
Dissertation
submitted to the

Combined Faculties for the Natural Sciences and for
Mathematics

of the Ruperto-Carola University of Heidelberg, Germany
for the degree of

Doctor of Natural Sciences

Put forward by
Dipl.-Phys. Bernhard Kausler

born in Hirschau
Oral examination: 2013-07-19





Tracking-by-Assignment

as a Probabilistic Graphical Model

with Applications in Developmental

Biology

Referees: Prof. Dr. Fred A. Hamprecht
Prof. Dr. Tilmann Gneiting





Zusammenfassung

Tracking-durch-Zuordnung als ein probabilistisches

graphisches Modell mit Anwendungen in der

Entwicklungsbiologie

Diese Dissertation präsentiert einen neuartigen Ansatz um eine variable Anzahl von
ähnlich aussehenden und sich teilenden Objekten in Gegenwart einer nicht zu ver-
nachlässigenden Anzahl von falsch-positiv Detektionen (mehr als 10%) zu tracken.
Er wird dazu verwendet, Zellstammbäume in sich entwickelnden Zebrabärbling-
und Fruchtfliegen-Embryos aus 3d Zeitrafferaufnahmen zu rekonstruieren. Das
zugrunde liegende Modell ist ein chain graph – ein gemischt gerichtetes und
ungerichtetes probabilistisches graphisches Modell. Ein Tracking wird aus der
Maximum-a-posteriori Konfiguration des Modells über alle Zeitschritte gleichzeit-
ig ermittelt.

Das Tracking Modell dient als zweiter Schritt einer Pipeline zur Aufzeichnung
von Digital Embryos, d.h. Karten aller Zellen in einem Embryo zusammen mit ihrer
Entwicklungshistorie. Der erste Schritt der Pipeline besteht aus der Segmentierung
von Zellkernen, die mit Fluoreszenzmarkern in Lichtscheiben-Mikroskopie Bildern
sichtbar gemacht wurden.

Die Pipeline ist als Software mit einer intuitiven, grafischen Benutzeroberfläche
implementiert. Es ist das erste frei verfügbare Programm seiner Art und macht
die präsentierten Methoden einem breiten Anwenderkreis aus den Lebenswis-
senschaften zugänglich.

Summary

Tracking-by-Assignment as a Probabilistic Graphical

Model with Applications in Developmental Biology

This thesis presents a novel approach for tracking a varying number of divisible
objects with similar appearance in the presence of a non-negligible number of false
positive detections (more than 10%). It is applied to the reconstruction of cell
lineages in developing zebrafish and fruit fly embryos from 3d time-lapse record-
ings. The model takes the form of a chain graph—a mixed directed-undirected
probabilistic graphical model—and a tracking is obtained simultaneously over all
time slices from the maximum a-posteriori configuration.

The tracking model is used as the second step in a two-step pipeline to produce
digital embryos—maps of cell nuclei in an embryo and their ancestral fate; the first
step being the segmentation of the fluorescently-stained cell nuclei in light sheet
microscopy images.

The pipeline is implemented as a software with an intuitive graphical user
interface. It is the first freely available program of its kind and makes the presented
methods accessible to a broad audience of users from the life sciences.
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1. Introduction

1.1. False Positive Detection-tolerant

Tracking-by-Assignment

One grand challenge of developmental biology is to find the lineage tree of all cells
in a growing embryo, i.e. the complete ancestry of each cell (Meijering et al., 2009).
To date the complete cell lineage is only known for the nematode Caenorhabditis El-
egans which was manually reconstructed in the early 80s from 2D light microscopy
images. The task was greatly assisted by the fact that the nematode’s lineage is
invariant between specimens. This made it possible to extract a single lineage by
processing many specimens (Sulston et al., 1983; Sulston, 2002). As a next step
the same should be achieved for more complex organisms with lineages that are in
general not invariant. Besides model organisms that are at least semi-transparent
and the availability of suitable cell markers, a new kind of 3d microscopy had to be
developed which allows the embryos to survive sufficiently long under observation
and provides short enough image acquisition times to record typical cell activities
like movements and divisions.

Recently, a new light sheet-based microscopy technology was introduced that
exhibits sufficiently low phototoxicity (Jemielita et al., 2012) and can acquire fully
isotropic 3d images at a rate of up to three 3d images per minute at a resolution
suitable to identify cell nuclei and membranes (Santi, 2011; Weber and Huisken,
2011; Keller and Dodt, 2012). Sequences showing a significant portion of the em-
bryonic development have already been successfully recorded for model organisms
like zebrafish (Keller et al., 2008), Drosophila (Keller et al., 2010; Krzic et al., 2012),
and the plant Arabidopsis thaliana (Maizel et al., 2011). The immediate goal of
these experiments is the recording of digital embryos—the complete record of cell
locations, shapes, tracks, and ancestry relations.

A reliable digital embryo recording pipeline is a necessary condition for large
scale quantitative studies of embryonic development. Besides the contribution to
fundamental science this could lead to the development of new drugs and a better
understanding of hereditary diseases (Kari et al., 2007; Chakraborty et al., 2009).
Currently, mainly 2d cell cultures are used in drug discovery. In contrast, cells
in an embryo can be examined in their natural three-dimensional configuration,
which could lead to new pharmaceutical discoveries (Kunz-Schughart et al., 2004).

Keller et al. (2008) introduced a pipeline consisting of a cell nuclei segmentation
step via local adaptive thresholding followed by a tracking step employing a nearest
neighbor search and applied the pipeline to early embryogenesis of zebrafish. In

3



1. Introduction

(a) Segmentation of one volume in a time lapse sequence
of a developing Drosophila embryo. More than 10% of
the objects are noise instead of actual cell nuclei.

(b) Maximum intensity projec-
tion of a Drosophila embryo
and tracking. Common an-
cestry is indicated by common
color.

Figure 1.1.: Tracking of cell nuclei in a Drosophila embryo. Despite more than 10%
noise objects in the segmentation (left panel) the proposed method is able to track
the cell nuclei successfully (right panel).

Lou et al. (2011) we adopted the approach and improved both steps. Our proposed
segmentation employed refined blob filter responses and a tracking based on the
optimisation of a scoring function that can account for cell moves, divisions, and
(dis-)appearances. Later, Lou and Hamprecht (2011) improved the segmentation
with a regularized graph cut-based postprocessing. Kaster (2011, p. 152) compared
the latter segmentation method with the voxel1 classification-based approach of the
freely available software ilastik (Sommer et al., 2011) and found the performance
of both methods on par. However, due to its convenient graphical user interface
ilastik is preferable to the regularized graph cut.

A ceiling analysis2 reveals that the pipeline performance is mostly limited by
false positive detections during the segmentation step caused by clutter objects orig-
inating from fluorescence markers outside the nuclei and phantom cells segmented
out of background noise. The tracker cannot distinguish these misdetections from
actual cells and the obtained cell lineages are distorted. In particular, tracking
of divisions suffers because clutter objects near cells are frequently interpreted
as the two descendant cells after a division in the previous time slice. This is
especially unfortunate since a single wrong division invalidates the ancestry of all
cells originating from that division.

1A voxel is a volumetric pixel.
2
Ceiling analysis asserts that the overall performance of a data analysis pipeline is determined by
the performance of each subcomponent. Evaluating each component with regard to its isolated
improvement potential and impact on the overall pipeline performance, we can most effectively
decide which component to improve next.
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1.1. False Positive Detection-tolerant Tracking-by-Assignment

Therefore, to advance the state-of-the-art a method has to be developed that

• simultaneously tracks a large (several thousand objects), unknown and variable
number of cells,

• allows for cell division,

• is highly accurate, because each tracking error affects a complete subtree of
the lineage,

• is highly robust against false positive segmentations and clutter objects.

In response, the thesis at hand improves the state-of-the-art in tracking offline
a variable and large number of divisible objects in presence of clutter in terms
of performance, modeling flexibility, and accessibility to non-experts.

We will argue that instead of improving the quality of existing segmentation
algorithms we improve the tracking method such that it can correct segmentation
errors after the fact. In particular, our work has the following features:

• In recent years graphical models proved to be exceptionally successful in
computer vision (Blake et al., 2011). We adopt the approach and present the
first probabilistic graphical model for cell tracking that can track an unknown
number of divisible objects that may appear or disappear and that can cope
with false detections.

• The model achieves robustness against noise detections by solving the track-
ing problem for all time steps at once taking the expected time between
divisions into account. The most likely cell lineage is obtained as the model
configuration with maximum a-posteriori (MAP) probability using exact
inference.

• While all literature with similar data focuses on single organisms, we present
results on zebrafish and—for the first time—on Drosophila together with
gold standard lineages, benchmarking measures and tracking results.

• The implementation of the method is the first freely available software for
automatic 3d+t tracking of divisible objects with a graphical user interface.

Fig. 1.1 on the facing page illustrates the capabilities of the proposed method.
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1. Introduction

1.2. Related Work

1.2.1. Tracking

Tracking in science comprises many different application domains and approaches
(Yilmaz et al., 2006). Our work is concerned with the tracking of a varying number
of divisible objects with similar appearance in images with its main application in
cell lineage reconstruction resp. cell tracking (Miura, 2005; Meijering et al., 2009).
It has to be distinguished from tracking many similar particles that are not dividing
(Smal et al., 2008).

When the temporal resolution of the raw data is high compared to the rate of
change, derivative-based methods such as optical flow (Melani et al., 2007) or level
sets (Padfield et al., 2009; Dzyubachyk et al., 2010) can be used to simultaneously
segment and track the evolution of one or more targets in spacetime.

A lower temporal resolution—as it is the case in our application—makes the
problem harder and in response, most algorithms separate the detection / seg-
mentation from the tracking problem: objects are detected in each time slice and
the detections are subsequently fed into a tracking routine. Two different kinds
of models are typically used: state space models and assignment models. The
Kalman filter, a linear Gaussian state space model, is the archetype of the former
class, which interprets detections as caused by a hidden target (Kalman and Bucy,
1961; Yang et al., 2006). It has been generalized in a number of ways allowing
for nonlinear motion models, discrete state spaces, non-Gaussian distributions
(Arulampalam et al., 2002; Doucet and Johansen, 2011), multiple target hypotheses
(Ong et al., 2010), or even an unknown (but fixed) number of targets (Fox et al.,
2006). While state space models easily accommodate target properties such as
velocity, size, and appearance and are robust against noisy detections by design,
they are unfortunately hard to coax into dealing with a variable number of dividing
objects.

Tracking-by-assignment, on the other hand, treats every detection as a potential
target itself. It easily accommodates multiple or dividing objects; however, this
increased flexibility must be reined in by enforcing the consistency of a tracking.
For example, each target must have a unique ancestry and it may not divide into
more than two parts, if prior knowledge so dictates. This difficulty has so far been
addressed in three ways. Firstly, approximate methods can be applied that forego
a consistency guarantee (Jiang et al., 2007). Secondly, tracks can be generated
hierarchically from tracklets (Bise et al., 2011; Li et al., 2009; Brendel et al., 2011),
akin to the use of superpixels in image processing. Thirdly, tracking is performed
across pairs of frames only (Chen et al., 2006; Kachouie and Fieguth, 2007; Kanade
et al., 2011; Padfield et al., 2011; Lou et al., 2011). Finally, other approaches
combine several methods into sophisticated tracking pipelines to compensate the
weaknesses of the individual methods (Li et al., 2008).

The approach by Bise et al. (2011) is most similar to ours since it is—to our best
knowledge—the only other global model of detections and assignments over many
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time slices. It is therefore a good candidate for a comparison with our method (see
Sec. 5.3.3 on page 52).

1.2.2. Digital Embryo Recording

The field that tries to quantitatively reconstruct embryonic development at the
cellular level using computational image analysis is fairly young. In fact, the term
digital embryo was (most likely) coined as late as 2008 by Keller et al. (2008). The
pioneers of the field come from the Waterston lab (Washington). They published
the first digital cell lineages of C. elegans in 2006 (Bao et al., 2006). Their software
tools StarryNite and AceTree (Murray et al., 2006) for the analysis of confocal
microscopy images of nematode embryos are still in active use and were recently
employed to study differences between normal and stressed C. elegans embryos
quantitatively (Richards et al., 2013).

Huisken et al. (2004) introduced light-sheet microscopy to developmental biology
and showed first in vivo recordings of Drosophila and Medaka embryos, even though
the contrast was not yet high enough to clearly discern single cells. Keller et al.
(2008) presented an improved version of the microscope employing a laser scanning
technique together with the first digital zebrafish embryos at early development
stages (see also Sec. 1.1 on page 3). Later, they upgraded the microscope with
structured-illumination and published recordings of Drosophila embryos (Keller
et al., 2010). Their expertise so far is summarized in Keller (2013).

In another line of work Olivier et al. (2010) applied label-free nonlinear mi-
croscopy to the reconstruction of early zebrafish embryogenesis. Besides a tracking
of the cell nuclei they also reconstructed the spatial arrangement of the cell mem-
branes in 3D. Their image processing pipeline to segment the cell membranes is
described by Luengo-Oroz et al. (2012) and is based on a watershed segmentation.
Furthermore, Mikula et al. (2011) published an advanced approach based on PDE
methods to segment cell nuclei and membranes in similar zebrafish data. Later,
the same microscopy technique was shown to work also on C. elegans embryos
(Tserevelakis et al., 2011).
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2. Digital Embryos Recording Pipeline

Light sheet microscopy paves the way to create digital embryos of organisms as
complex as zebrafish or Drosophila. That is, a complete record of cell locations,
shapes, tracks, and ancestry relations. Current microscopes can provide 3d images
high in contrast at a steady temporal frequency of two to three images per minute.
In the images one can observe cell nuclei and—in same cases—other structures
like cell membranes. To make these artifacts visible they have to be stained with
fluorescent makers allowing us to study the growth of embryos at the cellular
level. Even fast movements that happen during cell migration and division can
be observed, albeit not as a smooth motion and typically with no spatial overlap
between the images of a nucleus in consecutive time slices.

Figure 2.1.: Digital embryos recording pipeline. Data acquisition by 3d light sheet
microscopy is followed by a detection-by-segmentation step. Finally, the cell lineage
is established in a tracking step. [modified from Lou et al. (2011)]

In this chapter we present an approach to record digital embryos from mi-
croscopy images of stained cell nuclei. Given the above scenario a sensible design
for a digital embryo recording pipeline is a two-step procedure where a segmenta-
tion of the cell nuclei for all time slices is followed by a tracking. Fig. 2.1 shows a
schematic of the approach. For the segmentation step we employed a classifier to
predict foreground vs. background for every voxel. Several options for the tracking
step will be described in Chapters 3 and 4.

9



2. Digital Embryos Recording Pipeline

Figure 2.2.: Light sheet microscope (Wittbrodt lab, Univ. Heidelberg). The camera
(red) points at the specimen container (blue). The light sheet enters the container
perpendicular to the camera axis as indicated by the green plane.

2.1. Light Sheet Microscopy to Record Embryogenesis

The recently rediscovered light sheet microscope (Siedentopf and Zsigmondy, 1902;
Voie et al., 1993; Huisken et al., 2004) is an emerging tool in current developmental
biology (Tomer et al., 2011; Höckendorf et al., 2012). It allows the recording of
three dimensional images at high resolution and speed by illuminating only a
single plane in the specimen at any time. Compared to conventional widefield or
confocal fluorescence microscopy, photobleaching of the fluorophores is reduced
and specimens suffer less from phototoxicity.

2.1.1. Light Sheet Microscopes

Fig. 2.2 shows the essential components of a light sheet microscope similar to the
one described by Keller et al. (2008), employing a single camera and a single light
sheet. In this model, the light sheet moves through the sample once typically every
30 to 90 seconds while the high-speed camera is recording around 400 images. One
image has a size of four megapixel with a isotropic resolution of 0.3 µm per pixel.
Resolution along the stack is roughly 1µm per slice. The light sheet in this model
is generated by rapidly scanning the specimen with a thin laser beam horizontally
and vertically. There are other approaches; all with the goal to produce a light sheet
as thin and homogeneous as possible, with Bessel beam plane illumination being
one of the most advanced (Planchon et al., 2011).

Images recorded with this type of microscope show a degradation of contrast
along the light sheet penetration axis. This is caused by light absorption, scattering,
and shadowing. Recently, Krzic et al. (2012) and Tomer et al. (2012) overcame this
limitation by recording multiple views with multiple light sheets simultaneously.

10



2.1. Light Sheet Microscopy to Record Embryogenesis

At the same time the first commercial microscope was released as a sealed box
system making the technology available to a broader audience (Zeiss, 2012). The
technology is developing rapidly and there is a good case to believe that fast, high-
contrast light sheet microscopes will be a standard tool in many developmental
biology labs in the near future.

2.1.2. Imaging Embryos

(a) Two zebrafishes in mat-
ing tank.

(b) Fluorescent staining of
the zygote.

(c) Egg (blue) embedded in
agarose-filled tube.

Figure 2.3.: Preparing zebrafish embryos for imaging.

To be mounted inside the light sheet microscope the developing embryos have to
be embedded in an imaging cylinder filled with a semi-elastic gel. In general only
embryos that stay constant in size for the recording time survive the embedding
procedure. Furthermore, they should be at least semi-transparent and suitable
to express fluorophores. For that reason fruit fly and fish embryos are popular
organisms to be analyzed with light sheet microscopes (Keller et al., 2008; Truong
et al., 2011; Tomer et al., 2012; Krzic et al., 2012). They are also the two model
organisms for which we present tracking results in the thesis at hand. Other model
organisms examined with light sheet microscopes in the context of developmental
biology are the nematode C. elegans (Wu et al., 2011) and the plant Arabidopsis
thaliana (Maizel et al., 2011).

The zebrafish (Danio rerio) is a popular aquarium fish and also one of the most
studied model organisms in developmental biology (Detrich, III et al., 2009).
Fig. 2.3 illustrates the steps necessary to prepare a zebrafish embryo for imag-
ing in a light sheet microscope. First the zygote inside the fertilized eggs is stained
with a fluorescence marker like green fluorescent protein (GFP) by injecting it with
a thin needle (the gray line entering the egg from the right in Fig. 2.3b). Afterward
the egg is embedded in a transparent cylinder filled with agarose—an organic
gelatinous substance—to fix it in place. Subsequently, cylinder and egg are put in
the microscope specimen container for imaging. The experimenter has to be fast
in preparing the specimen otherwise the early stages of embryogenesis couldn’t
be recorded. A lot of manual skill and experience is necessary to create a dataset
suitable for further analysis.
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2. Digital Embryos Recording Pipeline

Fruit fly embryos are prepared in a similar manner. However, the manual staining
is not necessary. Instead the experiments are typically conducted with transgenic
lines, i.e. the cell nuclei are expressing fluorescent proteins on their own. On the
one hand this simplifies the experiments, but on the other hand the fluorophores
are also found in high concentrations outside the nuclei worsening the contrast of
the microscope images.

2.2. Nuclei Segmentation

(a) Maximum intensity projection of ze-
brafish blastula at the 64 cell stadium.

(b) Ortho-surfaces illustrating the spatial
distribution of the nuclei (cropped view).

Figure 2.4.: Zebrafish light sheet microscopy images. The two panels show images
of a zebrafish blastula. Cell nuclei are visible as round spots together with other
artifacts. Typically up to two 3d volumes are recorded per minute over a total time
span of several hours.

After the successful imaging of a developing embryo the next step is a foreground–
background segmentation of the fluorescent cell nuclei (Fig. 2.4). Kaster (2011)
investigated two methods geared towards nuclei segmentation in light sheet mi-
croscopy data. The one method employs a shape-regularized graph cut scheme
(Lou et al., 2012) and the other a voxel-wise classification using Random Forest—a
non-linear state-of-the-art classification algorithm—on filter-based intensity, edge,
and texture descriptors (Sommer et al., 2011). Both methods are on par regarding
segmentation accuracy. The latter is implemented in terms of the open source
“interactive learning and segmentation toolkit” (ilastik)1 and is easily accessible
for the end user thanks to a polished graphical user interface. Furthermore, the
classifier can be trained in an interactive manner with a direct quality feedback at

1http://ilastik.org
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2.3. Summary

any time. For that reasons we choose ilastik as our preferred method for nuclei
segmentation (see also Sec. 5.3.1 on page 48 for a quantitative evaluation).

The software takes sparse foreground / background labels and a selection of
voxel features as input. Kaster (2011) investigated several subsets of (rotationally
invariant) features and published a table of the best performing ones (Kaster,
2011, pg. 144). In general, the best performance can be achieved with a as-large-
as-possible set of informative features; the only limitation being an insufficient
amount of computer main memory. Furthermore, Random Forests are quite robust
against uninformative features when provided with enough training data (Breiman,
2001). As a consequence we use as many features as possible in the order given by
the table, only limited by the available computing power.

2.3. Summary

In this chapter we described a two-step pipeline consisting of cell identification
and tracking to reconstruct cell lineages (in general) and record digital embryos
(in particular) from 3d+t microscopy images. We gave a quick overview of light
sheet microscopes as sources of the spatio-temporal images and described the steps
necessary to prepare embryos for imaging. Finally, we introduced ilastik pixel
classification as a viable method to segment and identify cell nuclei in the obtained
images; being the first step of the proposed pipeline. A description of the second
step, tracking, is postponed to the following chapters.
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3. The Tracking-by-Assignment Problem

In Chapter 2 we introduced a pipeline to record digital embryos or—more general—
reconstruct cell tracks and lineages from time-lapse microscope images in two
steps: a segmentation step for cell identification followed by a tracking step. There,
we postponed a more detailed description of the tracking step to this chapter, which
will serve as the foundation for the main contribution of the thesis: stating the
tracking-by-assignment problem that we will later solve with a graphical model
approach (see Chap. 4).

We face a scenario where we want to track a large and typically unknown number
of objects (up to several thousands). Additionally these objects may divide and
(dis-)appear in any time slice and some objects may be false positive identifications
due to clutter or noise in the data. By assigning objects in consecutive time slices
to each other, we can easily establish tracks. Objects that are false positives are
labelled as such and not assign to any other object. Disappearance and appearance
can be expressed by no outgoing or incoming assignments to the future or from
the past. Divisions can be handled gracefully by assigning one ancestor object to
two descendant objects. The task of finding these assignments given a set of object
candidates in slices at regular intervals is the tracking-by-assignment problem. We
will formulate the problem in terms of a graph labelling and present a baseline
procedure to solve the problem in the context of cell nuclei tracking.

3.1. Hypotheses Graph

We want to state the tracking-by-assignment problem formally in terms of an
abstract hypotheses graph. The solution of the problem is then expressed as a
labelling of the graph. Procedures to obtain the labelling are called reasoners.

Formulating the tracking problem in terms of a graph and the clear separation
of modelling and solving the problem has several advantages. The procedures con-
cerned with constructing the hypothesis graph are independent from the reasoners.
That is, we can offer several options for both parts, each with its own advantages
and disadvantages and can tailor our design to a given application by reusing
independent components. Furthermore, it allows a fair performance evaluation of
different options for one part by keeping the rest fixed. Finally, there are several
minor advantages like the ability to serialize the graph (when implemented in
software) and to connect to the vast literature on graph algorithms. Note, that
this idea is very similar to the separation of learning, inference, and modelling in
probabilistic graphical models (one of the cornerstones of their success).
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3. The Tracking-by-Assignment Problem

Space

Slice
s s+ 1

≡

s s+ 1

or

s s+ 1

?

Figure 3.1.: Ambiguous object assignments. Given the object candidates shown
in the left-most panel there are several hypotheses how the transition from slice
s to s+ 1 happened. In the middle panel we explain the situation in terms of two
one-to-one assignments and mark one object as clutter. The right panel in contrast
offers an object split and a one-to-one assignment as an interpretation. There are
many more possible explanations including trivial ones like everything marked as
clutter or instant appearance and disappearance of all objects.

3.1.1. Definition

Before we give a formal definition of the hypotheses graph let us start with the
intuition behind it. Fig. 3.1 shows some object candidates for two consecutive slices
and two out of many possible hypotheses how the transition from one slice to the
next happened. The term object candidate subsumes both the actual objects to track
and undesired objects like clutter or false positive segmentations. For brevity we
will use object candidate and object interchangeably where it is not ambiguous. The
hypotheses are given as assignments between two or more objects in different slices
(when representing events like moves or divisions) or as markings of the objects
themselves (for instance, in case of disappearing objects or false positive object
candidates).

The task of a reasoner is to select the correct or most likely hypotheses given
information like the distance between objects or shape features. To avoid enu-
merating all possible hypotheses—there are exponentially many in the number of
objects–we build-up a hypotheses graph. For every object we add a node to the graph
and introduce edges between nodes when we believe that such an assignment could
be possible. For example one could link objects in a certain spatio-temporal neigh-
bourhood to each other or when they have a similar shape. Instead of selecting
from a set of hypotheses a reasoner can now label nodes and edges as active or
inactive.

A hypotheses graph covering seven object candidates at three slices is shown
in Fig. 3.2 on the next page. Note that not every two nodes are connected in
consecutive slices, stating that assignments between the two objects are considered
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3.1. Hypotheses Graph

Slice
s s+ 1 s+ 2

Figure 3.2.: A hypotheses graph spanning three slices.

impossible. Furthermore, nodes in slices further apart may also be connected
allowing for missing detections. (Alternatively a new node representing a missing
detection candidate can be added to the graph.)

We now want to give a formal definition of the hypotheses graph. A prerequisite
is the notion of a total order:

Definition. A total order is a binary relation over a set P , i.e. for all elements a, b,
and c in P the following statements are true:

Antisymmetry: a ≤ b∧ b ≤ a⇒ a = b

Transitivity: a ≤ b∧ b ≤ c⇒ a ≤ c

Totality: a ≤ b∨ b ≤ a
(i.e., you can compare any two elements of the set P )

Based on that, a hypotheses graph is defined as follows.

Definition. A hypotheses graph is an ordered, undirected graph

G = (N ,E , s : N →Z,.)

where N is a set of nodes, E a set of edges. The function s a node
labelling of the graph assigning a slice number to every node n. The
graph is totally ordered under . (“less or similar”). The order is
induced by the slice labels:

n . n′⇔ s(n) ≤ s(n′)
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3. The Tracking-by-Assignment Problem

3.1.2. Tracking-by-Assignment as Hypotheses Graph Labelling

Tracking-by-assignment can be restated as labelling all the edges and nodes of a
hypotheses graph as either “active” or “inactive” according to the following rules
of consistency. Active nodes mark the actual objects to track. The inactive nodes
are other objects like clutter or false positive segmentations. Object transitions like
moves, divisions, or mergers are represented by one or more active edges coming
from previous (“incoming edge”) or following (“outgoing edge”) slices. Appearing
(disappearing) objects have no incoming (outgoing) active edges. There are no
active edges attached to inactive nodes.

It is the task of the reasoner to ensure the consistency of the labelling. Further-
more some reasoners are less capable than others. For instance, a reasoner that
cannot track dividing objects would instead initialize new tracks for the descending
objects. It would never label more than one outgoing edge as active. This is not an
issue as long as the labelling is consistent.

Of course, reasoners take more than a hypotheses graph as input. Typical ad-
ditional information is the geometric configuration of the objects in space and
features describing their shapes. A good reasoner produces the most likely of all
consistent labellings given these additional inputs.

In software the graph labelling and any additional information can be repre-
sented as map data structures defined over the hypotheses graph data structure.
This allows to attach or remove annotations without changing the underlying graph
data structure and helps to reduce software defects caused by data mutability is-
sues.

3.2. Events

Events are a more detailed way to label a hypotheses graph resolving some of
the ambiguities that can arise from the simple “active” vs. “inactive” labelling
described in Sec. 3.1.2. In cell tracking we typically encounter event types such
as “move”, “division”, “appearance”, “disappearance”, “true positive detection”,
and “false positive detection”. Formally they are described in terms of subsets of
hypotheses graph nodes. For instance, division events are the three-set of nodes
representing the ancestor and the two descendant objects. Events from different
event classes can share the same set of nodes such as “appearance” and “true
positive detection”.

Some labellings of a hypotheses graph can be ambiguous. For example, both
a (cell) division and a split due to oversegmentation is indicated by two active
outgoing edges. A reasoner can give the event as an additional output to resolve
the situation. Furthermore, events can be used to specify mutually exclusive
assignments. A node marked as inactive corresponds to the “false positive detection”
event. Since we typically don’t want to allow assignments between inactive nodes
this event is incompatible with all the assignment events like move, division etc.
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3.3. A Baseline Reasoner for Cell Tracking

Event Notation Cost
i moves to j i→ j d2

i→j
i divides into j and k i→ j + k d2

i→j + d2
i→k + cdiv

i disappears in slice s i→∅ cdis
j appears in slice s+ 1 ∅→ j capp

Table 3.1.: Summary of the events considered by the reasoner. Here di→j is the
Euclidean distance between the centers of mass of nucleus i (from slice s) and j
(from slice s+ 1).

Such relations can be encoded with a hypotheses graph and a complementary set
of events.

3.3. A Baseline Reasoner for Cell Tracking: Optimal Joint

Assignment1

We present an example for a basic cell nuclei tracking reasoner as a baseline
for solving the tracking-by-assignment problem. It cannot mark nodes in the
hypotheses graph as inactive i.e. distinguish true cells from false positive objects but
will mark all nodes as active by default and should therefore only be applied when
the true positive rate of object candidates is very high. However, it is capable enough
to track dividing objects. Furthermore, since it only considers two consecutive
slices at once it cannot handle links that span several slices. Then again it can be
easily parallelized by tracking many pairs of slices simultaneously.

It finds the optimal joint assignment between nuclei for every pair of subsequent
time slices by minimizing the total sum of squared nuclei distances and fixed event
costs. Formally, let i denote a nucleus from slice s and j,k denote nuclei from slice
s + 1, and let ∅ represent no assignment. We consider the following events: move,
division, disappearance and appearance. While an (apparent) cell disappearance may
be caused by cell death, it is typically caused by the cell leaving the field of view
or a misdetection in the segmentation step. An (apparent) appearance happens
when it is segmented again at a later time slice or reenters the field of view. Note
that we initialize a new track for a reentering nucleus. All ancestry information
is lost. In order to make the optimization problem tractable, we only consider at
most k nearest neighbors of i within a given distance threshold above the maximal
observed moving distance of the nuclei. That is there are at most k outgoing edges
at any node in the hypotheses graph.2

As shown in Table 3.1 all these events have associated costs and the constants
cdiv, cdis and capp are chosen such that the cost of appearance and disappearance
events are always higher than the costs of all allowed division and move events.

1Content of section is based on the publication by Lou et al. (2011).
2Setting k = 6 works well in practice.
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3. The Tracking-by-Assignment Problem

Therefore cells that are assumed to (dis)appear cannot be accounted for by any
other event. We choose the movement costs to be zero for no translation and
quadratically increasing with the travelled distance. This assumed that objects stay
more or less at the same location in consecutive time slices. This is true when the
sampling frequency of the slices is high relative to the average movement speed of
the objects.3

LetM be the set of all possible moves and D the set of all possible divisions. For
each event inM and D, we define a binary variable x indicating whether this event
takes place or not. Finding the optimum joint association is then an integer linear
programming (ILP) problem:

min
x

∑
(i→j)∈M

xi→j(ci→j−ci→∅−c∅→j )+
∑

(i→j+k)∈D
xi→j+k(ci→j+k−ci→∅−c∅→j−c∅→k) (3.1)

subject to ∑
j:(i→j)∈M

xi→j +
∑

j,k:(i→j+k)∈D
xi→j+k ≤ 1 ∀ i,

∑
i:(i→j)∈M

xi→j +
∑

i,k:(i→j+k)∈D
xi→j+k ≤ 1 ∀ j.

(3.2)

Here, the two constraints guarantee that one nucleus can either divide into two
cells or perform a move when not disappearing.

All cells not accounted for by either a division or a move are assumed to appear
or disappear. Typically there are a few ten thousand variables (one for each division
or move) and a few thousand constraints (proportional to the number of nuclei
in each frame). We use a state-of-the-art ILP solver (ILOG CPLEX 4) to solve this
problem to global optimality within less than a minute per frame pair on a standard
desktop machine.

3.4. Summary

In this chapter we formulated tracking-by-assignment as a graph labelling prob-
lem and presented a baseline reasoner to solve the problem in the context of cell
tracking. Representing the problem in terms of a data structure produces a flexible
modelling framework for tracking algorithms. The baseline reasoner calculates a
optimal joint assignment between consecutive time slices by solving an integer lin-
ear program. It cannot distinguish between true positive and false positive objects
and needs a very high object identification accuracy to be applied successfully. We
will present a more advanced reasoner in form of a graphical model in Chapter 4.

3As a rule of thumb, most objects should have a spatial overlap with themselves in consecutive
slices.

4http://www.ilog.com/products/cplex/
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4. Tracking-by-Assignment as a

Graphical Model1

In the introduction of the thesis (pg. 5) we listed the requirements for a cell tracking
method to improve the state-of-the-art for automatic cell lineage reconstruction. In
particular we assert that it is necessary to handle a high number of false positive
objects—that is ≈ 10% of all identified objects.

In chapter 3 on page 15 we formulated tracking-by-assignment as a hypotheses
graph labelling problem and called the solving procedures “reasoners”. In this
chapter we present a reasoner formulated as a probabilistic graphical model that
meets all the demanded requirements and introduces the possibility to mark
object candidates as false positives (equivalent to labelling nodes as inactive in a
hypotheses graph) to address a high false positive rate.

The model takes the form of a chain graph (Frydenberg, 1990)—a directed graph-
ical model (Bayesian network) of “supernodes”, each of which consists of a condi-
tional random field over a set of “subnodes”. A chain graph model turns out to be
necessary because neither Bayesian networks nor Markov random fields alone are
compatible with the independence assumptions imposed by tracking.

4.1. Background

In this section we will summarize the most important methods necessary to un-
derstand the chain graph tracking model. That is on the one hand the theory of
graphical models including Bayesian networks, Markov random fields, and the
chain graph model as a hybrid of the two. On the other hand we have the Random
Forest discriminative classifier which is used to parametrize the detection factor in
the chain graph tracking model.

We will only mark the most important concepts and kindly refer the reader to
the cited literature for more details. For graphical models in particular we highly
recommend the book by Daphne Koller and Nir Friedman (Koller and Friedman,
2009). It is both a gentle introduction and comprehensive guide to almost all topics
concerning graphical models.

4.1.1. Discriminative Classifier: Random Forest

Random Forest was introduced to the machine learning community by Breiman
(2001). As a discriminative classifier Random Forest is part of a broad family of

1Content of chapter is based on the publication by Kausler et al. (2012).
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4. Tracking-by-Assignment as a Graphical Model

ensemble-based methods (Rokach, 2010), which aggregate the predictions of many,
typically weak classifiers of the same type to achieve an overall better performance
than can be achieved by each single classifier alone. In case of Random Forest,
decision trees play the role of the weak learners and the overall class predictions
are given in form of relative frequencies of the single tree predictions.

To improve prediction accuracy a bagging technique is employed (Breiman, 1996).
That is, each tree is only trained on a bootstrapped subset of the training samples,
drawn uniformly and randomly with replacement from all samples. Furthermore,
each tree sees only a random subset of all features at each split node. The trees are
typically trained to purity (each leaf associated with samples of only the same class)
without pruning. As a splitting criterion we have chosen the popular Gini impurity
measure (Breiman et al., 1984; Ceriani and Verme, 2012). Random Forest only has
two tunable parameters: the number of drawn features and the number of trees in
the forest. As empirical studies2 have shown, its predictive performance is mostly
independent of the exact parametrization and is on par with other state-of-the-art
non-linear classifiers like SVM or neural networks. Furthermore, it is robust against
noisy, mostly uninformative features.

We employ Random Forest to learn prior factors in the chain graph tracking
model (see Sec. 4.5.2 on page 37). Random Forest is well suited for this task. The
relative frequencies of the tree votes can be directly interpreted as normalized
probabilities (other than—for instance—the binary output of the standard SVM)
and it is fast in training and prediction without the need to worry about cross
validation schemes (other than—for example—neural networks).

4.1.2. Graphical Models

A graphical model links two aspects of probability theory with the help of a
graph data structure: conditional independence statements about a set of possibly
correlated random variables and the representation of multivariate distribution
over these variables as a product of factors. Given two random variables A and B
they are said to be independent (A⊥⊥ B) if

A⊥⊥ B : P (A,B) = P (A) · P (B) (4.1)

or (after introducing a third variable C) conditionally independent (A⊥⊥ B | C) if

A⊥⊥ B | C : P (A,B|C) = P (A|C) · P (B|C). (4.2)

One possible factorization of a distribution P (A,B,C) could be obtained using Bayes’
theorem

P (A,B,C) = P (A|C) · P (B|C) · P (C) (4.3)

2Guo et al. (2004); Caruana and Niculescu-Mizil (2006); Díaz-Uriarte and De Andres (2006); Menze
et al. (2009)
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4.1. Background

or the same distribution could be represented as a product of nonnegative potentials
φi with a normalizing partition function Z

P (A,B,C) =
1
Z
φ1(A,C) ·φ2(B,C) ·φ3(A) ·φ4(B). (4.4)

Graphical models have many advantages compared to merely probabilistic,
energy-based (LeCun et al., 2006), or combinatorial optimization-based (Papadim-
itriou and Steiglitz, 1998) approaches (and others). Graphical models can pose
as any of the three approaches by only concentrating on certain aspects. For ex-
ample, MAP inference can be seen as a combinatorial optimization problem and
Markov random fields can be converted to energy-based models by translating
them to log-space. In fact, one advantage of graphical models is their ability to
disguise as many different approaches allowing us to use the best methods from
many fields with the same underlying model (for example, sampling techniques
borrowed from Bayesian statistics or inference algorithms based on convex and
combinatorial optimization techniques). Furthermore, graphical models can be
bootstrapped from first principles by identifying random variables to describe real
world problems and clearly stating conditional independence assumptions. From
that a factorization with the necessary parameters can be derived, alleviating the
issue of over- or underparametrization.

Another strong point is the graph data structure associated with every graphical
model. It allows to investigate independence relationships in a much more intuitive
and effective manner compared to purely probabilistic models where independence
has to be checked using involved arithmetic. The lower hurdle encourages the
practitioner to actually investigate the independence relationships in his or her
model and helps to find possibly hidden and unwanted model assumptions. The
same structure also encodes factorization information without the need to spell
it out in formulas. To put it in another way, graphical models help humans to
structure a problem and to reason about it using intuitively accessible graphical
elements instead of opaque formulas and allow to concentrate more on the problem
domain itself instead of the modeling tools.

Representation

An instance of a graphical model is given as a graph G = (N,E) comprising a set of
nodes N and set of edges E. It can be directed, undirected, or both depending on
the particular type of graphical model. Below we give descriptions of three types:
Bayesian networks (directed), Markov random fields (undirected), and chain graphs
(mixed). There is one and only one node for each random variable. Edges between
nodes represent a direct influence between the two random variables. That is, if the
two variables are probabilistic dependent, no conditioning on other variables in
the model can make them independent. This is not necessarily true the other way
around. Two variables connected by an edge can still be probabilistic independent
as induced by a certain parametrization of the distribution.

(Conditional) independence relations between variables that are not directly
connected can be read-out from the graph by examining connecting paths between
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4. Tracking-by-Assignment as a Graphical Model

the variables (the rules depend on the type of graphical model). Furthermore,
the factorization of probability distributions over the random variables has to be
compatible with the connectivity of variables / nodes in the scope of each factor
(the rules again depending on the type of graphical model).

f1
X1

f2
f3

X3

f4
X2

Figure 4.1.: Factor graph example.

In general there can be many factor-
izations of a distribution that are com-
patible with a single graph. Kschis-
chang et al. (2001) and Frey (2003) in-
troduced and refined factor graphs to
resolve this ambiguity. Factor graphs
are undirected bipartite graphs consist-
ing of factor and variable nodes. Each
factor node is connected to the vari-
ables in the scope of the factor. Fig. 4.1
shows an example factor graph with
four factor nodes fi and three random
variables Xi . The factor f2 is connected with X1 and X2 indicating the factor
scope f2(X1,X2). The complete factorization encoded by this factor graph is then
P̃ (X1,X2,X3) = f1(X1) · f2(X1,X2) · f3(X1,X2) · f4(X2,X3). In general P̃ (X1,X2,X3)
needs to be normalized to obtain a proper distribution P (X1,X2,X3).

Inference

The primary application of multivariate probability distributions modeled as a
graphical model are inference queries. They come in three flavors: calculating
marginal distributions P (X\X̃ ), conditional distributions P (X\X̃ |X̃ ), and mode
queries—typically the maximum a-posteriori (MAP) or most likely configuration
x′ = argmaxP (X ). All three can be solved in principle using the variable elimina-
tion algorithm, which combines basic arithmetic manipulations applying Bayes’
theorem and dynamic programming. The algorithm was invented many times in
many different fields dating back as early as 1880 (Thiele, 1880). In the context of
graphical models (in particular, Bayesian networks) it was introduced by Zhang
and Poole (1994). The gist of the method is already present in a simple calculation
of a conditional. Given a distribution over two binary variables P (A,B) we can
obtain the conditional distribution of A as follows:

P (A|B) =
P (A,B)
P (B)

=
P (A,B)

P (A0,B) + P (A1,B)
. (4.5)

In case of more variables, operations like these are applied recursively on subsets
of variables while reusing already calculated intermediate results. That way, a
combinatorial blow-up is prevented as it happens when calculating the queries in a
single step.

Unfortunately, the inference problem is stillNP -hard in general in the number
of random variables (Bertele and Brioschi, 1972; Dechter, 1999). There are special
cases with polynomial runtime, though. For tree-structured graphical models
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A B

C D

E

(a) Bayesian network.

A

B C

D

(b) Markov Random Field.

Figure 4.2.: Examples of directed and undirected graphical models.

all three kinds of queries can be calculated efficiently (Shafer and Shenoy, 1990;
Shenoy and Shafer, 2008). If the distribution is a member of the Gibbs family
(P (X ) 1

Z e
−E(X )) and the energy function E is submodular, MAP inference is possible

in polynomial time (Kolmogorov and Zabih, 2002). As we show in the work at
hand, MAP inference can nevertheless be conducted in some cases in reasonable
time on real world problem sizes for the general case (even though it will scale
exponentially for even larger problems).

Furthermore, there are many approximate methods that can be roughly cate-
gorized into sampling approaches (Pearl, 1987; Gamerman and Lopes, 2006) and
variational approaches (Yedidia et al., 2005; Wainwright and Jordan, 2007). Another
important approach poses MAP inference in terms of an integer linear program
allowing us to use exact solvers (Schrijver, 1998) or linear programming relaxations
(Wainwright et al., 2005).

4.1.3. Bayesian Networks

A Bayesian network is represented by a directed graph. The factorization and
independence rules over the graph are governed by Bayes’ rule

P (A,B) = P (A|B) · P (B) (4.6)

(for two random variables A and B). In particular, there exist only two types of
factors: prior factors (like P (B)) and conditional factors (like P (A|B)) depending on
a single variable each. Both types are properly normalized and there is exactly one
factor associated with each variable node in the graph. If the node has incoming
edges the factor is conditioned on the sources nodes / variables of the edges,
otherwise it is an unconditioned prior factor. Naturally, this construction induces a
directed acyclic graph.

An example Bayesian network with five random variables is shown in Fig. 4.2a.
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4. Tracking-by-Assignment as a Graphical Model

The corresponding factorization is

P (A,B,C,D,E) = P (A)P (B)P (C|A,B)P (D |B)P (E|C,D) (4.7)

as can be easily read from the graph. Furthermore, conditional independence
statements can be derived from the graph, too. It is—for instance—intuitively clear
that A ⊥⊥ {B,D,E} | C. Formally, two variables are conditional independent in a
Bayesian network if they are d-separated, that is, if they are not connected by any
non-blocking trail.3 A trail is blocked if one ore more of the following statements
are true:

1. The trail contains a segment B←M← E, where M is observed.

2. The trail contains a segment B←M→ E, where M is observed.

3. The trail contains a segment B → M ← E and neither M nor any of its
descendants is observed.

In our example graph, C and D are thus not independent since they are connected
via B. If we observe B, this trail would become blocked and the two variables were
d-separated (and thus independent) since the only other trail via E is blocked, too.
If we would subsequently observe E, the latter trail unblocks and C and D become
dependent again.

4.1.4. Markov Random Fields

Other than Bayesian networks Markov Random Fields (MRFs) are represented by
undirected graphs. A factorization of a distribution is compatible with a Markov
Random Field if each factor is defined over a single clique in the graph. Before
we elaborate these concepts we have to define some notions first. A clique is a
fully connected subgraph and a maximal clique is a clique where no node could
be added without breaking the clique property. The set of variables a factor takes
as arguments is called the scope of the factor. A factor over a clique then is a
factor whose scope is identical with the clique variables and—as already stated—no
factor’s scope is allowed to have variables from more than one clique (otherwise
the factorization wouldn’t be compatible with the MRF anymore). In particular, the
largest scopes of any factorization are limited by the maximal cliques in the graph
and the coarsest factorization that is still compatible with the MRF is

P (X ) =
1
Z

∏
C∈{max. cliques}

φC(XC) (4.8)

where XC are the variables in clique C and the constant Z is called the partition
function. The partition function normalizes the product of semipositive, unbounded
factors. The factors φ are called the potentials. Note, that there are usually several

3A trail—other than a path—ignores the direction of edges.
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factorizations that are compatible with a given MRF. In that case a factor graph (see
above) can be used to exactly specify the factorization.

If a factorization of a distribution is compatible with a MRF we can read condi-
tional independence relations from the graph that can be fulfilled by the factor-
ization. Fig. 4.2b on page 25 shows an example MRF with the following maximal
clique factorization:

P (A,B,C,D) =
1
Z
φ1(A,B) φ2(A,C) φ3(B,D) φ4(C,D) (4.9)

Two variables in a MRF are conditionally independent if all connecting paths are
blocked. A path is blocked if it contains an observed variable. The two variables
are then said to be separated. For instance, B ⊥⊥ C | A,D and A ⊥⊥ D | B,C in the
example graph since in both cases the only two paths connecting the variables are
blocked. Note, that this rule is simpler than the three rules for d-separation in
Bayes networks.

4.1.5. Chain Graph Models

Bayesian networks and Markov Random Fields can both express independence
relations—sometimes called Markov properties of the graphical model—that the
respective other cannot. In case of Bayesian networks the “V”-pattern constellation
B→M← E induces B⊥⊥ E whenM is not observed and nullifies the independence
when M is observed. Such a mechanism does not exist in MRFs since there one
cannot remove independence relations by the act of observing variables. An analog
example exists the other way around. A diamond-pattern MRF like the one shown
in Fig. 4.2b on page 25 can expresses the conditional independence relations B⊥⊥
C | A,D and A⊥⊥D | B,C. There is no Bayesian network over four random variables
that could express both of these relations (which can be proven by exhaustive
construction of all possible four-node directed acyclic graphs).

A chain graph model is a mixed graphical model with both directed and undi-
rected edges that allows to express independence relations exclusive to directed
(Bayesian network) or undirected (MRF) graphs in the same model (Frydenberg,
1990; Studeny and Bouckaert, 1998). To understand chain graphical models we
first have to introduce two other concepts: conditional random fields (CRFs) and
partially directed acyclic graphs.

CRFs model a distribution over a set of target variables Y given another set of
feature variables X where independence relations involving target variables are
determined by MRF Markov properties (feature dependencies are not modeled
since they are thought of being observed):

P (Y|X ) =
1

Z(X )
P̃ (X ,Y )

P̃ (X ,Y ) =
∏
i

φi(D)
(4.10)
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A B

C D E

F

(a) A chain graph G.

A B

C D E

(b) The graphM[G+[C,D,E]] .

Figure 4.3.: Example for a chain graph. The chain graph in the left panel consists
of four components K1 = {A}, K2 = {B}, K3 = {C,D,E}, and K4 = {F}. The moral-
ized subgraph of the chain graph in the right panel is used to reason about the
dependence of variable C and D in the context of c-separation.

where D ⊆ {X ,Y} and D * X , that is, there are no factors with scopes only spanning
feature but no target variables. Note that the partition function is not a constant but
is depending on the feature variables. A CRF is represented by a partially directed
graph with an undirected subgraph over the target variables and parent–child
relationships between feature and target variables indicated by directed edges.
Sutton and McCallum (2012) give an comprehensive introduction to CRFs.

A partially directed acyclic graph (PDAG) is a directed acyclic graph (DAG) that
can also contain undirected edges. Because there are no directed cycles such a graph
consists of one or more distinct components. The nodes in a single component
are connected with each other only through undirected edges and are connected
to nodes from other components only with directed edges. This macro structure
resembles a chain of beads. A PDAG is therefore also called a chain graph over chain
components and a distribution that factorizes over such a graph is a chain graph
model. Fig. 4.3a shows an example for a chain graph with four components and six
variables.

The chain components in a chain graph model are laid out as a DAG and we can
interpret this DAG as a Bayesian network whose nodes are the chain components.
In contrast to a common Bayesian network the nodes themselves expose a finer
structure in form of undirected subgraphs. In fact, a chain graph model generalizes
both Bayesian networks and MRFs. It reduces to a common Bayesian network in the
case of only one node per chain component and to a MRF in case of only one chain
component with no parents. Let t be the number of chain components, Ki the set of
all variables in component i of t, and PaKi the set of parent nodes connected with
nodes in component i by directed edges which are pointing towards the component.
Then—in general—the factorization of a distribution over a chain graph takes the
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form of a product of CRFs:

P (X ) =
t∏
i=1

Pi(Ki |PaKi ) (4.11)

The Markov properties of chain graph models subsume the properties of MRFs
and Bayesian networks and are consequently more complex than each of the latter
two. They are defined in terms of c-separation and two variables in a chain graph
are conditionally independent given a third set of variables if the two variables
are c-separated (Madigan et al., 1995). To understand c-separation we need to
introduce the concept of moralization first. Moralization converts a directed into an
undirected graph in two steps. First, all parent nodes of the same child node, that
are not already connected, are connected with an edge. (They are “married” to each
other, removing their “immoral” relationship.) Second, all edges are converted to
undirected edges. The moralized version of a graph G is denoted byM[G]. The
graph G+[U] is the induced subgraph over the nodes U together with all ancestors
of these nodes based on a chain graph model. (In an undirected graph all other
nodes are ancestors). Given two variables A and B and a set of variables Z (A,B < Z),
A is said to be c-separated from B if they are separated (in the MRF sense) in the
graph M[G+[A∪ B∪ Z]]. To summarize, the statement A ⊥⊥ B | Z is true if A is
c-separated from B given Z.

For example, Fig. 4.3b on the facing page shows the graphM[G+[C,D,E]] derived
from our example chain graph and we can read out that the statement C ⊥⊥ E |D
is not true since there is a non-blocking path between C and E via A and B. We
additionally need to observe either A or B or both to make the statement true.

4.1.6. Bootstrapping Graphical Models

In previous sections we introduced the craft of graphical models that is mainly
concerned with reasoning in network structures and inference queries. In contrast
this section will briefly discuss the art of graphical models, that is, design decisions
involved when engineering a model. Laying out a graphical model involves three
steps: choosing random variables, picking a network structure, and parametrizing
the factors. The three steps cannot just be done one by one in linear order because
decisions made at any step are influencing all the others. The main goal of the
graphical model design process is to balance out all three steps to arrive at a
solution with a as low as possible complexity while still being useful for practical
applications.

The complexity of a graphical model can be estimated by the number of (free)
parameters in the model. To keep inference tractable and fast we want to reduce
model complexity without losing too much descriptive power. For instance, a
model consisting of a single factor with two binary variables has four entries
and thus three free parameters. In contrast, a model with two factors over one
binary variable each has only two free parameters and would be preferable in
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4. Tracking-by-Assignment as a Graphical Model

terms of model complexity. However, we also loose descriptive power because
the latter model cannot consider interactions between the two variables (they are
independent in the model). Inference in less complex models is in general faster
because we can think of inference—on the very highest level of abstraction—as a
search through the state space of the model whose size is roughly proportional to
the number of parameters in the model.

There are several ways to influence the model complexity. The more (conditional)
independence assumptions we make the more the model can be factorized and
in return reduces the model complexity. Or in other words, we want to have as
few edges as possible in the graph. Furthermore, it is desirable to have as few
variables as possible, too. Frequently one can trade off the number of edges against
the number of variables. Consider four variables all connected to each other with
in total six edges. We can introduce a fifth (hidden) variable and mediate the
dependency between the original variables via this helper variable. That way we
have increased the number of variables by one but reduced the number of edges to
four.

When designing a (partially) directed model a widely accepted rule of thumb is
to choose a structure that reflects the causal relationships between the variables
such that parent variables are considered the cause for the effect taking place in
the children variables. Experience of practitioners in the field shows that this
approach leads in general to sparser models. Another aspect to consider is the
parametrization of Bayesian factors. The concept of a child variable depending on
some parent variables maps naturally to the concept of discriminative classifiers
like Random Forest which can output a probability estimate for classes given
certain features. If we factorize the network neatly, some factors can be learned
directly using a discriminative classifier instead of using maximum likelihood
based learning approaches which are usually costlier than a classifier. In particular,
one should design factors such that they model the probability of a target variable
given some features than the other way around.

4.2. A Graphical Model for Tracking-by-Assignment

4.2.1. Random Variables and Layout

Our model contains two types of random variables: detection variables and assign-
ment variables. A binary detection variable X(t)

i is associated with the ith object
(cell candidate) in time slice t, and X (t) denotes the set of all detection variables
at time t. Values of these variables determine if the corresponding detections are
accepted as a true object (and hence incorporated into the tracking interpretation),
or rejected as a false positive. We argue to operate object identification in a high
recall regime, that is, we try to identify all actual objects at the cost of introducing
false positives (lowering precision). Compared to singling out false positives it
is harder to recover objects that were lost in the first place. We therefore forgo
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4.2. A Graphical Model for Tracking-by-Assignment

modeling of false negatives to rein in model complexity and assume an object
identification step with high recall.

Binary assignment variables Y (t)
ij are associated with every pair of object candi-

dates i, j at times t ∈ [1, . . . ,T −1], t+1, and Y (t) is the set of all assignment variables
between steps t and t + 1. A value of 1 expresses the belief that cell candidate j at
time step t + 1 is identical with, or a child of, cell candidate i at time step t, and a
value of 0 says that i and j are unrelated.

In addition, a number of natural consistency constraints are imposed on these
variables by our application in developmental biology: First, each cell must have at
most one predecessor, i.e.

∑
i Y

(t)
ij ≤ 1. Second, each cell must have a unique fate—if

it does not disappear (by leaving the data frame or other reasons), it can either move
to (be assigned to) a unique cell candidate in the next time slice, or it can divide
and be associated with exactly two cell candidates in the next time slice. These
children, in turn, may not have any other nonzero incoming assignment variables.
Third, there is a biological upper bound on the distance traveled between time
frames, excluding all assignments that are too far apart. This leads to a significant
reduction in the number of required assignment variables.

These consistency constraints define which configurations are impossible, i.e.
have zero probability. In the following subsections, we describe how the probabili-
ties of feasible configurations are defined by connecting variables into a chain graph
whose factors encode our knowledge about the plausibility of different trackings as
a function of data-dependent properties such as distance traveled, probability of
being a misdetection, etc.

Conditional random field over assignment variables

Let us pretend for the moment that the optimal values of the detection variables
are already known. Then the probability of a configuration Y (t) of assignment
variables connecting slices t and t + 1 given the detection variables X (t) and X (t+1)

can be expressed with an undirected graphical model, in particular a conditional
random field (CRF):

CRF(t) : P (t)(Y (t) | X (t),X (t+1)) (4.12)

where

P (t)(Y (t)|X (t),X (t+1)) =
1
Z(t)

∏
X

(t)
i ∈X (t)

φ
(t)
i→(X(t)

i ,Y
(t)
i→)

∏
X

(t+1)
j ∈X (t+1)

φ
(t)
→j(Y

(t)
→j ,X

(t+1)
j ) , (4.13)

and φ(t)
i→ and φ(t)

→j denote the factors for outgoing and incoming transitions respec-

tively. Note that the CRF partition function Z(t)(X (t),X (t+1)) is only calculated over
the assignment variables, since the detection variables are considered as given.
A factor graph Kschischang et al. (2001) representation of eq. (4.13) is shown in
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4. Tracking-by-Assignment as a Graphical Model

(a) Undirected part of the chain graph.
A single assignment CRF is shown as a fac-
tor graph Kschischang et al. (2001). The
dark nodes represent fixed detection vari-
ables X (at t and t + 1) and the smaller,
light nodes assignment variables Y .

(b) Directed part of the chain graph.
The boxes symbolize supernodes con-
taining assignment CRFs according to
Fig. 4.4a.

Figure 4.4.: Chain graphical model for global tracking by assignment.

Fig. 4.4a. Each of the maximal cliques of the underlying undirected graph corre-
sponds to a factor in the CRF. These CRFs will form the supernodes of the chain
graph, while the individual assignment variables are the subnodes.

Analyzing the separation properties of the graph in terms of connecting paths
between variables, implicit independence assumptions in the CRF can be identified:
an assignment Y (t)

ij is conditionally independent of all assignments Y (t)
kl involving

different detection variables k , i, l , j, provided that all incoming assignments

Y (t)
→j of detection j and all outgoing assignments Y (t)

i→ of detection i are given:

Y
(t)
ij ⊥⊥ Y

(t)
kl | Y

(t)
→j ,Y

(t)
i→ l , j, i , k . (4.14)

In other words, the assignment decisions only influence a small neighborhood of
other assignment variables directly. By fixing enough variables the CRF can even
decouple in two or more completely independent tracking problems—promoting
the tractability of the chain graph model.

Combining assignment CRFs in a chain graph

In order to get rid of the requirement that detection variables are already known, we
connect all CRFs defined above by means of directed edges from detection variables
to factors, in a manner analogous to a Bayesian network. The joint probability over
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all time steps can now be factorized as

P (X ,Y ) =
T∏
t=1

∏
X

(t)
i ∈X (t)

P
(t,i)
det (X(t)

i ) ·
T−1∏
t=1

P (t)(Y (t)|X (t),X (t+1)) , (4.15)

where P (t,i)
det (X(t)

i ) is the probability that a detection hypothesis should be accepted
into the tracking. The corresponding chain graphical model is sketched in Fig. 4.4b.

To analyze the independence properties in such a model one has to use the
quite involved rules of c-separation. By treating each CRF as a single random
variable (supernode) with as many states as configurations of the assignment
variables (subnodes) and assuming that all variables in the supernode are observed
at once, the less complex d-separation analysis can be applied to the directed part
of the model. The (unobserved) supernodes have only incoming edges and are
blocking the path between detection variables, revealing the following conditional
independence relations:

1. Detection variables are independent from each other, i.e. Xi ⊥⊥ (X \Xi) ,∀Xi .

2. Consecutive assignment variables are conditionally independent given the
connecting detection variables, i.e. Y (t) ⊥⊥ Y (t+1) | X (t+1).

These are rather strong independence assumptions and—of course—only an ap-
proximation to the real world. Later, we introduce an extension (eqs. (4.24) and
(4.23)) that, on the one hand, improves the model accuracy but, on the other hand,
weakens these relations and makes inference harder.

Taken together with the independence assumed further above, we obtain a model
that no longer falls within the scope of either directed or undirected probabilistic
graphical models but is a chain graph: a set of undirected graphical models, the
CRFs P (t)(Y (t)|X (t),X (t+1)) that depend on decisions X (t) regarding the presence or
absence of true objects.

4.2.2. Energy Representation

A (strictly) positive distribution factoring as a product of potentials can equivalently
be restated as sum of energy factors by expressing the probability in eq. (4.15) as a
Gibbs distribution

P (X ,Y ) =
1
Z
e−E(X ,Y ) (4.16)

with

E(X ,Y ) =
T∑
t=1

∑
i

E
(t,i)
det (X(t)

i ) +
T−1∑
t=1

∑
i

E
(t,i)
out (X(t)

i ,Y
(t)
i→) +

∑
j

E
(t,j)
in (Y (t)

→j ,X
(t+1)
j )


(4.17)
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where Edet, Eout, and Ein are the energy types corresponding to the factor types
Pdet, φ

(t)
i→, and φ(t)

→j respectively.

Switching to the energy domain has several advantages. First, it allows us to
use inference algorithms such as integer linear programming that only work on
factor sums but not on factor products. Second, in contrast to potentials which
have to be nonnegative, energies can assume the full range of real numbers putting
less restrictions on factor parametrization. Third, when implemented in software
summing operations are in general more numerically stable compared to products.

4.3. Tracking as MAP Inference

The chain graph distribution of eq. (4.15) assigns a probability value to every
configuration of assignment and detection variables. A tracking is obtained by
finding the most probable or maximum a posteriori (MAP) configuration:

MAP : argmax
X ,Y

P (X ,Y ) (4.18)

or equivalently

MAP : argmin
X ,Y

E(X ,Y ) . (4.19)

In Sec. 5.3.2 on page 50 we compare several energy minimization methods by
their capability to find a MAP configuration. As it turns out, integer linear pro-
gramming is—by a large margin—the best method and delivers good performance
with a reasonable running time for practical applications. In particular there are
two advantages. First, it allows us to use state-of-the-art ILP solvers that are able to
determine globally optimal solutions of eq. (4.17). Any remaining shortcomings
of our tracking results can thus be attributed to our model and are not a conse-
quence of approximate optimization. Second, zero probability / infinite energy
configurations can be naturally ruled out by adding hard constraints to the linear
program.

Compared to other kinds of inference queries MAP inference has the advantage
that there is no need to evaluate or estimate the partition function of the model
since, for instance, in the energy domain the partition function just enters as a
shifting constant with no influence on the argument minimum of the energy. Then
again calculating marginals can provide valuable information about the certainty
of the presented tracking. Another interesting approach that does not necessarily
require an evaluated partition function is presenting the m-best solutions to the
user (Batra et al., 2012) to convey an impression of the stability of the tracking
solution: variables that wouldn’t change state in different solutions would be
considered more stable and certain than variables that change state.
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4.4. Cell Nuclei Tracking

4.4.1. Basic Model

In this section we parametrize the chain graph model for cell nuclei tracking.
Recall the energy representation of eq. (4.17). The first term allows to incorporate
evidence from the raw data regarding the presence or absence of a cell at a location
where an object candidate was detected. We use the Random Forest classifier
(Breiman, 2001) to estimate the probability P̂ (t,i)

det of a detection being truly a cell,
based on features such as intensity distribution and volume of each cell candidate
found by the detection module (see Sec. 4.5.2 on page 37 for a detailed description).
In keeping with the definition of the Gibbs distribution, we get

E
(t,i)
det

(
X

(t)
i

)
=


− ln

(
P̂

(t,i)
det

)
,X

(t)
i = 1

− ln
(
1− P̂ (t,i)

det

)
,X

(t)
i = 0

(4.20)

The assignment energies Ein and Eout need to embody two kinds of prior knowl-
edge: firstly, which trackings are consistent; and secondly, amongst all consistent
trackings, which ones are plausible. To enforce consistency, zero probability /
infinite energy is assigned to cells dividing into more than two descendants, cells
arising from the merging of two or more cells from the previous slice, and cell
candidates that are regarded as false positives.

To penalize implausible trackings, we need to parametrize our model appropri-
ately. The model equations expose exactly five free parameters (Cinit, Cterm, Copp,
w, d̄). Cinit imposes a penalty for track initiation (i.e. when a cell (re-)appears in
the data frame) and Cterm for track termination (i.e. when a cell disappears from
the data frame or is lost due to cell death). To discourage trivial solutions where
too many objects are explained as misdetections, we exact a opportunity cost of
Copp for the lost opportunity to explain more of the data. Furthermore, each move
is associated with a cost dependent on the squared distance traveled of that move.
For cell divisions, finally, it is known that the descendants tend to be localized at
an average distance d̄ from the parent cell, and we punish deviations from that
expected distance.

All of the above can be summarized in the following assignment energies:

E
(t,i)
out (X(t)

i ,Y
(t)
i→) =



∞ ,X
(t)
i = 1∧

∑
j Y

(t)
ij > 2 > 2 children

w
(
(d − d̄)2

+(d′ − d̄)2
) ,X

(t)
i = 1∧

∑
j Y

(t)
ij = 2 division

wd2 ,X
(t)
i = 1∧

∑
j Y

(t)
ij = 1 move

Cterm ,X
(t)
i = 1∧

∑
j Y

(t)
ij = 0 disappearance

Copp ,X
(t)
i = 0∧

∑
j Y

(t)
ij = 0 opportunity

∞ ,X
(t)
i = 0∧

∑
j Y

(t)
ij > 0 tracked misdetection

(4.21)
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E
(t,j)
in (Y (t)

→j ,X
(t+1)
j ) =



∞ ,X
(t+1)
j = 1∧

∑
i Y

(t)
ij > 1 > 1 parent

0 ,X
(t+1)
j = 1∧

∑
i Y

(t)
ij = 1 move

Cinit ,X
(t+1)
j = 1∧

∑
i Y

(t)
ij = 0 appearance

0 ,X
(t+1)
j = 0∧

∑
i Y

(t)
ij = 0 misdetection, no parent

∞ ,X
(t+1)
j = 0∧

∑
i Y

(t)
ij > 0 misdetection with parent

(4.22)

Note that more informative features could be extracted from the raw data: for
instance, besides the length of a move, one could consider the similarity of the
associated cell candidates to obtain an improved estimate of their compatibility.
However, it is then no longer possible to select appropriate values for the parameters
with a simple grid search. Instead, a proper parameter learning strategy will be
needed, which will be a subject of our future research.

4.4.2. Minimal Cell Cycle Length Extension

Time

Figure 4.5.: Implausible division. The figure shows cell lineage trees with cell
divisions marked by dots. They were obtained from the chain graph tracking
model without the minimal cell cycle length extension. Several divisions in close
temporal proximity—as marked by the red circle—are biologically impossible and
should be ruled out by the method.

The model may be extended further by incorporating domain specific knowledge.
For instance, cells must pass through specific cell cycle states (interphase, prophase,
metaphase, anaphase, telophase) and thus, there is a biological lower bound for
the duration of a cell cycle. In other words, it is impossible to observe a cell
dividing twice within a number of subsequent slices as it is the case in Fig. 4.5. This
biological constraint can be integrated in our cell tracking model by expanding the
detection variables X(t)

i to obtain the number of time slices since the last division of

an individual cell, i.e. X(t)
i ∈ {0,1, ..., τ}, where X(t)

i = 0 still stands for misdetection
and τ is a parameter for the minimal duration between division events of an
individual cell. Hence, the energy functions given above change only slightly in
that X(t)

i = 1 becomes X(t)
i ≥ 1 and X(t)

i = τ for the division energy. Besides, another
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two factors need to be introduced to incorporate the counting between successive
detections. The corresponding energy functions are given by

Ecnt→(X(t)
i ,Y

(t)
i→,X

(t+1)
i→ ) =


∞ ,Y

(t)
ij = 1∧

∑
k Y

(t)
ik = 2∧X(t+1)

j , 1

∞ ,Y
(t)
ij = 1∧

∑
k Y

(t)
ik = 1∧X(t)

i < τ ∧X(t+1)
j , X

(t)
i + 1

∞ ,Y
(t)
ij = 1∧

∑
k Y

(t)
ik = 1∧X(t)

i = τ ∧X(t+1)
j , τ

0 ,otherwise

,

(4.23)

Ecnt←(X(t+1)
j ,Y (t)

→j ) =

 ∞ ,
∑
k Y

(t)
kj = 0∧X(t+1)

j , 0∧X(t+1)
j , τ

0 ,otherwise
, (4.24)

where X (t+1)
i→ are the detection variables connected to X(t)

i through Y (t)
i→. Technically,

these rules are implemented as hard constraints on indicator variables each repre-
senting a possible state of the detection variables. It should be noted that with this
modification, the detection variables are no longer independent. For that reason
and due to the increased number of variables, computation time increases by a
factor of ten compared to the chain graph model without this modification.

4.5. Determining Parameters

4.5.1. Exhaustive Search

The chain graph tracking reasoner as well as the joint optimal assignment reasoner
and the method by Bise et al. (2011) (later used to compare our methods to in
tracking experiments) all expose some free parameters. We chose to find parameter
settings according to an optimal f-measure of successfully reconstructed move,
division, appearance, and disappearance events relative to a manually obtained
tracking. Based on sensible parameter ranges found by manual experimentation we
set up a search grid of parameter combinations and evaluated the performance for
all combinations. To speed up the procedure we first did a search on a coarse grid.
Subsequently, we identified the region in parameter space containing the highest
performance so far and conducted a second search with a finer grid in that region
to find the final parameter settings. Furthermore, we evaluated several parameter
combinations in parallel using the parawalker software4 which we developed
previously (Kausler, 2010).

4.5.2. Chain Graph Priors: Discriminative Learning

The chain graph model contains prior factors that govern the state of the detection
variables and which can be parametrized by an estimate of the probability P̂ (t,i)

det
for a detected object being a true cell nucleus or not (see Sec. 4.4.1 on page 35).

4https://github.com/bekaus/parawalker
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4. Tracking-by-Assignment as a Graphical Model

For a start we could just use the same value for all detection variables based on
an estimate of the general noise level (say, roughly 10% of all objects are false
positives) and, as a matter of fact, the results are acceptable in practice. However, a
much better performance should be achievable if we use an individual estimate
for every single object based on the prediction of a state-of-the-art discriminative
classifier like Random Forest.

Lindner (2011) describes a set of object features calculated on three-dimensional
connected components. Based on these features he conducted experiments to
distinguish cell nuclei from other objects by training a Random Forest classifier.
As training and test data he used segmentations of three-dimensional images of
Zebrafish embryos in early stages of development recorded with a light sheet
microscope. Based on a feature selection experiment he advises to select all the
proposed features (pg. 61). Furthermore, he asserts that to achieve the best
discriminative performance care should be taken to train on a balanced dataset
with a similar number of true cell nuclei and other objects (pg. 64–65).

We take his advice and train a Random Forest classifier on balanced training
datasets of cell nuclei and false positive objects using the following Lindner features
calculated on the segmented object voxels:

volume – total number of voxels in an object

bounding box – ratio of object volume to bounding box volume

mean position – mean voxel coordinates and higher central mo-
ments

center of mass – intensity-weighted mean voxel coordinates and
higher moments

maximum intensity – coordinate of the highest intensity voxel

principal components – eigenvalues of the object principal components

intensity – mean voxel intensity and higher moments

intensity quantiles – quantiles of the voxel intensity distribution

pairwise intensity – several intensity distance measures on voxel pairs

statistical geometrical features – texture sensitive features (Chen et al., 1995; Walker
and Jackway, 1996)

Furthermore, all features except volume, bounding box, and mean position were
also calculated on the voxels contained in an enlarged bounding box around the
segmented object to capture some neighborhood context, too.
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4.6. Summary

4.6. Summary

In this section we proposed a novel graphical model taking the form of a chain
graph to solve the tracking-by-assignment problem and presented a parametriza-
tion of the model suitable for cell nuclei tracking. Furthermore we extended the
model to consider an expected minimal temporal distance between cell divisions—
demonstrating the flexibility of formulating tracking as a graphical model. In the
following chapters we will subject the model to a thorough experimental evaluation
and describe an implementation in software.
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In this chapter we present the experimental evidence for the capabilities of the chain
graph tracking model presented in Chap. 4 and its performance when integrated
with ilastik segmentation into a digital embryos recording pipeline (Chap. 2
on page 9). The experiments are based on two light sheet microscopy data sets:
recordings of zebrafish early embryogenesis and Drosophila syncytial blastoderm.
For both datasets we manually obtained a tracking as a benchmark for the automatic
methods. We introduce precision, recall, and f-measure as quantitative tracking
measures and show how they can be derived from set-theoretic principles.

In particular, we conducted experiments for the following aspects of our ap-
proach:

Segmentation Accuracy: To establish ilastik as a suitable segmentation
method on the presented light sheet microscopy
datasets.

Inference Method: To find the best performing inference methods
amongst popular choices.

Tracking Performance: To evaluate performance of the chain graph model
compared to others for cell tracking.

Minimal Cell Cycle Length: To show the impact of a prior term based on an
expected minimal temporal distance between cell
divisions.

Detection Performance: To investigate the capability of the chain graph
model to improve false positive classification per-
formance.

The results of the experiments will be put into context in a separate chapter with
discussions (Chap. 7).

5.1. Datasets

For the quantitative evaluation of our methods we choose two light sheet mi-
croscopy datasets consisting of 3d+t recordings of the currently most popular
model organisms in the field: zebrafish and Drosophila. In this section we docu-
ment technical details of theses datasets.
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In Sec. 2.2 on page 12 we describe two segmentation approaches—ilastik pixel
classification and regularized graph cut (rgc)—that are both on par in terms of
performance. Since pixel classification is easier to use and to parametrize we prefer
it over rgc in general. Therefore, the Drosophila dataset was segmented with ilastik

using all available pixel features for maximum performance. However, for the
zebrafish dataset the quantitative evaluations in this chapter are based on a rgc
segmentation (due to historical reasons). Future experiments should use ilastik

alone.

5.1.1. Zebrafish Early Embryogenesis

Keller et al. (2008) recorded time-lapse volumetric images of developing zebrafish
embryos (3d+t). The zebrafish dataset stems from their work and is a recording of
80 time slices of the animal pole from the 66 cells stadium1 up to ca. 2400 cells.
The embryo enters the 64 cell stage about two hours after fertilization and starts
forming the blastula—a hemispherical cell body covering roughly one third of the
spherical egg with the yolk covering the remaining two thirds. The embryo has a
diameter of around 0.7mm. Development of the embryo is complete after ca. 48
hours and the animal enters the hatching period while continuing to grow. See
Wolpert (2007, pg. 96 pp.) for more details.

Figure 5.1.: Maximum intensity pro-
jection of the first volume in the ze-
brafish sequence consisting of 80 vol-
umes.

One image stack is recorded every 60s,
totaling 2 hours over the 80 time slices. The
volume size is 1116x1111 pixels per image
and 166 images per stack. The physical
resolution per voxel is 0.3 µm and 1µm in
lateral and axial direction, respectively. The
dynamic range of the intensity is 8 bit. Since
only the cell nuclei are stained with a fluo-
rescent marker neither cell membranes nor
yolk are visible in the microscopy images.
A maximum intensity projection of the first
volume in the sequence is shown in Fig. 5.1.

We manually reconstructed the cell lin-
eage for the first 25 time slices of the dataset
comprising two full cell cycles. In particu-
lar we marked the center position of every
nucleus in the raw images and the tracking-
associations of the nuclei in consecutive
time slices. A detailed tracking protocol
is reproduced in Appendix A.

1Textbook knowledge claims synchronous cell divisions in the early zebrafish embryo and we would
expect to see exactly 64 cell nuclei after six cycles. Due to unknown reasons there were two
additional divisions.
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5.1.2. Drosophila Syncytial Blastoderm

Figure 5.2.: One image of the first stack of the Drosophila dataset. Cell nuclei are
residing near the border of the cigar-shaped embryo.

The other dataset consists of 3d image stacks of a fruit fly syncytial blastoderm
over 40 time slices (see Fig. 5.2). The syncytial blastoderm is formed about 90
minutes after fertilization and persists for roughly 90 minutes. During that stage
the cell nuclei reside at the periphery of the cigar-shaped embryo in a syncytium—
the nuclei share a common cytoplasm without separating membranes. The embryo
measures around 0.5 mm along its longest axis. See Wolpert (2007, pg. 32 pp.) for
more details.

One image stack is recorded every 30s, totaling 20 minutes over the 40 time
slices. The volume size is 2362x994 pixels per image and 47 images per stack. The
physical resolution per voxel is 0.1625 µm and 2µm in lateral and axial direction,
respectively. The dynamic range of the intensity is 8 bit. The embryo stems from
a transgenic line of Drosophila that is autofluorescent (Mavrakis et al., 2008).
Compared to the zebrafish dataset not only the nuclei but also the cytoplasm
exhibits intensity in the microscopy images.

The data was recorded by the lab of Lars Hufnagel at the European Molecular
Biology Laboratory (EMBL) in Heidelberg in autum 2011. They used an in-house
developed light sheet microscope with two light sheets and two cameras later to
be published in Krzic et al. (2012). Every data slice is therefore a fusion of four
recorded images. Due to that new technology the contrast is homogeneous over the
whole image range and the segmentation method was able to retrieve all visible
cell nuclei (alas with more than 10% false positive objects).

We performed a manual tracking for all 40 time slices. Unlike the zebrafish
dataset the manual tracking was executed on the segmented objects and not on the
raw data.

Compared to the zebrafish dataset the fruit fly dataset has lower contrast result-
ing in more ill-shaped cell segmentations and false positive detections that are
hard to distinguish from actual cells. Then again, cells reside only near the surface
of the embryo, lowering the chance of wrong tracking assignments to neighboring
cells compared to the zebrafish embryo.
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5.2. Methods

5.2.1. Detection Variable Priors via Object Classification

Tracking-by-assignment formulated as a chain graphical model (cf. eq. 4.15 on
page 33) contains prior probability factors P (t,i)

det (X(t)
i ) describing the likelihood

whether an object candidate i at time slice t is a true positive (X(t)
i = 1) or a false

positive (X(t)
i = 0). A simple approach for parametrization would be to assign a flat

prior to every object according to an estimated noise level. For instance, if we expect
about 10% false positive objects, we would set P (t,i)

det (1) = 0.9 and P (t,i)
det (0) = 0.1 for

all detected objects. A smarter way is to individually assign a factor to each object
based on object specific features.

Using connected component analysis we can extract objects in form of sets of
distinct voxel coordinates from segmented microscopy images. Lindner (2011)
describes a set of features suitable to characterize cell nuclei-shaped objects in 3d,
comprising features such as quantiles of the intensity distribution or statistical
geometric features (Walker and Jackway, 1996). We labeled a representative subset
of the object candidates and trained a Random Forest classifier (Breiman, 2001)
to predict the probability of an object being a false or true positive segmentation.
Based on that we parametrized the detection priors in the chain graph model for
every object individually. (See also Sec. 4.5.2 on page 37 for more details.)

5.2.2. Ground Truth Recording on Raw and Segmented Data

(a) 2D projection of one volume together
with manually placed cell nuclei markers.
Nuclei with common ancestors share the
same marker color and principal number.

(b) Zoomed-in detail of the 2D projection
for one volume. The lines in the center rep-
resent the future movements of nucleus 35
which were manually tracked. The three
bifurcations of the line indicate cell divi-
sions.

Figure 5.3.: View5D software for manual tracking. The two panels show XY projec-
tions of the zebrafish dataset generated by the software.

44



5.2. Methods

The image processing software Fiji (Schindelin et al., 2012) includes the View5D
2

plugin that allows the manual tracking of divisible objects. The user provides a
point-like marker for every object at every time slice and connects the markers
between consecutive time slices. Fig. 5.3 on the facing page shows one example
volume of the zebrafish dataset loaded in View5D together with markers for all
nuclei.

With its help we tracked the cell nuclei in both the zebrafish (sec. 5.1.1 on
page 42) and the Drosophila dataset (sec. 5.1.2 on page 43). In case of the zebrafish
dataset we placed the markers directly on the raw images, i.e. we did a manual
identification and tracking of the nuclei. The full tracking protocol is reproduced
in Appendix A. For the Drosophila dataset we tracked only the segmented objects
and only distinguished between false positive and true positive objects. That is,
with the Drosophila ground truth we can exactly judge the performance of the
chain graph tracking model since we used the very same input information that is
visible to the tracking algorithm; whereas the zebrafish ground truth is useful as
a benchmark for a complete reconstruction pipeline consisting of a segmentation
and a tracking step.

When placing the marker on the raw images directly we have to establish a
correspondence between the markers and the segmented objects. We placed the
markers on the pixel with maximum intensity inside a nucleus and calculated the
maximum intensity position inside the segmented objects, too. Assuming a perfect
segmentation we could simply match each marker to its nearest segmented object,
then. Since we have to consider false positive (phantom nuclei) and false negative
(missed nuclei) segmentations, we have to allow for markers and segmented objects
that are not matched. This can be formulated as a weak asymmetric bipartite matching
where markers resp. segmented objects are matched to their nearest neighbor
segmented object resp. marker as long as the distance is below a certain threshold.
Otherwise, they are matched with a hypothetical sink object resp. marker. Fig. 5.4a
on the next page illustrates the idea.

This matching problem can be formulated as a binary integer program

min
∑
i,j

ci↔j · xi↔j , i ∈ lhs, j ∈ rhs

s.t.
∑
j

xi↔j = 1,
∑
i

xi↔j = 1, ∀i, j \sink

xi↔j ∈ {0,1}, ∀i, j

(5.1)

where ci↔j is the distance between the marker i and the segmented object j mea-
sured from the maximum intensity position. The sets lhs and rhs contain one
index for every marker resp. segmented object and one additional index each
representing the two sink nodes. The problem can be easily solved in practice with

2http://www.nanoimaging.uni-jena.de/View5D/View5D.html
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5. Evidence

(a) Assigning ground truth markers
and segmented objects formulated
as an asymmetric bipartite match-
ing. Markers (lhs) and segmented
objects (rhs) are matched with their
respective nearest neighbors below
a certain distance threshold. Other-
wise, they are matched with a sink
node.
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Manual vs. Automatic Nuclei Detection
ct-keller-animal - timestep 0/24 (threshold: 25 px)

ground truth
our result

(b) Example result of matching ground truth and seg-
mentation. Circles indicate ground truth and crosses
segmented objects. Successful matches are green. Red
crosses are false positives and red circles false nega-
tives.

Figure 5.4.: Matching ground truth nuclei locations with segmented object loca-
tions.

an off-the-shelve integer programming package. As a result we obtain three sets of
objects: objects both present in ground truth and segmented data, phantom seg-
mentations (false positives), and objects that were not segmented (false negatives).
An example result is shown in Fig. 5.4b for the first time slice of the zebrafish
dataset and a distance threshold of 25 pixels.

5.2.3. Measuring Tracking Performance

Performance of a contestant tracking relative to a ground truth tracking is measured
in the following terms:

Recall: The number of tracking events that are found by the contestant and
are also present in the ground truth relative to the number of all
ground truth events.
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Precision: The number of tracking events that are found by the contestant and
are also present in the ground truth relative to the number of all
contestant events.

Precision and recall make sense intuitively. Additionally, we will derive the two
measures by reasoning over cardinalities of sets containing tracking events and
derive the f-measure as a unified error measure.

Tracking events are defined in the sense of Sec. 3.2 but limited to types that
describe transitions, i.e. moves, divisions, appearances, and disappearances. In par-
ticular, true positive detections and false positive detections are not tracking events.
A tracking event can only be correct if all participating objects are true positive
detections. Therefore, we do not consider true and false positive detections in the
tracking precision and recall since they are already implicitly taken into account.

Formally, we have two sets: the set of tracking events present in the ground
truth G and the set of tracking events extracted by the contestant tracking C.
Furthermore, we can establish a matching between elements of the two sets when
they describe the same tracking event type involving the same objects, i.e. the true
positive tracking events.3 That is, we split each set again in two distinct subsets
Gm, Gm, Cm, and Cm with m and m indicating match and no match.

Since they contain the successfully tracked events the sets Gm and Cm have the
same cardinality. Consequently, the set Gm contains true tracking events that were
not found correctly by the contestant tracking method and Cm contains the tracking
events that didn’t actually happen. In summary,

G = Gm ∪Gm
C = Cm ∪Cm
|Gm| = |Cm| .

(5.2)

This constellation is illustrated in Fig. 5.5 on the next page.
We can now formally define tracking recall and precision in terms of the ground

truth and contestant sets:

rec(G,Gm) =
|Gm|
|G|

prec(C,Cm) =
|Cm|
|C|

(5.3)

In empirical evaluations it is desirable to have only a single error measure. This
allows a unique ranking of competing methods and provides a clear target objective
for machine learning approaches. Of course, one could combine precision and
recall in an ad hoc manner like the sum or the arithmetic mean. But by inspecting
the definitions of recall and precision in terms of set cardinalities we can define an
analogous performance measure covering both sets G and C:

perf(G,Gm,C,Cm) =
|Gm|+ |Cm|
|G|+ |C|

(5.4)

3This shouldn’t be confused with true positive objects, which are a necessary but not sufficient
precondition for true positive tracking events.
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Figure 5.5.: Ground truth vs. contestant tracking method. The black dots represent
tracking events like moves, divisions, and (dis-)appearances. There are two sets
of tracking events, those in the ground truth and those found by the contestant
tracking method. The events that were tracked correctly by the tracking method
are present in both sets as indicated by the matching lines.

This combined performance score can also be expressed in terms of precision
and recall. Using |Gm| = |Cm| and expanding the fraction by |Cm|

|G|·|C| , we obtain

perf(G,Gm,C,Cm) =
2 · |Cm||C| ·

|Gm|
|G|

|Cm|
|C| + |Gm||G|

=
2 ·prec(C,Cm) · rec(G,Gm)
prec(C,Cm) + rec(G,Gm)

(5.5)

We now see that the combined error measure is actually the harmonic mean of
precision and recall and is therefore equivalent to the well known f-measure (Costa
et al., 2007).

5.3. Experiments

5.3.1. ilastik Segmentation Performance

In Sec. 2.2 on page 12 we described “segmentation” as the first step in a two-step
cell tracking pipeline and selected ilastik pixel classification as our preferred seg-
mentation method. This section documents its quantitative tracking performance
on the zebrafish and Drosophila benchmark datasets.

Kaster (2011) already established ilastik as a viable segmentation method on
data similar to our zebrafish dataset. He measures segmentation performance—
among others—in terms of precision, recall, and f-measure defined as follows
(Kaster, 2011, pg. 147).

Segmentation performance measures zebrafish (Kaster, 2011)

Precision: The percentage of segments in the computed segmentation that over-
lap at least one nucleus in the ground truth
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ilastik Segmentation Performance

Zebrafish Data Drosophila Data
Precision >0.99 0.87

Recall 0.7–0.8 1.0
F-measure 0.8–0.9 0.93

Table 5.1.: ilastik segmentation performance on zebrafish (Kaster, 2011, pg. 152)
and Drosophila light sheet microscopy data. Note, that the measurements for the
two kinds of data are defined in a comparable but not identical manner (see text
for more information).

Recall: The percentage of nuclei in the ground truth that overlap with at least
one segment in the computed segments.

F-measure: The harmonic mean of precision and recall.

He compares ilastik with a regularized graph cut approach and reports no signifi-
cant difference between the two regarding segmentation performance. The typical
performance on zebrafish data is given in Table 5.1.

The remainder of the section reports the segmentation performance of ilastik on
the Drosophila dataset. This dataset is different from the zebrafish dataset since
most of the exposed intensity does not belong to cell nuclei but to the internuclear
space (compare Fig. 5.1 on page 42 and Fig. 5.2 on page 43). It is therefore not
obvious that ilastik will perform equally well. As a performance measure we also
choose precision, recall, and F-measure. Different from Kaster (2011) we use the
matching of ground truth markers and segmented objects described in sec. 5.2.2 on
page 44 as a basis using the following definitions.

Segmentation performance measures Drosophila

Precision: T P /(T P +FP )

Recall: T P /(T P +FN )

F-measure: The harmonic mean of precision and recall.

The true positives (T P ) are segmented objects that are matched with a ground
truth marker, the false positives (FP ) are segmented objects with no matching
ground truth marker, and the false negatives (FN ) are ground truth marker with
no matching segmented object. Note, that there are no true negatives. They would
stand for non-existing nuclei that were correctly identified as such. That makes no
sense in a segmentation context.

The chain graph tracking model is able to correct false positives, but it cannot
recover false negatives. Therefore, we trained ilastik to achieve perfect recall—
ensured by manually inspecting all volumes—at the cost of precision. As a conse-
quence, we observe no false negatives. The segmentation of the Drosophila dataset
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for the first 25 time slices contains 14303 segmented objects of which 12493 are
true positives and 1810 are false positives. This is equivalent to a precision of 0.87
and a f-measure of 0.93 as summarized in Table 5.1 on the previous page.

Note, that for the zebrafish and the Drosophila dataset we used different defini-
tions for precision and recall. The two definitions are equivalent in intention but
will not lead to exactly the same performance in numbers for any given situation.
Therefore when comparing the numbers for the two data sets no conclusions should
be drawn from the relative ranking but only from their orders of magnitude.

5.3.2. Comparison of Inference Methods4

In sec. 4.3 on page 34 we argued that a tracking can be obtained from the maximum
a posteriori (MAP) configuration of the chain graphical model and formulated the
associated problem as a maximization of the joint probability or a minimization of
the energy representation in terms of the random variables X and Y :

MAP : argmax
X ,Y

P (X ,Y ) (5.6)

or equivalently
MAP : argmin

X ,Y
E(X ,Y ) . (5.7)

In this section we compare a group of popular methods for MAP inference in
graphical models regarding their optimization performance. We have chosen the
Drosophila dataset for the comparison and constructed a chain graphical tracking
model for it. Since not all of the investigated methods can work in the probability
domain and to avoid an unnecessary and expensive evaluation of the partition
function, we state the performance in the energy domain. Only linear programming
based methods can naturally deal with infinite energy configurations by adding
hard constraints. For all other methods we introduce soft constraints in form of
very high energy values for infeasible configurations.

Polyhedral and Combinatorial Methods

A large class of algorithms solves a linear programming relaxation (LP) of the dis-
crete energy minimization problem. Probably the most commonly used relaxation
is the LP relaxation over the local consistency polytope (Schlesinger, 1976; Kumar
and Torr, 2008). It can be solved with off-the-shelve LP-solvers (LP-LP). Other
approaches are based on a relaxation of the dual instead of the primal formula-
tion. Kappes et al. (2012) consider spanning trees as subproblems such that the
relaxation is equivalent to the local consistency polytope relaxation. They propose—
among others—bundle methods with a heuristic stepsize as a solving procedure
which is guaranteed to converge to the optimum of the relaxed dual (BUNDLE-H).
Related to polyhedral methods are Integer Linear Programs (ILPs). These include
additional integer constraints and guarantee global optimality, contrary to the

4Content of section is based on the publication by Kappes et al. (2013).
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Algorithm Running Time Minimal Energy Lower Bound

BUNDLE-H 1068.11 sec 107,553,778.57 7501875.98
ILP 32.77 sec 7,514,421.21 7514421.21
LBP 30.47 sec 407,520,058.41 − inf
LBP-LF 308.83 sec 7,515,575.61 − inf
LP-LP 3.26 sec 7,516,359.61 7513851.52

Table 5.2.: Inference performance for different methods in the chain graphical
model for tracking in the Drosophila dataset.

methods based on LP-relaxations. Solutions of ILPs are found by solving a sequence
of LPs and either adding additional constraints to the polytope (cutting plane
techniques), or branching the polytope into several polytopes (branch-and-bound
techniques) (see Darby-Dowman and Wilson (2002) for a short review of integer
programming).

Message Passing

Message passing methods like the mean field machine (Jordan et al., 1999) or belief
propagation (Pearl, 1982) are simple to implement and can be easily parallelized,
making them a popular choice in practice. Maybe the most popular message
passing algorithm is loopy belief propagation (LBP). While LBP converges to a
global optimum for acyclic graphical models, it is only a heuristic for general
graphs. Then again it is known to perform reasonably well in practice (Murphy
et al., 1999) and can be derived from first principles (Wainwright and Jordan, 2007).

Move-Making Methods

Another class of common methods are move-making algorithms with iterative
conditional modes (ICM) as the most basic example (Besag, 1986). Starting from
an arbitrary configuration the algorithm is iteratively searching through the labels
of a each random variable to find a lower energy configuration. The Lazy-Flipper
algorithm (Andres et al., 2012b) generalizes this principle to a greedy search over
local subsets, converging to a configuration which is optimal within a hamming
distance in label space. Lazy Flipper performance relies heavily on initialization.
For the chain graph model trivial start configurations like setting all variables to 0
or 1 or a random value usually get stuck in some infeasible configuration. Therefore
we initialize the lazy flipper with a solution from loopy belief propagation (LBP-LF).

Results

For each method we report runtime, objective value achieved by the final integer
solution, and lower bound achieved. ILP found a globally optimal solution with
an associated energy value of 107553778.57 . For all inference methods we used
the implementations provided by OpenGm (Andres et al., 2012a)—an open-source
C++ library for discrete graphical models. The results are summarized in Table 5.2.
The methods BUNDLE-H and LBP violated soft constraints as indicated by the
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very high minimal energy values whereas ILP, LBP-LF, and LP-LP found a feasible
solution.

Impact of non-optimal solutions on tracking performance

The different inference methods are evaluated in terms of their energy minimiza-
tion capabilities. Besides ILP no method was able to find a global minimum. This
raises the question of how the tracking results are affected by approximate infer-
ence. In practice LP-LP is the best alternative to ILP, since only LP-LP achieves a
competitive energy in similar or less time. Therefore we limit our analysis to LP-LP
in comparison to ILP.

The energy difference of the methods is 1938.4 A typical energy quantum associ-
ated with flipping a single random variable is around 20 to 200.5 The approximate
LP-LP solution should therefore differ in roughly 8 to 80 random variables. And in-
deed, the Hamming distance between the two solutions is 20—10 flipped detection
variables and 10 flipped assignment variables each. All 20 variables have state 1
in the optimal ILP solution and state 0 in the approximate LP-LP solution. This
means that in the LP-LP solution ten objects more are marked as false positives and
ten assignments less are present in the tracking.

5.3.3. Tracking Performance

We evaluate the tracking performance of the chain graph model in comparison
to other state-of-the-art methods on the segmented version of the Drosophila and
zebrafish dataset (cf. Sec. 5.1 on page 41). The tracking performance is measured in
terms of precision, recall, and F-measure as detailed in Sec. 5.2.3 on page 46. The
parameters of all methods were optimized using exhaustive search as described in
Sec. 4.5.1 on page 37. If not otherwise stated we used the basic chain graph model
without the minimal cell cycle length extension (cf. Sec. 4.4.2 on page 36).

Zebrafish dataset

In a first experiment we compare two reasoners to solve the cell nuclei tracking-by-
assignment problem for the zebrafish dataset: the baseline method employing an
optimal joint assignment (Sec. 3.3 on page 19) and our proposed method based on
a chain graphical model (Chap. 4 on page 21). For the zebrafish dataset we already
reported tracking results using the optimal joint assignment method (Lou et al.,
2011). The dataset is challenging since the segmentation does not only comprise
cell nuclei but also false positives caused by speckle artifacts and inhomogeneous
contrast. The results for the optimal joint assignment and the chain graph model
are summarized in Table 5.3 on the facing page.

Drosophila dataset

In a second experiment we investigate the tracking performance of different meth-
ods including the chain graph model on the Drosophila dataset. No quantitative

5Assuming no violations of consistency constraints; the energy range can be estimated from typical
object movements of 5 to 15 voxels by squaring the moving distance.
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Optimal Joint Assignment Chain Graph

precision 0.807 0.897
recall 0.861 0.850
f-measure 0.833 0.873

Table 5.3.: Tracking results on the Zebrafish dataset. The chain graph model shows
improved performance in terms of f-measure and precision compared to optimal
joint assignment model.

Detections
Given

Unconditioned
Chain Graph

Chain Graph
with τ = 3

Bise et al.
(2011)

precision 0.889 0.953 0.956 0.550
recall 0.933 0.957 0.960 0.718
f-measure 0.911 0.955 0.958 0.623

Table 5.4.: Tracking results on the Drosophila dataset. The conditioned chain graph
model with previously filtered false positives (detections given) is inferior to the
full chain graph model optimizing detection and assignment variables at once
(unconditioned chain graph). The extended chain graph with the condition that
division events in a cell lineage must at least be three time slices apart from each
other shows an improved performance over the unconditioned (or basic) chain
graph model (chain graph with τ = 3). Finally, the method of Bise et al. (2011) shows
decent recall but suffers in precision.

tracking performance was reported for this dataset before. In particular, we com-
pare the following approaches:

• the basic chain graphical model,

• a chain graph model with fixed detection variables,

• a chain graph model with four-state detection variables, satisfying a minimal
duration of three time slices between division events of a particular track (see
Sec. 4.4.2 on page 36),

• a state-of-the-art cell tracking method published by Bise et al. (2011).

Chain graph with fixed detection variables. The chain graphical model is a holistic
tracking approach that considers all time slices at once. That way it can reason
about the state of detection variables and assignment variables simultaneously. In
a less complex approach we could first decide about the states of the detection vari-
ables and then—given the detection variables—optimize the assignment variables.
To show possible performance improvements gained by the higher complexity
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of the holistic model we therefore compare with a chain graph model with fixed
(resp. given) detection random variables. The states of the detection variables are
determined by thresholding the Random Forest predictions at 0.5 probability to
set the variables to ’active’ or ’inactive’. That is, we filter out all objects classified by
the random forest as false positives before the tracking. Since the assignment CRFs
in the chain graph are conditioned on prior factors over the detection variables,
this approach can be justified as observing the detection variables and reasoning
over the assignment variables given the detection variables without the need to
refactorize the distribution—a conditioned chain graph. Note, that we use the very
same probabilities to parametrize the factor in the full chain graph model. The
difference lies only in the inference scheme but not in the amount or quality of
input information.

Chain graph with four-state detection variables. In Sec. 4.4.2 on page 36 we describe
an extension to the basic chain graph model that incorporates our prior knowledge
about a minimal temporal distance between two divisions in a single cell lineage.
Again, we want to show a possible performance gain at the cost of higher model
complexity compared to other variants like the basic or conditioned chain graph.
For this experiment we set τ = 3, that is, we believe that the temporal distance
between two divisions is at least three slices. The dependence of the performance
on τ is investigated in another experiment described in Sec. 5.3.4.

Cell tracking method by Bise et al. (2011). Finally, we evaluate the cell tracking
method recently proposed by Bise et al. (2011) on the Drosophila dataset to set
the chain graph model variants in proper context with another state-of-the-art
approach. This method is quite similar to the chain graph model and is therefore a
suitable candidate for a comparison. It is also a probabilistic model with similar
random variables and is optimized over all time slices at once, too. However, since
it is not a graphical model its factorization is ad hoc and differs from the chain
graph factorization.

The tracking results for all four methods are presented in Table 5.4 on the
preceding page. A full synopsis of all lineage trees is reproduced in Appendix B. A
comparison of some lineage trees obtained by manual tracking, the extended chain
graph, and the method by Bise et al. (2011) is shown in Fig. 5.6 on the next page.
The last method shows convincing results in regions with high data quality (cf. Fig.
5.6). However, its f-measure is 33 percentage points worse compared to the chain
graph model. This is most likely caused by the high false positive detection rate of
13% as is evident from the low precision of 0.550 and Fig. 5.6.

5.3.4. Minimal Cell Cycle Length

Cell cycles happening during embryogenesis have a minimal duration. However,
cell lineages obtained with the basic chain graph model sometimes include consec-
utive divisions that are in shorter temporal distance than is biologically plausible.
To remove this error source we designed an extension of the basic chain graph
model that also factors in a minimal temporal distance between two divisions in a
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1 2 3 4 5 · · · 189 1 2 3 4 5 · · · 189 1 2 3 4 5 · · · 189

Manual Tracking Extended Chaingraph with τ = 3 Bise et al. (2011)

Figure 5.6.: Lineage trees for Drosophila spanning 25 time slices. Divisions are
indicated by black dots. Time is running from top to bottom. Exemplary manually
tracked lineage trees are compared to the extended chain graph model with τ = 3
(that is, at least three time slices between two divisions in the same cell lineage)
and the method by Bise et al. (2011). The examples include correct reconstruction
(chain graph and Bise: 1, 2), false disappearances (chain graph: 3; Bise: 189),
missed divisions (Bise: 3, 5), and false divisions (Bise: 4, 189).

single cell lineage (cf. Sec. 4.4.2 on page 36). In the experiment measuring general
tracking performance (see Sec. 5.3.3 on page 52) we already compared the basic
chain graph model with the extended variant. The extended variant showed the
overall best performance in that experiment but only slightly better performance
than the basic chain graph (f-measure of 0.955 vs 0.958). It is uncertain if the
improved performance was caused by the extension or has to be attributed to
chance. The experiment described in this section is a more detailed analysis of
the extended chain graph’s performance. We will investigate the performance of
tracking division events separately from other events and control for the parameter
τ which determines the minimal demanded temporal distance between divisions.
The working dataset will be again Drosophila.

In the Drosophila dataset we can observe roughly twenty times more move events
than division events. All events that contribute to the f-measure value have the
same internal weighting and the overall performance is clearly dominated by the
tracking method’s ability to track move events correctly. Since the minimal cell
cycle length extension was introduced to improve the tracking performance of
division and not move events, we will measure a separate f-measure that only takes
division events into account. That way the result will not be distorted by the move
tracking performance and we can compare the basic chain graph with the extended
variant solely in terms of the division tracking performance.

Furthermore, from biology we know that the minimal distance between two
divisions in the same cell lineage in the Drosophila dataset is at least five time
slices. We will show the dependence of the performance on the parameter τ by
varying it between one and five (for τ = 1 the model is equivalent to the basic chain
graph and should show the very same performance).
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Figure 5.7.: Performance of the extended chain graph model which requires a
minimal duration between division events. Performance results on the Drosophila
dataset with varying τ are depicted. The upper panel shows the overall performance
for all events (Moves, Divisions, Disappearances, and Appearances) and the lower
panel shows the performance only for the division events.

Results

The basic chain graph exhibits a division performance of 0.941 precision, 0.832
recall, and 0.883 f-measure. The division performance for the extended model
with τ = 3 improves to 0.923 precision, 0.911 recall, and 0.917 F-measure. The
dependence of the performance depending on τ is given in Fig. 5.7.

Furthermore, we measured the runtime impact of the extension and recorded
the following values (in seconds): 100s (τ = 1), 929s (τ = 2), 1450s (τ = 3), 1715s
(τ = 4), 3057 (τ = 5) with a maximal allowed optimality gap of 5%.

5.3.5. Cell Nucleus Detection Performance

The chain graph is a holistic model that does tracking and false positive correction
in one inference step. In other experiments we mostly investigated the tracking
performance (which is of course influenced by the false positive correction perfor-
mance). In this section we will concentrate on the performance in terms of the
ability to find false positive objects. In particular, we compare three approaches
with a manually generated ground truth on the Drosophila dataset:
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Classifier
Unconditioned
Chain Graph

Chain Graph
with τ = 3

Human

true positive 12391 12330 12346 12493
true negative 1284 1607 1598 1810

false negative 102 163 147 -
false positive 526 203 212 -

Table 5.5.: Nucleus detection performance on Drosophila dataset. Compared to an
object classifier the chain graph recovers less actual cells (true positives), but finds
significantly more false positive segmentations (true negatives). The basic chain
graph and the variant with a minimal cell cycle length don’t differ significantly in
detection performance (but in tracking performance: see Table 5.4 on page 53).

Discriminative Classifier: A Random Forest classifier is trained for the two
classes cell nucleus and other and its predictions
used to discriminate true cell nuclei from false
positive objects. See Sec. 5.2.1 on page 44 for
more details.

Basic Chain Graph Model: The detection variable priors are parametrized
using the same Random Forest classifier. After
the MAP inference the state of the detection vari-
ables is used to label cell nuclei vs. others.

Extended Chain Graph Model: The parametrization and procedure is identical
to the basic chain graph model above. The τ
parameter is set to three.

In total the segmented dataset contains 14303 object candidates of which 12493
are actual cell nuclei and 1810 are other objects. The detection performance in
form of a contingency table is given in Table 5.5. It shows the results in terms of
correctly and incorrectly identified cell nuclei for both variants of the chain graph
in contrast to human annotations and the Random Forest classifier alone. Note,
that the true/false positives/negatives refer to the detection performance itself and
not the segmentation performance. That is, a false positive segmentation is either
counted as a true negative detection (when correctly identified as a false positive
object) or a false positive detection (when incorrectly identified as a cell nucleus).

5.4. Summary

In this chapter we presented several experiments to evaluate the proposed chain
graphical model for tracking-by-assignment and the digital embryo recording
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pipeline from different angles. Besides the pure tracking performance we also in-
vestigated the impact of different inference methods and documented experimental
results concerned with object detection and segmentation. In Chap. 7 we will bring
these results together in a holistic discussion.
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The methods developed in the thesis at hand are made available to the public in
form of carefully crafted open source software packages to let other scientists make
the most effective use of our work. The hypotheses graph concepts (Sec. 3.1 on
page 15) together with the three reasoners joint optimal assignment, the method
by Bise et al. (2011), and the chain graph (Ch. 3 and 4) are implemented in a
C++ library called pgmLink. It enables the modeling of tracking-by-assignment
problems and their solution with the provided or user supplied reasoners. Building
upon pgmLink we implemented the second step of the two-step digital embryo
recording pipeline (Ch. 2) as a tracking workflow with an easy to use graphical
user interface in ilastik—the interactive learning and segmentation toolkit1. It
constitutes the first freely available software2 with a graphical user interface for
the automatic tracking of many divisible objects in 3d+t data and is already in use
for (cell-)tracking applications other than the ones presented in the thesis at hand.
(Hand et al. (2009) and Meijering et al. (2009) give an extensive overview of other
free and commercial cell tracking software.) Furthermore, we extended ilastik

with a novel Python library called volumina. This library enables the display of
and the interaction with the presented 3d+t data sets, which are too large to fit into
the main memory of a typical workstation. It is now a core component of ilastik
and used in many other ilastik workflows related and unrelated to our work.

The pgmLink library can be obtained from https://github.com/bekaus/pgmlink

and the volumina library from https://github.com/ilastik/volumina . The
tracking workflow is part of the official ilastik distribution. It can be found as
source code at https://github.com/ilastik/ilastik or as a binary package at
http://ilastik.org .

About ilastik

ilastik is developed in an collaborative effort by researchers world-wide. The
project was initiated by Christoph Sommer and Prof. Fred Hamprecht at the
Heidelberg Collaboratory for Image Processing (HCI). Its first official release was
version 0.5 in 2011 (Sommer et al., 2011). The software is geared toward an
audience from the life and material sciences and offers several image analysis
workflows like pixel classification or interactive watershed segmentation. ilastik
can be easily extended with other kinds of workflows—as we did in the work at
hand—and software developers can leverage synergistic effects by sharing software
components between workflows. The strong points of ilastik compared to other

1http://ilastik.org
2to our best knowledge
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image analysis tools are manifold. It supports larger than main memory data sets
employing streaming techniques. Data sets can have up to three spatial dimensions
spanning several time slices and channels. The workflows can be interactively
parametrized by the user employing active learning approaches and the need to
specify opaque parameters is alleviated.

6.1. pgmLink: Tracking-by-Assignment Library

The pgmLink library is about tracking-by-assignment with probabilistic graphical
models and other approaches. It is written in C++. The central data structures of the
library are the HypothesesGraph, the TraxelStore, and several implementations
of the Reasoner abstract base class. Furthermore, there are several builder classes
and factory functions that assist the user in constructing the central data structures.
The graphical model used in the chain graph reasoner is implemented with the
openGm library(Andres et al., 2012a). It provides a convenient data structure for
factor graphs together with a comprehensive collection of MAP inference methods
and enables effortless experimentation with different inference schemes for the
chain graphical model.

Below we give an overview of the pgmLink high-level API. The mentioned classes
are also wrapped for Python. The library can therefore be used from scripts—as
we did to conduct the tracking experiments described in the thesis at hand—or by
applications like ilastik that are written in Python.

Tracking

Tracking in pgmLink is conducted by a reasoner that labels the nodes and edges
of a hypotheses graph as active or inactive (cf. Sec. 3.1 on page 15). The la-
beled HypothesesGraph is the output of the tracking. It can be converted to
several other tracking-result formats with helper functions. Every reasoner im-
plements three methods formulate(const HypothesesGraph&), infer(), and
conclude(HypothesesGraph&). The first method allows the reasoner to build
up its internal solving model, the second method executes the inference process,
and the last method labels the hypotheses graph according to the results of the last
inference. By splitting the process up into three steps, the user has a fine control
over the tracking process. For instance, it is possible to rerun the inference with
different parameters, storing each result separately, and—at the same time—avoid
the rebuild of the internal solving model.

Constructing hypotheses graphs

A HypothesesGraph can be constructed from a collection of Traxel objects. Each
traxel object has spatio-temporal coordinates and optional other features like
volume, surface etc. They are stored in a TraxelStore which allows filtering by
features or field-of-view and serves as an input to a hypotheses graph builder class.
A typical builder constructs a hypotheses graph from a traxel store according to
some user-specified parameters like the maximum number of nearest-neighbor
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traxels to consider but can also use more advanced heuristics like adding division
hypotheses only when indicated by some local characteristic. In fact, a simple
greedy nearest-neighbor tracking can be implemented by the builder alone without
the need for a reasoner. That way, the builder is an important preprocessing tool to
make the tracking problem tractable for the reasoners.

Code example

The following code example illustrates the central steps to track with pgmLink.

/ / c o n s t r u c t a h y p o t h e s e s b u i l d e r g iven
/ / a t r a x e l s t o r e and some o p t i o n s
HypothesesBuilder hyp_builder (& t r a x e l s t o r e , bui lder_opts ) ;

/ / c o n s t r u c t t h e h y p o t h e s e s graph
HypothesesGraph * graph = hyp_builder . build ( ) ;

/ / c o n f i g u r e a cha ingraph model
/ / and c o n s t r u c t a cha ingraph r e a s o n e r
chaingraph : : ModelBuilder b =

chaingraph : : ModelBuilder ( appearance_energy ,
disappearance_energy ,
move_energy ,
opportunity_cost ,
forbidden_cost )

. wi th_div i s ions ( div i s ion_energy )

. wi th_detect ion_vars ( detect ion_energy ,
misdetect ion_energy )

;

Reasoner * r = new Chaingraph ( b ) ;

/ / t r a c k
r−>formulate ( graph ) ; / / b u i l d up g r a p h i c a l model
r−>i n f e r ( ) ; / / g r a p h i c a l model i n f e r e n c e
r−>conclude ( graph ) ; / / l a b e l h y p o t h e s e s graph

Note the special builder pattern which is used to parametrize the ModelBuilder.
A library implementing data analysis methods usually has to handle a myriad of
parameters leading to constructors or free functions with many calling arguments.
Such code is difficult to read and can easily cause programming errors (think of 15
indistinguishable double arguments). Builder classes with method chaining help
to avoid these problems. The calling order of the chained methods is irrelevant, the
number of calling arguments is reined in, and their meaning is verbosely encoded
in the name of the chained method. Furthermore, builder objects are light-weight
(they are only a collection of parameters) and can be passed upstream in the class
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hierarchy efficiently to allow the user a clear parametrization of all components of
the algorithm.

6.2. volumina: Volume Slicing and Editing Library

The volumina library is concerned with displaying slice views of high dimensional
image data and allowing user interactions with the slice views. It is written in
Python and makes heavy use of the Qt graphical user interface library.3 volumina

implements the following features:

• handling of data larger than main memory employing tile-based streaming

• support for 3d+t volumes with multiple channels

• display of several volumes simultaneously rendered as a stack of layers

• slice views of any axes pair like x-y or z-time

• interaction modes like brushing labels or selecting objects

• ready-to-use viewer widgets

The library is structured into a low level and high level part. The low level part
consists of a collection of loosely coupled components which can be combined with
each other to design a variety of systems for slicing and edition multidimensional
volumetric data. Besides others the central low level components are the pixel
rendering pipeline and the interaction modes. The design of these components is
governed by the Observer and Model-View-Controller design patterns. The high
level part builds upon the low level components and provides ready-to-use classes
and widgets for the end user; with the volume editor being the most important one.

6.2.1. Central Design Patterns: Observer and Model-View-Controller

The low level classes of the library are interacting with each other using the Ob-
server pattern (Gamma et al., 1994). In Observer there are two types of classes: one
observable and zero or more observers. Observers can be registered and deregis-
tered at the observable at any time. The observable is exposing parts of its internal
state to the observers and notifies them about changes. This is especially useful
in an application where users can modify the program state in any order at any
time. In practice, the pattern is implemented employing the signaling and event
mechanisms provided by Qt. They promote loose coupling between the classes,
in particular a frictionless passing of state updates between otherwise unrelated
objects.

Class responsibilities are distributed according to the Model-View-Controller(MVC)
pattern (Freeman et al., 2004). It separates data, data representation, and user

3https://qt-project.org/
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Figure 6.1.: The Model-View-Controller (MVC) design pattern. Controller (blue),
View (green), and Model (red) are interacting with each other trough the Ob-
server pattern. Observer relationships are indicated with arrows pointing from the
observer to the observable.

interactions with the data from each other and builds upon Observer. Fig. 6.1 shows
a schematic of MVC, laying out the observable–observer relationships. The Model
encapsulates state and notifies its observables about state changes. In volumina

there are several models that, for example, hold information about slicing and
cursor position or the current state of the brushing tool. The model is observed
by zero or more views, that is, components that represent the model state in a
human readable form. Typical examples for views are graphical user interface
(GUI) widgets like list views or image canvases. Finally, the controller serves as an
entry point for user generated mouse and/or keyboard events (the events can also
be machine generated, for example network communication events). The controller
interprets the events and updates the model and/or views according to the user’s
intent. (Note, that subsequently the model notifies the views about the state change
and the views update themselves accordingly.) The prime example is a left click
event that can be interpreted in many different ways, one being a request to change
the slicing position or another being the intent to select a clicked object.

Overall, the flexible architecture based on MVC allows to react quickly to new
requirements and new interaction modes or layer rendering modalities can be
added easily without rewriting already existing code.

6.2.2. Pixel Rendering Pipeline

The pixel rendering pipeline or short pixel pipeline renders 2d bitmap images from
several multidimensional scalar data sources. It can produces several kinds of
images, amongst others: grayscale, rgba, alpha-modulated, and colortable images.
Each image type needs up to four scalar data sources as input, for example one
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Figure 6.2.: Pixel pipeline architecture.

source for each channel (red, green, blue, and alpha) in case of a rgba image.
Furthermore, these images can be combined into a stack using alpha blending

with an image of the rendered stack as output. A schematic of the pixel pipeline
architecture is shown in Fig. 6.2. The visual properties of one image are contained
in a layer object and a ordered stack of layers is organized in a LayerStack. They
serve as a rendering blueprint used in image pumps. A image pump takes the
blueprint together with the data sources and renders a 2d image. Internally, a
image pump consists of subcomponents that take care of slicing through the correct
axes of the multidimensional data sources and the blending of several layers into a
stack image. Furthermore, several image pumps can be connected to the same layer
stack and data sources allowing to render different slice views simultaneously.

The pixel pipeline is a lazy data flow processing pipeline, that is, subregions of
images can be requested from the pipeline and only the calculations necessary to
complete the request are actually performed.

6.2.3. Interaction Modes

Another central low level component are the interaction modes like navigation,
brushing, or object selection. They are analog to the different editing tools avail-
able in pixel graphics programs like Gimp or PhotoShop. Interaction modes are
implemented as controllers that interpret incoming user events. For example, the
left click is interpreted as “recenter the cursor” in navigation mode but as “start to
paint” in brushing mode.

Many single interactions are caused by a stream of user input events, for instance
painting a single label involves a mouse click event, several mouse move events, and
a mouse release event. volumina can switch between different interaction modes
at any time. To prevent inconsistent states when switching between modes in the
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Figure 6.3.: The brushing interaction mode implemented as a state machine.

middle of an interaction and to manage the overall complexity, the interaction
mode controllers are implemented in form of state machines. Fig. 6.3 shows the
flow diagram of the brushing mode state machine as an example. A state machine
is represented in form of a directed graph. For each distinct state a node is added
to the graph. Possible transitions between states are encoded as edges. A state
machine processes a stream of tokens (in our case, input events) that can cause state
transitions if certain conditions are met. To start and end the processing special
entry and exist nodes are used.

State machines can make use of other state machines as subprocessing units. For
example, the brushing mode shares many interactions with the navigation mode
(like the basic keyboard shortcuts for navigation). Therefore, the brushing mode
controller internally uses a navigation mode controller for the processing of most
events and only transitions into special states to process events directly concerned
with brushing. This design promotes code reuse and avoids defects caused by code
duplication issues.

6.2.4. Volume Editor Component

The central high-level component of the library is the volume editor. It is imple-
mented in terms of the low level classes and exposes all the features listed in the
introduction of this section in a single widget which can be easily incorporated
in application code. Fig. 6.4a gives an overview of its architecture and Fig. 6.4b
shows the widget as it appears to the end user. Other widgets are also included
like a viewer for 2d images and a layer widget that allows to control the order
and appearance of different layers in the slice views. Furthermore, a standalone
viewer application is part of volumina, too. The viewer can be used in a Python

command prompt to inspect multidimensional datasets and is launched with a
simple view(dataset) call.
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(a) Volume editor: high level architecture.
Observer–observable relations are indicated by ar-
rows. Models are red, views green, and controllers
blue (as defined in the MVC-pattern). The small
green dots represent user input events generated
with mouse or keyboard.

(b) Volume editor: widget. The
widget shows three slicings trough
the spatial axes of a three dimen-
sional dataset with two channels
rendered as a red-green composite
image at time slice 0 of 4.

Figure 6.4.: The volume editor is the most important component of the volumina

library.

Code example

The following code example illustrates the central steps to display multidimen-
sional data in several layers with volumina.

# c o n s t r u c t some data s o u r c e s from raw data
source = ArraySource ( npy_array )
rgb = ArraySource ( npy_rgbarray )

# d e f i n e l a y e r s and s t o r e them in a l a y e r s t a c k
l a y e r s t a c k = LayerStackModel ( )

layer1 = GrayscaleLayer ( source )
layer1 . name = "Raw�Data "
l a y e r s t a c k . append ( layer1 )

layer2 = RGBALayer ( red=rgb [ . . . , 0 ] ,
green=rgb [ . . . , 1 ] ,
alpha=rgb [ . . . , 2 ] )

layer2 . name = "RGB�Layer "
layer2 . opac i ty = 0.5
l a y e r s t a c k . append ( layer1 )
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Figure 6.5.: Object identification and feature extraction step of the tracking work-
flow. The left screenshot shows a zoomed-in detail of the Drosophila dataset. The
segmentation of the cell nuclei is overlayed in blue. The right screenshot shows
the result of object identification and feature extraction. Objects are assigned an
individual color and their centers are marked by small black crosses (3d crosses in
a six voxel neighborhood).

# i n s t a n t i a t e a volume e d i t o r and d i s p l a y t h e l a y e r s
s e l f . e d i t o r = VolumeEditor ( shape , l a y e r s t a c k )
s e l f . widget = VolumeEditorWidget ( s e l f . e d i t o r )
s e l f . widget . show ( )

6.3. ilastik Tracking Workflow

The ilastik tracking workflow allows to track objects given a foreground-background
segmentation and raw data as input. The workflow consists of three steps which
are executed by the user in consecutive order. First, individual objects have to
be identified in the segmentation using connected component analysis. Second,
features like the object centers have to be extracted. Third, based on the extracted
features the objects are tracked with pgmLink as the underlying engine. Finally,
the user can export the result in different formats. For the thesis at hand the input
segmentation is generated with the ilastik pixel classification workflow, which
works well for the presented datasets as shown in Sec. 5.3.1 on page 48. Of course,
the input can also be obtained from any other method that generates a binary
segmentation.

At any step, the user gets visual feedback and can control the intermediate results.
If necessary the user can then tweak parameters to improve the results. The object
identification and feature extraction step inside the ilastik application is shown
in Fig. 6.5. (Note, that only the z-slice view is shown to make the illustration
clearer.) Object centers can be described by several measures like the center of
(intensity) mass, the maximum intensity position or the geometrical mean. By
visually inspecting the centers the user can quickly assess which descriptor fits best
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to the given objects.4

In the tracking step the user can parametrize the tracking method itself and set
necessary meta information like resolution anisotropy factors of the input data.
Furthermore the user can select a spatio-temporal bounding box to track only in a
subset of the data leading to a reduced inference time. The latter is useful to tune
the algorithm quickly before applying it to the whole dataset spending a potentially
large time on inference.

The tracking step is depicted in Fig. 6.6 on the facing page. The tracking result is
presented to the user in form of a consistent coloring over time. One unique color
is given to every object in the first time slice. Later, siblings originating from the
same object share the color of their ancestor. The Figure shows four screenshots in
total. Two screenshots from each of two consecutive division cycles, one shortly
before and one shortly after the division event.5 Groups of four nuclei sharing
the same color are clearly visible in the last screenshots indicating the common
ancestor with the same color in the first screenshots. Such a coloring can be seen as
a digital fate map. Fate mapping is an important method in developmental biology
to understand the origin of various tissues by chemically staining cells earlier in
the development (Bildsoe et al., 2007). Compared to the traditional approach
that has to decide about the time point and select the cells to be stained before
the experiment, digital fate maps have the advantage to be produced after the
experiment. This allows the temporal origin of the map to be shifted to any desired
time slice, selecting any cells of interest.

6.4. Summary

The thesis at hand led to the development of three software packages that enable
the application and evaluation of the presented methods. pgmLink implements the
tracking methods and—amongst others—the hypotheses graph data structure as
described in previous chapters. volumina enables the display of and interaction
with the 3d+t datasets which are typically too large to fit into RAM. Finally, both
packages are integrated into ilastik as a tracking workflow making the methods
accessible to a broad audience.

4Well segmented cell nuclei in high-quality images are usually best tracked with the center-of-mass
descriptor. In case of low signal-to-noise and/or insufficient shape segmentation the other features
can be a more robust estimate of the nuclei centers.

5Divisions happen almost synchronously for all cell in the shown stages of the dataset.
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Figure 6.6.: Tracking step of the tracking workflow. The four screenshots show a
successful tracking of the Drosophila dataset at four different browsing positions.
The sequence displays time slices 8, 10, 30, and 32 (all at z = 42).
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In previous chapters we presented our methods to record digital embryos (Chap. 2,
3, 4, 6) and conducted several experiments (Chap. 5) to investigate different aspects
of the approach. In this chapter we will interrelate both to substantiate our claim
that the chain graph model in conjunction with the digital embryo recording
pipeline is a viable improvement over the state-of-the-art in tracking-by-assignment
in general and cell lineage reconstruction in particular.

7.1. A Holistic Model Over All Time Slices Helps Tracking

In this section we will show that a global model like the chain graph that is
optimized over all time slices at once is superior compared to an approach that acts
only on pairs of time slices. The two main advantages are:

1. the ability to reason about track properties over several time slices

2. the ability to weigh local evidence against the overall likelihood of a track.

Furthermore, we argue that (temporal) long-range effects can be achieved by
local factors only and consider advantages and disadvantages of incorporating
higher order factors spanning several time slices in a chain graph model.

7.1.1. Encoding Long-Range Effects Locally

The MAP solution of the chain graph model is obtained from all time slices at
once allowing the model to consider track properties over several time slices. This
may sound counterintuitive since the factors in the chain graph model are only
defined over variables from at most two consecutive time slices and do not consider
tracks as a whole. For instance, in contrast to actual cell nuclei, false positive
detections tend to suddenly appear and only exist for a comparatively short time
span since they are mostly caused by noise clusters in the raw data. To mitigate
this issue we could add higher order factors to the model to encode our belief of
the expected lifetime of a track. We now show that the model in its current form
already considers the above situation without the need to add any higher order
factors.

Consider a highly idealized situation with only one detection per time slice, a
small number of time slices n, and a fixed energy cost for all tracking events as
defined in the following table:
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Space

Slice

Space

Slice
s s+ 1 s+ 2

vs.

(a) Two explanations for the same detec-
tions: either all true positives (in blue) or
all false positives (in red).

Energy

Track Lifetime

(b) Schematic of the energy costs for the two
explanations (same color coding as on the
left).

Figure 7.1.: Local costs determine wide-range decisions. A series of detections is
explained either as all true positives or all false positives (left). For short lifetimes
the latter explanation is more likely in the model. To be considered a temporal
sequence of true objects the track has to reach a certain minimal lifetime to exhibit
less energy costs than the other explanation. The costs for both explanations are
linear functions of the lifetime but with different slope and intercept (right).

Event Energy

Appearance 25
Disappearance 25
Move 5
True Positive Detection 7
False Positive Detection 30
Opportunity 0

In case of n = 1 there is only one decision to be made: is the one detection a
true positive or a false positive? The former has to be explained in terms of an
appearance (25 energy units), a disappearance (25 energy units), and a true positive
detection event (7 energy units) and has a total energy cost of 57. The latter can
be explained in terms of just one false positive detection event and we only need
to expend 30 energy units. We therefore explain the one detection as being a false
positive. Now compare that with n = 4. The two most likely explanations are that
all four detections are either the same object existing during four time slices or are
all false positives. For the former explanation we would now need to expend in
total 93 energy units (one appearance, four true positive detections, three moves,
and one disappearance) and for the later 120 energy units (four false positive
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7.1. A Holistic Model Over All Time Slices Helps Tracking

detections). In this case we would pick the other explanation that the detections
constitute a true track. The two possible decisions are illustrated in Fig. 7.1a on the
preceding page.

In general, the energy costs for the false positive explanation are a linear function
of n with a slope equal to the false positive detection energy and an intercept of
zero. The true positive explanation costs are also a linear function of n with a
less steep slope equal to the sum of true positive detection and move energy but a
positive intercept equal to the sum of appearance and disappearance energy. That
is, a object or track needs a minimal lifespan to overcome the track initialization
and termination costs and the costs for the alternative explanation of being all false
positives. Fig. 7.1b on the facing page illustrates the idea. To conclude, this effect is
exploited in the chain graph model to reason about minimal track lengths given
evidence encoded in the energy values.

Another more obvious way to consider wide-range effects with local factors is
the minimal cell cycle length extension. It controls the minimal temporal distance
between divisions—not directly with higher order factors but indirectly using the
counting trick (see Sec. 4.4.2 on page 36)—and is another example of how the chain
graph model can reason globally using local factors..

We argue that local factors are the better choice compared to global factors
because they allow to build up a model from the same basic elements for any data
input. In particular, time slices can be easily added to the chain graph by just
repeating the same construction used for all other slices. Higher order factors over
time would involve newly added variables for the new slice and already added
variables from older slices and some factors could only be added after the model
has reached a certain size. This would complicate both the theoretical formulation
of the model and its implementation in software, increasing the chance of errors.
However, when using a linear programming based inference method global factors
can nevertheless be useful. There might be some constraints (i.e. zero probability
configurations) that are only rarely violated in a typical solution. Such cases can
be handled efficiently with an iterative cutting planes (Kelley, 1960) approach for
which a few global constraints make more sense than many local ones (again, for
simplicity reasons but also because of possible performance gains).

7.1.2. Weighing Local and Wide-Range Evidence Against Each Other

A full chain graph model implements local factors to influence wide-range decisions
as described in the previous section. This mechanism is combined with local-
evidence dependent energies and consistency constraints to reason about tracks
spanning multiple time slices (in the previous section we assumed fixed energy
costs).

A consequence of the wide-range reasoning is the possibility to override local ev-
idence encoded in the detection variable priors (the following points are illustrated
by Fig. 7.2 on the following page showing some exemplary false and true positive
detections):
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Figure 7.2.: Drosophila dataset: synopsis of raw data and corresponding segmenta-
tion; shown is a detail of stack slice 33 at time slice 7. The image illustrates that
false and true positives are hard to distinguish by only looking at object features in
a single time slice.

1. On the one hand objects that exhibit a low likelihood of being a true positive
can nevertheless be activated if they increase the overall likelihood of the
track in which they are integrated.

2. On the other hand false positive detections can deceptively look like true
positives due to mere chance (smoothly shaped ellipsoid in case of cell nuclei)
but if they are not part of a track with a certain lifetime, they will nevertheless
be deactivated.1

The described behavior is evident in the tracking results. Fig. 7.3 on the next
page shows a visualization of the chain graph tracking in the Drosophila dataset
(cf. Sec. 5.3.3 on page 52) for eight consecutive time slices with a clipped data
frame. We choose this sequence because it contains both false positive detections
that have a shape similar to cell nuclei and true positive nuclei whose shapes were
distorted in the segmentation step. The model tries hard to make sense out of the
noisy upper part of the sequence which is worst around time slice 10 and bridges
it in a meaningful manner. That is, only tracks that are well grounded in higher
quality regions are interpolated through the noise. No additional phantom tracks
are caused by the noise objects and quite the contrary most noise objects are filtered
out.

In contrast, Fig. 7.4 on page 76 illustrates the behavior of the joint optimal
assignment method (Sec. 3.3 on page 19) in presence of false positive detections.
The method cannot distinguish between false and true positive detections and
erodes the quality of the tracks mostly by claiming non-existing division events

1This is analogous to the strategy a human expert may use to obtain a manual tracking. Tracks
are counterchecked against the visual appearance of the segmented objects by browsing back
and forth in time before arriving at a decision that the human expert considers the most likely
explanation of the data.
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7 8 9 10

11 12 13 14

Figure 7.3.: Sample tracking sequence obtained with the chain graph model from
the Drosophila dataset. The eight consecutive time slices show a detail of the
data projected to 2d. The colored spots are segmented objects and objects sharing
the same color are assigned to each other. Dark gray objects are misdetections
as indicated by ’inactive’ detection variables. Ill-shaped objects will be treated
as active if they are bridging two tracks in a sensible manner. On the contrary,
cell-shaped objects may be labeled inactive, if they do not constitute a track of a
certain length.

to explain the suddenly appearing clutter detections. In terms of tracking true
positive objects the method is on par with the chain graph, though. This is no
wonder because optimal joint assignment can be seen as a special case of the chain
graph model where the true positive-probability of all detections is equal to one.
In quantitative terms, we expect a similar recall for both methods since recall is
influenced by the ability to track true positive objects and a higher precision for
the chain graph because an increased precision indicates a better handling of false
positive detections. In fact, the above interpretation is supported by the results: on
the zebrafish dataset the chain graph loses only 1.1 percentage points (pp) in recall
but gains 9pp in precision compared to optimal joint assignment leading to a overall
better tracking performance (see Tab. 5.3 on page 53). In practice this makes all the
difference because the remaining errors are not distributed equally over the data
range but are mostly located in regions with particularly low data quality. In the
other regions (which constitute the majority) the tracking is very reliable and no
longer distorted by the noise detections as with optimal joint assignment.
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1 2 3

4 5 6

(a)

(b)

Figure 7.4.: Tracking with the optimal joint assignment method in the zebrafish
dataset. The panel (a) shows a clipping of the full tracking result for six consecutive
time slices. Centers of tracked objects are marked with their associated numeric
track id. Division origins are indicated with x markers and the translation vectors
of the children with green lines. The images are 2d maximum intensity projections
of the 3d data. Panel (b) shows some representative lineage trees based on the
tracking result (time running from top to bottom; divisions indicated by round
dots). The trees are distorted by many erroneous divisions caused by false positive
detections.
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7.2. The Chain Graph Model is a Segmentation Regularizer

The reader may argue that this is an unfair comparison since the performance
of optimal joint assignment can certainly be improved by using the Random Forest
predictions (which are used in the chain graph model) to filter out false positives
in a preprocessing step. In particular, it is entirely possible that the increased
performance must be attributed mostly to the powerful predictions of the non-
linear classifier and not to the global model structure. But the results prove
otherwise. Table 5.4 on page 53 clearly shows a significant performance increase of
the full chain graph model, which weighs in the Random Forest predictions during
inference, in contrast to filtering false positives in a preprocessing step and treating
the detection variables as given. Compared to the chain graph with previously fixed
detection variables, the full (unconditioned) model gains 2.4pp and 4pp in terms
of recall and precision, respectively. Since both approaches are otherwise identical,
the performance increase has to be caused by the long-range effects which can be
only considered in a holistic model like the chain graph (as explained above).

7.2. The Chain Graph Model is a Segmentation

Regularizer

In this section we shift the focus from seeing the chain graph model as a tracking
method to viewing it as temporal regularizer for a local prediction-based segmen-
tation. A popular application of graphical models in image analysis acting as
regularizers is foreground–background segmentation. The prime example is a
Markov random field taking the form of a regular grid with one binary variable per
pixel (Boykov and Funka-Lea, 2006). Two types of factors are added: single-site
potentials over one variable each encoding the likelihood of a pixel being fore-
ground or background and second order potentials between neighboring variables
resp. pixels imposing spatial smoothness as exhibited in natural images. The MRF
therefore acts as a regularizer of the pixel-wise predictions.

Interpreting the chain graph model in an analog manner, the chain graph detec-
tion priors are single site potentials trying to include only true objects in the final
segmentation whereas the remaining factors represent the smoothing potentials.
The difference is that the smoothing operates along the temporal dimension, that
is, segmented objects should be present in all time slices in temporal vicinity as
expected in a natural time lapse sequence.

Table 5.5 on page 57 summarizes the results of the experiment investigating the
nucleus detection performance of the Random Forest classifier alone compared with
the chain graph (in the Drosophila dataset). Compared to the classifier the (basic)
chain graph retrieves 61 less cells (less true positives), but labels 323 more noise
detections correctly (more true negatives). (The chain graph also controlling the
minimal cell cycle length exposes the same behavior with nonsignificant differences
in performance.) This supports the interpretation that the chain graph regularizes
the single-site detections. It can prevent many wrong detections from entering the
final segmentation at a small decline in the true positive rate.
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This effect is related to the precision-recall trade-off in tracking performance of
the chain graph compared with optimal joint assignment (see Tab. 5.3 on page 53).
Since correct cell identifications are a precondition for a successful recovery of
move, division, appearance, and disappearance events, the higher object identifi-
cation rate should directly transfer to the tracking performance. Indeed we see a
slight decrease in recall of tracking events that could indirectly be caused by the
decrease in detection recall, whereas the significant gain in tracking precision is
certainly connected with the increased rate of correctly identified noise detections.

In summary, the chain graph model can even add value when the application
target is not tracking but segmentation since it acts as a temporal smoother analog
to the above MRF that acts as a spatial smoother. Furthermore it could be an inter-
esting direction for future research to try a combined tracking and segmentation
directly at the level of single pixels. One way to achieve that could be to combine
the mentioned MRF with the chain graph in a single model.

7.3. The Cell Cycle Length Extension is a Trade-Off

In Sec. 4.4.2 on page 36 we describe an extension of the basic chain graph model
that controls the minimal temporal distance between two divisions. The desired
minimal distance can be set with the parameter τ . As we showed in the previous
sections it is comparatively inexpensive in terms of energy to mark tracks as
inactive that are either very short or consist mainly of objects with a low detection
probability. But it can be even cheaper to link a short noise track with a nucleus
track using a division event if the noise objects are in close vicinity of true cells.
The goal of the extension is to make such wrong division more unlikely.

On the Drosophila dataset the extension causes an increase in f-measure by 0.3
percentage points for a minimal temporal distance of three (τ = 3) compared to the
basic chain graph model (see Tab. 5.4). At a first glance the gain seems insignificant.
But one has to take into consideration that the f-measure puts the same importance
on every type of tracking event. However, the number of move events exceeds the
number of division events by a factor of 20. The f-measure is therefore dominated
by the move events (appearance and disappearance events are very rare). To bypass
this issue we will only consider the performance calculated on division events alone
(see Sec. 5.3.4 on page 54).

In that regard the f-measure for divisions improves from 0.883 (precision 0.941,
recall 0.832) to 0.917 (precision 0.923, recall 0.911) for τ = 3. This is a significant
gain and very important for an accurate assessment of cell ancestry since a single
mistracked division can spoil the whole lineage downstream in time. In Fig. 5.7
on page 56 we plot the dependence of the performance on τ and it turns out that
the f-measure stays roughly the same for τ ≥ 3. This may be surprising since the
average number of time slices between divisions in the Drosophila dataset is around
ten and one would expect an ever increasing performance up to τ = 10. This can be
explained as follows since the extension operates symmetrically in time. Assume
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that a track divides at time slice s = 0 and then again at s = 9 and the model tracks
both divisions correctly. Then the extension prevents divisions of the same track at
time slices 0, 1, 2 , 7, 8, and 9, blocking already 60% of all time slices and making
erroneous divisions quite unlikely. (They have to happen in the right time window
and must have a low energy compared to other explanations of the data.)

Unfortunately, the extension is no free lunch since inference time increases at
least by a factor of ten compared to the basic model on the presented datasets.
Furthermore, as a direct consequence the maximal number of objects and time
slices the model can handle is also reduced since in practice inference time increases
exponentially in the size of the input. The reason is of course the enlarged state
space that is caused by the increased number of states of the detection variables.
In practice, the extension should therefore only be used when the problem size
at hand still permits inference in reasonable time and/or the utmost achievable
tracking quality is needed.

In summary, the extension is a trade-off between inference time and tracking
accuracy. On a higher level it shows the flexibility of formulating tracking as a data
structure (in particular, a graphical model) instead of a procedural algorithm. The
extension can be easily added to or removed from the model without the need to
change other parts of the pipeline. This is especially useful in the actual software
implementation of the approach. Future extensions could try to impose the whole
cell cycle consisting of several consecutive stages (prophase, metaphase, anaphase,
and telophase). That is, the cell in a track has to undergo the phases in the correct
order preventing wrong assignments to objects that are “out-of-phase”.

7.4. Linear Programming Approaches are Best for MAP

Inference

One of the advantages of graphical models is the separation of representation and
inference. It is usually enough to develop a graphical model representation of a
given problem (as we did with tracking in the work at hand) without the need to
develop a specialized solver for the problem. Instead, we can choose from a large
collection of general purpose inference methods. For our evaluation of different
MAP inference approaches for the chain graph model we selected five promising
candidates (see Sec. 5.3.2 on page 50).

Branch-and-cut combined with the simplex method (ILP) implemented in CPLEX

showed the overall best performance. As the only method, ILP found a confirmed
global energy minimum in only 33 sec (and serves as the energy ground truth).
Given these results modeling the local consistency constraints imposed by tracking
as hard constraints in an integer linear program seems to be a natural fit. Two of
the methods—loopy belief propagation (LBP) and bundle methods (BUNDLE-H)—
couldn’t neither find an optimal energy value nor fulfill the consistency constraints.
Additionally, BUNDLE-H took the longest time to convergence. LBP took only 30
secs to converge (on par with ILP) but got obviously stuck in a local minimum.
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Surprisingly, this deficiency can be fixed by taking the LBP solution as the start
configuration of a lazy flipper run (LBP-LF). The combination of the two can achieve
a competitive energy, even though the running time is longer by a factor of ten
compared to ILP. Finally, the local polytope relaxation of the integer program
solved with the simplex method alone (LP-LP) achieves a competitive energy and
is the fastest method with only three seconds inference time. Since LP-LP can
output only fractional solutions in general and the final integer solution is obtained
by rounding, there is no guarantee to fulfill all local consistency constraints (in
contrast to ILP). However, the energy landscape of the chain graph model seems to
exhibit a structure well suited for this kind of approximation.

To conclude, ILP should be used by default since it performs best overall. LP-LP
is an alternative when inference time is more important than an exact solution.
This is for instance the case in an interactive end user application like the presented
ilastik tracking workflow (Chap. 6). Another aspect when choosing a method is the
requirement for a fast (integer) linear programming solver. As of the time of writing
unfortunately only commercial solvers such as CPLEX or GUROBI are fast enough
for the presented application and the user needs to acquire a potentially expensive
software license. If such a license shouldn’t be in reach, LBP-LF is an interesting
alternative since it is freely available2 and can solve the tracking problem with
adequate quality, even though inference takes its time.

7.5. ilastik and the Chain Graph are a Viable Cell

Tracking Pipeline

Figure 7.5.: Tracking of an unrelated, freely available 3rd party dataset in 2d+t
(Neumann et al., 2010) to show the general applicability of the presented cell
tracking pipeline and software (common color indicates common ancestry).

The majority of this work is concerned with describing and evaluating the chain
graph tracking model. The motivation behind is constructing a reliable tracking

2It is part of the open source package openGm which is distributed under a free license here:
https://github.com/opengm/opengm
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7.5. ilastik and the Chain Graph are a Viable Cell Tracking Pipeline

Figure 7.6.: Dependence of tracking performance on the choice of parameter values
(zebrafish dataset; optimal joint assignment). The three axes correspond to the
three parameters controlling division (div), appearance (app), and disappearance
(dis). The axes are scaled down by the square root (sqrt).

tool for the second step of the two-step pipeline for cell tracking in general and digi-
tal embryo recording in particular (as outlined in Chap. 2). We cast the pipeline into
software with a graphical user interface (Chap. 6) to serve as a means to an end for
life scientists enabling them to conduct quantitative research in multidimensional
images of proliferating cells.

Naturally, one main application of the presented pipeline is cell tracking in
3d+t recordings of embryos. However, the application was designed with any
general (cell) tracking use case in mind. To prove the point we arbitrarily chose a
freely available 2d+t dataset of dividing cell nuclei (Neumann et al., 2010). After a
segmentation with ilastik pixel classification, we conducted a tracking using the
ilastik tracking workflow obtaining a (by visual inspection) high quality result
(see Fig. 7.5 on the preceding page). This was done without any modifications to
the original pipeline. The 2d images are internally embedded in a 3d space with a
singleton third dimension. That way, the tracking code for 3d can handle the 2d
case transparently. Care has to be taken in case of overlapping or occluding objects,
because this phenomenon cannot happen in 3d and is consequently not considered
in the chain graph model. Events to describe occlusions could be added easily, but
for recovering the identities of overlapping objects new methodology would have
to be developed.

To successfully apply the method, the user has to set parameters like appearance
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Figure 7.7.: Spacetime plot of the Zebrafish dataset. The 3d volumes were converted
to 2d slices by maximum intensity projections and stacked in consecutive order.
The image shows a volume rendering of the obtained 3d spacetime volume, time
running from left to right. Only roughly 50% of the intensity is shown to make
single tracks more pronounced.

or disappearance costs. In our quantitative experiments we found optimal parame-
ters by conducting a fairly costly exhaustive search through parameter space taking
many hours. This is not an option in an end user application. However, the tracking
performance turns out to be fairly robust against the exact choice of parameters in
practice as long as certain orders of magnitude are adhered to. This is evident from
Fig. 7.6 on the preceding page which shows a plot of the joint optimal assignment
performance on the zebrafish dataset depending on its three free parameters.3 The
performance changes only slowly in parameter space or is even invariant. The
average move distance during division, Cterm, and Cinit could in principle even be
calculated from the data. (In fact, we determined the former by measuring a set of
manually selected divisions.) The latter two are directly connected to the likelihood
of cell death and the signal-to-noise ratio of image acquisition, which influences the
accuracy of the cell detector. Furthermore, the application uses default parameters
that lead to a viable result out-of-the-box in most cases.

In future work the parameters could be learned from user annotations of the data.
Lou and Hamprecht (2011, 2012) pioneered cell tracking by structured learning in
two consecutive time slices. The approach can in principle be applied to the chain
graph model, too. Instead of setting parameters, the user could then label some
characteristic tracking events and refine the result further in an interactive manner
as it is already the case with the ilastik pixel classification workflow.

7.6. Outlook

We have shown in several experiments that the two-step pipeline is a very capa-
ble approach when implemented with ilastik pixel classification and the chain
graph model. The segmentation step (Sec. 5.3.1 on page 48) and the tracking step

3We cannot use the chain graph model for such a plot since it depends on five free parameters.
However, the result is also conclusive for the chain graph model, since joint optimal assignment is
essentially equivalent to the inter time slice assignment MRFs and the chain graph model shows
the same invariance to the exact parameter values in practice.
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(Sec. 5.3.3 on page 52) both produce high quality results, especially since the chain
graph model can correct errors made in the segmentation step. But there are alter-
native pipeline designs which could be topics of future research. We showed that
there are performance gains in a holistic approach where decisions can influence
each other compared to a hard conditioning on previous results (see Sec. 7.1.2 on
page 73). Therefore further improvements may be made by unifying the two-step
pipeline into a single-step pipeline.

One idea is a combined segmentation and tracking graphical model. Currently
in the ilastik segmentation step a foreground–background probability is assigned
to each voxel and a segmentation is obtained by thresholding the predictions
at 0.5 probability. Each connected component from the segmentation is then
represented by a single detection variable in the chain graph. To generalize this,
one could generate different segmentation hypotheses (for example by varying the
threshold or using a different method such as superpixel segmentation (Achanta
et al., 2012)) and add a random variable for each hypothesis. That way, the model
could weigh segmentation and tracking against each other finding the overall most
likely explanation of the data. Of course, this would increase the state-space of
the model making inference harder and requires new consistency constraints to
prevent the simultaneous activation of contradicting segmentation hypotheses.
Funke et al. (2012) describe a related idea in the context of segmenting tubular
structures in 3d, proving that such an approach can be practical.

Another idea is treating the 3d+t dataset as a single volume and conducting
a segmentation in 4d. The result should be a forest of 4d spacetime tubes and
tracking could be extracted by skeletonizing the segmentation (see Tschirren et al.
(2002) for an example of the approach in 3d). Fig. 7.7 on the facing page shows
a spacetime visualization of the zebrafish dataset and, indeed, tracks are visible
in form of nuclei-tubes. However, they are not particularly smooth in time and
broken up into many pieces because of an insufficient temporal sampling rate
(0.5–2 volumes per minute in the presented datasets). Especially cells mitosis is
not visible in the plot since the relative speed of the nuclei is much higher than
during interphase. Furthermore due to noise there are also several phantom track
fragments. Nevertheless, light sheet microscopy is improving fast and there are
already microscope prototypes that can record up to 30 volumes per minute with a
high contrast. Therefore, in the near future 4d segmentation could be an elegant
alternative to the presented pipeline.

To conclude, the presented pipeline is a viable approach for digital embryo
recordings and cell tracking in current microscopy datasets, and can be a foundation
or inspiration for future developments.

7.7. Summary

In this chapter we argued that a holistic tracking model conducting inference over
all time slices simultaneously can produce performance gains compared to models
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that consider only a few time slices at once or are conditioned on irreversible
decisions. Furthermore, we showed that the chain graph can also be seen as seg-
mentation regularizer which provides value even in a setting that is not primarily
concerned with tracking. Finally we discussed the minimal cell cycle length ex-
tension assessing that it trades off inference time against tracking accuracy and
portrayed the digital embryo recording pipeline as a viable general purpose cell
tracking approach.
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8. Conclusions

We presented a novel tracking-by-assignment approach formulated as a proba-
bilistic graphical model taking the form of a chain graph. It can handle a variable
and large number of divisible objects and is highly robust against false positive
detections and clutter. We established its performance on challenging datasets
from developmental biology with false positive rates of more than 10% and showed
an improvement over the state-of-the-art on these datasets. In particular, the ro-
bustness is evident in the increased precision at a stable recall compared to other
methods. We demonstrated the modeling flexibility of the approach by extending it
with a term controlling the minimal cell cycle length, examining the properties of
different inference schemes for the same model, and separating preprocessing steps
from inference with the hypotheses graph formalism. This makes it easy to control
the performance influence of the single components by testing them separately and
gives several entries point for future improvements. The method is implemented
in software with a graphical user interface geared towards non-expert users. This
enables other researchers—in particular from the life sciences—to build upon our
method to advance the state-of-the-art in their respective fields.

We are now in a position to reliably, but not yet perfectly, segment and track cell
nuclei in datasets like the presented ones. Light sheet microscopy is advancing at a
fast pace and it is reasonable to assume a near perfect segmentation recall of cell
nuclei for future datasets, alleviating the need to further improve the segmentation
in that respect. Furthermore, the chain graph model can correct most of the false
positive segmentations. In practice, the method can handle several thousand
objects for dozens of time slices which satisfies the requirements to reconstruct
early embryogenesis of typical model organisms before the gastrulation stage.

Tracking performance of our model is diminished mostly by merged segmenta-
tions of nuclei in close contact with each other which are treated as a single nucleus
and by complex movements like several divisions in immediate vicinity, which
can’t be sufficiently described by the squared distance feature. Finding a way to
correct the undersegmentations and introducing more features to describe tracking
events could lift the results to a level on par with human performance. Then again,
more features lead to more parameters and a better approach for parametrization
is required. Lou and Hamprecht (2011, 2012) pioneered cell tracking by structured
learning in two consecutive time slices. Their approach could be generalized to
learn the parameters in global graphical models like the chain graph.

To go beyond early embryogenesis, the tracking model needs to handle move-
ments of cell groups and motion of the organism as a whole. Currently, our energy
functions are assuming independent movements of the single cells. Group move-
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Figure 8.1.: Group movements of nuclei. The upper part is a projection of three
consecutive time slices to visualize coordinated group movements of the cell nu-
clei (shown is early gastrulation in Drosophila). The lower part shows a cross-
correlation estimate of the group movements in 2d. Such estimates could serve as
motion priors in future extensions of the tracking model.

ments could be modeled in form of local velocity priors that could be estimated in
advance, for instance, by using optical flow or cross correlation (cf. Fig. 8.1). The
current model can most likely not be extended to handle global organism motion.
New methodology needs to be developed to track contortions of the whole embryo.
Methods like the chain graph could then be applied in a local coordinate system
calculated relative to the global embryo model.

In summary, the very first steps towards complete digital embryos from the
zygote to the post-embryonic stage are made and we hope that the thesis at hand
will be considered a positive contribution to the field, when the grand goal is finally
met in the future.
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A. Ground Truth Cell Lineages and

Manual Tracking Protocol

We manually tracked the cell nuclei in both presented datasets (zebrafish and
Drosophila) for benchmarking purposes. Unfortunately, the datasets are too large
to be presented here. However, they are part of the supplementary materials of
Kausler et al. (2012) and can be acquired from there. Alternatively, please contact
either
fred.hamprecht@iwr.uni-heidelberg.de or bernhard@kausler.net.

For the Drosophila dataset we did the manual tracking directly on the segmenta-
tion, limiting our view to the type of information the automatic tracking methods
can access. In contrast, on the zebrafish dataset the tracking was conducted on the
raw data to be able to benchmark the pipeline as a whole. The latter required a
strict protocol to avoid biases and document disputable decisions and is reproduced
below.

Zebrafish dataset manual tracking protocol

Input

-----

as-tiff_ct-keller-animal-spacetime_0-100: 0000.tiff - 0024.tiff

downsampled from 16bit to 8bit

scale: 1111x1161x25 (30.80MB) (100%)

coordinates start at 0 -> time 5 is the 6th time slice

Software

--------

Java 5D image viewer, Version V1.3.0 by Rainer Heintzmann

ImageJ 1.43l

Java 1.6.0_18 (64-bit)

View5D settings

----------------

Tracking Mode: Max

Tracking direction: Z

Finish Mode: Stop

Finish Metric: Integral
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A. Ground Truth Cell Lineages and Manual Tracking Protocol

Threshold 0.2

Use automatic maximum finding: 3.0 X,Y neighbors

Subpixel positions turned off

Repulsion turned on

General Protocol

----------------

We use a maximum intensity snap-in. If this fails to center on a cell,

we do a manual correction. We don’t record this in the protocol,

though. Therefore, in most cases the marker sits on the maximal

intensity, but not always. Sometimes, we mark positions by

extrapolating the expected track of a cell, as long as there is the

slightest evidence (like a very small intensity gradient) at the

expected position. This might be impossible to pick up by a

segmentation or tracking algorithm that works only locally and/or at

one point in time. In a few cases, we even connect cells over several

time slices, even if there is no evidence in between. These are

borderline decisions and recorded in the remarks below.

Remarks

-------

interleave: unsure how to separate the overlap; separable interleaves

are not recorded explicitly

* 9ab vanishes at t22

* 21bb interleave with 21aa (t 17-24)

* 22ab interleave with 23bb (t 17-24)

* 23a interleave with 35a (t 9-17)

* 23aa, 23ab split in z direction; interleaving (t 17-24)

* 24 very low intense cell (7-20); shows characteristic speed

increases at the two mitosis points in time, but cannot find any offspring

* 27aa low intensity (17) at t 18; disappears in t 19; seems to

reappear in t 21

* 27ab very low intensity (11) at t 18; disappears in t 19; seems to

reappear in t 20

* 28 interleave with 29, but easily distinguishable

* 29b (t 5): manually corrected snap-in

* 29ab: evidence very weak (int 10-22) over whole track;

shape irregular, noisy

* 30b (t 7) very weak evidence (int maximum 10; background 7)

(same at t8, t9 -> int 11); reappears at same position with much

better intensity at t10

* whole 31 lineage: very weak evidence over the whole track

* 31a split at t20; no evidence for other daughter cell (small
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disturbances at the expected positions -> too inconclusive)

* 33 cell is not splitting, but has good intensity over t0-24

* 34a interleave with 34b (t 5-13)

* 37a and 37b interleave at t7; split probably happened 1-2 time

slices before, but there is only a interleaving blob visible

* 37bb, t18 manually corrected snap-in

* 27aa, 37bb, 37aa t19-24 heavy interleave

* 43b interleave with 49b (t 6,7,8)

* 44 did possibly split in stack direction at t5 (not visible though);

at t7 an interleaved fragment appears and morphs into a full cell later

* 44aa interleave with 44bb (t 18)

* 46b split probably as early as t16, but interleave till t17 (where

the split is visible)

* 46ba interleave with 50 bb (t 21)

* 50aa gone at t 22,23, reappears at t24; some doubts left

* 50ba gone at t 21, 22 ; reappears at t23; not sure, if it is

actually the same cell; could also be 59aa

* 51b probably splits at t 19; due to interleave visible only at t 22

and beyond

* 54ab very weak evidence (int 3-5, background 2)

* 58bb vanishes after t 23

* 58ab interleave with 57ab

* 59aa vanishes after t 20; there is a possible candidate, that is

assigned to 50ba; some doubts here

* 59a: transition t7 -> t8 may be a cell disappearance and appearance,

since the translation distance is very long

* 64a: recorded split at t21; very likely happened at t20, but no

suitable candidate for second daughter cell found

* 64ab: is not visible at t20, but has to be there due to typical

division pattern observed in latter

* 66bb vanishes at t20 and reappears at t21

Speckles:

---------

Speckles are -- compared to cells -- a little bit smaller and have in

general a higher intensity; they could be confused with cells by a

tracking algorithm. There are even smaller splitters that we don’t track here.

Candidates:

40,69,70,71

* 40 object doesn’t split, but has good snr at t0-24; very borderline;

might be a cell, but is a little bit too small

* 70 vanishes at t5

* 71 appears t7, might be identical to 70 (distance quite large, though)
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B. Drosophila Dataset: Complete

Lineage Synopsis

In this chapter we reproduce three complete lineage tree reconstructions of the
Drosophila dataset obtained as follows: tracked by human (ground truth), by the
chain graph model, and by the method of Bise et al. (2011).

Appearing, disappearing, and dividing cells are denoted by black circles; cells
only involved in movements are omitted for reasons of clarity.

The leading number of the IDs indicates the time step at which the lineage tree
begins; the second number displays the label of the corresponding cell.

It should be noted that, on the one hand, equal lineage trees are not necessarily
spanned by the same cells, and, on the other hand, missing lineage trees might
be present at a later time slice (e.g. only the root cell was not tracked) rather
than missing completely. This also includes the subtrees of (temporarily) falsely
disappearing cells. Furthermore, similarity in the labels does not imply proximity
in space. [Lineage tree graphic starts on the next page.]
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B. Drosophila Dataset: Complete Lineage Synopsis
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