
Dissertation
submitted to the

Combined Faculties for the Natural Sciences and for
Mathematics

of the Ruperto-Carola University of Heidelberg, Germany
for the degree of

Doctor of Natural Sciences

presented by
Nora Rieber, Master of Science
born in Karlsruhe, Germany

Oral examination: November 6th, 2013





Performance comparison
of four human

whole-genome sequencing technologies

Referees: Prof. Dr. Roland Eils
Prof. Dr. Holger Sültmann
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Abstract

After almost 30 years of inertia in the field of sequencing, the emergence of a whole

range of so-called ”next-generation” sequencing technologies has revolutionized the way

we approach genomic and genetic research. Sequencing all 3 gigabases of a human

genome, once a costly task of 13 years of international efforts, can now be done within

a matter of days with a coverage of 30x and more, and comes with a price tag that

is affordable for a middle-sized lab. Among the different next-generation sequencing

machines developed over the course of the last 6 to 8 years, four instruments from three

different companies have established themselves on the market for human whole-genome

sequencing: Illumina’s HiSeq2000, Life Technologies’ SOLiD 4 and 5500xl SOLiD, and

Complete Genomics’ technology.

However, these next-generation sequencing platforms are still relatively new, and

a comprehensive comparative assessment of their performance is lacking. For this

purpose, the DNA of two tumor-normal pairs from medulloblastoma patients was

sequenced individually to 30x coverage on each of the four instruments. The resulting

data was analyzed with respect to its coverage distribution and biases over the genome,

in particular GC bias, and regions without coverage as well as specific genomic regions

were assessed. SNP calls on the different sequencing machines were compared, and

the benefits of combining read information from different instruments were evaluated.

Additionally, somatic mutations were analyzed.

The most striking result is the poor coverage of GC-rich regions by SOLiD 4 and 5500xl

SOLiD, discouraging their use in particular for methylation experiments and exome

sequencing. In contrast, Complete Genomics seems the least affected by GC content

and shows the most comprehensive coverage of many genomic regions, except for short

repeats. HiSeq2000 exhibits the most even genome-wide coverage distribution and the

least sample-to-sample variation, while consistently achieving the highest sensitivity in

SNP calling. A combination of read data from different technologies is shown to entail

limited improvement in most cases, and is advisable only for very specific applications.

Finally, the comparison of somatic variation confirms that calling somatic alterations is

still a big challenge, which is due in particular to low allele frequency. In summary, this

comparative study illustrates the assets and drawbacks of each individual machine and

can be used as a guide to find the most suitable platform for a specific experimental

goal.
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Zusammenfassung

In den letzten Jahren hat das Aufkommen von sogenannten ”next-generation-

sequencing” Hochdurchsatz-Technologien die Analysemöglichkeiten im Bereich der

Genomforschung vervielfacht. Die Sequenzierung der drei Gigabasen eines menschlichen

Genoms, ein bisher kostspieliger Vorgang, der unter internationalen Bemühungen

13 Jahre in Anspruch nahm, ist nun innerhalb weniger Tage mit mehr als 30-

facher Abdeckung möglich, und ist auch für Forschungseinrichtungen mittlerer Größe

erschwinglich geworden. Unter den bisher entwickelten next-generation-sequencing

Technologien haben sich vier Geräte von drei verschiedenen Firmen für den Einsatz

an menschlichen Genomen etabliert: Illuminas HiSeq2000, Life Technologies’ Solid 4

und 5500xl SOLiD Geräte, und Complete Genomics’ Technologie.

Allerdings sind diese Plattformen noch immer relativ neu, und eine umfassende

vergleichende Beurteilung ihrer Leistung fehlt. Zu diesem Zweck wurde die DNA zweier

Tumor-Normal Paare von Medulloblastom-Patienten auf jedem der vier Geräte einzeln

sequenziert. Die erhaltenen Daten wurden in Bezug auf die Verteilung der genomischen

Abdeckung und auf etwaige Verzerrungen, insbesondere in GC-reichen und GC-armen

Bereichen, untersucht. Nicht abgedeckte Bereiche und spezifische genomische Regionen

wurden ebenfalls begutachtet. Die auf den unterschiedlichen Plattformen bestimmten

SNPs wurden mithilfe eines Goldstandards verglichen und die etwaigen Vorteile einer

Kombination alignierter ”reads” verschiedener Technologien untersucht. Zusätzlich

wurden somatische Mutationen analysiert.

Am hervorstechendsten ist die mangelhafte Abdeckung GC-reicher Genombereiche

durch SOLiD 4 and 5500xl SOLiD, die stark gegen die Verwendung dieser Plattformen,

insbesondere für Methylierungsexperimente und Exom-Sequenzierung spricht. Im

Gegensatz dazu scheint Complete Genomics am wenigsten vom GC-Gehalt der Sequenz

beeinflusst zu sein, und erreicht die umfassendste Abdeckung in vielen spezifischen

genomischen Regionen, mit Ausnahme von kurzen Repeats. HiSeq2000 weist die

gleichmäßigste genomweite Abdeckung und die geringste Variation zwischen den

Proben auf. Weiterhin erreicht HiSeq2000 stets die höchste Sensitivität bei der

SNP-Bestimmung. Eine Kombination der Daten verschiedener Technologien führt

in den meisten Fällen nicht zu einer wesentlichen Verbesserung und ist nur für

spezifische Anwendungen empfehlenswert. Schließlich bestätigt der Vergleich der

somatischen Mutationen, dass das Bestimmen somatischer Variation immer noch eine

große Herausforderung darstellt, vor allem aufgrund der niedrigen Allelfrequenzen.

Zusammenfassend zeigt diese Studie die Vor- und Nachteile der einzelnen Sequenzier-

geräte auf und kann als Orientierungshilfe dienen, um die für eine bestimmte

experimentelle Fragestellung am besten geeignete Plattform zu bestimmen.
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1 Introduction

1.1 DNA sequencing

1.1.1 A short history of DNA sequencing

Sixty years after the structure of DNA was determined by James Watson and Francis

Crick [1], a discovery which was honored with the Nobel Prize in 19621, the methods

for the determination of individual DNA sequences have been subject to monumental

transformation. The first DNA sequencing methods were published in the late seven-

ties, the ”Sanger sequencing” method by Sanger and Coulson [2, 3] quickly replacing

the earlier technique by Maxam-Gilbert [4] as the latter used hazardous compounds

and had a generally more complex technical setup [5]. The Nobel prize for chemistry

was awarded for both methods in 19802.

In the 30 years following the publication of the Sanger method, this sequencing

technique was the only broadly used protocol. The main characteristic of the method is

the use of chain-terminating dideoxynucleotides (ddNTPs). The most recent protocol

variant [6, 7] involves fluorescently labeled ddNTPs, and DNA sequence is read-out

by capillary electrophoresis (CE). Initially, the DNA fragment to sequence is cloned

into a plasmid vector and amplified through its transfection into bacterial cells. The

resulting DNA is isolated and then replicated in vitro in four different reactions (each

assessing the positions of one of the four DNA bases) using a DNA primer and a

DNA polymerase. Each reaction takes place in presence of normal deoxynucleoside

triphosphates as well as one of the four fluorescently labeled, chain-terminating

dideoxynucleotides (either ddATP, ddCTP, ddGTP, or ddTTP). Because these do not

contain a 3’-hydroxyl group, the replication is stopped upon their incorporation into

the DNA chain. Each of the four replication reactions generates DNA fragment copies

of different sizes, each of them terminated by a fluorescent ddNTP. These are then

size-sorted by capillary electrophoresis, and the fluorescent patterns are read out via

laser detectors, allowing the reconstruction of the underlying DNA sequence.

1http://www.nobelprize.org/nobel_prizes/medicine/laureates/
2http://www.nobelprize.org/nobel_prizes/chemistry/laureates/
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1 Introduction

Capillary electrophoresis was used for the initial sequencing of the full human genome.

Launched in 1990, the completion of the Human Genome Project (HGP) took more

than a decade, using up a budget of approximately 3 billion US dollars - essentially

a dollar per base pair. In early 2001, the first draft human genome sequences were

reported by the International Human Genome Sequencing Consortium [8] and by the

company Celera Genomics [9]. In 2003, the HGP declared the human genome sequence

”essentially complete”, covering 99% of the euchromatic genome [10]. Regular updates

to the assembly are given by the Genome Reference Consortium3.

Establishing a human reference sequence had a massive impact on the research commu-

nity, highlighting that all previous knowledge was extremely limited and that the human

genome and its functions were far more complex than assumed [11]. As an example,

protein-coding sequence was found to make up only 1-1.5% of the genome, which is in

remarkable contrast to previous estimates, while the importance of gene regulation was

strongly underestimated, as was the role of non-coding components like small RNAs.

The sequence of the human genome enabled far more comprehensive and systematic

approaches in the field of genetics and genomics, and its importance to the research

community is largely reflected in the number of queries received by the main genome

data servers, the European Bioinformatics Institute (EBI) alone recording around 9

million requests per day in 2012 [12].

1.1.2 Next-generation sequencing

The establishment of the human genome sequence was only the start of a major shift in

the field. The year 2005 marked the advent of massively parallel, or ”next-generation”

sequencing. Both the company 454 Life Sciences [14] and the lab of George Church at

Harvard Medical School [15] published new protocols which used a decreased reaction

volume while allowing an impressive increase in the total number of DNA fragments

assessed. In 2006 and 2007, respectively, the companies Illumina and Applied Biosys-

tems (now Life Technologies) introduced novel next-generation sequencing instruments

based on sequencing by synthesis and sequencing by ligation, respectively. Their

capacity was orders of magnitude greater than that of previous methods, and provided

the basis for an extremely sharp drop in sequencing cost (Figure 1.1) and the appoint-

ment of next-generation sequencing as ”method of the year” by Nature Methods [16],

emphasizing its relevance for life science research. Soon afterwards, a number of

human whole genomes were sequenced on different platforms [17–20]. A project that

had previously needed over ten years to complete with Sanger sequencing could now

be completed in a fraction of the time, and was therefore welcomed by the research

3http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
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1.1 DNA sequencing

Figure 1.1: The cost of sequencing a human-sized genome from 2001 to 2013, as
taken from the National Human Genome Research Institute of the USA
(http://www.genome.gov/sequencingcosts/) on May 23rd, 2013. Costs
for downstream analysis are not included. Moore’s law (hypothetical data
shown on the graph) reflects the observation that the processing power
of computer hardware doubles roughly every two years. It is generally
used as a way to assess technology improvements [13]. The sudden drop
in sequencing costs and outperformance of Moore’s law from January
2008 onwards corresponds to sequencing centers shifting from the Sanger
sequencing method to next-generation sequencing platforms.

3
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1 Introduction

community as a novel, faster way to shed light onto our understanding of disease

and treatment, and the genetic and epigenetic processes that make up the human being.

This cost-effective, faster way to sequence was mainly attained through the automation

of a time-limiting and error-prone step of Sanger sequencing: the preparation of

cloning libraries. Instead of amplifying the DNA to be sequenced in bacteria in vivo,

as described above in section 1.1.1, it is randomly fragmented, adaptor-ligated, and

then selectively amplified using PCR, with the positive side effect of avoiding cloning

bias. Additionally, this enables the sequencing and detection of low-abundance reads

and mutations, as the sequencing templates are derived from a single molecule.

The automation and reduction of the reaction volume result in a dramatically higher

throughput. As an example, up-to-date whole-genome next-generation sequencing ma-

chines like the Illumina HiSeq2000 attain a throughput of roughly 55 Gb per day4, while

”traditional” CE-based Sanger sequencing produces around 1.35 Mb per day [6], over

four orders of magnitude less. Currently, four different platforms from three companies

are established for human whole-genome sequencing: the HiSeq2000 by Illumina (and

the HiSeq2500, which was recently released) [17], Complete Genomics’ platform [20],

and the SOLiD 4 and 5500xl SOLiD by Life Technologies [18].

Illumina sequencers

Illumina is currently considered as ”the most widely used sequencing technology” [21]

and has released a number of upgraded platforms since its first one, the Illumina

(Solexa) Genome Analyzer, was introduced to the market in 2006. Illumina sequencers

use a polymerase-based sequencing-by-synthesis method [17].

The sequencing takes place in a glass flowcell (two for HiSeq2000 and upwards), each

divided into eight lanes. Each separate lane can contain different sequencing material

if needed. An overview of the steps followed is given in Figure 1.2 and 1.3. The surface

of the flowcell is covered with covalently attached oligonucleotides. These are used

to fix single-stranded DNA fragments onto the surface via end-ligated adapters. In

order to later reach a sufficient signal during the sequencing step, these fragments are

then replicated via bridge amplification PCR [17] and form so-called clusters of one

and the same DNA fragment. The clusters are then exposed to fluorescently labeled

nucleotides which bear a chemically inactivated 3’-hydroxyl group to prevent the incor-

poration of more than one base at a time. In the next step, the color emitted by each

cluster is recorded and assigned to the corresponding nucleotide, whose 3’ end is then

4http://www.illumina.com/systems/hiseq_comparison.ilmn
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1.1 DNA sequencing

”unblocked”. After this, the full cycle is repeated, and the sequence of each cluster

of identical fragments is optically read out by a CCD camera, base by base until the

maximum read length is reached. Currently, a read length of 2 x 100 bp can be reached

with the Illumina HiSeq20005 when in paired-end mode, i.e., when both ends of the

fragments are sequenced, and roughly 11 days are needed per run.

Figure 1.2: Preparation of the DNA clusters to be sequenced on an Illumina flow cell. In-
dividual DNA fragments with ligated adapters are attached onto the surface
and replicated into clusters of the same fragment via bridge amplification.
Figure taken from Mardis et al. [22].

5See footnote 4
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1 Introduction

Figure 1.3: Illumina sequencing step. Fluorescently labeled nucleotides with a
chemically blocked 3’-OH group are incorporated into the DNA fragment
clusters. After read-out of the emitted fluorescence and assignment to the
corresponding nucleotide, the 3’ end of the incorporated nucleotide is un-
blocked and the cycle is repeated anew. Figure taken from Mardis et al. [22].
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Complete Genomics

Complete Genomics Inc. was established in 2006 and published its first human whole-

genome sequences in late 2009 [20]. Unlike other companies which offer sequencing

instruments for sale, Complete Genomics is a sequencing facility selling sequencing

and analysis as a proprietary service. The company focuses on human whole-genome

sequencing and has developed both a novel sequencing method and software for the

downstream analysis. They offer a Standard Sequencing Service as well as a Cancer

Sequencing Service6 and provide customers with reads and mapping as well as variants

like SNVs, indels, and copy number variants.

Complete Genomics’ sequencing relies on hybridization and ligation using a protocol

allowing for extremely densely packed DNA fragments, and thus needing only very

small reagent volumes. An overview of the process is given in Figure 1.4 (A). The

fragments first go through a series of adapter insertions using restriction enzymes

and are then circularized (Figure 1.4 (B)). The circularized sequencing fragments are

around 400 bases long and contain 2 x 35 (10 + 10 + 10 + 5) bases of fragmented

mate-pair reads from the original genomic DNA fragment. The reason for these short

read fractions is that the sequencing by ligation approach as it is carried out by

Complete Genomics does not allow for longer readouts7.

The circularized templates are subsequently amplified with Φ29 polymerase, which

generates hundreds of tandem copies of the fragments, called DNA nanoballs or DNBs

(Figure 1.4 (C)), which are less than 200 nm in diameter [23]. These are then placed

onto a photolithographically patterned silicon chip with aminosilane active sites placed

1 µm apart. Up to 3 billion DNBs can be placed on one 25 x 75 mm silicon substrate [23].

Each DNB site is then sequenced via combinatorial Probe-Anchor Ligation (cPAL).

Using a set of standard and degenerate anchors, and pools of probes with four different

fluorescent dye labels (one for each base), each position is read out independently after

hybridization and ligation of the corresponding probe (Figure 1.4 (D)). The anchor

and probe are washed away after each readout step. The fact that bases are read

independently and in no fixed order avoids an accumulation of errors that can occur

on other sequencing platforms.

6Complete Genomics Technology White Paper, http://www.completegenomics.com/

knowledge-center/whitepapers/
7See footnote 6
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Complete Genomics’ standard genome coverage is generally higher than that of other

platforms (50-80x vs. 30x), but the turnaround time for their service is about 90 to 120

days8.

Figure 1.4: Complete Genomics sequencing setup. (A) Overview of the sequencing
steps. (B) Adapter insertions into the genomic fragment to be sequenced.
(C) Generation of DNA nanoballs via PCR and view of the silicon chips
used for sequencing. (D) Example of combinatorial Probe-Anchor Ligation
sequencing. Figure taken from Drmanac et al. [20].

8http://www.completegenomics.com/FAQs/Complete-Genomics-Service-General-Information/

8

http://www.completegenomics.com/FAQs/Complete-Genomics-Service-General-Information/


1.1 DNA sequencing

SOLiD sequencers

First introduced in 2007, the SOLiD acronym stands for Sequencing by Oligo Ligation

and Detection [18]. The DNA fragments to be sequenced are coupled to small magnetic

beads covered with oligo adapters, and are subsequently amplified via emulsion

PCR [24]. The beads are then attached to a glass slide inside a flow cell. For the 5500xl

SOLiD platform, beads are replaced with direct amplification on the flow chips9. Each

SOLiD instrument possesses 2 of these flow chips that can each take up to 8 (SOLiD

4)10 or 12 (5500xl SOLiD)11 separate samples per run.

The SOLiD sequencing process consists of multiple sequencing rounds, as exemplified

in Figure 1.5. After the annealing of a universal primer to the adapter, fluorescently

labeled, semi-degenerate octamers are sequentially ligated to the DNA template. The

distinctive feature of SOLiD platforms is their primary output in so-called ”color

space” (as opposed to base space)12, an encoded form of the nucleotide sequence where

four colors are used to represent 16 combinations of two bases, as shown in Figure 1.6.

After the ligation of an octamer, the color emitted is recorded and the fluorophore

and the end of the octamer are chemically cleaved to allow for the next ligation cycle.

After a defined number of ligation cycles, the complementary strand is removed and a

new sequencing round is started using a primer annealed one base further upstream.

This means that the positions assessed by the octamers change in each round, as can

be seen in Figure 1.5, and the sequencing stops once every base has been probed twice,

i.e. is represented by two associated fluorophore colors.

The color-space data can then be decoded given prior knowledge of the leading base,

usually the last base of the adapter. This strategy, called two-base encoding, allows to

recognize certain sequencing errors, as depicted in Figure 1.5(b). Most importantly, a

single point mutation in the DNA fragment sequenced will result in two adjacent color

changes, while an error in color space will change the entire decoding of the remainder

of the DNA fragment when assessed individually without a reference sequence. This

property makes it easier to distinguish actual sequence changes in base space from

sequencing errors in color space.

9http://tools.invitrogen.com/content/sfs/brochures/CO111759_5500_W_prelim_spec_

sheet_FLR.pdf
10http://www3.appliedbiosystems.com/cms/groups/global_marketing_group/documents/

generaldocuments/cms_078637.pdf
11http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/

solid-next-generation-sequencing/next-generation-systems.html
12http://marketing.appliedbiosystems.com/images/Product_Microsites/Solid_Knowledge_

MS/pdf/CSHL_Fu.pdf
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Currently, paired-end read lengths of 50 bp + 35 bp, and 75 bp + 35 bp can be reached

with the SOLiD 4 and 5500xl SOLiD platforms, respectively, and run times range from

10-20 days.

Figure 1.5: The SOLiD sequencing process. (a) Each sequencing round starts with
the annealing of a universal primer and then the subsequent ligation of
the fluorescently labeled octamers matching the underlying DNA sequence.
The color of the fluorescent tag stands for a combination of the two non-
degenerate bases of the octamer, as illustrated in Figure 1.6. After a defined
number of ligation cycles, a new sequencing round is started with a primer
placed one base further to the left. This is repeated until every base has
been probed twice, as emphasized by the blue rectangles. (b) An example
of possible color changes within the sequence and their associated meaning.
Figure taken from Mardis et al. [25].
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1.1 DNA sequencing

Figure 1.6: Principles of two-base encoding and color space used in SOLiD sequencing
platforms. Each color stands for a succession of two bases. As a consequence,
each base is interrogated twice. The alignment to a reference sequence allows
the conversion back to base space and the identification of sequence variation
and sequencing errors. Figure taken from Mardis et al. [22].
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Known issues

One of the most prominent characteristics of next-generation sequencing is the short

read length. While Sanger-based capillary sequencers produce read lengths in the

range of 650 to 800 bp, the first Illumina and SOLiD instruments reached a read

length of only 35-36 bp [25]. Although the accessible read length is rapidly growing

among next-generation platforms, and even further among third-generation sequencing

instruments (see section 1.1.2 below), a short read length is an obstacle to downstream

analysis. The assembly of a genome from its sequenced reads, as it was performed

with Sanger sequencing and the human genome (see section 1.1.1) is a challenging

task with short reads, as this increases potential similarity between reads even if they

do not belong to overlapping regions of the genome of interest [26]. For organisms

with an already available genome sequence, this has led to the general practice of

mapping reads onto the reference sequence instead of assembling them, as described

in section 1.3.2. Both mapping and assembly processes can be improved by using

paired-end reads, i.e. by sequencing both ends of the DNA fragment instead of one

end only13. The information about the distance between these two reads is stored to

decrease ambiguities during mapping or assembly.

Short read length is a problem in particular for DNA repeat regions, which represent

a large fraction of many genomes, and especially of the human genome with a repeat

content of at least 50% [27]. Repetitive elements take many forms, from just a few

to millions of copies, and from just a few bases in length to millions of bases. Long

regarded as ”junk DNA”, it has been found that repeats have a function in human

evolution, can influence gene expression [28, 29], and play a role in a number of

diseases [30–32]. In addition, short tandem repeats are used in genealogy and forensics

as DNA fingerprints [33].

Another issue is known as ”phasing noise” or ”loss of synchrony”. It describes the

substitution errors that arise when clonally amplified DNA fragments which are

fluorescently probed at the same time - as is the case in the Illumina or SOLiD

protocols - get ”out of phase”. It is assumed that certain sequence patterns trigger

loss of synchrony [34]. An additional factor which leads to low base quality at the read

end is the fading of fluorescent signal intensity in higher cycle numbers, an issue which

is supposedly caused by the limited yield of the elongation reaction [35].

Finally, next-generation sequencing is affected by polymerase-induced biases, leading

to a non-uniform representation of the genome. This is especially problematic for

13http://www.illumina.com/Documents/products/Illumina_Sequencing_Introduction.pdf
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quantitative sequencing experiments like RNA-seq or copy number estimation, but can

also lead to missed or erroneous variant calls.

During library preparation, i.e. the generation of fragments of DNA to be sequenced,

a short PCR step is used to select for fragments successfully ligated to adapters [36].

Libraries with too little starting material or with a great variance in starting fragment

size will result in a major fraction of duplicated fragments [37]. As long as this fraction

is small, it is sufficient to remove reads or read pairs mapping at the exact same position.

The most prominent PCR-induced bias, which also arises during library preparation,

is known as GC bias, i.e. the underrepresentation of GC-rich, but also GC-poor

fragments, leading to decreased coverage in the corresponding genomic regions [38,39].

Even though regions with a highly unbalanced base composition represent only a small

part of the human genome, GC-rich regions have been shown to correlate with high

gene content [40–42] and are frequently part of gene promoters [43].

The base pair error rate of next-generation sequencers is assumed to be higher than the

error rate of Sanger sequencing. The Sanger error rates found in the literature range

from 0.001% to 1%, depending on the read post-processing software [44]. Illumina

error rates are usually found to be between 0.05% and 1%, while the error rates from

Life Technologies’ instruments are claimed by the company to be around 0.075% [45].

Complete Genomics have never released a base pair error rate14, but state a variant call

error rate of 1 variant per 100 kb [20].

Third-generation sequencing

A new generation of sequencing machines is currently emerging, denoted as ”next-

next-generation”, ”third-generation” or ”benchtop sequencing”. While some authors

restrict the term to single-molecule sequencing protocols (as opposed to protocols

using PCR-replicated libraries), it is widely used for the platforms introduced after

the ultra-parallel whole-genome sequencing machines reviewed in this thesis. Beside

the Illumina MiSeq, platforms like the Ion Torrent and Ion Proton [46] or the Pacific

Biosciences sequencer [47] introduce innovative protocols that eventually promise

longer reads - from 150 bp to over 1kb - and faster turnaround times (between a few

hours and a day) at a lower overall cost [48]. These methods are still in their infancy

and not yet capable of sequencing a full human genome in a single run, but Life

Technologies recently reported ”not seeing the end of capacity” for Ion Torrent and

14based on personal communication with Complete Genomics
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Proton platforms [21].

The Ion sequencers are sequencing-by-synthesis machines based on semiconductor

technology and function much like a pH-meter. They detect the proton that is released

upon incorporation of a nucleotide into the growing strand, and thus do not require

light, scanning and cameras for the detection process, saving a significant amount of

time. The throughput has increased from 20-50 Mb/run on the first chips to 1 Gb/run

(with a run time of 2-3 hours) on the current 318 chip. However, the platform still

uses a ”wash-and-scan” technology analogous to the second generation platforms.

The MiSeq, Illumina’s new benchtop sequencer, is based on the sequencing-by-synthesis

chemistry already in use in the previous Illumina machines. However, it is designed to

have shorter run times and less throughput (1 Gb/run with a run time of roughly a

day), attained through a smaller flow cell and faster microfluidics [49], and is geared

towards clinical diagnostics and smaller laboratories.

Pacific Biosciences takes an entirely different approach, introducing single-molecule

real-time (SMRT) sequencing. This is the first approach to observe not a high amount

of replicated fragments, but a single DNA molecule as it is synthesized by DNA

polymerase. This allows to circumvent many of the biases described earlier on, and

even allows sequencing long stretches of short repeats [50]. This setup drastically

reduces the sample preparation time and the amount of reagents needed, does not

require time-intensive steps like scanning or washing, and allows significantly longer

read-outs (over 1 kb). Pacific Biosciences sequencing uses metal chips with nanoscale

wells, termed zero-mode waveguides, which contain a DNA polymerase fixed at the

bottom. The small volume allows the detection of the incorporation of a single

fluorescently labeled nucleotide into the growing DNA strand. Because the fluorescent

dye is attached to the phosphate group, it is cleaved upon incorporation, and diffuses

out of the well and into the dark quickly. The kinetic data of the polymerase can also

be used to detect DNA modifications like methylation [51, 52]. Although the system

allows real-time sequencing in a matter of hours, the throughput is currently low at

only of 100 Mb/run, and the error rates are extremely high (12-13%), mostly consisting

of insertions and deletions [48].

Another company which is developing a sequencing platform based on a single-molecule

approach is Oxford Nanopore [53]. However, their device is still in the development

phase and is not on the market yet.
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1.2 Applications of next-generation sequencing

1.2.1 Experimental applications

The classical use of next-generation methods is the sequencing or re-sequencing of whole

genomes, but the high throughput attained has allowed the development of a wide range

of other experimental applications, gradually replacing genomic chips and arrays [54].

Beyond the discovery of point mutations and indels [55], whole-genome sequencing has

been used to detect copy number variation [56, 57], structural variation [58], or DNA

methylation using bisulfite conversion [59] (Figure 1.7). Next-generation sequencing

is also opening the field of metagenomics [60] and enables the fast assembly of small

genomes like the enterohemorrhagic E. coli strain which led to a severe outbreak of

foodborne illness in Germany in 2011 [61].

RNA sequencing is used as a means to evaluate gene expression [62–64] (Figure 1.8 (a))

or for the analysis of non-coding small RNAs [65,66]. A broad range of application also

uses next-generation sequencing techniques to target specific parts of the genome, the

most widely used being exome sequencing [67, 68] and DNA enrichment procedures to

target DNA-protein interactions, chromatin structure or epigenetic marks, like ChiP-seq

[69,70] or MeDIP-seq [71] (Figure 1.8 (b)). The latter are both adaptions of DNA chip

protocols to next-generation sequencing. A more complete overview of experimental

applications can be found in Shendure et al. 2012 [72].

Next-generation sequencing in the clinic

Being able to sequence a human genome in a matter of days, at a non-prohibitive cost,

makes next-generation sequencing applications interesting not only for fundamental

research, but also in a clinical diagnostics setting. The idea is to use the information

gained through whole-genome sequencing of patients for personalized medicine, i.e.

for an assessment of expected patient response to different therapy options, and for

an assessment of disease risk [74]. However, the requirements to fulfill are radically

different for a ”clinical-grade” whole genome. Up to now, there is no infrastructure

and no standards or guidelines established for this [75], and sequencing data does not

always lead to clear conclusions that can be immediately put into action [76], although

disease gene panels exist for a small number of genes and for diseases with known

genetic causes. In addition, the psychological aspect should not be left out, as whole-

genome sequencing may incidentally unveil high risk factors for late-onset diseases with

no available treatment, like Alzheimer’s or Huntington’s disease, or dementia [75, 77].

Also, there is a certain chance of false positives which should not be disregarded as this

may have a severe impact on patients lives [78]. Pilot studies for integrating whole-
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Figure 1.7: Bisulfite sequencing is used to analyze DNA methylation. DNA is subjected
to a bisulfite treatment that converts unmethylated cytosines to uracil by
deamination, but leaves methylated cytosines intact. In a subsequent PCR
step, uracils are then converted to thymines, as they are thymine analogs.
Figure taken from [73].

Figure 1.8: (a) RNA-seq for the analysis of gene expression. Coding RNA is isolated,
usually by targeting its poly-A tail, and is then reverse transcribed to cDNA.
The latter is then sequenced on a next-generation platform. After align-
ment, the sequenced reads can be used to quantitate the RNA content of
the sample. Figure taken from [69]. (b) Chromatin immunoprecipitation
(ChIP) is a method to analyze DNA-protein interactions. It is commonly
used to locate the DNA binding sites of transcription factors, histones, or
modified histones. The DNA fragments bound to the protein of interest
are isolated via immunoprecipitation, and are then sequenced with a next-
generation platform. A similar technique can be employed to identify sites
of DNA methylation. Figure adapted from [70].
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genome sequencing into clinical practice are underway [79, 80], and initiatives like the

DKFZ HIPO project15 promise to build a first scaffold for personalized medicine in

oncology.

1.2.2 Large-scale projects

Sharply sinking costs and increased throughput have given rise to a number of

prestigious large-scale international genomic projects, e.g., the 1000 Genomes

project [55,81] and the International Cancer Genome Consortium (ICGC) project [82],

both launched in 2008. The recently completed Encyclopedia of DNA Elements

(ENCODE) project [83, 84], although already planned in 2003, equally profited from

the development of next-generation sequencing. All projects are aiming at sequencing

a high number of genomes, either to investigate human genetic variation in healthy

individuals (1000 genomes project) or cancer patients (ICGC), or to catalog functional

elements of the human genome (ENCODE).

The 1000 genomes project aims to sequence entire genomes of a high number of

individuals from different populations in order to assess their genetic diversity. While

the initial project plan involved 1,000 individuals, this goal was extended to sequence

around 2,500 samples, the sequencing results of which will be made available publicly.

In order to lower costs, sequencing takes place at a comparatively low coverage of 4x.

This is not enough to obtain a complete genotype of each individual, but allows to

detect most genetic variants with a population frequency above 1%. These can then in

turn be used for studies linking genetic variation and disease.

The International Cancer Genome Consortium is composed of 47 project teams from

Asia, Australia, Europe and the Americas, and leads large-scale cancer genome studies

of 50 cancer types. For each cancer type, the whole genome, the transcriptome and

the epigenome of 500 patients are currently being sequenced to unravel oncogenic

variation, which will allow to search for cancer origin and classify cancer subtypes in

order to predict clinical outcome and develop better, individually tailored therapies.

The ENCODE project integrated a number of different technologies with the goal

to attribute biochemical functions to genomic elements, especially outside the long

established protein-coding regions, challenging the widespread assumption that the

human genome predominantly consists of so-called ”junk DNA”. The insights from

15http://www.bio-pro.de/magazin/index.html?lang=en&artikelid=/artikel/09012/index.

html
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Figure 1.9: Genomic alterations playing a role in cancer, as seen in next-generation
sequencing data. Figure taken from Meyerson et al. [86].

the ENCODE project were recently published simultaneously in 32 papers16, the tenor

being that over three quarters of the human genome can actually be transcribed. Using,

among others, next-generation sequencing techniques like ChIP-seq and RNA-seq (see

section 1.2.1), the ENCODE project studied different cell types and investigated the

function, expression levels and localization of transcribed RNA, as well as factors

influencing transcription, like transcription factor binding, histone modifications, DNA

methylation, or general chromatin accessibility.

1.2.3 DNA sequencing in cancer

The availability of next-generation sequencing methods has lead to profound changes

across many research fields. The search for the determinants of cancer has particularly

benefited from the possibility of sequencing samples from hundreds of cancer patients,

as is the case within the ICGC project (see previous section 1.2.2), as cancer is a

consequence of often massive genomic alterations [85].

Figure 1.9 illustrates many of the changes that can occur in cancer genomes and the

way they translate to whole-genome next-generation sequencing data: from simple

point mutations to insertions and deletions, copy number changes, chromosomal

translocations, or insertion of non-human, e.g. viral [87], sequence. In addition, epi-

genetic changes are also known to play an important role in cancer development [88].

These alterations are usually somatic, i.e. acquired in non-germ cells over decades, and

16http://www.encodeproject.org
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are subject to natural selection. A tumor arises when cells carry unrepaired changes

conferring a selective advantage, allowing them to proliferate [89]. These changes are

termed ”driver mutations”, as opposed to ”passenger mutations” that do not have an

impact on cancer development.

Detecting mutations in cancer genomes is a challenge of its own. The search for

somatic mutations normally involves the sequencing of a normal control tissue,

so that two full genomes need to be sequenced per patient. Also, as cancer cells

usually originate from several phases of clonal expansion, their genomes can be highly

heterogeneous and may carry different driver mutations in parallel [90]. In addition,

cancer tissue usually contains a certain fraction of normal, non-malignant cells, and

copy number variation is a rather common event [86]. As a consequence, the allele fre-

quency of somatic mutations is often drastically lower than variant allele frequencies in

normal tissue, which makes them harder to detect and requires a high sequencing depth.

The ultimate goal of mutation detection in cancer is to advance diagnostics, prognos-

tics, and treatment. As the treatments themselves are extremely aggressive, knowing

driver mutations in advance allows for targeted therapy, meaning that patients likely to

benefit from it can be identified upfront, whereas patients likely to be unresponsive will

be spared from ineffective therapy. Tailored treatments often target mutated protein

products, so that driver mutation detection can be used for drug discovery [91]. The

most prominent example is imatinib, an inhibitor of a constitutively active tyrosine

kinase in chronic myeloid leukemia, which has greatly improved the treatment of the

disease [92].

1.3 Data analysis

1.3.1 ”Big data” challenges

For a long time, the limiting factors for whole-genome sequencing have been cost and

throughput, and sequencing was therefore only performed by large research centers

like the Wellcome Trust Sanger Institute in the UK. At the National Human Genome

Research Institute in the USA, a ”Billion Basepair Celebration” was held in 1999

to celebrate the billionth base pair sequenced in the Human Genome Project17, a

number which can now be reached in a matter of hours. Meanwhile, the unprecedented

throughput and sharp drop in sequencing costs allows even smaller labs to afford

next-generation sequencing machines, leading to an unparalleled flood of genomic data.

17http://www.genome.gov/10002105
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Often termed ”big data”, this phenomenon gives rise to a number of challenges related

to data storage, transfer, processing and analysis, and also has implications for patient

data privacy.

The output generated by next-generation sequencing machines has for some while

outpaced Moore’s law (Figure 1.1). While the transistor density on an integrated

circuit is growing by a factor of 2 roughly every one to two years [93], for next-

generation sequencing data, this has reached a factor of 10 every year since 2002 [94].

The European Bioinformatics Institute (EBI) alone, which runs one of the largest

public repositories, stores two petabytes of next-generation sequencing data, with this

amount doubling every twelve months [95]. As a consequence, new ways of storing,

transferring, and analyzing data are needed. Some answers may lie in the design of

smarter algorithms [96] and in the circumvention of data transfer needs, for example

through cloud-based solutions containing both databases and analysis software. While

the latter are beneficial especially to smaller research groups and institutions by

eliminating the need for a computational infrastructure of their own, there may be

access and privacy issues [12].

Privacy is a relatively new concern in this respect [97]. While genomic research has been

heavily relying on raw, usually anonymized data shared via internet databases [98],

some of which are open-access, a number of recent studies highlight that this may not

be safe enough to protect the identity of study participants [99]. Particular attention

was raised by Gymrek et al. for their recent study in which short tandem repeats on

the Y chromosome were used in combination with publicly available information from

genetic genealogy databases in order to identify sequenced individuals [100].

1.3.2 Analysis steps

The advent of next-generation sequencing required a whole new infrastructure for the

downstream analysis of the machine’s output, as previous solutions were not suitable

any more, being too slow for the available throughput, and not adapted to the shorter

read lengths or to new experiment designs (section 1.2.1).

Figure 1.10 shows typical analysis workflows for next-generation sequencing data. The

instruments initially produce so-called ”reads”, i.e. short sequence fragments, and

associated base quality values derived from base calling procedures, for example from
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Figure 1.10: Typical analysis workflows for NGS data. DNA or RNA is fragmented,
pre-processed and sequenced. The sequencing machine generates so-called
reads, i.e. short stretches of read-out sequence. Each base is assigned
a base quality. The reads are then aligned to a reference genome (if
available) and the resulting information is stored in a standardized BAM
file. Coverage is then evaluated to assess the success of the experiment,
and the mapped data is analyzed according to the chosen experiment type:
the most common being variant calling (SNVs, indels, or copy number
variation for example), measurement of gene expression, or analyses of
genomic regions previously enriched according to a certain criteria, e.g.,
CpG methylation, transcriptor factor binding, or histone binding, among
others.
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fluorescent readouts [101]. The standard format for base quality is Phred scores [102]

which are computed as follows:

QPhred = −10 · log10P (error)

A base quality score of 20, for example, amounts to an error probability of 10−2.

However, a read in itself is almost useless before it is put into context, either by

assembly, i.e. using overlaps between reads to reconstruct the genome of interest [26],

or by mapping, i.e. aligning reads to a reference, which is the solution of choice when

a reference genome is available [103]. Two major classes of mapping algorithms are

used, either hash-table based (for example Novoalign18 or Stampy [104]), or Burrows

Wheeler transform (BWT)-based (for example BWA [105] or Bowtie [106]). Alignment

methods need to choose a trade-off point between speed and accuracy: hash-table

based methods are usually more accurate, while BWT-based methods are faster [101].

One of the currently most popular mapping algorithms for base-space data is BWA, as

it is fast, freely available, easy to use, and produces reasonably accurate results [45].

After mapping, reads can be sorted into three different categories: unmapped (an

acceptable match was not found in the reference genome), ambiguously or non-uniquely

mapped (several equivalent or nearly equivalent matches were found), or uniquely

mapped. Mapped reads are assigned a mapping quality based on the concordance

between read and reference, and on the underlying base qualities, and this translates

to the probability of misplacing the read. Like the base quality, the mapping quality is

Phred-scaled. Ambiguously mapped reads are assigned a mapping quality of 0 and are

usually not retained for downstream analysis [107]. Mapped reads are usually stored

in standardized BAM (Binary Alignment/Map) files, along with alignment, mismatch

and quality information [108].

Next-generation sequencing experiments are designed to reach a certain mean coverage

or read depth, i.e. a certain redundancy in covering the genome, in order to compensate

for sequencing errors and low allele frequency variants. The more evenly the coverage is

spread across the genome, the more accurate are the analysis results. A mean genomic

coverage of 30x is currently regarded as the standard for variant calling [17,109]. After

alignment, mapped reads are routinely checked for duplicates, i.e. reads with the exact

same 5’ mapping position. These reads arise from a single read during PCR, and

not from different randomly fragmented genomes of multiple cells, as described in the

section ”Known issues” (section 1.1.2). A high number of duplicates is usually due to a

low-complexity library and is to be avoided, as this may introduce unwanted bias and

18http://www.novocraft.com/
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errors. As a consequence, in qualitative sequencing experiments, duplicate reads are

removed after mapping [81,110].

Programming languages and toolboxes used for analysis

The main toolboxes I used for data processing are the command-line based SAMtools

[108] and Picard19 which allow for fast and convenient manipulation of BAM files. All

other computations were performed using the statistical programming language R20,

the high-level programming language Perl21, as well as the Unix scripting language

awk and bash shell scripts [111]. The main scripts are listed in the Technical Annex

(Section 5) at the end of this thesis.

Statistical measures used

Sensitivity and specificity are common statistical terms used to evaluate the perfor-

mance of binary classification [112]. Within this thesis, they were used to evaluate

platform differences in SNP calls. Sensitivity describes the fraction of true positives –

i.e. correctly identified events – among all positive events, i.e. correctly identified and

incorrectly rejected events:

Sensitivity =
TP

TP + FN

TP stands for True Positive, FN for False Negative. Specificity describes the fraction of

true negatives – i.e. correctly rejected events – among all negative events, i.e. correctly

rejected and incorrectly identified events:

Specificity =
TN

TN + FP

TN stands for True Negative, FP for False Positive. Transferred to SNP calling, using

a SNP array as a gold standard, sensitivity is the probability of correctly identifying

an existing array SNP using the next-generation instrument data. Specificity is the

probability of correctly assigning a non-mutated SNP array position using the next-

generation instrument data. Specificity is directly related to the false positive rate:

the higher the specificity, the smaller the false positive rate, i.e. the less incorrectly

identified SNPs we have in the next-generation sequencing data:

False positive rate = 1− Specificity

19http://picard.sourceforge.net/
20http://www.r-project.org/
21http://www.perl.org/
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Similarly, the higher the sensitivity, the smaller the false negative rate, i.e. the less

SNPs we are missing. In addition, ROC (receiver operating characteristic) curves can be

plotted to depict the trade-off between sensitivity and false positive rate under a varying

criterion. The higher the area under the curve (AUC), the better the performance.

1.4 Motivation and thesis outline

In the years 2008 and 2009, due to sharply dropping prices, novel next-generation

sequencing platforms got adopted by a great number of research laboratories world-

wide. Seemingly endless possibilities [6, 113] led to a considerable number of articles

being published in scientific journals. However, as with the launch of every new

technology22, next-generation sequencing came with its own share of teething issues.

Researchers became aware of new biases involved [36, 38, 114] and their likely impact

on next-generation sequencing experiments and analysis results.

Initially, I had been working on data analysis within a project involving the transfer

of a methylation assay to the next-generation sequencing methodology. We were

confronted with a number of unforeseen issues involving an extremely high fraction of

PCR artifacts (sometimes more than 90% duplicate reads), a very uneven distribution

of read numbers between libraries, and some contamination problems. While some

of the problems arising were obviously assay-based, optimization of the methylation

enrichment protocol yielded little overall progress.

This experience sparked the project of benchmarking the different next-generation

sequencing platforms available, evaluating the strengths and weaknesses of each of

them. To this end, we used two tumor-normal pairs from medulloblastoma samples, se-

quenced on the four platforms currently commercially available, Illumina’s HiSeq2000,

Complete Genomics’, and Life Technologies’ SOLiD 4 and 5500xl SOLiD instruments.

I analyzed the data from the four patient samples with regard to the coverage

distribution and biases, in particular GC bias, and I investigated and compared regions

without coverage as well as the coverage of specific genomic regions. In addition, the

potential benefit of a combination of data from different platforms was examined and

SNP calls compared to a gold standard across platforms. Finally, somatic SNVs and

indels were called and compared.

While there are previous publications comparing next-generation sequencing platforms

[115–118], none of them is comprehensive regarding platform choices, and most of them

22http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
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examine only one sequenced sample. Furthermore, the comparison is usually restricted

to a few aspects only, e.g., SNV calling, and does not include a more in-depth analysis of

genome-wide coverage distribution. The most recent study by Lam et al. [115] analyzes

data from a single healthy subject sequenced with HiSeq2000 and Complete Genomics.

They show that HiSeq2000 is more sensitive in SNV calling than Complete Genomics,

and presume this may be due to HiSeq2000’s longer reads which should lead to a better

coverage of difficult regions. Additionally, they suggest using both technologies as a way

to more comprehensive variant detection, where platform-specific variants are discarded

or additionally validated using another technology.

1.4.1 Publication

I recently published a major part of my results in PLoS One together with my colleague

Marc Zapatka [119].
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2 Methods

Sections 2.1.1 and 2.2.2- 2.2.8 are partly taken from my first-author publication [119].

2.1 Data generation

2.1.1 Whole-genome sequencing

Two tumor/normal pairs obtained from the primary untreated tumor and whole blood

of two pediatric medulloblastoma patients (MB14/BL14, female and MB24/BL24,

male) were sequenced with Complete Genomics, HiSeq2000, SOLiD 4, and 5500xl

SOLiD instruments. Whole-genome sequencing was carried out by the DKFZ Genomics

and Proteomics Core Facility, except for Complete Genomics sequencing, which was

done by the company itself, using their proprietary solution. Run information for each

platform is given in Table 2.1.

All patient material was collected after obtaining written informed consent from partici-

pants and an ethical vote approving the study (Institutional Review Board: Ethics Com-

mittee of the Medical Faculty of Heidelberg University, Germany / Ethikkommission

der Medizinischen Fakultät Heidelberg) according to ICGC guidelines (www.icgc.org).

HiSeq2000

High molecular weight genomic DNA was fragmented in a Covaris instrument (Woburn,

MA, USA) to an average size of 400 nucleotides.

HiSeq2000 library preparation was performed using standard Illumina protocols and

Illumina paired-end adapters. A PhiX kit v2 library (Illumina) was spiked into the

libraries at a proportion of about 1% each. The total loading concentration was 7

pM. Amplification was performed in the cBOT (Illumina) using an Illumina TruSeq

paired-end v2-cluster generation chemistry. For sequencing, 200 cycle TruSeq-v2-SBS

chemistry was used and 2 x 101 cycles of sequencing were performed. Base calling was

performed with Illumina RTA v1.10.36 software.
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Complete

Genomics
HiSeq2000 SOLiD 4 5500xl SOLiD

DNA input

amount
8-16 µg 1 µg 1 µg 1 µg

Read length (bp)
2 x 35

(5+10+10+10)
2 x 100 50+35 75+35

Fragment length

(bp)
∼ 400 400 230 230

Throughput 30-90 GB/day 55 GB/day 5-7 GB/day 20-30 GB/day

Table 2.1: Run information for each platform. Throughput information was obtained
from the manufacturer’s homepage.

SOLiD 4 and 5500xl SOLiD

High molecular weight genomic DNA was fragmented in a Covaris instrument (Woburn,

MA, USA) to an average size of 230 nucleotides.

Genomic libraries were prepared following the manufacturer’s standard instructions.

Emulsion PCRs were performed using SOLiDTMEZ BeadTMSystems. SOLiD 4 sequenc-

ing was performed using Life Technologies standard protocols with 50/35 PE chemistry

and model caller version MCC 4.04. 5500xl SOLiD sequencing was carried out using

75/35 PE chemistry following the manufacturers standard protocols and MCC 5500 1.0

software.

2.2 Data analysis

2.2.1 Hardware

Computations were performed on a high-performance computer cluster with 49 AMD

opteron nodes running under Suse 11.4, each with up to 48 cores. The RAM configu-

ration per node ranges from 16 to 256 GB, and swap space is up to 16 GB, depending

on the node.

28



2.2 Data analysis

2.2.2 Read mapping

Sequences were aligned to the human reference genome (NCBI build 37/HG19,

released in March 2009), available at http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/. Due to the heterogeneous nature of the sequencing

data, e.g., color space for SOLiD 4 and 5500xl SOLiD platforms, or split read structure

for Complete Genomics’ platform (see section 1.1.2), for each sequencer the best

adapted alignment algorithm was used, following the broad experience gained within

DKFZ ICGC projects [110,120,121], as well as personal communication with developers

and application specialists from Life Technologies and Complete Genomics. Alignment

filters were kept as similar as possible. Only uniquely mapping reads were considered.

For HiSeq2000, the reads were mapped by Natalie Jäger (Computational Oncology

Group, Division of Theoretical Bioinformatics, DKFZ) using the Burrows Wheeler

Aligner [105] v0.5.9-r16. For Complete Genomics, due to the specific nature of their

sequencing data and due to their proprietary analysis algorithms, I relied on the

company’s alignment, as further methods were not available. For SOLiD 4 and 5500xl

SOLiD, reads were aligned using Life Technologies’ proprietary Lifescope 2.1 software.

SOLiD 4 reads were aligned by the DKFZ Genomics and Proteomics Core Facility,

5500xl SOLiD reads partly by the Core Facility, partly by myself.

Duplicate reads pairs, i.e. read pairs with identical 5’ coordinates and orientation, were

removed using the Picard software tools v1.61 (http://picard.sourceforge.net/).

2.2.3 Coverage and downsampling

I computed the mean base coverage for each sample and platform after duplicate

removal for all informative bases of the reference genome (excluding Ns) using a custom

python script by Natalie Jäger. For comparison purposes, the BAM files were downsam-

pled by randomly removing read pairs or singletons to reach 30x or 15x mean coverage,

using a custom python script by Marc Zapatka (Division of Molecular Genetics, DKFZ).

Complete Genomics mapping files include reads mapped (”initial mapping files”) and

reads mapped by assembly at candidate regions deviating from the reference (”evidence

files”). To allow for a fair comparison of coverage, only the initial mapping files were

used when downsampling to 30x. For SNP and SNV comparisons, no downsampling

was used, as explained in section 2.2.8.
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Unless otherwise mentioned, all results correspond to 30x mean coverage, or for

Complete Genomics to full coverage generated (for details see Table 2.2). An

evaluation of Complete Genomics at full coverage is included in the analysis because,

as explained in section 1.1.2, in place of selling sequencing instruments as is the

case with Illumina and Life Technologies, Complete Genomics provides a proprietary

sequencing solution with a usually higher coverage (40-80x) including their analysis

of the results, e.g., variant calls. It is therefore not possible to purchase a lower coverage.

Complete

Genomics
HiSeq2000 SOLiD 4 5500xl SOLiD

MB14 45.46x 29.87x 30.0x -

BL14 51.64x 34.06x 30.0x -

MB24 51.76x 34.48x 30.0x 32.51x

BL24 50.0x 33.29x 30.0x 31.0x

Table 2.2: Average coverage information for each sample and platform assessed

2.2.4 Conversion of Complete Genomics data

Complete Genomics uses proprietary formats for their mapping and results files. I

converted the initial mapping files and evidence files to the generic BAM format

[108] using shell scripts and the Complete Genomics Analysis Tools (http://www.

completegenomics.com/analysis-tools/cgatools/) v1.5.0.31, then merged and

position-sorted the resulting BAM files with samtools [108]. Duplicates were removed

using the Picard tool v1.61, as described in section 2.2.2.

2.2.5 Combination of sequencing data from different technologies

For the combination of data from different technologies, both Marc Zapatka and I

merged aligned reads into single BAM files after base quality recalibration with the

Genome Analysis ToolKit (GATK) [122] v1.3 (as described in section 2.2.8).

Marc Zapatka then called variants per chromosome using samtools mpileup and

bcftools with the following command:
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2.2 Data analysis

samtools mpileup -R -I -A -B -q 1 -Q $Q -r $chrom -ugf $REF $BAM |
bcftools view -vcgNI - | vcfutils.pl varFilter > result.vcf

Option -A was used to avoid skipping anomalous read pairs during variant calling,

option -B disables Illumina-specific probabilistic realignment. Option -I skips indel

calling. -q 1 skips reads with mapping quality 0, -Q $Q sets the minimum base quality

for a base to be considered, as described in section 2.2.8. $REF stands for the reference

genome. bcftools and vcfutils.pl are used with the standard paramenters.

2.2.6 Coverage distribution and regions without coverage

I computed the per-base coverage and the regions without coverage from BAM files

using samtools mpileup, a custom perl script, and BEDTools [123] v2.14.3. Only

uniquely mapping reads were considered. Reference genome regions composed of

undefined bases (Ns) as well as chr Y were not considered in the analysis.

Unless otherwise mentioned, a base was considered not covered if it was supported

by less than three reads. The rationale behind this cutoff is that we argue 3 reads

are the absolute minimum required to call a heterozygous variant - two reads with a

non-reference base (to exclude sequence artifacts affecting only one read) and one with

the reference base.

Base coverage in 1 kb windows was computed as the sum of the coverage per base using

a custom perl script. GC content in 1 kb windows was computed as the percentage of

GC dinucleotides per bin using custom perl scripts.

2.2.7 Functional regions

BED files with the genomic coordinates for CpG islands, CpG island shores, exons,

segmental duplications, self chains (downloaded on 09/21/2011), promoters, repeats

and mammalian conservation (downloaded on 12/19/2011) were taken from the UCSC

Genome Bioinformatics Site (http://genome.ucsc.edu/).

CpG island shores were defined as 2 kb upstream and downstream of CpG islands [124].

Promoters were defined as 2 kb upstream and 500 bp downstream from the transcrip-

tion start site. Intron coordinates were generated from exon coordinates using custom

perl and shell scripts and BEDTools complementBed and intersectBed. BED files

for different subcategories of repeats were generated by splitting the UCSC repeats file

according to repeat type (DNA repeats, LINE, low complexity repeats, LTR, RC, RNA
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repeats, rRNA, satellites, scRNA, simple repeats, SINE, snRNA, srpRNA, tRNA)

using a custom R script. The coordinates for the Cancer Gene Census (downloaded on

05/31/2011) and genes from the Cosmic database [125] (downloaded on 11/09/2011)

are taken from the Wellcome Trust Sanger Institute (http://www.sanger.ac.uk/).

Overlaps of regions without coverage with the genomic regions mentioned above, as

well as the size of these overlaps, were computed with custom perl and shell scripts and

with BEDTools intersectBed, sortBed, and mergeBed.

2.2.8 SNV calling

To increase base quality accuracy, Marc Zapatka and I performed base recalibration

on HiSeq2000, SOLiD 4, and 5500xl SOLiD data, using the CountCovariates and

TableRecalibration functions within the Genome Analysis ToolKit (GATK) [122]

v1.3.

SNV calling was then done by Marc Zapatka using samtools v0.1.18 for HiSeq2000,

SOLiD 4, and 5500xl SOLiD data. For SOLiD 4 and 5500xl SOLiD data, we were

advised by Life Technologies to use samtools instead of their own analysis software

LifeScope. Lifescope 2.1 was still used in addition. However, samtools yielded a better

concordance with the Affymetrix SNP6 array used as a gold standard, improving the

sensitivity for detecting SNPs identified by the array by one percent while gaining

0.02% in false positive rate.

Complete Genomics performed sequencing and data analysis using their proprietary

pipeline (Software v2.0.1.5). Because the Complete Genomics Analysis Pipeline is not

publicly available, it was not possible to downsample the entire data for direct SNV

comparison.

For the validation of calls with an independent technology, the Affymetrix GenomeWide

Human SNP Array 6.0 was used, which includes more than 906,600 SNPs. The arrays

were hybridized and analyzed by The Centre for Applied Genomics (TCAG) in

Toronto, Canada, according to the standard manufacturer protocols, as described

in [126]. Briefly, the restriction enzymes NspI and StyI (New England Biolabs, Boston,

MA) were used to digest 500ng of genomic DNA, which was then ligated to universal

adapters and amplified using PCR. The resulting digested and amplified DNA was

purified using polystyrene beads, then fragmented with DNaseI, labeled with biotin,

and hybridized to the array. Arrays were then washed on Affymetrix fluidics stations
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and scanned with the Gene Chip Scanner 3000 7G. Quality control was done within

the Affymetrix Genotyping Console (GTC) using the recommended Affymetrix QC

guidelines.

The array genotyping results were used by Marc Zapatka as the gold standard for

the generation of receiver operating characteristic (ROC) curves for each of the four

NGS platforms, using coverage at the SNP position as the independent variable.

Samtools mpileup was used with the following settings, generating vcf files [127] split

by chromosome ($chrom): -AE was used for HiSeq2000 data (using Illumina-specific

probabilistic realignment), -AB for SOLiD and Complete Genomics data. Several

quality cutoffs were tested ($Q: 1 and 13) and the cutoff selected that provided the

largest AUC for the comparison with the SNP6 array.

For HiSeq2000, additional arguments were:

samtools mpileup -R -I -A -E -q 1 -Q $Q -r $chrom -ugf $REF $BAM |
bcftools view -vcgNI - | vcfutils.pl varFilter > result.vcf

and for the SOLiD platforms and Complete Genomics the following command was used:

samtools mpileup -R -I -A -B -q 1 -Q $Q -r $chrom -ugf $REF $BAM |
bcftools view -vcgNI - | vcfutils.pl varFilter > result.vcf

2.2.9 Detection of somatic SNVs

Complete Genomics

Complete Genomics already provides a comprehensive list of variation with every

cancer genome they sequence, which includes somatic variations, called with a

proprietary algorithm adapted to the structure of their data. For reasons stated above

(see sections 2.2.2, 2.2.3), and after having consulted company experts, I relied on their

somatic calls.

Somatic SNV calls were extracted from Complete Genomics’ somaticVcfBeta file,

which contains the full list of genomic variation, using quality criteria fixed according to

Complete Genomics’ Cancer Pipeline user manual (http://media.completegenomics.

com/documents/DataFileFormats+Cancer+Pipeline+2.0.pdf) and with the assis-

tance of the company’s application specialists. I wrote a custom perl script retaining

only the variants matching the following criteria:
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• SNVs with somatic status SS=Somatic

• no VQLOW flag (stands for low call quality)

• a somatic score CGA SOMS > -10 (stands for a high-confidence somatic variant)

The somatic SNVs chosen accordingly were converted to the generic vcf format with

a custom perl script, and then annotated with the genomic categories described in

section 2.2.7 using BEDTools intersectBed and a custom perl script.

HiSeq2000

For somatic SNV calling on HiSeq2000 data, I adapted an in-house calling pipeline

written by Natalie Jäger, Matthias Schlesner and Barbara Hutter (Computational

Oncology group, Division of Theoretical Bioinformatics, DKFZ) to the data. The

pipeline uses publicly available software tools in combination with custom scripts and

filtering steps.

SNVs were first called in the tumor samples using samtools mpileup and bcftools [108],

taking into account only high quality reads and bases (minimum mapping quality: 30;

minimum base quality: 13). Tumor samples often contain variants with a very small

allele frequency due to contamination with normal tissue, copy number variation, and

tumor heterogeneity [110]. To avoid missing these variants, bcftools parameters in the

pipeline were adjusted so that one high quality non-reference base suffices for reporting

a variant (parameter -p 2).

The ensuing high number of false positive SNV calls was corrected using different

filters. The pipeline excluded positions covered by less than three reads in both tumor

and control, with a somatic allele frequency below 5%, or with only one read containing

the variant. Additionally, positions with strand bias, i.e. with reads supporting the

variant found on one strand only, were screened, as this usually indicates a sequencing

error. Bases in the immediate vicinity (+/- 10 bases) of these calls were checked for

Illumina-specific error profiles [34] and the SNVs excluded if a match was found.

A pileup was then generated in the corresponding normal samples at the positions

of the remaining SNV calls. These were divided into germline and somatic events

according to the pileup information. An SNV was categorized as somatic if at most

one read supporting the mutation per 30 reads was found in the corresponding normal

sample.
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Somatic SNVs were then annotated with the genomic categories described in

section 2.2.7 using BEDTools intersectBed and a custom perl script.

SOLiD 4 and 5500xl SOLiD

SNVs were called in the tumor samples using both LifeScope 2.1., Life Technologies’

proprietary analysis software, and samtools with the parameters described above for

HiSeq2000. However, as the calling parameters were extremely lenient, even after

filtering, samtools yielded a number of somatic SNVs so high (8 to 18 times more

than for the corresponding HiSeq2000 samples) that I chose to proceed with LifeScope

calls only and slightly more stringent quality parameters in order to take advantage of

dibase encoding and to avoid an increased number of false positives.

LifeScope SNV calling parameters were fixed to a minimum mapping quality of 30 and

a minimum base quality of 26. Since SOLiD 4 and 5500xl SOLiD have many regions

with low coverage, a minimum coverage of 10 was required for SNV calls. Additionally,

LifeScope computes a p-value for each SNV called. SNVs with a p-value higher than

0.05 were excluded. Finally, SNVs with an allele frequency below 5%, with only one

read containing the variant, or with reads supporting the variant found on one strand

only, were excluded. The resulting files were converted to the generic vcf format with

a custom perl script.

As described above for HiSeq2000, a pileup of the normal sample was then used to

identify somatic SNVs, and the somatic SNVs were then annotated with the genomic

categories described in section 2.2.7 using BEDTools intersectBed and a custom perl

script.

Validation

For each set of somatic SNVs called, I additionally removed all those called as germline

in any of the technologies. Since resources for validation were limited, I chose the 13

somatic SNVs called by all four technologies, as well as, for each platform, 10 to 15

high-quality somatic SNVs that were called for this platform only. The chosen somatic

SNVs were externally validated by Sanger sequencing.

2.2.10 Detection of somatic indels

Indel calling for HiSeq2000 was performed by Qi Wang (Computational Oncology

Group, Division of Theoretical Bioinformatics, DKFZ). Indel calling for SOLiD 4 and
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5500xl SOLiD, and indel extraction for Complete Genomics was done by myself. The

subsequent somatic indel calling was performed by Qi Wang using her own custom shell

and python scripts.

HiSeq2000

Indels were called in the tumor sample using the two-sample model from Pin-

del [128], an algorithm to detect insertions and deletions from paired-end short reads.

Pindel was preferred to samtools because it allows to call larger indels (insertions:

1-20 bp; deletions: 1bp-10kb), which makes its results more comparable to those

obtained for SOLiD 4 and 5500xl SOLiD using LifeScope, and those provided

by Complete Genomics (both calling indels up to 50 bp, according to personal

communication with Life Technologies and to the Complete Genomics FAQ, http:

//www.completegenomics.com/FAQs/Variant-Calls-SNPs-and-Small-Indels/).

The Pindel output was converted to vcf and compared to the pileup of the control

sample using a custom script. A somatic indel was called when at least two reads

supporting the indel were identified in the tumor sample, and no evidence of the indel

was found in the control sample. We required a minimum coverage level of at least

3 reads in control for the position to be considered. The region around the indel

(+/- 10 bp) was then scanned for its deviations from the reference. Regions with

more than one indel or with a mismatch density - computed over all reads - higher

than the average error rate of 0.01 (as assessed by the PhiX control kit, see also the

HiSeq2000 User Guide, http://support.illumina.com/documents/documentation/

System_Documentation/HiSeq2000/HiSeq2000_User_Guide_15011190_P.pdf) were

considered too error-prone and excluded. Insertions corresponding to homopolymers

of length > 5 were also excluded as they are known to have a high error rate [129].

Complete Genomics

Somatic indel calls were extracted from Complete Genomics’ somaticVcfBeta file using

the same procedure as described for somatic SNVs in section 2.2.9, ”Detection of somatic

SNVs”.

SOLiD 4 and 5500xl SOLiD

Indels were called with LifeScope 2.3 using the small indel pipeline. Indels with reads

supporting the variant found on one strand only were filtered out, the filtered results

were then converted to the generic vcf format using a custom perl script. Somatic indels

were then called as described above for HiSeq2000.
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Validation

For each set of somatic indels called, all those called as germline in any of the tech-

nologies were removed. For validation, the only somatic indel called for all four tech-

nologies was chosen, as well as two somatic indels called both on HiSeq2000 and 5500xl

SOLiD, two somatic indels called both on HiSeq2000 and Complete Genomics, and,

for HiSeq2000, Complete Genomics and 5500xl SOLiD, 6 to 10 somatic indels called

for this platform only. The chosen somatic indels were externally validated by Sanger

sequencing.

2.2.11 Statistical tests

For the pairwise platform comparisons of GC bias, I used Kolmogorov-Smirnov tests for

GC percentages below 25% and above 60%. Coverage input values were sampled from

the loess curves. For the comparison of the coverage distribution between platforms,

and for the comparison between platforms of the fraction without coverage for specific

genomic regions, I used two-sample Students t-tests. For the comparison of the ROC

curves, Marc Zapatka focused on the sensitivity, comparing the sensitivity between

different technologies and samples with paired two-sample Student’s t-tests.

Differences yielding p-values below or equal to 0.05 were considered significant. No

p-values were computed for 5500xl SOLiD because of the small sample size (two

samples).

2.3 Data access

All short-read sequencing data have been deposited at the European Genome-phenome

Archive (EGA, http://www.ebi.ac.uk/ega/), which is hosted by the EBI, under

accession number EGAS00001000274. The Affymetrix SNP6 array data has been

deposited at Array Express (http://www.ebi.ac.uk/arrayexpress/) under accession

number E-MTAB-1159. The main scripts used for this study are listed in the

Technical Annex (Section 5) at the end of this thesis.
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3 Results

Sections 3.1- 3.4 are partly taken from my first-author publication [119]. The analyses

were performed using the sequenced whole-genome data from two medulloblastoma

tumor-normal pairs, MB14/BL14 and MB24/BL24. The samples were sequenced with

the four technologies assessed in this study, HiSeq2000, SOLiD 4, 5500xl SOLiD, and

Complete Genomics. Unless otherwise mentioned, all results correspond to 30x mean

coverage, or for Complete Genomics to full coverage generated. Complete Genomics

data is included both at full coverage and at downsampled 30x coverage, because they

provide a proprietary sequencing solution with a usually higher coverage (40-80x)

including their analysis of the results. It is not possible to purchase a lower coverage.

In the first part of this comparison, I assess how evenly the reads from every platform

are spread across the genome. A sample’s coverage level and distribution are crucial

for its analysis, as this can introduce considerable bias into the results, even more so

in tumor samples, where contamination with normal tissue, copy number variation,

and tumor heterogeneity can heavily influence variant allele frequency. For each of the

four technologies and for each of the patient samples, I analyzed the read distribution

with respect to the GC content of the underlying sequence (section 3.1), the general

genome-wide distribution of coverage levels (section 3.2), as well as the coverage in

specific genomic regions, like exons or CpG islands (section 3.3), and the size and

fraction of regions without coverage (section 3.4). In addition, I examined whether

a combination of reads from two different platforms can lead to a better coverage of

certain genomic or functional regions (section 3.3).

We further investigated the differences between platforms in sensitivity and specificity

of SNV calling, first by comparing SNV calls from platforms and from combinations of

platforms to the results of a SNP array (sections 3.5 and 3.6). Then I called somatic

variations in the cancer samples and analyzed the overlaps between platforms. A

validation with Sanger sequencing experiments was performed (section 3.7). The SNP

calling analysis in sections 3.5 and 3.6 was mainly conducted by Marc Zapatka (DKFZ),

the somatic indel calling analysis in section 3.7.2 was mainly conducted by Qi Wang

(DKFZ). These results are included here for completeness.
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3.1 GC bias

As explained in section 1.1.2, the GC bias describes the dependence between coverage

and GC contents, where both GC-rich and GC-poor regions are less well covered than

regions with balanced base composition. Ideally, with no GC bias present, we would

see a uniform distribution of coverage, independent of GC content. Figures 3.1 - 3.4

show the genomic coverage per 1 kb interval for each platform, sorted by GC content

of that interval. Each figure corresponds to one of the patient samples.

A one-sample Kolmogorov-Smirnov test confirms that the data from each of the

platforms significantly deviates from the uniform distribution, i.e. a GC bias is found

for every platform. Resulting p-values for patient sample MB24 range between 4.4e-07

and 6.5e-12. To test for significant differences between platforms, I used two-sample

Kolmogorov-Smirnov tests for low (≤ 25% GC content per 1 kb bin) and high (≥ 60%)

GC contents. An overview of the resulting p-values is given in Table 3.1.

Significant differences in GC bias were found between all platforms, except for SOLiD 4

vs. HiSeq2000 for a GC percentage above 60%. The most pronounced GC bias is found

for Life Technologies’ SOLiD 4 and 5500xl SOLiD, especially in regions with more

than 60% GC content. HiSeq2000 shows a slightly reduced GC bias here (significant

in two out of four samples: MB14 and BL14). Note that for HiSeq2000 sequencing, v2

chemistry was used for of all four samples. However, the latest release of v3 chemistry

does not reveal a dramatic reduction in GC bias compared to the earlier v2 chemistry,

as can be seen in Figure 3.5. The least GC bias for GC-rich regions by far is revealed

by Complete Genomics, even when the higher mean coverage of around 50x (hereafter,

”Complete Genomics”) is computationally reduced to 30x mean coverage (hereafter,

”Complete Genomics 30x”) for comparison reasons.

At regions with GC content lower than 25%, 5500xl SOLiD and HiSeq2000 perform

similarly with a generally lower bias than SOLiD 4 and Complete Genomics. In contrast

to its behavior in GC-rich regions, Complete Genomics performs worst in GC-poor

regions at downsampled 30x coverage. The GC bias at GC-rich and GC-poor regions,

respectively, was consistently found across all four sequenced samples, except for patient

sample BL14 where HiSeq2000 and Complete Genomics 30x perform similarly: the

p-values of the Kolmogorov-Smirnov test are 0.9307 for %GC ≤ 25% and 0.4755 for

%GC ≥ 60%, as listed in Table 3.1.
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3.1 GC bias

Figure 3.1: GC bias for each platform for sample MB24. Log2 base coverage in
1kb windows versus GC content in percent is shown for HiSeq2000,
SOLiD 4, 5500xl SOLiD, and Complete Genomics data. The first panel
shows an overlay of all four technologies. The upper right panel shows
HiSeq2000 only (blue), the lower left SOLiD 4 and 5500xl SOLiD (red and
orange, respectively), and the lower right Complete Genomics at full and
downsampled 30x coverage (green and light green). Smoothed loess curves
are fitted to each dataset to represent the local coverage trend.
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Figure 3.2: GC bias for each platform for sample BL24, plotted analogously to
Figure 3.1.
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3.1 GC bias

Figure 3.3: GC bias for each platform for sample MB14, plotted analogously to
Figure 3.1. 5500xl SOLiD data is available only for samples MB24/BL24
(see Table 2.2).
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Figure 3.4: GC bias for each platform for sample BL14, plotted analogously to
Figure 3.1. 5500xl SOLiD data is available only for samples MB24/BL24
(see Table 2.2).
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3.1 GC bias

% GC in 1 kb

bin ≤ 25%

% GC in 1 kb

bin ≥ 60%

HiSeq2000 - CG 30x

MB14 0.00217 0.01484

BL14 0.9307 0.4755

MB24 0.00217 0.03561

BL24 0.00217 0.03561

HiSeq2000 - SOLiD 4

MB14 0.474 0.00561

BL14 0.02597 0.03561

MB24 0.00217 0.0779

BL24 0.00217 0.1558

CG 30x - SOLiD 4

MB14 0.00217 3.352e-08

BL14 0.02597 0.00016

MB24 0.00217 3.964e-05

BL24 0.00217 0.00016

Table 3.1: P-values from Kolmogorov-Smirnov tests for pairwise platform comparisons
of GC bias. CG 30x stands for Complete Genomics downsampled to 30x
mean coverage. P-values below 0.05 are highlighted in bold and italic.
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Figure 3.5: GC bias for HiSeq2000 with v2 chemistry versus HiSeq2000 with v3
chemistry. Log2 base coverage in 1kb windows is plotted versus GC content
in percent. Smoothed loess curves are fitted to each dataset to represent
the local coverage trend, analogously to Figure 3.1. Exemplary data from
patient sample MB24 (v2, blue) is compared to another medulloblastoma
patient sample (v3, red).
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3.2 Coverage distribution

Looking at the genome-wide distribution of coverage levels, a number of striking

differences between platforms can be seen (Figure 3.6). The most obvious divergence

appears between Life Technologies’ platforms, SOLiD 4 and 5500xl SOLiD, on one side,

and HiSeq2000 and Complete Genomics on the other. At the same mean coverage,

SOLiD 4 and 5500xl SOLiD show about 6 times more bases supported by less than

5 reads compared to HiSeq2000 and Complete Genomics. While the latter two show

similar numbers in this respect, downsampling Complete Genomics to 30x for fairness

of comparison shows a mean increase of almost factor 2.5 in bases supported by less

than 5 reads. An average of these numbers across all samples is given in Table 3.2.

Coverage distribution is similar for Life Technologies’ platforms SOLiD 4 and 5500xl

SOLiD, with 5500xl SOLiD showing a slightly higher number of bases with higher

coverage (20-60x). HiSeq2000 shows by far the narrowest coverage distribution

compared to all other sequencing platforms, meaning its coverage is the most evenly

distributed across the genome. Complete Genomics has the broadest coverage

distribution, i.e. the highest deviations from the mean. Even for Complete Genomics

downsampled to 30x mean coverage, the coverage distribution is still wider than the

one resulting from HiSeq2000.

The cumulative coverage distribution, i.e. the percentage of the genome covered with

at least n x, is shown in Figures 3.7 to 3.9, with Figure 3.7 showing the distribution

for all samples and all platforms, Figure 3.8 showing the distribution of the sample

means for each platform, and Figure 3.9 showing a magnified view of the sample

means. These reveal that 5500xl SOLiD covers the smallest percentage of the genome,

while HiSeq2000 and SOLiD 4 cover a similar and slightly higher fraction. However,

the fraction of the genome covered for all three platforms is exceeded by Complete

Genomics at both 30x and full coverage.

Further, higher variations in coverage distribution can be observed between the different

samples sequenced by Complete Genomics compared to the other platforms, with the

fraction of the genome covered with at least 30x differing up to about 15%, and even

up to about 18% for the fraction of the genome covered with at least 50x (Figure 3.7).

This is probably largely due to the differences in average coverage between Complete

Genomics samples (see Table 2.2), but the between-sample variation can still be

observed to a slightly lesser extent for low cumulative read depth at downsampled

30x coverage.
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Figure 3.6: Distribution of genome-wide base coverage for each of the four platforms.
Complete Genomics is shown at full coverage and at downsampled 30x
coverage. Each curve corresponds to one sample.

Figure 3.7: Percentage of genome covered by a given read depth. Each curve corresponds
to one sample. The colors used correspond to the legend in Figure 3.6. The
inset on the upper right shows a magnified view of the curves.
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3.2 Coverage distribution

Figure 3.8: Mean percentage of genome covered by a given read depth. Each curve
corresponds to the mean of all samples sequenced by one technology.

Figure 3.9: Magnified view of the mean percentage of genome covered by a given read
depth as depicted in Figure 3.8. Each curve corresponds to the mean of all
samples sequenced by one technology.
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Complete

Genomics

Complete

Genomics 30x
HiSeq2000 SOLiD 4 5500xl SOLiD

Total number

of bases

covered

2,826,524,353 2,817,003,995 2,801,114,390 2,795,379,490 2,772,621,192

Number of

bases

covered with

less than 5

reads

15,938,617 38,555,229 17,727,532 100,145,774 99,297,132

Table 3.2: Number of bases covered on average across all samples, and average number
of bases covered with less than five reads, for each platform assessed.

3.3 Coverage of genomic regions

To further evaluate the coverage differences between the different platforms, I analyzed

the coverage in specific genomic and functional regions. Here, bases covered by fewer

than three reads were considered as ”not covered” or ”without coverage”, as explained

in section 2.2.6.

Each of the four technologies has its strengths and weaknesses in covering different

sections of the genome (Figure 3.10). Complete Genomics shows a similar coverage

fraction for almost all regions, with a generally very low percentage (< 2%) of bases

not covered, both at 30x coverage and at full coverage. A comparably smaller covered

fraction is observed only for regions containing a large number of short repeats, like

simple repeats (24% uncovered at 30x coverage), low complexity repeats (11.9%), CpG

islands (9.2%), and satellite repeats (3.7%). Overall, Complete Genomics performs

better than all other technologies in this respect, except for simple repeat regions

where it is surpassed by all three other platforms.

Comparative coverage of an exemplary simple repeat region is shown in Figure 3.11 (a).

Almost no reads are mapped to this region by Complete Genomics. Read pairs with

reads mapping to different chromosomes can be observed for HiSeq2000, SOLiD 4 and

5500xl SOLiD sequences, which reflects the difficulty of mapping reads to repeated

sequences also for the latter three technologies. Interestingly, SOLiD 4 shows the

highest coverage in this example, but also the largest number of differences from the

reference genome.
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Figure 3.10: Mean percentage of uncovered bases across different genomic elements for
each of the platforms. Bases covered with less than three reads were
considered not covered. Note that reducing this threshold to 1 does not
dramatically change the overall distribution of reads (see Figure 3.12).
Error bars represent one standard deviation as obtained from analyzing
all samples sequenced on one platform. DNA, LINE, Low complexity,
LTR, RC, RNA, Satellite, Simple repeats and SINE are subcategories of
Repeats (all). For better visibility, CpG islands, low complexity and simple
repeats are plotted separately.
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Figure 3.11: Visualization of read coverage for two exemplary genomic regions from
patient sample MB24 by IGV [130] for HiSeq2000, SOLiD 4, 5500xl SOLiD
and Complete Genomics. (a) A simple repeat region on chr1:267,289-
267,425. (b) A CpG island on chr1:713,984-714,547.
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Figure 3.12: Mean percentage of uncovered bases across different genomic elements for
each of the platforms. In this case, a base is considered not covered when it
is covered by zero reads. The error bars represent one standard deviation
as obtained from analyzing all samples sequenced on one platform. DNA,
LINE, Low complexity, LTR, RC, RNA, Satellite, Simple repeats and SINE
are subcategories of Repeats (all). For better visibility, CpG islands, low
complexity and simple repeats are plotted separately.
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SOLiD 4 and 5500xl SOLiD sequencing are most affected by GC content and

consequently have by far the largest percentage of bases not covered in CpG islands

(58.2% and 52.5%, respectively) and CpG island shores (7.5% and 7%, respectively).

A t-test yields a p-value of 0.00069 (HiSeq2000 vs. SOLiD 4) and 0.0008 (Complete

Genomics 30x vs. SOLiD 4) for CpG islands and a p-value of 0.019 (HiSeq2000 vs.

SOLiD 4) and 0.01 (Complete Genomics 30x vs. SOLiD 4) for CpG island shores.

For all platforms except for Complete Genomics, the fraction of CpG islands without

coverage roughly doubles through our definition of an uncovered base (compare to

Figure 3.12), showing that a large proportion of these regions is covered by less than 3

reads.

Coverage of an exemplary CpG island is shown in Figure 3.11 (b). Complete Genomics

shows an impressive coverage of this region followed by HiSeq2000. The lowest coverage

is present in SOLiD 4 and 5500xl SOLiD data.

Concordant with the differences in coverage of CpG regions, the exome coverage also

shows dramatic differences between platforms with a mean difference in the fraction

of bases not covered of factor 6.6 between Complete Genomics at 30x and SOLiD 4

(p-value 0.006). Overall, HiSeq2000 performs better than SOLiD 4 and 5500xl SOLiD

in nearly all categories except for satellite regions (p-value 0.005 HiSeq2000 vs. SOLiD

4), and even outperforms Complete Genomics (both at full and at 30x coverage) in

simple repeat regions (p-value 0.0386). SOLiD 4 performs slightly better than 5500xl

SOLiD in repeat regions, while 5500xl SOLiD shows better coverage than SOLiD 4 in

most other regions.

Interestingly, at the same mean 30x coverage, a combination of HiSeq2000 with 5500xl

SOLiD data considerably decreases the uncovered fraction of certain repeat regions for

both technologies, especially in satellites and simple repeats (Figure 3.13 (a) and (b)).

Similarly, a combination of Complete Genomics data at full coverage with as little as

15x HiSeq2000 data (typically obtained with only one sequencing lane) shows a major

increase of covered bases in simple repeats (Figure 3.13 (b)).
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3.3 Coverage of genomic regions

Figure 3.13: Mean fraction of uncovered bases across genomic elements for different
combinations of technologies. Error bars represent one standard deviation
as obtained from analyzing all samples in the group. (a) Mean fraction
of uncovered bases for chosen repeat regions. Performance is compared
to sequence data from single technology platforms. Only regions with
observable differences are displayed. (b) Mean fraction of uncovered bases
across simple repeat regions for different combinations of technologies. CG
stands for Complete Genomics.
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3.4 Regions without coverage

While the number of uncovered regions is similar for all platforms for larger-sized

regions of 150 bp and above (see Figure 3.14), Life Technologies’ platforms SOLiD

4 and 5500xl SOLiD show very high numbers of small regions without coverage

compared to HiSeq2000 and Complete Genomics. The smaller the regions, the more

pronounced are the differences between platforms, with HiSeq2000 performing better

than Complete Genomics. 5500xl SOLiD shows slight improvement over SOLiD 4,

except for extremely small regions of 1-2 bp, where the slight difference increases to

a factor of 1.5 in the number of uncovered regions: on average, 384,304 uncovered

regions of 1-2 bp are found for SOLiD 4, versus 260,252 regions for 5500xl SOLiD.

The size of the largest region without coverage is approximately 110,000 bp for all four

platforms, except for HiSeq2000 whose largest region is 766,173 bp in length. However,

this is due to the pseudoautosomal region on chromosome X and Y [131] and is a

consequence of mapping differences: reads belonging to this region cannot be uniquely

mapped to a reference genome containing the region on both chromosome X and Y

and thus were automatically discarded before analysis (see section 2.2.2).

The fraction of the genome left without coverage (based on the reference genome

excluding N’s) at 30x coverage for HiSeq2000 and downsampled Complete Genomics

is very similar (1.45% versus 1.61% on average across samples), both performing

approximately 2.5 better in this respect than SOLiD 4 and 5500xl SOLiD. At 15x

coverage, the difference between HiSeq2000 and the Life Technologies platforms is even

more marked with a factor of approximately 3.5, suggesting that the latter can catch

up at higher coverage. Notably, Complete Genomics at full coverage leaves only an

average of 0.79% of the genome not covered.

3.5 SNP calling

After closely assessing coverage differences between the different technologies, we

followed up with the identification of SNVs and the performance of the platforms in

this respect. SNV calling is one of the major aims of sequencing projects, especially in

cancer research.

To this end, Affymetrix SNP6 arrays were used as a gold standard for all samples.

Affymetrix arrays are a sequencing-independent, well-established SNP calling
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3.5 SNP calling

Figure 3.14: Size distribution of regions without coverage for all platforms and all
samples, based on the reference genome excluding N’s. Each curve
corresponds to one sample. A base is considered uncovered when it is
covered by less than three reads, as described in section 2.2.6. The x-axis
is truncated at 200 bp.
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technology1. To ensure that only minimal bias is introduced by the genomic positions

assayed by the arrays, the distribution of array SNPs in different areas of the genome

was examined. Figures 3.15 and 3.16 show an overview of the results.

Introns and regions of mammalian conservation show a similar representation on the

SNP array and on the genome, and a high fraction of the regions contain at least one

array SNP. Promoters, exons and CpG island (CGI) shores show a percentage of array

SNPs similar to their fraction of the genome size. However, a large fraction of those

regions does not contain SNPs measured on the array. Within CpG islands (covering

0.76% of the genome) the percentage of array SNPs (0.037%) is even a lot lower than

expected from the size of CpG islands. Still, this corresponds to 1283 array SNPs

falling into this genomic region, allowing a reasonable evaluation of the sequencing

performance.

Repeat regions (Figure 3.16) show a similar representation on the SNP array and on

the genome for most repeat types. Only SINEs are underrepresented (genome 27.1%,

array SNPs 14.8% equivalent to 44659 SNPs), as are simple repeats, low complexity

regions and satellite regions. However, this still results in a high number of array

SNPs falling into these regions (respectively 1100, 374 and 758 array SNPs for simple

repeats, low complexity regions and satellite regions).

Receiver operating characteristic (ROC) curves were computed for each platform and

sample, as explained in section 2.2.8, to show the sensitivity and false positive rate

(equivalent to 1 - specificity) for SNV calling, using the Affymetrix SNP6 array as

a reference (Figure 3.17 - 3.24). This SNP calling sensitivity should be considered an

upper bound for somatic mutation calling, as cancer samples usually involve variant

allele frequencies far below 50% (see section 1.2.3).

229 out of 907,551 SNPs, i.e. 0.025%, were not found on any of the four platforms,

which may indicate that these SNPs are false positives on the SNP array. Looking at

the ROC curves, the best platform in terms of sensitivity is HiSeq2000 (e.g., 99.15%

for patient sample MB24, Figure 3.17 and 3.18), followed by Complete Genomics

(e.g., 98.38% sensitivity for patient sample MB24). A t-test on sensitivity over

all samples yields a p-value of 0.008651 for HiSeq2000 versus Complete Genomics.

Notably, HiSeq2000 needs far less overall coverage than Complete Genomics to reach

a comparable sensitivity: even at downsampled 15x coverage, HiSeq2000 reaches a

1http://media.affymetrix.com/support/technical/other/snp6_array_publications.pdf
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3.5 SNP calling

Figure 3.15: Percentage of genome covered by different genomic elements, in comparison
to the distribution of Affymetrix array SNPs on these genomic elements,
for patient sample MB24.

sensitivity of, e.g., 98.12% for patient sample MB24.

At the positions assayed by the SNP array, Complete Genomics shows a mean coverage

considerably lower than its genome-wide mean coverage, while HiSeq2000 performs

close to its overall mean coverage in this respect. E.g., for Complete Genomics on

patient sample MB24, the SNP array positions are covered with 40x on average, versus

51.7x overall, while HiSeq2000’s SNP array positions are covered with 32.1x. However,

this still does not account for the fact that HiSeq2000 at 15x and Complete Genomics

show a similar SNP calling sensitivity.

5500xl SOLiD and especially SOLiD 4 show a strongly reduced sensitivity in most

samples. E.g., 5500xl SOLiD has a sensitivity of 96.80% on patient sample MB24,

while SOLiD 4 reaches only 92.57% on the same sample. A t-test on all samples

between SOLiD 4 and HiSeq2000 yields a p-value of 0.008324, and of 0.008189 between

SOLiD 4 and Complete Genomics. However, this reduced sensitivity comes with a

slightly lower false positive rate compared to HiSeq2000 (approximately 0.105-0.124%

on patient sample MB24 for SOLiD 4 and 5500xl SOLiD, respectively).
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Figure 3.16: Distribution of Affymetrix array SNPs in repeat types analyzed for patient
sample MB24. The percentage given in the upper panels for the size of
each repeat region was computed in relation to the size of all genomic
repeats. The percentage of array SNPs shown in the lower panels for
specific repeat regions was computed in relation to the number of array
SNPs in all genomic repeats.
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3.5 SNP calling

Figure 3.17: ROC curves comparing sensitivity and specificity of SNV calling for all
platforms on sample MB24. The false positive rate (1 - specificity) is
plotted from 0-0.15. All curves have reached their plateau at that point
and will continue as straight lines.

Figure 3.18: Magnified view of the ROC curves for sample MB24 as indicated by the
dashed frame in Figure 3.17. Curves that do not appear in this plot reached
their plateau below the sensitivity cutoff chosen for this window.
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Figure 3.19: ROC curves for SNV calling on patient sample BL24, plotted analogously
to Figure 3.17.

Figure 3.20: Magnified view of ROC curves for SNV calling on patient sample BL24,
plotted analogously to Figure 3.18.
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Figure 3.21: ROC curves for SNV calling on patient sample MB14, plotted analogously
to Figure 3.17.

Figure 3.22: Magnified view of ROC curves for SNV calling on patient sample MB14,
plotted analogously to Figure 3.18.
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Figure 3.23: ROC curves for SNV calling on patient sample BL14, plotted analogously
to Figure 3.17.

Figure 3.24: Magnified view of ROC curves for SNV calling on patient sample BL14,
plotted analogously to Figure 3.18.
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3.6 Combination of sequencing technologies

Additionally, we assessed whether combining sequencing data from different

technologies would improve SNV calling results, uniting the strengths and compensating

for the weaknesses of each platform. As expected, combining the data sets as they

are, and thus reaching a coverage twice as high, e.g., with HiSeq2000 at 30x plus

5500xl SOLiD at 30x, yields a sensitivity and specificity slightly higher than any other

technology alone (Figure 3.18).

However, when comparing SNV results at a similar coverage, i.e. with a combination of

platforms at a total coverage of 30x, it is hardly possible to reach a sensitivity higher

than the one achieved with HiSeq2000 sequencing alone. This result can be confirmed

on all samples (see Figures 3.20, 3.22, and 3.24). Combining HiSeq2000 with 5500xl

SOLiD data, at 15x each, yields good results. The sensitivity decreases only slightly

compared to HiSeq2000 at full coverage, and specificity slightly increases above the

level reached by 5500xl SOLiD. However, the decrease in sensitivity (0.17%) is far

higher than the increase in specificity (0.0025%).

An interesting result is that for Complete Genomics sequencing, adding HiSeq2000

data at only 15x, a coverage that currently corresponds to only one lane of HiSeq2000

sequencing, can improve the SNV calling performance of Complete Genomics both in

sensitivity and specificity. The increase in sensitivity reached here is 0.73% compared

to Complete Genomics alone, which corresponds to a p-value of 0.008692, at a slightly

increased specificity.

3.7 Somatic variation calling

Going beyond the calling of SNVs within one sample, we attempted to estimate the

performance of the different platforms in cancer genome studies by calling somatic SNVs

and somatic indels on the two tumor/normal pairs, MB14/BL14 and MB24/BL24.

3.7.1 Somatic SNVs

After calling somatic SNVs as described in section 2.2.9, I first examined the overlap

between platforms. An overview of the number of somatic SNVs called for each

technology is given in Table 3.3. Generally, patient sample MB14 seems to contain

more somatic SNVs than MB24. However, it is striking to see that, for one and

the same sample, these numbers are extremely different between platforms, ranging

from 71 somatic SNVs on SOLiD 4, to 1599 on Complete Genomics for sample
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pair MB24/BL24. In addition, the between-sample ratio also varies a lot between

technologies, with 18.8 times more somatic SNVs found in patient sample MB14 (1333)

than in sample MB24 (71) for SOLiD 4, while the ratio is 6.8 for HiSeq2000 and only

1.7 for Complete Genomics. As we know from other studies of the same samples that

MB24 is tetraploid [110], this indicates that the platforms differ in their ability to pick

up variants with low allele frequency.

HiSeq2000 SOLiD 4
5500xl

SOLiD

Complete

Genomics

MB14 3950 1333 - 2962

MB24 584 71 470 1599

Table 3.3: Number of somatic SNVs called for each sample, for each of the four
technologies.

The pairwise overlap of somatic SNVs between platforms is shown in Figure 3.25 and

3.26. In addition, the number of somatic SNVs called by all four platforms concordantly

is only 456 for MB14 and only 13 for MB24. These numbers are drastically below any

expectation. If anything, the concordance is a bit better for sample MB14, even though

the number of somatic SNVs called is higher than in MB24.

Comparison to validation experiments

To further investigate the reasons for the drastic lack of overlap between somatic

SNVs on different platforms, I had the opportunity to have a small number of SNVs

externally validated with Sanger sequencing. For validation, variants from patient

sample MB24 were chosen in order to include 5500xl SOLiD in the comparison, and

because this sample seems to contain fewer somatic SNVs than sample MB14.

The 13 somatic SNVs that were concordantly called by all four technologies were

selected for Sanger validation, as well as, for each platform, 10 to 15 somatic SNVs that

were not called on any other platform, preferentially those called with high confidence.

An overview of validation results is given in Table 3.4. The individual variants and their

validation status are listed in Tables 3.5 (concordant SNVs selected for validation), 3.6

(HiSeq2000), 3.7 (SOLiD 4), 3.8 (5500xl SOLiD), and 3.9 (Complete Genomics). The

reason why the number of SNVs validated is different for each platform is that some

of the PCR reactions for validation failed.
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3.7 Somatic variation calling

Figure 3.25: Overlap of somatic SNVs called by different technologies. The left-hand
side panels stand for patient sample MB14, the right-hand side panels for
patient sample MB24.
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Figure 3.26: Overlap of somatic SNVs called by different technologies for patient sample
MB24.
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3.7 Somatic variation calling

Concordant 9/9 true somatic changes

HiSeq2000 only 2/7 true somatic changes

SOLiD 4 only 0/14 true somatic changes

5500xl SOLiD only 0/11 true somatic changes

Complete Genomics only 1/9 true somatic changes

Table 3.4: Somatic SNV results: number of true somatic changes out of the total number
tested, as validated by Sanger sequencing.

The validation results show that we can be confident that a variant called by all

platforms is real: all variants that could be tested are true somatic changes. However,

variants called by one platform only have disastrous validation rates: only 1 out of 9

variants could be validated for Complete Genomics and only 2 out of 7 for HiSeq2000,

while not even a single somatic SNV called by either SOLiD 4 or 5500xl SOLiD was

true. If we extrapolate, this would mean that most platform-specific somatic SNV calls

are false.

Subsequently, I examined the true and false somatic SNVs in order to understand why

these variants were only picked up by one technology.

SOLiD ”flanking SNV” artifact

The most obvious cause for false positive somatic SNVs can be seen in Life Technologies’

platforms and is a consequence of color space SNV calling (see section 1.1.2). Figure 3.27

illustrates what we call the ”flanking SNV” artifact: the false positive somatic SNV is

flanked by two SNVs positioned on either side. In Life Technologies’ color space, SNVs

are discriminated from sequencing errors through dibase encoding: each base is linked

to each of its neighbors by a common color code, which results in a certain number of

valid dicolor changes relative to the reference, corresponding to SNVs. Any deviation

from these changes is considered a sequencing error [22,132].

However, the event of an SNV followed by a reference base followed by a second SNV,

as depicted in Figure 3.27, results not in two, but in four subsequent colors differing

from the reference. This means that even though the base in the middle is a reference

base, it is represented by two colors differing from the reference (the second and third

color changes) and is therefore considered as an SNV. This assumption, in turn, renders

the first and the last of the four color changes, which correspond to the flanking real

SNVs, invalid: the false call of an SNV between the real SNVs has already reverted
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Figure 3.27: An example of the ”flanking SNV” artifact seen in Life Technologies’ plat-
forms. This is an IGV screen shot for SOLiD 4 and patient sample MB24.

the real SNVs to reference bases.

These false calls in the tumor are not filtered out during somatic SNV calling, as

the comparison to the normal sample is based on a pileup in base space and not on

color space. Since there is no mutation at the corresponding position in the normal

sample, the SNV in the tumor is considered somatic, although it is simply falsely called.

A closer look at the somatic SNVs called in Life Technologies’ platforms, beyond those

chosen for validation, shows that this is their main source of error. For SOLiD 4,

10 out of 14 somatic SNVs that were Sanger-validated (71,4%) and 21 out of the 31

remaining (67,7%) result from this artifact. For 5500xl, 8 out of 11 somatic SNVs that

were Sanger-validated (72,7%) carry the artifact, and out of 27 further somatic SNVs

checked manually, 16 carry it (59,3%). This means that roughly 2/3 of the somatic

SNVs called in Life Technologies’ platforms are false positives generated by a calling

issue.

Other technologies

The next question addressed was why the three platform-specific somatic SNVs that

were confirmed by Sanger sequencing (1 on Complete Genomics, 2 on HiSeq2000, as

listed in Table 3.4) were not picked up by the other technologies.
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The two confirmed HiSeq2000-specific variants have a rather low allele frequency (0.2

and 0.22, respectively). They are actually initially identified as somatic by Complete

Genomics, but with an extremely low probability score (flagged as SQLOW), which is

why they are filtered out. On the SOLiD platforms, the first variant is actually visible

in the tumor BAM file on IGV, but is not called, probably because of the low allele

frequency. The second variant is not visible in the SOLiD BAMs due to low coverage

of the region.

The confirmed Complete Genomics-specific variant is also initially identified in

HiSeq2000, but is later filtered out because it lies within a sequence region containing

the Illumina-specific error pattern GGC [34]. On the SOLiD platforms, the variant

is visible in the tumor BAM on IGV, but is not called, which may be due to the low

allele frequency (0.24).

In summary, the three Sanger-confirmed platform-specific somatic SNV calls are

generally hard to call because of low allele frequency, or because the region they fall

in which may not be covered well enough in SOLiD platforms, or contains a known

Illumina error pattern.

A closer look at the false somatic SNVs assessed by Sanger sequencing also reveals

miscellaneous and sometimes unclear reasons for their call. Very often, the SNVs

are located in regions that are difficult to map to, like poly-A stretches or segmental

duplications. Another reason for falsely called somatic SNVs are mutations that are

also present in control, but are not called because the coverage or the allele frequency

are too low. Finally, a few cases seem to be sequencing errors, where a mutation can

clearly be seen in the tumor BAM file on IGV, even though the Sanger validation could

not identify any.
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3 Results

chr pos dbSNP ref alt genomic regions
hom/

het

validation

result

chr1 172157950 - A G

Introns

Mammal conservation

Promoters

LINE repeats

het confirmed

chr1 237345250 - C T
Introns

Mammal conservation
het confirmed

chr3 7589499 - C T
Introns

Mammal conservation
het confirmed

chr3 14882459 rs116407913 G A
Introns

Mammal conservation
het

sequencing

failed

chr3 106758969 - A G
Mammal conservation

LINE repeats
het

sequencing

failed

chr4 594999 - G C

Mammal conservation

LINE repeats

Self chain

het confirmed

chr6 108328601 - C T

Mammal conservation

Promoters

LTR Repeats

het
sequencing

failed

chr7 109072602 - T A
Mammal conservation

LINE Repeats
het

sequencing

failed

chr8 27427015 - G A Mammal conservation het confirmed

chr9 9216163 - C T

Introns

Mammal conservation

SINE Repeats

het confirmed

chr12 28477282 - A G

Introns

Mammal conservation

Promoters

het confirmed

chr15 39798057 - C A Mammal conservation het confirmed

chr16 9975836 - G A
Introns

Mammal conservation
het confirmed

Table 3.5: Overview of the somatic SNVs concordant between all four platforms
and their Sanger sequencing validation results. For each somatic SNV
the chromosome, position, dbSNP identification (if present), reference and
alternative allele, genomic regions, zygosity and Sanger validation result is
given.
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3.7 Somatic variation calling

chr pos dbSNP ref alt genomic regions
hom/

het

validation

result

alt. allele

frequency

chr1 43754699 - G T

Mammal conservation

Promoters

LINE repeats

het TRUE 0.22

chr2 114188440 - C T

Introns

Mammal conservation

Promoters

LTR repeats

Segmental duplication

Self chain

hom FN 0.83

chr4 23622862 - A C Simple repeats hom FP 1

chr6 33747921 - G A

Exons

Mammal conservation

Promoters

het TRUE 0.2

chr9 68380340 rs77836632 G T

CpG islands

Mammal conservation

Segmental duplications

Self chain

het FP 0.24

chr19 4512945 rs75031432 C T
Exons

Mammal conservation
het FN 0.27

chr19 4512946 rs79662071 A G
Exons

Mammal conservation
het FN 0.27

Table 3.6: Overview of the HiSeq2000 somatic SNVs chosen for Sanger validation, and
their validation results. For each somatic SNV the chromosome, position,
dbSNP identification (if present), reference and alternative allele, genomic
regions, zygosity, Sanger validation result, and alternative allele frequency
is given. ”False positive” (FP) stands for an SNV that was not found in
the tumor with Sanger sequencing, ”false negative” (FN) for an SNV that is
found both in tumor and control with Sanger sequencing.
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3 Results

chr pos dbSNP ref alt genomic regions
hom/

het

validation

result

alt. allele

frequency

chr1 106238081 - T G
Mammal conservation

LINE repeats
het

Flanking SNV

artifact
0.46

chr3 19041671 rs112827577 T A Mammal conservation het
Flanking SNV

artifact
0.32

chr5 11008475 rs113518426 T C

Introns

Mammal conservation

Promoters

LTR repeats

het
Flanking SNV

artifact
0.44

chr6 29819600 - G A

CGI shores

Mammal conservation

Self chain

het
Flanking SNV

artifact
0.24

chr7 53857155 - G A Mammal conservation het
Flanking SNV

artifact
0.47

chr7 152104381 rs113774675 A G

Introns

Mammal conservation

Self chain

het
Flanking SNV

artifact
0.4

chr9 6932312 rs112868579 G A
Introns

Mammal conservation
het

Flanking SNV

artifact
0.33

chr12 31826443 - G A

Introns

Mammal conservation

Promoters

LINE repeats

het
Flanking SNV

artifact
0.36

chr13 102878420 - G A
Introns

Mammal conservation
het

Flanking SNV

artifact
0.26

chr15 21183913 rs115553418 T C

Mammal conservation

Promoters

Segmental duplications

Self chain

het FN 0.36

chr15 85114547 rs12899953 T C

CGI shores

Mammal conservation

Promoters

Segmental duplications

Self chain

Simple repeats

het FN 0.5

chr21 9907222 - T C

CGI shores

Introns

Mammal conservation

Segmental duplications

Self chain

het FN 0.29

chr22 47384036 rs113412201 A G

Introns

Mammal conservation

DNA repeats

het
Flanking SNV

artifact
0.28

chr22 49544337 rs6009515 T A
Mammal conservation

Self chain
het FP 0.43

Table 3.7: Overview of the SOLiD 4 somatic SNVs chosen for Sanger validation, and
their validation results. For each somatic SNV the chromosome, position,
dbSNP identification (if present), reference and alternative allele, genomic
regions, zygosity, Sanger validation result, and alternative allele frequency is
given. ’False positive’ stands for an SNV that was not found in the tumor
with Sanger sequencing, ’false negative’ for an SNV that is found both in
tumor and control with Sanger sequencing.
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3.7 Somatic variation calling

chr pos dbSNP ref alt genomic regions
hom/

het

validation

result

alt. allele

frequency

chr1 16842448 rs3982351 G A

CGI shores

Mammal conservation

Segmental duplications

Self Chain

het FP 0.25

chr3 10168966 rs113587531 T C
Mammal conservation

Promoters
het

Flanking SNV

artifact
0.32

chr8 69145468 rs34931257 A G
Mammal conservation

Promoters
het

Flanking SNV

artifact
0.53

chr8 125315212 - A T

CGI shores

Mammal conservation

Segmental duplications

Self chain

het
Flanking SNV

artifact
0.45

chr10 105356443 - C G

Introns

Mammal conservation

Promoters

Simple repeats

het
Flanking SNV

artifact
0.32

chr16 33942851 rs76303220 C A

CpG islands

Mammal conservation

Segmental duplications

Self chain

het FP 0.38

chr16 78921414 - A G

Introns

Mammal conservation

Simple repeats

het
Flanking SNV

artifact
0.54

chr17 31963897 rs111564603 C A

Introns

Mammal conservation

Self chain

Simple repeats

het
Flanking SNV

artifact
0.42

chr17 76253591 - G A

Mammal conservation

Promoters

Simple repeats

het FN 0.55

chr19 52099247 - C T

CGI shores

Mammal conservation

Promoters

LINE repeats

Self chain

het
Flanking SNV

artifact
0.29

chr20 6065730 rs112086590 T C
Exons

Mammal conservation
het

Flanking SNV

artifact
0.4

Table 3.8: Overview of the 5500xl SOLiD somatic SNVs chosen for Sanger validation,
and their validation results. For each somatic SNV the chromosome, position,
dbSNP identification (if present), reference and alternative allele, genomic
regions, zygosity, Sanger validation result, and alternative allele frequency is
given. ’False positive’ stands for an SNV that was not found in the tumor
with Sanger sequencing, ’false negative’ for an SNV that is found both in
tumor and control with Sanger sequencing.
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3 Results

chr pos dbSNP ref alt genomic regions
hom/

het

validation

result

alt. allele

frequency

chr1 17322619 - A G
Exons

Mammal conservation
het FP 0.21

chr1 36907562 - C A

Introns

Mammal conservation

Promoters

SINE repeats

het FP 0.21

chr1 47076668 - A C

CGI shores

Introns

Mammal conservation

het FP 0.21

chr3 100170628 - A G
Exons

Mammal conservation
het FN 0.2

chr4 166199389 - T A

Exons

Mammal conservation

Segmental duplications

Self chain

het FN 0.34

chr10 129905945 - T G

Exons

Mammal conservation

Self chain

het FP 0.21

chr15 102226182 - C T
Exons

Mammal conservation
het TRUE 0.24

chr17 16876781 - G A

Mammal conservation

Promoters

LINE repeats

Self chain

het FP 0.27

chr20 61595238 - T G

Introns

Mammal conservation

Promoters

het FP 0.21

Table 3.9: Overview of the Complete Genomics somatic SNVs chosen for Sanger
validation, and their validation results. For each somatic SNV the
chromosome, position, dbSNP identification (if present), reference and
alternative allele, genomic regions, zygosity, Sanger validation result, and
alternative allele frequency is given. ’False positive’ stands for an SNV that
was not found in the tumor with Sanger sequencing, ’false negative’ for an
SNV that is found both in tumor and control with Sanger sequencing.
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3.7 Somatic variation calling

3.7.2 Somatic indels

The overall number of somatic indels (Table 3.10) shows that, similarly to the somatic

SNVs, the differences between platforms are pronounced. Most variations are called

in HiSeq2000 (966), followed by 5500xl SOLiD (630), Complete Genomics (457) and

finally SOLiD 4 (37). However, the ratio between insertions and deletions is rather

similar for HiSeq2000, 5500xl SOLiD and SOLiD 4, ranging from 0.56 for HiSeq2000 to

0.72 for 5500xl SOLiD, which is consistent with the fact that insertions are generally

harder to call than deletions [129]. For Complete Genomics however, this trend is

reversed: for 333 insertions called in patient sample MB24, only 124 deletions are found.

The overlap between platforms, both for insertions and for deletions, is even lower than

for somatic SNVs (Figure 3.28). Generally, SOLiD 4 seems to have absolutely no indels

in common with the other platforms, while only one deletion and zero insertions are

shared by the three other platforms. The number of somatic insertions or deletions

shared by two platforms is slightly higher (e.g., 4 deletions and 18 insertions for

Complete Genomics and HiSeq2000, and 3 deletions and 4 insertions for Hiseq2000

and 5500xl SOLiD), but still represents only an extremely tiny fraction of the total

number of indels per platform.

HiSeq2000 SOLiD 4 5500xl SOLiD CG

MB24
ins 346 15 265 333

del 620 22 365 124

Table 3.10: Number of somatic indels called for patient sample MB24, for each of the
four technologies. ”ins” stands for insertion, ”del” for deletion. CG stands
for Complete Genomics.

Comparison to validation experiments

We had the opportunity to have a small number of somatic indels from patient sample

MB24 externally validated with Sanger sequencing. The 5 indels that were identified

on more than one platform were selected for validation (see Table 3.15), as well as

7 to 10 indels called by one technology only (Tables 3.12 (HiSeq2000), 3.13 (5500xl

SOLiD), and 3.14 (Complete Genomics)). An overview of the results of the Sanger

validation can be found in Table 3.11.

As expected, indels called on at least two different technologies are real, whereas not a

single one of those called by a single platform could be confirmed by Sanger sequencing.
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This suggests that indel calling is not very accurate, regardless of technology, and that

somatic indel calling is an even bigger challenge. Indeed, for HiSeq2000, SOLiD 4, and

5500xl SOLiD, the majority of platform-specific indels assessed by Sanger sequencing

are false negatives, meaning the indel was found in control, making it a germline indel.

This is different for Complete Genomics, which has a majority of false positive indels

among those assessed by Sanger sequencing, i.e. of indels found neither in the tumor

nor in the control. This indicates that the predominant difficulty lies in the calling of

somatic indels for all platforms except Complete Genomics, which seems to call many

false positive indels overall.

Figure 3.28: Overlap of somatic insertions and deletions found across platforms for
patient sample MB24. The plot includes platform-specific somatic SNVs
called as germline by other platforms.

HiSeq2000 + 5500xl SOLiD + CG 1/1 true somatic changes

HiSeq2000 + 5500xl SOLiD 2/2 true somatic changes

HiSeq2000 + CG 2/2 true somatic changes

HiSeq2000 only 0/9 true somatic changes

5500xl SOLiD only 0/7 true somatic changes

CG only 0/10 true somatic changes

Table 3.11: Somatic indels results: number of true somatic changes out of the total
number tested, as validated by Sanger sequencing. CG stands for Complete
Genomics.
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3.7 Somatic variation calling

chr pos ref alt allele frequency validation result

chr1 26895673 AAG A 0,2 False negative

chr1 54429616 G GC 0,4 False negative

chr2 96657159 C CG 0,364 False negative

chr2 201929338 ATTAT A 0,111 False negative

chr4 171115658 AC A 0,136 False negative

chr10 127595259 G GA 0,162 False positive, or allele freq too low

chr11 20499360 CA C 0,3 False negative

chr15 77246836 GGA G 0,125 False negative

chr18 15322955 ATTTATAC A 0,091 False positive

Table 3.12: Overview of the HiSeq2000 somatic indels chosen for Sanger validation, and
their validation results. For each somatic indel the chromosome, position,
reference and alternative allele, allele frequency and Sanger validation result
is given. ’False positive’ stands for an indel that was not found in the tumor
with Sanger sequencing, ’false negative’ for an indel that is found both in
tumor and control with Sanger sequencing.

chr pos ref alt allele frequency validation result

chr1 143475780 ACCAATTTTGT ACCAATTTGT 0,545 False negative

chr2 132776038 AAGACTCTAG AAGACTAG 0,333 False negative

chr5 115202417 CTAAGAGA CTGA 0,057 False positive, or allele freq too low

chr7 8010576 TA TAT 0,071 False negative

chr15 20083350 AC ACTTAC 0,116 False negative

chr15 20942204 TTCAACCATACAT TTCAACAT 0,389 False negative

chr21 31123516 TATG TATGTG 0,077 False positive, or allele freq too low

Table 3.13: Overview of the 5500xl SOLiD somatic indels chosen for Sanger validation,
and their validation results. For each somatic indel the chromosome,
position, reference and alternative allele, allele frequency and Sanger
validation result is given. ’False positive’ stands for an indel that was not
found in the tumor with Sanger sequencing, ’false negative’ for an indel that
is found both in tumor and control with Sanger sequencing.

chr pos ref alt allele frequency validation result

chr1 247104579 CAAA C 0,308 False negative

chr2 228593117 TGCG T 0,291 False positive

chr5 3125712 T TTGTTGTTGTTTGTTTCTTTTTGTTGTTGA 0,625 False positive

chr6 160956039 A ATGATGGTGGTAG 0,292 False positive

chr10 134326339 A ACTGAGCCCTACTCTCATCCCCAACGACCCAGG 0,731 False positive

chr14 24522271 GCA G 0,333 False negative

chr16 6773733 A AT 0,258 False negative

chr19 5852410 CT C 0,187 False positive, or allele freq too low

chr22 16202448 A AC 0,346 False positive

chr22 48930058 A
ACATGAATAAGTCAGGTGC

GGTGGGTCAGGCAGGTGC
0,433 False positive

Table 3.14: Overview of the Complete Genomics somatic indels chosen for Sanger
validation, and their validation results. For each somatic indel the
chromosome, position, reference and alternative allele, allele frequency and
Sanger validation result is given. ’False positive’ stands for an indel that
was not found in the tumor with Sanger sequencing, ’false negative’ for an
indel that is found both in tumor and control with Sanger sequencing.
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3 Results

chr pos ref alt allele frequency validation result
platforms

found in

chr5 39297910 GA G 0,147 Confirmed HiSeq2000, 5500xl SOLiD

chr11 123375285 TC T 0,143 Confirmed HiSeq2000, 5500xl SOLiD

chr3 967815 TC T 0,171 Confirmed HiSeq2000, Complete Genomics

chr4 82373501 TG T 0,129 Confirmed HiSeq2000, Complete Genomics

chr18 730060 GTTTAA G 0,176 Confirmed HiSeq2000, 5500xl SOLiD, Complete Genomics

Table 3.15: Overview of the somatic indels found by several platforms that were chosen
for Sanger validation, and their validation results. For each somatic indel
the chromosome, position, reference and alternative allele, allele frequency,
Sanger validation result and platforms found on is given. ’False positive’
stands for an indel that was not found in the tumor with Sanger sequencing,
’false negative’ for an indel that is found both in tumor and control with
Sanger sequencing.
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4 Discussion

The recent advent of massively parallel sequencing technologies has paved the way to

a better assessment and thus a better understanding of genomics and genetics. Once

an extremely costly and time-intensive task, large-scale human genome sequencing is

only a few steps away from becoming a routine laboratory task. However, the state-of-

the-art platforms currently available are still relatively new and thus not thoroughly

evaluated, and there are a number of caveats to be considered and uncovered.

The goal of this thesis is a comparison of the four whole-genome sequencing instruments

currently established on the market: Illumina’s HiSeq2000, Life Technologies’ SOLiD 4

and 5500xl SOLiD, and Complete Genomics’ technology. To this end, I used four

whole-genome samples (two tumor-normal pairs) from two pediatric medulloblastoma

patients, sequenced once on each of the four platforms. For each sequencing machine,

I presented an extensive assessment of coverage distribution and bias, in particular GC

bias, a comparison of SNV calls with regard to a SNP array gold standard, as well

as an assessment of the potential benefits of combining mapped reads from different

technologies. Additionally, somatic mutation calls (SNVs and indels) from different

platforms were evaluated. This study highlights the advantages and drawbacks of the

individual platforms while considerably extending previous comparative studies, as it

includes all four platforms, uses a more comprehensive approach, and assesses multiple

samples instead of one, allowing more compelling results.

4.1 Coverage assessment

Coverage, i.e. the redundancy with which each base in the sequenced genome is

covered, should ideally be evenly distributed across the genome. Instead it fluctuates

substantially due to different factors [133], one of the most common being the

underlying base or sequence composition. An even and sufficient coverage of all

genomic regions is crucial for reliable downstream analysis for a number of reasons.

First, it minimizes the impact of sequencing errors: unless it is a systematic error

due, for example, to a specific sequence pattern [34], the same sequencing error

is highly unlikely to appear at the same genomic position in many different reads
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4 Discussion

(although the overall number of sequencing errors, assuming a constant error

rate, increases with coverage). As a consequence, the higher the coverage, the

higher is the confidence in the results of a downstream analysis. A mean coverage of

30x is currently agreed as the standard for whole-genome sequencing (see section 1.3.2).

In addition, sufficient coverage is essential for accurately calling variants with low

allele frequency. These are extremely common in cancer samples, due to tumor

heterogeneity, tissue heterogeneity, and copy number variations (see section 1.2.3).

Localized lack of coverage or extremely low coverage, regardless of the reason, may lead

to the downstream analysis missing or erroneously reporting important variants, while

fluctuating coverage is an issue particularly in quantitative sequencing experiments like

RNA-seq, ChIP-seq, or CNV-seq. Coverage biases are often found in specific genomic

regions of interest, like in GC-rich or GC-poor regions, which are often located in or

near genes and gene promoters, or in repeat regions which may have a number of

different functions, as explained in section 1.1.2.

My results show that GC bias, i.e. a significant drop in coverage in GC-rich, but

also GC-poor regions, is present in all samples and for all platforms analyzed, but is

most pronounced for SOLiD 4 and 5500xl SOLiD instruments, in particular in regions

with a GC content above 60%. A slightly better coverage of GC-rich regions can be

observed with HiSeq2000, but the least (although present) GC bias is achieved with

Complete Genomics. This is in contrast to GC-poor regions (≤ 25% GC content),

where Complete Genomics shows the highest deviation from a uniform distribution,

together with SOLiD 4, while HiSeq2000 and 5500xl SOLiD exhibit a substantially

better coverage. This confirms results from earlier studies [38, 117] which clearly show

the presence of a GC bias in several next-generation sequencing platforms, notably

in data from Illumina’s GAII instrument, but stands in contrast to the results from

Suzuki et al. [116] who claim finding ”no striking GC bias” for SOLiD sequencers.

The overall coverage distribution proved to be surprisingly diverse, with HiSeq2000

showing the narrowest peak, i.e. the most even distribution. All three other platforms,

when observed at comparable coverage levels, display a relatively high number of bases

with very low (< 5) coverage. In addition, between-sample variation for Complete

Genomics was shown to be higher than for other technologies, even at similar mean

coverage, therefore hampering a comparison of variant calls between samples, as variant

call sensitivity is related to coverage. Also, up to a cumulative coverage of around 40x,

Complete Genomics covers a smaller genome fraction compared with HiSeq2000 at the

same mean coverage. This is consistent with Lam et al.’s remark that the less uniform
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4.1 Coverage assessment

the coverage, the higher mean coverage is needed to reach a certain read depth level

for most of the genome [115].

There is also major variation between sequencers in the uncovered fraction of specific

genomic and functional regions, the most striking being in CpG islands. Consistent

with the GC bias mentioned above, both SOLiD 4 and 5500xl SOLiD have major

difficulties covering CpG islands, leaving over half of them uncovered. This offers a

straightforward explanation for the major difficulties encountered in the analysis of

data from methylation experiments described in section 1.4, as these were conducted

on the SOLiD 4 platform. Also, a large part of CpG islands is covered with less

than 3 reads for both HiSeq2000 and the SOLiD sequencers, although HiSeq2000

performs better in this respect than its predecessor, Illumina’s GAII [117]. The good

performance of Complete Genomics might seem counter-intuitive, as CpG islands

contain a high number of repeated sequences, and Complete Genomics’ read length is

by far the shortest of all four platforms. However, as exemplified by Benjamini and

Speed [38], the GC bias is dependent on the GC content of the full fragment and not

just the sequenced read. Complete Genomics’ complex protocol uses short fragmented

sequences interspersed with adapter sequences, therefore lowering the GC content of

the fragment and making it less susceptible to GC bias.

Generally, Complete Genomics, even at downsampled 30x coverage, shows the smallest

uncovered fractions for most genomic regions considered, although it is usually closely

followed by HiSeq2000. Its weakness lies in the coverage of short repeats, in particular

simple repeats, which is most likely due to the shortness and split structure of the

reads, as the other technologies perform better in this respect. This also fits with the

observation of Lam et al. [115] that, compared to concordant SNVs, a high fraction of

platform-specific SNVs are located within simple repeats and low complexity repeats,

suggesting that these false positive calls are due to mapping difficulties.

Overall, it is the SOLiD 4 and 5500xl platforms which display the most shortcomings,

SOLiD 4 even more than 5500xl, often leaving considerable fractions of genomic

elements not covered. Exon coverage, which is of paramount importance in sequencing,

is particularly problematic in this respect, with around 10-12% of uncovered bases for

the SOLiD sequencers.

A combination of mapped reads from two different sequencers, as proposed by Nothnagel

et al. as an attempt to lower the false positive rate for SNV calling [118], showed limited

improvement in the uncovered fractions of problematic regions. The attempt to combine
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the strengths of two platforms in this respect proved to be useful for only few of the

genomic regions considered, in particular specific repeat regions.

4.2 Variant detection comparison

SNVs called genome-wide were compared to the SNP calls obtained from Affymetrix

arrays, which were used as a gold standard to compute sensitivity and false positive

rate. HiSeq2000 consistently reaches the highest sensitivity on all samples, closely

followed by Complete Genomics, even though the mean coverage for HiSeq2000 is

considerably lower than Complete Genomics’ coverage. In fact, even with half the

coverage, i.e. 15x, HiSeq reaches a sensitivity very close to Complete Genomics at

full coverage. It is interesting to note that Complete Genomics’ coverage at the SNP

positions assessed is substantially lower than the sample’s mean coverage (e.g., 40x vs.

51.7x for patient sample MB24), while this is not the case for HiSeq2000. Still, this

does not justify that HiSeq2000 at 15x reaches the sensitivity of Complete Genomics

at full coverage. The sensitivity of 5500xl SOLiD, and SOLiD 4 in particular, is far

behind the sensitivity reached by HiSeq2000 and Complete Genomics, although the

specificity is slightly increased.

The comparison of reliability of concordant and discordant SNV calls conducted by

Lam et al. on HiSeq2000 and Complete Genomics data [115] shows results consistent

with our findings. An earlier study by Suzuki et al. [116] mentions similar detection

performance for Illumina and SOLiD platforms, but these result relate to data from

very early sequencing machines (Illumina’s Genome Analyzer and SOLiD’s first

platform). Altogether, the results denote a strong preference for Complete Genomics

and HiSeq2000 in any research setting focusing on sensitive yet specific results. This is

especially valid for cancer research which relies on the detection of variants with low

allele frequency.

A combination of mapped reads from two different technologies shows that the

sensitivity reached by HiSeq2000 is hard to outperform. The sensitivity of 5500xl

SOLiD data can be strongly increased by combining 15x coverage from this machine

with 15x coverage from HiSeq2000, at the cost of a small loss of specificity, but will

not reach the sensitivity of HiSeq2000 alone. Interestingly however, the sensitivity of

Complete Genomics calls can be significantly increased by adding as little as one lane

(corresponding to around 15x mean coverage) of HiSeq2000 sequencing. This supports

the suggestion by Lam et al. [115] that combining sequence data from different platform

can help boosting their strengths for SNV calling.
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4.3 Evaluation of the detection of somatic mutations

As evidenced in section 1.2.3, calling somatic mutations in cancer samples is a

challenging task for a number of reasons. The cells of tumor tissues can contain very

heterogeneous genomes, the samples are usually admixed with a certain amount of

normal tissue, and copy number variation and polyploidy occur frequently, the latter

being a common event in pediatric medulloblastoma patients [110]. All this leads to a

low allele frequency (i.e., below 50%) for many somatic mutations, meaning that there

may be only a handful of reads carrying the mutation of interest, and that these need

to be distinguished from sequencing errors. This emphasizes once again the importance

of sufficient coverage (section 4.1).

In addition, somatic variation is identified by comparing the sequenced tumor sample

to the sequence of a normal, unaffected control sample. This holds an additional

source of error, since many false positive calls in the tumor sample will result in a

somatic mutation call, as we are unlikely to find the exact same error in control. This

means that, regardless of their origin, a large part of the false positive calls within the

tumor will be kept when calling somatic SNVs. Because there are usually few somatic

mutations in comparison to the total number of mutations called – i.e., germline and

somatic –, the fraction of false positive calls increases when moving on to somatic

calling. This is particularly evident for the ”flanking SNV” artifact I identified within

SOLiD data (see section 3.7.1) which affects a drastic 2/3 of SOLiD’s somatic SNV

calls, but it is to be expected that this factor will also affect the other platforms,

although to a lesser extent.

Besides false positive somatic mutation calls, comparison to a control normal tissue also

introduces false negative calls, i.e. germline mutations that are picked up in the tumor

sample but missed in the control, for example due to a low allele frequency and/or

low coverage, low base quality or mapping quality, or strand bias. Taken together, all

three factors mentioned above – low allele frequency in cancer samples, false positive

calls stemming from sequencing errors, and false negative calls – increase the error rate

compared to one-sample SNV calling in a non-cancer context, i.e. without classification

into somatic and germline.

The somatic SNV calling results show pronounced differences. The number of somatic

SNVs called varies strongly between platforms on the same sample, as does the

between-sample ratio from platform to platform. Overall, each platform presents more

somatic SNV calls for patient sample MB14 than for patient sample MB24. This is

very probably due to the fact that MB24 is tetraploid, and suggests that the ability to
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detect variants with low allele frequency differs between platforms.

Both the overlap between results from different platforms, and the Sanger validation

rates for somatic SNVs specific to one platform are extremely low, MB14 performing

slightly better in this respect than MB24. While somatic SNVs called by all platforms

were all validated by Sanger sequencing (9 out of 9 tested), none of the SOLiD

4-specific and 5500xl SOLiD-specific somatic SNVs chosen for Sanger resequencing

could be validated (0 out of 14 and 0 out of 11, respectively), and only very few of the

somatic SNVs found exclusively with HiSeq2000 or Complete Genomics sequencing

were actually verified (2 out of 7 and 1 out of 9, respectively). This suggests that using

more than one platform for somatic mutation calling may be beneficial for weeding out

false calls and increasing specificity, as a large majority of platform-specific calls seem

to be false. This is consistent with Lam et al.’s finding on standard mutation calling in

a healthy individual that ”concordant SNVs have high accuracy and platform-specific

SNVs have a high false positive rate” [115], an effect that is intensified for somatic

events.

As mentioned above, a major portion of somatic SNV calls detected with SOLiD

sequencing are false calls arising through the ”flanking SNV” artifact. These make

up not only roughly 2/3 of the total somatic calls, but also around 80-100% of the

number of non-overlapping calls in pairwise platform comparisons, depending on

the instrument used and sample studied. Assuming a low error rate for concordant

calls between two platforms, this supports the conclusions from the SNP comparison

showing a comparatively low false positive rate for the SOLiD platforms.

A closer look at the three Sanger-validated, true platform-specific variants in Complete

Genomics and HiSeq2000 data shows that the main reasons why they were missed in

the other platforms are indeed low allele frequency and/or low coverage, the latter

being a problem especially for the SOLiD platforms with their more variable coverage

distribution. False calls not validated by Sanger sequencing, on the other hand, mostly

fall into the categories of ”false positive” and ”false negative” calls illustrated above,

although they are often found in error-prone regions like homopolymer stretches or

repeats. It is interesting to note that almost all of the Sanger-assessed false calls on

the SOLiD platforms, not considering the ”flanking SNV” artifacts, fall into GC-rich

regions like promoters, CpG islands, and CpG islands shores, which is consistent with

the poor coverage of SOLiD platforms in these regions. The influence of analysis tools

on these results is further discussed in section 4.4.
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4.3.1 Somatic indel calling

Somatic indel calling results show even less overlap between platforms and an even

lower validation rate compared to somatic SNVs. The general issues stated above are

valid for all somatic events, but however, indel calling in itself is already an extremely

challenging task [129, 134]. Indel calling depends very strongly on the abilities of the

mapper to allow gapped alignments, as reads containing indels are more difficult and

less straightforward to map than reads containing base errors or SNVs, especially

in the case of longer insertions. Very often, reads with indels will be mapped with

mismatches instead of a gap, and even with a gapped alignment, the indel may not

be placed at its exact location due to, for example, the presence of repetitive elements

or insufficient quality. Finally, some instruments, including Illumina’s platforms, have

difficulties accurately detecting the length of homopolymers [129].

Indel detection is a topic of current research and is far less advanced than SNV calling

due to its higher complexity. Solutions to the indel issue include, for example, analyses

that do not consider reads independently [134].

4.4 Influence of mapping and detection software

An important point when comparing platforms is acknowledging the influence of the

chosen analysis software on the results, as this is what essentially gives meaning to the

raw data. At first sight, using the exact same software for every platform and every

analysis step may seem like the most straightforward solution for a cross-platform

comparison. However, there are a number of caveats to consider in our case. While

Illumina platforms essentially follow the previously used consensus of a base-by-base

read-out of DNA fragments, both Complete Genomics and the SOLiD platforms

introduce new concepts that require adapted handling of the raw data. Both the use

of color space instead of base space and the use of fragmented reads with interspersed

adapters (see section 1.1.2) hold advantages, like added error correction for SOLiD

through two-base encoding, or a better coverage of GC-rich locations for Complete

Genomics. However, using the same software for all platforms compared will not only

prevent taking advantage of these properties, but will also heavily penalize all platforms

but one. As an example, my experience showed that mapping SOLiD data in base space

results in about 50% to 65% less mapped reads in comparison to mapping in color space.

For this reason, both for mapping and for variant calling, we used the software

tools we consider best adapted for each platform. While we are aware that using

different software choices for different sequencing machines will introduce bias, our
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understanding is that this bias will be considerably smaller than the bias introduced

by using the same options for all sequencers, especially for mapping. Our criteria

for choosing the analysis software include comparison of results (e.g., AUC for ROC

curves), extensive shared experience of several DKFZ research groups on different

types of sequencing data, particularly within ICGC projects [110, 120, 121], personal

communication with experts from Life Technologies and Complete Genomics, published

algorithm comparisons [104, 105, 117, 135], and commonness of use within the next-

generation sequencing community.

For the mapping of reads from Illumina’s HiSeq2000 platform, BWA [105] was used

for a number of reasons. BWA is one of the most widely used mappers for Illumina

data, and also the mapper of choice for ICGC Illumina data. It was shown to have one

of the best overall performances for Illumina data [117], has a good trade-off between

speed and accuracy [135], and is relatively easy and straightforward to use.

For SOLiD data, the mapping algorithm was required to map in color space, which

greatly restricted the available choices. The main options were the LifeScope aligner

by Life Technologies1, NovoalignCS by Novocraft2, BFAST [136], and SHRiMP [137].

BWA and Bowtie [106], which are sometimes stated as color space compatible mappers,

actually dropped their color space support. SHRiMP was rejected as an option due to

its extremely long run times [117], as was BFAST, which has issues with the pairing of

SOLiD reads3,4. NovoalignCS is a commercial mapper and was therefore disregarded.

Although Novocraft offers a version that is free for academic and non-commercial

use, it does not support multithreading, which makes it rather slow in comparison.

LifeScope (previously BioScope) comes with the sequencing machine, and the latest

version is free, meaning most SOLiD data users have access to it. It is the most widely

used SOLiD mapper and was retained as our mapping choice for the SOLiD machines.

There is currently only one aligner which takes the specific nature of Complete

Genomics’ data into consideration - the company’s own proprietary software. None of

the analysis methods routinely used by Complete Genomics are available for use outside

the company, and Complete Genomics does not use any of the established standard

data file formats. In addition, the processes of mapping and calling variants are very

intertwined, as the company uses re-assembly at locations differing from the reference

1http://de-de.invitrogen.com/site/de/de/home/Products-and-Services/Applications/

Sequencing/Next-Generation-Sequencing/Data-Analysis-Solutions-for-Next-Generation-Sequencing/

LifeScope-Genomic-Analysis-Solutions/LifeScope-Genomic-Analysis-Software.html
2http://www.novocraft.com/wiki/tiki-index.php?page=NovoalignCS
3http://sourceforge.net/apps/mediawiki/bfast/index.php?title=Main_Page
4http://www.nilshomer.com/index.php?title=BFAST_with_BWA

88

http://de-de.invitrogen.com/site/de/de/home/Products-and-Services/Applications/Sequencing/Next-Generation-Sequencing/Data-Analysis-Solutions-for-Next-Generation-Sequencing/LifeScope-Genomic-Analysis-Solutions/LifeScope-Genomic-Analysis-Software.html
http://de-de.invitrogen.com/site/de/de/home/Products-and-Services/Applications/Sequencing/Next-Generation-Sequencing/Data-Analysis-Solutions-for-Next-Generation-Sequencing/LifeScope-Genomic-Analysis-Solutions/LifeScope-Genomic-Analysis-Software.html
http://de-de.invitrogen.com/site/de/de/home/Products-and-Services/Applications/Sequencing/Next-Generation-Sequencing/Data-Analysis-Solutions-for-Next-Generation-Sequencing/LifeScope-Genomic-Analysis-Solutions/LifeScope-Genomic-Analysis-Software.html
http://www.novocraft.com/wiki/tiki-index.php?page=NovoalignCS
http://sourceforge.net/apps/mediawiki/bfast/index.php?title=Main_Page
http://www.nilshomer.com/index.php?title=BFAST_with_BWA


4.4 Influence of mapping and detection software

genome. However, one of Complete Genomics’ unique selling points is the inclusion

of an extensive analysis of the generated data, a feature that is useful to customers

lacking the considerable infrastructure and knowledge needed for downstream analysis,

making it even less likely for users to apply their own downstream analysis. For this

reason, Complete Genomics’ analysis results were used, including mapping and variant

calling results. Quality filters were applied to the somatic calls, as advised in personal

communication with company experts.

There is a wide range of available Illumina-centered SNV calling algorithms

based on different methodologies [101], the most commonly used methods being

samtools/bcftools [108] and GATK [122]. As they differ only minimally in methodology,

samtools was used for calling SNVs because it was already established in our group. It

was used for the comparison to the SNP array for both HiSeq2000 and SOLiD data,

as for the latter it improved sensitivity (as computed from the SNP array) by 1% at a

hardly altered specificity, when compared to the results obtained with LifeScope.

For calling somatic SNVs, I had access to a very comprehensive and well-tuned pipeline

that is routinely used in ICGC projects [110]. Except for Illumina-specific filtering

steps, the procedure used after SNV calling for determining the somatic/germline

status of each mutation was kept the same for HiSeq2000 and SOLiD data. Preliminary

results from benchmarking studies5 show that different calling procedures will yield

very different total numbers of somatic SNVs, sometimes differing by an order of

magnitude. This encouraged us to use a setup as similar as possible for HiSeq2000,

SOLiD 4, and 5500xl SOLiD data.

Overall however, it is hardly possible to disentangle the influence of analysis software

choices from the effects of using a particular sequencing platform, as these are often

intricately linked. As an example, lack of sufficient coverage was identified as an

important cause of missed calls, but the reasons for lack of coverage are manifold,

and are often both an issue of the platform and of the downstream analysis: mapping

difficulties can be due to low base or read quality, due to specific sequencing biases, due

to the mappability of the region, due to a short read length, or due to too stringent

alignment settings.

5currently unpublished; talk by Ivo Gut, ICGC meeting, Heidelberg, December 10th, 2012
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4.5 Conclusions and outlook

This comparative study reveals the strong and weak points of the sequencing machines

and provides an indication of the preferred platform to use, depending on the aims

of the experiment. The most striking result is the poor performance of the two

SOLiD sequencers in a GC-related setting, disapproving their use especially for

methylation assessment and exon sequencing. This also explains the major problems

that occurred during the methylation experiments performed with SOLiD 4 machines

(see section 1.4). Combining raw data from different technologies proved to be only

of limited use and is indicated only for very specific applications that require good

coverage of specific genomic regions while retaining high SNP calling sensitivity. The

latter proved to vary strongly between platforms and once again places the SOLiD

platforms, in particular SOLiD 4, at the bottom end. The assessment of somatic

SNVs showed that calling somatic mutations is still a big challenge for many different

reasons. It requires high, and preferably evenly distributed coverage throughout the

genome in order to ease the discovery of mutations with low allele frequency. Using the

calls from several platforms was shown to increase the certitude of a true somatic call.

Comprehensive benchmarking experiments are needed for a better understanding of

the issues raised by somatic calling, a task that is beginning to be tackled by large-scale

sequencing consortia [138].

Laboratory parameters like the required amount of starting DNA, sequencing costs,

or turnaround time, were not considered in this comparison. Although they might be

decisive for choosing a particular sequencing platform, they tend to vary strongly over

time. However, it is worth pointing out that HiSeq2000 currently has by far the fastest

turnaround time among the sequencing machines considered, and that Complete

Genomics requires a comparatively high amount of starting material, prohibiting its

use for experiments with a very limited DNA amount available. Furthermore, there is a

lack of adapted downstream analysis algorithms for Complete Genomics’ data, except

for their own proprietary software, and while the company’s analysis service is useful

for smaller labs without bioinformatics support or strong computational infrastructure,

it is not flexible enough in other cases and does not match with the requirements of a

comprehensive analysis.

Different methods for downstream analysis were explicitly not reviewed here, as this

has already been done, and instead the algorithms best adapted to each platform were

chosen in order to give consideration to the heterogeneity of the data generated by the

different instruments. While a larger sample size per platform would have given more
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statistical power, this is currently difficult to achieve because of budgetary issues.

New, ”third” generation platforms currently emerge, which confirms the trend towards

platforms generating longer reads, a development that will help circumvent many of

the issues encountered with current next-generation sequencing instruments. Once

a sufficient throughput can be obtained, they will compete with current technology.

After the launch of the Ion Proton sequencer, Life Technologies recently promised the

”1000$ genome” in the foreseeable future [139]. Pacific Biosciences is developing the

promising SMRT (single-molecule real-time) sequencing, a technology which offers much

longer reads and less bias, as well as modified base detection (see section 1.1.2). The

throughput is currently too low for human-sized genomes and the error rate is still high,

but these issues are expected to be resolved in the future, opening the field for a more

comprehensive assessment of human genetics and genomics.
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5 Technical annex

The major scripts used for this thesis are included on a CD. A description can be found

below.

Coverage analysis

• coverageQc.py

determines genome-wide coverage

• mpileup.sh

runs samtools mpileup per chromosome, giving coverage for each covered

genomic position

• mpileup coverage distrib.sh

concatenates mpileup single-chromosome files and computes coverage

distribution using mpileup files

• sortn uniqc.py

used by mpileup coverage distrib.sh for coverage computation

• genome coverage plots.R

plots coverage distributions

• generate bed of uncovered regions refgenome.pl

computes coordinates of Ns in reference genome

(used for generate bed of uncovered regions.pl and

generate bed of uncovered regions 0-2.pl)

• generate bed of uncovered regions.pl

generates, for each technology, a BED file of uncovered regions

• generate bed of uncovered regions 0-2.pl

generates, for each technology, a BED file of uncovered regions (meaning, in

this case, base coverage < 3)

• my.genomehg19

chromosome sizes for reference genome version HG19; used by the scripts

above

• run compute uncovered regions overlap with bed files 30x.sh

starts compute uncovered regions overlap with bed files.sh
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• compute uncovered regions overlap with bed files.sh

computes the overlap of uncovered regions with genomic and functional

regions

• compute BED bp size.pl

computes the size of the overlaps (used for

compute uncovered regions overlap with bed files.sh)

• compute uncovered regions overlap with bed files cleanupFiles.sh

concatenates results from

compute uncovered regions overlap with bed files.sh

• xls plot with R.R

plots, for each platform and for each genomic/functional region, the

percentage of the region that is not covered

• xls plot with R functions.R

functions used in xls plot with R.R

• uncovered regions stats 30x.R

plots the size distribution of the regions not covered for each technology

• plot vsGC tumorcontrol.R

plots the GC bias

SNP analysis

• ROC functions.r

identifies concordance between array and the different platforms, computes

and plots ROC values plots

Somatic analysis

• CG somaticSNVsToVcf.pl

conversion of Complete Genomics’ somaticVcfBeta file format to generic vcf

file format

• CG extract somatic SNVs.pl

extracts somatic SNV calls from Complete Genomics calls

• LT filter SNPs gff3.pl and LT diBayesSNP GFF3 2vcf.pl

filtering and conversion from gff3 to vcf file format for LifeScope SNV calls

• LT split converted vcf per chr.pl

splits up LifeScope SNV calls by chromosome

• ./natalie snvcalling/ and ./matthias snvcalling/

somatic SNV calling pipeline
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• CG extract germline SNVs.pl

extracts germline SNVs for Complete Genomics

• filter somaticSNVs by germlinelist alltechs.pl

filters somatic SNVs (removes all those that are called as germline in any

of the technologies)

• overlap concordant discordant snvs 2ndversion.pl

• overlap concordant discordant snvs all4techs.pl

computes somatic SNV overlaps between platforms

• vennDiag concordant discordant.R

plots Venn diagrams of the somatic SNV overlaps between platforms

• discordant somSNVs only 1 tech.pl

computes somatic SNVs called by only one platform

• overlap concordant discordant snvs withfctregions 2ndversion.pl

annotate the somatic SNVs with functional regions
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