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Abstract

This thesis deals with the detection and classification of objects in visual images and with
the analysis of shape changes between object instances. Whereas the task of object recog-
nition focuses on learning models which describe common properties between instances of
a specific category, the analysis of the specific differences between instances is also relevant
to understand the objects and the categories themselves. This research is governed by the
idea that important properties for the automatic perception and understanding of objects
are transmitted through their geometry or shape. Therefore, models for object recognition
and shape matching are devised which exploit the geometry and properties of the objects,
using as little user supervision as possible.
In order to learn object models for detection in a reliable manner, suitable object repre-
sentations are required. The key idea in this work is to use a richer representation of the
object shape within the object model in order to increase the description power and thus
the performance of the whole system. For this purpose, we first investigate the integration
of curvature information of shapes in the object model which is learned. Since natural
objects intrinsically exhibit curved boundaries, an object is better described if this shape
cue is integrated. This subject extends the widely used object representation based on
gradient orientation histograms by incorporating a robust histogram-based description of
curvature. We show that integrating this information substantially improves detection
results over descriptors that solely rely upon histograms of orientated gradients.
The impact of using richer shape representations for object recognition is further investi-
gated through a novel method which goes beyond traditional bounding-box representations
for objects. Visual recognition requires learning object models from training data. Com-
monly, training samples are annotated by marking only the bounding-box of objects since
this appears to be the best trade-off between labeling information and effectiveness. How-
ever, objects are typically not box-shaped. Thus, the usual parametrization of objects
using a bounding box seems inappropriate since such a box contains a significant amount
of background clutter. Therefore, the presented approach learns object models for detec-
tion while simultaneously learning to segregate objects from clutter and extracting their
overall shape, without however, requiring manual segmentation of the training samples.
Shape equivalence is another interesting property related to shape. It refers to the abil-
ity of perceiving two distinct objects as having the same or similar shape. This thesis
also explores the usage of this ability to detect objects in unsupervised scenarios, that is
where no annotation of training data is available for learning a statistical model. For this
purpose, a dataset of historical Chinese cartoons drawn during the Cultural Revolution
and immediately thereafter is analyzed. Relevant objects in this dataset are emphasized
through annuli of light rays. The idea of our method is to consider the different annuli as
shape equivalent objects, that is, as objects sharing the same shape and devise a method
to detect them. Thereafter, it is possible to indirectly infer the position, size and scale of
the emphasized objects using the annuli detections.
Not only commonalities among objects, but also the specific differences between them are
perceived by a visual system. These differences can be understood through the analysis
of how objects and their shape change. For this reason, this thesis also develops a novel
methodology for analyzing the shape deformation between a single pair of images under
missing correspondences. The key observation is that objects cannot deform arbitrarily,
but rather the deformation itself follows the geometry and constraints imposed by the
object itself. We describe the overall complex object deformation using a piecewise linear
model. Thereby, we are able to identify each of the parts in the shape which share the



same deformation. Thus, we are able to understand how an object and its parts were
transformed. A remarkable property of the algorithm is the ability to automatically esti-
mate the model complexity according to the overall complexity of the shape deformation.
Specifically, the introduced methodology is used to analyze the deformation between origi-
nal instances and reproductions of artworks. The nature of the analyzed alterations ranges
from deliberate modifications by the artist to geometrical errors accumulated during the
reproduction process of the image. The usage of this method within this application shows
how productive the interaction between computer vision and the field of the humanities is.
The goal is not to supplant human expertise, but to enhance and deepen connoisseurship
about a given problem.



Zusammenfassung

Diese vorgelegte Dissertation befasst sich mit der Ekennung und Klassifizierung von Objek-
ten in Bildern und mit der Analyse von Formveränderungen zwischen Objekten. Während
Objekterkennung sich mit dem Lernen von Objektmodellen befasst, die die Gemein-
samkeiten zwischen Objektinstanzen beschreiben, ist die Analyze von spezifischen Un-
terschieden zwischen Objektinstanzen nötig, um die Objekte und Kategorien selber zu
verstehen. Die Leithypothese dieser Forschung ist, dass wichtigsten Eigenschaften für die
vollautomatische Perzeption und das Verstehen von Objekten durch ihre Form oder Ge-
ometrie gegeben sind. Folglich werden in dieser Arbeit Modelle für Objekterkennung und
Form-Matching entwickelt, die die Formeigenschaften von Objekten mit möglichst wenig
Überwachungsinformation verwenden.
Um zuverlässige Objektmodelle zu lernen, werden angemessene Objektdarstellungen benö-
tigt. Die Idee dieser Arbeit liegt darin eine genauere Beschreibung der Objektform1 zu
verwenden, die die Beschreibungsmöglichkeit des Objektmodels selber und somit auch die
Performance des gesamten Systems erhöht. Für diesen Zweck untersucht diese Arbeit
zunächst die Integration von Krümmungsinformation der Objektform in dem zu lernen-
den Objektmodell. Da natürliche Objekte intrinsisch eine gekrümmte Form aufweisen,
sollte das Objektmodell die Krümmungsinformation integrieren. Die vorliegende Arbeit er-
weitert die weitverbreitete, auf Orientierung von Gradienten basierte Objektbeschreibung
durch die Einfügung einer robusten, histogram-basierten Beschreibung der Krümmung.
Durch Verwendung dieser komplementären Information kann das Erkennungsresultat sub-
stantiell verbessert werden.
Im Weiteren werden durch eine neue Methode die Auswirkung der Verwendung der Ob-
jektgeometrie für Objekerkennung untersucht, die über die gewöhnliche Methode der auf
Bounding-box basierten Objektdarstellungen hinausgeht. Die Visuelle Erkennung von
Objekten erlernt Objektmodelle mit Hilfe von Trainingsinformationen. Im Allgemeinen
werden die Objekte innerhalb solcher Trainingsbeispiele mit einer Bounding-box markiert,
da dies den besten Ausgleich zwischen manueller Beschriftung und Effektivität zu sein
schien. Allerdings haben Objekte keine Boxform, sodass die gewöhnliche Objektbeschrei-
bung durch Lage, Skala und Askpektverhältnis nur unzureichend widergegeben wurde. Der
Grund dafür ist, dass die Box selbst viele Hintegrundsstördaten beinhaltete. Im Gegen-
satz dazu stellt die vorliegende Arbeit eine Methode zum Erlernen von Objektmodellen
vor, bei der gleichzeitig sowohl die Abgrenzung von Objekten zu ihrem Hintergrund als
auch die Erzeugung der gesamten Objektform erlernt wird. Dies geschieht ohne manuelle
Segmentierung der Trainingsbespiele.
Formäquivalenz ist eine weitere interessante Fähigkeit, die in Beziehung zu der Geome-
trie eines Objektes steht. Sie beschreibt die Fähigkeit ähnliche Objektformen zwischen
verschiedenen Objekten wahrzunehmen. Diese Dissertation erforscht ihre Verwendung im
Bereich der nicht überwachten Objekerkennung, d.h. der Objekterkennung, bei der die
Annotation der Trainingsbeispiele für das Lernen eines statistischen Modeles entbehrlich
ist. Zu diesem Zweck wird eine nicht annotierte Datenbank von chinesischen Comic-
bildern analysiert, die in der chinesischen Kulturrevolution entstanden sind. Für den Au-
tor des Comics wichtige Objekte werden in diesem Datensatz mit Hilfe von ringförmigen
Lichtstrahlen hervorgehoben. Die Idee dieser Methode besteht darin, die verschiedenen
ringförmigen Kränze als formäquivalente Objekte zu betrachten, d.h. als Objekte mit
einer gleichen Form, und eine Methode für ihre Erkennung zu entwickeln. Mit Hilfe der
erkannten Lichtstrahlen, ist es möglich die Lage, Größe und Skala der hervorgehobenen
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Objekte innerhalb des Comics abzuleiten.
Nicht nur Gemeinsamkeiten sondern auch spezifische Unterschiede zwischen sich ähnelnden
Objekten werden von einem visuellen System wahrgenommen. Diese feinen Unterschiede
können durch die Analyse der Veränderung der jeweiligen Objekteformen verstanden wer-
den. Aus diesem Grund entwickelt die vorliegende Arbeit eine neue Methode, um die For-
mveränderungen zwischen zwei Bildern zu beschreiben, zu quantifizieren und gleichzeitig
die Korrespondenzen zwischen den Objekten zu finden. Die entscheidende Erkenntnis ist,
dass Objekte nicht beliebig deformierbar sind, sondern jede Deformation der Geometrie
und ihrern Nebenbedingungen entsprechen muss. Die komplexe Gesamtdeformation eines
Objektes wird mit Hilfe eines stückweisen linearen Modelles beschrieben. Dadurch können
die verschieden Teile der Geometrie erkannt werden, die in einem zusammenhang trans-
formiert wurden. Diese Gruppierungen ermöglicht die Visualisierung und das Verständnis
der gesamten Objekttransformation. Eine wichtige Eigenschaft des Algorithmus ist die
Möglichkeit, die Modellkomplexität (d.h. die Anzahl der nötigen linearen Transformatio-
nen für die Registrierung der Objekte) automatisch entspechend der zugrundeliegenden
Deformation zu bestimmen. Das Modell wird verwendet um subtile Änderungen zwischen
einem Originalkunstwerk und dessen Reproduktionen zu analysieren. Die Natur der Bild-
deformationen variiert von absichtlichen Abänderungen von Seiten des Künstlers bis zu
geometrischen Fehlern, die während des Reproduktionsprozesses aufgetreten sind. Diese
Anwendung zeigt zugleich, wie gewinnbringend die Interaktion zwischen Computer Vision
und Geisteswissenschaften sein kann. Das Ziel besteht nicht darin menschliche Kompetenz
zu ersetzen, sondern das Verständnis einer Objektentwicklung zu vertiefen und genauer zu
formulieren.
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CHAPTER 1

INTRODUCTION

1.1 Modeling Reality

When Copernicus, Tyco Brahe and Galileo developed a more accurate picture of the solar
system as being heliocentric, only then were many of Aristotle’s theories about heavenly
bodies proven false ([102] p. 274-275). After Christopher Columbus discovered the new
world, only then did the perception about the physical world radically change. It is the
interaction between observing nature and finding a coherent explanation for these ob-
servations that generates knowledge. To know which relations exist between observable
complex real-world facts and being able to express these observations produces scientific
knowledge. It can be stated that science has helped humanity to understand its surround-
ings and to understand itself as part of nature. Ultimately, the advances in technology
we have experienced in the last two centuries are a product of this process of knowledge
generation. It can be further stated that technology emerges when man intends to use
knowledge in order to solve problems which affect his living in the world. Therefore,
scientific and technological understanding of a process are intimately related to the for-
mulation of functional relation between a representation or model and the real-processes
we observe in nature. The thermostat is a good example to explain this fact. There
exists a functional relation between the temperature in the external world and the tem-
perature which is represented by the height of the metallic strip in the thermostat, we
know about the outside-world temperature by looking at the thermostat. A more abstract
example is the relation between an apple which falls from a tree and the universal the-
ory of gravitation formulated by Isaac Newton. We are able to explain and know why
such an amazing fact like the interaction of gravity with an apple happens by making
use of a theory. This idea of knowledge generation can be embedded in an information-
processing framework. According to this framework, there exists a representational system
which links two related but distinct worlds. On the one side we have the external world
and on the other side we have the representing world which contains models or repre-
sentations of the external world ([196]). In this framework, scientific knowledge begins
with the generation of models in the representing world which are related to observa-
tions in the external world. In a second step, these models are applied to the external
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Real or external  world

observation

Representing World

model a

model n

...process

scientific knowledge
generation

Figure 1.1: Generation of scientific knowledge as described in section 1.1.

world to make new observations, which deny, corroborate, improve or show the capabil-
ity of a given model for describing reality. From this perspective, to know something
consists of knowing the homomorphism that links a model (or group of models) and the
external world. In some cases, due to the complexity of reality, it is required for a de-
scription to use different models which need to be linked. Therefore, the term process
is used to describe the mapping from one representation or model to another ([170]). A
graphic illustration of this understanding of knowledge generation can be appreciated in
figure 1.1.
The history of modern science can be understood as a history of struggling for better
and more precise models which describe and represent reality in such a manner that we
can better predict the behavior of nature. We are able to predict the falling of an apple
by using the Newtonian framework, but we are able to express this fact and describe a
broader scope of reality if we use the more powerful and complete framework conceived
by Einstein. Furthermore, a good scientist should always remember that both worlds are
related but not identical: a model is a representation of reality but not reality itself. Only
out of this motivation can science develop in its attempt of obtaining better models.
The understanding of human perception and the visual system has not been any exception
to scientific undertakings. Much research has been done and many theories of how humans
see and perceive the real-world have been formulated. It is unquestionable that research
within this field broke new ground with the introduction and developments of modern
computers during the 50’s and 60’s (e.g. see [170]), but it was the effort of scientists in-
tending for the first time to implement and simulate the different vision theories when a
new field in science arose: Computer Vision.

1.2 Computer Vision

The original goal of Computer Vision was to devise algorithms that enable computers to
understand the visually perceivable world ([193]). Nevertheless, during the 70’s, when
scientists started using computers to address vision problems (e.g. the group around
Marvin Minsky is a good example), it became clearer that simulating human vision is a far
more complicated task than they had imagined. All theoretical and computation models at
that time were incapable of solving problems, which until then has been considered trivial

2
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by human vision theories. The most representative example is probably the problem of
extracting the edge-signal out of images. As David Marr formulated in his very influential
book Vision [170], many vision theories agreed upon the fact that human vision is capable
of extracting edges from the retinal image at an early stage of vision. However, the available
computer methods at that time were only partially capable of extracting edge-signals from
images since the solution of this task was limited to very controlled scenarios where images
did not present any noise factors such as changes in illumination, boundary occlusions, or
background clutter. Only after more than 30 years, with the work of Fowlkes et al. [173],
computer scientists are now capable of extracting edges under real-world scenarios, if not
perfectly, at least in a reliable manner.
This discrepancy between human vision theories and computational feasibility pointed out
by David Marr has since then led on the one hand to a fragmentation of the computer
vision research field into different sub-disciplines which we can observe nowadays. These
sub-disciplines include methods for acquiring, analyzing and understanding images [121]
and commonly are studied without any global “vision theory” capable of integrating the
generated knowledge into a single system. However, on the other hand, this discrepancy
itself together with the complexity and highly diversified functionality of the human visual
system, the most perfect vision system we have access to, has kept alive the greatest goal of
computer vision: developing a vision algorithm capable of passing the Turing-Test, which
means that the machine’s ability to see should be equivalent to, or indistinguishable from,
that of an actual human.
An analogous exemplification from history of knowledge which helps to understand the
relation between the human visual system functionality and practical research in computer
vision today is the invention of airplanes. Birds have fascinated men for many centuries
due to their ability to fly. In fact the study of birds and their flying was the starting point
for building the first flying devices. For instance, Leonardo Da Vinci research about the
wings of birds for his designs of an aircraft in his Codex on the Flight of Birds (1502) is an
early example of this. However, it wasn’t until 1903 that the Wright brothers developed the
first powered airplane with sustained flight. Nowadays, despite existent similarities (e.g.
the usage and control of wings and general aerodynamic principles) between the manner
in which birds fly and plane flight, crucial differences between them like the source of
propulsion are also evident. Therefore, it cannot be stated that modern flying devices
simulate the flight of birds. However, they cannot be understood without noting the first
inspiration and endless studies of the flying of birds over time. The reason for this is that
every advance in knowledge always presupposes the analysis of previously existing state-
of-the-art systems. This fact can also be described by the image of Bernard of Chartres
which states that we always stand on the shoulders of giants.1

Visual perception is intrinsically related to objects. To the question: “What do I see?”, the
answer will most often be: objects or events among which objects play the central role.
Therefore, it is reasonable to understand visual perception as the process of acquiring
knowledge about objects and events by extracting information from the light they emit
or reflect ([196], s. 5). As a matter of fact, the human mind does not only perceive
objects as having a particular shape, color, and position, but the mind is also capable
of recognizing or identifying an object as belonging to a certain group of objects which
share common characteristics (which we commonly call classes) and also perceiving the
differences between the instances of certain classes. The process of classification allows
humans to gather all required information to be able to interact with an object in an

1This sentence has been attributed to Bernard of Chartres by John of Salisbury in 1159 within his opus
Metalogicon
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appropriate way. Additionally, once the class is known, the mind is able to establish the
functionality of an object: Once I recognize an object as a chair, I will be able to sit
upon it. Therefore, detecting and classifying objects within an image is a key task in the
development of automatic vision systems in computer vision.
Furthermore, once objects are detected, the human visual system is capable of relating the
objects to other objects in the scene or to previously seen objects which are present in the
memory and to recognize subtle variations between them. The nature of these variations
is very diverse. For instance, differences in color are easily detected, but also differences
in size and shape can be perceived. Therefore, whereas the task of classification requires
to abstract the commonalities between different objects in order to recognize and study
unique instances of classes, an analysis of the specific differences between objects is also
necessary to truly understand what an object is. The book of D’Arcy Thompson [231] On
Growth and Form is an excellent example of how useful shape is for this task. Thompson
explained species differences considering deformations between the different shapes of class
members. This was done by drawing a regular square grid on one object and deforming
it until it lay on a second grid of the other object, with corresponding biological parts
located in the corresponding blocks.
Therefore, a successful computer vision system requires at least two tasks to be solved.
The first task is the recognition and classification of objects and the second will be the
analysis of differences between the shapes of different objects. Both tasks are studied in
this thesis.

1.3 Excursus: The Philosophical Foundations of Computer
Vision

In this section the ideas of section 1.1 and section 1.2 are further pursued in a rather
unusual manner. In the last section it became clear that the original goal of computer
vision was and is to devise algorithms that enable computers (machines) to understand
the visually perceivable world. Now, in this section we analyze from a philosophical point
of view, what is required to be thought by a human in order to pursue the original goal of
computer vision. In other words, we are interested in finding and sketching the historical
genealogy of the ideas that made thinking the new idea of computer vision possible. This
analysis is done in order to reflect on the foundations of the field and to realize that its
roots lie far before the first computers were invented. Furthermore, not a single idea,
but rather a complex combination of philosophical results and thoughts through history
were required to make it possible for humans to think about computer vision. Due to
the complexity of the aforementioned task, we limit ourselves to sketch (in a rather crude
manner) two important ideas which seem to lay the foundations of computer vision

1.3.1 Knowledge as a Result of Sensory Perception

It is the intention of computer vision to extract or infer information from sensory data
(e.g. visual images) in order to generate knowledge or understanding about the underly-
ing pictured reality. However, the idea of using sensory perception by humans to generate
knowledge has not been self-evident in the history of human knowledge.
In ancient philosophy, Socrates expressed a belief that the material world as it seems to
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us is not the real world, but only an image or copy of the real world. This belief was
formulated by Plato in his very influential allegory of the cave [200]. According to this
allegory, mankind can be compared to people who have lived chained to the wall of a cave
all of their lives facing a wall. Furthermore, those people can only watch the shadows pro-
jected on the wall by the things that pass in front of a fire behind them. Watching these
shadows is the only manner of getting to view reality. Therefore, philosophical knowledge
is the only way to get free of the chains in order to see the real world. Using this allegory,
Socrates concluded that current human perception was not directly related to how the
world was in itself but rather that sensory perceptions are only mappings of eternal ideas
and thus they should not be relevant to the generation of knowledge, which can only be
reached by philosophical thinking. Socrates considered the whole natural universe as an
epiphany, that is, as an image of divinity [201] or divine ideas.
This idea that reality is a mapping of divinity was widely accepted in Arabic and Latin
metaphysics in later centuries and thus human thinking concentrated itself on understand-
ing the divinity and its ideas (that is, theology was developed) in order to understand the
real world. However, during the middle ages several philosophers and theologians under
the influence of Aristotle and later Arabic scholars started thinking about human knowl-
edge not only as a mapping of the eternal, but as a mapping of a finite reality. According
to this idea, nothing can get into the human mind if it is not captured before by the
human senses. Within this thinking, it was Thomas Aquinas (1225-1274) who postulated
the idea that knowledge or truth is based upon the agreement or concordance between
the intellect and the real thing (adequatio rei et intellectus). Furthermore, the Franciscan
friar Roger Bacon (1214-1294) represents this new idea which emerged during the middle
ages best and looked at experience and sensory perception not only as symbols for another
reality, but also asked for its own structure and nature laws. And in fact, Heimsoeth in
his very influential book [112] considers Roger Bacon to be a very important thinker of
the middle ages who helped us to understand the philosophy developed during the Renais-
sance, which builds the fundamentals of the later empiricism of the 17th century. And
indeed, it was during the Renaissance when the thinking that a real outside world exists
and humans have senses to perceive it deepened. For instance, the human perception or-
gans (e.g. the eyes) generate sensations; images of the world in our consciousness. Hence,
humans are compelled to develop better instruments to generate better images of reality
in our consciousness (e.g. thermometers, barometers, telescopes, microscopes). And for
sure, this new understanding of nature can also be seen as the underlying motive that
inspired Galileo Galilei to express (e.g. in [?]) that nature “... is written in the language
of mathematics”.
This thinking of the Renaissance was absorbed during the 17th century in the English
empiricism by postulating that everything that humans know is only possible through
human sense perception (e.g. [155]). Sensory perception became the only source of knowl-
edge. Furthermore, this school of thought considered the human soul as a tabula rassa,
an empty blackboard that through sensory perception of reality becomes substantiated.
For instance, in his Essay concerning Humane Understanding John Locke described the
mind as an “empty cabinet” or “waxed tablet”. And indeed, this way of thinking and its
further reception have had an important influence on the development of modern science
[23]. Moreover, it is this idea of understanding reality and knowledge generation based on
sensory information that also lies behind computer vision, where a full understanding of
a scene is intended using only sensory imagery.
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1.3.2 Using Machines to Understand Perception

Computer vision, as described in section 1.2, is a field which has emerged from the attempts
to understand and simulate the human vision system with the help of computers. And
in fact, new discoveries about the functionality of the brain have triggered this research.
For instance, the work of Louis Lapicque about the integrate and fire model of the neuron
can be considered as an early attempt to understand the brain. Another example is the
work of Hubel and Wiesel [118], who discovered that neurons in the primary visual cortex
(V1) react to oriented stimuli. It was along this line of research that David Marr used a
computational theory in order to explain the interaction and information process between
neurons or groups of neurons (e.g. [169, 168]). From this specific perspective the brain’s
functionality started to be thought of as being like a machine, and thus the usage of
machines to simulate brain activity became plausible. However, although the novelty of
this idea and its plausibility relied on new observable scientific evidence, this idea can be
seen in the history of a wider stream of thinking.
Already ancient philosophies like the atomists or epicurean philosophy believed that the
universe could be fully explained by mechanical principles acting upon atoms [209]. These
ideas were further developed by the early mechanical philosophy of matter during the
early modern period [62]. According to this belief, living things can be understood as
machines. And indeed, many achievements during the scientific revolution showed that
many phenomena could be explained in terms of “mechanical” laws or natural laws that act
upon matter. For instance, R. Descartes understood animals and humans as mechanistic
automata. For instance, in his work “Treatise of Man” (p. 108) he wrote:

“I should like you to consider that these functions (including passion, memory, and
imagination) follow from the mere arrangement of the machine’s organs every bit as

naturally as the movements of a clock or other automaton follow from the arrangement
of its counter-weights and wheels.”

Nevertheless, R. Descartes explained only vital functions and automatic actions (e.g.
habits) in terms of mechanistic interactions of matter. On the contrary, activities like
conceptual thinking and free will were understood as purely mind activities (s. [50] p. 60-
61). T. Hobbes (1588-1679), in contrast, conceived the human mind as purely materialist-
mechanistic (see his work [115] published in 1651), fully explicable in terms of the effects
of sensory perception, which in turn is explained by the operations of the nervous system.
(s. [50] p. 102-103). This was a new idea that probably was not possible to reach due
to the lack of advanced technology at that time. However, as mentioned above, recent
scientists like David Marr, inspired by new physical discoveries and observations about
the human brain and specifically about human vision, retook similar ideas as Hobbs and
his school of thinking and by doing this, laid an important thinking paradigm for modern
computer vision.

1.4 The Importance of Shape

It is hardly imaginable to conceive of a powerful vision system incapable of distinguishing
or recognizing shape. This becomes clear considering a retinal disease, where the patient
is only capable of vaguely perceiving the color but is unable to sharply see the contours of
the objects. A severe Stagardt’s disease is such an example, where a gradual degeneration
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Figure 1.2: The human vision system is capable of solving three tasks with respect to the
shape of an object. (a) Two different shapes belong to the same sculpture
(Bacchus by Michelangelo, 1496/97; Florence, Museo Nazionale del Bargello)
(b) Two different objects feature the same (or similar) shape (c) The differences
in shape between different objects can be perceived.

of the macula is produced. The macula is the area in the middle of the retina that makes
the central vision needed for daily life activities possible. Its degeneration leads to a loss of
detailed vision, thus strongly limiting the perception of many properties which characterize
an object.
Shape is probably the most important and most complex to describe property we perceive
about objects [196]. One reason for this is that through shape we implicitly perceive
all other spatial properties like size, orientation and position. Therefore, shape becomes
crucial for the human vision system to solve distinct tasks like determining the category
and function of an object [196]. In fact Biderman et al. ([21]) considers shape as the
most important type of information required for the categorization of objects. However,
the human vision system not only limits itself to recognizing and categorizing objects, but
through shape it is also able to perceive similarities and differences between objects. The
human vision system is capable of solving (at least) three tasks with respect to the shape
of an object [196]:

• Shape constancy is the capability of perceiving that two shapes belong to the same
object regardless of the difference in viewpoint

• Shape equivalence is the capability that refers to the fact that humans are able to
perceive two distinct objects as having the same shape

• Similarity in shape refers to the ability of perceiving the differences in shape between
different objects.

The first two capabilities are closely related since shape constancy is defined regarding the
same object and shape equivalence is concerned with the relation between two different
objects. The ability for detecting shape equivalence is illustrated very well when a human
is confronted with an unknown shape. Although he has no prior knowledge about the ob-
ject, he possesses the ability of detecting other objects which share the uncommon shape.
For example, in chapter 5 we will make direct use of this property in order to carry out
an unsupervised iconographic analysis of Chinese cartoons, drawn during the second half
of the Cultural Revolution and immediately afterwards.
The third task, detecting similarity in shape, is probably the most interesting one, since
regardless whether the differences are big or subtle, humans are capable of recognizing
two shapes as similar but not identical. Moreover, humans are capable of localizing the
differences within the shapes and quantifying them. For instance, if a human is able to
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recognize two tables, he is also able to describe that the legs (that is, he is able to localize
the deformation) of one desk are straight, whereas the legs of the second table are more
curved (that is, he quantifies the deformation).
Moreover detecting similarities in shape is a difficult problem from the mathematical point
of view, because it requires establishing a framework in which the differences can be lo-
calized and described at the same time. A deeper understanding of this mathematical
modeling framework is given in chapter 6.
Since the perception of the differences in shape is crucial to infer properties or to under-
stand the anatomy of the object itself, the analysis of shape has found several applications
in different fields as:

• In Biology : For instance, Drucker et al. [70] described an investigation to discover the
cranial differences between the sexes of apes, where it is of interest to understand
whether there is a size difference between the sexes and in this case investigate
whether there exist shape differences in the face and braincase regions.

• In Medicine: Bookstein [24] for instance, analyzed brain scans of schizophrenic pa-
tients and normal patients in order to study the shape differences of the brain between
the two groups.

• In Cultural Heritage: European Art of the Middle Ages and The Early Modern
period were mainly reproduced in black and white prints or monochrome drawings
which were also used to prepare paintings, sculptures, architecture or tapestries (e.g.
[180]). Humans are able to distinguish the differences between the shapes in the
preliminary studies and the final artworks and to recognize that both shapes belong
to the same object in spite of the differences in shape. This example is relevant since
it builds the starting point for the development of a new shape analysis model in
chapter 7.

The importance of using shape for visual perception tasks has also been identified early
in the field of computer vision. Although the concept of shape has been formalized in dif-
ferent manners, the term has been used mainly to refer to the spatial structure or global
geometry of an object (e.g. [193] [129] [26], [70], [226]). The most common definition of
shape was formulated by Kendall [130]:

“Shape is all the geometrical information that remains when location, scale and
rotational effects are filtered out from an object”

This definition is interesting since it can be considered as a negative definition. It only
enlists all elements that do not belong to shape (i.e. location, scale and rotation ) but does
not explicitly specify the understanding of “geometrical information”. The fact that shape
is given in terms of a negative definition is clear evidence of the complexity of this object
property. Furthermore, this evidence gets hardened by observing all different models that
have been used in computer vision to describe shape and use it to solve different tasks like
object recognition, shape matching or shape analysis. For instance, the usage of shape for
automatic object detection is described in chapter 2.
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Figure 1.3: Object Recognition systems can be considered as representational systems that
map initial measurements of an image into the space of object representations
and class assignments (s. section 1.5.1).

1.5 Open Questions in Computer Vision

Among the diverse and numerous challenges which computer vision still requires to solve
in order to get closer to the final task of developing a unified algorithm capable of truly
“seeing” and understanding the visual content of an image, the observations in previous
sections suggests that there exist two problems that lie at the heart of computer vision.
The goal of the current thesis is to study and devise new methods which focus on these
challenges. However, before giving a detailed description of the goal and original contri-
butions of the current thesis, we briefly describe these challenges.

1.5.1 Simplified object representations in object recognition systems

Object Recognition Systems

Automatic object recognition is the activity of detection and classification of novel ob-
ject instances as belonging to a certain class using computers. For this purpose, a class
representation needs to be “learned” by the system from a limited set of training images,
and during detection the system requires to find an object and decide its class member-
ship based on the learned parameters. From this point of view, an object recognition
system maps initial measurements of an image into the space of object representations
and class assignments. The starting point of this process is an initial abstraction of the
low level percepts which corresponds to the pixels of a digital camera (or in case of the
human visual system to photoreceptive cells in the retina) [193]. Together with the learned
class parameters, this abstraction process ends in turn with the final representation of the
object (together with its class assignment). Normally, this last representation is given
by a bounding box containing the query object. In other words, such systems output
a four-parameter representation of the object: position, scale, size of the box and class
membership. Although further parameters could be specified (e.g. rotation), the object
itself is thought of as being a rectangular box. The purpose of such an abstract, rather
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simple representation consists in being semantically accessible to a human interactor, since
a two dimensional bounding box is more understandable than a vector containing the raw
color values of the pixels belonging to the object. Therefore, each automatic object recog-
nition system can also be understood as the process of closing the semantic difference or
semantic gap between the initial and final representation of an object of a certain class.
The modeling choices made by different recognition systems become equivalent to choosing
different ways and methods of bridging this semantic gap and will be discussed in chapter
2. For the moment it is enough to consider the overall object recognition system as a
representational system that performs an abstraction process consisting of different levels.
A graphical schema of such a system can be observed in figure 1.3.

Simplified Object Representations

Since each object recognition system is based upon an abstraction process, the success of
a system is closely related to the capacity of description at each level by the underlying
model. That is, the more information about the object that it is lost at lower levels of the
representational system, the less information that can be used at higher levels to solve the
final problem of finding the object understanding the visual content of the image. Thus,
object representations at different levels that are too simple will limit the performance of
the overall system. Two examples may illustrate this problem: On the first level of this
abstraction process a feature-based representation or local image description of the object
is commonly found. For instance, the very common representation based on histograms
of oriented gradients (HoG, [60]) is a good example. In this description, the image region
containing the object is subdivided into a regular grid. Thereafter, in each cell of the grid
the orientation of the gradient signal is discretized and weighted with its magnitude in or-
der to build a histogram which builds the intermediate representation of the image content
of that cell. The local intermediate object description consists then of the concatenation
of all cell histograms. This rather simple representation results in a local straight line
approximation of object boundaries since local regions are described by a histogram over
a discrete set of the edge orientations that they contain. In this framework smooth curves
cannot be distinguished from sharp bent curves and thus valuable information gets lost
at this level. The next level will then operate with a poor representation that loses the
valuable information about the curvature of the object. In this example it is clear how
the description of the object’s shape in a model directly influences the mapping from the
real-world object to the space of object representations. Such influence, as we will show
in this thesis, has an important impact on the performance of an object detection system.
A similar problem occurs in systems where objects are represented by box-shaped tem-
plates. The first problem which becomes evident is that in this case, the shape of an
object is not box-shaped and so the detection window contains significant amounts of
background clutter that tend to deteriorate the decision about the class identity of the
present object. Secondly, the object shape can only be used for detection purposes only
after being segregated from the background. Therefore, a rather poor and rude abstraction
of the shape of the object (if a box is considered as the shape) used by the underlying
model will limit the performance of the system due to the description capacity of the
abstraction itself. Furthermore, if the final task of a computer vision system consists of
understanding the content of the image, and therefore understanding the interaction of
an object with its surroundings, it becomes arguable whether this task is fulfilled using a
bounding-box representation of the object that is not capable of distinguishing the object
from its background.
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Figure 1.4: Rigid vs articulated objects (s. section 1.5.2). A rigid body is defined as
an object, where all of its particles (or points on it) maintain approximately
the same distance relative to each other through time or in comparison with
another similar object.

1.5.2 Modeling Shape Changes

It is evident that the human visual system does not limit itself to detect, classify or
characterize objects through global properties like size, orientation and position. Moreover
it is able to “understand” the object it recognizes not only by means of positioning a
bounding-box each time an object is detected. For sure, the task of object recognition is
a crucial step towards this general “understanding” about objects since it is first required
to know where an object is in order to understand it. However, once objects are detected,
a deeper analysis of the structure of the object itself is advised.
For instance, the degree of rigidity of an object is an important characteristic which reveals
the structure of the object itself. In everyday life the rigidity of an object is perceived
through the nature of how it moves or comparing the differences with respect to another
instance of the same object class. This perception is best explained if a rigid body is
defined as an object where all of its particles (or points on it) maintain approximately
the same distance relative to each other through time or compared with another similar
object. Mathematically this means that given two objects of the same class, the object
is perceived as a rigid object if the transformation between instances can be described
using a mapping that includes scaling, rotation, and translation, since these kinds of
transformations precisely maintain the distances between every pair of points in a vector
space. Whereas an egg is perceived by the human mind as a rigid object, the human body
is considered as an articulated object. Analogously, an articulated object is where there
exist at least a pair of points on the shape which change their relative distance through time
or in comparison with another similar object. Mathematically, the global transformation
between articulated objects has normally a non-linear character. However, there is a
further observation which is helpful to specify the nature of this transformation. The
deformation of natural articulated objects is not arbitrary, but rather every articulation
can be described or approximated by means of local rigid or affine transformation. For
instance, whereas the movement of a single leg of an animal (e.g. see figure 1.4) is nonlinear,
every bone of it moves in a rigid manner. This is still the case if the trunk of an elephant
is considered, where the highly non-linear nature of this object could still be approximated
using an increased number of overlapping local linear transformations.
The previous observations describe a current challenge for computer vision. Is it possible to
develop a method, and thus an algorithm, capable of automatically finding the appropriate
deformation between two similar objects and infer at the same time the structure and the
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complexity of such a deformation between objects?
The first evident fact in order to solve the above question is that the shape representation
of the object is a crucial property to be taken into account. The reason is that shape
communicates inter alia the geometrical information about the deformation of the object
(s. section 1.4). However, to fully answer this question several challenges are required to
be approached:

• Shape Correspondence: Given two different objects, it is crucial that the system
establishes the correspondence between different parts of both shapes. The more
both shapes differ from each other, the more difficult it gets to solve this problem.
Furthermore, it is necessary to have a shape representation which allows local com-
parisons within the shape. For instance, this would not be possible if the system
represented the object by means of a bounding box.

• Modeling the differences: An appropriate model for describing the transforma-
tions between shapes is required. For instance, highly non-linear mappings (e.g.
Thin Plate Splines [249]) are able to transform a shape to any other arbitrary shape,
but it is hard to discover the local structure of the shape using this model (s. chap-
ter 7). On the other hand, piecewise models are flexible enough to describe a global
non-linear transformation. However, the parts belonging to each component, as well
as the complexity of the model (that is, the number of affine components required)
in the transformation model still need to be inferred.

• Lack of training samples: The aim is to describe the transformation between
objects and discover the structure of the object simultaneously, without prior knowl-
edge of the class of the object or the shape. Therefore, it is not possible to learn a
statistical shape model using training data.

• Complexity of the model: The model should be able to automatically adapt
itself to the degree of linearity or non-linearity of the deformation between both
shapes. For instance, in the case of a piecewise model, the algorithm should auto-
matically find the number of transformations required to describe the shape change.
Whereas the shape change of rigid objects will require a single transformation, a
higher complexity is required for articulated objects.

• Changes in viewpoint and scale: The inference of the shape change between
objects from a single pair of images presents an additional challenge. Already slight
changes in viewpoints between images induce distortions in the underlying shapes.
Thus, the overall transformation model requires partially coping with this fact. How-
ever, it is clear that in an extreme case where the viewpoint between images com-
pletely changes, the system will not be able to establish any correspondences between
the shapes. Nevertheless, slight viewpoint changes still present a difficult challenge
that needs to be handled.

• Robustness against noise: Commonly, the objects are not manually preprocessed
to clearly segmentate the shape from the background. Therefore, the shape of an
object needs to be automatically extracted in a robust manner and the registration
process requires to robustly take clutter noise into account.
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1.6 Objectives of the Present Thesis

The objective of this thesis is to study and devise new methods centered on the alleviation
of the problems derived from the challenges described in section 1.5. At the heart of this
thesis lies the conviction that shape is a crucial cue for solving these problems. Concretely,
regarding the problem of simplified object representations, new models featuring a richer
description of the object shape at different levels of the representational system (s. section
1.5.1) are developed. Furthermore, this thesis not only concentrates on search tasks but it
also addresses the problem of modeling the understanding of shape similarity and shape
changes as described in section 1.5.2. This analysis is a crucial step after the detection
process in order for the system to understand its structure: Understanding a scene is not
only about finding objects and their class membership within it, but it is also about un-
derstanding what the objects are and how they relate to each other.
Specifically, on the issue of object recognition the aim is firstly to devise a method for using
curvature information about the object shape in the category model which is learned. The
usage of curvature information is crucial since natural objects intrinsically exhibit curved
boundaries and therefore, this information should be included in the detection system.
Furthermore, since the importance of curvature for visual search tasks in human percep-
tion has been confirmed in different studies within the perception community (e.g. [262]),
it seems advisable to integrate curvature cues in automatic object detection systems. Since
a generic and stable representation of the curvature of objects is required to be used across
different categories this task of devising a richer object representation is a non-trivial task
to be solved.
Secondly, a new model for object detection is presented in order to go beyond bounding-box
representations for objects. Visual recognition requires learning object models from train-
ing data. Commonly, training samples are annotated by marking only the bounding-box of
objects, since this appears to be the best trade-off between labeling information and effec-
tiveness. However, objects are typically not box-shaped. Thus, the usual parametrization
of object hypotheses by only their location, scale and aspect ratio seems inappropriate
since the box contains a significant amount of background clutter. Therefore, an ap-
proach is presented for learning object models for detection while simultaneously learning
to segregate objects from clutter and extracting their overall shape. For this purpose, we
exclusively use bounding-box annotated training data.
Finally, this thesis also investigates the capability of detecting shape equivalence (s. section
1.4) for object detection in unsupervised scenarios, that is where no annotation of training
data is available for learning a statistical model. For this purpose, a dataset of historical
Chinese cartoons without annotated data is analyzed with the goal of detecting important
objects that may reveal within an iconographic analysis of the images important shifts in
style or reveal the intention of the persons who commissioned the images. However, due
to the lack of annotated training information, common object detection models cannot be
learned and thus, a method is developed to indirectly infer the position, size and scale of
important objects by detecting re-occurring shape patterns in the image, that is through
the detection of shape equivalent objects.
Furthermore, since a visual system does not limit itself to detect, classify and characterize
objects through global properties, the second part of this thesis focuses on the problem
of describing changes between shapes. Specifically, a new model for analyzing the shape
change between a single pair of images under missing correspondences is devised. The un-
derlying idea is to describe the overall complex deformation of an object, using a piecewise
linear model, which automatically estimates its complexity and at the same time is able to
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analyze the structure of the object by identifying each of the regions in the shape whose
deformation can be described by a single affine component. This model is then used to
analyze subtle modifications between an original artwork and a reproduction of it. The
nature of these deformations is either due to deliberate alterations or due to geometric
errors accumulated during the reproduction process of a certain image. For instance, an
example of a deliberate alteration between a preparatory drawing and the finished artwork
would be a conceptual change that induces alterations in the relative position of extrem-
ities in a human pose. Thus, in this case it is of interest for art historians to recognize
the parts that feature the same transformation and determine to which extent these parts
differ from other regions in the image. The second class of deformations is more subtle and
is related to the drawing process itself. Copying images at that time in many cases was
accomplished by placing a thin tracing paper on top of the original and sketching the con-
tours. Movements of the semi-opaque sheet by the artist induced slight alterations in the
reproduction. This art analysis represents a new interesting application within computer
vision that is analyzed in this thesis for the first time. Finally, this method also shows
how productive the interaction between computer vision and the field of the humanities
can be in order not to supplant human expertise, but to enhance connoisseurship about a
given problem.

1.7 Original Contributions

This section summarizes the contributions of this thesis

• The question of how to use shape to enrich object representations (s. section 1.5.1)
is addressed. We present a novel view-based object detection model that efficiently
represents an object shape, using both orientation and curvature features. It directly
encodes curvature statistics and uses this shape cue together with orientation of
gradients to perform object detection. The model exhibits competitive performance
on standard databases.

• It is shown that curvature information can be easily integrated into all state-of-the-
art representations that are based on gradient histograms with a low computational
cost. Furthermore, this approach provides evidence that curvature cues provide
complementary information that significantly enriches the widely used orientation
histograms.

• The usage of shape for view-based object detection is further studied by presenting
an approach that is capable of learning object models for automatic detection by
explicitly representing object shape and segregating it from the background without,
however, requiring manual segmentation of the training samples.

• A novel approach for learning a prototypical set of segments capable of representing
all training objects of a given class is presented. Learning the object model based
on this prototypical set of segments is then cast as a max-margin multiple instance
learning problem. The learned model is therefore capable of detecting objects and
assembling their overall shape simultaneously by grouping data-driven generated
constituent shape segments of the corresponding object.

• The usage of shape equivalent objects (s. section 1.4) for unsupervised object detec-
tion is demonstrated. The position, scale and size of different objects is indirectly
inferred in an unsupervised manner by detecting re-occurring shape patterns across a
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large dataset of historical Chinese cartoons that were drawn during and immediately
after the Chinese Cultural Revolution.

• Regarding the analysis of shape, a novel method for analyzing shape changes under
missing correspondence between shapes is presented. At the same time that corre-
spondence between point-set based shapes is found, the different shape constituent
groups that are affine-transformed are inferred.

• Therefore, a piecewise affine registration model is conceived that is capable of au-
tomatically finding the shape groups that correspond to the different affine trans-
formations. This problem, given the correspondences, is cast as an integer linear
program that assigns points to transformations, based on their registration quality.

• The complexity of the piecewise affine model, that is, the optimal number of trans-
formations used by the model is automatically found using a stability-based analysis.
The shapes to be registered are randomly subsampled and the registration is carried
out for different numbers of transformations. The most stable registration yields the
corresponding number of transformations.

• A novel application for analyzing the shape changes between artworks is introduced.
The usage of a piecewise affine model capable of automatically finding the parts of
an art image that are transformed similarly enable the user to develop insights into
which semantical parts were similarly reproduced and which were altered during the
reproduction of an artwork.

1.8 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 first gives an overview of the different components of a visual object
recognition system and their general modeling paradigms. Furthermore, it also ex-
amines how shape information has been used to represent objects within the different
modeling paradigms. Thus, we present a framework for classifying the underlying
shape model of a given object detection system and at the same time we give an
overview of state-of-the-art.

Chapter 3 develops a new model for automatic object recognition which uses cur-
vature information for solving the task. Thus, we show that our enriched object
representation improves the performance of a given detection system and by doing
so, we address the question described in section 1.5.1.

Chapter 4 elaborates further on the alleviation of the problem described in 1.5.1
about the richness of object representations. This is done by introducing a novel
method of learning object models for detection by explicitly representing object
shape and segregating it from the background without, however, requiring manual
segmentation of the training samples. The segregation from the background is not
carried out as a post-processing step after having localized the bounding-box sur-
rounding the object, but rather it is carried out during the detection process itself.

Chapter 5 exemplifies how the human visual capability of perceiving shape equiv-
alence (s. section 1.4) can be used for unsupervised object detection. A method for
analyzing a large dataset of Chinese cartoons drawn during the Chinese Cultural
Revolution and thereafter is presented.
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Chapter 6 is devoted to shape analysis and it gives an overview of the different
choices made within the field of computer vision to model change between shapes.

Chapter 7 introduces a novel method for shape registration using a piecewise affine
model which automatically estimates its complexity. Furthermore, the model auto-
matically infers the parts in the shape which belong to the different affine components
of the model.

Chapter 8 presents the conclusions of this present thesis.
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CHAPTER 2

USING SHAPE FOR OBJECT
RECOGNITION

The objective of this chapter is to give an overview of how shape has been modeled by
object recognition systems. However, before one can understand the integration of shape
it is essential to first understand the general modeling paradigms lying at the heart of
each system. As stated in section 1.5.1 different description levels in an object recognition
system can be distinguished (s. figure 2.1): (a) the feature representation that captures
the low level content of the image. (b) the object model representation and (c) the final
representation of an object instance, which can be used then for a further understanding
of the image content. Using this structure as an orientation we will describe different
modeling decisions and state-of-the-art in sections 2.1 and 2.2. Thereafter the integration
of shape will be discussed in section 2.3.

2.1 Local Image Descriptors

The basis for many high-level tasks in computer vision and specifically for object detec-
tion systems consists of the representation of specific structure in the image data. This
representation is commonly referred to as the local image descriptor. At the basis of each
descriptor lies a crucial modeling decision which is inevitably confronted with a trade-off
between the information content and the processing cost of this information. In some
cases, highly detailed descriptions may help to solve the task at hand, but this comes at
the cost of dealing with more data and processing resources. Furthermore, the importance
of choosing an appropriate low-level description of the image data is given by the fact
that all information that is lost at this stage cannot be recovered since all further steps
in the system are dependent on this representation. Finally, a local image descriptor can
be classified depending on which information is encoded in the image and on how it is
done. Whereas local image descriptors may use statistics about orientation of gradients
([156, 158, 178, 29, 60, 17]), other descriptors only use pixel intensity values ([11, 47, 191]),
or geometrical relations between discretely sampled landmark points ([13, 68]) for their
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computation.
In the following we will briefly review some of the most popular local image descriptors in
the field, and observe that depending on the kind of information that is encoded, shape
information may or may not be used. For instance, whereas the usage of orientation of gra-
dients can be considered as a shape-based descriptor since these descriptors provide a local
representation of the geometry of the object, color histograms or simple intensity-based
descriptors evidently only encode local appearance information.

SIFT Features

The scale invariant feature transform (SIFT) [156, 158] in its original version, is a histogram-
based representation of gradients in a local patch. Previous steps to the local image de-
scriptor consisted of assigning a dominant scale and orientation to the position where
the SIFT feature is being computed. The whole region is then rotated according to the
dominant orientation in order to achieve invariance with respect to rotations. Thereafter,
the region is subdivided into a regular 4 × 4 grid and 8 bin histograms of the gradients
orientations are calculated resulting in a 128 dimensional vector. An interesting fact is
that because the SIFT descriptor is normalized, the gradient magnitude changes have no
effect on the final descriptor.
A variation of the SIFT descriptor was presented in [178]. This variant called GLOH
considers larger spatial regions for the histograms and the dimensionality of the descriptor
is further reduced to 64 dimensions through principal component analysis (PCA). How-
ever, not only gradient information of gray-scale images has been used in the literature
to calculate SIFT descriptors, but also color information has been encoded in different
ways. For instance, whereas Bosch et. al. [29] computed SIFT descriptors over all three
channels of the HSV color model, Van de Weijer et al. [244] introduced a concatena-
tion of a saturation-weighted hue histogram with the SIFT descriptor. Furthermore, in
[242] the performance of descriptors that combine color information and the traditional
SIFT descriptor has been analyzed. Although the method for computing color-SIFT and
the traditional SIFT descriptor are similar, it is important to remark that whereas color-
SIFT does not encode any local shape information about the geometry of the object, the
traditional SIFT descriptor can be considered as a shape-based descriptor.

SURF Features

This image descriptor was first introduced in [11] and it is strongly inspired by SIFT.
This feature also calculates a dominant orientation and scale for each region, then the
region is split-up in regular 4 × 4 square sub-regions. However, instead of calculating
histograms over orientations of gradients for each sub-region, Haar wavelet responses (in
horizontal and vertical direction with respect to the dominant orientation) are calculated.
The wavelet responses and the magnitudes are then in turn summed up over each region
to form the entries of the feature vector.

Shape Context and Geometric Blur

Shape context [13] is a feature specifically designed to describe object shapes represented
by landmark points {pi}ni=1. The basic idea is to consider for each point pi the n − 1
chord vectors which connect all other points in the shape to pi and build a histogram (in
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2.1 Local Image Descriptors

the log-polar space) over these vectors. This histogram is considered as the shape context
of the point pi. Similar to this feature, however, without building a histogram, in [68]
relative orientations between specifically chosen chords for each point are used, resulting
in a matrix instead of a vector descriptor.
The geometric blur descriptor [18] can be considered as the continuous version of shape
context. Around an interest location the region is blurred with a spatially varying kernel.
Gaussian kernels with a standard deviation proportional to the distance from the center
of the region were used in [17, 16]. The objective is to put emphasis on the center of the
region and gradually suppress the importance of regions lying further away. Normally,
edge signals are filtered resulting in the high dimensional geometric blur descriptor.

Histogram of Oriented Gradients (HoG)

N. Dalal and B. Triggs presented the histogram of oriented gradients (HoG) in [60] with
an application to pedestrian detection. The idea behind this very successful and widely
used descriptor is to depict the local shape appearance of the object by means of the
distribution of weighted oriented gradients. The region of interest is first subdivided into
small connected regions (called cells), and for each cell a histogram of gradient directions
is calculated. The concatenation of these cells builds the final descriptor. In its original
version, 9 bin histograms over 0− 180 degree orientations were used for the histograms in
each cell. Each pixel contribution was weighted with the gradient magnitude itself. In order
to account for changes in illumination and contrast the gradient strengths were locally
normalized which required grouping the cells together into spatially connected blocks. N.
Dalal and B. Triggs used 3 × 3 cell blocks of 6 × 6 pixel cells with 9 histogram channels.
However, a variation of the original HoG feature was introduced by P. Felzenszwalb [80]
and has recently become very popular ([273, 77, 9, 99]) for object recognition. In this
variant, the calculation of the histograms for each cell is changed. In praxis the authors
found that for some object categories, recognition performance increases using contrast
sensitive features (B1), while some categories benefit from contrast insensitive features
(B2). Whereas for B1, a weighted histogram (using the gradient magnitude) with a 9
bin discretization of the gradient orientation is used, B2 is calculated using 18 bins. In
addition to both features a 4-dimensional vector capturing the overall gradient energy in
square blocks of four cells around each pixel (i, j) is added, resulting in a 9 + 18 + 4 = 31
dimensional vector for each cell. The overall HoG feature consists then in the concatenation
of the vectors for all cells over the region of interest.

Binary Robust Independent Elementary Features

This appearance based local image descriptor called BRIEF [47] is constructed by first
smoothing a square area of interest with a Gaussian Kernel. Hereafter, intensity values
p(x) and p(y) between nd randomly sampled pairs of locations (x, y) within the area of
interest are compared (called tests) and the BRIEF descriptor is built using a 128, 256
or 512 dimensional binary string containing 1 at the i-th position if the i-th comparison
yields p(x) < p(y) and 0 otherwise. The tests used are sampled from an isotropic Gaussian
distribution with fixed standard deviation. Rublee et al. [213] presented a modification of
BRIEF, which is rotation normalized by first rotating the patch according to a previously
calculated predominant orientation.
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Local binary patterns

This appearance-based descriptor is better known as LBP and was first described in 1994
[191]. Since then, it has been used mainly for texture classification and has shown a good
performance in combination with HoG descriptors [254]. In its simplest form, the window
of interest is divided into cells (e.g. 16× 16). Thereafter, each pixel in a cell is compared
with its eight neighbors (clockwise or counter-clockwise). An eight digit binary number is
built using the pixel’s value compared with its neighbors, resulting in 1 if the pixel’s value
is greater than its neighbor or 0 otherwise. Afterwards a histogram is built for each cell,
the feature vector results out of the concatenation of all these histograms.

2.2 General-Modeling Paradigms

Once that image-data is encoded into discrete features, the next stage in the represen-
tational scheme of an object recognition system consists of a model capable of binding
the different features into a joint representation of the object which enables the system to
make a decision about the presence or absence of a certain object belonging to a certain
class. Many models have been developed throughout the history of computer vision for
this purpose. Even though these models substantially differ from each other, they also
share common concepts or thought patterns which can be classified into a general scheme
or framework capable of providing an overview about the field of object recognition. For
instance, [193] described such a general modeling scheme utilizing four different attributes,
which directly refer to the mathematical model behind the object representation. In the
following, such a scheme is used to recapitulate and systematize current state-of-the-art
approaches for recognition.

Model-based vs View-based Models

Model-based vision systems look at the world from a geometrical viewpoint. For these sys-
tems describing an object consists of inferring geometrical constraints from different views
of the object in order to obtain a geometrical 3D model. Therefore, object recognition
consists of the process of fulfilling geometric constraints between the current scene and
the object model in order to make a decision about the presence or absence of the object.
The origins of model-based vision can be traced back to Lawrence G. Roberts and his
seminal work [212] where the foundations, formulations, and goals for model-based vision
were established. In a further step [251] formulated the problem of vision as a problem
of satisfying constraints, where projections of 3D objects could be labeled according to
their 3D configuration from a single 2D view. Furthermore, D. Lowe in his paper [157]
introduced the concept of hypothesize and test, where each algorithm is able to hypothesize
a correspondence between a collection of image features and a collection of learned object
features, and then uses this correspondence to generate a hypothesis about the projection
of the object model (called back projection). In a final step the algorithm compares the
rendering to the image and in cases of sufficient similarity, the hypothesis is accepted [94].
The advantage of a model-based viewpoint consists of the fact that geometrical modeling
is invariant to factors like luminance, or viewpoint changes, however, in praxis the reliable
extraction and hypothesizing of abstract geometric representations is difficult.
In contrast to model-based methods, during the 90’s view-based approaches emerged and
have become very popular since they attain a very good performance in praxis (e.g.
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[61, 165, 80, 61, 140, 103]). View-based approaches aim at learning a model of the object’s
appearance in a two-dimensional image under different poses and illumination conditions.
By this, they avoid constructing a 3D model of an object as well as having to make 3D
inferences from 2D features. For instance, an early view-based approach is Poggio and
Edelman [202] which demonstrated how a 3D object can be recognized using the raw in-
tensity values of 2D images. Another view-based approach is the eigenfaces technique of
Turk and Pentland [237], where a face image is represented as a vector of pixel values and
the eigenfaces are the eigenvectors associated with the largest eigenvalues of the covariance
matrix of the sample vectors. During testing, a query intensity vector is projected into the
lower dimensional eigenspace obtaining a vector of weights describing the contribution of
each of the eigenfaces. Thereafter, to determine the class identity of the query vector, the
Euclidean distance to each class (represented by a vector) is minimized.

Holistic vs Part-based models

The term holism refers to the idea that systems should be viewed as a whole, not as a
collection of parts. For instance, view-base models using template matching for object
recognition (e.g. [203]), follow this holistic idea. In its simplest variant the shape of the
object is captured by a binary template and the object is matched by translating and
positioning the template at various locations of the image. This last procedure is called
the sliding windows technique and is used e.g. in [219, 248, 81]. At each position in the
image the distance of the pixel values of the image which lie under the data pixels of the
template is estimated. Based on the matching score, a decision about the presence or
absence of an object instance can be made. Furthermore, invariance to scaling or rotation
can be achieved by additionally searching with scaled and rotated versions of the template.
However, the template is not restricted to be a binary numeric mask, but it allows more
complex templates like [60], where a vector-based template is learned from the training
data and is slid across the image, using convolution operations. Another line of research
within the holistic paradigm is the contour-based method like the work on snakes by [127].
Kaas et al. understands under the snake a spline which is fitted to lines and edges based on
an energy-minimization procedure trades prior knowledge about contour against evidence
from an image.
On the other end of the spectrum, part-based models [93, 136] introduce spatial structure
in the object representation in order to alleviate the limitations of holistic models when
handling highly deformable objects (e.g. articulated objects). Fischler and Elschlager [93]
proposed for the first time a model that combines local templates arranged according to
a geometric configuration. In this case, recognition works by solving the correspondence
between local parts in the image and the model while the global distortion is minimized.
Among part-based models, the geometric configuration between local parts can signifi-
cantly vary, ranging from independent parts like in Bag-of-Words models [56, 224, 84, 243],
to fully connected parts as in constellation models [34, 255, 256, 86, 87]. In the middle be-
tween both extreme systems modeling tree-structured geometrical relations between parts
(first proposed by Felzenszwalb and Huttenlocher [82, 83]) can be found. These tree-
structured models can be seen as predecessors of the work introduced in [80] by the same
author. This work has been awarded with the PASCAL VOC “Lifetime Achievement”
prize in 2010, for its influence in the computer vision community. The model consists of a
tree-structured part-based model, where each of the parts is described by a HoG feature
and only relations to the root-node of the tree are modeled. Objects are found using slid-
ing windows over the image at different scales, and at each position a score of the model is
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evaluated. This score is made out of the matching score of the root-template plus the sum
over the parts matching scores on their location minus a deformation cost measuring the
deviation of the part from its ideal location (relative to the root) learned during training.
The templates are learned based on HoG features using a variation of the linear Support
Vector Machine ([69]) capable of jointly learning the templates and the optimal position
of the parts with respect to the filter.

Generative vs Discriminative Models

The distinction between generative and discriminative models refers to the paradigm how
a model is learned from a set of training images. Generative models pursue the learning of
the optimal class label y of an object x by learning the joint probability density function
p(x, y) (or equivalently p(x|y) and p(y) since p(x, y) = p(x|y)p(y)). Classification is then
performed via the Bayes’ formula

p(y|x) =
p(x|y)p(y)

p(x)
(2.1)

∝ p(x|y)p(y) (2.2)

Examples of popular generative approaches are [85, 147, 218]. Among the benefits of this
class of methods, three advantages can be enlisted [238]: (a) these models can handle
missing data or partially labeled data, (b) a new class y2 can be added incrementally by
learning the class conditional density p(x|y2) independent of the other classes, and (c)
generative models can handle object combinations (e.g. faces with glasses), which were
not seen during training. However, if the goal of a detection system is interpreted as a
decision whether a certain object hypothesis belongs to a certain class or not, learning a
class in a generative manner seems a far more complex task than only learning the decision
boundary that separates instances of a class from other classes. And in fact, V. Vapnik
[51, 69] formulated this objection when he introduced the Support Vector Machines (SVM),
a discriminative classifier which has become a standard classifier for discriminative object
models (e.g. [80, 61, 165]).
Discriminative approaches for object recognition generally work by directly learning a
parametric model for the posterior probabilities p(y|x) from a set of labeled training data.
This class of approaches can be understood as learning a direct mapping from the object
representation to the label space, that is, the mapping y = f(x). For instance, Support
Vector Machines intend to find a hyperplane, which achieves a maximal separation be-
tween two classes so that the distance from it to the nearest data point on each side of
the hyperplane is maximized (s. Sec. 3.5.1 for more details). Different advantages using
discriminative methods can be observed [238]. For instance, discriminative methods are
typically very fast in the prediction of a new sample. Furthermore, whereas generative
models may model details of the distribution of x in irrelevant regions for determining the
posterior probabilities, discriminative approaches use their flexibility in regions where the
posterior significantly differs. Finally, there exist indications that in the asymptotic case
of large training sets, discriminative approaches yield lower error rates than generative
ones [189].

22



2.3 Shape-Modeling Paradigms

Hierarchical vs Shallow Models

Hierarchical models were originally used by biologically inspired object recognition sys-
tems. For instance, an early system is the Neocognitron [97], a multilayered network
consisting of a cascade of alternating layers of neuron-like cells where the C-cells and the
S-cells are the most important ones. Whereas S-cells are only activated when particular
features are present at a certain position in the input layer (e.g. lines with certain orienta-
tion, corners, end points etc.), C-cells receive signals from groups of S-cells which extract
the same feature at different positions. The model starts with a 2-D array of pixels as
input and presents the classification result by the activation of cells in the output layer.
Starting with the Neocognitron many hierarchical models relying on convolutional neural
networks have been introduced in the literature, the HMAX system [211] and the LeNet-5
system [142] are prominent examples of this. The idea behind a convolutional neural net-
work consists of learning a hierarchy of features where higher-level concepts are defined
from lower-level ones [15]. In recent time the construction of such models has been the
goal of a field within machine learning called deep learning that pursues the usage of deep
hierarchical structures for solving different tasks in Artificial Intelligence. For instance, a
convolutional neural network for classification in the presence of large amounts of training
and test data was recently introduced in [135]. This network consists of 60 million parame-
ters and 650, 000 neurons distributed across 5 layers. This achievement has partially been
made possible due to very efficient parallel GPU-based implementations of convolution
operations.
In contrast to hierarchical models view-based models have typically concentrated on shal-
low models which perform classification as directly as possible in the image space. However,
not only non-hierarchical, view-based models like template matching [203] or simple bag-
of-features [57] approaches exist, but also hierarchical view-based models like [273, 80] can
feature a flat hierarchy which is normally used to introduce spatial structure between the
number of model parts. However, the deeper the structure, the higher the complexity that
these models require to deal with. For instance, the recent model of [273] obtains 25947
dimensional features arising from a three-layered structure of HoG features. It becomes
evident that training a discriminative model in this highly-dimensional space requires very
large amounts of training data in order to overcome the course of dimensionality. This
phenomenon first formulated by Richard E. Bellman in [12] refers to the fact that when
the dimensionality of the data increases, the volume of the space increases and the avail-
able data becomes sparse. This sparsity is problematic when a distribution from a finite
amount of data is learned, since sufficient samples are not guaranteed.

2.3 Shape-Modeling Paradigms

The modeling framework presented in the last section is very useful to describe the general
structure of a given model for object recognition. However, the major shortcoming consists
in the limited ability of giving specific modeling insights about the codification of the
object’s shape itself. For instance, if we consider a part-based model this scheme will not
be able to distinguish if the underlying shape model operates with edge contours or if it
uses segments or regions for describing the overall form of the object. Furthermore, that
framework will not take into account the degree of supervision required for constructing the
underlying shape model. Therefore, in the current section we will extend the framework of
section 2.2 with the aim of understanding different paradigms and aspects of how shape has
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Figure 2.1: Different paradigms for shape modeling in object recognition systems. For
more details see section 2.3

been integrated into state-of-the-art object recognition systems. This framework consists
of three attributes which will be described in the following section.

2.3.1 Indirect vs Direct Shape Representation

Indirect shape representations1 are best explained by Bag-of-Features models [56, 224, 84,
243] using shape-based local descriptors (e.g. SIFT, see section 2.1 for more details). In
these models the object is represented by a distribution over a codebook of characteristic
features. During the training phase, features are collected from the training data and these
features are clustered to obtain a codebook. Thereafter, a classifier is trained using the bag-
of-features. For a better localization of the object, sliding windows together with a prune
technique can also be used. From this it is clear that in a bag-of-words approach every
spatial arrangement of the features is disregarded and only the co-occurrence is captured by
this model. The only information about the geometry of the object is indirectly captured
by the features used for the construction of the bags (if the underlying local descriptor is a
shape-based descriptor). Thus, indirect shape representations refer to models, where shape
cues are only captured at the level of the featural representation (that is, the first level of
the representational system as described in section 1.5.1) and not at the model-level itself.
Although an extension of the bag-of-features approach was presented by Lazebnik et al.
[140] who introduced a coarse spatial information into the bag-of-features by subdividing
the image into a regular grid and building separate feature bag descriptors for each cell
individually, to consider this grid-like structure as the true shape of the object is not
straightforward. Moreover, in cases using shape-based descriptors for building the different
bags this model also encodes local geometric information about the shape of the object
also in an indirect and local manner. Lazebnik’s model has a certain similarity to rigid
template matching methods (e.g. [60]), where the shape information about the object
is also indirectly given by the local image description based on histograms of oriented

1This terminology should not be confused with the Implicit Shape Model approach introduced by [144]
which is based on a voting approach and thus, using our terminology can be considered as a direct
shape representation
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gradients.
Opposed to an indirect representation we find a vast amount of models where the shape
of an object is directly used in the model itself. An example of this class of models is the
constellation model. Perona et al. [34, 255, 256] introduced this model, where the joint
configuration of all local parts (encoded through local feature descriptors) is modeled. The
dependencies between the parts can be thought of as a fully connected graph, where a single
part depends on the rest of the parts, this means that no further conditional independence
is assumed. Another class of models which shares the idea of directly modeling the shape
of the object are hough-voting-based approaches [145, 143, 91, 165, 98, 266, 194]. The
idea behind these methods consists in letting local features vote for object hypothesis
(parametrized by location, scale and aspect ratio). These methods directly model the
shape of the object insofar as every local feature (or collection of features) votes for an
object center hypothesis, and once a location is accepted as the location of a class-object,
the shape of the object can be recovered by selecting the features that voted for this
concrete location. In approaches like [228] or [267] this idea of directly recovering the shape
can be better appreciated. For instance, [267] learns a contour shape model within the
Multiple Instance Learning framework where multi-instance sets of contours in an image
are considered. Using these bags the discriminative model recovers the entire object shape
and by doing this a decision about the class membership is taken. Finally, region-based
approaches as described in the next section, are also considered by the current framework
as direct shape representations.

2.3.2 Contour-based vs Region-based Shape Representation

An important decision in the modeling of shape is whether direct contours or rather regions
(e.g. using a combination of superpixels as in [106]) are used to describe the object’s shape.
Although contour-based methods are vast, several lines of work can be distinguished. Be-
sides contour-based voting approaches like [120, 266], active shape models [54, 215, 92],
contour-based shape hierarchies [92] and partial shape matching [210, 228, 161] approaches
can be found. Also template-matching techniques using contours like [120, 154] belong to
this class. The idea behind [195, 120] consists of using a weighted contour-based version of
the hough-voting paradigm. During training, a codebook of contours is gathered and their
relative location is kept. The relative importance of each contour is learned using Ad-
aboost. Thereafter, during testing, the codebook contours are matched to the edge map of
the test image and hypotheses are generated. Furthermore, approaches like [210, 228, 161]
rely on partial matching of the training edge fragments against fragments of the query
image to perform object detection. In some cases (e.g. [210]) hand-drawn models for each
category are required. However, [228] treats long training contours as latent variables and
their placement for the shape model is learned using a latent SVM.
Methods using shock-graphs for describing the shape of the object are also contour-based
[223, 162, 10]. These methods rely on an exact characterization of the silhouette of the
shape given by a shock-graph, which is a labeling and partitioning of the skeleton points
(shocks) making up the medial axis transformation of a shape. This shape description
relies on an excellent segmentation of the image which yields the unoccluded contours of
the object’s shape. For this reason many of these methods have been typically applied only
to silhouette-based recognition where the shapes contain unocluded presegmented closed
contours. Contour-based shape representation models rest on the foundation of a reliable
extraction of contours in an image, which is a difficult task in real-world images.
Complementary to contour-based approaches, region-based models have also been popular
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for object recognition. An important class of these models are subsumed under the term
segmentation-based object recognition [99, 172, 247, 37, 106]. In [37], the authors first gen-
erate a set of class-independent pixelwise figure-ground segmentation masks, distributed
across the entire image using the bottom-up method [38]. These masks are extracted au-
tomatically without prior knowledge about the corresponding class, by solving a sequence
of constrained parametric min-cuts problems on a regular image grid. Thereafter, the
segments are ranked based on their plausibility of being an object. This is achieved by
training a classifier using ground-truth segmentations provided by humans on the Berke-
ley Segmentation Dataset. Once the figure-ground segmentation masks for all images are
provided, the authors in [?] assume that the best ranked segment within the bounding-box
of each positive example covers the entire object. This segment is thus used in turn to
learn a regression function that predicts the quality of query segments for being an object
of the desired class. In a similar fashion, [106] proposed a method for detection using re-
gions. The authors construct a tree using the hierarchical segmentation engine [3], where
each segment represents a node of a tree. Each segment is then represented by different
local features calculated on a regular grid that is superimposed on every segment. During
training, discriminative weights are learned to estimate the importance of each segment.
Finally, during testing, a hough-voting scheme based on segments is used to vote for dif-
ferent object centers, which estimate the location and scale of the objects.
Not only segmentation-based systems belong to the class of region-based shape models but
also models like deformable template matching algorithms belong to this class of meth-
ods, since the different templates can be viewed as constituents of the shape. Deformable
template matching methods [268, 123, 80] were introduced to compensate the limitations
of template-matching methods in the presence of articulated objects. These models ap-
ply a global transformation during the matching process and the objective is to minimize
the deviation between the model template and the query image. In practice bounded
deformations are normally preferred during the energy minimization.

2.3.3 Supervision Degree

Depending on the amount of information available during training, different shape models
can be learned. In addition to bounding-box annotations for the positive samples su-
pervised methods require also manually-annotated information to learn the model. For
instance, [82, 83] proposed a part-based model for recognizing people in images where the
spatial relation between parts are tree-structured. Training requires manually labeling
the part configuration in training images (thus only a small number of parts are used).
Another supervised part-based model with manually-labeled parts is the original version
of the k-fan model [53]. These k-fans are graphs with dependencies between parts, where
the parameter k determines the number of parts considered as reference parts, and all
other parts are dependent on the reference parts. Furthermore, methods like [99, 172, 247]
are region-based models with strong supervision since manually labeled figure-ground seg-
mentation masks are required during training. For instance, [99] augments the bounding
boxes with a set of binary variables, each of which corresponds to a cell of the HoG feature
representing the object. The model is learned using the structured output framework [235]
and is used to improve detection results obtaining a richer output of the detected object.
The main disadvantage of this class of methods is that manually-labeled information is
usually not available for large-scale detection tasks or it is tedious and expensive to obtain.
Recently, the usage of Amazon Mechanical Turk for gathering this additional information
has become popular (s. [64] and references therein). Mechanical Turk is a crowdsourcing
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Internet application that enables the coordination of human resources to perform tasks
that computers cannot do. By these means large amounts of richly-annotated data has
become available for training models. However, the usage of such a system for research
in computer vision presents several difficulties which should not be ignored. Firstly, the
amount of annotated information is proportional to the amount of money invested and
thus an imbalance in research due to the larger monetary power is introduced. Secondly,
it is difficult to evaluate whether the people annotating large amounts of data are doing
this freely or whether they require money as job income. In the latter case it is worth
asking if the money spent is a fair remuneration for the completed work. Finally, using a
fine-grained object annotation may lead to a fine-grained object detection with high per-
formance [64]. However, the more challenging question of obtaining a fine-grained object
detection using a weak or even using any supervision at all remains unanswered. It should
not be forgotten that every annotation used for training a model is an implicit concession
to the fact that computers are still not able to automatically infer this information directly
from the image itself.
On the other end of the spectrum we find shape models which are learned using only
weak supervision (e.g. using only manually annotated bounding-boxes around the ob-
jects of interest) or without any supervised information at all (e.g. [255]). Examples of
weakly supervised methods are [90, 267, 228]. For instance, the contour-based model [90]
constructs a shape model by finding the contours which consistently reoccur within the
bounding-boxes across training instances at similar locations and scales. The relevant seg-
ments are then found maintaining separate voting spaces for different segment types. The
local maximum over these spaces finally yields a model-part having a specific location and
size relative to the training bounding-box. Finally, [255] probably has been the first work
to tackle the problem of fully unsupervised object detection by means of a direct shape
model. The authors build their method on a simplified constellation-like model. First,
they extract highly textured regions in the training images. Using feature selection, they
select only a subset of these regions to learn a generative model by means of the expec-
tation maximization (EM) algorithm. Object detection is then performed by localizing
parts and building object candidates. Thereafter, the learned probability density is used
for calculating the likelihood that a given hypothesis arises from an object.

27





CHAPTER 3

BEYOND STRAIGHT LINES - OBJECT
DETECTION USING CURVATURE

3.1 Using Curvature for Object Recognition

As stated in section 1.4, the representation of shape is one of the most fundamental prob-
lems in the study of the human visual systems ([46]). Evidence has been gathered that
the visual system is predisposed to detect a given image feature, event, or configuration
[261]. In his review J. Wolfe ([262]) agrees with the consensus that there are about eight to
ten basic features that play an important role for visual search tasks1: color, orientation,
motion, size, curvature, depth, vernier offset, gloss and, perhaps, intersection and spatial
position/phase. Regarding curvature as being a basic feature this finding is consistent
with other works (e.g. Treisman and Gormican ([234], Foster and Westland [95])), which
found that curved lines could be found in parallel among straight distractors (see also
[31]). Moreover, when the target is straight and the distractors are curved, the search is
less efficient. This suggests that curvature is a property whose presence is easier to detect
than its absence and could be considered as a basic feature.
The psychologist Jeremy Wolfe [260] developed the guided search model in order to explain
how preattentive processes are used to direct attention. A preattentive process consists of
an accumulation of different signals or stimuli from the environment that are processed rel-
atively quickly and unconsciously by the visual field building a saliency map related to the
current individual thinking. According to Wolfe’s Model the brain generates an attentional
priority based on this saliency map. During a visual search task attention is directed to the
item with the highest priority and if it is rejected by a conscious (or attentive) process the
attention will move then to successive items. Many recent automatic object recognition
systems in computer vision share similarities to the Guided Search Model of Wolfe (e.g.
the deformable part model of [80] builds a dense map of feature responses which are then

1In this framework, a visual search task is an experiment where subjects are asked to look for an item
among distractor items. Whereas, on some trials, a target is present, on the rest of the trials, only
distractors are shown. Furthermore, the subject is instructed to give certain response to indicate that
the target object was found and a different signal to indicate the absence of the target [262].
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3 Beyond Straight Lines - Object Detection Using Curvature

used to prioritize the object search) and the attempt to integrate different stimuli (e.g. in
[245, 77] the usage of different types of features are analyzed) in order to search for objects
of a certain class. The usage of features like color and orientation (s. section 2.1), have
also reached maturity within the field leading to powerful detectors (e.g. [61, 165, 80]),
while others like curvature have not received the same level of attention although some
basic steps have been taken (e.g. [179]).
To yield robust powerful object representations the vision community has now broadly
adopted the theme of histograms of gradients at the lowest level of the representational
system (s. 1.5.1): Almost all present approaches, ranging from semi-local descriptors such
as SIFT [156] to holistic object representations [61, 140, 103], are based on histograms of
local gradient orientation. In effect, the usage of this representation results in a straight
line approximation of object boundaries since local regions are described by a histogram
over a discrete set of edge orientations that they contain. In this framework a smooth
curve cannot be distinguished from one with sharp bends or from a set of differently ori-
ented lines in arbitrary configuration as can be seen in Fig. 3.1. Moreover, natural objects
actually do not exist in a blocks-world domain [225] and have not been designed with a
ruler on a drawing table. Instead they do exhibit characteristically curved boundaries,
e.g., consider the differences between apples and pears.
For these reasons, in the present chapter we extend the widely used object representation
based on gradient orientation histograms by incorporating a robust description of cur-
vature and show that integrating curvature information substantially improves detection
results over descriptors that solely rely upon histograms of orientated gradients (HoG).
The proposed approach is generic in that it can be easily integrated into state-of-the-art
object detection systems. Furthermore, the present method directly deals with the prob-
lem in computer vision systems described in section 1.5.1. That is, since object recognition
systems are based upon an abstraction process the main weakness of current methods re-
sides in the fact that at each level of the abstraction process crucial information about
the object is totally missed and is not used for later tasks to solve the final problem. For
instance, if only orientation of gradients is used, the description of the object’s shape will
be very simple and rather crude. For this reason, the aim of this chapter is to develop
a method which is able to solve the recognition tasks based on a richer and thus more
accurate description of the object’s shape leading to a higher performance of the system.

3.2 The Contribution

The present chapter describes a novel object detection system that efficiently represents an
object shape using both orientation and curvature features. It directly encodes curvature
statistics and uses this shape cue together with the orientation of gradients to perform
object detection. The results presented in this chapter were published in [182] and have
been further used by [77].
The insights gained by this method are threefold:

1. curvature information can be integrated effortlessly into all state-of-the-art object
representations that are based on gradient histograms.

2. this representation has low computational cost

3. it provides complementary object information that significantly enriches the widely
used orientation histograms.
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3.3 Curvature Estimation Methods
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Figure 3.1: (a) Original images, (b) Histograms of oriented gradients, (c) Histograms of
Curvature. A smooth curve cannot be distinguished from one with corners or
from a set of differently oriented lines in an arbitrary configuration based only
on histograms of oriented gradients.

3.3 Curvature Estimation Methods

Curvature estimation in digital spaces, i.e. curves extracted from images, has been studied
in depth and several methods have been proposed. [263, 108] estimate curvature as the
derivative of the tangent direction with respect to the arc-length. Another way of esti-
mating the curvature is used in [45, 240, 204] by calculating the osculating circle touching
the curve. Curvature estimation methods based on the first and second derivative of the
curve can be found in [14, 79, 153], where [79] estimates the derivatives in the frequency
domain of a closed curve by a multi-scale convolution of the curve with different Gaussian
kernels and [153] approximates the curve with a rotated parabola. Finally, [109] proposed
an efficient new approach to approximate discrete curvature at a given point p by means
of the accumulation of Euclidean distances from different secant lines to the point p. This
method has proved to be more stable compared to the curvature-space method [179], where
a boundary is represented as a parametric function of arc length, and inflection points are
detected as stable zero-crossing points over convolution of the shape with Gaussian filters
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3 Beyond Straight Lines - Object Detection Using Curvature

Figure 3.2: Examples of local curvature approximation used by our descriptor on the ETHZ Shape
Dataset.

at different σ levels. Moreover, the calculation of curvature using [109] is extremely fast,
thus making this approach ideal to be used for object recognition purposes.

3.3.1 Curvature Cues for Object Detection

Many methods using curvature information for finding interest points (e.g. high-curvature
points) have been proposed in the literature [96, 5, 176] or more recently [111], [6]. How-
ever, the direct use of curvature information for building object descriptors has seen com-
parably little progress. The early approach of [179] works for object recognition under
the assumption of closed boundaries. Furthermore, modern descriptors like k-AS [88] ex-
plicitly decide not to take curvature into account: “The proposed descriptor considers the
segments as completely straight segments so as to capture only the relevant information
of the geometric configuration they form, and not the unreliable details of the weak cur-
vature along them” ([88], p. 9). Moreover, the simple, yet powerful descriptor proposed
by Dalal and Triggs [61] used for pedestrian detection with further extensions in [165] and
[80] solely encodes orientation of gradients in the form of histograms. Therefore, the aim
of this work is to directly use curvature statistics in a discriminative way to improve object
recognition.
Finally, related to our work is also the paradigm of sliding windows for object detection.
Some work [257, 137] has been recently been devoted to alleviate the immanent efficiency
problems (mainly computational cost) that this framework presents during object local-
ization. [137] presents a branch-and-bound scheme to efficiently maximize certain classes
of classifier functions. Very recently [257] proposed an efficient method for histogram
computation and evaluation of classification functions that has a constant complexity in
the histogram dimensions. This promises that the sliding window framework will remain
a powerful tool for object recognition, especially in combination with histogram-based
descriptors.

3.4 Robust Representation of Curvature

In this section we describe a method to perform object detection based on curvature infor-
mation from shapes and use this information directly as a discriminative feature together
with histograms of oriented gradients (HoG) [61]. We abbreviate the joint descriptor with
HoGC.

32



3.5 Model Learning

A very fast and stable way to approximate the curvature for planar boundaries is to use
the chord-to-point distance accumulation (or distance accumulation) [109]. Let B be a
set of N consecutive boundary points, B := {p0, p1, p2, · · · , pN−1}. The set of points is
obtained by following the edge contours of objects in a clockwise direction. Each pair of
points pi and pi+l defines a line Li, where i + l is taken modulo N . Li depends on the
parameter l whose adjustment is explained later in this section. For each point pk the
perpendicular distance Dik from the line Li is computed, using the Euclidean distance.
The distance accumulation for a point pk and a chord length l is the sum

hl(k) =
k∑

i=k−l
Dik. (3.1)

[109] showed that equation (3.1) is more stable, regardless of different values of l, than
in Gaussian smoothing curvature calculation methods, which give dislocation, broadening
and flattening of the features ([259]). Furthermore, it was shown that in the analytical case,
the chord-to-point distance accumulation asymptotically approximates (up to a constant)
the true curvature of the boundary.
Given an image, we first extract edges using the Berkeley edge detector [173]. Connected
components on the binarized edge map yield a set of segments Bj . Using these segments
we calculate the distance accumulation given in equation (3.1). To be robust against the
choice of l we choose a bank of values {l1, · · · , ln} ranging from between 5 and 40 pixels
and take for every point pi on segment Bj the median

cj(pi) := median

{
hls(i)

l3s

∣∣∣∣ s = 1, · · · ,n
}

(3.2)

as a boundary feature. In Fig. 3.2 we show some examples of the curvature of natural
images.
The idea behind the HoG descriptor of Dalal and Triggs [61] is that local statistics about
intensity and orientation of gradients can encode the appearance and shape of objects.
Curvature information of shapes can be encoded in a similar way. We divide the image into
connected cells and for each cell we build a 1D histogram of curvature information. For this,
we discretized the values cj(pi) from Eq.(3.2). Each pixel then casts a vote proportional
to the gradient magnitude. Following a “soft binning” approach, it also contributes to
the histograms in the four cells around it using bilinear interpolation. In practice, to
calculate both the histograms of oriented gradients and histograms of curvature, the image
is divided into grids of increasing resolutions for 4 levels, and histograms from each level
are weighted according to w = 2l−1, where l = 1 is the coarsest scale and the histograms
are concatenated together to form a feature vector that encodes local and global curvature
statistics of the image. The range of values from Eq.(3.2) is subdivided into 10 equally
sized bins.

3.5 Model Learning

3.5.1 Support Vector Machine (SVM)

In this section we briefly review a discriminative model for classification which we use to
learn our object recognition model. Support Vector Machines (SVMs) were first introduced
by Vladimir N. Vapnik who together with Corina Cortes extended the idea in 1995 by using
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3 Beyond Straight Lines - Object Detection Using Curvature

soft-margins [51]. This last approach became the standard form of this method for object
recognition applications [61, 165, 80, 245].

Linear SVM

Suppose we are given a set of objects (x1, y1), · · · , (xm, ym),xi ∈ H, yi ∈ {±1}, where H
is any fixed dot product space and yi are the corresponding labels (1 for positive and −1
for negative samples). Since any hyperplane in H is defined as

{x ∈ H| < w | x >= 0}, w ∈ H, b ∈ R (3.3)

can be transformed to its canonical form with respect to xi, i = 1, · · · ,m, that is

min
i=1,··· ,m

| < w | xi > +b| = 1, (3.4)

the function

fw,b : H → {±1} (3.5)

x 7→ fw,b(x) = sign(< w | x > +b) (3.6)

can be considered as a decision function2 . The goal of a SVM consists then in finding a
decision function fw,b such that

fw,b(xi) = yi, (3.7)

(if such a function exists. The case where such a function does not exist will be treated in
a later section). Since we assumed a canonical form (3.4), it follows

yi(< w | xi > +b) ≥ 1. (3.8)

Therefore, a SVM solves the following primal optimization problem

min
w∈H,b∈R

1

2
‖w‖2, (3.9)

s.t yi(< w | xi > +b) ≥ 1, (∀i = 1, · · · ,m). (3.10)

The Lagrangian formulation of the problem transforms then into

max
αi

min
w,b

L(w, b, α) =
1

2
‖w‖2 −

m∑
i=1

αi(yi(< w | xi > +b)− 1) (3.11)

αi ≥ 0. (3.12)

Since in the saddle point, the derivatives must vanish, we obtain

∂

∂b
L(w, b, α) = 0 ⇒

m∑
i=1

αiyi = 0 (3.13)

∂

∂w
L(w, b, α) = 0 ⇒ w =

m∑
i=1

αiyixi. (3.14)

2In a 2D space this function can be understood as an indicator of the side where certain samples lie
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3.5 Model Learning

Thus, if we substitute the solutions w, b into the decision function (3.5), we are able to
evaluate the function only in terms of dot products taken between the input samples

f(x) = sgn

(
m∑
i=1

αiyi < x | xi > +b

)
(3.15)

The samples xi, for which αi > 0, are called Support Vectors in the literature. Finally, it
can be noticed that if we substitute the solutions w, b into the Lagrangian problem (3.11),
we obtain the following formulation

max
α∈Rm

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj < xi | xj >, (3.16)

s.t. αi ≥ 0 (∀i = 1, · · · ,m), (3.17)

m∑
i=1

αiyi = 0 (3.18)

Soft Margin SVM

In the last section, we assumed that there exists a decision function which fulfills Eq. (3.7),
however, in praxis the existence of such a separating hyperplane is not guaranteed. To
alleviate this problem, Cortes and Vapnik [51] proposed a different approach for the SVM.
The idea behind it was to ask for an algorithm which would return a hyperplane leading
to the minimal number of margin violations, that is, violations of the constraints (3.7).
This was modeled by introducing the so-called slack variables

ξi ≥ 0, where , i = 1, · · · ,m (3.19)

relax the constraints of (3.9) to

yi(< w | xi > +b) ≥ 1− ξi, (∀i = 1, · · · ,m). (3.20)

and transform the objective function in (3.9) to

min
w∈H,ξ∈Rm

1

2
‖w‖2 +

C

m

m∑
i=1

ξi, (3.21)

for a given constant C. It can be shown [222], that this problem results in a similar
formulation as 3.16, however adding the box constraints

0 ≤ αi ≤
C

m
. (3.22)

Nonlinear SVM and the Histogram Intersection Kernel

Until now we only considered linear decision functions of the form sign(< w | x > +b),
however, it is possible to allow more general decision functions. To introduce this new
class of SVM, the concept of kernel is required, which can be regarded as a generalized
dot product without linearity in the arguments [222]. A kernel is a function

k : X 2 → K, (K = R or K = C) (3.23)

35



3 Beyond Straight Lines - Object Detection Using Curvature

from a non-empty set X to the real or complex numbers, which for all m ∈ N and all
xi, i = 1, · · · ,m ∈ X gives rise to a positive definite matrix Kij := k(xi, xj). The concept
of a kernel is relevant for our purposes, since it can be shown ([222], sec. 2.2.2) that for any
given kernel, a pre-Hilbert space (a vector space with an endowed dot product < · | · >B)
can be constructed such that k(x, x̂) =< φ(x) | φ(x̂) >B, where φ is the projection of the
data into the pre-Hilbert space. Therefore, on the practical level, due to the kernel trick
([222], s. 34), the above argumentation, and equation (3.16), the support vector Machine
can be calculated directly using a kernel instead of the standard dot product of the last
section. In other words, if we are interested in using a kernel in order to calculate the
distances between the different objects’ representations, then we can substitute the dot
product used in the last section with our kernel and calculate the SVM using the kernel
matrix K estimated from the training samples. Thus, the decision function in Eq. 3.15
when the dot product is substituted by the kernel yields

f(x) = sgn

(
m∑
i=1

αiyik(x,xi) + b

)
(3.24)

For histogram-based object representations, the usage of the histogram intersection kernel
has shown to be a useful kernel for measuring the dissimilarity between object representa-
tions ([103]). This kernel was first introduced in [229] for color indexing with an application
for object recognition. If we denote with x and z two histograms, both consisting of n
bins and the i-th bin is denoted with x(i) and z(i) respectively, then the kernel is defined
as follows

Kint(x, z) =
n∑
i=1

min{x(i), z(i)} (3.25)

Furthermore, in [190] its positive definiteness was proved thus making it suitable to be
used within the SVM framework.

3.5.2 Intersection Kernel SVM to Learn Curvature Representation

Because of the histogram-nature of our curvature representation (sec. 3.4), we use a his-
togram intersection kernel (as described in sec. 3.5.1) together with a SVM as a classifier.
Specifically, in order to further accelerate our method, we utilize the SVM variant of [164],
which proposed an approximation method for the Intersection Kernel SVM, which essen-
tially reduces the runtime of the classifier to that of a linear SVM. This is done by realizing
that the complexity of evaluating a SVM with histogram intersection kernel is O(mn) since
substituting Eq. (3.25) into (3.24) yields

f(x) =
m∑
l=1

αlyl

(
n∑
i=1

min{x(i), xl(i)}

)
+ b (3.26)

=
n∑
i=1

(
m∑
l=1

αlyl min{x(i), xl(i)}

)
+ b (3.27)

:=

n∑
i=1

hi(x(i))︸ ︷︷ ︸
(∗)

+b, (3.28)
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where the complexity for computing each (∗) is O(m). This last computation can be
reduced to O(logm) by showing that it can be written as a piecewise continuous linear
function

hi(s) =

m∑
l=1

ᾱlȳl min{s, x̄l(i)} (3.29)

=
∑

1≤l≤r
ᾱlȳlx̄l(i) + s

∑
r≤l≤m

ᾱlȳl (3.30)

:= Ai(r) + sB(r), (3.31)

where x̄l(i) denotes the sorted values of xl(i) in increasing order with corresponding α’s
and labels ᾱl and ȳl. In this case, if s < x̄l(i) then hi(s) = 0, otherwise r is the largest
integer such that x̄r(i) ≤ s. Both terms in function (3.31) are independent of the input
data and only depend on the support vectors and α. Therefore, hi(x̄r) can be precom-
puted as well as hi(s) by first finding r, the position s = x(i) in the sorted list x̄i using
binary search and interpolating between hi(x̄r) and hi(x̄r+1). Thus, the complexity for
computing f(x) reduces to O(logmn).

We train our model with an initial randomly picked subset of negative examples and
then collect negative examples that are incorrectly classified by the initial model. A new
model is trained using the new negative examples and the support vectors from the old
model. We repeat this procedure three times. To detect an object instance the classifier
is run in sliding window mode over different locations and scales. Note that using this
setting, curvature does not have to be scale invariant to be used as a descriptor since the
curvature computation is performed for different sizes of the sliding window, i.e. curvature
is computed on different scales during detection.

3.6 Experimental Results

The objective of our experiments is to show that the direct use of curvature as a feature
yields orthogonal shape information that helps to improve object detection results. Quan-
titatively this means that the use of our combined object descriptor should yield a higher
average precision and a lower false positive rate for the same recall over the HoG descriptor
using the same implementation.
We report our results on two challenging datasets: the ETHZ Shape Dataset and the
INRIA horses. The ETHZ Shape Dataset contains 255 images belonging to five different
classes. We follow the standard experimental protocol for creating training and test sets.
The the INRIA horses dataset consists of 170 images containing one or more side-viewed
horses and 170 images without horses. 50 horse images and 50 negative images are used
for training and the remaining 120 horse images plus 120 negative images are used for
testing. In our experiments we are following the standard PASCAL setting for counting
true positives and false positives among the predicted bounding boxes. In table 3.1 we
compare the performance of our approach with several state-of-the-art detector systems
[165, 107, 228] at 0.3, 0.4 and (for the INRIA horses) 1 FPPI. Our HoG baseline imple-
mentation uses HoG and IKSVM, like the currently best reported results of a HoG based
detection system on ETHZ [165]. Note that [165] searched over different aspect ratios for
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some categories in the ETHZ Shape Dataset (e.g. Giraffes and Mugs). This explains the
differences in the baseline results (HoG vs. IKSVM). Our final detector HoGC clearly
improves performance over the baseline HoG detection system on both datasets. Fur-
thermore, our approach outperforms the voting approach suggested in [107]. In addition,
we compared our detection system with the descriptive shape model (DSM) suggested in
[228]. This approach performs slightly better than our HoGC descriptor on the ETHZ
Shape dataset since it also adds a deformable part model to the holistic approach. As
reported in [1] the average performance improves about 8% on PASCAL VOC 2007 when
adding part-based HoG descriptors. However, we decided for a fair comparison with HoG
implementations to use the standard setting without parts. Furthermore, detection takes
several minutes per image using the descriptive shape model, whereas using HoGC is one
order of magnitude faster.
Figures 3.3 and 3.4 compare our approach with the state-of-the-art HoG detector. We
remark that the authors in [165] did not include FPPI or precision-recall curves for their
IKSVM + HoG detector for the ETHZ Shape Dataset. By incorporating curvature in-
formation, our combined HoGC representation outperforms HoG results in all categories
of the ETHZ Shape Dataset and on the INRIA horses. We achieve an average gain of
7.6% in AP on the ETHZ Shape Dataset and of 12.3% on the INRIA horses. For the
ETHZ Shape Dataset we get on average a 5.4% higher detection rate at 0.3 FPPI and at
0.4 FPPI; an improvement of 7%. On the INRIA horses we improved the recall by 8.7%
at 0.3 FPPI, 7.6% at 0.4 FPPI and 3.2% at 1 FPPI. For the sake of completeness, we
also included detection results of our system solely using curvature information. However,
the suggested curvature feature was never intended to be used in solitude and for that
reason does not contain redundant information of the HoG descriptor, like the orientation
of curvature. That explains the drop in performance when using curvature without HoG
while the combination of both significantly improves state-of-the-art HoG object detection
methods. These results approve our initial hypothesis that curvature is a complimentary
feature to HoG.

3.7 Discussion

The main contribution of this chapter is to provide quantitative evidence that curvature
information of objects can be discriminatively used in a robust and reliable manner for
object recognition. Our results show that the use of curvature information yields orthogo-
nal information to the state-of-the-art theme of histograms of oriented gradients for visual
search tasks. Combining both leads to improved accuracy and performance on standard
datasets and significantly improves the state-of-the-art detection system solely based on
HoG. The proposed curvature-based object representation is generic, efficient to compute,
and it can be effortlessly integrated into all current object models that utilize histograms
of gradients. Thus a wide applicability is automatically granted.
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3.7 Discussion

Table 3.1: We compare the performance of the HoGC against the state-of-the-art detector IKSVM
[165] for the ETHZ Shape Dataset. We follow the standard setup of HoG and search
over location and scale, but not over aspect ratios. This explains the performance gap
between our HoG and IKSVM [165] on ETHZ. [228] deviate from HoG by adding a
computationally costly part-based model .

ETHZ Shape: Average Precision
Curv. HoG HoGC

Applelogos 72.3 86.7 92.5
Bottles 72.0 79.0 88.4
Giraffes 31.0 56.0 60.1
Mugs 34.1 71.2 82.2
Swans 50.2 59.4 66.9
Average 52.1 70.4 78.0

Table 3.2: We compare the performance of the HoGC against the state-of-the-art detector IKSVM
[165] for the the INRIA horses dataset.

INRIA Horses: Average Precision
Curv. HoG HoGC
52.2 71.3 83.6

Table 3.3: ETHZ Shape Dataset: False positives per image at 0.3, 0.4 and 1 recall. We
follow the standard setup of HoG and search over location and scale

ETHZ Shape: Recall @ 0.3/0.4/(1) FPPI
Curvature HoG IKSVM [165] Voting [107] DSM [228] HoGC

Applelogos 86.3/91.2 90.0/90.0 90.0/90.0 90.6±6.2/- 95.0/95.0 100/100
Bottles 92.8/96.4 96.3/96.3 96.4/96.4 94.8±3.6/- 100/100 96.4/96.4
Giraffes 43.0/43.0 72.3/78.7 79.1/83.3 79.8±1.8/- 87.2/89.6 74.4/85.1
Mugs 54.8/54.8 87.1/87.1 83.9/83.9 83.2±5.5/- 93.6/93.6 90.3/93.5
Swans 76.4/76.4 82.3/82.3 88.2/88.2 86.8±8.9/- 100/100 94.1/94.1
Average 70.6/72.3 85.6/86.8 87.5/88.4 87.1±2.8/- 95.2/95.6 91.0/93.8

Table 3.4: INRIA Horses: False positives per image at 0.3, 0.4 and 1 recall.

INRIA Horses: Recall @ 0.3/0.4/(1) FPPI
Curvature HoG IKSVM [165] Voting [107] DSM [228] HoGC

53.2/56.5/72.8 81.5/82.6/91.3 -/-/86.0 -/-/- -/-/- 90.2/90.2/94.5
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3 Beyond Straight Lines - Object Detection Using Curvature

Figure 3.3: Precision Recall Curves for ETHZ Shape dataset comparing curvature only (red), HoG
(green) and HoGC (blue).
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Figure 3.4: Detection performance against FPPI for the ETHZ Shape dataset comparing curvature
only (red), HoG (green) and HoGC (blue).
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3.7 Discussion

Figure 3.5: Precision Recall Curve and detection performance against FPPI for the the INRIA
horses dataset; comparing curvature only (red), HoG (green) and HoGC (blue).

(a) (b) (c) (d)

Figure 3.6: Detection results using standard HoG (implementation of [165]) (first two columns)
and results using HoGC (last two columns). First detection is outlined in red and
false positives in dashed black. These examples illustrate a general finding in this
database that compared to the widely used HoG, our proposed representation yields
a better localization of the maxima compared to ground-truth and generation of less
false-positives.
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CHAPTER 4

BEYOND BOUNDING-BOXES:
LEARNING OBJECT SHAPE BY
MODEL-DRIVEN GROUPING

4.1 Going Beyond Bounding-Boxes

As seen in chapter 2, object detection typically proceeds by localizing object bounding-
boxes (e.g. [80]), which are parameterized by their location, scale, and aspect ratio.
A classifier is then evaluated for each detection window, thereby providing hypotheses
that are ranked by their score. Such approaches have proven to be very successful for
benchmarks, but there are two issues that remain unresolved. First, objects are not
box-shaped and so the detection window contains a significant amount of background
clutter that tends to deteriorate the whole window’s classification result. And indeed,
even complex models like [80] are eventually based on a holistic representation of the whole
bounding-box, including the clutter. The second problem is that the object shape becomes
only available for detection once the object has been segregated from the background. To
overcome both problems, not only background suppression is required, but also reasoning
about the object shape is essential. Recent work (e.g. [151]) in the field of segmentation
has shown that relying only on low-level cues is not enough. Furthermore, it appears
reasonable to combine class-specific top-down information to achieve better results. The
purpose of this chapter is to learn object models for detection by explicitly representing
object shape and segregating it from the background, without, however, requiring manual
segmentation of the training samples. Therefore, we propose a model-based approach
that does not require supervision, but automatically learns object shape and appearance
while segregating objects from the background. Since we use more than a mere bottom-up
segmentation, we are able to capture the overall object shape in a model-driven manner
by grouping the corresponding foreground regions.
Finally, in section 1.5.1 we observed how an object recognition system can be understood
as an abstraction process or mapping between the image level and the space of object
representations. From this perspective, the method introduced in this section corroborates
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4 Beyond Bounding-Boxes: Learning Object Shape by Model-driven Grouping

the observation that using a richer description of the object’s shape in the underlying class-
model of the system helps to improve the overall detection performance of the system. The
presented results were published in [184]

4.2 Novelty of the Approach

The present approach constitutes an advance with respect to the state-of-the-art. This
can be seen by first considering supervised methods like ([99, 172, 247]). The disadvan-
tage of these methods is that they require ground-truth pixel-wise segmentation masks
during training. Such information is usually not available for large-scale detection tasks
(s. section 2.3.3) or is tedious and expensive to obtain, so we are proposing an automatic
MIL learning-based (s. section 4.5.2) approach to circumvent these shortcomings. On
the other hand, we have methods which only require bounding-box information during
training [166, 232, 254, 41, 37, 106, 243]. These methods differ in the way shape in-
formation is integrated into the detection task. Pure bottom-up methods [166, 232] are
susceptible to segmentation artifacts. While [166] directly classifies bottom-up generated
segments using a k-nearest neighbor classifier, [232] computes hierarchical segmentations
to find object subtrees similar to those learned during training. [254, 41] can be viewed
as top-down approaches. [254] divides the bounding-box into cells and infers an occlu-
sion map by clustering the response scores of a linear SVM on each cell, where occluded
regions are defined as the groups with a negative overall response. This approach does
not use any shape information to train the linear SVM. Furthermore, negative response
scores can also be caused by occlusion or by other factors, such as background or an
uncommon shape. Based on the model of [273], [41] attempts to capture the object’s
shape by means of a fixed number of coarse box-shaped patterns. Finally, methods like
[106, 37, 243] attempt to combine bottom-up and top-down cues. For instance, Gu et al.
[106] proposed a method for detection using regions. Starting with regions as the basic
elements, a generalized Hough-like voting strategy for generating hypotheses is used (see
[194] for improvements to the idea of voting). The method’s drawbacks are twofold. First,
it needs a general sliding window classifier for verification, which does not take shape into
account. Second, ground-truth pixel-wise segmentation masks for the training data are
required. Recently, [37] proposed a method for object detection based on the category-
independent figure-ground segmentation masks of [38]. To train with only bounding-box
information, the authors assume that the best ranked segment within the bounding-box
covers the entire object. This segment is thus used to learn a regression function that
predicts the quality of query segments. Consequently, the performance of their detection
system is highly susceptible to the fact that the first bottom-up generated segment ac-
tually covers the entire object. In datasets like PASCAL VOC we observe that in many
images this assumption is too strong. Finally, [243] utilizes multiple over-segmentations to
propose class-independent bounding-boxes for classification. However, the authors discard
the shape information contained in the super-pixels. They sample at each pixel 5 different
color features and utilize them within a standard bag-of-words model to classify the object.
Thus, the question of using the foreground object shape for object detection remains open.
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4.3 Suppressing the Background

Figure 4.1: Object representation (best viewed in color). We divide the bounding-box
into cells and calculate features on each cell. Inferring a foreground segmen-
tation cell-mask from unsegmented training data, we suppress the background
features by setting the corresponding cells to zero.

4.3 Suppressing the Background

Detection window approaches like [60, 80] have demonstrated a good performance in dif-
ficult benchmarks. Consequently, such a framework offers us a good basis to implement
our idea. The detection window is commonly divided into a grid of cells and we learn
object shape in order to suppress cells in the clutter and concentrate on the actual object.
In this section we describe how to model a foreground/background segregation.
Suppose an object Oj within image I is given and we assume for a moment a pixel-wise
foreground object’s segmentation is also given. In the next section we will describe how
to automatically learn a cell-accurate shape estimation for the object’s foreground.
First, we divide the bounding-box j into an array of size l0×h0. For each cell we calculate
a d−dimensional feature. This l0 × h0 × d matrix is called φ̂0(p

j
0), where pj0 = (x, y) is

the top-left position of the bounding-box in image I. Specifically, in this chapter we use
histograms of oriented gradients (HoG) as features. These widely used and fast to calculate
descriptors capture the edge or gradient structure that is very characteristic of local shape.
Additionally, they exhibit invariance to local geometric and photometric transformations
([80, 60]). However, our framework is independent of this specific choice of features. A
combination of different descriptors (e.g. like in [243]) can be integrated into our model
and should enable further performance improvements.
The foreground of an object is modeled by defining a binary vector mj

0 ∈ B1×l0h0 . This
vector contains ones if the corresponding cell is covered by the object, otherwise it is zero.
We call this vector mj

0 the root-cell mask for object Oj (part-cell masks are introduced in

Sec. 4.8). Using mj
0 we set to zero the cells of φ̂0(p

j
0) corresponding to the zero entries in

mj
0. Formally, the foreground representation of object Oj is defined as

φ0(p
j
0,m

j
0) := (mj

0 ⊗ 1d)� φ̂0(pj0), (4.1)

where ⊗ defines the Hadamard-Product and � the element-wise multiplication. Fig. 4.1
shows how to suppress the background of a bounding-box if a root-cell mask for the object’s
foreground is given.
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4 Beyond Bounding-Boxes: Learning Object Shape by Model-driven Grouping

Figure 4.2: Left: the first column shows a detection and the last two columns the two most
similar prototypical segments. Right: Subset of prototypical segments for the
category cow.

4.4 Matching Objects

Due to different pose variations, occlusion and clutter, the foreground root-cell masks
mj

0 and mu
0 of two objects may differ substantially. Therefore, building an Euclidean

dot product between the feature representations φ0(p
j
0,m

j
0) and φ0(p

u
0 ,m

u
0) as [99] or [80]

do, will lead to unstable matching scores. Rather than using a simple dot product, we
represent each object with a prototypical set of shape segments C0 = {m̄ι

0}νι=1. This
set of segments is automatically learned from unsegmented training data (see section 4.7
for more details). The idea is to reduce the high intra-class shape variability by using a
reduced number of typical class-specific views of its shape. We then use a weighted sum
to match both representations. Precisely, the matching score is given by

d0(φ0(p
j
0,m

j
0), φ0(p

u
0 ,m

u
0)) :=

1

ν

ν∑
ι=1

< a(mj
0, m̄

ι
0)φ0(p

j
0, m̄

ι
0), a(mu

0 , m̄
ι
0)φ0(p

u
0 , m̄

ι
0) >, (4.2)

where

a(mj
0, m̄

ι
0) := exp

(
−β ∗ ‖m

j
0 − m̄ι

0‖2
|m̄ι

0|

)
(4.3)

represents the dissimilarity score between the root-cell mask mj
0 and the prototypical root-

cell mask m̄ι
0. The parameter β is obtained by cross-validation. In our experiments, we

obtained an optimal value in the range of 1.1 ± 0.1 for the different object classes. Here
|m̄ι

0| represents the total number of active cells in the prototypical root-cell mask m̄ι
0.

Equation (4.2) induces a Mercer kernel, since the sum of Mercer kernels is a Mercer
kernel again. By the “Kernel Trick“ we know, that there exists a (possibly unknown)
transformation Φ into a space in which the kernel (4.2) is a scalar product. To keep the
notation simple, we identify Oj := Φ(φ0(p

j
0,m

j
0)) and refer to this scalar product as

< Oj ,Ou >CB:= d0(φ0(p
j
0,m

j
0), φ0(p

u
0 ,m

u
0)). (4.4)

In praxis we do not need to evaluate the function Φ to learn our model, but use the kernel
values instead. By defining the kernel (4.2) we have integrated both of our goals into the
detection window approach: We suppress the features corresponding to the background
and robustly represent the shape of an object through a prototypical set of shapes.

Let us assume for the moment that for all objects Oj in the training data with their
root-cell masks mj

0 containing the whole object foreground are given. The training set is
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denoted by {(Oj , yj)}. Here yj ∈ {1,−1} denotes the label of object Oj = Φ(φ0(p
j
0,m

j
0)).

In this special case, we could easily learn a discriminative function

f(φ0(p
q
0,m

q
0)) =

∑
i∈SV

−yiαid0(φ0(pq0,m
q
0), φ0(p

i
0,m

i
0)) + b (4.5)

to classify the query object φ0(p
q
0,m

q
0) (SV is the set of support vectors). However, in con-

trast to [99], we are not provided with the foreground root-cell masks mj
0 during training,

but rather we automatically learn them from unsegmented training data. This is described
in the next section. Similar to [99], [37] assumes that the best-ranked foreground segmen-
tation mask of [38] covers the whole object. In practice this assumption is, however, not
valid: The second row of figure 4.3 shows the best ranked CMPC segments that lie within
the object bounding-box. None of them covers the whole object exactly.

4.5 Learning from Unsegmented Training Data

Before we introduce our approach it is necessary to first introduce the underlying general
learning paradigm which is called Multiple Instance Learning or MIL. This will be done
in the next subsection and thereafter we will describe how to use this paradigm in our
context.

4.5.1 Multiple Instance Learning (MIL) paradigm

The underlying idea behind MIL consists of a variation of the classical supervised learning
task (s. SVM in section 3.5.1). Supervised discriminative learning algorithms infer a
decision function (classifier) from labeled training data pairs (xi, yi), where xi is the input
pattern and yi its corresponding label. Instead of considering pairs (xi, yi), MIL algorithms
receive as input sets or bags containing several instances and labels for each of the bags. A
bag is commonly considered positive if all instances within it are positive, and as negative
if at least one instance within the bag is negative ([67, 2]). The task of the learned classifier
is either (a) to infer the label of all instances within a test bag or (b) infer the label of
the bag without inferring the label of the contained instances. The general idea of MIL
was first proposed by Dietrich et al. [67], where axis-parallel rectangles bounding positive
examples were learned to classify the bags (i.e. this approaches solves task a). Since
the introduction of SVMs for solving the MIL task by Andrews et al. [2], several other
algorithms have been proposed in literature [66, 100, 32, 272, 252]. However, the main
idea can be understood considering two variants of SVM-based MIL learning methods
introduced by Andrews et al. in [2]. Both methods are called MI-SVM and mi-SVM
which we briefly review in the following. For simplicity we will formulate both approaches
using linear SVMs as described in section 3.5.1. However also nonlinear kernels can be
used for solving the task.
Given a set of input patterns x1, · · · ,xm grouped into bags B1, · · · ,Bn, with

BI := {xi : i ∈ I} (4.6)

for given index sets I ⊆ {1, · · · ,m}. A bag-label YI is associated with each bag BI and
the relation between instance label yi and bag-labels can be expressed as YI = maxi∈I yi
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or alternatively as a set of linear constraints∑
i∈I

yi + 1

2
≥ 1, ∀I s.t. YI = 1

yi = −1, ∀I s.t. YI = −1

mi-SVM

The mi-SVM formulation

min
yi

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi (4.7)

s.t. ∀i : yi(< w | xi > +b) ≥ 1− ξi, ξi ≥ 0, yi ∈ {−1, 1} (4.8)

∑
i∈I

yi + 1

2
≥ 1, ∀I, s.t. YI = 1 (4.9)

yi = −1, ∀I s.t. YI = −1 (4.10)

treats the labels yi of xi belonging to a positive bag as unknown integer variables. There-
fore, the mi-SVM formulation maximizes a soft-margin together with label assignments
as well as hyperplanes, leading to a mixed-integer program. This differs from the stan-
dard SVM formulation (section 3.5.1), where labels yi for all instances are known and the
problem reduces to the hyperplane estimation.

MI-SVM

This formulation is an alternative to mi-SVM and extends the notion of margin from
individual instances to bags. Here, the prediction for a bag takes the form

ŶI = sgn max
i∈I

(< w | xi > +b) , (4.11)

where maxi∈I (< w | xi > +b) can be seen as a generalization of the margin for bags. In
this formulation, only one pattern per positive bag matters, since it will define the bag-
margin. Once this instance is identified, the position of all other instances in the bag
become irrelevant. Using this notation, the MI-SVM version of MIL is defined as

min
w,b,ξ

1

2
‖w‖2 + C

∑
I

ξI (4.12)

s.t. ∀I : YI max
i∈I

(< w | xi > +b) ≥ 1− ξI , ξI ≥ 0. (4.13)

It is worth noting that in this case only slack variables for bags are defined. Furthermore,
the MI-SVM formulation can also be cast as a mixed-integer program. For positive bags
an integer variable 1 ≤ z(I) ≤ |BI | is used to indicate the ”most positive“ member
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Figure 4.3: First row: We simultaneously detect and infer the object foreground. Second
row: We show our data-driven grouping from which we infer the foreground
of our object. For complex categories we cannot assume that the first CMPC
segment covers the whole object.

xz(I) ∈ BI and thus the constraint (4.13) reduces to < w | xz(I) > +b ≥ 1 − ξI resulting
in the formulation

min
z

min
w,b,ξ

1

2
‖w‖2 + C

∑
I=1

ξI (4.14)

s.t. YI(< w | xz(I) > +b) ≥ 1− ξI , (∀I) (4.15)

(< w | xz(I) > +b) ≥ (< w | x > +b), ∀x ∈ BI , I (4.16)

ξI ≥, ∀I (4.17)

where constraint (4.16) is added to enforce that xz(I) ∈ BI is the ”most“ positive member
of the bag. Whereas in this formulation instances belonging to negative bags do not have
any impact on the objective function, positive bags BI are represented by a single instance
xz(I) ∈ BI .
Both formulations MI-SVM and mi-SVM also hold for the general case, where a kernel
function is used (s. section 3.5.1).
In order to solve the program 4.14, the authors in [2] proposed a two stage greedy algo-
rithm, which alternates the following steps:

• for given z(I) (∀I : YI = 1), solve the resulting SVM to estimate the optimal hyper-
plane

• for a given hyperplane, update the integer variables z(I) in a way that the objective
function is locally minimized.

The last step is run for each bag independently choosing the instance which reduces the
objective function the most.

4.5.2 Our Model: Using MIL to Find Foreground Masks

The question now is how to learn the classification function f if the foreground root-cell
masks mj

0 are not given during training?
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Given a discriminatively trained function f , the problem of inferring the foreground root-
cell mask mj

0 for an object Oj can be formulated as

mj
0 = argmax

m0

f(φ0(p
j
0,m0)) (4.18)

i.e. the inference (4.18) is tackled by grouping cells in a model-driven, top-down manner
so as to maximize the classification score.
We simultaneously learn the function f and solve the grouping problem by formulating
our problem in the Multiple Instance Learning (MIL) framework. Here, a bag contains
features corresponding to different root-cell masks. For positive instances, at least one of
these features corresponds to the foreground of an object. In the ideal case, a bag Bj

0

would contain all possible combinations of cells within the bounding-box. Since this is not
tractable, in the next section we describe how to create a shortlist of meaningful groups
in a bottom-up manner. Suppose we obtain l different groups for a bounding-box j. The
i-th group is represented by a root cell mask mj

0i and build the set U j := {mj
0i}li=1. A bag

is then defined as

Bj
0 :=

{
φ0(p

j
0,m

j
0i)|m

j
0i ∈ P (U j)

}|P (Uj)|

i=1
, (4.19)

where P (U j) is the power set of U j . If the bounding-box contains an object, the label Yj
of the bag Bj

0 is set to 1, otherwise it is −1. Using our kernel (4.2) the problem of learning
the function f transforms into:

min
w0,b,ξ

1

2
‖w0‖+ C

∑
I

ξI (4.20)

s.t. ∀I : YI max
i∈I

(< w0,OIi >CB +b) ≥ 1− ξI , ξI ≥ 0, (4.21)

here OIi = Φ(φ0(p
I
0,m

I
0i)) are object hypotheses and denote the elements within the bag

I. Once the function f is learned, the inference problem (4.18) for a query image is
transformed into

mj
0 = argmax

mj0i∈P (Uj)

f(φ0(p
j
0,m

j
0i)) (4.22)

In other words, in (4.22) we look for the “most“ positive instance within Bj
0 and by doing

this, we indirectly infer the corresponding root-cell segmentation mask mj
0 (s. first row

of Fig. 4.3). In practice the optimization problem (4.20) is solved using the MI-SVM
formulation of Andrews [2] described in the last section (s. section 4.5). Specifically, the
calculation of the hyperplane w0 and bias b is alternated with the calculation of the margin
for the positive bags: YI maxi∈I(< w0,OIi >CB +b). This means that for every positive
bag we fix the “most“ positive instance and then we use all other instances of the negative
bags to learn a SVM using our Mercer kernel (4.2). In our experiments we used this MIL
formulation since it is effective, fast (convergence is reached after a few iterations) and
the performance was robust for varying initializations. Specifically, we randomly chose an
element for every positive bag to initialize the algorithm.
In the first row of Fig. 4.3 we visualize the inference of the final foreground root-cell mask
mj

0, given a data-driven grouping of cells for the bounding-box.
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4.6 Data-driven Grouping

4.6 Data-driven Grouping

In this section we describe how to create a shortlist of candidate groups by means of a
data-driven grouping of cells for a given bounding-box. This is necessary to render the
inference problem (4.18) and the creation of bags (4.19) feasible.
Recently, [38] presented the combinatorial CMPC algorithm for generating a set of binary
figure-ground segmentation hypotheses {SIt }

Ns
t=1 for an image I. In general, we can not

assume (see second row of Fig. 4.3 ) that the best ranked segment covers the whole object
(as in [37]). However, the pool of CMPC segments yields a good basis to obtain groups of
pixels, which cover only parts of the object. An example of our grouping can be seen in
Fig. 4.3 (second row).
Given a bounding-box BBj in image I, the idea is to first weight each pixel-wise segment
SIt generated by [38] with the ratio between the number of pixels pkl belonging to the
segment SIt which lie outside the bounding-box and the total number of pixels covered by
the bounding-box |BBj | itself:

rjt :=
1

|BBj |
∑
kl

1[pkl∈SIt ]
1[pkl 6∈BBj ]. (4.23)

Only segments SIt that fully lie within the bounding-box will get high scores, while strad-
dling segments will be penalized. We then take the weighted sum of all segments which
intersect the bounding-box and build a density map for this bounding-box

Hjkl :=
1

Ns

Ns∑
t

rjt ∗ 1[pkl∈SIt ]
1[pkl∈BBj ]. (4.24)

The values in this map indicate which regions within the bounding-box were consistently
covered by CMPC segments SIt . We then apply a mean-shift clustering algorithm on this
2D density map Hj and enforce the connectedness of each of the resulting groups. The
cells covering each of these groups define the root-cell masks mj

0i, used to construct the
bags in equation (4.19).
In practice, for bounding boxes containing an object, we typically obtain between 6 and 8
groups. For boxes in the background, our grouping algorithm typically does not generate
any segment, since these regions are not covered by a CMPC segment (the weights in
Eq. 4.23 are zero). This situation renders an exhaustive search using inference (4.18)
feasible. We favor mean-shift over other clustering methods because it allows an adaptive
bandwidth for different clusters.

4.7 Learning a Prototypical Set of Segments

Our goal is to represent every object through a prototypical set of segments. In section 4.4
we used such a representation to robustly match different object instances. In this section
we describe how to learn such a prototypical set.
The idea is to explain the shape complexity of a class through a reduced number of
segments that are typical for a certain class. Using the bottom-up grouping described in
section 4.4, we obtain a bag Bj

0 for every positive training sample j. To find those specific
segments that appear frequently within the class, we hierarchically cluster the elements
of all positive bags (e.g. using Ward’s method). Every group is then represented by its
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medoid, i.e. the element with the minimal average dissimilarity (using measure (4.3))
to all the objects in the cluster. The set of all medoids define the prototypical set of
segments C0 = {m̄ι

0}νι=1 used to train our model. The number of clusters is chosen using
cross-validation and ranges between 10 and 40 segments (s. Fig. 4.2).

4.8 Implementation Details

We use a sliding window detection model similar to [80] to implement our idea. The model
in [80] describes an object Oj by means of a bounding-box covering the entire object (root
window) as well as eight smaller windows (about half the size) that cover parts of the root
window. Every part window i is divided into a grid of cells of size li × hi, i = 1 . . . 8 and
a HoG feature is calculated for every cell. During training, weights (used as linear filters)
are learned for the root window and additional 8 linear filters are trained for the parts. In
our case, if we ignore the parts for a moment, we first would need to learn the prototypical
set of segments using the positive training samples as described in Sec. 4.7 and then learn
the classifier (Eq. 4.5) as described in Sec. 4.5.2. To include the concept of parts from [80],
we will first introduce the notion of a bag for each of the part windows and then extend
our matching kernel (4.2) for these parts also. Thereafter, the corresponding classifier can
be trained analogously to [80] and thus we remit to that work for further details.
Modeling parts: Running the bottom-up grouping described in section 4.7 exclusively
on the root window, results in the bags Bj

0 for each training sample j (τ being the number

of instances in each bag). We then define a bag Bj
i for each of the part-windows as follows:

Bj
i := {φi(pji ,m

j
ik)}

τ
k=1, i = 1 . . . 8. (4.25)

Here pji denotes the position of the i-th part-window for sample j. The binary vector

mj
ik ∈ Blihi denotes the k-th part-cell segmentation mask of part i. It is obtained by

taking the overlap of part i with the root-cell mask mj
0k ∈ Bl0h0 . In doing so, we obtain

the feature representation φi(p
j
i ,m

j
ik) for the i-th part (similar to Eq. (4.1)). Following

this notation, the matching score of Eq. 4.2 between two objects Oj ,Ou can be extended
to include parts,

d(Oj ,Ou) :=

8∑
i=0

di(φi(p
j
i ,m

j
i ), φi(p

u
i ,m

u
i ))+ < pji − p

j
0, p

u
i − pu0 > . (4.26)

Here the last term compares the displacement of the i-th part w.r.t. the object center.
di(., .) denotes the matching score for part i defined as in Eq. (4.2). To obtain di(., .)
we also use a set of prototypical segments to represent each one of the parts. This set is
obtained in a similar way as for the root window by hierarchically clustering the elements
of all positive bags Bj

i . In practice, 7 prototypical segments are used to represent each
part. Using the kernel (4.26) we are then capable of learning a discriminative function
along the lines of (4.5).

4.9 Experimental results

The purpose of our experiments is to show that if only bounding-box annotated data is
available during training, using a top-down generated prototypical representation of the
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Table 4.1: Detection results for the ETHZ-Shape dataset. Performance is measured as
pixel-wise AP over 5 trials, following [37, 106]. For completeness, we include
the performance of [80] measured using a bounding-box parametrization. We
improve the state-of-the-art by 7% AP

Our Method Carreira etal. [37] Gu etal. [106] Felz. etal.[80]

Apples 0.963± 0.023 0.890± 0.019 0.772± 0.112 0.934± 0.048
Bottles 0.877± 0.011 0.900± 0.021 0.906± 0.015 0.891± 0.028
Giraffes 0.823± 0.038 0.754± 0.019 0.742± 0.025 0.817± 0.048
Mugs 0.885± 0.037 0.777± 0.059 0.760± 0.044 0.856± 0.073
Swans 0.927± 0.023 0.805± 0.028 0.606± 0.013 0.813± 0.125

Mean 0.896± 0.026 0.825± 0.012 0.757± 0.032 0.862± 0.051

object shape, as well as suppressing the background within a bounding-box, helps to im-
prove pixel-wise object detection.
The methods of [37] and [106] are the most similar to ours and therefore provide us with
a baseline for our results. Both methods present pixel-wise detection results exclusively
on the ETHZ-Shape dataset ([90]). Specifically, [37] also presents results for the PASCAL
segmentation challenge. However, this challenge assesses a simpler problem than that in
our method since pixel-wise segmentation masks are used for training the model. For pur-
poses of comparison with state-of-the-art [37, 106] we also use the ETHZ-Shape dataset
to test our model’s performance. Larger and more complex datasets for object detection
(e.g. INRIA Horses or PASCAL VOC) are suboptimal to demonstrate the ability of our
method, since there are no pixel-wise masks for the whole test-set and measuring detection
performance is only possible up to a bounding-box.
[37] is currently the state-of-the-art for pixel-wise detection on the ETHZ-Shape dataset.
This dataset contains 5 object categories and 255 images. We follow the experimental set-
tings in [90]. The image set is evenly split into training and testing sets and performance
is averaged over 5 random splits. Following [106] and [37], we report pixel-wise average
precision (AP) on each class. The PASCAL criterion is used to decide if a detection is
correct. The ground-truth segmentation masks were provided by [106].
Our results are displayed in table 4.1. Our method outperforms the state-of-the-art ap-
proach of [37] by 7% mean AP and our detection rate is comparable with the detection
rate at 0.02, 0.3 and 0.4 FPPI in [37] (see table 4.2).

For the sake of completeness, we also evaluate our model on the level of bounding-boxes
for the detected objects (standard setting). We used the INRIA horses dataset, which
contains 340 images. Half of the images contain one or more horses and the rest are
negative images. 50 horse images and 50 negative images are used for training. The
remaining 120 horse images plus 120 negative images are used for testing. Results are
listed in figure 4.5. Compared to [80], we improve the state-of-the-art detection rate at 0.1
fppi by 3.5% achieving a gain of 29% compared to the recent segmentation-based approach
of [233].

Next, we evaluate the impact of our bottom-up grouping (see section 4.6) during training.
For this experiment, the union of the first n best-ranked CMPC segmentation masks of
[38] lying within the bounding-box were taken to define the bags (4.25). This setting
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Table 4.2: Detection rate at 0.02, 0.3 and 0.4, fppi on ETHZ-Shape. We reach comparable
pixel-wise detection rates to [37].

Our Method Carreira etal. [37] Gu etal. [106] Felz. etal.[80]

Apples 0.985/0.985/0.985 0.904/0.941/0.941 0.697/0.854/0.916 0.956/0.989/0.989
Bottles 0.860/0.975/0.975 0.891/0.975/0.975 0.745/0.932/0.958 0.835/0.981/0.981
Giraffes 0.830/0.924/0.924 0.920/0.970/0.970 0.543/0.736/0.800 0.675/0.936/0.943
Mugs 0.896/0.956/0.956 0.812/0.925/0.925 0.496/0.816/0.833 0.816/0.932/0.937
Swans 0.934/1/1 0.983/1/1 0.569/0.800/0.800 0.835/0.919/0.919

Mean 0.901/0.968/0.968 0.902/0.963/0.963 0.594/0.829/0.861 0.824/0.951/0.954

Ferrari et al.
Gu et al.

Our Method

SvrSegm

Ferrari et al.
Gu et al.

Our Method

SvrSegm

Bottles

Ferrari et al.
Gu et al.

Our Method

SvrSegm

Ferrari et al.
Gu et al.

Our Method

SvrSegm

Ferrari et al.
Gu et al.

Our Method

SvrSegm

Figure 4.4: Detection Results on ETHZ-Shape classes. Our method outperforms state-of-
the-art by 7% mean AP reaching a comparable detection rate at 0.02,0.3 and
0.4 FPPI
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Method AP Det.rate
at 0.1
FPPI

Our Method 0.883 0.902
[266] - 0.730
BoSS [233] - 0.630
[165] - 0.652
[89] - 0.674
[80] 0.871 0.867

Figure 4.5: Detection results for the INRIA horses dataset. We improve [80] by 3.5% and
the segmentation-based approach [233] by 29.9% detection rate at 0.1 FPPI.

would be equivalent to [37], which assumes that the best bottom-up generated segment
covers the whole object. We varied the number of segments n and measured the detection
performance in terms of average precision (AP). The experiment was evaluated on the
horse category of PASCAL VOC 2007. The result is plotted on the left side of figure (4.6).
For large n the performance reaches that of [80], since eventually all cells of mj

0 are active.
Conversely, performance significantly drops as we approach n=1, which is the setting of
[37]. Our full model is plotted as a constant line, since it is independent of the number of
segments generated by [38].
In a second experiment, we tested the impact of our bottom-up grouping during testing.
Instead of obtaining a bottom-up grouping for each sliding window, we tested our model
exclusively on all the CMPC segments. We considered the tight bounding-box around
each figure-ground segment SIt for an image I and used this segment to construct the bags
Bj
i (in this case we have as many bags as segments SIt , see Eq. (4.25)). The experiment

was carried out using the car category of VOC 2007 (see right plot in figure 4.6). We
observed a 7.3% performance drop in AP. Hence, it is advisable to combine the different
segments SIt (as we do) to obtain a better detection performance.
We also tested the impact of using a prototypical set of segments (see section 4.7) to rep-
resent an object shape. Since the matching score (4.26) uses a prototypical set of segments
to evaluate each di(., .), we trained in this experiment a linear SVM using the Euclidean
dot product (instead of using di(., .)) between the feature representations φi(p

j
i ,m

j
i ) for all

parts. In this case the matching score (4.26) is transformed into

d̂(Oj ,Ou) :=
8∑
i=0

< φi(p
j
i ,m

j
i ), φi(p

u
i ,m

u
i ) > + < pji − p

j
0, p

u
i − pu0 > . (4.27)

In doing so, we obtained a very poor performance of 0.45 AP for the horse category
compared to the 0.578 AP of our model.

To the best of our knowledge, there is no approach which explicitly tries to infer the overall
object form using a model exclusively learned from bounding-box annotated training data
for any category in the PASCAL dataset. In order to compare our approach with other
detection methods we evaluate our model using the standard setting on the PASCAL
VOC 2007 categories, where [80] best performs. In table 4.3 and figure 4.7, we observe
that our model exhibits robust performance (43.68 MAP or Mean Average Precision)
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class: car
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Our Method            AP 55.3
Test on CMPC seg.  AP 48.1 
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class: horse

Our Method            
Union of CMPC seg.  

recallnumber of segments

Figure 4.6: Impact of bottom-up grouping. Left: We trained our model using the union
of the n best-ranked CMPC segments. Right: Test exclusively on CMPC
segments.

under challenging image conditions at the same time that we obtain a richer output than
just a bounding-box for detection. While [80] (42.34 MAP) is considered as our baseline
model, we also listed comparable state-of-the-art detection methods. Due to the lack of
exact precision numbers, the multi-feature approach of [243] is not listed in table 4.3.
However, from the diagram presented in their paper, we read an approximate MAP of 42
for this set of categories and of 40 if [80] is evaluated exclusively on the proposed windows.
Regardless of this, the strength of [243] remains in the usage of 5 different color features
to train a Bag-Of-Words model. While we use a single, standard feature type, multi-
feature approaches (e.g. [243, 245, 110]) are complementary and should enable further
performance improvements.

4.10 Discussion

We have presented a model that explicitly represents object shape and segregates it from
the background, without, however, requiring segmented training samples. The basis of this
method is to capture the overall object form by grouping foreground regions in a model-
driven manner and representing it through a class-specific prototypical set of segments
automatically learned from unsegmented training data. By using exclusively bounding-
box annotated training data, our model improves pixel-wise detection results and at the
same time it provides a richer object parametrization for detecting object instances.
Furthermore, this model supports the thesis described in section 1.5.1 that increasing the
description granularity at each stage of an object detection system leads to better results.
In our case, this fine-grained description is introduce by directly using a richer object
description which uses shape information directly during detection.
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4.10 Discussion

Figure 4.7: Detection examples for certain PASCAL VOC 2007 categories. The cells cor-
responding to the object foreground are grouped and used for detection.

Table 4.3: AP for best performing categories of [80] in PASCAL VOC 2007

horse cow cat train plane car mbike bus tv bicycle sofa person

Our approach 57.8 25.3 23.9 47.8 31.9 59.8 49.8 51.6 41.9 59.8 33.7 41.9
Felz. etal. [80] 56.8 25.2 19.3 45.1 28.9 57.9 48.7 49.6 41.6 59.5 33.6 41.9
best2007 [167] 37.5 14.0 24.0 33.4 26.2 43.2 37.5 39.3 28.9 40.9 14.7 22.1
UCI [65] 45.0 17.7 12.4 34.2 28.8 48.7 39.4 38.7 35.4 56.2 20.1 35.5
LHS [273] 50.4 19.3 21.3 36.8 29.4 51.3 38.4 44.0 39.3 55.8 25.1 36.6
C2F [198] 52.0 22.0 14.6 35.3 27.7 47.3 42.0 44.2 31.1 54.0 18.8 26.8
SMC [207] 51.0 23.0 16.0 41.0 26.0 50.0 45.0 47.0 38.0 56.0 29.0 37.0
HStruct [220] 48.5 18.3 15.2 34.1 31.7 48.0 38.9 41.3 39.8 56.3 18.8 35.8
LatentCRF [221] 49.1 18.5 14.5 34.3 31.9 49.3 41.9 49.8 41.3 57.0 23.3 35.7
MKL [245] 51.2 33.0 30.0 45.3 37.6 50.6 45.5 50.7 48.5 47.8 28.5 23.3
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CHAPTER 5

BEYOND ANNOTATED DATASETS -
PARAMETRIC OBJECT DETECTION
FOR ICONOGRAPHIC ANALYSIS
USING SHAPE EQUIVALENCE

In chapter 1.4 we wrote about the importance of shape for both the human visual system
and for computer vision. One of the capabilities of the human visual system regarding
shape is the ability of detecting shape equivalence which refers to the ability of distin-
guishing two different objects as having the same shape. The present chapter introduces
a method that exemplifies how this property can be used for solving specific computer
vision tasks. The idea in this chapter consists of indirectly detecting important objects
within an image by finding reoccurring patterns which share the same shape. Specifically,
the present chapter develops a computational method for unsupervised object detection
for use within the field of cultural heritage and shows how fruitful the interaction between
computer vision and cultural heritage is. The results presented in this chapter were first
published in [183].

5.1 Parametric Object Detection for Iconographic Analysis

Every iconographic analysis within the field of cultural heritage needs to begin with what
can be seen in the objects being considered. Based on these observations the objects
under analysis are compared with other visual images. For this purpose research is needed
to understand how a particular example differs from others and why these differences
matter. Furthermore, the co-occurrence of similar patterns within the image corpus also
reveals important common characteristics and relevant structures, which in turn are used
to infer meta-information (e.g. the artistic choice of a group of artists) involved in the
process of the image generation. An iconographic analysis may involve intensive screening
of thousands of visual images in order to establish a consistent interpretation. Therefore,
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in such cases the use of automatic object detection systems is required. However, current
state-of-the-art object detection systems rely on one key aspect that is not always fulfilled
in iconographic analysis tasks: Similar to the human learning procedure, computer systems
require training examples in order to learn a model for object instances that are to be
searched in new images. For the task we explore in this chapter we lack any such training
data, i.e., we need to search objects that we have not seen before.
Specifically, in this chapter we analyze images taken from Chinese comics digitized at
the Cluster of Excellence “Asia and Europe”. The focus of the digitization process is on
comics from the second half of the Cultural Revolution and immediately thereafter, which
was the heyday of comic production in the ”small people’s books” (xiaorenshu) format.
In these books a special type of emphasis is used to accentuate heroes, objects, or idols
like the image of Mao Zedong: they are depicted as a sun omitting rays of light. This is
an example of how the occurrence of similar shape patterns in different images reveals a
meta-information (i.e. the accentuation of an object) related to the intention of the artists
which drew the image. Automatically finding the accentuated objects is a preliminary step
to carry out an iconographic analysis, which may reveal the intention of the cartoonist,
or more importantly the intention of those who commissioned those comics. Therefore, to
detect emphasized objects may help to reveal possible programmatic shifts in the focus of
the stories.
In the present chapter we develop a novel system which automatically finds emphasized
objects by detecting co-occurrent similar shape patterns (in this case the irradiation of the
object) in the image corpus. This task is non-trivial since finding the objects of interest
requires finding the rays which surround them. However, recognizing which line segments
in the image belong to a ray annulus and which do not requires knowing where the objects
are localized. Furthermore no training information is available, which makes it impossible
to directly search for the object as would be the setting scenario in object detection systems
[80, 146, 266].
Image databases in the field of cultural heritage are normally made accessible via textual
annotations [7], or more recently [265] presented an annotated dataset for purposes of
object detection. The problem of analyzing unlabeled datasets within this field remains
an unsolved problem. Object detection and recognition is a widely studied research area
within computer vision as we saw in chapter 2. However, the main work in object detection
concentrates either on a supervised or semi-supervised learning (e.g. [80, 146]), which relies
on annotated training data. In the present chapter we intend to detect objects without
any training information. Finally, our work is related to different tasks within the field of
computer vision, such as contour detection [125, 171, 35, 163, 173], clustering [74, 128, 122],
and Hough Voting [117, 105, 165, 98].

5.2 Using Shape Equivalence for Object Detection

As stated in the introduction, we develop a system, which automatically finds objects in
an unsupervised manner. The class of objects we are interested in is characterized by a
surrounding circle of fragmented light rays. The idea is to consider these annuli of light
rays as shape equivalent objects (i.e. objects that share a similar shape) and use their
detection to solve the original problem (i.e. detecting the enclosed objects). Therefore,
we use the observation that circular line patterns surrounding the object may intersect at
one point or at least, due to noise, in a region with high density of line intersection points
(see Fig. 5.1 for an overview of our method).
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5.3 Edge Extraction

To describe the system, we subdivide the method in 3 steps: Edge Extraction, Line Fitting
and Clustering, and Object Localization and Detection. In the following, we describe the
different steps of our method.

Figure 5.1: Overview of our method. This example automatically finds the object in the
image, which was emphasized by the author of the comic.

5.3 Edge Extraction

As a preprocessing step in our method, we firstly extract edges from this kind of images.
Common edge extraction methods like Canny [35] or Pb [173] fail in accurately extracting
edges in this type of images. This is the case since Canny uses a filter which cannot handle
lines of varying thickness. On the other hand, Pb uses different cues like color and texture
for the edge extraction. Both cues are not available in any image of the database we are
considering.
To avoid the drawbacks presented by these methods, we firstly convolve the image with
different Laplace of Gaussian (LoG) Filters of varying sigmas. The use of this kind of
filter is suitable since it allows obtaining a single response for lines of varying thickness.
In our experiments we use the sigma values σ = 0.8 + j ∗ 0.4 j = 1, · · · , 9. For every pixel
in the image we then take the maximal response over all sigmas. This ensures in praxis a
good contrast between ridge response and background. Finally, non-maximum suppression
followed by hysteresis thresholding is applied to obtain the final edges in the image. In
Figure 5.2 (a)-(b) we observe an example of how common methods fail to extract edges,
while our method (c) is able to cope with the difficulties in the images we are considering
here.

5.4 Line Fitting and Clustering

In the following, we introduce an important technique in computer vision which builds a
framework for our method.
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Figure 5.2: Edge Extraction. (a) Pb Edges. (b) Canny Edges. (c) Our method.

Hough Transform

The Hough Transform is a technique for finding instances of objects sharing certain shapes
by a voting procedure. It was first introduced by Richard Duda and Peter Hart in 1972
[73] for detecting lines and circles and Ballard extended it for arbitrary shapes [8].
The simplest case of Hough Transform is used for detecting straight lines. The main idea
is to consider the lines not as image points but instead in terms of parameters. Normally,
due computational accuracy, instead of representing a line using the slope and the offset
y = mx + b, a polar-coordinates representation is used. In this representation, whereas
the parameter r represents the distance between the line and the origin, the angle θ is the
angle of the vector from the origin to this closest point resulting in

y =

(
−cos θ

sin θ

)
x+

( r

sin θ

)
. (5.1)

Using this representation, each line in the image can then be identified with a pair
(r, θ), r ∈ R, θ ∈ [0, π). The (r, θ)-plane is referred to as Hough space or Hough ac-
cumulator. In this particular space, a line corresponds to a sinusoidal curve and if the
curves, corresponding to two points are superimposed, the location (in the Hough space)
where they cross corresponds to a line (in the original image space) that passes through
both points. Thus, the problem of finding collinear points transforms into the problem of
finding intersecting curves.

As stated in the introduction, objects of interest are surrounded by a circle or semi-circle of
fragmented light rays. This means that object centers are characterized as the intersection
of many lines or at least, due to noise, as a region with high density of line intersection
points. For this reason, we first need to detect all straight lines which appear in the
drawing. This is done in an iterative manner:
Firstly, a pixel is selected at random and then a line is hypothesized by using its own and
the neighboring pixel’s gradient orientation. This line is then extended (pixel-wise) by
grouping pixels with similar orientation in the direction of the hypothesized line. If the
circular variance of gradient orientations on the fitted line exceeds a predefined threshold,
the line-growing process breaks and the algorithm starts from the beginning. After this
procedure ends, all pixels used to calculate the line are removed from the search list. The
algorithm finishes when the search list is empty. As a post-processing step, all lines which
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do not exceed a minimal length are removed.
Since we are interested in detecting high-density regions of line intersections, we calculate
as a further step in our method all possible intersections between the fitted lines by the
iterative algorithm. For this, we construct a Hough Accumulator using polar coordinates
for every fitted line. Each line is then weighted by its circular variance. This allows us to
decrease the importance of lines which are not completely straight and therefore do not
belong with a high probability to any ray pattern. From the Hough Accumulator we then
extract all possible intersections. In our experiments we obtain in this manner around
100000 line intersections per image.
To localize high-density line intersection regions, we then cluster all intersections obtained
from the Hough Accumulator using a hierarchical clustering (Single-Linkage). Due to noise
in the line fitting algorithm, every intersection xij of two lines li, lj renders an uncertainty,
which we model using a 2D Gaussian distribution centered at the intersection point xij
and with a covariance matrix determined by the angles of the two lines which intersect.
Specifically, we have µij = xij and the covariance matrix is defined as

Σij =

(
σ1 0
0 σ2

)
, (5.2)

where σ1 = tan(θ1/2) and σ2 = tan(θ2/2). Here, θ1 is the smallest and θ2 the greatest
angle of the two intersecting lines. For orthogonal lines, our model yields for Σij the

identity matrix I2 =

(
1 0
0 1

)
.

Using this uncertainty model, the pairwise distance measure for the hierarchical clustering
is defined in a probabilistic manner. For two intersection points xij , xmn we define:

d(xij , xmn) := p(xij |µmn,Σmn) ∗ p(xmn |µij ,Σij), (5.3)

where p(x | ·µ,Σ) is the probability of x, conditioned on the model {µ,Σ}. This clustering
procedure using the measure (5.3) results in the desired object center hypothesis.
Finally, it is interesting to remark that our measure (5.3) is related to the Mahalanobis
distance, but our distance is more flexible since it allows for rotation of the Gaussian dis-
tributions.

Figure 5.3: Object Center estimation using a Gaussian model. (a) Ridge Image. (b) Line
Intersections.
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5.5 Object Localization and Detection

In the last section, we obtained all hypotheses of relevant objects of interest. Since the
object center does not yield any information about the size of the object itself, we calculate
its scale using the information contained in the annulus of light rays surrounding the object
center. More specifically, the scale of the object is determined as the radius from a circle
centered at the object center hypothesis (described in the last section) to the beginning of
the circular ray pattern. The beginning of this ray pattern can also be characterized as a
steep increase in the line density. Using this observation, we first weight all straight lines
according to how close they are to the object center hypothesis: lines crossing the center
or passing nearby should get a high weight since they belong to the rays describing the
object center. All other lines should get a small weight and should not play any role in
the line density estimation. Once we weight all line pixels in the image according to the
object center hypothesis we calculate the density as the sum of the weighted pixels within
a certain radius of a circle centered at the object center. Specifically, given the object
center xc and the set of indices Ir := {i | |xr − xc| <= r}, the density function is given by

density(r) =
∑
i∈Ir

wi, (5.4)

where wi is the corresponding weight of the pixel xi. Given this density function, to find
the radius from where the circular ray pattern starts, we calculate the maximum of the
first derivative of the density function. In practice, we also calculate the maximum of the
first derivative of the radius-normalized function of the cumulative circular variance to
improve the location of the radius.
An example of this scale estimation procedure for an object center can be seen in Fig.
5.4. Fig. 5.4 (a) shows how the object can be parametrized by a circle, and Fig. 5.4 (b)
shows the density function. Its first derivative is shown in (c). The maximum of the first
derivative is marked with a green point. The red point in (e) shows the improved length
of the radius which corresponds to the red circle in (a).

Figure 5.4: Scale Estimation. (a) Circle-parametrized scale estimation. (a)-(b) Density
Function and First derivative. (c)-(d) Normalized Circular Variance and First
Derivative
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5.6 Results

The Cluster of Excellence “Asia and Europe” developed the Chinese Comic Database.
As stated in the introduction, this database focuses on comics from the second half of
the Cultural Revolution and immediately thereafter. Most of the database consists of
black and white cartoon drawings. In figure 5.5 we can see some results generated by our
method. The first column shows the original image presented to the system. In the second
column we present results of the ridge extraction procedure. For purposes of visualization
we show only a section of each image. After the line fitting process we calculate all line
intersections using our probabilistic model, this is shown in the third column of figure 5.5.
The last column of the figure shows the object localization calculated by our system, as
described in the last section.
In the 5th row of figure 5.5 we can see how our system successfully extracts the object
center of the light rays. Specifically, if we see the line-intersection map we can see how
the map-energy within the circle has 3 centers: the person, the lamp and the sun. This
means that the light-rays intersect in three different centers, thus it is clear how the artist
of this comic draws the light rays to emphasize different objects in the image. Further, in
the 4th row of figure 5.5 we can clearly see how our method correctly extracts the scale of
the object, fitting the circle in such a way that the whole object of interest is covered by
it.

5.7 Discussion

In this chapter we have presented a novel method which enables to automatically find
the irradiating objects within a corpus of images taken from the Chinese Comics Database
digitized from the Cluster of Excellence “Asia and Europe”, which focuses on comics drawn
during the second half of the Cultural Revolution and immediately thereafter. This tool
will enable researchers to screen large amounts of data, visualize relevant objects and carry
out an exhaustive iconographic analysis of the whole database. Furthermore, we hope this
approach will help to show new ways of interdisciplinary research and mutual benefits
between cultural heritage and computer science.
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Figure 5.5: A small subset of the results provided by our method.

66



CHAPTER 6

DESCRIBING SHAPE CHANGES

As described in section 1.5.2 computer vision is impelled to go beyond the mere fact of
searching for objects and describing them by means of bounding-boxes. Moreover, the
object itself must be understood and therefore it is crucial to analyze its structure and
shape. It is an important underlying idea of this thesis that the analysis of the structure
and morphology of an object can be carried out by analyzing the deformation of the shape
between two distinct but similar objects.
The present chapter aims at introducing representative approaches within the field of
computer vision that have been developed for describing shape changes. The study of
such previous models will reveal the important model paradigms of current state-of-the-
art approaches and at the same time this study will also show important limitations of
current approaches. Based on this analysis, in the next chapter we will introduce a novel
method capable of tackling the full problem introduced in section 1.5.2.

6.1 Shape Changes Under Given Correspondences

An early technique for describing shape similarity in two dimensions is Procrustes analysis,
a term which was introduced in factor analysis by the authors in [119]. In its simplest
version (the generalized version over more dimensions is similar, but our interest is focused
on 2D images), this methodology represents a pair of shapes by a centered set of corre-
sponding complex landmark points, that is y = (y1, · · · , yk)T and w = (w1, · · · , wk)T both
in Ck such that w∗1[k] = 0 and y∗1[k] = 0, where y∗ denotes the transpose of the complex
conjugate of y. Two main steps can be identified in the Procrustes Analysis. Firstly, both
shapes w and y are matched using similarity transformations (called full Procrustes fit)
and secondly, the distance between shapes called full Procrustes distance is defined. The
full Procrustes fit is a standard least squares solution with complex variables for scale,
rotation, and translation. These are estimated by minimizing

min
β,θ,a,b

‖q − wβeiθ − (a+ ib)1[k]‖2 (6.1)
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yielding the solution (s. [70])

a+ ib = 0 (6.2)

θ = arg(w∗y) (6.3)

β =
(w∗yy∗w)1/2

w∗w
(6.4)

In case that the landmark points are normalized to have unit size, that is

√
y∗y =,

√
w∗w = 1. (6.5)

the full Procrustes distance between the shapes is given by

dF (w, y) = inf
β,θ,a,b

‖ y

‖y‖
− w

‖w‖
βeiθ − a− ib‖ (6.6)

= {1− y∗ww∗y

w∗wy∗y
}

1
2 . (6.7)

Within the Procrustes analysis, the mean shape of a population or the variability in shape
can also be described using this distance ([49, 131]).
A major problem of measuring shape distances using the full Procrustes distance (and all
its generalizations described e.g. in [70]) is the fact that we obtain a numerical value for
shape comparison but it does not indicate locally where the objects differ and what nature
the differences have.
Such a study of localized differences between shapes can be traced back to D’Arcy Thomp-
son’s [231] transformation grids. In his book D’Arcy Thompson manually placed rectan-
gular squared grids (called Cartesian grids) on both shapes and considered the transfor-
mations of different grid blocks between corresponding biological parts, enabling him to
describe the shape change between two species. Thompson’s idea was that these compar-
isons would reveal the origins of form. Similar approaches to D’Arcy Thompson can even
be found earlier in history within the field of cultural heritage, specifically with Renaissance
artists of the 16th century. For instance, A. Dürer (1528) [75] used affine transformed grids
of human bodies and their parts with the finality of exploring human body proportions
and to study the limits of normal variation in shape.
The simplest possible manner to describe the changes in shape and size using Cartesian
grids would be to use a global affine transformation. All grid blocks would uniformly
deform, and parallel lines in the first shape would remain parallel after applying the trans-
formation. In fact, some examples of affine-transformed grids were already described by
D’Arcy Thompson. However, it is clear that only very limited shape deformations can
be described using a single global affine transformation. A more complicated transforma-
tion was introduced by Sneath [227], who approximated the grid using cubic polynomials
and representing each of them by interpolating coefficients. However, it was not until
1989 when Bookstein [27], borrowing ideas from the mathematician Duchon and Meinguet
[72, 177], developed a successful approach for corresponding landmark points using a pair
of thin-plate splines.
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Thin-plate Splines

In this approach k landmark points xj ∈ R2×1, j = 1, · · · , k on the first shape are mapped
to exactly k points yi using different interpolation-functions for each coordinate

xir = φr(yj), r = 1, 2, j = 1, · · · , k (6.8)

resulting in a bivariate transformation function φ(yj) = (φ1(yj), φ2(yj))

φ(z) = z · d+

K∑
i=1

ψ(‖z − yi‖) · ci, (6.9)

where all points are represented using homogeneous coordinates, that is, each point zi is
represented as a vector (1, zi1, zi2). Furthermore, d ∈ R3×3, c ∈ RK×3 and ψ(‖z − yi‖) is
a radial basis function (RBF). The function (6.8) is known as a pair of thin-plate splines
(PTPS) [70]1. It can be shown (e.g. [250]), that the parameters c, d in Eq. (6.9) can be
found minimizing the energy function

ETPS = min
d,c
‖X − Y d−Ψc‖2 + λ

2∑
j=1

∫ ∫
R2

(
∂2φj
∂x2

)
+

(
∂2φj
∂x∂y

)
+

(
∂2φj
∂y2

)
dxdy,

= min
d,c
‖X − Y d−Ψc‖2 + λTr(cTΨc) (6.10)

where Y,X are the concatenated versions of the points yi, xi and Ψ is a k × k matrix
formed with the entries ψ(‖yj − yi‖) (also called TPS kernel). The second term in 6.10 is
called bending energy and receives its name from a physical analogy involving the bending
of a thin sheet of metal, where the deformation occurs in the z direction orthogonal to
the plane [250]. This approach based on thin-plate splines (TPS) consists of an affine
part (matrix d) and a non-affine component (matrix c), which parametrizes the non-affine
deformation for every point. The QR-decomposition of

Y =
(
Q1 Q2

)(R
0

)
(6.11)

can be used to estimate the exact minimizers c, d in a closed-form solution [250]:

γ = (QT2 ΨQ2 + IK−3)
−1QT2X (6.12)

d = R−1QT1 (X −ΨQ2γ) (6.13)

c = Q2γ (6.14)

The TPS can be considered as a special case of Kriging [134] for 2 dimensions. There-
fore, this approach can be extended to non-planar more-dimensional shapes using Krig-
ing interpolation methods (e.g. universal and intrinsic Kriging or Kriging with derivate
constraints)[70].

1The name pair of thin-plate splines refers to the fact that φ is a bivariate function with a Thin Plate
Spline in each component
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Finite Element Analysis

Another possible method for describing shape changes is to use the variational approach
of Finite Elements Method (FEM), which uses a similar idea to the Cartesian grids of
D’Arcy (in cases of linear Finite Elements). This method has been explored e.g. in
[25, 186, 132, 152, 42]. The FEM method was originally developed for finding approximate
solutions to boundary value problems. The application of this method for describing shape
changes works by first generating a grid or mesh over the shape y which is going to be
transformed to another shape x. Each block of this mesh is referred to as a finite element
and can have different forms. For 2D spaces either triangles or quadrilaterals can be used.
Finite elements may contain a different amount of landmarks but in the simplest case
the mesh is chosen such that each landmark point of the shape lies on the vertices of
the element. Thereafter, within each finite element, a set of n piecewise functions are
defined which separately interpolate the coordinates of the shape x using the points of y.
The interpolation function is uniquely defined using boundary conditions relative to the
neighboring elements which guarantee a continuous interpolation between finite elements.
Depending on the polynomial degree of each interpolant function different numbers of
boundary conditions are required to be defined. In the simplest case of triangles arising
from a Delauny triangulation (e.g. [192]) the interpolation within each finite element
results in an affine transformation and thus, the global function describing the shape
change consists of a piecewise affine transformation. This linear transformation model is
essentially equivalent to the recently introduced method in [116], which also defines affine
transformations over a Delauny triangulation with boundary constraints over the different
triangles.

Piecewise Affine Transformation Models

In the last section we saw how a piecewise affine transformation model arose as a special
case of linear finite elements over an automatically generated mesh (using triangles as
blocks in the grid). However, mesh-free piecewise affine models have also been introduced
in literature. Some of these methods have been developed specifically for the registration
of articulated structures (e.g. [59, 197]). Methodologies for interpolating between local
transformations [199] as well as for assuring global invertible transformations [48, 4, 188]
also exist. However, common to all these methods is that the affine-transformed local
structures in the shape are manually chosen. That means that not only the correspon-
dences between landmark points (or pixels) need to be known, but additional information
is required: the spatial localization of local shape changes needs to be known a priori.
Piecewise Affine models have also been used in the context of sparse motion segmentation
[253, 28]. The goal there is to decompose videos into similarly moving layers. Specif-
ically, in [253] (the work [28] is a modification thereof) the scene is firstly divided into
a regular grid and an affine transformation is calculated for each block. Thereafter, the
affine parameters are clustered (using a modification of Kmeans) to reduce the number of
components. In a second step the authors iterated between the assignment of points in
the scene to the affine components based on its registration error (and Euclidean distance)
and the refinement of the components themselves. Compared to other methods for linear
subspace segmentation like [78, 139], where multiple frames are needed to correctly sepa-
rate the different motions present in the sequence, Wang and Adelson [253] utilized only
two frames at a time for the analysis.
Normally, algorithms defined for motion segmentation deal only with frames coming from
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the scene and thus, the task reduces to the motion analysis of the same objects through
time (if we exclude appearances or disappearances of objects). For shape registration
where we are also interested in describing the shape changes between different objects,
we additionally have to deal with clutter, missing contours and an accurate estimation
of small and continuous deviations in transformations. Thus, the task of using piecewise
affine models for shape analysis becomes harder to solve.

6.2 Shape Change Under Missing Correspondences

An additional difficulty in describing changes between shapes arises when the correspon-
dences between shapes (i.e. between pairs of landmark points) representing the shapes are
missing. This situation is commonly found in real-life applications when similar shapes
belonging to different objects are analyzed. In this case the problem of finding a transfor-
mation model which describes the shape changes and the correspondences between points
is intrinsically related. In order to estimate the transformation model, correspondences
between points or shapes need to be known. The difficulty of this scenario becomes clear
by formulating the problem as

min
T,C

E(T,C) (6.15)

where E is the energy term to be minimized, T is a given transformation model (e.g. an
affine transformation or a TPS) and C ∈ Bm×n is a binary matrix specifying the cor-
respondences between m points in a shape Y to n points in another shape X. If the
chosen transformation model is continuous then the optimization problem turns into a
mixed-integer program with a very large optimization space. Already in order to estimate
one-to-one correspondences there exist alone O(mn) possibilities for defining correspon-
dences between points in both shapes.
The solution for problem 6.15 has been approached from different points of view. In the
following we will describe the most relevant approaches for solving this joint problem.

Iterative Closest Point Algorithms

Since its introduction [40, 19] for registering range-data imagery, the Iterative Closest
Point (ICP) algorithm has experienced several modifications. In its original version, if
shape Y consisting of a set of landmark points has to be registered to shape X, the ICP
algorithm greedily minimizes the total registration error by alternating two steps:

• Estimation of closest point: For each point yi ∈ Y , estimate its closest point in X,
that is

min
x∈X
‖x− yi‖ (6.16)

• Estimation of the transformation model: Use the correspondences obtained in the
first step to calculate a global affine transformation T . Thereafter, shape Y is trans-
formed using T

The iteration is stopped when the change in mean-square error (MSE) between the points
in both shapes falls below a given threshold. It can be proved that this algorithm mono-
tonically converges to a local minimum with respect to the mean-square distance objective
function ([19]). This convergence is given since the reduction of the squared-error for each
point also reduces the MSE for all points together.
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The popularity of this algorithm can be seen from the numerous subsequent modifications
it went through over the years (e.g. [236, 174, 22, 76, 205]). However all these approaches
keep the same underlying idea of the algorithm modifying only special issues which can be
classified ([214]) according to (a) selection of used points (b) selection of matching points
(c) outliers selection or (d) error metric minimization.

Non-Rigid Point Matching

Inspired by the ICP, Chui and Rangarajan [44] introduced a new algorithm called RPM (i.e
Robust Point Matching) for solving both problems: finding the correspondences between
landmark points and estimating a transformation model. However, the first difference to
the ICP algorithm consists in the usage of a TPS to model the deformation between shapes.
Thus, this approach can be seen as an extension to the approach of [27], where given the
correspondences between shapes the shape change was also modeled with a TPS. A further
difference to the ICP algorithm is that Chui and Rangarajan cast the problem in a least-
squares optimization algorithm allowing one-to-one fuzzy correspondences between points
(in contrast to the nearest-neighbor heuristics of the ICP algorithm) and deterministic
annealing ( DA) is used to overcome local minima during the optimization process.
Given two shapes Y and X, with points yi, xi ∈ R2×1, the correspondence between points
is given by a real-valued matrix C ∈ Rm×n, cia ∈ [0, 1]. To handle outliers the RPM
algorithm [44] adds an extra column and row to the matrix C allowing for this extra
outlier point many-to-one matching. The resulting optimization problem is given by

min
C,f

E(C, f) =

n+1∑
i=1

m+1∑
a=1

cai‖yi − f(xa)‖2 + λT‖Lf‖2 (6.17)

+ T
n+1∑
i=1

m+1∑
a=1

cai log cai + T0

m+1∑
a=1

ca,n+1 log ca,n+1 (6.18)

+ T0

n+1∑
i=1

cm+1,i log cm+1,i (6.19)

(6.20)

subject to the one-to-one matching constraints

n+1∑
i=1

cai = 1, a = 1, · · · ,m (6.21)

m+1∑
a=1

cai = 1, i = 1, · · · , n (6.22)

The parameter T together with the c log c terms regulate the Deterministic Annealing
schedule. Whereas high values of T allow fuzzy correspondences, lowering the parameter
produces in the limit a binary matric C. In Eq. (6.17) the transformation f and the
corresponding regularizer λT‖Lf‖2 are defined as in Eq. (6.10) where the TPS was in-
troduced. Due to the complexity of minimizing (6.17) the RPM algorithm obtains only
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a local minimum (given initial correspondences) alternating between the estimation of
the correspondence matrix C and the TPS estimation f . In order to enforce the con-
straints (6.21) the authors run the Sinkhorn algorithm at each iteration, which iterates
row and column normalizations until convergence. However, it is important to remark that
Sinkhorn’s algorithm only guarantees convergence for squared matrices with values within
[0, 1]. Therefore, a perfect fulfillment of the constraints (6.21) using a different number of
points is not guaranteed. Despite the clear improvement of this algorithm w.r.t to the ICP
algorithm in that a sound optimization algorithm is formulated, the RPM is very sensitive
to the parameter setting of T (which determines DA scheduling) and the regularizer for the
TPS calculation. Furthermore, the local structure of the shape is disregarded by ignoring
pairwise relations between points during the estimation of C.

Coherent Point Drift Algorithm

The work of Myronenko et al. [187] (also called CPD algorithm) can be seen in the tradition
of the ICP and the RPM algorithms described above. The CPD algorithm conceives the
points in the shape Y ∈ Rm×2 as the centroids of a Gaussian mixture model (GMM)
and the points in the other shape X ∈ RN×3 as the data points generated by the GMM.
Therefore, the authors consider the alignment of two point sets as a probability density
estimation problem, where one point set represents the GMM centroids and the other
one represents the data points. At the optimum the point sets become aligned and the
correspondence is obtained using the maximum of the GMM posterior probability for a
given data point ([187]). The algorithm minimizes the following energy function

E(f, σ2) =
1

2σ2

M,N∑
m,n=1

P old(m|xn)‖xn − (ym + f(ym))‖2 (6.23)

+ T log σ2 +
λ

2
‖Lf‖2, (6.24)

where

P old(m|xn) =
exp

(
−1

2‖
xn−f(ym)

σold
‖2
)

∑M
k=1 exp

(
−1

2‖
xn−f(yk)
σold

‖2
) (6.25)

and T is a constant. Different to the RPM algorithm, the authors in [187] use as regularizer
‖Lf‖2 the norm in the Hilbert space Hm

‖f‖2Hm :=

∫
R

m∑
k=0

‖∂
kf

∂xk
‖2. (6.26)

Using calculus of variation it can be shown that given P old the transformed points of shape
Y have the form f(Y ) = Y +GW , where G ∈ GM×M is a matrix of the form

gij = exp

(
−1

2
‖yi − yj

β
‖2
)

(6.27)

and the matrix W ∈ RM×2 is the solution of the system(
G+ λσ2diag(P old1)−1

)
W = diag(P old1)−1P oldX − Y (6.28)
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and the optimal σ2 is given by

σ2 =
1

2Np

N∑
n=1

M∑
m=1

‖xn − f(ym)‖2 (6.29)

Np = 1TP old1 (6.30)

The similarity to the ICP and RPM algorithm consists in that the CPD algorithm also
alternates between the estimation of soft correspondences given by the matrix P old and
the estimation of a nonlinear global transformation of the form

f(Y ) = Y +GW (6.31)

which can be seen as the parametrization of regularized displacement vectors for all points
in shape Y . The parameter σ2 can be seen in the RPM algorithm, as the temperature
parameter in an annealing procedure. However, instead of reducing the parameter by a
deterministic schedule, the CPD algorithm calculates at each step the exact optimal value
for it. A limitation of the CPD compared to the RPM algorithm is that the underlying
nonlinear transformation model is only defined for the given point set and it is not clear
how it can be continuously extended to the rest of the image.
The above mentioned probabilistic formulation using Gaussian Mixture Models (GMM)
for shape registration is not new and has also been used in prior works. For instance, in
[43] it was shown that for the RPM algorithm the alternation between correspondence and
transformation estimation is equivalent to the Expectation Maximization (EM) algorithm
for GMM, where one shape is treated as GMM centroids with equal isotropic covariances
and the other shape is treated as data points. Whereas methods for rigid transformation
like [124, 258, 55, 159, 175, 160] also formulate point set registration as a maximum
likelihood estimation problem to fit the GMM centroids to the data points, earlier works
on non-rigid point set registration [113, 208] also used the probabilistic formulation, where
the GMM centroids were uniformly positioned along the contours (using splines to model
them).

Finding Correspondences as the Solution of an Assignment Problem

The problem of finding correspondences between two point-set represented shapes has also
been solved using an optimal assignment formulation. Assignment problems deal with the
question of how to optimally assign n items (in the present case points of a shape) to n
other items (the points in the second shape) [33].
For instance, the authors in [13] formulated the problem of matching two shapes as a linear
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assignment problem (LAP)

min
x

n∑
i

n∑
j=1

cijxij (6.32)

s.t.
n∑
j=1

xij = 1, (∀j = 1, · · · , n) (6.33)

n∑
i=1

xij , (∀i = 1, · · · , n) (6.34)

xij ∈ {0, 1} (6.35)

where the term cij refers to the cost of matching the shape descriptors of the points xi
and yi. The corresponding constraints enforce the binary assignment matrix x to be a
permutation (one-to-one matching). In this formulation no relation or structure in the
shape (besides the information contained in the descriptors) is being taken into account
for finding the correspondences resulting in a linear objective function.
However, there is also a class of algorithms which rely on quadratic objective functions.
These methods rely on the solution or approximation of a quadratic assignment problem
(QAP) (or modifications of it). In its general form, a QAP can be modeled as a quadratic
integer program of the form:

min
x

n∑
i,j=1

n∑
k,l=1

aikbjl︸ ︷︷ ︸
:=dik;jl

xijxkl +
∑
i,j

cijxij (6.36)

s.t.

n∑
j=1

xij = 1, (∀i = 1, · · · , n) (6.37)

n∑
i=1

xij = 1 (6.38)

xij ∈ {0, 1} (∀i, j = 1, · · · , n), (6.39)

where the matrix d refers to the matching cost between two pairs of points and the con-
straints in (6.37) enforce one-to-one correspondences between the points in both shapes
(however, this constraint can also be relaxed to enforce many-to-one or many-to-many
matching). The problem (6.36) can also be equivalently formulated as

min
z
zTDz + ctz (6.40)

s.t. Az = b, z ∈ {0, 1}, (6.41)

where now the indicator variable z is such that zia = 1, if point yi from one image is
matched to the point xa from the other image or otherwise zero. Although these methods
are more descriptive than a LAP problem due to the quadratic cost which uses the structure
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of the shape, they are NP hard to solve. Therefore, efficient algorithms must look for
approximating the solution (e.g. [17, 148, 52, 101, 217, 271, 271, 71, 216]).
For instance, [17] defines a cost matrix dik;jl which penalizes the change of direction and
length between the pair of points yi, yj during matching. The problem (6.36) is then
approximated by specifying a linear bounding problem of the quadratic term and thereafter
a local gradient descent is used to find a locally minimal assignment.
A simple, yet very effective and widely used approach is the spectra matching algorithm
of [148] which solves the relaxed variant

max
x

xTMx, s.t. xtx = 1 (6.42)

by calculating the first eigenvectors of the matrix M . Then by heuristically selecting the
matches with highest eigenvalues, a binary matching is obtained. This algorithm was
improved in [149], resulting in the Integer Projected Fixed Point Algorithm (IPFP). The
intuition behind the algorithm is that at every iteration the quadratic term xTMx is
approximated by a first-order Taylor expansion around the current solution. This approx-
imation is then maximized within the discrete domain of problem (6.42) [150].

6.3 Limitations of Current Approaches

From the analysis of previous methods, several conclusions can be sketched

Necessity of Local Morphological Analysis

Procrustes analysis [70] is an example of a class of methods which is able to infer a global
transformation model to describe the deformation between two shapes and at the same
time is capable to infer a global similarity measure between them. Furthermore, the idea
of using a single global transformation for describing the deformation is also shared by
methods like the ICP [40, 19] which uses a single affine transformation. Moreover, the
RPM [44] or CPD [187] algorithms also use a single global non-linear transformation to
transform the entire shape. However, using a single global transformation is not possible
to give insights into how local structures in the shape transform. This still remains true if
global measures like the bending energy of a TPS as described in Eq. (6.10) is considered,
since it only yields a global numerical value about the distortion energy and thus lacks
any local information.
In contrast, mesh-grid based methods like Thompson’s Euclidean grids [231] or more re-
cently finite element methods (e.g [25, 186, 132, 152, 42]) do estimate local transformations
for each of the blocks in the grid. However, these methods are not able to reason whether
a group of blocks can be described by the same transformation parameters. For instance,
if an articulated object is considered, mesh-grid methods will break each of the articula-
tions into several grids and use a single transformation to register each of them. Thus,
this class of methods will ignore the fact that an articulation can probably be registered
using a single affine transformation. On the contrary, piecewise affine models yield a good
framework for achieving both, describing the global transformation of the shape change
and at the same time describing the inner structure of the object. However, many piece-
wise affine models for registration still require manually selecting the different structures
that are affine-transformed. Thus, automatically inferring the object structure is still an
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open question. Further methods which use piecewise affine models are [253, 28]. However,
this is done within the context of discrete motion segmentation which considers a different
problem to the one of shape analysis.
From the above, the challenge remains to develop a method which is capable of describing
the global transformation of the shape which at the same time can give insights into the
true structure (and not a grid-quantization) of the underlying object.

Automatic Complexity Adaptation

Non-linear deformations models like Thin-Plate-Splines or the point-wise displacement
parametrization of the CPD algorithm are powerful methods for describing complex trans-
formations. Normally, the complexity of these models is regulated by a global parameter.
For instance, if the parameter λ in Eq. (6.17) for the TPS is set too high, a rigid trans-
formation is obtained. On the contrary, if it is set too low, the global transformation will
overfit due to noise. Therefore, a model which automatically adapts its complexity accord-
ing to the current deformation is required. Whereas a rigid object should be described
with a single linear transformation, the model should adapt the complexity according to
the deformation. In other words the challenge is to follow the Occam’s razor (or in latin
lex parsimoniae), a principle which states that one should use simpler models and increase
the complexity if a greater explanatory power is required.

Joint Model

The different piecewise methods which were introduced in this chapter, can be divided
as (a) models that focus on solely calculating the transformation model, (b) models that
simultaneously estimate the correspondences and the deformation model and (c) models
that first estimate the correspondences and only afterwards is the transformation model
(e.g. [17, 150]) estimated. Therefore, it remains open how to jointly obtain the correspon-
dences, estimate the complexity of the transformations, discover the local structure of the
objects and estimate the overall transformation of the shapes using a single optimization
procedure. This challenge will be discussed in the next chapter.
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CHAPTER 7

BEYOND GLOBAL
TRANSFORMATIONS -

MORPHOLOGICAL ANALYSIS FOR
INVESTIGATING ARTISTIC

REPRODUCTIONS

This chapter introduces a methodology for solving the problem introduced in section 1.5.2:
Is it possible to develop a method, and thus an algorithm, capable of automatically find-
ing the appropriate deformation between two similar objects and infer at the same time
the structure and the complexity of such a deformation between objects? Understanding
what an object is means inter alia to understand all the properties that characterize it.
Shape is one of the most important features that characterizes an object (s. Sec. 1.4). It
may, however, change between object instances though remaining distinguishable by the
human mind as being a common shape to both objects despite the changes. What remains
the same and what changes? The present chapter aims at developing a computer vision
system able to answer this question. We focus on the analysis of artistic objects, since the
analysis of object shapes within art history is also important to reveal the stylistic impli-
cations of artworks and thus, such analysis may help to disclose the historical influences
in the creation and reproduction of art. This analysis shows once more the fruitfulness of
the interaction between computer vision and cultural heritage. The present results were
submitted for publication in [185].

7.1 Introduction

Although some stylistic movements in art like impressionism or pointillism define them-
selves by color, shape has been the predominant way to perceive an artwork. The theory
about primacy of shape can be traced back to Giorgio Vasari (1511-1574) who propagated
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the line drawing as the predominant technique of all visual arts. His use of the term disegno
(conceptual design) can be read as the assignment of ideas to shapes. This “shaped idea”
is represented through shapes in preparatory drawings, in the artwork itself as well as in
drawn reproductions. Based on this observation, changes in shape between artworks and
their reproductions, or preparatory drawings can be associated with changes in ideas and
concepts which reveal artistic choices and stylistic variations. Thus, the analysis of these
changes helps art historians to understand the impact of discourses and historical influences
in the creation and reproduction of art. However, in many cases these alterations between
shapes are very subtle and thus it becomes extremely difficult, even for trained eyes, to
determine the nature and extent of the deformations suffered by different parts within
an artwork. The automatic solution of such shape analysis poses an ambitious computer
vision task and its solution is the focus of the present chapter. The nature of the artwork
deformations that are analyzed in this work arise either due to deliberate alterations or
due to geometrical errors accumulated during the drawing process. For instance, a typical
example for a deliberate alteration between a preparatory drawing and the finished work
is a conceptual change that induces alterations in the relative position of extremities in a
human pose. Thus, in this case it is of interest for art historians to recognize the parts
that feature the same transformation and determine to which extent these parts differ from
other regions in the image. The second class of deformations is more subtle and is related
to the drawing process itself. Copying in many cases was done by placing a thin, tracing
paper on top of the original, and sketching the contours. Movements of the semi-opaque
sheet by the artist induced slight modifications in the reproduction. Whereas parts that
were reproduced at the same time shared the same transformation, sheet movements in-
duced a different transformation for the rest of the reproduction. Therefore, the system
presented in this chapter addresses the description of such overall nonlinear deformations
at the same time that give insights about the structure of different local deformations
present in the image. In the following, a more detailed description of the characteristics
of our model is given:

Piecewise Transformation Model

Shape transformation models within computer vision can be classified into linear and non-
linear models. Since global linear models cannot be used for describing complex shape
changes due to their limited description power, a common choice for describing nonlinear
changes has been the usage of splines like the TPS [44]. In this case, a TPS consists
of both a global affine transformation part and a non-linear parametrization based on
radial basis functions, where the number of parameters required for its estimation is in
the order of the number of points in the shape (s. Sect. 6). Moreover, the complexity of
such a model is regulated by a single parameter for the entire shape which is required to
be manually set. If this parameter is set too low, the registration becomes instable since
noise in the shape or in the correspondence assignments between points yields an over-fitted
transformation. In contrast, a high regularization parameter induces rigid transformations
incapable of describing the changes for the entire shape. Furthermore, the global nature of
this parameter makes it impossible for the model to locally adapt its complexity according
to the shape deformation. Therefore, the present chapter presents a piecewise linear
registration model that adapts the complexity of each component according to the shape
deformation in the underlying region. Moreover, the assignment of regions in the shape
to different model components induces a clustering which is used in turn to visualize the
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structure and geometry of the deformation introduced by the artist during the reproduction
procedure.

Automatic Complexity Estimation

However, a challenge of using piecewise linear models consists also in automatically deter-
mining the complexity of the model, that is, the number of affine components required for
registration. In the absence of prior knowledge about the shape, this question represents
a particularly important part of the analysis. Nonetheless, an indispensable requirement
for selecting the number of components is the robustness of the registration solution. The
present paper considers this robustness or stability from a statistical point of view, that is
a stable registration solution for a given number of components is a solution that is repro-
ducible on different subsampled versions of the shape and not too sensitively dependant on
the sample set at hand. For instance, inferring too many affine components (or clusters)
will lead to very similar affine transformations and points will arbitrarily be assigned to
them due to sample fluctuations. However, if too few clusters are selected structures in
the shape that should be kept separate will be mixed. Therefore, the “correct” number
of transformations is defined as the number which yields the most stable solution capable
of handling the trade-off between too rigid transformations and an overparametrization of
the transformation model.

Automatic Assignment of Affine Components

The second challenge of using piecewise affine models consists of determining not only the
correspondence between shapes but also which parts in the shape can be assigned to the
different affine components. Whereas piecewise affine models like [199, 48, 4, 188, 116]
simplify the task by manually setting the spatial domain of each of the affine components,
the methods in [181, 180, 253] assume to have the correspondence between shapes. In this
chapter we present a model that simultaneously solves three tasks: (i) infer the point-
correspondences between both shapes, (ii) identify the groups in the image which share
the same transformation, and (iii) estimate the transformation of these groups. Tasks (ii)
and (iii) are intrinsically related. The reason is that whereas a group is defined as the
set of points in a shape that can be described by a certain affine component, this affine
component is estimated using the points that define the group. An additional difficulty also
becomes evident noticing that whereas a group is a discrete set of points, the corresponding
affine parameters are continuous resulting in a complex mixed-integer problem.

Historical Analysis of Image Reproductions

The last part of the present chapter analyzes prominent reproductions from different peri-
ods of art history. At first, images coming from the Codex Manesse illustrated between c.
1305 and c. 1340 in Zürich and their reproductions commissioned by Bodmer/Breitinger in
1746/1747 are considered. This image collection is important in art history since the Codex
Manesse is the single most comprehensive source of Middle High German Minnesang po-
etry [36] and represents an outstanding source for understanding the visual interpretation
of the Middle Ages in early modern and modern times. Whereas the tracings from book
illustrations like the reproductions of the Codex Manesse exhibit only slight changes, the
differences between a drawing and a mural painting are obviously greater. Therefore, we
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7 Morphological Analysis for Investigating Artistic Reproductions

also analyze parts of Michelangelo’s ceiling fresco in the Sistine Chapel (1508-1512) with
sketches, which were made in the artist’s surroundings, probably after Michelangelo’s own
preparatory drawings or by Dutch artists after the original artwork had been completed.

7.2 Novelty of the Approach

In [181, 180] we introduced for the first time a method for analyzing the reproduction
process of artworks. However, both methods featured different limitations which we briefly
describe in the present section. In section 7.3 we will then introduce a new approach with
the intention of overcoming the prior limitations of [180, 181].

Greedy Clustering

The problem analyzed in [181] can be considered as a simplified version of the full task
introduced in section 7. The reason is that the authors manually select both points along
the contours and the correspondences between the point sets. Such information is usually
not available for large-scale tasks or is tedious and expensive to obtain. In the following,
shapes are represented through landmark points. The shape of the original artwork is
referred to by the set {xi}mi=1 and {yi}ni=1 for the reproduced shape. Furthermore, T (ϑi)
denote an affine transformation that is estimated in an iterative fashion for each point yi
and a neighborhood of it: if T 1

i := T (ϑ1i ) is the initial affine transformation estimated for
point yi using a non-collinear set of 12 neighbors, the refined transformation in the next
iteration is given by

ϑk+1
i := ϑki ∪ ϑargmaxj E

k
ij

(7.1)

T k+1
i = T (ϑk+1

i ) (7.2)

X k+1
A := X kA \ ϑk+1

i , (7.3)

where

Ekij :=
∣∣∣{s | ∥∥∥T (ϑki ∪ ϑ1j )ys − xs

∥∥∥
2
≤ ε
}∣∣∣ (7.4)

and

Cki :=

j | 1

|ϑkj |
∑

s:ys∈ϑkj

∥∥∥T ki ys − xs∥∥∥
2
≤ ε

 . (7.5)

Thus, the underlying idea consists of updating the neighborhood set and the transforma-
tion iteratively (eq. 7.1) by searching for points in the shape that can be explained by the
current transformation (eq. 7.5 and eq. 7.4). Once an affine transformation is calculated
for every point in the shape, a further clustering is applied to obtain a reduced number of
transformations capable of registering both shapes. Therefore, the similarity measure is
used

∆ij = β−11 dT (yi, yj) + λβ−12 dC(yi, yj), (7.6)

where dC(yi, yj) is an Euclidean contour distance and
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dT (yi, yj) :=
1

2
(‖Tjyi − Tiyi‖+ ‖Tjyj − Tiyj‖) (7.7)

Several limitations of this approach become apparent:

• The approach lacks a unified framework: Two different clustering procedures are
independently used. One is applied for estimating affine transformations (eq. 7.1)
and the other reduces the number of transformations (using eq. 7.6) required for
registration in order to avoid an overfitting.

• The correspondence problem is not approached. Furthermore, a method to auto-
matically extract edges, locate, and match landmark points is missing.

• The complexity of the piecewise affine model is manually set.

• The final clustering uses an Euclidean-distance term (eq. (7.6)) to force the com-
pactness of the groups. This term introduces a bias in the result since the objective
is to find groups of transformations that register the artwork and its reproduction.

A Deterministic Annealing Approach

The first two limitations enumerated in the last subsection were approached in [180], where
a single optimization problem was formulated in order to estimate the affine transforma-
tions and the resulting groups. There the shape contours, the landmark points, and the
correspondences were automatically inferred. However, the estimation of the point corre-
spondences was carried out independently of the other tasks.
Formally, the approach in [180] consisted in the estimation of a binary data assignment
matrix M ∈ Bn×k of n points to k groups at the same time that different affine transfor-
mations T ν ∈ R3×3 (ν = 1, . . . , k) for each group were calculated. In this case, the matrix
M is defined such that miν = 1 only if point xi is assigned to group ν.
To find both the data partition matrix M and the affine transformations T ν , local affine
transformations Ti were first calculated. These transformations are different from T ν .
While the former were calculated using only a small neighborhood around each landmark
point (12 non-collinear points) and were kept fixed, the latter transformations of groups T ν

corresponded to the deformations present in the reproduction process and were optimized
together with M . In a next step, the energy function E(M,T ν) was formulated

min
M,T ν

E(M,T ν) = min
M,T ν

1

2

k∑
ν=1

n∑
i=1

n∑
j=1

MiνMjν

pν
aij +

k∑
ν=1

n∑
i=1

Miνriν (7.8)

s.t.

k∑
ν=1

Miν = 1 (∀i = 1, · · · , n), Miν ∈ {0, 1} (7.9)

aij :=
1

Z
(‖Tjxi − Tixi‖+ ‖Tjxj − Tixj‖) (7.10)

riν :=
1

Zi

(
λ2||T νxi − yi||22 + (1− λ2)||Tixi − T νxi||22

)
, (7.11)

which was solved in turn using a coordinate descent approach based on deterministic
annealing. For this, the idea was to relax the matrix M to be a continuous valued matrix
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7 Morphological Analysis for Investigating Artistic Reproductions

M̂ in the interval of [0 1] and introduce a M logM entropy barrier function, which allowed
fuzzy partial assignments of data points to groups in the matrix M̂ . This term was
controlled in turn by a temperature parameter β. For β → 0 a discrete relaxed energy
function Ê(M̂, T ν ;β) was defined as follows

min
M̂,T ν

Ê(M̂, T ν ;β) :=
1

2

k∑
ν=1

n∑
i=1

n∑
j=1

M̂iνM̂jν

pν
aij +

k∑
ν=1

n∑
i=1

M̂iνriν (7.12)

+β
k∑
ν=1

n∑
i=1

M̂iν

(
log M̂iν − 1

)
(7.13)

s.t.

k∑
ν=1

M̂iν = 1 (∀i = 1, · · · , n), M̂iν ∈ {0, 1} (7.14)

As described in [269], the minima of E(M,T ν) and E(M̂, T ν ;β) all coincide in the limit
β → 0 if the matrix (aij) is negative definite. This was obtained by adding a sufficiently
large term to its diagonal without altering the structure of the minima of E(M,T ν).
The linear constraints were imposed by adding a Lagrange multiplier term obtaining the
Lagrange function

L(M̂, µ) :=
1

2

k∑
ν=1

n∑
i=1

n∑
j=1

M̂iνM̂jν

pν
aij +

k∑
ν=1

n∑
i=1

M̂iνriν (7.15)

+β

k∑
ν=1

n∑
i=1

M̂iν

(
log M̂iν − 1

)
+

n∑
i=1

µi

 k∑
µ=1

M̂iν − 1

 (7.16)

The Lagrangian function is a sum of a convex function Evex(M̂) = β
∑

νi M̂iν log M̂iν and

a concave part Ecave(M̂) = (1/2)
∑

νij
M̂iνM̂jν

pν
aij +

∑
νi M̂iνriν . Using this fact, the CCCP

algorithm ([270]) was used. This procedure effectively minimized the energy function using
the following update rule

β
(

1 + log M̂ t+1
iν

)
= −1

2

∑
j

M̂ t
jν

aij
pν
− riν , (7.17)

after setting to zero the derivative of (7.15) with respect to µi. By substituting it into
equation (7.17) and solving for M̂ t+1

iν the following update rule was obtained

M̂ t+1
iν =

exp
(
β
(
−1

2

∑
j M̂

t
jν
aij
pν
− riν − 1

))
∑

ν exp
(
β
(
−1

2

∑
j M̂

t
jν
aij
pν
− riν

)) (7.18)

After each update step (7.18), the affine transformations were recalculated using the
Levenberg-Marquardt algorithm:

T ν = arg min
T ∗

=
N∑
i

M̂ t+1
iν

(
λ2||T ∗xi − yi||2 + (1− λ2)||Tixi − T ∗xi||22

)
(7.19)
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In order to initialize the algorithm, the initial matrix M̂0 was obtained by running a fuzzy
c-means algorithm using the Euclidean distance between points xi ([20]) and M̂0 was taken
to be the resulting fuzzy assignment matrix.
Although this method is capable of jointly solving for the groups and the transformations
the usage of DA for its solutions is problematic. The problem arises at the beginning of
the optimization procedure when the temperature parameter is high, since all points are
assigned to every initial affine transformation with almost the same probability. Thus, all
parameters become equal when the transformations are updated. A second limitation (also
shared by [181]) is that the energy function to be minimized includes a Euclidean-distance
term, which forces the compactness of the groups and introduces a bias as described above.
Furthermore, [180] assumes the initial correspondences as fixed and thererfore are not ac-
tualized during the optimization procedure. The method described in the next section
replaces the deterministic annealing by introducing a linear program (LP) formulation.
Moreover, the Euclidean-distance term in the energy function is also eliminated. In addi-
tion to this, our method also updates the correspondences between shapes along with the
groups and the transformations within the same optimization procedure.

Related Fields

Within the field of sparse motion segmentation, the authors in [253] presented a procedure
for decomposing videos into similarly moving layers. The scene was firstly divided into
a regular grid and an affine transformation was calculated for each block. The method
estimated affine motion models for segments on a regular grid. However, due to clutter
and missing contours, accurate estimation of small and continuous deviations in transfor-
mations cannot be estimated with this approach. In [63], a regularized energy function
was minimized with Graph-Cuts ([30]) which also included a pairwise regularization and
thus a bias in the result. Thus, this regularization leads in practice to a poorer registra-
tion quality since parts in the shape belonging to different model components are mixed.
Furthermore, the authors of [133] presented a LP formulation of a central clustering in
which the number of clusters is determined indirectly by a hard to determine penalty term
for each data point. Lazic et al. [141] also indirectly determined the number of clusters
through the weighting of the different random subsampled linear subspaces. Normally,
(rigid) motion segmentation can be seen as an application of the more general task of sub-
space segmentation [141, 264]. This latter task commonly assumes that the data points
lie on several distinct linear subspaces [114, 264, 58, 246, 126]. However, the linearity
assumption does not hold in our setting: Whereas shape points lie in a 2D vector space,
each of the shape parts that were similarly altered by the artist are represented through el-
ements of the affine group. Therefore, the task consists not only of clustering points which
define a linear subspace but three tasks needing to be jointly solved: the correspondence
between both shapes, the groups in the image which share the same transformation, and
the estimation of the transformations of those groups.
In the field of computer graphics Sýkora et al. [230] embedded each shape in a lattice
consisting of several connected squares and registered them by estimating a rigid trans-
formation for every square. Since the registration is only on the level of rigid squares, a
grouping into flexibly shaped regions with related modifications is not part of this contri-
bution. Furthermore, the authors of [230] are not able to handle deformations which do not
preserve local rigidity (e.g s scaling or shear) and it requires a significant overlap between
shapes for registration. Additionally, in our setting background clutter creates distractors
that need to be handled, whereas the method of [230] is only applied to cartoons without
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any clutter. Another interesting related work is [48], which presented a piecewise affine
regularization method for medical image registration. The drawback of this method is
that the affine- registered areas required to be estimated manually by the user. Related
to piecewise affine registration, the authors of [116] recently introduced a matching algo-
rithm based on affine transformations calculated on a triangulation of the shape. In this
case, to match articulated objects it is required to manually select the groups and their
articulation in order to match the scene images. Two different works which are related to
estimating transformations between artworks are [39, 239]. While [39] tries to ensure con-
sistent perspective in art images, [239] aims to dewarp image reflections shown in convex
mirrors within very specific paintings. Common non-linear registration algorithms like [44]
or [187] are also not suited to the purpose of the present task. Whereas [44] uses a Thin
Plate Spline (TPS) to model the transformation, [187] estimates a displacement vector for
each point in the shape. In both cases these models introduce artifacts in the registration
as observed in [180], which is undesirable for art comparison.

7.3 Automatic Estimation of Transformations, Groups and
Correspondences

In the present chapter shapes are represented through landmark points (given in homoge-
neous coordinates) which are regularly sampled along extracted contours of the correspon-
ding image in an automatic manner (s. Sec. 7.4.4 for more details). Thus, the shape of
the original artwork is referred to with the matrix X ∈ Rm×3 and with Y ∈ Rn×3 the
reproduced shape.

7.3.1 Problem Statement

The main challenge consists of simultaneously solving three tasks. Firstly, the correspon-
dences between both shapes have to be inferred. Secondly, the groups in the image which
share the same transformation need to be found and finally, the transformations of those
groups and thus the overall deformation model needs to be estimated. The missing groups
correspond to image regions which are reproduced similarly by the artist. Therefore, each
of these groups is modeled through an affine transformation capable of transforming the
group from the reproduction into the original painting. The advantage of using a piecewise-
affine transformation model is that it allows to describe a non-linear transformation in a
more parsimonious manner, that is, less parameters are required for describing the overall
transformation. At the same time, the components in the model associated with different
regions in the shape give insights about the structure and geometry of the artistic defor-
mation.
Formally, the problem consists of estimating a binary data assignment matrix C ∈ Bn×m
of n points belonging to the first shape to m points in the second shape. At the same
time, a binary matrix M ∈ Bn×k of n points to k groups needs to be calculated together
with different affine transformations T ν ∈ R3×3 (ν = 1, . . . , k) for each group. Thus, the
overall registration error made by a solution (M,C, T 1, · · · , T k) can be written as:

Ereg :=

n,k∑
i,ν=1

Mνi


m∑
j=1

Cij‖xj − T νyi‖2︸ ︷︷ ︸
=:rνi

 . (7.20)
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An important observation is that although the global deformation between both artworks
is expected to be non-linear, regions between both images that were copied without any
or little alteration by the artist are transformed homogeneously and therefore, these parts
can be described using a single affine transformation. Thus, for any two points yi, yj within
such an affine-transformed shape part together with their respective correspondent points
xa, xb, the distortion between the vector from yi to yj and the vector from xa to xb is
expected to be small (and minimal in the presence of a rigid transformation). Similar to
[17], this distortion can be measured by

d(yi, yj ;xa, xb) := γda(yi, yj ;xa, xb)

+ (1− γ)dl(yi, yj ;xa, xb),

(7.21)

da(yi, yj ;xa, xb) :=

(
αd
|sij |

+ βd

∣∣∣∣arcsin

(
ŝab × sij
|ŝab||sij |

)∣∣∣∣) , (7.22)

dl(yi, yj ;xa, xb) :=
||sij ||ŝab||

(|sijf |+ σd)
; (7.23)

sij := yi − yj , ŝab := xa − xb. (7.24)

Whereas the first term da(yi, yj ;xa, xb) penalizes the change in direction, the second term
dl(yi, yj ;xa, xb) penalizes the change of length between two pairs of points in both shapes.
The constants αd = βd = σd = 0.5 allow more flexibility for nearby points, and the
constant γ = 0.3 weighs the angle distortion term against the length distortion term. We
use this measure to further enforce the matching consistency between both shapes and
thus the energy term (7.20) to be minimized is extended to:

min
M,T ν ,C

Etot :=

n,k∑
i,ν=1

Mνi

 m∑
j=1

Cij‖xj − T νyi‖2
+

k∑
ν=1

n∑
i,j=1

m∑
a,b=1

MνiMνjCiaCjbd(T νyi, T
νyj ;xa, xb)︸ ︷︷ ︸

=:Equad

(7.25)

s.t.

k∑
ν=1

Mνi = 1 (∀i = 1, · · · , n) (7.26)

n∑
i=1

Cij = 1 (∀j = 1, · · · , n), (7.27)

Cij ∈ {0, 1}, Mνi ∈ {0, 1} (7.28)

where k is the complexity of the piecewise model (i.e. the number of affine transformations
desired for registration). This parameter will be set automatically based on the stability
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analysis described in section 7.3.3. Whereas the constraint (7.26) forces each point to be
assigned to a single group, the constraint (7.27) ensures a many-to-one matching between
both point-sets yielding robustness in cases of missing points. Important to remark is that
whereas the authors of [17] minimized the pairwise distortions for all points in the shape
together, our model minimizes the pairwise distortions within each of the groups defined
through the matrix M .

7.3.2 Optimization Strategy

The general setting of jointly solving for M,C, T ν is hard. This is reflected in the above
problem formulation (7.25), where solving for the matrix C exactly is already NP-hard [17].
A practical solution to minimize the above energy is to assume an alternating procedure.
Departing from an initial solution, the above energy function is reduced by first calculating
the matrix M and the transformations T ν (assuming the matrix C is given) and solving
for the matrix C (assuming M,T ν are given) thereafter. This procedure is iterated until
the matrix C and M do not change.

Problem Formulation using a Superset of Affine Transformations

Estimating the matrix M and the different affine transformations T ν (given the matrix
C) are closely interrelated problems and their solution poses a challenging issue. Whereas
T ν (ν = 1, · · · , k) can only be estimated when the assignment of points to k groups (given
by the matrix M) is known, each of the groups ν is defined by the fact that all points
within it can be registered using a single affine transformation T ν . Thus, the rationale of
our previous work [180] was to approach this problem by first proposing a single initial
clustering (i.e. a matrix M) based on the Euclidean proximity of the shape points. There-
after, based on this matrix, the estimation of the affine transformations T ν was alternated
with the actualization of matrix M until local convergence was reached. However, this
procedure turned out to be very susceptible to the initialization of the matrix M . We show
this fact in Fig. 7.1 (e) where a textitsingle initial k-tuple of affine transformations led to
a wrong clustering, where parts in the shape corresponding to different affine deformations
were mixed into the same group. This paper studies an orthogonal approach for solving
the aforementioned problem leading to better results as shown Fig. 7.1 (b) (s. experi-
mental section for more details). Instead of proposing an initialization for the matrix M
or a single k-tuple of affine transformations and thus risking a wrong initialization, we
construct a large superset of affine transformations

T pool := {T ν |T ν ∈ R3×3, ν = 1, · · · , l}, (7.29)

where l >> k. For this purpose the shape Y is subdivided into non-overlapping small
segments, each of them containing at least 6 non-collinear points. For each segment an
affine transformation is estimated and added to the superset Tpool (we assume to have an
estimate of matrix C). Thereafter, each segment is merged with its nearest neighbor and an
affine transformation is calculated for the merged segment, which in turn is added to Tpool.
For the nearest neighbor estimation, the distance between two segments is defined as the
Euclidean distance between their centers of mass (i.e. the average of the segment points).
This merging is repeated until the whole shape is merged into a single segment. Thereafter,
using this superset Tpool our algorithm optimally selects a subset of k transformations that
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best register the shape and use these active transformations to estimate the matrix M .
Based on this matrix the active transformations are then updated in turn. Thus, the
original problem (7.25) is transformed into its final form:

min
M,W,C,T ν

l∑
ν=1

wν

(
n∑
i=1

Mνirνi

)
︸ ︷︷ ︸

=:Elin(W,M,C,T ν)

+Equad (7.30)

s.t.
l∑

ν=1

wν = k, (7.31)

n ∗ wν −
n∑
i=1

Mνi ≥ 0 (∀ν = 1, · · · , l) (7.32)

wν ∈ {0, 1} (7.33)

plus the constraints (7.26)-(7.28). Here the binary vector wν = 1 indicates that the ν-th
element of the set Tpool is being used and otherwise wν = 0. Whereas the constraint (7.31)
guarantees to obtain the desired number of transformations k, the constraint (7.32) avoids
the assignment of points to inactive transformations wν = 0. This becomes clearer by
remarking that constraint (7.32) is fulfilled whenever the logical constraint wν = 0 ⇒∑n

i=1Mνi = 0 is met.

LP-based Solution for Transformations and Group Assignments

In this section we describe how to estimate the active transformations (i.e. the vector W ),
assign points to the corresponding transformations (through the matrix M) and update
them afterwards (we assume to have the matrix C). This is a hard task due to the quadratic
non-linear term Equad in Eq. (7.30). Therefore, in praxis we focus only on the minimization
of the term Elin. Doing this is meaningful since this term controls the overall registration
error defined in Eq. (7.20) which in the praxis we intend to minimize. A further difficulty is
given by the binary constraints on M and W . For instance, if the elements wν are relaxed
to wν ∈ [0, 1], the constraint

∑n
ν=1wν = k becomes a soft-constraint. Therefore, despite

fulfilling this constraint more than k elements, wν can become greater than zero due to the
relaxation. Thus, the constraint (7.32) will assign points to more than k transformations
yielding a wrong solution to the joint problem. However, this last problem is alleviated if
we adopt an alternate procedure to minimize Elin. Firstly, the relaxed LP subproblems is
solved:

min
W

l∑
ν=1

wν

(
n∑
i=1

Mνirνi

)
(7.34)

s.t.
l∑

ν=1

wν = k (∀i = 1, · · · , n), wν ∈ [0 1]. (7.35)
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During the first iteration, all elements of matrix M are set to one and the transformations
to build r are taken from T pool . Since the solution W may contain more than k nonzero
elements (due to the relaxation), we observe excellent results if only the k biggest elements
are set to wν = 1 and the rest to zero. Once the active transformations W are obtained,
the second step consists in assigning points to these transformations by solving the LP:

min
M

n,k∑
i,ν=1

Mνirνi (7.36)

s.t.
k∑
ν=1

Mνi = 1 (∀i = 1, · · · , n) (7.37)

Mνi ∈ [0 1], (7.38)

Here, the matrix M ∈ Rk×n only indicates the assignment of points to the k active
transformations. A further benefit of solving this subproblems is that the solution of (7.36)
is always an integer solution, due to the constraint nature of M . Finally, after solving for
the matrix M , new point assignments for the different groups are made. Thus, the active
transformations can be actualized exactly by noting that given M and W , solving for the
affine parameters result in a weighted least squares problem for each group:

min
T ν

n∑
i=1

m∑
j=1

(Cij(Mνi))︸ ︷︷ ︸
:=(pν)ij

‖xj − T νyi‖, (∀ν : wν = 1) (7.39)

which can be solved exactly ([206]):

NP := 11TP11, µx :=
1

NP
XTP T11, µy :=

1

NP
Y TP11 (7.40)

X̂ = X − 11µTx , Ŷ := Y − 11µTy , (7.41)

B :=
(
X̂P T Ŷ

)(
Ŷ Tdiag(P11)Ŷ

)−1
(7.42)

t := µx −Bµy (7.43)

T ν :=

(
B t
0 1

)
(7.44)

For clearness in the notation, we have dropped the index ν out of the matrix P ν defined in
Eq. (7.39). Furthermore, diag(v) refers to the diagonal matrix built up using the elements
of the vector v, 11 being a vector containing 1 in all entries. Finally, this exact estimation
of the affine transformations is an improvement over [181, 180], where the transformations
are only approximated using Levenberg-Marquardt.

Finding Correspondences

We first describe how to estimate the correspondence matrix C between shapes Y and X
assuming the knowledge of the groups M and the transformations T ν (i.e. transformations
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T ν where wν = 1) Thus, the problem (7.30) can be formulated as

min
C

k∑
ν=1

wν

(
n∑
i=1

Mνirνi

)
+ (7.45)

l∑
ν=1

n∑
i,j=1

m∑
a,b=1

MνiCiaMνjCjbdT
νyi, T

νyj ;xa, xb

n∑
i=1

Cij = 1 (∀j = 1, · · · , n), Cij ∈ {0, 1} (7.46)

(7.47)

This problem can be alternatively formulated as

min
z

k∑
ν=1

zTDνz (7.48)

s.t. Az = 1, ν = 1, · · · , k (7.49)

z ∈ {0, 1}. (7.50)

In this case, z is an indicator vector such that zia = 1 if point yi from one image is
matched to point xa from the other image and zero otherwise. In this formulation, the
information of matrix C is included in the vector z. Furthermore, each matrix Dν contains
the values d(T νyi, T

νyj ;xa, xb) in all entries corresponding to group ν (i.e. Mνi = 0) and
zero otherwise. Whereas the diagonal of Dν consists of the linear terms of equation (7.45),
the many-to-one constraints of matrix C are expressed by the matrix A.
Solving for each group independently consists of subdividing the above formulation (7.45)
into smaller problems. This local formulation is given if first the vector uν is defined. This
vector contains all entries of vector z corresponding to all points yi belonging to group ν
(i.e. all entries of the form zi• for which Mνi = 1, wν = 1). Using this vector we obtain
the following local problems:

min
uν

uνTDν
|uνu

ν (7.51)

s.t. A|uνu
ν = 1 (7.52)

uν ∈ {0, 1}, (∀ν : wν = 1) (7.53)

where D|uν is the submatrix of Dν containing only pairwise distortions related to points
belonging to group ν (the non-zero submatrix of Dν in Eq. 7.48 ) and A|uν is the many-
to-one constraint submatrix of A for the corresponding points. Each of the subproblems
in Eq. (7.51) is then approximated using the Integer Projected Fixed Point (IPFP) algo-
rithm for graph matching ([149]) described in chapter 6. To estimate the initial matrix C
required by the IPFP algorithm, both shapes X and Y are registered using a single global
transformation (e.g. using a global affine transformation [187]) and for each point in Y
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its correspondent point is given as the nearest neighbor point in X. Although we cannot
guarantee finding a global minimum for problem (7.48), we are able to reduce the energy
(7.30) at each iteration ( given the matrices M,W ), since the solution of each subproblem
(7.51) reduces the total energy of the joint problem (s. e.g. [149]). In the praxis this
is confirmed through the improvement of the matching accuracy (s. Fig. 7.5 (a) in the
experimental section).

7.3.3 Choosing the Right Number of Clusters

In this section we describe how to automatically determine the complexity of the model,
that is the number of affine transformations required for registration. The underlying idea
is to measure the fluctuations in the registration results when random subsamples of the
shapes are considered. For a given number of clusters k, our algorithm is run on bmax
subsampled versions of the original shape Y (specifically, 60% of the points in the shape
are randomly subsampled each time). Thus, we obtain the clustering results M̂b ∈ Rns×1
(b = 1, · · · , bmax, ns = b0.6 ∗ nc), where M̂b indicates the cluster number for each point
in shape Y . Since the bmax clustering solutions are calculated on a subset of the points,
they are extended to the whole shape using nearest neighbors for the missing points. The
extended clustering solutions are referred to by Mb ∈ Rn×1. Thereafter, pairwise distances
between the different cluster solutions are calculated in order to evaluate the fluctuations in
the results induced by the random subsampling. This is done using the minimal matching
distance

d̂mmd(Mi,Mj) = min
π

1

n

n∑
i=1

1[Mi(i)6=π(Mj(i))], (7.54)

where the minimum is taken over all permutations π of the k labels. In other words,
d̂mmd(Mi,Mj) measures the percentage of points which changed the assignment (up to
a permutation). However, in order to avoid a bias when the number of clusters k is
increased, d̂mmd is normalized similar to [138] with the median r(n) of pairwise distances
between random labelings. Thus the fluctuations in the clustering results can be measured
by:

dmmd(Mi,Mj) :=
d̂mmd(Mi,Mj)

r(n)
(7.55)

In the case of stable clustering solutions, the pairwise distances dmmd(Mi,Mj) are expected
to be near zero. In contrast, unstable solutions yield variations in the clusterings and
large distances (s. Fig. 7.1 (d)). Therefore, we measure the instability of a solution by
approximating the empirical distribution of pairwise distances dmmd(Mi,Mj) through a
histogram h ∈ Rnbins×1 over the distances, and define as a measure for the instability the
sum of weighted counts:

instab(k) :=

nbins∑
i

h(i) ∗ ch(i), (7.56)

where h(i) is the absolute count and ch(i) is the value of the histogram bin i. Since the
number of runs bmax is the same for every value of k, the absolute counts of the histogram
can be used without introducing any bias. This measure penalizes distances which are
far from zero and thus, correspond to unstable clustering solutions for a certain value k.
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Therefore, the ideal most stable number of affine transformations required for registration
is defined as:

kopt := min
k

instab(k). (7.57)

Algorithm 7.1 Summary of the algorithm presented in this paper

Input: original image IX , reproduction IY
Output: kopt, T

ν
end, Mend, Cend, (ν = 1, · · · , kopt)

1 X̂ ∈ Rn×3, Ŷ ∈ Rm×3 ← Landmark points sampling
2 Cinit ← Initial global affine registration
3 for k = 1, · · · , kmax � Number of groups
4 for b = 1, · · · , bmax � Iteration for subsamplings

5 X ∈ Rns×3, Y ∈ Rms×3 ← Subsampling of X̂, Ŷ
6 T pool ← Initial pool of transformations
7 do
8 Mold ←M b, Cold ← Cb

9 W b ← minW Elin(M,W,T ν)� Section 7.3.2
10 M b ← minM Elin(M,W b, T ν)
11 T νb ←Weighted least squares given M b, W b

12 Cb ← minC Elin + Equad � Problem (7.51)
13 while(Cb 6= Cold ∧M b 6= Mold)
14 end for
15 instab(k) =

∑
nbins

i hb(i) ∗ cbh(i), (b = 1, · · · , bmax)� Eq. (7.56)
16 k ← k + 1
17 end for
18 kopt ← mink instab(k)� Eq. (7.57)

19 Mend, Cend, T
ν
end ← Repeat steps (6-13) once using k ← kopt and X ← X̂, Y ← Ŷ

7.4 Experiments

7.4.1 Synthetic data

We first evaluate our algorithm on two frames of a synthetic image sequence. Fig. 7.1 (a)
shows both frames in red and blue respectively. The head, both legs and tail were modified
through affine transformations, and thus the global non-linear deformation between frames
is known. In this case, around 4000 points are used to describe the shape and are uniformly
sampled along the contours of the image. In order to carry out the stability analysis
(s. Sec. 7.3.3) 60% of the points are uniformly subsampled and the algorithm is run
bmax = 60 times for each given number of clusters k (on average the algorithm converged
within 5 iterations each run). This resulted in 3600 pairwise distances for each k. This
experiment is repeated 20 times, thus yielding the instability plot of Fig. 7.1 (c). The
algorithm determined k = 5 to be the most stable number of groups. As Fig. 7.1 (b)
shows (each color represents a single group), the corresponding groups are consistent
with the manually introduced deformations. This experiment shows how our algorithm
not only registers both shapes, but also how the inferred groups describe and visualize
how the different local parts in the shape were truly deformed. Regarding this synthetic
experiment, the distribution of the pairwise distances dmmd(Mi,Mj) (Eq. 7.55) for the
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7 Morphological Analysis for Investigating Artistic Reproductions

Figure 7.1: Results on Synthetic Data. (a) original image in blue and distorted image in
red. (b) Groups found by our algorithm of Sec. 7.3.1 (each color corresponds
to a different group). (c) Instability analysis for different numbers of groups.
(d) Distribution of pairwise distances 7.54 for the most stable solutions. The
distribution is not normal (e) Resulting clustering if the greedy single linkage
algorithm of [181] is used for calculating the affine transformations instead of
our LP-based method described in Sec. 7.3.2

most stable number of groups (k = 4, 5, 6) is also shown in Fig. 7.1 (d). The author in
[241] (p. 5) mentions that a simple (normalized) mean over pairwise clustering distances
dmmd(Mi,Mj) is commonly used as instability measure. This methodology presuposes that
the distribution of the pairwise distances is normal and thus the instability measure weights
every pairwise distance equally. However, in Fig. 7.1 (d) we show that the distribution
of pairwise distances is in general not normal. Therefore, our measure in Eq. ?? is more
appropriate to describe the shape of the distribution since it weights the pairwise distances
proportional to their occurrence. Finally, the benefit of our LP-based method (Sec. 7.3.2)
for calculating the affine transformations and the assignment of points to them is evaluated
by comparing our method with an alternative procedure based on the algorithm previously
explored in [180]. Instead of using a pool of affine transformations T pool and the LP-based
method described in Sec. 7.3.2, we provided a single initial k-tuple of transformations by
locally grouping points in a greedy manner based on their proximity and registration
quality. This resulted in a defficient initialization which the sucessive updates of groups,
transformations and correspondences could not correct. Whereas in Fig. 7.1 (e) we can
observe how parts in the shape corresponding to different affine components wer mixed
into the same group resulting in a clustering which is not consistent with the ground-truth,
our current method (Fig. 7.1 (b)) groups the different shape parts correctly.
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7.4.2 Reproductions of the Codex Manesse

In [181] we collected a corpus of 5 shapes coming from the Codex Manesse (reproduced
between c. 1305 and c. 1340) and their corresponding reproductions commissioned in
1746/47 by J.J. Bodmer and J.J. Breitinger. Different regions of an image feature different
transformations as can be seen from Fig. 7.3 and 7.4 where a single transformation does
not suffice to bring the original and the reproduction into correspondence.

(a) (c) (b) (a) (c) (b)

Figure 7.2: a) 14th century original image. b) 18th century manual reproduction. c)
Transformation using a single affine transformation.

Only if the shape is decomposed into several affine transformations we achieve a consistent
registration. An example of this is shown in Fig 7.4 (a) where both images are brought
into alignment by means of piecewise affine transformations.

Since ground-truth for the correspondences between the shapes is known, it is possible to
measure the registration quality of our method and compare it with other state-of-the-art
algorithms. In Table 7.1 we show the mean squared error (MSE) of the registration for
all shapes. The number of affine transformations for all models is automatically deter-
mined by our algorithm. Furthermore, we are also interested in measuring the ability of
humans to perceive deformations in different parts of a shape. Therefore, we developed
an interactive registration tool which was used by 5 experts to manually select the re-
gions in the shape that according to their perception shared the same transformation. At
the beginning of the experiment, both shapes were registered using a single affine trans-
formation. Thereafter, each time a new group of points was selected the overall shape
registration was updated enabling each user to see the result of his selection. Moreover, it
was always possible to correct a group selected before. The average of the MSE over the
5 experts in the experiment is shown in table 7.1 under the row human. From the large
MSE it becomes clear that the task of an art historian to manually analyze a shape to
understand the drawing process is extremely difficult. Thus, a computer-based procedure
is essential. The entries Kmeans and Ward in table 7.1 correspond to a piecewise affine
registration based on the clustering of the displacement vectors between both shapes using
Kmeans and Ward’s method respectively. We have observed that clustering the error vec-
tors featured only insufficient accuracy: contours have been distorted (e.g. stretched) and
junctions are partly missing and thus affine deformations cannot be described by clustering
the displacement term of the deformation. A similar method to Wang and Adelson [253]
is also reimplemented (second row of Tab. 7.1). For this method not the displacement
vectors but the parameters of the affine transformations contained in Tpool are directly
clustered instead. Thereafter, we greedily iterate between the assignment of each point to
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Figure 7.3: a) Transformation of an image using a piecewise affine transformation model.

the centroids (i.e. the affine transformation representing a group) based on its registration
error and the refinement of the centroids themselves. The clustering of transformation
parameters resulted in being unstable since they strongly varied depending on the locality
of their support. Furthermore, the greedy assignment of points to transformations was
also not optimal.

In table 7.1 we also add the output of the algorithm from [181] for comparison. In
this case, we observed that areas in a shape were grouped based on their proximity due
to the pairwise Euclidean distance term used in their objective function. This bias was
also observed in the results of [63], where the assignments to transformations were also
regularized by a Euclidean distance based term in their energy function. This fact had an
important impact on the registration, since parts of the shape featuring different transfor-
mations were forced to be registered together and a bigger MSE was produced. Finally, it
is important to remark that all of these methods with exception of the presented one only
partially solve the full task since the correspondence between shapes is not calculated.
Furthermore, it is not possible to automatically determine the model’s complexity as we
do in our method.

Since we have ground-truth for the correspondences we also measure the improvement
of the matching quality between shapes induced by our algorithm. For this, we mea-
sure for each point yi in shape Y the error produced between its estimated corresponding
point

∑m
j=1Cijxj (as induced by the binary matrix C in our algorithm) and its true cor-

respondent point xgti (as provided in the ground-truth) in shape X. We then measure
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Table 7.1: Reproductions of the Codex Manesse. Mean squared error (MSE) of the regis-
tration using ground-truth correspondences provided by [181]. The complexity
of the piecewise affine transformation is automatically provided by our method.

Registration quality (MSE)

Shape ID (# groups) [253] Kmeans Ward [181] Human [63] Our Method

shape 1 (10) 49.36 37.20± 2.25 35.46 34.71 57.91 ± 9.93 25.04 24.89

shape 2 (7) 109.26 80.98± 5.30 84.19 131.07 194.33± 6.34 260.60 78.55

shape 3 (6) 24.11 35.77± 1.27 36.15 45.62 37.06± 5.61 24.68 21.41

shape 4 (7) 28.57 37.37± 0.99 39.26 37.68 44.21 ± 7.97 35.77 28.37

shape 5 (4) 52.12 57.52± 4.83 52.66 66.89 60.23 ± 1.03 67.84 45.86

Average 52.68 49.76± 2.92 49.54 63.19 78.74 ± 6.17 82.78 39.81

Figure 7.4: Inconsistency between parts. A single affine transformation is insufficient to
model the distortion of the complete figure, since individual parts have been
transformed differently by the artist. Each transformation is calculated using
the points marked in red.

for a threshold on δerr (which we then vary in turn) the percentage of points, where the
estimated correspondences lie at most δerr from the ground-truth. This yields a matching-
accuracy curve depending on the parameter δerr. In Fig. 7.5 (a) we show the relative
improvement in the matching accuracy between the last and the first iteration (initializa-
tion) of our algorithm. Thus, optimizing the correspondence matrix C together with the
groups M is beneficial for the registration process. Finally, we show in Fig. 7.5 (b) the
stability of the solutions for the whole corpus of shapes and observe that a local minimum
value indicating a stable solution for all shapes in the corpus is always obtained.
Finally, in order to compare the registration quality of our method with the CPD algo-
rithm of [187] we utilize more complex medieval scenes. For this we use reproductions
of the codex of Eike von Repgow’s Sachsenspiegel (“Mirror of the Saxons”) composed ca.
1220-1235 in eastern Saxony (s. Fig. 7.6 for one example). Whereas the CPD algorithm
of [187] (using the default parameters) obtains a root MSE (RMSE) of 12.64 ± 11.96 for
the registration error over 3 scenes, our method improves the registration with a RMSE
of 8.79± 5.8. In contrast to this, registering the scene with a rigid transformation results
in a poor RMSE of 20.65 ± 15.57. We observe that the improvement of our method over

97



7 Morphological Analysis for Investigating Artistic Reproductions

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

s2

s4

s1

s3

s5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

s2

s4

s1

s3

s5(a) (b)

number of groupsdistance to ground-truth (mrse)

im
p
ro

v
e
m

e
n
t 

o
f 

m
a
tc

h
in

g
 a

cc
u
ra

cy

in
st

a
b
ili

ty
 i
n
d
e
x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5 10 15 20 250

Figure 7.5: Results for the Codex Manesse corpus. (a) Improvement in the matching
accuracy between the last and first iteration of our algorithm: we plot the
difference between the matching accuracy curves of the last and the first it-
eration. Matching accuracy is the percentage of correspondences where the
ground-truth correspondent point lies at most δerr from the predicted corre-
spondent point (s. Sec. 7.4.2) (b) Instability analysis for all shapes in the
corpus and showing the standard deviation for each k.

the CPD algorithm is mainly due to the fact that whereas CPD regulates its complex-
ity through a global parameter for the whole image, our method has a greater flexibility
since it adapts its complexity, due to its piecewise nature, according to the underlying
deformation.

(a) (b) (c) (d)

Figure 7.6: Registration quality for complex scenes. (a) reproductions of the codex of Eike
von Repgowâs Sachsenspiegel (âMirror of the Saxonsâ) composed ca. 1220-
1235 in eastern Saxony (b) Registration using the CPD algorithm of [187]
(with a RMSE of 11.45 for this image). (c) Rigid registration (RMSE 17.48)
(d) Registration results using our method (RMSE 7.78)

98



7.4 Experiments

7.4.3 Michelangelo Reproductions

We also focused on the analysis of Michelangelo’s ceiling fresco in the Sistine Chapel
(1508-1512) and compare distinctive shapes with sketches, which were made by artists
surrounding Michelangelo, probably after preparatory drawings or by Dutch artists after
the original. The reason is that the differences between a drawing and a mural painting are
greater than the tracings from book illustrations like the reproductions in the last section.
Our aim here is not to reconsider the connoisseurs controversy about the attribution of
these drawings, but to show how our automatic approach is used to analyze the reproduc-
tion process of an artwork which in turn is noteworthy for an art-historical analysis.
The first column in Fig. 7.8 shows the original fresco images. The second column shows
two reproductions and a preparatory drawing. All three images in the second column seem
to be reproduced exactly from the first column images. However, after applying an overall
rigid transformation we see that the drawings feature important differences and show non-
linear deviations from the fresco. This can be seen in the third row of figure 7.8, where the
color of the arrows indicates the magnitude of the induced rigid registration error. Using
our method it is possible to discover a structure in the overall deformation by observing
the resulting groups obtained by our algorithm (s. Fig. 7.7). For instance, the Ignudo (i.e.
the male nude flanking the Creation of Eve) in (a) features only two relevant deformations:
whereas the upper and lower part of the body can be exactly registered to the other image,
both parts together yield a non-linear deformation. From an artistic point of view this
inconsistency can be explained by noting the difficulty of bringing both body parts into
an appropriate distance and angle to each other by the artist during the reproduction of
the fresco and alterations between these parts can easily be introduced in this procedure.
Furthermore, the Prophet Jonah in (b) features very interesting groups: whereas the left
leg fits using a single transformation, the right leg decomposes mainly into three groups
which correspond to the observation that this body part substantially differs from the leg
in the fresco. Furthermore, in (c) we can observe how the torso decomposes into the right
and left arm indicating a deliberate amplification of the articulation in the sketching. Since
our energy cost does not introduce any proximity-term which could bias the result, it can
be concluded that the artist approached the reproduction by independently reproducing
smaller parts corresponding to semantical entities. From an art historical point of view,
whereas these parts can be considered as technically sensible, regions in the shape that
were split in different groups indicate a possible difficulty of reproducing that area for the
artist.

7.4.4 Implementation Details

For shape drawings we have to extract and deal with different contour thickness and tex-
ture. Hence, contours are extracted by convolving the image with Laplace of Gaussian
(LoG) Filters of varying sigma (σ = 0.8 + j ∗ 0.4, j = 1, . . . , 9) and then take the maximal
response over all sigmas for every pixel. This kind of filter is suitable since it allows obtain-
ing a single response for lines of varying thickness and ensures in praxis a good contrast
between ridge response and background. Finally, non-maximum suppression followed by
hysteresis thresholding is applied to obtain a single binary response. For images where
shape is encoded through texture and color boundaries we use the Pb code ([163]) for edge
extraction, which weights edge signals proportionally to their strength.
In Sec. 7.3.2 we have estimated correspondences for each group independently. When
the group is too large (e.g. more than 1/5 of all points in the shape), each group is sub-
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Figure 7.7: Analysis of the drawing process. First to third column: Different shapes were
reproduced based in semantic entities (e.g. legs, arms, etc). The grouped parts
are mostly anatomically or technically sensible whereas the parts that are split
in different groups show a complex deformation for that area. Last column:
corresponding instability analysis together with standard deviation

divided into smaller pieces based on a bottom-up contour grouping (using the Euclidean
distance) and then the point correspondence for each subgroup is independently estimated.
However, we force the groups to reach a minimum size to guarantee a robust matching.

7.5 Discussion

This paper has presented a novel approach for the analysis of alterations between art-
works and their reproductions. Therefore, the overall shape deformation is represented
by decomposition into a piecewise affine model. Model complexity was automatically es-
timated using a statistical stability analysis. The present contribution jointly estimated
the correspondences between shapes, the affine structures in the shape, and the complex-
ity required by the overall deformation model. We have tested our method in controlled
scenarios, as well as with real historical images. Based on ground-truth correspondences
between images from the Codex Manesse and their 18th century reproductions, we have
observed an improvement over the state-of-the-art in both registration and matching qual-
ity. Furthermore, our algorithm outperformed a manual solution of the problem showing
the benefit of this method for art historians. Finally, an important experimental finding
was the discovery that the drawings of two of the Ignudi and the Prophet Jonah in the
ceiling fresco of the Sistine Chapel featured different deformations. These deformations
corresponded either to semantical entities of the shape (e.g. the arms in Fig. 7.7 (c)) or
indicated slight modifications in the relative position of extremities (e.g. Fig. 7.7 (a) and
(b)) by the artist.
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Figure 7.8: Parts of Michelangelo’s ceiling fresco in the Sistine Chapel (1508-1512). First
column: original fresco images. Second column: Sketches made after Michelan-
gelo’s own preparatory drawings or by Dutch artists after the original. Third
column: Error between rigid registered images. The color of the arrows corre-
sponds to the magnitude of the registration error.
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CHAPTER 8

CONCLUSIONS

This thesis has dealt with the detection and classification of objects in visual images and
with the analysis of shape changes between object instances. The driving force of this
research was the idea that important properties for the automatic perception and under-
standing of objects are transmitted through their geometry or shape and thus, they should
be exploited to solve the task at hand. The challenge consisted in using as little user su-
pervision as possible.
Specifically, we investigated the usage of richer representations of shape in order to learn
object models for recognition. The usage of curvature information in the underlying object
representation provided quantitative evidence that it is possible to use this shape cue in a
discriminative, robust, and reliable manner for object recognition. Our results showed
that curvature information can be considered as orthogonal information to the state-
of-the-art theme of histograms of oriented gradients for automatic visual search tasks.
Combining both curvature and orientation of gradients, the accuracy and performance on
standard datasets of a detection system solely based on HoG was significantly improved.
Finally, it became clear that the proposed histogram-based curvature representation is
generic, efficient to compute, and it is possible to effortlessly integrate it into all current
histogram-based object models, thus granting a wide applicability. Despite the evidence
that curvature is an important shape property for solving visual search tasks [261, 262]
this cue had remained unused by state-of-the-art systems [80, 165, 245]. Therefore, it is
remarkable that our work could bridge this gap for automatic object recognition.
This line of work also showed how to go beyond traditional bounding-box object repre-
sentations for detection. This thesis introduced a method to learn object models while
simultaneously learning to segregate objects from clutter and extract their overall shape
without manual segmentation of the training samples. It was shown that it is possible to
learn a prototypical set of segments and use it to represent and match objects of interest.
Using the Multiple Instance Learning framework it was possible to capture the overall
object shape in a model-driven manner by grouping the corresponding foreground regions
of the query object and thus segregate the object from the background. The quantitative
experimental results corroborated the main idea that segregating the shape of an object
is relevant to increase the description power of the model and thus, improve the over-
all performance of the system. This is remarkable since using shape information within
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histogram-based object models has been typically either (i) avoided (e.g. [165, 104]), (ii)
only a rough approximation of the object geometry has been used [80], or (iii) inten-
sive supervision has been required ([99, 172, 247]). Only recent approaches like [37] have
used shape for object recognition in a semi-supervised scenario. However, the specific
assumptions made by those approaches (s. Sect. 4.2) have limited the performance of the
system. Our results showed that it is possible to capture the overall object shape within a
semi-supervised scenario by grouping corresponding foreground regions relying on machine
learning techniques.
Another interesting evidence provided by this work is that it is possible to automatically
detect objects in fully unsupervised scenarios making use of the property of perceiving
shape equivalence. Due to the unsupervised scenario no annotation for the training data
was available and thus, it was not possible to learn a statistical model for detecting and
classifying objects. Shape equivalence refers to the ability of perceiving different object
instances as sharing the same shape. Relevant objects within the historical dataset we
analyzed were emphasized through annuli of light rays. This thesis explored the idea of
considering the annuli as shape equivalent objects and devised a method for detecting
them in an unsupervised manner. Thereafter, we were able to infer the size, position and
scale of the emphasized object through the annuli detections. The task of detecting the
rays of light and inferring the enclosed objects was not trivial, since finding objects of
interest required finding the rays which surrounded them. However, recognizing which
line segments in the image belonged to a ray annulus and which did not was related to the
location of the query objects. The new application we introduced disclosed an automatic
methodology to carry out iconographic analysis with the aim of revealing relevant meta-
information about the images like the focus of attention of the artists, or more important
the intention of those who commissioned those images.
Although object recognition is an important task in order to establish the functional
meaning of an object by means of its classification, the current thesis also focused on
the development of a method to detect and analyze the changes in shape between ob-
jects. This focus is remarkable since whereas object detection concentrates on learning
the commonalities between object instances, analyzing the shape transformations focuses
on describing the differences between them. Thus, both tasks complement each other and
are necessary to better understand objects and develop automatic perception systems.
Specifically, our method represented the overall complex deformation of an object using a
piecewise linear model. It was possible to employ statistical stability analysis to estimate
the model’s complexity and thus, overcome one of the major limitations of state-of-the-art
piecewise affine shape registration models (e.g. [48, 4, 188]): instead of manually select-
ing the regions in the shape that were affinely transformed, it was possible to formulate
a joint optimization program which automatically identified each of these shape regions.
Using this methodology it was possible to examine a novel interdisciplinary application for
discovering and quantifying deformations induced during the reproduction process of art-
works. At the same time, this novel application showed the fruitfulness of the interaction
between Computer Vision and fields arising from the humanities. Specifically, chapters 5
and 7 showed that art history is able to pose interesting challenges to Computer Vision
and motivate the development of new methodologies and approaches that bring the re-
search field to its original goal: devise algorithms that enable computers to understand
the visually perceivable world ([193]).
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