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Summary 

In pancreatic cancer and other solid tumor entities subpopulations of cancer stem 

cells (CSCs) or tumor initiating cells (TIC) have recently been identified. These cells 

were described to be tumorigenic in immunodeficient mice and give rise to the whole 

heterogeneity of the patient`s tumor. Besides those phenotypic markerspreviously 

associated with TIC function, little is known about pancreatic TIC. This thesis project 

unravels the clonal dynamics of long-term tumor growth in pancreatic cancer, and 

explores the phenotypic diversity within the pancreatic TIC population.  

Primary patient tumor samples were xenografted in immunodeficient NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice to remove benign human cells and receive 

sufficient amounts of tissue. Adherent cultures were established from xenograft 

tumor tissue in serum-free medium simulated with growth factors. These culture 

conditions allowed the enrichment of pancreatic TIC without restriction to a certain 

phenotype. These cultures grew as three-dimensional epithelial colonies with tight 

cell-cell contacts, and reliably initiated tumors in NSG mice. In order to induce TIC 

differentiation, culture conditions were changed to 10% FBS containing medium and 

withdrawal of cytokines. Subsequently, the cells lost three-dimensional growth, 

formed monolayers and showed irregular morphology. This was accompanied by a 

down-regulation of markers previously described for pancreatic TIC, stem cells of 

various entities or normal pancreatic progenitors. However, despite this 

differentiation-like phenotype, tumor initiation in serial transplantation was not 

substantially affected. Moreover, sorted CD133- cells formed equally efficient tumors 

as the CD133+ cell fraction and contained a similar proportion of CD133+ cells in vivo. 

In sum, these data indicate that pancreatic TIC are diverse with respect to marker 

expression, and exhibit an previously unknown phenotypic plasticity.  

To determine the clonal kinetics of individual TIC in vivo early passage serum-free 

cultures from 3 patients were lentivirally marked and serially transplanted over 3 

generations in NSG mice. In primary mice, 0.003-0.113% of all transduced cells were 

detected to contribute significantly to tumor formation. However, the second and third 

generation tumor formation was predominantly driven by distinct TIC clones that were 

not detected in earlier generations, but recruited later to participate in tumor 
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formation. Mathematical modeling indicated profound changes in the proliferation of 

individual TIC that produced mainly non-tumorigenic progeny with limited capacity of 

self-renewal. These data indicate that in pancreatic cancer long-term tumor growth is 

driven by the succession of transiently active TIC generating tumor tissue in 

temporally restricted bursts. The recruitment of inactive TIC clones to tumor formation 

after serial transplantation indicates a context-dependent switch between a quiescent 

and an active status.  

A clonal relation between tumorassociated fibroblast-like cells and neoplastic cells 

has been described in breast cancer. To investigate whether pancreatic TIC also give 

rise to fibroblast-like cell types xenograft tumors were analyzed in detail for their 

stromal compartment. Xenograft tumors contained no human stroma and attracted 

murine fibroblast-like cells instead. Human stroma cells were only found in xenograft 

tumors when these were co-transplanted with tumor cells, but engrafted with very low 

efficacy. Thus, due to the instability of human stroma cells in xenograft tumors grown 

in NSG mice, a possible clonal relation between fibroblast-like cells and neoplastic 

cells could not be investigated conclusively.   

In total, this study describes a previously unknown phenotypic and functional 

plasticity of pancreatic TIC. Its data show that TIC in pancreatic cancer have to be 

defined functionally level in vivo and that this cannot be replaced by the examination 

of phenotypic markers. Understanding the molecular mechanisms that regulate the 

activation and quiescence of pancreatic TIC might be important for future therapy 

approaches against pancreatic cancer.   
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Zusammenfassung 

In den letzten Jahren wurden im Pankreaskarzinom und in anderen soliden 

Tumorarten Subpopulationen von Krebsstammzellen (CSCs) oder Tumor-

initiierenden Zellen (TIC) identifiziert. Diese Zellen sind in der Lage in 

immundefizienten Mäusen Tumore zu bilden und können die gesamte Heterogenität 

des ursprünglichen Patiententumors hervorbringen. Außer phänotypischen Markern, 

die mit TIC Funktion assoziiert wurden, ist wenig über TIC im Pankreaskarzinom 

bekannt. In diesem Forschungsprojekt soll die klonale Dynamik der TIC untersucht 

werden, die das Tumorwachstum im Pankreaskarzinom langfristig unterhält, sowie 

die phänotypische Diversität innerhalb des TIC-Kompartiments.  

Aus primärem Patientenmaterial wurden Xenograft-Tumore in immundefizienten 

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ  (NSG) Mäusen initiiert. Durch diesen Prozess wurde 

das Gewebe expandiert und benigne menschliche Gewebearten entfernt. Aus dem 

Xenograft-Tumorgewebe wurden adhärente Zellkulturen mit Hilfe von serum-freien 

Kulturbedingungen und der Stimulation mit Wachstumsfaktoren etabliert, so dass TIC 

ohne Beschränkung auf einen bestimmten Phänotyp angereichert wurden. Diese 

Kulturen wuchsen als dreidimensionale epitheliale Kolonien mit dichten Zell-Zell-

Kontakten und bildeten zuverlässig Tumore in NSG Mäusen. Um TIC zu 

differenzieren wurden den Zellen die Wachstumsfaktoren entzogen und die 

Kulturbedingungen auf 10% FBS-haltiges Medium umgestellt. Daraufhin verloren die 

Zellen ihr dreidimensionales Wachstum, wuchsen einzelschichtig und zeigten 

irreguläre Morphologie. Gleichzeitig wurden viele Marker-Proteine runterreguliert, die 

für Pankreas-TIC, Stammzellen verschiedener Entitäten oder normale 

Vorläuferzellen im Pankreas beschrieben sind. Trotz diesem differenzierungs-

ähnlichen  Phänotyp war das Tumor-initiierende Potential der Zellen in serieller 

Transplantation in NSG Mäusen nicht substantiell verändert. Weiterhin bildeten 

sortierte CD133- Tumorzellenfraktionen gleichermaßen Tumore in NSG Mäusen wie 

CD133+ Kontrollzellen und regenerierten die CD133+ Population in vivo. Insgesamt 

zeigen diese Daten, dass TIC im humanen Pankreaskarzinom diverse Phänotypen 

haben können und eine unerwartete phänotypische Plastizität aufweisen.  
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Um die klonale Dynamik einzelner TIC in vivo zu untersuchen wurden frühe 

Passagen serum-freier Kulturen von 3 Patienten lentiviral markiert und seriell über 

drei Generationen in NSG Mäuse transplantiert. In primären Mäusen trugen 0,003-

0,113% aller transduzierten Zellen nachweislich zum Tumorwachstum bei. Die 

Bildung von sekundären und tertiären Tumoren wurde jedoch dann hauptsächlich  

von TIC-Klonen bestimmt, die in vorhergehenden Generationen nicht nachgewiesen 

werden konnten, aber später zum Tumorwachstum rekrutiert wurden. Mathematische 

Berechnungen zeigten hierbei starke Veränderungen der Proliferationsraten 

individueller TIC-Klone, die bei der Tumorbildung hauptsächlich nicht tumorigene 

Nachkommenzellen hervorbrachten. Diese Daten zeigen, dass im Pankreaskarzinom 

das langfristige Tumorwachstum durch die Abfolge kurzzeitig aktiver TIC-Klone 

unterhalten wird, die neues Tumorgewebe in temporären Impulsen hervorbringen. 

Die Rekrutierung inaktiver TIC-Klone nach serieller Transplantation weist auf einen  

vom Umfeld abhängigen Wechsel zwischen aktivem und inaktivem Status hin.                  

Beim humanen Brustkrebs wurde gezeigt, dass Tumor-assoziierte Fibroblasten-

ähnliche Zellen von Krebszellen gebildet werden können. Um zu untersuchen, ob 

dies auch im Pankreaskarzinom passiert, wurde das Stroma-Kompartiment der 

Xenograft-Tumore detailliert untersucht. In Xenograft-Tumoren konnte kein humanes 

Stroma nachgewiesen werden. Stattdessen wanderten murine Fibroblasten-ähnliche 

Zellen in die Tumore ein und bildeten eine desmoplastische Reaktion. Humane 

Stromazellen wurden nur nach Kotransplantation nachgewiesen, jedoch fügten sich 

nur mit sehr geringer Frequenz in die Xenograft-Tumore ein. Daher scheinen 

humane Stromazellen in Xenograft-Tumoren so instabil zu sein, dass eine klonale 

Verbindung zum neoplastischen Kompartiment in diesem Model nicht nachweisbar 

ist.   

Insgesamt zeigt diese Studie, dass TIC im Pankreaskarzinom eine unerwartete 

phänotypische und funktionelle Plastizität haben. Die Daten zeigen, dass in dieser 

Tumorentität TIC durch ihre Funktion in Mäusen Tumore zu bilden definiert werden 

müssen und nicht durch die Expression phänotypischer Marker. Die molekularen 

Mechanismen, welche die Aktivität und Ruhe von TIC im Pankreaskarzinom 

regulieren,  könnten für die Entwicklung neuer Therapien von Bedeutung sein.  
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1. Introduction 

1.1 The Pancreas  

1.1.1 Structure  

The pancreas is an organ required for digestion and sugar metabolism in vertebrates 

and is divided into the exocrine and the endocrine pancreas (figure 1). 

The endocrine part of the pancreas produces hormones and disseminates them into 

the blood stream. It comprises of four main cell types organized in clusters called 

Islets of Langerhans. Alpha-cells secrete glucagon, beta-cells secrete insulin, 

gamma-cells secrete pancreatic polypeptide and delta-cells secrete somatostatin into 

the blood stream. Insulin and glucagon are partners in regulating the blood glucose 

level. Whereas glucagon stimulates the release of glucose into the bloodstream, 

insulin triggers the uptake of glucose into liver, skeletal muscle and fat tissue.   

The exocrine pancreas produces digestive enzymes and secretes them into the 

duodenum. The development and regenerative maintenance of the exocrine 

pancreas is a complex interplay of different cell types within regulated by the specific 

activity or silence of signaling pathways and soluble factors (reviewed by [1]).The 

production of enzymes like amylase (AMY2A), lipase (PNLIP) and trypsin (PRSS1-3) 

is executed by the acinar cells which form the acinar glands [1]. The acinar-specific 

expression of these enzymes is regulated by the transcription factor Ptf1a [2, 3].   

The duct epithelium is responsible for the transportation of the digestive enzyme 

solution. It secretes a bicarbonate-rich fluid which dilutes and pH-buffers the acinar 

secretion and builds up the ductal tree, a channel network leading from small 

structures at the acinar glands (terminal ducts) over structures with increasing 

diameter (intra- and interlobular ducts) to the pancreatic main, duct which leads into 

the intestine. Markers of duct cells are Cytokeratin 7 (Krt7), Krt19, EpCam, Mucin 1 

(MUC1) and carbonic anhydrase II (CA2) (reviewed by [4]).  

The third cell type within the exocrine pancreas includes centroacinar cells residing at 

the border between the terminal ducts and the acinar glands. Centroacinar cells also 

differ from acinar and duct cells regarding their morphology. These cells have a small 
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main diameter of 10µm and have cytoplasmic protrusions connecting them to 

adjacent centroacinar, acinar and islet cells [5, 6]. The developmental origin of these 

cells remains unknown and the cellular heterogeneity within the centroacinar cell 

compartment is poorly understood [1].  

 

Figure 1: Cellular structure of the pancreas. The exocrine part of the pancreas secretes digestive 
enzymes into the duodenum, whereas the endocrine part supplies hormones into the blood stream. 
The exocrine part of the pancreas is composed of acinar glands that produce and secrete digestive 
enzymes and the ducts that pH-buffer and transport the enzyme mix to the gut. The endocrine part is 
organized as the Islets of Langerhans that are mainly composed of α-, β-, γ- and δ-cells. Figure 
modified from reference [7]. 

 

1.1.2 Development 

During mammalian endoderm development, the pancreas forms from the dorsal and 

ventral pancreatic buds growing out from the duodenum. The growth of the emerging 

exocrine pancreas is supported by of soluble factors secreted by the adjacent 

mesenchyme (reviewed by [1, 8, 9]). Without that stimulation, pancreatic multipotent 

progenitor cells (MPCs) follow the endocrine lineage and fail to yield exocrine acini 

[10]. FGF2, FGF7 and FGF10 promote pancreatic development and differentiation 

towards the exocrine lineage [11-13]. FGF10 activates Notch signaling in epithelial 

cells thereby promoting a population of undifferentiated MPCs that give rise to the 
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developing duct epithelium [13-15]. Within the exocrine lineage, the choice between 

ductal and acinar differentiation can be regulated by retinoids. 9-cis retinoic acid 

(9cRA) induces ductal differentiation by promoting laminin-1 expression in the 

mesenchyme [16]. By contrast, acinar differentiation of pancreatic MPCs can be 

induced by all-trans retinoic acid (atRA) [16-18]. 

At day 11.5 of embryonic pancreas development (E11.5), all MPCs commonly share 

the set of transcription factors Hnf1β, Hes1, Nkx6.1, Nkx6.2, Pdx1, Ptf1a, and Sox9 

[19-23]. The first spatial discrimination of populations restricted to ductal, acinar or 

endocrine lineages arises at E12.5, when the pancreatic bud splits into trunks and 

tips. Besides Pdx1 and Sox9, which are expressed in both regions, the trunks are 

characterized by ongoing Hnf1β, Nkx6.1, Nkx6.2 and acquired Hnf6 expression and 

active Notch signaling [23-25]. From E13.5 on, trunk progenitor cells give rise to 

endocrine and duct cells. Inactivation of Notch signaling thereby promotes endocrine 

fate, whereas prolonged Notch activity induces ductal differentiation. In contrast, 

acinar cells are generated by progenitors located in the tips which display inactive 

Notch signaling [21, 26, 27]. Acinar differentiation becomes fixed from E13.5 on, by 

the expression of Ptf1a, Rbpjl, Mist1 and Nr5a2 [28-32].  

 

1.1.3 Regeneration 

Centroacinar cells were discussed to be a possible multipotent progenitor cell (MPC) 

population in pancreatic regeneration. This was due to the expression of genes 

involved in pancreatic development including Notch and its target gene Hes1, Sox9 

and ALDH1 enzyme [6, 21, 33, 34]. On the functional level it has been demonstrated 

that centroacinar cells strongly proliferate following partial pancreas resection or 

chemically induced damage and can be converted rapidly into acinar cells upon 

artificial disruption of Notch signaling [35]. However, without extrinsic intervention 

centroacinar cells normally do not function as MPCs in the adult uninjured pancreas 

and do not give rise to acinar or β-cells [21].  

Observation has shown that regeneration in the exocrine pancreas in response to 

tissue damage was performed by surviving acinar cells that transiently 
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dedifferentiate. In this process, these cells lose their mature acinar cell markers like 

digestive enzymes or Ptf1a, and express factors involved in pancreatic development 

such as Sox9, Pdx1 and the Notch target Hes1 [36]. Besides Notch, Wnt-signaling 

becomes activated, and the cells transiently acquire the ability to give rise to new 

acinar tissue [37, 38]. In that state, the cells resemble morphologically the duct 

epithelium, so that this process has been termed acinar to ductal metaplasia (AMD). 

After closure of the lesion, the cells regain their acinar differentiation and execute a 

specialized function in the adult organ. In summary, these data indicate that in the 

pancreas transient progenitors are made upon damage. Thus, regeneration of the 

adult pancreas appears different from what is described for other organs which have 

a permanent, hierarchically organized adult stem cell compartment like the colon 

epithelium [39-43], the brain [44-46] or the blood system [47-50].  

 

1.2 Pancreatic Cancer 

The most common type of pancreatic cancer is the pancreatic ductal adeno-

carcinoma (PDAC), representing about 95% of all diagnosed tumors in the pancreas. 

This type of cancer arises from the exocrine pancreas and is characterized by 

pseudo-glandular structures formed by the tumor cells.  

 

1.2.1 Epidemiology 

PDAC is a highly malignant disease. According to the Robert-Koch-Institute in 

Hamburg, in 2008 PDAC represented the 9th leading cause of new incidences of 

male cancer and the 7th leading cause for women in Germany (www.krebsdaten.de). 

In Germany and the United States, it represents the fourth leading cause of cancer 

related death (www.rki.de, [51]).  

PDAC is characterized by high metastatic activity to the liver, lung, lymph nodes, and 

the peritoneum. Standard therapy approaches involve surgery, chemotherapy and 

radiation. The most common therapeutic agents used to treat PDAC in clinics are 

gemcitabine and erlotinib, which have been described to be most effective in 
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combination [52]. However, such treatment cannot prevent the poor prognosis with a 

5-year survival rate remaining below 10%. Since symptoms of pancreatic cancer are 

unspecific, the disease is often diagnosed at advanced stage, so that most patients 

die within one year after diagnosis (www.krebsdaten.de, [51, 53-57]).  

 

1.2.2 Molecular Pathology of Pancreatic Cancer 

1.2.2.1 Common Genetic Alterations 

The most frequent oncogene in pancreatic cancer is mutant KRAS, which is mutated 

in about 95% of all patients [58-65]. KRAS encodes a member of the Ras GTPase 

family and acts in many signaling pathways, affecting cell proliferation, survival, 

cytoskeleton dynamics and motility. Normal Kras protein can switch between an 

activated and an inactivated status. Active Kras is bound to GTP and executes its 

signaling function. Upon hydrolysis of GTP to GDP triggered by GTPase-activating-

proteins (GAPs), Kras activity is shut off. In pancreatic cancer, the mutant KRAS 

oncogene has an inoperative GTPase domain resulting in constantly active signaling 

[66, 67]. So far, no effective treatment strategy has been developed to inhibit mutant 

Kras protein. Kras signaling enhances endogenous expression of the epidermal 

growth factor receptor (EGFR) and it has been shown that inhibition of this receptor 

diminishes KRAS-mediated pancreatic tumorigenesis [68]. Jones et al. revealed by 

global genome analyses that besides KRAS mutation the signaling pathways Wnt, 

Notch, Hedgehog, TGF-β and JNK are affected frequently by genetic alterations 

driving PDAC malignancy [69]. Mutations also change cellular processes like 

apoptosis, invasion, cell adhesion, cell division or DNA damage control [69, 70]. 

Moreover, inactivating or deleting mutations of the tumor suppressors TP53, 

p16/CDKN2A and SMAD4 were detected in the majority of patients [65].  

 

1.2.2.2 Tumor Initiation and Genetic Evolution 

The primary event for PDAC initiation is the mutation of KRAS producing a constantly 

active form of that molecule. Experimental mouse models have shown that under 



Introduction 
 

 
6 

constantly active Kras signaling, damage induced acinar-to-ductal-metaplasia (ADM) 

develops to a precursor lesion of PDAC called pancreatic intraepithelial neoplasm 

(PanIN) [71-75] from fully differentiated acinar cells. This process is accelerated by 

chronic pancreatitis [72] which has been proposed as a risk factor for pancreatic 

cancer formation [76-78]. In a genetically engineered in vivo model of pancreatic 

carcinogenesis using a mouse strain expressing mutant Kras, researchers 

demonstrated that ADM prior to PanIN formation differs from the AMD process during 

acinar cell dedifferentiation in normal exocrine pancreas regeneration [37]. In 

carcinogenesis, the ADM is persistent and not transient as in the normal situation 

(see section 1.1.2.3). In both cases, acinar markers are down-regulated, cells acquire 

a duct-like appearance and activate factors involved in pancreatic development [36-

38]. The expression of the pancreatic development gene, Sox9, has recently been 

proposed as a particular driver of acinar-derived PanIN formation [22]. However, in 

contrast to regeneration, where wnt-signaling is required, in carcinogenesis β-catenin 

signaling inhibits ADM and is shut off during this process (figure 2) [37].  

 

 

Figure 2: Wnt-signaling in normal acinar regeneration and mutant KRAS induced PanIN 
formation. Transient acinar dedifferentiation in normal regeneration is supported by canonical wnt-
signaling. After closure of the lesion cells regain acinar differentiation and wnt-signaling stops. In 
contrast, active β-catenin inhibits mutant KRAS induced persistent dedifferentiation and is turned on 
after PanIN formation. Figure modified from [37].  

Normal Regeneration Mutant KRAS
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Based on their degree of architectural and cellular abnormality, PanIN precursor 

lesions are categorized according to three sequential stadia called PanIN-1, PanIN-2 

and PanIN-3. After Kras mediated PanIN-1 formation, PanIN-2 was described to 

develop upon additional mutational loss of p16/CDKN2A function. In later PanIN-3 

structures, additional hits in TP53, SMAD4 and BRCA2 tumor suppressor genes are 

frequently found (figure 3; reviewed by [79], [61]). Genetic progression from PanIN 

precursor lesions to malignant metastatic cancer was examined by Yachida et al. 

[80], who compared the mutations of primary tumors and metastases of 7 patients 

subjected to warm autopsy. Here, the whole mutational heterogeneity of the 

metastases was also found within the primary tumor. So, metastases were initiated 

by tumor cell clones that genetically evolved from the parental non-metastatic clone. 

Moreover, the time frame of PDAC progression from the initial mutation to the 

metastatic disease was estimated to exceed 10 years and to be therefore 

comparable to other kinds of solid tumors. 

 

 

Figure 3: Model of pancreatic cancer progression by sequential gain of mutations. Normal cell 
gain a mutational constant activation of KRAS oncogene and form an initial pancreatic intraepithelial 
neoplasm (PanIN-1), the earliest precursor lesion of pancreatic ductal adenocarcinoma (PDAC). An 
additional mutation in p16/CDKN2A tumor suppressor gene leads to PanIN-2 formation, whereas later 
acquired mutational inactivation of tumor suppressors TP53 and SMAD4 induces PanIN-3 formation. 
The genetic progression following PanIN-3 to metastatic PDAC is to date not finally understood. 
Figure modified from reference [61].  
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1.2.3 The Role of Tumor-associated Stroma in Pancreatic Cancer 

Pancreatic cancer growth and progression is characterized by the formation of 

intense desmoplatic reaction surrounding islands of neoplastic cells [81-83]. This so-

called stroma mainly consists of extracellular matrix (ECM) components and tumor-

associated fibroblast-like cells (FLCs) that express mesenchymal markers like 

vimentin and α-smooth-muscle actin (αSMA). In literature, stromal FLCs are 

described as fibroblasts, myofibroblasts or pancreatic stellate cells [84-86]. FLCs 

enhance the tumorigenic potential of pancreatic cancer cells in co-xeno-

transplantation experiments [87]. Tumor cells and FLCs stimulate one another by 

secreting signaling molecules, which enhances the proliferation of both cell 

compartments and facilitates cancer invasion (figure 4) [88-99]. Factors that stimulate 

stromal FLCs are mainly secreted by cancer cells and immune cells invading the 

tumor. The best described factors are platelet-derived growth factor (PDGF), sonic 

hedgehog (Shh), transforming growth factor β (TGFβ), and tumor necrosis factor α 

(TNFα). These factors also stimulate the stromal fibroblast-like cells to proliferate and 

produce extracellular matrix (ECM) components and ECM modulatory factors like 

matrix metallo proteinases (MMPs) and their inhibitors (TIMPs). That leads to an 

ECM remodeling and facilitates tumor cell invasion. Moreover, stromal FLCs secrete 

stromal derived factor 1 (SDF1), insulin-like growth factor 1 (IGF1) and hepatocyte 

growth factor (HGF). These promote tumor cell proliferation, survival and motility. 

Fujita et al. [100] described that stromal FLCs activate Notch signaling in pancreatic 

tumor cells by direct cell-cell contacts in vitro. 

The clonal origin of the pancreatic-cancer-associated stroma is still poorly 

understood. Existing studies propose a tumor independent mesenchymal origin [100-

102]. Epithelial-to-mesenchymal transition (EMT) is another potential source for 

carcinoma-associated fibroblasts-like cell types in pancreatic cancer and other 

human neoplasms [100, 103-106]. However, so far the production of non-tumorigenic 

FLC types by EMT of solid tumor cells has only been described for breast cancer 

[104]. Even though EMT frequently occurs in PC migration and invasion [107, 108], it 

remains unclear whether pancreatic carcinoma cells can produce their own stroma by 

EMT. 



Introduction 
 

 
9 

 

Figure 4: Interactions between tumor and stroma cells facilitate pancreatic cancer progression. 
Tumor cells and stromal fibroblast-like cell types (FLCs) stimulate each other by paracrine signaling 
which leads to enhanced proliferation in both compartments. Factors secreted by tumor cells (black) 
stimulate the secretion of extracellular matrix (ECM) components, matrix remodeling enzymes like 
matrix-metalloproteases and their inhibitors (TIMPs) by FLCs. Matrix remodeling supports tumor cell 
invasion and metastasis formation.  

 

1.3 Tumor-Initiating Cells 

In recent decades cancer researchers have increasingly focused on the functional 

heterogeneity of neoplastic cells within a tumor and its metastases. In that regard, 

subpopulations of tumor initiating cells (TIC), also referred as cancer stem cells 

(CSCs), have attracted attention. As a tool investigate human tumor cells in vivo, 

researchers made use of highly immunodeficient mice developed by genomic 

engineering. TIC are defined by their ability to form tumors upon transplantation into 

immunodeficient and to give rise to the whole heterogeneity of the original patient`s 

tumor, whereas bulk tumor cells are non-tumorigenic [109-112]. Within that, the 

capacity of xenograft tumor cells to initiate tumors in serial transplantation became 

the “gold standard” to prove their potential to maintain long-term tumor growth. 

However, single cell based assays or clonal marking are required to define the long-

term self-renewing potential of individual TIC, as recently used to describe a 

subpopulation of long-term TIC (LT-TIC) in human colon cancer [113].   
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The “hierarchical model” of long-term tumor growth claims that self-renewing TIC give 

rise to tumorigenic cells with abolished self-renewing and limited proliferation 

capacity which then turn into non-tumorigenic bulk tumor cells (figure 5, reviewed by 

[48], [114] and [115]). By contrast with the hierarchical model, the “stochastic model” 

considers each tumor cell as equipotent. In that model, functional heterogeneity is 

not caused by functional differentiation of an individual TIC clone`s progeny, but 

rather exclusively by genetic/epigenetic differences between single tumor cell clones 

induced by genetic evolution, and the sequence of random variations in the cell 

division interval determining by chance the dominance of the one clone and the 

regression of the other (figure 5) [115-120]. Both concepts remain controversially 

discussed.  

 

 

 

Figure 5: The hierarchical and the stochastic model of cancer stem cells (CSCs). In the 
hierarchical model self-renewing CSCs give rise to non-self-renewing cells with limited proliferation 
capacity that subsequently turn into bulk tumor cell showing no proliferation. Thereby, heterogeneity is 
derived from the functional differentiation of self-renewing CSCs. In contrast, the stochastic model 
considers all tumor cells as equally tumorigenic, where the dominance of one clone over the other 
arises from random intrinsic and extrinsic determinants. However, in both models the genetic and 
epigenetic differences between individual CSCs can cause the positive or negative selection of clones. 
Figure modified from reference [115]. 
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1.3.1 Tumor Initiating Cells and Stem Cells Share Functional Characteristics 

Very early, in 1907, a connection between cancer and stem cells was initially 

postulated when similarities in pathology were observed between embryonic and 

cancerous tissue [121]. Later, in the 1960s to 1980s researchers found evidence for 

stem cells in teratomas, and proposed cancer growth as a caricature of the healthy 

tissue development where malignant cells differentiated into non-tumorigenic or 

benign bulk tumor cells [122-126]. Later, the TIC compartment in human leukemia 

and colon cancer was found to be hierarchically organized from self-renewing long-

term TIC to non-self-renewing, short-term tumorigenic, transiently amplifying cells (T-

TAC), that thereby reflected the clonal dynamics of their healthy organs regeneration 

[109, 111, 113, 127-130]. For colon cancer, this finding was supported by the 

observation that the architecture of the cancerous tissue in well differentiated tumors 

reflected the normal colon epithelium [43]. Here, an intestinal stem cell-like 

population was found at the bottom of the irregular crypts of colorectal tumors.  

 

1.3.2 Identification of Tumor Initiating Cells 

Due to the presumed connection between TIC function and an undifferentiated cell 

status, surface markers of normal stem cells were investigated for the possibility that 

they might also mark malignant “stem cells”. CD133, a marker of normal adult 

neuroglial [46], hematopoietic [131, 132], prostate epithelium [133] and skeletal 

muscle [134] stem cells was examined by fluorescence-activated cell sorting (FACS) 

and subsequent transplantation of negative and positive fractions from primary 

patient tumor material into immunodeficient mice. With these experiments CD133+ 

TIC were described for example in malignant gliomas [135, 136], colon cancer [137] 

or Ewing´s sarcoma [138]. Further, Al-Hajj and colleagues provided initial evidence of 

a CD44+/CD24-/low/lineage- subpopulation highly enriched for TIC in human breast 

cancer [139]. However, drawbacks regarding the potential use of TIC markers in 

clinics were found through the later identification of CD133-negative TIC in gliomas 

[140] and colon cancer [141]. Thus, to date TIC surface markers remain controversial 

in the field of cancer research.    
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Subpopulations of TIC for pancreatic ductal adenocarcinoma (PDAC) have also been 

described. Also in this tumor entity defined markers were postulated to associate with 

in vivo tumorigenicity (table 1; recently reviewed by [142]). In 2007, Li et al. identified 

CD44/CD24/EpCam triple-positive TIC from primary patient-derived PDAC tissue 

which represented 0.2-0.8% of the purified tumor cells and gave rise to tumors in 

immunodeficient mice with a much higher frequency than the vast majority of triple-

negative cells [143]. Additionally, using patient-derived tumor tissue, Hermann et al. 

postulated in 2007 a subpopulation of CD133+ pancreatic TIC comprising less than 

3% of the purified cells, and showed tumor-initiating potential in immunodeficient 

mice upon transplantation of 5x102 cells compared to 106 CD133- cells that were not 

tumorigenic [144]. The CD133+ population was further subdivided into two 

subpopulations based on the expression of the chemotaxis and SDF1 receptor 

CXCR4. Only CXCR4+ cells formed metastases, and the authors claimed that 

CXCR4- cells could not transfer into CXCR4+ cells. The CD133+ population was also 

described as more resistant to gemcitabine treatment than CD133- cells. In a later 

study, the authors described the Nodal/Activin pathway as a regulator of pancreatic 

TIC self-renewal [145].    

Besides phenotypic surface markers, functional characteristics of normal stem cells 

like aldehyde dehydrogenase (ALDH) expression have also been associated with 

TIC function in various malignancies [146-148]. ALDH superfamily members were 

hypothesized to play a role for stem cell function in tissue repair and development 

based on their ability to oxidize retinaldehyde to retinoic acids which influence the 

lineage decision of undifferentiated cells (reviewed by [149]). For example, inhibition 

of ALDH function was shown to delay the differentiation of hematopoietic stem cells 

(HSCs) by diminished retinoic acid production [150, 151]. ALDH activity was 

described to mark undifferentiated cell populations displaying stem or progenitor cell 

potential in the blood system [152], skeletal muscle [153, 154], mammary epithelium 

[146] or prostate epithelium [155]. Also in pancreatic cancer ALDH+ cells were 

described to be highly tumorigenic compared to ALDH- cells, to have a higher 

resistance to gemcitabine and to be more invasive [147, 148].  

Another connection between TIC and an undifferentiated cell status involved the 

concept of “migrating cancer stem cells” [156]. Here, the expression of markers 
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characteristic of the process of epithelial-to-mesenchymal transition (EMT) was 

correlated with the expression of stem cell associated genes. EMT has been 

observed to facilitate cancer progression and metastasis as a functional pro-

migratory cellular program [157-160]. In particular, Wellner et al. showed that the 

EMT inducer Zeb1 promotes the tumor-initiating potential of pancreatic and colon 

cancer cells [161]. Their results indicated that Zeb1 represses the microRNA200 

family, which induces epithelial differentiation by repressing stem cell associated 

factors like Sox2 and Klf4. Together with Oct4 and c-myc, Sox2 and Klf4 have been 

described to reprogram fully differentiated cells into a pluripotent status ([162]; 

recently reviewed by Adachi and Schöler, [163]).  

Long-term self-renewing TIC were also associated with the formation of distant 

metastases [113, 156]. The receptor tyrosine family member c-Met was identified to 

enhance growth and invasion in pancreatic cancer [164-166]. In xenograft tumors 

established from primary human pancreatic cancer tissue, researchers found that c-

Met marks a highly tumorigenic TIC population [167]. Those cells, which co-

expressed CD44 representing 0.5%-5% of all tumor cells, were shown to have the 

highest TIC potential. Administration of the c-Met inhibitor XL184 retarded tumor 

growth and prevented metastasis formation in vivo. Thus, the authors proposed the 

HGF/c-Met pathway as a suitable therapy target for pancreatic cancer.  

 

Table 1: Phenotypes and properties of described TIC populations in pancreatic cancer.  

Study Phenotype Properties 

Li et al.,  
2007, [143] CD44+/CD24+/EpCam+ Increased Sonic Hedgehog expression 

Herman et al., 
2007, [144] CD133+ Chemoresistant, CD133+CXCR4+ respocible for 

metastasis 

Rasheed et al., 
2010, [148] ALDH+ 

TIC associated with overall survival; TIC exhibit 
mesenhymal features and are frequently found in 
metastatic lesions 

Li et al.,  
2011, [167] CD44+/c-Met+ Highly metastatic 

 

Table modified from reference [142].                                                                                                                             
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1.4 High-Sensitive LAM-PCR for Clonal Tracking in Vivo 

Linear amplification-mediated polymerase chain reaction (LAM-PCR) is a method to 

analyze the genomic integration sites (IS) of viral vectors in mammalian cells and to 

use such integration sites as clonal mark to identify the progeny of individual cells in 

highly polyclonal samples [168]. LAM-PCR is highly sensitive with a resolution of a 

single DNA copy in 1µg of genomic DNA [169].  

In this thesis project LAM-PCR was used to track the clonal dynamics of pancreatic 

tumor initiating cells (TIC) that were stably marked by transduction with lentiviral 

vector particles originating from the human immunodeficiency virus (HIV) [170, 171]. 

By comparison to other systems, lentiviral vectors have the advantage of efficiently 

marking cells in the G1/G0 phase of the cell cycle, thereby marking non-dividing cells 

[171-173]. The integration of lentiviral vectors into the genome occurs in a semi-

random manner. This means that vectors prefer certain regions of the genome, 

whereas the exact site of integration remains random. Thus, the sequence of the 

genomic DNA flanking the lentiviral long terminal repeats (LTRs) is different for each 

integration event, so that individual cell clones harbor unique genomic marks after 

transduction. 

By LAM-PCR procedure [168] a linear amplification of the genomic DNA flanking the 

viral LTR is mediated by PCR-primers annealing in the known LTR sequence. The 

linear PCR product is subsequently transferred to a double stranded DNA, so that it 

can be subjected to a restriction digest. Since the sequence of the DNA is random, 

for each cell clone a different fragment length is created by digestion. These 

fragments can be visualized in a gel electrophoresis (figure 6). Moreover, since two 

clones can randomly have a similar fragment size, high-throughput sequencing is 

applied to identify the exact vector-genome junction and thereby the specific clone. 

Using this method in a serial xenograft-tumor transplantation line employing 

lentivirally marked primary human colon cancer cells, our group has recently 

discovered that the colon cancer TIC compartment is hierarchically organized [113].  
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Figure 6: Linear amplification mediated PCR (LAM-PCR) allows detection of genomic viral 
integration sites (IS). IS of individual cell virally marked clones can be identified from mono-, oligo- 
and polyclonal samples as DNA fragments of clone specific size in gel electrophoresis. Figure 
modified from reference [168].    
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1.5 Thesis objectives 

New therapeutic approaches are urgently needed to treat pancreatic cancer. Besides 

information on certain markers that were postulated to mark functional TIC 

populations, little is known about the clonal dynamics within the pancreatic TIC 

compartment. To understand the long-term tumor growth in pancreatic cancer on a 

clonal level might be important for the development of future therapy approaches 

specifically targeting the TIC population.  

Thus, the clonal composition of the pancreatic TIC compartment was analyzed to see 

if it is homogenously organized, or if subpopulations of TIC differ in their ability to 

maintain long-term tumor growth. This investigation was performed by serial 

transplantation of lentivirally marked cultured TIC in immunodeficient mice and 

subsequent highly-sensitive LAM-PCR. Using the same method, Dieter et al. [113] 

recently described the hierarchical organization of the human colon cancer TIC 

compartment. Thereby, this thesis was also meant to draw conclusions about 

similarities and differences between the clonal dynamics maintaining long-term tumor 

growth in distinct solid tumor entities. 

Aberrant cellular differentiation has been implicated in cancer biology. Pancreatic TIC 

were described to be enriched in populations displaying phenotypic similarities to 

normal adult stem cell populations [144]. The differentiation potential pancreatic TIC, 

however, has so far only been investigated on a phenotypic level in vitro, but not yet 

on a functional level in vivo. In this thesis, previously described differentiating culture 

conditions and xenotransplantation experiments were used to simultaneously monitor 

TIC differentiation both on a phenotypic and a functional level. By this method was 

examined whether pancreatic TIC can be functionally differentiated by such 

treatment and whether TIC function is predictable by the expression of phenotypic 

markers. The focus of this part of the project was to find out how phenotypically 

diverse or even plastic pancreatic TIC are. 

The desmoplastic reaction in pancreatic cancer which is mainly composed of tumor-

associated fibroblast-like cells was described to influence the biology of the 

neoplastic compartment and support tumor progression. This work thirdly aimed to 

unravel a possible clonal relation between tumor-associated fibroblasts and the 
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neoplastic cell as previously shown for breast cancer. For this reason, the stroma 

compartment of xenograft tumors grown in NSG mice was characterized in detail 

using dissociated cells and outgrowth cultures.  

This study was designed to obtain information about the phenotypic and functional 

heterogeneity of pancreatic TIC. This information will be important for the 

development of future therapeutic approaches targeting this malignancy. Controlling 

TIC activity and self-renewal might lead to the specific elimination of TIC from 

pancreatic tumors, and to related clinical applications.  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Laboratory Equipment 

Agarose gel documentation  Peqlab, Erlangen 

Agarose gel electrophoresis chamber Biometra Göttingen 

Analytical balance TE124S Satorius, Göttingen 

BDTM LSRII flow cytometer BD Biosciences, Heidelberg 

Biofuge® pico Heraeus, Hanau 

Centrifuge inserts  Kendro, Langenselbold 

Centrifuge Multifuge® 3SR Heraeus, Hanau 

Confocal microscope SP5 Leica, Wetzlar 

Cryobox Nalgene Thermo Fisher Scientific, Schwerte 

Electrophoresis power supply   Elchrom Schientific, Cham 

FACS AriaTM cell sorter BD Biosciences, Heidelberg 

Fluorescence Mircoscope Axiovert 2000  Zeiss, Oberkochen 

Freezer -20°C Liebherr, Biberach a.d.Riss 

Freezer -80°C Sanyo, Hamburg 

Fridge 4°C Liebherr, Biberach a.d.Riss 

Incubator Heraeus® 150 Thermo Fisher Scientific, Schwerte 

iPhone 4 camera Apple, Cupertino 

Isoflurane vaporizer Vapor 19.3 Dräger, Lübeck 

Junior GS sequencer Roche, Mannheim 

Light microscope for cell culture Zeiss, Oberkochen 

Magnet MPC-96 Invitrogen, Darmstadt 

Magnet DynaMagTM-96 side skirted Invitrogen, Darmstadt 

Microtome HM 340-E Thermo Fisher Scientific, Schwerte 

Microwave Bartscher, Salzkotten 

Mr. Frosty freezing container Thermo Fisher Scientific, Schwerte 

NanoDrop® Spectrophotometer ND1000 Peqlab, Erlangen 

Neubauer cell counting chamber Marienfeld, Lauda-Königshofen 

Nitrogen cryo-system German-Cryo, Jüchen 
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Pap peb Kisker, Steinfurt 

PCR-Thermocycler Landgraf, Langenhagen 

Pipetboys acu Integra Biosciences, Fernwald 

Pipettes Research® (10µl, 20µl, 200µl, 1ml) Eppendorf, Hamburg  

Precision balance TE3102S Satorius, Göttingen 

Rotator Reax2 Heidolph, Schwabach 

Safety cabinet Herasafe® KS Thermo Fisher Scientific, Schwerte 

Shaking incubator Axon, Kaiserslautern 

Submerged Gel Electrophoresis Device     

SEA 2000®  

Elchrom Schientific, Cham 

Thermo cycler TPersonal Biometra, Göttingen 

Thermo mixer comfort Eppendorf, Hamburg 

Tissue-Tek® TECTM embedding system Sakura Finetek, Tokyo 

Transilluminator Biotec-Fischer, Reiskirchen 

Ultracentrifuge L8-M + rotor SW27 Beckman Coulter, Krefeld 

Vacuum pump Merck, Darmstadt 

Vortexer MS1 IKA, Staufen 

 

2.1.2 Disposable Materials 

BDTM FalconTM FACS tube, round bottom (5ml) BD Biosciences, Heidelberg 

BDTM FalconTM tube conical-bottom         

(15ml, 50ml) 

BD Biosciences, Heidelberg 

Cell culture flasks, EasyFlaskTM (25cm2, 

75cm2, 175cm2) 

Nunc (Thermo Fisher Scientific), 

Schwerte 

Cell culture well-plates (6-,12-, 96-well) BD Biosciences, Heidelberg 

Cell strainer (100µm and 40µm pore size) BD Biosciences, Heidelberg 

Cotton swabs Noba, Wetter 

Cover slips Ø 20mm Menzel, Braunschweig 

Cryotubes Corning, Kaiserslautern 

Embedding cassettes  Sanowa, Leimen 

Glass slides SuperFrost® Menzel, Braunschweig 
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HumanHT-12 v4 Expression BeadChips Illumina, München 

Injection needle (23G-26G) BD Biosciences, Heidelberg 

Injection needle, blunt (18G) BD Biosciences, Heidelberg 

Lab gloves nitril Microflex, Reno 

Microcon®-30 centrifuge filter device Merck, Darmstadt 

Multi-well plate 0.3ml Roche, Mannheim 

Parafilm Pechiney, Chicago 

Pasteur pipettes WU Mainz, Bamberg 

PCR reaction tube (200µl) Genaxxon, Ulm 

Petri dish (5cm, 10cm) Genaxxon, Ulm 

Petri dish (15cm) Thermo Electron, Langenselbold  

Pipettes (2ml, 5ml, 10ml, 25ml, 50ml) Genaxxon, Ulm 

Pipette tips (10µl, 20µl, 200µl, 1ml) Starlab, Hamburg 

Safe-Lock TubesTM (0.5ml, 1.5ml, 2ml) Eppendorf, Hamburg 

Scalpels Feather Safety, Osaka 

Sterile filters (0.22µm, 0.45µm pore size) Merck, Darmstadt 

Stericup vacuum filters (0.45µm pore size) Merck, Darmstadt 

Syringe Omnifix® Solo (1ml, 5ml, 10ml, 20ml, 

50ml) 

B. Braun, Melsungen 

Twin.tec PCR plate 96-well Eppendorf, Hamburg 

Ultra low attachment plates/flasks Corning, Kaiserslautern 

Ultracentrifugation tubes Beranek, Weinheim 

 

2.1.3 Chemicals and Reagents 

Adenosine-triphosphate (ATP) 10mM Epicentre Biotech., Madison 

Agar Sigma-Aldrich, München 

Agarose Serva, Heidelberg 

AMPure® XP beads Beckman Coulter, Krefeld 

Aqua ad injectabila (H2Odd) B. Braun, Melsungen 

Baytril® Bayer, Leverkusen 

Bovine serum albumin (BSA) Sigma-Aldrich, München 
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Bromphenol blue Sigma-Aldrich, München 

Calcium chloride (CaCl2) Sigma-Aldrich, München 

Citric acid (C6H8O7) Sigma-Aldrich, München 

Dimetylsulfoxide (DMSO) Sigma-Aldrich, München 

Disodium-EDTA Sigma-Aldrich, München 

Desoxy-Nucleotides (dNTPs) (10mM) Genaxxon, Ulm 

DNA ladder (100bp, 1kb) Invitrogen, Darmstadt 

Dynabeads® M280 streptavidin Invitrogen, Darmstadt 

Eosin Merck, Darmstadt 

Ethanol Sigma-Aldrich, München 

Ethanol, denatured DKFZ, Heidelberg 

Ethidiumbromide (0.07%) AppliChem, Darmstadt 

Ethylendiaminetetraacedic acid (EDTA) 0.5M, 

pH=8 

AppliChem, Darmstadt 

Formalin solution, pH=7.4 (10%) Sigma-Aldrich, München 

Genomic DNA, human Roche, Mannheim 

Glycerol Serva, Heidelberg 

Hematoxylin Merck, Darmstadt 

Hexanucleotide mix (10x) Roche, Mannheim 

Hoechst 33342 Invitrogen, Darmstadt 

Isopropanol Sigma-Aldrich, München 

Lithium chloride Sigma-Aldrich, München 

Loading buffer (5x) Elchrom Schientific, Cham 

Mounting medium, Anti-Fade Reagent PromoCell, Heidelberg 

Nuclease-free water Ambion, Darmstadt 

PCR buffer (10x) Invitrogen, Darmstadt 

Phalloidin-PF647 (200U/ml) PromoCell, Heidelberg  

Propidium iodide solution (1mg/ml) Invitrogen, Darmstadt 

Sodium chloride (NaCl) VWR, Wien 

Sodium citrate (C6H5Na3O7·2H2O) Sigma-Aldrich, München 

Sodium hydroxide (NaOH) Sigma-Aldrich, München 

Spreadex® gels, type EL1200 Elchrom Schientific, Cham 
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Tris-acetate-EDTA (TAE) buffer (40x) Elchrom Schientific, Cham 

Tris-borate-EDTA (TBE) buffer (40x) Genaxxon, Ulm 

Tris HCL, pH 7.5 (1M) US Biological, Swampscott 

Triton X-100 AppliChem, Darmstadt 

Trypane Blue 0.04% Invitrogen, Darmstadt 

Xylol VWR, Wien 

β-Mercaptoethanol Sigma-Aldrich, München 

 

2.1.4 Enzymes 

Collagenase IV Invitrogen, Darmstadt 

Klenow polymerase Roche, Mannheim 

Restriction enzymes + buffer New England Biolabs, 

Frankfurt/Main 

T4-DNA-Ligase + buffer New England Biolabs, 

Frankfurt/Main 

Taq-DNA-Polymerase Invitrogen, Darmstadt 

 

2.1.5 Antibodies 

2.1.5.1 Antibodies for Flow Cytometry 

For flow cytometry staining, the antibodies used were directly conjugated with 
fluorochromes allophycocyanine (APC), allophycocyanine-H7 (APC-H7) or 
phycoerythrine (PE).  

Antigen Clone Isotype Fluorochrome Dilution Supplier 

CD133 AC133 Mouse 

IgG1 

PE 1:10-1:20 Miltenyi, 

Bergisch-Gl 

CD133 293C3 Mouse 

IgG2b 

PE 1:10-1:20 Miltenyi, 

Bergisch-Gl.  

CD44 G44-26 Mouse 

IgG2b 

APC 1:10 BD Biosc., 

Heidelberg 

CD44 27-35 Mouse 

IgG2b 

APC-H7 1:200 BD Biosc., 

Heidelberg 
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CD24 ML5 Mouse 

IgG2a 

PE 1:20 BD Biosc., 

Heidelberg 

EpCam EBA-1 Mouse 

IgG1 

APC 1:20 BD Biosc., 

Heidelberg 

Thy1 5E10 Mouse 

IgG1 

PE 1:200 BD Biosc., 

Heidelberg 

Thy1.2 53-2.1 Rat  

IgG2a 

PE 1:50 BD Biosc., 

Heidelberg 

 

 

2.1.5.2 Antibodies for Indirect Immunofluorescence 

Primary antibodies 

Raised in Clonality Antigen Clone Dilution Supplier 

Goat polyclonal Sox2  1:100 R&D Systems, 

Wiesbaden 

Rabbit polyclonal Oct4  1:100 Abcam,  

Cambridge 

Mouse monoclonal Klf4 56CT5.1.6 1:100 Abgent, 

Oxfordshire 

Mouse monoclonal Nestin 10c2 1:100 Santa Cruz, 

Heidelberg 

Mouse monoclonal Desmin D33 1:100 Santa Cruz, 

Heidelberg 

Mouse monoclonal Krt7 OV-TL 

12/30 

1:100 Dako Systems, 

Hamburg 

Rabbit polyclonal Krt7  1:200 Abcam,  

Cambridge 

Goat polyclonal Ptf1a  1:50 R&D Systems, 

Wiesbaden 

Rabbit polyclonal α-Amylase  1:100 Sigma-Aldrich, 

München 
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Mouse monoclonal αSMA 1A4 1:200 Sigma-Aldrich, 

München 

Mouse monoclonal Vimentin V9 1:100 Santa Cruz, 

Heidelberg 

Mouse  monoclonal Thy1 AS02 1:100 Dianova,  

Hamburg 

Rat monoclonal Thy1.2 53-2.1 1:100 BD Biosc., 

Heidelberg 

 

Secondary antibodies 

Secondary antibodies for indirect immunofluorescence were conjugated with 
fluorochromes for detection in fluorescence or confocal microscopy.  

PF: PromoFluor®; DyL: DyLight®; AF: AlexaFluor® 

Raised in Antigen Fluorochrome Dilution Supplier 

Goat Mouse IgG PF-555 1:200 PromoCell, 

Heidelberg 

Goat Rabbit IgG PF-488 1:200 PromoCell, 

Heidelberg 

Goat Rabbit IgG PF-647 1:200 PromoCell, 

Heidelberg 

Donkey Mouse IgG DyL-649 1:200 Jackson IR, 

Suffolk 

Donkey Rabbit IgG DyL-549 1:200 Jackson IR, 

Suffolk 

Donkey Goat IgG DyL-488 1:200 Jackson IR, 

Suffolk 

Donkey Rat IgG AF-680 1:200 Invitrogen, 

Darmstadt 
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2.1.6 Plasmids 

Plasmid Encodes for Supplier 

pMDL gag pol (p101) Viral gag, pol Naldini Lab, Milan 

pRSV rev (p102) Viral rev Naldini Lab, Milan 

pMD2.VSVG (p103) VSVG protein Naldini Lab, Milan 

pCCLsincPPT.PGK-eGFP.WPRE  (p106) EGFP Naldini Lab, Milan 

All plasmids further encode an ampicillin resistance gene (AmpR) for amplification in 

bacteria. 

2.1.7 Oligonucleotides 

All oligonucleotides were purchased from Eurofins MWG Operon, Ebersberg. 

LC: Linker cassette; LTR: Long terminal repeat; bio: biotinylated; MID: Multiplex 
Identifier   

Denomination Sequence (5`-3`) 

LC1 GACCCGGGAGATCTGAATTCAGTGGCACAGCAGTTAGG  

LC3-1 AATTCCTAACTGCTGTGCCACTGAATTCAGATC  

LC3-2 TACCTAACTGCTGTGCCACTGAATTCAGATC 

LCI GACCCGGGAGATCTGAATTC  

LCIII GATCTGAATTCAGTGGCACAG  

LTRI GACCCGGGAGATCTGAATTC  

LTRII GATCTGAATTCAGTGGCACAG  

SK LTR 1 bio GAGCTCTCTGGCTAACTAGG  

SK LTR 2 bio GAACCCACTGCTTAAGCCTC  

SK LTR 3 bio AGCTTGCCTTGAGTGCTTCA  

SK LTR 4 bio AGTAGTGTGTGCCCGTCTGT  

SK LTR 5 bio GTGTGACTCTGGTAACTAGAG 

454-Titanium 

primer 

CCATCTCATCCCTGCGTGTCTCCGACTCAG-MID-GATCCCT 

CAGACCCTTTTAGTC 

454-Titanium 

linker 

5'Bio-CCTATCCCCTGTGTGCCTTGGCAGTCTCAGAGTGGCAC 

AGCAGTTAGG 
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2.1.8 Materials and Tools for Experimental Surgery 

Alcohol pads B. Braun, Melsungen 

Braunoderm® iodine solution B. Braun, Melsungen 

BD MatrigelTM Growth Factor Reduced BD Biosciences, Heidelberg 

Bepanthen® eye and nose lotion Bayer, Leverkusen 

Cotton swabs Noba, Wetter 

Earmarker FST, Heidelberg 

Epidural cannula 18G BD Biosciences, Heidelberg 

Forceps, delicate FST, Heidelberg 

Forceps, standard strong FST, Heidelberg 

Heat Pad Thermolux, Murrhardt 

Hemostat standard FST, Heidelberg 

Isoflurane Abbott, Ludwigshafen  

Reflex Wound Clip System FST, Heidelberg 

Rimadyl (carprofen), 50mg/ml Pfizer, Karlsruhe 

Scissors, artery, ball tip FST, Heidelberg 

Scissors, standard  FST, Heidelberg 

Thread PGA Resorba 4-0 Resorba, Nürnberg 

Tuberculin syringe 0.5ml, 27G BD Biosciences, Heidelberg 

 

2.1.9 Commercial Kits 

DNeasy® Blood & Tissue Kit Quiagen, Hilden 

EndoFree Plasmid Maxi Kit Quiagen, Hilden 

Fast-LinkTM DNA Ligation Kit Epicentre Biotech., Madison 

GS Junior Titanium emPCR Kit (Lib-L) Roche, Mannheim 

GS Junior Titanium PicoTiterPlate Kit  Roche, Mannheim 

GS Junior Titanium Sequencing Kit Roche, Mannheim 

PicoGreen dsDNA Assay Kit Invitrogen, Darmstadt 

RNeasy® Mini Kit Quiagen, Hilden 

 

 



Materials and Methods 
 

 
27 

2.1.10 Cell Lines 

HEK 293T ATCC, Wesel 

HeLa ATCC, Wesel 

 

2.1.11 Bacterial Strain 

One Shot® TOP10 chemically competent 

Escherichia coli (E. coli)   

Invitrogen, Darmstadt 

 

2.1.12 Mouse Strain 

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice The Jackson Laboratory, Bar 

Habor 

 

2.1.13 Cell Culture 

2.1.13.1 Cell Culture Media and Reagents 

Advanced Dulbecco`s Modified Eagel Medium 

F-12 (DMEM/F12) 

Gibco (Invitrogen), Darmstadt 

Roswell Park Memorial Institute (RPMI) 1640 

Medium 

Gibco (Invitrogen), Darmstadt 

Dulbecco`s Modified Eagel Medium (DMEM) Gibco (Invitrogen), Darmstadt 

Iscove`s Modified Dulbecco`s Medium (IMDM) Gibco (Invitrogen), Darmstadt 

Medium 199 Gibco (Invitrogen), Darmstadt 

Accutase enzyme mix PAA, Cölbe 

Dulbecco`s Phosphate Buffered Saline (PBS) Gibco (Invitrogen), Darmstadt 

Hank`s Balanced Salt Solution (HBSS) Sigma-Aldrich, München 

 

2.1.13.2 Media Additives 

Fetal Bovine Serum (FBS) PAN Biotechnology 

FGF-basic (FGF2) R&D Systems, Wiesbaden 

FGF10  R&D Systems, Wiesbaden 
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Glucose Invitrogen, Darmstadt 

Heparin Sigma-Aldrich, München 

HEPES buffer Sigma-Aldrich, München 

L-glutamine (200mM) Invitrogen, Darmstadt 

Nodal R&D Systems, Wiesbaden 

Penicillin/streptomycin (200mM) Invitrogen, Darmstadt 

 

2.1.13.3 Bacterial Media and additives 

Ampicillin sodium salt Sigma-Aldrich, München 

LB (lysogeny broth) medium Invitrogen, Darmstadt 

SOC medium Invitrogen, Darmstadt 

 

2.1.13.4 Buffers and Media Compositions 

Medium Composition 

Cancer stem cells medium new (CSCN 

medium) 

Advanced DMEM/F12  

Glucose (0.6%) 

Heparin 12µg/ml 

HEPES buffer (5mM) 

L-glutamine (2mM) 

Penicillin/streptomycin (2mM)  

10ml B27-supplement (1x) 

FGF-basic (10ng/ml) 

FGF10 (20ng/ml) 

Nodal (20ng/ml) 

Differentiation medium (RPMI medium) RPMI1640 medium 

FBS (10%) 

L-glutamine (2mM) 

Penicillin/streptomycin (2mM)  
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HeLa medium DMEM  

FBS (10%) 

L-glutamine (2mM) 

Penicillin/streptomycin (2mM) 

293T medium IMDM 

FBS (10%) 

L-glutamine (2mM) 

Penicillin/streptomycin (2mM) 

Freezing solution  11ml RPMI medium 

6ml FBS 

3ml DMSO 

Thawing solution 10ml RPMI medium 

10ml FBS 

Tumor purification mix Medium 199 (without additives) 

Collagenase IV (2mg/ml) 

CaCl2 (3mM) 

LB liquid medium 1L H2Odd 

25g LB powder 

LB agar 1L H2Odd 

25g LB powder 

12.5g Agar 

Ampicillin (100µg/ml) 

Loading buffer blue run (5x) Tris-HCl (pH=7, 25mM) 

EDTA (pH=8, 150mM) 

Bromphenole blue (0.05%) 

Glycerol (25%) 

3M LiCl solution Tris-HCl (pH=7.5, 10mM) 

EDTA (1mM) 

LiCl (3M) 

6M LiCl solution Tris-HCl (pH=7.5, 10mM) 

EDTA (1mM) 

LiCl (3M) 
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Fixation solution PBS 

Paraformaldehyde (4%)  

Permeabilization buffer PBS 

Triton X-100 (0.1%) 

Sodium citrate (0.1%) 

Blocking buffer PBS 

BSA (0.1%) 

HF HBSS 

FBS (2%) 

HFPI HBSS 

FBS (2%) 

Propidium iodide (200ng/ml) 

Unmasking buffer H2Odd 

Citric acid (1.8mM) 

Sodium citrate (8.2mM) 

pH 6 

 

2.1.14 Primary Material 

Primary patient-derived tumor material was provided by the department for surgery of 

the Heidelberg University Hospital (study groups of Prof. Dr. Jürgen Weitz and Prof. 

Dr. Jens Werner). All experiments with human material were done in accordance with 

the guidelines of the declaration of Helsinki. Each patient agreed to tissue donation. 

Experiments were performed as permitted by the University Ethics Review Board. 

 

2.1.15 Computer Software 

Axiovision (release 4.8) Zeiss, Oberkochen 

BLAST-like alignment tool (BLAT)  http://genome.ucsc.edu 

Chipster Kallio et al., 2011, reference [174] 

Endnote X6 Thompson Reuters, New York 

FACS Diva Software (version 6.1.3) BD Biosciences, Heidelberg 
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GraphPad Prism 6 Graph Pad, La Jolla 

GS Junior Sequencer software V2.5  Roche, Mannheim 

GS Run Processor V2.5 Roche, Mannheim 

IS Over Time In house software 

Leica Application Suite Advanced 

Fluorescence (LAS AF) Lite 

Leica, Wetzlar 

Office 2007/2010 Microsoft, Redmond 

Photoshop CS2 Adobe, Dublin 

 

 

2.2 Methods 

2.2.1 Tumor Cell Dissociation 

Tumor tissue was minced into small pieces (<2mm) and washed two times in PBS. 

Centrifugations were performed at 900rpm for 5min (4°C). Tissue pieces were 

digested in tumor purification mix for 2.5 hours at 37°C in a rotating incubator. 

Subsequently, the digestion mix was filtered once though a 100µm cell strainer, and 

then twice through a 40µm cell strainer, to yield a single cell suspension. After each 

filtering step cells were centrifuged at 1000rpm for 10min (4°C). The dissociated 

single cell suspensions was taken into culture, analyzed by flow cytometry or 

transplanted further as described below. 

 

2.2.2 Cell Culture Methods 

All cell cultures used in this thesis were incubated under sterile conditions at 37°C, 

and 5% CO2 in a humidified atmosphere.  

 

2.2.2.1 Establishment of Spheroid Cultures 

For serum-free culture conditions CSCN medium was used. Cytokines FGF-basic, 

FGF10 and nodal were added every 3-4 days. To establish spheroid cultures, 
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dissociated single cell suspensions were drawn up into CSCN medium in ultra-low 

attachment plates.  

 

2.2.2.2 Establishment of Adherent Colony Cultures 

For adherent culture establishment, undigested whole tumor pieces (1-2mm size) 

were plated into normal cell culture flasks to allow the attachment of tumor cells by 

the outgrowth method [175]. For adherent colonies CSCN medium was used. 

Cytokines FGF-basic, FGF10 and nodal were added every 3-4 days. 

 

2.2.2.3 Splitting of Cell Cultures 

For the splitting of adherent cultures, the cell layer was washed once with 5-10ml 

PBS and then incubated with 2.5-5ml accutase for 5-45min at 37°C. The incubation 

time was variable for every distinct cell culture. After all cells had fully detached, cells 

were centrifuged down at 1000rpm for 10min (4°C). Cells were then resuspended in 

new CSCN medium.  

For splitting of spheroid cultures the cells were centrifuged down at 800rpm for 5min 

(4°C) in 50ml Falcon tubes, and washed once with 20ml PBS. After repeated 

centrifugation, the spheroids were resuspended in 5ml accutase and incubated for 

10min at 37°C in the water bath. After that spheroids were vortexed gently at low 

intensity and incubated again for 5min followed by additional vortexing. The process 

of incubation and vortexing was repeated until no more clumps were visible in 

suspension. Subsequently, cells were centrifuged at 1000rpm for 10min (4°C), 

washed once with PBS and resuspended in CSCN medium.  

 

2.2.2.4 Cryoconservation of Cells 

For long-term viable storage of cultured cells or tumor pieces, cryoconservation was 

used. Cell or tumor piece suspensions were centrifuged down at 1000rpm for 10min 

(4°C). 1x105 to 1x107 were resuspended in 700µl RPMI medium and mixed with 



Materials and Methods 
 

 
33 

700µl freezing medium in a 1.5ml tube. Cells were immediately placed in an 

isopropanol-filled Mr. Frosty container and frozen at -80°C. In this step, the container 

mediates a slow 1°C/h cooling of the cell which is protective due to lower ice crystal 

formation. After 24h cells were transferred into -120°C liquid nitrogen tanks.  

Cryoconserved cells were thawed rapidly in a water bath and transferred into a 50ml 

tube. 1ml of thawing medium was used to clean the freezing tube and added slowly 

over the course of 1 minute. Next, 5ml and 20ml of thawing medium were added 

within a time span of 1 minute each, to dilute the DMSO of the freezing medium. 

Cells were centrifuged down at 1000rpm for 10min and washed once with 25ml PBS 

to remove remaining DMSO. Cell were centrifuged repeatedly and resuspended in 

culture medium for later cultivation. 

 

2.2.2.5 Differentiation of Adherent Colony Cultures 

For differentiation, freshly established adherent colony culture cells were detached by 

accutase and re-plated half in CSCN and half in RPMI medium. Serum-free and 

serum cultures were passaged in parallel up to 12 times. Cultures were split at       

50-90% confluence between 1:1 and 1:5. For monitoring changes in cell biology at 

passages 3 and 8 comparative gene expression profiling and indirect 

immunofluorescence were performed. Both cultures were analyzed by flow cytometry 

for surface marker expression at each passage.   

 

2.2.2.6 Outgrowth Cultures for Xenograft Tumor Analysis 

In order to characterize xenograft tumor cell populations in vitro for morphology and 

marker expression cell cultures were established by the outgrowth method [175] in 

RPMI medium by placing 1-2mm tumor pieces into 6-well plates containing 

autoclaved Ø20mm cover slips. Cells were cultured until outgrowth of desired cell 

populations and subsequently fixated and stained by indirect immunofluorescence as 

described below. 
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2.2.3 Xenotransplantation Experiments 

In this study, primary human tumor cells or whole tumor pieces were transplanted. All 

animal experiments were executed using immunodeficient NSG mice as permitted by 

the Regional Commission in Karlsruhe. Mice were purchased from Jackson 

Laboratory and kept in a specific-pathogen-free animal facility according to German 

laws and with the permission of the institutional ethic committee. Mice were sacrificed 

by cervical dislocation 3-26 weeks after transplantation when tumors reached the 

size of maximum 1cm3 or whenever initial signs of suffering of the animals became 

obvious. Mice were anesthetized on a 37°C heating pad with 1.75% isofluran in the 

breathing air. As painkiller, 4ng Rimadyl (carprofen) were applied per gram of body 

weight. Drinking water provided for the mice contained 0.5mg/ml Baytril®. All animal 

experiments were performed under a laminar airflow cabinet using sterile materials. 

 

2.2.3.1 Transplantation of Tumor Pieces   

To expand primary patient-derived tumor tissue, whole tumor sections were 

transplanted subcutaneously or under the kidney capsule of NSG mice. For that 

purpose, tumor material was minced into small pieces and washed twice in PBS 

containing 2mM penicillin/streptomycin. Mice were anesthetized and shaved at the 

left mid abdominal site using a scalpel or an electric razor. The shaved side was 

disinfected using alcohol pads and iodine solution and in perpendicular direction to 

the spine, a 1cm incision was made into the skin. The tumor pieces were applied as 

described below. After transplantation, the wound was clipped and resterilized with 

iodine solution. Clips were removed after 7 to 10 days.  

 

2.2.3.1.1 Subcutaneous Application of Tumor Pieces 

After incision, the skin was mobilized and tumor pieces of up to 0.5cm3 size were 

pushed under the skin using a hemostat. 
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2.2.3.1.2 Application of Tumor Pieces under the Kidney Capsule 

After incision into the skin, the peritoneum was cut above the kidney. By applying 

gentle pressure, the kidney was moved through the cut and stabilized with a cotton 

swab. The kidney was kept moist with PBS using a cotton swab. Carefully, using a 

delicate forceps, the kidney capsule was opened slightly to insert the epidural 

cannula containing <2mm tumor pieces. The cannula was pushed gently for 5mm 

into the cranial direction. Subsequently, the tumor pieces were carefully injected and 

the cannula was removed from the kidney. Next, the kidney was pushed back into 

the abdomen, and the peritoneum was stitched using self-resorbing thread.  

 

2.2.3.2 Transplantation of Cells 

For in vivo experiments, cultured or purified tumor or stroma cells were transplanted 

subcutaneously, under the kidney capsule or into the pancreas of NSG mice. 

 

2.2.3.2.1 Preparation of Cell/Matrigel Mix 

Single cell suspensions were centrifuged for 10min at 1000rpm (4°C). After removal 

of the supernatant, the cells were resuspended in 1ml culture medium and 

transferred to a 1.5ml reaction tube. Next, the cells were centrifuged for 5min at 

2000rpm (RT). The supernatant was removed except for 200µl. The pellet was 

resuspended in the remaining supernatant and transferred into a 0.5ml reaction tube. 

The cells were again centrifuged for 5min at 2000rpm (RT). The supernatant was 

removed leaving 20-50µl medium covering the cell pellet. The cells were mixed with 

an equal amount of matrigel and transferred into a 0.5ml tuberculin syringe (27G). 

The syringes were then cooled on ice until transplantation as described below. 

 

2.2.3.2.2 Subcutaneous Transplantation of Cells 

For subcutaneous transplantation, mice were anaesthetized as described above. The 

left or right mid abdominal site was disinfected using alcohol pads and iodine 
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solution. The disinfected skin was pulled up with a forceps to inject the cell/matrigel 

mix (prepared as described above) into the skin folding. To compare the growth 

characteristics of tumor initiated by differentially treated cell cultures, both flanks of 

an individual mouse were used to transplant two different cell entities.     

     

2.2.3.2.3 Transplantation of Cells under the Kidney Capsule 

Kidney capsule transplantation was performed as described for tumor pieces 

(2.2.3.1.2). Instead of injecting tumor pieces from an epidural cannula, a cell/matrigel 

mix prepared as described above was injected with a tuberculin syringe.  

 

2.2.3.2.4 Transplantation of Cells in the Pancreas   

Mice were anaesthetized, disinfected and shaved as described above. A 2cm skin 

incision was made in a ventral direction. The peritoneum was opened about 5mm 

above the spleen to expose the pancreas by gentle pressure. Using PBS soaked 

cotton swabs the pancreas was moistened and spread out on the peritoneum in a 

ventral direction. Coming from the spine a tuberculin syringe was pushed into the 

pancreas to inject the cell/matrigel mix prepared as described above. Subsequently, 

the pancreas was pushed back into the abdomen and the peritoneum was stitched 

using self-resorbing thread. The skin was closed with wound clips and disinfected 

again with iodine solution. Clips were removed after 7-10 days. 

 

2.2.3.3 Harvesting of Xenograft Tumors 

Mice were sacrificed by cervical dislocation. The legs were pulled away from the 

abdomen and fixed with needles. The mice were disinfected with 70% ethanol and 

their abdomens were opened with surgical scissors in cranial direction. The skin was 

mobilized from the flanks and fixed with needles. Peritoneum and sternum were cut 

in a cranial direction. Tumors were excised using surgical instruments and 

transferred into sterile PBS. Organs were examined visually for metastases. Liver, 
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spleen and lung were removed and fixed in 10% formalin for histopathological 

examination as described below (2.2.12).     

 

2.2.4 Molecular Biology Methods 

2.2.4.1 Isolation of RNA from Cell Cultures 

Cultured cells were washed with PBS and centrifuged down at 1000rpm for 10min 

(4°C). After the supernatant was discarded, the pellet was frozen at -80°C. For RNA 

isolation cells were thawed on ice. Subsequently RNA was isolated using the 

RNeasy Mini Kit according to supplier instructions and eluted in 30µl RNAse-free 

water. DNA was digested on the column. RNA concentration and purity was 

determined using the NanoDrop ND1000 device. RNA was aliquoted and stored at -

80°C. 

 

 2.2.4.2 Isolation of DNA from Cells or Tumor Tissue 

DNA from suspension cells or <2mm tumor pieces was isolated. After washing in 

PBS, cells or tumor pieces were centrifuged down at 1000rpm for 10min at 4°C. The 

supernatant was discarded, and pellets were frozen at -80°C until DNA isolation 

using the DNeasy® Blood & Tissue Kit following manual instructions. The 

concentration and purity of DNA was determined using the NanoDrop ND1000 

device. DNA was stored at -20°C. 

 

2.2.5 Gene Expression Profiling 

Comparative gene expression profiling was performed in cooperation with the Core 

Facility for Genomics & Proteomics of the German Cancer Research Center 

Heidelberg, using HumanHT-12 v4 Expression BeadChips. For that purpose, 10µl of 

minimum 50ng/µl RNA solution were provided. Quality check of the RNA was 

performed by the Core Facility. RIN values show the integrity of the RNA, where a 

value of 10 represents fully intact undegraded RNA. For expression profiling, only 
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RNA with RIN values between 7.5 and 10 was used. Normalization and processing of 

raw data was performed using chipster software [174].  

Global gene expression profiles were analyzed using Microsoft Excel. Gene 

expression values of control cells were subtracted from those of the experimental 

cells obtaining the fold change (FC). FC values were used to calculate the fold 

expression (FE) compared to the control samples. In a log2-scale, FC values 

represent FE values as the power of base 2 (FE=2FC). A fold change of 1 represents 

twice the gene expression exhibited by the controls (FE=2), whereas -1 represents 

half the expression (FE=0.5). A FE value ≥2 was considered an up-regulation and a 

FE value ≤0.5 a down-regulation of the respective gene. 

 

2.2.6 Lentiviral Vector Production 

In order to mark primary pancreatic tumor cells by genomic integration sites, lentiviral 

vector particles were produced encoding the enhanced green fluorescent protein 

(EGFP) marker gene as described previously [176]. Self-inactivating (SIN) lentiviral 

vectors of the 3rd generation based on the human immunodeficiency virus (HIV) were 

used. Due to a deletion in the 3` long terminal repeat (LTR) these virus particles 

cannot replicate after infection of a cell, and are thus suitable for the safe use in 

scientific and clinical applications.    

The system required four distinct DNA plasmids: pMDL gag pol (p101) encodes for 

viral enzymes integrase, protease and reverse transcriptase (pol) and the HIV matrix, 

capsid and nucleocapsid porteins (gag) under control of a CMV promoter; pRSV rev 

(p102) encodes for the RSV U3 promoter driven “regulator of expression of virion 

proteins” (rev) which is required for viral replication; pMD2.VSVG (p103) encodes 

CMV promoter controlled for the glycoprotein of the vesicular stromatitis virus 

(VSVG) that is introduced to the viral surface for pseudotyping, which enables HIV to 

infect a broad range of human cell types; pCCLsincPPT.PGK-eGFP.WPRE  (p106) 

represents the lentiviral expression vector encoding the EGFP marker gene under 

the control of the human phosphoglycerate kinase (PGK) promoter. 
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Lentiviral vector particles were produced in HEK 293T cells. For that purpose, 1x107 

cells were seeded in 15cm petri dishes in 15ml 293T medium. The next day, medium 

was changed 2h prior to transfection to a volume of 10ml fresh medium per dish. 

Polyethylenimine (PEI) served as transfection reagent, and was used in a DNA:PEI 

ratio of 1:3. For each dish, 179.25µl of a 1mg/ml PEI solution were diluted in 320.25µl 

IMDM medium without additives (∑ 500µl) in 1.5ml reaction tubes.  

For each dish, a DNA mix was prepared containing the following amounts of plasmid 

DNA: 

Plasmid Amount per dish 

p101 12.5µg 

p102 6.25µg 

p103 9µg 

p106 32µg 

 

DNA was diluted in IMDM medium without additives to a total volume of 500µl per 

dish in 1.5ml reaction tubes. The 500µl PEI mix and the 500µl DNA mix were 

combined to a 1ml DNA/PEI solution and incubated for 1h at RT. Next, 1ml of 

DNA/PEI solution was added to each dish followed by gentle shaking. After 12h of 

incubation, the medium was changed to 15ml fresh 293T medium. After 24h of 

incubation the virus supernatant was harvested and centrifuged at 800rpm for 5min 

to remove residual HEK 293T cells. Next, the supernatant was sterile filtered using 

Stericup vacuum filters (0.45µm pore size) and transferred into ultracentrifugation 

tubes (35ml/tube). Ultracentrifugation was performed at 20,000rpm for 2h at 20°C to 

pellet lentiviral particles for concentration. Subsequently the supernatant was 

discarded by turning the tubes upside down. Residual medium was removed with 

cotton swabs. To the bottom of the ultracentrifugation tubes 70µl of PBS were given 

and incubated for 30min at RT. To avoid drying, the tubes were covered with parafilm 

during this 30min incubation period. Next, the PBS was pipetted over the bottom of 

the ultracentrifugation tubes for 20 times to resolve the viral pellet. The PBS of all 

tubes was collected in one 1.5ml reaction tube and shaken for 20min at RT. After 

that, the virus supernatant was distributed into 5-20µl aliquots and stored at -80°C. 
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To determine the functional titer of lentiviral supernatants, HeLa cell were transduced 

in vitro using serial dilutions of the harvested virus suspension. HeLa cells grown in 

IMDM medium were seeded into a 6-well plate at a density of 5x104 cells per well. 

After 24 incubation, the cells of one well were detached by accutase treatment and 

counted to determine the cell number per well. The virus was diluted in a 24-well 

plate by adding 1µl virus supernatant into 1ml IMDM medium. This virus suspension 

was serially diluted at a 1:10 ratio by transferring 100µl of one dilution into 900µl of 

fresh IMDM medium. This was performed until five serial dilutions were prepared. 

The culture medium in the 6-well plate was replaced by 500µl IMDM-medium 

containing 16µg/ml polybrene. Next, 500µl virus dilution were added into each well to 

transduce adherent HeLa cells. By this further 1:2 dilution step, cells were 

transduced at a dilution range between 10-3 and 10-7 of the original virus supernatant. 

After 72h incubation the transduction efficiency of the cells in each well was 

determined by flow cytometry. The functional virus titer (transduction unit/ml) was 

calculated from the well that has received the lowest virus dilution showing a 

transduction of 1-25% of all living cells using the formula: 

Transduction unit/ml = Cell number x dilution factor x % EGFP+ cells/100 

 

2.2.7 Lentiviral Marking 

For lentiviral marking, cultured cells were detached by accutase treatment and 

centrifuged for 10min at 1000rpm. 1x105 to 2x106 cells were resuspended in 2ml 

CSCN medium and mixed with lentiviral vector particles at an MOI of 1 to 40 by 

gentle vortexing. Cells were subsequently incubated overnight and transplanted into 

NSG mice within 24 hours for in vivo experiments. On day 3 after transduction, 

transduction efficiency was measured by flow cytometry or by counting the proportion 

of EGFP+ cells under the fluorescence microscope. For flow cytometry, dead cells 

were excluded by staining with propidium iodide. Thus, cells were washed once with 

HFPI and centrifuged down at 1200rpm for 5min at 4°C. Samples were measured 

using a LSRII flow cytometer and FACS Diva software. The gate for EGFP+ cells was 

adjusted to an EGFP- control.      
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2.2.8 Linear Amplification Mediated PCR (LAM-PCR) 

LAM-PCR was used to detect lentiviral integration sites (IS) in the genome of primary 

pancreatic cancer cells as described previously [113, 168]. The method facilitates the 

amplification of the genomic DNA flanking IS and thereby the identification of the 

specific IS locus. Through the use of biotinylated primers designed to bind in the     

3`-region of the lentiviral LTR (3`-LAM-PCR) a linear PCR was performed and 

resulting products were captured on a solid phase (streptavidin coated Dynabeads). 

From linear amplicons, dsDNA was synthesized which subsequently was digested by 

restriction enzymes. To increase the IS coverage, each experiment employing LAM-

PCR was performed in duplicates either using TSP509I or MSEI for restriction digest. 

A linker cassette was ligated to the DNA fragments in order to add a known DNA 

sequence to the LAM-amplicon which enabled amplification of the DNA fragments by 

exponential PCR steps. The single steps of the LAM-PCR procedure are visualized 

in figure 7.    

LAM-PCR was performed using DNA isolated from purified cells of serially 

transplanted tumors in NSG mice. For that purpose 1/3 to 1/2 of all purified tumor 

cells were used for DNA isolation, 1/3 to 1/2 were transplanted into next generation 

mice (same proportion as used for DNA isolation) and the rest was used for flow 

cytometry analysis of EGFP expression or was cryoconserved. In case of an 

incomplete digestion of the tumor tissue, left over tumor pieces were additionally 

subjected to DNA isolation and LAM-PCR. 



Materials and Methods 
 

 
42 

 

Figure 7: Stepwise experimental procedure of LAM-PCR. LC: Linker cassette; LTR: Long terminal 

repeat. Figure modified from [168]. 

 

2.2.8.1 Generation of Linker Cassette 

The linker cassette was needed to exponentially amplify the LAM-PCR products by 

adding the known sequence of the linker to the unknown sequence of the DNA 

fragment. For each restriction enzyme used in LAM-PCR procedure a different 

overhanging DNA was required for ligation based on the varying DNA overhangs 

produced by restriction at different recognition sites. The linker cassette was 

generated by annealing the oligonucleotides LC1 and LC3-1 when TSP509I was 

used for the restriction digest, and in case of MSEI digestion, by annealing of LC1 

and LC3-2.  
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Annealing of linker cassette: 

Reagent Volume 

LC1 (100µM) 40µl 

LC3-1/LC3-2 (100µM) 40µl 

MgCl2 (100mM) 10µl 

Tris (250mM) 110µl 

∑ 200µl 

 

Oligonucleotides were mixed and incubated at 95°C for 5min in a heating block. The 

heating block was then turned off to allow slow cooling of the nucleotide mix 

overnight. Subsequently 300µl water was added and the mix was applied on a 

Micrcon-30 column. After centrifugation at 12600rpm for 12min at RT, the flow 

through was discarded, and the column was placed upside down into a new 

collection tube. By centrifugation at 3600rpm for 3min at RT, the DNA was harvested 

and diluted with water to 80µl total volume. The linker cassette was aliquotted and 

stored at -20°C until use.  

 

2.2.8.2 Linear PCR 

The linear PCR was performed using a 96-well plate. Each well contained 50µl of the 

following PCR mix: 

Reagent Volume 

10x PCR-buffer 5µl 

dNTPs (10mM) 1µl 

Taq DNA polymerase (5U/µl) 0.5µl 

Primer SK LTR 1 bio (0.167pmol/µl)  0.25µl 

Primer SK LTR 2 bio (0.167pmol/µl) 0.25µl 

DNA Xµl 

H2Odd Ad 50µl  
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For each linear PCR, 1µg of DNA was used and amplified running the following PCR-

program: 

Denaturation 95°C 2min  

Denaturation 95°C 45s 

100 cycles Annealing 60°C 45s 

Elongation 72°C 1min 

Termination 72°C 5min  

 

After 50 cycles, another 1µl of Taq DNA polymerase (5U/µl) was added. The PCR 

was then continued for additional 50 cycles. 

 

2.2.8.3 Magnetic Capture 

The linear PCR products were captured using streptavidin-conjugated magnetic 

beads. The magnetic beads were washed twice with 40µl PBS + 0.1% BSA, and one 

time with 20µl 3M LiCl. The wash supernatant was removed by stabilizing the beads 

by exposition to a MPC-96 magnet. After that the beads were resuspended in 50µl 

6M LiCl. Subsequently, the 50µl PCR product solution was mixed with the 50µl bead 

suspension and incubated at RT overnight on a rotator with 300rpm.  

 

2.2.8.4 dsDNA Synthesis 

Next, the single stranded linear PCR product bound to the magnetic beads was 

processed to a double stranded DNA. For that purpose, samples in the 96-well plate 

were exposed to a DynaMagTM magnet for 96-well plates so that the supernatant 

could be removed without loss of the beads.  
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The bead-coupled DNA was washed with 100µl water and subsequently incubated in 

10µl of the following reaction mix for 1h at 37°C: 

Reagent Volume 

H2Odd 8.25µl 

10x Hexanucleotide mix 1µl 

Klenow polymerase 0.5µl 

dNTPs (10mM) 0.25µl 

∑ 10µl 

         

2.2.8.5 Restriction Digest 

After dsDNA was synthesized, 80µl of DNA was added to the reaction mix. By 

exposure to a magnetic field, beads were stabilized to remove the supernatant. After 

that, beads were washed with 100µl water and resuspended in 10µl of the following 

restriction digest mix: 

Reagent Volume 

H2Odd 8.8µl 

10x NEB 1-buffer 1µl 

Restriction enzyme (5U/µl) 0.2µl 

∑ 10µl 

 

The restriction digest was performed using either TSP509I or MSEI as restriction 

enzyme. The digest mix was incubated for 1h at 65°C for TSP509I or at 37°C for 

MSEI.    

 

2.2.8.6 Linker Ligation 

The ligation of the linker cassette to the dsDNA fragments was performed using the 

Fast-LinkTM Ligation Kit. The restriction digest mix was filled to 100µl with water, 
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exposed to a magnetic field and once with another 100µl of water. Samples were 

resuspended in the following reaction mix: 

Reagent Volume 

H2Odd 5µl 

10x Fast-Link Ligation buffer 1µl 

ATP (10mM) 1µl 

Linker cassette 2µl 

Fast Link Ligase (2U/µl) 1µl 

∑ 10µl 

 

Incubation was for 5min at RT. After that, 90µl water was added and the samples 

were chilled on ice. 

 

2.2.8.7 Denaturation 

Samples were washed with 100µl water, with the beads stabilized on a magnet. After 

discarding of the supernatant samples were resuspended in 5µl of a 0.1M NaOH 

solution in order to remove the DNA from the beads. After 10min of incubation at RT 

on a shaking rotator at 300rpm, beads were removed by exposure to a magnetic 

field. The supernatant containing the DNA was transferred to a new reaction tube.  

 

2.2.8.8 Exponential PCRs 

The DNA harvested by denaturation was amplified in two independent exponential 

PCR reactions.  
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For the first exponential PCR the following mix was used: 

Reagent Volume 

H2Odd 40.5µl 

10x PCR-buffer 5µl 

dNTPs (10mM) 1µl 

Taq DNA polymerase (5U/µl) 0.5µl 

Primer SK LTR 3/4 bio (16.7pmol/µl)  0.5µl 

Primer LCI (16.7pmol/µl) 0.5µl 

DNA 2µl 

∑ 50µl 

 

When TSP509I was used for restriction digest the primer SK LTR 3 bio was required. 

After MSEI-driven digestion, the primer SK LTR 4 bio was needed for the first 

exponential PCR. The DNA was amplified according to the following PCR program:  

Denaturation 95°C 2min  

Denaturation 95°C 45s 

35 cycles Annealing 58°C 45s 

Elongation 72°C 1min 

Termination 72°C 5min  

 

The PCR products were subsequently captured on magnetic beads as described 

above. 20µl of the PCR product solution were mixed with 20µl of the beads and 

incubated for 1h at RT on a shaking rotator at 300rpm. After 60µl of water were 

added, the beads were stabilized on a magnet and the supernatant was discarded. 

The beads were washed twice with 100µl water, employing exposure to a magnetic 

field. Next, DNA was uncoupled from the beads by incubation in 10µl 0.1M NaOH 

solution for 10min at RT on a shaking rotator. After stabilization of the beads on a 

magnet, the DNA containing supernatant was transferred into a new reaction tube. 

2µl of the harvested DNA were introduced into the second exponential PCR. The 

same protocol was used as for the first exponential PCR, except for the use of the 
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primer pair SK LTR 4/5 bio instead of the primer pair SK LTR 3/4 bio. TSP509I-

digested products required the use of SK LTR 4 bio primer, whereas MSEI-digested 

DNA was amplified using SK LTR 5 bio primer.   

Next, LAM-PCR products were purified as described in the Amplicon Library 

Preparation Method Manual by Roche (Rev. June 2010) using AMPure beads. 40ng 

of the purified DNA were applied into a third exponential PCR. For this PCR a 

Titanium primer was used which binds in the LTR region of the LAM-PCR products 

and contains a multiplex identifier sequence for the assignment of each amplicon to 

its according sample in sequencing. As the second primer, a biotinylated titanium 

linker was employed binding in the linker cassette of the DNA amplicons. The 

biotinylated part provides binding to the solid phase during sequencing.  

The following PCR mix was used for the third exponential PCR: 

Reagent Volume 

10x PCR-buffer 5µl 

dNTPs (10mM) 1µl 

Taq DNA polymerase (5U/µl) 0.5µl 

454-Titanium primer (0.1pmol/µl)  0.25µl 

454-Titanium linker (0.1pmol/µl) 0.25µl 

DNA Xµl 

H2Odd Ad 50µl  

 

The DNA was amplified running the following PCR program: 

Denaturation 95°C 2min  

Denaturation 95°C 45s 

12 cycles Annealing 60°C 45s 

Elongation 72°C 1min 

Termination 72°C 5min  
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The tagged LAM-PCR products were subsequently used for 454-sequncing as 

described below.  

 

2.2.8.9 Gel Electrophoresis 

In order to separate LAM-PCR products, 1-2% agarose gels were used or 

commercial high resolution Spreadex EL 1200 gels.  

The agarose gel was composed of agarose and TBE buffer heated in a microwave to 

induce gel formation. After cooling of the liquid gel below 60°C 10µl ethidium bromide 

were added and mixed well with the gel. For gel loading samples were mixed 5:1 with 

5x loading buffer and run for 1.5h at 140V.  

For Spreadex gels, samples were mixed at a 5:1 ratio with a 5x Elchrom loading 

buffer. Gels were run in a SEA 2000 apparatus containing a 1:40 water-diluted 

Elchrom buffer for 90min at 130V. Subsequently, Spreadex gels were stained with a 

0.5µg/ml ethidium bromide water solution for 15min at RT. DNA fragment size was 

examined under UV light in comparison to a DNA ladder.  

 

2.2.8.10 454-Pyrosequencing 

454-pyrosequencing involves the PCR-based introduction of a DNA adapter for the 

attachment to DNA-capture beads, a multiplex identifier, and a quality check key 

sequence to the LAM-PCR product. The bead/DNA proportion is adjusted in a way 

that each bead bears only a single DNA fragment (one clone per bead) with a total 

enrichment of 5-20%.  

For that purpose, the DNA is quantified and the DNA molecules per volume are 

calculated using the following formula: 

Molecules/µl = 
sample concentration �ng

µl �∗6.022∗1023

656.6∗109∗amplicon length (bp)
 

These beads are distributed in a water-oil emulsion, where DNA fragments are 

amplified by emulsion-based clonal amplification PCR (emPCR) to exponentially 



Materials and Methods 
 

 
50 

increase the DNA copy number on each individual bead. After that, each bead is 

deposited into a single well of a picotiter plate. Sequencing following the Sanger 

method is based on the detection of a pyrophosphate signal generated by 

complementary nucleotide incorporation during DNA synthesis. For this process A, T, 

G and C dNTPs are flushed over the picotiter plate in a known order, so that in case 

of an incorporation event, pyrophosphate (PPi) is released from the incorporated 

dNTP. Beads are simultaneously deposited in the picotiter plate wells that bear 

sulfurylase and luciferase on their surface. Sulfurylase creates ATP from PPi and 

AMP, so that luciferase can hydrolase ATP and use luciferin to create a light signal. 

The light indicates the next added base and therefore also the next base of the 

sequenced molecule. 

The tagged LAM-PCR products were purified according to the Amplicon Library 

Preparation Method Manual by Roche (Rev. June 2010) using AMPure beads. The 

DNA concentration was measured employing the PicoGreen dsDNA Assay Kit. All 

samples were pooled in equimolar fashion and used for emPCR at proper dilution. 

Amplification by emPCR was performed using the GS Junior Titanium emPCR Kit for 

uni-directional sequencing strategy (Lib-L) (manual Rev. April 2011). Sequencing 

was performed employing the GS Junior Titanium PicoTiterPlate Kit and the GS 

Junior Titanium Sequencing Kit (manual Rev. June 2010) on a GS Junior sequencer. 

Light signals were detected by the GS Junior Sequencer software and processed by 

GS Run Processor software to sequence read data files.       

 

2.2.9 Statistical analysis 

Statistical comparison of tumor sizes was performed using a paired two-sampled 

student´s T-Test in Microsoft Excel.  

Statistical analysis of the data obtained by LAM-PCR and 454-sequencing was 

performed by Prof. Dr. Dr. Ulrich Abel (National Center for Tumor Diseases, 

Heidelberg). In addition to standard methods, such as Fisher’s exact test for equality 

of proportions, techniques were employed that were tailored to the special situation 

encountered here. This situation was characterized by complex serial sampling, the 
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absence of longitudinal observations on clone growth, an unknown number of clones 

present in the tumors, and the need to simultaneously account for observations 

gathered from different mouse generations. In particular, confidence interval p-values 

(a tool suited for “worst-case” analyses), confidence intervals for the parameter N of a 

binomial distribution with given success probability, stochastic modeling of the cell 

proliferation within clones using linear birth processes, and extreme-value 

distributions were employed. The details of these procedures are described in 

appendix C. 

 

2.2.10 Flow Cytometry  

Flow cytometry was used to phenotypically characterize cell cultures or purified tumor 

cells for the expression of cell surface markers or to sort antibody-marked 

populations. In order to exclude dead cells, propidium iodide (PI) was used 

intercalating into the DNA of dead cells, but leaving viable cells unstained. Thus, 

living cells appeared in the PI negative population.  

 

2.2.10.1 Staining Procedure 

Cells for flow cytometry were resuspended in HF and distributed into BDTM FalconTM 

FACS tubes at a number less than 1x106 cells per tube. All centrifugations were 

performed at 1200rpm for 5min. Fluorochrome conjugated antibodies for staining 

were diluted in HF. After centrifugation, cells were resuspended in 100µl antibody 

solution and incubated on ice for 30min. Next, 1ml of HF was added, followed by 

centrifugation. Samples were washed once with HFPI and subjected to further 

centrifugation. The supernatant was discarded and the cells were resuspended for 

measurement in 200-500µl HF. Measurement was performed using a BDTM LSRII 

flow cytometer or a FACS AriaTM cell sorter. Data were analyzed employing FACS 

Diva software. 
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2.2.10.2 Flow Cytometry Analysis and Cell Sorting 

For cell sorting, 1x106 and 2x107 cells were stained for CD133 or CD44 as described 

above. For analysis of CD133 expression by flow cytometry, antibodies of clones 

AC133 and 293C3 were mixed 1:1 to cover all CD133+ cells and used 1:20 each 

(1:10 in total). For cell sorting, the CD133 antibody concentration was increased to 

1:10 for both antibodies (1:5 in total) to exclude that positive cells remain in the 

negative population. Based on CD133 expression, a negative, an intermediate and a 

positive fraction were sorted. The sorting purity was determined by reanalysis of the 

collection tube. To achieve a 100% purity of the negative fraction, a second sort was 

performed with the collected cells in case further CD133+ events were detected upon 

reanalysis. 

       

2.2.11 Indirect Immunofluorescence  

Indirect immunofluorescence staining was performed to analyze the expression of 

intracellular markers in cultured cells and paraffin-embedded tissue or tumor spheres. 

Through the use of non-conjugated primary antibodies and fluorochrome-labeled 

secondary antibodies, a signal enhancement was achieved which provided sufficient 

signal intensity for confocal microscopy imaging. 

 

2.2.11.1 Fixation of Cultured Cells for Staining 

Cells were grown on Ø 20mm cover slips until desired confluence. Then cells were 

washed twice with ice-cold PBS and fixed for 20min in ice-cold fixation solution. Cells 

were then washed twice with PBS and stored in blocking buffer for at least 24h, or 

until later use for staining procedure. 

 

2.2.11.2 Staining of Fixed Cells 

The cultured cells were stained as described previously [177, 178]. All steps were 

performed by removing buffers after incubation with a glass Pasteur pipet connected 
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to a vacuum pump. All washing steps were done in blocking buffer, except where 

mentioned otherwise.  

The blocking buffer covering fixed samples was discarded and cells were incubated 

for 10min in ice-cold permeabilization buffer. After that samples were washed three 

times. Next, cells were incubated for 10min in blocking buffer containing 2µg/ml 

Hoechst 33342 for staining of the nuclear DNA. After three washes, a total actin 

staining using phalloidin-PF647 diluted 1:50 in blocking buffer was performed where 

necessary for 30min in a dark wet-chamber. Next, after three washing steps in 

blocking buffer, samples were incubated with 100µl primary antibody solution diluted 

in blocking buffer for 1-16h in a dark wet-chamber. Before phalloidin or antibody 

staining the well-surface surrounding the cover slip was completely dried by vacuum 

aspiration without drying the cells on the cover slip. The antibody solution was 

applied directly on the cover slip so that it only covered the cells without spreading 

through the well. After primary antibody incubation, the samples were washed three 

times and secondary antibody staining was performed for 1h in a dark, wet chamber. 

The samples were then wash once in blocking buffer, once in PBS and finally 

washed in water to remove buffer salts. The cover slips were mounted in a 20µl drop 

of mounting medium on glass slides and kept in the dark until imaging.    

  

2.2.11.3 Staining of Paraffin Embedded Tumor Tissue Slices or Spheroids 

For histological and immunohistochemical analysis tumor tissue or tumor spheres 

were fixed with 10% formalin solution and embedded in paraffin or 30% albumin 

(Serva). 10 µm sections were deparaffinized by serial incubation in xylol for 2x 10min 

and rehydrated 5min in 100% EtOH, 5min in 96% EtOH, 5min in 70% EtOH and 2x 

5min in H2Odd. To unmask epitopes, tissue slides were cooked sequentially 2x 5min 

and 3x 2min in unmasking buffer using a microwave at 750W. After each cooking 

step the samples were incubated for 5min in the hot unmasking buffer. Next, the 

tissue was surrounded with a palp pen and incubated for 15min in 100µl 

permeabilization buffer in a wet chamber. After that, slides were blocked for 15min in 

blocking buffer. Subsequently, nuclear DNA was stained for 10min in blocking buffer 

containing 2µg/ml Hoechst 33342 in a dark wet-chamber. After 5min of washing in 
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blocking buffer, samples were incubated with 100µl primary antibody solution diluted 

in blocking buffer for 1-16h in a dark wet-chamber. Next, the samples were washed 

for 10min in blocking buffer and secondary antibody staining was performed for 1h in 

a dark, wet chamber. After washing 5min in blocking buffer and 5min in H2Odd, 

samples were mounted in 30µl of mounting medium covered by a cover slip. Slides 

were kept in the dark until imaging. 

 

2.2.12 Tumor Histopathology 

The analysis of patient-derived and xenograft tumor material was performed in 

cooperation with Dr. Frank Bergmann and Prof. Dr. Wilko Weichert (Institute for 

Pathology, University Hospital Heidelberg).  

 

2.2.12.1 Sampling and tissue fixation 

Patient-derived tumor material was visually examined for tissue composition. 

Pathology samples were taken in a way that every differently colored area of the 

sample was contained. For histopathology of xenograft tumors, triangular pieces 

were cut. Murine organs were embedded entirely. The tissue was fixed in 10% 

formalin solution for 1-7 days. Finally, the tissue was dehydrated using an ascending 

EtOH series and embedded in paraffin wax. For further experimental procedures, 

10µm tissue slices were manufactured using a microtome.  

  

2.2.12.2 Hematoxylin/Eosin Staining 

10µm tissue slides were re-hydrated as described above (2.2.11.3) and stained for 

5min in hematoxylin, washed for 1 min with water, and stained another 1min with 

eosin. After subsequent washing for 1min in water, slides were mounted with 30µl 

mounting medium and a cover slip.  
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2.2.12.3 Histopathological Examination 

Pathological analysis was performed by Dr. Frank Bergmann (Institute for Pathology, 

University Hospital Heidelberg). Hematoxylin/eosin-stained tissue slices of primary 

patient material were analyzed for tissue composition and estimated proportional 

tumor content. The xenograft tumors derived from different experimental arms were 

compared for tumor differentiation status and patient-specific characteristics of tissue 

appearance. For a better comparison, xenograft tumors of an individual patient from 

all experiments of this thesis project were analyzed altogether in one session.  

 

2.2.13 Microbiology 

2.2.13.1 Transformation of E. coli 

For plasmid amplification, chemically competent E. coli were used. Frozen 100µl 

vials were thawed slowly on ice. Subsequently, 1µl of plasmid DNA was added to the 

bacteria. Transformation was supported by a head shock for 30s at 42°C. The mix 

was then cooled on ice for 2min. Bacteria were mixed with 900µl SOC-medium and 

incubated for 1h at 37° to enhance transformation efficiency. Finally, 5µl of bacteria 

suspension was distributed on a LB agar plate containing ampicillin, allowing the 

growth of only successfully transformed bacteria due to the plasmid-derived ampicillin 

resistance gene (AmpR). 

 

2.2.13.2 Liquid cultures 

Colonies from successfully transformed bacterial were picked and grown in 250ml LB 

medium containing 100µg/ml ampicillin for 12h at 37°C in a shacking incubator. The 

plasmids were purified using the EndoFree Plasmid Maxi Kit. 
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2.2.13.3 Restriction Digest 

The integrity of used plasmids was analyzed by restriction digests to see whether the 

correct band pattern could be observed in a gel electrophoresis. The agarose gel 

electrophoresis was performed as described above (see 2.2.8.9). The following 

restriction digest mix was used: 

Reagent Volume 

10x Restriction digest buffer (NEB) 2µl 

Restriction enzyme (5U/µl) 1µl 

Plasmid DNA Xµl 

H2Odd Ad 20µl 

  

2.2.14 Microscopy Imaging 

2.2.14.1 Light Microscopy 

The morphology of cultured cells was assessed in a light microscope using 

Axiovision software to take pictures and generate scale bars. 

 

2.2.14.2 Confocal Microscopy 

A Leica SP5 confocal microscope was used to image samples stained by indirect 

immunofluorescence. Up to 4 channels were imaged simultaneously. For analysis of 

3-dimentional samples, z-stacks were created imaging individual planes of the 

sample in a 0.5µm distance. Obtained data were processed using the LAS AF Lite 

software. 
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3 Results  

The data presented in this part were submitted for publication on May 28, 2013 [179]. 

The experiments on pancreatic tumor-initiating cells (TIC) and stroma cells were 

performed in close collaboration with Dr. Claudia R. Ball from the National Center for 

Tumor Diseases (NCT), Heidelberg. This section only contains data obtained by 

myself, unless indicated otherwise. Analysis of tumor histology was performed by 

senior pancreatic pathologist Dr. Frank Bergmann (Institute for Pathology, University 

Hospital Heidelberg). The statistical analysis of data presented in chapter 3.4 was 

performed by Prof. Dr. Dr. Ulrich Abel from the NCT, Heidelberg. 

 

3.1 Enrichment of Pancreatic Tumor Cells 

Primary tumor cell cultures were established from patient-derived tumor tissue in 

order to investigate pancreatic TIC biology regarding their clonal composition, 

phenotypic diversity and their potential to generate stroma cells. The following 

sections describe the enrichment of TIC by in vivo and in vitro methods. 

  

3.1.1 Surgically Resected Tumor Tissue Samples Vary in Tissue Composition 

Primary patient-derived pancreatic tumor tissue was received from the Department 

for Surgery of the University Hospital Heidelberg. In total, 76 different samples were 

received. Examined tumor pieces had a weight between <0.1g and 4.2g (mean 

0.61g, +/- 0.69g) and were dissociated using collagenase IV. The efficiency of tumor 

dissociation varied strongly between 2.5x103 and 1.43x107 living cells per 1g tumor 

tissue (mean 3.4x106/g).  

The tumor pieces were heterogeneous in color and often contained several areas of 

different color ranging from white to yellow, red or brown. When tumors were 

examined for tumor histology, different kinds of tissues were found in primary patient 

samples. In 20 of 45 examined samples PDAC tissue was detected (44%). Within the 

tumor bearing pieces, carcinoma content varied between 1% and 100% (mean 56%, 

+/-37.1%). Besides PDAC tissue, normal pancreas, inflamed pancreas (pancreatitis), 
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connective tissue, fat tissue, PDAC precursor lesions called pancreatic intraepithelial 

neoplasms (PanINs), benign neoplasms, and neuroendocrine tumors were also 

found (figure 8, table 2).     

 

 

Figure 8: Histopathology analysis revealed varying tumor content in primary patient samples. 
Besides PDAC tissue patient-derived tumor material received from the surgery department contained 
various benign tissue types like normal pancreas, fat or pancreatitis tissue; scale bars: 100µm.  
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PancreatitisFat tissue
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Table 2: Histopathology analysis of patient-derived tumor samples for tumor content and 

tissue composition. 

PDAC: pancreatic ductal adenocarcinoma; PanIN1-3: pancreatic intraepithelial neoplasm, stage 1-3.  

 

Sample no. Tissues contained Tumor content (%)

1 Chronic pancreatitis
2 Anaplastic PDAC 90
3 PDAC 80
4 Fat tissue
5 PDAC + chronic pancreatitis 5
6 Muscle + connective tissue + chronic pancreatitis
7 Normal pancreas
8 Chronic pancreatitis
9 Chronic pancreatitis

10 PDAC 80
11 PDAC 1
12 Normal pancreas + connective tissue
13 Normal pancreas
14 Chronic pancreatitis
15 Connective tissue
16 Connective tissue
17 Chronic pancreatitis
18 Chronic pancreatitis
19 Chronic pancreatitis
20 Chronic pancreatitis + PanIN3
21 Connective tissue
22 Chronic pancreatitis
23 PDAC 60
24 Adenosquamous PDAC 100
25 Chronic pancreatitis
26 PDAC 50
27 Neuroendocrine tumor
28 Chronic pancreatitis + PanIN1
29 Chronic pancreatitis
30 PDAC 70
31 Neuroendocrine tumor
32 Chronic pancreatitis
33 PDAC + chronic pancreatitis 1
34 PDAC 100
35 PDAC + chronic pancreatitis 20
36 PDAC 70
37 PDAC 100
38 Mucinous PDAC 60
39 Mucinous PDAC 2
40 PDAC 80
41 Chronic pancreatitis + PanIN3
42 PDAC + chronic pancreatitis 50
43 PDAC 2
44 Microcystic serous cystadenoma
45 PDAC 90
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3.1.2 Xenografting Facilitates Expansion of Primary Tumor Tissue 

In order to enrich primary patient tissue derived tumor cells, suspension spheroids or 

adherent cultures were established in serum-free culture medium supplemented with 

growth supporting cytokines (FGF-basic, FGF10 and Nodal).  

Purified single cell suspensions were cultured in ultra-low attachment plates to allow 

tumor-spheroid formation, a standard method to enrich for normal and malignant 

stem cells [44, 113, 135, 144]. However, from 49 attempts, no stable spheroid 

cultures were obtained. Alternatively, purified tumor cells or 2mm tumor pieces were 

plated in normal cell culture flasks under serum-free conditions to allow for the 

establishment of adherent cultures by the “outgrowth-method” (adapted from 

reference [175]). Through this outgrowth from tumor pieces, three tumor cell cultures 

were established from 20 tissue samples. These cells proliferated in vitro and 

displayed an epithelial morphology characterized by tight cell-to-cell contacts. Cells 

grew in a 3-dimensional colony-like fashion, so that these structures were named 

pancreatic tumor colonies (PTCs) (figure 9A). The colonies were surrounded by 

elongated cells with looser cell-to-cell contacts with a mesenchymal fibroblast-like 

appearance. Within 1 to 3 culture passages under serum-free conditions, fibroblast-

like cells (FLCs) expanded and overgrew the epithelial colonies (figure 9B). Indeed, 

indirect immunofluorescence analysis of the freshly established cultures showed a 

heterogeneous population of tumor cells expressing the pancreatic duct epithelial 

marker cytokeratin 7 (Krt7), and cells that stained positive for the mesenchymal 

stroma markers vimentin, Thy1, and α-smooth-muscle actin (αSMA) (figure 9C-E). 

Thus, epithelial tumor cultures were not stable in adherent serum-free cultures 

established directly from patient material.  
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Figure 9: Establishment of primary pancreatic tumor cell cultures directly from surgically 
resected patient material. (A) After plating of 2mm tumor pieces in cell culture dishes tumor cells 
grew out of adherent tumor pieces and formed epithelial colonies. (B) After initial passaging of the cell 
culture shown in (A) no more cells of epithelial morphology were visible and instead fibroblast-like cells 
were seen; scale bars: 100µm. (C-E) Outgrowth cultures from tumor pieces of patient material showed 
cells of fibroblast morphology expressing mesenchymal stroma markers vimentin (C), Thy1 (D) and α-
smooth-muscle actin (αSMA) (E). Pancreatic duct marker Krt7 was only expressed in tumor cells 
lacking mesenchymal markers; scale bars: 50µm. 

 

To overcome the overgrowth of epithelial tumor cells by mesenchymal fibroblast-like 

cell types in cell culture, small tumor pieces (2-10mm size) or purified tumor cells 

were transplanted directly under the skin or under the kidney capsule of NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice to initiate xenograft tumors. When 2mm tumor 

Intitial culture 1st Passage
A B

DNA  Krt7 Vimentin DNA  Krt7 Thy1 DNA  Krt7 αSMA

C D E
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pieces were transplanted under the kidney capsule, one sample out of 16 formed a 

tumor (6.25%). To enhance the efficiency of xenograft tumor formation, larger tumor 

pieces (up to 0.5cm3) were transplanted under the skin of NSG mice. With that 

methodology, patient tissue was cut in a way that every differently colored area of the 

tumor piece was transplanted. This strategy increased the probability of transplanting 

a tumor containing part. After this change in tissue processing, 9 samples initiated 

tumors from 29 transplanted (31%). When primary adherent serum-free cultured 

epithelial colonies were transplanted, 2 out of 2 xenografting attempts were 

successful. In total, 12 patient samples engrafted in NSG mice out of 47 tried 

(25.5%). Initial xenograft tumors formed within 8 weeks to 9 months after 

transplantation. Engrafted tumor samples were serially transplantable for up to 14 

passages in mice that were evaluated. Resulting xenograft tumors closely resembled 

the original patient`s tissue in histology (figure 10).                     

 

Figure 10: Histology of a pancreatic xenograft tumor tissue compared to the original patient 
sample. (A) The xenograft tumor closely resembled the patient`s tumor tissue in histology; scale bars: 
100µm. (B) Adherent cultures initiated xenograft tumors in NSG mice that contained Krt7+ irregular 
duct structures and a subpopulation of rare vimentin+ cells, alike the respective patient tumor; scale 
bars: 50µm. Figure modified from [179]. 

B
 

        

        

Xenograft tumour Patient tumour
DNA  Krt7 Vimentin DNA  Krt7 Vimentin

A
Xenograft tumour
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3.1.3 Establishment of Primary Cell Cultures from Xenograft Tumor Material  

After expansion of patient-derived tumor material in NSG mice, the establishment of 

spheroid and adherent colony cultures was repeated using the xenograft tumor tissue 

instead of direct patient tissue. 

 

3.1.3.1 Pancreatic Tumor Spheroids are not Expandable in Suspension Culture 

In contrast to direct patient tissue, xenograft tumor derived cells from three PDAC 

patients (P1-P3) formed large spheroid structures within 1-7 days of culture in ultra-

low attachment plates using serum-free medium plus cytokines FGF-basic, FGF10 

and Nodal (figure 11A). In these structures, cells survived in culture for up to 12 

months until termination of the experiment, and initiated tumors in NSG mice. 

However, spheroid cells proliferated poorly in vitro, as was indicated by a constant 

decrease of cell numbers counted at each passaging step (figure 11B). In 4 out of 6 

cases cells died within 2 culture passages. 

 

3.1.3.2 Adherent Epithelial Tumor Colonies Stably Growth from Xenograft 
Tumor Tissue 

As an alternative system to non-expandable spheroids, pancreatic tumor colony 

(PTC) cultures were established from xenograft tumor material of four patients (P1-

P4) by the outgrowth-method [175] (figure 11A). For this purpose, tumor pieces of 1-

2mm size were plated in normal cell culture flasks to allow adhesion. Derived 3-

dimensional PTCs grew exponentially (figure 11B) for up to 16 passages examined 

without any signs of senescence. As was observed for colony cultures grown directly 

from patient material, PTCs derived from xenograft tumors were again surrounded by 

fibroblast-like cells after outgrowth from tumor pieces. However, in contrast to the 

cultures grown from fresh patient tissue, these cells were lost by passaging. PTC 

cells of P1-P4 formed tumors in NSG mice to 97.9% efficiency when at least 5x103 

cells were transplanted. Moreover, even 100 transplanted cells formed tumors, as 

observed for P1 and P4.  
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Figure 11: Cell culture of primary pancreatic tumor cells under serum-free conditions. (A) TIC 
can be kept in serum-free culture as suspension spheroids or adherent three-dimensional colonies; 
scale bars: 100µm. (B) The number of cells in spheroid cultures decreases after each passaging step, 
whereas adherent cultures grow exponentially. Figure modified from [179].  
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Phenotypic characterization of spheroid and colony cells revealed an undifferentiated 

phenotype indicated by the high expression of surface markers that have been 

associated with pancreatic TIC function including CD133, CD44, CD24 and the 

epithelial marker EpCam [143, 144] (figure 12). Moreover, spheroid and colony 

cultures derived from P1 were examined for Krt7 and vimentin expression by indirect 

immunofluorescence analysis. In both culture models, cells displayed an epithelial 

phenotype characterized by tight cell-to-cell contacts, high expression of the 

pancreatic duct marker Krt7 and absence of mesenchymal marker vimentin (figure 

13A). However, besides the ductal differentiation marker Krt7 cells from three of four 

patients (P1, P2 and P3) co-expressed the acinar-specific transcription factor Ptf1a 

(only examined in adherent colonies, figure 13).   

 

Summary chapter 3.1 

Primary patient-derived tumor tissue varies strongly in tissue composition and tumor 

content. Thus, xenografting in NSG mice was employed to expand tumor material 

and obtain tissue that was free of benign human cell types. From these xenograft 

tumors, spheroid and adherent colony cultures could then be established in vitro 

under serum-free conditions. Primary pancreatic tumor cell cultures displayed a 

mixed cellular phenotype characterized by high TIC surface marker expression and 

the co-expression of ductal and acinar differentiation markers. Because spheroid 

cultures did not expand in vitro, exponentially growing tumor colony cultures were 

used for analyzing the differentiation potential and the clonal composition of 

pancreatic TIC, as described below.    
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Figure 12: Characterization of serum-free grown primary pancreatic tumor cell cultures for TIC 
associated surface marker expression. Representative 3rd passage suspension spheroid and 
adherent colony cultures showed expression of pancreatic TIC function associated markers CD44, 
CD24, and CD133 and the epithelial marker EpCam. Appropriate isotype controls revealed that 
unspecific antibody binding was not higher than 0.1%. Antibody staining was plotted against sideward 
scatter (SSC). Percentage numbers in gates indicate proportion of positively stained cells.    
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Figure 13: Characterization of serum-free primary pancreatic tumor cell cultures for pancreatic 
differentiation markers. (A) Adherent colonies and suspension spheroids displayed epithelial 
morphology and expression of the pancreatic duct marker Krt7, but stained negative for mesenchymal 
Vimentin; scale bars: 50µm. (B) Colony cells frequently co-expressed Krt7 and the acinar marker 
Ptf1a; scale bars: 30µm. Figure modified from [179]. 
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3.2 Phenotypic Diversity of Pancreatic TIC  

Tumor-initiating cells (TIC) and stem cells were previously hypothesized to share 

functional and phenotypic characteristics. For example, surface markers of benign 

stem cell population were frequently postulated to associate with tumor-initiating 

function (see section 3.1.3). This section describes experiments performed to attempt 

functional differentiation of pancreatic TIC to investigate, whether functional 

differentiation of pancreatic TIC is possible and, on the other hand, whether TIC 

function is stably associated to a certain phenotype.   

     

3.2.1 Serum Treatment and Withdrawal of Growth Factors Alter Colony Cell 
Morphology 

As described in section 3.1.3, pancreatic tumor colony (PTC) cells growing in serum-

free medium stimulated by the growth factors FGF-basic, FGF10 and nodal displayed 

an undifferentiated phenotype characterized by the expression of markers previously 

shown to be associated with functional TIC populations in PDAC and other solid 

tumor entities (see section 1.3). In order to differentiate PTC cells, “serum treatment” 

was applied. In this thesis, this was defined as cultivation in RPMI1640 medium 

supplemented with 10% fetal bovine serum (FBS) and withdrawal of growth factors. 

Such cultures will be referred below as “serum-treated culture” and the original 

colony cultures as “serum-free controls”. Culture conditions similar or identical to 

serum treatment were described previously to induce partial differentiation of PDAC 

and glioma TIC [144, 180, 181]. Subsequently, the morphology of the adherent cells 

changed strongly. Under these conditions, cells derived from 4 individual patients 

(P1- P4) did no longer grow as 3-dimensional epithelial colonies, but instead formed 

monolayers of much larger and irregular shaped cells with increased cell diameter 

(figure 14). Serum-treated cells displayed loosened cell-to-cell contacts and 

polymorphous cell shapes. The resulting cell monolayer appeared disorganized and 

highly heterogeneous. Serum-treated and serum-free control cultures were equally 

able to grow in culture until the experiment was terminated after 12 months 

representing 11 passages.  



Results 
 

 
69 

 

Figure 14: Serum treatment changed PDAC colony cell morphology. Cells derived from four 
PDAC patients treated with 10% FBS containing medium without growth factors lost 3-dimensional 
growth and formed monolayers. Serum-treated cells showed loosened cell-to-cell contacts and 
irregular shapes compared to serum-free controls; scale bars: 100µm.    

 

3.2.2 Serum Treatment Alters the Phenotype of Adherent Colonies 

Alterations in cell biology induced by the change in culture conditions were monitored 

for 5 to 10 passages, with direct comparison of serum-free controls and serum-

treated cells derived from the same serum-free established initial culture (figure 15). 

Possible changes of the cellular differentiation status were monitored via comparative 

gene expression profiling. The up- or down-regulation of a certain gene in serum-

treated cultures was defined as a change in the absolute expression (fold-change) of 

at least 1 (up) or -1 (down) respectively, representing double or half expression 

compared to the controls. To distinguish between short and long-term effects, 

expression profiling was performed at culture passage 3 and 8. Here, 3 passages in 

10% FBS containing medium without growth factors represented a time of 25-118 

days (P1: 25-26 days; P2: 27-69 days; P3: 47-118 days; P4: 85-105 days), and 8 

passages represented a time period of 75-190 days (P1: 75-76 days; P2: 64-129 

days; P3: 174-190 days; P4: 85-105 days).  
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Figure 15: Serum treatment of adherent colony cultures. An initial serum-free culture was split and 
cultured to equal parts in parallel for up to 10 passages either in serum-free medium containing growth 
factors or in 10% FBS supplemented medium without growth factors. Initial culture and every 
subsequent passage were analyzed for pancreatic TIC associated surface marker expression by flow 
cytometry. In addition, at culture passage 3 and 8 comparative gene expression profiling and 
simultaneous transplantation into NSG mice were performed to monitor phenotypic and functional 
differentiation of pancreatic TIC. Besides flow cytometry also indirect immunofluorescence staining 
was used at passages 3 and 8 to verify gene expression profiling results on protein level.      

 

Gene expression profiling revealed that serum treatment strongly altered the gene 

expression of cultured primary PDAC cells (figure 16A). The changes in gene 

expression, however, were specific for each individual patient, such that serum-free 

and serum cultured cells of each patient clustered together in a dendrogram (figure 

16B). Within the cultures of a specific patient, serum-treated cultures clearly differed 

from the controls. The global gene expression profile was examined for changes 

involving previously described markers, which would indicate a shift in the phenotypic 

differentiation of PDAC cells. The analysis focused on genes that indicate a 

differentiation into the acinar [31, 182-185], ductal [1, 4] and islet cell lineage [186, 

187] (appendix A).  
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Figure 16: Serum treatment changed gene expression in a patient specific manner. (A) Global 
gene expression prolife changed upon serum treatment of adherent tumor colony cells; P1-P4: 
patients 1-4. (B) The gene expression profiles of PDAC cell cultures passaged for three or eight 
passages (3Pa, 8Pa) either in serum-free or 10% FBS supplemented medium without growth factors 
clustered together for each of four patients. Within the expression profiles of one individual patient 
serum-treated cultures clustered distinct from serum-free controls.    

 

Under serum-free conditions, cells expressed pancreatic duct and acinar markers as 

described above (figure 13). Upon serum treatment expression of the duct marker 

cytokeratin 7 (KRT7) was found to be increased in 3 out of 4 patients (P2, P3, P4) at 

passage 3 and in 2 patients (P2, P3) at passage 8 (table 3, appendix A). Duct 

markers like mucin 1 (MUC1), cabonic anhydrase II (CA2) and hepatocyte nuclear 

factor 6β (HNF6β) were also up-regulated rather than less expressed by serum-
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treated cells of P2 and P3. However, examination of acinar markers after serum 

treatment revealed an up-regulation of genes encoding acinar specific trypsin 

enzymes (PRSS1, PRSS2 and PRSS3) in P2 and P3. By contrast with all other 

patients, cells of P1 rather down-regulated ductal and acinar differentiation markers. 

Differentiation into the pancreatic islet lineage was not observed (appendix A).    

Different from pancreatic lineage specific genes, upon serum treatment the 

expression of markers previously described for pancreatic TIC (CD24, CD133 and 

ALDH1) [143, 144, 148], reprogramming factors that have also previously been 

associated with pancreatic TIC function (SOX2 and KLF4) [161, 162, 188] and 

normal progenitors of the developing pancreas that also modulate pancreatic 

regeneration in adults (SOX9, NOTCH1 and HES1) [19-23, 36-38] were frequently 

lower expressed. This indicated a differentiation-like phenotype. These changes 

appeared in a patient and culture passage specific manner (table 3, appendix A). 

Substantial changes in the expression of other relevant markers, like CD44, CXCR4, 

OCT4 and PDX1 were not observed (appendix A).   

The results obtained by gene expression profiling were confirmed on the protein level 

(table 3). CD133, CD44, CD24 and EpCam expression was assessed through flow 

cytometry for every passage from initial culture establishment until passage 5 to 10. 

These experiments were performed in duplicates (Ex1 and Ex2, figure 17). Cells from 

P2 in particular down-regulated the TIC surface marker CD133 to 0% within 5 culture 

passages as measured by flow cytometry in both Ex1 and Ex2. In, contrast, under-

serum free conditions this marker stayed highly expressed by P2 cells at a proportion 

>10%. For P1, a similar down-regulation of CD133 was observed, but less strongly 

than had been observed for P2. In contrast, P3-derived cells that showed a low 

CD133 expression under serum-free control conditions up-regulated CD133 upon 

serum treatment and reached values comparable to those of the other three patients. 

CD24 was mildly down-regulated for P1 and P2, whereas for P3 and P4 no 

substantial differences were measured. For both serum-treated and serum-free 

control cells of all patients, CD44 and EpCam were equally strong expressed. 
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Table 3: Differential expression of markers associated with undifferentiated cell populations or 

mature pancreas cells after serum treatment and withdrawal of growth factors. 

  

Serum-treated cultures showed differential expression of markers characteristic for undifferentiated 
cells (blue color) or acinar and ductal differentiation markers (red color) compared to serum-free 
cultured controls. Markers of undifferentiated cells were more frequently down-regulated upon serum 
treatment and differentiation markers were more frequently up-regulated. Gene expression profiling 
was performed after three culture passages (3Pa, green background) or eight culture passages (8Pa, 
orange background) for four patients (P1-P4). 

 

For both cultures under comparison, indirect immunofluorescence (IF) analysis for 

intracellular markers was performed at culture passages 3 and 8. Staining for Sox2 

and Krt7 confirmed patient specific expression changes. The cells of all patients 

expressed Krt7 at high levels under any cell culture condition. However, up-

regulation of this marker by serum treatment was also apparent on the protein level, 

especially for cells of P2, which also showed the strongest down-regulation of Sox2 

(figure 18, table 4).     

Patient Down-regulated 
markers in 3Pa

Up-regulated 
Markers in 3Pa

Down-regulated 
markers in 8Pa

Up-regulated 
markers in 8Pa

P1

NOTCH1 
ALDH1A1

CA2
MUC1
HNF6β
PRSS3

ALDH1A3

KLF4 
ALDH1A1 

CD133 
EpCam
KRT19
MUC1
HNF6β
PRSS3

NOTCH1
ALDH1A3

CD24
PRSS1

P2

SOX2 
MYC
KLF4 

NOTCH1
ALDH1A1 

CD133 
HES1

KRT7
MUC1
PRSS2
PRSS3

ALDH1A1 
ALDH1A2 

CD133 
SOX9

ALDH1A3 
HES1
CA2

KRT7
MUC1
PRSS3

P3
SOX2 
SOX9
MUC1

ALDH1A3
KRT7

PRSS1
PRSS2
PRSS3

SOX2 
KLF4 
HES1

ALDH1A3 
CD133
KRT7
CA2

PRSS1
PRSS3

P4 KLF4 
CD133

ALDH1A3
KRT7

CA2
MUC1 -
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Figure 17: Expression of TIC associated surface markers and EpCam in PDAC cultures under 
serum-free conditions and after serum treatment. PDAC cultures of four patients (P1-P4) 
passaged five to ten times showed patient specific expression of CD133. P1 and P2 derived cells 
down-regulated CD133 after change from serum-free to 10% FBS containing medium without growth 
factors. In contrast, P3 cells showed higher CD133 values under serum conditions. CD24 was slightly 
down-regulated by serum treatment for P1 and P2. CD44 and EpCam expression did not differ 
between both culture conditions. Analysis was performed in two independent experiments (1 and 2).  

CD133 CD24
Experiment 1 Experiment 2 Experiment 1 Experiment 2

P1

P2

P3

P4

Culture passage

%

Culture passage Culture passage Culture passage

%

%

%

CD44 EpCam
Experiment 1 Experiment 2 Experiment 1 Experiment 2

P1

P2

P3

P4
%

%

%

%

Culture passage Culture passage Culture passage Culture passage

 

Serum-free

10% FBS

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

0 1 3 4 5 6 7 8

0

20

40

60

80

100

0 1 2 3 4 5

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

0 1 3 4 5 6 7 8

0

20

40

60

80

100

0 1 2 3 4 5

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

0 1 3 4 5 6 7 8

0

20

40

60

80

100

0 1 2 3 4 5

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

0 1 3 4 5 6 7 8

0

20

40

60

80

100

0 1 2 3 4 5

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8



Results 
 

 
75 

Table 4: Phenotypic characterization of primary adherent PDAC cell cultures under serum-free 
conditions and after serum treatment. 

 

Surface markers previously described to associate with pancreatic TIC function were measured by 
flow cytometry. Intracellular markers were investigated via indirect immunofluorescence staining. 
Cultures were assigned + when marker positive cells were noticed in more than one independent 
visual field of the same sample, +/- was indicated when only single positive cells were visible and – if 
no positive cells were found; n.d = not determined. Table modified from [179]. 

 

  

Figure 18: Differentiation-like phenotype of serum-treated PDAC cells. Tumor colony cells of 
patient 2 (P2) down-regulated Sox2 and up-regulated the pancreatic duct epithelium marker Krt7 after 
change of culture conditions from serum-free to 10% FBS supplemented medium and withdrawal of 
growth factors; scale bar: 30µm. Figure modified from [179]. 

 

Patient 1 Patient 2 Patient 3 Patient 4 
Marker Serum-free 10% FBS Serum-free 10% FBS Serum-free 10% FBS Serum-free 10% FBS

Flow Cytometry

CD133 10 - 94% 1 - 55% 11 - 98% 0 - 37% 0.3 - 14% 1 - 45% 12 - 87% 3 - 60%
CD44 75 - 100% 96 - 100% 86 - 100% 45 - 100% 87 - 100% 97 - 100% 73 - 100% 70 - 100%
CD24 2 - 85% 59 - 96% 0.2 - 22% 0.1 - 10% 60 - 98% 25 - 91% 55 - 94% 55 - 99%

EpCam 87 - 100% 96 - 100% 81 - 100% 92 - 100% 90 - 100% 95 - 100% 69 - 100% 95 - 100%

Indirect Immunofluorescence

Krt7 + + + + + + + +
Ptf1a + + + + + + - -

Amylase + + n.d. n.d. + + n.d. n.d.
Vimentin +/- + - - - - + +

Sox2 +/- + + +/- + + - -
Oct4 + + + + + + + +
Klf4 + + n.d. n.d. n.d. n.d. n.d. n.d.
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3.2.3 PDAC Cells Retain TIC Potential after Serum Treatment 

The results described in the previous section indicate a partial phenotypic 

differentiation of colony cells by serum treatment. To examine whether the cells were 

functionally differentiated, we tested their ability to form subcutaneous tumors after 3 

and 7 or 8 passages in 10% FBS containing medium without cytokines. Cells from all 

4 patients gave rise to xenograft tumors, indicating sustained tumor-initiating 

potential (figure 19 and 20) without any changes in the patient-specific histology 

(figure 20). The sizes of tumors initiated by serum-treated cells were not significantly 

different from tumors formed by serum-free control cells upon transplantation of 3rd 

passage cells (figure 19). After 7 to 8 passages of serum treatment, the tumor 

weights were significantly lower (p<0.001), but tumors grew in 20 of 24 animals 

compared to 23 of 24 observed for controls. The tumors induced by serum-treated 

and control cells were equally transplantable into secondary and tertiary recipient 

mice (2°/3°), again without differences in histology (figure 20). However, tumors from 

serum-treated cells passaged 7 to 8 times were again significantly smaller in 

secondary mice (p<0.005), but cells engrafted in 12 out of 12 animals compared to 

10 out of 12 observed for serum-free control cells. In third generation mice no 

substantial differences in tumor weights were measured. However, it is worth 

mentioning that for individual patients, serum treatment specifically induced a higher 

or lower tumor weight compared to serum-free control tumors (figure 19).   

 

3.2.4 CD133- PDAC Cells Initiate Tumors and Reconstitute the CD133+ 
Population 

CD133 has previously been described to predict for TIC function in heterogeneous 

cell populations derived from primary PDAC samples [144]. Similar findings have 

been made in other solid tumor entities [135-138]. By contrast with what was 

observed in the literature, in vitro expression of CD133 did not seem to correlate well 

with the in vivo data described above. Thus, the potential of CD133 as TIC marker 

was assessed by cell sorting. Between 1x106 and 2x107 serum-free cultured control 

or serum-treated cell populations were sorted according to their CD133 (P2, P3) or 

combined CD133/CD44 (P1) expression.  
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Figure 19: Serum-treated colony cells retained TIC potential in serial transplantation. First 
generation tumors (1°) in NSG mice initiated by cells cultured for 3 passages in serum containing 
medium without growth factors had equal weights compared to control tumors initiated by serum-free 
grown colony cells (n=23). In secondary (2°) (n=19) and tertiary (3°) (n=12) animals no significant 
differences were observed. After 7 or 8 passages under serum conditions 1° tumors were significantly 
smaller (*p<0.001), but still 20 of 24 transplantations derived tumors (23 of 24 observed in controls). In 
2° animals transplanted derived from 7 or 8 passage serum-treated cells again significantly smaller 
tumor weights were measured (**p<0.005), but also a higher engraftment in 10 of 12 mice compared 
to 12 of 12 observed for control cells. For 3° tumors no differences were observed. Tumor weight 
indicated in grams (g). Graphs show results of four patients (P1-P4), indicated by differently colored 
dots representing one tumor each; P1: red; P2: green; P3: blue; P4: yellow. 
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The purity of CD133-negative sorted fractions ranged to 100% (table 5). Upon 

subcutaneous transplantation into NSG mice, however, all fractions formed tumors 

equally (table 5, figure 21A). Tumors derived from sorted CD133 negative cells 

expressed CD133 to an equal proportion as tumors originating from the respective 

CD133+ fraction (table 5, figure 21B). No differences were detectable in histology 

(figure 22), and all fractions showed equal tumor-initiating capacity in serial 

transplantation. Moreover, when P1 cells were sorted for combined CD44 and 

CD133 expression all fractions showed equal tumor-initiating capacity and serial 

transplantability (table 5). As observed for CD133, the proportion of CD44+ cells in 

the transplanted fraction was not predictive for CD44 expression in the resulting 

xenograft tumors.        

 

 

 

Figure 20: The histology of xenograft tumors remains unchanged in serial transplantation. No 
difference in the histology of xenografted tumors was observed after serial transplantation of serum-
treated or serum-free control TIC; scale bars: 100µm. Figure modified from [179]. 
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Table 5: CD133(/CD44) expression did not predict for tumor-initiating potential. 

 

 

Sorted CD133+ and CD133- cell fractions from three patients were equally capable to form tumors in 
NSG mice. Tumors formed from highly purified CD133- and CD133+ cell fractions contained an equal 
proportion of cells expressing CD133 (CD133 in vivo). Cells of patients 2 and 3 were transplanted in 
duplicates or triplicates (Tumor 1, 2 or 3). Tumor weights are specified in grams (g). Besides CD133 
positive enriched fractions (CD133+) intermediate fractions (CD133+/-) were sorted. For enrichment, 
CD133- cells were sorted once (CD133-) or twice (CD133--). Cells derived from patient 1 were sorted 
for CD133 and CD44 simultaneously. Also CD44 expression in transplanted fractions did not correlate 
with tumor growth and with the CD44+ proportion in initiated tumors (CD44 in vivo). Purity of 
transplanted sort fractions is indicated by the % proportion of marker positive cells measured in 
reanalysis. Table modified from [179]. 

Patient 1
Fraction Sorted

from
% CD44-/
CD133-

in sort re-
analysis

% CD44+/
CD133-

in sort re-
analysis

% CD44-/
CD133+

in sort re-
analysis

% CD44+/
CD133+

in sort re-
analysis

Tumor 
(g)

CD44 
in vivo 

(%)

CD133 
in vivo  

(%)

CD44-/        
CD133-

Serum-
free 93.2 3.6 2.8 0.4 1.9 6.2 42.4

CD44+/       
CD133-

Serum-
free 49.1 45.5 4.7 0.7 0.9 6.5 36.1

CD44-/       
CD133+

Serum-
free 33.1 4.8 61.0 1.1 1.2 5.7 39.4

CD44+/     
CD133+

Serum-
free 51.5 12.3 32.9 3.3 1.6 4.2 35.1

Patient 2
Fraction Sorted

from
% CD133 
in sort re-
analysis

Tumour 1
(g)

CD133
in vivo 

(%)

Tumour 2 
(g)

CD133
in vivo 

(%)

CD133- Serum-
free 0.6 0.8 31.9 0.6 n.d.

CD133+/- Serum-
free 56.7 0.45 20.8 0

CD133+ Serum-
free 99 0.15 21.7 0

Fraction Sorted
from

% CD133 
in sort re-
analysis

Tumour 1 
(g)

CD133 
in vivo 

(%)

Tumour 2 
(g)

CD133 
in vivo 

(%)

Tumour 3 
(g)

CD133 
in vivo 

(%)

CD133- 10% FBS 0.0 0.4 22.8 0.6 21.9 0.1 n.d.

Patient 3
Fraction Sorted

from
% CD133 
in sort re-
analysis

Tumour 1
(g)

CD133 
in vivo 

(%)

Tumour 2
(g)

CD133 
in vivo

(%)

CD133- 10% FBS 1.8 1.1 0.2 0.7 0.7

CD133+/- 10% FBS 22.9 0.35 0.2 0.3 0.4

CD133+ 10% FBS 51.8 0.4 0.2 0.6 0.5

CD133-- 10% FBS 0.1 0.5 0.2 n.d.
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When 100% CD133 negative cells of P2 were taken into culture, cells reconstituted 

CD133 expression within 8-35 days (table 6). In contrast, under serum conditions this 

effect was not observed and CD133 values stayed at 0.0-0.1% at days 1, 8 and 35.  

These data show that there is a subpopulation of CD133- TIC capable of giving rise to 

CD133+ PDAC cells in vivo and in vitro. 

 

  

Figure 21: Phenotypic plasticity of pancreatic TIC. (A) After transplantation of sorted CD133+, 
intermediate and CD133- cell populations, all fractions equally initiated tumors (scale bars: 1cm). (B) 
Tumors initiated by CD133 enriched or CD133 depleted fractions showed equal proportions of CD133+ 
cells. Figure modified from [179]. 
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Figure 22:  Depletion or enrichment for CD133 and CD44 by cell sorting had no influence on 
xenograft tumor histology. All sorted fractions formed tumors with similar patient specific histology. 
The figure shows results for three patients (P1-P3); scale bars = 100µm. Figure modified from [179]. 

 

Table 6: CD133-negative PDAC cells restored CD133 expression in vitro. 

  

Serum-treated cells derived from P2 were sorted for CD133 negative cells to 100% purity and cultured 
in growth factor supplemented serum-free medium or 10% FBS containing medium without growth 
factors. Compared to isotype controls (IgG) serum-free cultured cells up-regulated CD133 to values 
regularly measured for P2. In 10% FBS containing medium no such CD133 expression was observed. 
Table shows flow cytometry data indicating the percentage proportion of CD133+ cells in culture 
measured 1, 8 and 35 days after sort. 

Culture Stain Day 1 Day 8 Day 35

P2 serum-free CD133 0.0% 1.9% 38.5%

P2 serum-free IgG 0.0% 0.1% 0.1%

P2 10% FBS CD133 0.0% 0.1% 0.0%

P2 10% FBS IgG 0.0% 0.0% 0.0%
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Summary chapter 3.2 

Tumor colony cultures were treated with 10% FBS-containing medium without growth 

factors and subsequently lost three-dimensional growth and tight cell-to-cell contacts. 

Cells commonly down-regulated markers characteristic for undifferentiated cell 

populations and up-regulated pancreatic differentiation markers. Despite this 

differentiation-like phenotype, cells retained their tumorigenicity and self-renewal in 

NSG mice. Sorting for pancreatic TIC markers CD133 and CD44 revealed no 

correlation between these cell surface molecules and tumor growth. Moreover, pure 

negatively sorted fractions restored CD133 expression in vitro and in vivo.   
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3.3 Clonal Composition of the Pancreatic TIC Compartment 

Despite recent evidence for tumor-initiating cells (TIC) or so-called cancer stem cells 

(CSC) in pancreatic cancer (see section 1.3.2) the clonal dynamics within the 

pancreatic TIC compartment remain unknown. To visualize the contribution of 

individual TIC clones to long-term tumor growth tumor colony cells of 3 patients (P1-

P3) were lentivirally marked and serially transplanted into highly immunodeficient 

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice over three generations (figure 23). The 

tumors which formed were harvested and dissociated to receive a single cell 

suspension. A representative proportion of dissociated tumor cells was analyzed by 

LAM-PCR (see section 1.4) and subsequent high-throughput 454-sequencing for 

lentiviral integration sites (IS) as described previously [113, 163, 168, 169, 189]. An 

equal proportion of the single cell suspension as analyzed by LAM-PCR was further 

transplanted into next generation recipient mice.    

 

 

 

 

 

 

 

 

 

 

Figure 23: Clonal composition of the pancreatic TIC compartment. Primary human pancreatic 
tumor-initiating cells (TIC) were expanded in xenograft tumors and adherent cultures. TIC were 
genetically marked by transduction with lentiviral vectors and transplanted under the skin, the kidney 
capsule or into the pancreas of NSG mice. Cells dissociated from first generation tumors (1°) were 
serially transplanted into second (2°) and third (3°) generation mice. Lentiviral insertion sites (IS) in the 
genome of TIC clones were analyzed by LAM-PCR and high-throughput sequencing using large 
aliquots of DNA isolated from dissociated cells derived from all tumors.  Figure was taken from [179]. 
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3.3.1 Efficient Lentiviral Marking Does not Change Xenograft-Tumor Biology 

To analyze the clonal composition of the pancreatic TIC compartment, tumor colony 

cells derived from three patients (P1-P3) were lentivirally marked using a self-

inactivating (SIN) lentiviral vector (LV106). Prior to transduction, tumor colony cells 

were passaged 1 to 5 times in serum-free medium to remove murine cells from the 

colony cultures. At a multiplicity of infection (MOI) between 1 and 40, the cells were 

transduced to an efficiency of 35.5% to 97.5% (P1: 50%; P2: 97.5%; P3: 35.5% and 

83%) measured 3 days after transduction. Upon transplantation of between 1x104 to 

5x105 cells under the skin, the kidney capsule or orthotopically into NSG mice, tumor 

formation time was not altered by lentiviral marking (transduced: 6-13 weeks; non-

transduced: 6-12 weeks). No differences of tumor histology were observed between 

lentivirally marked and unmarked tumors (figure 24). 

 

  

 

Figure 24: Lentivirally marked tumors retain their patient specific histology. Histopathology 
analysis of transduced and wild type (WT) xenograft tumors revealed no differences for 3 examined 
patients (P1-P3). Figure modified from [179].       
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3.3.2 Pancreatic Xenograft Tumors Show Little Clonal Overlap in Serial 
Transplantation 

Using lentivirally marked cells of patients P1-P3, five different experiments were 

performed, one for P1 (P1-1), one for P2 (P2-1) and three for P3 (P3-1, P3-2 and P3-

3). During serial transplantation the tumor tissue was expanded in each experiment 

from one primary mouse (1°) to two or three secondary mice (2°), and then to 

between two and six tertiary (3°) mice. Each tumor generated within the serial 

transplantation line was dissociated to obtain a homogenous single cell suspension. 

In generations 1° and 2°, 1/3 to 1/2 of all purified cells were further transplanted into 

next generation recipient mice in equal proportions. Genomic DNA was isolated from 

2% to 10% of all purified tumor cells in all three generations and analyzed by LAM-

PCR. The experimental procedure of LAM-PCR creates a single DNA fragment of a 

specific size for each TIC clone (see section 1.4). In gel electrophoresis of these 

LAM-PCR products, the 1°, 2° and 3° tumors were observed to be highly polyclonal 

(figure 25A). However, the DNA band pattern in the gels seemed to be unique for 

each individual tumor. To identify and track individual TIC in long-term tumor growth, 

LAM-PCR products were subjected to 454-high-throughput-sequencing to find the 

exact site of the vector-genome junction that is unique for every individual clone. 

Through subsequent data analysis using BLAT [190], clones were visualized in a 

heat-map for each experiment and sorted by their relative contribution to individual 

tumors (figure 25B and figure 26).  

Analysis of detected integration sites (IS) representing individual TIC clones revealed 

a homogeneous distribution throughout all human chromosomes. Thus, no bias due 

to vector-driven expansion of certain clones was noted (appendix B). In 1st 

generation tumors, between 4 and 16 IS were detected representing between 

0.003% and 0.113% of the transplanted lentivirally marked tumor cell clones (figures 

31 and 32). The total number of IS detected per tumor remained constant in the 

subsequent generations (2° tumors: 2-18; 3° tumors: 3-21). Strikingly, the majority of 

IS in 2° and 3° tumors were different from those detected in 1° samples. From a total 

of 203 distinct IS found in all five experiments, 53 (26.1%) were contained in 1° 

tumors, whereas 150 (73.9%) were found in 2° and 3° tumors. The IS detected in 

primary mice accounted for 13%-40% of all IS in the respective experiment, so that 
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60%-87% were found in 2° and 3° animals. Thus, the majority of 2° and 3° tumor 

mass was formed by clones not detected in 1° tumors. Moreover, between 20% and 

95% of all IS in individual tumors were unique, indicating that they were not found in 

any other tumor of the analysis (table 7). Taking together all experiments, 141 of 203 

distinct IS were unique (69.5%).  

 

Table 7: Integration site analysis of lentivirally marked tumors in serial transplantation.   

 

Individual serially transplanted xenograft tumors of three generations (1°/2°/3°) are depicted as rows. 
Colors indicate which 3° tumors descend from which 2° tumor. Table shows results of five experiments 
from three different patients; P1-x: patient number 1–experiment number x. The number of total 
insertion sites (IS) represents all IS in a respective tumor, independent if that IS was also found 
elsewhere in the same experiment. Novel IS are those which appear at first time and were not 
detected in generation(s) before, but may be detected again in subsequent tumors of that experiment. 
Unique IS were found only in one individual tumor and never before or again. Proportion in % of total 
IS is indicated in brackets for novel and unique IS.  

 

 

Tumor P1-1 
total

P1-1 
novel

P1-1 
unique

P2-1 
total

P2-1 
novel

P2-1 
unique

P3-1 
total

P3-1 
novel

P3-1 
unique

P3-2 
total

P3-2 
novel

P3-2 
unique

P3-3 
total

P3-3 
novel

P3-3 
unique

1° 7 7 (100) 5 (71.4) 15 15 (100) 3 (20) 11 11 (100) 10 (90.9) 16 16 (100) 8 (50) 4 4 (100) 2 (50)

2° 5 4 (80) 1 (20) 13 8 (61.5) 5 (38.5) 6 6 (100) 4 (66.7) 9 6 (66.7) 4 (44.4) 7 7 (100) 4 (57.1)

2° 8 8 (100) 5 (62.5) 8 3 (37.5) 2 (25) 6 6 (100) 4 (66.7) 18 14 (77.8)11 (61.1) 11 9 (81.8) 6 (54.5)

2° 2 1 (50) 0 (0)

3° 6 3 (50) 2 (33.3) 21 8 (38.1) 5 (23.8) 7 5 (71.4) 4 (57.1) 12 7 (58.3) 5 (41.7) 3 3 (100) 2 (66.7)

3° 11 6 (54.5) 4 (36.4) 7 5 (71.4) 4 (57.1) 14 9 (64.3) 5 (35.7) 4 1 (25) 0 (0)

3° 4 2 (50) 1 (25)

3° 10 4 (40) 2 (20) 21 8 (38.1) 5 (23.8) 4 3 (75) 3 (75) 9 3 (33.3) 1 (11.1) 9 8 (88.9) 7 (77.8)

3° 4 1 (25) 1 (25) 5 5 (100) 5 (100) 13 9 (69.2) 7 (53.8)

3° 3 2 (20) 0 (0)

3° 10 6 (60) 4 (40)
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Figure 25: Serially transplanted xenograft tumors shared low clonal overlap. (A) Gel 
electrophoresis of LAM-PCR products depicts individual TIC clones as DNA bands of a clone specific 
size; tumors of serial transplantation line over 3 generations (1°/2°/3°) in NSG mice were highly 
polyclonal. Band pattern appeared unique for each individual tumor reminiscent of a low clonal overlap 
between distinct tumors. (B) High-throughput-sequencing (HT-sequencing) of LAM-products followed 
by identification of the TIC clone specific genomic integration site confirmed low clonal overlap 
between distinct tumors, so that the majority of tissue mass in 2° and 3° tumors was formed by clones 
that were not detected before. This figure shows data of experiment 2 using lentivirally marked cells of 
patient 3 (experiment P3-2). Blue colored fields indicate relative contribution of individual clones to 
their respective tumor (see color legend); rows of the heat-map indicate individual lentiviral insertion 
sites; columns represent individual xenograft tumors; arrows specify serial transplantation steps; IC: 
internal control. Figure modified from [179]. 

P3-2 (subcutaneous)
LAM-PCR

M       1° 2° 2° 3° 3° 3° 3°

Relative Proportion

<1%

1-10%

10-50%

50-100%

IC

P3-2 (subcutaneous) 
HT-sequencing

# 1° 2° 2° 3° 3° 3° 3°
1 0,47 1,49 8,315 0,522 0,339 4,61 0,646
2 4,367 0,875 1,327 18,794 1,329
3 3,057 0,496 0,536 3,743
4 11,152 0,802
5 0,974 8,899 28,526
6 0,403 0,757 0,912
7 0,873 4,758
8 0,873 0,287 5,319
9 31,307

10 25,126
11 13,436
12 6,046
13 0,638
14 0,537
15 0,403
16 0,336
17 0,287 12,963 2,127
18 3,153 20,356
19 54,743
20 24,506
21 10,032
22 0,745
23 6,674 11,694
24 5,47 10,546
25 2,699 0,96
26 45,113
27 8,169
28 4,303
29 2,115
30 1,495
31 1,495
32 1,422
33 0,766
34 0,656
35 0,365
36 0,365
37 0,548 0,423 3,228
38 2,114 2,654
39 37,379
40 25,685
41 7,596
42 1,41
43 1,253
44 0,508 19,188
45 27,273
46 24,591
47 8,413
48 7,284
49 4,15
50 1,186
51 2,167 1,101
52 4,689
53 56,058
54 19,408
55 12,115
56 1,709
57 0,532
58 0,456
59 0,38

A B
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Figure 26: Clonal succession drives long-term tumor growth in pancreatic cancer. (A-D) LAM-
PCR and high-throughput-sequencing visualize TIC clones by their specific lentiviral insertion sites 
(IS), indicated as rows in the heat-map. Individual xenograft tumors of the serial transplantation line 
over 3 generations (1°/2°/3°) are depicted as columns. Tumors were grown subcutaneously (B), under 
the kidney capsule (A, C) or in the pancreas (orthotopic) (D) of NSG mice. Serially transplanted 
tumors are mainly formed by distinct successive clones. Lentivirally marked tumor cells derived from 3 
patients were transplanted; P1-x: patient number 1–experiment number x; Blue colored fields indicate 
relative contribution of individual clones to their respective tumor (see color legend); arrows specify 
serial transplantation steps. Figure modified from [179].  

 

 

P2-1 (subcutaneous) P1-1 (kidney capsule) 

No. 1° 2° 2° 3° 3°
1 7,478 2,732 15,99 8,61 3,092
2 4,276 4,7 18,71 6,869 8,872
3 20,27 0,94 0,512 13,69
4 17,97 27,82 1,27 3,016
5 1,83 1,528 8,993 3,23
6 5,05 0,795 3,783 6,869
7 2,639 6,199 0,942 1,379
8 0,757 0,863 0,799
9 11,03 9,095 2,443

10 8,71 1,618 0,371
11 2,587 17,43 12,33
12 0,633 0,302
13 14,39
14 2,164
15 0,211
16 0,323 0,704 1,693
17 29,23 9,45 12,32
18 6,786 0,17
19 21,27
20 2,879
21 0,823
22 0,558
23 0,411
24 47,57
25 9,173
26 5,995 8,211
27 0,198 1,7
28 0,13 0,094
29 18,57
30 2,356
31 1,413
32 0,15
33 0,116
34 20,96
35 0,737
36 0,082
37 0,076
38 0,069

No. 1° 2° 2° 3° 3° 3° 3°
1 14,4 0,21
2 4,603 13,17
3 80,67
4 0,322
5 73,66 0,839 99,49 49,55
6 1,921 6,156
7 0,285 0,125
8 19,13
9 3,244

10 1,246
11 0,519
12 24,8 0,125 11,39 9,385
13 37,03
14 11,74
15 2,992
16 1,791
17 0,82
18 0,457
19 7,266 0,262 27,69 44,08
20 88,7
21 4,037
22 11,37
23 45,5
24 0,203
25 0,176
26 0,169
27 0,19
28 0,19
29 0,108

<1%

1-10%

10-50%

50-100%

P3-3 (orthotopic) 

No. 1° 2° 2° 3° 3° 3° 3°
1 0,843 4,401
2 48,38
3 24,09
4 6,742
5 6,32
6 4,565
7 2,949
8 2,739
9 1,264

10 1,124
11 0,983
12 0,882 45,44
13 29,19 6,859
14 53,8
15 14,76
16 0,988
17 0,388
18 13,99 5,047
19 0,477 1,407
20 82,82
21 1,241
22 0,859
23 0,621
24 16,45 2,7
25 12,47
26 10,99
27 5,846
28 1,949
29 82,1
30 4,225
31 0,587
32 0,939
33 86,94
34 3,819
35 7,839
36 66,51
37 13,75
38 12,88
39 6,441
40 0,417

P3-1 (kidney capsule) 

Relative Proportion

A B C

D

##

#

# 1° 2° 2° 2° 3° 3° 3° 3° 3° 3°
1 43,38 13,05 7,738
2 0,375 15,65 6,324 4,972
3 38,16
4 9,693
5 4,403
6 3,311
7 0,682
8 77,14 25,75 0,457 9,011
9 1,781 0,361 27,29 44,4 27,91 7,229

10 0,421 34,82
11 7,61
12 17,33 1,625 40,78 9,27 15,5 21,62
13 3,377 6,784
14 39,35 2,26 6,836 2,571
15 24,23
16 6,755
17 3,671
18 3,671
19 1,615
20 92,26 2,487
21 17,37 23,46 23,26
22 36,19
23 3,422
24 0,24 48,84
25 4,4 11,23
26 35,85
27 4,568
28 3,607
29 1,154
30 10,82 6,828
31 0,777
32 0,777
33 5,275
34 45,44
35 1,264
36 0,738
37 0,59

#
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454-sequencing confirmed the observation made in gel electrophoresis, namely, that 

each tumor of an individual experiment bears a largely distinct set of TIC clones. To 

quantify this observation, the clonal overlap between one tumor and its next 

generation progeny was calculated. For that evaluation, the clonal overlap was 

calculated by dividing the IS shared between a parental tumor and its successive 

next generation progeny by the number of IS contained in the parental tumor. In 31 of 

such parental tumor pairs, the clonal overlap was calculated to be between 0% and 

50% (mean 19.4%, +/-16.4%). When pairs of tumors were transplanted from one 

parental tumor, the clonal overlap between both next generation tumors was 

calculated by the division of the number of total IS shared by both tumors through the 

number of total distinct IS found in sum of both tumors. Thereby, for 17 of such 

fraternal tumor pairs, a clonal overlap between 0% and 60% (mean 14.2%, +/-14.2%) 

was observed. Moreover, most often the strongest clones contributing to tumor 

formation disappeared after re-transplantation and were replaced by clones that were 

not detected before (figure 25 and 26). This analysis therefore demonstrated that the 

tumorigenic activity of pancreatic TIC clones was transient, and long-term tumor 

growth was mainly driven by the succession of such clones. 

 

3.3.3 Statistical analysis 

The statistical analysis of the data described in this chapter was performed by Prof. 

Dr. Dr. Ulrich Abel from the NCT, Heidelberg. The findings described below were 

formulated in close collaboration.  

 

3.3.3.1 Clone numbers and sizes 

The results shown in 3.3.2 show that after re-transplantation from primary mice into 

next-generation recipients large TIC clones were frequently replaced by clones that 

had not been previously observed. However, these later-detected clones must 

already have been present in the primary mice, because those 2° and 3° tumors, 

where these clones initially appeared in LAM-PCR analysis, were initiated by 

dissociated tumor cells of the 1° tumors. To retrieve a measurement for the clone 
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sizes of these later-detected clones we calculated an upper 99% confidence bound 

for the number of cells in clones present but not detected in 1° generation xenograft 

tumors. The number of cells contained in undetected clones was limited from 50 to 

262 in 1° (table 8). Assuming the worst case, that each undetected clone consists of 

a single cell, this is also an upper bound for the number of undetected clones.  

Thus, taking into account the 29 to 59 distinct clones that were detected by LAM-

PCR for individual experiments, one can safely assume that at most 96 to 302 clones 

were contained in 1° generation tumors resulting in a seeding efficiency of between 

0.026% and 2.7% (table 8). Moreover, from these results it is possible to derive 

upper bounds for the mean size of TIC clones that were initially detected in 2° and 3° 

tumors, but not in 1° samples. According to this analysis, the mean size of later-

detected clones in 1° was between 1 to 9 cells at an upper 99% confidence bound 

(appendix C, table 8). However, considering an upper 99.999% confidence bound 

this number did not exceed 2-20 cells (appendix C).  

 

Table 8: Statistical analysis of clone sizes, clone numbers and seeding efficiencies.   

 

Xenograft tumors initiated by lentivirally marked PDAC cells were serially transplanted of three 
generations (1°/2°/3°). The majority of total clones is detected in 2° and 3° tumor generation. The 
maximal (max.) number of cells in undetected clones in 1° tumors was calculated assuming the worst 
case that each undetected clone consists of a single cell. Since the number of later-detected clones 
represents the minimal number of clones not detected in 1°, an upper bound for the mean number of 
cells in undetected clones is obtained by dividing the maximal number of cells in undetected clones by 
the minimal number of undetected clones in 1°. Adding the detected clones and the maximal number 
of undetected clones gives the maximal number of engrafted clones. Division of the maximal number 
of engrafted clones by the number of transplanted lentivirally marked cells yields the maximal seeding 
efficiency. Table shows results of five experiments from three different patients; P1-x: patient number 
1–experiment number x. Maximum numbers are understood to represent upper 99% confidence 
bounds. 

Experiment
Total 

detected
clones

Later
detected

clones (in 2°
and 3°)

Max. cell 
number in 
clones not 

detected in 1°

Later 
detected 

clone max. 
mean size in 

1° (cells)

Lentivirally
marked cells
transplanted

Max. number  
of engrafted 

clones

Max. seeding 
efficiency in 

1° (%)

P1-1 37 30 149 5 250000 186 0.074
P2-1 38 23 205 9 48750 243 0.498
P3-1 40 29 262 9 415000 302 0.073
P3-2 59 43 50 1 415000 109 0.026
P3-3 29 25 67 3 3550 96 2.704
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3.3.3.2 Analysis of proliferation rates and seeding efficiency 

The data were further analyzed to elucidate the following null hypotheses: 

a) Proliferation rates of all clones in a tumor are identical. 

b) Proliferation rates of clones in the primary or secondary mice do not change from 

the parental to the next generation (“constant growth rates”).  

c) Seeding efficiencies of clones in a tumor are identical. 

Since the analysis had to account for a “natural variation” of clone sizes, a stochastic 

process (see appendix C) was used to derive clone size distributions and p-values.  

a) To refute the null hypothesis, it was determined that there existed no proliferation 

rate low enough to be statistically compatible with the observed number of clones 

undetected in 1° (thus having zero cells in the sample analyzed), and high enough to 

accommodate the size of the largest clone in 1°, after adjustment for this particular 

choice (p<0.0001 for each experiment). Thus, the null hypothesis of identical 

proliferation rates can be rejected. 

b) Changes of proliferation rates were established based on a single clone, namely, 

the one that was undetected in 1° and of maximum size after formation of 2° tumors. 

It was shown that one of these sizes of this clone (in 1° or 2°) was too extreme to be 

statistically compatible with an identical proliferation rate, taking into account that 

more than one cell of this clone was potentially transplanted into 2°. This analysis 

was only performed for experiments P1-1, P2-1, P3-1 and P3-2, where the tumor 

formation time in 2° was at least as long as in 1°. After adjusting for the multiplicity of 

testing, the results were statistically significant (p<0.05) for all experiments except   

P1-1. So, the null hypothesis that proliferation rates remain unchanged after re-

transplantation can be rejected. 

c) Two bounds for the seeding efficiency were compared: First, a lower bound sl was 

derived from the fact that from each clone undetected in 1°, but detected in 2° or its 

corresponding 3°, at least one cell was successfully transplanted into 2°. Second, an 

upper bound su was derived from the clone which had maximum size among all 

clones in 1° that were undetected in 2°. The upper bound was obtained from a 99.9% 
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confidence bound for the maximum cell number of this clone in 2°. This comparison 

was done for P1-1, P2-1, P3-1and P3-2. Using an exact test, it was shown that sl < su 

in all experiments (p<0.01 after adjustment for multiplicity), allowing for the rejection 

of the null hypothesis that seeding efficiency was identical across the clones.  

 

Summary chapter 3.3 

Primary pancreatic TIC can efficiently be marked by transduction with lentiviral 

vectors in order to study the clonal composition of the pancreatic TIC compartment in 

serial transplantation in NSG mice. The majority of clones detected by LAM-PCR and 

subsequent high-throughput sequencing appeared in later generations, and not in 

primary tumors. Especially large clones contributing strongly to tumor formation in 

one generation were frequently replaced after transplantation into next generation 

mice by such clones that were quiescent before. The proliferation rate of individual 

TIC clones changed dramatically between distinct tumor generations, indicating a 

switch between an active and a quiescent state. Thus, serially transplanted tumors 

displayed low clonal overlap between distinct tumor generations, demonstrating a 

long-term tumor growth maintained by the succession of transiently active TIC. 
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3.4 The Clonal Origin of the Pancreatic Cancer Associated Stroma 

The desmoplastic reaction in pancreatic ductal adenocarcinoma (PDAC) represents 

a substantial proportion of a patient`s tumor tissue. Tumor and stroma cell 

populations interact via direct cell-to-cell contacts and paracrine signaling that 

promotes tumor growth and metastases formation (see section 1.2.3). However, the 

clonal origin of the stromal fibroblast-like cell types (FLCs) in PDAC remains 

unknown. Either FLCs derive from a tumor-independent source or from neoplastic 

cells as has been described for breast cancer [104].  

 

3.4.1 Human Stroma Cells Can Be Cultured and Propagated from Primary 
Patient Tumor Tissue 

Primary FLCs were cultivated from primary tumor tissue derived from five patients 

(P5-P9) to characterize the in vitro phenotype of PDAC-associated stroma cells. 

Stroma cultures were established by the outgrowth method [175] in RPMI1640 

medium containing 10% FBS. Patient-derived tumor tissue pieces of <2mm size were 

placed in cell culture flasks allowing the outgrowth of adherent cells. Within 1 to 8 

weeks, cells adhered and grew as monolayers. These cells were slim and elongated, 

reminiscent of fibroblasts, or they displayed characteristics of frazzled myofibroblast 

morphology, containing visible actin stress fibers in the cytoplasm (figure 27). The 

doubling time of these cultures was between 7 and 28 days. Cells could be passaged 

up to 11 times (P5: 11; P6: 10; P3: 5; P4: 3), representing a culture period of up to 11 

months. After that, cells stopped proliferation or perished, detaching from the ground 

of the culture dish. Upon transplantation into NSG mice, P5-P9 derived stroma cells 

never induced tumors in any of the 21 transplanted animals, irrespective of the cell 

number or culture passage transplanted (table 9). 
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Table 9: Primary patient-derived stroma cell cultures were non-tumorigenic. 

 

Cultured stroma cells of five patients (P5-P9) did not induce tumors when transplanted into NSG mice 
at different culture passages using varying cell numbers. Culture passage 0 indicates freshly 
established unpassaged cell cultures.    

 

 

Figure 27: Stroma cells derived from primary PDAC patient tissue grew in cell culture. Cells of 
five different patients (P5-P9) were cultured adherently showing fibroblast or myofibroblast 
morphology; scale bars = 100µm. 

Patient Culture Passage Cell number transplanted Tumor formation frequncy

P5 1 1x106 0/1

P5 4 2x105 0/2

P5 5 2x105 0/3

P5 7 5x105 0/2

P5 7 1.4x106 0/1

P6 1 1x105 0/2

P7 0 2.5x105 0/2

P7 7 5x105 0/3

P8 1 2x105 0/2

P9 0 1x106 0/3

∑ 0/21

P5 P7

P8 P9

P6



Results 
 

 
95 

A phenotypic characterization of stroma cultures by flow cytometry revealed high 

expression of CD44 at 97% to 100% (table 10). CD133 was never expressed, 

whereas small subpopulations (0.1% to 1.1% of all cells) were positive for EpCam or 

CD24. Stroma cultures strongly expressed the mesenchymal markers vimentin and 

α-smooth-muscle-actin (αSMA), but also the fibroblast marker Thy1 (CD90) (table 

10). The epithelial marker cytokeratin 7 (Krt7) was detected by indirect 

immunofluorescence staining in cultures extracted from 3 out of 5 examined patients 

(P5, P7 and P8). Here, Krt7 was co-expressed together with mesenchymal markers 

by the stroma cells (P5 and P8), and/or by a subpopulation of very small cells 

residing on top of the stromal myofibroblasts (P5 and P7) (table 10, figure 28).  

 

Table 10: Phenotypic characterization of primary stroma cultures of human origin. 

 

Representative flow cytometry analysis of stroma cultures from 5 different patients revealed high 
CD44, low EpCam or CD24 and no detectable CD133 expression. Cells stained positive for 
mesenchymal stroma markers vimentin, α-smooth-muscle-actin (α-SMA) and Thy1. Some cultures co-
expressed the pancreatic duct marker Krt7. Cultures contained single nestin+ cells but were mainly 
negative for desmin. KLF4 was expressed throughout examined cultures. Cultures were assigned + 
when marker positive cells were detected minimum two independent visual fields of the sample, +/- 
when only single positive cells were observed and – if all cells were negative; n.d = not determined. 

Marker Patient 5 Patient 6 Patient 7 Patient 8 Patient 9

Flow Cytometry

CD133 0.0% 0.0% 0.0% 0.0% 0.0%
CD44 99.9% 97.7% 99.8% 99.9% 99.6%

EpCam 0.6% 0.1% 0.5% 0.0% 0.3%
CD24 1.1% 0.0% 0.1% n.d. 0.0%

Indirect Immunofluorescence

Krt7 + n.d. +/- +/- -
Vimentin + + + + +
αSMA + + + + +
Thy1 + + + + +

Nestin +/- +/- +/- n.d. n.d.
Desmin - - +/- n.d. n.d.

Klf4 + + + n.d. +
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Figure 28: Cytokeratin 7 (Krt7) was expressed in primary human PDAC derived stroma 
cultures. (A) A subpopluation of small cells residing on stromal fibroblasts expressed the pancreatic 
duct epithelium marker Krt7, whereas the stroma cells were Krt7 negative. (B) Individual stroma cells 
co-expressed Krt7 and mesenchymal stroma markers like α –smooth-muscle-actin (αSMA). 

DNA   Krt7 ActinA

merge

DNA Krt7   αSMA   Actin

merge

50µm50µm50µm

50µm50µm

50µm

B
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3.4.2 Xenograft-Tumor Derived Stroma Cells Express Murine and Lack Human 
Markers 

In order to investigate a possible clonal relation between stromal FLCs and 

pancreatic tumor cells, the stroma compartment of xenograft tumors was 

characterized. In cases where neoplastic cells had given rise to their own stroma, 

these tumors should contain human FLCs. Tumors initiated by serum-free cultured 

tumor colony cells of four different patients (P1-P4) were analyzed. Upon histological 

examination, areas of tumor-associated stroma were apparent in xenograft tumors 

for all four patients (figure 29).  

 

Figure 29: Human xenograft tumors contained regions of desmoplatic stroma. Stromal areas of 
(arrows) surrounded epithelial tumor cell clusters as observed for all four examined patients (P1-P4).  

 

However, flow cytometry analysis of purified cells revealed that human fibroblast 

marker Thy1 was not expressed in xenograft tumors. Instead, a substantial 

population of cells (4-20%) stained positive for that cell surface protein`s murine 

specific epitope Thy1.2 (table 11). To detect potential Thy1-negative human FLCs in 

P1 P2

P3 P4



Results 
 

 
98 

xenograft tumors, outgrowth cultures were stained for human and murine stroma 

markers via indirect immunofluorescence. Here, FLCs were detected which exhibited 

characteristic myofibroblast morphology with parallel actin stress-fibers (figure 30, 

arrows). These cells stained negative for human vimentin and Krt7, but expressed 

murine Thy1.2.  

Table 11: Expression of human and murine epitopes of the stromal cell surface marker Thy1 in 
xenograft tumors.  

 

Representative xenograft tumors of 4 patients (P1-P4) contained a substantial proportion of Thy1.2+ 
murine stroma cells. Values obtained for human stroma marker Thy1 were indistinguishable from the 
appropriate isotype controls.  

 

 

Figure 30: Xenograft tumors contain stroma cells expressing murine markers. Outgrowth 
cultures from xenograft tumors show cells of stroma morphology (arrows) that are negative for human 
vimentin (hVimentin) and human Krt7 (hKrt7), but express murine Thy1.2 (mThy1.2); hKrt7 and 
hVimentin are exclusively expressed in cells of the neoplastic epithelial compartment; scale bars: 
50µm. Figure modified from [179]. 

Patient Isotype control (%) Thy1 (%) Thy1.2 (%)

P1 0.1 0.1 8.6

P2 0.1 0.1 14.6

P3 0.1 0.0 4.9

P4 0.1 0.1 19.7

DNA hKrt7   hVimentin Actin DNA hKrt7   mThy1.2

A B
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Interestingly, single cells that showed human Krt7 expression also were positive for 

murine Thy1.2, reminiscent of fusion cells between human tumor cells and murine 

FLCs. These cells were multinuclear in every case, and always displayed at least 

one dotted (figure 31, green arrow) and at least one homogeneously Hoechst stained 

nucleus (figure 31, orange arrow).  

 

 

Figure 31: Human xenograft tumors in mice contained cells having combined expression of 
human tumor and murine stroma markers. Polynuclear cells of stromal morphology from human 
xenograft tumors co-expressed human cytokeratin 7 (hKrt7) and murine Thy1.2 (mThy1.2). Cells 
contained at least one nucleus homogeneously stained by Hoechst (orange arrow) and one displaying 
a dotted staining (green arrow); scale bars: 25µm.   

 

3.4.3 Primary Human Stromal Fibroblasts Poorly Contribute to Xenograft 
Tumor Formation when Co-Transplanted 

In order to investigate whether human stromal cells can engraft into xenograft 

tumors, cultured FLCs from P7 were co-transplanted into three NSG mice together 

with P1 derived tumor colony cells. Co-transplantation was performed in 1:1 ratio with 

5x105 cells of each compartment. Prior to transplantation P7 derived stroma cells 

DNA   hKrt7 mThy1.2
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displayed a proportion of 81.1% Thy1+ cells (compared to 0.0% for the appropriate 

isotype control). To easier distinguish between tumor and stroma cells, 2 of 3 

transplanted mice received EGFP+ FLCs that were transduced with lentiviral vectors 

(LV106) using a multiplicity of infection of 20 (MOI 20) or 40 (MOI 40). The 

transduction efficiency was 80.5% for MOI 20 and 84.1% for MOI 40. As a control, a 

4th mouse received 5x105 tumor cells without stroma.   

Six weeks after transplantation, mice were sacrificed to examine tumors for engrafted 

stroma cells. Histology and weights of the tumors were similar between all animals, 

regardless of whether stroma cells were co-transplanted (0.6g, 0.7g, 1g) or not (0.7g)          

(figure 32 A, B).  

The stroma content of the tumors was examined using flow cytometry. Again, high 

proportions of murine Thy1.2+ stromal FLCs (>10%) were observed. Human Thy1+ 

cells were detected only in the stroma co-transplanted animals with untransduced 

stroma (0.1%) or MOI 40 transduced stroma (0.2%). The proportion of EGFP 

expressing cells was 0.1% for MOI 20 and 0.2% for MOI 40. Moreover, the proportion 

of EpCam+ and CD133+ tumor cells remained unaffected by stroma co-

transplantation at 40-55% for EpCam and 10-50% for CD133 (table 12). 

Outgrowth cultures were established from the control tumor without co-transplanted 

stroma and from the tumor with co-transplanted MOI40 transduced stroma. In 

addition to EGFP expression, the cells were stained by indirect immunofluorescence 

for human vimentin and human Krt7 to distinguish between tumor and stroma cells. 

Cultures derived from the tumor without co-transplanted stroma contained no cells 

with EGFP or human vimentin expression (figure 32C). By contrast, the stroma co-

transplanted tumor contained clusters of EGFP and human vimentin double-positive 

cells. However, these were infrequent and only found in isolated spots of the 

outgrowth culture. Krt7 was exclusively expressed by cells of epithelial morphology, 

and not by EGFP+ stroma cells. 
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Figure 32: Co-transplanted stroma cells engrafted poorly into xenograft tumors and did not 
change tumor biology. (A) Tumor weights were unaffected by stroma co-transplantation; scale bars 
= 1cm. (B) Tumor histology appeared equal between both tumor entities; scale bars = 100µm. (C) 
Outgrowth cultures from xenograft tumors contained human vimentin (hVimentin) and EGFP co-
expressing stroma cell clusters only when stroma cells were co-transplanted; scale bars = 50µm. 
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Table 12: Co-transplanted human stroma cells showed poor contribution to xenograft tumor 

formation. 

 

A low proportion of EGFP+ and human Thy1+ cells was detected in xenograft tumors after 1:1 co-
transplantation of untransduced or transduced stroma (MOI 20 or 40) cells with pancreatic TIC. 
Stroma co-transplantation did not affect the expression of tumor markers EpCam and CD133 in 
resulting xenograft tumors. Mouse stroma marker Thy1.2 was strongly expressed compared to human 
Thy1.     

 

Summary chapter 3.4 

Primary pancreatic tumor-associated stroma cells could be cultured from primary 

patient-derived tumor tissue, and grew under serum conditions for a limited time. 

These cells displayed morphology and marker expression reminiscent of fibroblasts 

or myofibroblasts. Xenograft tumors initiated by pancreatic TIC in NSG mice 

contained no human stroma cells. Instead, tumor cells recruited murine fibroblast-like 

stroma cells, which constituted a significant proportion of the xenograft tumor mass. 

Human stroma cells co-transplanted with TIC into NSG mice engrafted during tumor 

formation, but accounted for a very low proportion of all tumor cells compared to the 

respective murine stroma cell population.     

 

 

 

Marker
TIC 

- stroma
(%)

TIC 
+ untransduced

stroma (%)

TIC
+ stroma

MOI 20 (%)

TIC
+ stroma

MOI 40 (%)

EpCam 41.2 44.4 45.0 52.4

CD133 23.9 10.8 20.2 47.7

Thy1 0.0 0.1 0.0 0.2

Thy1.2 11.3 16.1 20.3 17.3

EGFP 0.0 0.0 0.1 0.2
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4. Discussion 

4.1 Primary PDAC Cells can be Enriched and Expanded via Xenografting 

In recent years an increasing number of research studies on tumor-initiating cells 

(TIC) used primary patient derived tissue instead of permanent cell lines. Primary 

material has a closer connection to the original patient, because permanent cell lines 

may acquire additional mutations and change in their biology by years of cell culture 

[191-193]. Experiments using primary cell cultures instead of cell lines might 

therefore lead to results that better translate into clinics. 

Thus, the experiments in this thesis project addressed phenotypic and functional 

characteristics of pancreatic TIC and were performed by using surgically resected 

pieces of PDAC tumors. However, the carcinoma content of the patient derived 

tissue varied substantially as observed in histopathology. Benign contaminations 

might bias experiments investigating distinct tumor cell populations, so that 

dissociated cells from primary tumors could not be used for clonal marking. 

Moreover, the contained benign cell types expanded in primary cell cultures and 

prevented stable tumor cell culture establishment. In contrast to that, stable primary 

cell cultures in other solid tumor entities were established directly from primary 

material without prior xenografting [113, 135, 137, 180]. The amount and the quality 

of the tumor material provided could be an explanation for these differences. Unlike 

patients suffering from tumors of the brain or colon epithelium, most PDAC patients 

do not undergo surgery in advanced stages of the disease (www.cancer.org), so that 

mainly small tumors are available for research. Potentially curative surgery of small 

PDAC tumors requires resection of adjacent benign tissue that might explain the low 

tumor content in primary tissue samples.   

However, these limitations could be overcome by transplanting patient derived tumor 

pieces into NSG mice. A sub-fraction of patient samples formed serially 

transplantable xenograft tumors that resembled the original patient’s tumor. By that 

procedure benign human cell types were lost and spheroid or adherent cultures could 

be established efficiently from resulting xenograft tumors. FLC contaminations which 

were purely of murine origin after xenografting (see section 4.4) were rapidly lost by 

passaging. Obviously, murine FLCs are less competitive under serum-free culture 
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conditions than human FLCs. The use of xenografting as a method to outcompete 

benign human cell types has not been described in literature so far. Previously, 

xenografting was though applied as a method to expand pancreatic primary tissue for 

therapeutic compound screens in vivo [194, 195].  

The results of this thesis show that xenografting can diminish the high variability in 

carcinoma content, keep primary tumor material accessible for research without prior 

in vitro cultivation, and purify it from benign human cell types. This kind of processing 

of tumor tissue was needed, because stable cell culture establishment was not 

possible otherwise and benign contaminations might potentially bias the results of 

performed experiments in an unpredictable way, especially clonal marking 

experiments as depicted in chapter 3.3. Thus, xenografting enabled biological 

comparison of distinct cell populations within the heterogeneity of an individual 

patient`s tumor and between different patient samples.  

 

4.2 Adherent Colony Cultures Expand Primary PDAC Cells in Vitro 

As described in the above section, xenografting was a requirement for the 

establishment of stable primary cell cultures. From dissociated xenograft tumor cells 

suspension spheroids were cultured under serum-free conditions and stimulated with 

cytokines FGF2, FGF10 and Nodal. FGF2 and FGF10 support the growth of the 

developing pancreas epithelium [11-13] and the activin/nodal pathway is described to 

drive the self-renewal and tumorigenicity of pancreatic TIC [145]. Under these culture 

conditions spheroid cells displayed an epithelial morphology and highly expressed 

markers as previously depicted for pancreatic TIC [143, 144].  

The concept of spheroids for the cultivation of undifferentiated cell populations was 

initially established by Reynolds and Weiss [44] who cultured normal neural stem 

cells (NSCs) from central nervous system tissue of adult mice as suspension 

neurospheres in a serum-free medium supplemented with the growth factors FGF-

basic and EGF. These authors showed that nearly all spheroid cells were nestin+ 

reminiscent of NSCs and that a non-adhesive substrate and the stimulation with EGF 

were required for proliferation of these cells. Later, Singh et al. [135] initially 
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cultivated spheroids of malignant cells from primary brain tumor tissue in an 

analogous approach. Other groups adapted spheroid cultures for research on other 

solid tumors like colorectal cancer [113, 137], Ewing´s sarcoma [138] or pancreatic 

cancer [144]. In analogy to such previous studies on solid tumors, in this thesis 

spheroid cultures could be established and induced tumors in NSG mice. Contrary to 

these studies, however, spheroid cells did not show sufficient in vitro growth, so that 

an expansion of a TIC containing tumor cell population was not achieved by this 

method. Biological differences between the primary PDAC cells used in this project 

and the primary cell of other solid tumor entities might be the reasons for this 

discrepancy. Compared to previous studies of pancreatic TIC [144, 145], where 

spheroids were cultured not longer than five weeks, this thesis had a much higher 

need for passaging and in vitro expansion of TIC containing cell cultures.  

Thus, using equal culture conditions as for spheroids, adherent colonies were 

established from tumor pieces by the outgrowth-method [177] as an 

alternative[175][175][175]. Similar to spheroids, adherent colonies showed epithelial 

morphology, high TIC marker expression and induced tumors in NSG mice. 

Comparable adherent cultures were previously used for glioma cells [180]. In 

particular, researchers described much better characteristics for adherent primary 

glioma cell cultures compared to spheroids when using serum-free medium 

supplemented with FGF-basic and EGF. Adherent cells were easier to handle, 

displayed less apoptosis and expressed lower levels of differentiation markers. The 

need for a non-adherent culture that was described by Reynolds and Weiss for 

NSCs, was constituted by a proliferation stop and not by the enhanced differentiation 

observed upon adhesion [44]. Thus, if cells do proliferate well under adherent 

conditions, the establishment of non-adherent spheroid cultures by the use of ultra-

low attachment or other techniques to enforce suspension growth might not 

necessarily lead to better culture characteristics or enrichment of a more 

undifferentiated cell population. In line with this, the results depicted in chapters 3.1 

and 3.2 clearly demonstrate that adherent primary PDAC colonies provide a culture 

system suitable to expand and investigate the biology of pancreatic TIC. 

Consequently, suspension spheroids, which did not grow exponentially, were not 

required in this study.  
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4.3 Phenotypic and Functional Plasticity of Pancreatic TIC 

4.3.1 Pancreatic TIC Switch Their Phenotype without Loss of Tumor-Initiating 
Potential 

In order to investigate whether TIC potential is associated to a certain phenotype of 

pancreatic tumor cells, adherent colony cultures were stimulated with serum-

containing medium and the withdrawal of growth factors. This serum treatment 

frequently resulted in an up-regulation of pancreatic differentiation markers and a 

down-regulation of prominent markers that were described for various stem cell 

populations, pancreatic progenitor cells or pancreatic TIC. Thus, indeed phenotypic 

alterations were induced that reminded of a more differentiated cell population. 

Though, when the data of all patients was merged, serum treatment of minimum 25 

days in early passages did not significantly affect tumor growth and serial 

transplantability in NSG mice. The differentiation potential of pancreatic TIC has so 

far only been addressed on a phenotypic, but not on a functional level. In literature, 

the down-regulation of TIC markers like CD133, the up-regulation of Krt7 and 

morphological changes including increased cell size and irregular cell shapes were 

already described upon comparable changes in culture conditions [144, 145]. Yet, 

the results of chapter 3.2 showed no correlation between such phenotypic changes 

and in vivo tumor growth, indicating no functional differentiation of PDAC cells.  

Different to the results for early passages, the tumors induced by late passage 

serum-treated cultures were significantly smaller after the same period of time than 

the control tumors. Yet, after 75-190 days of cell culture in serum containing medium 

it cannot be excluded that the cells gained additional genetic/epigenetic alterations 

which might be responsible for the altered tumor growth. Due to the long culture time 

until a significant effect was observed, such clonal selection might rather explain the 

lower mean tumor weight than a partial functional differentiation stimulated by serum 

treatment.  

Permanent glioma cell lines and primary cell cultures were described to acquire such 

additional mutations along long-term cell culture in serum containing medium [181, 

191-193]. Lee et al. observed [181] that primary glioma cells cultured in serum 

containing medium without growth factors lost their tumorigenicity in mice already at 
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early passages, lacked the ability to differentiate and gained additional mutational 

hits, findings which were not observed for serum-free cultures. At late passages 

serum-treated glioma cells regained TIC potential, but the resulting xenograft tumors 

did not resemble the original patient tumor in histology and the xenograft tumors 

induced by serum-free grown control cells.  

Contrary, to the observations for primary glioma cell cultures, in this thesis it was 

demonstrated that after similar changes in cell culture, pancreatic TIC neither to lost 

their tumorigenic capacity nor the ability to recapitulate the whole heterogeneity of 

the patient`s tumor. Irrespective of how long tumors were passaged in vivo or in cell 

culture, and in whichever medium, an effect on the patient specific histology was 

never observed. This indicates that different from their glioma counterparts and 

normal stem cell populations, pancreatic TIC are resistant to irreversible functional 

differentiation by serum treatment including the withdrawal of growth factors, even 

though they acquired a differentiation-like phenotype. A possible explanation for this 

observation would be that pancreatic TIC are able to dynamically switch their 

differentiation status and thereby reverse the effects of serum treatment upon 

transplantation. Strikingly, the cell sorting experiments described in chapter 3.2 

clearly demonstrated that CD133 expression could be fully restored by CD133 

negative TIC in vitro and in vivo in a context dependent manner. In NSG mice, the 

proportion of marker positive cells in the transplanted fraction did not influence tumor 

biology regarding weight, marker expression or histology. Thus, after transplanting 

phenotypically diverse TIC all fractions equally gave rise to their patient`s 

characteristic tissue that is clear evidence of phenotypic plasticity in the PDAC TIC 

population.  

These data are furthermore opposing the role of CD133 in PDAC described in 

literature. Here, sorted CD133-negative cells did not initiate tumors in NSG mice at 

higher cell numbers (1x106), as transplanted in our setting (5x103-5x105) [144]. The 

finding that CD133 does not predict for pancreatic TIC function is encouraged by the 

fact that its level of expression in PDAC tumors does not correlate with patient 

survival [196]. However, PDAC is not the first kind of cancer, where CD133 was 

postulated as TIC marker, followed by the later detection of a CD133- tumorigenic 

population. Such contradicting studies exist for colorectal cancer [137, 141] and 
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gliomas [136, 140]. As described above, pancreatic cancer patients do not undergo 

surgery when tumors are in an advanced stage of the disease. So, mostly small, 

early stage tumors are resected and available for research. This explains the 

observed variation in carcinoma content described in chapter 3.1 for the tumor 

samples provided by surgery. It is tempting to speculate that other groups in the field 

of PDAC research might face the same obstacles of benign contaminations in their 

tumor samples. Thus, sorting for CD133 expression from a mixture of malignant and 

benign cell populations derived from dissociated patient tissue could lead to an 

enrichment for tumor cells in the positive collection tube, which would result in an 

enrichment for benign cells in the negative fraction. In theory, this might explain the 

previously published data for the role of CD133 as a TIC associated marker in PDAC 

[144].  

This kind of bias might also have affected the initial study identifying 

CD44/CD24/EpCam triple-positive TIC in PDAC [143]. Also in this study patient 

material was used directly without previous xenografting. Chapters 3.1 and 3.2 

demonstrate that after adherent culture establishment from xenograft tumors, nearly 

all cells were positive for CD44 and EpCam. The vast majority of cells that did not 

display the CD44/CD24/EpCam phenotype, were thus still double-positive for two of 

these markers. Based on the data of this thesis project, one cannot exclude that triple 

CD44/CD24/EpCam negative PDAC cells are indeed largely non-tumorigenic. 

However, these cells represent a small minority of all cells in primary cultures. 

Nonetheless, to associate TIC potential to cells expressing the common epithelial 

marker EpCam appears questionable in an epithelial cancer.  The negative fraction in 

such sorting experiments would exclude the majority of epithelial cells and thus might 

substantially enclose, for example, stroma, blood or endothelial cells contained in 

fresh patient tissue, as previously stated [197]. 

In recent years, TIC markers have gained importance for the enrichment of 

tumorigenic cell populations. But it seems that the relevance of phenotypic markers 

originally described in benign adult stem cell compartments for TIC identification was 

frequently overestimated in the past. For example, Bonnet and Dick described in 

1997 [109] that acute myeloid leukemia (AML) is maintained by a small 

subpopulation of TIC sharing the undifferentiated CD34++/CD38- phenotype of their 
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healthy hematopoietic stem cell counterparts. However, later Bonnet and colleagues 

corrected that the CD38 antibody used in previous study, inhibited the in vivo 

engraftment, and that TIC also resided in the CD38+ and the CD34- fraction [198, 

199]. Considering the data presented in this thesis, the significance of CD133 in 

pancreatic cancer appears overstated in a similar way [144]. Due to the strong 

phenotypic plasticity of PDAC TIC indicated by the results of chapter 3.2 one has to 

note that the altered expression of certain markers cannot represent a surrogate for a 

functional TIC assay in vivo. TIC must be defined by their functional characteristics of 

tumorigenicity and their ability of recapitulating the patient`s tumor heterogeneity in 

an animal model independent of their phenotype.  

Similar to the findings of this thesis, phenotypic plasticity was recently described for 

melanoma TIC by Quintana et al. [200]. The authors could not enrich for TIC via 

sorting for any melanoma TIC marker described, or for 20 other heterogeneously 

expressed proteins. Similar to the results presented above, melanoma cells also 

repeatedly up- and down-regulated established TIC markers without functional 

changes in vivo. The results of this thesis, however, do not exclude that factors 

associated with the self-renewal of embryonic stem cells, like SOX2 [188], or 

regulators of pancreatic regeneration, like Notch1 [38], are functionally implicated in 

pancreatic TIC biology. They might rather indicate that the expression of certain 

markers or transcription factors can be reversibly acquired and lost, so that a 

possible functional differentiation of PDAC cells could be reversible.  

 

4.3.2 Long-Term Tumor Growth in PDAC is Maintained by the Successive 
Recruitment of Transiently Active TIC Clones 

The hierarchical cancer stem cell concept postulates that only a subpopulation of 

long-term self-renewing, tumor-initiating cells (TIC) can maintain tumor growth 

(reviewed by [48, 114, 115]). This functional characteristic can be measured by serial 

transplantation into immunodeficient mice [109-113]. In this thesis, such serial 

transplantation of lentivirally marked primary TIC was used to analyze the clonal 

dynamics within the pancreatic TIC compartment. The results of chapter 3.4 revealed 

a surprisingly low clonal overlap between serially transplanted tumors and, 
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concomitantly, an unexpectedly dynamic clonal composition of the disease. Tissue 

formation was mainly driven by distinct TIC after each transplantation step into a 

subsequent mouse generation. This was a surprising discovery, since the 

established clones that contributed strongly to tumor formation in one generation 

represented a high proportion of the further transplanted cell fraction. In case that 

such large clones retained tumorigenic capacity after primary tumor formation one 

could expect that they would also engraft preferentially into the next tumor 

generation. In contrast, predominantly large clones were lost after re-transplantation, 

and replaced by clones that underwent only a few cell divisions or even by single 

cells that did not proliferate at all in the parental tumor. That these small clones were 

not detected in the earlier tumor generation(s) can be explained by the sampling size 

of 2-10% analyzed from each individual tumor. The statistically determined sizes of 

later-detected clones of up to 9 cells (99% confidence bound) represent upper limits. 

Therefore, small clones that were not contained in the fraction sampled for analysis 

after tumor dissociation could be present in the fraction of cells re-transplanted. Thus, 

cells contained in small clones had a higher tumorigenic capacity than the cells 

derived from already established large clones that seemed to give rise to mainly non-

tumorigenic progeny.  

The data clearly demonstrate that the activity of individual TIC is temporarily 

restricted. Therefore, long-term tumor growth in pancreatic cancer is not maintained 

by a stable long-term self-renewing TIC subpopulation, but rather by the successive 

recruitment of new clones acquiring TIC potential. The clonal dynamics observed 

here allowed no classification of TIC based on differences in their self-renewing 

potential and thus do not point to a hierarchical organization of the pancreatic TIC 

compartment. These results are in contrast to a hierarchical cancer stem cell model. 

Even though only a subpopulation of the cultured pancreatic TIC engrafted into NSG 

mice, the clonal dynamics in PDAC sharply differed from what has been described for 

acute myeloid leukemia (AML) [109, 111, 127], chronic myeloid leukemia (CML) [128-

130, 201] and colon cancer [43, 113], where a hierarchical organization of the TIC 

compartment was observed. Extensive self-renewal of long-term TIC (LT-TIC) is the 

driving force within a hierarchically organized TIC compartment, as was previously 

demonstrated in colorectal cancer by Dieter et al. [113]. These authors used the 
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same strategy of LAM-PCR based tracking of lentivirally marked primary TIC, as 

applied in this thesis project. In contrast to the data of this thesis, the LAM-PCR-

derived DNA fragments of certain clones were found only in the primary tumor 

generation, whereas a minority of fragments was there throughout all three tumor 

generations in NSG mice. Thereby Dieter et al. demonstrated that, indeed, certain 

clones had a limited self-renewing activity and contributed to tumor formation only 

initially, whereas other clones displayed long-term self-renewal and maintained tumor 

progression continuously.  

Thus, the clonal succession of transiently active TIC in PDAC is a fully new model for 

long-term tumor growth in solid tumor entities (figure 31). Individual TIC only 

transiently contribute to tumor formation and produce mainly non-tumorigenic 

progeny with little or no self-renewal. Thus, besides the phenotypic plasticity 

described above, pancreatic TIC also hold a profound functional plasticity. The LAM-

PCR based investigations of TIC clonality in pancreatic and colon cancer 

demonstrate that biological differences between malignancies arising from different 

organs can be strong. The fact that in this study only a small proportion of 

transplanted culture cells engrafted into primary mice could also be due to clonal 

selection by the artificial mouse system. The TIC frequency might be substantially 

higher in patient tumors.  

Statistical analysis of the clonal data presented in chapter 3.4 has revealed that TIC 

clones recruited in later generations can exist in a quiescent status undergoing not 

more than five cell divisions before their activation. However, in vivo models for TIC 

function cannot distinguish between non-tumorigenic cells and TIC that are 

temporally in a quiescent status. Thus, later-detected clones in serial transplantation 

might either consist of bulk tumor cells that gain TIC potential after re-transplantation, 

or of non-proliferating TIC that become activated. In this work the term “quiescent 

TIC” for undetected small clones is meant to consider both possibilities. Whichever 

alternative is true, the conversion of quiescent pancreatic TIC into an active tissue-

forming status even appears to be reversible, since certain clones found in the 

analysis even repeatedly appeared and disappeared.  
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Quiescent stem cells that persist without or with poor proliferation have previously 

been described in the normal hematopoietic system [202-204]. In quiescence, 

hematopoietic stem cells (HSCs) show only a few divisions per life time [205], have 

reduced energy metabolism and are thus more resistant against chemotherapeutics 

[202, 203, 206-208]. In neoplasms, dormant TIC have been described in leukemia 

[209-211] and colon cancer [113]. Quiescence of normal stem cells and TIC has also 

been linked to drug resistance (reviewed by [207, 212]). In leukemia, quiescent 

populations are shown to be more resistant to the action of chemotherapeutics than 

fast dividing tumor cells since the high metabolism of proliferating cells represents a 

weak points for drugs targeting cell cycle and signaling pathways [211, 213]. Hence, 

breaking the dormancy of TIC by cell-cycle activating agents combined with 

chemotherapy was recently proposed as a promising approach for future therapy 

[207, 214].             

 

Figure 33: The clonal dynamics maintaining long-term tumor growth differ between distinct 
malignancies. The clonal dynamics within the pancreatic TIC compartment fundamentally differ from 
the classical cancer stem cell concept of a hierarchical organization and long-term tumor growth driven 
by an intensively self-renewing TIC subpopulation. In pancreatic cancer, transiently active TIC drive 
long-term tumor growth in a clonal succession. Figure taken from [179]. 
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The capacity of TIC to cycle between a tumorigenic and a quiescent status has been 

recently discovered in melanoma as well [215, 216]. Here, epigenetic changes can 

act as regulators of this transition. Roesch et al. [215] discovered that the epigenetic 

demethylation of H3K4 by Jarid1B is defining a quiescent subpopulation of 

tumorigenic cells in melanomas. Upon loss of Jarid1B, these cells commenced strong 

proliferation and lost TIC potential while producing non-tumorigenic progeny. 

Jarid1B-dependent tumorigenicity was also shown to be repeatedly reversible. The 

findings described in melanoma are somehow similar to observations of this thesis. It 

is speculative, but possible, that epigenetic changes are involved in the regulation of 

the switch between a quiescent and an active mode of PDAC TIC. This has to be 

elucidated in further studies. 

Studies on leukemia and colon cancer supported the idea that the clonal dynamics 

underlying malignant tissue formation caricature their benign counterparts, a theory 

initially formulated by Pierce and colleagues [122-126] (see section 1.3.1). Due to the 

clonal dynamics observed in this thesis, pancreatic cancer also fits into that scheme. 

The pancreas is an organ that is not under constant regeneration as is the colon 

epithelium or the blood system. Regeneration in the adult pancreas occurs due to the 

damage induced by the dedifferentiation of terminally differentiated acinar cells into a 

status in which these cells acquire for a short term the ability to give rise to new 

acinar tissue and re-differentiate back upon closure of the lesion [36-38]. Thus, the 

recruitment of transiently active stem cells and the cycling switch between an 

undifferentiated and differentiated status seem to apply for normal and malignant 

tissue formation in the adult pancreas. Regulatory factors in the process of acinar cell 

dedifferentiation might possibly also define the recruitment of TIC, such as factors 

that work in pancreatic development.  

 

4.4 PDAC TIC Recruit Murine Stroma Cells into Xenograft Tumors 

One aim of this thesis was to examine a possible clonal connection between 

pancreatic TIC and stromal fibroblast-like cell types (FLCs). The conversion of 

epithelial tumor cells to such non-tumorigenic stroma cells by EMT was recently 

described for breast cancer by Petersen et al. [104]. The data shown in chapters 3.1 
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and 3.3 demonstrate that both epithelial tumor cells and stroma cells could be 

cultivated from primary patient tumors. Surprisingly, stroma cells in culture partially 

displayed cytokeratin 7 (Krt7) expression, which is a marker of pancreatic duct cells 

and is commonly found in PDAC and other solid tumors [217]. Krt7 has thus been 

used as a tumor cell marker to distinguish between cancer-associated fibroblasts and 

tumor cells in cholangiocarcinoma [218]. Petersen and colleagues described a similar 

Krt7 expression and interpreted it as residual expression of epithelial markers after 

EMT [104]. However, after the transplantation of stroma-free pancreatic colony 

cultures, the resulting xenograft tumors did not contain cells staining positive for 

stroma markers when human-specific antibodies were used. Instead, a 

subpopulation of cells in outgrowth cultures established from these tumors expressed 

Thy1.2 epitopes, the murine version of the human stroma marker Thy1. The data 

clearly show that pancreatic tumor cells do not give rise to stromal FLCs in NSG 

mice, but rather recruited murine FLCs into the xenograft tumor to create their 

preferred microenvironment. Of course, these results only represent the situation in 

the murine xenograft model system and do not decisively exclude a different scenario 

in the patient`s body. Factors stimulating the conversion of epithelial tumor into 

stroma cells in humans might not be present in mice. Obviously, however, factors 

used by PDAC cells to attract stroma into tumors appear conserved between humans 

and mice. In particular, PDGF, a major modulator of desmoplastic stroma [84, 97-99, 

175], is highly conserved throughout mammals [219]. Thus, human PDGF secreted 

by human PDAC cells might stimulate murine receptors, thereby contributing to 

murine stroma formation in human xenograft tumors.  

Interestingly, outgrowth cultures from xenograft tumors contained cells that co-

expressed of human Krt7 and murine Thy1.2. Since both antibodies were tested to 

be highly species-specific these cells reminded of fusions between human tumor and 

murine stroma cells. This finding was supported by the observation that all examined 

cell expressing human and murine markers were polynuclear and always contained a 

homogeneously stained and a dotted nucleus. Nuclei of murine cells in mixed 

human/mouse cell populations appear dotted in Hoechst or DAPI staining in 

comparison to human nuclei [220]. Fusion cells between cancer and stroma 

compartment are already described in human prostate cancer to influence tumor 
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progression [221]. If such fusion cells also exist in PDAC patient tumors might be 

revealed in future studies. Although the data of this thesis cannot exclude that the 

observed Krt7+ primary stroma cells isolated from patient tissue might be derived 

from neoplastic cells, they could also be derived from possible fusion events. 
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5. Conclusions and Outlook 

This thesis project clearly demonstrated that xenografting of primary patient-derived 

tumor tissue and adherent cell culture under serum-free conditions facilitate tumor 

cell enrichment and expansion. The tissue bank propagated in mice created in the 

course of this study will provide an ideal experimental platform for future 

investigations regarding PDAC TIC biology. Furthermore, this methodology might 

also work in other tumor entities.  

The phenotypic plasticity of pancreatic TIC unraveled here showed that TIC function 

is not strictly associated to a certain phenotype. Even the role of established markers 

like CD133 has to be revised in PDAC. In future, the search for TIC associated 

markers should rather concentrate on proteins that are indeed directly implicated in 

TIC biology, and not simply a pure phenotypic marker reminiscent of benign stem cell 

populations like CD133. However, if previously non-tumor-initiating cells acquire TIC 

potential by the up- and down-regulation of these functional regulators, the future use 

of TIC markers in research and clinics might be questionable. 

This work provides a new model of long term tumor growth in solid tumors that 

substantially differs from the hierarchical model that our group has recently described 

for colon cancer. In contrast to the hierarchical cancer stem cell model the data 

demonstrate that long term tumor growth in pancreatic cancer is maintained by the 

clonal succession of TIC that can reversibly switch between functionally active and 

quiescent states. The tumorigenicity of pancreatic TIC appears temporarily restricted 

and context-dependent. Future projects will need to investigate which mechanisms 

define the activity and quiescence of these cells. The development of a therapeutic 

approach that can specifically suppress the recruitment of TIC into a tumor tissue 

generating mode might also have great potential to increase PDAC patient survival.  

Altogether, this work has provided new insights into the phenotypic diversity and the 

clonal dynamics of the pancreatic TIC compartment. This information might represent 

a basis for future projects further investigating the biology and vulnerability of 

pancreatic TIC.   
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Appendix A: Comparative gene expression profiling of serum-treated and 
serum-free control cells reveals altered expression of markers associated with 
undifferentiated cell populations or mature pancreas cells. 

 

 

Patient 1 Patient 2
3Pa, 

serum-free
3Pa, 10% 

FBS
fold

change
fold 

expression
8Pa, 

serum-free
8Pa, 10% 

FBS
fold

change
fold 

expression
3Pa, 

serum-free
3Pa, 10% 

FBS
fold

change
fold 

expression
8Pa, 

serum-free
8Pa, 10% 

FBS
fold

change
fold

expression

TIC or stem cell associated markers

ALDH1a1 10.04 8.11 1.93 0.26 9.06 7.46 1.6 0.33 7.7 7.07 0.63 0.65 8.63 6.56 2.07 0.24
ALDH1a2 6.79 6.56 0.23 0.85 6.5 6.93 -0.43 1.35 6.83 6.43 0.4 0.76 6.76 6.71 0.05 0.97
ALDH1a3 9.19 13.11 -3.92 15.14 8.41 13.29 -4.88 29.45 12.22 13 -0.78 1.72 11.21 13.49 -2.28 4.86

CD24 8.38 8.65 -0.27 1.21 7.81 9.58 -1.77 3.41 8.46 9.33 -0.87 1.83 8.82 8.31 0.51 0.70
CD44 6.71 6.65 0.06 0.96 6.68 6.7 -0.02 1.01 8.74 8.48 0.26 0.84 8 7.57 0.43 0.74

CXCR4 6.45 6.3 0.15 0.90 6.48 6.4 0.08 0.95 6.52 6.39 0.13 0.91 6.5 6.47 0.03 0.98
KLF4 9.08 8.47 0.61 0.66 9.73 8.73 1 0.50 9.4 8.31 1.09 0.47 8.85 9.57 -0.72 1.65
OCT4 6.54 6.62 -0.08 1.06 6.6 6.51 0.09 0.94 6.48 6.53 -0.05 1.04 6.49 6.58 -0.09 1.06

PROM1 8.75 7.77 0.98 0.51 8.37 7.01 1.36 0.39 9.2 6.46 2.74 0.15 8.45 6.49 1.96 0.26
SOX2 6.82 6.36 0.46 0.73 6.44 7.12 -0.68 1.60 7.76 6.72 1.04 0.49 7.19 6.62 0.57 0.67

Panreatic progenitors associated markers

SOX9 10.69 9.78 0.91 0.53 11.07 10.27 0.8 0.57 8.72 7.77 0.95 0.52 9.15 7.88 1.27 0.41
CLU 6.5 6.51 -0.01 1.01 6.41 6.36 0.05 0.97 6.32 6.29 0.03 0.98 6.4 6.35 0.05 0.97

HES1 10.23 9.36 0.87 0.55 11.28 10.55 0.73 0.60 9.53 8.32 1.21 0.43 9.89 11.43 -1.54 2.91
NOTCH1 8.03 6.99 1.04 0.49 7.04 8.04 -1 2.00 9.8 8.78 1.02 0.49 10.3 8.62 1.68 0.31

PDX1 6.83 6.51 0.32 0.80 6.8 6.58 0.22 0.86 6.54 6.51 0.03 0.98 6.56 6.61 -0.05 1.04

Duct associated markers

CA2 11.43 8.38 3.05 0.12 11.67 8.73 2.94 0.13 9.25 10.18 -0.93 1.91 10.1 9.2 0.9 0.54
EPCAM 9.17 8.9 0.27 0.83 9.58 8.54 1.04 0.49 11.92 11.07 0.85 0.55 11.14 10.82 0.32 0.80
HNF1B 6.32 6.32 0 1.00 6.24 6.35 -0.11 1.08 7.19 7.34 -0.15 1.11 6.74 7.11 -0.37 1.29
HNF6α 6.46 6.48 -0.02 1.01 6.47 6.49 -0.02 1.01 6.62 6.53 0.09 0.94 6.47 6.48 -0.01 1.01
HNF6β 8.86 7.49 1.37 0.39 8.74 6.5 2.24 0.21 6.42 6.67 -0.25 1.19 6.46 6.33 0.13 0.91
KRT19 13.81 13.21 0.6 0.66 14.05 12.96 1.09 0.47 13.13 13.5 -0.37 1.29 13.01 12.99 0.02 0.99
KRT7 11.36 11.77 -0.41 1.33 10.98 11.37 -0.39 1.31 9.47 12.28 -2.81 7.01 8.7 11.64 -2.94 7.67
MUC1 9.75 7.12 2.63 0.16 9.68 8.1 1.58 0.33 7.4 9.44 -2.04 4.11 7.05 8.8 -1.75 3.36

Acinar associated markers

AMY2A 6.62 6.45 0.17 0.89 6.39 6.38 0.01 0.99 6.59 6.73 -0.14 1.10 6.6 6.52 0.08 0.95
BHLHA15 6.43 6.35 0.08 0.95 6.33 6.32 0.01 0.99 6.52 6.39 0.13 0.91 6.47 6.52 -0.05 1.04

CELA1 6.19 6.33 -0.14 1.10 6.13 6.29 -0.16 1.12 6.33 6.46 -0.13 1.09 6.43 6.41 0.02 0.99
CELA2A 6.34 6.44 -0.1 1.07 6.26 6.48 -0.22 1.16 6.5 6.73 -0.23 1.17 6.47 6.81 -0.34 1.27
CELA2B 6.45 6.42 0.03 0.98 6.45 6.42 0.03 0.98 6.42 6.46 -0.04 1.03 6.53 6.52 0.01 0.99
CELA3A 6.58 6.67 -0.09 1.06 6.58 6.51 0.07 0.95 6.63 6.66 -0.03 1.02 6.49 6.87 -0.38 1.30
CELA3B 6.49 6.44 0.05 0.97 6.3 6.4 -0.1 1.07 6.49 6.46 0.03 0.98 6.5 6.56 -0.06 1.04

CPA1 6.2 6.36 -0.16 1.12 6.53 6.26 0.27 0.83 6.45 6.43 0.02 0.99 6.43 6.41 0.02 0.99
CPA2 6.49 6.31 0.18 0.88 6.2 6.49 -0.29 1.22 6.34 6.31 0.03 0.98 6.48 6.47 0.01 0.99

CTRB2 6.55 6.56 -0.01 1.01 6.59 6.44 0.15 0.90 6.58 6.68 -0.1 1.07 6.54 7 -0.46 1.38
CTRC 6.53 6.75 -0.22 1.16 6.46 6.6 -0.14 1.10 6.55 6.8 -0.25 1.19 6.68 6.76 -0.08 1.06
PNLIP 6.45 6.3 0.15 0.90 6.07 6.41 -0.34 1.27 6.49 6.41 0.08 0.95 6.41 6.18 0.23 0.85
PRSS1 9.64 8.82 0.82 0.57 8.03 9.28 -1.25 2.38 7.43 8.01 -0.58 1.49 6.94 6.58 0.36 0.78
PRSS2 7.35 7.56 -0.21 1.16 7.69 7.84 -0.15 1.11 6.77 8.21 -1.44 2.71 6.83 7.2 -0.37 1.29
PRSS3 9.18 7.95 1.23 0.43 9.94 8.13 1.81 0.29 6.99 10 -3.01 8.06 7 8.75 -1.75 3.36
PTF1A 6.45 6.47 -0.02 1.01 6.34 6.59 -0.25 1.19 6.27 6.43 -0.16 1.12 6.54 6.41 0.13 0.91
RBPJL 6.58 6.41 0.17 0.89 6.39 6.61 -0.22 1.16 6.59 6.76 -0.17 1.13 6.59 6.61 -0.02 1.01

Islet associated markers
CHGA 6.61 6.37 0.24 0.85 6.63 6.38 0.25 0.84 6.69 6.62 0.07 0.95 6.61 6.51 0.1 0.93
CHGB 6.51 6.57 -0.06 1.04 6.36 6.47 -0.11 1.08 6.41 6.59 -0.18 1.13 6.48 6.53 -0.05 1.04
DDR1 10.07 9.63 0.44 0.74 10.19 9.74 0.45 0.73 6.94 6.72 0.22 0.86 6.7 6.63 0.07 0.95
DISP2 6.51 6.59 -0.08 1.06 6.45 6.4 0.05 0.97 6.54 6.63 -0.09 1.06 6.88 6.65 0.23 0.85
DNER 6.31 6.52 -0.21 1.16 6.23 6.31 -0.08 1.06 7.17 7.04 0.13 0.91 6.89 6.85 0.04 0.97
FOXA1 10.1 10.67 -0.57 1.48 9.68 11.1 -1.42 2.68 9.62 9.72 -0.1 1.07 9.85 9.81 0.04 0.97
FOXA2 7.42 6.76 0.66 0.63 7.37 6.51 0.86 0.55 6.46 6.45 0.01 0.99 6.61 6.41 0.2 0.87
FOXA3 8.85 6.71 2.14 0.23 8.99 6.46 2.53 0.17 6.48 6.42 0.06 0.96 6.58 6.76 -0.18 1.13
GAD1 6.58 6.6 -0.02 1.01 6.58 6.74 -0.16 1.12 6.88 6.59 0.29 0.82 6.8 7.45 -0.65 1.57
GCG 6.34 6.41 -0.07 1.05 6.37 6.37 0 1.00 6.41 6.47 -0.06 1.04 6.45 6.56 -0.11 1.08

HEPACAM2 6.53 6.55 -0.02 1.01 6.59 6.51 0.08 0.95 6.49 6.64 -0.15 1.11 6.44 6.38 0.06 0.96
KCNK1 9.16 8.6 0.56 0.68 9.56 8.39 1.17 0.44 9.28 8.91 0.37 0.77 8.36 9.03 -0.67 1.59
EPHA7 6.25 6.51 -0.26 1.20 6.47 6.26 0.21 0.86 6.52 6.48 0.04 0.97 6.48 6.48 0 1.00
PTPRN 6.46 6.49 -0.03 1.02 6.42 6.44 -0.02 1.01 6.39 6.4 -0.01 1.01 6.5 6.58 -0.08 1.06

IAPP 6.42 6.45 -0.03 1.02 6.44 6.43 0.01 0.99 6.37 6.57 -0.2 1.15 6.32 6.63 -0.31 1.24
INS 6.61 6.6 0.01 0.99 6.51 6.45 0.06 0.96 6.51 6.55 -0.04 1.03 6.58 6.67 -0.09 1.06
ISL1 6.68 6.64 0.04 0.97 6.72 6.78 -0.06 1.04 7.3 7.48 -0.18 1.13 7.62 7.18 0.44 0.74

LRP11 8.6 8.34 0.26 0.84 8.8 8.51 0.29 0.82 9.11 8.26 0.85 0.55 8.44 8.8 -0.36 1.28
NEUROG3 6.59 6.42 0.17 0.89 6.47 6.55 -0.08 1.06 6.51 6.81 -0.3 1.23 6.51 6.58 -0.07 1.05

NKX6-1 6.31 6.33 -0.02 1.01 6.33 6.44 -0.11 1.08 6.44 6.37 0.07 0.95 6.55 6.58 -0.03 1.02
ENO2 7.73 7.6 0.13 0.91 7.92 7.25 0.67 0.63 6.83 7.28 -0.45 1.37 6.91 6.59 0.32 0.80
PAX4 6.42 6.24 0.18 0.88 6.46 6.24 0.22 0.86 6.45 6.53 -0.08 1.06 6.48 6.57 -0.09 1.06
PAX6 6.63 6.52 0.11 0.93 6.25 6.47 -0.22 1.16 6.55 6.48 0.07 0.95 6.52 6.53 -0.01 1.01
PPY 6.49 6.4 0.09 0.94 6.41 6.47 -0.06 1.04 6.39 6.62 -0.23 1.17 6.59 6.42 0.17 0.89
PPY2 6.5 6.5 0 1.00 6.31 6.55 -0.24 1.18 6.38 6.29 0.09 0.94 6.55 6.46 0.09 0.94

SEZ6L2 8.25 8.4 -0.15 1.11 8.67 7.93 0.74 0.60 9.82 9.95 -0.13 1.09 9.47 9.63 -0.16 1.12
SLC30A8 6.16 6.38 -0.22 1.16 6.34 6.38 -0.04 1.03 6.32 6.44 -0.12 1.09 6.32 6.42 -0.1 1.07

SST 6.42 6.46 -0.04 1.03 6.46 6.45 0.01 0.99 6.57 6.58 -0.01 1.01 6.48 6.41 0.07 0.95
TMEM27 6.75 6.43 0.32 0.80 6.62 6.73 -0.11 1.08 6.82 6.67 0.15 0.90 6.75 6.82 -0.07 1.05
TSPAN7 6.68 6.43 0.25 0.84 6.5 6.19 0.31 0.81 9.37 7.92 1.45 0.37 8.52 8.43 0.09 0.94
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Absolute expression values are indicated by green to red color code. Fold change (FC) is calculated 
by substraction of absolute gene expression values measured for control cultures (serum-free) from 
the values obtained for serum-treated cultures (10% FBS). Fold expression (FE) indicates the ratio of 
gene expression after serum treatment compared to serum-free controls and is calculated by FE=2FC. 
FE is highlighted in light red when expression was ≥2 representing up-regulation and highlighted in 
light blue when expression was ≤0.5 representing down-regulation of this marker. Analysis was 
performed in culture passage 3 (3Pa) and 8 (8Pa). Appendix modified from [187]. 

Patient 3 Patient 4
3Pa, 

serum-free
3Pa, 10% 

FBS
fold 

change
fold 

expression
8Pa, 

serum-free
8Pa, 10% 

FBS
fold 

change
fold 

expression
3Pa, 

serum-free
3Pa, 10% 

FBS
fold 

change
fold 

expression
8Pa, 

serum-free
8Pa, 10% 

FBS
fold 

change
fold

expression

TIC or stem cell associated markers

ALDH1a1 8.62 7.92 0.7 0.62 9.5 9.19 0.31 0.81 9.07 8.56 0.51 0.70 9.2 9.18 0.02 0.99
ALDH1a2 6.71 6.72 -0.01 1.01 6.6 6.66 -0.06 1.04 6.29 6.26 0.03 0.98 6.4 6.49 -0.09 1.06
ALDH1a3 11.86 13.18 -1.32 2.50 10.71 13.34 -2.63 6.19 9.37 12.04 -2.67 6.36 9.4 9.94 -0.54 1.45

CD24 12.64 12.23 0.41 0.75 12.25 12.17 0.08 0.95 8.61 8.93 -0.32 1.25 12.93 12.8 0.13 0.91
CD44 6.79 6.59 0.2 0.87 7.04 7.02 0.02 0.99 11.37 10.68 0.69 0.62 8.44 8.75 -0.31 1.24

CXCR4 6.27 6.32 -0.05 1.04 6.93 6.45 0.48 0.72 6.43 6.4 0.03 0.98 6.35 6.4 -0.05 1.04
KLF4 8.71 8.37 0.34 0.79 9.65 8.3 1.35 0.39 8.26 7.23 1.03 0.49 8.25 8.69 -0.44 1.36
OCT4 6.57 6.55 0.02 0.99 6.74 6.6 0.14 0.91 6.22 6.35 -0.13 1.09 6.39 6.21 0.18 0.88

PROM1 6.72 7.4 -0.68 1.60 6.86 8.38 -1.52 2.87 9.94 8.46 1.48 0.36 6.83 7.1 -0.27 1.21
SOX2 8.04 6.98 1.06 0.48 9.5 7.86 1.64 0.32 6.39 6.4 -0.01 1.01 5.98 6.43 -0.45 1.37

Panreatic progenitors associated markers

SOX9 9.48 7.71 1.77 0.29 9.11 9.16 -0.05 1.04 8.67 8.87 -0.2 1.15 8.53 9.35 -0.82 1.77
CLU 6.52 6.75 -0.23 1.17 6.22 6.3 -0.08 1.06 6.42 6.39 0.03 0.98 6.62 6.42 0.2 0.87

HES1 10.36 9.45 0.91 0.53 10.66 8.74 1.92 0.26 8.85 9.83 -0.98 1.97 9.78 10.09 -0.31 1.24
NOTCH1 7.92 7.28 0.64 0.64 8.84 8.3 0.54 0.69 8.41 8.65 -0.24 1.18 8.49 8.38 0.11 0.93

PDX1 7.28 7.09 0.19 0.88 7.01 7.53 -0.52 1.43 6.74 6.52 0.22 0.86 6.51 6.48 0.03 0.98

Duct associated markers

CA2 6.65 7.42 -0.77 1.71 6.66 8.25 -1.59 3.01 8.44 6.91 1.53 0.35 9.34 6.77 2.57 0.17
EPCAM 11.32 11.53 -0.21 1.16 11.41 11.15 0.26 0.84 10.26 10.54 -0.28 1.21 9.72 10.18 -0.46 1.38
HNF1B 6.1 6.18 -0.08 1.06 6.25 6.18 0.07 0.95 6.18 6.05 0.13 0.91 6.4 6.2 0.2 0.87
HNF6α 6.29 6.21 0.08 0.95 6.3 6.24 0.06 0.96 6.43 6.4 0.03 0.98 6.44 6.3 0.14 0.91
HNF6β 6.17 6.08 0.09 0.94 6.12 6.27 -0.15 1.11 6.34 6.4 -0.06 1.04 6.6 6.52 0.08 0.95
KRT19 13.66 13.24 0.42 0.75 13.95 13.44 0.51 0.70 12.95 13.77 -0.82 1.77 13.75 13.75 0 1.00
KRT7 10.88 12.1 -1.22 2.33 8.77 10.67 -1.9 3.73 9.26 10.88 -1.62 3.07 9.69 9.98 -0.29 1.22
MUC1 10.51 8.69 1.82 0.28 10.35 10.25 0.1 0.93 6.23 6.78 -0.55 1.46 10.09 8.13 1.96 0.26

Acinar associated markers

AMY2A 6.67 6.68 -0.01 1.01 6.66 6.67 -0.01 1.01 6.38 6.39 -0.01 1.01 6.57 6.51 0.06 0.96
BHLHA15 6.2 6.24 -0.04 1.03 6.41 6.26 0.15 0.90 6.09 6.21 -0.12 1.09 6.27 6.43 -0.16 1.12

CELA1 6.19 6.18 0.01 0.99 6.27 6.22 0.05 0.97 6.12 6.17 -0.05 1.04 6.35 6.34 0.01 0.99
CELA2A 6.39 6.47 -0.08 1.06 6.45 6.47 -0.02 1.01 6.24 6.43 -0.19 1.14 6.45 6.46 -0.01 1.01
CELA2B 6.4 6.34 0.06 0.96 6.24 6.43 -0.19 1.14 6.32 6.14 0.18 0.88 6.54 6.52 0.02 0.99
CELA3A 6.43 6.55 -0.12 1.09 6.74 6.6 0.14 0.91 6.48 6.51 -0.03 1.02 6.51 6.51 0 1.00
CELA3B 6.56 6.62 -0.06 1.04 6.35 6.33 0.02 0.99 6.64 6.56 0.08 0.95 6.32 6.52 -0.2 1.15

CPA1 6.34 6.27 0.07 0.95 6.11 6.33 -0.22 1.16 6.08 6.04 0.04 0.97 6.35 6.36 -0.01 1.01
CPA2 6.43 6.61 -0.18 1.13 6.38 6.48 -0.1 1.07 6.5 6.51 -0.01 1.01 6.61 6.42 0.19 0.88

CTRB2 6.53 6.52 0.01 0.99 6.52 6.26 0.26 0.84 6.28 6.64 -0.36 1.28 6.45 6.29 0.16 0.90
CTRC 6.68 6.56 0.12 0.92 6.57 6.29 0.28 0.82 6.63 6.56 0.07 0.95 6.57 7.11 -0.54 1.45
PNLIP 6.23 6.24 -0.01 1.01 6.31 6.38 -0.07 1.05 6.28 6.16 0.12 0.92 6.28 6.24 0.04 0.97
PRSS1 7.03 11.81 -4.78 27.47 6.42 10.22 -3.8 13.93 6.33 6.44 -0.11 1.08 6.39 6.6 -0.21 1.16
PRSS2 6.91 8.3 -1.39 2.62 6.82 7.21 -0.39 1.31 6.58 6.52 0.06 0.96 6.6 6.45 0.15 0.90
PRSS3 8.72 10.55 -1.83 3.56 7.33 8.75 -1.42 2.68 6.89 6.58 0.31 0.81 8.01 7.44 0.57 0.67
PTF1A 6.35 6.74 -0.39 1.31 6.26 6.14 0.12 0.92 6.34 6.4 -0.06 1.04 6.26 6.39 -0.13 1.09
RBPJL 6.54 6.47 0.07 0.95 6.78 6.67 0.11 0.93 6.48 6.53 -0.05 1.04 6.52 6.54 -0.02 1.01

Islet associated markers

CHGA 6.64 6.47 0.17 0.89 6.67 6.65 0.02 0.99 6.49 6.41 0.08 0.95 6.5 6.51 -0.01 1.01
CHGB 6.35 6.45 -0.1 1.07 6.43 6.36 0.07 0.95 6.29 6.2 0.09 0.94 6.29 6.33 -0.04 1.03
DDR1 7.04 7.27 -0.23 1.17 6.6 7.06 -0.46 1.38 6.6 6.87 -0.27 1.21 6.59 6.78 -0.19 1.14
DISP2 6.5 6.56 -0.06 1.04 6.48 6.62 -0.14 1.10 6.4 6.46 -0.06 1.04 6.66 6.57 0.09 0.94
DNER 6.21 6.31 -0.1 1.07 6.54 6.42 0.12 0.92 6.65 6.37 0.28 0.82 6.53 6.35 0.18 0.88
FOXA1 8.59 9.37 -0.78 1.72 7.73 10.05 -2.32 4.99 6.68 8.42 -1.74 3.34 7.77 9.88 -2.11 4.32
FOXA2 6.13 6.29 -0.16 1.12 6.18 6.29 -0.11 1.08 6.07 6.2 -0.13 1.09 6.44 6.27 0.17 0.89
FOXA3 6.54 6.15 0.39 0.76 6.37 6.54 -0.17 1.13 6.58 6.31 0.27 0.83 6.71 6.46 0.25 0.84
GAD1 6.64 7.06 -0.42 1.34 6.71 6.7 0.01 0.99 6.56 6.86 -0.3 1.23 6.55 6.45 0.1 0.93
GCG 6.46 6.48 -0.02 1.01 6.57 6.44 0.13 0.91 6.24 6.31 -0.07 1.05 6.37 6.36 0.01 0.99

HEPACAM2 6.31 6.34 -0.03 1.02 6.38 6.21 0.17 0.89 6.4 6.25 0.15 0.90 6.27 6.4 -0.13 1.09
KCNK1 8 7.61 0.39 0.76 7.98 7.5 0.48 0.72 8.78 8.36 0.42 0.75 8.62 9.57 -0.95 1.93
EPHA7 6.16 6.32 -0.16 1.12 6.23 6.32 -0.09 1.06 6.16 6.28 -0.12 1.09 6.39 6.3 0.09 0.94
PTPRN 6.35 6.1 0.25 0.84 6.46 6.39 0.07 0.95 6.44 6.38 0.06 0.96 6.41 6.42 -0.01 1.01
IAPP 6.61 6.39 0.22 0.86 6.42 6.52 -0.1 1.07 6.33 6.22 0.11 0.93 6.32 6.56 -0.24 1.18
INS 6.65 6.68 -0.03 1.02 6.66 6.55 0.11 0.93 6.27 6.55 -0.28 1.21 6.27 6.4 -0.13 1.09
ISL1 7.69 7.85 -0.16 1.12 8.44 8.59 -0.15 1.11 7.02 7.19 -0.17 1.13 7.03 7.68 -0.65 1.57

LRP11 9.46 9.25 0.21 0.86 8.71 8.98 -0.27 1.21 9.03 9.35 -0.32 1.25 9.61 8.67 0.94 0.52
NEUROG3 6.44 6.66 -0.22 1.16 6.5 6.41 0.09 0.94 6.65 6.52 0.13 0.91 6.59 6.57 0.02 0.99

NKX6-1 6.26 6.25 0.01 0.99 6.06 6.2 -0.14 1.10 6.24 6.23 0.01 0.99 6.37 6.32 0.05 0.97
ENO2 7.16 7.25 -0.09 1.06 7.02 7.32 -0.3 1.23 6.58 6.49 0.09 0.94 6.87 6.56 0.31 0.81
PAX4 6.12 6.42 -0.3 1.23 6.34 6.48 -0.14 1.10 6.3 6.27 0.03 0.98 6.39 6.21 0.18 0.88
PAX6 6.52 6.41 0.11 0.93 6.43 6.51 -0.08 1.06 6.68 6.73 -0.05 1.04 6.44 6.33 0.11 0.93
PPY 6.63 6.55 0.08 0.95 6.51 6.52 -0.01 1.01 6.27 6.19 0.08 0.95 6.39 6.41 -0.02 1.01

PPY2 6.31 6.25 0.06 0.96 6.16 6.26 -0.1 1.07 6.27 6.19 0.08 0.95 6.32 6.2 0.12 0.92
SEZ6L2 6.55 6.7 -0.15 1.11 6.73 6.56 0.17 0.89 6.62 6.22 0.4 0.76 6.7 6.6 0.1 0.93

SLC30A8 6.17 6.42 -0.25 1.19 6.35 6.39 -0.04 1.03 6.22 6.23 -0.01 1.01 6.33 6.3 0.03 0.98
SST 6.44 6.46 -0.02 1.01 6.47 6.36 0.11 0.93 6.15 6.37 -0.22 1.16 6.38 6.24 0.14 0.91

TMEM27 6.85 6.55 0.3 0.81 6.87 6.51 0.36 0.78 6.48 6.81 -0.33 1.26 6.56 6.53 0.03 0.98
TSPAN7 6.65 6.82 -0.17 1.13 6.77 7.28 -0.51 1.42 8.2 6.64 1.56 0.34 8.15 6.79 1.36 0.39
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Appendix B: Lentiviral integration sites identified in the genome of serially 
transplanted pancreatic xenograft tumors. 

 

Chromosome Integration locus Sequence
Orientation

Upstream of TSS 
(bp)

In Gene, 
distance to TSS 

(bp)
Intron/Exon Downstream of

Gene RefSeq Gene

1 1329293 + 0 0
1 8257858 + 126532 0 SLC45A1
1 10791545 - 0 65162 In2 0 CASZ1
1 45231061 - 0 25571 In19 0 KIF2C
1 100491634 + 0 2628 SLC35A3
1 101256690 + 0 52091 VCAM1
1 110101504 + 0 10318 In1 0 GNAI3
1 154953330 - 0 1606 CKS1B
1 168909832 - 0 0
1 169943362 - 0 100517 In16 0 KIFAP3
1 182477665 - 0 58409 In9 0 RGSL1
1 204476156 + 0 0
1 215533018 - 0 122583 KCNK2
1 226331003 + 0 1379 ACBD3
2 28690039 + 0 0
2 28992434 + 0 17820 In2 0 PPP1CB
2 53661698 + 0 235420 ASB3
2 55475232 - 0 21152 In9 0 MTIF2
2 62322164 - 0 189361 In2 0 COMMD1
2 64795287 - 0 43822 In3 0 AFTPH
2 75928395 + 0 9927 Ex4 0 C2orf3
2 118980760 - 0 113164 INSIG2
2 161339209 - 0 11109 In1 0 RBMS1
2 173562383 + 38142 0 RAPGEF4
2 187447445 + 7345 0 ITGAV
2 203608196 - 0 107985 In4 0 FAM117B
2 219367930 - 0 65154 In11 0 USP37
3 4582201 + 0 0
3 17443681 + 0 338718 In8 0 TBC1D5
3 93770222 + 0 71240 In7 0 ARL13B
3 128837134 - 0 3485 In1 0 RAB43
3 144863512 + 0 923716 PLOD2
3 167704730 - 0 22924 GOLIM4
3 183717969 0 0
3 195066475 - 0 97342 In4 0 ACAP2
4 73149820 - 0 284696 In21 0 ADAMTS3
4 95439852 - 0 66814 In2 0 PDLIM5
4 125132609 + 0 452859 ANKRD50
5 5275927 + 0 135484 In18 0 ADAMTS16
5 14667690 - 0 0
5 18008665 + 0 731730 BASP1
5 24167549 - 0 319661 CDH10
5 34458904 - 197529 0 RAI14
5 36239974 + 0 1926 In1 0 C5orf33
5 37064508 + 0 187647 Ex46 0 NIPBL
5 39071098 - 0 3403 In2 0 RICTOR
5 57237298 - 458662 0 ACTBL2
5 58942558 - 0 247063 In1 0 PDE4D
5 64999040 + 0 18901 In5 0 SGTB
5 83036660 - 19764 0 HAPLN1
5 138197426 - 0 108319 In7 0 CTNNA1
5 139006337 + 0 65586 In6 0 UBE2D2
6 30703118 + 0 7335 In8 0 FLOT1
6 32913970 - 0 2421 HLA-DMA
6 36427824 + 0 17280 In1 0 KCTD20
6 90958501 - 0 48061 In3 0 BACH2
6 130241258 - 58842 0 C6orf191
7 42396054 - 0 0
7 74257829 + 0 0
7 85011774 - 260527 0 SEMA3D
7 123348078 - 0 41038 In2 0 WASL
7 135189767 - 0 5084 In1 0 CNOT4
7 158613293 + 0 9026 In1 0 FAM62B
8 24039400 + 0 0
8 39639341 + 0 56438 In10 0 ADAM2
8 41667105 + 0 0
8 54958990 + 0 0
8 63917239 - 0 10404 GGH
8 90652495 + 117480 0 RIPK2
8 91533561 - 0 100662 TMEM64
8 133810659 + 0 23055 In4 0 PHF20L1
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Chromosome Integration locus Sequence
Orientation

Upstream of TSS 
(bp)

In Gene, 
distance to TSS 

(bp)
Intron/Exon Downstream of

Gene RefSeq Gene

9 14107155 - 0 206790 In8 0 NFIB
9 111844293 - 0 37932 In6 0 C9orf5
9 115810273 - 0 8723 In3 0 ZFP37
9 126475924 - 0 216493 In5 0 DENND1A
9 127645822 - 0 57564 In19 0 GOLGA1
9 129829259 - 0 152206 In7 0 RALGPS1
9 131348541 + 0 33675 In19 0 SPTAN1
9 134565403 + 0 47522 In1 0 RAPGEF1
10 32162644 - 0 55126 In3 0 ARHGAP12
10 42396904 - 0 687651 ZNF33B
10 54742020 - 0 0
10 74407227 - 0 0
10 76701079 + 0 114700 In3 0 MYST4
10 93700427 - 0 16691 In3 0 BTAF1
10 105762912 + 0 35442 Ex9 0 SLK
11 1465549 - 0 54420 In8 0 BRSK2
11 56646719 - 109670 0 OR5AK2
11 62029660 + 7970 0 SCGB2A2
11 65159269 + 0 5228 In3 0 FRMD8
11 66082227 - 0 2288 Ex1 0 CD248
11 66922843 - 0 36103 In2 0 KDM2A
11 67947516 - 0 33268 In4 0 SUV420H1
11 74149628 - 0 16260 KCNE3
11 77082053 - 0 103055 In5 0 PAK1
12 6476233 - 0 8672 In2 0 SCNN1A
12 6597195 - 0 4121 MRPL51
12 14948802 - 0 7599 In5 0 WBP11
12 15888231 - 0 54279 In1 0 EPS8
12 46762763 + 0 3882 In4 0 SLC38A2
12 82509970 + 0 236120 CCDC59
12 110586867 + 0 24727 In10 0 IFT81
12 122263577 - 0 20939 In13 0 SETD1B
12 133763800 - 0 5805 0 ZNF268
13 32918151 + 0 28534 In11 0 BRCA2
13 45929590 + 14293 0 TPT1
13 97294990 + 0 551897 In1 0 HS6ST3
14 27993304 - 926344 0 NOVA1
14 28147200 + 1080240 0 NOVA1
14 35660285 + 0 68509 In5 0 KIAA0391
14 74370485 + 0 16899 In5 0 ZNF410
14 92475844 + 0 30973 In9 0 TRIP11
14 103125719 + 0 66486 In2 0 RCOR1
14 103896014 + 0 44313 In3 0 MARK3
14 104484030 + 0 89213 In22 0 TDRD9
15 42882720 + 0 20532 HAUS2
15 52898770 - 0 72050 In6 0 KIAA1370
15 62246148 - 0 106499 In36 0 VPS13C
15 66609809 + 0 24176 In7 0 DIS3L
15 72415626 - 0 4872 In1 0 SENP8
15 74860057 - 0 26509 In2 0 ARID3B
15 84224228 - 0 108137 In1 0 SH3GL3
16 2494598 + 0 15203 In9 0 CCNF
16 24779530 - 0 38481 In4 0 TNRC6A
16 50129776 + 0 29895 In12 0 HEATR3
16 73040211 - 0 42063 In1 0 ZFHX3
16 89579202 - 0 4397 In2 0 SPG7
17 860089 - 0 22921 In1 0 NXN
17 7149773 + 0 5222 In4 0 DULLARD
17 8022549 - 689 0 ALOXE3
17 9315391 - 0 163884 In6 0 STX8
17 15611694 + 0 8803 In5 0 ZNF286A
17 18446086 - 0 40636 CCDC144B
17 29821625 + 0 102983 In3 0 RAB11FIP4
17 36931607 - 0 24551 In7 0 PIP4K2B
17 36951404 + 0 4754 In1 0 PIP4K2B
17 54898096 - 4846 0 C17orf67
17 61480018 + 0 393120 In17 0 TANC2
17 74344627 + 0 5603 Ex2 0 PRPSAP1
17 81000905 - 0 8781 In3 0 B3GNTL1
18 24753543 - 0 11746 In1 0 CHST9
18 47315949 + 0 24302 In7 0 ACAA2
18 60202233 + 0 11575 In1 0 ZCCHC2
19 5709698 + 0 10478 In4 0 LONP1
19 6107091 + 0 0
19 6760255 + 0 7268 In3 0 SH2D3A
19 8526061 - 0 16258 In2 0 HNRNPM
19 9539366 - 0 6868 In4 0 ZNF266
19 9924000 - 0 5731 In2 0 FBXL12
19 13236758 + 0 7649 In1 0 NACC1
19 13287786 + 0 22070 IER2
19 15095593 - 11863 0 SLC1A6
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Integration sites in human tumor cells were analysed by LAM-PCR and subsequent 454-seqencing. 
Sequenced DNA-molecules were mapped in the human genome using BLAT. The integration site 
locus indicates the exact position of the vector in the host cell genome. Genome distances are 
depicted in base pairs (bp); TSS=Transcription start site; RefSeq: NCBI Reference Sequence 
Database. Appendix B was taken from [187]. 

 

 

Chromosome Integration locus Sequence
Orientation

Upstream of TSS 
(bp)

In Gene, 
distance to TSS 

(bp)
Intron/Exon Downstream of

Gene RefSeq Gene

19 16534450 - 0 48312 In9 0 EPS15L1
19 19399928 - 0 31379 In8 0 SF4
19 45483969 + 0 25331 In5 0 CLPTM1
19 56157726 - 0 0
19 58024410 + 0 0
19 58996092 + 0 3496 ZNF446
20 478723 - 0 45759 In6 0 CSNK2A1
20 21321202 + 0 37260 In14 0 XRN2
20 25618627 - 13979 0 NANP
20 33322989 - 0 90444 In12 0 NCOA6
20 61845914 - 0 1624 In2 0 YTHDF1
21 42591020 - 0 0
22 29982623 + 5479 0 NIPSNAP1
22 44397443 - 0 2270 In2 0 PARVB
22 50975416 - 4408 0 ODF3B
23 31388197 + 0 0
23 35715311 + 101148 0 MAGEB16
23 45510729 + 0 0
23 51619875 - 0 73720 In1 0 MAGED1
23 93308941 + 0 341680 FAM133A
23 94965853 0 0
23 129374599 + 0 28274 In5 0 ZNF280C
23 143781956 + 547151 0 SPANXN1
24 21632540 0 0
24 22970081 + 0 0
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Appendix C: Statistical analysis of data presented in chapter 3.3.  

This appendix was written by Prof. Dr. Dr. Ulrich Abel (National Center for 
Tumor Diseases, Heidelberg). Text was taken literally from [187]. 

 

“General Remarks 
The statistical analysis focused exclusively on transduced cells; i.e., in what follows 

the terms “tumour”, “sample”, and “clone” solely refer to transduced cells. Statistical 

analyses essentially consisted of “theory-based worst case analyses”. The special 

techniques employed were as follows: 

1. Confidence interval p-values: This is an important tool for worst-case analyses. 

The concept was developed by Berger and Boos [222], and in some way constitutes 

an improvement over the old idea of supremum p-values originally formulated by 

Barnard [223], which stated that when using a statistical test involving a nuisance 

parameter Θ, a valid p-value can be obtained by maximizing the conditional p-values 

p(Θ) over the parameter space of Θ. Berger and Boos showed that restricting the 

maximization of the conditional p-values to a 1-β confidence Cβ set for Θ (obtained 

when the null hypothesis is true), and adding ß to this maximum, also results in a 

valid p-value (the “confidence interval p-value” see also [224, 225]). Thus, when 

using confidence interval p-values the probabilities of error add up. This remains true 

when the principle is applied several times in a chain of arguments. Thus, e.g. 

confidence interval p-values can be used to calculate test-based confidence intervals 

for a nuisance parameter of another test. 

 

2. Confidence intervals for the parameter n of a binomial distribution B(n,p). While 

this situation is rarely considered in the biostatistical literature, it is what was needed 

for calculating confidence interval p-values in several situations, where the unknown 

n was a nuisance parameter of the test to be performed.  

 

3. Confidence rectangles for two nuisance parameters using the well-known principle 

that, if C1,C2 are level (1-β) confidence intervals for two nuisance parameters Θ1, Θ2, 

respectively, then C1 x C2 is a level (1-2β) confidence region for (Θ1,Θ2), even if the 



Appendix C 
 

 
133 

two pairs of confidence bounds are not statistically independent [222]. This principle 

was sufficient to reach conclusions when used in connection with an extension of 

confidence interval p-values. The result still holds true when Θ is an n-dimensional 

parameter with a corresponding n-dimensional confidence region Cβ.  

 

4. Supremum p-values over possible constellations of unobservable count data. This 

is a special case of supremum p-values, the missing numbers being regarded as 

nuisance parameters. 
 

For the analysis of proliferation rates we modeled the cell growth process by means 

of a birth process (a Yule process, i.e. a Poisson process for the number of divisions 

a single cell) with an identical growth parameter for all cells of a clone (Model 1). The 

model accommodated a “time-lag”, or “delay” ∆, in cell proliferation [226, 227]. Within 

this model, null hypotheses regarding proliferation rates can be expressed in terms of 

the growth parameters λ, i.e. the rate of the Poisson process. E.g., the null 

hypothesis of homogeneity of proliferation rates states that the parameters λi of the 

processes are the same for each clone i. In case of no time lag, clone size 

distributions were obtained by using known formulas for the Yule process [222], 

which imply that cell numbers after a fixed time follow a negative binomial distribution 

NB(r,p), with r=number of cells at t=0 and p=exp(-λt). For ∆>0 no mathematical 

formulas are available, so that computer simulations emulating the entire cell growth 

process of a clone were used to obtain clone size distributions. The homogeneity of 

rates across the clones could then tested by comparing the observed clone sizes 

with the calculated or simulated distribution, the growth parameter λ being a nuisance 

parameter in this analysis (see below for the details of this procedure). We chose a 

particular value (8 hours) to delimit the potential influence of a time lag on the results. 

A simpler model (Model 2) assumes that the growth process can be described by a 

growth curve (as may result, e.g., from a nonstochastic differential equation) and that 

the entire variability in the observed clone sized is solely due to the sampling process 

from the tumour. The null hypothesis H0 of homogeneity of the growth rates then 

states that the clone sizes in the tumour are all identical, implying that for a given cell 

the probability to fall into any clone is the same across all clones of the tumour. This 
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can be tested using a chi-squared goodness-of-fit test based on the observed clone 

sizes in Si (Undetected clones with a size of zero in the samples increase the 

heterogeneity, as is easily checked; i.e., ignoring them produces an upper bound for 

the p-value). We based our analyses on Model 1. In one instance, an additional 

analysis was done using Model 2 to illustrate the differences in the approaches. 

In addition to the special tools described above, standard methods, such as tests for 

equality of proportions (Fisher’s exact test), were used. Throughout the analyses, 

only upper bounds for p-values could be calculated. All confidence intervals for single 

parameters were two-sided and of a Clopper-Pearson type, i.e., based on two exact 

one-sided binomial tests. Two approximations were used throughout the analysis: 1, 

the number of transduced cells (among all cells of a tumour or a sample hereof) was 

set to be equal to the expected value calculated as the total cell number in the 

tumour or sample multiplied with the proportion of transduced cells, the latter having 

been determined in a separate analysis based on about 10,000 cells; 2, in order to 

describe sampling from a clone the binominal distribution was used when, in fact, the 

sampling depended on the total complex clone structure of a tumour, i.e. followed a 

multivariate hypergeometric distribution. The approximation was justified by the low 

probabilities of selection (ranging from 1.92% to 10% in primary or secondary mice). 

Adjustment for multiplicity was restricted to situations where several results (e.g., 

inferences for each clone in a tumour) were used in the same analysis, i.e. for testing 

the same hypothesis. No adjustment for multiple testing was done regarding the 

multiplicity of different hypotheses or experiments conducted. 

 

Details of the analysis 
Notation: Let (for i=1,…,3) Mi designate primary, secondary, and tertiary mice 

(respectively), Ti the tumours of these mice, Si the samples taken from these tumours 

and analyzed for clonality, CSi the clones detected in Si, CNSi the clones present in 

Ti but not detected in Si, and CNSi* the subset of the latter which were detected in 

samples of later mouse generations. Letters a,b,c (e.g. T2a,T2b) will be used to 

differentiate between tumours and samples taken from several secondary mice (and 

analogously for tertiary mice). Let k(…) and  n(…) denote the numbers clones and 

cells (respectively) in a sample of cells or a set of clones. If not stated differently, cell 

numbers will refer to tumours, not samples taken from tumours; thus, e.g. n(CNS1) 
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designates the number of cells in T1 contained in clones that were not detected in the 

sample S1. 

 

Upper bounds for the number of clones in a tumour 
Upper confidence limits for the number of clones in a tumour were test-based and 

calculated as the sum of the number of clones contained in the sample (i.e., 

“detected” in the sample) plus a test-based upper confidence limit for the number of 

clones not contained in the sample. We describe the procedure for T1: Let H0 be the 

null hypothesis that all tumour cells in T1 have the same probability s (s = sampling 

fraction) of being sampled in S1, and assume H0 to hold true. Then, for a given total 

number n(CNS1) of cells in CNS1, the possible number of clones in CNS1 is maximal 

if all clones in CNS1 are of size 1, and the probability that, given this cell number, no 

clone in CNS1 is detected is equal to the probability that none out of a given set of 

n(CNS1) cells is contained in S1. The upper bound of a two-sided test-based level (1-

β) confidence interval for n(CNS1) can thus be determined using a binomially 

distributed variable X~ B(n,s), X being the number of cells out of n detected in S1, 

and is calculated as the highest number n of cells such P(X=0)≥β/2. The upper bound 

is given by [log(ɣ)/log(1-s)]. 

 

Heterogeneity of proliferation rates 
The statistical analysis made use of clone size distributions generated by the 

stochastic process of cell growth (birth process with or without a time-lag). If clones 

are generated from single cells without a time-lag (i.e., ∆=0), the standard deviation 

of the clone sizes after time t is equal to the mean, namely exp(λt), in contrast to a 

Poisson process growth model with synchronized cell divisions, where log2(clone 

size(t))) - which is equal to the number of cell divisions of the clone in the time 

interval [0,t] - follows a Poisson distribution with parameter tλ and thus has standard 

deviation of (tλ)0.5. I.e., the assumption of synchronized cell divisions would imply that 

the standard deviation of the clone numbers is vastly higher than the mean clone 

sizes.  

In order to ascertain the heterogeneity of proliferation rates in T1 we first determined 

an upper confidence bound, λu, for the parameter of the process under the 
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assumption of H0 that all clones in T1 had the same growth parameter. The upper 

bound was test-based. The idea underlying the procedure was that once the 

common growth parameter λ (and thus the expected clone size at time ts of 

sampling) exceeded a certain level, this would no longer be statistically compatible 

with the rather high number of clones (namely, at least k(CNS1*) many) not present in 

the sample. In case of no time lag λu was calculated using exact probabilities p0 that 

a particular clone is undetected in S1, which is given by 

∑
∞
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where X(t) is size of this clone in T1 after time t and starting with a single cell at t=0 

(i.e., X(t) follows a negative binomial distribution NB(1,exp(-λt) )), and Yi describes 

the sampling from this clone. Hence, Yi is binomially distributed as Yi∼B(i,s), s being 

the proportion of cells analyzed for clonality (the “sampling fraction”), which is the 

ratio of the cell numbers in S1 to those in T1. Thus, a valid test-based level (1-β) 

confidence bound λu is given by the lowest value (of all discrete values examined) 

such that high observed ratio of undetected clones, namely, 
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is statistically “incompatible” with the probability p(λ,s), meaning that P(Z≥CNS*1) < 

β/2, where Z∼B(k(CNS1*) + k(CS1), p0(λ,s)). 

The ratio R ratio is not equal to the exact proportion of clones not present in the S1, 

because neither the nominator nor the denominator includes unobserved clones 

contained in CNS1\CNS1*. However, each of these clones would increase both the 

nominator and denominator by 1 and thus increase the proportion. Thus, a statistical 

test taken this modification into account would have an even lower p-value. 

In case of a positive time lag, the exact probability p0(λ,s) was replaced with a ratio R’ 

obtained from simulated clone size distributions. The nominator of R’ equals the 

number of random clone sizes clones generated but not present in a random sample 

of cells with given sampling fraction s; the denominator of R is the number of clones 

generated in the simulations.  
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The time interval from transplantation (t=0) to sampling (ts) was rescaled to one time 

unit. The growth parameter λ then is the mean number of cell divisions until ts.  For 

each of the growth parameter values λ=1, 2,….13, we generated 100,000 clone 

sizes. The lowest value of λ, λυ, no longer compatible with the minimum number of 

undetected clones (i.e. clones in CNS1*) at the 1-10-5 confidence level was then 

investigated to determine whether, conversely, it was statistically compatible with the 

very high observed clone sizes in CS1. To obtain p-values we considered the 

maximum observed clone size, cmax. While the true number k(S1) was unknown, for 

any assumed number k:=k(S1), given growth rate, and time lag ∆=0, the probability 

distribution function Fλ(x) of the maximum clone size could be calculated using 

elementary results from extreme-value theory, viz. Fλ(x) = Gλ(x)k, where Gλ(x) is the 

distribution function of the cell number of a clone after time ts. Here, the value of k 

used for the analysis was the sum of clones observed plus the upper (1-10-5) 

confidence bounds for the number of unobserved clones (calculated as outlined in 

paragraph 1). Finally, following the confidence interval p-value principle, we added 1- 

the confidence levels used for the nuisance parameters, i.e. 2*10-5.  

The distribution function Gλ(x) was known, mathematically, if no time-lag was 

assumed. If ∆>0 the clone-size distribution is shifted to smaller values. Thus, the 

minimum growth rate λu' statistically incompatible with the number of undetected 

clones in CNS1* will be (slightly) higher than the value λu obtained without a time-tag. 

On the other hand, due to the negative shift of the clone size distribution, the p-value 

calculated as outlined above (with ∆=0 but using this higher value λu') is a valid upper 

bound for the true p-value in case of a time lag. Therefore, the negative binomial 

(valid only if ∆=0) can be used to determine upper bounds for the p-value if ∆>0. 

 

Changes in proliferation rates  
The analysis focused on an observed increase of proliferation rates for clones in 

CNS1*, i.e. on clones in CNS1* ∩CS2. It aimed at showing that there was at least one 

clone in CNS1* whose proliferation rate increased in T2. In view of the fact that the 

true proliferation rate acted as a nuisance parameter which could be different for 

each clone, we based our analysis on a single pair, namely the clone in CNS1* that 
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was largest in CS2, along with a Bonferroni adjustment for the multiple testing 

implicitly involved in this particular choice. 

The analysis was based on clone size distributions generated either by means of the 

formulas for birth processes or computer simulation. In this analysis (and in the 

formulas) T2, in contrast to T1, originated from more than one transplanted cell. The 

number of cells transplanted into the secondary mice and starting the growth process 

was itself a random variable, namely the result of a sampling process in the primary 

tumour. The analysis exploited the fact that the growth processes in T1 and T2 were 

independent, following from the known property of Poisson processes of being 

memory less.  

The null hypotheses tested was a joint hypothesis, stating that sampling from 

tumours was random and the proliferation rates of each clone in T1 were unchanged 

in T2. We chose a statistical test based on the pair (X1, X2) of the observed sizes Xi of 

the same clone in S1 and S2, respectively. The rejection region was such that it 

simultaneously reflected the fact that (under H0) at least one of the two clone sizes 

was too extreme to be compatible with any assumed proliferation rate λ (resp.). Since 

we used only a single two-dimensional test statistic this was not a union-intersection 

test. In view of the independence of the growth processes in T1 and T2, the p-value 

was calculated as a product of probabilities namely p1*p2, where p1=P(X1≤c1|H0) and 

p2=P(X2≥c2|H0). Both p1 and p2 were calculated form identical clone size distributions, 

i.e. assuming identical growth rates and growth times (see the remarks below). The 

rejection region was defined by one-sided probabilities taken from the cumulative 

distribution of Xi under H0. The particular definition of the test statistic implies that 

only increases in clone sizes were considered when calculating p-values. The single 

p-values p1=P(X1≤c1) and p2=P(X1≥c2) were then determined using the clone size 

distribution in S1 and S2, again either based on the negative binomial distribution or 

on computer simulations. From the definition of CNS1* it follows that c1=0, while c2 

was obtained by multiplying n(S2) with the observed proportion of the clone in S2. By 

construction p1 will be small for high growth rates l, while p2 will be small for low 

growth rates of a clone. Therefore, the product p1p2 as a function of the growth rate λ 

has a maximum. This maximal value was determined and used as an upper bound 

for the p-value. The result was then adjusted for multiplicity, using the upper 
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confidence bounds for the number of clones in CNS1 (see point 1 above). In this 

context, to mitigate the effect of the adjustment, we selected the lowest confidence 

level of those presented in table C1 (namely, 99%) allowing a statistically significant 

result when used to calculate the confidence interval p-values. 

The analysis was restricted to P1-1, P2-1, P3-1, and P3-2, where the time interval 

from transplantation to purification in secondary mice was at most as long as in 

primary mice. Note that the shorter this interval the smaller the clones. This implies 

that the probability p2 calculated under the assumption of identical clone size 

distributions in T1 and T2 is an upper bound for the true value of p2 if proliferation time 

in T2 is shorter than in T1.  

 

Heterogeneity of the seeding efficiency (SE) 
We defined seeding efficiency at the clone level. The following definition was used: 

Seeding efficiency = probability that a randomly chosen cell of a clone that is 

transplanted into a mouse proliferates or survives until the time ts when the tumour is 

examined for clonality.  

All inferences regarding the SE of a clone had to be deduced from two data points, 

namely the estimated clone sizes at times t0 (transplantation) and ts (cell sampling 

from the tumour).  

We focused the analysis on T2, and, more specifically, on the first secondary mouse 

M2a. The analysis was aimed at showing that a lower bound for the seeding 

efficiencies (in T2a) of cells in clones contained CNS1 was significantly higher than an 

upper bound for the seeding efficiencies of at least one clone in CS1 (while adjusting 

for multiplicity of testing).  

A lower bound for the seeding efficiency of cells in CNS1 was obtained by observing 

that the nominator, i.e., the number of cells in (clones of) CNS1 successfully 

transplanted into M2a was at least as large as the number clones in CNS1 observed 

either in M2a or its corresponding tertiary mice. Let nA denote this number. To obtain 

an upper bound dA for the denominator we replaced the number of cells in CNS1 with 

their upper 99.9% confidence bound (see point 1 above). Thus, at the 99.9% 

confidence level for the denominator the seeding efficiency of cells in CNS1 was at 

least nA/dA. 
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The clone selected for comparison was the largest clone C in CS1∩CNS2. We 

calculated a lower 99.9% confidence bound, p, for its clone proportion of C in T1 

based on the observed proportion of C in S1. Multiplying p with the number of cells of 

T1 transplanted into the secondary mouse yielded a lower 99.9% confidence bound, 

dB, for the number of cells in C transplanted into the secondary mouse. This number 

served as the denominator for calculating an upper bound for the seeding efficiency 

of C. Since C was undetected in T2, an upper 99.9% confidence bound for the size of 

C in T2 was obtained as described above. This yielded an upper bound for the 

number of cells in C successfully seeded and was used as the nominator for the 

seeding efficiency of C in M2a. The ratios dA/nA and dB/nB were then compared using 

an exact test, and the p-value was adjusted for multiplicity involved in the particular 

selection of C (a Bonferroni adjustment with the total number of clones in CS1 being 

the adjustment factor).  
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Results 
Upper bounds for the number of clones in a tumour 
Upper confidence bounds, 𝑁𝑢

−, for the number of cells, N-, in clones present, but not 

detected in the tumour T1 and T2a, T2b, T2c of primary and secondary mice, 

respectively, are given in table C1. 

 

Table C1: Upper bounds 𝑁𝑢
− of level (1-β) confidence intervals    for N- (*). 

a) Primary mice  

    𝑁𝑢
−  

 Experiment  (1-β)=99% 99.9%  99.99% 99.999 

_________________________________________________________ 

P1-1   149  214  275  344 

 P2-1   205  295  384  474 

 P3-1   262  376  490  604 

 P3-2    50    72    93  115 

P3-3    67    96  125  154 
 (*) Test-based, Clopper-Pearson type, two-sided. The sampling fractions, i.e. the proportions of 

cells in the tumours whose DNA was analyzed for clonality, in the 5 experiments and used in 

the calculation were: s=3.48%, 2.54%, 2.0%, 10%, 7.6% (resp.). 

 

b) Secondary mice 1 (*) 

      𝑁𝑢
−  

 Experiment  (1-β)=99% 99.9%   99.99% 99.999% 

___________________________________________________________ 

P1-1   191  274  357  440 

 P2-1   243  349  455  561 

 P3-1   273  392  510  629 

 P3-2   100  144  188  232 

P3-3     74  107  139  172 
(*)Sampling fractions: s=2.73%, 2.15%, 1.92%, 5.12%, 6.85% (resp.) 
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c) Secondary mice 2 (*) 

      𝑁𝑢
−  

 Experiment  (1-β)=99% 99.9%  99.99% 99.999% 

__________________________________________________________ 

P1-1   167  239  312  385 

 P2-1   203  291  380  468 

 P3-1   114  163  213  262 

 P3-2     93  134  175  215 

P3-3   138  198  259  319 
(*)Sampling fractions: s=3.12%, 2.57%, 4.54%, 5.50%, 3.75% (resp.) 

 

d) Secondary mouse 3 (*) 

      𝑁𝑢
−  

 Experiment  (1-β)=99% 99.9%  99.99% 99.999% 

__________________________________________________________ 

P1-1   134  192  250  309 
 (*)Sampling fraction: s=3.87%  

 

At the same time, the numbers given in table C1 may be viewed as upper bounds for 

the total number of clones contained in CNS (assuming the worst case that each of 

these clones consist of a single cell). 

In contrast to CNSi, CNSi* (i=1,…, 3) was observable. In case of P1-1, e.g., CNS1* 

contained 30 clones. The numbers given in table C1 impose upper limits to the 

(mean) size of clones in CNSi*, which are obtained by dividing these by the number 

of clones in CNSi*, yielding, e.g.,  at level 99.9% a mean size of about 7 in case of 

the primary mouse of P1-1. In other words, clones that were definitely present, but 

undetected were few and mostly extremely small. 

Clone sizes within a tumour were very heterogeneous. Table C2 shows the 

estimated sizes (cell numbers) of the largest and smallest clones detected in S1 as 

well as an upper bound for the smallest clone in CNS1. For clones observed in S1, 

the numbers were obtained by multiplying the clone size proportions in S1 with the 

number of cells in T1. For clones in CNS1, the upper confidence bounds from table 
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C1 were used and divided by the minimum number of clones contained in CNS1, viz. 

the number of clones in CNS1*. 
 

Table C2: Range of clone sizes in T1 (estimated cell numbers). 
     Cell number per clone 

 Experiment  min (obs.) max (obs.) min (present, but non-obs.)(*) 

______________________________________________________________ 

P1-1     4,401     509,095  ≤ 11 

 P2-1   10,566  1,013,328  ≤ 20 

 P3-1   75,918  4,357,437  ≤ 20 

 P3-2   20,885  1,946,043  ≤   2 

P3-3        378       94,871  ≤ 11 
(*) Upper bounds based on level 99.999 confidence bounds of table C1. Since the minimum 

sizes multiplied with the number of clones must not exceed the values in table C1, the results 

were rounded off to the next lower number. 

 

 

Heterogeneity of proliferation rates 
Based on the minimum number of unobserved clones, a value of λ=5 (the rate of the 

process with time interval from transplantation to sampling rescaled to length 1) was 

obtained as an upper bound at the (1-10-5) confidence level for each experiment. 

However, using the extreme-value distribution with the total number of clones being 

limited by the observed clones plus the values in table C1 (again at the (1-10-5) 

confidence level), λ=5 was not compatible with the size of the largest clone T1   

(p<10-8 based on the negative binomial distribution). Adding 1-confidence levels of 

the nuisance parameters (twice 10-5), the result remained highly significant 

(confidence interval p-value <10-4) for each experiment.  

With a time lag of 8 hours, the lowest growth rate λ incompatible with the undetected 

clones in CNS1* (again at the (1-10-5) confidence level) increased slightly to λ=7. 

Again, however, this was too low to accommodate the high observed clone sizes      

(p<10-4 for each experiment after adjustment). Thus, the results are firm evidence for 

the heterogeneity of proliferation rates. 
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Changes in proliferation rates 

As for changes of proliferation rates, the Model 2 applied to clones in CNS1*∩ CS2  

led to a rejection of the null hypothesis of constant proliferation rates, owing to the 

fact that clones in CNS1* were necessarily very small (see tables C1 and C2), while 

those in CS2 were large. The nominal p-value, calculated as a confidence interval p-

value, the true unknown clone size in T1 (and thus also in T2) being the nuisance 

parameter) was <10-6 in each case and remained significant at the 0.001 level after 

adjustment for the multiplicity of tests.  

Under Model 1, which implies a high variability of clone sizes, the analysis was more 

complex. Carrying out the procedure as described above, the upper bounds for the 

nominal p-values obtained for P1-1, P2-1, P3-1, P3-2 were 0.00033, 0.000056, 

0.000034, and 3.8·10-6, respectively. Except for P1-1 they remained significant at the 

α=0.05 level after adjusting for multiplicity and the use of confidence interval p-

values. This was also true if a time-lag was introduced, as described above. Upper 

bounds for the p-values (derived from the simulations) did not exceed 1.2·10-5, 

regardless of the growth rate, and again remained statistically significant after 

adjustment. 
 

Analysis of seeding efficiency 
As described above, the analysis of the heterogeneity of clones with respect to 

seeding efficiency focused on seeding efficiency in M2a. A statistical comparison 

between a lower bound for the seeding efficiency (in M2a) of clones in CNS1 versus 

an upper bound for the largest clone (largest with respect to T1) in CS1∩CNS2 was 

performed for the first 4 experiments. It yielded nominal p-values of p=1.0⋅10-4 in 

case of P1-1, and p<10-6 in case P2-1, P3-1, and P3-2, and thus remained 

significant (p< 10-2) after adjusting for the use of confidence interval p-values and 

multiplicity of testing. This demonstrates that transplanted clones were 

heterogeneous with respect to seeding efficiency in the secondary mice.”  
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