2001)), and have revealed effects on 

homeologous chromosome recombination (Lu et al., 2008), cell cycle defects (Yang et 

al., 2003), and defects on meiotic cell fate (Sundaresan et al., 1995; Yang et al., 1999), 

all of which lead to reduced fertility or death of the meiocyte (Fig. 1). Many genetic 

regulators for meiosis are shared between female and male sporophytes (Liu and Qu 

2008). 

Most reported male meiotic mutants have defects during meiosis I (Fig. 1; see 

Supplemental Table 1). Baker et al. (1976) divided them into two classes: mutants 

causing asynapsis and mutants affecting chromosome integrity. Asynaptic mutants 

produce partial or complete failure of homologous chromosome synapsis during 

prophase I, with lower frequencies of chiasmata and elevated frequencies of univalents. 

Structural abnormalities, like multiple spindles, misdividing univalents, formation of 

micronuclei and/or restitution nuclei, lead mostly to reduced fertility or sterility of the 

meiocytes.  

Genetic factors underlying these phenotypes were examined primarily in 

Arabidopsis and have revealed mostly structural genes, as for example those necessary 

for sister chromatid cohesion such as SYN1/DIF1, which encodes a meiosis-specific 

cohesion subunit (Parisi et al., 1999) and SWITCH1-2/DYAD (SWI1-2/DY), which has 

some similarity to the structural maintenance of chromosomes (SMC) family proteins in 

humans (Mercier et al., 2001). Analysis of the asynaptic1 (asy1) mutant of Arabidopsis 

suggests that ASY1, which is a homolog of the yeast HOP1 gene (Ross et al., 1997; 

Armstrong et al., 2002), is involved in the formation of the synaptonemal complex (SC), 

as its absence leads to failure of homologous chromosome synapsis during prophase I. 

Homolog pairing is also affected by mutating the AHP2-1 gene, which is a meu13+ 

homolog (Schommer et al., 2003). Additionally, male meiosis-specific histone-like 

proteins (e.g. meiotin-1) have been observed to play a role in chromatin packing during 

meiosis (Sasaki et al., 1990; Riggs and Hasenkampf 1991). The key feature of meiosis 

is recombination between homologous chromosomes. The yeast homolog of SPO11 in 

Arabidopsis is one of the central genes coordinating meiotic recombination as it 

functions as a catalytic subunit of a topoisomerase causing double-strand breaks (DSB) 

in the genome. Additional proteins, like the MRE11-RAD50 (MR) proteins, are 

involved in the SPO11 pathway, being capable of tethering the ends of DNA molecules 
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or possessing various DNA nucleases, and are hence required for meiotic 

recombination, DSB and processing mis-folded DNA structures (Connelly and Leach 

2002). RAD51 is a counterpart of RAD50, as it is important for DSB repair (Shinohara 

et al., 1992; Doutriaux et al., 1998). Mutation of Atspo11 causes defects in homolog 

pairing, recombination, and bivalent formation. Other genes encode for functionally 

redundant kinesins, like the AtNACK1/HINKEL and STUD/TES genes, which are  

 
Figure 1. Cytological events of male germline development in Boechera. 

Transversal sections of antherheads and DAPI-stained meiocyte spreads were prepared from 

sexual Boechera genotypes. Key regulators and their regulatory effects in malfunction 

mutants were assigned from Arabidopsis (see reviews Ma (2005) and Berger and Twell 

(2011)). Supplemental Table 1 contains the extended reference list of genes and their 

specifications according to the gene designations. PMC = pollen mother cell; PMI and II = 

pollen meiosis I and II. Bars of transversal sections = 50 µm; Bars of meiotic spreads = 5 µm. 
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believed to serve as a microtubule-associated motor during cytokinesis of both 

male and female meiosis inhibiting potential mislocalization of the nuclei 

(Hulskamp et al., 1997; Spielman et al., 1997; Tanaka et al., 2004). 

A rare phenomenon is the involvement of a male and female meiosis-specific cyclin 

in homologous recombination during prophase I, as reported for the SOLO DANCERS 

(SDS) gene (Azumi et al., 2002). SDS, for which a phosphorylation activity of proteins 

involved in sister chromatid cohesion is proposed, is required for homolog synapsis and 

bivalent formation, similar to the function of the Arabidopsis genes AtSPO11 and 

AtDMC1 (Couteau et al., 1999; Grelon et al., 2001).  

Usually, cyclins play a major role in cell cycle progression during mitosis and 

meiosis. The meiotic cell cycle is vital for the production of reduced pollen and any 

defect heavily disrupts proper gamete formation. Meiosis starts at the transition from G2 

to M-phase, which requires high levels of cyclin-dependent kinases (CDK) followed by 

their massive degradation once the chromosomes are in correct order at metaphase I 

(Brownfield and Köhler 2010). The main kinase in Arabidopsis is the A group CDKA;1 

among 50 others, all of which can be divided in the A, B and D groups of plant cyclins 

(Renaudin et al., 1996). Mutagenesis of an A-type cyclin (CYCA1;2) in the tam1 

mutant in Arabidopsis illustrates their importance for cell cycle progression in male 

meiosis (Magnard et al., 2001; Wang et al., 2004). Mutation of TAM1 causes 

asynchronous PMC meiosis, allowing only a subset of the meiocytes to enter meiosis II. 

The other subset produces, based on the missing second division, unreduced gametes 

with sister chromatid formation. A similar Arabidopsis mutant, osd1, lacks promoting 

activity for the transition from meiosis I into meiosis II. Although the molecular 

function of OSD1 is currently unknown, a CDK activity similar to CYCA1;2/TAM is 

suggested (d’Erfurth et al., 2010). CDK domain containing genes include MALE 

STERILITY5 (MS5), which contains a fragment with similarity to a CDK subunit from 

Xenopus laevis (Glover et al., 1998). Other genes not representing cyclins, such as the 

MALE MEIOCYTE DEATH1 (MMD1/DUET) gene (Reddy et al., 2003; Yang et al., 

2003), are additionally hypothesized to regulate meiotic cell cycle progression during 

late male meiosis I, but mutation of both lead ultimately to pollen cell death.  

Besides the array of defective meiotic mutants, others have been observed for the 

production of elevated frequencies of unreduced (diploid) gametes (see osd1). Various 

mechanisms leading to unreduced gamete formation (2C gametes) have been reported in 

the Rosaceae, Solanaceae and Brassicaceae (Veilleux 1985), the Poaceae (Harlan and 
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deWet 1975; Gallo 2007) and Ericaceae (Vorsa and Rowland 1997), with premeiotic, 

meiotic, and postmeiotic abnormalities being the most frequent correlates (Kaul and 

Murthy 1985). In general, the two chromosome sets in unreduced gametes can be either 

non-sister chromatids, due to a first division restitution (FDR), or sister chromatids, due 

to second division restitution (SDR). Depending on the recombination frequency non-

sister chromatids are heterozygous from the centromere to the first chiasma, while sister 

chromatids are homozygous between the centromere and the first chiasma (Bretagnolle 

and Thompson 1995). Peloquin et al. (1999) estimated that the percentage 

heterozygosity transmitted by gametes is approximately 80% with FDR and less than 

40% with SDR. Assuming a complete lack of recombination for unreduced gametes, 

they are desired for breeding purposes like the generation of new hybrids because (1) 

they offer complete homozygosity (through SDR) or complete heterozygosity (through 

FDR), and (2) they provide the ability to fix hybrid vigor (Brownfield and Köhler 

2010). 

Recently, a couple of genes were detected whose mutation cause an array of 

different male meiotic products in Arabidopsis, including high frequencies of unreduced 

gametes. One example for an elevated production of balanced, unreduced pollen is the 

mutation of AtPS1, which initiates nuclear restitution in male meiosis II through 

disruption of the spindle orientation, producing a mix of dyads and triads (d’Erfurth et 

al., 2008). The highly conserved AtPS1 contains domains putatively involved in 

protein–protein interactions, but its specific function during male meiosis is unknown. 

Different to the Atps1 and osd1 mutants, where the formation of unreduced pollen 

occurs by parallel spindles during meiosis II or via omission of the second meiotic 

division (SDR pollen), the loss of the male meiosis-specific gene JASON causes the 

formation of parallel arranged and fused spindles in male meiosis II, resulting in the 

production of unreduced FDR pollen (Erilova et al., 2009; de Storme and Geelen 2011).  

Pollen mitosis I, which follows cytokinesis is a highly asymmetric cell division 

which critically depends on microspore polarization (Park et al., 1998). Determinants of 

microspore polarity were detected in the gemini pollen mutants of Arabidopsis (Park et 

al., 1998). Phenotypic behaviour of these mutants suggests that microspore polarity 

could be established during meiotic phragmoplast development, which involves 

specialized microtubuli. These microtubuli are putatively under control of the GEM1 

gene, a MAP215 family of microtubule-associated proteins that plays critical roles in 

the assembly and function of the meiotic/mitotic spindles (Park et al., 1998; Twell et al., 
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1998). Another gene whose function is postulated to be necessary in setting up cell 

polarity is SIDECAR POLLEN, which might encode a repressor of cell division until 

cell polarity is achieved (Chen and McCormick 1996). 

In their review Berger & Twell (2011) dissected the network of genetic factors 

involved in male germline cell fate and cell differentiation during microgametogenesis. 

Their model explains putative molecular pathways initiated after asymmetric division of 

the microspore, characterized by the exit of the vegetative cell from the cell cycle and 

formation of two sperm cells through symmetrical mitotic division. They illustrate that 

cell cycle progression from the G1 to the S phase in the generative cell is initiated by 

the F-BOX-LIKE 17 (FBL17), which functions as adaptor protein for the SKP-

CULLIN-F-BOX (SCF) containing complex, known to act in cell-cycle control in 

mammals (Morgan 2006). The transient expression of the FBL17 gene mediates the 

proteasomal degradation of the CDK inhibitors KRP6 and KRP7, leading to a loss of 

the CDK inhibition. Activated CDK’s phosphorylate the retinoblastoma protein (RBR), 

which suppresses the E2F/DP pathway. Phosphorylated RBR inactivates supressors of 

E2F/DP-type transcription factors, which subsequently activate S phase genes to start 

the cycle for the second pollen mitosis. As opposed to the generative cells, FBL17 is not 

expressed in the vegetative cell, leading to continuous repression of the E2F/DP 

pathway and exit from the cell cycle to G0 phase. Subsequently, germ cell 

differentiation genes are activated by the expression of the MYB family transcription 

factors DUO1 and DUO3, whereby DUO1 promotes the entry into pollen mitosis II 

(G2/M transition) via the activation of a cyclin-dependent pathway (CYCLINB1;1) and 

DUO3 via the activation of a cyclin-independent pathway. Chromatin remodeling, e.g. 

of the histone H3 variant HTR10, which is under control of DUO1, is supposed to play 

a role during germ cell specification via changes in CG methylation, and thus RNA 

dependent methylation pathways are supposed to be involved in the histone dynamic 

besides their role in regulation of transposable element activity (Berger and Twell 

2011).  

Nonetheless, beside the described activities of protein-encoding genes, the role of 

RNA-mediated gene regulation during male gamete formation is largely unknown. 

 

2.1.4 The role of RNA-mediated gene regulation in the male germline 

Only ~1.2% of the mammalian genome (The ENCODE Project Consortium et al., 

2007), ~2% of the mouse genome (FANTOM-Consortium 2005) and less than 50% of 
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the Arabidopsis genome (Yamada et al., 2003) are capable of coding proteins. The vast 

numbers of transcripts with low or no protein-coding potential were long referred to as 

“transcriptional noise”, “junk” or “selfish” DNA (Ohno 1972; Crick 1979). Among 

them, long non-coding RNAs (lncRNAs) constitute a significant fraction of non-protein 

coding transcripts in humans, although some of them function as precursor molecules 

that are later processed into small RNAs (sRNAs) (Esteller 2011). As the name predicts 

and in contrast to sRNAs (<200 nt), long non-coding RNAs can range in size from ~200 

to several thousand nucleotides and are most deeply studied in mammals (especially in 

human disease, see review Esteller (2011)), Drosophila and yeast (Mercer et al., 2009). 

LncRNAs can bear many signatures of mRNAs including 5`capping, splicing and 

polyadenylation, but have few or no ORFs (Au et al., 2011). It was shown that many of 

the characterized lncRNAs are, in contrast to sRNAs, not strongly conserved between 

mouse and human (Wang et al., 2004), but nevertheless they do exhibit a wide array of 

functions both in cis and trans and are a key player of the regulation of gene expression 

(Pang et al., 2006; Derrien et al., 2012). Explanations for this conflict were pointing to 

different evolutionary constraints on lncRNAs compaired to sRNAs. One reason could 

be that lncRNAs interact with a limited number of targets, hence increasing co-variable 

interactions through evolutionary time (Pang et al., 2006). In addition, the fact that some 

of the lncRNAs act as carriers of smaller functional products (see above) implies that 

only portions of the overall transcript might be under selection (Pang et al., 2006). 

In plants knowledge about active lncRNAs compared to sRNAs is poor. 

Nevertheless, it is clear that lncRNAs and multiple sRNA pathways (e.g. via 

microRNAs (miRNAs), PIWI-RNAs (piRNAs) and small silencing RNAs (siRNAs)) 

are active in male gametophytes (Berger and Twell 2011; Dickinson and Grant-

Downton 2011).  

Similar to animals, sRNA systems in the plant germline are generally used for the 

control of genome stability, gene expression and defense (Bonnet et al., 2006). Small 

RNAs are 21 – 27 nt sized non-coding RNAs (ncRNAs) with a preference for 

transcription factors as targets, but other mechanisms, including response to stress or 

environmental changes and modulation of DNA methylation and/or repressive 

heterochromatic histone modifications, are reported. Three major sRNA synthesis 

pathways in plants are known (Bonnet et al., 2006). 

The biogenesis of miRNAs involves transcription from their own locus (from 50-

350 nt long precursor miRNAs) by RNA-polymerase II (POL II). The resulting hairpin-
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like secondary structure is further processed by the RNase III catalytic enzyme DICER 

(e.g. Dicer-like1, DCL1) in several steps to produce miRNA:miRNA* duplexes, 

requiring the HYPONASTIC LEAVES1 (HYL1) protein as nuclear localization signal. 

Then the duplexes are methylated by RNA methylase HUA ENHANCER 1 (HEN1) and 

exported to the cytoplasm. Here the duplex is unwound and the miRNA is associated 

with the RNA-binding ARGONAUTE1 protein (AGO1), the core component of the 

RNA-induced silencing complex (RISC). The miRNA-RISC binds specifically to a 

target messenger RNA mediating its cleavage or translational repression.  

The synthesis of siRNAs slightly varies from miRNA biogenesis. Small interfering 

RNAs are synthesized from various origins like viruses, transposons or transgenes by 

converting longer dsRNAs into 21 nt long siRNAs by DICER enzymes (DCL4), which 

are subsequently loaded into RISC and associated with AGO proteins (e.g. AGO4). This 

complex binds to the same messenger RNA from which it originates. Hence, the 

complex intitiates its silencing or enhances siRNA production by inducing the 

transformation of single-stranded RNA (ssRNA) into dsRNA via RNA-dependent RNA 

polymerases (RDRs) RDR1 and RDR6. 

Some miRNAs first cleave a target mRNA expressed from trans-acting siRNA 

(TAS) loci into two fragments. After cleavage, both the 5`- or 3`-terminus can be 

converted into dsRNA by RDR6, and then DCL4 catalyzes the process into 21 nt ta-

siRNAs that guide degradation of a target mRNA that is different from the ta-siRNA 

transcript from which they originated.  

Although a general lack of sRNA expression in pollen has been detected (Borges et 

al., 2008), microarray analyses have revealed pollen-specific expression of key genes 

representing the three major gene families involved in miRNA and siRNA biogenesis 

pathways: AGO, DCL, and RDR (Grant-Downton et al., 2009a). Except for DCL1, all 

DCL genes loose their expression after pollen mitosis II, whereas many of the AGO and 

RDR family genes are constitutively expressed throughout microgametogenesis. Some 

sRNA pathway genes, such as AGO5 and AGO9, or genes required to maintain the 

DNA methylation status like METHYLTRANSFERASE1 (MET1) and DEFICIENT IN 

DNA METHYLATION1 (DDM1), are even highly enriched in sperm cells (Borges et al., 

2011). In this context the enriched expression of AGO9 is interesting, since analysis of 

female gametogenesis reveals a significant role of AGO9 in restriction of pre-meiotic 

differentiation of single sub-epidermal cells into single ovules, implying a similar 

function on male gametogenesis (Olmedo-Monfil et al., 2010). Independent microarray 
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analyses have revealed ~58 known miRNAs specifically or enriched expressed in pollen 

of Arabidopsis (Grant-Downton et al., 2009a; Borges et al., 2011). One example for 

miRNA targeting of transcripts during pollen formation is the miR160 mediated 

degradation of AUXIN RESPONSE FACTOR (ARF) transcripts regulating auxin 

perception during pollen maturation (Grant-Downton et al., 2009a). Another prominent 

example is miR172-targeting of the transcription factor Target of Eat2 (TOE2) in 

mature pollen, which is essential in earlier stages e.g. for repression of ectopic 

expression of floral development pathway genes (Grant-Downton et al., 2009a). In 

contrast, other miRNAs functions, such as the predicted function of the pollen-specific 

miR159 in the cleavage of a regulator (DUO1) of cyclin-CDK activity, as well as the 

role of the pollen-specific miR156a-f in the degradation of the floral meristem identity 

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family of 

transcription factors, remain unexplored (Borges et al., 2011). Furthermore it is known, 

that some miRNAs do not target coding mRNAs, but instead recognize TAS loci (see 

above). In pollen, miR173 and miR390 are known Arabidopsis miRNAs targeting TAS 

genes (e.g. AtTAS3; Montgomery et al. (2008)), and recently more pollen-specific ta-

siRNAs were identified from the four TAS genes: TAS1a, TAS1b, TAS1c and TAS2 

(Grant-Downton et al., 2009b). 

The interaction with sRNAs demonstrates one of the multifaceted functions of 

lncRNAs in plant reproductive tissues, which, as is known from humans, includes 

transcriptional and post-transcriptional regulation, chromatin modifications, cargo 

functions for subcellular protein trafficking, organelle biogenesis and as endogeneous 

RNAs (ceRNA) competing with miRNAs (Mercer et al., 2009; Zhu and Wang 2012). 

LncRNAs are transcribed from introns or intergenic regions; they can overlap with 

exons and/or introns of protein-coding regions in sense or antisense direction and can 

act both in cis and/or trans to modulate the expression of their target loci (Kim and 

Sung 2012).  

Various lncRNA types exist in plants, with lncRNAs which act as precursors for 

sRNAs being the first to be discovered in plant reproductive tissues (Hirsch et al., 

2006). Hirsch et al. (2006) discovered both inflorescence-specific lncRNAs (npcRNAs 

58 and 155) and a miRNA-containing lncRNA that might act as ceRNA (npcRNA 

78/miR162a, also called pri-miRNAs). The combination of functional lncRNAs with 

RNA-mediated gene silencing pathways in reproductive tissues was furthermore 

demonstrated for two subunits of the plant-specific multi-subunit nuclear enzyme RNA 
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polymerase IVb/PolV in Arabidopsis. RNA polymerase IVb/PolV is not essential for 

the viability in Arabidopsis, but participates in multiple small RNA-mediated gene 

silencing pathways, such as the siRNA-directed DNA methylation pathway (RdDM) 

(Pikaard et al., 2008). Two large subunits, NRPD1 and NRPE1 (Nuclear RNA 

Polymerase E1/D1) were identified as lncRNAs which serve as scaffolds for a siRNA-

biogenesis pathway and subsequently mediate the silencing of overlapping and adjacent 

genes like short (SINEs; e.g. AtSN1) and long interspersed nuclear elements (LINEs; 

e.g. At5g27845; Wierzbicki et al. (2008)).  

Other lncRNA types acting in reproductive tissues regulate gene expression by a 

range of mechanisms, including mediating chromatin-modifying activity, as has been 

discovered for the floral repressor FLOWERING LOCUS C (FLC) in Arabidopsis. 

Perennial plants need vernalization prior to flowering and the MADS-box transcription 

factor FLC directly represses the floral promoter FLOWERING LOCUS T (FT) and 

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in leaves and apices 

preventing premature flowering (Helliwell et al., 2006). Two cold-induced FLC long 

non-coding antisense transcripts, COOLAIR and COLDAIR, have a role in the 

epigenetic silencing of FLC (Zaratiegui et al., 2007). Early FLC silencing is mediated 

by COOLAIR, whereas COLDAIR causes epigenetic repression of FLC by physically 

associating with components of the Polycomb Repressive Complex 2 (PRC2), which is 

a key regulator of epigenetic states during the development of endosperm, catalyzing 

histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark 

(Schwartz and Pirrotta 2008).  

A third lncRNA-type, natural antisense transcript (NAT), represents a significant 

portion of the transcriptome and has partial complementary to protein-coding transcripts 

(reviewed in Kim & Sung (2012) and Au et al. (2011)). Both, cis- and trans-NATs are 

known. A portion of NATs induce translation of transcription factors (TF). 

Subsequently the cytoplasmatic localization of NAT-TF protein complexes is directed 

by 5S ribosomal RNAs. Such NATs are generally considered to fine tune the expression 

of genes. Other NATs can form double-stranded RNAs (dsRNA), which subsequently 

serve as templates to generate endogenous siRNA (cis-nat-siRNA) to induce 

transcriptional silencing. The detection of Sho-specific sense and antisense transcripts in 

Arabidopsis is one prominent example of the potential role of a flower-specific 

overexpressed cis-NAT serving as template for the synthesis of cis-nat-siRNAs (Zubko 

and Meyer 2007). The Sho gene encodes an enzyme that is responsible for the synthesis 



 

 

32 Introduction and Literature Review 

of plant cytokinins, which are important for shoot meristem growth, flower 

differentiation and male and female gamete development. The Sho Nat regulates Sho 

transcripts via induction of a gene silencing mechanism through a RNA interference 

pathway involving the DICER-mediated formation of nat-siRNAs. Additionally, 

various NATs from self-incompatibility genes of S loci in maize and in Brassica 

oleracea have been observed in reproductive tissues with particular interest in the 

developing male sexual tissues (Cock et al., 1997; Ansaldi et al., 2000). In male 

gametophytes the S NATs and S genes show complementary expression patterns, with 

antisense RNAs decreasing in abundance in maturing anthers, whereas sense S-like 

transcripts accumulate to the highest level in mature pollen. The reciprocal relationship 

of S NATs and S genes in mature pollen supports the possibility of a regulatory role for 

the NATs in control of male reproductive development. 

So far, only a few lncRNAs have been reported to be essential for male gamete 

development. In maize, a putative lncRNA, Zm401, is expressed specifically in pollen 

and regulates the expression of genes critical for pollen development, including 

ZmMADS2, MZm3-3 and ZmC5 (Au et al., 2011). Overexpression of Zm401 leads to 

abnormal tassels and degenerate anthers. The mechanism of differential gene regulation 

is still undetermined, but interaction of transcript fractions with different members of 

transcriptional protein complexes is assumed. Research on lncRNAs in humans 

suggested the induction of lncRNA activity to be generally related to the organisms’ 

response to environmental changes (Au et al., 2011). One example for a pollen-specific 

lncRNA whose activity is interrelated with an abiotic factor is the long-day–specific 

male-fertility–associated RNA (LDMAR) in Arabidopsis, which regulates photoperiod-

sensitive male sterility (PSMS) and is thus required for male fertility (Ding et al., 2012). 

The MALE FERTILITY11 (BcMF11) gene is another lncRNA described for Brassica 

campestris, and is expressed during pollen formation (Song et al., 2007). Its function is 

unknown, but mutagenizing BcMF11 causes serious morphological defects on pollen 

grains leading to reduced male fertility (Song et al., 2012).  

A (pre) -meiotically acting lncRNA in plants is yet undiscovered. Furthermore, the 

few examples illustrate, that the discovery and functional characterization of lncRNAs 

in plants is still in its infancy. This might be caused by the fact, that lncRNA are 

difficult targets for mutational screens, because RNA genes are immune to frameshift or 

nonsense mutations, and are often small and multicopy (Eddy 2001). Thus, comparative 
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analyses, including unannotated sequences might give a better insight into the RNA 

world, reducing the bias towards discovery of protein-coding genes. 

 

2.1.5 Reproduction types 

Male gamete formation is tightly bound to the type of reproduction of its host 

species. In flowering plants reproduction can be divided into two types: sexual and 

asexual reproduction. Sexual reproduction or amphimixis (greek, “amphi” for “on both 

sides” and “mixis” for “mixing”), including vivipary, occurs in the overwhelming 

majority of plants and involves meiotic reduction of the somatic chromosome number 

and its restoration during the fertilization. Sexual reproduction is the most successful 

type of reproduction, although it often holds the well-cited “2-fold cost” (i.e. not true for 

isogamous organisms), which is best interpreted as cost of producing males which do 

not produce own offspring and the cost of meiosis segregating co-adapted alleles 

(Charlesworth and Charlesworth 1978; Bell 1982). Advantagous features of sexual 

reproduction are genetic recombination and syngamy, both which produce genetic 

variation upon which natural selection can act to allow rapid adaptation to 

environmental variability (Fryxell 1957). An alternative explanation for its success 

refers to recombination as a DNA repair process (Bernstein 1977) which minimizes the 

long-term accumulation of disadvantageous mutations (Kondrashov 1985). 

Asexual reproduction in plants, including pseudovivipary, involves the inheritance 

of genetic material from a single parent and occurs in two types: vegetative propagation 

and apomixis. In vegetatively propagating plants all organs can be used to produce new 

ramets by mitotic division. The vegetative propagation of angiosperms via horizontal 

runners (e.g. Fragaria), stems (e.g. Rubus), leaves (also called bryophyllum, e.g. 

Kalanchoe) and roots (e.g. Ranunculus ficaria) is prevalent in grasses (Poa) and aquatic 

vascular plants (e.g. Elodea). Only a minority, approximately 0.1%, of the angiosperm 

species reproduce asexually via seeds, also called apomixis or agamospermy, which is 

by definition a female trait (Nogler 1984).  

Some apomictic species do not suffer the costs of producing males due to purely 

clonal reproduction via the female germline. Nonetheless, approx. 90% of apomictic 

species are pseudogamous and produce pollen (see 2.2.2, Mogie (1992)), potentially 

having some of the disadvantages of sexuality (e.g. requirement for a mate in case of 

outbreeders) without the counterbalancing advantages (e.g. recombination). 

Accumulating mutational load is one of the proposed disadvantages of apomicts and is 
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characterized by the irreversible random loss of the lowest mutational class (i.e. fewest 

mutation) of genotypes in apomictic populations (Muller’s ratchet, Muller (1964)). 

Thus, counterbalancing this process requires tolerance mechanisms, such as 

polyploidization or a potential reduction of the rate of mutation accumulation, similar to 

the approx. ten-fold reduction of the mutation rate in land plant organelles relative to 

nuclear mutation rates (Lynch 2010) or the mutation rate variances between highly and 

low expressed genes (Martincorena et al., 2012), which support long-standing theories 

predicting that selection could modulate the rate of mutation itself (Kimura 1967; 

Levins 1967). In apomicts none of these mechanisms were reported so far. In bdelloid 

rotiferes however, an increased DNA repair efficiency and massive gene conversion 

(i.e. repair of original gene copies using a second gene copy) have been observed (Mark 

Welch and Meselson 2000; Gladyshev and Meselson 2008; Mark Welch et al., 2008). 

On the contrary, both apomixis and self-fertilization are major advantages for 

colonization (Baker’s law; Baker (1955)), and are characteristic of many invasive 

species (Rambuda and Johnson 2004), for rare or endangered species and for edges of 

species’ geographical ranges (Reproductive Assurance Hypothesis; Stebbins (1950), 

Jain (1976)). Indeed, similar to parthenogenetic animals, a screen of asexual taxa in 

higher plants revealed tendencies towards larger ranges, higher latitudes and elevations 

compared to their sexual relatives, and towards colonization of previously glaciated 

refugia (‘geographical parthenogenesis’, Vandel (1928) and Bierzychudek (1985)). 

Therefore, common habitats for apomicts include arctic and alpine sites and disturbed 

environments (Hörandl and Paun 2007).  

 

2.2 Fundamentals of apomixis research  

2.2.1 Types of apomixis 

Hans Karl Albert Winkler, a german botanist (1847-1945), shaped not only the term 

“Genome”, but used as one of the first the term “Apomixis” (greek, “apo” for “from, 

away from” and “mixis” for “mixing”) for the production of seeds without fertilization 

by pollen and for vegetative propagation (Winkler 1908). At present the term apomixis 

is used solely for asexual reproduction via seeds, which is by definition a female trait 

(e.g. Cupressus dupreziana is an androgeneous exception; Pichot et al. (2001)) where 

all progeny are genetically identical copies (clones) of the mother plant (Nogler 1984). 

General characteristic features of apomicts include (1) facultative expression of the trait 

in the majority of apomictic species, (2) polyploidy (with some exceptions e.g. 
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Boechera), and (3) hybridization (between sexuals or between sexuals and apomicts). 

Apomixis refers to three major developmental alterations of the sexual pathway: (1) 

apomeiosis (unreduced gamete formation), (2) parthenogenetic development of the egg 

cell with autonomous embryo formation (i.e. without fertilization), and (3) the 

formation of a fully functional endosperm. Apomixis is observed in about 40 

angiosperm families, whilst 75% of them are found in Asteraceae, Rosaceae, Poaceae 

(Hanna and Bashaw 1987; Asker and Jerling 1992; Carman 1997). Three types of 

apomictic seed formation exist: sporophytic and gametophytic apomixis, the latter of 

which is subdivided into diplospory and apospory (Nogler 1984). All three types are 

“short-circuited” versions of the sexual pathway (see Fig. 2; see Koltunow (1993)). 

Sporophytic apomixis, also called adventitious embryony, usually occurs late in mature 

ovules were the embryo  

 

Figure 2. The diplo-

haplontic plant life cycle.  

The switch from the diploid 

sporophyte stage (blue) 

towards the haploid 

gametophyte stage (red) 

which is typical for sexual 

species is bypassed (“short-

circuited”) in the germline of 

gametophytic apomicts via

parthenogenetic development 

of the egg cell and a 

pseudogamous production of 

endosperm. Modified from 

Berger and Twell (2011). 

is derived not from the megaspore mother cell, but from one of the somatic cells of the 

nucellus, whereas the pseudogamous endosperm is derived by fertilization of the central 

cells of the embryo sac by a pollen nucleus (Koltunow 1993). Adventitious embryony is 

mainly found in diploid tropical genera like Tulipa and Lilium (Liliaceae; Marasek et al. 

2004), Nigritella (Orchidaceae; Teppner (1996), Asker & Jerling (1992)) and Opuntia 

(Cactaceae; Asker & Jerling, (1992)). In apospory the alternation of the sexual pathway 

occurs earlier, resulting in an unreduced embryo sac initiated from somatic cells of the 

nucellus (aposporous initials) and subsequent parthenogenetic development of the 
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embryo. Similar to adventitious embryony, multiple embryo sacs (polyembryony) can 

occur within one ovule depending on the species (Koltunow 1993). Pollination of the 

central cell is generally required, whereas autonomous endosperm formation is rare in 

aposporous species with exception of Hieracium (Bashaw and Hanna 1990). Apospory 

is present in many species of Rosaceae (e.g. Sorbus and Rubus; Asker & Jerling (1992)) 

and Poaceae, (e.g. Panicum; Bashaw & Hanna (1990)), but less frequent in Asteraceae 

(e.g. Hieracium, Achillea; Terziiski et al. (1995)). In diplosporous apomicts, the 

sporogenous tissue gives rise to an archesporial initial cell which differentiates into a 

megaspore mother cell (MMC) with the somatic chromosome number. The MMC 

develops either directly via three mitotic divisions (Antennaria type) or indirectly via 

abortion of meiosis I (apomeiosis; Taraxacum, Ixeris type) and develops into an 

unreduced embryo sac (Nogler 1984). Additional types of diplospory include premeiotic 

chromosome doubling (Allium type; Nogler (1984)). Diplospory occurs in a wide range 

of species, is most common in the Asteraceae but best studied in Tripsacum (Grimanelli 

et al., 1998) and Taraxacum (Mogie 1992). Similar to aposporous apomicts, 

autonomous endosperm formation is rare in diplosporous apomicts, and hence the 

central cell requires fertilization via pollen (pseudogamy). Unless otherwise specified 

we subsequently refer to pseudogamous diplospory when using the term “apomixis”.  

 

2.2.2 Modifications for balancing the endosperm 

The observation of high seed abortion rates in intra- and interspecific crosses 

Johnston et al. (1980) was initially hypothezised to arise via parent-of-origin effects that 

accompanied deviations from the 2 maternal to 1 paternal genome ratio in the 

endosperm (Quarin 1999). The 2 to 1 ratio reflects the parental conflict theory of Haig 

and Westoby (1991), which predicts selection for maternal and paternal alleles 

(“parental imprinting”), which are involved in the acquisition of resources, depending 

upon their opposing effects on endosperm growth. Considering the 2 to 1 endosperm 

balance number (EBN, i.e. an effective ploidy), and that an apomictic plant produces 

meiotically-unreduced ovules, viable seed formation depends strongly on the ploidy of 

the pollen. 

Hence, pseudogamous apomicts display a wide range of adaptations to cope with 

problems during fertilization, such as the switch of selective fertilization from egg cell 

to central cell, or relaxation of genomic balance during endosperm formation (Nogler 

1984; Savidan 2000; Spielman and Scott 2008). For example, a mechanisms to prevent 
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egg fertilization could include pre-fertilization induction of embryo development or 

thickening of the egg cell wall, as has been shown in grasses (e.g. Dichanthium 

annulatum; Spielman & Scott  (2008)).  

Disruption of the endosperm balance number occurs in apomicts that produce 

unreduced egg cells (i.e. apomeiosis) and reduced pollen, leading to an unbalanced 

endosperm ratio via fertilization of the unreduced double-nucleated central cell. In 

pseudogamous species like Boechera, the Polygonum type of embryo sac is 

characterized mostly by stable endosperm formation with a 4m:2p ratio by fertilization 

of the two fused unreduced polar nuclei by one unreduced generative sperm cell, 

although some deviation from the 2:1 balanced endosperm ratio in Boechera (Voigt et 

al., 2007; Aliyu et al., 2010) and other species (e.g. Paspalum, Quarin (1999)) is known. 

In other species the deleterious effects of deviations from the stable EBN are 

circumvented by early sperm cell degeneration (e.g. Zephyranthus (Atomosco) texana; 

Pace (1913)) or fertilization of a uninucleate, respectively a fused secondary uninucleate 

central cell with one haploid pollen, as observed in mature four-nucleate aposporous 

embryo sacs in Pennisetum (Ozias-Akins et al., 2003) and in some apomictic Pyrinae 

(e.g. Sorbus, Jankun and Kovanda (1987)). Additional strategies circumventing 

endosperm imbalance include polyspermy (e.g. Ranunculus auricomus, Rutishauser 

(1954)), autonomous (i.e. without fertilization) endosperm formation (e.g. Hieracium 

species, Nogler (1984); Tucker et al. (2003)) or relaxation of the genetic requirements 

for a balanced endosperm (Nogler 1984).  

 

2.2.3  The role of pollen in pseudogamous diplospory 

Various mechanisms exist to stabilize the EBN and avoid uniparental imprinting in 

apomicts, most of which involve unreduced pollen (see 2.2.2). Alternatively to their 

effects on endosperm balance number, unreduced pollen formation in pseudogamous 

species may be selected for by nature of their ability to mask deleterious mutations 

(Nogler 1984). The mechanism of selective guidance and fusion of one sperm cell with 

the central cell is unknown, whereas several mechanisms are proposed for prevention of 

egg cell fertilization (see 2.2.2). Analysis of the pollen-pistil interaction of the non-

pseudogamous apomict Commiphora wightii (Mukul myrrh tree) revealed  disruption of 

pollen tube growth half-way through the pistil when pollinated with its own pollen, 

suggesting a disruptive mechanism induced by the female gametophyte (Gupta et al., 

1998). On the contrary, in pseudogamous apomicts fertilization with both self and 
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foreign pollen is tolerated, exhibiting a strong relaxation of the fertilization-dependent 

barriers known from sexual systems (loss of self-incompatibility) and which suggests 

the participation of pollen in female fitness (Noirot et al., 1997). 

The participation of pollen in female fitness can be furthermore understood as 

contribution to the maintenance of asexual lineages existing in sympatry with sexual 

individuals (Carrillo et al., 2002), while the female function (apomixis sensu stricto 

female trait) is most effective during the establishment of apomixis (Mogie et al., 2007). 

Considering both sexual and asexual individuals as simultaneous hermaphrodites in 

sympatry (e.g. Taraxacum and Boechera), pollen contribution to the establishment and 

persistence of apomictic individuals within sexual populations could be three-fold. 

Firstly, pollen from apomicts, especially from highly selfing taxa such as Boechera 

(Roy 1995), could provide newly recombined asexual genotypes through crosses with 

outcrossing sexuals, thereby reducing their own cost of pollen production (Charlesworth 

and Charlesworth 1978; Mogie 1988). Secondly, the production of unreduced male 

gametes in asexual lineages contributes to the classical cost of sex, if progenies of 

crosses with sexuals are viable, because it provides the benefits associated with sex for 

the asexual population (Charlesworth 1980; Lynch 1984; Mogie et al., 2007). Finally, if 

asexual individuals produce poor quality pollen (i.e. from mutation accumulation or 

polyploidization) which fertilizes sexual mothers, the cost for sexuality and the 

reproductive success of sexual competitors decrease. Hence, pollen production in 

asexuals in conjunction with the ability of asexual lineages to sire progeny in crosses 

with sexual lineages can influence the conditions under which long-term coexistence of 

sexuals and asexuals can be maintained (Britton and Mogie 2001). 

 

2.3 The genetic control of apomixis 

2.3.1 Theories 

Apomixis is hypothesized to be under genetic control, but its characterization at the 

molecular level is still in its infancy (Nogler 1984; Savidan 2000; Grossniklaus 2001). 

While some early geneticists proposed dominant inheritance of apomixis based on 

crossing in Hieracium (Ostenfeld 1910), others explained variation in the expression of 

apomixis by a sensitive genetic balance of a few recessive genes with dosage effects 

(Müntzing 1940). Referring to the three-fold alternation of the sexual pathway 

(apomeiosis, parthenogenesis, and altered selective fertilization for functional 

endosperm development) it has furthermore been hypothesized that recessive genes 
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might be responsible for each apomixis component (Powers 1945; Spillane et al., 2001). 

Nogler (1984) criticized theories involving recessive genes, as the requirement of 

homozygosity and a superior assertiveness of those putative recessive genes was not 

mirrored by the apomictic cases examined at that time. Simple Mendelian factors could 

not explain the reappearance of parthenogenesis from sexual parents (e.g. observed in 

Ranunculus auricomus, Nogler (1984)), thus leading to a model which describes 

apomixis as a quantitative trait under polygenic control (Asker and Jerling 1992; Matzk 

et al., 2005). On the contrary, asexuality as a dominant trait induced by a single master 

gene regulating the different apomixis elements is an attractive idea, as random 

mutations (i.e. Darwinian evolution) leading to the independent “coordinated” evolution 

of several genes regulating each apomixis component is unlikely (Mogie 1992). Co-

occurrence of sexual and apomictic processes in apomicts exhibiting adventitious 

embryony or apospory (e.g. in Brachiaria) suggests independently operating cell- and 

region-specific gene expression programs (heterotopy), retaining the order and timing of 

events derived from the sexual pathway (Koltunow 1993). Temporal deregultation or 

rearrangement (heterochrony) of those subprograms that normally constitute the sexual 

pathway could additionally explain the onsets of apospory, diplospory and adventitious 

embryony (Grimanelli et al., 2001; Grossniklaus et al., 2001; Spillane et al., 2001). The 

assumption of a dominant mutant allele for apomixis and recessive wild type alleles, as 

proposed in initial models from Mogie (1992), for the regulation of diplospory in 

Taraxacum and from Nogler (1984), for apospory in R. auricomus, could explain 

flexibility in terms of temporal and spatial expression of the various types of apomixis. 

On the contrary, this hypothesis is challenged by segregation analyses in diplosporous 

species like Taraxacum, Erigon and Boechera, (van Dijk et al., 1999; Noyes and 

Rieseberg 2000; Schranz et al., 2005), which suggest complexes of at least 2-3 

coadapted cosegregating genes controlling the three traits of apomixis. On the other 

hand in some aposporous species like R. auricomus and Panicum maximum apomixis 

could indeed be regulated by a single master regulatory gene influencing the other 

apomixis elements in a cascade-like fashion. Considering that apomixis has 

independently arisen in various taxa, it is likely that no single model applies to all 

(Grossniklaus et al., 2001).  

Coadapted apomixis factors could be tightly linked in a complex which acts as non-

recombining unit (Jefferson 1993), as is evidenced by the presence of apospory markers 

in hemizygous chromosomal regions in some Poaceae (Brachiaria decumbens, 
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Tripsacum dactyloides and Paspalum simplex; reviewed in Grossniklaus et al. (2001)), 

as well as in a number of dicots (Grossniklaus et al., 2001).  

Besides the view of apomixis as derived version of the sexual pathway, the 

hybridization-derived floral asynchrony (HFA) theory proposes that the asynchronous 

expression of duplicated gene sets which are initially necessary for female gamete 

development may cause apomixis (Carman 1997). This hypothesis is opposed to 

Harlan’s observations in Bothriochloa and Dichantium which led him to conclude that 

“…apomixis and sexual reproduction are not alternative modes of reproduction, either 

genetically or operationally, but are simultaneous and independent phenomena…. The 

genes controlling normal sexual reproduction are not allelic to those controlling 

apomixis in the conventional sense” (Harlan et al. (1964), p. 46). Nonetheless, the HFA 

theory was recently supported by heterochronic expression profiles in four ovule 

developmental stages between sexual and apomictic Boechera (Sharbel et al., 2010). 

The overrepresentation of transcription factors among the expression profiles of 

apomicts points to a network of epigenetic and post-transcriptional regulation during 

germline specification (Twell 2010) and apomixis expression (Sharbel et al., 2010; 

Grimanelli 2011). Gene expression changes or the occurrence of epialleles could be the 

result of hybridization between distinct genotypes (Carman 2001). Such epialleles 

would not only be stable inherited (genomic imprinting), but could additionally be 

induced rapidly on a genome-wide level, providing the raw material needed to 

accumulate the genetic factors necessary to control the different apomixis elements 

(Koltunow and Grossniklaus 2003).  

 
2.3.2 Genetic factors causing apomixis elements 

The genetic control of apomixis components has been mostly observed in female 

tissues (apomixis is sensu stricto a female trait). Examining natural aposporous 

apomicts with mapping strategies, numerous molecular markers linked to apospory have 

been detected in Paspalum notatum (Martínez et al., 2001), Panicum maximum (Ebina 

et al., 2005), R. auricomus (dominant allele A-; Nogler (1984)), Hypericum perforatum 

(HAPPY locus; Schallau et al. (2010)) and Pennisetum squamulatum (Ozias-Akins et 

al., 1998), all of which support a single locus model for this trait (ASGR, apospory-

specific genomic region; Ozias-Akins et al.(1998)). In contrast, a segregation study in 

aposporous Poa pratensis suggested that apomixis could be inherited by five different 

loci, demonstrating that apomixis in natural systems might be more complex than 

http://dict.tu-chemnitz.de/english-german/opposed.html�
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previously reported (Matzk et al., 2005). Here it was postulated that asexual seed 

formation is induced by dominant alleles of two genes, the Apospory initiator (Ait) gene 

and Parthenogensis initiator (Pit) which are solely expressed in apomicts, two preventer 

counterparts, the Apospory preventer (Apv) and Parthenogenesis preventer (Ppv), in 

addition to a homozygous recessive Megaspore development (Mdv) in apomicts. 

Marker analysis in diplosporous apomictic dandelions (Taraxacum officinale) 

suggested that a single sex-specific dominant locus, DIPLOSPOROUS (DIP), causes 

unreduced MMC formation (van Dijk and Bakx-Schotman 2004), while in diplosporous 

Erigeron annuus two independent loci were proposed to control apomixis (Noyes and 

Rieseberg 2000).  

Mutant analyses have led to the identification of numerous factors which can mimic 

apomictic components (Spillane et al. (2001) and Grossniklaus et al. (2001)), and 

include genes causal for the spontaneous induction of embryo formation (SOMATIC 

EMBRYOGENESIS RECEPTOR KINASE (SERK), carrot; LEAFY COTYLEDON 

(LEC1), Arabidopsis), cell fate decisions (e.g. multiple archesporial cells 1 (mac1), 

multiple sporocytes1 (msp1), maize), induction of apomeiosis (e.g. switch1 (swi1); 

Arabidopsis), induction of parthenogenesis (e.g. haploidy initiator (hap); barley) and 

fertilization independent endosperm formation (e.g. through the PcG proteins medea 

(mea), fertilization-independent endosperm (fie) and fertilization independent seed (fis), 

Arabidopsis). So far no stable apomictic mutant was recovered from sexual species 

which implies that this trait may require gains in functions that are solely present in 

recurrent natural apomicts (Vielle-Calzada et al., 1996). 

Discovery of gain of function genes involves comparative expression profiling 

studies between natural apomicts and sexuals. Evolving technology (e.g. laser 

microdissection method (LAM)) has facilitated the comparative expression analyses of 

gametes in early developmental stages. Differential expression analyses between natural 

apomictic and sexual genotypes were conducted mostly in monocots, and have revealed 

a plethora of candidate apomixis factors (Chen et al., 1999; Pessino et al., 2001; 

Rodrigues et al., 2003; Albertini et al., 2004; Albertini et al., 2005; Singh et al., 2007; 

Polegri et al., 2010). One promising example involves the SERK family members in P. 

pratensis and Hieracium, whereby mutations in sexual systems were independently 

identified in apomicts (Tucker et al., 2003; Albertini et al., 2005). PpSERK1 and 

PpSERK2 were differentially expressed between sexual and apomictic individuals, and 

according to its function in Arabidopsis it is hypothesized to induce embryo sac 
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development and redirect gene products to different compartments by altered signaling 

(Albertini et al., 2005). A second candidate is APOSTART, which is downregulated in 

apomicts compared to sexuals during both male and female meiosis (Albertini et al., 

2005). Similar to MALE MEIOCYTE DEATH1 (MMD1) in Arabidopsis it may be a 

candidate for cell death in male meiocytes in Poa pratensis.                                                                           

In Hieracium the floral organ-identity gene DEFICIENS (DEF) was isolated from 

an apomictic line and showed predominant expression in early stamen development and 

petal primordia, but was not detected in ovules of either sexuals or apomicts (Guerin et 

al., 2000). In other taxa DEF is expressed in ovules and functions in heterodimers 

together with the B-class MADS-box transcription factor protein GLOBOSA (see 

2.1.1), which together maintain continuity of the sporophytic developmental program of 

the ovule. Thus, the absence of HPDEF in sexuals could activate cellular differentiation 

programs of the megaspore mother cell, in contrast to apomicts were down regulation 

might initiate reprogramming of sporophytic cells towards a gametophytic fate (Guerin 

et al., 2000). Recently, time series differential expression analyses of ovule 

development during meiosis in Boechera revealed heterochronic gene expression 

profiles between sexual and apomictic genotypes, with the peak of differentially 

expressed sequence tags (e.g. transcription factors) at premeiotic stages (Sharbel et al., 

2010).  

 

2.3.3  Apomictic crops  

Except for citrus, none of the major crops reproduce apomictically, and furthermore 

no natural apomicts are closely related to crop species (except Tripsacum with maize; 

Bicknell & Koltunow (2004) and Boechera with Brassica species; Beilstein et al. 

(2006)). The induction of apomixis in the major crop plants could hypothetically allow 

the fixation of any desired trait (e.g. hybrid vigor or plant disease resistance), provide 

faster and less cost intensive plant breeding, and enable seed propagation of 

vegetatively-propagated crops to lower rates of pathogen transmission (Dresselhaus et 

al., 2001). Moreover, small farm businesses and farmers of the developing world could 

benefit by reproducing their own cultivars from locally adapted varieties (niche 

breeding).  

Progress on introducing fully operational apomixis into sexual systems has been 

limited. Ploidy barriers (gene dosage) and to a lower extent mentor effects (e.g. genomic 

imprinting) often hinder the replacement of sexuality by apomixis, as crosses in R. 
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auricomus revealed, using diploid sexual mother plants and tetraploid or hexaploid 

apomictic pollen donors (Hörandl and Temsch 2009). Limited crossability between 

sexuals and apomicts was shown in Boechera, were the seed production of F1 

polyploids derived from nonreduced pollen and reduced eggs was low, suggesting a 

failure in the transmission of apomixis (Schranz et al., 2005).  

Attempts to introgress apomixis components from apomictic wild relatives into 

crops using back crossing (BC) strategies were conducted in wheat (with Elymus 

rectisetus; Liu et al. (1994)), pearl millet (with Pennisetum purpureum; Savidan (2001)) 

and maize (with T. dactyloides; Savidan (2001)). Major limitations seemed to be high or 

complete male sterility in F1 hybrids, BC3 lines with low agronomic value, and the 

restriction of the introgression strategy to close related species.  

The mutagenesis approach is based on the assumption that apomixis could be 

induced in sexual plants by perturbation of gene activity (Grossniklaus 2001). In line 

with this, many mutants with phenotypes corresponding to elements of apomixis have 

been described (see 2.1.3 and 2.3.2). Recently, an attempt was made to introduce clonal 

reproduction into maize (Marimuthu et al., 2011). Crosses of a triple mutant that 

controls meiosis (spo11 rec8 osd1 resp. cyca;1/tam; MiMe mutant) as female or male 

parent with another mutant controlling for chromosome segregation (CENH3; GEM 

mutant) as female or male counterpart led to some level (<50%) of diploid progeny 

lacking the maternal or paternal contribution, depending on the parental mutant line.    

Nonetheless, these results show that modification of sexual species to propagate 

clonal seeds via apomixis mimicking is hindered by low penetrance of the trait. 

 

2.4 The genus Boechera (Brassicaceae)   

2.4.1 A model plant system for studying apomixis 

The perennial Boechera (Löve & Löve (1975); rockcress; formerly Arabis (x=8); 

Al-Shebaz & Windham (1993+); Fig. 3) is a genus of the Brassicaceae almost 

exclusively found in North America. In addition, one species was found in Siberia and 

one in Greenland. The genome size of Boechera is heterogeneous (Aliyu et al., 

unpublished results) and about 1.8 times the size of its close relative Arabidopsis (~ 125 

Mb). Their divergence is estimated to have taken place about 10-14 million years ago 

(mya; Koch et al. (2001)). Comparisons of a sexual Boechera stricta to Arabidopsis 

revealed a relatively high genome conservation of approx. 71.4% (Windsor et al., 2006). 
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Karyological analysis of the chromosome composition revealed 1.2-5.8 µm sized 

chromosomes with median to subterminal centromere positions (Kantama et al., 2007). 

Additionally, two types of independently-evolving extra chromosomes (Het and Del) 

were observed in diploid and triploid apomicts, with differences in morphology, size, 

and levels of heterochromatin (Sharbel et al., 2004; Kantama et al., 2007). 

 
Figure 3. Example photos of Boechera genotypes used for transcriptome analysis. 

Flower buds with different shapes and trichome classes and patterns (F-J) correspond to 

Boechera genotypes above (A-E). A, F – B. stricta (ES 865); B, G – B. retrofracta (300.9); C, 

H – B. stricta X retrofracta (120.6); D, I – B. lignifera (ES 753); E, J – B. divaricarpa (ES 

524.2). A-E, bar = 25 cm; F-J, bar = 500 µm.  

 

The approximately 110 species comprising the genus Boechera are characterized by 

an enormous genomic plasticity and high ecological diversity which reflects a hybrid 

background (Schranz et al., 2006; Kantama et al., 2007; Schranz et al., 2007), 

polyphyletic speciation (Koch et al., 1999; 2003; Kiefer et al., 2009) and quantitative 

variation for penetrance of apomixis (Aliyu et al., 2010). Boechera can reproduce either 

sexually or apomictically, and allopolyploid (mostly 2n=3x=21), aneuploid and diploid 

apomixis occurs (Böcher 1951; Windham et al., 2004; Windham and Al-Shehbaz 2007). 

As triploids represent the majority of polyploids and only a few tetraploids are known, 

triploidy is probably generated through crosses between diploids (fusion of unreduced 

and reduced gametes), although triploid origin via crosses between diploids and 

tetraploids cannot be excluded (Schranz et al., 2005). Apomicts are highly correlated 
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with interspecific hybridization (Böcher 1951, 1954; Roy 1995; Dobeš et al., 2004a; 

Schranz et al., 2005). A postglacial (Wisconsin glaciation 18,000 years ago) range 

extension and recolonization from the center of species diversity in the southwestern  

United States is hypothesized (Koch et al., 2003; Kiefer et al., 2009). The origin of 

Boechera is placed into the Pleistocene (Koch et al., 2003; Dobeš et al., 2004a), but a 

diverse “ancient” gene pool in the southern Great Basin is hypothesized, members of 

which contain older ancestral genetic variation (0.7-2 mya) and which are characterized 

by unreduced gamete formation (Koch et al., 2003; Dobeš et al., 2004a; Dobeš et al., 

2006). The relative contributions of hybridization and polyploidy to apomixis remain a 

topic of debate (Winge 1917; Buxton and Darlington 1932; Gustafsson 1946, 1947a, 

1947b; Harlan and deWet 1975; Grimanelli et al., 2001; Beck et al., 2011), although 

diploid apomixis in Boechera suggests the former as the causal link (Sharbel et al., 

2009; 2010; Beck et al., 2011).  

Diploid apomixis is a rare condition due to greatly reduced fitness in early 

generation hybrids (reviewed in Soltis and Soltis (2009)), and is well-described only in 

a few species e.g. in Boechera, Helianthus, Iris (Soltis and Soltis 2009) and Paspalum 

rufum (Siena et al., 2008). Diploid apomicts facilitate comparisons between sex and 

apomixis without the added complexity of different ploidy levels. In Boechera the facts 

that a majority of apomicts are diploid and that most newly formed triploids are not 

apomictic imply that apomixis in Boechera may not be under simple genetic control by 

a single factor and/or requires certain gene dosage ratios (Schranz et al., 2005).  

Apomictic Boechera are characterized by a Taraxacum-type of pseudogamous 

diplospory producing unreduced male and female gametes (Rollins 1941; Böcher 1951; 

Rollins 1993; Naumova 2001; Dobeš et al., 2006). Unreduced pollen formation is 

demonstrated by the fact that diploid and triploid apomicts produce seeds almost 

exclusively with hexaploid (6C = [4Cmaternal] + [2Cpaternal]) and nonaploid (9C = [6Cm] + 

[3Cp]) endosperm respectively (Voigt et al., 2007; Aliyu et al., 2010; Voigt-Zielinski et 

al., 2012). Unreduced pollen of apomictic Boechera is characterized by great 

morphological variablity and higher percentages of infertility, causing higher levels of 

seed sterility (Böcher 1951, 1954; Koch et al., 2003; Voigt et al., 2007). Observations of 

male gametogenesis in apomicts are limited (Böcher 1951; Naumova 2001; Sharbel et 

al., 2005), and suggest either complete asynapsis or irregular pairing of chromosomes 

during meiosis I, followed by the formation of a restitution nucleus resulting in gametes 

with unreduced chromosome numbers. Additional observations demonstrated 
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accompanied reduced and unreduced pollen formation within populations (Böcher 

1951; Sharbel et al., 2005). Although tolerance of endosperm imbalance has been 

described for some Boechera (Voigt et al., 2007), castration experiments (Böcher 1951) 

and extensive flow cytometric analyses of seeds (Aliyu et al., 2010) strongly support 

selection pressure for the maintenance of unreduced pollen development to fulfill 

endosperm balance requirements.  

Taken together, these data are suggestive of male gametophytes as excellent model 

system for studies of apomeiosis as initial element of apomixis in Boechera. 

 

2.4.2 Genome modulation in the light of interspecific hybridization 

Chromosome number reduction from ancestral karyotypes with x=8 chromosomes 

(A. lyrata or Capsella), to x=5 (e.g. in A. thaliana), x=6 (e.g. in Arabis glabra) or x=7 

(e.g. in Boechera) characterizes genome evolution among the Crucifereae (Koch et al., 

1999; Schranz et al., 2007). The transition from the ancestral karyotype (AK) to sexual 

Boechera genomes was accompanied by fragment exchanges via reciprocal 

translocations of their centromeres in four of eight ancestral chromosomes (forming B. 

stricta linkage group 1 (BstLG1) and BstLG2 from AK1 and AK2, and BstLG3 from 

AK3 and AK8), in addition to chromosome fusion (AK8 and AK5 forming BstLG5; 

Schranz et al. (2007)).  

Besides the long term genome evolution that formed sexual lineages, virtually all 

Boechera apomicts were generated by homoploid (i.e diploid in this case) hybridization 

and allopolyploidization (Roy 1995; Koch et al., 2003; Dobeš et al., 2004a; Schranz et 

al., 2005). Thereby, allodiploids could have resulted from two 2n gametes rather than 

via the diploid-tetraploid-dihaploid cycle considering the rare occurrence of tetraploids 

in this genus (Schranz et al., 2005), while allotriploids resulted from one reduced 

gamete and one unreduced (2n) gamete. Karyotypes of the hybrid progeny (i.e. 

apomictic) exhibit diversity for parental contributions, putatively caused by large-scale 

homeologous chromosome substitutions (Kantama et al., 2007). These substitutions 

could be hallmarks of the “genomic shock” that follows hybridization, caused by 

incompatibilities between the different genomes, by the excess of one parental 

chromosome set (Kantama et al., 2007) and/or by differences in repetitive elements 

between the two parental genomes (McClintock 1984). Both transposable element (TE) 

classes, through RNA intermediates (class I) and through  DNA forms (class II), play a 

major role in the genome dynamics of interspecific hybrids, in which both 
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activation/mobilization (Lisch 2009) and depression (Kentner et al., 2003; Hazzouri et 

al., 2008) have been reported.  

Enhanced TE activity can have severe effects on the hybrid genome through gene 

duplication, insertional mutagenesis or unequal homologous recombination (reviewed in 

Kazazian Jr (2004)). In natural hybrids of sunflower, genome enlargements of greater 

than 50 % were detected due to massive amplification of a unique retrotransposon class 

(Baack et al., 2005). Another result of TE activation in hybrids is the production of 

chimeric gene transcripts. For example the well characterized Wis 2-1A retrotransposon 

in wheat hybrids produces chimeric transcripts which can be involved in homology 

dependent gene silencing (HDGS) by producing antisense sequences relative to a 

coding gene (Kashkush et al., 2003). 

On the other hand, elevated TE levels in hybrids may have induced gene silencing 

mechanisms such as methylation and heterochromatin formation, as adaptive response 

to the selfish behaviour of TEs (McDonald 1998). Such TE-induced silencing was 

observed for the Mutator element (MuDR) derivative Mu killer (Muk) gene, whose 

expression results in a long hairpin RNA molecule that triggers silencing of other 

MuDR elements (Lisch 2009). 

In hybrids, especially in allopolyploids, where simultaneous duplication of many 

genes occurs, gene silencing and DNA sequence elimination are mechanisms to remove 

redundant DNA sequences or maladaptive loci from their genomes. These mechanisms 

could have shaped for example the aberrant extra chromosomes in aneuploid apomictic 

Boechera (Kantama et al., 2007). One hypothesis is that incompatibilities between 

parental genomes could have led to synapsis failure, followed by epigenetic changes 

leading to stepwise chromosome degeneration, heterochromatinization and ultimately 

the Het chromosome (Kantama et al., 2007). The observed imbalances in parental 

contributions to different hybrid lineages could also lead to nucleolar dominance, 

whereby one parental set of ribosomal RNA (rRNA) genes is silenced, and which was 

observed in crosses of A. thaliana with Cardaminopsis arenosa (Chen et al., 1998). 

Furthermore, gene silencing in allopolyploids could also lead to genetic diploidization, 

in which duplicate genes are either silenced or expressed at reduced levels (Feldman et 

al., 1997), while the presence of homeologous chromosomes could force exclusive 

bivalent pairing of homologous chromosomes leading to (partial) chromosome 

“diploidization”. In both cases the consequences are massive gene loss and genome 

rearrangements (Arabidopsis Genome Initiative 2000). Diploidization mechanisms are 



 

 

48 Introduction and Literature Review 

proposed for maize (e.g. caused by Ph1 locus in Zea maize; Sears (1977), Gaut and 

Doebley (1997)), Sorghum bicolor (Chen et al., 1997), and also for Arabidopsis 

(Lagercrantz 1998). Thereby, gene inactivation could be enhanced by epigenetic 

shaping of gene expression through epiallele formation (Jacobsen and Meyerowitz 

1997). 

Besides replicative translocation, hybridization is a driver of gene duplication 

(Lynch et al., 2001). If duplicated genes in hybrids are not silenced by degenerative 

mutations (nonfunctionalization), they could gain new (neofunctionalization) or 

additional functions (subfunctionalization; Walsh (2003)). Together, recurrent gene 

duplication and alternative silencing represent mechanisms for generating 

microchromosomal rearrangements (Lynch et al., 2001; Walsh 2003). 

Chromosomal rearrangements in diploid hybrids could occur simply through 

homeologous recombination, although this mechanism could be genetically repressed in 

allopolyploids (e.g. by Ph1 in wheat, see above). Homeologous recombination is 

generally considered as deleterious (Comai 2000) by elevating the rate of chromosomal 

segment loss and duplication e.g. in Brassica napus causing reciprocal translocations 

(Udall et al., 2005; Nicolas et al., 2007). Such rearrangements could also cause 

chromosome shrinkage, as proposed for Del chromosome formation in Boechera 

aneuploids, which is considered to be a translocation or recombinant chromosome 

between parental chromosomes (Kantama et al., 2007).  

Apomixis might be the concomitant consequence and cause for some of the 

restructurations in hybrid genomes (sensu Carman (2001)), whereby the induction of 

apomixis could enhance some of the mechanisms initially caused by hybridization, for 

example by hindering homologous chromosome pairing in diploids (Comai 2000). 

Thus, the absence of recombination in apomicts may enhance again homologous 

chromosome heteromorphy, whereas in sexual systems the structural divergence 

between homologues is held low by random drift (Birky, 1996). Additionally, apomicts 

might not be able to suppress TE activity compared to their sexual counterparts, as has 

been shown in Hieracium apomicts, which typically contained higher frequencies of 

transposon insertions and gene rearrangements (Bicknell and Koltunow 2004). The lack 

of TE control together with a disrupted repair mechanism (i.e. origin of recombination 

as a DNA repair process; Bernstein (1977)) could, in addition to hybridization, enhance 

extensive gene duplication and genome rearrangements in apomictic Boechera.  
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2.5 Conclusion and aims of the dissertation 

The maintenance of a balanced endosperm seems to constitute a strong selection 

pressure for functional unreduced pollen in apomictic Boechera (see 2.2.2). The de novo 

engineering of apomixis in crops requires a fundamental insight of the molecular nature 

of apomixis and of unreduced pollen formation in natural apomicts. The implementation 

of functional unreduced pollen formation from natural apomicts in crops would 

hypothetically solve the “endosperm problem” by balancing maternal and paternal 

genome ratios via central cell fertilization (Birchler 1993).  

However, underlying genetic factors controlling unreduced pollen formation in the 

natural apomictic Boechera are unknown. Thus far, the male gametes in Boechera were 

mainly observed for reproductive mode related morphological variation, like pollen 

grain size (Böcher 1951; Koch et al., 2003; Voigt et al., 2007), pollen fecundity and 

viability (Voigt et al., 2007), the occurrence of seed sterility (Böcher 1951) and the 

quantitative variation for apomixis penetrance (Aliyu et al., 2010). The observation of 

large scale homeologous chromosome substitutions, variable reproduction and the 

hybrid nature of apomictic Boechera (Kantama et al., 2007; Schranz et al., 2007) lead to 

the hypothesis, whether the potential of expressing apomeiosis was first induced 

through interspecific hybridization or it could be an older characteristic of the genus 

(i.e. pre-Pleistocene; Sharbel et al. (2009)).  

In our study we apply comparative microscopic and molecular methods on a wide 

range of Boechera genotypes to test this hypothesis and to identify both the mechanism 

of unreduced pollen formation and candidate factors responsible for this trait via: 

1. Characterization of early male gametophyte development in sexual and 

apomictic Boechera for the identification of male gametophyte stages 

suitable for comparative gene expression analyses. 

2. Microarray-based identification and isolation of candidate genes for the 

initiation of unreduced pollen formation. 

3. Characterization of the molecular structure and function of these 

candidate genes to reveal apomixis-specific polymorphisms.  

4. Elucidation of the phylogeographic distribution of detected apomixis-

specific polymorphisms. 
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3. Material and Methods 
3.1 Materials 

3.1.1 Plants 

In the frame of this study seed material (IPK Gatersleben, AG Apomixis) from 22 

genotypes was used (Plant/genotype IDs refer either to Sharbel et al. (2005) or Schranz 

et al. (2005)). Numbers at the first position indicate original seed sets from the provider, 

whereas numbers behind the dot indicate seed sets from daughter plants. The 

geographic information of Boechera genotypes used for the identification of candidate 

genes in the course of the comparative gene expression analysis are summarized in 

Supplemental Table 2, and illustrated in Figure 4.  Details of Boechera genotypes used  

 

 
Figure 4. Distribution map of Boechera genotypes used for transcriptome analysis. 

Diploid sexual (black) and apomictic (red) genotypes from western North America were used 

in this study for discovery of genes involved in unreduced male gamete formation. The 

numbers refer to genotype names and localities given in Supplemental Table 2. Map designed 

with Diva GIS (v7.5, http://www.diva-gis.org/). 

 

for the phylogeographic analyses were published by Christiane Kiefer (PhD thesis, 

University of Heidelberg, 2008) and can be downloaded from accession database of the 

The Heidelberg Boechera Group (http://ephedra.hip.uni-

heidelberg.de/boechera/content/accession_db/). Boechera were classified using the 
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latest nomenclature (sensu Al-Shebaz and Windham (1993+)), but as the taxonomic 

relationships are undergoing revision, here all references were made to genotypes/lines.   

 

3.1.2 Chemicals and Enzymes 

Chemicals having generally the “Extra pure”, “Molecular biology reagents” or “For 

Analytical Purpose” grade were ordered from Agilent Technologies (Böblingen, D), 

Applichem (Darmstadt, D), Fluka (Buchs, CH), Life Technologies (Carlsbad, Ca., 

USA), Hartmann Analytic (Braunschweig, D), Macherey-Nagel (Düren, D), Merk 

(Darmstadt, D), Qiagen (Hilden, D), Roche Molecular Biochemicals (Mannheim, D), 

Roth (Karlsruhe, D), Seegene (Eschborn, D), Serva (Heidelberg, D), Sigma-Aldrich 

(Taufkirchen, D), Takara Bio Europe (St. Germain-en-Laye, F) and TedPella (Redding, 

Ca., USA). Enzymes used for cytochemical and histological preparations of flower 

material and molecular analyses were ordered from Bioline (Luckenwalde, D), 

Fermentas Life Sciences (St. Leon-Rot, D), Invitrogen (Karlsruhe, D), New England 

BioLabs (Frankfurt a. M., D), Qiagen (Hilden, D) and Sigma-Aldrich (Taufkirchen, D). 

Solutions, buffers and media were prepared with distilled water of “aqua tridest.”-

quality (Milli-Q Water System, Millipore, Bedford, MA, USA) according to Sambrook 

et al. (1989). If necessary, solutions and media were autoclaved (20 min, 120°C, 2x105 

Pa) or sterile filtrated (Rotilabo® Spitzenfilter, pore diameter 0.22 µm, Roth, Karlsruhe, 

D).  
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3.1.3 Oligonucleotides 

Oligonucleotides were designed with Primer3 (v0.4.0; http://frodo.wi.mit.edu/primer3/) 

and were synthesized by Eurofins MWG Operon (Ebersberg, Germany). 

Chromosome walking      Identification of BspUPG polymorphisms  

 

   RACE 

   (Rapid amplification of cDNA ends)       

 

 

 

 

 

 

 

 

Sharb1199059 
TSP1_1L 
TSP1_1R 

GCTTACACATTGGGTTGCTT 
GGGTTAAAGGTACAACTCACCA 

TSP1_2L 
TSP1_2R 

AAGAAAACGCTTCGGACAGG 
CAACTCACCAAATCCCTATTGC 

TSP1_3L  
TSP1_3R 

GCAATAGGGATTTGGTGAGTTG 
CCTGTCCGAAGCGTTTTCTT 

Sharb0931225 
TSP2_1L 
TSP2_1R 

CGATATGACCTGCACAACC 
CTAAATTTGCACACCACCTG 

TSP2_2L 
TSP2_2R 

GGCGAATATTTGCAGGTGGT 
CCTGCAAATATTCGCCCAGA 

TSP2_3L 
TSP2_3R 

GCAGGTGGTGTGCAAATTTAGT 
GGGTTGTGCAGGTCATATCG 

Sharb0425060 
TSP5_1L 
TSP5_1R 

AATTTACAGACCCTGCGATCT 
CTTTCTCCTCGATTTCTGATTG 

TSP5_2L 
TSP5_2R 

CCATAAGCACAACCAATCGAAA 
TTTCGATTGGTTGTGCTTATGG 

TSP5_3L 
TSP5_3R 

CAGAAATCGAGGAGAAAGAGACA 
TCGCAGGGTCTGTAAATTGG 

Sharb0501554 
TSP3_1L 
TSP3_1R 

ACATCATCCACAACCCAAAA 
CGCGTACCTTAGGCTAAATTC 

TSP3_2L 
TSP3_2R 

TCTTTGGACTTCAGTGGATCG 
TGTAAGTGCACAGCAAACACAA 

TSP3_3L 
TSP3_3R 

TGCCGGGGACCAATGTAAT 
GGTTCGATCCACTGAAGTCCA 

Sharb0690829 
TSP4_1L 
TSP4_1R 

AAGTCGATCGAACACCACAT 
CGGAAGTAAACATGAACGATG 

TSP4_2L 
TSP4_2R 

CGATCGAACACCACATGAGAA 
CATGAACGATGGCGAAGAAG 

TSP4_3L 
TSP4_3R 

TCATGTCTTCTTCGCCATCG 
TGTTCGATCGACTTCCTCCTC 

BspHRD3 
TSP9_1L 
TSP9_1R 

TTCTCAGGCTTGCTTGTTGA 
CCAAAGCAAGCCAAAACATT 

TSP9_2L 
TSP9_2R 

GCCTTCAAATGCAGGCAAGAG 
TCCAAGGTTAAAATGCCCACT 

TSP9_3L 
TSP9_3R 

GGTGGGCGTGGCAGAGATTA 
AAATCAACAAGCAAGCCTGAGA 

BspUPG  in apomictic genomes 

CON234X5L  
CON234X5R     

TCCGACCTAAATCCTACCAAACTGA 
TGCTCAATTTTGAACATCTTATTTGC 

CON234X2L** 
TSP3_3R** 

CTGGAATTGGGTACTTGTATGTCAA 
GGTTCGATCCACTGAAGTCCA 

4RBAC_L** 
4RBAC_R** 

ATGAACGATGGCGAAGAAGA 
TGGATTGCTGTTAAGACCATGT 

PC1pol1_L** 
PC1pol1_L** 

CTTTTCCGTTGACTTTCCGACAAAT 
TCGATCAATCTCATTCGGGATCTAT 

BspUPG  in sexual B. stricta genomes 

CON234X11L 
CON234X5R 

CAAAAATAAAAGATTTGATGTAGATTGC 
TGCTCAATTTTGAACATCTTATTTGC 

CON234X10_L** 
CON234B2_R** 

GCTGCCCTGACTCTCTCTCC 
TTCACAAATCTAGATGAAGAACCCT 

CON234X8_L * *   
TSP3_1R** 

GAATGTCGCAATCTTCCAAAAC 
CGCGTACCTTAGGCTAAATTC 

BspUPG  in genomes of other sexual genotypes 

FLTsexX2L    
CON234X5R       

GAAGAAAGAGCTACGGCGGTGAT  
TGCTCAATTTTGAACATCTTATTTGC 

FLTsexX5L**   
FLTsexX5R**       

CCCTAGACGTTCAAGCCTCGTTA 
AATTGCATTGGTCCTGGCAAC 

FLTsexX6L**  
TSP4_1R**    

TGAGGCTGCTTTTCATTACGTGT 
CGGAAGTAAACATGAACGATG 

BspUPG-2  

GSP3 
GSP4 

TCTTCGCCATCGTTCATGTTTACTTCCG 
TCATCATGTCTTCTTCGCCATCGTTCA 

BspHRD3 

GSP11 
CON234X14L 

TAATGCCCACTGGGGTCGTCATTGT  
ACTGGAATTGGGTACTTGTATGTCA 

http://frodo.wi.mit.edu/primer3/�
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QRT-PCR analysis 

Probe no.    Primer name Primer sequence 5`  3` Efficiency ± SD 
Sharb0931225 CON234B4L 

CON234B4R 
TTGCTTTGGTTGAATGCAATAC  
AATTACTAAATTTGCACACCACCTG 

0.91 ± 0.02  

Sharb0501554  CON234B3L 
CON234B3R 

TGTGTTTGCTGTGCACTTACAG  
TCTCAAGAGAACCTGAGACACAAA  

0.76 ± 0.01  

Sharb0690829  CON234B2L 
CON234B2R 

TCTTCTTCGCCATCGTTCAT  
TTCACAAATCTAGATGAAGAACCCT  

0.90 ± 0.01  

Sharb0425060  CON5B9L 
CON5B9R 

TGGATGAGAAATACAAACTTGG  
AGGAACACGCCCTCAAATTC  

0.95 ± 0.01  

Sharb0350102 Single0350102L 
Single0350102R 

TGATGCACCAAGGTTGCCATA 
CAGAAAACCGAGTGCGAATGC 

0.96 ± 0.01 

Sharb1627083 Single1627083L 
Single1627083R 

ACTCGGCCAACTTGCTCGTC 
TCATGGGTCGACTCGGTGAG 

0.95 ± 0.01 

ACTIN2  RT_Act2_T7L 
RT_Act2_T7R 

GTTCCACCACTGAGCACAATGTTACC  
AGTCTTGTTCCAGCCCTCTTTTGTG  

0.91 ± 0.01  

EFα1  RT_EFα1_M13L 
RT_EFα1_M13R 

CCAAGGGTGAAAGCAAGGAGAGC  
CACTGGTGGTTTTGAGGCTGGTATCT  

0.95 ± 0.01  

GAPDH  GAPDH_For  
GAPDH_Rev  

CAAGGTCATCCATGACAACTTTG 
GTCCACCACCCTGTTGCTGTAG  

-  

 
Sequencing of vector inserts    Small RNA Northern Blot 

         
Boechera BAC library screen  Biogeographic distribution of BspUPG-2 

 
*Primer sequences listed in 5`- to 3`-

orientation  

**BspUPG-2-specific internal sequencing 

primers  

 

 
 

 

 

 

Indel9plus  

Indel9minus 

TTTTCACCTTAGCTTAATTTGAATATA 

TATATTCAAATTAAGCTAAGGTGAAAA 

Indel9longplus 

 

Indel9longminus

 

AACCTTATATTTTCACCTTAGCTTAATT

TGAATATAATAAACTCGTT 

AACGAGTTTATTATATTCAAATTAAGCT

AAGGTGAAAATATAAGGTT 

ACT2plus 

ACT2minus 

AAGTCTTGTTCCAGCCCTCGTTTGTGG 

CCACAAACGAGGGCTGGAACAAGACTT

pCR™4-TOPO® vector  

T3 
T7 
 
M13for  
M13rev 
 

ATTAACCCTCACTAAAGGGA 
TAATACGACTCACTATAGGG  
 
GTAAAACGACGGCCAG 
CAGGAAACAGCTATGAC 
 

pJET™2.1/blunt cloning vector 

pJET™1.2For 
pJET™1.2Rev 

CGACTCACTATAGGGAGAGCGGC 
AAGAACATCGATTTTCCATGGCAG 

Sharb1199059 

TSP1_1L 
1LBAC_R       

GCTTACACATTGGGTTGCTT 
TGCTTCTTCCGTTTCCACTT 

Sharb0931225 

TSP2_1L 
2LBAC_R 

CGATATGACCTGCACAACC 
TGGGCATGTATTTGTGTGCT 

Sharb0501554 

TSP3_1L 
3LBAC_R         

ACATCATCCACAACCCAAAA 
CTGGGCATGTATTTGTGTGC 

Sharb0690829 

4RBAC_L 
4RBAC_R 

ATGAACGATGGCGAAGAAGA 
TGGATTGCTGTTAAGACCATGT 

Sharb0425060 

TSP5_1R 
5RBAC_R 

AATTTACAGACCCTGCGATCT 
GACACATTAACAAGACAAGGCTCT 

PC1pol1_L    

PC1pol1_R    

CTTTTCCGTTGACTTTCCGACAAAT 

TCGATCAATCTCATTCGGGATCTAT 

RT_Act2_T7_L

RT_Act2_T7_R 

GTTCCACCACTGAGCACAATGTTACC 

AGTCTTGTTCCAGCCCTCTTTTGTG 
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3.1.4 Polymerase chain reaction (PCR), Bacteria and Plasmids 

Standard PCR reactions were performed in 0.2 ml eppendorff tubes or 96-well 

plates with BioTaq™ Taq DNA polymerase (Bioline) according to the manufacturer`s 

protocol. Sanger sequencing of PCR products generated with proofreading polymerase 

Phusion® High-Fidelity (Thermo Fisher Scientific) was conducted by cloning the PCR 

products into the vector of the CloneJET™ PCR Cloning Kit (Fermentas). All other 

products with A-overhangs synthesized by the BioTaq™ Taq DNA polymerase were 

cloned into the pCR®4-TOPO® vector of the TOPO TA Cloning® Kit for sequencing 

(Invitrogen). Plasmids were transformed into chemical competent cells of the 

Escherichia coli TOP10 strain (Invitrogen) typically grown on X-gal-LB plates 

containing 100 µg/ml ampicillin with shaking (200 rpm) at 37°C. Positive clones were 

selected based on a blue/white screen and a colony PCR-based screening according to 

the manufacturer’s protocol of the CloneJET™ PCR Cloning Kit (Fermentas) or TOPO 

TA Cloning® Kit for sequencing (Invitrogen).  

 

3.1.5 Molecular weight markers 

DNA sizing of DNA fragments in Agarose gels was conducted using 

HyperLadder™ I for products with >1 kb size, HyperLadder™ IV for products <1kb 

size and HyperLadder™ V for products <500 bp size (Bioline). 

 

3.2 Methods 

3.2.1 Plant cultivation conditions 

Several sets of the same diploids, ten apomictic and twelve sexual Boechera 

genotypes, were used for the entire experimental pipeline (Supplemental Table 2; note 

recent taxonomic information, (Koch 2010)). Ten seeds per genotype were cultured on 

moist filter paper in sealed Petri dishes and vernalized at 4°C in the dark for two weeks 

until germination. Seedlings were transplanted to plastic pots (11x11x13 cm) containing 

autoclaved substrate, and transferred to a phytotron and grown without insecticide and 

herbicide treatment under long-day conditions (16h light and 8h dark, 21°C) and 

constant relative humidity at 70%.   

3.2.2 Ploidy measurements 

Relative nuclear DNA content (referred to as ploidy) in leaf, seed (Matzk et al., 

2000) and pollen (de Storme and Geelen 2011) was quantified using leaf tissue from a 
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diploid, sexual B. stricta (ES 558.2; Supplemental Table 2) as an external control. Leaf 

and seed material (20 seeds) were chopped with a razor blade in a drop of Galbraith’s 

buffer containing 4 µg/ml DAPI (4′,6-Diamidin-2-phenylindol; Galbraith et al. (1983). 

Approximately 20 mature open flower buds at dehiscence stage were harvested for 

pollen grain extraction by shaking gently for 15 min in 500 µl distilled water, followed 

by centrifugation at 13200 rpm for 6 min. After decanting the supernatant the pollen 

pellets were resuspended in 100 µl Galbraith’s buffer containing 4 µg/ml DAPI and 

ground with two 6 mm steel balls in 2 ml eppendorf tubes using a Retsch mixer mill 

MM 400 for 20 sec at 30 Hz. Extracted nuclei from leaf, seed and pollen tissues were 

suspended in 1 ml of Galbraith’s buffer. Seed and leaf nuclei were filtered through a 30 

µm nylon mesh (Partec, Münster, Germany) and pollen nuclei were filtered through a 

10 µm nylon net filter (Millipore, Billerica, MA,USA).  

Tissue-specific ploidy measurements were performed on a FACSAria II (BD 

Biosciences, Franklin Lakes, NJ, USA) equipped with a 375 nm near UV laser. Data 

were measured using the FACSDiva Software (v6.1, BD Biosciences) and analyzed 

using WinMDI v2.9 software (The Scripps Research Institute, 

http://facs.scripps.edu/software.html); “C” referes to DNA content of a haploid 

anaphase cell, and “x” the basic chromosome number. 

 

3.2.3 Isolation and cytochemical preparation of Boechera flower material 

Pollen developmental stages were defined (Fig. 6, Table 1; Regan and Moffatt 

(1990)) from each of twelve flower bud size stages (S1-S12) which differed in 100 µm 

length ranges (sensu Smyth et al. (1990) and Sanders (1999)). Whole flowers of stage 

S3 and antherheads of flower developmental stages S8 – S12 were dissected under a 

Zeiss Discovery V20 (Carl Zeiss, Jena, Germany) stereomicroscope using sterile glass 

needles (self-made using a Narishige PC-10 puller, Narishige Group, Kasuya, Japan) 

bent to an angle of appr. 100-120° and tip size of 50-100 µm. Antherheads and flower 

buds were collected and pooled per size stage into 2 ml eppendorf tubes containing 2% 

Formaldehyde (FA) + 2% Glutaraldehyde (GA) in 0,5 M phosphate buffer (pH 7.2). 

The plant material was fixed overnight at 4°C, then washed twice with 0.5 M phosphate 

buffer and distilled water, and postfixed in 1% osmium tetroxide. The fixed material 

was dehydrated in a graded ethanol series (30%, 40%, 50%, 60%, 75%, 90%, 2×100%), 

transferred to 100% propylenoxide, embedded in Spurr’s epoxy resin (Spurr (1969); 

TedPella, Redding, Ca) and sectioned in 3 µm slices using a Leica RM 2255 microtome 
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(Leica, Wetzlar, Germany). Transverse antherhead sections were stained with 1:1 

methylene blue/azure blue II at 60°C for 80 sec, and photographed on a Zeiss Axioplan 

2 Imaging (Carl Zeiss) microscope under differential interference contrast optics and 

20-fold magnification. 

Transverse sections of antherheads in LR White resin, appr. 3 µm thick, were cut 

and dehydrated for immunofluorescence staining of callose as described above. Slides 

with LR White resin embedded antherhead sections were pre-incubated (14 μl 

drop/well) in 3% (w/v) bovine serum albumin (BSA) (Fraction V, A 2153, Sigma) in 

PBS at pH 7.4 for 20 min, then incubated for 1h in primary antibody. Anti-callose (1,3)-

ß-glycan primary antibody (Biosupplies) was used at a 1:100 dilution and the secondary 

antibody (Alexa Fluor 488 anti-mouse, Invitrogen) was diluted 1:200 in PBS, 1% BSA, 

0.5% Tween. Slides were rinsed five times for 5 min with PBS Tween, and then 

incubated for 1h in the dark with secondary antibody. Slides were then rinsed twice with 

PBS Tween, two times with PBS and three times with water. Samples were analysed on 

a confocal microscope Zeiss LSM 510 META equipped with a Zeiss AxioCam HRc 

camera. 

 

3.2.4  Cytological observation of meiocytes in fixated Boechera anthers  

Cytological observations of meiosis and PMCs were made from sexual and 

apomictic Boechera flower bud stages S9 to S10. Meiotic chromosome spreads of 

Boechera anthers were prepared according to Ross et al. (1996) with minor changes. 

Prepared spreads were stained with 40 µl of DAPI (4 µg/ml), mounted with a 24 X 50 

mm cover slip and sealed with Fixogum (Marabu, Tamm, Germany). The slides were 

incubated for 30 min in the dark at 4°C, and cytological analysis was performed under a 

Zeiss Axioplan 2 imaging microscope (Carl Zeiss). Photographs were taken with a high 

resolution camera (AxioCam HRc Rev. 2) under 100-fold magnification using a 49 

DAPI BP reflector block. Meiocytes at the tetrad stage were examined by separate 

squashes of all six antherheads per flower bud, from one sexual and six apomictic 

genotypes, to determine the number of monads, dyads, triads and tetrads in each 

antherhead. The anthers were squashed according to Peterson et al. (2010), stained 

(Alexander’s stain, Alexander (1969)) and examined under a Zeiss Axioplan 2 imaging 

microscope (Carl Zeiss). All available meiocytes per anther were counted, and statistical 

analyses of meiocyte behaviour and anther size correlations of gametophyte stages were 

evaluated with SPSS v11.5 (LEAD Technologies, Charlotte, NC, USA). 
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3.2.5 Live-microdissection of antherheads and isolation of total RNA 

Microdissections and total RNA extractions were prepared using tools and 

dissection area which were cleaned with ethanol, treated with RNAseZap® (Ambion, 

Carlsbad, CA, USA) and washed with DEPC treated distilled water (DEPC, Diethyl 

phosphorocyanidate). Approximately 30 antherheads of each genotype, corresponding 

to the PMC stage, were live microdissected from fresh whole flower buds under a Zeiss 

Discovery V20 stereomicroscope (Carl Zeiss) using sterile glass needles (see above), 

and directly collected in 500 µl RNAlater (Qiagen, Hilden, Germany), which was 

substituted by the lysis buffer of the extraction kit (RNeasy® Micro kit, Qiagen) prior to 

RNA extraction. 18 µl of RNAse-free DNAse I (Qiagen) digested total RNA extracts  

were eluted through RNeasy MinElute Spin® columns (Qiagen) and quantified on a 

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, 

USA).  RNA quality of all samples was assessed with the RNA 6000 Nano LabChip Kit 

II (Agilent Technologies, Santa Clara, CA, USA) on the Agilent 2100 Bioanalyzer. 

Purified total RNA was stored at -80°C.  

 

3.2.6 Flower-specific Boechera 454 cDNA libraries 

The Boechera 454 FLX cDNA libraries (Sharbel et al., 2009; 2010) used in this 

study were sequenced from pooled flower stages 1–12 (Smyth et al., 1990) of three 

diploid sexual plants (genotypes ES 910.2.2, 105.6.1 and ES 616.2) and three apomictic 

plants (genotypes 67.5, 300.6.1 and 218.2.2). 

 

3.2.7 Microarray design 

The 454 cDNA sequences were assembled using the CLC Genomics workbench 

using standard assembly parameters for long-read high-throughput sequences, after 

trimming of all reads using internal sequence quality scores. In total, 36 289 contig 

sequences and 154 468 non-assembled singleton sequences were obtained. This data 

was then sent to ImaGenes GmbH (Berlin, Germany) for microarray development using 

their Pre-selection strategy (PSS) service. Thereby, 14 different oligonucleotides (each 

60 bp in length) per contig and 8 oligonucleotides per singleton, including the “anti-

sense” sequence of each oligo, were bioinformatically designed and spotted onto two 1 

million-spot test arrays. These test-arrays were probed using (1) a “complex cRNA 

mixture” (obtained by pooling tissues and harvesting all RNA from them), and (2) 

genomic DNA extracted from leaf tissue pooled from a sexual and an apomictic 
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individual. Based upon the separate hybridization results from the cRNA and genomic 

DNA samples, and after all quality tests, a final 2x105k spot array was designed 

containing in total 103 747 oligos including 37 974 non-assembled sequences 

(singletons) and 65 773 contig sequences (clusters). According to a BLASTX search 

against the TAIR9 cDNA database, the 103 747 oligonucleotide targets represent 31051 

annotated genes (6.23% singletons, 93.77% clusters), and approx. 72 696 (49.57% 

singletons, 50.43% clusters) non annotated Boechera genomic regions which are known 

to have transcriptional activity (Sharbel et al., 2009). This array hypothetically contains 

multiple oligonucleotides (i.e. technical replicates) of every gene expressed during 

Boechera flower development and was uploaded on the eArray platform (Agilent 

Technologies, https://earray.chem.agilent.com/earray/) for in situ synthesis of the 

microarray. 

 

3.2.8 Microarray probe preparation, hybridization, data analysis and validation  

To ensure optimal cRNA yield after labeling, 200ng total RNA with absorbance 

readings of A260/A280 >1.8 and A260/A230 >1.8 (recommended by Agilent) were 

used for the labeling procedure. Approximately 1.5 µg of the generated Cy3-labeled 

cRNA per sample (One-color Quick Amp Labeling kit, Agilent Technologies) was 

hybridized for 18hrs at 65°C to the custom Boechera whole flower-105k-Agilent 

microarrays, which were scanned at 5μm double pass resolution with an Agilent 

G2565BA Microarray Scanner. The One-color RNA Spike-in kit (Agilent 

Technologies) was used to assure optimal microarray processing. Microarray 

hybridization quality was assessed with Feature Extraction 10.1 software (Agilent 

Technologies), whereas quantile normalization with baseline to median transformation 

and gene expression analysis was performed with GeneSpring GX 10 software (Agilent 

Technologies). Differentially expressed microarray probes were considered validated 

with p≤0.05 as assessed by an unpaired t-test with a mean difference ≥2-fold. P-values 

were corrected for the family-wise error rate (FWER) as control for false positives 

using the Bonferroni method. Principal components analysis (PCA) is a method of data 

reduction (Manly 1994). If the data are highly correlated, a plot of the microarray probe 

signal intensity values against the first few principal components will account for a 

large portion of their total variance. Such a plot would effectively summarize the 

structure contained in the full data set. We applied PCA to our microarray datasets 
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formed by different fold change levels using GeneSpring GX 10 software (Agilent 

Technologies).  

Array probes which, (1) were highly expressed (FC≥10) or (2) demonstrated 

significant differential genexpression (FC≥2, p≤0.05) between sexual and apomictic 

genotypes were traced back to their original Boechera cDNA sequences (based upon 

assemblies of 454 reads; Sharbel et al. (2009)) and these full-length sequences were 

used in a blast search to find Arabidopsis cDNA homologues (TAIR9) using the 

following parameters: blastall –p blastn -m8 -e1e-3 -W7 -r1 –q -1 -i (Altschul et al., 

1997).  

Corresponding TAIR9 hits of dataset (1) with highest E-value and Bit score were 

then used for a Gene Ontology (GO) analysis using AgriGO 

(http://bioinfo.cau.edu.cn/agriGO/index.php) for GO term enrichment, using the 

annotated genes (N=31051) present on the 2x105k Boechera flower-specific array as 

background comparison set, with the following analysis parameters: Hypergeometric 

test, Yekutieli (FDR under dependency) adjustment for multiple tests, significance level 

0.05, minimum number of mapping entries = 5, and complete plant GO  gene ontology. 

 

3.2.9 qRT-PCR validation of genes demonstrating differential gene expression 

SYBR® Green quantitative PCR (qRT-PCR) (SYBR® Green PCR Master Mix, 

Applied Biosystems, Carlsbad, CA, USA) was used as an independent validation of the 

microarray data. The RevertAid™ H Minus First Strand cDNA Synthesis Kit 

(Fermentas, Waltham, MA, USA) and oligo(dT)18 primer were used to conduct a cDNA 

synthesis from 300 ng total RNA from microarray samples. CDNA quantification was 

performed with Quant-iT™ PicoGreen® dsDNA Assay Kit (Invitrogen, Carlsbad, CA, 

USA) on a ND-3300 fluorospectrometer (Thermo Fisher Scientific, Waltham, MA, 

USA). Primers were designed on the candidate microarray probe homologous cDNA 

reads ET5PU7E01BTR6J, ET5PU7E01DDH28 and ET5PU7E01DERC2 (Supplemental 

Table 3) using Primer3 v0.4.0 (Tm ~ 60°C, 40% < CG content < 80% and PCR product 

size < 200 bp). 1 ng of cDNA in a 5 µl SYBR® Green PCR Master Mix containing 

microarray probe specific primer combinations was initially denatured for 2  min at 50 

°C and 10 min at 95°C and amplified by 40 cycles of PCR, with each cycle consisting 

of 15  sec at 95 °C, 1  min at 60 °C. The melting curve for each PCR product was 

achieved by a temperature ramp (95 °C, 60°C, 95 °C each 15 sec). QRT-PCR was 

performed on an ABI-PRISM 7900HT FAST Real-Time PCR System (Applied 
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Biosystems) using the SDS software v2.4 (Applied Biosystems). Seven biological and 

four technical replicates were run for each probe and tissue in a 384-well plate together 

with two endogenous control genes tested on Boechera anther material (ACTIN2 

(ACT2) and EFα1, (Pellino et al., 2011)), negative template and reverse transcriptase 

controls.  PCR efficiencies and normalized Ct values of each set of four technical 

replicates were processed with the Real-time PCR Miner v2.0 software (Zhao and 

Fernald 2005). Relative quantification and normalized cycle threshold (Ct) values of the 

amplified targets were calculated separately with reference to the expression levels of 

each of the two housekeeping genes employing the ∆∆Ct method (Pfaffl 2001) using a 

calibrator sample (ES 910.2 and ES 913.3 (Sharb0350102); Supplemental Table 4). The 

corresponding mean relative expression ratio for each genotype was calculated with 

SPSS (v11.5; LEAD Technologies) and significant differences between samples were 

evaluated using a one-way ANOVA (α = 0.05) with a Tuckey-HSD post hoc test for 

differences between multiple pairs of means. 

 

3.2.10 DNA preparation, chromosome walking, and sequence analysis in Boechera  

DNA was extracted from young leaves using the Cleanplant DNA kit with minor 

protocol modifications (CleanNA, www.cleanna.com). Chromosome walking on 

microarray candidate probes and BspHRD3 (homolog to At1g18260) in sexual and 

apomictic Boechera genomes was conducted using the DNA Walking SpeedUp Premix 

Kit I (Seegene Inc.) according to the manufacturer’s protocol. Chromosome walking 

products and PCR products were cloned (see 3.1.4), subsequently amplified using the 

TempliPhi™ DNA Sequencing Template Amplification Kit (Reagin 2003) and Sanger 

sequenced on the ABI 3730 XL sequencing system at the GenomeCentre, IPK 

Gatersleben in forward and reverse reaction. Sequence analysis and assembly was 

carried out with Lasergene (v8.0.2; DNAStar). 

 

3.2.11 BAC probe preparation and screening of Boechera BAC library 

Candidate 60-mer microarray probes were mapped against Boechera 454 FLX 

cDNA libraries (Sharbel et al., 2009) using CLC Genomics Workbench v4.5.1 (CLC 

Bio, Aarhus, Denmark, standard parameters). Specific primers were designed for 

chromosome walking on flanking regions to the mapped microarray probes (Primer3 

v0.4.0; see 3.1.3). The sub-cloned (see 3.1.4), PCR amplified and finally gel purified 

DNA walking products (NucleoSpin® Extract II kit, Macherey-Nagel, Düren, 
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Germany) hybridized against a gridded macro array of a bacterial artificial chromosome 

(BAC) library (48 x 384 spotted wells onto a 22 x 22 cm filter membrane, binary vector 

pCLD04541, Bancroft (1997)). Individually radio-labelled and pooled probes were 

hybridized as a group using the overgo hybridization method (Ross et al., 1999). Vector 

inserts of 500ng pure BAC clone DNA extracts were restriction digested to completion 

with HindIII, BglII and BamHI (Amersham Pharmacia Biotech) at 37°C (HindIII, BglII) 

and 30°C (BamHI) for 8h and examined on a 1% agarose gel.  Based on their partial 

overlapping restriction patterns DNA was isolated from four chosen BAC clones 

(A4O22, E7K5, C8B11 and F8G11) using Nucleobond Xtra Midi Kits (Macherey-

Nagel), BAC DNA was randomly sheared (Hydroshear, Digilab, Marlborough, MA, 

USA) and size-fractionated by agarose gel electrophoresis in ~1kb and ~4-5kb size 

classes. These fragments were end-repaired, blunt-end ligated into pUC19 (Life 

Technologies), transformed into E. coli ELECTROMAX DH5α-E electro-competent 

cells (Invitrogen) and sequenced on an ABI 3730 XL automatic DNA sequencer (PE 

Applied Biosystems). Vector clipping, quality trimming and sequence assembly using 

stringent conditions (e.g. 95% sequence identity cutoff, 25 bp overlap) was done with 

the Lasergene 8 (DNAStar) and Staden (http://staden.sourceforge.net/). Assembly of the 

complete BAC clone sequences was performed using Seqman and the Gap4 algorithm 

implemented in Staden. Remaining gaps in the contiguous BAC sequences were 

manually inspected and closed with primer walking or PCR products crossing the gaps 

from adjacent contigs. The resulting sequences were assembled using Lasergene 8 

(DNAStar) set to an overlap minimum of 20 bp with 95% identity. All BAC assemblies 

were annotated, based on a combined BLASTN and BLASTX search against the non-

redundant GenBank nucleotide and protein databases, respectively 

(http://www.ncbi.nlm.nih.gov/genbank/). 

 

3.2.12 Rapid Amplification of cDNA Ends (RACE) 

The SMARTer RACE method (Clontech, Palo Alto, CA, USA) was employed to 

obtain 5`-end and poly(A)-site information from BspUPG-2 and BspHRD3, an 

Arabidopsis homologous of HRD3 in Boechera. Primers (Primer3 v0.4.0) for BspUPG-

2 RACE were derived from cDNAs homologous to the microarray probe read 

ET5PU7E01BTR6J (5`-end primer GSP3: 5`-

TCTTCGCCATCGTTCATGTTTACTTCCG-3`; 3`-end primer GSP4: 5`-

TCATCATGTCTTCTTCGCCATCGTTCA-3`), and those for BspHRD3 RACE were 
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derived from the LCB2 of BspUPG-2  (5`-end primer GSP11: 5`-

TAATGCCCACTGGGGTCGTCATTGT-3`; 3`-end primer CON234X14_L: 5`-

ACTGGAATTGGGTACTTGTATGTCA-3`). PCR reactions were performed with the 

Advantage 2 PCR Kit (Clontech) and PCR fragments were cloned (pCR4-TOPO TA; 

Life Technologies) and Sanger sequenced (see 3.1.4 and 3.2.10). 

 

3.2.13 BAC annotation and analysis of sequence polymorphisms  

The allelic constitution of BspUPG-2 in nine each sexual and apomictic genotypes 

was determined sequencing proof-reading polymerase amplified (Phusion high-fidelity 

polymerase, Thermo Scientific), gel purified (NucleoSpin® Extract II kit, Macherey-

Nagel) and multiply-cloned PCR fragments (CloneJet™ PCR cloning kit, Fermentas) 

using specific primers (5`-end primer in apomictic genotypes CON234X5L: 5`-

TCCGACCTAAATCCTACCAAACTGA-3`; in sexual B. stricta CON234X11L 5`-

CAAAAATAAAAGATTTGATGTAGATTGC-3` and in other sexual genotypes 

FLTsexX2L: 5`-GAAGAAAGAGCTACGGCGTGAT-3`; 3`-end primer CON234X5R: 

5`-TGCTCAATTTTGAACATCTTATTTGC-3`) according to the manufacturer’s 

protocol (Phusion high-fidelity polymerase protocol, Thermo Scientific). The 

amplifications were run under the following conditions: 0.5 min initial denaturation at 

98°C; 32 cycles of amplification with 10 s at 98°C, 30 s at 58°C, and 1.5 min at 72°C; 

and 10 min of final elongation at 72°C. PCR success was checked with electrophoresis 

in a 1% agarose gel in TBE-buffer and staining with ethidium bromide. Lasergene 8 

software (DNAStar) was used for assembly and similarity analysis of Phred 20 quality-

trimmed sequences. Open reading frames (ORF) in all six frames of BspUPG-2 with 

minimum 100 nt length were identified with Geneious (v5.3.6; Biomatters, Auckland, 

NZ). Geneious was used for pairwise sequence alignment using CLUSTALW (IUB cost 

matrix, gap open cost = 15, gap extend cost = 6,66, free end gaps) and maximum-

likelihood method comparison (Tamura and Nei 1993) were conducted in MEGA5 

(Tamura et al., 2011) using standard parameters.  

 Pairwise CLUSTALW comparisons in the presence of rearrangements were 

performed with Mauve (v2.3.1; progressiveMauve, default parameters, Darling et al. 

(2004)) to detect collinear sequence blocks (LCBs; conserved sequence segments, 

which are internally free from genome rearrangements) in BspUPG-1 and BspUPG-2 

between different genotypes.  
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BAC sequence assemblies were annotated for transposable elements by screening 

the green plant section (Viridiplantae) of the Repbase repetitive element database (Jurka 

(1998), http://www.girinst.org/server/Maps/AT/index.html) using CENSOR (Kohany 

2006) and Repeatmasker (Smit et al., 1996-2004). Programs, einverted and EMBOSS 

(Rice et al., 2000) were employed to identify inverted repeats with ≥80% matches and 

the Pipmaker software for simple repeats and CpG islands (Schwartz et al., 2003). LTR 

analyses of Assembly 1 and Assembly 2 were performed with LTR FINDER software 

(Xu and Wang 2007). 

 

3.2.14 Computational analysis of RNA folding probabilities of BspUPG-2 

Structural RNAs are usally characterized by an unusual thermodynamic stability and 

a conserved secondary structure. The minimum folding energy (MFE) as a measure of 

thermodynamic stability for a sequence (i.e. negative values indicate that a sequence is 

more stable) was calculated using the RNAfold and RNAz version 1.0 software for 

Windows of the Vienna RNA package (Hofacker et al. 

(1994), http://www.tbi.univie.ac.at/ivo/RNA). All MFEs were expressed as negative 

kcal/mol. To better classifiy npcRNAs from candidate genes (e.g. into miRNA, tRNA, 

random mRNA or rRNA), the adjusted MFE (AMFE), the minimal folding free energy 

index (MFEI) and the A+U content were calculated and only the optimal folding 

structure was used, which must not be necessarily the biological correct structure for 

RNAs (Zhang et al., 2006). The optimal structure was conducted by the lowest 

ensemble diversity which is a measure to indicate how much time the secondary 

strucure stays in the actual "target" shape (Hofacker et al., 1994). 

The presence of statistically significant secondary structures of BspUPG-2 was 

monitored using Z-score values as described by Crespi et al. (1994) and Bonnet et al. 

(2004). BspUPG-2 and its complementary strand were scanned every 10 nt using 

sliding windows of sizes (= step size, impact of different step sizes was examined in 

Kavanaugh and Dietrich (2009) showing strong decrease in detection sensitivity with 

step sizes  ≥25) ranging between 50 and 300 nt (by increments of 10 nt = window 

delta). For each window, usually shuffled sequences (in mono- or dinucleotides) are 

generated to estimate the mean and standard deviation (SD) of the MFE for all possible 

sequences (Workman and Krogh 1999; Washietl et al., 2005). The Z-score is the 

number of SDs between the actual MFE of the sequence and the mean value of the 

energies of folding of the shuffled sequences, whereby negative values indicate that a 

http://www.tbi.univie.ac.at/ivo/RNA�
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sequence is more stable than expected by chance (Crespi et al., 1994). RNAz does not 

actually sample random sequences but approximates Z-scores using Support Vector 

Machine (SVM) regression (Washietl et al., 2005). In order to augment the energy 

model for BspUPG-2 secondary structures for covariance information a consensus MFE 

(EA) for BspUPG-2 secondary structures was conducted from a CLUSTALW alignment 

of BspUPG-2 homologs from six different Boechera genotypes (ES 776.1, 300.9, 28.6, 

ES 753, ES 514 and ES 524.2). A comparison of EA with the individual MFEs (E) 

results in the structural conservation index (SCI=EA/E). Based on Z-score and SCI, 

RNAz calculates a combined score, the so-called “RNA class probability” which also is 

referred to as “p-value”. If p>0.5, RNAz classifies an alignment as “RNA”, meaning 

that RNAz has detected an unusually stable and/or unusually conserved RNA structure. 

A Z-score threshold of ≤-3.5 was used according to the RNAz software manual 

(http://www.tbi.univie.ac.at/~wash/RNAz/manual.pdf). The “npcRNA [number]”-

names were chosen to follow the naming convention established by previous 

investigators (Hirsch et al., 2006). 
 

3.2.15 Copy Number Variation (CNV) and whole genome sequencing (WGS) read 

analysis 

Duplicated sites on BspUPG-2 were tested by mapping a set of sequence tags from 

an array-based comparative genome hybridization (aCGH) experiment in sexual and 

apomictic Boechera (Aliyu et al., unpublished results) using a BLASTN search on 

sliding windows of BspUPG-2 (blastall -p blastn -m -e-10 -W7 -r1 -q-1; 200 bp, 

window length, 20 bp, step size). Local BLASTN search (Genomics Workbench v4.5.1, 

CLC Bio; parameters: costs = match 1, mismatch 3, existence 5, extension 2; E-value = 

10; word size 11, filter complexity = yes) between BspUPG-2 and the complete 

genomic Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra/, 454 GS 

FLX) of a sexual B. stricta (SRP007750) was conducted to test the presence of 

BspUPG-2 fragments in sexual Boechera genomes. 

 

3.2.16 Small RNA Northern blot 

Total RNA and small RNA were extracted from 0.150 – 0.250g flowers at different 

stages (pooled together from each four sexual and apomictic genotypes separately) 

using a mirVana™ miRNA Isolation kit (Ambion) according to the manufacturer’s 

protocol. Small RNA preparations were separated on a 15% polyacrylamide-gel 

containing 7 M urea and transferred by a semi-dry electroblotting system onto Zeta-
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probe® GT genomic tested blotting membranes (Bio-Rad, Hercules, CA) using a 

miRNA size marker (NewEngland Biolabs, Ipswich, MA, USA). RNA was cross-linked 

for 2 h at 80°C under vacuum. DNA-oligonucleotide probes were end-labeled with [γ-

32P] ATP by T4 polynucleotide kinase (Fermentas). The hybridization was performed 

in Church buffer at 42°C (1% BSA fraction V, 1 mM EDTA, 0.5 M NaPO4 pH 7.2; 7% 

SDS), and membrane washing in 2x SSC / 2% SDS at room temperature. 

 

3.2.17 Phylogeographic distribution analysis of BspUPG-2  

Total DNA of 1685 accessions was extracted according to protocol of the 

Cleanplant DNA kit (CleanNA, www.cleanna.com). PCR amplification of a 645bp 

spanning BspUPG-2 gene fragment using primers mapping each on one of the LCBs 

(see 3.2.13) was performed in a volume of 10 μL, using 10 μM of each primer, a total of 

2.0 mM MgCl 2 and 0.5 U of BioTaq polymerase (Bioline, Luckenwalde, Germany). 

The housekeeping gene ACTIN2 was used as external template control. The 

amplifications were run under the following conditions: 5 min initial denaturation at 

95°C; 32 cycles of amplification with 30 s at 95°C, 30 s at 60°C, and 1 min at 72°C; and 

10 min of final elongation at 72°C. PCR success was checked with electrophoresis in a 

2% agarose gel in TBE-buffer and staining with ethidium bromide. Sample coordinates 

of most of the 1576 successfully screened Boechera accessions for map reconstructions 

(DIVA GIS v7.5, http://www.diva-gis.org/) were taken from Kiefer et al. (2009) and 

Schranz et al. (2005). Latitude and longitude data were unavailable for some accessions, 

and thus only a subset (N=1502) of the complete data could be analysed. Pairwise 

distances from each pair of accessions were calculated with GENALEX (v6.5; Peakall 

and Smouse (2012)) and used for distribution analysis with SPSS v11.5 (LEAD 

Technologies, Charlotte, NC, USA). (Supra)haplotype designations based on trnL-F 

sequence data of all accessions were taken from Kiefer et al. (2009). Network 

reconstruction was conducted on the TCS 1.21 software (Clement et al., 2000). The 

trnL-F dataset was split in three subalignments according to parsimony analysis in 

Kiefer et al. (2009). Then the pseudogene region was excluded for the analysis and the 

connection limit was set to 95%. After network reconstruction the subnetworks were 

rejoined according to the parsimony analysis. Haplotype node sectors indicate the 

partition of this haplotype between accessions carrying BspUPG-2 and accessions 

lacking the candidate gene. Ecological habitat modelling and jackknife analysis for 

variable contribution for apomictic and sexual Boechera genotypes was performed 
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using the 2.5 arc-minute (ca. 5 km2) climate and elevation grids (WorldClim version 1.4 

provides monthly temperature and precipitation data which were are compiled and 

interpolated for all land regions across the world during a period of 1950–2000, 

http://www.worldclim.org/bioclim, Hijmans et al. (2005)) for the maximum entropy 

calculation in Maxent (standard parameters with 15 replicates, random seed, 5000 

iterations; Phillips et al. (2006)). The Maxent model generates a threshold-independent, 

continuous output for climatic suitability range (0–1). The model performance was then 

evaluated using the receiver operating characteristic (ROC) analysis (Zweig and 

Campbell 1993) with the area under ROC curve (AUC) index (Fielding and Bell 1997). 

Discrepancies in Boechera classification (Kiefer et al., 2009) were inferred in excluding 

all Boechera accessions from lineages IV and V. All statistical analyses were carried out 

with SPSS v11.5 (LEAD Technologies, Charlotte, NC, USA). 
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4. Results 
4.1 Staging of early floral development in Boechera genotypes 

4.1.1 Morphometric analysis of flower organs 

Gene expression profiles in reproductive tissues showed spatial and temporal 

variability (Mascarenhas 1989; Honys and Twell 2004). To optimize for comparative 

gene expression analyses between reduced (sex) and unreduced (apomeiosis) pollen at a 

single developmental stage, the morphological development of antherheads was staged 

depending on the flower bud length. The identification of an allometric relationship 

between the flower bud size and the gametophyte stage of anthers would set up a fast 

and non-destructive method to screen for appropiate anther developmental stages for 

RNA isolation and subsequent transcriptome comparisons. 

Analyses of early flower development from about 780 flower buds in six diploid 

Boechera genotypes showed a linear relationship between bud length (i.e. from the 

receptaculum to the tip of the outermost sepal) and flower organ size (e.g. stage S4 to 

S12 antherheads: R2
apo=0.87, F=1273.50, p<0.001; R2

sex=0.95, F=4237.23, p<0.001; 

Fig. 5). Only minor variations among genotypes, but no differences between sex and 

apomixis were detected (general linear model for regression line slopes (b) of stage S4 

to S12 antherheads: H0: bapo=bsex; R2=0.95, F(44, 8) = 0.68, p=0.804; Fig. 5). Bud stages 

S1 to S3, which most likely can be assigned to Arabidopsis flower developmental stages 

1 to 5 (sensu Smyth et al. (1990)) were excluded from flower organ analysis because the 

majority of flower organs are at primordial stages or are prior to emergence. 

In a second step we examined the correlation of antherhead length with male 

gametogenesis stages according to their flower bud correlates. Different from other 

tissues, such as the tapetum, microsporogenous tissues undergo several systematic 

histodifferentiation steps, and was thus reported as appropiate “marker” for anther 

development (Scott et al., 1991). We decided to focus on four major histodifferentiation 

steps of male gametophyte development which are characterized by their pre-meiotic, 

meiotic and post-meiotic appearance (Fig. 6, Table 1). Despite some marker-specific 

variations in the correlation quality, flower bud length predicts the gametophytic stage 

of anthers with relative high accuracy (N=455; Sp: 100%, PMC: 100%, Me: 52.27% 

and Msp: 58.24%). Thereby, the sporocyte (Sp) stage is prevalently correlated with 

flower buds of 0.2 to 0.3 mm length (antherhead length: <100µm), flower buds 

between0.3 and 0.9 mm length (~100 to ~430µm) exhibit a high correlation with pollen 

mother cells (PMCs), and microspores (Msp) are highly enriched in flower buds greater 
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than 1.1 mm (>610µm). Meiotically-active gametophytes (Me) are predominant in 

flower buds with 0.9 to 1.1 mm length (Sex: ~550 to 610 and 760µm; Apo: ~430 to 

610µm).  

 

 
Figure 5. Correlation of flower organs and flower bud length for sexual and apomictic Boechera 

genotypes. 

Error bars show the standard deviation (SD) of single flower organ sizes for each flower bud 

stage (see also Fig. 6 and Table 1). Total number of examined flower buds per genotypes 

given in parentheses.  
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Figure 6. Light microscope analysis of Boechera antherhead development and corresponding 

gametophyte stages during pollen formation. 

(A) Flower buds and appropriate antherheads of different developmental stages S3 to S12 in a 

sexual genotype. (B-E) Light microscopy images of semi-thin sections of resin-embedded 

antherheads after histological staining displaying the development of the sporocyte into a 

mature microspore, used for cytological validation of major gametophyte stages (B – Sp; C - 

PMC; D - Me; E – Msp, Table 1). E, endodermis; P, parietal cells; Sp, sporocyte; V, vascular 

region; C, connective; T, tapetum; PMC, pollen mother cell; En, endothecium; MC, meiotic 

cell; Me, meiosis; Msp, microspores. 
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Table 1. Developmental markers of Boechera pollen formation corresponding to gametophyte 

and flower stages. 

 

4.1.2 Heterochronic development of male gametophytes in sexual and apomictic 

Boechera 

Divergent apomictic taxa (e.g. Panicum, Tripsacum) share an accelerated 

development of their apomeiotic ovules relative to their sexual counterparts (Savidan 

2007), an observation which is mirrored by temporal shifts (heterochrony) between both 

reproductive modes on the transcriptome level (Sharbel et al., 2010). Such a 

desynchronization of the flower development in apomicts is speculated to result from 

the temporal alteration of the sexual pathway without disrupting it (Grimanelli 2003). 

Under this viewpoint we tested, whether microgametogenesis and anther elongation 

growth are synchronized in the same way between sexual and apomictic Boechera 

flower buds. Therefore, the data set was analysed per genotype and the comparison was 

focussed on anthers of flower bud stage S8 to S12. Statistical analysis exhibited, that in 

apomictic genotypes antherhead length predicts all gametophytic stages of anther 

development, whereas in all sexual genotypes meiotic and microspore stages strongly 

overlapped in antherhead size class, which together point to  heterochronic development 

between sexual and apomictic antherheads (one-way ANOVA with Tukey-HSD post 

hoc test, between *p<10-2 and ***p<10-9, Fig. 7A). Similar to the observations in ovule 
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tissues, the onset of meiosis in apomictic antherheads appears to be accelerated 

compared to sexual anthers (Fig. 7B and C).   

 
Figure 7.  Correlation of antherhead length with different gametophyte stages among sexual 

and apomictic Boechera. 

(A) Horizontal bars above boxplots demonstrate significant comparisons between 

gametophytic stages within each genotype (*p<0.05; **p<0.01; ***p<0.001, n.s. = not 

significant), as conducted for a 95% binomial proportion confidence interval with a one-way 

ANOVA including Tukey-HSD post hoc test (Supplemental Table 5). Despite observations of 

antherhead-related gametophyte stages for flower bud stages S3 to S12, the correlation 

analysis focuses only on S8 to S12 (refer to Figure 1 and 2). Graphs display frequencies of 

microspores, meiotic and pollen mother cells (PMC) relative to antherhead length bins in (B) 

sexual and (C) apomictic Boechera. The threshold for statistical significance of a stage-

specific PMC enrichment according to a two-tailed Fisher’s exact test was ***p<0.001 (white 

boxes). 

4.1.3 PMC stage suitable for comparative gene expression analyses 

Several criteria were proposed for selection of apomixis candidate genes, such as the 

specific expression of the candidate at the onset of meiosis and the ability of producing 

unreduced gametes by circumvention of meiosis checkpoints, which otherwise would 

override the abnormal behaviour (Grimanelli et al., 2001). In addition, comparative 

gene expression profiling of sexual and apomictic ovule transcriptomes demonstrated a 

spike in gene expression change at the megaspore mother cell stage (Sharbel et al., 
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2010). Thus, the observation of altered male meiocyte fate at the diplotene stage of 

prophase I in facultative and obligate apomicts (see 4.2.1, Fig. 8), pointing to 

deregulation of genes at premeiotic stages, together with the high correlation between 

antherhead length and gametophyte stage, led to the selection of antherheads with a 

length of 400±30 µm (S8) for collection of total RNA. Anthers at bud stage S8 are 

significantly enriched for PMCs being close to meiosis in both sexual and apomictic 

genotypes (one-tailed Fisher’s exact test, ***p<0.001, Fig. 7B and C, Supplemental 

Table 5). 

 
 
4.2 Cytological examination of the Boechera male meiocyte development 

4.2.1 Chromosome behavior during meiosis in sexual and apomictic genotypes 

For the characterization of apomeiosis initiation candidate genes and their products 

by comparative microarray-based gene expression analysis it is necessary, in addition to 

a well defined gametophyte stage (see. 4.1), to study their phenotypic variation. 

Therefore a comprehensive comparative atlas of meiotic and apomeiotic chromosome 

behaviour for correlation with putative apomeiosis initiation candidates on meiosis I 

and/ or meiosis II is an essential prerequisite. Hence, the nature of the chromosome 

behaviour during microsporogenesis was assessed by microscopic analyses of meiotic 

spreads from antherheads. Meiotic chromosome behaviour during pollen formation 

differed between apomictic and sexual genotypes (Fig. 8). The sexual B. stricta 

genotype ES 612.1 exhibited the expected homologous chromosome pairing with 

juncture of non-sister chromatids leading to seven bivalents (Fig. 8A). Subsequent two 

nuclear divisions lead to a tetrad with four haploid nuclei (Figs. 3B-G). In contrast, the 

aneuploid obligate apomictic B. polyantha (ES 776.2, 2n=2x=15) and the euploid B. 

lignifera (ES 753, 2n=2x=14) exhibited complete or partial chromosomal asynapsis 

resulting in a high level of univalents at metaphase I, which do not (or only partially) 

segregate during meiosis I (Figs. 8I, J and P, Q). Subsequently the frequently fused 

metaphase II plates (Figs. 8K and R) develop into dyads with balanced and unreduced 

chromosome numbers (Figs. 8L, M and S, T). Low levels of chromosomal synapsis 

leading to tetrad formation were also observed in all examined diploid obligate apomicts 

(Figs. 8N and U). Compared to obligate apomicts the facultative apomictic B. 

divaricarpa ES 514 exhibited higher levels of nuclei with bivalents (Figs. 3W and Y) 

which proceeded through both meiotic cell divisions (Figs. 8A’, C’ and E’), 
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Figure 8. Meiotic chromosome behaviour of male meiocytes. 
Chromosome spreads of a diploid obligate sexual (A - G), an aneuploid (H – N) and a euploid 

(O - U) obligate apomictic and a high facultative apomictic Boechera genotype (V – G’) are 

displayed. Fig. H shows two homologues which have not synapsed and arrowheads point to 

single and adjacent pericentromeric heterochromatin (asterisk). Scale bars, 5 µm.  

generating tetrads with four haploid cells (Fig. 8G’). Nonetheless, nuclei with univalents 

were frequently observed (Figs. 8V, X and Z) whose sisterchromatids were equally 

separate at metaphase II (Fig. 8B’) to develop balanced dyads (Figs. 8D’ and F’). 

Meiotic chromosome counts of obligate and high facultative apomicts strongly support 

univalent-induced first division restitution without crossover. Univalents remain 

together during meiosis I and disjoin in meiosis II, where sister chromatids are 

equationally separated to opposite poles leading to two balanced sets of diploid 

chromosomes and the formation of balanced dyads.  

 

4.2.2 Male meiocyte constitution at tetrad stage  

Previous studies demonstrated low level apomeiotic gamete formation in sexual 

members of Boechera (e.g. B. stricta) and a lack of intermediate-frequency apomicts 

between low-facultative (sensu Aliyu et al. (2010); 1-3% apomeiosis) and high-

facultative or obligate apomicts (>87-100% apomeiosis) led to the hypothesis, that high 

apomeiosis levels may have been induced by global gene regulatory changes associated 

with hybridization (Kantama et al., 2007; Aliyu et al., 2010). Thereby, indirect 

extrapolations from FCSS data revealed that diploid apomicts produce prevalently 
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unreduced diploid pollen with low frequencies (<1%) of pollen ranging from reduced 

haploid (1C) to unreduced hexaploid (6C) genome content.  

Here we used a simple anther squashing technique to examine the potential of high-

facultative and obligate apomicts to produce reduced and unreduced gametes. The 

meiotic atlas gave first insights into pollen meiosis demonstrating the production of 

tetrads carrying reduced chromosome sets in all tested apomicts (Fig. 8G-G’). In order 

to quantify meiotic product frequencies, about 28 000 meiocytes from single 

antherheads of six apomictic and a sexual reference genotype were counted (Figs. 9 and 

10). The sexual reference genotype produced the expected high frequency of tetrads 

(88%), whereas the tetrad frequency varied among apomicts (0 to 87%) between 

individuals of one genotype and even between different flower buds from the same 

individual (Fig. 9, Supplemental Table 6). Low levels of triads and tetrads were 

observed for apomictic genotypes ES 805.2 (0.55% and 0.35%) and ES 776.2 (0%), 

both of which showed high levels of monad and dyad formation. While part of the triad 

population could be pseudotriads, having lost one nucleus through the preparation 

procedure, this is inconsistent with the variability of triad number detected between 

genotypes (Fig. 9). Surprisingly high levels of triads and tetrads in both obligate (300.9 

- 24.98% and 57.98%; ES 753 - 32.78% and 62.16%) and high-facultative apomicts (ES 

514 - 11.22% and 87.00%; ES 524.2 - 15.67% and 64.53%) were found (Fig. 9). 

Distortions in chromosome segregation resulting in the formation of extra nuclei are low 

(in total 0.19% meiocytes with micronuclei and 0.02% polyads) and were mainly 

detected in the apomict ES 753 (0.88% meiocytes with micronuclei, Fig. 10). 

Interestingly, FCSS of all obligate apomictic Boechera suggests successful fertilization 

with only unreduced pollen (Fig. 10). 

The low abundance of segregation distortions during meiosis in apomictic male 

gametes points to a coordinated genetic program underlying the process. Considering 

the highly variable pattern of meiocyte frequencies between individuals and between 

flowers of single specific apomictic genotypes (Fig. 9), only plants producing 

exclusively unreduced (2C) pollen were chosen for comparative gene expression 

analyses. Plant selection was therefore based upon measurements of nuclear DNA 

content of pollen and seed nuclei for all individuals (examples in Fig. 10).    
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Figure 9. Meiocyte constitution at the tetrad stage in diploid sexual and apomictic Boechera. 

Roman numbers denote (I) groups of individuals primarily (>50%) producing reduced gametes 

versus (II) groups of individuals primarily (>50%) producing unreduced gametes.  
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Figure 10. Representative meiocytes at tetrad stage and flow cytometric ploidy confirmation. 

Ploidy of pollen and seed material of diploid sexual (A) and apomictic Boechera genotypes 

(B-G), respectively was confirmed. (A) Double fertilization of the reduced embryo (1C) and 
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the binucleate central cell (1C+1C) by a reduced pollen (1C) leads to formation of a 

2C=[1Cmaternal +1Cpaternal] embryo and a 3C=[1Cm + 1Cm] + [1Cp] endosperm in sexual 

genotypes (e.g. ES 612.1, B. stricta). (B-G): In apomictic Boechera the 2C pollen fertilizes 

only the unreduced central cell, whereas the unreduced egg cell develops towards the embryo 

via parthenogenesis, giving a 2C=[2Cm] embryo and 6C=[2Cm + 2Cm] + [2Cp] endosperm. 

Although results from the pollen ploidy screen and the meiocyte squashes were not always 

congruent, both results together show that in all of the tested facultative and obligate 

apomictic genotypes, some individuals produce predominantly reduced or both reduced and 

unreduced pollen. One 1C pollen external control from the diploid sexual Boechera genotype 

ES 558.2 was used for all pollen ploidy measurements (red profile) and a leaf external control 

from the same diploid sexual genotypes was used for the flow cytometric seed screen (FCSS). 

X-axis: linear fluorescence, y-axis: events count. The 4C peak represents the G2 of the 

embryo. N=individuals per genotype; mn/black arrows=micronuclei.  

4.2.3 Callose distribution during pollen meiosis  

In sexual species the deposition of callose, a -(1,3)-linked glucan, can be used as a 

marker for the onset of meiosis. Callose accumulates during meiosis reaching its peak 

during the tetrad stage and dissolutes in subsequent stages leading to the separation of 

the microspores. In contrast, a lack of callose synthesis during megagametogenesis was 

reported for a number of apomicts (Koltunow 1993; Barcaccia et al., 1996; Tucker et 

al., 2001). Observation of callose distribution during microsporogenesis were previously 

performed in diploid and triploid apomictic Boechera and showed contrasting results for 

both ploidy levels (i.e. lack of callose cross walls for dyads of the diploid B. divaricarpa 

genotype, Taskin et al. (2009)).  

In order to reveal the nature of callose distribution during the complete male 

gametogenesis in diploid apomicts we used anti-(1,3)-β-glucan primary antibodies to 

track the callose distribution profile from pre-meiosis to binucleate microspore stages 

between one flow cytometrically confirmed diploid sexual B. stricta and one diploid 

apomictic B. divaricarpa genotype.  

In general, callose distribution across the different stages is similar between the 

sexual and the apomictic genotype (Fig. 11). Callose deposition before bud stage S9 

(anther length <0.5mm) was not detected in anthers of both reproductive modes (Fig. 

11A, E, I and M), but was first recognized in sexual PMCs of antherhead lenghts 

between 0.55 – 0.6 mm (bud stage S9) compared to ~0.50mm in B. divaricarpa (Fig. 

11B, F, J and N). Similar to the formation of tetrads in the sexual genotype, dyads and 

tetrads of the facultative apomict were separated by a thick callose layer, including the 
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formation of callose cross walls in all tested antherheads (Fig. 11C, G, K and O).   

Besides proceeding callose degradation, callose deposition seems to persist through the 

first stages of microgametogenesis and was detected in uni- and bi-nucleate 

microspores, which in parellel exhibited mature pollen walls (Fig. 11D, H, L and P, 

white arrowheads).  

Interestingly, at this stage the callose is encapsulated by the pollen wall layers (Figs. 

11S and T), which is different to observations in other closely related species e.g. 

Brassica napus L. (Cresti et al., 1992) or Arabidopsis (Suzuki et al., 2008), and to 

reported models e.g. based on Lilium (Scott et al., 2004), where the developing pollen 

wall is enveloped by the callosic wall which dissolves from the outside while pollen 

wall development proceeds inside of the callosic wall towards the cytoplasm. As no 

typical callose cover of the developing pollen wall was detected during pollen grain 

maturation, but instead an irregular and relatively thick layer covering the entire inner 

side of the pollen wall including the aperture sites was observed, it is hypothesized that 

the secondary callosic layer is initiated within the intine (ca2, Figs. 11S and T), the so 

called ‘outer intine’, as has previously been observed gymnosperm pollen (e.g. Pinus 

sylvestris, Rowley et al. (2000)). Alternatively, the inner callose layer could be a 

remnant of the originally thick layer which separates the microspores at tetrad stage, and 

which subsequently was more quickly degraded from the outer side compared to the 

inner side. In summary, different from the altered callose deposition in MMCs in a 

number of apomicts, callose deposition and dissolution during microsporogenesis of the 

apomictic Boechera genotype is unaffected and comparable to the sexual genotype. 

Hence, callose deposition seems not to be an interrelated trait with male apomeiosis. 

One reason could be that the role of callose during pollen development is not solely 

reduced during microsporogenesis (i.e. separation of the developing microspores), but 

in addition plays a role later in pollen tube formation (Müller-Stoll and Lerch 1957). 

Whether the inverse layering of callose into the inner side of the pollen wall represents a 

Boechera-specific chronology of pollen wall development, or represents the intine layer 

in which callose is integrated beside cellose and hemicelluloses, remains to be 

examined. 
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Figure 11. Immune staining of callose wall formation during microgametogenesis with anti-

(1,3)-β-glucan antibody. 

Panel displays three of the four major histodifferentiation stages of male gametes (PMC: A, E, 

I and M; Me: B, C, F, G, J, K, N and O; Msp: D, H, L and P) from sexual B. stricta (ES 612.1; 

A-D) and from apomictic B. divaricarpa (ES 524.2; I-L) and associated callose distributions 

(ES 612.1 – E-H; ES 524.2 – M-P). Black boxed graphs show dynamics of callose distribution 

which covers the entire young microspore after separation from the tetrad (Q). With 

proceeding maturation of the micronuclei the outer callose degraded (R) and an inner callose 

layer was formed, probably in the intine layer (S, T). ap- aperture, e – exine, ca1 – external 
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callose, ca2 – internal callose, nu – nucleus, pm – plasma membrane, pr – primexine. White 

arrow marks degrading external callose. (A-P) Bar scale, 20 µm and (Q-T) bar scale, 10 µm.   

4.3 Microarray-assisted screen for apomeiosis-inducing candidate genes 

4.3.1 Pre-selection strategy for apomeiosis candidate genes 

The switch from sexual to apomictic seed production is associated with deregulation 

of the sexual developmental pathway in female and male gametes (Koltunow 1993; 

Grossniklaus 2001) and is characterized by wide-ranging chromosomal (Kantama et al., 

2007) and global gene expression changes (Sharbel et al., 2010), which are 

hypothesized to result from hybridization and/or polyploidy (Grossniklaus 2001). The 

goal of this experiment was to perform a comparative transcriptomic analysis of sexual 

and apomeiotic antherheads enriched for PMCs at a developmental stage prior to 

meiosis (Figs. 2 and 3I’; Supplemental Table 5) to identify the factor(s) responsible for 

apomeiotic pollen formation in Boechera. A large number of diploid biological 

replicates were used in order to statistically correct for genetic- and ploidy-mediated 

background noise in subsequent analyses of differential gene expression. Based upon 

haplotype designation, geographic distribution and pollen ploidy, 7 different diploid 

sexual genotypes, and 7 different diploid obligate and facultative apomictic genotypes 

were chosen for a microarray-assisted gene expression analysis of microdissected live 

antherheads (Supplemental Table 2). Following the Agilent One color microarray 

protocol (version 5.7; Palo Alto, CA, USA) we revealed high quality microarray data 

(Supplemental Figure 1) which subsequently were normalized using the quantile 

normalization scenario with median to baseline transformation. The ‘processed signal’ 

values were plotted genotype-wise as a relative fold change on a log2 scale (Fig. 12). In 

a first attempt we examined the mean and distribution of normalized log2 intensity 

values between the genotypes without considering significance levels of single array 

probes between the reproductive modes. Therefore, gene expression ratios above a fold 

change (FC) cut-off value ≥2 were filtered without examining any p-value cut-off. 

Taking a FC≥2 significantly decreases the total number of probes from 103747 to 9496. 

Although the means of normalized log2 intensity values between the genotypes differ 

slightly (one-way ANOVA: F(13, 132930)=178.533, p<0.001; Fig. 12B), no overall 

differences of the distribution of the normalized log2 intensity values were detected 

across all genotypes (Tuckey-HSD post hoc test: -0.023±2.69 log2 intensity values, 

p=0.803). Increasing the fold change to ≥10, decreases the number significantly to 522 

array probes. Interestingly, the mean and distribution of these highly expressed 
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normalized intensity values are statistically different between three groups: sexual B. 

stricta, all remaining sexuals and apomictic genotypes (one-way ANOVA, 

F(13,7294)=157.545, p<0.001; Fig. 12C and F). A PCA of the 522 highly differential 

expressed array probes exhibited a closer relation of apomictic with other sexual 

genotypes compared to sexual B. stricta genotypes (Fig. 2F). A Tuckey-HSD post hoc 

 
Figure 12. Microarray sample intensity values and 2D-PCA projection. 

(A-C) Distributions of log2 ratios of normalized data for 7 sexual (S1 to S7) and 7 apomictic 

(A1 to A7) Boechera genotypes revealed a similar distribution across all genotypes 

considering all values above background (A) with fold change cut-off value (FC)≥2 (B). 

Entities with log2 intensity values beyond 1.5 times the inter‐quartile are show in red. For 

expressed normalized intensity log2 values with FC≥2 significantly different means, but no 

statistical significant differences between the three groups were detected (one-way ANOVA, 

F(13, 132930)=178.533, p<0.001; Tuckey-HSD post hoc test: -0.023±2.69 log2 intensity 

values, p=0.803). Highly expressed normalized intensity values are statistically significant 

different expressed between sexual B. stricta, other sexual genotypes and apomictic genotypes 

(FC≥10, one-way ANOVA, F(13,7294)=157.545, p<0.001; C). A Tuckey-HSD post hoc test 

revealed, that mean intensity values in sexual genotypes are lower or down regulated (sexual 

B.stricta: -3.418 to -2.896 log2 intensity values, p<0.001; other sexual genotypes: -0.243 to -

0.131 log2 intensity values, p=0.027) compared to apomictic genotypes (0.806 to 2.033 log2 

intensity values, p<0.001; except for genotype A6: 0.328±4.14 log2 intensity values, 

p=0.793). (C-F) 2D-PCA projection demonstrated clustering progress of the biological 

replicates into the three subgroups. In 2D-PCA for FC≥10 log2 intensity values, the 

cumulative variance of 80.97% was reached for the first two principle components. 

 

test revealed that mean log2 intensity values in sexual genotypes are lower or down 

regulated (sexual B.stricta: -3.418 to -2.896 log2 intensity values, p<0.001; other sexual 

genotypes: -0.243 to -0.131 log2 intensity values, p=0.027) compared to apomictic 



 

 

82 Results 

genotypes (0.806 to 2.033 log2 intensity values, p<0.001; except for genotype A6: 

0.328±4.14 log2 intensity values, p=0.793).  

The 522 array probes corresponded to 311 cDNAs for which gene annotations in 

Arabidopsis were available, and for which a gene ontology (GO) analysis was 

performed. In total, 250 (80.39%) probes were GO annotated and could be assigned to 

the second level molecular function GO classes binding (N=67, 6.80%), catalytic 

activity (N=86, 34.40%) and transcription regulator activity (N=13, 7.60%; Fig. 13A; 

Supplemental Table 7). Cellular (N=78, 31.20%) and metabolic processes (N=33, 

32.80%) are the most prominent biological processes (Fig. 13B). Overall, a GO analysis 

for overrepresentation of particular classes of genes between the annotated highly 

expressed probes in apomictic genotypes and all annotated probes on the 2x105k-

Boechera flower-specific microarray (N=31051) shows that only genes involved in the 

catalytic activity, especially with mitogen-activated protein (MAP) kinase activity 

(GO:0004707, FDR-corrected p-value=0.0076), are overrepresented on a low level 

among the ‘522 highly expressed probes’ dataset (Fig. 13C, Supplemental Table 7).  

 
Figure 13. Gene ontology (GO) analysis of 522 higly expressed probes with cut-off value 

FC≥10. 

A

B

C
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Bar charts for the GO analysis show key molecular functions (A) and biological processes (B) 

of all annotated sequences characterized by FC≥10 in apomictic and sexual Boechera 

genotypes (blue) versus the total annotated genes on the microarray (green). (C) A directed 

acyclic graph (DAG) for the GO analysis showing key molecular functions of all enriched 

probes of the 522 higly expressed probes with cutt-off value FC≥10 in apomictic Boechera 

genotypes. 

Using a foldchange threshold ≥2 and a Bonferroni corrected p-value ≤0.05 no single 

differentially expressed probe was detected, but when allowing different single outlier 

genotypes for each round of analysis, 13 (0.013%) microarray probes were identified to 

be consistently differentially-regulated between sexuals and apomicts (i.e. by exclusion 

of four different genotypes significantly differentially-regulated probes were detected, 

Table 2, group A-D). Except for one probe (Sharb1627083, -3.92 AFC), all are highly 

upregulated in apomicts (+40.00 to +849.30 AFC; Table 2, Figure 14). Homologous 

cDNAs corresponding to the 13 candidate array probes were obtained from a flower-

specific cDNA library (Supplemental Table 3; Sharbel et al. (2009)). A BLASTN search 

(Altschul et al., 1997) of these cDNAs against the whole GenBank nucleotide collection 

(http://www.ncbi.nlm.nih.gov/genbank/) revealed hits for only five of the 13 candidate 

probes (Table 2). The annotation includes the A. thaliana TTR1/AtWRKY16 

(AT5G45050) and RRS1/AtWRKY52 proteins of the WRKY protein family 

(AT5G45260), which have a general binding preference for genes containing W box 

promoter elements including the WRKY genes themselves as well as a large variety of 

defense-related genes (e.g. pathogenesis-related (PR) genes); a PHENOLIC 

GLUCOSIDE MALONYLTRANSFERASE 2 (PMAT2) gene which encodes for a 

HXXXD-type acyl-transferase-like protein (AT3G29670) of the BAHD acyltransferase 

family, which is required for the synthesis of acylated anthocyanins; and an 

uncharacterized protein (AT1G31130). Only two of the annotated differentially- 

expressed genes between sexual and apomictic genotypes showed pollen-specific 

functions; the A. thaliana S-locus lectin protein kinase (AT1G11410) which is involved 

in pollen recognition, and a SRK gene (S-12 and S-15 type; AB180901.1) encoding a 

Brassica oleraceae S-locus receptor kinase involved in pollen self-recognition 

specificity (Table 2).   
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Table 2. Microarray probes demonstrating significant absolute fold change regulation in apomictic versus 

sexual genotypes. 

IDa Microarray 
probe no.b 

Corrected 
p-value 

AFC Regc  Outlier 
acc. no. 

AGId  Predicted function E-valuee Species Strand 

A Sharb0350102 0.0057 229.10 up 132.3 AT5G45050 WRKY transcription 
factor 16 (TTR1)  

2.00E-93 A. 
thaliana 

− 

            AT5G45260 WRKY transcription 
factor 52 (RRS1) 

5.00E-69 A. 
thaliana 

+ 

B Sharb0834363 2.52E-07 219.28 up 29.1 n/a n/a n/a n/a n/a 
 Sharb0791806 1.77E-09 292.06 up  n/a n/a n/a n/a n/a 
 Sharb1627083 1.80E-07 -3.92 down  AT3G29670 HXXXD-type acyl-

transferase-like protein   
4.00E-44 A. 

thaliana 
+ 

 Sharb0789018 8.39E-08 303.42 up  n/a n/a n/a n/a n/a 
  Sharb0789016 1.74E-08 354.04 up   n/a n/a n/a n/a n/a 

C Sharb0700754 5.10E-05 36.79 up ES 805.2 AT1G31130 Uncharacterized protein   3.00E-05  − 
  Sharb0505763 0.015 40.00 up   - Chromosome 5, complete 

sequence 
3.00E-20 A. 

thaliana 
n/a 

D Sharb1199059 7.08E-06 158.53 up ES 753 AT1G11410 S-locus lectin protein 
kinase  

2.00E-30 A. 
thaliana 

+ 

 Sharb0931225 7.12E-05 849.30 up  n/a n/a n/a n/a n/a 
 Sharb0501554 1.00E-05 188.29 up  AB180901.1 S-12 SRK gene for S-

locus receptor kinase 
6.00E-05 Brassica 

oleracea 
 

 Sharb0690829 3.12E-04 76.50 up  n/a n/a n/a n/a n/a 
  Sharb0425060 4.90E-08 48.73 up   n/a n/a n/a n/a n/a 
a ID’s correspond to single plots in Fig. 14. 

b Microarray probe numbers correspond to cDNA database IDs in Supplemental Table 3.
c Direction of regulation is apo versus sex. 
d Arabidopsis Genome Initiative (AGI) gene identification number from TAIR10. 
e E-values corresponds to the best hit of the microarray probe corresponding Boechera cDNAs in a BLASTN analysis to GenBank nucleotide collection. 
n/a, not applicable. AFC, absolut fold change. 
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Figure 14. Constantly differentially regulated microarray probes in apomictic compared to 

sexual Boechera genotypes. 

Line charts (left side) and Volcano plots (right side) display relative expression ratios of 

candidate microarray probes when allowing different single outlier genotypes (see Table 2). 

The Y-axis of the line chart displays the averaged Log2 normalized fluorescence intensity, 

while the X-axis show single Boechera genotypes and their specific mode of reproduction. 

The volcano plot displays the negative log (base 10) of p-values from unpaired t-tests on the 
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Y-axis, while the X-axis show the log (base 2) of the fold differences of the microarray 

probes between the sexual and the apomictic genotypes. The identified differentially 

expressed probes are marked in red. Green lines mark the treshholds for the fold change (≥2) 

and the significance level (p≤0.05). 

4.3.2 Validation of differentially expressed candidate microarray probes 

QRT-PCR was employed to validate the five annotated candidate genes found in the 

microarray analysis of 14 Boechera genotypes, except for the probe Sharb0700754 

which blasted to an uncharacterized protein. Furthermore three unannotated microarray 

probes of the group D (Sharb0931225, Sharb0690829 and Sharb0425060; Table 2, 

Figure 14) were included due to the pollen-specifity of the two other genes in the same 

group (Sharb1199059 and Sharb0501554) to give the total of seven candidate genes 

which were tested by qRT-PCR. In general, relative mRNA expression values obtained 

by qRT-PCR showed the same trend as those obtained by the microarray (Figure 15, 

Supplemental Table 8). However, the sequence Sharb1199059 (lectin homolog), which 

is furthermore characterized by a negative BAC screen result (Table 3), was not 

considered for further analysis due to technical reasons. In addition, the PMAT2 gene 

(Sharb1627083) is down regulated in apomictic genotypes according to the microarray 

experiment (-3.92, p=1.80E-07) but not uniformly differentially expressed across all 

genotypes of both reproductive modes according to qRT-PCR (one-way ANOVA, 

F(1,11)=2.331, p=0.155).  

QRT-PCR confirmed the microarray expression profiles of the other five microarray 

probes (Figure 15; Supplemental Table 8). With exception of the sexual outlier sample 

(132.3), the microarray probe Sharb0350102 is highly upregulated in apomictic 

antherheads (one-way ANOVA, F(1,11)=23.903, p=4.70E-04). Similarily, the 

remaining four probes of group D are highly upregulated in apomictic antherheads (one-

way ANOVA, Sharb0931225: F(1,11)=8.886, p=0.012; Sharb0501554: 

F(1,11)=15.883, p=0.002; Sharb0690829: F(1,11)=13.287, p=0.004; Sharb0425060: 

F(1,11)=8.909, p=0.012). 

Quantitative RT-PCR techniques were used not only to validate the microarray data, 

but also to investigate the expression level of the selected genes in different tissues at 

PMC stage. In contrast to sexuals, in which the relative mRNA levels were close to the 

detection limit, ubiquitous expression of all probe sequences was detected in apomictic 

somatic (whole flower without anthers and leaf) and reproductive tissues (antherhead). 

Thereby, for probes Sharb0350102, Sharb1627083, Sharb0931225, Sharb0501554 and 

http://www.biomedcentral.com/1471-2164/12/28/table/T2�
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Figure 15. Validation of differentially-expressed microarray probes by qRT-PCR. 

Expression of candidate microarray probes was tested in antherhead (Ah), flower bud without 

antherhead (Fb) and leaf tissue (L) of seven sexual versus seven apomictic Boechera. Error 

bars display standard errors for tissue-specific relative mRNA expression levels of the 

microarray probes in sexual and apomictic genotypes. Free asterisks and circles mark 

genotype-specific outlier values. Significant differentially-expressed probes between tissues 

are marked with boxed asterisks (*p<0.05). 

 

Sharb0690829, expression was substantially higher in antherheads compared to levels in 

leaf tissue (Tukey-HSD post hoc test, p=0.021, p=0.045, p=0.022, p=0.008 and 

p=0.027, respectively; Fig. 15; Supplemental Table 8). Microarray probe Sharb0425060 

exhibited no significant differences between any of the tested tissues (one-way 

ANOVA, F(2,18)=0.254, p=0.779).  

QRT-PCR on validated microarray probes Sharb0350102, Sharb0931225, 

Sharb0501554 and Sharb0690829 in antherhead tissue was extended to three additional 

apomictic and four additional sexual genotypes which were not previously used for the 

microarray experiment (Fig. 16, Supplemental Table 9). Interestingly, relative  
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Figure 16. Validation of differentially-expressed microarray probes by qRT-PCR in 

antherhead tissue in seven microarray and seven additional Boechera genotypes. 

Standard error bars are based on four technical replicates per genotype. Free asterisks mark 

additionally tested genotypes, while all other genotypes were used for microarray and serve as 

internal reference. Black arrows mark outlier genotypes identified by microarray-based gene 

expression analysis. 

expression levels of microarray probe Sharb0350102 in sexual and apomictic genotypes 

showed substantial variability despite generally lower expression in sexual compared to 

apomictic genotypes (one-way ANOVA, F(1,12)=10.621, p=0.007, Fig. 16). Three of 

four additional sexual genotypes show similar upregulation as demonstrated for the 

outlier genotype 132.3 while the other sexual genotypes are completely downregulated. 

In addition one apomict (ES 903.1) was completely downregulated compared all other 

apomicts. In contrast, microarray probes Sharb0931225, Sharb0501554 and 

Sharb0690829 exhibit constant relative differential expression between all sexual and 

all apomictic genotypes, including the additional non-microarray genotypes. The 

constantly lower average expression levels of these three probes in this second-level 

analysis compared to the initial analysis could be explained by the extended period of 

total RNA storage between the two analyses. 

All told, preferential upregulation of microarray probes Sharb0931225, 

Sharb0501554 and Sharb0690829 in apomictic antherhead tissue was confirmed for 10 

apomictic compared to 11 sexual genotypes with exception of the apomictic outlier 

sample ES 753. Microarray probe Sharb0350102 was not considered for further 

analyses due to ambiguities of its expression pattern between genotypes of each 

reproductive mode. 
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4.4 UPGRADE is a primary candidate for unreduced pollen formation 

4.4.1 Molecular structure of UPGRADE 

In search of an apomeiotic regulator for unreduced pollen formation in Boechera the 

qRT-PCR-validated differentially expressed microarray probes Sharb0931225, 

Sharb0501554, Sharb0690829 and Sharb0425060 were selected for further analyses, 

considering their constant upregulation in apomictic reproductive tissues of virtually all 

tested genotypes (Figs. 15 and 16; Supplemental Tables 8 and 9). Chromosome walking 

along the 3`- and 5`-ends of the five candidate probes extended the range of sequence 

length to 843bp and 1337bp, and identified priming sites for gene specific primers used 

for the rapid amplification of cDNA ends (RACE). Chromosome walking products of 

microarray probe Sharb0931225 and Sharb0501554 overlapped with one another 

(Supplemental Table 3).  

A RACE pre-test using primers specific for Sharb0501554 on a single apomictic 

genotype exhibited that microarray probe Sharb0690829 belongs in addition to 

microarray probes Sharb0931225 and Sharb0501554 to the same transcript (data not 

shown). Hence RACE was performed using gene specific primers from microarray 

probe Sharb0690829 (GSP3 for 5`-end RACE and GSP4 for 3`-end RACE) to obtain 

full-length cDNA including the 3`- and 5`-cDNA ends from ten genotypes. Although 

total RNA of antherheads (data not shown) and whole flower tissue from two sexuals 

and eight apomicts was used, 5`- and 3`-RACE generated for each tissue DNA 

fragments of similar size exclusively in all apomicts, except for the apomictic outlier ES 

753 (Fig. 17).  

All fragments from five apomicts were cloned and sequenced, and led to the 

identification of a single polyadenylated full-length transcript, BspUPG (Boechera 

species UPGRADE; unreduced pollen grain development, EMBL No. HF930769) with 

appr. 2648 nt length (i.e. for B. divaricarpa ES 524), excluding the poly(A) sequence. 

Interestingely, the microarray probes Sharb0931225, Sharb0501554 and Sharb0690829 

were found in the most 3`-exon of the BspUPG transcript (Fig. 18, Supplemental Table 

10). Mapping of different BspUPG full-length cDNA variants onto genomic DNA by 

isolation of 3`-RACE and the various 5`-RACE fragments in different Boechera 

genotypes showed that the gene has an overall length of 3156 nt (i.e. for B. divaricarpa 

ES 524) and contains two putative alternative splicing sites, 61 bp (Intron1) and 303 bp 

size (Intron2), in addition to a 144 bp intron common to all apomicts (Intron3, Fig. 17, 

white arrows, Fig. 18).  
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The best, albeit short, sequence matches from GenBank are located on Arabidopsis 

chromosomes At1, At4 and At5, and encode respectively a GTP-binding elongation 

factor Tu protein (EFTU/EF-1A; AT4G02930), a RNA recognition motif-containing 

 
Figure 17.  Rapid amplification of cDNA 3`- and 5`-ends of the candidate gene UPGRADE. 

3`-end (A) and 5`-end (B) RACE cDNA fragments were obtained from sexual and apomictic 

Boechera whole flower cDNA. Transferrin receptor (TFR) primers on cDNA from mouse 

heart total RNA with optimal cycling parameters were used as positive control. A/B and C/D 

marks indicate the different putative splicing forms of the candidate transcript. 

protein (RNAR; AT5G19960), and the HRD3 protein (HMG-coA Reductase 

Degradation) which is homologous to components of the yeast HRD1 complex 

(AT1G18260; Fig. 18A, Table 4, Supplemental Table 11). From these candidates, 

AtHRD3, which plays a central role in endoplasmic reticulum (ER)-associated protein 

degradation, exhibits the highest similarity to BspUPG, with fragments of 145 nt (83% 

identity, p<5.00E-31), 118 nt (87% identity, p<6.00E-30) and 47 nt length (89% 

identity, p<0.0002).   

BspUPG is characterized by U2-dependent classified introns (5`-GT/3`-AG splicing 

site; Simpson and Filipowicz (1996.)) which are located towards the 5`-end of the 

transcript. Although no information about a putative promoter is available, the 

PlantPAN database (Chang et al., (2008); http://plantpan.mbc.nctu.edu.tw/) was 

screened for putative regulatory features, such as tandem repeats and transcription factor 

binding site (TFBS), on a 1.1 kb fragment upstream of BspUPG-2 (position +47809 -

48921 nt on Assembly 2, see chapter 4.4.2). A single tandem repeat (-726 to -985 nt, 82 
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nt consensus size, 3.2 copies) and multiple TFBSs were identified (Supplemental Table 

12). Furthermore, a single CpG island was detected at the 5`-end of the transcript locus 

(+140 to 312 nt, C+G >60%; Fig. 18C). The detection of CpG/CpNpG islands, regions 

of genomic sequences that are rich in the CpG/CpNpG patterns, is important, because 

such regions are predominantly nonmethylated and tend to be associated with genes 

which are frequently switched on (Deaton and Bird 2011). In addition, the transcript  

 
Figure 18. Schematic representation of putative splicing forms and coding potential of 

BspUPG. 

(A) Exons are represented by grey boxes and numbers indicate intron-exon boundary 

positions. Promotor motives like tandem repeats were detected with a PlantPAN database 

search (Chang et al., 2008). (B) Coding potential graph of BspUPG was retrieved from 

Geneious Pro 5.3.6 (Biomatters) indicating low coding (red) and high coding potential 

(green). The coding potential score (cps) was calculated with the Coding Potential Calculator 

software (Kong et al., 2007). (C) CpG/CpNpG islands are potential promotor motifs which are 

important sites for DNA methylation and thus crucial for the gene regulation. 
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carries a poly(A)-tail with some variation in length and initiation position. A putative 

near upstream element (NUE, AATAAA) of a polyadenylation signal, which is the most 

common signal in plants (Hunt 1994), was identified 31 nt upstream of the 

polyadenylation site (Fig. 18, Supplemental Table 10).   

Coding Potential Calculation of BspUPG (for ES 524; Kong et al. (2007)), 

excluding the constitutive intron 3, revealed a single short open reading frame (ORF) 

for each of both strands. The sense strand gave an ORF with 196 nt (66 amino acids, 

pos. 895 to 1090 nt, coding potential score (cps)=-0.0298) and the reverse complement 

strand revealed a 202 nt sized ORF (68 aa, pos. +1958 to 2159 nt, cps=-1.180). The lack 

of an ORF length typical for a protein encoding mRNA suggested a long non-coding 

RNA (lncRNA) product of BspUPG (Fig. 18B, ORF typically >100 aa; Kondo (2007)).  

Apart from other lncRNA types in plants, some lncRNA act as precursors for small 

non-protein-coding RNAs (ncRNAs or npcRNAs) such as so far unidentified miRNAs 

or endogenous ta-siRNAs and may regulate translation in cis or trans (Hirsch et al., 

2006; Pikaard et al., 2008). A search for miRNA binding sites of known Arabidopsis 

(www.mirbase.org, default parameter, 1 mismatch) and Boechera miRNAs (Amiteye et 

al., 2011) revealed no mature miRNAs matching the candidate transcript. In default of 

known miRNAs matching to BspUPG and due to the obvious lack of a long ORF on 

BspUPG, we used a bioinformatical approach to predict other thermodynamic stabile 

npcRNA structural elements that could function as an RNA molecule from the genomic 

background sequence BspUPG.  

The minimum free energy (MFE) is a measure of the thermodynamic stability of a 

structure, but also depends on the length and the base composition of a folded sequence 

and is, therefore, difficult to interpret in absolute terms (Washietl et al., 2005). To test 

for an exceptional stability of a candidate npcRNA structure from BspUPG the 

thermodynamic stability of potential npcRNA candidates were evaluated using a Z-

score, which represents the number of standard deviations that the MFE of a native 

sequence deviates from the mean MFE of a large number of random sequences of the 

same length and base composition (see 3.2.14 in Materials and Methods). Negative Z-

scores indicate that a sequence is more stable than expected by chance. As npcRNAs 

vary in length and structure, no single sequence size is expected to be optimal for 

npcRNA identification. Therefore, variable window sizes between 50 and 300nt were 

selected and these windows were used to scan the genomic sequence of BspUPG, 

starting at the beginning of the sequence and moving each time by the step size (our 



 

 
 

93 Results 

analysis used a step size of 10nt). Any windows producing a significant Z-score during 

the scanning process were considered candidate regions for a structural npcRNA.  

As shown in Figure 19, the BspUPG forward and reverse strand contains eight 

candidate regions (i.e. overlapping windows are combined to determine the total length 

of a candidate region, Supplemental Tables 13 and 14) that display significant Z-score 

values (potential secondary structures of windows with most negative Z-score for each 

candidate region are proposed in Supplemental Figure 2), suggesting that parts of 

BspUPG are able to form stable secondary structures. In order to classify these newly 

generated secondary structures a widely accepted system (Seffens and Digby 1999; 

Bonnet et al., 2004; Zhang et al., 2006) was used for differentiating sRNA classes which 

comprises among others, (1) the minimal folding free energy, (2) the adjusted minimal 

folding free energy  (AMFE), (3) the minimal folding free energy index (MFEI), and (4) 

the A+U content. Interestingely, all detected secondary structures met most of the 

criteria for miRNA precursors (Supplemental Table 15). Comparable with pri-miRNAs 

in Boechera (Amiteye et al., 2011) and other plant species (Zhang et al., 2006), 

npcRNA 1 to 8 demonstrate a lower minimal free energy (ranging from -18.27 to -73,72 

kcal/mol), have an elevated A+U level (ranging from 56.70 to 70.00%), and have, with 

exception for npcRNA 5 (0.70), a MFEI greater than 1.07, which is much higher than in 

tRNAs (0.64), rRNAs (0.59), or random mRNAs (0.65).  The candidate regions span 

25% and 27% of the total length of each strand of BspUPG respectively. Only the 70nt-

sized npcRNA 5 (position +1090nt and +1160nt on the reverse strand of BspUPG) 

overlapped with a genomic region of BspUPG that is homologous to a known protein-

coding gene (i.e. EFTU/EF-1A (AT4G02930) maps to genomic region of BspUPG at 

position +1043nt and +1193nt). NpcRNA 5 covers approx. 75% of the third exon of 

EFTU/EF-1A in Arabidopsis (pos. +536nt to +606nt on EFTU/EF-1A full length 

genomic DNA, Supplemental Figure 3). NpcRNAs 1/6, 2/7 and 4/8 cover similar 

regions on both strands of the genomic sequence. NpcRNA 1, 6 and 7 have significant 

Z-scores for all tested window sizes. 
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Figure 19. Z-score versus position on BspUPG. 

(A) The Z-score for the sliding window with length between 50nt and 300nt (step size=10) is plotted vs. 

position. Any window producing a significant Z-score during the scanning process was considered 

candidate region for a structural npcRNA. In case that multiple, overlapping windows of several lengths 

produced significant Z-scores, the region encompassed by all the overlapping windows defined the 

candidate region (represented as black boxes). Numbers in black boxes are putative npcRNAs having 

most negative Z-score (Supplemental Tables 13, 14 and 15, Supplemental Figure 2). (B) Proposed 
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minimum free energy structures (MFE) of putative npcRNAs with most negative Z-scores detected for 

the forward and reverse strand of BspUPG. Negative MFEs and Z-scores indicate that a sequence is more 

stable than expected by chance. The structures above are colored by base-pairing probabilities from zero 

(violet, see legend) to hundred percent (red). For unpaired regions the color denotes the probability of 

being unpaired. 

 

4.4.2 Detection of a duplicated variant of UPGRADE 

Although the entire genomes of B. stricta and B. divaricarpa are being sequenced (DOE 

Joint Genome Institute; www.jgi.doe.gov) and comparative genomic analysis revealed 

partial genome information (Windsor et al., 2006), while partial genome information 

(Windsor et al., 2006) and a genetic linkage map (Schranz et al., 2007) are available, 

thus far no complete physical map of Boechera exists. Hence the novel BspUPG was 

localized by screening a B. divaricarpa bacterial artificial chromosome (BAC) library. 

Although the qRT-PCR validation was not successful due to technical reasons, probe 

Sharb1199059 was included due to its pollen-specific molecular function, in addition to 

the microarray probes mapping onto BspUPG and probe Sharb0425060, for screening 

of the Boechera BAC library. Chromosome walking products of the five candidate 

microarray probes hybridized to 80 Boechera BAC clones (Supplemental Figure 4). 

Colony-PCR using target-specific primers from the chromosome walking approach (see 

method section 3.1.3 Boechera BAC library screen) led to the identification of twelve 

Boechera BAC clones which hybridized with one or several probes simultaneously 

(Table 3). None of the clones was positive for probe Sharb1199059, whereas three 

single hits for probe Sharb0425060 and nine triple hits for probes Sharb0931225, 

Sharb0501554 and Sharb0690829 were detected (Table 3). Restriction digests of the 

twelve BACs suggested partial overlap of their DNA inserts (Supplemental Figure 5). 

Sanger sequencing was thus performed on BAC clones A4O22, E7K5, C8B11 and 

F8G11, each being positive for three of five microarray probes (Sharb931225, 

Sharb501554 and Sharb690829). The C8B11 BAC sequence contig (Assembly 1, 

Supplemental Table 16), which could not be aligned together with the sequence contigs 

of the other three BAC clones, reached 57 458 bp length with 33.5% average GC 

content increasing to 40.1% in genic regions. BAC sequence contigs from clones 

A4O22, F8G11 and E7K5 overlapped and were assembled into the 58 769 bp-sized 

Assembly 2 (Supplemental Table 17) with 32.9% average GC content increasing to 

42.1% in genic regions. Annotation of Assembly 1 identified one transposon-related 

gene, five protein-encoding genes and two fragments of protein-encoding genes, all of  
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which (except for TER4) were homologous to genes located on Arabidopsis 

chromosome At1 (Figs. 20A and B, Table 4). In contrast, Assembly 2 contained a 

higher level of transposon-related genes (3) and gene fragments (9) whose homologs 

were found on all Arabidopsis chromosomes except for At3 (Figs. 20A and C, Table 4).  

Comparison of both assemblies showed that both fragments share several highly 

homologous sequences; e.g. for the two protein-encoding genes MtN21 and RRP4, for a 

fragment of the protein-encoding gene MBOAT, and for the 3`-end of BspUPG. 

Allowing for rearrangements, Assembly 1 and Assembly 2 aligned along orthologous 

regions covering 27.15 kb of Assembly 1 and 46.20 kb of Assembly 2 (Fig. 20A). 

Synteny gaps in Assembly 2 contained transposon-related genes (e.g. TER1 and TER2) 

and insertions composed of short protein-encoding gene fragments flanked by inverted 

repeat (IR) sequences (e.g. IR 7; Figs. 20B and C, Supplemental Table 18), suggesting 

Table 3. Overview of BAC clones carrying one to three candidate microarray probes. 

DNA contig lengths are given for BAC clones which were selected for Sanger sequencing. 

No. BAC ID 
 
 

Hybridization 
signal intensitya

Microarray probeb BAC contig length (bp)

1 2 3 4 5  

1 D1L12 very weak - - - - + - 
2 E3C19 very strong - + + + - - 
3 A4O22 weak - + + + - 55 616d 
4 B4G11 very strong - + + + - - 
5 B5B16 weak - - - - + - 
6 E5O18 weak - - - - + - 
7 E6A11 weak - + + + - - 

8 E7K5 very strong - + + + - 54 682 + 3 998 
9 A8D8 strong - + + + - - 
10 C8B11 weak - + + + - 57 458 + 21 311c 
11 D8G22 strong - + + + - - 
12 F8G11 weak - + + + - 55 616d 

a Subjective estimation based upon observation of high-density hybridization membrane after 19 hrs 
hybridization period. 
b 1 - Sharb1199059; 2 - Sharb0931225; 3 - Sharb0501554; 4 - Sharb0690829; 5 - Sharb0425060 (see 
Table 2). Present (plus) and not present (minus) microarray probes were detected via colony PCR on 
Boechera BAC clones. 
c 21 kb-sized fragment shows no similarity with any other BAC clone sequences. 
d 100% identical. 
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that parts of Assembly 2 arose via partial duplications of Assembly 1. Hence, 

considering the partial presence of BspUPG at both loci, we subsequently labelled the 

original locus in Assembly 1 BspUPG-1, and the duplicated variant on Assembly 2 

BspUPG-2 (Fig. 20).   

Table 4. Gene annotation of Boechera BAC clone Assembly 1 and Assembly 2. 

Symbol Description Best Hitb Accession ID Positiond Expect Strand Algorithm Assembly 

RRP4 Exosome complex component 
RRP4 

Ath AT1G03360 3163 - 4068 8.00E-136 + BLASTN 1 

MBOAT Membrane bound O-acyl 
transferase-like protein 

Ath AT1G57600 6339 - 6460 9.00E-40 + BLASTN 1 

MtN21 Nodulin MtN21 /EamA-like 
transporter protein 

Ath AT1G43650 18280 - 22394 1.00E-95 - BLASTN 1 

BspUPG-1 Unreduced pollen grain 
development (original locus) 

Boe n/a 23071 - 25374 0.00 + MAUVE 1 

TER4 non-LTR retroelement reverse 
transcriptase-like protein 

Ath 
(BAB08714) 

AT5G35540c 30148 - 31596 6.00E-133 + BLASTX 1 

TLP5 Tubby-like F-box protein 5 Ath AT1G43640 42429 - 45148 0.00 - BLASTN 1 

UP1 Uncharacterized protein Ath AT1G43630 46255 - 47862 0.00 + BLASTN 1 
TIR TIR-NBS class of disease 

resistance protein 
Ath AT1G66090 50446 - 50976 2.00E-67 + BLASTN 1 

UGT Sterol 3beta-
glucosyltransferase 

Ath AT1G43620 53271 - 57458 3.00E-121 - BLASTN 1 

TER5a Putative LTR retroelement 
polyprotein 

Ath 
(BAB10790.1) 

AT5G34980 12427 - 15165 0.00 - BLASTX 1 (fragment) 

NPC1 Niemann-Pick C1 protein Ath AT1G42470 3634 - 3790 3.00E-34 + BLASTN 2 

TER3a Putative LTR retroelement 
polyprotein 

Ath 
(AAG10812.1)

AT1G34967 4915 - 6534 0.00 + BLASTX 2 

RRP4 Exosome complex component 
RRP4 

Ath AT1G03360 4335 - 12075 1.00E-133 + BLASTN 2 

TER1a Hypothetical transposable 
element-related protein 

Vvi 
(AM456232.2) 

AT4G03810 13249 - 17298 0.00 - BLASTX 2 

MBOAT Membrane bound O-acyl 
transferase-like protein 

Ath AT1G57600 20588 - 20707 7.00E-35 + BLASTN 2 

MtN21 Nodulin MtN21 /EamA-like 
transporter protein 

Ath AT1G43650 31590 - 35114 0.00 - BLASTN 2 

TPR Tetratricopeptide repeat 
domain-containing protein 

Ath AT5G02590 39831 - 39928 7.00E-16 + BLASTN 2 

DY2A Dynamin-2A Ath AT1G10290 39930 - 40093 8.00E-28 - BLASTN 2 
GRV2 DNAJ heat shock N-terminal 

domain-containing protein 
Ath AT2G26890 40102 - 40468 9.00E-78 + BLASTN 2 

TER2 Putative TNP2-like 
transposon protein 

Ath 
(AAD20646.1)

At2G13000 42155 - 44066 0.00 - BLASTX 2 

HRD3 HRD3 like protein Ath AT1G18260 49324 - 49651 1.00E-31 - BLASTN 2 

RNAR RNA recognition motif-
containing protein 

Ath AT5G19960 49652 - 49868 9.00E-34 + BLASTN 2 

EFTU GTP binding Elongation 
factor Tu/EF-1A family 
protein 

Ath AT4G02930 49961 - 50111 9.00E-40 - BLASTN 2 

BspUPG-2 Unreduced pollen grain 
development (duplicated 
locus) 

Boe n/a 48921 - 52073 0.00 + MAUVE 2 

a LTR retroelement function confirmed with LTR FINDER software (Xu and Wang 2007). 
b Plant species: Ath, Arabidopsis thaliana; Boe, Boechera species; Vvi, Vitis vinifera. 
c Arabidopsis locus identifier refers to neighbouring gene MOK9.17; for TER4 = MOK9.16 no locus identifier is available. 
d Position of annotated gene on designated assembly. 

n/a, not applicable. 
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Figure 20. Percent identity plots showing the original UPGRADE locus and its duplicated 

variant. 

(A) Percent identity plot (pip) showing the BAC clone Assembly 1 region in the B. stricta 

linkage group 1 (BstLG1) block C1, which is associated with the original locus of BspUPG 

aligned with BAC clone Assembly 2 containing the duplicated locus BspUPG-2. Green bars 

represent all regions within an alignment with at least 50% nucleotide identity and red bars 

are those regions that align at a high level of similarity (at least 100 bp without a gap and 

with at least 70% nucleotide identity). (B) and (C) illustrate the alignments with their 

associated gene, repetitive element and promotor motif annotations on a pip. The aligning 

segments are drawn according to their percent identity, which is shown on the vertical axis 

from 50% to 100%. Arrows indicate the motif orientation on the assemblies. Each aligning 

segment on both assemblies is displayed as a series of horizontal lines whose positions 

correspond to the second assembly. The colored sequence stretches in (B) and (C) specify 

rearranged sequence blocks between both assemblies and correspond to colors given in (A). 

Genes were annotated according to BLASTN and BLASTX search in GenBank. Annotation of 

transposable elements were retrieved from the Repbase databank (Jurka 1998), simple repeats 

from RepeatMasker (Smit et al., 1996-2004), inverted repeats (IR) from einvert software and 

EMBOSS (Rice et al., 2000) and pip with positions of CpG islands were provided with the 

Pipmaker software (Schwartz et al., 2003). 
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BspUPG-1 is flanked by four genes centered in the centromeric region on the lower 

arm of Arabidopsis chromosome At1 (Figs. 20 and 21, Table 4; ~ 0.57 megabases 

distance to T3P8-sp6, Hosouchi et al., (2002)). Interestingly, two genetic markers 

(Bst006701 and BSTES0032) from the synthetic F2 linkage map of sexual B. stricta 

(Schranz et al., 2007), homologous to Arabidopsis locus identifier At1g51310 and 

At1g43245, flank BspUPG-1. Both markers span the interval of genomic block C1, 

which localizes BspUPG-1 on the BstLG1 linkage group of B. stricta for which very 

low levels of recombination were detected (Schranz et al., 2007). The putative location 

of the duplicated BspUPG-2 is unknown. 

 
Figure 21. Distribution of homologous loci surrounding BspUPG-1 and BspUPG-2 along the 

Arabidopsis genome. 

A distribution map of homologous loci corresponding to (red) the original locus (Assembly 

1), (blue) the duplicated locus (Assembly 2) and (black) to both loci in Boechera, along 

Arabidopsis chromosomes were generated by the chromosome map tool of TAIR (The 

Arabidopsis Information Resource). Asterisks denote flanking loci of BspUPG-1. Arabidopsis 

loci AT1G43245 and AT1G51310 refer to boundaries of genomic block C1 on BstLG1 in the 

synthetic F2 genetic map of B. stricta (Schranz et al., 2007). 
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4.4.3 Distribution of transposable elements on the original and the duplicated locus 

Transposable elements (TEs) are mobile, repetitive DNA sequences that constitute a 

large component of eukaryotic nuclear genomes, ranging from ~21% (A. thaliana 

genome; Ahmed et al. (2011)) to ~88% (wheat; Choulet et al. (2010)) of the total 

genome. Since TEs are considered to drive genome rearrangements, including the 

generation of inversions, translocations, deletions and duplications, we screened 

Assembly 1 and Assembly 2 combining datasets from Repbase (Jurka 1998) and 

Repeatmasker (http://repeatmasker.org) for Viridiplantae TEs in search of hallmarks for 

the duplication of the BspUPG locus.  

In total, 100 and 113 TEs mapped onto Assembly 1 and Assembly 2 respectively, 

many of them are simple repeats with low sequence complexity. Excluding the simple 

repeats left 68 and 73 TEs which mapped onto Assembly 1 and Assembly 2 

respectively, with about half of them identified in Arabidopsis (27 and 35 respectively). 

The major repeat families are copia-like (18 and 16) and gypsy-like (8 and 9) LTR 

retrotransposons, followed by DNA transposons En-Spm (9 and 12), MuDR (11 and 7), 

hAT (7 and 7) and Helitrons (6 and 9). Both BspUPG-1 and the BspUPG-2 are targeted 

by four TE sequence sites (Fig. 22; Supplemental Tables 19 and 20). Proportions of the 

TE superfamilies do not vary statistically significant between Assembly 1 and 

Assembly 2. In contrast, proportions of both loci compared to the distribution across the 

whole Arabidopsis genome partly differ. Copia-like LTR retrotransposons are the 

largest proportions among both Arabidopsis TEs (57.70%) and those on the Boechera 

BAC clone assemblies (26.47% and 21.92% respectively). Nonetheless, copia-like LTR 

retrotransposons are more prominent across the whole Arabidopsis genome compared to 

both Boechera assemblies (one-tailed Fisher’s exact test, LTR/Copia: 

p(Assembly1)=1.83E-07, p(Assembly2)=5.23E-10), in contrast to DNA transposons of 

the En-Spm and hAT class and non-LTR retrotransposons of the LINE/L1 class, which  

are more prominent on both Boechera assemblies (one-tailed Fisher’s exact test, 

DNA/En-Spm: p(Assembly1)=4.21E-10, p(Assembly2)=3.83E-14, DNA/hAT: 

p(Assembly1)=2.00E-06, p(Assembly2)=3.24E-06, LINE/L1: p(Assembly1)=0.001, 

p(Assembly2)=0.008, Fig. 22, Supplemental Tables 19 and 20). Interestingely, Fiston-

Lavier et al. (2012) observed a greater number of gypsy-like LTR retrotransposons and 

DNA/En-Spm transposons in heterochromatic compared to euchromatic regions of 

Arabidopsis, and observation which is congruent with the detection of BspUPG-1 on 

Assembly 1 in a heterochromatic region of Boechera. Although the position of the 
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duplicated BspUPG-2 in Boechera is unknown, the similar prominent occurrence of the 

DNA/En-Spm TE class in both assemblies might point to a heterochromatin insertion 

position of the candidate transcript, similar to the position of the original locus 

(Assembly1). 

 
Figure 22. Distribution of the TE superfamilies along the original and duplicated UPGRADE 

locus. 

TE superfamily distributions along the original and duplicated UPGRADE locus in Boechera 

were examined in comparison with the distribution of TE superfamilies along the complete A. 

thaliana genome. 

4.5 The genesis of BspUPG-2 

4.5.1 Sequence divergence of UPGRADE in sexual and apomictic Boechera 

Although no within-individual (i.e. allelic) polymorphisms were identified, BspUPG 

is characterized by strong sequence divergence between apomictic and sexual genotypes 

(63.1% ± 0.26 similarity; Fig. 23A; Supplemental Table 21). Sequence conservation is 

high between apomicts, with highest nucleotide divergence between genotypes ES 753 

(transcriptional outlier) and ES 514 (0.67% ± 0.13), while all other apomicts share 

complete sequence identity (Fig. 22A). Sequence similarity is also high in sexuals, both 
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within B. stricta (99.69% ± 0.05) and between different species (98.87% ± 0.34). 

Sequence divergence between apomicts and sexuals is accentuated by four large 

structural variants (SV>1kb; The-1000-Genomes-Project-Consortium (2010)) based on 

markedly increased numbers of nucleotide substitutions (39.37% ± 0.17 similarity). 

Phylogenetic analysis indicates that all apomictic sequences are monophyletic, whereas 

sexual sequences can be split into two subgroups, one representing B. stricta genotypes 

and the second representing the remaining sexual genotypes (Fig. 23A, Supplemental 

Table 22).  

Together, the lack of intra-individual allelic variation and the absence of a BspUPG-

2 at any other locus in both sexuals and apomicts point to a homo- or hemizygous state 

for BspUPG-2 in apomicts. 

Thirty-five indels were identified between BspUPG in different genotypes (indels, 

<50 nucleotides, Albers et al. (2011)), 20 of which were located in the highly conserved 

3`-end (+1821 to 3153 nt, 82.75% ± 0.86 similarity; Fig. 23A and Supplemental Table 

23). Among these 20 indels a single 27 nt sequence was found exclusively in all sexual 

genotypes (Figs. 23A and B, indel9). Interestingly, Chellappan et al. (2010) identified a 

new 27-nt small RNA-species that is associated with AGO4 to regulate gene expression 

at the transcriptional level by directing DNA methylation to some of their target loci in 

trans. Hence, the sex-specific indel9 was tested as a small RNA binding site by northern 

blot screening of small RNAs from sexual and apomictic pooled flower buds using 

specific sense and antisense probes covering the 27 nt site and additional 3`- and 5`-

bases (i.e. indel9long probes). Expression of the highly conserved plant miRNA167, 

which was used as positive control, was observed in all flower tissues, whereas no 

signal was detected for any indel9-specific probe in both apomictic and sexual flower 

tissues (Fig. 23B). 
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Figure 23. Phylogenetic consensus tree and schematic representation of a CLUSTALW 

alignment of UPGRADE in sexual and apomictic Boechera. 

Sequences from end-to-end sequenced and cross-match aligned full-length BspUPG-2 from 

nine diploid sexual and apomictic Boechera respectively, were compared. (A) The Maximum 

Likelihood method using Tamura and Nei (1993) was used to calculate the unrooted 

phylogenetic consensus tree showing the relatedness of the complete candidate gene between 

Boechera genotypes. The tree with the highest log likelihood (-7579.008) is shown and is 

drawn to scale, with branch lengths measured in the number of substitutions per site. Cross-

match alignment of full-length BspUPG-2 in sexual and apomictic Boechera, adapted and 

modified from the Progressive Mauve algorithm, exhibits locally collinear blocks (LCBs, 

coded in different colors) between the candidate genes in various genotypes. CLUSTALW 

multiple pairwise nucleotide sequence alignment of the full-length BspUPG-2 in apomicts and 

sexuals shows distribution of SNPs and indels between single genotypes compared to a 

common consensus sequence. (B) Northern blot analysis for putative small RNAs homologous 

to indel9 at BspUPG-2. Pooled flower tissues from different developmental stages for each 

four pooled sexual and four pooled apomictic Boechera genotypes were used. The small RNA 

miRNA167 was used as positive control and ACTIN2 as negative control. 
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4.5.2 A model of BspUPG-2 genesis  

The structural variants described in chapter 4.5.1 were elucidated using multiple 

alignments of sexual and apomictic BspUPG copies with Assembly 1 and Assembly 2 

in the presence of rearrangements. Surprisingly, the 3`-end of all gene copies from 

sexuals and apomicts, here named locally collinear block 1 (LCB1, see definition in 

methods), shares high similarity with both assemblies, whereas the 5`-ends of apomictic 

gene copies, here LCB2, were only identified on the duplicated locus of Assembly 2 

(Fig. 24A; Supplemental Figure 6 and Supplemental Table 24). Unlike apomictic gene 

copies (now BspUPG-2, see nomenclature in chapter 4.4.2), the copies from sexuals 

(now BspUPG-1) share high sequence similarity for the 3`- and 5`-end with the original 

locus on Assembly 1, but exhibit a mosaic distribution of their LCBs on the duplicated 

locus of Assembly 2 (Fig. 24B, Supplemental Figure 6). LCB4 of BspUPG-1 in sexual 

B. stricta, which is partially homologous to LCB3 in other sexuals, is translocated 1859 

nt upstream from the transcript start of BspUPG-2 in apomictic genomes (Fig. 24B; 

Supplemental Figure 6 and Supplemental Table 24).  LCB5 from sexual B. stricta is 

translocated 10189 nt further downstream of BspUPG-1, but translocated and 

additionally inverted 19276 nt further downstream of BspUPG-2 at the duplicated locus 

(Supplemental Figure 6).  

The transcriptional functionality of BspUPG-1 and BspUPG-2 was inferred by 

mapping sexual and apomictic cDNA (Sharbel et al., 2009) independently onto both, 

and revealed that only the apo-specific LCB2 is transcribed in both sexuals and 

apomicts (Fig. 24C).  In contrast, apomictic cDNA map to LCB1 and LCB2 including 

the reads with homology to the candidate microarray 60-mer oligonucleotide probes 

(Fig. 24C). No cDNA maps to any of the remaining LCBs. PCR on genomic DNA 

using specific primers for both loci demonstrates the presence of BspUPG-1 in sexuals 

and apomicts, but absence using cDNA as a PCR template. In contrast genomic copies 

and transcripts of BspUPG-2 were solely identified in apomicts (Fig. 24E).  

Two lines of evidence were used to validate the proposed fusion of the 5`- (LCB1) and 

3`-ends (LCB2) of the transcriptionally active BspUPG-2. A BLASTN search between 

BspUPG-2 and the complete genomic Sequence Read Archive (SRA) of a sexual B. 

stricta identified a gap at the juncture between all reads mapping to LCB1 and to LCB2, 

while all reads per LCB overlapped, suggesting their separate genomic origins in the 

sexual genotype (Fig. 24B, position +1820 nt). We confirmed this result by amplifying 

a 478 bp-fragment in sexual genotypes using primers corresponding to a fragment of the 
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Figure 24.  Structure of original and duplicated UPGRADE locus. 

(A) Schematic representation of the gene annotation of Assembly 1 containing the original 

BspUPG-1 locus and Assembly 2 containing the duplicated apo-specific BspUPG-2 locus. 

Synthenic regions of the two assemblies are shown below. Inverted repeats are denoted by 

grey numbered arrowheads. Insertions of genic fragments are marked in red letters. (B) 

Mapping of genomic sequences of BspUPG-1 in apomictic (e.g. B. divaricarpa, ES 514) and 

sexual genotypes (e.g. B. stricta, ES 612.1) onto both BAC clone assemblies identified 

rearrangements of locally collinear blocks (LCBs). Black asterisks denoted indels for the sex-

specific identity of LCB1 and LCB4. (C) Separate mapping of cDNA reads from sexual and 
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apomictic genotypes onto BspUPG-2 displays different distribution. Both, sense-oriented 

(green) and antisense-oriented (red) cDNA reads are displayed. Coloured vertical bars on 

cDNA reads show SNPs in comparison with genomic DNA of BspUPG-2. (D) PCRs with 

independent primer pairs one located on the LCB1 and one on cDNA mapping positions of 

LCB2 in sexual and apomictic genomes illustrate that LCB1 is highly conserved in both 

sexuals and apomicts and that LCB2 is also present in sexual genotypes, but at a different 

genomic position. (E) PCR with primers combining LCB1 and LCB2 shows apo-specific 

presence of BspUPG-2, whereas BspUPG-1 is present in both, sexual and apomictic genomes. 

The white arrow marks a faint band for genotype ES 753 and white asterisk marks missing 

band for genotype 105.18 which lacks the priming site for primer 6. Black arrows mark PCR 

primers: 1 - CON234X2L, 2 - CON234X14L, 3 - CON234X10R, 4 - PC1pol1L, 5 - PC1pol1R, 

6 - GSP4, 7 - TSP33R, 8 - CON234X5R, 9 - Indel9minus. Refer to Table 4 for gene 

annotations. 

BspUPG-2-specific LCB2. Additionally, this fragment is mapped by cDNA in sexual 

and apomictic Boechera belonging to the Boechera homologue of AtHRD3 (BspHRD3; 

Figs. 24A and C, 25A, Table 4).  

We tested whether LCB2 derived directly from parental transcripts or from putative 

duplicated variants by performing RACE-PCR and chromosome walking on BspHRD3 

(Fig. 25A; Supplemental Table 11). RACE-PCR amplified BspHRD3 in sexual and 

apomictic genotypes with high overall sequence similarity to the AtHRD3 transcript 

(93.0%), whereas chromosome walking yielded a sequence with only partial similarity 

(63.5%) to the genomic AtHRD3 copy (Fig. 25A). To focus on the predicted insertion 

region of BspHRD3 in BspUPG-2, a fragment of the 5`-end genomic copy of BspHRD3 

extracted from a sexual genome was shown to contain insertions which were not present 

in the cDNA of BspHRD3 or the genomic copy of AtHRD3. Interestingly, comparing 

the chromosome walking sequence of BspHRD3 with BspUPG-2, a 550-bp sized 

fragment was identified as being highly homologous to BspUPG-2, including these 

insertions (Fig. 25A; 93.6% similarity, blue boxes denote insertions).  

A partial gene duplication as is proposed for BspUPG-1 and BspUPG-2, should be  

strongly correlated with insertions and pseudogenization (Ohno 1970; Kaessmann 

2010). Hence, we tested BspUPG-2 for duplication by mapping a set of sequence tags 

from an array-based comparative genome hybridization (aCGH) experiment in 10 

sexual and 10 apomictic Boechera (Aliyu et al., unpublished results) against BspUPG-2 

(Fig. 25B). In total, 79 array probes from the CGH experiment mapped to BspUPG-2. 

Whereby most probes mapping onto BspUPG-2 show no copy number variation (CNV) 
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in apomicts (96.0% with the remaining 4.0% showing depletion), 68% of the tags were 

depleted in at least one sexual genotype. Approximately half of the depleted sequence 

tags in sexual genotypes were situated at the 3`-end of BspUPG-2, representing the start 

of LCB1. The remaining depleted sequence tags were distributed towards the 5`-end of 

BspUPG-2 between +0 to +1081 nt (Fig. 25B). 

To summarize, both LCB1 and the extreme 5`-end of BspUPG-2 is present in fewer 

copies in sexual compared to apomictic genomes, whereas the middle part of BspUPG-

2 shows no variation in copy number in either reproductive mode. The duplication of 

LCB1 in apomictic genomes is explained by its presence in both assemblies. The 

duplication of the 5`-end in apomictic genomes is evidenced by the presence of 

duplicated source gene insertions covering almost exactly the region represented by 

depleted sequence tags in sexuals (HRD3: +199 to + 731 nt, RNAR: +732 to 948 nt, 

EFTU/EF-1A: +1041 to 1191 nt;  Figs. 24A and 25A). 

Together these results (Figs. 24 and 25) suggested that BspUPG-1 fragments were 

duplicated from the original locus on Assembly 1 to form the basis of BspUPG-2, 

which subsequently underwent sequential insertions of genome fragments derived from 

at least two unlinked genomic regions. Thereby, LCB1 was inserted between LCB2 and 

LCB4. The newly formed locus was then the insertion target for the duplicated variant 

of at least one functional gene (i.e. BspHRD3), with subsequent exonization leading to a 

gain of BspUPG-2 transciptional activity. 
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Figure 25. Hypothesized origin of BspUPG-2 through duplication and fragmental insertion. 
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(A) Locally collinear blocks (LCB) between BspUPG-2 and the source genes from which 

BspUPG-2 hosts fragments (identical colour display highly similar sequences; only a 

fragment of BspHRD3 was obtained by chromosome walking) obtained by an modified cross-

match alignment using the Progressive Mauve algorithm. (B) 454 whole genome sequencing 

and CGH sequence tags (10 sexual versus 10 apomictic genotypes; Aliyu et al., unpublished 

results) were mapped onto eighteen 200 bp fragments of the genomic sequence of BspUPG-2 

which had 20 bp overlap between each other. The graph shows all existing CNVs for each 

single sequence tag. Relative CNV frequencies are considered independently for sexual and 

apomictic genotypes. (C) Schematic representation of parental and chimeric BspUPG genes. 

Boxed numbers illustrate different LCBs (Supplemental Table 24, Supplemental Figure 6). (+) 

Transcription activity and (−) no transcription activity.                                                                                        

4.6 Phylogeography of BspUPG-2 

In this chapter we examined the evolutionary footprint of BspUPG-2 as a candidate 

factor for unreduced pollen formation on a Boechereae tribe-wide level, by testing its 

species-specificity and putative origin. A total of 1576 accessions representing 102 taxa 

of four Boechereae genera (Boechera, Cusickiella Rollins, Sandbergia Greene 

(formerly Halimolobos, Al-Shehbaz (2007)) and Polyctenium Greene) and one taxon of 

tribe Sisymbrieae (Schoenocrambe Greene), which are distributed across 213 cpDNA 

haplotypes, were examined for presence (‘carriers’) or absence (‘noncarriers’) of 

BspUPG-2 via a PCR-based screen using a marker fragment which spans the juncture 

between the fused LCB1 and LCB2. 

BspUPG-2 was found in 33.82% of all tested accessions across North America and 

additionally in a single Greenland accession, while virtually all mid- and south-eastern 

North American Boechera accessions were noncarriers (Figs. 26A and B). Interestingly, 

these noncarrier accessions belong to cpDNA lineages V and IV which were recently 

described as closely related to Borodinia, and for whom their taxonomic status remains 

undecided (Kiefer et al., 2009). For each of the remaining lineages the distribution of 

BspUPG-2 follows approx. a 1:2 presence-to-absence ratio, with the exception of  

lineages I and III where BspUPG-2 is overrepresented (two-tailed Fisher’s exact test, 

43.27%, p>p0=0.0006 and 46.47%, p>p0<<0.001, respectively, Fig. 26C). Taken 

together, except for lineages IV (purely B. canadensis) and V (mostly B. laevigata and 

B. missouriensis), no pronounced correlation was detected between single lineages and 

BspUPG-2 levels. As apomictic Boechera are pseudogamous and thus strongly depend 

on central cell fertilization with their own unreduced pollen for induction of a balanced 

endosperm (Roy 1995; Voigt et al., 2007) and for which unreduced pollen formation is 
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restricted to apomictic genotypes (Aliyu et al., 2010), a genetic factor causing 

unreduced pollen formation should be indirectly linked with ‘apomixis’. Despite the 

hypothesized involvement of additional apomeiosis factors, a putative male apomeiosis- 

 
Figure 26. Phylogeographic distribution of BspUPG-2. 

(A) Individuals carrying BspUPG-2 (blue) versus individuals lacking BspUPG-2 (red). 

Subfigure shows distribution of individuals used for correlation of BspUPG-2 appearance 

with the mode of reproduction (yellow). (B) Penetrance of BspUPG-2 across all genotypes 

compared to sexuals, and apomicts. (C) Penetrance of BspUPG-2 per cp-haplotype lineage. 

n/a = not applicable. 

associated factor such as BspUPG-2 should be able to separate most of the apomicts 

from the sexuals within the genus. In order to establish BspUPG-2 as a genetic marker 

for apomixis in Boechera we tested its association with apomixis using a subset of 73 of 

the 1576 screened Boechera accessions from which FCSS data were available 

genotypes, representing 18 Boechera taxa from lineages I, II and III (yellow dots in Fig. 

26A, Supplemental Table 25; Mau et. al., unpublished results; Aliyu et al. (2010)). In 
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93.10% of the apomicts BspUPG-2 is present, whereas in sexual genotypes only 

19.51% genotypes carry the candidate gene (Fig. 26B).  

In all, BspUPG-2 explains 85.71% of the reproductive modes among the tested 

Boechera genotypes, and together with its ubiquity in all lineages, we thus conclude that 

BspUPG-2 is a suitable marker for apomixis in the genus Boechera. 

 

4.6.1 BspUPG-2 is specific to the tribe Boechereae 

According to the haplotype database (Kiefer et al., 2009), 106 of the tested 

haplotypes are singletons whilst 107 haplotypes are shared by several accessions (hence 

called suprahaplotypes). BspUPG-2 is present in approx. half of all Boechera 

interconnected haplotypes (N=93, 43.66%, Fig. 27A) exept lineage IV. Furthermore, 

BspUPG-2 was detected in accessions of the oldest haplotype (i.e. AB, represented in 

suprahalotype 8), which is the center of the haplotype network and which has been 

estimated to be 0.7–2 million years old (Dobeš et al., 2004a). In addition, BspUPG-2 is 

present in two single accessions which are each assigned to one of two closely related 

genera of the tribe Boechereae (i.e. clade B: Cusickiella and Polyctenium, refer to 

Beilstein et al. (2006) and Al-Shehbaz et al. (2006)). BspUPG-2 was not detected in 

other tested genera of the same clade (clade B, e.g. Sandbergia whitedii, S. perplexa and 

S. perplexa var. lemhiensis) or in neighbouring clades (clade A (Camelineae): e.g. genus 

Arabidopsis (A. thaliana, A. lyrata), clade I (Sisymbrieae): e.g. genus Schoenocrambe 

(S. linifolia); clade J (Brassicaceae): e.g. genus Brassica (B. napus, B. oleracea, B. 

rapa); Supplemental Table 26).  

All together, the ubiquitous occurence of BspUPG-2 within the genus Boechera 

point to a conserved status of the apomeiosis candidate gene, and places the origin of 

BspUPG-2 with that of the genus Boechera in the middle of the Pleistocene (Dobeš et 

al., 2004a). As BspUPG-2 was detected in two neighbouring Boechereae genera our 

working hypothesis is that BspUPG-2 alternatively could have originated earlier at the 

base of the tribe Boechereae. 

 

4.6.2 Taxon-specific variation of BspUPG-2  

PCR screening data from 28 taxa with statistically representative numbers (N≥10) of 

accessions demonstrate (Fig. 27B, complete list of taxa in Supplemental Table 26) that 

six taxa do not carry BspUPG-2, from which two belong to the eastern North American 

lineages IV and V (B. breweri (lineage I, III), B. platysperma (III), B. canadensis (IV), 
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Schoenocrambe linifolia, B. laevigata (V) and B. cobrensis (III)). The mostly sexually 

reproducing B. stricta (Aliyu et al., 2010) which co-dominates lineage II together with 

B. divaricarpa, is consistently correlated with the absence of BspUPG-2, except for a 

few accessions for which FCSS confirmed their apomictic mode of reproduction 

(N=183, 5.43%, e.g. ES 649; Supplemental Table 26). In other taxa BspUPG-2 is 

prevalent in a number of accessions (e.g. B. microphylla var. macounii, B. crandallii, B. 

fendleri, B. lignifera, B. microphylla, B. holboellii, B. perennans, B. holboellii var. 

pinetorum and B. divaricarpa), whereby in accessions of B. crandallii BspUPG-2 is 

virtually omnipresent (N=16, 93.75%). In contrast to previous reports (Aliyu et al., 

2010; Kiefer and Koch 2012), the two taxa which constitute the largest groups and the 

largest distribution among the haplotypes, B. holboellii var. retrofracta which 

dominates lineage I and III, and B. divaricarpa which dominates lineage II, do not 

correlate purely with apomixis but are characterized by approximately equal proportions 

of carrier and noncarrier accessions (45.50% and 60.66% carriers respectively, Fig. 

27B, Supplemental Tables 26 and 27). In fact, none of the tested taxa with a statistically 

representative number of accessions (here extended to taxa with N≥5 accessions) is 

purely apomictic, but several purely sexual taxa were detected so far (N=19), besides 

the majority of tested taxa which exhibit a mixture of sexual and apomictic accessions 

(N=33, Supplemental Tables 26 and 27). 
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Figure 27. Haplotype- and taxon-specific frequencies of BspUPG-2. 

(A) Network analysis of BspUPG-2 using TCS v1.21, based on the trnL-F chloroplast DNA 

dataset of Kiefer et al. (2009). Node size corresponds to number of accessions carrying the 

(supra)haplotype (N ranges from 1 to 168). Haplotype node sectors indicate the partition of 

this haplotype between accessions carrying BspUPG-2 and accessions lacking BspUPG-2. (B) 

Abundance of BspUPG-2 for 28 Boechera taxa (latest nomenclature) which are represented by 

more than ten accessions. 

4.6.3 Indications for geographic parthenogenesis in apomictic Boechera? 

Previous studies on ecological and geographic distribution patterns of sexual and 

apomictic higher plants concluded that apomictic populations follow a trend towards 

larger ranges, in addition to a tendency to higher latitudes and elevations compared to 

their sexual relatives, a phenomenon which is called “geographical parthenogenesis” 
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and which was initially described for parthenogenetic animals (Vandel 1928; 

Bierzychudek 1985). Moreover, growth-chamber experiments with varying 

environmental conditions for sexual and apomictic Anntennaria parvifolia supported the 

hypothesis that sexual and apomictic genotypes are not ecologically similar, and led to 

the idea of general purpose genotypes among apomicts (Bierzychudek 1987; 

Bierzychudek 1989). In this chapter we used the pairwise distances and bioclimate 

variables to test whether the previously reported differences in geographical and 

ecological distribution patterns between sexuals and parthenogens are also present 

between naturally occuring apomictic (i.e. accessions which carry the apomeiosis 

marker candidate BspUPG-2) and sexual Boechera (i.e. accessions lacking the marker 

gene). 

BspUPG-2 is geographically widely distributed over North America and Greenland. 

The most southerly occupied site for noncarriers was Bullen Creek, Jefferson, 

Mississippi  (B. canadensis, 31° 34'N, -91° 12'W), and for carriers it was Box Elder 

County, Utah (B. perennans, 31° 59'N, -108° 6'W), while the most northerly occupied 

site was the Upernivik District, Greenland (B. holboellii, 72° 46'N, -56° 10'W) for 

noncarriers, and for carriers Kangerdluarssuk, Greenland (B. holboellii, 69° 40'N, -50° 

28'W). The center with the highest abundance differed slightly between carriers and 

noncarriers. BspUPG-2 carriers were highly abundant at the Colorado Plateau Shrub 

Steppe and the Central Rockies Forest, Idaho, whereas the highest density of BspUPG-2 

noncarriers was detected at the Sierra Nevada/Great Basin Shrub Steppe, Californa and 

the Central Rockies Forest, Idaho (Figs. 28A and B). In addition, a higher abundance of 

BspUPG-2 noncarriers compared to BspUPG-2 carriers was detected in Eastern North 

America.                                                                                                                                                           

In search for variation in geographical patterns between carrier and noncarrier 

accessions we tested for geospatial distribution homogenity using kernel density 

estimation as a smoothing method (KDE with Epanechnikov kernel, Silverman (1986)) 

for pairwise distances (PD) between all single accessions per group (N=1502 

accessions) in conjunction with Mann-Whitney U tests to evaluate their significant 

differences per group (i.e. apo versus sex). 

Besides different centers of highest abundance of noncarriers versus carriers, no 

obvious difference in the geospatial pattern of both PD distributions was detected. The 

same two distance maxima of PDs were identified for carriers and noncarriers (M1:~750 

km, M2:~2750 km, Fig. 28E) which points to a similar aggregation pattern of both 
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distributions on a large scale. Interestingely, the frequencies of BspUPG-2 carrier and 

noncarrier differ at each PD maximum (U=3.01E+10, p<<0.001) exhibiting a higher 

number of carriers at M1 and a lower number of carriers at M2 compared to the 

distribution of the noncarriers, as reflected by smaller mean PDs in the carrier group 

(N=140715, PDMEAN=1223.6±1013.69 km, mean rank=284582.98) compared to the 

mean PDs in the noncarrier group (N=470935, PDMEAN=1414.8±1124.29 km, mean 

rank=312172.74). Considering lineages IV and V as outliers (see above, Kiefer 2009) 

the PD analysis was repeated after exclusion of 42 accessions belonging to lineages IV 

and V, and demonstrated similar results for carriers (N=140185, 

PDMEAN=1222.12±1014.73 km, mean rank=278686.26) compared to noncarriers 

(N=434778, PDMEAN=1304.69±1070.20 km, mean rank=290318.00, U=2.92E+10, 

p<<0.001, Fig. 28E inbox graph). 

Ecological habitat modelling of sexual and apomictic accessions, as estimated by 

presence of BspUPG-2, was used to provide insights into putative differences in habitat 

requirements based on primary limiting factors for species distribution such as 

temperature, moisture, elevation and specific ecoregion profiles (i.e. ecologically and 

geographically defined areas with distinct composition of natural communities and 

species, after Olson et al. (2001)). Noncarriers were used as a training dataset while 

carriers composed the test data set. The maximum-entropy-model (Maxent) method 

(Phillips et al., 2006) was used, which tests separately the worldwide potential 

distribution (i.e. suitability) of both sexual and apomictic Boechera accessions based 

upon their biogeographic abundance. Thereby, the area under the receiver operating 

characteristic (ROC) curve (AUC) allows the comparison of model performance by 

plotting the fraction of true positives out of the positives (TPR=true positive rate or 

sensitivity) versus the fraction of false positives out of the negatives (FPR=false 

positive rate or 1-specificity). An AUC value of 0.5 indicates that the performance of 

the model meets randomness, while values closer to 1.0 indicate better model 

performance. The average AUC (N=15 repetitions) for the BspUPG-2 noncarrier model 

is 0.946±0.0005, and the average AUC for BspUPG-2 carriers (test model) is 

0.940±0.0072, which points to a good performance of both models (Figs. 28C, D and F) 

compared to the real distribution of carriers and noncarriers (Figs. 28A and B). 

Moreover, both AUC values are similar suggesting a good prediction of the BspUPG-2 

carrier model with the distribution of BspUPG-2 noncarriers. Therefore our prediction 

http://en.wikipedia.org/wiki/True_positive�
http://en.wikipedia.org/wiki/False_positive�
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for apomictic Boechera demonstrated similar patterns to sexual Boechera, but its 

geogaphic coverage was somewhat less extensive than sexual Boechera (Figs. 28A-D). 

We predicted the distributions of BspUPG-2 carriers and noncarriers in North 

America (Fig. 28C and D) using Maxent models driven by the climatic variables that 

most strongly contributed to the thermal and moisture gradients (Table 5). As discussed 

earlier, these variables included BIO1 (= Annual Mean Temperature) to BIO11 (= mean 

temperature of coldest quarter) for the thermal gradient, and BIO12 (= Annual 

Precipitation) to BIO19 (= precipitation of coldest quarter) for the moisture gradient. 

Jackknife tests showed that these predictors contributed similarly to the models, but had 

less impact on the models compared to variable ‘altitude’, which in both groups had the 

highest predictive contribution to the models with 31.6% versus 21.0% for carriers and 

noncarriers, respectively (Table 5). Carriers and noncarriers were most responsive to 

variables BIO11 and BIO2 (= mean diurnal range), respectively, for the thermal 

gradient and to variable BIO19 for the moisture gradient (Table 5). These four of the 

nineteen tested variables contributed approx. 50% to the models, in contrast to the 

remaining variables which contributed relatively little (Table 5).  

Boechera inhabits a wide range of elevations (sea level to 3992.88m), and although 

single noncarriers (i.e. sexual accessions) represent the highest elevational record for the 

genus, we detected a trend towards higher altitudes for carriers (noncarriers: 

1831.00±837.70m, carriers: 2024.83±618.86m; Mann-Whitney U test, U=7.92E+04, 

p=0.0012, Fig. 28G). In order to avoid bias resulting from strong outlier distributions of 

carriers and noncarriers, we removed accessions of lineages IV and V since virtually all 

accessions of both lineages lack BspUPG-2 and a previous study placed them into a 

new genus of the tribe Boechereae (Borodinia, see above, Kiefer et al. (2009)). 

Nonetheless, the corrected data did not change the conclusion that apomictic Boechera 

were characterized by higher elevations (Mann-Whitney U test, U=7.90E+04, p=0.018). 

Most bioclimate variables showed no statistically different distributions between 

noncarriers and carriers (e.g. annual precipitation, Fig. 28I, Supplemental Figure 7).  On 

the other hand, small differences were observed, such as the average annual temperature 

of carriers (4.4±4.06°C, BIO1), which was significantly lower compared to noncarriers 

(4.9±4.44°C, U=1.94E+05, p=0.015, Fig. 28H). In addition, carriers tend to occupy 

locations with higher seasonal variability (856.2±177.12 versus 833.7±174.06 100 x 

standard deviation of mean monthly temp. in °C, BIO4) and exhibit a one degree higher 
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annual temperature range compared to sexuals (38.5±5.02 versus 37.6±4.94 

respectively, U=1.86E+05, p<0.001, BIO7; Supplemental Figure 7).  

A similar geographic distribution pattern for sexual and apomictic Boechera was 

mirrored by a similar habitat distribution (grouping of the tested ecoregions into biomes 

according to Olson et al. (2001), http://worldwildlife.org/publications/wildfinder-

database; Fig. 29, Supplemental Table 28), which contrasts results for other apomictic 

species for which habitat differentiation between sexuals and apomicts were observed 

(e.g. Ranunculus auricomus, Hörandl and Paun (2007)). Both sexuals and apomicts 

prefer temperate conifer forests and desert/xeric shrublands, which together account for 

80.8% and 82.9% of the compete distribution, respectively (Fig. 29). 

Taken together, with the exception of altitude differences, no habitat differentiation 

between sexual and apomictic Boechera accessions was found according to ecological 

and geographic distribution analyses. Sexual and apomictic Boechera are also similar in 

terms of their climatic limits. Thus, evidence for geographic parthenogenesis is weak 

and based on marginal differences in altitude and temperature, which may be interelated 

as apomicts demonstrated lower annual temperatures and higher altitudes. 
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Table 5. Contribution of environmental variables to the maximum-entropy-

models of BspUPG-2 carriers and noncarriers. 

Noncarrier (BspUPG-2 absent) Carrier (BspUPG-2 present) 
Variablea % contribution % permutation 

importance 
Variablea % contribution % permutation 

importance 

Altitude 21.0 0.7 Altitude 31.6 1.2 
BIO19 11.2 33.9 BIO11 15.0 4.0 
BIO2 11.0 19.4 BIO2 11.0 19.0 
BIO11 9.1 0.6 BIO19 6.9 23.5 
BIO3 8.7 3.3 BIO1 5.7 10.5 
BIO1 8.6 5.4 BIO15 5.1 0.3 
BIO9 6.6 2.5 BIO17 5.0 10.8 
BIO4 6.2 7.7 BIO3 4.1 0.7 
BIO6 4.9 7.6 BIO18 3.6 4.8 
BIO17 3.9 0.4 BIO4 3.5 8.7 
BIO18 3.2 5.8 BIO6 2.4 2.5 
BIO10 2.4 1.3 BIO5 2.3 2.9 
BIO8 1.4 0.4 BIO8 1.1 1.2 
BIO7 0.6 2.4 BIO10 1.0 3.2 
BIO15 0.4 0.5 BIO9 0.7 2.3 
BIO5 0.4 1.5 BIO7 0.5 1.3 
BIO14 0.1 1.1 BIO14 0.3 1.0 
BIO16 0.1 0.0 BIO13 0.1 0.4 
BIO13 0.1 0.1 BIO16 0.1 0.3 
BIO12 0.0 5.3 BIO12 0.0 1.5 
aBIO1= Annual Mean Temperature, BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min 
temp)), BIO3 = Isothermality (BIO2/BIO7) (* 100), BIO4 = Temperature Seasonality (standard deviation 
*100), BIO5 = Max Temperature of Warmest Month, BIO6 = Min Temperature of Coldest Month, BIO7 
= Temperature Annual Range (BIO5-BIO6), BIO8 = Mean Temperature of Wettest Quarter, BIO9 = 
Mean Temperature of Driest Quarter, BIO10 = Mean Temperature of Warmest Quarter, BIO11 = Mean 
Temperature of Coldest Quarter, BIO12 = Annual Precipitation, BIO13 = Precipitation of Wettest Month, 
BIO14 = Precipitation of Driest Month, BIO15 = Precipitation Seasonality (Coefficient of Variation), 
BIO16 = Precipitation of Wettest Quarter, BIO17 = Precipitation of Driest Quarter, BIO18 = Precipitation 
of Warmest Quarter, BIO19 = Precipitation of Coldest Quarter; (http://www.worldclim.org/bioclim).  
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Figure 28. Comparison of the geographic abundance of apomictic and sexual Boechera 

accessions using Maxent models. 

Density measures of BspUPG-2 noncarriers (i.e. sexuals) (A) and BspUPG-2 carriers (i.e. 

apomicts) (B) per cell (1x1 degree). Bar scale=1000km. Habitat prediction for BspUPG-2 

noncarriers (C) and BspUPG-2 carriers (D) shows the center of optimal environmental 

conditions for both groups (white arrows). The colors indicate the predicted probability that 
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conditions are suitable to BspUPG-2 noncarriers or BspUPG-2 carriers, with red indicating 

high probability of suitable conditions, green indicating conditions typical of those where 

repoductive mode-based group of Boechera’s is found, and lighter shades of blue indicating 

low predicted probability of suitable conditions. (E) Comparance of weighted KDE of 

pairwise distances between individuals carrying BspUPG-2 versus individuals lacking 

BspUPG-2. The subgraph shows KDE of pairwise distances without accessions of lineages IV 

and V. (F) Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) enables the 

comparison of performance of the BspUPG-2 carrier model with the BspUPG-2 noncarrier 

model against a random distribution, and is useful in evaluating both maximum entropy 

models. Abundance of BspUPG-2 carriers and noncarriers per altitude (G), annual 

temperature (H) and annual precipitation (I) is shown. 

 

 

 

 

 
Figure 29. Habitat differentiation of sexual and apomictic Boechera in North America. 

Assignment to types of vegetation was conducted according to a PCR-based screen with the 

molecular marker BspUPG-2. Types of vegetation were applied from WWF biomes 

(http://worldwildlife.org/publications/wildfinder-database) based on Olson et al. (2001). 
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5 Discussion and Conclusions 
 

Research into the fundamentals of apomixis with the goal of introducing it into 

crops has become a major issue in the last two decades (Khush et al., 1994; Koltunow et 

al., 1995; Spillane et al., 2001; Marimuthu et al., 2011) and has an expected high impact 

in agronomy (Dresselhaus et al., 2001). The hypothesized benefits of introducing 

apomixis in crops are multifaceted and include drastically decreased costs of hybrid 

production (hybrids from hybrid seeds through clonal reproduction), clonal propagation 

of hybrid vigor, the stabilization of locally adapted varieties and reduced costs for 

farmers. 

Besides the inherent potential of apomixis for agriculture, the transfer of apomixis 

key gene(s) into the desired host crop plants would provide several hurdles such as a 

proposed high (epi)genetic genetic (i.e. mutational) load of apomeiosis-related region(s) 

(Leblanc et al., 2009), the requirement for adaptation of the host genome to regulate 

downstream genes following apomixis-induction, and for transferring candidate factors 

to distantly-related crop species (Polegri et al., 2010).  

Several approaches to studying apomixis have been undertaken: (i) interspecific 

hybridization between crops and wild apomictic varieties, which has so far provided no 

agronomically useable crop (refer to section 2.3.3), (ii) mutagenesis in model plants, 

which has revealed a wide array of genes which when introduced into a sexual 

background show side effects (e.g. polyploidization) or low penetrance of the desired 

apomixis trait (e.g. low rates of unreduced gamete formation, Marimuthu et al., (2011)), 

(iii) comparative mapping which has identified a number of linkage groups which 

coseggregate with apomixis but for which functional analyses of robust candidates is 

still lacking (e.g. Nogler (1984), Ozias-Akins et al. (1998), van Dijk and Bakx-

Schotman (2004)), and (iv) comparative gene expression studies between natural sexual 

and apomictic genotypes as presented here (Polegri et al., 2010; Sharbel et al., 2010).  

This study represents the first approach to identify components associated with 

unreduced pollen formation, a trait which is directly linked with pseudogamous 

apomixis (sensu stricto a female trait) in Boechera. Using multiple phenotypically 

characterized genotypes for a customized microarray-based transcriptome analysis of 

male reproductive tissues, followed by qRT-PCR, RACE and DNA sequencing-based 

validation steps, identified a single novel transcript associated with unreduced pollen 

formation, whose structure and origin was subsequently characterized. Furthermore, 

Boechera combines the advantage of being genetically closely related to Arabidopsis 
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which provides an array of tools for molecular genetic analyses, and in addition is 

closely related to the agronomical important genus Brassica, together which could 

facilitate the introgression of apomixis into a crop species. Considering that apomixis is 

facultative and represents a derivation of normal sexual development (Koltunow 1993; 

Grossniklaus 2001), in addition to the fact that diploid sexual and diploid apomictic 

individuals were compared here, this factor could hypothetically stabilize endosperm 

development in a sexual plant that has been transformed with apomixis controlling 

factor(s) (“dosage compensation”; sensu Birchler (1993), refer also to section 2.2.2). 

Hence, in the following sections the putative role of the candidate factor during 

unreduced pollen formation and its implications on a genus-wide scale are discussed. 

 

5.1 High quantitative variation for unreduced pollen formation in apomictic 

Boechera 

High variability in pollen morphology and unreduced pollen formation, in addition 

to tolerance to deviations from the sexual endosperm balance number have been 

described for some Boechera (Böcher 1951, 1954; Voigt et al., 2007; Aliyu et al., 2010; 

Voigt-Zielinski et al., 2012). Despite this variability, castration experiments (Böcher 

1951) and extensive flow cytometric analyses of seeds (Aliyu et al., 2010) strongly 

support selection pressure for the maintenance of unreduced pollen development to 

fulfill endosperm balance requirements in diploid apomicts.  

Here we have performed detailed quantitative analyses of anther growth and 

microsporogenesis to identify the most optimal developmental stage for comparative 

expression profiling of reduced (sexual) and unreduced (apomictic) pollen formation in 

14 genotypes. A strong correlation between microsporogenesis and anther growth was 

evident at the pre- and postmeiotic stages, whereas it was difficult to identify antherhead 

lengths corresponding to the meiotic stage (Fig. 7). Considering spatial and temporal 

variability of expression profiles in reproductive tissues (Mascarenhas 1989; Honys and 

Twell 2004), the identification of a specific stage of antherhead development and length 

characterized by PMCs at the onset of meiosis enabled targeted expression profiling of 

the meiotic stage which differentiates reduced (sexual) and unreduced (apomeiotic) 

pollen formation.  

Variable levels of apomeiosis penetrance have been reported for Boechera (Aliyu et 

al., 2010), and here both obligate and highly facultative apomicts were analyzed. No 

evidence for sex- or apomixis-specific flower morphological variation was found, 
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although meiosis and the appearance of microspores are developmentally-uncoupled in 

apomicts relative to sexuals (Figs. 7 and 8). This latter observation supports the 

hybridization-derived floral asynchrony (HFA) theory, which describes the temporal 

shift (heterochrony) between both reproductive modes (Carman 1997) which has also 

been identified on the transcriptomic level (Sharbel et al., 2010).  

Meiotic chromosome behaviour of apomicts producing unreduced pollen (the same 

used for expression profiling) was primarily asynaptic (Fig. 9), as has previously been 

shown (asyndetic, sensu Böcher (1951)). The low level of segregation distortions (e.g. 

resulting in the formation of micronuclei, data not shown), point to a fully functioning 

molecular mechanism which guarantees the equal separation of sister chromatids during 

meiosis II and subsequent formation of dyads with two unreduced chromosome sets. 

Sexuals were also able to produce low levels of unreduced pollen (Fig. 9), which is 

consistent with previous data (Kantama et al., 2007) and might reflect a predisposition 

for environmentally-induced unreduced gamete formation, such as stimulation by low 

(Mason et al., 2011) or elevated temperatures (Pécrix et al., 2011). 

Although ultimately producing higher levels of dyads compared to sexuals, the same 

apomicts demonstrated variability in terms of monad, dyad, triad and tetrad formation 

(Fig. 9), mirroring reported genotype-specific variability for meiotic chromosome 

synapsis potential in both diploid and polyploid Boechera (Böcher 1951; Naumova 

2001; Kantama et al., 2007). Interestingly, variation between individuals of the same 

clonal lineage for dyad and tetrad formation was also apparent in the majority of tested 

apomictic genotypes, and hence phenotypic variability for pollen formation exists 

despite genetically clonal reproduction. In this light, the observed sexual allopolyploid 

progeny from both diploid and triploid obligate apomicts (e.g. ES 753, B. divaricarpa; 

Schranz et al. (2005)) could be explained by fertilization with reduced self pollen rather 

than with pollen from another plant (Aliyu et al., 2010), since Boechera is a highly 

selfing system (Roy 1995). Kantama et al. (2007) observed sexual Boechera which 

produce apomeiotic egg cells and postulated that hybridization-associated stress might 

have induced gene-expression changes required to switch from sex to apomixis. 

Considering the existing predisposition for environmentally-induced unreduced gamete 

formation in sexual genotypes (this study and Kantama et al. (2007)), hybridization-

derived stress could similarly have induced gene-expression changes required to switch 

to apomeiosis in the PMCs of Boechera to thus lead to enhanced production of 

unreduced pollen. 



 

 
 

125 Discussion and Conclusions 

These results, and the observed endosperm imbalance tolerance of some taxa, led us 

to characterize seed and pollen ploidy in every individual plant used for subsequent 

expression-profiling of antherhead tissues. On a broader scale, our data indicate that 

fixation of the genotype via apomixis does not necessarily lead to phenotypic stability 

of male meiocytes. While these data are consistent with previous work (Kantama et al., 

2007; Voigt et al., 2007), the lack of correlation with apomeiosis expression (e.g. egg 

cell formation as measured by flow cytometric seed screen) suggests separate 

mechanisms leading to unreduced male versus female gametes in Boechera, and 

supports independent genetic control for at least some of the developmental steps 

required to form apomictic seeds (van Dijk et al., 1999; Noyes and Rieseberg 2000; 

Matzk et al., 2005). 

The analyses of seed production, anther development, meiosis and pollen formation 

have shown that (1) unreduced pollen formation occurs via first division restitution 

(FDR) in apomictic Boechera, (2) this mechanism is not fully penetrant, and (3) that 

selection pressure for a balanced endosperm in apomictic Boechera leads to the almost 

exclusive contribution of unreduced pollen to endosperm formation.    

 

5.2 BspUPG-2 is highly associated with male apomeiosis 

Besides the pioneering work on the identification of apomixis-linked genes in 

various model apomixis systems using comparative mapping strategies (Leblanc et al., 

1995; Ozias-Akins et al., 1998; Noyes and Rieseberg 2000), transcriptional profiling of 

sexual versus apomictic genotypes became more popular in the last years due to reduced 

costs (e.g. microarrays superseeded cDNA-AFLP and differential display techniques), 

customizing capabilities and an increase in microarray size format which enabled 

spotting of large genome/transcriptome portions (Sharbel et al., 2009; Polegri et al., 

2010). Nonetheless, with rare exceptions (e.g. Albertini et al. (2005)) past studies have 

reported a plethora of genes associated with apomixis for different species in absence of 

functional analyses to prove their specific involvement in apomixis, neither from 

mutagenesis approaches, using transposons or t-DNA, (e.g. A. thaliana, Chaudhury and 

Peacock (1994); H. pilosella, Ohad et al. (1996)) nor from comparative studies on 

natural apomictics (Polegri et al., 2010; Sharbel et al., 2010). This might be a 

consequence of the complexity of the trait considering the hybridization-induced 

temporal and spatial deregulation of the complete sexual pathway as a potential 
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apomixis inducer (HFA, Carman (1997)), in addition to the use of single genetically 

different samples (single genotypes or populations, segregating backcrossing lines) for a 

molecular-based comparison of apomixis and sexuality (Leblanc et al., 1997; Singh et 

al., 2007) and the species-specificity of the reported candidate apomixis marker genes 

(cp. Grossniklaus et al. (2001)). 

In order to identify genes whose specific expression is associated with single 

components of the asexual pathway in Boechera (e.g. apomeiosis for this study) the 

present study attempted to overcome these hurdles by examining multiple genotypes 

(i.e. biological replicates) for (1) the identification of a single developmental stage 

showing a significantly different gene expression between sexual and apomictic tissues 

(e.g. PMCs in analogy to MMCs, sensu Sharbel et al. (2010)), and (2) detailed 

phenotypic characterization of the trait. Hence, comparative transcriptome profiling of 

the identified developmental tissues in multiple genetically and phylographically 

diverse samples enabled us to filter out most of the non-apomixis related variation. 

A global view of our microarray data revealed a group of highly expressed genes 

with different expression characteristics in apomictic, sexual B. stricta and sexual non-

B.stricta genotypes (Fig. 12; FC≥10, N=522 genes). The different relative expression 

level of highly expressed genes involved in major cellular and metabolic processes 

between sexual B. stricta, other sexuals and apomicts could reflect different 

contributions of both groups of sexual genotypes to their apomictic derivatives, as has 

been shown for different degrees of introgession of parental (i.e. sexual) chromosome 

segments in hybrid progenies (L’Hôte et al., 2008). Interestingely, a previous study on 

apomictic Boechera revealed that their genome consisted of variable numbers of B. 

stricta and non-B. stricta-like chromosomes (i.e. B. holboellii, sensu Kantama et al. 

(2007)). Hence, this phenomenon could apply to the observed gene expression 

differences of highly expressed genes which exhibit a closer relation between the 

apomicts and the sexual non-B. stricta compared to B. stricta genotypes (Fig. 12F), 

considering that chromosomes from diploid apomicts have by tendency higher numbers 

of B. holboellii-like compared to B. stricta-like chromosomes (in 3 of 5 tested apomicts, 

one has equal contributions, Kantama et al. (2007)). Interestingly, global upregulation 

of these highly expressed genes in apomictic anther tissues is contrasted by global 

downregulation of genes in early apomictic ovule development (Sharbel et al., 2010), a 

phenomenon which could attest to the suggested independent genetic control of male 

and female gamete formation in apomicts (see 5.1). Among these genes, which are 
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averagely but not constantly (i.e. outlier) higher expressed in apomicts than in sexuals 

(Fig. 12), GO classes involved in the serine/threonine protein kinase pathway, especially 

for mitogen-activated protein (MAP) kinases, were significantly enriched (Fig. 13, 

Supplemental Table 7). Among other functions (e.g. signal transmission), MAP kinases 

have been implicated in cell cycle and developmental processes and have previously 

been shown to be differentially expressed in apomictic and sexual ovules of aposporic 

Brachiaria (Rodrigues et al., 2003) and in immature inflorescences of aposporic 

Paspalum notatum (Laspina et al., 2008). In line with these results would be the 

observation that mutagenesis of cyclin-dependent kinases (i.e. the closest relatives of 

MAP kinases) in sexual reproducing plants (e.g. CYCA1;2 in the tam1 mutant in 

Arabidopsis; Magnard et al. (2001), Wang et al. (2004)) causes asynchronous PMC 

meiosis, producing elevated levels of unreduced gametes with sister chromatid 

formation. Therefore, MAP kinases could conceivably act as a part of an apo-specific 

signal cascade involved in unreduced pollen formation in apomictic Boechera, although 

our data could show only tendencies as none of the corresponding genes were 

constantly (i.e. significantly) differential expressed between all tested apomictic and all 

sexual genotypes (refer to section 4.3.1). 

The choice of a microarray containing multiple oligonucleotides (i.e. technical 

replicates) of every annotated and non-annotated gene expressed during Boechera 

flower development, together with stringent threshhold criteria such as multiple 

biological replicates (i.e. single genotypes), the collection of a specific antherhead stage 

which differentiated reduced versus unreduced PMCs, and a conservative statistical 

correction of false positives overcame the problem of genotype and tissue heterogeneity 

and drastically reduced the number of identified genes being significant differentially 

expressed between sexual and apomictic antherhead tissues. 

The microarray-based analysis of diploid sexual versus diploid apomictic Boechera 

genotypes, in conjunction with qRT-PCR-based analyses of additional genotypes, 

further reduced the field of potential candidates (e.g. Sharb0350102; Figs. 15 and 16) 

and led to the identification of BspUPG-2. Assuming all other developmental aspects of 

sexual and apomictic antherheads to be the same, the transcriptional activity of the 

BspUPG-2 locus is directly correlated with meiotic non-reduction during male 

sporogenesis. Interestingly, only the apomixis-specific duplicated locus (BspUPG-2) 

shows transcriptional activity, while the original locus (BspUPG-1), which is present in 

both sexuals and apomicts, does not (Fig. 24E). This is consistent with the “gain in 
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functions” hypothesis, which proposes a novel function for a putative apomeiosis gene 

because of the lack of recurrent apomictic mutants in sexual species (Vielle-Calzada et 

al., 1996). Although the apo-specificity of BspUPG-2 attests to its novelty, the lack of 

homologs in other species and a missing ORF typical for a protein-coding gene (Fig. 

18B) leaves the question open whether BspUPG-2 acts in a complementary fashion to 

increase the penetrance of an existing predisposition for environmentally-induced 

unreduced gamete formation in sexual genotypes (see chapter 4.2.2, sensu Aliyu et al. 

(2010)), or whether it is responsible for a completely novel pathway. 

While the specific function of BspUPG-2 with respect to unreduced pollen 

formation remains unclear, the fact that it was discovered with 21 biological replicates 

(i.e. 11 sexual and 10 apomictic genotypes) and 3 technical replicates (i.e. microarray 

probes Sharb0931225, Sharb0501554 and Sharb0690829 mapping to different regions 

of the same locus), in conjunction with qRT-PCR results which show strong 

apomeiosis-specific upregulation of BspUPG-2 in reproductive tissues, attest to its 

significance (Figs. 15 and 16). The specificity of BspUPG-2 to male apomeiosis in 

anthers is additionally supported by a lack of its expression in ovule tissues (J. M. 

Corral, pers. comm.). In this context, it is unclear why genotype ES 753 was an outlier 

(Figs. 16B and 17), despite sharing a highly-similar BspUPG-2 sequence with other 

apomictic genotypes (Fig. 23), although we suspect that genotype-specific shifts in 

anther development (as observed in other samples) may have led to sampling of pollen 

formation outside of the developmental window which characterized other genotypes. 

Besides tremendously higher expression rates in the autosomal tissue low levels of 

expression of BspUPG-2 were also detected in somatic tissues of all tested apomicts 

(Fig. 15), an observation which might reflect the 60-90% overlap of genes expressed in 

pollen with somatic tissues (Willing et al., 1988; Borges et al., 2008). 

Another feature of BspUPG-2 is its hemi- or homozygosity (Fig. 23, Supplemental 

Table 22), which reflects dominant inheritance as a proposed characteristic for an 

apomeiosis controlling locus (refer to Grossniklaus et al. (2001), Table 1). A prominent 

example for a hemizygous apomixis-linked molecular marker was previously reported 

for apomictic Pennisetum, which was evidenced by its lack of hybridization in sexual F1 

relatives (Ozias-Akins et al., 1998). A hemizygous status for BspUPG-2 could reflect an 

extended period of low to no recombination in its genomic region, as has been proposed 

for the apospory-specific genomic region in P. squamulatum (Ozias-Akins et al., 1998). 
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5.3 Transposable element-driven duplication of the UPGRADE locus  

Mapping of annotated genes from both BAC assemblies to the genomes of 

Arabidopsis (TAIR database) and a sexual B. stricta (Schranz 2007) allocated the 

original locus (Assembly 1 including BspUPG-1) to a pericentromeric, highly 

heterochromatic region (Fig. 21). We could not decipher the location of the duplicated 

locus containing BspUPG-2 due to an enriched number of gene fragments which are 

distributed across the Arabidopsis genome. One source of the enrichment of these gene 

fragments (i.e. dead-on-arrival (DOA) elements, Petrov et al. (2003)) on Assembly 2 

could be transposable elements (TEs) which are known to induce ectopic recombination 

leading to genome rearrangements (e.g. duplications, deletions and inversions). 

Consequently, their disruptive effect on gene functions (“gene-disruption model”, 

Finnegan (1992)) in addition to induction of strongly deleterious chromosome 

rearrangements (“ectopic recombination model”, Montgomery et al. (1987)) should lead 

to the elimination of TE sequences in high-recombination rate regions more quickly 

compared to TEs in regions with low-recombination rates, leading to accumulation of 

TEs in heterochromatic regions (e.g. pericentromers, Petrov et al. (2003)). Interestingly 

this is consistent with our observation of numerous TEs and TE fragments on both 

assemblies (Figs. 20B and C, 22), in addition to the allocation of the original locus 

(Assembly 1) to the pericentromeric region of chromosome At1/linkage group BstLG1 

(Schranz et al., 2007). In conjunction with the similar abundance of TEs from Gypsy-

type and En-Spm superfamilies, which insert preferentially into gene poor regions (i.e. 

heterochromatic regions, Fiston-Lavier et al. (2012)) and which are enriched in both 

assemblies compared to their abundance within the total number of Arabidopsis TEs 

(Fig. 22) we assume that both assemblies, including the original and the duplicated 

locus of BspUPG, are co-localized in the same pericentromeric region or are localized 

on different positions with similar characteristics (i.e. interstitial heterochromatic 

regions comparable to hk4S in Arabidopsis; Fransz et al. (2000)). 

In light of the data presented here, two mechanisms may have contributed to the 

formation of BspUPG-2: homeologous recombination and transposable element (TE) 

activation. Considering homeologous recombination, both nonreciprocal (HNTRs) and 

reciprocal translocations (HRT) could have led to gene fusions, although we favor the 

latter considering that HRT drives the rates of both chromosomal segment loss and 

duplication, as has been shown in B. napus (Udall et al., 2005; Nicolas et al., 2007). 

Duplication, as the fundamental event of BspUPG-2 formation is evidenced by 
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sequence comparison with both BAC clone assemblies (cp. sex-specific indels for the 

LCB1 and LCB4, Figs. 20 and 24). 

Moreover, TE sequences surrounding BspUPG-2, including three TE-related 

protein-coding genes (Fig. 20C, Supplemental Table 20), point to hybridization-

mediated TE activation and associated genome rearrangements (McClintock 1984) as 

possible drivers of the BspUPG-2 origin. The increased length of the duplicated versus 

original locus, the putative result of LTR transposons and IR-flanked insertion 

sequences (e.g. IR7; Fig. 20C) points additionally to a TE-induced origin of BspUPG-2. 

Evidence for TE-mediated gene creation has been found in plants, where Mutator-like 

DNA elements (e.g. Pack-MULES) and Helitrons (less abundant than classical LTR 

retrotransposons) produce chimeric transcripts which can evolve into functional fusion 

genes (Talbert and Chandler 1988; Yu et al., 2000; Brunner et al., 2005; Gupta et al., 

2005). Consistent with this, Mutator and Helitron repeat families are prominent in both 

BAC clone assemblies (Fig. 22). Besides Helitron and Mutator-like DNA elements, 

specific TEs of other superfamilies such as CACTA and Harbinger, have the potential of 

directly “capturing” genic sequences via readthrough events, whereby neighboring TEs 

and the encircled fragment are joined into one element (i.e. TE-driven exon shuffling, 

Long et al. (2003), Kapitonov and Jurka (2007)). Alternatevely, the BspUPG locus 

could have been duplicated via the “synthesis-dependent strand annealing” mechanism 

(SDSA), whereby neighbouring genes are used as filler DNA while invading a foreign 

DNA strand to reinitiate strand synthesis after a double strand break inside of a TE (e.g. 

in Helitrons, Gupta et al. (2005), Kapitonov and Jurka (2007), Wicker et al. (2010)). 

However, while a TE-driven duplication scenario for the origin of BspUPG-2 is 

favored, the specific involvement of TEs in the genesis of BspUPG-2 cannot be asserted 

because of “footprint” erosion through time (Bennetzen 2005) and limited sequence 

information from flanking sites. 

 

5.4 High sequence conservation and genus-wide occurence imply a selective 

advantage of BspUPG-2  

Importantly, BspUPG-2 is chimeric in structure and present together with BspUPG-

1 in apomicts, whereas sexuals host the original BspUPG-1 only (Figs. 24 and 25C). 

This observation is based on BAC sequence comparison in addition to CNV and WGS 

read distribution analyses which both demonstrate duplication of the 5`-end of LCB2 
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and the LCB1 of BspUPG-2 in apomicts, an observation which reflects two different 

processes, and which leads to the following model with respect to its generation.  

The initial process was the duplication of a locus (LCB1) which was primary non-

genic (i.e. non-genic in sexuals) and its insertion into a different genomic region (now 

referred to as Assembly 2). This event was followed by sequential integration of genes 

fragments from functional genes of other genomic regions (e.g. HDR3, RNAR, 

EFTU/EF-1A) into the 5`-end of the LCB1-attatched sequence (now LCB2), which is 

reflected in the higher copy number genomic sequence reads at the 5`-end of BspUPG-

2. We tested whether LCB2 was derived directly from parental transcripts or from 

putative duplicated variants of those parental transcripts by performing RACE-PCR and 

chromosome walking (e.g. BspHRD3, homologous to AT1G18260). Although 

BspHRD3 cDNA is conserved with AthHRD3, variation (i.e. insertions) between the 

transcript and its genomic copy, which are not caused by RNA splicing, were detected 

(Fig. 25A). The homologous fragment shared between BspUPG-2 and the genomic 

copy of BspHRD3 includes these insertions, suggesting that a nonfunctional duplicated 

variant of BspHRD3 (i.e. a pseudogene derived through duplication; Ohno (1972)) 

which is present in sexuals and apomicts, was inserted into the BspUPG-2 locus.  

Although the long-term survival of chimeric genes is described to be rare 

(Bennetzen 2005), BspUPG-2 exhibited an unexpectedly high degree of conservation in 

DNA sequence (Fig. 23) and expression between apomictic Boechera representing 

different taxa and geographic origins (Fig. 24E). In contrast, higher sequence variation 

was identified for BspUPG-1, especially at the 5`-end in sexuals (Fig. 23, Supplemental 

Tables 21 and 22). Together with the lack of intra-individual allelic variation in any 

tested Boechera genotype (refer to 4.5.1 and 5.2) these observations have a major 

implications considering that natural selection acts upon two major sources of genetic 

variation: mutations and recombination. 

They indeed could reflect an extended period of low to no recombination in the 

genomic region of BspUPG-2, similar to the apospory-specific genomic region in P. 

squamulatum, which would point to a physical location of BspUPG-2 in a 

recombinationally suppressed region. This result would also be consistent with the 

specific composition of TEs at both the original and the duplicated locus (Fig. 22). It is 

widely known that in regions of low recombination natural selection reduces 

polymorphism at linked sites because of Hill-Robertson interference (HRi, Hill and 

Robertson (1966)), which explains the influence of segregation at a second locus on the 
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chance of fixation at the first locus of a linked neutral site. But the incorporation of 

deleterious (“background selection”, Charlesworth et al. (1993)) and advantageous 

mutations (“genetic hitchhiking”, Maynard-Smith and Haigh (1974)), similarly lead to a 

positive correlation of genetic invariability at linked neutral sites with a decrease in 

recombination rate. However, considering the broad phylogeographic distribution of 

BspUPG-2, we hypothesize that the canditate gene appears rather to be under selective 

maintenance (sensu Casillas et al. (2007)), which would be consistent with its assumed 

role in unreduced pollen formation for balanced endosperm in apomictic Boechera 

(Aliyu et al., 2010). 

Taken together, we hypothesize that BspUPG-2 arose via sequential (and 

segmental) duplication-insertion events involving at least five loci, from which three 

originated from transcriptional active genes. Considering its complex chimeric 

structure, we suggest that the genesis of BspUPG-2 is associated with the recurrent 

interspecific hybridization which is highly correlated with the origins of apomictic 

Boechera (Schranz et al., 2005; Beck et al., 2011).  

 

5.5 Does BspUPG-2 have a regulatory function?  

We have shown that meiocyte production in apomictic Boechera is highly variable 

despite stable BspUPG-2 upregulation in generative tissues at the onset of meiosis and 

the formation of apomictic seeds (Figs. 9 and 15). The unexpected detection of a single 

candidate instead of multiple genes may therefore be interpreted in different ways with 

respect to its association with apomeiosis in anthers: either the locus controlling male 

apomeiosis contains a key genetic factor (e.g. BspUPG-2) with pleiotropic effects on 

other putatively essential components of unreduced pollen formation, or it contains 

several tightly linked factors, one of which is BspUPG-2, each controlling different 

aspects of unreduced pollen formation (i.e. apomeiosis). Therefore additional factors, 

including modifier genes (Bicknell et al., 2000), genetic background and/or 

environmental conditions (Nogler 1984) could explain variation in the level of 

apomictic trait expression.  

The detection of the apo-specific indel9 is one example of a potential co-regulatory 

target site in BspUPG-2, although no homologous sRNAs were detected (Fig. 23B). 

Alternatively, the four detected mRNA isoforms (i.e. potentially caused by alternative 

splicing; Figs. 17 and 18) could regulate transcript abundance (as is predicted for at 

least 25% of all alternative exons; Stamm et al. (2005)) leading to the observed 
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variation in terms of reduced and unreduced pollen formation in both facultative and 

obligate apomicts. 

The identification of an apomeiosis-associated short open reading-frame mRNA 

(sORF mRNA) and/or lncRNA is unique. Usually the identification of lncRNAs is 

difficult due to microarray designs, missing unannotated genes and the use of standard 

gene prediction programs that rely on the presence of relatively long ORFs (Zhang 

2002). Here, we used detailed bioinformatic analyses of cDNA databases, including 

coding and miRNA formation potential in conjunction with chromosome walking to 

identify the chimeric BspUPG-2. Given its chimeric structure, the novel lncRNA 

BspUPG-2 could have attained neofunctionalization in the context of apomeiosis for 

pollen development through a number of mechanisms (Kaessmann 2010), similar to the 

lncRNAs BcMF11 from Brassica campestris (Song et al., 2007; 2012) or Zm401 in 

maize (Ma et al., 2008). In addition, its tissue-specific expression pattern and 

conservation at the nucleotide level strongly supports a developmental role for the 

lncRNA BspUPG-2. Hence, BspUPG-2 could conceivably have a regulatory function 

via a homology-dependent gene silencing mechanism (HDGS, reviewed in Meyer and 

Saedler (1996)), such as posttranscriptional gene silencing of related genes in trans 

(Eamens et al., 2008), which has been found for chimeric Helitron and Pack-MULE 

RNAs in maize (Jiang et al., 2004; Morgante et al., 2005), or via the modulation of 

DNA methylation patterns, such as reported for lncRNA-like loci which are associated 

with polycomb components and histone modifications (de Lucia and Dean 2011).  

In line with this would be the observation of sequence fragments homologous to 

three different functional parental genes across the 5`-end of BspUPG-2 which 

putatively could serve as targets for HDGS (BspHRD3, RNAR and EFTU/EF-1A; Figs. 

18 and 23). Thereby, BspUPG-2 could belong to a novel class of miRNA-containing 

lncRNAs which serve as matrices (i.e. as precursor RNA) for unidentified miRNAs or 

endogenous trans acting short interfering RNAs (ta-siRNA), as for example were 

detected in vegetative developmental pathways (Peragine et al., 2004; Vazquez et al., 

2004; Hirsch et al., 2006) as well as in generative tissues (e.g. in mature pollen; Grant-

Downton et al. (2009b)). Unlike other siRNAs in plants, ta-siRNAs silence gene 

expression by acting in trans to cleave mRNAs with sequences only partially 

complementary to their own (Peragine et al., 2004). The biogenesis of ta-siRNAs 

comprises their processing from the excised intronic region of a spliced transcript, or 

from the full-length unspliced transcript with Dicer-like proteins into 21 nt long siRNAs 
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which are incorporated into a RNA-induced Silencing Complex (RISC) with the 

appropriate Argonaute protein, which binds to target transcripts which are subsequently 

converted into dsRNA via RNA-dependent RNA polymerases (Peragine et al., 2004; 

Vazquez et al., 2004; Yoshikawa et al., 2005). One prominent example of this lncRNA-

type is the pri-miR162a, whose miRNA product MIR162a putatively acts as substrates 

of DCL1 (Hirsch et al., 2006). 

In search for secondary structures from BspUPG-2 similar to those mentioned 

above, database screens for known Boechera-specific and other plant sRNAs for 

homologous sequences were unfruitful. Despite these negative results, computer 

analysis of the RNA folding probability for different window slices (i.e. 50nt to 300nt 

with step size=10nt and window delta=10nt) of the complete gene using the 

ViennaRNA package (Hofacker et al., 1994) detected several sections of BspUPG-2 

which form with high probability non-random and stable secondary structures (Fig. 19, 

Supplemental Figure 2 and Supplemental Tables 13 and 14). According to previous 

studies the minimal folding free energy index (MFEI) is an appropiate measure to 

distinguish miRNAs from other non-coding and coding RNAs, whereby 90% of 

miRNA precursors have a MFEI greater than 0.85 (Zhang et al., 2006). Interestingely, 

seven of the eight detected secondary structures have MFEIs greater than 1.07 and also 

fulfill other criterias for miRNAs (e.g. elevated A+U content, Supplemental Table 15). 

Surprisingly, these potential miRNAs were not detected in a previous screen (Amiteye 

et al., 2011), which might be due to their tissue-specific and short-term upregulation at 

the onset of male meiosis or due to shortcomings of previous analyses which often refer 

to homology-based screens, whereas BspUPG-2 demonstrated no homology to any 

known gene in close relative species. 

In how far these conserved, structured and highly expressed RNA domains could be 

functional elements that play a role in posttranscriptional regulation of target genes in 

trans remains open as most of them demonstrated only minor homologies with known 

protein-coding genes. However, the detection of a stable secondary structure in a region 

which is highly homologous to a known protein-coding gene with translation elongation 

activities during polypeptide synthesis at the ribosome and activities in signal 

transduction (i.e. npcRNA 5 similar to GTP binding Elongation factor Tu/EF-1A family 

protein; E-value=7.00E-24, GO:0003746, AT4G02930), could be a first indication for a 

HDGS function of BspUPG-2. The highly conserved eukaryotic EFTU/EF-1A is 

involved in many cellular processes in plants, and hence modulation of EFTU/EF-1A 
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activity would have tremendous effects to the translation efficieny of many tRNAs, 

which it binds in a GTP-dependent reaction to the acceptor site of ribosomes (Fu et al., 

2012). Interestingely, such modulation was observed for a homologous factor in 

Xenopus during meiotic progression, were some but not all subunits of EF-1 become 

phosphorylated by cdc2 kinase (i.e. amongst other kinases) - a metaphase promoting 

factor - during prophase to metaphase transition of meiotic cell division, resulting in an 

enhancernent of elongation activity (Bellé et al., 1990; Peters et al., 1995). It would now 

be of great interest to investigate if and how npcRNA 5 could be involved via 

interaction with EFTU/EF-1A in the regulation of protein synthesis during meiotic 

maturation of male gametes in Boechera.  

Noteworthy in this context is the observation that one of the other two sequence 

fragments of the 5`-end of BspUPG-2 is also homologous to a gene with nucleotide 

binding function (RNAR; GO:0003723), whereas the Arabidopsis homolog of 

BspHRD3 (AT1G18260) is involved in vesicle transport from the endoplasmic 

reticulum (ER) to the Golgi bodies (GO:0030433) and is associated with salt stress 

(GO:0042538). Expression of Arabidopsis homologs of all three parental genes was 

found across pollen development (Borges et al., 2008), and interestingly, greater 

abundance and development of endoplasmic reticulum, Golgi bodies, polysomes and 

mitochondrial cristae was found in unreduced compared to meiotically derived egg cells 

in mature aposporous embryo sacs of P. ciliare (Naumova and Vielle-Calzada 2001), an 

observation which was related to early egg cell maturation and the loss or truncation of 

the quiescent phase of egg cell development in apomicts. In this context an analysis of 

relative mRNA levels of the parental gene BspHRD3, which is involved in the ER to 

Golgi transport and which is actively transcribed in sexual and apomictic genotypes, 

would give further insights into its regulation and role during unreduced pollen 

formation in pseudogamous apomicts. Furthermore a functional analysis of the 

collection of BspUPG-2 npcRNAs should help us to better grasp the role of BspUPG-2 

in unreduced pollen formation. 

 To summarize, despite variability for unreduced pollen formation in apomictic 

Boechera, a single novel transcription unit (BspUPG-2) is consistently upregulated in 

apomictic flower tissues at the PMC stage. BspUPG-2 has a chimeric sequence 

structure which might reflect the interspecific hybridization history of this genus. 

Whereas many studies have focused on mutation accumulation and deregulation with 

respect to origins of apomixis elements (e.g. Tucker et al. (2003), d’Erfurth et al. 
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(2008)), the emergence of novel genes in apomicts has not been appreciated, although 

various identified apomixis-associated loci suggest species-specific inheritance of this 

trait (Grossniklaus et al., 2001) for which “gains in function” are required (Vielle-

Calzada et al., 1996). The identification of the novel apo-specific BspUPG-2 however, 

supports the HFA theory, which proposes that apomeiosis, and in a broader perspective 

apomixis, originates from hybrid-specific “genome collisions” and associated induction 

of gene duplication and TE activation (Carman 1997). How BspUPG-2 has undergone 

neofunctionalization to develop a hypothesized trans-regulatory function remains to be 

clarified. 

 

5.6 Phylogeographic distribution of BspUPG-2 

5.6.1 Correlation of BspUPG-2 with male apomeiosis on a large geographical scale 

Classification of a particular Boechera taxon as either sex or apomictic is influenced 

by sampling and quantitative variation for the trait, as demonstrated for example in 

earlier experiments where relatively few crosses per plant were assessed (Schranz et al., 

2005), or where extensive flow cytometric seed screen data were collected for relatively 

few genotypes (Aliyu et al., 2010). Furthermore, a classification based on 

morphological traits (Al-Shehbaz 2010, Kiefer 2012) is not always consistent with 

molecular phylogenies (Beilstein et al., 2006).  

The goal of this study is to shed light on a reproductive-mode based classification of 

Boechera taxa by examining the phylogeographic distribution and abundance of the 

newly characterized candidate gene (BspUPG-2) on a genus-wide and continental-wide 

scale. A correlative analysis with respect to its presence in apomictic Boechera can 

furthermore be used to infer its hypothesized importance for balanced endosperm 

formation.   

The chimeric structure of BspUPG-2, which is strictly conserved in apomicts, 

provides an excellent apo-specific polymorphism (Fig. 24) to test the candidate gene’s 

correlation with diploid and polyploid apomicts which were previously screened for 

quantitative variation for different apomixis components (Aliyu et al., 2010). The 

expected high correlation between the marker and apomixis was confirmed in diploid 

(95.24%, N=21) and triploid (88.89%, N=9) apomictic accessions (Supplemental Table 

25). Furthermore, BspUPG-2 was detected in a few sexual accession (30.23%, N=43), 

an observation which is consistent with the potential of some sexual Boechera to 

produce unreduced pollen (Kantama et al., 2007). But considering that no 
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transcriptional activity of BspUPG-2 in sexuals was detected, our working hypothesis is 

that BspUPG-2 evolved gradually (i.e. duplication, sequential insertion of foreign gene 

fragments) in a non-recombining region (e.g. pericentromere) of sexual genomes under 

little to no selection pressure. The hypothesis predicts that later recurrent hybridization 

events between sexuals not only supported the transition to apomixis through gene 

regulatory changes in the hybrid progeny (Carman 1997; Beck et al., 2011), but 

additionally activated the transcription of BspUPG-2 in apomicts, which would be 

consistent with our gene expression data. Therefore, footprints of the candidate gene 

evolution, such as gene fragments, are likely present in some sexuals and hence may 

have served as templates for the PCR-based screen and subsequent positive 

amplifications.  

Nonetheless, its high correlation with FCSS-based quantitative measurements across 

18 taxa, apomicts of varying ploidy (diploid and triploid) and phylogenetic lineages (I to 

III) support its use as a marker for analysing genus-wide apomixis frequencies. 
 

5.6.2 Ubiquitous distribution of BspUPG-2 across Boechera genus attests to its single 

origin 

A survey of 1576 accessions representing 102 taxa using BspUPG-2 as an apomixis-

specific marker demonstrated its ubiquitous abundance in all Boechera chloroplast 

haplotype lineages, including taxa of the ancient AB haplotype in addition to closely-

related genera (Figs. 26 and 27, Supplemental Tables 26 and 27). BspUPG-2 is 

apparently underrepresented in lineages IV and V, which is consistent with previous 

data showing that these Boechera are most closely related to Borodinia which exhibits 

great differences in life form, habitat preferences and morphology (Kiefer et al., 2009). 

Together, this distribution has several far-reaching implications.  

Sharbel et al. (2009) hypothesized that inter-breeding between different Boechera 

taxa led to the independent and convergent expression of apomeiosis in different 

apomictic lineages. Our results contrast this hypothesis in so far, as at least the genetic 

base for apomeiosis (i.e. for male-apomeiosis) seems not to have evolved convergently 

as the ubiquitous distribution of the unique apomeiosis-associated BspUPG-2 factor 

across all Boechera chloroplast haplotype lineages point to a single origin. Furthermore, 

the ubiquitous distribution of BspUPG-2 in all Boechera chloroplast haplotype lineages 

and approx. half of the tested haplotypes supports its hypothesized selective advantage 

for apomictic Boechera in addition to its importance for balanced endosperm formation. 
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Our marker-based analysis has provided some results which are contradictory to 

previously-published data (Kiefer and Koch 2012). For example, some taxa that were 

classified as pure sexual (Schranz et al., 2005) have now been found to contain apomicts 

(e.g. B. stricta, Fig. 27B, Supplemental Table 26), while taxa formerly considered as 

apomictic (Schranz et al., 2005; Kiefer and Koch 2012) were shown to contain sexual 

and apomictic members (e.g. B. divaricarpa, Fig. 27B, Supplemental Table 26). 

Furthermore, our marker analysis provides evidence for the existence of both sexual and 

apomictic B. microphylla (Fig. 27B), and could explain contrasting results based on the 

correlation between microsatellite heterozygozity and apomictic pollen frequencies, 

whereby highly heterozygous individuals had no apomictic pollen (Beck et al., 2011). 

The observation of wide-ranging sympatry between apomicts and sexuals (i.e. 

63.36% of all taxa with N≥5 tested accessions, Figs. 27 and 28) is consistent with 

Mogie’s hypothesis (Britton and Mogie 2001; Mogie et al., 2007), whereby the male 

function can favor long-term coexistence of sexuals and asexuals in contrast to the 

female function which is associated with the establishment of asexuality (i.e. 

reproductive assurance). 

BspUPG-2 was only detected in two single individuals of each of one species from 

close relative Boechereae genera (e.g. Polyctenium fremontii, Supplemental Tables 26 

and 27). As these results could be explained by the hypothesized presence of BspUPG-2 

gene fragments in sexual genotypes (see above) we favor a genus-specific origin over 

an origin at the root of the tribe (Fig. 30, 2). The genus-specific distribution of 

BspUPG-2 could be explained by the observation that certain germline-specific genes, 

such as has been demonstrated for gamete recognition genes, rapidly diverge as a result 

of adaptive evolution and are not conserved over species borders (Swanson and 

Vacquier 2002). The former argument is strengthened by the observation that no 

apomixis has been reported for any close relatives, and that the apomictic mechanism 

seems to differ on a species level, which was shown for various apomictic grass species  

for which different genetic loci were proposed (Grimanelli et al., 2001; Grossniklaus et 

al., 2001).  

The spatial analysis exhibited no global differences in distribution pattern (e.g. 

homogeneous versus patchy) between sexual and apomictic Boechera (Fig. 28A, B and 

E). The observed frequency differences for BspUPG-2 carriers and noncarriers at the 

two common distribution maxima can be explained by a lower abundance of BspUPG-2 

in eastern North American accessions, which resulted in decreased frequencies of long  



 

 
 

139 Discussion and Conclusions 

 
Figure 30. Putative origins of BspUPG-2. 

Phylogenetic relationships among tribes of the Brassicaceae and among genera of the tribe 

Boechera with designation of BspUPG-2 occurrence (modified from Beilstein et al. (2006)). 

Encircled numbers refer to putative origins of BspUPG-2 at the root of the tribe Boechereae 

(1) and at the root of the genus Boechera (2). 

distance pairs. The equality of spatial patterns was mirrored by similar ecological niche 

models based on similar habitats for sexual and apomictic accessions (Figs. 28A-C).  

The majority of tested WWF terestrial ecoregions is shared by apomicts and sexuals 

with similar proportions (Fig. 29). One explanation for the observed linked distribution 

of apomicts to sexuals is the growing evidence that apomixis in Boechera is the result of 

a cascade of gene regulatory changes following interspecific hybridization between 

sexual individuals (Schranz et al., 2005; Kantama et al., 2007; Beck et al., 2011), and 

hence the distributional linkage is a reflection of their parental relationships (Asker and 

Jerling 1992; Mogie 1992; Carrillo et al., 2002; Hörandl 2006). Another possible cause 

for the apparent sympatry (i.e. syntopy has not been examined here) between sexual and 

apomictic Boechera could be the impairment of the male function in apomicts, which 

can reduce the costs of sexuality and enable its invasion into asexual populations 
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(Mogie et al., 2007; Voigt et al., 2007). The molecular marker-assisted observed 

sympatry of sexual and apomictic Boechera across the North American continent (Figs. 

26, 28 and 29) is consistent with the hypothesis that hybridity, rather than polyploidy, is 

linked to the expression of the apomixis (Beck et al., 2011). In contrast, the present 

results together with other examples of long-term coexistence of sexuals and apomicts 

(e.g. T. officinale, Verduijn et al. (2004), Hörandl (2006)) are contradictory to 

previously-published data which demonstrated habitat differentiation between sexual 

and apomictic populations, such as in the R. auricomus complex (Hörandl and Paun 

2007) or Antennaria (O'Connell and Eckert 1999). As geographic parthenogenesis could 

also be expressed by contrasting microhabitats as shown for T. officinale (Verduijn et 

al., 2004), one explanation for our results could be that our use of a course-scaled 

ecological niche model (based on a 5 km2 grid) prevented the detection of subtle niche 

differences. But, assuming unbiased sampling, the former explanation is not convincing 

since only 0.06% of all calculated pairwise distances for sexuals and apomicts together 

are below the threshold of 5km distance between two accessions. Alternatively, Mogie 

et al. (2007) stated that for populations at marginal sites, the overall effect of gene flow 

between well-adapted asexual residents and maladapted sexual immigrants from 

populations at core sites (i.e. asexual pollen fertilizes sexual egg cell) increases the level 

of adaptedness of the sexual component and lowers the level of the asexual component 

to potentially result in an increase in period of coexistence. In addition, Mogie et al. 

(2007) assumed a similar effect for the opposite scenario, were asexual immigration into 

core population sites is observed and predicts an increased level of adaptedness of the 

asexual component while lowering the level of the sexual component of the same 

population. Both trends in gene flow together could also explain extented periods of 

sympatry of sexual and apomictic Boechera accessions. Finally, the diverging results 

could be explained by parental sexual Boechera accessions which continuously generate 

new asexual accessions, which would lead to younger asexual lineages relative to sexual 

lineages through neutral clonal turnover as has been shown in a model of dynamic 

equilibrium between asexual lineage generation and neutral loss (Janko et al., 2008). 

Besides the generally observed sympatry between sexuals and apomicts, the latter 

tend towards higher - although on low level - tolerance of annual temperature ranges, 

higher alitudes and lower temperatures (Figs. 28G and H, Supplemental Figure 7). In 

total, only in 9 of 20 tested environmental variables significantly differed between both 

groups (Supplemental Figure 7). The observed marginal differences in altitude and 
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prevalently in temperature-related bioclimate variables cannot be discarded, but could 

rather reflect the emergence of local niche differentiation or contrasting microhabitats 

between apomictic and sexual accessions according to a broadening of ecological 

tolerances (sensu Hörandl (2006) and (Mogie et al. (2007)), rather than being historical 

carry-overs of an established geographical parthenogenesis as proposed for other 

species (Bierzychudek 1985; de Kovel and de Jong 2000; Hörandl and Paun 2007), 

which is also consistent with the relatively young age of the genus (Koch et al., 2001; 

Dobeš et al., 2004a; Beilstein et al., 2006; Kiefer et al., 2009; Kiefer and Koch 2012). 

Considering the latter assumption in conjunction with polyploidization and its 

disruptive consequences for the male function in apomicts, both would explain the 

observed distribution pattern in which the ranges of sexuals coincides for the most part 

with that of apomicts (Mogie et al., 2007). 

An interesting aspect thereby is that sexuals occupy extreme altitudes whereas 

apomicts tend to higher altitudes in general (Fig. 28G). Similar observations were made 

with subnival to nival plants of the European Alps (Hörandl et al., 2011), in addition to 

hypotheses which revealed that apomixis turns out to be very rare in plants at extremely 

high elevations declining from high to very high altitudes (~1800 to 2900m; Gustafsson 

(1952; 1953)). It is speculated that the evolutionary advantages of gametophytic 

apomixis for colonization, such as pollinator-independency (i.e. reduced pollinator 

activities caused by unfavorable weather conditions in high altitudes, McCall and 

Primack (1992)) and rapid development, are not strong enough to establish apomixis 

frequently at extreme elevations and hence other strategies, such as facultative selfing, 

are functionally easier to establish (Hörandl 2006; Hörandl et al., 2011). 

Nonetheless, our results based on ecological niche modeling should be interpreted 

with caution as they often miss environmental variables (e.g. solar radiation, soil 

characteristics), and are prone to putative sampling bias (i.e. bias through missing 100% 

penetrance of the molecular marker BspUPG-2 in apomicts in addition to low 

frequencies in sexuals) or low spatial and temporal resolution of the datasets.  
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5.7 Final remarks 

This study provides a detailed analysis of the first candidate gene reported for 

unreduced pollen formation in Boechera using a broad variety of currently available 

procedures and resources which will also enable the rapid discovery of more candidate 

genes towards the improvement of crop plants. 

We present an apomeiosis candidate gene which fulfills most of the previously 

proposed criteria for the genetic control of apomixis components. BspUPG-2 is only 

present in apomictic Boechera, and its transcript is highly abundant at the onset of male 

meiosis in apomicts, which together imply that it is a “gain in function” factor (Vielle-

Calzada et al., 1996; Grimanelli et al., 2001). BspUPG-2 is putatively located in a non-

recombining region were it evolved in a stepwise fashion (e.g. duplication, sequential 

insertion of foreign gene fragments, exonization), an observation which was also made 

for apomeiotic loci in other aposporous (Ozias-Akins et al., 1998) and diplosporous 

apomicts (Noyes and Rieseberg 2000). The structure and putative genesis of BspUPG-2 

reflect molecular signatures of apomictic ovule transcriptomes which implicated both 

hybridization and gene duplication in the switch from sexuality to apomixis (Sharbel et 

al., 2009). Comparable to other known apomixis candidate factors, BspUPG-2 is likely 

genus-specific, and its homo- or hemizygous status in addition to its presence in 

obligate and facultative apomicts attests to its proposed dominant genetic control of 

apomixis (Grossniklaus et al., 2001). Furthermore, the chimeric appearance of 

BspUPG-2, its high abundance in both diploid and tripoid apomicts and the sympatric 

occurrence of most of sexual and apomictic Boechera is in agreement with the 

hypothesis that the hybrid constitution of apomictic lineages, rather than polyploidy 

causes the expression of the apomixis (Bicknell & Koltunow, 2004).  

The detailed analyses of BspUPG-2 point to a complex regulatory network for 

unreduced pollen formation, which is consistent with previous reports which emphasize 

the role of long non-coding mRNAs (Ansaldi et al., 2000) and miRNAs (Olmedo-

Monfil et al., 2010; Amiteye et al., 2011) in the control of gamete formation, and 

illustrates the importance of novel pathways for regulation of apomixis components. 

Nonetheless, its detailed contribution to apomixis remains to be elucidated. In future 

studies we will characterize the molecular function and putative interaction of BspUPG-

2 with target transcripts or proteins using biochemical assays, such as the 

electromobility shift assay (EMSA) and in vitro-expression studies (e.g. in wheat 

germline systems). To further advance the study of the contribution of BspUPG-2 to 
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unreduced pollen formation transformation into sexual Boechera and crop species in 

parallel to knockdown experiments in apomictic Boechera will be assessed. 

A better understanding of the molecular mechanism for unreduced pollen formation 

will be vital in our attempt to engineer apomictic crops, by stably expressing all 

components of apomixis in crop plants, including a stable endosperm formation (c.f. 

Birchler (1993)). In this regard the identification of BspUPG-2 is a major step forward 

to learn more about the genomic history of apomicts and the putative important 

regulatory roles of mRNA-like non-protein-coding RNAs in gametophytic apomixis.
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