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ABSTRACT:

Rotationally symmetric objects commonly occur at archæological finds. Instead of creating 2D images for documentation purposes
by manual drawing or photographic methods, we propose a method based on digitally colored surface models that are acquired by 3D
scanners, thereby including color information. We then transform these highly-detailed meshes using simple geometrical objects such
as cones and spheres and unwrap the objects onto a plane. Our method can handle curved vessel profiles by dividing the surface into
multiple segments and approximating each segment with a cone frustum that serves as an auxiliary surface. In order to minimize distor-
tions, we introduce a simple quality measure based on distances of points to a fitted cone. We then extend our method to approximately
spherical objects by fitting a sphere on the surface of the object and applying a map projection, namely the equirectangular projection
known from cartography. Our implementation generates true-to-scale images from triangular meshes. Exemplary results demonstrate
our methods on real objects, ranging from small and medium-sized objects such as clay cones from the Ancient Orient and figural
friezes of Greek vessels to extremely large objects such as the remains of a cylindrical tower of Heidelberg Castle.

1 INTRODUCTION

Due to the demand by archæologists for a fast and accurate docu-
mentation as well as analysis of small ancient objects, close-range
3D scanners are increasingly used within museums and on exca-
vation sites (Sablatnig and Menard, 1992). These man-made ob-
jects are manufactured from various materials, and they are often
rotationally symmetric. Furthermore, many of them depict lots
of details, such as iconographic imagery, ornamental paintings
or inscriptions. While parallel projections and cross-sections are
used to show the general shape of an object (Orton et al., 1993),
the details along the surface have to be unwrapped. Tradition-
ally, unwrapping an object is a time-consuming task requiring
either a highly skilled draftsperson or special equipment for roll-
out photography (Lynch-Johnt and Perkins, 2008). Fig. 1 shows
an example of unwrapped conical friezes of an ancient vessel.

1.1 Related work

Previous research in photogrammetry used cylinder fitting for un-
wrapping 3D surfaces with known analytical expressions (Karras
et al., 1996). Likewise, cartographic projections have already
been proved useful for obtaining raster images of paintings on
arches and spherical surfaces (Karras et al., 1997). More recent
works uses triangle strips that are adjusted to the surface of arbi-
trary objects in order to unfold them (Massarwi et al., 2007). A
detailed body of methods for unwrapping spherical objects can be
found in cartography (Grafarend and Krumm, 2006). Our method
enables experts of cultural heritage to rapidly compute planar rep-
resentations of cultural heritage objects for important tasks such
as iconographic analysis. These planar representations cannot be
substituted by 3D models e.g. via the Internet, because tasks such
as historic interpretations require all parts of an object to be visi-
ble.

The simplest geometric primitive for an unwrapping transforma-
tion is the cylinder. It has already been used for 3D models of
ancient cylinder seals (Pitzalis et al., 2008). Since the cylinder is
a degenerate cone, we focus on unwrapping approximately coni-
cal objects in the next section. However, as there is a vast number
of objects with a spherical shape, we also show how to unwrap a
sphere.

1.2 Data format

In the following, we assume that the user is working with 3D
representations of cultural heritage objects, such as ceramic ves-
sels or cuneiform tablets. We require an object to be specified as
a triangular mesh, e.g. in Stanford Triangle Format (PLY). This
mesh is composed of vertices, i.e. points in R3, and faces, i.e.
triangles consisting of three distinct vertices. The edges of the
faces are described implicitly by this representation. Triangular
meshes are commonly used and generated by most of commer-
cial 3D scanners: Three non-collinear vertices always define a
plane and allow for the simple calculation of normals and other
properties of the faces.

Figure 1: Unwrapping both figural friezes of a vessel (KHM Inv.-
No. 3618 ) by fitting two different cones (Bechtold et al., 2010).

2 DEVELOPABLE SURFACES

In this part of the paper, we will focus on developable surfaces
that can be unwrapped without any distortions. The unwrapping
transformation is bijective, i.e. it can be reversed without loss of
accuracy. For simplicity, we only talk about finite cones and cone
frusta, i.e. truncated cones. We will later generalize these tech-
niques to unwrap cylinders, as well.

2.1 Fitting a cone frustum

Many ceramic vessels can be described by conical shapes. Typi-
cally, the objects are at least approximately rotationally symmet-
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ric due to their manufacturing process, which uses a rotational
plate. In most cases, one can think of vessels as being comprised
of several cone frusta. Usually, two or three frusta are sufficient
for unwrapping these vessels—see Fig. 1 for a typical example.

For fitting a cone frustum, we let the user interactively specify an
axis of the cone as well as two points on the surface of an object.
We then calculate the height of the truncated cone by projecting
the selected points to the cone axis. The upper and lower radius of
the cone are then determined by the position of the points selected
by the user. Furthermore, by employing cone frusta, the user can
exclude regions of the vessel that are removed upon unwrapping
the object. This is useful when the user is interested in a depiction
around the middle of the vessel, but does not want to include han-
dles or the base of the vessel. From an algorithmic point of view,
this approach of cone fitting offers additional possibilities: (i) The
process of determining a rotational axis may be automated. In re-
cent publications (Mumford and Cao, 2002, Mara and Sablatnig,
2006), methods for automatically finding the best rotational axis
have been introduced. (ii) If an axis has been determined, numer-
ical fitting methods can be applied in order to find the optimum
radii of the cone frustum with respect to some quality measure,
such as minimized squared distances (Strutz, 2010).

2.2 Cone distance calculation

When unwrapping an arbitrary object that is not a perfect cone,
we want to minimize any distortions occurring due to the trans-
formation. To this end, we need to define a quality measure. In
the case of a complete cone, we use the distance of each point of
an object to the fitted cone as a simple quality measure. When
fitting a cone frustum, this method has the advantage of deter-
mining whether a point is located above or below the planes of
the cone frustum such that distance calculations are not neces-
sary. In these cases, the corresponding vertices are skipped and
will not be processed any further. This greatly improves the speed
of the unwrapping transformation.

For calculating the cone distance, we assume that the cone is sit-
uated in the origin of the coordinate system and opens towards
the positive y-axis. The main idea is to use the angle γ = β − α
between the position vector of the vertex and the vector along the
surface of the cone. With Fig. 2 depicting the required angles, we
obtain

dist(p) = sin(γ) · ‖p‖ = d, (1)

where ‖p‖ is the Euclidean norm of the vector connecting the
apex of the cone and p. If the angle β becomes larger than π/2,
we set dist(p) := ‖p‖.

When fitting a cone frustum, we use the same distance calculation
as defined above. In addition, we check whether the orthogonal
projection of a query point onto the y-axis is outside the frustum.
If so, we assign the point a semi-transparent colour. Points whose
distances are defined, on the other hand, will be drawn using a
heat map colour ramp. This enables the user to see the quality of
the fitted cone frustum in one glance—see Fig. 3.

2.3 Unwrapping a cone

Before unwrapping a cone, we first transform the object and the
cone into a local coordinate system with the axis of the fitted cone
being the y-axis of the coordinate system. This transformation
simplifies later calculations. See Fig. 4 for the current setting.
We describe the required formulæ and refer to (Bechtold et al.,
2010) for a more detailed derivation. For simplicity, we express
the coordinates of the vertices in a conical coordinate system, i.e.
one that employs an angle ϕi and a height hi to uniquely describe
the position of a point pi on the surface of the cone.
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Figure 2: Angles used for calculating the distance to a cone.

Figure 3: Heat map visualization of the distance to a fitted cone.
Due to the high curvature of the vessel (KHM Inv.-No. 3601)
larger distances at the middle part of the frustum are visible.

Unwrapping a cone is of the points of the object. Since the maxi-
mum height of a point in the conical coordinate system is given as
h, whereas the unwrapped cone has a maximum polar radius of
s, we require some sort of scaling. The same applies to the vertex
angles: In the conical coordinate system, they span the half-open
interval of [0, 2π), whereas they are limited by an angle θ in the
plane of the unwrapped cone. From Fig. 4, we obtain the ratio

2πr

θ
=

2πs

2π
⇔ θ = 2π

r

s
. (2)

Consequently, the angle scale factor λ is given as

λ =
r

s
= sin(α). (3)

For the height scale factor µ, we observe that a point at height h
will be transformed to height s when being unwrapped. Hence,
µ is given as

µ =
s

h
=

1

cos(α)
. (4)

We thus arrive at the following transformation for vertices:

Tc(ϕi, hi) = (λϕi, µhi) (5)

This handles the unwrapping of a cone that is centered along the
y-axis of the coordinate system.

2.4 Unwrapping a cone frustum

In the case of a cone frustum, care must be taken only to apply this
transformation to vertices that are contained between the upper
and lower plane of the cone frustum. To describe a cone frustum,
we require an axis, which is again supposed to be the y-axis of
the coordinate system, and two limiting planes perpendicular to
the y-axis. We determine these limiting planes by specifying an
upper position yu and a lower position yl, with yl < yu. The two
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Figure 4: Depiction of the unwrapping process of a cone. Note
how angles and heights of the points on the cone are changed.

positions then yield a simple and criterion for the transformation
function Tf of a cone frustum:

Tf (ϕi, hi) =

{

(λϕi, µhi) hi ∈ [yl, yu]

undefined else
(6)

In practice, we let the user interactively select two points on the
surface of a digital object. From these two points, we obtain an
upper radius ru and a lower radius rl, with rl < ru because
we require the apex of the complete cone to be the origin of the
coordinate system. We then calculate the respective y-positions
required for Eq. (6):

yu =
ru

tan(α)
, yl =

rl

tan(α)
(7)

In this section, we exploited the fact that the cone axis is the y-
axis of the coordinate system.

In many cases, the user wants to center the projection of the cone
on a certain angle, be it to highlight a certain figurative element
on a vessel or to push handles to the side where the cone is split.
Following usage in cartography, we call this process selecting
a prime meridian. In mathematical terms, this is accomplished
by applying a fixed offset σ ∈ [−π, π) to the projected vertex
coordinates, i.e. θi := θi − σ, and then normalizing the vertex
angle θi to a range of [−π, π). Likewise, we have a splitting
meridian, i.e. the angle opposite to the prime meridian. This is
where the cone will be ‘split’ when being unwrapped to the plane.

2.5 Unwrapping a 3D mesh

So far, we have only discussed the unwrapping of a perfectly con-
ical object. In practice, objects are approximately conical at best
and may consist of multiple layers. In order to apply the trans-
formation described in Eq. (6), we perform the following steps
for each vertex pi = (xi, yi, zi)

T : (i) Determine coordinates
ϕi = arctan (zi/xi), hi = yi of vertex within the conical co-
ordinate system. (ii) Obtain radial distance ri =

√

x2
i + z2

i of
vertex with respect to cone axis. (iii) Set new coordinates of ver-
tex to be (x′

i, y
′
i, z

′
i) := (Tf (ϕi, hi), ri).

The second step solves the depth-sorting problem (Foley et al.,
1997, pp. 673–686): Digital objects acquired with a structured
light scanner do not have an infinitely thin surface. Instead, each
object is composed of an inner and outer shell. The transforma-
tion described in Eq. (6) is 2D, which means that points of all
layers would be projected on top of each other. By using a radial
distance, we obtain a 3D object with the correct depth order—see
Fig. 5 for an example.

The mesh consists of discrete data points in R3. Therefore, re-
moving all points whose distances are undefined results in trun-
cated triangles and rough edges along the upper and lower part

Figure 5: An unwrapped version of an approximately conical ves-
sel, UMJ Inv.-No. 4611 (Karl et al., 2009), that has been rotated
to convey the depth information. The highlighted contour is the
cross-section at the splitting meridian. This line is identical to the
profile line as drawn by archæologists (Orton et al., 1993).

of the fitted cone. Truncated triangles, in turn, appear as jagged
edges in the resulting object. As a remedy, we implemented an
algorithm employing splitting planes. The main idea is to define
a plane in Hesse normal form, and intersect it with the object. The
intersection will create points that are situated on the plane, along
the edge of a triangle. By re-triangulating the existing points, the
object may be split seamlessly along the plane.

3 NON-DEVELOPABLE SURFACES

In the following, we will handle spheres and the equirectangular
projection only. However, the methods presented in this section
can be generalized to use any cartographic projection or transfor-
mation operation.

3.1 Fitting a sphere through four points

If a vessel has spherical characteristics, unwrapping the object by
using a sphere instead of a cone yields better results. We let the
user choose four points {(xi, yi, zi)

T | i = 1 . . . 4} on the surface
of the object. By solving a determinant equation,

det

















x2 + y2 + z2 x y z 1

x2
1 + y2

1 + z2
1 x1 y1 z1 1

x2
2 + y2

2 + z2
2 x2 y2 z2 1

x2
3 + y2

3 + z2
3 x3 y3 z3 1

x2
4 + y2

4 + z2
4 x4 y4 z4 1

















= 0, (8)

we obtain a general equation for the sphere; see (Osgood and
Graustein, 1921), pp. 524–526, for a detailed derivation. Ex-
panding the determinant by minors M1i, we get

(x2 + y2 + z2)M11 − xM12 + yM13 − zM14 + M15 = 0.

The implicit equation of a sphere of radius r centered at a point
(x0, y0, z0)

T is given by (x−x0)
2+(y−y0)

2+(z−z0)
2 = r2.

Equating the terms of the last two equations yields both radius
and center of the sphere:

x0 =
1

2
· M12

M11
, y0 = −1

2
· M13

M11
, z0 =

1

2
· M14

M11

r2 = x2
0 + y2

0 + z2
0 − M15

M11

(9)

In Eq. (9), M11 is required to be nonzero. If this is not the case,
we may assume that the points are either coplanar or three of the
points are collinear. Consequently, fitting a sphere through these
points is impossible.
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Figure 6: The equirectangular projection of a unit sphere.

Figure 7: An aryballos, UMJ Inv.-No. 8738 (Karl et al., 2009), a
vessel with a spherical shape that is well-suited for the equirect-
angular projection. Note that the sphere does not envelop the
object. This signifies that the object is not perfectly spherical.

3.2 Equirectangular projection of spherical meshes

We assume that points of a perfectly spherical object are given
and that the center of the sphere is the origin of the coordinate
system. Having described the sphere on which they are situ-
ated, we are now able to perform an equirectangular projection,
thereby unwrapping the sphere to the plane. To accomplish this,
we convert the Euclidean coordinates of the points of the object
into spherical coordinates: Let a point in R3 be described by
pi = (xi, yi, zi)

T . Then the corresponding spherical coordi-
nates are given by

ri =
√

x2
i + y2

i + z2
i

ϕi = arctan

(

zi

xi

)

, θi = arcsin

(

yi

ri

) (10)

and we obtain the following projection function:

Ts (ri, ϕi, θi) = (ϕi, θi) (11)

Fig. 6 depicts the relation between spherical coordinates and the
resulting equirectangular projection. Note that a variant of the
equirectangular projections scales all points by the radius r of the
sphere. This ensures that the projection is true to scale.

3.3 Equirectangular projection of arbitrary meshes

Eq. (11) is insufficient for arbitrary meshes: Not all vertices of the
object may be situated on the outside of the same sphere. Since
we lose all depth information, different vertices would overlap—
this is essentially the same problem that occurs when unwrap-
ping arbitrary 3D meshes using cone frusta. We hence again use
the radius of the spherical coordinates in order to add depth in-
formation. This yields the following procedure for each point
pi = (xi, yi, zi)

T : (i) Fit a sphere to the object and make the
center of the sphere the new origin of the coordinate system.
(ii) Determine spherical coordinates ri, ϕi, θi for pi by using
Eq. (10). (iii) Set new coordinates of point to be (x′

i, y
′
i, z

′
i)

T :=

(a) Manual drawing

(b) Equirectangular projection

(c) Distances to the fitted sphere

Figure 8: A comparison of a manual drawing (courtesy of S. Karl)
and the equirectangular projection for the aryballos in Fig. 7.

(Ts (ϕ, θ) , ri). This transformation ensures that the outside of
the original object remains the outside of the projected object.
Hence, we again obtain a 3D projection, which may be used for
further post-processing, such as detecting curvature, inscriptions,
and other surface details. Fig. 7 depicts a vessel that is well-
suited for an equirectangular projection along with a fitted sphere.
The result of the projection operation for this object is shown by
Fig. 8.

4 RESULTS

As this work was originally motivated by the Austrian Corpus
Vasorum Antiquorum (CVA) project, we provided 25 unwrapped
vessels for CVA volume Austria 5 (Kratzmüller, 2014). All the
final images are orthographic projections and hence true to scale.
Our implementation can create high-resolution raster images of
the transformed objects by using OpenGL-based tiled rendering
techniques. Examples are shown in the previous sections. Fig. 1
depicts the usage of multiple cones for one vessel, while Fig. 10
shows the difference between unwrapping transformations using
a cone and a sphere.

Cuneiform tablets from the Ancient Orient have their details rep-
resented within geometry. These ancient hand-writings become
only visible when properly illuminated e.g. by bright sunlight.
While virtual illumination is a global operation, we used local
filters based on Multi-Scale Integral Invariants (MSII) (Mara et
al., 2010) to compute a false colour texture map that highlights
curvature-related features. An example of cuneiform inscription
and such texture maps on a clay cone are shown in Fig. 9.

Finally, we demonstrate the independence of scale and acquisi-
tion device by applying the unwrapping transformation to one of
the towers of Heidelberg Castle, namely the famous ruins known
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as the Pulverturm (powder tower). Together with the Institute of
Geography, Heidelberg University, we documented the present
conditions of this part of the castle using Terrestrial Laser Scan-
ning (Siart et al., 2012) with a Riegl VZ-400. Fig. 11 shows the
tower and its 3D model.

For the model of the Pulverturm, we extended the techniques
from Section 2.5 to unwrap cylinders, as well: A cylinder is a
degenerate cone whose upper and lower radius are equal. This
equality yields a cone angle of α = 0, but, following Section 2.4,
we can still use an angle ϕi and a height hi to uniquely describe
the position of a point pi on the surface of the cylinder. With the
notation of Section 2.3, Eq. (3) evaluates to λ = 0, while Eq. (4)
evaluates to µ = 1. Since λ = 0, the transformation function
from Eq. (5) maps all angles ϕi to 0, which is incorrect. We han-
dle this by setting Tcyl(ϕi, hi) = (rϕi, hi), where r denotes the
radius of the fitted cylinder. Scaling the angle ϕi with r ensures
that the transformation is true to scale. Using the previous equa-
tion, we then proceed as described in Sec. 2.5. The result of the
transformation is shown in Fig. 11.

5 CONCLUSIONS AND FUTURE WORK

The work shown in this article demonstrates the use of elemen-
tary geometry to unwrap high-resolution 3D meshes of highly
detailed objects of cultural heritage. The presented algorithms
were successfully tested on a large number of real-world 3D data
from archæological projects. Due to this interdisciplinary work,
we can suggest several improvements: (i) For some types of ob-
jects, it may be advantageous to use standard cartographic projec-
tions. There are many projections available offering a variety of
different results: Some preserve angles, while others preserve ar-
eas. For further discussion regarding several cartographic meth-
ods, we refer to (Grafarend and Krumm, 2006). (ii) Future ad-
ditions to our framework will be the usage of primitives such as
ellipsoids or parameterizable surfaces. (iii) To improve the color
representation, flashlights can be added to cancel shadows dur-
ing acquisition of the texture-map of the 3D model as described
by (Dellepiane et al., 2010).
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Kratzmüller, B., 2014. CVA Österreich 5: Attisch Geometrische,
Protoattische und Attisch Schwarzfigurige Vasen Band 1. Verlag
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(a) Illuminated 3D model

(b) Distances between the cone and the 3D model, unwrapped model, and color ramp.

(c) MSII filter responses, unwrapped model without virtual illumination, and grayscale ramp.

Figure 9: 3D model of a building inscription with cuneiform characters on a Tonnagel (clay cone), ca. 2200–2000 B.C., Sammlung des
Seminars für Sprachen und Kulturen des Vorderen Orients, Assyriologie, Universität Heidelberg. For information about the inscription
and its known 451 ancient duplicates see (Steible, 1991, Text Ur-Baba 7).

Figure 10: Oinochoe, UMJ Inv.-No. 4181 (Karl et al., 2009). From left to right: A scanned version of the object, an unwrapped variant
using a cone, and the result of the equirectangular projection. Unpainted parts of the vessel have been discarded.

Figure 11: Pulverturm of Heidelberg Castle. Left: Photograph of the tower and the Riegl VZ-400 Terrestrial Laser Scanner. Middle:
Orthographic, true-to-scale, isometric view of the 3D model with the realigned wall fragment. The cylinder for the unwrapping
transformation has a radius of 12m and is shown in red color. Right: Perspective front view of the unwrapped 3D model.
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