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Summary I 
 

Summary 

Ketogenic diet is protective in models of ischemic stroke and neurodegenerative diseases. 

Currently, clinical trials are testing the efficacy of this diet in neurodegenerative diseases but 

its mode of action is still unclear. The ketone body β-hydroxybutyrate (BHB) is the 

endogenous agonist of the hydroxy-carboxylic acid receptor 2 (HCA2, GPR109A) which is 

expressed in various immune cells; therefore, we tested the potential involvement of this 

receptor in a mouse model of ischemic stroke.  

The protective effect of ketogenic diet and BHB was lost in Hca2
-/-

 mice, demonstrating that 

HCA2 receptors are responsible for neuroprotection. Similarly, nicotinic acid, a HCA2 agonist, 

reduced the infarct size via a HCA2-mediated mechanism. Immunohistochemical analysis of 

immune cells in Hca2
mRFP

 transgenic mice revealed HCA2 expression in 

monocytes/macrophages. Bone marrow transplantation demonstrated that HCA2 on 

monocytes/macrophages is required for the protective effect. Activation of HCA2 receptors 

induced a neuroprotective phenotype of monocytes/macrophages that depended on PGD2 

production by COX-1 and the hematopoietic PGD2 synthase. Our data reveal that HCA2 

activation by dietary or pharmacological means instructs monocytes/macrophages to carry a 

neuroprotective signal to the brain which can be used therapeutically. 
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Zusammenfassung 

Eine ketogene Diät hat in Tiermodellen des ischämischen Schlagfalls und Modellen weiterer 

neurodegenerativer Erkrankungen einen protektiven Effekt. Aktuell wird auch in klinischen 

Studien die Effektivität einer ketogenen Diät bei neurodegenerativen Erkrankungen getestet. 

Der Wirkmechanismus ist jedoch bisher ungeklärt. Der Ketonkörper β-Hydroxybutyrat 

(BHB) ist der endogene Agonist des hydroxy-carboxylic acid receptor 2 (HCA2 , GPR109A), 

welcher in unterschiedlichen Zellen des Immunsystems exprimiert wird. In dieser Arbeit wird 

die Rolle des Rezeptors HCA2 in einem Mausmodell des ischämischen Schlaganfalls 

untersucht. 

Weder eine ketogene Diät, noch die Behandlung der Tiere mit BHB übten in Hca2-Knockout-

Mäusen einen protektiven Effekt aus, was zeigt, dass die, in Kontrolltieren beobachtete, durch 

beide Behandlungen ausgelöste Neuroprotektion über den Rezeptor HCA2 vermittelt wird. 

Analog dazu konnte auch der HCA2-Agonist Nikotinsäure die Infarktgröße über einen HCA2-

abhängigen Mechanismus verringern. Eine immunhistochemische Analyse transgener 

Hca2
mRFP

-Mäusen zeigte, dass Hca2 in Monozyten und Makrophagen exprimiert wird. 

Mittels Knochenmarktransplantation konnte demonstriert werden, dass Hca2-exprimierende 

Monozyten und Makrophagen für den protektiven Effekt verantwortlich sind. Die Aktivierung 

von HCA2-Rezeptoren induzierte in Monozyten und Makrophagen einen neuroprotektiven 

Phänotyp, dessen Ausprägung abhängig von der Produktion von Prostaglandin D2 (PGD2) 

durch COX-1 und durch die hämatopoetische PGD 2-Synthase war. Zusammenfassend zeigt 

diese Studie, dass die Aktivierung von HCA2 sowohl mittels einer Diät, als auch durch ein 

Pharmakon, Monozyten und Makrophagen dazu instruiert, ein neuroprotektives Signal in das 
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Gehirn zu übermitteln. Dieser Mechanismus stellt eine potentielle neue Therapiestrategie 

gegen neurodegenerative Erkrankungen dar. 
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Introduction 1 
 

Introduction 

1.1. Brain energy metabolism 

 

The brain consumes more energy per mass unit than other tissues and has very limited energy 

stores; therefore it is highly dependent on a constant supply of nutrients. The brain receives 

approximately 15% of the cardiac output and consumes 25% of the body’s energy although it 

encompasses only 2 % of the body’s weight (Zauner et al, 2002). To generate ATP, a form of 

cellular energy, the brain uses more than 90% of its consumed oxygen (Zauner et al, 2002). 

Thus, uninterrupted blood supply is crucial for usual brain functions. Energy homeostasis is 

an important aspect of normal body function occurring as a consequence of a balance between 

energy intake and energy expenditure (Dupuis et al, 2011). The Brain uses energy that is 

produced mainly by oxidation of glucose to maintain ionic gradient across the cell membranes 

(Zauner et al, 2002). Maintenance of electrochemical gradients across the cell membrane is 

central for proper neuronal and glial function. Therefore, to maintain ionic gradients a 

substantial part of energy is used to fuel Na
+
/K

+
-ATPase activity even during the resting state 

(Shetty et al, 2012). Consequently, the cellular metabolic rate increases proportionately when 

activity increases (Zauner et al, 2002). Insufficient blood flow to the brain, such as occurs in 

stroke, leads to rapid loss of function and tissue demise. However, an altered energy balance 

seems to play a causal role in other neurodegenerative diseases as well, such as Parkinson’s 

disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) (Dupuis et 

al, 2011; Exner et al, 2012). Under such circumstances, blood concentration of glucose and 

the ketone body β-hydroxybutyrate (BHB), the brain’s main energy substrates, would be 

expected to affect a disease. However, the role of these two energy substrates in neurological 
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disorders is complex. Hyperglycemia aggravates rather than improves ischemic stroke and 

AD (Kruyt et al, 2010) but the basic mechanisms underlying this paradox are still unclear. 

1.2. Cerebral ischemia and brain energy regulation 

 

Cerebral ischemia 

Reduction in blood flow to the brain results in altered cerebral function which eventually 

leads to cerebral ischemia. Stroke is of hemorrhagic origin which results from rapture of 

supplying blood vessels or ischemic where interrupted blood supply to the brain results from 

occlusion of a cerebral artery either by a thrombus or an embolus (Adibhatla et al, 2008). 

Global cerebral ischemia results when total blood flow to the brain is blocked due to events 

like cardiac arrest (Adibhatla et al, 2008). 

Ischemic stroke is one of the leading causes of death and disability around the world. It 

negatively impacts not only the affected individuals but also the society as a whole (Flynn et 

al, 2008). The frequency of cerebral ischemia induced death is noteworthy in developing 

countries (Yepes et al, 2009). 

Ischemic stroke is characterized by a ‘core’ where the central region of brain tissues rapidly 

undergoes infarction and ‘ischemic penumbra,’ the region surrounding the core where the 

blood flow reduces in a graded fashion due to the presence of collateral arteries (Smith, 2004). 

Ischemic penumbra gained more interest as a target to develop therapeutic intervention since 

the core is generally considered difficult to be rescued (Adibhatla et al, 2008).  

Until now, thrombolysis with recombinant tissue plasminogen activator (tPA) and mechanical 

removal of the clot has been approaved by Food and Drug Administration (FDA, 
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www.fda.gov) for the treatment of patient with acute ischemic stroke (Yepes et al, 2009). 

However, treatment option with tPA is limited to a time window of 4.5 hours after the onset 

of stroke (Haile et al, 2011). Since presentation of stroke patients is often delayed in clinical 

practice and also because of comorbid diseases tPA therapy is effective in only about 5 to 

10% of stroke patients (Lees et al, 2010). Therefore, further therapeutic intervention targeting 

wide patient groups is obligatory.  

Cerebral ischemia and metabolic failure 

Glucose is the major metabolic substrate in the brain. It is stored as glycogen. In brain, 

glycogen is found predominantly in astrocytes (Brown & Ransom, 2007). As soon as vascular 

occlusion ensues, brain tissues are deprived of glucose and oxygen and acidic metabolic 

byproducts start accumulating (Smith, 2004). As a result of substrate unavailability and 

decreased pH, mitochondrial electron transport chain activity diminishes leading to a sharp 

decline in ATP production (Smith, 2004). Na
+
/K

+
-ATPase activity fails due to lack of ATP 

resulting in increased intracellular Na
+
 concentration. Continuous depolarization leads to an 

increase in intracellular Ca
2+

 and neurons release their transmitters nearby and at remote 

targets (Smith, 2004). Increased Ca
2+

 influx also damages mitochondria and thereby 

exaggerate energy failure even further (Smith, 2004). As glycolytic consumption increases 

significantly in this paradigm, tissues are in frantic need of glucose. Paradoxically, cellular 

damage increases distinctly when the tissue glucose level exceeds 16 to 20 mmol/L (Smith, 

2004). In line with this glucose paradox, hyperglycemia aggravates human stroke (Bruno et 

al, 2002; Parsons et al, 2002). 
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1.3 Ketone bodies in brain energy regulation 

 

β-hydroxybutyrate (BHB), acetoacetate (AcAc), and acetone are known as ketone bodies 

(Figure 1.1). The liver produces ketone bodies predominantly from β-oxidation of fatty acids 

and these ketone bodies are utilized by the brain and other organs as an alternative energy 

source in a situation when glucose utilization is compromised such as occurs in starvation and 

strenuous exercise (Laffel, 1999). Since the brain does not exploit fatty acids to generate 

energy when blood glucose levels drop, ketone bodies are the principal alternative fuel to 

meet the metabolic demand (Morris, 2005). 

 

Figure 1.1. Formation of ketone bodies in hepatocytes. Adopted form Laffel et al. 

1999. Descriptions are in the text. 

Upon glycolysis and β-oxidation, acetyl CoA is formed in mitochondria of hepatocytes from 

glucose and fatty acid respectively which afterwards condensate with oxaloacetate and enter 
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into the citric acid cycle (Laffel, 1999). When glycolysis drops down to a very low level 

oxaloacetate is the privileged molecule being used in the process of gluconeogenesis and in 

this situation acetyl CoA is diverted from citric acid cycle and utilized to form ketone bodies 

since oxaloacetate is no more available to condense with acetyl CoA (Laffel, 1999). 

1.4. Role of ketogenic diet and BHB in cerebral ischemia and other neurodegenerative 

diseases 

 

Ketogenic diet 

Ketogenic diet came in light during the 1920s as an option to treat epilepsy (Lutas & Yellen, 

2013). It was launched to elevate the circulating concentration of ketone bodies. A classical 

form of ketogenic diet consists of fat to carbohydrates and proteins in a 4:1 ratio (Lutas & 

Yellen, 2013). With the advent of the first modern anticonvulsant diphenylhydantoin during 

the 1930s, ketogenic diet was promptly ignored in clinical practice despite of its reported 

efficacy in controlling epileptic seizures. However, during the 1990s, ketogenic diet regained 

its importance to treat pharmacoresistant childhood epilepsy since a substantial number of 

patients fail to get relief significantly from seizure with available anticonvulsants (Lutas & 

Yellen, 2013). Apart from epilepsy, protective functions of ketogenic diet have also been 

reported in animal models of stroke, Parkinson’s disease, Alzheimer’s disease and ALS 

(Lutas & Yellen, 2013; Prins, 2008; Puchowicz et al, 2008). Moreover, small clinical trials 

suggest that ketogenic diet is also effective in neurodegenerative diseases (Stafstrom & Rho, 

2012). Currently, larger clinical trials are under way to test ketogenic diet in 

neurodegenerative diseases (clinicaltrials.gov, NCT01035710, NCT01016522, 

NCT01364545). Several mechanisms have been described that explain the antiepileptic 
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efficacy of a ketogenic diet but the mechanisms underlying its neuroprotective activity and the 

possible improvement in energy balance have not yet been elucidated (Gasior et al, 2006a; 

Lutas & Yellen, 2013; Prins, 2008). 

β-hydroxybutyrate 

BHB is a small water soluble carboxylic acid and an endogenous ligand to hydroxy-

carboxylic acid receptor 2 (HCA2, GPR109A) (Taggart et al, 2005). Being one of the major 

ketone bodies produced in the body during condition when glucose is unavailable as energy 

substrate, BHB has gained a lot of research interest in focal cerebral ischemia and in other 

CNS diseases (Puchowicz et al, 2008; Suzuki et al, 2002; Suzuki et al, 2001; Tieu et al, 2003). 

Suzuki et al. reported that BHB had protective effects on cerebral hypoxia, anoxia, and 

ischemia-induced metabolic changes. By using an animal model of cerebral ischemia they 

also demonstrated that BHB reduced the infarct volume as well as cerebral edema although 

the detailed mechanism underlying this effect was not clear (Suzuki et al, 2002). Long ago in 

1968, Senior and Loridan found that under fasting conditions, BHB produced from free fatty 

acids in the liver reduces the release of free fatty acids from adipose tissue in a negative 

feedback loop (Senior & Loridan, 1968).This important homeostatic function is believed to be 

mediated by the HCA2 receptor, that is activated by BHB on adipocytes (Taggart et al, 2005). 

1.5. Hydroxy-carboxylic acid receptor 2 (HCA2) and its ligand nicotinic acid 

 

1.5.1. HCA2 receptor 

HCA2 is a Giα protein-coupled receptor and member of Class A rhodpsin-like GPCRs (Gille et 

al, 2008). After cloning in 1993 it was listed as an orphan receptor (Hanson et al, 2012). 

However, several groups in 2003 reported HCA2 as a receptor for nicotinic acid (Soga et al, 
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2003; Tunaru et al, 2003; Wise et al, 2003) which was also referred to as GPR109A, HM74A 

in human, and PUMA-G in mice (Gille et al, 2008). HCA2 is activated by BHB, nicotinic 

acid, and related drugs (Gille et al, 2008; Taggart et al, 2005).  

Brown and white adipose tissue express HCA2 (Gille et al, 2008). It is also expressed 

significantly in spleen and immune competent cells, specifically monocytes, macrophages, 

dendritic cells, and neutrophils (Gille et al, 2008). The expression pattern of HCA2 in immune 

cells is regulated by various cytokines. GM-CSF up-regulate the expression of HCA2 in 

neutrophils (Yousefi et al, 2000) where as in other immune cells, IFNγ increases its 

expression (Gille et al, 2008; Maciejewski-Lenoir et al, 2006; Schaub et al, 2001). In addition, 

expression of HCA2 in the brain has been reported but the cellular localization was unknown 

(Miller & Dulay, 2008). 

1.5.2. Metabolic effect of HCA2 activation  

 

Since HCA2 is a Giα protein-coupled receptor, its activation on adipocytes inhibits adenylyl 

cyclase activity which results in decreased intracellular cAMP levels (Figure 1.2) (Gille et al, 

2008). Conversely, receptors that are Gs protein-coupled such as β-adrenergic receptors (β-

AR) would increase cAMP level by increasing adenylyl cyclase activity. Therefore, HCA2 

activation by its ligand nicotinic acid counteracts the activity of β-adrenergic receptors as well 

as its protein kinase A (PKA) stimulatory effects (Gille et al, 2008). By phosphorylation of 

various proteins such as hormone sensitive lipase (HSL) and perilipin, PKA increases 

lipolysis. Since free fatty acids (FFA) are a substrate for hepatic triglyceride (TG) synthesis, 

substrate shortage occurs as a result of decreased FFA concentration in blood induced by 

HCA2 activation (Gille et al, 2008). Consequently, the liver produces less triglycerides and 
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very low density lipoprotein (VLDL), which eventually leads to reduced plasma levels of 

triglycerides, VLDL, and low density lipoprotein (LDL) (Gille et al, 2008). 

 

Figure 1.2. Metabolic role of HCA2 activation. Adopted from Gille et al, 2008. Descriptions 

are in the text (CETP- Cholesteryl ester transfer protein, AC- Adenylyl cyclase, LDL-C- Low 

density lipoprotein cholesterol, HDL-C- High density lipoprotein cholesterol). 

1.5.3. Nicotinic acid 

 

Nicotinic acid is a water-soluble vitamin of the group B complex (B3) and acts as a precursor 

of coenzymes NAD and NADP (Gille et al, 2008). In the beginning, nicotinic acid was used 

to treat pellagra, a disease caused by chronic deficiency of vitamin B3 (Hanson et al, 2012). 

Rudolf Altschul et al. first described the lipid modifying properties of nicotinic acid when 

administered in gram quantities (Altschul et al, 1955). Since then extensive research has been 

carried out on nicotinic acid and its lipid lowering effects, which eventually introduced it into 
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clinical practice as a promising therapeutic intervention to treat dislipidemia and 

cardiovascular risk (Carlson, 2005; Hanson et al, 2012). The plasma lipid lowering effect of 

nicotinic acid is mediated by HCA2 receptors as demonstrated by using mice lacking the gene 

that encodes HCA2 (Tunaru et al, 2003). Nicotinamide is the vitamin counterpart of nicotinic 

acid. Nicotinic acid and nicotinamide together are called niacin (Gille et al, 2008). However, 

nicotinamide has no effect on plasma lipid levels and is inactive at HCA2 even though both 

are chemically quite similar and serve as precursors for the coenzyme nicotinamide adenine 

dinucleotide (Carlson, 2005). This indicates that the carboxylic acid moiety of the ligand is 

critical in activating HCA2 receptors (Gille et al, 2008). Being a potent ‘broad-spectrum lipid 

lowering drug’ (Carlson, 2005) nicotinic acid not only reduces total cholesterol, triglyceride, 

VLDL, and lipoprotein (a), but till now it is the most effective available lipid modifying drug 

that has been shown to raise high-density lipoprotein (HDL) as well (Kamanna & Kashyap, 

2008). However, the mechanism by which nicotinic acid increases HDL cholesterol is still 

unknown. More recently, Lukasova et al. reported that activation of HCA2 on immune cells 

by nicotinic acid is beneficial in reducing the progression of atherosclerosis and that this anti-

inflammatory property mediated by HCA2 is independent of its lipid modifying effect 

(Lukasova et al, 2011b). Nicotinic acid has been reported to be protective in cerebral ischemia 

although contributory mechanisms remained to be revealed (Shehadah et al, 2010b; Yan et al, 

2012; Ye et al, 2011). 

1.6 Inflammation in cerebral ischemia and the role of immune cells 

 

Inflammation is an integral part of the body’s defense mechanisms and plays distinct 

functions upon injury and invasion of foreign particles and microbes. In response to injury, 
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vascularized tissues of the body initiate a characteristics cascade of responses manifested by 

changes in local blood vessels and exudation of plasma and circulating blood cell ultimately 

leading to inflammation (Zheng & Yenari, 2004). The pathophosiologic role of inflammation 

as a a key contributor in cerebral ischemia has been recognized more and more (Iadecola & 

Anrather, 2011). Elements of the immune systems are substantially involved in the ischemic 

cascade ranging from initial acute vascular events to ultimate brain damage and subsequent 

tissue repair that occurs at later time points (Iadecola & Anrather, 2011). Therefore, 

therapeutic interference targeting inflammation warrants careful consideration. 

Pro-inflammatory signals can be generated within minutes after ischemic events (Iadecola & 

Anrather, 2011). Neurons are depolarized as a result of energy failure (Figure 1.3). Specific 

glutamate receptors become active and increase the intracellular concentration of Ca
2+

 and 

Na
+
 dramatically while at the same time release K

+
 into the extracellular space (Dirnagl et al, 

1999). Diffusion of K
+
 and glutamate into the extracellular space results in peri-infarct 

depolarization. In parallel the second messenger Ca
2+

 increases the activation of proteolytic 

enzymes (Dirnagl et al, 1999). Free radicals are generated and damage DNA, mitochondria, 

and membranes, which in turn initiates apoptosis and induces the formation of inflammatory 

mediators (Figure 1.3). This activates microglia and induces peripheral immune cell 

infiltration into the ischemic brain (Dirnagl et al, 1999). 

With the progress of the ischemic cascade cell death ensues leading to another stage of 

inflammation. Danger signals are released by the dying and dead cells leading to the 

activation of purinergic receptors on microglia and macrophages which in turn results in the 

production of pro-inflammatory cytokines (Iadecola & Anrather, 2011). Also damage-
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associated molecular pattern molecules (DAMPs) are released by ischemic cell death which 

activate toll like receptors (TLRs) and subsequently up-regulate pro-inflammatory gene 

expression (Iadecola & Anrather, 2011).  

 

Figure 1.3. Pathophysiologic mechanisms leading to inflammation in focal cerebral 

ischemia. Adopted from Dirnagl et al. 1999 (Dirnagl et al, 1999). Explanations are in 

the text  

Ischemic brain damage can be aggravated by inflammation in many ways. The degree of 

ischemia can be worsened by neutrophil-mediated microvascular obstraction (del Zoppo et al, 

1991). In ischemic brain neutrophils produce iNOS, which is responsible for toxic amounts of 

NO having substantial pathogenic potential (Dirnagl et al, 1999). Cyclooxygenase 2 (COX-2) 

has been reported to be expressed by ischemic neurons. By producing superoxides and toxic 

prostanoids this enzyme contributes to ischemic injury (Dirnagl et al, 1999). The cytokine 

TNF is also able to intensify ischemic damage although a beneficial role in ischemic brain has 
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been reported as well (Barone et al, 1997; Bruce et al, 1996). The activated microglia has also 

been demonstrated to produce neurotoxins including NO, reactive oxygen species, and toxic 

prostanoids (Dirnagl et al, 1999).  

1.7. Inflammation in post-ischemic repair mechanisms 

Since post-ischemic inflammation is a dynamic as well as ‘self-limiting’process, over time it 

ceases and participates in tissue remodeling and reconstruction following brain injury 

(Iadecola & Anrather, 2011; Zheng & Yenari, 2004). The exact mechanisms by which the 

resolution of inflammation and remodeling of the injured brain tissue happen are not 

completely understood. Clearing of dead cells and suppression of inflammation have been 

described as key events involved in this repair process (Iadecola & Anrather, 2011). 

 

Figure 1.4. Repair process and resolution of inflammation after injury. Adopted and 

modified from Iadecola and Anrather et al. 2011(Iadecola & Anrather, 2011) 

Microglia and infiltrating macrophages are the main cell types involved in removal of dead 

cells and tissue debris after stroke (Figure 1.4). After injury, microglia and macrophages are 

attracted to the site of injury by ‘find-me’ signals (UTP, ATP) and chemokines (Iadecola & 
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Anrather, 2011). Microglial phagocytosis is then stimulated by UDP ‘eat-me’ signals acting 

through P2Y6 receptors as well as phosphatidylserine (PtdSer) translocated to the outer 

membrane of apoptotic cells (Iadecola & Anrather, 2011). PtdSer-binding protein on 

microglia and T cell immunoglobulin and mucin domain-containing molecule 4 (TIM4) on 

macrophages are involved in clearing the dead cells (Figure 1.4). Phagocytosis induced TGF-

β and IL-10 production play a central role in developing an anti-inflammatory environment 

coupled with tissue repair. Production of these cytokines results in suppression of antigen 

presentation, and pro-inflammatory cytokines while promoting Treg formation (Iadecola & 

Anrather, 2011). However, TGF-β and IL-10 themselves are neuroprotective and may have 

the potential to facilitate the repair process. Metabolites of arachidonic acid may also dampen 

post-ischemic inflammation (Iadecola & Anrather, 2011). The post-ischemic repair process 

and tissue reorganization are achieved by the production of growth factors which have been 

reported to offer a favorable setting for neuronal sprouting, neurogenesis, angiogenesis, 

gliogenesis, and matrix reorganization (Iadecola & Anrather, 2011). For instances, neuronal 

sprouting after ischemia is attributed to insulin-like growth factor 1 (IGF-1), the full 

expression of which crucially depends on microglia (Figure 1.4) (Iadecola & Anrather, 2011).  

1.8. The role of macrophages in cerebral ischemia 

After neutrophils infiltrate the ischemic brain in the first place with a peak at 24-48 hours 

after ischemia, monocytes/macrophages are the decisive cell type at later stages of infarction 

(Iadecola, 1997). 
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1.8.1. The origin of macrophages 

Macrophages are phagocytic cells and one of the important immune effectors that are 

involved in the body’s defense mechanisms. They are involved in the process of removing 

cellular debris produced during tissue remodeling as well as efficient clearance of apoptotic 

cells (Mosser & Edwards, 2008). This clearing process could take place without the 

interference of immune cells since removal of apoptotic cells by unstimulated macrophages 

appears to result in little or no production of immune mediators (Mosser & Edwards, 2008). 

However, while removing necrotic debris, macrophages elicit inflammatory signals resulting 

in the production of cytokines and pro-inflammatory mediators (Mosser & Edwards, 2008). 

Haematopoietic stem cells (M-CFU, myeloid colony-forming units) give rise to myeloid cells 

in the bone marrow of mature adults or in the yolk sac of the developing embryo (Lawrence & 

Natoli, 2011). First, the macrophage colony stimulating factor-1 (CSF-1) dependent 

macrophage and dendritic cell progenitor (MDP) is derived from M-CFU. This then gives rise 

to pro-monocytes (Lawrence & Natoli, 2011). In contrast to brain resident microglia and skin 

Langerhans cells, blood monocytes and most other tissue macrophages are developed from 

these pro-monocytes (Lawrence & Natoli, 2011). Derived from the yolk sac of developing 

embryos, microglial and Langerhans cells develop initially from M-CFUs. These radiation 

resistant cell populations are believed to be maintained by local proliferation (Lawrence & 

Natoli, 2011). In mice, two main subsets of monocytes have been described based on their 

expression of cell surface markers as well as the time they spend in the blood before 

migrating to the tissues (Auffray et al, 2009; Mosser & Edwards, 2008). LY6C
-
 blood 

monocytes seem to be the source of most tissue macrophages and to be involved in patrolling 

blood vessels under homeostatic conditions (Auffray et al, 2009; Mosser & Edwards, 2008). 
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However, during inflammation, LY6C
+
 blood monocytes are recruited and differentiate into 

inflammatory macrophages (Lawrence & Natoli, 2011). Upon the influence of environmental 

factors, inflammatory macrophages polarize into subtypes having specific phenotypes such as 

M1 or M2 macrophages. Nevertheless, resident tissue macrophages also have the potential to 

polarize into specific activation states during inflammation (Lawrence & Natoli, 2011). 

1.8.2. Dual role of macrophages  

 

Having a remarkable plasticity, macrophages can attain distinctive functional phenotypes in 

order to respond competently to micro-environmental signals. Two classes of macrophages 

have been described based on polarized phenotypes. Classically activated macrophages are 

designated as M1 and M2 represents the macrophages that are alternatively activated 

(Lawrence & Natoli, 2011).  

Upon stimulation with interferone –γ (INF-γ) and TNF, cell-mediated immune responses 

generate classically activated M1 macrophages having increased microbicidial or tumoricidal 

capacity (Mosser & Edwards, 2008). Hence, classically activated macrophages are crucial for 

host defense. Since M1 macrophages secret high levels of pro-inflammatory cytokines and 

mediators, accurate titration of their activation must be maintained to prevent host-tissue 

damage (Mosser & Edwards, 2008). 

Interleukin-4 (IL-4) and IL-13 induce M2 macrophage activation (Gordon, 2003), which is 

associated with anti-inflammatory and homeostatic functions in wound healing, fibrosis, and 

tissue repair (Lawrence & Natoli, 2011). In mice, these macrophage subtypes significantly 

express arginase1, macrophage mannose receptor 1(Mrc1/CD206), resistin-like-α 

(Fizz1/Retnla), chitinase 3-like 3 (Ym1), and IL-10 (Lawrence & Natoli, 2011). 
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In the acute stage, infiltration of immune cells to the ischemic brain leading to tissue damage 

is well known (Iadecola & Anrather, 2011). Conversely , they also contribute to tissue 

remodeling and reconstruction processes following brain injury and are critical for the 

integrity of the neurovascular unit (Gliem et al, 2012a) (Iadecola & Anrather, 2011). M2 

macrophages have been described by several authors as beneficial after cerebral ischemia 

(Frieler et al, 2011; Fumagalli et al, 2013; Hu et al, 2012; Xu et al, 2012). Therefore, 

treatment strategies targeting infiltrating macrophages should critically consider the M1/M2 

dynamics.  

1.9. Cyclooxygenase 1 (COX-1) and prostaglandin D2 (PGD2) in neuroinflammation 

 

Inflammation has been recognized as one of the key contributor to various neurological and 

neurodegenerative diseases (Choi et al, 2009). Activation of microglia/macrophages has been 

described clinically and experimentally following ischemia (Liu et al, 2009). Microglia and 

infiltrating macrophages are involved in secondary infarct expansion since they produce 

several chemokines and pro-inflammatory mediators (Liu et al, 2009). Bone marrow-derived 

macrophages and activated microglia also produce arachidonic acid (AA) and its lipid 

metabolites, which have been reported to play a critical and differential role in 

neuroinflammation (Choi et al, 2009; Zhao et al, 2013b). 

Prostaglandins (PGs) are 20-carbon polyunsaturated fatty acids derived from AA (Joo & 

Sadikot, 2012). When various hormones interact with their cell surface receptors, 

prostaglandin synthesis is initiated through the activation of one or more cellular lipases, 

specially phospholipae A2 (PLA2) (Smith, 2002). Activation of PLA2 leads to the release of 

arachidonic acid from membrane phospholipids. COX-1 and COX-2 convert arachidonic acid 
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into PGG2 and PGH2 (Harris et al, 2002). Subsequently, PGH2 is converted into a series of 

prostaglandins such as PGD2, PGE2, PGI2, and PGF2α by the action of cell specific enzymes, 

the prostaglandin synthases (Harris et al, 2002). For instances, PGD2 is synthesized from 

PGH2 by the enzyme prostaglandin D synthase. 

PGD2 is the most abundant prostaglandin in brain and appears to be involved in maintaining 

homeostatic functions (Joo & Sadikot, 2012). Although mast cells in peripheral tissues mainly 

produce PGD2, it can be produced by other leukocytes as well (Ricciotti & FitzGerald, 2011). 

The rate limiting enzyme in the process of PGs generation is COX (Choi et al, 2009). Two 

distinct isoforms of COX enzymes have been described, namely COX-1 and COX-2. In the 

central nervous system, tissue distribution and privileged pairing with upstream and 

downstream enzymes differ between these two isoforms (Choi et al, 2009). COX-1 is 

expressed constitutively in most tissues and believed to be responsible for synthesizing PGs in 

homeostatic conditions, whereas COX-2 is an inducible enzyme involved mostly in regulation 

of inflammation (Harris et al, 2002). 

In the brain, COX-1 is expressed constitutively in microglia and endothelial cells (Choi et al, 

2009; Depboylu et al, 2011). Depboylu et al. reported its expression on macrophages and 

multinucleated giant cells upon SIV infection. The role of COX-1 in cerebral ischemia is 

controversial. Iadecola et al. reported increased susceptibility to focal cerebral ischemia upon 

genetic deletion of Cox-1 (Iadecola et al, 2001b), whereas pharmacologic inhibition of COX-1 

resulted in reduced neuronal injury and oxidative stress during transient global cerebral 

ischemia (Candelario-Jalil, 2003). Therefore, manipulation of COX-1 signaling to combat 

brain inflammation requires further investigations.  
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Downstream of COX-1, prostaglandin D synthase catalyzes the production of prostaglandin 

D2 from its precursor PGH2. Lipocalin-type prostaglandin D synthase (L-PGDS) and 

hematopoietic prostaglandin D synthase (HPGDS) are the two prostaglandin D synthase 

enzyme that have been identified (Taniguchi et al, 2007b). In the brain, oligodendrocytes 

express L-PGDS, whereas HPGDS is expressed by microglia (Taniguchi et al, 2007b). 

HPGDS has also been reported to be expressed in dendritic cells, Langerhans cells, mast cells, 

Th2 cells, and megakaryoblasts (Joo & Sadikot, 2012). A neuroprotective role of HPGDS in 

focal cerebral ischemia as well as in hypoxic ischemia has been demonstrated (Liu et al, 2009; 

Taniguchi et al, 2007b)  

Under physiological conditions, PGD2 is involved in regulation of sleep and body 

temperature, olfactory function, hormone release, and nociception in the central nervous 

system (Joo & Sadikot, 2012). On the contrary, several studies provide evidence that it is an 

important mediator of inflammation (Taniguchi et al, 2007b). PGD2 exerts its effect by 

interacting with its two receptors DP1 and DP2. DP1 is a Gs protein-coupled receptor and has 

been reported to be expressed in neurons and endothelial cells (Taniguchi et al, 2007b) as well 

as in dendritic cells, platelets, and bronchial and vascular smooth muscle cells (Pettipher et al, 

2007). Alternatively, DP2 is a Gi protein-coupled receptor expressed in Th2 lymphocytes, 

eosinophil, basophil, and neural cells (Pettipher et al, 2007). Both receptors are involved in 

mediating diverse biological response. Taniguchi et al. reported a neuroprotective role of 

PGD2 which was mediated by the DP1 receptor in hypoxic-ischemic injury (Taniguchi et al, 

2007b). Deletion of the DP1 receptor increased the susceptiblity of mice to brain damage 

induced by middle cerebral artery occlusion (MCAO), while pharmacological activation of 

DP1 receptor exerted beneficial effects in transient cerebral ischemia (Ahmad et al, 2010).
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Aim of the study 

The G protein coupled receptor HCA2 is expressed on immune cells in addition to adipocytes. 

BHB is an endogenous ligand to this receptor and regulates the release of free fatty acid under 

fasting conditions. This important homeostatic function is thought to be mediated by HCA2. 

Although ketogenic diet and BHB have been reported to be protective in stroke, underlying 

mechanisms are not completely understood. HCA2 receptors are also stimulated by nicotinic 

acid and related drugs that are in clinical use to lower plasma lipids and protect against 

atherosclerotic disorders. Therefore, in the current study we aimed to investigate the effect of 

HCA2 activation in cerebral ischemia by addressing the following aspects: 

1. Which cells express HCA2 in the brain? 

2. Does HCA2 mediate the neuroprotective effect of ketogenic diet and BHB? 

3. Does HCA2 mediate the neuroprotective effect of nicotinic acid in cerebral 

ischemia? 

4. Do hemotapoietic cells mediate the neuroprotective effect of nicotinic acid? 

5. Which macrophagic cell population infiltrates the brain? 

6. Does nicotinic acid affect the polarization of macrophages after cerebral ischemia? 

7. Does COX-1 mediate the neuroprotective effect of nicotinic acid in cerebral 

ischemia? 

8. Does HPGDS mediate the neuroprotective effect of nicotinic acid in cerebral 

ischemia? 
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2. Materials and methods 

2.1 Materials 

2.1.1. Reagents 

Reagents Company 

2,2,2-Tribromoethanol Sigma-Aldrich, Steinheim 

2 Methyl 2-butanol Sigma-Aldrich, Germany 

Acetone Merck, Darmstadt, Germany 

Alzet pumps (2001D) Cupertino, CA 

Ammonium chloride Merk, Germany 

Ammonia solution 25% Merck, Darmstadt, Germany 

Bovine serum albumin (BSA) Roth , Karlsruhe, Germany 

Cell strainer, 40 µm BD Biosciences, Germany 

Cell lysis solution Applied bio system, UK 

Collagenase A Roche, Mannheim, Germany 

DAPI Sigma-Aldrich, Deisenhofen, Germany 

DMEM Invitrogen, Germany 

DNAse Roche, Mannheim, Germany 

Dulbecco’s phosphate-buffered saline (dPBS) Invitrogen, Germany 

EDTA, disodium ethylenediamintetra- acetate Merck, Darmstadt, Germany 

Formaldehyde  Merck, Darmstadt, Germany 

Heparin, 5000 U/ml Braun, Melsungen  

HQL-79 Tocris bioscience , R & D system 
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Hydrochloric acid, HCl 37% Merck, Darmstadt, Germany 

Hydroquinone Fluka, Buchs  

ssniff EF R/M ketogenic diet with 80% fat, 

long-chain fatty acid 

Ssniff Spezialdiäten GmbH, Germany 

Lithium carbonate Riedel-de Haen, Seelze 

Methyl cellulose Fluka, Germany 

Mowiol Merck, Darmstadt, Germany 

Nucleic acid purification lysis solution Applied biosystem 

Nicotinic acid Sigma-Aldrich, Germany 

O.C.T freezing medium Leica Microsystems, Nussloch 

Paraformaldehyde Merck, Darmstadt 

Platinum SYBER Green qPCR supermix Invitrogen 

Polysine slides Thermoscientific 

Potassium bicarbonate Merck ,Germany 

Ringer’s solution  Braun, Melsungen 

Safety-multifly-set Sarstedt, Germany 

Saline , physiological Diaco, Triest 

Silver nitrate Riedel-de Haen, Seelze 

Sodium citrate  J.T. Baker, Deventer 

Sodium hydroxide  Carl Roth, Karlsruhe 

Titration complex Roth, Germany 

Triton X 100 Promega, USA 

β-hydroxybutyrate Sigma-Aldrich, Germany 
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2.1.2. Equipments 

Device Company 

6100 Nucleic Acid Prepstation Applied biosystem 

ABI prism 7000 sequence detection system Applied Biosystem 

Centrifuge 2.ORS  Heraeus , Sepatech 

Coagulator ERBE ICC50 Erbe, Tübingen, Germany 

Cryostat CM 3050 Leica, Nussloch, Germany 

Driller Proxxon micromot 50/F Proxxon, Luxemberg 

Fluostar Optima BMG Labtech 

MoFlo Legacy, 100 µm nozzle, 20 psi Beckman Coulter, Krefeld, Germany 

Nanodrop 2000 spectrophotometer Thermo scientific 

Olympus AU 400 analyzer Beckman Coulter, Krefeld, Germany 

Scanner CanoScan 9000F Cannon, Krefeld 

Surgery microscope, Hund SM33 Wetzlar, Germany 

Temperature control module TKM-0902 FMI, Seeheim-Ober Beerbaach 

Ultra-turrax T8 Werner Hassa 

Water Bath B. Braun, Melsungen AG 
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2.1.3. Antibodies 

Primary antibodies 

Antibody Host/Type Dilution  Company 

CD11b Rat/monoclonal 1:100 AbD Serotec 

GFAP Rabbit/polyclonal 1:500 DAKO 

Iba1 Rabbit/polyclonal 1:100 Wako 

NeuN Mouse/monoclonal 1:500 Chemicon 

 

Secondary antibodies 

Antibody  Host Conjugate Dilution Company 

Anti-Rabbit Donkey Alexa 488 1:400 Invitrogen 

Anti-Rat Donkey Alexa 488 1:400 Invitrogen 

Anti-Mouse Donkey Alexa 488 1:400 Invitrogen 

 

Antibodies used for flow cytometry and cell sorting 

Antibody Host Conjugate Company 

Anti-mouse CD11b Rat APC BD Pharmingen 

Anti-mouse CD16/32, Fc block Rat - BD Pharmingen 

Anti-mouse CD45 Rat PE eBioscience 

Anti-mouse CD45 Rat PerCP BD Pharmingen 

Anti-mouse Ly-6C Rat PE-Cy7 BD Pharmingen 
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APC Rat IgG2b, kappa isotype control Rat APC BD Pharmingen 

 PE Rat IgG2b, kappa isotype control Rat PE BD Pharmingen 

PerCP Rat IgG2b, kappa Isotype 

Control 

Rat PerCP BD Pharmingen 

PE-Cy7 Rat IgGM, kappa isotype 

control 

Rat PE-Cy7 BD Pharmingen 

2.1.4. Kits 

Kit Company 

Cloned AMV First Stand Synthesis Kit Invitrogen, Germany 

Prostaglandin D2-MOX EIA Kit Cayman Chemicals. USA 

Platinum SYBER Green qPCR Supermix-

UDG with ROX 

Invitrogen, Germany 

 

2.1.5 Buffers and solutions 

Buffer Ingredients Quantity Remarks 

10x PBS (1 L) NaCl 

KCl 

Na2HPO4 x7H2O 

KH2PO4 

Water 

80.0 g 

2.0 g 

26.8 g 

2.4 g 

ad 1000 ml 

pH 7.4 

1x PBS (1 L) 10x PBS 

H2O 

100 ml 

Ad 1000 ml 

pH 7.4 

30 % Percoll B  

(60 ml) 

90% percoll 

DMEM 

20 ml 

40 ml  

Stored at 4
0
 C 

78 % Percoll A  

(60 ml) 

90 % percoll 

1x PBS 

47 ml 

13 ml 

Stored at 4
0
 C 

90 % Percoll (100 ml) Percoll plus (100 %) 90 ml Stored at 4
0
 C 
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10x PBS 10 ml 

Avertin (100 ml) 2,2,2-Tribromoethanol 

2-Methyl-2-butanol  

Isotonic NaCl 

2.5 g 

2.5 ml 

97.5 ml 

Protected from light 

Blocking solution for 

Immunohistochemistry 

BSA 

Triton-X 100 

1x PBS 

5 g 

0.3 ml 

Ad 100 ml 

Stored at 4
0
 C 

Digestion solution 

(100 ml) 

DMEM 

Collagenase A 

DNase 

100 ml 

100 mg 

10 mg 

Aliquoted at 5 ml 

and stored at -20
0
 C 

Erylysis-buffer (1 L) 0.15 M Ammonium chloride 

10 mM Potassium hydrogen 

carbonate 

0.1 mM Titration complex III 

(Na2 EDTA) 

8.02 g 

1.00 g 

 

0.037 g 

pH 7.2-7.4 

FACS Buffer 1x PBS 

1 M NaN3 (0.02 %) 

0.5 % BSA (Albumin, 

Fraction V) 

500 ml 

1.54 ml 

2.5 g 

Stored at 4
0
 C 

Mowiol
R 

Mowiol
®
 4-88 

Glycerol 

Tris-HCl 

10 % W/V 

25 % W/V 

0.1 M 

 

 

pH 8.5 
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2.1.6. Primers used in real-time RT-PCR 

Gene Sequence Amplicon 

length (bp) 

Ang F, 5´- CCCCACCCCGTCACATGAGC-3´ 

R, 5´- TCCAACAGAGATTCCAAAGCTGGC-3´ 

144 

Arg1 F, 5´-TGGTGTGGTGGCAGAGGTCCA-3´ 

R, 5´-ACTGCCAGACTGTGGTCTCCACC-3´ 

72 

Arg2 F, 5´-CCTTGCGTCCTGACGAGATCC-3´ 

R, 5´-GGTGGCATCCCAACCTGGAGAG-3´ 

148 

Ccl17 F, 5´-CCAGGGATGCCATCGTGTTTCTG-3´ 

R, 5´-TCAGCGGGAAGGTCATGGCCT-3´ 

122 

Ccl2 F, 5´-GCTCAGCCAGATGCAGTTAACGC-3´ 

R, 5´-GCTTCTTTGGGACACCTGCTGCT-3´ 

122 

Ccl5 F, 5´-GCCTCACCATATGGCTCGGACA-3´ 

R, 5´-ACTCCTTGACGTGGGCACGA-3´ 

85 

Chi3l3 F, 5´-AGCCAGCAGAAGCTCTCCAGAAGC-3´ 

R, 5´-TGCCAGACCTGTGACAAGAATGAGC-3´ 

72 

Clec10a F, 5´-ACCCAAGAGCCTGGTAAAGCAGC -3´ 

R, 5´-TGGGAATTTTGGGATCCAATCACGG-3´ 

140 

Dab2 F, 5´- AGCCAGCCCCGAGACAAGGT-3´ 

R, 5´- GGCTGAGAAACCACAGAGGGGT-3´ 

112 

Fcrls F, 5´-GCTGAAAACGCCTGGGGTACCA-3´ 

R, 5´-ACTTTGGGTGGGGGCTCTGTGA-3´ 

71 

Gas6 F, 5‘- GGGGACGCGCGATGCAAGAA-3´ 

R, 5‘- TGGCACTCGTCCACATCTTGGC-3´ 

107 

Hpgds F, 5´- AACACAGATTTGGCTGGGAAGACAG-3´ 

R, 5´- CATCCAGCGTGTCCACCACTGC-3´ 

70 

Igf1 F, 5´- GCAGCCCGCTCTATCCGTGC-3´ 

R, 5´- TGTCGATAGGGACGGGGACTTCT-3´ 

72 

Il1b F, 5‘-CGAGGCCTAATAGGCTCATCT G-3´ 

R, 5‘-CACTGTCAAAAGGTGGCATTTC-3´ 

117 

Il1rn F, 5´-TTGCCTTGCTGTGGCCTCGG-3´ 

R, 5´-ATTCTGAAGGCTTGCATCTTGCAGG-3´ 

143 

Itgax F, 5´- AGCCTTTCTTCTGCTGTTGGGGTT-3´ 

R, 5´- TGTCCGAACTCAGCACCGTCCA-3´ 

99 

Mgl2 F, 5´-TGGAGCGGGAAGAGAAAAACCAGG-3´ 

R, 5´-TGGGAATTTTGGGATCCAATCACGG-3´ 

196 

Mrc1 F, 5´-GGGACGTTTCGGTGGACTGTGG-3´ 76 
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R, 5´-CCGCCTTTCGTCCTGGCATGT-3´ 

Nos2 F, 5´-GCCCGGCAAACCCAAGGTCT-3´ 

R, 5´-ACATCCCGAGCCATGCGCAC-3´ 

129 

Ppia F, 5´-AGGTCCTGGCATCTTGTCCAT-3´ 

R, 5´-GAACCGTTTGTGTTTGGTCCA-3´ 

51 

Retnla F, 5´-TCCTGCCCTGCTGGGATGACTGCTA-3´ 

R, 5´-CAGCGGGCAGTGGTCCAGTCAA-3´ 

125 

Rnase4 F, 5´- GCAACGCCGACCTCACCCAT-3´ 

R, 5´- ACCTAGAAAGTGCCTGGACCCGGA-3´ 

135 

Stard8 F, 5´- CCTCGTGGTGGGTGCCTCCT-3´ 

R, 5´- GGAGAACGGCCCCTGAGGTC-3´ 

170 

Tnf F, 5´-TGTAGCCCACGTCGTAGCAAA-3´ 

R, 5´-GCTGGCACCACTAGTTGGTTGT-3´ 

120 

Wwp1 F, 5´- TCCCTCTGCCAGTGCGGAAGT-3´ 

R, 5´- TGTTCCCACCCTGATGGCAAAGC-3´ 

174 

 

2.2. Animals 

The mice were housed and bred under appropriate conditions at the Central Animal Facilities 

of the University of Heidelberg and University of Lübeck.  

Mice 

Mice Reference/source 

C57BL/6 Charles River, Germany 

Cox1
-/- (Langenbach et al, 1995) 

Hca2
-/-

  (Tunaru et al, 2003) 

Hca2
mRFP

 (Gpr109a
mRFP

) (Hanson et al, 2010) 
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2.3. Methods 

2.3.1 Mouse model of stroke 

In the model, 8- to 12-week-old male mice were subjected to left MCAO as described 

previously (Bargiotas et al, 2012). Briefly, the mice were anesthetized with 15 µl 2.5% 

tribromoethanol per gram body weight. Panthenol eye ointment was used to prevent eye 

dryness. A 4-cm long skin incision was made between the ear and the orbit on the left side. 

The temporal muscle was removed and a burr hole was drilled to expose the stem of the 

middle cerebral artery (MCA). The MCA was then occluded by microbipolar 

electrocoagulation (Modell ICC 50, Erbe, Tübingen, Germany). The surgery was done under 

a microscope (Hund, Wetzlar, Germany) and rectal temperature was maintained at 37
0
 C 

during surgery by a heating pad. The skin incision was then closed by suture and the mice 

were placed under a heating lamp until they fully recovered. After 24 or 48 h of MCAO, mice 

were deeply reanesthetized with tribromoethanol and perfused intracardially with 15 to 20 ml 

of Ringer’s solution. Brains were carefully removed and coronally cryosectioned (20-µm 

thick) every 400 µm. Coronal sections were then stained with a silver technique (Lubjuhn et 

al, 2009) and the infarct volume was determined using ImageJ and corrected for brain edema 

as described previously (Herrmann et al, 2005a; Lubjuhn et al, 2009). All experiments were 

performed according to the German animal protection law and approved by the local animal 

welfare authorities (Regierungspräsidium Karlsruhe; Ministerium für Energiewende, 

Landwirtschaft, Umwelt und ländliche Räume, Kiel, Germany). I was blinded to the treatment 

or genotype of mice or to both in all experiments. Mice were randomized to the treatment 

groups. If not indicated otherwise, nicotinic acid or vehicle was administered 10 min before 

MCAO and 4 h, 8 h, 24 h, 28 h, and 32 h after MCAO. Due to its short half-life, we 
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administered BHB through subcutaneous Alzet pumps (2001D, releasing 8 µl/h BHB, 

1mg/ml, dissolved in normal saline) that were implanted subcutaneously 10 h before MCAO 

under isoflurane anesthesia. HQL-79 was administered by oral gavage 1 h before each 

nicotinic acid dose. 

The mice were reluctant to eat ketogenic diet. Therefore, to habituate mice to ketogenic diet 

(sniff EF R/M ketogenic diet with 80% fat, long-chain fatty acids) we mixed it with normal 

chow (ssniff M-Z, containing 48% carbohydrates, 15% fat, and 37% protein) and increased 

the fraction of ketogenic diet in a stepwise manner (50% for 3 days, 70% for 5 days, 90% for 

6 days, 100% for 4 days).  

2.3.2. Silver staining  

For silver staining, silver impregnation and developing solutions were applied to determine 

the infarct area on brain cryosections (Lubjuhn et al, 2009).  

2.3.2.1. Impregnation solution 

To prepare impregnation solution for 60 slides, 0.81 g lithium carbonate was mixed with 67.5 

ml of water to generate a saturated solution of lithium carbonate. This solution was then 

mixed with 33.75 ml of 10% silver nitrate which formed precipitate. The precipitate was then 

carefully titrated by dropwise adding 25% ammonia. Precautions were taken not to add an 

excess of ammonia since this could make the staining faint. Finally, 506.25 ml of distilled 

water was added and the solution was protected from light by wrapping the container with 

aluminum foil. 
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2.3.2.2. Developing solution 

To prepare developing solution, 6.6 g sodium citrate was dissolved in 420 ml of distilled 

water. After adding filtered formaldehyde (37%, 120 ml) the solution was well mixed at room 

temperature. Finally, 1.8 g hydroquinone and 90 ml acetone were added. This solution was 

mixed well at room temperature for about 30 minutes.  

2.3.2.3. Staining procedure 

 Both the silver impregnation and the developing solutions were used only once for each 60 

slides and staining was performed as described previously (Vogel et al, 1999). First the slides 

were arranged in a slide rack and incubated in silver impregnation solution for 2 minutes. 

Then, the slides were washed 6 times (1 minute each) in distilled water. Finally, slides were 

dipped in developing solution for 3 minutes followed by 3 washing steps (1 minute each) in 

distilled water. The stained sections were air dried over night. 

2.3.3. Scanning, measurement and calculation of infarct sizes 

Air-dried stained sections were scanned at 300 dpi along with a ruler to set the scale. 

Digitized images were analyzed with ‘ImageJ’ software. The area of the silver deficit 

(infarcted area) and the left (ischemic) and right hemisphere (non-ischemic) were measured. 

Edema correction was achieved by the following formula (Swanson et al, 1990). 

Vol infarct = RH – (LH - SD)  Vol infarct = Corrected Infarct volume (mm
3
),  

RH = Right hemisphere (non-ischemic)  

LH = Left hemisphere (ischemic) 

SD = Silver deficit 
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*This experiment was performed together with Sajjad Muhammad (SM). Preparation of the recipient mice was done by 

myself. Bone marrow cells were prepared by SM and myself. MCAO surgery of the recipient mice were done by SM. 

Cryosection, silver staining, calculation and analysis of infarct volume were done by myself. 

2.3.4. Bone marrow transplantation* 

Bone marrow transplantation was performed as described previously (Muhammad et al, 2008) 

with modifications.  

 

Figure 2.1. Schematic diagram of bone marrow transplantation. Descriptions are in the text. 

2.3.4.1. Preparation of bone marrow cells from donor mice 

Mice were euthanized by cervical dislocation and bone marrow was collected aseptically from 

femurs and tibias by flushing with 1x PBS. Collected bone marrow cells were passed through 

23-gauge needles to obtain single cell suspensions. These unfractionated cells were 

resuspended in sterile PBS (5x10
6
 cells/0.25 ml PBS).  
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2.3.4.2. Irradiation of recipient mice and bone marrow transplantation 

To generate chimeric mice by bone marrow transplantation we employed HCA2
+/+

 and HCA2
-

/-
 mice. The following 3 groups of chimeric mice were generated: HCA2

+/+
 to HCA2

+/+
, 

HCA2
+/+

 to HCA2
-/-

, and HCA2
-/-

 to HCA2
+/+

. The recipient HCA2
+/+

 or HCA2
-/-

 mice (10 to 13 

weeks old) were lethally irradiated with 10 Gy γ-radiation (in 2 divided sessions, 5 Gy each 

time with 4 hours interval) at the Deutsches Krebs Forschungs Zentrum (DKFZ), Heidelberg. 

One day after irradiation, 5 million bone marrow cells suspended in 0.25 ml PBS are 

reconstituted by injection into the retroorbital venous plexus (Hall et al, 2007). Six weeks 

after bone marrow reconstitution, mice were subjected to MCAO and the infarct volume was 

measured 48 hours later. 

2.3.5. Behavioral analysis 

To evaluate sensory motor function after cerebral ischemia, we used the following three 

established tests. 

2.3.5.1. Corner test 

The corner test has been described previously (Lubjuhn et al, 2009). In this test, mice were 

allowed to enter a 30x20-cm corner with an angle of 30
0
. A food pellet between the two 

boards stimulated the mice to enter the corner. Mice were placed half way between the boards 

facing the corner and had the choice to explore the environment. When entering the corner, 

due to bilateral stimulation of vibrissae mice tended to turn around either left or right on 

rearing. Number of right and left turns on rearing out of 12 trials were counted before and 48 

hours after MCAO.
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*Preperation of the cells were done by myself. Flow cytometry and cell sorting were performed together with Dr.Tillman 

Vollbrandt at FACS core facility, University of Lübeck. 

2.3.5.2. Latency to move  

Lubjuhn et al. previously described the latency-to-move test where a plain board was used to 

perform the test (Lubjuhn et al, 2009). Mice were placed at the centre of a plain board and the 

time to cross one full body length (7 cm) was measured before and 48 hours after MCAO. 

The test was performed three times for each mice and the mean value was calculated. 

2.3.5.3. Sticky-tape-removal-test 

In the sticky-tape-removal test, a small circular adhesive tape (HERMA No 2212, 8 mm) was 

placed on forepaws before and 48 hours after MCAO. The time until mice first tried to 

remove the adhesive tape as well as the total time needed to remove adhesive tapes were 

determined. In this study mice were trained before MCAO 2 times on two days. 

2.3.6. Flow cytometry and cell sorting* 

To perform flow cytometry and cell sorting, mice were deeply anesthetized with 

tribromoethanol 48 h after MCAO and perfused intracardially with Ringer’s solution. Brains 

were dissected and olfactory bulbs, right hemispheres, and cerebella were removed. Two left 

hemispheres were pooled and digested in DMEM (Invitrogen) containing collagenase A (1 

mg/ml, Roche) and DNAse (0.1 mg/ml, Roche) for 30 min at 37°C. Then, tissues were mixed 

thoroughly with a 10 ml pipette and filtered through a 40-µm nylon cell strainer (BD 

Biosciences) followed by washing the strainer with 40 ml cold PBS. After centrifugation at 

310 g for 10 minutes at 4
0
 C, cells were resuspended in 5 ml standard erythrocyte lysis buffer 

and incubated for 7 min on ice to lyse the red blood cells. After centrifugation, cells were 

resuspended in 2.8 ml percoll B (30 %). The cell suspension was placed on top of 2.8 ml 

percoll A (78%) carefully and centrifuged again at 1350 g for 30 minutes without break at 
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4
0
C. Myelin and debris were separated and cells were collected carefully from the interface of 

the gradient and washed with 10 ml PBS containing 0.5% BSA. After treatment with purified 

rat anti-mouse CD16/32 (Fc Block, BD Pharmingen, 2 µl for 100 µl cell suspension) for 10 

minutes on ice, cells were incubated with the antibodies and respective isotype controls for 30 

minutes on ice. The CD45
hi

CD11b
+
 and CD45

int
CD11b

+
 cells were sorted on a MoFlo Legacy 

(Beckman Coulter, 100 µm nozzle, 20 psi) with the laser line 488 nm at 100 mW and 635 nm 

at 25mW. Then, cells were lysed with Nucleic Acid Purification Lysis solution (Applied 

Biosystem) and used for quantitative RT-PCR. To analyze monocytes and macrophages, 

CD45
hi

CD11b
+
 cells were gated and subpopulations of monocytes (Ly-6C

hi
 and Ly-6C

lo
) 

were identified and quantified. 

2.3.7. RNA extraction, reverse transcription and quantitative RT-PCR 

2.3.7.1. RNA extraction from cerebral cortex and sorted cells 

Total RNA was extracted using a 6100 Nucleic Acid PrepStation. Twenty four or 48 hours 

after MCAO, mice were perfused with Ringer’s solution. Left and right cerebral cortices were 

dissected. Separated cortices were lysed in 1X Nucleic Acid Purification Lysis solution (1 

ml/cortex) with a Ultra Turrax homogenizer. Two µl of proteinase K (20mg/ml) was added to 

100 µl of homogenized solution and incubated for about 1 hour at room temperature. This 

solution was ready for extracting RNA with the ABI 6100 Nucleic Acid PrepStation. 

 To extract RNA from sorted cells, 1X Nucleic Acid Purification Lysis Solution (500 

µl/10.3x10
4
 cells) was used to resuspend the cell pellets after sorting. The sample solutions 

obtained from brain and sorted cells (500 µl) were loaded in pre-wetted wells (RNA 

Purification Wash Solution 1) of the Total RNA Purification tray. RNA extraction was 
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performed as described by the manufacturer’s protocol. Briefly, loaded samples were 

incubated in the wells for 2 minutes followed by washing the wells with RNA Purification 

Wash Solution 1 and 2 each for 2 minutes. To collect RNA, 70 µl Nucleic Acid Purification 

Elution Solution was added to the wells. The concentration of the RNA was measured with 

the Nanodrop 2000 spectrophotometer (Thermo scientific). RNA samples were stored at -80
0
 

C. 

2.3.7.2. cDNA Synthesis 

cDNA was synthesized from extracted RNA using Cloned AMV First-Strand cDNA 

Synthesis Kit (Invitrogen) according to the manufacturer’s instructions. In brief, 9 µl RNA, 1 

µl Oligo (dT) (0.5µg/µl) and 2 µl dNTP mix (10 mM) were combined and denaturated by 

incubating at 65
0
C for 5 minutes. Then, this solution was placed on ice. After mixing for 5 

second, 5x cDNA Synthesis Buffer was used to prepared the following master reaction mix. 

Component For 1 Reaction  

5x cDNA Synthesis Buffer 4 µl 

0.1 M DTT 1 µl 

RNaseOUT (40 units / µl) 1 µl 

DEPC-treated water 1 µl 

Cloned AMV RT (15 units /µl) 1 µl 

Total Volume 8 µl 

 

Eight µl of the master mix was then pipeted into each reaction tube on ice and transferred to a 

preheated thermal cycler where reaction tubes were incubated for 60 minutes at 50
0
C. Finally, 

the reaction was terminated by incubating at 85
0
C for 5 minutes. cDNA was then stored at -

20
0
C for quantative RT-PCR. 
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2.3.7.3. Quantitative RT-PCR 

Quantitative RT-PCR was performed on the ABI Prism 7000 Sequence Detection System 

(Applied Biosystem) using Platinum SYBR Green qPCR SuperMix-UDG with ROX 

(Invitrogen). The experiment was performed according to manufactuere’s instructions. First, 

the real-time instrument was programmed as follows. 

50
0
C for 2 minutes hold (UDG incubation)  

95
0
C for 2 minutes hold 

40 cycles of: 

95
0
C, 15 seconds 

60
0
C, 30 seconds 

 

The following components were then added to the each well of the qPCR plate 

 

The qPCR plate was sealed and mixed gently. In order to make sure that all components were 

at the bottom of the tube, a brief centrifugation was performed. The reaction plate was then 

placed in a preheated real-time instrument programmed as described above. Data were 

collected when the reaction was finished. Quantified results of each cDNA samples were 

normalized to cyclophilin using the ∆∆Ct method. The purity of the amplified products was 

checked by the dissociation curve. The primers used to detect specific cDNA are listed in 

Table 2.1.6.

Component Quantity for single reaction 

cDNA 2 µl 

Platinum SYBR Green qPCR superMix-UDG with ROX 12.5 µl 

Forward primer 0.75 µl 

Reverse primer 0.75 µl 

DEPC-treated water 9 µl 

Total 25 µl 
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*The measurement was performed at the Children’s Hospital, University of Heidelberg in collaboration with Dr. Okun. 

2.3.8. Measurement of ketone bodies* 

Total ketone bodies (acetoacetate + BHB), BHB, and free fatty acids in plasma were 

measured photometrically on an Olympus AU 400 analyzer (Beckman Coulter, Krefeld, 

Germany) using Autokit Total Ketone Bodies, Autokit 3-HB and NEFA C kit from Wako 

Chemicals GmbH (Neuss, Germany). The acetoacetate concentration was calculated by 

subtracting the BHB levels from the total ketone bodies levels. 

2.3.9. Measurement of PGD2 with Prostaglandin D2-MOX EIA Kit 

Plasma concentrations of PGD2 were measured using an ELISA kit (Cayman Chemicals) and 

following the manufacturer’s protocol. 

2.3.9.1. Preparation of the buffers and samples 

The EIA buffer was prepared by adding 90 ml of Ultra Pure water to the contents of one vial 

of EIA Buffer Concentrate (10X). To prepare the wash buffer, 1 ml Wash Buffer Concentrate 

(400X) and 200 µl of polysorbate 20 were added to 400 ml of Ultra Pure water. Plasma 

samples were obtained from mice at 2 minutes and 10 minutes after nicotinic acid injections. 

Samples were diluted 10 times with Ultra Pure water to determine the PGD2 concentration. 

2.3.9.3. Derivatization of prostaglandin D2 to prostaglandin D2-MOX 

Derivatization of the prostaglandin D2 EIA standard  

Methoxylamine HCl (0.04 g) was dissolved with 10:90 ethanol:water (4 ml). After adding 

sodium acetate (0.328 g), the solution was mixed to prepare the methyloximating reagent. 

Prostaglandin D2 EIA Standard (20 µl) was transferred to a clean tube and diluted with 180 µl 

of Ultra Pure water and mixed well. After adding the methyl oximating reagent (200 µl), the 
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mixture was heated at 60
0
C for 30 minutes. The concentration of this bulk standard solution 

was 20 ng/ml. This bulk solution was used to generate standard curves. 

Derivatization of the prostaglandin D2 samples 

The Methyl Oximating reagent (30 µl) was added to 30 µl of plasma samples. The mixture 

was heated at 60
0
C for 30 minutes. Subsequently, samples were centrifuged at 7000 rpm and 

the supernantant was diluted 1:10 and used in the assay. 

2.3.9.4. Assay specific reagents preparation 

The PGD2 EIA methoximated bulk standard (100 µl) was diluted with 300 µl Ultra Pure 

water. Serial dilution was performed to obtain PGD2-MOX EIA standard. PGD2-MOX Ach 

tracer and PGD2-MOX EIA antiserum were reconstituted by adding 6 ml of EIA buffer to 

each vial. 

2.3.9.5. Assay procedure 

First, the template sheet was labeled. Then, 100µl of EIA buffer was added to Non-specific 

Binding (NSB) wells and 50 µl to maximum binding (B0) wells of the 96-well plate. 

Standards (50 µl) and samples (50 µl) were transferred to respective wells. PGD2-MOX 

AChE (50 µl) Tracer was added to every well except Total Activity (TA) and blank (Blk) 

wells. PGD2-MOX EIA Antiserum (50 µl) was added to every well except TA, NSB, and Blk 

wells. The plate was then covered and incubated overnight at 4
0
C. After 5 washing steps, 200 

µl Ellman’s reagent (reconstituted by adding 20 ml Ultra Pure water to the vial) was added to 

each well. The PGD2-MOX AChE Tracer (5µl) was added to TA wells and the plate was 

covered. The plate was placed on a shaker in the dark at room temperature for approx. 90 

minutes. The absorbence was read at 405 nm with the Fluostar Optima.
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*The staining was performed together with Dr. Dirk A Ridder. 

 

2.3.10. Immunohistochemistry* 

Forty-eight hours after MCAO, Hca2
mRFP

 mice were deeply anesthetized with 

tribromoethanol and perfused with Ringer’s solution and 4% PFA. Then, 20-µm-thick coronal 

cryosections were permeabilized with 0.3% Triton X-100 in PBS for 30 min and blocked with 

5% BSA. The sections were incubated with rabbit anti-mouse Iba1 (Wako, 1:100), rat anti-

mouse CD11b (AbD Serotec, 1:100), mouse anti-NeuN (Chemicon, 1:500), and rabbit anti-

GFAP (DAKO, 1.500) overnight at 4°C. After washing with PBS we used the following 

secondary antibodies to visualize the staining using a confocal microscope (LSM, Lyca): 

Alexa 488-labeled donkey anti-rabbit (Invitrogen, 1:400) and Alexa 488-labeled donkey anti-

rat (Invitrogen). The sections were then washed with PBS containing DAPI (Sigma, 1: 5000) 

and mounted with Mowiol. 

2.4. Statistical analysis 

GraphPad Prism 5 software was used for statistical analysis of the acquired data. The data are 

presented as mean ± SEM. To compare multiple groups, either two-way repeated-measures 

ANOVA followed by Bonferroni posthoc test or one-way ANOVA followed by Newman-

Keuls posthoc were used as indicated. Student’s t test was used to compare 2 groups. 
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3. Results 

With the aid of pharmacological as well as genetic tools the current study aimed to investigate 

the role of HCA2 activation in cerebral ischemia. We also explored potential cellular and 

molecular mediators mediating the protective function of HCA2 activation. 

3.1. Expression of HCA2 receptors in brain 

After the discovery of the HCA2 receptor, extensive research has been carried out to uncover 

its impact in physiological as well as pathological aspects (Lukasova et al, 2011b; Tunaru et 

al, 2003). In addition to adipocytes where HCA2 plays an important homeostatic function in 

mobilizing free fatty acids, significant expression has been observed in immune competent 

cells (Taggart et al, 2005). Expression of HCA2 receptors has been reported in the brain but its 

cellular localization was unknown (Miller & Dulay, 2008). Therefore, to analyze the 

expression of HCA2 in brain, we used the BAC-transgenic mouse line Hca2
mRFP

 

(Gpr109a
mRFP

), in which the Hca2 locus directs the expression of monomeric red fluorescent 

protein (mRFP) (Hanson et al, 2010). To identify brain cell types that could potentially 

express HCA2 receptors, we used immunohistochemistry in conjunction with cell specific 

marker antibodies. Under normal conditions, mRFP was expressed exclusively by CD11b
+
 

microglia (Figure 3.1A). To investigate the expression of HCA2 in other brain cells, we used 

anti-GFAP and anti-NeuN antibodies as markers for astrocytes and neurons, respectively. We 

found that astrocyte and neuron do not express mRFP (Figure 3.1B, C). Since infiltration of 

immune cells in the brain is common after cerebral ischemia and immune cells express HCA2, 

we characterize HCA2 expressing immune cells after cerebral ischemia induced by occlusion 

of the middle cerebral artery. This procedure induces mainly cortical infarcts. Forty eight 
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hours after MCAO, confocal microscopy revealed that mRFP
+
 cells accumulated in the 

periphery of the ischemic area (Figure 3.1D). Most of them expressed CD11b (87.5±14.6% of 

mRFP
+
 cells) and Iba1 (98.7±18.0% of mRFP

+
 cells), indicating that HCA2 is present in 

microglia or monocyte/macrophages that infiltrated the ischemic brain. 

 

 

Figure 3.1. HCA2 receptors are expressed in CD11b
+
 cells. (A-C) Evidence for the 

expression of HCA2 in CD11b
+
 microglia under normal conditions. In Hca2

mRFP
 mice, mRFP 

(red) reflects HCA2 expression. CD11b, the astrocyte marker GFAP, and the neuronal marker 

NeuN were detected by immunohistochemistry. (D) mRFP
+
 cells markedly increased in the 

periphery of the ischemic area 48 h after MCAO. Most mRFP
+
 cells expressed Iba1, a marker 

of microglia and infiltrating monocytes/macrophages. IC, ischemic core. NT, normal tissue. 
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3.2. HCA2 receptors mediate the neuroprotective effect of ketogenic diet  

Ketogenic diet has already been established as a treatment option for pharmacoresistant 

childhood epilepsies (Lutas & Yellen, 2013). To explore HCA2 function in ketogenic diet-

induced neuroprotection, we employed Hca2
-/-

 mice. When we fed wild-type (Hca2
+/+

) or 

Hca2
-/-

 mice with a ketogenic diet, body weight did not change but plasma concentrations of 

BHB increased markedly (Figure 3.2A). Compliant with the concept that HCA2 provides a 

negative feedback on ketone body production by inhibiting fatty acid release, the BHB levels 

were even higher in Hca2
-/-

 than in wild-type mice (Figure 3.2A). Plasma levels of free fatty 

acids and acetoacetate increased similarly (Table 3.1). Forty-eight hours after MCAO, infarcts 

were significantly smaller in wild-type mice on a ketogenic diet than in animals on a normal 

diet (Figure 3.2B). Interestingly, the protective effect of the diet was lost in Hca2
-/-

 mice, 

although they had higher plasma levels of ketone bodies (Figure 3.2A-B, Table 3.1). 

However, there was no significant difference in the infarct size between the genotypes when 

mice were fed a normal diet.  
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Figure 3.2. HCA2 receptors mediate the neuroprotective effect of ketogenic diet (KD) in 

cerebral ischemia. (A) BHB plasma concentrations increased when mice were fed a ketogenic 

diet (KD). Controls received normal chow (ND). ANOVA, F(3/36)=10.85, p<0.0001. 

*p<0.05, ***p<0.0001 (Newman-Keuls posthoc test). Values are means ± SEM (n=10). (B) 

Ketogenic diet reduced the infarct volume in Hca2
+/+

 but not in Hca2
-/-

 animals. ANOVA, 

F(3/35)=3.692, p<0.05. *p<0.05 (Newman-Keuls posthoc test). Values are means ± SEM 

(n=9-10).  

 

 Table 3.1. Plasma concentrations of free fatty acids and acetoacetate in mice on a 

ketogenic diet (KD) in comparison to animals on a normal diet (ND). One-way ANOVA 

showed a statistically significant difference only for free fatty acids, F(3/28)=10.61, 

p<0.0001. **p<0.001 in comparison to Hca2
+/+

 mice on ND, ***p<0.0001 in comparison to 

Hca2
-/-

 on ND (Newman-Keuls posthoc test). Values are means ± SEM (n=6-10). 

 Hca2
+/+

 / ND Hca2
+/+

 / KD Hca2
-/-

 / ND Hca2
-/-

 / KD 

Free fatty acids   

(µmol/l) 

82.7±25.0 371.4±60.5** 181.9±35.2 503.6±68.9*** 

Acetoacetate  

(µmol/l) 

2.1±0.9 12.2±3.5  9.2±4.3  19.8±7.0  

 

 

3.3. β-hydroxybutyrate (BHB) is protective in cerebral ischemia acting through HCA2 

receptors  

The liver produces ketone bodies, which serve as alternative energy source when the normal 

supply of glucose is compromised such as occurs during fasting, strenuous exercise, and 

hypoxic conditions. BHB is one of the two dominant ketone bodies produced in mitochondria 

by reduction of acetoacetate (Laffel, 1999). BHB is an endogenous ligand of HCA2 receptors 
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(Taggart et al, 2005). To test whether BHB is involved in reducing the infarct size via HCA2 

receptors, we administered BHB by implanting subcutaneous pumps because of its short half-

life. This treatment elevated plasma levels of BHB 48 hours after MCAO (Figure 3.3A). In 

parallel, BHB decreased the infarct volume in wild-type but not in Hca2
-/-

 animals, 

demonstrating a neuroprotective effect of BHB through HCA2 receptors (Figure 3.3B). 

 

 

Figure 3.3. Protective effect of BHB in cerebral ischemia. (A) BHB plasma concentrations 

increased when mice were treated with BHB to similar levels as on ketogenic diet. Measurements were 

performed immediately before MCAO or 48 h after MCAO. ANOVA, F(3/8)=24.28, p=0.0002. 

***p<0.0001 (Newman-Keuls posthoc test). Values are means ± SEM (n=3). (B) BHB treatment 

reduced the infarct volume in Hca2
+/+

 but not in Hca2
-/-

 mice. ANOVA, F(2/27)=7.29, p=0.0029. 

**p<0.001 (Newman-Keuls posthoc test). Values are means ± SEM (n=10). 
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3.4. The HCA2 agonist nicotinic acid ameliorates the consequence of ischemic stroke. 

The ability of nicotinic acid to lower plasma cholesterol was discovered by Rudolf Altschul in 

the middle of 20
th

 century followed by a landmark study confirming that nicotinic acid 

administration in gram quantities lowered total plasma cholesterol in healthy human subjects 

and in patients with high level of cholesterol (Altschul & Herman, 1954; Altschul et al, 1955; 

Carlson, 2005). Eventually, nicotinic acid had been tested in controlled clinical trials 

establishing it for the treatment of coronary heart diseases (Carlson, 2005; Gille et al, 2008). 

After the discovery of the HCA2 (GPR109A) receptor, it had been shown that nicotinic acid 

could also stimulate HCA2 and protect against atherosclerotic disorders (Lukasova et al, 

2011b; Tunaru et al, 2003). Based on these data and also because both BHB and nicotinic acid 

are small carboxylic acids we aimed to investigate the role of nicotinic acid and its 

corresponding HCA2 receptor in the context of cerebral ischemia. We subjected male 

C57BL/6 mice to MCAO. Immediately before the occlusion of the artery, nicotinic acid was 

injected intraperitonially. The treatment was continued three times daily for two consecutive 

days. Forty eight hours after the MCAO, mice were sacrificed and the infarct volumes were 

analyzed on silver stained serial sections. 

In clinically relevant doses, nicotinic acid reduced the infarct size significantly in comparison 

to the vehicle control (Figure 3.4.1A). Based on this dose-effect relationship of nicotinic acid 

on cerebral ischemia we chose a dose of 100 mg/kg body weight for the subsequent 

experiments. When we repeated the experiment in wild-type and Hca2
-/-

 mice, nicotinic acid 

was only effective in wild-type but not in Hca2
-/-

 mice, proving that by activating HCA2 

receptors a neuroprotective effect is produced (Figure 3.4.1B).
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*Data from individual experiments were pooled. 

 

 

 

Figure 3.4.1. The HCA2 agonist nicotinic acid ameliorates the consequences of ischemic stroke 

*(A) Nicotinic acid at doses similar to those used in the clinic reduced the infarct volume. The 

infarct volume was determined 48 h after MCAO. ANOVA, F(2/59)=37.05, p<0.0001. 

***p<0.0001 (Newman-Keuls posthoc test). (B) The protective effect of nicotinic acid (100 

mg/kg) was lost in Hca2
-/-

 mice. The infarct volume was determined 48 h after MCAO. 

ANOVA, F(3/48)=15.81, p<0.0001. ***, p<0.0001 (Newman-Keuls posthoc test). Values are 

means ± SEM (n=12-14).
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Thrombolysis with tissue plasminogen activator (tPA) is one of the approaches that has been 

investigated for the treatment of acute ischemic stroke. In addition to mechanical removal of 

the clot, thrombolysis with tPA has been approved by the Food and Drug Administration 

(FDA)(Yepes et al, 2009). However, this treatment option is limited to a time window of 4.5 

hours after the onset of ischemic events. On the other hand, deleterious effects of tPA in the 

ischemic brain have been reported (Yepes et al, 2009). In clinical practice, treatment of stroke 

is often delayed excluding effective therapy. Therefore, we administered nicotinic acid after 

onset of MCAO. Although the delayed dosage reduced the efficacy, nicotinic acid still 

decreased the infarct size significantly when administered up to 4.5 hours after MCAO 

(Figure 3.4.2). 

 

Figure 3.4.2. Delayed treatment with nicotinic acid is protective in cerebral ischemia. 

Nicotinic acid (100 mg/kg) reduced the infarct volume when administered 30 min or 4.5 h 

after MCAO. The infarct volume was determined 48 h after MCAO. ANOVA, F(2/21)=21.05, 

p<0.0001. **p<0.001, ***p<0.0001 (Newman-Keuls posthoc test). Values are means ± SEM 

(n=8). 
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3.5. Nicotinic acid improves the stroke-induced neurological deficit 

Cerebral ischemia is a leading cause of death and disability around the world. Millions of 

stroke survivors every year have to adapt to a restricted lifestyle (Flynn et al, 2008; Yepes et 

al, 2009). Therefore, treatment options should address cognitive impairment and functional 

outcome after ischemic events. To investigate functional outcome of nicotinic acid treatment 

after cerebral ischemia, we performed three established tests of sensorimotor function 

(Lubjuhn et al, 2009). In the corner test, mice were allowed to enter into a 30
0
 angled corner 

and their turning behavior on rearing was evaluated before and 48 hours after MCAO. Mice 

did not show a significant bias before MCAO. However, after MCAO, mice tended to turn 

more often to the contralateral (i.e. right) than to the ipsilateral side which was normalized by 

nicotinic acid treatment (Figure 3.5A, D). When we placed the mice on an open board during 

the latency-to-move test after MCAO, mice took more time to cross one body length (7 

cm).Treatment with nicotinic acid normalized this parameter to its basal level (Figure 3.5B, 

D). Finally, in the sticky-tape-removal test, adhesive tapes were placed onto both forepaws of 

mice and the time until mice first sensed the tape and started to remove it was measured. After 

MCAO, mice needed more time to sense the tape on the contralateral forepaw. Nicotinic acid 

treatment also reduced this time (Figure 3.5C). 
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Figure 3.5. Functional outcome in stroke after nicotinic acid treatment. (A) In the corner 

test, nicotinic acid treatment (100 mg/kg) improved the preference that was observed in 

vehicle-treated animals to turn to the right side 48 h after MCAO. The dashed line indicates 

the expected behavior without a side preference in 12 trials of the corner test. Two-way 

repeated-measures ANOVA, F(1/16)=20.36, p=0.0004. ***p<0.001 (Bonferroni posthoc 

test). Values are means ± SEM (n=9). (B) Nicotinic acid treatment (100 mg/kg) improved the 

latency to move that was increased 48 h after MCAO. Two-way repeated-measures ANOVA, 

F(1/15)=13.30, p=0.0024. ***p<0.001 (Bonferroni posthoc test). Values are means ± SEM 

(n=8-9). (C) After nicotinic acid treatment (100 mg/kg) mice started to remove the sticky tape 
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fixed to the right frontpaw earlier. Nicotinic acid treatment only started 30 min after MCAO 

with the dosing intervals specified in the Methods section. The behavioral test was performed 

48 h after MCAO. Two-way repeated-measures ANOVA, F(1/18)=11.28, p<0.05. *p<0.05 

(Bonferroni posthoc test). Values are means ± SEM (n=10). (D) The equipment used for the 

corner and latency-to-move tests. 

3.6. Impact of nicotinic acid on HCA2 expressing cells. 

Most of the mRFP expressing cells express CD11b (Figure 3.6A) after MCAO. We wanted to 

investigate the effect of nicotinic acid on this cell population. We subjected the BAC-based 

transgenic Hca2
mRFP

 mice to MCAO and treated them with nicotinic acid three times a day for 

two consecutive days. While analyzing coronal cryosections 48 hours after MCAO, confocal 

microscopy revealed a characteristic expression of mRFP
+
 cells in the periphery of the infarct 

(Figure 3.6.B) as shown above (Figure 3.1D). Treatment with nicotinic acid significantly 

reduced the number and the expression of HCA2 as revealed by a reduced integrated density 

of the mRFP signal (Figure 3.6.B, C). This suggests that the neuroprotective effect of 

nicotinic acid could depend on HCA2 expressing CD11b
+
 monocytes/macrophages. 
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Figure 3.6. Effect of nicotinic acid on mRFP expressing cells. (A) Most of the mRFP 

expressing cells also express CD11b, a marker for monocyte/macrophages. (B, C) 

Accumulation of mRFP
+
 cells in the periphery of the infarct was reduced by nicotinic acid 

treatment (NA, 100 mg/kg). Hca2
mRFP

 mice were subjected to MCAO. Scale bar, 100 µm. 

Unpaired t test, ***p<0.0001, values are mean ± SEM (n = 4/group). 

3.7. Activation of HCA2 receptors in bone marrow-derived monocytes/macrophages is 

neuroprotective. 

CD11b
+
 cell in the ischemic brain represent a composite population consisting of bone 

marrow-derived peripheral macrophages and resident microglia. Both microglia and 

macrophages have been reported to exert beneficial and/or deleterious effects not only on 

ischemic brain damage but also in other neurodegenerative diseases such as Alzheimer´s 

disease, ALS, and PD (Butovsky et al, 2006; Gliem et al, 2012a; Lo et al, 2003; Prinz & 

Mildner, 2011; Reichmann et al, 2002). Therefore, to determine whether bone marrow–

derived monocytes/macrophages or resident microglial cells mediate the protective effect of 

HCA2 in stroke, we generated chimeric mice by bone marrow transplantation. Six weeks after 
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successful reconstitution mice were subjected to MCAO and infarct volumes were measured. 

In line with our expectation, Hca2
+/+

 mice that received Hca2
+/+

 bone marrow were protected 

by nicotinic acid treatment as revealed by a significant reduction in the infarct volume (Figure 

3.7). Transplantation of Hca2
+/+

 bone marrow rescued the response of Hca2
-/-

 animals, 

whereas nicotinic acid lost its activity when Hca2
-/-

 bone marrow was transplanted to Hca2
+/+

 

mice, which demonstrates that HCA2 present in bone marrow-derived macrophages mediates 

the protective effect of nicotinic acid (Figure 3.7)  

 

Figure 3.7. Activation of HCA2 in bone marrow-derived monocytes/macrophages is 

neuroprotective. After transplanting Hca2
+/+

 bone marrow to either Hca2
+/+

 mice 

(Hca2
+/+

>Hca2
+/+

) or to Hca2
-/-

 mice (Hca2
+/+

>Hca2
-/-

) nicotinic acid (100 mg/kg) reduced 

the infarct size. However, when Hca2
-/-

 bone marrow was transplanted to Hca2
+/+

 mice 

(Hca2
-/-

>Hca2
+/+

) nicotinic acid was no longer effective. The infarct volume was measured 

48 h after MCAO. ANOVA, F(5/50)=8.454, p<0.0001. **p<0.001 (Newman-Keuls posthoc 

test). Values are means ± SEM (n=9-10). 
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3.8. Characterization of infiltrating monocytes/macrophages 

 

Macrophages and its precursor monocytes encompass functionally distinct subpopulations 

(Gliem et al, 2012a). To characterize monocytes/macrophages in the ischemic brain we 

performed flow cytometry (Figure 3.8). After 48 hours of MCAO, substantial number of 

CD45
hi

CD11b
+
 monocytes/macrophages infiltrated the brain (Figure 3.8, top left panel). Most 

of the cells in this subpopulation also expressed Ly-6C, a marker for monocytes (Figure 3.8, 

upper right panel). The amount of CD11b
+
Ly-6C

hi
 cells was substantially increased in the 

ischemic hemisphere when compared to non-ischemic hemisphere (Figure 3.8, upper right 

and lower right panel). However, CD11b
+
Ly-6C

lo
 cells were not affected significantly by 

ischemia. 

 

Figure 3.8. CD11b
+
Ly-6C

+
 monocytes migrated to the brain after MCAO Increased 

infiltration of CD45
hi

CD11b
+
 cells in the ischemic hemisphere (upper left panel) after 48 

hours of MCAO. Gated CD45
hi

CD11b
+
 cells were plotted against Ly-6C (right panel). 
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3.9. Nicotinic acid treatment induces M2 polarization of macrophages in vivo. 

Macrophages originate from the differentiation of circulating peripheral-blood mononuclear 

cells (PBMCs). In response to inflammation or under normal conditions they migrate into the 

tissues (Mosser & Edwards, 2008). Plasticity is one of the noteworthy characteristics of 

macrophages. This plastic nature permits them to modulate their phenotype in order to 

respond efficiently to environmental signals (Liao et al, 2011). Therefore, macrophages have 

been categorized in a simplified manner where the classically activated macrophages are 

designated as M1 representing a pro-inflammatory state and the alternatively polarized 

macrophages as M2 representing an anti-inflammatory state. Thus, in titrating inflammatory 

responses, M1 and M2 macrophages play divergent roles (Gordon, 2003; Mosser & Edwards, 

2008). 

To approach the question of how monocytes/macrophages mediate the neuroprotective effect 

of HCA2 we investigated the polarization of monoccytes/macrophages by quantifying mRNA 

levels of marker genes for pro-inflammatory M1-polarized and anti-inflammatory M2 

polarized monocytes/macrophages (Frieler et al, 2011; Raes, 2004). M1-related genes were 

upregulated by cerebral ischemia but treatment with nicotinic acid did not affect expression 

levels (Table 3.2). Out of 8 M2-related genes only Retnla and Mrc1 were increased by 

nicotinic acid treatment (3.9.A, B), which suggests only a partial M2 polarization, if any. A 

recent meta-analysis of gene expression signatures in mouse leukocytes reported that Mrc1 is 

part of a specific cluster of genes coordinately expressed mainly in macrophages and bone 

marrow-derived dendritic cells (cluster 60) (Mabbott et al, 2010). Therefore, we investigated 

the expression level of other Mrc1 cluster members. Out of 9 Mrc1 cluster genes, 6 were 

regulated by nicotinic acid treatment 24 or 48 h after MCAO (Figure 3.9.C, D and Table 3.2). 
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Figure 3.9. Nicotinic acid partially induced alternative activation of macrophages in vivo. 

(A) Relative mRNA expression of Mrc1, a marker gene that is involved in the alternative 

polarization of macrophages. Nicotinic acid treatment increases the expression of Mrc1 48 h 

after MCAO in brain. Two-way repeated-measures ANOVA, F(1/8)=5.48, p=0.047. *p<0.05 

(Bonferroni posthoc test). Values are means ± SEM (n=5). (B) Relative mRNA expression of 

Retnla increases upon nicotinic acid treatment in brain. Two-way repeated-measures 

ANOVA, F (1/9)=6.73, p=0.029. Values are means ± SEM (n=5-6). (C, D) Brain mRNA 
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expression of Mrc1 gene cluster members. Brain mRNA expression of Igf1(C) and Ang (D) 24 

h after MCAO was increased significantly upon nicotinic acid treatment. Two-way repeated-

measures ANOVA, Igf1, F (1/10)= 7.391, p= 0.0216, *p<0.05 (Bonferroni posthoc test). 

Values are means ± SEM (n=6). Ang,.F (1/10)=7.314, p=0.022, *p<0.05 (Bonferroni posthoc 

test). Values are means ± SEM (n=6). NIH, Non-ischemic hemisphere. IH, Ischemic 

hemisphere. 

Table 3.2. mRNA levels of macrophagic genes in the non-ischemic (NIH) and ischemic 

hemispheres (IH) of mice that were treated with nicotinic acid (NA, 100 mg/kg) or vehicle. 

Only statistically significant differences of the two-way repeated-measures ANOVA are 

given. For a description of ‘cluster 60’ see the publication of Mabbot et al. (2010). 
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 24 h after MCAO 48 h after MCAO 

 Vehicle NA 2-way ANOVA Vehicle NA 2-way ANOVA 

Gene NIH IH NIH IH NA (P, F) Ischemia Interaction NIH IH NIH IH NA (P, F) Ischemia Interaction 

M2-related genes 

Arg1 1.1±0.3 3.3±0.1 0.6±0.1 1.7±0.5  P=0.0018, 

F=14.86 

 1.4±0.5 4.0±0.9 2.5±1.0 6.4±2.0  P=0.0006, F=19.40  

Retnla 1.2±0.2 1.6±0.5 0.6±0.2 0.9±0.3    0.9±0.1 1.0±0.1 2.0±1.6 2.4±0.6 P=0.029,F=6.73   

Chi3l3 1.3±0.4 11.3±7.3 0.7±0.2 3.9±2.0    1.0±0.2 1.9±0.2 1.6±0.4 5.0±1.6  P=0.02, F=7.67  

Mrc1 1.1±0.3 1.9±0.4 0.9±0.4 1.8±0.4  P=0.007, 

F=12.51 

 1.0±0.1 3.8±0.5 1.8±0.4 6.7±1.5 P=0.04, 

F=5.487 

P=0.002, F=20.15  

Fcrls 1.3±0.3 1.8±0.5 0.8±0.2 1.7±0.4  P=0.005, 

F=11.05 

 2.8±1.8 4.9±2.0 1.4±0.5 3.1±0.9    

Clec10a 1.2±0.3 0.7±0.2 1.2±0.6 1.2±0.2    1.1±0.1 2.9±0.8 2.6±0.7 4.1±1.1  P=0.017, F=7.664  

Mgl2 0.9±0.2 0.9±0.2 0.9±0.2 0.9±0.1    1.1±0.1 1.5±0.3 2.0±0.6 2.4±0.6    

Il1rn 1.8±0.9 17.6±10.0 1.0±0.5 7.1±3.2  P=0.04, 
F=5.06 

 1.6±0.6 14.1±2.3 3.5±0.7 23.1±6.3  P=0.0002,F=26.42  

M1-related genes 

Tnf 1.2±0.2 6.2±10.0 1.4±0.8 6.6±1.7  P=0.0002, 
F=26.04 

 1.3±0.4 2.8±0.9 1.4±0.4 2.5±0.5  P=0.016, F=7.739  

Il1b 1.2±0.2 11.2±3.8 3.0±2.0 15.1±7.0  P=0.004, 

F=11.75 

 1.0±0.1 9.8±3.0 2.0 

±0.5 

16.9±8.0  P=0.018, F=7.454  

Ccl2 1.3±0.5 20.7±6.5 0.6±0.2 18.8±4.8  P=0.0002, 
F=24.05 

 1.7±1.0 21.3±4.7 1.8±0.5 24.7±5.6  P=0.0001, F=38.41  

Ccl5 1.7±0.8 3.2±1.5 0.4±0.1 2.5±1.4    1.3±0.4 3.6±1.0 3.2±1.6 4.3±1.5    

Ccl17 1.2±0.2 1.1±0.3 0.8±0.2 0.7±0.1    2.6±1.9 3.1±2.0 1.8±0.4 1.4±0.4   P=0.039, F=5.394 

Nos2 2.4±1.7 17.9±13.5 0.3±0.1 0.4±0.1    1.2±0.4 1.6±0.1 1.9±0.5 2.5±0.7    

Arg2 1.3±0.3 0.9±0.2 0.6±0.1 0.7±0.1 P=0.041, 

F=5.106 

  1.0±0.3 1.1±0.3 1.3±0.2 1.6±0.3    

Mrc1 cluster genes 

Ang 1.0±0.1 1.1±0.2 1.7±0.2 1.9±0.3 P=0.022, 
F=7.314 

  1.1±0.1 1.5±0.2 1.7±0.4 1.9±0.1  P=0.054, F= 4.735  

Dab2 1.0±0.1 2.5±0.2 1.3±0.1 3.1±0.1 P=0.013, 

F=9.079 

P<0.0001, 

F=141.1 

 1.0±0.1 3.9±0.3 1.7±0.4 3.6±0.6  P =<0.0001, F =56.46  

Gas6 1.0±0.1 1.1±0.1 0.8±0.1 0.9±0.1 P=0.017, 
F=8.009 

P=0.044, 
F=5.254 

 1.0±0.1 1.3±0.2 1.0±0.1 1.0±0.1    

Igf1 1.0±0.1 1.2±0.1 1.2±0.1 1.5±0.1 P=0.021, 

F=7.391 

P=0.0005, 

F=26.01 

 1.0±0.1 1.6±0.2 1.1±0.1 1.4±0.2  P = 0.002, F=15.95  

Hpgds 1.0±0.1 1.5±0.1 0.9±0.1 1.3±0.1  P<0.0001, 

F=95.07 

 1.0±0.1 2.5±0.3 1.2±0.3 2.1±0.2  P = <0.001, F =55.84  

Rnase4 1.0±0.1 1.1±0.1 1.0±0.1 1.0±0.2    1.0±0.1 1.7±0.2 1.3±0.1 1.4±0.1  P= 0.004, F=13.43 P= 0.045, F=5.210 

Stard8 1.0±0.1 0.9±0.1 1.0±0.1 0.8±0.1    1.0±0.1 1.0±0.1 1.3±0.1 1.0±0.1    

Wwp1 1.0±0.1 1.1±0.1 0.8±0.1 0.8±0.1 P=0.004, 

F =12.93 

  1.0±0.1 1.1±0.1 1.0±0.1 0.9±0.1    

Itgax 1.0±0.1 1.1±0.1 1.6±0.2 1.8±0.3 P=0.020, 

F=7.548 

  1.0±0.1 0.9±0.1 1.3±0.2 1.5±0.1 P=0.0171, 

F=8.153 

 P=.022, F=7.254 
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 3.10. HCA2 activation by nicotinic acid induces neuroprotective factors 

Since we noticed a regulated expression of the Mrc1 cluster genes in vivo, we wanted to 

analyze the regulation of these genes in isolated monocytes/macrophages after cerebral 

ischemia. We sorted CD45
int

CD11b
+
 cells, corresponding to resident microglia and 

CD45
hi

CD11b
+
 infiltrating monocytes/macrophages from the ischemic hemisphere (Gliem et 

al, 2012b; Sedgwick et al, 1991). Quantitative real-time RT-PCR of these sorted cells 

revealed that treatment with nicotinic acid increased the expression of the two neuroprotective 

genes Igf1 and Ang (Figure 3.10A, B). 

 

Figure 3.10. HCA2 activation by nicotinic acid induces neuroprotective factors. (A, B) 

Nicotinic acid treatment (100 mg/kg) increased the expression of Igf1 and Ang in 

CD45
int

CD11b
+
 and CD45

hi
CD11b

+ 
cells that were sorted from the ischemic hemisphere of 

mice 48 h after MCAO. Expression levels were determined by quantitative RT-PCR. Two-way 

repeated measures ANOVA of Igf mRNA for nicotinic treatment, F(1/6)=11.01, p=0.016. 

*p<0.05 (Bonferroni posthoc test). Ang mRNA, F(1/12)=9.533, p<0.01. Values are means ± 

SEM (n=4-7). 
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 3.11. Protective effect of HCA2 activation depends on COX-1 and prostaglandin D2 

Hematopoietic PGD2 synthase (Hpgds) is another member of the Mrc1 gene cluster (Mabbott 

et al, 2010) that was upregulated by cerebral ischemia but not by nicotinic acid treatment 

(Table 2). HPGDS and COX-1 are responsible for synthesizing PGD2 and its derivatives in 

macrophages (Knowles et al, 2006; Zhao et al, 2013a). In accordance with the finding that 

HCA2 activation stimulates PGD2 release from macrophages (Meyers et al, 2007b), plasma 

concentrations of PGD2 increased upon nicotinic acid treatment (Figure 3.11A). To test the 

role of PGD2 synthesis in HCA2-mediated neuroprotection we used Cox1
-/-

 mice and an 

inhibitor of HPGDS. In our stroke model, the infarct volume in vehicle-treated Cox1
-/-

 mice 

was similar as in Cox1
+/+

 animals in line with some but not all previous studies (Cheung et al, 

2002; Iadecola et al, 2001a; Zou et al, 2006). Interestingly, nicotinic acid had no effect on the 

infarct volume in Cox1
-/-

 mice whereas Cox1
+/+

 littermates were protected (Figure 3.11B). 

Furthermore, when we inhibited HPGDS in mice with the small molecule compound HQL-

79, the protective effect of nicotinic acid was partially reversed (Figure 3.11C), suggesting 

that COX1 and HPGDS mediate the effect of nicotinic acid. 
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Figure 3.11. COX-1 and PGD2 dependent protective effect of HCA2 activation. (A) PGD2 

plasma concentrations increased after nicotinic acid treatment. The time between nicotinic 

acid (100 mg/kg) treatment and blood sampling is indicated. Two-way repeated-measures 

ANOVA, F(1/15)=16.45, p=0.001. *p<0.05 (Bonferroni posthoc test). Values are means ± 

SEM (n=8-9). (B) The protective effect of nicotinic acid (100 mg/kg) was lost in Cox1
-/-

 mice. 

The infarct volume was determined 48 h after MCAO. ANOVA, F(3/30)=4.617, p<0.01. 

*p<0.05, **p<0.001 (Newman-Keuls posthoc test). Values are means ± SEM (n=7-8). (C) 

Inhibition of HPGDS by HQL-79 (30 mg/kg) partially reversed the neuroprotective effect of 

nicotinic acid (100 mg/kg). Infarct volumes were determined 48 h after MCAO. One-way 

ANOVA, F (3/36)=8.471. p=0.0002. *p<0.05 (Bonferroni posthoc test). Values are means ± 

SEM (n=10). 
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4. Discussion 

Extensive research has been carried out to understand the biology of HCA2 receptors and their 

potential implications in disease models. Nevertheless, the impact of HCA2 activation in the 

context of cerebral ischemia has not been elucidated so far. Apart from their well recognized 

metabolic role in lipid mobilization, little was known about the activation of HCA2 receptors 

in brain and the associated immune modulation especially in the context of cerebral ischemia. 

In this study we demonstrated that activation of HCA2 by ketogenic diet, BHB or nicotinic 

acid is neuroprotective. The current study demonstrated not only a protective role of HCA2 

activation in cerebral ischemia but also provide insight into how it can modulate immune cells 

to carry a neuroprotective signal to the brain after cerebral ischemia. 

4.1. HCA2-dependent neuroprotective effects of ketogenic diet and BHB 

Over 90 years of experience with ketogenic diet have provided evidence for its antiepileptic 

and neuroprotective efficacy. It is now an established treatment for pharmacoresistant 

childhood epilepsies and constitutes an experimental therapy for various neurodegenerative 

diseases. However, compliance is often low because the diet is unpalatable. Elucidating its 

neuroprotective mechanisms may guide drug development and may ultimately lead to a 

‘ketogenic diet in a pill’ (Gasior et al, 2006b).  

Here we provide evidence that the neuroprotective action of ketogenic diet and of BHB is 

mediated by HCA2 receptors (Figure 3.2, 3.3). So far it has been established that HCA2 

receptors on adipocytes are activated by the endogenous ketone body BHB and by the anti-

dyslipidemic drug nicotinic acid (Lukasova et al, 2011a; Taggart et al, 2005). However, CNS 

effects mediated by this G protein-coupled receptor were unknown. We showed here now that 
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chronic treatment with ketogenic diet prophylacticaly could generate therapeutic 

concentrations of the ketone body BHB (Figure 3.2A) that were able to activate HCA2 

receptor and thereby to protect the ischemic brain (Figure 3.2B). Pharmacological infusion of 

BHB through osmotic pumps induced a similar outcome as ketogenic diet which confirms the 

neuroprotective role of BHB. Until now, clinical trials of ketogenic diet in patients with stroke 

have not been performed although several animal studies reported a neuroprotective potential 

of ketogenic diet (Puchowicz et al, 2008; Stafstrom & Rho, 2012). 

Ketone metabolism has some distinctive features that places it as favorable energy substrate 

for the brain in various pathological conditions. In contrast to 11 biochemical steps to process 

glucose only 3 enzymatic steps are involved to produce acetyl-CoA from β-hydroxybutyrate 

metabolism (Prins, 2008). It improves mitochondrial metabolism and decreases oxygen 

consumption. Production of free radicals is also decreased by ketone metabolism since it 

decreases the reduced form of coenzyme Q and thereby decreases its reaction with O2 to form 

superoxide O2
-•
 (Prins, 2008). Cerebral blood flow has also been reported to be substantially 

increased upon ketone metabolism (Prins, 2008). Considering all these findings, it is 

speculative that multiple mechanisms are involved in mediating the neuroprotective effect of 

ketogenic diet. 

Puchowicz et al. have reported a link between the neuroprotective role of ketogenic diet and 

hypoxia inducible factor (HIF-1α) (Puchowicz et al, 2008). In their study, pretreatment with 

BHB leads to an increased content of brain succinate as well as HIF-1α and Bcl-2 after 

MCAO. In an earlier study they also found an increased brain capillary density after 3 weeks 

of treatment with ketogenic diet. HIF-1α is important in angiogenesis and anti-apoptotic 
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activity (Stafstrom & Rho, 2012). On the other hand, angiogenesis is known to play an 

important role in improving stroke outcome. In an animal model of stroke, we demonstrated 

that activation of HCA2 by nicotinic acid leads to significantly higher expression of Ang and 

and Igf1 in brain after nicotinic acid treatment (Figure.3.9C, D). These macrophagic genes 

have been involved in neuroprotection and angiogenesis (Butovsky et al, 2006; Butovsky et 

al, 2007; Kieran et al, 2008; Sebastia et al, 2009; van Es et al, 2011). 

4.2. The HCA2 agonist nicotinic acid in cerebral ischemia 

HCA2 receptors are activated by nicotinic acid, a drug that is used clinically to lower serum 

lipid concentrations (Tunaru et al, 2003). Although previous studies reported that nicotinic 

acid ameliorates ischemic brain damage (Chen et al, 2007; Shehadah et al, 2010a), its mode of 

action was unclear. Our data now show that the neuroprotective activity of nicotinic acid 

depends on HCA2, very much as that of BHB and ketogenic diet. Nicotinic acid is able to 

penetrate the blood-brain barrier (Hankes et al, 1991). Under normal conditions HCA2 

receptors are expressed by microglia. In ischemic stroke and in chronic neurodegenerative 

diseases, such as AD, PD, and ALS, monocytes/macrophages infiltrate the brain (Biju et al, 

2010; Butovsky et al, 2012a; Prinz et al, 2011a). In accordance with a recent study infiltrating 

monocytes/macrophages alone seem to have little effect on the infarct size in ischemic stroke 

(Gliem et al, 2012b). However, they express HCA2 (Figure 3.1.D) and mediate its 

neuroprotective action as demonstrated by our experiments in which bone marrow was 

transplanted. These data exclude an indirect effect secondary to altered lipid levels or 

increased release of the neuroprotective factor adiponectin from adipocytes in response to 

HCA2 activation (Digby et al, 2010; Nishimura et al, 2008). Furthermore, the experiments 
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argue against a major role of resident microglia in HCA2-induced neuroprotection because 

this cell population is not exchanged by bone marrow transplantation (Mildner et al, 2007).  

Delay in treating stroke patient is a common situation faced in clinical practice. The only 

available pharmacological approach till now to treat stroke patients is tPA. In this study we 

demonstrated now that nicotinic acid-induced activation of HCA2 receptors retained its 

efficacy even 4.5 hours after the onset of stroke. Furthermore, the functional outcome was 

improved upon nicotinic acid treatment as evaluated by three established sensorimotor tests 

(Figure 3.5). Therefore, HCA2 and the anti-lipolytic drug nicotinic acid possess immense 

therapeutic potential in treating cerebral ischemia given that nicotinic acid is already in 

clinical practice to treat dislipidemia since decades. 

4.3. Neuroprotective and anti-inflammatory role of infiltrating monocytes/macrophages  

In response to injury, inflammation being an integral part of body’s defense mechanism 

initiates cascades of events in order to set back homeostatic functions. To prevent tissue 

demise and loss of functions, coordinated titration of inflammation is critical. In the context of 

cerebral ischemia, inflammation has been viewed as one of the key contributors to 

pathophysiological conditions (Iadecola & Anrather, 2011). Monocytes/macrophages are 

immune effectors cells and appear in the ischemic brain 24-48 hours after ischemia (Iadecola, 

1997). The plastic nature of macrophages sets them apart from other immune cell populations 

and allows them to efficiently adapt to environmental signals. The pro-inflammatory nature of 

monocytes/macrophages is critical for host defense provided that they are well balanced and 

regulated (Mosser & Edwards, 2008). Alternatively activated macrophages are anti-

inflammatory in nature and linked to wound healing and repair mechanism (Gordon, 2003; 
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Lawrence & Natoli, 2011). The role of monocytes/macrophages in cerebral ischemia as well 

as in other neurodegenerative diseases is critical (Biju et al, 2010; Butovsky et al, 2012b; 

Prinz et al, 2011b). In an elegant study, Gliem et al. demonstrated how a specific population 

of monocytes/macrophages critically determines outcome of lesion-associated inflammation 

(Gliem et al, 2012a). They provided evidence that inflammatory monocytes are recruited 

within 24 hours of cerebral ischemia in a CCL2-dependent manner and transform locally into 

a non-inflammatory state which then plays a role in maintaining the integrity of the 

neurovascular unit following cerebral ischemia (Gliem et al, 2012a). Monocytes/macrophages 

are heterogeneous in nature having different subtypes attributed to specific roles in a specific 

tissue environment. For example, highly mobile Ly-6C
hi

CCR2
+ 

monocytes are inflammatory 

in nature and are rapidly recruited to inflamed tissues, whereas Ly-6C
lo

CCR2
-
 monocytes are 

resident and believed to be important for patrolling blood vessels (King et al, 2009; Mildner et 

al, 2009; Prinz et al, 2011b). In the current study, we found an increased infiltration of 

CD11b
+
Ly-6C

hi
 monocytes in the ischemic hemisphere where as ischemia had no significant 

effects on CD11b
+
Ly-6C

lo
 monocytes (Figure 3.8). 

Given the complexity of macrophage activation, a number of markers have been identified to 

investigate macrophage polarization and its ultimate functions (Gordon, 2003; Mosser & 

Edwards, 2008). An anti-inflammatory role of monocytes/macrophages (M2) in cerebral 

ischemia has been described in many different animal models, most of which have 

demonstrated an alleviation of the pro-inflammatory M1 phenotype while promoting the M2 

phenotype in different stages of ischemia (Frieler et al, 2011; Fumagalli et al, 2013; Hu et al, 

2012; Xu et al, 2012). 
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In our experimental paradigm, we observed an infiltration of CD11b
+
 and Iba1

+
 

monocytes/macrophages in the brain 48 hours after cerebral ischemia (Figure 3.1D and 3.6). 

Treatment with nicotinic acid reduced the number of infiltrating monocytes/macrophages as 

revealed by reduction in mRFP
+
 cells (Figure 3.6 B, C). By generating bone marrow chimers 

we confirmed that HCA2 receptors present in peripherial monocytes/macrophages account for 

this effect. In conjunction with this project, Sajjad Muhammad investigated the effect of 

nicotinic acid treatment in CD11b-DTR mice after cerebral ischemia (unpublished). As 

reported previously, ablation of CD11b
+
 cells by itself did not alter the infarct size (Gliem et 

al, 2012b). However, when monocytes/macrophages had been ablated, nicotinic acid no 

longer reduced the infarct volume, demonstrating that the neuroprotective effect of nicotinic 

acid depends on monocytes/macrophages.  

We observed an increased expression of Mrc1 and Fizz1 (Retnla), marker gene for M2 

polarized macrophages when we activated HCA2 receptors with its agonist nicotinic acid 

(Figure 3.9 A, B). This suggests a partial M2 polarization since other marker genes were 

unaffected (Table 3.2)  

Mrc1 is part of a specific cluster of genes that are coordinately expressed mainly in 

macrophages and bone marrow-derived dendritic cells (Mabbott et al, 2010). We observed a 

regulated expression of many of the other member genes in brain upon nicotinic acid 

treatment (Table 3.2) including Igf1 and Ang (Figure 3.9 C, D) which are well known to 

induce neuroprotection and angiogenesis, respectively (Butovsky et al, 2006; Butovsky et al, 

2007; Kieran et al, 2008; Sebastia et al, 2009; van Es et al, 2011). We observed similar 

findings in macrophages isolated from the ischemic brain (Figure 3.10A, B). Therefore, in our 
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study activation of HCA2 by nicotinic acid released neuroprotective factors and offered an 

anti-inflammatory environment by partially polarizing monocytes/macrophages after cerebral 

ischemia. 

4.4. Cyclooxygenase 1 (COX-1) and prostaglandin D2 (PGD2) dependent 

neuroprotection by monocytes/macrophages 

The pro-inflammatory mediator COX is involved in the progression of stroke associated 

damage (Ahmad et al, 2010). Owing to the predominant expression in microglia, the 

constitutively expressed isoform COX-1 was suggested to be the major player in mediating 

the inflammatory response (Choi et al, 2009). Pharmacological inhibition of this enzyme leads 

to reduced neuronal injury and oxidative stress during transient global cerebral ischemia 

(Candelario-Jalil, 2003) although Iadecola et al. reported increased susceptibility to focal 

cerebral ischemia upon genetic deletion of Cox-1 (Iadecola et al, 2001b). Due to these 

discrepancies in mediating inflammatory cascade, COX-1 warrants further investigations 

detailing its crucial role in cerebral ischemia. 

Using genetic deletion of Cox-1 and pharmacological inhibition of hematopoietic 

prostaglandin D synthase (HPGDS) by the small molecule HQL-79, we provided evidence 

that the neuroprotective effect of HCA2 activation depends on COX-1 and HPGDS (Figure 

3.11 B, C). Our data suggest a new concept by which PGD2 release from 

monocytes/macrophages mediates the neuroprotective effect of HCA2 receptors. 

HPGDS is downstream of COX-1 and responsible for producing prostaglandin D2 from its 

precursor PGH2. Hanson et al. and others reported that HPGDS is the key enzyme that 

synthesizes PGD2 in response to nicotinic acid treatment (Hanson et al, 2010; Song et al, 
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2012). In the normal brain, microglia expresses HPGDS (Liu et al, 2009; Taniguchi et al, 

2007b). However, it is also known to be expressed in macrophages, dendritic cells, 

Langerhans cells, mast cells, Th2 cells, and megacaryocytes (Gandhi et al, 2011; Joo & 

Sadikot, 2012). Using bone marrow chimers exhibiting enhanced green fluorescence protein 

(EGFP) expression in bone marrow/blood-derived monocytes/macrophages Liu et al. 

demonstrated that 3 days and 7 days after reperfusion infiltrating monocytes/macrophages 

expresses HPGDS. Treatment with the inhibitor of HPGDS led to larger infarct volume (Liu 

et al, 2009)  

PGD2 plays an inflammatory role in peripheral tissues. It induces airway inflammation, 

inhibits platelet aggregation and induces peripheral vasodilation, glycogenolysis, allergic 

reaction, and intraocular pressure reduction (Ahmad et al, 2010; Taniguchi et al, 2007b). 

However, it is produced in the brain and is known to mediate homeostatic functions in 

regulating sleep, body temperature, nociception, and neuromodulation (Ahmad et al, 2010). 

Neuroprotective effects of PGD2 have been demonstrated. Taniguchi et al. showed that PGD2 

is protective in hypoxic ischemic injury and this effect is mediated by DP1, a Gs protein-

coupled receptor expressed in neurons and endothelial cells (Taniguchi et al, 2007b). Genetic 

deletion of DP1 resulted in increased susceptibility to ischemic brain damage which could be 

prevented by pharmacologic activation of the DP1 receptor (Ahmad et al, 2010).  

Meyers and colleagues reported that activation of HCA2 stimulates PGD2 release from 

macrophages which was supported by our findings since we also observed increased plasma 

PGD2 concentrations when mice were treated with nicotinic acid (Figure 3.11.A) (Meyers et 

al, 2007a). In line with others, the infarct volume of vehicle-treated Cox-1
-/-

 mice was similar 
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as that of Cox-1
+/+

 mice although Iadecola et al. reported Cox-1
-/-

 as more susceptible to 

ischemic insults (Cheung et al, 2002; Iadecola & Alexander, 2001; Zou et al, 2006). This 

discrepancy could be attributed to different time points of infarct measurement since Iadecola 

et al. measured the infarct volume at 24 hours after ischemia. 

Production of PGD2 and its downstream ‘double-dehydration’ product 15-deoxy-Δ
12,14

-

prostaglandin J2 (15d-PGJ2) is favored over PGE2 during the resolution phase of inflammation 

(Gandhi et al, 2011) . Previous work has shown that PGD2 helps to resolve inflammation 

(Rajakariar et al, 2007). In addition, it has neuroprotective effects (Masuda et al, 1986; 

Taniguchi et al, 2007a). PGD2 has a short half-life in tissues and is spontaneously converted 

into the cyclopentenone 15d-PGJ2, which inhibits the IκB kinase (IKK), the main activator of 

the transcription factor NF-κB and a key player in ischemic brain damage (Herrmann et al, 

2005b; Rossi et al, 2000). It can also dampen NF-κB dependent transcriptional activation by 

blocking nuclear translocation and DNA binding of NF-κB (Surh et al, 2011). 15d-PGJ2 is 

also an endogenous agonist of PPARγ, a transcription factor with neuroprotective properties 

(Ridder & Schwaninger, 2012; Zhao et al, 2009). Via this mechanism nicotinic acid is able to 

stimulate PPARγ in human monocytes in vitro (Knowles et al, 2006). Macrophages express 

PPARγ profusely and upon differentiation of monocytes into macrophages its expression is 

quickly induced (Bouhlel et al, 2007). Activation of PPARγ could lead to the generation of a 

specific macrophage population with a M2 phenotype and could exert pronounced anti-

inflammatory properties on M1 macrophages by reprogramming mononuclear precursor cells 

in vivo (Bouhlel et al, 2007). Furthermore, it has been reported that 15d-PGJ2 can stimulate 

angiogenesis (Kim & Surh, 2008), providing a potential explanation for how nicotinic acid 

treatment enhanced angiogenesis in the ischemic brain (Chen et al, 2007). 
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4.5. Proposed model of HCA2-mediated neuroprotection in cerebral ischemia  

Based on the current findings described in this study, we propose the following mechanism by 

which HCA2 receptors mediate its neuroprotective role in cerebral ischemia (Figure 4.1). 

After an ischemic insult, peripheral monocytes/macrophages infiltrate the brain through a 

leaky blood-brain barrier. Activation of HCA2 receptors present in these peripheral 

monocytes/macrophages by agonist binding would lead to activation of phospholipase C-β 

(PLCβ) via βγ-subunit of the receptor. Inositol-1,4,5,-triphosphate (IP3) produced by PLCβ 

would release intracellular calcium which induces the activation of phospholipase A2 (PLA2). 

Arachidonic acid (AA) is synthesized and eventually metabolized to PGD2 by the action of 

COX-1 and HPGDS. PGD2 itself may lead to neuroprotection and maintain an anti-

inflammatory environment. However, PGD2 is further metabolized to the cyclopentenone 15-

d-PGJ2, which is a ligand of PPARγ. Activation of PPARγ is neuroprotective. Furthermore, 

15-d-PGJ2 inhibits IKK, a key enzyme responsible for activating NF-κB and thereby 

maintains an anti-inflammatory environment by dampening pro-inflammatory signaling.  
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Figure 4.1. HCA2-mediated neuroprotection in cerebral ischemia. Agonist binding to HCA2 

leads to synthesis of AA from which PGG2 is formed by the action of COX-1 and then HPGDS 

produce PGD2 from is precursor. PGD2 further metabolized to 15d-PGJ2 which inhibits IKK. 

15d-PGJ2 also could activate PPARγ which is neuroprotective. 

4.6. Implication of HCA2 activation  

The current study demonstrated that HCA2 activation induces a neuroprotective repertoire of 

monocytes/macrophages that can reduce ischemic brain damage. Infiltration of 
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monocytes/macrophages into the diseased brain has been noted in several neurodegenerative 

disorders (Prinz et al, 2011a), which suggests that the findings we obtained in a model of 

ischemic stroke may have implications that extend far beyond this specific disease. 

Importantly, the HCA2 receptor is a good target for drug development, with some agonistic 

compounds already in clinical use to lower plasma lipids and others showing evidence of a 

superior potency or of fewer side effects than nicotinic acid during clinical trials (Lauring et 

al, 2012; Offermanns et al, 2011; Shen & Colletti, 2010). Thus, the vision of a ‘ketogenic diet 

in a pill’ may be within reach. A synthetic HCA2 agonist with a favorable pharmacological 

profile may bring this therapeutic principle to the large population of patients suffering from 

stroke and neurodegenerative diseases. In conclusion, these data suggest a novel concept in 

which HCA2 receptors provide the pharmacological basis for modulating 

monocyte/macrophage function and redirecting these important cells into a neuroprotective 

pathway.  

 

4.7. Area of uncertainty 

We found that ketogenic diet, BHB and nicotinic acid reprogrammed monocytes/macrophages 

into a phenotype that offered neuroprotection in cerebral ischemia. This protective effect was 

dependent on COX-1 and HPGDS-mediated PGD2 production. However, there are certain 

issues that are still illusive and are not explained by the current study and warrant further 

investigations. Although we demonstrated that Cox-1-dependent PGD2 production is 

responsible for neuroprotection, it was not clear whether infiltrated mononuclear cells express 

COX-1.  
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In our experiments, we documented increased PGD2 production in plasma. It is possible that 

brain PGD2 could play a key role as well. Therefore, measurement of brain PGD2 needs to be 

performed to identify the critical source of PGD2. 

While COX-1 is constitutively expressed in almost all tissues, the COX-2 isoform is an 

inducible form that is induced by inflammatory stimuli (Choi et al, 2009). We demonstrated 

in our study that nicotinic acid-induced PGD2 production was COX-1-dependent. However , 

we cannot exclude a possible role of COX-2 since COX-2 has also been reported to be 

expressed constitutively in the brain, especially in hippocampal and cortical glutamatergic 

neurons, and to play a role in neurovascular coupling during functional hyperemia (Choi et al, 

2009). Thus, it is important to investigate the role of COX-2 in brain since COX-2 could also 

be linked to anti-inflammatory and neuroprotective properties (Choi et al, 2009). 
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Abbreviations 

  

AA Arachidonic acid 

AcAc Acetoacetate 

AC Adenylyl cyclase 

AChE Acetylcholinesterase 

AD Alzheimers diseases 

ALS Amyotrophic lateral sclerosis 

AMV Avian Myeloblastosis Virus 

ANOVA Analysis of variance 

APC Allophycocyanin 

ATP Adenosine tri phosphate 

BAC Bacterial artificial chromosome 

BBB Blood-brain barrier 

Bcl2 B- cell lymphoma 2 

BHB β-hydroxybutyrate 

BlK Blank 

BSA Bovine serum albumin 

cAMP cyclic adenosine monophosphate 

CD11b Cluster of designation 11 b 

cDNA Complementary deoxyribonucleic acid 

CETP Cholesteryl ester transfer protein 

CNS Central nervous system 

COX-2 Cyclooxygenase-2 

DAMP Damage-associated molecular pattern molecules 

DAPI 4´,6-Diamino-2-phenylindole 

DMEM Dulbecco´s modified eagle medium 

dNTP Deoxyribonucleotide triphosphate 

dPBS Dulbecco's phosphate-buffered saline 

EIA Enzyme immunoassay 

FDA Food and Drug Administration 

FFA Free fatty acid 

Fizz1 Found in inflammatory zone 1 

GFAP Glial fibrilatory acedic protein 

GM-CSF Granulocyte macrophage - colony stimulating factor 

GPCRs G protein-coupled receptors   

GPR109A G protein-coupled receptor 109 A 

HCA2 Hydroxyl-carboxylic acid receptor 2 

HDL High density lipoprotein 

HIF-1α Hypoxia inducible factor 1 

HM74 A  Human receptor 74 A 
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HPGDS Hematopoietic prostaglandin D synthase 

HQL-79 4-(Diphenylmethoxy)-1-(3-2H-tetrazol-5-yl)propyl]-piperidine 

HSL Hormone sensitive lipase 

Iba 1 Ionized calcium binding adaptor molecule 1 

IC Ischemic core 

IFNγ Interferon gamma 

IGF-1 Insuline like growth factor-1 

IKK IκB kinase 

IL-10 Interlukin-10 

IL-13 Interlukin -13 

IL-4 Interlukin-4 

iNOS Inducible nitric oside synthase 

IP3 Inositol-1,4,5-triphosphate 

IκB Inhibitors of κB 

KD Ketogenic diet 

LH Left hemisphere 

MCA Middle cerebral artery 

MCAO Middle cerebral artery occlusion 

M-CFU Myeloid colcony forming unit 

M-CSF Macrophage colony stimulating factor 1 

MDP Macrophage and dendritic cell progenitor 

MOX Metoxime 

Mrc1 Macrophage mannose rceptor 1 

mRFP monomeric red fluorescence protein 

mRNA Messenger ribonucleic acid 

NAD Nicotinamide adenine dinucleotide 

NADP Nicotinamide adenine dinucleotide phosphate 

ND Normal diet 

NeuN Neuronal nuclei 

NFκ-B Nuclear factor kappa B 

NSB Non specific binding 

NT Normal tissue 

PBMs Peripheral blood-mono-nuclear cells 

PBS Phosphate-buffered saline 

PD Perkinson's diseases 

PE R-Phycoerythrin 

PFA Paraformaldehyde 

PGE2 Prostaglandin E 2 

PGF2 Prostaglandin F 2 

PGG2 Prostaglandin G 2 

PGH2 Prostaglandin H 2 
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PGHS prostaglandin endoperoxide H synthase 

PGI2 Prostaglandin I 2 

PGJ2 Prostaglandin J 2 

PGs Prostaglandins 

PKA Protein kinase A 

PLA2 Phospholipase A 2 

PLC-β Phospholipa se C beta 

PPARγ Peroxisome proliferator-activated receptor gamma 

PtdSer Phosphatidyl serine 

PUMA-G Protein-upregulated in macrophages by INFγ 

RH  Right hemisphere 

RT-PCR Reverse transcriptase polimerase chain reaction  

SD Silver deficit 

SEM Standard error of mean 

TA Total activity 

TG Triglyceride 

TGFβ Transforming growth factor beta 

TIM4 T cell immunoglobulin and mucin domain-containing milecule 4 

TLRs Toll like receptors 

TNFα Tumor necrosis factor alpha 

tPA Tissue plasminogen activator 

VLDL Very low density lipoprotein 

Volinfarct Infarct volume 

YM1 Chitinase 3-like-3 
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