
Dissertation
submitted to the

Combined Faculties for the Natural Sciences and for Mathematics
of the

Ruperto-Carola University of Heidelberg, Germany
for the degree of

Doctor of Natural Sciences

Presented by
Dipl.-Phys. Simon Friedmann

born in Heidelberg, Germany

Date of oral examination: July 25, 2013

A New Approach to Learning in
Neuromorphic Hardware

Referees: Prof. Dr. Karlheinz Meier
Prof. Dr. Ulrich Brüning

Ein Neuer Ansatz für das Lernen in Neuromorpher Hardware

Diese Doktorarbeit stellt einen neuartigen, besonders flexiblen Zugang zum Lernen in
durch das Gehirn inspirierten Rechensystemen dar. Ein klassischer Digitalprozessor
wurde mit lokaler, analoger Verarbeitung kombiniert, um Flexibilität und Effizienz
zu erreichen. Insbesondere erlaubt dies die Umsetzung der modulierten spike-timing
dependent plasticity Lernregel. Dieser Ansatz wurde in ein abstraktes, hybrides Hard-
waremodell formalisiert. Mit diesem Modell wurde Belohnugslernen anhand eines
Fallbeispiels simuliert, um die Auswirkungen der Hardwareeinschränkungen abzu-
schätzen. Um die Machbarkeit der vorgeschlagenen Architektur zu ergründen wurde
ein synthetisierbarer Plastizitätsprozessor entworfen und mittels des allgemeinen Core-
Mark Benchmarks getestet (Bestes Ergebnis: 1.89 pro MHz). Der Prozessor wurde auch
als Teil eines 65 nm Prototypenchips produziert, auf dem er eine Fläche von 0.14 mm2

belegt und eine maximale Taktfrequenz von 769 MHz erreicht. Zunächst wurde ei-
ne nicht-programmierbare Plastizitätsimplementierung entwickelt, die jetzt Teil des
sich in Betrieb befindenden BrainScaleS wafer-scale Systems ist. Später wurde dieser
Entwurf um einen Plastizitätsprozessor erweitert, um die vorgeschlagene hybride Ar-
chitektur zu verwirklichen. Simulationen zeigen eine Geschwindigkeitsverbesserung
von 42 % gegenüber der nicht-programmierbaren Variante. Aus der Vorbereitung für
die Produktion ergibt sich ein Flächenbedarf von 6.2 % der Gesamtfläche.

A New Approach to Learning in Neuromorphic Hardware

This thesis presents a novel, highly flexible approach to plasticity and learning in
brain-inspired computing systems. A classical digital processor was combined with
local analog processing to achieve flexibility and efficiency. In particular, this allows
for the implementation of modulated spike-timing dependent plasticity. The approach
was formalized into an abstract hybrid hardware model. This model was used to
simulate a reward-based learning task to estimate the effect of hardware constraints.
To investigate the feasibility of the proposed architecture, a synthesizeable plasticity
processor was designed and tested using the CoreMark general purpose benchmark
(best score: 1.89 per MHz). The processor was also produced as part of a 65 nm proto-
type chip, requiring 0.14 mm2 of die-area, and reaching a maximum clock frequency of
769 MHz. In a preparatory step a non-programmable plasticity implementation was
developed, that is now part of the operational BrainScaleS wafer-scale system. This
design was later extended with the plasticity processor to implement the proposed
hybrid architecture. Simulations show a speed improvement of 42 % over the non-
programmable variant. By preparation for production, the area requirement for the
digital part is estimated to be 6.2 % of total area.

Contents

List of Figures 12

List of Tables 15

1. Introduction 17

1.1. The BrainScaleS wafer-scale system . 19
1.2. Models of plasticity . 21

1.2.1. Spike-timing dependent plasticity 21
1.2.2. Phenomenological models from biology 23
1.2.3. Reward-modulated STDP . 24

1.3. Design goals for neuromorphic hardware 25

2. Theory 27

2.1. Requirements for hardware . 27
2.1.1. Two-factor STDP . 27
2.1.2. Reward-modulated STDP . 28
2.1.3. Phenomenological models . 28

2.2. Abstract hybrid hardware model . 29
2.2.1. Combining analog and digital computing 29

2.2.1.1. What type of digital part is needed? 30
2.2.2. The abstract hybrid hardware model 30

2.2.2.1. Using the abstract model for plasticity 31
2.2.2.2. Acceleration in time . 32
2.2.2.3. Discretized weights . 32
2.2.2.4. Local analog processing in the synapse 33
2.2.2.5. Global digital processing by the processor 35
2.2.2.6. Drift of analog storage 35
2.2.2.7. Mismatch . 37
2.2.2.8. Dynamic analog noise 37
2.2.2.9. Processing speed . 38
2.2.2.10. Communication latency 38

2.3. Reward modulated STDP . 38
2.3.1. Baseline performance . 41
2.3.2. Mapping reward modulated STDP to the AHM 44

7

Contents

2.3.3. Discretized weights . 44
2.3.4. Threshold readout . 47
2.3.5. Robustness to variations in the drift model 50
2.3.6. Mismatch on the evaluation function 52
2.3.7. Delayed reward . 52
2.3.8. Guidelines for hardware implementation 56

3. Hardware design 59

3.1. Plasticity processor technology . 59
3.1.1. Design principles . 59
3.1.2. Instruction set architecture . 60
3.1.3. Microarchitecture . 61
3.1.4. Instruction fetching and control transfers 66
3.1.5. Instruction cache . 69
3.1.6. Instruction scheduling . 72

3.1.6.1. Result shift register . 72
3.1.6.2. Write back channels . 73
3.1.6.3. Lookup cache and variable-latency operations 76
3.1.6.4. Write-through optimization 77
3.1.6.5. Pre-decoding instructions 77
3.1.6.6. Multi cycle operations 80
3.1.6.7. Scheduling instructions to functional units 82

3.1.7. Execution in the back end . 87
3.1.8. Functional units . 88

3.1.8.1. Input/output over the plasticity processor bus 88
3.1.8.2. Multiplier and divider 89

3.1.9. Interrupts & Exceptions . 90
3.1.9.1. Interrupt processing . 91
3.1.9.2. Saving the return address 91
3.1.9.3. Asynchronous interrupts 91
3.1.9.4. Precise interrupt problem 92
3.1.9.5. Critical and machine check interrupts 92

3.1.10. Timer facility . 92
3.1.11. General purpose input/output registers 93

3.2. On-chip bus technology . 93
3.2.1. Motivation and design goals . 93
3.2.2. Interface specification . 95
3.2.3. Basic bus fabric building blocks 96

3.2.3.1. Bus arbiter . 97
3.2.3.2. Bus delay . 97
3.2.3.3. Bus splitter . 97

8

Contents

3.2.3.4. Example bus configuration 97
3.2.4. Additional bus building blocks 99

3.2.4.1. Register target . 99
3.2.4.2. Serializer/Deserializer 99
3.2.4.3. RAM interface adapter 99
3.2.4.4. HICANN system bus adapter 100

3.2.5. Methodology: using code generation for bus specification . . . 100
3.3. STDP logic in the BrainScaleS wafer-scale system 101

3.3.1. HICANN synapse array interface 102
3.3.1.1. Structural description 102
3.3.1.2. Analog evaluation . 104
3.3.1.3. Control sequences on synapses 105

3.3.2. Non-programmable STDP implementation 109
3.3.2.1. Functional overview . 109
3.3.2.2. Design of the bus interconnect 110
3.3.2.3. Structure of the design 112
3.3.2.4. Operation of the access state machine 113
3.3.2.5. Automatic weight update controller 115

3.3.3. Synapse array interface adapter for programmable STDP 117
3.3.3.1. Detailed description . 119

3.4. SYNAPSE special function unit . 126
3.4.1. Special purpose registers . 127

3.4.1.1. Vector registers . 127
3.4.1.2. Look-up table registers 127
3.4.1.3. Pattern register . 128
3.4.1.4. Select state register . 128

3.4.2. Special purpose instructions . 128
3.4.2.1. Apply mapping from look-up table to vector elements 129
3.4.2.2. Compare elements with immediate 129
3.4.2.3. Select elements from two vectors 130
3.4.2.4. Perform operation sequences 130
3.4.2.5. Swap vector register file 131
3.4.2.6. Register move instructions 132

3.4.3. Code example . 134
3.4.4. Design considerations for the instruction set extension 134
3.4.5. Implementation . 137

3.5. Native Vector Extension . 137

4. Functional verification and software support 139

4.1. Directed verification: program level testing 140
4.1.1. Generating the expected result memory image 140

9

Contents

4.1.2. The CoreMark Benchmark for directed testing 142
4.1.3. Test results . 142

4.2. Constrained random verification: instruction level testing 144
4.2.1. Verification framework . 145

4.3. Constrained random verification: instruction sequence testing 148
4.3.1. Automatic program generation 151

4.4. Verification of the plasticity processor bus 151
4.5. Writing software for the plasticity processor 152
4.6. From source code to program execution 154

5. Hardware systems and their evaluation 155

5.1. FPGA prototype . 155
5.1.1. Benchmarking with CoreMark 155
5.1.2. Influence of compiler optimization options 158
5.1.3. Influence of issue to retire latency 160
5.1.4. Influence of in-time issuing and write-through 161
5.1.5. Influence of branch prediction 161
5.1.6. Influence of variable latency load/store 162
5.1.7. Influence of instruction cache . 163
5.1.8. Maximizing performance . 164
5.1.9. Comparison to other processors 165

5.2. Prototype ASIC in 65 nm technology . 169
5.2.1. Design overview . 169

5.2.1.1. Global clock gate . 170
5.2.1.2. General purpose input/output pins 171
5.2.1.3. Timer facility and interrupt controller 171
5.2.1.4. Program suspension with hardware breakpoints . . . 172
5.2.1.5. Processor options . 172

5.2.2. Implementation and area requirements 173
5.2.3. Experimental results . 174

5.2.3.1. Frequency and supply voltage operating range 175
5.2.3.2. Power consumption . 178
5.2.3.3. Effect of clock gating 180
5.2.3.4. Power consumption by individual instructions 180

5.3. BrainScaleS wafer-scale system with non-programmable STDP 182
5.3.1. Simulation results: updating performance 184
5.3.2. Verification of automatic weight update logic in hardware . . . 185
5.3.3. Test of evaluation comparator . 186
5.3.4. Event transmission crosstalk . 190

10

Contents

5.4. In preparation: BrainScaleS wafer-scale system with plasticity processor 190
5.4.1. Design overview . 191

5.4.1.1. Bus structure . 192
5.4.1.2. Rate counter . 193

5.4.2. Simulation results: weight updating performance 193
5.4.2.1. Benchmark programs 193
5.4.2.2. Results . 197

5.4.3. Area requirements . 201
5.4.4. Status of the implementation . 203

6. Discussion and outlook 205

6.1. Discussion of main results . 206
6.1.1. Abstract hybrid hardware model and results for reward-modu-

lated STDP . 206
6.1.2. Plasticity processor . 207
6.1.3. Instruction set extension for operations on neuromorphic synapses208
6.1.4. Non-programmable STDP implementation 209
6.1.5. 65 nm prototype . 209
6.1.6. Plasticity processor in the BrainScaleS wafer-scale system . . . 211
6.1.7. From guidelines to implementation 214

6.2. Directions for future hardware . 215
6.2.1. Maximizing performance in the HEPP design 215
6.2.2. Maximizing flexibility in future 65 nm systems 217

6.3. Conclusion . 220

A. Tabular description of used neural network models 223

B. Supported Power ISA subset 225

C. Supplemental design description 230

C.1. External interfaces of the plasticity processor 230
C.1.1. RAM interface . 230
C.1.2. Plasticity processor bus interface 230

C.2. Scheduling state machine graph . 231
C.3. OCP configuration options of the plasticity processor bus 233
C.4. Synapse array interface signals . 233

Glossary 235

References 239

11

List of Figures

1.1. The BrainScaleS wafer-scale system . 20

2.1. Synapse schematic . 31
2.2. Overview of the Abstract hybrid Hardware Model 32
2.3. Local analog processing . 34
2.4. Simplified schematic for the drift model 36
2.5. Network model for reward modulated STDP 39
2.6. Simulation results of unconstrained baseline model 42
2.7. Comparison for generality of results . 43
2.8. Sweeping the learning rate . 43
2.9. Performance with discretized weights 46
2.10. Effect of weight discretization . 47
2.11. Finding the optimal threshold and update constant parameters 49
2.12. Performance with threshold readout . 49
2.13. Variation of analog drift . 51
2.14. Threshold readout with mismatch . 53
2.15. Reward timing effects on performance 54
2.16. Performance with delay and analog noise 56

3.1. Locating the processor in the Abstract Hybrid hardware Model (AHM) 60
3.2. Plasticity processor pipeline block diagram 63
3.3. Instruction streamer block diagram . 67
3.4. Block structure of the instruction cache 70
3.5. Result shift register . 73
3.6. Scheduling write back with RSR . 74
3.7. Scheduling write back with lookup cache 75
3.8. Multi cycle instruction decoding . 81
3.9. Scheduling instructions to functional units 83
3.10. Simplified scheduling state machine graph 85
3.11. Back-end overview . 86
3.12. Bus in the abstract hybrid hardware model 94
3.13. Bus request . 95
3.14. Plasticity processor bus building blocks 96
3.15. Example bus fabric . 98

12

List of Figures

3.16. Locating the synapse interface in the AHM 102
3.17. Block diagram of the synapse array . 103
3.18. Synapse array read timing . 106
3.19. Synapse array write timing . 107
3.20. Synapse array STDP evaluation . 108
3.21. Synapse array accumulation reset . 108
3.22. Non-programmable STDP in the AHM 109
3.23. Structure of the non-programmable synapse array adapter 111
3.24. State diagram of the STDP access state machine 114
3.25. Data path for automatic weight update computation 117
3.26. Location of the synapse array adapter for programmable STDP in the

AHM. 118
3.27. Synapse array interface adapter for programmable STDP 120
3.28. State diagram of the sequencer state machine 121
3.29. State diagram of the bus FSM . 125
3.30. SYNAPSE functional unit overview . 136

4.1. Instruction level testing work-flow . 144
4.2. Class diagram for instruction level testing 145
4.3. Class diagram for instruction level testing (2) 147
4.4. Class diagram for instruction level testing (3) 148
4.5. Class diagram for automatic program generation 149
4.6. Automatic program generation work-flow 150
4.7. Bus topology for bus verification . 151
4.8. Programming workflow . 154

5.1. FPGA evaluation platform . 156
5.2. Hardware design for CoreMark evaluation 157
5.3. Influence of compiler options on performance 159
5.4. Influence of instruction latencies . 160
5.5. Influence of branch prediction on CoreMark performance 162
5.6. Influence of the instruction cache size on performance 164
5.7. Maximizing performance on FPGA platform 165
5.8. Performance comparison to other processors 166
5.9. Photo of 65 nm prototype system . 168
5.10. Block diagram of 65 nm prototype ASIC 169
5.11. Global clock gate schematic . 170
5.12. The 65 nm design . 173
5.13. Area breakdown of the 65 nm chip . 174
5.14. Validated frequency and supply voltage domain 176
5.15. Low-voltage operation . 177

13

List of Figures

5.16. Power measurement for 65 nm prototype 178
5.17. Transient power consumption during CoreMark execution 179
5.18. Power consumption by individual instructions 181
5.19. Photo of the BrainScaleS wafer-scale system 183
5.20. Speed of non-programmable STDP controller 184
5.21. Results from evaluation measurement with null read pattern 188
5.22. Fixed-pattern variation of comparator switch-points 189
5.23. Block diagram of BrainScaleS wafer-scale system with embedded plas-

ticity processor . 191
5.24. Bus structure of HICANN with Embedded Plasticity Processor 192
5.25. Two-factor weight update . 194
5.26. HEPP weight updating performance . 198
5.27. HEPP probabilistic weight updating performance 199
5.28. Area breakdown of HEPP design . 202
5.29. Floorplan after placement of standard cells 204

6.1. Maximizing performance in the HEPP design 216
6.2. Maximizing flexibility in future process technologies 218

14

List of Tables

2.1. Model options for R-STDP . 45
2.2. Simulation parameters with threshold readout 50

3.1. List of write back channels . 75
3.2. Functional unit interface definition . 87
3.3. Non-programmable adapter commands 112
3.4. Contents of words in the sequencer store 123
3.5. Defined opcodes . 124
3.6. Address space layout . 125

4.1. List of test programs used for program level testing. 141

5.1. Parameter space for CoreMark analysis 157
5.2. Configurations used for CoreMark analysis 158
5.3. Fit-parameters for power dependencies 179

B.1. Implemented registers . 225
B.2. Implemented instructions . 226
B.3. Interrupt vector table . 229

C.1. Control word signals . 232
C.2. OCP options of the PPB . 233
C.3. Synapse array interface signals . 233

15

1. Introduction

The human brain is a computing device with remarkable properties: with a power
consumption on the order of 25 W (Kandel et al., 2000) and a volume of approximately
1.3 liters (Scahill et al., 2003), it can process complex sensory inputs, control the
movement of our body, and perform abstract reasoning. Neither is it understood how
these functional capabilities are achieved, nor are we currently capable of building
machines with comparable abilities.

An outstanding property of neural tissue is its massive parallelism of comparatively
slow units. In the neocortex of humans, for example, there are 20 billion neurons
(Pakkenberg and Gundersen, 1997), each performing local, time-continuous, analog
processing on the millisecond timescale. These neurons are interconnected at their
contact points by synapses, over which signals are transmitted from one to the other.
Interconnection can exhibit a very large fan-in: in neocortex of humans, neurons have
thousands of synapses on average (Pakkenberg et al., 2003). The input received via
these synapses affects the time-course of the neuron’s membrane potential. If the
membrane potential exceeds a threshold voltage at the cell body, it evokes a sharp
voltage spike, called action potential, which is transmitted to other neurons along a
fibre, called axon. The transmission along the axon in form of spikes represents digital
communication, while the local processing performed by the neuron is analog.

In contrast to this, classical digital computers of the von-Neumann architecture (von
Neumann, 1945) follow a very different principle: These machines are subdivided into
specialized units for control, memory, and arithmetic and other operations. The whole
machine follows a single program stored in memory, operating on data represented
with binary states. Computation is performed symbolically on the foundation of
boolean logic, and sequentially following the globally stored program.

The idea of neuromorphic hardware is to build computational machines more akin to
the nervous system (Mead, 1989; Douglas et al., 1995). A key concept here is that of a
physical model: The dynamical behavior of the biological equivalent is reproduced by
the physical properties of the model. In classical neuromorphic hardware, those are
the fundamental properties of transistors using Complementary Metal Oxide Semi-
conductor (CMOS) technology. In such system there is a one-to-one correspondence
of neurons and synapses between the physical model and the biological counterpart.
Every neuron is implemented by a distinct transistor circuit that follows differential
equations modeled after the biological behavior. Just as in neural tissue, the compu-
tation performed by the neuromorphic neuron is analog, using a voltage range to

17

1. Introduction

represent its state.
The motivation for neuromorphic hardware is two-fold: On the one hand is the

goal to develop technology that makes capabilities of the brain accessible in artificial
systems. Most prominently, the ability to do complex processing with very little
energy as compared to classical digital computers drives this endeavour. This is of
interest, because performance of classical computers today is limited by their power
consumption (Borkar and Chien, 2011; Fuller and Millett, 2011). A further desired
ability is, that neural circuits are robust to imperfections of the underlying devices. For
example, transmission via synapses exhibits considerable trial-to-trial variability due
to the probabilistic release of neurotransmitters (Otmakhov et al., 1993; Katz, 1969).
Also, the substrate can adapt to local damage by reorganizing the network structure,
for example after a stroke (Weiller et al., 1992). Perhaps the most interesting feature of
biological neural networks is their ability to learn. In contrast to classical computers,
which are programmed to perform a certain task, neural networks learn their function
from experience. In operant conditioning experiments, an animal is trained simply by
providing reward and punishment depending on its actions (Staddon and Niv, 2008).

A second goal of neuromorphic hardware is to aid in the research of brain func-
tion. Here, it can offer a computationally efficient platform for large-scale network
experiments (Brüderle et al., 2010). The conventionally used approach is to simulate
networks on classical digital computers. However, compared to a physical model this
incurs a large overhead, since the neuronal state has to be represented in an abstract
symbolic form, and the dynamical behavior is numerically simulated with complex
arithmetic units. Therefore, classical simulations of large scale neural networks require
supercomputers (Markram, 2006; Ananthanarayanan et al., 2009) that come with high
power consumption (Alam et al., 2008; CompuGreen, 2012). This limits the size of
networks that can be studied, and the time frame over which behavior can be observed.

The ability to learn is based in the plasticity of neural tissue. Every aspect of the net-
work, from neurons over synapses to the structure of the network, changes over time
depending on the activity in the network. Including powerful plasticity mechanisms
into neuromorphic hardware devices has the prospect of making learning computers
possible that can be trained much like animals using reward and punishment. Devices
with limited plasticity mechanisms have been demonstrated in the past, for example to
counter the effect of process variations in Very Large Scale Integration (VLSI) circuits
(Cameron et al., 2005; Bill et al., 2010), or for learning of pattern classification (Hafliger,
2007; Mitra et al., 2009; Sheik et al., 2012). Most neuromorphic systems built to date
focus on plasticity of synapses, especially implementing Spike-Timing Dependent
Plasticity (STDP) (Vogelstein et al., 2003; Indiveri et al., 2006; Schemmel et al., 2007;
Ramakrishnan et al., 2011; Seo et al., 2011). However, biology paints a rather diverse
picture of plasticity as will be shown in Section 1.2. This makes it unlikely, that a
single mechanism or rule is sufficient to match the learning capabilities of the brain.
On the other hand, the functional consequences of all the different effects found in

18

1.1. The BrainScaleS wafer-scale system

biological experiments are to a large extent not clear. A large-scale experimental plat-
form that is under full control by the operator can help to study these consequences.
Neuromorphic hardware with flexible plasticity can be such a platform.

The work presented in this thesis follows a new approach, diverging from the
classical idea of neuromorphic hardware with analog computing, to provide a highly
flexible plasticity implementation. Instead of realization as a pure physical model, I
present a hybrid system that is in part physical model and in part a classical processor
of the von-Neumann architecture. This allows for advantages from both worlds:
The physical model enables energy efficient, time-continuous, and massively parallel
processing with small area requirements. The classical processor on the other hand
adds flexibility in the implementable learning rules. I will show the usefulness of
this approach using a specific reward-based learning rule as example (Chapter 2),
describe in detail the hardware design necessary for such a system (Chapter 3), and
present results obtained in simulations and with hardware prototypes (Chapter 5) to
judge the implementability of this architecture (Chapter 6). The rest of this chapter
gives background information on the preexisting hardware framework, and introduces
models of plasticity.

1.1. The BrainScaleS wafer-scale system

The work presented in this thesis builds upon the hardware system designed and built
within the FACETS and BrainScaleS projects (FACETS, 2010; BrainScaleS, 2012). The so
called BrainScaleS wafer-scale system employs complete 20 cm wafers to realize high
interconnection densities. The wafers are produced in a conventional 180 nm CMOS
process and then interconnected in a post-processing step that adds an additional
metal layer on top of the wafer. This way, connections across reticle boundaries, which
can normally not be realized directly, are possible, so that the whole wafer can be
used as one common substrate. On one such wafer, there are 40 million synapses
and up to 180 thousand neurons. One neuron circuit can receive input from 224
synapses. To realize cortical scales, up to 64 neuron circuits can be combined to form
a single neuron with 14 336 synapses, while simultaneously reducing the amount of
totally available neurons. This inspired the name for the 5× 10 mm High Input Count
Analog Neural Network (HICANN) chip-unit, that is repeated on the wafer to build
the substrate. These HICANN units can also be built as individual chips. Figure 1.1A
shows the system with one wafer-module and the cluster of control computers. The
wafer-module holds support logic for power and communication. The control cluster
configures the hardware, sends stimulus, and receives the resulting activity. It is also
intended to simulate interactive environments for the neural system on the wafer. The
post-processed wafer is shown in Figure 1.1B.

Action potentials are transported from neurons to synapses by an asynchronous

19

1. Introduction

A System B Wafer-scale integration

Figure 1.1.: (A) The BrainScaleS wafer-scale system in the lab. The left rack holds the cluster
of control computers operating the neuromorphic system in the rack to the right.
Here, the current variant with one wafer module is shown. Photo by S. Schrader.
(B) Post-processed wafer. Photo by A. Grübl.

20

1.2. Models of plasticity

event network. This network is connection switched, with programmable switch
matrices distributed over the whole wafer. An additional off-wafer network is available
to interconnect multiple modules, to provide stimulation from external sources, and to
observe the activity of the network (Scholze et al., 2011).

For further reference see Schemmel et al. (2008, 2010); Millner et al. (2010); Millner
(2012). More detailed introductions are also given by Brüderle (2009) and Millner
(2012).

1.2. Models of plasticity

Plasticity refers to the continuous activity dependent change of properties in a neural
network. This change affects neurons, synapses, and the structure of the network as a
whole. Cudmore and Desai (2008) provide a review on plasticity of neuron parameters.
This so called intrinsic plasticity affects the electrical properties of the neuron. Further,
the structure of the neural network itself changes over time in a process referred to as
structural plasticity. This involves the creation of new neurons, growth processes of
dendrites and axons, and the formation and elimination of synapses (Lamprecht and
LeDoux, 2004; Leuner and Gould, 2010). The change of the strength of connections
between neurons, referred to as synaptic plasticity, is widely believed to be at the
foundation of learning and memory in neural systems (Martin et al., 2000). Although
the concepts developed in this thesis address all forms of plasticity, synaptic plasticity
and especially the biologically realistic spike-timing dependent plasticity rule (see next
section) is the most important application for the hardware learning system, due to its
functional importance for learning.

1.2.1. Spike-timing dependent plasticity

Spike-Timing Dependent Plasticity (STDP) is a synaptic learning rule. The change of
synaptic weight depends on the relative timing of action potentials, generated by the
neurons that the synapse interconnects (Gerstner et al., 1996; Markram et al., 1997; Bi
and Poo, 1998). Reviews are given by Morrison et al. (2008) and Caporale and Dan
(2008), a historical overview is presented by Markram et al. (2011).

Neurons communicate by the exchange of action potentials or spikes: sharp increases
of membrane potential caused by the opening of ion-channels on the cell (Holz and
Fisher, 1999). At a synapse, action potentials of the presynaptic neuron trigger the
release of chemicals to communicate the event to the postsynaptic neuron. The impact
the synapse has on the membrane voltage of the postsynaptic neuron is called its
efficacy or weight. The STDP rule states, that the change in weight ∆ depends on the
time difference ∆tij = Xi −Yj between a presynaptic action potential at time Xi and a

21

1. Introduction

postsynaptic one at time Yj according to the STDP learning function s
(

∆tij

)

:

∆ = s
(

∆tij

)

(1.1)

In its canonical form the learning function is given as

s
(

∆tij

)

=

f+ (w) exp
(

−|∆tij|
τ+

)

if ∆tij > 0

− f− (w) exp
(

−|∆tij|
τ−

)

if ∆tij ≤ 0
(1.2)

with the synapse weight w, time constants τ± and weight dependencies f±(w).
Whether a synapse is potentiated or depressed depends on the temporal order of
pre- and postsynaptic firing. Pre-before-post leads to potentiation, post-before-pre
to depression. If s does not depend on the weight (f±(w) = 1), the range of allowed
weights must be limited to w ∈ [0, wmax] to prevent unrealistic situations, where the
weight would grow without limits. Such rules are referred to as additive, since an
increment determined only by timing is added to the weight. A limitation arises
naturally, if the weight dependence is multiplicative:

f+(w) = γ (wmax − w) (1.3)

f−(w) = λγw (1.4)

with proportionality factor γ and asymmetry λ. The asymmetry parameter λ con-
trols the difference in magnitude of the two branches of the learning function s. A
generalization is the variant by Gütig et al. (2003):

f+(w) = γ (wmax − w)µ (1.5)

f−(w) = λγwµ. (1.6)

By selecting µ the rule can be configured to be additive (µ = 0) or multiplicative
(µ = 1).

The form of the weight dependence has a relevant effect on the evolution of weights
in a neural network. For example, under stimulation with uncorrelated action po-
tentials that are sent with random firing intervals drawn from a Poisson distribution,
additive rules lead to a bimodal weight distribution in equilibrium, where weights are
either at the maximum or the minimum of the allowed range (Morrison et al., 2008).
This holds true for rules with weak weight dependence (µ ≪ 1). For multiplicative
rules and most intermediate values of µ, the equilibrium distribution is unimodal.
According to observations in biology, unimodal distributions seem to be more realistic
(Morrison et al., 2008).

To fully define the STDP rule, it must be stated which spike pairs (i, j) elicit weight
updates. This is determined by the spike pairing rule. Besides all-to-all pairing that

22

1.2. Models of plasticity

considers each possible combination of i and j, several nearest neighbor variants are
in use (Morrison et al., 2008). Hardware systems described by Schemmel et al. (2006,
2010) use a reduced symmetric nearest neighbor rule.

By itself STDP is an unsupervised learning rule. It detects temporal coincidences
in activity between pre- and postsynaptic neurons. An important feature is the sharp
separation in time for pre-before-post (∆tij > 0) and post-before-pre (∆tij < 0) spike
pairs.

STDP provides a number of functional capabilities (see for example Sjöström and
Gerstner (2010) for a list). Examples would be latency reduction for repetitive inputs
(Song et al., 2000), the development of receptive fields in cortex (Song and Abbott,
2001), and tuning for sound source localization (Gerstner et al., 1996).

1.2.2. Phenomenological models from biology

The form introduced in the previous section is commonly used in simulation studies.
However, biological experiments draw a more complex picture of the rule. Other
factors than pre- and postsynaptic timing can influence the amount of weight change.
Measurements by Sjöström et al. (2004) show that depression can be induced by chang-
ing the postsynaptic membrane potential without any postsynaptic action potentials.
Magnitude and timing of weight change are identical for both forms of induction. This
would indicate, that membrane potential is the more fundamental factor than spike
timing.

Measurements by Markram et al. (1997) and Sjöström et al. (2001) also show that
firing rates in addition to timing influence STDP. If spike pairs are presented at high
frequencies, synapses are strengthened independent of ∆tij. So there is no depressing
branch in the learning function s above a certain rate threshold.

In addition to frequency, STDP depends on the short term history of spikes (Froemke
et al., 2010a). When using for example triplets instead of spikes, where a post-pre pair
is followed by a post spike with 10 ms time intervals, the synapse is strengthened. If
however pre-post-pre triplets are applied, no change is observed (Wang et al., 2005).
Equation 1.2 predicts no change in both cases. As shown by Froemke et al. (2010a)
short-term modulation and frequency dependence can be included into Equation 1.1
via additional suppression terms that depend on the time since last spike for the pre-
and postsynaptic neuron.

As reviewed by Froemke et al. (2010b) STDP depends on the specific location of
the synapse in the dendritic tree. The learning function s gradually changes with
distance to the soma of the neuron. Synapses close to the soma exhibit classical STDP.
With increasing distance, potentiation is suppressed until distal synapses only exhibit
depression, even for pre-post spike pairs. This can be reverted again to potentiation by
depolarizing the dendrite or by dendritic spikes.

STDP is found for synapses in various species and different brain regions. However,

23

1. Introduction

the general shape of the learning function s can be very different. For example, the
temporal width τ± of the interaction window can vary (Caporale and Dan, 2008). The
learning function can be inverted in part or over the whole time range (Morrison
et al., 2008). There can be negative offsets if single pre or postsynaptic spikes lead to
depression. A collection of different shapes is given by Abbott and Nelson (2000) and
Caporale and Dan (2008).

It is known, that the dynamics and strength of synaptic transmission are modulated
by various chemicals, so called neuromodulators (Seol et al., 2007; Pawlak and Kerr,
2008; Zhang et al., 2009; Pawlak et al., 2010). For example, the neuromodulator
dopamine can change depression for post-before-pre pairs into potentiation (Pawlak
et al., 2010). Neuromodulators can act as a “third-factor” in addition to pre- and
postsynaptic firing times in Equation 1.2. They provide a control mechanism of the
unsupervised “two-factor” STDP rule affecting many synapses in a certain area. Here,
especially dopamine is of interest, because of its connection to reward (Schultz et al.,
1997): The dopamine signal seems to signal an error between predicted and actually
received reward. This leads to the field of reward-based learning using STDP with
neuromodulation as third-factor. This is discussed in the next section.

In contrast to the plain STDP rule introduced in Section 1.2.1, the functional conse-
quences of the effects described in this section are to a large part not yet clear. Therefore,
it is difficult to say what can be gained by including all or some of them in a hardware
model. On the other hand, hardware with biologically realistic plasticity mechanisms
offers the opportunity to help in that research by providing a platform for large-scale
network experiments.

1.2.3. Reward-modulated STDP

In the classical machine learning approach of reinforcement learning (Sutton and
Barto, 1998) an agent learns to perform a given task by selecting actions that maximize
the total reward it receives from the environment. This idea is inspired by operant
conditioning experiments (Rescorla and Wagner, 1972; Rescorla, 2008) where an animal
is trained using only reward or punishment as feedback. The reward is a single scalar
number that determines how well the agent performed. This stands in contrast to
supervised learning, in which a teacher supplies the correct actions to take in a learning
phase. In recent research, a connection between reinforcement learning and modulated
STDP is beginning to emerge (Izhikevich, 2007b; Farries and Fairhall, 2007; Florian,
2007; Legenstein et al., 2008; Frémaux et al., 2010; Potjans et al., 2011). A central
requirement is the solution of the so-called temporal credit assignment problem: There
is a temporal delay between action and the reward it will cause. The neural network
somehow has to know, which synapses contributed to the reward and should be
modified. A solution is to maintain a per-synapse eligibility trace e(t), that keeps a

24

1.3. Design goals for neuromorphic hardware

memory of recent spike activity.

ė(t) =

{

s(∆tij) if t = tij

− 1
τe

e(t) otherwise
(1.7)

with the time derivative ė(t), the decay time constant τe, and the time of the spike pair
tij = max

{

Xi, Yj

}

. It is important to note, that synaptic weights are not immediately
changed by the occurrence of spiking activity as in the case of the plain two-factor rule.
Instead, only the local eligibility trace is affected. The environment gives the reward R

in reaction to the activity of the agent. However, using R directly to modulate weight
change would introduce an unsupervised bias, as Frémaux et al. (2010) have shown.
Instead, the success signal S = R− 〈R〉 given as difference between expected reward
〈R〉 and current reward R is used:

∆ = ηe(t)S (1.8)

with the learning rate η. S could be implemented by dopamine signals in the brain,
which exhibit such a differential behavior (Schultz et al., 1997). Equation 1.8 is called
R-STDP rule (Izhikevich, 2007b; Florian, 2007) and replaces Equation 1.2 for the compu-
tation of weight changes. This rule is used in a detailed simulation study described in
Chapter 2 to analyze the effect of hardware constraints on its performance in a simple
spike train learning task.

1.3. Design goals for neuromorphic hardware

This thesis focuses on neuromorphic hardware systems that follow three main design
goals. These goals are listed and motivated in the following text:

Large scale Neurons in the neocortex of the human brain count in the tens of
billions (21.5× 109 ± 38%, Pakkenberg and Gundersen, 1997). The entire brain is even
five times larger. To understand how the brain or individual substructures work,
models of comparable size have to be formulated and analyzed. The classical approach
is to perform simulations on super-computers employing general purpose micro-
processors. However, cortical or brain scales are not yet within reach. The simulation
reported in Ananthanarayanan et al. (2009) reaches 109 neurons using a BlueGene/P
(Alam et al., 2008) with 147 456 cores. The Blue Brain Project (Markram, 2006) targets a
much more detailed simulation of about 10k neurons on a BlueGene/L. By building
hardware systems specialized for the emulation of neural networks, it is possible to
increase efficiency and therefore reach larger scales. It is the goal of neuromorphic
hardware systems designed for scalability to enable the study of networks at relevant
sizes and do so more efficiently than general purpose supercomputers.

25

1. Introduction

Acceleration in time Animals are able to alter their behavior based on past ex-
periences by learning. This is often a tedious process requiring repeated interaction
with an environment, for example when learning how to walk or to play a musical
instrument. To study these processes that take days, weeks or even years in an artificial
system requires an acceleration compared to the biological equivalent. The problem is
aggravated as computer experiments often require a lot of repetitions, where in each
iteration the experimenter evaluates the results and modifies the model. Reducing
this turn-around time enables quick exploration by the experimenter and therefore
increases the efficiency of research. With this in mind, neuromorphic hardware should
provide accelerated emulation of networks.

For some cases, the acceleration can be seen as a hindrance: robotics applications
for example operate necessarily in a not accelerated environment. If control models
taken from biology are to be employed, environment and controller operate at different
time scales. Therefore, the ideal hardware allows a wide range of acceleration factors
ranging down to real time operation.

Flexibility To allow exploration of network models a system must allow to change
its configuration. In general, the more flexible, the better, but of course this reduces
the ability to specialize the design. So in a way, this goal is in opposition to the first
two goals. This gives rise to trade-offs between flexibility and performance in terms of
achievable size and acceleration. Supercomputers are on the extreme of flexibility. In
principal, they can simulate arbitrary models, only limited by available memory and
perhaps suffering long simulation times. Neuromorphic hardware is often rather on
the other extreme, for example with neuronal dynamics fixed in full-custom circuits.
One aspect of this thesis is the question of how much flexibility is possible regarding
plasticity, while still achieving the first two goals.

26

2. Theory

In this chapter I approach the topic of neuromorphic hardware design from a theoreti-
cal perspective. Starting out from the plasticity models described in Section 1.2 a list of
high level requirements is derived and an abstract model of a hardware implementa-
tion developed. This model is then studied in simulations to develop guidelines for
the hardware implementation.

2.1. Requirements for hardware

The models listed in Section 1.2 require an increasing amount of capabilities.

2.1.1. Two-factor STDP

Two-factor STDP is a conceptually simple algorithm. It represents a process local to
the synapse, depending only on pre- and postsynaptic activity. What makes it difficult
to implement in hardware is, that this process has to be available in parallel for every
synapse and be active for every spike. In the neocortex in humans there are between
104 and 105 synapses per neuron (Peter et al., 1979). So the algorithmic complexity at
the individual synapse has to be kept at a minimum.

The basic two-factor STDP rule requires the ability to measure time differences
between pairs of pre- and postsynaptic spikes at the individual synapse. This implies
some form of memory, because information about past presynaptic spikes must be
used for every postsynaptic one and vice versa. In principal, this memory is only
necessary for every neuron or other source of events. However, especially in large-scale
systems, distribution to the necessary synapses may be problematic, as the source may
be physically far away and have a high fan-out to many synapses.

In the typical formulation, change of weight depends exponentially on the time
difference. Therefore, a method for exponential weighting of the measured timing is
required. This can be combined with the measurement itself, for example using local
traces as described in Morrison et al. (2008). Of course, an implementation of STDP
must provide modifiable synaptic weights. So in summary, this rule has the following
requirements:

1. Processing per synapse and per spike.

2. Measurement of spike timings.

27

2. Theory

3. Exponential weighting of time differences.

4. Modifiable synaptic weights.

2.1.2. Reward-modulated STDP

Reward-modulated STDP is a three-factor extension of two-factor STDP and has
therefore the same requirements. Additionally, it needs an environment providing
rewards, with which the system can interact. This environment could for example be
simulated on an attached computer - or cluster of computers - or it could be a robotic
system. The concept of environment used here is the same as in reinforcement learning
(Sutton and Barto, 1998).

The core idea of the rule is to modulate STDP with a reward derived global signal.
So the hardware needs to provide a means to calculate this signal from the reward,
distribute it to the STDP mechanism and multiply the weight change with it.

An important aspect of reward-based learning rules is, that the reward can arrive
with some delay to the actions that have caused it. This is known as the distal reward
or temporal credit assignment problem (Izhikevich, 2007a). In the model I have
described in Section 1.2 an eligibility trace is used to solve this problem. The trace
contains information about the recent activity at the synapse. Therefore, a per-synapse
eligibility trace is necessary for this rule. In summary, there are these requirements:

1. All requirements of two-factor STDP.

2. An interactive, reward providing environment.

3. Computation and distribution of and multiplicative modulation with a global
signal.

4. A per-synapse eligibility trace.

2.1.3. Phenomenological models

Section 1.2.2 lists a number of observations from biology regarding synaptic plasticity.
Additional factors, e.g. membrane potential of the postsynaptic neuron or the mean
firing rate, can affect the weight change. For an implementation, this necessitates access
to these factors by the weight updating mechanism. For example, STDP depends on
the short-term history of the pre- and postsynaptic activity. This requires additional
state variables for each synapse with their own temporal dynamic. Observations also
show, that the shape of the STDP learning function can vary drastically between cell
types and brain regions. To model this, a concept of location and type for the synapse
is needed, i.e. the weight updating process has to know where the synapse is located
and of what type it is. Such a location should also reflect the position in the dendritic

28

2.2. Abstract hybrid hardware model

tree, to cover this dependency. Different learning functions have to be reflected in the
ability to use configurable weighting of the timing measurement. In summary, these
observations lead to the following requirements:

1. All requirements of two-factor STDP.

2. Access to additional state variables (e.g. membrane potential, firing rate, short-
term plasticity) that have their own dynamics.

3. Information about location of synapses in regions and on the dendritic tree.

4. Information about cell- and synapse-type.

5. Ability to configure the STDP learning function.

2.2. Abstract hybrid hardware model

This section formulates an abstract model of a hardware plasticity implementation. It
represents a generalization of the concrete designs presented in Chapter 3. Using an
abstract model simplifies a general analysis of the hardware design space.

2.2.1. Combining analog and digital computing

Classical neuromorphic hardware systems use analog circuits to build a physical model
of synapses, neurons and their interconnections (Mead, 1990; Douglas et al., 1995). The
term physical model means, that circuit dynamics as described by differential equations
match those of the biological model. This is a very efficient way of implementing a
system that behaves like a neural one. The neural network is emulated. In contrast, a
digital computer encodes differential equations in a software program and numerically
solves them. The state of the system is represented in abstract digital values stored in
memory. The neural network is simulated.

While the analog approach is efficient, it is also inflexible, because once the dy-
namics are built into the circuit they can not be changed. Configuration options and
modular design improve flexibility, but the dynamics stay restricted to a family of
implementable models. For digital systems, flexibility is only limited by available
memory and computational power. In practice this often means, that a more detailed
model takes longer to simulate and the network consists of fewer neurons and synap-
ses. An example for this are the two simulation studies mentioned in Section 1.3. The
more detailed simulation could support fewer neurons.

While discussing the requirements (Section 2.1), it was already apparent, that plastic-
ity rules show considerable diversity. A fully analog solution would have to include all
possible features with individual configurable enable switches. Depending on the rule,
parts of the circuit that are not needed would be disabled. In a digital implementation,

29

2. Theory

the gained flexibility would be paid for by reduced efficiency. So why not combine
both approaches into a hybrid system to get the best from both worlds? An analog part
models common features, like the measurement of spike timings, in a time continuous
and local fashion. Most of the higher features, like modulation or access to other state
variables, are realized in software running on a processor. The processor, as a rather
complex and therefore large component, would likely be shared by many synapses.
In this case, software would iterate over the synapses, communicate with the local
analog circuit and modify the weight according to its program and the local analog
state. Such a hardware system is the focus of this thesis. The AHM formulated later in
this section is based on this concept.

2.2.1.1. What type of digital part is needed?

The straight forward choice for the digital part of such a hybrid system is to use a
conventional micro-processor: a device that executes a stream of instructions belonging
to a program stored in memory to manipulate internal registers and variables also
stored in memory. An Input/Output (I/O) unit is used to interface the analog part
of the system. However, it is also conceivable to use a different design concept here,
for example a command sequencer or a configurable finite state machine. I will come
back to the idea of a command sequencer later, but mainly I will exclude alternative
implementation styles for the digital part in this thesis. This is done for three reasons: 1)
The concept of a processor is well understood with a large literature on implementation
and optimization. 2) A processor provides great flexibility, while a hand-crafted system
might be difficult to adapt in unforeseen use cases. 3) A processor can support high-
level programming languages allowing everyone proficient in that language to use
it.

2.2.2. The abstract hybrid hardware model

With these considerations about the basic architecture in mind, a model can now be
formulated. The goal of this model is to capture fundamental aspects of a hardware
system that follows the hybrid approach detailed in the previous section.

Synapses are organized in an array of N rows with M columns. A row shares the
same presynaptic input. All synapses in one column are connected to the same neuron.
An individual synapse is shown in Figure 2.1. It has to fulfill two purposes: controlling
the strength of the effect a presynaptic pulse has on the postsynaptic neuron and
implementing the local component of STDP. The former is controlled by the weight w,
which modulates the incoming pre pulse. The modulated inputs from all synapses in
one column are summed on a vertical line feeding to the postsynaptic neuron. The
shape of the postsynaptic potential (PSP) does not necessarily have to be generated in
the individual synapse, but can be created in a neuron input stage. The local part of

30

2.2. Abstract hybrid hardware model

pre x +

local STDP

post sum out

sum in

readout

Synapse

w

Figure 2.1.: A synapse in the abstract hybrid hardware model. It consists of a weight w that
modulates presynaptic events. The output of all synapses belonging to one neuron
is integrated, before it is presented to the neuron. The synapse also contains the
local accumulation part of STDP.

the STDP implementation needs to see the pre and post signals and the weight. The
post line is a feedback line from the neuron that is pulsed whenever the neuron fires.

Figure 2.2 gives an overview of the AHM. The synapse array is controlled by a
synapse interface component that can selectively access the readout lines of individual
synapses. Via an adapter module this interface is connected to the plasticity processor
executing the plasticity program. The program and other data is stored in main
memory, which the processor accesses via a bus. This bus also gives access to other
components of the system that are indicated here as peripherals 1 . . . K. The bus
can also be accessed from the outside to configure the system initially or to provide
additional information during runtime, for example a reward signal. To allow for
external access to synaptic weights, the adapter is also connected to the bus.

2.2.2.1. Using the abstract model for plasticity

To realize for example two-factor STDP in the AHM, the STDP component local to the
synapse performs the timing measurement and exponential weighting. The result is
stored locally until the processor - via adapter and synapse interface - reads it together
with the weight. The program then calculates the new weight, writes it back to the
synapse and indicates to the local STDP circuit, that the stored information was used to
change the weight. The local circuit could for example sum the exponentially weighted
time difference between pre- and postsynaptic spike pairs. When writing the new
weight back, the sum would be set back to zero.

For more complex rules requiring additional state information, for example the

31

2. Theory

Synapse Interface

Synapse Array

(NxM)

Bus

Adapter

Plasticity

Processor

Main memory

Peripheral 1

Peripheral K

...

External

Control

Figure 2.2.: Schematic overview of the abstract hybrid hardware model. It represents a high
level view of the proposed plasticity implementation for neuromorphic hardware.
See text for a description of the components.

membrane potential of the postsynaptic neuron, software would perform a bus access
to an Analog to Digital Converter (ADC) peripheral when calculating the new weight.
In reward based learning, the environment would send any rewards through the
external interface and write a message in main memory. During the weight update,
software would retrieve this message to modulate the amount of change.

2.2.2.2. Acceleration in time

The hardware system and therefore also the plasticity implementation should operate
in an accelerated time domain (Section 1.3). This means, that the dynamics of the emu-
lated network are equivalent to that of the mathematical model, but with a compressed
time scale. If the model uses time ϑ, the hardware uses time t with the relation

ϑ = αt. (2.1)

Where α is the acceleration factor.

2.2.2.3. Discretized weights

In general, weights can be stored as continuous analog values, discretized in a digital
representation or as binary on/off switches. The AHM uses digitally represented
weights of r-bit resolution, which are limited to the interval [wmin, wmax]. This defines
the discretization step size

δr =
wmax − wmin

2r − 1
. (2.2)

32

2.2. Abstract hybrid hardware model

Thus, a weight w can assume one of the values wmin, wmin + δ, . . . , wmin + (2r − 1) δr =

wmax. The special case of r = 1 corresponds to binary weights that either assume wmin

or wmax. In the limit of large r, the weight approaches a continuous representation.

Modifying discretized weights If a weight change of ∆ is required by the learning
rule, this has to be rounded to ∆r, so that the resulting weight w′ = w + ∆r is repre-
sentable. This leaves some freedom in choosing the rounding rule. The straightforward
approach is to round to the nearest representable value. This has the consequence, that
small weight changes are discarded, if they satisfy

|∆| ≤
δr

2
. (2.3)

For learning it is more important, that the overall effect on all weights follows the
statistics of the learning rule. This opens the door for probabilistic rounding: The
discretized change ∆r is chosen with a probability proportional to the distance to
the actual update ∆. If ∆ is within the interval [wmin + (k− 1)δr, wmin + kδr), then
∆r = wmin + kδr is chosen with probability p and ∆r = wmin +(k− 1)δr with probability
1− p. Given ∆, the average discretized change is

〈∆r〉 = (wmin + kδr) p + (wmin + (k− 1)δr) (1− p) (2.4)

= wmin + δr(k− 1) + δr p. (2.5)

To get 〈∆r〉 = ∆, one can choose

p =
(∆− wmin)− (k− 1) δr

δr
. (2.6)

This way, averaged over all synapses and updates the discretized version matches the
continuous one.

2.2.2.4. Local analog processing in the synapse

The component of the STDP circuit local to the synapse has to perform three tasks:
measuring the timing of spike pairs, weighting the result according to the STDP
learning function and accumulating results, until the plasticity program processes the
synapse.

Measuring spike timing There are a number of possible pairing schemes to select
pairs from the pre- and postsynaptic spike trains Xi and Yj (Morrison et al., 2008).
All-to-all pairing, for example, considers all presynaptic spikes occurring before a post-
synaptic one, and vice versa for presynaptic events. The pairing scheme determines
the set of spike pairs P evaluated at a synapse. Each pair (i, j) ∈ P has a time difference

∆tij = Xi −Yj. (2.7)

33

2. Theory

Weighting

Drift

0 1 2 3 4

0 1 2

Spike input

Accumulation trace

Figure 2.3.: Local analog processing by the accumulator part of the synapse. It measures the
time differences of nearest neighbor spike pairs, and weights them according to
the learning function s(∆t). The result is subjected to drift according to the drift
function d(t) to produce the local accumulation trace a(t).

It is positive for pre event Xi occurring before post event Yj and negative otherwise.
The occurrence of a pair is known at time tij = max

{

Xi, Yj

}

.

Local accumulation The time differences are weighted according to the STDP
learning function s

(

∆tij

)

. The result is added to the local state variable a(t) at the time
of occurrence of the pair tij. In the time between pairs, a(t) changes according to the
drift function d(t). At time tr a reset mechanism initializes the trace to 0. This gives
the following equation:

ȧ(t) =

{

s
(

∆tij, a
)

for t ∈
{

tij|(i, j) ∈ P with tij > tr

}

d(t, a) else
(2.8)

a (tr) = 0 (2.9)

In Figure 2.3 local analog processing is illustrated by an example. Here, the symmetric
nearest neighbor pairing scheme (Morrison et al., 2008) is used, with exponential
weighting for s

(

∆tij, a
)

and exponential decay for d(t, a). Those are the settings used
in Section 2.3.

34

2.2. Abstract hybrid hardware model

Analog interface The synapse interface, triggered by the plasticity processor, eval-
uates the local trace a at time te by means of a readout and evaluation process. The
evaluation function E converts the analog value a into a digital representation b:

b = E (a (te)) (2.10)

An example for a possible implementations of the evaluation process would be an
ADC discretizing the analog value to a digitally represented number. A special case
used in Section 2.3 is comparison to a threshold Θ

(b0, b1) = EΘ (a(te)) =

(1, 0) for a(te) > Θ

(0, 1) for a(te) < −Θ

(0, 0) else.

(2.11)

2.2.2.5. Global digital processing by the processor

The plasticity processor controls the readout of synapses, calculates new weights and
writes them back. This is modeled with an update function F that determines the
weight change ∆

∆ = F (b, w, P) (2.12)

depending on the result b of the analog evaluation of the synapse accumulation trace,
the synaptic weight w, and global parameters P. The global parameters P can represent
arbitrary information, for example network state or neuromodulator concentrations.
The complexity of F is only limited by available resources, i.e. the amount of main
memory and processing speed.

2.2.2.6. Drift of analog storage

The drift function d(t, a) models a characteristic aspect of analog memory in deep
sub-micron process technologies. Due to leakage currents of various origins (Roy et al.,
2003), the value stored in analog memory changes over time. The AHM assumes, that
on the occurrence of a spike pair the trace a is increased or decreased precisely with the
value given by s(∆tij, a). In the time between those updates, the trace drifts according
to the drift function d. The precise shape of d depends on the used circuit. Behavior is
not limited to decay, but for example drift to the upper supply voltage is also possible.

This is not only a parasitic effect. For example, the eligibility trace of reward-
modulated learning rules typically is exponentially decaying in theoretical models
(Florian, 2007; Izhikevich, 2007b; Frémaux et al., 2010). The eligibility trace can be
identified with the local accumulation variable a(t). To precisely implement such
models, it might be necessary to tune the circuit to exhibit a specific drift function
d(t, a).

35

2. Theory

C R2

V

R1

Figure 2.4.: Drift modeled with ohmic resistance to ground and to the supply voltage.

Ohmic drift If charge leaks from the capacitor through an ohmic resistance, d(t, a)

is proportional to the voltage difference to the leakage potential A:

d (t, a) = λ (A− a(t)) (2.13)

Here, λ = 1
τe

is the inverse time constant. A circuit representing this model is shown in
Figure 2.4. In the limit of infinite R1, i.e. perfect isolation, the leakage potential A = 0
and a(t) always decay towards 0. Respectively, in the limit of infinite R2, a(t) always
grows towards the supply voltage.

Dual capacitors For VLSI hardware systems it is impractical to use negative volt-
ages. However, a(t) can assume negative values, if a post-before-pre pair is encoun-
tered. A possible solution is to use two capacitors and split up the accumulation into
positive and negative components a(t) = a+(t)− a−(t). To capture this in the AHM,
a, s and d are extended to two-dimensional vectors a, s, d.

a(t) =

(

a+(t)

a−(t)

)

(2.14)

d(t, a) =

(

λ+ (A+ − a+(t))
λ− (A− − a−(t))

)

(2.15)

The learning function is split into pre-before-post and post-before-pre part using the
Heaviside function H:

s(∆tij, a) =

(

s(∆tij, a)H(∆tij)

−s(∆tij, a)H(−∆tij)

)

(2.16)

An evaluation function Ev operating on a can be constructed from E by using the
difference of the accumulating capacitors:

Ev(a(t)) = E(a+(t)− a−(t)) (2.17)

36

2.2. Abstract hybrid hardware model

2.2.2.7. Mismatch

A second intrinsic aspect of analog hardware is device mismatch introduced by the
manufacturing process (Kinget, 2007). Imperfections in e.g. transistor geometry cause
variations in circuits that should ideally be identical. This effect, also referred to as
fixed-pattern noise, leads to deviations between individual synapses in the AHM.
Simply put, all synapses behave differently, but behavior of the individual one stays
constant over time. As a simplification, the AHM integrates mismatch at two points:
the drift and the evaluation function. For the n-th synapse, the drift function dn(t) and
the evaluation function En(t) represent the analog behavior of this particular synapse1.

For the analysis in Section 2.3, mismatch is modeled using the following definitions:
For the threshold comparison readout EΘ,n(a), mismatch is modeled by drawing the
threshold Θn from a Gaussian distribution

Θn ∈ N
(

Θ, σ2
Θ

)

, (2.18)

with mean Θ and variance σ2
Θ.

To integrate mismatch into the vectorized drift function dn(t, a), parameters λ−1
n,+ =

τ
(e)
n,+ and λ−1

n,− = τ
(e)
n,− are individually drawn from a Gaussian distribution

τ
(e)
n,± ∈ N

(

τ
(e)
± , σ

τ
(e)
±

)

, (2.19)

with means τ
(e)
+ and τ

(e)
− , and variances σ

τ
(e)
+

and σ
τ
(e)
−

. To simplify analysis and keep

the parameter space small, only the maximum and minimum of possible values are
used for the leakage potential in the drift function:

An,± =

{

0 for λn,± ≥ 0

amax else,
(2.20)

with amax describing the maximum value a± can assume. This means, that a capacitor
implementing the accumulation trace a(t) can either drift towards ground or supply
voltage.

2.2.2.8. Dynamic analog noise

While fixed-pattern noise stays constant over time, there is also dynamic noise, or
trial-to-trial variation, on analog circuits. For example, repeatedly evaluating the same
synapse using the evaluation function E will produce varying results. Noise is caused
by a number of sources, for example shot noise or thermal noise (Gray et al., 2001).
Additionally there are man-made sources, for example crosstalk between interconnect

1As long as only single synapses are considered, the index is left out for clarity.

37

2. Theory

lines or power supply noise (Shepard and Narayanan, 1997). Noise can be integrated
into the AHM by introducing an additional term to the accumulation trace a(t):

aδ(t) = a(t) + δa(t) (2.21)

δa(t) is distributed according to a Gaussian distribution with mean 0 and variance σδa.

2.2.2.9. Processing speed

The central aspect of the AHM is, that analog time-continuous circuits are combined
with a digital, clocked processor. The processor accesses synapses for weight updates
sequentially through the synapse interface (see Figure 2.2). While the processor is busy
updating one synapse, all synapses continue to evolve according to their dynamics
(Equations 2.8-2.9). So for the whole array updates do not occur simultaneously, but
are stretched out over a duration of time. The n-th synapse in the array is updated at
time

tn = t0 +
n

νS
, (2.22)

with the processor updating frequency νS measured in synapse updates per second.
The updating speed νS is limited by the read and write access times of the array and
the computational performance of the processor.

2.2.2.10. Communication latency

Whenever plasticity experiments are performed in a closed-loop setup, where addi-
tional information for the weight update is provided externally depending on the
activity of the emulated network, the communication latency plays a role. Typically,
external information represents a reward signal that is determined by the output of
the network. Just like processing speed, as discussed in Section 2.2.2.9, communication
latency adds an additional delay DR compared to a theoretical model. Because weight
updating can only commence after the reward is available, Equation 2.22 is extended
by a delay term:

tn = t′0 +
n

ν
+ DR (2.23)

Here t′0 is the hypothetical time of evaluation of the first synapse, if there was no delay.

2.3. Reward modulated STDP

The previous section formulated an abstracted hardware model, the AHM. This model
is a generalization of the hardware designs presented in Chapter 3. By studying the
model in simulations, the viability of the concept can be verified and guidelines for the

38

2.3. Reward modulated STDP

Reward

Modulated

STDP

Random

Background

Figure 2.5.: Overview of the network used for reward modulated STDP. The network consists
of two layers with feed-forward connections. Each of the NT = 5 neurons sees all
NU = 250 inputs, and additional random background stimulation. The output
firing pattern of the neurons is rewarded, and the reward modulates the weight
change by STDP.

39

2. Theory

implementation developed. This section presents results from simulation of a reward
modulated STDP learning rule.

The reward modulated STDP synaptic learning rule is described in Section 1.2.3. The
learning task is based on the work by Frémaux et al. (2010). Findings presented here
are in part submitted for publication (Friedmann et al., 2013). Figure 2.5 visualizes the
benchmark network model used in the simulations. A single layer T of NT = 5 neurons
receives input from NU = 250 stimulus sources and NB = 250NT random Poisson
sources providing background activity. All neurons see the same stimulus population
U, but each receives random stimulation from disjoint, equally sized subsets of the
background population B. The network is simulated in trials of ttrial = 1 s duration. At
the end of each trial, the environment generates a reward R in response to the activity.
This reward is then used with the eligibility trace local to the synapse to compute the
change of synaptic weights wij between populations U and T according to Equation 1.8
(i = 0 . . . NU , j = 0 . . . NT). A tabular description of the simulated network is available
in Appendix A.

Stimulation The input to the network consists of a defined pattern of k = 0 . . . Nstim

firing times Sik of the individual input sources i = 0 . . . NU . Times are drawn from a
uniform distribution

Sik ∈ U (0, ttrial) (2.24)

on the interval [0, ttrial]. For the simulations shown here, Nstim = 6. One specific
stimulation pattern, generated in the described way, is denoted as S∗ik. This pattern
is used for all simulations if not noted otherwise to ensure comparability of results
without the variability introduced by different patterns. The background sources emit
spikes according to a Poisson process with firing rate νB.

Learning task The task the network has to learn defines how the reward is gen-
erated. Here a spike train learning task is used, where the output neurons have to
reproduce a target pattern Xtarget of output spike times. The pattern is generated by
simulating the network once with a set of reference weights wij = Wij and recording
the output pattern. This way, it is guaranteed, that the network can produce the
target pattern. Reference weights are drawn randomly from the uniform distribution
U (wmin, wmax). A specific set of weights W∗ij is used for comparisons that is generated
differently using

W∗ij =

Ŵ sin
(

iπ
NU

)

if 0 ≤ i ≤ NU
2

0 if NU
2 < i < NU ,

(2.25)

with amplitude Ŵ (value given in Appendix A).
The reward R is calculated using the metric Dspike[q] by Victor and Purpura (1996).

Dspike[q] measures the distance between spike trains by determining the cost of trans-

40

2.3. Reward modulated STDP

forming one into the other by adding, moving and deleting spikes. Adding and
deleting have unit cost, moving by ∆t costs q∆t. So if a spike has to be moved farther
than 2/q it is less costly to remove it and add it back at the correct time. These simu-
lations use 1/q = 20 ms. The reward is calculated with a normalized version of the
metric individually for every neuron j:

Rj = 1−
Dspike[q]

(

Xout,j, Xtarget
)

Nout,j + Ntarget
, (2.26)

Here, Xout,j is the output spike train of neuron j with Nout,j spikes and Ntarget is the
number of spikes in the target spike train. The reward R communicated to the network
is the average of Rj over all neurons. Because Dspike[q] ≤ Nout,j + Ntarget, the reward R

is restricted to the interval [0, 1].

The approach taken in the analysis here, is to simulate the network with and without
hardware constraints and compare the learning performance. Hardware constraints are
derived from the AHM and include discretized weights, effect of a readout mechanism,
analog drift, mismatch and delayed reward.

2.3.1. Baseline performance

Before hardware constraints are included, this section presents the unconstrained
model. The network is simulated for a total of 10 000 trials. This is repeated Nrun

times with different random seeds, so that the background stimulation is different each
time. All runs use the reference weights W∗ij and the input pattern S∗ik. Performance is
measured using the initial performance level Rbefore and the final performance level Rafter,
which represent the average of the received reward over the first 100 and the last 1 000
trials, respectively. During the first 100 trials no weight updates occur to stabilize 〈R〉
and accurately measure Rbefore for the initial weight configuration.

Figure 2.6A shows a raster plot for selected trials during learning. One can see, that
while the neurons fired randomly initially, they quickly learn to produce spikes close to
the target time points. Figure 2.6B shows reward over time for this simulation. Initially
reward increases quickly, until after about 2 000 trials the final level is nearly reached.
The trace of the success signal shows, that S is overall distributed symmetrically
around 0. According to Frémaux et al. (2010) this is a requirement to eliminate an
unsupervised bias, that would prevent or hinder learning. Over all Nrun = 20 runs, the
baseline model improves performance on the task from initially Rbase

before = 0.12± 0.04
to a final performance of Rbase

after = 0.54± 0.05.
In Figure 2.6B one can see transient drops in reward. On close inspection, these

drops only last for ten or fewer trials, where the performance sinks monotonically
to Rbefore and then grows monotonically to the previous level. This is also the case

41

2. Theory

A

0.0 0.2 0.4 0.6 0.8 1.0
Time in trial [s]

0

2000

4000

6000

8000

10000

Tr
ia
l N

o.
B

0.0
0.2
0.4
0.6
0.8
1.0

Re
w

ar
d

0 2000 4000 6000 8000 10000
Trial No.

−0.15
0.00
0.15

Su
cc

es
s

Figure 2.6.: Simulation of the unconstrained baseline model of reward modulated STDP. (A)
Raster plot showing the output of all five neurons at selected trials during learning.
The red vertical bars indicate the target firing times. Figure taken from Friedmann
et al. (2013). (B) Evolution of reward during learning. The blue and red line mark
the initial and final performance levels Rbefore and Rafter, respectively. The lower
plot shows the success signal S, which is the difference between reward R and the
running average 〈R〉. The black trace shows only every 50-th point, while all points
are plotted in grey.

for smaller learning rates of η = 10 or η = 5 (data not shown), but to a lesser extent.
The precise reason for this effect is not understood, but since it does not affect final
performance, no further investigations are performed.

This result is obtained in the special case of using W∗ij and S∗ik. Because the focus
of this study is the impact of hardware constraints on performance, it makes sense
to reduce the variability introduced by other sources, such as varying weights and
stimulation patterns. It is especially important in light of long simulation times
on the order of 10 h, since a high variability necessitates many repetitions of the
same simulation to gather enough statistics. However, the reduction to a special
case may limit the generality of the obtained results. To verify that this is not the
case, simulations with random reference weights and stimulation patterns are carried
out. Figure 2.7 shows results: If reference weights Wij ∈ U (wmin, wmax) are used for
Nrun = 20 simulation runs, the final performance is Rw

after = 0.59± 0.08. For random
stimulation patterns Sik ∈ U (0, ttrial), and using W∗ij , the final performance reaches
Rs

after = 0.53± 0.08 averaged over 20 runs. If both reference weights and stimulation
patterns are chosen randomly, final performance is Rsw

after = 0.54± 0.09, again averaged
over 20 runs.

The learning rate in Equation 1.8 allows for a trade-off between speed of convergence
and achievable final reward level. For small η, only small changes are made after every

42

2.3. Reward modulated STDP

Rbase
after

Rw
after Rs

after
Rsw

after

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
in

a
l
le

ve
l
o
f
re

w
a
rd

Figure 2.7.: Final level of reward of the baseline simulation Rbase
after, compared to simulations with

random weights (Rw
after), random stimulation pattern (Rs

after), and both random
(Rsw

after). The data show, that the selected configuration of weights and stimulation
are comparable to the larger class of randomly selected weights and stimulation
patterns.

A

0 2000 4000 6000 8000 10000
Trial No.

0.00

0.25

0.50

Av
er
ag

e
re
w
ar
d

η=15 η=40 η=1

B

1 5 10 15 20 25 30 35 40 45
η

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
w
ar
d

Figure 2.8.: (A) Traces of the running average of the reward 〈R〉 for different learning rates η.
Only every 50-th point of the running average is shown. (B) Final performance
levels for different learning rates η.

43

2. Theory

trial and the performance increases slowly. For large η, the increase is faster, but also
fluctuations caused by the random background are amplified, limiting how close the
network can come to optimal performance. This behavior is evident in Figures 2.8A
and 2.8B. A maximum of performance is reached for 5 < η < 15. The simulations
reported here use η = 15 for fast convergence with good performance.

2.3.2. Mapping reward modulated STDP to the AHM

To include hardware constraints into the simulation the AHM is employed. A central
aspect of the R-STDP rule is, that weight updates do not occur immediately, when
the spike pair is encountered, but are deferred until reward arrives. The eligibility
trace serves as memory of recent activity that, modulated by the success signal S,
determines the weight update. The eligibility trace can be directly mapped to the
local accumulation trace a(t) in the synapse (see Section 2.2.2.4). In this case, the
temporal behavior of a(t), as defined by the drift function d(t, a), has to reproduce
the exponential decay of the eligibility trace. Here, a time constant of 500 ms is used.
The reward is signalled to the processor in form of the success signal S written to
main memory through the external control interface. Whenever S is updated in
memory, i.e. at the end of each trial, the plasticity program starts a weight update of all
synapses. Initially, only the effect of discretized weights is considered. Therefore, the
evaluation function E returns the precise value of a(t), processor speed ν is infinite,
and communication has no latency (DR = 0). The plasticity program computes the
new weight according to

∆ = Ftheory (a (ttrial) , S) = Sa (ttrial) (2.27)

Table 2.1 defines all options in the framework of the AHM. Later sections add increas-
ingly more hardware effects.

2.3.3. Discretized weights

For the analysis of the effect of discretized weights on learning performance, I tested
different resolutions r and two rounding schemes described in Section 2.2.2.3: de-
terministic and probabilistic rounding. Figure 2.9 shows the results for Nrun = 20.
Already relatively low resolution of 8 or 6 bit is enough to reach performance equal to
the baseline simulation with continuous weights (Figures 2.9B and 2.9C). Only the 4 bit
data in Figure 2.9D show reduced performance, when using deterministic rounding.
In this case, switching to probabilistic rounding (green trace in Figure 2.9D) increases
performance nearly to the baseline level.

So why is it possible to improve performance for 4 bit by switching the rounding
scheme? Can it also be improved for even smaller resolutions? To answer these
questions one has to consider why the performance of lower resolutions is reduced.

44

2.3. Reward modulated STDP

Model option Implementation Section

Pairing scheme:
symmetric nearest neighbor
after Morrison et al. (2008)

all

Pair weighting: s
(

∆tij, a
)

= A±e−∆tij/τ± all

Drift:
d(t, a) = −λa(t) with
λ = 1

500 ms
2.3.1-2.3.4, 2.3.6-2.3.7

dn(t, a) according to Eq. 2.15
and Section 2.2.2.7

2.3.5

Evaluation: E(a(te)) = a(te) 2.3.1-2.3.3
EΘ (a(te)) 2.3.4 - 2.3.5, 2.3.7
EΘn (a(te)) 2.3.6

Evaluation
time:

te = ttrial 2.3.1 - 2.3.6

te = tn 2.3.7

Weight update: ∆ = SE(a(te)) 2.3.1-2.3.3
∆ = SA(b0 − ba) 2.3.4 - 2.3.7

Discretization:
∆r = Round(∆) (with
deterministic or probabilistic
rounding)

2.3.3,2.3.4,2.3.6

w′ =

w + ∆r for wmin ≤ w + ∆r ≤ wmax

wmax for w + ∆r > wmax

wmin for w + ∆r < wmin

Table 2.1.: Definitions of model options in the framework of the AHM for the simulations of
reward modulated STDP.

45

2. Theory

A Continuous weights

0 2000 4000 6000 8000 10000
Trial No.

0.00

0.25

0.50

Av
er
ag

e
re
w
ar
d

B 8 bit weight resolution

0.00

0.25

0.50

Av
er

ag
e

re
w

ar
d

0 2000 4000 6000 8000 10000
Trial No.

−0.15

0.00

De
vi

at
io

n

C 6 bit weight resolution

0.00

0.25

0.50

Av
er

ag
e

re
w

ar
d

0 2000 4000 6000 8000 10000
Trial No.

−0.1

0.0

De
vi

at
io

n

D 4 bit weight resolution

0.00

0.25

0.50

Av
er

ag
e

re
w

ar
d

0 2000 4000 6000 8000 10000
Trial No.

−0.4

0.0

De
vi

at
io

n

Figure 2.9.: Reward traces for different weight resolutions. Plotted is the running average of
the reward 〈R〉 and, for (B)-(D), the deviation to the trace in (A). The black traces
show every 50-th point of the running average. In (A) the light trace shows every
point for a single arbitrarily chosen run. The shaded area in the lower plot of (B)-(D)
also shows all points of the deviation trace. (D) The green trace shows performance
for probabilistic weight updates. These figures were taken from Friedmann et al.
(2013).

46

2.3. Reward modulated STDP

A

8 4 3 2 1
r

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
w
ar
d

B

−80 −40 0 40 80
∆t [pS]

100

103

106

Co
un

t

4 bit
6 bit
8 bit

Figure 2.10.: (A) The baseline simulation learns a set of continuous weights, which are then
discretized to lower resolutions. The simulation continues for 1000 trials with the
discretized weights to measure the performance. The shaded area indicates one
standard deviation around the baseline performance level Rbase

after. (B) Distribution
of weight updates ∆ before rounding. The red bars mark ±δr/2 for different
resolutions. All updates within this range are lost by deterministic rounding.

Two effects play a role here: 1) with lower resolution sinks the ability to represent a
well performing set of weights to which the network can converge. The discretization
error limits the accuracy. 2) After each trial, synaptic weights can only be changed in
quantities of the discretization step δr. If the weight update before rounding satisfies
Equation 2.3, it is discarded completely by deterministic rounding. Figure 2.10A shows
performance of a “good” weight set learned by the baseline model discretized to
different resolutions. Resolutions of 8 and 4 bit reach good performance, but beginning
at r = 3 bit performance decreases. So down to 4 bit the discretization error is small
enough to not limit the ability to represent a well performing set of weights. The
distribution of weight updates before rounding ∆ in Figure 2.10B visualizes how many
updates are lost due to rounding as described by Equation 2.3 for different resolutions.
One can see, that for 4 bit most of the updates are lost by rounding. So to answer
the previous questions: The resolution of 4 bit weights is improved by probabilistic
rounding, because this way the population average of weight changes is conserved.
For smaller resolutions, performance will be reduced even with probabilistic updates,
because the ability to represent a “good” set of weights is reduced by the discretization
error as shown in Figure 2.10A.

2.3.4. Threshold readout

The approach of combining analog and digital processing necessitates an interface
between both worlds. This interface is given by the evaluation function E(a) in the

47

2. Theory

AHM. A very simple implementation of the evaluation function is comparing a with a
threshold Θ as is done by EΘ defined in Equation 2.10. The simulations reported in
this section tested whether this simple mechanism is enough and how performance
is affected by this constraint. The model options used in the previous section are
modified in two places: the evaluation function is now E(a(te)) = EΘ(a(te)), which
produces the two comparison bits b0, b1 depending on whether a(te) exceeded Θ or
−Θ. The weight update then uses these bits to compute

∆ = Fthresh (b0, b1, S) = SA (b0 − b1) , (2.28)

with the update constant A. The update constant A is necessary, because now there is
no more direct access to the local accumulation trace a. So there are two free parameters
Θ and A that have to be configured.

To this end, I employed a heuristic method following the idea, that the average
update 〈∆〉 by Equation 2.28 should be the same as without the readout (Equation 2.27).
The network is simulated in a precursor run over 100 trials and the distribution of
|a(ttrial)| for all synapses and trials is recorded. The mean of this distribution is used
as threshold Θ∗ = 〈|a (ttrial) |〉. This way, the average final accumulation value is close
to the threshold. This avoids two extremes: a high threshold would only seldom be
crossed for large a (ttrial), while a low threshold would be exceeded very often. In the
former case, few large updates would have to be made, and in the latter many small
ones. Large updates have a stronger effect on performance and lead to a less smooth
learning curve, which is considered harmful for the learning rule. Small updates are
difficult to represent with low resolution weights. The selected threshold Θ∗ represents
a compromise between the extremes. The threshold readout causes an update of size
±A through the readout bits b0 and b1 in Np(Θ) out of all N trials. By setting

A∗ =
N

Np(Θ)
〈|a (ttrial) |〉 (2.29)

the average absolute update with threshold is equal to the average update that would
have been performed in the precursor run. The term N/Np(Θ) accounts for the fact,
that if the threshold is not exceeded, the weight is not changed. Its value can be
estimated from the distribution of a recorded in the precursor run. Numerical values
for Θ∗ and A∗ determined in the presented simulation are given in Table 2.2.

Figure 2.11 shows performance for different combinations of the parameters Θ and
A. This simulation uses continuous weights. The heuristically determined values Θ∗

and A∗ reach the best performance in the tested parameter space. If the threshold
is increased, the update constant must also be increased to limit the reduction in
performance. This is intuitively clear from Equation 2.29: increasing Θ leads to smaller
Np(Θ) and therefore higher A. With constant Θ increasing A has the same effect as
changing the learning rate η.

48

2.3. Reward modulated STDP

15 1501673757501125

A[pS]

55
100
200
300
400
500

Θ
 [p

S]

*
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

R
a
ft
er
−R

be
fo
re

Figure 2.11.: Improvement in reward Rafter − Rbefore for different combinations of readout
threshold Θ and update constant A. The red star marks the parameters Θ∗ and
A∗ as determined heuristically.

A Continuous and 8 bit

0.00

0.25

0.50

Av
er
ag

e
re
w
ar
d

0 2000 4000 6000 8000 10000
Trial No.

0.0

0.1

De
vi
at
io
n

B 4 bit

0.00

0.25

0.50

Av
er

ag
e

re
w

ar
d

0 2000 4000 6000 8000 10000
Trial No.

−0.3

0.0

De
vi

at
io

n

Figure 2.12.: Reward traces with threshold readout. The lower plots show the deviation to
the baseline simulation shown in Figure 2.9A. (A) Continuous weights in black
and 8 bit weights in green. (B) 4 bit resolution with deterministic (black) and
probabilistic rounding (green). These figures were taken from Friedmann et al.
(2013).

49

2. Theory

Parameter Value

Readout threshold Θ∗ 54.77 pS
Update constant A∗ 167.2 pS

Measured quantities Value

Average eligibility value 〈a〉 (5± 2)pS
Average absolute eligibility value 〈|a|〉 (142± 2)pS
Maximum eligibility value max {a(t)} (1.01± 0.06) nS
Maximum success signal Smax 0.121± 0.008

Table 2.2.: Parameters and measurements for the simulation shown in Figure 2.12.

Figure 2.12 shows learning performance, when the threshold readout is used with
the parameters Θ∗ and A∗. Continuous and 8 bit weights reach equal performance (Fig-
ure 2.12A). Both rise slightly above the baseline level and show generally a less noisy
trace. The threshold readout suppresses extreme weight changes, that would have a
strong effect on performance. This way, variability is reduced and better performance
can be achieved. For 4 bit resolution, as expected, deterministic rounding leads to
poor performance, while probabilistic rounding comes close to baseline (Figure 2.12B).
Table 2.2 lists a number of characteristics measured in the simulations shown here.
In conclusion, the simple threshold readout EΘ is enough to achieve performance as
good as the unconstrained model.

2.3.5. Robustness to variations in the drift model

In the previous sections the drift model conveniently reproduced the by theory desired
behavior of exponential decay with a time constant τe = 0.5 s. However, this requires
a controlled decay mechanism in every synapse, which might be too expensive for
a practical implementation. Without such a mechanism, drift is caused by leakage
currents, which are subject to device mismatch as detailed in Section 2.2.2.7. The
simulations in this section tested how sensitive the learning rule is to this disturbance
and whether a controlled decay mechanism is necessary. Because this type of noise is
static over time and creates a fixed pattern over the synapses, the hope is, that a learning
rule can adapt itself to these variations without further calibration. As a realistic model,
the dual capacitor vectorized drift model is employed (Equations 2.15-2.17) with ohmic
drift (Equations 2.15). Mismatch is included according to Equations 2.19-2.20, with

mean time constants τ
(e)
+ = τ

(e)
− = τe and variances σ

τ
(e)
+

= σ
τ
(e)
−

= στe . Also, continuous

weights are used here.
Figure 2.13A shows how this drift affects the final distribution of the accumulation

trace a(ttrial). The lower right histogram shows the previously simulated case of decay

50

2.3. Reward modulated STDP

A

100

102

104

Co
un

t

(−0.5±0.5)s (0.5±0.5)s

−1.0−0.5 0.0 0.5 1.0
a [nS]

100

102

104

Co
un

t

(−0.5±0.0)s

−1.0−0.5 0.0 0.5 1.0
a [nS]

(0.5±0.0)s

B

-1000.0-1.0 -0.5 0.5 1.0
1000.0

[s]

0.0

0.5

1.0

1.5

M
is

m
a

tc
h

 f
a

c
to

r

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 2.13.: (A) Distribution of final accumulation trace values a(ttrial) for mean time constants
τe = ±0.5 s and variance στe = 0 and 0.5 s. The vertical red bars indicate the
threshold ±Θ. (B) Relative performance compared to baseline Rafter − Rbase

after in
units of the standard deviation of the baseline performance coded as grey value.

with a time constant of 500 ms and no mismatch. To the left, a negative time constant
without mismatch causes a narrow distribution. From the beginning of each trial
both capacitors a+ and a− drift towards amax. Since the effective value seen by the
evaluation function is their difference a+ − a−, the final state with both capacitors at
maximum represents a = 0. Since both capacitors can only be charged, i.e. a+ and
a− increased, the maximum width of the distribution is limited. The largest possible
value for a (ttrial) results for initial conditions a+(0) = amax and a−(0) = 0. Then,

a (ttrial) = a+ (ttrial)− a− (ttrial) (2.30)

= amax − amax

(

1− exp
(

ttrial

τ−

))

(2.31)

= amax exp
(

ttrial

τ−

)

. (2.32)

Similarly, the smallest possible value is achieved for a+(0) = 0 and a−(0) = amax, so
that the width is given by approximately ±0.135 · amax.

When mismatch is included (upper histograms in Figure 2.13A), time constants can
be negative as well as positive, even within one synapse. Therefore, there are three
possible final states towards which a(t) can drift: Towards 0 if both capacitors decay
or grow. Towards amax if a+ grows and a− decays and −amax if the opposite is the case.
This leads to three maxima at the respective values in the histogram. Figure 2.13B
shows how these variations in the drifting behavior affect performance of the learning
rule as compared to the baseline simulation. Foremost to note is, that all combinations

51

2. Theory

of time constant and variance reach performance within one standard deviation of the
baseline performance Rbase

after. As observed in Figure 2.12A performance for τe = 0.5 s
and no mismatch is slightly better than baseline. It achieves the best performance
in the tested parameter set. Very long time constants τe = ±1000 s compared to the
trial duration ttrial = 1 s do not cause significant changes to a(t) between spike pairs.
Without or with small mismatch, this setting simulates the case without drift, where
good performance is also reached. The only regime, where minor degradation is
observable is for small time constants with high mismatch. Here the probability is
high, that within one synapse time constants have opposite sign, causing drift to±amax.
In this case, the synapse might exceed the threshold during evaluation, even if there
were no spike pairs at all. For even smaller time constants than 0.5 s performance
is expected to reduce further. In this case activity at the beginning of the trial has
a reduced effect on the weight update. The eligibility trace has lost memory of the
activity at the beginning of the trial, when reward is given. It becomes therefore
increasingly difficult to correct the output activity at the beginning of the trial to match
the target spike train.

So in conclusion, the hope that the learning rule would adapt to fixed-pattern
variations has proven true. Performance is only weakly sensitive to rather drastic
deviations from the theoretical decaying behavior. In the tested task, a controlled
decay mechanism is not required.

2.3.6. Mismatch on the evaluation function

As described in Section 2.2.2.7, the evaluation unit is also subject to device mismatch.
This is modeled by varying the threshold Θ for each synapse. Simulations now use
again a drift model with time constant τe = 0.5 s and continuous weights. Figure 2.14
shows performance in dependence of the variance of the threshold Θ. The maximal
variance is of the same size as the threshold itself. The results indicate, that the learning
rule is insensitive to variation on the readout threshold. This is probably the case,
because the mean threshold and therefore the mean weight update is not altered.

2.3.7. Delayed reward

Sections 2.2.2.9 and 2.2.2.10 described how limited performance of the processor and
communication latency can delay the point of time at which the reward is available
for the weight update. During this additional delay the accumulation trace a(t)

continues to evolve according to the drift function d(t), causing a deviation from
the theoretical learning model. To investigate the impact on the performance, the
network is simulated using a non-varying threshold Θ and the analog drift model with
time constant τe = 0.5 s. Figures 2.15A and 2.15B show performance with increasing
communication latency DR and finite processor update frequency ν. Especially in

52

2.3. Reward modulated STDP

A Continuous weights

0 11 22 44 55
Noise σΘ [pS]

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
w
ar
d

B 8 bit weights

0 11 22 44 55
Noise σΘ [pS]

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
w
ar
d

C 6 bit weights

0 11 22 44 55
Noise σΘ [pS]

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
w
ar
d

D 4 bit weights

0 11 22 44 55
Noise σΘ [pS]

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
w
ar
d

Figure 2.14.: Final performance Rafter with mismatch on the threshold evaluation function
EΘ in dependence of the variance σΘ. The shaded area represents one standard
deviation around Rbase

after. (D) Updates with 4 bit weights were performed with
probabilistic rounding.

53

2. Theory

A Communication delay

0.00 0.50 1.00 1.50 2.00 2.50 3.00 6.00
DR [s]

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
w
ar
d

B Processor speed

250 500 750 1000 1250 1500
νS [synapses per sec]

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
w
ar
d

C Communication delay corrected

0.00 0.50 1.00 1.50 2.00 2.50 3.00 6.00
DR [s]

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
w
ar
d

D Processor speed corrected

250 500 750 1000 1250 1500
νS [synapses per sec]

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
w
ar
d

Figure 2.15.: Effect of delayed reward due to limited processor speed and communication
latency with and without correction. The correction compensates the additional
drift of a(t) after the trial has ended and until the reward arrives. It requires
knowledge of the delay and the update speed.

54

2.3. Reward modulated STDP

the face of increasing DR learning fails for DR ≥ 1 s (Figure 2.15A). In comparison,
a limited updating frequency causes a more gradual failure (Figure 2.15B). For both
cases Equation 2.23 determines the time of evaluation tn for the n-th synapse. The
communication latency is measured from the end of the trial at time ttrial until the
reward is available at the processor. Communication latency and processor speed turn
the accumulation trace from a(ttrial) into a (tn). In the used drift model of exponential
decay this is expressed with an (tn) = βnan (ttrial) using the factor

βn = exp

(

−
DR + n

νS

τe

)

. (2.33)

Large enough βn will reduce the accumulation trace below the evaluation threshold Θ

and thereby prevent an update that would have occurred without delay. This happens
for all synapses if

amaxβn < Θ (2.34)

τe ln
(amax

Θ

)

< DR +
n

νS
(2.35)

with the maximal accumulation value amax. With infinite processor speed this is
satisfied for DR > 1.497 s and all synapses in the presented simulations (using amax =

max {a(t)} from Table 2.2). This is in agreement with observations in Figure 2.15A. If
the delay is neglected (DR = 0) and Equation 2.35 considered for n = NU NT

2 , i.e. for half
the synapses no update is possible, then νS < 417.5 s−1 limits the updating frequency.
In Figure 2.15B degradation is already evident for higher frequencies. If νS < 750 s−1

is assumed as limit, n = 475 ≈ 1
3 NU NT. So loss of up to about one third of all synapses

due to delay can be tolerated.
If the communication latency and updating frequency are known, one can correct

for delay by lowering the threshold by a factor of βn with n = NU NT
2 . By leaving

the update constant A unchanged, weights effectively change as if the delay were
not present. The result is shown in Figures 2.15C and 2.15D. If only communication
latency is considered, no degradation in performance is observable over the tested
range of delays (Figure 2.15C). If only updating frequency is tested, performance for
νS = 250 s−1 is slightly degraded.

So far, the discussion ignored an important aspect of analog hardware: noise. The
correction necessitates smaller and smaller threshold values for increasing delay. But
if the threshold is reduced too far, noise can cause an exceedance even if the mean
accumulation trace is zero. For Gaussian distributed noise around the accumulation
trace a(t) with variance σa, the signal-to-noise ratio z = a/σa is described by

z(t) =
a (ttrial)

σa
exp

(

−
t− ttrial

τe

)

. (2.36)

55

2. Theory

0.00.51.01.52.02.53.06.0
DR [s]

0
2

10
100
500

σ
a
 [p

S]
0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475

R
a
ft
er
−R

be
fo
re

Figure 2.16.: Improvement in reward Rafter− Rbefore for different combinations of reward delay
DR and readout noise σa on the accumulation trace a(t). The red bars mark the
prediction for maximally tolerable delay based on the signal-to-noise ratio of a(t)
(Equation 2.37 with z∗ = 1).

If a signal-to-noise ratio of z∗ is required for learning, delay satisfying

DR +
n

νS
> τe ln

(

amax

z∗σa

)

(2.37)

will fail to learn. This relation is tested in Figure 2.16 for noise with a variance of up
to σa = amax

2 and assuming z∗ = 1. The observations are well in agreement with the
predicted limits. In comparison to Figures 2.15C and 2.15D even moderate noise levels
of 0.01amax limit delay to 2 s. So while the correction of the threshold Θ is necessary to
allow for learning in the presence of delays, analog noise poses a hard constraint on
communication latency and processor speed.

2.3.8. Guidelines for hardware implementation

Section 2.3 tested a reward modulated STDP rule in a simple spike train learning
task under hardware constraints. The AHM was used as a generalized model of a
neuromorphic plasticity implementation to derive the constraints. This subsection
condenses the results into a set of guidelines for hardware implementation.

A first important result comes from the analysis of the impact of weight resolution on
learning performance in Section 2.3.3. Already a small resolution of only 6 bit is enough
to reach a performance comparable to continuous weights. For lower resolutions, as
tested for 4 bit, probabilistic rounding can increase performance nearly to the baseline
level. However, further reduction of the resolution (Figure 2.10A) will at some point
degrade performance independent of rounding, because the discretization error does
not allow to represent a well performing final set of weights. At what point this
happens depends in general on the network topology, stimulation statistics, and the

56

2.3. Reward modulated STDP

learning task. For implementation this means, that small weight resolutions below
8 bit are viable. A mechanism for probabilistic rounding is a good option to boost
performance of low resolution weights.

A second result is, that for the interface between processor and synapses a simple
threshold comparison is sufficient (Figure 2.12). Using a high resolution ADC instead
would not gain any improvement. This greatly reduces the cost for the readout and
evaluation circuitry in hardware.

The analysis of sensitivity to variations in the drifting behavior of the analog accu-
mulation trace in Section 2.3.5 has shown, that a controlled mechanism for decay is not
required for this task. Of course, the time constant has to be large enough compared to
the trial duration. To accommodate other tasks with possibly longer trials, the time
constant should be at least on the order of seconds if it can not be made configurable.
Long time constants did not negatively affect performance (Figure 2.13B), but short
ones do. An open question remains if non-episodic learning tasks, i.e. tasks that are
not naturally separated into finite length episodes or trials, are more sensitive to the
time constant. For example a continuously learning agent with an eligibility trace that
does not decay at all might reinforce actions unrelated or even counter-productive
to the reward. So to stay on the safe side here with a hardware system, an at least
minimally configurable drifting behavior is desirable.

Simulations with fixed-pattern noise on the evaluation threshold Θ showed no im-
pact on performance up to high variances (Figure 2.14). As long as the mean threshold
does not deviate too far from the desired value Θ∗, the learning rule can adapt to
the variability. This showcases an intriguing feature of neuromorphic hardware with
plasticity: the ability to self-calibrate to hardware variations.

Communication latency and processor updating frequency need to be carefully
optimized depending on two variables: the acceleration factor α and the time constant
of the eligibility trace τe. In a real-time system with α = 1, timing is of no concern,
since communication latencies on the order of seconds are much larger than typical
technical latencies on the order of micro- or milliseconds. Also a processor clocked
in the MHz-range can compute at least thousands of weight updates per second for
typical STDP functions. But in highly accelerated systems with 103 ≤ α ≤ 105 this
is not the case any longer. Now it is primarily important how long information is
retained in the eligibility trace as determined by its time constant. For long time
constants compared to the delay, timing is again of no concern, at least for episodic
tasks. For a continuously learning agent it may be problematic if rewards arrive with a
huge delay. But on the other hand this is an intrinsic aspect of reinforcement learning
also known as the distal reward or temporal credit assignment problem (Sutton and
Barto, 1998; Izhikevich, 2007b): Reward arises a certain time after the rewarding action
and the purpose of the eligibility trace is to allow the association of earlier actions with
the reward. One insight from the analysis in Section 2.3.7 is that analog noise on the
accumulation trace in the end limits how much delay is tolerable. In general, any real

57

2. Theory

system will have a smallest reliably representable value for the accumulation trace
a(t) regardless of implementation. For delay large enough to cause a(t) to drop to this
level, learning will fail. Equation 2.37 can be used by hardware designers to relate
communication latency, processor speed, time constant, and noise and find working
combinations.

58

3. Hardware design

This chapter presents the hardware designed to implement a neuromorphic plasticity
system following the concept of the AHM. Developed technologies are described and
design considerations discussed. In Chapter 5 these technologies are combined for
concrete hardware systems, which are evaluated in experiments. Throughout this
chapter Figure 2.2 serves as a map to locate the described technologies in the overall
context. The background for the developed designs is formed by the neuromorphic
hardware systems developed in the EU-projects FACETS and BrainScaleS (FACETS,
2010; BrainScaleS, 2012). These systems aim for the design goals outlined in Section 1.3
using wafer-scale integration (Mead, 1990; Schemmel et al., 2008, 2010) as central
method: The complete wafer, on which several individual, but identical Application
Specific Integrated Circuits (ASICs) are produced, is left intact and the single ASICs
are interconnected in a post-processing step. This way, large-scale systems can be build
with high interconnection density. Components presented in this chapter are always
designed with wafer-scale integration in mind.

3.1. Plasticity processor technology

The Plasticity Processor (PP) is an integral component of the overall strategy of com-
bining analog and software based computing. Its location in the model is visualized in
Figure 3.1. It is tasked by the AHM with coordinating the weight update process and
computing new weights. So it has to access the analog synapse array through the array
interface to select synapses for evaluation, read their weight, compute the update, and
write the new weight back. To maintain maximal flexibility, the PP is designed as a
general purpose microcontroller implementing a subset of the PowerISA specification
(PowerISA, 2010).

3.1.1. Design principles

First I want to outline the philosophy followed in designing this processor and the
design goals aimed for. For VLSI hardware design, it is always important to minimize
cost in chip area. In the present case this is aggravated by the fact, that the design
is intended to be integrated into the standard cell part of an existing system with a
tight area budget. Especially compared with current technologies, the used 180 nm
process is not very area efficient. This forces a minimalistic approach to the design.

59

3. Hardware design

Plasticity

Processor

Synapse Interface

Synapse Array

(NxM)

Bus

Adapter
Main memory

Peripheral 1

Peripheral K

...

External

Control

Figure 3.1.: The picture locates the plasticity processor in the framework of the AHM.

However, in the long run it is well possible, that a more modern technology, e.g. 65 nm,
is used, which would increase area efficiency of standard cell digital logic. For this
case it is desirable that the existing design can profit from the improvement without
having to be redesigned. This can be achieved by configurable and modular Register
Transfer Level (RTL) code allowing to scale the PP by simply changing a configuration
option. A third goal is to keep the complexity of the design as low as reasonably
possible. This is generally a good idea facilitating development and keeping the design
adaptable to new demands. For a general purpose processor it is also quite a challenge
to sufficiently verify correct functioning of the design in the light of arbitrary programs.
Low complexity helps in reducing the amount of states that need to be tested. More or
less in contrast to the low area and low complexity goals should the PP be suitable for
fast processing of synaptic weights. Chapter 2 showed, that a low updating frequency
by the processor negatively impacts performance. The higher the frequency, the more
weights can be processed by one processor, increasing overall efficiency.

3.1.2. Instruction set architecture

The operation of a processor is controlled by a sequence of instructions in main
memory known as program. What instructions are available, what arguments they
take, and how they are coded is defined in the Instruction Set Architecture (ISA). In
essence, the ISA forms the interface between the worlds of software and hardware. A
program written in a high level programming language is translated into sequences
of instructions by the compiler following the ISA. The hardware then executes the
instructions following the so called sequential execution model. In this model, every
instruction is executed completely in the order it appears in memory before the next
is started. To increase performance real implementations typically deviate from this

60

3.1. Plasticity processor technology

idealized model and overlap the execution of instructions. This is possible as long as
the result does not deviate from the sequential execution model.

Power ISA In particular, very different hardware implementations can execute the
same software and use the same tools, if they implement the same ISA. To not be forced
to develop or adapt a compiler for the PP, I decided to use the ISA defined by PowerISA
(2010). It is a widely used Reduced Instruction Set Computer (RISC) specification, for
which for example the GNU Compiler Collection (GCC) can compile code (Stallman,
2012). The specification is organized in categories, of which many are optional and
provide specialized functionality. It specifically differentiates server and embedded
processors and supports 64 bit and 32 bit designs. Therefore, the specification can
be used similar to a construction kit to build an ISA appropriate for the plasticity
processor.

Implemented subset In terms of categories, the design presented in this section
supports Base, Embedded, External Control and Wait in 32 bit mode, although some liber-
ties were taken to better suite the constraints of the plasticity application. Instructions
for cache handling, load-reserve/store-conditional, and synchronization (sync, isync)
are not supported. A full list of implemented instructions, registers, and exceptions
is given in Appendix B. Unimplemented instructions are ignored instead of raising
an exception. As a further deviation, the interrupt vector addresses are custom as
described in Section 3.1.9. There it is also discussed, under what conditions interrupts
are precise, i.e. whether taking an interrupt can cause a deviation from the sequential
execution model. The selection of implemented instructions allows for the execution
of code generated by a compiler. The deviations are only relevant for system software,
that therefore can not be reused from other platforms.

3.1.3. Microarchitecture

While the Instruction Set Architecture (ISA) defines coding and semantics of instruc-
tions that can be used on a processor, the mircorarchitecture describes the detailed
organization and how these instructions are executed. The task of a micro-processor
is to execute instructions from a program in a way that is indistinguishable to the
sequential execution model for the user. However, to improve performance, it is
essential to leverage parallelism in hardware. The most common way of doing this
is pipelining: the execution of an instruction is divided into a series of smaller steps
that each take a single clock cycle to complete. As soon as one instruction completes
the first step, the second one starts, so that effectively multiple instructions execute in
parallel each at a different stage of completion. This is only possible as long as there
are no interdependencies between subsequent instructions. If, for example, the second
instruction uses a register as input that is written by the first one, it has to be stalled

61

3. Hardware design

until the result has been written to the register. Such a so called hazard therefore causes
“bubbles” in the pipeline that reduce performance. Section 3.1.6 describes how hazards
are detected and solved in the presented design.

To reduce the number of wasted cycles, out-of-order designs can dynamically change
the order in which instructions are started. In case of a stall, the waiting instruction can
“step aside” to allow later ones to execute, if they have no outstanding dependencies.
The process of beginning the execution of an instruction after it has been fetched from
memory and analyzed for hazards is called issuing the instruction. Completion of an
instruction by writing its result - if any - back to registers is referred to as retiring

the instruction. Out-of-order designs have to track instructions between issue and
retirement to ensure equivalency to the sequential execution model. If this is not the
case, reordering will introduce additional hazards. For example, the result from a
preponed instruction might be overwritten by a postponed one if both write to the
same register destination, which would represent a write-after-write hazard. Out-of-
order designs can be classified depending on whether only issue or retirement happen
out-of-order or both.

A further performance improvement tries to maximize the utilization of functional
units of the processor by issuing multiple instructions simultaneously. In such a case
the implementation is called super-scalar. Super-scalar out-of-order processors can
have many instructions in various stages of completion executing simultaneously. The
gain in performance is then only limited by Instruction Level Parallelism (ILP), i.e. the
degree to which interdependencies allow parallel execution. Analyzing the program
for these interdependencies and keeping track of in-flight instructions adds cost in
terms of area and power. It also increases complexity and creates higher bandwidth
demands for memories and register files, since, for example, several instructions need
to be fetched from memory in one clock cycle to sustain super-scalar execution.

The PP attempts a trade-off between performance on one side and power/area costs
and complexity on the other. It is therefore a scalar in-order issue, out-of-order retire
design. This means, that one instruction per cycle can be issued in program order, but,
if latencies are different, they can retire out-of-order. This form of retirement takes
advantage of situations where one operation, e.g. access to memory, takes long to
complete. The program can be continued up until the result from the slow operation is
required. This choice is also in line with the results reported by Gonzalez and Horowitz
(1996) that show pipelining to improve the energy-delay product, while performance
gains by super-scalarity are offset by the increased power demand. Figure 3.2 illustrates
the pipeline structure. The design is separated into front- and back end. The front end
fetches instructions, detects hazards and schedules instruction issue and retirement.
The back end performs the function associated with an instruction. The first stage in
the pipeline is the address generation for instruction memory. It contains the Program
Counter (PC) that points to the location of the current instruction and is typically
incremented in every cycle. Branch instructions and interrupts can initiate a control

62

3.1. Plasticity processor technology

Adress generation

with branch prediction

Dependency Tracking and

Instruction Scheduling
Operand fetch

Pre-Decode

Instruction fetch

from cache

Write back

Frontend stages

Functional units

Retire stages

External interfaces

Front end

Back end

B
u
s
/R

A
M

 i
n
te

rf
a
c
e

B
ra

n
c
h

F
ix

e
d
p
o
in

t

M
u
lt

ip
li
e
r

D
iv

id
e
r

L
o
a
d
/S

to
re

E
x
te

rn
a
l

c
o
n
tr

o
l

N
V

E

S
Y
N

A
P
S
E

B
u
s
 i
n
te

rf
a
c
e

RAM interface

Interrupt

control

Synapse IO A

Synapse IO B

In
te

rr
u
p
t

s
ig

n
a
ll
in

g

Figure 3.2.: High level view of the processor pipeline showing the separation into front and
back end. See text for a description of the elements.

63

3. Hardware design

transfer that loads a new address into the PC from which to continue execution. This
stage optionally also includes a mechanism to predict branches and speculatively
do a control transfer before the branch is decided in the back end. The next stage
fetches one instruction per cycle from storage. Then, it is pre-decoded to determine
information necessary for hazard detection and scheduling, e.g. to which functional
unit the instruction belongs and which registers it reads and writes. In the next
cycle, dependency tracking will decide whether stalling is required to solve a hazard.
Simultaneously, operands from the register file are fetched. Only if no dependency on
an outstanding write exists is a correct result available after the fetch. The dependency
tracking stage keeps information about all in-flight instructions, which are also used to
schedule writing back of results to registers. A key concept that simplifies this task
is that execution in the functional units takes a known, fixed number of clock cycles,
after which the result is available. This allows for allocating a write back slot upon
issue. Issuing an instruction is then a fire-and-forget operation in a sense, that the
instruction is allowed to complete without any further delays. On the other hand,
this imposes a strong constraint for the implementation of operations. For example,
an I/O operation might take a not a priori known time to execute, depending on the
latency of the peripheral address by the access. To relax this restriction, an alternative
delayed write back method is used by such operations: The functional unit has to wait
for a free write slot and then indicate completion to the dependency tracking logic.
As an optimization, a write-back slot is reserved based on an expected latency. If an
instruction using delayed write back returns a result in time for this reserved write
back slot it can immediately finish. Otherwise it has to wait for a free slot.

The back end is organized in a number of parallel functional units, that take two or
more cycles to execute an operation. Those are:

1. Branch: Decides the outcome and target address of branch instructions. Some
interrupt related instructions are also handled here. The output of the branch
unit controls the address generation unit to load a new program counter.

2. Fixed-point: This includes most arithmetic and logical instructions excluding
multiply and divide. The rotate and shift instructions are executed here, as well
as special purpose register manipulation, e.g. condition register logical and move
operations.

3. Multiplier: A 32 bit pipelined multiplier for signed and unsigned fixed-point
multiplication.

4. Divider: A 32 bit sequential divider for signed and unsigned fixed-point division.
Because division is typically an infrequent operation, the divider is built in a way
that only one division can be executed at a time with typically several ten cycles
latency.

64

3.1. Plasticity processor technology

5. Load/Store: As is typical for RISC designs, all operations work on internal registers
and only dedicated load and store instructions access main memory. They are
implemented in this functional unit. Two alternatives are available: a simple
version assumes direct connection to an Static Random Access Memory (SRAM)
memory that provides results without delay. A more complex variant translates
load and store operations into requests on a bus allowing for arbitrary delay of
the response. The used bus is the Plasticity Processor Bus (PPB) described later
in Section 3.2. This way also memory mapped I/O operations can be performed
using the load/store unit.

6. External control: This unit implements the external control category of the Power
ISA that provides additional input and output operations similar to load and
store. It implements a simplified version of the load/store unit and provides an
additional PPB interface for I/O.

7. NVE: A special function unit to perform look-up table based vectorized 4 bit
arithmetic in the 32 bit General Purpose Register (GPR). This is an optimization
for the plasticity application.

8. SYNAPSE: A more powerful replacement for the NEVER unit using dedicated
128 bit vector registers. The unit also has two specialized I/O interfaces for
efficient reading and writing of synapses.

All functional units share standardized input and output interfaces. The operand bus
supplies up to three 32 bit arguments from operand fetch. For example, some store
instructions (e.g. stwx) need all three operands simultaneously: one for the data to be
written to memory, and two as memory address and offset to select the destination in
memory. The result bus reads one or two 32 bit results that are written back to registers
in the write-back module. Only one word is written to general purpose registers per
cycle, but for example a branch instruction can simultaneously change the CTR and
LNK register.

External Interfaces The processor core block as shown in Figure 3.2 has four
types of interfaces to the external world. The RAM interface is a simple synchronous
interface allowing for read and write operations inside an address space. The signals
are specified in Table C.1.1 in Appendix C. Writes can be masked byte-wise. The delay
signal indicates that requested read data is not yet available. The PP acts as master
on one RAM interface to instruction storage and, if the simple load/store variant is
selected, a second one to data storage.

The interface of the PPB is based on the Open Core Protocol (OCP) specification
(OCP, 2009). Only a small subset is implemented and compatibility with other OCP
clients might be limited. The bus itself is described in Section 3.2. In short, the master

65

3. Hardware design

initiates requests using a handshake method. After the request is accepted the response
can arrive after an arbitrary number of cycles. They only have to follow a first-in-first-
out principle, i.e. responses have to arrive at the master in exactly the same order as
the requests were sent out. This bus is used by the more complex load/store unit and
the external control unit, if present.

The interrupt signaling interface provides a number of signals to indicate exceptions
to the processor core. Among them are for example timer events or wakeup requests,
if the processor is in a power saving sleep state.

The synapse I/O interface is described in Section 3.4.

3.1.4. Instruction fetching and control transfers

The first stages in the pipeline (Figure 3.2) deal with address generation and fetching
from storage to generate an instruction stream. Most of the time, it is sufficient
to increment the PC in every clock cycle. However, branches and interrupts can
initiate control transfers, so that after the branch or the interrupt triggering instruction,
execution is resumed not at the next, but an arbitrary other address. In a pipelined
processor this requires to discard partially executed instructions that were started
directly after the branch, but before its outcome was decided. This introduces a
branch penalty measured in the number of clock cycles it takes for a control transfer
to complete. To minimize this penalty, a standard method is to predict if a branch is
taken and where it will jump.

Figure 3.3 illustrates the instruction streamer module of the PP and how it deals
with control transfers and branch prediction. The address of the next instruction to
fetch from storage is stored in the program counter (PC) register. If jump, hold, delay
and predicted taken are low, its value incremented by one is fed back to the register
input through the three multiplexers.

Control transfer If downstream logic initiates a control transfer, the jump signal is
asserted and the target address is presented on the jump vector signal. Multiplexer
M0 now selects the new address as input to the PC. To give feedback to downstream
logic, when the control transfer has completed, the jump signal is delayed by a series
of flip-flops to assert the complete signal together with the instruction fetched from
the target address. Between the assertion of jump and complete, downstream logic
ignores data from the streamer. The time from initiating a control transfer until the
first instruction from the target is available to downstream logic is at least two cycles.

Storage delay and pipeline stalls If instruction storage can not provide the
requested data on the next clock cycle it asserts the delay signal and returns a no-
operation instruction. This toggles M1 to keep the current value in the PC, so that a
fetch can be re-attempted in the next cycle. A possible reason for delay is a miss on an

66

3.1. Plasticity processor technology

PC

jump

jump vec.

complete

PC

instruction

pred. taken

0

1

+1

Memory

0

1

0

1

Branch

Cache

ta
k
e
n

n
o
t

ta
k
e
n

ta
rg

e
t

a
d
d
r

{
0..N

Branch control

F
e
e
d
b
a
c
k

Instruction

Stream

Output shift

register

delay

hold

M0

M1
M2

Figure 3.3.: Block diagram of the instruction streamer module. It generates addresses for
fetching instructions from memory or cache while using the branch cache module
to predict branches based on the instruction address. Filled, black rectangles
represent flip-flops inserted for delay purposes. The output shift register can
be configured with a variable number of stages. Blocks with a thick right side
represent synchronous modules, where the outputs to the right are updated one
clock cycle after the inputs to the left are set.

67

3. Hardware design

instruction cache. If a hazard is encountered, the pipeline is stalled for a number of
cycles. This is indicated to the instruction streamer by asserting the hold signal and
thereby keeping PC at its current value.

Branch prediction The branch prediction predicts whether the next address holds
an instruction causing a control transfer and the target of the transfer. As the name
“branch cache” indicates, it operates similar to a cache, maintaining a table with
addresses and associated outcome and target. It is trained by the feedback input from
the downstream branch functional unit that will indicate addresses holding branches,
whether they are taken or not and where they jump. The cache is fully associative
and uses 2 bit saturating counters (Smith, 1998). When a branch is encountered that
is not already stored in the cache, its address is recorded as tag for the lookup, the
target is recorded as associated data, and the counter is initialized to 2. When the
same address is about to be fetched again, the cache lookup will hit and the Most
Significant Bit (MSB) of the stored counter value is used to predict outcome. If the
branch is predicted taken, M2 will override the incremented address as new value
for the program counter, so that fetching resumes with the stored target address one
cycle after the branch instruction itself. If the prediction was wrong, the downstream
branch unit will detect this by the predicted taken signal of the instruction stream
interface. It then signals appropriate feedback to decrement the counter for incorrectly
predicted taken branches and vice versa for incorrectly predicted not taken. In parallel
it causes a control transfer using the branch control interface to the correct address
after the branch. Because instructions are issued in-order and because branches are
decided with a minimum latency of one cycle, no incorrectly fetched instruction can
retire before the true branch outcome is known. This avoids costly hardware to revert
the effect of incorrectly fetched instructions after a mis-prediction.

As a variant, branch prediction can also be used with a direct-mapped cache. This
allows for higher clock speeds, but sacrifices some performance (see Analysis in
Section 5.1.1).

Output shift register The instruction streamer features an output shift register
of configurable length. This is intended to be used in situations, where instruction
storage is physically situated far away from the processor core. If this is not the case, it
is configured to length 0 to minimize the branch penalty.

The arrangement of the multiplexers M0-2 determines the priority of branch pre-
diction, pipeline stall, and control transfer in setting the next instruction address. An
explicit control transfer always has the highest priority, so that it can take effect during
a pipeline stall. Prediction has the lowest priority. If it is overridden by a stall, it will
re-predict in the next cycle.

68

3.1. Plasticity processor technology

In the current implementation, only one cycle is available for branch prediction. This
possibly limits the complexity of the implementable prediction algorithm, especially
the cache size. However, a prediction latency of one cycle is required to jump to the
predicted target directly after the branch in the instruction stream. Allowing a higher
latency makes it necessary to discard fetched instructions if a branch is predicted taken
independent of the correctness of the prediction. To work around this limitation, one
would have to either speculatively predict more than one instruction into the future or
increase the fetch bandwidth together with a buffering queue after the memory. Under
this constraint, it is not possible to use the fetched instruction for the prediction, for
example to include a static prediction for un-cached branches.

The instruction streamer represents a universal streaming unit that is not specific to
a particular ISA. It can also be used for other applications apart from micro-processors,
where a stream of data is generated from a possibly cached memory. In the context of
neuromorphic hardware, such an application is for example the playback of stimulation
events for a neuromorphic device, which is typically implemented within a controlling
Field Programmable Gate Array (FPGA). In this case instructions would be events
with a time stamp that indicates at which time they should be sent to the neuromorphic
substrate. Logic downstream from the instruction streamer would compare this time
stamp to the current system time and throttle the incoming flow similar to pipeline
stalls. The concept of branches can be used to implement loops in the stimulation
pattern, for example for repetitive background stimulation.

3.1.5. Instruction cache

The PP has two distinct interfaces to instruction and data storage. This is necessary
to remove the von-Neumann bottleneck (Backus, 1978): with a single interface the
bandwidth of reading and writing data is reduced by accesses required for instruction
retrieval. However, if distinct SRAM blocks are used on-chip, it must be decided
beforehand how much storage is reserved for program and data. Space that is not used
by one can not be transfered to the other, so that memory is wasted. One alternative
is a dual-port memory, so that both accesses can be made in parallel. This is paid for
with a less area efficient memory, since SRAM cells require a second port. While this is
still a viable option, for example for FPGA implementations, where integrated SRAM
blocks are dual-ported anyway, a more elegant solution is the use of an instruction
cache. Due to loops in the program, a sufficiently large cache reduces the number of
accesses to its backing store allowing more bandwidth for data accesses. This cache
can be relatively simple, because the processor only reads from it.

Figure 3.4 shows a high-level view of the read-only instruction cache. It is a direct
mapped implementation exposing a RAM interface to the processor on the front and a
PPB interface on the back towards storage. Data is stored in three memory structures:
Two register files maintain information about valid entries per cache line and their tag.

69

3. Hardware design

address

data

delay

Tags

Tag 0

Tag N

...

Valids

Valid 0: a...b

Valid N: a...b

...

Back

Front

RAM interface

R
e
q
u
e
s
t

g
e
n
e
ra

to
r

R
e
s
p
o
n
s
e

re
c
e
iv

e
r

Bus interface

IDLE

REQ

RESP

!valid | mismatch

all req'ed

all resp'ed

Fetch FSM

tag index displ.

Cache store

...

...

...

...

Line 0:

Line N:

Word 0,0

Word N,0

Word 0,M

Word N,M

F
ro

n
t

p
o
rt

B
a
c
k
 p

o
rt

tag check

(!valid | mismatch)

req ctr resp ctr

valid check

Figure 3.4.: Schematic overview of the read-only cache used as instruction cache. The front
side faces the processor through the RAM interface and the back side accesses main
memory through a bus interface. The cache store is a dual-port memory that is
external to the control logic. It is connected by two additional RAM interfaces not
explicitly shown in the figure. See main text for a description of cache operation.

70

3.1. Plasticity processor technology

The cached data are kept in a dual-ported store with one read and one write port. The
cache store is situated external to the module and accessed by two RAM interfaces
(not shown in the figure). This allows efficient implementation using a generated
SRAM macro. In FPGA based implementations, SRAM hard-macro blocks are used,
while the wafer-scale system with plasticity processor uses latch based memory (see
Chapter 5 for descriptions of the systems). The front side performs lookup in the cache
for requests via the RAM interface and in particular detects misses, i.e. requests to data
not available in the store. The back side is triggered by misses and fills the store from
main memory.

Front Data in the cache store is organized in N lines of M words each. For each line
two valid pointers a, b are kept and a line valid bit. The pointers indicate the first and
the last valid entry in the line masked by the per-line bit. Upon a read request, address
is split into tag, index, and displacement. The index selects the cache line and is used
to address valid-, tag-, and cache store. The displacement selects the word within the
line and is used as offset into the cache store and to test validity. The result from the
tag store is compared with the tag taken from the address to ensure, that the requested
data is stored at the selected cache line. If the requested word is marked as valid and
the tags match, the request is a hit and output from the cache store can be forwarded
to the requesting processor. Otherwise the request misses, which is indicated to the
processor by asserting the delay signal. This signal is evaluated by the instruction
streamer module shown in Figure 3.3.

Back A miss will also trigger the back side to retrieve the missing data from main
storage. The fetch Finite State Machine (FSM) invalidates the selected line while
transitioning into the REQ state. It then refills the line by generating requests on the
PPB interface. The first request is generated for the selected word within the cache line.
As soon as the corresponding response is received, the new tag is stored for the line.
The valid table is updated by setting the line valid and a and b to the retrieved word.
This allows the front side to hit for this address in the next cycle, without waiting for
the whole line to be filled. This is the reason for keeping pointers a, b additionally to
the line valid bit. If the bus to main storage allows for fetching one word per cycle, the
processor does not need to be delayed any further, even if it requests a new address
every cycle. Thus, the cost of cache misses is kept small. The fetch FSM continues
generating requests, until the request counter reaches N, i.e. all words in the line are
requested. It then transitions into the RESP state to receive the remaining responses
until the response counter indicates, that the complete line has been filled. Responses
are also processed while in the REQ state.

While filling of a line is in progress, a new miss might occur in a different line. In
this case, the front side sees the miss and waits. The back side continues filling the

71

3. Hardware design

current line until the FSM enters the IDLE state. Then, it starts a new refill sequence
for the second miss.

The read-only instruction cache represents a universal design that operates without
knowledge of instruction coding or access patterns. The fetch FSM could be extended
to pre-fetch cache lines trying to reduce the number of misses. This is supported by
the Power ISA with the instruction cache block touch (icbt) instruction, that references
addresses expected to be needed soon. However, inserting these instructions into
the program increases its size and adds potentially unnecessary memory accesses for
pre-fetch. This can increase power consumption (Zhuang and Pande, 2007). The use
of pointers to mark valid entries in a line allows for early continuation after a miss,
reducing miss latency. Because the cache is direct mapped, standard SRAM macros
can be used to implement the main data store.

3.1.6. Instruction scheduling

Because of pipelining, several instructions are ongoing simultaneously at various
stages of completion. Interdependencies between subsequent instructions can cause
data hazards. There are three types of data hazards classified by the order and type of
accesses (Hennessy and Patterson, 2007): for read-after-write hazards, a subsequent
instruction reads a result from an earlier instruction. Reading the result has to be
delayed until the write is complete. A write-after-read hazard exists, if a subsequent
operation writes a register, before the earlier one has read it. In write-after-write
hazards, two instructions write to the same location in the incorrect order. Write-
after-read hazards are excluded in the presented implementation, because of in-order
issuing and the requirement for functional units to store operands internally during
execution. Therefore, it is guaranteed, that all operands are read, before the next
operation can write a result. The other two types of hazards have to be detected and
solved by stalling the pipeline until the hazards no longer exists.

3.1.6.1. Result shift register

The RSR, shown in Figure 3.5, is a component to track the execution of in-flight
instructions, in particular when and where they write a result (Smith and Pleszkun,
1985). Its operation is quite simple: depending on the latency L of an operation, the
destination register number is inserted into a shift register at stage L. The register
is shifted in every cycle, so that after L cycles - in synchrony with the completion of
the operation - the write falls out of the register. To detect read-after-write hazards,
upon a read access the source register is compared in parallel to the stored destinations
in the shift register. As long as there is a match, a hazard exists. To accommodate
instructions reading up to three registers, as many test ports with comparators are

72

3.1. Plasticity processor technology

0

1

0

1

check

0

1

check

0

1

check

= = = =

0

test
found

out

insert

Test port

Insertion logic

Figure 3.5.: Simplified schematic overview of a RSR with four stages and one test port. The
concept is based on the design presented by Smith and Pleszkun (1985). The RSR
controls the write back of instruction results, and detects data hazards between
operations.

required. A comparison of the write destination to the stored writes in higher stages
allows for detection of write-after-write hazards (not shown in Figure 3.5). Additionally
a collision check prevents inserting writes into stages already holding a write.

Because the RSR tracks writes, it is straightforward to use it to schedule write back
to registers. To this end, stages additionally hold the functional unit of an operation
to act as source for the write. If the last entry of the shift register is marked valid, the
destination register is written from the functional unit coded in the source field. This
is illustrated in Figure 3.6. Write destination and read sources are identified by the
pre-decode unit (Figure 3.2) and fed to the RSR. Matches on the read test ports and the
write-after-write test port are combined with a logical nor to get the ready signal. If
asserted the current instruction is ready for issue and written to the RSR. After L cycles
a write configures the write back multiplexers to select the functional unit executing
the instruction and the destination register. The empty signal is asserted if no write
is held at any stage of the shift register. It is used for example to wait for all in-flight
instructions to finish, before transitioning into a sleep state.

3.1.6.2. Write back channels

The Power ISA defines a number of different registers besides the 32× 32 bit general
purpose registers. For example, there are condition registers used as output of compari-
son operations and input to branches. A number of instructions write to more than one
register, for example recording add with overflow (addo.). Table B in Appendix B gives
a full list of registers. For each subset of registers that can be written simultaneously

73

3. Hardware design

write

read 0

read P

WAW test port

test port 0

test port P

empty ready

FU0 FUN

R0 RM

...

src

dest

we

Result Shift Register Write back

Figure 3.6.: Scheduling write back to registers and detecting data hazards using the RSR: The
right side shows the data path from the output of functional units FU0. . . FUN to
registers R0. . . RM. The left side shows the RSR that controls the data path on the
right. Test ports 0 . . . P detect read-after-write hazards for new instructions, the
WAW test port detects write-after-write hazards. If neither hazard is detected the
instruction is ready for issue. The RSR can also detect, whether the pipeline is
currently empty.

74

3.1. Plasticity processor technology

write

emptyready

SET

T
E
S
T

C
L
E
A

R

WAW

LC

SET

T
E
S
T

C
L
E
A

R

TP 0

LC

SET

T
E
S
T

C
L
E
A

R

TP P

LC...

src, dest

read 0

read P

..
.

delayed commit

Figure 3.7.: Write back to registers using the RSR with lookup cache. Test ports are replaced
with the lookup cache (LC) structure explained in the text. This is an area and
speed optimization for long shift registers. The lookup cache is also required, if
instructions can commit results delayed to their scheduled write back slot.

Write back channel Stages Ports DC Destinations

General purpose registers 8 or 16 3 yes 32
Special purpose registers 4 2 no 1024
Condition register field 0..7 8 or 16 1 no 1
Counter register 4 1 no 1
Link register 4 1 no 1
Fixed-point exception register 8 or 16 1 no 4
Machine state register 4 1 no 1

Branch dummy 4 - no -
Memory dummy 4 - no -

Table 3.1.: List of write back channels. The number of RSR stages is defined by the maximal
latency of instructions writing through the respective channel. Only the general
purpose register file requires the ability to perform delayed commits (DC) of results,
because writes to other registers always have deterministic timings. The branch and
memory dummy channels are not used to detect data hazards, but to synchronize
control operations. For example, before entering a sleep state, the front end has to
ensure, that all instructions currently in-flight have retired. The empty signal from
the RSR is used for this.

75

3. Hardware design

with the others, there is an individual write back channel. Each write back channel has
its own RSR to schedule writes and detect hazards. A list of the channels is given in
Table 3.1. Depending on the maximum latency of instructions writing over a partic-
ular channel, the respective RSR can be shortened to save area. The shown maximal
length of eight is used by the multiplier. The latency of the divider is even greater
(28 cycles), but here a trick is used to keep the shift register short: division is treated
as a multi cycle instruction (see Section 3.1.6.6) with L cycles. This blocks issuing of
other instructions while the divide is ongoing, yet as divides occur relatively seldom
in typical code, this is a good compromise. Apart from length, write channels employ
different numbers of read ports and destination registers. The special-purpose register
file according to specification can address up to 1024 registers. However, not all of
those registers are defined and only few need to be implemented by a minimal design.
The PP has only 29 special-purpose registers. To save area a reduced representation
can be used in the RSR, but this was not done for the presented implementation. The
“Delayed commits” column indicates whether the channel requires the ability to retire
instructions with a variable latency. This necessitates the use of a lookup cache in the
RSR, which is detailed in the next section.

3.1.6.3. Lookup cache and variable-latency operations

The approach outlined in Figure 3.6 is straightforward and simple, but has a fundamen-
tal flaw: it can not deal with operations, for that latency is variable. Such operations
are for example loads via the PPB, which return after an unspecified amount of cycles,
depending on which address is being used. The lookup cache represents an alterna-
tive replacing the test ports to detect hazards. The shift register works as before for
fixed-latency operations to schedule result write back. Variable-latency instructions
use the delayed commit mechanism that employs a handshake with the write back
module to take opportunity of free write slots in the RSR. When a slot is available, the
write is signaled to the RSR with lookup cache. The lookup cache simply stores one
bit per destination to mark, whether an in-flight operation writes to it. It is set by the
write port of the RSR and cleared by either the output from the RSR or the delayed
commit. So in a sense it caches the lookup into the shift register in a separate memory.
This concept is shown in Figure 3.7. One lookup cache is used for each test port and
another one for write-after-write detection. Variable-latency instructions can use the
shift register to reserve a write slot for an expected default latency. If they take longer,
they have to wait for a free slot. Such a slot will eventually occur, when the pipeline
stalls for a dependent operation that reads or writes the result register. 1

The lookup cache is necessary for variable-latency instructions in the presented
framework. Apart from that, it can serve as an area and timing optimization compared

1If this is not the case and there are never any free write slots, the instruction will never retire. However,
such code is considered irrelevant.

76

3.1. Plasticity processor technology

to the comparator stages of the RSR. The test ports of the shift-register constitute in
essence a content addressable memory. With the lookup cache this is turned into a
classical memory saving a comparison unit per memory item. Which approach to use
depends on the number of destination registers that need to be tracked and the length
of the shift register. For long shift registers and few destinations, the lookup cache is
smaller, since it removes comparators and allows for a smaller NOR-reduction for the
ready signal. With many destinations, the sparse representation in the shift-register
allows for better scaling in the number of flip-flops and the size of comparators.

3.1.6.4. Write-through optimization

So far, scheduling assumed, that a dependent instruction can only read an operand one
cycle after it was written. However, one cycle can be saved if the register file allows
write-through: if the same register is read and written in the same cycle, the read will
return the newly written data. This creates a timing path starting from the source
flip-flops of the write to the destination flip-flops of the read. Without write-through
this path is broken by the register file. On the other hand, it reduces the penalty of data
hazards by one cycle. Therefore, the option to use write-through allows for a trade-off
between maximum clock frequency and computational efficiency.

For hazard detection this means, that dependent instructions can be issued one cycle
earlier than without write-through. To implement this in the RSR, it is enough to
exclude the last stage of the shift register from checks by the test ports. When using a
lookup cache, the reservation for the in-flight instruction is cleared one cycle earlier by
using the second last stage of the RSR, instead of the last.

3.1.6.5. Pre-decoding instructions

Writing and checking the RSR is done in the fourth stage of the processor pipeline
(Figure 3.2). The preceding stage in the pipeline performs pre-decoding of instructions.
Its task is to determine information necessary for dependency tracking and scheduling.
For example, the source and destination registers, latency, and used functional unit.
The functional units perform further decoding later in the pipeline to determine the
remaining control signals, e.g. which operation to perform in the fixed-point data path.
For the front end, the pre-decoded information is sufficient. All signals of the control
word are listed in Appendix C on page 231.

The basic operation of the pre-decoder is to map the 32 bit instruction word onto the
123 bit control word. Each signal in the control word can be computed independently
from the others in combinatorial logic. In an early design variant, this type of decoding
operation lead to a large amount of repetitive RTL code. Therefore, I decided to use a
more methodical approach in later iterations using macro generated code. The RTL
code of the design is written using the SystemVerilog hardware description language

77

3. Hardware design

(SystemVerilog, 2004). Instead of using the built-in pre-processor macros, I selected the
m4 language (Kernighan and Ritchie, 1977) for code generation for its more advanced
capabilities. The features of m4 are mostly relevant later in the context of specifying
bus structure (Section 3.2.5).

For pre-decode, comparison macros using the unique case SystemVerilog con-
struct are defined, and lists of opcodes by category compiled. For every pre-decode
signal, a decode function compares with the instruction and sets the signal in the
resulting control word appropriately.

Listing 3.1: Decoding the read_ra signal using macros.

1 ...

2

3 DEF_FUN_CMP(pd_read_ra, logic, 1’b0)

4 STORE_IMMEDIATE_OPS, STORE_INDEXED_OPS, LOAD_NOUPDATE_OPS,

5 OP(Op_lmw), OP(Op_stmw),

6 OP(Op_addi), OP(Op_addis):

7 rv = (fst.inst.x.ra != 0); // only read when RA != 0

8

9 ADDSUB_REG_OPS, OPXO(Xop_neg),

10 OP(Op_addic), OP(Op_addic_rec), OP(Op_subfic),

11 MUL_OPS,

12 LOGICAL_OPS, COMPARE_OPS, TRAP_OPS, ROTATE_OPS,

13 OPX(Xop_mtspr), OPX(Xop_mtocrf),

14 DEV_CTRL_OPS:

15 rv = 1’b1;

16

17 DIV_OPS:

18 rv = 1’b1;

19 END_FUN_CMP

20

21 ...

22

23 PD_MAP(read_ra)

An example for such a function using macros is given by Listing 3.1 for the read_ra
signal. This signal is set if the general purpose register given in the bit-field RA of
the instruction word is read from the register file by this operation. Invoking the
DEF_FUN_CMP macro, name, type, and default value of the control signal read_ra
are declared. Lines 4 to 18 list all instruction names that do read the general purpose
register given in RA. Line 7 implements the RA|0 referencing mode (PowerISA, 2010):
the instructions listed on the previous lines always read zero if operand RA references
register 0. The PD_MAP macro in line 23 enables decoding by the defined function for
the read_ra signal. Listing 3.2 shows the emitted code after preprocessing by m4.

The shown methodology simplifies specification of decoding logic and makes the

78

3.1. Plasticity processor technology

Listing 3.2: SystemVerilog code after pre-processing of Listing 3.1.

1 ...

2

3 function automatic logic pd_read_ra(input Fetch_state fst);

4 logic rv;

5

6 unique casez({fst.inst.x.opcd, fst.inst.x.xo})

7 {Op_stw, 10’bz}, {Op_stwu, 10’bz}, {Op_sth, 10’bz}, {Op_sthu, 10’bz

},

8 {Op_stb, 10’bz}, {Op_stbu, 10’bz}, {Op_stmw, 10’bz}, {Op_alu_xo,

Xop_stwx}, {Op_alu_xo, Xop_stwux},

9 ...

10 {Op_addi, 10’bz}, {Op_addis, 10’bz}:

11 rv = (fst.inst.x.ra != 0); // only read when RA != 0

12

13 {Op_alu_xo, 1’bz, Xop_add}, {Op_alu_xo, 1’bz, Xop_addc}, {Op_alu_xo,

1’bz, Xop_adde},

14 {Op_alu_xo, 1’bz, Xop_addme}, {Op_alu_xo, 1’bz, Xop_addze},

15 ...

16 {Op_alu_xo, Xop_eciwx}, {Op_alu_xo, Xop_ecowx}:

17 rv = 1’b1;

18

19 {Op_alu_xo, 1’bz, Xop_divw}, {Op_alu_xo, 1’bz, Xop_divwu}:

20 rv = 1’b1;

21

22 default:

23 rv = 1’b0;

24 endcase

25

26 return rv;

27 endfunction

28

29 ...

30

31 always_comb predec.read_ra = pd_read_ra(fst);

79

3. Hardware design

code more readable. Especially, the use of instruction lists has proven useful in
increasing maintainability of the source. A new instruction can typically be integrated
into pre-decode by listing it in all decoding functions, for which it deviates from the
default value. The macros defined here are also used by decode logic in the functional
units and for control of operand fetching. On the other hand, m4 is only used for text
substitution, which could also be done using built-in `define macros. Therefore, for
this task alone it would be better to avoid an additional tool. However, for other tasks
(see Section 3.2.5), the built-in macro language is not sufficient, and thus has to be used
anyway.

The pre-decode pipeline stage performs most of the decoding work and is the main
dependency on the ISA. The rest of the front end is completely agnostic of instruction
coding. Using macros, this coding can be efficiently specified in the RTL source.

3.1.6.6. Multi cycle operations

A few instructions in the Power ISA proof difficult to implement: load multiple (lmw)
and the load with update variants (lbzu, lhzu, . . .). These instructions write to more
than one general purpose register, while the write back channel provides only one
write port. In the case of store multiple (stmw) the same problem arises for the memory.
This is solved by performing multiple writes sequentially for a single instruction. To
implement this in a generic way, a universal framework for multi cycle operations is
provided.

Figure 3.8 shows how this framework operates. The pre-decode module defines
decoding logic for every control signal that changes during the multi cycle operation.
It consists of decoding logic for every cycle in the sequence and a multiplexer to
select the appropriate one. The multiplexer is controlled by a counter incrementing
with every cycle. Pre-decode detects the beginning of a multi cycle operation by the
instruction’s operation code. It then asserts the is_multicycle signal to start the
cycle counter. This also holds instruction fetching until all cycles have completed.
The total number of cycles is determined by the multicycle signal of the control
word. All cycles of the operation are tested for hazards, which are indicated in the
usual way by deasserting the ready signal and thereby stalling the counter. When
the counter compares equal to multicycle it is reset and hold to the instruction
streamer removed.

The load and store multiple instructions write or read general purpose registers
from a specified index up to the last one. Therefore, the number of multi cycles is
variable and needs to be determined by the pre-decode unit. Parameterized decoding
functions compute, which registers to read and write using a static mapping from
counter values to register index. Since the counter starts at zero and only the last
register is always referenced, CTR = 0 is mapped to index 31 and indices decrease
from there. So if a lmw instruction in the program references register 1, execution

80

3.1. Plasticity processor technology

Instruction

Streamer

Pre-decode Hazard

Detection

ready

hold

is_multicycle

multicycles

CTR

..
.

+1 ←0

=

Cycle 0

Cycle N

Figure 3.8.: Simplified schematic of the control logic for multi cycle instructions. Normal
instruction fetch is stalled (hold signal), and a predetermined sequence of control
signals is send to downstream logic. For the remaining processor, a multi cycle
instruction is equivalent to a short sequence of operations.

81

3. Hardware design

takes at least 31 cycles. If a data hazard exists for any register in the accesses range, the
pipeline is stalled, when the parameterized decoding function selects this particular
register. The load with update instructions write the retrieved result from memory
and its effective address to two general purpose registers in two cycles. The divide
instruction is implemented as multi cycle operation to reduce the required length of
the RSR. Pre-decode generates the appropriate number of no-operations after a divide
to delay execution of subsequent instructions until the divide has completed. Since
division is used only infrequently in typical programs (Weicker, 1984; Patterson and
Hennessy, 1996), it is viable to completely block execution.

This framework for multi cycle execution is similar to the concept of micro-
operations (Wilkes, 1969). It is however employed only minimally for just the control
signals of just the instructions requiring it.

3.1.6.7. Scheduling instructions to functional units

The last stage of the front end has to send instructions to functional units and control
operand fetching. To do this, it has to consider detected hazards and whether functional
units are ready to accept a new instruction. This task is fulfilled by the scheduling
block shown in Figure 3.9A. It distributes the fetched and pre-decoded instruction
to one of the functional units if the ready signal from hazard detection is asserted.
The information passed to the functional unit is comprised of the full instruction, the
control word, the current and next instruction address, and a valid bit. Functional units
either are always ready to accept instructions (FU A in the figure) or use an Functional
Unit Manager (FUM) to compute the ready signal. An operation may for example take
multiple clock cycles to execute. A counter in the FUM removes the ready signal until
the execution has finished. Other units can be used without constraints during this
time. Therefore, in the terminology of Patterson and Hennessy (1996), managers detect
structural hazards, i.e. hazards resulting from unavailable execution resources.

Delayed write back The FUM also coordinates delayed write back of variable-
latency instructions. This is illustrated in Figure 3.9B: The functional unit requests a
write back slot from its associated manager, when it has completed execution. Control
of the write back channel for the destination registers is chained through all managers
supporting delayed write back. If on the in port no write is signalled, the manager
inserts a write for the requesting unit on the out port. The order of the chain therefore
defines the priority, with which write back slots are granted. Fixed-latency writes from
the RSR have highest priority and are always granted. When acknowledging the write
to the functional unit, the manager also informs the RSR in the hazard detection via the
delayed_commit port shown in Figure 3.7. Currently, only the general purpose and
fixed-point exception register write back channels are chained through managers in
this manner. FUMs control load/store using the PPB, external control, and the divider.

82

3.1. Plasticity processor technology

A

Hazard

detection

Schedule

re
a
d
y

e
m

p
ty

is
s
u
e

FU A

FU B

FU C

F
U

M
 B

F
U

M
 C1

FU readies
A B C

inst

CW

operand

fetch

B

FU A

FU B

Hazard

detection

WBC gpr

WBC ...

FUM A

FUM B

req

ack

req

ack W
r
it

e
 b

a
c
k

in

out

in

out

Figure 3.9.: Distributing instructions to functional units. (A) The schedule block considers the
ready signals from instruction tracking and functional units to issue instructions to
the associated functional unit, when they are free of hazards and the unit is ready
to execute. The Functional Unit Manager (FUM) determines, if a functional unit
is ready to accept new instructions. Most units do not need an FUM, since they
accept instructions in every cycle. (B) Control of delayed write back using FUMs.
The write back channel control signals from the RSR are chained through FUM
blocks. When using delayed write back, functional units request a write back slot,
which is granted by the manager, if the upstream channel does not indicate a write.
In this way, the arrangement of the chain defines write back priority, giving highest
priority to fixed-latency instructions, then load/store, external control and divider.

83

3. Hardware design

Only load/store and external control have a delayed write back capability. A manager
is only needed for the divider, if the multi cycle trick described in Section 3.1.6.6 is not
used. This is for example the case in FPGA implementations, where hard-macros for
division are available that have an acceptable latency.

Controlling state machine The schedule block in Figure 3.9A is implemented
as a Finite State Machine (FSM). While executing sequences of instructions without
branches, it simply uses the ready signals from hazard detection and FUMs to distribute
the incoming instruction stream to the correct functional unit. Beyond that, the FSM
has to deal with program start after reset, control transfers, context synchronization
(explained below), interrupts, and transition into a sleep state. The controlling FSM is
the central control unit of program execution. The rest of the front end acts as data path
for it, processing the instruction stream. Functional unit managers perform specialized
control operations for individual functional units. They keep track of execution state
and coordinate delayed write back with other functional units.

Figure 3.10 shows a simplified version of the state diagram of the controlling FSM.
Here, some transitions for unusual situations are left out. The full diagram is shown in
Appendix C on page 230.

After reset, the FSM is in the RESET state. The instruction streamer starts to fill the
pipeline by fetching instructions from storage. The stream marks the first retrieved
instruction with a valid signal. When it passes pre-decode, the controlling state
machine transitions into the FETCHING state. This is the state of normal program
execution, where operations are send to the appropriate functional unit, if no hazards
exists.

The branch functional unit causes control transfers and signals them to the instruc-
tion streamer and the controlling FSM. As described in Section 3.1.4, the streamer will
deliver invalid operations for a number of cycles until the transfer is complete. Down-
stream logic detects completion by monitoring the delayed jump signal (Figure 3.3).
The controlling FSM transitions to the JUMPING state, when a branch is signalled. In
this state, it ignores incoming instructions. It remains in this state, until it detects
completion, upon which it transitions back to the FETCHING state.

Instruction execution is affected by certain register bits and other processor state in-
formation, which are called the context of the instruction. Context-altering instructions
are not required to take effect in the program order defined by the sequential execution
model. To ensure, that an instruction issued after a context-altering instruction is
executed in the new context, context synchronization has to be used. The controlling
state machine implements context synchronization by transitioning to the SYNCING
state, before executing the synchronizing instruction. This causes the pipeline to stall,
until all RSRs of the instruction tracking module are empty, i.e. all previous operations
have retired. Then, normal operation resumes in the FETCHING state.

84

3.1. Plasticity processor technology

RESET

FETCHING

(v)

SYNC_TO_HALT

(vh)

(h)

JUMPING

(b)

SYNCING

(s)

SYNC_JUMP_0

(i)

HALTED

(e)

(c) (e)

(w)

(wi)

SYNC_JUMP_1

(c)

(e)

Figure 3.10.: Simplified state machine diagram for the scheduling FSM. Transitions are labeled
with the asserted input signals, that trigger the transition: valid instruction from
instruction streamer (v), halt (h), context synchronization (s), control transfer
complete (c), branch (b), interrupt (i), all RSRs empty (e), and wakeup from sleep
(w). After reset, the FSM is in the RESET state. Some transitions for special cases
are omitted. The full graph is shown in Appendix C.1.2.

85

3. Hardware design

A

Controlling FSM

Operand

fetchDC DC

EX EX

result bus

W
B

C

W
B

C

operand bus

...

...

...

from hazard detection

and pre-decode

IS IS

B

A IS DC EX WB

IS DC EX WBIS IS ISB

IS DC EX WBIS IS

IS DC EX WBIS

B

B

Figure 3.11.: (A) Pipeline stages of functional units in the back end. Functional units operate
in parallel. Execution starts after issue (IS), and takes one cycle for decode and
operand fetch (DC). After that, operands are available for the execution stage
(EX). (B) Penalties P0, P1, and P2 by data hazards depending on issue-to-retire
latency L for three scenarios: issue after retire, issue in time, and issue in time
with write-through. Instruction B reads a result from instruction A. Each box
represents one clock cycle, in which execution passes through one of the pipeline
stages issue (IS), decode and operand fetch (DC), execute (EX), and write back
(WB). To indicate, that B waits for issue due to the hazard, the issue box is greyed
out.

Interrupts are also context synchronizing. In this case, the controlling FSM combines
synchronization with a control transfer. After the interrupt is signaled, the SYNC_-
JUMP_0 state waits for completion of the control transfer and SYNC_JUMP_1 for the
empty signal. After that, normal fetching resumes in the new context.

The wait instruction puts the processor in a sleep state, in which execution is disabled
until an external source wakes it up again. To the FSM this is indicated by the halt
signal, causing a transition to SYNC_TO_HALT to wait for the empty signal. While
sleeping, the FSM remains in the HALTED state until wake-up is triggered by an
interrupt. Typically, clock gating will disable the processor clock after the HALTED
state is reached and only re-enable it for leaving the state.

86

3.1. Plasticity processor technology

A Operand bus

Name Width Description

a 32 Operand A
b 32 Operand B
c 32 Operand C
cin 1 Carry-in

so 1
Summary
overflow

cr 4
Condition
register field

B Result bus

Name Width Description

res_a 32 Result A
res_b 32 Result B
cout 1 Carry-out
ov 1 Overflow

crf 4
Condition
register field

msr 32
Machine state
register

valid 1 Valid bit

Table 3.2.: Interfaces for functional units. (A) Data input to functional units through the
operand bus. (B) Data output from functional units through the result bus.

3.1.7. Execution in the back end

At the end of the front end of the pipeline, instructions are issued to their associated
functional units. The controlling FSM writes instruction, its address, and the – possibly
predicted – next address into an issue slot and marks the data as valid. Simultaneously,
it starts to fetch operands required for execution. Figure 3.11A visualizes execution in
the back end. Operand fetching involves readout of register storage and multiplexing
results to a number of ports of the operand bus. This is performed within one clock
cycle after issue in parallel to decoding of the instruction in the functional unit. In the
next cycle, operands are available on the operand bus and execution begins. Depending
on the operation, this can take a number of cycles. At the end, a result is presented
on the result bus, which the write back channels read as controlled by their RSRs or
through delayed write back. Therefore, the minimum latency of instructions from
issue to retire is three cycles.

Back-end interface Functional units are connected to two standardized interfaces:
the operand and result buses. Their signals are listed in Table 3.2. The operand
bus provides three 32 bit operands and a number of status signals (Table 3.2A). The
cin signal is used for extended arithmetic operations with more than 32 bit data
types. The so and cr signals are used for operations on the fixed-point exception
and condition registers. The result bus (Table 3.2B) carries two 32 bit words, because
some instructions provide two result words. For example, a branch can decrement
the counter register and record the return address in the link register, providing new
values for both registers on res_a and res_b. The valid bit is relevant for delayed
write back. If a fixed-latency write slot is allocated for a variable-latency instruction,

87

3. Hardware design

deasserting valid prevents, that incorrect data is written to registers. The remaining
bits of the interface are used to record status information.

Penalty by data hazards The issue to retire latency L determines the penalty by
data hazards. Figure 3.11B shows pipelined execution of two dependent instructions
A and B. The penalty is P0 = L, if B is issued only after A has committed its result
to the register file. This is the case, if all stages of the RSR including the last one
controlling the write back channel are checked by test ports (Figure 3.5). This wastes
one cycle, because operand fetching could start directly after write back of A. By
removing the last stage of the RSR from hazard checking, subsequent instructions
can be started in time, so that they enter the operand fetch state, when the result is
available. This reduces the penalty by one P1 = L− 1. If the register file supports
write-through (Section 3.1.6.4), write back and operand fetch can occur in the same
cycle. By removing the last two stages of the RSR from test ports, instructions issue in
time for this scenario. The penalty is then further reduced to P2 = L− 2.

To some degree, the latency of instructions can be configured. Multiply and divide
can have arbitrary latency limited only by the used implementation (see Section 3.1.8.2).
Fixed-point instructions can have a minimum latency of L = 2, fixed-latency load/store
of L = 3. A latency L = 2 is achieved by omitting the output registers after the execute
stage. This forms a timing path starting from the register file, through the execution
data path, and back to the register file, possibly reducing the maximum frequency of
the design. In this case, there is no penalty for data hazards, if write-through is used.
A complete list of latencies is given in Appendix B.

3.1.8. Functional units

For the PP, functional units are relatively simple to design, because challenging arith-
metic operations, e.g. floating-point math, are left out. Also, because of the back end
architecture, functional units can be designed independent of each other. With the
fire-and-forget approach of execution for fixed-latency instructions, the unit simply
represents a pipeline to compute its function.

3.1.8.1. Input/output over the plasticity processor bus

Load/store and external control perform data I/O over two PPB ports. They both
employ a common bus access module to generate requests on the bus. The main
difference is, that external control supports only two instructions to read or write 32 bit
words, while load/store can perform byte and halfword accesses.

The PPB is described in more detail in Section 3.2. The processor acts as master,
initiating read and write requests to addresses. The request is complete, when the bus
has accepted it. Some time after request initiation, the bus generates a response to the

88

3.1. Plasticity processor technology

request. To complete the response, the master reads the provided data and raises an
accept signal. The request and response phases are completely decoupled to allow
pipelining. The master can initiate a new request immediately after a first one was
accepted, independent of whether the response was already received. The master
assigns responses to requests by their ordering. The bus guarantees, that responses
arrive in the same order as requests are accepted. To track completion and detect
errors, write requests also generate a response.

The bus access module The bus access module has to perform three tasks: gen-
erating requests and responses on the bus, stalling the pipeline if requests can not be
handed out fast enough, and retirement of responses using the delayed write back
method. To do this, two First-In First-Out (FIFO) queues are being used for requests
and responses. A new instruction inserts target address, the type of the request, and
– for writes – write data into the request queue. In parallel it inserts the destination
register into the response queue. A request generator reads the request queue and if it
is not empty, it starts an I/O operation on the bus. Upon acceptance by the bus, the
entry is removed from the queue and, if available, the next entry processed. Indepen-
dent of this, responses from the bus initiate delayed write back using the information
provided in the response queue. When the delayed write is acknowledged by the front
end, the entry is removed from the queue. In the meantime no further responses are
accepted. There are two pipeline stages after issue and before an access is stored in the
queues. Therefore, the unit is marked as not ready by the manager in the front end, if
only two entries remain free in the queues. This way, it is guaranteed, that all entries
that are issued are inserted into the request and response queues.

Beyond the basic operation, the module provides facilities to perform byte and
halfword accesses potentially with sign extension. It also detects requests, that are
incorrectly aligned, i.e. word accesses not aligned to word boundaries and halfword
acceses not aligned to halfword boundaries. The Power ISA allows embedded systems
to not implement such accesses and instead raise an alignment exception. If such
an exceptions exists for the current instruction, is checked after the target address
is calculated after the operand fetch phase. If the access is misaligned, the access is
marked as such in the request and response queues. The operation is still carried
out normally, but no request is generated on the bus and no data written back to
registers. Instead of write back of a result, the completion of the instruction is signalled
to dependency tracking in the front end using the same mechanism as if a result was
written.

3.1.8.2. Multiplier and divider

To perform the arithmetic operations I relied on either synthesizable components
from the DesignWare data path building blocks library (DesignWare, 2013) or vendor

89

3. Hardware design

supplied generated IP cores for FPGA hard-macros. These blocks are preceded by
control logic that decodes the instruction and configures the macros to perform the
appropriate mathematical operation. After them, status flags for the condition register,
overflow, and division by zero are generated. The divider operates sequentially, i.e.
after a division is started, it is unavailable until computation completes and the result
is returned. This is done, because integer division is assumed to be an infrequent
operation and a sequential implementation saves pipelining flip-flops and therefore
area. Multiplication on the other hand, is a much more often used instruction, for
example in address computation in two-dimensional arrays. Therefore, a pipelined
multiplier is used that can start a new operation in every clock cycle. The specific
DesignWare components used are DW_div_seq and DW_mult_pipe.

3.1.9. Interrupts & Exceptions

External events and certain instructions can cause exceptions to occur. Depending
on the current context defined by particular bits in status and control registers this
causes an interrupt to be taken. An interrupt suspends current program execution
and transfers control to a predetermined instruction address, the interrupt vector. The
interrupt subsystem of the PP is rather rudimentary. There are four reasons to include
it at all for the plasticity application: 1) Interrupts can be used to insert break- and
watchpoints into a program for debugging purposes. 2) Timer exceptions allow time
based wake-up from sleep states. 3) Receiving messages from the controlling computer
system without polling. 4) To detect alignment errors of load/store instructions. The
following subset of interrupts is available in the implementation:

1. Alignment: Triggered for mis-aligned load/store accesses.

2. Decrementer: Invoked after the decrement register of the timer facility has
reached zero.

3. Doorbell: Logic external to the processor core can signal a doorbell exception,
for example to indicate that a message is available in memory.

4. External input: Triggered by external logic to indicate an arbitrary asynchronous
event in the system.

5. Fixed-interval: Invoked in fixed time intervals by the timer facility.

6. Program: Handles exceptions directly caused by the program. Only used for
trap instructions.

90

3.1. Plasticity processor technology

3.1.9.1. Interrupt processing

The interrupt control unit shown in Figure 3.2 coordinates the execution of interrupts.
If either internally or externally an exception exists, it is signaled to the control unit. It
checks context bits and interrupt priorities, if multiple exceptions are signaled simul-
taneously, to determine if an interrupt needs to be taken. Apart from alignment and
program interrupt, all others are masked by the external enable (EE) bit of the machine
state register. For decrementer and fixed-interval interrupts there are additional enable
bits in the timer control register (FIE and DIE). The current program counter and
machine state register are saved in two 32 bit save and restore registers. The external
enable bit is cleared to block further interrupts from external sources. A synchronizing
interrupt control transfer is started by asserting appropriate signals to the instruction
streamer (Section 3.1.4) and controlling FSM (Section 3.1.6.7). Execution is resumed at
a predetermined address, the interrupt vector. The interrupt vector table used by the
PP deviates from the specification and is listen in Appendix B on page 228.

When the service routine at the interrupt vector has finished, a return from interrupt
instruction is used. It transfers control to the saved program counter and restores the
saved machine state register. This will also re-enable the EE bit, if it was enabled before
the interrupt.

3.1.9.2. Saving the return address

The saved return address depends on the interrupt type. The alignment and program
interrupt are synchronous, i.e. the interrupt is caused directly by the execution of
an instruction. The restore address saved in register SRR0 indicates the causing
instruction, that is the mis-aligned load or store, or the trap instruction. The other
interrupts are asynchronous to program execution. To reduce interrupt latency, the
front end will immediately start a control transfer to the interrupt vector. The saved
return address is that of the next operation to be issued by the controlling state machine.
There are two special cases: if the processor is in a sleep state after a wait instruction,
interrupts resume at the wait instruction, sending the core back to sleep. If the service
routine decides to resume normal operation, it sets the restore register to a different
address before issuing the return from interrupt instruction. If the interrupt is signaled
after issue of a branch instruction and before its decision by the branch functional unit,
current execution is speculative. In this case, the return address is always set to the
branch instruction.

3.1.9.3. Asynchronous interrupts

External exceptions are signalled using a handshake with the interrupt control unit.
The source has to keep its request after detecting an exception until the processor
acknowledges, that it has taken the associated interrupt. This is necessary for two

91

3. Hardware design

reasons: first of all, exceptions may occur simultaneously or while external interrupts
are disabled (EE = 0). The handshake ensures, that interrupts can be taken sequentially
in such situations. The second reason is that during context synchronization and
wake-up from sleep, especially when the clock is disabled during sleep, some time
passes, before the interrupt control unit can initiate the control transfer.

3.1.9.4. Precise interrupt problem

A synchronous interrupt is precise, if all instructions prior to the one causing the
exception have completed execution and all following ones have not. This is an
important property to be able to resume program execution after an exception at the
instruction following the one causing the exception. In a pipelined processor that
allows out-of-order retirement, as is the case for the PP, this is potentially difficult to
guarantee. If an exception is only detected after a subsequent instruction has retired
out of order, the requirements for preciseness are violated. Smith and Pleszkun (1985)
describe a number of methods to assure preciseness of interrupts, when a result shift
register is used. They propose for example a reorder buffer, that allows to revert results
committed out of order.

In the presented design such mechanisms are not needed. Only the alignment and
program interrupts are specified as synchronous and precise. For them, exceptions are
tested with minimum latency after the operand fetch phase. A subsequent instruction
can retire in the next cycle at the earliest. The controlling state machine disables write
back globally from this next cycle on, during the synchronizing control transfer (states
SYNC_JUMP_0 and SYNC_JUMP_1 in Figure 3.10). Therefore, the pipeline runs empty
while issue of new instructions is blocked until the transfer to the interrupt vector is
complete.

3.1.9.5. Critical and machine check interrupts

Although not available as interrupts, save/restore registers, enable bits in the machine
state register, and appropriate return from interrupt instructions (rfmci, rfci) are imple-
mented and can be used. This forms the basis to implement prioritized interrupts in a
future system. For example, critical doorbell could be used as high-priority signalling
channel that can be reacted upon, even if another interrupt is currently processed.
So far, I did not see a practical use for prioritization in the context of the plasticity
application.

3.1.10. Timer facility

The timer facility provides a 64 bit time base register that is continuously incremented
synchronous to the core clock. The facility is not subjected to clock gating, when the

92

3.2. On-chip bus technology

processor is in a sleep state. Therefore, the time base register can be used to measure
the duration of a sleep phase. The unit offers two interrupt sources: the fixed-interval
timer and the decrementer. The watchdog timer is not implemented. Both sources can
be used to wake the PP from sleep states.

The fixed-interval timer sets the fixed-interval timer interrupt status bit (FIS) in the
timer status register (TSR), when a particular bit of the time base transitions from 0 to
1. If enabled, this will also invoke the associated interrupt. The bit can be selected in
the timer control register (TCR) from position 8, 12, 16 or 20. For a 500 MHz clock, this
allows for periods from 1.024 µs to 4 ms.

The decrementer register counts down and sets the decrementer interrupt status
bit (DIS) in the TSR, if decrementing occurs for the value 1. Depending on the con-
figuration, it then assumes value 0 and stops decrementing or it reloads a value from
the decrementer auto reload register (DECAR). If enabled this triggers an decrementer
interrupt to be taken.

3.1.11. General purpose input/output registers

Mainly for debugging purposes the PP has three 32 bit special purpose registers
referred to as General purpose Input/Output (GIO) registers. The processor core
makes them available to surrounding support logic for simple I/O tasks. A typical
example would be the control of pins on a chip. Register GIN is read-only and returns
the value presented by support logic. Conversely, the GOUT register is write-only and
presents its value to support logic. The GOE register is intended as bitwise output
enable register. Support logic can for example use this value to selectively activate
tri-state drivers on off-chip pins. It can be read and written. Software accesses these
registers using the mtspr and mfspr instructions.

3.2. On-chip bus technology

Section 3.1 describes the inner workings of the PP core. In Section 3.1.3 I already
described two interfaces used on the boundary of the core: the RAM interface and
the PPB interface. The protocol and the fabric used for implementation of the PPB
are the subject of this section. In the framework of the AHM, the task of the PPB is
to interconnect the plasticity processor with peripherals and main memory, and to
provide access to the synapse array interface adapter for the external control computer
system (Figure 3.12).

3.2.1. Motivation and design goals

The PPB is intended as on-chip bus that connects the PP to peripheral devices using a
generic interface. On the processor side, it is controlled by the variable-latency load/s-

93

3. Hardware design

Synapse Interface

Synapse Array

(NxM)

Bus

Adapter

Plasticity

Processor

Main memory

Peripheral 1

Peripheral K

...

External

Control

Figure 3.12.: Location of the Plasticity Processor Bus (PPB) in the framework of the AHM.

tore or the external control functional units. Therefore, it allows for memory mapped
I/O with peripherals. Originally, the bus was considered for access to the synapse
array in the context of the plasticity application. However, benchmarks showed (see
Section 5.4), that better performance can be achieved with a specialized instruction set
extension using a dedicated I/O interface (described in Section 3.4). It remains the task
of the bus to connect to other modules of the neuromorphic device, such as analog
parameter storage for neurons, or configuration of event network routing switches.
This is important to enable plasticity rules, that not only affect synaptic weights, but
for example change the wiring of the neuronal network (structural plasticity). In future
systems it is also envisioned to pass messages through the PPB for inter-processor
communication. Apart from that, the PPB is used for instruction fetching behind the
cache (Section 3.1.5) and data exchange between general purpose registers and main
memory (Section 3.1.8.1).

These considerations define the design goals for the bus: The fabric has to offer
access to multiple peripheral slaves, of which one is typically main memory. It needs to
bridge physically long distances by inserting delay flip-flops. This is mostly motivated
by the floorplan of the HICANN chip (Section 5.4), which leads to connections of
multiple millimeter between master and slave. In such situations, pipelined operation
should allow for good throughput, even though latency is high. Pipelined operation
means, that multiple accesses can be initiated before the first one is completed. As a
last goal, it must be possible to initiate bus transfers from multiple masters in parallel.
For one thing, this is to arbitrate access between the external controlling computer
system and the on-chip processor. For another thing, to arbitrate between instruction
fetching (by the cache) and load/store accesses.

94

3.2. On-chip bus technology

MClk

MCmd IDLE WR RD IDLE

MAddr A0 A1

MData D0

MByteEn F F

MRespAccept

SCmdAccept

SResp NULL DVA NULL

SData D1

Request phase for A0 Response phase for A0

Figure 3.13.: Timing diagram of two transfers on the PPB: A write operation to address A0 and
a read operation on address A1.

3.2.2. Interface specification

The PPB fabric connects a number of bus masters initiating transfers with multiple
bus slaves. The fabric directs transfers to the correct slave based on the address of the
transfer. The interface follows the OCP specification (OCP, 2009). Used configuration
options are listed in Appendix C on page 233. It supports read and write operations
in a 32 bit address space with 32 bit data words in big-endian byte order. The request
and response phase each use a handshake to control the rate of requests and responses.
Writes also have a response phase, i.e. they need to be acknowledged from the slave.
Data in transfers can be enabled byte-wise.

Figure 3.13 shows a write and a read transfer by an example. All signals starting
with “M” are driven by the master and all signals driven by the slave start with an
“S”. The request phase of the write transfer is initiated by the master by presenting
the command WR on MCmd. The slave accepts the command, when it is ready by
asserting SCmdAccept. This ends the request phase and the master can initiate the
next request. The slave initiates the response phase by presenting DVA on SResp. The
response phase can start in the same clock cycle as the request phase at the earliest for
a 0-latency transfer. This is the case for slaves generating the response combinatorially
from the request. The response phase can start an arbitrary number of cycles after
the request phase starts or ends. There can be multiple completed request phases,
before the first response phase is started. The master completes the response phase
by asserting the MRespAccept signal. As can be seen in the diagram, the first write
causes a response with SResp = DVA. The contents of SData in this response is ignored.
Refer to the OCP specification (OCP, 2009) for further details.

95

3. Hardware design

Bus splitterBus arbiter Bus delay

0

1

0

1

Figure 3.14.: Bus fabric for the PPB is implemented by combining three basic building blocks.
Splitter and arbiter forward requests and responses combinatorially. The delay
block inserts a delay pipelining stage into the datapath. This allows to shorten
logic paths to improve timing.

3.2.3. Basic bus fabric building blocks

From the perspective of the bus fabric there are two independent data channels. The
request channel transports requests from the master to the slave and the response
channel transports data in the opposite direction. The SCmdAccept and MRespAccept
signals serve as handshake signals to exert back pressure on the sending side, i.e., they
control how fast the other side can send requests or responses. Fabric needs to assure
correct ordering of requests and responses for each master and slave. Every master
must see responses in the same order as requests were sent out. Every slave must see
requests originating from the same master in the same order as they were initiated.
The slave has to respond in the order it receives its requests. The relative ordering of
requests between multiple masters is undefined.

These considerations guide the design of three basic building blocks for bus fabric
shown in Figure 3.14. They all use the PPB interface to connect to each other.

1. Bus arbiter: Arbitrates between two masters with priority given to master 0.

2. Bus delay: Inserts one cycle delay in the request and response channel, to allow
for pipelining of requests and responses.

3. Bus splitter: Diverts requests to slave 1, if bit s in the address is set, and slave 0
otherwise.

This allows to build arbitrary bus structures connecting any number of masters with
any number of slaves. Some structures are shown in Chapter 5 for systems using the
PPB.

96

3.2. On-chip bus technology

3.2.3.1. Bus arbiter

Since transfers are not tagged with the identity of the master they were initiated by, the
arbiter records which master initiated a request in a FIFO queue. The response is then
forwarded to the correct master depending on the output of the queue, removing the
last item upon completion of a response phase. During a request phase the arbiter is
locked, meaning that the request phase has to finish, before the other master can initiate
a request. When both masters request simultaneously, the one with higher priority
gets the lock. If the lower priority master typically has long request phases, this will
reduce access bandwidth for the high priority one. The MReset_n signal to the slave
is either driven only by master 0 or is deasserted if one or the other master deasserts
MReset_n. The length of the FIFO queue determines the number of simultaneously
open transfers. If the queue is full SCmdAccept is held low to both masters until a
response phase completes and the FIFO can track the next transfer.

3.2.3.2. Bus delay

The purpose of the delay element is to break long combinatorial logic paths between
master and slave that limit the maximum clock frequency. Request and response
channels are treated completely independent: For each direction, there is a two entry
deep FIFO queue. While up to one entry is in the queue, incoming transmissions are
accepted. If the slave downstream of the delay module signals, that it can not accept
further requests, the delay module will signal this to the upstream master in the next
cycle. Therefore, it needs to be able to buffer one request to compensate the incurred
latency. The same is true for the response data path.

3.2.3.3. Bus splitter

The splitter is in a way a reversed version of the arbiter. Requests are forwarded to
one of two outputs depending on the bit at position s in the address. The origin of the
request is recorded in a FIFO queue. Responses are forwarded to the master indicated
by the last element from the queue. The depth of the queue limits the number of open
transfers to both slaves of the splitter. Signals are passed without delay flip-flops from
one side to the other, thereby forming timing paths between master and slave.

3.2.3.4. Example bus configuration

Figure 3.15A shows an example bus network connecting three masters with four slaves.
Figure 3.15B shows the timing diagram for a read transfer from master 0 to slave 3. The
arbiter computes the SCmdAccept signal combinatorially from MCmd, SCmdAccept
of the slave and the full flag of the tracking queue. It is therefore only asserted while
the command is presented. The request passes through the three delay stages and is

97

3. Hardware design

A

0

1 0

1

Master 0

Master 1

Master 2

0

1

Slave 0

Slave 1

Slave 2

Slave 3

0

1

0

1

B

MClk

MCmd IDLE RD IDLE

SCmdAccept

SResp NULL DVA IDLE

MRespAccept

MCmd IDLE RD IDLE

SCmdAccept

SResp NULL DVA IDLE

MRespAccept

Round-trip-time

M
a
s
te
r
0

S
la
v
e
3

Figure 3.15.: (A) An example use of the building blocks shown in Figure 3.14. (B) Timing
diagram for transfers in the example bus fabric. Only the handshake signals are
shown.

98

3.2. On-chip bus technology

then presented to the interface of the slave. The configuration of the splitters specifies
the address space of slave 3 to 0xC0000000. . . 0xFFFFFFFF2. The slave presents the
response in the next cycle. It appears back at the interface of the master after three
cycles.

3.2.4. Additional bus building blocks

The basic building blocks from Section 3.2.3 are sufficient to build arbitrary bus net-
works. For optimization and convenience there are additional generic components.

3.2.4.1. Register target

The register target bus component provides read and write access via the PPB for
a configurable number of registers. A write mask allows for selection of writable
registers. A user input can be used to override the register contents returned by bus
read operations. The module selects a register based on the presented address using a
base mask M, a base address A, and an offset mask O. A transfer referencing address
a accesses register n = a & O, if a & M = A3.

3.2.4.2. Serializer/Deserializer

The Serializer/Deserializer (SerDes) bus component performs transfers serially over
a reduced number of lines. It was motivated by the need to connect bus endpoints
through a routing bottleneck on the HICANN chip. The block operates independently
for request and response channel. The signals belonging to request or response are
combined into a parallel word. This word is registered and transferred sequentially
over a configurable number Nserdes of data lines to a deserializer on the receiving
side. It reconstructs the parallel word and presents it to the receiving interface. Until
the parallel word has been completely transferred to the other side, the accept signal
is kept low. Changing the width Nserdes of the serial line offers a trade-off between
bandwidth and required routing resources. Serializer and deserializer communicate
by three signals: MReset_n is propagated to the slave, a strobe signal, and the serial
data line. Both blocks share the same clock.

3.2.4.3. RAM interface adapter

This adapter is designed to access slaves exposing a RAM interface (Section 3.1.3)
from the PPB. The delay signal on the RAM interface is not supported and must
remain low. Incoming requests are processed by a state machine that immediately

2Numbers beginning with “0x” are given in hexadecimal representation
3& denotes bit-wise and

99

3. Hardware design

acknowledges the request by initiating a response phase. Address, data, and byte
enables are forwarded asynchronously and enable and write enable are generated
from the MCmd field. If the response is not immediately accepted (MRespAccept =
0), the request and the returned data are registered. New requests are not accepted
(SCmdAccept = 0) until the response phase of the previous transfer is completed.

3.2.4.4. HICANN system bus adapter

The HICANN ASIC also uses an OCP based bus to interconnect system components.
However, it is configured with incompatible options, making the adapter module
necessary. For example, it does not have the MRespAccept signal and writes do not
cause a response. The employed bus fabric terminates request and response phase
together by asserting SCmdAccept and, for reads, SResp = DVA. This blocks subsequent
transfers and prevents pipelined operation. Therefore, the adapter needs to decouple
both buses, so that requests can be pipelined in the PPB.

The adapter from PPB to HICANN bus uses FIFO queues to track requests and
responses. Incoming requests are pushed to the request queue and presented to the
HICANN bus from its tail. The returned data is pushed to the response queue. From
its tail, responses are initiate to the PPB. The adapter for the opposite direction is
simpler: a state machine goes through the request and response phase on the PPB and
returns the result to the HICANN bus, when the transfer is complete.

3.2.5. Methodology: using code generation for bus specification

Specifying a bus network in the RTL description results in lengthy and repetitive code.
For every node and connection a SystemVerilog module or interface is instantiated.
The structure of the described network is not directly obvious from the source code.
Similar to the approach taken in Section 3.1.6.5, code generation using the M4 language
can be used to allow for a more concise description. Listing 3.3 shows a description of
the network illustrated in Figure 3.15. The network description is surrounded by the
bus_begin and bus_end macros. The former sets a prefix “testbus” for the network
and specifies the used clock. Connectivity is determined using a stack: every macro
takes its inputs from the top of the stack and pushes its output onto it. The master
macro serves as entry point to the network that does not remove an input. Its argument
is pushed onto the stack. When the first arb macro is encountered in line 5, the stack
holds two inputs. They are removed by arb and replaced with its arbitrated output.
The delay macro consumes and produces one entry on the stack and split takes one,
pushing two. With slave an output is added to the network removing one entry from
the stack. It uses its argument to define a macro that can be used by user code to refer
to the output SystemVerilog interface. The slave(1) macro in line 10 for example
defines the macro testbus_slave_1 that expands to the name of the interface for

100

3.3. STDP logic in the BrainScaleS wafer-scale system

Listing 3.3: Example M4 code to describe the bus network shown in Figure 3.15

1 include(bus.m4)

2 ...

3 bus_begin(testbus, clk)

4 master(bus_master_0)

5 master(bus_master_1) arb

6 master(bus_master_2) arb delay

7 split(31)

8 split(30)

9 slave(0)

10 slave(1)

11 delay split(30)

12 slave(2)

13 delay slave(3)

14 bus_end()

this slave.

The stack is implemented with the pushdef and popdef operators of M4 that
treat macro definitions as a stack. Names for intermediate nodes and interfaces are
generated automatically by use of the bus prefix and a counter variable set by bus_-
begin. Interfaces are automatically instantiated as needed and connected to the
specified clock.

In contrast to the use of M4 for the pre-decode logic (Section 3.1.6.5), Listing 3.3
shows much more elaborate code generation. The result is a short and easily readable
description of the bus network that translates to SystemVerilog code. The use of stack
processing goes beyond what is possible with the built-in SystenVerilog ‘define

macros.

3.3. STDP logic in the BrainScaleS wafer-scale system

The previous sections in this chapter described generic hardware designs for a general
purpose micro-processor and an associated on-chip bus. This section introduces
specialized logic for the plasticity application. First the interface to the synapse array
in the HICANN system is defined in Section 3.3.1. Section 3.3.2 describes a non-
programmable STDP implementation using this interface. This implementation was
designed as a precursor design for a processor based approach and is used in the
current generation of the wafer-scale neuromorphic computing system. Section 3.3.3
introduces the adapter between processor and synapse array interface.

101

3. Hardware design

Synapse Interface

Synapse Array

(NxM)

Bus

Adapter

Plasticity

Processor

Main memory

Peripheral 1

Peripheral K

...

External

Control

Figure 3.16.: The synapse interface in the framework of the AHM.

3.3.1. HICANN synapse array interface

The location of the synapse array interface within the AHM is highlighted in Fig-
ure 3.16. It provides access to synaptic weights and control of the evaluation process
(Section 2.2.2.4). In HICANN the synapse also stores an individual address to de-
termine if it should forward a presynaptic event. These addresses are referred to as
“decoder addresses”. Also, reading and writing configuration data for the synapse
line drivers that inject presynaptic events from the on-wafer event network into the
synapse array is intertwined with synapse weight readout. Therefore, the interface has
to perform read/write accesses to synapse weights and decoder addresses, read/write
on synapse line driver configuration SRAM, and control of the evaluation process
including accumulator reset. The interface is asynchronous and so all changes on
signal inputs take immediate effect. This has to be kept in mind when designing the
logic to drive the interface. The design of the synapses, synapse line drivers, and the
array was not part of this thesis.

3.3.1.1. Structural description

Figure 3.17 shows the organization of the synapse array. The shown signal names
belong to the synapse array interface and are also listed with their polarity and width
in Appendix C on page 233.

The synapse driver SRAM consists of three regions, that can be selected using the
syn_endrvb, syn_enctrlb, and syn_engmaxb enable signals. The bitlines are exposed
as syn_d and syn_db. Wordlines are driven from an address decoder shared with the
synapse array. The address is presented to syn_a and in inverted form to syn_ab. Two
rows share the same address and the 2 bit wide syn_en signal is used to disambiguate
them. The bits enable the synapse line driver on the left or right side of the array and

102

3.3. STDP logic in the BrainScaleS wafer-scale system

syn_d / syn_db

syn_endrvb

syn_enctrlb

syn_engmaxb

s
y
n
_
e
n
s
y
n
b

s
y
n
_
e
n
d
e
c
b

s
y
n
_
e
n
c
rb

s
y
n
_
g
e
n

dio

corrin

corresetb

en

pattern

sca/scab

scc/sccb

csen

syn_a/syn_ab

pcb

ramoeb

ramwb

evaluate

Syndriver

SRAM

..
.

..
.

DRV

CTRL

GMAX

Synapse weights,

 decoder addresses,

STDP accumulation

Slice 0 Slice 1 Slice 2 Slice 3

syn_en
s
y
n
_
g
e
n
b

Figure 3.17.: A block diagram showing the organization of the synapse array and its interface
signals.

103

3. Hardware design

thereby determine which synapse row is addressed. Each side has eight bitlines that
are concatenated in syn_d and syn_db.

The main array of synapses is separated into four slices of 64 columns each. The
whole array consists of 224 rows with 256 columns. Every synapse has a 4 bit weight,
4 bit decoder address, and two analog accumulation capacitors for STDP correlation
measurement. Enables syn_ensynb, syn_endecb, and syn_encrb activate weight, de-
coder, or correlation readout. Synapse and decoder data is read out via four bitlines
per column. All 256 bit for one slice are multiplexed to a 32 bit bus. These four buses
are concatenated to the 128 bit dio bus. The multiplexer is configured by the 32 bit en
signal that contains eight one-hot coded bits for each slice (multiplexing 64× 4 bit to
8× 4 bit for each slice). The data direction of the dio bus is controlled by the ramoeb
and ramwb signals. For ramwb = 0, dio is treated as input and its value is driven to
the synapse SRAM for the selected columns. For ramoeb = 0, dio is an output and
driven with the value from the selected bitlines. If both ramwb and ramoeb are high,
dio is in a high-impedance state. The pcb signal triggers pre-charge of the bitlines.

3.3.1.2. Analog evaluation

For the evaluation of the local accumulation capacitors, the evaluate block is used. The
syn_encrb signal triggers readout of the capacitors to a temporary storage location
in the evaluation unit. The sca/scab pair of control signals for one and scc/sccb for
the other capacitor control whether both, one, or none of them are stored. The 4 bit
pattern control the evaluation operation. With csen a digital bit is generated from the
analog evaluation result and presented on the corrin bus, which is multiplexed as for
the synapse bitlines. A low-active reset bus corresetb is split to the selected columns to
reset both accumulation capacitors.

The evaluation block in Figure 3.17 implements a generic evaluation function EH

(see Section 2.2.2.4 for the definition of evaluation function). It is configured by an eval-
uation pattern p with bits p = (eaa, eac, eca, ecc) that control the evaluation operation.
Two analog parameter voltages Vth,Vtl are provided from the global parameter storage.
The accumulation trace a(t) in terms of the AHM is represented using the dual capaci-
tor value with a positive “causal” capacitor with value a+(t) and a negative “acausal”
one with value a−(t). The combined trace is then given by a(t) = a+(t)− a−(t). The
temporal storage locations Vc, Va in the evaluation block are set depending on whether
scc or sca is asserted:

Vc ← a+(t) if scc = 1∧ sccb = 0 (3.1)

Va ← a−(t) if sca = 1∧ scab = 0 (3.2)

If neither scc nor sca is set, Vc and Va remain unchanged. The evaluation function is

104

3.3. STDP logic in the BrainScaleS wafer-scale system

described by

EH (Vtl , Vth, p, Vc, Va) =

{

1 if Vtl+eacVc+ecaVa

1+eac+eca
>

Vth+eccVc+eaaVa

1+ecc+eaa

0 else.
(3.3)

The null read pattern pnull = (0, 0, 0, 0) sets all evaluation bits to zero and therefore
performs the following readout operation

EH (Vtl , Vth, pnull) =

{

1 if Vtl > Vth

0 else
(3.4)

This is a useful test-pattern, since it allows to characterize the evaluation circuit by
configuring different values for Vth and Vtl . It also allows for deterministic generation
of evaluation result bits to test weight update logic. The absolute threshold patterns

p+abs = (eaa = 0, eac = 1, eca = 0, ecc = 0) (3.5)

p−abs = (eaa = 0, eac = 0, eca = 1, ecc = 0) (3.6)

compare to a threshold Θ = 2Vth −Vtl :

EH
(

Θ, p+abs, Vc

)

=

{

1 if Vc > Θ

0 else
(3.7)

EH
(

Θ, p−abs, Va

)

=

{

1 if Va > Θ

0 else
(3.8)

The relative threshold patterns

p+rel = (eaa = 1, eac = 1, eca = 0, ecc = 0) (3.9)

p−rel = (eaa = 0, eac = 0, eca = 1, ecc = 1) (3.10)

compare the difference of the temporal storage capacitors to Θ:

EH
(

Θ, p+rel, Vc, Va

)

=

{

1 if Vc −Va > Θ

0 else
(3.11)

EH
(

Θ, p−rel, Vc, Va

)

=

{

1 if Va −Vc > Θ

0 else
(3.12)

3.3.1.3. Control sequences on synapses

To perform accesses on synapses, interface signals have to be set appropriately in the
correct order. Since the interface is asynchronous and weights are stored in a physically
large SRAM array, special care has to be taken with the timing of signals. Two control
units generating the sequences presented in this section are explained in Sections 3.3.2
and 3.3.3.

105

3. Hardware design

syn_a address

syn_ab inv. address

syn_en side

en col. set

pcb

dio data

ramoeb

syn_ensynb

tpc tdrvo toe

ts to tk

Figure 3.18.: Timing diagram of a synapse array read operation. Signals not shown are at their
inactive level.

Reading weight or decoder address Figure 3.18 shows a timing diagram for a
read access to a synapse weight. The timing for reading decoder bits is identical, but
instead of syn_ensynb the syn_endecb signal is used. Every constraint that applies
to syn_ensynb mentioned below also applies to syn_endecb. Synapses are addressed
in one 128 bit column set. The column set is selected by presenting an address on the
syn_a and syn_ab address bus, side selection on syn_en, and an enable pattern on en.
A typical enable pattern would be en = 0x80808080 to select the first 32 bit from every
slice. Each byte of en configures one multiplexer and only one bit per byte may be set.

When syn_ensynb is active, the wordline for synapse weights of the currently
selected row is activated. Therefore, the address decoder must have settled before
syn_ensynb is active and the address lines must stay stable while it is active. This
safety margin between syn_a/syn_ab and syn_ensynb is described by the settling
time ts and the keep time tk. The SRAM bitlines are pre-charged for a time tpc by
activating pcb. Afterwards, the wordline is activated for a time tdrvo to drive the stored
bit value onto the bitlines. Activating ramoeb for time toe enables the dio output driver
to present the result to user logic. The output is stable after time to.

Writing weight or decoder address Figure 3.19 shows timing of a write access to
a synapse weight. The same timing is used for decoder address writing by exchanging
syn_ensynb with syn_endecb. Again, the address decoder settling and keep times ts

and tk have to be satisfied. Additionally, after presenting the write data on dio and
selecting the demultiplexer configuration with en, the user must wait for a settling
time tds until the demultiplexer has settled. Then, the bitlines are driven for a time tdrvi

106

3.3. STDP logic in the BrainScaleS wafer-scale system

syn_a address

syn_ab inv. address

sny_en side

en col. set

dio data

ramwb

syn_ensynb

tds

ts

tdrvi twe tk

Figure 3.19.: Timing diagram of a synapse array write operation. Signals not shown are at their
inactive level.

by activating ramwb. When they have reached a stable state the wordline is activated
for the selected row by activating syn_ensynb for duration twe.

Accumulator readout and evaluation The timing diagram for a readout and
evaluation sequence of the local accumulators in the synapse is shown in Figure 3.20.
Settling and keep times ts, tk have to be satisfied between syn_a/syn_ab and syn_-
encrb. While syn_encrb is active, the accumulation circuit drives the readout lines
for time tcro. The temporal storage capacitors Vc and Va are set by activating scc and
sca, respectively4 for time tsc. Asserting the 4 bit evaluation pattern p triggers the
evaluation operation as described in Section 3.3.1.2. The pattern may not overlap with
activation of sca and scc, which is accounted for by the waiting time tscw. The pattern
is kept for time te. When the analog comparison is finished, activation of csen for
a time tcsen generates a digital bit from the result and drives it to the corrin port as
selected by the multiplexer configuration en. The output is stable after time tco.

Accumulator reset The accumulator reset clears the local capacitors to zero. The
corresetb bus controls which of the synapses are reset in a column set. The reset at the
accumulation circuit is enabled by the weight word line. Therefore, syn_ensynb must
be activated for a reset. This implicates, that accumulation can only be reset during
a synapse weight read or write sequence. Figure 3.21 shows timing for reset during
a write access. This is the most likely case for the STDP application: After reading
weights and evaluating accumulation, new weights are written and the accumulators
reset. Two additional timing parameters are relevant: the settling time of the corresetb

4Not shown in the figure: sccb and scab are the inverted versions of scc and sca

107

3. Hardware design

syn_a address

syn_ab inv. address

syn_en side

en col. set

syn_encrb

corrin corr

scc

sca

pattern 0 p 0

csen

ts tcro tsc te

tk

tscw tcsen

tco

Figure 3.20.: Timing diagram of readout and evaluation of the local accumulation capacitors.
Signals not shown are at their inactive level.

syn_a address

syn_ab inv. address

syn_en side

en col. set

dio data

ramwb

corresetb reset

syn_ensynb

tds

ts

tdrvi twe/tcri tk

tcs

Figure 3.21.: Timing diagram of reset to zero of the local accumulation capacitors. Signals not
shown are at their inactive level.

108

3.3. STDP logic in the BrainScaleS wafer-scale system

Synapse Interface

Synapse Array

(NxM)

Bus

Adapter,

automatic update

controller

Peripheral 1

Peripheral K

...

External

Control

Figure 3.22.: The non-programmable STDP implementation with automatic update controller
represents a reduced version of the AHM. There is no processor, no main memory,
and the automatic update controller is part of the synapse array interface adapter.

multiplexer tcs and the time needed for reset by the cell tcri. In a combined write/reset
cycle, syn_ensynb needs to be pulled down for the larger of the times twe and tcri.

3.3.2. Non-programmable STDP implementation

This section describes the digital part of a non-programmable STDP implementation
for the HICANN wafer-scale system. It translates between external requests and the
synapse array interface described in Section 3.3.1. Its main function is to perform
automatic weight updates to implement STDP in ongoing network operation. The
plasticity system is outlined in Figure 3.22 in the context of the AHM. The main focus
of this section is the highlighted adapter with the automatic weight update controller.
Note, that the bus used here is the HICANN system bus and not the one described in
Section 3.2.

3.3.2.1. Functional overview

The user operates the neuromorphic system from a control computer system by per-
forming read and write accesses via the external control interface. These accesses are
distributed to the addressed peripheral in one HICANN ASIC by the system bus. Two
of these peripherals are the adapters for the two synapse arrays. The user can perform
a number of basic control operations: He can read and write synapse weights and
decoder addresses, as well as synapse line driver configuration SRAM. He can perform
evaluation and reset of accumulation capacitors. And finally, he can configure the
automated update process and start and stop it.

109

3. Hardware design

The automatic weight update process follows a simple algorithm: For each row it
iterates over all column sets reading out synaptic weights. Then, the accumulators are
evaluated with two pre-configured patterns pa and pb. The resulting correlation bits
ba/b = EH (pa/b) are used to select a 16× 4 bit look-up table L (ba, bb, w). This look-up
table holds the new weight w′ for every old weight w, so that

w′ = L (ba, bb, w) . (3.13)

For ba = bb = 0 the weight is kept unchanged, i.e. L(0, 0, w) = w. In the design, there
is no look-up table for this case, to save the associated flip-flops. To my knowledge,
there is no use-case requiring it. The new weight is then written back to the synapses.
If enabled by reset configuration, the accumulation is reset to zero for those synapses
that had ba or bb set. This iteration is repeated for a range of synapse rows either
indefinitely or in singleshot mode just once.

3.3.2.2. Design of the bus interconnect

Weights and decoders make up 112 kiB, synapse line driver SRAM 672 byte of configu-
ration data. This is the largest block of configuration data in the system and makes
a high-throughput connection desirable. However, it is situated far away from the
external control interface on the die, making delay flip-flops in the data path neces-
sary to meet timing requirements. Since the PPB described in Section 3.2 was not
yet developed at the time the adapter was designed, the paths to and from it were
build as shift-registers. This means that request data from the master travels over a
fixed number of cycles to the slave. The slave generates the response in the next cycle
and the result appears at the master after a total round-trip-time that is two times
the shift-register length. In contrast to the hitherto used system bus interconnect, this
allows to send a new request in every cycle instead of having to wait for the complete
round-trip-time until SCmdAccept is asserted. However, without buffering and an
ability to exert back-pressure, this allows only for single cycle latency operation by the
adapter. The notification, that a request takes longer to fulfill would only arrive at the
sender after a certain latency. Requests sent during that time would be dropped. An
improved solution for a future upgrade is to use the delay component described in
Section 3.2.3.2.

To accommodate the constraint of single cycle latency operation, all requests are
made to registers in the adapter. An operation taking a longer time is then performed
asynchronously and saves results back to local registers. A second transfer is then
needed to fetch the result. This transfer can either be timed with the knowledge of the
execution time, or otherwise polling needs to determine the end of the operation.

110

3.3. STDP logic in the BrainScaleS wafer-scale system

Control

Config

Status

LUT

SYNIN

SYNOUT

SYNCORR

SYNRST

Automatic

update

controller

A
c
c
e
s
s
 S

ta
te

 m
a
c
h

in
eAccess

instruction

Bus input

SynDrv

adapter

sramClient

dio

corrin

corresetb

en

pattern

sca/scab

scc/sccb

csen

pcb

ramoeb

ramwb

syn_d/syn_db

Common

address generation

syn_endrvb

syn_enctrlb

syn_engmaxb

syn_a/syn_ab

syn_en

Registers

Figure 3.23.: The toplevel structure of the non-programmable synapse array adapter. The
figure shows all synapse array interface signals (Figure 3.17) and from which part
of the design they are driven.

111

3. Hardware design

Name Descriptions

idle Do nothing
start_read Open row for weight read accesses
read Read weights from the selected location
write Write weights to selected location
rst_corr Reset local accumulation for selected location
start_rdec Open row for decoder address read access
rdec Read decoder addresses from selected location
wdec Write decoder addresses to selected location
close_row Close a row previously opened
auto Enable the automatic update controller

Table 3.3.: Command descriptions of the non-programmable synapse array adapter.

3.3.2.3. Structure of the design

Figure 3.23 shows the internal organization of the non-programmable synapse array
adapter. Read and write requests from the HICANN system bus either access local
registers or are passed to an adapter for synapse driver access. The latter serves as
proxy for the SRAM controller module sramClient developed by Schemmel (2011). The
sramClient module together with the common address generation performs accesses
on the synapse driver SRAM memory. The address generation sets the row address
and enable signals as determined by the address of the bus request for synapse driver
accesses. Otherwise, the access state machine controls addressing. The contents of
the control register determines if and what type of access operation is performed by
the access state machine. The config register allows for setting timing parameters
for the synapse array interface access. The status register indicates whether an op-
eration is currently ongoing. The LUT register hold the look-up tables L (ba, bb, w)
(Section 3.3.1.2). The remaining registers are used for input and output of data to and
from the array via the access state machine.

The contents of the control register is condensed into an access instruction consisting
of an command code, a target row, and a target column set. The instruction is presented
as valid to the state machine, if a certain bit in the control register is written to one.
Commands are listed in Table 3.3. For the auto command, control of the access state
machine is handed over to the auto update controller. It executes the described weight
updating algorithm by issuing access instructions to the state machine and processing
the data registers. A full description of the user interface in terms of address space
layout and bit-positions within the registers is given by Schemmel et al. (2012).

112

3.3. STDP logic in the BrainScaleS wafer-scale system

3.3.2.4. Operation of the access state machine

The commands listed in Table 3.3, except for idle and auto, translate directly into
the control sequences described in Section 3.3.1.3. The state machine has to assure,
that all signals are applied in the correct order and respecting the timing constraints.
Figure 3.24 shows the simplified state diagram of the access state machine. States
and transitions associated with decoder address access are not shown, since they are
identical to the weight read and write states. After reset, the FSM is in the IDLE state
keeping all control signals to the array interface in their inactive state. A valid access
instruction will initiate a control sequence by transitioning into the corresponding
state. To control timing, the state machine employs a counter that is used by some of
the states.

To read data from the SRAM array bitlines have to first be pre-charged and then
cells have to drive their internal state onto them. This requires the time tpc + tdrvo. This
happens for all columns in parallel, but only one eighth of them can be de-multiplexed
to the data I/O lines. Therefore, a row is kept “open” after pre-charge and enable
phase and the eight column sets can be read out successively requiring only the output
time to.

For the STDP application, weights and correlation are typically read together. There-
fore, there is a common readout sequence and only a bit in the control register (encr)
controls, whether accumulators are evaluated in a read sequence or not.

Reading weights and decoder addresses The required timing of control signals
is shown in Figure 3.18. If the access instruction holds the command read or start_-
read while the FSM is in the IDLE state, the row is being opened by transitioning
into the READ_WEIGHT_PRE state. In this state, the bitlines are pre-charged (pcb
= 0) for cpredel clock cycles. When the counter matches the configured number of
cycles, a transition to state READ_WEIGHT_EN deactivates pre-charge and activates
the enable signal syn_ensynb. The state is held for a configurable number of clock
cycles (parameter cendel) determining time tdrvo. After that, the FSM assumes state
ROW_SELECTED_WEIGHT. In this state the row is held “open” by keeping the enable
signals active and thereby the word line enabled.

Starting from this state, reads of all column sets in the opened row can be performed
directly without going through the lengthy pre-charge and enable sequence. A read

command will cause a transition to READ_WEIGHT_SAMPLE. This state is held for a
number of cycles configured by parameter coedel. It enables the output drivers to the
data I/O bus and registers the result in the SYNOUT register. Afterwards it transitions
back to the ROW_SELECTED_WEIGHT state.

Reading of decoder addresses is symmetric: A second set of states is used that
activate syn_endecb instead of syn_ensynb. Results are registered to the SYNCORR
register.

113

3. Hardware design

IDLE

READ_WEIGHT_PRE

READ_COR_START

READ_WEIGHT_EN

READ_COR_WAIT

ROW_SELECTED_WEIGHT

READ_WEIGHT_SAMPLE WRITE_WEIGHT_ACOR_RST_SYNRST NO_DRVIO_TO_IDLE

WRITE_WEIGHT_B

READ_COR_PAT

READ_COR_COMP

READ_COR_SAMPLE

COR_RESET

Figure 3.24.: State diagram of the STDP access state machine performing control sequences on
the synapse array interface. Transition conditions and outputs are described in
the main text. States for reading and writing of decoder addresses are not shown
for clarity. They mirror behavior for weight access (states with “WEIGHT” in the
name).

114

3.3. STDP logic in the BrainScaleS wafer-scale system

Reading and evaluating STDP accumulation To evaluate the STDP accumula-
tion capacitors of the synapses a standard read sequence is started with the encr bit in
the control register set. This will cause a transition from READ_WEIGHT_SAMPLE to
READ_COR_START instead of back to ROW_SELECTED_WEIGHT. The readout and
evaluation is then a sequence with fixed timing: READ_COR_START activated the scc
and sca signals to load the temporal storage locations Vc and Va in the evaluation unit.
A wait cycle ensures, that tscw is positive and loading is not overlapped with the appli-
cation of the evaluation pattern. READ_COR_PAT presents an evaluation pattern that
is stored in the configuration register. READ_COR_COMP activates csen and finally
READ_COR_SAMPLE registers the result in the SYNCORR register while holding
csen active. The READ_COR_SAMPLE remains active for coedel + 1 clock cycles. The
read performs always two evaluations of the accumulators for the two patterns stored
in the configuration register. A counter is used, that is incremented after the pattern is
applied. This counter is used to select a pattern in the configuration register and to
select one half of the SYNCORR register as write destination. After the first evaluation
the FSM loops from READ_COR_SAMPLE back to READ_COR_START for the second
evaluation. If the without_reset bit is not set in the control register, the COR_RESET
state follows after the second evaluation sequence. It resets accumulators for which
one of the patterns returned one as indicated in the SYNCORR register. Finally, the
state machine returns to ROW_SELECTED_WEIGHT.

Writing weights and decoder addresses Writing involves two states: In the
first one, the adapter begins to drive the dio port with the data to write. In the second
state, the bitline write drivers are enabled for cwrdel cycles.

Manual reset of accumulators For the normal STDP algorithm, reset occurs
automatically after the evaluation operation depending on the evaluated bits ba, bb. To
selectively perform a reset of synapses indicated in the SYNRST register, the rst_-
corr command is used. The single state COR_RST_SYNRST is used to apply a reset
pattern on corresetb for crst = 2 cycles.

Closing the row If a command other than read, write, or rst_corr is received
while in state ROW_SELECTED_WEIGHT, the row is “closed” by transitioning over
NO_DRVIO_TO_IDLE back to the IDLE state. The intermediate state is used to ensure
the time tk is positive. It deactivates the syn_ensynb and, if active, syn_encrb enable
signals.

3.3.2.5. Automatic weight update controller

The automatic weight update controller performs the algorithm outlined in Sec-
tion 3.3.2.1. It is started by writing an auto command to the control register. The

115

3. Hardware design

controller then uses the access state machine to read and write weights and evaluate
and reset accumulators.

Micro-programmed control The automatic update controller is micro-pro-
grammed: A read-only memory holds words of control signals that send instructions
to the access FSM. Conditional branches are supported for looping. Listing 3.4 shows
an excerpt from the SystemVerilog code describing the seven line long micro-program.
Every line corresponds to one control word in the read-only memory. The columns
are: Branch condition, branch target, continue condition, instruction for the access
state machine, operation for the row address pointer, and two bits to trigger weight
update computation (2’b10) and increment the column set pointer (2’b01). The
continue condition is evaluated after the current operation, i.e. cont_not_busy
means continue with the next control word after the access instruction given in this
word is complete.

Listing 3.4: Micro-program of the automatic update controller.

1 { jump_none, 5’h0,cont_not_busy, DSC_START_READ,row_hold,2’b00 }

2 { jump_none, 5’h0,cont_not_busy, DSC_READ, row_hold,2’b00 }

3 { jump_none, 5’h0,cont_done, DSC_IDLE, row_hold,2’b10 }

4 { jump_none, 5’h0,cont_not_busy, DSC_WRITE, row_hold,2’b00 }

5 { jump_row_ip,5’h1,cont_immediate,DSC_IDLE, row_hold,2’b01 }

6 { jump_none, 5’h0,cont_not_busy, DSC_CLOSE_ROW, row_hold,2’b00 }

7 { jump, 5’h0,cont_immediate,DSC_IDLE, row_inc, 2’b00 }

In the first line, a start_read instruction is sent to the access FSM to open the
row currently addressed by the row pointer. The cont_not_busy code causes the
sequencer to proceed to the next word, when the busy signal goes low again, i.e. the
row is open. Line 2 then fetches weights using a read command. After that, weight
update computation is performed by setting the first bit in the last field. The cont_-
done code causes continuation after all weights have been updated and the results
stored in the SYNIN register. Line 4 writes the new weights back to synapse array. The
next operation does two things: it increments the column set pointer by rotating the
pattern presented on the en signal of the synapse array interface by one position to the
right. The conditional branch jump_row_ip branches to line 2 while the column set
pointer does not wrap around to the first position. Therefore, lines 2 to 5 represent a
loop iterating over all column sets in one row. When a row is completely processed, it
is closed by line 6 and finally line 7 increments the row pointer before looping back to
the start of the program.

Execution of the program is stopped in two cases: if the controller is configured for
single shot mode (continuous = 0 in the control register) and there is a row_inc on
the last row of the enabled range. Or, if a different command than auto is written to

116

3.3. STDP logic in the BrainScaleS wafer-scale system

SYNOUT,

SYNCORR

SYNIN

UP

...

...

UP

...

...

...

...

LUT A

LUT B

LUT AB

Figure 3.25.: The data path used by the automatic weight update controller. Weights are
computed in parallel by look-up table based updating units (UP). In the produced
BrainScaleS wafer-scale system there are eight synapses per update unit.

the control register. The enabled range of rows is configured in the control register.

Weight update datapath Figure 3.25 shows how new weights are computed by
the automatic update controller. Result data from the read command is multiplexed
to an updater that selects the correct table to use and performs the look-up of the new
weight. The number of update units per synapses is compile-time configurable. At
least one has to be implemented per synapse array slice. This gives a range of one
to eight cycles for weight computation. In the produced single-chip and wafer-scale
systems this parameter is set for eight cycle updates. Update is started by a control
word of the micro-program that has the update bit set. When all synapses have been
updated the micro-program sequencer is signalled. The control word can wait for this
event by using the cont_done condition for continuation.

3.3.3. Synapse array interface adapter for programmable STDP

For the programmable plasticity implementation an improved synapse array interface
adapter was developed. Figure 3.26 highlights the location of the adapter in the AHM.
With plasticity processor in the system, the adapter has to perform accesses to synapses
from external control, as well as the internal processor. Additionally, as I will show in
Chapter 5, a specialized adapter allows for better performance of the weight update
algorithm running on the PP. There are two central ideas to improve performance: first,
using a wider 128 bit I/O datapath, so that the processor can calculate weight updates
on a larger number of synapses in parallel. Second, a programmable sequencer instead
of the access FSM described in Section 3.3.2.4 to allow for fine tuning of the control
sequences presented to the synapse array interface.

117

3. Hardware design

Synapse Interface

Synapse Array

(NxM)

Bus

Adapter

Plasticity

Processor

Main memory

Peripheral 1

Peripheral K

...

External

Control

Figure 3.26.: Location of the synapse array adapter for programmable STDP in the AHM.

Wide I/O bus The synapse array interface has a 128 bit wide, bi-directional data
port dio (Figure 3.17). This is the maximum amount of data that can be read and
written at once. Therefore, it makes sense to use an equally sized bus to the processor,
if the processor features a special-function unit to perform weight updates in parallel
for this amount of data. In Section 3.4 such a special-function unit is introduced.
This I/O bus is used to transfer weight and decoder addresses, as well as evaluation
readout data. While the dio port provides 128 bit of weights and decoder addresses
in one read access, there are only 32 bit of evaluation results per access. Typically,
an STDP program will perform multiple evaluations with different patterns and use
the combined information to compute the new weight. To offload bit-manipulation
operations from software, results from up to four evaluations are combined into one
128 bit vector in an interspersed manner. This way, each half-byte in the vector holds
the results from four evaluations with different programmable patterns of one synapse.

Programmable control sequencer The access FSM is a straightforward solution
for performing control sequences on the synapse array interface. However, the re-
sulting state diagram (Figure 3.24) is relatively complex, although the state machine
only goes through fixed sequences with controlled timing in reaction to a presented
command. An easier way to achieve this is using a sequencer similar to the approach
taken for the automatic update controller (Section 3.3.2.5): Control sequences are
stored in a memory block. A command triggers the execution of the control sequence
stored at an associated address. Making this memory writable by the PP allows for
micro-optimization of access sequences. For example a plasticity program may want
to scan the array using a specific evaluation pattern without considering weights or
performing resets. To do this, it can write an appropriate sequence to the sequencer
memory effectively creating a new specialized command. Furthermore, in an exper-

118

3.3. STDP logic in the BrainScaleS wafer-scale system

imental system, such as the BrainScaleS wafer-scale system, it is a benefit to have
detailed control over internal processes. This increases the chances to be able to fix
problems arising after tape-out without having to change the design.

Data loop-back mode To facilitate testing of the digital design, the new adapter
features a loop-back mode for data transfers to the synapse array. With the loop-back
mode enabled, the output registers (synapse array to controller) sample directly from
the input register (controller to synapse array), instead of the data port. This allows for
test programs that execute with defined results without depending on the analog part
of the design.

Arbitration between external and internal accesses The new adapter pro-
vides two interfaces to access synapses: one is the specialized interface with the 128 bit
data buses used by the PP. The other implements the PPB interface and is connected to
the internal system bus. The latter interface can also be used by the processor. There-
fore, non-timing critical operations, like changing the sequencer memory or enabling
loop-back mode, are performed through the PPB interface. Timing critical accesses
from the processor use the specialized bus, which does not allow for the slow control
operations. The external controller always uses the PPB interface.

3.3.3.1. Detailed description

Figure 3.27 shows the control sequencer and its datapath. The sequencer (Figure 3.27A)
contains two memories: The opcode table maps up to 16 operation codes to address
offsets and the I/O sequencer store holds control sequences with a total number of 32
entries. If a new command is presented, its opcode is used as index into the opcode
table and the returned data loaded to the sequence counter. This counter indexes the
sequencer store that in turn provides a 24 bit word that contains control signals for
the synapse array interface and the internal datapath of the adapter. Each word in the
store represents one step in the access sequence. Signals for the synapse array interface
are presented through a latch. The latch is there to ensure, that control signals stay
stable in-between control operations.

Control operations A control operation consists of a command code (opcode), a
row number, and a column set address. The row number is used to set the syn_a/syn_-
ab, and syn_en signals of the synapse array interface to address a single row in the array.
The column set address is translated into the one-hot coded en port of the interface (see
Section 3.3.1) to select which columns are referenced by the operation. The semantics
of the operation and whether data is written or read by it, is defined by the contents
of the sequencer store. Table 3.5 lists a number of command code names that are

119

3. Hardware design

A

Opcode Table I/O Sequencer

Store
opcode

OPCD0

OPCDN

..
.

offset0

offsetN

..
.

SEQ0

SEQ1

SEQN

..
.

..
.

OPCD1 offset1

Output latches

Control FSM
enable

sequence

counter

row

colset

S
y
n
a
p
s
e
 a

rr
a
y
 c

o
n
tr

o
l
s
ig

n
a
ls{op

B

Synapse array

interface

Plasticity Processor

data

reset

data

evaluation

syn2client

client2syn

Bus FSM

bus_client2syn

bus_syn2client

Loopback

mode

Channel

correset

Figure 3.27.: (A) Control sequencer for the synapse array interface adapter of the programmable
STDP implementation. (B) Datapath for the synapse array interface adapter.
Registers are marked as boxes with a black bar to the right or left side. The black
bar marks the output side of the register.

120

3.3. STDP logic in the BrainScaleS wafer-scale system

IDLE

EXE

(s) (h)

WAIT

(d)

(h)

(d)

Figure 3.28.: State diagram of the sequencer state machine. It is controlled by three inputs:
Start (s) triggers the execution of a sequence. The halt signal from the sequencer
store (h) marks the end of the sequence. The delay value from the sequencer
store is counted down to zero for each entry in the sequence. While this counter
is positive the state machine sees a delay signal (d). Edges are labeled with the
active control signals that trigger the associated transition. Inactive signals are
omitted. Unlabeled transitions are taken, if none of the other transitions from this
state are taken.

associated with the lower 14 positions in the opcode table. After reset, the contents
of opcode table and sequencer store define meaningful operations for these codes
similar to the commands defined in Table 3.3. The user and ext commands point to
address 0 in the sequencer store and are intended to be programmed by the user. The
idle command also has no sequence associated with it and is meant as a no-operation
code. Commands open_weights and open_dec activate weight or decoder address
wordlines of the addressed row. In the open row, read and write perform input and
output of weight and decoder address data, depending on which open command was
used previously. With close the wordline is deactivated again. Commands prefixed
with corr_ orchestrate the evaluation process: accumulator values are loaded to the
temporal storage locations in the evaluation unit, evaluated with a given pattern, and
the result sampled to the output register. After that, accumulators are reset back to
zero depending on a reset pattern given on the data port.

Sequencer FSM Sequencing is controlled by the sequencer FSM, of which the state
diagram is shown in Figure 3.28. If the start of a sequence is signalled either from the

121

3. Hardware design

processor or via the PPB interface, the state machine transitions into an executing state
(EXE). In this state the counter is incremented in every cycle to present a new set of
signals to the synapse array interface through the latch. Every word in the sequence
contains a 6 bit delay value that is loaded to a decrementing counter, when the word is
fetched from the sequencer store. If the value is greater than zero, the state machine
assumes a waiting state (WAIT) until the counter reaches zero. This allows for timing
control of every step in an access sequence. The end of a sequence is marked by a bit in
the last sequence word. When it is encountered and the associated delay of the word
has elapsed, the state machine transitions back to the IDLE state. The output latch
in Figure 3.27A is enabled by the state machine. Only in the executing and waiting
states is the latch transparent in the positive clock phase. Therefore, control signals
maintain the last value given until the next sequence is started. Thereby, for example
the wordline for a synapse row can be kept active between accesses as it was done in
the non-programmable adapter using the start_read and close_row commands.

Datapath Figure 3.27B shows the datapath of the adapter. Its task is to exchange
data between the synapse array interface, the plasticity processor, and the bus interface.
Central are the 128 bit syn2client and client2syn registers. The syn2client
register reads from three potential sources: the synapse array dio or corrin port, or the
client2syn register. For the latter, loop-back mode has to be enabled by a preceding
bus access. Whether the dio or corrin port is read is decided by a bit in the current
sequence word. The output of the syn2client register is read by the processor
and, for bus read requests, by the 128 bit bus_syn2client register. In the opposite
direction, the client2syn register forwards data either from the bus_client2syn
register, for bus writes, or from the processor interface. The correset bit in the
sequence word controls if its contents is presented to the data or the accumulation
reset port of the synapse array interface.

Coding of words in the sequencer store The coding of words in the sequencer
store is shown in Table 3.4. Bits 23. . . 14 control the execution of the sequence and
configure the internal datapath. The halt bit marks the end of a sequence in the
sequencer store. The delay field holds the value to be loaded to the decrementing
counter and determines how long the current word of the sequence is active. The
bits data_valid and data_channel control reading of data from the synapse array
to an internal register. The two channels are: one for synapse weights and decoder
addresses (data_channel = 0), the other for evaluation results (data_channel =
1). Both are stored in the same 128 bit register. The change_en bit is an additional
enable on the output latches of the synapse array enable ports (syn_encrb, syn_ensynb,
and syn_endecb). Only if it is set do the outputs change to the values specified in
the associated fields of the sequence word. Using this bit, common control sequences

122

3.3. STDP logic in the BrainScaleS wafer-scale system

Name Position Description

Sequencer control signals

halt 23 Marks last entry of the current sequence
delay 22. . . 17 Delay the next word from the sequence by

the given number of cycles
data_valid 16 Sample incoming data from the synapse

array to the syn2client register
data_channel 15 Select the data channel to which to sample
change_en 14 Change syn_encrb, syn_ensynb, and syn_-

endecb only when this bit is set

Synapse array interface control signals

encrb 13 Value for syn_encrb
ensynb 12 Value for syn_ensynb
endecb 11 Value for syn_endecb
syn_en 10 Activate one of the syn_en bit chosen by

the row address
csen 9 Value for csen
ramoeb 8 Value for ramoeb
scc 7 Value for scc
sca 6 Value for sca
ramwb 5 Value for ramwb
pcb 4 Value for pcb
drv_io 3 Enable driver on the dio port
correset 2 User data enables accumulation reset
eval 1 Activate evaluation pattern
pat_rst 0 Reset the pattern counter to zero

Table 3.4.: Coding of words in the sequencer store. The upper bits control the execution of
the sequence and configure the internal datapath. The lower bits are either directly
forwarded to the synapse array interface (see Figure 3.17) or directly control inputs
to the synapse array interface. For example syn_en is converted to the 2 bit syn_en
signal enabling the left or right side of synapse drivers depending on the currently
selected row address.

123

3. Hardware design

idle close user_0

open_weights corr_load user_1

open_dec corr_eval ext_0

read corr_sample ext_1

write corr_reset

Table 3.5.: List of pre-defined opcode names. These names are labels for addresses in the
opcode table that hold offsets into the sequencer store. Opcode table and sequencer
store can be freely programmed to define new operations.

for weight and decoder address access can be defined. An initial sequence opens a
row for weight or decoder address access just like the start_read command of the
adapter of the non-programmable implementation. The read and write sequence do
not change enables and therefore automatically read the correct data.

The lower bits 13. . . 0 are mostly directly presented to the synapse array interface.
There are some exceptions: The syn_en port of the interface is 2 bit wide enabling
the left or right side of the synapse array. To allow for a coding independent of the
target row, the 2 bit signal is computed automatically depending on the provided row
address if the 1 bit syn_en field in the sequencer store is set. The drv_io bit enables
the driver from the adapter to the array interface on the dio port. correset controls,
whether the internal output register is forwarded to the data input/output port (dio) or
the accumulator reset (corresetb). The 128 bit content of the internal register is reduced
to the 32 bit corresetb signal by performing a logical or on each half-byte and inverting
the result. Multiple 4 bit evaluation patterns are provided by the processor from its
internal pattern register (see Section 3.4). A counter selects the currently active pattern.
By setting the eval bit in a sequence, the currently selected pattern is asserted to the
array interface and the counter incremented. With the pat_rst bit, the counter can
be reset back to zero.

Bus access state machine Figure 3.29 shows the state diagram of the bus FSM.
The state machine handles requests via the PPB to synapse driver SRAM, the opcode
table, sequencer store, and internal registers, for example bus_syn2client and
bus_client2syn. It also triggers the control sequencer to perform access operations.
Table 3.6 gives the address map for the bus interface. Depending on the type of request
– read or write – and the address, the state machine performs different actions. Edges in
the state diagram in Figure 3.29 are marked with “w” if the transition is taken on write
requests and “r” for read requests. If the address falls in the synapse driver SRAM
range, edges with label “s” are taken. Accesses to the op register follow the edge
labeled with “o”. All other requests reference internal registers and cause transitions
not labels with “s” or “o”. In this case, data can be read or written within one cycle.

124

3.3. STDP logic in the BrainScaleS wafer-scale system

IDLE

RESP

(w) (r,ro) SYNDRV_WAIT_WRITE

(ws)

OP_START

(wo)

SYNDRV_WAIT_READ

(rs)

(a)

(c) OP_WAIT (d)

(i)

Figure 3.29.: State diagram of the bus FSM. Edges are labeled with the active control signals
that trigger the associated transition. Inactive signals are omitted. Unlabeled
transitions are taken, if none of the other transitions from this state are taken. The
control signals are defined in the text.

Name Lowest address Highest address

Opcode table 0x0000 0x00ff

Sequencer store 0x0100 0x01ff

bus_client2syn 0x0200 0x0203

bus_syn2client 0x0204 0x0207

op register 0x020a 0x020a

gen register 0x020b 0x020b

dllresetb register 0x020c 0x020c

Loop-back enable
register

0x020d 0x020d

Synapse driver SRAM 0x1000 0x12ff

Table 3.6.: Address space layout for requests on the PPB interface. Registers are addressed in
big-endian byte-order.

125

3. Hardware design

The state machine assumes the RESP state to wait for the MRespAccept signal (label
“a”) from the bus master (see Section 3.2). For a write to synapse driver SRAM, the state
machine goes into the SYNDRV_WAIT_WRITE state. The write request is forwarded
to the sramCtrl module by Schemmel (2011) also used in the non-programmable
implementation. If it accepts the request (label “c”), the write is complete and FSM
waits in the RESP state to complete the response phase. Similarly, read requests use
the intermediate SYNDRV_WAIT_READ state to wait for the returned read data (label
“d”), before transitioning to RESP. Operations are handled with two intermediate states,
where the first triggers the control sequencer to initiate a sequence using opcode, row
and column set address from the op register. The second state waits for the completion
of the sequence before returning the response via the RESP state.

This implementation is notably different from the way the non-programmable
implementation handles external requests (see Section 3.3.2.2). Requests here do
not have to be completed within one cycle. Especially lengthy control sequences
communicate to the requester, when they have completed by returning a response.
This simplifies the timing of requests by the master. Instead of having to check for a
busy state as before, requests can be made back to back. The handshake of the PPB
ensures the correct timing. Also, for synapse driver SRAM reads only one request is
required, that will directly return the correct data. Thus, by the use of the PPB full
pipelining of requests is possible, while eliminating the need for polling.

3.4. SYNAPSE special function unit

On one HICANN ASIC there are two synapse arrays with a total of 114 688 synapses.
It operates with an acceleration factor α between 103 and 105 (see Equation 2.1). To
achieve a weight update rate in the order of magnitude of one second in biological
time for every synapse, 1.15 · 108 to 1.15 · 1010 new weights need to be processed per
real-time second. Since gigahertz clock frequencies are unrealistic for a standard-
cell processor in 180 nm process technology, processing needs to be parallelized as
much as possible. On the algorithmic level, the problem mainly exhibits data-level
parallelism: many synapses are processed using one or a few algorithms. A well
established concept for data-parallel processing in the taxonomy of Flynn (1972) is
Sinlge Instruction Multiple Data (SIMD) processing. One instruction operates on a
one-dimensional array, or vector, of data. This section describes the SYNAPSE special-
function unit for the acceleration of weight processing using SIMD processing. It
implements an extension to the instruction set using 128 bit vectors that each hold
32× 4 bit synaptic weights. The width of 128 bit was chosen, because the data port
dio of the synapse array interface is of this size. Therefore, 128 bit can be read and
written in one access. The extension also includes asynchronous I/O operations for
these vectors using the specialized I/O adapter presented in Section 3.3.3. Making I/O

126

3.4. SYNAPSE special function unit

asynchronous means that data transfers do not block the execution of the program.
This allows for overlap between weight computation and data transfer, increasing
performance.

3.4.1. Special purpose registers

The SYNAPSE instruction set extension adds a number of new application specific
registers.

3.4.1.1. Vector registers

There are eight 128 bit wide vector registers v0 to v7:

0 31 63 95 127

Word 0 Word 1 Word 2 Word 3
}

v0

. . .

Word 0 Word 1 Word 2 Word 3

Front

}

v3

Word 0 Word 1 Word 2 Word 3
}

v4

. . .

Word 0 Word 1 Word 2 Word 3

Back

}

v7

They are separated into a back and a front side as viewed by software. Only the front
side can be accessed by the program, while the back side is used for I/O. The synswp
instruction allows to swap front and back side. After the instruction the previous
content of registers v0 to v3 is available in v4 to v7 and vice versa. Elements vi,0 . . . vi,31

for the i-th vector are positioned from most significant to least significant bit.

3.4.1.2. Look-up table registers

There are two look-up tables for 4 bit arithmetics L0 and L1:

0 31 63

Word 0 Word 1
}

L0

Word 0 Word 1
}

L1

The replacement value for weight 0 (Li(w = 0); see Equation 3.13) is stored at position
0 . . . 3, that for weight 15 (Li(w = 15)) at 60 . . . 63.

127

3. Hardware design

3.4.1.3. Pattern register

Up to four evaluation patterns can be stored in the 16 bit pattern register:

0 1 2 3

eaa eac eca ecc

}

p0

4 5 6 7

eaa eac eca ecc

}

p1

8 9 10 11

eaa eac eca ecc

}

p2

12 13 14 15

eaa eac eca ecc

}

p3

For technical reasons, patterns are stored inverted – as indicated by the bar over the
symbol – with respect to the notation of Section 3.3.1.2.

3.4.1.4. Select state register

An internal select state is maintained that is set by a vector compare operation
(syncmpi, see below) and used by a element-wise vector select instruction (syns, see
below):

0 31

Select state

The select state bits s0 . . . s31 correspond each to one element in a vector register. They
are positioned from most- to least-significant bit in the select state register.

3.4.2. Special purpose instructions

Instructions defined by the SYNAPSE extension use the special purpose registers to
compute weights and perform I/O with the synapse array. Instructions are coded using
the X- and D-form specified by PowerISA (2010). Both have a 6 bit primary opcode
and are 32 bit long. The X-form allows for a 10 bit extended opcode XO and three 5 bit
register locations RT, RA, and RB. The latter is used by arithmetic instructions that save
comparison results – greater than, less than or equal to zero – to a condition register if
the bit is set. The D-form is used for instructions with 16 bit immediate data D, i.e. data
coded directly into the instruction. It allows for two 5 bit register locations RT and RA.

In the following instruction coding is specified in tabular form. The first row specifies
the instruction form by showing the positions of the associated fields. The second row

128

3.4. SYNAPSE special function unit

shows how these fields are interpreted by the instruction. Ignored bits are indicated by
double slashes “//”. Symbols y, a, and b stand for 128 bit vector register indices. The
symbol l is a look-up table index and p an evaluation pattern index. Indices for general
purpose registers are denoted using o, z, and t. The contents of a general purpose
register is referred to by gt for register t. The data returned from the synapse array
interface adapter is written as 4 bit elements d0 . . . d31.

3.4.2.1. Apply mapping from look-up table to vector elements

synm y, a, l

OPCD RT RA RB XO

4 // y // a // l 648 //

Elements in register va are replaced using the look-up table Ll and the output is written
to register vy.

vy,i = Ll (va,i) for all i ∈ [0, 31] (3.14)

This instruction is the main facility to compute 4 bit weights.

3.4.2.2. Compare elements with immediate

syncmpi a, (m << 4)&c (opcode 6)
syncmpi. a, (m << 4)&c (opcode 9)

OPCD RT RA D

6,9 // // a // m c

Mask elements in register va with bit-mask m and compare to pattern c. Write the
result to the select state register.

si =

{

1 if va,i&m = c

0 else
for all i ∈ [0, 31] (3.15)

If the variant recording to the condition register is used (syncmpi.), the first condition
register field (CR0) is written. If no select state bit si was set by the instruction, the
equal to zero bit (EQ) is set in CR0 and greater and lesser than zero (GT,LT) are unset. If
at least one of the si is set, EQ and LT are unset and GT is set.

This instruction is used to process evaluation result data. Each evaluation by the
synapse array interface adapter contributes one of up to four bits to each element of a
vector register. The syncmpi and syncmpi. instructions can be used to compare this
result to the given pattern c, while using a mask m. The main purpose of the mask
is to select, which bits were set by the evaluation sequence. For example, if only two

129

3. Hardware design

evaluations are performed, m = 0011 (binary) compares only the set bits and treats the
others as don’t care. The select state register is used by the select instruction syns to
combine two vector registers. The recording variant syncmpi. is meant to be followed
by a branch instruction using the condition register field. This way, computing code
can be bypassed if no bits are set.

3.4.2.3. Select elements from two vectors

syns y, a, b

OPCD RT RA RB XO

4 // y // a // b 649 //

Select elements from vector va and vb depending on the select state register contents
and write the result to vy.

vy,i =

{

va,i if si = 0

vb,i else
for all i ∈ [0, 31] (3.16)

This instruction together with syncmpi and syncmpi. is used to account for the
evaluation result in the weight computation. Depending on the result from evaluation,
the update has to be computed differently. For example, the evaluation might test,
whether a synapse encounters more pre-before-post than post-before-pre spike pairs.
Depending on which of them is seen more, the weight should be increased or decreased.
However, synm uses only one look-up table to compute the new weight for 32 synapses
simultaneously. The compare and select mechanism allows for an elegant solution: for
all weights, both variants are computed. Then syncmpi and syncmpi. identify first
synapses that should be increased, then those that should be decreased. With syns the
final result of the computation can be combined from the two speculatively computed
intermediate results.

3.4.2.4. Perform operation sequences

synops o, z, t

OPCD RT RA RB XO

4 o z t 656 //

Send the 4 bit operation codes given in go in order from most- to least-significant
bit to the synapse array interface adapter, where they are used as control sequence
operation codes. Use the address given by gz + gt for the control sequences. The
128 bit result from the adapter d0 . . . d31, if any, is written to v4 if the control sequencer
selects the data channel. Otherwise, for evaluation result data, every n-th bit of each
element in vector v5 is set to the corresponding bit in the returned data vector. Here n

130

3.4. SYNAPSE special function unit

is the current value of the pattern counter maintained by the control sequencer (see
Section 3.3.3).

m = (1 << n)
{

v4,i = di if data channel used

v5,i = v5,i| (m&di) else
for all i ∈ [0, 31] (3.17)

The general purpose register go can hold up to eight 4 bit codes for the control
sequencer of the adapter. A code of value zero terminates an operation sequence
with less than eight operations. For each code, the control sequencer presents the
stored sequence of control signals to the synapse array interface. The data_valid
and data_channel bits in the sequence (Table 3.4) determine if data is written to the
vector registers.

The SYNAPSE functional units stays ready, while the operation sequence is executed.
If a second synops instruction is encountered, before the previous one has finished, the
functional unit is marked not ready until the first one has completed. Typically, a user
program will use the synswp instruction to wait for the completion of an operation
sequence and to make the result available to the program. While the sequence is being
executed, other instructions of the functional unit are available to compute weight
updates. This allows for an efficient overlap of computation and communication.

3.4.2.5. Swap vector register file

synswp

OPCD RT RA RB XO

4 // // // 657 //

Wait for the completion of all previous synops instructions and exchange the contents
of front and back vector registers.

for all i ∈ [0, 3] :

ui = vi

vi = vi+4

vi+4 = ui (3.18)

This instruction waits for all ongoing I/O operations to complete. By swapping
the register file it makes I/O results available to the weight computation commands
operating on the front registers v0 . . . v3. Separating registers into front and back, where
only front registers are usable by software, is a simplification for data hazard detection.
Because synswp waits for the completion of I/O operations before swapping registers,
it is not possible for software to reference a vector register, before it contains a valid
result.

131

3. Hardware design

3.4.2.6. Register move instructions

synmtl l, z, t

OPCD RT RA RB XO

4 // l z t 650 //

Write the contents of general purpose register z to word 0 of Ll and that of general
purpose register t to word 1.

synmtvr y, z, w

OPCD RT RA RB XO

4 // y z // w 651 //

Write the contents of general purpose register z to the w-th word of vector register y.

synmfvr o, a, w

OPCD RT RA RB XO

4 o // a // w 652 //

Write the w-th word of vector register a to general purpose register o.

synmvvr y, a

OPCD RT RA RB XO

4 // y // a // 655 //

Write the contents of vector register a to vector register y.

synmtp z

OPCD RT RA RB XO

4 // z // 653 //

Write the upper half-word of general purpose register z to the pattern register.

synmfp o

OPCD RT RA RB XO

4 o // // 654 //

Write the pattern register to the upper half-word of general purpose register o.

132

3.4. SYNAPSE special function unit

Listing 3.5: Example code using the SYNAPSE instruction set extension for writing and reading
weights.

1 # first load general purpose registers

2 li r5, 0

3 li r6, 0

4 lis r7, 0x1450

5 lwz r8, 0(0)

6 lwz r9, 4(0)

7 lwz r10, 8(0)

8 lwz r11, 12(0)

9

10 # load vector register

11 synmtvr v0, r8, 0

12 synmtvr v0, r9, 1

13 synmtvr v0, r10, 2

14 synmtvr v0, r11, 3

15

16 # perform operation sequence to write weights

17 synops r7, r5, r6

18

19 # load and perform read sequence

20 lis r7, 0x1350

21 synops r7, r5, r6

22 synswp

23

24 # read vector register to general purpose registers

25 synmfvr v0, r12, 0

26 synmfvr v0, r13, 1

27 synmfvr v0, r14, 2

28 synmfvr v0, r15, 3

133

3. Hardware design

3.4.3. Code example

This section goes through an assembler code example to explain the usage of the
presented instruction set extension for writing and reading weights. Listing 3.5 shows
the example program. First in lines 2 to 8 a number of general purpose registers are
loaded. General purpose registers r5 and r6 are used as row address and offset for the
synops instruction. They are initialized to zero using the load immediate instruction li.
The lis instruction loads an immediate value to the upper half-word of the destination
register. The value loaded to register r7 is an operation sequence consisting of three
opcodes from Table 3.5. In order of execution they are: open_weights (1), write (4),
and close (5). After that, in lines 5 to 8 four general purpose registers are loaded from
memory addresses 0 to 15 using the load word and zero (lwz) instruction. The vector
register v0 is initialized with the just loaded values using the synmtvr instruction
on lines 11 to 14. The write is started on line 17 with synops using the previously
configured operation sequence and address registers. On line 20, the read sequence
is loaded, replacing the code for write (4) with the one for read (3). The synops

instructions waits for the previous one to finish, before starting the read. With synswp

on line 22 vector registers are swapped, so that the result of the read can be transferred
to general purpose registers on lines 25 to 28.

3.4.4. Design considerations for the instruction set extension

Operation codes The Power ISA uses the X-form of instructions to extend the
primary 6 bit opcode with a 10 bit extended code. This gives room for 216 potential
instructions, but leaves relatively few bits in the instruction word to parameterize
the operation. Especially, there is no room to give an immediate operand. For this
purpose there is the D-form, which allows for 16 bit immediate values. However,
there can be a maximum of 26 D-form instructions, since there is no extended opcode.
In PowerISA (2010) there are six unassigned primary opcodes available, of which 6
and 9 are two. These opcodes are used for the syncmp and syncmpi. instructions
to avoid collisions with other operations. Executing a program containing SYNAPSE

instructions on a generic Power ISA compliant processor would therefore cause an
invalid instruction exception. The X-form instructions use primary opcode 4, which
is assigned to instructions with extended opcodes in the vector, legacy multiply-
accumulate, and signal processing categories (PowerISA, 2010). The chosen extended
opcodes 648 to 657 are unassigned for primary opcode 4. The opcode spaces are
visualized in (PowerISA, 2010, Appendix F).

I/O operation sequences The goal of the synops instruction is to provide a simple
way to initiate asynchronous I/O operations. If I/O is performed asynchronously,
computation and communication can be overlapped. A sequence of control operations

134

3.4. SYNAPSE special function unit

is specified in one go. This is in addition to the option of programming custom
control sequences to the synapse array interface adapter (Section 3.3.3). Sequences
programmed to the adapter represent operations with a fundamental function, e.g.
reading a column set. The synops instruction then goes through a complete sequence
of these fundamental operations parallel to normal program execution. Starting a
complete sequence per synops reduces code size and additional requirements for
synchronization with I/O operations.

Partitioned register file Having the vector register file partitioned into front and
back parts has two advantages. First of all, it simplifies data hazard detection. The
software program can not access registers before they are written with the result from
an operation sequence. Therefore, in flight writes do not need to be tracked for the back
side of the register file. This saves tracking resources in the processor front end (see
Section 3.1.6). The second advantage is, that it allows the use of memory blocks with
fewer read and write ports. Front and back side each get one dedicated block with one
read and one write port. With synswp the role of the two blocks is switched around. If
instead one would use only one block, four ports were required, since instructions and
the synapse array interface adapter can simultaneously read and write one register.

Vector select SIMD processing is only effective if the same code is executed for all
data elements. However, STDP requires different treatment of individual synapses
depending on the result of the analog evaluation. Doing this with branches would
necessitate iteration over the vector elements and therefore, one would lose the benefit
of parallel vector processing. With the selection mechanism by syns the necessity for
branches can be removed by transferring the evaluation of condition codes from the
control path to the data path. An alternative would be conditional execution by synm,
where only elements are modified for which the select state bit is set.

Vector registers local to functional unit In contrast to other registers of the
processor, e.g. general purpose registers, the vector registers are only accessible from
the SYNAPSE special function unit. Especially, load and store operations can not use
the vector registers, but instead data has to be transferred via general purpose registers.
This is an acceptable performance penalty for the STDP application, where I/O is
primarily performed with the synapse array. On the other hand, it allows for a local
implementation of the register file. This way, reading and writing registers does not
utilize the operand and result bus (see Section 3.1.7). Especially, a 128 bit bus is not
needed outside of the functional unit.

135

3. Hardware design

LUTs

Patterns

IR

Operand Bus
Vector Register Fetch

(front)
Decode

C
o
m

p
a
re

M
o
v
e

S
e
le

c
t

M
a
p

Select

State

Result Bus
Vector Write-back

(front)

B
a
c
k
lo

g
B

a
c
k
lo

g

Vector Register Fetch

(back)

Vector Write-back

(back)

Processor interface Control Execution Front registers Back registers

Op Sequencer A

Op Sequencer B

Front Back

Figure 3.30.: Overview of the SYNAPSE functional unit implementation. Thick edges on a box
indicate a registered output. A detailed description is given in the text.

136

3.5. Native Vector Extension

3.4.5. Implementation

Figure 3.30 shows the internal organization of the SYNAPSE special-function unit. The
unit is connected to the processor using the standard back end interface described in
Section 3.1.7. The instruction is presented on the IR register and one cycle later fetched
operands are available via the operand bus. As stated above, the vector registers are
internal to the functional unit. Two vector operands VA and VB are fetched in parallel to
the decode phase. The four execution units Compare, Move, Select, and Map compute
results in a single cycle. The Compare unit implements the syncmpi and syncmpi.

instructions. It reads operand b from the operand bus containing the instruction
immediate, and vector operand VA. Move performs data exchange between vector and
general purpose registers, reading VA and b from the operand bus. Select and Map
execute syns and synm, respectively. Results from these units are multiplexed to the
result bus and back to the vector register file depending on instruction type. The vector
register file uses write-through like the general purpose register file (Section 3.1.6.4).
Look-up tables and evaluation patterns are written one cycle after decode and do not
use a dedicated fetch cycle for reading. Therefore, all instructions of the SYNAPSE

functional unit, except for those writing to general purpose or condition registers
(synmfvr, syncmpi.), have an issue to retire latency L = 2 and thus penalty P2 = 0 for
data hazards (see Section 3.1.7). This means, they can be executed back-to-back.

The back side of the functional unit is connected to the synapse array interface
adapter described in Section 3.3.3. Vector register v4 is statically forwarded to the
adapter, while in the opposite direction data is recorded to v4 and v5. Which of the
destination registers is used is determined by the data_channel bit in the control
sequence executed in the adapter (Section 3.3.3). Data is written whenever the data_-
valid bit in the control sequence is set. The execution of the operation sequence
given to the synops instruction is performed by two operation sequencers. Only one
of them is active at a time depending on the address of the operation. A backlog of
one operation sequence is maintained. If a new sequence is given, before the current
one has completed, the new one is saved to a register and the functional unit marked
as not-ready to prevent any further synops instructions to be issued. This situation is
already detected in the decode phase to assure, that no instructions are lost.

3.5. Native Vector Extension

The Native Vector Extension (NVE) was a precursor variant of the SYNAPSE instruc-
tion set extension. It is only described briefly here, because it is not intended for
implementation, but is used for comparisons in Chapter 5.

The concept behind the extension is to enable 4 bit vector operations in 32 bit general
purpose registers. To this end, it provides compare, select, and map operations identical
to those of SYNAPSE (Sections 3.4.2.1-3.4.2.3), but with reduced width. It provides no

137

3. Hardware design

capabilities for I/O. Instead, the general purpose load/store, or the external control
unit have to be used to access the synapse array. Therefore, only one fourth of the
bandwidth available to SYNAPSE can be used.

Native Vector Extension (NVE) represents a minimal specialization for the problem
of 4 bit weight computation. Compared to SYNAPSE, it does not require a costly
dedicated register file. Its lack of I/O bandwidth and wide registers however, lead to
reduced performance, as will be shown in Section 5.4.2.

138

4. Functional verification and software

support

The so far presented designs of plasticity processor (Section 3.1) and its bus (Section 3.2)
pose a difficult verification problem. The processor must behave according to specifi-
cation for arbitrary programs and the design can use the PPB in arbitrary topologies.
The task of functional verification is to systematically exercise the design and verify,
that it performs according to its specification.

Directed tests apply a fixed input, to which the testbench holds a static expected
result for comparison with the actual result. The test passes if expectation and actual
result match. This concept of testing is well suited to ensure that specific problems
are not present in the design. An example would be a regression test that ascertains,
that an error identified once is not introduced again. Also with this method the
knowledge of the designer about problematic input patterns for example can be used
to identify problems more quickly. However, directed testing is not well suited for
finding unsuspected errors.

Here, a better approach is to use random testing or more precisely constrained
random testing. The design under test is exercised with randomly generated input
patterns and the result is compared to a prediction of the result by the testbench. The
generation of random input is constrained to a certain subset of valid input patterns
according to the specification of the design. Typically the random distribution of the
input is weighted to make corner cases more likely to occur. Constrained random
testing is accompanied by coverage analysis, which provides a metric of how much
of the design has been exercised by the random stimulation. Constrained random
testing and functional coverage analysis are directly supported by the SystemVerilog
hardware description language.

In addition to only comparing the result against the expectation, assertions and
coverage statements can be inserted into the design. Assertions specify an erroneous
condition in the design that may not occur. Coverage statements on the other hand test
that certain conditions do occur. Conditions in SystemVerilog assertions are not limited
to boolean expressions, but can instead be sequences, formulated as implications. For
example, if condition A is true in cycle one and B is true in the next cycle, condition
C must be true in the third cycle, or otherwise an error is reported. I used assertions
and coverage statements throughout the design, but will not go into any further detail
here. Instead, the following sections describe how the design of processor and bus is

139

4. Functional verification and software support

verified using directed and constrained random testing. A special challenge here is the
automatic generation of random programs as input to the processor design and the
prediction of the expected result for these programs.

4.1. Directed verification: program level testing

A straightforward way of testing a processor design is to execute a number of programs
on it, for which the expected result is known in advance. Such a program test consists
of three parts: the instruction memory image, the initial data memory image, and the
expected final data memory image. The instruction and initial data memory images
are loaded to the corresponding memory blocks of the processor in the testbench.
After that the program is started. By convention test programs finish using the wait
instruction and entering a sleep state. The testbench detects the completion of the
program by monitoring the sleep state of the processor. A maximum duration for
program execution is also specified, to avoid indefinite waiting times. If the program
does not enter the sleep state in time, reset is asserted after the specified time. Then,
the testbench reads the data memory content and compares it with the stored expected
memory image. Discrepancies are reported with address, expected, and actual value
on a byte-by-byte basis. This process is repeated for a number of test programs.
Listing 4.1 shows the load-add-store test program with assembly source, code, data,
and expected memory image. It is a simple program consisting only of the three
instructions load, add, and store that each have data dependencies on the previous
one. Typically, test programs are more complex than this example. Table 4.1 lists the
main test programs used in the program level testing suite. Further programs were
developed by Nonnenmacher (2011).

4.1.1. Generating the expected result memory image

Reference images for the programs listed in Table 4.1 are generated manually. This
is only a viable approach for relatively small programs. An automatic approach was
developed by Nonnenmacher (2011) under my supervision. In this approach programs
are written in the C programming language. This allows compilation targeting the PP
and conventional personal computers. By using an additional layer for encapsulation
an expected result image can be generated through execution on the personal computer.
This is accomplished through the use of a dedicated memory block in the program,
which is written out to a file after the program has finished. With this approach only
programs written specifically for testing can be used for reference image generation,
because they have to use the dedicated memory block. To generate reference images
using arbitrary C code, a software emulator of a Power ISA compliant processor could
be used. However, such an approach was not taken.

140

4.1. Directed verification: program level testing

Name Description

load_add_store Simple test for data hazard handling.
branch Simple test of unconditional branch.
branch_cond Test of conditional branching implementing a

loop.
simple_interlock_test Extended version of the load_add_store test

with multiple interdependent load, add, and
store instructions.

interlocks Interlock testing in conjunction with branching.
logic Exercising logical operations (e.g. and, xor, . . .).
func_call Testing function calls with bl and blr. Imple-

ments a 64 bit add and 32 bit multiply function.
special_reg Test special purpose registers.
cshell Testing the assembly shell around C-programs

with a simple C-program performing arithmetic
and memory operations.

load_with_update Test of updating variants of load/store opera-
tions.

mem_multiple Test of stmw and lmw instructions.
mul Signed and unsigned multiplication for different

inputs.
interrupt Alignment and trap interrupt.
div Like mul, but for division.
cr_complex Advanced condition register manipulation, e.g.

logical operations.
other_instructions Primarily instructions for counting ones

(popcntb) and computing parity (prtyw).
debugging Case study for debugging of a recursive faculty

function using a trap interrupt.
ext_ctrl Write data to a bus endpoint behaving like

a memory using external control instructions,
read it back, and store the result to main mem-
ory.

ee_vsprintf Fragment from the output function of the Core-
Mark benchmark: bytewise copy from one mem-
ory location to another.

Table 4.1.: List of test programs used for program level testing.

141

4. Functional verification and software support

(a) Assembly source

1 lwz 3, 0(0)

2 lwz 4, 4(0)

3 add 5, 3, 4

4 stw 5, 8(0)

5 wait

(b) Instruction image
0 31

80 60 00 00

80 80 00 04

7C A3 22 14

90 A0 00 08

7C 00 00 7C

(c) Initial data image
0 31

00 00 00 0F

00 00 00 02

00 00 00 00

(d) Expected data image
0 31

00 00 00 0F

00 00 00 02

00 00 00 11

Listing 4.1: The load-add-store test program used for program level testing. Memory images
are given bytewise in hexadecimal numbers.

4.1.2. The CoreMark Benchmark for directed testing

An alternative method of deciding whether a test has passed or failed is a consistency
self-check in the test program itself. This is less safe, because it relies on the design
itself, which may show undefined behavior if a functional error is present. For example,
if the self-check uses a comparison operation to compare the result of a computation
to an expected value, but the compare instruction erroneously always reports a match,
the self-check can not detect this error. However, if the design has already passed
a battery of basic tests, self-checking represents an option for tests with increased
complexity without the need of reference memory images.

The CoreMark benchmark by EEMBC (2012) is aimed at performance testing of
embedded processors. It performs three main tests and computes a CRC32 (Peterson
and Brown, 1961) checksum of the result. The checksum is then compared against a
pre-stored expected value. The three tests perform matrix manipulation, linked list
manipulation, and execution of a state machine. The CoreMark benchmark therefore
offers the ability to a) test the design with code that was not written on purpose for
testing of the PP and b) test commonly used algorithms.

4.1.3. Test results

Listing 4.2 shows an example report from the program level testing simulation. The
report lists all programs together with a pass/fail indication and some performance

142

4.1. Directed verification: program level testing

1 ===

2 SUMMARY:

3 0 load_add_store : ok CPI = 3.25 (13/ 4)

4 | BP:(--no branches--)

5 1 branch : ok CPI = 4.67 (14/ 3)

6 | BP:(T:1.00 + NT:0.00 / 1)

7 2 branch_cond : ok CPI = 2.65 (53/ 20)

8 | BP:(T:0.80 + NT:0.00 / 5)

9 3 simple_interlock_test : ok CPI = 1.95 (41/ 21)

10 | BP:(--no branches--)

11 4 interlocks : ok CPI = 3.29 (102/ 31)

12 | BP:(T:0.91 + NT:0.00 / 11)

13 5 logic : ok CPI = 1.52 (105/ 69)

14 | BP:(--no branches--)

15 6 func_call : ok CPI = 2.04 (484/ 237)

16 | BP:(T:0.76 + NT:0.00 / 45)

17 7 special_reg : ok CPI = 2.33 (56/ 24)

18 | BP:(T:1.00 + NT:0.00 / 1)

19 8 c/cshell : ok CPI = 1.90 (219/ 115)

20 | BP:(T:0.93 + NT:0.00 / 14)

21 9 load_with_update : ok CPI = 1.67 (211/ 126)

22 | BP:(T:0.50 + NT:0.00 / 2)

23 10 mem_multiple : ok CPI = 1.11 (82/ 74)

24 | BP:(--no branches--)

25 11 mul : ok CPI = 1.34 (86/ 64)

26 | BP:(--no branches--)

27 12 interrupt : ok CPI = 2.72 (223/ 82)

28 | BP:(T:0.63 + NT:0.00 / 30)

29 13 div : ok CPI = 4.77 (429/ 90)

30 | BP:(T:0.82 + NT:0.00 / 11)

31 14 cr_complex : ok CPI = 1.87 (247/ 132)

32 | BP:(T:0.75 + NT:0.00 / 8)

33 15 other_instructions : ok CPI = 1.25 (55/ 44)

34 | BP:(--no branches--)

35 16 debugging : ok CPI = 1.77 (165/ 93)

36 | BP:(T:0.85 + NT:0.00 / 13)

37 17 ext_ctrl : ok CPI = 2.84 (957/ 337)

38 | BP:(T:0.97 + NT:0.00 / 64)

39 18 ee_vsprintf : ok CPI = 2.25 (2321/1032)

40 | BP:(T:1.00 + NT:0.00 / 258)

Listing 4.2: Simulator output for program level testing. Besides reporting whether a test has
passed or failed, further performance metrics of the simulation are shown. The raw
output from the simulator is edited for readability. See main text for details.

143

4. Functional verification and software support

Instruction

Processor state

Processor under

Test

Prediction model

Result state

Expected state

= test result

Figure 4.1.: Work-flow of the instruction level testing method. Instruction and processor state
are generated randomly and send as input to the processor under test and a
prediction model in the testbench. Both return results, which have to match for the
test to be successful.

metrics. For each program the output shows Clocks Per Instruction (CPI) followed by
total cycles and number of instructions in brackets. For the branch prediction accuracy,
it shows percentages of mispredictions. Labeled with T are branches that where taken,
but not predicted and vice versa NT shows the percentage of not taken branches that
were predicted to be taken. The number after the slash is the total number of branches.
This simulation used a branch cache with 16 entries (see Section 3.1.4).

4.2. Constrained random verification: instruction level

testing

Program level testing decides correctness for a complete program as a whole. To
deduce the specific error or errors from this information requires additional manual
labor and can be difficult for long test programs. For example, for the test programs
developed by Nonnenmacher (2011) finding the cause of a mismatch in the result and
expected data images requires a detailed analysis of the assembly source. Also it is
laborious to achieve good test coverage of the design. Each instruction or sequence of
instructions must be written explicitly as part of a test program. To facilitate testing,
achieve better coverage, and allow for quicker identification of the cause of a problem,
instruction level testing is used. Using this method, the testbench randomly generates
a single instruction and initial processor state and predicts the processor state after
the instruction has executed. It uses the constrained random verification features of
the SystemVerilog hardware description language. The work-flow is visualized in
Figure 4.1.

144

4.2. Constrained random verification: instruction level testing

Sit

Instruction

get() : Inst

Rand_instruction

constraints
state : State
addr_space_size : int
no_exceptions : bit
no_wait : bit
no_branches : bit

pre_randomize() : void

State

get_pc() : Address
get_gpr(index : int) : Word
get_mem(a : Address) : Word
set_mem_model(m : Mem_model) : void
set_io_model(m : Mem_model) : void
. . .

Rand_state

constraints
addr_space_size

Fixed_state

Figure 4.2.: Class diagram for instruction level testing. Here classes for handling instructions
and processor state are shown.

4.2.1. Verification framework

The first problem to solve for instruction level testing is the generation of valid in-
structions and processor state. The state of the processor is defined by its internal
registers. Additionally, the state of main memory is required to predict results for
certain instructions, e.g. those of the load/store functional unit. Figure 4.2 shows a
diagram of the classes used by the testbench for instruction and state. The instruction
word itself is stored using the Inst data type. It holds the bit-exact 32 bit image of the
instruction. The abstract Instruction class defines an interface to generate an in-
stance of the Inst type. Its only implementation generates instruction words using the
SystemVerilog random constraints facility. Constraints are formulated as conditions
that must hold true for the generated instruction. When calling the randomize()
member function of a class, the simulator employs a solver that tries to generate a
new set of random values fulfilling all given constraints. Here, constraints are used to
exclude instruction codings outside of the specification. For example, the load with
update variants of load instructions may not specify the same general purpose register
as target for loaded data and the address.

The constraint mechanism is also used for further limiting the generated instructions.

145

4. Functional verification and software support

Load and store operations must be aligned to word boundaries or otherwise an
interrupt is taken. This is defined behavior according to specification, but not useful
during single instruction testing. By using the processor state, instruction generation
can be constrained to aligned accesses only. For this, the Rand_instruction class
must have knowledge of the processor state, hence the state member.

The pre_randomize() member serves as callback for the SystemVerilog random-
izer. It is invoked after a call to randomize() and before actual randomization. Here
it is used to dynamically enable and disable constraints depending on configuration
options and whether the state member is specified to hold a valid state. If a valid pro-
cessor state is available, memory accesses are aligned and branches are limited to the
address space indicated by addr_space_size. Further options enable constraints
to eliminate exceptions (no_exceptions), the occurrence of the wait instruction
(no_wait) and of branches (no_branches).

Processor state The processor state is modeled with the abstract State class.
It provides getter functions for all registers and for memory. The memory state is
modelled using implementations of the abstract Mem_model class. Depending on the
bus topology, I/O bus and load/store bus can see separate memory spaces. This is
accounted for by individual Mem_model instances for I/O and load/store. The two
implementations of the abstract State class either produce random register contents
in the case of Rand_inst, or hold a static state that can be modified through additional
setter functions. The latter is for example used to store the expected state generated
by the prediction. The former again uses SystemVerilog constrained randomization
features to generate the state. Here, constraints are simpler than for instruction gener-
ation: They assure, that reserved bits in special purpose registers are zero and limit
registers that can be used as branch targets to an address range determined by addr_-
space_size. Those registers are CTR, LNK, SRR0, CSRR0, and MCSRR0. Constraints
are also used to bias the contents of general purpose registers to typical corner cases of
arithmetic operations: The minimum and maximum values for unsigned representa-
tion 0 and 0xFFFFFFFF and minimum and maximum for signed two’s-complement
representation 0x80000000 (−231) and 0x7FFFFFFF (231 − 1).

Modeling memory Implementations of the abstract Mem_model class allow for
get and set access to memory (Figure 4.3). The whole memory starting from a given
address can be cleared to zero using the clear() function. The iter_first()

and iter_next() members provide a simple iteration interface. This is necessary
for sparse memory representations as it is implemented by the Sparse_mem_model
class. With iter_first() the referenced Address variable is initialized to the first
location in the memory and its contents is returned via the Word-type output variable.
The return value is 0 if there is no entry in the memory. A call to iter_next moves

146

4.2. Constrained random verification: instruction level testing

Sit

Mem_model

get(a : Address) : Word
set(a : Address, d : Word) : void
iter_first(i : ref Address, d : output Word) : bit
iter_next(i : ref Address, d : output Word) : bit
clear(a : Address) : void
update_from(m : ref Mem_model) : void
get_mem_size() : int

Static_mem_model Sparse_mem_model

Figure 4.3.: Class diagram for instruction level testing. These classes model the state of memory.

the Address variable to the next location and returns that value. If there is no next
value, the function returns 0. The update_from member uses the iteration interface
of another Mem_model implementation to copy all defined memory locations over to
itself.

The Static_mem_model implementation returns a single default return value for
all locations. Writes have no effect. On the other hand, Sparse_mem_model uses
SystemVerilog associative arrays to store memory values. Such a sparse representation
is necessary if large memory spaces are to be used for testing. Otherwise, a 4 GiB
array would be necessary for the 32 bit address space. If a location is read that was
previously not written, it does not exist in the associative array and zero is returned as
default value.

Executing the test The abstract Instruction_loader class (Figure 4.4) defines
member functions to load instruction and state to the design under test, and to retrieve
the current processor state. The testbench defines a derived class that knows the
hierarchical names of processor internal registers and uses those to directly set and get
the registers. The Predictor class (Figure 4.4) provides a single member function
returning the expected result state for a given instruction and initial state. It is basically
a software re-implementation of the processor logic.

To perform single instruction testing the following sequence of actions is taken:

1. Initialize main memory to zero.

147

4. Functional verification and software support

Sit

Instruction_loader

load(I : Instruction, s : State) : void
load_state(s : State) : void
get_state() : State

Predictor

predict(i : Instruction, s : State) : State

Figure 4.4.: Class diagram for instruction level testing. Here, classes for setting and retrieving
the state of the design under test, and to predict the result of individual instructions
are shown.

2. Generate a random initial state using the Rand_state class.

3. Load the initial state to the processor under test using Instruction_loader.

4. Generate a random instruction using Rand_instruction.

5. Predict the expected result for this instruction using Predictor.

6. Write the instruction to main memory.

7. Release reset.

8. Wait until the processor enters the sleep state or a maximum number of clock
cycles has elapsed.

9. Read the result state back using Instruction_loader.

10. Compare expected and actual result.

11. Generate a report indicating success or failure.

12. Repeat.

This process is repeated until sufficient coverage of the design is achieved.

4.3. Constrained random verification: instruction

sequence testing

Instruction level testing is a special case of the more general instruction sequence
testing. Here, not only a single instruction is executed in the testbench, but a randomly
generated program consisting of a fixed number of operations is used. For a pipelined

148

4.3. Constrained random verification: instruction sequence testing

Rand_program

length : int
rinst : Rand_instruction
memory : Sparse_mem_model
io : Static_mem_model
predictor : Predictor
image : Inst[image_size]

set_init_state(state : ref State) : void
create_program()
get_final_state() : State

Rand_branching_program

Figure 4.5.: Class diagram for automatic program generation.

processor design, such as the PP, it is not sufficient to test only the correctness of single
instructions. The state of the design depends on the sequence of instructions that are
currently in execution. For example, logic for resolving interdependencies between
instructions can only be tested using sequences.

The basic idea is to use the prediction mechanism subsequently for all instructions in
the sequence using the intermittent state as initial state for prediction in each step. This
approach requires to also predict the control flow of the program, i.e. the outcome and
target of branches, which was not necessary for testing of single instructions. To avoid
the halting problem (Turing, 1937), loops in the generated program are forbidden.
So branches may not transfer control back to an instruction that has already been
executed.

Figure 4.5 shows two newly introduced classes for instruction sequence generation.
The Rand_program base class produces programs of fixed length without branches.
Its derived class Rand_branching_program adds the ability to include branches.
The length of the program is the number of instructions that are executed. The classes
use the previously introduced framework to generate random instructions, model
memory and I/O space, and predict the resulting state. The Predictor assumes
all I/O operations to always read zero and, that a load to a memory location returns
either zero or a value that was previously written to the same address. Therefore, the
Sparse_mem_model and Static_mem_model classes are used here.

149

4. Functional verification and software support

initialize memory with no-ops

set intermediate state to initial
state and current address to zero

generate random instruction
and write to current address

predict state after
current instruction

next instruction
no-op?

update intermediate
state and current address

program
complete?

insert wait at current address

no

yes

no

yes

Figure 4.6.: Flowchart visualizing the algorithm for automatic test program generation.

150

4.4. Verification of the plasticity processor bus

0

1

0

1

Master 0

Master 1

Read_cache

0

1

Memory block

Slave 1

Slave 3

Slave 2

0

1

0

1

Figure 4.7.: PPB topology used for bus verification. The third master is a cache module pre-
sented in Section 3.1.5. The memory block slave internally uses the PPB to RAM
interface adapter shown in Section 3.2.4.3. Other slaves are implemented as generic
bus targets that can be configured for different accept and response latencies indi-
vidually for read and write. They act as memory, always return either zero or one,
or return the address.

4.3.1. Automatic program generation

The algorithm for automatic program generation is visualized with a flowchart in
Figure 4.6. The generated program is stored in the member image of the generator
class. Randomization constraints on Rand_instruction configured by the addr_-
space_size member ensure, that a branch will not jump to a location outside of the
image. With the predicted program counter the generator checks the image location of
the next instruction address. If it does not hold a no-op, the current instruction is a
branch starting a loop. The testbench then draws new instructions until one is found,
that does not create a loop. This process is repeated until the sequence consists of a
number of instructions given by the length member of the generator classes. Finally,
a wait instruction is inserted to mark the end of the sequence for the testbench.

4.4. Verification of the plasticity processor bus

Unfortunately, it is not possible in SystemVerilog to dynamically generate module
hierarchies. Therefore, one can not systematically generate random topologies for
testing, without resorting to additional tools. Although, it would certainly be possible
to solve this problem using M4 and the bus description mini-language introduced in
Section 3.2.5, I did not implement such a system. Instead, the testbench uses a fixed
topology trying to cover the most common cases. There are three masters and four
slaves as is shown in Figure 4.7. It simulates randomly generated parallel accesses
through the bus by multiple masters.

Read/write test The first test is a classical memory test: The testbench first writes
a block of random data to an address range, then reads the result back and compares

151

4. Functional verification and software support

to what it had written. This is done in parallel on masters zero and one for disjoint
address spaces. The used address spaces are mapped to the memory block and slave
one.

Odd/even test Now the same address space within the memory block is used,
where one master accesses even addresses the other odd ones. One word of data is
written and immediately read back and compared from a random even or odd address.
A random number of waiting cycles is introduced after the read and the write to
desynchronize both clients. Intervals follow a Poisson distribution.

Cache test This is a memory test that writes a block of data to the memory block
via master one and then reads it back through the cache using the RAM interface.
Simultaneously the testbench performs the even half of an odd/even test via master
zero.

4.5. Writing software for the plasticity processor

The interface between hardware and software is defined by the Instruction Set Archi-
tecture (ISA). This chapter lists additional conventions going beyond this specification,
such as calling conventions or memory space organization. These conventions are
optional and can be changed without having to modify the hardware.

I used the toolchain around the GNU Compiler Collection (GCC) (Stallman, 2012) to
generate binary memory images for the processor. The targeted Application Binary
Interface (ABI) is the PowerPC Embedded ABI (EABI) described by IBM (1998a).

To support the instructions of the SYNAPSE special function unit the assembler source
code needs to be patched. Since SYNAPSE instructions use pre-defined instruction
formats, the new operations can be easily added to the opcode table of the assembler.
Since the opcode table is shared for all tools of the binutils package (Free Software
Foundation, 2013), this also enables correct disassembler output.

Shell for C programs A small shell of assembly code provides a minimal environ-
ment for the actual C program. It contains the interrupt vector table and initializes
the stack pointer in general purpose register 1 according to the EABI specification
(IBM, 1998a). It initially points to a 64 bit stack frame at the end of main memory.
Upon a function call the prologue of the function will save the LNK register to this
frame. The shell branches to an externally defined symbol start using the linking
branch instruction bl. So the entry point to the C program is a function declared void

start(). When the program returns from this function, the shell enters and indefinite
loop with a wait instruction in the body. This will put the processor into the sleep state.

152

4.5. Writing software for the plasticity processor

If it wakes up for example due to an interrupt event, it will return to sleep after the
interrupt service routine has completed.

The interrupt vector table consists of branch instructions to externally defined service
routines. When linking the program, it must be ensured, that the shell code is placed
at instruction memory address zero. Otherwise, the interrupt vector table will not be
at the correct location.

Linking Since there is no dynamic linker all programs are linked statically. The
GNU is Not Unix (GNU) linker uses so called linker scripts to further control how the
executable is generated. The linker script defines the memory space and how sections
for code and data are arranged in the memory space. For systems with two disjoint
memory blocks for code and data the convention is to use addresses 0 . . . 230 − 1 for
instructions and 230 . . . 231 − 1 for data. If the system has a joined memory space, the
whole range is used for instruction and data with code starting at address zero. The
linker script is therefore specific for the target system. It also contains the exact amount
of available physical memory.

The compiler normally places variables in a number of different sections that are
optimized for specific usage patterns or underly different access permissions if there is
a Memory Management Unit (MMU). For the PP this is not necessary and so the linker
script combines them into the .text and .data sections.

For interrupt handling the shell requires external symbols for interrupt service
routines to be defined. If the C source code does not define such functions, a linking
error is caused. The linker script offers a way to avoid this, by defining the required
symbols automatically, if they are not present in the source. The default address is the
reset vector, restarting the program if an unhandled interrupt is taken.

Standard library The C standard library offers an interface to functionality pro-
vided by the operating system. For example, there are functions for file I/O and
printing text to a terminal. Also, dynamic memory management is handled by library
functions. I did not port a C standard library to the PP, because its usefulness would be
strongly limited by the constraints of the BrainScaleS wafer-scale system. For example,
the concept of files or terminal input and output have no direct equivalent in the
system. Dynamic memory management could probably be of use, but the very limited
amount of available memory in the range of few kilobytes makes it less attractive. A
dynamic memory management system would introduce memory overhead by adding
code and a data structure to track allocated memory blocks.

If in the future a C standard library is needed, the newlib library (Vinschen and
Johnston, 2013) is an ideal candidate. It is targeted at embedded systems and offers a
modular design that is easy to port to a new architecture. The lack of a C library also
implicates that it is not possible to run programs written in C++ on the PP.

153

4. Functional verification and software support

compile *.c files

assemble shell source

link statically us-
ing linker script

extract .text and .data
sections with objcopy

program images to proces-
sor embedded in system

Figure 4.8.: Workflow for programming the processor starting from the source code.

4.6. From source code to program execution

Figure 4.8 illustrates the process of executing a program within a hardware system
starting from the source code. The source for the program and the shell is translated
into binary object files and linked to an Exectuable and Linking Format (ELF) exe-
cutable (Zucker and Karhi, 1995). The binary data of the text and data sections are then
extracted using the objcopy tool of binutils. This gives raw, binary data files that can
be loaded to the processor in the system using a system specific control software.

154

5. Hardware systems and their

evaluation

This chapter introduces four hardware systems using the technologies presented in
Chapter 3 and evaluates them using different performance metrics. The first system is
an FPGA based prototype platform mainly used for evaluation of the design of the
Plasticity Processor (PP). The second system is the BrainScaleS wafer-scale system
with the non-programmable STDP implementation from Section 3.3.2. The third one
is a prototype ASIC using a 65 nm process technology to test the plasticity processor.
The last system presented here is the BrainScaleS wafer-scale system with embedded
PP. This system has not yet been manufactured and so only simulation results are
presented.

5.1. FPGA prototype

During development the design of the processor was constantly evaluated using an
FPGA based hardware platform. I used the ML505 evaluation board (Xil, 2008) that is
equipped with the Virtex-5 110LXT FPGA (Xil, 2009b) at the slowest speed grade 1.
The SystemVerilog hardware description is synthesized with Synplify by Synopsys
(Syn, 2012). For low-level implementation, and the generation of a programming bitfile
I used the Xilinx software tools (Xil, 2012b).

5.1.1. Benchmarking with CoreMark

The CoreMark benchmark (EEMBC, 2012) was already mentioned in the context of
functional verification in Section 4. It tests four commonly used algorithms: linked
list manipulation, matrix operations, state machine operation, and computation of
a CRC32 checksum of results. The benchmark repeats these tests for niter iterations
and measures the number of clock cycles ncyc. Using the clock frequency fclk of the
processor this gives the performance metric

Cperf =
niter fclk

ncyc
(5.1)

155

5. Hardware systems and their evaluation

Figure 5.1.: Photo of the ML505 evaluation platform using a Virtex-5 FPGA by Xilinx (Xil,
2008).

measured in iterations per second (s−1). To measure efficiency of the design, this metric
is normalized with the clock frequency in MHz

Ceff =
Cperf

fclk
· 106. (5.2)

Ceff is a dimensionless number. In contrast to performance evaluation on computers
with preemptive multi-tasking, there is no random element in program execution for
the tested system. Results do not show trial-to-trial variation for identical parameters.

These two metrics are now measured for different configurations of the processor
design to find performance critical options. Figure 5.2 shows the structure of the
system. First, a disjoint memory configuration is used with fixed-latency load/store
operations (Figure 5.2A), then the variable latency variant is tested (Figure 5.2B).
Table 5.1 lists all parameters that are modified during the analysis.

Porting CoreMark to the plasticity processor In order to execute the CoreMark
benchmark on the PP some adaptations to the code have to be made: Methods for
time measurement and text output need to be supplied. The timer facility described in
Section 3.1.10 provides the 64 bit time base register clocked with the processor core
clock. This is used to measure start and stop time of benchmark execution. For text
output one could use the serial port of the evaluation board, for example through

156

5.1. FPGA prototype

A Dual memory variant

JT
A

G Processor

core

IMEM

DMEM

JT
A

G
 a

d
a
p
te

r

4 GIO Pins

Timer Interrupt

control

B Single memory variant

JT
A

G Processor

coreM
E
M

JT
A

G
 a

d
a
p
te

r

4 GIO Pins

Timer Interrupt

control

ICache

P
P
B

Figure 5.2.: Structure of the design used for CoreMark evaluation. (A) Distinct memory blocks
for instructions and data representing a Harvard architecture. (B) One memory
block with instruction cache (ICache) for code retrieval. Data accesses use the PPB,
which is shared for instruction fetching and load/store operations.

Option Description

fclk Processor clock frequency.
LLS Issue to retire latency of load/store instructions.
LMUL Issue to retire latency of integer multiplication.
LDIV Issue to retire latency of integer division.
Ldef Issue to retire latency for all other instructions except branches

and wait.
sb The branch prediction table has 2sb entries.
pb Implementation of the branch cache: either direct-mapped

(DM) or fully-associative (FA).
si The instruction cache has 2si entries (always direct-mapped).
sd The size of a cache line in the instruction cache is 2sd .
pwt Whether the write-through optimization is used (pwt ∈

{true, false}).
pit Whether instructions are issued in time. (pit ∈ {true, false}).
sacc Number of entries in the bus access module (Section 3.1.8.1).
sbus Number of in-fligh requests in bus building blocks (Sec-

tion 3.2.3).

Table 5.1.: List of parameters that are modified during the analysis using the CoreMark bench-
mark.

157

5. Hardware systems and their evaluation

No. f c
lk

[M
H

z]

L
L

S

L
M

U
L

L
D

IV

L
d

ef

sb pb si sd pwt pit s a
cc

s b
u

s

1 50 4 7 29 4 8 DM 0 0 n n - -
2 50 var. var. var. var. 0 - 0 0 n n - -
3 50 3 4 29 3 0 - 0 0 var. var. - -
4 50 3 4 29 3 var. DM 0 0 y y - -
5 50 3 4 29 3 var. FA 0 0 y y - -
6 50 4 3 29 2 6 FA 10 4 y y 16 16
7 50 6 5 13 3 4 FA var. var. y y 16 16

65 500 4 15 38 4 0 - 0 0 n n - -
180 62.5 6 9 29 3 4 FA 7 4 y y 16 4

Table 5.2.: List of configurations used for tests reported in this section. The abbreviation “var.”
indicates, that this parameter is varied by the test. Letters “y” and “n” stand for yes
or true and no or false, respectively.

the external control I/O port. However, to keep the setup simple I instead only copy
the output to an internal buffer in memory. Control software then reads the data
memory back through the Joint Test Action Group (JTAG) interface after the program
has finished.

Some further options control how CoreMark performs the benchmark: Initially a
number of seed parameters are set to control how the test algorithms are performed. It
is important, that the compiler does not know these parameters. Otherwise, it might
remove the code under test and give results that do not represent processor perfor-
mance. Therefore, the program retrieves these seeds initially either from command line
arguments, from a system function, or from memory locations marked in a way, that
prevents removal of the code. Since there is neither a command line nor an operating
system, I selected the latter method. Also, the benchmark is configured to use static
memory allocation, since there currently is no software support for dynamic memory
management.

5.1.2. Influence of compiler optimization options

The compiler translates the source code into machine code and has a strong impact on
performance. I used the GNU compiler collection (GCC, Stallman, 2012) in versions
4.5.0 and 4.6.3. The performance difference between programs produced by both
versions is negligible (data not shown).

The first question was, which options passed to the compiler give the best results.

158

5.1. FPGA prototype

A Optimization option

-O0 -O1 -O2 -O3
0.0

0.2

0.4

0.6

0.8

1.0

C
e
ff

0

5000

10000

15000

20000

25000

30000

C
o
d
e

s
iz

e
[b

y
te

]

B Processor target

(none)

common

common,405

common,G
5

1.00

1.02

1.04

1.06

1.08

1.10

C
e
ff

Figure 5.3.: (A) The diagram shows code size in gray and CoreMark efficiency Ceff in black,
when using different optimization options for the compiler. The highest optimiza-
tion option does not further increase performance, but results in larger code images.
(B) Performance depending on the selected processor target. The plot shows results
for giving neither -mcpu nor -mtune, -mcpu=common, and -mcpu=common with
different -mtune. The used configuration is listed in Table 5.2 under number 1.

The used configuration of the PP is given in Table 5.2 under number 1. The com-
mand line switches “-O0” through “-O3” enable increasingly more code optimization
techniques by the compiler. A list of these techniques is given by Stallman (2012).
Figure 5.3A shows efficiency Cperf and size of the code image in dependence on the
optimization level. The data show that the best performance is reached for levels two
and three. However, for level three the code is much larger than for level two. In the
remaining tests the benchmark is therefore compiled with option “-O2”.

The GNU compiler knows instruction latencies for a large number of processors
and uses them to schedule operations in the generated code. To find out whether it
would be useful to add such latency information for PP, I tested performance with
different latency information for other processors. The command line options used are
“-mcpu=common” to select a generic processor architecture and “-mtune=<type>” to
select latency information for a specific processor type. Figure 5.3B shows performance
Ceff for some combinations of these options. The specifically selected processor types
are the PowerPC 405 (IBM, 1998b) and Power G5 (e.g. the 970, Rohrer et al., 2004).
Only for the G5 target is performance minimally reduced. This indicates only a small
influence of different latency models on performance. Therefore, I do not expect larger
performance gains by making the correct latency information available to the compiler.

159

5. Hardware systems and their evaluation

A Latencies

(4
,4

,7
,2

9)

(4
,4

,4
,2

9)

(4
,3

,7
,2

9)

(4
,3

,4
,2

9)

(3
,3

,4
,2

9)

(3
,3

,2
,2

9)

(2
,3

,2
,2

9)

(2
,3

,2
,1

3)

(Ldef, LLS, LMUL, LDIV)

0.8

0.9

1.0

1.1

C
e
ff

B Scheduling

(fa
lse, false)

(tru
e, false)

(fa
lse, tru

e)

(tru
e, tru

e)

(pit, pwt)

0.9

1.0

1.1

1.2

1.3

1.4

C
e
ff

Figure 5.4.: (A) Performance results for different instruction latencies. Tuples show the com-
bination of instruction latencies for load/store LLS, integer multiplication LMUL,
integer division LDIV, and all other instructions Ldef. Configuration is given under
number 2 in Table 5.2. (B) Performance results depending on whether instruc-
tions are issued in time pit = true and whether write-through is used pwt = true.
Configuration under number 3 in Table 5.2.

5.1.3. Influence of issue to retire latency

Figure 5.4A shows the impact of latency on performance in the CoreMark benchmark.
The parameters used for the processor design are shown in Table 5.2 under number 2.
The number of cycles ncyc required to execute the program is given by the average clock
cycles per instruction ci and the instruction frequency fi for the classes of operations
default (def), load/store (LS), multiply (MUL), divide (DIV) i ∈ {def, LS, MUL, DIV}:

ncyc = ∑
i

ci · fi (5.3)

In the given architecture, ci = 1 if all operands are immediately available. Otherwise,
the instruction computing the operands incurs a penalty P depending on its issue-to-
retire latency L, and scheduling configuration options pit and pwt (see Section 3.1.7).
Latencies for individual instruction classes are given as Ldef, LLS, LMUL, and LDIV in
Table 5.2. The penalty ranges between P0 = L and P2 = L− 2. Runs in Figure 5.4A use
pwt = false and pit = false, so that ci ∈ [1, 1 + L]. With the given pipeline structure,
L can not be reduced below two: one cycle is taken by the register file for operand
fetching, and one for writing the result back (see for example Figure 3.11A).

Performance increases with decreasing latency: The largest increments are achieved
by reducing Ldef first from four to three and then to the minimum two. This is to be
expected considering Equation 5.3: Ldef affects cycles per instruction cdef for the largest

160

5.1. FPGA prototype

number of instructions fdef. Therefore, it has the largest impact on ncyc in Equation 5.3.
The second largest impact on performance have load/store instructions. Comparing
the first three points in Figure 5.4A, one sees a larger improvement of Ceff for the
reduction of LLS from four to three, than for the reduction of LMUL from seven to four.
Note, that LLS is reduced only by 25 %, while LMUL shrinks by over 40 %. Latency
of load/store can not be optimized further in this system, because at least one cycle
for a synchronous read on the memory is required. Using the PPB based load/store
unit, the latency is even higher (CoreMark results shown later). The minimum latency
configuration (Ldef, LLS, LMUL) = (2, 3, 2) achieves an efficiency of Ceff = 1.095. The
latency of the divider has nearly no impact on performance, as the last two points in
Figure 5.4A show.

5.1.4. Influence of in-time issuing and write-through

As discussed in Section 3.1.7, the penalty by data hazards can be reduced by optimizing
the scheduling of instructions by the front-end. Instructions can be scheduled in time to
read operands immediately after they are available in the register file. This is possible
if the operand is the result of a fixed-latency operation. The Result Shift Register (RSR)
holds precise timing information for all in-flight instructions. Therefore, the front-end
can plan the point of time for issue using that information. Since there is no penalty
associated with this feature, there is no reason not to use it. In contrast to that, writing
through the register file requires a modification that produces a longer timing path
than without the feature. If read and write to the same register occur within the same
clock cycle, the written data is forwarded to the read port. This way, the mechanism
works similar to a bypass network (Hennessy and Patterson, 2007, p. 147) connecting
the output of the source functional unit to the input of the target unit.

Figure 5.4B shows results depending on whether these two features are used. To-
gether, they increase performance by 38 %. Most of this is attributable to issuing in time
(pit), as the steps from first to second, and third to fourth point show. Write-through
has an effect comparable in size to the reduction of default latency from Ldef = 3 to
Ldef = 2. When both optimizations are in place, instructions with L = 2 do not cause
any penalty for data hazards.

5.1.5. Influence of branch prediction

With write-through, in-time issuing, and most latencies at two cycles, the penalty by
data hazards is nearly completely removed. The next step to take is to reduce the
penalty caused by branches. Figure 5.5A shows performance for different sizes of
a direct-mapped branch cache as described in Section 3.1.4. The used configuration
is listed under number 4 in Table 5.2. Overall, performance can be improved by
23 % when using a branch prediction table of size sb = 9. Nearly equal performance

161

5. Hardware systems and their evaluation

A Direct-mapped

0 2 4 6 8 10
sb

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

C
e
ff

B Fully-associative

0 2 4 6 8 10
sb

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

C
e
ff

Figure 5.5.: (A) Performance for various branch prediction table sizes using a direct-mapped
branch cache. Configuration number 4 in Table 5.2. (B) Performance for different
table sizes when using a fully associative cache. The horizontal line marks the
best performance when using a direct-mapped cache of size sb = 9. Configuration
number 5 in Table 5.2, which differs only in the cache implementation from number
4 used for Figure (A).

(Ceff = 1.611 instead of 1.612) is already achieved for sb = 8. An economical choice
would be to use sb = 7, which gives Ceff = 1.605 with half the cache size. Please note,
that the branch cache has 2sb entries.

Figure 5.5B shows performance for a fully associative branch cache with otherwise
identical configuration. In comparison to the direct-mapped variant, performance
increases faster with growing cache size. Already for sb = 5 the maximum level from
Figure 5.5A is nearly reached (Ceff = 1.610 instead of 1.612). Larger sizes even slightly
surpass the direct-mapped implementation, but not to a large extent (Ceff = 1.619 over
1.612).

These results show, that even with a rather simple branch prediction mechanism,
which is completely agnostic of the instruction set, considerable performance im-
provement can be achieved. The fully associative variant achieves good performance
improvements with a relatively small table size.

5.1.6. Influence of variable latency load/store

So far, the tested system used two distinct SRAM memories for code and data, rep-
resenting a Harvard architecture (Hennessy and Patterson, 2007). This is ideal for
performance, because instructions and data can be fetched in parallel without any
conflicts. However, memory can not be used efficiently in all cases, since storage sizes
are fixed. For example, a program may not fit into memory, although its total size is

162

5.1. FPGA prototype

smaller than the total amount of available storage, because code or data parts are larger
than their respective memory block. Since early studies for the BrainScaleS wafer-scale
system showed only very small amounts in the order of 10 kiB of memory to be imple-
mentable, I decided to use a single main memory. Instruction fetch uses a read-only
cache to reduce the von-Neumann bottleneck (Backus, 1978), while load/store directly
accesses main memory through the PPB. In this case, collisions between accesses from
the cache and the load/store unit can occur. The latency of load and store operations
is therefore not known in advance. Also, the need to support arbitrary bus structures
enforces load/store instructions with variable latency.

In this and the next section the performance penalty incurred by this architecture is
studied. Performance is degraded by two effects: Moving code to the cache blocks data
accesses, and the load/store unit with variable latency requires an additional cycle
to maintain request and retire queues (see Section 3.1.8.1). Additionally, dependent
instructions can not be issued in time, because the front-end does not know in advance,
when an operation will finish. Write-through however is unaffected. By reserving
a write-back slot at the expected completion time, instructions can retire without
longer delays if they finish fast enough. Otherwise, a longer waiting time may be
required until no other functional unit uses the write port of the register file. Using
the configuration under number 6 in Table 5.2, performance Cperf = 75.712 s−1 and an
efficiency Ceff = 1.514 is achieved with variable latency load/store.

5.1.7. Influence of instruction cache

The direct-mapped instruction cache is described in Section 3.1.5. Two configuration
options select how the cache is structured: The cache size si determines the total
number of instruction words 2si that can be stored in the cache. The displacement size
sd controls the size of individual cache lines, which is given by 2sd .

Figure 5.6 shows how CoreMark performance depends on these two parameters.
The configuration number 7 in Table 5.2 is used for these measurements. Figure 5.6A
varies si while keeping sd = 4 fixed. Maximum performance is reached for si = 9 and
is not improved by going to larger cache sizes. There is a relatively large drop from
si = 7 to si = 6. In the latter case there are only four cache lines and even only two
for si = 5. This means, that for every miss a large fraction of the cache is invalidated,
increasing the likelihood that useful operations are pushed out.

This shows, when varying the cache line size while keeping the total size constant.
Figure 5.6B shows the dependence on sd while keeping si fixed at seven or ten. One can
see, that a reduction from sd = 4 to sd = 3 gains performance, whereas the opposite
is true for longer cache lines. This effect depends on total size, since for si = 10 an
increase to sd = 5 does not affect performance.

163

5. Hardware systems and their evaluation

A Cache size

5 6 7 8 9 10
si

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

C
e
ff

B Cache line size

2 3 4 5
sd

0.95

1.00

1.05

1.10

1.15

1.20

1.25

C
e
ff

si = 7

si = 10

Figure 5.6.: CoreMark performance depending on the instruction cache and cache line size in a
system with single main memory. (A) Performance depending on cache size given
by parameter si. The total number of entries in the cache is 2si . (B) Performance
depending on line size for two different cache sizes. The cache line has 2sd entries.

5.1.8. Maximizing performance

To maximize performance Cperf in the CoreMark benchmark one can either increase
the clock frequency fclk or the efficiency Ceff. Those are often opposing goals. When in-
creasing efficiency requires deeper logic paths, this also limits the maximum frequency.
The presented processor provides many options to tune efficiency as the previous
sections have shown. This section tries to find a maximum performance configuration
for the Virtex-5 FPGA. Using different implementation technology, such as the TSMC
65 nm or the UMC 180 nm processes discussed below, will likely require different
configurations to maximize performance.

The variant with highest efficiency Ceff = 1.885 has minimal instruction latencies
(Ldef, LLS, LMUL, LDIV) = (2, 3, 2, 17), a fully-associative branch prediction with sb = 6,
and uses separate memories for code and data. Figure 5.7 shows how increasing fre-
quency fclk on this design requires decreasing Ceff, but improves absolute performance
Cperf.

Initially, the branch prediction limits frequency. Switching from the fully associative
variant to a direct mapped branch cache shortens the critical path, as does decreasing
cache size. To reach 70 MHz, additionally the multiplier latency needs to be increased
by one cycle. So the 70 MHz design in Figure 5.7 uses a direct mapped branch cache
with sb = 5 and increased multiplier latency LMUL = 3. This results in slightly less
efficiency Ceff, but improved performance Cperf. To achieve significantly higher fclk,
branch prediction has to be removed completely. Also a further increased multiplier

164

5.1. FPGA prototype

0.0 0.5 1.0 1.5 2.0

Ceff

(2, 3, 2, 17)
@ 50 MHz

(2, 3, 3, 17)
@ 70 MHz

(2, 3, 4, 17)
@ 100 MHz

(2, 3, 5, 29)
@ 111 MHz

C
o
n
fi
g
u
ra

ti
o
n

0 20 40 60 80 100 120 140 160

Cperf[s
−1]

Figure 5.7.: Performance and efficiency for different configurations and clock frequencies.
Latencies are given as tuples (Ldef, LLS, LMUL, LDIV). Absolute performance Cperf
can be maximized by increasing the clock frequency. To increase the clock frequency,
the efficiency Ceff has to be reduced by switching from fully associative to direct
mapped branch cache. Over a clock frequency of 70 MHz, the branch prediction
has to be omitted totally and latencies for multiply and divide are increased.

latency LMUL = 4 is necessary. At fclk = 100 MHz this gives a degraded efficiency
Ceff = 1.457, but still improved performance Cperf = 145.668 s−1. With further in-
creased multiplier and divider latencies the design reaches fclk = 111 MHz and a
performance of Cperf = 159.509 s−1. At this point, the critical path lies in the proces-
sor front-end, specifically in the dependency tracking and scheduling pipeline stage
(Figure 3.2). To reach even higher frequencies, this stage would need to be divided
into two. In this case, the front-end knows only after a latency of two cycles whether
an instruction is ready for issue or not. This further complicates scheduling logic and
would require most likely a major redesign of this part.

5.1.9. Comparison to other processors

By using a standardized benchmark one can compare results to other designs. Fig-
ure 5.8 shows results for a selection of other processors compared to the presented
design. Data is taken from EEMBC (2013), except for the OpenRISC 1200 processor
(OR1200), for which results are taken from OpenCores (2013). For the PP results for
four different points in the design space are reported:

(a) Highest efficiency variant with dual memory architecture.

(b) Highest efficiency with single memory and instruction cache.

(c) Highest performance variant.

165

5. Hardware systems and their evaluation

0.0 0.5 1.0 1.5 2.0 2.5

Ceff

PP(a) @ 50 MHz

PP(b) @ 50 MHz

PP(c) @ 111 MHz

PP(65 nm) @ 500 MHz

Atmega2560 @ 8 MHz
MSP430F5438 @ 18 MHz

LPC2939 @ 120 MHz

OR1200 @ 50 MHz

MicroBlaze v8.2 @ 125 MHz

IBM 405 @ 300 MHz

P
ro

c
e
s
s
o
r

0 150 300 450 600

Cperf[s
−1]

Figure 5.8.: Comparison of performance to other processors. Left: Efficiency Ceff. Right:
Absolute performance Cperf.

(65nm) Performance of the 65 nm prototype variant discussed in Section 5.2.

The 65 nm prototype was produced before I optimized the design on the FPGA plat-
form and thus not necessarily represents the maximal achievable performance in this
technology. For example the design was produced without in-time issue (pit = false),
which boosts performance without impact on timing (Figure 5.4B). The full configura-
tion is listed under number 65 in Table 5.2. ATmega2560 (Atmel, 2012) is an 8 bit and
the MSP430 (Texas Instruments, 2010) a 16 bit micro-controller for embedded applica-
tions. They represent the lower end in the performance spectrum in both efficiency
and absolute performance. The FPGA based designs are more than twice as efficient
and achieve a much higher clock frequency.

The LPC2939 by NXP Semiconductors is based on the ARM968 Intellectual Property
(IP) core (NXP Semiconductors, 2010). The same core is used by the SpiNNaker project
to simulate large-scale neural networks with micro-processors that are interconnected
with an asynchronous event network (Furber et al., 2012; Khan et al., 2008). It imple-
ments a Harvard architecture with two 32 kiB memories for code and data, as does the
dual memory variant of the PP. The multiplier can only compute 32× 16 bit operands
and there is no hardware divide (ARM Ltd., 2007). Also, there are only sixteen general
purpose registers instead of 32 in the PP. Apart from this, both ISAs are comparable.
The PP design surpassed the LPC2939 in efficiency and for variant (c) also in absolute
performance on the FPGA.

The OpenRISC 1200 processor is developed by an open source hardware project
(OpenRISC Project, 2013). It is a 32 bit scalar processor with 32 general purpose
registers and 32 kiB instruction and data caches. Multiplication takes three, division
32 clock cycles. The result shown in Figure 5.8 was also obtained on a Virtex-5 FPGA.
Therefore, ISA and implementation platform are similar to the work presented here.

166

5.2. Prototype ASIC in 65 nm technology

At the same clock speed PP achieves 41 % higher efficiency Ceff. A more than twice as
high clock frequency can be used, while still staying more efficient.

Xilinx Inc., the manufacturer of the used FPGA, offers the configurable MicroBlaze
processor IP core (Xil, 2012a). It is a 32 bit, scalar micro-processor with 32 general
purpose registers. The result shown in Figure 5.8 was obtained using a variant con-
figured with a five-stage pipeline and two 16 kiB caches for instructions and data.
The full configuration of the tested processor is not reported (EEMBC, 2013), but the
design supports single cycle integer multiplication and load with a latency of one. The
architecture also supports delayed branch slots, i.e. one instruction following a branch
is executed before jumping to the destination address. MicroBlaze achieves a slightly
better efficiency Ceff = 1.9 compared to 1.885 for the PP. It also uses a higher clock
frequency of 125 MHz. This might be due to the use of an FPGA with a higher speed
grade.

The PowerPC 405 processor core by IBM implements the PowerISA (2006) in a scalar,
five-stage pipeline architecture. Figure 5.8 shows results for a hard-macro co-processor
in a Virtex-4 FPGA by Xilinx (Xil, 2009a). The used ISA is nearly identical to the one of
PP. Notable exception is the presence of integer multiply-accumulate operations in the
PowerPC 405. According to IBM (2005) instructions generally complete in one cycle,
while multiplication takes up to three depending on the operand values. The core uses
only a static branch prediction scheme, but decides branches as early as possible in the
pipeline. Only if a read-after-write hazard for the condition, counter, or link register
exists, does a branch take more than one cycle to execute. The PowerPC 405 achieves
an efficiency Ceff = 2.22 well above the best-case for PP.

This comparison shows the PP design to achieve an efficiency in the CoreMark
benchmark comparable or better to industry developed commercial processors. Com-
paring with MicroBlaze suggests, that there is still room for improving clock frequency
of the best-efficiency variant (a). For example, the branch cache – representing the
limiting component for higher frequencies – could be optimized for the FPGA archi-
tecture to support shorter timings. Better performance of the PowerPC 405 could to a
large part be attributable to the multiply accumulate instructions that can accelerate
the matrix multiplication task in the CoreMark program. However, also handling of
branches as early as possible reduces the penalty by control transfers. This could, to
some extent, be transferred to the PP. For example, by deciding branches in the pre-
decode stage as long as there is no outstanding write to a register the transfer depends
on. In conclusion, the systematic optimization using the CoreMark benchmark and
comparison with results from other designs has helped in improving performance of
PP.

167

5. Hardware systems and their evaluation

Arbitrary Waveform Generator

Core voltage power supply

IO voltage power

supply

Board with 65 nm prototype

65 nm prototype chip

JTAG cable

Figure 5.9.: The photo shows the experimental setup used to evaluate the 65 nm prototype
ASIC.

168

5.2. Prototype ASIC in 65 nm technology

JT
A

G
clk

Processor

core

IMEM

DMEM

JT
A

G
 a

d
a
p
te

r

global clock gate

& reset

Breakpoint control

4 GIO Pins

Timer

Interrupt

control

m
o
n
it

o
r

s
ta

ll

processor clock

domain

Figure 5.10.: Overview of the design used for the 65 nm prototype ASIC. The shaded area
marks the clock domain of the processor under control of the global clock gate.

5.2. Prototype ASIC in 65 nm technology

The BrainScaleS wafer-scale system is produced using the 180 nm process by United
Microelectronics Corporation (UMC), which is already more than ten years old. The
prototype ASIC discussed in this section was produced using the 65 nm low-power pro-
cess by Taiwan Semiconducator Manufacturing Company (TSMC). Figure 5.9 shows
a photo of the system. It was intended to test basic building blocks for future neuro-
morphic hardware systems using that technology. On the one hand those are analog
components, such as analog memories and Digital to Analog Converters (DACs),
which are not part of this thesis. On the other hand the PP was integrated to get
realistic estimates for reachable clock frequency, area, and power consumption.

5.2.1. Design overview

Figure 5.10 shows the high-level structure of the design. The processor has two disjoint
SRAM memories for instructions and data (IMEM and DMEM) that are connected
using the RAM interface without an instruction cache. Both memories are 16 kiB,
dual-ported SRAM macros provided by TSMC. The second port provides access from
outside the chip using a JTAG interface. The processor and the memory ports connected
to it lie within the processor clock domain. This clock domain is controlled by a global
clock gate and separate reset. The clock gate is primarily intended to turn off the
clock when the processor enters the sleep state. Four GIO pins allow for bi-directional
signalling with off-chip components (see Section 3.1.11). The pins can also be used to

169

5. Hardware systems and their evaluation

A Circuit diagram

wakeup

sleep
break

force off
force on

proc clk

clk

d q

B Timing diagram

clk

sleep

d

q

proc clk

Sleep phaseInitiate sleep Resume

Figure 5.11.: (A) Schematic for the global clock gate. Whether the processor clock is enabled
or disabled is determined by a number of input signals that are reduced to the
input of a latch in a combinatorial logic tree. The latch is transparent if the clock
is low. Its output gates the clock via an AND gate. (B) Timing diagram showing
the operation of the clock gate. The row labeled “d” shows the input to the latch,
while the one with “q” shows its output.

trigger interrupts. The timer facility provides the time base and an interrupt source
as described in Section 3.1.10. It is situated outside of the processor clock domain to
allow wakeup on timer interrupts. The breakpoint control unit provides additional
debugging capabilities. It can stop execution if a given instruction or memory address
is fetched or if a given program counter value is encountered.

5.2.1.1. Global clock gate

Figure 5.11A shows the logic used for the global clock gate. The circuit has to make
sure, that the clock to the processor is free of glitches and that the time between rising
and falling edge of the gated clock is not reduced compared to the input. Also, there
are a number of control signals that have to be prioritized for correct operation of the
gate. Otherwise one might build a circuit that can not wakeup from sleep again, for
example.

Clock gating is controlled by five enable signals. The processor asserts sleep,
when entering the sleep state after a wait instruction. The interrupt controller asserts
wakeup to terminate the sleep state. To halt execution upon hitting a breakpoint, the

170

5.2. Prototype ASIC in 65 nm technology

breakpoint controller asserts break to disable the clock. To increase resilience against
implementation errors, the force off and force on signals have the highest pri-
ority and override the other control signals. They are set from the outside via the
JTAG interface. Especially, if force on is set, the processor clock will always remain
enabled regardless of all other control signals.

Figure 5.11B shows control of the clock gate in operation: the processor clock is
disabled for a single cycle. A latch is necessary to ensure, that glitches from the control
input are not propagated to the gated clock. Pulses on the processor clock network
that are shorter than half the clock period for which the processor clock domain is
constrained can have a detrimental effect to correct functioning. If it causes setup or
hold timing violations on flip-flops in the clock domain, this can lead to undefined
behavior. The combination of low-active latch and AND gate allow for one clock
period of settling time. In the high phase of the clock, the latch keeps its output stable
and glitches can not propagate to the gate. In the low phase, the output of the AND
gate is always low and so possible glitches are also not propagated. It is important that
latch and gate see the clock in the same phase. In the prototype ASIC this was ensured
by placing the standard cells for latch and gate next to each other. Behind the clock
gate a balanced buffer tree distributes the clock.

5.2.1.2. General purpose input/output pins

The processor can directly control four dedicated pins on the ASIC using the four least
significant bits of the GIO registers (see Section 3.1.11). Register GIN reads the logic
level on the pins. If the corresponding bit is set in GOE, register GOUT is driven to the
pin.

Additionally, the pins are available as interrupt sources. The interrupt configuration
and control register (ICCR) configures each pin individually to be either level or edge
sensitive, or masked out. Both polarities and edge types can be selected. If the interrupt
controller detects a matching event on one of the pins, it signals an external input
exception to the processor core, possibly waking it up from a sleep state. The controller
signals the exception only if the external enable bit EE is set in the machine state
register MSR.

5.2.1.3. Timer facility and interrupt controller

The timer facility implements the time counter, decrementer and fixed-interval timers
as described in Section 3.1.10. It is placed outside of the processor clock domain
together with the interrupt controller, so that the timer continues during sleep phases.
This allows for wakeup to be triggered by timed events using interrupts. Apart
from the already discussed interrupt sources, an external user can trigger a doorbell
exception via the JTAG interface. If the external enable bit in the machine state register

171

5. Hardware systems and their evaluation

is set, the interrupt controller signals the exception to the processor core, possibly
waking it up.

5.2.1.4. Program suspension with hardware breakpoints

Breakpoints stop the execution of a program, when a specified condition is met.
The user can then inspect the state of registers and memory to debug the program.
Normally the trap instruction and its variants provide this capability. For example, the
“debugging” test program of the program level testing suite (see Section 4.1) writes the
contents of the general purpose register file to main memory after the last recursion
in a recursive faculty calculation using a trap interrupt. However, since this assumes
a correctly functioning processor, I added hardware support for breakpoints. The
breakpoint controller monitors the instruction and data fetch ports, and the Program
Counter (PC) at the input to the pre-decode pipeline stage. When enabled, it disables
the processor clock through the global clock gate if one of the following conditions is
true:

• The PC matches the instruction breakpoint address.

• The instruction breakpoint address is read from instruction storage.

• The processor writes to the data breakpoint address.

• The processor reads from the data breakpoint address.

The user then can inspect the current instruction word at the input to the pre-decode
stage and memory contents. She can resume execution by JTAG command that re-
enables the global clock gate.

5.2.1.5. Processor options

The PP core used for the 65 nm prototype uses hardware multiplier and divider from
the DesignWare IP library. They have a latencies of LMUL = 14 and LDIV = 37 cycles.
For fixed-latency load/store functional unit has a latency of LLS = 3. The default
latency for other instructions is also Ldef = 3. There is neither a branch prediction
nor an instruction cache in the system. The instruction cache is not necessary if a
dedicated memory stores instructions and would not improve performance. The
branch prediction logic was relatively new at the time of the tape-out and not yet
sufficiently validated. Since it is an essential part in the front-end of the processor
the risk of introducing severe errors by including it was too high. The design was
constrained for a clock frequency fclk = 500 MHz. All options are summarized in
Table 5.2 under number 65.

172

5.2. Prototype ASIC in 65 nm technology

1.7 mm

1
.7

 m
m

data

memory

instruction

memory

front-end

GPR

multiplier

fixed-point

other

Figure 5.12.: Layout of the 65 nm prototype ASIC with plasticity processor. To the left are two
SRAM memory blocks of 16 kiB size. Standard cell logic belonging to the processor
is highlighted: front-end (red), multiplier (blue), general purpose registers (green),
fixed-point functional unit (yellow). Other standard cell logic and blocks are
unrelated to the processor and not part of this thesis.

5.2.2. Implementation and area requirements

The design was synthesized using Synopsys DesignCompiler (Synopsys, 2012) and
implemented with Cadence Encounter (Cadence Design Systems, 2012) for the TSMC
low-power 65 nm process technology. The implementation flow was created by Hartel
et al. (2011). Figure 5.12 shows the layout of the produced chip. Only a small part of the
available area is used, with the two SRAM memories and the processor core making up
largest fraction of the design. An area breakdown is given in Figure 5.13. Overall, the
two memory blocks contribute the largest part to total area. The plasticity processor
core requires 0.140 mm2. The largest part of that is for general purpose registers
(Figure 5.13B), followed by the front-end. The front-end contains the instruction
tracking logic to detect interdependencies and the control logic to organize program
execution (Section 3.1.6). The multiplier is the largest functional unit. It contains a data
path for 32× 32 = 64 bit pipelined multiplication with 15 pipeline stages. This results

173

5. Hardware systems and their evaluation

A Full design

other

PP

memory

B Plasticity processor

load/store

special regs.

fixed-point

other

multiplier

front-end GPR

Figure 5.13.: (A) Area distribution for the full design. Most area is consumed by data and
instruction SRAM blocks. (B) Breakdown of area requirements for sub-units of
the plasticity processor.

in a large number of pipelining registers and arithmetic logic. The divider module is
part of the “other” fraction. Its hierarchy was dissolved by synthesis and so an isolated
area value is difficult to obtain. The fixed-point functional unit implements the largest
number of instructions, but makes up only a relatively small fraction of total area. The
“special registers” are additional architecturally defined registers, e.g. the condition or
link register. The load/store unit in the dual-memory variant of the PP takes only a
negligible amount of area.

These results show, that even with a physically small ASIC (1.7× 1.7 mm2) complex
processor designs can be prototyped. The inner area of the die has a size of 1.4×
1.4 mm2. Assuming a multi-processor system would share the two memory blocks
and use the same processor as implemented here multiple times, ten such processors
could be implemented on this chip. On the other hand, with one processor the design
still offers plenty of space for neuromorphic synapses and neurons to build a fully
functional 65 nm neuromorphic prototype.

5.2.3. Experimental results

Statical timing analysis reported no timing violations in the typical and fast corners
for fclk = 500 MHz. In the slow corner some violations were reported. The corners are
parameter sets, e.g. temperature, supply voltage, and process variations, that together

174

5.2. Prototype ASIC in 65 nm technology

affect the speed of the logic gates. In the fast corner, the highest performance can be
reached, while in the slow corner speed is degraded. A first test with a produced chip
(#23) showed correct execution of the CoreMark benchmark at fclk = 596 MHz. The
achieved performance was Cperf = 449 Iterations

s with an efficiency of Ceff = 0.75 Iterations
s·MHz .

5.2.3.1. Frequency and supply voltage operating range

This section describes a systematic measurement of the operating range concerning
supply voltage and clock frequency for three chips. To decide whether a chip is
working at a given point within the voltage and frequency space, the CoreMark
benchmark is used. Figure 5.9 shows the test setup. The computer remotely controls
an Arbitrary Waveform Generator (AWG) to supply the clock frequency fclk

1. The core
supply voltage Vc is supplied by a programmable power supply2. The nominal core
supply voltage is Vc = 1.2 V. Another supply powers the I/O cells of the chip with a
nominal voltage Vio = 2.5 V.

The test is performed in the following way: The control computer steps through
the voltage range in equally sized steps. For each voltage, the frequencies fclk =

50 MHz, 100 MHz, 200 MHz, . . . , 800 MHz are tested until the CoreMark test program
returns invalid results. Validity of results is determined by the text output stored in
the in-memory output buffer. The output contains the exact number of timer cycles
and CRC32 checksums of the results, which are compared to a reference that is known
to be correct. Between the first failing frequency f0 and the last successful one f1, a
binary search locates the precise point of failure. The frequency

ft =
f0 + f1

2
(5.4)

is tested. If it fails, the process is repeated with f ′0 = f0, f ′1 = ft, otherwise with f ′0 = ft,
f ′1 = f1. Refinement is stopped after eight repetitions and thus the point of failure is
located to within an interval with width

δ =
f1 − f0

28 . (5.5)

For values over 200 MHz this results in a width of δ = 0.39 MHz in the given setup.
Figures 5.14A to 5.14C shows results for this test for three chips. Figure 5.14D shows

only the highest clock frequency passing the CoreMark test for each chip. Overall
chip #23 achieves the highest performance. The highest reachable clock frequency
was within 769.53 . . . 769.92 MHz for Vc = 1.4 V. In the tested range, fclk depends
approximately linearly on the core voltage Vc. The other chips show a less linear
dependency. Chip #22 falls below the target frequency fclk = 500 MHz at the nominal

1Tektronix AWG7102 Arbitrary Waveform Generator
2Keithley 2635 SYSTEM SourceMeter

175

5. Hardware systems and their evaluation

A Chip 22

100 200 300 400 500 600 700 800

Frequency [MHz]

1.0

1.1

1.2

1.3

1.4

S
u
p
p
ly

V
o
lt
a
g
e

[V
]

B Chip 23

100 200 300 400 500 600 700 800

Frequency [MHz]

1.0

1.1

1.2

1.3

1.4

S
u
p
p
ly

V
o
lt
a
g
e

[V
]

C Chip 24

100 200 300 400 500 600 700 800

Frequency [MHz]

1.0

1.1

1.2

1.3

1.4

S
u
p
p
ly

V
o
lt
a
g
e

[V
]

D Best frequency

100 200 300 400 500 600 700 800

Frequency [MHz]

1.0

1.1

1.2

1.3

1.4

S
u
p
p
ly

V
o
lt
a
g
e

[V
]

Chip 22

Chip 23

Chip 24

Figure 5.14.: (A)-(C) The plots show in which range of supply voltage and clock frequency three
individual chips can be operated. Green plus signs show a successful execution of
the CoreMark benchmark with 2000 iterations. Red dots show failure. (D) Highest
frequency with successful execution depending on the supply voltage for all three
chips in one plot.

176

5.2. Prototype ASIC in 65 nm technology

0 50 100 150 200 250 300 350 400

Frequency [MHz]

0.6

0.7

0.8

0.9

1.0

S
u
p
p
ly

V
o
lt
a
g
e

[V
]

Figure 5.15.: Measurement to find the lowest reachable supply voltage. As in Figure 5.14, green
plus signs indicate successful execution of the CoreMark benchmark, while red
dots mark failure. Results where obtained for chip #23.

supply voltage Vc = 1.2 V. At Vc = 1.213 V the best achievable frequency is within
484.38 . . . 484.77 V.

The results show a large range of frequencies to be achievable by varying the
supply voltage by only ±200 mV around the nominal value. Of course, this is paid
for with an increased power consumption at higher voltages, for which Section 5.2.3.2
shows measurements. Over the range from 1.0 to 1.4 V, clock speed can be improved
nearly by a factor of two. A way to capitalize on this in a future system would be
Dynamic Voltage and Frequency Scaling (DVFS), which increases supply voltage to
allow for higher frequencies during operation, when there is an increased workload.
For typical plasticity programs in the BrainScaleS wafer-scale system with a processor
that continuously iterates over the synapse array, this is a less useful feature, since the
workload is constant. It is currently being investigated, whether future 65 nm systems
could process every spike in software. For such a system, DVFS could be a valuable
feature to save energy while still having the capacity to process bursts of events.

To find out how far Vc can be reduced, I tested voltages down to 0.6 V. In order to
prevent a large difference between I/O and core voltages Vio and Vc, the I/O voltage is
reduced to Vio = 2.0 V in this test. Figure 5.15 shows the result for chip #23. The same
protocol is used as above, but now the initial frequency test starts at 5 MHz. The first
successful execution is observed at Vc = 0.68 V with a maximum frequency within
15.0 . . . 15.16 MHz. With higher voltage, the plot shows a sharp increase and then
continues linearly as in Figure 5.14B. Concluding from this data there is considerable
headroom to reduce supply voltage for power saving.

177

5. Hardware systems and their evaluation

A

0 50 100 150 200 250 300 350 400

Frequency [MHz]

0

10

20

30

40

50

60

P
o
w

e
r

[m
W

]

1.00 V

1.20 V

1.40 V

B

1.0 1.1 1.2 1.3 1.4

Supply Voltage [V]

12

14

16

18

20

22

24

26

28

P
o
w

e
r

[m
W

]
Figure 5.16.: (A) Power consumption measured during execution of the CoreMark benchmark

program depending on clock frequency and measured for different supply volt-
ages. The error on power is below 4.6 µW. Data obtained from chip #22. (B)
Dependency of power on supply voltage for fclk = 200 MHz on chip #23. Error
on power is below 4.8 µW.

5.2.3.2. Power consumption

To get a realistic estimate of power consumption, the current Ic drawn from the power
supply on Vc is measured during execution of the CoreMark benchmark. The power
supply measures typically eight times within the first five seconds of execution. The
number of measurements is limited by time and not by number of samples to assure
data is taken before the program is finished and the processor enters the sleep state.
The supply itself averages over 25 cycles of the detected power line frequency. With
a cycle period of 20 ms, the total measurement takes 500 ms. The standard deviation
between the typically eight measurements for one combination of fclk and Vc is taken
as error on the power measurement.

Power consumption Pc is caused by charging and discharging capacitances in the
chip. It depends linearly on frequency and quadratically on supply voltage:

Pc ∼ fclk ·Vc
2 (5.6)

Figure 5.16A shows power consumption depending on clock frequency for three
different supply voltages. The linear relationship between power and frequency is
apparent. Fitting results are given in Table 5.3. The quadratic dependency on supply
voltage is shown in Figure 5.16B.

178

5.2. Prototype ASIC in 65 nm technology

Fit Fitted function Parameters

Power-frequency
dependency for
Vc = 1 V

Pc = m fclk + c m (6.57± 0.01)× 10−5 W/MHz

c (5.3± 2.7)× 10−5 W

Power-frequency
dependency for
Vc = 1.2 V

Pc = m fclk + c m (9.58± 0.02)× 10−5 W/MHz

c (1.5± 0.4)× 10−4 W

Power-frequency
dependency for
Vc = 1.4 V

Pc = m fclk + c m (1.335± 0.003)× 10−4 W/MHz

c (3.0± 0.6)× 10−4 W

Power-voltage
dependency for
fclk = 200 MHz

Pc = aV2
c + b a (1.442± 0.006)× 10−2 A/V

b (−1.28± 0.01)× 10−3 W

Table 5.3.: Fit parameters for data shown in Figure 5.16.

0 10 20 30 40 50 60 70 80

Time [s]

10−2

10−1

100

101

P
o
w

e
r

[m
W

]

1

2

1

2

1.20 V 50 MHz

1.40 V 50 MHz

1.20 V 100 MHz

Figure 5.17.: Power consumption during execution of the benchmark. The plot shows the oper-
ation of the global clock gate: The processor clock is disabled after the program
has finished causing a sharp drop in power consumption (1). A few seconds later,
the clock output of the AWG is also disabled, further reducing power (2).

179

5. Hardware systems and their evaluation

5.2.3.3. Effect of clock gating

Figure 5.17 illustrates the effect of the global clock gate (see Section 5.2.1.1). It shows
power consumption during and after the execution of the CoreMark program for
different clock frequencies and supply voltages. Initially, the benchmark is running
and drawing a constant average current. Upon completion, the wait instruction
initiates sleep and disables the processor clock. This reduces power by more than an
order of magnitude. After 20 seconds the control software disables the output of the
AWG generating the clock. This again reduces power consumption by an order of
magnitude.

Without external clock input there is no activity in the chip and remaining power
consumption is caused by leakage currents. Leakage is voltage dependent: the trace
for 1.4 V ends at a much higher level than for 1.2 V. With external clock but disabled
clock gate, power is consumed by digital logic outside the processor clock domain
(see Figure 5.10). A large portion is probably due to the clock tree distributing the
signal over the die area. There is only little logic outside the processor. The power
level depends on frequency and voltage as the traces show.

The data presented in Figure 5.11 show clock gating to be an effective method
for power saving. It allows drastic savings under software control within few clock
cycles. Yet, there is still room for improvement: With disabled processor clock, the only
activity in the chip should be related to the timer facility including the decrementer
and fixed-interval interrupts. Those are primarily a 64 bit and a 32 bit counter with
comparator. The design including the clock tree should be optimized to allow this
part to function with minimal power consumption. This could be achieved through
a minimal clock network for this part and gating the clock for the rest of the design
outside of the processor. The ultimate limit to this optimization is the leakage power
level.

Power gating would allow going beyond this limit by shutting off the supply voltage
to unused portions of the design. This is more difficult to achieve than clock gating,
because flip-flops inside the power gated area lose their state and have to be re-
initialized before execution can resume. This could be done in a simple way by
saving architectural registers to main memory using a software routine during power
shut down. SRAM memory can not be fully de-powered without losing its contents.
However, a standby mode with much reduced operating voltage can be used, in which
the memory retains its state.

5.2.3.4. Power consumption by individual instructions

The experimental setup used so far can easily be extended to measure the power
consumption of individual instructions. The instruction under test is continuously
repeated for several seconds by the processor. During this time the current drawn from

180

5.2. Prototype ASIC in 65 nm technology

0 5 10 15 20 25

Pc [mW]

add

ori

mullw

divw

lwzx

stwx

bdnz

rotlw

In
s
tr

u
c
ti
o
n

10−10 10−9 10−8

E [J]

Figure 5.18.: Power consumption measured while executing individual instructions in a loop.
The operation under test is repeated 64 times, before the bdnz instruction jumps
back to the beginnig of the block. The right plot shows the energy per operation
derived from this data. Errorbars indicate the variation from different operand
values: where applicable 0xAAAAAAAA and 0 are used as operands. Data
obtained from chip #23.

the power supply is measured. To measure power consumed by the instruction under
test and not by the code used to repeat that instruction, special care has to be taken:
the instruction is repeated in the program 64 times. This block of 64 times the same
instruction forms the body of a loop implemented with the bdnz (branch decrementing
while non-zero) instruction. The experiment is carried out with fclk = 200 MHz and
Vc = 1.2 V.

Figure 5.18 shows results for a subset of instructions covering all general purpose
functional units. add, or and rotlw are operations of the fixed-point unit, mullw uses
the multiplier, divw the divider, lwsx and stwx are load/store operations, and bdnz is
a branch. The power measurement averages over two sets of operand values for all
instructions except bdnz. For or, add, rotlw, mullw, and divw the two operands are
either both zero or 0x55555555 and 0xAAAAAAAA. For lwsx and stwx the value read
and written to memory is either zero or 0xAAAAAAAA. In case of bdnz there is no
sensible way of varying operands.

Power consumption is similar for most instructions. Load and store consume more
power as is to be expected for accesses to the SRAM array. Division consumes the
least power, because of the used multi cycle trick and the long latency (Section 3.1.6.6):
During the division the front-end is halted until the operation is complete. Somewhat
surprising is the high power demand by the branch instruction.

The data can be explained by assuming, that power consumption is primarily deter-
mined by accesses to instruction and data storage. The multi cycle trick reduces the
temporal density of fetches. In contrast, without a branch prediction, control transfers

181

5. Hardware systems and their evaluation

introduce an overhead for fetches: the instruction streamer (Section 3.1.4) treats the
branch as not taken an fetches following instructions until the branch functional unit
signals the outcome. Therefore, it causes a maximal fetch density.

The plot on the right side of Figure 5.18 shows the energy required for a single
operation. To compute this number, the test program measures the time tloop taken for
the instruction loop using the timer facility. The energy is then given by

E =
Pc · tloop

nrepeat
(5.7)

with the number of single instruction repetitions nrepeat. The data show add instruc-
tions to require (3.35± 0.03)× 10−10 J. They also show the div instruction to be much
less efficient at (8.68 ± 0.05) × 10−9 J. This is about a factor of 26 more energy for
division than adding, which is comparable to the ratio of required clock cycles (mea-
sured to be 36 in this test). This indicates, that the difference is mainly caused by the
different number of clock cycles per instruction for div and add. The div instruction
blocks the execution of all other instructions until it has finished (multi cycle trick, see
Section 3.1.6.6). This results in a high number of cycles-per-instruction. Assuming
that most power is consumed for clocking, this explains the drastic deviation in power
consumption for this operation. The assumption is supported by the observation, that
pipelined multiplication is comparable in energy to addition, although it algorithmi-
cally consists of multiple additions. Thus, cycle count and not the number of involved
logic gates drives energy cost. Therefore, one can conclude that pipelining improves
energy cost per instruction. More generally, a processor with high computational
efficiency per clock cycle reduces the number of required cycles for a given program
and therefore is also more energy efficient.

The test program used in this section also demonstrates the capability to resume
from the sleep state using the decrementer interrupt. Between repetitions of individual
operations, software enters the sleep state using a wait instruction. This allows control
software, which is measuring the current to detect when instructions are switched.
Before entering the sleep state, the decrementer is activated to trigger an interrupt after
four seconds. The interrupt service routine increments the save-and-restore register
SRR0 that holds the address of the interrupt instruction, before returning. This causes
execution to resume directly behind the wait, after returning from the interrupt.

5.3. BrainScaleS wafer-scale system with

non-programmable STDP

The currently used generation of the BrainScaleS wafer-scale system uses the non-
programmable STDP implementation presented in Section 3.3.2. This section analyzes

182

5.3. BrainScaleS wafer-scale system with non-programmable STDP

power supply

Single HICANN

chip

Support board

back: FPGA board for

communication

Figure 5.19.: Photo of the experimental setup with single HICANN to measure analog charac-
teristics relevant for STDP.

183

5. Hardware systems and their evaluation

0 2 4 6 8 10 12

trow[µs]

0, 0, 0, 0

15, 0, 0, 0

0, 15, 0, 0

0, 0, 0, 3

0, 0, 15, 0

15, 15, 15, 3

0.00 0.02 0.04 0.06 0.08 0.10 0.12

νarray[s−1]

Figure 5.20.: Duration trow for the update of one synapse row in simulation using the non-
programmable weight update controller for different timing configurations. The
timing configuration consists of the parameters cpredel, cendel, coedel, and cwrdel as
they are defined in Section 3.3.2. The controller is clocked at 62.5 MHz. The light
bars show performance if resetting of accumulation capacitors is omitted. The
right chart shows the same data using the updating rate νarray for the full array of
224× 256 synapses in the biological time domain assuming a speed-up α = 104.

the weight update mechanism first in simulation and then shows results from initial
measurements.

5.3.1. Simulation results: updating performance

The simulations presented in this section measure the time trow taken for updating one
row of synapses using the non-programmable weight update controller presented in
Section 3.3.2. The timing of the update is completely deterministic and independent of
synapse weights or evaluation results. The duration shown in Figure 5.20 is the time
the busy signal of the automatic update controller is high. This is the time starting
from setting the auto command until the micro-program has finished for the last
column set. The duration of weight update scales linearly with the number of synapse
rows (data not shown). The four timing parameters cpredel, cendel, coedel, and cwrdel

control the number of clock cycles used for pre-charge, word-line enable, driving the
output, and driving the bitlines. Except for cwrdel these parameters range between
zero and 15. cwrdel is limited to the interval [0, 3]. After reset all values are set to
their maximum. This way, the user starts with a maximally reliable configuration,
but has the option to optimize performance by choosing a faster timing. To optimize
performance, the correct values to use have to be determined in experiments, so that
read and write access to synapse weights and decoders is error-free. Doing this can
reduce the time per synapse row at best to 39 % of the default case according to the top

184

5.3. BrainScaleS wafer-scale system with non-programmable STDP

and bottom bars in Figure 5.20. The plots in between show the impact on performance
by individual parameters. Parameters cpredel and cendel have the same effect. This is
evident from Figure 3.18: Both waiting periods occur together and so changing either
of the two parameters has the same effect on performance. Because these waiting
period occur only once per row, they have only a small influence on performance.
Delays controlled by cwrdel and coedel occur for every column set, eight times per row.
Additionally, coedel is used for the output of the weights and two times for the output
of evaluation results. Therefore, it has the highest impact on performance.

For a speed-up factor of α = 104 one array with 224× 256 = 57 344 synapses can be
updated with a maximum frequency of νarray = 0.104 Hz in biological time (best-case
timing, maximum clock frequency, and use of evaluation reset). For worst-case timing
this reduces to νarray = 0.041 Hz.

5.3.2. Verification of automatic weight update logic in hardware

Figure 5.19 shows a photo of the experimental setup used for this test. Individual
HICANN ASICs can be produced as single chips and operated in isolation. Since the
STDP controller only operates locally on one HICANN, a single chip setup is sufficient
for testing.

The first test verifies operation of the digital logic of the weight update controller.
The null read pattern pnull defined in Section 3.3.1.2 allows for control over the ana-
log evaluation result EH (Vtl , Vth, pnull) by configuring analog parameters Vth and Vtl

(Equation 3.4). Parameter voltages and currents are stored using analog floating gate
memories (Millner, 2012; Schemmel et al., 2012). The user specifies a 10 bit digital value
that defines the analog value programmed to a memory cell. This value is from hereon
given with arbitrary units (arb. unit). The translation between programming value
and effective voltage is not necessarily linear. There are saturation effects for high and
low values (Kononov, 2011). However, a change of one of the programming value
corresponds to about 1.8 mV for a supply voltage of 1.8 V. By setting Vth = 0 arb. unit
and Vtl = 1023 arb. unit on the respective floating-gate cells, EH = 1 when using
pnull. With the evaluation circuit returning deterministic results, the outcome of the
weight update is determined by the contents of look-up tables. In the given case both
evaluation patterns are set to pnull so that the combined look-up table L (1, 1, w) defines
resulting weights. The test uses three tables:

L0 (1, 1, w) = w (5.8)

L+ (1, 1, w) =

{

w + 1 if w < 15

15 else
(5.9)

L− (1, 1, w) =

{

w− 1 if w > 0

0 else
(5.10)

185

5. Hardware systems and their evaluation

The test initially writes all synapse weights to the same value w0 and then performs an
automatic weight update cycle. The controller is operated in single-shot mode, where
it will stop after one iteration over the array. After the cycle is complete, test software
reads the final weights w1 back and compares them to the expected value Li (1, 1, w0).
If all synapse weights match the expectation the test passes. This process is repeated
for all sixteen possible values of w0 and all three look-up tables L0, L+, and L−.

Verified for one chip, this test passes for all weights and all synapses. Beyond
proving functionality of the digital logic of the update controller, this shows the correct
use of the synapse array interface, especially correctness of signal timings. Previously,
this was verified by manual inspection of waveforms. The test does not validate
operation of the synaptic accumulation circuit and the charge readout. These circuits
are based on those used by a previous neuromorphic system and have already been
tested in that context (Schemmel et al., 2006; Pfeil et al., 2012).

The test also uncovered a problem in the design of the automatic update controller:
The range of weights to process is specified using a first and last row number a and
b given in the control register. The update controller should iterate from row a to b

and then jump back to a. However, this is not the case: instead of returning to a the
controller always resumes at row 0. This is not a severe problem. The consequence for
the user is, that plastic synapses can only be configured in a block starting at row 0.

5.3.3. Test of evaluation comparator

The central component of the evaluation circuit is a comparator implementing Equa-
tion 3.3. The null read pattern pnull lends itself to characterize its analog behavior: The
parameter voltages Vtl and Vth are configured using mean voltage Vm and difference
variable δ:

Vtl = Vm − δ (5.11)

Vth = Vm + δ (5.12)

The evaluation circuit is expected to return bit b = EH (Vth, Vtl , pnull):

b =

1 if δ < 0

0 if δ > 0

0 or 1 otherwise

(5.13)

The test iterates over all synapses and performs evaluation operations using the read
command (Section 3.3.1.3). This is repeated Nr times for one value of δ. In each
repetition, the analog parameter storage is reprogrammed. Therefore, the evaluation
result b includes the programming variation of the floating-gate parameter memory
(Kononov, 2011). For each synapse in row i and column j, the evaluation in repetition

186

5.3. BrainScaleS wafer-scale system with non-programmable STDP

k = 0 . . . Nr − 1 returns the result bit bijk. The repetition average therefore is:

〈

bij

〉

rep =
1

Nr

Nr−1

∑
k=0

bijk (5.14)

Since there is one comparator for all synapses in one column, the column average is
also of interest:

〈

bj

〉

col =
1

Nr · 224

Nr−1

∑
k=0

223

∑
i=0

bijk (5.15)

Results Figure 5.21 (B)-(C) show
〈

bij

〉

rep for all synapses in the top array block of
one HICANN. For δ = −20 arb. unit according to Equation 5.13 the expected result is
〈

bij

〉

rep = 1. This is fulfilled by all synapses in the right half of the chip (j = 128 . . . 255),
but not on the left (Figure 5.21A). The left half exhibits a strong columnar structure
with a weaker row-wise pattern. At δ = 20 arb. unit all synapses on left and right half
meet the expectation

〈

bij

〉

rep = 0 (Figure 5.21B). For δ = 0 arb. unit the result of the

comparison is undefined returning either 1 or 0. Figure 5.21C shows
〈

bij

〉

rep = 0 for
the left half. The right half shows a columnar pattern: for each column the variation of
〈

bij

〉

rep is small, but between columns it is larger.

First of all, these results for different values of δ show that left and right side are
not equal. The right side is behaving as expected, while the left shows distorted
results. Going to larger negative differences δ < −64 arb. unit (data not shown) gives
a homogeneous picture again, where

〈

bij

〉

rep = 1 for all synapses. This indicates, that

for columns j = 0 . . . 127 the effective difference δ̃ is shifted towards negative values.
Parameter voltages Vth and Vtl are stored on four floating-gate cells per array: one set
of them for the left and one for the right side. So a difference in their performance
could be at the root of the observed behavior. A complete malfunction for the left side
can be excluded, since then changing δ would have no or only random effect. Further
tests should also vary the side-wise bias parameter for the evaluation circuit (Vbr in
Schemmel et al., 2012). In this test it was set equally for both sides to a medium value
of 512.

The second observation is, that the columnar structure visible for example in Fig-
ure 5.21C on the right half shows fixed-pattern variations caused by the evaluation
circuit due to device mismatch. The result for the individual circuit is highly reliable:
the variation within one column is small. Between columns there is variation from the
manufacturing process. Figure 5.21D shows the column average

〈

bj

〉

col in dependence
of the difference Vth −Vtl . For the right side (columns 127 . . . 255 and therefore lower
part in this plot), each column exhibits a clear point in the neighborhood of δ = 0 at
which it switches from b = 1 to b = 0. This is the expected behavior. For the left side

187

5. Hardware systems and their evaluation

A δ = −20 arb. unit expect b = 1

0 50 100 150 200 250

Synapse column

0

50

100

150

200

S
y
n
a
p
s
e

ro
w

B δ = 20 arb. unit expect b = 0

0 50 100 150 200 250

Synapse column

0

50

100

150

200

S
y
n
a
p
s
e

ro
w

C δ = 0 arb. unit expect random b

0 50 100 150 200 250

Synapse column

0

50

100

150

200

S
y
n
a
p
s
e

ro
w

D 〈b〉col depending on δ

−160 −96 −32 32

Vth − Vtl [arb. unit]

0

50

100

150

200

250

S
y
n
a
p
s
e

c
o
lu

m
n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

〈b〉rep / 〈b〉col

Figure 5.21.: (A)-(C) Measured repetition average
〈

bij

〉

rep
for all synapses at different values for

δ. (D) Dependency of column average 〈b〉col,j on voltage difference Vth −Vtl = 2δ.
Voltages are given in units of the 10 bit floating-gate programming value.

188

5.3. BrainScaleS wafer-scale system with non-programmable STDP

−30 −20 −10 0 10 20 30

Vth − Vtl [arb. unit]

0

10

20

30

40

50

60

C
o
u
n
t

Figure 5.22.: Histogram over the voltage difference at which the comparator in the evaluation
circuit switches from b = 1 to b = 0 in Figure 5.21D when increasing δ. Only
columns 128 . . . 255 are shown.

(columns 0 . . . 127) now also a repeating pattern for blocks of 64 columns becomes
apparent. This is just the size of one so-called array slice that is repeated four times
in the schematic to form the synapse array. Therefore, this structure hints at effects
introduced at this level of the design. Peculiar about the observed structure is, that
the probability for getting b = 1 first dips with increasing δ, before returning to nearly
1 and then decreasing. This means, that the comparator is not just seeing shifted
values for Vth and Vtl , but malfunctions in some other way. Also, there is a pronounced
structure between −96 arb. unit < Vth −Vtl < −64 arb. unit showing a dependency
on the column number. This hints at a geometrical cause, for example length of wires
from one side to the comparator in the column.

Fixed-pattern variation The fixed-pattern variation of the evaluation comparator
can not be calibrated for, because there is only one set of parameters Vth, Vtl per half of
the array. Therefore, the magnitude of variation limits the precision of the evaluation
process. Figure 5.22 shows the distribution of the switching point over the right side of
the array. This point was determined to lie within the interval [δn−1, δn] if

〈

bj

〉

col > 0.5
for δn−1 and

〈

bj

〉

col < 0.5 for δn. This method works for the right half, but would be
problematic for the left side as Figure 5.21D shows. On the left side, there is no clear
switching point, but rather a broad range in which results are erratic. The resulting
histogram has a mean of (0.5± 7.1). If used with an absolute comparison pattern for
a threshold Θ = 512 this standard deviation would be 1.4 % of the threshold, which
is far below the worst-case values tested for the reward-modulated learning task in
Section 2.3.6.

189

5. Hardware systems and their evaluation

The data presented in this section shows the evaluation circuit and the controller
using it to be functional. However, the reason for the erratic behavior of the left side
is not evident from the collected data. Before characterizing more chips over ranges
of the center voltage Vm and the comparator bias Vbr it is too early to draw any final
conclusions. It is important to note, that the left side is still able to correctly compare
for larger differences. Therefore, the observed behavior represents a performance
degradation rather than a malfunction. If a learning rule turns out to be sensitive to
these effects and if no solution can be found, the left side can not be used for plastic
synapses. In this case updates in this part can be prevented by setting the comparison
parameters Vth and Vtl in such a way, that exceeding the threshold is impossible. For
example, for the absolute threshold pattern Vth = 1023 and Vtl = 0 (see Section 3.3.1.2).

5.3.4. Event transmission crosstalk

It was first observed by Kononov (2013), that read and write operations on the synapse
array induce crosstalk on the synaptic input of neurons. Synapses signal events
to the neuron by a current on a shared line along one column. This line runs in
parallel to the bitlines of the weight and decoder SRAM cells over the whole height
of nearly 5 mm of one synapse array. When reading or writing, these bitlines are
driven – for pre-charge or the data to write – causing a noise signal on the synaptic
input through capacitive coupling. Depending on the configuration of the neuron
input circuit this leads to effects on the membrane potential of varying magnitude.
In first experiments by Kononov (2013) the effect was comparable to real synaptic
input from event stimulation. The effect was also confirmed in simulation by Millner
(2013). It poses a potentially severe problem for using STDP in HICANN, as the
update algorithm periodically reads and writes weights. This might cause a global,
periodic, and synchronized disturbance of all active neurons. So far, a systematic
investigation of the effect has not been carried out, so that a final conclusion for the
functionality of STDP can not be drawn. It might still be possible by increasing the
strength of real synaptic input to perform STDP experiments with the existing system.
However, observations so far suggest, that a hardware modification is required to
reduce crosstalk significantly. This could be done in the next generation system that
includes a plasticity processor and is discussed in the next section.

5.4. In preparation: BrainScaleS wafer-scale system

with plasticity processor

This section presents results for the BrainScaleS wafer-scale system based on the HI-
CANN with Embedded Plasticity Processor (HEPP) design. The system uses the PP
with SYNAPSE special function unit and the synapse array interface adapter presented

190

5.4. In preparation: BrainScaleS wafer-scale system with plasticity processor

Synapse

Array

A
d
a
p
te

r

Embedded

Plasticity

Processor

Synapse SFU

12 kiB main memory

Plasticity processor bus

H
IC

A
N

N
 b

u
s

bridge

Rate counter

Routing

configuration

Background

generators

Analog parameter

storage

A
d
a
p
te

r

Synapse

Array

processor clock domain

Timer
Interrupt

Control

global clock gate

& reset

Figure 5.23.: The block diagram shows the structure of the programmable plasticity implemen-
tation in the BrainScaleS wafer-scale system.

in Section 3.3.3. It has not yet been produced due to unexpected complications caused
by the special organization of metal layers used for the asynchronous event commu-
nication system. This is explained later in Section 5.4.4. Here a synthesizable design
prepared for tape-out is presented. Further changes are only required outside of this
design.

5.4.1. Design overview

Figure 5.23 shows an overview of the structure of the system. It uses the same clock
gating mechanism as the 65 nm prototype (Section 5.2.1.1) to save power if the pro-
grammable plasticity is not needed for network emulation. A hardware breakpoint
mechanism is not planned, since the processor is now considered reliable enough to
use internal trap based debugging. Therefore, the break enable signal to the clock gate
is tied low. The timer and interrupt facilities are also taken from the 65 nm prototype.
The GIO port of the processor, which controls pins in the prototype, is not available.
Using the bus technology described in Section 3.2 the processor has access to 12 kiB
of main memory distributed over three 4 kiB SRAM blocks. Memory is separated
into three blocks to satisfy constraints imposed by the arrangement of full-custom
blocks and the asynchronous event network. Instruction fetching is cached using
a 128 entry directed-mapped cache with cache lines of 16 entries (see Section 3.1.5).
An arbitration module, as described in Section 3.2.4, arbitrates access between the
processor and the HICANN system bus. The HICANN system bus is divided in two

191

5. Hardware systems and their evaluation

0

1

0

1

Tag 1

load/store

0

1

Memory block

Control Regs

Syn. adapter bot

0

1

0

1

Read_cache

SerDes

0

1

Tag 0

Syn. adapter top

Figure 5.24.: Bus structure of the BrainScaleS wafer-scale system with embedded plasticity pro-
cessor. The tag 1 HICANN system bus can act as master on the bus. Other masters
are the instruction cache of the processor (Read_cache), and the load/store unit.
The SerDes block is used to reduce the number of required signalling lines over a
long distance on the die. Access to tag 0 of the HICANN system bus is provided
by an adapter slave (Section 3.2.4.4). Other peripherals are main memory, control
registers, and top and bottom synapse array adapter interfaces.

disjoint bus parts referred to as tag 0 and tag 1. The tag 1 part is dedicated to plasticity
and can act as master on the PPB. Conversely, the PPB can act as master on the tag 0
bus that interfaces all other components in the system. The user loads a program to
the processor or to read and write synapses via tag 1. The plasticity program uses the
access to tag 0 for advanced learning rules, for example to reconfigure the network
connectivity.

The four peripherals most relevant to plasticity rules in the system are shown in
Figure 5.23: rate counters allow for limited measurement of event rates of individual
neurons or populations of neurons. Background generators stimulate the asynchronous
event network with random or fixed-interval events at configurable rates. The rout-
ing configuration for the asynchronous event network is stored in switch matrices
distributed over the wafer. The processor can access those matrices local to its die.
Analog parameters are stored on floating-gate memories (Millner, 2012) and can be
modified between emulation runs. Changing them during network operation is not
possible as the programming interfere with neuron dynamics.

5.4.1.1. Bus structure

Figure 5.24 shows the structure of the PPB used by HEPP in more detail. Notable is, that
the tag 1 part of the HICANN system bus connects through the Serializer/Deserializer
(SerDes) bus component presented in Section 3.2.4.2. Processor logic and the root
of the tag 1 bus are situated far apart on the die and the bus has to pass through a
constriction caused by the floorplan. Serialization reduces the necessary amount of

192

5.4. In preparation: BrainScaleS wafer-scale system with plasticity processor

routing resources for the cost of decreased performance. Since this path is only taken
for external requests, a decrease of performance is acceptable.

Both tags of the HICANN system bus use 16 bit addresses, while the PPB uses 32 bit
addresses. The first splitter after the delay register stage multiplexes based on bit 16.
Therefore, the whole address range of tag 0 is visible to the processor in the range
0x10000 to 0x1FFFF. Also, the external user can reach all peripherals except for the
tag 0 adapter, to which he has direct access anyway, using 16 bit addresses.

5.4.1.2. Rate counter

To support learning rules that depend on neuronal firing rates I designed a rate
counting facility for the HEPP design. Eight 16 bit counters are integrated into the
so-called merger-tree (Schemmel et al., 2012). The merger-tree routes events from local
neurons, background event generators, and external stimulation to eight local drivers
on the asynchronous event network. Each neuron has a 6 bit source address number
depending on its position on the chip. Rate counters are added at the last stage of the
tree, before transmission to the network. Each counter n is configured with a mask m

and compare address a. If the merger-tree forwards an event for transmission, of which
the address b matches a masked comparison to the address, the counter is increased:

n ←

{

n + 1 if m&b = a

n else
(5.16)

If currently the counter holds the highest representable number 216 − 1 while a match-
ing event is detected, n is left unchanged and the overflow bit so is set.

Counter, overflow bit, compare address, and mask are accessible through the tag 0
HICANN system bus that is also used for configuration of the merger-tree. Counters
are reset by writing to their associated address.

5.4.2. Simulation results: weight updating performance

To measure the weight updating performance of the plasticity processor in HEPP
I measured timing information for a collection of benchmarking programs. In the
simplest case the updating algorithm of the non-programmable implementation is
reproduced (Section 5.3.1). Section 5.4.2.1 describes the programs and Section 5.4.2.2
shows performance results.

5.4.2.1. Benchmark programs

All benchmark programs perform updates for ten synapse rows and measure the
required time in clock cycles using the timer facility. The processor is operated at
62.5 MHz and uses the SYNAPSE special-function unit for the update. Results are

193

5. Hardware systems and their evaluation

A Two-factor update process for one row

Compute: comp. 0 comp. 1 · · · comp. 7

Front VR: B A B · · · B A

Back VR: A B A · · · A B

I/O: rd. 0 rd. 1 wr. 0, rd. 2 · · · wr. 7

B Inner loop source code

1 synswp

2 synops <write sequence>, <row>, <previous column set>

3 synm v2, v0, l0

4 synm v3, v0, l1

5 syncmpi v1, 0x1

6

7 synops <read and evaluate sequence>, <row>, <next column set>

8

9 syns v0, v0, v2

10 syncmpi v1, 0x2

11 syns v0, v0, v3

Figure 5.25.: Two-factor weight update using the SYNAPSE extension. (A) Computation and
I/O tasks of the program are drawn as boxes over time. The Front VR an Back
VR rows illustrate which half of the vector register file is currently accessible by
software (front) or by I/O (back). (B) Assembler source code of the inner loop.
Operands given symbolically in angle brackets “<.>” refer to general purpose
registers. Instructions are defined in Section 3.4.

reported using the time for one synapse row trow and the updating frequency for one
array of 224 rows in biological time νarray assuming a speed-up α = 104. The same
metrics were reported in Section 5.3.1 for the non-programmable implementation.

Two-factor weight update This program is equivalent to the fixed algorithm used
by the non-programmable implementation. Weights are updated by a fixed look-up
table using the SYNAPSE special function unit. Figure 5.25A illustrates the update
process for one row. The program iterates over the eight column sets while overlapping
computation and I/O. First, after the row has been opened, column set 0 is loaded to a
vector register in the back of the register file. Then, the register file is swapped, and
reading of column set 1 is started, while updates for set 0 are computed. After the next
swap, the result of the computation is written back, before a read for column set 2 is
started. This repeats, up to and including column set 6. For the last set, no new read

194

5.4. In preparation: BrainScaleS wafer-scale system with plasticity processor

operation is initiated, and new weights for it are written back after a final swap of the
register file.

Figure 5.25B shows the assembly source code of the inner loop of the program, to
illustrate how this scheme is implemented with the SYNAPSE special function unit. The
code does not show the initial and final part, in which the first two column sets are
read, and the last one written. I/O operations are initiated with synops instructions,
and computation uses synm, syncmpi, and syns.

The limiting factor for updating is the time required for the I/O operations started in
lines 2 and 7, and further the waiting time by synswp, if a previous operation has not
yet completed. Therefore, synops has to be placed with sufficient distance to previous
instances to avoid waiting cycles. The space in between is filled with computational
instructions.

Two-factor dual row weight update This test program is motivated by the results
by Pfeil et al. (2012). They tested a synchrony detection task using STDP and simulated
the non-programmable weight updating mechanism. They identified the simultaneous
reset mechanism of accumulation capacitors in the synapses as cause for degraded
performance compared to a system where both accumulators are reset individually.
Due to the tight layout of the synapse array it is not possible to add an additional reset
line for each column without reducing synapse density (Schemmel, 2012). However, it
is possible to simulate multiple reset lines. Synapse rows can be combined to increase
resolution of the weights. When doing this, two synapses – one below the other in the
same column – see the same input from the network and their output goes to the same
neuron. To simulate multiple reset lines the program evaluates capacitor a+ from the
upper row and a− from the lower row. So when resetting one synapse, information in
the other row is retained. Only 4 bit weights are used, which are stored in the upper
synapse, while the lower one is set to weight zero.

This dual row operation changes the iteration scheme: instead of processing one row
in total before going to the next one, the program has to evaluate column sets from both
rows to compute the weight change. Every row switch involves closing and opening
operations consuming additional time. Also, due to the partitioned vector register
file, evaluation data from the upper and lower rows are stored to different partitions,
which are not accessible simultaneously. Therefore, the data has to be moved to the
general purpose register file and loaded back again.

Three-factor dual-row weight update A simple case of a three-factor learning
rule is the reward modulated R-STDP rule analyzed in Section 2.3. According to
Equation 2.28, the increment or decrement of the synaptic weight is multiplied with
an external factor, the success signal S. Therefore, software has to change the look-up
tables when a change in the success signal is indicated from the external controller. In

195

5. Hardware systems and their evaluation

the learning task of Section 2.3 a non-zero success signal is given at the end of each
trial and all synapses are updated once with this success signal.

The three-factor benchmark task computes the new look-up tables itself from the
success signal before iterating once over the array. The external controller sends the
success signal S3, upon which the plasticity program multiplies the stored update
constant A with S using 32 bit fixed-point arithmetic with 16 bit for the fractional part.

∆ = S · A (5.17)

The result is rounded and reduced to a 4 bit representation:

∆4 = Round (∆) (5.18)

With this offset the program computes the two new look-up tables L0 and L1:

L0 (w) =

{

w + ∆4 for w + ∆4 < 15

15 else
(5.19)

L1 (w) =

{

w + ∆4 for w− ∆4 > 0

0 else
(5.20)

(5.21)

The actual weight update is then identical to the dual row two-factor benchmark.
Note, that if reward is only given at the end of a trial it is not necessary to emulate
separate reset lines by using two rows, since all accumulators are reset before starting
the next trial anyway.

Three-factor dual-row probabilistic weight update Section 2.3 showed prob-
abilistic updates to give better learning performance for 4 bit weights. The plasticity
program can implement this using a software Random Number Generator (RNG). For
each synapse with probability p, as defined in Equation 2.6, the bit-pattern 0001 is set
in a different vector register. With probability 1− p the field is set to zero. Then the
syncmpi instruction tests against the pattern 0001 to set the internal compare state.
Now, syns selects, based on this randomly generated compare state, from the two
update alternatives. In the test program used here, the two alternatives are: update
according to look-up table, or no update at all. To set the patterns randomly for
each synapse, the RNG generates a 32 bit number for each position and compares
it against a threshold T = p ·

(

232 − 1
)

. If the random number is below T, 0001 is
written and 0000 otherwise. I tested three algorithms for random number generation:
linear-congruential, XOR-shift, and multiply-with-carry (Press et al., 1992).

3This might be signalled to software by using the doorbell interrupt, possibly waking the processor
from the sleep state.

196

5.4. In preparation: BrainScaleS wafer-scale system with plasticity processor

Three-factor dual-row 8bit weight update Even better results than with proba-
bilistic updates can be achieved for higher weight resolutions in the spike train learning
task (Section 2.3). In dual-row operation weight data from both rows can be combined
to form an 8 bit weight. In this case, the look-up table based arithmetic of the SYNAPSE

extension is no longer useful, as it is restricted to 4 bit. Therefore, weight update has
now to be computed with the general purpose part of the processor. To do this, weight
and correlation data is first moved from vector registers to general purpose registers.
Then the new weight is computed by adding the offset ∆, and moved back to a vector
register. When moving between vector and general purpose registers, the upper and
lower 4 bit part of the full 8 bit weight need to be extracted and packed back again
using shift and bit-wise logical operations.

Evaluation scan If the probability of updating is small, the plasticity program can
be optimized. Instead of computing updates for all synapses, the program searches for
those in need of update. Only if by evaluation such a synapse is found, is the update
computed.

The evaluation scan benchmark program only performs a single evaluation opera-
tion per synapse. The syncmpi. instruction sets a bit in the condition register, if at least
one comparison matches. This bit is evaluated by a conditional branch instruction that
jumps to weight update code if necessary.

5.4.2.2. Results

Figure 5.26 shows performance results for HEPP. The used configuration for the
plasticity processor is listed under number 180 in Table 5.2. As is to be expected the
evaluation scan program shows the fastest updating speed. Two-factor updating takes
more then twice the time for one row. Two-factor and two-factor dual-row show nearly
the same performance as long as the pre-charge time tpre is negligible. For 15 cycle
pre-charge, programs using dual-row updating perform worse than those with single-
row updates, because pre-charge is necessary for every column set and not only every
row. It is important to note, that the time trow refers to technical synapse rows. In
dual-row mode, programs update only half as many logical synapses then single-row
programs in this time. The result here means, that the whole system can be operated in
single- and double-synapse mode with the same updating speed. However, measured
in synapses per second, the latter mode reaches only half the throughput of the former.

The time required for setting the look-up tables in the three-factor program is
negligible when considering the update rate of the whole array νarray (Figure 5.26B).
Therefore, it is a viable option to configure the tables using the plasticity processor
instead of sending pre-computed ones from the external environment.

The comparison with the non-programmable implementation of the HICANN sys-
tem (Section 5.3) shows a reduction of trow to 58 % for two-factor single-row updating.

197

5. Hardware systems and their evaluation

A Single row time

0.0 1.5 3.0 4.5 6.0

trow [µs]

Scan

Two-factor

Two-factor dual row

Three-factor

non-prog. best

NVE

B Array updating rate

0.0 0.1 0.2 0.3 0.4 0.5

νarray[s−1]

Scan

Two-factor

Two-factor dual row

Three-factor

non-prog. best

NVE

Figure 5.26.: Performance of weight updating in HEPP measured with four benchmarking
programs. For comparison the best-case performance of the non-programmable
implementation, of updating with the native vector extension (NVE), and without
specialized instructions (non-SFU) are also shown. (A) Absolute time for one
row of synapses. Best-case performance is shown in light gray. Bars in dark
gray show performance when using a 15 cycle pre-charge duration. For the three
factor benchmark the white part shows the time for setting new look-up tables
depending on the third factor. This is only done once for one iteration over the
array. (B) The resulting array updating rate νarray assuming a speed-up of α = 104.

198

5.4. In preparation: BrainScaleS wafer-scale system with plasticity processor

A Single row time

0 10 20 30 40 50

trow [µs]

3-factor prob. (no RNG)

3-factor prob. (LCG)

3-factor prob. (XOR)

3-factor prob. (MWC)

3-factor 8 bit

B Array updating rate

0.00 0.04 0.08 0.12 0.16

νarray[s−1]

3-factor prob. (no RNG)

3-factor prob. (LCG)

3-factor prob. (XOR)

3-factor prob. (MWC)

3-factor 8 bit

Figure 5.27.: Updating performance for three-factor probabilistic weight updating. The four
tested programs use different RNGs: dummy RNG returning a fixed number,
linear-congruential generator (LCG), XOR-shift (XOR), and multiply-with-carry
(MWC) (Press et al., 1992). (A) Absolute time taken for one synapse row. (B) Array
update rate in biological time assuming a speed-up of α = 104 and 224 synapse
rows per array.

This is, for one thing, due to the programmable I/O controller that allows for more
aggressive timings at the synapse array interface and, for another, because of parallel
weight computation enabled by the SYNAPSE special-function unit.

Figure 5.26 also shows updating speed of the NVE design variant described in
Section 3.5. The NVE special-function unit is similar in concept to SYNAPSE: it provides
specialized instructions for look-up table based weight processing, and comparison
and select operations equivalent to syncmpi and syns. However, instead of dedicated
128 bit vector registers it uses the 32 bit general purpose registers and does not have
comparable I/O capabilities as are provided by synops and synswp. In their place, it
uses the load/store or external control I/O units. This design also used a specialized
synapse array interface adapter that provides memory mapped I/O sequences. So to
read eight synapse weights into a general purpose register a single load instruction is
sufficient. The result in Figure 5.26 shows this approach to be more than two times
slower compared with programs using the SYNAPSE functional unit. This underpins
the importance of a wide SIMD datapath with dedicated I/O capabilities.

Probabilistic updates Figure 5.27 shows performance results for the probabilistic
three-factor test program. This benchmark is an order of magnitude slower then
the deterministic ones. The reason for this is the generation of random numbers in
software: If the RNG is removed from the code, updating performance is comparable

199

5. Hardware systems and their evaluation

to deterministic algorithms. In place of the RNG a fixed number is returned. Special
means were taken to prevent the compiler from exploiting this by removing code that
is now unnecessary. Manual inspection of the generated assembly source showed,
that only the generation of random numbers was removed from the program. The
random selection instructions, as described above, are still executed. Thereby, only
the random number generation itself remains as cause for the degraded performance.
Despite using a multiply operation, which has a relatively long latency of eight cycles,
the linear-congruential method is faster than the XOR-shift variant, which requires
more instructions in total. The multiply-with-carry algorithm uses two multiplications
and is the slowest of the tested variants.

In the tested benchmark program the RNG is executed for every synapse in the
system. Performance could potentially be improved if a random pattern generation
algorithm is used that sets bits in a 32 bit word with parameterized probability in
parallel. This would reduce the number of RNG calls by a factor of eight. It might also
be possible to perform a random choice with less granularity with a minimal impact
on learning performance For example, if the random choice is made only once per
array and then used for all synapses, over many repetitions the correct probability
is approached. In case of the reward-modulated learning task studied in Section 2.3,
learning takes up to 10 000 trials giving ample time for approximation. A better
solution would be to add hardware random number generators to the instruction set,
to quickly generate random numbers.

8bit weight resolution Computation of 8 bit weights is comparable in perfor-
mance to probabilistic updates. The two primary causes for degraded performance are
that updates need to be computed sequentially, since there is no parallel 8 bit adder,
and that weights need to be extracted and packed from and to the SYNAPSE vector
registers. Manual inspection shows, that the latter leads to a large fraction of the code
being dedicated to shift and bit-wise logical operations.

In principal, specialized instructions for packing and extraction of higher resolution
weights could be added to the SYNAPSE extension. However, the separation of the
vector register file into front and back prevents simultaneous access to result data from
two consecutive read operations. The synops instruction could be extended to allow
for the specification of a destination register. Thus, two read sequences could store
their results in different vector registers. Then dedicated extract instructions could
return a single 8 bit weight to a general purpose register, and a pack instruction would
move the weight to the respective locations in two vector registers.

An even more advanced approach would be to include a parallel adder in the
SYNAPSE extension together with the above mentioned capability to store synops

results to different target registers. The adder would then add a fixed offset from a
general purpose register to each full 8 bit weight and store the result to the remaining

200

5.4. In preparation: BrainScaleS wafer-scale system with plasticity processor

two vector registers.

Conclusion on performance Array update rates νarray for two- and three-factor
rules are by a factor of five below the rate of 1 Hz identified by Pfeil et al. (2012) as
critical speed for the synchrony detection task. This means, that for this task only
one fifth of synapses per array may be used. This limits the total amount of plastic
synapses available to an emulated network. However, as long as the network does not
utilize a complete wafer, synapses can be distributed to other arrays and processors to
satisfy the speed constraint. All synapses connecting to the same neuron have to be
implemented within the same array. In the BrainScaleS wafer-scale system neurons
can have up to 14 336 synapses, which is one fourth of the array. Therefore, a network
with that many plastic synapses per neuron that requires updates with 1 Hz is not
implementable with the processor or the non-programmable implementation.

The only other task for which the effect of updating speed was studied is the
reward-modulated learning rule presented in Section 2.3. Here, updating speed is
less critical. The required performance depends on the decay time constant and the
analog readout noise, which are both parameters that have not yet been measured
in hardware. Preliminary experiments on an older chip-scale system with similar
synapses indicate, that for differential evaluation patterns the decay time constant is in
the range of seconds in real-time (Pfeil, 2012). In this case updating speed is irrelevant
for trial-by-trial learning tasks.

5.4.3. Area requirements

To estimate the area required for implementation of the plasticity processor, the design
was synthesized using Synopsys DesignCompiler (Synopsys, 2012) and standard cells
were placed using Cadence Encounter (Cadence Design Systems, 2012). This was done
as part of the existing implementation flow of the HICANN design used in previous
tape-outs. Area requirements given here are obtained using the “report gate count”
feature of First Encounter.

Figure 5.28 shows results for the configuration used for performance measurements
in Section 5.4.2. All plasticity related digital logic, excluding the local accumulation
in the synapse, make up 6.2 % of the totally used area. Nearly half of the total area is
dedicated to full-custom analog neurons and synapses.

Within the plasticity related part (Figure 5.28B), most area is consumed by the
PP core logic (0.895 mm2), followed by the three main memory SRAM macros. The
synapse array interface adapter is comparatively area intensive due to the wide 128 bit
data path and the sequencer and opcode table memories implemented with latches.
The 128-entry instruction cache also uses latch based memory instead of more area
efficient SRAM. This is due to layout constraints in the design. Also, area consumed
by the PPB is not negligible. The bus uses 32 bit address and data lines plus additional

201

5. Hardware systems and their evaluation

plasticity

analog part

other

A Full design

PPB

inst. cache

syn. adapt

memories

PP

B Plasticity related

divider

fixed-point

other

special regs.

multiplier
GPR

load/store

front-end
synapse

C Plasticity processor

Figure 5.28.: Area requirements for the plasticity related logic in the HEPP design using the
same configuration as was used for performance measurements in Section 5.4.2.
(A) Breakdown of total design area. (B) Breakdown of the plasticity related part.
(C) Area requirements within the plasticity processor.

202

5.4. In preparation: BrainScaleS wafer-scale system with plasticity processor

control signals. For master-to-slave and slave-to-master directions separate data lines
are provided. All these signals are registered for delay and Serializer/Deserializer
(SerDes) bus elements (see also Figure 5.24).

For the plasticity processor core (Figure 5.28C), the largest sub-units are the SYNAPSE

special-function unit, front-end, load/store unit, and the general purpose register
file. The SYNAPSE special-function unit features 8× 128 bit vector registers – the same
number of bits as the general purpose register file – plus the parallel data path for
128 bit operations. The front-end includes the 16-entry fully-associative branch cache,
tracking logic for instruction interdependencies, and decoding and control logic. The
large size of the load/store unit is explained by the 16-entry deep response and request
queues (see Section 3.1.8.1). To save area, this can be reduced to a minimum depth of
three. For the plasticity programs in Figure 5.26, this should not have an impact on
performance, since the inner loop of update computation does not require memory
access. The fixed-point functional unit, executing most of the provided instructions,
is comparatively small. Special registers are special purpose registers defined by the
Power ISA, such as the condition register and several others. Under “other” there
is for example the branch functional unit, and interrupt related logic among others.
Multiplier and divider represent a relevant area investment. None of the benchmark
programs in Section 5.4.2.1 use division operations. Therefore, the area investment is
probably not justified and the functional unit should be removed if area needs to be
reduced. Programs would then have to revert to divisions in software, if they require
this operation. Multiplication is more useful, for example, it is used in the three factor
benchmark and for the generation of random numbers using the linear-congruential
method. In the former case, new look-up tables can be computed externally by the
control computer, and in the latter, the XOR-shift method, for example, could serve as
alternative. Therefore, this functional unit is also a candidate for removal if necessary.

5.4.4. Status of the implementation

As of this writing, the design is not fully implementable. The implementation was
carried out up until the placement step, where standard cells from the synthesized
netlist are placed on the chip. This shows, that sufficient area is available to realize
all logic gates. However, the routing step that interconnects placed standard cells
fails. This is due to the asynchronous event network blocking the top three metal
layers (layers 4 to 6) out of six available in the process for a large part of the area,
where the processor is situated. The lowest blocked layer 4 would otherwise be used
for interconnecting wires in the vertical direction. As one can see in Figure 5.29, the
processor core is stretched out in a way that especially requires vertical connections.
Note, that Figure 5.29 is rotated 90 degrees counter clock-wise and so vertical connec-
tions are horizontal in the picture. If layer 4 is made available for interconnection, all
connections can be realized, as was shown in a trial implementation run carried out by

203

5. Hardware systems and their evaluation

10 mm

5
 m

m

Processor core
Instruction

cache

Bus

interconnect

SRAM macros

Top

Full-custom

analog neurons

and synapses

Figure 5.29.: The picture shows the HEPP design after placement of standard cells including
the lowest three metal layers. Processor core logic is highlighted in blue, the
instruction cache in cyan, and the bus interconnect in yellow. Three SRAM macros
provide a total of 12 kiB of main memory. The design is rotate 90 degrees counter
clockwise to the conventional orientation.

Grübl (2012). However, this interferes with the power distribution network and the
switching matrices of the event network, making a major redesign of this part of the
design necessary (Grübl, 2012).

Figure 5.29 shows the result for a different configuration of the plasticity processor
than was used in Sections 5.4.2.2 and 5.4.3. Here, the multiplier, divider, and branch
prediction are removed from the design. This version was also used for the preliminary
routing test in which layer 4 was available for interconnection.

204

6. Discussion and outlook

The work reported in this thesis investigates options for building biologically inspired
and realistic plasticity mechanisms for neuromorphic hardware. The starting point was
the idea to use a hybrid system combining classical analog neuromorphic neurons and
synapses with a general purpose micro-processor. I first formalized this hybrid concept
in the theoretical Abstract Hybrid hardware Model (AHM) and then investigated it
using a specific reward modulated learning task (Chapter 2). Implementing the concept
in hardware requires the design of a number of components, which are described in
Chapter 3. The most important component is the Plasticity Processor (PP) described
in Section 3.1. The digital part of the non-programmable STDP implementation used
in the current version of the BrainScaleS wafer-scale system (Section 3.3.2) was also
designed as a preparatory step. Starting with the experience gained from this design,
a new I/O sub-unit and the SYNAPSE instruction set extension were conceived and
designed (Sections 3.3.3 and 3.4). These developed technologies were put together in
four different systems and evaluated (Chapter 5). An FPGA platform was used first, to
verify correct functionality of the processor core, and second, to measure performance
in general purpose tasks using the industry standard CoreMark benchmark (EEMBC,
2012). Results for a large number of configuration options are reported in Section 5.1.
The processor was included in a prototype chip built with a 65 nm process technology
to verify the design in silicon in a low-risk setting as compared to implementation
in the BrainScaleS wafer-scale system (Section 5.2). This provided valuable data on
achievable clock frequency and power consumption that is relevant input for the design
process of future neuromorphic systems planned for this technology. The performance
of the non-programmable STDP implementation in the current BrainScaleS wafer-scale
system was studied in simulation and initial measurements of the analog evaluation
circuit were carried out (Section 5.3). These experiments especially showed the digital
weight updating logic that was designed as part of this thesis to be functional. Further,
the HICANN with Embedded Plasticity Processor (HEPP) design that is planned as
next generation implementation of the BrainScaleS wafer-scale system was evaluated
in simulations. Performance for a number of plasticity related benchmark tasks was
estimated using simulations (Section 5.4). The preparation for tape-out showed, that
further work on parts of the design unrelated to plasticity has to be carried out, before
hardware can be produced.

In this chapter I want to outline and discuss the main results from this work and
come to a conclusion to what is achievable in regard to plasticity using the presented

205

6. Discussion and outlook

technologies. The outlook extends this picture to the question of what might be
achievable in the future by continuing from this work as starting point.

6.1. Discussion of main results

This section discusses the main results obtained in this thesis.

6.1.1. Abstract hybrid hardware model and results for

reward-modulated STDP

The theoretical analysis in Chapter 2 formulates the AHM as a tool to explore the
learning performance of a neuromorphic system in simulations. The model itself is
abstract in that it is independent of a specific implementation technology or details
of the system’s architecture. It is hybrid in that it assumes a combination of local,
time-continuous and global, time-discrete processing. Therefore, results obtained with
this model apply to a large class of potential systems and not just the ones presented
here. The central assumption is, that the local, time-continuous part implements an
eligibility trace that is evaluated by the global part. Whether the eligibility trace uses
analog or digital circuits, or some other means, e.g. memristive devices (Chua and
Kang, 1976; Strukov et al., 2008; Snider, 2008), is not relevant.

The AHM was used to explore hardware design variations for a reward-modulated
spike train learning task using computer simulations. Results from this study are
summarized in Section 2.3.8 in the form of guidelines for hardware design. In essence
the study showed the hybrid concept simulated with realistic hardware constraints to
be sufficient for this particular task.

Many tasks can be formulated as spike train learning. For example, for pattern
recognition the network learns to produce a special output spike train, when the input,
also coded as spike train, contains a specific pattern. This is studied by Frémaux et al.
(2010) using the same network architecture and learning rule as was used here. In
more recent work the authors employ a more complex network structure to extend this
rule to Temporal Difference (TD) learning using actor and critic neuron populations
(Frémaux et al., 2013). In this framework they are able to solve among others the cart
pole task, in which a pole on a movable cart has to be balanced in an upright position.
New weights are calculated in the same way as in the R-STDP rule tested in Section 2.3,
and only the neuronal architecture and the meaning of the modulation factor are
different. It now represents the TD-error coded as population firing rate. Using
rate counters (Section 5.4.1.2) this can be made accessible to the plasticity program.
Therefore, this updating mechanism is also implementable in the presented hardware
model. Results from Section 2.3 do not allow a prediction of learning performance.

In conclusion, the AHM represents a tool for the analysis of learning rules un-

206

6.1. Discussion of main results

der hardware constraints. To be able to emulate the large class of multiplicatively
modulated STDP rules, the central requirements for hardware are the presence of an
eligibility trace per synapse and multiplicative modulation of the weight change.

6.1.2. Plasticity processor

The plasticity processor design represents a major technical development carried out
for this thesis. It is a 32 bit scalar, in-order issue, and out-of-order retire RISC processor
implementing the Power ISA (PowerISA, 2010). The challenge of verifying correctness
considering the very large input space of possible programs was met with elaborate
simulations and an FPGA-based, as well as a silicon prototype. For the former, pro-
grams were generated and verified automatically. Correctness was further validated
with numerous runs of the CoreMark benchmark software (EEMBC, 2012) and a suite
of dedicated test programs (Section 4.1 and Nonnenmacher, 2011). In conclusion, the
processor can be considered usable for general purpose programs. Limitations in the
current state of the design would be the lack of a Memory Management Unit (MMU)
and of a cache for data supporting read and write.

The performance data gathered using the CoreMark benchmark showed the design
to be competitive with commercially available processors. In particular performance is
superior compared to the open source OR1200 processor (OpenRISC Project, 2013) or
the ARM968 core by NXP Semiconductors (2010).

Together with the Plasticity Processor Bus (PPB) the PP can be used as building
block in future neuromorphic systems. Its configurability and modular design allow
for the use in different process technologies and with varying area and frequency goals.
Use of different technologies was demonstrated with the 65 nm prototype and the
HEPP design (Sections 5.2 and 5.4). Configurability is evident from the performance
evaluation carried out on the FPGA platform (Section 5.1.1). Taking the SYNAPSE

extension as example it is easy to add further specialized execution units into the
design. For example, a parallel fixed-point multiply-accumulate SIMD unit could
provide accelerated computing for synaptic weights with more than 4 bit. Such new
instructions can be single or multi cycle operations using the framework described in
Section 3.1.6.6. In both cases they can complete with fixed latency using the Result Shift
Register (RSR) for scheduling of write-back, or, with variable latency, using the delayed
commit mechanism (Section 3.1.6.3). Using external control instructions (Section 3.1.8.1
and PowerISA, 2010) a second port for I/O can be added to the processor beside
the load/store unit. This can be used as optimization, for example, to connect some
peripherals with a faster bus interconnect than load/store via external control.

When starting a new design it is always a difficult decision, whether to continue
from an existing project or to start a new one, as I did for the plasticity processor. In
hindsight the question remains, if it was justified to develop a new general purpose
micro-processor. Especially the comparison of CoreMark performance shows, that the

207

6. Discussion and outlook

new design is at least not worse in performance compared to established processors.
Even commercial designs are outperformed or at least matched. Further, existing
high quality designs, like the ARM IP cores, are not freely available and are often too
expensive for a research project. Choosing a commercial design would also create a de-
pendency on a particular company. This might be a hindrance for future neuromorphic
systems, for example, if the company does not provide the used processor for a new
technology. The most important reason for developing a new design is, that it allows
for the optimization of every detail towards the intended application of plasticity. The
resulting design as presented in this thesis is a good match to the particular require-
ments. For example, the overall architecture was selected for low power- and area-cost,
to allow for integration into the BrainScaleS wafer-scale system. All features typically
found in processors that are not required for the intended application, e.g. distinction
between supervisor and program mode, a MMU, or a data cache, were left out. So
although it would probably have been possible to achieve the goal of programmable
plasticity starting from an existing processor, I argue, that it was the best decision to
start a new design.

6.1.3. Instruction set extension for operations on neuromorphic

synapses

To exploit the high amount of data parallelism in the used STDP algorithm I developed
the SYNAPSE instruction set extension with 32× 4 bit vector operations and registers.
With this extension it was possible to outperform the previous implementation while
simultaneously increasing flexibility in the programmable HEPP system. The com-
parison to the NVE variant of the design in Section 5.4.2 confirms the necessity of
using highly parallel weight computation and specialized wide I/O buses. NVE per-
forms I/O through load/store or external control operations and computes on 8× 4 bit
vectors stored in general purpose registers. Using SYNAPSE instead, the number of
input, output, and computing operations can be reduced by a factor of four, due to
the vector size of 32× 4 bit. The same inefficiencies would be present in a system,
where a dedicated I/O controller moves large blocks of synapse data to and from main
memory.

In the context of brain-inspired computing and learning, there are instruction set
extensions for the acceleration of software simulations in the literature. For example,
the system described by Al Maashri et al. (2013) is an FPGA accelerator card used
with a standard personal computer to simulate a high-level visual processing model.
Shapiro et al. (2011) use an automatically generated ISA on an FPGA platform to
accelerate the simulation of spiking neural networks. Madrenas and Moreno (2009)
employ simple, parallel processing elements in an SIMD array with the intention to
simulate neural networks. To my knowledge, the use of a specialized instruction
set extension in combination with analog neuromorphic circuits is a new approach

208

6.1. Discussion of main results

first presented here. It combines advantages from the worlds of analog and digital
processing: Local, time-continuous, and fixed analog circuits perform the massively
parallel detection of spike coincidences. Global, time-discrete, and programmable
digital logic computes new weights with great flexibility. Together, this allows for good
energy efficiency and flexibility. The SYNAPSE special-function unit plays a key role
in this concept. It represents the interface between plasticity software and the analog
circuitry. Using specialized instructions allows for higher throughput of weight update
computations as compared to a plain general purpose processor. Ways to accelerate
probabilistic and 8 bit updates are proposed in Section 5.4.2.

6.1.4. Non-programmable STDP implementation

The concept of combining local analog processing with global digital weight up-
dates for STDP was already implemented in a non-programmable way on a previous
chip-scale system (Schemmel et al., 2004, 2006, 2007). The non-programmable STDP
implementation for the BrainScaleS wafer-scale system (Section 3.3.2) provides the
same high-level capabilities to a modeler using the system. It allows for the use of
two-factor STDP for unsupervised learning tasks, such as were demonstrated on the
chip-scale system by Pfeil et al. (2012).

By making the micro-program of the automatic weight update process (Sec-
tion 3.3.2.5) modifiable, for example by storing it in latch based memory, this imple-
mentation could serve as minimalistic and functionally constrained alternative to the
more elaborate processor based HEPP design. With small modifications to the existing
micro-program sequencer, this would enable for example the combination of two
rows to emulate separate reset lines for a+ and a− (see also Section 5.4.2). However,
due to the lack of appropriate arithmetic units, this does not allow for increased
synaptic weight resolution. Also, it would not be possible to modify the contents of
look-up tables from within the system, for example to use different updating rules for
different synapses. Three-factor rules could thus only be implemented by changing
look-up tables from the external control computer. Further restrictions compared to
the HEPP design would be no access to rate counters or other system components, and
no additional state information in main memory, e.g. for neuromodulator chemical
concentrations. Therefore, this implementation even with modifiable micro-program
store does not reach the capabilities of a PP based design.

6.1.5. 65 nm prototype

The production of the 65 nm prototype ASIC served two functions: first, it validates
correct functionality of the PP in silicon, and second, it gives power and performance
data that can be used for future neuromorphic designs in this process technology. In the
configuration the processor was implemented, a normalized CoreMark performance of

209

6. Discussion and outlook

Ceff = 0.75 is reached. Results reported in Section 5.1.1 for the FPGA implementation
show that a much better performance is reachable. This is due to optimizations that
were introduced only after tape-out of the prototype. For example, the issue in time
feature can be enabled without impact on clock frequency, but considerable effect on
performance (see Section 5.1.4). Other optimizations missing on the produced version,
like write-through on general purpose registers, or branch prediction, could have an
impact on frequency. The instruction latency for multiplications LMUL is relatively
high compared to the FPGA variants, because here a component from the DesignWare
library is used, while for the FPGA hard-macro multiplier blocks are available. Also to
support higher clock frequencies, latencies of other instructions are generally larger
than for the FPGA. In light of the results presented in Section 5.1.3, which show the
greatest improvement is achieved by reducing the latency Ldef, it might be worthwhile
to selectively optimize this datapath for shorter latency, while trying to keep the impact
on frequency small. In conclusion, the reported performance does not represent the
best-case achievable for the 65 nm technology and the PP design. An improved version
could now be produced.

The processor was designed for a 500 MHz clock frequency. Measurements in
Section 5.2.3, show this to be reached at the nominal supply voltage of 1.2 V for two
out of three tested chips. Static timing analysis reported remaining timing violations in
the “slow” corner, while “typical” and “fast” were free of errors. The corners represent
sets of parameters like operating voltage, temperature, and process variations, that in
combination result in slow, fast, or typical performance of the logic cells. Therefore,
one chip failing to reach 500 MHz at 1.2 V is not surprising. The sample size is much
too small to draw any statistical significant conclusions. The measurements show the
relation between maximum clock frequency and supply voltage to be approximately
linear in the tested range. With the best performing chip, a maximum frequency of
769.53 MHz at 1.4 V was reached consuming (102.9 ± 0.03)mW. This corresponds
to a CoreMark performance of 577.15 s−1 and an energy efficiency of Cperf/Pc =

(5.61± 0.02) (mJ)−1 (CoreMark iterations per mJ). Varying supply voltage between
1 V and 1.4 V allows for nearly doubling the maximum frequency. In this range,
power scales with a factor between (65.7± 0.1) µW/MHz and (133.5± 0.3) µW/MHz
depending on supply voltage.

If a future system in this technology requires a processor with a given clock frequency,
statically varying supply voltage allows for compensation of manufacturing variations.
This is relevant for a wafer-scale system, where a block not fulfilling its specification
has to be marked unusable, but can not be exchanged on the wafer. It therefore wastes
precious wafer area. If power can be varied on a per-block basis, on the one hand, a
higher voltage can be applied to make too slow processors usable, and on the other
hand, a lower voltage for fast processors saves power. Going to dynamic voltage and
frequency scaling (DVFS, Pouwelse et al., 2001; Simunic et al., 2001) is only necessary,

210

6.1. Discussion of main results

if varying workloads have to be handled. In the HEPP design, this is typically not
the case, because the plasticity program always iterates with maximum rate over all
synapses. The workload is therefore constant. This would be different in a system
that implements also the local accumulation part of the AHM in software. Here, the
workload would scale with event rate and DVFS could be used for power saving.

For power saving, it is especially interesting how far the supply voltage can be
reduced. Experiments revealed a sharp drop of maximum frequency below 0.7 V. The
lowest voltage at which the processor functioned correctly was 0.68 V with a maximum
frequency of 15 MHz. Below that, the processor did not function for frequencies
greater or equal to 5 MHz. For higher voltages, the linear relation between voltage and
frequency is maintained.

The transient power consumption during and after execution of the CoreMark
program shows the global clock gate to be an effective method for power saving,
reducing consumption by an order of magnitude. However, as the comparison to
disabled clock input to the whole chip in Figure 5.17 shows, there is still room for
reducing power for the off-state of the global clock gate. Logic and especially the clock
tree outside the processor have to be carefully optimized for low-power operation.

In Section 5.2.3.4 the energy costs of individual instructions was measured. The main
factor determining energy cost is the number of clock cycles required per instruction,
followed by the number of memory accesses. The complexity of datapath logic nearly
has no effect, as for example the comparison of multiplication and addition in Fig-
ure 5.18 shows. Therefore, to optimize for power, it is important to design an efficient
front-end of the processor, while the back-end is less critical. According to Gonzalez
and Horowitz (1996) the additional energy cost of superscalar architectures outweighs
the performance gain when using the energy delay product as metric. Zyuban and
Kogge (2000) also shows, that for many sub-components of a superscalar architecture
energy per instruction scales super-linear with increasing issue width. For example,
the increased number of ports on the register file required to support parallel issue
of multiple instructions leads to increased energy cost per instruction. Therefore, to
maximize power-efficiency, a scalar, in-order-issue architecture, as was selected for the
PP, is the best match.

6.1.6. Plasticity processor in the BrainScaleS wafer-scale system

The HEPP design presented in Section 5.4 represents the culmination of the work
done for this thesis. It integrates the developed technologies described in Chapter 3 –
especially the plasticity processor – into the existing BrainScaleS wafer-scale system.
The result is a novel architecture for neuromorphic hardware that enables strong
plasticity in an accelerated and large-scale system.

The key capabilities that are added by this architecture compared to the non-
programmable implementation currently used (Section 5.3) are:

211

6. Discussion and outlook

• Different plasticity rules can be used simultaneously for different synapses in
the system.

• Further observables are available through the connection to the HICANN system
bus: rate counters measure population rates, and information about the networks
structure is held in the decoder addresses of the synapse and the event network
configuration. Previously, plasticity rules could only depend on the synapse-
local coincidence measurement and accumulation, and on the synapse weight
itself.

• Additional state, e.g. a map of neuromodulator concentration, with its own
dynamics can be stored and maintained in main memory.

• Plasticity rules can interact with the environment by messages exchanged
through main memory and using the doorbell interrupt.

• Plasticity rules can affect further parameters instead of only synapse weights:
network connectivity through decoder addresses and event network configura-
tion, and event rates of random background generators on the event network.
Neuron parameters on floating-gate storage cells can only be modified while
the network is not in use, because the programming voltages are visible to the
neuron circuit disrupting normal operation. So modifying these parameters is
restricted to trial-by-trial learning.

• Dual- or even multi-row operation either to emulate separate reset lines for a+
and a− or to increase synapse weight resolution. The latter case comes at the
cost of reduced performance, because the 4 bit vector arithmetic of the SYNAPSE

functional unit can not be used. Multi-row operation could also be used in
conjunction with the evaluation circuit (see Section 3.3.1.2) to average over the
accumulation traces of multiple synapses to increase precision.

• Probabilistic weight updates are possible, although with reduced performance
(Section 5.4.2.2).

Additional to this improved functionality, the new design can perform weight
updates nearly two times faster. This is due to the programmable control sequencer
in the synapse array interface adapter (Section 3.3.3) and the 128 bit parallel weight
computation by SYNAPSE. Both features could also be added to the non-programmable
implementation.

Measurements in the current system reported in Sections 5.3.3 and 5.3.4 revealed two
open issues in the analog part of the design. The erroneous behavior of the evaluation
circuit for one half of the synapse array requires further investigation. So far, it is not
entirely certain, that a problem exists in the hardware design at all. The effect could be

212

6.1. Discussion of main results

explained by a malfunctioning floating-gate cell due to a manufacturing defect, which
could be tested by performing the experiment on a second chip. The other issue is
crosstalk between synapse weight and decoder SRAM accesses and synaptic event
transmission. It represents a real hardware defect that needs to be addressed in a
future version of the system with or without plasticity processor. Further systematic
measurements are required to characterize how detrimental this effect is to network
operation and whether a working configuration for plasticity experiments can be
found.

The analysis of the reward-modulated spike train learning task (Section 2.3) came
to the conclusion that learning performance is increased by either going from 4 bit
weight resolution to 8 bit or by using probabilistic updates. Both is possible in the
HEPP design, but associated with significantly reduced performance. This is likely
not a problem for the reward-modulated learning task, assuming that the decay time
constant τe of the eligibility trace in hardware is very long compared to the array
updating time 224 · trow. This assumption is motivated by comparable measurements
on the precursor chip-scale system using similar synapses performed by Pfeil (2012)
suggesting decay time constants on the order of ten thousands of seconds in biological
time or seconds in real time. The reason for these long decay times is the used
differential evaluation comparing the similarly fast decaying a+ and a− to each other.
Ways to improve performance for probabilistic updates or 8 bit resolution are proposed
in Section 5.4.2.

Comparison to other plasticity implementations I already compared the
HEPP design to other plasticity implementations in Friedmann et al. (2013): Typically,
spike based neuromorphic hardware systems implement variants of STDP with
fixed-function circuits (Indiveri et al., 2006; Ramakrishnan et al., 2011; Seo et al., 2011).
The weight is changed according to an algorithm built into the device, offering no
flexibility. Additionally, these systems update weights immediately, when spikes
are encountered. There is no per-synapse state variable usable as eligibility trace.
Therefore, these systems can not implement the reward modulated learning rule
studied in Chapter 2, because they can not associate reward with earlier activity. This
is known as the distal reward problem (Izhikevich, 2007b).

The comparison also includes two processor-based plasticity implementations (Vo-
gelstein et al., 2003; Davies et al., 2012). The system described by Vogelstein et al.
(2003) uses multiple special purpose chips: one with analog neurons, one with SRAM
for synaptic connections, and one with a general purpose processor. The processor
implements routing of events and plasticity in software using the connection data
stored in the memory chip. This is only possible, because the number of neurons is
small (1024), and they operate without acceleration (α = 1). For accelerated systems
the overhead by software and memory accesses for every spike are prohibitive. Also,

213

6. Discussion and outlook

integrating the processor into the same die reduces power for off-die communication.
Therefore, the HEPP design has better scalability as is required for a wafer-scale system.
The SpiNNaker system presented by Davies et al. (2012) consists of general purpose
processors interconnected by an asynchronous event network. Due to the organization
of the architecture, especially the storage of synaptic weights in off-chip memory, they
only have the weight value available for presynaptic events. Therefore, they can not
directly update weights for pre-before-post spike pairs. They work around this by
estimating postsynaptic firing times using the current membrane potential, whenever
a presynaptic event arrives. This emphasizes, that it is difficult to implement STDP in
fully programmable systems. The hybrid architecture of the HEPP design represents a
more efficient solution.

6.1.7. From guidelines to implementation

At the end of Chapter 2, the findings of the theoretical analysis were condensed into a
set of guidelines for hardware implementation. Here, I want to discuss, how the HEPP
design is in accordance with these guidelines.

To reach good performance, either 4 bit weights with probabilistic rounding, or 8 bit
weights with deterministic rounding should be used. The natural resolution in the
hardware system is 4 bit, but by combining rows, the resolution can be increased in
increments of 4 bit at the cost of reducing the number of totally available synapses. As
was discussed in the previous subsection, the HEPP design does not offer accelerated
computation of 8 bit weights or probabilistic rounding.

The evaluation circuit in the HEPP design supports comparison of the difference
between both accumulators to a threshold. This is in accordance with the given
guidelines. The temporal behavior of the eligibility traces was not yet measured in
the BrainScaleS wafer-scale system, but is expected to be slowly drifting when using
the differential evaluation. Synapses do not have a controlled mechanism for decay.
As long as there is no theoretical finding that clearly shows such a mechanism to be
required, it is not justified to modify the synapse circuit. Any modification would
likely require an increased size and therefore reduced number of available synapses in
the system. The measurements on the accumulation circuit presented in Section 5.3.3
show fixed-pattern variations to be small. The spike train learning task is anyway very
tolerant to fixed-pattern noise.

Delay in giving the reward is introduced by communication with the external control
computer and by the finite processor updating speed. Since neither the decay time
constant nor the trial-to-trial variation of the evaluation circuit are known at this time,
a definite requirement for delay on reward can not be made.

In conclusion the HEPP design fulfills all requirements for reward modulated STDP
as outlined in Section 2.3.8. With its speed-up factor of 10 000 and large number of
neurons (up to 196 608), it will represent a very attractive research platform for this

214

6.2. Directions for future hardware

type of learning when it is produced. Especially the question of scalability of the
R-STDP rule to large neural networks could be explored.

6.2. Directions for future hardware

As discussed in the previous section, the results obtained in this thesis point to some
limitations in the HEPP design. On the other hand, the investigation of the 65 nm
prototype hints at what might be possible in future neuromorphic systems. In this
section, I want to suggest two new architectures, one to maximize performance in the
180 nm HEPP design, and one to maximize flexibility using the 65 nm technology.

6.2.1. Maximizing performance in the HEPP design

The HEPP design does not perform very well for probabilistic updates and weights
with more than 4 bit resolution. I already proposed to add hardware random number
generators to increase performance for probabilistic updates (Section 5.4.2). However,
for higher resolution weights it is necessary to replace the look-up table based update
units with real arithmetic units providing multiply and add operations. To make
matters worse, 8 bit weights are distributed over two rows for one synapse. Therefore,
two read and two write operations are required to aggregate the weight and store the
result of the update. Also, conversion between the logical representation with 8 bit
weights and the raw one from the array requires additional operations.

The design proposed here addresses these problems by introducing read and write
caches that convert between the representations, and by using up to eight parallel
128 bit vector processing units. Figure 6.1 shows an overview.

Vector processing units Each vector processing unit operates on 128 bit vectors
of either 32× 4 bit, 16× 8 bit, or 8× 16 bit. It implements a multiply-add operation
with operands from the read cache or a constant memory. This functionality could
for example be implemented with DesignWare SIMD blocks (DWF_dp_simd_mult_tc,
and DWF_dp_simd_add_tc). These blocks allow to use one hardware multiplier or
adder, respectively, for all three configurations of input vectors. The result from the
vector unit is either written to the read or the write cache. The vector operations can
be enabled element-wise depending on the evaluation result.

Read and write cache The read cache is divided into eight banks that each hold
four 128 bit vectors and eight 32 bit correlation words. This matches the data produced
in one read operation with two evaluations of the synapse accumulators with weight
data written to the 128 bit vector and correlation written to the two 32 bit ones (see
Section 3.3.1). Upon reading from the synapse array, the raw 4 bit weight elements are

215

6. Discussion and outlook

Synapses

Read Cache

with reordering

VPU VPU

Write Cache

8x

128 bit

weights
32 bit

corellation

P
la

s
ti

c
it

y
 P

ro
c
e
s
s
o
r

Adress/op

Register transfer

Constants

Instructions

Adress/op

Figure 6.1.: Using parallel vector processing units and caching to remove performance bottle-
necks in the HEPP design. See text for a description.

scattered to the four vectors depending on whether 4 bit, 8 bit, or 16 bit resolution is
used. In the first case, the data is moved directly to the vector as it is presented on
the data bus. In the last case, the first to fourth 4 bit elements are placed in the first
position of each of the four vectors in the read cache. This way, the vector holds the
correct logical representation with 8× 16 bit weights ready for processing by the vector
unit. In a similar fashion is proceeded for 8 bit weights. The write cache performs the
reverse operation, reordering the logical vector to a raw representation that can be
written to the array. For maximum efficiency it has to be of the same size as the read
cache, so that a full logical row with 16 bit synapses can be stored. However, only one
32 bit correlation word per bank is required to control the reset of accumulators in the
synapse.

Having read and write cache allows for maximal decoupling between synapse I/O
and computation. The vector processing units operate only on logical synapse rows,
while data is exchanged between caches and synapse array in terms of physical rows.
Therefore, I/O can be performed row-wise, saving an overhead for pre-charge every
time a row is opened (see also the results for the dual-row benchmark program in
Section 5.4.2). The plasticity problem is separated into two that can be independently
solved: 1) Efficient data transfers between synapse array and caches. 2) Computation
of weight updates by the vector processing units.

A constants memory stores additional parameters for the computation, such as
a multiplicative factor for three-factor plasticity rules. It is filled from the general
purpose register file of the plasticity processor. Also the read cache can be read and

216

6.2. Directions for future hardware

written from general purpose registers.

Control The vector processing units and the caches are viewed by the plasticity
processor as a functional unit. Dedicated instructions in the program are issued to this
functional unit to, for example, read a row of synapse weights or perform a vector
multiply operation. Therefore, only the datapath and cache memories need to be
added to the design, and additional overhead for control is kept small.

Implementability Using the area requirements for the regular HEPP design as
basis (Section 5.4.3), one can extrapolate the expected area cost for this architecture.
Read and write cache have in total 2 × 8 × 4 × 128 bit = 8192 bit vectors and 8 ×
2× 32 bit + 8× 32 bit = 768 bit correlation words. Assuming a constants memory of
8× 32 bit = 256 bit, this is in total about 2.2 times the size of the instruction cache
shown in Figure 5.28. The most area intensive component of the eight vector processing
units is the multiplier. Assuming, that a 128 bit vector-multiplier is four times larger
than the 32 bit scalar multiplier used by the plasticity processor, the eight vector
processing units would cost 32 times that size. To estimate the total increase in area, I
assume that the multiplier and SYNAPSE functional units are removed, and that the
same area for a synapse array interface adapter is needed. This gives a total increase
by a factor of 4.28 over the HEPP design for the digital plasticity logic. That much area
is not available in the current design. However, since the digital part of the plasticity
logic in the HEPP design only consumes 6.2 %, it would be possible to make this
area available by reducing the size of the analog part, e.g. by reducing the number
of synapse columns. This would increase the expended area for the digital part of
plasticity to 26.5 %.

6.2.2. Maximizing flexibility in future 65 nm systems

The hybrid approach of combining analog computing in the synapse with globally
digital weight updates allows for a good trade-off between updating speed and flexi-
bility. However, the analog part still imposes restrictions on flexibility, for example by
limiting the shape of the learning function s(∆t) (see Chapter 1). A way to increase
flexibility beyond this, is to go to a fully programmable system that processes individ-
ual spikes for each synapse. This is not a viable option for 180 nm technology with
high acceleration factors of 103 . . . 104, which is why this hybrid approach was chosen
in the first place. However, future smaller scale technologies make smaller and faster
digital logic possible.

Figure 6.2 sketches such a system having the 65 nm technology in mind: The part
not related to plasticity is conceptually identical to the current HEPP architecture.
Synapses are arranged in a rectangular array with each column belonging to one
neuron. Action potentials generated by the neuron are passed through a routing

217

6. Discussion and outlook

Plasticity Processor

Synapse Weights

Neurons

S
y
n
a
p
s
e
 I
n

p
u
ts

Row port

C
o
lu

m
n
 p

o
rt

Routing

Switch

Long range network

E
v
e
n
t

b
u
ffe

r
E
v
e
n
t

b
u
ffe

r
E
v
e
n
t

b
u
ffe

r

Event bufferEvent bufferEvent buffer

Figure 6.2.: Sketch of a neuromorphic system with fully digital plasticity implementation. The
main hardware features are a transposable synapse array for efficient row and
column access, buffers providing temporal and spatially sorted access to events,
and a plasticity processor with parallel weight computation. See text for a detailed
description.

218

6.2. Directions for future hardware

switch to send them either to a long range network, or to the input drivers to the
synapse array. Synapses do not include a local accumulation circuit, reducing the size
of the array. For plasticity, pre- and postsynaptic events – from the synapse input
drivers and the neurons, respectively – are send to event buffers. These event buffers
are FIFO queues that present spikes in temporal order to the plasticity processor.
Additionally, they are content addressable, allowing for readout of events by row- and
column-address.

If reward modulated learning rules are to be implemented, it is further necessary
to provide digital storage for an eligibility trace. This can either be accomplished by
additional bits in the synapse array that are only interpreted by the plasticity program,
or by separate memory in the plasticity processor.

Algorithm The task of the plasticity processor is to compute weight changes de-
pending on the spike pairs extracted from the event buffers. The update algorithm for
a two-factor STDP rule would follow this outline:

• Wait for new pre- or postsynaptic event in the event buffers.

• For a presynaptic event, load the row of weights to which the event was sent
to internal storage of the processor. For a postsynaptic event the remaining
procedure is symmetrical. Just exchange pre- and postsynaptic and row and
column.

• For each synapse in the row, extract the most recent event for the postsynaptic
neuron from the event buffer.

• Compute the weight change depending on the time difference.

• Write the new row of weights back to the synapse array.

• Remove presynaptic events from the event buffer that are older than a given
threshold (for example three times the time constant τ± of the learning function).
If the capacity of the event buffer is reached, remove at least one of the oldest
events.

• Repeat

Hardware optimizations To improve performance, to hardware optimizations are
conceivable: Since the algorithm performs row- and column wise accesses depending
on whether a pre- or postsynaptic event was encountered, the SRAM weight storage
can be equipped with a row and a column port. Depending on which port is used, the
full row or column is returned with one read operation. Such a transposable SRAM
array is used for synapses by Seo et al. (2011). A test-chip designed by Hock et al. (2013)

219

6. Discussion and outlook

for the 65 nm process was recently submitted and contains, among other components,
a transposable SRAM macro.

The second optimization is to use a vectorized SIMD unit in the plasticity processor
to compute the weight update. In principal, the same design could be used as was
proposed in Section 6.2.1. Additional operations for access to the event buffers would
need to be designed.

Back-of-the-envelope performance estimate The 65 nm prototype (Section 5.2)
used a clock frequency of fclk = 500 MHz. So, this frequency can be assumed for the
proposed design. Further, in the existing BrainScaleS wafer-scale system neurons
with up to 14k synapses can be configured to realize numbers found in neocortex
(Pakkenberg et al., 2003). To match this number, an array size with Npre = 128
presynaptic inputs and Npost = 128 postsynaptic neurons could be used. Each neuron
and each input contribute events with an average firing rate of ν. In neocortex, ν is
on the order of 10 Hz (Plenz and Aertsen, 1996; Shafi et al., 2007). Finally, the analog
neurons used in the BrainScaleS wafer-scale system can operate with a speed-up of
α = 104. This allows for a rough estimation of the number of clock cycles available per
event in the proposed algorithm:

cev =
fclk

(

Npre + Npost
)

να
(6.1)

with cev = 195 312α−1 = 19. Although, this needs to be validated, it seems to be
achievable to implement the proposed algorithm with this number of clock cycles,
given optimized data structures in the form of the event buffers, and vectorized
processing units operating on whole rows and columns. If the speed-up factor α can
be reduced by an order of magnitude through slow-down of the analog dynamics of
the neuron, fully-digital plasticity should therefore be possible in the 65 nm process
using the proposed architecture.

6.3. Conclusion

This thesis presents a new approach to learning and plasticity in neuromorphic hard-
ware. Instead of a pure physical model, a hybrid system is proposed that combines
local, analog computation with a central processor. This approach is motivated by
the diversity of plasticity mechanisms observed in biology. Flexible plasticity is a re-
quirement for neuromorphic hardware intended as research platform for neuroscience.
It enables network-level studies of the functional consequences of such elementary
observations. As long as a single rule for plasticity, that leads to brain-like learning
capabilities, has not been found, flexibility is also desirable for technical applications
of neuromorphic hardware.

220

6.3. Conclusion

The work presented in this thesis investigated the usefulness of the hybrid approach,
and the implementability in hardware. The full functional capabilities enabled by
this system have yet to be explored, but the analysis of the R-STDP rule in Chapter 2
gives a first impression of what is possible with multiplicatively modulated STDP
rules alone. This class of rules is used in the literature for a large number of learning
tasks (Farries and Fairhall, 2007; Izhikevich, 2007a; Legenstein et al., 2008; Frémaux
et al., 2010; Potjans et al., 2011; Frémaux et al., 2013). Most interestingly, it opens the
gate to reinforcement learning with spiking neurons (Florian, 2007), and thereby with
neuromorphic hardware.

In Section 2.1, I described a number of requirements on hardware implementations
for two-factor, reward-modulated, and phenomenological models of STDP. Require-
ments for two-factor and reward-modulated rules are fulfilled by the programmable, as
well as the non-programmable implementation. In the latter case, reward-modulation
has to be performed outside of the system by pre-computing new look-up tables on the
control computer. In this case, updates are limited to 4 bit resolution and deterministic
rounding, limiting learning performance. Further requirements by phenomenological
models are not met by the non-programmable system. With the plasticity processor,
location and type of neurons and synapses can be used for plasticity, but only firing
rate is accessible as additional state variable. Further observables, and the ability
to modify the learning function of STDP are not available. Short-term effects, and
arbitrary learning functions would be realizable with the fully digital system proposed
in Section 6.2.2 using e.g. 65 nm technology.

Beyond STDP based rules, the architecture enables completely different learning
paradigms. For example, an evolutionary algorithm could be used to optimize neuron
parameters for a given task. Each physical neuron could implement an individual
parameter set in a population, of which the parameters are mutated from trial to
trial. Such a mechanism would be interesting for calibration of neurons to a specific
operating state, e.g. a given firing rate, compensating device mismatch on the neuron
circuits.

A second example for a new learning rule, not based on STDP is gradient decent
to optimize weights for a given task. In this case the processor would systematically
modify individual weights between trials. This way, the gradient of the quantity to
minimize is determined. Performance is improved by following the gradient “down-
hill”. Typically encountered slow conversion for this type of learning rule is alleviated
by the high acceleration factor of the hardware system.

So far, no hardware system of the proposed type has been produced, but results from
measurements and simulations make a convincing case for the implementability. The
two proposed architectures in the previous section show that it is possible to further
improve the HEPP design with regard to performance and flexibility. However, the
former is only possible with a major investment of chip area at the cost of synapses
and neurons, and the latter requires a more modern process technology.

221

6. Discussion and outlook

So in conclusion, the overall result of this thesis is, that the proposed architecture
can emulate a wide class of plasticity rules, and can be integrated into the BrainScaleS
wafer-scale system.

222

A. Tabular description of used neural

network models

Description of the network model used for the learning task after Nordlie et al. (2009). See
Table A for numerical values for the parameter. This table was previously published in
Friedmann et al. (2013).

A: Model summary

Populations Three: input U, random background B, target T
Connectivity Feed-forward
Neuron model Leaky-integrate-and-fire, fixed voltage threshold, fixed abso-

lute refractory period (voltage clamp)
Synapse model Exponentially shaped post-synaptic conductances
Plasticity Three-factor STDP
Input Fixed-length spike-trains with uniformly distributed firing

times

B: Populations

Name Elements Population size
U Stimulus generator NU

B Poisson generator NB

T LIF neurons NT

C: Connectivity

Source Target Pattern
U T All-to-all, initial weights wS

B T Non-overlapping 250→ 1, weight wB

D: Neuron and synapse model

Name LIF neuron
Type Leaky integrate-and-fire, exponential-shaped synaptic conduc-

tances

Sub-threshold dynam-
ics

{

Cm
dV
dt = gL (EL −V) + g(t) (Ee −V) if t > t∗ + τref

V(t) = Vreset else

g(t) = w exp
(

−t/τsyn
)

Spiking if V(t−) < Vth ∧V(t+) ≥ Vth
1. set t∗ = t
2. emit spike with time-stamp t∗

Continued on next page

223

A. Tabular description of used neural network models

Continued from previous page

E: Plasticity

Name Three-factor STDP
Spike pairing scheme Reduced symmetric nearest-neighbor (Morrison et al., 2008)
Weight dynamics ∆ = Sa(t)

a(t) = ∑ i
ti<t

A± exp
(

|∆ti |
τ±

)

exp
(

− t−ti
τe

)

w ∈ [wmin, wmax]

F: Input

Type Target Description
Stimulus generator U Nstim spikes at random firing times dis-

tributed uniformly within the trial du-
ration.

Poisson generators B Independent Poisson spike-trains with
rate νB

Numerical values for parameters. For parameter definitions see Table A and text. This table
was previously published in Friedmann et al. (2013).

Parameter Value

NU 250
NB NT · 250
NT 5
Cm 500 pF
gL 10 nS
EL -70 mV
Ee 0 mV
τref 10 ms
Vreset -60 mV
Vth -50 mV
A± ±32 pS
τ± 20 ms
τe 0.1 . . . 1000 s
wmin 0 nS
wmax 0.5 nS
Ŵ 0.45 nS
tend 1 s

224

B. Supported Power ISA subset

Table B.1.: Subset of implemented registers.

Register name Abbreviation Number of registers

General purpose registers GPR 32
Special purpose registers SPR 29
Condition register CR 1
Fixed-point exception register XER 1
Link register LNK 1
Counter register CTR 1
Machine state register MSR 1

Interrupt related:

Save/restore register (PC) SRR0 1
Save/restore register (MSR) SRR1 1
Critical save/restore register (PC) CSRR0 1
Critical save/restore register (MSR) CSRR1 1
Machine check save/restore register (PC) MCSRR0 1
Machine check save/restore register (MSR) MCSRR1 1
Exception syndrome register ESR 1
Data exception address register1 DEAR 1

Timer facility:

Time base upper register TBU 1
Time base lower register TBL 1
Decrementer DEC 1
Decrementer auto reload register DECAR 1
Timer control register TCR 1
Timer status register TSR 1

Not in Power ISA:

General purpose output register GOUT 1
General purpose input register GIN 1
General purpose output enable register GOE 1
Interrupt configuration & control register ICCR 1

1Not set by the alignement exception

225

B. Supported Power ISA subset

Subset of implemented instructions sorted by category and instruction name. Square brackets
indicate optional variants. A dot [.] denotes recording to condition register field 0 and [o]
indicates recording overflow to the fixed-point exception register. For branches [l] indicates
branch and link feature and [a], that absolute addresses are to be used. Instruction names
and mnemonics as used by PowerISA (2010). The last column gives the configurable range
of the issue-to-retire latency L (see Section 3.1.7 for the definition of L). For load/store the
fixed-latency values are given. If the variable latency variant is used, an arbitrary configurable
expected lantency can be used for optimization. The true latency is of course variable. The
same is the case for external control instructions.

Table B.2.: Implemented instructions

Instruction Mnemnonic Category FU L

Add add[o][.] Base Fixed-point 2-4
Add Carrying addc[o][.] Base Fixed-point 2-4
Add Extended adde[o][.] Base Fixed-point 2-4
Add Immediate addi Base Fixed-point 2-4
Add Immediate Carrying addic[.] Base Fixed-point 2-4
Add Immediate Shifted addis Base Fixed-point 2-4
Add to Minus One Extended addme[o][.] Base Fixed-point 2-4
Add to Zero Extended addze[o][.] Base Fixed-point 2-4
And and[.] Base Fixed-point 2-4
And with Complement andc[.] Base Fixed-point 2-4
And Immediate andi. Base Fixed-point 2-4
And Immediate Shifted andis. Base Fixed-point 2-4
Branch b[l][a] Base Branch 1
Branch Conditional bc[l][a] Base Branch 1
Branch Conditional to Count Register bcctr[l] Base Branch 1
Branch Conditional to Link Register bclr[l] Base Branch 1
Compare cmp Base Fixed-point 2-4
Compare Immediate cmpi Base Fixed-point 2-4
Compare Logical cmpl Base Fixed-point 2-4
Compare Logical Immediate cmpli Base Fixed-point 2-4
Count Leading Zeros Word cntlzw Base Fixed-point 2-4
Condition Register And crand Base Fixed-point 2-4
Condition Register And with Complement crandc Base Fixed-point 2-4
Condition Register Equivalent creqv Base Fixed-point 2-4
Condition Register Not And crnand Base Fixed-point 2-4
Condition Register Not Or crnor Base Fixed-point 2-4
Condition Register Or cror Base Fixed-point 2-4
Condition Register Or with Complement crorc Base Fixed-point 2-4
Condition Register eXclusive Or crxor Base Fixed-point 2-4
Divide Word divw[o][.] Base Divide ≥ 8
Divide Word Extended divwe[o][.] Base Divide ≥ 8

Continued on next page

226

Continued from previous page
Instruction Mnemnonic Category FU L

Divide Word Extended Unsigned divweu[o][.] Base Divide ≥ 8
Divide Word Unsigned divwu[o][.] Base Divide ≥ 8
Equivalent eqv[.] Base Fixed-point 2-4
Extend Sign Byte extsb[.] Base Fixed-point 2-4
Extend Sign Halfword extsh[.] Base Fixed-point 2-4
Load Byte and Zero lbz Base Load/Store 3-4
Load Byte and Zero with Update lbzu Base Load/Store 3-4
Load Byte and Zero with Update Indexed lbzux Base Load/Store 3-4
Load Byte and Zero Indexed lbzx Base Load/Store 3-4
Load Halfword Algebraic lha Base Load/Store 3-4
Load Halfword Algebraic with Update lhau Base Load/Store 3-4
Load Halfword Algebraic with Update Indexed lhaux Base Load/Store 3-4
Load Halfword Algebraic Indexed lhax Base Load/Store 3-4
Load Halfword and Zero lhz Base Load/Store 3-4
Load Halfword and Zero with Update lhzu Base Load/Store 3-4
Load Halfword and Zero with Update Indexed lhzux Base Load/Store 3-4
Load Halfword and Zero Indexed lhzx Base Load/Store 3-4
Load Multiple Word lmw Base Load/Store 3-4
Load Word and Zero lwz Base Load/Store 3-4
Load Word and Zero with Update lwzu Base Load/Store 3-4
Load Word and Zero with Update Indexed lwzux Base Load/Store 3-4
Load Word and Zero Indexed lwzx Base Load/Store 3-4
Move Condition Register Field mcrf Base Fixed-point 2-4
Move From Machine State Register mfmsr Base Fixed-point 2-4
Move From One Condition Register Field mfocrf Base Fixed-point 2-4
Move From Special Purpose Register mfspr Base Fixed-point 2-4
Move To One Condition Register Field mtocrf Base Fixed-point 2-4
Move To Special Purpose Register mtspr Base Fixed-point 2-4
Multiply High Word mulhw[.] Base Multiply ≥ 2
Multiply High Word Unsigned mulhwu[.] Base Multiply ≥ 2
Multiply Low Immediate mulli Base Multiply ≥ 2
Multiply Low Word mullw[o][.] Base Multiply ≥ 2
Not And nand[.] Base Fixed-point 2-4
Negate neg[o][.] Base Fixed-point 2-4
Not Or nor[.] Base Fixed-point 2-4
Or or[.] Base Fixed-point 2-4
Or with Complement orc[.] Base Fixed-point 2-4
Or Immediate ori Base Fixed-point 2-4
Or Immediate Shifted oris Base Fixed-point 2-4
Population Count Bytes popcntb Base Fixed-point 2-4
Parity Word prtyw Base Fixed-point 2-4
Rotate Left Word Immediate then Mask Insert rlwimi[.] Base Fixed-point 2-4

Continued on next page

227

B. Supported Power ISA subset

Continued from previous page
Instruction Mnemnonic Category FU L

Rotate Left Word Immediate then And with Mask rlwimi[.] Base Fixed-point 2-4
Rotate Left Word Immediate then And with Mask rlwinm[.] Base Fixed-point 2-4
Rotate Left Word Then And with Mask rlwnm[.] Base Fixed-point 2-4
Shift Left Word slw[.] Base Fixed-point 2-4
Shift Right Algebraic Word sraw[.] Base Fixed-point 2-4
Shift Right Algebraic Word Immediate srawi[.] Base Fixed-point 2-4
Shift Right Word srw[.] Base Fixed-point 2-4
Store Byte stb Base Load/Store 3-4
Store Byte with Update stbu Base Load/Store 3-4
Store Byte with Update Indexed stbux Base Load/Store 3-4
Store Byte Indexed stbx Base Load/Store 3-4
Store Halfword sth Base Load/Store 3-4
Store Halfword with Update sthu Base Load/Store 3-4
Store Halfword with Update Indexed sthux Base Load/Store 3-4
Store Halfword Indexed sthx Base Load/Store 3-4
Store Multiple Word stmw Base Load/Store 3-4
Store Word stw Base Load/Store 3-4
Store Word with Update stwu Base Load/Store 3-4
Store Word with Update Indexed stwux Base Load/Store 3-4
Store Word Indexed stwx Base Load/Store 3-4
Subtract From subf[o][.] Base Fixed-point 2-4
Subtract From Carrying subfc[o][.] Base Fixed-point 2-4
Subtract From Extended subfe[o][.] Base Fixed-point 2-4
Subtract From Immediate Carrying subfic Base Fixed-point 2-4
Subtract From Minus One Extended subfme[o][.] Base Fixed-point 2-4
Subtract From Zero Extended subfze[o][.] Base Fixed-point 2-4
Trap Word tw Base Branch 1
Trap Word Immediate twi Base Branch 1
eXclusive Or xor[.] Base Fixed-point 2-4
eXclusive Or Immediate xori Base Fixed-point 2-4
eXclusive Or Immediate Shifted xoris Base Fixed-point 2-4
Move To Machine State Register mtmsr Embedded Fixed-point 2-4
Return From Critical Interrupt rfci Embedded Branch 1
Return From Interrupt rfi Embedded Branch 1
Return From Machine Check Interrupt rfmci Embedded Branch 1
External Control In Word Indexed eciwx Ext. Ctrl. Ext. Ctrl. arb.
External Control Out Word Indexed ecowx Ext. Ctrl. Ext. Ctrl. arb.
Wait wait Wait - 0

228

Table B.3.: Addresses for interrupts.

Interrupt Interrupt vector address

Machine check 0x0001
Critical input 0x0002
Data storage 0x0003
Instruction storage 0x0004
External input 0x0005
Alignment 0x0006
Program 0x0007
System call 0x0008
Doorbell 0x0009
Critical doorbell 0x000a
Fixed-interval timer 0x000b
Decrementer 0x000c

229

C. Supplemental design description

C.1. External interfaces of the plasticity processor

C.1.1. RAM interface

Signal name Direction Width Description

en master to slave 1 enable interface

addr master to slave variable
address for read
and write

data_r slave to master variable result data for read
data_w master to slave same as data_r input data for write

we master to slave 1
enable write
operation

be master to slave bytes in data_r
byte enable mask
for writes

delay slave to master 1
read data not yet
available

C.1.2. Plasticity processor bus interface

Processor bus interface based on the OCP specification (OCP, 2009).

Signal name Direction Width Description

Clk to master and slave 1 bus clock
MReset_n master to slave 1 reset active low
MAddr master to slave variable address for request

MCmd master to slave 3
requested
command

MData master to slave variable
data transfered to
slave

MRespAccept master to slave 1
handshake for
response

MByteEn master to slave bytes in MData byte enable mask

SCmdAccept slave to master 1
handshake for
request

SData slave to master variable
data transfered to
master

SResp slave to master 2 type of response

230

C.2. Scheduling state machine graph

C.2. Scheduling state machine graph

State machine diagram for the scheduling FSM. Transitions are labeled with the asserted input
signals, that trigger the transition: valid instruction from instruction streamer (v), halt (h),
context synchronization (s), control transfer complete (c), branch (b), interrupt (i), all RSRs
empty (e), and wakeup from sleep (w). After reset, the FSM is in the RESET state.

RESET

FETCHING

(v)

SYNC_TO_HALT

(vh)

SYNCING

(vs)

(h)

(s)

JUMPING

(b)

SYNC_JUMP_0

(i)

(c)

(b)HALTED

(e)

(e)

(c)

(ch)

(cs)(ci)

(w)

(ws)

(wb)

(wi)

SYNC_JUMP_1

(c)

(e)

231

C. Supplemental design description

Table C.1.: The 32 bit instruction word is pre-decoded to the 123 bit control word.

Name Width Description

read_ra 1 Read from GPR referenced in RA
read_rb 1 Read from GPR referenced in RB
read_rt 1 Read from GPR referenced in RT
write_ra 1 Write to GPR referenced in RA
write_rt 1 Write to GPR referenced in RT
ra 5 Operand reference RA
rb 5 Operand reference RB
rt 5 Operand reference RT
b_immediate 1 Second operand is immediate
read_ctr 1 Read the counter register
write_ctr 1 Write the counter register
read_lnk 1 Read the link register
write_lnk 1 Write the link register
write_cr 8 Write for condition register fields
read_cr_0 8 Read port 0 for condition register fields
read_cr_1 8 Read port 1 for condition register fields
read_cr_2 8 Read port 2 for condition register fields
read_xer 1 Read fixed-point exception register
write_xer 1 Write fixed-point exception register
xer_dest 3 Fixed-point exception register field for write
read_spr 1 Read special purpose register SPR
read_spr2 1 Read special purpose register SPR2
spr 10 Special purpose register reference SPR
spr2 10 Special purpose register reference SPR2
write_spr 1 Write special purpose register
spr_dest 10 Special purpose register destination for write
write_mem 1 Instruction writes to memory
read_msr 1 Read machine state register
write_msr 1 Write machine state register
write_nve 1 Write to registers in NEVER functional unit
fu_set 8 Functional unit for this instruction
context_sync 1 Instruction is context synchronizing
mem_bar 1 Instruction is a memory barrier
halt 1 Halt the processor to sleep state
nd_latency 1 Instruction has variable latency
latency 3 Latency
multicycles 5 Number of multi-cycles
is_multicycle 1 Instruction is a multi-cycle instruction
is_branch 1 Instruction is a branch
is_nop 1 Instruction is a no-operation
synops 1 Is a synops instruction (SYNAPSE unit)

232

C.4. Synapse array interface signals

C.3. OCP configuration options of the plasticity

processor bus

Table C.2.: OCP configuration options for the plasticity processor bus

Option name Value

addr 1
addr_wdth 32
mdata 1
mdata_wdth 32
respaccept 1
cmdaccept 1
sdata 1
sdata_wdth 32
sresp 1
byteen 1
mreset 1
writeresp_enable 1
read_enable 1
write_enable 1
endianess big

C.4. Synapse array interface signals

Table C.3.: List of signals of the synapse array interface.

Name Width Description

syn_a 8 Row address
syn_ab 8 Inverted row address
en 32 One-hot coded per-slice column selection
syn_gen 4 Global per-slice enable
syn_ensynb 1 Enable for synapse weights
syn_endecb 1 Enable for synapse decoder addresses
syn_encrb 1 Enable for synapse correlation readout
syn_endrvb 1 Enable for synapse driver configuration region DRV
syn_engmaxb 1 Enable for synapse driver configuration region GMAX
syn_enctrlb 1 Enable for synapse driver configuration region CTRL
syn_d 16 Synapse driver SRAM bitlines

Continued on next page

233

C. Supplemental design description

Continued from previous page
Name Width Description

syn_db 16 Synapse driver SRAM inverted bit lines
syn_en 2 Synapse driver side selection
dio 128 Bi-directional synapse data port
corrin 32 Correlation readout & evaluation output
corresetb 32 Correlation reset signals
pcb 1 Enable pre-charge on synapse bitlines
ramoeb 1 Drive dio port
ramwb 1 Drive bitlines
pattern 4 Configure readout operation
scc 1 Sense correlation “causal”
sccb 1 Inverted version of scc
sca 1 Sense correlation “acausal”
scab 1 Inverted version of sca
csen 1 Correlation sense enable to output evaluation result

234

Glossary

ABI Application Binary Interface. 152

ADC Analog to Digital Converter. 32, 35, 57

AHM Abstract Hybrid hardware Model. 12, 13, 30–32, 35–38, 41, 44, 45, 48, 56, 59, 60,
93, 94, 102, 104, 109, 117, 118, 205, 206, 211

ASIC Application Specific Integrated Circuit. 59, 100, 109, 126, 155, 168, 169, 171, 173,
174, 185, 209

AWG Arbitrary Waveform Generator. 175, 179, 180

CMOS Complementary Metal Oxide Semiconductor. 17, 19

CPI Clocks Per Instruction. 144

DAC Digital to Analog Converter. 169

DVFS Dynamic Voltage and Frequency Scaling. 177, 210, 211

EABI Embedded ABI. 152

ELF Exectuable and Linking Format. 154

FIFO First-In First-Out. 89, 97, 100, 219

FPGA Field Programmable Gate Array. 69, 71, 84, 90, 155, 156, 164, 166, 167, 205, 207,
208, 210

FSM Finite State Machine. 71, 72, 84–87, 91, 113, 115–118, 121, 124–126, 231

FUM Functional Unit Manager. 82–84

GCC GNU Compiler Collection. 61, 152

GIO General purpose Input/Output. 93, 169, 171, 191

GNU GNU is Not Unix. 153, 158, 159

235

Glossary

GPR General Purpose Register. 65, 232

HEPP HICANN with Embedded Plasticity Processor. 190, 192, 193, 197, 198, 202, 204,
205, 207–209, 211, 213–217, 221

HICANN High Input Count Analog Neural Network. 19, 94, 99–102, 109, 112, 126, 183,
185, 187, 190–193, 197, 201, 212

I/O Input/Output. 30, 64–66, 88, 89, 93, 94, 113, 117–119, 126–128, 131, 134, 135, 138,
146, 149, 153, 158, 175, 177, 194, 195, 199, 205, 207, 208, 216

ILP Instruction Level Parallelism. 62

IP Intellectual Property. 166, 167, 172, 208

ISA Instruction Set Architecture. 60, 61, 65, 69, 72, 73, 80, 89, 134, 140, 152, 166, 167,
203, 207, 208, 225

JTAG Joint Test Action Group. 158, 169, 171, 172

MMU Memory Management Unit. 153, 207, 208

MSB Most Significant Bit. 68

NVE Native Vector Extension. 137, 138, 199, 208

OCP Open Core Protocol. 65, 95, 100, 230

PC Program Counter. 62, 64, 66, 68, 172

PP Plasticity Processor. 59–62, 65, 66, 69, 76, 88, 90–93, 117–119, 140, 142, 149, 153, 155,
156, 159, 165–167, 169, 172, 174, 190, 201, 205, 207, 209–211

PPB Plasticity Processor Bus. 65, 69, 71, 76, 82, 88, 93–96, 99, 100, 110, 119, 122, 124–126,
139, 151, 157, 161, 163, 192, 193, 201, 207

PSP postsynaptic potential. 30

RISC Reduced Instruction Set Computer. 61, 65, 207

RNG Random Number Generator. 196, 199, 200

RSR Result Shift Register. 72–77, 82–85, 87, 88, 161, 207, 231

RTL Register Transfer Level. 60, 77, 80, 100

236

Glossary

SerDes Serializer/Deserializer. 99, 192, 203

SIMD Sinlge Instruction Multiple Data. 126, 135, 199, 207, 208, 215, 220

SRAM Static Random Access Memory. 65, 69, 71, 72, 102, 104–106, 109, 110, 112, 113,
124–126, 162, 169, 173, 174, 180, 181, 190, 191, 201, 204, 213, 219, 220, 233, 234

STDP Spike-Timing Dependent Plasticity. 18, 21–24, 28, 31, 39, 40, 207, 213, 214, 219,
221

TD Temporal Difference. 206

TSMC Taiwan Semiconducator Manufacturing Company. 169

UMC United Microelectronics Corporation. 169

VLSI Very Large Scale Integration. 18, 36, 59

237

References

Larry F Abbott and Sacha B Nelson. Synaptic plasticity: taming the beast. Nature neuroscience,
3:1178–1183, 2000.

Ahmed Al Maashri, Matthew Cotter, Nandhini Chandramoorthy, Michael DeBole, Chi-Li
Yu, Vijaykrishnan Narayanan, and Chaitali Chakrabarti. Hardware acceleration for neu-
romorphic vision algorithms. Journal of Signal Processing Systems, 70(2):163–175, 2013.
ISSN 1939-8018. doi: 10.1007/s11265-012-0699-x. URL http://dx.doi.org/10.1007/

s11265-012-0699-x.

S. Alam, R. Barrett, M. Bast, M.R. Fahey, J. Kuehn, C. McCurdy, J. Rogers, P. Roth, R. Sankaran,
J.S. Vetter, et al. Early evaluation of ibm bluegene/p. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, page 23. IEEE Press, 2008.

R. Ananthanarayanan, S.K. Esser, H.D. Simon, and D.S. Modha. The cat is out of the bag:
cortical simulations with 10 9 neurons, 10 13 synapses. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, page 63. ACM, 2009.

ARM Ltd. Armv5 architecture reference manual, 2007. URL http://infocenter.arm.

com/help/index.jsp.

Atmel. 8-bit atmel microcontroller with 64k/128k/256k bytes in-system programmable flash,
October 2012. URL http://www.atmel.com/Images/doc2549.pdf. revision P.

John Backus. Can programming be liberated from the von neumann style?: a functional style
and its algebra of programs. Commun. ACM, 21(8):613–641, August 1978. ISSN 0001-0782.
doi: 10.1145/359576.359579. URL http://doi.acm.org/10.1145/359576.359579.

G. Q. Bi and M. M. Poo. Synaptic modifications in cultured hippocampal neurons: dependence
on spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience :
the official journal of the Society for Neuroscience, 18(24):10464–10472, December 1998. ISSN
0270-6474. URL http://www.jneurosci.org/content/18/24/10464.abstract.

Johannes Bill, Klaus Schuch, Daniel Brüderle, Johannes Schemmel, Wolfgang Maass, and
Karlheinz Meier. Compensating inhomogeneities of neuromorphic VLSI devices via short-
term synaptic plasticity. Front. Comp. Neurosci., 4(129), 2010.

Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communications of the
ACM, 54(5):67–77, 2011.

BrainScaleS. Research. http://brainscales.kip.uni-heidelberg.de/public/

index.html, 2012.

239

http://dx.doi.org/10.1007/s11265-012-0699-x
http://dx.doi.org/10.1007/s11265-012-0699-x
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/index.jsp
http://www.atmel.com/Images/doc2549.pdf
http://doi.acm.org/10.1145/359576.359579
http://www.jneurosci.org/content/18/24/10464.abstract
http://brainscales.kip.uni-heidelberg.de/public/index.html
http://brainscales.kip.uni-heidelberg.de/public/index.html

References

Daniel Brüderle. Neuroscientific Modeling with a Mixed-Signal VLSI Hardware System. PhD thesis,
2009.

Daniel Brüderle, Johannes Bill, Bernhard Kaplan, Jens Kremkow, Karlheinz Meier, Eric Müller,
and Johannes Schemmel. Simulator-like exploration of cortical network architectures with a
mixed-signal vlsi system. In Proceedings of the 2010 IEEE International Symposium on Circuits
and Systems (ISCAS), pages 2784–2787, 2010.

Inc. Cadence Design Systems. Encounter digital implementation system. www.cadence.com,
2012.

K. Cameron, V. Boonsobhak, A. Murray, and D. Renshaw. Spike timing dependent plastic-
ity (stdp) can ameliorate process variations in neuromorphic vlsi. Neural Networks, IEEE
Transactions on, 16(6):1626–1637, 2005. ISSN 1045-9227. doi: 10.1109/TNN.2005.852238.

Natalia Caporale and Yang Dan. Spike timing-dependent plasticity: A hebbian learning rule.
Annual review of neuroscience, February 2008. ISSN 0147-006X. doi: http://dx.doi.org/10.
1146/annurev.neuro.31.060407.125639.

Leon O Chua and Sung Mo Kang. Memristive devices and systems. Proceedings of the IEEE, 64
(2):209–223, 1976.

LLC. CompuGreen. Green 500 list. Website, November 2012. URL http://www.green500.

org/lists/green201211.

R. H. Cudmore and N. S. Desai. Intrinsic plasticity. 3(2):1363, 2008.

S. Davies, F. Galluppi, A.D. Rast, and S.B. Furber. A forecast-based stdp rule suitable for
neuromorphic implementation. Neural Networks, 32(0):3 – 14, 2012. ISSN 0893-6080.
doi: 10.1016/j.neunet.2012.02.018. URL http://www.sciencedirect.com/science/

article/pii/S0893608012000470. Selected Papers from IJCNN 2011.

DesignWare. Designware datapath building block ip, 2013. URL http://www.synopsys.

com/dw/buildingblock.php.

R. Douglas, M. Mahowald, and C. Mead. Neuromorphic analogue VLSI. Annu. Rev. Neurosci.,
18:255–281, 1995.

Embedded Microprocessor Benchmark Consortium EEMBC. Coremark benchmark. website,
2012. URL http://www.coremark.org/.

Embedded Microprocessor Benchmark Consortium EEMBC. Coremark benchmark scores.
Website, April 2013. URL http://www.coremark.org/benchmark/index.php?pg=

benchmark.

FACETS. Fast Analog Computing with Emergent Transient States – project website. http:
//www.facets-project.org, 2010.

240

http://www.green500.org/lists/green201211
http://www.green500.org/lists/green201211
http://www.sciencedirect.com/science/article/pii/S0893608012000470
http://www.sciencedirect.com/science/article/pii/S0893608012000470
http://www.synopsys.com/dw/buildingblock.php
http://www.synopsys.com/dw/buildingblock.php
http://www.coremark.org/
http://www.coremark.org/benchmark/index.php?pg=benchmark
http://www.coremark.org/benchmark/index.php?pg=benchmark
http://www.facets-project.org
http://www.facets-project.org

References

Michael A. Farries and Adrienne L. Fairhall. Reinforcement learning with modulated spike
timingâĂŞdependent synaptic plasticity. Journal of Neurophysiology, 98(6):3648–3665, Decem-
ber 2007. doi: 10.1152/jn.00364.2007. URL http://jn.physiology.org/content/98/

6/3648.abstract.

RÄČzvan V. Florian. Reinforcement learning through modulation of spike-timing-dependent
synaptic plasticity. Neural Computation, 19(6):1468–1502, April 2007. ISSN 0899-7667. URL
http://dx.doi.org/10.1162/neco.2007.19.6.1468.

Michael J Flynn. Some computer organizations and their effectiveness. Computers, IEEE
Transactions on, 100(9):948–960, 1972.

Free Software Foundation. Binutils website. website, March 2013. URL http://www.gnu.

org/software/binutils/. Version 2.21.51.

Nicolas Frémaux, Henning Sprekeler, and Wulfram Gerstner. Functional requirements for
reward-modulated spike-timing-dependent plasticity. The Journal of Neuroscience, 30:13326–
13337, 2010.

Nicolas Frémaux, Henning Sprekeler, and Wulfram Gerstner. Reinforcement learning using
a continuous time actor-critic framework with spiking neurons. PLoS Comput Biol, 9(4):
e1003024, 04 2013. doi: 10.1371/journal.pcbi.1003024. URL http://dx.doi.org/10.

1371%2Fjournal.pcbi.1003024.

Simon Friedmann, Nicolas Frémaux, Johannes Schemmel, Wulfram Gerstner, and Karlheinz
Meier. Reward-based learning under hardware constraints - using a RISC processor in a
neuromorphic system. Frontiers in Neuromorphic Engineering, 2013. URL http://arxiv.

org/abs/1303.6708. submitted.

Robert C Froemke, Dominique Debanne, and Guo-Qiang Bi. Temporal modulation of spike-
timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 2(19), 2010a. ISSN 1663-
3563. doi: 10.3389/fnsyn.2010.00019. URL http://www.frontiersin.org/synaptic_

neuroscience/10.3389/fnsyn.2010.00019/abstract.

Robert C Froemke, Johannes J Letzkus, Bjorn Kampa, Giao B Hang, and Greg Stuart. Den-
dritic synapse location and neocortical spike-timing-dependent plasticity. Frontiers in
Synaptic Neuroscience, 2(29), 2010b. ISSN 1663-3563. doi: 10.3389/fnsyn.2010.00029.
URL http://www.frontiersin.org/synaptic_neuroscience/10.3389/fnsyn.

2010.00029/abstract.

S.H. Fuller and L.I. Millett. Computing performance: Game over or next level? Computer, 44
(1):31–38, 2011. ISSN 0018-9162. doi: 10.1109/MC.2011.15.

Steve B. Furber, David R. Lester, Luis A. Plana, Jim D. Garside, Eustace Painkras, Steve Temple,
and Andrew D. Brown. Overview of the SpiNNaker system architecture. IEEE Transactions
on Computers, 99(PrePrints), 2012. ISSN 0018-9340. doi: http://doi.ieeecomputersociety.org/
10.1109/TC.2012.142.

W. Gerstner, R. Kempter, J.L. Van Hemmen, H. Wagner, et al. A neuronal learning rule for
sub-millisecond temporal coding. Nature, 383(6595):76–78, 1996.

241

http://jn.physiology.org/content/98/6/3648.abstract
http://jn.physiology.org/content/98/6/3648.abstract
http://dx.doi.org/10.1162/neco.2007.19.6.1468
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://dx.doi.org/10.1371%2Fjournal.pcbi.1003024
http://dx.doi.org/10.1371%2Fjournal.pcbi.1003024
http://arxiv.org/abs/1303.6708
http://arxiv.org/abs/1303.6708
http://www.frontiersin.org/synaptic_neuroscience/10.3389/fnsyn.2010.00019/abstract
http://www.frontiersin.org/synaptic_neuroscience/10.3389/fnsyn.2010.00019/abstract
http://www.frontiersin.org/synaptic_neuroscience/10.3389/fnsyn.2010.00029/abstract
http://www.frontiersin.org/synaptic_neuroscience/10.3389/fnsyn.2010.00029/abstract

References

Ricardo Gonzalez and Mark Horowitz. Energy dissipation in general purpose microprocessors.
IEEE Journal of Solid-State Circuits, 31(9):1277–1284, September 1996.

Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, and Robert G. Meyer. Analysis and design of
analog integrated circuits, fourth edition. John Wiley & Sons, 2001. ISBN 0-471-32168-0.

Andreas Grübl. Personal communication, August 2012.

R. Gütig, R. Aharonov, S. Rotter, and Haim Sompolinsky. Learning input correlations through
nonlinear temporally asymmetric hebbian plasticity. The Journal of Neuroscience, 23(9):3697–
3714, 2003. URL http://www.jneurosci.org/content/23/9/3697.abstract.

P. Hafliger. Adaptive wta with an analog vlsi neuromorphic learning chip. Neural Networks,
IEEE Transactions on, 18(2):551–572, 2007. ISSN 1045-9227. doi: 10.1109/TNN.2006.884676.

Andreas Hartel, Gvidas Sidlauskas, and Andreas Grübl. tc65nm back-end, 2011. personal
communication.

John L. Hennessy and David A. Patterson. Computer architecture: a quantitative approach. Morgan
Kaufmann, Amsterdam, 2007.

Matthias Hock, Andreas Hartel, and Johannes Schemmel. The route65 prototype chip, April
2013. personal communication.

Ronald W. Holz and Stephen K. Fisher. Basic Neurochemistry: Molecular, Cellular and Med-
ical Aspects. Lippincott-Raven, 1999. URL http://www.ncbi.nlm.nih.gov/books/

NBK27911/.

IBM. Ppc405fx embedded processor core userâĂŹs manual, January 2005.

Microcontroller Applications IBM. Developing powerpc embedded application binary interface
(eabi) compliant programs, September 1998a. Version 1.0.

Microelectronics Division IBM. The powerpc 405 core. Whitepaper, November 1998b.

G. Indiveri, E. Chicca, and R. Douglas. A VLSI array of low-power spiking neurons and bistable
synapses with spike-timing dependent plasticity. IEEE Transactions on Neural Networks, 17(1):
211–221, Jan 2006.

E.M. Izhikevich. Solving the distal reward problem through linkage of stdp and dopamine
signaling. Cerebral Cortex, 17(10):2443–2452, 2007a.

Eugene M. Izhikevich. Solving the distal reward problem through linkage of stdp and
dopamine signaling. Cerebral Cortex, 17(10):2443–2452, 2007b. doi: 10.1093/cercor/bhl152.
URL http://cercor.oxfordjournals.org/content/17/10/2443.abstract.

E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural Science. McGraw-Hill, New
York, 4 edition, 2000.

Bernard Katz. The release of neural transmitter substances, volume 10. Liverpool University Press,
1969.

242

http://www.jneurosci.org/content/23/9/3697.abstract
http://www.ncbi.nlm.nih.gov/books/NBK27911/
http://www.ncbi.nlm.nih.gov/books/NBK27911/
http://cercor.oxfordjournals.org/content/17/10/2443.abstract

References

Brian W. Kernighan and Dennis M. Ritchie. The m4 macro processor. Technical report, Bell
Laboratories, Murray Hill, New Jersey 07974, July 1977.

MM Khan, DR Lester, Luis A Plana, A Rast, X Jin, E Painkras, and Stephen B Furber. Spinnaker:
mapping neural networks onto a massively-parallel chip multiprocessor. In Neural Networks,
2008. IJCNN 2008.(IEEE World Congress on Computational Intelligence). IEEE International Joint
Conference on, pages 2849–2856. IEEE, 2008.

P.R. Kinget. Device mismatch: an analog design perspective. In Circuits and Systems, 2007.
ISCAS 2007. IEEE International Symposium on, pages 1245–1248. IEEE, 2007.

Alex Kononov. Testing of an analog neuromorphic network chip. Diploma thesis (English),
University of Heidelberg, HD-KIP-11-83, 2011.

Alexander Kononov. Personal communication, 2013.

Raphael Lamprecht and Joseph LeDoux. Structural plasticity and memory. Nature Reviews
Neuroscience, 5(1):45–54, 2004.

R. Legenstein, D. Pecevski, and W. Maass. A learning theory for reward-modulated spike-
timing-dependent plasticity with application to biofeedback. PLoS Computational Biology, 4
(10):e1000180, 2008.

Benedetta Leuner and Elizabeth Gould. Structural plasticity and hippocampal func-
tion. Annual Review of Psychology, 61(1):111–140, 2010. doi: 10.1146/annurev.
psych.093008.100359. URL http://www.annualreviews.org/doi/abs/10.1146/

annurev.psych.093008.100359. PMID: 19575621.

J. Madrenas and J.M. Moreno. Strategies in simd computing for complex neural bioinspired
applications. In Adaptive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on,
pages 376–381, 2009. doi: 10.1109/AHS.2009.31.

H. Markram. The blue brain project. Nature Reviews Neuroscience, 7(2):153–160, 2006.

H. Markram, J. Lübke, and B. Sakmann. Regulation of synaptic efficacy by coincidence of
postsynaptic aps. Science, 275:213–215, 1997.

Henry Markram, Wulfram Gerstner, and Per Jesper Sjöström. A history of spike-timing-
dependent plasticity. Frontiers in synaptic neuroscience, 3, 2011.

Stephen Martin, P. D. Grimwood, and R. G. M. Morris. Synaptic plasticity and memory: An
evaluation of the hypothesis. Annual Review of Neuroscience, 23:649–711, March 2000. doi:
10.1146/annurev.neuro.23.1.649.

C. A. Mead. Analog VLSI and Neural Systems. Addison Wesley, Reading, MA, 1989.

C. A. Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78:1629–1636, 1990.

Sebastian Millner. Development of a Multi-Compartment Neuron Model Emulation. PhD thesis,
November 2012. URL http://www.ub.uni-heidelberg.de/archiv/13979.

243

http://www.annualreviews.org/doi/abs/10.1146/annurev.psych.093008.100359
http://www.annualreviews.org/doi/abs/10.1146/annurev.psych.093008.100359
http://www.ub.uni-heidelberg.de/archiv/13979

References

Sebastian Millner. Personal communication, 2013.

Sebastian Millner, Andreas Grübl, Karlheinz Meier, Johannes Schemmel, and Marc-Olivier
Schwartz. A VLSI implementation of the adaptive exponential integrate-and-fire neuron
model. In J. Lafferty et al., editors, Advances in Neural Information Processing Systems 23, pages
1642–1650, 2010.

S. Mitra, S. Fusi, and G. Indiveri. Real-time classification of complex patterns using spike-based
learning in neuromorphic vlsi. Biomedical Circuits and Systems, IEEE Transactions on, 3(1):
32–42, 2009. ISSN 1932-4545. doi: 10.1109/TBCAS.2008.2005781.

Abigail Morrison, Markus Diesmann, and Wulfram Gerstner. Phenomenological models of
synaptic plasticity based on spike timing. Biological Cybernetics, 98(6):459–478, June 2008.
ISSN 0340-1200. doi: 10.1007/s00422-008-0233-1.

Tobias Nonnenmacher. Verification of an embedded processor for synaptic plasticity, August
2011. Bachelor thesis.

Eilen Nordlie, Marc-Oliver Gewaltig, and Hans Ekkehard Plesser. Towards reproducible
descriptions of neuronal network models. PLoS Comput Biol, 5(8):e1000456, 08 2009. doi:
10.1371/journal.pcbi.1000456. URL http://dx.doi.org/10.1371%2Fjournal.pcbi.

1000456.

NXP Semiconductors. Lpc2939 arm9 microcontroller with can, lin, and usb, April 2010. URL
http://www.nxp.com/documents/data_sheet/LPC2939.pdf. Rev. 3.

OCP. Open core protocol specification 3.0, 2009. URL http://www.ocpip.org/home.

OpenCores. Or1200 openrisc processor. Website, April 2013. URL http://opencores.org/

or1k/OR1200_OpenRISC_Processor.

OpenRISC Project. Website, April 2013. URL openrisc.net.

Nikolai Otmakhov, Aneil M. Shirke, and Roberto Malinow. Measuring the impact of prob-
abilistic transmission on neuronal output. Neuron, 10(6):1101 – 1111, 1993. ISSN 0896-
6273. doi: 10.1016/0896-6273(93)90058-Y. URL http://www.sciencedirect.com/

science/article/pii/089662739390058Y.

B. Pakkenberg and H.J. Gundersen. Neocortical Neuron Number in Humans: Effect of Age
and Sex. J Comp Neurol., 384(2):312–320, July 1997.

Bente Pakkenberg, Dorte Pelvig, Lisbeth Marner, Mads J Bundgaard, Hans Jørgen G Gundersen,
Jens R Nyengaard, and Lisbeth Regeur. Aging and the human neocortex. Experimental
gerontology, 38(1):95–99, 2003.

David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 2 edition, 1996.

Verena Pawlak and Jason ND Kerr. Dopamine receptor activation is required for corticostriatal
spike-timing-dependent plasticity. The Journal of Neuroscience, 28(10):2435–2446, 2008.

244

http://dx.doi.org/10.1371%2Fjournal.pcbi.1000456
http://dx.doi.org/10.1371%2Fjournal.pcbi.1000456
http://www.nxp.com/documents/data_sheet/LPC2939.pdf
http://www.ocpip.org/home
http://opencores.org/or1k/OR1200_OpenRISC_Processor
http://opencores.org/or1k/OR1200_OpenRISC_Processor
openrisc.net
http://www.sciencedirect.com/science/article/pii/089662739390058Y
http://www.sciencedirect.com/science/article/pii/089662739390058Y

References

Verena Pawlak, Jeffery R Wickens, Alfredo Kirkwood, and Jason ND Kerr. Timing is not
everything: neuromodulation opens the stdp gate. Frontiers in synaptic neuroscience, 2, 2010.

R. Peter et al. Synaptic density in human frontal cortexâĂŤdevelopmental changes and effects
of aging. Brain research, 163(2):195–205, 1979.

W.W. Peterson and D.T. Brown. Cyclic codes for error detection. Proceedings of the IRE, 49(1):
228–235, 1961. ISSN 0096-8390. doi: 10.1109/JRPROC.1961.287814.

Thomas Pfeil. Personal communication, 2012.

Thomas Pfeil, Tobias C Potjans, Sven Schrader, Wiebke Potjans, Johannes Schemmel, Markus
Diesmann, and Karlheinz Meier. Is a 4-bit synaptic weight resolution enough? - constraints
on enabling spike-timing dependent plasticity in neuromorphic hardware. Frontiers in
Neuroscience, 6(90), 2012. ISSN 1662-453X. doi: 10.3389/fnins.2012.00090.

D Plenz and Ad Aertsen. Neural dynamics in cortex-striatum co-cultures–ii. spatiotemporal
characteristics of neuronal activity. Neuroscience, 70(4):893–924, Feb 1996.

Wiebke Potjans, Markus Diesmann, and Abigail Morrison. An imperfect dopaminergic error
signal can drive temporal-difference learning. PLoS Comput Biol, 7(5):e1001133, 05 2011. doi:
10.1371/journal.pcbi.1001133. URL http://dx.doi.org/10.1371%2Fjournal.pcbi.

1001133.

Johan Pouwelse, Koen Langendoen, and Henk Sips. Dynamic voltage scaling on a low-power
microprocessor. In Proceedings of the 7th annual international conference on Mobile computing
and networking, pages 251–259. ACM, 2001.

PowerISA. PowerISA version 2.03. Technical report, power.org, September 2006. Available at
http://www.power.org/resources/reading/.

PowerISA. PowerISA version 2.06 revision b. Technical report, power.org, July 2010. Available
at http://www.power.org/resources/reading/.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T Vetterling. Numerical recipes in C: The
art of scientific computing. Cambridge University Press, online ed. edition, 1992. URL
http://www.nr.com.

S. Ramakrishnan, P.E. Hasler, and C. Gordon. Floating gate synapses with spike-time-
dependent plasticity. Biomedical Circuits and Systems, IEEE Transactions on, 5(3):244–252,
2011.

R. Rescorla. Rescorla-wagner model. Scholarpedia, 3(3):2237, 2008. doi: 10.4249/scholarpedia.
2237. URL http://www.scholarpedia.org/article/Rescorla-Wagner_model.

Robert A Rescorla and Allan R Wagner. A theory of pavlovian conditioning: Variations in
the effectiveness of reinforcement and nonreinforcement. Classical conditioning II: Current
research and theory, pages 64–99, 1972.

245

http://dx.doi.org/10.1371%2Fjournal.pcbi.1001133
http://dx.doi.org/10.1371%2Fjournal.pcbi.1001133
http://www.power.org/resources/reading/
http://www.power.org/resources/reading/
http://www.nr.com
http://www.scholarpedia.org/article/Rescorla-Wagner_model

References

N.J. Rohrer, M. Canada, E. Cohen, M. Ringler, M. Mayfield, P. Sandon, P. Kartschoke, J. Heaslip,
J. Allen, P. McCormick, T. Pfluger, J. Zimmerman, C. Lichtenau, T. Werner, G. Salem, M. Ross,
D. Appenzeller, and D. Thygesen. Powerpc 970 in 130 nm and 90 nm technologies. In
Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE International,
pages 68–69 Vol.1, 2004. doi: 10.1109/ISSCC.2004.1332597.

Kaushik Roy, Saibal Mukhopadhyay, and Hamid Mahmoodi-Meimand. Leakage current
mechanisms and leakage reduction techniques in deep-submicrometer cmos circuits. In
Proceedings of the IEEE, volume 91, pages 305 – 327. IEEE, February 2003.

Rachael I Scahill, Chris Frost, Rhian Jenkins, Jennifer L Whitwell, Martin N Rossor, and Nick C
Fox. A longitudinal study of brain volume changes in normal aging using serial registered
magnetic resonance imaging. Archives of neurology, 60(7):989, 2003.

J. Schemmel. personal communication, 2012.

J. Schemmel, K. Meier, and E. Muller. A new VLSI model of neural microcircuits including
spike time dependent plasticity. In Proceedings of the 2004 International Joint Conference on
Neural Networks (IJCNN’04), pages 1711–1716. IEEE Press, 2004.

J. Schemmel, A. Grübl, K. Meier, and E. Muller. Implementing synaptic plasticity in a VLSI
spiking neural network model. In Proceedings of the 2006 International Joint Conference on
Neural Networks (IJCNN). IEEE Press, 2006.

J. Schemmel, D. Brüderle, K. Meier, and B. Ostendorf. Modeling synaptic plasticity within
networks of highly accelerated I&F neurons. In Proceedings of the 2007 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 3367–3370. IEEE Press, 2007.

J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration of analog neural networks. In
Proceedings of the 2008 International Joint Conference on Neural Networks (IJCNN), 2008.

J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner. A wafer-scale neuro-
morphic hardware system for large-scale neural modeling. In Proceedings of the 2010 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1947–1950, 2010.

Johannes Schemmel. Systemverilog sram controller. Personal communication, 2011.

Johannes Schemmel, Andreas Grübl, Sebastian Millner, and Simon Friedmann. Specification of
the HICANN microchip. FACETS and BrainScaleS project internal documentation, 2012.

Stefan Scholze, Stefan Schiefer, Johannes Partzsch, Stephan Hartmann, Christian Georg Mayr,
Sebastian Höppner, Holger Eisenreich, Stephan Henker, Bernhard Vogginger, and Rene
Schüffny. VLSI implementation of a 2.8GEvent/s packet based AER interface with routing
and event sorting functionality. Frontiers in Neuromorphic Engineering, 5(117):1–13, 2011.

Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction and
reward. Science, 275(5306):1593–1599, 1997.

246

References

J. Seo, B. Brezzo, Y. Liu, B.D. Parker, S.K. Esser, R.K. Montoye, B. Rajendran, J.A. Tierno,
L. Chang, D.S. Modha, and D.J. Friedman. A 45nm cmos neuromorphic chip with a scalable
architecture for learning in networks of spiking neurons. In Custom Integrated Circuits
Conference (CICC), 2011 IEEE, pages 1 –4, sept. 2011. doi: 10.1109/CICC.2011.6055293.

Geun Hee Seol, Jokubas Ziburkus, ShiYong Huang, Lihua Song, In Tae Kim, Kogo Takamiya,
Richard L Huganir, Hey-Kyoung Lee, and Alfredo Kirkwood. Neuromodulators control the
polarity of spike-timing-dependent synaptic plasticity. Neuron, 55(6):919–929, 2007.

M. Shafi, Y. Zhou, J. Quintana, C. Chow, J. Fuster, and M. Bodner. Variability in neuronal activity
in primate cortex during working memory tasks. Neuroscience, 146(3):1082 – 1108, 2007. ISSN
0306-4522. doi: 10.1016/j.neuroscience.2006.12.072. URL http://www.sciencedirect.

com/science/article/pii/S0306452206017593.

D. Shapiro, J. Parri, J. M Desmarais, V. Groza, and M. Bolic. Asips for artificial neural net-
works. In Applied Computational Intelligence and Informatics (SACI), 2011 6th IEEE International
Symposium on, pages 529–533, 2011. doi: 10.1109/SACI.2011.5873060.

Sadique Sheik, Martin Coath, Giacomo Indiveri, Susan L Denham, Thomas Wennekers,
and Elisabetta Chicca. Emergent auditory feature tuning in a real-time neuromorphic
vlsi system. Frontiers in Neuroscience, 6(17), 2012. ISSN 1662-453X. doi: 10.3389/fnins.
2012.00017. URL http://www.frontiersin.org/neuromorphic_engineering/

10.3389/fnins.2012.00017/abstract.

K.L. Shepard and V. Narayanan. Noise in deep submicron digital design. In Proceedings of
the 1996 IEEE/ACM international conference on Computer-aided design, pages 524–531. IEEE
Computer Society, 1997.

Tajana Simunic, Luca Benini, Andrea Acquaviva, Peter Glynn, and Giovanni De Micheli.
Dynamic voltage scaling and power management for portable systems. In Proceedings of the
38th annual Design Automation Conference, pages 524–529. ACM, 2001.

Jesper Sjöström and Wulfram Gerstner. Spike-timing dependent plasticity. Scholarpedia, 5
(2):1362, 2010. doi: 10.4249/scholarpedia.1362. URL http://www.scholarpedia.org/

article/Spike-timing_dependent_plasticity.

Per Jesper Sjöström, Gina G Turrigiano, and Sacha B Nelson. Rate, timing, and cooperativity
jointly determine cortical synaptic plasticity. Neuron, 32(6):1149 – 1164, 2001. ISSN 0896-
6273. doi: 10.1016/S0896-6273(01)00542-6. URL http://www.sciencedirect.com/

science/article/pii/S0896627301005426.

Per Jesper Sjöström, Gina G. Turrigiano, and Sacha B. Nelson. Endocannabinoid-dependent
neocortical layer-5 ltd in the absence of postsynaptic spiking. Journal of Neurophysiology,
92(6):3338–3343, 2004. doi: 10.1152/jn.00376.2004. URL http://jn.physiology.org/

content/92/6/3338.abstract.

James E. Smith. A study of branch prediction strategies. In 25 years of the international
symposia on Computer architecture (selected papers), ISCA ’98, pages 202–215, New York,
NY, USA, 1998. ACM. ISBN 1-58113-058-9. doi: 10.1145/285930.285980. URL http:

//doi.acm.org/10.1145/285930.285980.

247

http://www.sciencedirect.com/science/article/pii/S0306452206017593
http://www.sciencedirect.com/science/article/pii/S0306452206017593
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2012.00017/abstract
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2012.00017/abstract
http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://www.sciencedirect.com/science/article/pii/S0896627301005426
http://www.sciencedirect.com/science/article/pii/S0896627301005426
http://jn.physiology.org/content/92/6/3338.abstract
http://jn.physiology.org/content/92/6/3338.abstract
http://doi.acm.org/10.1145/285930.285980
http://doi.acm.org/10.1145/285930.285980

References

J.E. Smith and A.R. Pleszkun. Implementation of precise interrupts in pipelined processors, volume 13.
IEEE Computer Society Press, 1985.

G.S. Snider. Spike-timing-dependent learning in memristive nanodevices. In Nanoscale Archi-
tectures, 2008. NANOARCH 2008. IEEE International Symposium on, pages 85–92, 2008. doi:
10.1109/NANOARCH.2008.4585796.

Sen Song and L. F. Abbott. Cortical development and remapping through
spike timing-dependent plasticity. Neuron, 32(2):339–350, October 2001. URL
http://www.sciencedirect.com/science/article/B6WSS-4C5RF9F-K/2/

4ea9cc32d87453c29c4d5247b9b38995.

Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian learning through
spike-timing-dependent synaptic plasticity. Nature neuroscience, 3(9):919–926, 2000.

J. E. R. Staddon and Y. Niv. Operant conditioning. Scholarpedia, 3(9):2318, 2008. URL http:

//www.scholarpedia.org/article/Operant_conditioning.

Richard Stallman. Using the GNU Compiler Collection. Free Software Foundation, 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301 USA, for gcc version 4.5.4 edition, 2012. URL
http://gcc.gnu.org.

Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams. The missing
memristor found. Nature, 453(7191):80–83, 2008.

R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction, volume 1. Cambridge Univ
Press, 1998.

Inc. Synopsys. Design compiler. www.synopsys.com, 2012.

Synplify Premier Fast, Reliable FPGA Implementation and Debug. Synopsys, Inc., 700 East Middle-
field Road, Mountain View, CA 94043, 2012.

SystemVerilog. SystemVerilog 3.1a Language Reference Manual. Accellera, 2004.

Texas Instruments. Msp430f543x, msp430f541x mixed signal microcontroller, MArch 2010.
URL http://www.ti.com/lit/gpn/msp430f5438. Revision C.

A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, 42:230–265, 1937.

J. D. Victor and K. P. Purpura. Nature and precision of temporal coding in visual cortex: a
metric-space analysis. J Neurophysiol, 76(2):1310–1326, 1996.

Corinna Vinschen and Jeff Johnston. newlib c library. website, March 2013. URL http:

//sourceware.org/newlib/.

R. Jacob Vogelstein, Francesco Tenore, Ralf Philipp, Miriam S. Adlerstein, David H. Goldberg,
and Gert Cauwenberghs. Spike timing-dependent plasticity in the address domain. In
S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information Processing
Systems 15, pages 1147–1154, Cambridge, MA, 2003. MIT Press.

248

http://www.sciencedirect.com/science/article/B6WSS-4C5RF9F-K/2/4ea9cc32d87453c29c4d5247b9b38995
http://www.sciencedirect.com/science/article/B6WSS-4C5RF9F-K/2/4ea9cc32d87453c29c4d5247b9b38995
http://www.scholarpedia.org/article/Operant_conditioning
http://www.scholarpedia.org/article/Operant_conditioning
http://gcc.gnu.org
http://www.ti.com/lit/gpn/msp430f5438
http://sourceware.org/newlib/
http://sourceware.org/newlib/

References

J. von Neumann. First draft of a report on the edvac. Technical report, Moore School of
Electrical Engeneering Library, University of Pennsylvania, 1945. Transscript in: M. D.
Godfrey: Introduction to “The first draft report on the EDVAC” by John von Neumann.
IEEE Annals of the History of Computing 15(4), 27–75 (1993).

Huai-Xing Wang, Richard C Gerkin, David W Nauen, and Guo-Qiang Bi. Coactivation and
timing-dependent integration of synaptic potentiation and depression. Nature neuroscience,
8(2):187–193, 2005.

Reinhold P Weicker. Dhrystone: a synthetic systems programming benchmark. Communications
of the ACM, 27(10):1013–1030, 1984.

Cornelius Weiller, FranÃğois Chollet, Karl J. Friston, Richard J. S. Wise, and Richard S. J. Frack-
owiak. Functional reorganization of the brain in recovery from striatocapsular infarction in
man. Annals of Neurology, 31(5):463–472, 1992. ISSN 1531-8249. doi: 10.1002/ana.410310502.
URL http://dx.doi.org/10.1002/ana.410310502.

Maurice V. Wilkes. The growth of interest in microprogramming: A literature survey. ACM
Computing Surveys (CSUR), 1(3):139–145, 1969.

ML505/ML506/M ML505/ML506/ML507 Evaluation Platform User Guide. Xilinx, Inc., November
2008. v3.1.

Virtex-4 FPGA Embedded Processor Block with PowerPC 405 Processor. Xilinx, Inc., April 2009a.
URL http://www.xilinx.com/support/documentation/ip_documentation/

ppc405_virtex4.pdf. version 2.01b.

Virtex-5 FPGA User Guide. Xilinx, Inc., 2009b. URL http://www.xilinx.com.

MicroBlaze Processor Reference Guide. Xilinx, Inc., January 2012a. URL http://www.xilinx.

com/support/documentation/sw_manuals/xilinx13_4/mb_ref_guide.pdf.
version 13.4.

PlanAhead User Guide. Xilinx, Inc., January 2012b. v13.4.

Ji-Chuan Zhang, Pak-Ming Lau, and Guo-Qiang Bi. Gain in sensitivity and loss in temporal
contrast of stdp by dopaminergic modulation at hippocampal synapses. Proceedings of the
National Academy of Sciences, 106(31):13028–13033, 2009.

Xiaotong Zhuang and Santosh Pande. Power-efficient prefetching for embedded processors.
ACM Trans. Embed. Comput. Syst., 6(1), February 2007. ISSN 1539-9087. doi: 10.1145/1210268.
1210271. URL http://doi.acm.org/10.1145/1210268.1210271.

Steve Zucker and Kari Karhi. System v application binary interface powerpc processor supple-
ment, September 1995. Revision A.

Victor Zyuban and Peter Kogge. Optimization of high-performance superscalar architectures
for energy efficiency. In Proceedings of the 2000 international symposium on Low power electronics
and design, pages 84–89. ACM, 2000.

249

http://dx.doi.org/10.1002/ana.410310502
http://www.xilinx.com/support/documentation/ip_documentation/ppc405_virtex4.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ppc405_virtex4.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/mb_ref_guide.pdf
http://doi.acm.org/10.1145/1210268.1210271

Danksagungen

Zum Ende dieser Arbeit möchte ich noch all jenen danken, die mich auf dem Weg
hierher unterstützt haben:

Zunächst natürlich Herrn Prof. Meier, der diese Arbeit ermöglicht hat und immer
eine Unterstützung war. Herrn Prof. Brüning, dafür, dass er sich bereit erklärt hat das
Zweitgutachten zu übernehmen. Herrn Prof. Klingeler und Herrn Prof. Schwarz, als
weiter Mitglieder meiner Prüfungskommission.

Besonderer Dank gilt Dr. Johannes Schemmel, für den Entwurf der Synapsen und
die ursprüngliche Idee eines Plastizitätsprozessors. Sein unglaubliches Fachwissen
wird nur noch durch seinen Optimismus übertroffen. Matthias Hock, für spannende
Chip-Submissionen, einen sorgenfreien Laboraufbau, praktische Hilfe bei unzähligen
Dingen, dem rigorosen Korrekturlesen, täglichen Flurgesprächen und nicht zuletzt
dafür ein guter Freund zu sein. Andreas Hartel und Dr. Andreas Grübl für die Backend
Arbeit und letzterem vor allem auch fürs Korrekturlesen. Auch den restlichen Visions
sei gedankt, für die freundliche Atmosphäre und ihre Hilfsbereitschaft.

Dank gilt auch Tobias Nonnenmacher, der mit seiner Bachelorarbeit einen Beitrag
zur Verifikation des Prozessors geleistet hat. Dr. Nicolas Frémaux für produktive
Zusammenarbeit an einem spannenden Thema und einem angenehmen Aufenthalt in
Lausanne (merci beaucoup!).

Ohne die Unterstützung und Rücksichtnahme meiner Eltern, die mir stets den
Rücken frei gehalten und mich motiviert haben, wäre ich sicher nicht an den Punkt
gekommen diese Arbeit schreiben zu können. Danke dafür!

Ganz besonderer Dank schließlich gilt meiner Ursula, die nicht nur meine Metamor-
phose zum Zombie erdulden musste, sondern neben moralischer Unterstützung auch
tatkräftig Korrektur gelesen hat.

	List of Figures
	List of Tables
	Introduction
	The BrainScaleS wafer-scale system
	Models of plasticity
	Spike-timing dependent plasticity
	Phenomenological models from biology
	Reward-modulated STDP

	Design goals for neuromorphic hardware

	Theory
	Requirements for hardware
	Two-factor STDP
	Reward-modulated STDP
	Phenomenological models

	Abstract hybrid hardware model
	Combining analog and digital computing
	What type of digital part is needed?

	The abstract hybrid hardware model
	Using the abstract model for plasticity
	Acceleration in time
	Discretized weights
	Local analog processing in the synapse
	Global digital processing by the processor
	Drift of analog storage
	Mismatch
	Dynamic analog noise
	Processing speed
	Communication latency

	Reward modulated STDP
	Baseline performance
	Mapping reward modulated STDP to the AHM
	Discretized weights
	Threshold readout
	Robustness to variations in the drift model
	Mismatch on the evaluation function
	Delayed reward
	Guidelines for hardware implementation

	Hardware design
	Plasticity processor technology
	Design principles
	Instruction set architecture
	Microarchitecture
	Instruction fetching and control transfers
	Instruction cache
	Instruction scheduling
	Result shift register
	Write back channels
	Lookup cache and variable-latency operations
	Write-through optimization
	Pre-decoding instructions
	Multi cycle operations
	Scheduling instructions to functional units

	Execution in the back end
	Functional units
	Input/output over the plasticity processor bus
	Multiplier and divider

	Interrupts & Exceptions
	Interrupt processing
	Saving the return address
	Asynchronous interrupts
	Precise interrupt problem
	Critical and machine check interrupts

	Timer facility
	General purpose input/output registers

	On-chip bus technology
	Motivation and design goals
	Interface specification
	Basic bus fabric building blocks
	Bus arbiter
	Bus delay
	Bus splitter
	Example bus configuration

	Additional bus building blocks
	Register target
	Serializer/Deserializer
	RAM interface adapter
	HICANN system bus adapter

	Methodology: using code generation for bus specification

	STDP logic in the BrainScaleS wafer-scale system
	HICANN synapse array interface
	Structural description
	Analog evaluation
	Control sequences on synapses

	Non-programmable STDP implementation
	Functional overview
	Design of the bus interconnect
	Structure of the design
	Operation of the access state machine
	Automatic weight update controller

	Synapse array interface adapter for programmable STDP
	Detailed description

	SYNAPSE special function unit
	Special purpose registers
	Vector registers
	Look-up table registers
	Pattern register
	Select state register

	Special purpose instructions
	Apply mapping from look-up table to vector elements
	Compare elements with immediate
	Select elements from two vectors
	Perform operation sequences
	Swap vector register file
	Register move instructions

	Code example
	Design considerations for the instruction set extension
	Implementation

	Native Vector Extension

	Functional verification and software support
	Directed verification: program level testing
	Generating the expected result memory image
	The CoreMark Benchmark for directed testing
	Test results

	Constrained random verification: instruction level testing
	Verification framework

	Constrained random verification: instruction sequence testing
	Automatic program generation

	Verification of the plasticity processor bus
	Writing software for the plasticity processor
	From source code to program execution

	Hardware systems and their evaluation
	FPGA prototype
	Benchmarking with CoreMark
	Influence of compiler optimization options
	Influence of issue to retire latency
	Influence of in-time issuing and write-through
	Influence of branch prediction
	Influence of variable latency load/store
	Influence of instruction cache
	Maximizing performance
	Comparison to other processors

	Prototype ASIC in 65 nm technology
	Design overview
	Global clock gate
	General purpose input/output pins
	Timer facility and interrupt controller
	Program suspension with hardware breakpoints
	Processor options

	Implementation and area requirements
	Experimental results
	Frequency and supply voltage operating range
	Power consumption
	Effect of clock gating
	Power consumption by individual instructions

	BrainScaleS wafer-scale system with non-programmable STDP
	Simulation results: updating performance
	Verification of automatic weight update logic in hardware
	Test of evaluation comparator
	Event transmission crosstalk

	In preparation: BrainScaleS wafer-scale system with plasticity processor
	Design overview
	Bus structure
	Rate counter

	Simulation results: weight updating performance
	Benchmark programs
	Results

	Area requirements
	Status of the implementation

	Discussion and outlook
	Discussion of main results
	Abstract hybrid hardware model and results for reward-modulated STDP
	Plasticity processor
	Instruction set extension for operations on neuromorphic synapses
	Non-programmable STDP implementation
	65 nm prototype
	Plasticity processor in the BrainScaleS wafer-scale system
	From guidelines to implementation

	Directions for future hardware
	Maximizing performance in the HEPP design
	Maximizing flexibility in future 65 nm systems

	Conclusion

	Tabular description of used neural network models
	Supported Power ISA subset
	Supplemental design description
	External interfaces of the plasticity processor
	RAM interface
	Plasticity processor bus interface

	Scheduling state machine graph
	OCP configuration options of the plasticity processor bus
	Synapse array interface signals

	Glossary
	References

