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Zusammenfasung

Die Natur wartet mit einer enormen Vielfalt an dreidimensionalen Pro-

teinstrukturen auf, von denen vermutlich jede für ihre spezifische Funk-

tion optimiert ist. Ein wichtiges Ziel in der Biologie ist es, die treiben-

den evolutionären Kräfte für die Entdeckung und Optimierung neuer Fal-

tungen von Proteinen zu entdecken. Eine langjährige Hypothese ist, dass

die Evolution von Proteinfaltungen bestimmten Randbedingungen gehorcht.

Mit dem Ziel der Aufklärung dieser äußeren Bedingungen, die die Entwick-

lung neuer Proteinfaltungen einschränken, werteten wir einige physikalische

Größen wie Flexibilität, Faltbarkeit und Festigkeit für eine Vielzahl von

Proteinen aus. Als erstes wurde die Flexibilität mit zwei unabhängigen

Methoden abgeschätzt: mit CONCOORD, welches Konformationensembles

für atomare Proteinstrukturen durch geometrische Parameter prognostiziert

sowie mittels vereinfachter elastischer Netzwerkmodelle. Das Faltungsver-

halten wurde durch die sogenannte ”contact order” gemessen. Diese kann

die Faltungsgeschwindigkeit eines Proteins durch die Messung des Abstands

zwischen nativen Kontakten innerhalb des Proteins vorhersagen. Schließlich

wurde die mechanische Festigkeit mit Langevin-Dynamik-Simulationen von

herkömmlichen Go-Typ-Modellen von Proteinen unter Anwendung von ex-

terner Kraft abgeschätzt. Diese grobkörnigen Modelle sind von der Röntgen-

kristallstruktur abgeleitet. Wir berechneten diese drei physikalische Größen

für jede bekannte Proteinstruktur, und bildeten diese auf einem phylogenomis-

chen Baum von ca 3.000 Proteinfamilien ab. Bimodale Trends wurden für

die verschiedenen physikalischen Größen beobachtet und deuten auf eine

Trendwende in der Proteinevolution vor rund ∼1,5 Milliarden Jahren hin.

Diese Wende geht mit einem plötzlichen Erscheinen vieler neuer Protein-

strukturen einher (”big bang”) und entspricht dem Erscheinen von vielzel-
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ligen Organismen, welche durch veränderte Randbedinungen die Evolution

von Proteinstrukturen drastisch verändert haben könnten. Genauer gesagt

beobachten wir vor∼1,5 Milliarden Jahren einen Anstieg der Faltbarkeit und

eine Abnahme der mechanischen Stabilität, welche vermutlich das Ergeb-

nis einer Notwendigkeit für schnell und kompakt faltende Proteine auf-

grund molekularer Kompartimentierung sind, d.h. dem Erscheinen von

Zellen. Im Gegensatz dazu beobachten wir nach ∼1,5 Milliarden Jahren

einen Rückgang von Faltbarkeit und eine Erhöhung der mechanischen Sta-

bilität, was auf die Notwendigkeit von mechanischer Stabilität hindeutet.

Dieser Trend ist wahrscheinlich auf den Aufstieg von mehrzelligen Organ-

ismen mit erhöhten mechanischen Belastungen zwischen den Zellen zurück-

zuführen. Der Verlust von Faltbarkeit nach dem ”big bang” könnte darin

begründet sein, dass Zellen begannen, Proteine wie Chaperone oder an-

dere fortschrittliche Mechanismen zu verwenden, die die Notwendigkeit zur

schnellen Faltbarkeit abgeschwächt haben könnten.

Zusammengefasst haben wir in dieser Arbeit physikalische Randbedingun-

gen analysiert, die wahrscheinlich eine Rolle in der Entwicklung von Protein-

Strukturen spielen. Unser globaler Ansatz eröffnet Wege für eine umfassen-

dere Analyse von verfügbaren genomischen und strukturellen Daten. Diese

neue Sicht auf die Evolution von Proteinstrukturen erlaubt uns, bessere

Einblicke in deren Arbeitsweise und Funktion zu bringen. Darüber hinaus

kann unser Ansatz helfen, eine netzwerkbasierte Ansicht der Evolution von

Proteinstrukturen aufzubauen, um die Klassifizierung der heute bekannten

vielfältigen Proteinstrukturen zu verbessern und neue Proteinstrukturen zu

entwerfen.



Abstract

Nature has come up with an enormous variety of protein three-dimensional

structures, each of which is thought to be optimized for its specific func-

tion. A fundamental biological endeavor is to uncover the evolutionary

driving forces for discovering and optimizing new folds. A long-standing

hypothesis is that fold evolution obeys constraints. Aiming at elucidating

those constraints, we evaluated some physical quantities for a large number

of biological molecules. Firstly, flexibility was estimated via two indepen-

dent methods: CONCOORD, which predicts conformational ensembles for

atomic protein structures using geometrical constraints, and elastic network

models, a simple coarse-grain model. Foldability was measured by Con-

tact Order, which can predict the folding rate of a protein by measuring

the distance between native contacts within the protein. Lastly, mechanical

strength was predicted with Langevin Dynamics simulations of the conven-

tional Go-type models of proteins, a coarse-grained model based on the

X-ray structure, under force. We mapped those physical quantities onto a

phylogenomic tree of protein structures resulting from the analysis of the

abundance of ∼3,000 protein families. Bimodal trends were observed for the

different physical quantities suggesting a turnover at around ∼1.5 billions

years ago. This turnover corresponds to the apparition of multicellular or-

ganism that could have drastically modified the constraints applied on the

evolution of protein structures. More specifically, before ∼1.5 Gya, we ob-

served an increase of foldability and a decrease of mechanical stability that

might be the result of a concerted need for fast folders and compact proteins

resulting from molecular compartimentalization, i.e. the rise of cells. On

the contrary, after ∼1.5 Gya, we observed a decrease of foldability and an

increase of mechanical stability that suggest a need for mechanical stability
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probably related to the rise of multicellular organisms with increased me-

chanical stresses between cells. The loss in foldability after the big bang

might be due to that cells started to make use of proteins such as chaper-

ones or other advanced mechanisms thereby removing, at least partly, the

constraint for fast folders.

Taken together, we identified physical constraints that are likely to play

a role in the evolution of protein structures. Our global approach opens

avenues for a more comprehensive analysis of genomic and structural data

available. Improving our view on protein structure evolution is likely to

bring more insights into their functioning. Additionally, it could help con-

structing a network based view of protein structures evolution improving

the classification of the known protein catalogue and aiding the design of

new protein structures.
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Chapter 1

Introduction

Today, it is generally accepted that proteins appeared on earth between

∼3.9 to ∼3.5 billion years ago. A common theory that could explain the

synthesis of the first protein is abiogenesis [1]. In short, primitive earth con-

ditions allow the spontaneous formation of organic molecules. As the result

of further transformations, organic compounds assembled into polymers. It

is still unclear, however, how protein structures formed from those primitive

polymers. Some studies suggested that those polymers first adopted some fa-

vorable configurations. Hence, first protein structures could have formed by

combination of favorable polypeptide fragments [2]. The way proteins fold

into such fragments is encoded into their amino-acid sequences. The pro-

cess of folding is complex, physical interactions between amino-acids drive

polymers to a stable conformation with biological activity. In the course

of evolution, in order to evolve from the folding of small polypeptides of

only tens of atoms to the folding of a giant molecular machinery of million

atoms, nature must have selected protein architectures. Thus, physics and

evolution influenced the protein world we can observe nowadays. In this

thesis, we would like to understand some of the physical components that

impacted protein structure evolution.

The recent accumulation of sequenced genomes is now enabling us to

search for evolutionary traces of protein structures. The genomic era makes

use of the massive amount of data becoming available combined with new

computational methodologies, in order to extract knowledge from genomic
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4 CHAPTER 1. INTRODUCTION

data [3, 4]. Furthermore, structural information gathered by experimental

techniques such as X-ray crystallography or Nuclear Magnetic Resonance

(NMR) can be mapped onto the genomic data to infer evolutionary rela-

tionships [5]. To this end, we decided to work at a specific level of protein

organization: the domain. Proteins can be divided into domains, which are

independent structural and evolutionary units. It was shown that dupli-

cations and combinations of different domains are the major evolutionary

processes in the acquisition of novel functions [6–8]. Occasionally, domains

can also evolve by random mutations, slowly changing their structures inside

the fold structure space. Taken together, those evolutionary processes have

led to the apparition of protein structure groups sharing sequence or struc-

tural similarities. Aiming at characterizing groups of domains according

to their similarities, classifications of proteins (SCOP, CATH) were devel-

oped [9, 10], allowing further investigations on structural and evolutionary

links between domains. Using structural comparison methods, maps of pro-

tein structures unveiled a continuous view of the protein universe [11–14],

or helped revealing possible paths of evolution between protein structures.

In an effort to improve the description of such phylogeny, methods based

on sequence alignments or, more recently, whole genome features are now

commonly used. These studies lead to a view of the protein universe as a

continuous space with bridges inside and within different structural families,

thus reinforcing the theory of a divergent evolution of the protein universe.

An area of study that would help uncover how the protein universe expanded

relates to the factors influencing the selection of structures. A wide range

of factors can influence selection, including the genomic position of the en-

coding genes, expression patterns, the position in biological networks (e.g.

high level of contacts), and physical constraints. These factors are thought

to influence the evolutionary rate and patterns in proteins, particularly the

formation as well as the extinction of protein domain families. Underlying
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genomic mechanisms responsible for the dynamics of protein family pop-

ulations are diverse. Duplication, mutation, or recombination of genetic

material can lead to jumps between structural spaces, divergence from a

structural space, or extinction of a structural space [15,16]. Taken together,

all those mechanisms can help to understand how protein structures evolved.

This thesis aims at identifying the influence of some physical properties on

protein structure evolution. It is divided into two parts. In the first in-

troductory part (Chapters 2-4), we describe concepts and methods used to

build our map of physical constraints onto evolutionary history.

In Chapter 2, we present concepts and methods related to the evolution of

protein structure. In short, examining protein structures in combination

with genomic features allowed to create a tree of protein architectures. This

tree unveiled the early history of proteins [17], planet oxygenation [18], and

the dynamics of domain organization in proteins [19]. In Chapter 3, we

present the fundamental physical principles responsible for the diversity of

protein shapes observed. Additionally, we present the dataset of protein

structures used for this study. This dataset covers most of the observed

folds until now. Interestingly, the number of shapes adopted by proteins is

rather limited, suggesting that natural selection played a role in the evolu-

tion of protein structures. Aiming at studying the mechanisms underlying

this selection, in Chapter 4, we describe how we evaluated physical quan-

tities for our dataset of protein structures. Physical constraints such as

folding time, flexibility, and mechanical stability reflect the involvement and

function of a protein within its biological environment. By measuring those

properties for a set of proteins, one can correlate their composition, topol-

ogy, or folding propensity with their mechanical performance, and deduce

the nature of stress to which the protein is subjected. This result allows

classifying proteins depending on their mechanical properties, and there-

fore helps to identify of protein architectures with outstanding mechanical
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properties. Those proteins could be used as templates for biomedical or

industrial purposes.

In the second part comprising the results of this thesis, we study the im-

pact of physical constraints such as folding rates, structural flexibility, or

mechanical stability onto the evolution of protein structure. In Chapter 5,

we aim at testing if folding rates changed during the evolution of protein

structures, and may have constituted an evolutive pressure. Similarly, in

Chapter 6, we try to understand how mechanical stability impacted the

protein universe. We want to test if mechanical stability was acquired late

in evolution, only when multicellular organisms, active transport, and mo-

tion developed. Understanding how the protein universe expanded under

effects of physical constraints is a first step toward an understanding of how

the protein universe was shaped under evolutive pressure. We discuss our

results from the view of a relation of the physical features with each other

(Chapter 7), with structural features of protein domains and their evolution,

in an attempt to link genomics and protein biophysics.



Part I

Physical constraints mapped onto

protein structure evolution
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Chapter 2

How have protein structures

evolved?

Despite our knowledge about nowadays proteins, little is known on their

origin and evolutionary history. Theory and experiments suggest that the

first proteins originated from short polypeptides arising under specific con-

ditions. Yet, the different steps of molecular evolution of proteins are still

unclear. Information gathered from nowadays genomes on the distribution

of protein structures could complete our knowledge on the origin and evo-

lution of protein structures, allowing to explain how proteins evolved to the

current catalog of existing proteins. In this chapter, we will review the dif-

ferent concepts and computational methods utilized to reconstruct protein

structure evolution.

2.1 Principles of molecular evolution

Evolution is a general concept describing a gradual change of a system. In

biology, the system of interest is generally a population of organisms or

molecules (DNA, RNA, proteins). In this thesis, the system considered is

a population of proteins that evolved gradually through mutations, occa-

sionally leading to the apparition or extinction of protein families. In the

following sections, we describe the principles of molecular evolution.

9



10 CHAPTER 2. HOW HAVE PROTEIN STRUCTURES EVOLVED?

2.1.1 Mutations

Mutations represent changes in the genetic material (DNA or RNA coding

for proteins). Mutations can affect single or multiple amino-acid depend-

ing on the mutation type: copying errors during cell division, exposure to

ultraviolet or ionizing radiation, chemicals or viruses. Mutations can affect

protein structures in many ways:

• Point mutations correspond to a change of one nucleotide for another.

At the protein level they can result (i) in the same amino-acid (silent

mutations), without an impact on protein structure, (ii) in a different

amino-acid that possesses similar chemical properties as the mutated

one (neutral mutation) or different properties (missense mutation), or

(iii) in a mutation that codes for a stop, which can lead to a truncated

protein (nonsense mutation).

• Insertions represent an addition of one or more extra nucleotides, oc-

casionally resulting in a truncated protein structure (frameshift muta-

tion) by a reading frame shift.

• Deletions remove one or more nucleotides. Similarly to an insertion,

deletions can lead to truncated protein structures.

The effect of the mutation on the gene product can be harmful or benefi-

cial depending on the location and nature of the change. Mutations benefi-

cial to the protein function do not seem to occur often (adaptive mutations)

constraining proteins to a certain topology [20–23]. However, gene duplica-

tion (Section 2.1.2) offer a higher chance of modifying the topology, possibly

leading to a change of protein function, as the new duplicate is likely to be

under a smaller constraint. Additionally, in a few cases duplication can lead

to the insertion of a domain within another domain [24] possibly giving rise

to a new type of fold.
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2.1.2 Gene duplication

Gene duplication results in an expansion of the genetic material [25]. It

may occur during cell meiosis when homologuous chromosomes bind to each

together. At this point, exchange of genetic material randomly takes place

and may lead to a duplication genetic information in one of the homologuous

chromosomes, consequently removing the genetic portion from the other

chromosomes. Gene duplication can also result from other events such as

retro-transposition events. Transposons are transcripted into RNA and can

copy themselves back into the DNA sequence leading to an amplification of

genetic material. Gene duplication is often considered as one of the main

drivers of evolution [26]. Consequently, evolutionary dynamics of domains

might be mostly driven by gene duplication, divergence, and elimination.

All together those mechanisms are the basis of “Birth death innovation

models” [27,28]. In this thesis, we consider a “Birth death innovation” model

where gene duplication expands the protein repertoire linearly (Section 2.2).

In the following section, we describe patterns of evolution that result from

mutation or gene duplication events.

2.1.3 Patterns of Evolution

Evolution can follow three major patterns, convergent, analoguous, or di-

vergent evolution of the system as specified below.

• Convergent: Proteins evolve simultaneously toward the same function

without a common ancestor. It has been reported as a rare event [29].

• Analoguous: Proteins evolve simultaneously toward the same function

without a common ancestor and without sequence similarity.

• Divergent: Proteins exhibit a similar function and structure, and de-

rive from a common ancestor, but evolve into a separate function and

structure.
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The divergent evolution results in homologous proteins referring to their

degree of similarity as well as their ancestry relationships. They can result

from two events, speciation when a species diverges into two separate species

resulting in orthologous sequences, or duplication when a gene is duplicated

in one species resulting in paraloguous sequences which subsequently can

evolve separately.

2.1.4 Molecular clock

A molecular clock is an evaluation of the elapsed time between events of

in an evolutionary model. Geological history is coupled to rates of molec-

ular changes in order to assess the occurrence of divergence, or extinction

events. The method originated from the observation of a linear increase in

amino-acid mutations in hemoglobin by Emile Zuckerkandl and Linus Paul-

ing [30]. Later, E. Margoliash observed similar patterns in the evolution

of Cytochrome C and formulated the term genetic equidistance. However,

the model of genetic equidistance is debated with regard to five factors that

limit its applicability [31]:

• changes in generation times (if the rate of new mutations depends at

least partly on the number of generations rather than the evolutionary

time)

• population size (genetic drift is stronger in small populations, so that

more mutations are effectively neutral) [32]

• species-specific differences (due to different metabolism, environment,

evolutionary history, or others)

• change in function of the protein studied

• change in the intensity of natural selection
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Notwithstanding these crucial concerns, a molecular clock based on changes

in protein structure abundance calibrated using fossils and crucial events in

evolution allowed to obtain a time line of protein structural evolution and

was used in this thesis (Section 2.2).

2.1.5 Common computational methods used for phylogeny

Multiple sequence alignments

A multiple sequence alignment consists of three or more biological sequences,

which are aligned according to a scoring scheme in order to find the best

match between them (Figure 2.1). Alignments are generally conducted on

Figure 2.1: Example of a multiple sequence alignment using Jalview [33].

Amino-acids are colored according to their type.

homologous sequences in order to identify conserved amino-acids that usu-

ally represent positions or regions which are key to the function, struc-

ture, or evolution of the protein of interest. Sequence alignment methods

match amino-acids according to a degree of identity related to their chem-

ical properties and the evolutionary probability of mutation between then

(substitution matrix), and uses gaps to optimize the alignment of similar or

identical amino-acids. Dynamic programming is used to find the globally

optimal alignment solution, which consists in the lowest score being calcu-

lated from the sum of all of the pairs of characters at each position in the
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alignment. Such score can be used as evolutionary distance, consequently

allowing the reconstruction of a phylogenetic tree using methods presented

in Section 2.1.6. Typically, aligned amino-acids also share the same position

in a structural alignment of homologuous structures. A multiple sequence

alignments can be based on Hidden Markov Models (HMM, see below) en-

abling the detection of more distant evolutionary relations which are relevant

for classification or sequence assignment of homologous protein.

Hidden Markov models

Hidden Markov models (HMMs) are sophisticated and powerful statisti-

cal models allowing the assignment of protein sequences to their respective

family [34]. They use family multiple sequence alignments (MSA) to build

profiles based on insertion, deletion, and transition probabilities (i.e. the

likelihood that one particular amino acid follows another particular amino

acid). HMMs are composed of several layers (Figure 2.2), each of which

represents one position in the sequence.

Figure 2.2: Hidden Markov Models are modeling each position of a multiple

sequence alignment as a state: Matched (M), Inserted (I), Deleted (D). The

states possess frequencies of amino-acids extracted from the MSA, that are

used to produce a signature of a given alignment.
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At each step, according to the frequency obtained from the MSA and

the state in the model (insertion or match) a residue type is added to the

signature sequence. The resulting sequence profile corresponds to a given

family and can be used to help the assignment of other sequences.

2.1.6 Phylogeny reconstruction

Phylogenetics describe the evolution of a population of proteins via a tree,

where branches can diverge, converge, or terminate corresponding, respec-

tively, to the apparition, the parallel evolution, or the extinction of a pro-

tein. In order to infer the evolution between proteins, a number of different

computational methods have been developed, building trees on the basis

of similarities and differences of protein sequences, structures, or genomic

distribution.

Reconstruction based on distance

One class of computational techniques for tree reconstruction considers dis-

tances between sequences as the main ingredient. The different methods

take as input a genetic distance that can be calculated from a multiple se-

quence alignment (Section 2.1.5). We shortly describe two major methods

that are based on distance matrices of an MSA.

1. The Unweighted Pair Group Method with Arithmetic Mean (UP-

GMA) regroups sequences according to distance values. The algo-

rithm associates sequences starting from the closest to the most dis-

tant. Sequences are merged into clusters at each step. Therefore,

the distance taken into consideration for the next step is an average

distance between two merged sequences. Additionally, UPGMA con-

siders a constant rate of evolution consistent with a molecular clock

(Section 2.1.4), such that the same evolutionary time is considered for

every branch of the resulting tree.
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2. The Neighbor Joining method clusters a set of taxa (e.g. species, se-

quences) on the basis of the distance between each pair. In contrast

to UPGMA, Neighbor joining uses a modified matrix, hereby agglom-

erating information of all pairs. Subsequently, the rate of evolution

is modified allowing insight into the evolutionary distance between

divergence events.

Reconstruction based on character

Tree reconstruction techniques using character as input again require a mul-

tiple sequence alignment, from which they, however, deduce characters in-

stead of distances. A character corresponds to an attribute that varies be-

tween sequences, organisms, or genomic features as used in this thesis, see

Section 2.2. Hence, characters represent the evolution of heritable varia-

tion. Each character can have two or more discrete states. For instance,

the character ”hair color” might have the states ”brown” and ”black”, or

the character ”weight” might have states on a 0-10 scale coded from the

distribution of measured weights. When a character exhibits more than

two discrete states, it can be treated as unordered or ordered. Unordered

characters have an equal ”cost” (in terms of number of the ”evolutionary

events”) to change from any one state to any other; complementary, they do

not require passing through intermediate states. On the contrary, ordered

characters follow a sequence that must occur through specific intermediates.

Thus, the cost of evolutionary variation is to be considered between different

pairs of states.

Maximum parsimony

Trees generated by maximum parsimony [35] are optimized toward a mini-

mum of the total number of changes. More precisely, the most parsimonious

tree is the preferred hypothesis of relationships among taxa, sequences, or
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protein architectures. A simple algorithm determines how many evolution-

ary transitions are required to explain the distribution of each character. As

the result of the high number of evolutionary transitions, plenty of possi-

ble phylogenetic trees can be produced from the same dataset. Therefore,

most algorithms attempt to increase the tree score by applying perturba-

tions onto it until convergence of the score is achieved. Maximum parsimony

was used for the construction of protein structure trees within this thesis

(Section 2.2), as we assume a linear rate of evolution between lineages and

characters.

Maximum likelihood

The maximum likelihood method, similar to maximum parsimony, requires

a substitution model to assess the probability of particular mutations. In

short, the number of mutations possible between node is constrained to ob-

tain the best tree. In contrast to maximum parsimony, maximum likelihood

permits varying rates of evolution between lineages and characters. As a re-

sult, maximum likelihood is well suited for the analysis of distantly related

sequences, for which the total number of possible tree topologies and the

branch length is high. In order to reduce the search space for the optimal

tree, algorithms such as the pruning algorithm are used.

Bayesian inference

Bayesian inference assumes a predefined probability distribution for possi-

ble trees. This distribution can consider a more sophisticated estimate that

takes into account a stochastic process for divergence events. Similar to

maximum likelihood, Bayesian inference decreases the changes required be-

tween nodes and leaves of a given tree.
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2.2 Phylogenomic tree of protein families

Comparative genomics approaches to study similarities of organisms have

been developed recently. They rely on genomic data as fossils to reconstruct

trees over a large evolutionary period. Genomic structural information was

first used by Gerstein et al [36, 37], at a time when only one species from

each of the three superkingdoms was sequenced. Phylogenomic trees based

on structural information, which is more conserved than sequence informa-

tion, allow to track the evolutionary link between distant proteins [38, 39].

Protein domains are central units of protein organization and evolution, as

the duplication and shuffling of domains are fundamental for diversity [6,7].

This section describes the work flow used to generate a phylogenomic tree

of protein fold architecture [5].

The character-based reconstruction of protein structure tree uses data

from more than 1000 genomes (Figure 2.3), for which the presence and

abundance of protein structures was obtain as follows. Three-dimensional

structures of protein domains were matched via HMMs (Section 2.1.5, Fig-

ure 2.3) to more than 60 % of the open reading frames in those complete

genome sequences. This census of protein architectures results in abundance

values for each superfamily or family (for SCOP classifications of superfam-

ilies or families, see Section 3.6.1). Abundance values together with the

presence of a superfamily or family in each genome constitute the basis of

the method. Abundance values scale from zero to thousands. Matrices were

constructed from the abundance values (G) of domains at different levels of

the SCOP classification.

The abundance is coded as a character (Section 2.1.6) as follows: each

level of abundance corresponds to one states (standardized between 0 to

20 scale), and state are linearly ordered. Thus, the model assumes a con-

stant successive addition of homologous genes that leads to an increase of
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Figure 2.3: Workflow describing the different steps of the phylogenomic

reconstruction of proteome trees and protein structure trees.
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the given population. Therefore, families that appeared earlier in evolution

are prominent in many genomes. In this model, duplication is considered

to occur more frequently than gene loss leading to an increase of the gene

family copy number. Consequently, ancient structures are more abundant

and more widely present than younger ones. This model follow principles

such as preferential attachement [40] where large domain families are more

prone to expand compared to small domain families.

Phylogenetic trees of protein architectures were reconstructed from the abun-

dance of protein structures in genomes as characters using maximum par-

simony (Section 2.1.6). The data matrix can be used to construct either

proteome trees or domain structures trees. Using a molecular clock to map

events in protein structure evolution to molecular fossils, a domain struc-

ture tree (Figure 2.4) describing the evolution of protein families over ∼3.8

billions years was obtained.

Relative evolutionary ages are mapped according to a node distance (nd).

A node distance is calculated by counting internal nodes along a lineage

from the root to a terminal node (a leaf) of the tree. Hence, nd measures

evolutionary speciation between protein structures with the most ancestral

taxon having 0 as nd, and the most recent one 1.
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Figure 2.4: Phylogenomic tree of protein architectures at the family level of

SCOP organization (Section 3.6.1) [41].
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Chapter 3

What are the determinants of

protein structure?

Encoded by the amino-acid sequence, proteins can adopt a wide variety of

structures. In this chapter, we will discuss the determinants of the shape

of protein structures. More precisely, we are interested in the underlying

physical mechanisms that influence shapes adopted by proteins. We note

that some proteins such as intrinsically disordered protein transiently adopt

various configurations to fulfill their functions. Hence, they do not possess

any defined shape. This implies that structure is not always required for a

protein to fulfill its role. In this thesis, we focus on ordered, well structured

globular proteins.

3.1 The geometry and size of proteins

Proteins are polymers formed from a mix of 20 different monomers called

amino-acids. An important factor that distinguishes proteins from one an-

other is their specific three-dimensional structure, which is determined only

by the sequence of the monomers themselves. These monomers or amino-

acids assemble via the formation of a peptide bond leading to a polypeptide.

Amino-acids in proteins are referred to as residues. Their side chains are re-

sponsible for the structure of the protein as they represent the only variation,

while the other part, referred to as backbone, is shared by all aminoacids.

This backbone possesses a certain flexibility conferred by the rotation of

23
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two flanking bonds of a peptide link. Protein structures can be classified in

different categories according to their general shape (Figure 3.1):

Figure 3.1: Proteins feature a high structural and functional variety. Three

main categories are, from top to bottom; a) fibrous, b) globular, and c)

membrane proteins.

• Fibrous proteins (Figure 3.1a) are long (generally less than 1000 residues)

filamentous or fibrous proteins in the shape of a rod or a wire. They

are found in two forms, namely either a helix composed of repetitive

motifs, or a string of domains with higher sequence variations. They

usually fulfill structural or storage functions. Examples are keratins,

collagens, and elastins.

• Globular proteins (Figure 3.1b) are compact spherical-shaped proteins.

Their size ranges from a hundred to several hundred residues. They

can act as enzymes, messengers, transporters, regulatory, and struc-

tural proteins. As a consequence of the variety of functions that glob-

ular proteins can handle, a variety of structures is adopted. Hence,

globular proteins are naturally relevant for studying structure func-

tion space relationships.
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• Membrane proteins (Figure 3.1c) are a class of proteins that interact

with a membrane. Their shape and size is closely related to those

of globular proteins, but they predominantly adopt bundle or barrel

shapes when present inside a membrane. Additionally, they form large

protein complexes often featuring a high structural flexibility. Due to

their preference of a hydrophobic environment instead of water as a

solvent, like other globular proteins, membrane proteins pose a chal-

lenge for structure determination.

3.2 Hydrophobic core and secondary structure

The structure of a protein is generally acquired during a physical process

called folding, during which the protein hydrophobic residues turn towards

the inside of the structure, whereas hydrophilic residues turn outside towards

the aqueous solvent or membrane environment. The formation of weak, non-

covalent interactions occurs inside the protein leading to a hydrophobic core.

Other non-covalent interactions within the core and at the protein surface

are hydrogen bonds and salt bridges between polar atoms of sidechains and

backbone. Backbone hydrogen bonds form regular patterns of mainly two

types [42]. When the carbonyl group of residue i is connected to the amide

group of residue i+4 repetitively, an α-helix is formed. When a ladder of

hydrogen bonds is formed between two segments of the backbone chain, a β-

sheet is formed [43]. Physical properties of proteins differ due to the relative

composition of the two main secondary structures. For instance, α-helices

are known to confer a higher flexibility, while β-sheet can increase stability.

Consequently, the composition of protein secondary structure is relevant

for the classification of proteins (Section 3.6). In the following section, we

present how proteins can be grouped according to their secondary structure.
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3.3 Structural classes

From the two secondary structure combinations, proteins fall into three

major structural classes: (1) all-α, (2) α combined with β, and (3) all-β

proteins [44].

• All-α proteins: The high content of helices makes this class rich in

inter-atomic contacts. They are on average of a relatively small size

due to the fact that α-helices can form in smaller segment.

• All-β proteins: The arrangement of β-strands in an anti-parallel or

parallel fashion gives a relatively high rigidity. The variation in the

number of β-strands and β-sheets and their orientation is the source

of the diversity of this class.

• α-β proteins: The α-β class can be split into two categories with either

clearly separated α and β (α+β) or with mixed α and β (α/β). A

well-studied example of the latter category is the TIM-barrel, an α/β

topology that several unrelated proteins possess.

3.4 Protein topology

Figure 3.2: Structural motifs from left to right : β-α-β units, β-meander,

α-α unit, β-barrel, Greek key.

A protein topology refers to the tree-dimensional path of the amino-acid

chain leading to the network of interactions responsible for the general shape

of a given fold. Some typical structural topologies (Figure 3.2) are found
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with high frequency among the protein structures known to date, such as

the β-α-β unit, β-meander, α-α unit, β-barrel, and Greek key.

Similar structural motifs do not necessarily involve a similarity in the

amino-acid sequence of the protein chain. On the contrary, they represent

favorable physical conformations that are found for several unrelated se-

quences. They constitute repeating units that are basis of numerous protein

structures. The fact that structural topologies are more conserved than se-

quences rationalizes the phylogenetic approach based on structure instead

of sequence (Section 2.2). The next section presents protein domains as a

type of repeating units of structural topologies central for protein evolution

and organization.

3.5 The protein domain: A fundamental unit of organiza-

tion

As seen above, proteins possess different levels of organization. The pri-

mary structure corresponds to the sequence of amino-acids, which in turn

fold into a secondary structure. Secondary structures pack into a topology

corresponding to a tertiary structure. If a protein molecule is formed from

more than one polypeptide chain, the complete structure is designated as

the quaternary structure.

A level of organization embedded into the tertiary structure and particularly

relevant for evolutionary analyses is the domain. Domains are independent

evolutionary and folding units that can be detected using conformation,

function, or sequence similarity. Studies using these similarity measures re-

vealed that the same domain can be present in different proteins [45–47].

Thus, domains act as modules that can be combined to form new proteins.

Their occurrence in various proteins is due to genomic mechanisms such as

gene duplication, resulting in an independent evolution of one copy toward
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a new function. Thus, successive duplications lead to an increase of domain

populations resulting in protein families, with each family member having a

sequence and a three-dimensional structure that resemble those of the other

family members. Taken together, domains are a unit of organization rele-

vant for the classification of proteins as they represent unique modular units

that can be identified and classified. Domains also were used as structural

units throughout all analyses presented in this thesis. In the next section,

we review two different databases of protein structure classification, both of

which are based on domains.

3.6 Classifications of proteins

Structural classifications of proteins group domains according to their topolo-

gies, structures, and sequences similarities. Several classification schemes

have been developed. Here, we present two main classification databases

that share a hierarchical organization but differ with respect to the defi-

nition of domains and the methods used to group protein structures (e.g

manual, semi-automatic, or fully-automatic methods).

3.6.1 SCOP

The structural classification of proteins (SCOP) [48] defines four hierarchical

levels (Figure 3.3) :

• Class (C): types of folds according to secondary structure (Section 3.2)

• Fold (FO): according to the general arrangement of secondary struc-

ture

• Superfamily (SF): based on structure similarities

• Family (F): based on sequence similarities



3.6. CLASSIFICATIONS OF PROTEINS 29

SCOP is essentially manually annotated. Hence, similarities are partly de-

tected on the basis of visual inspection which may result in a bias of the

assignment. Recent studies reported that SCOP already covers the major-

Figure 3.3: Graphical representation of the hierarchical organization of

SCOP.

ity of fold space [49]. However, SCOP is based on structures that can be

crystallized or have been determined by NMR, and is only poorly repre-

senting (Section 4.1.2) membrane proteins (Section 3.1) or does not include

intrinsically disordered proteins.

3.6.2 CATH

Class Architecture Topology Homology [10] (CATH) uses different layers to

classify protein structures.

• Class: specified by the secondary-structure content of the domain
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• Architecture: high structural similarity, but no evidence of homology.

Equivalent to a fold in SCOP

• Topology: sharing particular structural features.

• Homology: presence of an evolutionary relationship. Equivalent to the

superfamily level of SCOP.

Additionally, the way domains are selected differs from the SCOP database,

as CATH mostly utilizes automatic methods based on sequence similarities

for dissecting proteins into domains, for instance at the homologous level of

classification. Further, at the topology level, structural similarity is used.

Only the architecture level is manually assigned based on visual inspection.

While most of the analysis of this thesis is based on SCOP (Section 3.6.1,

results have been validated by comparisons to CATH.)



Chapter 4

How to evaluate physical properties

of protein structures?

Physical properties of protein are numerous. For this thesis, we selected

physical properties relevant for the formation and function of proteins and

likely to play a role in their evolution. The set of protein molecules in-

vestigated here was obtained from the SCOP (Structural Classification Of

Protein, Section 3.6.1) database [48]. This classification scheme groups pro-

tein domains into super-families and families depending on their general

composition and their structural fold. For this set, we measured physical

values that potentially played the role of a constraints during the evolu-

tion of protein structures. More precisely, we focused on three different

but inter-dependant measures, namely protein flexibility, foldability, and

mechanical stability, each of which is defined in further detail in the next

sections. The generated data required to be stored in a data model that

allowed exploration of different variables. Analysis of this data using com-

parative, statistical, and phylogenetic methods allowed insight into changes

of protein fold apparition during evolution.

4.1 Flexibility

Flexibility corresponds to the capacity of a protein to deform. Flexibility is

of great importance to a protein’s biological function. Flexibility analysis

also enables the possibility to assess protein stability [50], which in turn
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again is a requisite for a protein to play its biological role. Evaluation

of the fluctuation of the atoms around their mean position in the protein

is commonly used to measure the global flexibility of a protein. Atomic

fluctuations can be evaluated using experimental methods such as X-ray

crystallography (via the Debye-Waller factor) or specific Nuclear Magnetic

Resonance techniques (Section 4.1.2). Within this project, we used two

alternative computational methods to assess protein flexibility, the Gaussian

Network model (GNM), and CONCOORD, a method based on geometrical

constraints.

4.1.1 Computational methods

Computational methods allow to predict the favorable motions of a proteins,

using energetic or geometric descriptions of the protein structural space.

From the obtained set of motions or structures, i.e. the conformational

ensemble, a Root Mean Square Deviation (RMSD) can be obtained as a

measure for the overall protein flexibility. The RMSD is the measure of the

average distance between atoms of superimposed proteins. In the study of

globular protein conformations, one customarily measures the similarity in

three-dimensional structure by the RMSD of the C-alpha atomic coordinates

after optimal rigid body superposition. When a dynamical system fluctuates

around some well-defined average position, the RMSD can be calculated over

time.

Gaussian Network model

A Gaussian Network Model (GNM) [51] is created from a protein struc-

ture by connecting its neighboring residues by springs with a uniform force

constant. Residues are represented by a single particle at the position of

the C-alpha atom that represents the magnitude of the residue’s positional

fluctuations. The correlation matrix of these fluctuations is given by the
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inverse of a contact matrix in which each atom pair within a given cut off

has the value 1 and all other atom pairs the value 0. Harmonic modes of

motion are obtained from the correlation matrix, which in turn give the

overall flexibility in terms of an RMSD.

CONCOORD

CONCOORD [52] is a Monte-Carlo method which generates a set of confor-

mations. Those conformations are produced following distance constraints

between all atoms. A conformation is created starting from random positions

for all atoms. Positions are subsequently corrected to obey the geometric

constraints such as hydrogen bonds or local contacts. This method is faster

than a Molecular Dynamics (MD) simulation but is able to reproduce the

atomic fluctuations very well.

4.1.2 Experimental techniques

The two major techniques to determine the structure of a protein at atomic

detail are Nuclear Magnetic Resonance (NMR) and X-Ray crystallography.

They allow limited insight into the flexibility of the protein, and also are the

starting points for the computational methods described in Section 4.1.

The NMR spectrum provides information about the chemical environ-

ment of the nuclei. Applying an electromagnetic field to a certain atom give

rise to a resonance phenomenon caused by the nuclear spin. This resonance

occurs upon absorption of energy at a precise frequency which depends on

the electromagnetic environment of the atom. Hence, measuring spin fre-

quencies of macromolecules in solution enables the possibility to determine

relative atomic positions in a given molecule, allowing the reconstruction of

the three-dimensional structure of proteins.

Novels developements such as dipolar residual couplings also allow insights

into protein dynamics at shorter to larger time scales [53]. X-Ray crystal-
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lography, in contrast, requires a protein in crystalline form, as the periodic

arrangement of the molecules in a crystal is required for a valuable diffrac-

tion pattern of the X-ray light. The diffraction pattern can be used to infer

the three-dimensional arrangement of the diffracting electrons, and there-

fore of the atoms of the molecule. Flexibility is only partly, within the low

temperature crystal, embedded into the B-factors of the atoms.

Resulting three-dimensional structures from NMR and X-Ray crystallogra-

phy are stored in databases such as the Protein Data Bank (PDB) [54] and

further classified into domains in SCOP and CATH (Section 3.6).

Figure 4.1: Correlation of the flexibility predicted by theoretical methods

(CONCOORD and GNM) with an experimental method (NMR). The sam-

ple set includes 600 protein domains. The RMSD (Root Mean Square devia-

tion) within the Cα-atoms of the computed or measured structural ensemble

is given in nm. The green line is a linear fit to the data.
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We could show that the flexibility predicted by CONCOORD and GNM

correlates well with those measured in NMR ensembles (Figure 4.1). The

correlation coefficients are 0.63 and 0.66, respectively. Correlation between

GNM and NMR ensemble was previously observed by Bahar et al [55].

4.2 Foldability

4.2.1 Computational methods

The folding of a protein is a physical process by which a polypeptide adopts

a characteristic three-dimensional structure, which is functional. Every

protein is trans-coded from an mRNA sequence into a linear amino-acid

chain. This polypeptide does not possess a three-dimensional structure at

this time. However, each amino-acid of the chain possesses some essen-

tial chemical characteristics. This could be hydrophobicity, hydrophility,

or electric charge. They interact with each other, leading to a well-defined

three-dimensional structure, the folded protein or so called native state. The

three-dimensional structure is determined by the amino-acid sequence. In

the present work, foldability is measured by the folding time, the time from

the unfolded to folded state, assuming that efficient folding without the

risk of misfolding requires, among others, a short folding time, i.e. a short

life time of the unstable and aggregation-prone unfolded state. The folding

time was assessed by a method called Contact Order. Contact Order [56] is

a value used in order to estimate the folding time of a protein. It is measured

from the average number of amino-acids between all contact points (com-

monly defined with a cutoff values of around 7 Å between Cα-atoms) within

a protein. It correlates with the number of long-range contacts, i.e. contacts

distant in sequence but close in space. A high value indicates many long-

distance contacts, which will result in a longer folding time. Contact order

was found to be in good correlation with folding times of two state folders



36 CHAPTER 4. PHYSICAL PROPERTIES OF PROTEINS

but not multi-state proteins. Subsequent studies with extended comparison

to experiments led to the definition of the Size-Modified Contact Order [57]

(SMCO),

SMCO = (
1

L

N∑
∆Lij) · L0.7, (4.1)

where N is the number of contacts, L is the total number of aminoacids,

and ∆Lij is the number of aminoacids along the chain between residues i

and j forming a native contact. By correcting for protein size L, the SMCO

showed an improved correlation with experimental folding times, with a

correlation coefficient of 0.74 [57]

4.2.2 Experimental techniques

Various experimental techniques which measure quantities varying during

the folding process have been developed to assess folding times and mecha-

nisms, including fluorescence or absorption spectroscopy. One conventional

method is circular dichroism, which depending on the secondary structure

measures the absorbtion of circular polarized light. Quantifying the absorp-

tion of light allows to evaluate the degree of nativeness of the protein. The

degree of nativeness of a given protein is artificially modified under the ac-

tion of a chemical or physical denaturant. Most commonly, the protein is

denatured by heat, light or solvent (such as denaturant), and then allowed

to relax into the folded state upon removal of the denaturing conditions.

Variation of the denaturant concentration allows to monitor the folding or

unfolding of a protein.

Folding experiments are typically represented by a Chevron plot (Fig-

ure 4.2), which allows insights into the number of states involved, such as

two-state (unfolded and folded) or three-state folding (comprising also an

intermediate state). A denaturation midpoint corresponds to the tempera-

ture (Tm) or denaturant concentration (Cm) at which half of the protein is

folded and the other half is unfolded.
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Figure 4.2: Chevron plot obtained from relaxation rates as a function of the

denaturant concentration. A linear change in rate as shown in the schematic

example here indicates two-state folding.
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4.3 Mechanical stability

4.3.1 Computational methods

Go-model

Mechanical strength is experimentally assessed by measuring rupture forces.

A simple and computationally efficient method to predict rupture forces

from simulations is the Go-model [58], a coarse-grained model based on

the experimental X-ray structure. The Go-model treats each amino acid

by a single bead connected to its neighbors by springs. Contacts close in

space in the X-ray structure are assigned favorable potentials to stabilize the

protein in its native state. Here, we will use this model to predict the force

to unfold each SCOP domain, and use forces as a measure for mechanical

strength (Chapter 5).

The peak of the force curve (Figure 4.3) is used as a reference for the

mechanical strength of a given domain. The mechanical strength values

obtained by this method are in good agreement with experimental data [59].

The comparison of experimental force peaks with simulations is shown in

Figure 4.4. The dataset is composed of 13 domains and the correlation

coefficient is 0.90. Thus, our computational results agree very well with

experimental measurements of mechanical strength.

We used a specific implementation of the Go-model called Self-Organized

Polymer (SOP) [60], which describes a protein in terms of beads on the posi-

tion of Cα-atoms representing amino-acids. SOP uses the Langevin equation

to describe the dynamics of the i-th Cα-atom:

ξ
dRi

dt
=

∫
(Ri) +Gi(t) (4.2)

where ξ is the friction coefficient, Gi(t) is the Gaussian distributed random

force with zero mean and delta function correlations (white noise). The ran-

dom force mimics hits of protein residues with the solvent (water) molecules.
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Figure 4.3: Force curves obtained for unfolding the coronavirus main pro-

teinase for different pulling velocities obtained from pulling simulations using

the Go-model. Mechanical stability is measured by the maximal force, Fmax,

here approximately 300 pN.

Figure 4.4: Correlation be-

tween the experimental and

theoretical Fmax. The solid

line is a linear fit, the grey

shade a 95% confidence inter-

val.
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∫
(Ri) = −∂V/∂Ri is the molecular force exerted on the i-th particle due

to the potential energy V . The force field (potential energy function) of a

protein conformation is given by:

V = VFENE + V ATT
NB + V REP

NB = (4.3)

−
N−1∑
i=1

k

2
R2

0 log

(
1−
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+
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εl

(
σ

rij

)6

(1−4ij) (4.6)

The first term in the equation describes the backbone chain connectivity us-

ing the finite extensible nonlinear elastic (FENE) potential with a tolerance

in the change of a covalent bond of R0 = 2 Å and a force constant of k=1.4

N/m. The distance between any two interacting residues i and i+1 is ri,i+1,

whereas r0i,i+1 is the value in the native (PDB) structure. The second term

(4.5) in the equation represents forces such as hydrophilic and hydrophobic

interactions (only between non-covalently linked residues i and j, i.e. |i -

j|> 2) via attractive and repulsive forces defined by a cutoff distance Rc in

the native state, i.e., rij < RC, then 4ij=1 (for native contacts), and zero

otherwise (for non-native contacts). The strength of the non-bonded inter-

actions is given by εh term. Additional constraints are imposed on the bond

angles formed by residues i, i+1, and i+2 by including a repulsive potential

with parameters εl=1 kcal/mol and σ = 3.8 Å, which quantify, respectively,

the strength and the range of the repulsion. To ensure self-avoidance of the

protein chain between beads of non-native contacts (rij > RC), a repulsive

term (last term in Eq.4.6) is introduced, with σ = 3.8 Å. To induce mechan-

ical unfolding, we pulled each protein structure from the N to C terminal

residue with a constant velocity of 2,776*10−4 nm/ns and a spring constant
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of 700 pN/nm. The simulation was stopped, when the N- to C-distance

represented 90 % of the maximum distance between the N and C termini

(calculated by the number of residues times 1.4 Å). We defined the topolo-

gies according to the SCOP database (Section 3.6.1). The timescale of the

simulations was defined according to the following relation

τL = (
ma2

εh
)1/2, (4.7)

considering inertia in the Langevin paradigm with a unit-less mass of m =

3 ∗ 10−22, a distance of a = 5 ∗ 10−8 and εh = 1.4 kcal/mol−1. When no

inertia are considered, the timescale becomes

τH =
ζa2

kBTs
=

6Πηa3

kBTs
= ατL

εh
kBTs

(4.8)

and corresponds then to a Langevin overdamped limit or Brownian dynamics

simulation. The real time can then be obtained from 4T ∗ τH , which is the

relation used in this thesis.

4.3.2 Experimental techniques

Atomic force microscopy (AFM) and optical tweezer experiments have en-

abled the induction and monitoring of large conformational changes in bio-

molecules, including protein denaturation and refolding under mechanical

force. In such a study, a pulling force is applied on given points of the pro-

tein of interest - often the termini. Optical tweezers use a focused laser beam

to move a nano-element. The electric gradient generated by the laser beam

attracts the nano-element to the center of the beam, allowing a controlled

displacement of the nano-element. The nano-element is attached to one side

of the protein while the other side is fixed (Figure 4.5a). In an AFM, the

laser beam is replaced by a nano-stick attached to the protein called can-

tilever (Figure 4.5b). Both methods allow to evaluate the force needed to

unfold a protein, but lack a description at the atomic level. Computational
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methods can help to complement these experiments by suggesting pathways

of the protein. Also, in this thesis, they allow predicting unfolding forces

of ∼100.000 protein domains, which is currently unfeasible by experimental

means.
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Figure 4.5: Schematic representation of experimental techniques. a) Optical

tweezer experiments with the protein attached to a surface and a bead, which

is optically trapped in a laser beam. b) Atomic Force Microscopy with the

protein attached with a sharp tip and a surface.
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Part II

Physical constraints in protein

structure evolution
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Chapter 5

Evolutionary optimization of

protein folding

5.1 Introduction

The catalog of naturally occurring protein structures [61] exhibits a large

disparity of folding times (from microseconds [62], to hours [63]). This dis-

parity is the result of roughly ∼3.8 billion years of evolution during which

new protein structures were created and optimized. The evolutionary pro-

cesses driving the discovery and optimization of protein topologies is com-

plex and remains to be fully understood. Nature probably uncovers new

topologies in order to fulfill new functions, and optimizes existing topologies

to increase their performance. Various physical and chemical requirements,

from foldability to structural stability, are likely to be additional players

shaping protein structure evolution. One indicator for foldability, i.e. the

ease of taking up the native protein fold, is a short folding time. Here we

propose that foldability is a constraint that crucially contributes to evolu-

tionary history. Optimization of foldability during evolution could explain

the existence of a folding funnel [64, 65], into which a defined set of folding

pathways lead to the native state, as postulated early on by Levinthal [66].

While the biological relevance of efficient folding still needs to be explored,

an obvious advantage is the increase of protein availability to the cell. For

instance, folding could decrease the time between an external stimulus and
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the organismal response. However, this increase of accessibility is probably

limited by other factors such as protein synthesis, proline isomerization and

disulfide formation. A probably more important point to support folding

speed as an evolutionary constraint is that fast folding avoids proteins ag-

gregation in the cell [67]. Aggregation avoidance could lead to a selection

of topologically simple structures that fold rapidly or exclusion of a large

number of geometrically feasible structures that compromise accessiblity.

This could have reduced the catalog of naturally occurring folds [60,68,69].

The balance between the need for new structural designs and functions in

evolution and the physical requirements imposing pressure on folding has

remained elusive. The increasing number of organisms with completely se-

quenced genomes and experimentally acquired models of protein structures,

combined with new techniques to study the folding behavior of proteins

now open new avenues of inquiry. A common approach for such studies

has been the use of molecular simulations such as lattice or coarse-grained

techniques, which are efficient enough to scan sequence space. Simulations

generally involve an algorithm that mimics the evolutionary accumulation of

mutations. This allows to monitor how proteins are selected and evolve to-

wards specific features that are optimized, including those linked to folding,

structure and function [70–72]. In contrast, we have uncovered phylogenetic

signal in the genomic abundance of protein sequences that match known

protein structures. Specifically, phylogenomic trees that describe the his-

tory of the protein world are built from a genomic census of known protein

domains defined by the Structural Classification of Proteins (SCOP) [48]

and used to build timelines of domain appearance [5,73] that obey a molec-

ular clock [18]. This information revealed for example the early history of

proteins [17], planet oxygenation [18], and the dynamics of domain organi-

zation in proteins [19]. All-atom simulations of denatured proteins folding

into their native state [74, 75] are computationally too demanding to sys-
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tematically evaluate the folding times of the available structural models of

protein domains, currently ∼100,000 in total. A decade ago, Baker and

co-workers [56] introduced the concept of contact order, a measure of the

non-locality of intermolecular contacts in proteins. Contact order was found

to be in good correlation with folding times of two state folders but not

multistate proteins. Subsequent studies with extended comparison to ex-

periments led to the definition of the Size-Modified Contact Order (SMCO),

SMCO = (
1

L

N∑
∆Lij) · L0.7, (5.1)

where N is the number of contacts, L is the total number of aminoacids,

and ∆Lij is the number of aminoacids along the chain between residues i

and j forming a native contact. By correcting for protein size L, the SMCO

showed an improved correlation with experimental folding times, with a

correlation coefficient of 0.74 [57].

Here, we reveal evolutionary patterns of foldability by mapping the SMCO

and thus the folding time onto timelines derived from phylogenomic trees of

domain structures (Figure 5.1).

Figure 5.1: Protein

topologies that favor

short range inter-

aminoacid contacts

might be the result of

an evolutionary opti-

mization of foldability

and thus would have

likely appeared late in

evolution.
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Remarkably, we find there is selection pressure to improve overall fold-

ability, i.e reduce folding times, during protein history. Interestingly, differ-

ent topologies such as all-β and all-α folds show distinct patterns, suggesting

folding impacts the evolution of some classes of protein structures more than

others.

5.2 Results

5.2.1 Change in foldability during evolution

To trace protein folding in evolution, we determined the SMCO of protein

domain structures at the Family (F) level of structural organization. Fig-

ure 5.2a shows the folding rate of each F, as measured by its average SMCO,

as a function of evolutionary time. Using polynomial regression, we observed

a significant decrease (p-value = 9.5e-15) in SMCO in proteins appearing be-

tween ∼3.8 and ∼1.5 billion years ago (Gya). Trends were maintained when

excluding domains from the analysis solved in multi-domain proteins, and

also when studying domain evolution at more or less conserved levels of

structural abstraction of the SCOP hierarchy. Namely, we find a signif-

icant decrease of SMCO at the level of Superfamily (SF), p-value = 2.6e-

15), and at the level of domains with less than 95 % sequence identity

(p-value<= 2.0e-16). Similarly, consistent results were obtained at the F

level using linear regression (p-value = 1.0e-06). Remarkably, even within a

smaller data set of only 87 proteins for which folding times have been mea-

sured [76], we find that the experimental folding times exhibit a tendency

to decrease early in protein evolution (Figure 5.4). As an additional way of

validation, we repeated the analysis for ∼3 million single domain sequences

with predicted SMCO [77], and obtained a decrease again of SMCO up to

∼1.5 Gya (p-value<= 2.0e-16). Thus, in this initial evolutionary period,

proteins tended to fold faster on average. As suggested by the decrease
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Figure 5.2: Change in length

and foldability during evo-

lution : a) Size Modified

Contact Order (SMCO) ver-

sus approximative F domain

age in billion of years (Gya).

Each data point represents

an SMCO average of domain

belonging to the same F.

Triangles show SMCO aver-

ages for domains belonging

to the same F and experi-

mentally known to be ultra-

fast folders [78]. b) Aver-

age amino-acid chain length

for domains belonging to the

same F versus F domain age

in Gya. The solid line shows

a LOESS polynomial regres-

sion [79], and the grey shade

the 95% confidence interval.
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in SMCO, during evolution, domains diminish long-range and favor short-

range interactions, thereby becoming more strongly connected locally. This

picture was further corroborated by an analogous analysis of evolutionary

trend in tightness, measured by shortest paths in the network of protein

contacts [80]. Tightness, and thus the lengths of paths in the interaction

network, decreased in evolution until ∼1.5 Gya, followed by an increase,

just like the SMCO (Figure 5.3). Our results support the hypothesis that

folding speed acts as an evolutionary constraint in protein structural evolu-

tion. In contrast, we observed an increase in SMCO between ∼1.5 Gya and

Figure 5.3: Tigthness ver-

sus approximate domain age

(Gya). A polynomial regres-

sion is shown as black solid

line. The gray area indicates

the 95% confidence interval.

the present (Figure 5.2a). Thus, the appearance of many new structures by

domain rearrangement ∼1.5 Gya, also refered to as the “big bang” [19] of

the protein world, affected the evolutionary optimization of protein folding.

While a linear regression supports the SMCO increase (p-value = 2e-16), it

was not as observed at the SF level or at the level of domains, and for

the analysis of experimentally determined rates (Figure 5.4). Given the ob-

served overall evolutionary speed-up of protein folding, we would expect a

late evolutionary appearance of so-called downhill proteins, which feature

ultra-short folding times on the microsecond scale. We annotated 11 down-

hill folders [78] by their Fs, namely a.35.1.2, a.4.1.1, a.8.1.2, b.72.1.1, and
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Figure 5.4: Evolutionary

changes for an experimental

dataset. a) Experimental

folding rates versus approxi-

mate domain age in billion of

years ago (Gya). b) Domain

size of the same set of 87

proteins versus approximate

domain age. A polynomial

regression is shown as black

line, and the 95 % confidence

interval as grey shade.
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d.100.1.1, and show their average SMCO per family as black triangles in the

timeline of Figure 5.2a. All of them, unsurprisingly, have an SMCO < 2, and

thus fold significantly faster on average than other structures. We find 7% of

families to have a lower SMCO (SMCO < 1.5) than the experimentally iden-

tified downhill folders. We predict these Fs will fold even faster than the

known downhill folders, rendering them interesting candidates for folding

assays. The five Fs containing the fast folders have all appeared no earlier

than ∼2.5 Gya, suggesting that they are a result of lengthy evolutionary

optimization. According to our predictions, the first fast-folding proteins

appeared already ∼3.4 Gya. However, their frequency and optimization of

folding speed continue to increase until ∼1.5 Gya.

5.2.2 Protein length and evolution of foldability

The length of the amino acid chain has been reported to influence the folding

kinetics of a protein, with longer chains folding more slowly [57, 78, 81, 82].

We therefore ask if the decrease in SMCO we observed from ∼3.8 to ∼1.5

Gya can be explained by a decrease in the chain length of proteins. Fig-

ure 5.2b shows how domain size has varied in evolution. Folding time mea-

Figure 5.5: Size Modified

Contact Order (SMCO) ver-

sus folding rate for 87 proteins

with experimentally known

folding rates. A linear regres-

sion is shown as blue dashed

line. The solid lines indicates

the 95% confidence interval.

sured by SMCO and domain size follow a very similar bimodal trend, with

a clear decrease occuring prior to ∼1.5 Gya and a slight increase after the
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“big bang”. As expected, we find domain size, which equals L in Equation 1,

and SMCO to be correlated with folding rate in agreement with other stud-

ies [57, 60] (Figure 5.5). In line with this correlation, the downhill folders

discussed above and shown in Figure 5.2a as triangles, have a small domain

size of less than 100 residues in common.

We next eliminated the effect of domain size on the evolutionary trends

observed in folding rate to analyze factors other than domain size. To this

end, we dissected our dataset according to the amino acid chain length. This

analysis was done with all ∼92,000 domains to ensure enough data points

for each length. The distributions of chain length are shown in Figure 5.6a,

b for the two time periods before and after the “big bang” (∼1.5 Gya). The

length distribution for proteins appearing before the “big bang” exhibited

a peak at around ∼150 amino acids, and shifted later (∼1.5 Gya to the

present) to shorter chains with a peak at around 100 aminoacids, underlin-

ing the tendency for a decrease of domain size. We note that the resulting

average chain length of three-dimensional structures in SCOP, which have

been obtained from X-ray or NMR measurements, is smaller than the av-

erage length of sequences in genomes [83], apparently due to the increasing

experimental difficulties when working with large proteins. We then ana-

lyzed evolutionary tendencies for every domain length subset by measuring

the variation in the end points of a polynomial regression. The color map-

ping in Figure 5.6a indicates an increase (blue), a decrease (yellow-red), or a

non-significant change (green) of SMCO. Overall, 85 % of the data returned

a significant result according to the F-test. During early protein evolution

(3.8-1.5 Gya), we found that 54 % ± 0.3 % of all domains in each size sub-

set optimized their foldability during evolution by decreasing their SMCO.

Conversely, 37 % ± 0.4 % of domains showed a slow-down in folding, i.e. a

significant increase in SMCO. These results confirm the tendencies observed

for the full data set (Figure 5.2a), and hold for different tresholds of identity,
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Figure 5.6: Change in foldability during evolution for subsets of chain size

: Distribution of domain length for domains appearing a) 3.8-∼1.5 Gya

and b) ∼1.5-0 Gya. Abundancies were colored according to the average

∆SMCO, the difference between the end points of the polynomial regression

of SMCO in this dataset, for the specified initial (a) and later (b) time

period. Yellow to red indicates a decrease, and blue an increase in SMCO.

The barplots (inset) show the percentage of domains with positive (blue),

negative (yellow), and insignificant (green) ∆SMCO.
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namely 95 % and 40 %. As expected, due to the smaller data set, partition-

ing domains defined at F and SF levels according to size yielded results that

were statistically not significant. In summary, even after dissecting the ef-

fect of chain length on changes in SMCO, the tendency of proteins to fold

faster during evolution is confirmed.

After the “big bang”, the SMCO and thus foldability showed a over-

all increase in evolution (Figure 5.6b), in agreement with results from the

total set (Figure 5.2a). Apparently, fast folding did not represent a ma-

jor evolutionary constraint during this period. Instead, other constraints

must have been optimized at the expense of foldability. We next discuss

secondary structure as one factor influencing the impact of foldability on

protein structure evolution.

5.2.3 Secondary structure and evolution of foldability

Secondary structure composition is another factor reported to have an in-

fluence on folding kinetics [57, 78, 81]. We repeated the analysis of domains

partitioned by size that was described above for domains in each secondary

structure class of SCOP (all-α, all-β, α/β, and α+β domains) and thereby

revealed differences in the evolution of foldability. As shown in Figure 5.7a,

the tendency of a decreasing SMCO before the “big bang” is reproduced for

all classes. This result was confirmed at the level 95 % identity and 40 %

identity, though with a significant decrease only for the α+β and α classes

at the 40 % identity level, i.e. for a much smaller data set. Again, our anal-

ysis strongly supports an evolutionary constraint for fast folding of proteins

appearing early in evolution, 3.8-1.5 Gya.

Interestingly, we here observe a specialization of protein classes, with

all-α proteins tending to fold faster and all-β proteins tending to fold more

slowly, all of which was supported at the 95 % domain level (Figure 5.7b).

Why should the all-α class be under a stronger fast folding constraint than
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the all-β class? Figure 5.8 shows the average SMCO for each secondary

structure class. The all-β and all-α class show the highest and lowest SMCO,

respectively, suggesting that all-β proteins in general fold slower than all-α

proteins. This is in line with previous findings that containing all-β proteins

fold more slowly than all-α proteins due to long range interactions between

all-β strands that increase contact order [57,78,81].

5.3 Discussion

Protein aggregation damages cellular components and can lead to a variety

of neuronal diseases [84–86]. A way of reducing aggregation is to enhance

the kinetic and thermodynamic accessibility of the native fold of a protein.

Incremental increases in kinetic or thermodynamic stability of a protein

might therefore represent an evolutionary trace reflecting optimization of

protein foldability [87].

Here, we confirm the hypothesis that foldability exerts a constraint in

the evolution of protein domain structures, as we find a tendency of pro-

teins to on average fold faster than their structural ancestors. As expected,

shortening of protein chain length during evolution is an important factor

leading to faster folding. However, the exclusion of this protein-size effect

preserved the trend of decreasing folding times. Thus, faster folding is not a

side effect of chain shortening, but likely acts as an evolutionary constraint

in itself. An alternative reason for the decrease of folding times in evolution

is the need of proteins for flexibility in order to optimize their function such

as enzymatic catalysis or allosteric regulation [88]. Folding speed and flex-

ibility are known to correlate, as the formation of the compact state with

no or only minor native contacts is much quicker than the arrangement of

the native – often long-range – contacts [89]. Fewer native contacts in turn

result in lower stability and may increase conformational flexibility as re-

quired for some biological functions [90]. Our analysis of protein folding
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Figure 5.7: Percentage of all domains with a positive (blue), negative (yel-

low), and insignificant (green) ∆SMCO. a) for 3.8-∼1.5 Gya, and b) ∼1.5-0

Gya. Each barplot considers one of the four fold classes according to their

secondary structure: all-α, all-β, α/β, and α+β, as indicated. The barplots

were obtained from domain length distributions analogous to those shown

in Figure 5.6.
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speed on an evolutionary time line can be similarly carried out for measures

of flexibility to test this scenario.

Evolutionary constraints on folding are apparently not uniformly im-

posed onto the full repertoire of protein structures and during the entire

protein history. Instead, our analysis revealed a bimodal evolutionary pat-

tern, with folding speed increasing and decreasing before and after ∼1.5 Gya,

respectively. The speed-up of folding was most pronounced for all-α folds.

The evolutionary inflexion point coincides with the previously identified pro-

tein “big bang”, which features a sudden increase in the number of domain

architectures and rearrangements in multi-domain proteins triggered by in-

creased rates of domain fusion and fission. We speculate that the slow down

of folding that ensues could be due to cooperative interactions during fold-

ing of domains in the emerging multi-domain proteins [91]. Alternatively,

the observed slow-down after the “big bang” could be related to the ap-

pearance of protein architectures that are known to help proteins to fold,

such as chaperones [92, 93] Moreover, protein architectures specific to eu-

karyotes appeared at ∼1.5 Gya [73]. The Eukaryotic domain of life has

the most elaborate protein synthesis and housekeeping machinery, including

enzymes for post-translational modification. This machinery might have

mitigated the constraints for fast folding, thereby increasing evolutionary

rates of change [87], while preventing misfolding and aggregation prior to

attaining the native fold [94].

Finally, we revealed striking evolutionary diversity in protein folding

when comparing all-α and all-β fold classes from ∼1.5 Gya. Their average

folding times diverged after the “big bang”, with the all-α class further

decreasing and the all-β class instead increasing their folding times. This

result can support the idea of an optimization of folding that increased

the difference in folding time between all-β and all-α through evolution.

As previously shown [56], all-β folds have on average higher SMCO and
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fold slower than their all-α-counterparts. This simply results from their

different topology and is also the result of our analysis (Figure 5.8). We

here show that earlier in evolution, however, folding times have been more

similar and only diverged from each other as late as after 1.8 Gya. But

why would all-β folds have been relieved from the evolutionary constraint

of fast folding? Since the “big bang” is responsible for the discovery and

optimization of many new functions, including an elaborate protein synthesis

and folding machinery, we speculate that the divergence of averge folding

times of all-α and all-β folds probably reflects an optimization of function.

This optimization happens to be on the expense of foldability for only the

all-β class, the reasons of which remain unknown. One possible scenario

would be that all-α have the tendency to carry out functions that require

high flexibility, a property that correlates with few long-range contacts, i.e.

high foldability.

Figure 5.8: Average SMCO for the

four fold classes according to their

secondary structure: all-α, all-β,

α/β and α+β. all-β proteins fold

significantly more slowly than all-

α proteins. The Wilcoxon rank-

sum test return a p-value ± 2.2e-

16 for every pair of datasets. The

higher average SMCO for all-β as

compared to all-α proteins confirms

earlier findings.

An important experimental study by Baker and colleagues [95] tested the

idea that rapid folding of biological sequences to their native states does not

require extensive evolutionary optimization. Using a phage display selection
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strategy, the barrel fold of the SH3 domain protein was reproduced with a

reduced alphabet of only five amino-acids without any loss in folding rate.

Despite extensive changes to protein sequence, experimental manipulation

preserved contact order. While these results should not be generalized to

the thousands of other fold topologies that exist in nature, they are reveal-

ing. They suggest that stabilizing interactions and sequence complexity can

be sufficiently small and still enable evolutionary folding optimization. In

other words, optimal folding structures can find their way through the free

energy landscape without extensive explorations of sequence space. This

property of robustness could be a recent evolutionary development, since

the SH3 domain F appears very late in our timeline of protein history. Al-

ternatively, it could represent a general structural property. The fact that

we now see clear and consistent foldability patterns along the entire time-

line supports the existence of limits to evolutionary optimization of folding

that are being actively overcome in protein evolution. We conjecture that

these limits were initially imposed by the topologies of the early folds, and

that structural rearrangements (resulting from insertions, tandem duplica-

tion, circular permutations, etc [96–99]) offered later on opportunities for

fast and robust folding as evolving structures negotiated trade-offs between

function and stability.

We end by noting that we cannot exclude overlooking effects on fold-

ing times from cooperative folding. These could influence trends of folding

times. The SMCO is known to show high correlations with folding times only

for single-domain proteins [56]. Developing schemes for estimating folding

times from structures comprising more than one domain is a challenge [91]

but would enable a more general view onto protein foldability as a constraint

throughout evolution. Moreover, our analysis is based on the sequence and

structural data that is available. Results might therefore be biased by the

choice of proteins and their accessibility. However, the structure of most
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protein folds and families have been acquired and will not exceed those that

are expected [100]. Moreover, our approach allow us to steadily test if the

predicted evolutionary trends of foldability are maintained upon inclusion

of new sequences and protein folds into the analysis. Interestingly, multiple

studies have found folding rates to correlate with stability rather than con-

tact order [101]. Analyzing phylogenomic trends of stability might in this

light be an important study to further elucidate evolutionary contraints on

protein structure.
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Chapter 6

Evolution of protein mechanical

stability

6.1 Introduction

Compression, tension, and friction are the most common mechanisms of

how mechanical forces are applied and transduced during biological func-

tions, ranging from cell-cell adhesion and muscle contraction to protein

degradation and translocation [102–105]. Protein structures in control of

such biological processes evolved via the optimization and discovery of new

topologies, in order to fulfill their function under such mechanical con-

straints [106–108]. Thus, mechanical properties of proteins might play the

role of a constraint or driving force during protein evolution. Identifying

driving forces that recruit new topologies will help to understand how the

current protein universe was shaped [109–113]. Physical and chemical fac-

tors [114, 115] molding the protein structure catalog need to be elucidated.

Deciphering what are the crucial factors contributing to the evolutionary

history of the protein structures is a relevant question toward a better un-

derstanding of the mechanism of evolution. One such factor could be me-

chanical stability, i.e. the ability to withstand forces, which can be measured

by pulling a protein by both ends. The force applied for unfolding a protein

can be monitored during protein extension. As a result, a force-extension

curve describing the unfolding pathway of the molecule can be examined

65



66 CHAPTER 6. EVOLUTION OF MECHANO-STABILITY

(Figure 4.3). Peaks in the force-extension curve represent forces required

to rupture critical building block such as a force clamp. Force clamps are

an assembly of hydrogen bonds formed by a core of residues responsible for

the mechanical stability of the protein. In other words, they are an area of

proteins which possesses a high mechanical propensity. Unfolding pathways

are therefore highly dependent on the shape of and interactions within the

protein. Examining the topology adopted by a protein can give valuable in-

formation on its mechanical stability. A common example of such topology

is the shear topology which possesses a high mechanical stability [116,117].

It features two force-bearing β-strands arranged in parallel and is partic-

ularly adapted to withstand a stretching force. This topology is used in

several proteins having different functions requiring mechanical properties.

Therefore, evolutionary processes driving selection and optimization of pro-

tein topology is likely to have occurred and probably still occurs. Among

those external forces, the ability to oppose tension is of great biological inter-

est. Nature might have selected protein structures to resist such forces using

evolutionary mechanisms such as mutations or recombinations (Figure 6.1).

One example of a protein with mechanical function is the giant muscle

protein titin. Titin is a structural protein composed of 244 individual protein

domains that takes advantage of the shear topology to confer resilience and

elasticity to muscle fibers [118]. Since muscle fibers and also titin therein

are only present in multicellular organisms and might have originated from

contractile cells in sponge-grade organisms [119](with a common ancestor

probably 700 million years ago), they are certainly the result of an opti-

mization of protein folds. The association of small but highly mechanically

stable domains constitute titin and is a key factor in defining its properties.

How evolutionary pressure, such as mechanical force, influenced the de-

mand for new structural topologies and functions is still an open question.

Using available genomic data and protein structure models acquired via ex-
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Figure 6.1: Scheme representing a possible path of protein structure evolu-

tion.

periments, combined with techniques to study mechanical properties of pro-

teins in a high-throughput way can now open new avenues of inquiry. Over

the past decade, new experimental techniques such as magnetic and laser

tweezers or Atomic Force Microscopy (AFM) have enabled the characteriza-

tion of mechanical properties of proteins at the single molecule level [33,120]

(Section 4.3.2). However, AFM experiments of protein unfolding are too de-

manding to systematically evaluate the mechanical stability of the available

structural models of protein domains, currently ∼100,000 in total. Such

a survey, instead, has been conducted by computational means on pro-

teins [121]. We here followed a similar computational approach to evalu-

ate mechanostability. Our study differs from the previous survey in three
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aspects: first, we used the definition of protein domains by SCOP (Sec-

tion 3.6.1), and second, we also considered domains with a size of up to

400 a.a. Thirdly, and most importantly we finally mapped the aquired data

on an phylogenomic tree of SCOP domains. A domain based analysis, as

provided by our studies, allows a better understanding of the connection be-

tween topology and mechanical stability by removing possible combination

of different topologies in proteins.

We aimed at estimating the rupture force of all ∼100,000 SCOP domains

as a measure for mechanical stability, using computer simulations mimick-

ing force spectroscopy experiment. It remains virtually impossible to reach

the biologically relevant millisecond to second timescales using theoretical

pulling rates, even for a very small system of a few tens of residues, using

conventional all-atom Molecular Dynamics (MD) methods in explicit and

implicit solvent (water) implemented on the most powerful distributed com-

puter clusters. Brownian Dynamics (BD) simulations using a Go-model [122]

as introduced in Section 4.3.1 is a mesoscopic method, in which explicit sol-

vent molecules are replaced by a stochastic force. This technique has the

advantage to allow simulations on much larger time scales than MD sim-

ulations [83], and was the method of choice here. Its high computational

efficiency allows to evaluate the dynamic response of ∼100.000 SCOP do-

mains to a tensional force. Loading rates can be chosen such that timescales

are close to those of the experimental studies.

Here, we reveal evolutionary patterns of mechanical stability by mapping

the peak force of the force-extension curve Fmax onto time-lines derived from

phylogenomic trees of domain structures [18]. Remarkably, we find a selec-

tion pressure to decrease the overall mechanical stability, and on the other

hand to increase the ratio of mechanical stability to protein length during
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the overall protein history. Our results suggest a reduction of the material

without a loss of mechanical stability, leading to a forced optimization of

mechanical clamps, or reflecting a need for more compact protein domains to

become compatible with a multi-domain protein world [19], allowing the rise

of multi-cellular organisms and Eukaryota lineage. Our studies yield valu-

able new information on the mechanical properties of domains. We identify

specific force-resistant topologies and their emergence during evolution, as

an answer to the need for abilities to transmit and withstand forces in a

biological context. In addition, studies on supposedly non-mechanical pro-

teins yielded interesting results about their behavior under forces [123,124],

suggesting mechanical properties to be a critical aspect of protein structures

in general.

6.2 Results

6.2.1 Change in mechano-stability during evolution

To trace mechanical stability in evolution, we determined the mechanical

unfolding forces of protein domain structures at the Family (F) level of

structural organization. Figure 6.2a shows the mechanical stability of each

F, as measured by its average maximum peak force (Fmax), as a function of

evolutionary time. Using polynomial regression, we observed a significant

decrease (p-value = 2.0e-16) in Fmax in proteins appearing between ∼3.8 and

∼1.5 billion years ago (Gya). Trends were maintained when studying domain

evolution at more or less conserved levels of structural abstraction of SCOP

hierarchy. We found a significant decrease of mechanical stability at the level

of domains with less than 40 % or 95 % sequence identity (p-value = 2.0e-16).

Consistent results were also obtained at the F level using linear regression.

Within a smaller dataset of only 13 proteins, for which mechanical stabilities

have been measured, we find that the experimental Fmax does not exhibit
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any significant tendency early in evolution. Experimental data for at least

50-60 proteins would be needed to validate our computional results on the

large data set.

Figure 6.2: Change in length and mechanical stability during evolution:

a) Mechanical stability (Fmax) b) Mechanical stability corrected by chain

length (Fmax/l) versus approximative F domain age in billion of years (Gya).

Each data point represents a mechanical stability average of domains belong-

ing to the same F. c) Average amino-acid chain length for domains belonging

to the same F versus F domain age in Gya. The solid line shows a LOESS

polynomial regression, and the blue shade the 95% confidence interval. The

appearance of many new F at 1.5 Gya corresponds to the so-called big-bang

of protein stuctures.
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6.2.2 Length, SMCO, and evolution of mechano-stability

At the same time during which we observe a decay in rupture forces, protein

domains decrease in size suggesting that decrease in mechanical stability is

only due to trend in evolution for domain size reduction. Aiming at testing

how length influences the variation of mechanical stability, we divided me-

chanical stability by chain length. Figure 6.2b shows the mechanical stability

of each F, as measured by its Fmax corrected by size, as a function of evo-

lutionary time. We observed a decrease of the ratio of mechanical stability

and chain length before 1.6 Gya, suggesting an optimization of amino-acids

usage to retain a relative mechanical stability of proteins while reducing the

amount of material required. In other words, evolution might have favored

the production of compact protein structures but on an only minor expense

of mechanical stability. This trend was followed by a minor but significant

increase in Fmax in proteins appearing between 1.5 Gya to present day pro-

teins. Again, trends were maintained when studying domain evolution at the

level of domains with less than 40 %, 95 % sequence identity (p-value = 2.0e-

16). The decrease of absolute mechanical stability during the first part

of evolution suggests that the ability to withstand forces decreased in this

interval. Interestingly, when looking at the tightness of proteins, which rep-

resents how compact the network of interactions in protein structures is,

we observed a decrease suggesting that protein structures lost mechanical

stability while becoming more compact. On the contrary, when we divide

tightness and mechanical stability by chain length, we observe an increase

in both ratios of mechanical stability and tightness divided by chain length.

The length of the amino acid chain has already been reported to influence

the mechano-stability of a protein, with longer chains creating a higher re-

sistance to force [125]. We therefore asked whether the decrease in Fmax

and increase in Fmax/L (Figure 6.2a,b) we observed from ∼3.8 to ∼1.5 Gya

can be explained by a decrease in the chain length of proteins. Figure 6.2c
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shows how domain size has varied in evolution. Mechano-stability measured

by Fmax and domain size follow a very similar bimodal trend, with a clear

decrease occurring prior to ∼1.5 Gya and a slight increase after the “big

bang”. In accordance, we found the domain size and Fmax to be correlated

(Pearson correlation coefficient: 0.74; Figure 6.3). Taken together, those

Figure 6.3: Chain length versus

mechanical stability, Fmax. A

non-linear dependency is observed,

which can be approximated by a

linear dependency for small (200

aminoacids) proteins. The solid line

shows a LOESS polynomial regres-

sion, and the blue shade the 95 %

confidence interval.

results suggest that nature optimized the number of amino-acids used for

protein structures, while partly maintaining tight interactions and mechan-

ical stability. This trend might reflect the pressure of an environment with

limited resources. During the second part of evolutionary history (after ∼1.5

Gya) we observe the opposite tendencies. It has been shown that this time

marks the increase of folds belonging to the Eukaryota lineage. New folds

are among others related to the extracellular matrix [126,127], as required by

multicellular organisms, for cell-cell interactions and junctions. Adhesion,

motility, and matrix proteins evolved to develop and spawn anisotropic and

mechanically resilient scaffolds between and within cells.

Next, we eliminated the effect of domain size on evolutionary trends

in mechano-stability by dissecting our dataset according to the amino acid

chain length, in order to analyze other factors. This analysis was done

with all ∼92,000 domains to ensure enough data points for each length.
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The distributions of chain length are shown in Figure 6.4a and b for the

Figure 6.4: Change in foldability during evolution for subsets of chain size:

Distribution of domain length for domains appearing a) 3.8-∼1.5 Gya and

b) ∼1.5-0 Gya. Abundancies were colored according to the average ∆Fmax,

the difference between the end points of the polynomial regression of Fmax in

this dataset, for the specified initial (a) and later (b) time period. Yellow to

red indicates a decrease, and blue an increase in Fmax. The barplots (inset)

show the ∆ averaged of subset (left) and the percentage of domains (rigth)

with positive (blue), negative (yellow), and insignificant (green) ∆Fmax.
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two time periods before and after the “big bang” (∼1.5 Gya). The length

distribution for proteins appearing before the “big bang” exhibited a peak

at around ∼150 amino acids, and shifted later (∼1.5 Gya to the present) to

shorter chains with a peak at around 100 amino-acids, showing a decrease

of domain size. We note that the resulting average chain length of three-

dimensional structures in SCOP, which have been obtained from X-ray or

NMR measurements, is smaller than the average length of sequences in

genomes [83], due to the increasing experimental difficulties when working

with large proteins. These tendencies are consistent with studies revealing

that conserved protein domains have a longer length [128] and also agree

with the theory that 200 amino-chains represent a barrier for the physical

force helping folding [129, 130]. The need for smaller force with equivalent

length was then required as observed in our results. Then we analyzed

evolutionary tendencies for every domain length subset by measuring the

variation in the end points of a polynomial regression. The color mapping

in Figure 6.4a indicates an increase (blue), a decrease (yellow-red), or a

non-significant change (green) of mechanical stability. During early protein

evolution (3.8-1.5 Gya), we found that 52 % ± 0.3 % of all domains in each

size subset decrease their mechano-stability during evolution. Conversely,

30 ± 0.4 % of domains showed an increase in mechano-stability, i.e. a

significant increase in Fmax. These results confirm the tendencies observed

for the full data set (Figure 6.2a), and hold for different thresholds of identity,

namely 95 % and 40 %. As expected, due to the smaller data set, partitioning

domains defined at F and SF levels according to size yielded results that were

not statistically significant. In summary, even after dissecting the effect

of the chain length on changes in Fmax, the tendency of proteins to lose

mechano-stability during the evolution is confirmed.
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6.2.3 Evolution of β-architectures

With the aim of understanding how topology may have affected the evolu-

tion of mechano-stability, we analyzed three specific β topologies: barrel,

sandwich and pseudo-barrel. We choose β-topologies because of their out-

standing mechanical stability, e.g. observed for the β-barrel GFP [131] and

for the β-sandwich immunoglobulin [132]. Figure 6.5 shows the evolution of

these β-topologies. We observed that the apparition of the barrel topology

occurs prior to sandwich topology apparition.

Figure 6.5: Change in mechan-

ical stability for β-class proteins

a) Mechanical stability (Fmax) and

b) Mechanical stability divided by

length (Fmax/l). Red diamonds are

barrels, blue diamonds are sand-

wiches, and black diamonds repre-

sent pseudo-barrels.

A barrel topology is often related to channel functions, such as the ex-

change between outside and inside of the cell [133], while a sandwich topol-

ogy can carry out functions such as motion, cell recognition or mechanical

scaffolding [134–139] that are known to have appeared only later when Eu-

karyota kingdom arose [140,141]. Taken together, those results suggest that

nature selected topologies for required functions, thereby potentially select-

ing β-barrels such that two sheets flattened to form first a pseudo-barrel and

later a sandwich.
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Aiming at tracking such transformations, we measured the structural sim-

ilarity between β-topologies using SPalign [142]. Figure 6.6 represents a

similarity graph of all-β domains with relative positions according to their

evolutionary age (nd) and mechanical stability. Several pathways possibly

representing transitions of protein structures from between topologies can

be observed. Together with the successive apparition of those topologies

Figure 6.6: Graph representation of similarity between all-β domains: x-

axis: evolutionary time (nd), y-axis: mechanical stability (Fmax)

in evolutionary time, our results suggest a continuous transition in protein

topological space driven by functions such as high mechanical resistance.

6.3 Discussion

Protein mechano-stability is generally associated with functions related to

mobility, force transmission and structural integrity. Those functions are
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required in particular in multi-cellular organisms to allow communication,

adhesion, and mobility of the whole organism. Transition of protein from

an intracellular to an extracellular environment may cause a higher need for

mechanical stability due to the increase of forces acting on the protein. The

later expansion of a uni-cellular to a multi-cellular organism may account for

the increase in mechanical stability seen in our study. The turnover occurs

at the same time as the protein “big bang”, a period of time that exhibits an

abrupt increase in the number of domain architectures and shuffling within

multi-domain proteins set off by increased rates of domain fusion and fission.

In our analysis, we considered only the highest peak of force required to pull

a protein as a reference for mechanical stability.

In this aspect, protein structure nearly maintained their mechanical stabil-

ity over the first period in spite of losing amino acids. This suggests that

a simplification of protein structures occurred during this period of time.

Despite the increase of mechano-stability after the “big bang” our results

show that the evolutionary pressure for mechanically stable protein is not

globally applied onto every protein structure, but that mechanical stabil-

ity will increase in specific protein families, depending on requirements for

protein function and other evolutionary pressures. Classification of force

profiles could help us learn more about specific protein families and their

evolution. More precisely, we would like to have a better understanding of

the correlation of force peaks with set of residues in a given structure pos-

sibly by using WLC theory [143]. This could improve the classification of

different fore clamps, and could yield a more detailed picture of the evolu-

tionary selection of stable proteins.

Single protein folds do not correspond to individual functions, that is to

say, the same fold could have many functions or a similar function in two

instances may require different protein folds. Our work examines the rela-

tionship between structure and function and may be used to uncover folds
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that might be applicable to nanotechnology [144]. However, mechanical

strength is a function not necessarily important to an equal extend through-

out the protein repertoire. As a consequence, we find mechanical stability

to follow more complex trends as compared to folding, in particular when

separating protein size effects in contrast to a more locally applied pressure

for mechanical performance. This may be a result of a more global evolu-

tionary pressure applied to protein folding time in contrast to a more locally

applied pressure for mechanical performance

In this study, we only considered pulling along the termini axis. As shown

previously in different studies, [145] the variation of the pulling direction

may impact the proteins response to force. Therefore this study describes

the evolution of protein structure for resistance to tensional force propagat-

ing to the protein through the termini. Future studies using different pulling

velocities can further complete our understanding of how mechanical prop-

erties evolved.

Solenoid proteins represent one of the possible ancestors of intrinsically dis-

ordered proteins (IDP) and are found late in evolution (0.95 nd) suggesting

the late appearance of IDPs. Their interesting mechanical properties such

as high elasticity and extensibility, cannot be covered by this study but

would be an interesting aspect to examine in future studies [146]. Apart

from IDPs, we note that the current protein structure (PDB) database is

predicted to include already the majority of protein structures, and that the

rate of discovery of novel structures has declined over the last 2 years [100].

Further studies on augmented protein structure data sets, on structures be-

yond single domains, or also on other interesting protein features such as

hydrophobicity [147,148], would further elucidate the possible evolutionary

constraints on protein structure.
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Multivariate analysis of physical

constraints on protein structures

Chapters 5 and 6 analyzed evolutionary trends of physical constraints, namely

foldability and mechanical stability. We next asked how those potential con-

straints depend on each other and also vary with other attributes such as

protein flexibility, function, localization, or secondary structure composi-

tion. These results give insight into the property space sampled by today’s

protein structural repertoire.

7.1 Mapping between localization, function, and domains

We mapped protein domains and associated physical measures to functions

and localizations using data from Gene Ontology (Go) 1 [149]. Go associates

every gene or protein with controlled vocabulary terms. Vocabulary terms

are split into three main branches: cellular component, molecular function,

and biological process. For every PDB or chain, several Go IDs are available

for each ontology. They correspond to the different levels of definition for a

given ontology (e.g. for the cellular component, Figure 7.1). Using the Go,

we assigned the localization and function to domains by mapping between

pdb structures to their Go 2. The mapping covered about half of our dataset

(≈ 50,000 domains).

1http://www.geneontology.org/
2https://lists.sdsc.edu/pipermail/pdb-l/2011.../005385.html.
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Figure 7.1: Portion of the cellular component tree structure of Go.

7.1.1 Mapping between Taxa and protein domains

A mapping between taxid and taxa name was obtained from querying NCBI

taxonomy files 3 [150]. From the NCBI data, tree structures for every species

were collected. A tree structure contains several layers of every species, such

as: domain, kingdom, phylum, class, order, family, genus, and species.

The Star Data Model [151] (Figure 7.2) is composed of one central fact

table called Domain. The fact table contains all the physical quantities, or

any other values related to a given domain. Surrounding tables are called

dimension tables. Each dimension corresponds to an analysis axis, in other

words to criteria that are relevant for data analysis. The dimensions here

are the SCOP classifications comprising four layers. (namely the general

composition, the fold class, the superfamily, and the family), the localization,

the function, the taxon (evolution).

Then, queries can be built such as a comparison of average foldability

(Section 4.2.1) against localization for each domain of life.

3http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
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Figure 7.2: Star scheme model with fact table domains (id, length, etc)

surrounded by dimensions, which here are taxon, localization, SCOP classi-

fication, and function.

7.2 Multivariate analysis

We first analyzed the covariation of foldability as measured by the Size-

Modified Contact Order (SMCO, Section 4.2.1 and Chapter 5) with mechan-

ical stability measured from unfolding forces (Fmax, Section 4.3, Chapter 6)

Interestingly, S.C.O.P domains with mixed α/β structures show a slight ten-

dency for an increase of foldability that involves a decrease of mechanical

strength (Figure 7.3). Moreover, we can observe a lower contact order for

high values of rupture force for the purely β-class structures. This tendency

could be explained by the fact that a low Contact Order translates into a

high number of short range or local contacts (Section 4.2.1), which in con-
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trast to non-local contacts can very efficiently increase the global stability

of protein structures. On the contrary, from a global perspective, purely

β-sheet structures show both overall higher mechanical strength and con-

tact order, as compared to all-α proteins. This underlines that other factors

influence the mechanical strength of a domain, such as architecture or fold

(Section 4.2.1).

Figure 7.3: Domain distributions according to their relative Size Modified

Contact Order and rupture force (Fmax). The color code corresponds to the

density of domains at a given coordinates, with red for high to blue for low

probabilities.

We next compared the mechanical strength to the flexibility of domains,

measured by the structural deviations (RMSD) within the conformational

ensemble of a domain (Section 4.1). Unsurprisingly, an increase of flexibil-

ity generally involves a decrease of mechanical strength (Figure 7.4). We
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could not detect pronounced differences in flexibility for different secondary

structure classes. Interestingly, domains distribute into some distinct ar-

eas, which could contain domains with similar properties or evolutionary

connections, an observation, which requires further investigation.

Figure 7.4: Domain distributions according to their flexibility (RMSD) and

rupture force (Fmax). Increase of flexibility involves a decrease of rupture

forces for all structural classes.

Finally, we analyzed how flexibility and foldablity, i.e RMSD and SMCO,

covary (Figure 7.5). SCOP domains with only α-helical structures show a

higher flexibility combined with a lower contact order than mixed or purely

β-sheet structures. A remarkable trade-off is observed between flexiblity

and foldability. Thus, rigid proteins are designed from many long-range

contacts, while flexible proteins are held together by rather local contacts.
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Figure 7.5: Domain distributions according to their flexibility (RMSD) and

foldability (SMCO). Increase of flexibilty involves a decrease of folding time

for all structural classes. Also, β-sheets fold more slowly than helical pro-

teins.

Those results bring to light that resistance to tensile strength implies a

longer folding time, and flexibility a shorter folding time, when considering

global differences between protein classes.

7.3 Mechanical strength, fold classes, and localization of

proteins

In Chapter 6, we observed a decrease in mechanical stability during evolution

until the big bang ∼1.5 Gya. We argued that this tendency was mainly due
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to the loss in protein size, as we observe an overall increase of Fmax per

amino-acid. We next asked how different structural composition classes

of SCOP, namely all-α, all-β, mixed α/β and segregated α+β, differ in

these aspects. We find mixed α/β structures to show the highest average

mechanical force (341 pN) followed by β-sheet structures (283 pN), and α+β

structures (244 pN) (Figure 7.6a). These values have to be compared to the

average length of each class (Figure 7.6b).

(a) Average mechanical strength. (b) Average length (in amino-acids).

Figure 7.6: Average mechanical strength (Fmax) and length (in amino-acids)

according to S.C.O.P general composition classes.

The ratio force/length (Fmax/N , Figure 7.7) shows a different order as

compared to Figure 7.6a. The β-sheet structures possess the highest ratio,

followed by mixed α/β structures. Thus, in agreement with experimental

observations, β-sheet structures outperform others in terms of mechanical

resistance, and have been possibly designed for this function at least partly.

Finally, we asked the question if the protein localization has an effect

on the average mechanical stability of proteins, which would suggest an

adaptation of proteins to the mechanical stress present in their respective



86 CHAPTER 7. ANALYSIS OF PHYSICAL CONSTRAINTS

Figure 7.7: Relative

mechanical strength

(Fmax/N) obtained

from normalizing Fmax

by protein length N ,

for SCOP general

composition classes.

environment. Figure 7.8 shows that intra-cellular domains clearly possess

a lower mechanical stability as compared to extracellular domains, but the

distribution is much more diffuse.

Figure 7.8: Relative

mechanical strength

(Fmax/N) for three

different localizations:

intra-cellular, extra-

cellular, and plasma

membrane.

The average Fmax for localizations in the Endoplasmic Reticulum, the

lysozyme, microtubuli, the Golgi, sarcolemma, and mitochondria is very
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similar. One exception is the lysosome, hosting proteins with significantly

higher mechanical strength than the other compartiments, the reason of

which remains to be elucitated.
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