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A B S T R A C T- Z U S A M M E N FA S S U N G

This work introduces two investigations on possible new weak lens-
ing applications. In the first part, I present a study on the possibility
of detecting baryon acoustic oscillations by means of 3d weak lensing
(3dWL). Basing our analysis on a Fisher matrix approach, we quan-
tify the uncertainty on inferring the amplitude of the power spectrum
wiggles with 3dWL. Ultimately, we find that surveys like Euclid and
DES should be able to detect, respectively, the first four and three os-
cillations, with errors reaching the 1% or 10% of the amplitude for the
first two wiggles in the case of Euclid. The second part of this work
focuses on the study of primordial non-Gaussianities with a classical
weak lensing approach. We study inflationary bi- and trispectra, the
strentgh of their signals, and the consequences of fitting data with
a wrong type of bispectrum on the inferred on fNL. We conclude
that contraints on fNL are not competitive with the ones from CMB,
but nonetheless valuable in case of a scale-dependent fNL. Lastly, we
quantify lensing ability to test the Suyama-Yamaguchi inequality, and
ascertain that Euclid could give evidence in favour or against the in-
equality for large non-Gaussianity values (τNL > 105 or fNL > 102).

In dieser Arbeit untersuche ich zwei neue Anwendungsmöglich-
keiten des schwachen kosmischen Linseneffekts. In dem ersten Teil
meiner Dissertation zeige ich die Ergebnisse einer statistische Studie,
die den Fisher-Formalismus verwendet, ob baryonische Oszillationen
in dreidimensionalen Abbildungen der kosmischen Struktur über den
Linseneffekt detektiert werden können. Mein Ergebnisse zeigen, dass
Durchmusterungen wie Euclid und DES die ersten vier oder drei
Oszillationen erkennen, wobei die Amplitude der ersten beiden Os-
zillationen statistische Fehler im Prozentbereich haben. Im zweiten
Teil untersuche ich primordiale nicht-Gaußianitäten durch den klas-
sischen Linseneffekt, insbesondere inflationäre Bi- und Trispektren,
deren Signalstärke und die Auswirkungen einer falschen Modellwahl
auf die Messung von Parametern wie fNL. Ich zeige, dass Einschränkun-
gen auf fNL nicht mit dem CMB konkurrenzfähig sind, es sei denn die
nicht-Gaußianitäten wären skalenabhängig. Schließlich untersuche ich
die Möglichkeit, mit dem Linseneffekt die Suyama-Yamaguchi-Un-
gleichung zu testen, wobei Euclid in der Lage sein sollte, statistische
Tests im Parameterbereich τNL > 105 und fNL > 102 durchzuführen.
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P R E FA C E

Many steps have been made since 1915, when Albert Einstein first
published his work on a relativistic theory of gravity, marking the
birth of modern cosmology. Back then, it was thought that our Uni-
verse coincided with the Milky Way, and there was no reason to doubt
its staticity. In a decade, both conceptions would have been proven
wrong: Observations by Edwin Hubble and, before him, Vesto Slipher,
suggested in 1924 that our galaxy was just one among many, and that
such distant objects were receding from us, as if the Universe was
expanding. Friedmann’s equations, derived a couple of years earlier
from Einstein’s general relativity under the assumptions of homo-
geneity and isotropy of the Universe, had been themselves implicitly
- and, back then, surprisingly - supporting an expanding Cosmos.
This was just the beginning of the series of processes that led many
common conceptions about our Universe to be revolutionized.

In less than one century, we came to learn that the initial assump-
tions of homogeneity and isotropy were well-grounded, as the discov-
ery of an extremely uniform background blackbody radiation (CMB)
proved in 1965. We are now familiar with the idea of an expand-
ing Universe, and we are able to make predictions about the rate of
this motion, both in the past and in the future, and infer some of
the consequences it may have on the properties, and the evolution,
of the Cosmos’ content. Overall, we developed a comprehensive stan-
dard model able to describe such properties, and parametrize them by
means of some quantities that are being measured with ever-growing
precision: the cosmological parameters.

Regardless of all its successes, though, the study of our Universe
is far from being a closed issue. Many questions still remain unan-
swered. We still do not know anything about the true nature of dark
matter, postulated to account for several problems: flat rotational
curves in spiral galaxies, dynamical properties of galaxy clusters, or
the small amplitude of primordial density fluctuations, as observed
from the CMB. Such perturbations would not have led to structure
formation as we observe it today, had baryonic matter been the only
gravitationally interacting species. Our understanding of the non-
linear regime of structure formation is also incomplete. In addition,
the origin of the seeds of structure formation, i. e. the primordial dis-
tribution of density fluctuations, is not known, and such a distribu-
tion must be given as an initial condition in the framework of the stan-
dard model. A possible solution to this last issue is given by inflation,
also gracefully solving the problem of the excessive flatness of our

xvii



xviii preface

Universe as well as the CMB problem, in which isotropy is also ob-
served on scales that should not have been causally connected. Infla-
tion postulates the existence of an early period in which the Universe
has undergone an accelerated expansion. Many inflationary models
exist, and all of them naturally predict the genesis of density fluctua-
tions. Furthermore, observations dating back to 1998 detected for the
first time an - unexpected - acceleration of the Universe, opening a
new series of unresolved questions regarding the mechanism that is
driving this peculiar type of expansion. Possible solutions could be
a modified theory of gravity that on larger scales acts differently to
general relativity, or some kind of energy whose properties mimic, in
some sense, the effect of a repulsive gravity. Such a component is usu-
ally referred to as dark energy, and its contribution could either vary
or be uniform with time; in the last case, dark energy would have
the same effect of a cosmological constant Λ, originally introduced
by Einstein in his field equations. These are only a fraction of the still
open questions, and the amount of the understanding we lack makes
cosmology one of the most fecund sciences of our time.

This work, in particular, focuses on two of these unsolved issues.
We know that constraints on the nature and properties of dark en-
ergy, for instance, can be obtained by an accurate description of the
Universe’s expansion history. Such a description can be provided by
standard rulers: objects or properties of known size, and for whom
we can easily retrieve the distance-redshift relation. Baryon acoustic
oscillations, frozen relics of the time when matter and radiation were
coupled together, are promising candidates to the role of standard
rulers, and could indeed help us understanding more about the na-
ture of dark energy. The other problem here addressed involves the
inflationary paradigm. It turns out that many different models of in-
flation predict diverse degrees of deviation from Gaussianity in the
distribution of primordial density fluctuations. A detection of such
deviation, and of its entity, could tell us something about the leading
mechanism responsible for inflation.

Both baryon acoustic oscillations and primordial non-Gaussianities
are observable properties of the matter distribution. The purpose of
this work is then to understand what kind of contribution could a
weak lensing analysis give to the quest for the detection, and mea-
surement, of these two quantities. The weak lensing method, in effect,
can infer informations about the cosmological density field. It does so
by exploiting the relativistic deflection of light due to variations of the
gravitational potential, and hence of the mass distribution.

This thesis is articulated in three parts. Part i has a twofold, in-
troductory purpose. A collection of the main results of modern cos-
mology will be given in Chapter 1, in order to frame the original
research of this work in a wider picture. Here I will review a de-
scription of the Universe’s metric and dynamical properties, when
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homogeneity and isotropy are assumed to be valid on large scales.
Growth of primordial perturbations and their statistical description
will also be concisely addressed, as well as a schematic chronology of
the Universe from its very first instants up to now. The second aim of
this introductory part is to introduce gravitational lensing both gener-
ically, as a relativistic effect, and as a cosmological tool, especially in
its weak limit. A special mention to 3d weak lensing, able to produce
a 3-dimensional shear map by using photometric redshift of galaxies
as an estimate of their distance, will also be given in this chapter.

The following parts will present our two investigations. Part ii will
focus on the possibility of detecting baryon acoustic oscillations by
means of 3d weak lensing. It constitutes of Chapter 3, where I first
examine the physics governing the baryon oscillations genesis. I will
continue by introducing the concept of standard rulers, proving that
baryon acoustic oscillations can be considered such, hence providing
motivation for the scientific community interest in these cosmolog-
ical tool. In Chapter 4, I will propose a novel method for their de-
tection. Our method is inspired by some of weak lensing interesting
properties such as, most importantly, its sensitivity to both dark and
baryonic matter, its well understood physics, and its independency
from other methods, especially regarding probed redshift or scales,
but also systematic errors and degeneracies. Unfortunately, the wide
line-of-sight weighting functions arising from the source projection
on the sky plane, renders narrowband features of the matter power
spectrum unobservable with classical weak lensing. A 3d lensing ap-
proach, though, provides a direct estimate of the 3-dimensional mat-
ter distribution. Our study, here reproduced as in Grassi and Schäfer
[2013], quantifies the statistical power of this approach on inferring
the presence of one or more baryon acoustic wiggles, and the preci-
sion that it allows for constraining the spectrum at the oscillations
wavelengths. Such analyses are carried out for future surveys like Eu-
clid, DES, or the hypothetical DEEP. Lastly, our study investigates
how much the uncertainties on the determination of the power spec-
trum are sensitive to some typical survey parameters.

Part ii will be centered on the investigation of primordial non-
Gaussianities with classical weak lensing, starting with an introduc-
tion of such features of the primordial density distribution in Chap-
ter 5. Here I will briefly explain the common traits of inflationary
theories, and why the assumption of a period with an accelerated ex-
pansion made its way over the years in explaining some of the stan-
dard cosmological model contradictions. Moreover, I will enumerate
the possible parametrizations of the deviations from Gaussianity pre-
dicted by some inflationary models, and explain why those devia-
tions can be devised as a means to study the mechanism behind infla-
tion. Thereafter, I will review in Chapter 6 the results we obtained in
Schäfer et al. [2012], where the statistical sensitivity of the weak lens-
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ing bispectrum to the signal from the three main shapes of primordial
non-Gaussianity is tested. Finally, in Chapter 7, I will propose weak
lensing as a method for testing the Suyama-Yamaguchi inequality: It
is a fundamental relation that links two of the non-linear parameters
that describe and parametrize the degree of primordial non-Gauss-
ianities. Although such inequality is a general result, violations are
predicted among certain inflationary models. Being in the condition
to detect this kind of anomalies could indeed help to discriminate
between different, competing models of inflation. Our investigation
starts from the study of the weak lensing bi- and trispectrum and the
computation of the relative signal-to-noise ratio. We give an analytical
expression for the probability of the inequality to be exactly fulfilled,
and we finally estimate the degree of primordial non-Gaussianity al-
lowing to make a reliable statement about the relation.

Chapter iv will ultimately summarize the main results of this thesis,
and Appendix A will briefly outline the numerical method used in
the computation of the 3d weak lensing covariance matrices.

Part of the content presented in this thesis has appeared already, or
will soon appear, in the following publications:

• Detecting baryon acoustic oscillations by 3d weak lensing
A. Grassi and B. M. Schäfer,
submitted to MNRAS, under revision,
arXiv:1303.1024;

• A weak lensing view on primordial non-Gaussianities
B. M. Schäfer, A. Grassi, M. Gerstenlauer and C. Byrnes,
MNRAS, 421:797-807;

• A test for the Suyama-Yamaguchi inequality from weak lensing
A. Grassi, L. Heisenberg, C. Byrnes and B. M. Schäfer,
in preparation



Part I

I N T R O D U C T I O N T O C O S M O L O G Y





1
F O U N D AT I O N S O F C O S M O L O G Y

This chapter intends to be a collection of the main results obtained in
Cosmology. For a more detailed dissertation on the main aspects of
modern cosmology I refer to Coles and Lucchin [2002], Padmanabhan
[1993], Bartelmann [2010b], and to Bartelmann [2012] for an analysis
of the evolution of this discipline over time1.

Before starting, it could be worthwhile pointing out that all along dark and baryonic
matterthis chapter and this Thesis I will refer to ordinary2 matter as baryonic.

By matter, on the other hand, I will mean both baryons and dark matter.
The existence of a type of matter that could only interact by gravity
and possibly by weak force, has been speculated to account for ro-
tation curves of spiral galaxies, inconsistencies betwbeen cluster of
galaxies mass estimates and other probes. Unfortunately, there is still
no direct evidence for a particle with such characteristics, although
many efforts are being done to detect it. For some recent reviews
on the subject, please see Del Popolo [2013], Frenk and White [2012],
Peter [2012], or Einasto [2011].

The present chapter is organized as follows. Section 1.1 will start
from the Cosmological principle and derive the main properties pos-
sessed by a homogeneous and isotropic Universe. In particular, it will
deduce a metric for such a system, define distances, and parametrize
the density of the Cosmos content. Section 1.2, instead, will focus
more on the inhomogeneous part of our Universe, namely on how

1 among the others, I would like to mention Prof. Bartelmann’s lecture notes on Cos-
mology, kindly provided on:
ita.uni-heidelberg.de/research/bartelmann/Lectures/cosmology/.

2 meaning, by ordinary: Able to interact gravitationally and electromagnetically.

3

http://www.ita.uni-heidelberg.de/research/bartelmann/Lectures/cosmology/


4 foundations of cosmology

density perturbations are supposed to evolve, and how they can be
statistically described. Lastly, Section 1.3 will present a schematic
timeline of the Universe, from the first instants after the big bang,
until the beginning of structure formation.

1.1 describing a homogeneous universe

A great part of modern cosmology is based on two very simple as-
sumptions:

1. the properties of the Universe are independent of the direc-
tion when averaged over large scales, therefore the Universe
is isotropic;

2. we are not special or favored observers in any way, and our
position in the Universe is supposed to be comparable with any
other (Copernican principle).

The two statements above imply that the Universe is both homoge-Cosmological
principle neous and isotropic, and are usually referred to as the Cosmological

principle.
In addition, we assume that gravity is described by Einstein’s gen-general relativity

eral relativity. Since the other three fundamental forces (weak, strong,
and electromagnetic) are either intrinsically acting on very small scales
(weak and strong forces), or have their scales limited by charge shield-
ing (electromagnetic force), gravity, whose action is not negligible
even at very large scales, is indeed the most relevant type of inter-
action in the cosmological framework.

1.1.1 Robertson-Walker metric

In general relativity, the line element can be written as ds2 = gijdxidxj.
As soon as the Cosmological-principle ansatz is adopted, it can be
shown that g0i = 0 (isotropy would be violated, otherwise), and
g00 = c2 (the Copernican principle imposes that all fundamental ob-
servers3 witness the same properties and evolution of the Universe),
so that ds2 = c2dt2 + gijdxidxj. Spacetime can therefore be decom-
posed in spatial hypersurfaces at constant time. To preserve isotropy,
these surfaces should only be multiplied by a scale function a(t):

ds2 = c2dt2 − a2(t)dl2. (1.1)

By convention, the scale factor a(t) is normalized in such a way that
a(t0) = a0 = 1, where t0 corresponds to today.

In spherical coordinates l = (r, θ,φ), Equation 1.1 readsRobertson-Walker
metric

3 by fundamental one means free-fall observers, or, equivalently, observers placed in
an inertial frame of reference.



1.1 describing a homogeneous universe 5

ds2 = c2dt2 − a2(t)
[
dr2 + f2K(r)dω

2
]

, (1.2)

where dω is the solid angle element. The previous equation describes
the metric of a homogeneous and isotropic universe, and is called the
Robertson-Walker metric. The quantity fK is a function that is restricted
by homogeneity to the values

fK(r) =


K−1/2sin(K−1/2r) K > 0, spherical,

r K = 0, flat,

|K−1/2|sinh(|K−1/2|r) K > 0, hyperbolic,

(1.3)

with K being a constant value describing spatial curvature.

1.1.2 Metric’s dynamics and density parameters

Homogeneity turns out to be useful also in determining the dynami- ideal fluid:
dissipationless,
subject to pressure
but not to shear
stress

cal properties of the metric, i. e. the dynamical properties of a(t). In
fact, by assuming that pressure p and density ρ of the Universe con-
tent - assumed as an ideal fluid - only depend on time, one can make
use of the Robertson-Walker metric to solve Einstein’s field equations:

Gµν =
8πG

c2
Tµν +Λgµν, (1.4)

where Tµν is the energy momentum tensor, depending on the density
and pressure of the fluid, G is the gravitational constant, Gµν the
Einstein-tensor, linked to the second derivatives of the metric, and Λ
is the cosmological constant. The result is then Friedmann’s

equations(
ȧ

a

)2
=
8πG

3
ρ−

Kc2

a2
+
Λ

3
, (1.5)

ä

a
= −

4πG

3

(
ρ+ 3

p

c2

)
+
Λ

3
. (1.6)

These two relations are called Friedmann’s equations, and they are not
necessarily independent. In effect, the first equation can be recovered
from the integration of the second if the expansion is considered to
be adiabatic, i. e.

d

dt
(a3ρc2) + p

d

dt
(a3) = 0. (1.7)

We can define the logarithmic derivative of the scale factor a(t) as Hubble parameter

the Hubble parameter

H(t) ≡ ȧ
a

, (1.8)
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whose dimension is of course the inverse of a time (the dotted quan-
tity will be intended as derivatives with respect to t).

Starting from the first Friedmann’s equation (Equation 1.5) one can
see that there exists a critical quantity, called ρcr, that, for a Uni-critical density

verse with no cosmological constant, defines the density the Universe
should have to be exactly flat:

ρcr(t) ≡
3H2(t)

8πG
. (1.9)

In some sense, a sphere containing matter at the critical density is
forced to have a perfect balance between gravitational potential and
kinetic energy, causing the expansion to be constant, and the curva-
ture is equal to 1.

It is convenient to express the energy density at a given t of thedensity parameters

species contained in the Universe as a ratio between their density
and ρcr(t), namely the density parameter:

Ωi(t) ≡
ρi(t)

ρcr(t)
. (1.10)

In particular, we can define such a parameter also for the cosmologi-
cal constant Λ,

ΩΛ(t) =
Λ

3H2(t)
, (1.11)

and the curvature K,

ΩK ≡ 1−Ωm0 −Ωr0 −ΩΛ0 = −
Kc2

H20
, (1.12)

where the subscripts 0 indicate that the quantity must be evaluated
today, i. e. t = t0.

Once that the density parameters are defined, one can express the
first Friedmann’s equation in terms of the Ωi, yieldingexpansion function

H2(a) = H20
[
Ωr0a

−4 +Ωm0a
−3 +ΩKa

−2 +ΩΛ0
]

≡ H20E
2(a). (1.13)

The quantity E(a) is called the expansion function, and carries informa-
tion about the expansion history.

1.1.3 Redshift

One key quantity in cosmology is the redshift, that is the relative
change in wavelength of the light emitted by a source and later de-
tected by an observer. If λs is the wavelength emitted by the source,
and λo the one observed, then the redshift is

z ≡ λo − λs

λs
. (1.14)



1.1 describing a homogeneous universe 7

Since this stretching of waves on the fly is given by the recession of the relation between
redshift and scale
factor

source due to cosmic expansion, it comes naturally that z is linked to
the ratio of the scale factors at emission and observation, respectively
as and ao. In particular, we have

1+ z =
ao

as
. (1.15)

1.1.4 Cosmological distances

While a Euclidean description of space-time would allow for a uni-
vocal definition of the distance between two given objects, this is not
anymore true in cosmology. In addition, differently from a static, Eu-
clidean framework, distances will depend on the scale factor, as well.
As it will be shown in this section, there are several ways to define dis-
tance, and although they tend to each other in the limit of a Euclidean
space, they can substantially differ in a more general context.

proper distance (dprop ) is the distance measured by the time it
takes for a light ray to travel from a source placed at a redshift
z2 to an observer put at z1 :

ddprop = −cdt = −c
da
ȧ

, (1.16)

yielding

dprop(z1 , z2) = c

∫ a(z2)
a(z1)

da
ȧ

. (1.17)

comoving distance (dcom ) is the distance that is comoving with
the cosmic flow, therefore evaluated at t = const. It is the dif-
ference of coordinates l (see Equation 1.1) between the source
and the observer along the geodesic ds = 0, giving −cdt =

addcom and

dcom(z1 , z2) = c

∫ a(z2)
a(z1)

da
ȧa

. (1.18)

angular diameter distance (dA ) is defined as the ratio between
the true size of a given source and its angular size as perceived
by the observer. The angular size also depends on the spatial
curvature, and it can be proved that

dA(z1 , z2) =
a(z2)

a(z1)
fK [dcom(z1 , z2)] . (1.19)

Since the quantity a(z2) gets smaller as the source is placed angular diameter
distance is not
monotonic

farther away, the angular diameter distance has the interesting
property of not being monotonically increasing with dcom: As
a result, after a certain z depending on the cosmology objects
tend to look bigger as they are farther.
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luminosity distance (dL ), on the other hand, comes from the
relation existing between the intrinsic luminosity of a source
and the flux received by an observer. It is linked to the angular
diameter distance via the Etherington relation

dl(z1, z2) =
(
L

4πF

)2
=

(
a(z2)

a(z1)

)2
dA(z1, z2), (1.20)

valid in very kind of space time.

1.2 introducing inhomogeneities

The Universe can indeed be considered homogeneous on large scales.
On the other hand, structures like clusters, galaxies, stars, or life it-
self, show that on smaller scale, we have some inhomogeneities to ac-
count for. The origin of the primordial distribution of perturbations is
still subject of debate, although inflation, i. e. a period of accelerated
expansion, may be the source mechanism for such fluctuations (for
more details on this topic, please see Section 5.2). This section will
give a brief overview on how density perturbations evolve with time
and how they can be described statistically.

1.2.1 Linear description of perturbations

For small inhomogeneities, a Newtonian treatment of the problem is
still considered a good approximation. A non-relativistic fluid can be
described by the continuity and Euler equations,continuity, Euler,

and Poisson
equations ∂ρ

∂t
+∇ · ρv = 0, (1.21)

∂v
∂t

+ (v · ∇)v +
1

ρ
∇p+∇Φ = 0, (1.22)

formulating, respectively, mass and momentum conservation. In ad-
dition, the gravitational potential Φ should also satisfy the Poisson
equation

∇2Φ = 4πGρ, (1.23)

that links it to the density field.
Density perturbations can be described via of the density contrastdensity contrast

δ(x, t) ≡ ρ(x, t) − ρ̄(t)
ρ̄(t)

, (1.24)

. By means of linear perturbation theory, from Equation 1.21, Equa-
tion 1.22 and Equation 1.23 it is possible to derive the time evolution
of the density contrast δ:

δ̈(x, t) + 2Hδ̇(x, t) −
c2s
a2
∇2δ(x, t) − 4πGρ0δ(x, t) = 0, (1.25)
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or its equivalent form in Fourier space

δ̈(k, t) + 2Hδ̇(k, t) + δ(k, t)
(
c2s
a2
k2 − 4πGρ0

)
= 0, (1.26)

where a transformation to comoving coordinates r = ax was per-
formed. The term cs, present in both equations, is the sound speed,
such that δp = c2sδρ.

Equation 1.26 naturally defines a scale, called Jeans length Jeans length

λJ ≡
2π

kJ
=

√
c2sπ

Gρ0
, (1.27)

telling us something about the threshold under which pressure bal-
ances gravitational attraction. It turns out that every perturbation
whose scale is smaller than λJ oscillates, whereas those whose scale
is larger, grow or decay.

It is interesting to notice that perturbations grow at a different rate perturbations
growth ratedepending on which species is dominating the overall Universe en-

ergy density. In particular, it can be found that δ ∝ a2 in the radiation-
dominated era, and δ ∝ a in the matter-dominated epoch.

The linear growth function D+(a) traces the evolution of the density growth function

contrast with respect to the scale factor a,

D+(a) ≡
δ(a)

δ(a0)
≡ δ(a)
δ(1)

(1.28)

There is a good fitting formula for the growth factor in case of a
ΛCDM model, that reads [Carroll et al., 1992]

D+(a) =
5a

2
Ωm

[
Ω
4/7
m −ΩΛ +

(
1+

Ωm

2

)(
1+

ΩΛ
70

)]−1
. (1.29)

1.2.2 Statistical description of inhomogeneities: The power spectrum

The density contrast δ(x), introduced in the previous section, can be density contrast as a
stochastic fieldseen as a homogeneous and isotropic stochastic field, thanks to the

Cosmological Principle. Our Universe, on the other hand, can be de-
vised as a product of a statistical realization of such a field. What we
are interested in, is a study of the properties of the field δ(x).

One conceptual problem arises as we notice that we are allowed to
observe only one realization of the stochastic field. A way out to this
limitation is making use of the ergodic hypothesis, stating: ergodic hypothesis

• averaging a given stochastic field at a fixed point over the entire
ensemble of realizations is equivalent to carrying out a spatial
average on its own realizations.
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It can be proved that a stochastic field is ergodic if the field can be
described by a Gaussian statistics and if its power spectrum is contin-
uous [Adler, 1981].

The density fluctuations can indeed be assumed to be Gaussian
(some amount of deviations from Gaussianity is predicted by some
inflationary theories, topic that will be treated in much more detail
over all Part iii; nevertheless, Gaussianity remains a good first approx-
imation for the field δ(x)). Moreover, it is known that a Gaussian field
is completely defined by its mean and variance. Since the mean of the
density contrast field is null by construction (see Equation 1.24), the
variance is all we need to exhaustively describe the field δ(x).

The variance of a field σ2, is related to that field’s correlation func-correlation function

tion

ξ(r) ≡ 〈δ(x)δ(x + r)〉, (1.30)

describing how much a given field’s realization moves away from a
purely Poissonian realization; in other words, how much a field tends
to be correlated on certain scales. In fact, the variance σ2 coincides
with the correlation function when r = 0. If we define the power
spectrum to be the correlation function’s equivalent in Fourier space,power spectrum

as follows

〈δ(k)δ∗(k ′)〉 = (2π)3Pδ(k)δD(k − k ′), (1.31)

(valid if the random field is homogeneous) it is straightforward to see
that there is a particular link between variance and power spectrum:

σ2 = 4π

∫
k2dk

(2π)3
P(k). (1.32)

As a consequence, the two-point statistics ξ(r) and P(k) are sufficient
to describe the properties of the field.

There are several reasons why the power spectrum is often pre-why using the power
spectrum? ferred over the correlation function. Among the advantages of using

P(k), for instance, we can acknowledge the fact that, for homogeneous
Gaussian perturbations, estimates of the power spectrum at different
k are uncorrelated, while this does not hold for the correlation func-
tion. Also, from definitions in Equation 1.31 and Equation 1.30, it
is easy to see that the covariance matrix of δ(k) is a diagonal matrix,
whereas in configuration space it is not. Most importantly, if the back-
ground of a field has some kind of symmetry, the most natural choice
for expanding perturbations of the field is in eigenmodes of that sym-
metry. Due to our hypotheses of isotropy and homogeneity, we can
state the background field to be symmetric under translations, and
Fourier modes are exactly the eigenmodes of the translation operator
[Hamilton, 2009].

Inflationary theories generally predict a primordial power spec-
trum of the type

P(k) ∝ kns , (1.33)
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where ns is called spectral index and is very close to 1 (see also Ta-
ble 1.1 for the latest constraints on ns).

The power spectrum that we observe today has a dependence on k
that goes like

P(k) ∝

k (k < k0),

k−3 (k� k0),
(1.34)

where k0 depends on the time of equality between matter and radia-
tion, and on when a perturbation of a given scale enters the horizon.
Such behavior of the power spectrum on the smaller scales is due to
the growth suppression for modes entering the horizon when radia-
tion is still dominating.

1.3 a timeline of the cosmos evolution

In this last section, some key events in the Universe history will be
presented as we follow the timeline of the cosmic evolution. Please
note that the time intervals indicated on the margins are purely in-
dicative.

the early universe The events of the very early Universe are first fractions of
secondknown until a certain extent. This epoch is thought to be de-

scribed by grand unification theories, stating a unification be-
tween electroweak and strong forces. As the temperature drops,
due to the cosmic expansion, these forces gradually separate,
until, lastly, electromagnetic and weak interactions detach.

The very first fractions of second of the Cosmos history could
have witnessed an accelerated expansion of the Universe, called
inflation. Such a mechanism was postulated in order to explain inflation

some problems arising in the standard cosmological model, and
it is thought to be responsible for the existence of primordial
perturbation of the density field. Section 5.1 will address this
topic in more detail.

radiation domination Looking at Equation 1.13 it is straight- from 1 s to
∼ 50 kyrsforward to see that the dominant quantity at early times (small

a(t)) is the radiation term. During that time the approximation

da
dt

= H0a
−1Ω

1/2
r0 (1.35)

holds, and by solving the equation one finds that, while radia-
tion dominates, the expansion of the Universe scales like

a ∝
√
t. (1.36)

Nucleosynthesis takes place in this epoch: In fact, the reached
temperature range allows for the formation of the lightest nuclei
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via a two-body collision process. The production stops at Lithi-
um, due to the fact that as coulomb barriers become stronger,
synthesis of heavier nuclei gets more inefficient. The standard
model is able to predict the light elements abundances due to
nucleosynthesis with a good precision.

During radiation-dominated epoch, and part of the matter-dom-
inated era, (baryonic) matter and radiation are coupled via Thom-
son scattering.

matter domination The equality time teq is defined as the mo-from ∼ 50 kyrs to
∼ 9.5 Gyrs ment when a transition from a radiation-dominated to a matter-

dominated Universe occurs. From Equation 1.13 it follows that
teq is such that a(teq) ≡ aeq = Ωr0/Ωm0. During this time we
have

da
dt

= H0a
−1/2Ω

1/2
m0 , (1.37)

hence yielding

a ∝ t2/3. (1.38)

All along matter domination, some quite important events oc-
cur.

• Recombination and decoupling. As previously said, during∼ 300 kyrs

the first stages of the cosmic history, baryonic matter and
radiation are coupled via a mechanism called Thomson
scattering, due to the continuous interactions between elec-
trons and photons. As the temperature decreases, nuclei
and electrons start to combine for the first time, and matter
and radiation gradually decouple from each other, evolv-
ing separately. This mechanism and one of its most im-
portant consequences, i. e. the origin of baryon acousticBAO

oscillations (BAO), are crucial for this Thesis and will be
described in Chapter 3.

Another fundamental consequence of this period is the
genesis of the cosmological microwave background (CMB),
a thermal radiation (corresponding to a black-body radi-
ation of 2.7 K) filling the entire observable Universe, and
originated in the moment when the Cosmos became trans-
parent to radiation. First detected in 1965 [Penzias and
Wilson, 1965], the CMB initially proved that we live in a
Universe that is undoubtedly homogeneous on large scales.
On the other hand, the study of the anisotropies observed
on the CMB temperature or polarization map is one of the
most fertile branch of the entire cosmology, yielding proba-
bly the most stringent constraints on cosmological param-
eters. For some of the latest constraints coming from the
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parameter Planck Planck+lensing Planck+WMAP pol.

Ωm0 0.314± 0.020 0.307± 0.019 0.315+0.016
−0.018

ΩΛ0 0.686± 0.020 0.693± 0.019 0.685+0.018
−0.016

Ωb0h
2 0.02207± 0.00033 0.02217± 0.00033 0.02205± 0.00028

H0 67.4± 1.4 67.9± 1.5 67.3± 1.2
ns 0.9616± 0.0094 0.9635± 0.0094 0.9603± 0.0073
σ8 0.834± 0.027 0.823± 0.018 0.829± 0.012
zeq 3386± 69 3362± 69 3391± 60
zdrag 1059.29± 0.65 1059.43± 0.64 1059.25± 0.58
Age [Gyr] 13.813± 0.058 13.796± 0.058 13.817± 0.048

Table 1.1: Constraints on Ωm0 (matter density parameter), ΩΛ0 (dark en-
ergy density parameter), Ωb0 (baryonic matter density parame-
ter), H0 (Hubble constant), ns (spectral index of the primordial
power spectrum), σ8 (power spectrum normalization), zeq (equal-
ity redshift), zdrag (baryon drag redshift), and the age of the Uni-
verse, as estimated by Planck Collaboration et al. [2013a].

Figure 1.1: Snapshots of the Millennium N-body simulation at z = 0, dis-
playing the dark matter distribution on different scales. The Mil-
lennium Run simulated a cubic region of side 500h−1 Mpc, con-
taining 1010 particles. Credit: Millennium Run Database.

Planck experiment [Planck Collaboration et al., 2013a], see
Table 1.1.

• Structure formation. After an interval of time during which from 0.1 Gyrs on

primordial perturbations have the opportunity to grow (see
Section 1.2.1), the first structures start to form via gravita-
tional instability. The first non-linear systems to collapse
are dark matter halos. Stars, galaxies, clusters of galaxies,
or any baryonic structure in general, will see the light later,
by collapsing in the potential wells of the already formed
halos.

It is thought that the structure formation process is hierar-
chical: Small structures (e. g. Population III stars) are sup-

http://www.mpa-garching.mpg.de/millennium/ 
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posed to form earlier, whereas larger objects should appear
later via a clustering mechanism.

As density fluctuations grow, there comes one point when
the small-perturbations approximation does not hold any-
more. Even though simplified models exist, able to have
predictions about the statistical properties of collapsed ob-
jects (e. g. the Press-Schechter mass function [Press and
Schechter, 1974]), the description of what happens in the
non-linear regime of gravitational collapse needs to be ad-
dressed by means of tools such as numerical N-body sim-
ulations (see Figure 1.1).

dark energy domination Observation coming from Type Ia su-from ∼ 9.5 Gyrs to
now pernovae showed that the Universe is right now undergoing an

accelerated expansion, yielding the scientific community to be-
lieve that there exists a non-zero dark energy (or cosmological
constant, in its simplest form) component. A domination of the
term ΩΛ gives

da
dt

= H0aΩ
1/2
Λ , (1.39)

hence bringing

a ∝ et. (1.40)

Recent constrains on ΩΛ lead to believe that the dark energy
component started to dominate the Universe energy density in
a recent time, whose correspondent redshift seems to be of the
order of the unity.

In this chapter I gave a synthetic overview of the most important
results obtained in Cosmology. The main purpose was giving a wider
context to better collocate the original work that will be presented in
Part ii and Part ii. The background, however, would not be complete
without a proper introduction to the method that has been used in the
original investigations addressed in this Thesis: gravitational weak
lensing. I will present this topic in the following chapter.



2
G R AV I TAT I O N A L L E N S I N G

The main purpose of modern cosmology is the understanding of Uni-
verse’s evolution over time, from its very beginning to its fate, know-
ing the Cosmos’ statistical properties and how structures developed
or how they will evolve. Most of this is done by means of some the-
oretical models and via quantities that, defined within such models,
parametrize the most important properties of the cosmos: These quan-
tities are called the cosmological parameters. Constraints on the cos-
mological parameters can be placed in a multiplicity of ways, ranging
from the study of the cosmological microwave background, to statis-
tics of the galaxy distribution or of high-redshift objects such as Type
Ia supernovae. Diverse methods often probe different scales, are sub-
ject to independent systematics, or are sensitive to different cosmo-
logical parameters. Gravitational lensing is one of this methods, and
has been proposed as a cosmological tool over the last years.

The lensing effect from gravitation is a relativistic phenomenon,
due to the fact that, as matter produces curvature in space-time, it also
distorts geodesics of that given space-time, causing light trajectories
to bend. In cosmology we observe gravitational lensing when light
coming from a distant source, e. g. a galaxy or a quasar, passes close
to massive objects like clusters of galaxies. As a result, the image of
the source galaxy gets distorted. This deformation can be minimal, as
in weak lensing, or considerable, like the giant arcs or the Einstein
rings produced by strong lensing (see for instance Figure 2.1).

It is intuitive that the amount of deflection that different light bun-
dles will undergo, or, equivalently, the amount of distortion suffered

15
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Figure 2.1: Giant arcs due to the effect of gravitational lensing. The clus-
ter RCS2 032727-132623 acts as a lens for a background galaxy,
whose image gets extremely magnified and stretched. Credit:
NASA, ESA/Hubble.

by a source image, will depend on the mass distribution that lies
between the observer and the source. Weak lensing can therefore be
used to study the statistics of such a distribution, and infer constraints
on cosmological parameter from it. One important advantage of lens-
ing, is that it is sensitive to both baryonic and dark matter, and it is
therefore immune, for instance, to systematic errors due to the galaxy
bias.

The aim of this Chapter is to give an overview of gravitational lens-
ing. A special attention was devoted to weak lensing, that we adopted
as a method for detection of baryon acoustic oscillations and primor-
dial non-Gaussianities of the density distribution (Part ii and Part iii,
respectively). In Section 2.1, I will present the basic idea and physics
behind lensing, as defined in a quite general context. A declination
of the lensing formalism for the specific case of cosmological weak
lensing will be treated in Section 2.2. A particular kind of formal-
ism, aiming to derive a 3-dimensional map of the cosmic shear, is
introduced in Section 2.3. This method, called 3d weak lensing, is of
particular interest for this Thesis, since it was proposed by our work
as a tool for detecting baryon acoustic oscillations in the matter power
spectrum, as we will see in Part ii.

The content of this chapter is based on Bartelmann and Schneider
[2001], Refregier [2003], Bartelmann [2010a], and I refer to these re-
views for a more accurate and extended analysis of the topic.

http://www.nasa.gov
http://www.spacetelescope.org
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Figure 2.2: The basic lensing process acting when a point-like source is sub-
ject to the effect of a single lens.

2.1 light deflection by gravitation

2.1.1 Lens equation

The simplest situation that involves the lensing mechanism is drawn
in Figure 2.2. Here we have an observer, a source placed at the angular
diameter distance Ds and a mass concentration placed in between the
two, at distance Dd from the observer and Dds from the source.

If the dimension of the lens is negligible with respect to the dis- thin lens and Born
approximationstances Ds, Dds, and Dd, we can use the thin-lens approximation. In this

framework, the deflection is assumed to take place instantaneously
on the lens plane, a surface perpendicular to the line-of-sight and
passing through the lens. The Born approximation, also often used,
supposes that the slightly curved light-ray path can be replaced by
a single straight ray.

The path of the light ray traveling to the observer is bent by the
action of the lens. As a consequence, the source object will appear
at a different position, now subtending an angle β (and not θ, as it
would be without the lens) with the line-of-sight.
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The deflection is quantified by the angle α̂ (see Figure 2.2), that isdeflection angle

predicted by general relativity and reads

α̂ =
4GM

c2
ξ

|ξ|2
, (2.1)

where ξ is the impact parameter, denoting the distance from the lens,
defined on the lens plane1.

Once we define the relations

θ =
ξ

Dd
and β =

η

Ds
, (2.2)

then the relation, called lens equation, that the geometry of the lightlens equation

ray path has to fulfill is

β ≡ θ−
Dds

Ds
α̂(Ddθ) = θ−α(θ), (2.3)

with α being defined as in the equation, and called the reduced deflec-
tion angle.

If we choose to abandon the simplified model of deflection by a
single mass, and

• consider instead a mass distribution, characterized by a density
ρ(ξ, z),

• assume that deflection angles are small, i. e. we are dealing with
a weak gravitational field,

• make use of the Born approximation,

then in the continuum limit, the vectorial sum of all the small deflec-
tions can be written as an integral that looks like

α(ξ) =
4G

c2

∫
d2ξ ′

∫
dz ′ρ(ξ, z)

ξ− ξ ′

|ξ− ξ|2
. (2.4)

It is possible to show that the deflection angle can be expressed asdeflection angle as
the gradient of a

potential
a gradient of a potential ψ. In order to do that, we should first define
the surface mass density as the mass density projected on a surface that
is perpendicular to the line-of-sight:

Σ(ξ) ≡
∫

dz ρ(ξ, z). (2.5)

Similarly, one can introduce the quantity

Σcr =
c2

4πG

Ds

DdDds
, (2.6)

called critical surface mass density. This term allows us to write a di-convergence

1 this prediction holds only in case the impact parameter is much larger than the
Schwarzschild radius, RS ≡ 2GM/c2, of the lens.
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Figure 2.3: The famous Einstein’s cross. The quasar QSO 2237+0305 is sub-
ject to the lensing by a foreground galaxy, producing four sepa-
rate images. Credit: ESA/Hubble.

mensionless Σ(ξ), such that

κ(θ) ≡ Σ(Ddθ)

Σcr
, (2.7)

that is now depending on the angle θ, rather than on the absolute
distance ξ from the lens.

The quantity κ(θ) is called convergence. Having κ > 1 is a sufficient
condition (although not necessary) for the lens equation to have mul-
tiple solutions. In other words, a surface mass density larger than the multiple images

threshold value Σcr, brings to the development of multiple images
(see Figure 2.3). The situation κ = 1 poses a limit for the discrimi-
nation between weak and strong gravitational lensing. Whenever the weak and strong

lensingconvergence is larger than, or of the order of unity, we have strong
lensing, featuring multiple images or somewhat extreme distortions
of the source image, such as the giant arcs pictured in Figure 2.1;
weak lensing, instead, takes place when κ � 1, and is characterized
by small image deformations, usually of the order of 2%.

Eventually, it is possible to write the total deflection angle in terms
of the convergence κ and the angle θ on which it depends:

α(θ) =
1

π

∫
d2θ ′κ(θ ′)

θ−θ ′

|θ−θ ′|2
. (2.8)

The previous relation makes obvious that the deflection angle can
indeed be expressed as a 2-dimensional gradient of a potential ψ,

α(θ) = ∇ψ(θ), (2.9)

where lensing potential

http://www.spacetelescope.org
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ψ(θ) ≡ 1

π

∫
d2θ ′κ(θ ′) ln |θ−θ|. (2.10)

The quantity ψ is called lensing potential, and it can be seen as the lens-
ing equivalent of the Newtonian gravitational potential. Moreover, it
satisfies the Poisson equation

∇2ψ(θ) = 2κ(θ). (2.11)

2.1.2 Image distortion

A point-like source whose light experiences gravitational lensing by
a given mass distribution, will be perceived by an observer as if it
was shifted on the plane perpendicular to the line of sight. Thingsimage deformation

of extended sources are slightly more complicated for a source of finite size. In this case,
light rays coming from different parts of the source will be subject
to deflections that do not necessarily have to be of the same entity,
depending on the values assumed by the lensing potential on the
plane.

In general, light bundles that are deflected differentially will pro-
duce distorted images of the source that emitted them. This distortion
can be qualitatively and quantitatively described by the Jacobian ma-
trix of the lens equation:

A(θ) =
∂β

∂θ
(2.12)

In case we assume the source to be considerably smaller than the
scale on which the properties of the lens change, we can expand the
lens equation and truncate it at the first order, yielding

A(θ) =

(
δij −

∂2ψ(θ)

∂θi∂θj

)
=

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
. (2.13)

In the previous equation, a new complex quantity has been intro-complex shear

duced: The shear γ, that can be written in terms of γ1 and γ2 as
γ ≡ γ1 + iγ2, or equivalently γ = |γ|exp(2iϕ), where the factor of
two in the exponential reminds us that the shear is a spin-2 field. The
shear components are related to the second derivatives of the lensing
potential via the relations

γ1 =
1

2

(
∂2ψ

∂θ21
−
∂2ψ

∂θ22

)
, γ2 =

∂2ψ

∂θ1∂θ2
. (2.14)

It is particularly interesting to have a look at A(θ) once we divide
isotropic and anisotropic distortions. In fact, Equation 2.13 can be re-
written as

A(θ) = (1− κ)

(
1− g1 −g2

−g2 1+ g1

)
. (2.15)
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The term (1− κ) acts in a homogeneous fashion, re-scaling the size
of the lensed object. The matrix, on the other hand, will produce a reduced shear

distortion of the image through the action of the components of the
so called reduced shear g, by definition:

gi ≡
γi
1− κ

. (2.16)

Please note that, in principle, the deformation depends on both shear
and convergence, although in the limit of weak lensing (κ � 1), we
have gi ∼ γi.

It can be seen that for a generic, circular source, the distortion due distortion of a
circular sourceto gravitational lensing will produce an elliptical image, whose major

and minor axes are given, respectively, by the relations

a =
r

1− κ− |γ|
and b =

r

1− κ+ |γ|
, (2.17)

where |γ| is, of course, the modulus of the complex shear γ.
Lensing is just a geometrical effect, and there is no absorption or

emission of photons once the light bundle has left the source. As a
consequence, the surface brightness of the source is conserved. Flux
is not, though, and a quantification of how much the observed flux magnification

differs from the one the source would have without lensing, is given
by the magnification µ of the light bundle,

µ ≡ 1

|detA|
=

1

(1− κ) − |γ|2
, (2.18)

that results to be the inverse of the determinant of the Jacobian matrix
A(θ). Magnification is caused by both convergence and shear, thanks
to isotropic and anisotropic focusing of light, respectively.

2.2 cosmological weak lensing

In this section, cosmological weak lensing will be analyzed, and all
the results obtained so far will be generalized to the case where the
lens deflecting light ray paths is not a single mass, but instead the
large scale structure of the Universe.

In this framework, the deflection angle is given by an integral of deflection angle for
LSS-induced lensingthe gradient of the potential, or better the component perpendicular

to the line-of-sight. This integral is weighted, though, by the ratio of
two angular diameter distances: The one between lens and source,
over the one between observer and source. In fact,

α(θ,χ) =
2

c2

∫χ
0

dχ ′
fK(χ− χ

′)

fK(χ)
∇θΦ[fK(χ

′)θ,χ ′], (2.19)

where χ is a comoving coordinate.
Similarly as before, it is possible to define an effective convergence effective convergence
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κeff, and express it in terms of the density contrast making use of the
Poisson equation

∇2Φ =
3H20Ωm0

2a
δ. (2.20)

The effective convergence is given by

κeff(θ,χ) =
1

2
∇θα(θ,χ), (2.21)

hence depending, in principle, on a 2-dimensional Laplacian ∇θ · ∇θ

of the gravitational potential (see Equation 2.19). It is possible to
promote this Laplacian to a 3-dimensional one by adding a factor
∂2Φ/∂χ2. The legitimacy of the operation comes from the fact that
derivatives along the line-of-sight average to zero2; its convenience,
on the other hand, comes from the fact that it permits the exploita-
tion of the Poisson equation, i. e. κeff to be written in terms of the
density contrast:

κeff(θ,χ) =
3Ωm0

2χ2H

∫χ
0

dχ
fK(χ)fK(χ− χ

′)

fK(χ)

δ[fK(χ)θ,χ]
a(χ)

, (2.22)

with χH = c/H0 being the Hubble distance.
Assumed that the sources are not all at the same distance χ, but areaveraged effective

convergence placed according to a redshift distribution n(χ), one can construct
an effective convergence that is averaged over n(χ), therefore only
depending on the angular coordinates θ:

κ̄eff(θ) =
3Ωm0

2χ2H

∫χH
0

dχGκ(χ)fK(χ)
δ[fK(χ)θ,χ]

a(χ)
, (2.23)

and Gκ a weighting function such that

Gκ(χ) ≡
∫χH
χ

dχ ′n(χ ′)
fK(χ− χ

′)

fK(χ)
, (2.24)

with n(χ ′) as the redshift distribution of the sources. Thus, the (aver-
aged) effective convergence is an integral of the cosmological density
contrast, all along the unperturbed light path, conveniently weighted
by the function Gκ.

2.2.1 Angular power spectrum

Although we cannot exactly predict the exact amount of light deflec-
tion for a given source, we can infer something about the statistical
properties of these deflections. In effect, we have seen that it is pos-
sible to express the quantities responsible for image distortions in

2 White and Hu [2000] verified the validity of this statement with numerical simula-
tions.
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terms of δ (the effective shear can also be defined in a similar way,
although calculations are slightly more complex than for the conver-
gence). The density contrast, as already mentioned in the previous
chapter (see Section 1.2.2), can be assimilated to a stochastic field and
is well described by its two-point statistics.

Is it possible to construct such statistics also in weak lensing? The Limber’s equation

answer is yes, and it is given by Limber’s equation. Suppose we have
a generic, Gaussian stochastic field ϕ defined in the sky and its power
spectrum Pϕ(k). Then, given any projection of ϕ on the plane perpen-
dicular to the line-of-sight that can be written as

g(θ) =

∫χ
0

dχ ′q(χ ′)ϕ(χ ′θ), (2.25)

(where q(χ) is a certain weighting function along the line-of-sight)
this projection allows its own power spectrum to be written

Pg(`)m =

∫χ
0

dχ ′
q2(χ ′)

χ ′2
P

(
k =

`

χ ′

)
. (2.26)

This result holds as far as the weighting function q(χ) is compara-
tively smooth with respect to the scales on which the density contrast
is expected to vary [Limber, 1953].

The Limber equation can be applied also in our case, in particular
if we consider the effective convergence as a projection of the density
field δ, and Gκ, or better its rescaling

Wκ(χ) =
3Ωm0

2χ2H

G(χ)fK(χ)

a
, (2.27)

as its weighting function. These assumptions bring us to the follow- angular power
spectruming expression for the angular power spectrum of the lensing conver-

gence

Cκ(`) =

∫χH
0

dχ
W2
κ(χ)

χ2
Pδ

(
k =

`

fK(χ)

)
. (2.28)

Moreover, a elementary Fourier analysis can show that the shear
power spectrum, derived in an analogous way, is exactly identical
to the convergence one

Cκ(`) ≡ Cγ(`), (2.29)

since both κ and γ depend on the second derivative of the lensing
potential.

2.2.2 Measuring the lensing distortions

The lensing convergence (or shear) angular power spectrum defined power spectrum
sensitivity to
cosmological
parameters

in Equation 2.28 is particularly interesting because of its sensitivity to
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cosmological parameters, via theΩm factor and of course via the den-
sity contrast two-point statistics Pδ(k), and its evolution with time.

In principle, there is no way to know exactly how, and by how
much, the image of a single galaxy is distorted by gravitational lens-
ing. Nonetheless, one can still infer statistical deformations once thereshear from ellipticity

measurements is a larger sample of galaxies. Suppose that the observed ellipticity of
a galaxy is a sum of two effects: Its intrinsic ellipticity, and the shear
γ (we are in the weak-lensing limit, therefore κ � 1 and its effect on
the image shape distortion is negligible). In such a case, the two-point
correlation function of the observed ellipticity εobs

i can be written

〈εobs
i εobs

j 〉 = 〈(εint
i + γi)(ε

int
j + γj)〉

= 〈εint
i ε

int
j 〉+ 〈εint

i γj〉+ 〈γiεint
j 〉+ 〈γiγj〉

' 〈γiγj〉, (2.30)

where εint is the intrinsic ellipticity. The main assumption done in
weak lensing (and in the last equivalence of the previous equation) is
that there are neither correlations between the intrinsic ellipticities of
galaxies (〈εintεint〉), nor between εint

i and the surrounding tidal field
(〈εintγ〉). In this way, the correlation function between observed ellip-
ticities equals the shear two-point statistics.

In reality, this simplification is not completely exact. Intrinsic align-intrinsic alignments

ments between galaxies that formed in a common environment do
exist, and can partly contaminate the results if not properly taken
into account. See Schäfer [2009] for a review on the subject.

2.3 3d weak lensing

The expression for the effective covariance in terms of the density
contrast (Equation 2.22) shows that, originally, this is a 3-dimensional
quantity, depending on the distance χ between the source and the
observer. Averaging κeff over the supposed redshift distribution ofline-of-sight

averaging is not
necessary

the sources has become common practice over the years, leading to
analyses of 2-dimensional shear fields. Performing this simplification
has been a mere consequence of poor measurements of individual
galaxy distances.

This weighing, though, is not necessary if we can know such dis-
tances with good approximation. Upcoming surveys such as Euclid3

or DES4, able to measure galaxy photometric redshift with high accu-
racy, allow to use this z as a good and precise estimate of individual
galaxy distances.

Heavens [2003] was the first to develop a framework to fully ex-3d expansion of
lensing observables ploit the gain of information coming from a 3d weak lensing analysis.

The main idea is to perform a special spectral expansion of lensing

3 euclid-ec.org
4 darkenergysurvey.org

http://www.euclid-ec.org
http://www.darkenergysurvey.org
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observables, like the convergence or the shear5 (a detailed description
of the theory can be found in Castro et al. [2005], Massey et al. [2007],
Heavens et al. [2006], Kitching et al. [2008a]).

A combination of spherical harmonics and spherical Bessel func- spherical harmonics
and spherical Bessel
functions

tions, respectively taking care of the angular and radial components,
is the most natural choice for a Fourier expansion in spherical coordi-
nates. In fact, such a combination is an eigenfunction of the Laplacian
in spherical coordinates, and turns out to be particularly useful when
we want to express all the lensing quantities in terms of the density
field. For a generic scalar field f(r), such an expansion reads

f`m(k) ≡
√
2

π

∫
d3r f(r) j`(kr)Y∗`m(θ), (2.31)

where j` and Y`m are, respectively, a spherical Bessel function of the
first kind and a spherical harmonic.

Quantities like the lensing potential, the shear, or the convergence
can thus be decomposed and expressed in terms of coefficients of this
expansion. For the convergence, for instance, we have:

κ`m(k) ≡
√
2

π

∫
χ2dχ dθ κ(θ,χ) j`(kχ)Y∗`m(θ). (2.32)

An estimator of κ`m can be constructed, that in the case of a full-sky
survey of galaxies is given by the relation

κ̄`m(k) =
3Ωm

2χ2H

`(`+ 1)

2

B`(k,k ′′)
(k ′′)2

δ`m(k ′′). (2.33)

As we will see in Section 4.3 (Part ii), where a more detailed deriva- mode-coupling
matrixtion of this quantity will be provided, the matrix B`(k,k ′′) carries

all the information on additional mode couplings coming from lens-
ing, the galaxy redshift distribution, and uncertainties in the measure-
ment of the photometric redshift.

Statistics of the convergence (or shear, of course) coefficients6 in the
considered 3d expansion depend on that of the coefficients δ`m with-
out any averaging along the line-of-sight distribution of galaxies. The
power spectrum of δ`m is exactly equal to the spectrum of the density
contrast itself [Castro et al., 2005], and therefore inherits its sensitivity
to cosmological parameters. Moreover, the absence of a line-of-sight
weighing results in a more direct correspondence between a 3d lens-
ing statistics and the underlying matter power spectrum, at least with
respect to the classical 2d weak lensing approach.

It has been shown [Heavens et al., 2006] that a 3d analysis would be valuable tool for
dark energy study

5 please note that such observables depend on the gravitational potential, that evolves
with time and is not perceived as homogeneous by galaxies that are lensed under
its effect. It is more correct, then, to refer to the transform of such quantities as the
transform of the corresponding, homogeneous fields that exist in correspondence of
the time on which the galaxy emitted its light [Castro et al., 2005]

6 in this work only 3d two-point statistics have been considered; for higher order
statistics please refer to Munshi et al. [2011].



26 gravitational lensing

of particular interest regarding constraints on the dark energy equa-
tion of state, providing a reduction of the marginalized errors on its
coefficients w0 and wa, especially when combined to measurements
from CMB and baryon acoustic oscillations experiments.

The lack of an averaging along the line-of-sight source distribution,
on the other hand, resulting as already said in a tighter relation be-
tween the 3d weak lensing and the matter power spectra, leads to the
idea of exploiting this kind of approach for detecting localized fea-possible application

for baryon acousticc
oscillations

tures of the matter P(k), e. g. baryon acoustic oscillations (that will be
introduced in the next chapter). Such features are usually smoothed
out from the classical weak lensing power spectrum, due to the pres-
ence of the weighting function defined in Equation 2.24. On the con-
trary, they are inherited by the 3d weak lensing spectrum, and their
detectability depends on the sensitivity of the 3d method. In Part ii
of this Thesis, I will give an overview on baryon acoustic oscillations
as a cosmological tool, and on our predictions regarding the feasibil-
ity of their detection with a 3d weak lensing approach [Grassi and
Schäfer, 2013].



Part II

D E T E C T I N G B A RY O N A C O U S T I C
O S C I L L AT I O N S B Y 3 D W E A K L E N S I N G





3
B A RY O N A C O U S T I C O S C I L L AT I O N S

Baryon acoustic oscillations are features of the matter power spec-
trum P(k), where they show up as a damped series of peaks and
troughs. As the power spectrum is defined in Fourier space, it makes
sense to identify a BAO counterpart in configuration space: the baryon
acoustic peak, namely a bump-shaped feature of the two-point mat-
ter correlation function. Both this peak and BAO are manifestation
of the same phenomenon: In fact, they originate during the decou-
pling between matter and radiation, and represent a preferred clus-
tering scale in the global matter distribution. As we will see, BAO
have been suggested to be among the most powerful and promising
new cosmological tools for cosmological parameter constraining. In
particular, they can help us studying and determining our Universe’s
expansion history. For a recent review, please see Bassett and Hlozek
[2010].

In this Chapter, I will briefly introduce baryon acoustic oscillations
by explaining, in Section 3.1, what kind of physical processes they
originate from, whereas in Section 3.2 I will analyze BAO’s poten-
tialities as a cosmological tool and, more specifically, as a statistical
standard ruler.

29
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3.1 the physics of baryon acoustic oscillations

3.1.1 The plasma era

During the first 300−400 kyrs of the Universe, the baryonic and radia-
tion components of the Cosmos are in the form of a hot, dense plasmaA plasma is defined

as a globally neutral
collection of

free-moving charged
particles

composed by electrons, nuclei and photons. All along this epoch, ra-
diation and baryons result tightly coupled thanks to Thomson scatter-
ing by electrons, a mechanism describing an elastic collision between
a free charged particle and a photon. As long as the timescale of
the scattering is much smaller than the expansion timescale tH(z) =
H(z)−1, we observe a continuous momentum transfer between bary-
onic matter and radiation, causing them to be in thermal equilibrium.
If we define the average time between two Thomson scatterings to be

ts =
1

σTne
, (3.1)

where σT is the Thomson cross section and ne the number density of
free electrons, it is clear that, as long as ne is large enough to make the
relation ts � tH hold, baryons and photons will be coupled, and their
temperatures will evolve in the same manner. This state of course
causes the plasma to be opaque to electromagnetic radiation.

One important consequence of coupling between baryons and radi-acoustic waves in
the primordial
photon-baryon

plasma

ation, is that any perturbation in the plasma behaves like an acoustic
wave, thanks to the competing forces of gravity and radiation pres-
sure. In simple words:

1. given a certain, primordial, perturbation in density, e. g. an
overdensity, gravitation acts to compress the plasma in corre-
spondence of the overdensity itself;

2. this process also increases photon density;

3. the temperature rises, and so does the radiation pressure,

4. causing the plasma to expand.

A more rigorous analysis can be found in Eisenstein et al. [2007b],
where they remind that, given the rapidity of the scattering compared
to time it takes to travel along the wavelength of a generic perturba-
tion, the Euler equation can be expanded in powers of the term k/τ̇,
namely the Compton free path λs = τ̇−1, over a wavelength λ ∝ k−1,
where k is the perturbation’s wavenumber, τ̇ = aσTne is the differ-
ential optical depth, and the dot denotes a derivative with respect
to conformal time η =

∫
dt/a, while a is, as usual, the scale factor

[Montanari and Durrer, 2011]. In this way it is possible to write the
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evolution of a single Fourier mode of the plasma perturbation in the
so called tight coupling approximation:

d

dη
[(1+ R)δ̇] +

k2

3
δ = −k2(1+ R)Φ−

d

dη
[3(1+ R)Ψ̇], (3.2)

[Peebles and Yu, 1970; Doroshkevich et al., 1978; Ma and Bertschinger,
1995] where Φ is the gravitational potential, Ψ the perturbation of
spatial curvature and

R ≡ 3ρb
4ργ

(3.3)

is the ratio between baryon and photon momentum density. It is easy
to see that Equation 3.2 describes a driven oscillator with original
frequency csk, where cs is defined as the sound speed

cs =
c√

3(1+ R)
, (3.4)

and can assume at most the value of c/
√
3. The period decay can

anyway be neglected for small values of R, typical for the range of
redshifts here considered (z >∼ 1000).

3.1.2 After recombination

When considering the timeline of Universe’s evolution, some events,
more than others, mark exceptional changes in the state and physi-
cal properties of the Cosmos’s content. The epoch of recombination
and decoupling is undoubtedly part of this category. We have seen
that during the plasma era, perturbations are not allowed to grow in
amplitude, on the contrary they propagate as acoustic waves with a
certain sound speed (Equation 3.4); there comes a moment, though,
when things change. As both temperature and density of the plasma Recombination

decrease due to cosmic expansion, the equilibrium state for baryons
moves towards a situation where nuclei and electrons combine to-
gether [Zeldovich et al., 1969; Peebles, 1968], no longer being ionized:

H+ + e− 
 H + γ. (3.5)

By convention, the instant when 50% of baryonic matter is in the
form of neutral atoms is called recombination time trec ∼ 360000 yrs,
corresponding to a redshift of zrec ∼ 1090 [Komatsu et al., 2011; Planck
Collaboration et al., 2013a].

Shortly after this process begins to take place, scattering between
photons and electrons starts to become more and more sporadic. In
other words: The Hubble distance is now comparable or even smaller
than the photon mean free path. Photons gradually stop noticing the Decoupling and

drag epoch
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presence of baryons, meaning that they decouple from them and that
the total optical depth up to the present becomes smaller than one.
This is when last scattering and cosmic microwave background origi-
nate. As a consequence of recombination, also baryons stop noticing
photons, although these two specular processes do not necessarily
have to take place at the same time. In fact, since there are vastly
more γ than baryons, photon’s optical depth approaches 1 earlier
than baryon’s τb. The moment when the baryon optical depth

τb(η) ≡
∫η0
η

dη
τ̇

(1+ R)
(3.6)

drops below unity, is when baryons are released from the drag of
photons due to Compton scattering, and is usually called drag epoch
[Hu and Sugiyama, 1996]. From this time on, matter and radiation
evolve separately: Photons now freely propagate, the Universe is al-
ready transparent to electromagnetic radiation, and baryons must
now be treated as a pressureless species, meaning that they can now
cool down at a different rate compared to photons, and eventually
collapse. Of course the tight coupling approximation seen in Equa-
tion 3.2 doesn’t hold anymore, and perturbations in the baryon den-
sity can no longer propagate as acoustic waves after decoupling. The
drag epoch doesn’t coincide, in principle, with recombination, al-
though the two moments are comparable and both depend on Ωm
and Ωb. A fitting formula for the derivation of the drag redshift was
proposed by Eisenstein and Hu [1998]:

zdrag = 1291
(Ωmh

2)0.251

1+ 0.659(Ωmh2)0.828

(
1+ b1(Ωbh

2)b2
)

, (3.7)

with

b1 = 0.313(Ωmh2)−0.419[1+ 0.607(Ωmh2)0.674],

b2 = 0.238(Ωmh2)0.223. (3.8)

An interesting and instructive analysis of the evolution of a point-Evolution of a
point-like density

perturbation
like overdensity in configuration space was carried out by Eisenstein
et al. [2007b], as shown in Figure 3.1. Here they analyze the mass
profile behavior of such an overdensity with respect to a radial coor-
dinate, as time passes by (different panels). The density perturbation
is initially present in all species, i. e. dark matter, photons, baryons,
and neutrinos. The figure clearly displays how, while at first the
wave propagates through baryons and photons as a single pulse, after
z ∼ 1100 (time of recombination) this starts to be not valid anymore.
In fact, after recombination photons can freely propagate, not supply-
ing radiation pressure to baryons; the sound speed obviously drops
and this causes the baryons perturbation to slow down and even-
tually freeze. Not only does the perturbation stall, but it grows by
gravitational instability.
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(a) z = 6824, t ∼ 1.4 · 104yrs (b) z = 1440, t ∼ 2.3 · 105yrs

(c) z = 848, t ∼ 5.7 · 105yrs (d) z = 478, t ∼ 1.45 · 106yrs

(e) z = 79, t ∼ 2.3 · 107yrs (f) z = 10, t ∼ 4.7 · 108yrs

Figure 3.1: The evolution with time of the radial mass profile of a point-like
overdensity initially located at r = 0. Different panels display the
mass profiles at chosen redshifts, while the colors represent mass
profiles of dark matter (black), baryons (blue), photons (red), neu-
trinos (green). Time increases (and z gets smaller) as we look at
panels from left to right, and from top to bottom. The first two
panels show how coupling between baryons and photons makes
the perturbation evolve in an identical way for the two species.
A smoothing of the DM overdensity over r > 0, due to gravita-
tional interaction with the plasma, is also visible from Figure 3.1b
on. After Figure 3.1c it becomes evident that photons have al-
ready decoupled from matter and start streaming away, while
the baryon perturbation gradually stops at a radius ∼ 150 Mpc.
Both baryon and DM overdensity grow in amplitude and inter-
act gravitationally, yelding a double-peaked mass profile like the
one in Figure 3.1f. Figure taken from Eisenstein et al. [2007b].

In this scenario, what remains after recombination and decoupling
are two overdensities:

• the CDM’s one, located at the center;
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• the baryons’ one, that from t0 to trec managed to travel up to a
distance rs from the center, and that now forms a shell around
the origin.

The distance covered by the baryons perturbation, i. e. the radius of
the overdensity spherical shell, is of course related to the size of the
sound horizon at the drag epoch, that is assumed to be comparable
to the sound horizon at recombination [Eisenstein and White, 2004]:

rs =

∫trec

0

cS(1+ z)dt

=
1√
ΩmH

2
0

2c√
3zeqReq

ln

[√
1+ Rrec +

√
Rrec + Req

1+
√
Req

]
, (3.9)

where zeq is the redshift at the moment of equality between matter
and radiation, and Req, Rrec are the baryon-photon momentum den-
sity ratios for, respectively, equality and recombination, giving rS of
the order of 150 Mpc. Interacting via gravitation, CDM and baryons
drag each other, eventually reaching the intermediate situation shown
in the last panel of Figure 3.1, where the final radial mass profile fea-
tures a peak close to the perturbation origin, and a secondary one
located at the distance the baryon-photon acoustic wave could travel
before recombination.

Galaxies and collapsed objects tend to form in correspondence of
overdensities. As a consequence, the scale of the sound horizon at re-
combination remains as a characteristic separation length in the mat-
ter distribution, because there is where galaxies will be more likely
to form. In other words, it can be considered as a preferred scale for
matter clustering. Since, of course, the overall baryon distribution will
consist in a superposition of perturbations similar to the one consid-
ered, this length can only be recovered statistically. In effect, it will
appear in the correlation function as a peak1 around the scale rs.

The power spectrum and the two-point correlation function of the
matter distribution form a Fourier pair. Therefore, since the transform
of a single bump gives a harmonic sequence, the baryon acoustic peak
will be visible in P(k) as wiggles (BAO) whose wavelength is strictly
related to the sound horizon scale at the time of recombination kS =

2π/rS. Power spectra with and without the presence of a baryonic
components are plotted in Figure 3.2.

1 it is a peak because we are dealing with an excess of clustering at a certain scale; a
scarcity of clustering, on the other hand, would produce a dip.
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Figure 3.2: The difference between a CDM-only power spectrum (black,
solid line), a power spectrum where also a baryonic presence
was considered, in the amount of Ωb = 0.44 (magenta line) and
the corresponding smooth spectrum (black, dashed line). We can
also observe that the presence of baryons acts as an overall sup-
pression in intermediate and small scales. The spectra were cal-
culated using the prescription by Eisenstein and Hu [1998]

3.2 baryon acoustic oscillations as a cosmological tool

3.2.1 What is a statistical standard ruler

Since Riess et al. [1998] and Perlmutter et al. [1999] proved for the first
time that the Universe was accelerating (see Figure 3.3), cosmologists
have strived for years aiming to explain what kind of mechanism is
behind this peculiar type of expansion. Whether be this phenomenon
related to the cosmological constant, or to a dark energy with some still
unknown equation of state, there is no doubt that the understanding
of the expansion of the Universe relies on our ability to investigate the
redshift-distance relation, unless we consider, for instance, modified-
gravity theories.

The expansion rate in function of redshift, i. e. the Hubble parame-
ter H(z), can be inferred by measuring quantities such as the angular
diameter distance

dA =
c

1+ z

∫z
0

dz

H(z)
(3.10)

or the luminosity distance (see Section 1.1.4)

dL ≡
√

L

4πF

= (1+ z)2dA. (3.11)
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Figure 3.3: Difference between relative and absolute magnitude (top panel)
for a sample of Type Ia supernova as a function of their redshift.
The lines represent the expected behavior for different cosmolo-
gies, while the bottom panel displays the residuals with respect
to the reference model, characterized by Ωm = 0.2 and ΩΛ = 0.
The data appear to give evidence for a flat Universe with a non-
zero Λ-component, implying an acceleration of the cosmic ex-
pansion. Figure taken from Riess et al. [1998].

If we assume the expansion to be ascribable to the effect of dark
energy, and described by its density parameter ΩΛ and its equation
of state (assumed that it can be treated as an ideal fluid)

w(z) =
pΛ
ρΛ

∣∣∣∣
z

, (3.12)

then the Hubble parameter for a flat, matter and dark-energy domi-Hubble parameter as
a proxy for dark

energy contribution
nated universe can be written:

H(z) = H0

√
Ωm0(1+ z)3 +ΩΛ0 exp

[
3

∫z
0

1+w(z)

1+ z
dz

]
, (3.13)

where H0, Ωm0, and ΩΛ0 are, respectively, the expansion rate pa-
rameter, the matter density and dark energy density parameters at
present time. The Hubble parameter is thus the fundamental observ-
able related to ΩΛ0 and w(z).

To measure quantities like dL and dA and their trend with redshift,standard candles
and standard rulers
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though, we need respectively

• standard candles: Objects whose absolute magnitude, or luminos-
ity, is known or, alternatively, whose luminosity change with
redshift in a well understood way;

• standard rulers: Objects of known absolute size, or whose size-
redshift relation is well acknowledged.

Rulers and candles are especially useful, in cosmology, for solving
issues related to the degeneracy that exists between radial distance,
intrinsic size (or luminosity) of the object, and space curvature. In
fact, if we observe an object to be small (or faint), theoretically we are
not allowed to know whether it is intrinsically small (faint), whether
it looks like this because it is very far away from us, or whether space
curvature acts as a lens and distorts its shape. Standard rulers and
candles can, in principle, break this degeneracy.

Several examples of this two very special category of objects can
be found in cosmology. Type Ia supernovae (SNIa) are probably the
most famous among standard candles : Since their collapse always oc-
curs at the Chandrasekar mass, they happen to have a characteristic
brightness at the peak of their light curve, that can be used as stan-
dard candle after appropriate calibrations. Unlike other standard can-
dles (e. g. Cepheids, RR Lyrae), Type Ia supernovae are particularly
suited for cosmology thanks to their extremely high brightness, that
makes them visible even at cosmologically relevant distances. Riess
et al. [1998], for instance, used supernovae up to z ∼ 1 in their study,
corresponding to a distance of the order of the Gpc.

Concerning cosmological standard rulers, some have been proposed
over the years: Double-lobed [Buchalter et al., 1998] and ultra-compact
radio sources [Kellermann, 1993; Gurvits, 1994; Jackson and Dodgson,
1997], or even galaxy clusters [Allen et al., 2002; Schäfer et al., 2005;
Mantz et al., 2008]. All of them gave results similar or at least com-
patible with the ones obtained by Riess et al. [1998] from SNIa.

A slightly different class of standard rulers also exists. Imagine to statistical standard
rulershave, rather than an object, a particular behavior or phenomenon that

has a characteristic, known scale, e. g. clustering of galaxies. In this
case we are not dealing with one single object of known size, but
instead with a certain distribution whose characteristic scale can be
recovered only statistically (see Figure 3.4): Such a tool is called statis-
tical standard ruler.

The ideal (statistical) standard ruler allows for very accurate con- 3 rules for the
perfect standard
ruler

straints on H(z), and in order to achieve that it should satisfy the
following properties2:

2 these considerations are based on Martin White’s lectures on BAO, that he kindly
provides on mwhite.berkeley.edu

http://mwhite.berkeley.edu
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Figure 3.4: The concept behind statistical standard rulers, taken from Bas-
sett and Hlozek [2010]. It shows a very simple, two-dimensional
galaxy distribution featuring a preferred clustering scale. In the
left panel, the relatively small number of galaxies makes the cor-
relation visible to the naked eye. The right panel, instead, shows
a distribution with the same characteristics but where the num-
ber of galaxies is much larger: In this case, the distribution’s char-
acteristic scale is not obvious anymore and can only be regained
statistically, by means of a correlation function.

• it should be possible to calibrate the ruler over the largest possi-
ble redshift interval (i. e. we can precisely predict how the ruler
size evolves with z);

• the ruler size should be small enough to be measured with high
statistical accuracy over the volume of the surveys;

• it should be possible to get a high-precision measurement of the
ruler.

We will see in the following sections that baryonic features in the
matter distribution statistics can satisfy all of these properties.

3.2.2 Constraining cosmological parameters with baryon acoustic oscilla-
tions

Since BAO and the baryon acoustic peak are manifestations of the ex-
istence of a preferred clustering scale, and since this scale’s absolute
value can be relatively easily calculated from theory, they make ex-
cellent statistical standard rulers, as it was first suggested by Cooray
et al. [2001] and later developed in more detail by Eisenstein [2003]
and Blake and Glazebrook [2003].

By measuring both the transverse, angular size of the BAO feature
and its interval in redshifts at different z (namely, transverse and ra-
dial Fourier modes of the matter distribution) we can get estimates
of, respectively, dA(z) and H(z). Since the physical, absolute scale of
BAO is known, they are not considered an Alcock-Paczynski test [Al-
cock and Paczynski, 1979] and the two quantities themselves, rather
than their product, can be inferred separately.
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Baryon acoustic oscillations fulfill, in theory, all the characteristics
of a good ruler, in fact:

• within a certain grade of accuracy, BAO scale is predicted by
well understood, linear theory and depends mainly on matter
and baryon density, meaning that CMB constrains on Ωm and
Ωb, for instance, can be used to accurately calibrate the BAO
ruler;

• recent galaxy surveys have reached sufficiently large volumes
so that BAO features can be detected in the galaxy density dis-
tribution;

• the oscillatory behavior (peak) of the matter power spectrum
(two-point correlation function) is a relatively sharp and easily
recognizable feature to detect.

3.2.2.1 Observing baryon acoustic oscillations

(a) (b)

Figure 3.5: On the left, the baryon acoustic peak in the correlation function
of a SDSS galaxy sample. The three upper lines represent mod-
els with, from top to bottom, Ωmh2 = 0.12, 0.13, 0.14, while for
all three Ωbh2 = 0.024; the bottom line shows a model with no
baryons, and therefore no acoustic peak. The right panel, on the
other hand, exhibits a power spectrum derived from an SDSS
(top curve) and an LRG (bottom curve) galaxy sample. Solid
and dashed lines represent, respectively, a ΛCDM fit to WMAP3

[Spergel et al., 2007] data, and a fit that includes also non-linear
corrections. Left and right panels are taken respectively from
Eisenstein et al. [2005] and Tegmark et al. [2006].

The two primary channels for observing a baryon acoustic signa-
ture are the power spectrum of CMB temperature anisotropies and
statistics of galaxy distributions. While oscillatory features in the CMB
power spectrum were already observed by WMAP [Hinshaw et al.,
2003, 2007; Nolta et al., 2009; Larson et al., 2011], BAO signatures in



40 baryon acoustic oscillations

the galaxy distribution have been detected for the first time by Eisen-
stein et al. [2005] in the SDSS survey, as shown in Figure 3.5a.

Further detection have been carried out, ever since, in particular
with SDSS [Eisenstein et al., 2005; Padmanabhan et al., 2007; Perci-
val et al., 2007b, 2010; Kazin et al., 2010b; Padmanabhan et al., 2012;
Mehta et al., 2012], the 2-Degree Field Galaxy Redshift Survey [2dF-
GRS, Percival et al., 2007a; Beutler et al., 2011], the WiggleZ-survey
[Parkinson et al., 2012] and Lyman-α forest data coming from the
Baryon Oscillation Spectroscopic Survey (BOSS) [Busca et al., 2012;
Slosar et al., 2013]. Moreover, [Gaztañaga et al., 2009a; Kazin et al.,
2010a; Gaztañaga et al., 2009b] managed to observe both longitudinal
and transverse modes in the galaxy distribution. All the observations
confirmed what already determined in CMB measurements, namely
spatial flatness and low matter density when a flat geometry is as-
sumed as a prior.

A very interesting insight on issues related to model testing and
parameter estimation with baryon acoustic oscillations was made by
[Cabré and Gaztañaga, 2011], who find that although BAO cannot be
used for model selection, yet, they can still help to constrain cosmo-
logical parameter once a specific model is assumed to be valid.

3.2.3 Nonlinear effects and observational complications

In an ideal frame, as White [2005] nicely phrased it, we should be able
to measure the linear-theory, matter power spectrum, in real space.
What is usually measured, instead, is

• the non-linear,

• galaxy power spectrum,

• in redshift space.

Although it seems that BAO probably have the lowest systematic un-
certainties among the methods used for studying cosmic expansion
[Albrecht et al., 2006], it is clear that these three factors have repercus-
sions on the detection of the BAO scale, degrading the reconstruction
of the peak position, or, equivalently, of the oscillations wavelength.

Redshift space must be considered every time we take a galaxy’sredshift space
distortions z as an estimate of its distance. In reality, a galaxy’s redshift is de-

termined not only by its distance from us, via the Hubble relation,
but also by its peculiar velocity, not to mention the fact that the red-
shift uncertainty of the survey, σz, also plays a role. As a result, what
we observe is an altered version of real space, with misestimates
of true galaxy distances leading to the so called redshift space distor-
tions. These kind of deformations are mainly radial, and will there-
fore mostly affect measurements of the Hubble expansion rate H(z),
leaving the transverse BAO scale derivation (and subsequently dA
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measurements) almost unblemished. The main effect is a suppression
of the power spectrum P(k)

Pobs(k) = P(k) exp

[
−

(
k||σz

1+ z

H(z)

)2]
, (3.14)

over the radial modes k|| [Seo and Eisenstein, 2003], where Pobs(k)
is of course the resulting, observed power spectrum. This suppres-
sion clearly depends on the redshift uncertainty σz, and it acts more
strongly on higher order oscillations. Its main effect is to smear out
the baryon acoustic peak in the correlation function. I refer to Blake
et al. [2006], Benitez et al. [2008], Cai et al. [2009], Simpson et al. [2009]
for a more detailed analysis of the subject.

An other source of complications is undoubtedly non-linear struc- distortions due to
non-linear structure
formation

ture formation. At z < 1, there is already a deviation of the non-linear
P(k) from the linear one concerning wave numbers that contain acous-
tic information [Eisenstein et al., 2007b]. Since non-linear collapse
tend to displace matter with respect to its initial position by an or-
der of ∼ 10 Mpc, due to an object’s combined interactions with all the
other density fluctuations, a broadening of the baryon acoustic peak
will be observed. A broadening that adds to the natural, finite width
of the peak of ∼ 10 Mpc h−1, due to Silk damping [Silk, 1968]. In
P(k), this will be observed as a damping of the oscillations at higher Silk damping:

Dissipation of
perturbations below
a given Silk scale; it
is due to photons
randomly walking
out of overdense
regions

k (smaller scales). It is straightforward that a broadening of the peak
will have important consequences in the precision with which the
position of the peak itself, i. e. the scale of the sound horizon rs, is
measured. Mode-mode couplings in the density distribution induced
by non-linear structure formation also play a role, producing a shift
in the baryon acoustic peak. This phenomenon has been thoroughly
analyzed by Crocce and Scoccimarro [2006b], Crocce and Scoccimarro
[2006a] and Crocce and Scoccimarro [2008]. On the other hand, recon-
struction methods have also been proposed [Eisenstein et al., 2007a]
to account for this kind of non-linear distortion, recovering the true
peak position, and have been proved to be successful [Eisenstein et al.,
2007a; Huff et al., 2007; Seo et al., 2008; Noh et al., 2009; Mehta et al.,
2011]

Lastly, a further shift of the BAO peaks emerges as a consequence distortions from
galaxy biasof the bias mechanism. Indeed, if we aim to obtain constraints on the

shape of the matter power spectrum, we should keep in mind that
objects like galaxies or Type Ia supernovae (proposed as a target to
measure BAO by Zhan et al. [2008]) trace the underlying dark matter
distribution in an incomplete, partially unknown way, quantified by
the bias parameter b as shown in the equation

Pobj(k) = b
2(k, z)PCDM(k), (3.15)

with Pobj(k) standing for the power spectrum of the considered class
of objects, PCDM(k) for the dark matter one, and where it was pointed
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out that the bias parameter can in principle be both scale and redshift
dependent [Coles, 1993; Weinberg, 1995; Fry, 1996; Smith et al., 2007].
Mehta et al. [2011] used numerical simulations to extensively analyze
repercussions of galaxy bias on BAO measurements, combined with
the reconstruction technique by Eisenstein et al. [2007a]. They find
that such shifts on the final determination of the peak position should
not be noticeable in current surveys, e. g. SDSS, BOSS, or the WiggleZ
dark energy survey. Despite that, they claim it is not excluded that
upcoming surveys like BigBOSS or Euclid could measure the BAO
scale with a precision that could allow for a bias shift to be noticed.

A weak lensing measurement of the matter power spectrum wouldwhat about
gravitational

lensing?
be immune to bias mechanisms, as gravitational lensing traces the
overall matter distribution, rather than only baryons. We will see in
Chapter 4 that, while classical weak lensing cannot be a valuable can-
didate for BAO detection due to its wide line-of-sight weighting func-
tions, three-dimensional weak lensing can, instead, prove to be able
to resolve oscillatory features in P(k) [Grassi and Schäfer, 2013].



4
B A RY O N A C O U S T I C O S C I L L AT I O N S W I T H 3 D
W E A K L E N S I N G

This chapter reproduces the content of the paper "Detecting baryon acoustic
oscillations by 3d weak lensing" [Grassi and Schäfer, 2013]. The original
analysis we carried out and the results are presented in Section 4.4 and
summarized in Section 4.5.

abstract

We investigate the possibility of detecting baryon acoustic oscilla-
tion features in the cosmic matter distribution by 3d weak lensing.
Baryon oscillations are inaccessible even to weak lensing tomography
because of wide line-of-sight weighting functions and require a spe-
cialized approach via 3d shear estimates. We quantify the uncertainty
of estimating the matter spectrum amplitude at the baryon oscilla-
tions wave vectors by a Fisher-matrix approach with a fixed cosmol-
ogy and show in this way that future weak lensing surveys such as
Euclid and DES are able to pick up the first four or three wiggles,
respectively, with Euclid overall giving a better precision in the mea-
surement. We also provide a detailed investigation of the correlation
existing between errors and of their scaling behavior with respect to
survey parameters such as median redshift, error on redshift, error on
the galaxy shape measurement, sky coverage, and finally with respect
to the number of wiggles one is trying to determine.

43
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4.1 introduction

Baryon acoustic oscillation (BAO) features are modulations in the
cosmic matter distribution on very large spatial scales of roughly
∼ 100Mpc/h [for a review, see Bassett and Hlozek, 2010]. These BAOs
are the imprint of oscillations of the photon-baryon fluid in the early
universe on the matter density field driven by gravity and the equa-
tion of state providing a restoring force, and they are observable in
two primary channels: through the observation of anisotropies in the
cosmic microwave background (CMB) and through galaxy surveys.
The most important features such as their spatial scales, their signa-
ture in the CMB, their statistical properties, and their dependence on
cosmological parameters is very well understood analytically [Seljak
and Zaldarriaga, 1996; Hu and Sugiyama, 1996; Montanari and Dur-
rer, 2011; Sutherland, 2012].

Concerning the determination of cosmological parameters, it is a
fortunate situation that they are observable at high redshifts through
the primary CMB and at much lower redshifts in the galaxy distribu-
tion. Due to the fact that BAOs provide a standard yardstick at two
different cosmological epochs, it is possible to constrain the density
parameters of cosmic fluids and the possible time evolution of their
equation of state parameters in a geometric way, breaking degenera-
cies that may arise if the equations of state of cosmological fluids are
allowed to change with time.

CMB observations carried out by the Cosmic Background Explorer
[COBE, Bennett et al., 1994; Wright et al., 1996] first revealed aniso-
tropies in the CMB, but only the Wilkinson Microwave Anisotropy
Probe [WMAP, Hinshaw et al., 2003, 2007; Nolta et al., 2009; Lar-
son et al., 2011] had sufficient angular resolution such that the BAO
scale of ∼ 100 Mpc/h could be resolved at a comoving distance of
∼ 10 Gpc/h, revealing temperature modulations of the CMB of the
order ∆T/TCMB ' 10−5 at an angular scale of roughly 2◦, with subse-
quent higher harmonics. Likewise, galaxy surveys have now reached
sufficient depth and solid angle that BAO features could be detected
as modulations of the galaxy density of the order 10% in both radial
and transverse directions. With the assumption of a galaxy biasing
model, the longest wavelength BAO modes survive nonlinear struc-
ture formation to the present epoch [Meiksin et al., 1999] and will
be targeted by future surveys for the precision determination of cos-
mological parameters [Dolney et al., 2006; Angulo et al., 2008; Labatie
et al., 2012], in particular dark energy [Seo and Eisenstein, 2003; Eisen-
stein et al., 2007a]. Both avenues have contributed significantly to the
estimation of cosmological parameters and to the selection of most
plausible cosmological models.

Specifically, there are quite a number of detection reports with on-
going surveys, for instance with the Sloan Digital Sky Survey [SDSS,
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Eisenstein et al., 2005; Padmanabhan et al., 2007; Percival et al., 2007b,
2010; Kazin et al., 2010b; Padmanabhan et al., 2012; Mehta et al., 2012],
the 2-Degree Field Galaxy Redshift Survey [2dFGRS, Percival et al.,
2007a; Beutler et al., 2011], the WiggleZ-survey [Parkinson et al., 2012]
and Lyman-α data [Busca et al., 2012] with subsequent determination
of cosmological parameters which confirm spatial flatness and the
low matter density found by CMB observations, if flatness is assumed
prior to the analysis. Recent studies [Parejko et al., 2012; Zhao et al.,
2012] were able to constrain neutrino masses. BAO modulations have
been found as longitudinal as well as transverse modes in the galaxy
density [Gaztañaga et al., 2009a; Kazin et al., 2010a; Gaztañaga et al.,
2009b] and their issues of model selection and parameter estimation
have been addressed thoroughly [Cabré and Gaztañaga, 2011].

The motivation for this paper is the fact that the detection of BAOs motivation

as a modulation feature in the galaxy field depends on the assump-
tion of a biasing mechanism [Gaztañaga et al., 2009a; Desjacques et al.,
2010] which relates the galaxy number density to the ambient density
of dark matter is well as a control of redshift space distortions effects
[Nishimichi et al., 2007; Taruya et al., 2009] and it would be desirable
to measure the dark matter density directly. Weak lensing would be why using 3dWL?

a prime candidate for such a measurement, but the wide line-of-sight
weighting functions cause the weak lensing signal to depend rather
on the integral of the spectrum of cold dark matter (CDM) than on
individual, localized features, even in the case of tomographic lensing
surveys [Hu, 1999]. This is the reason why investigate the sensitivity
of 3d weak lensing [3dWL, Heavens, 2003] for constraining the dark
matter spectrum on BAO scales: 3dWL provides a direct estimate
of the 3-dimensional matter distribution and gives Gaussian errors
on the amplitude of the CDM spectrum in wavelength bands from
sparsely sampled data [Leonard et al., 2012]. In this way, we aim to
quantify the statistical precision at which 3dWL constraints the CDM
spectrum at the BAO wavelengths, and the statistical significance for
inferring the presence of one or more wiggles from 3dWL data rela-
tive to the null-hypothesis of absent wiggles.

After a short compilation of basic results concerning distances, struc-
ture growth, structure statistics, and conventional weak lensing in
Section 4.2, we recapitulate the main results of 3dWL in Section 4.3
and motivate its usage in constraining BAO wiggles. Our statistical
approach and the estimation of statistical errors on the BAO measure-
ment is given in Section 4.4, followed by a discussion of our main
results in Section 7.9.

The reference cosmological model used is a spatially flat wCDM
cosmology with Gaussian adiabatic initial perturbations in the matter
distribution. The specific parameter choices are Ωm = 0.25, ns = 1,
σ8 = 0.8 and H0 = 100 h km/s/Mpc, with h = 0.72. The dark energy
equation of state is set to w = −0.9 and we assume the dark energy to
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be smooth. The baryon density Ωb = 0.04 is used for correcting the
CDM shape parameter and for predicting BAO-wiggle amplitudes
and wave-vectors.

4.2 cosmology and structure formation

4.2.1 Dark energy cosmologies

In spatially flat dark energy cosmologies with the present matter den-
sity Ωm, the Hubble function aH(a) = da/dt is given by

H2(a)

H20
=
Ωm

a3
+ (1−Ωm) exp

(
3

∫1
a

d lna (1+w(a))

)
, (4.1)

with the dark energy equation of state w(a). A constant value w ≡
−1 corresponds to the cosmological constant. The relation between
comoving distance χ and scale factor a is given by

χ = c

∫1
a

da
a2H(a)

, (4.2)

with the Hubble distance χH = c/H0 as the cosmological distance
scale. Redshift z and comoving distance are related by dz/dχ = H(z)/c

.

4.2.2 CDM power spectrum

The linear CDM-density power spectrum P(k) describes the fluctua-
tion amplitude of the Gaussian homogeneous density field δ,

〈δ(k)δ(k′)∗〉 = (2π)3δD(k − k′)P(k) ∝ knsT2(k), (4.3)

with the the spectral index ns and the transfer function T(k). The
restoring force provided by the baryon-photon fluid in the early Uni-
verse generates a set of wiggles in the spectrum P(k) and an overall
suppression due to diffusion. Both effects are discussed in detail by
Eisenstein and Hu [1998] and Eisenstein and Hu [1999] who also pro-
vide a fitting formula for T(k) in terms of the density parameters Ωm,
Ωb, and the Hubble parameter h.

The spectrum P(k) is normalized in such a way that it exhibits the
variance σ28 on the scale R = 8 Mpc/h,

σ2R =

∫
k2dk
2π2

P(k)W2(kR) (4.4)

with a Fourier transformed spherical top hat filter function, W(x) =

3j1(x)/x, where j`(x) is the spherical Bessel function of the first kind
of order ` [Abramowitz and Stegun, 1972].
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4.2.3 Structure growth

The growth of density fluctuations in the cosmic matter distribution
can be described as a self-gravitating hydrodynamical phenomenon,
in the limit of Newtonian gravity. Homogeneous growth of the den-
sity field

δ(x,a) = D+(a)δ(x,a = 1) (4.5)

in the linear regime |δ| � 1 is described by the growth function
D+(a), which is the solution to the growth equation [Turner and
White, 1997; Wang and Steinhardt, 1998; Linder and Jenkins, 2003],

d2

da2
D+(a) +

1

a

(
3+

d lnH
d lna

)
d

da
D+(a) =

3

2a2
Ωm(a)D+(a). (4.6)

Nonlinear structure formation leads to a strongly enhanced struc-
ture growth on small scales, generates non-Gaussian features and,
most importantly, wipes out BAO wiggles as features in the initial
matter distribution. This can be understood in an intuitive way as
corrections to the CDM spectrum in perturbation theory to order n
assume the shape of integrals over polyspectra up to order 2n [which
separate into a product of n spectra by application of the Wick’s the-
orem, see the review by Bernardeau et al., 2002] and are therefore
becoming insensitive to localized features that are not strongly influ-
encing the normalization of P(k) [Springel et al., 2005; Jeong and Ko-
matsu, 2006; Pietroni, 2008; Matarrese and Pietroni, 2008; Crocce and
Scoccimarro, 2008; Nishimichi et al., 2009; Jeong and Komatsu, 2009;
Jürgens and Bartelmann, 2012; Anselmi and Pietroni, 2012]. Since non-
linear structure formation affects small scales first, we will target BAO
wiggles with 3dWL beginning at the largest wavelength before pro-
ceeding to successively shorter wavelengths.

4.2.4 Weak gravitational lensing

The weak lensing convergence κ provides a weighted line-of-sight av-
erage of the matter density δ [for reviews, see Bartelmann and Schnei-
der, 2001; Munshi et al., 2008; Hoekstra and Jain, 2008; Bartelmann,
2010c],

κ =

∫χH
0

dχWκ(χ)δ, (4.7)

with the weak lensing efficiency Wκ(χ) as the weighting function,

Wκ(χ) =
3Ωm

2χ2H

D+

a
G(χ)χ, (4.8)
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and the lensing efficiency weighted galaxy redshift distribution, rewrit-
ten in terms of comoving distance,

G(χ) =

∫χH
χ

dχ′ n(χ′)
(
1−

χ′

χ

)
. (4.9)

n(z) denotes a common parametrization of the redshift distribution
of the lensed background galaxy sample,

n(z) = n0

(
z

z0

)2
exp

(
−

(
z

z0

)β)
dz with

1

n0
=
z0
β
Γ

(
3

β

)
,

(4.10)

which can be rewritten in terms of a distribution in comoving dis-
tance with the relation n(χ)dχ = n(z)dz using dχ/dz = c/H(a).
These expressions allow to carry out a Limber projection [Limber,
1954] of the weak lensing convergence, which yields the angular con-
vergence spectrum Cκ(`),

Cκ(`) =

∫χH
0

dχ
χ2
W2
κ(χ)P(k = `/χ). (4.11)

We will formulate our derivations in terms of the lensing convergence
κ instead of the observable shear γ because it is a scalar quantity and
possesses identical statistical properties. Equation 4.11 illustrates why
line-of-sight averaged weak lensing spectra are ineffective in picking
up BAO wiggles (and is almost a repetition of the previous argument
why nonlinear structure formation destroys BAO features): They pro-
vide only an integrated measure of the CDM spectrum P(k) weighted
with wide weighting functions Wκ(χ) that is very insensitive to local
features of the spectrum such as BAO wiggles. This argument holds
even for advanced tomographic surveys [Hu, 1999; Takada and Jain,
2004] and motivates the need of a 3-dimensional mapping of the cos-
mic matter distribution. With reference to Gaztañaga et al. [2009b]
and Kazin et al. [2010a], we would like to emphasize that weak lens-
ing, due to its sensitivity to gravitational shear components perpen-
dicular to the line of sight, will provide measurements of BAO wig-
gles in the transverse direction.

4.3 3d weak lensing

The method of 3dWL was introduced by Heavens [2003], who pro-
posed to include distances of lensed galaxies estimated from their
photometric redshifts to infer the 3-dimensional unprojected tidal shear,no line-of-sight

averaging in 3dWL i.e. the second derivatives of the gravitational potential perpendicular
to the line-of-sight from distortions in the galaxies’ ellipticity. There-
fore, this approach differs from estimations of the angular line-of-
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sight averaged spectrum Cκ(`) or corresponding tomographic spec-
tra Cijκ (`) in the important respect that the statistics of the full 3-
dimensional matter distribution is inferred without any averaging
of shears with the line-of-sight galaxy distribution, which has been
performed in Equation 4.9. As such, 3dWL is particularly suited for
the problem at hand, namely to provide a precise estimate of the am-
plitude of the dark matter power spectrum at the BAO wavelengths.
Additionally, Heavens [2003] showed that if 3dWL is used for con-
straining P(k) at a fixed cosmology, the smallest errors are expected
in the BAO regime of the CDM spectrum.

In this section, we recapitulate the main results of 3dWL in terms
of the weak lensing convergence in the Fourier-convention we prefer
to work with; please also refer to Castro et al. [2005], Massey et al.
[2007], Heavens et al. [2006], Kitching et al. [2008a] for a detailed de-
scription of the theory, to Munshi et al. [2011] for higher-order statis-
tics through 3dWL and to Ayaita et al. [2012] for details of our nu-
merical implementation. We assume spatial flatness and lensing in
linearly evolving structures, which can be, in principle, relaxed from
the 3dWL point of view [Pratten and Munshi, 2013]. The impact of
systematic errors is nicely investigated by Kitching et al. [2008b], and
for an application to observational data we refer the reader to Kitch-
ing et al. [2007].

The most natural choice for carrying out a Fourier transform in
spherical coordinates is a combination of spherical harmonics for the
angular and spherical Bessel functions for the radial dependence. We convergence

transformationcan therefore write the transformation for the convergence κ as

κ`m(k) ≡
√
2

π

∫
χ2dχ dΩκ(χ,θ) j`(kχ)Y∗`m(θ), (4.12)

[see Ballinger et al., 1995; Heavens and Taylor, 1995], where j` and
Y`m are, respectively, a spherical Bessel function of the first kind and
a spherical harmonic, and θ ≡ (θ,ϕ). There exist algorithms for fast
computation of κ`m(k) [Percival et al., 2004; Rassat and Refregier,
2012; Lanusse et al., 2012; Leistedt et al., 2012]. Such a transforma-
tion is particularly convenient as the combination of j` and Y`m is an
eigenfunction of the Laplacian in spherical coordinates, leading to a
quite simple relationship between the coefficients of the density field
δ`m(k) and the lensing convergence κ`m(k), as the observable:

κ`m(k) =
3Ωm

2χ2H

`(`+ 1)

2

η`(k,k′)
(k′)2

δ`m(k′), (4.13)

with the lensing-induced mode coupling η`(k,k′) mode coupling
induced by lensing

η`(k,k′) =
4

π

∫∞
0

χ′
2dχ′

∫χ′
0

dχ
χ′ − χ

χχ′
D+

a
j`(kχ

′)j`(k
′χ), (4.14)

with implicit assumption of the Einstein summation convention

X(k,k ′) Y(k ′,k ′′) ≡
∫∞
0

k′
2dk′ X(k,k ′) Y(k ′,k ′′). (4.15)
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It is then possible to construct an estimator for κ`m(k) by including
the uncertainty of the galaxy distance estimates coming from errors
in the measurements of redshift. If we denote by χ the true radial
coordinate of a galaxy, and by χ ′ the one inferred by its observed
redshift z′ = z(χ′), then they will be related by the probability p(χ ′|χ),
which we assume to be Gaussian for simplicity:

p(χ′|χ)dχ =
1√
2πσ2z

exp
[
−
(z(χ) − z(χ′))2

2σ2z

]
dz′, (4.16)

where σz is the width of the distribution and is assumed to be con-
stant throughout the entire galaxy sample. Furthermore, galaxies re-
ceive a statistical weight according to their distribution in distance
n(χ)dχ. Following the derivation in Heavens [2003], we define the
two additional matrices

mode coupling
induced by redshift

errors and galaxy
distribution

Z`(k,k′) =
2

π

∫
χ′
2dχ′

∫
dχ p(χ′|χ) j`(k′χ)j`(kχ ′), (4.17)

M`(k,k′) =
2

π

∫
χ2dχ n(χ) j`(kχ)j`(k′χ), (4.18)

where n(χ) is the number density of galaxies, as defined in Equa-
tion 4.10. These matrices describe the correlations in spherical Fourier
modes generated by the measurement process: While η`(k,k′) de-
scribes mode couplings due to weak lensing, Z`(k,k′) and M`(k,k′)
define, respectively, the contributions in the mode couplings coming
from redshift errors and from the galaxy distribution along the radial
coordinate χ.

We restrict ourselves to observations of the entire sky. In this case,full sky limit

the expression for the estimator κ̄`m of the convergence is then ex-
pected to be

κ̄`m(k) =
3Ωm

2χ2H

`(`+ 1)

2

B`(k,k ′′)
(k ′′)2

δ`m(k ′′). (4.19)

where the mode-coupling matrix B`(k,k ′) describes two integrationsmode-coupling
matrix over k1 and k2:

B`(k,k ′′) = Z`(k,k1)M`(k1,k2)η`(k2,k ′′). (4.20)

Since the average values of a field like κ`m(k) are zero for all-skyconvergence 3dWL
covariance surveys, we can only infer information about any parameter the field

may depend on by means of its covariance,

〈κ̄`m(k) κ̄∗`m(k ′)〉 = Sκ,`(k,k ′) +Nκ,`(k,k ′) ≡ Cκ,`(k,k ′) (4.21)

which consists of a signal term Sκ,`(k,k ′) and a noise term Nκ,`(k,k ′).
The signal term Sκ,` can be calculated directly from Equation 4.19:

Sκ,`(k,k ′) =
(
3Ωm

2χ2H

)2 [
`(`+ 1)

2

]2
B`(k,k ′′)
(k
′′
)2

B`(k
′,k ′′)

(k
′′
)2

Pδ(k
′′), (4.22)
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with the abbreviations

B`(k,k ′′) = Z`(k,k1)M`(k1,k2)η`(k2,k ′′) (4.23)

B`(k
′,k ′′) = Z`(k

′,k3)M`(k3,k4)η`(k4,k ′′) (4.24)

with implicit integration over k1, k2 and k3, k4. The corresponding
noise part Nκ,` is given by

Nκ,`(k,k ′) =
σ2ε
4
M`(k,k ′), (4.25)

which is proportional to the shape noise σ2ε, namely the variance of
the galaxy ellipticity distribution. It is important to notice that Nκ,` is
independent of cosmology or variations in the CDM spectrum P(k).
Intrinsic ellipticity correlations were neglected, which would greatly
complicate the 3dWL description.

4.4 detecting bao wiggles

4.4.1 Construction of the Fisher matrix

We choose a Fisher matrix approach to determine how precisely 3dWL
can constrain baryon acoustic oscillations in the matter power spec-
trum P(k). The Fisher matrix is a square matrix whose elements are Fisher matrix

definitiondefined as the expectation values of the second derivative of the loga-
rithmic likelihood with respect to the fiducial parameters θα and θβ:

Fαβ = −

〈
∂2 lnL

∂θα∂θβ

〉
. (4.26)

As a general statement, if the likelihood L can be expressed as an
N-dimensional Gaussian

L =
1√

(2π)N det(C)
exp

(
−
1

2
~x TC−1~x

)
, (4.27)

where ~x is a generic data vector and C is the corresponding covari-
ance, we can then write

Fαβ =
1

2
tr
[
(C−1 ∂αC)× (C−1 ∂βC)

]
, (4.28)

or, equivalently,

Fαβ =
1

2
tr
[
∂α lnC× ∂β lnC

]
, (4.29)

where ∂α and ∂β stand for the derivatives with respect to the pa-
rameters θα and θβ. Given a particular experimental framework, the
Fisher matrix specifies what are the best errors to expect for the in-
ferred parameters θα via the Cramér-Rao relation.
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Figure 4.1: Ratio between the power spectrum with baryon acoustic oscilla-
tions P(k) and the smooth power spectrum Ps(k). The largest
wiggles in amplitude have been highlighted and labeled as
wα,α = 1, ..., 6. These are the wiggles used to parametrize the
power spectrum in our Fisher matrix approach.

It can be proved that, since `-measurements are independent in
the case of full-sky coverage, we can reformulate Equation 4.28: We
consider our estimator to be κ̄`m(k) and its covariance as defined in
Equation 4.21, and find

Fαβ =
fsky

2

`max∑
`=`min

(2`+ 1) tr
[
(Cκ,`

−1 ∂αCκ,`)× (Cκ,`
−1 ∂βCκ,`)

]
.

(4.30)

In our specific case, we consider the power spectrum as parametrizedour parametrization
of the spectrum not by usual cosmological parameters, such as Ωm or σ8, but rather

by its own wiggles amplitudes, namely by the values assumed by
P(k) in a range of k where the wiggles wα are located. In Figure 4.1
we plot the wiggle-only power spectrum, i.e. the ratio between the
power spectrum with baryon acoustic oscillations P(k) and an equiv-
alent, smoothed out spectrum that has the same shape as P(k) but
shows no oscillating feature, Ps(k). We highlight the wiggles that
have been used to parametrize P(k), wα,α = 1, ..., 6. By calculating
the derivative ∂αC of the covariance with respect to a variation of
the amplitude of a maximum number of wiggles nw, we can build
up (Equation 4.28) a Fisher matrix Fαβ, where α,β = 1, ...,nw. Such
a matrix carries information about the best errors to expect on the
detection of each wiggle wα, α = 1, ...,nw, and the cross-correlations
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Figure 4.2: The ratio between P(k) and Ps(k). The figure shows a picto-
rial representation of the variation of the amplitude of one wig-
gle when calculating the derivative of the covariance matrix,
∂α=2C`.

between inferred wiggle amplitudes. Given our aim, what we are
actually performing in the calculation of ∂αC is a functional deriva-
tive, also known as Fréchet derivative. In fact, we can imagine the
power spectrum as depending on features, i.e. the wiggles in Fig-
ure 4.1. Each one of them can be approximated to a sin-like function
defined in a range of k as wide as λ/2, where λ is the wavelength of
the function itself. The covariance derivative is numerically estimated covariance

derivativefor one wiggle at a time as a finite difference:

∂αCκ,` =
C+
κ,`,α −C−

κ,`,α

2ε
, (4.31)

where C±κ,`,α are the covariance matrices calculated using the power
spectra P±α (k) and ε is an arbitrarily small number. The spectra P±α (k)
are equivalent to the original P(k) for all k of the domain, exception
made for the wave numbers belonging to the interval Iα that corre-
sponds to wiggle wα. In this interval P±α (k) is then

P±α (k) = P(k)± εP(k). (4.32)

We would like to point out that, since what we are actually perform-
ing by means of the spectrum variation in Equation 4.32 is in a way a
logarithmic derivative of C`, the denominator in Equation 4.31 lacks a
factor P(k) and is therefore just two times the fraction of the spectrum
used in the variation. In Figure 4.2 we show a representation of an ex-
ample of the variation performed in the calculation of the derivative
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zmed n̄ fsky σz σε

Euclid 0.9 30 0.5 0.1 0.3

DES 0.7 10 0.1 0.12 0.3

DEEP 1.5 40 0.1 0.05 0.3

Table 4.1: Basic survey characteristics used for the Fisher-analysis: median
redshift zmed of the galaxy sample, galaxy density per squared ar-
cminute n̄, sky coverage fraction fsky, redshift error σz and shape
measurement error σε of the surveys Euclid, DES and a hypothet-
ical deep-reaching survey labeled DEEP.

of the covariance matrix, ∂αC; in this case the second wiggle, w2, has
been considered.

It is worth noticing that the Fisher-matrix approach for inferring
the error σα on the dark matter spectrum P(kα) (where kα are simply
the k ∈ Iα, for brevity) as a Gaussian standard deviation is perfectly
justified because of the linearity of the lensing observable and the
linearity of the random field, so we do not need to use Monte-Carlo
sampling for evaluating the likelihood L(P(kα)) and to measure its
widths σα from Monte-Carlo samples of the likelihood.

As noise sources for the inference of P(kα), we consider a Gaus-noise sources:
- shape noise

- redshift error
sian shape measurement error σε for the galaxy ellipticities, which
are assumed to be intrinsically uncorrelated, and a Gaussian error σz
for the redshift determination uncertainty. Likewise, we work in the
approximation of neglecting all geodesic effects [Seitz and Schneider,assumptions and

simplifications
1994; Seitz et al., 1994] like deviations form the Born approximation,
lens-lens couplings [Shapiro and Cooray, 2006; Krause and Hirata,
2010], source clustering [Schneider et al., 2002], source-lens correla-
tions [Hamana et al., 2002], and deviations from Newtonian gravity
[Acquaviva et al., 2004]. While performing the necessary variations
for computing the Fisher matrix, we keep all other cosmological pa-
rameters fixed and calculate everything using an `-range between
`min = 2 and `max = 100 (please see the next section for a justifica-
tion of this choice). As surveys, we consider the cases of Euclid, DES,surveys

and a hypothetical deep-reaching galaxy survey we refer to by the
name DEEP. The respective survey properties are summarized in Ta-
ble 4.1. For the calculation of the covariance matrices, we adopted the
numerical implementation by Ayaita et al. [2012], also described in
Appendix A.

4.4.2 Statistical errors

The error σα for inferring the amplitude of the CDM spectrum P(kα)Cramér-Rao error
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Figure 4.3: The marginalized errors on the first four wiggles, normalized
with respect to their amplitude, as the maximum ` used for the
calculation of the Fisher matrix increases. It shows that choosing
`max > 100 brings no particular advantage in the precision of the
wiggles measurement. In the calculation of the errors we consid-
ered the power spectrum as parametrized by the first 4 wiggles.

at wiggle positions kα is given by the Cramér-Rao relation,

σ2α = (F−1)αα, (4.33)

and

σ2α = 1/Fαα, (4.34)

for marginalized and conditional likelihoods, respectively.
Before carrying out our analysis for surveys like Euclid, DES, and sensitivity to survey

parametersDEEP, we implement some tests in order to determine the optimal
value for the maximum number of modes to be used in the calcula-
tion of the Fisher matrix, `max. Besides, we tried to find out how and
by how much are the errors sensitive to some of the usual survey
parameters, such as

1. the shape noise σε;

2. the error σz in the measurement of redshift;

3. the median redshift zmed;

4. the fraction of sky coverage fsky.

Throughout these tests, when not stated otherwise, we make use of
a default set of survey parameters such that σz = 0.02, σε = 0.3,
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Figure 4.4: The relative marginalized error for the first 4 wiggles, as the
shape noise σε varies. Again, we assumed σz = 0.02, σε = 0.3,
zmed = 0.9, fsky = 0.4 and n̄ = 20. As we expected, larger values
of σε bring along larger errors on the detection of the wiggles.

zmed = 0.9, fsky = 0.4 and n̄ = 20. Additionally, we assumed we want
to constrain simultaneously the first four wiggles (see Figure 4.1).

We start our investigation by determining the errors σα, α = 1, 2, 3, 4,finding the optimal
`max as the maximum number of modes `max in the summation in Equa-

tion 4.30 increases. Please refer to Figure 4.3 for a plot of the behavior
of σα normalized to the oscillation amplitude Aα, where Aα is de-
fined as the maximum value of |P(k) − Ps(k)| for each wiggle. In par-
ticular, we considered `max = 10, 30, 100, 300, and observe that, after
`max = 100, there is practically no gain in the precision with which the
first 4 wiggles would be constrained in a 3dWL approach. Therefore,
we decide to stick to a maximum number of modes of 100 for all the
subsequent calculations. This is a fair approximation also from a theo-
retical point of view: In fact, extending too much the ` interval for the
Fαβ summation could make us fall out of the linear regime; in addi-
tion, the assumption of a Gaussian shape for the likelihood L could
not to be anymore reasonable in such a multipole range [Heavens,
2003].

In Figure 4.4, we show what happens as soon as we keep all the sur-shape-noise

vey parameters fixed and vary the shape noise σε. As one can expect,
larger values of σε lead to larger σα, therefore to a greater uncertainty
in the detection of the wiggles. Moreover, the rate at which σα grows
with the shape noise seems to be of the type of a power law, and
seems independent of the wiggle considered, at least for the wiggles
sample we evaluated. The situation turns out to be similar when theredshift error

error in the determination of redshift σz is considered, in Figure 4.5:
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Figure 4.5: The relative marginalized error for the first 4 wiggles as a func-
tion of the error in the measurement of the photometric redshift,
σz. The sensitivity of the errors on the value of σz is not as steep
as it is for the shape noise σε. In addition, the increasing rate of
σα seems to change as we consider higher order wiggles.

increasing σz still produces larger errors on all the wiggles under in-
vestigation, although here the relation is somewhat slower, especially
as long as σz . 0.1; the relation also appears to be slightly dependent
on the wiggle, becoming steeper as higher order oscillations are taken.
In fact, by incrementing the error on redshift from 0.01 to 0.1, we get
an error larger only by a factor of ∼ 2 on the first wiggle and by a fac-
tor of ∼ 8 on the second. Additionally, the correspondence between median redshift

σα and the median redshift of the survey (Figure 4.6) seems again
like a power law that gives larger errors for an increasing zmed, and
is independent of the wiggle. Qualitatively, this trend makes sense in
light of the fact that, as we increase the median redshift, we keep fixed
all other survey parameters such as, for example, the galaxy density
per squared arcminute n̄. By doing so, we consider surveys where a
number n̄ of galaxies is distributed over a deeper cone, meaning that
we are actually sampling the 3D convergence field in a more diluted
way, and therefore inheriting a larger noise. Naturally, varying the sky coverage

sky covarage propagates to the errors σα ∝ 1/
√
fsky.

4.4.3 Detectability of BAO wiggles

In this section, we would like to present the results obtained when
estimating the best errors to expect on BAO wiggles for the surveys
Euclid, DES, and DEEP (please see Table 4.1 for specifications).

We started our analysis by calculating both marginalized (σα = marginalized and
conditional errors
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Figure 4.6: Relative marginalized errors on the first 4 wiggles when the
median redshift zmed of the survey increases. Since all other
parameters are kept fixed, especially the mean galaxy density
per squared arcminute, n̄, increasing zmed is equivalent to hav-
ing more and more diluted surveys, where the same amount of
galaxies is distributed along a deeper survey cone.
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Figure 4.7: Conditional (magenta lines) and marginalized relative errors
(black lines) for the three surveys under investigations Euclid
(solid line), DES (dashed line) and DEEP (dash-dot line) as a
function of the wiggles, when the first 4 oscillations are simulta-
neously constrained.
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Figure 4.8: Confidence ellipses for the first four wiggles in a Euclid-like sur-
vey, showing that the wiggles are indeed highly correlated. In
fact, taking, for example, two consecutive wiggles, such as w2
and w3, we see that by increasing the amplitude of P(k) at the
position of wiggle 2, we must then have the amplitude at w3
decreased in order to remain in the confidence region. The x-
and y-axes show the variation of the wiggle in terms of percent-
age of its amplitude Aα, the three contours areas correspond to
1− 2− 3σ, and every panel shows the correlation coefficient in
the upper-right corner.
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Figure 4.9: Fisher confidence ellipses for DES, when one tries to simulta-
neously constrain the first four wiggles. Again, contours areas
correspond to 1− 2− 3σ and the number in every panel is the
correlation coefficient; the axes represent variation of wiggles
in terms of their amplitude fraction. Also in this case we can
observe correlation between the amplitudes of P(k) at different
wiggles positions.
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Figure 4.10: Confidence ellipses for the DEEP survey, with the variation of
the oscillations in terms of the wiggle amplitude. Again, we
assumed we wanted to constrain jointly the first four wiggles,
contour areas stand for 1− 2− 3σ and the correlation coefficient
can be read in the panels.
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Figure 4.11: The bars show the marginalized errors in the detection of the
wiggles, normalized with respect to Ps(k), when the first 2 (up-
per left panel), 3 (upper right panel), 4 (bottom left panel),
5 (bottom right panel) wiggles are used to parametrize the
power spectrum. Here, we considered a Euclid-like survey with
σz = 0.1, σε = 0.3, zmed = 0.9, fsky = 0.5 and n̄ = 30.

√
(F−1)αα) and conditional errors (σα = 1/

√
Fαα) relative to the wig-

gle amplitude. These errors were computed for the three types of
surveys, considering the first four oscillations, as shown in Figure 4.7.
As we could expect, marginalized errors are always larger than the
correspondent conditional ones, namely the σα on each wiggle when
we assume to know precisely all the other wiggle amplitudes.

We continue the investigation considering the confidence ellipses confidence ellipses

calculated from the corresponding Fisher matrices obtained for the
three surveys. We assume we are aiming to jointly constrain the first
four wiggles and plot the results in Figure 4.8, Figure 4.9, and Fig-
ure 4.10 for, respectively, Euclid, DES, and DEEP. The sizes of the el-
lipses, whose contours stand for 1−2−3σ, already tell us that, among
the ones evaluated, Euclid will probably be the survey with largest
constraining power on the BAO wiggles. It is of particular interest
noticing the orientation of the ellipses, or their correlation coefficients
(upper-right corner in every panel), that tell us something about the
interdepence between different wiggles: In fact, neighboring wiggles
are anti-correlated , i.e. increasing the amplitude of the power spec-
trum in correspondence to one oscillation would cause the P(k) at the
position of the adjacent wiggle to take smaller values in order to stay
among the confidence region, and vice versa, whereas the opposite
holds for alternated wiggles.
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Figure 4.12: Marginalized errors on the detection of BAO wiggles when one
tries to detect the first 2 (upper left panel), 3 (upper right panel),
4 (bottom left panel), 5 (bottom right panel) wiggles at the same
time, for a DES-like survey (σz = 0.12, σε = 0.3, zmed = 1.5,
fsky = 0.12 and n̄ = 10). Again, we considered the relative
marginalized errors, dividing by Ps(k).
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Figure 4.13: The marginalized errors on the detection of the wiggles in the
power spectrum, relative to Ps(k), for the hypothetical survey
DEEP, characterized by the parameters σz = 0.05, σε = 0.3,
zmed = 1.5, fsky = 0.1 and n̄ = 40.
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In order to better understand whether the constraining power of
the three surveys will allow us to detect any oscillatory feature in the
CDM power spectrum, we plot the σα obtained from the Cramér-Rao
relation in Equation 4.33 as error bars in the usual wiggle-only power
spectrum for DEEP (Figure 4.13), DES (Figure 4.12), and Euclid (Fig-
ure 4.11). Since what is shown is a ratio between P(k) and a smooth
spectrum, the σα have of course also been normalized with respect
to Ps(k). The four different panels show how the errors change when
we try to jointly constrain the first 2, 3, 4, or 5 wiggles with a 3dWL
approach.

What these and the following plots show, first of all, is an expected
feature: As we increment the number of wiggles we expect to simul-
taneously examine, the precision with which the amplitudes P(kα)
would be measured gets poorer and poorer for all the oscillations.
Our purpose would then be to evaluate how many BAO wiggles one
is allowed to constrain before the errors on them become too large.
It can be seen that all three surveys would allow for quite good con-
straints on the first 2 wiggles. The hypothetical survey DEEP already
shows error bars of the order of the wiggle amplitude Aα when the
first 3 wiggles are considered, and the errors become much larger
than Aα (α > 1) as soon as one tries to detect 4 or more wiggles
(Figure 4.13). On the other hand, DES and Euclid give a better per-
formance, allowing for, respectively, the first 3 and 4 wiggles to be
simultaneously constrained, with Euclid giving smaller errors overall
(Figure 4.11).

A better comparison between the three surveys can be carried out
analyzing Figure 4.14 and Figure 4.15, where we plotted relative er-
rors σα/Aα as functions of the maximum number of wiggles we want
to jointly constrain, nw, and we collate results coming from, respec-
tively, DEEP and Euclid, and DES and Euclid. It becomes straight-
forward that a DEEP-like survey cannot compete against Euclid: The
relative errors coming from DEEP are always larger than the latter’s,
independently of the maximum number of wiggles to be constrained,
and remain safely under the unity only for the first 2 wiggles.

The situation is better for DES, that seems to be at least able to de-
tect the first three wiggles. However, DES gives a worse performance
than Euclid, with errors larger of a factor ∼ 6.

Concluding, Euclid seems to grant the best results, allowing for
the simultaneous detection of up to 4 wiggles with expected errors
that are smaller than the ones predicted for both DES and, of course,
DEEP, and that range between ∼ 1% and ∼ 10% (with respect to the
wiggle amplitudes) for the first harmonics.
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Figure 4.14: Relative marginalized errors as a function of nw for a Euclid-
like survey (solid lines) and a DEEP-like survey (dashed lines).
The relative σα for a DEEP survey appear to be always larger
than the ones obtained from Euclid, independently of the max-
imum number of wiggles nw we want to constrain.
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Figure 4.15: Relative marginalized errors (with respect to the wiggles ampli-
tude) as a function of the maximum number of wiggles that we
try to simultaneously detect, nw. Here, we show the results for
a Euclid-like survey (solid lines) and a DES-like survey (dashed
lines). Different colors and point types correspond to the dif-
ferent wiggles on which the error σα is calculated. The relative
errors coming from a DES-like survey turn out to be larger than
Euclid’s over all the nw interval, nevertheless still allowing DES
to detect the first three wiggles simultaneously.
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4.5 summary and conclusions

Subject of this paper has been a statistical investigation on whether
future weak lensing surveys are able to detect baryon acoustic oscilla-
tions in the cosmic matter distribution by application of the 3d weak
lensing method. For a fixedwCDM cosmology, we have estimated the
statistical precision σα on the amplitude of the CDM spectrum P(k)

at the BAO wiggle positions in a Fisher-matrix approach. Through-
out, we worked under the assumption of Gaussian statistics, indepen-
dent Fourier modes and in the limit of weak lensing. Noise sources
were idealized and consisted in independent Gaussian-distributed
shape-noise measurements for the lensed background galaxy sam-
ple, as well as a Gaussian error for the redshift determination. As
surveys, we considered the cases of Euclid, DES and a hypothetical
deep-reaching survey DEEP.

1. We have constructed the Fisher matrix considering our model
as parametrized by the amplitudes of the CDM power spectrum
at the baryon acoustic oscillations anticipated positions. In par-
ticular, we started taking the two BAO wiggles with largest
amplitude and progressively increased the number of oscilla-
tions considered. Keeping the cosmology fixed to a standard
wCDM parameter choice, we carried out variations of P(k) that
preserved its wiggle-shape in those wave number intervals; we
then estimated the Fisher matrix accordingly, in order to quan-
tify whether the statistical power of future weak lensing surveys
suffices to place bounds on the amplitudes of the considered
harmonics. By means of the Cramér-Rao relation, we calculated
the best errors σα to expect for the amplitudes of P(k) at wiggle
positions.

2. The sensitivity of σα with respect to some typical survey-param-
eters was tested. In particular, we considered the shape noise
σε, the redshift error σz, the median redshift zmed, and the sky
coverage fsky. We found that, as expected, increasing the uncer-
tainty in the estimate of either the redshift or the galaxy shapes
brings a larger error in the inference of the presence of wig-
gles, and that the sensitivity of these errors on σz is less pro-
nounced for small values of σz, although it grows as soon as
we consider higher order wiggles or large σz. An increase of
zmed leads as well to larger errors on the wiggles amplitudes, as
one would expect from considering less and less populated sur-
veys; for the same reason, a wider sky coverage, i.e. larger fsky,
yields to higher precision in constraining the wiggle amplitudes
σα ∝ 1/

√
fsky.

Overall, we may conclude that the volume of a survey seem to
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be overcoming the importance of a high precision in the redshift
measurement of galaxies, at least for σz < 0.1− 0.2.

3. Finally, we evaluated the σα for the surveys under investigation
and found that, among them, Euclid gave the best results, po-
tentially allowing for the detection of up to the first four BAO
wiggles with a good statistical confidence. Given our tests on
the sensitivity of the errors on P(kα) to certain survey parame-
ters, we may conclude that Euclid’s good performance is prob-
ably due to the volume of the survey in terms of total galaxy
number and sky coverage, that seem to prevail over the nega-
tive effects brought by the error on redshift measurements, σz,
larger than the ones predicted for the other two surveys.

Given these results, we conclude that measurements of BAO wig-
gles based on future weak lensing data are entirely possible, and
avoid issues related to galaxy biasing and redshift-space distortions.
We forecast a detection of the first four or three wiggles with Euclid
and DES by applying 3dWL techniques. Future developments from
our side include estimates of the precision that can be reached on
inferring dark energy density and equation of state by including the
estimate of the BAO scale at low redshifts probed by lensing to the
estimates at intermediate redshift provided by galaxy surveys and
those at high redshifts such as the CMB. Additionally, we are inves-
tigating the impact of systematical errors on the estimation process
from 3dWL-data and biases in the estimation of BAO-wiggle ampli-
tudes.

The next Part of this thesis will analyze another possible use of the
weak lensing method: the detection of primordial non-Gaussianities
in the density fluctuations distribution.
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I N F L AT I O N A N D P R I M O R D I A L N O N -
G A U S S I A N I T I E S

Inflation is probably among the most controversial topics in Cos-
mology. Inflation models theorize an accelerated expansion that hap-
pened in the very first moments after the big bang. Such an expansion
could, in fact, solve some of the contradictions of the standard hot big
bang model, and produce the distribution of density anisotropies we
observe in the CMB, and from which the Milky Way originated.

Under the inflation paradigm, many models flourished, trying to
explain in detail the mechanism behind the expansion, and what is
responsible for it. Up to now, we still do not know if such an accel-
erated expansion really took place, and what kind of fields gener-
ated it. One way to help us discriminating among the wide range of
candidate models, is measuring the amount of deviation from Gauss-
ianity in the distribution of primordial density fluctuations: In fact,
many inflationary models predict different degrees of non-Gaussiani-
ties, making them a valuable tool.

In the present Chapter, I will schematically introduce the main
problems of the standard big bang model, and how the hypothesis
of an accelerated expansion can solve some of them in an elegant an
simple fashion (Section 5.1). In Section 5.2, I will address primordial
non-Gaussianities in the density fluctuations: how they form and how
they can be described by means of the local, equilateral, and orthogo-
nal shapes.

69
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When not stated otherwise, all the content of this Chapter is based
on the reviews by Bartolo et al. [2004], Wang [2013], Chen [2010], and
on Komatsu [2010], Liddle and Lyth [2000].

5.1 the inflationary paradigm

5.1.1 Standard model: successes and issues

The standard hot big bang model arises as a natural consequence
when the following assumptions are adopted:

1. gravity is described by the theory of general relativity, and laws
of physics as we know them are also valid during the early
Universe;

2. the Universe is homogeneous and isotropic on large scales;Cosmological
Principle

3. some initial conditions must hold, in particular:

• the content of the Universe is initially in thermal equilib-
rium;

• Ωtot(t = 0), i. e. the total density parameter of the Uni-
verse, is very close to unity, meaning that the Universe is
very close to perfect flatness at its early stages;

• some kind of spectrum of initial fluctuations in the density
distribution is provided.

Given these premises, one can construct a theory that easily (orstandard model
successes almost easily)

1. explains the Universe’s expansion,

2. predicts the observed light-element abundances,

3. gives a natural explanation for the isotropy of the cosmic mi-
crowave background,

4. provides a framework for a theory of structure formation, aim-
ing to understand how the initial density fluctuations evolved
and eventually generated collapsed objects such as galaxies, or
the large scale structure.

Despite such important successes of the standard hot big bang
model, there are still some issues that cannot find a solution in this
system. For instance, the cosmological constant problem, that I willstandard model

issues not address here (for a review on the topic see Sahni [2002], Martin
[2012], or the broader Padmanabhan [2003]), the absence of evidence
for topological defects such as magnetic monopoles [Preskill, 1979],
our ignorance on what exactly constitutes dark matter (see for in-
stance the reviews Einasto [2009], Silk [2013]), or the standard model’s
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inability to explain the existence of primordial density fluctuations,
that must be given as an initial condition. Other problems are the
horizon and the flatness ones, briefly described below.

the horizon problem The existence of a limiting velocity like c
comes naturally with the presence of a particle horizon. The
particle horizon defines, for every point in space, the radius “ The horizon of

many people is a
circle with zero
radius, which they
call their point of
view.” A. Einstein

of the sphere containing everything the point itself could have
been in causal contact with. This means that from the moment
of big bang to a generic moment t, information could travel
only a finite distance. If we imagine information to be carried
by photons with speed c, then this distance can be calculated
from imposing a null geodesic

0 = ds2 = c2dt2 + a2dr2, (5.1)

hence yelding

rH(t) = c

∫a(t)
0

dt ′

a(t ′)
. (5.2)

The problem arises as soon as we estimate the particle horizon
at the time of recombination rH(trec). In fact, it turns out that
the portion of sky every point could have already been in causal
contact with, at recombination, is roughly 1/100 of our observ-
able universe. This, of course, is in strong contradiction with
CMB observations, clearly showing that at trec the Universe is
already homogeneous and isotropic, at least if we leave aside
fluctuations of the order of ∆T/T ∼ 10−5. How can CMB spots
separated by r > rH look like they had been casually connected?

the flatness problem As the Universe expands, its curvature evol-
ves with time: the first Friedmann’s equation (Equation 1.5) can
be rewritten in terms of the total density parameter Ωtot:[

Ω−1
tot (t) − 1

]
ρ(t)a2(t) = −

3Kc2

8πG
. (5.3)

The quantities on the right hand side of the equation are clearly
all constants, and, since ρ(t)a2(t) diminishes over time, the
meaning of Equation 5.3 is that curvature cannot change qual-
itatively, i. e. a Universe that is closed, flat or open for t = 0,
will remain so forever. What the equation also tells us is that
curvature does change quantitatively, though, and any initial
deviation of Ωtot from unity increases, also considerably, as t
passes by. This implies that in order for us to observe a value
of the density parameter as close to 1 as we estimate it to be
nowadays, Ωtot should have been (almost exactly) equal to 1,
the critical value, soon after the big bang. The flatness issue is
therefore a fine-tuning problem.
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5.1.2 The inflationary solution

Guth [1981] was the first to propose a way out to some of the issues
of the standard hot big bang model. The idea behind his work was
speculating that during its early stages, and for a limited amount of
time, the Universe has undergone an accelerated expansion, calledaccelerated

expansion, ä > 0 inflation. The plain assumption of the existence of a period where
ä > 0 is able to solve the flatness, the horizon, and the monopole
problems.

The flatness issue is easily addressed [Liddle and Lyth, 2000] assolution to flatness
problem soon as we notice that if ä > 0 holds, then for the definition itself

of the Hubble parameter, we have that the comoving Hubble length
(Ha)−1 is such that

d

dt
(Ha)−1 < 0 (5.4)

Rewriting Equation 5.3 in terms of (Ha)−1 yields

(Ωtot − 1)(Ha)
2 = Kc2, (5.5)

meaning that as time goes by, and as the second term of the left hand
side of the equation increases, Ωtot must get closer to one. In other
words, as a consequence of the accelerated expansion, the Universe
tends to look flatter. This happens because expansion made the size of
our observable universe small with respect to any original curvature
radius.

Also the solution to the horizon problem is a consequence of the
shrinking comoving Hubble length during inflation. In fact, the ob-solution to horizon

problem servable Universe could have originated in a region contained in the
sub-horizon scale before the accelerated expansion, hence before in-
flation caused the comoving horizon scale to decrease.

Similarly, such an accelerated expansion, if long enough, wouldsolution to monopole
problem drastically diminish the monopole density and make it compatible

with observations.

5.1.2.1 Inflation dynamics

Describing all the dynamical aspects of the main inflationary models
would be beyond the purpose of this work. Nonetheless, I would like
to briefly describe the main aspects of the inflationary mechanism,
focussing on the standard slow-roll scenario, usually associated to
models characterized by a single field.

From the Friedmann’s Equation 1.6, it is straightforward to see that
the condition ä > 0 is met only when

ρ+
3p

c2
< 0, (5.6)

meaning that we need the Universe to be dominated by a species withan entity with a
negative pressure
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a negative pressure, i. e. w < −1/3, in order to have an exponential
expansion.

To date, there is no indication on what exactly could be responsi-
ble for inflation. Nonetheless, the most credited general hypothesis
is that it could originate in conjunction with the phase transition of
a generic scalar field subject to a flat potential: As soon as the po-
tential gets slightly tilted, the slowly rolling scalar field produces a
negative pressure, as desired. Such a scalar is usually called inflaton
and denoted by the symbol φ.

Assuming that the choice of a Robertson-Walker metric is justified, standard slow-roll
scenarioand therefore that the space is homogeneous and isotropic on large

scale, and given a generic potential V(φ), the equation of motion for
the inflaton under the influence of V(φ) reads [Mukhanov, 2005]

φ̈+ 3Hφ̇+
d

dφ
V(φ) = 0. (5.7)

This equation differs from the correspondent equation of motion in
flat space in the second term, that represent the coupling of the scalar
field φ to gravity, and acts as a friction.

The H term must be known in order for Equation 5.7 to be solved.
It can be proved that

H2 =
8πG

3

[
1

2
φ̇2 + V(φ)

]
. (5.8)

The two equations can be solved as soon as the potential form is
well known. However, more general considerations can be done, with-
out any restriction on the exact shape of V(φ), if we use the slow-roll slow-roll

approximationapproximation. The slow-roll approximation allows us to solve the
system for any choice of the potential, assumed that V(φ) is suffi-
ciently flat. The assumption of flatness is quantified by the condition

|φ̈|� 3H|φ̇|. (5.9)

In fact, we want the second order term of Equation 5.7 to be negligible
for φ to slowy roll down under the potential action. On the other
hand, since the inflation pressure and density turn out to be

ρφ =
φ̇2

2
+ V(φ), pφ =

φ̇2

2
− V(φ), (5.10)

we also need the following condition to imply a negative pressure,
i. e. p ' −ρ, and therefore for inflation to take place:

1

2
φ̇2 � V(φ). (5.11)

The restrictions found in Equation 5.9 and Equation 5.11 can be ex-
pressed in terms of the potential by means of the slow-roll parameters

ε(φ) ≡
M2
Pl

2

(
V ′(φ)

V(φ)

)2
� 1 (5.12)
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and

|η(φ)| ≡
∣∣∣∣M2

Pl

V ′′(φ)

V(φ)

∣∣∣∣� 1, (5.13)

where the primed quantities are derived with respect to φ. The condi-
tion on parameter ε(φ) assures that the pressure is negative enough,
while the one on η(φ) allows inflation to last as long as it should.

After the slow rolling of φ towards an equilibrium configuration
φ0, it starts to oscillate around the potential minimum V(φ0), until it
decays, coupling to other fields. This process is called reheating, and
its dynamical details vary quite a lot among different models (refer
to Bassett et al. [2006], Allahverdi et al. [2010] for reviews addressing
this topic). The reheating constitutes the threshold between inflation-
ary epoch and the standard model framework; after this moment, the
radiation starts to dominate.

Many alternatives to this simple scenario exist, like the curvaton
mechanism [Mollerach, 1990; Enqvist and Sloth, 2002; Lyth and Wands,
2002], the ekpyrotic scenario [Lehners, 2010], not to mention the en-
tire class of multi field models (for a review see Wands [2008]).

5.2 primordial non-gaussianities

One of the most important successes of the inflationary scenario is
that it gives a natural explanation for the existence of primordial den-inflation generates a

primordial
distribution of

density fluctuations

sity fluctuations. What happens is that quantum fluctuations of the
scalar field φ also get stretched during the accelerated expansion, and
imprinted in super-Hubble scales. As soon as the inflaton decays, dur-
ing the end of inflation, these fluctuations are inherited by the fields
with which φ gets coupled, namely matter and radiation, revealing
themselves as anisotropies of their energy density field. Among the
generic predictions that inflation models make for such density per-
turbations we can find that [Chen, 2010]:

• they are almost scale invariant: In fact, during inflation, each
mode withstand a similar expansion;

• they are approximately Gaussian.

The second statement holds precisely as far as we consider the per-
turbations of the scalar field to be linear: In this case the Central Limit
Theorem ensures that given that modes have a random distribution,
then their superposition will follow a Gaussian statistic.

Things are different, though, if the linearity hypothesis for the fielddeviations from
Gaussianity perturbations must be discarded. It is the case, for example, when

we also have to consider deviations from the slow roll approxima-
tion, or the contributions coming from the scalar field interactions
with itself, with other fields, or both. In that instance, deviations from



5.2 primordial non-gaussianities 75

Gaussianity could occur in the primordial density fluctuations distri-
bution. As various inflationary models predict different degrees of
non-Gaussianities, measuring the latter could lead to rule out some
of these scenarios.

Unlike a normal distribution, that is completely defined by its vari-
ance, and therefore by its power spectrum in Fourier space, a non-
Gaussian distribution needs higher order momenta to be exhaustively
described. Since the primordial distribution of density fluctuations is
still Gaussian to a good approximation, deviations can be treated per-
turbatively, and in this case the bispectrum and trispectrum, defined higher order

statistics are
necessary:
bispectrum,
trispectrum, ...

in Fourier space as follows,

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δD

( 3∑
n=1

kn
)
BΦ(k1, k2, k3) (5.14)

〈Φ(k1)Φ(k2)Φ(k3)Φ(k4)〉 = (2π)3δD

( 4∑
n=1

kn
)
TΦ(k1, k2, k3, k4),

(5.15)

(where Φ stands for the curvature perturbation) contain a good part
of the additional information, apart from being the most accessible
higher order momenta, both from an observational and a theoretical
point of view.

5.2.1 Shapes of non-Gaussianities

There are many different ways a distribution can deviate from a Gaus-
sian. For this reason, non-Gaussianities are usually classified depend-
ing on what modes configurations give the strongest signal. In the
following sections, I will give a brief description of the three main
classifications, and provide an analytical prediction for the bispec-
trum for local, equilateral, and orthogonal non-Gaussianities.

These three shapes, or a linear combination of them, cover almost
the totality of the inflationary models giving deviations from Gauss-
ianity. Nonetheless, there are still some scenarios predicting peculiar
shapes of non-Gaussianity, independent from the following (see for
instance Chen et al. [2007, 2008]; Barnaby [2010]).

local non-gaussianity Local-shape non-Gaussianity is probably
the most studied. In the local ansatz, the curvature perturbation
Φ(x) can be written as a local expansion around a point x and local ansatz

by means of the perturbation variable Φg(x), that is assumed to
satisfy a Gaussian statistics [Wang, 2013]:

Φ(x) = Φg(x) + fNLΦ
2
g(x) + gNLΦ

3
g(x) + ... (5.16)
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Figure 5.1: Three main shapes for the primordial bispectra, normalized as
Bx(k1,k2,k3)(k2/k1)2(k3/k1)2 with respect to the maximum
value assumed, where x stands for local, equilateral, or orthog-
onal. In the top-left panel, it can be seen that the local form
peaks at squeezed triangle configurations. The equilateral shape
(bottom-left panel), on the other hand, provides larger bispec-
trum values in correspondence of configurations where k1 '
k2 ' k3, whereas the orthogonal form (top-right panel) features
a peak at equilateral configurations, and a negative valley all
along elongated shapes, i. e. k1 = k2 + k3. Figure taken from
Komatsu [2010].

Of course this is not a general way for expanding Φ(x): In fact,
in a more general picture, the non linearity parameters could de-
pend on a position vector that is different from the one around
which the expansion itself takes place.

This ansatz makes the study of non-Gaussianities much simpler
from an analytical point of view. It implicitly assumes that they
arise at different spatial points in an independent way, and that
they are generated on super-Hubble scales.

The local form bispectrum is given by the relation [Gangui et al.,
1994; Verde et al., 2000; Komatsu and Spergel, 2001]

Blocal
Φ (k1, k2, k3) = 2flocal

NL

[
PΦ(k1)PΦ(k2) + PΦ(k2)PΦ(k3)

+PΦ(k3)PΦ(k1)
]

= 2A2fNL

[
kns−41 kns−42 + kns−42 kns−43

+kns−43 kns−41

]
, (5.17)

where the approximation PΦ(k) ' PΦg(k) was made, and where
the coefficient

A ≡ PΦ(k)
kns−4

(5.18)
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describes the departure from a scale invariant spectrum [Se-
fusatti and Komatsu, 2007]. The local bispectrum given in Equa-
tion 5.17 peaks among the squeezed triangle configurations, na-
mely when k3 � k2 ' k1 (see top-left panel of Figure 5.1).

The effect of a positive fNL would be, for instance, to enhance
the right-hand tail of the density distribution, and suppress the
left-hand one, making overdensities overall more likely to hap-
pen, and on the contrary, underdensities less likely, with respect
to a Gaussian distribution. Vice versa, of course, for a negative
fNL.

Local shape non-Gaussianities occur, in general, in models where
non-linearities are expected to be produced by super-horizon
evolution of perturbation; this is typically expected to happen
in several types of multi-field models [Lyth et al., 2003; Zaldar-
riaga, 2004; Lyth and Rodríguez, 2005; Bond et al., 2009].

One peculiarity of local non-Gaussianity resides in the fact that,
as Creminelli and Zaldarriaga [2004] proved, every single-inflation
model give a bispectrum like

Blocal
Φ (k1, k2, k3) =

5

3
(1−ns)PΦ(k1)PΦ(k3), k3 � k1,k2

(5.19)

in the squeezed triangle limit. Such a case would imply an ex- single-field models
do not predict local
non-Gaussianities

tremely small value for flocal
NL . Detecting a flocal

NL sensibly different
from zero would then rule out the entire class of single-field
inflationary.

equilateral non-gaussianity Equilateral non-Gaussianities are
characterized by a bispectrum that peaks, as bottom-left panel
of Figure 5.1 shows, at equilateral configurations (k1 ' k2 ' k3).
This form is almost orthogonal to the local one, meaning that
they can be detected independently, and its bispectrum reads
[Creminelli et al., 2006]

B
equil
Φ (k1, k2, k3) = 6A2f

equil
NL

[
− 2
(
k1k2k3

)2(ns−4)/3
−
(
k1k2

)ns−4 − (k2k3)ns−4 − (k3k1)ns−4
+
(
k
(ns−4)/3
1 k

2(ns−4)/3
2 kns−43

+5 perm.
)]

. (5.20)

In general, a positive equilateral bispectrum corresponds to hav-
ing strong overdensities encircled by large regions characterized
by a milder underdensity; on the other hand, a negative equilat-
eral bispectrum describes a higher likelihood to have very con-
centrated under densities surrounded by regions with a blander
overdensity [Lewis, 2011].
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This type of non-linearities arises from several inflationary mod-
els [Arkani-Hamed et al., 2004; Seery and Lidsey, 2005; Chen
et al., 2007; Cheung et al., 2008; Li et al., 2008]. In general,
equilateral non-Gaussianities are produced in models with non-
canonical kinetic terms, such as the well known Dirac-Born-
Infeld (DBI) inflation [Alishahiha et al., 2004; Silverstein and
Tong, 2004]. It is worth pointing out that a positive, and al-
most entirely equilateral bispectrum also arises from non-linear
collapse of dense filaments in the large scale structure [Lewis,
2011].

orthogonal non-gaussianity This form is constructed to be
orthogonal to both local and equilateral forms, and therefore
independent. It actually arises from a linear combination of
higher-derivative interaction terms of the scalar field. Its bispec-
trum

Bortho
Φ (k1, k2, k3) = A2fortho

NL

[
− 8
(
k1k2k3

)2(ns−4)/3
−3
(
k1k2

)ns−4 − 3(k2k3)ns−4 − 3(k3k1)ns−4
+
(
3k

(ns−4)/3
1 k

2(ns−4)/3
2 kns−43

+5 perm.
)]

, (5.21)

when normalized in amplitude, i. e. Bortho
Φ · (k2/k1)2 · (k3/k1)2,

features a peak for the equilateral configurations, and a negative
trough in correspondence of the elongated ones (k1 = k2 + k3),
as Figure 5.1 displays in the top-right panel.

5.2.2 The Suyama-Yamaguchi inequality

The Suyama-Yamaguchi inequality is a very general result that links
the two non-linearity parameters fNL and τNL, introduced and proved
for the first time by Suyama and Yamaguchi [2008].

In the local ansatz, once performed the expansion of Equation 5.16,
we notice that the cubic term does not contribute to the bispectrum,
instead it generates the trispectrum, that can be written as follows

T˘(k1, k2, k3, k4) = A3
{
6gNL

[
kns−41 kns−42 kns−43 + 3 perm.

]
+

25

18
τNL

[
kns−41 kns−43 |k1 + k2|ns−4

+ 11 perm.
]}

, (5.22)

and that depends on the parameters gNL and τNL

Generalizing the local ansatz to multi-field inflation by means of
the δN formalism [Starobinskiı̌, 1985; Sasaki and Stewart, 1996], we
can expand the primordial curvature perturbation ζ, whose relation
to Φ is ζ = 5Φ/3, in terms of the inflation perturbations δφ and thee-folding number
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e-folding number, defined as

N(ti, tf, r) =
∫tf
ti

H(t, r)dt, (5.23)

namely the time integral of the Hubble parameter, evaluated locally.
By means of such an expansion, it is possible to write the non-linear
parameters in terms of derivatives of N with respect to the i-th in-
flation perturbation δφi, i. e. Ni = ∂N/∂φi (for a detailed derivation,
please see Suyama and Yamaguchi [2008]):

fNL =
5
∑
ijNijNiNj

6(
∑
iN

2
i )
2

, gNL =
25
∑
ijkNijkNiNjNk

54(
∑
iN

2
i )
3

, (5.24)

and

τNL =

∑
ijkNijNikNjNk

(
∑
iN

2
i )
3

. (5.25)

Due to the well known Cauchy-Schwarz inequality, that can be ex-
pressed as [Lin and Wang, 2010]∑

ij

(AiAi)(BjBj) >
∑
ij

(AiBi)(AjBj), (5.26)

it can be proved that there exists a general relation between fNL and Suyama-Yamaguchi
inequalityτNL,

τNL >

(
6

5
fNL

)2
, (5.27)

called Suyama-Yamaguchi inequality.
Such a relation should always hold. Nonetheless, it was calculated Suyama-Yamaguchi

inequality as a tool
to discriminate
among inflationary
models

that some inflationary models could predict a violation of the inequal-
ity. Hence, detecting a departure from the condition in Equation 5.27,
could help us ruling out some scenarios.

5.2.3 Measuring primordial non-Gaussianities

Many efforts have been made, over the years, to provide independent
methods able to constrain the degree of primordial non-Gaussianities
in the density distribution. Not only do diverse approaches experi-
ence different kinds of systematic errors, yielding in this way comple-
mentary results: they also often probe different scales. This last fact is
of fundamental importance if we consider fNL to be scale-dependent, scale-dependent fNL

as a number of studies seem to suggest [Byrnes et al., 2010a; Chen,
2005; Bartolo et al., 2010; Riotto and Sloth, 2011].

The tightest constraints on primordial non-Gaussianities definitely constraints from
CMBcome from the study of CMB and the bispectrum of temperature fluc-

tuations ∆T/T [Komatsu, 2003; Casaponsa et al., 2011; Komatsu et al.,
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2011]. One undeniable advantage of this channel is that the distribu-
tion of temperature anisotropies that we observe is not so affected
by deviations from Gaussianity coming from the non-linear growth
of perturbations. The most recent observations constraining the non-
linearity parameter fNL come from Planck [Planck Collaboration et al.,
2013b] and give

flocalNL = 2.7± 5.8
f
equil
NL = −42± 75
forthoNL = −25± 39

Verde [2010] and Fedeli et al. [2011a] , among others, have workedconstraints from
LLS on the possibility to detect non-Gaussianities from large scale struc-

ture statistics. These class of methods, of course, is highly affected
by non-Gaussianities coming from structure formation, and therefore
needs an adequate mechanism able to distinguish between primor-
dial and non-primordial deviations from a normal distribution. Grav-
itational lensing has also been proposed [Fedeli et al., 2011b; Paceconstraints from

lensing et al., 2011; Jeong et al., 2011], although observational constrains com-
ing from this approach, so far, have focussed more on non-Gaussiani-
ties generated by non-linear structure formation. A discussion on pos-
sible observational constraints on primordial non-Gaussianities com-
ing from weak lensing in the near future can be found in Schäfer et al.
[2012] and will be presented in the next Chapter.



6
A W E A K L E N S I N G V I E W O N P R I M O R D I A L N O N -
G A U S S I A N I T I E S

The content of this chapter is based on the paper "A weak lensing view on
primordial non-Gaussianities" [Schäfer et al., 2012]. The development and
contribution of the author of this Thesis to the following work was testing
the numerical code and the convergence of the Monte-Carlo integration rou-
tines.

A weak lensing study of primordial non-Gaussianities via conver-
gence bispectrum measurements would be of great interest. In fact,
lensing sums up two interesting features:

• since lensing is not affected, in principle, by galaxy bias, it has
smaller systematic errors than other large scale structure probes,
such as cluster counts or the study of galaxy bispectrum;

• also, it probes smaller scales than CMB does, providing inde-
pendent constraints on a possible scale dependence of the non-
linearity parameter fNL, for example [Lo Verde et al., 2008].

On the other hand, classical weak lensing suffers some limitations.
Among the ones that could affect the problem at hand, lies the fact
that all weak lensing statistics depend on integrals along the line-of-
sight. In this integration, many independent effects could sum up,
hence reducing the information on the primordial non-Gaussianities
inherited by the convergence bispectrum [Jeong et al., 2011]. As a con-
sequence, we expect weak lensing to be less sensitive to primordial
non-linearities than probes like CMB.

In order to test weak lensing sensitivity, though, some questions
naturally arise:

81
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1. Is the power of the signal of the three different shapes of primor-
dial non-Gaussianity compatible with a detection by a future
survey like Euclid?

2. Suppose a wrong choice of the type of bispectrum (local, equi-
lateral, or orthogonal) is made for fitting the data: How, and by
how much would such a mistake affect the fNL measurement?
And, how likely would it be to notice such a mistake?

3. What kind of repercussions would a non-exact subtraction of
the non-Gaussianities coming from structure formation have on
the fNL measurement?

In the present Chapter, I will recapitulate our main results pub-
lished in Schäfer et al. [2012] concerning the aforementioned issues.
Section 6.1 will introduce the basis of the analysis, by deriving the ob-
servable convergence bispectrum and giving an estimate of the much
stronger bispectrum coming from non-linear structure formation, that
has to be subtracted from the signal in order to recover the primordial
non-Gaussianity signal. Section 6.2, Section 6.3, and Section 6.4 will
give answers to the previous questions, by means of a calculation of
the signal-to-noise ratio, and by a statistical analysis that will try to
investigate what kind of consequences could a wrong assumption or
a wrong fit have on the measurement of fNL.

6.1 weak lensing convergence bispectrum

Before addressing the mentioned problems, let me concisely intro-
duce how we get from the original bispectra coming primordial non-
Gaussianities or non-linear structure formation, to the observed, weak
lensing, convergence bispectrum.

I would like to start from the statistics coming from primordial de-
viations from Gaussianity. Given the bispectrum with respect to the
distribution of the potential BΦ(k1, k2, k3), defined for local, equi-
lateral and orthogonal non-Gaussianities as shown in Equation 5.17,
Equation 5.20, and Equation 5.21, then the bispectrum of the densitydensity bispectrum

field reads

Bδ(k1, k2, k3,a) =
3∏
i=1

(
2D+(a)

3Ωm
T(ki)(χHki)

2

)
BΦ(k1, k2, k3), (6.1)

with T(k) and D+(a) as, respectively, the transfer function and the
growth function. This result is of course obtained by means of the
comoving Poisson equation [Munshi et al., 2012], linking the potential
distribution to the density field δ(k,a):

∇2Φ =
3Ωm0

2χ2H

D+(a)

a
δ. (6.2)
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Once obtained Bδ(k1, k2, k3,a), the projection of the flat-sky conver- convergence
bispectrumgence bispectrum Bκ is then [Schneider et al., 1998; Takada and Jain,

2003a,b, 2004; Dodelson and Zhang, 2005]

Bκ(`1, `2, `3) =
∫χH
0

dχ
χ4
W3(χ)Bδ(k1, k2, k3,a), (6.3)

where the Limber equation was used [Limber, 1954], and ki = `i/χ
for i = 1, 2, 3. Unfortunately, since a weak lensing approach implies
a line-of-sight integration, we can already forecast that many, inde-
pendent effects will add up to the information, therefore reducing
the power of the non-Gaussian signal because of the Central Limit
theorem [Jeong et al., 2011].

The observed spherical convergence bispectrum is obtained from spherical
convergence
bispectrum

Bκ(`1, `2, `3) via the following relation

Bκ(`1, `2, `3) '

(
`1 `2 `3

0 0 0

)√∏3
p=1(2`p + 1)

4π
Bκ(`1, `2, `3), (6.4)

where the first term on the right hand side of the equation is the
Wigner-3j symbol, whose purpose is to select only the configurations
that satisfy the triangle inequality, and set the bispectrum to zero
for all the others. A 3d representation of the values assumed by the
(dimensionless) bispectra Bκ is shown in Figure 6.1.

As already mentioned, primordial non-Gaussianities are not the
only source of deviations from normality. In fact, non-linearities com-
ing from structure formation also generate a non-Gaussian contribu- structure formation

bispectrumtion to the density field statistics, that can be described by the bispec-
trum term [Buchert, 1994; Bernardeau et al., 2002]

BSF
δ (k1, k2, k3,a) =

3∑
i,j=1(i 6=j)

D4+(a)M(ki, kj)P(ki)P(kj), (6.5)

with M(ki, kj) describing the coupling between modes:

M(ki, kj) =
10

7
+

(
ki
kj

+
kj

ki

)
kikj
kikj

+
4

7

(
kikj
kikj

)2
. (6.6)

The quantity M(ki, kj) assumes the largest values when the vectors
ki and kj are parallel, i. e. x = 1, so that the strongest non-Gaussian
contribute comes from squeezed configurations. Since BSF

δ is much
stronger than the primordial non-Gaussianities bispectrum, this con-
tribution must be subtracted in order to recover the signal coming
from primordial non-linearities.

6.2 expected signal to noise ratio

Once we have the expression for the convergence bispectra, the first
question can be addressed: We want to find out how strong the signal
coming from primordial non-Gaussianities, and encoded in Bκ, is.
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Figure 6.1: Dimensionless convergence bispectrum (`1`2`3)
4/3Bκ(`1, `2, `3)

for local (top panel), equilateral (middle panel), and orthogonal
non-Gaussianity (bottom panel), plotted in the configurations
space. Size and colors of the blobs are proportional to the dimen-
sionless bispectrum values. It is evident how the properties of
the original bispectra are inherited by the weak lensing Bκ. The
top and middle panel, for instance, clearly show how the corre-
sponding bispectra peak for, respectively, squeezed and equilat-
eral configurations.

Let the covariance be [Hu, 2001; Takada and Jain, 2003a]

cov(`1, `2, `3) =
∆(`1, `2, `3)

fsky
C̃(`1)C̃(`2)C̃(`3) (6.7)
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Figure 6.2: Cumulative signal-to-noise ratio Σ(`)/fNL as the maximum `

used in its evaluation increases. The ratio is evaluated for lo-
cal (circles), orthogonal (rhombi), and equilateral (squares) non-
Gaussianities. Different line-types represent the four CUBA algo-
rithms, showing that they agree quite well for the calculation of
Σ(`).

The term fsky stands for the portion of sky covered by a generic survey,
whereas C̃(`) is the observed power spectrum; both these quantity are
set accordingly to Euclid predictions. On the other hand, ∆(`1, `2, `3)
takes care of the triangle configurations multiplicity. Given the expres-
sion for the covariance, the cumulative signal-to-noise ration can be cumulative signal-

to-noiseevaluated:

Σ2(`) =
∑̀
`1=`min

∑̀
`2=`min

∑̀
`3=`min

B2κ(`1, `2, `3)
cov(`1, `2, `3)

. (6.8)

A direct summation of Equation 6.8 among all the possible config-
urations of `1, `2, `3 would be extremely expensive from a computa-
tional point of view. A way out to this problem is given by Monte-
Carlo integrations. In this case, the CUBA library is used [Hahn,
2005], consisting of the four different algorithms Vegas, Suave, Di-
vonne, and Cuhre. The cumulative Σ(`) is calculated using the four
algorithms, whose results seem to agree with each other, and for the
three shapes of non-Gaussianities, and its ratio with respect to the
non-linearity parameter fNL is presented in Figure 6.2. The conclu-
sions that can be drawn from the plot are:

• with Euclid, the signal coming from primordial non-Gaussia-
nity bispectrum can only be detected for values of fNL much
larger than 100;

• this is true, at least, for local non-Gaussianity, that seems to be
the most easily detectable type; forms like the orthogonal one
would need an even larger degree of non-Gaussianity, and the
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equilateral type of non-Gaussianity directly follows, having the
smallest signal (almost one order of magnitude smaller than the
local type); such a difference in the magnitude of the signal for
the three non-Gaussianity forms is also visible in Figure 6.3;

• the consequently estimated conditional Cramér-Rao bounds re-
sult to be much weaker than probes like, for instance, CMB. In
fact they read

σfNL =


200, local

575, orthogonal

1628, equilateral.

(6.9)

The choice of stopping the Σ(`) calculation at ` = 1000 is motivated by
the fact the the signal is not considerably increasing after this thresh-
old. Moreover, ` > 1000 correspond to scales that start to be affected
by baryonic physics and intrinsic alignments [Semboloni et al., 2008,
2011].

6.3 consequences of a wrong bispectrum choice

The next matter aims to understand what happens when we fit the
data with the wrong type of bispectrum. One can quantify the mises-
timation of fNL by means of the multiplicative bias α, i. e. the ratio
between the non-linearity parameter inferred from the wrong bispec-
trum, fwNL, and the true ftNL. The quantity α is calculated by minimiz-
ing the derivative of the functional

χ2 =
∑̀
`1=`min

∑̀
`2=`min

∑̀
`3=`min

[
αB

wrong
κ (`1, `2, `3) −Btrue

κ (`1, `2, `3)
]2

cov(`1, `2, `3)
,

(6.10)

with respect to α itself. The superscripts t and w stand of course for
the true and wrong bispectra.

The ratio α (or better, its departure from unity) is depicted in Fig-
ure 6.4a. Apparently,

• differences between the wrongly inferred fNL and the true one
start to show up as soon as relatively large multipoles are con-
sidered; in fact, here is where the non-Gaussianity signal is
stronger;

• the majority of the possible wrong fittings lead to an underes-
timation of fNL, and the largest error (almost half an order of
magnitude) is made when trying to fit a local non-Gaussianity
with an orthogonal one;
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Figure 6.3: Dimensionless signal-to-noise ratio in the configurations space,
Bκ(`1, `2, `3)/

√
cov(`1, `2, `3). Again, size and colors of the blobs

are proportional to the bispectrum values, and the top, middle,
and bottom panels depict respectively bispectra for local, equi-
lateral, and orthogonal non-Gaussianity. Local non-Gaussianity
shows a much higher signal-to-noise ratio for squeezed configu-
rations, whereas the equilateral one presents a (weak) signal only
for very small values of `. Signal-to-noise coming from orthogo-
nal non-Gaussianity, on the other hand, seems more uniform.

• on the other hand, an overestimate (by a factor of around ±3) of
fNL occurs when an equilateral bispectrum is used to fit what
is, truly, a local Bκ.
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Figure 6.4: Left panel: ratio α(`) = fwNL/f
t
NL as a function of the maximum

multipole ` used in the computation of the χ2 functional. The line
styles indicate the true non-Gaussianity model: local (solid line),
orthogonal (dashed line), equilateral (dash-dotted line). Markers,
on the other hand, stand for the non-Gaussianity model that has
been wrongly chosen to fit the hypothetical data: local (circles),
orthogonal (rhombi), equilateral (squares). Right panel: probabil-
ity q(fNL) of obtaining data more extreme than those considered
when a wrong non-Gaussianity model is chosen to fit the data.
Again, line types describe the true underlying model: local (solid
line), orthogonal (dashed line), equilateral (dash-dotted line). Dif-
ferent markers represent the wrong model chosen to explain the
data: local (circles), orthogonal (rhombi), equilateral (squares).
The maximum multipole ` used for the calculation is 1000, and
the horizontal lines stand for 1, 2, 3, 4σ confidence intervals.

Hence, making a wrong ansatz regarding the type of bispectrum can
lead to serious misestimates of the non-Gaussianity parameter.

Is it possible to notice such a mistake? Figure 6.4b addresses thisis it likely to notice
that a wrong

bispectrum is fitting
the data?

question by means of the quantity q(fNL), i. e. the probability - given
a certain, true fNL

1 - of obtaining data more extreme than those con-
sidered. The result of the analysis is that this probability starts to get
considerably small only when the true fNL is of the order of 100 or
larger. In fact, the strength of the signal for smaller degrees of non-
Gaussianity is such that no difference between data and the wrong
model are visible.

6.4 subtraction of structure formation bispectrum

Another problem concerns the subtraction from the total bispectrum
of the part bringing the contribution of structure formation BSF

κ (see
Equation 6.6). Since the prediction of this quantity depends on cos-
mological parameters, our uncertainty on the constraints on the latter

1 a Gaussian likelihood was assumed.
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can propagate, yielding some possible errors in the measurement of
the primordial non-Gaussianity degree.

In a similar way as in Section 6.3, one can define a functional de-
scribing the fit of the true bispectrum Btκ

χ2 =
∑̀
`1=`min

∑̀
`2=`min

∑̀
`3=`min

[
αBtκ(`1, `2, `3) −∆Bκ(`1, `2, `3)

]2
cov(`1, `2, `3)

, (6.11)

where the quantity

∆Bκ(`1, `2, `3) = Btκ(`1, `2, `3) +Bt,SF
κ (`1, `2, `3) −Bw,SF

κ (`1, `2, `3)

(6.12)

contains the information about the subtraction of the wrong structure
formation bispectrum Bw,SF

κ . Again, by minimizing χ2 with respect to
α = fwNL/fNL, one can calculate the distribution of the bias between
wrong and true fNL, i. e. δ = α− 1.
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Figure 6.5: Distributions of the bias between fwNL and ftNL in the case where
uncertainties on cosmological parameter determination lead to
a wrong or non complete subtraction of the structure forma-
tion bispectrum for local (solid line, circles), equilateral (dash-
dotted line, squares), orthogonal (dashed line, rhombi) primor-
dial non-Gaussianity. The two panels show the distributions for
a prior corresponding to Euclid weak lensing and BAO results
(left panel), and when one adds also data coming from PLANCK’s
CMB temperature and polarization analysis to the previous prior
(right panel).

Figure 6.5 shows this distribution p(δ)dδ for the three non-Gauss-
ianity shapes, and the two panels display different choices of prior.
In particular, Figure 6.5a displays the bias distribution when a prior
coming from Euclid weak lensing and BAO results was used. On the
other hand, Figure 6.5b makes use of a better prior, namely weak
lensing and BAO coming from Euclid, plus the expected PLANCK’s
constraints on CMB temperature and polarization spectra.
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6.5 conclusions

Summarizing, the signal starts to dominate the noise for values of
fNL of 200, 575, 1628 for local, orthogonal, and equilateral non-Gauss-
ianities. Also, fitting data with a wrong bispectrum type can lead to
under- or overestimates of fNL up to a factor of |3|, and such an error
would become visible only for fNL ∼ 200 or greater. Concerning a par-
tially wrong subtraction of the signal coming from structure forma-
tion, it is found that the propagation on the estimate of fNL is depen-
dent on the prior considered. In particular a prior consisting in data
coming from Euclid weak lensing and BAO analyses, and PLANCK’s
study of the temperature and polarization maps, would yield typical
uncertainties of 29, 98, 149 for local, orthogonal, and equilateral non-
Gaussianities, respectively. These values seem to be much less of the
statistical accuracy.

Concluding, even though a weak lensing approach to measure pri-
mordial non-Gaussianity seems to have, as expected, a smaller sensi-
tivity than the cosmic microwave background, it nevertheless stands
out as an independent investigation, able to probe smaller scales than
CMB and hence a precious test for a possible scale dependence of fNL.

In the next chapter I will propose a more definite application of
weak lensing to the study of primordial non-Gaussianities. In partic-
ular, I will treat the possibility of testing the validity of the Suyama-
Yamaguchi inequality (introduced in Section 5.2.2) with weak gravi-
tational lensing.



7
A T E S T O F T H E S U YA M A - YA M A G U C H I
I N E Q U A L I T Y

This chapter exactly reproduces the content of the paper "A test of the
Suyama-Yamaguchi inequality from weak lensing" [Grassi et al., 2013]. The
original analysis we carried out and the results are presented in Section 7.5,
Section 7.6, Section 7.7, Section 7.8, and summarized in Section 7.9.

abstract

We investigate the weak lensing signature of primordial non-Gaus-
sianitites of the local type by constraining the magnitude of the weak
convergence bi- and trispectra expected for the Euclid weak lensing
survey. Starting from expressions for the weak convergence spectra,
bispectra and trispectra, whose relative magnitudes we investigate
as a function of scale, we compute their respective signal to noise
ratios by relating the polyspectra’s amplitude to their Gaussian co-
variance using a Monte-Carlo technique for carrying out the configu-
ration space integrations. In computing the Fisher-matrix on the non-
Gaussianity parameters fNL, gNL, and τNL with a very similar tech-
nique, we can derive Bayesian evidences for a violation of the Suyama-
Yamaguchi relation τNL > (6/5fNL)

2 as a function of the true fNL and
τNL-values and show that the relation can be probed down to levels
of fNL ' 102 and τNL ' 105. In a related study, we derive analytical
expressions for the probability density that the SY-relation is exactly
fulfilled. We conclude with an outlook on the levels of non-Gaussia-
nity that can be probed with tomographic lensing surveys.
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7.1 introduction

Advances in observational cosmology made it possible to probe mod-
els of the early Universe and the mechanisms that can generate small
seed perturbations in the density field from which the cosmic large-
scale structure grew by gravitational instability. One of the most promi-
nent of these models is inflation, in which the Universe underwent an
extremely rapid exponential expansion and where small fluctuations
in the inflationary field gave rise to fluctuations in the gravitational
potential and which then imprinted these fluctuations onto all cosmic
fluids [for reviews, see Bartolo et al., 2004; Seery et al., 2007; Komatsu
et al., 2009; Komatsu, 2010; Desjacques and Seljak, 2010b,a; Verde,
2010; Lehners, 2010; Jeong et al., 2011; Wang, 2013; Martin et al., 2013;
Lesgourgues, 2013]. Observationally, inflationary models can be dis-
tinguished by the spectral index ns along with a possible scale depen-
dence, the scalar to tensor-ratio r and, perhaps most importantly, the
non-Gaussian signatures, quantified by n-point correlation functions
or by polyspectra of order n in Fourier-space. They are of particular
interest as the full set of non-Gaussianity parameters can be mapped
onto a Taylor-expansion of the inflaton potential, providing important
constraints. Additionally, the configuration space dependence of the
polyspectra yields valuable information on the type of inflationary
model [Byun and Bean, 2013].

The (possibly non-Gaussian) density fluctuations are subsequently
imprinted in the cosmic microwave background (CMB) as tempera-
ture anisotropies [Fergusson and Shellard, 2009; Fergusson and Shel-
lard, 2007; Fergusson et al., 2010; Pettinari et al., 2013], in the matter
distribution which can be probed by e.g. gravitational lensing and
in the number density of galaxies. Hereby it is advantageous that
the observable is linear in the field whose statistical property we in-
vestigate. In case of linear dependence the n-point functions of the
observable field can be mapped directly onto the corresponding n-
point function of the primordial density perturbation, which reflects
the microphysics of the early Universe.

The first important measurement quantifying non-Gaussianity is
the parameter fNL which describes the skewness of inflationary fluc-
tuations and determines the amplitude of the bispectrum. Not only
the bispectrum but also the trispectrum can successfully be constrained
by future precisions measurements, where the parameters gNL and
τNL determine the trispectrum amplitude. The complementary anal-
ysis of both the bi- and the trispectra in the future experiments will
make us able to extract more information about the mechanism of
generating the primordial curvature perturbations and constrain the
inflationary potential. Therefore, it is an indispensable task for cos-
mology to obtain the configuration space dependence for the higher
polyspectra and to make clear predictions for the non-Gaussianity
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parameters. The non-Gaussianities are commonly expressed as per-
turbations of modes of the potential ∝ kns−4/2 but can in principle
have scale dependences [Lo Verde et al., 2008; Sefusatti et al., 2009;
Riotto and Sloth, 2011; Byrnes et al., 2010b; Becker et al., 2011; Byrnes
et al., 2010b].

The description of inflationary non-Gaussianities is done in a per-
turbative way and for the relative magnitude of non-Gaussianities of
different order the Suyama-Yamaguchi (SY) relation applies [Suyama
and Yamaguchi, 2008; Suyama et al., 2010; Smith et al., 2011a; Sugiyama,
2012; Beltrán Almeida et al., 2013; Rodríguez et al., 2013], which in the
most basic form relates the amplitudes of the bi- and of the trispec- Suyama-Yamaguchi

inequalitytrum. Recently, it has been proposed that testing for violation of the
SY-inequality would make it possible to distinguish between differ-
ent classes of inflationary models. In this work we focus on the re-
lation between the non-Gaussianity parameters fNL and τNL for a
local model, and investigate how well the future Euclid survey can
probe the SY-relation: The question we address is how likely would
we believe in the SY-inequality with the infered fNL and τNL-values.
We accomplish this by studying the Bayesian evidence [Trotta, 2007,
2008] providing support for the SY-inequality.

Models in which a single field generates the primordial curvature single-field models
predictionsperturbation predict an equality between one term of the trispectrum

and the bispectrum, τNL = (6fNL/5)
2 (provided that the loop correc-

tions are not anomalously large, if they are then gNL should also be
observable). Violation of this consistency relation would prove that
more than one light field present during inflation had to contribute
towards the primordial curvature perturbation. However a verifica-
tion of the equality would not imply single field inflation, rather that
only one of the fields generated perturbations. In fact any detection of
non-Gaussianity of the local form will prove that more than one field
was present during inflation, because single field inflation predicts
negligible levels of non-Gaussianity. A detection of τNL > (6fNL/5)

2

would prove that not only that inflation was of the multi-field variety,
but also that multiple-fields contributed towards the primordial per-
turbations, which are the seeds which gave rise to all the structure in
the universe today.

A violation of the Suyama-Yamaguchi inequality would come as a violation of
SY-inequalitybig surprise, since the inequality has been proved to hold for all mod-

els of inflation. Even more strongly, in the limit of an infinite volume
survey it holds true simply by the definitions of τNL and fNL, regard-
less of the theory relating to the primordial perturbations. However
since realistic surveys will always have a finite volume, a breaking of
the inequality could occur. It remains unclear how one should inter-
pret a breaking of the inequality, and whether any concrete scenarios
can be constructed in which this would occur. A violation may be
related to a breaking of statistical homogeneity [Smith et al., 2011a].
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After a brief summary of cosmology and structure formation in
Sect. 7.2 we introduce primordial non-Gaussianities in Sect. 7.3 along
with the SY-inequality relating the relative non-Gaussianity strengths
in the polyspectra of different order. The mapping of non-Gaussiani-
ties by weak gravitational lensing is summarized in Sect. 7.4. Then, we
investigate the attainable signal to noise-ratios (Sect. 7.5), address de-
generacies in the measurement of gNL and τNL in (Sect. 7.6), carry out
statistical tests of the SY-inequality (Sect. 7.7) and investigate analyti-
cal distributions of rations of non-Gaussianity parameters (Sect. 7.8).
We summarize our main results in Sect. 7.9.

The reference cosmological model used is a spatially flat wCDM
cosmology with adiabatic initial perturbations for the cold dark mat-
ter. The specific parameter choices are Ωm = 0.25, ns = 1, σ8 = 0.8,
Ωb = 0.04. The Hubble parameter is set to h = 0.7 and the Hubble-
distance is given by c/H0 = 2996.9 Mpc/h. The dark energy equation
of state is assumed to be constant with a value of w = −0.9. We prefer
to work with these values that differ slightly from the recent PLANCK
results [Planck Collaboration et al., 2013a] because lensing prefers
lower Ωm-values and larger h-values [Heymans et al., 2013]. Scale-
invariance for ns was chosen for simplicity and should not strongly
affect the conclusions as the range of angular scales probed is small
and close to the normalization scale.

The fluctuations are taken to be Gaussian perturbed with weak
non-Gaussianities of the local type, and for the weak lensing survey
we consider the case of Euclid, with a sky coverage of fsky = 1/2, a
median redshift of 0.9, a yield of n̄ = 40 galaxies/arcmin2 and a ellip-
ticity shape noise of σε = 0.3 [Amara and Réfrégier, 2007; Refregier,
2009].

7.2 cosmology and structure formation

In spatially flat dark energy cosmologies with the matter density pa-
rameter Ωm, the Hubble function H(a) = d lna/dt is given by

H2(a)

H20
=
Ωm

a3
+
1−Ωm

a3(1+w)
, (7.1)

for a constant dark energy equation of state-parameter w. Comoving
distance χ and scale factor a are related by

χ = c

∫1
a

da
a2H(a)

, (7.2)

given in units of the Hubble distance χH = c/H0. For the linear mat-
ter power spectrum P(k) which describes the Gaussian fluctuation
properties of the linearly evolving density field δ,

〈δ(k)δ(k′)〉 = (2π)3δD(k + k′)P(k) (7.3)
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the ansatz P(k) ∝ knsT2(k) is chosen with the transfer function T(k),
which is well approximated by the fitting formula

T(q) =
ln(1+ 2.34q)

2.34q
×
[
1+ 3.89q+ (16.1q)2 + (5.46q)3

+ (6.71q)4
]−1/4, (7.4)

for low-matter density cosmologies [Bardeen et al., 1986]. The wave
vector k = qΓ enters rescaled by the shape parameter Γ [Sugiyama,
1995],

Γ = Ωmh exp

[
−Ωb

(
1+

√
2h

Ωm

)]
. (7.5)

The fluctuation amplitude is normalized to the variance σ28,

σ2R =

∫
k2dk
2π2

W2
R(k) P(k), (7.6)

with a Fourier-transformed spherical top-hat WR(k) = 3j1(kR)/(kR)

as the filter function operating at R = 8 Mpc/h. j`(x) denotes the
spherical Bessel function of the first kind of order ` [Abramowitz
and Stegun, 1972]. The linear growth of the density field, δ(x,a) =

D+(a)δ(x,a = 1), is described by the growth function D+(a), which
is the solution to the growth equation [Turner and White, 1997; Wang
and Steinhardt, 1998; Linder and Jenkins, 2003],

d2

da2
D+(a) +

1

a

(
3+

d lnH
d lna

)
d

da
D+(a) =

3

2a2
Ωm(a)D+(a). (7.7)

From the CDM-spectrum of the density perturbation the spectrum of
the Newtonian gravitational potential can be obtained

PΦ(k) =

(
3Ωm

2χ2H

)2
kns−4 T(k)2 (7.8)

by application of the Poisson-equation which reads ∆Φ = 3Ωm/(2χ
2
H)δ

in comoving coordinates at the current epoch, a = 1.

7.3 non-gaussianities

Inflation has been a very successful paradigm for understanding the inflationary
paradigmorigin of the perturbations we observe in different observational chan-

nels today. It explains in a very sophisticated way how the universe
was smoothed during a quasi-de Sitter expansion while allowing
quantum fluctuations to grow and become classical on superhorizon
scales. In its simplest implementation, inflation generically predicts
almost Gaussian density perturbations close to scale-invariance. In
the most basic models of inflation fluctuations originate from a single
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scalar field in approximate slow roll and deviations from the idealorigin of n-G

Gaussian statistics is caused by deviations from the slow-roll con-
ditions. Hence, a detection of non-Gaussianity would be indicative
of the shape of the inflaton potential or would imply a more elab-
orate inflationary model. Although there is consensus that competi-
tive constraints on the non-Gaussianity parameters will emerge from
CMB-observations and the next generation of large-scale structure
experiments, non-Gaussianities beyond the trispectrum will remain
difficult if not impossible to measure. For that reason, we focus on
the extraction of bi- and trispectra from lensing data and investigate
constraints on their relative magnitude. Furthermore, we will only
consider local non-Gaussianities that would follow from a single-fieldlocal ansatz

inflation model.
Local non-Gaussianities are described as quadratic and cubic per-

turbations of the Gaussian potential ΦG(x) at a fixed point x, which
yields the resulting field Φ(x) [LoVerde and Smith, 2011],

ΦG(x)→ Φ(x) = ΦG(x) + fNL
(
Φ2G(x) − 〈Φ2G〉

)
+ gNL

(
Φ3G(x) − 3〈Φ2G〉ΦG(x)

)
, (7.9)

with the parameters fNL, gNL and τNL. These perturbations generate
in Fourier-space a bispectrum 〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δD(k1 +bispectrum

k2 + k3)BΦ(k1, k2, k3),

BΦ(k1, k2, k3) =

(
3Ωm

2χ2H

)3
2fNL

(
(k1k2)

ns−4 + 2 perm.
)

· T(k1)T(k2)T(k3), (7.10)

and a trispectrum 〈Φ(k1)Φ(k2)Φ(k3)Φ(k4)〉 = (2π)3δD(k1 + k2 +trispectrum

k3 + k4) TΦ(k1, k2, k3, k4),

TΦ(k1, k2, k3, k4) =

(
3Ωm

2χ2H

)4 [
6gNL

(
(k1k2k3)

ns−4 + 3 perm.
)

+
25

9
τNL

(
kns−41 kns−43 |k1 + k2|

ns−4

+ 11 perm.
)]
T(k1)T(k2)T(k3)T(k4). (7.11)

The normalization of each mode Φ(k) is derived from the variance
σ28 of the CDM-spectrum P(k).

Calculating the 4-point function of (7.9) one would find the coeffi-
cient (2fNL)

2 instead of the factor 25τNL/9 in eqn. (7.11) [see Byrnes
et al., 2006]. Since eqn. (7.9) represents single-source local non-Gauss-
ianity (all of the higher order terms are fully correlated with the lin-
ear term), this implies the single-source consistency relation τNL =single source:

equality (6fNL/5)
2. The factor of 25/9 in eqn. (7.11) is due to the conventional

definition of τNL in terms of the curvature perturbation ζ, related
by ζ = 5Φ/3. In more general models with multiple fields contribut-multi source:

inequality ing to Φ, the equality between the two non-linearity parameters is
replaced by the Suyama-Yamaguchi inequality τNL > (6fNL/5)

2.
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7.4 weak gravitational lensing

7.4.1 Weak lensing potential and convergence

Weak gravitational lensing probes the tidal gravitational fields of the
cosmic large-scale structure by the distortion of light bundles [for
reviews, please refer to Bartelmann and Schneider, 2001; Bartelmann,
2010c]. This distortion is measured by the correlated deformation of
galaxy ellipticities. The projected lensing potential ψ, from which the lensing potential

distortion modes can be obtained by double differentiation,

ψ = 2

∫
dχWψ(χ)Φ (7.12)

is related to the gravitational potentialΦ by projection with the weight-
ing function Wψ(χ),

Wψ(χ) =
D+(a)

a

G(χ)

χ
. (7.13)

The distribution of the lensed galaxies in redshift is incorporated in
the function G(χ),

G(χ) =

∫χH
χ

dχ′ p(χ′)
dz
dχ′

(
1−

χ

χ′

)
(7.14)

with dz/dχ′ = H(χ′)/c. It is common in the literature to use the pa-
rameterization

p(z)dz = p0

(
z

z0

)2
exp

(
−

(
z

z0

)β)
dz (7.15)

with

1

p0
=
z0
β
Γ

(
3

β

)
. (7.16)

Because of the linearity of the observables following from eqn. (7.12)
moments of the gravtational potential are mapped onto the same mo-
ments of the observable with no mixing taking place. At this point we central limit theorem

would like to emphasis that the non-Gaussianity in the weak lensing
signal is diluted by the line of sight integration, which, according to
the central limit theorem, adds up a large number of non-Gaussian
values for the gravitational potential with the consequence that the in-
tegrated lensing potential contains weaker non-Gaussianities [Jeong
et al., 2011].

7.4.2 Convergence polyspectra

Application of the Limber-equation and repeated substitution of κ =

`2ψ/2 allows the derivation of the convergence spectrum Cκ(`) from convergence
spectrum
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the spectrum PΦ(k) of the gravitational potential,

Cκ(`) = `
4

∫χH
0

dχ
χ2
W2
ψ(χ)PΦ(k), (7.17)

of the the convergence bispectrum Bκ(`1, `2, `3),bispectrum

Bκ(`1, `2, `3) = (`1`2`3)
2

∫χH
0

dχ
χ4
W3
ψ(χ)BΦ(k1, k2, k3) (7.18)

and of the convergence trispectrum Tκ(`1, `2, `3, `4),and trispectrum

Tκ(`1, `2, `3, `4) = (`1`2`3`4)
2

∫χH
0

dχ
χ6
W4
ψ(χ)TΦ(k1, k2, k3, k4). (7.19)

This relation follows from the expansion of the tensorψ = ∂2ψ/∂θi∂θj
into the basis of all symmetric 2× 2-matrices provided by the Pauli
matrices σα [Abramowitz and Stegun, 1972]. In particular, the lens-
ing convergence is given by κ = tr(ψσ0)/2 = ∆ψ/2 with the unit
matrix σ0. Although the actual observable in lensing are the weak
shear components γ+ = tr(ψσ1)/2 and γ× = tr(ψσ3)/2, we present
all calculations in terms of the convergence, which has identical sta-
tistical properties and being scalar, is easier to work with.

Fig. 7.1 shows the weak lensing spectrum and the non-Gaussian
bi- and trispectra as a function of multipole order `. For the bispec-
trum we choose an equilateral configuration and for the trispectrum
a square one. The polyspectra are multiplied with factors of (`)2n for
making them dimensionless and in that way we were able to show
all spectra in a single plot, providing a better physical interpretation
of variance, skewness and kurtosis per logarithmic `-interval. In our
derivation we derive the lensing potential directly from the gravita-
tional potential, in which the polyspectra are expressed and subse-
quently apply `2-prefactors to obtain the polyspectra in terms of the
weak lensing convergence, for which the covariance and the noise of
the measurement is most conveniently expressed. The disadvantage
of this method is that the τNL-part of the trispectrum Tψ diverges for
the square configuration, because opposite sides of the square cancel
in the |ki − ki+2|-terms which can not be exponentiated with a nega-
tive number ns − 4. We control this by never letting the cosine of the
angle between ki and ki+2 drop below −0.95. We verified that this ex-
clusion cone of size ' 20◦ has a minor influence on the computation
of signal to noise-ratios.

The contributions to the weak lensing polyspectra as a function of
comoving distance χ are shown in Fig. 7.2, which is the derivative of
Fig. 7.1 at fixed `. At the same time, the plot presents the integrand
of the Limber equation and it demonstrates nicely that the largest
contribution to the weak lensing polyspectra comes from the peak of
the galaxy distribution, with small variations with multipole order as
higher multipoles acquire contributions from slightly lower distances.
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Figure 7.1: The weak convergence spectrum Cκ(`) (red solid line), the weak
convergence bispectrum Bκ(`) for an equilateral configuration
(green solid line) with fNL = 1, and the convergence trispectrum
Tκ(`) for a square configuration as a function of multipole order
`, for gNL = 1 (blue dashed line).
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Figure 7.2: Contributions dCκ(`)/dχ (red lines), dBκ(`)/dχ (green lines) for
the equilateral configuration and dTκ(`)/dχ (blue lines) for the
square configuration, as a function of comoving distance χ. The
non-Gaussianity parameters are chosen to be fNL = 1 and gNL =

1. We compare the contributions at ` = 10 (solid line) with ` =
100 (dashed line) and ` = 1000 (dash-dotted line).
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7.4.3 Relative magnitudes of weak lensing polyspectra

The strength of the non-Gaussianity introduced by nonzero values of
gNL and τNL can be quantified by taking ratios of the three polyspec-
tra. We define the skewness parameter S(`) as the ratioskewness

S(`) =
Bκ(`)

Cκ(`)3/2
(7.20)

between the convergence bispectra for the equilateral configuration
and the convergence spectrum. In analogy, we define the kurtosiskurtosis

parameter K(`),

K(`) =
Tκ(`)

Cκ(`)2
, (7.21)

as the ratio between the convergence trispectrum for the square con-
figuration and the spectrum as a way of quantifying the size of the
non-Gaussianity. The relative magnitude of the bi- and trispectrum is
given by the function Q(`),

Q(`) =
Tκ(`)

Bκ(`)4/3
. (7.22)

For computing the three parameters we set the non-Gaussianity pa-
rameters to fNL = gNL = 1.

The parameters are shown in Fig. 7.3 as a function of multipole or-
der `. They have been constructed such that the transfer function T(k)
in each of the polyspectra is cancelled. The parameters are power-power-laws

laws because the inflationary part of the spectrum kns−4 is scale-free
and the Wick theorem reduces the polyspectra to products of that in-
flationary spectrum. The amplitude of the parameters reflects the pro-
portionality of the polyspectra to 3Ωm/(2χ2H) and the normalization
of each mode proportional to σ8. A noticeable outcome in the plot is
the fact that the ratio is largest on large scales as anticipated. Since
the fluctuations in the inflationary fields give rise to fluctuations in
the gravitational potential on which the perturbation theory is built.
Since the effect of the potential is on large scale and the trispectrum
is proportional to the spectrum taken to the third power, the ratio
K(`) should be the largest on large scales. Therefore as one can see in
the Fig. 7.3 the ratio is drops to very small numbers on small scales.
Similar arguments apply to Q(`) and S(`).

7.5 signal to noise-ratios

The signal strength at which a given polyspectrum can be measured is
computed as the ratio between that particular polyspectrum and the
variance of its estimator averaged over a Gaussian ensemble [which,
in the case of structure formation non-Gaussianities, has been shown
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Figure 7.3: Parameters K(`) (blue solid line), S(`) (green dashed line) and
Q(`) (red dash-dotted line), where we chose a equilateral con-
figuration for the convergence bispectrum and a square configu-
ration for the trispectrum. The non-Gaussianity parameters are
fNL = 1 and gNL = 1

to be a serious limitation Takada and Jain, 2009; Sato and Nishimichi,
2013; Kayo et al., 2013]. We work in the flat-sky approximation be- flat-sky

cause the treatment of the bi- and trispectra involves a configuration-
space average, which requires the evaluation of Wigner-symbols in
multipole space.

In the flat-sky approximation the signal to noise ratio ΣC of the spectrum
signal-to-noise ratioweak convergence spectrum Cκ(`) reads [Tegmark et al., 1997; Cooray

and Hu, 2001]

Σ2C =

∫
d2`
(2π)2

Cκ(`)
2

covC(`)
, (7.23)

with the Gaussian expression for the covariance covC(`) [Hu and
White, 2001; Takada and Hu, 2013],

covC(`) = 2× 2π fsky C̃κ(`)
2. (7.24)

Likewise, the signal to noise ratio ΣB of the bispectrum Bκ(`) is given bispectrum
signal-to-noise ratioby [Hu, 2000; Takada and Jain, 2004; Babich, 2005; Joachimi et al.,

2009]

Σ2B =

∫
d2`1
(2π)2

∫
d2`2
(2π)2

∫
d2`3
(2π)2

B2κ(`1, `2, `3)
covB(`1, `2, `3)

(7.25)

where the covariance covB(`1, `2, `3) follows from

covB(`1, `2, `3) = fsky(2π)
3 C̃κ(`1)C̃κ(`2)C̃κ(`2). (7.26)
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Finally, the signal to noise ratio ΣT of the convergence trispectrum Tκtrispectrum
signal-to-noise ratio results from [Zaldarriaga, 2000; Hu, 2001; Kamionkowski et al., 2011]

Σ2T =

∫
d2`1
(2π)2

∫
d2`2
(2π)2

∫
d2`3
(2π)2

∫
d2`4
(2π)2

T2κ(`1, `2, `3, `4)
covT (`1, `2, `3, `4)

, (7.27)

with the expression

covT (`1, `2, `3, `4) = fsky(2π)
4C̃κ(`1)C̃κ(`2)C̃κ(`3)C̃κ(`4) (7.28)

for the trispectrum covariance covT (`1, `2, `3, `4). In all covariances,
the fluctuations of the weak lensing signal and the noise are taken
to be Gaussian and are therefore described by the noisy convergence
spectrum C̃κ(`),

C̃κ(`) = Cκ(`) +
σ2ε
n̄

, (7.29)

with the number of galaxies per steradian n̄ and the ellipticity noise
σε.

The configuration space integrations for estimating the signal toMonte Carlo
integration: CUBA noise ratios as well as for computing Fisher-matrices are carried out

in polar coordinates with a Monte-Carlo integration scheme [specifi-
cally, with the CUBA-library by Hahn, 2005, who provides a range of
adaptive Monte-Carlo integration algorithms]. We obtained the best
results with the SUAVE-algorithm that uses importance sampling for
estimating the values of the integrals.

Fig. 7.4 provides a plot of the polyspectra in units of the noise of
their respective estimators. Clearly, the measurements are dominated
by cosmic variance and show the according Poissonian dependence
with multipole `, before the galaxy shape noise limits the measure-
ment on small sacles and the curves level off or, in the case of the
higher polyspectra, begin to drop on multipoles ` <∼ 300.

An observation of the polyspectra Cκ(`), Bκ and Tκ with Euclid
would yield signal to noise ratios as depicted in Fig. 7.5. Whereas theminimum values for

detection convergence spectrum Cκ(`) can be detected with high significance
in integrating over the multipole range up to ` = 103, the bispectrum
would require fNL to be of the order 102 and the two trispectrum
non-Gaussianities gNL and τNL-values of the order 106 for yielding
a detection, which of course is weaker compared to CMB bounds
or bounds on the parameters from large-scale structure observation.
The reason lies in the non-Gaussianity supression due to the central-
limit theorem in the line of sight-integration [Jeong et al., 2011]. This
could in principle be compensated by resorting to tomographic weak
lensing (see Sect. 7.9).

7.6 degeneracies in the trispectrum

The independency of estimates of gNL and τNL from the weak lensingindependency
between gNL and

τNL
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trispectrum are depicted in Fig. 7.6 where we plot the likelihood con-
tours in the gNL-τNL-plane. The likelihood L(fNL,gNL, τNL) is taken
to be Gaussian,

L(fNL,gNL, τNL) =

√
det(F)
(2π)3

exp

−12
 fNL

gNL

τNL


T

F

 fNL

gNL

τNL


 (7.30)

which can be expected due to the linearity of the polyspectra with
the non-Gaussianity parameters. The Fisher-matrix F has been esti-
mated for a purely Gaussian reference model and with a Gaussian
covariance, and its entries can be computed in analogy to the signal
to noise ratios. The diagonal of the Fisher matrix is composed from
the values ΣB and ΣT with the non-Gaussianity parameters set to
unity, and the only off-diagonal elements are the two entries FgNLτNL ,

FgNLτNL =

∫
d2`1
(2π)2

∫
d2`2
(2π)2

∫
d2`3
(2π)2

∫
d2`4
(2π)2

1

covT (`1, `2, `3, `4)
· Tκ

(
gNL = 1, τNL = 0

)
Tκ
(
gNL = 0, τNL = 1

)
, (7.31)

which again is solved by Monte-Carlo integration in polar coordi-
nates. The statistical errors on fNL on one side and gNL and τNL on
the other are independent. Clearly, there is a degeneracy that gNL

can be increased at the expense of τNL and vice versa. In the remain-
der of the paper, we carry out a marginalization of the Fisher-matrixmarginalization

such that the uncertainty in gNL is contained in τNL. The overall preci-
sion that can be reached with lensing is about an order of magnitude
worse compared to the CMB [Smidt et al., 2010], with a very similar
orientation of the degeneracy.

7.7 testing the suyama-yamaguchi-inequality

Given the fact that there are a vast of different inflationary models
generating similar local-type non-Gaussianity, it is indispensable to
have a classification of these different models into some categories.
This can be for instance achieved by using consistency relations among
the non-Gaussianity parameters as the SY-relation. In the literature
one distinguishes between three main categories of models, the single-
source model, the multi-source model and constrained multi-source
model. As the name already reveals the single-source model is asingle-source models

model of one field causing the non-linearities. The important repre-
sentatives of this category include the pure curvaton and the pure
modulated reheating scenarios. It is also possible that multiple sourcesmulti-source models

are simultaneously responsible for the origin of density fluctuations.
It could be for instance that both the inflaton and the curvaton fields
are generating the non-linearities we observe today. In the case of
multi-source models the relations between the non-linearity parame-
ters are different from those for the single-source models. Finally, theconstrained

multi-source models
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constrained multi-source models are models in which the loop contri-
butions in the expressions for the power spectrum and non-linearity
parameters are not neglected. The classification into these three cate-
gories was based on the relation between fNL and τNL. Nevertheless,
this will not be enough to discriminate between the models of each
category. For this purpose, we will need further relations between
fNL and gNL. Hereby, the models are distinguished by rather if gNL is
proportional to fNL (fNL ∼ gNL) or enhanced or suppressed compared
to fNL. Summarizing, the fNL-τNL and fNL-gNL relations will be pow- fNL-τNL and

fNL-gNL relationserful tools to discriminate models well. In this work we are focusing
on the SY-relation between fNL and τNL. The Bayesian evidence [for
reviews, see Trotta, 2007, 2008] for the SY-relation τNL > (6/5fNL)

2

can be expressed as the fraction α of the likelihood L that provides
support:

α =

∫
τNL>(6/5fNL)2

dτ′NL

∫
df′NL L

(
fNL − f′NL, τNL − τ′NL

)
. (7.32)

Hence α answers the question as to how likely one would believe in
the SY-inequality with inferred f′NL and τ′NL-values if the true values
are given by fNL and τNL. Technically, α corresponds to the integral
over the likelihood in the fNL-τNL-plane over the allowed region. If
α = 1, we would fully believe in the SY-inequality, if α = 0 we would
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think that the SY-relation would be violated. Correspondingly, 1− α
would provide a quantification of the violation of the SY-relation,

1−α =

∫
τNL<(6/5fNL)2

dτ′NL

∫
df′NL L

(
fNL − f′NL, τNL − τ′NL

)
. (7.33)

We can formulate the integration over the allowed region as well as
an integration over the full fNL-τNL-range of the likelihood multiplied
with a suitable function Π,

α =

∫
dτ′NL

∫
df′NL L(fNL − f′NL, τNL − τ′NL)×Π(fNL, τNL) (7.34)

with Π = θ(τNL − (6/5fNL)
2). This function would play the role of a

theoretical prior in the fNL-τNL-plane. In this interpretation, α corre-
sponds to the Bayesian evidence, that means the degree of belief thatdegree of belief

the SY-inequality is correct.
We can test the SY-inequality τNL > (6/5fNL)

2 up to the errors
on fNL and τNL provided by the lensing measurement: Fig. 7.7 shows
the test statistic α(fNL,gNL, τNL) in the fNL-τNL-plane, where the likeli-
hood has been marginalized over the parameter gNL. The blue regime
fNL

>
∼ 10

2 is the parameter space which would not fulfill the SY-in-
equality, whereas the green area τNL

>
∼ 10

5 is the parameter space
that where the SY-relation would be fulfilled. Values of fNL

<
∼ 10

2 and
τNL

<
∼ 10

5 are inconclusive and even though non-Gaussianity param-
eters may be inferred that would be in violation of the SY-relation,
the wide likelihood would not allow to derive a statement. Another
nice feature is the fact that for large fNL and τNL the relation can be
probed to larger precision and the contours are more closely spaced.

7.8 analytical distributions

In this section we would like to derive the analytical expression forexactly fulfilled
relation the probability density that the SY-relation is exactly fulfilled, τNL =

(6/5fNL)
2, i.e. for the case (6/5fNL)

2/τNL ≡ 1. For this purpose we
explore the properties of the distribution

p(Q)dQ with Q =
(6/5fNL)

2

τNL
(7.35)

where the parameters fNL and τNL are both Gaussian distributed with
means f̄NL, τ̄NL and widths σfNL and στNL .

We will split the derivation into two parts. First of all we will de-
rive the distribution for the product f2NL. For this purpose we use the
transformation of the probability density:

py(y)dy = px(x)dx (7.36)
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with the Jacobian dx
dy = 1

2
√
y and where x = fNL and y = x2. Thus we

can write the above equality as

py(y) =
px(
√
y)

2
√
y

(7.37)

where the probability distribution px(x) is given by

px(
√
y) =

1√
2πσ2fNL

exp

(
−
(
√
y− f̄NL)

2

2σ2fNL

)
(7.38)

Naively written in this way, we would lose half of the distribution
and do not obtain the right normalization. Therefore we have to dis-
tinguish between the different signs of y. After taking care of that the
distribution of a square of a Gaussian distributed variate fNL with
mean f̄NL and variance σfNL is given by

py(y) =
1√
2πσ2fNL

1

2
√
y

·


exp

(
−

(
√
y−f̄NL)

2

2σ2fNL

)
,
√
y positive branch

exp
(
−

(−
√
−y−f̄NL)

2

2σ2fNL

)
,
√
y negative branch

(7.39)
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with y = f2NL. In the special case of normally distributed variates, the
above expression would reduce to

py(y) =
K0

(
|y|

σfNLστNL

)
πσfNLστNL

(7.40)

where Kn(y) is a modified Bessel function of the second kind [Abramowitz
and Stegun, 1972].

The next step is now to implement the distribution eqn. (7.39) into
a ratio distribution since we are interested in the distribution of(

6fNL

5

)2
1

τNL

incorporating the additional factor 4. The ratio distribution can be
written down using the Mellin transformation [Arfken and Weber,
2005]:

p(Q) =

∫
|α|dα py(αQ, f̄NL)pz(α, τ̄NL), (7.41)

with a Gaussian distribution for z = τNL,

pz(z) =
1√
2πσ2z

exp
(
−
(z− z̄)2

2σ2z

)
(7.42)

In the special case of Gaussian distributed variates with zero mean
the distribution would be simply given by the Cauchy distribution
[Marsaglia, 1965, 2006], but in the general case eqn. (7.39) needs to be
evaluated analytically.

In Fig. 7.8 we are illustrating the ratio distribution as a function
of fNL and τNL for Q = 1, i.e for the case where the SY-relation be-
comes an equality. The values for fNL run from 1 to 103 and τNL

runs from 1 to 106. The variances σfNL and στNL are taken from
the output of the Fisher matrix and correspond to σfNL = 93 and
στNL = 7.5× 105. We would like to point out the nice outcome, that
the distribution has a clearly visible bumped line along the the SY-
equality. Similarly, Fig. 7.9 shows a number of example distributions
p(Q)dQ for a choice of non-Gaussianity parameters fNL and τNL. We
let Q run from 1 to 5 and fix the values for fNL and τNL pairwise to
(fNL, τNL) = (1, 1), (5, 5), (10, 10), (20, 20), . . . , (100, 100) respectively.

7.9 summary

Topic of this paper is an investigation of inflationary bi- and trispectra
by weak lensing, and testing of the SY-inequality relating the relative
strengths of the inflationary bi- and trispectrum amplitudes using
weak lensing as a mapping of the large-scale structure. Specifically,
we consider the case of the projected Euclid weak lensing survey and
choose a basic wCDM-cosmology as the background model.
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Figure 7.8: The probability distribution p(Q)dQ of Q = (6/5fNL)
2/τNL as a

function of the non-Gaussianity parameters fNL and τNL.
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Figure 7.9: The probability distribution p(Q) as a function of Q

for fixed non-Gaussianity parameter fNL and τNL. The
curves in descending order represent (fNL, τNL) =

(1, 1), (5, 5), (10, 10), (20, 20), . . . , (100, 100).
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1. We compute weak lensing potential and weak lensing conver-
gence spectra Cκ, bispectra Bκ and trispectra Tκ by Limber-
projection from the CDM-polyspectra PΦ, BΦ and TΦ of the
Newtonian gravitational potential Φ. The non-Gaussianity mo-
del for the higher-order spectra are local non-Gaussianities para-
metrised with fNL, gNL and τNL. The weak lensing polyspectra
reflect in their magnitude the perturbative ansatz by which they
are generated and collect most of their amplitude at distances
of ∼ 1 Gpc/h, where the higher order polyspectra show a ten-
dency to be generated at slightly smaller distances. Ratios of
polyspectra where the transfer function has been divided out,
nicly illustrate the reduction to products of spectra by appli-
cation of the Wick theorem, as a pure power-law behaviour is
recovered by this construction.

2. The signal to noise ratios ΣC, ΣB and ΣT at which the polyspec-
tra can be estimated with Euclid’s weak lensing data are fore-
casted using a very efficient Monte-Carlo integration scheme for
carrying out the configuration space summation. These integra-
tions are carried out in flat polar coordinates with a Gaussian
expression for the signal covariance. Whereas the first simplifi-
cation should influence the result only weakly as most of the
signal originates from sufficiently large multipoles, the second
simplification has been shown to be violated in the investigation
of dominating structure formation non-Gaussianities, but might
be applicable in the case of weak inflationary non-Gaussianities
and on low multipoles.

3. With a very similar integration scheme we compute a Fisher-
matrix for the set of non-Gaussianity parameters fNL, gNL and
τNL such that a Gaussian likelihood L can be written down.
Marginalization over gNL yields the final likelihood L(fNL, τNL)

which is the basis of the statistical investigations concerning the
SY-inequality. The diagonal elements of the Fisher matrix are
simply inverse squared signal to noise ratios due to the propor-
tionality Bκ ∝ fNL and Tκ ∝ τNL. For Gaussian covariances, the
parameters fNL and τNL are statistically independent.

4. We quantify the degree of belief in the SY-relation with a set of
infered values for fNL and τNL and with statistical errors σfNL

and στNL by computing the Bayesian evidence that the SY-re-
lation τNL > (6/5fNL)

2 is fulfilled. Euclid data would provide
evidence in favour of the relation for τNL

>
∼ 10

5 and against the
relation if gNL

>
∼ 10

2. For fNL < 10
2 and τNL

<
∼ 10

5 the Bayesian
evidence is inconclusive and quite generally, large non-Gaussia-
nities allow for a better probing of the relation.
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5. We provide a computation of the probability that the quantity
Q ≡ (6/5fNL)

2/τNL is one, i.e. for an exact SY-relation. The dis-
tribution can be derived by generating a χ2-distribution for f2NL
and then by Mellin-transform for the ratio f2NL/τNL. We observe,
that the analytical probability distribution has a clearly visible
bumped line along the SY-equality.

In summary, we would like to point out that constraining non-
Gaussianities in weak lensing data is possible but the sensitivity is
weaker compared to other probes. Nevertheless, for the small bis-
pectrum parameter confirmed by PLANCK, τNL values of the order
of 105 would be needed to claim a satisfied SY-relation, and values
smaller than that would not imply a violation, given the large experi-
mental uncertainties.

Despite the fact that we will not be able to see a violation of the
inequality, if τNL is large enough to be observed, then this together
with the tight observational constraints on fNL will imply that the
single-source relation is broken and instead τNL � f2NL. Even though
this might be allowed by inflation, such a result would come as a
surprise and be of great interest, since typically even multi-source
scenarios predict a result which is close to the single-source equality,
and a strong breaking is hard to realise for known models, e.g. Pe-
terson and Tegmark [2011]; Elliston et al. [2012]; Leung et al. [2013],
although examples can be constructed at the expense of fine tuning
[Ichikawa et al., 2008; Byrnes et al., 2009].

As an outlook we provide a very coarse projection what levels of what about
tomography?fNL and τNL can be probed by tomographic surveys with N = 2, 3, 4

redshift bins which are chosen to contain equal fractions of the galaxy
distribution [Hu, 1999; Takada and Jain, 2004]. Fig. 7.10 shows the sig-
nal to noise ratio ΣB and ΣT for measuring local weak lensing bi- and
trispectra, respectively, and at the same time those numbers corre-
spond to the inverse statistical errors σfNL and στNL because of the
proportionality Bκ ∝ fNL and Tκ ∝ τNL. If the measurement is lim-
ited by statistics the constraints on the non-Gaussianity parameters
could be improved substantially, up to an statistical uncertainty of
σfNL of the order 10 and στNL of the order 104 with a correspondingly
tighter probing of the SY-relation, but of course many systematical ef-
fects become important, related to the measurement itself [Semboloni
et al., 2011; Heymans et al., 2013], to structure formation non-Gauss-
ianities at low redshifts [which can in principle be controlled with
good priors on cosmological parameters, Schäfer et al., 2012], or to
the numerics of the polyspectrum estimation [Smith et al., 2011b].
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The relativistic effect of gravitational lensing has become, over the
years, one of the most promising cosmological tools. The well under-
stood relation between light deflection and the mass that acts on it
as a lens, permits to use lensing to probe the distribution of matter
in our Universe, especially if we consider this phenomenon’s most
common regime, referred to as weak lensing.

This work intended to propose weak gravitational lensing as a
means both to detect baryon acoustic oscillations and to measure
the amount of primordial non-Gaussianities, possibly testing the re-
lation that exists between some of the quantities by which they are
parametrized.

Baryon acoustic oscillations are particularly interesting from a cos- BAO: Motivation

mological point of view. They originated back in the time when bary-
onic matter and radiation were coupled, and can now be observed as
a characteristic clustering length in the matter distribution. They are
extremely good candidates to the role of statistical standard rulers,
and can therefore contribute to the study of the properties and the
evolution of dark energy. A lensing approach to BAO detection would
benefit, for instance, from weak lensing’s sensitivity to both dark mat-
ter and baryons, and could probe smaller redshifts than CMB.

Primordial non-Gaussianities, on the other hand, can help to dis- primordial n-G:
Motivationcriminate among competing models of inflation. In effect, some of

these models predict different amount, or different shapes of non-
Gaussianity in the primordial distribution of density fluctuations. Some
of them even predict a violation of the fundamental relation that
exists between two non-Gaussianity parameters: the Suyama-Yam-
aguchi inequality. Detecting such violation could lead to prefer these
models, and the mechanisms they propose as responsible for infla-
tion. The main advantage of adopting weak lensing to measure pri-
mordial non-Gaussianities, would be providing an independent new
method, subject to different systematics and, most of all, probing
smaller scales than CMB. Such a characteristics would be valuable
in case of a scale-dependent non-Gaussianity.

bao with 3dwl We addressed the first of these problems by car-
rying out a statistical investigation to determine whether fu-
ture surveys could detect BAO with a 3d weak lensing method,
with a special attention to Euclid, DES or the hypothetical deep-
reaching DEEP.

To simplify the analysis, we assumed a fixed wCDM cosmology, assumptions

115
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and that noise sources like the shape-noise or the photometric-
redshift error could be described by independent, Gaussian statis-
tics.

The model was parametrized by the amplitudes of the CDMtechnique

power spectrum P(k) at the positions of the less damped bary-
onic oscillations, as they are predicted by the cosmology we
assumed. By varying P(k) in a way that preserved its wiggle-
shape in those wave number intervals, and by using a Fisher
matrix approach, we calculated the best errors σα to expect for
the amplitudes of P(k) at such positions.

We tested the sensitivity of such statistical precisions, and esti-results

mated the best errors to expect for surveys like Euclid, DES, and
DEEP. Moreover, we inferred the maximum number of wiggles
that can be simultaneously constrained with reasonably small
errors. It was found that

1. Among all the survey characteristics, σα seemed to be par-
ticularly sensitive to volume and density of the galaxy sam-
ple. This held, at least, for relatively small values of the
redshift error, i. e. σz < 0.1− 0.2.

2. Euclid, immediately followed by DES, gave the best per-
formance. We estimated that Euclid could allow for the
simultaneous detection of the first four baryonic wiggles
with sensible precision, whereas DES is not expected to go
beyond the third harmonic.

primordial non-gaussianities with wl Our second investiga-
tion focused on the study of a weak lensing approach to primor-
dial non-Gaussianities.

We initially started by estimating the strength of the signal for“A weak lensing
view on primordial
non-Gaussianities”

local, equilateral and orthogonal forms of primordial non-Gauss-
ianities in the weak lensing bispectrum. We did so by means of
a Monte Carlo integration of the signal-to-noise ratio computa-
tions. Such study proved weak lensing to have a weaker con-
straining power than CMB, concluding that fNL = 200, 575, 1628
(for local, orthogonal and equilateral shape, respectively) is nec-
essary for weak lensing to be able to claim a detection. We also
found that a wrong model choice in the fitting of the data bis-
pectrum could lead to misestimates on fNL of the order of ±3. In
addition, the propagation on fNL estimate of a partially wrong
subtraction of the structure formation signal, is found to be de-
pendent on the prior considered. A prior consisting in Euclid
weak lensing and BAO data, and PLANCK’s results on the tem-
perature and polarization maps, would yield uncertainties of
∼ 29, 98, 149 for local, orthogonal, and equilateral non-Gaussia-
nities.
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Finally, we analyzed weak lensing sensitivity as a test for the
relation that exists between fNL and τNL, i. e. the Suyama-Yam-
aguchi inequality.

In the study, a wCDM cosmology was assumed; also, flat polar assumptions

coordinates and a Gaussian expression for the signal covariance
were used in the integrations of the signal-to-noise ratios. We
considered a local form of non-Gaussianity, parametrized by
fNL, gNL and τNL, and the case of the projected Euclid weak
lensing survey.

Our analysis was carried out by computing inflationary bi- and technique

trispectra by weak lensing and the correspondent signal-to-noise
ratio via a very efficient Monte Carlo integration. The Fisher ma-
trix of the fNL, gNL and τNL parameters was also evaluated with
a similar numerical method, and from this, we derived the like-
lihood of the parameters fNL and τNL.

Thanks to the likelihood L(fNL, τNL), we could estimate the results

degree of belief of the Suyama-Yamaguchi inequality, stating
τNL > (6/5fNL)

2. We could conclude that data coming from a
survey like Euclid would provide a reliable statement on the
inequality only for τNL

>
∼ 10

5, that would give evidence for its
validity, and fNL

>
∼ 10

2, that would instead indicate a violation
of the relation.

In summary, one can conclude that measurements of baryon acous-
tic oscillations with 3d weak lensing are possible. Future surveys like
Euclid or DES should allow to detect higher amplitude oscillations
like the first four or three. A 3d weak lensing approach would avoid
issues related to galaxy biasing and redshift-space distortions, and
therefore be particularly valuable.

Further steps can be made to advance this work, like estimating the
precision gain on inferences about dark energy density and equation
of state, when low-redshift BAO data from lensing is added to inter-
mediate and high redshift probes (from galaxy distribution and CMB,
respectively). An investigation of the impact of systematical errors on
the estimation process from 3dWL data and biases in the estimation
of BAO-wiggle amplitudes, could also be useful.

On the other side, we acknowledge the fact that weak lensing sensi-
tivity to primordial non-Gaussianities is not competitive with probes
like the CMB, and large degrees of non-Gaussianity would be neces-
sary, in order to be able to observe them with such a method. Large
primordial non-Gaussianities would be also needed for a better prob-
ing of the Suyama-Yamaguchi relation. Nonetheless, weak lensing
could probe smaller scales than CMB, possibly allowing for the de-
tection of a scale-dependence of the non-linearity parameters. Finally,
if τNL is large enough to be observed, then the current constraints on
fNL would imply τNL � f2NL, hence ruling out single field inflation-
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ary models, as well as many multi-field scenarios, all predicting the
Suyama-Yamaguchi relation to be close to an equality.

Among the future developments to this work, I would definitely
suggest a thorough study of the improvement on τNL and fNL con-
straints, coming from a tomographic analysis, that already seems par-
ticularly promising.
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A
N U M E R I C A L M E T H O D F O R T H E C A L C U L AT I O N
O F T H E 3 D W E A K L E N S I N G C O VA R I A N C E

In this appendix, I will illustrate the numerical method we used for
the calculation of the covariance matrix of the 3d weak lensing con-
vergence.

We have seen that the covariance Cκ,`(k,k ′) is the sum of a noise
part (Equation 4.25) and a signal part (Equation 4.22). Then Cκ,`(k,k ′)
can be either calculated directly from the previous equations, that are
numerically quite demanding, or via a more efficient and more stable
method, derived by Ayaita et al. [2012] and adopted in this work.

During this derivation, I will use the standard matrix notation, re-
lating to the one used in Chapter 4 in the following way

Akk ′ = A(k,k ′)
√
k2∆k

√
k ′2∆k ′, (A.1)

where, for a multiplication between matrix, the coefficients reproduce
the summation convention1.

Since the trace operation is independent of the basis, and the Fisher
matrix is given by a trace, we can choose a transformation that sim-
plifies the numerical computation. Let this transformation be denoted
by T `:

C̃` = (T `)−1C`T
`, (A.2)

A natural choice for such a basis change would be an orthogonal T `,
i. e. (T `)−1 = (T `)T , chosen in such a way that the transformed matrix

1

∑
k k
2∆k ∼

∫
dkk2
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M̃` is diagonal. This occurs by means of the orthogonality relations if
we define

T `kρ =

√
2

π

√
ρ2∆ρ

√
k2∆k j`(kρ), (A.3)

where the pre-factors are given by the normalization of the eigenvec-
tors.

In this way M̃` becomes, as desired

M̃`
ρρ ′ = T

`
ρk M

`
kk ′ T

`
k ′ρ ′ = n̄(ρ)δρρ ′ , (A.4)

whereas for the signal part, since we have S` ∝ B`kk ′ P(k ′) (B`kk ′)
T ,

the transformation implies an action of T ` on the B` matrix of the
type

B̃`ρk ′ = T
`
kρB

`
kk ′ . (A.5)

It can be shown that, by making use of the orthogonality relation, the
final expression for B` is

B̃`ρk ′ = 2

√
2

π

√
ρ2∆ρ

∫∞
0

dχ p(ρ|χ)n(χ) ·

·
∫χ
0

dχ ′ j`(k ′χ ′)
χ− χ ′

χχ ′
D+

a

√
k ′2∆k. (A.6)

Once we have Equation A.6 we can use it for the calculation of the
signal part, while the noise part is already given by Equation A.4. By
the sum of these two contributions, the covariance matrix for a given `
can be computed and then used in the evaluation of the Fisher matrix.
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