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Abstract

Improvements in the capacity to perform and analyze time-resolved
experiments are a fundamental challenge in quantitative biology, with
automation providing the eventual solution. To that end the author developed an
algorithm, termed Automated Result / Cost Optimization (ARCO), as a
universally-applicable approach based on an operator-defined experiment result.
ARCO increased the information density of high-resolution microscopy
experiments while minimizing the associated costs, including the loss of biosensor
sensitivity and phototoxicity. Several derivations of the ARCO algorithm
provided automatic optimization of microscopy experiments via dynamic re-
adjustments of parameters, including XY-positions and light exposure during run
time. Furthermore, to integrate high-throughput microscopy with single-cell,
high-sampling online data analysis, the author developed LifeXplorer, an
adaptable processing and hardware control platform, here applied to the
Olympus IX81 ScanR and Nikon Ti-E NIS Elements imaging systems. All
applications of the ARCO algorithm were benchmarked against two intracellular
events which are well known to be influenced by phototoxic stress; mitochondrial
energetics and the reassembly of the Golgi. ARCO optimization significantly
increased the information content and accuracy of experimental results, while
reducing phototoxicity by several fold. The LifeXplorer platform integrates
commonly-used tools (Imagel, CellProfiler, Matlab, etc.), allowing for adoption
and development of new ARCO applications. The application of ARCO to both
image acquisition and analysis is an important step towards automation and
integration of microscopy and data analysis for the emergence of quantitative

biology via computer vision.



Zusammenfassung

Die  Moglichkeiten zu  erweitern, Lebendzellexperimente  optimaler
durchfithren und auswerten zu koénnen, ist eine fundamentale Herausforderung im
Bereich der quantitativen Biologie. Aus diesem Grunde entwickelte der Autor
den Automated Result / Cost Optimization (ARCO) Algorithmus, als einen
universell einsetzbaren Ansatz, um die Effizienz und Effektivitat wissen-
schaftlicher Experimente automatisch zu erhohen. Der Ansatz basiert auf der a
priori Modellierung des Experimentergebnisses durch den Anwender. ARCO
verbesserte  den  Informationsgehalt von  hochauflésenden  Mikroskopie-
Experimenten, wahrend die damit in Verbindung stehenden Kosten minimiert
wurden, einschlieflich des Empfindlichkeitsverlusts von Biosensoren sowie der
Phototoxizitdt der Messungen. Abgeleitet vom ARCO Algorithmus konnten
mehrere Methoden entwickelt werden, die unterschiedliche Parameter von
Mikroskopie Experimenten wahrend der Laufzeit durch dynamische Anpassung
optimieren. Dazu gehorten u.a. die Optimierung der XY-Position und der
Belichtungszeit. Fiir die Integration des Algorithmus in die Hochdurchsatz-
mikroskopie und zur Optimierung von Einzelzellstatistiken bei hoher zeitlicher
Auflosung wurde LifeXplorer entwickelt. LifeXplorer ist eine flexible Plattform
zur Steuerung von Hardwarekomponenten und Echtzeitdatenverarbeitung, die
hier an zwei unterschiedliche Hochdurchsatz Mikroskopie Systeme gekoppelt
wurde: Olympus IX81 ScanR und Nikon Ti-E NIS Elements. Alle Anwendungen
von ARCO wurden auf Basis zweier intrazelluldrer Vorgidnge untersucht und
bewertet: die mitochondriale Energetik und der Wiederaufbau des Golgi-
Apparats. Beide Vorgénge sind bekannt dafiir, dass sie durch phototoxischen
Stress  beeinflusst werden. Die Optimierung mit ARCO konnte den
Informationsgehalt und die Genauigkeit der Experimente signifikant erhohen,
wahrend die Phototoxizitdt stark reduziert werden konnte. Die LifeXplorer
Plattform integriert im Bereich der quantitativen Biologie héaufig genutzte
Standardwerkzeuge wie ImagelJ, CellProfiler, Matlab und weitere. LifeXplorer ist
damit leicht anpassungsfihig und ermoglicht die Entwicklung neuer ARCO
Anwendungen. Die Anwendung von ARCO ist ein wichtiger Schritt in Richtung
Automatisierung und Integration von Mikroskopie und Datenanalyse, um die

Wirksamkeit quantitativer Biologie mithilfe von Computern zu steigern.
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Chapter 1

Introduction

Managing complexity in quantitative biology is a major challenge.
Automating the process of data acquisition and analysis as far as possible is a key
factor in this science field. To generate insights into life, extended
interdisciplinary knowledge is needed. This knowledge often spreads into a
variety of scientific disciplines including biology, microscopy, imaging, image
processing, statistics and modeling. Subjective human experiences, however,
affect the pipeline of insight generation. The generalizability of results is therefore
prone to be experience related. The reproducibility of quantitative scientific
results becomes less dependable. Sources of error exist in each work step from the
biological setup, over the measurements to the modeling. This often leads to
different results. This issue of subjectivity in science has to be addressed and
overcome with automation. For automation, mathematical models are necessary.
They can reduce the impact of subjective experiences. The author’s hypothesis
was that intelligent microscopy based on previous knowledge and mathematical
models increases the reproducibility and the information density of biological
experiments. Five basic technical parameters play a crucial role in live cell
imaging. These include the three-dimensional position XYZ, the exposure of light,
the magnification, the resolution and the sampling rate. Several focusing
algorithms and strategies were evaluated in literature [1-3] in order to find the in-
focus plane. To find the relevant information region of interest, algorithms were
applied in offline and online processing steps [4]. Controlled Light Exposure
Microscopy (CLEM) for laser scanning microscopes showed that the
phototoxicity [5, 6] and photobleaching [7-9] effects in imaging can be reduced if
background pixels are exposed to a different exposure time as foreground pixels
[10, 11]. How the light dose influences the viability of cells was also investigated,
although no established standard exists to approximate phototoxic effects
quantitatively [6]. Trusting the computer to make decisions and to find relevant

phenotypes is an approach increasingly used in quantitative biology [12]. The
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combination of online data analysis with the observation process helps to increase
the information density and to find relevant information on high dimensional
information. By that, integrated automation of data acquisition and analysis
reduces complexity for biologists, which was already demonstrated for a machine

learning application that identifies a phenotype [4] on run time.

In this thesis, the author presents novel approaches to optimize the parameter
space of live cell imaging experiments with a unique algorithm called Automated
Result / Cost Optimization (ARCO). From this algorithm, several methods were
derived, evaluated and implemented in LifeXplorer. LifeXplorer is a platform
that makes it easy to integrate intelligent microscopy strategies. It uses existing
tools such as ImageJ [13], Matlab, Mathematica, CellProfiler [14], and others.
Using these standards enables us to demonstrate the capacity of self-organized
computing networks to determine information density and quality optimization
steps, which can be used to increase significantly the outcome of biological
experiments. The first method that is run on the LifeXplorer platform is an
application specific exposure control (ASEC) that reduces phototoxicity by use of
a global light exposure control. Based on a model of the quantity that should be
observed in each channel, a classification efficiency is computed and the lowest
exposure time possible is configured. The method was applied to mitochondrial
energetics which could be observed three- to sixfold longer before becoming
apoptotic. Imaging the reassembly of the Golgi apparatus after observing the
disassembly was not possible using the operator’s guess for a suitable exposure
time; however, it was possible using ASEC to mathematically decide which
exposure time is necessary. In order to increase information density, LifeXplorer
observes as many cells as possible with a region of interest control logic the
author called OSAPI (Optimized Sampling Point Identification). It establishes
optimized sampling points. The autofocus function is optimized by an automated
selection of the best focusing algorithm. The method behind is based on a real-
time modeling of the surface in order to get better estimates for the focus plane
in the focusing step and to automatically select the best suitable focusing
algorithm for the sample. The refocusing is optimized by a refocus trigger (RFT)

logic that triggers refocusing, depending on image quality and position. The
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sampling rate decreases automatically according to each channel. This decrease
depends on cut-off frequency detection (CDF). Implementing different forms of
quality control and information densification strategies to automate high-
throughput microscopy and data analysis based on ARCO leads, however, to
technical challenges. LifeXplorer addresses these challenges, such as dependability
and redundancy for memory afflicted, sampling position and channel related data
analysis. This study is aimed to demonstrate relevant applications of intelligent
microscopy using the ARCO algorithm implemented in LifeXplorer. LifeXplorer
was benchmarked against two intracellular events influenced by imaging induced
phototoxic stress: mitochondrial energetics and the reassembly of the Golgi.
ARCO optimization significantly increased the information content and accuracy
of live-cell experimental results, while reducing phototoxicity 3-6 fold. With
ARCO the author introduces an overall system optimization for microscopy data

acquisition and analysis.
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1.1 Motivation

1.1.1 Ethical Impact of Life Sciences

Knowledge is a cornerstone of all conscious actions of human beings.
Information and the generation of insights into the laws of life as well as
structural system-related knowledge are fundamental for humanity and culture.
Ethics, as a practical discipline of philosophy, is engaged with the ethos, the
habits and customs of people. Aristotle was the first philosopher to discuss ethos
(384 B.C. in Stageira; 1 322 B.C. in Chalkis); it had become a central
philosophical discipline by the time of Socrates (469 B.C. in Alopeke, Athen; {
399 B.C.) after the so called Socratic shift. The Socratic shift changed the focus
of philosophy from the observation of nature towards the reflection of the human.
Sophists believed that following traditions and conventions is unreasonable for
humans as rational beings. Humans should rather act according to rational
models that are created out of reflection and are logically established.
Philosophers including Pythagoras (570 B.C; T 510 B.C.) reinvented the natural
sciences on the basis of philosophy and its methods. These approaches to
thinking merged with existing knowledge systems, i.e. mathematics, becoming
fields such as astrology and physics. Using mathematics as a basic tool to model
laws and processes, these science fields become quantitative. The development of
a system’s behavior thus can be predicted over time within a certain
environment. The ethical impact of the scientific methodology’s ability to enable
humans to predict the future is significant. It empowers humans to build and
control dependable systems in reflection of Aristotle’s understanding of ethics.
Armed with this quantitative approach, humans are able to rule the world on the
basis of natural laws. This task was already given in the Bible (Genesis 1:28).
However sustainable power does not come without responsibility. Otherwise
power becomes destructive and what was destroyed cannot be controlled

anymore. Western culture gives a feeling that the next step of human evolution,
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control over biological systems is both: an indispensable subtask of the human’s
duty and a challenge for ethics. Quantitative biology enables the formulation of
dependable predictions. The robust control of biological systems then emerges
into synthetic biology. Bio-engineering can contribute to heal diseases like cancer.
It can also help to develop drug treatments and therapies that are more

specifically in their influence on the human body with personalized medicine.

1.1.2 Technical Impact of This Work

The automation of life sciences is a consequent step, as the existing
knowledge and models of the world are fundamental for the interpretation of
scientific results, which can be explained by the philosophy and theory of science
[13]. The work described in this thesis is motivated by this idea. Existing
knowledge that can be formulated mathematically should be exchangeable in
standard formats and integrated into instruments, such as high-throughput
microscopes, in order to increase the information density of the measured data.
Observing living cells and organisms with fluorescence [14] microscopy is made
more difficult by major technical limitations such as optical resolution, imaging
throughput, phototoxicity and photobleaching [5]. At the same time, data
analysis is limited by available storage and computing resources, data volumes
and processing speed. The main hypothesis driving this work is that integrating
previous knowledge, along with questions about the biological system, into the
microscope can help to increase the information density of experiments while
decreasing the amount of necessary data. This certainly can be explained by
information and system theory. Mathematically, the technical parameter space of
the observation needs to be sampled to find the relevant information to answer a
specific scientific question. Several computational issues arise with the complexity
of the described problem. The larger the range of the parameters are, the more
dimensions have to be taken into account [15]. Several strategies were developed
to find suitable parameters to solve a given problem, or in other words to

describe a system in which its expected behavior is based on a predefined or
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automatically generated model. Data mining i.e. is a common strategy for data
analysis. It is applicable to find functional relations between dimensions and to

extract structural information of data, such as data clusters.

The generation of insights and the creation of robust models of life is a
challenging task. It consists of a complex variety of different theoretical and
practical questions. Additionally, observing living is challenging. Both the
observation and the biological system become defective. Biological systems are
sensitive to their environment. The chemical environment, the temperature and
the light all play a central role in live cell imaging. Technical parameters, such as
the light dose and the sampling rate, therefore can directly influence the
biological system under observation. The term phototoxicity is used to describe
this phenomenon. Altering the behavior of the biological system by the influence
of the measurement is undesirable. Disturbing signals appearing in data
acquisition are multiplied in the data analysis workflows. They hold the potential
of crucially decreasing the value of experimental results. Today, the bases for
choosing the technical parameters for live cell imaging are experience and
individual knowledge. Integrating mathematical formulation and questions about
the biological system leads to reproducible and generalizable decisions. Models,
data analysis, and decision support systems allow optimizing the parameter
space. Being shared digitally, the exchange of scientific knowledge can be
enhanced. Transforming knowledge and strategies into more generalizable units
would lead to more efficient access to knowledge. It would improve how we
currently observe and analyze specific biological systems. These units can then be
used by instruments in an evolving process to autonomously make or suggest
decisions on how to set up, image, and analyze biological systems in a

mathematically optimized way.
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1.2 Research Question and Approach

The goal of this dissertation is to optimize the efficiency of scientific
experiments in the context of high-throughput microscopy for life sciences. This
research introduces a new algorithm called Automatic Experiment Efficiency
Optimization (ARCO) as a generalized approach to increase the efficiency of
scientific experiments. It demonstrates practical and novel applications of
intelligent microscopy and data processing, derived from ARCO. To be able to
test several applications of ARCO a platform for intelligent microscopy and
processing, called LifeXplorer, was built. LifeXplorer was connected with two
different hardware platforms. This thesis therefore introduces ARCO and the
LifeXplorer platform (hosting ARCO applications) as a case study of a higher
level of automating life sciences, with the aim to increase both productivity and
reproducibility. Infrastructural challenges were addressed in the LifeXplorer
platform, regarding how to efficiently integrate knowledge into imaging
workflows of microscopes. Several applications were built as case studies to
control the quality of images and to optimize the parameterization by the usage

of existing models about the biological system and the measured quantities.
The main hypothesis motivating this research was:

“Models of biological systems can be used in automated acquisition and
analysis systems to optimize parameters of scientific experiments.

Automated systems thus enhance information density and content.”

Figure 1 illustrates the general idea of the ARCO algorithm. This dissertation is
motivated and based on the generalized approach of ARCO to optimize the
efficiency of scientific experiments by automating parameter configuration

decisions.
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Figure 1 The ARCO algorithm. The ARCO algorithm to optimize the efficiency of one
experimental dimension. First the scientific question is defined. Second the question has
to be formulated in means of math using relevant existing knowledge to answer the
question, i.e. models about the quantities involved in the question. Third, the parameter
of one experimental dimension is swept within a defined range, and an online data
analysis extracts relevant information. Fourth, the minimal costs are detected to extract
the maximal information content necessary to answer the question. Fifth, the experiment

is run and additional steps are executed to answer the scientific question.

The experimental set-up and approach for integrating models of existing
knowledge about the experiment is illustrated in Figure 2. Circuits for
intelligent hardware control taking advantage of this knowledge, aiming to
increase the information content. The infrastructure built to run several
applications of intelligent microscopy simultaneously was called LifeXplorer,
hinting at the final aim of automating science and the vision of the computer

becoming a scientist.

Just as ARCO is supposed to be transferred to other science fields outside of
life sciences, the experiment set-up based on the LifeXplorer platform is not
limited to use in microscopy environments only. In contrast, the hardware
platform for the experiment set-up plays a minor role. To efficiently and
effectively run the developed ARCO applications however the LifeXplorer was
enhanced with its own LifeXplorer MMS (Microscopy Managing System).
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Figure 2 LifeXplorer architecture overview. The microscope hardware control unit (1) is
virtualized by a scheduler (2) unit which organizes both hardware control commands to
run imaging workflows, and data processing tasks for feedback controlled microscopy.
The scheduling is based on organic computing approaches to be able to dynamically
adapt to the time variant demands of the imaging workflow, as well as the data
processing itself. The hardware and processing tasks are executed in a computing cloud
on which different applications are run to optimize the information content and control
the quality of imaging workflows (3). The integrated decision support systems take
advantage of previous knowledge (4) that is formulated in mathematical models about
the biological system and the scientific question. The data analysis can be adapted over
time through events detected on run time. Circuits for intelligent hardware control can
be run redundantly to ensure highly dependable workflows. Single circuits run
optimizations and control the quality of all basic parameters of imaging workflows such
as the light exposure, the three dimensional sampling point positions XYZ and the

sampling rate.
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1.3 Contributions

This dissertation investigates intelligent high-throughput microscopy
applications for automated information densification and quality control. The
environment in which this research took place was the upcoming field of
quantitative biology, also called systems biology. The main contributions of the
dissertation research are described below in the order they are presented in this
thesis:

First, the main scientific contribution was to develop and evaluate an
algorithm that measures the functional relation between a technical parameter
and the information content. The algorithm gains a mathematical basis upon
which a parameter of a system can be configured such that a scientific question
can be answered, with optimized efforts and costs and an increased information
content of an experiment. It helps biologists to observe biological systems more
gently and specifically. This method called ARCO (Automated Result / Cost
Optimization) was shown in the context of phototoxicity minimization and
several other applications as follows.

Second, this thesis introduces the LifeXplorer platform for intelligent
microscopy applications. Using a top-down approach, it is shown how complex
data analysis and hardware control commands can be combined in one
framework in order to be able to have a feedback controlled, dynamic, and
adaptive imaging workflow.

Third, the ARCO algorithm was evaluated using the exposure time as the
technical parameter to be minimized based on a scientific question. A method
called ASEC (Application Specific Exposure Control) was derived using ARCO
and led to a three- to sixfold minimization of photobleaching and phototoxicity
effects in two different biological experiments.

Fourth, several applications to control the image quality and to enhance the

information were evaluated.
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1.4 Thesis Outline

The thesis is divided into five chapters, described as follows:

Chapter 1 gives an introduction to the topic of automating sciences. It seeks
to automate the generation of insights based on ethical and technical aspects.
The main research approach and question are described. All contributions of this

work are listed.

Chapter 2 introduces the Automated Result / Cost Optimization (ARCO)
algorithm and briefly shows practical applications and results. Chapter 4 is
directly linked to it, but goes into more detail. In addition to Chapter 4, a
practical application of ARCO demonstrates in Chapter 2 how to dynamically

optimize data processing on run time.

Chapter 3 presents the motivation to develop a platform for ARCO
applications called LifeXplorer. It is intended to give background information on
the experiment set-up, such as the architecture of LifeXplorer, consisting mainly
of an organic computing manager, so called workers, and a visual programming

tool called LifeXplorer Intelligence Manager.

Chapter 4 presents practical applications derived from the ARCO algorithm
in more detail. These applications aim to reduce costs and to increase the
information content in two basic dimensions of microscopy: light exposure and

position.

Chapter 5 concludes the present work. It reflects on the questions asked, and

discusses possible future work, which would exploit the results of this dissertation

and the potential of ARCO and LifeXplorer.



Chapter 2
Method: Automated Result / Cost Optimization

2.1 Abstract

Improvements in the capacity to perform and analyze time-resolved
experiments are a fundamental challenge in quantitative biology, with
automation providing the eventual solution. To that end the author developed an
algorithm, termed Automated Result / Cost Optimization (ARCO), as a
universally-applicable approach based on an operator-defined experiment result.
ARCO increased the information density of high-resolution microscopy
experiments while minimizing the associated costs, including the loss of biosensor
sensitivity and phototoxicity. Several derivations of the ARCO algorithm
provided automatic optimization of microscopy experiments via dynamic re-
adjustments of parameters, including XY-positions and light exposure during run
time. Furthermore, to integrate high-throughput microscopy with single-cell,
high-sampling online data analysis, the author developed LifeXplorer, an
adaptable processing and hardware control platform, here applied to the
Olympus IX81 ScanR and Nikon Ti-E NIS Elements imaging systems. All
applications of the ARCO algorithm were benchmarked against two intracellular
events which are well known to be influenced by phototoxic stress; mitochondrial
energetics and the reassembly of the Golgi. ARCO optimization significantly
increased the information content and accuracy of experimental results, while
reducing phototoxicity by several fold. The LifeXplorer platform integrates
commonly-used tools (ImagelJ, CellProfiler, ilastik, Matlab, etc.), allowing for
adoption and development of new ARCO applications. The application of ARCO
to both image acquisition and analysis is an important step towards automation
and integration of microscopy and data analysis for the emergence of quantitative

biology via computer vision.
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2.2 Introduction

High-resolution imaging of subcellular, dynamic cell signaling events [16-19]
coupled with data extraction and analysis allows for quantification, and improved
hypothesis testing in biological research [20]. Increasing sampling throughput
allows for the capture of heterogeneity within cell populations [21-23], and
statistically describable phenotypes [21, 24]. Recent improvements in image
analysis software allow for virtually unlimited flexibility in feature extraction,
analysis and scalability [25]. However, implementation of computer vision, the
integration of image acquisition, handling and analysis strongly depend on the
concrete usage of existing tools and their parameterization. Individual expert
knowledge is required therefore, and collaboration between specialized research
groups determines the overall success of scientific experiments. Moreover, the
biological value of the results is negatively influenced during acquisition and
analysis, which significantly reduces the biological value of results. Automation of
acquisition and analysis offers an attractive solution for reducing complexity and
the requirement for specialization [26]. Integrative platforms, including Micropilot
[4, 27], have been developed for offline and online data analysis. These
approaches employ machine learning to extract and describe complex phenotypes.
Machine learning approaches can utilize generated data to analyze factors
underlying data generation, and are powerful tools emerging in the field of
quantitative biology [12, 28-32]. Importantly, phototoxicity [5, 6] and
photobleaching [7-9] are fundamental problems intrinsic to live-cell imaging,
which reduce image quality and it is widely recognized that light exposure results
in mitochondrial dysfunction [33, 34], and influences the pathway being explored.
Reduced illumination has been achieved via optimized pixel-dwell time with
specialized laser scanning microscopy [10, 11, 35-37], and through development of
application-specific re-focusing algorithms [1-3]. However, to perform online data
analysis for high-throughput microscopy data, a processing framework is
necessary that is able to schedule computing tasks and generate feedback control

signals for each measuring point individually, which at present does not exist. To
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utilize ARCO, the LifeXplorer framework was therefore developed to integrate
imaging, data handling, and machine-learning analysis. This chapter summarizes
all major results of this thesis, as all applications are motivate by ARCO. Details
and further applications can be found in chapter 4 Applications: of the ARCO

algorithm.

2.3 Results

The conventional approach to imaging experiments relies on subjective
parameter estimation (i.e. light exposure time often estimated by the human
eye). Only after the data acquisition and analysis is performed, imaging
optimization requirements are identified. To change this paradigm, the author
included an additional degree of freedom with the ARCO algorithm. Describing
the phenotype of interest prior to data acquisition, it is possible to integrate and
optimize both parameter domains of data acquisition and analysis on runtime in
three steps applying the ARCO algorithm (Figure 1). This method reduces

experimental complexity for the operator.

Originally the ARCO algorithm was designed to only measure the non-trivial
relations between light exposure and information content, and on this basis to
minimize the phototoxicity associated with the imaging process. The author
found that ARCO was furthermore able to automatically optimize other data
acquisition and analysis parameters for quantitative live cell imaging, including
XYZ-position, the magnification, the resolution, the sampling time, and the

selection for optimal focusing and segmentation algorithms and parameters.

This chapter comprises an in-depth analysis of the ARCO algorithm to
optimize the XY-position (Supp. Figure 2a), the light exposure (Supp. Figure
2b), the refocusing behavior (Supp. Figure 6) and to automatically select data
analysis algorithms and parameters (Supp. Figure 3). In two biological systems,
(1) the dynamic behavior of mitochondrial membrane potential and (2) the

reassembly of Golgi apparatus, the author could measure significant
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phototoxicity reduction and information densification using ARCO (Figure 2,
Suppl. Figure 4). Time-lapse experiments consisted of four positions in four
independent experiments for the mitochondrial membrane potential analysis, and
32 positions in four independent experiments for Golgi analysis. The ARCO

implementation workflow is illustrated in Suppl. Figure 1 and 4.

Classically, the operator employs subjective light exposure configurations. In
contrast, ARCO selects the optimal information content for a given data analysis
and acquisition parameter, here nuclei and Golgi segmentation (Suppl. Figure
2b). As the information content is related to the light exposure (Suppl. Figure
2b), ARCO analyses different light exposures in order to select the lowest
exposure time that is still suitable to detect 95% of the object area, which can be
detected using the highest light exposure (Suppl. Figure 2b+3). Furthermore
the best available data analysis method and configuration is selected to segment

nuclei and Golgi (Figure 1, Suppl. Figure 3+ 4).

To run ARCO the author first defined the result R for both optical channels
after the AutoExposure function was used to identify exposure time with the
highest possible image dynamic (Figure 1, Suppl. Figure 1). The costs C were
set equal to the exposure time. To define valid nuclei objects in the image, the
pixel size of the segmented objects was defined to be in a range of 1000-6000
pixels and the Golgi apparatus in a range of 20-2000 pixels. For the Golgi
complexes in addition the min. relative StdDev was set to 20% of the mean
value. In the second step, the same image with 11 different exposure times (1 s
down to 100ms in a 100ms step) was analyzed with multiple segmentation
methods (global thresholding, CellProfiler [38] + ilastik [39], point source
detector [40]) and configurations (threshold and percentile). Finally in the third
step, surprisingly global thresholding was selected to maximize the result (object
count) and the lowest possible exposure time (100ms) was identified to still
segment 95% of the area correctly (Suppl. Figure 3). In contrast to the Golgi
segmentation, the global thresholding segmentation pipeline was selected by

ARCO to maximize the nuclei count (Supp. Figure 5a-b).
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To further reduce phototoxicity, during runtime ARCO selects the action
that minimizes the costs to get in-focus images. Below a quality threshold of
95%, in the case of the mitochondrial membrane potential measurements, a
refocusing step is triggered and added to the scheduler by LifeXplorer (Supp.
Figure 6). Above the quality threshold, the Z-position is readjusted by selecting
the Z-plane of the imaged three planes stack with highest contrast value. Over
eight hours of screening, only eight triggers on average every 76 min (Supp.

Figure 7) were fired and caused a refocusing of an ARCO controlled spot. Using

ARCO, the phototoxicity of the refocusing could be neglected.
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Figure 3 Schematic for the general three-step workflow of the Automated Result /
Costs Optimization (ARCO) algorithm. It maximizes a specified result and minimizes
the costs by evaluating the outcome with different data acquisition and analysis
parameter settings (here illustrated with different light exposures). First, the result
therefore has to be defined, using relevant existing knowledge about the measured
quantities (such as geometry, brightness, etc.). Second, multiple analysis methods are
run with multiple parameter sets for multiple acquisition parameters. Third, the
parameter configuration for acquisition and analysis is configured, which maximizes the
previously defined result (i.e. cell count) and minimizes the costs (i.e. light exposure).

Finally, ARCO provides an optimized output for a specific biological question.

For the XY-position the ARCO algorithm was run with the same

configuration as above, except for the cost function. The result R was defined as
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the nuclei count and the costs C were set equal to one, ignoring the microscope’s
overhead to approach a non-equidistant position. Utilizing ARCO to maximize
the information content by optimizing the XY-position (Supp. Figure 5c-d),

the nuclei count was increased up to 220%.

To generalize ARCO for all experimental parameters, the author developed
and formulated it according to equation 1, the maximization of the result / cost
relation (RCR). Equation 1 formulates the general case, which considers all
parameters of an experiment. Acquisition parameters used here include the XY-
position, light exposure time, data analysis and focusing method. In Equation 2,
the maximization of the overall RCR is formulated on the basis of the aggregated
maximization of single parameters; assuming that parameters are independent
and thus separate maximization is possible. Equation 3 represents the actual
basis for the ARCO approach shown in this chapter. For different parameter
configurations the result R(p;) is computed. A priori a cost function C(p;) for a
parameter is formulated. Finally the parameter set with the highest RCR can be
set (Figure 1, Suppl. Figure 4).

R(pO' P1,--, pl)

C(po, P1» -+ pi)> = max(RCR) (Eq-1)

(pPo, P1,--,Pj) = max <

p; parameter;
RCR result — cost ratio;

Parameter reduction assuming the parameters can be separated:

R(p;
(Do) D1, -+ Di) *Z maX(Cg;) = max(RCR) (Eq-2)

p; = max <R(pi)> = max(RCR;(p,)) (Eq-3)
' C(p) o d
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Evaluation of ARCO with the LifeXplorer framework

Implementing a testable ARCO algorithm required an integrative data
processing and hardware control framework, scalable for multipoint experiments
and high-throughput feedback-controlled microscopy. LifeXplorer was therefore
developed. It allows for desktop PC usage, supports redundancy and thus high

availability for less reliable processing nodes that may crash or undergo delays.

LifeXplorer is designed as an open hardware interface to any microscopy
system and allows ARCO implementation with standard analysis tools such as
ImagelJ [41] , CellProfiler [38], ilastik [39], Matlab and Mathematica. LifeXplorer
integrates new data analysis methods to the ARCO workflows during runtime. It
is able to run computing tasks for each measuring point individually on different
computing nodes. Computing resources are virtualized and the processing
controller automatically distributes tasks by the means of self-x and organic
computing approaches [42]. In all, the LifeXplorer framework incorporates
application specific exposure control (ASEC, Suppl. Figure 4), the automated
algorithm and parameter selection (AAPS, Figure 1 and Suppl. Figure 5),
optimal positioning of the observed region (OSAPI, Suppl. Figure 2a), and a
stack-applicable refocusing trigger (RFT, for individual description see Suppl.
Methods). To enable adoption, LifeXplorer was designed to be compatible with
standard interfaces, and was tested here with the Nikon software Nis-E, which
controls advanced Nikon microscopes, and via a custom solution controlling the
Olympus ScanR microscopy system. LifeXplorer is open source based on .NET
and can easily be customized. To interface with Nikon microscopy systems, a
macro is included into the imaging workflow that communicates with
LifeXplorer. For the Olympus ScanR system, custom software was written to
utilize ScanR hardware drivers. LifeXplorer can easily be connected to
microscope systems and run ARCO applications by simply exchanging basic

imaging commands and macros.
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Optimized time-lapse imaging of mitochondria bioenergetics

Phototoxicity [5, 6] and photobleaching [7-9] are fundamental problems
intrinsic to live-cell imaging, which reduce image quality and it is widely
recognized that light exposure results in mitochondrial dysfunction [33, 34]. To
address this problem the author performed experiments in HeLa cells loaded with
TMRM (50 nM), imaging with the Olympus IX81 at 20x magnification for a
period of 8 hours, at 30 second increments. ARCO was implemented to both
optimize exposure time (ASEC) and optimize sample size through optimized XY-
positioning of the measuring points (OSAPI, for individual description see
Supplementary Methods). In addition, the refocusing trigger (RFT, for individual
description see Supplementary Methods) was applied to avoid unnecessary image
acquisition and thereby increased phototoxicity. Phototoxicity from TMRM
excitation induces intra-cellular oxidative stress, propagating mitochondrial
depolarization and mitochondrial ROS generation [33, 34, 43, 44]. In the absence
of ARCO implementation, rapid loss of mitochondrial potential within the
cellular population was detected between 1 and 2 hours of imaging. With ARCO-
optimized light exposure, no sudden loss of mitochondrial membrane potential
occurred, and a linear decrease over 8 hours can be attributed (Figure 2a) to
dye leakage and photobleaching. Thus at the time, ARCO achieved a 3 to 4-fold
reduction in the impact of phototoxicity to 50% depolarization and total
depolarization, respectively (Figure 2b). Furthermore, total intensity was

significantly maintained using ARCO, demonstrating decreased photobleaching.
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Figure 4 Optimized time-lapse imaging using ARCO by reducing phototoxicity during
imaging of mitochondrial bioenergetics and Golgi reformation. (a) ARCO optimization
for time-lapse imaging of mitochondrial membrane potential. The difference in
phototoxicity between ARCO and non-ARCO can clearly be seen in projects of series of
3D stacks of HeLa cells with the electrophoretic mitochondrial membrane potential
reporter TMRM (50 nM). (b) In response to continuous imaging, mitochondrial
membrane potential is lost, resulting in rapid decrease in mitochondrial fluorescence (red
line). The phototoxicity curve demonstrates that the phototoxicity rate is reduced three-
to fourfold by ARCO (green line). (c) Photobleaching effects of time-lapse imaging can
be detected and minimized three to fourfold. (d) Optimization for time-lapse imaging of
Golgi reformation. The difference in phototoxicity between ASEC and non-ASEC can be
seen in time-lapse imaging (every 2 minutes) of NRK cells expressing Golgi-associated
GalT-CFP. (e) Under normal conditions, the Golgi appears as perinuclear stacks.
Treatment with BFA (5 mL) results in fragmented, dispersed Golgi. During the
reassembly, phototoxicity was detected after 1 hour by cell rounding for user-defined
exposure time but not with the application of ASEC. Cell rounding was measured by the
decrease in relative area (%) occupied by the nucleus. (f) After 1 hour of imaging, the
GalT-CFP intensity is already bleached 25% in the user-defined exposure while no
bleaching was observed with ASEC during 6 hours. Fluorescence was normalized to the

intensity at the beginning of the experiment.
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Optimized time-lapse imaging of Golgi reassembly

Golgi reassembly following treatment with the protein transport inhibitor
Brefeldin A (BFA) can be used to determine regulatory roles of specific proteins
[43]. This approach requires the use of a fusion of [-1,4-galactosyltransferase to
cyan fluorescent protein (GalT-CFP) to detect Golgi reassembly over time based
by quantifying juxtanuclear GalT-CFP localization following washout of BFA.
Accurate quantification of Golgi reassembly requires that the process is not
influenced by phototoxicity and that bleaching does not result in bias of
measurement (e.g. underestimation of intensity). To that end, the author applied
ARCO in order to increase information content through shorter imaging time
intervals during both disassembly in presence of BFA and reassembly after
washout. Two illumination schemes were run in parallel. Exposure time was
calculated by either (i) the standard “auto exposure” function present in all
commercial imaging software packages or (ii) ASEC-based optimization of Golgi
segmentation in an exposure series (Figure 2d). The auto-exposure function
increased the exposure time from the initial selected 100 ms to 1 second,
improving the signal-to-noise and image quality (Figure 4D, upper panel), but
more importantly induced rapid bleaching of GalT-CFP (Figure 2f) and
phototoxicity, as measured by rounding of the nucleus within 60 minutes, 30

minutes following BFA washout (Figure 2e).

2.4 Discussion

Here the added value of the Automated Result / Cost Optimization (ARCO)
algorithm is benchmarked to standard experimental approaches using existing
microscopy platforms. Phototoxicity [5, 6] and photobleaching [7-9] are
fundamental problems intrinsic to live-cell imaging, reducing image quality. It is
widely recognized that light exposure results in mitochondrial dysfunction [33,
34]. Previously reduced illumination has been achieved via optimized pixel-dwell
time with specialized laser scanning microscopy [10, 11, 35-37], and through

development of application-specific refocusing algorithms [1-3]. Integrative
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platforms, including Micropilot [4, 27], employ machine learning to extract and
describe complex phenotypes. Machine learning approaches can utilize generated
data to analyze factors underlying data generation, and are emerging tools in the

field of quantitative biology [12, 28-32].

ARCO optimized the quantitative result value (object count and segmented
area) of the imaging up to twofold (Supplementary Figure 5), while
minimizing the costs of the acquisition process on the observation. This was
demonstrated by a measurable decrease in phototoxic effect on mitochondrial
bioenergetics and Golgi reformation. Phototoxicity was reduced 3-6 fold in both
experiments. Thus artifacts stemming from the imaging process were almost

eliminated (Figure 2).

Importantly, ARCO implemented in LifeXplorer is able to optimize
parameters dynamically during run time and therefore makes costly trials of
sequential data acquisition and evaluation obsolete. The decisions based on
ARCO might be non-intuitive to the inexperienced user, as in the example of low
signal to noise images resulting from illumination optimization (Figure 4). This is
because the algorithm optimizes quantitatively for the scientific question rather

than for bright images with a high dynamic range as in the case of the user.

Decisions to optimize the imaging workflow during runtime can be based on
extended knowledge by using precise physical and biological models. Having now
established a general method for how to optimize the efficiency and effectiveness
of experiments, the ARCO algorithm can be applied to additional experimental
parameters, forming a critical component of hypothesis testing and validation.
The author started to apply and evaluate ARCO to select the best focusing
algorithm for a specific experiment on run time, to refocus during time-lapse only
if necessary, and to find a suitable sampling time for each channel individually.
In a pre-scanning step the amount of relevant cells can be maximized by ARCO
by modifying the measuring point based on a model of the phenotypes of interest.
Further concrete imaging issues can be addressed as was shown in chapter 4
Future algorithms can be annotated on runtime for which experiment

specifications they worked best with which parameter-sets. This finally can lead
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to an evolutionary network, which supports imaging and data analysis

optimization based on your scientific question and experiment specifications.

The automated result / cost optimization approach described here provides a
powerful and adaptable approach to optimize data acquisition and analysis on
runtime and can be applied to other experimental parameters such as focusing

algorithm, magnification, resolution, sampling time and stacking.

2.5 Material and Methods

Hela cells were plated at 40000 cells per well in p-Slide 8 well microscopy
slide (ibidi, Martinsried, Germany) one day prior to the experiment. For analysis
of mitochondrial depolarization, cells were stained with Tetramethyl Rhodamine
Methyl Ester (TMRM) at a final concentration of 10n M for 30 minutes at 37°C,
5% CO,. Cell nuclei were visualized through DNA staining with Hoechst 53342,
at a final concentration of 1 pg/ul, incubation at 37°C, 5% CO, for 30 minutes.
Live cell imaging was performed in full medium (DMEM, 10%FBS). NRK cells
stably expressing GalT-CFP (NRK-GalT-CFP) were a gift from the Starkuviene
lab and cultured as described [43]. Cells were plated in ibidi 8 well microscopy
slide one day prior to imaging. The GalT-CFP redistribution assays was
performed as described [4]. In short, cells were stained with Hoechst 53342 for 15
minutes prior to acquisition and after multiple positions per well were defined in
the software, 5 pg/mL of BFA and 0.1 mg/mL of cycloheximide were added.
Timelapse images were acquired every 2 minutes over 30 min. After washing cells
3 times with the preheated growth medium, time-lapse imaging of the same
positions was resumed for 3 hours. Cycloheximide was kept in all solutions during

Golgi reassembly to prevent de-novo synthesis of GalT-CFP.

The microscopy setups consisted of two different motorized inverted
microscopes with wide field fluorescence. The first is an Olympus IX81, a frame
grabber (Matrox Meteor-1I) and a CCD camera (Hamamatsu C9100-02). Two
objectives were used, a 10x objective (Olympus UPlanFL, NA 0.3) and a 40x


http://ibidi.com/xtproducts/en/ibidi-Labware/Open-Slides-Dishes:-ibidi-Standard-Bottom/m-Slide-8-well
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objective (Olympus LCPlanF1, NA 0.6). The second setup was a Nikon Ti-E
with automated table and perfect focus system operated with Nis-Elements AR
4.1, using a 20x Plan Fluor objective (Nikon, NA 0.75) and an interline transfer
CCD camera (Clara, Andor). The metalhalide illumination (Nikon Intensilight)
was attenuated to 25%, rather than using low exposure times, which might then
be shorter than the reaction time of the epifluorescence shutter (Sutter 10-2,
Sutter Instruments), gating exposure. Initial exposure was estimated by using the
auto exposure function based on saturation of pixels. This value was reduced by
40% to avoid potential saturation of pixels at other XY-positions. Microscopy
computers were connected with the LifeXplorer software through internet access

for online image analysis.

2.6 Supplementary Methods

2.6.1 Application specific exposure control (ASEC)

The first application of ARCO was to reduce phototoxicity in each channel.
Based on Equation 1, the initial exposure time is chosen by the operator as the
start value. The exposure time is automatically increased until saturation. The
exposure time then is decreased incrementally and the segmentation efficiency is
calculated each time, in this case to segment mitochondrial membrane potential
or the Golgi complexes. Finally the minimal exposure time is taken where 95%

segmentation efficiency is still possible.

2.6.2 Optimized sampling point identification (OSAPI)

Within the autofocusing step, images are taken with a low 10x magnification.
The optimized sampling point for the higher magnification is set to the center of

the region of interest with the maximal number of relevant cells. To prove the
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method, nuclei were segmented using CellProfiler [45] and ilastik [39] that are
plugged into the LifeXplorer control logic. The optimized sampling point
identification led to a doubled information density in the case of 10,000 cells

plated and four- to sixfold enhancement for 5,000 cells.

2.6.3 Refocusing Trigger (RFT)

The refocusing trigger can be derived from ARCO as well. Initially after the
focusing step, the contrast value of each sampling point is saved in the
LifeXplorer computing cloud. The RFT logic then triggers the microscope to
refocus a position if the quality of the image of a sampling point drops under a
certain threshold. Including ARCO, this logic can be generalized by adding a cost
function, which leads to a refocusing if it is more efficient to refocus a sampling
point then losing information content, because the focus has drifted. Refocusing a
position is time consuming and thus creates costs in terms of dimension time and
phototoxicity. The information content in the z-dimension can be quantified i.e.
by a contrast value since a scientific question can only be answered if the quality
of the image is suitable to extract relevant information. If the contrast value of
an image of a certain sampling point drops under a predefined minimum quality
threshold, the costs for losing information content have to be taken into account,
i.e. because the optical spacial resolution is decreased. In this case a cost function
is dynamically created on run time: The RFT logic simulated both behaviors
every time, refocusing a position or not, and calculated which behavior is more
efficient based on then calculated ARCO efficiency. The phototoxicity could be
reduced two to threefold by the refocusing trigger.

2.6.4 AAPS (Automated Algorithm and Parameter Selection)

ARCO is based on online data analysis. For data analysis, in this case

segmentation, the author implemented an automated processing parameterization
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module for the LifeXplorer. It sweeps through a given parameter of the data
analysis module and the parameter value with the highest amount of valid
objects is then parameterized in the segmentation module. This approach ensures
that one data analysis itself maximizes its outcome. Essential again is to define
what this outcome quantitatively is before the experiment starts. Here the size of
the cells has to be configured for an internal quality control after the

segmentation.

2.7 Supplementary Figures
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Suppl. Figure 1 ARCO experiment workflow. (1) Operator configures exposure time
based on the existing AutoExposure function, maximizing the image dynamic. (2) Define
the segmentation result by valid feature ranges for the pixel size of objects and the
minimal StdDev of their brightness. (8) The exposure time is read out (i.e. 1000 ms) and
(4) a workflow is created that captures the image with multiple exposure times within a

range from 100 ms to the current exposure time in 100 ms steps. (5) LifeXplorer waits
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until the microscope signals that all images are captured. (6) The images are read from
the disk and three different segmentation pipelines are run against the images with
multiple exposure times. First, a global thresholding within with 10 different thresholds
within a range of average and max brightness are run. Second, a CellProfiler analysis
pipeline is run using ilastik as a trainable classifier to detect Golgi complexes. Third, a
particle tracker implementation for ImageJ is run with 11 different percentile
configurations (between 0.1 and 2.0 with a step of 0.2). In every segmentation pipeline
the previously defined result features are validated and the segmentation pipeline
maximizing the result (object count) is selected. Based on this result the lowest exposure
time is selected where 95% of the segmented area can still be detected. (7) The

optimized exposure time is set.
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Suppl. Figure 2 ARCO application with LifeXplorer. (a) Intelligence Manager

optimizing the XY-position to increase the cell count. After prefocusing with a lower
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magnification, the region of interest is selected by maximizing the cell count. (b)
Schematic illustrating the relation of light exposure to information content. As shown on
the Y axis, different imaging functions need different levels of information content, i.e.
segmentation works at lower information content whereas high-content feature
extraction needs a high information content and thus higher light exposures. The
operator, however, tends to choose the maximal dynamic range, which strongly decreases
the survival time. (c) Schematic illustrating relation of information content and life time
and phototoxicity [12]. Classically, intuitive operator light exposure configurations are
used. ARCO in contrast selects the optimal information content for a given data analysis
(b), in this case a segmentation analysis, which requires lower light exposure in the

dynamic range, and thereby minimized phototoxicity.

Global thresholding ilastik supervised classifier Point source detection
threshold: average + 1.5 StdDev | integrated into CellProfiler percentile: 0.1

Suppl. Figure 3 Automated algorithm and parameter selection results for Golgi. (a)
Binary image of Golgi complexes captured with 1 s light exposure. Dim Golgi complexes
are not resolved. (b) Binary image of Golgi complexes imaged with 100 ms light
exposure. (c) Overlap of (a) and (b). Yellow pixels are overlapping pixels, red and green
pixels do not overlap. (d) Overlap map of Golgi segmentation using global thresholding,
which was performed with 11 different threshold configurations: 0 - 2 StdDev + mean
brightness, with a step of 0.2 StdDev. (e) Overlap map of Golgi segmentation using
ilastik [39] integrated into CellProfiler [38] for Golgi classification. Only unique

configuration was analyzed by ARCO. (f) Overlap map of Golgi segmentation using an
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ImageJ [41] plugin for point source detection [40]. 10 configurations were analyzed by
changing the percentile between 0.1 and 2.0 with a step of 0.2. ARCO analyses different
light exposures to select the lowest exposure time that is still suitable to detect 95% of
the area, which can be detected using the highest light exposure (Supplementary Figure
2b). Furthermore the best available data analysis is selected to segment nuclei and
Golgi. ilastik integrated into the CellProfiler was selected by ARCO to maximize the
number of valid Golgis (e). Being only interested in the average brightness over time,
Golgi objects were defined with a pixel size range of 20-2000 pixels and a min. relative
StdDev as 20% of the average value. Surprisingly, global thresholding with a threshold of
mean + 1.5 StdDev performed best and was chosen by ARCO as it could classify the

highest amount of Golgi complexes, being sensitive to a high dynamic brightness range.
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Suppl. Figure 4 Two separate application domains of ARCO, data analysis and data
acquisition. (a) The microscope’s parameters are changed automatically and the
parameter configuration with the lowest costs and the highest result is set automatically.
(b) The first, fundamental step for ARCO optimization requires result definition. Shown
are example workflows for detection of the nuclei and Golgi complexes. Definitions for
organelles are determined by size and average brightness features. (c) Different
algorithms for segmentation are run with different parameter configurations. Based on

the result definition, the segmentation results are filtered and only valid objects remain.
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The algorithm and parameter configuration with the highest amount of valid objects is
selected. (d) Based on a reference imaging position, the segmentation algorithm is
applied to a range of exposure times, and the lowest exposure time with best result (i.e.

95% of the area is segmented) is used for data collection, for each time point.
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Suppl. Figure 5 Experimental application of ARCO to optimize the number of cells
detected. (a) Improvement of single nuclei detection. ARCO can be applied to maximize
the nuclear detection, i.e. cell count, by selection from multiple segmentation algorithms,
including global thresholding, supervised -classification implemented in ilastik and
CellProfiler [38], and a point source detector [40] and changing their parameters if
possible. (b) ilastik integrated in CellProfiler performed best and could improve
sensitivity by 40% compared to a standard segmentation pipeline with global
thresholding using ImageJ. (c¢) Example image HeLa cells labeled with nuclear dye
Hoechst (1 pnl). After prefocusing with a 10x magnification, a 40x region of interest with
the highest cell count is selected as the new image center. (d) For Hela cells plated at a

density of 50 to 10,000 cells per well, the nuclei count was increased up to 220%.
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as reference as image contrast

Suppl. Figure 6 Refocusing trigger system. (1) An image is taken and (2) the Brenner
gradient [46] is measured as the image contrast. If it is the first run after a focusing step,
the contrast value is saved as a reference (3), else the reference value is compared with
the current contrast value (4). If the contrast drops under a threshold of 95% (5), the
system triggers a refocusing step (6). In the next run, the system is reinitialized with the
new contrast value and it is saved as the reference value. Three modes are implemented:
one trigger signal can trigger the refocusing of all spots, of a specific spot or all spots of
one well are corrected by the Z-value different of one reference spot that needed to be
refocused. ARCO costs are set to two for contrasts below 95% and to one above or equal

to 95%.
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Suppl. Figure 7 Contrast quality over time. The Y-axis is normalized to the contrast
value measured after a refocusing step was performed. Where the relative contrast
quality drops under a threshold of 96%, a refocusing trigger was necessary. After
refocusing, the reference value is reinitialized and contrast measurements get close to
100% of the relative quality. Refocusing triggers are marked with red. Over eight hours
of screening, the refocusing trigger was fired only eight times on an ARCO controlled
spot. On average a trigger was fired only every 76 min. The ARCO decision support
decided to perform a realignment of the Z-position based on the stack data in almost
99.4% of the cases, as the costs for the refocusing were set to two and the cost for stack
based Z-position realignment to one. Sampling the mitochondrial membrane potential

every 30 sec, the phototoxicity of the refocusing can be neglected when using ARCO.



Chapter 3

Implementation: the LifeXplorer platform

To show diverse ARCO applications, it was important to build an
experimental setup with the ability to efficiently integrate them. Since this case
study of ARCO is based on microscopy applications for life sciences, the main
focus initially was to be able to build the LifeXplorer platform as a platform for
intelligent microscopy applications. Intelligent microscopy is yet another word for
feedback controlled microscopy. Having the possibility to process the imaged data
online while the experiment is still running, and making decisions about the
configuration of the workflow on run time, “intelligent” or rather feedback
controlled microscopy applications are possible. In principle this option already
exists by being able to plug-in external macros to an imaging workflow, as can be
done in the latest versions of the microscopy managing software Nikon NIS-
Elements. This standard interface to microscopy systems from Nikon was also
used to provide ARCO applications for Nikon systems and to run biological
experiments on Nikon systems feedback controlled by the LifeXplorer. Two
different software components were built into the LifeXplorer platform: the
microscopy control component called LifeXplorer Microscope Management
System (MMS) and the LifeXplorer Cloud Computing Suite (CCS), consisting of
an organic computing service and an intelligence manager. The first component
has a very specific architecture which directly connects to a microscopy hardware
platform, such as the ScanR from Olympus, based on an Olympus IX81 inverted
motorized microscope. It is a simple imaging workflow management system,
which can be connected to the LifeXplorer Cloud Services via SOA (Service
Oriented Architecture) components. The microscope in this case becomes a
service in the LifeXplorer cloud, which offers several basic functions for imaging.
The LifeXplorer MMS has several advantages in comparison with standard
interfaces, such as macros for Nikon systems. The main advantage is the full
control over all functions. The microscope therefore could be integrated into the

LifeXplorer platform using SOA components, and the overall architecture could
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be built in exactly the way experimental set-up was needed for evaluating the
potential of ARCO. It was found that no existing solution provided the necessary
degrees of freedom to specifically implement what was necessary for our
investigations. In the following paragraph, the state of the art is briefly described
to give an overview of distributed systems, as the LifeXplorer system is a
distributed system designed to be a scalable computing platform for high-
throughput experiments such as high-throughput microscopy imaging

applications.

After a short introduction of the motivation to create LifeXplorer as a
platform for automating science, the state of the art is put into comparison to
LifeXplorer. In chapter 3.2 Basic Technologies for Imaging and Data Processing
relevant basics of the application context and the implementation of LifeXplorer
is introduced briefly. The general architecture of the LifeXplorer is then described
in 3.3 Software Architecture, along with all its relevant components. 3.3.1
Modules explains the main concept of abstracting hardware control and
computing tasks and providing a unique interface for developers to add new
functionality to LifeXplorer. In 3.3.2 Microscope Management System, the
hardware control framework is explained briefly. The chapter 3.3.4 Intelligence
Manager mainly shows examples of the graphical users interface where data
analysis workflows and feedback control circuits can be setup. 3.3.5 Organic
Computing explains the implementation of the organic computing functionality
LifeXplorer is built on. For parallel and organic computing so called workers are
necessary in LifeXplorer’s architecture and are explained in 3.3.3 Workers.
LifeXplorer was built to handle large amount of data and extract single object
features over time on multiple measuring points. A database based the MS SQL
Server therefore was created which helps to process statistics and is presented
3.3.6 Database. Finally LifeXplorer provides several plugins by default, as they
were developed and used for the experiments and application of ARCO presented
in this thesis. 3.3.7 Plugins for Image Processing and Hardware Control therefore

gives a brief overview on the existing plugins for intelligent microscopy.



Implementation: the LifeXplorer platform 41

3.1 Introduction

Let us introduce this chapter by calling back into memory why it is relevant
to automate science. And starting from this motivation to derive requirements for
the concrete implementation for science automation presented in here. Good
science is based on robust methods to get insights into life. Method optimization
therefore is a key aim in science. Automation can help to optimize the method of
insight generation. This is due to several reasons. The first reason especially in
the field of life sciences is that, automation helps to manage complexity, which
cannot easily be reduced only be optimizing scientific questions and experimental
setup, since biology is always multidimensional and it is not yet clear how to
reduce experimental complexity easily, without making use out of science
automation. While manual observations and evaluations are very often necessary
to have direct understanding of data and results, without automation errors
sources and the variance of results can dramatically increase. Manual
measurements and evaluations are always subjective. In addition as shown in
science theory, i.e. by Karl Popper, the existing knowledge of us determines also
the interpretation of results. As individuals have different experiences and
knowledge, the results can heavily vary. Furthermore humans are limited in their
senses, and make use out of technology became essential for modern science,
focusing on small scales and high precision. Science however is aiming to create
robust models about life and therefore needs reproducible results. Automating
can essentially help to reach that aim, by the need to explicit and mathematical
formulation of existing knowledge. This leads to unique basis for sharing and
using knowledge. Finally automation can help to do model based experiments,
meaning that the explicit knowledge formulation base is used to even drive
experiments. Although we would like to avoid anything subjective and “human”
in science and automation therefore is a suitable solution, human finally have to
do the “brain work” and make use out of scientific results. Science however is
complex and demanding. The more complexity is involved in an experiment, the
harder it gets for humans to make it reproducible. Applying science automating

therefore is a key approach to make scientific experiments and evaluation more
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efficient and also effective. Both helps also to increase the motivation to perform
experiments and explore life. The motivation enhancement finally also plays an
essential role in science and tools for automation directly help to increase the
human motivation to do science. Eventually automation has the potential to
increase the speed of insight generation dramatically, while scientists are able to
focus on their scientific question rather than spending time on the set-up and

data analysis. The process of science automation is illustrated in Figure 5.

Experiment setup [«

!

Data acquisition
hardware — Data analysis — Modeling
(i.e. microscope)

Figure 5 General process of insight generation in science

The usage of previous knowledge increases automation efficiency. The model
cannot be considered as the end of the pipeline, but also as the start. Using
formalized knowledge of this model for the process therefore is a key to science
automation. Implementing this loop hardware needs to be coupled with an
instrumentation that supports data analysis, the integration of a model and

finally the power to control the hardware, based on gained knowledge.

Having gained this consciousness about what can science automation be
about, we can derive what is necessary to efficiently integrate knowledge in order
to integrate the insight generation loop above. First of all, a feedback control
loop needs to be implemented. This implies that during runtime, data analysis
and the usage of a model need to be executed (unsupervised in the case of full
automation) to optimize the experimental setup and acquire optimized data,
which again is analyzed. Optimizing parameters during runtime, however, needs
a system that is able to handle the data acquired by the microscope or any other

measurement system. The system to process the date therefore needs to scale for
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different data rates. Data rates may even change over time, due to changes of the
experimental parameters, like the sampling rate or the amount of list of sampling
point. Reacting on biological events is time critical and therefore requires at least
a soft real-time data analysis, which reliably provides a result in a given time
frame, independently from variability of the processing environment. Creating
feedback control logic for event based parameter change triggers or other
parameter optimizations during runtime, due to efficiency and better motivation
reasons, requires fast and easy integration of existing standards. Integration of
existing standards such as ImageJ, CellProfiler, Matlab, etc. therefore was an
important step towards fast and robust feedback circuit creation. Feedback
circuits and data analysis workflows however can be complex and LifeXplorer
should be filling a gap between specialized knowledge from image processing and
statistics experts to biologist. Visual programming of the automation workflow
therefore was in addition important to bring the added value of LifeXplorer and

ARCO directly to the operator.

At the start of the project no tool was published by the scientific community
which was able to meet the requirements mentioned above. At the end of the
project however, another group developed a tool called Micropilot [47], which also
serves as a platform for intelligent microscopy. Micropilot is based on LabView
[48], however, which i.e. is used for the Olympus ScanR microscopy platform as
well. LabView in contrast to LifeXplorer is able to handle multipoint experiments
with redundancy and special binding behaviors. LifeXplorer explicitly was
designed for dynamic parameters changes during time, such as changing sampling
times or a dynamic list of sampling positions, which both directly influences the
data rate and need dynamic resource allocation during run time. Micropilot in
addition implemented a specific method for biological event triggering based on
trained classification of phenotypes. This trigger activates an external hardware
added to the microscope which can add a liquid to the sample, i.e. for event
based drug treatment. In contrast to LifeXplorer it was not designed to actually
change the acquisition workflow and all its parameters by providing sampling
point specific processing nodes the ability to take decision on the workflow during

runtime. LifeXplorer as well implements ARCO modules and is able to process
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intermediate results of the ARCO algorithm in parallel. Depending on the
configuration it can also bind modules to specific computing nodes, i.e. to nodes
where GPUs (graphic processing units) are available and existing GPU code can
be executed. Although Micropilot is a bundle for intelligent microscopy, which is
based on LabView, it cannot be customized for a lot requirements mentioned
above such as dynamic and high-throughput specific task scheduling. This is due
to the fact that LabView is not open source and cannot freely be adapted. To
meet the requirements above and evaluate novel methods of dynamic parameter
optimization, LabView would have to be fully customizable, especially its parallel
computing scheduler. Furthermore the aim of LifeXplorer is to also provide
parallel computing based on a normal desktop PC network as it is available in
every office environment. Facing this requirement, technical requirements such as
redundancy in combination with sampling point specific parallelization and data
binding are necessary, which was integrated into LifeXplorer as it will be
explained in this chapter (s. the implementation for high availability through
redundancy in Figure 25. Moreover LifeXplorer offers standard interfaces to
visualize intermediate processing results, which is a relevant for proof of concept
developments. LifeXplorer key requirement was to be able to have asynchronous
workflows within the same environment that handles hardware control and
processing tasks. While the microscope acquisition workflow is running, both
synchronously (i.e. for focusing) and asynchronously (i.e. for a refocusing trigger)
feedback are available. The processing and the acquisition workflow can be
synchronized with built in methods for resynchronization of asynchronous signal.
A scheduler was necessary that virtualizes the microscope hardware, so that
multiple decision support systems running on different processing nodes, can add
tasks to change the parameters of the acquisition workflow. LifeXplorer was
designed to integrate other tools therefore, as single tools add value for the
operator, but cannot meet the requirements for multipoint and dynamic
parameter specific task scheduling. As Micropilot add value by its integrated
image processing method to identify phenotypes, it can be integrated into
LifeXplorer, yet not the other way around without losing the added values of

scheduling and integrated ARCO modules which are built into LifeXplorer.
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3.2 Basic Technologies for Imaging and Data Processing

The technologies described in the following pages are supposed to give a brief
overview on relevant aspects of the actual architecture of the LifeXplorer, the
microscopy platform it was connected to and the application context. Certainly
this chapter is not intended to provide a complete overview on fundamentals and
the state of all technologies involved. It is rather focused on a small introduction
to digital imaging, microscopy, and distributed systems. LifeXplorer can run
applications for feedback controlled microscopy in parallel, in order to control a
hardware platform to optimize the outcome of experiments while reducing
involved costs. General approaches are explained, as well as existing software
technologies and frameworks which were used in order to build the LifeXplorer
with the aim of being scalable in function, and to build a framework for
automating science that can easily be used in the most relevant system

environments.

3.2.1 Wide field microscopy

Focusing on the ARCO method and its practical application, an inverted
fluorescence microscope was used as a hardware platform in order to demonstrate
and evaluate the effects of ARCO within the environment of live cell experiments
using different, automated wide field microscopes. Next to wide field microscopes,
there are different microscopes available for different applications, such as laser
scanning microscopes i.e. as confocal microscopes [49, 50|, or more lately
developments such as multi-photon microscopes [51]. Laser scanning microscopes
create a spatial image of the object by sequentially sampling each pixel, which
leads to reduced temporal resolutions. Applying multi-photon microscopy could
combine both a reduced phototoxicity and a high depth penetration [52]. The

advantage of wide field microscopy however is to create an image of one layer
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with a single illumination. Excitation of many object pixels in parallel cannot be

reached with laser scanning microscopy.

In Figure 6 a compound microscope with two lenses (also see [53]) is
illustrated. A whole area of an object is projected to the camera chip. Only the
in-focus plane is captured with high contrast. As the point spread function of a
wide field microscope has a low z-precision, other layers of the object are also
projected to the camera chip and reduce the contrast of the in-focus signal.
Because of a smeared point spread function, a whole volume of the object is

finally aggregated on the camera chip, which reduces the spatial resolution.

The magnification M can be calculated with:

_h

M= 7 (Eq-4)

f1 is the focal distance of the objective and f,the focal distance of the second
lens. Point in the object plane with the distance d will have a distance of M*d in
the image plane. Because the field of view of a microscope system is limited by
the geometrical composition of the lenses, their focal distance and the refraction
index of the material, the so called numerical aperture of a lens is relevant to

identify the maximum field of view for a given magnification.

Numerical aperture (NA):

NA = nsin 0 (Eg-5)

whereas n is the refraction index of the medium between the lens and the object
(i.e. air or oil) and @ the angle of aperture which can still be captured in the light
path. For quantification it is relevant to know the maximum revolution of a
microscope system. The revolution is determined by the ability to distinguish
between two separate object points in the image layer.

2
d'=d*M=122 — Eq-6
* NA Ea-6)
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A is the wavelength of light, which has to be considered. d’ is called the lateral
resolution of a microscope. The pixel size of the camera chip determines the
revolution, once it is greater than the lateral resolution. Figure 7 illustrates the
Epi-illumination based on the Koehler illumination. Excitation; and emission
light can be separated with specialized filters, called beam splitters which are
based on dichroic filters. This approach is commonly used in fluorescence
microscopy, as fluorophores emit light after being excited in a different
bandwidth as the wavelength of the excitation light. As illustrated in Figure 8
and mentioned in [54] “August Koehler introduced a new method of illumination
that greatly improved image quality and revolutionized light microscope
design.[..]He introduced a collector lens for the lamp and used it to focus the
image of the lamp on the front aperture of the condenser. A luminous field stop
(the field diaphragm) was then focused on the specimen with the condenser focus
control. The method provided bright, even illumination, and fixed the positions
of the focal planes of the microscope optics. In later years [..] fluorescence
microscopy with epi-illumination would utilize and be critically dependent on the
action of the collector lens, the field diaphragm, and the presence of fixed

conjugate focal planes that are inherent to Koehler’s method of illumination.”
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Figure 7 Epi-illumination with Koehler illumination. Image adapted from [55].
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Figure 8 “August Koehler introduced a new method of illumination that greatly
improved image quality and revolutionized light microscope design. Koehler introduced
the system in 1893 while he was a university student and instructor at the Zoological
Institute in Giessen, Germany, where he performed photomicrography for taxonomic
studies on limpets. Using the traditional methods of critical illumination, the glowing
mantle of a gas lamp was focused directly on the specimen with the condenser, but the
images were unevenly illuminated and dim, making them unsuitable for photography
using slow-speed emulsions. Koehler’s solution was to reinvent the illumination scheme.
He introduced a collector lens for the lamp and used it to focus the image of the lamp on
the front aperture of the condenser. A luminous field stop (the field diaphragm) was
then focused on the specimen with the condenser focus control. The method provided
bright, even illumination, and fixed the positions of the focal planes of the microscope
optics. In later years |..] fluorescence microscopy with epi-illumination would utilize and
be critically dependent on the action of the collector lens, the field diaphragm, and the
presence of fixed conjugate focal planes that are inherent to Koehler’'s method of

illumination.” [54] Images are adapted from [54].
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3.2.2 Fluorescence microscopy

Fluorescence microscopy [56-59] became an essential tool for modern biology.
Imaging of subcellular, dynamic cell signaling events [16-19] coupled with data
extraction and analysis allows for quantification and improved hypothesis testing
in biological research [20]. Quantitative imaging [16] today is a key technology to
create models which are suitable for quantitative reproducibility. Finally, modern
life sciences aim to receive insights into biological systems and their dynamics
[60-62] over time, being able to take influence in a reproducible and predictable
way. The physical effect of fluorescence offers a tool for microscopy where dyes
[63] or the tissue itself are excited with light of a certain bandwidth, and
nanoseconds later emit light in a different bandwidth. Excitation and emission
light can be separated with specialized filters, called beam splitter based on
dichroic filters as it is illustrated in Figure 7 and Figure 9. So called
fluorochromes can directly be employed for fluorescence microscopy, whereas
other tissues need be labeled with dyes. In both cases intracellular events can be
measured, and even single molecules can be detected applying ultra-high
resolution imaging [64-71]. The resolution speckles can be detected using
standard camera sensors. Fluorescence microscopes commonly offer a motorized
XY7Z stage, motorized filter cube revolver, and a motorized objective revolver.
For dye specific light excitation, light sources offer filter wheels, which filter
white light into single excitation bands. For laser microscopes, different laser
light sources can be used and injected into the excitation light path. Being able
to excite different dyes sequentially or even in parallel, multispectral biological
readouts can be performed automatically for multiple positions. Automated
microscopy [72-74] was a base technology for this thesis to implement and

evaluate novel methods of automation and intelligent microscopy with the
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LifeXplorer platform. In Figure 9 a state of the art inverted fluorescence
microscope is illustrated. Reflected light illumination is used together with beam

splitters to separate fluorescence excitation and emission light.

Spaci
Focusing Knob

Figure 9 “The research light microscopy with inverted stand. As in upright designs, two
lamps provide transmitted and reflected light illumination. Note the location of the
knobs for the specimen and condenser lens focus adjustments, which are often in
different locations on inverted microscopes. Also note the positions of two variable iris
diaphragms: the field diaphragm near the illuminator, and the condenser diaphragm at
the front aperture of the condenser.. Each has an optimum setting in a properly adjusted
microscope. Above: Microsystems DMI600 B inverted microscope; below: Zeiss Axio

Observer inverted microscope.” [54] Image adapted from [54].
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3.2.3 Digital imaging

Quantification in modern life sciences using a fluorescence microscope is
essentially bound to digital imaging, as digital images are the output of
microscope cameras. Digitalization (mathematically and technically) is a complex
topic in itself and in the following only a brief introduction should give a basic

idea how the process of digitalization for imaging platform is employed.

“Charge-coupled  device (CCD) and complementary metal oxide
semiconductor (CMOS) detectors are small, centimeter-size chips of silicon that
are divided up into millions of tiny picture elements capable of storing
photoelectrons during an exposure. The photon count in each pixel is then
digitalized and displayed on a computer monitor or other display device. The
light-sensitivity, dynamic range, and spatial resolution of these detectors are
extraordinary. The efficiency of light collection is so great that even weak
fluorescent images in a microscope can be recorded in just a few milliseconds.
Because they give a linear response over a large range of light intensities, CCD
and CMOS cameras can function as imaging spectrophotometers, producing tens
of hundreds of times better resolution of light intensity than video or film
cameras. They also have a high spatial resolution comparable with film [..] and
can acquire “full frame” images at close the standard video rate of ~30 fps.
Because digital imaging is so fast, one can see and interact with the images on

the computer monitor in real time.

The combination of microscope and digital camera, together with computer
imaging software, defines what is called a digital imaging system ([Figure 11]).,
a mainstay of the laboratory that has greatly stimulated the use of light
microscopy in research [75]. To use the equipment properly, some basic study is
needed to master several software-dependent procedures for image acquisition,
processing, analysis, and display. [..] the principles and design of the CCD

camera [is presented in Figure 11].”[54]

Figure 10 depicts a sample result of a multi-color imaging. Each optical

channel is read out separately and quantified into a grey scale matrix.
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Independently from the specific technology of the camera chip, CCD as well as
CMOS and other chip technologies are based on similar principles of photon
detection and counting as it is illustrated and explained in Figure 11. Relevant

parameters of an imager (camera chip) are the following:

e The resolution

e The pixel size

e The bit depth (i.e. 12 bit for 4096 quantification units)
¢ Dynamic range (range of min to max signal intensity)
e Maximal Frame rate

e The signal to noise ratio

e The quantum efficiency

Depending on the imager, other parameters and special options are available.
Often the signal can be amplified and some chips offer fast readouts for a

configurable ROI (region of interest).

Figure 10 Multi-color imaging result sample. Each optical channel is read out
separately and quantified into a grey scale matrix. This can be done sequentially by
changing the excitation and emission filters or by splitting the beam into different paths
which are imaged by separate cameras. Each channel image is a gray scale image and

only for visualization the grey values are translated into color values again.
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Figure 11 “Silicon as a photon-sensitive substrate in a CCD imager. The sketch shows
the effect of incident photons of various wavelengths on the silicon matrix of a CCD.
Incident photons interact with the silicon, breaking covalent bonds between the silicon
atoms and generating electrons and electron-deficient sites called electron holes. A
voltage potential applied across the CCD holds the accumulating photoelectrons in the
silicon matrix until they are read off from the chip and digitalized. Red photons
penetrate deeper into the matrix than green photons followed by blue photons,
accounting for the relative insensitivity of silicon to blue light. High-energy x-rays and
cosmic rays disrupt many bonds and generate large saturating signals. Typically, there
are a few cosmic ray hits on the CCD surface per minute. Thermal energy, represented
by the match, also disrupts bonds and generates electrons (thermal noise) that cannot be
distinguished from photoelectron counts; however, the problem can be reduced
significantly by cooling the CCD to very low temperatures. After the electron charge
packets are read off the CCD surface, the structure of the silicon matrix is restored, and

the CCD is ready for another exposure.” [54] Image adapted from [54].
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3.2.4 Digital image processing

Illumination (energy)

,7/1 \ source

(Internal) image plane

b Scene element

Figure 12 Digital image acquisition process. (a) illuminiation source, (b) scene element,

(c) imaging sytem, (d) image plane, (e) output image. Image adapted from [54].

As illustrated in Figure 12, the scene element is digitalized as a matrix of gray
values. The process of the digital image acquisition is bound to physical
limitations of the imaging system. First of all, the detector of the imaging
systems needs to be able to quantify a certain amount of photons which are
emitted from the light source or the object itself, i.e. in the case of fluorescence
microscopy. The so-called dynamic range of the detector defines the min-, max-
boundaries within which the detector is able to quantify light dependably. If the
spacial resolution is relevant, some limitations to consider include: the pixel size
in comparison to the point spread function of the optical system, and the emitted
wave length. The quantification itself is not necessarily linear, which needs to be
considered when evaluating gray values of an image. Additionally, quantifying
the emitted light over time causes known issues of time discretization. Depending
on the sampling rate of the quantification, information of different object features
may change due to under-sampling of fast processes. Image processing, however,
often is not aware of the physical properties of the imaging system, which can
lead to wrong results. It generally is comfortable to directly use the output image

without any knowledge how it was generated.
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3.2.5 Parallelism

Developing and evaluating the LifeXplorer, fast data processing was the
overall goal to be able to provide computational decisions for feedback controlled
microscopy as fast as possible. Exploiting concurrency in processing therefore was
a main objective. Concurrency can be achieved through different methods and
levels. One method is the so called parallelism. It can be described as the

following (translated by the author):

“Parallelism is [..] the short form for the possibility to execute operations in

parallel”. [76]

In fact two types of parallelism are discriminated: data and program parallelism.
This differentiation however will not be taken into account, since in the following
considerations about parallelism it is assumed that the execution of operations
has no data access limitation in order to simplify the complexity of this topic for
the reader. On the local computer there are in principle four program levels, and

thus four levels of parallelism from the computer architecture point of view.

Table 1 Levels of parallelism. Adapted from [76]

Program levels Characterization Degree of parallelism
User programs (jobs) Multiple jobs are executed simultaneously Low
Processes (tasks) Multiple processes are run concurrently High
Commands Multiple commands of one program are run | Low to high
concurrently
Elementary operations | An  expression consisting of multiple | Low
operations is executed.

Table 1 shows all four program levels with their characterization and degree of
parallelism. The parallelization degree on the level of user programs is low. The
degree of scalability on the same level however is very high, especially when user

programs are distributed across the borders of a single processing node on a
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processing cluster. Real parallelism can only be reached if there are multiple
function units which are able to execute operations simultaneously. In computer
architecture and any other production systems two general approaches exist to

reach parallelism:

1. Pipelining

2. Parallel function units

The principle of pipelining is to separate sequential processes into autonomous,
specialized units that are aligned. A vivid sample for pipelining is a sequential

assembly line as it can be seen in Figure 13.
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Figure 13 Sequential assembly line
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The production process of an assembly line is split into single work steps, which
are exactly synchronized. Each working step is connected to another working step
by a rigid transfer line [77]. Parallelism in the approach of pipelining can be
imaged the easiest if one assumes goods are permanently produced. This causes
every work station to be permanently busy producing parts of the final product.
The desired concurrency is then reached by executing single operations
simultaneously. The second approach to reach parallelism is the more obvious: to
use parallel units for the same task. Figure 14 illustrates the usage of multiple
assembly lines to reach a higher degree of parallelism, while every assembly line
is parallel itself implementing a pipeline for parallel operations. To have more
than one work station for the same task however is only efficient if the degree of
parallel stations can be exploited. In both approaches the scheduling and fetching

of new tasks has to be managed well to fully load the production lines.
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Figure 14 Parallel assembly lines

“The aim of every software system must be to efficiently load all active units in
order to increase the throughput of the complete system and thus to be able to

execute applications as fast as possible.” [78] (translated by the author)

The partition into four levels of parallelism mentioned above can be slightly
changed from the software development point of view. From this point of view a

different partition into three levels is easier to understand:

e Process level
e Thread level

e Node level

Processes have their own memory area, clearly divided from other processes. The
communication between processes as a general rule is only possible with the
intervention of the operating system. Threads in contrast can share the same
memory area and their synchronization has to be implemented explicitly by the
software developer. A process can consist of multiple threads which can run
simultaneously depending on the computer architecture. A node in this context is
the term for a computer running in a network of other computers. This level of

parallelism is in principle process related, however parallel processes on different
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nodes can exploit local parallelism on the thread level. All levels of parallelism

can be exploited in the LifeXplorer.

3.2.6 Distributed Systems

“A distributed system is one in which components of connected computers
communicate and coordinate their actions only by sending messages to each
other. This definition leads to the following characteristics of distributed systems:
the concurrency of components, the absence of a global cycle, and the

independent breakdown of single components.”[79] (translated by the author)

The most famous example of a distributed system is the internet, with both its
soft- and hardware distribution. Systematically the potential of this distribution
becomes obvious and is communicated in modern terms like “cloud” and “cloud
computing”. Although these terms do not directly refer to applications running
on the internet, more and more applications “in the cloud” do so. High
performance and supercomputing [80], which refers to the term super computer,
brings highly parallel computers, mostly with specialized computer architectures,
into application. For science related applications, it has a high potential to be a
solution for major computing issues in a large variety of applications [81].
Medical [82-84] and biomedical imaging [85], applications of molecular biology
[86, 87], cancer research [88] as well as drug discovery [89], car simulation and
crash test simulation, astrophysics, high energy physics experiments, optics [90],
fluid dynamics [91-93] and modern weather prediction [94] depend on the
existence of distributed and highly parallel systems to compute solutions of given
computing problems. Life sciences to a large extent start benefiting from existing
approaches to exploit distributed systems, such as the three-dimensional electron
microscopy reconstructions [95] and other complex computing issues, such as
large scale image screen. For example, genome wide RNAi screens [96-100] could
not efficiently be evaluated without the usage of parallel computing and thus
distributed systems. Another application is to efficiently search sequences as a

challenging task for bioinformatics [101], which becomes even more relevant since
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the genome sequencing is pushed by the International Cancer Genome Project

(ICGC) where 50 different cancer types are sequenced across the globe [102].

The basic principle for distributed computing and applications is the
modularization of programs in several parts that are independent from each
other. Hardware parallelism can then be exploited by distributing computing
tasks to different computing units and by running several tasks in parallel.
Essentially communication and synchronization with this basic step comes into
play. If an algorithm is separated into different independent parts and run on
different hardware units, these units have to communicate their intermediate
results in order to compute the total result of the whole algorithm and for all
existing data packages. In principle a distributed system and application can be
run locally on a single computer as well in many cases. Scalable applications are
designed to be distributed on different computers and in the best case in a way
that the application scales automatically when adding computers to the
processing network. The fixed costs to develop scalable applications are in general
higher than the costs of single node applications, which are not able to make use
of multiple computing resources. The need to build distributed applications
increases, because computing problems are becoming more complex. At the same
time, the application design itself becomes more complex, because non-expert
users also want to benefit from a combined set of technologies.

Because the distribution of computing tasks implies communication, the
latency and bandwidth of network connections, or rather the overall system,
become crucial parameters to run high performance computing applications. As
soon as the communication overhead becomes higher than the increased
computing performance by the distribution of tasks, the overall performance of
the distributed system will be lower. For the development of distributed systems
and applications a large variety of architectures and approaches exist. These
approaches will not be further discussed in this thesis, however main principles of
the communication will be explained in the following, in order to provide a basic
background the final architecture of the LifeXplorer framework. Communication
in distributed systems can be divided into two classes: synchronous and

asynchronous.
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Synchronous distributed applications

Applications which are synchronously distributed block the local program
execution until a network message of a communication partner is received
[79].The result can be that the local process can freeze if no time out logic is
implemented or an existing time out can cause the program to fail if the result of
the communication partner is necessary for a successful execution of the local
program code. The parallelism of the computing doesn’t have the highest priority
in such applications. Although the work load of the local resources is reduced if a
communication partner takes over calculations, local resources are not actively
used for the same application. Nevertheless synchronously distributed
applications can benefit from heterogeneous resources, which are used on demand
for special purposes. A microscope host computer i.e. might not have as high a
performance as a different computing node of a computing cluster. As soon as the
communication overhead is lower than the amount of time that can be saved by
computing a task on a distributed computer, the synchronous and distributed
task execution can already be an added value for the application performance.
This basic communication pattern of distributed applications is called Client-
Server architecture [79]. The server in this case provides services to different
clients, which in general have a less strong hardware. A typical example is a
database management system. If a database file is shared by many clients on a
network drive, the performance is in general much lower than it would be using a
database management system. Data base management systems offer services to
read and write data to the database locally and in an ordered an optimized way.
In this case only relevant data is sent over the network, and in addition the
server can have an optimized hardware, whereas the clients can have weaker

hardware.

Form the process point of view, synchronous communication mainly offers
one advantage: no synchronization if necessary. The process itself therefore
becomes easier to understand and less error-prone. In addition, the process can be
understood and recovered more easily on runtime. Developing synchronous,
distributed applications is closer to the development of non-distributed

applications than it is the case for asynchronously distributed applications.
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Locally blocking the program executing in any case avoids using resources in an
optimized way. Exploiting existing resources however often leads to
asynchronously distributed applications. Parallelism instead of pipelining

moreover can optimize both latency and throughput.

Asynchronous distributed applications

Distributed applications which are run asynchronously do not block the
program execution when communication with another distributed processes is
started, which means that the local program continues to run while in parallel
the communication partner receives and handles a message and asynchronously
provides a reply. Depending on the technology, such as MPI (Message Passing
Interface), it is possible to retrieve messages via a communication status register.
This means that received messages can cause a soft- or even hardware trigger,
which pauses the current program execution and can then be handled by a
special synchronization code that actively handles the message of the
communication partner and re-schedules the result into the local program
execution. Asynchronous applications can be understood as a super class of
synchronous applications, simply because synchronicity can be simulated with an
asynchronous application. On a lower level, every network communication is
normally asynchronous, because the operating system can and will continue to
run after a message is passed over to the network interface. As soon as a message
comes back, the local program execution will be continued based on triggering or
polling. In both cases however, the underlying network communication itself is
normally asynchronously implemented to ensure that multitasking is still
possible. Once an asynchronous application is implemented in a way that looks
like a synchronous one to the operator, the underlying benefits of asynchronicity
cannot be exploited anymore. Alternatively it is possible to locally simulate
asynchronicity by creating threads for each asynchronous program call. Internally
the communication then can be asynchronous, while the local program execution
is still asynchronous. In the case of the LifeXplorer asynchronicity plays a crucial
role for the implementation and understanding of the distributed system. Because

hardware and computing tasks can be run asynchronously, the re-scheduling of
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messages is a relevant design challenge. Asynchronous software designs are often
based on threading. The sending process itself can be encapsulated into a thread
and only the send communication is called by a different thread that awakens a
new thread, which runs the send logic. The same pattern can be used for the
asynchronous receiving process. A hardware or software trigger (which can be
implemented by so called polling as well, which in general implies high resource
usage) makes the operation system change the program execution by jumping to
a program code position that handles the message. Like in a hardware system,
the software design is then based on encapsulated sending, receiving, and other
logical units that are run in parallel. A relevant question is how exactly the
binding between the communication thread and the program logic is
implemented. In order to show the complexity of this topic, one example of
highly scalable software designs should be mentioned. The so-called instance per
call mechanism creates a new thread for each communication call. This pattern is
highly scalable because memory is freed once a call is terminated, and at the
same time, a hardware with several CPUs can handle several communication
calls in parallel, which can highly increase the overall availability and throughout
of distributed applications, especially in so called SOAs (Service Oriented
Architecture). At the same time, the overhead is a lot higher for handling as
many communication threads as necessary in parallel, in contrast to only one.
The overall performance therefore is initially reduced by this overhead, the
system is on average slower, but scalable. Asynchronous systems, as briefly
explained, are a lot more complex as they demand proper designs, make
debugging more difficult, and offer a large variety of different implementations on
how to make use of asynchronicity. Unfortunately, asynchronicity offers the
beauty of exploiting resources more efficiently and once a working design is
successfully implemented it is often more robust due to the modular design
principles asynchronicity demands. In principle, the design and maintenance of
such applications quickly gets more complex. This is mainly due to the
assignment of the data of the asynchronous program flow, which may prove to be
much more difficult. While a synchronously implemented program by its flow
design has the right data in place, when needed, an asynchronous program can

have a completely different program state at the time a reply message is received.
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The original program status that was valid before a message was sent may be
reassigned by the usage of a status history. This issue in computer engineering is
called context switching and takes place in the CPU registers every time a
different program is run on the CPU. While CPU and operating system designs
offer this ability by default to make multitasking possible, software applications
have to implement such a behavior explicitly depending on the concrete needs

and underlying technologies available.

A network of hardware components which interconnect with each other
always is the physical basis for a distributed system. The LifeXplorer system was
designed to connect heterogeneous computers with each other, using their local
computing resources such as CPUs and GPUs (graphical processing unit). Since
heterogeneous networks can consists of different hardware and software
platforms, the challenge of building the LifeXplorer was to build an interoperable
communication system that abstracts from the specific hardware and operating
systems. In the same time, the communication should be based on modern object
oriented programming approaches to be able to build robust and scalable
software architecture. The solution for the LifeXplorer development was to build
it on the so-called Service Oriented Architecture (SOA) [103] paradigm. This
architectural paradigm helps to build robust distributed systems and applications

and is further explained in the following chapter.

3.2.7 Service Oriented Architecture (SOA)

Distributed applications are complex, as becomes obvious from the above.
Designing and maintaining them is a challenge. In order to handle the complexity
of software applications, it is often helpful and even necessary to make use of so-
called design patterns [104]. They provide general approaches to solve specific
design problems and help make it easier for the developer to create a clear
understanding of the solution being designed. This furthermore helps to develop
robust applications more efficiently. Especially the so-called lose binding plays a

central role in modern applications. Loose binding basically means that
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components communicate only through small interfaces, whereas local changes
will not affect other components. One approach for this strategy, which respects
the cooperation of multiple, distributed function units, is the so-called service

oriented architecture (SOA).

"A service is a functional unit, which is brought into contact with the world.
In this sense, it is the next evolutionary step in the long journey from functions
to objects to components to services. The service orientation (SO) is itself an
abstract figure consisting of approaches and good experiences to develop service-

oriented applications.” [105] (translated by the author)

During the history of software development, new methodologies and
technologies have always taken advantage of established ones. However, as
mentioned previously, new challenges simultaneously come along. Generally,
service oriented architectures are based on a standardized object description and
communication protocol called “simple object access protocol” (SOAP). On this
basis it is possible to transfer objects across heterogeneous systems and to
execute method calls of objects that are not locally implemented (Figure 15b).
This is done by the so-called serialization of the object at the transmitter and the
de-serializing on the receiver side. The receiver only needs the structural
information of the received object that is present based on XML, which can be
integrated even on runtime. The service provides operations (Figure 15a) and
data to other clients, which can consume the service through standardized

communication channels (Figure 15b).
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Figure 15 Basic service architecture. (a) A service offers operations to other services.

(b) Service consumes other service to work with its computing result locally. Images

adapted from [106]

The approach is close to real life, where organizations and individuals offer
services for others. On runtime services can be called and consumed. The
underlying program code can be exchanged even on runtime as long the interface
stays the same. Although complexity is always higher than the ability to manage
complexity by more sophisticated approaches, SOAs seems to have made a solid
step towards future applications, which will be based on distributed systems and
services. Every intelligent network consisting of heterogeneous participants that
communicate with each other can in principle be designed as an SOA. This
exercise almost always has the desire to develop separate functional units as
cleanly as possible, and to be able to reuse them, which only can easier be done
by thinking in the design pattern and paradigms of an SOA. The real gain,
however, comes through the standardization of this approach. An SOA will show
its beauty only by the fact that developers focus entirely on the design and
development of robust features, without having to lose too much time on the
implementation of the communication. The merging of the separated functional

units is facilitated considerably.
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3.2.8 Organic Computing

Self-organization is an attractive design principle for a large variety of
applications, where system parameters change over time and re-adjustment and
autonomic optimization of parameters is possible. Organic computing tries to
apply self-organization in biological systems to information systems and is
thereby closely related to systems biology [107]. It can be considered an
evolutionary system optimization in dynamic environments [108]. The quality of
the self-organization is describes in self-x features. As organic computing
approaches are fundamentally based on the structure and thus architecture of a
system, in the following basic architectural design templates are briefly described.
Eventually organic computing tries to provide generic architectural templates on
which system designers can build more flexible systems, which are at the same
time more robust against crashes. Like in nature, applications run on organic
computing architectures are process driven. Structures and topologies may
change over time due to runtime decision of the organic computing management
units, which are often called observer and controller (Figure 16). The
productive system is observed on runtime by the observer unit, which reports the
results of the observation to the controller. The controller is configured based on
pre-defined goals, such as availability-, throughput-, and latency-optimization.
Depending on the reported system status the controller can change the
productive system, its parameters, and even structure. The productive system is
abstracted in a process definition rather than a structure, which drives a certain
process. In this way, the process which should be driven is dominant, over and
against the structure, while the controller tries to drive this process, building or
changing structures on runtime if necessary. Organic computing systems by
design are modular and often distributed intelligent systems and can be
considered autonomous computing networks [109]. As a practical example of a
process, we can image a data analysis workflow. It can be run on a computing
grid, with fixed associations. L.e.: algorithm 1 is run on node 1, its results are sent
to node 2 where algorithm 2 processes the input of algorithm 1 and creates the

final result. Organic computing in contrast will change the assignments and
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communication pattern autonomously, i.e. if node 2 crashes another node will be
integrated into the productive system structure in order to run algorithm 2.
Another case would be that on runtime algorithm 3 and 4 are added and another
communication structure is necessary. Organic computing thus reduces

complexity for the operator and increases the reliability of a system.

selects obversation model

Observer Controller

observes changes

—> Productive system —

Figure 16 Basic observer / controller architecture. Image adapted from [42].

As in biological systems, organic computing systems are designed to react on
changes rather than assuming that the overall system behavior is predictable,
and fixed structures therefore can be optimized before runtime. Especially in
computing, the applications and algorithms choose different paths in their sub
programs depending on the data and the system history. This application path
however cannot be predicted in many cases and only on runtime, when
processing application-, data- and time-specific information, different needs for
the system configuration appear. Organic computing is closely linked to neural
networks [110] as they implement similar principles of self-organization and
flexibility. They can be integrated into organic computing strategies as machine
learning strategies. Neural networks can be trained during runtime and

dynamically adapt to the environment, driving a defined output function.
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To measure the degree of autonomy, the following parameters of systems
have to be considered. The complexity reduction R of self-organized systems is

described as:

R=Vp— Vy (Eq-7)

whereas Vy; is variability the high-level configuration space (i.e. the goals
configuration of controller) and Vp the variability of the internal configuration

space (i.e. the productive system) [42].

The degree of autonomy S is defined as:

= (Eq-8)

If no external control (Vyp = 0) is necessary, the highest autonomy is reached for
and S = 1. As organic computing systems are designed for dynamic environments
[108], the autonomy is not just a static value, but can change over time. The
dynamic complexity reduction within the time window t, — t; therefore has to be

defined as:

r= | (I —h)dt (Eq-9)
J

fttf(l — h)dt

-10
[t (Fa-10)

whereas h(t)is the high-level and [(t) the low-level flow of control information
[42]. As illustrated in Figure 17 the degree of self-organization increases with
the variability of the productive system. Three basic design patterns for organic

computing architectures are shown in (a)-(c). (a) depicts the central observer-
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controller architecture. For the whole productive system, only a single observer-
controller instance is reliable. A multi-level pattern is shown in (b). The
productive system itself is segmented and each segment has its own self-
organization, whereas the overall system is controlled by an observer and
controller. The highest autonomy is given if the segmentation rate of the
productive system is maximized, so that the variability is maximal and each
segment has its own self-organization, without any additional control unit, as it is
illustrated in (c). Practically the fully distributed self-organization of (c) however
leads to high redundancy. Each sub system will have to measure its environment
and no specialization allows creating and sharing common knowledge about the

overall system or sub systems of it.

S 4 degree of self-organization

complexity reduction R

Productive system

-
L

Variability Vp

Figure 17 Degree of self-organization S as a function of the variability of the

productive system, Vp

In LifeXplorer the central approach of Figure 17 (a) was chosen, as it is the
easiest to trace during runtime. The multi-level architecture offers, however,
more flexibility and reliability for the application run on such architecture.
Having only a single instance for self-organization, already the measurements of
the observer can create a bottleneck for the communication channel of the node

which processes the messages of the observer. In addition, redundancy of the
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observer and controller instances is an issue as these components are highly
critical system components, needing to be stable against environmental changes
and crashes. This leads to a hierarchical topology and includes strategies for
redundancy, which are not explicitly explained here. Once it is modularized, the
productive system can however be adapted dynamically such that it is stable
against crashes. Having several processing nodes in a network, the controller can
switch tasks from one node to another. Having memory afflicted tasks, demands
to implement synchronization strategies, which are also not mentioned in more
detail in this thesis. Redundancy and multi-level strategies have been
investigated, but were less relevant than the Automated Cost / Result

Optimization during runtime.

3.2.9 Real time

Since the ARCO algorithm necessarily needs a feedback control system, real-
time aspects had to be considered in order to implement reliable parameters
optimization methods on runtime. If the duration of a processing operation is
reliably fixed, a system can be called a real time system. If an expected time for a
processing operation is smaller or equal to the real-time interval, a system can be
called a soft real-time system. Hard real-time implementation is only necessary in
systems which dependably have to guarantee that the real-time requirements can
be strictly kept for all tasks, meaning that tasks or signals are not processed
faster than expected. However in general this creates hard limitations to the
system complexity and therefore is often only possible and necessary for low-level
implementation in communication and electronics. On the software level, soft
real-time commonly is suitable if the architecture implements buffers to catch
signals and task into a list first, to be stable against variable processing times.
Practically, real-time played a role for the LifeXplorer platform, because one
cycle is determined by the physical imaging workflow and can artificially be
extended by the operator if the imaging software allows such a configuration to
extend the cycle time by adding adaptive pauses after the imaging workflow.

Finally the processing time of data analysis workflows determines the minimal
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imaging workflow time which is necessary to successfully couple together imaging
and data analysis in real-time, in order to control the imaging workflow on
runtime. LifeXplorer was not explicitly designed to support soft real-time for
data processing, however it can synchronize the imaging workflow with the data
processing and thus clock the imaging cycle with the data processing. In the
worst, case, the sampling rate of the imaging workflow therefore will be extended

artificially and cannot reach the actual physical limit.

3.2.10 Software platform .NET

NET is a runtime based, cross-language, object-oriented software development
framework. The primary aim of such a development framework is to reduce
complexity of software development by providing comprehensive and
standardized libraries, which can easy be used and combined within the
customized application development. Among other things, this aim is achieved by
abstracting from the underlying operating system. Source code that is writing on
.NET can be used on every operating system for which the .NET framework is
available. The developer does not need to know the specifics of different
operating systems. To make this possible, developers can write their applications
in different languages, such as Visual Basic, C#, C++4, PHP, and many others,
which are internally translated into the so called Common Intermediate
Language (CLI) [111]. The source code of an application is then translated into
machine code on runtime by the Common Language Runtime (CLR) (Figure

18).
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Figure 18 NET framework - language translation

This basic “compile on demand” approach, which is implemented by every
interpreter of a scripting language, creates a relevant overhead, which decreases
the performance of applications. Fortunately .NET in contrast uses more
sophisticated approaches and incrementally precompiles source code on demand.
This approach then leads to lowered performance loss. .NET however can be
considered to have a lower performance than for example C++. The main reason
for this is that .NET does not by default allow the use of direct object access
through so called pointers. They give the developer the chance to work more or
less with the physical address of an object in memory. Because this has been a
major security and stability issue of existing applications, .NET managed the
access and developers can only access an object through the .NET layer. The
overhead therefore can be understood as a function call. Every time an object
such as a variable is accessed, a function of the .NET framework is called in
order to make sure that no access violation happens and if that is not the case
the content of the object is returned. The term for this internal behavior is called
managed code. Like the Java Virtual Machine (JVM), .NET is active and
manages the program code even on runtime in the case of the already compiled

machine code. Because direct object access is not possible, memory and memory
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addresses can be managed by .NET on runtime. C++ applications and others,
where direct object access is possible, often are not dependable due to memory
management related issues. .NET applications are less complex for developers in
this case. They can free objects and trust the framework to handle the underlying
memory management with a high dependability. The robustness of applications
can therefore be increased only by using frameworks such as .NET, because the
so called garbage collector (GC) is a highly developed memory management core
unit, addressing memory leaks and optimization issues. In practice, however,
developers have to be aware of the main principles of the garbage collector as

well, and have to have knowledge how to make the garbage collector work

properly.

The fully object oriented approach of .NET is a basis for proper and robust
software development. It makes applications in principle more scalable and less
error-prone. A unique feature of .NET is the already mentioned cross-language
integration. Almost every high language such as C++, Java, or Delphi can be
used. The added value of these languages for the developer is that almost every
standard library of the framework can be used and integrated easily. This in
general makes software development more elegant, efficient and effective. The
C# language has the highest compatibility with the .NET framework and all its
libraries. It was designed and optimized to be a pure .NET programming
language. The LifeXplorer and all its components except hardware drivers were
implemented using C#. In many various areas .NET is furthermore strongly
XML oriented, because XML is used as a standard intermediate format in the
case of data communication. This standardization could profitably be used in
different components of the LifeXplorer. From the software architectural point of
view, frameworks such as .NET add value because they serve as a relevant
abstraction layer, as mentioned above. Although performance is lowered by this
additional software layer, the efficiency and dependability of software
development is often decisive. As the measurements in this thesis will prove, the
overhead of using .NET technologies is not relevant in the case of feedback

controlled microscopy applications. C++ was used to implement hardware
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drivers, but mainly because the existing libraries of the hardware components are

only available for C++.

Software development frameworks like .NET offer new opportunities of
generic programming, which are becoming increasingly important. Generic means
that components can be added and modified on runtime. At the same time, the
main goal of building the LifeXplorer was to have a framework for science
automation and especially intelligent microscopy, where data acquisition and
analysis can be modified on runtime. .NET therefore was chosen to build a base
technology for the LifeXplorer. Because the LifeXplorer is a package of hardware
control components, distributed workflow computing and visual programming,
also the possibility of efficiently building graphical user interfaces had to be taken
into account. .NET in this case offers a novel framework called Windows
Presentation Foundation (WPF), where a user interface is fully described in the
XML format and rendered into a concrete form on runtime. This abstraction
allows building web and desktop applications on the same bases. To build the
LifeXplorer, .NET version 3.5 and later version 4.0 was used. In Figure 19 the
NET framework version stack is illustrated. Fortunately starting with version
3.0, the technology development focused on distributed and parallel applications.
Out of the .NET technology bundle, the following key technologies were used to
build the LifeXplorer:

communication

e Windows Communication Foundation (WCF)
framework

e Windows Presentation Foundation (WPF) — visualization framework

e Parallel Language Integrated Query (PLINQ) — can be considered as being
an integrated SQL which is optimized for multi core usage.

e Task Parallel Library (TPL) — local computing task parallelization

framework
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Figure 19 NET framework version stack

Most of these technologies are only available using the original .NET
framework which is built for Microsoft Windows operating systems. However
there is a serious initiative called the Mono project that ports .NET to the Unix
world in order to make .NET available for unix derivatives like Linux, SunOS,
OpenSolaris, OpenBSD, MacOS, and others. Although this project is still at its
beginning, a variety of .NET technologies can already be fully used. Mono in
addition seems to be a platform with very high performance, as references
available on the web show. The LifeXplorer is designed to be a computing cloud
that can also consist of personal computers as computing resources, and designed
to be available for as many operating systems as possible. Throughout this thesis
only Windows platforms were used as the underlying operating system for .NET.
Migrating the code to Mono was tested in principle, and proved partially

successful.
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3.3 Software Architecture

The software architecture of the LifeXplorer platform is based on the ideas of
organic computing as explained above. As illustrated in Figure 20, the platform
consists of two main components. The microscope management system (MMS)
serves as a hardware control and data acquisition framework for microscope
systems, where preconfigured acquisition workflows can also be set up in a
graphical user interface. The MMS is connected to the second component: the
processing framework. Both components are connected using services
implemented in the Windows Communication Foundation (WCF) WCF
implements a framework for service-oriented architectures. During runtime the
microscope management systems sends the acquired data to the processing
framework, which drives a preconfigured data analysis and feedback control
workflow. “Drives” means that the framework is able to permanently reorganize
the existing local processing topology, based on organic computing approaches.

Data analysis

and feedback
changes acqusition parameters  control workflow

LifeXplorer

Acquisition sends Processing

Framework Framework

controls provides data

Acquisition hardware (i.e. Microscope)

Figure 20 LifeXplorer software architecture.

The processing framework manages a workflow for feedback control. This
workflow will process the received data, analyze it, and make dynamic decisions
on the microscope system parameters as well as on the acquisition workflow. All

parameters that can be controlled by the MMS can also be controlled by the



Implementation: the LifeXplorer platform 78

processing framework. As the framework is not directly connected to the data
acquisition hardware, it can generate and send tasks to the acquisition framework

in order to change the data acquisition workflow during runtime.

Offline processing and simulation

Data acquisition Data processing Data storage

Figure 21 LifeXplorer: first architectural approach with data quality control on an

external node

Originally, the aim of this thesis was to improve data quality by feedback
controlled microscopy. Because the microscope’s host PC has only a limited
amount of computing resources, the first architecture for the feedback control
system was to push quality control measurements to an external computing node
as illustrated in Figure 21. In order to be able to understand run time behaviors
of the system better, offline processing and a simulation of the acquisition process
should be implemented as well. Throughout the project, the architecture was
extended due to an additional challenge: making the feedback control system
scalable. This was because the hardware system was accelerated to be 10x faster

than a standard high-throughput microscope.

Complex anal lysis processing
without feedback

Data acquisition Data processing Data storage

Figure 22 LifeXplorer: first architectural approach with distributed computing on

workers.
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Figure 23 LifeXplorer: data acquisition and processing architecture

The data acquistion and processing architecture of LifeXplorer is illustrated in
Figure 23. The data source (microscope) provides its generated data to a worker
which distributes it to the virtual data source. The reason for this design is that
the virtual data source module in general can be instanced on multiple
computing notes to balance the work load. After each virtual data source another
distribution worker offers the data distribution to the processing network. In
reality the virtual data source itself is able to take over the distribution, just like
every worker can. In Figure 23 the design pattern is explained by explicitly
illustrating all necessary functions of the architecture. Every function can
however be integrated in a single worker or distributed to multiple workers.
Another worker function that has to be mentioned here is the organic computing
service. This service as well can be executed by all workers. Yet the implemented
architecture in LifeXplorer currently allows only one unique worker to take over
the organic computing service during runtime. The processing node of this worker
also cannot be changed during runtime. This design certainly limits the
scalability of LifeXplorer, but builts a first step towards higher degrees of
scalability. The existing implementation already allows to bind all workers except
the virutal data source to different nodes during runtime. The virtual data source
in addition can be flexibly bound to a computing resource by configuration,
before runtime. The multi-level cache module serves as a database for historical

information. Workers by that can request historical data stacks.
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Figure 24 LifeXplorer main components and architecture.

As presented in Figure 24, the LifeXplorer platform is built “around” the acquisition
hardware: it receives data from it and controls it. Initially the operator has to ask a
specific biological question by defining a static hardware workflow and a data analysis
answering the specified question. The initial setup more generally implements existing
knowledge to automate image acquisition with the aim to improve data quality and
information density. The existing knowledge about the biological system as well as its
analysis and the experiment definition can be implemented in the MMS and processing
framework user interface, the LifeXplorer Intelligence Manager. During runtime four
main application scopes of feedback controlled microscopy can be implemented into
LifeXplorer. The first scope is the quality control of the data. A typical example in this
context is an autofocus function, which also will be evaluated in the chapter
Applications of the ARCO algorithm. The second scope can include the whole pipeline of
data analysis, starting from image processing, to statistics, and finally ending with the
modeling of the acquired data. In each of these analysis steps, processing modules can
generate feedback to the microscope in order to make a decision on how to optimize
parameters of the running experiment, aiming to increase data quality and information
density. While collecting these messages a decision support-system system is necessary to
manage different parameter optimizations from different processing steps at the same
time. Once a decision how to optimize the workflow is taken, the workflow scheduler
scope is the final application scope, where the actual hardware control is implemented
and imaging tasks are collected and scheduled. By way of these applications scopes, the

LifeXplorer automatically increases data quality and information content.
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Figure 25 LifeXplorer implementation and application sample of a refocusing trigger.

In more detail, the LifeXplorer main components consist of the sub systems
illustrated in Figure 25. The software instances virtualizing computing nodes
are called “worker”. All tasks for hardware control, data acquisition, and
processing are run on these workers. Whereas the MMS has a locally fixed setup
of software components to run microscope experiments, the processing framework
can push tasks to different nodes with different distribution strategies. The
physical processing network by that approach is virtualized and the organic
computing manager can take decisions on the logical topology based on observed
performance measurements of the network. The organic computing controller
thus organizes the data processing based on different strategies. One example
would be the high availability mode, which is enabled by implementing different
forms of redundancy (hot standby and parallel, redundant computing). Figure
25 depicts the hot standby redundancy strategy. Worker2 is permanently
synchronized with historical processing results, in order to be able to take over
the processing of Workerl if the underlying node crashes or is too busy with

other tasks to fulfill real time requirements. Once a decision is made on a certain
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worker to change parameters of the acquisition workflow, a feedback signal will
be sent to the virtual microscope module. This module will normally be run on a
worker that is located on the microscope host PC, and virtualizes the microscope
hardware for the processing framework. In the case of parallel, redundant
processing i.e. it will collect and consolidate feedback signals such that the MMS
only retrieves new tasks once. All hardware tasks for the acquisition process are
finally managed by the task scheduler of the MMS. Depending on the task,
different scheduling strategies can be configured. I.e. in the case of a refocusing
trigger task, the scheduler can be configured to execute the task out of order
when it is received or in order, adding the task to the end of the existing task
queue. The LifeXplorer architecture consists of four programming and software
abstraction layers as illustrated in Figure 26. The lowest layer can be called
hardware driver layer. This layer contains the direct interface and
communication channel to all hardware components. In the case of the Olympus
IX81 i.e. this layer is implemented in a C++ DLL which is dynamically plugged
into the MMS. On top of this layer, the “system driver connector” layer is
implemented. This layer encapsulates the DLLs into a unique interface for C#.
System components are provided in unique object classes such that the workflow
developer does not need to know anything about the actual hardware
communication protocols anymore. In this layer tasks can be pushed to the
hardware layer. Whereas the hardware driver layer implements atomic tasks such
as “read out image from camera”, the “system driver connector” layer
implements more complex tasks such as “get image stack of all available
channels”. The hardware control and processing layer abstracts again from the
hardware tasks and encapsulates all tasks, processing and hardware control into a
unique format, such that both task types are “melted” together in this
abstraction layer. This layer contains the processing controller, as well as the
workers, which run tasks on this abstraction level. Finally in the processing
workflow logic layer, workflows can be defined visually or added in code,
abstracting from how and where they are managed and executed. All the
communication between distributed components, such as workers and the MMS,
is implemented using WCF (Windows Communication Foundation) in order to

be able to abstract from protocols (SOAP, TCP/IP, HTTP, etc.) and to



Implementation: the LifeXplorer platform 83

implement a SOA (Service Oriented Architecture), which was explained above.
Further details on the implementation of the main components of LifeXplorer can

be found in the following paragraphs.

Hardware workflow Analysis workflow
Cit programming Visual design

foreach (Position p in positionList)
{

foreach (Channel c in channellist)

{
Image image = Microscope.Acquirelmage(p, c);
image.SavelnConfiguredStorage();

}  Abstraction layer: synchronous activity proxy

}

public class Microscope

{
public static Image Acquirelmage(Position p, Channel c)
{

var imput = new List<object>{p,c};

Processing workflow logic layer

var output =
WorkflowScheduler.AddActivity(“mic:acquireimage”,input, \E )
“constrain:imageinfocus”);
Image image = (Image)output[0]; Concept

return image;
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Figure 26 LifeXplorer abstraction layers. In order to hide complexity from the user and
make use of parallelism and other features of high performance computing, processing
and hardware tasks are abstracted in four layers such that the execution of tasks can be
dynamically managed by the LifeXplorer platform during run time by the means of

organic computing.
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3.3.1 Modules

Modules are the top level abstraction of tasks in the LifeXplorer platform.
They encapsulate the actual code. The code will normally be located in code
libraries and can be used independently from the module classes and objects.
Modules however consist of a standard interface, which allows defining input and
output object lists. As illustrated in Figure 27, the module serves as a wrapper

around the actual code base and can have an individual amount of I/Os.

=

Module M

code

Figure 27 LifeXplorer basic module architecture

In Figure 28 some sample modules of applications evaluated in this thesis are
presented. Module definitions need to be provided by the developer, which can
easily use a given template pattern to create and define new modules. Only the
I0s have to be defined and one single method execution of the program logic.
Using this simple approach, external programs such as ImageJ, CellProfiler,
Matlab and others can easily be linked into LifeXplorer. For the applications
developed and evaluated in this thesis, different standard modules for external
program integration where developed. ImagelJ i.e. is called by a batch progress
class, which is called inside an ImageJ interface module. The input is a matrix of
short values, which represents the input image, and the output matrix contains
the filtered output image from ImageJ. ImageJ can thus be easily connected by
recording a macro file and providing a batch script path to LifeXplorer that is
used to execute the recorded macro in a batch mode (without GUI). This also
applies to CellProfiler, Matlab and Mathematica. For all these programs,
standard modules are integrated into LifeXplorer. Analysis workflows can be
enriched with existing standard tools and existing code without any further
programming knowledge. Using .NET as the application host and runtime

environment of LifeXplorer, an extended amount of integration possibilities
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exists, since .NET is being permanently developed and novel sub frameworks

(such as WCF, WPF, etc.) and useful technologies are provided for free.

Task Split

Create Workflow
ms

Figure 28 LifeXplorer module samples

Next to the encapsulation of complexity, LifeXplorer modules provide
standard visualization interfaces. Intermediate results can be added to the
primary results and will be visualized in the LifeXplorer Intelligence Manager. As
the LifeXplorer code is freely available for everybody, code integration and
visualization possibilities can be extended and customized. As modules are the
key abstraction layer for processing and hardware acquisition tasks, they are
managed by the organic computing controller, which is embedded into the
LifeXplorer platform. Their execution is also permanently measured by the
embedded observer components in order to ensure that the execution of a module

still meets configured requirements, such as availability and latency.

Although modules are managed and dynamically associated to processing
nodes during runtime, which increases the dependability of the processing and
thus feedback control circuits, modules are the lowest logical abstraction, as they
still implement concrete program code. As it is explained in chapter 2, ARCO
serves as a basic algorithm to abstract even from concrete modules and thus
specific tasks. ARCO module therefore will make use of a program class called
ARCO Manager, which is able to select a specific module during runtime based
on previous knowledge about the experimental system provided by the operator.
These ARCO modules are a key enhancement of LifeXplorer and represent a
crucial step towards higher degree of automation based on models about life that

are provided to the computer.
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3.3.2 Microscope Management System (MMS)

Running an automated microscope experiment demands a graphical interface
for operators, because they are usually non-experts in microscopy and
programming. Further, it is more dependable and efficient to set up experiments
graphically. As illustrated in Figure 29, the author therefore developed a
microscope management system (MMS), where operators can set up microscopy
workflows for multichannel and multipoint experiments. Obviously there is a
large amount of existing microscopy software available already. The development
of the MMS, however, was necessary because its purpose was to be connected to
an accelerated high-throughput microscope, a modified Olympus IX81. The
acceleration of this system was done by fixing and optimizing the optical light
paths, using a multi-camera setup, and by hiding latencies of the camera readout
and stage movements. Both optimizations influenced the design of the hardware
driver and the workflow, regarding how to capture images and perform
multipoint experiments. In order to keep this chapter as short as possible, further
details of this acceleration approach will not be explained. However, the high-
level acquisition workflow is unfortunately directly influenced by advanced
techniques to accelerate the acquisition process. In addition, accelerated focusing
methods were developed and evaluated throughout this thesis. This furthermore
required a microscopy framework in which all software layers could freely be
implemented and optimized, which was the reason to develop the MMS.
Eventually the service-oriented architecture approach of LifeXplorer, applying
intelligent microscopy methods, was a major reason to use .NET and build a new
microscopy framework. The MMS both serves as a development framework for
novel microscopy methods as well as a graphical user interface for standardized
routes of imaging. Being connected to the organic computing network via a
standard interface of the workers’ service oriented design, the MMS smoothly
integrates into the LifeXplorer’s architecture. Integrating new feedback signals
i.e. such as region of interest (ROI) repositioning, or a refocusing trigger, the
MMS’s scheduler behavior for resynchronizing new hardware tasks can also be set

up in the user interface. As the MMS itself is connected by a worker to the
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computing network, (and especially to a worker which runs the virtual
microscope module) runtime information about the feedback control messaging
and real-time data analysis can be debugged and run time information be added
to a central logger, as it is illustrated in Figure 29. The processing monitor
directly visualizes run time information that is added to the logger. The logger
can receive information from every processing stage, from the low level driver

stages to the high level organic computing messages and decisions.
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Figure 29 LifeXplorer's Microscope Management System

Because the system was designed also to optimize data processing for
heterogeneous computing networks, workers present their available resources and
functionalities to the MMS once they connect. As illustrated in Figure 30, once
a worker connects to the MMS, it will transfer its available resources and
functions to the MMS. The MMS then can decide which workers to use for which
computing task (ROI, etc.). The virtual microscope module, which was explained
in the architecture, is normally configured to be run only on the MMS host PC,

from where a n:n data distribution is started. The MMS however is built to
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handle workers directly without even knowing about the organic computing
manager and other components of the LifeXplorer’'s computing platform. It is
able to implement redundancy and thus high availability. This direct feedback
loop implementation however describes its basic functionality, and was later
extended by means of organic computing, implemented in separate components
such as an observer and a controller unit. By means of organic computing,
processing tasks can be allocated dynamically on run time to different nodes. The
basic approach however is that the microscope (or rather the MMS) will check if
a worker is able to run a processing task or not, to ensure that the initial data
distribution goes to the right processing node. In the case of the LifeXplorer’s
organic computing network, the virtual microscope module holds an instance of
all functions available in the network, and in doing so can virtually offer
processing tasks to the MMS. The actual task execution however can be

performed on any computing node.

@ 1. MMS Worker registered at net.tep://129.206.245.200: 21 22/Worker
PC name: C3P0
IP address: 128.206.245.200
User name: BErnutefarcel
Available tasks: 7
CPUs 2
Model: Intel(R] Core[TH)2 Duo CPU EE7506 2.66GHz

Waorker MMS Server Total physical memary: 3413 MB

Graphic cards: 2
Modsl: NVIDIA GeForce 8800 GT

Dietailed worker information

Available Tasks | System infarmation

D Description Min buffer size Max butfer size
DLL_FIND_REGION_OF_INTEREST_FO... Find region of interest for 20w magnification
DLL_FIND_REGION_OF_INTEREST_FO... Find region of interest for 40x magnification
CONTRAST_HISTOGRAM Get histogram of image
INTERMAL_FIND_REGIOM_OF_INTERE... Find region of interest for 20x magnification
IMTERMaAL_FIMD_REGIOM_OF_INTERE... Find region of interest for 40x magnification
IMTERMAL_SHOW_IMAGE Show cumently scanned image
INTERMAL_EXPOSURETIMECORRECT... Comect exposure time based on the histogram

Figure 30 MMS worker resource information dialog

Again the MMS in the case of the dialog presented in Figure 30 serves as a

development environment and offers run time and information processing.
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3.3.3 Workers

An important design approach in the LifeXplorer was to abstract processing

4

nodes with a software component called “worker”. A worker builds a
multipurpose processing instance and in the latest version of the architecture
receives tasks and the corresponding program code on demand. Figure 31
illustrates the basic architecture inside a worker. Having the service oriented
architecture (SOA) paradigm in mind, a service is a software component based
on object orientation that offers its functions to other services over the network.
By that approach a SOA is by default scalable, meaning that functions embedded
in its services can easily be spread from a single computer to a large network of
computers. The software itself will stay exactly the same, only the bindings
between a service client instance and a network address needs to be updated. The
architecture of a worker therefore essentially needs to have a network interface,
which is able to communicate processing results. Furthermore, related to the
SOA paradigm, this interface has to be able to even communicate structured
data (like objects etc) by default, without the need for explicit protocol
programming. Objects on run time are dynamically resolved therefore using i.e.
XML description of the object structure. To communicate whole object
structures, a serializer on the sender and deserializer on the receiver side are
necessary. Several serializer and deserializer classes are implemented by default

inside .NET and can be used in the Windows Communication Foundation

(WCF), a powerful communication framework.
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MMS Worker

Figure 31 Worker architecture

.NET and WCF were used to standardize communication and even be compatible with
other platforms through the SOAP (Simple Object Access Protocol), which is an
industry standard for SOAs. SOAP however is based on XML, which makes the SOAP
protocol by default slower, because for one the serialization and deserialization process is
more complex, and the protocol overhead is also higher than for a usual binary protocol.
For the internal communication in LifeXplorer, however, a rather classical approach was
implemented to boost the serialization and deserialization process for communication. A
binary memory stream / block serialization was used which does not allow for
dynamically assigned object structures on the receiver side, but only allows to deserialize
the whole object structure in one step, and cast the object pointer explicitly to the
actual object type behind the memory stream. This boosts latency and communication
throughput, and still allows the architecture to behave as a SOA on the level of workers

and available processing tasks.
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Figure 32 Worker graphical user interface with run time information

In order to more efficiently achieve a better understanding of run time behavior
of a feedback control system implemented in LifeXplorer, the workers offer basic
data visualization as is illustrated in Figure 32 and Figure 33. Exemplary in
Figure 33 a region of interest algorithm is run and the output XY-vector to
optimize the imaging position is presented directly in the worker to provide more

transparency to the feedback control developer on run time.

Within the worker a task management is implemented as is presented in
Figure 31. Directly after the service host receives a task, a buffer manager is
implemented which buffers and organizes the input data. Inside the worker’s core
the task manager finally executes tasks, which are provided by the buffer
manager. The task manger manages the task execution. The task manager
however not directly executes the program code behind a task, but calls a
plugged in method, which is located in an external library, i.e. DLL. This library
code then finally executes the program code for a certain processing task.
Depending on the implementation, the program code can be run on different

locally available resources such as CPUs or GPUs.
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3.3.4 Intelligence Manager

Feedback controlled microscopy couples image acquisition and data analysis
in a feedback control loop. Based on real-time data analysis, decisions about the
screening workflow are made during run time. Developing such control circuits
and decision support systems, however, is complex. Especially when the data
analysis itself is complex already, it becomes more complex when real time data
needs to be processed. Visualization of intermediate processing results, together
with run time information, is a key to efficiently develop, test, and optimize such
applications of intelligent microscopy. Especially when dealing with image
processing results, where the optical impression of results serves as a fast
functioning quality assurance test. Since LifeXplorer was developed as a general-
purpose platform for a large variety of science automation applications — i.e.
applications of intelligent microscopy - a graphical user interface as illustrated in
Figure 34 was an added value towards user-friendly configuration of

LifeXplorer’s “intelligence”.
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Figure 34 LifeXplorer Intelligence Manager
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Complex data analysis workflows and circuits for feedback control can be visually
programmed as illustrated in Figure 35, showing the complete circuit for the

intelligent light exposure control methods presented in this thesis.
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Figure 36 LifeXplorer’s acquisition and processing framework in a feedback loop
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3.3.5 Organic Computing Service

To distribute processing tasks, the LifeXplorer platform implements
mechanisms of self-organization (self-x) [42]. Due to better complexity
management and maintenance of existing components, services are used as a base
technology for LifeXplorer. The organic computing service (Figure 37) inside
LifeXplorer implements the logic and strategies to distribute processing tasks to
the computing network. As mentioned above, processing nodes are virtualized
using a multipurpose software component called “worker”. In contrast, however,
to classical SOA implementations, LifeXplorer arranges workers and their
functions on demand based on a peer-to-peer connection. That means that
workers can get assigned new functionality, by sending the corresponding
program libraries to them. The organic computing service serves as a component
that is able to use workers, which can be run locally or distributed on a network,
to build a communication topology such that a given processing workflow can be
run following a configurable process optimization strategy. Samples of different

process optimization strategies are presented in Figure 39.
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Figure 37 Organic Computing Manager architecture
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The organic computing service’ components are illustrated in Figure 37. In
the intelligence manager interface, operators can set up a data analysis or
feedback control workflow. This workflow has to be sent to the “network” as the
button in the interface says. By that it will be sent to the organic computing
service and forwarded to the embedded controller component. The controller,
based on different strategies (Figure 39), will then distribute single tasks or task
packages of the workflow to different workers as illustrated in Figure 38.
Different processes can be run on one worker using the same function and
libraries. The organic computing service sets up the processing topology by
sending a list of tasks objects to a worker, and by sending an output routing list.
The routing list consists of task object ids and receiver addresses. Once the
controller has updated this routing information, workers are connected directly
with each other and will send results in peer to peer mode. If the observer
measures that a worker is not available anymore, or the processing latencies are
too low, the controller can update the routing information and in doing so

dynamically optimize the processing network topology during run time.
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Figure 38 Organic computing: process distribution sample

For the task distribution not only the configured scheduling strategy as
illustrated in Figure 39 is relevant. Important are also the preconfigured
binding strategies, as will be explained in the following chapter. The most easy

and inflexible binding strategy is the fixation of a task to a single processing
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node. All instances of this task within a workflow would then need to follow that
rule and use the one node for the task is was set up for, independent from the
distribution strategy. Different scheduling strategies are implemented in
LifeXplorer. As illustrated in Figure 39 a min, max resource usage strategy is
implemented as well a “min time to return”. By default the max resources
strategy is used in LifeXplorer. All strategies implemented in LifeXplorer are
based on simple parallelism of the whole workflow, meaning that new processing
packages coming from the virtual microscope unit are sent and processed as a
whole on a single node. How many and which nodes are used depends the
strategy and observation of their performance. The min resources strategy is
based on a dynamic expansion of the processing topology, once a certain local

latency threshold is overrun.

. Min Max Min
Strategies: Resources Resources Time to Return
Get Worker Get Worker

Classification: with best with Minimal Coitree
performance Latency orier
Statistics: Processing Communication Workerldle
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Figure 39 Organic computing scheduling strategies
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3.3.6 Database

The database of LifeXplorer is based on the database management system
Microsoft SQL Server (2012). It was designed for large data analysis of single cell
population wide analysis and time resolved data for multipoint and multichannel
experiments. LifeXplorer offers feedback control and dynamic decisions for every
analysis step. After the image processing is performed on multiple sampling
positions, single objects and object features are extracted and have to be put into
relation in a global statistic. As LifeXplorer is supposed to offer intelligent
experiment control and analysis for a wide range of applications, it offers to the
developer a unique interface for feature extraction and statistics. This interface is
mainly based on a general ImageObject class. ImageObjects can be added to the
database via a corresponding database module. All statistics in this thesis were
created using this interface and the database queries to create complex statistics.
Nuclei as well as Golgi complexes and mitochondria dynamics were abstracted
into objects and put into relation. Single cell statistics i.e. require the relation
between primary statistical objects such as Golgi complexes and single cell
information such as the nuclei. Using i.e. Voronoi regions, particles can be related
to nucleus objects. Tracking a large amount of single objects over time required a
scalable processing approach and a suitable access for complex data analysis
queries. Both are provided by the SQL Server and the embedded stored
procedures that were developed to perform single cell and population wide
dynamics analysis. Figure 40 illustrates the first part of LifeXplorer’s database
design. The main table is the OBJECT table. Two additional tables for
classification, OBJECTTYPE and OBJECTCLASS are related to this main
table, as well as a CHANNEL table. For object tracking i.e. the table
PARAMETER_TRACKING_FUZZINESS is related to the OBJECTTYPE
TABLE. This allows i.e. defining different fuzziness configurations for different
objects, i.e. nuclei and particles. With the table OBJECTCLASS classification
information can be related to each object. I.e. the phenotype can be an object
class, or provide finer information on parameter classifications, such as size,

brightness, etc. The table RELATION OBJECTCLASS allows an n:n relation,
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which means each object can be related to several classes. The LifeXplorer
database module automatically creates object classes, before adding new objects
to the database. Object classes are thus synchronized to the database at a central
position, whereas each classification module can freely add new classes to the
objects directly, without the need to know about the statistics layer implemented
by the database. A special processing scheduler built into the database is directly
related to the main object table OBJECTCLASS.
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Figure 40 LifeXplorer’s database design for time-resolved object statistics

The table IN MODULE is related to the table
RELATION OBJECTCLASS, because of two reasons. The first reason is that
each module can potentially add new classes to an object. The second reason is
that classes themselves can be clustered into the modules they were created by.

This helps to schedule processing tasks for efficiency. Figure 41 illustrates the
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database design part for the parallel processing scheduler, embedded into the
database. The reason for implementing a separate processing scheduler at this
analysis level is that in some cases it can be faster or easier for the developer to
run experiment wide statistics on the program source code level. As each
sampling points can be processed on a separate processing node, processing nodes
have to have a central place where they can add results of different sampling
positions. One experiment i.e. can be run on several sampling points, in order to
have enough cells for a robust statistic. This then implies that the objects are
added to the database and re-synchronized to a processing node, which creates
experiment-wide statistics. LifeXplorer offers both options: either to run statistics
directly in the SQL Server using SQL and stored procedure code, or to use a
module that is classifically run on a worker instance and create statistics using

normal programming code.
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Figure 41 LifeXplorer’s database design for parallel processing and activity scheduling

To provide the second option however, the database design illustrated in Figure
41 was designed to provide basic scheduling functions for parallel processing.
Objects that should be processed can be packed into several processing packages.
For example, a node can request all objects of a certain channel of a certain

imaging run number. The scheduling then will block this processing package for a
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single node so that the next node in the network requesting a processing package
will get a different processing package. Objects that are processed in this way can
be blocked, so that statistics can be created exclusively, and in order. Several
processing package levels are available. Figure 41 illustrates that the database
design is built around the table ACTIVITY. And activity is a task that is run
with a certain configuration and data. The task could be nuclei tracking, whereas
the configuration is that all nuclei of a certain measuring index should be
tracked. This activity is then added to the table ScheduleForParallelProcessing.
Activities can be executed in order, meaning that a certain activity relies on the
scheduling that another activity is running before its execution. The table
ActivityExecutionOrderConstraint  holds the corresponding information. All
activities in the LifeXplorer network are measured. In the table
ActivityMeasurement, performance measurements of activities can be saved.
These measurements as mentioned above are used for the organic computing
scheduling; i.e. deciding which algorithm is run on which processing resource.
Eventually Figure 41 illustrates the basic design for an experiment. A project
can be set up with different experiments, slides, spots and areas. This
information is provided by the Microscope Management System experiment
definition. Every table in this definition also builds an information aggregation
level. I.e. the experiment can, as mentioned above, aggregate different spots.
Each spot can have a large number of single objects over time, which are located
in different optical channels. Objects can have types and classes. The scheduling
as mentioned above can consider these aggregation levels by creating object

packages.
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3.3.7 Plugins for Image Processing and Hardware Control

Building the applications evaluated in this thesis, the author created several
modules divided into eight plugins to extend LifeXplorer’s functionality. Most of
the modules were used for the ARCO applications described in this work. The

modules are briefly explained in the following.

Base library plugin

e AddSamplingPoint
Adds a sampling point to the Microscope Management System
scheduler.
e AND
Logical, binary “and” operation with a configurable number of inputs.
e Decision support
Freely programmable decision support logic with dynamic inputs.
Programming code can be added and modified during runtime.
e DeleteSamplingPoint
Deletes a sampling point from the Microscope Management System
scheduler.
e History manager
Caches any kind of input over time with a configurable depth.
Outputs the last value (object) as well as a stack of all saved values.
e IF
Logical, binary “if” operation with a configurable number of inputs.
e OR
Logical, binary “or” operation with a configurable number of inputs.
o SetExposureTime
Sets exposure time for all sampling point or a selected one.
e SetSamplingRate
Sets global sampling rate.
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o SetXYPosition

e Modifies XY position for a given sampling point

e SyncSamplingPointPositions
Modifies the list of sampling points for in the Microscope Management
System.

e SyncSurfaceModel
Synchronizes and if configured creates a calculated surface model with

the Microscope Management System.

Classifier plugins

Classify: crumpled cells

Finds and tags crumpled cells, based on outline to size ratio.

Classify: object brightness

Classifies object brightness based on histogram into five classes: very dim,
dim, average, bright, very bright.

Classify: phenotypes

Classifies objects into phenotypes based on the trainable ilastik classifier.
Classify: round objects

Finds and tags round cells, based on outline to estimated radius ratio.
Tag: objects at border

Tags objects the border of an image.

Tag: objects invalidated by channel merge

Tags objects that need to be invalided because of a channel merge that

creates a non overlapping area.

Database plugin

Database
Database module that adds objects of the class ImageObject to the
database (MS SQL Server). Three inputs (objects of three channels) can

be configured to be synchronized dependently or independently.
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Filters plugin

e 4-tiles video creator
Creates video frames. The video frames consist of four tiles, each showing
RBG images of one channel over time. The first tile shows the latest
frame, the second the difference image to the last tile (depending on a
configurable sampling rate). The third tile shows the very first video frame
and the forth the difference of the current frame to the very first one.

e Background subtraction
Subtracts the background of an image. The background is calculated with
a median filter of a configurable kernel size.

e (Coarse segmentation
Gradient based segmentation algorithm with global thresholding.

e Filter: by object parameters
Sorts out objects by a configurable threshold of a configurable object
parameter.

e Filter: binary filter
Binary filter based on a global threshold.

e Filter: borders
Sorts out all objects at the border of an image.

e Filter: cross correlation
Creates the cross correlation of two images.

e Filter: Laplace convolution
Filters the image based on a Laplace convolution.

e Filter: Mean convolution
Filters the image based on a mean convolution.

e Filter: Median convolution
Filters the image based on a median convolution.

e Filter: smart threshold filter
Filters the image based on a smart threshold filter. Smart here means that

the global threshold is automatically detected by a histogram analysis.
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e Filter: stamp out binary map
Sets all values to zero, where a reference image has values greater than
zZero.

e Fine segmentation
Based on a coarse segmentation as mentioned above, local thresholds are
determined and used to segment i.e. nuclei in more detail.

e Fire LUT
Creates an RBG image based on a so called fire look up table: small
values are mapped to blue, high values to red.

o Get image statistics
Creates image statistics (average value, stddev, histogram, etc.)

e Image transform
Transforms an image based on a configurable transformation vector.

e Maximum projection
Performs a maximum projection for a stack of images.

o Merge stack
Merges an image stack of size n into one image by calculating the average
value of each pixel.

e Remove background by subtraction (on stack)
Uses the image with the highest contrast and subtracts a blurred image as
the background.

e Stitching unit
Stitches a grid of images into one single image, i.e. a 10x10 grid into one
image.

e Transform object positions

Transforms object positions based on a transformation vector.

Microscope Control Logic

e Automated Result/Cost Optimization
Sample module for the ARCO algorithm applied on light exposure and

object segmentation.
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e DeMux
Has multiple trigger signal inputs and can be connected to the unique
trigger input of the virtual microscope module.

e Highest quality picker (3-1)
Choses the image with the highest quality (different measurements
possible) out of a stack with three planes.

o Highest quality picker (Stack based)
Choses the image with the highest quality (different measurements
possible) out of a stack with a dynamic number of planes.

e Identify segmentation efficiency
Counts pixels of a segmentation map which overlap with a reference map.

e Matrix buffer
Caches a matrix and gives back the cached matrix at the output.

e Microscope
Virtualizes in- and output of the microscope. Serves as the microscope
interface for LifeXplorer’s computing network. Handles redundant, parallel
trigger signals and implements other special functionalities.

e Nikon: ARCO workflow
Creates a macro files for Nikon microscope systems that images the same
position with different light exposures, based on an exposure time that is
read out during runtime and a configurable sampling step.

e Nikon: XY-readjustment
Re-adjusts the XY-position of sampling point by maximizing the overlap
of a segmented object map with a stitched 10x10 reference image.

e Optimized result
Provides the image with the maximal result / cost ratio.

e Refocus Trigger
Provides a trigger signal to refocus a positions once the quality of an
image at this position dropped under a configurable threshold.

e Save to disk
Saves image to disk at a configurable file path.

o Task splitter
Sends clock signals at different outputs depending on the input task type.
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Scheduler

Post processing scheduler
Provides object packages based on a configurable package configuration
(measurement index, channel, object type or class, etc.) for parallel

processing of object statistics.

Object detection

ARCO based segmentation

Sample module for the ARCO algorithm applied on object segmentation
for all algorithms added to the object detection manager.

ARCO global threshold

Automatic optimization of a global thresholding segmentation pipeline by
the means of ARCO.

ARCO MOSAIC particle detector

Automatic optimization of the MOSAIC particle detector by the means of
ARCO.

ARCO ilastik object classifier

Automatic optimization of the ilastik classifier added to CellProfiler by
the means of ARCO.

AssignParticlesToCells

Assignes particles to cells based on a particle, nuclei and Voronoi map.
AutoConfigParticleDetector

Outputs optimized parameters for the MOSAIC particle detector by the
means of ARCO.

AutoThreshold

Provides an optimized global threshold based on a histogram analysis.
CellProfiler Ilstaik GolgiSegmentation

Golgi segmentation using ilastik and CellProfiler.

CellProfiler_Ilastik NucleiSegmentation

Nuclei segmentation using ilastik and CellProfiler
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e CellProfiler ParticleDetector
Particle detector using CellProfiler.
e CenterOfMassOfSpecificPhenotype
Determines the center of mass for configurable objects types.
e ClusterDetection
Extracts object clusters by a configurable average neighbor distance.
e EstimateRadiusForBorderCells
Estimates the radius for nuclei at the border of an image.
e ExtractObjectStatistics
Extracts basic object statistics and morphology information.
¢ GlobalThresholdSegmentation
Segmentation filter based on global thresholding.
e ImageJ LoG3D
Laplacian of Gaussian filter, implemented in ImagelJ.
e ImageJ Mosaic_ParticleDetector
Mosaic particle detector, implemented in ImagelJ.
e ImagelJ SegmentationPipeline
ImageJ segmentation macro (can be customized).
e ImageJ Watershed
ImageJ watershed algorithm.
e Matlab MexHatWavelet
Mexican hat wavelet transformation implemented in Matlab.
e Merge3DObjectData
Merges object data that is located in different z-planes, by choosing
overlapping objects with the highest variance (intensity dynamic).
e ObjectQA
Quality assurance for objects, based on min and max size and a min
standard deviation.
¢ ObjectIndexing
Indexes objects in a binary map.
e ObjectIndexingQAErase
Combines ObjectIndexing and ObjectQA
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ObjectIndexingWorkflowNuclei

Complete object indexing workflow for nuclei objects.

ObjectSplitting

Splits objects by eroding them, until new objects are found or a maximal
run number is reached.

RegionOfInterest

Maximizes the number of objects with a specified tag (class or object
type) within a region of interest (size can be configured).
ROIBasedOnNucleiCount

Uses RegionOflnterest to maximize the nuclei count.
SingleCellParticleDector

Complete workflow for single cell particle detection.

SingleCellStatistics

Complete workflow for single cell statistics.

VoronoiRegions

Creates a Voronoi map based on an object index map

Tracking

Track objects in DB

Two-dimensional tracking of objects over time based on least squares,
implemented as a stored procedures in the database. Works incrementally
with a configurable depth (if objects may get lost over time and reappear).
Track objects

Two-dimensional tracking of objects over time based on least squares.
Works incrementally with a configurable depth. Can be run in parallel for
multipoint experiments, as the implementation is run in LifeXplorer’s

computing network.



Chapter 4
Applications: of the ARCO algorithm

4.1 ASEC (Application Specific Exposure Control)

4.1.1 Abstract

Phototoxicity [5, 6] as well as photobleaching [7-9] pose serious challenges in
live cell imaging, causing cells to react abnormally or to become apoptotic much
earlier than they would without being measured with light. Image analysis is
mostly interested in specific features like cell count, nuclei segmentation, object
texture, etc. The exposure time is generally set to a best guess by the operator. I
propose to automatically re-adjust the exposure times during the experiment such
that the feature extraction achieves a required accuracy, and at the same time
minimizes the light exposure as well as the photo bleaching and phototoxicity
effects. The method called ASEC (Application Specific Exposure Time) is
directly derived from the ARCO algorithm and an application of ARCO in the
experimental parameter dimension light exposure. In addition the method
dynamically re-adjusts over time, which also can be derived from ARCO. Two
different biological systems were used to prove the added value of ASEC for live
cell imaging. In both cases it could be quantitatively shown that the light
exposure can be minimized to 90% of the operator’s subjective estimation, that it
reduces phototoxicity three- to six fold, and it allows three- to sevenfold longer

observation time on living cells.
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4.1.2 Introduction

Fluorescence live cell imaging has become a relevant application in life sciences
and systems biology. Observing living cells however leads to complex problems.
Next to the experimental set-ups themselves, the process of reading out signals
from the cells with light microscopy poses a variety of challenges. One the most
challenging issues are the so-called phototoxicity [5, 6] and photobleaching [7-9]
effects. Phototoxicity is the phenomenon of toxic effects caused by photons
interacting with molecules in the cells. Mainly excited fluorophores produce
reactive oxygen species (ROS) [33, 34, 43, 44, 112, 113]. ROS can react with a
variety of oxidizable components, such as nucleic acids, lipids, fluorophores and
proteins, which leads to a loss in the fluorescence signal (photobleaching) and can
cause cell cycle arrest or finally cell death (phototoxicity). The production of
ROS however is mainly dependent on the light dosage, based on the
photochemical properties of the fluorophores [14]. Minimizing the light exposure
is an effective way of reducing phototoxicity and photobleaching [6, 10, 114].
Reducing the light exposure however negatively affects the quality of the
resultant images. The information content that can be extracted is correlated to
the dynamic of the image. The less light exposure is used, the lower the signal to
noise ratio (SNR) [115, 116]. This means that it becomes more complicated to
extract information, highlighting a conflicting goal between image quality (high
light exposure) and cell viability (low light exposure). Previously, reduced
illumination has been achieved via optimized pixel-dwell time with specialized
laser scanning microscopy [10, 11, 35-37], and through development of
application-specific refocusing algorithms [1-3]. Controlled Light Exposure
Microscopy (CLEM) [10] for laser scanning microscopes showed that the
phototoxicity and photobleaching effects in imaging can be reduced if background
pixels are exposed with a different exposure time as foreground pixels. How the
light dose is influencing the viability of cells was also investigated recently,
although no established standard exists to approximate phototoxic effects
quantitatively [6]. To solve this problem more generally and find the most

accurate configuration, ARCO can be integrated into a light exposure control
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system. ARCO is able to identify how much light is necessary to still gain most
of the predefined information. We called the ARCO based light exposure control
method ASEC (Application Specific Exposure Time). ASEC controls the light
exposure to reduce phototoxicity in each optical channel. The idea of ASEC
(Application Specific Exposure Time) is to minimize the light dose first based on
quantitative measurements and a decision support system and then to stabilize
the signal over time in order to make the data analysis more dependable. Three
different biological systems, the dis- and reassembly of the Golgi apparatus,
autophagy dynamics and the mitochondrial membrane potentials were analyzed
using ASEC to demonstrate the added value of this ARCO application. The
autophagy dynamics experiment failed, but it is described in this thesis as a basic

principle to investigate the effects of different light doses on biological systems.

In Figure 42 the functional relation between the light exposure, information
content and life time is illustrated as a rough approximation. Quite often only a
small part of the image dynamic or more general information content is actually
used for the read out of biological processes. Our hypothesis therefore was that
ASEC can bring a clear added value to fluorescence live cell imaging by
automatically identifying the most accurate exposure time for a specific
application, and by stabilizing the signal over time. As it can also be seen in
Figure 42 the life time is directly related to the exposure time. The actual
functional relation is not clear, and depends on many other experimental
parameters besides the exposure time. However the experience has shown that
both parameters are negatively correlated. The more light a cell received, the

shorter its survival time becames.



Applications: of the ARCO algorithm 113

Saturation
= Of o
S 100% Avg. operator's.~ " -y
= Texture set-up'., |
8 analysis = i
c Morpholo
2 P gy50% Jo AR | Over exposure
®
£ .
S Segmentation
Y
£
b Exposure time
max
()
£ Longer
- life time
2 y
3
min

Exposure time

Figure 42 Relation between exposure time, information content and life time. (a)
illustrates how the information content is related to the exposure and how this is
approximately related to (b) the survival time [6]. Each dimension of an experiment can
be put into this relation (such as sampling rate, magnification, resolution, focus- and

XY-position), and the ARCO algorithm can be applied.

4.1.3 Materials

Biological samples

MCEF7 nuclei are stained using DAPI and imaged with a 40x objective using
an Olympus IX81 wide-field microscope. The sample is fixed. Note: all
measurements are performed in real-time during the imaging workflow. A grid of
3x3 spots is measured, 4 spots with controlled light exposure, 5 spots without.
Fig. 5 shows the workflow of the light exposure control system. Two
measurements of a certain image feature are taken with two different exposure
times. Based on this the functional relation of the exposure time and the chosen
image feature are approximated. Finally the exposure time necessary to reach the
target value of the image feature is calculated and set as the new exposure time.
The parameter x is set to 0.25 (=> feature measured at +/-25% of the last

exposure time).
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Hardware, Software and Development Environment

The experimental setup consists of a motorized inverted microscope (Olympus
IX81), a frame grabber (Matrox Meteor-II) and a CCD camera (Hamamatsu
C9100-02). The motorized inverted microscope has a minimum focus step width
of 0.01 pym. Two objectives were used, a 10x objective (Olympus UPlanFL, 3 pm
depth of field, NA 0.3) and a 40x objective (Olympus LCPlanF1, 1 pm depth of
field, NA 0.6). The microscope was operating in the brightfield mode. The
focusing workflow we developed uses two different axial steps for different
magnifications (Brazdilova and Kozubek 2009). Depending on the experiment,
multi-point experiments were executed with a 20x objective. The 20x images
were taken without binning. The automation of the image acquisition routine was
implemented in C# and C++ using the native serial port commands of the
specific hardware units. The methodology was integrated into the LifeXplorer

framework.

4.1.4 Methods

Applying the general principle of ARCO to the dimension of light, the
workflow is at follows. First, the operator’s configuration of the exposure time is
taken as a start value. As it is illustrated in Figure 42, the operator’s guess for
a suitable exposure time is often too high, because images with a brilliant
contrast are only needed for image analysis which needs a very high signal to
noise ratio. In the next step the exposure time is increased up to a level where
the image gets saturated. In our case, we used a standard auto exposure function
of the Nikon NIS-Elements software to find the upper border of the exposure
time. This configuration is taken as a reference to evaluate all other
configurations. The exposure time after that is decreased incrementally and the
efficiency is calculated each time to classify the objects of interest, in our case
mitochondrial membrane potentials or the Golgi apparatus. Finally the minimal
exposure time is taken where still 95% classification efficiency is possible. 95% of

the classification efficiency in the case of Golgi apparati means that 95% of the
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area can still be segmented. In Figure 43 (a) raw image with Golgi apparatus
can be seen. The cells were exposed with 1 s exposure time. Figure 43 (b)

visualizes the segmentation efficiency for 100 ms exposure time.

Raw image of Golgi apparati. 1s exposure time Merged segmentation map of 100 ms and 1 s exp.

Figure 43 Golgi apparati segmentation efficiency for different exposure times. (a) shows
a raw image of the golgi apparati taken with an exposure time of 1 s. (b) shows
visualizes the segmentation efficiency if only 100 ms exposure time was used. The yellow
areas are the overlapping areas of the segmentation maps created out of the raw images
with 100 ms and 1 s exposure time. The red areas are missing areas when only 100 ms

are taken.

The yellow areas are the overlapping areas of the segmentation maps created out
of the raw images with 100 ms and 1 s exposure time. The red areas are the
missing areas which appear if only 100 ms are taken. This demonstrates that 100
ms of light exposure is still enough to read out the fluorescence signal of Golgi
apparati with the computer, although by human eye the image looks noisy and
it’s quality by that not suitable enough. 90% phototoxicity reduction however is

gained.
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Figure 44 Signal minimizer. The exposure time is minimized based on a given,
application-specific, processing unit. Afterwards the contrast with the minimized

exposure time will be measured and will be kept constant over time.

The signal minimizer shown in Figure 44 minimizes the exposure time based on
a given, application-specific, processing unit. Afterwards the contrast with the
minimized exposure time will be measured and will be kept constant over time.
This method intends to keep not only the contrast constant, but rather the SNR,
due to the fact that image processing often needs a constant SNR over time to
work dependably. Because it is hard to define the SNR of an image, and in
addition this value can be application-specific and to measure it can be highly
defective. In addition it is not clear if the measured value has a linear functional
relation to the exposure time, which causes even more conflict. A more general
way to abstract from the SNR and to gain a linear relation to the light exposure

is to measure a simple and dependable contrast value such as the

Absolute Gradient [117]. This algorithm sums up the absolute value of the

first derivative:

Fabs graa = Z Z lix+ 1,y) —i(xy)l (Eq-11)
Height Width
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This kind of contrast measure can also be considered an approximation of the
“real” SNR, because with an increasing SNR, the contrast of an image will be

increased approximately in a linear dependency.
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Figure 45 Approximates the necessary exposure time to reach the target value of a

certain feature with a first order fit

Once the contrast quality, relatively to the first contrast value, drops below a
certain threshold, the ASEC logic triggers the re-adjustment of the exposure
time. Figure 44 and Figure 46 illustrate the re-adjustment logic workflow. The
principle how to re-adjust the initial exposure time such that the contrast stays
stable is shown in Figure 45. Based on first order fit, the new exposure time is
estimated, which is necessary to readjust the image quality such that the
contrast quality stays equal to the reference value measured at the beginning of
the screen. In order to perform a first order fit, next to the last measured value,
two addition values need to be measured. Measuring two contrast values with
two different exposure times, the new exposure time can be calculated by the

following first order fit:

C1 - Cz
= (Eq-12)

b=c —mt, (Eq-13)



Applications: of the ARCO algorithm 118

_ Ctarget — b (Eq-14)

texposure,corrected - m

¢ contrast value,t exposure time

Originally the SNR was directly detected, but the results of the re-adjustment

over time were not stable. The SNR is defined as

SNR = VS—BG (Eq-15)

whereas S is the mean intensity of the foreground and BG the mean intensity of
the background detected by a real-time segmentation. With the same quality
control system that is presented in Figure 46 the system behavior was measured

to stabilize the SNR.
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Figure 46 Controlled light exposure workflow. Two measurements of a certain image

feature are taken with two different exposure times (parts (1),(2)). Based on this the
functional relation of the exposure time and the chosen image feature is approximated.
Finally the exposure time necessary to reach the target value of the image feature is

calculated and set as the new exposure time (3).
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4.1.5 Results

In Figure 47 the development of the average intensity (average value over
signal and background) with and without using the controlled light exposure
method is illustrated. The signal of the non-controlled spots decreases by 15% on
average after 220 imaging runs due to photo destruction and bleaching (fixed
sample). The exposure time was set constant to 60 ms. In contrast, the signal
decreases by only 1.5% using ASEC to control the light exposure over time. The
controlled spots furthermore show a contrast precision error below 1% on average
with no outliers in 220 imaging runs. Clearly it can be seen that spots with many
cells (spot 07 with 90 cells) in contrast to spots with a lower amount of cells
(spots 09 with 50 cells) show a stronger signal decrease over time. This effect
appears due to the fact that the background can be considered as an offset for
the signal and does not bleach with the same dynamics as the signal itself does.
The background was not subtracted for the evaluation and this causes a variance

in the bleaching curve of different spots.
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Figure 47 Average intensity development with and without using ASEC to control the

light exposure over time
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Figure 48 demonstrates that the exposure time has to be increased
exponentially to keep the average intensity constant over time. The exposure
time doubles after 90 images are taken. In each imaging run, however, three
images are taken to re-adjust the exposure time constantly. Practically it is not
necessary to re-adjust the exposure time in every run, for sampling rates which

are higher than the frequency of the photobleaching dynamics.
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Figure 48 Exposure time development. Over time the exposure time has to be increased

exponentially in order to keep the mean intensity constant.

ASEC with SNR control

It can be observed that the SNR stabilization works dependably until ca. 150 images are
taken (Figure 49, Figure 50). After that the control system cannot keep the target
value anymore. This happened because the functional relation was not calculated
correctly, caused by the increasing non-linearity and steeper getting slope, which finally
becomes exponential. Re-adjusting the parameter X by increasing it over time can solve
this issue as well as taking historical data into account. Furthermore the measurements
show that the SNR approximation is not dependable enough, because there are
maximum turning points in the measurements of the non-controlled spots, where only
minimum turning points should be (the light was switched on in the room). The decrease
of the SNR is on average the same as the mean intensity decrease (85%), which is an
indicator that the SNR calculation in principle works correctly. For the average intensity
over time, all spots in Figure 47 show a similar characteristic of the SNR development

(Figure 49) due to the ROI (region of interest) detection that was performed in
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advance of the screening to increase the cell count per image. As one can see the
correlation of different experimental parameters such as XY-position and light exposure
is significant once automated methods come into play. Classically, operators do not have
the need to improve image quality on this precision level, because the image processing

can be adapted manually for different quality cases.
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Figure 50 Exposure time development for ASEC with SNR control
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Optimized time-lapse imaging of mitochondria energetics

Phototoxicity [5, 6] and photobleaching [7-9] are fundamental problems
intrinsic to live-cell imaging, which reduce image quality, and it is widely
recognized that light exposure results in mitochondrial dysfunction [33, 34]. To
address this problem we performed experiments in HeLa cells loaded with TMRM
(50 nM), imaging with the Olympus IX81 at 20x magnification for a period of 8
hours, at 30 second increments. ARCO was implemented to both optimize
exposure time (ASEC) and optimize sample size through optimized XY-
positioning of the measuring points (OSAPI). In addition the refocusing trigger
(RFT) was applied to avoid unnecessary image acquisition and thereby to avoid
unnecessary phototoxicity. Phototoxicity from TMRM excitation induces intra-
cellular oxidative stress, propagating mitochondrial depolarization and
mitochondrial ROS generation [33, 34, 43, 44]. In the absence of ARCO
implementation, rapid loss of mitochondrial potential within the cellular
population was detected between 1 and 2 hours of imaging. With ARCO-
optimized light exposure, no sudden loss of mitochondrial membrane potential
occurred, and we attribute the observed linear decrease over 8 hours (Figure
51a+b) to dye leakage and photobleaching. Thus at the time, ARCO achieved a
3 to 4-fold reduction in the impact of phototoxicity to 50% depolarization and
total depolarization, respectively (Figure 51b+c). Furthermore, total intensity
was  significantly  maintained using ASEC, demonstrating decreased

photobleaching.

In contrast to the measurements mentioned above (Figure 47-Figure 50),
the exposure time in this experiment was kept constant after minimizing it with
the signal minimizer (Figure 44). Applying a refocusing trigger, the image

contrast quality based on the focus position, however, was stabilized over time.
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Figure 51 Mitochondrial energetics with and without applying ASEC
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Optimized time-lapse imaging of Golgi reassembly

The Golgi apparatus is composed of membrane stacks near the nucleus,
where proteins synthesized in the rough endoplasmic reticulum (ER) are sorted
and modified before being secreted. Many enzymes are involved in this, and
localize specifically to the Golgi compartment. The Golgi can be reconstituted
from the ER demonstrating the intimate relation of the two compartments. How
the Golgi is formed and maintained is of high interest, as it is intimately tied to
vesicular protein transport [118]. Much of our knowledge is owed to the drug
Brefeldin A (BFA), which leads to Golgi disassembly and relocation of Golgi
markers into the ER [119]. Recently a live imaging approach has been used to
quantitatively study Golgi assembly after BFA treatment, as a powerful tool to
study regulation by overexpression and potential depletion of proteins [44]. Golgi
reassembly following treatment with the protein transport inhibitor Brefeldin A
(BFA) can be used to determine regulatory roles of specific proteins [120]. This
approach requires the use of a fusion of [-1,4-galactosyltransferase to cyan
fluorescent protein (GalT-CFP) to detect Golgi reassembly over time based on
quantifying juxtanuclear GalT-CFP localization following washout of BFA.
Accurate quantification of Golgi reassembly requires that the process is not
influenced by phototoxicity and that bleaching does not result in bias of
measurement (e.g. underestimation of intensity). To that end, we applied ARCO
in order to increase information content through shorter imaging time intervals
during both disassembly in presence of BFA and reassembly after washout. Two
illumination schemes were run in parallel. Exposure time was calculated by either
(i) the standard “auto exposure” function present in all commercial imaging
software packages or (ii) ASEC-based optimization of Golgi segmentation in an
exposure series (Figure 52a). The auto-exposure function increased the exposure
time from the initial selected 100 ms to 1 second, improving the signal-to-noise
and image quality (Figure 4D, upper panel), but more importantly induced rapid
bleaching of GalT-CFP (Figure 52c) and phototoxicity, as measured by
rounding of the nucleus within 60 minutes, 30 minutes following BFA washout

(Figure 52b).
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4.1.6 Possible integration to existing CLEM systems

Figure 53 illustrates the integration of the signal re-adjustment over time
into the Controlled Light Exposure (CLEM) by Manders [10, 121]. In order to
compensate the effect of the increasing exposure time (Figure 50) CLEM can be
used. Additionally the initial exposure time can be minimized if a target value for
the feature can be defined. I.e. for a given SNR which is sufficient to segment
cells for a cell counter, the exposure time can be minimized. The workflow for the
signal minimization is described in Figure 44. The costs for additional
measurements of the re-adjustment can be reduced if the re-adjustment factor for
the exposure time is calculated for one spot and is taken for all others spots
within the same well, assuming that spots of the same experiment have the same

bleaching dynamics and similar cell counts.

to keep target value of feature

Find and initialize min exposure time
for a given feature target value
(i.e. SNR >=x)

exposure times

Figure 53 Possible integration into existing Controlled Light Exposure (CLEM)

systems
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4.2 Autophagy dynamics with ASEC

4.2.1 Autophagy dynamics

Autophagy or autophagocytosis is a catabolic process in cell biology which
mainly involves the degradation of cell components by the lysosomal machinery.
The process plays a crucial part in the relevant processes like cell development,
growth and homeostasis. In the process the cell breaks down its own components
or foreign particles and recycles them as it can be seen in Figure 54. Autophagy
is a precisely regulated process by the cell and aimed to maintain the balance

between recycling, synthesis and degradation of cellular products.

“The autophagy machinery is thought to have evolved as a stress response
that allows unicellular eukaryotic organisms to survive during harsh conditions,
probably by regulating energy homeostasis and/or by protein and organelle
quality control. The same machinery might therefore be expected to diversify
functionally in complex metazoan organisms, so as to regulate new layers of
defences used by multicellular organisms to confront different forms of stress. A
plethora of genetic, biochemistry, cell biology, systems biology and genomic
studies have recently converged to support this notion. The autophagy machinery
interfaces with most cellular stress-response pathways [122], including those
involved in controlling immune responses and inflammation. This interface is not
only at the level of the autophagy pathway, but also entails direct interactions

between autophagy proteins and immune signalling molecules[123].” [124].

4.2.2 Material

Biological samples
To assess the impact of phototoxicity on aggregation of autophagosomes,

stably transfected GFP-LC3 MCEFT cells were plated in ibidi 8-well microscopy
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slides (ibidi, Munich, Germany) at 50000 cells per well the day before treatment.
Prior to analysis cells were washed with PBS and put in HBSS solution
(containing Penicillin/Streptomycin and Hepes buffer), and immediately imaged.
Addition of the lysosomal inhibitor Bafilomycin A1l (final concentration 100nM)

to HBSS was used as a positive control for aggregation of autophagosomes.
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Figure 54 “Possible autophagy-protein-dependent pathways of pathogen degradation.
Possible pathways involving the autophagy machinery by which viruses, bacteria (and
damaged membranes of bacteria-containing vacuoles) and parasites may be targeted to
the lysosome. Adaptor refers to the proteins shown in the cargo-recognition box in Fig.
1; however, as yet undiscovered adaptors may be involved in pathogen recognition, and
pathogen targeting may involve ubiquitin-dependent or -independent mechanisms.” [125]

Image adapted from [125]
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Figure 55 Autophagosomes / LC3 development over time (7.5h) under different

exposure times. Four experiments, each in its own well with 25 measuring points

Hardware, Software and Development Environment

The experimental setup consists of a motorized inverted microscope (Olympus
IX81), a frame grabber (Matrox Meteor-II) and a CCD camera (Hamamatsu
C9100-02). The motorized inverted microscope has a minimum focus step width
of 0.01 pm. Two objectives were used, a 10x objective (Olympus UPlanFL, 3 pm
depth of field, NA 0.3) and a 40x objective (Olympus LCPlanF1, 1 pm depth of
field, NA 0.6). The microscope was observing in the brightfield mode. The
focusing workflow we wused wuses two different axial steps for different
magnifications [1]. 400 sampling points were measured with 5 pm axial steps
using a 10x objective and 1 pm axial steps using a 40x objective. The 40x images
were taken with 2x binning and 60ms exposure time. For lateral sampling a
10x10 regular grid with an accuracy of 900 pm was taken in each chamber. Three
wells were imaged using binning and one well was imaged without binning. The
evaluation of the non-binned images showed that the evaluated algorithms can be
heavily irritated by noise. Our presented evaluation therefore only considers
binned images. The automation of the image acquisition routine was
implemented in C# and C++ using the native serial port commands of the
specific hardware units. The surface modeling was implemented using
Mathematica and focusing algorithm ranking done with Matlab. Both were

integrated using the distributed microscopy framework LifeXplorer.
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4.2.3 Methods

Aiming to find a light sensitive biological system, autophagy as a crucial
process of cell recycling was tested against different light doses. The scientific
question first of all was if there is any effect on the degradation of
autophagosomes influenced by light due to apoptotic and autophagic responses
[122, 126]. In order to get an answer for this qualitative question, the
autophagosomes marker LC3 was measured in four experiments as specified in
Figure 55. In two different experiments, the cells were imaged with a low and a
high exposure time. And in another two experiments a positive and negative
control was measured. All experiments were imaged simultaneously. All
experiments were run as multi point experiments with 16 sampling points in
separated well for each experiments to get robust results. In all cases, starving
medium as taken in order to put the cells under stress to see autophagy dynamics
more easily [127]. The first experiment was image cell with 400 ms light exposure
and the second to observe them with 800 ms, with a sampling rate of 15 min over
8 hours. As positive and negative controls another two experiments were run in
parallel. Each well for both control experiments was only imaged twice, at the
beginning and at the end of the experiment. The positive control was treated
with Bafilomycin which blocks the degradation of autophagosomes [128]. The
negative control was only starving medium without any treatment of the cells.
Both control experiments were measured with 400 ms exposure time. The
hypothesis was that high light exposure should bring the cell status closer to the
positive control and autophagosomes should aggregate over time as it can be seen

in Figure 56.

4.2.4 Results

The result we were interested in was a binary answer to our question, if the
imaging itself changes the biological process and is therefore light sensitive. Our

hypothesis was that high light exposures over time finally lead to cell death and
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therefore accelerate the process of autophagy. The result however was that the
system was not light sensitive. By eye, in some cases an aggregation of the Lc3
particles could be observed as it would have been necessary in order to come
closer to the positive control of BFA that inhibits the degradation of
autophagosomes. In Figure 56a one sampling position is shown over time. The
cell marked with the red circle beautifully shows the effects that we thought will
be raised by higher light exposures due to phototoxicity and cell death effects.
However we could not reproduce the effect that higher light exposures cause the
cells to behave as in the case of the positive control. On average the cells
behaved almost the same. The phenotypes of the cells did not vary clearly if they
were sampled or not. Figure 56b illustrates the quantitative results of your
investigations. The red curve is the positive control with BFA blocking the
degradation of autophagosomes. The green line is the negative control. It is equal
to the average behavior of the cells if they are not treated with any drug
influencing the process of autophagy. Both control wells were only sampled at the
beginning and at the end of the experiment. The blue curve is equal to the lower
light exposure with 400ms, whereas the yellow curve shows the quantitative
results of the high exposure. In contrast to what we could have expected, both
curves are close to the negative control. From this it can be derived that the
imaging itself did not significantly inhibit the degradation of light as in the case
of the positive control. In contrast higher light exposure in these experiments
sometimes, as it gets obvious in Figure 56b, even seemed to cause cellular
homeostasis. In other experiments the effect was different and the higher light

exposures and the imaging caused the aggregation of Lc3.

In all cases the effect was not reproducible yet and only single cells were
affected, not the whole cell population. We therefore stopped using this system as
a possible candidate for light sensitive biological systems and investigated two
system that are well known to be sensitive to oxidative stress and thus
phototoxicity causing the creation of reactive oxygen species 33, 34, 43, 44, 112,
113]: mitochondria [33, 43, 129] and the Golgi complex [120, 130, 131].
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Figure 56 Lc3 particles over time with different exposure times. No significant effect of

higher light exposures could be observed.



Applications: of the ARCO algorithm 133

4.3 Mitochondrial energetics with ASEC

4.3.1 Mitochondria

“Mitochondria are central to the process of programmed cell death that kills
damaged or superfluous cells. Surprisingly, components of the death machinery
turn out to be essential for keeping these organelles in shape.” [132]. They are the
ATP generation, calcium homeostasis, and integrate metabolic signaling
complexes of cells. TMRM is a lipophilic, positively charged and accumulates
within mitochondria matrix according to the Nernst equation due to the
mitochondrial membrane potential across the inner mitochondrial membrane (-
180 mV). Upon depolarization, TMRM is rapidly released to cytosol and
medium. Importantly, phototoxicity from TMRM excitation can induce
endogenous response within the cell, resulting in waves of mitochondrial
depolarization and mitochondrial ROS generation [33, 34, 43, 129, 133]. The use
of mitochondrial membrane potential reporters is fundamental for cell death and
toxicity readouts. However, at present, no strategy has been demonstrated for
empirically minimizing the imaging effect, i.e. optimizing long-term monitoring of
mitochondrial function. Figure 56 illustrates important cell components

including a single mitochondrion.
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4.3.2 Material

Biological samples

Hela cells were plated at 40000 cells per well in ibibi microscopy slides one
day prior to the experiment. For analysis of mitochondrial depolarization, cells
were stained with Tetramethyl Rhodamine Methyl Ester (TMRM) at a final
concentration of 10nM for 30 minutes at 37°C, 5% CO2. Cell nuclei were
visualized through DNA staining with Hoechst 53342, at a final concentration of
Ipg/nl, incubation at 37°C, 5% CO2 for 30 minutes. Live cell imaging was
performed in full medium (DMEM, 10%FBS).

Hardware, Software and Development Environment

The experimental setup consists of a motorized inverted microscope
(Olympus IX81), a frame grabber (Matrox Meteor-II) and a CCD camera
(Hamamatsu C9100-02). The motorized inverted microscope has a minimum
focus step width of 0.01 pm. Two objectives were used, a 10x objective (Olympus
UPlanFL, 3 pm depth of field, NA 0.3) and a 40x objective (Olympus LCPlanF1,
1 pm depth of field, NA 0.6). The microscope was observing in the brightfield
mode. The focusing workflow employs two different axial steps for different
magnifications [1]. 400 sampling points were measured with 5 pm axial steps
using a 10x objective and 1 pm axial steps using a 40x objective. The 40x images
were taken with 2x binning and 60ms exposure time. For lateral sampling a
10x10 regular grid with an accuracy of 900 pm was taken in each chamber. The
evaluation of the non-binned images showed that the evaluated algorithms can be
heavily irritated by noise. Our presented evaluation therefore only considers
binned images. The automation of the image acquisition routine was
implemented in C# and C++ using the native serial port commands of the
specific hardware units. The surface modeling was implemented using
Mathematica and focusing algorithm ranking done with Matlab. Both were

integrated using the distributed microscopy framework LifeXplorer.
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4.3.3 Methods

As shown in the chapter above, where Golgi complexes were segmented using
different exposure times, ASEC was also applied to mitochondria systems. Two
parameters were measured as a readout for phototoxicity and photobleaching.
The total size of the mitochondria was measured to approximate the active
amount of mitochondria as an indicator for effect of phototoxicity. To measure
the photobleaching, the mean brightness of the mitochondria was measured over
time as an approximation for the fluorescence intensity. The imaging was
performed with a sampling rate of 30 seconds over eight hours. The data analysis
was performed based on single cells and then accumulated again to a mean value
over time. To finally evaluate the added value of ASEC, the phenotypes of the
cells were classified visually in order to compare healthy and unhealthy cells, and
the temporal distance between both phenotypes. Four independent experiments
were performed, to ensure the effects presented here are statistically significant,
and thus in principle reproducible. Each experiment was based on a special
imaging workflow. Two sampling points were measured with ASEC and the
refocusing trigger logic activated. ASEC calculated 10 ms to be accurate enough
to detect 2 95% of the mitochondria. Another two positions were measured with
the normal exposure time of 40 ms and with permanent refocusing. The
refocusing trigger, as is explained in greater detail in the corresponding chapter,
optimizes the refocusing behavior of the microscope such that the refocusing step
is only performed if the image quality drops under a configured threshold, here
set to 90%. Unnecessary imaging is thus avoided based on the ARCO algorithm,
which calculates whether the result / costs ratio is higher with or without the
refocusing step. The image quality result is considered to become 100% again if
the refocusing step is done. And at the same time the results function is set to
one for all value 2 90%. This means that the ratio only gets worse if the quality of
the image drops below 90%, which then triggers a refocusing based on the result
/ costs optimization paradigm. In order to have a reference to compare both
experiments with, four control positions were imaged only at the start, and after

eight hours.
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4.3.4 Results

Figure 58a illustrates what the cells looked like after measuring them with
and without any imaging optimization. After six hours the mitochondria could
hardly be detected anymore. The brightness however is enhanced so that it is
possible to see the fluorescence signals with the human eye, and thus identify the
remaining mitochondrial structures. After only two hours, the phenotypes clearly
show that most of the mitochondria are not functioning anymore, which causes a
switching off of the fluorescence marker, and on average an incremental dimming
of the signal. In contrast the phenotypes of the cells which were imaged with
ASEC and the refocusing trigger look equivalent to the reference cells, which
were only imaged at the start and the end of the experiment. The refocusing
trigger, as can be seen in the corresponding chapter, only necessitated refocusing
the measuring positions on average every hour. In addition, an average of six
images had to be taken to refocus a position again. The phototoxicity which is
caused by the refocusing was reduced approximately to 1%. Figure 58b shows
the quantitative result of the average mitochondria size measured over time.
After only 1.5 hours the size of active mitochondria has dropped to 50% for the
Non-ASEC measurements. In contrast, the ASEC and RFT measurements show
a clear trend and drop to 50% of the total mitochondria size after five hours.
When taking the 50% as a reference threshold to evaluate the phototoxicity, cells
can be measured 3.33 fold longer using ASEC and RFT. Taken 10% as the lowest
threshold for mitochondria activity, cells can be measured four times longer. The
loss of fluorescence signal (in a.u., arbitrary units) is only 33% (25% loss instead

of 75%) as strong as in the case of normal imaging.
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Figure 58 Phototoxcity and photobleaching evaluation of ASEC using the mitochondria

as a light sensitive biological system.
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4.4 Golgi reassembly with ASEC

4.4.1 Golgi dis- and reassembly

The Golgi apparatus is an organelle structure devoted to process the proteins,
which are synthesized in the endoplasmic reticulum (ER). It is also known as the
Golgi complex, Golgi body, or simply the Golgi, and was found in 1897 by the
Italian physician Camillo Golgi [134, 135]. The Golgi reassembly is well known to
be influenced by phototoxic stress [130].

“Reactive oxygen species (ROS)/reactive nitrogen species (RNS) and
ROS/RNS-mediated oxidative stress have well-established roles in many
physiological and pathological processes and are associated with the pathogenesis
of many diseases, such as hypertension, ischemia/reperfusion injury, diabetes
mellitus, atherosclerosis, stroke, cancer, and neurodegenerative disorders. It is
generally accepted that mitochondria play an essential role in oxidative stress
because they are responsible for the primary generation of superoxide radicals.
Little attention, however, has been paid to the importance of the Golgi apparatus
(GA) in this process.” [130]. Figure 59 illustrates the assembly and disassembly
of the Golgi between the ER and the plasma membrane (PM).
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Figure 59 (a) Model showing recycling of the Emp46-Emp47-Ssp120 complex between
endoplasmic reticulum (ER) and early Golgi [136]. (b) Diagram of the Secretory
Pathway Transport intermediates in the form of vesicles and tubulovesicular
intermediates mediate forward and retrograde transport between the ER, Golgi complex,

and plasma membrane (PM). [137]
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4.4.2 Material

Biological samples

NRK cells stably expressing GalT-CFP (NRK-GalT-CFP) were a gift from
the Starkuviene lab and cultured as described [43]. Cells were plated in ibidi 8
well microscopy slide one day prior to imaging. The GalT-CFP redistribution
assay was performed as described [4]. In short, cells were stained with Hoechst
53342 for 15 minutes prior to acquisition and after multiple positions per well
were defined in the software, 5 jg/mL of BFA and 0.1 mg/mL of cycloheximide
were added. Timelapse images were acquired every 2 minutes over 30 min. After
washing cells 3 times with the preheated growth medium, time-lapse imaging of
the same positions was resumed for 3 hours. Cycloheximide was kept in all

solution during Golgi reassembly to prevent de-novo synthesis of GalT-CFP.

Hardware

The microscopy setups consisted of the motorized inverted microscope Nikon
Ti-E, run in wide field fluorescence. The Nikon Ti-E with an automated table
and perfect focus system operated with Nis-Elements AR 4.1, using a 20x Plan
Fluor objective (Nikon, NA 0.75) and an interline transfer CCD camera (Clara,
Andor). The metalhalide illumination (Nikon Intensilight) was attenuated to
25%, rather than using low exposure times, which might then be shorter than the
reaction time of the epifluorescence shutter (Sutter 10-2, Sutter Instruments),
gating exposure. Initial exposure was estimated by using the auto exposure
function based on saturation of pixels. This value was reduced by 40% to avoid
potential saturation of pixels at other XY-positions. Microscopy computers were
connected with the LifeXplorer software through network access for online image

analysis.

4.4.3 Methods

Due to the fact that phototoxicity causes the creation of ROS [6, 34, 138] and
the fact that the Golgi assembly is influenced by ROS, the hypothesis was that
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imaging itself would negatively influence the process of the dis- and reassembly
over time. More concretely the Golgi-to-ER relocalization of GalT-CFP was
analysed with high and low light exposures after brefeldin A (BFA) addition and
wash-out. Adding BFA makes the cells disassemble their Golgis, whereas after
washing it out, the Golgis reassemble. The hypothesis was that light exposures
that are too high will disturb the cells dis- and reassemble their Golgis. As a
reference for the high light exposure, the auto exposure function of the Nikon NIS
Elements Software was used to determine the exposure time which operators
would use in order to get the highest dynamic range of their images. The result
was 2.5 seconds. Assuming that biologists might know that this exposure time
will be to high concerning the viability of cells and the throughput of the
microscope, the high exposure time was set to 1 second. ASEC was used then
used to determine the lowest exposure time possible to classify Golgis. A macro
was plugged into the graphical interface for the operator that communicates with
the LifeXplorer framework. Once this basic macro triggers the ASEC logic hosted
in the LifeXplorer framework, new macros for the microscope are written
automatically. These macros extend the basic macro, which waits until the
workflow extensions are programmed by the ASEC logic. The workflow as
described above basically decreased the light exposure given on a configured
decrement step. For these experiment series, the configuration was 100ms, which
means that a series of images is taken between 1 second and 100 ms light
exposure. Afterwards ASEC uses the signal minimizer to identify which
classification result based on the lowest exposure time possible still is suitable to
reach 95% segmentation quality. The reference segmentation map is the one
created out of the highest exposure time, since this image has the highest SNR
and the highest dynamic range. As can be seen in Figure 60, the Golgi apparati
are captured with the high and low exposure, classified, segmented, after which
the resulting segmentation maps are cross-correlated. Figure 60d illustrates the
resulting merged map. Yellow pixels are classified for both exposure
configurations, whereas red pixels are lost in the case of the low exposure time.
Using the human eye however, the missing 5% of the segmented Golgi area are
not relevant, which also holds true for the statistical analysis. The focus plane of

16 sampling positions was sampled each two minutes using ASEC and the same
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configuration of another 16 positions were imaged without using ASEC. Initially
the cells were treated with BFA to start the disassembly of the Golgi complexes
and after 30 min BFA was washed out to make the cells reassemble the Golgis.
Before and after running these two experiments, reference positions in separated
wells were taken to compare the low and how exposure times with the
phenotypes of cells that were not imaged at all. In addition, another experiment
was run where the same amount of spots with and without using ASEC cells was

imaged over 8 hours without any BFA treatment.

Binary image

Merged segmentation map of 100 ms and 1 s exp.

Figure 60 Cross correlation of two different segmentation maps as a quantitative
measure for the classification efficiency at low (a) - (b) and high (c¢) — (d) light
exposures. (€) 95% of the segmented are can be segmented with the low exposure time,
which is equivalent to the yellow pixels. Only 5% of the Golgi area is not segmented
using a low exposure time of 100 ms. 90% of the light exposure and thus phototoxicity

however is saved.
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4.4.4 Results and Discussion

Both experiments, with ASEC and Non-ASEC adjusted light exposure, were
analyzed based on a single cell population wide data analysis. Two parameters
then were aggregated and plotted over time. The first parameter was the nuclei
size over time. Figure 61a clearly visualizes that over time the cells detach from
the surface, and the nuclei become smaller and rounder in the case of the high
light exposure times. Figure 61b clearly shows that the nuclei size over time
stays stable using ASEC, whereas after ca. 30 minutes of imaging the cells which
were imaged without using ASEC start to suffer from photobleaching and
shrinking cell nuclei. Figure 6la shows the plotted, quantitative effect of
Figure 61b. Figure 61c in addition measures the fluorescence as the second
parameter over time (a.u., arbitrary units). Again, in the case of ASEC the
Fluorescence stays stable and cells even go into mitosis, disassembling and
reassembling their Golgi complexes. That cells reproduce in a normal way is an
obvious and steady criteria that the phototoxicity using ASEC was reduced down
to a level where cells are not negatively influenced in their production and
reproduction. This poses a contrast to the cells imaged without using ASEC.
They clearly show that on average the photobleaching effect heavily influences
the readout by lowered intensities over time. In numbers the phototoxicity of
ASEC in this experiment could be reduced at least six-fold, considering that the
nuclei size did not change at all after 180 min using ASEC, whereas with Non-
ASEC the cells behaved abnormally after only 30min. In the case of the
photobleaching measure, the photobleaching could be reduced 100%.

These results make clear that experimental optimizations using the ARCO
algorithm increase the change of stable results. Certainly ARCO, as well as any
other ARCO derivate, needs to be specifically and carefully implemented for each
individual experiment application. The benefit from this however is that
experimental setups are mathematically more robust and thus the reproducibility
can be increased, besides the benefits of lower phototoxicity and information
densification. Commonly, no biologist or image processing expert would in the

default case test crucial experimental parameters on a quantitative basis. In
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between the ability to image live cells in the first place, and reproducibly image
and evaluate live cell system is a big gap, which today is partially closed by the
experience of individuals. The access threshold for non-experts however is still
too high for biologists to be able to fully independently perform quantitative
experiments. Yet in the future, complexity can only be handled based on reliable
ways of automating science. ASEC on the dimension of light exemplarily
demonstrates the effects of a targeted automation approach such as the ARCO
algorithm. ASEC allows biologists to automatically optimize the data quality

based on their specific scientific question and biological phenotypes.
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Figure 61 Phototoxicity and photobleaching evaluation of ASEC using the Golgi

complex as a light-sensitive biological system.
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4.5 MBAAS (Model Based Autofocusing Algorithm Selection)

4.5.1 Abstract

Crucially, the significance of the analysis output is a function of the initially
acquired raw data, and therefore strictly controlled in order to minimize error
propagation. In high-throughput microscopy the balance between image quality
and acquisition rate is a fundamental optimization step. The auto focusing step
represents a relevant target for increasing the throughput of microscopes and the
sampling rate for live cell screens. Improved focusing methods have the potential
to both minimize exposure bleaching and phototoxicity, and increase sampling
speed. The author proposes an adaptable, data-driven algorithm based on the
ARCO algorithm, which improves data quality by increasing the amount of in-
focus images, minimizes exposure times, and is applicable to high throughput
microscopy. The algorithm provides an automatic selection of the best focusing
algorithm based on the modeling of the slide surface. Our method in addition
leads to higher speed and image quality by maximizing the amount of in-focus
images while reducing the effort to find the in-focal planes. The autofocusing

could be accelerated three- to fourfold while the number of in-focus images could

be doubled.
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4.5.2 Introduction

Rapid high-resolution imaging is emerging as an essential tool in quantitative
biology. Since data analysis depends on the incoming data, the data quality of
the raw images in light microscopy is highly relevant for the effectiveness in
gaining insights into biology. In high-throughput microscopy a conflicting goal is
to provide fast imaging on one side, and to retain the quality of the data
acquisition on the other side. One of the most important prerequisites for high-
quality data is precise focusing. The accuracy of focusing algorithms differs with
different data and therefore the choice of the best algorithm depends on the
experiment. This can be seen in literature [2, 3, 139, 140], where the evaluation of
focusing algorithms showed different results if the data was different. Within one
image optimized, estimations of the focal planes of single sub areas can be
computed. Image stacks can be cut into sub areas, and for each of these areas the
focus position can be calculated separately [141]. In addition this has shown that
the focus position is related to the physical unevenness. In order to speed up the
focusing step, a sub sampling of the observed area can be used [141]. Several
patterns, i.e. a regular grid or more sophisticated ones using Halton sampling
points can be used to increase speed. In addition, different adaptive algorithms
with variable z-steps can be used to accelerate the focusing step [1]. Pre-
processing the acquired raw data before computing the in-focus plane was

analyzed as suitable to generalize the usage of focusing algorithms [142].

Using the same focusing algorithm for different experiments, the number of
in-focus images can greatly vary. So far, the main reference to evaluate
performance of focusing algorithms for a certain type of data was done by
manual inspection (i.e. [3]). In order to maximize the amount of in-focus images,
however, it would be optimal to automatically select the best focusing algorithm
before starting a high-throughput experiment. To that end the author developed
a method which makes it possible to select the best focusing algorithms for a
specific experiment automatically. A model of the slide surface was used as a
reference to automatically evaluate autofocus algorithms. Outliers furthermore

can be detected automatically. After having found the best algorithm for a
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certain type of experimental data, the autofocus step can be accelerated up three-

to fourfold.

17 algorithms have been evaluated, out of which 12 were stable against noise
and are presented in the results section. Using the surface information about local
gradients, outliers were detected on the fly. Our approach helped to better
understand systematic errors of algorithms as can be found in existing literature
[3]. Using our method, the most suitable focusing algorithm can be found
automatically. The best selected algorithm has been applied to a relevant

biological sample to quantify the possible acceleration of the data acquisition.

4.5.3 Materials and Methods

Focusing procedure

The focusing process consists of a basic idea. The Z position of the objective
is changed with a given strategy and a certain quality of the image is measured.
In principle, operators would like to see sharp images, which means that the
autofocus algorithm will for example measure a certain contrast value of the
image. It will then try to find the maximum quality possible and assume that the
in-focus plane is at this position. The relevant literature [1-3, 139, 140] presents
and evaluates different quality measurements. These optimizations focus on the
amount of in-focus images, which means that the algorithms should be as close as
possible a manual measure of the in-focus plane. In addition, strategies have been
presented for the z-sampling [143, 144] to reduce the amount of necessary
sampling steps. All existing evaluations however are data- and thus experiment-
related. For each experiment, the results of a selected algorithm or strategy can

be completely different.

Overview of the approach

The approach presented here therefore takes existing focusing methods and
evaluates them, automatically selecting the most suitable algorithm for a given
experiment dataset. The workflow of the approach is illustrated in Figure 65. In

the first run, the first well is taken as a reference well to select the most suitable
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focusing algorithm that maximizes the amount of in-focus images, and afterwards
the lowest subsampling to sample the surface and approximate non-sampled z-
positions. The number of in-focus images here is the result function for ARCO,
whereas the computing time is the costs function. 100 spots are taken in a 10x10
grid, and for each focusing algorithm a low frequency, third order model is
created out of the XYZ-point cloud, using Mathematica. The highest number of
in-focus images is then approximated using the standard deviation of the error
function. The error can be estimated with the differences of the measured and the

approximated z positions of surface model:

n
1
$ = = > (A%~ Dmean) (Ea-16)
i=1

The algorithm with the lowest variance can be considered as being the most
suitable algorithm to estimate the focus positions. This focusing algorithm is then
selected to process the most efficient sampling rate to sample the surface and find
the focus plane. The 10x10 regular grid which was taken to sample the surface, is
then sub sampled incrementally until only four corner points are taken. For each
sub sampling step, the surface is modeled again, and it is calculated how many
images the focusing would still need to find the focus plane with the
approximated values of the surface. By reducing the sampling rate of the surface,
the precision of the approximation gets incrementally lower. I.e. a first order fit
cannot approximate local distortions of a slide’s surface, which means that the
error of the model is incrementally increased by decreasing the sampling rate. At
the same time only few sampling points have to be taken in depth, which reduces
the costs to create a model. The sampling points are taken with a fixed volume
to be stable against the slide distortion independently from the distance of each
sampling point. These measurements are therefore static for the amount of
images taken, whereas all other positions are taken with a dynamic focusing
method using a dynamic extreme search, [143] and have to rely on the first

estimate of the focus position by using the modeled surface.
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17 algorithms were evaluated, out of which 12 could be taken for further
evaluations plus one which was developed for special purposes. These 13

algorithms are presented here.
The algorithms are:
1. Absolute Gradient
2. Brenner Gradient
3. FEdge Gradient
4. Energy Laplace
5. Genetic Programming
6. Laplacian
7. Laplacian Variance
8. Manuel measure
9. Netten Filter
10. Sobel-Tenengrad Variance
11. Squared Gradient
12. Tenengrad
13. Vollath F4

The appendix provides further information about the algorithms. The Edge
Gradient is a new algorithm, which was developed for experiments on autophagy
dynamics [124, 145, 146] with a high-resolution imaging, especially using a 40x
magnification objective. Figure 62 illustrates how measured values of a focus
position are composed. The first component is the surface offset. Due to uneven
surfaces this offset very likely will vary in each XY position. On top the
biological offset has to be considered. This offset finally determines where the in-
focus position is, because next to the surface offset that is physically unique, the

fluorescence markers in each channel can be located in different planes.
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Unfortunately in reality the position will be flawed. The standard deviation of
the error therefore has to be considered as the key figure that determines the
precision of the focusing algorithm. To automatically select the best focusing
algorithm, a reference is needed in order to rank them. The reference so far has

been a manual measure.

Standard deviation of error: Error

Biological offset

Focus position

Z position

Surface offset

Figure 62 Components of a measured value.

Our hypothesis was that a low order fit of the measured focus positions
represents the slide surface and is suitable as a reference. For better
understanding, the model for the measured value is illustrated in Figure 62 and

described as follows:

m(x,y) = s(x,y) + b(x,y) + e(x,y) (Eq-17)

m measured value; s surface of fset; b biological of fset; e meaurement error
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The error e itself consists of two parts:

e(x,y) = a+ p(x,y)

- (Eq-18)
a accuracy, p precision

By fitting a measured point cloud of XY- and Z-positions, the high frequency
function components p is filtered out and e gets close the a. If the accuracy a is
close to zero, only p has to be computed in order to find the best focus algorithm.

The precision of an algorithm is equal to:

p(x'y) = f(x:J’) —m(x;}’)

.. , (Eq-19)
p precision; f fitted value; m meaured value;

The standard deviation of all precision values finally is a suitable measure to
compare the precisions of algorithms with the same accuracy. This chapter
evaluates the automatic selection of the focusing algorithms and compares it to
the manual selection. The surface model was taken as the ground truth. The
calculated focal planes were compared to the focal plane of the manual measure.
In addition, the author shows how the surface model can be used to detect

outliers, as well as to accelerate the focusing step by sub-sampling.

Hardware, Software and Development Environment

The experimental setup consists of a motorized inverted microscope (Olympus
IX81), a frame grabber (Matrox Meteor-II) and a CCD camera (Hamamatsu
C9100-02). The motorized inverted microscope has a minimum focus step width
of 0.01 pm. Two objectives were used, a 10x objective (Olympus UPlanFL, 3 pm
depth of field, NA 0.3) and a 40x objective (Olympus LCPlanF1, 1 pm depth of
field, NA 0.6). The microscope was observing in the brightfield mode. The
focusing workflow wused employs two different axial steps for different

magnifications [1]. 400 sampling points were measured with 5 pm axial steps
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using a 10x objective and 1 pm axial steps using a 40x objective. The 40x images
were taken with 2x binning and 60ms exposure time. For lateral sampling a
10x10 regular grid with an accuracy of 900 pm was taken in each chamber. Three
wells were imaged using binning and one well was imaged without binning.
Figure 63 illustrates all four wells and the topological map of the sampled
surfaces. The evaluation of the non-binned images showed that the evaluated
algorithms can be heavily irritated by noise. Our presented evaluation therefore
only considers binned images. The automation of the image acquisition routine
was implemented in C# and C++ using the native serial port commands of the
specific hardware units. The surface modeling was implemented using
Mathematica and focusing algorithm ranking done with Matlab. Both were

integrated using the distributed microscopy framework LifeXplorer.
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Figure 63 (a) Schematic representation of the microscopic preparation used in this
study. Four wells of an iBidi slide were sampled, each with a 10x10 regular grid pattern.
The 400 colored points represent the z positions for each XY position. (b) All positions
were analyzed with 17 focus algorithms, out of which 12 algorithms were found suitable

for the automatic selection of the best focus algorithm method.
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Biological samples

Human MCF7 breast cancer cell lines (Cell Line Services, Heidelberg) were
maintained in DMEM/10% FBS/L-glutamine /non-essential amino
acids/penicillin/streptomycin/amphotericin B (Invitrogen). Cells were plated in
8-well microscopy p-slides (iBidi) at a density of 20,000 cells per well. To label
nuclei, cells were incubated for 15 min with Hoechst 33342 at a concentration of
1 ug/mL at 37C. Cells were then fixed with 4% paraformaldehyde (Electron
Microscopy Services) in PBS, and stored in PBS (Sigma).

Figure 64 Cell nuclei of MCF7 cells.
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Figure 65 Surface modeling an acceleration workflow. Automated selection of the best
focus algorithm and acceleration of the autofocus step. Part (a) shows how to accelerate
the focusing step while the maximal amount of in-focus images is reached. Sampling a
reference well of the slide with many positions, a surface model can be created. The
model serves as a ground truth reference, which can be used to automatically select the
best focus algorithm. In a next step, the optimal sub-sampling for all other wells can be
computed, which maximizes the focusing while the maximal amount of in-focus images is
kept. (b) illustrates a result of the surface modeling using a third order fit. (c)
exemplarily visualizes three different algorithms with the same accuracy, but different
precisions. Part (d) shows an acceleration curve depending on the number of focused and

approximated spots.
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Focal plane finding using surface modeling to minimize algorithmic

errors

Automatically finding the real in-focal planes out of defective measures
involves a method to minimize the error of the measured focus positions. To that
end, the author presents an approach that uses surface approximation to
calculate the in-focus positions. To understand the method, it is crucial to take a
detailed look at the structure of the measured focus positions. The model for a
measured focus position can be found in Eq-17. The focus position consists of a
physical offset of the surface plus the biological offset, which depends on where
the parts of the specimen are located, which were stained, and are observed with
the aid of the fluorescence signal. The error amplitude of normally distributed
focusing algorithms is equal to the standard deviation of the error (Figure 62).
The higher the standard deviation is, the lower the precision of the focusing
algorithm will be. The aim is reduce the precision error to close to zero in order
to get the real in-focus positions. The low frequency part of the measured focus
positions is the bowing of the slide surface, whereas the high frequency part is the
error component of the focusing algorithm. Assuming that normally distributed
focusing algorithms are evaluated, the mean error is equal to the accuracy of the
algorithm. If the algorithm’s accuracy is comparable to the accuracy (mean error)
of the manual measure, the surface fit can be considered as a ground truth
reference. Figure 65b illustrates a third order fitting of 100 sampled spots of a
lem? well using the Edge Gradient algorithm to get the in-focus plane. To
automatically select the best focusing algorithm for particular data, the author
evaluated a first, second and third order polynomial to model the surfaces of
iBidis. The distortion of the surface in addition showed that a second order
polynomial cannot be sufficient, whereas a forth order fitting led to over fitting of
the data. By fitting the measured point cloud with a third order plane, the low

frequency part of the measured values can be modeled efficiently.
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Automatic selection of the best focusing algorithm based on error

estimation

From the above, a suitable reference was created to calculate the precision of
all algorithms. The surface model of each algorithm can be taken to calculate the
precision of all algorithms individually. The standard deviation of all differences
between the focus position of the surface model and the measured focus position
as shown in Figure 62 is equal to the precision of an algorithm. Our hypothesis
was that the lower the standard deviation is, the higher is the precision of the
focusing algorithm, and the higher the amount of the in-focus images becomes.
To prove that this holds true for our test data, both rankings of the precision
measures and the manual, by eye evaluation were compared. The results can be
found in Table 2. The manual evaluation in addition to the precision measure
contains the amount of images which are in-focus by eye as a visual reference.

The criteria which were evaluated are described again as follows.

1. Number of in-focus images

The number of in-focus images is related to the manual measure with a 1 pm
tolerance, which means that one plane before or after the manual measure is still
counted as in-focus considering the fact that the manual measure is also
defective.

2. Precision

This precision is equal the standard deviation of all differences between the
approximated in-focus positions and the measured ones.

3. Accuracy

The accuracy is the mean value of all differences between the focus position of
the surface model of the manual measures and the focus position of the focusing
algorithms.

4. Ranking

Three different rankings have been calculated based on the criteria above to get

an impression of the correlation between the rankings.
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Table 2 Automatic and manual overall ranking of 12 focusing algorithms in comparison

Surface reconstruction as reference

Manual reference

Ranking Nr of in-focus Ranking Ranking

Focusing Precision with images (+/- 1um) with with
algorithm (StdDev) surface reconstruction in % in-focus images Accuracy accuracy
Manuel measure 1.09 (3) 100% - 0.00 -
Edge Gradient 0.94 2 91.67 1 0.63 10
Absolute Gradient 0.87 1 89.33 2 0.79 11
Laplacian 1.11 3 85.00 3 0.52 9
Laplacian

1.12 4 81.67 4 0.18 2
Variance
Squared Gradient 1.34 6 82.67 5 0.40 7
Vollath F4 1.32 5 82.00 6 0.25 4
Netten Filter 1.44 8 81.33 7 0.39 5
Brenner Gradient 1.41 7 81.33 8 0.23 3
Tenengrad 1.48 9 75.00 9 0.11 1
Energy Laplace 1.61 11 76.67 10 0.48 8
Sobel Tenegrad

) 1.59 10 73.00 11 0.39 6

Variance
Genetic

1.92 12 45.00 12 1.27 12

Programming
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Table 3 Precision statistics for focusing algorithms for all wells

Precisions / Standard deviations

Focusing algorithm Well02 Well03 Well04 Avg.
Edge Gradient 1.08 0.78 0.96 0.94
Absolute Gradient 1.05 0.72 0.83 0.87
Manuel measure 1.11 0.99 1.17 1.09
Laplacian 1.36 1.03 0.94 1.11
Laplacian Variance 1.22 0.96 1.18 1.12
Squared Gradient 1.28 1.43 1.30 1.34
Vollath F4 1.37 1.30 1.28 1.32
Netten Filter 1.61 1.43 1.27 1.44
Brenner Gradient 1.53 1.44 1.27 1.41
Tenengrad 1.43 1.53 1.49 1.48
Energy Laplace 1.55 1.65 1.63 1.61
Sobel Tenegrad

Variance ) 1.50 1.67 1.59 1.59
Genetic Programming 1.70 1.85 2.21 1.92
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Accuracy and focusing algorithm classification

To use the automatic selection of the best focusing algorithm, it has to be
assumed that the accuracy of the analyzed algorithms is close to zero. In this
case it is possible to rank the focusing algorithms based on their precision only. It
was proven that 12 of the 17 algorithms evaluated in this chapter can be related
to the manual measure and are normally distributed. Others however showed a
biased error (> 1 pm depth of view) from which it can be derived that the offset
is a systematic error, and from there that the biased algorithms measure a
different quantity than our eye does. Figure 66 illustrates the effect of bias
algorithms. In order to automatically select the best algorithm, the algorithms
have to be classified due to the fact that the surface reconstruction will by design
integrate any systematically existing offset, and put the fitted plane in the

middle of all measured focus positions.

To automatically classify which algorithms built a common accuracy class, a
histogram of all errors of all algorithms was created. The surface modeling did
not work out for all algorithms with non-binned images, binning therefore was
activated. Figure 66 illustrates the histogram for 100 sampling points, which
were taken in one well. As it can be seen here there are two different algorithm
classes. Table 4 breaks the accuracy classes down to the algorithms which create
them. Both classes and their algorithms belong of normally distributed focusing
algorithms. For non-binned images the author additionally found that some
algorithms cannot be classified at all, due to the fact that they provide error
values for both accuracy classes. Table 4 shows the mean error of each focusing
algorithm compared with a manual measure as well as the standard deviation
within a corresponding class. The error distributions of the algorithms were
evaluated using Q-Q plots. The result was that the algorithms which could be
classified uniquely were normally distributed, whereas the others algorithms
which were unclassifiable clearly are not distributed normally. The unclassifiable
algorithms therefore were excluded from further evaluations. As shown in Table
2 and Table 3 only the 12 remaining algorithms were evaluated. This leads to
the conclusion that algorithms which are sensitive for a different quantity cannot

be compared. Each carrier in the histogram shown Figure 66 in represents an
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accuracy class of characteristically different algorithms. Which means each offset
of a carrier can be explained by the fact that the sampled characteristic is
maximized in a certain plane in a dependable way. This characteristic is then the
main characteristic of the algorithm class (i.e. for contrast functions, the

frequencies; for power function, the intensity of the image).
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Figure 66 Error histogram of focusing algorithms
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Figure 67 Histogram of all errors of all focusing algorithms for binned images.
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Table 4 Accuracy classes of focusing algorithms

Alg.class Start End Focusing algorithm Count Mean StdDev

class 01 -32 -7 Energy_laplace 45 -17,67 2,21
Abs_gradient 91 -17,65 1,76
Laplacian 98 -17,60 1,72
Laplacian__variance 84 -17,50 1,70
Hist__entropy 81 -15,98 2,95

class 02 -7 20 Abs variance 99 -3,46 1.40
Energy laplace 55 -1,04 2,81
Image power 91 -0,82 2,51
Vollath 5 91 -0,82 2,51
Variance 99 -0,63 2,55
Edgegradient 98 -0,41 2,14
Genetic programming 99 0,29 2,68
Squared gradient 99 0,97 1.83
Laplacian__variance 16 1,00 3,27
Tenengrad 99 1,04 2,65
Netten filter 99 1,06 1.87
Vollath 4 99 1,18 2,62
Brenner gradient 99 1,27 2,77
Sobel tenegrad
variance 99 1,29 2,72
Hist__entropy 19 5,26 7.16



Applications: of the ARCO algorithm 161

Table 5 Algorithm classes with binned data.

Alg.class Start End Focusing algorithm Counts Mean Std.dev

class 01 -6 -2 Tenengrad 100 0.20 1.48
Vollath 4 100 0.38 1.45
Brenner Gradient 100 0.39 1.50
Netten Filter 100 0.49 1.51
Sobel Tenegrad Variance 100 0.52 1.62
Squared Gradient 100 0.54 1.49
Laplacian 100 0.54 1.31
Edge Gradient 100 -0.61 0.68
Hist Entropy 100 0.61 9.39
Laplacian Variance 100 -0.73 3.11
Energy Laplace 100 -0.79 2.42
Abs Gradient 100 -0.80 0.77

class 02 -2 6 Genetic Programming 100 -1.43 1.73
Variance 100 -2.32 1.29
Image Power 100 -2.91 2.05
Vollath f5 100 -2.93 2.04

Absolute Variance 100 -3.96 0.82
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Outlier detection using the surface model as a reference

Due to dust, noise, and other unspecific signals the local focus plane finding
can be irritated. Even the top five focusing algorithms evaluated showed outliers
(Table 6). For normally distributed functions 99.73 % of all measurements will
lie within +30 of the Gaussian distribution. Outliers can be defined therefore as
values outside the +30 range. The detection of outliers is important due to
different aspects. The automatic selection, as well as the classification of focusing
algorithms, need to have dependable statistics. Above all the data analysis needs
to be able to automatically exclude outliers, to provide dependable results.
Therefore, in order to detect outliers, a model of the low frequency surface can be
used. Presuming that the objects of interest are distributed around a low
frequency waviness of the surface, the surface reconstruction explained above can
be sufficient to estimate the amplitude of the error of the high frequency
distribution around the focus plane. For the evaluation a fixed threshold of 5 pm

(on average = +30) was used to make the results more comparable.

Accelerating the focusing step using sub-sampling

In order to speed up the focusing step previous knowledge gained by
incrementally modeling the surface helps to scan the specimen from an optimized
starting position at each sampling point. Furthermore the focusing can be
accelerated by terminating the focusing as soon as possible after detecting the
global maximum of the focusing algorithm. The idea is to model the surface of
the slide with a small but sufficient number of sampling points to start the
focusing step of the interpolated sampling points with a height map. After the in-
focus position was measured, the global maximum search should determine the
in-focus plane as fast as possible. To decrease focusing time, the maximum search
must be able to detect the global maximum “on-the-fly”, which needs a dynamic
extremum search [143] and a model-based curve fitting [144], without knowing
explicitly which values might appear outside the scanned volume. A maximum is
generally characterized by the fact that the predecessor and successor values are

smaller than the current one. Since a microscope normally has to work for a
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variety of samples, the system design of an autofocus system has to be stable
against multimodal functions however. Local and global maxima hence have to
be discriminated. The presumption used here is that the global maximum has a
higher steepness than a local maximum. A global maximum peak can contain
more than one value. Measuring the steepness between the current value, two
values before and two values after the current value helps to dependably find the
maximum. Ambiguity in this case often comes from dust particles which can

generate false global maxima.

Figure 65 illustrates the workflow how to accelerate the focusing step. First
one well is sampled with an equidistant grid of 10x10. Second the best focusing
algorithm has to be determined automatically. Because the automatic selection is
based on the ranking of the standard deviations of the focusing algorithms, this
step ensures two fundamental principles. The first principle is to maximize the
number of in-focus images, and the second is to minimize the standard deviation,
which will influence the actual acceleration of the autofocus system. To find the
best focusing algorithm therefore is a fundamental step towards solving the
conflicting goals of speed and quality. The third step has to determine the fastest
sub sampling rate. The best focusing algorithm, as well as the sub sampling rate,
will finally be taken for all others wells. Optimizing the focus starting position to
be as close as possible to the in-focus plane helps to avoid wrong maxima
detections, because dust often can be found on the surface of liquid rather than
on the surface of the carrier. The acceleration is calculated based on the following

formulas:

Z range (Eq-ZO)

measurementSgeatic case = nm

3%x0 (Eq-21)

Z range
-)—————+2
(=) stepwith

measurementsSgynamic case = M m

) number of adaptive measurements (Eq-22)
acceleration = - -1
number of static measurements
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Table 6 Outlier detection statistics using the surface model and a fixed threshold of 5

nm.
Number of outliers

Focusing algorithm Well01 Well02 Well03 Well04 All wells
Edge Gradient 3 2 0 0 1.25
Absolute Gradient 15 1 0 0 4.00
Laplacian 3 3 0 0 1.50
Laplacian Variance 30 7 5 8 12.50
Squared Gradient 2 4 2 0 2.00
Vollath F4 4 3 3 1 2.75
Netten Filter 2 2 2 1 1.75
Brenner Gradient 4 1 2 2 2.25
Tenengrad 4 1 1 1 1.75
Energy Laplace n.a. 8 2 4 4.67
Sobel Tenegrad Variance 3 3 1 0 1.75
Genetic Programming 4 3 1 1 2.25
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Table 7. Accelerations factors based on standard deviations. The average is built out of
well 02-04 only because Well01 shows bad results because the Absolute Gradient is not

suitable for non-binned images.

Standard deviations Acceleration
Nr. of sampled
spots Well02 Well03 Well04 Well02 Well03 Well04 Average
4 3.67 3.14 3.23 440% 329% 298% 355%
9 3.22 1.94 2.08 375% 392% 356% 374%
16 2.72 0.84 0.98 294% 387% 362% 347%
25 2.73 0.77 0.86 199% 248% 240% 229%
36 2.73 0.74 0.85 131% 156% 151% 146%
49 2.71 0.75 0.86 83% 94% 92% 90%
64 2.68 0.73 0.84 47% 52% 51% 50%
81 2.65 0.73 0.84 20% 22% 22% 21%
100 2.65 0.72 0.83 0% 0% 0% 0%
400% -
5  300% -
=
©
—
<@
[0
S 200% -
<
100% -
0%

4 9 16 25 36 49 64 81 100

Positions

Figure 68 Acceleration of focusing by approximating the surface. The less positions are
measured, the higher the approximation error is, but the higher the overall acceleration
becomes. An acceleration of 374% could be reached if only 9 positions are measured and

91 positions focused based on an estimated focus position.
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4.5.4 Results

Surface modeling

The first and second order approximation caused systematic error; whereas a
third order polynomial was sufficient to minimize the average error of the
approximation under the optical depth of field of 1 pm and within the range of
the manual measure standard deviation (1 pm). In the implementation an
incremental approach was used to asynchronously recalculate the surface model
with each new measured focus position, which helped to gradually improve the
precision of the approximation and make the estimated focus positions more

dependable.

Automatic selection of the best focusing algorithm

The number of in-focus images within the top 12 algorithms could be doubled
from 45% (genetic programming) to 90% (edge gradient), although the manual
evaluation showed an average accuracy of the focusing algorithms which was
almost the same (Table 1). The new focusing algorithm, which the author called
Edge Gradient, was ranked among the best algorithms. It could be shown that it
is stable against noise in non-binned images, whereas the Absolute Gradient
failed for noisy images. With the Edge gradient algorithm, the highest amount of
in-focus images was obtained. However using the automatic approach the
Absolute Gradient performed best for binned-images. In order to automatically
select the best focusing algorithm, a pre-classification of the algorithms is
necessary. It was shown that only 12 out of the 17 algorithms evaluated belong
to the same analytical class as the manual measure by the human eye. In
addition the surface model was a suitable reference to detect and exclude outliers

after selecting and using the best focusing algorithm.

The main result of the comparison shown in Table 2 is that the automatic
approach using a surface model is positively correlated to the manual approach,
which proves that it can be used to automatically select the best focusing

algorithm. The ranking of the automatic approach is slightly shuffled however. It
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can be assumed that the manual measure has errors itself; the ranking after the
amount of in-focus images is tendentially correct related to the manual measure
as the ground truth. The precision of the manual measure was below the depth of
field of 1 pm. It can be assumed therefore that the chosen algorithms catch the
correct focus plane within the ambiguous range of 1 pm. The best focusing
algorithm by the number of manually counted in-focus images was the Edge
Gradient, which was introduced by the author, with 91.67% in-focus images. The
second best focusing algorithm in this ranking was the Absolute Gradient, with
89.33% images in-focus. These values are very close to each other, however
subtracting the error of the manual measure as a reference could alter this close
ranking in a way that the ranking will become identical to the automatic one.
The automatic ranking using the surface modeling as a reference showed that the
Absolute Gradient is the best algorithm for binned images. Furthermore, the
evaluation showed that ranking after the accuracy is not suitable, because it is
not correlated to the number of in-focus images. The precision of focusing
algorithms in contrast gives a dependable impression as to how many images will
be in-focus, once the accuracy of the algorithms is below the depth of view. The
problem of the precision measurements on the other hand is that outliers can
influence the mean value, and thus the standard deviation. Outliers therefore
need to be excluded automatically in order to receive dependable statistical

variables.

Acceleration
The maximal acceleration which could be reached was 374% with a second
order fitting of the surface as can be seen in Figure 68. The detailed precision

measurements are described in Table 7.
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4.5.5 Conclusion and Discussion

This chapter presents an approach for how to automate the selection of the
best focusing algorithm for experiment specific data, and in combination with
outlier detection improve the number of in-focus images. The surface modeling
also was evaluated to provide a basis for the acceleration of the focusing step. It
was shown that focusing algorithms evaluated can differ in the number of in-
focus images by a factor of two. After automatically choosing the best suitable

algorithms, the focusing step could be accelerated three- to fourfold.

Our original hypothesis was that a surface modeling can dump our precision
errors and reconstruct the focal plane. The author has compared his method with
a manual evaluation, and it could be shown that the automatic selection of the
most precise algorithm is possible, and our hypothesis holds true. To be able to
do this, however, the algorithms have to be within the algorithmic class of the
manual measure, meaning that their accuracy is below the depth of view. The
author showed that some evaluated algorithms display systematic errors, from
which he derived that they measure different qualities that our eye does. Finally,
reducing the number of images taken in the focusing step decreases phototoxicity
and bleaching, and increases the throughput, especially for time lapse
experiments. Our method addresses this critical part of microscopy and can
successfully reduce the amount of necessary images to find the focal plane, while
maintaining the maximum amount of in-focus images. Our method could be
widely implemented, not just based on nuclei, but also on all applications where
the surface bounding has a low frequency and the biological offset of the marked
part of the specimen is constant. In addition, in the future this knowledge could
be shared in a cloud, in which algorithms are available as image quality
improvement strategies for different kinds of experiments. Operators would then
not just benefit from a local selection of image quality improvement strategies,

but rather from prior and shared common knowledge.
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4.5.6 Appendix
A1 Focusing algorithms

Absolute Gradient [147]. This algorithm sums up the absolute value of the
first derivative:

Fabsgrad = Z Z |i(x + 1'37) - i(x'Y)l (Eq_23)
Height Width

Squared Gradient [147]. This algorithm sums squared differences, making
larger gradients exert more influence:

Fagraa= ). ) (+1y) = iGoy)? (Eq-24)
Height Width

Brenner Gradient [46]. This algorithm computes the first difference between a
pixel and its neighbor with a horizontal/vertical distance of 2.

FBrenner = z z (i(x +2, }’) - i(x::)/))z (Eq-25)
Height Width

Tenenbaum Gradient (Tenengrad) [46, 148]. This algorithm convolves an
image with Sobel operators and then sums the square of the gradient vector
components.

Frenengraa = Z Z Se(x,y)? + Sy(x, y)? (Eq-26)
Height Width
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Laplacian [139]. This algorithm convolves an image with a Laplacian

convolution mask of:

0 1 0
L=|1 -4 1 (Eq-27)
0 1 0

Laplacian Variance [149]. “Continuing with these approaches, the best-in-
focus image for in the stack, according to the Laplacian gradient magnitude

variance, will be the image with highest variance, in this context
fer={fx where MAX(N(LPVFM,)) (Eq-28)

where LPVFM:is a vector containing normalized values.” [149]

Energy Laplace [150]. This algorithm convolves an image with a Laplacian

convolution mask:

-1 -4 -1
L=|-4 -20 -4 (Eq-29)
-1 -4 -1

Vollath’s F4 [151]. This algorithm is defined as:

Foow= ) > gGNgG+1)= > > gG))gi+2)) (Eq-30)

Height Width Height Width

where g(i, j) is the gray level of. This algorithm computes the autocorrelation and
is robust against noise.

Sobel-Tennengrad Variance [149]. “The best-in-focus image f sr in the stack
based on the Sobel-Tenengrad gradient magnitude variance will be the image

with highest variance in the sense

fer={fi where MAX(N(STVGM,)) (Eq-31)

where STVFM;is a vector containing normalized values” [149]
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Netten filter [152]. The filter is computed with

Frewen= ). Y (x+1,y) = i(x = 1,)? (Fq-32)

Height Width

Genetic Programming [153].

Edge gradient. This thresholded algorithm sums the gradients at the edges of
the foreground:

Fgage = Z z (foreground(xy,y;) — background(x,, y,))* (Eq-33)

Height Width

where foreground > (mean+ xo() (here x is 0.5) and background < mean.
x1,y; are pixels which were classified as background. x,,y, are the nearest

neighbor pixels of x;, y;, which are classified as foreground.
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4.6 RFT (Re-Focusing Trigger)

4.6.1 Abstract

Autofocusing is an elementary technology for automated imaging. Crucially,
the significance of the analysis output is a function of the initially acquired raw
data and therefore strictly controlled in order to minimize error propagation. In
high-throughput microscopy the balance between image quality and acquisition
rate is a fundamental optimization step. The auto focusing step represents a
relevant target for increasing the throughput of microscopes and the sampling
rate for live cell screens. Improved focusing methods have the potential to both
minimize photobleaching and phototoxicity, and increase sampling speed.
Avoiding unnecessary focusing steps therefore is a central challenge to optimize
the process. In live cell imaging the focusing step has to be performed on run
time in order to ensure that images are still in focus. This lowers the throughput
of the microscope and increases phototoxicity. We propose a refocusing trigger,
which triggers a refocusing only on demand. This logic was implemented in the
LifeXplorer framework, offering highly dependable logic execution. It was tested
with an Olympus IX 81 as well as with a Nikon Ti-E fluorescence high-
throughput microscope. The refocusing speeds up the imaging throughput up to
threefold and could reduce the phototoxicity by half. This method can easily be

integrated to existing microscopy environments.
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4.6.2 Introduction

Rapid, high-resolution imaging is emerging as an essential tool in quantitative
biology. Since data analysis depends on the incoming data, the data quality of
the raw images in light microscopy is highly relevant for effectively gaining
insights into biology. In high-throughput microscopy a conflicting goal is to
provide fast imaging on one hand, and on the other hand to retain the quality of
the data acquisition. One of the most important perquisites for high-quality data
is precise focusing. The accuracy of focusing algorithms differs with different data
and therefore the choice of the best algorithm depends on the experiment. This
can be seen in the literature [2, 3, 139] where the evaluation of focusing
algorithms has shown different results, depending on varying data. Within one
image, optimized estimations of the focal planes of single sub areas can be
computed. Image stacks can be cut into sub areas, and for each of these areas the
focus position can be calculated separately [154]. This has in addition shown that
the focus position is related to the physical unevenness. In order to speed up the
focusing step, a sub sampling of the observed area can be used [141]. Several
patterns, i.e. a regular grid or more sophisticated ones using Halton sampling
points, can be used to increase speed. In addition different adaptive algorithms
with variable z-steps can be used to accelerate the focusing step [1]. Pre-
processing the acquired raw data before computing the in-focus plane was
analyzed to be suitable to generalize the usage of focusing algorithms [142]. All
published methods however focus on optimizing the focusing algorithm, but do
not answer the question if, and especially to which extent, the re-focusing in live
cell imaging step itself is necessary. From the ARCO principle it can be derived
that also the scheduling of a task itself can be simulated first, in order to check if

the result-costs ratio is higher if a task is performed or not.

A refocusing trigger therefore is proposed in this thesis, which triggers a
refocusing only on demand. It is based upon the ARCO principle. The refocusing
trigger logic was implemented in the LifeXplorer framework. It was tested with
an Olympus IX 81 as well as with a Nikon Ti-E fluorescence high-throughput

microscope. The refocusing speeds up the imaging throughput up to threefold and
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could reduce the phototoxicity up to twofold. The method can easily be
integrated into existing microscopy environments. In order to provide high
available logic execution, specialized bindings were introduced into the
LifeXplorer framework. The controller logic of the organic computing network
was modified such that memory afflicted workflows can be run redundantly,
synchronizing necessary information between each other or alternately computing
a workflow completely redundant on runtime. The last method, which can be
called a hot standby, ensures that the refocusing trigger is computed in parallel

and the task controller in the microscope can identify redundant signaling.

4.6.3 Material

Hardware, Software and Development Environment

The experimental setup consists of a motorized inverted microscope
(Olympus IX81), a frame grabber (Matrox Meteor-II) and a CCD camera
(Hamamatsu C9100-02). The motorized inverted microscope has a minimum
focus step width of 0.01 pm. Two objectives were used, a 10x objective (Olympus
UPlanFL, 3 pm depth of field, NA 0.3) and a 40x objective (Olympus LCPlanF1,
1 pm depth of field, NA 0.6). The microscope was observing in the brightfield
mode. The focusing workflow employs two different axial steps for different
magnifications [1]. 200 sampling points were measured with 5 pm axial steps
using a 10x objective and 1 pm axial steps using a 40x objective. The 40x images
were taken without binning and 60ms exposure time. For lateral sampling a
10x10 regular grid with an accuracy of 900 pm was taken in each chamber. Two
wells were imaged. The sampling time was 15 min. The automation of the image
acquisition routine was implemented in C# and C++ using the native serial port
commands of the specific hardware units. Both were integrated using our

distributed microscopy framework called LifeXplorer.
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Biological samples

Human MCF7 breast cancer cell lines (Cell Line Services, Heidelberg) were
maintained in DMEM/10% FBS/L-glutamine/non-essential amino acids /
penicillin / streptomycin / amphotericin B (Invitrogen). Cells were plated in 8-
well microscopy p-slides (iBidi) at a density of 20,000 cells per well. To label
nuclei, cells were incubated for 15 min with Hoechst 33342 at a concentration of

1 ug/mL at 37C.

Figure 69 Cell nuclei of MCF7 cells

4.6.4 Methods

The refocusing trigger logic is based on the idea that focusing is only
necessary if the quality of an image drops under a configured threshold. The
quality can be measured with diverse algorithms published in the related
literature [2, 139]. In this thesis the Absolute Gradient and the Brenner Gradient

were taken.

Absolute Gradient [117]. This algorithm sums the absolute value of the first

derivative:

Fabs grad = Z Z lix+1,y) —ixy)l (Eq-34)
Height Width

Brenner Gradient [46]. This algorithm computes the first difference between a

pixel and its neighbor with a horizontal/vertical distance of 2.
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Fprenner = Z Z (1(X +2,y) —ix Y))z (Eq-35)

Height Width

As it can be seen in Figure 70, after the first focusing step, the value of the
quality of the in-focus image is stored. In the next runs, the focusing step is not
automatically performed anymore. Instead images on each configured sampling
point are taken and the quality of the image is always measured in addition. The
value of the image quality is then related to the initially measured value. If the
currently measured quality drops below a configured threshold, i.e. 90% of the
initial image quality, the refocusing trigger logic triggers the microscope to
refocus a position. Two different behaviors can be configured regarding how to

treat the existing history after the trigger signal is sent to the microscope.

- Focussed image quality Quality break-in: refocusing triggered !
|mage Quality recovered back to maximum
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Figure 70 Contrast quality over time.

History management

Once the logic detects that a refocusing is necessary:

1. The history of the trigger logic is deleted so that the new value measured
after refocusing the position is considered as being the initial measurement

again.

2. The initial value stays the same
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The first behavior is supposed to be the default behavior, since it is not clear how
the fluorescence signals change over time, or if the initially measured value is also
suitable as a constant reference over the time. In principle, it is only important
that the reference value comes from an image in focus. The second behavior
however is possible if the quality of the image over time is controlled by
additional methods. I.e. if ASEC (Application Specific Exposure Control) is
activated and configured to stabilize the Signal/Noise ratio over time, the initial
value can be kept, since ASEC will try to force this value to remain stable over
time. In this case it becomes obvious how different methods have to be
harmonized and the execution of tasks has to put into a well-defined order.
ASEC i.e. has to be run after the focusing logic is completed. Otherwise the re-
focusing trigger logic might not detect a focus drift, because the overall contrast

of an image is stabilized by the re-adjustment of the light exposure.

Trigger scheduling

As it can be seen in Figure 73, received trigger signals are stored in a buffer
first. Depending on the configuration, the scheduler can then decide if refocusing
a position is directly performed after the current position is imaged, or
alternately if all trigger signals in the buffer are handled after the current

imaging run is finished.
Once a trigger is received, two different behaviors can be configured:
1. Schedule refocusing of the position as the next task

2. Schedule refocusing of all positions in the refocus trigger buffer after all

positions are scanned.

Both scheduling alternatives can cause completely different behaviors. The
first configuration is more powerful, because it always allows all possible
configurations of the refocusing management as follows. After a position is
refocused, a measured offset between the old and the new position can be added
to other positions, without explicitly refocusing them. Depending on the real-time

conditions, the first behavior however can be critical, since the sampling time of
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the positions that are imaged afterwards can be changed. For the second
behavior, in the spare time after the imaging is done, the refocusing triggers can
be performed. The advantage of this behavior is that only the positions which
need to be refocused will have a dynamic sampling time. The disadvantage in
contrast to the first behavior can be that one single refocusing step causes that
all positions which are taken afterwards will not be in real-time anymore. For
both behaviors the sampling rate should be higher than the actual imaging time.
How much higher is obviously an estimation based on how much refocusing is
necessary, and certainly needs to be based on previous knowledge about the

experiment.

Refocusing management

Once a position is refocused, three different behaviors can be configured:
1. The focus is changed only for the refocused position
2. The focus is changed for all positions of the same well

3. The focus is changed for all positions

The first behavior is the default behavior. Each position is treated individually
and the triggers do not correspond to each other. The handling of this behavior is
the least complex one. In the case of redundant trigger logic execution, trigger
signals for each position in the same run have to be processed only once to avoid
unnecessary refocusing on positions which were refocused already. The second
behavior however causes a more complex handling of the trigger signals. The task
scheduling in addition has to be aware of this behavior as mentioned above. Once
positions are changed either by a physical or a computational refocusing, triggers
for this position should be discarded. In the scheduler logic each signal has a
unique key and meta information, including the task, the position, the well, the
channel, the configuration and the run index. Having configured the propagation
of the measured focus offset to other positions, tasks can virtually be created in

the scheduler as if these positions had actually been refocused. As the scheduler
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by default will not perform the exact same task twice, in order to be stable
against redundant requests, it will then automatically discard all incoming

triggers for positions which are changed computationally.
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Figure 71 Refocusing trigger configuration form

The behaviors explained above can be configured in the Life Explorer Microscope
Management System by an administrator. The form shown in Figure 71 in
addition makes it possible to simulate trigger signals, execute them manually,
and track the Z positions over time. In principle it was integrated to run the
experiments mentioned in the results part to get a first impression about the

possible options.

Redundancy management

Figure 72 illustrates how the redundancy management for the refocusing
trigger logic is implemented. Each sampling point is routed to its own subnet.
This practically means that the whole computing workflow for all optical
channels is always handled by the same nodes for the same sampling point. By

default, the controller of the computing network, in this case the LifeXplorer
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computing cloud controller will dynamically push tasks to resources with the
lowest workload. For memory afflicted workflows however the dynamic
scheduling is not suitable. Once a node stores historical information used by the
workflow logic (here the refocusing trigger) the scheduler has to bind the
sampling point to this node. At the same time redundancy for highly available
workflow execution should be possible. As can be seen in Figure 72 the green
arrows lead to the same node. In the LifeXplorer framework it is possible to fix
the binding between a module and a node. The last module in the case of the
refocusing trigger logic is the decision support system, which finally sends a
trigger signal to the microscope, or not. This module depends on historical
information about the image quality as explained above. A module in addition
can be marked as highly available in the graphical user interface. It will then get
a fixed list of computing nodes, on which it will be executed. Practically this
means that the controller will not always schedule a processing task redundantly
on the exact same nodes. In addition, the routing information for the preceding
processing steps needs to be adapted so that the relevant inputs are linked
redundantly to the corresponding nodes. Figure 73 visualizes the communication
topology in more detail with all the relevant modes within the microscope control

logic, along with the processing logic for the refocusing trigger.

Subnet 1

Subnet 2

e

Figure 72 Different sampling points are computed in seperate subnets
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On the microscope host computer the hardware control logic is executed. The
basic imaging workflow is to focus a position, to scan it, and attach the image
with a configured task to a distribution worker. This worker sends images and
receives tasks. This unit is completely asynchronous to the imaging workflow.
After the image is scanned, the next spot can be scanned or the workflow pauses.
After it has paused, the scanning is continued if the refocus buffer of the task
manager is empty. If it is not empty, the refocusing step is performed. If and
when exactly the refocusing is done depends on the concrete system behavior,
explained above. The distribution worker sends the image of a sampling point to
the virtual microscope unit, which normally is run either on the microscope host
node as well or as closely as possible, in order to avoid unnecessary
communications delays. The virtual microscope unit integrates three essential sub
modules, a receiver, a router and a feedback manager. Receiving the image from
the sender unit of the distribution worker on the microscope, the controller logic
will have to create binding between the sampling point and at least two different
nodes in order to ensure high availability of the refocusing trigger logic.
Measuring point 1 in Figure 72 will be bound to worker2 and measuring point 2
to worker 3. In addition the redundant “hot spot” for the trigger logic of
measuring point 1 will be worker 3. This can be seen in the figure by the fact
that the calculated gradient in worker 2 will be sent to the history manager of
both worker 2 internally and worker 3 in addition. This means that the last
image quality stored is always saved on two different nodes. If the node of worker
2 fails, the observer of the LifeXplorer network will detect it and communicate it
to the controller. The controller then will switch the task processing for

measuring point 1 to worker 3.
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Figure 73 Refocusing trigger implementation in all LifeXplorer components

Since the history manager of worker 3 stores the relevant information for
measuring point 1 already, no loss of information is caused by the breakdown of
worker 2. The decision support system of worker 3 will then be executed twice
with two different inputs for both measuring points. The refocusing trigger
signals will be sent to the virtual microscope worker, where they can be passed
through or sorted out in order to avoid double tasks in the microscope control
logic. Both are possible, since the microscope task scheduler will additionally sort
out double entries. To evaluate the refocusing trigger logic, two basic
measurements were taken. The time to return and the frequency of the triggers
were measured. Both evaluation results are presented in the next chapter. In the
materials part, the hard- and software setup as well as the biological sample are

described.
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4.6.5 Results

In Figure 74 200 sampling points were measured with a sampling rate of 15
min over 6 hours. The refocusing trigger logic was configured to fire an event
once the image quality drops below a relative value of 95%. The quality of an
image was measured with the Brenner Gradient [46]. Once a trigger signal was
sent, the current run index minus the last run index of the last trigger signal was
saved. Later these frequencies were multiplied by 15 again in order to scale them
with the sampling rate. The histogram of all frequencies was plotted then in
Figure 74. As can be seen here, the distribution of the trigger frequencies can
roughly be approximated with a Gaussian distribution curve. The average
frequency was 172.3 min. 251 triggers were sent over time, which is equal to 5%
of the 4800 images taken. This means that the refocusing was only necessary on

average every ~180 min and only in 5% of the cases.
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Figure 74 Trigger distribution over time.

The acceleration of the imaging can be approximated with:

. Screening Time + FocusingTime
Acceleration =
(Eq-36)

. . , , Avg.TriggerCount
ScreeningTime + FocusingTime * SpotCount
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The measured results lead to the following acceleration:

. S5min + 10min
Acceleration = = 2.73 (Eq-37)

. , 10
5min + 10min = 200

The acceleration by the refocusing trigger was 2.7 fold.

The phototoxicity reduction can be approximated with:

P(Screening) + (Avg.Rel.TriggerCount) * P(Focusing)

P.reduction = 1 — Eq-38
reduction P(Screening) + P(Focusing) (Eq-38)
P phototoxicity
The measured results lead to the following phototoxicity reduction:
b reduction < 1 LH005*25 (Eq:39)
.reduction = 1725 = 0} q

On average the refocusing algorithm takes ten images, binned. The refocusing
trigger logic works on the primary imaging data, which were non binned images.
The exposure time of the focusing step is then reduced fourfold in relation to the
imaging exposure time, since the focusing is done on 2x binned images. In the
same time ten instead of only one image is taken, which leads to a total exposure
time of the focusing that is 2.5 higher than the imaging to take one single plane,
as it was done in the experiment. It was furthermore assumed that the
phototoxicity is on average linearly related to the exposure time, which means
that the reduction of the exposure is directly related to the reduction of the
phototoxicity. Taking these assumptions and the numbers mentioned above, the

phototoxicity is reduced 71%.

To calculate the latency of a refocusing trigger signal, the Brenner Gradient [46]
was taken. The Absolute Gradient [117] was not considered anymore after it
become obvious that it is not as stable against noise as the Brenner Gradient.

The latency statistics are illustrated in Figure 75. The measured deviation of



Applications: of the ARCO algorithm 185

the latencies can be approximated with a Gaussian distribution curve. The
average latency was 707 ms. The standard deviation is ~200 ms. This deviation is
caused by the fact that software is run on a normal Windows operating system
where others tasks are executed in parallel and no real-time ability is guaranteed
by the scheduler. However the average latency is still fast enough to suit a soft
real time of 1 second on average. This means that the trigger logic on average
can react below 1 second. The focusing on average took twice the time of the
imaging time. Having on average only 5% of the spots which need to be
refocused, the spare time for the imaging run in addition only needs to be 10% of
the sampling rate. Although the refocusing trigger logic was hosted only on one
single node, the performance was still suitable enough to cover soft real-time

needs.
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Figure 75 Trigger latency distribution

4.6.6 Conclusion

The refocusing trigger approach is a derivation of the ARCO principle. A
refocusing step should only be executed if necessary. The result in this case is
quality of the image. If this quality drops below a configured threshold, the costs
to lose this quality can be configured as being high enough to rather send a

trigger signal to the microscope in order to re-adjust the focus and thus the
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quality of the image. The method was evaluated and it showed that the
refocusing trigger could reduce the phototoxicity of the imaging 71% and at the
same time accelerate the imaging throughput 2.7 fold. Only in 5% of the cases
was a refocusing necessary. This means that depending on the application and
the environment, the focusing step can be optimized due to the fact that it is
only performed on demand. The approach of triggering a refocusing task is
independent from the focusing algorithm itself. The possibility to reduce
phototoxicity and to accelerate the focusing step in life cell imaging is very high.
Besides algorithmic optimizations of the focusing itself, this optimization can help
to increase the Result/Cost ratio immediately without changing the existing
focusing algorithms. The relevant literature did not consider that the throughput
of live cell imaging is significantly dependent on the refocusing step. It was
furthermore not considered that the task to refocus a position is not always
necessary, and that the need to refocus a position can be derived from the

primary imaging data as well, without creating additional redundant data.

4.6.7 Discussion

The refocusing trigger introduced here is based on the idea of aggregating the
quality of an image into one single number. Practically each object in an image
can have its very own focus plane and the mean value for the whole image might
not be suitable. This especially can be the case if selected objects are tracked
over time, or if phenotypes of interest are tracked. Whole parts of an image
therefore might not be interesting anymore to answer the actual scientific
question. The focusing logic therefore has to be supported by region of interest
algorithms and make decisions based on single objects, rather than on the whole
image. Both the XY and the Z position might change over time and the focusing
step has to be separated into two parts: a rough focus plane estimation and a
single object based focus position estimation [154]. The rough estimation has to
be performed in order to ensure that the region of interest (ROI) algorithms work

as well as possible. After performing the ROI algorithms, the fine estimation of
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single focus positions has to be executed. Integrating these steps into a
microscope, it would be possible to do XY and Z tracking with the best quality
possible. In addition, the microscope could make autonomous decisions about the
number of Z planes on each position. If some objects drift out of the Z position
where an image was taken, the imaging could automatically be expended and
additional planes be taken. This way is would be possible to avoid taking
unnecessary images, while ensuring that the objects of interest are always in
focus in one of the acquired images. However the handling of the data would then
need to be smarter. Either an artificial image would afterwards have to be
created where all objects of interest are in focus, or the data analysis would need
to have structured knowledge about objects and where to find them. Both can be
critical since it increases complexity and thus the possibility of error propagation.
In this case, scientists would not be easily able to evaluate the data by
themselves. Even merging several focus planes into one image, most simply by a
maximum projection [155], can cause several issues. For example, the image
resolution is reduced, since the integrated volume is increased and all out of focus
signals of blurred objects are integrated and overlapped as well. Artificially
creating a merged image in any case needs a model that provides the lowest
information loss possible and ensures that the data analysis will not detect
artifacts of the merging. Eventually these investigations have to be done to
reduce the complexity of life sciences for scientists by increasing the complexity
of the decisions microscopes and others instruments autonomously make based on

the ARCO principle.



Chapter 5

Conclusion and Future work

5.1 Conclusion

This study introduced the Automated Result / Cost Optimization (ARCO)
algorithm according to standard experimental approaches, using existing
microscopy platforms. Phototoxicity [5, 6] and photobleaching [7-9] create
fundamental problems intrinsic to live-cell imaging and reduce image quality. It
is widely recognized i.e. that light exposure results in mitochondrial dysfunction
[33, 34]. Reduced illumination has been achieved via optimized pixel-dwell time
with specialized laser scanning microscopy [10, 11, 35-37], and through the
development of application-specific refocusing algorithms [1-3]. Integrative
platforms, including Micropilot [4, 27], employ machine learning to extract and
describe complex phenotypes. Machine-learning approaches can utilize generated
data to analyze factors underlying data generation. Such approaches are

emerging as critical tools in the field of quantitative biology [12, 28-32].

The effects of phototoxicity on mitochondrial bioenergetics and Golgi
reformation demonstrated that a) ARCO optimized the imaging’s quantitative
result value twofold (object count and segmented area) (Suppl. Figure 5) and
b) minimized the impact of the acquisition process on the observation.
Phototoxicity was reduced 3-6 fold in both experiments. The evidence thus
suggests that artifacts stemming from the imaging process were almost

eliminated (Figure 51 and Figure 52).

Implementing ARCO in LifeXplorer during run time enabled the experimenter
to optimize dynamically the parameters. ARCO therefore renders obsolete costly
trials of sequential data acquisition and evaluation. The decisions based on
ARCO might appear as non-intuitive to the inexperienced user, as in the example

demonstrating how images with a low signal-to-noise ratio result from the
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optimization of illumination (Figure 42). This appearance stems from the fact
that the algorithm optimizes quantitatively for the scientific question but not for
bright images with a high dynamic range, as in the case of the user. Decisions to
optimize the imaging workflow during runtime are based on an extensive
knowledge of wusing precise physical and biological models. Having now
established a general method for optimizing the efficiency and effectiveness of
experiments, the ARCO algorithm can be applied to additional experimental

parameters, forming a critical component of testing and validating a hypothesis.

I applied and evaluated ARCO for three reasons: first, to minimize a
technical parameter such as light exposure (or sampling and refocusing rate), and
to reduce phototoxicity and photobleaching; second, to select an optimal
algorithm to evaluate the acquired data. And third, to combine both approaches
and to provide an owerall system optimization. Further concrete imaging issues
were addressed, as was shown in this thesis in chapter 2 and chapter 4.
Modifying the measuring point, based on a model of the phenotypes of interest,
enables ARCO to maximize the amount of relevant cells needed in the pre-

scanning step. The main hypothesis motivating this research was:

“Models of biological systems can be used in automated acquisition and
analysis systems to optimize parameters of scientific experiments.

Automated systems thus enhance information density and content.”

In short, this thesis confirmed the hypothesis above and found that the
Automated Result / Cost Optimization algorithm implemented in LifeXplorer
provides a powerful and adaptable tool for optimizing data acquisition and
analysis during runtime. Furthermore, the thesis demonstrated that ARCO can
be applied to other experimental parameters, such as focusing algorithms,
sampling time, stacking, resolution and magnification. Future algorithms can be
annotated in runtime to explain which experiment specifications worked best
with which parameter-sets. ARCO and LifeXplorer finally can lead to an
evolutionary network, which supports imaging and data analysis optimization

based on subjective scientific questions and experiment specifications.
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5.2 Future work

5.2.1 Genome In A Day
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“Genome in a day” is the challenge to sequence (and analyze) the whole
genome in one day. The challenge also envisions imaging the whole genome with
one microscope in one day, which, however, far exceeds the capacity of current
technologies. “Genome in a day” implies rather the employment of multiple

lenses in the sequencing of the whole genome.

A number of technological advancements have been made that make
plausible the sequencing of an entire genome in one day. Firstly, commercially
available sequencers have vastly increased processing speeds; what used to take

over a year can now be done in a matter of weeks (sequencing and analysis), a
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rate of improvement that suggests ever-increasing speeds. Secondly, the costs of
sequencing a whole genome have markedly been reduced, from $2.7 billion (1990
till 2010) to $1.000 (2004). Because of these two points, this study believes that

sequencing and analyzing a genome in one day will soon become a reality.

Today, the methods involved in researching biological systems are called high
throughput and next-generation sequencing methods. Modern sequencers have
been used to produce the large quantities of data located at storage facilities in
the International Cancer Genome Consortium (ICGC). “The ICGC was launched
to coordinate large-scale cancer genome studies in tumors from 50 different
cancer types and/or subtypes that are of clinical and societal importance across
the globe. Systematic studies of more than 25,000 cancer genomes at the
genomic, epigenomic and transcriptomic levels will reveal the repertoire of
oncogenic mutations, uncover traces of the mutagenic influences, define clinically
relevant subtypes for prognosis and therapeutic management, and enable the
development of new cancer therapies.” [102]. A few articles on Medulloblastoma,
a fast and aggressively growing tumor, have been published, stemming from
research undertaken at the ICGC. [156, 157]. Their approach in analyzing the
tumor is based on parallelizing the read out, an approach that has already been
successfully applied in other contexts. The technique of parallelizing the
measurement has been deployed in high-throuput microscopy. But it has not yet
been possible to create successfully a parallel microscope consisting of multiple
parallel microscopy units. Optical channels are split into different light paths;
this enables the illumination to be triggered successively and as fast as possible
for each channel. For future applications in microscopy, however, live cell
imaging will probably play a crucial role in gaining deeper insights into biological
systems. To measure the whole genome even time resolved, however, implies
parallelism of the observation units. Parallelism, on the other hand, provides a
limited approach, because it is not able to reduce complexity. It enables a much
faster read out but causes a huge variety of unwanted issues in the data
processing path. This thesis shows that real-time data selectivity increases
information density and makes more specific observations. By means of ARCO,

imaging can be made much more intelligently and its application can make
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experiments more specific and relevant. Combining hardware parallelism and

intelligence, however, addresses both speed and information densification.

In addition to generating a fruitful understanding of scientific automation,
this thesis aimed to research the effects of parallel microscopy on feedback-
controlled microscopy. The thesis detailed the architecture generally used to
parallelize data processing and feedback control units. Figure 76 depicts a
framework for concretely handling the massive amounts of parallel microscopy
units’ parallel data. It shows that workers abstract a processing node specialized
in processing and various management tasks. After the microscopy units are
distributed, workers are able to flexibly send data to the processing network
based on workload balancing techniques. A separate virtual microscopy unit exits
for each physically existing microscope unit. A workflow scheduler controls the
hardware and the computing workflow. The data processing is split into pre- and
postprocessing, while the data warehousing is split into an aggregation hierarchy.
First experiments indicated the importance of hierarchal data centrality. This is
because data management systems running on a single node or multiple CPUs
are not able to handle large numbers of objects in parallel. Database mangement
systems, like the Microsoft SQL Server, are generally designed and optimized to
provide high performance data handling. ARCO applications, however, may
depend on single particle information for multiple measuring positions, which can
even be an overload for a single instance database management system. Because
of this need they will have to be mapped on this hierarchical data-warehousing
design. As a first step, a database management system will be needed to handle
each measuring position. In a second step, all information of one experiment
should be aggregated, including information that exist in multiple measuring
positions. And, finally, all information can be stored in one database to create
final statistics and models. The post-processing path, however, is designed here to
be based on lower hierarchy levels, not on the highest levels of aggregation which
includes the information of all experiments and measuring points. Pre- and
postprocessing generate feedback the virtual microscope unit, which, if necessary,
can then add or change tasks in the global workflow scheduler. The scheduler

distributes the tasks either to the computing or hardware acitivity scheduler. The
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said design implies specifically that the microscopy units require eithernet ports
for sending data from their physical location to the distribution workers. The
microscopy units also need to have streaming functionalities to allow the imaging
to send data without additional pull-mode communications from the distribution
of workers. This architectural design of the units is necessary to avoid interrupt
overflowing on the software layers of the workers’ distributions, which can be
caused if too many cameras send data to the same distribution node. At the same
time, workload balancing and redundancy have to be possible, which means that
cameras operating during runtime can be configured to send their data to
different distribution workers. The architecture illustrated in Figure 76 offers a
preliminary plan for integrating intelligent, ARCO-based algorithms with parallel

microscopy.



5.2.2 LifeXplorer Open Network (LEON) — evolutionary ARCO

applications run on a shared computing network

The success of life sciences depends on its ability to handle complexity. Two
promising approaches lend themselves best to the successful management of
complexity. The first approach is reducing complexity as much as possible. The
second is managing complexity by means of automation. I suggest that the
approaches are not mutually exclusive; they ought to be combined. The success
of the first approach rests on the quality of the scientific questions being posed.
Scientific questions have to be intelligent and focused. In combination with their
answers they have to build a resilient block for others which they can work with.
Both approaches involve the employment of stable methodologies to make even
small scientific answers reproducible. Handling the complexity of manageable
scientific questions in the case of quantitative biology is still a huge challenge.
This is because the insight generation workflow is long and complex, independent
from the complexity of the scientific question at hand. In addition, there are a
wide variety of scientific questions being asked at this stage of the young field of
quantitative biology, too much to be answered at once. Even very focused and
intelligent scientific questions will bring about complexity. Even if the first
approach of reducing complexity is successfully performed, focusing on science
automation [26] becomes increasingly relevant. Automation, however, already
exists. From observation to mathematical models, automation is a crucial and
essential part of modern research. At the same time, automation cannot yet
significantly increase the reproducibility of scientific results. The main reason for
this could be that even if automation is implemented, it is still heavily bound to
expert knowledge and single persons or groups. This means that the accessibility
of existing, mathematically formulated knowledge - including ways to extract
image features, describe a phenotype, and make reliable statistics - is still
exclusive and local and often not generalized. The knowledge, however, to handle
a large variety of scientific questions exists in principle, but is distributed and

often not accessible by computers.



Conclusion and Future work 195

Automation comes into play when researchers deal with issues of accessibility
and the generalization of knowledge. A lab will greatly benefit from
understanding a certain biological system. Research becomes easier and straight
forward. Digitalization and world-wide knowledge sharing is key to reaching
higher levels of efficiency in the life sciences. Classifying and relating data to each
other creates knowledge. I therefore propose a network in which algorithmic
knowledge about experiments and the workflow of answering scientific questions
can be shared and easily used without the need for expert knowledge. The
working title of this project, to create such a network of knowledge and models
is: LifeXplorer Open Network (LEON). The idea behind LEON is that biologist
and other scientist literally ask scientific questions. LifeXplorer connects then
with LEON, asking for possible solutions to scientific enquiries. LEON loads and
communicates the relevant models of the measured quantities and the process
models, feature extraction and feedback control algorithms. This entire process is

illustrated in Figure 77.

Laboratory instruments, such as a microscope, are prepared and the samples
are created automatically in the future. After measuring the relevant information
and analyzing it with the algorithms, which were found to be suitable to answer
the initial question, the scientist then selects the result which he or she thinks is
most realistic and suitable. LEON, at the same time, learns which algorithms
work best in which situation. Eventually, this interactivity between operator and
LEON leads to an evolutionary learning of LEON. Any new data analysis or
model can be added, if the existing solutions are not suitable or no solutions exist
in the network. By adding both models and algorithms as well as assigning
experiment specifications with suitable measuring and analysis workflows,
scientists automatically and instantly benefit from their colleagues all over the
world. Certainly not everyone will be interested in such an approach, as it is
based on openness and knowledge sharing. Participants of this network, however,
will boost their efficiency. Others will be motivated to join, benefit from, and give

something back to the network.

The main features of intelligent microscopy and more generally intelligent

experiments will be based on the ARCO approach with an additional strategy
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involved: to not only change the parameters of an experiment to optimize the
result / costs ratio, but also verify results with LEON’s knowledge. This
additional function is a crucial enhancement and is necessary for the evolutionary

approach of LEON. Further research, therefore, has to be performed on this

topic.
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intelligence sharing of the systems biology community.

Figure 78 illustrates the LifeXplorer Intelligence Manager with several building
blocks controlling essential imaging parameters. It additionally features real-time
modeling. Each module here is an ARCO module that initially or even during
runtime dynamically adapts to the needs of the experiment by testing different
parameters and different data analysis algorithms. Preliminary evaluations of this
method demonstrate that the principle of this paradigm works not only for the
automated selection of different autofocusing algorithms, but also for
segmentation problems (s. chapter 2). Several algorithms for nuclei segmentation,

Golgi complexes classification, particle detection and tracking were put into the
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LifeXplorer Image Processing Library; they are managed by a class called
ObjectDetectionManager. As its name reveals, this class serves as a manager
class. Object detection algorithms can be registered through a proxy object called
ObjectDetectionSystem, as can be seen in Figure 79. The manager pattern in
this case already shows the principle of the LEON: it abstracts from the actual
algorithms. If the scientific question is based on a quantity and needs object
detection, like the number of cells in an image, the object detection manager can
be executed by the ARCO algorithm with an additional loop that sweeps through
all available object detection systems. It pinpoints which algorithm would most
efficiently maximize the result / costs ratio. This approach, however evaluated in

this thesis already, needs further research.
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Having explained and demonstrated the potential of ARCO by automatically
selecting the most suitable algorithms for a specific scientific answer, making use
of the LEON will now be explained. The abstract technical workflow in Figure
80 is relevant for building ARCO into an evolutionary network that learns to
answer scientific questions by intelligent measurements and data analysis
algorithms that are shared and annotated by scientists all over the world. Figure
80 depicts, in a sketch, relevant information in a lively and user friendly version
that caters to the needs of a non-expert audience. It contains all important
computing blocks when making use of LEON. The first step is to orally formulate
a question. A speech to text algorithm then digitalizes the information. Once the
experiment specification is digitized, a text mining algorithm extracts and relates
previously known information in the experiment’s specification. The operator, for
example, might have explained that he or she is interested in general in
autophagy dynamics and in more detail in cell nuclei and LC3 particles, and he

or she wants to learn about the aggregation of particles over time at 16
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measuring positions with a sampling rate of 30 minutes. The computer then
extracts keywords like “LC3” and “particles” and brings them into relation. In
this case, the ontology would be that LC3 is a subclass of particles, which is a
subclass of a cell object, which is a sub class of an object. Furthermore, the

imaging setup can be extracted.
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Figure 80 First draft for operators of the LEON

By this human-machine interaction, the full experiment specification is defined
and modeled. This experiment description model can be sent to LEON. Two
steps are performed once the experiment description model is sent to LEON, as
illustrated in Figure 81. Based on the experiment definition model, the static
imaging or more general measuring workflow can be set up automatically. In
parallel, the model can be sent to LEON for analysis. If, for example, information
for the imaging workflow is missing, LEON can detect it based on existing
knowledge in the network. A sample would be the missing information about the
distance of the measuring positions. LEON can hold information about existing

experiments that were also dealing with autophagy dynamics. This information
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can then be loaded into the operator’s graphical user interface, which must then
be selected or confirmed. At the same time, existing data analysis algorithms and
workflows, which were annotated to be suitable for the formulated scientific
question, can be loaded. Initially, the network will not know how to extract LC3
particles, but it will then expand the search with the given ontology and find an
object detection module which was annotated to detect objects in general. Behind
this module, as explained above, the extended ARCO algorithm implements the
Automated Algorithm Selection (AAS) algorithm. This algorithm depends on the
definition of the measured quantities. For example, it may want to know, at
least, the size of the objects. Again, this information had not yet been defined
and the operator will be asked to input the necessary information. Once this
information is inputted, however, LEON automatically annotates that LC3
particles have a specific size. To simplify the example, the magnification and
resolution are not relevant, but, of course, both parameters will be additional
information that LEON needs to know in reality. Returning to the annotation
mechanism, LEON now knows basic information about LC3 particles and nuclei.
The next operator, therefore, will find him or herself in a more comfortable
situation, since the network has already learned how big LC3 particles are. Now,
the imaging can begin and the loaded data analysis can work with the measured
data. Once images are taken and sent to LEON’s computing cloud, the general
ARCO-based object detection module begins running. Having all the relevant
information about the quantities that are to be extracted, like the size of the
observed objects, ARCO can be executed for all existing object detection
algorithms. It can exclude those which were not able to detect any object, and
show all other results to the operator again, while the microscope is put on hold
temporarily. The operator again provides crucial information to the LEON by
selecting which result looks best. LEON annotates the selected data analysis
suitable for the experiment definition. The next time the identical experiment is
run, a suitable data analysis is known. LEON had previously learned a great deal
of information, i.e. that nuclei are not separable point sources of light, whereas

LC3 particles are.
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Figure 81 The workflow how to make use of the LEON

The moment another user has a similar question, the network will have
multiple solutions and more knowledge about potentially suitable algorithms. It
can again show the results to the operator. This time, the results can additionally
receive rankings based on the existing usage statistics, such as which and how
often keywords were used and for which algorithms, allowing the user to get a
feeling for the community’s decisions. Finally, the idea of LEON is very close to
what is already state-of-the art in other daily-life applications like Google or
Facebook. Ranking information by means of automation and user preferences is
certainly the most basic swarm intelligence [158] approach. This approach,
however, is very powerful once a user profile and context is given, which is the

case for LEON and ARCO applications.

The methodology of ARCO and the LEON can be extended to statistics and
modeling. In the case of statistics, which are supposed to be automated as well,
like those illustrated in Figure 81, the same method of basic annotation and

evolutionary learning can be used to provide statistical analysis packages to the



Conclusion and Future work 202

users based on the concrete needs formulated in the scientific question and
experiment definition. The mathematical power of relating all steps from the
question to the result with digital information should not be underestimated.
Modern application networks have demonstrated how flexible and powerful the
outcome can be, once information and solutions are created collaboratively. The
automation of science by these means offer a necessary abstraction (and hide
complexity) to biologists and other scientists, facing complex workflows, from
their initial scientific question to the final answer. Organic computing and the
ARCO algorithm, including existing technologies of information sharing and
annotating, hardware control algorithms, and existing data analysis libraries can
establish themselves into an open network for exploring life more specifically and

easily than ever before.

Finally, ARCO, LifeXplorer, and LEON work together to increase both the
efficiency and effectiveness of generating scientific knowledge, aiming to develop
dependable therapies with broad application in the areas of health care,

personalized medicine, and ontology.
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