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Abstract 

The research field of functional magnetic resonance imaging (fMRI) has made possible a 

remarkable progress in the understanding of the human brain enabling neuroscientists to study 

spatio-temporal alterations in the healthy and the diseased brain. While current theories of 

schizophrenia stress the critical role that plays aberrant connectivity among brain regions in major 

psychiatric disorders, other theories point towards the crucial role that plays functional excitation-

inhibition (E-I) balance within the neural microcircuitry. Indeed, recent neuroscientific research has 

revealed increasing evidence that taking functional brain connectivity into account is essential to 

understand how the human brain works. Particularly, when trying to understand the brain pathology 

of schizophrenia, it becomes mandatory to study the connectivity among brain regions. The 

connection between the dorsolateral prefrontal cortex (DLPFC) and the hippocampal formation (HF) 

during working memory (WM) has been found to be increased in carriers of genetic risk variants for 

schizophrenia and schizophrenic patients. However, less is known about causality, i.e. which region 

drives the altered connection. Stochastic dynamic causal modelling (sDCM) is a novel mathematical 

algorithm for studying causal connectivity from fMRI data among higher cognitive brain regions. In 

this study, we focus on identifying alterations on genetic risk carriers and schizophrenia patients 

from the prefrontal-hippocampal network estimated with sDCM. We strive on giving a plausible 

biological interpretation to the sDCM parameter estimates by linking the concepts of causal 

connectivity and functional (E-I) balance. Furthermore, we ask whether sDCM parameter estimates 

contain sufficiently rich information to predict behavior and how these alterations on the prefrontal-

hippocampal network have an impact on performance and reaction time. The final goal of this study 

is to describe how genetic risk variants for schizophrenia contribute to the phenotype expressed in 

patients in relation to the underlying neurobiology and behavior and thus help identifying potential 

blanks for the development of effective treatments. 
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Zusammenfassung 

Die Forschung mittels funktioneller Magnetresonanztomographie (fMRT) hat wesentlich zum 

Verständnis des menschlichen Gehirns beigetragen, indem sie den Neurowissenschaftlern das 

Erforschen  temporär- räumlicher Veränderungen sowohl im gesunden als auch im erkrankten Gehirn 

ermöglicht. Während aktuelle pathophysiologische Theorien der Schizophrenie den Veränderungen 

der Konnektivität innerhalb der Hirnregionen eine wesentliche Rolle zuschreiben, betonen andere 

Theorien die Bedeutung der funktionellen Balance zwischen Excitation und Inhibition (E-I) in 

neuronalen Mikroschaltkreisen. In der Tat zeigen die jüngsten neurowissenschaftlichen 

Forschungsergebnisse, welchen wichtigen Beitrag die Konnektivität zwischen Hirnregionen zum 

Verständnis der Arbeitsweise des gesunden und auch des erkrankten Gehirn leistet. Insbesondere für 

das Verständnis von pathologischen veränderten Hirnfunktionen bei der Schizophrenie scheint die 

Berücksichtigung der Konnektivität unabdingbar. So wurde eine verstärkte Konnektivität zwischen 

dem dorsolateralen präfrontalen Kortex (DLPFC) und der Hippocampusformation (HF) sowohl bei 

Trägern genetischer Risikovarianten als auch bei Schizophrenie-Patienten während der Bearbeitung 

von Arbeitsgedächtnisaufgaben (working memory, WM) entdeckt. Trotzdem bleibt vieles in Bezug 

auf die Kausalität unklar. Zum Beispiel bleibt die Frage offen, welche Region für die verstärkte 

Konnektivität verantwortlich ist. Moderne Ansätze wie das stochastic dynamic causal modelling 

(sDCM) nutzen neue mathematische Algorithmen zur Erforschung kausaler Konnektivität zwischen 

Hirnregionen auf der Basis von fMRT-Daten. Fokus dieser Studie ist die Identifizierung von 

Veränderungen im präfrontal-hippocampalen Netzwerk bei Trägern genetischer Risikovarianten und 

Schizophrenie-Patienten mittels sDCM. Anschließend wird versucht, die mittels sDCM geschätzten 

Parameter auf neurobiologischer Ebene zu erklären, indem die Konzepte der kausalen Konnektivität 

und der funktionellen Balance (E-I) verknüpft werden. Weiterhin wird untersucht, ob die durch sDCM 

geschätzten Parameter genügend Informationen beinhalten, um Vorhersagen über das Verhalten der 

Probanden treffen zu können und inwiefern Veränderungen im präfrontalen-hippocampalen 

Netzwerk einen Einfluss auf die Leistung und die Reaktionszeit während der Ausführung einer 

Arbeitsgedächtnis-Aufgabe haben. Das Endziel dieser Studie besteht darin, unter Einbeziehung der 

zugrundeliegenden Neurobiologie und des Verhaltens, besser zu verstehen, wie genetische 

Risikovarianten zum Phänotyp der Schizophrenie beitragen und dadurch potenzielle Ansatzpunkte 

für neue Therapiemöglichkeiten zu identifizieren. 
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Chapter 1: Introduction 

“Whether you think you can or whether you think you can’t, you’re right” 
Henry Ford 

1.1. Background of the problem 

The main goal of neuroscience is the better understanding of how the brain works. This can be 

performed at very different description levels, from the molecular level up to the system level. 

Functional neuroimaging is a technique that describes brain function at the system level. The 

research framework presented here uses neuroimaging methods to identify the causal dynamics 

within a particular macroscopic system: the prefrontal-hippocampal network, which is known to play 

a fundamental role in the pathophysiology of one of the most severe mental disorders: 

schizophrenia. 

The next section will cover the research themes that are relevant for understanding this 

dissertation. This is not meant to be an exhaustive review of the themes, but it will pinpoint the basic 

research assumptions of this study. This literature review introduces the three main aspects of the 

research problem: functional neuroimaging, schizophrenia, and genetic studies. 

1.1.1. Introduction to functional neuroimaging: measuring effective connectivity and 

functional excitation-inhibition (E-I) balance in fMRI 

In the last decades, functional neuroimaging has made possible a remarkable progress in the 

understanding of the human brain enabling neuroscientists to study spatio-temporal alterations in 

the healthy and the diseased brain as a function of various stimuli. During these years, researchers 

have brought into the field of functional neuroimaging a large number of mathematical concepts i.e. 

functional and effective connectivity, with the purpose of addressing some of the issues in 

neuroscience i.e. functional organization of the brain. 

Functional neuroimaging techniques significantly evolved during this process. The current state of 

non-invasive functional neuroimaging techniques has been classified according to underlying 

hemodynamic and electrophysiological principles. Hemodynamic principles concern the measure of 

biological signals generated by the cardiovascular system. The currently available functional 

neuroimaging techniques based on hemodynamic principles are positron emission tomography (PET) 

or single-photon emission computed tomography (SPECT), functional magnetic resonance imaging 

(fMRI), and near-infrared spectroscopy (NIRS). Electrophysiological principles concern the measure of 

electrical signals emanating from the central nervous system. The currently available 
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electrophysiological techniques include electroencephalography (EEG), magnetoencephalography 

(MEG), and transcranial magnetic stimulation (TMS) (Shibasaki, 2008). 

Among these functional imaging techniques, fMRI measures the blood-oxygenation-level-

dependent (BOLD) signal correlated to neural activity in the brain during perceptual and higher-

cognitive tasks. The first successful fMRI study was published in Science Journal by (Belliveau et al., 

1991). This new MRI technique was developed for quantitative imaging of cerebral hemodynamics, 

enabling for measuring the regional cerebral blood volume during both resting and task states by 

using a visual stimulus paradigm. The study showed the first magnetic resonance maps of human 

task activation. During photic stimulation, increases in cerebral blood volume were reported in the 

primary visual cortex (32 ± 10 percent, n = 7 subjects).  

Nowadays, BOLD-based fMRI is a powerful technique for studying brain function not only locally 

but also at the systems level. The field of fMRI became central in neuroimaging research due to its 

relatively low invasiveness, wide availability, and absence of radiation exposure. More specifically, 

the field of fMRI for studying cognitive processes to examine how brain function supports mental 

activities literally exploded. While the first fMRI study exclusively focused on localized brain 

activation, soon after its publication the first attempts were made to identify functional networks in 

the brain by means of fMRI.  

A landmark study in this context was a methodological review article published in Human Brain 

Mapping Journal by (Friston, 1994). Friston reviewed the primary difference between functional and 

effective connectivity and their role in addressing various aspects of functional brain organization. 

These concepts were initially formulated in the analysis of separable spike trains acquired from 

multiunit recordings (Aertsen and Preissl, 1991; Gerstein et al., 1989; Gerstein and Perkel, 1969; 

Gochin et al., 1991). At this microscopic level, correlations arise from stimulus-locked transients, 

driven by a common afferent input, or oscillations induced by input stimuli, mediated by synaptic 

connections (Gerstein et al., 1989). Thus, in this view, functional connectivity is the analysis about the 

observed covariations but it does not provide any direct insight in the origin of such observed 

variability. Thus, the focus has been displaced from functional connectivity studies, concerning static 

interactions among nodes to effective connectivity studies, encompassing dynamically distributed 

brain connectivity. Effective connectivity closely resembles the intuitive notion of connection, and 

can be defined as the influence on neural system exerts over another, mediated by synaptic efficacy 

or at the systems level. For instance, in electrophysiology, there is a close relationship between 

effective connectivity and synaptic efficacy (Gerstein et al., 1989). Moreover, it has also been 

proposed in the literature that effective connectivity in electrophysiology is defined as the simplest 
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time-dependent circuit that replicates the observed temporal interactions between the recorded 

neurons (Aertsen and Preissl, 1991). 

Recently developed data analysis techniques where used for measuring effective connectivity in 

the human brain using fMRI data. A relevant study within this context is a methodological article 

published in NeuroImage Journal by (Friston et al., 2003). In this article, the authors introduced 

Dynamical Causal Modelling (DCM) for the first time. They developed this approach for the effective 

connectivity analysis using fMRI responses and experimentally designed inputs. The ensuing 

framework allowed one to make inferences about, the connectivity among brain regions and how 

these connectivity estimates are influenced by changes in experimental context. 

DCMs are state space models formulated as ordinary differential equations. The basic idea is to 

implement a plausible neuronal model of interacting brain areas. This neuronal model is followed by 

a hemodynamic forward model that describes how neuronal or synaptic activity is transformed into 

observed fMRI responses. This hierarchical model consisting of two layers enables the parameters of 

the neuronal model (i.e., effective connectivity estimates) to be estimated from measured fMRI data. 

By using a bilinear approximation to the dynamics of interactions among neuronal populations, the 

parameter estimates of the implicit causal model reduce to three different sets. The three different 

sets of parameters are: (1) parameters that mediate intrinsic coupling among brain areas (intrinsic 

parameters), (2) bilinear parameters that allow experimentally designed inputs to influence the 

connectivity among brain areas (modulatory parameters), and (3) parameters that mediate the 

influence of experimentally designed inputs on brain areas (extrinsic parameters or driving inputs). 

The estimation proceeds in a Bayesian framework given known, deterministic inputs and the 

observed responses of the brain system. 

DCM represented a completely different focus from existing approaches to effective connectivity: 

It uses a more plausible generative model of measured brain responses and takes into consideration 

their nonlinear and dynamic nature. Such nonlinear models of neural ensemble dynamics have been 

used to infer on effective connectivity between brain regions in multiple studies. 

During last years, DCMs for fMRI responses have been limited largely to deterministic DCMs, 

where uncertainty about the states is ignored (Friston et al., 2003). These models assume that there 

are no random variations in the hidden neuronal and physiological states that mediate the effects of 

known experimental inputs on observed fMRI data. However, many studies suggested that 

physiological noise due to stochastic fluctuations in neuronal and vascular responses need to be 

taken into consideration (Biswal et al., 1995; Kruger and Glover, 2001; Riera et al., 2004). For 

instance, working memory (WM) tasks activate or deactivate regions that are susceptible to elicit 
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task-independent activity i.e. regardless the specific task. Recently, there has been an increasing 

interest in estimating both the parameters and hidden states of DCMs based upon differential 

equations that include state-noise (Daunizeau et al., 2009; Friston et al., 2008). 

A relevant study within this context is a methodological article published in NeuroImage Journal 

by (Friston et al., 2011). In this article, the authors introduced stochastic DCM (sDCM) for the first 

time. The work focuses on discovering the functional integration of brain systems using fMRI time 

series. The algorithm enables to overcome Markovian assumptions – which were implausible – about 

the serial independence of random fluctuations. It can be applied to experimentally evoked 

responses (task state) or endogenous activity (resting state) fMRI studies. The authors envisaged that 

this novel mathematical algorithm would provide a meaningful complement to current functional 

connectivity analyses for both task and resting-state studies. This work established the 

methodological framework of the present study (see Section 1.4). 

Although functional and effective connectivity can be cited at a conceptual level in both 

neuroimaging and electrophysiology techniques they differ essentially at a practical level. This is 

because the time-scales and nature of these neurophysiological measurements are very different 

(seconds vs. milliseconds and hemodynamic vs. spike trains). Nonetheless, new emerging studies 

have started to link findings between fMRI and electrophysiological techniques to locate specific 

brain functions (Logothetis and Wandell, 2004).  

An influential study within this context is a review article published in Nature Journal by 

(Logothetis, 2008). In this article, the author provided an overview of the actual state of fMRI, and 

draw on fMRI and physiological data to describe the current understanding of the hemodynamic 

signals and the limitations they impose on fMRI data interpretation. As displayed in Figure 1.1.1.1, 

the author depicted a scheme of a canonical cerebral microcircuit and described the four different 

types of excitation-inhibition (E-I) changes and their plausible effect on the hemodynamic responses. 
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Figure 1.1.1.1. Principles of excitation-inhibition circuits. Figure courtesy of (Logothetis, 2008) 

This canonical microcircuit comprises three different neuronal populations: supragranular-

granular and infragranular glutamatergic spiny neurons (Glu cells), and GABAergic cells. All neuronal 

populations interact with each other and potential proportional and opposite-direction changes of 

cortical (E-I) activity are likely to strongly affect the hemodynamic responses. A very simple 

explanation of the fMRI responses assumes that observed increases of the BOLD signal occurs as a 

result of increases in the excitatory activity, and observed decreases of the BOLD signal occurs as a 

result of decreases in the excitatory conductances.  

However, increases of the BOLD signal may also occur as a result of balanced proportional 

increases in the excitatory and inhibitory conductances, but without a net excitatory activity. 

Furthermore, an increase in recurrent inhibition with concomitant decreases in excitation may result 

in reduction of the BOLD signal, but the response to this question seems to be dependent on the 

specific brain region that is inhibited.  

The author concluded that the limitations of fMRI are caused by the structural and functional 

brain organization, and these limitations are improbable to be solved in the future by improving the 

power of the scanners. Furthermore, the author stated that the fMRI signal may potentially lead to 

confusion about excitation and inhibition and therefore, complicates the precise definition of 

functional (E-I) balance. 

Once introduced the elements of effective connectivity analyses and functional (E-I) balance in 

BOLD-fMRI, the next section will introduce the disconnection hypothesis and dysfunctional 

excitation-inhibition (E-I) balance in schizophrenia. 
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1.1.2. Introduction to schizophrenia: disconnection hypothesis and dysfunctional 

excitation-inhibition (E-I) balance 

Schizophrenia is a severe mental disease characterized by withdrawal from reality, illogical 

patterns of thinking, hallucinations, and delusions, and accompanied in varying degrees by other 

behavioral, emotional, or cognitive deficits. The notion that schizophrenia is not caused by localized 

pathophysiology of brain areas, but arises from pathophysiological connectivity among brain regions, 

has been an influential thought. In addition to this idea, other pathophysiological theories point 

towards the critical role that plays functional excitation-inhibition (E-I) balance within the neural 

microcircuitry. It seems that schizophrenia results from abnormal regulation of functional (E-I) 

balance in neocortical networks. 

Over the last century, disrupted interactions among brain areas have been proposed to underlie 

schizophrenia. This pathophysiological theory was originally presented by (Wernicke, 1906), who 

postulated that schizophrenia arises from anatomical disruption of association fiber tracts, and 

reformulated five years later in terms of psychopathology by (Bleuler, 1911), who coined the term 

schizophrenia for the first time to indicate the “splitting” of different mental domains. In the last 

decades, this influential theme re-emerged in neurophysiologic and functional neuroimaging studies 

revealing aberrant distributed activity and functional connectivity in schizophrenia (Hoffman et al., 

1991; Volkow et al., 1988; Weinberger et al., 1992). 

An influential study on this re-emerging topic is the article published in Clinical Neuroscience 

Journal by (Friston and Frith, 1995). In this PET study of language in 6 healthy subjects and 3 groups 

of 6 schizophrenic subjects, scientists reviewed the evidence for pathophysiological changes in the 

prefrontal and temporal cortices of schizophrenia patients and abnormal integration of the 

physiological dynamics between these brain regions. The main message of this study is that although 

local brain abnormalities, i.e., DLPFC, may be a sufficient explanation for some signs of schizophrenia, 

they do not provide a convincing explication for some symptoms such as hallucinations and 

delusions. These symptoms are better understood at a physiological level as altered functional 

connectivity and at a cognitive level as impairment to integrate perception and action. Their findings 

revealing consistently reduced prefronto-temporal connectivity in patients in comparison to controls 

indicate that altered prefrontal-temporal coupling is a well described endophenotype for 

schizophrenia. 

In an attempt to explain these observations, (Friston, 1998) reviewed evidence for the 

disconnection hypothesis and presented a mechanistic model of how dysfunctional brain integration 
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among neuronal populations might result. This hypothesis suggests that psychosis can be understood 

as an impaired control of neuronal plasticity that manifests as inappropriate functional integration of 

brain systems. The mechanistic model is based on the crucial role that plays synaptic plasticity in 

shaping the connectivity dynamics that underlie human brain function. The assumption is that the 

pathophysiology is expressed at the level of modulation of associative plasticity in those neural 

systems in charge of memory and emotional learning, in the post-natal period. This modulation is 

mediated by ascending neurotransmitter systems that: (1) have been associated with schizophrenia; 

and (2) are known to be implicated in consolidating synaptic connections during learning. 

Indeed, there is increasing evidence that analysing functional brain connectivity is essential to 

elucidate how the human brain works (Biswal et al., 2010). Particularly, when trying to understand 

brain pathology in major psychiatric disorders like schizophrenia, it is mandatory to study the 

connectivity between different brain regions (Fornito et al., 2012; Friston and Frith, 1995; Stephan et 

al., 2009a). 

More specifically, the prefrontal-hippocampal network has been found to play a crucial role in 

pathophysiological theories of schizophrenia (Barch, 2005; Fletcher, 1998; Weinberger et al., 1992), 

and their connectivity has been studied in numerous studies on the disorder. Impaired PFC-HF 

connectivity has been described in mouse models of schizophrenia (Sigurdsson et al., 2010) as well as 

in individuals with increased psychosis risk and in first episode patients (Benetti et al., 2009; Crossley 

et al., 2009). In schizophrenia patients, altered PFC-HF coupling was found both under resting 

conditions (Zhou et al., 2007; Zhou et al., 2008) and during WM tasks (Crossley et al., 2009; Wolf et 

al., 2009). 

WM concerns the maintenace and on-line manipulation of information; and is an essential 

component of executive control for guiding behavior. WM processes temporary store contents; 

which are continually updated, scanned and manipulated in response to immediate processing 

demands (Baddeley, 1992). WM deficits in schizophrenia have been consistently described (Forbes et 

al., 2009; Lee and Park, 2005), they are known to be resilent to the treatment and thus may underlie 

many of the cognitive deficits and symptoms in the disorder (Silver et al., 2003). These deficits cause 

longer reaction time and less accurate performance in schizophrenic subjects, especially when 

memory load increases (Goldman-Rakic, 1994; He et al., 2012; Manoach et al., 1999; Park and 

Holzman, 1992). 

A landmark study within the context of prefrontal-hippocampal connectivity and WM is the article 

published in Archives of General Psychiatry Journal by (Meyer-Lindenberg et al., 2005). In this PET 

study of WM in 22 medication-free schizophrenic subjects and 22 performance-, age-, and sex-
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matched healthy volunteers, the researchers investigated the functional coupling between the HF 

and the DLPFC in the healthy and the diseased brain. Their analysis indicated a specific alteration of 

HF-DLPFC functional connectivity. The authors demonstrated an unmodulated persistence of 

coupling between these brain areas during a working memory load condition; which occurred in 

schizophrenia patients but not in healthy subjects. Figure 1.1.2.1 illustrates their findings by showing 

a significant coupling during both the 2-Back and 0-Back tasks in patients; which in controls was only 

present during the 0-Back task. 

 
Figure 1.1.2.1. Mean values for covariation with left HF in the right DLPFC. Figure courtesy of (Meyer-

Lindenberg et al., 2005) 

This discovery suggested a plausible causal mechanism of the development of the 

pathophysiology of schizophrenia from HF dysfunction. Such a sequence of events would lead from 

an early developmental insult to the HF via impairment of the HF-DLPFC connectivity and induced 

maturational deficits in DLPFC circuitry to DLPFC dysfunction, which accounts for the core 

neuropsychology of the disease and is related to dopaminergic disinhibition. Therefore, a mechanism 

by which HF dysfunction may manifest in schizophrenia is by inappropriate reciprocal connectivity 

with the DLPFC. 

This influential functional neuroimaging study is one of the mainstays of our research together 

with (Esslinger et al., 2009; Meyer-Lindenberg and Weinberger, 2006). It is worth highlighting that 

while some functional interactions between prefrontal and temporal cortices seem to be reduced in 

schizophrenic subjects (Friston and Frith, 1995), other functional interactions between temporal and 

prefrontal regions may be abnormally increased (Meyer-Lindenberg et al., 2005). To avoid any 

potential confusion, neuroscientists started to use the term “dysconnectivity” to describe these 

observations. This term emphasizes the idea that there is “abnormal” (rather than decreased) 

functional integration among brain areas in the disorder. 
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More recently, in a literature review article, (Stephan et al., 2006) reviewed the evidence for 

current theories of schizophrenia stressing the crucial role of abnormal connectivity among brain 

regions and focusing on the modulation of synaptic plasticity as a plausible mechanistic account for 

explaining how dysconnectivity arises. In particular, they discussed how dysconnectivity among brain 

regions associated with schizophrenia (Friston and Frith, 1995; Meyer-Lindenberg et al., 2005), could 

result from altered modulation of (NMDA)-dependent plasticity by other neurotransmitter systems; 

and further examined current discoveries provided by recent genome-wide linkage and allelic 

association studies supporting abnormal synaptic plasticity in schizophrenia (Harrison and 

Weinberger, 2005).  

As displayed in Figure 1.1.2.2, they depicted a simplified diagram of the hierarchical relation 

among synaptic strength, synaptic plasticity and its modulation at glutamatergic synapses. The 

efficacy of a glutamatergic synapse largely depends on the number and functional state of 

postsynaptic AMPARs. The AMPARs are quickly inserted into and removed from the cell membrane 

(Malinow and Malenka, 2002; Montgomery and Madison, 2004). Both the trafficking and state-

dynamics of AMPARs are mostly under the control of NMDARs. The function of NMDARs is affected 

by mGluRs as well as by various neurotransmitters, including acetylcholine (ACh), norepinephrine 

(NE), serotonine (5-HT), and dopamine (DA) (Gu, 2002). Some of these neurotransmitters, i.e. 

dopamine (Wolf et al., 2003) and acetylcholine (Massey et al., 2001), can also influence AMPAR 

function independently of NMDARs. Six out of seven candidate genes for schizophrenia identified by 

(Harrison and Weinberger, 2005), encode proteins that play a role in synaptic plasticity and its 

modulation. It should be stressed that the vast majority of these candidate genes affect NMDAR 

function directly.  

 
Figure 1.1.2.2. Simplified diagram of the hierarchical relation among synaptic strength, synaptic plasticity, and 

its modulation at glutamatergic synapses. Figure courtesy of (Stephan et al., 2006) 

 



Of Genes and Patients: Stochastic Dynamic Causal Modelling of the Prefrontal-Hippocampal Network  

 

David Bernal Casas  20 

To conclude the article, (Stephan et al., 2006) illustrated the implication of the dysconnectivity 

hypothesis for functional neuroimaging studies reviewing recent data analysis techniques for 

measuring plasticity in the human brain using fMRI and EEG. The authors predicted that theoretical 

and causal models of brain responses for these data modalities, i.e. DCM, will potentially provide a 

mechanistic understanding of synaptic plasticity in schizophrenia. 

In addition to these pathophysiological theories of schizophrenia highlighting the crucial role of 

abnormal connectivity among brain regions, other pathophysiological theories point towards the 

crucial role that plays functional (E-I) balance within the neural microcircuitry. Abnormal regulation 

of (E-I) balance in neocortical networks seems to underlie severe neuronal disorders including 

schizophrenia. This concept will serve as a guide for the discussion of our research findings.   

A relevant article within this context is a literature review paper published in Frontiers In 

Molecular Neuroscience Journal by (Kehrer et al., 2008). The main message of this review is that the 

fundamental neurotransmitter pathology of schizophrenia remains poorly understood, despite 

tremendous advances over the last decades in discovering neurochemical and pathophysiological 

abnormalities in the disorder. The researchers stated that originally the dopamine/serotonin 

hypothesis supported most of the neurochemical research in schizophrenia; however, in the last 

years, the focus has turned to the glutamate system, the major excitatory neurotransmitter in the 

central nervous system, and towards the concept of functional (E-I) imbalance at the network level in 

specific brain areas associated with schizophrenia. Recent findings suggesting a crucial role for the 

NMDA-receptor in the aetiology of the disorder have led to the NMDA-hypofunction model opening 

a research field which allows study the disease in vitro at the cellular and network level. The 

researchers review evidence that changes in the (E-I) balance within the NMDA-hypofunction model 

leads to alterations in network behaviors, particularly in oscillatory activity within the gamma 

frequency band. 

Despite all these findings on the disconnection hypothesis and dysfunctional excitation-inhibition 

(E-I) balance, we do not know what causes some individuals to develop this severe mental disorder 

and is still a major challenge. Indeed, recent studies report a robust evidence of a strong genetic 

component involved in the development of the disease. Thus, the next section will introduce some 

genetic mechanisms of dysconnectivity in schizophrenia. 
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1.1.3. Introduction to genetic studies: genetic mechanisms of dysconnectivity and 

dysfunctional excitation-inhibition (E-I) balance in schizophrenia 

There is overwhelming evidence of a strong genetic influence to develop schizophrenia; 

nonetheless, genes alone do not completely explain the disease. In fact, a series of studies suggest 

that genes do not cause schizophrenia directly, but do make a person vulnerable to developing the 

disorder, as will be discussed in short. 

The frequency of schizophrenia in the general population is less than 1%. However, being related 

to someone with schizophrenia extremely increases the risk of developing the disorder. For instance, 

if your sibling has the illness your chance of having schizophrenia is 9%. If your identical twin has 

schizophrenia, you have a 28% likelihood of developing the disease. If both of your parents have the 

illness, you have a 36% chance of developing the disorder. However, genes alone do not cause the 

disease. If they did, then identical twins, who share virtually the same genetic code, would have close 

to 100% likelihood of sharing the illness, rather than 28%.  

Recently, significant risk genes for psychotic disorders have been discovered affording an 

excellent opportunity to establish neural mechanisms linked to genetic risk variants for 

schizophrenia. A landmark study within this context is an opinion article published in Nature Journal 

by (Meyer-Lindenberg and Weinberger, 2006). The researchers illustrated recent progress on linking 

genes to structural and functional variation in neural systems related to cognition and emotion, using 

imaging genetics as an example. They proposed the intermediate phenotype as a meaningful 

strategy for describing the brain systems affected by genetic risk variants to characterize 

quantitatively mechanistic aspects of brain function involved in mental disorders. The main 

hypothesis of the intermediate phenotype strategy is that gene effects are a more direct effect of 

genetic variation at the level of neural systems than is complex behavior, and will reveal association 

in genetic risk carriers even if the carriers do not show clinical symptoms.  

As displayed in Figure 1.1.3.1, many genetic risk associations to brain-based phenotypes are even 

observed in healthy subjects. To the significant degree that susceptibility genes contribute to 

psychiatric risk, this approach offers a potential bottom-up strategy to discover biologically 

meaningful knowledge about unknown mechanisms. Therefore, imaging genetics becomes a 

guideline to the discovery of neural systems that translates genetic effects into behavior. 
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Figure 1.1.3.1. Intermediate phenotype tools for gene discovery versus neural mechanism characterization. 

Figure courtesy of (Meyer-Lindenberg and Weinberger, 2006) 

Figure 1.1.3.1 illustrates the intermediate phenotype strategy by showing two different 

approaches for the detection of genetic risk variants linked to mental disorders: a) In the gene 

discovery approach, behavioral or brain systems phenotypes are used to diminish genetic complexity 

and increase penetrance to discover genes involved in mental disorders. b) In the neural mechanism 

approach, risk genes known to be associated with mental disorders or behavioral traits are used to 

identify neural mechanisms mediating their complex emergent phenotypic associations, implicating 

these mechanisms in the mental disorders to which they have been related. 

This excellent opinion article is one the mainstays of our research together with (Esslinger et al., 

2009; Meyer-Lindenberg et al., 2005), since in our study we adopted the neural mechanism 

characterization approach. The review of the literature continues with genome-wide association 

studies (GWAS) of schizophrenia. 

GWAS have emerged as a new approach for investigating the genetic basis of schizophrenia. 

Recently, in a GWAS of schizophrenia, (O'Donovan et al., 2008) discovered the single-nucleotide 

polymorphism (SNP) rs1344706, in intron 2 of ZNF804A on chromosome 2q32.1, a gene coding for a 

protein of unknown function but potential gene regulatory ability, to be one of the most compelling 

candidate SNPs for schizophrenia. Their GWA cases (Table 1.1.3.1; Combined UK samples, 642 cases, 

2937 controls) were drawn meeting criteria for schizophrenia. In a first replication sample (Table 

1.1.3.1; Replication 1, 1664 cases, 3541 controls), they replicated the association observed in the 

GWA sample for 6 of the 12 SNPs. In a second replication sample, they did genotype these 6 SNPs 
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(Table 1.1.3.1; Replication 2, 4143 cases, 6515 controls). The full replication dataset (Table 1.1.3.1; 

Replication 1 + 2) provided strong independent support for schizophrenia susceptibility variants at 

2q32.1 in ZNF804A (p = 9.25 × 10-5). Finally, they combined the data across all samples (Table 1.1.3.1; 

Meta SZ), and discovered that the ZNF804A locus provided the highest evidence for association to 

schizophrenia (p = 1.61 × 10-7). Therefore, the ZNF804A is very possibly a true susceptibility locus for 

schizophrenia; albeit one that confers a small increment in risk. 

 
Table 1.1.3.1. Loci selected for follow-up analysis. Table courtesy from (O'Donovan et al., 2008) 

Common risk factors between schizophrenia and bipolar disorder as shown by (Craddock et al., 

2005), motivated the authors to investigate also the association with the latter disease. Therefore, in 

a second analysis, they included genotypes from the bipolar cases (Table 1.1.3.2; UK BP, 1865 cases) 

to the UK schizophrenia cases to make a large UK psychosis sample for inclusion in the meta-analysis. 

Table 1.1.3.2 shows that this association strengthened when the affected phenotype included bipolar 

disorder (p = 9.96 × 10-9), indicating that alleles in the vicinity of ZNF804A influence risk to a larger 

psychosis phenotype. In summary, the authors demonstrated that ZNF804A is probably a true 

susceptibility locus not only for schizophrenia but also for bipolar disorder. 

 
Table 1.1.3.2. Combined schizophrenia and bipolar disorder analysis. Table courtesy from (O'Donovan et al., 

2008) 
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As demonstrated by some follow-up studies (Riley et al., 2010; Steinberg et al., 2011; Williams et 

al., 2011), there is a strong association between ZNF804A (rs1344706) and schizophrenia being the A 

allele the risk allele. This association was also replicated in two studies among Han Chinese 

population (Xiao et al., 2011; Zhang et al., 2011) but not a third one (Li et al., 2011b). These 

replication studies corroborated that ZNF804A (rs1344706) is a relatively strong candidate 

susceptibility gene for schizophrenia; albeit one that confers a small increment in risk. However, the 

possible molecular mechanism responsible for enhancing risk for psychosis remained unknown for a 

while.  

In this context an influential immunochemistry study was very recently published in PLoS ONE 

Journal by (Girgenti et al., 2012). Results confirmed that ZNF804A directly contributes to 

transcriptional control by regulating the expression of four schizophrenia associated genes: PRSS16, 

COMT, PDE4B, and DRD2. In particular, they demonstrated that expression of ZNF804A leads to a 

significant increase in transcript levels of PRSS16 and COMT, relative to GFP-transfected controls, and 

a statistically significant decrease in transcript levels of PDE4B and DRD2. Furthermore, they revealed 

that both epitope-tagged and endogenous ZNF804A directly interacts with the promoter regions of 

PRSS16 and COMT, suggesting a direct up-regulation of transcription by ZNF804A on the expression 

of these genes. In summary, these findings were the first to confirm that ZNF804A may modulate a 

transcriptional network of schizophrenia associated genes. 

In addition to these outstanding findings, ZNF804A (rs1344706) has been correlated with 

increased ZNF804A transcript levels in adult tissue (Riley et al., 2010; Williams et al., 2011), and the 

risk allele has a lower affinity for nuclear proteins compared to the common allele (Hill and Bray, 

2011). Furthermore, RNAi knockdown of ZNF804A in an immortalized human neuroepithelium cell 

line revealed abnormal expression of genes involved in cell adhesion (Hill et al., 2012). Despite the 

fact we do not know the function of the protein yet, in the last few years imaging genetics studies 

have started to characterize the prefrontal-hippocampal network linking ZNF804A (rs1344706) 

genotype to schizophrenia.  

The first study within this new research field was published in Science Journal by (Esslinger et al., 

2009). In this fMRI genetic study of WM in 115 healthy volunteers, researchers validated the 

intermediate phenotype strategy described by (Meyer-Lindenberg and Weinberger, 2006), indicating 

that mechanisms underlying genetic discoveries supported by genome-wide association studies 

(O'Donovan et al., 2008) are highly penetrant in the human brain, consistent with the 

pathophysiology of the mental disorder, and mirror candidate gene effects. 
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In this study, researchers map ZNF804A (rs1344706) effects on activation and connectivity across 

the brain. Local activation within the DLPFC was not significantly related to genotype but connectivity 

of the most activated DLPFC locale was strongly altered.  

Figure 1.1.3.2 illustrates their findings by showing: (1) the risk allele (A allele) reduces 

interhemispheric DLPFC connectivity (red bars); and (2) the left HF is uncoupled from the right DLPFC 

in non-risk allele carriers but shows a dose dependent increased connectivity in risk-allele carriers 

(grey bars).  

 
Figure 1.1.3.2. Functional connectivity results of the right DLPFC within the left DLPFC and the left HF for each 

genotype group: CC, CA, and AA. Figure courtesy of (Esslinger et al., 2009) 

Their findings revealed that ZNF804A (rs1344706) or a variant in linkage-disequilibrium is 

functional in the human brain. Nonetheless, molecular changes leading up to abnormal brain systems 

function remain to be discovered. They speculated that, because genetic variation in dopaminergic 

and glutamatergic neurotransmission affects DLPFC or HF connectivity, examination of ZNF804A 

(rs1344706) in those neurotransmitter cascades is assured, as is its role in white matter development 

and plasticity. Finally, they concluded that abnormal connectivity arises as part of the core 

neurogenetic architecture of schizophrenia and probably bipolar disorder, identifying novel blanks 

for effective treatments. 

In this dissertation, we follow up this article and previous ones (Meyer-Lindenberg and 

Weinberger, 2006; Meyer-Lindenberg et al., 2005), by examining the prefrontal-hippocampal 

network with sDCM and investigating relations between sDCM parameter estimates, ZNF804A 

(rs1344706), and behavior. The review of the literature continues with an fMRI genetic study. 

Another interesting study in connection with this gen was published two years later in Archives of 

General Psychiatry Journal by (Rasetti et al., 2011). In this fMRI genetic study of WM in 153 healthy 

volunteers, 171 healthy siblings of schizophrenia patients, and 78 schizophrenia patients, the 

researchers studied the DLPFC-HF coupling in genetic risk carriers, siblings of patients, and patients. 
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This work analysed fMRI data using two connectivity analyses: seeded connectivity analysis and 

psychophysiological interaction (PPI) analysis. Their analyses revealed that altered DLPFC functional 

connectivity with the HF and, to a lesser degree, the rest of the PFC, is observed in patients and 

siblings when compared with healthy volunteers. The ZNF804A (rs1344706) genotype significantly 

modulates DLPFC coupling with the HF and PFC but not DLPFC activity in the healthy group. Similarly, 

ZNF804A (rs1344706) genotype modulates right DLPFC-HF connectivity in siblings and patients. 

Figure 1.1.3.3 illustrates their findings across different groups: controls, siblings, and patients; by 

showing a statistically significant effect on the right DLPFC-left HF connectivity estimate across each 

group using both connectivity analyses.  

 
Figure 1.1.3.3. Seeded connectivity and PPI analyses for each group: controls, siblings, and patients. Figure 

courtesy of (Rasetti et al., 2011) 

Figure 1.1.3.4 illustrates their findings across different genotype groups: CC, CA, and AA; showing 

a gene-dose effect on the right DLPFC-left HF connectivity estimate across each genotype group 

using both connectivity analyses. 

 
Figure 1.1.3.4. PPI and seeded connectivity analyses for each genotype group: CC, CA, and AA. Figure courtesy 

of (Rasetti et al., 2011) 

It is important to highlight that these discoveries go in the opposite direction in comparison to the 

results obtained by (Esslinger et al., 2009; Meyer-Lindenberg et al., 2005). Nonetheless, the authors 
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stated over the article that this measurement needs to be interpreted cautiously (Rasetti et al., 

2011). 

The third study within this field was published in Human Brain Mapping Journal by (Paulus et al., 

2013). In this fMRI imaging genetic study of WM in 94 healthy volunteers genotyped for ZNF804A 

(rs1344706), researchers aimed at replicating findings previously found by (Esslinger et al., 2009; 

Rasetti et al., 2011). 

Analyses did not indicate further support for a decrease in the interhemispheric DLPFC functional 

connectivity at higher ZNF804A (rs1344706) risk status. Nonetheless, the analysed data show the 

previously described alteration in functional connectivity between the right DLPFC and the HFs, albeit 

with weaker effects. Decoupled by default, the functional coupling between the right DLPFC and 

anterior HFs increased with the number of ZNF804A (rs1344706) risk alleles. Therefore, the current 

data supported fronto-hippocampal dysconnectivity as intermediate phenotype linking ZNF804A 

(rs1344706) genotype to psychosis.  

Figure 1.1.3.5 illustrates their findings by showing a gene-dose effect on the right DLPFC-left HF 

coupling consistent with (Esslinger et al., 2009).  

 
Figure 1.1.3.5. Means and standard errors of connectivity estimates of the right DLPFC within the left HF at two 

different coordinates for each genotype group: CC, CA, and AA. Figure courtesy of (Paulus et al., 2013) 

To conclude the article, the authors discussed the difficulties in replicating the bilateral DLPFCs 

functional connectivity in light of the effect sizes ZNF804A (rs1344706) genotype has on human brain 

function, concluding that further replication studies in independent samples are needed to 

investigate the role that ZNF804A (rs1344706) plays in the functional integration of brain systems. 

In summary, comparing healthy volunteers with either no, one, or two ZNF804A (rs1344706) risk 

alleles, (Esslinger et al., 2009; Paulus et al., 2013) found that the number of risk alleles predicted 

higher prefrontal-hippocampal functional coupling during the N-back WM task, just as had been 

observed earlier in patients (Meyer-Lindenberg et al., 2005), supporting the fact that higher 
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functional coupling (especially with a dysfunctional PFC, as in schizophrenia), not only less, can be the 

risk phenotype. Albeit limited to three studies (Esslinger et al., 2009; Paulus et al., 2013; Rasetti et al., 

2011), these discoveries contributed to establish the “dysconnectivity” hypothesis as an intermediate 

phenotype linking ZNF804A (rs1344706) genotype to schizophrenia. The review of the literature 

continues with the importance of using optogenetic tools for the understanding of genetic 

mechanisms responsible of dysfunctional (E-I) balance within the neural microcircuitry. 

An outstanding article within this topic is an optogenetic study in mice published in Nature 

Journal by (Yizhar et al., 2011). The researchers reviewed that serious behavioral impairments in 

mental disorders such as schizophrenia and autism result from increases in the cellular (E-I) balance 

within the neural microcircuitry as previously shown by (Kehrer et al., 2008). They proposed that this 

assumption may provide a unified approach encompassing physiological and genetic research. In this 

work, the authors implemented a variety of novel optogenetic tools to causally investigate the 

cellular (E-I) balance hypothesis in freely moving mice, and explored the associated circuit 

physiology. They discovered that elevation, but not reduction, of cellular (E-I) balance within the 

mouse medial prefrontal cortex impaired information processing at the cellular level. This was 

associated with specific behavioral deficits and increased power in the 30-80 Hz frequency band; 

findings already observed in clinical human populations. Furthermore, consistent with the (E-I) 

balance hypothesis, they found that compensatory elevation of inhibitory cell excitability partially 

rescued social impairments caused by (E-I) balance elevation. 

With this section we have finished the review of fMRI genetic studies for understanding the 

genetic mechanisms of dysconnectivity in schizophrenia by means of functional connectivity 

analyses. Moreover, we have introduced the use of optogenetic tools to causal investigate 

dysfunctional (E-I) balance in schizophrenia. The next step is to precisely define the original problem 

that will be addressed in this dissertation. 

1.2. Statement of the problem 

As discussed above, an obvious limitation in fMRI is that neural function is not measured directly. 

It is inferred from hemodynamic measurements. A major improvement in fMRI is possible by the 

establishment of direct connections between hemodynamic measurements and neural function. To 

do this, it is necessary to establish the neural basis of hemodynamic functional connectivity which 

has been attempted with the so-called hemodynamic model. In this study, we will analyse our fMRI 

data with sDCM which includes a hemodynamic forward model (Stephan et al., 2007). 
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Functional connectivity is defined as a correlation between remote neurophysiological events 

(Friston, 1994; Friston et al., 1993b). In turn, effective connectivity is defined as the influence that 

one neuronal population exerts over another (Friston, 1994; Friston et al., 1993a). Functional 

connectivity among brain regions has been used to delineate the functional anatomy in health and 

schizophrenia (Meyer-Lindenberg et al., 2005) and the impact of genetic variation (Meyer-Lindenberg 

and Weinberger, 2006). Nonetheless, due to the fact that in fMRI the neural function is not 

measured directly, functional connectivity is an indirect measure of neuronal connectivity and 

therefore, reflects indirectly anatomic connectivity and synaptic efficiency (Buckner, 2010). In other 

words, this measure does not make any explicit reference to an underlying structural model or to 

specific directional effects. Furthermore, functional connectivity between two variables, e.g. brain 

regions, does not necessarily imply that one causes the other (Aldrich, 1995). Therefore, by using 

functional connectivity, we do not know anything about causality, i.e. which region drives the altered 

connection. In this study, we will analyse or fMRI data with sDCM which estimates the causality 

among brain regions. 

As discussed in previous section, in simple terms, a brain system can be described by three 

different sets of parameters: a) intrinsic connections – within and between brain regions –, b) 

modulatory inputs of the task on the intrinsic connections, and c) driving inputs of the task into the 

brain regions (Friston et al., 2003). By functional connectivity, we might reveal modulatory effects of 

genetic risk variants on the connectivity estimates but we cannot reveal the contributions these 

genes make to the workings of these three set of parameters describing any brain system. In this 

study, we will describe the prefrontal-hippocampal network in terms of these three set of parameter 

estimates. 

Moreover, a reoccurring difficulty in the field of psychiatric genetics is the non-replication of 

initially promising findings, partly caused by the small effects of single genes. The replication of 

imaging genetic results is therefore crucial for the long-term assessment of genetic effects on neural 

connectivity parameters. In this study, we will examine the effect of a genetic risk variant for 

schizophrenia on the prefrontal-hippocampal network in a large sample from three different 

locations. 

As we indicated previously, the exact meaning of these set of parameter estimates in terms of 

functional excitation-inhibition (E-I) balance within and between brain regions is still poorly 

unknown. Furthermore, we do not know whether these parameters contain information concerning 

behavior or whether behavior is modulated by genotype or disease. In this study, we will strive on 

giving a plausible biological interpretation to the parameter estimates in terms of functional (E-I) 
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balance. Moreover, we will illustrate some causal relations between these set of parameters, 

genotype, and behavior in the healthy and the diseased brain. 

Therefore, there is critical demand of new methods for understanding the contribution these 

genes make to the functioning of particular brain networks, and how changes in the structure and/or 

the expression of these genes impact on these distributed brain networks and behavior. In this study, 

we focus on applying and building mathematical algorithms which identify alterations on genetic risk 

carriers and schizophrenia patients from neural connectivity dynamics estimated with sDCM for fMRI 

responses and describe how these alterations have an effect on the behavior. 

1.3. Purpose of the study 

As discussed above, altered cortical connectivity is a well described endophenotype for 

schizophrenia. Thus, the main goal of this study is to identify alterations on genetic risk carriers and 

schizophrenia patients from the prefrontal-hippocampal network estimated with sDCM and describe 

how these alterations have an effect on the behavior. In other words, sDCM for fMRI responses are 

explored and brought into the specific prefrontal-hippocampal network to investigate relations 

between sDCM parameter estimates, genotype, and behavior. Towards this goal, we divided this 

study into four analyses: 

a. In a first stage: Multi-site reproducibility of prefrontal-hippocampal connectivity 

estimates by sDCM in healthy volunteers; we focused in the prefrontal-hippocampal 

modelling in healthy volunteers. The method will be validated along three different data-sets, 

furnishing a robust meta-analysis study. In general terms, the aim of this analysis was to test 

whether the method is stable and reliable independent of the particular research setting, i.e., 

scanner, participants, experimenter.   

b. In analysis second stage: Investigation of relations between sDCM parameter 

estimates, ZNF804A (rs1344706), and behavior in healthy volunteers; the links between 

prefrontal-hippocampal effective connectivity estimates, a genome-wide risk genetic variant 

for schizophrenia, and behavior in healthy volunteers were analyzed. We also studied the 

alterations on genetic risk carriers within the prefrontal-hippocampal network estimated with 

sDCM. To conclude, we evaluated whether these sDCM parameter estimates contain 

sufficiently rich information to predict the behavior.  

c. During the third stage: Investigation of relations between sDCM parameter estimates 

and behavior in pair-wise matched healthy volunteers and schizophrenia patients; we 

analyzed the links between prefrontal-hippocampal effective connectivity estimates and 

behavior in pair-wise matched healthy control subjects and schizophrenia patients. The aim of 
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this third stage was to identify potential differences between controls and patients within the 

prefrontal-hippocampal network estimated with sDCM and test whether these sDCM 

parameter estimates contain sufficiently rich information to predict the behavior. 

d. In the fourth and final project stage: Comparison of two-group genetic models and 

healthy vs. schizophrenia model; each of the two-group genetic models (recessive, co-

dominant, and dominant) was compared to the new healthy vs. schizophrenia model. Our 

goal was to reveal which of the two-group genetic models contributes to the phenotype 

expressed in schizophrenia patients. 

With these four analyses, we hope to illustrate how sDCM for fMRI responses can be used to 

identify alterations on risk genetic carriers and schizophrenic subjects within distributed brain 

systems in relation to the underlying neurobiology and behavior.   

1.4. Theoretical framework 

The theoretical framework used in this study is stochastic DCM for fMRI responses. Importantly, 

stochastic DCMs allow for uncertainty about both the states and parameters of the model. Critically, 

previous DCM studies of neuroimaging time series have been limited largely to deterministic DCMs, 

where uncertainty about the states is ignored (Friston et al., 2003).  

These previous approaches, based on ordinary differential equations, assumed that there are no 

random variations in the hidden neuronal and physiological states that mediate the effects of known 

experimental inputs on observed fMRI responses. This may be a limitation in some instances, 

because several studies suggest that physiological noise due to stochastic fluctuations in neuronal 

and vascular responses may need to be taken into account (Biswal et al., 1995; Kruger and Glover, 

2001; Riera et al., 2004). As a consequence, there has been growing interest in estimating both the 

parameters and hidden states of DCMs based upon stochastic differential equations with state noise. 

Examples of different inversion schemes have been in the DCM literature for a while (Daunizeau et 

al., 2009; Friston et al., 2008), including a “generalised filtering” scheme (Friston et al., 2010).  

Moreover, we used Bayes model selection (BMS) to compare sDCMs in order to select the 

winning model, statistical tests to examine potential differences in the sDCM parameter estimates, 

and linear regression to investigate relations between sDCM parameter estimates and behavior. 
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1.5. Research hypotheses 

As stated above, we divided this study into four analyses. Next we will give an overview of the 

research hypotheses for each analysis. 

1.5.1. Multi-site reproducibility of prefrontal-hippocampal connectivity estimates by sDCM 

in healthy volunteers  

A robust method might consistently reveal the same causal prefrontal-hippocampal network in 

healthy volunteers across the sites of the multi-center study. Furthermore, statistical tests on sDCM 

parameter estimates should not reveal statistically significant differences across the sites. 

1.5.2. Investigation of relations between sDCM parameter estimates, ZNF804A 

(rs1344706), and behavior in healthy volunteers  

Detecting the modulatory effect of ZNF804A (rs1344706) on the prefrontal-hippocampal network 

in healthy volunteers, will help to reveal the functionality of this genetic polymorphism on the 

workings of this particular brain system. All genetic models will be explored in order to reveal some 

phenotypic variants. Furthermore, sDCM parameter estimates containing sufficiently rich 

discrimination information might permit to predict the mean performance and reaction time and 

provide us some insights about the impact of this genetic polymorphism on the neurobiology of the 

causal prefrontal-hippocampal network and behavior. 

1.5.3. Investigation of relations between sDCM parameter estimates and behavior in pair-

wise matched healthy volunteers and schizophrenia patients 

Estimating the causal prefrontal-hippocampal network in pair-wise matched healthy volunteers 

and schizophrenia patients will provide some insights about the underlying neuronal connectivity 

within this particular brain system in the healthy and the diseased brain. In case of having a different 

causal model, we will reveal a difference in the causal structure between these two regions in 

controls and patients; in case of having the same, we will reveal that these brain areas interact 

identically independently of the disorder and the pathophysiology of schizophrenia manifests on 

sDCM parameter estimates. Testing for potential differences on sDCM parameter estimates between 

healthy volunteers and schizophrenia patients might reveal some abnormalities within this particular 

brain system. To conclude, investigating relations between sDCM parameter estimates and behavior 

might permit to show the impact of the disease on the neurobiology of the prefrontal-hippocampal 

network and behavior. 
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1.5.4. Comparison of two-group genetic models and healthy vs. schizophrenia model 

Comparing each of the two-group genetic models to the healthy vs. schizophrenia model, might 

reveal which of the phenotypes observed by each of the two-group genetic models reproduce the 

schizophrenia phenotype. The similarities and dissimilarities between these models might help us to 

hypothesize the functionality of this particular brain system. 

1.6. Importance and scope of the study 

This dissertation investigates the applicability of computational models like sDCM to identify 

causal biological mechanisms associated with psychiatric disorders like schizophrenia. The 

importance of the study lies on estimating reliable connectivity estimates with neurobiological 

interpretability and investigating relations between connectivity estimates, a risk genetic variant for 

schizophrenia, and behavior in healthy volunteers and schizophrenia patients. 

The scope of the study is to establish the functional significance of a specific genetic 

polymorphism for disease mechanisms and thus help identifying potential blanks for the 

development of effective treatments. Rather than illustrating new evidence for intermediate 

phenotypes of a specific genetic risk variant, with this work we demonstrate that for meaningful 

studies in imaging genetics detailed information about the analysis process should be presented and 

the reliability of the results and their interpretation should be taken into consideration. 
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Chapter 2: Research methods 

“Let me tell you the secret that has led me to my goal. My strength lies solely in my tenacity.” 
Louis Pasteur 

This chapter presents a detailed description of the methods designed to analyze the fMRI data-

sets and address the research questions of this study. It begins with an overview of the research 

methods, and then goes into the details of the research design, participants, instrumentation, data 

analysis, and assumptions and limitations of study. 

2.1 Introduction to research methods 

Next section will give an overview of Dynamical Causal Modelling (DCM), stochastic DCM (sDCM), 

Bayes model selection (BMS), statistical tests, and linear regression with further details in later 

sections of this chapter. 

2.1.1. Summary of Dynamical Causal Modelling (DCM) 

DCM models the brain as a dynamic system of interconnected regions; while, an experiment is 

defined as a designed perturbation of the system’s dynamics (Friston et al., 2003; Stephan et al., 

2010). Any given DCM represents a particular mechanistic model for explaining experimentally 

obtained measures of brain activity. Even though the mathematical formulation of DCMs differs 

significantly across different techniques, common neural mechanisms modeled by all DCMs include 

synaptic connection strengths and their experimental modulation. In contrast to purely statistical 

models of effective connectivity which characterize inter-regional connectivity in a 

phenomenological fashion, DCMs strive for neurobiological interpretability of their parameters and 

this is a core feature which distinguishes them from alternative approaches. 

DCMs for fMRI responses are hierarchical models, consisting of two layers. The first layer is a 

neuronal model that describes the dynamics of interacting neuronal populations in the context of 

experimental inputs. The second layer is a hemodynamic forward model that characterizes how a 

given neuronal state translates into observed fMRI responses and serves to account for variations in 

neurovascular coupling across brain regions and individual subjects. Experimental inputs ( )tu  enter 

the model in two different ways: they can elicit responses through direct influences on specific 

regions (driving inputs), or they can modulate the strength of coupling among regions (modulatory 

inputs).  
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Assuming, for simplicity, a single input ( )tu , the state and measurement equations of a 

conventional deterministic DCM for fMRI are: 

Neuronal state model: ( )( ) ( )( ) ( ) ( )tCutxtBuAtutxf
dt

tdx
n ++== ,),(

)(
θ  (1) 

Hemodynamic forward model: ( ) ( ) ( )ttxgty h εθ +∗= )(  (2) 

where ( )tx  represents the neuronal state, ( )CBAn ,,=θ  are the neuronal parameters, A  is a 

matrix of endogenous connection strengths, B  is a matrix of modulatory input strengths, C denotes 

the strength of direct (driving) inputs, ( )hg θ  is a nonlinear convolution operator that links the 

neuronal state ( )tx  to a predicted BOLD signal ( )ty  via changes in vasodilatation, blood flow, blood 

volume, and deoxyhemoglobin content (Stephan et al., 2007), 
h

θ  are the hemodynamic parameters, 

and ( )tε  denotes Gaussian measurement error. 

Critically, the neuronal parameters nθ  have some degree of neurobiological interpretability, 

representing, for instance, synaptic weights and their context-specific modulation. The hemodynamic 

parameters 
h

θ  are not of scientific research interest because they exhibit strong interdependencies 

and thus high posterior covariances and low precision, which make it difficult to determine the 

distinct contribution provided by each parameter. 

To summarize, DCM for fMRI responses provides a generative model for explaining measured 

BOLD time series as the outcome of hidden dynamics in an interconnected network of neuronal 

populations and its experimentally induced perturbations. Inverting such a model refers to estimate 

the posterior distribution of the parameters of both the neuronal and the hemodynamic model from 

observed fMRI responses of an individual subject. See (Brodersen et al., 2011) for a comprehensive 

overview. 

2.1.2. Stochastic Dynamical Causal Modelling (sDCM) 

Stochastic DCMs differ from conventional deterministic DCMs by allowing for endogenous or 

random fluctuations in unobserved (hidden) neuronal and physiological states, i.e., system or state-

noise. Practically, this means the states are free to fluctuate, in addition to the parameter estimates, 

to model spontaneous and experimentally induced responses. The mathematical form we use here 

corresponds to that introduced in (Li et al., 2011a) which extend of Eq. 1 and 2 by including 

fluctuation terms for both states and causes: 

Neuronal state model: ( )( ) ( )( ) ( ) ( ) )()(
,),(

)( xx
n tCvtxtBvAtvtxf

dt

tdx
ωωθ +++=+=  (3) 
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Hidden causes model: ( ) ( ) )(vtutv ω+=  (4) 

Hemodynamic forward model: ( ) ( ) ( )ttxgty h εθ +∗= )(  (5) 

The variables have the same meaning as in Eq. 1 and 2 above.  Additionally, ( )xω are random 

neural fluctuations, and )(vω  are the hidden cause’s fluctuations.  Importantly, both types of 

stochastic innovations are assumed to be non-Markovian but show a degree of temporal 

smoothness; this is a typical feature of biological systems (Friston et al., 2011). In other words, the 

random state fluctuations ( )xω  are characterized by two hyperparameters ,π σ  which describe 

their precision (inverse variance) and smoothness, given a particular temporal autocorrelation 

function V  (Li et al., 2011a): 

( ) ( )( )∑
−

⊗=
πσω eVNx

,0
)(  (6) 

The same sort of parameterization applies to the random fluctuations of the causes ( )vω . States, 

parameters and hyperparameters from Eq. 3, 4, and 5 are inferred using generalised filtering, a 

triple-estimation scheme that employs variational Bayesian techniques (Friston et al., 2010). Notably, 

the presence of stochastic innovations makes sDCMs applicable to both task-driven and “resting-

state” fMRI data. In this study, we used sDCM based on generalised filtering, to investigate the 

prefrontal-hippocampal network in healthy volunteers and schizophrenia patients. 

2.1.3. Bayes Model Selection (BMS) 

In this study, we used BMS to compare sDCMs that are applied to empirical fMRI data (Penny et 

al., 2004a; Stephan et al., 2009b). Deciding between several competing models cannot only consider 

the relative fit to the data but also needs to take into account differences in model complexity; i.e., 

the number of free parameters and the functional form of the generative model which, for example, 

determines parameter interdependencies (Pitt and Myung, 2002). Penalizing for model complexity is 

important: as complexity increases, so does model fit (monotonically). At some point, however, the 

model will start fitting noise that is specific to a particular measurement (i.e., “over-fitting”). In other 

words, overly complex models are less generalisable across multiple realizations of the same 

underlying generative process. Therefore, assuming that all models are equally likely a priori, 

searching for an optimal model (given a set of alternatives) corresponds to searching the model that 

represents the best balance between fit and complexity. This is the model that maximizes the model 

evidence or marginal likelihood which integrates out uncertainty about hidden parameters and 

states: 
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( ) ( ) ( ) θθθ dmpmypmyp ,,|| ∫=  (7) 

In this study, we use an estimate of the negative free-energy as an approximation to the log 

model evidence (Friston et al., 2007) and employ a random effects BMS scheme at the group level 

that accounts for potential heterogeneity across subjects (Penny et al., 2010; Stephan et al., 2009b). 

2.1.4. Statistical tests 

Statistical tests provide a mechanism for making quantitative decisions about an effect. The goal 

is to determine whether there is enough evidence to reject a conjecture about the effect. This 

conjecture is called the null hypothesis. Not rejecting may be a good result if we want to continue to 

act as if we believe the null hypothesis is true. Or it may be an unsatisfactory result, maybe indicating 

we may not yet have enough data to demonstrate something by rejecting the null hypothesis. In this 

study, we used statistical tests to investigate potential differences in the sDCM parameter estimates 

of the winning model across different groups. 

2.1.5. Linear regression 

In statistics, linear regression is an approach for modelling the relationship between a scalar 

dependent variable y , i.e., performance and reaction time; and one or more explanatory variables 

denoted by X , i.e., sDCM parameter estimates of the winning model. Linear regression analysis can 

be very helpful for making forecasts and predictions. In this study, we used linear regression analysis 

to investigate relations between sDCM parameter estimates of the winning model and behavior 

across different groups. 

2.2. Research design 

This study utilized several quantitative methods: sDCM, BMS, statistical tests, and linear 

regression, and a qualitative method comparison. A brief overview of the methods used to address 

each of the four research objectives is presented; please find more details in later sections of this 

chapter. 

To address Objective One: Multi-site reproducibility of prefrontal-hippocampal connectivity 

estimates by sDCM in healthy volunteers, we investigate the applicability and robustness of 

stochastic Dynamic Causal Modelling (Daunizeau et al., 2012; Friston et al., 2011; Li et al., 2011a) to 

investigate DLPFC-HF effective connectivity during WM in healthy volunteers. 180 healthy subjects 

were measured by fMRI during a standard working memory N-Back task at three different sites 
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(Mannheim, Bonn, Berlin; each with 60 participants). The reproducibility of regional activations in 

key regions for working memory (DLPFC; HF) was evaluated using conjunction analyses across 

locations. The effective connectivity between DLPFC and HF was analysed using a simple two region 

sDCM. For each subject, we evaluated twenty-two alternative sDCMs and compared their relative 

plausibility using Bayes model selection (BMS). We examined potential differences in the parameter 

estimates of the winning model by performing statistical tests. 

To address Objective Two: Investigation of relations between sDCM parameter estimates, 

ZNF804A (rs1344706), and behavior in healthy volunteers, we investigate relations between 

prefrontal-hippocampal effective connectivity estimates, a risk genetic variant for schizophrenia: 

ZNF804A (rs1344706), and behavior in healthy volunteers. We further investigate the modulatory 

effect of this genetic polymorphism on the prefrontal-hippocampal network (Esslinger et al., 2009; 

Paulus et al., 2013; Rasetti et al., 2011). Furthermore, we ask whether specific directed connections 

strengths within the prefrontal-hippocampal network, contain sufficiently rich information to enable 

to predict behavior. All genetic models (additive, recessive, co-dominant, and dominant) were 

explored in order to estimate underlying phenotypic variants: 

a. Additive model: “AA vs. AC vs. CC” model. Homozygous risk allele carriers versus 

heterozygous risk allele carriers versus non-risk allele carriers. 

b. Recessive model: “AA vs. AC+CC” model. Homozygous risk allele carriers versus 

heterozygous plus non-risk allele carriers. 

c. Co-dominant model: “AC vs. AA+CC” model. Heterozygous risk allele carriers versus 

homozygous risk carriers plus non-risk allele carriers.  

d. Dominant model: “CC vs. AA+AC” model. Non-risk allele carriers versus homozygous 

plus heterozygous risk allele carriers. 

AA stands for homozygote Adenine, AC stands for heterozygote, and CC stands for homozygote 

Cytosine, with the A allele being the risk allele. We designed a battery of statistical tests for detecting 

statistically significant differences on sDCM parameter estimates and behavior for each genetic 

model. We also performed linear regression of behavior on sDCM parameter estimates to see 

whether we can predict subject’s behavior from sDCM parameter estimates for each genetic model. 

To address Objective Three: Investigation of relations between sDCM parameter estimates and 

behavior in schizophrenia patients and pair-wise matched healthy control subjects, we applied the 

same methodology described above to 33 schizophrenia patients and 33 pair-wise matched healthy 

control subjects. For each individual, we evaluated the same twenty-two alternative sDCMs and 

compared their relative plausibility using BMS. Then, we investigate statistically significant 
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differences on sDCM parameter estimates and behavior between healthy control subjects and 

schizophrenia patients (Meyer-Lindenberg et al., 2005). Furthermore, we investigated relations 

between the new set of sDCM parameter estimates and behavior in healthy control subjects and 

schizophrenia patients. Basis on these results, we defined a healthy vs. schizophrenia model. 

To address Objective Four: Comparison of two-group genetic models and healthy vs. 

schizophrenia model, we qualitatively compare each of the two-group genetic models: additive, 

recessive, co-dominant and dominant to the healthy vs. schizophrenia model. 

2.3. Participants 

We applied the methodology described in this Chapter to two fMRI data sets. 

2.3.1. First fMRI data set 

In a first fMRI sample, a total of 180 healthy German participants from three different locations: 

Mannheim (60), Bonn (60), and Berlin (60), were analyzed. All participants gave written informed 

consent, and the study had ethics committee approval by the Universities of Heidelberg, Bonn, and 

Berlin.  

Table 2.3.1.1 shows the demographics and behavioral data of participants across the three sites.  

We tested for potential systematic differences between subjects examined at the three different 

locations using a one-way ANOVA or a Kruskal-Wallis test depending on the distribution of the 

variables previously assessed by a Lilliefors Test. Regarding age, gender, and education (years of 

study), no significant differences were found. Concerning the behavior, no significant differences in 

performance and reaction time were found either. 

 Mannheim Bonn Berlin p-value 

Age [years] 
33.95 ± 9.64 

range 19-49 

31.47 ± 9.60 

range 18-50 

34.88 ± 8.72 

range 18-50 

No significant;  

p= 0.1384**  

Sex [Male/Female] 27/33 29/31 29/31 
No significant;  

p = 0.9151**  

School education [years] 15.40 ± 2.43 15.48 ± 2.93 15.57 ± 2.57 
No significant;  

p = 0.8978**  

Performance on the 2-Back [%] 81.42 ± 17.22 77.67 ± 21.28 74.58 ± 19.45 
No significant;  

p = 0.1351** 

Reaction time on the 2-Back [ms] 472.02 ± 262.93  461.66 ± 297.70 577.08 ± 350.21  
No significant;  

p = 0.1309** 

Table 2.3.1.1. Demographics and behavior of healthy volunteers grouped according to the site 

*One-way ANOVA; **Kruskal-Wallis test 
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Table 2.3.1.2 focuses participants grouped according to the “AA vs. AC vs. CC” model. Similarly as 

in previous table, no significant differences were found across variables regarding demographics and 

behavior. 

 AA (67) AC (79) CC (34) p-value 

Age [years] 
33.76 ± 9.16 

range 18-50 

32.44 ± 9.38 

range 18-50 

33.32 ± 10.01  

range 18-50 

No significant;  

p = 0.6206**  

Sex [Male/Female] 30/37 38/41 17/17 
No significant;  

p = 0.8655** 

School education [years] 15.36 ± 2.77  15.51 ± 2.44  15.69 ± 2.86  
No significant;  

p = 0.8554** 

Performance on the 2-Back [%] 78.30 ± 17.26 77.50 ± 21.10 78.00 ± 20.25 
No significant;  

p = 0.8904** 

Reaction time on the 2-Back [ms] 517.96 ± 309.19  526.39 ± 328.71 429.47 ± 237.90  
No significant;  

p = 0.4374** 

Table 2.3.1.2. Demographics and behavior of healthy volunteers grouped according to the “AA vs. AC vs. CC” 

model 

*One-way ANOVA; **Kruskal-Wallis test 

Analyses of participants grouped according to the “AA vs. AC+CC” model are shown in Table 

2.3.1.3. Two-sample t-test or Wilcoxon rank sum test were used depending on the verification of 

normality assumptions as in previous analyses. Regarding age, gender, education, performance, and 

reaction time no significant differences were found either. 

 AA (67) AC+CC (113) p-value 

Age [years] 
33.76 ± 9.16  

Range 18-50 

32.71 ± 9.54 

Range 18-50 

No significant;  

p = 0.3954** 

Gender [male/female] 30/37 55/58 
No significant;  

p = 0.6149** 

School Education [years]  15.36 ± 2.77  15.56 ± 2.56 
No significant;  

p = 0.8515** 

Performance on the 2-Back [%] 78.30 ± 17.26  77.65 ± 20.76 
No significant;  

p = 0.6352** 

Reaction time on the 2-Back [ms] 517.96 ± 309.19  497.23 ± 306.46  
No significant;  

p = 0.5760**  

Table 2.3.1.3. Demographics and behavior of healthy volunteers grouped according to the “AA vs. AC+CC” 

model 

*Two sample t-test; **Wilcoxon rank sum test 

Table 2.3.1.4 focuses participants grouped according to the “AC vs. AA+CC” model. Similarly as in 

previous table, no significant differences were found across variables regarding demographics and 

behavior. 
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 AC (79) AA+CC (101) p-value 

Age [years] 
32.44 ± 9.38 

range 18-50 

33.61 ± 9.41 

Range 18-50 

No significant;  

p = 0.3529** 

Gender [male/female] 38/41 47/54 
No significant;  

p = 0.8363** 

School Education [years]  15.51 ± 2.44 15.47 ± 2.79 
No significant;  

p = 0.7989** 

Performance on the 2-Back [%] 77.50 ± 21.10 78.20 ± 18.22 
No significant;  

p = 0.7894** 

Reaction time on the 2-Back [ms] 526.39 ± 328.71  488.17 ± 289.03  
No significant;  

p = 0.6426**  

Table 2.3.1.4. Demographics and behavior of healthy volunteers grouped according to the “AC vs. AA+CC” 

model 

*Two sample t-test; **Wilcoxon rank sum test 

To conclude, Table 2.3.1.5 shows demographics and behavior of participants grouped according 

to the “CC vs. AA+AC” model. No significant differences were found regarding age, gender, 

education, performance, and reaction time as in previous analyses. 

 CC (34) AA+AC (146) p-value 

Age [years] 
33.32 ± 10.01  

range 18-50 

33.05 ± 9.27 

Range 18-50 

No significant;  

p = 0.8996** 

Gender [male/female] 17/17 68/78 
No significant;  

p = 0.7210** 

School Education [years]  15.69 ± 2.86 15.44 ± 2.59 
No significant;  

p = 0.5778** 

Performance on the 2-Back [%] 78.00 ± 20.25 77.87 ± 19.37 
No significant;  

p = 0.8062** 

Reaction time on the 2-Back [ms] 429.47 ± 237.90 522.52 ± 318.84  
No significant;  

p = 0.2002**  

Table 2.3.1.5. Demographics and behavior of healthy volunteers grouped according to the “CC vs. AA+AC” 

model 

*Two sample t-test; **Wilcoxon rank sum test 

2.3.2. Second fMRI data set 

In a second fMRI sample, a total of 33 schizophrenia patients from Mannheim were analyzed. All 

patients gave written informed consent, and the study had ethics committee approval by the 

University of Heidelberg.  

We performed pair-wise matching between the 33 schizophrenia patients and the first fMRI 

sample (see above) to control for factors which may be confounded with the neuropathology.  

Table 2.3.2.1 shows the demographics and behavioral data of pair-wise matched healthy control 

(HC) subjects and schizophrenia (SZ) patients. 33 healthy participants were pair-wise matched by 

location (p = 1.000), gender (p = 1.000), age (p = 0.6988), and school education (p = 0.3451). 
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Concerning the behavioral data, significant differences in performance were found. No significant 

differences in reaction time were found. 

 HC (33) SZ (33) p-value 

Age [years] 
34.24 ± 8.42  

Range 19-48 

33.42 ± 8.67 

Range 18-50 

No significant;  

p = 0.6988* 

Gender [male/female] 23/10 23/10 
No significant; 

p = 1.000** 

School Education [years]  15.64 ± 2.45  14.92 ± 3.03 
No significant; 

p = 0.3451** 

Performance on the 2-Back [%] 83.04 ± 18.70  57.45 ± 20.32 
Significant;  

p = 4.3565e-6** 

Reaction time on the 2-Back [ms] 519.67 ± 247.86  609.51 ± 249.53  
No significant; 

p = 0.1472* 

Table 2.3.2.1. Demographics and behavior of pair-wise matched healthy volunteers and schizophrenia patients  

*Two sample t-test; **Wilcoxon rank sum test 

2.4. Instrumentation 

2.4.1. fMRI data acquisition and preprocessing 

At all three sites, fMRI data sets were acquired at 3 Tesla using a Trio TIM (Siemens, Erlangen) 

whole-body MRI system. 128 contiguous multi-slice images were obtained with a gradient echo-

planar sequence (orientation = AC-PC line, number of slices = 28; slice thickness = 4 mm; slice gap = 1 

mm; FOV = 192 mm; TE = 30 ms; TR = 2.00 s; flip angle = 90°; matrix size = 64×64×28; voxel size = 

3.0×3.0×5.0 mm3). 

The fMRI data sets were analyzed using procedures implemented in Statistical Parametric 

Mapping (SPM8, Welcome Trust Centre for Neuroimaging, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm). All functional images and the structural image of each subject 

were preprocessed prior to the statistical analyses. We conducted rigid body motion correction of 

the functional time-series and “unified segmentation” (Ashburner and Friston, 2005) of the structural 

image. After co-registration of the realigned functional images to the subject specific structural 

image, the images were normalized to MNI space using the warping parameters obtained from the 

unified segmentation procedure applied to the structural image. Finally the functional images were 

smoothed by applying a 6 mm full-width at half maximum Gaussian kernel. 

2.4.2. WM paradigm: N-Back task 

We utilized the N-Back task (Owen et al., 2005), which requires the temporal tagging and 

updating of information on each trial, and therefore has a steep difficulty slope with increasing 
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demand (i.e., from 0-Back to 2-Back). Our N-Back paradigm used a block design with two conditions: 

0-Back condition and 2-Back condition. In the 0-Back condition (a baseline condition requiring no 

WM), subjects were asked to press the button of the number that they were seeing. In the 2-Back 

condition, subjects were asked to press the button of the number that they saw two trials before. 

The study comprised a sequence of 0-Back blocks alternating with 2-Back blocks. Subjects performed 

four 0-Back blocks and four 2-Back blocks with 15 trials per block. 

2.5. Data analysis 

2.5.1. fMRI analyses using the General Linear Model (GLM) 

Following preprocessing, we specified a voxel-wise general linear model (GLM) with two 

conditions of interest for each participant (0-Back and 2-Back). Each regressor was convolved with a 

canonical hemodynamic function and its temporal and dispersion derivatives. Contrasts of interest 

were defined as [2-Back - 0-Back] for identifying WM activations in the right DLPFC and [0-Back - 2-

Back] contrast for identifying deactivations of the left HF.  

At the group level, the first-level contrast images were entered into a full factorial design. To 

identify regions that were consistently (de)activated in participants from all three sites, we used a 

conjunction analysis (i.e., a “logical AND” analysis based on the conjunction null hypothesis; (Nichols 

et al., 2005)). Given our a priori hypothesis, based on the rich literature of N-back fMRI studies (see 

above), of activation in the right DLPFC and deactivation of left HF during 2-Back vs. 0-Back, we 

restricted this analysis to our regions of interest which were anatomically defined using the PickAtlas 

software (WFU PickAtlas, ANSIR Laboratory, Winston-Salem, NC, USA; 

http://fmri.wfubmc.edu/software/PickAtlas). Significant results were corrected for multiple 

comparisons using family wise error correction based on Gaussian random field theory. 

The significant conjunction results within these anatomical masks were used to specify 

functionally defined region-of-interest masks for subsequent time series extraction in each subject.  

Specifically, time series were extracted for each subject by computing the first eigenvariate across all 

voxels within 6 mm radius from his/her maximum within the functionally defined ROIs from the 

group level. 

2.5.2. sDCM analysis 

The time series extracted from individual maxima within the ROIs defined at the group level were 

used to fit a set of twenty-two alternative sDCMs per subject. In relation to the experimental input 
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(cognitive set associated with working memory) we considered two classes of model.  In the first set 

(models 1-7), experimental inputs exerted a driving effect on one or both regions. In the second set 

(models 8-22) the experimental input changed extrinsic or intrinsic connectivity - such that observed 

memory related responses were modelled by an interaction between hidden neuronal activity and 

the connection strengths that shape this activity. The structure of these twenty-two sDCMs is shown 

by Figure 2.5.2.1.  

In models 1-7, we systematically examine all combinations of directed connections between 

DLPFC and HF (from DLPFC to HF, from HF to DLPFC, or both) and where driving inputs enter (in 

DLPFC, HF, or both). Driving inputs encode the influence of task on the DLPFC-HF network (set to 1 

during 2-Back and 0 during 0-Back). Together with the stochastic innovations whose precision and 

temporal smoothness are estimated separately for each area (see above), the driving inputs 

represent and absorb influences from unknown (hidden) regions (Daunizeau et al., 2012; Friston et 

al., 2011; Li et al., 2011a) that change their inputs to the DLPFC-HF network depending on WM load. 

In other words, in these models, we are not modelling WM load dependent changes in DLPFC-HF 

connectivity by (bilinear) modulation of activity induced by any condition (i.e., a driving input 

representing any trial), as is often the case in DCM, but via changes in input to the network. The 

reason for this choice is that in our experimental design 0-Back and 2-Back blocks are continuously 

following each other, which means that a driving input representing all task conditions would simply 

correspond to a constant. 

In models 8-22, we consider another type of mechanism.  These additional models do not 

consider the 2-Back WM condition as driving input to HF or DLPFC, instead these regions are purely 

driven by the stochastic innovations and the 2-Back WM condition modulates all possible 

combinations of inter-regional and self-connections. In other words, DLPFC and HF are not directly 

affected by changes in working memory load (in terms of load-dependent driving inputs as in models 

1-7 above), but we are modelling WM dependent changes in DLPFC and HF activity through (bilinear) 

modulation of their connectivity by the 2-Back condition. 

  
Models 1-7 Models 8-22 

Figure 2.5.2.1. Space-state model  
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For the analyses presented in this study, we used stochastic DCM for fMRI as implemented in 

DCM10 in the software package SPM12 (alpha version), code release 4579. 

2.5.3. Statistical tests and linear regression analysis 

Concerning the first analysis, we examined potential differences in the sDCM parameter estimates 

of the winning model across the three sites by performing a one-way ANOVA or a Kruskal-Wallis test 

depending on the distribution of the sDCM parameter estimates previously assessed by a Lilliefors 

test. 

Regarding the second analysis, we examined potential differences in the sDCM parameter 

estimates and behavior depending on the genetic model. For the additive model, we performed a 

one-way ANOVA or a Kruskal-Wallis test depending on the distribution of the sDCM parameter 

estimates and behavior previously assessed by a Lilliefors test. For the two-group genetic models: 

recessive, co-dominant, and dominant, we performed a two-sample t-test or a Wilcoxon rank sum 

test depending on the distribution of the sDCM parameter estimates and behavior previously 

assessed by a Lilliefors test. We performed linear regression of behavior on sDCM parameter 

estimates across different genetic models to see whether we can predict subject’s behavior from 

sDCM parameter estimates for each genetic model. 

Concerning the third stage, we examined potential differences in the sDCM parameter estimates 

and behavior by performing a two-sample t-test or a Wilcoxon rank sum test depending on the 

distribution of the sDCM parameter estimates and behavior previously assessed by a Lilliefors test. 

We performed linear regression of behavior on sDCM parameter estimates for healthy control 

subjects and schizophrenia patients to see whether we can predict subject’s behavior from sDCM 

parameter estimates for healthy control subjects and schizophrenia patients. 

2.6. Assumptions and limitations of the study 

The connection between the DLPFC and the HF during WM has been found to be increased in 

carriers of schizophrenia risk genes (Esslinger et al., 2009; Paulus et al., 2013; Rasetti et al., 2011) and 

schizophrenia patients (Meyer-Lindenberg et al., 2005). In this study, we characterized the influence 

that a neuronal population exerts over the other driven by the 2-Back condition, the cognitively 

demanding condition of the N-Back task, with sDCM. 

The main assumption of the study is that during the 2-Back condition, we can observe statistically 

significant differences on the dynamics of this particular brain system across healthy volunteers with 
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different genotype and between healthy controls subjects and schizophrenia patients. Moreover, we 

assumed that prefrontal-hippocampal connectivity estimates contain sufficiently rich discrimination 

information to enable to predict behavior. In other words, we assumed that we can predict subject’s 

behavior from sDCM parameter estimates in healthy subjects and schizophrenia patients.  

The main limitation of the study is that in our experimental design 0-Back and 2-Back blocks are 

continuously following each other. Therefore, we can only model the dynamics of one condition: the 

2-Back task; because a driving input representing all task conditions would simply correspond to a 

constant. 
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Chapter 3: Research findings 

“There are 2 possible outcomes: If the result confirms the hypothesis, then you've made a 
measurement. If the result is contrary to the hypothesis, then you've made a discovery.” 

Enrico Fermi 

The purpose of this study is to identify alterations on genetic risk carriers and schizophrenia 

patients from the prefrontal-hippocampal network estimated with sDCM and describe how these 

alterations have an effect on behavior. Towards this goal, we divided this study into four analysis or 

research questions. This chapter is divided into four sections each of which describes the findings of 

each research question. 

3.1. Multi-site reproducibility of prefrontal-hippocampal connectivity estimates by sDCM 

in healthy volunteers 

We divided this section into four subsections: SPM for each site, BMS for each site, sDCM 

parameter estimates for each site, and statistical tests on sDCM parameter estimates across the 

three sites. 

3.1.1. SPM for each site 

The conjunction maps depicted in Figures 3.1.1.1 and 3.1.1.2 show the common (de)activation 

pattern across three locations in our anatomically constrained regions of interest.  These conjunction 

analyses showed a consistent activation in the right DLPFC (x, y, z = 45, 41, 20; T = 8.94; p = 0.05, 

FWE-corrected) and consistent deactivation in the left HF (x, y, z = -27, -31, -10; T = 8.99; p = 0.05, 

FWE-corrected) across all three sites. 
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Mannheim Bonn Berlin 

 
Mannheim, Bonn, and Berlin 

Figure 3.1.1.1. Activation maps for each site and conjunction map in the right DLPFC 

As described in Chapter 2, these conjunction results were subsequently used as group-level 

functional ROIs to guide the subsequent time series extraction in the right DLPFC and left HF of each 

individual subject. 

   
Mannheim Bonn Berlin 

 
Mannheim, Bonn, and Berlin 

Figure 3.1.1.2. Deactivation maps for each site and conjunction map in the left HF 
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3.1.2. BMS for each site 

We used random effects BMS to determine, from our model space of twenty-two alternative 

sDCMs (Figure 2.5.2.1), the model that provided the best balance between accuracy and complexity 

for explaining the measured data. The results were fully consistent across the three sites, revealing 

the same winning model (model 2; Figure 2.5.2.1) in Mannheim, Bonn, and Berlin.  This model 

includes a driving influence of the 2-Back condition on both DLPFC and HF, and a unidirectional 

influence from DLPFC to HF. 

Figure 3.1.2.1 shows the results of BMS Random Effects (RFX) for each location. The exceedance 

probability of model 2 (i.e., the probability that this model is a more likely model than any other 

model considered) was 0.97 (for the Mannheim cohort), 1.00 (for the Bonn cohort), and 0.93 (for the 

Berlin cohort), respectively. 

Comparison of RFX BMS results 

   
Mannheim Bonn Berlin 

Figure 3.1.2.1. Comparison of RFX BMS results across the three sites 

3.1.3. sDCM parameter estimates for each site 

As described above, BMS revealed the same winning model in Mannheim, Bonn, and Berlin. For 

this model, Figure 3.1.3.1 shows the mean sDCM parameter estimates across participants from each 

site and the grand average across all sites. 
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Location models 

   
Mannheim Bonn Berlin 

Grand average model 

 
Mannheim, Bonn, and Berlin 

Figure 3.1.3.1. Mean sDCM parameter estimates across participants from each site and the grand average 

across the three sites 

3.1.4. Statistical tests on sDCM parameter estimates across the three sites 

As a further test of consistency of sDCM results across the three sites, we examined potential 

differences in the sDCM parameter estimates of the winning model by performing one-way ANOVA 

or a Kruskal-Wallis test depending on the distribution of the sDCM parameter estimates previously 

assessed by a Lilliefors Test, see Figure 3.1.4.1. Even without correction for multiple comparisons, 

none of the five parameters contained by model 2 were statistically different across sites. 

Clearly we cannot infer that there are no differences between the parameter estimates among 

the sites (because this would rest upon accepting the null hypothesis). For further analysing this 

effect, we performed two-way analyses of variance, in which the five parameter estimates and the 

three sites are the two factors. We found no significant differences between sites using non-

parametric Friedman-rank test, χ2(2,885) = 3.23, p = 0.20 (normality was rejected according to 

Lilliefors test only in 3 out of 15 repetitions, p < 0.01) and two-way ANOVA, F(2,885) = 0.67, p = 0.51; 

neither a significant interaction sites by parameter estimates, F(8,885) = 0.51, p = 0.85. Nonetheless, 

differences between the effects of connection strength are highly significant, p < 0.01. 

Therefore, our two-way analysis of variance (both parametric and non-parametric) enables us to 

assert that the connection strength summary statistics provides sufficient power to detect 

differences among connections.  This means that the absence of a centre by connection interaction 

cannot be explained trivially by an under-powered analysis.  In other words, our analyses were 
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sufficiently sensitive to detect departures from the null hypothesis of no connectivity and yet failed 

to show any differences between centres. 

Comparison and statistical tests on sDCM parameter estimates 

Parameter a11 Parameter a21 Parameter a22 

   
No significant; p = 0.1046* No significant; p = 0.6236** No significant; p = 0.7238* 

Parameter c1 Parameter c2 

  
No significant; p = 0.5202* No significant; p = 0.1221** 

Figure 3.1.4.1. Comparison and statistical tests on sDCM parameter estimates across the three sites: 

Mannheim (MA), Bonn (BN), and Berlin (BL) 

*One-way ANOVA; **Kruskal-Wallis test 
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3.2. Investigation of relations between sDCM parameter estimates, ZNF804A (rs1344706), 

and behavior in healthy volunteers 

We divided this section into five subsections: sDCM parameter estimates for each genotype 

group, statistical tests on sDCM parameter estimates across different genetic models, statistical tests 

on behavior across different genetic models, linear regression of behavior on sDCM parameter 

estimates across different genetic models, and linear regression of mean performance in the 2-Back 

on mean reaction time in the 2-Back across different genetic models. 

3.2.1. sDCM parameter estimates for each genotype group 

As described in Section 3.1.2, BMS revealed the same winning model (model 2; Figure 3.4.2.1) in 

Mannheim, Bonn, and Berlin. For this model, Figure 4.2.1.1 shows the mean sDCM parameter 

estimates across participants for each genotype group: AA allele carriers, AC allele carriers, and CC 

allele carriers. 

DCM models 

Grand average model 

 
Mannheim, Bonn, and Berlin 

A model for each genotype group 

   
AA allele carriers AC allele carriers CC allele carriers 

Figure 3.2.1.1. Grand average model across all participants and the mean sDCM parameter estimates across 

participants for each genotype group: AA, AC, and CC 

3.2.2. Statistical tests on sDCM parameter estimates across different genetic models 

Figure 3.2.2.1 shows the comparison between sDCM parameter estimates of the winning model 

for the “AA vs. AC vs. CC” model. We observe a significant effect on the connection from right DLPFC 

to left HF – parameter a21 – between genotype groups (p = 0.0047). AA allele carriers show higher 

prefrontal-hippocampal effective connectivity in comparison to AC+CC allele carriers. Furthermore, 
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we also observe a tendency on the self-connection in right DLPFC – parameter a11 – between 

genotype groups (n.s., p = 0.1011). AA+AC allele carriers show lower inhibition (higher excitation) per 

unit of time in right DLPFC in comparison to CC allele carriers. 

Comparison and statistical tests on sDCM parameter estimates 

“AA vs. AC vs. CC” model 

NAA = 67; NAC = 79; NCC = 34 

Parameter a11 Parameter a21 Parameter a22 

   

No significant; p = 0.1011* 
Significant; p = 0.0047* 

p ≤ 0.05, corrected 
No significant; p = 0.7145* 

Parameter c1 Parameter c2 

  
No significant; p = 0.1345** No significant; p = 0.9584** 

Figure 3.2.2.1. Comparison and statistical tests on sDCM parameter estimates across genotype groups for the 

“AA vs. AC vs. CC” model 

*One-way ANOVA; **Kruskal-Wallis test 
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Figure 3.2.2.2 shows the comparison between sDCM parameter estimates of the winning model 

for the “AA vs. AC+CC” genetic model. We observe a significant effect on the connection from right 

DLPFC to left HF – parameter a21 – between genotype groups (p = 0.0011). AA allele carriers show 

higher prefrontal-hippocampal effective connectivity in comparison to AC+CC allele carriers. 

Comparison and statistical tests on sDCM parameter estimates 

“AA vs. AC+CC” model 

NAA = 67; NAC+CC = 113 

Parameter a11 Parameter a21 Parameter a22 

   

No significant; p = 0.5311* 
Significant; p = 0.0011** 

p ≤ 0.05, corrected 
No significant; p = 0.8586* 

Parameter c1 Parameter c2 

  
No significant; p = 0.9764** No significant; p = 0.7718** 

Figure 3.2.2.2. Comparison and statistical tests on sDCM parameter estimates between genotype groups for 

the “AA vs. AC+CC” model  

*Two sample t-test; **Wilcoxon rank sum test 
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Figure 3.2.2.3 shows the comparison between sDCM parameter estimates of the winning model 

for the “AC vs. AA+CC” model. We observe a significant effect on the connection from right DLPFC to 

left HF – parameter a21 – between genotype groups (p = 0.0258). AC allele carriers show higher 

prefrontal-hippocampal effective connectivity in comparison to AA+CC allele carriers. 

Comparison and statistical tests on sDCM parameter estimates 

“AC vs. AA+CC” model 

NAC = 79; NAA+CC = 101 

Parameter a11 Parameter a21 Parameter a22 

   

No significant; p = 0.2862* 
Significant; p = 0.0258* 

p ≤ 0.05, uncorrected 
No significant; p = 0.6419* 

Parameter c1 Parameter c2 

  
No significant; p = 0.1487** No significant; p = 0.8491** 

Figure 3.2.2.3. Comparison and statistical tests on sDCM parameter estimates between genotype groups for 

the “AC vs. AA+CC” model 

*Two sample t-test; **Wilcoxon rank sum test 
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Figure 3.2.2.4 shows the comparison between sDCM parameter estimates of the winning model 

for the “CC vs. AA+AC” model. We observe a significant effect on the self-connection in right DLPFC – 

parameter a11 – between genotype groups (p = 0.0326). AA+AC allele carriers show lower inhibition 

(higher excitation) per unit of time in right DLPFC in comparison to CC allele carriers. Furthermore, 

we do observe a tendency on driven input into right DLPFC – parameter c1 – between genotype 

groups (p = 0.0616). AA+AC allele carriers show increased deactivation per unit of time in right DLPFC 

driven by the 2-Back in comparison to CC allele carriers. 

Comparison and statistical tests on sDCM parameter estimates 

“CC vs. AA+AC” model 

NCC = 34; NAA+AC = 146 

Parameter a11 Parameter a21 Parameter a22 

   
Significant; p = 0.0326* 

p ≤ 0.05, uncorrected 
No significant; p = 0.2364* No significant; p = 0.4178* 

Parameter c1 Parameter c2 

  
No significant; p = 0.0616** No significant; p = 0.9084** 

Figure 3.2.2.4. Comparison and statistical tests on sDCM parameter estimates between genotype groups for 

the “CC vs. AA+AC” model  

*Two sample t-test; **Wilcoxon rank sum test 
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3.2.3. Statistical tests on behavior across different genetic models 

(a) Statistical tests on mean performance in the 2-Back across different genetic models 

Figure 3.2.3.1 shows the comparison between the mean performances in the 2-Back for each 

genotype model. We do not observe any statistically significant effect. 

Comparison and statistical tests on mean performance in the 2-Back 

“AA vs. AC vs. CC” model 

NAA = 67; NAC = 79; NCC = 34 

 
No significant; p = 0.8904

2 

“AA vs. AC+CC” model 

NAA = 67; NAC+CC = 113 

“AC vs. AA+CC” model 

NAC = 79; NAA+CC = 101 

“CC vs. AA+AC” model 

NCC = 34; NAA+AC = 146 

   
No significant; p = 0.6352

4 
No significant; p = 0.7894

4 
No significant; p = 0.8062

4 

Figure 3.2.3.1. Comparison and statistical tests on mean performance in the 2-Back for each genetic model 
1
One-way ANOVA; 

2
Kruskal-Wallis test; 

3
Two sample t-test; 

4
Wilcoxon rank sum test 
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(b) Statistical tests on mean reaction time in the 2-Back across different genetic models 

Figure 3.2.3.2 shows the comparison between the mean reaction time in the 2-Back for each 

genetic model. We do not observe any statistically significant effect. Nonetheless, we do observe a 

slightly tendency in the “CC vs. AA+AC” model (n.s., p = 0.2002). AA+AC allele carriers show higher 

mean reaction time in the 2-Back in comparison to CC allele carriers. 

Comparison and statistical tests on mean reaction time in the 2-Back 

“AA vs. AC vs. CC” model 

NAA = 67; NAC = 79; NCC = 34 

 
No significant; p = 0.4374

2 

“AA vs. AC+CC” model 

NAA = 67; NAC+CC = 113 

“AC vs. AA+CC” model 

NAC = 79; NAA+CC = 101 

“CC vs. AA+AC” model 

NCC = 34; NAA+AC = 146 

   
No significant; p = 0.5760

4 
No significant; p = 0.6426

4 
No significant; p = 0.2002

4 

Figure 3.2.3.2. Comparison and statistical tests on mean reaction time in the 2-Back for each genetic model  
1
One-way ANOVA; 

2
Kruskal-Wallis test; 

3
Two sample t-test; 

4
Wilcoxon rank sum test 

3.2.4. Linear regression of behavior on sDCM parameter estimates across different genetic 

models 

 (a) Linear regression of mean performance in the 2-Back on sDCM parameter estimates across 

different genetic models 

 Figure 3.2.4.1 shows the linear regression of mean performance in the 2-Back on sDCM 

parameter estimates of the winning model for the “AA vs. AC vs. CC” model. We do not observe any 

statistically significant effect. Nonetheless, we do observe a tendency in AC allele carriers and 

another tendency in CC allele carriers. On the one hand, self-connection in left HF – parameter a22 – 

seems to predict mean performance in the 2-Back in AC allele carriers (p = 0.0644). The lower the 
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inhibition (higher excitation) per unit of time in left HF, the higher is the mean performance in the 2-

Back in AC allele carriers. On the other hand, driven input into left HF – parameter c2 – seems to 

predict mean performance in the 2-Back in CC allele carriers (p = 0.0923). The higher the driven input 

into left HF, the lower is the mean performance in the 2-Back in CC allele carriers. 

Linear regression of mean performance in the 2-Back on sDCM parameter estimates 

“AA vs. AC vs. CC” model 

NAA = 67; NAC = 79; NCC = 34 

Performance = f(Parameter a11) Performance = f(Parameter a21) Performance = f(Parameter a22) 

   
AA: No significant; p = 0.8381 

AC: No significant; p = 0.3912 

CC: No significant; p = 0.8123 

AA: No significant; p = 0.4806 

AC: No significant; p = 0.1966 

CC: No significant; p = 0.5835 

AA: No significant; p = 0.1824 

AC: No significant; p = 0.0644 

CC: No significant; p = 0.1621 

Performance = f(Parameter c1) Performance = f(Parameter c2) 

  
AA: No significant; p = 0.1969 

AC: No significant; p = 0.8019 

CC: No significant; p = 0.6826 

AA: No significant; p = 0.5926 

AC: No significant; p = 0.6754 

CC: No significant; p = 0.0923 

Figure 3.2.4.1. Linear regression of mean performance in the 2-Back on sDCM parameter estimates for the “AA 

vs. AC vs. CC” model 
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Figure 3.2.4.2 shows the linear regression of mean performance in the 2-Back on sDCM parameter 

estimates of the winning model for the “AA vs. AC+CC” model. We do observe a significant effect. 

Self-connection in the left HF – parameter a22 – predicts mean performance in the 2-Back in AC+CC 

allele carriers (p = 0.0202). The lower the inhibition (higher excitation) per unit of time in the left HF, 

the higher is the mean performance in the 2-Back in AC+CC allele carriers. 

Linear regression of mean performance in the 2-Back on sDCM parameter estimates 

“AA vs. AC+CC” model 

NAA = 67; NAC+CC = 113 

Performance = f(Parameter a11) Performance = f(Parameter a21) Performance = f(Parameter a22) 

   

AA: No significant; p = 0.8381 

AC+CC: No significant; p = 0.3971 

AA: No significant; p = 0.4806 

AC+CC: No significant; p = 0.4013 

AA: No significant; p = 0.1824 

AC+CC: Significant; p = 0.0202 

p ≤ 0.05, uncorrected 

Performance = f(Parameter c1) Performance = f(Parameter c2) 

  
AA: No significant; p = 0.1969 

AC+CC: No significant; p = 0.9975 

AA: No significant; p = 0.5926 

AC+CC: No significant; p = 0.2571 

Figure 3.2.4.2. Linear regression of mean performance in the 2-Back on sDCM parameter estimates for the “AA 

vs. AC+CC” model 
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Figure 3.2.4.3 shows the linear regression of mean performance in the 2-Back on sDCM parameter 

estimates of the winning model for the “AC vs. AA+CC” model. We do not observe any significant 

effect. We do observe the same tendency on the self-connection in the left HF – parameter a22 – in 

AC allele carriers, since we are comparing “AC vs. AA+AC”. 

Linear regression of mean performance in the 2-Back on sDCM parameter estimates 

“AC vs. AA+CC” model 

NAC = 79; NAA+CC = 101 

Performance = f(Parameter a11) Performance = f(Parameter a21) Performance = f(Parameter a22) 

   
AC: No significant; p = 0.3912 

AA+CC: No significant; p = 0.9883 

AC: No significant; p = 0.1966 

AA+CC: No significant; p = 0.8415 

AC: No significant; p = 0.0644 

AA+CC: No significant; p = 0.9708 

Performance = f(Parameter c1) Performance = f(Parameter c2) 

  
AC: No significant; p = 0.8019 

AA+CC: No significant; p = 0.5199 

AC: No significant; p = 0.6754 

AA+CC: No significant; p = 0.4597 

Figure 3.2.4.3. Linear regression of mean performance in the 2-Back on sDCM parameter estimates for the “AC 

vs. AA+CC” model 
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Figure 3.2.4.4 shows the linear regression of mean performance in the 2-Back on sDCM parameter 

estimates of the winning model for the “CC vs. AA+AC” model. We do not observe any significant 

effect. We do observe the same tendency on driven input into left HF – parameter c2 – in CC allele 

carriers, since we are comparing “CC vs. AA+AC”. 

Linear regression of mean performance in the 2-Back on sDCM parameter estimates 

“CC vs. AA+AC” model 

NCC = 34; NAA+AC = 146 

Performance = f(Parameter a11) Performance = f(Parameter a21) Performance = f(Parameter a22) 

   
CC: No significant; p = 0.8123 

AA+AC: No significant;  p = 0.5554 

CC: No significant; p = 0.5835 

AA+AC: No significant; p = 0.1768 

CC: No significant; p = 0.1621 

AA+AC: No significant; p = 0.5420 

Performance = f(Parameter c1) Performance = f(Parameter c2) 

  
CC: No significant; p = 0.6826 

AA+AC: No significant; p = 0.3370 

CC: No significant; p = 0.0923 

AA+AC: No significant; p = 0.9226 

Figure 3.2.4.4. Linear regression of mean performance in the 2-Back on sDCM parameter estimates for the “CC 

vs. AA+AC” model 
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(b) Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates across 

different genetic models 

 Figure 3.2.4.5 shows the linear regression of mean reaction time in the 2-Back on sDCM 

parameter estimates of the winning model for the “AA vs. AC vs. CC” model. We observe three 

significant effects. Firstly, self-connection in right DLPFC – parameter a11 – predicts mean reaction 

time in the 2-Back in AA allele carriers (p = 0.0481). The higher the inhibition (lower excitation) per 

unit of time in right DLPFC, the lower is the mean reaction time in the 2-Back in AA allele carriers. 

Secondly, connection from right DLPFC to left HF – parameter a21 – predicts mean reaction time in 

the 2-Back in CC allele carriers (p = 0.0457). The higher the prefrontal-hippocampal effective 

connectivity, the lower is the mean reaction time in the 2-Back in CC allele carriers. Lastly, driven 

input into right DLPFC - parameter c1 – predicts mean reaction time in the 2-Back in AA allele carriers 

(p = 0.0057).  The higher the driven input into right DLPFC, the lower is the mean reaction time in the 

2-Back in AA allele carriers. 

Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates 

“AA vs. AC vs. CC” model 

NAA = 67; NAC = 79; NCC = 34 

Reaction time = f(Parameter a11) Reaction time = f(Parameter a21) Reaction time = f(Parameter a22) 

   
AA: Significant; p = 0.0481 

p ≤ 0.05, uncorrected 

AC: No significant; p = 0.5430  

CC: No significant; p = 0.2322 

AA: No significant; p = 0.1163 

AC: No significant; p = 0.8580 

CC: Significant; p = 0.0457 

p ≤ 0.05, uncorrected 

AA: No significant; p = 0.1596 

AC: No significant; p = 0.8954 

CC: No significant; p = 0.4889 

Reaction time = f(Parameter c1) Reaction time = f(Parameter c2) 

  
AA: Significant; p = 0.0057 

p ≤ 0.05, corrected 

AC: No significant; p = 0.6865 

CC: No significant; p = 0.8222 

AA: No significant; p = 0.7966 

AC: No significant; p = 0.1642 

CC: No significant; p = 0.7983 

Figure 3.2.4.5. Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates for the “AA 

vs. AC vs. CC” model 



Of Genes and Patients: Stochastic Dynamic Causal Modelling of the Prefrontal-Hippocampal Network  

 

David Bernal Casas  64 

Figure 3.2.4.6 shows the linear regression of mean reaction time in the 2-Back on sDCM 

parameter estimates of the winning model for the “AA vs. AC+CC” model. We observe two significant 

effects, since we are comparing “AA vs. AC+CC”. On the one hand, self-connection in right DLPFC – 

parameter a11 – predicts mean reaction time in the 2-Back in AA allele carriers (p = 0.0481). The 

lower the inhibition (higher excitation) per unit of time in the right DLPFC, the higher is the mean 

reaction time in the 2-Back in AA allele carriers. On the other hand, driven input into right DLPFC – 

parameter c1 – predicts mean reaction time in the 2-Back in AA allele carriers (p = 0.0057).  The 

higher the driven input into the right DLPFC, the lower is the mean reaction time in the 2-Back in AA 

allele carriers. 

Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates 

“AA vs. AC+CC” model 

NAA = 67; NAC+CC = 113 

Reaction time = f(Parameter a11) Reaction time = f(Parameter a21) Reaction time = f(Parameter a22) 

   
AA: Significant; p = 0.0481 

p ≤ 0.05, uncorrected 

AC+CC: No significant; p = 0.4873 

AA: No significant; p = 0.1163 

AC+CC: No significant; p = 0.5574 

AA: No significant; p = 0.1596 

AC+CC: Significant; p = 0.7471 

Reaction time = f(Parameter c1) Reaction time = f(Parameter c2) 

  
AA: Significant; p = 0.0057 

p ≤ 0.05, corrected 

AC+CC: No significant; p = 0.6258 

AA: No significant; p = 0.7966 

AC+CC: No significant; p = 0.1326 

Figure 3.2.4.6. Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates for the “AA 

vs. AC+CC” model 



Of Genes and Patients: Stochastic Dynamic Causal Modelling of the Prefrontal-Hippocampal Network  

 

David Bernal Casas  65 

Figure 3.2.4.7 shows the linear regression of mean reaction time in the 2-Back on sDCM 

parameter estimates of the winning model for the “AC vs. AA+CC” model. We observe a significant 

effect. Driven input into the right DLPFC – parameter c1 – predicts mean reaction time in the 2-Back 

in AA+CC allele carriers (p = 0.0221).  The higher the driven input into the right DLPFC, the lower is 

the mean reaction time in the 2-Back in AA+CC allele carriers. 

Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates 

“AC vs. AA+CC” model 

NAC = 79; NAA+CC = 101 

Reaction time = f(Parameter a11) Reaction time = f(Parameter a21) Reaction time = f(Parameter a22) 

   
AC: No significant; p = 0.5430  

AA+CC: No significant; p = 0.1192 

AC: No significant; p = 0.8580 

AA+CC: No significant; p = 0.3413 

AC: No significant; p = 0.8954 

AA+CC: No significant; p = 0.3550 

Reaction time = f(Parameter c1) Reaction time = f(Parameter c2) 

  
AC: No significant; p = 0.6865 

AA+CC: No significant; p = 0.0221 

p ≤ 0.05, uncorrected 

AC: No significant; p = 0.1642 

AA+CC: No significant; p = 0.9481 

Figure 3.2.4.7. Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates for the “AC 

vs. AA+CC” model 



Of Genes and Patients: Stochastic Dynamic Causal Modelling of the Prefrontal-Hippocampal Network  

 

David Bernal Casas  66 

Figure 3.2.4.8 shows the linear regression of mean reaction time in the 2-Back on sDCM 

parameter estimates of the winning model for the “CC vs. AA+AC” model. We observe two 

statistically significant effects. On the one hand, connection from right DLPFC to left HF – parameter 

a21 – predicts mean reaction time in the 2-Back in CC allele carriers (p = 0.0457). The higher the 

prefrontal-hippocampal effective connectivity, the lower is the mean reaction time in the 2-Back in 

CC allele carriers. On the other hand, driven input into right DLPFC - parameter c1 – predicts mean 

reaction time in the 2-Back in AA+AC allele carriers (p = 0.0440).  The higher the driven input into the 

right DLPFC, the lower is the mean reaction time in the 2-Back in AA+AC allele carriers. 

Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates 

“CC vs. AA+AC” model 

NCC = 34; NAA+AC = 146 

Reaction time = f(Parameter a11) Reaction time = f(Parameter a21) Reaction time = f(Parameter a22) 

   

CC: No significant; p = 0.2322 

AA+AC: No significant;  p = 0.4484 

CC: Significant; p = 0.0457 

p ≤ 0.05, uncorrected  

AA+AC: No significant; p = 0.2647 

CC: No significant; p = 0.4889 

AA+AC: No significant; p = 0.3941 

Reaction time = f(Parameter c1) Reaction time = f(Parameter c2) 

  
CC: No significant; p = 0.8222 

AA+AC: No significant; p = 0.0440 

p ≤ 0.05, uncorrected 

CC: No significant; p = 0.7983 

AA+AC: No significant; p = 0.2939 

Figure 3.2.4.8. Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates for the “CC 

vs. AA+AC” model 

3.2.5. Linear regression of mean performance in the 2-Back on mean reaction time in the 

2-Back across different genetic models 

 Figure 3.2.5.1 shows the linear regression of mean performance in the 2-Back on mean reaction 

time in the 2-Back for each genotype model. We observe a statistically significant effect in all 

subjects independently on genotype. Mean reaction time in the 2-Back predicts mean performance 

in the 2-Back in AA allele carriers (p = 3.3968e-5), AC allele carriers (p = 3.8194e-10), and CC allele 
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carriers (p = 0.0096). The lower the reaction time in the 2-Back, the higher is the mean performance 

in the 2-Back in all subjects. 

Linear regression of mean performance in the 2-Back on mean reaction time in the 2-Back 

“AA vs. AC vs. CC” model 

NAA = 67; NAC = 79; NCC = 34 

 
AA: Significant; p = 3.3968e-5 

p ≤ 0.05, corrected 

AC: Significant; p = 3.8194e-10 

p ≤ 0.05, corrected 

CC: Significant; p = 0.0096 

p ≤ 0.05, corrected
 

“AA vs. AC+CC” model 

NAA = 67; NAC+CC = 113 

“AC vs. AA+CC” model 

NAC = 79; NAA+CC = 101 

“CC vs. AA+AC” model 

NCC = 34; NAA+AC = 146 

   
AA: Significant; p = 3.3968e-5 

p ≤ 0.05, corrected 

AC+CC: Significant; p = 1.6689e-11 

p ≤ 0.05, corrected
 

AC: Significant; p = 3.8194e-10 

p ≤ 0.05, corrected 

AA+CC: Significant; p = 1.8090e-6 

p ≤ 0.05, corrected
 

CC: Significant; p = 0.0096 

p ≤ 0.05, corrected  

AA+AC: Significant; p = 4.1417e-14 

p ≤ 0.05, corrected
 

Figure 3.2.5.1. Linear regression of mean performance in the 2-Back on mean reaction time in the 2-Back for 

each genetic model 

3.3. Investigation of relations between sDCM parameter estimates and behavior in pair-

wise matched healthy volunteers and schizophrenia patients  

We divided this section into seven subsections: SPM, BMS, DCM parameter estimates for each 

group, statistical tests on sDCM parameter estimates between groups, statistical tests on behavior 

between groups, linear regression of behavior on sDCM parameter estimates for each group, and 

linear regression of mean performance in the 2-Back on mean reaction time in the 2-Back for each 

group. 
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3.3.1. SPM for each group 

The conjunction maps depicted in Figures 3.3.1.1 and 3.3.1.2 show the common (de)activation 

pattern across the two groups in our anatomically constrained regions of interest.  These conjunction 

analyses showed a consistent activation in the right DLPFC (x, y, z = 45, 11, 35; T = 7.69; p = 0.05, 

FWE-corrected) and consistent deactivation in the left HF (x, y, z = -27, -31, -10; T = 6.80; p = 0.05, 

FWE-corrected) across the two groups. 

  
HC subjects SZ patients 

 
HC subjects and SZ patients 

Figure 3.3.1.1. Activation maps for each group and conjunction map in the right DLPFC 
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HC subjects SZ patients 

 
HC subjects and SZ patients 

Figure 3.3.1.2. Deactivation maps for each group and conjunction map in the left HF 

As described in Chapter 2, these conjunction results were subsequently used as group-level 

functional ROIs to guide the subsequent time series extraction in the right DLPFC and left HF of each 

individual subject. 

3.3.2. BMS for each group 

We used random effects BMS to determine, from our model space of twenty-two alternative 

sDCMs (Figure 2.5.2.1), the model that provided the best balance between accuracy and complexity 

for explaining the measured data. The results were fully consistent across the two groups, revealing 

the same winning model (model 2; Figure 2.5.2.1) in HC subjects and SZ patients.  This model 

includes a driving influence of the 2-Back condition on both DLPFC and HF, and a unidirectional 

influence from DLPFC to HF. 

Figure 3.3.2.1 shows the results of BMS Random Effects (RFX) for each group. The exceedance 

probability of model 2 (i.e., the probability that this model is a more likely model than any other 

model considered) was 0.93 (for the healthy control group), and 0.75 (for the schizophrenic group), 

respectively. 
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Comparison of RFX BMS results 

  
HC subjects SZ patients 

Figure 3.3.2.1. Comparison of RFX BMS results between groups  

3.3.3. sDCM parameter estimates for each group 

As described above, BMS revealed the same winning model in HC subjects and SZ patients. Figure 

3.3.3.1 shows the mean sDCM parameter estimates for each group. 

Group Models 

  
HC subjects SZ patients 

Figure 3.3.3.1. Mean sDCM parameter estimates for each group 

3.3.4. Statistical tests on sDCM parameter estimates between groups 

Figure 3.3.4.1 shows a comparison between sDCM parameter estimates of the winning model for 

the “HC vs. SZ” model. We observe two statistically significant effects. On the one hand, we observe 

a statistically significant effect in the self-connection in right DLPFC – parameter a11 – between 

groups (p = 0.0290). SZ patients show lower inhibition (higher excitation) per unit of time in right 

DLPFC in comparison to HC subjects. On the other hand, we observe a statistically significant effect in 

the self-connection in left HF – parameter a22 – between groups (p = 0.0159). SZ patients show lower 

inhibition (higher excitation) per unit of time in the left HF in comparison to HC subjects. 

Furthermore, we observe two tendencies. On the one hand, we observe a tendency on driven input 

into right DLPFC – parameter c1 – between groups (n.s., p = 0.0956). SZ patients show increased 

deactivation per unit of time in right DLPFC driven by the 2-Back condition in comparison to HC 

subjects. On the other hand, we observe a tendency on driven input into the left HF – parameter c2 – 
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between groups (n.s., p = 0.1437). SZ patients show increased deactivation per unit of time in right 

DLPFC driven by the 2-Back condition in comparison to HC subjects. We do not observe any tendency 

on the connection from right DLPFC to left HF – parameter a21 – between groups (n.s., p = 0.5548). 

Comparison and statistical tests on sDCM parameter estimates 

“HC vs. SZ” model 

NHC = 33; NSZ = 33 

Parameter a11 Parameter a21 Parameter a22 

   
Significant; p = 0.0290* 

p ≤ 0.05, uncorrected 
No significant; p = 0.5548* 

Significant; p = 0.0159** 

p ≤ 0.05, uncorrected 

Parameter c1 Parameter c2 

  
No significant; p = 0.0956* No significant; p = 0.1437** 

Figure 3.3.4.1. Comparison and statistical tests on sDCM parameter estimates for the “HC vs. SZ” model 

*Two sample t-test; **Wilcoxon rank sum test 

3.3.5. Statistical tests on behavior between groups 

(a) Statistical tests on mean performance in the 2-Back between HC subjects and SZ patients 

Figure 3.3.5.1 shows a comparison between mean performances in the 2-Back for the “HC vs. SZ” 

model. We observe a statistically significant effect in the mean performance in the 2-Back between 

groups (p = 4.3541e-06). SZ patients show lower mean performance in the 2-Back in comparison to 

HC subjects. 
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Statistical tests on mean performance in the 2-Back 

“HC vs. SZ” model 

NHC = 33; NSZ = 33 

 
Significant; p = 4.3541e-06** 

p ≤ 0.05, corrected 

Figure 3.3.5.1. Comparison and statistical tests on mean performance in the 2-Back for the “HC vs. SZ” model 

*Two sample t-test; **Wilcoxon rank sum test 

(b) Statistical tests on mean reaction time in the 2-Back between HC subjects and SZ patients 

Figure 3.3.5.2 shows a comparison between mean reaction times in the 2-Back for the “HC vs. SZ” 

model. We do not observe any statistically significant effect. Nonetheless, we do observe a tendency 

in the mean reaction time in the 2-Back between groups (n.s., p = 0.1472). SZ patients show higher 

mean reaction time in the 2-Back in comparison to HC subjects. 

Statistical tests on mean reaction time in the 2-Back 

“HC vs. SZ” model 

NHC = 33; NSZ = 33 

 
No significant; p = 0.1472* 

Figure 3.3.5.2. Comparison and statistical tests on mean reaction time in the 2-Back for the “HC vs. SZ” model 

*Two sample t-test; **Wilcoxon rank sum test 

3.3.6. Linear regression of behavior on sDCM parameter estimates for each group 

(a) Linear regression of mean performance in the 2-Back on sDCM parameter estimates for each 

group 

Figure 3.3.6.1 shows the linear regression of mean performance in the 2-Back on sDCM parameter 

estimates of the winning model for the “HC vs. SZ” model. We observe a statistically significant 

effect. Connection from right DLPFC to left HF – parameter a21 – predicts mean performance in the 2-
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Back in SZ patients (p = 0.0452). The lower the prefrontal-hippocampal effective connectivity, the 

higher is the mean performance in the 2-Back in SZ patients. Furthermore, we observe a tendency in 

HC subjects and another tendency in SZ patients. On the one hand, self-connection in right DLPFC – 

parameter a11 – seems to predict mean performance in the 2-Back in HC subjects (n.s., p = 0.1028). 

The lower the inhibition (higher excitation) per unit of time in right DLPFC, the higher is the mean 

performance in the 2-Back in HC subjects. On the other hand, driven input into left HF – parameter c2 

– seems to predict mean performance in the 2-Back in SZ patients (n.s., p = 0.1188).  The higher the 

driven input into the left HF, the higher is the mean performance in the 2-Back in SZ patients. 

Linear regression of mean performance in the 2-Back on sDCM parameter estimates 

“HC vs. SZ” model 

NHC = 33; NSZ = 33 

Performance = f(Parameter a11) Performance = f(Parameter a21) Performance = f(Parameter a22) 

   

HC: No significant; p = 0.1028 

SZ: No significant; p = 0.5709 

HC: No significant; p = 0.6270 

SZ: Significant; p = 0.0452 

p ≤ 0.05, uncorrected 

HC: No significant; p = 0.6526 

SZ: No significant; p = 0.5849 

Performance = f(Parameter c1) Performance = f(Parameter c2) 

  
HC: No significant; p = 0.3481 

SZ: No significant; p = 0.7879 

HC: No significant; p = 0.9623 

SZ: No significant; p = 0.1188 

Figure 3.3.6.1. Linear regression of mean performance in the 2-Back on sDCM parameter estimates for the “HC 

vs. SZ” model 

(b) Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates for each 

group 

Figure 3.3.6.2 shows the linear regression of mean reaction time in the 2-Back on sDCM 

parameter estimates of the winning model for the “HC vs. SZ” model. We do not observe any 

statistically significant effect. Nonetheless, we observe two tendencies in SZ patients. On the one 

hand, self-connection in right DLPFC – parameter a11 – seems to predict mean reaction time in the 2-
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Back in SZ patients (n.s., p = 0.1107). The higher the inhibition (lower excitation) per unit of time in 

right DLPFC, the lower is the mean reaction time in the 2-Back in SZ patients. On the other hand, 

driven input into right DLPFC – parameter c1 – seems to predict mean reaction time in the 2-Back in 

SZ patients (n.s., p = 0.1360).  The higher the driven input into the right DLPFC, the lower is the mean 

reaction time in the 2-Back in SZ patients. 

Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates 

“HC vs. SZ” model 

NHC = 33; NSZ = 33 

Reaction time = f(Parameter a11) Reaction time = f(Parameter a21) Reaction time = f(Parameter a22) 

   
HC: No significant; p = 0.2363 

SZ: No significant; p = 0.1107 

HC: No significant; p = 0.6358 

SZ: No significant; p = 0.5155 

HC: No significant; p = 0.8396 

SZ: No significant; p = 0.7242 

Reaction time = f(Parameter c1) Reaction time = f(Parameter c2) 

  
HC: No significant; p = 0.6159 

SZ: No significant; p = 0.1360 

HC: No significant; p = 0.4213 

SZ: No significant; p = 0.6870 

Figure 3.3.6.2. Linear regression of mean reaction time in the 2-Back on sDCM parameter estimates for the “HC 

vs. SZ” model 

3.3.7. Linear regression of mean performance in the 2-Back on mean reaction time in the 

2-Back for each group 

Figure 3.3.7.1 shows a linear regression of mean performance in the 2-Back on mean reaction 

time in the 2-Back for the “HC vs. SZ” model. We observe a statistically significant effect. Mean 

reaction time in the 2-Back predicts mean performance in the 2-Back in SZ patients (p = 0.0035). The 

lower the reaction time in the 2-Back, the higher is the mean performance in the 2-Back in SZ 

patients. 
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Linear regression of mean performance in the 2-Back on mean reaction time in the 2-Back 

“HC vs. SZ” model 

NHC = 33; NSZ = 33 

 
HC: No significant; p = 0.6270 

SZ: Significant; p = 0.0035 

p ≤ 0.05, corrected 

Figure 3.3.7.1. Linear regression of mean performance in the 2-Back on mean reaction time in the 2-Back for 

the “HC vs. SZ” model 

3.4. Comparison of two-group genetic models and healthy vs. schizophrenia model 

We qualitatively compare each of the two-group genetic models: “AA vs. AC+CC”, “AC vs. AA+CC”, 

and “CC vs. AA+AC” to the “HC vs. SZ” model. We found a high degree of similarity between “CC vs. 

AA+AC” and “HC vs. SZ” models. Next, we show the similarities between these two models. 

3.4.1. Comparison of “CC vs. AA+AC” and “HC vs. SZ” models 

We qualitatively compare: (a) sDCM models, (b) Statistical tests on sDCM parameter estimates, (c) 

Statistical tests on behavior, (d) Linear regression of behavior on sDCM parameter estimates , and (e) 

Linear regression of mean performance in the 2-Back on mean reaction time in the 2-Back. 

(a) Comparison of sDCM models between “CC vs. AA+AC” and “HC vs. SZ” models 

Figure 3.4.1.1 shows a comparison of sDCM models between “CC vs. AA+AC” and “HC vs. SZ” 

models. 
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Comparison of sDCM models 

“CC vs. AA+AC” model 

  
CC allele carriers AA+AC allele carriers 

“HC vs. SZ” model 

  
HC subjects SZ patients 

Figure 3.4.1.1. Mean sDCM parameter estimates for the “CC vs. AA+AC” and “HC vs. SZ” models 

(b) Comparison of sDCM parameter estimates between “CC vs. AA+AC” and “HC vs. SZ” models 

Figure 3.4.1.2 shows a comparison of sDCM parameter estimates of the winning model between 

“CC vs. AA+AC” and “HC vs. SZ” models. We observe the same phenotype in both models. Self-

connection in right DLPFC – parameter a11 – increases in AA+AC allele carriers in comparison to CC 

carriers (p = 0.0326), as do SZ patients in comparison to HC subjects (p = 0.0290). AA+AC allele 

carriers and SZ patients show lower inhibition (higher excitation) per unit of time in the right DLPFC 

in comparison to CC allele carriers and HC subjects. Connection from right DLPFC to left HF – 

parameter a21 – increases in AA+AC allele carriers in comparison to CC carriers (n.s., p = 0.2364), as 

do SZ patients in comparison to HC subjects (n.s., p = 0.5548). AA+AC allele carriers and SZ patients 

show a greater prefrontal-hippocampal effective connectivity in comparison to CC allele carriers and 

HC subjects. Self-connection in left HF – parameter a22 – increases in AA+AC allele carriers in 

comparison to CC carriers (n.s., p = 0.4178), as do SZ patients in comparison to HC subjects (p = 

0.0159). AA+AC allele carriers and SZ patients show lower inhibition (higher excitation) per unit of 

time in the left HF in comparison to CC allele carriers and HC subjects. Driven input into right DLPFC – 

parameter c1 – decreases in AA+AC allele carriers in comparison to CC carriers (n.s., p = 0.0616), as do 

SZ patients in comparison to HC subjects (n.s., p = 0.0956). AA+AC allele carriers and SZ patients 

show increased deactivation per unit of time in the right DLPFC driven by the 2-Back condition in 

comparison to CC allele carriers and HC subjects. Driven input into left HF – parameter c2 – decreases 

in AA+AC allele carriers in comparison to CC carriers (n.s., p = 0.9084), as do SZ patients in 

comparison to HC subjects (n.s., p = 0.1437). AA+AC allele carriers and SZ patients show increased 
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deactivation per unit of time in left HF driven by the 2-Back condition in comparison to CC allele 

carriers and HC subjects. 

Comparison and statistical tests on sDCM parameter estimates 

Parameter a11 Parameter a21 Parameter a22 

   
Significant; p = 0.0326* 

p ≤ 0.05, uncorrected 
No significant; p = 0.2364* No significant; p = 0.4178* 

   
Significant; p = 0.0290* 

p ≤ 0.05, uncorrected 
No significant; p = 0.5548* 

Significant; p = 0.0159** 

p ≤ 0.05, uncorrected 

Parameter c1 Parameter c2 

  
No significant; p = 0.0616** No significant; p = 0.9084** 

  
No significant; p = 0.0956* No significant; p = 0.1437** 

Figure 3.4.1.2. Comparison of sDCM parameter estimates between “CC vs. AA+AC” and “HC vs. SZ” models 

*Two sample t-test; **Wilcoxon rank sum test 
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(c) Comparison of behavior between “CC vs. AA+AC” and “HC vs. SZ” models 

Comparison of mean performance in the 2-Back between “CC vs. AA+AC” and “HC vs. SZ” models 

Figure 3.4.1.3 shows a comparison of mean performance in the 2-Back between “CC vs. AA+AC” 

and “HC vs. SZ” models. We observe the same phenotype in both models. We observe that mean 

performance in the 2-Back decreases in AA+AC allele carriers in comparison to CC carriers (n.s., p = 

0.8062), as do SZ patients in comparison to HC subjects (p = 4.3541e-06). AA+AC allele carriers and SZ 

patients show lower mean performance in the 2-Back in comparison to CC allele carriers and HC 

subjects. 

Comparison and statistical tests on mean performance in the 2-Back 

 
No significant; p = 0.8062** 

 
Significant; p = 4.3541e-06** 

p ≤ 0.05, corrected 

Figure 3.4.1.3. Comparison of mean performance in the 2-Back between “CC vs. AA+AC” and “HC vs. SZ” 

models 

*Two sample t-test; **Wilcoxon rank sum test 
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Comparison of mean reaction time in the 2-Back between “CC vs. AA+AC” and “HC vs. SZ” models 

Figure 3.4.1.4 shows a comparison of mean performance in the 2-Back between “CC vs. AA+AC” 

and “HC vs. SZ” models. We observe the same phenotype in both models. We observe that mean 

reaction time in the 2-Back increases in AA+AC allele carriers in comparison to CC carriers (n.s., p = 

0.2002), as do SZ patients in comparison to HC subjects (n.s., p = 0.1472). AA+AC allele carriers and 

SZ patients show higher mean reaction time in the 2-Back in comparison to CC allele carriers and HC 

subjects. 

Comparison and statistical tests on mean reaction time in the 2-Back 

 
No significant; p = 0.2002** 

 
No significant; p = 0.1472* 

Figure 3.4.1.4. Comparison of mean reaction time in the 2-Back between “CC vs. AA+AC” and “HC vs. SZ” 

models 

*Two sample t-test; **Wilcoxon rank sum test 
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(d) Comparison of linear regression of behavior on sDCM parameter estimates between “CC vs. 

AA+AC” and “HC vs. SZ” models 

Comparison of linear regression of mean performance in the 2-Back on sDCM parameter estimates 

between “CC vs. AA+AC” and “HC vs. SZ” models 

Figure 3.4.1.5 shows a comparison of the linear regression of mean performance in the 2-Back on 

sDCM parameter estimates of the winning model between “CC vs. AA+AC” and “HC vs. SZ” models. 

We observe a comparable linear regression effect of mean performance in the 2-Back within one of 

the sDCM parameter estimates in both models. Connection from right DLPFC to left HF – parameter 

a21 – seems to predict mean performance in the 2-Back in AA+AC allele carriers (n.s., p = 0.1768), as 

do in SZ patients (p = 0.0452). The lower the prefrontal-hippocampal effective connectivity, the 

higher is the mean performance in the 2-Back in both AA+AC allele carriers and SZ patients. 

Comparison of linear regression of mean reaction time in the 2-Back on sDCM parameter estimates 

between “CC vs. AA+AC” and “HC vs. SZ” models 

Figure 3.4.1.6 shows a comparison of the linear regression of mean reaction time in the 2-Back on 

sDCM parameter estimates of the winning model between “CC vs. AA+AC” and “HC vs. SZ” models. 

We observe a comparable linear regression effect of mean reaction time in the 2-Back within one of 

the sDCM parameter estimates in both models. Driven input into right DLPFC – parameter c1 – 

predicts mean reaction time in the 2-Back in AA+AC allele carriers (p = 0.0440), as seems to do in SZ 

patients (n.s., p = 0.1360). The higher the driven input into right DLPFC, the lower is the mean 

reaction time in the 2-Back in AA+AC allele carriers and SZ patients. 
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Comparison of linear regression of mean performance in the 2-Back on sDCM parameter estimates 

Performance = f(Parameter a11) Performance = f(Parameter a21) Performance = f(Parameter a22) 

   
CC: No significant; p = 0.8123 

AA+AC: No significant;  p = 0.5554 

CC: No significant; p = 0.5835 

AA+AC: No significant; p = 0.1768 

CC: No significant; p = 0.1621 

AA+AC: No significant; p = 0.5420 

   

HC: No significant; p = 0.1028 

SZ: No significant; p = 0.5709 

HC: No significant; p = 0.6270 

SZ: Significant; p = 0.0452 

p ≤ 0.05, uncorrected 

HC: No significant; p = 0.6526 

SZ: No significant; p = 0.5849 

Performance = f(Parameter c1) Performance = f(Parameter c2) 

  
CC: No significant; p = 0.6826 

AA+AC: No significant; p = 0.3370 

CC: No significant; p = 0.0923 

AA+AC: No significant; p = 0.9226 

  
HC: No significant; p = 0.3481 

SZ: No significant; p = 0.7879 

HC: No significant; p = 0.9623 

SZ: No significant; p = 0.1188 

Figure 3.4.1.5. Comparison of linear regression of mean performance in the 2-Back on sDCM parameter 

estimates between “CC vs. AA+AC” and “HC vs. SZ” models 
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Comparison of linear regression of mean reaction time in the 2-Back on sDCM parameter estimates 

Reaction time = f(Parameter a11) Reaction time = f(Parameter a21) Reaction time = f(Parameter a22) 

   

CC: No significant; p = 0.2322 

AA+AC: No significant;  p = 0.4484 

CC: Significant; p = 0.0457 

p ≤ 0.05, uncorrected  

AA+AC: No significant; p = 0.2647 

CC: No significant; p = 0.4889 

AA+AC: No significant; p = 0.3941 

   
HC: No significant; p = 0.2363 

SZ: No significant; p = 0.1107 

HC: No significant; p = 0.6358 

SZ: No significant; p = 0.5155 

HC: No significant; p = 0.8396 

SZ: No significant; p = 0.7242 

Reaction time = f(Parameter c1) Reaction time = f(Parameter c2) 

  
CC: No significant; p = 0.8222 

AA+AC: Significant; p = 0.0440 

p ≤ 0.05, uncorrected 

CC: No significant; p = 0.7983 

AA+AC: No significant; p = 0.2939 

  
HC: No significant; p = 0.6159 

SZ: No significant; p = 0.1360 

HC: No significant; p = 0.4213 

SZ: No significant; p = 0.6870 

Figure 3.4.1.6. Comparison of linear regression of mean reaction time in the 2-Back on sDCM parameter 

estimates between “CC vs. AA+AC” and “HC vs. SZ” models 
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(e) Comparison of linear regression of mean performance in the 2-Back on mean reaction time in the 

2-Back between “CC vs. AA+AC” and “HC vs. SZ” models  

Figure 3.4.1.7 shows a comparison of the linear regression of mean performance in the 2-Back on 

mean reaction time in the 2-Back between “CC vs. AA+AC” and “HC vs. SZ” models. We observe a 

comparable linear regression effect of mean performance in the 2-Back on mean reaction time in the 

2-Back in both models. We observe that mean reaction time in the 2-Back predicts mean 

performance in the 2-Back in AA+AC allele carriers (p = 4.1417e-14), as do in SZ patients (p = 0.0035). 

The lower the mean reaction time in the 2-Back, the higher is the mean performance in the 2-Back in 

AA+AC allele carriers and SZ patients. 

Linear regression of mean performance in the 2-Back on mean reaction time in the 2-Back 

 
CC: Significant; p = 0.0096 

p ≤ 0.05, corrected  

AA+AC: Significant; p = 4.1417e-14 

p ≤ 0.05, corrected 

 
HC: No significant; p = 0.6270 

SZ: Significant; p = 0.0035 

p ≤ 0.05, corrected 

Figure 3.4.1.7. Comparison of linear regression of mean performance in the 2-Back on mean reaction time in 

the 2-Back between “CC vs. AA+AC” and “HC vs. SZ” models 
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Chapter 4: Discussion, conclusions and suggestions for future research 

“A man can do as he will, but not will as he will.” 
Arthur Schopenhauer 

This chapter discusses the results, reports the conclusions that can be drawn from the results and 

suggests new approaches for future research. 

4.1. Summary 

As stated in Section 1.3, we divided the research problem into four stages. 

In the first stage, we examined the reproducibility of prefrontal-hippocampal connectivity 

estimates obtained by stochastic Dynamic Causal Modelling (sDCM). 180 healthy subjects were 

measured by functional magnetic resonance imaging (fMRI) during a standard working memory N-

Back task at three different sites (Mannheim, Bonn, Berlin; each with 60 participants). The 

reproducibility of regional activations in key regions for working memory (dorsolateral prefrontal 

cortex, DLPFC; hippocampal formation, HF) was then evaluated using conjunction analyses across 

locations. For effective connectivity analyses between DLPFC and HF, we used a simple two region 

sDCM; where the relative plausibility of twenty-two alternative sDCMs for each user was computed 

using Bayes model selection (BMS). We examined potential differences in the parameter estimates of 

the winning model by performing statistical tests. 

In the second stage, we investigated relations between prefrontal-hippocampal connectivity 

estimates, a risk genetic variant for schizophrenia: ZNF804A (rs1344706), and behavior in the 180 

healthy subjects previously analyzed. We further investigated the modulatory effect of ZNF804A 

(rs1344706) on the prefrontal-hippocampal network in healthy volunteers. Furthermore, we asked 

whether specific sDCM parameter estimates contain sufficiently rich discrimination information to 

enable to predict behavior. Importantly, all genetic models (additive, recessive, co-dominant, and 

dominant) were explored in order to estimate underlying phenotypic variants.  

During the third analysis stage, we applied the same methodology previously described to 33 pair-

wise matched healthy volunteers and 33 schizophrenia patients. For each subject, we evaluated the 

same twenty-two alternative sDCMs and compared their relative plausibility using BMS. We then 

investigated statistically significant differences on sDCM parameter estimates between healthy 

control subjects and schizophrenia patients, and relations between the new set of sDCM parameter 

estimates and behavior. Based on these results, we defined a healthy vs. schizophrenia model.  



Of Genes and Patients: Stochastic Dynamic Causal Modelling of the Prefrontal-Hippocampal Network  

 

David Bernal Casas  85 

To conclude in the fourth exploratory analysis stage, we visually compared each of the two-group 

genetic models (recessive, co-dominant, and dominant) estimated in the second stage to the new 

healthy vs. schizophrenia model estimated in the third stage. We discussed the similarities and 

dissimilarities between these models and these comparisons helped to argue the conclusions of this 

dissertation. 

4.2. Discussion 

4.2.1. Multi-site reproducibility of prefrontal-hippocampal connectivity estimates by sDCM 

in healthy volunteers 

For deterministic DCM, two studies of reliability exist, showing high reproducibility of parameter 

estimates (Schuyler et al., 2010) and model selection (Rowe et al., 2010) respectively. While 

reliability tests do not directly address questions of model validity, reliability is an important 

prerequisite for validity.  For deterministic DCM, several studies have been performed that assessed 

different aspect of its validity.  For example, construct validity of deterministic DCM for fMRI has 

been demonstrated in relation to SEM (Penny et al., 2004b) or large-scale neuronal models (Lee et 

al., 2006). Predictive validity has been demonstrated in a multimodal rodent study, showing that 

regional origins of epilepsy spread can be detected (David et al., 2008), and in studies of stroke 

patients where DCM applied to data from non-lesioned parts of the brain could predict, with nearly 

perfect accuracy, the absence or presence of a “hidden” lesion, i.e., out of the field of view 

(Brodersen et al., 2011). Stochastic DCM for fMRI is a more recent development, and so far, only one 

validation study exists (Daunizeau et al., 2013). 

Remarkably, in our winning model the maximum a posteriori (MAP) estimates of both our inter-

regional connection strengths and driving inputs are rather small (Figure 3.1.3.1), while visual 

inspection of our models shows good fit to data.  This implies that the activity in DLPFC and HF can be 

largely explained by the stochastic innovations (fluctuation terms) that drive activity in DLPFC and HF; 

and suggests that future refinements of sDCM in SPM should consider the relative precision of priors 

on stochastic innovations and connectivity parameters. 

Nevertheless, the additional (small) explanatory contribution of inter-regional connectivity is very 

stable across subjects, as demonstrated by our analyses (Figure 3.1.4.1). Furthermore, both removing 

the influence of task as driving input (models 8-22) or disallowing for the endogenous connection 

from DLPFC to HF (in models 1-7) clearly deteriorated model goodness, as shown by the results of 

our BMS analyses.  This means that despite their small MAP values, both driving inputs and inter-
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regional connections play a sufficiently important role in explaining regional activity (in DLPFC and 

HF) that the respective models can be clearly distinguished in terms of their model evidence. 

Another interesting (and unexpected) aspect of the quantitative results was that the parameters 

that scale experimental input (2-Back) were negative for both regions - despite the fact that one 

region activated and the other deactivated.  This again speaks to the subtleties of stochastic DCM, in 

which experimental effects can be modelled by condition-specific fluctuations in hidden neuronal 

states.  In other words, despite the fact that the cognitive set associated with task performance 

appears to produce an inhibitory afferent drive to both regions, the estimated changes in neuronal 

activity must more than compensate in the prefrontal region showing an activation (which drives the 

hippocampal region showing a deactivation). In future work, it may be interesting to test this 

conjecture using the estimates of hidden neuronal activity in the two regions, as opposed to the 

observed hemodynamic responses.  Our hypothesis here would be that the estimated activity in the 

prefrontal region would be higher, on average, during working memory and the converse for the 

hippocampal region. 

To conclude, it may be helpful to remember that the lumped neuronal activity modelled by DCM 

for fMRI does not correspond to evoked responses in electrophysiology; rather, it probably reflects 

very slow fluctuations in the power of high frequency dynamics - that have much slower rate 

constants than the underlying neuronal activity itself. 

4.2.2. Investigation of relations between sDCM parameter estimates, ZNF804A 

(rs1344706), and behavior in healthy volunteers 

In this section, we will frame the second analysis results in terms of effective connectivity and 

functional (E-I) balance highlighting the crucial role that plays in our research the disconnection 

hypothesis and dysfunctional (E-I) balance. These two concepts were introduced in Chapter 1 and will 

serve as a guide to discuss our research findings and compare them to the discoveries published by 

other colleagues. 

As described in Chapter 1, recently neuroimaging studies started to link ZNF804A (rs1344706) to 

the prefrontal-hippocampal network. Furthermore, some molecular biology studies, investigated the 

influence of ZNF804A (rs1344706) on DLPFC and HF. Please see Chapter 1 for further details; Table 

4.2.2.1 summarizes these research findings. 
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Neuroimaging 

studies on ZNF804A 

(rs1344706) 

→ 
↑ Risk allele 

“A” 
→ 

DLPFC-HF 

network 
→ ↑ Functional connectivity between DLPFC-HF 

Molecular biology 

studies on ZNF804A 

(rs1344706) 

→ 
↑ Risk allele 

“A” 
→ DLPFC → ↑ ZNF804A → ↑ COMT 

Molecular biology 

studies on ZNF804A 

(rs1344706) 

→ 
↑ Risk allele 

“A” 
→ HF → 

It seems ZNF804A (rs1344706) does not play any 

role within the HF 

Table 4.2.2.1. Recent discoveries of ZNF804A (rs1344706) within the DLPFC-HF network 

Here, we performed statistical tests on sDCM parameter estimates of the winning model and 

behavior to examine potential differences across different genetic models.  

We observed a statistical difference on the connection from right DLPFC to left HF within the 

recessive model (see Figure 3.2.2.2). AA allele carriers show greater prefrontal-hippocampal effective 

connectivity or higher functional (E-I) balance (lower inhibition) in comparison to AC+CC allele 

carriers. This result is fully consistent with (Rasetti et al., 2011). In this study, the researchers 

revealed that subjects homozygous for the risk-associated allele (AA allele carriers) showed a 

disruption in task-related modulation of right DLPFC-left HC coupling in the PPI analysis. Moreover, is 

partially consistent with (Esslinger et al., 2009; Paulus et al., 2013). In these studies, the researchers 

revealed a gene-dose effect of the genotype on the prefrontal-hippocampal connectivity in seeded 

connectivity analysis. The functional connectivity between the right DLPFC and the left HF statistically 

increased with the number of rs1344706 risk alleles.  

In addition, we also observed a statistical difference on the self-connection in the right DLPFC 

within the dominant model (see Figure 3.2.2.4). AA+AC allele carriers show higher functional (E-I) 

balance (lower inhibition) per unit of time in right DLPFC in comparison to CC allele carriers. We do 

not have any reference to compare our results with; nonetheless some molecular biology studies 

already reported a pretty similar research finding showing that ZNF804A (rs1344706) seems to play a 

very crucial role within the DLPFC (see Chapter 1; i.e. Girgenti et al., 2012).  

Following on these results, we further investigate the biological implications of ZNF804A 

(rs1344706) on the DLPFC-HF network by reviewing some other molecular biology studies. Table 

4.2.2.2 summarizes the research findings reported by other studies in relation to increased COMT 

within the DLPFC: 
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Molecular 

biology studies 

on ZNF804A 

(rs1344706) 

→ 

↑ Risk 

allele 

“A” 

→ DLPFC → ↑ ZNF804A → ↑ COMT → … 

Other 

molecular 

biology studies 

→ ↓ DA 

→ 

Via 

D1 

↓ NMDAR-

mediated currents 

on GABA 

interneurons 

→ 

↓ Overall 

network 

inhibition 

→ 
↑ Excita	on primary 

corticolimbic networks 

Table 4.2.2.2. Summary of implications of increased COMT within the DLPFC 

In view of these research findings, considering the winning model with a directed connection from 

DLPFC to HF (see above), we hypothesize the next functional pathway of ZNF804A (rs1344706) on 

the prefrontal-hippocampal network. 

The rs1344706 risk allele has been associated with increased expression in the DLPFC (Riley et al., 

2010). ZNF804A regulates transcription levels of four SZ associated genes: PRSS16 and COMT by 

increasing transcript levels; and PDE4B and DRD2 by decreasing transcript levels (Girgenti et al., 

2012). For instance, increased transcript levels of COMT lead to higher degradation of dopamine in 

the synaptic cleft in the PFC (Karoum et al., 1994; Matsumoto et al., 2003). Dopamine, in particular 

D1 receptors, in the PFC is profoundly implicated in the control of cognition, e.g. working memory 

(Goldman-Rakic et al., 2004). Reduced dopamine via D1 reduces NMDA receptor-activated synaptic 

currents (Tseng and O'Donnell, 2004). A consequence of NMDA-hypofunction is an extensive release 

of glutamate in cortical regions, i.e. DLPFC (Adams and Moghaddam, 1998; Moghaddam et al., 1997). 

One assumption of the NMDA-hypofunction model is that this increased release of excitatory 

neurotransmitter leads to an overstimulation of downstream excitatory neurons, as well as to a 

further disinhibition through a lack of NMDA receptor excitation on interneurons and a consequent 

loss in overall network inhibition (Homayoun and Moghaddam, 2007). According to this model, this 

complex disinhibitory phenomenon results in hyperstimulation of primary corticolimbic networks, i.e. 

DLPFC-HF network. This excessive release of glutamate in the DLPFC and in primary corticolimbic 

networks may lead to a net excitatory activity that can be observed by fMRI (Figure 2.1.3.1; 

Logothetis, 2008; Logothetis and Wandell, 2004). This cascade of phenomena might be a plausible 

explanation for observing, in a first step, a higher functional (E-I) balance (lower inhibition) per unit 

of time in the right DLPFC in AA+AC allele carriers in comparison to CC allele carriers, and in a second 

step, a higher prefrontal-hippocampal effective connectivity or higher functional (E-I) balance (lower 

inhibition) per unit of time in AA allele carriers in comparison to AC+CC allele carriers.  

In the same vein, the rs1344706 risk allele has not been associated with increased expression in 

the HF and that might be a plausible explanation for not observing this phenomenon in the HF. 
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Table 4.2.2.3 illustrates the research findings reported by other studies in comparison to our 

second analysis results. 

Neuroimaging 

studies on ZNF804A 

(rs1344706) 

→ 

↑ Risk 

allele 

“A” 

→ 

DLPFC-

HF 

network 

→ ↑ Functional connectivity between DLPFC-HF 

Our second analysis → 

↑ Risk 

allele 

“A” 

→ 

DLPFC-

HF 

network 

→ 

↑ Effective connectivity between DLPFC-HF 

 

Molecular biology 

studies on ZNF804A 

(rs1344706) 

→ 

↑ Risk 

allele 

“A” 

→ DLPFC → 
↓ Overall network 

inhibition 
→ 

↑ Excitation primary 

corticolimbic networks 

Our second analysis → 

↑ Risk 

allele 

“A” 

→ DLPFC → 

↑ Func	onal (E-I) 

balance per unit of time 

in the  

DLPFC 

→ 

↑ Func	onal (E-I) 

balance per unit of time 

between DLPFC-HF 

 

→ 

 

Molecular biology 

studies on ZNF804A 

(rs1344706) 

→ 

↑ Risk 

allele 

“A” 

→ HF → 
It seems ZNF804A (rs1344706) does not play any role within 

the HF 

Our second analysis → 

↑ Risk 

allele 

“A” 

→ HF → 

↑ Func	onal (E-I) balance per unit of time in the  

HF (n.s.) 

 

Table 4.2.2.3. Comparison of recent discoveries of ZNF804A (rs1344706) within the DLPFC-HF network and our 

second analysis results 

Regarding the statistical tests on behavior, we did not observe any statistical difference across 

different genetic models within the mean performance nor within the mean reaction time in the 2-
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Back. Nonetheless, we do observed a slight tendency within the mean reaction time in the 2-Back in 

the dominant model (see Figure 3.2.3.2). AA+AC allele carriers show higher mean reaction time in the 

2-Back in comparison to CC allele carriers. These results are fully in line with previous studies 

(Esslinger et al., 2009; Paulus et al., 2013; Rasetti et al., 2011). In these works, the influence of the 

genotype on mean performance or mean reaction time in the 2-Back was not found. 

We also investigated relations between sDCM parameter estimates and behavior by means of 

linear regression. 

First, we performed linear regression of mean performance in the 2-Back on sDCM parameter 

estimates of the winning model. We observed that self-connection in the left HF predicts mean 

performance in the 2-Back in AC+CC allele carriers (Figure 3.2.4.2). The higher the functional (E-I) 

balance (lower inhibition) per unit of time in the left HF, the higher is the mean performance in the 2-

Back in AC+CC allele carriers.  

Second, we computed linear regression of mean reaction time in the 2-Back on sDCM parameter 

estimates of the winning model. Firstly, we observed that self-connection in the right DLPFC predicts 

mean reaction time in the 2-Back in AA allele carriers (see Figure 3.2.4.5). The lower the functional 

(E-I) balance (higher inhibition) per unit of time in the right DLPFC, the lower is the mean reaction 

time in the 2-Back in AA allele carriers. Secondly, connection from right DLPFC to left HF predicts 

mean reaction time in the 2-Back in CC allele carriers (see Figure 3.2.4.5). The greater the prefrontal-

hippocampal effective connectivity or higher the functional (E-I) balance (lower inhibition); the lower 

is the mean reaction time in the 2-Back in CC allele carriers. Finally, we observed that the driven 

input into the right DLPFC predicts mean reaction time in the 2-Back in AA allele carriers (see Figure 

3.2.4.5). The higher the driven input into the right DLPFC, the lower is the mean reaction time in the 

2-Back in AA allele carriers.  

To conclude, we performed linear regression of mean performance in the 2-Back on mean 

reaction time in the 2-Back. We observed that mean reaction time in the 2-Back predicts mean 

performance in the 2-Back in all genotype groups (see Figure 3.2.5.1). The lower the mean reaction 

time in the 2-Back, the higher is the mean performance in the 2-Back in all subjects independently on 

the genotype. 

Despite all these discoveries, we do not have any reference to compare our regression analyses 

results with. Nonetheless, all these observations will be very important for the conclusions of this 

dissertation as will be discussed in short. 
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4.2.3. Investigation of relations between sDCM parameter estimates and behavior in pair-

wise matched healthy volunteers and schizophrenia patients 

In this section, we will also frame the third analysis results in terms of effective connectivity and 

functional (E-I) balance emphasizing the fundamental role that plays the disconnection hypothesis 

and dysfunctional (E-I) balance in our dissertation. 

As described in Chapter 1, the prefrontal-hippocampal network has been extensively analysed in 

neuroimaging studies of schizophrenia. Furthermore, recent reports reviewed strong evidence of 

altered functional (E-I) balance within brain regions associated with the disease, i.e. DLPFC and HF. 

(please see Chapter 1 for further details). Table 4.2.3.1 shows a simplified schema of the recent 

findings in the topic. 

Neuroimaging 

studies of 

schizophrenia 

→ 

DLPFC-

HF 

network 

→ ↑ Functional connectivity between DLPFC-HF 

Molecular 

biology 

studies of 

schizophrenia 

→ DLPFC → 

NMDAR 

hypofunction 

model 

→ 

↓ NMDAR-

mediated 

currents on 

GABA 

interneurons 

→ 

↓ Overall 

network 

inhibition 

 

→ 

 

↑ Excitation 

primary 

corticolimbic 

networks 

Molecular 

biology 

studies of 

schizophrenia 

→ HF → 

NMDAR 

hypofunction 

model 

→ 

↓ NMDAR-

mediated 

currents on 

GABA 

interneurons 

→ ↓ Overall network inhibi	on 

Table 4.2.3.1. Recent discoveries of schizophrenia within the DLPFC-HF network 

Using BMS, we revealed the same connectivity pattern or winning model between DLPFC and HF 

during WM in controls and patients. Furthermore, we performed statistical tests on sDCM parameter 

estimates of the winning model and behavior to examine potential differences between healthy 

control subjects and schizophrenia patients. Two main results were obtained: 

First, we observed a statistical difference in the self-connection in the right DLPFC (see Figure 

3.3.4.1). Schizophrenia patients have higher functional (E-I) balance (lower inhibition) per unit of 

time in the right DLPFC in comparison to healthy control subjects. This result is fully consistent with 

the literature review published by (Kehrer et al., 2008). In this study, the researchers reviewed strong 

evidence for altered functional (E-I) balance in the NMDA-hypofunction model of schizophrenia 

within brain regions associated with the disease (PFC and HF among others). Furthermore, this 

research finding is also consistent with (Yizhar et al., 2011). In this study, the authors provided 

support for the elevated cellular (E-I) balance hypothesis within neocortical regions of severe 

neuropsychiatric disease-related symptoms. 
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Second, we reported a statistical difference in the self-connection in the left HF (see Figure 

3.3.4.1). Schizophrenia patients have higher functional (E-I) balance (lower inhibition) per unit of 

time in left HF in comparison to healthy control subjects. Once again, this result is fully consistent 

with the NMDA-hypofunction model of schizophrenia depicted by (Kehrer et al., 2008).  

Remarkably, we did not observe any tendency on the causal connection from right DLPFC to left 

HF between groups (see Figure 3.3.4.1). This result is not consistent with (Meyer-Lindenberg et al., 

2005). Nonetheless, in this work, the authors show a statistical difference on the “functional 

connectivity” between right DLPFC and left HF when comparing healthy control subjects and 

schizophrenia patients. Nonetheless, we must stress that functional connectivity between two 

variables, e.g. brain regions, does not necessarily imply that one causes the other (Aldrich, 1995). 

Furthermore, in our study, we disentangle one parameter – the original functional connectivity 

estimate – into five parameters, the five sDCM parameter estimates of the winning model. Thus, 

these facts might be plausible reasons that explain the observed effects on both self-connection 

parameter estimates, but not on the connection from right DLPFC to left HF as described earlier by 

(Meyer-Lindenberg et al., 2005). 

In view of these research findings, considering the winning model with a directed connection from 

DLPFC to HF (see above), we hypothesize the next underlying neurobiology of the prefrontal-

hippocampal network in schizophrenia: 

On the one hand, the NMDA-hypofunction model of schizophrenia within the DLPFC leads to an 

extensive release of glutamate (Adams and Moghaddam, 1998; Moghaddam et al., 1997). As stated 

above, this increased release of excitatory neurotransmitter leads to an overstimulation of 

downstream excitatory neurons, as well as to a further disinhibition through a lack of NMDA receptor 

excitation on interneurons and a consequent loss in overall network inhibition (Homayoun and 

Moghaddam, 2007). This complex disinhibitory syndrome seems to lead to hyperstimulation in 

primary corticolimbic networks, i.e. DLPFC-HF network. On the other hand, the NMDA-hypofunction 

model of schizophrenia within the HF might also lead to a loss in overall network inhibition. This 

cascade of phenomena might be a plausible explanation for observing, in a first step, higher 

functional (E-I) balance (lower inhibition) per unit of time in the right DLPFC in patients in comparison 

to controls, in a second step, a higher prefrontal-hippocampal effective connectivity or higher 

functional (E-I) balance (lower inhibition) per unit of time in patients in comparison to controls, and 

in a last stage, a higher functional (E-I) balance (lower inhibition) per unit of time in the right DLPFC in 

patients in comparison to controls.  
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Table 4.2.3.2 illustrates the research findings reported by other studies in comparison to our third 

analysis results. 

Neuroimaging 

studies of 

schizophrenia 

→ 
DLPFC-HF 

network 
→ 

↑ Functional connectivity between DLPFC-HF 

 

Our third 

analysis 
→ 

DLPFC-HF 

network 
→ 

↑ Effective connectivity between DLPFC-HF (n.s.) 

 

Molecular 

biology 

studies of 

schizophrenia 

→ DLPFC → ↓ Overall network inhibi	on 

 

→ 

 

↑ Excitation primary corticolimbic 

networks 

Our third 

analysis 
→ DLPFC → 

↑ Func	onal (E-I) balance per unit 

of time in the DLPFC 

→ 

 

↑ Func	onal (E-I) balance per 

unit of time between DLPFC-HF 

(n.s.) 

  

Molecular 

biology 

studies of 

schizophrenia 

→ HF → ↓ Overall network inhibi	on 

Our third 

analysis 
→ HF → 

↑ Func	onal (E-I) balance per unit of time in the HF 

 

Table 4.2.3.2. Comparison of recent discoveries of schizophrenia within the DLPFC-HF network and our third 

analysis results 

Concerning the statistical tests on behavior, we observed a statistical difference in the mean 

performance in the 2-Back between groups (see Figure 3.3.5.1). Schizophrenia patients show lower 
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mean performance in the 2-Back in comparison to healthy control subjects. Furthermore, we 

observed a slight tendency in the mean reaction time in the 2-Back (see Figure 3.3.5.2). 

Schizophrenia patients show higher mean reaction time in the 2-Back in comparison to healthy 

control subjects. These results are fully consistent with (Goldman-Rakic, 1994; He et al., 2012; 

Manoach et al., 1999; Park and Holzman, 1992). In these studies, the authors reported longer mean 

reaction time and lower mean performance in patients in comparison to controls during working 

memory tasks. 

In this section, we also investigated relations between sDCM parameter estimates and behavior 

by means of linear regression.  

In a first step, we performed linear regression of mean performance in the 2-Back on sDCM 

parameter estimates of the winning model. The analysis revealed that connection from right DLPFC 

to left HF predicts mean performance in the 2-Back in schizophrenia patients (see Figure 3.3.6.1). The 

lower the prefrontal-hippocampal effective connectivity or the lower the functional (E-I) balance 

(higher inhibition), the higher is the mean performance in the 2-Back in schizophrenia patients. 

 In a second step, we computed linear regression of mean reaction time in the 2-Back on sDCM 

parameter estimates of the winning model. We observed a slight tendency in the self-connection in 

the right DLPFC in schizophrenia patients (see Figure 3.3.6.2). The lower the functional (E-I) balance 

(higher inhibition) per unit of time in the right DLPFC, the lower is the mean reaction time in the 2-

Back in schizophrenia patients. 

To conclude, in the last analysis step, we performed linear regression of mean performance in the 

2-Back on mean reaction time in the 2-Back. The results revealed that mean reaction time in the 2-

Back predicts mean performance in the 2-Back in schizophrenia patients (see Figure 3.3.7.1). The 

lower the reaction time in the 2-Back, the higher is the mean performance in the 2-Back in 

schizophrenia patients. 

Despite all these research findings, we do not have any reference to compare our regression 

analyses results with. However, all these observations will be relevant for the conclusions of this 

dissertation as will be discussed in short. 

4.2.4. Comparison of two-group genetic models and healthy vs. schizophrenia model 

In this section, we will compare each the two-group genetic models (recessive, co-dominant, and 

dominant) to the healthy vs. schizophrenia model in relation to the underlying neurobiology and 
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behavior. We visually observed a high degree of similarity between the dominant and the healthy vs. 

schizophrenia models. As discussed in previous sections, we will frame these comparisons in terms of 

effective connectivity and functional (E-I) balance. 

Comparisons of sDCM parameter estimates between the dominant and the healthy vs. 

schizophrenia models revealed some interesting similarities. On the one hand, we observed that self-

connection in the right DLPFC increases in AA+AC allele carriers in comparison to CC, as do 

schizophrenia patients in comparison to healthy control subjects (see Figure 3.4.1.2). AA+AC allele 

carriers and patients have higher functional (E-I) balance (lower inhibition) per unit of time in the 

right DLPFC in comparison to CC allele carriers and controls. This difference is statistically significant 

in both models. On the other hand, we observed that self-connection in left HF increases in AA+AC 

allele carriers in comparison to CC carriers, as do schizophrenia patients in comparison to healthy 

control subjects (see Figure 3.4.1.2). AA+AC allele carriers and patients show higher functional (E-I) 

balance (lower inhibition) per unit of time in the left HF in comparison to CC allele carriers and 

controls. Nonetheless, this difference is only statistically significant in the healthy vs. schizophrenia 

model. 

The comparison of mean performance in the 2-Back between the dominant and the healthy vs. 

schizophrenia models was performed next. We observed that mean performance in the 2-back 

decreases in AA+AC allele carriers in comparison to CC carriers, as do schizophrenia patients in 

comparison to healthy control subjects (see Figure 3.4.1.3). AA+AC allele carriers and patients show 

lower mean performance in the 2-Back in comparison to CC allele carriers and controls. Nonetheless, 

this difference is only statistically significant in the healthy vs. schizophrenia model. Concerning the 

comparison of mean reaction time in the 2-Back between both models, we observed that mean 

reaction time in the 2-back increases in AA+AC allele carriers in comparison to CC carriers, as do 

schizophrenia patients in comparison to healthy control subjects (see Figure 3.4.1.4). AA+AC allele 

carriers and patients show higher mean reaction time in the 2-Back in comparison to CC allele 

carriers and controls. This difference is not statistically significant in either model, but shows a 

tendency in both of them. 

We also observed a similarity when comparing linear regression analysis of mean performance in 

the 2-Back on sDCM parameter estimates between the dominant and the healthy vs. schizophrenia 

model. Connection from right DLPFC to left HF seems to predict mean performance in the 2-Back in 

AA+AC allele carriers, as do in schizophrenia patients (see Figure 3.4.1.5). The lower the prefrontal-

hippocampal effective connectivity or the lower the functional (E-I) balance (higher excitation) per 
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unit of time, the higher is the mean performance in the 2-Back in both AA+AC allele carriers and 

patients. Nonetheless, this statistical effect is only significant in the healthy vs. schizophrenia model.  

Concerning the comparison of linear regression analysis of mean reaction time in the 2-Back on 

sDCM parameter estimates between both models, we observed that the driven input into the right 

DLPFC predicts mean reaction time in the 2-Back in AA+AC allele carriers, as seems to do in 

schizophrenia patients (see Figure 3.4.1.6). The higher the driven input into the right DLPFC, the 

lower is the mean reaction time in the 2-Back in AA+AC allele carriers and patients. Nonetheless, this 

statistical effect is only significant in the dominant model. 

To conclude this section, when comparing linear regression analysis of mean performance in the 

2-Back on mean reaction time in the 2-Back, we found that mean reaction time in the 2-Back predicts 

mean performance in the 2-Back in AA+AC allele carriers and schizophrenia patients (see Figure 

3.4.1.7). The lower the mean reaction time in the 2-Back, the higher is the mean performance in the 

2-Back in AA+AC allele carriers and patients. This statistical effect is significant in the dominant and 

the healthy vs. schizophrenia models. 

4.3. Conclusions 

4.3.1. Multi-site reproducibility of prefrontal-hippocampal connectivity estimates by sDCM 

in healthy volunteers 

This initial analysis demonstrated a consistent pattern of activation in the right DLPFC and 

deactivation in the left HF across the three locations. Moreover, BMS revealed the same connectivity 

pattern or winning model between DLPFC and HF during WM in Mannheim, Bonn, and Berlin, and 

statistical tests on sDCM parameter estimates of the winning model did not reveal any statistical 

difference across sites.  

While certainly not an exhaustive test of the robustness of sDCM, this initial reproducibility 

analysis speaks favourably to the reliability of sDCM as a method for assessing effective connectivity 

from fMRI data. This analysis of sDCM provided a basis for next stages. After demonstrating that 

sDCM provides reliable estimates of prefrontal-hippocampal interactions, we used this modelling 

approach to identify connectivity alterations in genetic risk carriers and schizophrenia patients. 
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4.3.2. Investigation of relations between sDCM parameter estimates, ZNF804A 

(rs1344706), and behavior in healthy volunteers 

This second analysis provided strong support for the genetic influence of ZNF804A (rs1344706) on 

the prefrontal-hippocampal network and revealed some relations between sDCM parameter 

estimates, ZNF804A (rs1344706), and behavior. 

Statistical tests on sDCM parameter estimates of the winning model revealed a statistical 

difference on the connection from right DLPFC to left HF within the recessive model: increased 

effective connectivity and functional (E-I) balance in risk homozygotes; and a statistical difference on 

the self-connection in right DLPFC within the dominant model: increased functional (E-I) balance in 

risk allele carriers. In summary, we observed that AA allele carriers have a higher functional (E-I) 

balance (lower inhibition) within the prefrontal-hippocampal network in comparison to AC allele 

carriers and these, in turn, have a higher functional (E-I) balance (lower inhibition) within the 

network in comparison to CC allele carriers.  

Statistical tests on behavior did not reveal any statistical difference across genetic models within 

the mean performance in the 2-Back nor within the mean reaction time in the 2-Back. Nonetheless, 

these analyses revealed a non-statistical effect but tendency in the mean reaction time in the 2-Back 

within the dominant model: higher reaction time in the 2-Back in risk allele carriers. Table 4.3.2.1 

summarizes the research findings of this second analysis. 

↑ Risk 

allele “A” 
→ 

DLPFC-HF 

network 
→ 

 
↑ Effec	ve connec	vity 

between DLPFC-HF 
 

↑ Func	onal (E-I) 

balance in the 

DLPFC 

→ 
↑ Func	onal (E-I) balance 

between DLPFC-HF 
→ 

↑ Func	onal (E-I) 

balance in the 

HF (n.s.) 

Behavior in 

the 2-Back 
→ 

= Mean performance in the 2-Back (n.s.) 

& 

↑ Mean reac	on 	me in the 2-Back (n.s. but tendency) 

Table 4.3.2.1. Summary results of the second analysis 

In view of these research findings, we hypothesize a mechanistic causal model between self-

connection in the right DLPFC and mean reaction time in the 2-Back within the dominant model. 

Figure 4.3.2.1 illustrates this mechanistic account. According to this model, higher functional (E-I) 

balance (lower inhibition) on self-connection in the right DLPFC (premise P) seems to lead to a higher 

mean reaction time in the 2-Back (premise S). Thus, this causal relationship can be translated into the 

next mathematical logic expression: P → S.  
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P → Q 

↑ Func	onal (E-I) balance in the  

DLPFC in risk allele carriers 

→ 

↑ Mean reac	on 	me in the 2-Back in risk allele carriers (n.s.) 

  

Figure 4.3.2.1. Graphical representation of the proposed causal relationship: P → S 

Regression analyses revealed statistical effects across different genetic models. First of all, these 

analyses showed that self-connection in right DLPFC seems to contain sufficiently rich information for 

predicting mean reaction time in the 2-Back in AA allele carriers. Secondly, we observed that 

connection from right DLPFC to left HF seems to contain sufficiently rich information for predicting 

mean reaction time in the 2-Back in CC allele carriers. In a third step, these analyses showed that self-

connection in left HF seems to contain sufficiently rich information for predicting mean performance 

in the 2-Back in AC+CC allele carriers. To conclude, we observed that mean reaction time in the 2-

Back seems to contain sufficiently rich information for predicting mean performance in the 2-Back in 

all subjects independently on the genotype. 

In view of these results, we assume that the prefrontal-hippocampal network is modulated by the 

genotype and each genotype individual requires of a small perturbation on the mean genotype 

parameter estimates in order to achieve the optimal behavior. Figure 4.3.2.2 illustrates this 

mechanistic account. Therefore, this perturbation depends on the genotype of each individual. AA 

allele carriers, who as depicted in Figure 4.3.2.2, have the highest functional (E-I) balance (lowest 

inhibition) within the prefrontal-hippocampal network (left side of Figure 4.3.2.2), require the lowest 

functional (E-I) balance on the prefrontal-hippocampal network in order to achieve the optimal 

behavior (right side of Figure 4.3.2.2). AC allele carriers, who as depicted below, have an 

intermediate functional (E-I) balance (intermediate inhibition) within the prefrontal-hippocampal 

network, require lower functional (E-I) balance on the prefrontal-hippocampal network in order to 

achieve the optimal behavior. CC allele carriers, who as described below, have the lowest functional 

(E-I) balance (highest inhibition) within the prefrontal-hippocampal network, require the highest 

functional (E-I) balance on the prefrontal-hippocampal network in order to achieve the optimal 

behavior. 
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Overall functional (E-I) balance within the DLPFC-HF network 

→ 

Behavior in the 2-Back 

  

Figure 4.3.2.2. Simplified scheme of the influence of the overall functional (E-I) balance within the DLPFC-HF 

network on behavior for each genotype group: AA, AC, and CC 

4.3.3. Investigation of relations between sDCM parameter estimates and behavior in pair-

wise matched healthy volunteers and schizophrenia patients 

This analysis demonstrated a consistent pattern of activation in the right DLPFC and deactivation 

in the left HF in healthy control subjects and schizophrenia patients. Moreover, BMS revealed the 

same connectivity pattern or winning model between DLPFC and HF during WM in controls and 

patients. However, statistical tests on model parameter estimates revealed statistical differences 

across groups. 

More precisely, statistical tests on sDCM parameter estimates of the winning model revealed 

differences on the self-connection in the right DLPFC and in the self-connection in left HF between 

groups. Schizophrenia patients have higher functional (E-I) balance (lower inhibition) in right DLPFC 

and left HF in comparison to healthy control subjects. In summary, we observed that patients have a 

higher functional (E-I) balance (lower inhibition) within the prefrontal-hippocampal network in 

comparison to controls. 

In addition, statistical tests on behavior indicated differences in the mean performance in the 2-

Back and a slight tendency in the mean reaction time in the 2-Back. Schizophrenia patients showed 

lower mean performance in the 2-Back and higher mean reaction time in the 2-Back in comparison to 

healthy control subjects. Table 4.3.3.1 summarizes the research findings of this third analysis. 

Schizophrenia → 

DLPFC-HF 

network 
→ 

 
↑ Effec	ve connec	vity 

between DLPFC-HF (n.s.) 
 

↑ Func	onal (E-I) 

balance in the 

DLPFC 

→ 
↑ Func	onal (E-I) balance 

between DLPFC-HF (n.s.) 
→ 

↑ Func	onal (E-I) 

balance in the 

HF 

Behavior 

in the 2-

Back 

→ 

↓ Mean performance in the 2-Back 

& 

↑ Mean reac	on 	me in the 2-Back (n.s. but tendency) 

Table 4.3.3.1. Summary results of the third analysis 
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In view of these research findings, we hypothesize a mechanistic causal relationship between self-

connection in the right DLPFC and self-connection in the left HF, on the one hand, and mean 

performance in the 2-Back and mean reaction time in the 2-Back, on the other hand. Figure 4.3.3.1 

illustrates this mechanistic model. According to this model, higher functional (E-I) balance (lower 

inhibition) of self-connection in the right DLPFC (premise P) and higher functional (E-I) balance (lower 

inhibition) of self-connection in the left HF (premise Q) seems to lead to a lower mean performance 

in the 2-Back (premise R) and a higher mean reaction time in the 2-Back (premise S). Thus, this causal 

relationship can be translated into the next mathematical logic expression: (P & Q) → (R & S). 

(P & Q) → (R & S) 

↑ Func	onal (E-I) balance within the  

DLPFC in schizophrenia patients 

→ 

↓ Mean performance in the 2-Back in schizophrenia patients 

  
& & 

↑ Func	onal (E-I) balance within the  

HF in schizophrenia patients 
↑ Mean reac	on 	me in the 2-Back in schizophrenia patients (n.s.) 

  

Figure 4.3.3.1. Graphical representation of the proposed causal relationship: (P & Q) → (R & S) 

Furthermore, regression analysis revealed some statistical effects. On the one hand, the analyses 

revealed that connection from right DLPFC to left HF seems to contain sufficiently rich information 

for predicting mean performance in the 2-Back in schizophrenia patients. The lower the prefrontal-

hippocampal effective connectivity, the higher is the mean performance in the 2-Back in 

schizophrenia patients. On the other hand, the analysis revealed that mean reaction time in the 2-

Back seems to contain sufficiently rich information for predicting mean performance in the 2-Back in 

schizophrenia patients. The lower the reaction time in the 2-Back, the higher is the mean 

performance in the 2-Back in schizophrenia patients. 
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Taken together, these results suggest that the prefrontal-hippocampal network is modulated by 

each group: controls and patients, and each group individual require of a perturbation on the mean 

group parameter estimates in order to achieve the optimal behavior. Figure 4.3.3.2 illustrates this 

mechanistic account. Thus, this perturbation depends on the group of each individual. On the one 

hand, schizophrenia patients, who as depicted in Figure 4.3.3.2, have a higher functional (E-I) balance 

(lower inhibition) within the prefrontal-hippocampal network (left side of Figure 4.3.3.2), require 

lower functional (E-I) balance on the prefrontal-hippocampal network in order to achieve the optimal 

behavior (right side of Figure 4.3.3.2). One the other hand, healthy control subjects, who as depicted 

below, have a lower functional (E-I) balance (higher inhibition) within the prefrontal-hippocampal 

network, require higher functional (E-I) balance on prefrontal-hippocampal network in order to 

achieve the optimal behavior. 

Overall functional (E-I) balance within the DLPFC-HF network 

→ 

Behavior in the 2-Back 

  

Figure 4.3.3.2. Simplified scheme of the influence of overall functional (E-I) balance within the DLPFC-HF 

network on behavior for healthy volunteers and schizophrenia patients 

4.3.4. Comparison of two-group genetic models and healthy vs. schizophrenia model 

We compared each of the two-group genetic models: recessive, co-dominant, and dominant to 

the healthy vs. schizophrenia model. We visually observed a high degree of similarity between the 

dominant and the healthy vs. schizophrenia models in relation to the underlying neurobiology and 

behavior. In summary, our comparisons showed that risk allele carriers have higher functional (E-I) 

balance (lower inhibition) within the prefrontal-hippocampal network in comparison to non-risk 

allele carriers, as do schizophrenia patients in comparison to healthy control subjects. Furthermore, 

we reported that some of the sDCM parameter estimates contained sufficiently rich information for 

predicting mean performance in the 2-Back and mean reaction time in the 2-Back in risk allele 

carriers and patients. 

Taking into consideration these comparisons, the winning model with a directed connection from 

DLPFC to HF, and the two plausible causal relationships: P → S within the dominant model, and (P & 

Q) → (R & S) within the healthy vs. schizophrenia model, we hypothesize the following functionality 

of the prefrontal-hippocampal network in genetic risk carriers and patients. In the dominant model, 
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dysfunction of the right DLPFC in risk allele carriers or increased functional (E-I) balance within the 

right DLPFC leads to a higher mean reaction time in the 2-Back; but mean performance in the 2-Back 

is not affected because the left HF in risk allele carriers seems to work properly. Nonetheless, in the 

healthy vs. schizophrenia model, dysfunction of the right DLPFC in patients or increased functional 

(E-I) balance within the right DLPFC leads to a higher mean reaction time in the 2-Back, and mean 

performance in the 2-Back is affected because the left HF in patients is disrupted.  

Recapitulating, we conclude that the prefrontal-hippocampal network is modulated by each 

genotype and group. Schizophrenia patients require lower functional (E-I) balance on the prefrontal-

hippocampal network in order to achieve the optimal behavior and these findings are consistent with 

the similarities observed between the dominant and healthy vs. schizophrenia models by assuming 

that their phenotypes can be approximated by a weighted sum of AA and AC phenotypes. Pair-wise 

healthy volunteers with genotype frequencies: NAA = 11; NAC = 14; NCC = 8; require higher functional 

(E-I) balance on the prefrontal-hippocampal network in order to achieve the optimal behavior and 

these findings are consistent with the conclusions of second analysis by assuming that their 

phenotypes can be approximated by a weighted sum of AA, AC, and CC phenotypes.  

Therefore, our analyses revealed that ZNF804A (rs1344706) genotype contributes to the 

phenotype expressed in schizophrenia patients. Better understanding of the biology of ZNF804A 

(rs1344706) is necessary to clarify the nature of this observation. Nonetheless, it is quite remarkable 

that a risk genetic variant for schizophrenia can so clearly show a predicted illness circuit phenotype 

in this way. 

4.4. Final conclusions and suggestions for future research 

● In a first sample, 180 healthy subjects were measured by fMRI during a standard working 

memory N-Back task at three different sites (Mannheim, Bonn, Berlin; each with 60 participants). The 

effective connectivity between key regions for working memory: DLPFC and HF, was analyzed using a 

simple two-region sDCM. BMS revealed the same causal pattern or winning model across the three 

sites, with the 2-Back working memory condition as driving input to both DLPFC and HF and with a 

connection from DLPFC to HF. Furthermore, a genome-wide risk variant for schizophrenia: ZNF804A 

(rs1344706), showed a strong impact on the DLPFC-HF network. On the one hand, risk homozygotes 

showed higher effective connectivity or higher functional (E-I) balance between DLPFC and HF. On 

the other hand, risk allele carriers showed higher functional (E-I) balance on the self-connection in 

the DLPFC. In summary, we observed that risk allele carriers have a higher functional (E-I) balance 

within the DLPFC-HF network in comparison to non-risk allele carriers. 
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● In a second sample, 33 schizophrenia patients were measured by fMRI during the same working 

memory N-Back task. We pair-wise matched healthy volunteers of the first sample and patients and 

applied the same methodology. BMS revealed the same winning model in patients but sDCM 

parameter estimates differed significantly between groups. Patients showed higher functional (E-I) 

balance on the self-connection in the DLPFC, as we had previously observed in risk allele carriers, but 

also showed higher functional (E-I) balance on the self-connection in the HF. In summary, we 

observed that patients have a higher functional (E-I) balance within the DLPFC-HF network, as we had 

previously observed in risk allele carriers, in comparison to controls.  

● In view of these research findings, we concluded a possible biological functioning of ZNF804A 

(rs1344706) within the DLPFC-HF network:  

The risk allele rs1344706 increases the expression of ZNF804A in the DLPFC, and this, in turn, up-

regulates transcripts levels of COMT. Increased transcript levels of COMT lead to higher degradation 

of dopamine, and reduced dopamine via D1 reduces NMDA receptor-activated synaptic currents. A 

consequence of NMDA-hypofunction is an extensive release of glutamate in the DLPFC. This 

increased release of glutamate leads to a hyperstimulation of downstream excitatory neurons, and to 

a further disinhibition through a lack of NMDA receptor excitation on interneurons and a consequent 

loss in overall network inhibition within the DLPFC. This disinhibitory phenomenon leads to 

overstimulation of the DLPFC-HF network. In the same vein, the risk allele rs1344706 has not been 

associated with increased expression in the HF and that might explain the reason for not observing 

this phenomenon within the HF. 

● Furthermore, we also suggested a model for explaining the underlying neurobiology of 

schizophrenia within the DLPFC-HF network:  

On the one hand, as explained above, increased release of glutamate within the DLPFC due to 

genetic variants, i.e. ZNF804A (rs1344706), leads to an overstimulation of downstream excitatory 

neurons, as well as to a further disinhibition through a lack of NMDA receptor excitation on 

interneurons and a consequent loss in overall network inhibition within the DLPFC. This complex 

disinhibitory phenomenon results in hyperstimulation of the DLPFC-HF network. On the other hand, 

a lack of NMDA receptor excitation due to genetic variants for schizophrenia other than ZNF804A 

(rs1344706) might lead as well to a loss in overall network inhibition within the HF. 

● Then, we reported causal relations between some sDCM parameter estimates and behavior in 

terms of functional (E-I) balance in both samples: 

Dysfunction of the DLPFC in risk allele carriers or increased functional (E-I) balance within the 

DLPFC leads to a higher mean reaction time in the 2-Back; but mean performance in the 2-Back is not 
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affected because the HF in risk allele carriers seems to work properly. In contrast, dysfunction of the 

DLPFC in schizophrenia patients or increased functional (E-I) balance within the DLPFC leads as well 

to a higher mean reaction time in the 2-Back, but mean performance in the 2-Back is affected 

because of dysfunction in the HF or increased functional (E-I) balance. 

● Finally, we reported a series of interesting observations between the DLPFC-HF network and the 

optimal behavior during working memory in both samples: 

On the one hand, we observed that risk allele carriers and patients, who as noted above have a 

higher functional (E-I) balance within the DLPFC-HF network, require lower functional (E-I) balance on 

the DLPFC-HF network in order to achieve the best performance during the task. On the other hand, 

we found that healthy volunteers, who as noted above have a higher functional (E-I) balance within 

the DLPFC-HF network, require higher functional (E-I) balance on the network in order to achieve the 

optimal behavior. 

● This study investigated the applicability of computational models like sDCM to establish the 

functional significance of specific genetic polymorphisms for schizophrenia and identify causal 

mechanisms associated with the disease in relation to the underlying neurobiology and behavior. In 

forthcoming studies, we plan to investigate whether subject-specific directed connections strengths 

between DLPFC and HF, and genotype, contain sufficiently rich information to enable accurate 

predictions of behavior. In order to study how temporal patterns in the neuronal ensembles and 

genotype convey robust information about behavior, multivariate regressors or statistical decoding 

algorithms will be used in both samples. 
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Appendix 

Acronyms 

5-HT  5-hydroxytryptamine 

ACh  Acetylcholine 

AC-PC line Anterior commissure-posterior commissure line 

AMPAR  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

BMS  Bayes model selection 

BOLD  Blood oxygenation level dependent 

BL  Berlin 

BN  Bonn 

COMT  Catechol-O-methyltransferase 

DA  Dopamine 

DCM  Dynamic causal modelling 

DLPFC  Dorsolateral prefrontal cortex 

DRD2  Dopamine receptor D2 isoform 

EEG  Electroencephalography 

fMRI  Functional magnetic resonance imaging 

FOV  The field of view 

GWAS  Genome wide association study 

HC  Healthy control 

HF  Hippocampal formation 

MA  Mannheim 

MEG  Magnetoencephalography 

MRI  Magnetic resonance imaging 

mGluR  Metabotropic glutamate receptor 

NE  Norepinephrine 
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NIRS  Near-infrared spectroscopy 

NMDAR  N-methyl D-aspartate 

NMR  Nuclear magnetic resonance 

PDE4B  Phosphodiesterase 4B 

PET  Positron emission tomography 

PFC  Prefrontal cortex 

PPI  Psychophysiological interaction 

PRSS16  Thymus-specific serine protease 

SNP  Single nucleotide polymorphism 

SPECT  Single photon emission computed tomography 

SPM  Statistical parametric mapping 

SZ  Schizophrenia  

sDCM  Stochastic dynamic causal modelling 

TE  Echo Time 

TMS  Transcranial magnetic stimulation 

TR  Repetition Time 

WM  Working memory 
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