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ABBREVIATIONS  

µg microgram 

µL microliter 

µM micromolar 

µm micrometer 

ABCB1 ATP-binding cassette transporter B1 

ADME absorption, distribution, metabolism and elimination 

ADP adenosine-5`-diphosphate 

AM acetoxymethyl ester 

ATP adenosine-5`-triphosphate 

BV2 immortalized mouse (strain: C57BL/6) microglia cells 

Bz-ATP 2`, 3`-O-(4-benzoylbenzoyl)-adenosin-5`triphosphate 

cDNA complementary deoxyribonucleic acid 

CO2 carbon dioxide 

Da Dalton 

DDI drug-drug interaction 

DILI drug-induced liver injury 

DMEM Dulbecco`s modified Eagle medium 

DMPK Drug Metabolism and Pharmacokinetics 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

EBM endothelial basal medium 

EC50 half maximal effective concentration 

EDTA ethylenediaminetetraacetic acid (disodium salt) 

EGM endothelial growth medium 

FADH flavin adenine dinucleotide (reduced form) 

FBS fetal bovine serum  

g gravitation constant 

GSH -L-glutamyl-L-cysteinylglycine (or: glutathione) 

h hour 

HBSS Hanks` balanced salt solution 

HCl hydrochloric acid 

HEK293 human embryonic kidney cell line 

HEK-hP2X7 human P2X7 overexpressing HEK293 cells 

Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HepG2 human hepatocarcinoma-derived cell line 

HPLC high performance liquid chromatography 

i.e.  id est 

IC50 half maximal inhibitory concentration 

IgG-HRP immunoglobulin G-coupled with horseradish peroxidase 

IL-1b or IL-1 interleukin-1 
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IU international unit 

k kilo 

KM Michaelis-Menten constant 

LC-MS liquid chromatography coupled to mass spectrometry 

LLC-PK1 porcine kidney epithelial cell line 

L-MDR1 porcine kidney epithelial cell line transfected with human mdr1 gene 

M molar 

m/z mass over charge ratio 

MDR1 multi drug resistance gene-1 
MDR1-G1 mouse monoclonal antibody raised against amino acids 1040-1208 of 

human mdr1 protein 

MEM modified Eagle medium 

mg milligram 

min minute 

mL millilitre 

mM millimolar 

MTT 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide 

NADH nicotinamide adenine dinucelotide (reduced form)  

NAPQI N-acetyl-p-benzoquinone imine 

NC nitrocellulose 

nM nanomolar 

nm nanometer 

P2X7 purinergic ligand gated ion channel  

PBS phosphate buffered saline 

P-gp permeability glycoprotein 

pH negative logarithm of the hydrogen ion concentration 

RNA ribonucleic acid 

ROS reactive oxygen species 

rpm rotations per minute 

s second 

SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

SEM standard error of the mean 

UK United Kingdom 

US United States of America 

UV ultraviolet 

V volt 

v/v volume/volume 

Vmax maximum rate 

wt wild type 
w/v weight/volume 
YoPro1 4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-

(trimethylammonio)propyl]-, diiodide 



Introduction 

3 

1 INTRODUCTION 

1.1 General 

This dissertation yields a means to support drug research based on the monitoring of cellular 

energy pathways. Moreover, the newly achieved approach presented here resolves key 

mechanistic issues from various sections of drug discovery and development, thus 

representing a beneficial and supportive tool for the pharmaceutical industry. 

 

1.2 Drug discovery and development  

The basic mission of the pharmaceutical research industry is to understand disease and to 

provide safe and effective drugs for patients.  

Drug discovery and development are two distinguished processes that contribute to the drug 

research pipeline. The whole story of drug research starts with the drug discovery process. 

Once a lead compound is identified, it enters the drug development process (Figure 1). 

 

Figure 1. Drug discovery and development is a long process that starts with the selection of a disease and the 
pharmaceutical target identification. Following a multitude of processes in drug discovery, the compound 
enters preclinical trials and subsequently the clinical phases (Phase I, II, III) before it can be launched on the 
market. 
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1.2.1 Drug discovery 

The initial issues in drug discovery involve choosing a disease, selecting a disease-specific 

target, and finding a suitable assay to determine the activity of molecules with respect to the 

selected target. In the past, most drugs were discovered by identifying ingredients from 

traditional remedies or plants. Today's drug discovery is supported by enormous knowledge 

of the mechanisms of diseases, and how these diseases are controlled. With this information 

and a deeper insight, the scientist can search for molecules that modulate targets in a 

selective manner. Selectivity can play a pivotal role in the development of fewer side effects, 

but has also proved beneficial for new and unexpected indications for drugs (1). In any case, 

the drug discovery track is difficult and similar to the proverbial search for the needle in a 

haystack. However, once a molecule is successful in the screening process, the next step in 

drug discovery is the identification of a lead compound, which is a molecule that exhibit 

activity towards the target, but is not yet good enough to be the drug itself. Combinatorial 

chemistry (involves rapid synthesis and computer simulations) provides a large number of 

slightly modified molecules for compound lead identification and optimisation. These 

synthesised analogues are analysed in large screening studies to show their potential activity 

with respect to the target. Simultaneously the first safety experiments (cytotoxicity assays, 

cytochrome P450 inhibition, covalent binding to cell proteins, metabolic stability, plasma 

protein binding) were investigated to assess the potential risk of the compounds and to 

support lead compound optimisation. Once a pharmacophore is identified, the optimisation 

of the molecule can focus more on the feature of the pharmacophore responsible for the 

activity towards the target. Irrespective of all the advantages of the new technologies, drug 

discovery is still a long, expensive, and inefficient process (Figure 2) requiring more and more 

support technologies to yield a more economical and successful process (2). 
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Figure 2. Stages of the drug development process. This chart represents the attrition rate of compounds as 
they travel through the drug development process over time. Starting with 10`000 candidates, only one will 
finally make it to market (from: www.PhRMA.org, January 2012, Washington, US). 

1.2.2 Drug development 

Drug discovery and development are more of interdependent than rigorously separated 

processes. Preliminary tests in the developmental stage, before lead compound selection, 

can help eliminate poor drug candidates in the early process and thereby save limited 

resources. However, once a lead compound has been selected in the drug discovery process, 

the new drug candidate enters the drug development process. Drug development consists of 

two different disciplines: preclinical research and clinical trials (Figure 1). Prior to "first in 

man", the preclinical department provides required data (e.g. toxicity, pharmacokinetics and 

-dynamics, metabolism, enzyme induction, drug transport, etc.) for the new drug candidate 

to the regulatory authorities for the clinical Phase I trial. In addition to the safety profile of 

the drug, the preclinical department recommends the first human dose for the clinical trial, 

estimated from several toxicology, efficacy, and supporting experiments. To follow 

regulatory requirements, a number of tests are available to determine the toxicity of the 

new drug candidate before it enters the first clinical trial in humans. Section 1.5 - Toxicology 
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in drug research – depicts in more detail the requirements of toxicity studies in drug 

research. Briefly, many cell-based in vitro and in vivo experiments are performed to examine 

the safety of the new drug candidate and the collection of all data is required for the next 

steps. Finally, all data gathered from the studies are collected in an Investigational New Drug 

application (IND) and then submitted to the regulatory authorities for approval of the clinical 

trials. It is worth mentioning that the costs to bring a new drug to market are above 

500 million dollars (3, 4), the process taking an average of 10 to 15 years, with a success rate 

of only 0.01%. This means that, of every 10`000 compounds that enter the research and 

development pipeline, ultimately only one drug receives approval (Figure 2) (5). Taking this 

in perspective, to say the least the implementation of new technologies that can support the 

drug research process in an economical manner will be appreciated. 

 

1.3 Drug interactions  

The terms drug interactions refers to circumstances in which the efficacy of a drug is altered, 

be it an increased or decreased thereof, or a completely different effect occurs. Several 

kinds of drug interactions are known; i.e. the interaction of two administered drugs (drug-

drug interactions, DDI), or the interaction of an administered drug with ingredients in food. 

Epidemiology shows that, among adults older than 55, at least 4% take medication and 

supplements, putting them at risk of DDI (6-8). That is why DDIs remain a decisive issue in 

drug research. The earlier the DDI can be detected, the greater the probability that this 

deleterious effect can be changed by the design of the molecule. In the pipeline of drug 

research, several mechanistic approaches are implemented to assess the DDIs potential of a 

drug candidate (e.g. enzyme inhibition and induction, transport substrate and inhibition 

identification, etc.). Drug interaction has a crucial influence on the pharmacokinetic and 
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pharmacodynamic of drugs. Regarding the pharmacodynamic, the effect of the drug on a 

disease can be potentiated or simply lost. The pharmacokinetic of a drug can be subdivided 

into absorption, distribution, metabolism, and excretion (ADME) processes of the drug 

molecule in the body. This ADME process can be significant altered by a DDI, e.g. by 

inhibition or induction of metabolising enzymes or by inhibition of transport proteins (e.g. 

ABC-transporters, solute carrier, etc.) (9). Drug transporters mediate the uptake or efflux of 

a broad variety of endogenous compounds, metabolites, or drugs (10, 11). The transporters 

are well distributed in the body and are found highly expressed in tissues were they playing 

pivotal roles. P-glycoprotein (P-gp, ABCB1), the most famous member, is found at high levels 

at the blood-brain barrier endothelia, protecting the brain from brain-critical substances, but 

also at the level of the small intestine, where it can deny drug entry into the systemic 

circulation. Drug-drug interactions with transporters occur when translocation of a drug is 

disturbed by a second drug. This alteration by a second drug can function via inhibition or 

induction (12-14). In recent years, scores of DDI studies with drug transporters have been 

investigated and concern with molecules interacting with drug transporters has become ever 

more important (15-21). It is great aspiration in drug research to design drugs that show no 

undesirable interactions with drug transporters. The importance of the function of drug 

efflux pumps is well established with the neurotoxic pesticide ivermectin. Ivermectin itself is 

a substrate for P-gp and consequently is not able to cross the blood-brain barrier and enter 

the brain, as shown in Figure 3. In cases where ivermectin is co-administrated with a drug 

that has P-gp inhibition potential, ivermectin can cross the blood-brain barrier and enter the 

brain with fatal neurotoxic consequences (22). This observation was confirmed in mouse 

models lacking the expression of P-gp (mdr1a-/b-) and resulted in markedly elevated brain 

levels of ivermectin (23). Overall, ABC-transporters serve as protective shields by preventing 
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uptake or facilitating clearance of toxic substances. A guide on drug-interaction studies was 

provided by the regulatory authorities to cover the most frequent and known DDIs (24). 

Existing techniques are used regularly in drug research, but often come up against the limits 

of their potentials in the prediction of DDIs. For all of the above reasons, I decided to test the 

possibility of real-time, label-free substrate identification of the drug efflux pump, P-gp. 

 

Figure 3. Putative localisation of drug efflux proteins on the plasma membrane of brain capillary endothelial 
cells that form the blood–brain barrier. The proposed direction of transport is indicated by black arrows. 
Only efflux transporters that are localised on the apical (luminal) side of the brain capillary endothelium 
would be in a position to restrict brain uptake of xenobiotics. (A) Indicates the protective function of 
P-glycoprotein (Pgp) at the level of the blood-brain barrier using ivermectin as an example of a P-gp 
substrate. Ivermectin cannot enter the brain, owing to the active efflux of P-gp from the brain capillary cell. 
(B) Co-administration of a P-gp inhibitor or a competing drug can block the protective function and 
ivermectin can penetrate the brain capillary cells and thus enter the brain, with dramatic neurotoxic 
consequences. It should be noted that this figure represents only a simplified scheme of drug-efflux 
transporter distribution at the blood-brain barrier. There are various other transporters localised in brain 
capillary endothelial cells (25), which are not illustrated here because their potential role, if any, in drug 
efflux is not clear. In consideration of the fact that ivermectin penetration is on the basolateral side, 
involvement of MRP1 (multi-drug resistance protein-1) as well as passive diffusion was analysed (26). 
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1.3.1 ABC-Transporters and their famous member: P-glycoprotein (ABCB1) 

ATP-binding cassette (ABC) transporters are one of the largest families of multidomain 

integral membrane proteins that use ATP hydrolysis energy to translocate molecules across 

cell membranes. They are found in all species including man (27). These efflux pumps 

recognise a wide range of chemically diverse endogenous and exogenous compounds and 

act as gatekeepers, contributing to cell defence (28, 29). They are involved in biomedical 

phenomena such as the multidrug-resistance of cancer cells or the poor bioavailability of 

drugs (30, 31). One of the best-characterised ABC-transporters is P-gp, the gene product of 

the human multi-drug resistance (MDR1) gene and the first member of subfamily B of the 

ABC-transporters (ABCB1). P-gp is highly expressed in human tissues that have a protective 

function and is found on the luminal surface of cell barriers, including the kidney proximal 

tubule, small intestine, colon, testis, adrenal cortex, and the blood-brain barrier (17). The 

expression pattern of P-gp suggests a protective function of P-gp towards potentially toxic 

xenobiotics. P-gp is a 170 kDa protein consisting of two homologous drug-binding 

transmembrane domains (32) and a cytosolic nucleotide-binding domain with ATPase 

activity (33). P-gp recognises and couples its substrates in the cytosolic membrane leaflet 

(32) and translocates them from the cytosolic membrane leaflet out of the cell or to the 

outer membrane leaflet, which prevents substrate uptake into the cytosol (34). Transporting 

the drug consumes two ATP molecules; one ATP is required to induce the drug-releasing 

conformation, the second to reset P-gp to the drug-binding conformation (35, 36). The rate 

of ATP hydrolysis in the transport process correlates linearly with the rate of effective 

transport (37, 38) and can therefore used to monitor P-gp activity.  
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1.3.2 Identification of P-glycoprotein substrates: A challenge  

P-gp has a broad substrate range and modulates the pharmacokinetics of many, chemically 

unrelated drugs (39). As a consequence, efficient screening methods are needed to identify 

substrates or inhibitors of P-gp during the drug discovery and development process (40). 

High-throughput fluorescent assays exist to identify P-gp modulators, including the 

rhodamine123- (41) or the calcein-AM (42) assay. However, identification of substrates of 

P-gp remains a challenge: predictive cellular assays such as the transcellular transport assay 

(43) or any in vivo experimentation relies on sensitive, compound-specific, and expensive 

analytical procedures such as the use of radiolabeled test compounds or quantitative mass 

spectroscopy. In contrast, generic biochemical assays such as the ATPase release assay (44) 

make use of membrane preparations of P-gp-expressing cells. However, these assays are not 

necessarily representative of the in vivo situation, because membrane integrity is disturbed 

and the orientation of P-gp binding sites towards the intracellular or extracellular space is 

lost during the preparation of cell homogenates. Schwab et al. (2003) showed that the 

assays mentioned above and generally used in drug development demonstrate limitations in 

terms of the reliable identification of P-gp substrates; ten of 28 P-gp substrates were not 

identified by analysis as substrates in either one or more of these assays (40). Because it is 

well understood, that P-gp requires energy in the form of ATP for the translocation of drugs 

out of the cell (Figure 4), this consumed ATP must be regenerated intracellularly, which 

results in a higher consumption of oxygen and a release of acidic metabolic products. A 

system that can monitor such alterations should be able to identify P-gp modulators in an 

effective and elegant way. 
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Figure 4. P-glycoprotein binds its substrates in the cytosolic leaflet of the plasma membrane and translocates 
them into the outer membrane leaflet or into the extracellular compartment. The active transport utilises 
ATP for translocation (PI: phosphate). 

1.4 Target characterisation in drug discovery 

Finding new medications based on knowledge of biological targets require an intensive 

ligand design process (45). The number of new entities approved by the Food and Drug 

Administration (FDA) in the last few years remains stable, with only 18 to 26 newly approved 

drugs per year (46). The reasons for the stagnated number are multifactorial (47, 48). 

However, it is recognised that a crucial step in drug discovery is the initial identification of a 

disease relevant target and target characterisation, and this seems to be one of the main 

bottlenecks (49-51). In particular, drug discovery repeatedly struggles with the limitations 

associated with the existing cell-based in vitro models for the characterisation of new 

targets. To circumvent such limitations in drug discovery, implementation of new 

technologies plays a pivotal role in successful characterisation of new disease relevant 

targets. Therefore, one of the sub-projects of this thesis was to characterise the purinergic 

P2X7 receptor. 



Introduction 

12 

1.4.1  Purinergic P2X7 receptor mediates metabolic alterations 

Ubiquitous adenosine triphosphate (ATP) influences innumerable cellular metabolic 

mechanisms (52, 53), provides energy for transporters that translocate molecules against 

concentration gradients, facilitates muscle contraction, and drives protein synthesis and 

degradation. It thereby underpins vital chemical (e.g. oxidative phosphorylation) (52), 

mechanical (e.g. motor proteins) (53, 54) and biochemical (e.g. glycolysis) processes in the 

cell (55, 56). Intracellular concentrations of ATP range from 1.0 to 10 mM (57), while 

extracellular ATP concentrations are typically very low under physiological conditions, being 

strictly regulated by the presence of ATPases (58). There are, however, conditions under 

which local extracellular ATP concentrations do reach high levels (58, 59). For example, ATP 

has been reported to be released at the synapses of neurons, where it acts as a 

neurotransmitter (60, 61). In addition, intracellular ATP is released into the extracellular 

environment in cases of cell destruction, necrosis, or hypoxia (62). In such cases, high 

extracellular ATP levels trigger immune system responses that lead to pro-inflammatory 

states and immune modulation of macrophages/monocytes, lymphocytes, mast cells and 

endothelial cells (63-65), in addition to initiating cell death in leukocytes and endothelial 

cells (66-68). These effects are thought to be induced, in part, by the purinergic receptor 

P2X7, which is activated by ATP only at concentrations above 500 µM (69, 70). This 

concentration is more than ten times higher than that required for ATP to activate other P2X 

or P2Y receptors (71, 72). Activation of the P2X7 receptor initiates a series of cellular 

responses that include depolarisation, secondary messenger activation of phospholipase C, 

and a rise in intracellular Ca2+ concentrations that stimulates caspase-1, cytokine release, 

and activation of p38 mitogen-activated protein kinase (73, 74). Sustained exposure 

(> 1 min) to ATP highlights the unique ability of the P2X7 receptor to form a large, non-
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selective pore (Figure 5) (75). The opening of the pore, which is permeable to molecules up 

to a molecular mass of 900 Daltons, results in complete depolarisation of the membrane 

potential (ion flux), cell swelling, and finally cell death (76-78). Interestingly, the activation of 

caspase-1 and mitogen-activated protein kinase pathways has been linked to P2X7 pore 

formation (79, 80). Moreover, pore formation has also been proposed as regulating 

physiological processes such as cell fusion and phagocytosis (81, 82). However, little is 

known to date of how extracellular ATP influences the regulation of metabolic pathways in a 

cell, and whether this occurs via the P2X7 receptor.  

 

Figure 5. Function and signalling pathways of the P2X7 receptor. (A) The P2X7 receptor is a homomeric cation 
channel. Each of the three subunits possesses two transmembrane domains (TM1 and TM2) (83), an 
extracellular loop with an ATP binding site and intracellular carboxyl (COO-) and amino termini (NH3

+). (B) 
Brief (< 10 s) activation of P2X7 with high concentrations of ATP (> 100 µM) lead to rapid, reversible channel 
opening with ion flux, followed by depolarisation (73). Acute receptor activation also initiates second 
messenger processes, resulting in phospholipase D (PLD) and caspase-1 activation. (C) Sustained activation of 
P2X7 receptor (> 1 min) induce large pore formation (> 4 nm), which triggers the enhanced influx of cations 
and molecules up to 900 Da (75). The rise of intracellular calcium and efflux of potassium activates the 

caspase-1 pathway and thus a conversion of pro-IL-1b (pro-interleukin-1) into IL-1b (interleukin-1) and 
release from the cell. Stimulation of the P2X7 receptor also leads to an activation of p38 mitogen-activated 
protein kinase (MAPK) (74). Prolonged activation of the P2X7 receptor leads to complete depolarisation of 
the membrane potential (ion flux), cell swelling, and finally cell death (76, 78, 84). 
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1.5 Toxicology in drug research 

Findings from human graves indicate the use of therapeutic agents as early as the Neolithic 

age and with the poor knowledge of the used agents, it was indeed a risqué to ingest 

substances that were potentially poisonous. A chemical entity itself does not constitute a 

poison; the entity must achieve a sufficiently `high` dose, which was attempted by 

Paracelsus as early as the sixteenth century. As depicted in the ratio of the median lethal 

dose (LD50) to the median effective dose (ED50), the therapeutic index has to be assessed 

very carefully. The goal of the pharmaceutical industry is obviously to develop safe drugs 

with high efficacy in therapy, which can narrow down the therapeutic index and has to 

assess carefully. 

Before entering the development process, drug candidates have first to be screened in 

different in vitro assays (i.e. biochemical and cellular assays), and the chemical structure of a 

potential drug optimised. Subsequently the most promising development candidates are 

investigated in more complex in vitro assays and pharmacological in vivo models. The latter 

consist mainly of rodents and possibly non-rodents. These in vivo models are concomitantly 

used to assess plasma concentration profiles and possible adverse effects. Compounds for 

development are selected based on the before mentioned battery of assays. These 

compounds are subsequently assessed in toxicology and safety pharmacology studies in 

order to enable "entry into man" (clinical Phase I) of the preclinical candidate. Non-clinical 

safety studies to conduct human clinical trials and to obtain marketing authorisation for 

pharmaceuticals are described in the ICH (International Conference on Harmonisation) 

M3 guideline (European Medicine Agency©, Canary Wharf, London, UK). Toxicology 

assessment consists of in vitro and in vivo studies covering genotoxicology/carcinogenicity, 

general (or repeated) toxicology, reproduction toxicology and safety pharmacology. The 
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read-out from the toxicology studies can indicate adverse effects, which will require 

additional experiments for the elucidation of the observed effects. Briefly, the 

genotoxicology studies consider the gene mutation potential of a drug and, in general, 

support all single dose clinical development trials. To support the multiple dose trials, an 

additional assessment capable of detecting chromosomal damage in the mammalian system 

should be completed. Carcinogenicity studies are commonly relevant for marketing. General 

toxicology studies, which are required, consist of repeated drug application to two 

mammalian species (one non-rodent) for several weeks up to month, related to the 

duration, therapeutic indication, and scope of the proposed clinical trial. The reproduction 

toxicology is performed again in two mammalian species (one non-rodent) in in vivo 

experiments and concerns the safety of pregnant humans. Before the availability of the 

results, all clinical trials are exclusively performed in male humans. The last set of toxicology 

studies is safety pharmacology. The core of safety pharmacology studies includes the 

assessment of effects on the cardiovascular, central nervous and respiratory system. The 

compiled resulting data show whether more investigations have to be undertaken to issue 

the safety profile of the drug. The most critical organs in terms of adverse effects are the 

organs excessively exposed to the drug or its metabolites. In the first instance, this adverse 

effect occurs mainly in the liver and the kidneys, as well as in the heart and lungs. Adverse 

effects that not be overcome, are usually a deathblow to the drug candidate. In general, 

adverse effects results represent the point at which mechanistic toxicologists become active. 

In a specific set of experiments, the toxicologist tries to reveal the mechanism and 

hazardousness of the observed adverse effect. If the mechanism can be clarified and ranked 

as reversible, monitorable, rodent specific and/or acceptable (e.g. by a safety margin), the 

development process can be continued. It cannot be denied that toxicology measurements 
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are enormously relevant parts of the drug discovery and development process and can 

greatly influence the progress of a potential drug candidate. However, it should be 

mentioned that toxicology is not a single discipline in the drug research process. For 

example, the preclinical department (DMPK) supports toxicology studies through a number 

of important results that it issues, to accumulate better knowledge of drug candidates and 

thus improved insight into adverse effect. However, an observation of an adverse effect in 

organs (e.g. liver), especially in the range of the considered therapeutic dose, is a serious 

event in the preclinical process and requires further investigation for the identification of the 

underlying mechanisms. Common sets of techniques are available, but do not represent a 

panacea for the analysis of toxicology findings. In any case, any additional information that 

permits a deeper insight into the toxicological mechanism can help to determine the 

progress of a drug candidate and can probably save resources.  

 

1.5.1 Drug-induced liver injury (DILI)  

Drug-induced liver injury (DILI) is an important health problem that can necessitate 

discontinuation of an essential drug, hospitalisation with intensive care, or even liver 

transplantation (85). In 80% of all cases, DILI is caused by direct, dose-dependent toxicity by 

an administered drug or its metabolites. Alternatively, immunologically mediated 

idiosyncratic toxicity may lead to liver injury (86, 87). Idiosyncratic hepatoxicity can lead to a 

drug being withdrawn from the market, even after launching and clinical trials. A prime 

example of such a drug was Rezulin (Troglitazone), which was withdrawn in 2000 due to the 

risk of serve idiosyncratic hepatoxicity (88, 89). Drugs that exhibit chemical (direct) 

hepatotoxicity have predictable dose-response curves and well characterised mechanisms of 

toxicity. Examples include the promotion of dysfunction in physiological pathways and finally 
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cell death by direct insult by chemically reactive compounds, induction of an apoptotic 

process, or infliction of cellular stress (90). The latter phenomenon is often observed in the 

context of oxidative or metabolic stress, where inhibition of the mitochondrial respiratory 

chain results in a release of reactive oxygen species (ROS) to an excessive level and depletion 

of ATP (91-93). Furthermore, certain drugs influence mitochondrial activity by inhibiting fatty 

acid β-oxidation (91), impairing mitochondrial DNA replication (94) or opening the 

mitochondrial permeability transition pore, which is unavoidably associated with cell death 

(95). All of the physiological dysfunctions mentioned above ultimately lead to hepatic tissue 

damage. If energy is available in the form of ATP, injured cells enter programmed cell death 

(apoptosis). If ATP sources are exhausted, cells follow the necrosis pathway, enhancing 

hepatic inflammation (96). 

As shown in Figure 6, the vast majority of hepatic portal blood is composed of blood from 

the gastrointestinal viscera (from the lower part of the oesophagus to the upper part of 

rectum) and to a smaller extents from the spleen (92). The portal vein system is responsible 

for directing blood and absorbed drugs to the liver in a concentrated form. Therefore, the 

liver plays a pivotal role in drug metabolism and detoxification and is consequently 

vulnerable to injury.  
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Figure 6. The hepatic portal system is comprised of veins from almost every part of the digestive tract, even 
from the lower oesophagus and the upper rectum. In this view, some organs have been removed to reveal 
the blood vessels. (from: Robert, A.: Anatomie und Physiologie, Dorling Kindersley Verlag 2011) 

In phase I metabolism, initially the hepatic cytochrome P450 system transforms mainly 

lipophilic drugs into water-soluble metabolites for excretion in bile or urine (97). These 

oxidative metabolism pathways are followed by a phase II metabolism pathway (98, 99). 

Phase II metabolism reactions are usually conjugation reactions to glucuronic acid, sulphate 

or glutathione and the resulting hydrophilic metabolites are excreted into plasma or bile via 

transporters located at the hepatocytes membrane. In order to avoid hepatotoxicity, the 

generation of phase I products should not exceed the capacity of the liver to detoxify them. 

For example, such an incapacity can arise with abuse of alcohol and ingestion of 

acetaminophen, even a customarily tolerable dose of acetaminophen can, under these 

conditions, result in severe liver injury (100). 

Resulting hepatic dysfunction is generally paralleled by a rise in biochemical liver markers 

such as alanine aminotransferase, alkaline phosphatase and/or bilirubin (101). These initial 
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indicators of hepatotoxicity, when observed during the drug discovery and development 

process, call for alert and necessitate mechanistic follow-up studies. Such studies are ideally 

based on the use of additional biomarkers as predictors and are time consuming and costly if 

performed in experimental animals (102). However, in view of the poor correlation between 

clinical findings of DILI and standard preclinical animal studies, such efforts remain a 

challenge and are a source of concern for investigators and regulatory authorities. Ongoing 

efforts are therefore directed towards the development of predictive in silico or in vitro 

models to gain better insight into mechanisms leading to DILI and to uncover potential risks 

in the drug research (103). One strategy to gain improved insight into toxicity is the use of 

cytosensor systems, where a silica-based sensor system allows online monitoring of 

metabolic activity in target cells in the presence of potentially toxic chemicals (104). Because 

drug-induced liver adverse effects are of great interest, I therefore decided to identify drug-

induced liver adverse effects in vitro to support mechanistic toxicology studies and thus drug 

research. 

 

1.6 Bioenergetic pathways, or, how a meal provides energy for 1014 cells 

All cellular work, all of the activities of life, requires energy either from ATP or from other 

energy related molecules. For this, cells store energy mainly in the form of chemical bonds 

(52, 55, 56). The intracellular metabolic pathways are a series of chemical reactions in the 

cell to break down substrates and synthesise new, energetic molecules. These pathways are 

important to maintain the homeostasis of an organism (52, 105). Several distinct but linked 

metabolic pathways are used by cells to transfer the energy released by breakdown of fuel 

molecules into ATP and other small molecules (e.g. NADH, FADH) that are used for further 

energy generation. Cellular respiration is the process in the cell that converts the energy 
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from nutrients into ATP, using molecular oxygen (O2) as an electron acceptor, and is divided 

into four different but tightly linked parts; i.e. glycolysis, oxidative decarboxylation of 

pyruvate, Krebs cycles and finally oxidative phosphorylation (52, 55, 56). Regarding the 

whole cellular respiration process from glycolysis to oxidative phosphorylation, a net of 38 

ATP molecules are produced from one molecule of glucose, whereas 38 ATP molecules is 

only a theoretical value. De facto, in reality this is reduced due to several minor influences 

such as slightly leaky inner mitochondrial membranes or the consumption of energy by 

transporting and providing substrates (pyruvate, phosphate, ADP) for the ATP synthesis 

(106). The energy generating process is very susceptible to modification and the real value of 

generated ATP is closer to 28 – 30 ATP molecules (107), but it is nonetheless an effective 

process to generate energy. However, exogenous variations can influence these sensitive 

processes significantly, thus recording O2 consumption and excretion of acidic metabolic 

products (CO2 and lactate) from these processes can be used as responsive parameters to 

detect minute alterations in cellular metabolism and respiration. 

 

1.7 The multiparametric cytosensor system  

Because the goal of this thesis was to develop a new technology for the pharmaceutical 

industry based on bioenergetic pathways, I used a multiparametric cytosensor system 

capable of monitoring the energy pathways of cells. Two similar systems for the 

identification of these parameters were used (Figure 7), i.e. the Bionas®1500, a single sensor 

chip system, and the Bionas®2500, which measures six cell-coated chips simultaneously. The 

multiparametric cytosensor system allows simultaneous measurement of several metabolic 

parameters of the specific cells grown on the silica-sensor chip. The core of the system 
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consists of the silica-sensor chip SC1000 (Figure 8), including the sensors for the real-time 

monitoring of the cell physiological parameters. 

 

Figure 7. (A) Photographic illustration of the Bionas®2500 system. (B) Schematic diagram of the flow system 
and dimensions for the sensor chip analysis, indicating the inlet and outlet (arrows) of the assay medium and 
the small incubation chamber with an effective volume of 1.4 µL or 5.7 µL, respectively. The sensor chip 
SC1000 forms the bottom of the reaction chamber, including the three different sensors. 

 

 

 

Figure 8. (A) Photographic representation of the silica-sensor chip SC1000. The silica-sensor chip has a 
surface area of 75 mm2. (B) The zoom-view depicts the integrated sensors, include one interdigitated 
electrode structures (IDES) for the measurement of cellular impedance, five ion sensitive field effect 
transistor (ISFET) sensors for the measurement of pH, and five Clark-type sensors for the measurements of 
oxygen concentration (pictures reproduced with permission of Bionas Ltd., Rostock, Germany) 
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The supply of the assay medium to the sensor chip was carried out in stop and go phases. 

During these “stop phases”, metabolic breakdown products of the cells (lactate and 

carbonate) were released into the assay medium and were allowed to accumulate, resulting 

in alterations of extracellular pH (reflecting metabolic/glycolytic activity) (Figure 9A) (108). 

Simultaneously, the change in oxygen concentration is recorded, which is an indication of 

cellular respiration activity (Figure 9B). Initial rates of extracellular acidification and 

respiration were calculated by changes in the slope in the stop phases and a linear 

regression analysis. The system records one raw data point every 10 s in the stop and go 

phases of an experiment. Impedance measurements were carried out continuously over the 

whole experiment to monitor cell adhesion and thus cell morphology, viability and 

membrane functionality (109).  

 

Figure 9. Representative raw data from an example of a multiparametric cytosensor system experiment. 
Cellular respiration of L-MDR1 cells is shown during several 2 min stop (pump off) and 2 min go (pump on) 
cycles (solid lines). Recorded data (square symbols) are plotted against time and include measurement of 
extracellular acidification (A) and oxygen concentration (B). The pH is proportional to a measured voltage (U) 
and the oxygen concentration is proportional to a measured current (I). Extracellular acidification (A) and 
cellular respiration (B) rates were calculated from the initial slope of each stop phase by a linear regression. 
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2 AIMS 

Because cellular activities require energy, the goal of this thesis was to develop a new 

technology for drug research based on the monitoring of cellular energy pathways. For this 

approach, different questions from three sections of drug discovery and development were 

explored and effective ways were sought to answer questions by utilising the cellular energy 

pathways. 

 

2.1 Real-time identification of P-glycoprotein substrates 

As described in section 1.3.2, the common techniques to identify substrates for P-gp in vitro 

suffer from several limitations and concerns in reliability (40-44). In view of these limitations, 

the aim of the project was to implement a new, label-free method to identify substrates of 

P-gp on-line in living cells by monitoring changes in cellular energy pathways. A further goal 

was to validate this assay as an effective and generic tool for the reliable identification of 

these P-gp substrates. Concerning the energy pathways, the regeneration of consumed ATP 

via cellular processes is coupled with the formation of carbon dioxide and lactate, which are 

released into the extracellular milieu as carbonic acid and lactic acid (108). Besides 

acidification, oxygen is consumed during ATP regeneration, resulting in a decrease in oxygen 

concentration in the extracellular environment. These two processes, i.e. oxygen 

consumption and extracellular acidification, are indicators of ATP regeneration and thus P-gp 

activity. Using a MDR1-overexpressing cell line, the objective was to develop a label-free and 

real-time analysis system for the identification of P-gp substrates in living cells. 

 



Aims 

24 

2.2 Does the P2X7 receptor mediate effects on cellular metabolism upon ATP treatment? 

To investigate the effects of extracellular ATP on cell metabolism, I also used the 

multiparametric, cell-based sensor system to simultaneously monitor metabolic-related 

extracellular acidification rate (pH changes), cellular respiration (oxygen consumption), and 

cellular morphology and adhesion (impedance measurements) (108). In an initial set of 

experiments, the release of hydrogen peroxide from mononuclear blood cells exposed to 

exogenously applied ATP was explored, as a marker for metabolic activity. Results from 

these experiments were suspected of being linked with the purinergic P2X7 receptor.  

To investigate the role of extracellular ATP on cell metabolism associated with the purinergic 

P2X7 receptor, I further took advantage of a recombinant cell line expressing the P2X7 

receptor at high levels. This P2X7 cell line was used to analyse alterations in cell metabolism, 

mitochondrial respiration, and changes in cell shape upon the application of exogenously 

applied ATP.  

I subsequently verified the role of the P2X7 receptor by using of a specific P2X7 agonist (Bz-

ATP) and a selective P2X7 receptor antagonist. The effect of the antagonist on cell 

metabolism was investigated in terms of its ability to block P2X7 receptor-mediated ion flux, 

intracellular Ca2+ increase, and YoPro1 uptake. 

 

2.3 Identification of drug-induced adverse liver effects on human HepG2 cells 

I used the multiparametric, chip-based cytosensor system to determine physiological 

changes in a cell line overexpressing the drug efflux transporter P-gp (110) (section 2.1) and 

for the identification of metabolic changes after exogenous application of ATP to cells 

overexpressing the purinergic P2X7 receptor (section 2.2). In light of the sensitivity of such a 
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cytosensor system to deviations in the physiological parameters, the question arises as to 

whether this approach might be adapted to monitor the early onset of drug-induced 

hepatocellular damage in vitro.  

In view of the above, the aim of this thesis project was to implement and validate a cell-

based multiparametric cytosensor system to characterise DILI. For this approach, eight 

prototypic drugs known to be hepatotoxic in therapeutic use were investigated with respect 

to their toxicological potential on human hepatocarcinoma-derived HepG2 cells. The distinct 

differences in the mechanisms of hepatotoxicity and liver pathology were thoroughly 

considered during the selection of these eight drugs. The HepG2 cell line is frequently used 

as a model of liver cells (111, 112). In an additional control experiment, the metabolic 

activity of HepG2 cells was assessed and results derived from the mass spectrometry analysis 

were compared to previously published data (113-115). Emphasis was placed on the 

assessment of mitochondrial respiration, metabolic activity and/or morphological changes 

and cell adhesion as major markers of toxicity. Based on the nature of cellular response, 

different types of effects, including necrosis-like-, apoptosis-like cell death, and metabolic or 

oxidative stress, were discriminated.  
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3 MATERIAL AND METHODS 

3.1 Materials 

All chemicals were obtained in the highest available purity from Sigma-Aldrich (Buchs, 

Switzerland) and LGM Pharma (Boca Raton, Florida, US) unless otherwise indicated. 

Reference chemicals and drugs used in the studies are listed in Table 1. An overview of the 

cell culture media, supplements, and adjuvant used is given in Table 2. The P2X7 receptor 

antagonist, amiodarone, cyclosporine A, doxorubicin, isoniazide, and methotrexate were 

used as stock solutions in dimethyl sulfoxide (DMSO). Organic solvents concentrations did 

not exceed 1.0% (v/v) in any of the experiments. The MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide) stock solution was prepared in phosphate buffered saline at a 

concentration of 5 mg/mL, and was then sterile-filtered and stored at 4 °C in the dark. Aside 

from common laboratory material, all materials used, cell lines, buffers, and solutions are 

mentioned in the related chapter. 
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Table 1. An overview of the compounds (i.e. drugs, antagonists, and agonists) investigated in the projects 
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Amiodarone HCl 681.8 DMSO  1.0, 5.0, 10, 15, 30 µM 

   
  

Cyclosporin A 1`202.6 DMSO  1.0, 3.0, 10, 30, 60 µM 

   
  

Doxorubicin HCl 580.0 Water  1.0, 5.0, 10, 25 µM 

   
  

Isoniazide 137.1 Water  0.1, 0.5, 1.0, 3.0, 5.0 mM 

   
  

Methotrexate hydrate 454.4 DMSO  1.0, 10, 50, 100, 200 µM 

   
  

D-Sorbitol 182.2 Water  0.001, 0.01, 0.1, 1.0, 5.0 mM 

   
  

Terfenadine 471.7 DMSO 5.0, 25 µM 

   
  

Valproic acid sodium salt 166.2 Water  0.5, 1.0, 3.0, 5.0, 10 mM 

        
a
 Stock solution adjusted to pH 7.4 using sodium hydroxide. 

Project Compound Molecular 
weight 

Solvent for 
stock solution 

Concentrations used  
in experiments with the 

sensor system 
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Caffeine 194.2 Water 10 µM 

   
  

Daunorubicin HCl 564.0 DMSO 1.0 µM 

   
  

Elacridar 563.6 DMSO 0.1 µM 

   
  

Fexofenadine HCl 538.1 DMSO 1.0 µM 

   
  

Loperamide HCl 513.5 DMSO 10 µM 

   
  

Propranolol HCl 295.8 Water 10 µM 

   
  

Quinidine HCl 378.9 Water 10 µM 

   
  

Verapamil HCl 491.1 Water 1.0, 5.0, 15, 50 µM 
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ATP 
a
 507.2 Water 0.005 - 5.0 mM 

    
Bz-ATP

 a
 715.4 Water 1.0, 10, 50, 100 µM 

   
  

P2X7 receptor antagonist 455.5 DMSO 10 µM 

        

     

 
Acetaminophen 151.2 Water  0.01, 0.1, 1.0, 5.0, 10 mM 
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3.2 Cell culture 

Cell culture work was carried out under standard biosafety level 2 conditions (116). Cell 

handling was performed in a microbiological safety cabinet (Skan, Allschwil, Switzerland) to 

reduce risk of contamination. All freshly prepared primary cells and cell lines grow as 

adherent cells in standard 75 cm2 tissue culture flasks (TPP AG, Trasadingen, Switzerland). 

With the exception of the primary rat cortical cells, all cells used were passaged by 

trypsination twice a week using a dilution factor ratio of 1:5 to 1:20. For this procedure, cells 

were rinsed with 15 mL pre-warmed PBS, followed by cell detachment with 0.25% 

trypsin-EDTA and dilution in the appropriate culture medium. Cell viability was analysed by a 

Vi-Cell XR cell viability analyser (Beckman Coulter, Krefeld, Germany), using a trypan blue 

exclusion test. Cells showing cell viability below 80% were rejected for use in experiments. 

The amount of cells used for experiments was calculated based on the viable cells. For 

optimal cell attachment, some cells require surface coating with poly-L-lysine, poly-D-lysine 

or fibronectin prior to experiments, according to the manufactures protocols. Briefly, 

surfaces were disinfected using 70% (v/v) aqueous ethanol, rinsed twice with PBS, and 

incubated for 3 h with the coating agents at 37 °C in a humidified atmosphere containing 

5% CO2. Coating agents were removed and surfaces were rinsed with PBS prior to the cell 

suspension being dispensed. 
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Table 2. An overview of the media, supplements, and adjuvants used in the cell culture. 
 

Media, Supplements, Adjuvants 
Catalogue 
number  

Supplier 

DMEM containing GlutaMAX™ 21885 

Life technologies TM, Basel, 
Switzerland 

Neurobasal™ medium 21103 

Medium 199 containing GlutaMAX™ 41150 

MEM containing GlutaMAX™ 21090 

MEM (10x) 21430 

Medium 199 (10x) 21180 

GlutaMAX™ Supplement (200 mM) 35050 

L-Glutamine 200 mM (100x) 25030 

Geneticin (G418), selective antibiotics (50 mg/mL) 10131 

Penicillin/streptomycin solution  
(10 kUnits/mL penicillin and 10 mg/mL streptomycin) 

15140 

Sodium pyruvate (100 mM) 11360 

Hanks`balanced salt solution (HBSS) (10x) 14065 

Hepes buffer solution (1 M)  15630 

Non-essential amino acids (100x) 11140 

B-27 supplement (50x) 17504 

Trypsin-EDTA (0.25% Trypsin, 1 mM EDTA) 25200 

Fluo-4-AM™, (1.0 mM solution in DMSO) F14202 

Heat-inactivated foetal bovine serum A15-104 
PAA Laboratories, Pasching, 

Austria 

Foetal calf serum 2-01F30-1 

BioConcept, Allschwil, 
Switzerland Penicillin/streptomycin solution  

(10 kUnits/mL penicillin and 10 mg/mL streptomycin) 
for mouse microglia BV2 cells 

4-01F00-H 

Colchicine (10 µg/mL) L6211 
Biochrom AG, Berlin,  

Germany 
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Table 2 (continued). An overview of the media, supplements, and adjuvants used in the cell culture. 
 

Media, Supplements, Adjuvants 
Catalogue 
number  

Supplier 

Poly-D-Lysine (0.01%) P6407 

Sigma, Buchs,  
Switzerland 

Poly-L-Lysine (0.01%) P4707 

Phosphate buffered saline (PBS),  
without Ca2+ and Mg2+ 

D8537 

Fibronectin from bovine plasma (1.0 mg/mL) F1141 

Papain (20 Units/mg protein) LK003178 
Worthington, Lakewood,  

NJ, US 

EBM® medium CC-3121 

Lonza Ltd., Walkersville, MD, US 

EGM® SingleQuots CC-4133 

Bovine brain extract (BBE) (9.0 mg/mL) CC-4098 

Hydrocortisone (1.0 mg/mL) CC-4036C 

Gentamicin/amphotericin solution 
(30 mg/mL gentamicin, 15 µg/mL amphotericin-B)  

CC-4081C 

Human embryonic growth factor (3.0 mg/mL) CC-4107C 

 

3.2.1 LLC-PK1 and L-MDR1 cells 

The human P-gp overexpressing cell line L-MDR1 derived from the porcine kidney epithelial 

cell line LLC-PK1 was obtained under license from The Netherlands Cancer Institute 

(Amsterdam, The Netherlands). Cells were maintained under standard cell culture conditions 

(section 3.2) and described previously (39, 40). Cells were cultivated at passage numbers 

12 – 26 in 75 cm2 cell culture flasks at 37 °C in Medium 199 with 2.0 mM GlutaMAX 

supplemented with 50 IU/mL penicillin, 50 μg/mL streptomycin and 10% (v/v) foetal bovine 

serum in a humidified atmosphere containing 5% CO2. L-MDR1 cells were subcultured in the 

presence of 150 ng/mL colchicine to maintain P-gp expression levels. Colchicine was omitted 

from medium 12 h prior to use in the experiments to avoid the development of other drug 

resistance mechanisms that could modify the action of P-gp (117). It has been shown that, 
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once in culture and induced, cells express constant levels of P-gp for up to at least 15 

passages (118). 

 

3.2.2 HUVEC cells 

Human umbilical vein endothelial cells were obtained from Lonza (CC-2517, Walkersville, 

MD, US) and maintained under standard cell culture conditions. Cells were maintained in 

EBM® medium with Clonetics EGM® SingleQuots supplemented with 2.0% (v/v) 

heat-inactivated foetal bovine serum, 1.0 µg/mL hydrocortisone, 36 µg/mL bovine brain 

extract, 3.0 ng/mL human embryonic growth factor, 30 µg/mL gentamicin, 15 ng/mL 

amphotericin-B, 50 IU/mL penicillin and 50 µg/mL streptomycin at 37 °C in a humidified 

atmosphere containing 5% CO2.  

 

3.2.3 Human mononuclear blood cells  

For the preparation of fresh mononuclear cells (lymphocytes, monocytes and macrophages), 

30 mL human blood containing 10% (v/v) citrate as anticoagulant were taken and 

mononuclear cells were isolated using a polymorphprep™ (Axis-Shield, Oslo, Norway) 

density centrifugation kit according to the manufacturer`s protocol. Briefly, in a 50 mL 

reaction tube, 15 mL of human blood were layered on 17 mL of the polymorphprep™ buffer 

(Axis-Shield, Oslo, Norway) and centrifuged at 500 g for 30 min at 22 °C. After gradient 

centrifugation, different bands of blood cells appear. The mononuclear cell band was 

transferred to a new 50 mL reaction tube and diluted with one equivalent of 0.45% (v/v) 

aqueous sodium chloride solution to restore physiological osmolarity. The solution was again 

centrifuged at 450 g for 18 min at 20 °C and the supernatant removed. Subsequently, the 
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cell pellet was reconstituted in 0.9% (v/v) aqueous sodium chloride solution and again 

centrifuged at 400 g for 10 min at 20 °C. Supernatant was removed and remaining red blood 

cells were hypertonically lysed by adding 9.0 mL demineralised water for 17 s and then 

centrifuged at 300 g for 10 min at 20 °C. The cell pellet after the last centrifugation step was 

reconstituted in 20 mL PBS and cell viability and concentration analysed by a Vi-cell XR cell 

viability analyser. Cell concentration was adjusted to 2 x 106 cells/mL and a 250 µL-aliquot of 

this cell suspension was dispensed into a 96-well plate and immediately used for 

experiments. 

 

3.2.4 P2X7 overexpressing HEK293 cells  

The human P2X7 (HEK-hP2X7) cell line generation was performed in the laboratories of 

Actelion Ltd. (Allschwil, Switzerland) according to established molecular cloning protocols. 

Specifically, RNA was extracted from human whole blood using the Qiagen RNeasy®kit 

(Qiagen, Hombrechtikon, Switzerland) according to the manufacturer’s instructions. 

Subsequently cDNA was generated (Superscript®II, Life technologies, Basel, Switzerland) and 

the human P2X7 gene (genebank ref. BC011913) was amplified and ligated into a 

pcDNA3.1 (+) vector. HEK293 cells (ATCC CRL–1573, Manassas, VA, US) were transfected 

with the pcDNA3.1 (+)hP2X7 plasmid using lipofectamine™2000 transfection reagent (Life 

Technologies, Basel, Switzerland) according to the manufacturer’s instructions. Following a 

24 h-exposure to DNA, cells were trypsinised and re-seeded at low density in the presence of 

0.25 mg/mL geneticin (G418). Geneticin resistant cells were then selected during two 

consecutive rounds of cloning by serial limiting dilution with visual inspection. Individual 

clones were screened for P2X7 expression by applying ATP and recording the resulting 

uptake of YoPro1. A specific cell clone was chosen based on RNA and protein expression. 
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Cells were cultivated at passage numbers 1 – 30 in 75 cm2 cell culture flasks at 37 °C in 

DMEM with 2.0 mM L-glutamine, supplemented with 50 IU/mL penicillin, 50 µg/mL 

streptomycin and 10% (v/v) heat-inactivated foetal calf serum in a humidified atmosphere 

containing 5% CO2. HEK-hP2X7 cells were cultured in the presence of 0.25 mg/mL geneticin 

(G418) to maintain P2X7 expression levels. It has been shown that, once in culture and 

induced, cells express constant levels of P2X7 for up to at least 30 passages. 

 

3.2.5 Mouse microglia BV2 cells 

A mouse microglia BV2 cell line for patch-clamp experiments was cultured under standard 

cell culture conditions. The cells were maintained in 75 cm2 cell culture flasks at 37 °C in 

DMEM with 2.0 mM GlutaMAX supplemented with 50 IU/mL penicillin, 50 µg/mL 

streptomycin and 10% (v/v) foetal calf serum in a humidified atmosphere containing 5% CO2. 

 

3.2.6 Primary Wistar rat cortical cells 

Freshly prepared cortical cultures originated from Wistar rat embryos 18 days 

post-gestation. After enzymatic cell dissociation with papain, the cells were resuspended and 

diluted to 3 x 105 cells/mL in neurobasal medium supplemented with 0.5 mM L-glutamine, 

2.0% (v/v) B27, 50 IU/mL penicillin and 50 µg/mL streptomycin. Fifty µL-aliquots of this 

suspension were dispensed into poly-D-lysine-coated 384-well micro BioCoat™ plates 

(Becton Dickinson, Basel, Switzerland) and incubated at 37 °C for a period of about 8 days in 

a humidified atmosphere containing 5% CO2. 
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3.2.7 Human hepatocarcinoma-derived HepG2 cells 

The human epithelial hepatocarcinoma-derived cell line HepG2 was obtained from the 

American Type Culture Collection (ATCC HB-8065, Rockville, MD, US) and was maintained 

under standard cell culture conditions (see section 3.2) and as described previously (119). 

Briefly, the HepG2 cells were cultivated at passage numbers 3 - 15 in 75 cm2 cell culture 

flasks at 37 °C in MEM with 2.0 mM GlutaMAX, supplemented with 1.0 mM sodium 

pyruvate, 1.0% (v/v) non-essential amino acids, 50 IU/mL penicillin, 50 µg/mL streptomycin 

and 10% (v/v) heat-inactivated foetal bovine serum in a humidified atmosphere containing 

5% CO2. 
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3.3 Methods 

3.3.1 Real-time monitoring of cell physiological parameters 

For the real-time measurements of physiological parameters, two cell-based sensor systems 

were used. The Bionas®1500 hosted one cell-coated chip for analysis, whereas the 

Bionas®2500 was able to measure six cell-coated chips simultaneously (Figure 7). The 

systems were used as described previously (110) with project related modifications 

(Table 3). 

 

Table 3. Conditions of the assays using the multiparametric cytosensor system 
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HepG2  
 

2500 2.0   5.7 56 3 3 1`140 

MEM (21430),  
0.1% FBS,  
1 mM sodium pyruvate,   
1% NEAA,  
25 IU penicillin,  
25 µg/mL streptomycin 
 

 

Prior to experiments, cells were detached by trypsination for approx. 4 min and cell viability 

analysed by a Vi-Cell XR analyser. Cells were then diluted in culture medium to reach the 

required cell amount by adding 0.35 mL of these cell suspensions to the pre-warmed sensor 

chips and incubating for at least 16 h prior to use. The core of the system consists of the 

Project Bionas 
system 

Cells per 
sensor chip  

Chip 
coating 

Effective 
chamber 
volume  

Flow rate  Stop 
cycle  

Go 
cycle  

Compound 
exposure 

time  

Cell line / 
assay medium 
composition 
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] 
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 LLC-PK1; L-MDR1 

1500 0.75 - 1.5   5.7 252 2 2 20 

Medium 199 (21180),  
2.0% FBS,  
0.3 mM GlutaMAX,  
50 IU penicillin, 50 µg/mL 
streptomycin 
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HEK293; HEK-hP2X7  

1500 2.0 
Fibro- 
nectin 

1.4 63 4 3 21 

MEM (21430),  
0.1% FBS,  
25 IU penicillin,  
25 µg/mL streptomycin 
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silica-sensor chip SC1000 (Figure 8) containing ion sensitive field effect transistor and Clark-

type sensors for the measurement of dynamic changes of acidification and oxygen 

consumption. Cell adhesion was monitored by means of impedance measurements using an 

interdigitated electrode structures circuit. The effective volumes of the reaction chamber (i.e 

the volume of the space between the surface of the sensor chip and the chamber lid) were 

either 1.4 µL or 5.7 µL (Table 3) and were determined by the distance (50 µm or 200 µm) 

between the flow head and the sensors chip surface (Figure 7). Cells were seeded directly 

onto the silica-sensor chip with or without prior surface coating according to the type of cells 

used in the experiments (Table 3). During analysis, assay medium (Table 3) was delivered to 

the cells at a constant flow rate (Table 3). The supply of assay medium was interrupted 

periodically, as described previously (110). These stop/go cycles were carried out throughout 

the entire experiment (divided into periods of medium exchange and periods without 

medium flow), during which the parameters were recorded. The duration of the stop and go 

cycles were project dependent and are defined in Table 3. During these “stop phases”, 

metabolic breakdown products of the cells (lactate and carbonate) were released into the 

assay medium and were allowed to accumulate, resulting in a change in extracellular pH 

(108). Extracellular oxygen concentrations were monitored in parallel. Initial rates of 

extracellular acidification and respiration were calculated by changes to the slope in the stop 

phases and a linear regression analysis. Recorded data were normalised to a reference value, 

which represented the baseline signal of a cell-coated chip prior to treatment with the 

compound. Impedance measurements were carried out continuously to monitor cell 

adhesion and thus cell morphology, viability, and membrane functionality (109). As a 

control, 0.2% Triton X-100 was added to the cells at the end of each experiment to induce 

cell membrane destruction and thus detachment of cells from the surface of the sensor chip. 
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The signals that were generated under these conditions were used to provide a reference 

signal from the cell-free sensor surface (0% baseline value) (109). These relative signals 

relate to a 0% control value of an empty sensor chip and to a 100% reference value 

representing the baseline signal of a cell-coated chip prior to compound treatment. 

The initialisation procedure of the sensor system prior to each experiment was carried out 

routinely, whereat the supply lines of the system were conditioned in a three-step 

procedure: disinfection with 70% (v/v) aqueous ethanol, flushing with an excess of PBS and 

rinsing with low-buffered assay medium. For the measurements, an assay medium with low 

buffer capacity was required (Table 3). Assay media were prepared from ten-fold 

concentrated stock media and the concentration of penicillin and streptomycin was halved, 

due to the reduced foetal bovine serum content and therefore more unbound antibiotics in 

the medium. The concentration of foetal bovine serum in the assay media did not exceed 

2.0% (v/v) to keep the buffer capacity of the FBS as low as possible. The assay media 

contained neither Hepes nor NaHCO3 and were adjusted to pH 7.4 using sodium hydroxide. 

Before use, the integrity of the cell monolayer covering the surface of the microsensor chip 

was verified using a Motic DM-39C reflected-light microscope (Motic Group Ltd., Hong Kong, 

China). Cell monolayers with a cellular confluence below 80% were rejected for use.  

Signals from the metabolic sensor chip were then recorded after a stabilisation phase of at 

least 3 h to acquire a constant baseline signal-to-noise ratio from the different sensors. 

Subsequently, treatment of compounds dissolved in assay medium (adjusted to pH 7.4 with 

sodium hydroxide) or drug-free running medium (control) was initiated. For those 

compounds for which stock solutions were prepared in other media, an equal amount of 

DMSO was added to the assay medium for initial stabilisation phase to avoid the detection 

of effects from DMSO. All compounds and their individual concentrations in the 
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multiparametric cytosensor system assays are listed in Table 1. Raw data were recorded by 

all sensors at intervals of 10 s to obtain one raw data point per ten seconds. From these data 

points, initial rates of acidification and cellular respiration were derived by linear regression. 

Compound treatment phases were followed by compound wash-out periods for detection of 

regeneration processes. After the experiment, impedance values were recorded following 

solubilisation of cells by 0.2% (v/v) Triton X-100. This control is used to compare cell 

monolayer integrity during the experiment with a reference value obtained from a cell-free 

sensor chip at the end of the experiment. This value represents, by definition, the 0% 

reference control value. 

 

3.3.2 Western blot detection of P-glycoprotein 

A Western blot analysis was carried out to confirm the presence of P-gp in L-MDR1 and its 

absence in parental LLC-PK1 cells. LLC-PK1 (passage no. 25) and L-MDR1 (passage no. 14) 

cells were harvested by trypsination (5 min) at approx. 80% confluence, viability was 

determined by a Vi-cell XR analyser, and diluted in PBS to reach a final cell concentration of 

6 x 105 cells/mL. The cell suspension was transferred in a pre-cooled 2 mL S-homogeniser 

(Sartorius, Göttingen, Germany), placed on ice, and homogenised for fifteen cycles. The 

separation of the cell proteins was achieved by sodium dodecylsulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE). For the SDS-PAGE analysis, 12 µL of the homogenised cell 

suspension was mixed with 3 µL loading buffer (2.3% sodium dodecylsulphate, 72.5 mM 

Tris(hydroxymethyl)-amminomethane (pH 6.8), 17.3% glycerol, 10 mg/mL bromophenol 

blue) and incubated for 5 min at 95 °C for protein denaturation. The samples were 

subsequently transferred to a NuPAGE® 4 - 12% Bis-Tris precast gel (Life technologies, Basel, 

Switzerland) for protein electrophoresis. The SDS-PAGE was carried out in MOPS 
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(4-morpholinepropanesulfonic acid) buffer (Life technologies, Basel, Switzerland) using the 

XCell-SureLock™ aperture (Life technologies, Basel, Switzerland) according to the 

manufactures protocol. In addition to the samples, 5 µL of the Precision-Plus™ protein 

standard (BioRad Laboratories, Hercules, California, US) was added as a molecular weight 

marker. A current of 170 V was applied for approx. 1 h to the SDS-PAGE for electrophoretic 

protein separation. Subsequently the proteins were transferred to a Protran® nitrocellulose 

(NC) membrane (0.45 µm pore size, Schleicher & Schuell, Dassel, Germany) by means of an 

iBlot®Dry blotting system (Life technologies, Basel, Switzerland) according to the 

manufactures instruction protocol. All regions of the NC membrane, that did not containing 

proteins were saturated by incubation of the NC membrane with blocking milk (10% skim 

milk powder, 1.0% bovine serum albumin, 150 mM NaCl, 10 mM Tris-HCl (pH 7.4) and 0.3% 

Tween 20) over night at 4 °C. The primary mouse monoclonal MDR1-G1 (sc-13131, 

SantaCruz Biotechnology, Santa Cruz, CA, US) and the anti--actin (A1978, Sigma, Buchs, 

Switzerland) antibodies were added to the blocking buffer (1:1`000 each, v/v) and incubated 

at room temperature under gentle agitation for 1 h. After three washings with western-wash 

buffer (3.0 g/L bovine serum albumin, 150 mM NaCl, 10 mM Tris-HCl (pH 7.4), 0.05% 

Triton X-100) for 10 min each step, the secondary antibody (goat-anti-mouse IgG-HRP, cat. 

no. sc-2005, SantaCruz Biotechnology, Santa Cruz, California, US) was added (1:5`000, v/v) to 

the blocking milk and then applied to the NC membrane. After 1 h incubation under gentle 

agitation and room temperature the NC membrane was washed three times with 

Western-wash buffer, as described above. For the analysis of the proteins, the NC 

membrane was incubated for 1 min with a 1:1 (v/v) mixture of the Western-lightning-ECL™ 

chemiluminescence reagents (NEL101 and NEL102, PerkinElmer, Wellesley, MA, US) and 

transferred to a photosensitive Kodak BioMax™ Light film (Kodak, Rochester, NJ, US). The 
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film was exposed to the NC membrane for 1 min at room temperature and then developed 

by the Curix 60 tabletop processor (Agfa, Mortsel, Belgium). 

 

3.3.3 Metabolic activity of human mononuclear blood cells 

Production of cellular hydrogen peroxide (H2O2) was analysed by the Amplex®Red assay 

obtained from Life technologies (Basel, Switzerland) after application of the P2X7 agonists 

(ATP or Bz-ATP) to human mononuclear blood cells. Oxidation of glucose by glucose oxidase 

resulted in the generation of hydrogen peroxide, which is coupled to the conversion of the 

Amplex®Red reagent to fluorescent resorufin in the presence of horseradish peroxidase. 

Briefly, 5 x 105 human mononuclear blood cells (section 3.2.3) were placed in the wells of a 

96-well plate and incubated with 50 µM Amplex®Red and 0.1 U/mL horseradish peroxidase 

for 0.5 h at 37 °C in Krebs Ringer phosphate solution (145 mM NaCl, 5.7 mM sodium 

phosphate, 4.9 mM KCl, 0.5 mM CaCl2, 1.2 mM MgSO4, and 5.5 mM glucose), protected from 

light. After adding ATP (0 – 4.0 mM) or Bz-ATP (0 – 400 µM) to the cells, the fluorescence 

was quantified by means of a microplate reader (Synergy MX, BioTek®, Luzern, Switzerland) 

at excitation and absorbance wavelengths at 550 nm and 600 nm, respectively. Background 

fluorescence, determined using a reaction without mononuclear cells, was subtracted from 

each value. From these preliminary results, the optimal ATP concentration was determined 

as 1.0 mM and this was used again for the determination of hydrogen peroxide release, in 

the presence of the selective P2X7 receptor antagonist (0 - 25 µM). 
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3.3.4 Dynamic mass redistribution assay 

The Corning Epic® system (Corning Inc., Tewksbury, MA, US) was used, consisting of a 

temperature controlled unit, an optical detection unit, and an on-board robotic liquid 

handling device. The Epic® system measures changes within the cell monolayer in the index 

of refraction, which can be ligand-induced upon mass redistribution. HUVEC cells (section 

3.2.2) were detached by trypsination for approx. 5 min and analysed by a Vi-cell XR cell 

viability analyser. Cells were then diluted in culture medium to reach a final concentration of 

4 x 105 cells/mL medium. A 30 µL-aliquot of this cell suspension was transferred to a 

fibronectin-coated 384-well Epic® microplate containing 10 µL HUVEC medium (section 

3.2.2) and incubated at 37 °C for 20 h in a humidified atmosphere containing 5% CO2 to 

achieve a confluent monolayer. Each microplate well bottom contained a resonant 

waveguide grating biosensor. Prior to the experiment, the medium was replaced by 30 µL 

HBSS buffer supplemented with 20 mM Hepes and 0.06% (w/v) bovine serum albumin and 

kept for 2 h in the Epic® reader at a constant temperature of 26 °C for equilibration. The 

sensor microplate was then analysed and an initial baseline curve was recorded. 

Subsequently, the ATP solution in the assay buffer was dispensed into the microplate at a 

concentration range of 0 to 5.0 mM and the dynamic mass redistribution was monitored for 

4`000 s. Control experiments were performed in the absence of ATP under otherwise 

identical conditions. In these controls, the volumes of the ATP-containing solutions were 

replaced by assay buffer. 
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3.3.5 YoPro1 uptake analysis 

Uptake of membrane-impermeable fluorescent dyes, such as YoPro1, is a hallmark of early 

downstream signalling by the P2X7 receptor and was used as a means of identifying the P2X7 

receptor antagonists in human embryonic kidney cells expressing the P2X7 receptor at high 

levels (120, 121). 

HEK-hP2X7 cells (section 3.2.4) were detached by trypsination (0.5 ml per 75 cm2 dish), 

which lasted two minutes and were analysed by a Vi-cell XR cell viability analyser. Cells were 

then diluted in medium (section 3.2.4) without geneticin to a final concentration of 

2 x 105 cells/mL and a 50 µL-aliquot of this cell suspension was transferred to a poly-L-lysine 

pre-coated black-wall, clear-bottom 384-well-plate and incubated 48 h at 37 °C in a 

humidified atmosphere containing 5% CO2. Medium was removed from cells and assay 

buffer containing 0.5 µM YoPro1 was added into the wells. Solutions of the antagonist were 

prepared by serial dilutions of a 10 mM DMSO solution into PBS. Each concentration was 

represented in duplicate. For IC50 measurements, ten concentrations were measured (10 µM 

being the highest concentration followed by nine serial dilution steps 1:3, v/v). The cells 

were incubated with the selective P2X7 receptor antagonist and ATP at a final concentration 

of 250 µM for 90 min. During this period, four time points were taken. Each time point 

comprised the average of several measurements made within a few seconds. Fluorescence 

was measured in the FLIPR®-Tetra (fluorescent imaging plate reader; Molecular Device, 

Sunnyvale, CA, US) using the filters appropriate for YoPro1 fluorescence (excitation 485, 

emission 530). The FLIPR®-Tetra was equipped with Molecular Devices Screen Works system 

control software to define and run experimental protocols. The affinity of the antagonist was 

determined at the EC50 concentration of the agonist (250 µM ATP for HEK293 cells 
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overexpressing human recombinant P2X7 receptor). For IC50 measurements, the maximum 

intensity is plotted against the concentration of the antagonist to determine IC50 values. 

 

3.3.6 Fluo-4-AM calcium measurements 

Calcium transients were determined using a Tetra high-throughput fluorescence imaging 

plate reader (Molecular Devices, Sunnyvale, CA, US) at room temperature. Wistar rat 

primary cortical cells (section 3.2.6), at day eight in culture, were loaded with 1.0 µM Fluo-4-

AM in HBSS (pH 7.4) containing 20 mM Hepes. Cells were washed once with HBSS 10 min 

before recording. After a 15 min pre-incubation with 0.01 - 10 µM of the selective P2X7 

receptor antagonist, the P2X7 agonist Bz-ATP was applied to the cells at a final concentration 

of 250 µM. In control incubations, Bz-ATP was replaced by DMSO in equal amounts used in 

the Bz-ATP incubations. Data points were collected every one second and analysed using the 

plate reader specific software (Molecular Devices, version 2.0.0.24, Sunnyvale, CA, US) and 

IGOR software (IGOR Pro, version 6.12A, Oregon, US). 

 

3.3.7 Electrophysiology 

For patch-clamp experiments, mouse microglia BV2 cells (section 3.2.5) were analysed in the 

whole cell patch-clamp configuration (122). Patch electrodes were filled with intracellular 

buffer containing 120 mM KF, 20 mM KCl, 1.0 mM EGTA (ethylene glycol-bis(aminoethyl 

ether)-tetraacetic acid) and 10 mM Hepes adjusted to pH 7.2 with potassium hydroxide. 

Recordings were done at room temperature in external buffer containing 147 mM NaCl, 

2.0 mM KCl, 0.3 mM CaCl2, 10 mM Hepes and 12 mM D-glucose adjusted to pH 7.4 with 

sodium hydroxide. At a constant holding potential of -70 millivolt, 100 µM Bz-ATP were 
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applied in the absence or presence of different concentrations of the selective P2X7 receptor 

antagonist by a computer-controlled application system. Agonist-induced steady-state 

currents were corrected for leakage, and concentration-response curves were fitted to 

averaged current amplitudes derived from 3 – 4 cells. 

 

3.3.8 MTT cell viability assay 

HepG2 cells were seeded in 96-well plates at a density of 5 x 104 cells/well and were cultured 

as described above (section 3.2.7). Twenty-four hours after seeding, medium was removed 

and 100 µL aliquots of cell culture medium containing the test compounds were added to 

each well in triplicate. Control cells were incubated in the presence of 1.0% (v/v) DMSO 

(100% viability control). After 24 h, cell culture medium was replaced by 100 µL cell culture 

medium containing 10% (v/v) MTT stock solution. Cells were incubated for additional 2 h at 

37 °C. In a final step, the cell culture medium was discarded and reduced MTT, which is 

present as water-insoluble formazan dye crystals, was dissolved by adding 20 µL of 3.0% 

(v/v) sodium dodecylsulphate solution in water, and 100 µL of a 40 mM hydrochloric acid in 

isopropanol. Optical density was measured at 550 nm using a Spectramax® M2 plate reader 

(Molecular Devices, Sunnyvale, CA, US). 

 

3.3.9 Metabolic activity of human hepatocarcinoma-derived cells, HepG2 

Acetaminophen and amiodarone were incubated with human hepatocarcinoma-derived 

HepG2 cells (section 3.2.7) to confirm activity in phase I and phase II metabolism. Since the 

metabolic pathways and the metabolites of these two compounds in the liver were already 
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elucidated, these compounds were used as prime examples to confirm metabolic activity of 

HepG2 cells.  

For the determination of metabolic activity of HepG2 cell, 19 h-incubations with amiodarone 

and acetaminophen were performed. HepG2 cells were detached by trypsination for 5 min 

and analysed by a Vi-Cell XR cell viability analyser. Cells were then diluted in culture medium 

to a nominal density of 1.25 x 106 viable cells/mL and 400 µL aliquots of this suspension were 

dispensed into 24-well plates and incubated at 37 °C for a period of about 20 h in a 

humidified atmosphere containing 5% CO2 for cell attachment. 

At the end of the pre-incubation period, the medium was removed from each well and 

replaced by 200 µL of pre-warmed (37 °C) incubation medium containing amiodarone or 

acetaminophen at final concentrations of 20 µM. Triplicate wells were sampled after 19 h of 

incubation by addition of 200 µL of ice-cold acetonitrile and transfer of the entire well 

content into 2 mL cryovials. Samples were stored frozen at -20 °C pending analysis. Prior 

LC-MS analysis, samples were centrifuged at 20`800 g for 5 min at 4 °C and supernatant 

were submitted to LC-MS analysis without further treatment. Control incubations in the 

absence of cells were performed in parallel.  

The analytical system consisted of two Shimadzu HPLC pumps LC-20AD XR (Shimadzu, 

Reinach, Switzerland) equipped with a membrane degasser (DGU-20A), a Shimadzu system 

controller CBM-20A, a Thermo Scientific (San Jose, CA, US) photodiode array detector 

ACCELA™, a Shimadzu autosampler model SIL-30AC, and a LTQ-Orbitrap Velo Pro™ (Thermo 

Electron, San Jose, CA, US). 

The chromatographic separation of amiodarone and acetaminophen and their metabolites 

were achieved on a Phenomenex Luna®C18(2) column (250 x 4.6 mm, 5 µm, 100 Å) at 30 °C 

with a flow rate of 1.0 mL/min. Mobile phases consisted of 0.1% (v/v) formic acid in water 
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(phase A) and acetonitrile (phase B). The autosampler temperature was set to 4 °C. The 

applied gradient for the separation of the test compounds and their metabolites is described 

below: 

 

 

 

For the analysis of parent drug and metabolites, a full scan, high resolution LTQ-Orbitrap 

Velo Pro™ was used (Thermo Electron, San Jose, CA, US). The analysis was performed in 

positive ion mode and a mass range of 100 to 1`000 m/z. High resolution reconstructed ion 

chromatograms of potential metabolites were generated using mass tolerance of 

10 parts per million (ppm) and Xcalibur® software package (Version 2.1.0, Thermo Electron, 

San Jose, CA, US). Photodiode array detection (PDA) was used in parallel in the wavelength 

range of 200 to 300 nm. 

 

3.3.10 Data recording, analysis and statistics 

The evaluations as well as the kinetics and statistical calculations were performed using 

GraphPad Prism® software (Version 5.04, GraphPad Software Inc., La Jolla, CA, US), Bionas® 

data analyser software (Versions 1.22 and 1.66, Bionas GmbH, Rostock, Germany), 

OriginPro® (Version 7.5, OriginLab®, Northampton, MA, US) and Microsoft® Office 

Excel 2007. Each experiment was performed at least in triplicates. Results are expressed as 

the mean ± SEM or means with 63% or 95% confidence interval (CI). Statistical significances 

were estimated by unpaired t-tests and designated to *p < 0.05, **p < 0.01, and 

***p < 0.001. 

  

Time [min] 0 20 25 26 35 

Phase B [%] 5 95 95 5 stop 
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4 RESULTS 

4.1 Identification of P-glycoprotein substrates 

In this part of the thesis, the multiparametric cytosensor system (Figure 7) was used for 

real-time identification of P-gp substrates in human P-gp overexpressing LLC-PK1 cells 

(L-MDR1). The cells used in the study were preliminarily analysed to assess the expression 

level of P-gp using Western blot analysis technique.  

 

4.1.1 P-glycoprotein levels in LLC-PK1 and L-MDR1 cells 

The level of P-gp in parental LLC-PK1 and human MDR1-transfected cells (L-MDR1) was 

determined by Western blot detection. LLC-PK1 cells in culture at passage 25 and L-MDR1 

cells in culture at passage 14 were used to assess the levels of P-gp. Cell concentrations of 

both cell lines were adjusted to 6 x 106 cells/mL and subsequently homogenised. Identical 

aliquots of the resulting suspensions were transferred for protein separation by 

electrophoresis, followed by an electrical transfer of the proteins to a NC membrane. The NC 

membrane was incubated simultaneously with two specific monoclonal antibodies for the 

identification of P-gp (170 kDa) and total actin (42 kDa) levels. Beta-actin was used as a 

loading control and helped to determine whether the samples were loaded equally across all 

lanes and served to display the effective transfer of protein during Western blotting. 

Beta-actin is a suitable loading control due to its general expression across all eukaryotic cell 

types (123). Comparing the intensity of the loading control (Figure 10), the -actin bands in 

both lanes indicate equal levels of actin in LLC-PK1 and L-MDR1 cells. An intense signal at 

170 kDa was detected, indicating the presence of high levels of P-gp in the L-MDR1 cells. In 
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contrast to the L-MDR1 cells, no band at 170 kDa was detected in the lane with LLC-PK1 cell. 

The presence of high P-gp levels in L-MDR1 cells, and the absence of P-gp in LLC-PK1 cells 

was confirmed by the Western blot, and I therefore went on to use the cells in the 

multiparametric cytosensor system. Parental LLC-PK1 cells were assessed to be P-gp 

deficient and used as a control cell line in all further experiments of this project.  

 

Figure 10. Western blot analysis of P-gp (170 kDa) levels in parental LLC-PK1 cells and human MDR1 
transfected L-MDR1 cells. A 12 µL aliquot of a cell suspension containing 6 x 106 cells/mL was added to each 
lane for protein separation. After electrophoretic blotting of the proteins over to nitrocellulose membrane, 
P-gp was detected by a monoclonal antibody MDR1-G1 and visualised by staining with a secondary goat-anti-

mouse IgG-HRP antibody, which is responsible for chemiluminescence. The -actin staining was used as a 
loading control for better comparison of the analysed total protein levels. Position and size of the molecular 
weight marker are indicated. 

4.1.2 Real-time identification of P-glycoprotein substrates 

The multiparametric cytosensor system was used as an analytical tool for the real-time 

monitoring of changes in extracellular acidification (pH-changes), cell respiration (oxygen 



Results 

49 

concentration) and cell adhesion (cell impedance). The sensor system assay was optimised 

with respect to maximal stimulation amplitudes to allow for a sensitive and reliable 

recording of signals. Important assay parameters included the use of an assay medium with 

a low buffer capacity supplemented with 2.0% (v/v) foetal bovine serum albumin. Optimal 

cell densities were in the range of 0.75 to 1.5 x 105 attached cells per chip and the effective 

volume of the reaction chamber (i.e. the effective volume of the 200 µm space between the 

surface of the sensor chip and the chamber lid) was 5.7 µL.  

During measurements, the flow of assay medium was periodically interrupted for two 

minutes. After each measuring period, the incubation chamber was flushed for another two 

minutes with assay medium before a new measuring cycle was initiated. Cell viability was 

measured during the entire experiment and deviations were in the range of ± 20% over a run 

time of 1`500 min for all experiments of this project. A representative pattern of the cellular 

viability in all experiments of this study is given in Figure 11. 

 

Figure 11. Representative pattern of impedance curves recorded with L-MDR1 cells (blue) and LLC-PK1 cells 
(red) up to 1`600 min compiled from two different experiments. The arrows indicate the release of death 
cells from the chip after Triton X-100 treatment. 
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In a first set of experiments, activity of P-gp was monitored in the presence of verapamil (a 

P-gp substrate (40, 124)) and the negative control caffeine (non-P-gp substrate (125)). 

Experiments were initiated as soon as a stable baseline metabolic rate was attained (100% 

threshold in Figure 12). Extracellular acidification rates, as well as respiration rates were 

identified and correlated with P-gp activation (Figure 12, phase 1 of the experiment). After a 

regeneration phase of approx. 100 min P-gp activity was inhibited by adding 100 nM 

elacridar (Figure 12, phase 2). Subsequent addition of again 10 µM verapamil (Figure 12, 

phase 3) showed no further stimulatory effects, neither in extracellular acidification nor in 

respiration rates. Elacridar alone decreased the basal levels of extracellular acidification and 

respiration rates of almost 25% (Figure 12, phase 2) with subsequent stabilisation at the 

reduced basal activity level. At the end of the experiment (Figure 12), reference 0% signal-

levels of the cell-free microsensor chip were achieved by the addition of 0.2% (v/v) 

Triton X-100. Cell viability was recorded during the entire experiment and was in the range 

of the acceptable deviations. 

 

Figure 12. Stimulation of P-gp overexpressing L-MDR1 cells in the presence and absence of the P-gp inhibitor 
elacridar. Phase 1: stimulation of L-MDR1 cells with 10 μM verapamil results in an increase in the 
extracellular acidification rate (red, circles) and an increase in the oxygen consumption rate (green, 
triangles). Phase 2: addition of 100 nM elacridar after a wash-out phase. Phase 3: addition of 10 μM 
verapamil in the presence of 100 nM elacridar. At the end of the experiment: Triton X-100 (0.2%, v/v) 
treatment to obtain the 0% reference value of the empty sensor chip. Depicted is a representative pattern of 
n = 3 experiments. 
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Different concentrations of verapamil (1.0 - 50 µM) were analysed using L-MDR1 cells 

(Figure 13, solid symbols) and the Michaelis-Menten kinetics were calculated. Stimulation of 

P-gp by verapamil showed saturation at high concentrations and was characterised by a KM 

value of 0.92 ± 0.12 μM (calculated based on extracellular acidification rates (red), 

mean ± SEM, n = 4) and 4.9 ± 2.7 μM (calculated based on respiration rates (green), 

mean ± SEM, n = 4). Vmax values for extracellular acidification rates (57.4 ± 1.6% as compared 

to 0% control, mean ± SEM, n = 4) were twice as high as the corresponding Vmax values for 

respiration rates (25.4 ± 5.2% as compared to 0% control, mean ± SEM, n = 4). At substrate 

concentrations of 50 μM verapamil, a sudden drop in extracellular acidification rates as well 

as in respiration rates was observed.  

 

Figure 13. Stimulation of P-gp in the presence of different concentrations of verapamil. Extracellular 
acidification (red, circles) and oxygen consumption (green, triangles) in P-gp overexpressing L-MDR1 cells 
(solid symbols) and parental, LLC-PK1 (open symbols, dotted lines) cells measured as a function of increasing 
concentrations of verapamil. Solid lines: curve fitting using a Michaelis–Menten type kinetics model. Signals 
obtained at a verapamil concentration of 50 μM were rejected for kinetic calculations, due to substrate 
inhibition effects. Level of significance between L-MDR1 and parental LLC-PK1 controls: ***p < 0.001, n = 4.  

 

Cell viability was measured during the entire experiment and deviations were in the range of 

± 13% over an experimental run time of 1`500 min. In a separate set of control experiments 

(Figure 13, open symbols), P-gp-deficient LLC-PK1 cells were incubated in the presence of 
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verapamil and did not show any stimulation effects in either extracellular acidification rates 

or respiration rates. 

Figure 14 showed the identification of P-gp substrates using the extracellular acidification 

parameter because this shows higher sensitivity. Seven market drugs were analysed with 

respect to their potential to modulate P-gp activity. Activation of P-gp was expressed as the 

ratio between acidification rates measured during and immediately before stimulation of 

L-MDR1 cells (delta acidification rates). Propranolol, caffeine, quinidine, verapamil, and 

loperamide were used at a substrate concentration of 10 µM, while daunorubicin and 

fexofenadine concentrations were reduced to 1.0 µM. Both, propranolol and caffeine, 

known not to interact with P-gp, were used as negative controls. Compared with the two 

negative controls, all P-gp substrates were identified with statistical significance. Cellular 

impedance and thus cellular viability were not affected by the test compounds in the 

concentration ranges used. 

 

Figure 14. Identification of P-gp substrates using the multiparametric cytosensor system in combination with 
P-gp expressing L-MDR1 cells. Extracellular acidification rates were determined in the presence and absence 
of test compound (10 μM final substrate concentration with the exception of 1.0 μM of daunorubicin and 
fexofenadine). Ratios of acidification rates before and during stimulation (Δ Acidification) are shown. Data 
are means ± SEM, n > 3. Levels of statistical significant difference between acidification rates in unstimulated 
or stimulated cells are *p < 0.05, **p < 0.01 or ***p < 0.001. 
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Figure 15 showed the control experiments in LLC-PK1 cells with a set of test compounds. No 

effects of these test compounds were detected under the same experimental conditions. 

Cell viability was again within the limit of acceptable deviations.  

 

 

Figure 15. Control experiments demonstrating absence of stimulatory effects in parental LLC-PK1 cells. 
Caffeine (phase 1), verapamil (phase 2), loperamide (phase 3), quinidine (phase 4) and paclitaxel (phase 5) 
did not induce extracellular acidification in P-gp deficient LLC-PK1 cells. All compounds were tested at a 
substrate concentration of 10 μM. Triton X-100 (0.2%, v/v) treatment (phase 6) at the end of the experiment 
was used to obtain the 0% reference value of the cell-free sensor chip. Depicted is a representative pattern. 
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4.2 Purinergic P2X7 receptor mediates metabolic changes upon ATP treatment 

Metabolic activity of human mononuclear blood- and HUVEC cells after treatment with 

extracellular ATP was assessed.  

Many metabolic processes in cells lead to the formation of hydrogen peroxide, which can be 

used as a marker for metabolic activity (126). Therefore, I investigated the effect of 

exogenously applied ATP on the release of hydrogen peroxide from mononuclear cells, 

freshly prepared from human donor blood. Cells were treated with ATP and supernatant was 

analysed after 20 min. ATP induced a strong, concentration-dependent increase in hydrogen 

peroxide release with a half-maximal effective concentration of 558 ± 5.0 µM (mean ± SEM, 

n = 3), as depicted in Figure 16.  

 

Figure 16. Rate of hydrogen peroxide formation in human mononuclear blood cells. The formation of 
hydrogen peroxide was analysed in mononuclear blood cells upon exogenously applied ATP, as a marker for 
metabolic activity in cells. Human mononuclear blood cells were exposed to ATP at the concentration range 
of 0 to 4.0 mM. Fluorescence was measured with a fluorescence microplate reader using excitation at 
550 nm and fluorescence absorbance at 600 nm. Background fluorescence, determined for a control reaction 
with no H2O2, was subtracted from each value. The half-maximal effective concentration was 
EC50 = 558 ± 5.0 µM (n = 3). 
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Extracellular ATP mediates its effect by activating ionotropic or metabotropic receptors. 

Usually, activity of metabotropic receptors is linked to changes in cellular metabolism, thus 

the name 'metabotropic'. However, in this case, the concentration response curve for ATP 

induction of hydrogen peroxide release, with the EC50 value above 500 µM, did not fit with 

the ATP sensitivity of the twelve known metabotropic P2Y receptors. Only P2X7 receptors 

have such low sensitivity to extracellular ATP (71). It is probable that non-linear mechanisms 

between receptor activation and hydrogen peroxide release could explain such an 

observation. Nevertheless, when the effect of extracellular ATP was tested on dynamic mass 

redistribution in HUVEC cells, a similar concentration-response correlation with an EC50 of 

933 ± 110 µM (mean ± SEM of three experiments with n = 2 replicates) (Figure 17) was 

observed.  

 

Figure 17. The mass redistribution of human umbilical vein endothelial cells (HUVEC) was assessed in the Epic 
system to identify changes upon treatment with exogenously applied ATP. Cells showed significant 
concentration-dependent effects in the Epic, indicating strong morphological changes with an 
EC50 = 933 ± 110 µM (mean ± SEM of three experiments with n = 2 replicates). The larger figure showed one 
of the three representative raw data sets. The smaller figure depicts the calculation of the EC50 derived from 
the raw data. 

I therefore tested whether the selective and potent P2X7 receptor antagonist was able to 

block the ATP-induced effect on human mononuclear blood cells. 
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The P2X7 receptor antagonist elicited a moderate inhibition of the hydrogen peroxide 

formation in human mononuclear blood cells with a half-maximal inhibition (IC50) of 

3.0 ± 0.5 µM (mean ± SEM, n = 3), indicating that P2X7 receptors at least partially mediate 

the observed metabolic effects (Figure 18).  

 

Figure 18. P2X7 receptor antagonist effect on hydrogen peroxide levels in human mononuclear blood cells. 
Inhibition of ATP-induced hydrogen peroxide release by the selective P2X7 receptor antagonist. The P2X7 
receptor antagonist was used from 0 to 25 µM and the IC50 was 3.0 ± 0.5 µM (mean ± SEM, n = 3). 

In addition, Bz-ATP, which selectively activates the P2X4- and P2X7 receptors (71), was able 

to mimic the results of observations with ATP in the hydrogen peroxide release assay 

(Figure 19), corroborating my hypothesis that P2X7 receptors at least partially link 

extracellular ATP with intracellular metabolic pathways. The EC50 could not be calculated, 

because the hydrogen peroxide release did not reach a plateau at the highest concentrations 

of Bz-ATP used, showing room for increasing metabolic levels.  
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Figure 19. The formation of hydrogen peroxide was analysed in human mononuclear blood cells upon 
treatment with P2X7-specific extracellular Bz-ATP, as a marker for increased metabolic activity in cells. 
Human mononuclear blood cells were exposed to Bz-ATP in the concentration range of 0 to 400 µM. 
Fluorescence was measured with a fluorescence microplate reader using excitation at 550 nm and 
fluorescence absorbance at 600 nm. Background fluorescence, determined for a control reaction without 
H2O2, was subtracted from each value (n = 3). 

 

I subsequently went on to study more specifically how P2X7 receptors influence cellular 

metabolism using the label-free multiparametric sensor system. I used the Bionas®1500 to 

analyse changes in oxygen concentration, extracellular acidification, and cell impedance. 

Enhanced metabolic activity of cells requires increased oxygen consumption for 

regeneration of energy, which is detectable during the stop phases by a decrease in oxygen 

concentration. Moreover, toxicity associated with mitochondrial inhibition or uncoupling of 

the proton circuit is detectable by the alteration of oxygen consumption. The sensor system 

was optimised with respect to maximal stimulation amplitudes, as described previously 

(110). This allows for sensitive and reliable recording of the signals. Optimal cell density was 
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2 x 105 attached cells per fibronectin-coated chip and an effective incubation chamber 

volume of 1.4 µL (i.e. the effective volume of the 50 µm space between the surface of the 

sensor chip and the chamber lid). Viability of cells was monitored continuously by 

measurement of cellular impedance. Continuous deviations in the range of about ± 1.2% per 

hour from initial values were considered acceptable and were attributed to cell proliferation 

or cell release from the chip.  

 

The multiparametric cell-based sensor system detects metabolic alterations upon Bz-ATP 

treatment.  

Both human P2X7-overexpressing HEK293 cells (HEK-hP2X7) and parental HEK293 cells with 

no expression of P2X7 were monitored for alterations in physiological cell parameters to 

assess the influence of exogenously applied Bz-ATP to intracellular metabolic pathways. The 

results obtained with HEK-hP2X7 cells were compared to those of parental HEK293 cells 

(127). HEK-hP2X7 cells immediately responded to Bz-ATP treatment in a concentration-

dependent manner. In agreement with previous findings (128), cell morphology changed, 

with a maximum effect being reached at 100 µM Bz-ATP (13% above control with parental 

HEK293 cells) (Figure 20A). In comparison to HEK-hP2X7, parental cells HEK293 showed only 

negligible effects on the impedance sensor, predominantly at lower concentrations of 

Bz-ATP. One-hundred µM Bz-ATP applied to parental cells showed reduced amplitude. 

Furthermore, in HEK-hP2X7 cells the metabolic activity (Figure 20C) and cellular respiration 

(Figure 20B) increased in a concentration-dependent manner upon Bz-ATP treatment. An 

obvious effect was observed in metabolic and respiratory activity on HEK-hP2X7 cells at the 

highest Bz-ATP concentration (100 µM). Compared to parental HEK293 cells, a reduction of 

23% in cellular respiration was observed at 100 µM Bz-ATP, while metabolic activity was 
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increased by 24% relative to parental HEK293 cells. This particular effect at 100 µM Bz-ATP 

with HEK-hP2X7 cells was absent in parental HEK293 cells (Figure 20B, C).  

 

Figure 20. Concentration-dependant stimulation effects of HEK-hP2X7cells (black, solid lines) and parental 
HEK293 cells (blue, dotted lines) upon treatment with the P2X7 specific agonist Bz-ATP analysed by the 
sensor system. (A) Compared to parental HEK293 cells, the human P2X7 overexpressing HEK293 cells showed 
a more significant increase in cellular impedance up to 100 µM Bz-ATP, while parental HEK293 cells initiate a 
reduction of impedance effects at concentrations above 50 µM. (B) Cellular respiration showed a 
concentration-dependent increase in HEK-hP2X7 at concentrations equal to and below 50 µM Bz-ATP 
compared to parental HEK293 cells. Bz-ATP treatment at 100 µM demonstrates the toxicological effect of 
Bz-ATP by strong inhibition of the respiratory activity. This effect is most likely a consequence of pore 
dilatation and Ca2+-influx. Respiration of the parental HEK293 cells was almost stable at all concentrations of 
Bz-ATP. (C) The metabolic activity of the HEK-hP2X7 cells was again activated upon Bz-ATP treatment. A 
remarkable amplitude is depicted at 100 µM Bz-ATP and is a domino effect, due to a lack of ATP generation 
via oxidative phosphorylation. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, n = 4. 

The morphological changes upon Bz-ATP treatment are an indication of ligand binding to the 

human P2X7 receptor (128). Therefore, the calculation of an EC50 was carried out in HEK-

hP2X7 cells (Figure 21). Activation of P2X7 by Bz-ATP showed saturation at high 

concentrations and was characterised by an EC50 value of 9.6 ± 0.8 µM (mean ± SEM, n = 5).  
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Figure 21. Stimulation of P2X7 in the presence of different concentrations of Bz-ATP. Morphological changes 
in HEK-hP2X7- (black circles) and parental HEK293 (blue squares) cells were measured as a function of 
increasing Bz-ATP concentrations. The solid line shows the curve fitting using an enzyme kinetic model. 
Strong morphological changes were observed with an EC50 of 9.6 ± 0.8 µM (mean ± SEM, n = 5). The level of 
significance between HEK-hP2X7 and parental HEK293 controls for concentrations above 1.0 µM was 
**p < 0.01, n = 5. 

 

The results of the multiparametric cytosensor system (Figure 20) confirm the correlation 

between exogenously applied Bz-ATP and the triggering of intracellular metabolic pathways 

via the P2X7 receptor. Therefore, the inhibition of these alterations in order to investigate 

the role of P2X7 in cellular metabolism was analysed using the specific P2X7 receptor 

antagonist. In a further set of experiments with the sensor system, the inhibition of the 

effects triggered by Bz-ATP on the HEK-hP2X7 cells was assessed. 

 

Figure 22 shows the inhibitory effect of the P2X7 receptor antagonist on metabolic activity, 

cellular respiration, and morphology of HEK-hP2X7- and parental HEK293 cells using 50 µM 

Bz-ATP. All previously observed stimulatory effects on HEK-hP2X7 cells were inhibited by the 
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P2X7 receptor antagonist, suggesting that P2X7 is important for Bz-ATP-induced intracellular 

metabolic changes. The inhibition of the Bz-ATP-induced effects observed in the P2X7 

overexpressing cells were absent in parental HEK293 cells (Figure 22). 

 

Figure 22. Inhibition experiments using HEK-hP2X7- (black column) and parental HEK293 (white column) 
cells. P2X7 were stimulated by preliminary treatment with 50 µM Bz-ATP, followed by an inhibition of Bz-
ATP induced effects with 10 µM of the P2X7 receptor antagonist in the presence of 50 µM Bz-ATP. (Table 4 
provides an overview of the inhibition potency). After a wash-out period of at least 4 h after the inhibition 
step, the cells were again stimulated with 50 µM Bz-ATP to assess regeneration and reactivation processes. 
Statistical significance between the stimulation effects and inhibition was, for all three sensors, *p < 0.05, 
n = 4. 

 

Comparative pharmacology of P2X7 receptor-mediated effects on cellular metabolism, 

calcium-, and dye influx.  

The P2X7 receptor was activated by Bz-ATP in patch-clamp experiments on a P2X7 receptor-

expressing mouse microglia BV2 cell line and was characterised by an EC50 value of 

197 ± 2.3 µM (mean ± SEM, n = 5). The P2X7 receptor antagonist was also able to inhibit, 

with similar affinity, Bz-ATP-induced currents measured in patch-clamp experiments with the 

mouse microglia cell line, BV2. Bz-ATP induced stable inward currents at a holding potential 

of -70 millivolt that were blocked by the P2X7 receptor antagonist with an IC50 of 2.1 µM 

(95% CI 1.8 - 2.5 µM, n ≥ 5) (Figure 23). 
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Figure 23. Comparison of the raw current signal patterns after stimulation and inhibition of P2X7 expressing 
mouse microglia BV2 cells. (A) The P2X7 receptor specific patterns of 100 µM Bz-ATP-induced current signals 
in mouse microglia BV2 cells with an EC50 of 197 ± 2.3 µM (mean ± SEM, n = 5). (B) Indicates the current 
signal pattern of BV2 cells stimulated with Bz-ATP in the presence of the P2X7 receptor antagonist. (C) 
Depicts the inhibition curves with the selective P2X7 receptor antagonist on membrane currents in mouse 
microglia BV2 cells. Bz-ATP was used at 100 µM, which is in the concentration range of the estimated EC50 
values for the agonist. One-hundred µM Bz-ATP induced a current in mouse microglia BV2 cells that was 
blocked by the P2X7 receptor antagonist with an IC50 of 2.1 µM (95% CI 1.8 - 2.5 µM, n ≥ 5). 

 

I additionally questioned how closely the P2X7 receptor-mediated effects on cell 

morphology, extracellular acidification, and cellular respiration are linked to channel 

function. P2X7 receptors are ion channels permeable to mono- and divalent cations and, 

upon longer activation, to larger ions such as YoPro1. This dye was used to monitor Bz-ATP 

and P2X7 receptor antagonist pharmacology in the HEK-hP2X7 cells used in the experiments 

with the multiparametric cytosensor system. YoPro1 influx into HEK-hP2X7 cells upon 

stimulation with Bz-ATP for 45 min was measured and was able to antagonise Bz-ATP effects 

completely with an IC50 of 11.2 nM (95% CI 9.6 - 13.2 nM, mean of three experiments with 

n = 2 replicates) (Figure 24).  
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Figure 24. YoPro1 dye permeability measurements using ATP as agonist and the selective P2X7 receptor 
antagonist. Uptake of the YoPro1 dye in human P2X7 overexpressing HEK293 cells was inhibited by the P2X7 
receptor antagonist and was characterised by an IC50 value of 11.2 nM (95% CI 9.6 - 13.2 nM, mean of three 
experiments with n = 2 replicates; depicted is a representative pattern). 

When measuring Ca2+ influx via P2X7 receptors using a calcium-sensitive fluorescent dye in 

primary cortical cultures from rat embryonic brains, the P2X7 receptor antagonist inhibited 

Bz-ATP-induced Ca2+ influx with an IC50 of 3.2 µM (95% CI 2.8 - 3.7 µM, n ≥ 4) (Figure 25).  

 

Figure 25. Intracellular Ca2+ increase by Bz-ATP stimulation of P2X7 receptor antagonist in rat cortical cells. 
(A) Depicted is a section of the 384-well plate and the recorded currents for the P2X7 receptor antagonist 
and the control (DMSO). (B) The remaining current was measured and showed concentration-dependent 
effects with an IC50 of 3.2 µM (95% CI 2.8 - 3.7 µM, n ≥ 4).  
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All of these experiments, with recombinant cells overexpressing the human P2X7 receptor as 

well as the rodent P2X7 receptors, showed that the pharmacology of P2X7 receptor-

mediated metabolic changes are well in line with the pharmacology of more direct 

physiological effectors upon receptor activation (Table 4). 

 
Table 4: Summary of the inhibitory affinity of the P2X7 receptor antagonist 

 
Assay Cells Agonist a 

[µM] 

Selective P2X7 

receptor 

antagonist [µM] 

IC50  / 

% inhibition 

H2O2 release mononuclear 
blood cells 

1`000 0 - 25 3.0 µM 

     

YoPro1 uptake HEK-hP2X7 3`000 3.8 x 10-5 - 10 11.2 nM 

     
Fluo-4-AM rat cortical 250 0.01 - 10 3.2 µM 

     
Patch-clamp mouse microglia 100 0.3 - 10 2.1 µM / 

96%b 

     Sensor system 

respiration 
HEK-hP2X7 50 10 92% 

     Sensor system 

acidification 
HEK-hP2X7 50 10 77% 

     Sensor system 

impedance 
HEK-hP2X7 50 10 77% 

          

a Hydrogen peroxide (H2O2) release and YoPro1 uptake assays were performed with ATP, all other assays 
with Bz-ATP; b at 10 µM selective P2X7 receptor antagonist. 
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4.3 Detection of drug-induced liver toxic effects using HepG2 cell 

Metabolic activity of HepG2 cells.  

In control experiments, the metabolic activity of HepG2 cells was assessed by means of 19 h 

incubations with acetaminophen and amiodarone (20 µM each). Metabolites were detected 

using high-resolution liquid chromatography coupled with mass spectrometry in positive ion 

mode. Acetaminophen incubations with HepG2 cells resulted in the formation of an oxidised 

metabolite (m/z 168), NAPQI (m/z 150), and two phase II metabolites (a cysteine adduct at 

m/z 271 and a glucuronic acid conjugate at m/z 328). In incubations with amiodarone, the 

major metabolite was desethylamiodarone (m/z 618) accompanied by a hydrated- 

(m/z 648), a dehydrated- (m/z 644) and an oxidised metabolite (m/z 662). Figure 26 and 

Figure 27 showed the mass spectrometry patterns of acetaminophen and amiodarone, the 

identified metabolites, and the putative metabolic pathways. 
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Figure 26. (A) High resolution ion chromatograms in ion positive mode and photodiode array detector 
pattern (200 - 300 nm) of acetaminophen (ACAP, m/z 152) and its metabolites. Acetaminophen was 
incubated for 19 h with HepG2 cells. (B) Putative metabolic pathway of the acetaminophen metabolites 
detected in the 19 h incubation with HepG2 cells.  
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Figure 27. (A) High resolution ion chromatograms in ion positive mode and photodiode array detector 
pattern (200 - 300 nm) of amiodarone (m/z 646) and its metabolites. Amiodarone was incubated for 19 h 
with HepG2 cells. (B) Putative metabolic pathway of the amiodarone metabolites detected in the 19 h 
incubation with HepG2 cells.  
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Experimental setup of the multiparametric cytosensor system for analysis of liver 

toxicological effects.  

Changes in oxygen concentration, extracellular acidification, and cell impedance were 

monitored in real-time using the multiparametric cytosensor system. The experimental 

set-up was optimised to achieve maximal sensitivity to physiological alterations (Figure 7B, 

Table 3). Important assay parameters included the use of an assay medium (Table 3) with a 

low buffer capacity, which was additionally supplemented with 0.1% (v/v) heat-inactivated 

foetal bovine serum albumin. Optimal cell density was determined as 2 x 105 viable HepG2 

cells per chip. Minimal required cell viability, estimated by a trypan blue dye exclusion test, 

was 90%. The effective volume of the incubation chamber, i.e. the volume of the space 

between the surface of the sensor chip and the chamber lid, was 5.7 µL and was determined 

by the distance (200 µm) between the flow head and the sensor chip surface (Figure 7B). 

This minimal volume enhances the responsiveness of the system with respect to alterations 

in pH and oxygen partial pressure. Signals from cell respiration, acidification, and impedance 

were recorded after an initial stabilisation phase of 3 h. Subsequently, cells were exposed to 

test compounds for 19 h, followed by a regeneration phase of 2 h to detect cell 

regeneration. After the experiment, baseline signals of the cell-free cytosensor chips (i.e. 0% 

reference signal) were recorded after solubilisation of cells using a non-ionic detergent 

(Triton X-100). Viability of cells was monitored continuously by measurements of cellular 

impedance. Thus, signals from the three sensor types were recorded relative to initial 

conditions (100% reference signal) and 0% background signal. Eight marketed drugs were 

used at, above, and below their clinically relevant plasma concentrations to study 

hepatotoxic effects in vitro (Table 5). 
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Table 5: Characteristics and toxicological profiles of reference drugs used in the present toxicology project. 
 

Drug Indication  
(Cmax, range of 

therapeutic plasma 
concentration) 

Concentration 

range in the 

experiments 

Mechanism of 

toxicity 

Reactive 

metabolites 

Liver pathology 

Acetaminophen 

 

NSAID 
a
  

0.1 mM 
(129, 130) 

 
0.01 - 10 mM 

GSH depletion,  
mitochondrial 

toxicity 
(131-133) 

N-acetyl-p-
benzoquinone 
imine (NAPQI), 
other quinones 

Hepatocellular 
degeneration 

Amiodarone 

 

Antiarrythmic 
2.1 µM 
(134) 

 
1.0 - 30 µM 

ROS formation,  
mitochondrial 

toxicity 
(135-137) 

Desethyl-
amiodarone 

Steatosis, 
hepatocellular 

death 

Cyclosporine A 

 

Immunosuppresant 
1.5 µM 
(138) 

 
1.0 - 60 µM 

Covalent binding  
to microsomal 
proteins, ROS 

formation,  
oxidative stress, 

(133) 

Reactive 
metabolites 

 

Cholestasis 

Doxorubicin 

 

Anticancer 
1.9 µM 
(139) 

 
1.0 - 25 µM 

DNA intercalation, 
ROS formation,  
oxidative stress, 
mitochondrial 

toxicity 
(140, 141) 

Semiquinone 
radical 

Hepatocellular 
death 

Isoniazide 

 

Antibacterial 
0.11 mM 

(142) 

 
0.1 - 5.0 mM 

Oxidative stress,  
GSH depletion 
 (133, 143-146) 

Hydrazine, 
reactive acetyl 

species 

Steatosis, 
necrosis, 

hepatocyte and 
vasculature 

damage 

Methotrexate 

 

Anticancer 
up to 1150 µM;  

Immunosuppressant 
0.4 µM 

(147, 148) 

 
1.0 - 200 µM 

Inhibition of 
biosynthetic 
pathways,  

metabolic stress 
(149-152) 

Polyglutamated 
methotrexate 

Fatty infiltration, 
fibrosis, cirrhosis 

D-Sorbitol 

 

Laxative 
70 µM 
(153) 

0.001 - 

5.0 mM 

none none none 

Terfenadine 

 

Antihistamine 
4.5 nM 
(154) 

 
5.0 - 25 µM; 

Modulation of Ca2+ 
homeostasis, ROS 

formation, 
apoptosis-inducer 

(155, 156) 
 

unknown Cholestasis, 
hepatocellular 

death 

Valproic acid 

 

Anticonvulsant 
0.6 mM 

(157) 

 
0.5 - 10 mM; 

Oxidative stress, 
altered 

mitochondrial 
β-oxidation and  

oxidative 
phosphorylation,  

GSH/NAC
b depletion 

(91, 133, 158, 159) 

Acyl 
glucuronides, 
2-N-propyl-4-

pentenoic acid 

Necrosis, 
steatosis, 

cholestasis 

a Non-steroidal anti-inflammatory drug; b N-acetylcysteine 
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Effect of D-sorbitol on HepG2 cells.  

D-sorbitol, known to be well tolerated even at high concentrations and non-toxic, was used 

as a negative control (160). D-sorbitol (Figure 28) showed no relevant effects in the 

multiparametric cytosensor system at concentrations from 0.001 mM to 5.0 mM. A small but 

continuous increase in cellular respiration, reaching 110 - 120% of the control values, was 

detected at all concentrations. 

 

Figure 28. Patterns of cytosensor signals upon stimulation of HepG2 cells with D-sorbitol. Cells were 
incubated with the indicated concentrations of D-sorbitol. Using the multiparametric cytosensor system, 
three physiological parameters were monitored on-line: cell impedance being an indicator of cell 
morphology/adhesion, cellular respiration based on oxygen consumption, and metabolic activity resulting in 
extracellular acidification. The grey areas indicate the initial stabilisation and final regeneration periods, 
which are carried out in the absence of test compound. Control incubation in the absence of test compound 
was normalised to 100%. The patterns depict means of n ≥ 3 experiments. 

Effect of acetaminophen on HepG2 cells.  

Acetaminophen was used in a concentration range of 0.01 mM to 10 mM (Figure 29) and 

induced concentration-dependent effects in the multiparametric cytosensor system at all 

considered parameters over a 19 h incubation period. The impedance was indicative of 

shrinking and retraction of cells, reflected by a maximal drop to 80% from baseline values at 

10 mM acetaminophen within the first 70 min after addition of the compound. It then 

remained at around 80% to 90% for the remaining incubation time. Impedance was 

reversible in the regeneration phase, reaching baseline levels similar to the initial values 

prior to acetaminophen treatment. Reduction of cell respiration was detected immediately 
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after acetaminophen application. Maximal reduction was observed at 20 min after drug 

application reaching 40% of baseline values and was constant until the end of drug 

treatment. Conversely, at the same time, metabolic activity increased in a concentration-

dependent manner up to 130% (10 mM) and remained constant at this level over six hours 

before it returned to initial baseline levels. These effects were partially reversible during the 

regeneration phase, reaching values equal to those prior to drug treatment. In the MTT test, 

cell viability was significantly decreased (Table 6) showing a reduction to 80% and 62% in 

viability at 1.0 mM and 10 mM acetaminophen, respectively.  

 

 

Figure 29. Patterns of cytosensor signals upon stimulation of HepG2 cells with acetaminophen. Cells were 
incubated with the indicated concentrations of acetaminophen. Using the multiparametric cytosensor 
system, three physiological parameters were monitored on-line: cell impedance being an indicator of cell 
morphology/adhesion, cellular respiration based on oxygen consumption, and metabolic activity resulting in 
extracellular acidification. The grey areas indicate the initial stabilisation and final regeneration periods, 
which are carried out in the absence of a test compound. Control incubation in the absence of test 
compound was normalised to 100%. The patterns depict means of n ≥ 3 experiments. 

  



Results 

72 

Table 6. Cellular viability of HepG2 cells determined after 24 h incubation by the MTT assay. Values are 
means ± SEM (n = 3 of two independent sets of experiments) as compared to untreated control cells (100% 
viability). Level of significance (Student's t-test as compared to 100% control): **p ≤ 0.01, ***p ≤ 0.001. 
 

  

Compound % Viability  
(statistical significance) 

Concentration 

Acetaminophen 101.4 ± 0.7  

80.3 ± 0.3 (***) 

61.8 ± 0.3 (***) 

0.01 mM 

1.0 mM 

10 mM 

Amiodarone 100.2 ± 3.2 

95.7 ± 0.6  

107.9 ± 5.9 

1.0 µM 

10 μM 

30 μM 

Cyclosporine A 87.1 ± 5.3 

101.0 ± 0.8 

81.8 ± 2.6 (**) 

1.0 µM 

10 μM 

60 μM 

Doxorubicin 70.2 ± 3.9 (***) 

61.3 ± 1.2 (***) 

53.5 ± 1.8 (***) 

1.0 µM 

10 μM 

25 μM 

Isoniazide 97.1 ± 2.6 

99.5 ± 1.8 

102.9 ± 0.8 

0.1 mM 

1.0 mM 

5.0 mM 

Methotrexate 79.3 ± 1.4 (***) 

70.3 ± 2.5 (***) 

79.3 ± 0.8 (***) 

1.0 µM 

50 μM 

200 μM 

Valproic acid 101.9 ± 2.0  

89.0 ± 1.4 (**) 

85.2 ± 1.8 (**) 

0.5 mM 

3.0 mM 

10 mM 

Terfenadine (control for 

cytotoxicity) 

98.9 ± 6.3 

1.4 ± 0.2 (***) 

5.0 μM 

25 μM 
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Effect of amiodarone on HepG2 cells.  

Amiodarone caused intense changes in the multiparametric cytosensor system experiments 

(Figure 30). These changes were proportional to the concentrations used, which covered a 

range of 1.0 µM to 30 µM. Concentrations below 10 µM amiodarone did not influenced 

cellular physiology. However, pronounced effects were observed at concentrations equal to 

and above 10 µM. Three hours after amiodarone application, cytotoxicity and cell death 

were evident by a persistent decrease in cell impedance. Dying cells were released from the 

sensor chip and, at the end of the drug treatment period, only 16% (approx. 32`000 cells) of 

the initial cell number remained. At concentrations of 10 µM and above, amiodarone 

affected mitochondrial respiration and metabolic activity non-reversibly. The respiration 

curve at 30 µM amiodarone described a steep drop until 280 min post-treatment with 30% 

residual cell respiration, followed by a levelling-off to 15% at the end of the incubation 

period. The metabolic activity at 15 µM and 30 µM amiodarone increased with a maximal 

amplitude of 150% at 400 min post-treatment. At 30 µM amiodarone, this boost in 

metabolic activity changed into a sustained reduction until the end of the drug-treatment, 

with only 7% residual metabolic activity. In the MTT assay, amiodarone had no statistically 

significant effect on HepG2 cell viability at all concentrations of the MTT assay (Table 6).  

 

Figure 30. Patterns of cytosensor signals upon stimulation of HepG2 cells with amiodarone. Cells were 
incubated with the indicated concentrations of amiodarone. Using the multiparametric cytosensor system, 
three physiological parameters were monitored on-line: cell impedance being an indicator of cell 
morphology/adhesion, cellular respiration based on oxygen consumption, and metabolic activity resulting in 
extracellular acidification. The grey areas indicate the initial stabilisation and final regeneration periods, 
which are carried out in the absence of a test compound. Control incubation in the absence of test 
compound was normalised to 100%. The patterns depict means of n ≥ 3 experiments. 
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Effect of cyclosporine A on HepG2 cells.  

Cyclosporine A was analysed at concentrations up to 60 µM and showed no obvious effects 

with respect to cell impedance (Figure 31). In cell respiration, concentrations below 30 µM 

showed no obvious effects in the first 400 min of treatment, followed by a small increase in 

cell respiration to 110% of baseline values. A decrease to 60% was monitored within the first 

400 min after application of 30 µM and 60 µM cyclosporine A, followed by a nearly complete 

recovery of respiratory activity (90%) at the end of the treatment period. The decrease in 

respiration at 30 µM and 60 µM went in parallel with an increase in metabolic activity up to 

110%. Along the time course, the metabolic activity was continually reduced to 90% at the 

end of the cyclosporine A incubation. The MTT assay showed a statistically significant 

reduction of 18% in cell viability at the highest concentration of 60 µM (Table 6). No effects 

were observed in the MTT assay at concentrations below 60 µM. 

 

 

Figure 31. Patterns of cytosensor signals upon stimulation of HepG2 cells with cyclosporine A. Cells were 
incubated with the indicated concentrations of cyclosporine A. Using the multiparametric cytosensor system, 
three physiological parameters were monitored on-line: cell impedance being an indicator of cell 
morphology/adhesion, cellular respiration based on oxygen consumption, and metabolic activity resulting in 
extracellular acidification. The grey areas indicate the initial stabilisation and final regeneration periods, 
which are carried out in the absence of a test compound. Control incubation in the absence of test 
compound was normalised to 100%. The patterns depict means of n ≥ 3 experiments. 

 

Effect of doxorubicin on HepG2 cells.  

Cells treated with up to 25 µM doxorubicin were found to have stable impedance during the 

experiments (Figure 32). In contrast, mitochondrial respiration was directly affected and 
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reacted with a sudden, concentration-dependent drop after drug application. At 25 µM 

doxorubicin, cell respiration diminished to 46% within 230 min, followed by a constant and 

non-reversible reduction to 30% during the remaining incubation period. Simultaneously, 

metabolic activity was reduced in a concentration-dependent- and non-reversible manner. 

Doxorubicin initiated a sustained decrease in metabolic activity at 390 min post-application. 

At the end of the incubation period, the metabolic activity was in the range of 75% and 90% 

for doxorubicin concentrations equal to and above 5.0 µM and 1.0 µM, respectively. The 

24 h incubations of doxorubicin in the MTT assay indicate an impairment of cell viability 

(Table 6) showing a 61% and 54% reduction in viability for 10 µM and 25 µM doxorubicin, 

respectively. 

 

Figure 32. Patterns of cytosensor signals upon stimulation of HepG2 cells with doxorubicin. Cells were 
incubated with the indicated concentrations of doxorubicin. Using the multiparametric cytosensor system, 
three physiological parameters were monitored on-line: cell impedance being an indicator of cell 
morphology/adhesion, cellular respiration based on oxygen consumption, and metabolic activity resulting in 
extracellular acidification. The grey areas indicate the initial stabilisation and final regeneration periods, 
which are carried out in the absence of a test compound. Control incubation in the absence of test 
compound was normalised to 100%. The patterns depict means of n ≥ 3 experiments. 

Effect of isoniazide on HepG2 cells. 

Isoniazide was used in a concentration range of 0.1 mM to 5.0 mM. After applying isoniazide 

to HepG2 cells, a non-reversible and sustained reduction to 90% in impedance was observed 

until the end of the incubation period. An initial increase in cell impedance was detected at 

the highest concentration (5.0 mM), reaching a maximum of 110% at 400 min post-
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application (Figure 33). Immediately after drug application, mitochondrial respiration 

reduced continually during the entire incubation period and remained at levels of 60 - 80% 

for all concentrations used. Metabolic activity was not affected and remained stable during 

all experiments. There was also no impact on cell viability as determined by the MTT assay 

(Table 6), with a viability of 103% at 5.0 mM isoniazide. 

 

Figure 33. Patterns of cytosensor signals upon stimulation of HepG2 cells with isoniazide. Cells were 
incubated with the indicated concentrations of isoniazide. Using the multiparametric cytosensor system, 
three physiological parameters were monitored on-line: cell impedance being an indicator of cell 
morphology/adhesion, cellular respiration based on oxygen consumption, and metabolic activity resulting in 
extracellular acidification. The grey areas indicate the initial stabilisation and final regeneration periods, 
which are carried out in the absence of a test compound. Control incubation in the absence of test 
compound was normalised to 100%. The patterns depict means of n ≥ 3 experiments. 

Effect of methotrexate on HepG2 cells.  

Methotrexate was investigated at concentrations ranging from 1.0 µM to 200 µM. The two 

highest concentrations of methotrexate (100 µM and 200 µM) initiated a reduction of 

impedance at 80 min post-application, described by a sustained decrease to 86% of baseline 

values at the end of the incubation (Figure 34). This reduction was not reversible during the 

regeneration phase, which indicates cell death and was corroborated by observations in the 

MTT assay, where cellular viability was reduced to 79% at 200 µM (Table 6). The 

mitochondrial respiration curves at the two highest concentrations described an initial 

decrease to 78% during the first 320 min after application, followed by a persistent increase, 

reaching 125% at the end of the incubation. With the exception of the initial decrease, 
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treatment with 50 µM methotrexate showed similar curves, reaching 145% of the cell 

respiration signal at the end of the incubation. Metabolic activity was inhibited in a 

concentration-dependent manner 30 min after drug treatment, with a maximal reduction to 

70% at 200 µM, and was subsequent maintained at levels between 60% and 80%. In contrast 

to cellular respiration, metabolic activity was restored after the removal of the drug, 

reaching levels of around 90%.  

 

Figure 34. Patterns of cytosensor signals upon stimulation of HepG2 cells with methotrexate. Cells were 
incubated with the indicated concentrations of methotrexate. Using the multiparametric cytosensor system, 
three physiological parameters were monitored on-line: cell impedance being an indicator of cell 
morphology/adhesion, cellular respiration based on oxygen consumption, and metabolic activity resulting in 
extracellular acidification. The grey areas indicate the initial stabilisation and final regeneration periods, 
which are carried out in the absence of a test compound. Control incubation in the absence of test 
compound was normalised to 100%. The patterns depict means of n ≥ 3 experiments. 

Effect of valproic acid on HepG2 cells.  

Valproic acid was used in the concentration range of 0.5 mM to 10 mM. An increase to 112% 

in cellular impedance was observed during the first six hours of treatment with 10 mM 

valproic acid (Figure 35). After 640 min of treatment with 3.0 - 10 mM valproic acid, dying 

cells detached from the sensor chip, indicated by a constant decrease in cell impedance. Half 

of the initial cell amount (1 x 105 cells) remained on the sensor chip at the end of the 

incubation period with 10 mM valproic acid. Signals obtained from cell respiration sensors 

were concentration-dependent. The respiration curve described a sudden, steep drop to 

52% at 10 mM valproic acid, followed by a bell-shaped curve with maximal amplitude of 
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153% at 820 min post-application. At the end of the drug incubation period, cell respiration 

was 130% at 10 mM valproic acid. Metabolic activity and cell respiration were reciprocally 

related. Simultaneous to the reduction in cell respiration, the metabolic activity increased to 

equal extents, reaching levels up to 145%. This amplification levelled off until the end of 

treatment, with residual metabolic activity of 82% at 10 mM valproic acid. Neither cell 

respiration nor metabolic activity was reversible in the regeneration phase. The MTT assay 

indicated a statistically significant trend towards decreased HepG2 cell viability at 10 mM 

and 1.0 mM, showing 85% and 89% remaining viability, respectively (Table 6). 

 

 

Figure 35. Patterns of cytosensor signals upon stimulation of HepG2 cells with valproic acid. Cells were 
incubated with the indicated concentrations of valproic acid. Using the multiparametric cytosensor system, 
three physiological parameters were monitored on-line: cell impedance being an indicator of cell 
morphology/adhesion, cellular respiration based on oxygen consumption, and metabolic activity resulting in 
extracellular acidification. The grey areas indicate the initial stabilisation and final regeneration periods, 
which are carried out in the absence of a test compound. Control incubation in the absence of test 
compound was normalised to 100%. The patterns depict means of n ≥ 3 experiments. 
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5 DISCUSSION 

5.1 Real-time identification of P-glycoprotein substrates 

Drug interaction studies in pharmaceutical drug research are of great importance when 

assessing the potential of a drug to generate serious interaction effects with co-administered 

drugs. Because the amount of medications has increased significantly, especially in adults 

older than 55 (6), drug-drug interactions plays a pivotal role in the design of new drugs. 

The preliminary assessment of P-gp levels in L-MDR1 and parental LLC-PK1 cells indicates a 

high expression level of P-gp in L-MDR1 cells, and the absence of such in parental LLC-PK1 

cells (Figure 10). The level of P-gp in LLC-PK1 cells was possibly below the limit of detection, 

which was considered low enough to use the parental LLC-PK1 cells as a control cell line in 

the multiparametric cytosensor system. 

In the present project, a multiparametric, chip-based cytosensor system (Figure 7) was used 

for real-time identification of P-gp substrates in human P-gp overexpressing LLC-PK1 cells 

(L-MDR1). The results obtained with P-gp overexpressing L-MDR1 cells were compared with 

those of wild-type LLC-PK1 cells exhibiting only a marginal or no P-gp expression (161). Seven 

marketed drugs, known to be substrates or non-substrates of P-gp, were used as reference 

compounds for system validation: caffeine and propranolol are not substrates of P-gp, 

whereas verapamil, daunorubicin, fexofenadine, quinidine and loperamide are known 

substrates of the transporter. In contrast to previous studies in which pH microsensors were 

used for mechanistic studies on P-gp ATPase activation (162), the experiments here included 

measurements of cellular oxygen consumption and cell adhesion and were focused on 

efficient identification of P-gp substrates.  
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The multiparametric cytosensor assay was optimised with respect to maximal stimulation 

amplitudes to allow for sensitive, reliable recording of signals. Important assay parameters 

included the use of an assay medium with a low buffer capacity supplemented with 2.0% 

(v/v) foetal bovine serum albumin. Serum proteins reduce non-specific binding of test 

compounds to surfaces such as the plastic tubing of the microsensor instrument, and they 

enhance cellular viability in the assay system during incubation times of up to 24 h. Optimal 

cell densities were in a range of 0.75 to 1.5 x 105 attached cells per chip. The design of the 

actual incubation chamber (i.e. the volume of the 200 µm space between the surface of the 

sensor chip and the chamber lid) is of critical importance. In the experimental set-up, the 

effective volume of the incubation chamber was 5.7 µL (Figure 7). Such a minimal volume is 

needed to monitor the rate of accumulation of metabolic products and the depletion of 

oxygen in the assay medium. A further reduction of the incubation chamber volume led to 

cell hypoxia resulting in system instability and a high signal-to-noise ratio for the measured 

signal. During measurements, the flow of assay medium was periodically interrupted for two 

minutes. After each measurement period, the incubation chamber was flushed for another 

two minutes with assay medium before a new measuring cycle was initiated. Prolonged 

phases of reduced flow of assay medium should be avoided due to the detrimental effects 

on cell viability and overall system stability, resulted from oxygen depletion (hypoxia). 

Viability of cells was monitored continuously by measurement of cellular impedance. 

Deviations in the range of less than ± 20% from initial values over a run time of 1`500 min 

were considered acceptable and were attributed to cell proliferation or small morphological 

changes after compound treatment, i.e. shrinking or swelling. Experiments were 

discontinued as soon as a change in impedance in excess of these limits was recorded. 
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In a first set of experiments, activity of P-gp was monitored in the presence of verapamil (a 

P-gp substrate (40, 124)) and the negative control caffeine (125). Experiments were initiated 

as soon as a stable baseline metabolic rate was attained (100% threshold in Figure 12). 

Extracellular acidifications as well as respiration rates were identified as correlating with 

P-gp activation (Figure 12, phase 1 of the experiment). Selectivity of the observed P-gp 

stimulatory effects were demonstrated by inhibition of P-gp activity with elacridar 

(GF120918), a selective third-generation P-gp inhibitor (163, 164) (Figure 12, phase 3). 

Elacridar on its own does not stimulate P-gp ATPase activity, but has a slight inhibitory effect 

on overall metabolic activity of L-MDR1 cells (Figure 12, phase 2). At the end of the 

experiment (Figure 12), reference 0% signal-levels of the microsensor chip were determined 

by Triton X-100-mediated removal of attached cells.  

 

Observed acidification rates and respiration rates increased in the presence of increasing 

concentrations of up to 15 μM verapamil (Figure 13, black symbols) and followed 

Michaelis-Menten type kinetics. Stimulation of P-gp by verapamil showed saturation at high 

concentrations and was characterised by a KM value of 0.92 ± 0.12 μM (calculated based on 

extracellular acidification rates, mean ± SEM, n = 4) and 4.9 ± 2.7 μM (calculated based on 

respiration rates, mean ± SEM, n = 4). These values are in good agreement with a KM value of 

1.5 μM reported previously (165) for the stimulation of P-gp for verapamil at low substrate 

concentrations. It is important to note that, for the first time (to my knowledge) P-gp 

activation was monitored not only by extracellular acidification (165) but also by stimulation 

of cellular respiration. In the experimental setup, extracellular acidification rates deliver 

stronger and more reliable signals as compared to respiration rates: Vmax values for 

extracellular acidification rates (57.4 ± 1.6% as compared to 0% control, mean ± SEM, n = 4) 
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were twice as high as the corresponding Vmax values for respiration rates (25.4 ± 5.2% as 

compared to 0% control, mean ± SEM, n = 4). At substrate concentrations of 50 μM 

verapamil, a sudden drop in extracellular acidification rates as well as in respiration rates 

was observed and was attributed to substrate inhibition at high concentrations (162) of the 

test compound (Figure 13). However, none of the tested verapamil concentrations featured 

cell impedance deviations from 100% control values by more than ± 13%. In a separate set of 

control experiments (Figure 13, open symbols), P-gp-deficient LLC-PK1 cells were incubated 

in the presence of verapamil and did not show any stimulation effects in either extracellular 

acidification rates or respiration rates. Again, high concentrations of verapamil (50 μM) 

seemed to inhibit cellular metabolic activity, which is related to the limited capacity of the 

P-gp transporter and a resulting substrate inhibition as described previously (162). P-gp 

comprises two substrate-binding sites that can translocate slow diffusion compounds. In 

contrast, fast diffusion compounds (e.g. verapamil) can overrun the capacity of P-gp to 

translocate the compounds out of the cell and lead to an apparent substrate inhibition with 

decreasing kinetic parameters for higher concentrations. 

 

The question arises as to whether extracellular acidification rates or respiration rates should 

be used to monitor P-gp activation. Both parameters can be used to monitor cellular 

responses upon stimulation of cells using P-gp substrates and are therefore correlated with 

extracellular acidification rates is predominantly linked to glycolysis whereas respiration 

rates is indicative of mitochondrial respiration. In the experiments (Figure 12 and Figure 13), 

extracellular acidification was demonstrated to deliver a three-fold higher signal than oxygen 

consumption. In addition, baseline respiration rates changed over time during prolonged 

experimental periods. It is tempting to speculate that overall cellular viability and/or possibly 
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mitochondrial toxicity might be confounding factors that influence cellular respiration in an 

unpredictable way. In view of the reduced sensitivity as well as the uncertainty associated 

with the respiration rates parameter, it was decided to quantify P-gp stimulation based on 

extracellular acidification only, but to monitor respiration rates values as an additional 

control in parallel with identify cell-permeating compounds affecting mitochondrial 

respiration. 

 

The chip-based sensor system was also used to identify substrates of P-gp. Representative 

examples of marketed drugs are shown in Figure 14. Activation of P-gp was expressed as the 

ratio of acidification rates measured during and immediately before stimulation of L-MDR1 

cells (delta extracellular acidification rates). Propranolol, caffeine, quinidine, verapamil, and 

loperamide were used at a substrate concentration of 10 µM. The substrate concentrations 

of daunorubicin and fexofenadine had to be reduced to 1.0 µM to avoid cellular toxicity. 

Propranolol and caffeine, which do not interact with P-gp, were used as negative controls. 

All P-gp substrates were correctly identified and showed statistically significant differences 

(p < 0.05) in extracellular acidification rates as compared to the negative controls. Cellular 

impedance and thus cellular viability were not affected by the test compounds in the 

concentration range used. Absences of cellular toxicity or unspecific stimulatory effects were 

confirmed in a set of control experiments (Figure 15). None of the test compounds 

stimulated extracellular acidification rates using the P-gp-deficient LLC-PK1 cell line under 

the same experimental conditions. 
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5.2 Purinergic P2X7 receptor mediates metabolic changes upon ATP treatment 

This project investigated the effects of extracellular ATP on the metabolic activity of cells 

that overexpress the purinergic P2X7 receptor. I conclude that P2X7 receptors are mediators 

of these effects, based on the observation that high concentrations of ATP are necessary to 

induce these metabolic changes and on their inhibition by a selective P2X7 receptor 

antagonist.  

Hydrogen peroxide is a metabolic side product of cell respiration and can be used as a 

marker for changes in the metabolic activity of cells (126). I measured the hydrogen peroxide 

released in human mononuclear blood cells upon ATP treatment and found that ATP 

induced a concentration-dependent increase in H2O2 release with an EC50 value above 

500 µM (Figure 16A), confirming previous reports by Skaper et al. (166). In addition, the 

mass redistribution of HUVEC cells was assessed and showed EC50 values above 900 µM 

(Figure 17). Based on the similarity of EC50 values, I hypothesised the involvement of the 

P2X7 receptor in mediating the concentration-dependent increase in metabolic activity and 

morphological changes. To test my hypothesis, I used a specific P2X7 receptor antagonist 

and showed a strong concentration-dependent inhibition of the ATP-induced hydrogen 

peroxide release in human mononuclear blood cells (Figure 18). Furthermore, Bz-ATP, a 

specific agonist for P2X4- and P2X7 receptors (71), was used at a one-tenth concentration 

(400 µM) as compared to ATP (4`000 µM) and induced equal hydrogen peroxide release at 

these concentrations from human mononuclear blood cells (Figure 19); further indicating 

that the increased metabolic activity of the mononuclear blood cells were mediated by P2X7 

receptors.  

As a validation step, I initially confirmed the functionality of the P2X7 receptors in a 

recombinant HEK-hP2X7 cell line using the YoPro1 uptake assay and I confirmed the affinity 
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of the antagonist in blocking P2X7 receptors (Figure 24) with an IC50 of 11.2 nM. The 

experiments with the rodent cells and the YoPro1 uptake experiment were intended to 

compare and confirm the pharmacology of P2X7 receptors with the classical read-outs 

traditionally used for studying P2X7. 

I subsequently utilised these cells to further investigate the changes in metabolic activity by 

means of a cell-based, real-time monitoring sensor system, capable of simultaneously 

recording extracellular acidification as a marker for metabolic activity, oxygen consumption 

as a measure for cellular respiration, and impedance as a means to assess changes in cell 

morphology and adhesion. Pfeiffer et al. (128) previously described changes in cell 

morphology in the presence of P2X7 agonists in cells expressing P2X7 receptors, as P2X7 

receptors are co-localised with -actin, -actin, and the 2-integrin subunit, i.e. factors 

determining changes in the cytoskeleton components (167). These described morphological 

changes were detected and confirmed by the measurement of cellular impedance 

(Figure 20). In addition to this, HEK-hP2X7 cells exhibited concentration-dependent swelling 

upon treatment with Bz-ATP, possibly reflecting the osmotic influx of water into the cells due 

to pore dilatation. The estimated potency of Bz-ATP (Figure 21) in terms of cell morphology 

in this assay was calculated with an EC50 of 9.6 µM. The morphological changes detected in 

parental HEK293 cells were in the range of biologically acceptable deviations, emphasis the 

hypothesis that P2X7 is the mediator of the detected changes in P2X7 expressing cells.  

In addition, cellular respiration was maximally increased at 50 µM Bz-ATP to 23% as 

compared to parental cells. Treatment with 100 µM Bz-ATP led to a drop of 23% as 

compared to parental cells in cellular respiration, indicative for mitochondrial stress (168), 

whereas metabolic activity was amplified to 24% as compared to parental cells, providing 

evidence for a role of P2X7 in cellular metabolic activity. The resulting impairment in the 
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generation of ATP via oxidative phosphorylation was compensated to a certain extent by the 

enhancement of metabolic activity, monitored by an increase in extracellular acidification of 

up to 23% above the levels derived from control incubations with parental HEK293 cells. The 

reduction of cellular respiration was probably linked to the formation of reactive oxygen 

species (166) and activation of the apoptosis cascade (169).  

Using the multiparametric cytosensor system, I observed multiple readouts on cellular 

metabolism simultaneously, enabling a more complete picture to be generated of how ATP 

affects cellular metabolism through the P2X7 receptor. All effects on cell morphology, 

mitochondrial respiration, and metabolic activity, as induced by 50 µM Bz-ATP, were 

inhibited with potencies between 77% and 92% using 10 µM of the P2X7 receptor antagonist 

(Figure 22). Neither activation nor inhibitory effects were detected in parental HEK293 cells 

(Figure 22), suggesting that all effects were indeed mediated through the P2X7 receptor.  

I investigated how this link between P2X7 receptors and metabolic activity correlates with 

other functions of these ion channels. In patch-clamp experiments with mouse microglia BV2 

cells, which directly measure the flux of small, inorganic ions through these P2X7 channels, 

Bz-ATP showed distinct effects on the receptor activity (EC50 = 197 µM), and the selective 

P2X7 receptor antagonist had similar affinity (IC50 = 2.1 µM), indicating an involvement of 

the P2X7 receptor in mediating these agonist-induced effects (Figure 23).  

I also tested the impact of P2X7 on Ca2+ influx, and thus cell depolarisation (Figure 25). 

Primary rat cortical cells were used for these experiments, because P2X-mediated Ca2+ influx 

cannot be determined in HEK293 cells, due to the co-activation of endogenously expressed 

purinergic P2Y receptors (170). However, an experiment with exogenously generated P2X7 

activation led to an increased Ca2+ signal in the cells (171, 172) and was blocked by the P2X7 
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receptor antagonist (IC50 = 3.2 µM), with similar affinity as derived from patch-clamp 

experiments.  

From a comparison with other functions of P2X7 receptors, such as Ca2+ influx or 

depolarisation, it is not possible to deduce clear pathways from ATP-gated channel opening 

to the activation of cellular metabolism. Both small cations (Ca2+) influx and larger molecules 

entering the cell upon P2X7-related pore opening triggered further downstream effectors 

(i.e. interleukin-1 release, apoptosis, etc.) 
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5.3 Characterisation of drug-induced liver effects in HepG2 cells 

Identifying hepatotoxic effects of potential drug candidates that lead to drug-induced liver 

injury (DILI) in human remains a challenge. Standard preclinical animal models do not 

reliably predict human toxicity (animal concordance of 55%) (173).  

To improve predictability, specialised animal models can be combined with, for example, in 

silico, in vitro (endpoint assays) or toxicogenomic approaches (103). In this context, it was 

proposed that cytosensor systems be used to monitor reduction in metabolic rates as an 

indicator of cell death (174). Due to technical limitations, measurements were thereby 

limited to measuring cellular acidification rates. Only recently have novel, multiparametric 

sensor chips become available that can be used for the simultaneous determination of 

cellular impedance as a measure of cell morphology and adherence, oxygen consumption as 

a measure of mitochondrial respiration, and extracellular acidification as a measure of 

cellular metabolism, i.e. release of metabolic breakdown products such as lactate and 

carbonate resulting in a change in extracellular pH (110). In this project, high sensitivity and 

responsiveness of the multiparametric cytosensor system was achieved by combining an 

assay medium with low buffer capacity and a minimal inner volume of the perfusion 

chamber (Figure 7). The system therefore permitted real-time monitoring of physiological 

changes resulting from toxicological insult over a 24-hour period in human 

hepatocarcinoma-derived HepG2 cells. 

To validate the cytosensor approach, eight different reference drugs known to be 

hepatotoxic at certain concentrations (Table 5) were selected. They exhibit different 

hepatotoxic mechanisms and patterns of liver pathology. The drugs are structurally diverse, 

are used for different clinical indications, and the selection included the intrinsically 

cytotoxic drugs doxorubicin and methotrexate used to treat cancer. D-sorbitol, known to be 
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non-toxic and well tolerated even at high concentrations, was used as a negative control 

(160). Assay concentrations were comparable to clinically relevant plasma concentrations, 

covering a nanomolar to millimolar range. 

The test compounds have been reported to have different mechanisms of toxicity (Table 5). 

Cellular viability was measured by the MTT assay, which responded in a statistically 

significant manner to the antineoplastic drugs, acetaminophen, cyclosporine A and valproic 

acid (Table 6). Methotrexate and doxorubicin were used at clinical plasma concentrations as 

analysed in human cancer treatment. Clinical plasma concentrations of methotrexate and 

doxorubicin are measured at 1`150 µM (147) and at 1.9 µM (139), respectively. All other 

drugs investigated in the MTT viability assay reduced cell viability only at concentrations 

clearly above the clinically relevant human plasma concentrations. Interestingly, all analysed 

compounds known to cause DILI in humans also responded with very distinct and 

characteristic signal patterns in the multiparametric cytosensor assay (Figure 28 to 

Figure 35). All observed effects were rigidly concentration-dependent. This result was 

unexpected, because reactive metabolites (and not the parent compound alone) are often 

suspected sources of adverse effects (Table 5). Thus, in liver tissue, hepatotoxicity is 

frequently linked to accumulation of the parent drug in combination with its metabolites, 

initiating pathological effects, and/or an altered cellular defence mechanism, such as the 

depletion of glutathione (GSH), formation of ROS or the inhibition of metabolising enzymes. 

In the present study, the human hepatocarcinoma-derived HepG2 cell line was used. As 

opposed to primary human hepatocytes, HepG2 cells are characterised by a defined but low 

expression level of cytochrome P450 monooxygenases (113). In contrast, expression levels of 

most phase II enzymes seem to be normal (175, 176). The results suggest that phase II 

metabolic enzymes in combination with residual phase I metabolic enzyme (e.g. 
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cytochrome P450) activity may generate adequate levels of intracellular metabolites to 

trigger cytotoxic reactions. HepG2 cells therefore seem to be a convenient, stable, economic, 

and relatively easy to handle alternative to hepatocytes for cytosensor-based toxicological 

investigations. This view was supported by control experiments where amiodarone and 

acetaminophen were used to assess the phase I and phase II metabolising enzymes 

(Figure 26 and Figure 27).  

 
Analysis of the reference drugs in the multiparametric cytosensor system revealed distinct 

signal patterns that allowed for classification according to six distinct cytotoxic reaction 

types (Table 7, Figure 37).  

 

 

Figure 36. Classification of cytotoxic effects based on cytosensor signal patterns. Incubation of HepG2 cells 
with elevated concentrations of hepatotoxic drugs has an impact on cell morphology/adhesion (impedance, 
black line), metabolic activity (acidification, red line), and cellular respiration (oxygen consumption, green 
line). Cellular responses and cytotoxic effects can be classified according to six typical signal patterns 
(Table 7). Representative examples of experiments are shown in which treatment of HepG2 cells resulted in 
cytotoxicity and cell death (toxicological effects type 2 and 3) or cellular stress (effects of type 4 to 6). 
D-sorbitol served as a negative control (no cytotoxicity type l). Effects are considered reversible if baseline 
levels of signals are re-established after wash-out of drug (grey areas, absence of test compound). The 
patterns depict means of n ≥ 3 experiments. 
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Table 7. Classification of toxic effects based on multiparametric cytosensor signal patterns. Physiological 
parameters were monitored online in HepG2 cells and included metabolic activity (acidification), respiration 
(oxygen consumption) and cell morphology and adhesion (increased by swelling of cells or decreased by cell 

detachment or shrinking). Signals were stable over time (○), increasing in intensity (+) or decreasing  (－). 
Typical signal patterns of representative drugs are shown in Figure 36. 
 

Type Classification Endpoint Impedance Acidification Respiration Example 

1 No toxicity No effect ○ ○ ○ / +  D-sorbitol 

2 Necrosis-like Cell death － ○ / + + Valproic acid 

3 Apoptosis-like Cell death － ○ / + － Amiodarone 

4 Oxidative stress Cell stress ○ ○ / + － Acetaminophen 

5 Metabolic stress Cell stress ○ － + Methotrexate 

6 
Oxidative and 

metabolic stress 
Cell stress ○ － － Doxorubicin 

 

Type 1 is represented by D-sorbitol (Figure 36), a well tolerated and safe compound (160), as 

confirmed in the project. The slight increase in cell respiration of 20% at 5.0 mM during the 

24 h of the experiment was attributed to active compensation of the osmotic effect of 

D-sorbitol on cells.  

 

Type 2 signal patterns are represented by valproic acid (Figure 36). This compound is one of 

the most widely used antiepileptic drugs, with a black box warning for hepatoxicity. 

Oxidative stress, GSH depletion, as well as mitochondrial dysfunctions and necrosis have 

been associated with valproic acid treatment (159, 177-179). Recently, Ji et al. reported 

toxicological effects due to valproic acid and its reactive metabolites, suggesting an ability to 

damage liver cell plasma membranes and resulting in leakage of intracellular enzymes and 

finally cell death via necrotic or apoptotic pathways (158). These findings were confirmed in 

the cytosensor assay: an irreversible decrease of 50%, at 10 mM, of the impedance over 

time, which indicated cell death. This effect was preceded by a short and transient period of 
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water influx resulting in transient cell swelling (i.e. increased impedance), as described 

recently (180). A sudden drop in respiration was observed after the addition of valproic acid 

in the first 20 min of incubation, indicating reduced oxidative phosphorylation and hence 

reduced ATP generation. The reduced cell respiration was compensated by an increase in 

metabolic activity for a similar time range. The observed reduction of intracellular 

concentration of ATP led to strong oxidative and metabolic stress and caused an initiation of 

energy-independent necrotic-like pathways, which was detected in a previous study (181). 

Consequently, metabolic activity levelled off at 82% over the entire experiment. 

 

Amiodarone was used as a second drug with a black box warning for hepatoxicity and it is 

known to generate liver steatosis and hepatocellular death (119). In the multiparametric 

cytosensor system, the strong tendency of amiodarone to damage cells was confirmed (i.e. 

irreversible decrease in impedance) and was classified as type 3 (Figure 36), representing 

drugs causing apoptotic-like cell death. Amiodarone showed the most distinct 

concentration-dependent cytotoxic behaviour of all drugs analysed in this study. After 9 h of 

amiodarone treatment (15 µM and 30 µM), only 50% of the initial cells remained on the 

sensor chip. Higher concentrations of amiodarone showed almost complete inhibition of 

cellular respiration (15% of control), correlating with a continuous release of dying cells from 

the sensor chip. It is interesting to note that these concentrations of amiodarone can also be 

reached in human plasma (Table 5). Mitochondrial toxicity induced an amplification of 

metabolic activity as a compensatory but transient means of ATP regeneration. This 

compensatory mechanism failed after approx. 6 to 8 hours and amplified metabolic stress, 

as previously described (137) and demonstrated by the steep drop of the acidification curve 

down to 7%. Amiodarone showed no recovery of signals, thus identifying amiodarone as a 
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potent hazard to liver cells at elevated levels in tissue, without the possibility of 

regeneration. Furthermore, the observed effects support the previous findings of the 

production of reactive oxygen species, induced mitochondrial damage, and promoted 

apoptosis in HepG2 cells (182). It is still unclear whether amiodarone, its postulated reactive 

metabolite (desethylamiodarone), or both cause toxicity (133). However, the findings 

showed the significant potential of amiodarone to damage the liver, which was in good 

agreement with the black box warning of hepatoxicity on this drug. 

 

In contrast to drugs that induce cell death (i.e. type 2 and type 3 cytotoxicity), several drugs 

were identified that caused cellular stress only but no changes in cellular impedance. Three 

out of eight compounds in this study were identified as inducing oxidative stress in HepG2 

cells (type 4, acetaminophen, cyclosporine A, and isonidazide). Acetaminophen induces 

mitochondrial stress upon formation of its reactive metabolites as a consequence of 

depletion of GSH. Acetaminophen is widely used as an analgesic and antipyretic compound, 

and is classified as a non-steroidal anti-inflammatory drug. The first hours of the treatment 

phase showed slight and reversible shrinking of the cells, reflected by reduced impedance 

values of 70% to 80%, followed by an apparent regeneration period (Figure 36) during which 

the impedance was maintained at around 80%. This apparent regeneration is most likely 

linked to the disturbance of mitochondrial Ca2+ homeostasis (183), characterised by a 

phenotypic blebbing of the cell surface. Cellular respiration was intensely affected in a 

concentration-dependent manner and inhibited the respiration to 40% at 10 mM, indicating 

severe oxidative stress on the cell respiratory system, the formation of toxic benzoquinone 

metabolites, and the linked depletion of GSH, as previously described (131, 184). The intense 

impairment of respiration and the consequent deficit of oxidative phosphorylation results in 
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a lack of ATP generation. During such events, cells typically compensate for lack of energy 

generation by enhancing ATP generation via glycolysis, which is confirmed by the increase in 

metabolic activity to 130% at 10 mM. During the drug wash-out period, the signals of 

impedance and cell respiration almost recovered to initial baseline values prior to 

acetaminophen treatment. Wash-out of the drug reactivated the formation of ATP via 

oxidative respiration, leading to a decrease in metabolic activity, as the generation of ATP via 

glycolysis was no longer in demand. A study by Roe et al. (1993) confirmed the formation of 

the reactive metabolite (NAPQI) and phase 2 conjugation products in HepG2 cells, among 

others (e.g. benzoquinone) that were also responsible for adverse effects (113). 

Cyclosporine A showed similar effects (Figure 31) in all physiological parameters. This potent 

immunosuppressive agent prolongs survival of allergenic transplants by suppressing humoral 

immunity and, to a greater extent, cell-mediated immune reactions such as allograft 

rejection and delayed hypersensitivity. Unfortunately, cyclosporine A is associated with toxic 

effects to several organs, mainly the kidney, but also the liver, which is confirmed in my 

experiments. Oxidative stress was induced in HepG2 cells, particularly at concentrations 

equal to and above 30 µM followed by a regenerative phase and a slight compensatory 

amplification of the metabolic activity. It should be noted that the observed effects were 

apparent at concentrations that were 40 times higher than clinically relevant plasma 

concentrations of cyclosporine A and therefore of no direct clinical relevance. Additionally, 

cyclosporine A exemplified the limitations of the HepG2 cells, because the hepatoxicity of 

cyclosporine A is accompanied by the ability to inhibit hepatic bile-salt export transporters 

(e.g. ABCB11) (185). These pumps are responsible for the secretion of bile components into 

the bile canaliculi. A block of these bile-salt export pumps results in an intracellular 

accumulation of bile salts and thus cholestasis (119, 186). HepG2 cells are a common in vitro 
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model to analyse toxic effects on the liver (187). However, in previous studies, HepG2 cells 

showed impaired bile-salt transporter levels (188) and therefore HepG2 seems not to be the 

most appropriate model for studying such specific effects. An alternative to indicate 

toxicological effects linked with these efflux transporters would be the use of primary 

hepatocytes.  

 

Isoniazide, another example of a drug that induces oxidative stress, is associated with mild to 

severe liver toxicity in 2% of patients (189). Its metabolism is characterised by the formation 

of hydrazine (H2NNH2) and an additional toxic intermediate, isonicotinic acid. Hydrazine is a 

well-characterised hepatotoxin (190, 191). Hydrazine can be formed directly by 

amidohydrolase or indirectly via the isonicotinic acid pathway (N-acetyltranferase) to form 

acetylhydrazine and then hydrazine. Histopathological observations of isoniazide-induced 

liver toxicity reveal inflammatory processes and cell death (189). In the experiments 

(Figure 33), cellular respiration was affected in a concentration-dependent manner and was 

maximally reduced to 60%, indicative of previously described observations of oxidative 

stress to cells after isoniazide treatment (143, 144).  

 

Methotrexate is a compound that induces metabolic stress to cells (type 5, Figure 36). This 

drug is a folic acid antagonist used at high doses in cancer therapy. The intrinsic toxicity of 

methotrexate was evident in the MTT assay, showing reductions to 70% and 79% of cell 

viability at 50 µM and 200 µM, respectively. The mechanism of liver injury is poorly 

understood (152). The pathological pattern of methotrexate-induced liver injury varies from 

mild liver enzyme elevations to severe fibrosis and cirrhosis. Methotrexate enters the cell via 

a folate transporter and is retained within the cell as a polyglutamate (151). The drug inhibits 
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the enzymes required for the synthesis of purines and pyrimidines (192). It additionally 

blocks the conversion of homocysteine to methionine. High levels of homocysteine cause 

metabolic stress, with the above-described consequences, i.e. impaired metabolic activity 

(193, 194). Metabolic stress was clearly observed using the multiparametric sensor system, 

by a metabolic inhibition to a maximum of 60% of baseline values at 200 µM. The highest 

concentration (200 µM) investigated was six-fold below the detected clinical plasma 

concentrations in humans receiving methotrexate at high doses for anticancer therapy 

(1`150 µM, Table 5). Therefore methotrexate was a prime example of a drug that is 

intrinsically toxic, intensely inhibits metabolic activity and induced metabolic stress in HepG2 

cells, which was previously described (150). The amplified cellular respiration agreed well 

with the impaired glycolytic activity, which represents a compensatory mechanism to 

generate ATP. 

 

Doxorubicin indicates a combined pattern of oxidative and metabolic stress (type 6, 

Figure 36). Doxorubicin is an anthracycline derivate, commonly used in the treatment of a 

wide range of cancers, including hematological malignancies, many types of carcinomas, and 

soft tissue sarcomas. The MTT assay reflects the intrinsic cytotoxicity of the drug (54% 

viability at 25 µM), even at concentrations below the human plasma concentrations, which is 

1.9 µM (139). The MTT assay at 1.0 µM doxorubicin showed a statistical significant decrease 

in cell viability of 30% (Table 6) on HepG2 cells after 24 h treatment. During its metabolism, 

doxorubicin undergoes a one-electron reduction by different oxidoreductases to form a 

doxorubicin-semiquinone radical (195). The re-oxidation of the radical back to the parent 

drug leads to the formation of ROS and hydrogen peroxide (196). The reactive species might 

then cause oxidative stress, lipid peroxidation, damage to proteins and the mitochondrial 

http://en.wikipedia.org/wiki/Cancer
http://en.wikipedia.org/wiki/Hematological_malignancy
http://en.wikipedia.org/wiki/Carcinoma
http://en.wikipedia.org/wiki/Soft_tissue_sarcoma
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membrane, oxidation of mitochondrial DNA, as well as the activation of the redox-sensitive 

mitochondrial permeability transition pore (197). Consequently, the bioenergetics of the 

cells alters radically (198). I was able to monitor these effects in the cytosensor assay, in that 

cellular respiration was significantly inhibited (IC50 of < 5 µM), as a consequence of 

mitochondrial damage that inhibits cellular respiration. In addition, an inhibition of cellular 

metabolic activity was observed. These findings are in agreement with previous studies 

(197). Neither metabolic nor respiratory activities regenerated during the drug wash-out 

period, indicating irreversible impairment of cell viability, even at clinical relevant 

concentrations (Table 5). 

 

Using the multiparametric cytosensor system, I was able to monitor alterations in cellular 

metabolism, respiration and impedance in real-time. These changes were linked to the 

chemical-induced toxicological effects of the drug or its reactive metabolites. An assessment 

of reversibility of the effects was used to acquire additional insight into the underlying 

mechanisms of toxicity. In contrast to the well-established cellular viability (MTT) endpoint 

assay, the onset of toxic effects was monitored on-line, as opposed to the determination of a 

physiological endpoint. Based on these results, a Test-Flag-Risk Mitigation strategy 

(Figure 38) is being introduced; it can be used to extrapolate from an in vitro to an in vivo 

situation and to determine risk of cytotoxicity for a given test compound. I propose that 

signals from the cytosensor system should trigger an alert (flag) that will determine a further 

course of action and a follow-up strategy. Depending on concentrations used and 

reversibility of effects, animal experiments will be needed. Such studies can be combined 

with additional in vitro and/or in vivo experiments (e.g. enzyme induction or inhibition, drug 

transporter studies, etc.) to elucidate the mechanism of any adverse effect. Such a Test-Flag-
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Risk Mitigation strategy helps reduce the risk of hepatotoxicity and therefore leads to better 

management of risks associated with DILI. It remains to be elucidated whether this approach 

can be extended to other organ-specific cell lines that are used to evaluate organ specific 

toxicity (187). 

 

Figure 37. Test-Flag-Risk-Mitigation strategy based on findings in the cytosensor in vitro assay. Decisions to 
be taken during the drug discovery and development process will depend on the mechanism and extent of 
the observed cytotoxicity relative to the predicted therapeutic drug concentrations (i.e. classification as 
"low" or "high" drug concentrations). Potential risks uncovered in the multiparametric cytosensor test 
system will raise a flag and have to be addressed by confirmatory in vivo studies. 1Relative to the awaited 
plasma concentrations; 2increase the dose in animal models to elicit the adverse effects from the in vitro 
assay; 3probably detected also in animal toxicology models and the drug research discontinuation is already 
decided; 4further animal studies required for the clarification of the adverse effects and the in vitro-in vivo 
correlation; 5probably increase the dose in animal studies to classify the drug as `safe`.   
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6 CONCLUSION 

The basic mission of the pharmaceutical industries is to understand disease and to bring safe 

and effective new drugs to the market. For many reasons, the path to developing new drugs 

is fulfilled with hurdles and is comparable to the proverbial search for the needle in the 

haystack. The development of a new drug that fulfils all requirements is long (> 10 years) and 

very expensive (> 500 million dollars) and has a success rate of only 0.01%.  

Therefore, the pharmaceutical industry is looking for new assays to, for example comply 

with the safety requirements of the authorities, or more specifically to support drug 

discovery (e.g. discover new drug targets) and drug development (e.g. safety analysis). 

Considering this, the general idea of this PhD thesis was to use an in vitro technology that 

can monitor physiological parameters of cells and to develop novel assays that overcome 

obstacles in drug research.  

For the determination of the physiological alterations, I used a non-invasive, label-free 

multiparametric cytosensor system to monitor simultaneously extracellular acidification, 

cellular respiration, and cell morphology/adhesion.  

Drug-drug interactions and drug resistance are two of the most redoubtable detections in 

the development of a new drug, because they have a crucial influence on the 

pharmacodynamic and pharmacokinetic of a drug. A major role of these negative effects was 

imputed to the ABC-transporters and their famous member, P-gp. P-gp is found in many 

endothelial cells of the body, where it acts as a barrier to molecules, including drugs. In this 

case, efficient in vitro screening methods have been developed and used frequently in drug 

development. However, these assays are not necessarily reflecting the real in vivo situation 

and evince several limitations in the reliable identification of substrates of the P-gp 
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transporter. Utilising the properties of the P-gp transporter to hydrolyse ATP for the 

translocation of substrates, I was able to identify substrates for P-gp transporters by 

measuring the regeneration of the hydrolysed ATP in living cells expressing P-gp at high 

levels. The ATP regeneration process is linked to the excretion of acidifying metabolic 

breakdown products and increased oxygen consumption, and this was clearly observed using 

the multiparametric cytosensor system. Concentrations of compounds used in the 

experiments with the multiparametric cytosensor system showed great sensitivity, and this 

provides the opportunity to reduce concentrations of test compounds to more physiological 

relevant concentrations. Confirmatory experiments with cells lacking an expression of P-gp 

showed a clear absence of any effects detected with cells overexpressing P-gp. The effects 

were concentration-dependent and followed protein kinetic behaviour. The estimated 

protein kinetic parameters were in good agreement with previously published data. 

Summarising the results of the P-gp project it was possible to develop a novel, label-free and 

non-invasive technology to identify reliably P-gp substrates in living cells. The P-gp project 

serves as a proof-of-concept project and the extension of the validated application to other 

ATP-dependent transporters can be investigate. 

Another project was the characterisation of a potential new drug target, i.e. the purinergic 

P2X7 receptor, using the multiparametric cytosensor system. The effects of intracellular ATP 

are well described, but little is known about the effects of extracellular ATP, particular when 

the extracellular concentrations of ATP rise due to pathological circumstances. I analysed 

these effects and was able to link the detected physiological changes to the P2X7 receptor. 

The study identifies a leading role of the purinergic P2X7 receptor in mediating downstream 

signalling and thereby changes in cellular metabolism at non-physiologically high levels of 

extracellular ATP.  
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In summary, I discovered the role of P2X7 receptors in coupling extracellular ATP with yet to 

be elucidated intracellular metabolic pathways. Further experiments are necessary to 

investigate the specificity of the receptors involved in this link between extracellular ATP and 

metabolic activity and in what normal or pathological situations this coupling plays a role. 

Extracellular ATP has been shown to play a role in inflammation and apoptosis, and there are 

models of this relationship, between extracellular ATP and metabolic activity, that already 

exist, with both processes highly linked to metabolism. It is readily conceivable that P2X7 

receptor-mediated modulation of cellular metabolism contributes to some of the observed 

downstream effects, such as cytokine release, at least to some degree. 

In the third project, I used the multiparametric cytosensor system to identify adverse effects 

in liver cells upon exposure to drugs know to exhibit the potential to injure the liver. I used 

an established and characterised liver cell line (HepG2) and proved the possibility of using 

this cell line, despite its limitations in metabolic activity and expression of drug transporters.  

A panel of eight marketed drugs was used to develop a novel cytosensor-based in vitro 

toxicological assay. Reference drugs in my study were classified as either non-toxic 

(D-sorbitol), intrinsically toxic (antineoplastic drugs) or potentially toxic under conditions of 

exaggerated exposure resulting from, for example, intentional intoxication, drug-drug 

interactions or disease-induced physiological alterations. Drugs were tested using 

concentrations equal to, above, and below the clinically relevant plasma concentrations. 

Real-time monitoring of drug-induced physiological effects in HepG2 cells revealed 

characteristic signal patterns. Mechanistic insight into the action of these compounds was 

used to predict detrimental events such as cell stress, cell death, cytotoxicity, or DILI in 

humans. In addition, information was obtained on the reversibility of the observed effects. 

All identified alterations were rigidly concentration-dependent. My findings suggest that 
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cytosensor-based toxicological investigations may provide early indications of potential 

mechanisms of hepatotoxicity, which might be followed up by studies in experimental 

animal models. The early indications of potential mechanisms of hepatotoxicity, together 

with the Test-Flag-Risk Mitigation strategy, may therefore guide the design of specific follow-

up studies in experimental animals.  

Based on the capabilities of the multiparametric cytosensor system, it was possible to 

develop successful three new, supportive assays for different areas of the pharmaceutical 

research (i.e. preclinical, toxicology, and pharmacology) and the system therefore exceeded 

the expectations of the author of this PhD thesis. Based on the knowledge derived from the 

PhD thesis projects, it is possible to implement the multiparametric cytosensor system in 

laboratories for these specific disciplines and probably to extend its use to similar or 

different applications.  
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7 ABSTRACT 

The basic mission of the pharmaceutical industry is to understand disease and to bring safe 

and effective drugs to patients. Starting with the drug discovery process, for any particular 

disease a first step involves selecting a disease-specific target, then finding a suitable assay 

to determine the activity of molecules in relation to the selected target. This path is difficult 

and, lacking proper technology, is similar to the proverbial search for the needle in a 

haystack. However, once a molecule emerges as a successful candidate in the drug discovery 

process, it enters into drug development. The drug development process provides safety 

data prior to "first-in-man" trials. Drug discovery and development are extended, expensive, 

and inefficient processes with a success rate of only 0.01%. Placing these difficulties into 

perspective, it remains the desire of the pharmaceutical industry to develop novel, 

economical, reliable in vitro technologies to meet the above challenges.  

In this PhD thesis, a multiparametric cytosensor system was used for real-time identification 

of physiological parameters in living cells, and to meet the above-mentioned challenges in 

drug research. This technology allows us to simultaneously monitor extracellular 

acidification (pH changes), cellular respiration (oxygen consumption), and cellular 

morphology and adhesion (impedance measurements).  

All work done by a cell and all of the activities of life in general necessitate energy, 

commonly in the form of adenosine triphosphate (ATP). The regeneration of the consumed 

ATP leads to increased oxygen consumption and an excretion of acidifying side products 

(lactate and carbon dioxide), which can be monitored and used to deduce changes in 

physiological pathways.  
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The first project of this thesis explored the influence of the P-glycoprotein (ABCB1) 

transporter on drug-drug-interactions, drug resistance, as well as drug absorption and 

distribution, all of which are important factors to be considered during the development of 

new drugs. Thus, the early identification and the exclusion of compounds that show a high 

affinity to P-glycoprotein can help to select drug candidates. The aim of this first project was 

to use the multiparametric cytosensor system for the label-free identification of 

P-glycoprotein substrates in living cells by monitoring extracellular acidification and cellular 

respiration upon stimulation with substrates of P-glycoprotein. Using L-MDR1 cells, a human 

P-glycoprotein-expressing cell line, the influence of P-glycoprotein activity was determined 

for seven different compounds, demonstrating the applicability of the system for 

P-glycoprotein substrate identification. Effects were concentration dependent, as shown for 

the P-glycoprotein substrate verapamil, and were associated with cellular acidification and 

respiration. P-glycoprotein ATPase activation by verapamil was able to be described by a 

Michaelis-Menten type kinetics profile showing saturation at high substrate concentrations. 

Control experiments using a P-glycoprotein inhibitor indicated that the observed effects 

were related to P-glycoprotein ATPase activity. In contrast, wild-type LLC-PK1 cells that did 

not express P-glycoprotein were not responsive to stimulation with different P-glycoprotein 

substrates. Summarising these findings, the microsensor system used is a generic system 

suitable for the identification of P-glycoprotein substrates. In contrast to other biochemical 

P-glycoprotein assays, activation of the drug efflux pump can be monitored on-line and 

label-free in living cells in order to identify P-glycoprotein substrates and to study the 

molecular mechanisms of ATP-dependent active transport. 

The second project of this thesis explored the pharmacology of the purinergic P2X7 receptor 

and its influence on changes in metabolic activity after ATP treatment. The purinergic P2X7 
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receptor plays a prominent role in cell metabolism and possibly determines downstream 

effects based on its interactions with extracellular ATP. Adenosine triphosphate, a key agent 

in physiology, provides energy in numerous reactions and acts as a neurotransmitter. 

Extracellular ATP concentrations are known to rise under pathological conditions, thereby 

triggering immune system responses that lead to pro-inflammatory states and immune 

modulation, to the extent of initiating cell death. These adverse effects have been linked to 

the purinergic P2X7 receptor, which triggers downstream signalling when levels of 

extracellular ATP are high. The purinergic P2X7 receptor is also involved in modulating 

cellular responses that include membrane depolarisation, secondary messenger activation, 

Ca2+ influx, and activation of the mitogen-activated protein kinase pathway. Moreover, it 

features a unique ability to form a large, non-selective pore, allowing molecules up to 

900 Daltons to enter the cell, with potentially deleterious consequences. In addition, the 

P2X7 receptor purportedly regulates many metabolic processes inside the cell, while little is 

known of how extracellular ATP triggers these P2X7-mediated metabolic effects. In this 

study, the stimulatory effects of exogenously applied ATP on metabolic activity and the 

associated morphological changes in cells in relation to the P2X7 receptor were explored 

using the multiparametric cytosensor system for a deeper view inside the cell.  

Analysis of cell physiological parameters revealed that ATP-induced metabolic stimulation 

was detectable. Furthermore, based on signal patterns of the multiparametric cytosensor 

system, it was possible to detect ATP-induced oxidative stress to cells. Experiments with 

rodent brain cells that express P2X7 receptors demonstrated similar activation effects. 

Exploring and elucidating the evident relationship between the P2X7 receptor and 

extracellular ATP concentrations leads to the hypothesis that high levels of ATP reflect a 

pathological state and lead to an increase in metabolic activity in the cell. 
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The third project of this thesis explored liver toxicology and used the multiparametric 

cytosensor system to detect these adverse effects. The liver plays a pivotal role in the 

biotransformation and detoxification of drugs and is consequently vulnerable to potential 

injury as a consequence of significant drug exposure. Drug-induced liver injury (DILI) is of 

considerable concern in drug discovery and development, placing emphasis on the need for 

predictive in vitro technologies that identify potential hepatotoxic side effects of drugs. A 

label-free, real-time, multiparametric cytosensor system has therefore been established for 

in vitro assessment of drug-induced toxicity. The system is based on monitoring cellular 

respiration, metabolic activity, cell morphology, and adhesion of human hepatocarcinoma-

derived HepG2 cells. The read-out derived from the multiparametric cytosensor system has 

been optimised and permits sensitive, reliable, and simultaneous recording of cell 

physiological signals, such as metabolic activity, cellular respiration and morphological 

changes, and cell adhesion upon exposure to a drug. 

Analysis of eight prototypic reference drugs revealed distinct patterns of drug-induced 

physiological signals. Effects proved to be rigidly concentration-dependent. Based on signal 

patterns and reversibility of the observed effects, compounds were able to be classified as 

triggering mechanisms of oxidative or metabolic stress or as leading to cell death (necrosis-

like and apoptosis-like). A test-flag-risk mitigation strategy is proposed to address potential 

risks for drug-induced hepatotoxicity. 

Concluding all three projects, the general concept of monitoring the physiological 

parameters of cells with an in vitro technology to overcome obstacles in drug research has 

clearly been shown to be viable. It was possible to develop a successful, novel assay for 

reliable, real-time, label-free identification of potential drug-drug interactions based on the 

identification of P-glycoprotein transporter substrates. Furthermore, the pharmacology of 
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the purinergic P2X7 receptor after application of extracellular ATP was characterised and, 

finally and importantly, drug-induced liver effects were detected by on-line monitoring of 

liver HepG2 cells exposed to drugs. 
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