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Summary  I 

Summary 

In human colon cancer only a small subfraction of all tumor cells is able to rebuild the 

tumor in immunodeficient mice. It has been hypothesized that the proliferative activity 

of these tumor initiating cells (TIC) may differ from the bulk of the tumor cells and that 

mitotic quiescence of TIC may contribute to chemotherapy resistance or relapse after 

treatment. By genetic marking, it has previously been shown that a variable proportion 

of all human TIC contributed to tumor xenograft formation only late after serial 

transplantation suggesting that these delayed contributing TIC indeed might have been 

quiescent in primary recipient mice.  

In order to investigate the cell cycle and proliferative activity of human colon TIC in 

vitro and in vivo, human colon cancer patient samples were dissociated and cultured 

under serum free conditions favoring the outgrowth of tumor spheres enriched for TIC.  

The CFSE label-retaining assay was used to analyze the proliferative activity of human 

colon TIC in vitro. It allowed discrimination of fast (F), slow (S) and rarely dividing (R) 

cell fractions suggesting that a rarely dividing population of human colon TIC might 

exist in vivo as well. Cell surface markers previously associated with tumor initiating 

potential (CD133, CD44, EpCAM and CD166) were equally expressed in all 

proliferative subfractions. A limiting dilution assay confirmed the self-renewal potential 

of spheroid cells. Furthermore, it revealed that the frequency of sphere forming cells 

(SFC) was similar in the fast, slow and rarely dividing fraction within individual sphere 

lines, demonstrating that the vast majority of all SFC were rapidly cycling in vitro.  To 

assess the in vivo tumor initiating potential and self-renewal ability, equal cell numbers 

of sorted R, S and F cells were transplanted into immunodeficient mice. All sorted cell 

fractions of three patients formed tumors, irrespective of their proliferative kinetics in 

vitro. Moreover, the majority of cells within serially transplanted tumors originating 

from CFSE+ fractions lost fluorescence intensity indicating that they actively cycled 

after transplantation. Hoechst/Pyronin-staining of dissociated sphere cells allowed 

investigation of their cell cycle status. Equal numbers of G1-, S/G2/M- and G0-cells were 

transplanted under the kidney capsule of immunodeficient mice. Each cell fraction 

comprised self-renewing, human colon TIC as shown by a serial transplantation assay. 

In order to investigate the proliferative activity of human colon TIC within an 

established tumor in vivo, intra-tumoral cell divisions were tracked using a genetic high 

resolution label-retaining assay. A tetracycline-regulated H2B-GFP expression system 

was implemented into spheroid cells by lentiviral transduction prior to transplantation. 

H2B-GFP-expression was suppressed after establishment of the tumor 

microenvironment. Further cell divisions dilute the GFP-label and thereby enable 
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analysis of the cell’s proliferative activity. FACS analysis of formed tumors revealed 

fast, slow and rarely dividing cell fractions in vivo. All cell fractions harbored self-

renewing, human colon TIC as shown by serial transplantation. Interestingly, only 

quiescent TIC showed a polyclonal contribution to tumor formation in mice. A 

proportion of quiescent TIC might have been activated to proliferate upon 

chemotherapeutic treatment.  

This study demonstrates that human colon cancer harbours tumor initiating cells with 

differing cell cycle status and proliferative activity. Self-renewing colon TIC were 

present in all cell cycle phases demonstrating that the tumor initiating potential is not 

restricted to a dormant cell cycle status. A rarely dividing population of human colon 

TIC derived from different patient samples exists in vitro and in vivo. However, the 

majority of colon TIC rapidly divided in sphere cultures as well as in vivo. Colon TIC 

were found to be enriched in the quiescent population and were recruited to tumor 

formation upon chemotherapeutic treatment. Our results provide basis for a better 

understanding of quiescence and proliferation of human colon TIC. This will hopefully 

lead to the development of innovative treatment strategies directed against colon cancer 

initiating cells. 

Keywords: colon cancer initiating cell, quiescence, dormancy, chemotherapy, 

resistance 

 

 

 

 

 

 



Zusammenfassung  III 

Zusammenfassung 

Nur eine kleine Fraktion der Zellen des humanen kolorektalen Karzinoms ist in der 

Lage, Tumore in serieller Transplantation in immundefizienten Mäusen zu bilden. 

Bisher wurde angenommen, dass die proliferative Aktivität solcher Tumor-initiierender 

Zellen (TIC) sich von der des Großteils der Tumorzellen unterscheidet. Ein mitotischer 

Ruhezustand, die sog. Quieszenz, trägt möglicherweise zu Therapieresistenz gegenüber 

Chemotherapeutika und Wiederkehr der Krankheit nach einer Therapie bei. Genetische 

Markierungsarbeiten haben gezeigt, dass eine humane TIC-Subpopulation erst zu 

späteren Zeitpunkten zum Tumorwachstum in transplantierten Mäusen beigetragen hat 

und dass sie anfangs inaktiv waren. Diese verzögert beitragenden TIC (DC-TIC) waren 

daher möglichweise quieszent und wurden reaktiviert. 

Um das Zellzyklus- und Proliferationsverhalten humaner Kolonkarzinom-initiierender 

Zellen in vitro und in vivo zu untersuchen, wurden Sphäroidkulturen aus primärem 

Kolonkarzinom-Patientengewebe etabliert, die mit TIC angereichert sind. Die 

proliferative Aktivität der  TIC wurde in vitro mittels CFSE-Färbung untersucht. Es 

konnten schnell (F), langsam (S) und kaum teilende (R) Kolon-TIC unterschieden 

werden, was die Existenz ruhender Kolon-TIC in vivo impliziert. Außerdem konnte 

keine Anreicherung von CD133, CD44, EpCAM oder CD166 in einer der proliferativen 

Fraktionen festgestellt werden. Eine Verdünnungsreihe vereinzelter Sphäroidzellen 

belegte deren Selbsterneuerungspotential und zeigte weiterhin dass die Frequenz von 

sphärogenen Zellen (SFC) inter-fraktionär ähnlich ist. Die Mehrheit der SFC 

proliferierte aktiv in vitro. Mittels durchflusszytometrischer Zellsortierung wurden 

schnell, langsam und kaum teilende TIC aufgetrennt und anschließend in 

immundefiziente Mäuse transplantiert um Selbsterneuerungsfähigkeit und Tumor-

initiierendes Potential in Abhängigkeit von der proliferativen Aktivität in vivo zu 

untersuchen. F-, S- und R-Zellen trugen zum Tumorwachstum in Mäusen bei. Die 

Mehrheit der angewachsenen Tumorzellen, auch wenn als reine CFSE+-Fraktion 

transplantiert, zeigte kein CFSE mehr. Demnach hat sich der größte Teil der Zellen nach 

Transplantation aktiv geteilt. Des Weiteren wurde der Zellzyklusstatus von dissoziierten 

Späroidzellen mittel Hoechst/Pyronin-Färbung bestimmt. Die serielle Transplantation 

von G1-, S/G2/M- und G0-Zellen zeigte, dass jeder Zellzyklusfraktion 

selbsterneuerungsfähige humane Kolon-TIC beinhaltete. Das proliferative Verhalten 

humaner Kolon-TIC innerhalb eines bereits etablierten Tumors wurde an Hand einer 

genetischen Markierung von Kolon-TIC untersucht. Sphäroidzellen wurden mittels 

lentiviraler Transduktion mit einem Tetrazyklin-induzierbaren H2B-GFP-

Expressionssystem ausgestattet und anschließend in Mäuse transplantiert.  Nach 

Etablierung des Tumormilieus wurde die H2B-GFP-Expression mittels Tetrazyklingabe 
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über das Trinkwasser der Mäuse inhibiert. Weitere Zellteilungen transduzierter Zellen 

führen zu einer Verdünnung des GFP-Markers und lassen daher eine Analyse der 

proliferativen Aktivität solcher Zellen zu. Die durchflusszytometrische Analyse 

gewachsener Tumoren bestätigte eine schnell, langsam und kaum teilende 

Zellpopulation innerhalb des Tumors in vivo. Die proliferativen Fraktionen zeigten 

keine Unterschiede hinsichtlich Selbsterneuerungspotentials während serieller 

Transplantation. Des Weiteren konnte die ruhende Kolon-TIC-Fraktion durch 5-

Fluorouracil-Behandlung der Mäuse angereichert werden. Möglichweise wird eine 

Subfraktion ruhender TIC durch Chemotherapiegabe zur Teilung angeregt. 

Diese Studie zeigt, dass das humane Kolonkarzinom TIC mit unterschiedlichem 

Zellzyklusstatus und Teilungsverhalten beinhaltet. In allen Zellzyklusphasen waren 

selbst-erneuernde TIC zu finden. Dies beweist, dass das Tumor-initiierende Potential 

nicht auf eine ruhende Zellzyklusphase beschränkt ist. Eine kaum teilende TIC-

Population existiert tatsächlich in vitro und in vivo. Jedoch war der größte Teil an TIC 

schnell teilend in Sphäroidkulturen und Mäusen. Die klonalen Analysen implizieren, 

dass Kolon-TIC in der ruhenden Fraktion in vivo angereichert sind und durch 5-

Fluorouracil-Behandlung aktiviert wurden um  zum Tumorwachstum beizutragen. 

Unsere Ergebnisse tragen zu einem besseren Verständnis von Quieszenz und 

Proliferation humaner Kolon-TIC bei. Dies wird hoffentlich zu der Entwicklung von 

innovativen Behandlungsstrategien führen, die spezifisch gegen Kolonkarzinom-

initiierende Zellen gerichtet sind. 

Schlüsselwörter: Kolonkarzinom, Quieszenz, Ruhezustand, Chemotherapie, Resistenz 
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1 Introduction 

1.1 Colon and colonic epithelium 

As the physically last part of the digestive system, the colon is mainly responsible for 

concentration of digestive waste products and their transport. It is densely populated 

with microorganisms which degrade previously undigested material from the chyme1. 

Water, fatty acids, electrolytes and some vitamins are absorbed by epithelial cells2. The 

colonic epithelium is organized in crypt-like units3 (Figure 1): at the bottom of each 

crypt, adult stem cells and mesenchymal cells surrounding the crypt-base can be found 

making up the stem cell niche. Intestinal stem cells (ISCs) actively proliferate and give 

rise to transit-amplifying cells (TAC) migrating upwards among the crypt4. At the 

crypt’s top they exit the cell cycle and reach a highly differentiated, post-mitotic state 

fulfilling determined functions: enterocytes are responsible for absorption of nutrients 

and water whereas enteroendocrine and goblet cells are involved in secretion of 

hormones and mucus5-7. At the end of their life span, they undergo apoptosis and are 

shed into the gut lumen. The alternation of contraction and relaxation of muscles in the 

colonic wall is responsible for propelling its content (peristalsis)8, 9. 

 

Figure 1: The human colon.  
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The inner layer of the colonic wall is organized in finger-like invaginations called crypts. Each crypt 

comprises intestinal stem cells at its bottom giving rise to transient amplifying cells. The differentiated 

cells at the top fulfill absorbing and secreting functions. 

The concept of adult stem cells required for human tissue maintenance and organ 

homeostasis is well established. Adult stem cells are characterized by two distinct 

features: they have the ability to self-renew and are multi-potent meaning that they can 

generate all differentiated cells of the corresponding tissue. Stemness can be 

experimentally approved either by lineage tracing or transplantation. In the 

hematopoietic system, the golden proof of stemness is “lifelong reconstitution of 

hematopoiesis in sublethally irradiated mice”10, 11. In the intestine, two stem cell models 

have been proposed (Figure 2): Potten et al. suggested that ISCs can be found at the +4 

position, meaning 4 cells upwards from the crypt bottom (“+4 position model”)12. In the 

same year, Leblond and Cheng proposed the “stem cell zone model” showing that all 

differentiated colonic cells originate from multi-potent colon stem cells residing more 

closely to the crypt bottom (crypt base columnar cells, CBC) with intermingled cells 

resembling paneth cells from the small intestine6. Experimental evidence for the clonal 

offspring of intestinal crypts has been provided in mice13-15. In 1996, Novelli et al. then 

demonstrated that human colonic crypts are clonal populations as well16.  
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a) +4 position model 

 

b) Stem cell zone model 

 

Figure 2: Intestinal stem cell models. 

Intestinal stem cells are proposed to reside at the +4 position (a) or to be distributed along the bottom of 

the crypt (b). Adapted from Barker et al., 200817. 

Proliferation and differentiation in the crypt are mainly governed by Wnt signaling18 

(Figure 3): Wnt proteins bind to cell surface receptors of the Frizzled and LRP families. 

The signal is transduced to β-catenin which then accumulates in the nucleus and forms a 

complex with TCF. This complex acts as a transcriptional activator of target genes 

which have been identified by microarray-based expression studies19. In addition, these 

experiments showed that only a subset of these genes was expressed in ISC. In vivo 

lineage tracing has shown that Bmi1 expression identifies ISCs in the +4 position20 

whereas Lgr5 has been found on CBC21. Recent data indicates that these two stem cell 

populations might even convert into each other22, 23. Expression levels of EphB2, Ascl2, 

OlfM4, Musashi-1 and Prominin-1 were shown to be associated with intestinal stem 
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cells24-28 but the expression of the two latter was additionally found in the TAC 

compartment29. Moreover, transit-amplifying cells showed reduced expression levels of 

Lgr5 and EphB224 indicating that a unique ISC signature remains elusive. 

 

Figure 3: The Wnt canonical pathway.  

(Left) Without Wnt stimulation, β-catenin is degraded in the cytoplasm by a degradation complex 

composed of APC, Axin, GSK3β, and CKI. Expression of target genes is blocked by a complex of TCF 

factors and transcriptional repressors. (Right) Wnt stimulation leads to destabilization of the degradation 

complex and β-catenin accumulates in the nucleus where it activates transcription of target genes. SFRP – 

secreted frizzled-related protein 1, WIF – WNT inhibitory factor, Dkk – Dickkopf, LRP – low-density 

lipoprotein receptor-related protein, Fz – frizzled receptor, HSGP – heparan sulfate proteoglycan, Axin – 

Axin 1 , β-cat – β-catenin, APC – adenomatous polyposis coli, CKI – Casein kinase 1, GSK3β – 

glykogen synthase kinase 3β, β-TrCP – β-transducin repeat containing protein,  ICAT – inhibitor of beta-

catenin and TCF-4, Tcf – T-cell factor, Dsh – Dishevelled, PP2A – protein phosphatase 2A, Pygo – 

Pygopus, Lgl – lethal giant larvae, CBP – CREB binding protein. Adapted from Gregorieff et al. 200530.  

Quiescent stem cell pools have been demonstrated in the hematopoietic system31, 

brain32, prostate33 and pancreas34 where they are responsible for tissue maintenance and 

its longevity. In contrast to these adult stem cell systems, at least the vast majority of 

colonic stem cells are actively-cycling and the epithelial layer is renewed within 4-5 

days35. TAC divide every 12-16h allowing the fast cell turnover and maintenance of the 

colonic epithelium36. However, quiescence is also supposed to play an important role in 
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stem cell maintenance via inhibition of differentiation and by limiting the risk of 

accumulating mutations37-39. Pericryptal fibroblasts from the intestinal stem cell niche 

are also assumed to influence proliferation via secretion of growth factors and 

cytokines40. Expression profiling demonstrated that genes involved in BMP, EPH and 

MYC signaling pathways are involved in the maturation of colonic crypts41. Acquired 

mutations in such regulatory genes lead to deregulated proliferation or misleaded 

differentiation which can finally result in colorectal cancer. 

1.2 Colorectal Cancer 

Colorectal cancer (CRC) is one of the most frequent cancers among men and women 

worldwide42. It is a progressive disease where accumulation of mutations in a cell’s 

genome leads to transformation of normal cells into malignant ones. More than 90% of 

the cases are diagnosed adenocarcinoma originating from the epithelial mucosa43. 

Lymphoma, squameous cell carcinoma, malignant melanoma, neuroendocrine tumors 

and sarcomas are rarely accounting for primary colorectal tumors44-48.  

They all share distinct malignant properties: uncontrolled proliferation of cells, invasion 

into neighbouring tissues and metastasis formation in later stages. Causes of cancer 

differ widely but they all lead to genetic mutations in the normal cell’s genome. A 

deficient DNA repair machinery then causes accumulation of such mutations in all cell 

descendants.  

1.2.1 Cancerogenesis 

The majority of CRC cases is associated with genetic alterations and mutations of genes 

involved in the Wnt pathway49. It is well accepted, that colorectal cancer is driven by 

multiple mutations accumulating over disease progression and a long period of time. 

Whole genome sequencing of human colon cancers revealed that only few mutations 

among many are common in different patient-derived samples50, 51. In 1990, Fearon and 

Vogelstein already published the adenoma-carcinoma model which is the well accepted 

basis for a genetic model of colon cancerogenesis10, 52 (Figure 4): inherited or acquired 

mutations in the tumor suppressor gene adenomatous polyposis coli (APC) lead to loss 

of APC protein function. APC is part of an inactivation complex preventing transport of 

β-catenin into the nucleus where it acts as a transcription factor for different Wnt target 

genes like CCND1 encoding cyclin D153. In some cases, the β-catenin-encoding gene 

CTNNB1 is mutated itself making the protein insensitive towards degradation54. In 

addition, mutations in genes encoding for components of the degradation complex lead 

to insufficient β-catenin-degradation55. Aberrant degradation of cytoplasmic β-catenin 

leads to its nuclear accumulation and activates the Wnt signaling pathway (Figure 3). 

Wnt signaling is usually only active in stem cells at the crypt bottom whereas it 
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gradually decreases upon migration of cells upwards30. Deregulated Wnt signaling 

drives the cells into proliferation and abnormal cell descendants replace the normal 

colonic epithelium. A benign cell mass is formed which is called adenoma. According 

to Fearon and Vogelstein, increasing genomic instability and further oncogenic hits in 

KRAS, SMAD 4 and TP53 drive the progression from a benign adenoma to a malignant 

carcinoma.  

 

Figure 4: Model of intestinal cancer initiation and progression.  

Different mutations drive the progression from a benign adenoma to a malignant carcinoma. Some colon 

cancer cells can acquire the ability to leave the primary tumor site and form metastasis in distant organs. 

Adapted from Rizk et al. 201256. 

Widening the Fearon-Vogelstein-model of colorectal cancer initiation and progression, 

the Cancer Genome Atlas Network very recently published data obtained from a large-

scale genomic analysis of colon and rectal cancer patient samples57: in addition to the 

already published colorectal cancer causing mutations, the authors found several other 

frequently mutated genes, such as ARID1A, SOX9 and FAM123B, as potential drivers of 

the disease. Furthermore, colon and rectal cancers were classified as one cancer since 

both types showed similar patterns of genomic alterations. KRAS was one of the first 

oncogenes studied in CRC and was found to be mutated in 40-50% of the cases58, 59. Its 

mutations mainly lead to a constantly active KRAS protein which is involved in the 

translation of growth factor signaling resulting in proliferation60, 61. SMAD4 and TP53 

act as tumor suppressor genes. SMAD4 protein plays an important role in TGF 

(transforming growth factor)-β signaling where expression of target genes inhibits cell 

cycle progression. Loss of SMAD4 function confers insensitivity towards growth 

inhibition via TGF-β signaling62. Many colon cancers show a depletion on chromosome 

17p which comprises the TP53 gene63-65. Its product, the p53 protein, is a key player in 

regulation of apoptosis and also in its induction upon DNA damage65, 66. Depletion of 

p53 consequently helps cells to escape from apoptosis and increases genomic 

instability. ARID1A is part of the chromatin remodelling complex SNF/SWI which 

plays a role in cell differentiation, development, and tumor suppression67. Its functional 

loss has been suggested to contribute to a variety of different neoplasms68. The protein 

SOX9 is involved in differentiation processes in the ISC niche69, 70 and FAM123B 
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negatively regulates Wnt signaling71 suggesting a tumor suppressive function for both 

proteins.  

The genomic instability described above accounts for 85% of all colorectal cancers. 

About 15% of all colorectal cancer cases are defined by a genetic condition called 

microsatellite instability72, 73. Microsatellites are DNA regions comprising short 

sequence repeats. The likelihood that those strands realign incorrectly during replication 

is increased and a mismatch repair (MMR) system is required to smooth the errors out74. 

Mutations in MMR components encoding genes like MLH1 and MSH2 result in 

nucleotide insertions and deletions which increases genomic instability (microsatellite 

instability, MSI). It has also been demonstrated that MMR deficiency plays a major role 

in carcinogenesis of hereditary non-polyposis colon cancer (HNPCC) 75-77.  Mutations 

in MLH1 and MSH2 accounted for 80% of the genetic alterations found in HNPCC-

families whereas mutations in the other MMR genes MSH6, MSH3, PMS1, PMS2 and 

MLH3 were rare or absent78. 

Spread of the diseases requires epithelial tumor cells to detach from neighboring cells 

and migrate through the body until they settle down to form metastasis at distant organ 

sites. In the 1980s, Greenburg and Hay provided experimental data on a similar 

transformation process in benign tissue by showing that lens epithelial cells detached 

from their tissue association in a 3D collagen gel and migrated as individual cells with 

mesenchymal morpholgy79-81. They termed this process Epithelial-Mesenchymal 

Transition (EMT). However, EMT appeared to be reversible enabling migrating cells to 

settle down and to form an epithelial layer (Mesenchymal-Epithelial Transition, 

MET)82, 83. E-Cadherin was identified as a gate keeper of the epithelial state: it mediates 

formation of cell-cell-junctions and its lack of production led to loss of the epithelial 

cell phenotype in vitro84. Interestingly, E-Cadherin restorage resulted in suppression of 

the invasive mesenchymal phenotype. During carcinoma progression, E-Cadherin can 

be downregulated by several mechanisms: the transcriptional repressors Snail, ZEB1 

and ZEB2 bind independently from each other to the E-Cadherin promoter and thereby 

inhibit E-Cadherin expression in epithelial tumors85-87. Gregory et al. demonstrated that 

ZEB1 additionally inhibits the transcription of the microRNA-200 family which in turn 

regulates expression of ZEB1 and ZEB2 by inhibiting the translation of their RNA88.  

Thus, the microRNA-200 family indirectly controls expression of E-Cadherin as well. 

Furthermore, transcriptional repression of E-cadherin has been associated with 

hypermethylation of its promoter89. Few cases of gastric carcinomas have been shown 

to harbor genetic mutations within the E-Cadherin encoding gene leading to non-

functional or absent protein90, 91. Research from the last years emphasizes the role of 

EMT and MET in CRC and metastasis initiation: it has been suggested that EMT 

enables colorectal cancer cells to leave their solid tissue association and, in a reverse way 

via MET, to settle down and form metastasis at distant organ sites92, 93. Moreover, lab 
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members have shown that the metastastic potential of primary colon sphere cultures in 

immunodeficient mice was associated with low levels of E-Cadherin. Because of 

EMT’s and MET’s transient nature, isolation and investigation of cells in EMT is hardly 

possible and hampers investigation of the underlying molecular mechanisms92. Other 

studies demonstrate that cancer cells disseminate throughout the body in early stages of 

cancerogenesis before the primary tumor is surgically resected94, 95. This finding 

additionally implies a hibernating state of tumor cells which would explain the long 

period of time until appearance of disease relapse. Furthermore, Balic and colleagues 

suggest the implication of cancer stem cells in metastasis formation96. 

1.3 Tumor initiating cells 

In the genetic concept of carcinogenesis, a distinct cell acquires a mutation. A clonal 

population accumulates mutations over a long period of time which finally leads to 

uncontrolled proliferation and to a spread of the disease via the lymphatic or venous 

system. According to the traditional stochastic model, every tumor cell divides 

uniformly and has the same potential to self-renew and to drive tumor growth97. The 

biological behavior of individual cells within the tumor might be altered by random or 

stochastic events leading to the tumors functional heterogeneity. In 1997, a study by 

Bonnet and Dick implied that AML is organized in a different way98: serial 

transplantation of AML patient’s bone marrow and blood cells in immunodeficient mice 

revealed that <0.01% of mononuclear patient-derived cells could launch the disease in 

those mice. Furthermore, they postulated that these leukemia-initiating cells (LIC) were 

only found in the CD34+CD38- cell population suggesting that malignant transformation 

took place on the stem cell or early progenitor level. However, later studies questioned 

the use of these markers for purification of LIC by showing that LIC were also found in 

the CD34- or CD38+ cell population99, 100. These studies indicated that the expression of 

LIC surface molecules varies between different patients. In 2004, Hope et al. 

demonstrated a hierarchical organization of the leukemic stem cell compartement101. In 

the hierarchical “cancer stem cell” (CSC) model, a small population of cancer stem cells 

shows self-renewal and pluripotency and gives rise to several more differentiated cell 

types with limited or no proliferative capacity. Only these CSCs were able to initiate 

tumor growth in transplanted animals and to maintain the disease102, 103. While the term 

“cancer stem cell” suggests that cancer results from oncogenic transformation of stem 

cells, it is now well known that stem cell progeny as well might be hit by oncogenic 

transformation and gain stem cell-like properties104, 105. These findings introduced the 

more appropriate term “tumor initiating cell” (TIC). 

Several studies made use of different marker combinations to isolate or enrich for tumor 

initiating cells in different solid tumor entities like breast106, brain107, 108, pancreas109, 110, 
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head and neck111, prostate112, ovary113 and colon114-116. Whether expression of certain 

cell surface markers is able to universally distinguish TIC from non-tumorigenic 

progeny is still under debate99, 100, 117, 118. Sphere-forming assays have been established 

to identify and to study TIC in vitro119-121. It has been suggested that sphere-forming 

capacity reflects self-renewal ability of cells, but the relation of stemness and sphere-

forming capacity remains discussed102, 122. The gold standard for approving the tumor 

initiating capacity of a given cell population in vivo is xenotransplantation into 

immunodeficient mice: TIC generate xenografted tumors with all the cellular 

phenotypes and similar properties as the primary, patient-derived tumor. Furthermore, 

serial transplantation of xenografted cells elucidates their self-renewal ability101, 123. 

1.3.1 Tumor initiating cells in colorectal cancer 

The concept of colorectal cancerogenesis resulting from sequential mutations of a single 

cell is widely-accepted. In the context of the cancer stem cell model, colonic stem cells 

might accumulate mutations over several years and generate new cancer stem cells and 

more differentiated progenitor cells loosing the ability to self-renew. Colonic crypts are 

finally colonized by the mutant stem cell’s monoclonal progeny of highly differentiated 

cancer cells (monoclonal conversion). On the other hand, an initial oncogenic hit might 

also occur in the more differentiated progeny of colonic stem cells. These cells might 

then regain stem-like properties. Vermeulen and coworkers provided experimental 

evidence that stemness of more differentiated colon cancer cells can be induced by 

growth factor modulation of their microenvironment124 indicating that oncogenic 

transformation not necessarily happens on the stem cell level. Upon publication of data 

on the putative isolation of acute myeloid leukemia (AML) initiating cells, a number of 

studies followed investigating the possible existence of tumor initiating cells in solid 

cancers such as CRC. Human colon TIC are defined on a functional basis: 

transplantation into immunocompromised mice produces xenografted tumors which 

show similar heterogeneity and properties as the primary, patient-derived tumor. Self-

renewal capacity of colon TIC can be confirmed by a serial transplantation assay. Colon 

TIC research has been performed using several transplantation techniques. 

Transplantation of human cells under the kidney capsule of immunodeficient 

NOD/SCID or SCID mice has been favored due to higher tumor take rates as compared 

to subcutaneous transplantation114-116, 125, 126. Additionally, distinct in vitro culturing 

conditions have been described enabling researchers to study human colon TIC in more 

detail: patient-derived tumor cells are cultured under serum-free, non-adherent 

conditions where tumor cells form 3-dimensional floating aggregates called spheroids. 

Dalerba et al. described that serum-containing growth medium induces a more 

differentiated phenotype in tumor cells going along with reduced tumor initiating 

capacity upon xenotransplantation115. Differentiated cells do not survive serum-free 
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growth conditions enabling an enrichment of cultures for TIC. Furthermore, serum-free 

spheroid cultures were shown to preserve the “genotype, gene expression patterns and 

in vivo biology of human glioblastomas”127.  

Identification of human colon TIC on a phenotypic level was first published in 2007. 

CD133 was used as cell surface marker to discriminate a human colon TIC enriched cell 

population from other cells114. Ricci-Vitani et al. additionally demonstrated that only 

CD133+ formed tumors in immunocompromised mice upon subcutaneous 

transplantation whereas CD133- cells did not116. On the other hand, Shmelkov and 

colleagues published data demonstrating that CD133 is expressed by differentiated and 

undifferentiated healthy colon cells117. Moreover, the authors show that CD133- and 

CD133+ metastatic colon cancer cells contribute to tumor formation in mice. Although 

CD133 has been shown to be expressed not only on colon TIC but also on more 

differentiated progenitor cells, expression levels were clinically correlated with relapse-

free time intervals and prognosis128, 129. In addition, Todaro et al. showed that CD133+ 

colon TIC resist chemotherapeutic treatment by the production of IL-4126. IL-4-targeted 

therapies eradicated tumor bulk cells as well as CD133+ colon cancer cells in vitro and 

in vivo. Another study from 2007 has shown that mice transplanted with 

EpCAMhigh/CD44+ CRC cells developed tumors whereas EpCAMlow/CD44- CRC cells 

did not115. The authors identified CD166 as an additional marker to further enrich for 

human colon TIC. Expression of CD166 in CRC was previously already linked to 

shortened patient survival130. Few years ago, Huang et al. identified ALDH1 as a colon 

cancer stem cell marker with respect to tumor formation in mice131. The tumor initiating 

capacity of EpCAM+/CD133- cells was also demonstrated in a serial transplantation 

assay117. However, in 2010, Kemper et al. published that the AC133 antibody which has 

generally been used in previous study to enrich for CD133+ colon TIC, does not detect 

glycosylated forms of CD133 in colon CSCs132. The role of cell surface markers in 

cancer is still not fully understood and needs to be further addressed. Moreover, the 

controversial findings imply consideration of several TIC phenotypes among different 

patients and of the existence of several subfractions of colon TIC within individual 

patients what has recently been demonstrated in different leukemias133, 134.  

1.3.2 Heterogeneity of colon TIC 

More recently, the colon cancer initiating cell compartment has for the first time been 

analyzed surface molecule-independendly135: clonal marking revealed the existence of 

distinct classes of TIC with differing self-renewal and metastasis-initiating capacity 

(Figure 5). Only self-renewing long-term (LT-) TIC showed tumor- and metastasis-

initiating potential in a serial transplantation assay. Tumor transient amplifying cells (T-

TAC) had limited or no self-renewal capacity and contributed to tumor formation only 
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in primary mice whereas rare delayed contributing TIC (DC-TIC) were exclusively 

active in secondary or tertiary mice. 

 

Figure 5: The human colon cancer initiating cell compartment is hierarchically organized.  

a) LAM-PCR and b) high throughput sequencing revealed distinct classes of colon TIC and led to a new 

colon cancer stem cell model (c): Long-term TIC (LT-TIC, red) have self-renewal capacity and can 

initiate tumor and metastases in a serial transplantation assay. LT-TIC give rise to tumor transient 

amplifying cells (T-TAC, green). T-TAC show limited or no self-renewal potential and contribute to 

tumor formation in primary mice only. They form the tumor bulk cells. Delayed contributing TIC (DC-

TIC, blue) were rare and became active in later generations of mice. 1-3°: First to third generation of 

mice; M: 100bp marker; C: control. Adapted from Dieter et al., 2011135. 

DC-TIC did not contribute to primary tumor growth, but were recruited to tumor 

formation at later time points indicating that they were able to self-renew. In addition, 

this small cell population was necessarily present in primary tumors although not 

contributing to its growth. Consequently, DC-TIC might have been present in a 

mitotically quiescent state. Conversion into a proliferating state might have reactivated 

them to contribute to tumor formation only in late recipient mice. A possible quiescence 

of colon TIC in patients might protect them from chemotherapy and would represent a 

source for chemoresistance and disease relapse after prolonged period of times. 

1.4 Tumor dormancy 

A substantial number of cancer patients suffer from relapse of their disease after 

initially successful therapy. This implies that residual cancer cells remained unnoticed 

in patients (minimal residual disease, MRD) and that they are reactivated after months 

or years to regrow a tumor136. These extended periods of time might be overcome in 

cellular quiescence or rare cell divisions until cells might be reactivated by genetic or 

cellular changes in the tumor or by microenvironmental factors137. Quiescence also 

plays an important role under physiological circumstances: it prevents accumulation of 
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mutations and thus maintains many adult stem cell compartements138, 139. Label-

retaining assays helped to identify different proliferative fractions in intestinal crypts 

and suggested that ISCs were less proliferating than other intestinal cells12, 140. More 

recent studies indicated the existence of a quiescent and an actively-proliferating stem 

cell zone in intestinal crypts building a bridge between the +4 position and stem cell 

zone model for intestinal stem cells141, 142. There might even be a conversion between 

the ISC’s proliferative status which is potentially regulated by the microenvironment22, 

23, 143, 144. 

The proliferative biology of many cancer cells and several tissue stem cells like ISCs 

has been investigated using pulse/chase label-retaining assays21, 145 (Figure 6): a bulk of 

cells with a low frequency of stem cells is labeled  in vitro using a fluorescent dye like 

CFSE (pulse). Labeling is followed by a prolonged period of time (chase). During this 

time actively-proliferating cells dilute the label by separating it equally among the 

daughter cells during cell division until it is not detectable anymore. Slow or rarely 

dividing cells maintain their label intensities (label-retaining cells, LRC).  

A common technique to identify quiescent and slow-dividing cells in vivo is labeling by 

administration of 5-bromo-2-deoxyuridine (BrdU). The nucleoside is incorporated into 

newly synthesized DNA during S phase of the cell cycle instead of thymidine and 

distributed among daughter cells during cell division. A subsequent chase period reveals 

LRCs146, 147. However, not all cells might be labeled by BrdU since only a small fraction 

of a given cell population is actively-cycling at the time of administration. Quiescent 

cells evade BrdU labeling. Moreover, BrdU incorporation might be associated with 

DNA damage influencing cell proliferation148. Another disadvantage of BrdU is that its 

detection requires permeabilization of cells which makes further investigations of 

purified LRCs impossible149, 150. To overcome these major impediments, a new pulse-

chase-concept was developed making use of the tissue-specific expression of a 

tetracycline-inducible histone fused to a green fluorescent marker protein (H2B-

GFP)151. This system was first applied to the hair follicle of mouse skin152: H2B–GFP-

expressing LRCs were identified at the base of each hair follicle. They were shown to 

proliferate and to exit their niche upon activation of a new hair cycle or wounding. 

Their fluorescence was found to be diluted 2-fold with each cell division. Moreover, 

engraftment in immunodeficient mice revealed multi-lineage reconstitution potential153. 

Thus, the system enabled monitoring of quiescent or slow-cycling stem cells and also of 

their progeny154.  
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Figure 6: Label-retaining assays to study stem cell behavior and tumor biology.  

a) Cell suspensions are labeled and label-retention is investigated over a prolonged chase period. 

Actively-proliferating cells lose their label whereas less cycling ones maintain label intensities. b) Tumors 

are supposed to comprise a fraction of quiescent or slowly cycling cells. These cells would survive 

conventional chemotherapies which only target fast proliferating cells and thus could be the source for 

disease relapse. Adapted from Moore and Lyle, 2011155. 

It has been suggested that quiescence of tumor cells plays a major role in chemotherapy 

resistance limiting clinical treatment. Rare quiescent cells are assumed to survive 

chemotherapeutic treatment which is only targeting actively-proliferating cells. They 

can be reactivated, enter the cell cycle and contribute to disease relapse. Experimental 

evidence for chemoresistant cells has been provided in the hair follicle where slowly 

proliferating cells survived treatment and regenerated the hair follicle156. In the context 

of cancer, Moore et al. found small, slow cycling cell populations in spheroid cultures 

of the colon cancer cell line HCT116 and the breast cancer cell line MDA-MB-231157. 

Both populations were still able to proliferate after chemotherapeutic treatment. 

Furthermore, Correa and colleagues published data about the activation of previously 

quiescent ovarian cancer cells158. Furthermore, slow-cycling populations of cancer cells 

have also been demonstrated in cell lines originating from pancreatic cancer159 and 

melanoma160 and in primary patient-derived cancer cells from melanoma129, breast133 

and ovary157, 160, 161. These studies indicate that quiescent and slow cycling cells might 

be the source for disease relapse and late metastasis formation in patients.  

1.5 Therapy of colorectal cancer 

Colorectal cancer is diagnosed based on tissue biopsies during colonoscopy162. 

Treatment strategies are initiated according to previous staging162, 163: rectal cancers are 

commonly resected by surgery. Patients receive neoadjuvant or adjuvant radiotherapy in 

order to reduce the tumor volume. Localized colon cancers are also surgically resected 

but radiation therapy is less suitable due to the intestines motility. Those patients 
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receive adjuvant chemotherapy based on 5-Fluorouracil (5-FU) to reduce the risk of 

disease relapse. The treatment of colon cancer patients with metastatic disease is mainly 

performed using combinational chemotherapy with 5-FU and oxaliplatin, This treatment 

scheme was established upon a clinical phase III study by de Gramont and colleagues 

presenting that the combination of Leucovorine, 5-FU and oxaliplatin (FOLFOX) 

significantly extended progression free survival of patients with metastatic colorectal 

cancer164-166. 

5-FU exhibits two mechanisms of action167, 168: first, it is a pyrimidine analogue whose 

metabolites are incorporated into RNA and DNA leading to inhibition of DNA 

synthesis and apoptosis. Second, 5-FU inhibits the enzyme thymidylate synthetase (TS) 

which is responsible for generation of deoxythymidine triphosphate (dTTP). dTTP is 

one of the bases necessary for generation of nucleic acid. Thus, inhibition of TS leads to 

reduction of dTTP-levels which eventually lets the cell die (thymineless death). 

Oxaliplatin is a platinum-based agent which produces crosslinks between different 

DNA molecules and also within one molecule169. These links block DNA replication 

and transcription which finally leads to cell death. 

Although many attempts have been made bringing up new agents and treatment options, 

treatment of advanced colon cancer is still not curative. The 5-year survival rate for 

colorectal cancer patients in european countries is <60%170. Up to 25% of patients 

suffer from recurrent colon cancer within the first 5 years after initially successful 

treatment171. This suggests that a small fraction of tumor cells is not affected by 

conventional chemotherapeutic treatment with 5-FU and Oxaliplatin which both require 

actively-cycling cells to unfold their spectrum of action169, 172. 
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2 Scientific Aims  

Accumulating studies emphasize that colon cancer is hierarchically organized. Only a 

small subpopulation of tumor cells is able to self-renew and can thereby maintain the 

disease. Within this colon cancer initiating compartment, Dieter et al. found a small 

subfraction of TIC contributing to tumor formation only in secondary or tertiary mice in 

a serial transplantation assay135. These delayed contributing TIC (DC-TIC) might have 

been mitotically quiescent or might have hibernated in a dormant cell cycle state in 

primary mice. In patients, cellular quiescence of TIC could enable them to evade 

systemic cancer-therapy and cause cancer relapse or metastasis formation upon 

reactivation after extended periods of time. Indeed, most colon cancer patients die due 

to advanced, metastastatic cancer stages after initially successful therapies.  

This work aims to characterize the proliferative and cell cycle activity of human colon 

TIC in vitro and in vivo. We determined whether a quiescent population of human colon 

cancer initiating cells exists. Hoechst/Pyronin-staining revealed if colon TIC were 

arrested in G0 phase of the cell cycle. Long-term quiescence of human colon TIC was 

assessed using the CFSE label-retaining assay. In addition, the sphere forming potential 

of cells with differing proliferative activity was examined by a limiting dilution assay. 

Xenotransplantation studies elucidated if the tumor initiating potential was associated 

with mitotic quiescence. A high-resolution label-retaining strategy was used to 

investigate the proliferative activity of human colon TIC in vivo. Unique clonal marking 

allowed to decipher whether DC-TIC were indeed quiescent in vivo and to investigate 

their role in chemoresistance.  

This detailed characterization of the proliferative characteristics and dynamics of human 

colon TIC will contribute to a better understanding of their biological properties and 

TIC maintenance. Furthermore, it might extend knowledge about colon cancer disease 

progression and relapse.  
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3 Materials and Methods 

3.1 Materials 

3.1.1 Equipment and Devices 

Analytical Balance TE 124S Sartorius, Göttingen 

Biofuge® pico Heraeus, Hanau 

Camera Lumix DMC-FZ50  Panasonic, Hamburg 

centrifuge inserts Kendro, Langenselbold 

Centrifuge Multifuge® 3SR  Heraeus, Hanau 

Cryobox Nalgene Thermo Fisher Scientific, 

Schwerte 

Electrophoreses Power Supply 200/2000  Elchrom Scientific, Cham 

Flow Cytometer BD™ LSRII Becton, Dickinson and Company, 

Heidelberg 

Flow Cytometer FACS Aria™ Cell Sorter Becton, Dickinson and Company, 

Heidelberg 

Fluorescence Microscope Axiovert 200  Zeiss, Oberkochen 

Freezer -20°C  Liebherr, Biberach an der Riss 

Freezer -80°C  Sanyo (Panasonic), Hamburg 

Fridge 4°C  Liebherr, Biberach an der Riss 

Gel Documentation  Peqlab, Erlangen 

Gel Electrophoreses Chamber  Biometra, Göttingen 

Incubator Heracell® 150  Thermo Fisher Scientific, 

Schwerte 

Isoflurane Vaporizer Vapor 19.3  Dräger, Lübeck 

Light Microscope Zeiss, Oberkochen 

Magnet MPC-96 Gibco®  Invitrogen, Darmstadt 

Magnetic Plates for Tissue Culture Dishes  OZ Biosciences, Herford 
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Microplate Reader  Tecan, Männedorf 

Microwave  Bartscher, Salzkotten 

Mini Protean®  Tetra Cell BioRad, Munich 

Molecular Imager®  ChemiDoc™ XRS+ BioRad, Munich 

Multipette Plus Eppendorf, Hamburg 

NanoDrop® Spectrophotometer ND-1000  Peqlab, Erlangen 

Neubauer counting chamber Marienfeld, Lauda-Königshofen 

Nitrogen System German-Cryo, Jüchen 

PCR-Thermocycler Landgraf, Langenhagen 

Pipetboy acu  Integra Biosciences, Fernwald 

Pipettes Research® (10μl; 20μl; 200μl; 1000μl)  Eppendorf, Hamburg 

Power Pac™ HC Power Supply BioRad, Munich 

Precision Balance TE3102S  Sartorius, Göttingen 

Rotator Reax2 Heidolph, Schwabach 

Safety Cabinet Herasafe® KS Thermo Fisher 

Scientific 

Thermo Fisher Scientific, 

Schwerte 

Shaking incubator Axon, Kaiserslautern 

Submerged Gel Electrophoresis Apparatus SEA 

2000® 

Elchrom Scientific, Cham 

TC10™ Automated Cell Counter BioRad, Munich 

Thermo Cycler TPersonal  Biometra, Göttingen 

Thermo Mixer comfort  Eppendorf, Hamburg 

Tissue-Tek® TEC™ Embedding System  Sakura Finetek, Tokyo 

Trans-Blot®  semi-dry cell BioRad, Munich 

Trans-Blot® semi-dry cell  BioRad, Munich 

Transilluminator Biotec-Fischer, Reiskirchen 

Ultracentrifuge L8-M with Rotor SW27  Beckman Coulter, Krefeld 

Vacuum pump  Merck Millipore, Darmstadt 

Video documentation system Peqlab, Erlangen 

Vortexer MS1 IKA, Staufen 
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Water Bath Haake SWB25  Thermo Fisher Scientific, 

Schwerte 

Water treatment plant TKA, Niederelbert 

3.1.2 Plastic and Disposables 

Cell Culture Flasks, EasyFlasks™ (25cm2; 75cm2; 

175cm2)  

Nunc (Thermo Fisher Scientific), 

Schwerte 

Cell Culture Plates (6-; 12-; 24-; 48-; 96-well) Becton, Dickinson and Company, 

Heidelberg 

cell strainer (0,4 - 1µm pore size) Becton, Dickinson and Company, 

Heidelberg 

cotton swabs, sterile Noba Verbandmittel Danz GmbH, 

Wetter 

Cover Glasses Marienfeld Marienfeld, Lauda-Königshofen 

Cryotubes  Corning, Kaiserslautern 

Embedding Cassettes Sanowa Laborprodukte 

FACS Tubes, BD™ Falcon™ Round-Bottom 

Tube (5ml)  

Becton, Dickinson and Company, 

Heidelberg 

Filter (0.22µm pore size) Merck Millipore, Darmstadt 

Hollow Needle (23G-26G) Becton, Dickinson and Company, 

Heidelberg 

Hollow Needle, blunt end 18G Becton, Dickinson and Company, 

Heidelberg 

Lab Gloves (Nitril)  Microflex, Reno 

Microcon®-30 Merck Millipore, Darmstadt 

Parafilm Pechiney Plastic Packaging, 

Chicago 

PCR reaction tube (V=0,2 ml) Genaxxon, Ulm 

Petri dish (d=10 cm) Genaxxon, Ulm 

Petri dish Nunclon™ (d=15 cm) Thermo Electron, Langenselbold 

Pipette Tips (200μl, extended)  Thermo Fisher Scientific, 

Schwerte 
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Pipettes (V=2 - 50 ml) Genaxxon, Ulm 

Pipette tips (V=10/20/200/1000 µl) Starlab, Hamburg 

PVDF membrane  BioRad, Munich 

Scapel Feather Safety, Osaka 

Stericup vacuum filtration system Merck Millipore, Darmstadt 

Syringe (5/20/50 ml) Omnifix® Solo B. Braun, Melsungen 

Syringe, Omnifix® solo (1ml; 5ml) B. Braun, Melsungen 

Twin.tec PCR plate 96 well Eppendorf,  Hamburg 

Ultra Low Attachment Flasks  Corning, Kaiserslautern 

Ultracentrifuge tubes Beranek Laborgeräte, Weinheim 

Whatman filter paper Protean® BioRad, Munich 

3.1.3 Molecular Biology Reagents 

5-(and-6)-carboxyfluorescein diacetate, 

succinimidyl ester (CFDASE) 

Invitrogen, Darmstadt 

Agarose  Serva, Heidelberg 

Ammonium chloride (NH4Cl)  Sigma-Aldrich, Munich 

Aqua ad injectabilia (aqua dest)  B. Braun, Melsungen 

Baytril®  Bayer, Leverkusen 

Bovine Serum Albumin Sigma-Aldrich, Munich 

Bromphenolblue  Sigma-Aldrich, Munich 

Dimethylsulfoxide (DMSO)  Sigma-Aldrich, Munich 

Disodium-EDTA  Sigma-Aldrich, Munich 

DNA ladder 100 bp  Invitrogen, Darmstadt 

DNA ladder 1kb Invitrogen, Darmstadt 

DNA, human genomic  Roche, Mannheim 

Ethanol  Sigma-Aldrich, Munich 

Ethanol denatured  DKFZ, Heidelberg 

Ethidiumbromide (0,07%) AppliChem AppliChem, Darmstadt 

Ethylendiaminetetraacedic acid (EDTA) 0.5M, AppliChem, Darmstadt 



3 Materials and Methods  20 

pH8 

Fluorogold Invitrogen, Darmstadt 

Formalin solution, neutral buffered (10%)  Sigma-Aldrich, Munich 

Glycerol Serva, Heidelberg 

Hoechst 33342 Invitrogen, Darmstadt 

Isopropyl alcohol  Sigma-Aldrich, Munich 

Lithium chloride  Sigma-Aldrich, Munich 

Loading Buffer (5x)  Elchrom Scientific, Cham 

Magnesium chloride (MgCl2) 25mM Invitrogen, Darmstadt 

MgCl2  100mM Sigma-Aldrich, Munich 

Oligonucleotides  MWG Biotech, Ebersberg 

Potassium bicarbonate (KHCO3) Roth, Karlsruhe 

Propidiumiodid  Invitrogen, Darmstadt 

Pyronin Y Sigma-Aldrich, Munich 

RNase/DNase free water Ambion, Darmstadt 

Sodium azide pure (NaN3) AppliChem, Darmstadt 

Sodium Chloride (NaCl) VWR International, Vienna 

Sodium hydroxide (NaOH)  Sigma-Aldrich, Munich 

Spreadex® Gels, Type EL1200  Elchrom Scientific, Cham 

Sputolysin® Calbiochem (Merck), Darmstadt 

Tris HCl pH 7.5 (1M) USBiological, Swampscott 

Trypan Blue Stain 0,04% Invitrogen, Darmstadt 

Viromag R/L Beads OZ Biosciences OZ Biosciences, Herford 

β-Mercaptoethanol Sigma-Aldrich, Munich 

3.1.4 Cell Culture and Bacterial Growth Reagents 

Advanced Dulbecco’s Modified Eagle Gibco 

(DMEM/F-12) 

Invitrogen, Darmstadt 

Dulbecco’s phosphate buffered saline (DPBS) Invitrogen, Darmstadt 

Hank’s balanced salt solution (HBSS) Sigma-Aldrich, Munich 



3 Materials and Methods  21 

Iscove's Modified Dulbecco's Medium (IMDM) Invitrogen, Darmstadt 

Iscove's Modified Dulbecco's Medium (IMDM) Invitrogen, Darmstadt 

Luria Broth (LB) base Invitrogen, Darmstadt 

SOC-Medium Invitrogen, Darmstadt 

Trypsin-EDTA 0,05% Invitrogen, Darmstadt 

Trypsin-EDTA 0,25% Invitrogen, Darmstadt 

3.1.5 Medium Additives and Antibiotics  

Ampicillin Sodium Salt  Sigma-Aldrich, Munich 

Bovine Serum Albumin (BSA) Solution (7,5%)  Sigma-Aldrich, Munich 

Doxycyclin Clontech, Saint-Germain-en-Laye 

Fetal Bovine Serum (FBS) Biosera, Sussex 

Glucose Invitrogen, Darmstadt 

Heparin Sigma-Aldrich Sigma-Aldrich, Munich 

HEPES buffer Sigma-Aldrich, Munich 

Human Epidermal Growth Factor (hEGF) R&D Systems, Wiesbaden 

Human Fibroblast Growth Factor (hFGF basic)  R&D Systems, Wiesbaden 

L-Glutamine  Invitrogen, Darmstadt 

Penicillin-Streptomycin Invitrogen, Darmstadt 

Polybrene Millipore (Merck), Darmstadt 

Polyethylenimin (PEI) Sigma-Aldrich, Munich 

3.1.6 Media and Buffer Compositions 

media reagent concentration 

Agar LB 25% 

Agar 12.5% 

H20dest  

CSC freezing medium CSC growth medium  

DMSO 15% 

CSC growth medium D-Glucose  0.6% 
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Penicillin/Streptomycin  2mM 

L-glutamine  2mM 

Heparin  4μg/ml 

HEPES  5mM 

BSA  4mg/ml 

HF HBSS  

FBS 2% 

IMDM freezing medium IMDM growth medium  

FBS 30% 

DMSO 15% 

IMDM growth medium IMDM  

Penicillin/Streptomycin  2mM 

L-glutamine  2mM 

FBS 10% 

IMDM thawing medium IMDM growth medium  

FBS 50% 

LB medium LB 25% 

H20dest  

LiCl, 3M Tris-HCl (pH 7.5) 10mM 

EDTA 1mM 

LiCl 3M 

H20dest  

LiCl, 6M Tris-HCl (pH 7.5) 10mM 

EDTA 1mM 

LiCl 6M 

H20dest  

Loading buffer (5x Blue Run) Tris HCl pH 7.5 (1M) 25mM 

EDTA pH 8.0 (0.5M) 150mM 

Bromphenol blue 0.05% 
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Glycerol (100%) 25% 

H20dest  

staining buffer (intracellular 

staining) 

PBS  

FBS 1% 

NaN3 0.09% 

storage buffer for DNA ladders Tris HCl pH 7.5 (1M) 10mM 

EDTA pH 8.0 (0.5M) 1mM 

NaCl 20mM 

H20dest  

3.1.7 Antibodies 

Mouse anti-human CD133/1 (AC133), APC-conjugated 

monoclonal antibody 

Miltenyi-Biotech, 

Bergisch Gladbach 

Mouse anti-human CD133/2 (293C2), APC-conjugated 

monoclonal antibody 

Miltenyi-Biotech, 

Bergisch Gladbach 

Mouse anti-human EpCAM, PerCP-Cy5.5-conjugated 

monoclonal antibody 

Becton, Dickinson and 

Company, Heidelberg 

Mouse anti-human CD166, PE-conjugated monoclonal 

antibody 

Becton, Dickinson and 

Company, Heidelberg 

Mouse anti-human CD44, APC-conjugated monoclonal 

antibody 

Becton, Dickinson and 

Company, Heidelberg 

Mouse IgG1, APC-conjugated Isotype Control Miltenyi-Biotech, 

Bergisch Gladbach 

Mouse IgG2b, APC-conjugated Isotype Control Miltenyi-Biotech, 

Bergisch Gladbach 

Mouse IgG1 κ, PerCP-Cy5.5-conjugated Isotype Control Becton, Dickinson and 

Company, Heidelberg 

Mouse IgG1 κ, PE-conjugated Isotype Control Becton, Dickinson and 

Company, Heidelberg 

Mouse IgG2b κ, APC-conjugated Isotype Control Becton, Dickinson and 

Company, Heidelberg 

Mouse anti-human Ki67, Alexa 700-conjugated 

monoclonal antibody 

Becton, Dickinson and 

Company, Heidelberg 
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Mouse IgG1 κ, Alexa 700-conuagtes isotype Control Becton, Dickinson and 

Company, Heidelberg 

 

Antibody Corresponding Isotype Concentration 

α-CD133/1-APC IgG1-APC 0.55µg/ml 

α-CD133/2-APC IgG2b-APC 0.825µg/ml 

α-EpCAM-PerCP-Cy5.5 IgG1-PerCp-C5.5 0.2µg/ml 

α-CD166-PE IgG1-PE 3.5µg/ml 

α-CD44-APC  IgG2b-APC 0.15µg/ml 

3.1.8 PCR-Reagents 

PCR Buffer (10x) Invitrogen, Darmstadt 

dNTPs (mM) Genaxxon, Ulm 

Taq DNA Polymerase Invitrogen, Darmstadt 

Dynal M280-Streptavidin Beads Invitrogen, Darmstadt 

Hexanucleotides mix (10x) Roche, Mannheim 

ATP (10mM) Epicentre Biotechnologies, 

Madison 

3.1.9 Enzymes and Reaction Buffers 

Klenow Polymerase  Roche, Mannheim 

T4 DNA-Ligase + Puffer New England Biolabs, 

Frankfurt/Main 

Taq DNA Polymerase Invitrogen, Darmstadt 

Taq-Polymerase Genaxxon, Ulm 

Restriction endonuclease digestion buffers New England Biolabs, 

Frankfurt/Main 

Restriction endonucleases New England Biolabs, 

Frankfurt/Main 

Dispase  Becton, Dickinson and Company, 

Heidelberg 
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3.1.10 Oligonucleotides 

All oligonucleotides were snythesized by Eurofins MWG Operon, Ebersberg. 

name sequence (5' - 3') 

SK LTR 1 bio GAG CTC TCT GGC TAA CTA GG 

SK LTR 2 bio GAA CCC ACT GCT TAA GCC TCA 

SK LTR 3 bio AGC TTG CCT TGA GTG CTT CA 

SK LTR 4 bio AGT AGT GTG TGC CCG TCT GT 

SK LTR 5 bio GTG TGA CTC TGG TAA CTA GAG 

LC I  GAC CCG GGA GAT CTG AAT TC 

LC II  GAT CTG AAT TCA GTG GCA CAG 

LC 1 GAC CCG GGA GAT CTG AAT TCA GTG GCA CAG CAG 

TTA GG 

LC 3 AAT TCC TAA CTG CTG TGC CAC TGA ATT CAG ATC 

TitaniumLinker CCT ATC CCC TGT GTG CCT TGG CAG TCT CAG AGT GGC 

ACA GCA GTT AGG 

Tit3SKLV10-1 ACA GTA TAT ATG TGT GAC TCT GGT AAC TAG 

Tit3SKLV10-2 ACG CGA TCG ATG TGT GAC TCT GGT AAC TAG 

Tit3SKLV10-3 ACT AGC AGT ATG TGT GAC TCT GGT AAC TAG 

Tit3SKLV10-4 AGC TCA CGT ATG TGT GAC TCT GGT AAC TAG 

Tit3SKLV10-5 AGT ATA CAT ATG TGT GAC TCT GGT AAC TAG 

Tit3SKLV10-6 AGT CGA GAG ATG TGT GAC TCT GGT AAC TAG 

Tit3SKLV10-7 AGT GCT ACG ATG TGT GAC TCT GGT AAC TAG 

Tit3SKLV10-8 CGA TCG TAT ATG TGT GAC TCT GGT AAC TAG 

Tit3SKLV10-9 CGC AGT ACG ATG TGT GAC TCT GGT AAC TAG 

Tit3SKLV10-10 CGC GTA TAC ATG TGT GAC TCT GGT AAC TAG 

Tit3SKLV10-11 TGT AGT GTG ATG TGT GAC TCT GGT AAC TAG 

Tit3SKLV6-3 CAG CAG TGT GTG ACT CTG GTA ACT AG 

Tit3SKLV6-4 TGA TCA TGT GTG ACT CTG GTA ACT AG 

Tit3SKLV6-5 AGT GTC TGT GTG ACT CTG GTA ACT AG 

Tit3SKLV6-6 ACT TGC TGT GTG ACT CTG GTA ACT AG 
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Tit3SKLV6-7 CCT ATA TGT GTG ACT CTG GTA ACT AG 

3.1.11 Plasmids 

All plasmids were provided by Andreas Trumpp. Plasmid sequences can be found in 

supplement A. 

Construct Promoter Gene 

pMD2.G CMV VSV-G 

psPAX2 CAG gag pol rev 

pWPXL-TTT-H2B-GFP EF1α tTA2S 

PTight H2B-GFP 

3.1.12 Commercial Kits 

Agencourt AMPure XP, 60 mL Beckman Coulter 

BCA Protein Assay Pierce, Schwerte 

Blood and Tissue Kit Qiagen, Hilden 

EndoFree® Plasmid Purification Kit Qiagen, Hilden 

Fast-Link™ Ligation Kit Epicentre Biotechnologies, Madison  

Plasmid Miniprep DNA Purification Kit GeneMATRIX 

QIAquick®  Gel Extraction Kit Qiagen, Hilden 

QIAquick®  PCR Purification Kit Qiagen, Hilden 

Quant-iT PicoGreen dsDNA Assay kit Invitrogen 

Spreadex 1200 Elchrom Scientific, Cham 

3.1.13 Surgical Instruments and Material 

Alcohol Pads  B. Braun, Melsungen 

B. Braunoderm®  B. Braun, Melsungen 

BD Matrigel™ Growth Factor Reduced  Becton, Dickinson and Company, 

Heidelberg 

Bepanthen® eye and nose lotion  Bayer, Leverkusen 

Cotton Swabs  Böttger, Bodenmais 

Earmarker  Fine Science Tools, Heidelberg 
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Forceps, Moria Ultrafein  Fine Science Tools, Heidelberg 

Forceps, standard anatomical  Fine Science Tools, Heidelberg 

Forceps, standard surgical  Fine Science Tools, Heidelberg 

Heat Pad  Thermolux, Murrhardt 

Insulin Syringe 0.5ml, 27G Becton, Dickinson and Company, 

Heidelberg 

Isoflurane  Abbott, Ludwigshafen 

Reflex Wound Clip System  Fine Science Tools, Heidelberg 

Scalpels  Feather Safety, Osaka 

Scissors, standard surgical  Fine Science Tools, Heidelberg 

Thread PGA Resorba 4-0 Resorba, Nürnberg 

3.1.14 Mouse Strains 

The in vivo-work in this study has been performed using NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ 

mice (The Jackson Laboratory, Bar Harbor). 

3.1.15 Cell Lines  

HEK 293T ATCC, Wesel 

HeLa ATCC, Wesel 

3.1.16 Bacteria Strains 

One Shot® TOP10 Chemically Competent E. coli Invitrogen, Darmstadt 

One Shot® Stbl3™ Chemically Competent E. coli Invitrogen, Darmstadt 

3.1.17 Primary Material 

Primary colorectal tumor samples, liver metastases and lung metastasis samples were 

provided by the surgical department of Heidelberg University Hospital. Respective 

patients were informed according to the instructions of the universities ethical 

committee. These instructions have been established in agreement with the declaration 

of Helsinkia. The ethical committee also approved all the experiments performed with 

the material (Ethikvotum 323-2004). 

3.1.18 Histopathological Material 

Isopropyl alcohol  Sigma-Aldrich, Munich 
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Ethanol Sigma-Aldrich, Munich 

Xylol                                                                          VWR International, Vienna 

Paraplast X-TRA® Sigma-Aldrich, Munich 

3.1.19 Computer Programs 

Axiovision Rel. 4.8 Zeiss, Oberkochen 

Basic Local Alignment Search Tool (BLAST) http://www.ncbi.nlm.nih.gov/ blast 

FACS Diva Software V6.1.3 Becton, Dickinson and Company, 

Heidelberg 

Lasergene DNAStar, Madison 

L-Calc Stem Cell Technologies, Grenoble 

NanoDrop® ND-1000 V3.2.1 Coleman Technologies, Langley 

Microsoft Office 2007 Microsoft, Redmond 

Photoshop CS2 Adobe, Dublin 

Reference Manager 12 Thomson Reuters, New York 

3.2 Methods 

3.2.1 Cell-Biological Methods and Flow Cytometry 

3.2.1.1 Purification of Primary and Xenografted Colon Cancer and Metastasis 

Tissue 

Primary colorectal tumor samples, liver metastases and lung metastasis samples were 

provided by the surgical department of Heidelberg University Hospital. Respective 

patients were informed according to the instructions of the universities ethical 

committee. These instructions have been established in agreement with the declaration 

of Helsinkib. The ethical committee also approved all the experiments performed with 

the material (Ethikvotum 323-2004). 

The surgically resected tissue sample was fractionated by a scientist of the surgical 

department laboratory. Tissue samples were kept in PBS on ice and transported to our 

laboratory as fast as possible after surgery. They were mechanically dissociated in a 

petri dish with a scapel into small pieces of approximately 1mm3 and were spun down 

in 20ml PBS (900rpm, 5min, 4°C). The pellet was resuspended in a PBS-digestion mix 

(20ml/3g sample) containing 0.08U dispase per ml and 50µM MgCl2. Enzymatic 

digestion was carried out at 37°C in a rotating incubator for 1.5hours. Subsequently, the 
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solution was amended with PBS to a final volume of 50ml. An initial filtering step 

(100µm pore size) was performed to remove remaining tissue and mucous. After 

centrifugation at 900rpm, 5min, 4°C, the pellet was dissolved in 20ml PBS and filtered 

through a 40µm-filter. In case of excessive erythrocytes, the pellet was lysed with 5ml 

red blood cell lysis buffer, washed with 10ml PBS and subsequently resuspended in 5ml 

PBS and filtered (40µm). Cells were counted and stored on ice until they were further 

processed. 

3.2.1.2 Determination of Cell Numbers 

Scientific Background 

Cells were counted using the dye exclusion test. The membrane of intact cells cannot be 

overcome by dyes like trypan blue. Dead cells lose their property to maintain their 

impermeable cell membrane. Thus, dead cells are stained and appear blue under the 

light microscope. Cell viability can be easily assessed. 

Methods 

Singularized cells were mixed with trypan blue in specific dilution (1:2 – 1:100). A 

cover slip was placed on a Neubauer chamber and 10µl of the cell mixture was loaded 

into the counting chamber. Light, viable cells were counted in 4 quadrants under a light 

microscope. The number of cells per ml original cells suspension was calculated 

according to this formula:  

ݏ݈݈݁ܿ ݂݋ #
݈݉

ൌ
ݏ݈݈݁ܿ ݂݋ #

ݏݐ݊ܽݎ݀ܽݑݍ 4
 10ସ ݔ ݎ݋ݐ݂ܿܽ ݊݋݅ݐݑ݈݅݀ ݔ

1 quadrant holds 0.1µl (= 10-4ml). The average number of cells per quadrant multiplied 

with the dilution factor gives the average number of cells per 0.1µl. In order to calculate 

the average number of cells per ml, the average number of cells per 0.1µl has to be 

multiplied with 104. 

3.2.1.3 Culturing of Purified Tissue Samples and Sphere Cultures 

Scientific Background 

Primary human colon cancer cells can be cultured under serum-free conditions that 

favor the growth of 3-dimensional floating cell aggregates, so-called tumor spheres. 

This culture assay allows for the enrichment of TIC and prevents cancer cells from 

differentiation116, 125, 126. It has first been published for normal and neoplastic stem cells 

from neural and epithelial organs107, 108, 173, 174. Additionally, non-neoplastic cells 

present in the primary tumor specimens do not survive in spheroid cultures. 

Methods 
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After purification of clinical or xenografted cancer samples and depending on their 

further experimental processing, 1x104 – 1x107cells were spun down (900rpm, 5min, 

4°C), resuspended in 5-15ml CSC-medium and seeded in an ultra low attachment flask 

(passage 0). The culture medium was supplemented with the cytokines hFGF-basic 

(10ng/ml) and hEGF (20ng/ml). hFGF-basic and hEGF were added twice a week. 

Medium was changed at least once a month. When spheres were formed and medium 

was used, indicated by a yellow color, the sphere culture was split and entered a new 

passage number. Therefore, cells were spun down at 900rpm for 5min at 4°C and the 

pellet was resolved in 1-10ml fresh CSC-medium. The spheres were manually 

dissociated by pipetting. Depending on the growth kinetics of each individual sphere 

line, 1/10 to 1/3 of the cells were than seeded in a new ULA flask containing up to 50ml 

medium supplemented with hFGF-basic and hEGF. Cells were kept in a humified 

atmosphere at 37°C and 5% CO2. 

The experiments in this work were performed with sphere cultures in passage numbers 

3 to 13 closely resembling the original patient sample without a selective process 

undergone during culturing. All centrifugation steps with primary, xenografted or 

sphere cells were carried out at 900rpm for 5min at 4°C unless otherwise stated. CSC-

medium, was always supplemented freshly with hFGF-basic and hEGF at a final 

concentration of 10ng/ml and 20ng/ml respectively. 

3.2.1.4 Culturing of Adherent Cell Lines 

Scientific Background 

In this work, HEK-293T- and HeLa-cells were used. HEK-293T-cells are human 

embryonic kidney cells which stably express the SV40 T-antigen. HeLa cells are 

derived from human cervical carcinoma. Both are commercially available. 

Methods 

Culturing of adherent cell lines was performed in cell culture flasks in an incubator at 

humidified atmosphere (37°C, 5% CO2). At 80% confluency, medium was aspirated 

and the cell layer was washed with 10ml PBS. 5ml 0.05% Trypsin was added and cells 

were incubated at 37°C for 5min. The reaction was stopped by the addition of 20ml 

stopping medium. The cell suspension was centrifuged (1200rpm, 5min, 4°C) and 

resuspended in 5ml growth medium. 1/100 – 1/10 of the cell suspension was transferred 

into a new flask containing 15ml growth medium and culturing was continued at 37°C. 
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3.2.1.5 Freezing and Thawing of Purified Tissue Cells, Sphere Lines and 

Adherent Cell Lines 

Scientific Background 

For preparation of back up stocks of sphere and cell lines or simply for preserving cells, 

cells can be frozen and kept viable at very low temperatures for many years. Therefore, 

cells should be frozen in complete growth medium in the presence of dimethylsulfoxide 

(DMSO). DMSO acts as a cryoprotective agent: it lowers the freezing point and allows 

slower cooling rates reducing ice crystal formation which can damage the cellsc. 

Methods 

If not all purified cells were required for further experimental processing or culturing, a 

part of the cells was viably frozen. Same was performed for sphere cultures and 

adherent cultures when expanded and when the cells were still in log phase of growth or 

at about 80% confluency. Respective cell suspensions were centrifuged or adherent 

cells were harvested (3.2.1.4) and resolved in 700μl growth-medium. The cell 

suspension was transferred into a cryotube and mixed with 700μl of the respective 

freezing-medium reducing the amount of DMSO to 7.5%. Cells were placed in a 

cryobox filled with 250ml isopropyl alcohol providing a cooling rate of 1°C/min which 

is required for successful cryopreservation of cellsd. The box was than kept at -80°C for 

24-48hours. Frozen cells were moved to the vapor phase of liquid nitrogen for long-

term storage. 

For thawing of cells, the respective cryotube was placed in a 37°C water bath in order to 

thaw the cells until only a small ice piece was left. Cells were transferred in a 50ml 

falcon tube and 1ml growth-medium or in case of adherent cells conditioned thawing 

medium was added drop wise in the time span of 1 minute to thaw the remaining cells 

completely. In order to further dilute the DMSO from the freezing medium, another 5ml 

of medium were slowly added during the next minute. Finally, 20ml medium were 

added to the cell suspension which was then centrifuged. Depending on the amount of 

thawed cells, the pellet was resuspended in 5-15ml fresh growth-medium. Adherent 

cells were seeded into a cell culture flask. Sphere cells were seeded in a ULA flask and 

medium was supplemented with hFGF-basic and hEGF as mentioned in chapter 3.2.1.3. 

Cells were then kept at 37°C, 5% CO2. 

3.2.1.6 Flow Cytometry 

Flow Cytometry (fluorescence activated cell sorting, FACS) is a technology that 

measures cells or particles in liquid suspension. A flow cytometer, like the BD™ LSRII, 

is composed of three subsystems: fluidics, optics and electronics. Samples are kept in 

suspension and loaded into the cytometer’s fluidic system which brings the sample to a 

point of interrogation where it is hit by a laser beam of a certain wavelength. Because of 
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the samples fluorescent properties or previous treatment of the sample with fluorescent 

dyes and the like, the fluorescent components are excited by the laser light and emit 

fluorescent light which is subsequently modified by mirrors, a photo multiplier tube 

system and filters. The modified light is then detected by collection components of the 

optics subsystem. The electronic subsystem converts the light signal into an electronic 

one and digitizes the data which is then displayed by a computer using software. The 

experimenter can measure fluorescence intensity, counts, the relative complexity and 

the relative size of particles or cells. 

Additionally to the BD™ LSR II, the BD FACS Aria™ II Cell Sorter was used in this 

work. A cell sorter works similar to a common cytometer. The optics system contains 

additional features for sorting the samples according to different characteristics of 

choice: the sample drop is charged depending on the emitted fluorescence signal after 

excitation and deflected in a subsequent electrical field. Tubes at respective positions 

collect the separated samples which can then be further used. 

For flow cytometric measurement or sorting of viable cells, specific fluorescent dyes 

can be used to exclude dead cells which allows enrichment of a population of interest. 

Membrane integrity of viable cells guarantees that these dyes cannot invade a cell. Cell 

death results in loss of membrane integrity. Thus, the stain enters a cell and dead cells 

can be identified. 

For the flowcytometric experiments in this work, Fluorogold or ToTo®-3 Iodide was 

used. ToTo®-3 Iodide exhibits far-red fluorescence which makes it an excellent stain in 

combination with fluorochromes excited by the UV- (355nm) or green laser (488nm). 

Fluorogold was only used in combination with stains occupying the red laser (635nm). 

3.2.1.7 Preparation of Cells for Flow Cytometry 

Cells were centrifuged and the pellet was washed once with 1ml PBS. Subsequently, 

cells were resuspended in 500µl ToTo®-3 Iodide and spun down. Samples were 

resuspended in 300µl PBS and stored on ice until FACS analysis. 

3.2.1.8 Hoechst/Pyronin-Staining of Colon Cancer Sphere Cells  

Scientific Background 

The DNA content of a cell changes with increasing cell age: in G1-phase, the cell is 

diploid (2n). The genome is transcribed and DNA is synthesized during S-phase until it 

is duplicated in G2-phase. The chromosomes are then separated during mitosis (M-

phase). Cytokinesis completes the cell cycle. Each daughter cell is diploid and can 

reenter G1-phase. However, some cells that only divide rarely can leave G1 and enter a 

stage called G0. It is supposed to be a quiescent state and is characterized by diploid 

DNA and low RNA content whereas the RNA content in actively-cycling cells remains 
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relatively stable175, 176. Using the fluorescent DNA-intercalating dye Hoechst 33342 

(Hoe) and the RNA-specific dye Pyronin Y (PY) the DNA or RNA contents can be 

correlated with the fluorescence intensity of the stained cells176, 177.  

Methods 

Spheres in medium were pelleted and resuspended in 5ml PBS. After manual 

dissociation of spheres, single-cell suspensions were prepared by filtering through a cell 

strainer (40µm pore size). Cells were counted and 5x105 cells were transferred into a 

sterile FACS tube. They were spun down and resolved in 2ml staining solution 

containing 1µM Hoechst, PY, a combination of Hoe and PY in the mentioned 

concentrations or PBS only for an unstained control. Samples were incubated in a 

waterbath at 37°C for 45min. Addition of PY to a final concentration of 0.3175µg/ml 

was followed by further 45min incubation. All tubes were gently vortexed every 15min 

during incubation. Cells were centrifuged and washed once in 2ml PBS or the 

respective washing buffer (0.66µM Hoe, 0.21µg/ml PY in PBS). Cell pellets were 

washed once more in PBS or the respective washing buffer with 0.2µM ToTo®-3 

Iodide. Finally, cells were resuspended in washing buffer and stored on ice until FACS 

analysis. Cells were sorted according to their cell cycle status and collected in 0.5ml 

CSC-medium. The walls of the collection tubes were rinced with PBS. Samples were 

then centrifuged (1200rpm, 5min, 4°C) and washed once with PBS until they were 

resuspended in CSC-medium supplemented with hFGF-basic and hEGF. 

3.2.1.9 Intracellular staining of colon cancer sphere cells against Ki-67  

Scientific Background 

Ki-67 is an intracellular, nuclear protein which is only expressed in G1, S, G2 and M 

phase of actively-cycling cells178. Its absence from resting cells in G0 makes it an 

outstanding marker to discriminate cells in G0 from proliferating ones. Intracellular 

proteins can be detected by antibodies. If respective antibodies are conjugated to a 

fluorochrome, they can be visualized and quantified via flow cytometry. Since 

antibodies are not membrane permeable, cells have to be fixed and permeabilized in 

advance. 

Methods 

5x102 – 3x104 sorted cells were transferred into a FACS tubes and centrifuged (G0-, 

S/G2/M-cells, 3-fold amount of cells in G1) All centrifugation steps in this experiment 

were performed at 1200rpm, 5min, 4°C. The supernatant was discarded and 4ml ice-

cold Ethanol was added while vortexing. Cells were then incubated in Ethanol at -20°C 

for 2h.  

They were spun down and washed twice with 4ml staining buffer. Before the last 

centrifugation step, G1-cells were separated among three different FACS tubes. Cell 
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pellets were resuspended in100µl staining buffer (unstained control), 100µl isotype 

control (0.01µg/µl staining buffer) or 100µl Ki-67-antibody (0.01µg/µl staining buffer).  

Incubation was performed at room temperature (RT) for 20-30min in the dark. Finally, 

2ml staining buffer were added and all samples were centrifuged and resuspended in 

200µl staining buffer. Cells were stored on ice until FACS analysis. 

3.2.1.10 5-(and-6)-carboxyfluorescein succinimidyl ester (CFSE)-Staining of 

Colon Cancer Sphere Cells  

Scientific Background 

The proliferative activity of cells can be investigated through staining cells with the 

originally non-fluorescent dye 5-(and-6)-carboxyfluorescein diacetate, succinimidyl 

ester (CFDASE). It is highly membrane permeable and is cleaved by intracellular 

esterases yielding the fluorescent dye 5-(and-6)-carboxyfluorescein succinimidyl ester 

(CFSE). CFSE is highly reactive and can covalently bind to intracellular aminogroups. 

Its high lipophilicity also allows it to freely exit from cells. After equilibration, stable 

fluorescent labeling of cells is achieved179. During each cell division CFSE fluorescence 

is equally distributed among the two daughter cells allowing tracking of cells according 

to their proliferative history180. 

Methods 

The sphere cell suspension was spun down and the pellet was resuspended in 5ml PBS. 

Spheres were manually dissociated by thorough pipetting and filtering through a 40µm 

cell strainer. Cells were counted and 1x105 cells were transferred to a 50ml falcon. After 

centrifugation, cells were resuspended in 4ml CFSE-solution (1µM in PBS) or in PBS 

only (unstained control). BSA was added to every tube at a final concentration 0.1%. 

Cells were then stained for 10min at 37°C in a waterbath. After another centrifugation 

step, cells were washed twice with 50ml 0.1% BSA/PBS before they were resuspended 

in 3ml CSC-medium and kept at 37°C, 5% CO2 for 18 hours. Medium was replaced 

after spinning the cells down and hFGF-basic and hEGF were added. Culturing was 

continued for further 8 days at 37°C, 5% CO2. Medium and cytokines were refreshed 

every 72hours. 

3.2.1.11 Determination of CFSE-Staining Efficiency and 10-Days-Kinetics  

Before medium was replaced 18hours after staining, an aliquot of cells was withdrawn 

to determine the initial CFSE intensity (day 0). 500µl of cells were transferred into a 

FACS tube and centrifuged. They were washed once with 1ml PBS and once with 

0.2µM ToTo®-3 Iodide/PBS. Samples were stored on ice until FACS analysis. 

Fluorescence intensity of CFSE was determined in the FITC-channel in relation to an 

unstained control. 
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In order to investigate the label-loss-kinetics in detail, CFSE-stained cells were 

centrifuged 18hours after staining and resuspended in CSC-medium. Cells were counted 

and 5x104 stained cells were seeded into 11 wells of a 24-well-plate in 500µl total 

volume. Every 24hours, one well was emptied and prepared for FACS analysis as 

mentioned above. 

3.2.1.12 Detection of Cell Surface Markers CD133, EpCAM, CD44 and CD166 

on Colon Cancer Sphere Cells  

Scientific Background 

Previous studies suggest that colon TIC can be identified using the cell surface marker 

CD133 or a combination CD44/EpCAM and CD166114-116. Later studies questioned the 

use of these marker, especially of CD133117, 181. In order to investigate whether these 

markers are enriched in one of the proliferative subfractions, CFSE-stained singularized 

sphere cells were stained with different antibodies against the respective cell surface 

molecules. 

Methods 

Before CFSE-stained samples were analyzed 8 days after culturing via FACS, cells 

were also stained with different antibodies specific for the surface molecules CD133, 

CD44, EpCAM and CD166. Therefore, CFSE-stained cells were transferred to a falcon 

and centrifuged. The pellet was resuspended in 5ml PBS and spheres were manually 

dissociated and filtered through a 40µm-filter in order to singularize them. Cells were 

counted and 5x104 cells were kept in a FACS tube and spun down at 1200rpm, 5min, 

4°C. Samples were then incubated with the different antibody-mixes in HF as indicated 

above. One sample was incubated in HF only as an unstained control. Incubation was 

performed at 4°C for 30min in the dark. 100µl HF were added and samples were 

centrifuged (1200rpm, 5min, 4°C). Cells were washed with 500µl 0.02µM 

Fluorogold/HF and the pellet was resuspended in 300µl PBS. Samples were stored on 

ice until FACS analysis. 

3.2.1.13 Determination of the Frequency of Sphere Forming Cells  

To investigate the frequency of sphere forming cells in cell fractions with differing 

proliferative activity, singularized sphere cells were stained with CFSE (3.2.1.10), 

cultured for subsequent 8 days and analyzed using flow cytometry. Fast, slow and non-

dividing sphere cells were sorted in wells of a 96-well-plate in limiting dilution. The 

number of sorted cells per well varied depending on the growth kinetics of the different 

sphere lines (1 cell/well, 5 cells/well, 10 cells/well, 50 cells/well, 100 cells/well, 1000 

cells/well). To determine the sorting efficiency, one plate was always prepared with 1 

cell/well and checked manually under the microscope. Only wells with 1 cell were 

counted as a successful event.  
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Sorted cells were cultured in 200µl CSC medium per well supplemented with hFGF-

basic and EGF. Every 3 to 4 days, the 96-well-plates were centrifuged at 1000rpm, 

7min, 4°C and 100µl medium was carefully withdrawn by a multichannel-pipette. 100µl 

medium containing the 2-fold concentration of hFGF-basic and EGF were added for 

maintenance of the cells. Plates were inspected for sphere formation weekly. Wells 

where spheres developed were counted and compared to number of wells successfully 

sorted. Frequencies were calculated using the software L-Calc (Stem Cell 

Technologies). 

3.2.1.14 Serial Plating Assay 

8 to 12 weeks after the initial sort, single spheres were picked, transferred to a FACS 

tube and carefully dissociated in 100µl PBS. Cells were spun down at 1200rpm, 5min, 

4°C and washed with 100µl 0.2µM ToTo®-3 Iodide/PBS. Living cells were sorted into 

in wells of a 96-well-plate in limiting dilution. The sorting efficiency was determined 

by manual observation and cells were cultured as described in 3.2.1.6. The frequencies 

of sphere forming cells were calculated and compared to the previously analyzed 

generation of cells. 

3.2.1.15 Cytotoxicity Tests of Hoechst 33342, Pyronin Y, CFSE and Cytostatic 

Drugs 

In this work, different sphere lines were used for analyzing the proliferative and cell 

cycle activity of colon TIC in vitro using the dyes CFSE, Hoechst 33342 and Pyronin Y. 

Since sphere cells were sorted and needed to be kept viable for further culturing or 

transplantation into immunodeficient mice, the long-term toxicity of these dyes needed 

to be determined. 

CFSE-, Hoechst-, Pyronin Y- or Hoechst/Pyronin Y-stained and unstained cells were 

counted and 1x104cells were seeded into 12 wells of a 96-well-plate into 200µl CSC 

growth medium. Every 24h, 100µl were withdrawn from one well, pipette carefully up 

and down for 10 times to singularize the cells and mixed 1:1 with trypan blue. Cells 

were counted with an automated cell counter and the number of stained cells was 

normalized to the number of unstained cells to assess an effect of the staining on cell 

viability. 

3.2.1.16 Production of Lentiviral Particles 

Scientific Background 

In order to stably express H2B-GFP and the corresponding repressor tTA2S in sphere 

lines, lentiviral vectors were produced which encode the respective expression cassette. 

These vectors were used as a gene shuttle delivering the genetic material of interest into 

the target cells. The lentiviral genome encodes for three essential viral proteins: gag is 



3 Materials and Methods  37 

required for the formation of structural proteins to protect the viral core and genome, 

pol is involved in protein processing, reverse transcription of the viral genome and 

integration into the host genome and the envelope-glycoprotein env is necessary for the 

attachment to and fusion with the target cell. The products of the regulatory genes tat 

and rev and of the accessory genes vif, vpu, vpr and nef play a role in regulation of gene 

expression, replication and host recognition. Furthermore, gene expression is controlled 

by two long terminal repeats (LTR), one at each end of the viral genome (5’- and 3’-

LTR). LTRs contain the Psi-sequence which is required for packaging of the viral RNA 

into the virus capsid to continue the infection of HIV in its host and the primer binding 

site where tRNA binds and acts as a primer to initiate reverse transcription. The 

polypurine tract (PPT) enables DNA synthesis182. 

In order to improve the safety in molecular biology and gene therapy trials, the viral 

wildtype genome was modified by deleting a short region within the 3’LTR which 

contains transcription factor binding sites183. This modification led to the development of 

self-inactivating (SIN) lentiviral vectors which are not able to replicate anymore 

(replication incompetent). As a result, new expression cassettes composed of promoter 

and a corresponding gene of interest were introduced facilitating development of 

genetically engineered lentiviral vectors for research and for clinical applications184-187. 

In this context, the envelope-protein env of HIV-1 was replaced by the glycoprotein G 

of the vesicular stomatitis virus envelope protein (VSV-G). In contrast to HIV-1-env, 

VSV-G pseudotypes allow transduction of cells independent of CD4 and co-receptor 

and thus show extended host tropism184. In addition, HIV-based lentiviral vectors allow 

efficient transduction of cells in G1 or G0 phase of the cell cycle188.  

In this work, 293T-cells were co-transfected with plasmids encoding all viral 

components required for the formation of SIN-HIV-1-derived lentiviral vectors. All 

viral components were separated among three plasmids in order to minimize the risk of 

replication competent virus formation.  

Methods 

5x106 293T-cells were seeded into 15cm-dishes. Cells were grown in 15ml IMDM 

growth medium for 24hours at 37°C and 5% CO2. Medium was replaced with 13ml 

fresh growth medium. Polyethyleneimine (PEI, 179.25µg/500µl blank IMDM) was used 

as a transfection agent. PEI packs the negatively charged DNA into positively charged 

particles facilitating cellular uptake by endocytosis. 500µl plasmid-mix was prepared 

with blank IMDM. The solution was filter sterilized (0.22µm pore diameter) and mixed 

with an equal volume of PEI/IMDM. After 20min incubation at RT, the mixture was 

added onto the cells and the dish was carefully shaken in order to distribute the DNA 

among the cells.  
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Plasmid Function Amount per dish 

psPAX2 Packaging vector 18.75µg 

pMD2.G Envelope vector 9µg 

pWPXL-TTT-H2B-GFP Transfer vector 32µg 

Medium was refreshed after 12h incubation (15ml). After further 48hours of incubation, 

medium containing lentiviral particles was harvested and filter sterilized (stericup 

vacuum filtration system). It was seperated among ultracentrifugation tubes and 

lentiviral particles were pelleted at 20.000rpm, 2h, 20°C. The supernatant was discarded 

and tubes were put upside down on an ethanol-wetted tissue. After 10min incubation at 

RT, residual medium was removed by a sterile cotton-tip. 30µl PBS were added and 

incubation was performed at RT for 30min. Then, the pellet was washed 25 times with 

the PBS. The supernatants from all centrifuge tubes were collected in a 1.5ml-reaction 

tube and shaken at RT for further 20min. The concentrated viral supernatant was 

aliquotted and stored at -80°C for at least 16h.  

3.2.1.17 Determination of Functional Lentiviral Titers  

Scientific Background 

The efficiency of lentiviral infection depends on the amount of functional and infectious 

viral particles present at the time of infection. This amount might differ depending on 

production and harvest conditions. It is therefore helpful to know the amount of 

infectious particles in a given solution (functional titer). The titer can be quantified 

using a serial limiting dilution transduction assay under standardized conditions. 

Methods 

HeLa cells were grown in a cell culture flask in IMDM-growth medium. At about 80% 

confluency, cells were harvested as described in 3.2.1.4. Cells were counted (3.2.1.2) 

and 5x104 cells were seeded into each well of a 6-well-plate in 3ml growth medium. 

After 24hours of incubation (37°C, 5% CO2) one well was trypsinized and counted to 

determine the numbers of cells at the timepoint of infection (3.2.1.2). 

Growth medium was replaced by 500µl conditioned growth medium containing 16µg 

Polybrene per ml. Virus was diluted in a 24-well-plate: 2µl virus stock were added into 

1ml growth medium and mixed properly. Five serial 1:10-dilutions were prepared by 

transferring 100µl of the previous well into 900µl fresh growth medium (dilution factor 

10-3 – 10-7). Subsequently, 500µl of each viral dilution were added into the wells 

containing the cell layer in 500µl conditioned medium. Transduction was allowed for 

72hours at 37°C, 5% CO2. Then, cells were trypsinized and prepared for flow 

Cytometry (3.2.1.7). 
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The functional titer of the lentiviral stock solution was calculated with the following 

formula from the sample where 1% to 25% (z%) of all living cells were transduced: 

ܷܶ ݂݋ #
݈݉ൗ ൌ  ݔ ݎ݋ݐ݂ܿܽ ݊݋݅ݐݑ݈݅݀ ݔሻ݊݋݅ݐ݂ܿ݁݊݅ ݂݋ ݁݉݅ݐሺ ݏ݈݈݁ܿ ݂݋ #

ݏା݈݈ܿ݁ܲܨܩ %ݖ
100

 

3.2.1.18 Transduction of Primary Colon Cancer Cells with Lentiviral Vectors  

Scientific Background 

Lentiviruses are frequently used to genetically modify a cell. The functional basis is 

integration of the viral DNA into a host cells genome followed by stable expression of 

the newly introduced genetic material. Infection of a cells starts with recognition of its 

receptor by a viral particle (Figure 7). Once a particle is attached, it fuses with the 

targets cell’s membrane and deposits its genomic RNA into the cytoplasm. Viral 

proteins, host proteins and the viral RNA form the pre-integration complex (PIC). 

Single-stranded (ss) RNA is reversely transcribed into ss cDNA by the viral reverse 

transcriptase. A host cell’s DNA polymerase transcribes it into double-stranded (ds) 

cDNA. Processed DNA is then actively transported into the nucleus where integration 

of the viral DNA into the host cell’s genome is promoted by a viral integrase. The 

newly generated DNA (“provirus”) is transcribed and subsequently translated in the 

cytoplasm by the host cell machinery. Viral proteases modify the synthesized 

polypeptides and finally proteins assemble to form the new lentiviral particle which is 

released into the surrounding medium and ready to infect new target cells. 
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Figure 7: Life Cycle of HIV-1-derived lentiviruses.  

Viral particles recognize the host cell’s receptor. Virus-host-fusion is followed by release of the viral 

genome into the cytoplasm. ssRNA is reversely transcribed into ds cDNA which is transported into the 

nucleus. Integration of the viral DNA into the host cell’s genome leads to efficient production of viral 

proteins and finally to formation of new lentiviral particles ready to infect new target cells. Adapted from 

Ozato et al. 2008189. 

The viral DNA semi-randomly integrates into the host cell’s genome. All cell 

descendants also carry the viral DNA at exactly this site and thus a unique clonal mark 

is established in each successfully transduced cell. 
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The transduction efficiency of target cells depends not only on the functional titer of a 

viral stock solution but also on the actual number of viruses entering a cell. One cell can 

be entered by more than one virus while another cell may not absorb any virus particle. 

The transduction efficiency therefore directly depends on the ratio of functional virus 

particles to target cells. This ratio is named multiplicity of infection (MOI). In order to 

increase infection efficiencies, MagnetoFection™ technology was used (Figure 8): virus 

particles were associated with magnetic nanoparticles. Application of a magnetic field 

targets the virus-nanoparticles to the cells and increases infection rates. 

 

Figure 8: Transduction using MagnetoFection™ technology.  

Virus-nanoparticle-complexes are targeted to spheroid cells by application of a magnetic field which 

increases infection rates. 

Methods 

For lentiviral transduction of TIC, sphere cultures were centrifuged and resuspended in 

1ml fresh CSC medium. Spheres were manually dissociated and singularized via 

pipetting with a 200µl tip. Cells were counted and 5x104cells were transferred into the 

well of a 24-well-plate and medium was brought to a total volume of 400µl. To achieve 

an MOI of 100, 5x106 viral particles were mixed with 1.5µl Viromag magnetic beads 

and H2O in a final volume of 100µl. After 20min incubation at RT, the virus-mix was 

added into the wells and mixed with the cells. Infection was allowed for 16h in an 

incubator at 37°C; 5% CO2. Sphere cells were harvested, centrifuged and medium was 

replaced with fresh CSC medium containing FGF and EGF. Depending on their 

intentional use, cells were kept on ice or culturing was continued in an incubator.  
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3.2.1.19 Determination of Transduction Efficiencies 

The transduction efficiency was determined 72h after transduction: for low cell 

numbers, cells carrying the reporter gene GFP were observed under the fluorescence 

microscope, positive events were counted manually and the percentage of GFP-positive 

cells was calculated. For higher cell numbers and for a more accurate determination, an 

aliquot of cells was prepared for flow cytometry (3.2.1.7) and the percentage of GFP-

positive cells in a given population of viable cells was determined. 

3.2.1.20 Validation of the Tet-Off-regulated expression of H2B-GFP in HeLa 

cells and sphere cultures 

After determining the transduction efficiency, 5x104 transduced HeLa cells were kept in 

culture in a 6-well-plate. The same number of untransduced cells was also kept in 

parallel as a negative control. Cells were cultured in 3ml IMDM growth medium until 

80% confluency, harvested as described in 3.2.1.4 and culturing was continued with 

1/10 to 1/100 of the cells. Remaining cells were prepared for FACS analysis (3.2.1.7). 

The percentage of GFP-positive cells was determined everytime when splitting the 

cells. After 4 to 6 weeks in culture, untransduced and transduced HeLa cells were 

counted and 5x104cells were seeded. An equal number of transduced cells were seeded 

into an additional well and treated with 10ng doxycyclin per ml medium. The 

percentage of GFP+ cells under doxycyclin-treatment was compared to that of untreated 

transduced cells. The same experiment was performed with TSC-01 and TSC-08. 

Sphere cells were maintained in 5ml medium in an ULA T25 flask as described in 

3.2.1.3. GFP precentages were measured frequently over 5 months mimicking the time 

period sphere cells spent in mice. 

3.2.1.21 Testing the Sensitivity of sphere lines towards 5-Fluorouracil and 

Oxaliplatin 

Scientific Background 

Since transplanted mice were planned to be treated with chemotherapy, the effect of 5-

Fluorouracil (5-FU) and Oxaliplatin on respective sphere lines was estimated in vitro as 

a preliminary test. These drugs are commonly used in colon cancer chemotherapy165, 166, 

190.  

Methods 

Sphere cells were harvested and centrifuged. The pellet was resuspended in 1ml CSC 

medium and spheres were manually dissociated and singularized via pipetting and 

filtering (40µm pore size). Cells were then counted and 1x104cells were seeded into 12 

wells of a 96-well-plate into 100µl CSC growth medium containing the 2-fold 

concentration of FGF and EGF. Then, 100µl of 2-fold concentrated drug were added 
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into the wells. Final concentrations of 5-FU and Oxaliplatin were 0, 0.001, 0.01, 0.1, 1, 

10, 100 and 1000µg/ml. Every 48h, 100µl were withdrawn from one well, pipette 

carefully up and down for 10 times to singularize the cells and mixed 1:1 with trypan 

blue. Cells were counted with an automated cell counter and the number of treated cells 

was normalized to the number of untreated cells to assess sensitivity of the cells for the 

chemotherapeutic drug. 

3.2.1.22 Preparation of cells for Xenotransplantation 

For transplantation, tumor sphere cells were dissociated, counted and 500 to 1x106 cells 

were transferred into a 1.5ml reaction tube. Cells were pelleted at 2000rpm, 5min, RT 

and resuspended in 25µl CSC medium including FGF and EGF. The cell suspension 

was mixed with an equal volume of matrigel and transferred into an insulin syringe. The 

syringe was kept on ice until transplantation. 

3.2.2 Animal Experiments  

3.2.2.1 Mouse Strain and housing 

Scientific Background 

In this work, only NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice, also known as Il2rg-/-, 

Il2RGnull or NOD SCID gamma (NSG), were used. This mouse strain lacks B-cells, T-

cells and functional NK-cells. Consequently, it displays a severe immune deficiency 

facilitating the engraftment of human cancer cells191-193. Colon sphere cells were 

injected into the kidney capsule of these mice. Injection of colon cancer cells into the 

murine kidney capsule has been associated with the best tumor take rate, generation of 

tumors that closely resembled the patient material and high cell numbers could be 

transplanted which minimizes the risk of losing cell clones in genetic marking 

experiments114, 125. 

Methods 

NSG mice were kept at the animal facility in individually ventilated cages (IVC) and 

isolators. These housing conditions are pathogen free and provide a clean atmosphere 

for immunodeficient animals. Mice received sterilized feed and bedding. All supplies 

and equipment was disinfected prior to animal contact. Gloves, coat, mask and cap were 

worn in respective housing rooms. Experiments were performed under sterile conditions 

in a laminar flow hood. Animals were sacrificed by cervical dislocation when a tumor 

reached a size of 1cm3 or when the mice suffered. 
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3.2.2.2 Transplantation of Cells under the Kidney Capsule of Immune 

Compromised Mice and Serial Transplantation Assay 

Cells were prepared for transplantation according to 3.2.1.22. At the animal facility, a 

mouse was anesthetized using 1.8% isoflurane (inhalation narcosis) and narcosis was 

maintained on a 37°C heat pad. Eyes of the mouse were covered with Bepanthen (eyes 

and nose lotion) to keep them moist. The left flank was shaved using a scapel and the 

skin was disinfected with sterile alcohol pads. On the upper right of the spleen, a skin 

incision of about 1cm was made. Using blunt scissors, the skin was mobilized from the 

peritoneum. The abdominal cavity was opened by a small cut above the kidney. Light 

manual pressure was applied to expose the kidney. Peritoneum and kidney were kept 

moist using sterile cotton tips and PBS. The syringe containing cells in matrigel was 

inserted under the kidney capsule and the viscous mixture was injected before the 

syringe was carefully removed. PBS-soaked cotton tips facilitated the repatriation of the 

kidney into the abdominal cavity. The peritoneal cut was stitched using resorbable 

material and the skin was closed using wound clips. Iodide solution was applied 

liberally and the mouse was uniquely ear marked. Narcosis was ended and the mouse 

was kept on the heat pad until reaching its consciousness. From then on, animals were 

continuously treated with 50µg Baytril® per ml drinking water. Transplanted mice were 

checked every day during the first week after surgery and every second day in 

subsequent weeks. The wound clips were removed 10 days after transplantation. 

3.2.2.3 Excision of organs and xenografted tumors from transplanted mice  

Mice were sacrificed by cervical dislocation and fixed backwards on a solid 

underground. The abdomen was opened along the median ventral line and the skin was 

also fixed on the underground. Tumor and corresponding kidney were carefully 

separated from the surrounding tissue and excised. Liver, spleen and lungs were also 

carefully removed and all was kept in PBS on ice until further processing. 

3.2.2.4 Administration of Tetracycline to NSG mice 

In order to suppress H2B-GFP-experssion in transduced and transplanted cells, 

doxycyclin was applied to the drinking water of mice (2g/L) from three weeks on after 

transplantation. The dox-water was additionally supplemented with 1.5% sucrose to 

mask the bitter taste of doxycyclin. 

3.2.2.5 Administration of 5-FU on NSG mice 

5-FU was administrated intraperitoneally (i.p.). A stock solution was prepared at a 

concentration of 10mg/ml PBS. The mouse was hold in a safe and tight grasp with one 

hand, it was turned around to expose the abdominal site and the head was tilted 

downwards to move inner organs upwards. Using a 26G needle, a syringe loaded with 
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5-FU in PBS was inserted into the lower right quadrant of the abdomen and 5-FU was 

injected. The needle was removed carefully and the mouse was returned to its cage.  

Starting three weeks after transplantation, 85 mg 5-FU/kg body weight was 

administered weekly for three weeks in a row. Mice were then sacrificed and tumors 

and organs were harvested. 150 mg 5-FU/kg body weight was injected in another 

experiment 3 days prior to scarification.  The total volume injected did not exceed 

350µl. 

3.2.3 Molecular Biological Methods 

3.2.3.1 Transformation of Competent Escherichia coli 

Scientific Background 

Bacteria exhibit distinct features which make them ideal organisms to amplify DNA: 

Various methods have been described to introduce exogenous DNA into bacteria 

(transformation)194-202, always provided that they were in DNA-uptake-enabled state 

(competence). For this work, One Shot® TOP10 chemically competent E. coli 

(genpotype F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 

Δ(araleu) 7697 galU galK rpsL (StrR) endA1 nupG λ-) and One Shot® Stbl3™ 

chemically competent E. coli (genotype F-mcrB mrrhsdS20(rB
-, mB

-) recA13 supE44 

ara-14 galK2 lacY1 proA2 rpsL20(StrR) xyl-5 λ-leumtl-1) were purchased from 

Invitrogen. The competent state was achieved by Ca2+-treatment leading to masking of 

the negatively charged outer bacterial membrane which consists of lipopolysaccharides 

and phospholipids. The negatively charged DNA molecules are attracted and can enter 

the cell upon heat shock which weakens the membrane structure and leads to pore 

formation203.  

Methods 

Chemically competent E.coli were stored at -80°C and thawed on ice for 30min. 1µg 

plasmid was added and incubated on ice for further 30min. Bacteria were heat shocked 

for 30s on 42°C (Stabl3 45s on 42°C). The mix was cooled on ice for 2min and 250μl 

SOC-medium was added. Incubation was performed for 60min at 37°C to help bacteria 

recover from the heat shock.  

3.2.3.2 Propagation of Transformed Bacteria  

Scientific Background 

If absorbed plasmids harbor a gene conferring antibiotic resistance, transformed bacteria 

can be enriched by antibiotic selection: the bacterial cell suspension is grown on agar 

plates containing the respective antibiotic and only plasmid containing bacteria will 
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have the ability to metabolize the drug and to form colonies. Single colonies can then be 

picked and amplified in liquid cultures. 

All plasmids used in this study harbored an ampicillin-resistance-gene. 

Methods 

50-100µl of the bacteria suspension was plated onto ampicillin-containing agar plates 

(100µg/ml). Plates were incubated upside down at 37°C for 12-16h. Formed colonies 

were picked by an autoclaved toothpick and transferred into 5ml LB medium containing 

100µg ampicillin/ml. Bacteria were allowed to grow for 8-14h at 37°C, 190rpm. 

Depending on the desired amount of DNA, liquid cultures were either used for DNA 

isolation (Mini Prep) or used for inoculation of 250ml ampicillin-LB medium which 

was then kept on the shaking incubator for further 12-14h and finally used for DNA 

isolation (Maxi Prep). 

3.2.3.3 Isolation of Plasmids 

Scientific Background 

Plasmids can be isolated by alkaline lysis: addition of an alkaline solution containing a 

detergent like sodium hydroxide (NaOH)/Sodium dodecyl sulfate (SDS) disrupts 

bacterial cell membranes, the chemical can enter the cell and nucleic acid is denatured. 

A neutralizing solution like sodium acetate allows the renaturing of plasmid DNA, but 

precipitates chromosomal DNA and the detergent. The lysate can be filtrated to separate 

precipitated components and debris. The plasmid can then be purified using an ion-

exchange polymer column. DNA is bound to the column, washed and finally eluted 

with a saline solution. Purified DNA is then pelleted by isopropanol-percipitation and 

centrifugation and dissolved in H2O. 

Methods 

Bacterial cultures were centrifuges at 8000rpm, 5min, 4°C (5ml Mini culture)  or at 

4600rpm, 30min, 4°C (250ml Maxi culture) and either frozen and stored at -80°C or 

directly submitted to alkaline lysis according to the kit-manufacturers protocol. The 

following kits were used: 

 Mini Prep: GeneMATRIX Plasmid Miniprep DNA Purification Kit 

 Maxi Prep: Qiagen EndoFree® Plasmid Purification Kit. 

The concentrations of DNA were determined using the spectrophotometer NanoDrop® 

ND-1000. Purified DNA was stored at -20°C. 
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3.2.3.4 Restriction Digest  

Scientific Background 

DNA can be digested enzymatically using restriction endonucleases. These enzymes 

recognize particular and unique sequences of DNA and act as molecular scissors 

producing DNA fragments of distinct sizes with 5’-, 3’- or no overhang (blunt end). 

Visualization of these DNA fragments using agarose gel electrophoresis and ethidium 

bromide as an intercalating agent helps to determine fragment sizes which can then be 

compared to theoretically expected ones. Fragments can be extracted from the gel and 

be used in further cloning experiments or the gel is simply used to determine integrity of 

isolated DNA samples like in this work. 

Methods 

2µl of the purified DNA sample were mixed with 18µl digestion buffer (see Table 1) 

and incubated at 37°C for 1h. In some cases, bovine serum albumin (BSA) had to be 

added (final concentration 100µg/ml) to stabilize enzymes and to prevent their adhesion 

to plastic surfaces during incubation. The plasmids pMD2.G, pSPAX2 and pWPXL-

TTT-H2B-GFP were digested with the enzyme Kpn1 and its corresponding NEB buffer 

1 under presence of BSA. 

Table 1: Buffer composition for restriction digestion. 

10x NEB buffer 2µl 

10x BSA (if necessary) 2µl 

NEB enzyme 5 units 

H2O ad 20µl  

3.2.3.5 Agarose Gel Electrophoresis  

Scientific Background 

DNA molecules are negatively charged due to their phosphate groups. They can thereby 

move in an electrical field. The velocity of their movement depends on their size 

(correlating with the molecules total charge and mass) and on the constitution of the 

medium. One can take advantage of these facts using agarose gel electrophoresis: DNA 

is loaded onto an agarose gel, an electrical field is applied and the molecules start to 

move through the electrical field. Agarose is a natural polysaccharide found in red 

algae. As a gel, agarose medium is porous. Its pore size depends on the concentration of 

agarose (0.8 - 2%). Smaller molecules migrate faster than bigger molecules because 

they move much easier through the pore mesh. Thus, DNA fragments can be separated 

according to their size. A DNA intercalating dye helps to visualize the fragments and 

comparison to a marker of known size lets one determine the size of these fragments. 
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Fragments can be extracted from the gel and be used in further cloning experiments or 

the gel is simply used to determine integrity of isolated DNA samples like in this work. 

Methods 

Depending on the intended concentration, 0.8 – 2g of purified agarose were dissolved in 

100ml 1x TBE buffer under heating in a microwave. After a short cool down, 2 drops of 

ethidiumbromide (1mg/ml) were added and the mixture was pivoted carefully and filled 

into a gel carrier. A comb was inserted for the formation of chambers and the gel was 

solidified and cooled for 20min at RT. The carrier containing the gel was placed into a 

chamber with 1x TBE buffer. 8µl of the digested DNA samples were mixed with 2µl 

loading buffer 5x Blue Run and loaded into the gel chambers. Gel electrophoresis was 

perfomed for 45min at 150V. Fragment sizes were estimated by visualization under UV 

light and comparison of signals to a DNA ladder loading control. 

3.2.3.6 Sequencing of plasmids  

Scientific Background 

Plasmids had to be checked for their integrity before amplification and usage in further 

experiments. Sequencing was performed according to Sanger et al.204: DNA is 

replicated in vitro using a primer, a DNA polymerase, a mix of normal 

deoxynucleosidetriphosphates (dNTP) and only one type of radio-labeled 

dideoxynucleotides (ddNTP) lacking a 3’-OH group. If ddNTPs are incorporated into 

the newly synthesized DNA, replication is terminated since a new phosphodiester bond 

cannot be formed. These fragments are subsequently separated via electrophoresis and 

the sequence can directly be read from the gel picture. 

Methods 

2.5µg of the DNA sample were diluted in 30µl H2O in a 1.5ml reaction tube. 

Sequencing was performed at GATC Biotech in Konstanz. Primers were chosen based 

on the following criteria: 17-28 bases in length, G/C-content of about 50-60%, location 

about 50bp up- or downstream of region to be sequenced, melting temperature 

preferentially 52 – 58°C and a G- or C-3‘end was favored. If not available, primers were 

also synthesized by GATC Biotech. 

3.2.3.7 Isolation of Genomic DNA from Xenografted Tumors 

After purification of xenografted tumors, at least 1/3 of the cells were pelleted at 

2000rpm for 5min. The supernatant was discarded and samples were frozen and kept at 

-20°C. 

Pellets were thawed on ice for 30min and DNA was isolated according to Qiagens 

DNeasy Blood & Tissue Kit protocol. Cells were lysed, DNA bound to silica surfaces 

and was thereby separated from debris and contaminants. DNA was finally eluted in 50-
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100µl H2O and concentrations were determined using the spectrophotometer 

NanoDrop® ND-1000. Purified DNA was stored at -20°C. 

3.2.3.8 Linear Amplification Mediated PCR 

Scientific Background 

Efficient transduction of cells is based on integration of viral DNA into the host cell’s 

genome. These integration sites (IS) are unique for each cell and its descendants. 

Tracking of IS by linear amplification mediated PCR (LAM-PCR) and subsequent 

sequencing allows to determine the clonal composition of xenografted tumors in serial 

transplantation assays. Schmidt et al. established this method in order to detect viral IS 

in clinical gene therapy samples205 harboring the possibility of insertional mutagenesis 

and subsequent malignant transformation206-208. 

Virus-specific, biotinylated primers were used to amplify the genome-virus junctions. 

Single-stranded DNA fragments composed of the known primer-vector-sequence and 

the unknown adjacent part of the host cells genome were immobilized on streptavidin-

coated magnetic beads. Double-stranded DNA was enzymatically synthesized and 

subsequently digested. A restriction-site-specific linker of a known sequence was 

coupled to the remaining dsDNA. The DNA fragments were denatured and removed 

from the solid phase. ssDNA was further amplified using linker-specific and nested 

primers. Finally, amplified DNA was purified, concentrated and submitted for high 

resolution gel electrophoresis. 

 

 



3 Materials and Methods  50 

 

Figure 9: Schematic outline of linear amplification mediated PCR (LAM-PCR).  

Genome-virus junctions were amplified using virus-specific, biotinylated primers. ssDNA products were 

immobilized on streptavidin-coated magnetic beads and dsDNA was synthesized and subsequently 

digested. Coupling of restriction-site-specific linkers to immobilized dsDNA and subsequent denaturation 

yielded ssDNA which was further amplified using nested primers. Adapted from Schmidt et al. 2007205. 

Methods 

Generation of linker 

The linker was generated by ligation of two oligonucleotides: a universal long one (LC 

1) and a short one which had to be chosen according to the overhanging sequence 

produced by the enzyme used for restriction digestion. In this study, the enzyme 

Tsp509I was used for restriction digestion yielding an AATT-overhang. Thus, LC 3 was 

mixed with LC 1 according to the following protocol: 

LC 1 (100µM) 40µl 

LC 3 (100µM) 40µl 

MgCl2 (100mM) 10µl 

Tris (250mM) 110µl 

The mix was incubated for 5min at 95°C in a thermo mixer which was subsequently 

switched off and the reaction mix was cooled down over night. 300µl H2O were added 

and transferred into a Microcon-30 column. Centrifugation was performed at 12600rpm, 

12min, RT and the flow through was discarded. The column was turned upside down 



3 Materials and Methods  51 

and placed into a new collection tube. DNA was harvested by centrifugation (3600rpm, 

3min, RT) and filled up to 80µl with H2O. The linker was aliquotted and stored at -

20°C. 

Linear PCR 

A 96-well-PCR-plate was prepared containing 50µl DNA-reaction mix per well: 

DNA 100-500ng 

10x PCR-buffer 5µl 

dNTP (10mM) 1µl 

Taq DNA Polymerase (5U/µl) 0.5µl 

Primer SK LTR 1 bio (0.167µM) 0.25 µl 

Primer SK LTR 2 bio (0.167µM) 0.25 µl 

H2O ad 50µl 

DNA was amplified using the following program 

step Temperature Time 

Initial Denaturation 95 °C 2min 

Denaturation 95 °C 45sec 

Annealing 58 °C 45sec 

Elongation 72 °C 1min 

Final Elongation 72 °C 5min 

After 50 cycles of denaturation, annealing and elongation, 2.5 U of fresh Taq DNA 

Polymerase were added. DNA was then amplified for further 50-cycles using the same 

program. 

Magnetic Capture 

The amplified, biotin-tagged ssDNA fragments were then captured by streptavidin-

coated magnetic beads. Therefore, 200µg beads per sample were collected by a magnet 

at the wall of a reaction tube. The storage buffer was removed and beads were washed 

twice with PBS/0.1% BSA (40µl/200µg beads) and once with 3M LiCl (20µl/200µg). 

Finally, beads were resuspended in 6M LiCl (50µl/200µg) and added to 50µl PCR 

product (ratio 1:1). Capturing of biotinylated DNA by the streptavidin-coated beads was 

performed at 300rpm, over night, RT. 
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dsDNA synthesis 

Complementary DNA was synthesized using klenow-enzyme: the PCR-pate was 

exposed to a magnetic field and the supernatant was withdrawn. Beads/DNA-complexes 

were washed with 100µl H2O and resuspended in 10µl reaction mix. 

H2O 8.25µl 

10x Hexa-Nucleotide-Mix 1µl 

dNTPs (200µM) 0.25µl 

Klenow (2U/µl) 0.5µl 

Samples were incubated at 37°C, 1h and then stored on ice. 

Restriction digest 

90µl H2O were added to each sample and a magnetic field was applied. The supernatant 

was discarded and beads/DNA-complexes were washed once more with 100µl H2O. 

Finally, they were resuspended in 10µl reaction mix. 

H2O 8.8µl 

10x NEB-buffer 1 1µl 

Enzyme Tsp509I (5U/µl) 0.2µl 

Samples were incubated at 65°C for 1h. 

Linker ligation 

Digested, dsDNA fragments were ligated with the restriction site-specific linker using 

“Fast-Link™ Ligation Kit”: 90µl H2O were added to each sample which was then 

exposed to a magnetic field. The supernatant was discarded and samples were washed 

one more time with 100µl H2O. The beads/DNA/linker-complexes were resuspended in 

10μl ligation mix.  

10x ligation buffer 1µl 

ATP 1µl 

Ligase 1µl 

Linkerkassette 2µl 

H2O 5µl 

They were incubated for 5min at RT and subsequently stored on ice. 

Denaturation 

DNA was removed from the beads and denatured by addition of an alkaline solution: 

first, 90µl H2O were added to each sample and the supernatant was removed after 
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exposure to a magnetic field. Samples were again washed with 100µl H2O and then 

resuspended in 5µl 0.1M NaOH. Denaturation was allowed for 10min at 300rpm, RT. 

Beads were attracted by a magnet and the supernatant containing DNA fragments was 

carefully transferred into 0.5ml reaction tubes which were finally stored on ice. 

Nested PCRs 

The denatured DNA was submitted to a first round of nested PCR: a 96-well-PCR-plate 

was prepared containing 50µl DNA/reaction mix per well: 

DNA (denaturation product) 2µl 

H2O 40.5µl 

10x buffer (Qiagen) 5µl 

dNTP (10mM) 1µl 

Taq DNA Polymerase (5U/µl) 0.5µl 

Primer LC I (16.7µM) 0.5 µl 

Primer SK LTR 4 bio (16.7µM) 0.5 µl 

DNA was amplified using the following program: 

step Temperature Time 

Initial Denaturation 95 °C 2min 

Denaturation 95 °C 45sec 

Annealing 60 °C 45sec 

Elongation 72 °C 1min 

Final Elongation 72 °C 5min 

35 cycles of denaturation, annealing and elongation were carried out. 

The first round of nested PCR was followed by second round using two other, more 

nested primers: 

DNA (product from 1st nested PCR) 2µl 

H2O 40.5µl 

10x buffer (Qiagen) 5µl 

dNTP (10mM) 1µl 

Taq DNA Polymerase (5U/µl) 0.5µl 

Primer LC II (16.7µM) 0.5 µl 

Primer SK LTR 5 bio (16.7µM) 0.5 µl 
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DNA was amplified using the same program. 8µl of each sample were submitted to high 

resolution gel electrophoresis whereas the remaining part was frozen and stored at -

20°C. 

3.2.3.9 High resolution gel electrophoresis 

DNA fragments were seperated using spreadex EL 1200 gels which are made of a 

synthetic polymer. Samples were mixed with 5x Elchrom loading buffer (ratio 1:5) and 

10µl were loaded into the chambers of the gel. Gel electrophoresis was performed in a 

tank containing Elchrom buffer (mixed 1:40 with H2O) for 90min at 130V. Gels were 

incubated in 100ml H2O containing 2 drops of ethidiumbromide (15min, RT). Fragment 

sizes were estimated by visualization under UV light and comparison of signals to a 

DNA ladder loading control. 

3.2.4 Histopathological Methods 

3.2.4.1 Fixation and Processing of Tissue Samples  

In order to obtain tissue slices (primary and xenografted tumor or organs), tissue 

samples had to be embedded into a solid media like paraffin or paraplast (a mixture of 

paraffin and synthetic polymers). 

First, tissue samples in embedding cassettes were incubated in 10% formalin for 

24hours, 4°C. They were then stored in PBS at 4°C for up to 3 weeks. Since paraffin is 

not water-miscible, tissue had to be drained in an ascending ethanol series (2h 70% 

EthOH, 2h 85% EthOH, 2h 95% EthOH, 3x 2h Isopropanol). Incubation with Xylol (2x 

2h) removed remaining alcohol. Finally, samples were kept in melted paraffin for 2-8h 

until they were transferred into metal forms and covered by melted paraffin. Solid tissue 

blocks were produced by letting the paraffin harden at 4°C. Blocks were then stored at 

room temperature until usage. 

3.2.4.2 Pathology and Generation of Tissue Slices 

Pathological evaluation of primary patient tumors, spheroid cultures, xenografts and 

respective organs was performed in collaboration with PD Dr. Karsten Brand and Prof. 

Dr. Wilko Weichert. Prof. Weichert also provided tissue slices and HE staining of 

submitted samples. 

3.2.4.3 Immunohistochemistry 

Tissue slices of H2BGFP-transduced tumors were stained with an anti-GFP-antibody by 

the Weichert lab. The distribution of GFP-label-retaining cells was assessed and 

evaluated by Prof. Dr. Wilko Weichert. 
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4 Results 

Our lab has shown that the human colon cancer TIC compartment is composed of 

distinct types of TICs differing in their ability to contribute to tumor formation in a 

serial transplantation assay135. DC-TIC were only active in secondary or tertiary mice 

suggesting an initial mitotic quiescence in primary generations of mice. The 

proliferative and cell cycle activity of human colon TIC has not been investigated so far. 

In order to characterize human colon TIC in more detail, this study thoroughly 

investigates their proliferative activity and dynamics in vitro and in vivo. 

4.1 Primary Sphere Cultures are enriched for Human Colon 

Cancer initiating Cells 

Colon cancer cells lines have widely been used to study the disease in vitro. Stable cell 

lines are usually cultured over several months where cells accumulate phenotypic and 

genetic aberrations diverging from the original patient tumor. To overcome this 

limitation, only primary patient-derived tumor material was used in this study. Patient 

tumor or metastasis samples were purified and isolated cells were expanded using two 

different strategies to enlarge engraftment efficiency: cells were grown in vitro under 

serum-free, growth factor supplemented and low attachment conditions. Cells grew in 

3-dimensional, non-adherent structures called spheroids. Sphere formation in freshly 

purified samples started 2 weeks to 5 month after purification. However, not all purified 

samples directly engrafted in vitro. This is why freshly purified patient-derived tumor 

cells were additionally transplanted into immunodeficient mice. Patient material was 

expanded in vivo and xenografted tumors were subsequently purified and cultured 

allowing spheroid formation. 

In total, 194 samples were purified in our lab. 16 sphere cultures could have been 

established from purified patient’s or xenograft’s material (success rate 8.2%) of which 

4 have been used in this study (TSC-01, TSC-03, TSC-04 and TSC-08, Figure 10). 
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Figure 10: Primary sphere cultures derived from patient tumors and metastasis.  

TSC-01 was derived from a colon cancer patient’s liver metastasis, TSC-03 was established out of a 

patient’s lung metastasis, TSC-04 was developed from a xenografted tumor which grew after 

transplantation of purified primary colon cancer tumor tissue and TSC-08 originated from xenografted 

patient’s liver metastasis tissue. 

Enrichment of spheroid cultures for human colon TIC has been demonstrated by a 

limiting dilution experiment where 1x106 freshly purified TSC-02 cells did not form a 

tumor in mice but 1x104 primary sphere culture cells formed tumors. Histological 

analysis revealed that both, spheroid cultures and xenografted tumors resembled the 

corresponding patient tissue. Moreover, all samples showed similar intra-individual 

marker expression (Figure 11). 

 

Figure 11: Spheroid cultures and xenografted tumors resemble the original primary patient 
material.  

The expression of diagnostically relevant colon cancer antigens was similar in patient tissue and 

corresponding xenografted tumors and spheroid cultures. TSC-02 is exemplarily displayed. Scale bar 

50µm. HE – Hematoxylin and eosin stain, CK20 – Cytokeratin 20, CDX2 - caudal type homeobox 2, 

EpCAM - Epithelial cell adhesion molecule, CEA - Carcinoembryonic antigen. Data produced by Dr. 

Christopher Hoffmann and Dr. Sebastian Dieter. 

Once spheres were formed and the medium was used, sphere cultures were harvested 

and pellets were resuspended in fresh medium. Everytime, sphere cultures were splitted 

or frozen, spheres were manually dissociated and cells entered a new passage number. 
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Only low to medium passage numbers were used in this work (P<13). Aliquots of 

passage numbers were routinely investigated in the lab and proved no change of 

morphology or expression of cell surface markers (CD133, EpCAM, CD44 and CD166) 

up to P30. Patient characteristics are depicted in Table 2. 

Table 2: Patient characteristics of distinct primary sphere cultures. 

Primary sphere culture age sex Tumor site Tumor stage (UICC) 

TSC-01 54 m Liver metastasis IV 

TSC-03 67 m Lung metastasis IV 

TSC-04 53 m Colon IV 

TSC-08 49 f Liver metastasis IV 

4.2 The majority of human colon TIC is actively-cycling in 

vitro and in vivo 

To address whether a highly quiescent population of colon cancer initiating cells 

persists in G0 phase of the cell cycle, sphere cells were stained with the DNA-

intercalating dye Hoechst 33342 (Hoe) and the RNA-intercalating dye Pyronin Y (PY). 

During progression through the cell cycle, a cell changes its DNA- and RNA-content. 

The intercalating fluorescent dyes were used to visualize DNA and RNA via flow 

cytometry in order to discriminate cells in G0-phase of the cell cycle from actively-

cycling ones (G1-, S-, G2- and M-phase). G2- and M-phase are characterized by a 

doubled amount of DNA (correlated to the Hoechst fluorescent intensity) as compared 

to the signal of cells in G0- and G1-phase. Cells in S-phase of the cell cycle show an 

intermediate Hoechst-intensity. G0-cells, which have a low RNA content, can be 

distinguished from G1-cells by their reduced PY-staining. Different concentrations and 

combinations of Hoe and PY were tested to minimize the cytotoxic effect of each 

compound. Cytotoxicity tests helped to avoid a selective process and overgrowth of a 

subsequently transplanted population by one resistant subfraction. Suitable 

concentrations of Hoe and PY were used to stain different sphere cultures. Subsequent 

FACS analysis revealed sphere cells in the different cell cycle phases G1, G0, S, G2 and 

M (Figure 12). Cells were sorted according to their cell cycle status. The gating strategy 

was verified using Ki-67 as a marker for actively-cycling cells. Cells from each cell 

cycle phase were then transplanted into immunodeficient mice. The tumor forming 

capacity of cells from each fraction was investigated in order to see whether the 

tumorigenic potential depended on the cell cycle status of transplanted cells. Formed 

tumors were harvested and the in vivo cell cycle status of xenografted cells was 

evaluated. A serial transplantation assay was carried out to decipher which cell cycle 

phase comprised self-renewing colon TIC. 
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Figure 12: Cell cycle status of colon cancer initiating cells.  

Tumor sphere cells were stained with Hoechst 33342 and Pyronin Y. Cells were sorted according to their 

cell cycle status (G1, S/G2/M, G0) and transplanted into immunodeficient mice. A serial transplantation 

assay was carried out in order to evaluate the tumor forming potential and self-renewal ability of cells 

with differing cell cycle status. 

4.2.1 Hoechst/Pyronin-staining allows discrimination of primary sphere 

culture cells in G0-, G1- and S/G2/M-phase of the cell cycle 

Primary sphere culture cells were stained with Hoechst and PY in order to discriminate 

cells in different phases of the cell cycle. TSC-03 and TSC-04 were chosen for 

assessment of the spheroid cell’s cell cycle status due to their homogenous 

morphological appearance regarding size and shape. Other sphere cultures tested were 

relatively heterogeneous causing an inconsistent sample flow in the sorting device’s 

fluidic system which is required for high resolution stable sorting experiments. 

Consequently, these spheroid cultures were inappropriate for cell cycle analysis and 

subsequent cell sorting. Different concentrations of the fluorescent dyes were tested for 

their staining efficiencies and long term toxicities. PY did not have an impact on cell 

viability up to 1µM (Figure 13a). Spheroid cells tolerated low Hoechst concentrations 

(<0.5µM) for 48h and showed slightly reduced viability afterwards (Figure 13b). 1µM 

Hoechst showed a cytotoxic effect already in the first 24hours after staining but then 

viability stayed stable over further 3 days in vitro. When comparing the staining 

efficiencies of several Hoechst-concentrations, only 1µM Hoechst revealed cell cycle 

profiles with a sufficient resolution to discriminate G0/G1 and S/G2/M phase (Figure 

13c).  
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Figure 13: Spheroid cells can be efficiently stained using 1µM Hoechst 33342 and 1µM Pyronin Y. 

Cytotoxicity of Pyronin Y (a;  0.2µM,  0.4µM,   0.6µM,   0.8µM,   1µM,   2µM), 

Hoechst 33342 (b;  0.1µM,  0.2µM,  0.3µM,  0.4µM,   0.5µM,   1µM) and 

Hoechst staining efficiencies of different concentrations (c) on TSC-04. Pyronin Y had only a small 

impact on cell viability whereas Hoechst showed a cytotoxic effect at concentrations of 0.4µM or higher. 

Only 1µM Hoechst allowed discrimination of cells with differing cell cycle status. 

Consequently, TSC-03 and TSC-04 spheroid cells were stained using 1µM Hoe and 

1µM PY (Figure 14). The majority of cells were actively-cycling: TSC-03 showed 

72.3% in G1-phase and 27.4% in S/G2/M-phase of the cell cycle. For TSC-04, 83.2% of 

spheroid cells were present in G1-phase and 16.5% in S/G2/M-phase. Both sphere 

cultures exhibited 0.3% of cells in G0. 
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Figure 14: Cell Cycle Profiles of spheroid cultures using Hoechst/Pyronin staining.  

a) TSC-03 and b) TSC-04 spheroid cells were stained using 1µM Hoe and 1µM PY. The majority of cells 

were in G1- ( ) and S/G2/M-phase ( ) and only 0.3% cells were hibernating in G0 ( ) as shown in the 

cell cycle phase distribution (c). 

4.2.2 Sphere cells from G0-, G1- and S/G2/M-fractions form tumors with a 

similar cell cycle profile 

To address whether cell cycle quiescence is a property of human colon TIC and whether 

the tumor initiating and self-renewal potential are restricted to cells in G0 phase of the 

cell cycle, primary patient-derived spheroid culture cells were stained with Hoechst and 

Pyronin, sorted according to their cell cycle status and serially transplanted into 

immunodeficient mice. In TSC-03, 0.3% of living cells were present in G0 whereas the 

majority of cells were actively cycling (69.1% G1 and 25.8% S/G2/M, Figure 15a). 4.8% 

of cells were in sub-G1-phase. Cells in sub-G1 are apoptotic and characterized by 

degradation of DNA resulting in a decreased Hoechst signal as compared to G1-phase. 

TSC-04 exhibited a similar pattern: 0.5% G0, 80.7% G1, 16.3% S/G2/M and 2.5% sub-G1 

(Figure 15b). Cells were sorted according to their cell cycle status and equal cell 

numbers of bulk or sorted fractions were transplanted into immunodeficient mice to 

assess the tumor initiating capacity of cells with differing cell cycle status. All fractions 

of TSC-03 and TSC-04 contributed to tumor formation irrespective of their cell cycle 

status in spheroid cultures. In addition, purified cells from xenografted tumors were 

analyzed for their cell cycle status to determine the cell cycle activity of human colon 

TIC in vivo (Figure 15). TSC-03 tumors showed a remarkably similar distribution of 

cells in the different cell cycle phases as compared to the in vitro situation of sphere 

cultures: in the tumor grown out of bulk transplanted spheroid cells, 0.3% of viable cells 

were in G0, 85% in G1 and 3% in S/G2/M-phase of the cell cycle, the G0-tumor 

exhibited 0.2% in G0, 90% in G1 and 4% in S/G2/M, G1-tumor 0.1% G0, 88% G1, 9% 

S/G2/M and the S/G2/M-tumor revealed 0.3% of cells in G0, 78% in G1 and 8% in 
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S/G2/M-phase. TSC-04 sphere culture yielded 0.4% of viable cells in G0, 77% in G1 and 

13% in S/G2/M-phase of the cell cycle. Xenografted tumors showed the following cell 

cycle phase distribution: bulk tumor 0.3% G0, 61% G1 and 12% S/G2/M-phase; the; G1-

tumor 0.9% G0, 7% G1 and 4% S/G2/M-phase and S/G2/M-tumor 0.5% G0, 64% G1 and 

12% S/G2/M-phase. The G1-tumor additionally exhibited a huge proportion of apoptotic 

cells in sub-G1-phase. The cell cycle status of TSC-04’s G0-tumor could not be 

determined due to a very small amount of viable cells.  

a) 

 
b) 

 

Figure 15: Cell cycle status of colon spheroid cells and xenografted tumors.  

Singularized TSC-03 (a) and TSC-04 (b) sphere cells were stained with Hoechst and Pyronin. Bulk and 

sorted cells originating from G0 ( ), G1 ( ) and S/G2/M phase ( ) were transplanted into 

immunodeficient mice. Xenografted tumor cells were again analyzed for their cell cycle status and serial 

transplantation was performed. Cells in sub-G1 ( ) showed a decreased Hoechst staining due to DNA-

degradation. 
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4.2.3 Ki-67 is a nuclear marker to discriminate cells in G0-phase of the cell 

cycle from actively-cycling cells 

In order to verify the sorting gates and to approve the dormant cell cycle state of 

transplanted G0-cells, aliquots of sorted cells were stained with an antibody against Ki-

67. Sorted TSC-03 and TSC-04 could be discriminated according to their Ki-67 

expression levels determined by the mean fluorescence intensity (MFI) of fixed and 

stained cells (Figure 16): G0-cells show similar fluorescent intensities as unstained and 

isotype-stained control cells indicating the level of autofluorescence. Contrarily, G1- 

and S/G2/M-fractions exhibited 2- to 5-fold increased expression levels of Ki-67. 

 

Figure 16: Ki-67 is only expressed by actively-cycling cells. 

Aliquots of Hoe/PY-sorted cells from a) TSC-03 and b) TSC-04 were stained with an antibody against 

Ki-67. Mean fluorescence intensities (x1000 fluorescent units) increased with cell cycle progression. Neg 

Ctrl – negative control, IgG – isotype control, MFI – mean fluorescence intensity. 

4.2.4 G0-, G1- and S/G2/M-fractions comprise self-renewing human colon 

TIC 

Long-term tumor initiating capacity and self-renewal-potential of primary sphere cells 

were assessed in a serial transplantation assay: singularized spheroid cells were 

transplanted into immunodeficient mice as an unsorted and unstained bulk or as sorted 

fractions defined by their cell cycle status (G0, G1 and S/G2/M). Mice transplanted with 
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TSC-03 and TSC-04 cells originating from the different cell cycle phases all formed 

tumors (Figure 15). Xenografted tumors were harvested, digested and equal numbers of 

tumor cells were transplanted into new recipients. Serial transplantation was carried out 

until 3 generations of mice indicating that G0-, G1- and S/G2/M-fractions from spheroid 

cultures comprised self-renewing colon TIC.  

Aliquots of tumor cells from primary recipients were restained with Hoe and PY and 

sorted according to their cell cycle status in vivo. Sorted cells were subsequently 

transplanted into a second generation of mice. Mice transplanted with 500 to 1x104 cells 

did not develop tumors. However, 2nd generation mice transplanted with 500 unstained 

and unsorted cells from the same primary recipient showed tumor formation. 

Bulk transplantation of unstained and unsorted TSC-03 and TSC-04 spheroid cells 

yielded tumors in primary recipients. 2nd and 3rd generation tumors developed in mice 

serially transplanted with unstained bulk cells. Aliquots of primary tumor cells were 

additionally stained and sorted according to their cell cycle status. Secondary mice 

transplanted with 500 to 1x104 cells of the different cell cycle fractions did not develop 

tumors for TSC-03. For TSC-04, 500 G1- and 1x104 S/G2/M-phase-cells from primary 

xenografted bulk tumors led to tumor formation in mice.  

Summarizing, all initially sorted cell cycle fractions yielded long-term tumor forming 

potential in three generations of mice indicating that G0-, G1- and S/G2/M-fractions 

harbored self-renewing colon TIC.  

4.3 The tumor initiating potential is not tightly linked to 

mitotic quiescence in vitro and in vivo 

It has been hypothesized that mitotic quiescence and resulting chemoresistance are 

functional characteristics of human colon TIC but experimental evidence has not been 

provided yet. We aimed to investigate whether colon cancer comprises cell fractions 

with differing proliferative activity. Analysis of the cell cycle status via Hoe/PY-

staining is a snapshot at the time of analysis. However, the momentous cell cycle status 

does not equally indicate quiescence per se. In order to detect cells which are long-term 

quiescent, label-retaining assays have been developed based on DNA-intercalation or 

binding of cellular components147, 179. In this study, the CFSE label-retaining assay was 

used to investigate prolonged quiescence of primary, human colon TIC enriched 

spheroid cultures. Furthermore, the H2BGFP label-retaining assay was applied to 

identify quiescent human colon TIC in vivo.  
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Singularized sphere cells were stained with CFSE. The fluorescent dye is highly 

reactive and can covalently bind to intracellular aminogroups resulting in stable 

fluorescent labeling of cells179. During each cell division half of the CFSE fluorescence 

intensity is distributed into each of the two daughter cells allowing tracking of cells 

according to their proliferative history180. Systematic titration experiments were 

performed to test different dye-concentrations for their cytotoxic effect, their staining 

efficiency and 10-days-kinetics of label loss. A suitable concentration showing no 

cytotoxicity, maximum staining efficiency after equilibration and a small fraction of 

label-retaining cells after 8 days in culture was used to stain different sphere cultures. 

Subsequent FACS analysis revealed spheroid cells with differing proliferative activity. 

Fast, slow and rarely dividing sphere cells were separated by FACS. Cells from each 

proliferative fraction were sorted in limiting dilution and cultured over a prolonged 

period of time. The frequency of sphere forming cells in each proliferative subfraction 

was determined in vitro to test whether the sphereogenic potential correlated with the 

original proliferative velocity of sorted cells. Formed spheres were picked and replated 

to elucidate the self-renewal ability of colon sphere cells. Furthermore, the expression 

of cell surface markers previously associated with tumor initiating potential (CD133, 

EpCAM, CD44 and CD166) was analyzed among the sorted proliferative fractions. In 

addition, sorted cells with differing proliferative activity were transplanted into 

immunodeficient mice. The tumor forming capacity of cells from each fraction was 

investigated in order to see whether the tumorigenic potential depended on the original 

proliferative velocity of transplanted cells. Formed tumors were harvested and a serial 

transplantation assay was carried out to investigate the self-renewal ability of colon 

cancer spheroid cells with differing proliferative activity in vivo.  

 

Figure 17: Proliferative capacity of colon cancer initiating cells.  

Tumor sphere cells were stained with CFSE and cells were sorted according to their proliferative history 

at day 8 after staining. Fast, slow and rarely dividing cells were transplanted into immunodeficient mice 

or sorted in limiting dilution into 96-well-plates. A serial transplantation and replating assay were carried 

out in order to evaluate the tumor and sphere forming potential and self-renewal ability of cells with 

initially differing proliferative activity. 
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4.3.1 CFSE-staining allows discrimination of primary sphere culture cells 

with differing proliferative activity and reveals a rarely dividing 

subpopulation 

TSC-01, TSC-03 and TSC-04 cells were stained with different concentrations of CFSE 

in order to test for their initial staining efficiencies and for their long-term cytotoxic 

effect. The CFSE-intensity was determined after equilibration to assure successful 

staining. Cells were cultured for 10 days and cytotoxicity of CFSE was evaluated by 

cell counting.  Labeling of spheroid cells with 1µM – 25µM CFSE showed 100% 

staining efficiency. 1µM CFSE showed no cytotoxic effect over 10 days for all primary 

sphere cultures tested. CFSE concentrations higher than 2.5µM inhibited cell growth 

and had a negative impact on cell viability after 2-3 days in culture (Figure 18). 

 

Figure 18: Cytotoxicity of CFSE. 

 TSC-01, TSC-03 and TSC-04 sphere culture cells were stained with 1µM ( ), 2.5µM (  ), 5µM (

 ), 10µM (  ) or 25µM (  ) CFSE or treated with 0.2% DMSO (  ) as a control. Cell viability 

was determined by cell counting and observed over 10 days. 

Spheroid cells, which were previously stained with 1µM CFSE, were cultured for 10 

days and FACS measurements were performed daily in order to investigate the label-

loss-kinetics for three sphere cultures (Figure 19): all cells were efficiently labeled with 

1µM CFSE. When determining initial CFSE intensities at about 16h after staining (day 

0), corresponding histograms revealed a gaussian distribution. In the next 24 hours, 

mitotic profiles slightly changed. On day 2, a decrease of CFSE intensities was 

observable in all sphere cultures tested. During the following days in vitro, the majority 

of cells lost their CFSE until only a small subpopulation still maintained the label. After 

day 8, the proliferative profile was not altered anymore. 
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Figure 19: CFSE label loss kinetics. 

Singularized spheroid cells from a) TSC-01, b) TSC-03 and c) TSC-04 were stained using 1µM CFSE 

and cultured for 10 days. FACS measurements were performed daily in order to study the label loss of 

each individual primary sphere culture. 
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After 8 days of culture, three subfractions with differing proliferative activity could be 

distinguished: fast dividing cells lost all the label dye and exhibited the same CFSE 

intensity as compared to a negative, unstained control (autofluorescence), cells 

maintaining at least 90% of the initial CFSE-intensity represented a rarely dividing or 

quiescent population and slow-dividing cells showed an intermediate CFSE 

fluorescence. On day 8, less than 5% of cells in all sphere cultures tested could be 

defined as rarely dividing (Figure 20). 

 

Figure 20: CFSE staining of primary sphere culture cells reveals different proliferative 
subfractions. 

 a) Sorting gates used to separate cells in culture are indicated (fast, slow and rarely dividing). b) The 

distribution of fast ( ), slow ( ) and rarely dividing ( ) cells among different sphere cultures varies, but 

each spheroid culture comprised a small fraction of rarely dividing cells at day 8 after staining. 

4.3.2 Cancer stem cell markers are not enriched in fast, slow or rarely 

dividing cell fractions  

To further analyze whether published markers, which have previously been associated 

with colon cancer initiating cells, are enriched in individual proliferative fractions, we 

analyzed sphere cells which have been prepared for sorting after CFSE culture for the 

expression of CD133, CD166, CD44 and EpCAM by flow cytometry. Interestingly, no 

enrichment of any marker could be identified among fast, slow and rarely dividing 

spheroid cells (Table 3). 

Table 3: Expression of cell surface markers. 

Fast, slow and rarely dividing TSC-01, TSC-03 and TSC-04 sphere cells were stained with antibodies 

against CD133, CD166, CD44 and EpCAM. The cell surface markers were not enriched in any 

proliferative subfractions. 

  CD133 CD166 CD44 EpCAM 

TSC-01 

Fast 0% 99.3% 64.7% 0% 

Slow 0% 99.4% 69.1% 0% 

Rarely div. 0% 93.3% 57% 0% 
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TSC-03 

Fast 47.3% 96.3% 72.2% 0.6% 

Slow 51.3% 98.4% 85.2% 0.6% 

Rarely div. 39.5% 91.1% 75% 0.4% 

TSC-04 

Fast 0% 98.2% 89.1% 3.9% 

Slow 0% 95.7% 91.4% 17.9% 

Rarely div. 0% 48.5% 71.1% 19.1% 

4.3.3 The frequency of sphere forming cells is similar among fast, slow 

and rarely dividing cells 

To test the hypothesis that colon cancer initiating cells are quiescent, the frequency of 

sphere forming cells in rarely, slow and fast dividing subfractions of three primary 

colon sphere cultures was determined in vitro. Therefore, cells from each subfraction 

were sorted in limiting dilution series into the wells of a 96-well-plate. 1 cell/well, 10 

cells/well and 100 cells/well were seeded and sphere formation was observed weekly. 

Formed spheres were picked, singularized and replated twice in order to test the self-

renewal ability of spheroid cells with differing proliferative activity in vitro. The 

frequency of sphere forming cells (SFC) was calculated for every proliferative 

subfraction and each plating-generation (Table 4). In TSC-01, every second to every 

11th cells was sphereogenic, independent from its original proliferative activity and 

plating generation. The SFC-frequency for TSC-03 ranged from 1 in 20 cells to 1 in 97. 

For TSC-04, frequencies were only determined for two spheroid generations (1 SFC in 

34 to 1 SFC in 160 cells). They did not grow from single-cell level. TSC-04 spheroids 

regrew when plated at a density of at least 500 cells/ml, in rare cases also at 50 cells/ml. 

Comparison revealed that the frequencies of sphere forming cells (SFC) were similar 

among the different proliferative fractions but varied among different sphere cultures, 

each representing one patient. 
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Table 4: Frequencies of sphere forming cells. 

Fast, slow and rarely dividing TSC-01, TSC-03 and TSC-04 sphere cells were sorted in 96-well plates in 

limiting dilution and the frequencies of sphere forming cells (SFC) were calculated using the software L-

Calc. SFC frequencies were similar among fast, slow and rarely dividing colon cancer sphere cells. 

  1st generation 2nd generation 3rd generation 

TSC-01 

Fast 1 SFC in 2 1 SFC in 4 1 SFC in 6 

Slow 1 SFC in 8 1 SFC in 5 1 SFC in 4 

Rarely div. 1 SFC in 10 1 SFC in 11 1 SFC in 7 

TSC-03 

Fast 1 SFC in 23 1 SFC in 97 1 SFC in 20 

Slow 1 SFC in 29 1 SFC in 62 1 SFC in 63 

Rarely div. 1 SFC in 61 1 SFC in 94 1 SFC in 45 

TSC-04 

Fast 1 SFC in 76 1 SFC in 34 n.d. 

Slow 1 SFC in 160 1 SFC in 68 n.d. 

Rarely div. 1 SFC in 81 1 SFC in 75 n.d. 

4.3.4 Fast, slow and rarely dividing cell fractions comprise self-renewing 

human colon TIC 

In order to assess the tumor initiating capacity of human colon TIC with differing 

proliferative activity, equal cell numbers from each subfraction of rarely, slow and fast 

dividing cells were transplanted under the kidney capsule of immunodeficient mice. 

Sorted cell fractions of all three patients formed tumors, irrespective of their 

proliferative kinetics in vitro. Tumors formed in the first generation (1°) of mice were 

digested, analyzed for their CFSE intensities and serially transplanted (2° and 3°) with 

equal numbers of bulk cells.   TSC-01, TSC-03 and TSC-04 initially sorted rarely, slow 

and fast dividing cells were able to form tumors in 3 generations of mice confirming the 

self-renewal ability of cells in all proliferative subfractions. Respecive tumors within 

one generation of mice exhibited a similar weight. In all cases, first generation tumor 

cells from originally fast (CFSEneg), slow (CFSElow) and rarely dividing (CFSEhigh) cells 

were CFSEneg, indicating that all cells within this fraction actively proliferated upon 

transplantation (Figure 21).  
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a) TSC-01 

 
b) TSC-03 

 
c) TSC-04 

 

Figure 21: Fast, slow and rarely dividing human colon TIC form tumors in immunodeficient mice. 
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CFSE-stained TSC-01 (a), TSC-03 (b) and TSC-04 (c) cells were sorted as indicated by the gates (fast – 

left, slow – middle, and rarely dividing – right) and serially transplanted over three generations.  

4.4 A quiescent population of human colon cancer TIC exists 

in vivo and is enriched by chemotherapeutic treatment 

Dieter et al. described delayed contributing tumor-initiating cells in the TIC 

compartment of human colorectal cancer135. These DC-TIC only contributed to tumor 

formation in a serial transplantation assay in secondary or tertiary mice suggesting an 

initial mitotic quiescence in vivo.  To understand whether DC-TIC are indeed quiescent 

in vivo and whether quiescent TIC can be recruited to tumor formation after 

chemotherapeutic treatment, a high resolution genetic label-retaining strategy was used: 

tumor sphere cells were genetically marked by transduction with a lentiviral vector 

encoding a tetracycline-regulated gene expression system151. This expression construct 

comprised a transcriptional transactivator protein (tTA2S) and a transactivator-

controlled human histone 2B (H2B) fused to a green fluorescent marker protein GFP 

(H2B-GFP). Transduced cells constitutively express tTA2S (EF1α promoter) whereas 

H2B-GFP is under control of the tetracycline-responsive promoter PTight. In the absence 

of tetracycline, the transactivator binds to PTight and activates transcription of H2B-GFP. 

Proliferating cells continuously incorporate the H2B-GFP fusion protein into their 

nucleosomes. Addition of tetracycline leads to conformational changes in the 

transactivator which cannot bind to PTight anymore and thereby expression of H2B-GFP 

is stopped (“Tet-Off regulated gene expression system”). During each cell division half 

of the GFP is distributed among the two daughter cells allowing tracking of cells 

according to their proliferative history. 

Singularized sphere cells were transduced with the H2B-GFP lentiviral vector (H2B-

GFP-LV). Different MOIs were tested for their transduction efficiencies (MOI 0.1-500). 

MOI 100 was used to transduce different primary sphere cultures. We validated the Tet-

Off-regulated expression of H2B-GFP by long-term-culturing of transduced cells with 

or without tetracycline and frequent FACS measurements. Transplantation of infected 

cells into immunodeficient mice yielded green fluorescent tumors. After establishment 

of the tumor microenvironment, tetracycline was applied to the drinking water of mice. 

Consequently, H2B-GFP expression was repressed and tumor cells lost half of their 

GFP expression with each cell division. Formed tumors were harvested and purified. 

FACS analysis revealed tumor cells with differing proliferative activity. Cells were 

sorted according to their proliferative velocity and a serial transplantation assay 

demonstrated whether the self-renewal ability of colon TIC was correlated to their 

proliferative activity. In addition, we determined whether quiescent TIC can be 

reactivated to regrow the tumor after chemotherapy. Therefore, we tested the in vitro-

sensitivity of different sphere lines towards 5-Fluorouracil (5-FU) and Oxaliplatin, two 
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commonly used drugs for the clinical treatment of colorectal cancer patients165, 166, 190. 

Two different concentrations of 5-FU were tested for its long-term-toxicity on 

immunodeficient mice (85mg/kg, 150mg/kg). Cohorts of mice transplanted with H2B-

GFP expressing sphere cells were treated with 85mg 5-FU per kg bodyweight. The 

proportion of label-retaining cells was quantified in order to determine whether 

mitotically quiescent TIC within established tumors survived chemotherapeutic 

treatment. Serial transplantation of sorted cells with differing proliferative activity 

originating from 5-FU-treated tumors allowed us to determine whether quiescent TIC 

can be reactivated to regrow the tumor after chemotherapy. The clonal composition of 

tumors engrafted from sorted cells with differing proliferative activity was analyzed via 

LAM-PCR. We determined whether quiescent TIC can be recruited to regrow the tumor 

after drug treatment. Furthermore, identification of DC-TIC in 5-FU treated tumors 

reflected their role in chemoresistance. 

 

Figure 22: In vivo quiescence and chemotherapy resistance of delayed contributing TIC.  

Tumor sphere cells were dissociated and transduced with an H2B-GFP-lentiviral vector resulting in green 

fluorescent tumors following xenotransplantation under the kidney capsule of immunodeficient mice. 

Upon treatment with tetracycline, H2B-GFP expression was shut off. Consequently, dividing tumor cells 

loose half of their GFP expression with each cell division. Tumors were harvested and label-retaining 

cells were sorted. Subsequent serial transplantations into immunodeficient mice assessed repopulation 

ability and self-renewal potential of different cell clones. Chemotherapeutic treatment of mice bearing 

H2B-GFP expressing tumors allowed evaluation of the recruitment of previously quiescent clones to 

tumor formation upon drug treatment.  
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4.4.1 Efficient production of lentiviral particles encoding the human-

derived histone H2B-GFP  

The production of lentiviral particles encoding the tet-regulated H2B-GFP expression 

system required bacterial plasmids encoding the viral components. These plasmids were 

amplified in E.coli and subsequently checked for their integrity by restriction digestion. 

Figure 23 shows representative results. Digestion of pMD2.G, psPAX2 and pWPXL-

TTT-H2B-GFP were performed using NEB enzyme Kpn1.  

 

Figure 23: Agarose gel displaying digested DNA. 

The plasmids pWPXL-TTT-H2B-GFP (a), pMD2.G (b) and psPAX2 (c) were digested using the 

restriction enzyme Kpn1 (37°C, 1h). Gel electrophoresis was performed in a 2% agarose gel (150V, 

45min). 

Isolated plasmid DNA was used for the production of lentiviral particles. Titer assays 

were performed on HeLa cells. The percentage of GFP-positive cells was determined 

via flow cytometry and the functional titer was calculated according to the formula  

(Figure 24). 2.8% of 9x104 cells were successfully transduced by a viral stock solution 

(104-fold dilution) giving a functional titer of 2.52x107 TU/ml.  
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Figure 24: Determination of functional virus titers. 

FACS plot and corresponding statistics from a) untransduced HeLa cells and b) HeLa cells transduced 

with a lentivirus encoding the tet-regulated H2B-GFP expression system. The percentage of GFP+ cells 

was determined and functional titers were calculated. 

4.4.2 Expression of H2B-GFP in infected cells is regulated by tetracycline 

in vitro and in vivo 

In order to validate the tet-regulated H2B-GFP expression system in vitro, HeLa cells 

were transduced with the H2B-GFP-LV and cultured. Transduced HeLa cells showed a 

distinct nuclear GFP signal (Figure 25a). Stable integration of viral DNA into the host 

cells genome was verified by measuring GFP-intensity of transduced HeLa cells at 

frequent timepoints over 8 months. Additionally, a part of those cells was cultured in 

the presence of doxycyclin to approve the functionality of the tet-regulated system. 

First, the system was tested in HeLa cells (Figure 25): transduced cells (approximately 

25%) maintained their GFP intensity over 3 months. Then, the proportion of GFP 

expressing cells slightly increased and remained stable for further 4 months. In the 

following two weeks, the amount of GFP expressing cells was tripled. Doxycyclin was 

added to the medium after 4 weeks of culturing and GFP-expression was completely 

suppressed. Removal of doxycyclin after further 4 weeks restored GFP-expression. 

Same hold true for a later removal of doxycyclin from transduced cells. GFP-expression 

was further suppressable by renewed doxycyclin-addition. After 7 months of culture, 

GFP-expression of the untreated, GFP-expressing cells started to increase 3-fold.   
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Figure 25: Tet-regulated H2B-GFP expression system in HeLa cells.  

a) Transduced HeLa cells show nuclear localization of GFP expression. b) Cells were cultured for 8 

months ( ). 10ng/ml Doxycyclin was added as indicated by black arrows and GFP-expression was 

completely abolished ( ). Removal of Doxycyclin restored GFP-expression at two different timepoints 

(  and  ) which remained reversible (  ). 

Regulation of H2B-GFP expression in mice harbored the risk that doxycyclin was only 

available for distinct regions of the xenografted tumor. Thus, label-retention would have 

been due to insufficient doxycyclin-supply and not due to mitotic quiescence. 

Therefore, the distribution of GFP within a tumor was assessed using tissue slices which 

were immunohistochemically stained with an antibody against GFP (Figure 26). 

Doxycyclin-untreated control tumors showed homogeneous GFP-expression for TSC-

01 and TSC-08. Single clones showed no GFP-expression in both cases. Treatment of 

mice with doxycyclin via the drinking water led to almost complete abundance of GFP-

expression in TSC-01- and TSC-08-derived tumors. Single GFP+ signals were equally 

distributed over the tumor and showed no regional enrichment. 
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Figure 26: Immunohistochemical staining of GFP within H2B-GFP-transduced tumors. 

Tumor tissue slices were stained using an antibody against GFP. Positive control tumors showed a 

homogeneous distribution of GFP (pos Ctrl). Doxycyclin inhibited GFP expression (Dox). Only rarely 

dividing cells maintained the label. 

4.4.3 Xenografted tumors comprise different proliferative subfractions of 

self-renewing human colon TIC in vivo 

Lentivirally marked tumor sphere culture cells were transplanted under the kidney 

capsule of immunodeficient mice and gave rise to green fluorescent tumors. Doxycyclin 

was applied to the drinking water of mice starting 3 weeks after transplantation. GFP 

expression was suppressed from then on resulting in dilution of GFP expression in 

rapidly dividing cells. Only slow or rarely dividing cells maintained their GFP. After 

further 3 weeks of tumor growth, mice were sacrificed and tumors were harvested and 

analyzed for their GFP intensities. Doxycyclin-treated tumors were compared to 

untreated control tumors. Subfractions with differing proliferative activity could be 

discriminated (Figure 27): fast dividing cells (78.8% of TSC-01, 99.6% of TSC-08) lost 

all their GFP and showed the same fluorescent intensity as untransduced tumor cells. 

Rarely dividing tumor cells (TSC-01 0.3%, TSC-08 0%) were defined by the same 

GFP-intensities as the highly GFP+ population in the doxycyclin-untreated tumor. Slow 

dividing cells (TSC-01 21.1%, TSC-08 0.4%) exhibited an intermediate GFP-

fluorescence. The untreated H2B-GFP expressing control tumor showed 60% GFP+ 

cells in first generation recipients of TSC-01. First generation mice were sacrificed and 

tumors were analyzed for their GFP expression. Untransduced and transduced but 

doxycyclin-untreated tumor cells were serially transplanted as control groups. 

Untreated, H2B-GFP expressing 2nd generation TSC-01 tumors contained 64% GFP+ 

cells. The GFP+-proportion remained stable in 3rd generation mice (70% GFP+). 

Doxycyclin-treated tumor cells were sorted according to their proliferative history and 

each subfraction was transplanted into a second generation of mice. Tumors were 
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formed by control bulk cells and originally fast and rarely dividing TSC-01 cells. In 

TSC-01, 4.5% of the transplanted rarely dividing cell population still maintained their 

GFP-intensities upon tumor formation. A third generation of mice was transplanted with 

xenografted 2nd generation tumor bulk cells. Originally fast, rarely dividing and 

unfractionated cells maintained their tumor forming capacity confirming the presence of 

self-renewing TIC. The size of the rarely dividing population decreased to 2.5% in the 

3rd generation tumor originating from rarely dividing cells. For TSC-08, transduced 

control cells formed tumors over two generations whereas untransduced TSC-08 

contributed to tumor formation over three generations of mice (Figure 27b). Upon 

sorting of proliferative subfractions, only fast dividing cells contributed to tumor 

formation in a 2nd generation of mice.  
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a) TSC-01 

 
b) TSC-08 

 

Figure 27: Xenografted tumors comprise fast, slow and rarely dividing human colon TIC. 

Untransduced (-) and transduced (+ and D) cells were transplanted into immunodeficient mice. After 

three weeks of tumor growth, a cohort of mice was treated with doxycyclin in the drinking water (D), 

tumors were harvested after further three weeks. Purified tumor cells were sorted according to their 

proliferative activity or further assessed as unfractioned bulk. a) TSC-01 fast and rarely dividing tumor 

cells maintained their tumor initiating potential over three generations of mice; the size of the originally 

quiescent population decreased to 2.5%. b) Fast dividing TSC-08 contributed to tumor formation in a 2nd 

generation of mice. 
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4.4.4 A quiescent population of human self-renewing colon TIC is 

enriched by chemotherapeutic treatment 

In order to investigate whether quiescent TIC can be recruited to tumor formation after 

chemotherapeutic treatment, cohorts of mice were treated with 5-FU, a 

chemotherapeutic drug applied in standard colon cancer therapies.  

Prior to these experiments, 5-FU in vivo toxicity tests were performed in agreement 

with the DKFZ veterinarian: weekly intraperitoneal injection of 85mg 5-FU per kg body 

weight on 3 consecutive weeks and bolus injection of 150mg/kg 3 days prior to 

sacrification did not show a viability-reducing effect in treated animals. 2 out of 2 mice 

for each group survived. Consequently, 85mg 5FU / kg were injected once a week for 

the final three weeks of tumor growth in parallel to application of doxycyclin whereas 

150mg 5-FU / kg were only applied once, 3 days prior to sacrification (Figure 28). In 

this experiment, the size of a quiescent population in 5-FU-treated mice was compared 

to 5-FU non-treated mice. Interestingly, 5-FU-treatment increased the size of the 

quiescent population (TSC-01: 0.1% in non-treated mice vs. 0.3% with 1x 150mg/kg 

and 0.5% with 3x 85mg/kg; TSC-08: 0% in non-treated mice vs. 0% with 1x 150mg/kg 

and 0.1% with 3x 85mg/kg). Sorting and subsequent serial transplantation of fast, slow 

and rarely dividing cells revealed that all proliferative subfractions of TSC-01 and TSC-

08 comprised self-renewing TIC. The quiescent fraction of TSC-01 cells was even more 

enriched in the 2nd generation tumor originating from those cells (1.7% vs. 0.5% in the 

1st generation tumor), indicating that these cells admittedly proliferated but, however, 

comprise a small fraction which is still not contributing to tumor formation. Slow and 

rarely dividing cells from 150mg 5-FU-treated tumors (Figure 28b) did not engraft in 

transplanted mice. Treatment of TSC-08-tumor-bearing mice with 5-FU led to an 

enrichment of label-retaining cells in the first generation. All cells in 2nd generation 

tumors, no matter from which cell fraction they were derived, actively proliferated and 

lost all their GFP. Rarely dividing cells from 85mg-treated mice and slow-dividing and 

unsorted cells from 150mg-treated mice did not form a tumor in the second generation. 
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a) TSC-01, 85mg 5-FU/kg 

 
b) TSC-01, 150mg 5-FU/kg
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c) TSC-08, 85mg 5-FU/kg 

d) TSC-08, 150mg 5-FU/kg

 

Figure 28: A quiescent population of human colon TIC can be enriched using chemotherapeutic 
treatment.  
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Fast, slow and rarely dividing cell fractions of TSC-01 (a and b) and TSC-08 (c and d) tumor cells 

comprised self-renewing TIC. The quiescent fraction of TSC-01 and TSC-08 was enriched in 85mg 5-

FU/kg-treated mice. TSC-01-rarely dividing tumor cells were even more concentrated in the 2nd 

generation tumor originating from those cells. Fast, slow and rarely dividing TSC-08 tumor cells highly 

proliferated and lost all their GFP. 

4.4.5 Clonal Composition of xenografted tumors formed by colon TIC 

with differing proliferative activity 

Our group has recently shown that human colon cancers comprise a small subfraction of 

delayed contributing TIC (DC-TIC) which becomes activated upon serial 

transplantation. These cells might have rested in a mitotically inactive state. We 

hypothesized that cellular quiescence might enable them to survive chemotherapeutic 

intervention. To track the contribution of individual cell clones, we analyzed the clonal 

composition of xenografted tumors. In addition, we assessed the effect of 5-FU 

treatment on the clonal contribution of distinct TIC clones.  

H2B-GFP expression in human colon TIC was driven by lentiviral integrating vectors. 

The viral DNA carrying the H2BGFP expression cassette semi-randomly integrates into 

the host cell’s genome. All cell descendants inherit the viral DNA at exactly the same 

site, and thus a unique clonal mark is established in each successfully transduced cell. 

Lentiviral integration sites in the host cell’s genome were tracked using LAM-PCR.  

Amplification and restrictive digestion of vector-genome-junctions during LAM-PCR 

yielded DNA-fragments of different length which were finally displayed by high 

resolution gel electrophoresis (Figure 29). Assuming that each clone harbors one 

integration, every band on the gel represents one distinct cell clone contributing to 

tumor formation in respective samples. Primary recipient mice developed tumors with 

polyclonal offspring (Figure 29a). Several clones contributed to tumor formation in 

three generations of mice whereas other cell clones were only active in 1st generation 

mice. A small fraction of TIC only proliferated in the third generation, its clonal 

contribution to first or second generation tumors was not detectable via gel 

electrophoresis. Moreover, the number of clones contributing to tumor formation 

decreased during serial transplantation. 

First generation tumors comprised fast, slow and rarely-dividing cells. Cells with 

differing proliferative activity were separately transplanted into NSG mice and the 

clonal composition of xenografted tumors was analyzed (Figure 29b): tumors derived 

from initially fast dividing cells were formed by few cell clones with a relatively small 

band size of 100-150bp. In contrast, tumors formed by originally rarely-dividing cells 

showed a polyclonal pattern with numerous additional cell clones with band sizes 

between 200 and 500bp. Chemotherapeutic treatment led to a different clonal pattern as 

compared to non-treated tumors (Figure 29c). Some clones were eliminated and did not 
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contribute to tumor formation in chemo-treated mice. Few clones survived and were 

still detectable after chemotherapy. In addition, new cell clones which were previously 

not detectable in chemo-free mice (“no 5-FU 1°”) proliferated and contributed to the 

tumor (“5-FU bulk 1°”). Follow-up of chemo-exposed tumor cells over three 

generations of mice showed that one cell clone was detectable in primary and tertiary 

recipients of chemo-treated, unsorted bulk cells. If at all contributing, it was below the 

detection limit in secondary tumor samples. The polyclonal pattern from 1st generation 

tumors was reduced to an oligoclonal level within three generations. One very weak 

clone contributed to the tertiary tumor only. Fast, slow and rarely-dividing cells could 

be discriminated in 1st generation chemo-treated tumors. They were sorted and the 

clonal pattern of formed tumors was analyzed and compared to each other and to the 1st 

generation bulk tumor from which they were derived. The gel revealed that the primary 

tumor’s polyclonal pattern (“5-FU bulk 1°”) was only maintained by the rarely-dividing 

cell fraction in a second generation of mice (“5-FU rarely div. 2°”). The third generation 

tumor derived from initially rarely-dividing cells showed an oligoclonal composition as 

seen before. Moreover, the gel picture suggests that another cell clone which was not 

detectable in primary or secondary recipients actively contributed to tumor formation in 

the tertiary mouse.  Secondary recipients transplanted with fast or slow dividing tumor 

cells both developed tumors showing only few of the initially detected cell clones. 

Tertiary tumors of both proliferative subfractions exhibited a reduced number of 

contributing cell clones but showed activity of an additional, previously undetected cell 

clone.  
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Figure 29: Clonal contribution of individual cell clones with differing proliferative activity under 
chemotherapeutic treatment determined by LAM-PCR. 

H2B-GFP-LV-transduced TSC-01 spheroid cells were serially transplanted over three generations of 

NSG mice (1°-3°). a) Three classes of TIC could be discriminated. Several clones contributed to tumor 

formation in three generations of mice (red) whereas other cell clones were only active in 1st generation 

mice (green). A small fraction of TIC only proliferated in the third generation (yellow). Tumor cells from 

non-treated (b) or 5-FU-treated mice (c) were analyzed using flow cytometry and sorted according to their 

proliferative activity. Fast, slow and rarely-dividing cell fractions were serially transplanted. The clonal 

contribution of individual cell clones, defined by their unique integration site of the viral genome, was 

analyzed via LAM-PCR and high resolution gel electrophoresis. 

4.5 Summary 

The intestinal stem cell compartment is becoming more and more characterized: it has 

been shown that the majority of colonic stem cells are actively-cycling enabling fast cell 

turnover and renewal of the epithelial layer35, 36. A protective role is ascribed to rare 

quiescent intestinal stem cells37-39. An equivalent counterpart in the malignant stem cell 

compartment has not been demonstrated. We aimed to elucidate whether quiescent TIC 

exist in human colorectal cancer and if they play a major role in chemoresistance. They 

could potentially be either hibernating in G0 phase of the cell cycle or they could be 

long-term inactive. In this study we now investigated the link between cell cycle status, 

proliferative activity and stem-like properties in human colon cancer. Hoe/PY- and 

CFSE staining of primary human colon cancer spheroid cultures enriched for human 
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colon TIC allowed discrimination of TIC subfractions with differing cell cycle status 

and differing proliferative activity in vitro. A small subfraction of TIC indeed 

hibernated in G0 phase of the cell cycle but self-renewing colon TIC could be found in 

all cell cycle phases. Moreover, the majority of all colon TIC from different colon 

cancer patient samples was actively-proliferating in vitro and in vivo as shown by 

lentiviral marking experiments. Nevertheless, a quiescent population of human colon 

TIC exists in vitro and in vivo. Clonal analysis revealed that colon TIC were enriched in 

the quiescent population and indicated that quiescent TIC were recruited to tumor 

formation upon chemotherapeutic treatment. 
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5 Discussion 

5.1 Maintenance of primary human colon TIC in spheroid 

cultures and xenografts 

5.1.1 In vitro maintenance of human colon TIC in spheroid cultures 

In this study, human colon cancer specimen from patients who underwent surgery were 

enzymatically purified and maintained in vitro as non-adherent, 3-dimensional spheroid 

cultures. To date, human colorectal cancer has been studied in different model systems 

starting with patient-derived cancer cell lines growing as 2-dimensional monolayers in 

serum-containing growth medium. In an attempt to simulate the clinical diversity of 

colon cancers, low-passage, serum-containing cell culture models were developed 

reflecting the individual combinations of oncogenes and mutations found in the parental 

primary patient tumor209. To better approximate the 3-dimensional in vivo situation of a 

tumor, spheroid culture systems were established using non-adherent culture-conditions: 

cells form 3-dimensional, freely floating cell aggregates. Their superior role in 

mimicking the in vivo-situation was demonstrated by Kobayashi et al.210. The authors 

generated 2- and 3-dimensional cell cultures out of murine mammary tumors which 

showed in vivo-resistance to the alkylating agents Thiotepa, Cyclophosphamid and 

Cisplatin. They found that 2-dimensional monolayer cultures did not recapitulate the 

chemoresistant phenotype whereas multicellular spheroids under serum-free conditions 

did. In addition, serum-free culture conditions have been described for neuronal stem 

cells211, mammary stem cells174, mesenchymal stem cells212 and hematopoietic stem 

cells213. In the context of human cancer, the sphere culture technique has been widely 

used to enrich putative cancer stem cells from breast106, brain108 and colon116, 126. Lee et 

al. showed that serum-treatment of isolated human glioblastoma cells leads to genotypic 

and biological changes whereas cells in serum-depleted growth medium maintained the 

primary patient tumor characteristics127. Additionally, it has been shown that serum-

depletion prevents colon cancer initiating cells from differentiation125, 126 and 

Vermeulen et al. demonstrated multi-lineage differentiation capacity of single colon 

cancer stem cells from serum-free cultures214. Well in line with already published data, 

our study provides experimental evidence for the clonal origin of cells within one 

sphere by showing that single sphere cells generated new spheroids. DNA analysis of 

all cells comprised in one spheroid might approve the clonal conditions on a molecular 

level. The clonality of these cultures might be questioned in high density sphere cultures 

where fusion of spheroids has already been observed in a neurosphere assay215. The 
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analogy between sphere-forming capacity and stemness of human primary tissue-

derived cells remains under debate. Within this study, dissociation and serial replating 

of formed spheres demonstrated that at least a subfraction of spheroid cells shows long-

term self-renewal ability which links spheroid-formation to stem-like properties. 

Furthermore, xenotransplantation of singularized, spheroid cells resulted in long-term 

tumor formation throughout a serial transplantation assay demonstrating the self-

renewal ability of spheroid cells in vivo. Pastrana et al. summarized that the sphere-

forming assay is a functional assay which evaluates “the potential of a cell to behave as a 

stem cell when removed from its in vivo niche”122. Indeed, in the context of colon spheres, 

one should not speak about cultivating stem cells uniquely. Although serial passaging of 

spheroid cultures progressively enriches for long-term self-renewing tumor initiating cells, 

self-renewing tumor transient amplifying cells (T-TAC) from the colon cancer initiating 

compartment are also maintained and contribute to spheroid formation in vitro135. This has 

also been shown in the mammary stem cell compartment. Progenitor enriched populations 

of mammary cells generated “pure luminal colonies” and “multi-lineage colonies”216. 

Moreover, murine hematopoietic stem cell progeny gained stem cell-like properties via 

malignant transformation by the leukemic oncogene MOZ-TIF2104. These studies 

indicate that not only stem cells but also more differentiated stem cell progeny is able to 

self-renew and potentially maintained in spheroid cultures. Our lab has shown that the 

majority of several colon sphere cultures and corresponding xenografted tumors 

resembled the original patient material, demonstrating the multi-lineage reconstitution 

potential of TIC maintained in spheroid cultures. TSC-01 and TSC-04 showed a 

reduced differentiation level than respective patient tissues. Genetic or epigenetic 

changes might have led to a dedifferentiated phenotype with growth advantage, and thus 

clonal selection might have happened during establishment of the spheroid culture. The 

efficacy of establishing spheroid cultures out of primary patient tissue was 8%. Major 

limitations were given by the mass of received tissue samples and their tumor cell 

content, the time between surgery and purification, the treatment patients received 

before undergoing surgery and E. coli contaminations.  

In summary, the serum-free, non-adherent, growth factor supplemented culture 

conditions maintained a sub-population of primary human colon cancer cells with 

tumor-forming potential and self-renewal ability, defined as colon cancer initiating 

cells. To date, spheroid cultures represent the assay of choice for maintenance of cells in 

vitro in best possible similarity to the patient material which is clinically most 

important. Furthermore, they allow a detailed molecular characterization and genetic 

engineering via lentiviruses. 
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5.1.2 In vivo maintenance of human colon TIC in NSG mice 

Although in vitro studies facilitated molecular characterization of colorectal cancer and 

colon TIC, translational research requires detailed investigation of their biological 

function in vivo. Several transgenic animal models were developed on the basis of the 

most prevalent mutations in CRC: various APC mutant mouse strains were generated, 

starting with the most prominent ApcMin mouse217-220. All of them form polyp adenomas 

preferentially in the small intestine differing only in number and exact localization. 

Apc∆716 mice with an additional mutation of the Cdx2 gene exhibited more polyps in the 

colon221. Reduction of polyp numbers was observed by equipping Apc mutant mice with 

further mutations in Smad4222, in the nitric oxide synthase gene iNOS223, in the DNA 

methyltransferase gene Dnmt1224, in the transcription regulating Mbd2 gene225 and in 

the ABC transporter gene Mdr1226. Mouse models harboring several other gene 

mutations were developed including modifications of the TGF-β1 encoding gene 

Tgfb1227, of Kras228 and of the β-catenin gene Ctnnb1229, 230. In order to address specific 

questions of inflammation-related colon cancer, in vivo models have been developed 

where adenocarcinomas grew in interleukin-10 knockout mice231 or in mice deficient 

for interleukin-2 and β2-microglobulin expression232. All these genetically engineered 

CRC models are driven by oncogenic mutations, and only few showed metastasis 

formation. Thus, these models only reflect a part of CRC biology and hamper 

investigation of advanced cancer stages. Furthermore, they only mirror the murine in 

vivo situation and might underestimate the huge mutational diversity of human colon 

cancers50, 51. Transplantable colon cancer models were introduced facilitating 

investigations of metastasis233, 234 and of tumor invasion into neighboring tissue235, 236. 

Many of these models are still based on murine cancer cells, making them less 

appropriate to study the human disease. However, each of these colon cancer animal 

models shows distinct characteristics to investigate specific aspects of CRC. The choice 

of animal model depends upon the aim of a study. Consequently, in order to study the 

human colon cancer initiating compartment, xenogenic transplantation is the gold 

standard. Its major limitation is given by inefficient engraftment of human cells in 

respective animals due to the host’s immune response. To overcome this impediment, 

immunodeficient mice were developed. The NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (Il2rg-/-, 

NSG) mouse strain was generated by Shultz et al. and is one of the most 

immunodeficient strains available to date237, 238. It lacks functional activity of mature B 

cells, T cells and NK cells which are responsible for recognition and elimination of 

foreign contaminants. Evading recognition and rejection of transplanted material, NSG 

mice are thus most eligible for xenotransplantation studies on human colorectal cancer. 

Several studies have been performed using subcutaneous or kidney capsule injections of 

human cells whereas the latter was reported to yield higher tumor take rates114-116, 125, 126. 

Moreover, subcutaneous tumor formation might hinder metastasis formation due to the 
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tissue barrier239. Consequently, in this work, primary patient-derived colon cancer cells 

were transplanted under the kidney capsule of NSG mice, facilitating tumor formation 

and subsequent investigation of the proliferative behavior of colorectal cancer cells in 

vivo. 

5.2 Quiescence of colon cancer initiating cells 

Adult stem cells are functionally defined by their ability to self-renew and by their 

capacity to generate all organ-specific differentiated cell types. Murine hematopoietic 

stem cells (HSC) represent the best-studied stem cell compartment to date. They 

reestablish normal hematopoiesis in lethally irradiated mice and thereby lead to 

hematopoietic recovery and survival. Several groups have directly linked quiescence of 

long-term HSC to most efficient reconstitution potential147, 240, 241 suggesting that stem 

cell quiescence plays a protective role in HSC maintenance31, 242, 243. The finding that 

some leukemia and solid tumor cells also show a heterogeneous potential to self-renew 

suggested the existence of a stem cell-like population in the malignant compartment244-

247. It is now a widely-accepted concept that in many cancer entities tumor maintenance 

is driven by a subset of stem-like cells. Since HSC properties like self-renewal and 

multi-lineage-reconstitution potential have also been demonstrated for TIC of different 

solid cancers, it appears reasonable to assume that TIC also exhibit other HSC 

characteristics like quiescence. Indeed, dormant TIC have been demonstrated in 

AML248, 249 and CML250. Moreover, a correlation between low mitotic activity and 

tumor forming ability has been demonstrated for several cancers including brain251, 

breast252, skin160 and pancreas159 but has not been found in colorectal cancer. However, 

proliferative studies of human colon cancer initiating cells are highly relevant for 

clinical treatment of the disease. Quiescent cells could evade conventional 5-FU-based 

chemotherapy which is only affecting actively-cycling cells172. They might be 

reactivated at later time points and contribute to recurrent disease.  

This work characterizes the proliferative activity and dynamics of human colon TIC 

independent of any cell surface marker. 

5.2.1 The cell cycle status of human colon TIC 

It has been demonstrated that several solid cancers harbor a subfraction of slow-cycling 

cells159, 160, 252, 253. In terms of the cell cycle, TIC might persist in G0 in which cells do 

not divide. To address whether cell cycle quiescence is a property of human colon TIC 

and whether the tumor initiating potential is restricted to cells in G0 phase of the cell 

cycle, primary patient-derived spheroid culture cells were stained with Hoechst and 

Pyronin. These intercalating fluorescent dyes enabled simultaneous analysis of cellular 

RNA and DNA content, and thereby discrimination and subsequent cell sorting of colon 
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TIC in G0, G1 and S/G2/M phase of the cell cycle. In order to exclude contamination of 

the G0 cell fraction with actively-cycling cells, the expression of Ki-67 was analyzed in 

aliquots of all sorted fractions. Ki-67 is a nuclear protein only expressed by actively-

cycling cells whereas exit from the active cell cycle leads to a rapid decrease of mRNA 

and protein expression254, 255. A more recent study indicates that Ki-67 can nevertheless 

be detected in quiescent cells, namely at the site of ribosomal RNA synthesis256. 

However, the authors also showed that proliferating and quiescent cells could still be 

clearly distinguished by differences in intensity and spatial distribution of Ki67+ events. 

Consequently, Ki-67 can still be used as a proliferation marker.  

Cell sorting of spheroid cells with differing cell cycle status and subsequent 

xenotransplantation of equal cell numbers revealed tumor-forming potential in every 

cell cycle phase. Interestingly, cell cycle profiles of first generation xenografted tumors 

exhibited a similar cell cycle distribution of tumor cells as compared to spheroid culture 

cells. This implies that cells with differing cell cycle status equally contributed to tumor 

formation. It additionally indicates that colon TIC from spheroid cultures did not change 

their proliferative behavior when removed from in vitro conditions and transplanted into 

mice. Moreover, tumors formed by unstained and unsorted spheroid cells showed a 

similar cell cycle profile as previously stained and sorted spheroid cells. Thus, staining 

and sorting procedures did not have any impact on the biological behavior of cells as 

well. Bulk transplantation of 1st generation tumor cells revealed long-term tumor 

forming potential in three generations, no matter if transplanted cells originated from 

cell cycle phase tumors or from the bulk tumor. Cells which have been stained and 

sorted twice (the first time from spheroid cultures and the second time from first 

generation tumors) did not form tumors even from high cell numbers (500 to 1x104 

cells). In contrast, mice transplanted with 500 TSC-04 cells from once stained and 

sorted first generation bulk tumor cells developed a tumor. A strongly decreased 

viability after a second Hoe/PY staining and sorting procedure probably led to TIC 

frequencies below the threshold necessary for tumor formation. Nevertheless, self-

renewing colon TIC were present in G0, G1 and S/G2/M fractions, showing long-term 

tumor-forming potential in a serial transplantation assay. The proportion of G0-cells 

from spheroid cultures was maintained in mice. A switch between a dormant and active 

cell cycle state appears likely since at least a proportion of G0-cells must have been 

activated to leave their dormant state and to initiate tumor growth. Interestingly, a few 

years ago, it has been demonstrated in the murine hematopoietic system that mouse 

HSC are activated to self-renew upon hematopoietic stress and return to a quiescent 

state after reestablishment of homeostasis257. A similar role might be ascribed to 

quiescent human colon TIC enabling maintenance of the TIC pool upon cellular stress. 



5 Discussion  91 

Here, we demonstrate that the majority of human colon TIC is actively-cycling. A small 

proportion of TIC in G0 exists. However, quiescent and actively-cycling TIC 

populations equally contributed to tumor formation in immunocompromised mice.  

5.2.2 The proliferative activity of human colon TIC 

The cell cycle analysis performed above showed that a small fraction of human colon 

TIC was in an inactive state at the time of analysis. However, cells might transiently 

adopt the G0 state and begin to cycle upon activation. In order to detect cells which are 

long-term quiescent, label-retaining assays have been developed based on DNA-

intercalation or binding of cellular components147, 179. In this study, the CFSE label-

retaining assay was used to investigate prolonged quiescence of primary, human colon 

TIC enriched spheroid cultures. Furthermore, the H2BGFP label-retaining assay was 

applied to identify quiescent human colon TIC in vivo.  

5.2.2.1 The proliferative activity of human colon TIC in spheroid cultures 

CFSE has been originally developed to track lymphocytes in animals258. It has been 

demonstrated that CFSE is equally distributed among daughter cells during each cell 

division259, initiating its use in proliferative studies. Several dyes have been used to 

study cellular proliferation179. The membrane inserting dye PKH 26 additionally 

allowed long-term observation of CFSE labeled cells in vivo260. However, it is much 

more expensive and has been shown to give less uniform staining than CFSE179 leading 

to low resolution profiles during flowcytometric analysis of the cell’s proliferative 

history. 1µM CFSE was identified to yield optimum staining conditions for our 

experiments. Initial fluorescence intensities of labeled cells enabled follow-up of around 

8 cell divisions demonstrating the efficient labeling of spheroid cells. Blood cells were 

commonly studied upon staining with 5µM to 10mM CFSE180, 258, 259 indicating that 

colon TIC were more susceptible to CFSE staining. A reduced concentration of CFSE 

was also used to study a mammary adenocarcinoma-derived cell line and glioma sphere 

cultures reflecting the higher CFSE sensitivity of such tumor cells253, 261. The more 

efficient staining of tumor cells by lower CFSE concentrations might have been due to 

their increased metabolic activity, as compared to their healthy counterpart, leading to 

increased transcriptional and translational activity. The cell’s protein content directly 

correlates with CFSE-intensity due to the formation of stable conjugates179. 

Nevertheless, a cytotoxic effect of CFSE could be excluded by thorough titration 

experiments. Colon TIC from spheroid cultures showed a broad range of initial CFSE 

intensities. Cell sorting of a stained subfraction would have yielded a distinct intensity-

peak, allowing determination of exact numbers of divisions after prolonged culturing. In 

order to maintain the diversity present in human colon cancers and corresponding 

spheroid cultures, cells were not sorted and proliferation was allowed during culturing 
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of the unselected bulk population. The wide range of initial CFSE intensities can be 

explained by cell aggregation during staining and by a heterogeneous appearance of 

spheroid cells in terms of size, morphology and protein content. This is supported by the 

finding that TSC-04 exhibited the narrowest “peak” after staining. TSC-04 was the 

spheroid culture which was easiest to singularize and most homogeneous in terms of 

size and cellular shape when viewed under the microscope. Fast, slow and rarely 

dividing cells could be discriminated on day 8, after initially determining CFSE 

intensities. The proliferative status was maintained afterwards. Thus, day 8 was chosen 

to sort cells according to their proliferative activity in vitro.  

All proliferative subfractions harbored self-renewing spheroid cells. Moreover, the 

frequencies of sphere forming cells (SFC) were similar among the different proliferative 

subfractions, indicating that the sphere-forming potential is not correlated to the 

proliferative activity of spheroid cells. This finding is supported by very recent data 

obtained with glioma spheres: slow and fast dividing cells derived from glioma sphere 

cultures formed new spheres after separation by CFSE-dependent FACS sorting253. 

Singularization and serial replating of formed spheres showed that the frequency of SFC 

was retained over 3 spheroid generations. This indicates that a cellular hierarchy present 

in individual patient-derived colon spheres is maintained. In addition, inter-individual 

differences reflected by varying SFC frequencies in different spheroid cultures were 

also preserved. TSC-04 cells did not regrow spheres from single-cell level but at higher 

cell densities, implying that growth stimulation was dependent on co-culture of several 

spheroid cells. This finding is supported by a study using a co-culture system of 

intestinal stem cells and Paneth cells. The authors demonstrated the relevance of 

growth-stimulating factors secreted by surrounding cells for regulating stem cell 

proliferation262.  

Upon transplantation of equal cell numbers from each proliferative subfraction, all mice 

developed tumors. Serial transplantation revealed long-term tumor forming potential of 

all proliferative subfractions. Thus, rarely, slow and fast dividing cell fractions 

comprised self-renewing human colon TIC and mitotic quiescence could not be 

approved as a functional criterion of human colon TIC from spheroid cultures. 

Moreover, the separation of quiescent cells from more actively-proliferating ones did 

not have an impact on long-term tumor formation whereas the long-term repopulating 

activity of HSC was lost when disrupting maintenance of a quiescent HSC pool263. Mice 

from each generation were sacrificed on the same day and the CFSE intensities of 

xenografted tumor cells were analyzed. All tumor cells were CFSE-, indicating that all 

cells including originally rarely dividing and slow-dividing cells actively proliferated 

upon transplantation and lost their CFSE due to divisions. First generation mice were 

sacrificed 5 to 13 weeks post-injection which still allows monitoring of CFSE-stained 



5 Discussion  93 

cells in vivo258, 264. It has also been postulated that up to 8 divisions can be tracked264 

which is well in line with our data.  

5.2.2.2 Relationship of proliferative activity and cancer stem cell markers in 

spheroid cultures 

An aliquot of CFSE stained cells was also analyzed for the expression of cell surface 

markers which have previously been associated with tumor initiating potential. 

Expression of CD133, CD44, CD166 and EpCAM were, if at all detected, not found to 

be enriched in any of the proliferative subfractions. Since Kemper et al. published that 

the AC133 antibody does not detect glycosylated forms of CD133 in colon CSCs132, a 

combination of two CD133-antibodies was used with differing epitopes (AC133 and 

293C3). Thus, CD133 was indeed not expressed by TSC-01 spheroid cells. 

Investigation of the corresponding primary patient material might have shown whether 

CD133 was not expressed by this patient, or if its expression was lost upon in vitro 

cultivation. Consequently, expression of any of these markers was not correlated to the 

proliferative activity of spheroid cells. Recently and consistent with our finding, two 

independent groups could not link CD133+-expression to the proliferative activity of 

colon TIC265, 266. Furthermore, Huang and coworkers demonstrated for several other 

cancer types that cell fractions defined by putative cancer stem cell markers, e.g. 

CD44+CD24− for breast cancer, showed a similar proliferative potential as the CSC-

marker negative fraction266. The authors also showed that primary, patient-derived 

CD133- colon cancer cells could generate CD133+ progeny and vice versa, 

demonstrating the phenotypic plasticity exhibited by colon cancer cells. Investigations 

from the last decade have already led to controversial findings and have questioned the 

use of distinct marker combinations to identify human colon TIC115-117. Taken together, 

these very recent studies emphasize limitations of using cell surface markers alone to 

distinguish CSCs from non-tumorigenic cells.  

5.2.2.3 The proliferative activity of human colon TIC within established tumors 

To gain a thorough insight into the proliferative activity of human colon TIC within an 

established tumor, a TetOff-H2BGFP expression system was introduced into TIC-

enriched spheroid culture cells. A study by Pfizer demonstrated that doxycyclin, a 

member of the tetracycline antibiotics group, forms stable calcium complexes and is 

stored in bone, teeth, kidney and liver of tested animalse. Induction of H2BGFP-

expression and a subsequent doxycyclin-free chase period (TetOn-H2BGFP expression 

system) are thus inappropriate to study label-dilution since basal activity of the 

transactivator would lead to falsely GFP+ cells. Therefore, the TetOff-H2BGFP 

expression system was chosen where presence of tetracycline stops H2B-GFP 

expression and dividing cells dilute their GFP label, allowing tracking of cells according 

to their proliferative activity. To stably implement the H2BGFP-expression system into 
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human colon TIC, we transduced spheroid cells with a TetOff-H2B-GFP-encoding 

lentivirus. Lentiviruses are frequently used as gene delivery vectors. In comparison to 

other viruses they show the unique ability of infecting fast dividing and rarely dividing 

cells188. Stable integration of the viral genome leads to tissue-specific life-long 

expression of the transactivator protein and, if no doxycyclin is present, H2B-GFP. 

Moreover, it allows studying viable cells after purification based on their label-retaining 

ability. 

Long-term stable expression of H2B-GFP was approved in HeLa cells. After 3 months 

of culture, the proportion of transduced untreated control cells imcreased. When 

culturing cells over extended periods of time, a clonal selection process might happen. 

A transduced clone probably developed a growth advantage and overgrew the culture, 

explaining the increasing proportion of GFP+ cells. Nevertheless, addition of doxycyclin 

completely abolished GFP-expression in vitro. Withdrawl of doxycyclin led to 

incomplete restorage of original GFP expression levels. Possible reasons include (1) a 

reduced activity of the transactivator protein after its conformational change and (2) 

epigenetic silencing of H2B-GFP expression.  For the TetOn system, where presence of 

doxycyclin induces transgene expression under control of the reverse transactivator 

protein rtTA, it has been demonstrated that rtTA shows weak binding to the transgene-

controlling promoter PTight even without doxycyclin being present, leading to a basal 

expression of the transgene267. As the TetOff-tansactivator tTA2S induces H2B-GFP 

expression only in the absence of doxycyclin, and doxycyclin itself induces a 

conformational change of this protein hampering binding to PTight, doxycyclin withdrawl 

from once-treated cells might not restore the original tTA2S conformation completely. 

This might lead to inefficient binding and thereby to reduced expression levels of H2B-

GFP. On the other hand, Kues et al. reported that reduced transgene expression was 

correlated with the methylation status of PTight in pigs268. The authors concluded that 

promoter methylation led to epigenetic silencing of their transgene. In our hands, 

methylation of PTight might lead to binding of methyl-CpG-binding domain proteins. 

These proteins attract histone deacetylase complexes (HDAC) and several factors which 

modify histones leading to dense chromatin structure (heterochromatin)269. The 

compressed state of the DNA region might result in inefficient binding of the 

transactivator protein and thereby in H2B-GFP silencing. Bisulfite sequencing might 

help to determine the methylation status of PTight in HeLa cells. In addition, direct 

histone modifications such as methylation might lead to dense chromatin structure and 

epigenetic H2B-GFP silencing. Nevertheless, we could show that H2B-GFP expression 

in transduced cells is regulated by doxycyclin in vitro. In addition, when transplanting 

transduced cells into immunodeficient mice, a stable proportion of GFP+ cells was 

detected in the control group which was not treated with doxycyclin over three 

generations of mice.  
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In order to approve that label-retention was not due to insufficient supply of doxycyclin, 

the GFP-distribution in tissue slices of doxycyclin-treated tumors was investigated. 

Local enrichment of GFP+ cells would have indicated that doxycyclin was not equally 

available throughout the tumor. In our study, an unequal spread of doxycyclin appears 

unlikely because single GFP+ events were equally distributed over the tumor slice. It 

can be concluded that label-retaining cells were indeed less-dividing than other cells. 

GFP- regions in doxycyclin-untreated control tumors can be explained by the 

contribution of untransduced cell clones. 

The tumor from a 1st generation recipient mouse treated with doxycyclin revealed cell 

fractions with differing proliferative activity including a small fraction of label-retaining 

cells. Fast and rarely dividing tumor cells formed secondary and tertiary tumors. Slow- 

dividing tumor cells contributed to long-term tumor formation in chemotherapeutically- 

treated mice. Consequently, the absence of tumor-formation in 2nd generation recipients 

of slow-dividing tumor cells in chemotherapy-untreated mice might have been due to a 

technical mistake performed during transplantation. In doxycyclin-treated primary mice, 

all cells actively proliferated and lost their label due to divisions. In contrast, a second 

generation tumor xenografted from the same number of purified LRC from primary 

recipients still contained a small fraction of rarely dividing cells. First, it is obvious that 

cell sorting prior to secondary transplantation enriched for label-retaining cells. Flow 

cytometric detection of rare LRCs in bulk transplanted 2nd generation mice was limited 

by the number of recorded events. Additionally, populations smaller than 0.1% are 

below the detection limit of the FACS Diva software. Second, this finding indicates that 

a small fraction of initially label-retaining cells is still inactive in secondary and tertiary 

recipients reflecting a long-term quiescent subfraction of human colon TIC in vivo. But 

third and more important, the majority of initially label-retaining cells was activated 

upon transplantation and contributed to tumor-formation in every generation.  In the 

benign intestinal stem cell compartment, a quiescent nature has been ascribed to label-

retaining +4 ISCs12, 140 whereas Lgr5+ CBC cells are assumed to be more actively-

cycling270. It might be interesting to find out whether Lgr5 is uniquely expressed by 

actively-cycling cells with decreased to no H2B-GFP expression. On the other hand, 

two groups have independently suggested that the label-retaining +4 ISCs are able to 

generate Lgr5+ cells and vice versa22, 23. Moreover, the authors show, that +4 ISCs are 

activated upon irradiation, indicating that these cells function as a quiescent stem pool 

responsible for stem cell maintenance under very distinct circumstances. In line with 

this, we here show that quiescent and actively-cycling colon TIC co-exist in human 

colon cancer.  

Summarizing, our data goes along with observations made for healthy intestinal stem 

cells where a quiescent and an actively-proliferating stem cell population have been 

demonstrated141, 142. A quiescent TIC subpopulation indeed exists in vivo. It might be 



5 Discussion  96 

responsible for TIC maintenance upon injury or stress such as chemotherapeutic 

treatment. Reactivation of quiescent TIC by chemotherapeutic drugs might lead to 

tumor regrowth and recurrent disease in patients. 

5.2.3  Quiescent TIC and their role in chemoresistance 

The behavior of quiescent TIC upon chemotherapeutic treatment was thoroughly 

investigated. A cohort of H2B-GFP-transplanted mice was additionally treated with 5-

Fluorouracil after xenografted tumors and their microenvironment were already 

established. Quiescent TIC were enriched by single bolus treatment and to an even 

higher extent by frequent treatment with a lower dose. 5-FU was injected 

intraperitoneally, mainly because of the ease of administration. In addition, it has been 

demonstrated that intraperitoneal injection of 5-FU offers high local- and systemically- 

effective concentrations of the drug271, 272. But the relatively short half-life of 5-FU273 

might explain the lower effect of the single bolus-injection, although it was 

administered in higher concentrations. Frequent treatment leads to a more constant 

bioavailability over a longer time. This is well in line with the finding, that prolonged 

continuous 5-FU low-dose infusion is superior to bolus treatment of colorectal cancer 

patients in terms of response rates and side effects274. 

In contrast to TSC-01, TSC-08 showed little to no sensitivity towards 5-FU. 85mg 5-

FU/kg increased the proportion of quiescent cells to 0.1%, 150mg/kg-bolus treatment 

had no detectable effect. Moreover, although the 5-FU-treated xenografted TSC-01 

tumors showed an enrichment of quiescent cells, indicating the effectiveness of the 

chemotherapeutic drug, the majority of tumor cells present at the time of analysis were 

fast dividing. Thus, 5-FU did not have an effect on the majority of fast dividing cells as 

well. Given the fact that 5-FU shows a low therapeutic index275, studies have been 

performed to increase 5-FU efficacy. Well in line with our finding, Francescangeli et al. 

recently demonstrated that chemotherapy-treated colon cancer xenografts contained 

actively-proliferating cells265. Additional inhibition of the mitotic regulator polo-like 

kinase1 (Plk1) eradicated all proliferating cells. Moreover, several mechanisms 

including imbalanced drug-uptake and –efflux276, 277, increased 5-FU-metabolism278 and 

alteration of the drug target thymidilate synthetase279, have been identified leading to 5-

FU-resistance. As 5-FU requires actively-cycling cells, specifically in S-phase of the 

cell cycle, cellular quiescence is a major impediment for 5-FU treatment. Contrarily, 

TSC-01 and TSC-08 tumor-bearing mice mainly harbored fast dividing tumor cells even 

after 5-FU treatment. For the moment, this finding implies that cellular quiescence is no 

major factor being responsible for 5-FU resistance of TSC-08 and TSC-01 in these 

experiments. Effectiveness of 5-FU is also influenced by DNA repair mechanisms like 

the mismatch repair (MMR) machinery. MMR corrects replication errors, including 

base mismatches and insertions and deletions due to polymerase slippage at nucleotide 
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repeats280. It also plays a role in apoptotic signaling induced by DNA damage281. 

Deficiency of the MMR machinery, mainly caused by inherited mutations in MMR 

genes or by their silencing282,  leads to tolerance of DNA damage and apoptosis, and is 

consequently another reason for 5-FU resistance. This has been experimentally shown 

by Meyers et al., who demonstrated that restoration of MLH1 activity in an MMR-

deficient colon cancer cell line increased sensitivity to 5-FU283. Moreover, MMR-

defects cause increasing genomic instability and the formation of microsatellites, 

repeated sequences of few nucleotides. These microsatellites become instable during 

replication when a deficient MMR system does not properly repair newly developed 

errors (microsatellite instability, MSI). Thus, the MSI status correlates with sensitivity 

towards 5-FU. Indeed, investigation of TSC-01’s and TSC-08’s MSI status by another 

lab member revealed that both spheroid cultures were MSI+. Interestingly, the MSI 

phenotype has been associated with increased patient-survival284. This can be explained 

by the fact, that most MSI+ patients exhibit a p53-wildtpe status whereas mutated p53 

was associated with MSI- patients. The p53 protein functions as a transcriptional 

activator of cell cycle arrest inducing genes like CDKN1285. Arrested cells are not able 

to incorporate metabolites of 5-FU and consequently, 5-FU treatment yields only 

reduced effects by TS inhibition. Furthermore, depending on the type of DNA damage, 

p53 triggers induction of apoptosis via activation of pro-apoptotic genes like FAS and 

down-regulation of anti-apoptotic genes such as BCL2286. Thus, p53mut patients show 

loss of p53 function resulting in 5-FU resistance and dysfunctional apoptosis. TSC-01 

and TSC-08 were both classified as MSIhigh, and additionally harbored mutated p53. It is 

worth testing combinational chemotherapy on transplanted mice to increase therapy 

efficiency. Clinical therapies are mainly based on the combination of 5-FU and 

Oxaliplatin164-166. Thus, combination of 5-FU and Oxaliplatin which has a different 

spectrum of action producing DNA crosslinks169, is a promising strategy to improve 

treatment response in mice. 

The unique clonal mark established by lentiviral transduction of spheroid cells was 

utilized to determine the contribution of distinct cell clones with differing proliferative 

activity to tumor formation in mice. Within a serial transplantation assay, three TIC 

classes could be discriminated which is well in line with data obtained by Dieter et 

al.135: (1) long-term tumor initiating cells (LT-TIC) showed long-term self-renewal 

ability contributing to tumor formation in 3 generations of mice, (2) transient tumor 

amplifying cells (T-TAC) which were only detectable in primary mice and showed no 

self-renewal ability and (3) delayed contributing tumor initiating cells (DC-TIC) which 

proliferated only in late generations and were not detectable in primary recipients. The 

contribution of fast, slow and rarely-dividing cell clones was investigated. Tumors 

formed by initially fast and rarely-dividing cells exhibited a different clonal pattern. The 

rarely-dividing cell fraction from 1st generation bulk tumors might have comprised 
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numerous quiescent cell clones which potentially became activated when separated 

from the bulk and contributed to tumor formation.  

According to the LAM-PCR gel, chemotherapeutic treatment of tumor-bearing mice 

eliminated numerous cell clones. On the other hand, several previously undetected cell 

clones quantitatively contributed to tumor formation in 5-FU-treated mice indicating 

that they were mitotically inactive before. They might have been activated upon 

chemotherapeutic treatment. Activation of previously quiescent cells by 5-FU treatment 

has been extensively studied in the murine hematopoietic system. Treatment with 5-FU 

is commonly used to force quiescent murine HSC into proliferation replenishing the 

impaired hematopoietic system288. This furthermore demonstrates the important role of 

a quiescent HSC pool for maintenance of the hematopoietic system. Our work already 

suggested a similar role for quiescent colon TIC. Now it appears even more likely, since 

chemotherapeutic stress might activate mitotically quiescent colon TIC to cycle and 

replace the previously eliminated TIC and thereby the tumor bulk cells. The LAM-PCR-

gel suggests that tumors from primary and tertiary chemo-treated, bulk-transplanted 

mice harbored the same cell clone. If it was really the same clone, it must have been 

inactive in secondary recipients indicating a switch between an actively cycling and 

quiescent state. Few clones were only detectable in third generation tumors formed by 

initially fast, slow and rarely-dividing cells.  In order to validate the existence of 

different TIC clones, high-throughput sequencing needs to be performed elucidating the 

contribution of individual cell clones to tumor formation in respective mice. 

Independently from 454 sequencing, primers might be designed binding to viral LTR 

and flanking host genome region. These integration site-specific “Tracking PCRs” will 

elucidate whether cell clones which were only rarely detected were indeed in an inactive 

state in remaining mice. 
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6 Conclusion and Perspective 

It is a widely-accepted concept that colon cancer is hierarchically organized with long-

term tumor initiating cells at the top being able to self-renew and to maintain the 

disease.  It has been hypothesized that mitotic quiescence and resulting chemoresistance 

are functional characteristics of human colon TIC being responsible for late disease 

relapse and metastasis formation. However, experimental evidence has not been 

provided yet. Within the colon cancer initiating compartment, our lab determined a 

small subfraction of delayed contributing TIC (DC-TIC) which contributed to tumor 

formation only in secondary or tertiary mice in a serial transplantation assay135. This 

was the first experimental result indicating the existence of a quiescent population of 

human colon TIC in vivo. 

Here we provide a marker-independent characterization of the proliferative activity and 

dynamics of human colon TIC in vitro and in vivo. We have shown that a quiescent 

population of human colon TIC indeed exists, both in vitro and in vivo, but that the 

majority of colon TIC is actively-proliferating. Quiescent and actively-cycling colon 

TIC equally contributed to tumor formation in immunocompromised mice. It is likely 

that cells selectively switch between a dormant and an actively-cycling state. 

Interestingly, only quiescent TIC showed a polyclonal contribution to tumor formation 

in vivo. 5-FU-treatment might activate previously quiescent TIC to drive tumor growth. 

We conclude, that quiescent and actively-proliferating colon TIC co-exist in human 

colorectal cancer. A quiescent TIC subpopulation might be responsible for TIC 

maintenance. Furthermore, our data implies that the biological properties of colon TIC 

are similar to those of benign colonic stem cells which have been shown to be mainly 

actively-cycling. Our in vivo-data demonstrated that colon TIC were enriched in the 

quiescent population. It additionally indicated that quiescent TIC were recruited to 

tumor formation upon chemotherapeutic treatment. Future studies are essential to 

understand mechanisms that control quiescence and proliferation of human colon TIC. 

Further downstream analysis of quiescent colon TIC might unravel new therapeutic 

targets, in order to eliminate actively-proliferating as well as quiescent TIC. This will 

hopefully provide basis for the development of innovative treatment strategies for colon 

cancer, leading to improved therapy response rates and prolonged survival. 
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A.1 pMD2.G (5.824bp) 

5’-

ggatcccctgagggggcccccatgggctagaggatccggcctcggcctctgcataaataaaaaaaattagtcagccatgagc

ttggcccattgcatacgttgtatccatatcataatatgtacatttatattggctcatgtccaacattaccgccatgttgacattgattatt

gactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggc

ccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttc

cattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctat

tgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctac

gtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttcc

aagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgcc

ccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtttagtgaaccgtcagatcgcctg

gagacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcctcccctcgaagcttacatgtggtaccg

agctcggatcctgagaacttcagggtgagtctatgggacccttgatgttttctttccccttcttttctatggttaagttcatgtcatag

gaaggggagaagtaacagggtacacatattgaccaaatcagggtaattttgcatttgtaattttaaaaaatgctttcttcttttaatat

acttttttgtttatcttatttctaatactttccctaatctctttctttcagggcaataatgatacaatgtatcatgcctctttgcaccattcta

aagaataacagtgataatttctgggttaaggcaatagcaatatttctgcatataaatatttctgcatataaattgtaactgatgtaaga

ggtttcatattgctaatagcagctacaatccagctaccattctgcttttattttatggttgggataaggctggattattctgagtccaa

gctaggcccttttgctaatcatgttcatacctcttatcttcctcccacagctcctgggcaacgtgctggtctgtgtgctggcccatca

ctttggcaaagcacgtgagatctgaattcaacagagatcgatctgtttccttgacactatgaagtgccttttgtacttagcctttttatt

cattggggtgaattgcaagttcaccatagtttttccacacaaccaaaaaggaaactggaaaaatgttccttctaattaccattattg

cccgtcaagctcagatttaaattggcataatgacttaataggcacagccatacaagtcaaaatgcccaagagtcacaaggctatt

caagcagacggttggatgtgtcatgcttccaaatgggtcactacttgtgatttccgctggtatggaccgaagtatataacacagtc

catccgatccttcactccatctgtagaacaatgcaaggaaagcattgaacaaacgaaacaaggaacttggctgaatccaggctt

ccctcctcaaagttgtggatatgcaactgtgacggatgccgaagcagtgattgtccaggtgactcctcaccatgtgctggttgat

gaatacacaggagaatgggttgattcacagttcatcaacggaaaatgcagcaattacatatgccccactgtccataactctacaa

cctggcattctgactataaggtcaaagggctatgtgattctaacctcatttccatggacatcaccttcttctcagaggacggagag

ctatcatccctgggaaaggagggcacagggttcagaagtaactactttgcttatgaaactggaggcaaggcctgcaaaatgca

atactgcaagcattggggagtcagactcccatcaggtgtctggttcgagatggctgataaggatctctttgctgcagccagattc

cctgaatgcccagaagggtcaagtatctctgctccatctcagacctcagtggatgtaagtctaattcaggacgttgagaggatct

tggattattccctctgccaagaaacctggagcaaaatcagagcgggtcttccaatctctccagtggatctcagctatcttgctcct

aaaaacccaggaaccggtcctgctttcaccataatcaatggtaccctaaaatactttgagaccagatacatcagagtcgatattg

ctgctccaatcctctcaagaatggtcggaatgatcagtggaactaccacagaaagggaactgtgggatgactgggcaccatat

gaagacgtggaaattggacccaatggagttctgaggaccagttcaggatataagtttcctttatacatgattggacatggtatgtt

ggactccgatcttcatcttagctcaaaggctcaggtgttcgaacatcctcacattcaagacgctgcttcgcaacttcctgatgatg
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agagtttattttttggtgatactgggctatccaaaaatccaatcgagcttgtagaaggttggttcagtagttggaaaagctctattgc

ctcttttttctttatcatagggttaatcattggactattcttggttctccgagttggtatccatctttgcattaaattaaagcacaccaag

aaaagacagatttatacagacatagagatgaaccgacttggaaagtaactcaaatcctgcacaacagattcttcatgtttggacc

aaatcaacttgtgataccatgctcaaagaggcctcaattatatttgagtttttaatttttatggaattcaccccaccagtgcaggctg

cctatcagaaagtggtggctggtgtggctaatgccctggcccacaagtttcactaagctcgcttccttgctgtccaatttctattaa

aggttccttggttccctaagtccaactactaaactgggggatattatgaagggccttgagcatctggattctgcctaataaaaaac

atttattttcattgcaatgatgtatttaaattatttctgaatattttactaaaaagggaatgtgggaggtcagtgcatttaaaacataaa

gaaatgaagagctagttcaaaccttgggaaaatacactatatcttaaactccatgaaagaaggtgaggctgcaaacagctaatg

cacattggcaacagccctgatgcctatgccttattcatccctcagaaaaggattcaagtagaggcttgatttggaggttaaagttt

ggctatgctgtattttacattacttattgttttagctgtcctcatgaatgtcttttcactacccatttgcttatcctgcatctctcagccttg

actccactcagttctcttgcttagagataccacctttcccctgaagtgttccttccatgttttacggcgagatggtttctcctcgcctg

gccactcagccttagttgtctctgttgtcttatagaggtctacttgaagaaggaaaaacagggggcatggtttgactgtcctgtga

gcccttcttccctgcctcccccactcacagtgacccggaatccctcgacatggcagtctagcactagtgcggccgcagatctg

cttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttat

ccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccg

cgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccg

acaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatac

ctgtccgcctttctcccttcgggaagcgtggcgctttctcaatgctcacgctgtaggtatctcagttcggtgtaggtcgttcgctcc

aagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggt

aagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttc

ttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaa

gagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaa

aaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtca

tgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttgg

tctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcg

tgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctcc

agatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtcta

ttaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgt

cacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaa

gcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataa

ttctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcga

ccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgt

tcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcag

catcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacg

gaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgt

atttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgt-3’ 
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A.2 psPAX2 (10.703bp) 

5‘-

gtcgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataa

cttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaac

gccaatagggactttccattgacgtcaatgggtggactatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgc

caagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctac

ttggcagtacatctacgtattagtcatcgctattaccatgggtcgaggtgagccccacgttctgcttcactctccccatctcccccc

cctccccacccccaattttgtatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggcgcgcgccag

gcggggcggggcggggcgaggggcggggcggggcgaggcggagaggtgcggcggcagccaatcagagcggcgcg

ctccgaaagtttccttttatggcgaggcggcggcggcggcggccctataaaaagcgaagcgcgcggcgggcgggagtcgc

tgcgttgccttcgccccgtgccccgctccgcgccgcctcgcgccgcccgccccggctctgactgaccgcgttactcccacag

gtgagcgggcgggacggcccttctcctccgggctgtaattagcgcttggtttaatgacggctcgtttcttttctgtggctgcgtga

aagccttaaagggctccgggagggccctttgtgcgggggggagcggctcggggggtgcgtgcgtgtgtgtgtgcgtgggg

agcgccgcgtgcggcccgcgctgcccggcggctgtgagcgctgcgggcgcggcgcggggctttgtgcgctccgcgtgtg

cgcgaggggagcgcggccgggggcggtgccccgcggtgcgggggggctgcgaggggaacaaaggctgcgtgcgggg

tgtgtgcgtgggggggtgagcagggggtgtgggcgcggcggtcgggctgtaacccccccctgcacccccctccccgagtt

gctgagcacggcccggcttcgggtgcggggctccgtgcggggcgtggcgcggggctcgccgtgccgggcggggggtgg

cggcaggtgggggtgccgggcggggcggggccgcctcgggccggggagggctcgggggaggggcgcggcggcccc

ggagcgccggcggctgtcgaggcgcggcgagccgcagccattgccttttatggtaatcgtgcgagagggcgcagggactt

cctttgtcccaaatctggcggagccgaaatctgggaggcgccgccgcaccccctctagcgggcgcgggcgaagcggtgcg

gcgccggcaggaaggaaatgggcggggagggccttcgtgcgtcgccgcgccgccgtccccttctccatctccagcctcgg

ggctgccgcagggggacggctgccttcgggggggacggggcagggcggggttcggcttctggcgtgtgaccggcggctc

tagagcctctgctaaccatgttcatgccttcttctttttcctacagctcctgggcaacgtgctggttattgtgctgtctcatcattttgg

caaagaattcgggccggccgcgttgacgcgcacggcaagaggcgaggggcggcgactggtgagagatgggtgcgagag

cgtcagtattaagcgggggagaattagatcgatgggaaaaaattcggttaaggccagggggaaagaaaaaatataaattaaa

acatatagtatgggcaagcagggagctagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaa

tactgggacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagtagcaaccctctattgtgtg

catcaaaggatagagataaaagacaccaaggaagctttagacaagatagaggaagagcaaaacaaaagtaagaaaaaagc

acagcaagcagcagctgacacaggacacagcaatcaggtcagccaaaattaccctatagtgcagaacatccaggggcaaat

ggtacatcaggccatatcacctagaactttaaatgcatgggtaaaagtagtagaagagaaggctttcagcccagaagtgatacc

catgttttcagcattatcagaaggagccaccccacaagatttaaacaccatgctaaacacagtggggggacatcaagcagcca

tgcaaatgttaaaagagaccatcaatgaggaagctgcagaatgggatagagtgcatccagtgcatgcagggcctattgcacc

aggccagatgagagaaccaaggggaagtgacatagcaggaactactagtacccttcaggaacaaataggatggatgacaca

taatccacctatcccagtaggagaaatctataaaagatggataatcctgggattaaataaaatagtaagaatgtatagccctacc

agcattctggacataagacaaggaccaaaggaaccctttagagactatgtagaccgattctataaaactctaagagccgagca

agcttcacaagaggtaaaaaattggatgacagaaaccttgttggtccaaaatgcgaacccagattgtaagactattttaaaagca

ttgggaccaggagcgacactagaagaaatgatgacagcatgtcagggagtggggggacccggccataaagcaagagttttg

gctgaagcaatgagccaagtaacaaatccagctaccataatgatacagaaaggcaattttaggaaccaaagaaagactgttaa

gtgtttcaattgtggcaaagaagggcacatagccaaaaattgcagggcccctaggaaaaagggctgttggaaatgtggaaag
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gaaggacaccaaatgaaagattgtactgagagacaggctaattttttagggaagatctggccttcccacaagggaaggccag

ggaattttcttcagagcagaccagagccaacagccccaccagaagagagcttcaggtttggggaagagacaacaactccctc

tcagaagcaggagccgatagacaaggaactgtatcctttagcttccctcagatcactctttggcagcgacccctcgtcacaata

aagataggggggcaattaaaggaagctctattagatacaggagcagatgatacagtattagaagaaatgaatttgccaggaag

atggaaaccaaaaatgatagggggaattggaggttttatcaaagtaggacagtatgatcagatactcatagaaatctgcggaca

taaagctataggtacagtattagtaggacctacacctgtcaacataattggaagaaatctgttgactcagattggctgcactttaaa

ttttcccattagtcctattgagactgtaccagtaaaattaaagccaggaatggatggcccaaaagttaaacaatggccattgaca

gaagaaaaaataaaagcattagtagaaatttgtacagaaatggaaaaggaaggaaaaatttcaaaaattgggcctgaaaatcc

atacaatactccagtatttgccataaagaaaaaagacagtactaaatggagaaaattagtagatttcagagaacttaataagaga

actcaagatttctgggaagttcaattaggaataccacatcctgcagggttaaaacagaaaaaatcagtaacagtactggatgtg

ggcgatgcatatttttcagttcccttagataaagacttcaggaagtatactgcatttaccatacctagtataaacaatgagacacca

gggattagatatcagtacaatgtgcttccacagggatggaaaggatcaccagcaatattccagtgtagcatgacaaaaatctta

gagccttttagaaaacaaaatccagacatagtcatctatcaatacatggatgatttgtatgtaggatctgacttagaaatagggca

gcatagaacaaaaatagaggaactgagacaacatctgttgaggtggggatttaccacaccagacaaaaaacatcagaaagaa

cctccattcctttggatgggttatgaactccatcctgataaatggacagtacagcctatagtgctgccagaaaaggacagctgga

ctgtcaatgacatacagaaattagtgggaaaattgaattgggcaagtcagatttatgcagggattaaagtaaggcaattatgtaa

acttcttaggggaaccaaagcactaacagaagtagtaccactaacagaagaagcagagctagaactggcagaaaacaggga

gattctaaaagaaccggtacatggagtgtattatgacccatcaaaagacttaatagcagaaatacagaagcaggggcaaggc

caatggacatatcaaatttatcaagagccatttaaaaatctgaaaacaggaaaatatgcaagaatgaagggtgcccacactaat

gatgtgaaacaattaacagaggcagtacaaaaaatagccacagaaagcatagtaatatggggaaagactcctaaatttaaatta

cccatacaaaaggaaacatgggaagcatggtggacagagtattggcaagccacctggattcctgagtgggagtttgtcaatac

ccctcccttagtgaagttatggtaccagttagagaaagaacccataataggagcagaaactttctatgtagatggggcagccaa

tagggaaactaaattaggaaaagcaggatatgtaactgacagaggaagacaaaaagttgtccccctaacggacacaacaaat

cagaagactgagttacaagcaattcatctagctttgcaggattcgggattagaagtaaacatagtgacagactcacaatatgcat

tgggaatcattcaagcacaaccagataagagtgaatcagagttagtcagtcaaataatagagcagttaataaaaaaggaaaaa

gtctacctggcatgggtaccagcacacaaaggaattggaggaaatgaacaagtagatgggttggtcagtgctggaatcagga

aagtactatttttagatggaatagataaggcccaagaagaacatgagaaatatcacagtaattggagagcaatggctagtgattt

taacctaccacctgtagtagcaaaagaaatagtagccagctgtgataaatgtcagctaaaaggggaagccatgcatggacaa

gtagactgtagcccaggaatatggcagctagattgtacacatttagaaggaaaagttatcttggtagcagttcatgtagccagtg

gatatatagaagcagaagtaattccagcagagacagggcaagaaacagcatacttcctcttaaaattagcaggaagatggcca

gtaaaaacagtacatacagacaatggcagcaatttcaccagtactacagttaaggccgcctgttggtgggcggggatcaagca

ggaatttggcattccctacaatccccaaagtcaaggagtaatagaatctatgaataaagaattaaagaaaattataggacaggta

agagatcaggctgaacatcttaagacagcagtacaaatggcagtattcatccacaattttaaaagaaaaggggggattggggg

gtacagtgcaggggaaagaatagtagacataatagcaacagacatacaaactaaagaattacaaaaacaaattacaaaaattc

aaaattttcgggtttattacagggacagcagagatccagtttggaaaggaccagcaaagctcctctggaaaggtgaaggggca

gtagtaatacaagataatagtgacataaaagtagtgccaagaagaaaagcaaagatcatcagggattatggaaaacagatgg

caggtgatgattgtgtggcaagtagacaggatgaggattaacacatggaattctgcaacaactgctgtttatccatttcagaattg

ggtgtcgacatagcagaataggcgttactcgacagaggagagcaagaaatggagccagtagatcctagactagagccctgg

aagcatccaggaagtcagcctaaaactgcttgtaccaattgctattgtaaaaagtgttgctttcattgccaagtttgtttcatgacaa

aagccttaggcatctcctatggcaggaagaagcggagacagcgacgaagagctcatcagaacagtcagactcatcaagcttc
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tctatcaaagcagtaagtagtacatgtaatgcaacctataatagtagcaatagtagcattagtagtagcaataataatagcaatag

ttgtgtggtccatagtaatcatagaatataggaaaatggccgctgatcttcagacctggaggaggagatatgagggacaattgg

agaagtgaattatataaatataaagtagtaaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgca

gagagaaaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactatgggcgcagcctca

atgacgctgacggtacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctgagggctattgaggcgca

acagcatctgttgcaactcacagtctggggcatcaagcagctccaagcaagaatcctagctgtggaaagatacctaaaggatc

aacagctcctagggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatct

ctggaacagatctggaatcacacgacctggatggagtgggacagagaaattaacaattacacaagcttaatacactccttaatt

gaagaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaac

ataacaaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagtttttgctgtactttctata

gtgaatagagttaggcagggatattcaccattatcgtttcagacccacctcccaatcccgaggggacccgacaggcccgaag

gaatagaagaagaaggtggagagagagacagagacagatccattcgattagtgaacggatccttggcacttatctgggacga

tctgcggagcctgtgcctcttcagctaccaccgcttgagagacttactcttgattgtaacgaggattgtggaacttctgggacgc

agggggtgggaagccctcaaatattggtggaatctcctacaatattggagtcaggagctaaagaatagtgctgttagcttgctc

aatgccacagccatagcagtagctgaggggacagatagggttatagaagtagtacaaggagcttgtagagctattcgccacat

acctagaagaataagacagggcttggaaaggattttgctataagctcgaaacaaccggtacctctagaactatagctagcagat

ctttttccctctgccaaaaattatggggacatcatgaagccccttgagcatctgacttctggctaataaaggaaatttattttcattgc

aatagtgtgttggaattttttgtgtctctcactcggaaggacatatgggagggcaaatcatttaaaacatcagaatgagtatttggtt

tagagtttggcaacatatgccatatgctggctgccatgaacaaaggtggctataaagaggtcatcagtatatgaaacagccccc

tgctgtccattccttattccatagaaaagccttgacttgaggttagattttttttatattttgttttgtgttatttttttctttaacatccctaaa

attttccttacatgttttactagccagatttttcctcctctcctgactactcccagtcatagctgtccctcttctcttatgaagatccctcg

acctgcagcccaagcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacg

agccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgcttt

ccagtcgggaaacctgtcgtgccagcggatccgcatctcaattagtcagcaaccatagtcccgcccctaactccgcccatccc

gcccctaactccgcccagttccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctcgg

cctctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcaaaaagctaacttgtttattgcagcttataat

ggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaa

tgtatcttatcatgtctggatccgctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccg

cttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttat

ccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccg

cgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccg

acaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatac

ctgtccgcctttctcccttcgggaagcgtggcgctttctcaatgctcacgctgtaggtatctcagttcggtgtaggtcgttcgctcc

aagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggt

aagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttc

ttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaa

gagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaa

aaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtca

tgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttgg

tctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcg
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tgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctcc

agatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtcta

ttaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgt

cacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaa

gcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataa

ttctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcga

ccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgt

tcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcag

catcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacg

gaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgt

atttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctg-3‘ 

A.3 pWPXL-TTT-H2B-GFP (12.127bp) 

5’-

ttggaagggctaattcactcccaaagaagacaagatatccttgatctgtggatctaccacacacaaggctacttccctgattagc

agaactacacaccagggccaggggtcagatatccactgacctttggatggtgctacaagctagtaccagttgagccagataag

gtagaagaggccaataaaggagagaacaccagcttgttacaccctgtgagcctgcatgggatggatgacccggagagagaa

gtgttagagtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccggagtacttcaagaactgctga

tatcgagcttgctacaagggactttccgctggggactttccagggaggcgtggcctgggcgggactggggagtggcgagcc

ctcagatcctgcatataagcagctgctttttgcctgtactgggtctctctggttagaccagatctgagcctgggagctctctggcta

actagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggta

actagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgcccgaacagggacttgaaagcgaaaggg

aaaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcgaggggcggcgactggtga

gtacgccaaaaattttgactagcggaggctagaaggagagagatgggtgcgagagcgtcagtattaagcgggggagaatta

gatcgcgatgggaaaaaattcggttaaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcaggga

gctagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgggacagctacaaccatccct

tcagacaggatcagaagaacttagatcattatataatacagtagcaaccctctattgtgtgcatcaaaggatagagataaaagac

accaaggaagctttagacaagatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttca

gacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagtaaaaattgaaccattaggagta

gcacccaccaaggcaaagagaagagtggtgcagagagaaaaaagagcagtgggGaataAggagctttTgttccttggg

GttcttgggGagcagcaggaagcactatGgggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggt

atagtgcagcagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctggggcatcaagca

gctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagctcctggggatttggggttgctctggaaaactca

tttgcaccactgctgtgccttggaatgctagttggagtaataaatctctggaacagatttggaatcacacgacctggatggagtg

ggacagagaaattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaaagaatgaacaag

aattattggaattagataaatgggcaagtttgtggaattggtttaacataacaaattggctgtggtatataaaattattcataatgata

gtaggaggcttggtaggtttaagaatagtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttca

gacccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggagagagagacagagaca

gatccattcgattagtgaacggatctcgacggtatcgatgtcgacgataagctttgcaaagatggataaagttttaaacagagag
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gaatctttgcagctaatggaccttctaggtcttgaaaggagtgggaattggctccggtgcccgtcagtgggcagagcgcacat

cgcccacagtccccgagaagttggggggaggggtcggcaattgaaccggtgcctagagaaggtggcgcggggtaaactg

ggaaagtgatgtcgtgtactggctccgcctttttcccgagggtgggggagaaccgtatataagtgcagtagtcgccgtgaacgt

tctttttcgcaacgggtttgccgccagaacacaggtaagtgccgtgtgtggttcccgcgggcctggcctctttacgggttatggc

ccttgcgtgccttgaattacttccactggctgcagtacgtgattcttgatcccgagcttcgggttggaagtgggtgggagagttcg

aggccttgcgcttaaggagccccttcgcctcgtgcttgagttgaggcctggcctgggcgctggggccgccgcgtgcgaatct

ggtggcaccttcgcgcctgtctcgctgctttcgataagtctctagccatttaaaatttttgatgacctgctgcgacgctttttttctgg

caagatagtcttgtaaatgcgggccaagatctgcacactggtatttcggtttttggggccgcgggcggcgacggggcccgtgc

gtcccagcgcacatgttcggcgaggcggggcctgcgagcgcggccaccgagaatcggacgggggtagtctcaagctggc

cggcctgctctggtgcctggcctcgcgccgccgtgtatcgccccgccctgggcggcaaggctggcccggtcggcaccagtt

gcgtgagcggaaagatggccgcttcccggccctgctgcagggagctcaaaatggaggacgcggcgctcgggagagcgg

gcgggtgagtcacccacacaaaggaaaagggcctttccgtcctcagccgtcgcttcatgtgactccacggagtaccgggcgc

cgtccaggcacctcgattagttctcgagcttttggagtacgtcgtctttaggttggggggaggggttttatgcgatggagtttccc

cacactgagtgggtggagactgaagttaggccagcttggcacttgatgtaattctccttggaatttgccctttttgagtttggatctt

ggttcattctcaagcctcagacagtggttcaaagtttttttcttccatttcaggtgtcgtgaggaatttcgacatttaaatttaattaatc

tcgacggtatcggttaacttttaaaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagca

acagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttATcgatcacgagactagcctcgaggtttaa

actacgggatcccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcc

tccgcggccccgaattcaccatgtctagactggacaagagcaaagtcataaactctgctctggaattactcaatgaagtcggtat

cgaaggcctgacgacaaggaaactcgctcaaaagctgggagttgagcagcctaccctgtactggcacgtgaagaacaagc

gggccctgctcgatgccctggcaatcgagatgctggacaggcatcatacccacttctgccccctggaaggcgagtcatggca

agactttctgcggaacaacgccaagtcattccgctgtgctctcctctcacatcgcgacggggctaaagtgcatctcggcacccg

cccaacagagaaacagtacgaaaccctggaaaatcagctcgcgttcctgtgtcagcaaggcttctccctggagaacgcactgt

acgctctgtccgccgtgggccactttacactgggctgcgtattggaggatcaggagcatcaagtagcaaaagaggaaagaga

gacacctaccaccgattctatgcccccacttctgagacaagcaattgagctgttcgaccatcagggagccgaacctgccttcct

tttcggcctggaactaatcatatgtggcctggagaaacagctaaagtgcgaaagcggcgggccggccgacgcccttgacgat

tttgacttagacatgctcccagccgatgcccttgacgactttgaccttgatatgctgcctgctgacgctcttgacgattttgaccttg

acatgctccccggCtaactaagtaaacGCGTAAAATAGgcgtatcacgaggccctttcgtcttcactcgagtttactc

cctatcagtgatagagaacgtatgtcgagtttactccctatcagtgatagagaacgatgtcgagtttactccctatcagtgataga

gaacgtatgtcgagtttactccctatcagtgatagagaacgtatgtcgagtttactccctatcagtgatagagaacgtatgtcgag

tttatccctatcagtgatagagaacgtatgtcgagtttactccctatcagtgatagagaacgtatgtcgaggtaggcgtgtacggt

gggaggcctatataagcagagctcgtttagtgaaccgtcagatcgcctggagaattcgagctcggtaccgccaccatgccag

agccagcgaagtctgctcccgccccgaaaaagggctccaagaaggcggtgactaaggcgcagaagaaagGcggcaaga

AgcgcaAgcgcaGccgcaaggagagctattccatctatgtgtacaaggttctgaagcaggtccaccctgacaccggcattt

cgtccaaggccatgggcatcatgaattcgtttgtgaacgacattttcgagcgcatcgcaggtgaggcttcccgcctggcgcatt

acaacaagcgctcgaccatcacctccagggagatccagacggccgtgcgcctgctgctgcctggggagttggccaagcac

gccgtgtccgagggtactaaggccatcaccaagtacaccagcgctaaggatccaccggtcgccaccatggtgagcaaggg

cgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccgg

cgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggc

ccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaa
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gtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggt

gaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggc

acaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaa

gatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggcccc

gtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtc

ctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaaagcggccgcatcgataagcttG

TCGACGATATCTCTAGAGGATCATAATCAGCCATACCACATTTGTAGAGGTT

TTACTTGCTTTactagtcatatgataatcaacctctggattacaaaatttgtgaaagattgactggtattcttaactatgttg

ctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaat

cctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaaccccc

actggttggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaactcatcgc

cgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaagctgacgtcct

ttccatggctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcgga

ccttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgg

gccgcctccccgcatcggtacgtatggccaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttttta

aaagaaaaggggggactggaagggctaattcactcccaacgaagacaagatgggatcaattcaccatgggaataacttcgta

tagcatacattatacgaagttatgctgctttttgcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggct

aactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggt

aactagagatccctcagacccttttagtcagtgtggaaaatctctagcagcatctagaattaattccgtgtattctatagtgtcacct

aaatcgtatgtgtatgatacataaggttatgtattaattgtagccgcgttctaacgacaatatgtacaagcctaattgtgtagcatct

ggcttactgaagcagaccctatcatctctctcgtaaactgccgtcagagtcggtttggttggacgaaccttctgagtttctggtaa

cgccgtcccgcacccggaaatggtcagcgaaccaatcagcagggtcatcgctagccagatcctctacgccggacgcatcgt

ggccggcatcaccggcgccacaggtgcggttgctggcgcctatatcgccgacatcaccgatggggaagatcgggctcgcc

acttcgggctcatgagcgcttgtttcggcgtgggtatggtggcaggccccgtggccgggggactgttgggcgccatctccttg

catgcaccattccttgcggcggcggtgctcaacggcctcaacctactactgggctgcttcctaatgcaggagtcgcataaggg

agagcgtcgaatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagccccgacacccgccaacacccgct

gacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcaga

ggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatg

gtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatcc

gctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttat

tcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgca

cgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagc

acttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctca

gaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccat

aaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacat

gggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgat

gcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactgg

atggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggt

gagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggag

tcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagt
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ttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaa

tcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgt

aatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaag

gtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtag

caccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactc

aagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacga

cctacaccgaactgagatacctacagcgtgagcattgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatc

cggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcg

ggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcg

gcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccg

cctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcg

cccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctgtggaatgtgtgtcagttagggtgtggaaag

tccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccaggct

ccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccatagtcccgcccctaactccgcccatcccgcc

cctaactccgcccagttccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcct

ctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcaaaaagcttggacacaagacaggcttgcgag

atatgtttgagaataccactttatcccgcgtcagggagaggcagtgcgtaaaaagacgcggactcatgtgaaatactggttttta

gtgcgccagatctctataatctcgcgcaacctattttcccctcgaacactttttaagccgtagataaacaggctgggacacttcac

atgagcgaaaaatacatcgtcacctgggacatgttgcagatccatgcacgtaaactcgcaagccgactgatgccttctgaaca

atggaaaggcattattgccgtaagccgtggcggtctgtaccgggtgcgttactggcgcgtgaactgggtattcgtcatgtcgat

accgtttgtatttccagctacgatcacgacaaccagcgcgagcttaaagtgctgaaacgcgcagaaggcgatggcgaaggct

tcatcgttattgatgacctggtggataccggtggtactgcggttgcgattcgtgaaatgtatccaaaagcgcactttgtcaccatct

tcgcaaaaccggctggtcgtccgctggttgatgactatgttgttgatatcccgcaagatacctggattgaacagccgtgggatat

gggcgtcgtattcgtcccgccaatctccggtcgctaatcttttcaacgcctggcactgccgggcgttgttctttttaacttcaggcg

ggttacaatagtttccagtaagtattctggaggctgcatccatgacacaggcaaacctgagcgaaaccctgttcaaaccccgctt

taaacatcctgaaacctcgacgctagtccgccgctttaatcacggcgcacaaccgcctgtgcagtcggcccttgatggtaaaa

ccatccctcactggtatcgcatgattaaccgtctgatgtggatctggcgcggcattgacccacgcgaaatcctcgacgtccagg

cacgtattgtgatgagcgatgccgaacgtaccgacgatgatttatacgatacggtgattggctaccgtggcggcaactggattt

atgagtgggccccggatctttgtgaaggaaccttacttctgtggtgtgacataattggacaaactacctacagagatttaaagctc

taaggtaaatataaaatttttaagtgtataatgtgttaaactactgattctaattgtttgtgtattttagattccaacctatggaactgatg

aatgggagcagtggtggaatgcctttaatgaggaaaacctgttttgctcagaagaaatgccatctagtgatgatgaggctactg

ctgactctcaacattctactcctccaaaaaagaagagaaaggtagaagaccccaaggactttccttcagaattgctaagttttttg

agtcatgctgtgtttagtaatagaactcttgcttgctttgctatttacaccacaaaggaaaaagctgcactgctatacaagaaaatta

tggaaaaatattctgtaacctttataagtaggcataacagttataatcataacatactgttttttcttactccacacaggcatagagtg

tctgctattaataactatgctcaaaaattgtgtacctttagctttttaatttgtaaaggggttaataaggaatatttgatgtatagtgcctt

gactagagatcataatcagccataccacatttgtagaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaa

cataaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaa

taaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggatcaactggataactcaagct

aaccaaaatcatcccaaacttcccaccccataccctattaccactgccaattacctagtggtttcatttactctaaacctgtgattcc

tctgaattattttcattttaaagaaattgtatttgttaaatatgtactacaaacttagtag-3‘ 
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