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Abstract

Complex cognition addresses research on (a) high-level cognitive processes – mainly problem solving, reasoning, and decision making
– and their interaction with more basic processes such as perception, learning, motivation and emotion and (b) cognitive processes which
take place in a complex, typically dynamic, environment. Our focus is on AI systems and cognitive models dealing with complexity and
on psychological findings which can inspire or challenge cognitive systems research. In this overview we first motivate why we have to go
beyond models for rather simple cognitive processes and reductionist experiments. Afterwards, we give a characterization of complexity
from our perspective. We introduce the triad of cognitive science methods – analytical, empirical, and engineering methods – which in
our opinion have all to be utilized to tackle complex cognition. Afterwards we highlight three aspects of complex cognition – complex
problem solving, dynamic decision making, and learning of concepts, skills and strategies. We conclude with some reflections about and
challenges for future research.
! 2010 Elsevier B.V. All rights reserved.

1. Introduction

Dealing with complexity has become one of the great
challenges for modern information societies. To reason
and decide, plan and act in complex domains is no longer
limited to highly specialized professionals in restricted areas
such as medical diagnosis, controlling technical processes,
or serious game playing. Complexity has reached everyday
life and it affects people in such mundane activities such as
planning a travel, investing money, or buying a car. The ori-
gin of many aspects of everyday complexity is information
technology, which made it possible to obtain information
about nearly everything at nearly anytime and in any loca-
tion. For example, now activities such as banking or shop-
ping are independent from location, business time and office

hours. While this gives much more autonomy to every per-
son, at the same time, persons are expected to pursue many
activities – such as selecting a suitable flight or searching for
a suitable book as a present – based on their own judgement
by interaction with some computer program instead of get-
ting service and council by a trained person.

In principle, there are two sources of complexity in deal-
ing with information technology: One source of complexity
arises from the interaction possibilities offered by the
computer and the used software. To provide for cognitively
ergonomic interaction technologies is a main topic of
research in the domain of human–computer interaction
(Dix, Finlay, Abowd, & Beale, 2004). The other source of
complexity arises from the content domain. For example,
when deciding whether to invest in stock exchange and, if
yes, in which stocks, the internet offers lots of information.
Whether someone arrives at a useful decision might depend
on his/her background knowledge, search strategy, heuris-
tics and assumptions.

The ultimate hope is that information technology will be
enhanced by cognitive systems to support people navigating
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through the jungle of everyday reasoning, decision making,
planning and acting by providing intelligent support tech-
nology. Lessons learned from expert system research of
the 1980s (Hayes-Roth, Waterman, & Lenat, 1983) are that
the aim should not be to provide for fully automated sys-
tems which can solve specialized tasks autonomously but
instead to develop interactive assistant systems or cognitive
companions (Forbus & Hinrichs, 2006) where user and sys-
tem work together by taking advantages of the respective
strength of human and machine (see Biundo et al., this
issue).

However, before we can realize such an intelligent sup-
port technology further basic research of complex cognitive
systems is needed. Insights in cognitive structures and pro-
cesses underlying successful human reasoning and planning
can provide suggestions for algorithm design. Insights in
restrictions, typical errors and misconceptions can provide
information about those parts of a complex task from
which the human should be relieved. Therefore, research
in complex cognition is necessarily an interdisciplinary
endeavor where cognitive artificial intelligence (AI) and
cognitive psychology work together.

In the following, we will first try to characterize complex-
ity in the context of cognitive systems research. Afterwards,
we will give an overview of methodological approaches to
tackle complex cognition. Then, we will high-light three
central areas of research, namely, complex problem solving,
decision making in dynamic and possible real-time environ-
ments, and learning high-level strategies for problem solv-
ing and reasoning. We will conclude with a final discussion.

2. Characterizing complex cognitive systems

In psychological research, cognitive complexity often is
used to refer to high-level cognitive processes – mainly
problem solving, reasoning, and decision making – and
their interaction with more basic processes such as percep-
tion, learning, motivation, and emotion (Dörner & Wear-
ing, 1995; Knauff & Wolf, 2010; Osman, 2010; Sternberg
& Ben-Zeev, 2001). We propose to use the term complex
cognition as a label for a perspective on psychological pro-
cesses that searches for an integration of various cognitive
processes needed for a smart course of action. Complex
cognition is opposed to simple cognition, a term that
describes isolated capacities of single psychic functions like
perception, memory, and thinking without reference to
other functions. In a sense, complex cognition tries to
address cognition as a whole, whereas simple cognition is
interested in the different parts of the psychic system.

As Knauff and Wolf (2010) pointed out, there is a sec-
ond important aspect to complexity – the complexity given
by the environment with which the agent has to interact
(Dörner & Wearing, 1995; Osman, 2010). To discern basic
research focussing on simple, highly controlled tasks from
research on cognitive processes in complex environments
some authors proposed the term macrocognition in contrast
to microcognition (Klein et al., 2003).

In the context of AI planning, the complexity of the envi-
ronment is typically characterized by the following dimen-
sions (Ghallab, Nau, & Traverso, 2004, chap. 1.6): The
number of states might be infinite, due to actions which
can create new objects or due to numerical variables. States
might be only partially observable and as a consequence,
the outcome of actions cannot be predicted with certainty.
Another cause for uncertain outcome of actions can be
that the environment is nondeterministic due to uncontrol-
lable factors (e.g., gambles), unpredictable changes (e.g.,
weather), or involvement of other intelligent agents
(Wooldridge, 2002). While in a static environment, changes
can only be caused by actions of the agent, in dynamic sys-
tems, changes in the environment occur over time, which
also often results in nondeterminacy from the perspective
of the agent (Funke, 2010).

In addition to goals that have to be reached in a final
state, there might be more general goals in form of con-
straints, such as avoiding of damage, or optimization of
utility functions which must be taken into consideration.
There might be situations where goals cannot be reached
by a simple sequence of actions but where conditions, loops,
or parallel executions might be necessary. Furthermore,
there might be problem environments where it is not enough
to consider time only implicitly via state transitions but
where the duration of actions or temporal constraints must
be taken into account. For example, in driver simulations,
an autonomous driver needs to react immediately to
dynamic changes such as traffic lights or the unexpected
appearance of a pedestrian on the road (Langley & Choi,
2006). Finally, especially in dynamic, nondeterministic envi-
ronments, it might be necessary to interleave action plan-
ning, action monitoring, and action execution.

About three decades ago, there was some effort to tackle
the problem of complexity in cognitive psychology as well as
in AI, reflected in psychological research in problem solving,
high-level learning and expertise (Anderson, 1987; Chi,
Feltovich, & Glaser, 1981; VanLehn, 1991) and in expert sys-
tems research (Hayes-Roth et al., 1983). Since some time,
research in both disciplines is focussing on more restricted
domains. In cognitive psychology, this is reflected by a dom-
inance of research on the neuro-psychological basis of cogni-
tion where experiments typically focus on very simple tasks.
In AI this is reflected by a dominance of the development of
rigorous methods, e.g. in pattern recognition and statistical
machine learning, and efficient algorithms, e.g. in automated
planning. While this focus on restricted and isolated prob-
lems in both disciplines brought along impressive results,
we believe, that the ultimate research goals of cognitive
psychology and AI should be kept in mind – that is, to get
insight in and technologies for cognition in the real world.

We should give a new look on topics such as reasoning
in complex domains, learning from problem solving experi-
ence, planning and problem solving in dynamic environ-
ments, automated decision making or cognitive assistance
systems based on the insights and technological develop-
ments gained over last decades.
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3. Methods to tackle complex cognition

To get insight into the diverse phenomena of complex
cognitive systems, the full spectrum of methods offered
by cognitive science should be applied. Cognitive science
methods draw from three different research traditions –
analytical, empirical, and engineering research.

Analytical methods as used in philosophy and linguis-
tics, mathematics and theoretical computer science can
help to formalize general regularities as well as general con-
straints of problem domains. Giving precise insight into
problem complexities and offering formal models provide
a basis for the design of new intelligent algorithms. For
example, Wareham and van Rooij (this issue) define an
algorithm-independent computational-level model of ana-
logical generalization and investigate the computational
complexity of problems associated with this model.
Thereby, they provide insights on conditions under which
analogical generalization can be done efficiently. New for-
mal approaches and new algorithms might offer a challenge
to existing cognitive systems and trigger their extension and
modification to cover additional or more complex cognitive
processes. For example, Guhe and collegues (this issue)
propose an algebraic approach to concept blending which
offers new possibilities for algorithms for discovery and
creativity. Schmid and Kitzelmann (this issue) propose
inductive programming as an efficient method for learning
complex rules from few and only positive examples which
might offer the possibility to allow for meta-learning in
rule-based systems.

Empirical methods as used in experimental cognitive
psychology, in psycho-linguistics, and in neurosciences
can help to establish relations between formal and compu-
tational models of cognitive systems and human cognitive
processes and they also can be used exploratory to give
general suggestions about cognitive inspired algorithms.
The second way may be called “psychonics” in analogy
to bionics where engineering draws new ideas from biolog-
ical systems (Schmid, 2008). Here the relation to empirical
data is rather loose – algorithms are designed such that
they cover some human cognitive achievement on the func-
tional level. Many typical cognitive AI systems fall in this
category (Forbus & Hinrichs, 2006; Langley & Choi,
2006). On the other hand, research in cognitive modeling
aims at a more close correspondence between cognitive
model and empirical data (Gonzalez, Lerch, & Lebiere,
2003). Here, the goal is to establish correlations between
behavioral data from humans and algorithms for the same
tasks, typically comparing relative times and percentages of
correct solutions. However, the next most important goal is
to be able to predict human behavior in novel conditions,
for which the models were not initially built for Gonzalez,
Best, Healy, Bourne, and Kole (2010). Investigating com-
plex behavior, empirical data on the behavioral rather than
the neuropsychological level usually are more helpful to
give rise to develop cognitive systems. However, relating

behavioral data to neuropsychological findings might give
additional constraints for cognitive models.

Currently, psychological research on complex cognitive
phenomena, such as problem solving in complex, dynami-
cal domains are rather rare. Some psychological experi-
ments addressing complex problem solving are presented
in this special issue. Osman and Spellman (this issue) inves-
tigate human strategies in dealing with complex control
tasks. Güss and Dörner (this issue) investigate cultural dif-
ferences when dealing with a dynamical simulation system.

Besides problem solving, reasoning and decision making
are research topics in higher cognition. Research in reason-
ing is often closely related with specific assumptions about
knowledge representation. Some authors argue, that the
ability of humans to construct multi-modal representations
is crucial to the flexibility of human cognition. While
Krumnack et al. (this issue) present experimental work
and a cognitive model for relating spatial and verbal rea-
soning, Kurup et al. (this issue) present a cognitive archi-
tecture for integrating multiple representations.

Very often, cognitive models are realized within some
cognitive architecture, such as ACT-R (see Möbus et al.,
this issue; Russwinkel et al., this issue), SOAR (Laird,
Newell, & Rosenbloom, 1987), Icarus (see Choi & Langley,
this issue), Polyscheme (see Kurup et al., this issue).
Cognitive architectures offer the advantage that all models
share the same general assumptions and constraints which
makes it easier to compare concurring models in the same
domain. On the other hand, a cognitive architecture
restricts the algorithmic possibilities.

While cognitive architectures started with the aim to
progress to model complex cognition (Anderson, 1983;
Newell, 1990), over the last decade, in cognitive modeling
the focus also has been shifted to simpler tasks with the
focus on relating cognitive processes to their neuropsycho-
logical basis. Moebus et al. (this issue), investigate the
brain-mapping hypothesis of ACT-R with more complex
problems in the domain of mathematical problem solving.
Likewise, Russwinkel et al. (this issue) compare experimen-
tal data with an ACT-R to predict errors in mathematical
reasoning. A cognitive architecture with focus on modeling
highly complex real-world tasks with challenging demands
on reaction times is Icarus where, for example, urban driv-
ing is modeled (see Choi and Langley, this issue).

Cognitive modeling is not necessarily restricted to the
symbolic level. David Marr argued for the idea that science
must try to understand information processing systems at
three distinct levels. These levels include the computational
level (what does the system do), the algorithmic level (how
does the system operate, on what representations and how
are these manipulated) and finally the implementational
level (how is the system physically realized, including neu-
ral structures and activities) (Marr, 1982). There is an
ongoing research effort to bring both sides nearer together:
the subsymbolic level (which is typically associated with the
neural implementation of cognitive functions – the
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so-called neural correlates) and the symbolic level. Both
sides are necessary, as we know that the brain operates
on neural networks and on the other side cognitive science
is built upon the idea to model thinking by algorithms
(Newell, 1990). Both sides allow for interesting insights:
The symbolic part allows to understand the problem and
to describe complexity (although from a formal perspec-
tive), the neural network levels bring learning into play.

4. Complex problem solving

Complex problem solving is the label given to a Euro-
pean research tradition (Frensch & Funke, 1995) which
started in the mid 1970s with work done by Donald Broad-
bent (e.g., Broadbent, 1977) and Dietrich Dörner (e.g.,
Dörner, 1980). Their intention was to get complexity into
the labs of cognitive psychologists and see how naive sub-
jects (not experts) worked on complex, intransparent, and
dynamic problems. The availability of computers helped
to realize this idea by allowing to construct complex
microworlds (scenarios) which required dynamic decision
making – not a single decision act, but a series of decisions
dependent from each other and dependent from time.

A complex problem is said to occur when finding the
solution demands a series of operations which can be char-
acterized as follows (Dörner, Kreuzig, Reither, & Stäudel,
1983): The number of elements relevant to the solution pro-
cess is large (complexity), highly interconnected (connectiv-
ity), and the system is dynamically changing over time
(dynamics). Neither structure nor dynamics are disclosed
to the actor (intransparency). Finally, the goal structure
is not as straight forward: in dealing with a complex prob-
lem, a person is confronted with a number of different goal
facets that have to be weighted and coordinated (polytelic
situation).

From the beginning of its use in the mid 1970s, the term
“complex problem solving” seemed a bit misleading: It was
not the problem solving activity which looked complex (on
the contrary: most subjects in the experiments made mis-
takes and tended to simplify the situation), but the problem
situation itself. The famous Lohhausen study (Dörner
et al., 1983) reported more than 2000 variables in its sys-
tem. But from its beginning, the question of situation com-
plexity was a hot topic in the development of the field. For
example, Funke (1993) argued for the use of much simpler
simulation models based on linear structural models – a
line of research which today uses the concept of “minimal
complex systems” (Funke, 2010; Greiff, 2011).

Güss and Dörner (this issue) use the dynamic system
Coldstore for an analysis of cross-cultural differences in
problem solving strategies. Four different successful strate-
gies (adaptive, cautious, switching, or oscillating) show dis-
tinctive cultural preferences between Brazil, Germany,
United States, India, and the Philippines. The bottom line
of their research is that complex cognition (i.e., higher
order cognitive processes) depends more on cultural tradi-
tions than assumed before.

Osman and Speekenbrink (this issue) used a complex
dynamic task environment to demonstrate also strategic
differences: depending on the uncertainty that was realized
in the system, subjects either varied all cues under unstable
conditions or – under stable conditions – took the VOTAT
strategy (=vary one thing at a time). The bottom line here
is: complex cognition is very sensitive to the predictability
of the environment and, thus, sensitive to context.

Choi (this issue) developed the ICARUS architecture to
model goal management as part of higher-order cognition.
Based on a distinction between conceptual and procedural
knowledge, concepts and skills for driving a car in a simu-
lated environment have been modeled. Especially, the sim-
ulation was confronted with surprising events like a sudden
ambulance vehicle or pedestrians jumping on the street,
events that require immediate reaction and a shift in the
goal hierarchy.

5. Decision making in dynamic environments

Decision-making in dynamic systems requires an ability
to deal with incomplete information, highly connected vari-
ables and changing environments over time. It has been
argued that system thinking is essential to learn to make
decisions in dynamic systems (Dörner, 1989; Sterman,
2000; Sterman & Booth-Sweeney, 2002). For example,
Senge (1999) suggested that with systems thinking skills,
People learn to better understand interdependency [. . .],
and thereby to deal [. . .] with the forces that shape the conse-
quences of our actions. Complex dynamic systems are typi-
cally defined by highly inter-connected states (cf. Funke,
2006; with intransparency of situations and changes over
time, it is hard to trace back changes to one variable or
cause, specially when the effects are delayed.

Dynamic Stocks and Flow Systems (DSF) are a special
kind of dynamic systems that represent the most essential
elements of dynamic systems: stocks, accumulations of a
certain amount of a quantifiable unit, and flows, that
increase the stock amount (inflow) or decrease it (outflow)
over time (Cronin, Gonzalez, & Sterman, 2009; Dutt &
Gonzales, 2007). These simple systems are dynamic because
the system’s configuration changes over time. The task of
the system agent is to predict the underlying changes and
to react accordingly to keep the stock in balance.

Different aspects of dynamic systems have been empiri-
cally investigated, from feedback response, time delays, lin-
earity, and non-linearity to reading out minimum and
maximum information from graphs representing these
changes lead to sub-optimal solutions. Unfortunately, there
is increasing and robust evidence of a fundamental lack in
the human understanding of accumulation and rates of
change; a difficulty called the Stock-Flow (SF) failure
(Cronin et al., 2009). The SF failure occurs even in simple
problems, such as evaluating the level of water in a bathtub
given the amounts of water flowing in (inflow) and out of it
(outflow) over time (Sterman & Booth-Sweeney, 2002).
Researchers have used simple problems to ask individuals
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for their basic interpretations of a stock’s behavior. For
example, researchers often use graphical representations
of the inflow and the outflow over time, and ask students
to answer questions about the stock or to draw it. Despite
the simplicity of these problems, individuals with strong
mathematical backgrounds exhibit poor performance; less
than 50% of them answer the stock questions correctly
(Cronin & Gonzalez, 2007).

It has been suggested that people use the “wrong repre-
sentation” to think about stocks and flows (SF) (Cronin
et al., 2009), and students often draw a stock that replicates
the pattern of inflow or netflow, while ignoring the effect
that both inflow and outflow would have on accumulation
over time. These mental procedures that lead to erroneously
assume that the stock behaves like the flows was termed the
“correlation heuristic” (Cronin et al., 2009). Although the
correlation heuristic seems to be robust in SF problems
(Cronin & Gonzalez, 2007; Cronin et al., 2009; Sterman &
Booth-Sweeney, 2002), we know little about the mental pro-
cedures people use in solving these problems and why.

Ragni et al. (this issue) investigate the question of how
one can best deal (from a formal and cognitive perspective)
with dynamic stock and flow systems. They analyze the
DSF task proposed by Gonzalez and Dutt, and generalize
the task from one to several stocks. They use artificial neu-
ral networks (ANNs) for identifying the optimal solution
for single stocks, and linear programming with the simplex
method for solving the generalized problem. Cognitive
models are compared with the Artificial Intelligence model.
Their method takes the dynamicity of the DSF task into
account: The ANN receives like the participants in the
empirical investigations at each time step the new value,
which has to be taken into account. So the ANN starts
to learn and to adapt at each new function change over
time. The neural network used only three hidden layers
and took the last three times steps into account similar to
a human reasoner who does not only base his decisions
at the current time point but takes some previous informa-
tion into consideration. As there is currently no benchmark
available they tested their approach on the functions pro-
posed on the DSF challenge.

Another case for dynamic decision making is the article
from Choi (this issue). The ICARUS architecture is applied
to model driving a car in a simulated environment (see sec-
tion Complex problem solving). This case can be seen as an
inter-connection between complex problem solving – as
dynamicity and time changes play a major role. Different
to the described approaches here is that in classical DSF
tasks the reasoner has to identify future changes based
on current and past data, while an ambulance or a pedes-
trian crossing the street is not predictable but requires
nonetheless an immediate reaction.

6. Learning to deal with complexity

The flexibility and adaptiveness of a – natural or artifi-
cial – cognitive system depends highly on its ability to learn

from previous experience. It is obvious that when dealing
with complex environments (as described in the previous
sections), it is not possible to rely on a pre-defined fixed
set of knowledge and behavioral routines. From the per-
spective of AI, providing a system which is already
equipped with all information necessary to deal success-
fully with all problems which might arise is impossible
due to the knowledge engineering bottleneck (Feigenbaum
et al., 1977). From the perspective of cognitive modeling, a
completely pre-defined set of knowledge and rules would
support a nativistic stance, implying that humans are
already born with all the knowledge necessary to deal with
the world. Following the standpoint of empiricism, we
assume that humans have inborn capabilities for learning
from the environment. Furthermore, it is safe to assume
that human learning occurs over a hierarchy of levels –
from very basic sensu-motor coordination over pattern
classification to concept learning to the acquisition of skills
and strategies.

Machine learning research made considerable progress
over the last two decades bringing forward a variety of
probabilistic, statistical and neural approaches (Mitchell,
1997). Most approaches are concerned with classification
learning where concept learning is subsumed as a special
case. Reinforcement learning provides a means to acquire
action sequences for interaction with the environment,
including an opponent in a game. The progress in machine
learning is reflected in recent developments of cognitive
architectures which provide mechanism for learning to a
far larger degree and with a much larger variety of mecha-
nisms than earlier cognitive architectures.

For example, approaches of Bayesian learning (Cooper
& Herskovits, 1992) recently are applied to model concept
acquisition and acquisition of causal knowledge from
sparse data as statistical inferences over structured knowl-
edge representations (Tenenbaum, Griffiths, & Kemp,
2006). In the domain of analogical reasoning and problem
solving, over the last years models addressing the acquisi-
tion of generalized knowledge structures were proposed
(Kuehne, Forbus, Gentner, & Quinn, 2000; Klenk &
Forbus, 2009; Schwering, Krumnack, Kühnberger, & Gust,
2009; Weller & Schmid, 2006). Wareham and van Rooij
(this issue) address the conditions under which analogical
generalization can be done efficiently.

The cognitive architecture Soar already early on pro-
vided a mechanism for learning by chunking simple rules
into more complex rules (Laird, Rosenbloom, & Newell,
1986). Learning is triggered directly in the context of prob-
lem solving. Chunking is proposed as a universal learning
mechanism that can emulate learning of procedural, epi-
sodic and declarative knowledge. A similar procedure,
called production compilation is realized in ACT-R (Taat-
gen & Anderson, 2002). Most learning processes in ACT-R
are realized on a subsymbolic level, that is, production
rules are selected by their estimated utility which is modi-
fied over experience. Likewise, retrieval from declarative
memory depends on history of usage (Anderson et al.,
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2004). Soar as well as ACT-R mainly address speed-up
effects of learning. Another proposal for modeling skill
acquisition based on generalization of goals and chaining
of given skills or concepts is realized in the cognitive archi-
tecture ICARUS (Langley & Choi, 2006). A system which
takes into account learning of new rules using a rule-extrac-
tion-refinement algorithm is Clarion. Clarion (Sun &
Zhang, 2006) is a hybrid cognitive architecture which puts
implicit and explicit learning in the focus of cognitive mod-
eling and provides for different learning mechanisms such
as backpropagation networks, reinforcement learning and
imitative learning.

An approach to high-level learning based on an analyt-
ical method to learn generalized recursive rules from
sparse, positive experience is presented by Schmid and Kit-
zelmann (this issue). The authors present a method for
learning problem solving strategies, such as solving Tower
of Hanoi problems, reasoning rules, such as transitivity of
certain relations, recursive concepts, such as ancestor and
simple phrase-structure grammars.

7. Conclusions: about complex cognition

After we have discussed methods for dealing with com-
plexity and given three research areas as examples for com-
plex cognition, we want to come back to our working
definition of complexity (see Section 2) where we distin-
guished between complexity in the cognitive processes itself
and complexity in the environment. A similar characteriza-
tion of complex cognition is given by Knauff and Wolf
(2010, p. 100) in their introduction to a “Special Issue on
Complex Cognition” in the journal Cognitive Processing:
“As ‘complex cognition’ we define all mental processes that
are used by individuals for deriving new information out of
given information, with the intention to solve problems, make
decision, and plan actions. The crucial characteristic of ‘com-
plex cognition’ is that it takes place under complex condi-
tions in which a multitude of cognitive processes interact
with one another or with other noncognitive processes.”

However, giving a closer look at these characterizations,
it becomes obvious that the distinction between simple and
complex is rather fuzzy: Distinguishing between complex
processes (on the person side) and complex conditions/sit-
uations (on the environment side) would allow to construct
a two-dimensional space with four cells, simple/complex
processes crossed with simple/complex situations. Let us
take a look to these four cells by giving potential examples:

(1) simple cognition, simple situation: sitting in an iso-
lated room and hearing a single tone;

(2) complex cognition, simple situation: reading a num-
ber and doing very complex things with it (e.g., a
mental calculator who extracts the root of a huge
number in his mind);

(3) simple cognition, complex situation: a manager reads
a single figure out of a table within a monthly report
of operations;

(4) complex cognition, complex situation: a busy man-
ager makes a series of interdependent decisions in a
dynamic and complex economic environment.

What is the scale of complex cognition? The four cases
illustrate the difficulty of drawing a demarcation line
between simple and complex – if you go into detail, previ-
ously simple processes can become very complex: Even the
simple case of hearing a tone might become a very complex
activity if we draw attention to the neural activities needed
in this case. On the other hand, even highly complex deci-
sions in highly complex situations can (sometimes) be
taken by very simple heuristics (Marewski, Gaissmaier, &
Gigerenzer, 2010).

What possibilities do we have for making decisions
about the simple/complex process dimension? Here are
some candidates: (a) The number of assumed cognitive
processes, (b) the diversity of involved processes, (c) the
time taken for processing, (d) the complexity of the sim-
plest machine program which would solve the task.

To assess the complexity of situations, there is also no
simple solution. There are no clear measures for system
complexity (Kolmogorov complexity and other quantita-
tive measures from mathematics seem to us not appropri-
ate), network theory from physics (Buchanan, 2002;
Newman, 2003) might be a starting point.

Until we have no clear indicators, our decisions about
simple or complex remain totally subjective and probably
unjustly. But for now, we have to live with this uncomfort-
able situation. Nevertheless, it is our strong belief that
there is a need to go beyond today’s reductionist psycho-
logical experiments and to try hard to push cognitive mod-
eling towards dealing with more and more complex
phenomena of human achievements. The special issues
dedicated to complex cognition in Cognitive Processing
and in Cognitive Systems Research are first evidence that
both cognitive psychologists as well as researchers in cogni-
tive AI are trying to move from simple to complex.
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