
DISSERTATION

SUBMITTED

TO THE

COMBINED FACULTIES FOR THE NATURAL SCIENCES AND FOR

MATHEMATICS

OF THE

RUPERTO–CAROLA UNIVERSITY OF HEIDELBERG, GERMANY

FOR THE DEGREE OF

DOCTOR OF NATURAL SCIENCES

Put forward by
Dipl.–Mat, M.Sc. Dorotea Dudaš

Born in: Osijek, Croatia
Oral examination:

Vortex Extraction Of Vector Fields

Advisors: Prof. Dr. Rolf Rannacher
PD Dr. Christoph S. Garbe

Abstract

Spinning, turbulent structures swirling around its centers within various flow me-
dia are known as vortices. The capability of locating and extracting vortical struc-
tures in flow data is crucial for understanding the flow. Vortices also have a strong
impact on flow control and transport processes.

Real-time vortex extraction methods are presented, offering immediate no-
tion of the shape and location of the vortex structures. Using a real-time fluid
simulation based on Navier-Stokes equations presented in [46], several vortex ex-
traction methods are interactively performed in real-time. Following vortex ex-
traction methods are implemented using the GPU: vorticity threshold, Q criterion,
λ2 criterion, the eigenvector method via parallel vectors operator (PVO) and the
eigenvector method via coplanar vectors operator (CVO).

Diffusional methods outputting flow fields with preserved/enhanced vortical
structures are also presented. Such methods are useful for obtaining an alternative
insight into vortices within a flow field and can also be used within the real-time
simulation.

Using a number of human performed gestures for human-computer interac-
tion, special ensemble flow fields are produced. Detecting vortices from these
gesture ensemble range flows is introduced as aid for gesture classification. Ges-
ture range data is recorded using the Microsoft Kinect device. Range or scene
flow is a 3D vector field describing movement within a scene. Range data con-
sists of images (color channels) and corresponding depth images (depth channels)
in which the distance of objects is recorded as a grayscale image. Ensemble range
flow is estimated from gesture videos. Ensemble flow describes the overall flow
within the scene and is obtained by averaging the structure tensor throughout the
scene. Vortices are extracted from an ensemble range flow of the gestures. Their

i

number and location is offering an additional parameter for gesture classification.
Collection of methods for detecting vortices and obtaining vector fields with

emphasized vortices are introduced in this thesis. Real-time execution of vortex
extraction methods offers an instant notion of the nature of the flow. Diffusional
methods can serve as a processing step within the real-time vortex extraction. As
an additional application, gesture ensemble flow is presented. By detecting its
vortices, a parameter for gesture classification is introduced.

Zusammenfassung

In einer Strömung werden rotierende, turbulente Strukturen, die sich um ein Zen-
trum drehen als Wirbel bezeichnet. Deren Charakterisierung und Lokalisierung
ist essentiell für das Verständnis einer Strömung. Weiterhin haben Wirbel einen
bedeutenden Einfluss auf das Verhalten einer Flüssigkeit und Transportprozesse
innerhalb der Flüssigkeit.

Hier werden Methoden für die Extraktion von Wirbeln in Echtzeit vorgestellt,
die die sofortige Ansicht von Ort und Form der Wirbelstruktur ermöglichen.
Mehrere Wirbelextraktionsmethoden werden interaktiv und in Echtzeit ausgeführt
und Daten aus einer Simulation der Navier-Stokes-Gleichungen in Echt-zeit
([46]) angewendet. Dabei handelt es sich um folgende Methoden: Vortizitäts-
schwellwert, Q Kriterium, λ2 Kriterium, Eigenvektorenmethode über parallele
Vektoroperatoren (PVO) und Eigenvektorenmethode über Koplanare Vektoroper-
atoren (CVO).

Weiterhin werden auf Diffusionsprozessen basierte Methoden zur Gener-
ierung von Strömungsfeldern präsentiert mit erhaltenen/verstärkten Wirbelstruk-
turen. Diese Methoden ermöglichen einen alternativen Einblick in Wirbelstruk-
turen innerhalb des Geschwindigkeitsfeldes und können auch in der Echtzeitsim-
ulation eingesetzt werden.

Ensemble Geschwindigkeitsfelder wurden von einer Auswahl menschlicher
Gesten im Rahmen der Mensch-Computer-Interaktion generiert. Die Vortexde-
tektion aus diesen gesteninduzierten Geschwindigkeitsfeldern wird als Hilfe in
der Gestenklassifikation vorgestellt. Die nötigen Daten wurden mit der Mi-
crosoft Kinect Kamera aufgenommen. Das aufgenommene Geschwindikeits-
feld ist ein 3D Vektorfeld, das die Bewegung innerhalb eine Szene beschreibt.
Die zugehörigen Daten bestehen aus 3-Kanal Farbbildern und dazugehörigen

iii

Tiefenkarten, in denen der Abstand der Objekte als Grauwertbild gespeichert
wird. Ein Ensemble Geschwindigkeitsfeld wird aus jedem Gestenvideo berech-
net. Es beschreibt die durchschnittliche Bewegung und wird durch die Mittelung
des Strukturtensors über die gesamte Szene bestimmt. Im Anschluss werden die
Wirbel aus den resultierenden Ensemble Geschwindigkeitsfeldern bestimmt. Ort
und Anzahl der Wirbel stellen einen zusätzlichen Parameter für die Gestenklassi-
fikation dar.

In dieser Arbeit wird eine Auswahl von Methoden zur Detektion von Wirbeln
und Erzeugung von Vektorfeldern mit Schwerpunkt auf Wirbeln vorgestellt. Die
Ausführung der Methoden der Wirbelextraktion in Echtzeit ermöglicht die so-
fortige Kenntnis der Art des Geschwindigkeitsfeldes. Die Anwendung der Dif-
fusionsmethoden kann einen Schritt innerhalb der Vortexextraktion in Echtzeit
darstellen. Als eine zusätzliche Anwendung wird die Generierung von Ensem-

ble Geschwindigkeitsfeldern aus Gesten vorgestellt. Über die Detektion der
entstehenden Wirbel wird ein zusätzlicher Parameter für die Gestenklassifikation
eingeführt.

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 Flow Data 7
2.1 Introduction . 7
2.2 Simulated Data . 8

2.2.1 Analytical Vortex Examples 9
2.2.1.1 Vector Field Topology 9

2.2.2 Real-Time Flow Simulation on the GPU 16
2.2.2.1 Navier-Stokes equations 17
2.2.2.2 Implementation 19

2.3 Recorded Data . 25
2.3.1 Microsoft Kinect . 25

3 Diffusional and Variational Vortex Preserving 27
3.1 Introduction . 27
3.2 Diffusion . 28
3.3 Variational Methods . 32
3.4 Vortex Preserving Diffusion and Variational Processes 34

3.4.1 Vortex Preserving Diffusion 36
3.4.2 Variational Formulation of Vortex Preserving 46
3.4.3 Results . 49

v

4 Real-Time Vortex Extraction 53
4.1 Introduction . 53
4.2 Overview of the Vortex Extraction Methods 55

4.2.1 Vortex Region Extraction 55
4.2.1.1 Vorticity Threshold 56
4.2.1.2 Q Criterion (Okubo-Weiss) 56
4.2.1.3 λ2 Method (Jeong-Hussain) 56

4.2.2 Vortex Core Extraction 57
4.2.2.1 Minimal Bending Energy Method 57
4.2.2.2 Sujudi-Haimes Method (Eigenvector Method) . 61
4.2.2.3 Parallel Vectors Operator 62
4.2.2.4 Feature Flow Fields 64
4.2.2.5 Coplanar Vectors Operator 65

4.3 Stationary Flow Parallel Vectors Operator on the GPU 68
4.3.1 Results . 74

4.4 Real-Time Flow Vortex Extraction on the GPU 76
4.4.1 Simulation Enhancement Through Nonlinear Isotropic

Diffusion . 78
4.4.2 Implementation of Vortex Detection Methods 79

4.4.2.1 Vorticity Threshold 79
4.4.2.2 Q Criterion . 79
4.4.2.3 λ2 Criterion 79
4.4.2.4 Parallel Vectors Operator 79
4.4.2.5 Coplanar Vectors Operator 80

4.4.3 Results . 81

5 Gesture Classification by Detecting Vortices in Ensemble Flow 91
5.1 Introduction . 91
5.2 Range and Optic Flow . 93
5.3 Correction of Range Flow Computation - Combined Local-Global

Range Flow . 95
5.3.1 Results . 99

5.4 Ensemble Range Flow . 101

5.5 Vortex Detection of Ensemble Range Flow for Gesture Classification102
5.5.1 Results . 107
5.5.2 Vortex Preserving Diffusion of the Ensemble Range Flow 110

6 Conclusion and Future Work 113
6.1 Future Work . 114

Appendices 115

A Mathematical Formulations Leading to a Discrete Explicit Scheme 117
A.1 Finite Difference Derivative Approximations 117
A.2 Boundary Conditions . 118
A.3 Linear Isotropic Diffusion . 119
A.4 Backward Linear Isotropic Diffusion 119
A.5 Nonlinear Isotropic Diffusion . 120
A.6 Backward Nonlinear Isotropic Diffusion 121
A.7 Nonlinear Anisotropic Diffusion 122
A.8 Discretization of the Diffusion-Reaction System 123
A.9 Discriminant Steered Energy Functional Requesting Similarity to

the Original Vector Field . 124
A.10 Optic Flow . 126
A.11 Range Flow . 128

B Ensemble Range Flow of the Fluid Data With Estimated Depth 131
B.0.1 Estimating Depth From Single Monocular Images 132
B.0.2 Results . 133

Acknowledgement 135

Affidavit 137

List Of Figures 139

List Of Tables 145

Bibliography 147

viii

Chapter 1

Introduction

Due to extreme climatic changes, importance of understanding vortices increases.
Figure 1.1 shows different instances of vortical structures.

Figure 1.1: Vortices. Upper, left: World tallest artificial tornado serving as a smoke
draining system in Mercedes-Benz museum in Stuttgart ([23], Copyright Daimler AG).
Upper, right: Tornado storm in the “tornado alley” area in the central USA (Orchard,
Iowa, June 2008 [25]). Lower: A fire tornado near Alice Springs, Australia (Sep, 18.
2012 [4]).

A collection of methods for detecting vortices and obtaining vector fields
with emphasized vortices are introduced in this thesis. Real-time vortex extrac-
tion methods are presented, offering immediate notion of the shape and location

1

Introduction 2

of the vortex structures. Diffusional methods outputting flow fields with pre-
served/enhanced vortical structures are also introduced. Detecting vortices from
gesture ensemble range flows is introduced as a possible application of the devel-
oped methods to gesture classification.

Chapter 2 Chapter 2 is an introductory chapter presenting some of the back-
ground knowledge necessary for understanding the other chapters. Obtaining flow
data, whether by designing analytical flow fields, by simulating the flow or by
recording the flow, is crucial for the study of vortices. Chapter 2 is divided into
sections on simulated (Section 2.2) and recorded data (Section 2.3).

Section 2.2 on simulated data is divided into “Analytical Vortex Examples”
(Section 2.2.1) and “Real-Time Flow Simulation on the GPU” (Section 2.2.2)
sections.

For designing analytical vector fields suitable for studying vortices, it is nec-
essary to have some knowledge about the vector field topology. Certain types of
first order critical points are considered to be vortex cores in 2D. Analytical 2D
flow fields containing such critical points, i.e. vortex cores, are extensively used
to test diffusion and diffusion-reaction processes in Chapter 3. Analytical 3D
flows are designed to test 3D extraction methods presented in Chapter 4. Eigen-
vector method for vortex extraction ([47]) is a standard vortex extraction method.
To understand where the motivation for its design originated from, first order 3D
critical points are presented. Parallel vectors operator method, extensively used in
Chapter 4, was motivated by the eigenvector method.

Simulating fluid in real-time is presented in Section 2.2.2. Using this fluid
simulation in Chapter 4, vortex extraction methods are implemented in real-time.
The simulation is based on Navier-Stokes equations which describe the motion of
fluid substances. Implementation was done on a GPU using the CUDA frame-
work. Interactive 3D real-time fluid simulation allows user to input additional
force into the data volume, so creating flow data in real-time.

Section 2.3 presents the range data used in Chapter 5 for detecting vortices
withing the gesture flow. The data is recorded using the Microsoft Kinect device.
The device has a standard camera and an infrared sensor that records the depth
information. Range data consists of images (color channels) and corresponding

Introduction 3

depth images (depth channels) in which the distance of objects is recorded as
a grayscale image. Such range data is used to create the ensemble range flow
(Section 5.4) used for classifying gestures (Section 5.5).

Chapter 3 Chapter 3 presents diffusion and diffusion-reaction (variational) pro-
cesses which produce vector fields with preserved/emphasized vortices.

Sections 3.2 and 3.3 give an introduction into diffusional and variational pro-
cessing framework. Basic diffusion and diffusion-reaction processes are presented
in order to facilitate the understanding of the upcoming sections.

Vortex preserving diffusion and variational processes are presented in Section
3.4.

Vortex preserving diffusion (Section 3.4.1) results in vector fields with pre-
served vortex areas where rest of the flow field is dampened. Diffusion produces
simplified and information-reduced output. By choosing diffusivity functions that
avoid vortex areas, diffusion processes are steered to preserve the information
within them. Other features are diminished. It is also preferred, but not guaran-
teed that no new features are created. Different binary and continuous diffusivity
functions are designed. One choice for designing diffusivity functions is making
them dependent on the discriminant d of the characteristic polynomial of the Ja-
cobian matrix. Negative d indicates an existence of a swirling area that possibly
contains swirling critical points i.e. critical points that can be classified as vor-
tex cores in 2D. Other choice for diffusivity functions includes considering area
around detected vortex cores or regions. All approaches output vector fields with
emphasized vortex areas.

Variational processes which give vector fields with emphasized/preserved vor-
tex areas are presented in Section 3.4.2. A function H that causes preservation
of certain areas and destruction of others is used to preserve vortices. H is again
steered either by discriminant d, or by the areas around vortex cores or regions.

Designed processes offer an alternative insight into the structure of the flow
and are useful for the further study of vortices.

Introduction 4

Chapter 4 Chapter 4 presents real-time vortex detection and extraction meth-
ods. Various vortex core and region extraction methods exist. They operate as
a post-processing step for locating vortex regions/cores. Here, standard vortex
extraction methods are performed in real-time and are implemented within the
real-time fluid simulation based on Navier-Stokes equations (presented in Section
2.2.2).

Overview of the vortex extraction methods is given in Section 4.2. Vortex core
and region extraction methods needed for testing or for real-time implementation
are covered. Following vortex region detection methods are presented: vorticity
threshold, Q criterion and λ2 criterion. Vortex core extraction includes minimal
bending energy vortex extraction, the eigenvector method and the parallel vector
operator (PVO). Eigenvector method is one of the standard vortex core extrac-
tion methods and is a predecessor of the PVO. Coplanar vectors operator (CVO)
method, which is a generalization of the PVO, can be expressed through PVO.

GPU implementation of the parallel vectors operator method (PVO) for sta-
tionary vector fields is presented in Section 4.3. OpenCL framework is used for
programming. PVO is used as a testing method for vortex extraction from 3D vec-
tor fields obtained by pausing the real-time simulation. This way, it is possible to
verify the results from the real-time extraction. GPU implementation is optimized
by considering only limited amount of faces within a volume cell of the 3D data.

Section 4.4 introduces real-time vortex core/region extraction. CUDA is used
as a programming environment. Extraction methods are implemented within a
real-time fluid simulation which is interactively influenced by the user. User is
able to input additional force into the flow field in real-time (see Section 2.2.2)
and so form, e.g. a helical-like flow suitable for testing of the real-time extrac-
tion methods. The results of the real-time extraction are color coded within the
arrow or within the density plot of the real-time simulation. Different extraction
methods can be compared in real-time by using different colors to depict them.
Following vortex extraction methods are implemented: vorticity threshold, Q cri-
terion, λ2 criterion, the eigenvector method via parallel vectors operator (PVO)
and the eigenvector method via coplanar vectors operator (CVO). Vortex preserv-
ing diffusion methods presented in Section 3.4.1, can be used as a replacement for
the diffusion step of the fluid simulation, producing flows with slightly empha-

Introduction 5

sized swirling areas.

Chapter 5 Chapter 5 deals with detecting vortices within the ensemble range
flow of the gesture videos. The designed method is intended as a improvement of
the existing gesture classification methods.

Section 5.2 is an introductory section presenting basics of optic and range flow.
Range or scene flow is a 3D vector field describing movement within a scene. It
requires image pairs of color images and of depth images as input. Depth images
are encoding the distance of objects in an observed scene using grayscale values.
Data recorded with Kinect device is used for testing.

Depth data obtained by Kinect contains many artifacts. Section 5.3 introduces
a range flow method that removes those artifacts. Improved global-local range
flow algorithm is presented. Magnitude of the derivatives of the input depth im-
ages is thresholded, thus removing the influence of artifacts to the resulting flow.

Ensemble range flow is introduced in Section 5.4. It describes the overall
flow within the considered scene. The structure tensors of images are averaged
throughout the entire data set.

Section 5.5 shows how vortex detection of the gesture ensemble range flows
can aid gesture classification. Five volunteers recorded nine gestures using the Mi-
crosoft Kinect device. Ensemble range flow is calculated for every gesture. Vortex
cores extracted from these ensemble range flows, i.e. their position and number
can serve as a addition to certain gesture classification methods. Although this
approach can be used as a standalone indicator, it is intended as an improvement
of gesture classification methods that operate on data of reduced dimensions. A
draft for a newly designed gesture classification is also proposed. The technique is
based on mapping of the ensemble range flow magnitudes to 1D, so allowing fast
classification. Gesture classification requires only the number of obtained vor-
tices. Diffusion techniques from Section 3.4.1 can be used to create a flow field
with emphasized vortices.

Appendix Different mathematical formulations leading to discrete explicit
schemes are presented in Appendix A. Calculation of the ensemble range flow
of the fluid data by estimating the depth data is given in Appendix B.

Introduction 6

Chapter 2

Flow Data

2.1 Introduction

In order to deal with flow data, it is important to understand its origin and basic
topological structure. Different approaches for obtaining flow data as well as some
theoretical background of the flow topology and flow simulation are presented in
this chapter.

2D flow fields and their topology are presented in order to better understand
diffusion and diffusion-reaction processes covered in chapter 3. Since only certain
types of first order critical points are considered to be vortex cores, the ability to
recognize such features is essential for their processing and extraction. During an
iterative process on a 2D vector field, two critical points sometimes collapse into
one, or vice versa. These special events are called bifurcations and should also be
considered when dealing with 2D flow data.

In order to understand where the idea for the 3D eigenvector vortex extraction
method came from, one should also be familiar with first order 3D critical points.
If 3D critical points of the saddle focus type are considered, the direction of the
vortex core coincides with the direction of the only “real eigenvector” of the Ja-
cobian matrix of that point. The eigenvector method led to the development of
the parallel vectors operator used in chapter 4. 3D vector fields specially designed
to test vortex extraction methods, such as a helical flow field or bent helical flow
field are also presented.

7

Simulated Data 8

Real-time fluid simulation, used in Chapter 4 to implement and test the real-
time vortex extraction methods, is based on simulating the Navier-Stokes equa-
tions. These partial differential equations describe the motion of fluid substances.
The real-time simulation, and later the vortex detection methods, are implemented
on the GPU using the CUDA framework. Parallel vector operator for stationary
fields is also implemented on the GPU using the OpenCL framework.

Range flow methods developed in chapter 5 rely on data recorded using spe-
cial equipment, e.g. Microsoft Kinect device. Such devices produce not only
color video sequences, but also, by utilizing an infrared projector, provide depth
sequences i.e. data that contains information about distance of objects to the de-
vice.

Section 2.2 gives some insights into simulation of the flow data. Analytical
examples are presented in Section 2.2.1. Section 2.2.1.1 gives an introduction
into the vector field topology important for understanding the structure of the flow.
Simulating flow in real-time using the graphic processing units (GPUs) is covered
in Section 2.2.2. Section 2.2.2.1 explains the governing Navier-Stokes equations.
Section 2.2.2.2 reveals some details of the simulation implementation.

Section 2.3 is about the acquisition of the flow data. Acquisition of range data
using the Microsoft Kinect is covered in Section 2.3.1.

The vector field data, techniques and theories presented here are used
throughout the rest of the thesis.

2.2 Simulated Data

Simulated flow data in the thesis is produced by using 2D and 3D analytical flow
examples or by simulation of the Navier-Stokes equations.

Simulated Data 9

2.2.1 Analytical Vortex Examples

In order to test vortex extraction methods or design processes that preserve vor-
tices, it is necessary to have analytical examples for which the exact solution of
the given problem is known. Producing such examples requires certain knowledge
about the main features of the vector field i.e. about its topology.

2.2.1.1 Vector Field Topology

First Order Critical Points The main feature of a vector field are its critical
points. Definition of a first order critical point is given as: x0 is a first order
critical point of the vector field v(x) if and only if v(x0) = 0 and |J(x0)| 6= 0,
where J is the Jacobian matrix of the flow in a point.

Figure 2.1: First order critical points in 2D linear vector field.

The flow pattern in a 2D vector field around the critical point is characterized
by eigenvalues and eigenvectors of the Jacobian matrix in that point and can be

Simulated Data 10

classified (Figure 2.1) as:

repelling node : 0 < Re(λ1) < Re(λ2) , Im(λ1) = Im(λ2) = 0,

attracting node : Re(λ1) < Re(λ2) < 0 , Im(λ1) = Im(λ2) = 0,

saddle point : Re(λ1) < 0 < Re(λ2) , Im(λ1) = Im(λ2) = 0,

repelling focus : 0 < Re(λ1) = Re(λ2) , Im(λ1) = −Im(λ2) 6= 0,

attracting focus : Re(λ1) = Re(λ2) < 0 , Im(λ1) = −Im(λ2) 6= 0,

center : 0 = Re(λ1) = Re(λ2) , Im(λ1) = −Im(λ2) 6= 0.

First order critical points in 2D can therefore be divided into a saddle points,
nodes, foci and centers. Repelling node and focus can also be called sources,
while attracting node and focus are also called sinks. If eigenvalues are imaginary
numbers then the critical point (focus or center) can be characterized as a vortex
i.e. a swirling critical point.

Separatrices Next to critical points, separatrices are also significant features
of the flow. Separatrices are streamlines that separate regions of different flow
behavior. In parabolic region all tangent curves originate or end in the critical
point. In hyperbolic region all tangent curves go by the critical point, except the
two that end/begin in it. In elliptic sector all tangent curves originate and end in the
critical point. Each streamline that starts/ends in a critical point which separates
two sectors is a separatrix. Special cases of isolated streamlines and stream lines
through boundary switch points are also separatrices.

Bifurcations Sudden changes of flow structure at a certain time are called
bifurcations. Fold bifurcations is an event where a saddle collapses with a
source/sink/center and both of them disappear (Figure 2.2) or a reversed process.
Visualizations were made using the Mathematica toolkit ([21]). Hopf bifurcation
is switching of the repelling node to an attracting node via center or reversed.
Saddle connection is another type of the bifurcation where a separatrix of one
saddle ends in a separatrix of another saddle. Collapsing of the separatrix of
a saddle into the same saddle is called a blue sky bifurcation. Cyclic fold
bifurcation is collapsing of two isolated closed streamlines into each other.

Simulated Data 11

Figure 2.2: Four stages of a fold bifurcation. A saddle and a center col-
lapse into each other and disappear with vector fields ranging from u(x, y) =(
y2 − 0.25
−x

)
to u(x, y) =

(
y2 + 0.25
−x

)
.

2D Examples Analytical models containing a single critical point are easiest to
consider for testing purposes. Jacobian matrices producing respectively saddle,
attracting node, repelling node, center, attracting focus, repelling focus are:(

1 0

0 −1

)
,

(
−1 0

0 −1

)
,

(
1 0

0 1

)
,(

0 1

−1 0

)
,

(
0 1

−1 −1

)
,

(
0 1

−1 1

)
.

(2.1)

Following the fact that linear 2D or 3D vector fields can be simplified as v = Jx

(where x is a 2D/3D vector and J a constant Jacobian matrix of the flow field),
the corresponding vector fields are:(

x

−y

)
,

(
−x
−y

)
,

(
x

y

)
,(

y

−x

)
,

(
y

−x− y

)
,

(
y

−x+ y

)
.

(2.2)

Creating vector fields with several critical points is also useful for testing different
methods (Figure 2.3).

Simulated Data 12

(a) (b) (c) (d)

Figure 2.3: Creating a 2D vector field by sampling the analytical function:

(a) u(x, y) =

(
y
−x

)
, (b) u(x, y) =

(
y2 − 0.25
−x

)
, (c) u(x, y) =(

x2 − 0.25
y2 − 0.25

)
, (d) u(x, y) =

(
y2 − 0.25
x2 − 0.25

)
.

3D First Order Critical Points 3D topology is more complicated to consider.
In 3D classification of the first order critical points is as follows:

sources : 0 < Re(λ1) ≤ Re(λ2) ≤ Re(λ3),

repelling saddles : Re(λ1) < 0 < Re(λ2) ≤ Re(λ3),

attracting saddles : Re(λ1) ≤ Re(λ2) < 0 < Re(λ3),

sinks : Re(λ1) ≤ Re(λ2) ≤ Re(λ3) < 0.

Each of the four cases is subdivided by considering the imaginary parts:

foci : Im(λ1) = 0 , Im(λ2) = −Im(λ3) 6= 0,

nodes : Im(λ1) = Im(λ2) = Im(λ3) = 0,

where λ1, λ2, λ3 are the eigenvalues of the Jacobian matrix. Figure 2.4 shows
some of the possible first order 3D critical points. Critical points containing
a vortex are the ones with two conjugated complex eigenvalues that have
opposite signs of real parts when compared to the third eigenvalue i.e. focus
saddles. In critical points of the focus saddle type the direction of the vortex
core coincides with the direction of the only “real eigenvector” of the Jaco-
bian matrix of that point. The eigenvector method for vortex extraction, which
led to the parallel vectors operator, is a generalization of that fact to the entire flow.

Simulated Data 13

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.4: First order 3D critical points: (a) source node, (b) repelling saddle
node, (c) attracting saddle node, (d) sink node, (e) source focus, (f) repelling
saddle focus, (g) attracting saddle focus, (h) sink focus.

3D Examples Jacobian matrices producing respectively (Figure 2.4): source
node, repelling saddle node, attracting saddle node, sink node, source focus, re-
pelling saddle focus, attracting saddle focus, sink focus are e.g.: 1 0 0

0 1 0

0 0 1

 ,

 1 0 0

0 1 0

0 0 −1

 ,

 1 0 0

0 −1 0

0 0 −1

 ,

 −1 0 0

0 −1 0

0 0 −1

 ,

 0 1 0

−1 1 0

0 0 1

 ,

 0 1 0

−1 1 0

0 0 −1

 ,

 0 1 0

−1 −1 0

0 0 1

 ,

 0 1 0

−1 −1 0

0 0 −1

 ,

(2.3)

with corresponding flow fields being:

(x, y, z)T , (x, y,−z)T , (x,−y,−z)T , (−x,−y,−z)T ,

(y,−x+ y, z)T , (y,−x+ y,−z)T , (y,−x− y, z)T , (y,−x− y,−z)T .
(2.4)

Simulated Data 14

(a) (b) (c)

Figure 2.5: Side and front view of the 3D helical vector field. Visualizations were
made using the ParaView scientific visualization application ([29]).

Some other common examples of 3D vector fields used for testing are the fol-
lowing. In 2D a center can also be considered as a velocity field of a solid body
rotation. Its Jacobian matrix is: (

0 −ω
ω 0

)
, (2.5)

where ω is a rotational speed of the rotation of the solid body around the origin.
When a constant motion perpendicular to the 2D rotation plane is added a helical
flow field (Figure 2.5) is obtained. Its Jacobian matrix is: 0 −ω 0

ω 0 0

0 0 γ

 , (2.6)

where γ is the speed of the constant motion perpendicular to the rota-
tion plane. Using the speed zero the following vector field is obtained
v(x, y, z) = (−y, x, 1)T .

Simulated Data 15

Figure 2.6: Circular helical vector field. Upper row: Side and front view of the
bent helical vector field with circular vortex core. Lower row: Side and front
view of the bent helical vector field with circular vortex core - a closer look at the
streamlines around the core.

In order to construct a bent helical vector field with circular vortex ([37]) (Figure
2.6), a helical vortex is translated and bent around an axis resulting in a following
vector field:

v =

−ωxzR

r2
− Ωy

r

−ωyzR
r2

+
Ωx

r(
R− R2

r

)
ω

 ,

where r =
√
x2 + y2. The vortex core is a circle of radius R around the z axis. ω

is the rate of the rotation around the core, Ω is the large-scale rotation around the
z axis.

Simulated Data 16

(a) (b)

Figure 2.7: Side and front view of a helical vortex with core dislocated from z = −1 to
z = 1 via a blending function. The dislocated core is clearly visible in Figure (b).

Helical vortex with “dislocated” core (Figure 2.7) is constructed by using:

v =

 y + f(z)

−x
1

 , (2.7)

where function

f(z) =

−1, z < −1

x, −1 ≤ z ≤ 1

1, z > 1

(2.8)

is added to one vector field component, such that a vortex core is dislocated away
from the plane center by the value of −1 on one side of the spiraling plane, and
value of 1 on the other side of the plane, except “near” the center, according to
f(z).

2.2.2 Real-Time Flow Simulation on the GPU

Vortex extraction methods are incorporated within a real-time simulation of the
flow in Chapter 4. Real-time simulation is implemented by following the paper
“Stable Fluids” [46]. It is based on simulating the Navier-Stokes equations.

Simulated Data 17

2.2.2.1 Navier-Stokes equations

Navier-Stokes equations are a set of differential equations that describe the mo-
tion of fluid substances. The Navier-Stokes equation for incompressible flow of
Newtonian fluids in vector form is:

ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇p+ µ∇2v + f, (2.9)

where ρ is the density of flow medium, µ dynamic tenacity, p pressure and f
represents body forces such as gravity or centrifugal force. The meaning of the
individual terms in the equation (2.9) is the following:

ρ

(
∂v
∂t

+ (v · ∇)v
)

inertia,

∂v
∂t

unsteady acceleration,

(v · ∇)v convective acceleration,

−∇p+ µ∇2v divergence of stress,

−∇p pressure gradient,

µ∇2v viscosity,

f other forces.

(2.10)

The incompressible Navier-Stokes equation (2.9) is a differential algebraic
equation (DAE) which has no explicit mechanism for advancing the pressure in
time. It is desired for pressure to be eliminated from the equations and thus create
a pressure-free Navier-Stokes velocity formulation.

Helmholtz decomposition states that any sufficiently smooth, rapidly decay-
ing vector field in three dimensions can be resolved into the sum of an irrotational
(curl-free) vector field and a solenoidal (divergence-free) vector field. The incom-
pressible Navier-Stokes equation (2.9) can be written as a sum of two orthogonal
equations, a pressure-free governing equation for the velocity (2.11) and a func-

Simulated Data 18

tional of the velocity related to pressure Poisson equation (2.12):

∂u
∂t

= ΠS
(
−(u · ∇)u + µ∇2u

)
+ fS, (2.11)

ρ−1∇p = ΠI
(
−(u · ∇)u + µ∇2u

)
+ fI , (2.12)

where are ΠS , ΠI are solenoidal and irrotational projection operators with ΠS +

ΠI = 1, and are fS , fI the nonconservative and conservative parts of the body
force.

Pressure-free Navier-Stokes equation is used to implement the real-time fluid
simulation.

Real-Time Fluid Simulation The real-time fluid simulation method presented
in paper Stable Fluids [46] was initially designed to move the density particles
along a stationary vector field (Figure 2.8). Particles are influenced by the addi-
tional density inputed into a density scalar field, they are moved into the direction
of the vector field and also there is a certain amount of diffusion (dissipation)
happening.

Figure 2.8: Advection i.e. moving of the density (denoted white) through the
static vector field (denoted by a blue arrow plot) ([46]).

Pressure-free Navier-Stokes equation for velocity that governs such behavior is
given as:

∂u
∂t

= P
(
− (u · ∇)u + µ∇2u + f

)
, (2.13)

with projection operator P that projects a vector field onto its divergence-free
component. The following notation for density and velocity equations shall be

Simulated Data 19

used for simplicity:

∂ρ

∂t
= −(u · ∇)ρ+ κ∇2ρ+ S, (2.14)

∂u
∂t

= −(u · ∇)u + µ∇2u + f, (2.15)

where ρ is the density, u vector field, S additional density, f additional force. The
meaning of the individual terms in the equation (2.14) is the following:

−(u · ∇)ρ movement along the vector field,

κ∇2ρ diffusion of the density,

S input of additional density.

(2.16)

Similar equation is also used for velocity (2.15), where individual terms can be
interpreted as:

−(u · ∇)u self-advection,

µ∇2u viscous diffusion,

f additional forces.

(2.17)

A simulation of a swirling divergence free (without sources or sinks) vector field
was accomplished in the following way. As already mentioned, every velocity
field can via Helmholtz decomposition be represented as a sum of a divergence
free field and a gradient field. We want to project a vector field onto its divergence
free part containing no sinks or sources, but containing many swirls (Figure 2.9).
The projection onto a divergence free space is achieved by subtracting the gradient
field from the original vector field. The gradient field is obtained by solving a
Poisson equation (2.19).

2.2.2.2 Implementation

Fluid simulation runs in real-time and has a scalable flow field grid. By using a
right mouse click the user can input a desired amount of density into the plane (in
2D) or first slice of the volume (in 3D). Left mouse click adds forces to the vector
field (first slice of the vector field in 3D). The forces spread the density around

Simulated Data 20

= +

= –

Figure 2.9: Upper row: original vector field is decomposed into a mass conserving field
and a gradient field. Lower row: by subtracting the gradient field from the original field
we get the visually appealing divergence free field ([46]).

the volume (Figure 2.10). The view can be switched between an arrow plot and
the density plot of the vector field. Pseudo-volume rendering i.e. rendering of
transparent textures is used to visualize the density of the volume. Simulation is
needed in order to test the real-time performance of the vortex extraction methods
presented in chapter 4. Quantities indicating a vortex are visualized instead of
density. It is possible to pause a simulation and save a stationary flow data. Data
can also be saved in regular time periods thus producing a 3D time dependent data.

(a) (b) (c) (d)

Figure 2.10: 2D and 3D real-time fluid simulation. (a) 2D simulation, arrow plot of
the vector field, (b) 2D simulation, density (denoted blue) plot, (c) 3D simulation, arrow
plot of the vector field (sphere is to test the camera movement and not related to the
simulation), (d) 3D simulation, density (denoted cyan) pseudo-volume.

Simulated Data 21

Implementation Detail Starting point of the implementation is a 2D C code
provided by the author of a Stable Fluid paper ([46]). The code was expanded
to a 3D CUDA GPU version. The finite grid size is set. The solver is started
with an initial state of density and velocity which are then updated according to
the environment and newly inputed density/forces. Simulation is based on four
functions: source input, diffusion, advection and projection acting as follows:

• Source input adds additional density into the density field or additional
forces into the velocity field. The adding of the forces is preformed by
the user by using the mouse pointer movement.

• Diffusion procedure is a stable backward diffusion process (given in Ap-
pendix A.4) that results in a sparse linear system solved by using a Gauss-
Seidel relaxation (2.25).

• Advection procedure forces density/velocity to follow a given velocity field.
Linear backtracing is used to trace particles back in time. The new den-
sity/velocity value it then obtained by bi/trilinear interpolation. Trilinear
interpolation is an extension of linear interpolation to 3D (Figure 2.11):

v(x, y, z) = (1− x)(1− y)(1− z)v0,0,0 + x(1− y)(1− z)v1,0,0

+ (1− x)y(1− z)v0,1,0 + (1− x)(1− y)zv0,0,1

+ xy(1− z)v1,1,0 + (1− x)yzv0,1,1

+ x(1− y)zv1,0,1 + xyzv1,1,1.

(2.18)

Figure 2.11: Trilinear interpolation of the vector field v in a 3D cell. The value of the
flow field at the location of the red “point” is obtained using (2.18).

Simulated Data 22

• Projection routine forces velocity field to be mass conserving. Visually it
produces a swirly flow without sources or sinks. Mass conserving i.e. diver-
gence free vector field is obtained by subtracting the gradient field from the
original vector field. The gradient field is obtained by solving the Poisson
equation:

∆u = f . (2.19)

Poisson equation is a large sparse linear system. For example, in 2D the
equation (2.19) is rewritten as:

f = ∂xxu+ ∂yyu, (2.20)

f =
ui+1,j − 2ui,j + ui−1,j

h2
+
ui,j+1 − 2ui,j + ui,j−1

h2
, (2.21)

h2f = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j, (2.22)

and yields a system Au = b, where a system matrix is of the form:

A =

D −I 0 · · · 0

−I D −I 0 · · · 0

0 −I D −I 0 · · · 0
...
0 · · · 0 −I D −I 0

0 · · · 0 −I D −I
0 · · · 0 −I D

, (2.23)

where I is the identity matrix, and D of the following form:

D =

4 −1 0 · · · 0

−1 4 −1 0 · · · 0

0 −1 4 −1 0 · · · 0
...
0 · · · 0 −1 4 −1 0

0 · · · 0 −1 4 −1

0 · · · 0 −1 4

. (2.24)

Simulated Data 23

The Poisson equation is solved by using a red-black Gauss-Seidel scheme:

uk+1
i,j =

uki+1,j + uk+1
i−1,j + uki,j+1 + uk+1

i,j−1

4
− h2f

4
(2.25)

Red-black denotes an alternating usage of pixel grid in each iteration i.e. a
grid is divided into a red-black chess-like pattern and only red or only black
pixels are used in one iteration.

These four routines combined produce a fluid simulation. Density is simulated by
iteration of adding additional density, diffusing and advecting. Velocity is sim-
ulated by iteration of adding force, diffusing, advecting, projecting. Boundary
conditions are set so that the velocity component perpendicular to the cell bor-
der is zero. The routines are implemented as CUDA kernels operating in parallel
on GPU. OpenGL was used for visualization of vector field/density/vortex mea-
sures. Additional GPU routines are implemented for vortex extraction in Chapter
4. They are visualized by connecting the vortex indicators to the color of the
volume/arrow plot.

CUDA Implementation and Optimization The simulation is implemented
by using OpenGL and nVidia CUDA and is running on the GPU. nVidia CUDA
(Compute Unified Device Architecture) is a parallel computing architecture
developed by nVidia for graphics processing. C for CUDA (C with nVidia
extensions and certain restrictions) is used to code algorithms for execution on
the graphics processing units (GPUs). The main feature of using CUDA (or
OpenCL) is the ability of parallel computation on many cores allowing very large
speedups if used properly.

Optimizing code for GPU requires certain knowledge about the hardware ar-
chitecture and is sometimes contraintuitive. Main opportunities for optimization
(other than changing the algorithm) lie in optimizing the grid/block sizes and
optimizing the memory access.

CUDA computation is organized in a grid. A grid has several blocks which
have a a fixed number of threads (Figure 2.12). GPU kernels can be run using
different block and grid sizes. A grid has the same dimension as the blocks in it,

Simulated Data 24

Figure 2.12: CUDA grid containing a number of blocks which contain a number
of threads.

usually 1, 2 or 3. Grid and block sizes are specified during the launch of the kernel.
Choosing the optimal size has a great influence on the speed of the execution. The
design of problem and the GPU hardware determine the optimal setup. Number
of treads in a block should be a multiple of 32 (multiple of warp size). Most of
the kernels used in the flow simulation use the 32× 32 block size with 64 threads
per block. The simulation is performed using nVidia GeForce GTX 285 graphics
card.

Memory management is extremely important when programming CUDA and
OpenCL kernels (Section 4.3). Choosing the “right” memory for the task (global,
shared, texture etc.) and dimensioning the data (padding) to get the consecutive
chunks of memory thrown onto a kernel (coalescent reads) helps to optimize the
task. Parallel vectors operator used in Section 4.3 pads the loaded data with zeros
to achieve coalescent reads from memory. In the real-time simulation the size is
chosen by the user and can easily be set to multiples of 32.

Further speedup of the algorithm could be achieved by taking care of the
OpenGL and CUDA interoperability. By taking into account the ability of
OpenGL to render directly from the device memory, the unnecessary copying
from device to host can and back can be avoided. OpenGL buffers are mapped
into the CUDA address space and then used as global memory. This is done via
Vertex Buffer Objects (VBO) or Pixel Buffer Objects (PBO).

Recorded Data 25

2.3 Recorded Data

Flow data measured from different sources is essential for testing performance of
the detection methods within the flow. Data can be obtained from different sources
such as flow inside mechanical parts, blood flows, flow around a plane, around an
insect, hurricane data etc. The quality of so obtained data is sometimes low and
might require preprocessing.

2.3.1 Microsoft Kinect

Kinect is a multi sensing device by Microsoft. It consists of a RGB camera, and a
depth sensor, allowing inclusion of the third dimension into different algorithms.
Depth sensor is an infrared projector that projects light grid onto the environment.
Depth images recorded with the Kinect contain significant invalid areas and
unstable edges (Figure 2.13) which are a consequence of occlusions which occur
because of the shift between the source of active illumination and the infrared
camera, caused by the structured light depth estimation approach [1], [51].

Data obtained by Kinect is used in Chapter 5 to record human gestures. Five
volunteers preformed nine gestures each. Each gesture data consists of 60 frames
of color and depth images. Color and depth data is first calibrated by using back-
ward warping. Post processing technique is developed to get rid of the input data
artifacts (Section 5.3). Ensemble range flow of the gesture videos is created (Sec-
tion 5.4) and finally, vortex cores are detected within created gesture ensemble
range flow in order to aid gesture classification (Section 5.5).

Recorded Data 26

Figure 2.13: Upper row: Microsoft Kinect device ([24]). Second row: two consecutive
image frames (color channels) of a scene that shows a human hand moving right, up and
back. Third row: depth channels of the images above (with close-up frame of the hand)
obtained by Kinect. The depth images are aligned to the corresponding color channels
using backward warping. Invalid areas (white) are visible in depth images. Fourth row:
color channels of a passive scene of an office with camera moving towards the table. Last
row: depth channels of the images above.

Chapter 3

Diffusional and Variational Vortex
Preserving

3.1 Introduction

Diffusion and diffusion-reaction processes in which the swirling motion i.e
vortices are preserved will be presented in this chapter. Diffusion processes
produce simplified, information-reduced output. Such processes are utilized to
preserve vortex areas and diminish the rest of the flow field. Vector fields with
emphasized swirling areas i.e 2D swirling critical points (vortices) are wanted
as the result. Other types of features should be diminished and no new features
should be created. Several processes are designed in order to preserve vortical
structures. The discriminant d of the characteristic polynomial of the Jacobian
matrix is used as an indicator of a swirling area. Nonlinear isotropic diffusion
with diffusivity steered by d is used to process the vector fields. Detecting
vortices or vortex regions and preserving a circular area around them is another
option for obtaining the wanted vector fields. Variational processes which give
similar results are also presented here.

Section 3.2 explains diffusion process and its discretization. Section 3.3 gives
an introduction into the variational energy minimization. Section 3.4 introduces
diffusion and diffusion-reaction processes designed to preserve the swirling

27

Diffusion 28

i.e vortical structures. Nonlinear isotropic diffusion processes steered either
by discriminant d or by the location of the vortex cores/region are presented.
Binary and continuous diffusivities are tested. Some processes are based on
utilizing the discriminant d of the characteristic polynomial of the Jacobian
matrix as an indicator of the existence of swirling structures i.e. vortex cores. As
an alternative approach, a circular area around detected vortex cores or vortex
regions is preserved while the rest of the flow is blurred. These processes can also
be expressed as a nonlinear isotropic diffusion with binary diffusivity based on
the location of vortex cores/regions. Variational methods that preserve swirling
structures are presented in Section 3.4.2.

The processes produce vector fields with emphasized i.e. preserved swirling
and vortex structures. Other kinds of critical points are diminished, however,
their destruction cannot be guaranteed. Resulting flow fields are suitable for a
alternative insight into the flow structure, especially when one is interested in
study of vortices. They can also be used as a processing step within the presented
real-time techniques (Chapter 4, Section 4.4.1).

Further improvements include determination of optimal parameters, using
advanced anisotropic regularization and formulation of algorithms in 3D. Non-
iterative fast numerical schemes could be used to speed up the algorithms up to
the real-time performance.

3.2 Diffusion

Prior to introduction of vortex area preserving diffusion in Section 3.4.1, basic
theory and classification of diffusion processes will be presented in this section.

The diffusion or heat equation describes a process that equilibrates concentra-
tion and preserves mass. It can be described by the following equation:

∂tu = div(D∇u). (3.1)

Different diffusion processes are suitable for various applications. In
2D image processing linear isotropic diffusion is sufficient for simple blur-
ring. Edge enhancing diffusion can be more suitable for e.g denoising an image,
while e.g. fingerprint recognition can benefit from coherence enhancing diffusion.

Diffusion 29

Figure 3.1: Diffusion of a 2D image. (a) original image, (b) linear isotropic diffusion i.e.
Gaussian blurring ([15], [56]), (c) nonlinear isotropic diffusion (Perona-Malik [32]), (d)
coherence enhancing anisotropic diffusion (using joint color channels in structure tensor)
([53]).

Different processes can be formulated as follows (Figure 3.1):

• Linear isotropic diffusion ([15], [56]):

∂tu = div(1 ∗ ∇u) = ∆u, (3.2)

• Nonlinear isotropic diffusion ([32]):

∂tu = div(g(|∇u|2)∇u), (3.3)

• Nonlinear anisotropic diffusion ([52]):

∂tu = div(D(Jρ(∇uσ))∇u). (3.4)

Following sections will tangle each of them. Finite difference derivative approxi-
mations and boundary conditions are explained in Appendix A.1 and A.2.

Diffusion 30

Linear Isotropic Diffusion Linear diffusion process can be expressed as:

∂tu = ∆u,

u(x, 0) = f(x),
(3.5)

and is equivalent to Gaussian convolution. It has the unique solution:

u(x, t) =

{
f(x) (t = 0)

(K√2t ∗ f)(x) (t > 0)
, (3.6)

where Kσ is a Gaussian with standard deviation σ:

Kσ(x) :=
1

2πσ2
exp

(
−|x|

2

2σ2

)
. (3.7)

The unique solution depends continuously on the initial image f (well-posedness).
The evolving image satisfies the minimum-maximum principle:

inf
R2
f ≤ u(x, t) ≤ sup

R2

f ∀x,∀t > 0. (3.8)

Other theoretical results include average grey level invariance, Lyapunov se-
quences (i.e. transformation is simplifying, information-reducing) and conver-
gence to a constant steady state. Mathematical formulation leading to a discrete
explicit scheme is given in Appendix A.3.

Nonlinear Isotropic Diffusion Nonlinear isotropic diffusion process can be
written as:

∂tu = div(g(|∇u|2)∇u), (3.9)

where g(|∇u|2) is a diffusivity function governing the nature of the diffusion.
Contrast parameter λ that separates forward and backward diffusion needs to be
set. The function is formed so that the smoothing (forward diffusion) happens for
|∇u| < λ and edge-enhancing (backward diffusion) for |∇u| > λ.

Diffusion 31

Some usual diffusivities are:

Perona-Malik diffusivity: g(s2) =
1

1 + s2

λ2

, (3.10)

Charbonnier diffusivity: g(s2) =
1√

1 + s2

λ2

, (3.11)

Exponential diffusivity: g(s2) = exp

(
−s2

2λ2

)
. (3.12)

Properties of function g are g > 0, g ∈ C∞, g(0) = 1, g decreasing on [0,∞),
lim
s2→∞

g(s2) = 0. Mathematical formulation leading to a discrete explicit scheme
is given in Appendix A.5.

Nonlinear Anisotropic Diffusion Nonlinear anisotropic diffusion process can
be written as:

∂tu = div (D(∇u)∇u)

= div

((
v1,x v2,x

v1,y v2,y

)(
λ1 0

0 λ2

)(
v1,x v1,y

v2,x v2,y

)
∇u

)
,

(3.13)

where v1, v2 are eigenvectors such that v1‖∇u, v2⊥∇u and λ1, λ2 eigenvalues
chosen such that λ2 = 1 denotes full diffusion along the edge, and λ1 = g(|∇u|2)

adjustable diffusion across the edge so forming an edge enhancing diffusion.

For applications that require a more general structure direction description, the
matrix∇u∇uT can be used instead of∇u:

∂tu = div
(
D(K ∗ ∇u∇uT)∇u

)
= div

(
D

(
K ∗

(
uxux uxuy

uxuy uyuy

))
∇u

)

= div

((
v1,x v2,x

v1,y v2,y

)(
λ1 0

0 λ2

)(
v1,x v1,y

v2,x v2,y

)
∇u

)
,

(3.14)

where v1, v2 are eigenvectors of theK∗∇u∇uT and eigenvalues λ1, λ2 are chosen

Variational Methods 32

such that the smoothing increases with structure coherence i.e.:

λ1 = α, (3.15)

λ2 =

{
α µ1 = µ2

α + (1− α) exp
(

−C
(µ1−µ2)2

)
else

, (3.16)

where α > 0 is a small value, µ1, µ2 eigenvalues of the structure tensor
K ∗ ∇u∇uT and C contrast parameter. Such coherence enhancing diffusion
has a better sense of “overall direction” since, due to the structure tensor, the can-
cellation of gradients with opposite orientations in not an issue. Mathematical
formulation leading to a discrete explicit scheme is given in Appendix A.7.

3.3 Variational Methods

Prior to introduction of vortex area preserving variational methods in Section
3.4.2, variational processes will be presented in this section.

Minimizing an energy functional of the form:

Ef (u) =

∫
Ω

(
(u− f)2 + αΨ

(
|∇u|2

))
dx, (3.17)

is an elegant way of describing a minimization model and its constraints. The
first term, known as data or similarity term is rewarding the similarity to the
original image f , while the second term, know as smoothness term, regulariser or
penaliser, penalises deviations from smoothness.

If energy Ef is minimized by function v, then v satisfies Euler-Lagrange equa-
tions. A minimizer of the 2D functional:

E(u) =

∫
F (x, y, u, ux, uy)dxdy (3.18)

necessarily satisfies the Euler-Lagrange equation:

0 = Fu − ∂xFux − ∂yFuy . (3.19)

Variational Methods 33

By using the notation:

F =
(

(u− f)2 + αΨ
(
|∇u|2

))
,

Fu = 2(u− f),

Fux = 2αuxΨ
′ (|∇u|2) ,

Fuy = 2αuyΨ
′ (|∇u|2) ,

(3.20)

the following equation is obtained:

0 = (u− f)− α∂x
(
Ψ′
(
|∇u|2

)
ux
)
− α∂y

(
Ψ′
(
|∇u|2

)
uy
)

giving

0 = div
(
Ψ′(|∇u|2)∇u

)
− u− f

α
. (3.21)

A choice of how to discretize has to be made.

Discretizing the Euler-Lagrange equations If Euler-Lagrange equations are
discretized a non-linear system of equations is obtained. Note that the same sys-
tem is obtained if discrete energy functional and its minimizing condition (vanish-
ing gradient) is considered directly, without using the Euler-Lagrange equations
(approach used in graphical models):

E(u) =
N∑
i=1

(ui − fi)2 + α
N−1∑
i=1

Ψ

(
(ui+1 − ui)2

h2

)
, (3.22)

∂E

∂ui
= 0, for i = 1, . . . , N , (3.23)

where f = (f1, . . . , fN)T is the signal to be restored, u = (u1, . . . , uN)T mini-
mizer of E(u). The system is then solved by using some root finding algorithm.

Euler-Lagrange equations as Parabolic PDEs Another option for discretiza-
tion is formulating and solving the Euler-Lagrange equation (3.21) as a steady
state of a parabolic partial differential equation i.e. forming a diffusion-reaction
system:

∂u

∂t
= div

(
Ψ′(|∇u|2)∇u

)
− u− f

α
. (3.24)

Vortex Preserving Diffusion and Variational Processes 34

Such diffusion-reaction system can then be solved in a similar fashion as a diffu-
sion process. Mathematical formulation leading to a discrete explicit scheme is
given in Appendix A.8.

3.4 Vortex Preserving Diffusion and Variational
Processes

Diffusion based vortex preserving processes are designed in this section. The
goal is a vector field in which vortex cores are preserved and rest of the flow
dampened. The destruction of other types of features is desired, however, no new
features should be created.

Methods for smoothing the vector field that pay attention to the topology of
the field have been designed before. Papers like [3] rely on complex combinato-
rial topology to process the vector field ([36]). In [27], user is expected to choose
the features to be preserved. Here, an automatic method is designed in which the
emphasis is on vortex preserving.

Figure 3.2 shows the color coding used for depicting the flow magnitude. Ar-
row plots are also used to obtain a better insight into the flow behavior.

(a) (b) (c) (d) (e)

Figure 3.2: (a) color coding used to depict the vector direction (color) and magnitude
(saturation), (b) color coded magnitude of a analytical test flow field with two centers and
two saddles, (c) arrow plot of the vector field from (b) (also in Figure 2.3 (d)). (d) color
coded magnitude of a flow field saved from a paused 2D real-time simulation, (e) arrow
plot of the vector field from (d).

Vortex Preserving Diffusion and Variational Processes 35

Section 3.4.1 presents different diffusion methods for preserving the swirling
features. Nonlinear isotropic diffusion is used with different diffusivities designed
to preserve vortices. Diffusivities are based on using the discriminant d of the
characteristic polynomial of the Jacobian matrix in each point of the flow.

(a) (b) (c) (d)

Figure 3.3: Critical points detected in the flow fields from Figure 3.2. (a), (c) Critical
points detected as intersection of curves where flow components change sign. (b), (d)
Vortex cores i.e. critical points where d < 0 i.e. swirling critical points, foci or centers
(denoted as red diamonds).

In 2D stationary vector fields, the vortex/swirling critical point exists if the eigen-
values of the Jacobian matrix are two conjugated complex values i.e. if the dis-
criminant of the quadratic equation:

λ1,2 =
trJ ±

√
tr2J − 4|J |
2

, (3.25)

where J =

(
ux uy

vx vy

)
, is less than zero i.e. d =

(
(ux − vy)2 + 4uyvx

)
< 0.

Figure 3.3 shows critical points detected in 2D vector fields from Figure 3.2. The
critical points are detected by locating the intersections of the curves where the
components of the vector field change direction. In (b) and (d) only the points
where d < 0 i.e. vortices are shown. Figure 3.4 shows the areas in the test vector
fields where the quantity d < 0.

Binary diffusivity, binary diffusivity with additional edge blurring and con-
tinuous diffusivities are presented. Swirling area indicated by the negative dis-
criminant d does not guarantee that there is a critical point within it. To always
obtain only areas around vortices, binary diffusivities based on vortex (core or re-
gion) detection are also presented. Diffusion-reaction processes are presented in
Section 3.4.2. Resulting flow fields are smoothed, but have emphasized/preserved

Vortex Preserving Diffusion and Variational Processes 36

(a) (b) (c) (d)

Figure 3.4: (a), (c) Areas in test vector fields where discriminant d < 0 denoted red, (b),
(d) Swirling areas together with swirling critical points denoted blue.

swirling features i.e. vortices.

3.4.1 Vortex Preserving Diffusion

A diffusion processes are designed with diffusivity function that avoids swirling
features or vortices. Nonlinear isotropic diffusion process is taken:

∂tu = div(g(|∇u|2)∇u), (3.26)

with function g being a diffusivity function governing the nature of the diffusion
(see Section 3.2, Appendix A.5).

Wanted properties for the function g are that it is positive g > 0 and smooth
g ∈ C∞[0,∞). These properties ensure that the diffusion process is well-posed
and regular, the average gray level is preserved, the minimum-maximum principle
respected, that the process is simplifying and information-reducing, and that for
t→∞ the image converges to the average gray level (average flow magnitude).

Selecting a diffusivity function which equals zero for certain cases, results in
a process that does not converge to the average steady state. Flow areas for which
g = 0 do not get diffused, so for t → ∞ the process converges to the average
magnitude outside these areas, while the flow inside stays unchanged. A small
variance of the flow magnitude within the blurred area is a good stopping criteria
for all presented methods.

Binary Diffusivity Diffusivity g is set to strong in a non-swirling area (where
d ≥ 0) and set to weak where there are swirling features (d < 0). Following

Vortex Preserving Diffusion and Variational Processes 37

diffusivity is constructed:

g(s2) =

{
0, d < 0

1, d ≥ 0
. (3.27)

Note that for g = 1 nonlinear isotropic diffusion equals the linear isotropic diffu-
sion i.e. Gaussian blurring. Figure 3.5 shows the diffusion process on the two test
vector fields for different number of iterations.

Figure 3.5: Nonlinear isotropic diffusion process with diffusivity (3.27) on an analytical
test flow field (upper two rows) and simulated test flow field (lower two rows) for iteration
number: 500, 1000, 5000, 50000 (left to right). Upper, third row: color coded magnitude
of the flow. Second, lower row: gray scale flow magnitude with vortex cores. Red critical
points are the points originally present in the vector field. Orange critical points are newly
created.

Vortex Preserving Diffusion and Variational Processes 38

Figure 3.6 shows the arrow plots of the processed flow fields for high iteration
number (50000).

(a) (b) (c) (d)

Figure 3.6: (a), (c) arrow plots of the two test vector fields, (b), (d) arrow plots of the
diffused vector fields from Figure 3.5 right (50000 iterations).

Swirling structures are preserved and the rest of the field blurred, however, new
critical points are introduced at the borders of the swirling and non-swirling ares
(orange points in Figure 3.5).

Additional Blurring of the Swirling Structure Edges Newly introduced
critical points need to be removed. They appear at the places where discriminant
d changes sign. Figure 3.7 shows the areas where d > −ε, where ε is small. The ε
threshold chooses the area where d > 0 plus edge of the d < 0 area (Figure 3.4).

(a) (b) (c) (d)

Figure 3.7: Areas where discriminant (a), (c) d > −0.0001 and (b), (d) d > −0.01. The
area where d > 0 is chosen plus the edge of the d < 0 area (Figure 3.4).

Vortex Preserving Diffusion and Variational Processes 39

Additional Gaussian blurring of the area with d > −0.01 is performed after the
diffusion process with the diffusivity (3.27). This removes the created invalid
critical points. Figure 3.8 shows such process.

Figure 3.8: Nonlinear isotropic diffusion process with diffusivity (3.27) followed by
blurring for iteration number: 500, 1000, 5000, 50000 (left to right). Upper, third row:
color coded magnitude of the flow. Second, lower row: gray scale flow magnitude with
vortex cores.

Figure 3.9 shows arrow plots of the processed flow fields for high iteration num-
ber. Swirling features are preserved and no new features are introduced. Sharp
boundaries between the swirling and non swirling areas are blurred.

Vortex Preserving Diffusion and Variational Processes 40

(a) (b) (c)

(d) (e) (f)

Figure 3.9: (a), (d) arrow plots of the two test vector fields, (b), (e) arrow plots of the
diffused vector fields from Figure 3.5 right (50000 iterations), (c), (f) arrow plots of the
diffused and additionally blurred fields from Figure 3.8 right (50000 iterations).

Continuous Diffusivity Previous process first blurs the area where d > 0, and
then, because the sharp blurring border introduces additional critical points, the
area where d > −0.01 is blurred. This removes the introduced artifacts. Alterna-
tive solution is designing a diffusivity without sudden jumps. Following diffusiv-
ity is now considered:

g(s2) =

0, d < 0

d, d ∈ [0, 1]

1, else

, (3.28)

where discriminant d =
(
(ux − vy)

2 + 4uyvx
)
. This results in an graduate in-

crease of blurring amount, from no blurring within the swirling area to full blur-
ring (g = 1) away form the swirling area. During the diffusion process, additional
blurring iteration is made within the non-swirling area to further blur it out. Fig-
ure 3.10 shows the value of the discriminant of the two test vector fields mapped
to grayscale. Sudden jumps in values are not excluded. Figure 3.11 shows the
diffusion process. Figure 3.12 compares the arrow plots of this and two previous
approaches.

Vortex Preserving Diffusion and Variational Processes 41

(a) (b) (c)

Figure 3.10: Value of the discriminant d of the two test vector fields mapped to grayscale.
Negative values start from white, positive end with black. (a) analytical example, (b)
frame from the real-time simulation test data, (c) middle image with adjusted contrast and
brightness.

Figure 3.11: Nonlinear isotropic diffusion process with diffusivity (3.28) for iteration
number: 500, 1000, 5000, 50000 (left to right). Upper, third row: color coded magnitude
of the flow. Second, lower row: gray scale flow magnitude with vortex cores.

Vortex Preserving Diffusion and Variational Processes 42

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.12: (a), (e) arrow plots of the two test vector fields, (b), (f) arrow plots of the
diffused vector fields (3.27) from Figure 3.5 right (50000 iterations), (c), (g) arrow plots
of the diffused and additionally blurred fields from Figure 3.8 right (50000 iterations).
(d), (f) arrow plots of the diffused vector fields (3.28) from Figure 3.11, right (50000
iterations).

Shown processes output the vector fields with emphasized swirling features.
No new swirling features are introduced, however, it is not always guaranteed
that all other features are destroyed. Figure 3.13 shows the resulting vector
fields with all critical points denoted. The diffusion with diffusivity (3.27)
destroys all other features, but also introduces new critical points. Approach with
additional blurring after the diffusion and the diffusion with diffusivity (3.28)
do not guarantee the destruction of the non-swirling critical points. They do,
however, emphasize the swirling features and produce relatively smooth vector
fields without introducing new swirling features.

Vortex Preserving Diffusion and Variational Processes 43

Figure 3.13: All critical points within the two processed vector fields with 50000 itera-
tions. Swirling critical points are denoted red, non-swirling critical points green. Upper
row: analytical flow field, lower row: frame from the real-time simulation. Left column:
initial vector fields, Second column: diffusion with diffusivity (3.27), Third column: dif-
fused with diffusivity (3.27) plus additional blurring, Right column: diffusion with diffu-
sivity (3.28).

Binary Diffusivity Based on Vortex Detection Presented diffusion approaches
are steered by the discriminant d of the characteristic polynomial of the Jacobian
matrix. Areas where d < 0 do not always nicely indicate an area around vortex
cores. There is also no guarantee that there is a swirling critical point present
within the swirling area. This results in seemingly random patches of flow which
are not smoothed. Figure 3.14 shows such an example. It represents another vec-
tor field saved from a 2D real-time simulation processed with nonlinear isotropic
diffusion with diffusivity (3.27). Although the swirling areas are preserved, it is
not the result one would necessarily desire as a field with emphasized vortices.

An alternative approach is to detect vortex cores, and to not blur the vector
field in areas around them. This process could also be considered a nonlinear
isotropic diffusion process with binary diffusivity steered by the location of vortex
cores i.e. with diffusivity:

g(s2) =

{
0, areas around vortex cores

1, else
. (3.29)

Vortex Preserving Diffusion and Variational Processes 44

Figure 3.15 shows the result of such process for two different area sizes. Resulting
flow fields have preserved swirling areas around the vortex cores. There are no
newly created critical points.

Figure 3.14: Nonlinear isotropic diffusion process with diffusivity (3.27) on a simulated
flow field. Swirling areas without swirling critical points remain unblurred.

Figure 3.15: Nonlinear isotropic diffusion process with diffusivity (3.29) on a simulated
flow field (same as in figure 3.14) for 50000 iterations. Upper row: smaller area sur-
rounding the vortex cores. Lower row: bigger area surrounding the vortex cores. For
better visibility, right column shows arrow plots of the vector field with increased magni-
tude. First column: color coded magnitude of the vector field. Second column: magnitude
of the vector field together with swirling critical points (red) and area surrounding them
(blue).

Vortex Preserving Diffusion and Variational Processes 45

Considering vortex region detection gives another option for defining the vor-
tex areas to be preserved. Q criterion for vortex region detection is taken as a
vortex indicator ([14], Section 4.2.1). Areas where the vorticity tensor A = J−JT

2

dominates the rate of strain tensor S = J+JT

2
are considered (J Jacobian matrix).

This is achieved by looking at the ratio of the Euclidean norm of the two matrices.
The diffusivity is then defined as:

g(s2) =

{
0, areas around points where |A|

2

|S|2 > 1

1, else
. (3.30)

Figure 3.16 shows the test vector fields processed with diffusion (3.30). In practice
an area around |A|2 > |S|2 + ε with small ε is chosen to get the preserved vortex
area (Figure 3.16, upper row).

Figure 3.16: Nonlinear isotropic diffusion process with diffusivity (3.30) on test flow
fields for 50000 iterations. Upper row: left: area where |A|2 > |S|2, middle: area where
|A|2 > |S|2 + ε, right: area surrounding |A|2 > |S|2 + ε. Second, third row: diffusion on
test flow fields. Left: original magnitude, middle: magnitude of the diffused vector field,
right: magnitude of the vector field together with swirling critical points (red) and area
surrounding them (blue). Lower row: arrow plots of the shown vector fields.

Vortex Preserving Diffusion and Variational Processes 46

3.4.2 Variational Formulation of Vortex Preserving

Discriminant Steered Energy Functional Requesting Similarity to the Origi-
nal Vector Field Variational approach that produces vector fields with preserved
swirling features is wanted. The processed data should be as similar as possible
to the initial data within the vortex areas whereas other locations within the flow
should be destroyed. For that purpose the following energy functional is used:

E(u, v) =

∫ (
H
(
(u− uorig)2 + (v − vorig)2

)
+ αΨ

(
|∇u|2 + |∇v|2

))
dxdy, (3.31)

where H is a function steering the diffusion and uorig, vorig initial vector field
components. Mathematical formulation leading to a discrete explicit scheme is
given in Appendix A.9. H needs to impose high similarity to the data within the
swirling areas and allow low similarity outside them. H is chosen as:

Hi,j =

{
−a d < 0

b d ≥ 0
, (3.32)

where a is a large value, b small value, and discriminant d = ((ux − vy)
2 +

4uyvx). H is set so to prevent smoothing within the swirling structure, and allow
smoothing elsewhere. Due to stability issues with negativeH values, the resulting
vector field components are normalized. This backward diffusion gives “edge
detection” in a flow field sense, resulting in vector fields with emphasized “critical
lines”. These lines are connecting the swirl critical point with its matching non-
swirling critical point pair (when present). The energy functional is producing
normalized vector fields which are not smoothed within the swirling areas and are
smoothed outside the swirling areas. Figure 3.17 shows the normalized vector
field on which the energy functional (3.31) is minimized. The process introduces
additional critical points at the places where “critical lines” are intersecting the
swirling area. The swirling features in output vector fields are emphasized and
visible, with the uniform magnitude.

Vortex Preserving Diffusion and Variational Processes 47

Figure 3.17: Minimization of the energy functional (3.31). Processing results of
the test vector field for 1, 2, 4, 10 iterations (left to right). Upper row: nonlin-
ear isotropic diffusion i.e. regularization only (Section 3.2). Vector fields with
emphasized critical lines are obtained. Second row: color magnitude of the min-
imization result of the normalized vector field. Third row: grayscale magnitude
and swirling critical points of the resulting fields. New critical points are intro-
duced at the places where critical lines intersect the swirling area. Lower row:
arrow plots of the resulting fields. Normalized vector fields with emphasized crit-
ical lines and preserved swirling areas are obtained.

Vortex Preserving Diffusion and Variational Processes 48

Discriminant Steered Energy Functional Requesting Similarity to the Inter-
mediate Vector Field Normalization of the vector field components produces
vector fields with emphasized swirling structures, but destroys information about
their magnitude. Requesting similarity to the intermediate vector field i.e. to the
resulting field from the previous iteration, gives a stable process and still produces
vector fields with preserved swirling areas. Non-swirling areas are blurred. Fol-
lowing energy functional is formulated:

E(u, v) =

∫
F (x, y, u, v, ux, uy, vx, vy)dxdy

=

∫ (
H
(
(u− uprev)2 + (v − vprev)2

)
+ αΨ

(
|∇u|2 + |∇v|2

))
dxdy,

(3.33)

with the sameH as in (3.31), and uprev, vprev intermediate vector field components
i.e. the result of the previous iteration. Vector field components are not normalized
thus preserving the information about the magnitude. Figure 3.18 shows the result
of the energy functional minimization. Flow field with preserved, but not strongly
emphasized swirling features is produced.

Figure 3.18: Minimization process of the energy functional (3.33) for iteration number:
500, 1000, 5000, 50000 (left to right). Upper row: color coded magnitude of the flow.
Lower row: gray scale flow magnitude with vortex cores.

Vortex Preserving Diffusion and Variational Processes 49

3.4.3 Results

Different approaches were used in order to construct a vortex preserving diffusiv-
ity in Section 3.4.1. Figures 3.19, 3.20 show the summary of the designed dif-
fusion methods. Diffusion with diffusivity (3.27) nicely clears the non-swirling
areas, but also introduces new swirling points on the boundaries of the swirling
areas. Additionally blurring non-swirling area and also small swirling area bor-
der produced vector fields with emphasized swirling features without introducing
new swirling features. Using diffusivity (3.28) gives an alternative way of pro-
ducing vector fields with preserved swirling features. Figure 3.20 shows diffusion
processed with binary diffusivities based on vortex detection. Areas around the
detected swirling critical points are preserved. Lower row of Figure 3.20 shows
the Q criterion for vortex region detection used to determine area to be preserved.
Diffusion based on vortex detection is e.g. suitable when approaches based on
detection of swirling areas preserve patches without vortices (Figure 3.15).

Variational methods for preserving swirling features are presented in Section
3.4.2. Figure 3.21 shows the summary of the designed variational methods. Vec-
tor fields produced by the discriminant steered energy functional (3.31) where
vector field components are normalized after each step, have emphasized swirling
areas and uniform magnitude. Additional critical points are, however, introduced
at places where “critical lines” are intersecting the swirling area. Energy func-
tional (3.33) produces vector fields with unchanged swirling areas and blurred
surroundings without destroying the magnitude of the flow or introducing new
critical points. Resulting flow fields are similar to the diffusion with diffusivity
(3.28). It is possible to consider other criteria for defining the function H , such as
vortex core or region detection used to determine the preserved areas in Section
3.4.1 “Binary Diffusivity Based on Vortex Detection”. Figure 3.22 shows a test
vector field processed with the same energy functional (3.31), but using different
H functions. FunctionH based on discriminant d preserves swirling areas regard-
less of them containing a vortex or not, whereas function H based on vortex core
detection preserves only areas around vortices.

Further work includes investigation of the optimal parameters for the diffusion
and diffusion-reaction processes. Fast 3D algorithms shall also be researched.

Vortex Preserving Diffusion and Variational Processes 50

Figure 3.19: Vortex preserving diffusion processes based on discriminant d. Upper,
fourth row: color coded magnitude of the vector fields. Second, fifth row: magnitude of
the vector fields together with swirling critical points. Third, sixth row: arrow plot of the
corresponding vector fields above. First column (left): original test vector fields. Second
column: vector fields diffused by nonlinear isotropic diffusion using diffusivity (3.27).
Third column: vector fields diffused using diffusivity (3.27) and additionally blurred in the
edge areas of swirling structures. Last column (right): vector fields diffused by nonlinear
isotropic diffusion using diffusivity (3.28).

Vortex Preserving Diffusion and Variational Processes 51

Figure 3.20: Vortex preserving diffusion processes based on vortex core (upper row) or
vortex region (lower row) detection. Upper row: vector fields diffused using diffusivity
(3.29). Lower row: vector fields diffused using diffusivity (3.30).

Figure 3.21: Vortex preserving diffusion-reaction (variational) processes based on dis-
criminant d. Upper row: color coded magnitude of the vector field. Second row: mag-
nitude of the vector field together with swirling critical points. Lower row: arrow plot
of the corresponding vector field above. First column (left): original test vector field.
Second column: vector field processed by discriminant steered energy functional (3.31)
with normalized vector field components. Last column (right): vector field processed by
discriminant steered energy functional (3.33).

Vortex Preserving Diffusion and Variational Processes 52

Figure 3.22: Vortex preserving diffusion-reaction (variational) processes based on dis-
criminant d (rows two and three) or vortex core (lower two rows) detection. Minimization
of the energy functional (3.31) on a simulated vector field shown in the first row (from
Figure 3.14) for 1, 2, 4, 10 iterations (rows two to five, left to right). Second, Third
row: color magnitude and arrow plots of the resulting fields from the diffusion-reaction
process (3.31) based on discriminant d. Swirling patches without critical points are pre-
served. Fourth, lower row: color magnitude and arrow plots of the resulting fields from
the diffusion-reaction process (3.31) based on vortex core detection. Only areas around
the detected vortices are preserved.

Chapter 4

Real-Time Vortex Extraction

4.1 Introduction

This chapter will present vortex detection and extraction methods performing
within the real-time simulation. As with the development of modern hardware
the computing power is continuously growing, it will eventually be possible to
observe or even simulate very high precision time dependent fluid flows in real-
time. Feasible fluid simulation is presented in Section 2.2.2. Many tools for vor-
tex extraction from stationary and time-dependent flow data have been developed.
They all operate as a post-processing step for locating vortex regions/cores. Vor-
tex detection methods that operate directly in real-time are presented here. Various
vortex detection methods are encoded within the real-time simulation from Sec-
tion 2.2.2. Following vortex region and vortex core detection methods are imple-
mented: vorticity threshold, Q criterion, λ2 criterion, the eigenvector method via
parallel vectors operator (PVO) and the eigenvector method via coplanar vectors
operator (CVO).

Diffusion and diffusion-reaction processes that preserve swirling features are
presented in Chapter 3. They operate on 2D flow fields (although a straight-
forward formulation for 3D is possible) and are solved using iterative methods.
Here, it is shown how a nonlinear isotropic diffusion presented in Section 3.4.1
can be used as a replacement for the diffusion step of the fluid simulation.
Resulting flows have slightly emphasized swirling areas.

53

Introduction 54

Advantage of presented real-time methods is immediate notion of the shape
and location of the vortex structure. Unlike with the iterative diffusion processes,
the result is immediately visible, without the time delay. Using this real-time
approach on not only simulated, but also real world data is planned as future work.
Enhancing the flow simulation by implementing different specially designed
diffusion and diffusion-reaction processes within the simulation is also planned.

Section 4.2 gives a short overview of the vortex extraction methods. They
can be roughly divided into vortex region and vortex core extraction methods.
Common region extraction methods are presented in Section 4.2.1: vorticity
threshold, Q criterion and λ2 criterion. Vortex core extraction methods are
presented in Section 4.2.2. Previous work done on minimal bending energy
vortex extraction is given in Section 4.2.2.1. The eigenvector method presented
in Section 4.2.2.2 is the predecessor method of the parallel vectors operator
(PVO) explaining the logic behind its design. Section 4.2.2.3 explains the parallel
vectors operator (PVO) method used as a testing method for stationary 3D
vector fields in Section 4.3. Feature flow fields (Section 4.2.2.4) are needed for
formulation of the coplanar vectors operator (CVO) (Section 4.2.2.5) which can
be reduced to a PVO formulation (Section 4.2.2.5).

Section 4.3 shows a GPU implementation of the parallel vectors operator for
stationary flow data. OpenCL is used as the programming tool. Vortex cores
are successfully detected using the implemented algorithm (Section 4.3.1). By
decreasing the number of considered triangles within a cell, the method perfor-
mance can be speeded up. The higher order PVO method is especially successful
with curved vortex cores. Stationary PVO method is used as a check-up tool for
the real-time vortex extraction. Real-time simulation can be paused and stationary
flow fields obtained. In order to verify results from real-time simulation, vortices
are extracted from such stationary fields and comparison is preformed between
stationary and real-time extraction methods.

Overview of the Vortex Extraction Methods 55

Section 4.4 introduces a vortex core/region extraction within a real-time fluid
simulation. The methods are implemented using a GPU with CUDA as a program-
ming environment. The simulation is interactively influenced by the user who is
able to input additional force into the flow field in real-time (Section 2.2.2). Real-
time simulation is “stirred” by the user using, for example, circular movements
with the mouse which are inputing a force into the first slice of the simulation
which then spreads through the volume. That way, a helical-like flow field is ob-
tained, suitable for testing purposes. The results of the real-time extraction are
color coded within the arrow or within the density plot of the real-time simula-
tion. The vortex structures appear at the expected locations. By intelligent color
coding different methods can be compared in real-time.

4.2 Overview of the Vortex Extraction Methods

Vortex is usually defined implicitly through the definition of the extraction
method. The methods of detecting and localizing vortices differ in localizing
vortex regions or vortex centers or cores. Most common method for determining
the vortex region is the λ2 method ([17]), while the eigenvector method ([47]) is
the standard for vortex core extraction.

4.2.1 Vortex Region Extraction

Figure 4.1: Vortex region extraction. Horseshoe vortex region ([6]) extracted by
the λ2 method ([17]).

Overview of the Vortex Extraction Methods 56

4.2.1.1 Vorticity Threshold

The simplest region based extraction is thresholding. Vorticity∇× v is used as a
thresholding value. A threshold is set on vorticity values. Area of high vorticity is
considered to be the vortex region. Another option is putting threshold on helicity
(∇× v) · v (projection of vorticity onto the flow vector). A potential vortex is a
contra-example for these definitions. Alternative approach is using pressure as a
thresholding value.

4.2.1.2 Q Criterion (Okubo-Weiss)

In ([14]) Jacobian matrix J is decomposed into symmetric part S (the rate-of-
strain tensor that measures the amount of stretching and folding):

S =
J + JT

2
, (4.1)

and antisymmetric part A (the vorticity tensor):

A =
J − JT

2
, (4.2)

the Q-criterion can be expressed as:

Q =
|A|2 − |S|2

2
> 0, (4.3)

i.e. the vortex is defined as a spatial region where the Euclidean norm of the
vorticity tensor dominates that of the rate of strain ([11]).

4.2.1.3 λ2 Method (Jeong-Hussain)

In ([17]) Jacobian matrix J is decomposed into symmetric part S and antisymmet-
ric part A. The vortex region is region where at least two of the three eigenvalues
of the S2 + A2 matrix are negative i.e.:

λ2(S2 + A2) < 0, (4.4)

Overview of the Vortex Extraction Methods 57

where λ2(X) is the intermediate eigenvalue of a symmetric tensor X (Figure
4.1(a)).

4.2.2 Vortex Core Extraction

4.2.2.1 Minimal Bending Energy Method

Minimal bending energy vortex extraction is based on detecting the streamlines
with minimal bending energy which are then considered to be candidates for vor-
tex cores ([7]).

Figure 4.2: The center curve (red) has the minimal bending energy, purple curves higher
and blue curves the highest bending energy.

Bending energy stored in a thin beam is proportional to the integral of the
square of the curvature

∫
k2ds, where k is curvature and s arc length ([5], [13],

[26]). A discrete version of the energy is then:

B =
∑

k2d, (4.5)

where d is the distance between two consecutive polyline points of the curve ap-
proximation, and

k =
|ẋ× ẍ|
|ẋ|3

, (4.6)

is curvature where:

ẋ = v(x, y, z) =

 u(x, y, z)

v(x, y, z)

w(x, y, z)

 , (4.7)

ẍ = Jv ẋ = a(x, y, z) =

 ux uy uz

vx vy vz

wx wy wz

 u(x, y, z)

v(x, y, z)

w(x, y, z)

 . (4.8)

Overview of the Vortex Extraction Methods 58

(a) (b) (c)

Figure 4.3: Interactive probe is set within a data set. From seed points on the
chosen plane, bending energy values are accumulated on a plane. (a) Interactive
plane probe can be manipulated within the volume. Curvature values are denoted
by size and color of the seed points (spheres), (b), (c) Bending energy can be
accumulated at chosen plane (here, in a helical flow field). Values of the bending
energy are color coded on the plane (interpolated in-between seed points).

Using the minimal bending energy ensures that the integral curve, with the least
energy invested in its bending, is chosen as a candidate vortex core (Figure 4.2).

An interactive plane is placed by the user within the data set volume. Stream-
lines are integrated from seed points on the plane. The values of the bending
energy are accumulated into the seed points (Figure 4.3). The plane is subdivided
in order to find the seed points with minimal bending energy. From the point/s
with minimal bending energy streamline is integrated as vortex core (Figure 4.4).
Optimal length of the vortex core is automatically determined by considering
sudden value changes of bending energy along the curve (Figure 4.5).

The consequence of an integration based approach is that the method makes
no assumptions about the shape of the vortex and thus has no problems with e.g.
extracting bent vortex cores (Figure 4.6). The method produces (if desired) a
single vortex core, making the post processing, in order to get rid of the many de-
tected false, short vortex core segments, unnecessary. Utilizing pathlines enables
the method to deal with the 2D time-dependent data by considering both time and
space on equal terms (Figure 4.7(b)).

Overview of the Vortex Extraction Methods 59

(a) (b) (c)

Figure 4.4: Minimal bending energy extraction of the vortex core from a heli-
cal flow field. (a) Subdivision is performed on the plane (different subdivision
schemes possible), (b) The point/s with the minimal bending energy are chosen as
seed point/s for vortex core line candidates to be integrated from these points as
integral curves (streamlines/pathlines). (c) Additionally, only the streamlines that
can be integrated to full length can be considered

(a) (b)

Figure 4.5: Optimal length of the vortex core candidate is determined by consid-
ering the bending energy values along the integral curve (e.g. for sudden jumps).
(a) helical vortex core breakdown data, (b) dislocated helical vortex core.

Overview of the Vortex Extraction Methods 60

(a) (b) (c)

Figure 4.6: (a), (b) extraction of the circular vortex core from a bent helix set, (c) extrac-
tion of the vortex core from a vortex rotating in a plane perpendicular neither to its core,
nor to the vorticity

(a) (b) (c)

Figure 4.7: (a) Vortex core of the hurricane Isabel data set (b) 2D time dependent data
of a simulated cavity flow. Core extraction is performed in a pathline version of the data,
while streamlines are depicting the flow (blue ribbons). (c) Vortex cores extracted from a
finite elements simulation of a flow behind a cylinder.

Overview of the Vortex Extraction Methods 61

Figure 4.8: Vortex cores (yellow) extracted by the eigenvector method ([47]).

4.2.2.2 Sujudi-Haimes Method (Eigenvector Method)

The algorithm of Sujudi and Haimes, also known as the eigenvector method
([47]), is based on using the only real eigenvalue of Jacobian matrix to determine
vortex segments. The flow field domain is decomposed into tetrahedra and within
each tetrahedron a linear vortex segment is searched for.

The method was designed by generalizing the flow pattern around the focus
saddle critical point to all flow points. Namely, [33] showed that if there is a
critical point on a vortex core, than that point is a focus saddle. Globus [8] used
this fact to search for vortex cores by locating focus saddles and extracting cores
by integrating streamlines in the direction of the only real eigenvector for that
critical point. When a swirling motion is present in 3D, a Jacobian matrix has
two conjugate complex eigenvalues and one real eigenvalue. A matching vector
is referred to as the real eigenvector.

Using the facts above, Sujudi and Haimes designed reduced velocities which
are a projection of the velocity vector (flow vector) to the plane normal to the only
eigenvector with the real eigenvalue (Figure 4.9). Requiring for such projection to
be zero is equivalent to requiring for the flow vector to be parallel to eigenvector
with the real eigenvalue. This fact was used when designing the Parallel Vectors
Operator.

The results of the eigenvector method are shown in Figure 4.8. Many short

Overview of the Vortex Extraction Methods 62

Figure 4.9: Extraction of the linear vortex core segment within a single tetra-
hedron using the eigenvector method (left to right). Reduced velocities (green
arrows) are a projection of the velocities (blue arrows) to a plane perpendicular
to the only “real eigenvector” (red arrows). By locating the zeros of the reduced
velocity on sides of the tetrahedron, the vortex segment (red line) can be located.

false vortex segments are detected.

4.2.2.3 Parallel Vectors Operator

The Parallel Vectors operator (PVO) by Peikert and Roth ([31]) is a tool for extrac-
tion of features from vector fields. It generalizes some of the previously designed
vortex extraction methods e.g. the eigenvector method. The parallel vectors oper-
ator for two n-dimensional vector fields v and w denoted as v ‖ w is defined as
the set:

S = {x : v(x) = 0} ∪ {x : ∃λ,w(x) = λv(x)} (4.9)

of all locations where either the two vectors have the same direction or one of
them is zero. For 2D or 3D vector fields the set S can be written as:

S = {x : v(x)× w(x) = 0}. (4.10)

Some vortex core detection methods can be reformulated using the concept of
parallel vector fields.

Overview of the Vortex Extraction Methods 63

One of the “standard” vortex extraction method, the eigenvector or Su-
judi/Haimes method ([47]) can be obtained by taking Jv as second vector field
i.e. by considering the parallelity v and Jv. The method can be formulated as
following. If v considered to be an eigenvector of Jacobian J :

Jv = λv, (4.11)

then, considering parallel vectors operator, that formulation is equivalent to:

v ‖ Jv. (4.12)

Connection between the eigenvector method and the PVO formulation (4.12) is
as follows. In the eigenvector method, reduced velocity r(x) at a point x is a
projection of the steady flow field v(x) to the plane normal to the real eigenvector
e(x):

r(x) = v(x)− (v(x) · e(x))e(x). (4.13)

Places where r(x) = 0 are vortex cores. PVO is equivalently stating that the
locations of the core are at the position where the vector field is parallel to the
only real eigenvector of the Jacobian (Figure 4.10): v(x) ‖ e(x).

Figure 4.10: Reduced velocity r(x) (green) is a projection of the velocity v(x) (blue) to
a plane perpendicular to the only “real eigenvector” e(x) (red). Left: r(x) 6= 0, Right:
r(x) = 0 i.e. v(x) ‖ e(x).

Further interpretation of the parallel vectors operator indicates a similar logic be-
hind the bending energy method and the PVO. v ‖ Jv can be rewritten as:

v ‖ (∇v)v, (4.14)

Overview of the Vortex Extraction Methods 64

then further rewritten as:
v ‖ a. (4.15)

The acceleration a of a particle is parallel to its velocity v, so the streamline
through a point on the core has zero curvature at that point. The location of all
points where the streamlines have zero curvature can than be defined as the loci
of zero curvature and expressed in the same manner as the eigenvector method,
as equation (4.14).

Depending on the choice of the second vector field, different methods can
be implemented simply by testing the parallelity between the input vector field
and the second chosen vector field derived from the input field. Encoding torsion
(∇a)v gives a higher order vortex core detection ([30]) that detects loci of zero
torsion. The second derivative following a particle in a flow field is (∇a)v. The
parallel vector formulation of the method is:

v ‖ (∇a)v. (4.16)

4.2.2.4 Feature Flow Fields

Feature flow fields [49] are vector fields modeled in way that a simple integration
gives the wanted features. Formulations for tracking critical points and vortices
in 2D/3D are given here. They are needed for formulation of the coplanar vectors
operator (CVO) in Section 4.2.2.5.

Tracking of Critical Points in 2D Unsteady Vector Fields If v(x, y, t) =

(u(x, y, t), v(x, y, t))T = (vx, vy, vt) is a 2D unsteady vector field, the feature
flow field for tracking the critical points is constructed as:

f(x, y, t) = grad(u)× grad(v) =

 det(vy,vt)

det(vt,vx)

det(vx,vy)

 . (4.17)

Tracking of Vortex Cores in 3D Unsteady Vector Fields If v(x, y, z, t) is a
3D unsteady vector field, and v2(x, y, z, t) the vector field constructed from v

Overview of the Vortex Extraction Methods 65

for applying the PVO, then the feature flow field for extracting the vortex core is
constructed as:

f(x, y, z, t) =

+det(wy,wz,wt)

−det(wz,wt,wx)

+det(wt,wx,wy)

−det(wx,wy,wz)

 , (4.18)

where w = v × v2 = (wx,wy,wz,wt).

4.2.2.5 Coplanar Vectors Operator

Coplanar vectors operator (CVO) is a generalization of the PVO to the 3D un-
steady case ([55]). CVO for 3D unsteady case can be formulated as a 3D PVO
problem which makes the implementation straightforward. In order to obtain a
formulation for 3D unsteady vector fields, a formulation for 2D unsteady case is
first given.

2D Unsteady Path lines of 2D unsteady flow fields v(x, y, t) are stream lines of
the following 3D vector field:

p(x, y, t) =

(
v(x, y, t)

1

)
=

 u(x, y, t)

v(x, y, t)

1

 . (4.19)

Jacobian matrix of the vector field p is of the form:

J(p) =

 ux uy ut

vx vy vt

0 0 0

 , (4.20)

with eigenvalues e1, e2, 0 and matching eigenvectors:(
e1

0

)
,

(
e2

0

)
, f , (4.21)

Overview of the Vortex Extraction Methods 66

where e1, e2 are the eigenvectors of the spatial Jacobian and vector field f is of
the form (4.17). Field f is designed so that the values of v do not change along
the stream lines of f i.e. the directional derivative of field v in direction of field
f is zero. Therefore J(v) · f = 0 and therefore J(p) · f = 0 · f . Field f is an
eigenvector of J(p) with eigenvalue 0.

3D Unsteady Path lines of 3D unsteady flow field v(x, y, z, t) are stream lines
of the following 4D vector field:

p(x, y, z, t) =

(
v(x, y, z, t)

1

)
=

u(x, y, z, t)

v(x, y, z, t)

w(x, y, z, t)

1

 . (4.22)

Jacobian matrix of the vector field p is of the form:

J(p) =

ux uy uz ut

vx vy vz vt

wx wy wz wt

0 0 0 0

 , (4.23)

with eigenvalues e1, e2, e3, 0 and matching eigenvectors:(
e1

0

)
,

(
e2

0

)
,

(
e3

0

)
, f , (4.24)

where e1, e2, e3 are the eigenvectors of the spatial Jacobian and f is a 4D feature
flow field for tracking critical points in 3D unsteady vector fields (4.18):

f(x, y, z, t) =

+det(vy,vz,vt)

−det(vz,vt,vx)
+det(vt,vx,vy)

−det(vx,vy,vz)

 . (4.25)

Overview of the Vortex Extraction Methods 67

The eigenvalue corresponding to field f is zero. Therefore one of the remaining
eigenvalues is real and other two are either real or a pair of conjugated complex
values. Swirling motion is present only when eigenvalues are conjugated complex.
The two real eigenvectors f and eS span a plane in which no swirling occurs. The
cores of swirling motion are at the positions where 4D vectors f , eS and p are
coplanar i.e. the point x lies on a core if the flow vector p(x) lies in a plane of
non-swirling flow i.e:

λ1p + λ2e
S + λ3f = 0,

∑
λ2
i > 0 (4.26)

i.e, it is necessary to have three linearly dependent 4D vectors.

Formulation Of Coplanar Vectors Operator By Using Parallel Vectors Oper-
ator Coplanar vectors operator for 3D unsteady flow can be formulated as a 3D
PVO problem. This makes the implementation straightforward. Expanding (4.26)
reads:

λ1

u

v

w

1

+ λ2

eS1

eS2

eS3

0

+ λ3

f1

f2

f3

f4

 = 0. (4.27)

By setting λ1 = −λ3f4 the equation reformulates to:

λ2

 eS1

eS2

eS3

+ λ3

 f1

f2

f3

− f4

 u

v

w

 = 0, (4.28)

which is a 3D parallel vectors problem, with the two vector fields:

v1 =

 eS1

eS2

eS3

 , v2 =

 f1

f2

f3

− f4

 u

v

w

 . (4.29)

Applying PVO on 3D unsteady data produces a line sweeping over time i.e. a
surface.

Stationary Flow Parallel Vectors Operator on the GPU 68

4.3 Stationary Flow Parallel Vectors Operator on
the GPU

Parallel vectors operator vortex extraction method ([31]) for stationary vector
fields is implemented on the GPU using OpenCL. Eigenvector ([47]) method
and higher order method ([30]) via PVO are used to extract vortex cores from
different analytical and simulated flow fields.

The algorithm proceeds as follows. Data domain, consisting of structured
cells, is divided into triangles. Each cell space is covered by a number of strate-
gically placed triangles. By considering different number of space covering el-
ements i.e. triangles, computation can be speeded up. Using only 3 outer sides
gives good results and decreases the number of triangles considered per cell. The
goal of the algorithm is to find vortex core points within the cells. This is to be
achieved by finding out where the two considered vector fields are parallel i.e. by
finding zeros of the cross product of the two vector fields on every triangle within
the cell. More detail on input data, the algorithm, implementation and covering of
the cell with triangles will be given in the text to follow.

Algorithm Detail Input data for the algorithm is of the following form. As
input, the algorithm requires a structured set of points and two sets of vectors
which are going to be checked for parallelity. Second set of vectors is usually
derived from the first set, either by using a separate program or within the
real-time simulation (Section 4.4.2.4). Input data is a structured grid of the
following form:

xdim ydim zdim

xmin xmax ymin ymax zmin zmax

x y z u v w u2 v2 w2
...
x y z u v w u2 v2 w2

where xdim, ydim, zdim are the dimension of the data in x, y, z direction

Stationary Flow Parallel Vectors Operator on the GPU 69

(the number of points N is given, spanning N − 1 cells), [xmin, xmax],
[ymin, ymax], [zmin, zmax] is the data domain, x, y, z point coordinates, u, v,
w values of the first vector field and u2, v2, w2 values of the second vector field.
The point coordinates x, y, z are given or calculated from data dimensions and
data range.

The PVO algorithm for the eigenvector method (Section 4.2.2.3) proceeds
as follows. First, the second vector field has to be produced. For every
point (x, y, z) of the data, next to the already present vector field v(x, y, z) =

(u(x, y, z) v(x, y, z) w(x, y, z))T , a new vector field is calculated. Since the
method to be implemented is the eigenvector method, the second set of vectors
equals Jv = v2(x, y, z) = (u2(x, y, z) v2(x, y, z) w2(x, y, z))T , where J is
the Jacobian matrix in a point. Partial derivatives for the Jacobian matrix (with
(x, y, z) omitted in the notation):

Jv = ∇v =

 ux uy uz

vx vy vz

wx wy wz

 (4.30)

are approximated from the surrounding grid points (Appendix A.1). After
multiplication of the each matrix with the matching vector, obtained vector field
is encoded into the data file. For higher order method vortex extraction ([30]) the
second vector field is (∇(Jv))v = (∇a)v.

After the data file is complete, the vortex core calculation can commence.
Zeros of the cross product of the two vector fields are determined on each avail-
able face within the data. Starting in the center of each triangle, a number of 2D
Newton-Raphson steps are performed. Vector c = v × v2 is minimized on every
triangle. Partial derivatives of the cross product with respect to 2 axes ξ1, ξ2 (the
2D triangle coordinate system) are calculated:

∂c

∂ξi
=
∂v

∂ξi
× v2 + v × ∂v2

∂ξi
, (4.31)

Stationary Flow Parallel Vectors Operator on the GPU 70

thus obtaining the 3× 2 matrix Jc. In order to obtain the “correction” vector ∆ξi

the system
Jc∆ξi = −c (4.32)

needs to be solved. Since this is an overdetermined system least square solution
is used and system:

∆ξi =
(
Jc

TJc

)−1 (−Jc
Tc
)

(4.33)

is solved to obtain the correction vector ∆ξi on the triangle face. After a certain
number of iterations on the triangle the zero point (if found) is stored as a part of
the vortex core. Optionally, the zeros within the tetrahedron can be connected in
order to form a vortex core segment.

The parallel vectors operator is implemented on the GPU using OpenCL/C++
([28]). The key feature of the problems being implemented on GPUs are the paral-
lelization possibilities, i.e. the ability to divide the problem into many independent
problems, all requiring same calculation. The loaded data is padded with zeros to
achieve coalescent reads from memory.

Choosing a Number of Tetrahedrons Cells within the data are divided into
tetrahedra i.e. into triangles. On each triangle an iterative algorithm attempts to
find a zero of a PVO operator i.e. a point belonging to a vortex core. The cell/box
can be uniformly divided into 5, 6 or 12 tetrahedra (Figure 4.11). Better coverage

Figure 4.11: A cell can be uniformly divided into 5, 6, or 12 tetrahedrons.

of space gives more precise results. Using less tetrahedrons i.e. triangles speeds
up the calculation. Since the implementation does not connect the zeros found on
the faces of a tetrahedron, single points are obtained as output. This allows basing
the calculation on triangles as calculation units instead on tetrahedrons.

Stationary Flow Parallel Vectors Operator on the GPU 71

Versions of the algorithm using different parts of cell structure were tested
(Table 4.1). The table shows the number of triangles which have to be processed
by the algorithm per data cell. The number of triangles depends on the way the
cell space was covered. The tests were made by using outer sides of the cell only
or by using the division of the cell to 5 and 6 tetrahedra. Using 3 outer sides plus
inner sides, or even using only 3 outer sides gives satisfactory results.

No. Structures used within the cell number of triangles
in the used structure

1. 3 outer sides of the cell 6
2. 6 outer sides of the cell 12

3. 5 tetrahedra (all sides) 20
4. 5 tetrahedra (unique sides only) 16
5. inner sides (cell divided to 5 tetrahedra) 4
6. 3 outer sides + 4 inner triangles (5 tetrahedra) 10

7. 6 tetrahedra (all sides) 24
8. 6 tetrahedra (unique sides only) 18
9. inner sides (cell divided to 6 tetrahedra) 6

10. 3 outer sides + 6 inner triangles (6 tetrahedra) 12

Table 4.1: Number of triangles to be processed by the algorithm depends on the
choice of the underlaying structure of the cell used for calculation. Table shows
different configurations which were tested. Configuration 1 and 2 use only the
outer sides of the cells and are independent of the division of the cell to tetrahedra.
Configurations 3-6 use the division of the cell to 5 tetrahedra, and configurations
7-10 division to 6 tetrahedra.

Tables 4.2 and 4.3 show the resulting images of the vortex extraction on the
helical and bent helical flow field using different space coverage setup. Figure
4.12 shows the close-up view of the vortex core extracted from the helical field.
Configurations 8, 10 and 1 are shown in the images, processing consecutively 18,
12 and 6 triangles. Using only 3 outer neighboring sides of the cell yielded good
results with analytical examples. This also ensures that no double calculation is
performed between neighboring cells, since the neighbor cells will perform the
calculation on the remaining sides.

Stationary Flow Parallel Vectors Operator on the GPU 72

configuration 8
(18 triangles)

configuration 10
(12 triangles)

configuration 1
(6 triangles)

Table 4.2: Vortex core extraction from helical flow field using the eigenvector method via
PVO. The algorithm is processing different numbers of triangles per cells. The left table
column shows the used configuration from Table 4.1. Middle column shows the side view
and right column the frontal view of the helical flow field with vortex core denoted by red
spheres. All configurations give the expected vortex core as output. Slight differences in
the extracted vortex core are shown in Figure 4.12.

Figure 4.12: A close up view of the vortex cores extracted from the helical flow field
by using a PVO algorithm with different cell coverage (Table 4.1). Left: extraction by
using configuration 8 gives triple row of spheres in the core. Middle: extraction by using
configuration 10 gives a double row of spheres in the core. Right: extraction by using
configuration 1 gives a single row of spheres in the core.

Stationary Flow Parallel Vectors Operator on the GPU 73

configuration 8
(18 triangles)

configuration 10
(12 triangles)

configuration 1
(6 triangles)

Table 4.3: Vortex core extraction from bent helix flow using the eigenvector method via
PVO. The algorithm is processing different numbers of triangles per cells. The left table
column shows the used configuration from Table 4.1. Middle column shows the top view
and right column the side view of the bent helical flow field with vortex core denoted
by red spheres. All configurations give the expected vortex core as output. Configura-
tions with more triangles give a denser vortex core, while configurations with low triangle
number used per cell give a sparser core. Note that the algorithm with configuration 1 still
gives a good vortex extraction result although only 3 outer triangles are used per cell. A
close-up of differences in the extracted vortex core are shown in Figure 4.13.

Figure 4.13: A close up view of the vortex cores extracted from the bent helical flow
field by using a PVO algorithm with different cell coverage (Table 4.1). Right: extraction
by using configuration 1 gives a sparser core, but it is still a good approximation.

Stationary Flow Parallel Vectors Operator on the GPU 74

4.3.1 Results

Figure 4.14 shows the results of the eigenvector method via PVO for different
analytical flow fields. Obtained results, where vortex core points are denoted by
red spheres, are at the expected locations and are noiseless. Visualizations were
made using the ParaView scientific visualization application ([29]).

(a) (b)

(c) (d)

(e)

Figure 4.14: Vortex core extraction using eigenvector method via PVO imple-
mented in OpenCL. (a) helical flow, (b) bent helix, (c) helical vortex breakdown,
(d) vortex rotating in a plane perpendicular neither to its core, not to the vorticity,
(e), (f) dislocated helical vortex.

Stationary Flow Parallel Vectors Operator on the GPU 75

Figure 4.15 shows the vortex extraction results for simulated flow fields. The
central core structure is nicely visible (especially when rotating the result in 3D is
possible). Results show noise typical for eigenvector method. Figure 4.16 shows
the results of the higher order method via PVO. Curved vortex cores are more
correctly detected using the higher order method.

(a) (b)

(c) (d)

Figure 4.15: Vortex cores extracted from simulated flow data using eigenvector
method via PVO. Left column and right column represent two data sets from dif-
ferent views. The data sets are two paused real-time simulation instances. When
observing the data in 3D central structures are nicely visible (denoted red). First
data set is a fairly straight core (green streamlines), second is curved and branches
into several structures (blue streamlines). Presence of noise is characteristic for
eigenvector method.

Real-Time Flow Vortex Extraction on the GPU 76

(a) (b)

Figure 4.16: Vortex cores extracted using the higher order method ([30]) i.e. in-
stead of locating zero curvature, zero torsion is located. (a) Bent vortex exam-
ple. Purple points are extracted by the eigenvector method. Red points by the
higher order method. Here it is visible how eigenvector method has problems
with curved vortices which are overcomed by using higher derivatives. (b) Higher
order method on a simulated data (center points are roughly denoted in magenta).

4.4 Real-Time Flow Vortex Extraction on the GPU

Vortex extraction methods are integrated into the real-time fluid simulation (Sec-
tion 2.2.2, [46]). Methods implemented are the eigenvector method via PVO,
eigenvector method via CVO, and also vortex region methods: threshold on vor-
ticity, Q criterion, λ2 criterion. Figure 4.17 shows the real-time implementation.
Quasi-volume rendering and arrow plots (without the arrow head) are used for
visualization of the result. The result is color coded within the simulation, allow-
ing instant visualization of vortex structures and comparison of different methods.
Area where the measured quantities are zero are color coded as black or white,
depending on the background color. The best visibility is achieved when the sim-
ulation volume is directly rotated in 3D.

Real-Time Flow Vortex Extraction on the GPU 77

(a) (b) (c)

(d) (e) (f)

Figure 4.17: Real-time simulation is used to directly indicate a vortex region/core
within the data volume while running a real-time simulation. Both arrow plots
(without the arrow head) and quasi-volume rendering will be used, as alternating
different techniques offers additional visibility. Upper row shows volume render-
ing with different quantities color coded within the simulation. Comparing two
quantities is then easy, since a mixture of two colors can easily be interpreted.
For example, image (b) shows a region of a swirling motion (discriminant less
than zero) encoded blue, and a vortex core encoded red. Intersection of the two
quantities appears purple (the center structure in the image is purple, as are some
artifact border areas). Comparing more than two quantities is possible, but visual
interpretation is then difficult (c). Lower row shows arrow plots of flow fields
with different quantities encoded as line (arrow) color (using either continuous or
thresholded color scaling).

Real-Time Flow Vortex Extraction on the GPU 78

4.4.1 Simulation Enhancement Through Nonlinear Isotropic
Diffusion

Flow simulation is implemented using an approach presented in Section 2.2.2
from [46]. Details are presented in subsection 2.2.2.2 and present four steps
which are continuously iterated in order to obtain the simulation: force input,
diffusion, advection and projection. Diffusion serves as a smoothing and also as
a transfer mechanism. In order to obtain a stable simulation, instead of doing a
forward diffusion, the values for which backward diffusion gives the initial state
are searched for (Appendix A.4).

Linear diffusion step is replaced with the nonlinear isotropic diffusion pre-
sented in Section 3.4.1 where binary diffusivity (3.27) is used in order to empha-
size the swirling areas. The diffusion from Section 3.4.1 is an iterative process
operating on 2D vector fields. Here, the same diffusion is applied to 3D time-
dependent fields. In order to maintain the real-time execution, only one iteration
is preformed per simulation step. Backward nonlinear isotropic diffusion is used
to keep the simulation stable (Appendix A.6). Figure 4.18 shows the resulting flow
simulation which exhibits slightly emphasized swirling structures when compared
to the regular simulation.

Figure 4.18: Left, Middle: side and top view of the arrow plot of the fluid simulation us-
ing linear diffusion. Right: top view of the simulation using nonlinear isotropic diffusion
with diffusivity (3.27) shows a slightly emphasized swirling structure.

The standard simulation (with linear diffusion) shall be used throughout the
rest of this chapter, since the vortex extraction methods, unlike the approach pre-
sented here, do not aim to change the flow simulation itself.

Real-Time Flow Vortex Extraction on the GPU 79

4.4.2 Implementation of Vortex Detection Methods

4.4.2.1 Vorticity Threshold

Magnitude of the vorticity vector:

∇×

 u

v

w

 =

 wy − vz
uz − wx
vx − uy

 (4.34)

is used to color code the vortex region within a real-time simulation (Figure 4.20).

4.4.2.2 Q Criterion

Q criterion ([14]):

Q =
|A|2 − |S|2

2
> 0, (4.35)

where A = J−JT
2

, S = J+JT

2
, J Jacobian matrix, is used as a indicator of a vortex

region (Figure 4.21). Euclidean norm of a matrix is the largest singular value of
the matrix.

4.4.2.3 λ2 Criterion

λ2 Criterion ([17]), i.e. the region where at least two eigenvalues of (S2 +A2) are
negative:

λ2(S2 + A2) < 0 (4.36)

is used as a indicator of a vortex region (Figure 4.22). Q criterion and λ2 criterion
are compared in Figure 4.23.

4.4.2.4 Parallel Vectors Operator

Parallel vectors operator for stationary 3D fields is used to indicate vortex
cores/regions. PVO for 3D stationary vector fields can be expressed as: u

v

w

×
 ux uy ut

vx vy vt

wx wy wt

 u

v

w

 =

 0

0

0

 , (4.37)

Real-Time Flow Vortex Extraction on the GPU 80

left hand side giving the vector: (wxu+ wyv + wzw)v − (vxu+ vyv + vzw)w

(uxu+ uyv + uzw)w − (wxu+ wyv + wzw)u

(vxu+ vyv + vzw)u− (uxu+ uyv + uzw)v

 =

 a

b

c

 . (4.38)

The elements of the obtained 3D vectors are summed up within the simulation
implementation. If the sum a + b + c is very small (less than a small threshold),
the area is encoded with color (Figures 4.24, 4.25). PVO and Q criterion are
compared in Figure 4.26, PVO and λ2 criterion in Figure 4.27.

4.4.2.5 Coplanar Vectors Operator

Coplanar vectors operator (Section 4.2.2.5) is used for vortex extraction from 3D
unsteady flow fields. As seen in Section 4.2.2.5, it can be formulated via parallel
vectors operator. This, in practice, means that the two vector fields to be checked
for parallellity need to be defined. From Section 4.2.2.5 these two fields are:

v1(x) = e(x) =

 e1

e2

e3

 , v2(x) =

 f1

f2

f3

− f4

 u

v

w

 , (4.39)

where e(x) is the only “real eigenvector” of the Jacobian matrix, (u, v, w)T is the
original vector field and (f1, f2, f3, f4)T feature flow field (Section 4.2.2.4). The
cross product of the two vector fields is calculated: e1

e2

e3

×
 f1 − f4u

f2 − f4v

f3 − f4w

 =

 a

b

c

 . (4.40)

The obtained components of 3D vectors are again summed up. The area where
the sum a + b + c is small is color coded and represents a vortex region (Figure
4.28). CVO and PVO are compared in Figure 4.29.

Real-Time Flow Vortex Extraction on the GPU 81

4.4.3 Results

Figure 4.19: Images show a comparison between the PVO extraction from a flow data
produced within the real-time simulation and outside of it. PVO eigenvector method
vortex extraction from a stationary 3D vector field is preformed. The vector field is saved
from a paused real-time simulation. Upper and lower row show two views of the same
vector field. The extracted vortex points are denoted as spheres. The data for the extraction
was prepared in two ways (left and right column). Before starting the extraction the values
of the second vector field J · v have to be calculated: Left column: values of the second
vector field encoded by a separate script, Right column: values of the second vector field
encoded directly in the real-time simulation. Results are noisy as expected when using
the eigenvector method. Both data result in detecting the same main center structure.

Figures showing the result of vortex extraction methods will be shown here.
First, a comparison between a real-time and stationary extraction will be made
(Figure 4.19). The shown 3D vector field is saved from a paused real-time simu-
lation. The fluid was circularly stirred by the user to produce a helical like flow
field. Two views of the same vector field are shown (upper and lower row) in order
to get a better sense of the result. Results of a PVO eigenvector method extrac-
tion from the vector field are shown. The needed flow data was prepared in two
ways. For applying the PVO, two vector fields are needed, the second one being

Real-Time Flow Vortex Extraction on the GPU 82

calculated from the original vector field. Left column is obtained by encoding the
values of the second vector field (Jacobian matrix times the original vector field
J · v) in a separate VTK ([48]) program. The values of the second vector field
in the right column are obtained directly from the real-time simulation. Extrac-
tions yield noisy result (points denoted as spheres), but the same center structure
is detected, confirming that the real-time simulation is dealing with the correct
numbers.

(a) (b) (c)

(d) (e) (f)

Figure 4.20: Real-time simulation with higher values of vorticity encoded red. (a),
(b), (c) show an arrow and volume plots with the continuous color coding. (d),
(e), (f) show an arrow and volume plots with the thresholded color coding. Values
higher than a threshold have a full color value. Highlighted areas coincide with
the expected position of the vortex.

Figure 4.20 shows the values of vorticity encoded into the simulation. Arrow
plots and volume plots are shown. Higher values of vorticity are encoded red,
either as continuous values (upper row) or a threshold is set that maps all values
above it into red color (lower row). The indicated area coincides with the

Real-Time Flow Vortex Extraction on the GPU 83

(a) (b)

(c) (d)

Figure 4.21: Real-time simulation with Q criterion encoded red. (a), (b) show the
Q criterion of a helical like flow with nicely visible center vortex region. (c), (d)
show the Q criterion of flow produced by diagonal movement across the first slice.
Vortices rolling on the sides of the volume can be nicely distinguished from the
rest of the flow.

expected position of the vortex.

Figure 4.21 shows the Q criterion of the simulation encoded red. The helical
like flow was again tested (upper row), together with the flow obtained by diagonal
movements across the first slice (lower row). Such flow has, as nicely seen in the
figure, vortices rolling along the sides of the volume.

Figure 4.22 shows the λ2 criterion of the simulation encoded blue. The helical
like flow (upper and middle row) and the diagonal movements flow (lower row)
are tested. Vortices are indicated at expected positions. Vortices rolling along the
sides of the volume in the “diagonal” flow are clearly visible.

Real-Time Flow Vortex Extraction on the GPU 84

(a) (b)

(c) (d)

(e) (f)

Figure 4.22: Real-time simulation with λ2 criterion encoded blue. (a), (b) show
the λ2 criterion of a strong helical like flow, shortly after the force input. (c),
(d) show the λ2 criterion of a already dissipated helical like flow i.e. after some
time has passed. As with the Q criterion detection, the values of the criterion are
boosted by a threshold that has to be adjusted depending on whether one wants to
clearly see the strong or weak structures. (e), (f) show the λ2 criterion of diagonal-
movement-initiated flow. Vortices rolling on the sides of the volume are nicely
visible.

Real-Time Flow Vortex Extraction on the GPU 85

Figure 4.23 shows the comparison of the Q and λ2 criterion of the simulation.
λ2 criterion is color coded as cyan, Q criterion as magenta. The area where both
indicate a vortex region appears as dark blue/purple. Vortex regions are overlap-
ping nicely.

(a) (b) (c)

(d) (e) (f)

Figure 4.23: Real-time simulation comparing the λ2 and Q criterion. λ2 criterion
is color coded as cyan, Q criterion as magenta, and the area where both indicate
a vortex region appears as dark blue/purple. (a), (d) shows the comparison in a
strong helical like flow, shortly after the force input. (b), (e) shows the comparison
of a weak helical like flow i.e. after some time has passed. (c), (f) shows the
comparison of the flow (initiated with diagonal movement across the first slice)
with vortices rolling on the sides of the volume. Vortex regions overlap nicely
when the boost threshold is set carefully.

Real-Time Flow Vortex Extraction on the GPU 86

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.24: Real-time simulation where values of the parallel vectors operator are en-
coded red. Images show development of the vortex structure in time in a helical like flow
field. (a),(e) show the initial screw like vortex structure, (b),(f) show the clear vortex cen-
ter later in time, (c),(g) show the bounce back vortex core forming in the middle of the
volume, (d),(h) show the final stabilization of the core. Highlighted areas coincide with
the expected position of the vortex core.

Figure 4.25: Real-time simulation where values of the parallel vectors operator are en-
coded red. Images show the vortex structures in a flow field obtained by diagonally input-
ing force into the first slide of the volume.

Figures 4.24, 4.25 show the real-time simulation with eigenvector method
via parallel vectors operator encoded red. Since locations of zero vectors are
searched (where cross product is zero), a scalar value representing the magnitude
of the resulting vectors is used. Places where this scalar is small are color coded
red. Highlighted areas coincide with the expected position of the vortex cores.
The results were also verified by pausing the simulation and using the algorithm

Real-Time Flow Vortex Extraction on the GPU 87

for stationary flows (Figure 4.19).

Figure 4.26: Comparison of the PVO (magenta) and the Q criterion (cyan). Core
extraction via PVO and the vortex region detection via Q criterion coincide nicely.
First column shows the strong helical flow, middle column intermediate flow, and
the right column shows the already weak flow.

Figure 4.26 shows the comparison of the Q criterion with the eigenvector
method via PVO. Figure 4.27 the comparison of the λ2 criterion with the
eigenvector method via PVO. PVO is color coded as magenta, Q or λ2 criterion as
cyan. The area where both indicate a vortex region appears as dark blue/purple.
Vortex core detection using PVO and the vortex region detection using Q or λ2

criterion both detect expected regions.

Figure 4.28 shows the real-time simulation where vortex values obtained by
coplanar vectors operator are color coded blue. Coplanar vectors operator is im-
plemented via parallel vectors operator. Two vector fields are again checked for
parallelity. When swirling motion is present, Jacobian matrix has two conjugated
complex eigenvalues and one real eigenvalue. First input vector field is the vector
field of real eigenvectors. The second input vector field is derived from the feature

Real-Time Flow Vortex Extraction on the GPU 88

Figure 4.27: Comparison of the PVO (magenta) and the λ2 criterion (cyan). Core
extraction via PVO and the vortex region detection via λ2 criterion coincide nicely.
Right pair of images shows the comparison in a “diagonal force input” flow set.

flow field and the original vector field (see 4.4.2.5). Expected vortex structures are
indicated at wanted locations.

Figure 4.28: Real-time simulation with values of the coplanar vectors operator
encoded blue. Coplanar operator indicates expected vortex structures.

Real-Time Flow Vortex Extraction on the GPU 89

Figure 4.29 shows the comparison of the PVO and CVO. Values of the CVO
are encoded cyan, values of the PVO magenta, values where both methods detect
vortex areas are dark blue/purple.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.29: Comparison of the PVO and CVO in the simulation with values of
the coplanar vectors operator encoded cyan and the values of the parallel vectors
operator magenta. Dark blue/purple values indicate locations where both meth-
ods detect vortex areas. Figures (a), (b), (e), (f) show the comparison in a strong
helical like flow, shortly after the force input. At this point, while the PVO indi-
cates an initial screw-shaped region, the CVO indicates a straight vortex region in
a center of the helical-like field which can be observed in dark blue/purple areas.
After a short time vortex structures coincide ((c), (d), (g), (h)). Lower row shows
places in a strong flow where both PVO and CVO indicate a vortex (color coded
as blue).

Real-Time Flow Vortex Extraction on the GPU 90

Chapter 5

Gesture Classification by Detecting
Vortices in Ensemble Flow

5.1 Introduction

This chapter presents an addition to gesture classification methods through vortex
core extraction of an ensemble range flow. An approach to improve the range flow
data obtained by the Kinect device and introduction of ensemble range flow are
also presented here. An ensemble range flow of an image set is an accumulated
3D flow in which the structure tensor is averaged throughout the entire data set.
It gives an idea of the overall movement in the image set. Detecting vortices in
such accumulative flows can give an additional insight into the gesture data.

Range or scene flow is an extension of optic flow to three dimensions. As
an input for the range flow estimation algorithm, standard color image pair is
required, but also the depth image pair. Depth images are encoding the distance of
objects in an observed scene using grayscale values. Depth images are obtained
by utilizing Microsoft Kinect and contain many artifacts. Section 5.2 gives an
introduction theory behind the optic and range flows. Section 5.3 shows how a
range flow algorithm can be improved on. Magnitude of the derivatives of the
input depth images is thresholded and the energy functional is expressed as a
combined local-global approach.

91

Introduction 92

Section 5.4 introduces an ensemble range flow. Ensemble range flow is ob-
tained by averaging the structure tensor throughout the entire data set consisting
of number of images. The resulting flow field gives an overall motion through the
data set.

Detecting vortices within the ensemble range flow of gesture data is presented
in Section 5.5. Using the Microsoft Kinect camera, five people recorded nine
gestures each. Every gesture data contains 60 frames of color and depth images.
Ensemble range flow is calculated from each of the gesture data. Gesture area is
determined and vortex cores extracted within this area. The position and the num-
ber of obtained critical points can serve as an additional indicator for classifying
the gestures.

This approach is not meant to serve as a standalone gesture detection tech-
nique, but rather intended as an improvement of gesture classification methods
that operate on data of reduced dimensions. An approach that reduces the dimen-
sion of the data is e.g. presented in [18]. They segment the static hand gesture
images and project the segmentations to x and y axis, thus reducing the data di-
mension from 2D to 1D. Such 1D data is then classified. An idea for similar tech-
nique is presented in Section 5.5.1. Here, a magnitude of the flow was projected
to x and y axis, so creating a 1D plot which can be used for classification.

For the purpose of gesture classification only the number of obtained vortices
is considered. If processed flow field with emphasized vortices is wanted,
diffusion techniques from Section 3.4.1 can be used to create it (Section 5.5.2).

A lot of research is currently being done in utilizing modern depth sensors.
Particle based approach for estimating range flow from Kinect data is presented
in [10]. Invalid depth areas were not treated separately and are causing incorrect
flow estimation. Real-time range flow estimation can be achieved by using GPU
implementation [34]. In [20] a 3D mesh is also used to estimate the range flow.
Papers like [16] show state of the art usage of the Kinect sensor for real-time 3D
reconstruction of the environment which can also be applied to gesture recogni-
tion. Small Leap Motion device ([19]) instantly detects gestures preformed within
its reach. Alternative sensors, such as accelerometers (sensors capable of de-

Range and Optic Flow 93

tecting linear accelerations), gyroscopes (measuring angular rates around one or
more axes) or geomagnetic sensors (measuring Earth’s magnetic field along mul-
tiple axes) shall undoubtedly be used in future to capture complete movements in
a three-dimensional space and much more. Vortex extraction for gesture classifi-
cation presented in this chapter is not intended to compete with such approaches,
but rather to show the possibility of introducing vortex extraction into gesture
classification.

Computing range flow between two frames of the gesture data produces a 3D
flow in a plane (2.5D). Computing flow between each of the two images in a
gesture and stashing them next to each other gives a volume of 3D flows. Ensem-
ble flow is mapping this “volume” into a single 3D flow. Techniques that operate
within a volume of 3D flows would have an advantage of not having to use any ac-
cumulative process (like ensemble flow) and not having to determine the start and
the end of a gesture. Fluid simulation in Chapter 4 is a 3D flow volume. Future
work includes immersing the gesture detection into the real-time fluid simulation
and taking advantage of the real-time vortex detection techniques.

5.2 Range and Optic Flow

Optic Flow In order to retrieve a vector field (u(x, y, t), v(x, y, t))T describing a
motion in a 2D image sequence, following energy functional has to be minimized:

E(u, v) =

∫ (1

2

(
(fxu+ fyv + ft)

2 + αV(∇u,∇v)
))
dxdy, (5.1)

where f(x, y, t) is the input image sequence, fx, fy, ft corresponding partial
derivatives and V the chosen penalizer. The data term is the color constancy over
time assumption, i.e. the optic flow constraint:

fxu+ fyv + ft = 0. (5.2)

Figure 5.1 shows the input image pair and color coded output images which rep-
resent the magnitude of the obtained vector field (color coding depicted in upper
row). Mathematical formulation leading to a discrete explicit scheme is given in
Appendix A.10.

Range and Optic Flow 94

Figure 5.1: Upper row: Color coding for the uv optic flow. Middle row: two
consecutive image frames of a scene that shows a human hand moving right, up
and back. Lower row: color coded magnitude of the optic flow. Depending on
the chosen regularization results differ slightly. Left: Charbonnier regularization,
Right: anisotropic regularization.

Range Flow Range or scene flow is an extension of optic flow and describes the
3D motion in a scene ([50], [44]). Estimation of range flow requires, in addition
to the standard pair of images, also information about depth (Figure 5.2). Range
flow is important for various applications i.e. segmentation, gesture recognition
and similar ([43]).

Figure 5.2: Depth channels (obtained by Kinect) are aligned to color channels
(Figure 5.1(b), 5.1(c)) using backward warping. Invalid areas (white) are visible
in depth images.

Correction of Range Flow Computation 95

The aim is to estimate the range flow:

h(x, y, t) =

 u(x, y, t)

v(x, y, t)

w(x, y, t)

 , (5.3)

which can be done by minimizing the following energy functional:

E(u, v, w) =

∫
F (x, y, u, v, w, ux, uy, vx, vy, wx, wy)dxdy

=

∫ (1

2

(
(fxu+ fyv + ft)

2 + β(gxu+ gyv + w + gt)
2

+ αV(∇u,∇v,∇w)
))
dxdy,

(5.4)

where f(x, y, t), g(x, y, t) are given color and depth image sequences,
fx, fy, ft, gx, gy, gt are corresponding partial derivatives and V is penal-
izer/regularizer functional. Mathematical formulation leading to a discrete explicit
scheme is given in Appendix A.11.

5.3 Correction of Range Flow Computation - Com-
bined Local-Global Range Flow

Data recorded with Kinect, consisting of color and depth channels, requires align-
ment of the two channels (a.k.a. calibration) ([9]) prior to estimating the flow
([50], [44]). The recorded data exhibits invalid areas and unstable edges (Figure
5.2). As mentioned in Section 2.3.1, invalid areas are a consequence of occlu-
sions which occur because of the shift between the source of active illumination
and the infrared camera, caused by the structured light depth estimation approach
[1], [51].

The output of the algorithm is the assessed 3D flow. Figure 5.3(a) shows the
magnitude of the optic uv flow, Figure 5.3(b) shows the magnitude of the third
depth w flow component. Color coding for the depth component of the range
flow is interpolated between blue for backward and orange for forward movement.

Correction of Range Flow Computation 96

Existence of invalid areas poses a problem for accurate range flow estimation.
Figure 5.3 shows the result of the range flow algorithm with the invalid areas
included. Visible are the noisy hand edge parts originating from the invalid areas.

(a) (b)

Figure 5.3: (a) Magnitude of the optic uv flow, with the invalid areas included (b)
Magnitude of the w component of the range flow, with the invalid areas included
i.e. with the calibrated unprocessed input images.

By excluding such invalid areas (Figure 5.4) from the range flow estimation,
the results of the estimation are improved (Figure 5.5). The invalid areas are
excluded by thresholding of the derivative magnitudes.

Figure 5.4: Thresholded derivative magnitudes of the depth channel indicated as
blue pixels. These pixels are used for removing the invalid derivatives in the depth
channel.

Correction of Range Flow Computation 97

(a) (b)

(c) (d)

Figure 5.5: Combined local-global range flow with diffusivity D3 where invalid
depth areas are removed prior to estimation. (a) Magnitude of the optic uv flow,
with the invalid areas excluded, 10 iterations (b) Magnitude of the w component
of the range flow, with the invalid areas excluded, 10 iterations (c) Magnitude of
the optic uv flow, with the invalid areas excluded, 100 iterations (d) Magnitude of
the w component of the range flow, with the invalid areas excluded, 100 iterations.

Following the optic flow approach of [2], range flow estimator is formulated
as a combined local-global model:

E(u, v, w) =

∫ (
Kρ ∗

(
(fxu+ fyv + ft)

2
)

+Kφ ∗
(
β(gxu+ gyv + w + gt)

2
)

+ αV(∇u,∇v,∇w)
)
dxdy,

(5.5)

where Kρ, Kφ are Gaussian smoothing kernels, with parameters ρ, φ > 0.

Correction of Range Flow Computation 98

Regularizers are, as before:

• homogeneous regularizer [12]:

V1(∇u,∇v,∇w) = Ψ(|∇u|2 + |∇v|2 + |∇w|2)

= |∇u|2 + |∇v|2 + |∇w|2,
(5.6)

• nonlinear isotropic regularizer [42] e.g. Charbonnier regularizer:

V2(∇u,∇v,∇w) = Ψ(|∇u|2 + |∇v|2 + |∇w|2)

= 2λ2

√
1 + |∇u|2+|∇v|2+|∇w|2

λ2
− 2λ2,

(5.7)

• nonlinear anisotropic regularizer [54]:

V3(∇u,∇v,∇w) = tr Ψ(∇u∇uT +∇v∇vT +∇w∇wT), (5.8)

where matching diffusivities are:

D1(∇u,∇v,∇w) = Ψ′(|∇u|2 + |∇v|2 + |∇w|2)

= 1,
(5.9)

D2(∇u,∇v,∇w) = Ψ′(|∇u|2 + |∇v|2 + |∇w|2)

=
1

1 + |∇u|2+|∇v|2+|∇w|2
λ2

,
(5.10)

D3(∇u,∇v,∇w) = Ψ′(∇u∇uT +∇v∇vT +∇w∇wT). (5.11)

Correction of Range Flow Computation 99

The corresponding diffusion-reaction system is then:

ut = div (D (∇u,∇v,∇w)∇u)

− 1

α

(
Kρ ∗ (fx)

2u+Kρ ∗ (fxfy)v +Kρ ∗ (fxft)

+ β
(
Kφ ∗ (gx)

2u+Kφ ∗ (gxgy)v +Kφ ∗ (gx)w +Kφ ∗ (gxgt)
))
,

vt = div (D (∇u,∇v,∇w)∇v)

− 1

α

(
Kρ ∗ (fyfx)u+Kρ ∗ (fy)

2v +Kρ ∗ (fyft)

+ β
(
Kφ ∗ (gygx)u+Kφ ∗ (gy)

2v +Kφ ∗ (gy)w +Kφ ∗ (gygt)
))
,

wt = div (D (∇u,∇v,∇w)∇w)

− 1

α

(
β
(
Kφ ∗ gxu+Kφ ∗ gyv + w +Kφ ∗ gt

))
.

(5.12)

The equation system (5.12) differs from system (A.42) in convolution of the
derivatives with the Gaussian kernels in the reaction term. The local smoothing
i.e. flow constancy assumption within a neighborhood of a size ρ and φ introduces
robustness to noise.

5.3.1 Results

Figure 5.5 shows the result of the combined local-global range flow with excluded
invalid edges. The flow estimation exhibits no artifacts.

Figure 5.6 shows a second test scene depicting an office. It is passive scene
with the camera moving towards the table. Lower row shows the result of the
proposed method. Larger number of iterations produce a fill-in effect as a conse-
quence of the regularization term.

Figure 5.7 shows an arrow plot of the estimated depth component of the range
flow. In order to show that the estimation is correctly located, the arrow plot is
overlayed with magnitude and color channel of the input images.

In both datasets, noise produced by the invalid edges (Figure 5.3, Figure 5.6
middle row) is eliminated (Figure 5.5, Figure 5.6 lower row). Compared to the
results of the standard method a more regular non-distorted result closer to the
expected movement is observed.

Correction of Range Flow Computation 100

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.6: Upper row: Input pairs of images. (a), (b) color channels, (c), (d) depth
channels. Middle row: Unmodified range flow with original depth data as input. Influence
of noise is visible at the edges. Range flow with diffusivity D2. (e), (f) magnitude of the
uv-flow, depth w-flow, 10 iterations, (g), (h) magnitude of the uv-flow, depth w-flow,
300 iterations. Lower row: Combined local-global range flow with adjusted depth image
derivatives, where invalid depth areas are removed prior to estimation. Range flow with
diffusivity D3. ρ = 6, φ = 6. (i), (j) magnitude of the uv-flow, depth w-flow, 10
iterations, (k), (l) magnitude of the uv-flow, depth w-flow, 300 iterations.

(a) (b) (c)

Figure 5.7: Arrow plot of the depthw-flow with arrows oriented at (1, 1) instead of “into”
the paper. Images are overlayed with magnitude and color channel (c) of the flow. Range
flow with diffusivity D3. 10 iterations. (a) Standard range flow method. The influence
of invalid depth areas is corrupting the estimation of the depth w-flow. (b) Combined
local-global range flow with invalid areas. (c) Combined local-global range flow without
invalid areas is giving a correct estimation of the movement.

Ensemble Range Flow 101

5.4 Ensemble Range Flow

Analysis and study of the fluid flow often requires the information about the
average motion of the flow in time. When applying the techniques such as particle
image velocimetry [35] or optic flow it is common to average the vector fields
after recording the vector data. An ensemble optic flow approach proposed in
[45] is based on averaging the structure tensor of the large data set before the flow
estimation. The approach gives better average flow estimates and is more robust
against outliers.

Here, an ensemble (combined local-global) range flow is proposed for estima-
tion of the 3D flow. By additionally averaging the structure tensor throughout the
entire data set an ensemble range flow is formulated as:

E(u, v, w) =

∫ (
Kη ∗

(
Kρ ∗

(
(fxu+ fyv + ft)

2
)

+Kφ ∗
(
β(gxu+ gyv + w + gt)

2
))

+ αV(∇u,∇v,∇w)

)
dxdy,

(5.13)

where Kη is Gaussian smoothing kernel over all frames. In addition to averaging
the gradients of two consecutive frames prior to flow estimation as proposed in a
combined local-global range flow, the gradients are also averaged over the entire
dataset. Figure 5.10 shows an ensemble range flow of the infinity gesture images
set.

Appendix B applies the ensemble range flow (5.13) to sets of fluid flow
images. Such sets do not contain the depth data, so the depth information is
estimated by using one of the “depth from monocular images” algorithms.

Vortex core extraction of a gesture ensemble range flow will be used here to
assist the gesture classification.

Classifying Gestures by Detecting Vortices 102

5.5 Vortex Detection of Ensemble Range Flow for
Gesture Classification

Vortex detection of gesture ensemble range flow is proposed as a method for im-
provement of gesture classification. Five persons recorded nine chosen gesture
videos using the Microsoft Kinect device. Vortices are extracted from the ensem-
ble range flow of the gestures. Number of vortices serves as an additional aid for
gesture classification.

Figure 5.8: Upper row: circle in xy plane, circle in xz plane, circle in yz plane,
Middle row: sweep left, sweep up, sweep “in” camera, Lower row: horizontal
infinity loop in xy plane, vertical infinity loop in xy plane, horizontal infinity loop
in yz plane.

Gestures Gestures are recorded as short videos using Kinect. Each gesture con-
tains 60 to 90 frames of 640 × 480 rgb images (color channels) and the equal
number of depth images (depth channels). Nine gestures are recorded by 5 sub-
jects, making a total of 45 test gestures. Gestures which can be classified via
vortex extraction are chosen as test gestures.

Classifying Gestures by Detecting Vortices 103

Chosen gestures are (Figure 5.8):

• circle in xy plane, circle in xz plane, circle in yz plane,

• horizontal sweep in xy plane (sweep left), vertical sweep in xy plane (sweep
up), horizontal sweep in yz plane (sweep “in” camera)

• horizontal infinity loop in xy plane, vertical infinity loop in xy plane, hori-
zontal infinity loop in yz plane

Gesture Range Flow The optic/range flow between two consecutive frames re-
veals very limited information about the gesture performed. Figure 5.9 shows the
optic flow from three points in time of an infinity gesture.

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Magnitude of the optic flow for frames 19, 32, 43 of one of the infinity
gestures. Minimization with the Charbonnier regularization (5.7). Upper row: 1
iteration, lower row: 10 iterations.

Classifying Gestures by Detecting Vortices 104

Gesture Ensemble Range Flow An ensemble flow (5.13) of the entire scene
gives an insight into the flow of the whole gesture. Derivatives are summed
up through the entire scene and the structure tensor is averaged to produce
the ensemble flow (Figure 5.10). Depending on the setup of the minimization
parameters, the regularization is set to weaker or stronger, the latter producing
vector fields suitable for detection of critical points (Figure 5.10(b), 5.10(d)).
Figure 5.11 shows ensemble uv-flows and depth w-flows of the gestures from
Figure 5.8. “3D” gestures i.e the gestures with movement in z direction (right
column of Figure 5.8 plus xz circle) have more intensive depth flow component.

(a) (b)

(c) (d)

Figure 5.10: Ensemble flow of the infinity gesture with weaker (left column) and
stronger regularization (right column).

Classifying Gestures by Detecting Vortices 105

(a) circle xy (optic flow) (b) circle xz (optic flow) (c) circle yz (optic flow)

(d) circle xy (depth flow) (e) circle xz (depth flow) (f) circle yz (depth flow)

(g) sweep left (optic flow) (h) sweep up (optic flow) (i) sweep z (optic flow)

(j) sweep left (depth flow) (k) sweep up (depth flow) (l) sweep z (depth flow)

(m) infinity xy horizontal (optic

flow)

(n) infinity xy vertical (optic

flow)

(o) infinity yz (optic flow)

(p) infinity xy horizontal (depth

flow)

(q) infinity xy vertical (depth

flow)

(r) infinity yz (depth flow)

Figure 5.11: Ensemble uv-flows (color coded by image 5.1(a)) and depth w-flows
(color interpolated between blue for backward and orange for forward) of the
gestures from Figure 5.8. The depth flow is more intensive in “3D” gestures (ones
where the movement in z direction is present) although it is always visible due to
the imperfection of the user’s interpretation.

Classifying Gestures by Detecting Vortices 106

Vortex Detection of an Ensemble Range Flow Figure 5.12 shows the process
of detecting critical points in gesture ensemble range flows. First, an area with
the gesture is selected. An area with higher flow magnitude is thresholded, then
“expanded” using simple Gaussian blurring or morphological opening. These
operations result in a mask that denotes the area of an image where the main
gesture movement lies. Critical points are detected by determining the lines in the
flow where flow components change sign. Critical points are at places (within the
gesture mask) where the resulting lines of the two flow components cross. The
nature of the critical point is then determined. The swirl exists if the critical point
is a focus or a center i.e. if there are two conjugated complex eigenvalues of the
Jacobian matrix in that point. Such critical points are 2D vortices. Two vortex
cores are extracted from the infinity gesture, as expected.

Figure 5.12: Detecting vortices in infinity gesture ensemble range flow. Magnitude of
the flow is denoted in gray. Upper row: Left image shows thresholded high magnitude
of the flow denoted red. Middle image shows the threshold area expanded by Gaussian
blurring. Right image shows the threshold area expanded by morphological opening.
Blurring is chosen as the default method. Middle row: Left image shows lines in the
flow where flow components change sign. Middle image shows the same lines within
the determined gesture area (cyan edge). Right image shows the detected critical points,
where the resulting lines of the two flow components cross, denoted as red points. Both
points are of the focus type, so none of them is excluded. Lower row shows the arrow and
the magnitude plots of the original flow together with the vortex centers.

Classifying Gestures by Detecting Vortices 107

5.5.1 Results

Figure 5.13 shows the vortex detection of ensemble flows of the gestures from
Figure 5.8. As expected, circular gestures have one vortex center detected, sweep
gestures none. Horizontal infinity gesture has, as wanted, two vortices. However,
the detection of the vertical infinity gesture gives only one vortex, and detection
of the yz infinity gesture gives three vortices.

(a) circle xy (b) circle xz (c) circle yz

(d) sweep left (e) sweep up (f) sweep z

(g) infinity xy horizontal (h) infinity xy vertical (i) infinity yz

Figure 5.13: Vortex detection of the ensemble range flows of the gestures from Fig-
ure 5.8. Upper row shows circular gestures with one vortex center detected. Middle row
shows sweep gestures with no vortex centers detected. Lower row shows infinity gestures.
Horizontal gesture has, as expected, two vortices. One vortex is detected in vertical ges-
ture (h). Three vortices are detected in yz gesture (i). This issue is addressed in upcoming
text.

Classifying Gestures by Detecting Vortices 108

By filtering out the very steep foci (foci that are near sink or near source)
from the data, two vortices are obtained in yz infinity gesture (Figure 5.14). What
is desired in a gesture flow are non-steep vortices. Sinks or sources with a slight
swirl (steep foci) can be filtered out. Steepness of a focus can be determined by
looking at the magnitude of the imaginary part of eigenvalues of Jacobian matrix.
Smaller magnitude results in a steeper focus. By thresholding this magnitude,
only non-steep vortices are kept.

Figure 5.14: Steep foci critical points (foci that are near sink or near source) are filtered
out from a yz infinity gesture giving only two remaining critical points as opposed to three
points detected before (Figure 5.13 (i)). Steep foci are the ones with small magnitudes of
imaginary parts of eigenvalues of the Jacobian matrix.

Only one critical point is detected in vertical infinity gesture flow from Figure
5.11 (n). If different vertical infinity gesture is considered (Figure 5.15), three
vortices are obtained. After filtering out the steep (near sink/source) foci two
vortices are obtained.

(a) (b) (c)

Figure 5.15: Alternative vertical infinity gesture considered. (b) Vortex detection results
in three vortices. (c) Filtering out the steep vortices results in two points.

Classifying Gestures by Detecting Vortices 109

The detection of vortices in the ensemble flow depends on many parameters.
Selecting the suitable gesture region and selecting the appropriate critical points
within it, could be repeatedly preformed and optimized. In the future, it is
planned to make the vortex detection more robust.

Although it could be used as a standalone method, vortex extraction of an
ensemble range flow is designed to be used in combination with gesture classifi-
cation methods. Methods that reduce the dimensionality of the data (e.g. [18])
can produce similar data for different gestures. Gesture classification based on
summed magnitudes of the flow is proposed for future work. The idea is pre-
sented in the text below. Non-perfect user performance of the gesture is leading
to certain flow magnitudes producing similar graphs. Detection of vortices should
resolve the uncertain cases.

Gesture Classification Following gesture classification method is proposed.
Magnitude of the gesture ensemble flow (including u, v and w) is summed up
through every x and y coordinate (Figure 5.16). A histogram-like plot of the
gesture is drawn, so decreasing a number of parameters to work with. Similar
approach was taken in [18]. The graph depicting x, then y summed magnitude
values has 640 + 480 = 1120 x entries. The graph can be further simplified i.e.
its dimension can be reduced if PCA is used.

(a) (b)

Figure 5.16: Summing up of the magnitude of the flow through every x and y coordinate
produces a histogram-like graph. The x magnitudes are followed by the y magnitudes
resulting in a two-peaked graph (blue). The red graph is a PCA reconstruction of the
same graph with reduced number of basis function (from 1120 to 2).

Classifying Gestures by Detecting Vortices 110

Such 2D graphs can be used to classify the gestures using e.g. K-nearest neigh-
bors (KNN). The problem when having a small number of data is the following.
It is sometimes not clear which gesture is looked at i.e. classification is incorrect
(Figure 5.17). If the users circle gesture is elliptical and has similar shape as an
infinity gesture, resulting graphs can be difficult to distinguish from one another.
This uncertainties can be resolved by detecting the critical points of the ensemble
range flow of the gesture.

(a) (b)

Figure 5.17: Graph for the circle gesture (a) and for the infinity gesture (b) in xy plane
together with the red PCA reconstruction. If user performs the circle gesture as an ellipse
similar to the infinity gesture, the graphs will also be similar and difficult to distinguish
from one another.

5.5.2 Vortex Preserving Diffusion of the Ensemble Range Flow

For the purpose of gesture classification, only the number of vortices within
the flow is required. If one wants to obtain an ensemble flow field of the ges-
ture with emphasized vortices, vortex preserving diffusion techniques can be used.

If diffusion presented in Section 3.4.1 is run on the gesture data, the flows with
emphasized swirling areas are obtained (Figure 5.18 rows 3, 4 from above). It
would, however, make more sense to keep only the area surrounding the vortices.
After detection of vortices, circular area around them is kept while the rest of the
flow is blurred (Figure 5.18 lower half, rows 5, 6, 7, 8). This is also a nonlinear
isotropic diffusion process with binary diffusivity set to 1 outside and 0 inside the
vortex area. Different sizes of the vortex area can be used.

Classifying Gestures by Detecting Vortices 111

Figure 5.18: Nonlinear isotropic diffusion process on a gesture ensemble range flow with
binary diffusivities steering the diffusion. Column 1: circle in xy plane, column 2: circle
in yz plane, column 3: horizontal infinity loop in xy plane. Rows 1,2 (upper): magnitude
and arrow plots of the three gestures. Rows 3,4: nonlinear isotropic diffusion process with
diffusivity (3.27) for 5000 iterations. Rows 5,6: circular area surrounding the vortices is
kept, the rest of the flow is blurred. This is also a nonlinear isotropic diffusion process
with binary diffusivity set to 1 outside and 0 inside the vortex area. Rows 7,8: bigger
circular area surrounding the vortices is chosen.

Classifying Gestures by Detecting Vortices 112

Chapter 6

Conclusion and Future Work

Detecting and locating vortices is crucial for understanding of the flow. Different
methods for enhancing and denoting vortical structures are presented in this thesis.

Real-time vortex detection offers instant insight into vortical structures of the
simulated flow data. Extraction methods are implemented within the fluid simu-
lation. Vortices are located and denoted by color coding of the parts of the flow
volume/arrow plots. Advantage of the presented real-time methods is immedi-
ate notion of the shape and location of the vortex structures. Vortex detection
is no longer performed as a post processing step and vortex cores or regions are
instantly denoted.

Diffusional and variational methods have the goal of obtaining vector fields in
which the vortical structures are preserved and emphasized. The resulting vector
fields offer an alternative insight into the structure of the flow. Diffusion and
diffusion-reaction methods which produce vector fields with emphasized vortex
regions are introduced.

Ensemble range flow shows the overall movement in a scene. Ensemble range
flow of gestures is estimated and used to improve gesture classification methods.
Non-perfect user performance of the gesture is leading to uncertainties within ges-
ture classification. Detection of vortices within the ensemble flow helps resolving
such cases.

113

Conclusion and Future Work 114

6.1 Future Work

Diffusional and Variational Methods Diffusion and diffusion-reaction meth-
ods require setting of many parameters. Determining optimal parameters for vor-
tex preservation is planned in future. Using advanced anisotropic regularization
and implementing fast numerical non-iterative schemes shall be used to speed up
the algorithms up to the real-time performance.

Real-Time Vortex Detection Optimization of the GPU implementation of the
real-time fluid simulation could be achieved by using OpenGL CUDA interoper-
ability, as well as by implementing faster numerical solvers for the simulation.

The applicability of the real-time vortex extraction methods could be increased
by allowing not only simulated, but also real world data to be processed.

Figure 6.1: Object-fluid in-
teraction.

An alternative real-time vortex extraction method
could be designed by replacing the diffusion within the
real-time fluid simulation with diffusion and diffusion-
reaction approaches designed in Chapter 3.

Fluid interaction with a moving obstacle could give
an insight into vortices forming around an object. Fig-
ure 6.1 shows a butterfly flapping its wings and inter-
acting with the fluid within a real-time simulation.

Gesture Ensemble Range Flow Detection of vortices in the ensemble flow de-
pends on many parameters. Calculation of the ensemble range flow itself, already
has many parameters. Additionally, a gesture region has to be selected and then
the suitable critical points within it. Automatic detection of optimal parameters
and more robust vortex detection is planned.

Developing a gesture classification method based on reduction of data dimen-
sions by using summed magnitudes of the ensemble range flow is planned.

Immersing the gesture detection into the real-time fluid simulation and taking
advantage of the real-time vortex detection techniques is planned. Range flow
between two frames gives a 3D flow in a plane (2.5D). Stashing such flows to-
gether gives a volume of 3D flows. Ensemble flow is mapping this “volume” into
a single 3D flow. Operating within a volume of 3D flows would remove the need
for an accumulative process, such as ensemble flow, and would allow real-time
performance.

Appendices

115

116

Appendix A

Mathematical Formulations Leading
to a Discrete Explicit Scheme

A.1 Finite Difference Derivative Approximations

Some of the most frequently used approximations are given here. Approximation
of the first derivative with central differences:

∂xu ≈
ui+1,j − ui−1,j

2h1

, (A.1)

∂yu ≈
ui,j+1 − ui,j−1

2h2

, (A.2)

∂tu ≈
uk+1
i,j − uki,j

τ
, (A.3)

where h1, h2, τ are pixel sizes in x, y and time direction. Usually the pixel sizes
h1 and h2 are taken as equal.

Approximation of the second partial derivatives:

∂x(b ∂xu) ≈ 1

h1

(
bi+1,j + bi,j

2

ui+1,j − ui,j
h1

− bi,j + bi−1,j

2

ui,j − ui−1,j

h1

)
,

∂y(b ∂yu) ≈ 1

h2

(
bi,j+1 + bi,j

2

ui,j+1 − ui,j
h2

− bi,j + bi,j−1

2

ui,j − ui,j−1

h2

)
.

(A.4)

117

Mathematical Formulations Leading to a Discrete Explicit Scheme 118

Approximation of the second partial derivatives with constant b = 1:

∂xxu ≈
uki+1,j − 2uki,j + uki−1,j

h2
1

,

∂yyu ≈
uki,j+1 − 2uki,j + uki,j−1

h2
2

.

(A.5)

Approximation of the mixed terms of second partial derivatives:

∂x(b ∂yu) ≈ 1

2h1

(
bi+1,j

ui+1,j+1 − ui+1,j−1

2h2

− bi−1,j
ui−1,j+1 − ui−1,j−1

2h2

)
,

∂y(b ∂xu) ≈ 1

2h2

(
bi,j+1

ui+1,j+1 − ui−1,j+1

2h1

− bi,j−1
ui+1,j−1 − ui−1,j−1

2h1

)
.

(A.6)

Approximation of the mixed terms with constant b = 1:

∂xyu ≈
1

2h1

(
ui+1,j+1 − ui+1,j−1

2h2

− ui−1,j+1 − ui−1,j−1

2h2

)
≈

∂yxu ≈
1

2h2

(
ui+1,j+1 − ui−1,j+1

2h1

− ui+1,j−1 − ui−1,j−1

2h1

)
.

(A.7)

If there is a quadratic error term in the grid size h, then the approximation has a
consistency order 2. Approximations must have a consistency order of at least 1.
If not, they are inconsistent and inappropriate.

A.2 Boundary Conditions

In practice the domain Ω is a rectangle with boundary ∂Ω. Boundary conditions
imposed are usually:

• Dirichlet boundary conditions i.e. setting the velocity to zero at boundaries:
u = 0 on ∂Ω,

• Neumann boundary conditions: ∂u
∂n

= 0 on ∂Ω, where n is the outer normal
vector on ∂Ω.

Mathematical Formulations Leading to a Discrete Explicit Scheme 119

A.3 Linear Isotropic Diffusion

By discretizing the diffusion equation, unknown uk+1
i,j can be explicitly computed:

∂tu = ∆u

∂tu = ∂xxu+ ∂yyu

uk+1
i,j − uki,j

τ
=
uki+1,j − 2uki,j + uki−1,j

h2
1

+
uki,j+1 − 2uki,j + uki,j−1

h2
2

uk+1
i,j =

(
1− 2

τ

h2
1

− 2
τ

h2
2

)
uki,j

+
τ

h2
1

uki+1,j +
τ

h2
1

uki−1,j +
τ

h2
2

uki,j+1 +
τ

h2
2

uki,j−1

(A.8)

This explicit scheme can be expressed as a 3×3 computation stencil on a 2D grid:

0 τ
h22

0

τ
h21

1− 2 τ
h21
− 2 τ

h22

τ
h21

0 τ
h22

0

,

or, if pixel sizes are taken to be one:

0 τ 0

τ 1− 4τ τ

0 τ 0

.

The scheme is stable for τ ≤ 1
4
. For larger values the scheme changes its nature

away from a smoothing scheme.

A.4 Backward Linear Isotropic Diffusion

Linear isotropic diffusion can be written as update of the current pixel with the
weighted neighbor influence:

uk+1
i,j = (1− 4τ)uki,j + τ

(
uki+1,j + uki−1,j + uki,j+1 + uki,j−1

)
,

uk+1
i,j = uki,j + τ

(
uki+1,j + uki−1,j + uki,j+1 + uki,j−1 − 4uki,j

)
.

(A.9)

Mathematical Formulations Leading to a Discrete Explicit Scheme 120

Backward diffusion is then the difference of the current pixel and the weighted
neighbor influence:

uki,j = uk+1
i,j − τ

(
uk+1
i+1,j + uk+1

i−1,j + uk+1
i,j+1 + uk+1

i,j−1 − 4uk+1
i,j

)
. (A.10)

uk+1
i,j is then expressed as:

uk+1
i,j =

uki,j + τ
(
uk+1
i+1,j + uk+1

i−1,j + uk+1
i,j+1 + uk+1

i,j−1

)
(1 + 4τ)

. (A.11)

This is a sparse linear system which can be solved by e.g. using Gauss-Seidel
relaxation.

A.5 Nonlinear Isotropic Diffusion
By discretizing the diffusion equation, unknown uk+1

i,j can be explicitly computed:

∂tu=div
(
g(|∇u|2)∇u

)
∂tu=∂x

(
g(|∇u|2)∂xu

)
+∂y

(
g(|∇u|2)∂yu

)
uk+1
i,j −uki,j

τ
=

1

h1

(
gi+1,j+gi,j

2

ui+1,j−ui,j
h1

−gi,j+gi−1,j
2

ui,j−ui−1,j
h1

)
+

1

h2

(
gi,j+1+gi,j

2

ui,j+1−ui,j
h2

−gi,j+gi,j−1
2

ui,j−ui,j−1
h2

)
uk+1
i,j =

(
1− τ

h21
(
gi+1,j+gi,j

2
+
gi,j+gi−1,j

2
)− τ

h22
(
gi,j+1+gi,j

2
+
gi,j+gi,j−1

2
)

)
uki,j

+

(
gi+1,j+gi,j

2

τ

h21

)
uki+1,j+

(
gi,j+gi−1,j

2

τ

h21

)
uki−1,j

+

(
gi,j+1+gi,j

2

τ

h22

)
uki,j+1+

(
gi,j+gi,j−1

2

τ

h22

)
uki,j−1,

(A.12)

where gi,j is an approximation of the diffusivity g(|∇u|2) in pixel (i, j). The
scheme is stable for τ < h2

4
(in 2D).

The explicit scheme can be expressed as a 3× 3 computation stencil on a 2D grid:

Mathematical Formulations Leading to a Discrete Explicit Scheme 121

0
gi,j+1+gi,j

2
τ
h2
2

0
gi,j+gi−1,j

2
τ
h2
1

1− τ
h2
1
(
gi+1,j+gi,j

2 +
gi,j+gi−1,j

2)− τ
h2
2
(
gi,j+1+gi,j

2 +
gi,j+gi,j−1

2)
gi+1,j+gi,j

2
τ
h2
1

0
gi,j+gi,j−1

2
τ
h2
2

0

A.6 Backward Nonlinear Isotropic Diffusion
Nonlinear isotropic diffusion can be written as update of the current pixel with the
weighted neighbor influence:

uk+1
i,j =

(
1− τ

(
gi+1,j + gi,j

2
+
gi,j + gi−1,j

2
+
gi,j+1 + gi,j

2
+
gi,j + gi,j−1

2

))
uki,j

+ τ

((
gi+1,j + gi,j

2

)
uki+1,j +

(
gi,j + gi−1,j

2

)
uki−1,j

+

(
gi,j+1 + gi,j

2

)
uki,j+1 +

(
gi,j + gi,j−1

2

)
uki,j−1

)
,

uk+1
i,j = uki,j + τ

((
gi+1,j + gi,j

2

)
uki+1,j +

(
gi,j + gi−1,j

2

)
uki−1,j

+

(
gi,j+1 + gi,j

2

)
uki,j+1 +

(
gi,j + gi,j−1

2

)
uki,j−1

−
(
gi+1,j + gi,j

2
+
gi,j + gi−1,j

2
+
gi,j+1 + gi,j

2
+
gi,j + gi,j−1

2

)
uki,j

)
.

(A.13)

Backward diffusion is then the difference of the current pixel and the weighted
neighbor influence:

uki,j = uk+1
i,j − τ

((
gi+1,j + gi,j

2

)
uk+1
i+1,j +

(
gi,j + gi−1,j

2

)
uk+1
i−1,j

+

(
gi,j+1 + gi,j

2

)
uk+1
i,j+1 +

(
gi,j + gi,j−1

2

)
uk+1
i,j−1

−
(
gi+1,j + gi,j

2
+
gi,j + gi−1,j

2
+
gi,j+1 + gi,j

2
+
gi,j + gi,j−1

2

)
uk+1
i,j

)
.

(A.14)

Mathematical Formulations Leading to a Discrete Explicit Scheme 122

uk+1
i,j is then expressed as:

uk+1
i,j =

uki,j+τ

(
(
gi+1,j+gi,j

2
)uk+1
i+1,j+(

gi,j+gi−1,j

2
)uk+1
i−1,j+(

gi,j+1+gi,j
2

)uk+1
i,j+1+(

gi,j+gi,j−1

2
)uk+1
i,j−1

)
(

1+(
gi+1,j+gi,j

2
+
gi,j+gi−1,j

2
+
gi,j+1+gi,j

2
+
gi,j+gi,j−1

2
)τ

) ,

uk+1
i,j =

uki,j+τ

(
(
gi+1,j+gi,j

2
)uk+1
i+1,j+(

gi,j+gi−1,j

2
)uk+1
i−1,j+(

gi,j+1+gi,j
2

)uk+1
i,j+1+(

gi,j+gi,j−1

2
)uk+1
i,j−1

)
(

1+(4gi,j+gi+1,j+gi−1,j+gi,j+1+gi,j−1) τ
2

) .

(A.15)

This is a sparse linear system which can be solved by e.g. using Gauss-Seidel
relaxation.

A.7 Nonlinear Anisotropic Diffusion

By discretizing the diffusion equation, unknown uk+1
i,j can be explicitly computed:

uk+1
i,j −uki,j
τ

=div

((
a b

b c

)
∇u

)
=∂x(a∂xu+b∂yu)+∂y(b∂xu+c∂yu)

=
1

h1

(
ai+1,j+ai,j

2

ui+1,j−ui,j
h1

−ai,j+ai−1,j

2

ui,j−ui−1,j

h1

)
+

1

2h1

(
bi+1,j

ui+1,j+1−ui+1,j−1

2h2
−bi−1,j

ui−1,j+1−ui−1,j−1

2h2

)
+

1

2h2

(
bi,j+1

ui+1,j+1−ui−1,j+1

2h1
−bi,j−1

ui+1,j−1−ui−1,j−1

2h1

)
+

1

h2

(
ci,j+1+ci,j

2

ui,j+1−ui,j
h2

−ci,j+ci,j−1

2

ui,j−ui,j−1

h2

)

(A.16)

The explicit scheme can be expressed as a 3× 3 computation stencil on a 2D grid:

−bi−1,j−bi,j+1

4h1h2

ci,j+1+ci,j
2h22

bi+1,j+bi,j+1

4h1h2
ai−1,j+ai,j

2h21
−ai−1,j+2ai,j+ai+1,j

2h21
− ci,j−1+2ci,j+ci,j+1

2h22

ai+1,j+ai,j
2h21

bi−1,j+bi,j−1

4h1h2

ci,j−1+ci,j
2h22

−bi+1,j−bi,j−1

4h1h2

In order for the minimum-maximum principle to be respected a better non-

Mathematical Formulations Leading to a Discrete Explicit Scheme 123

negative stencil ([41]) is:

|bi−1,j+1|−bi−1,j+1

4h1h2

+
|bi,j |−bi,j

4h1h2

ci,j+1+ci,j
2h22

− |bi,j+1|+|bi,j |
2h1h2

|bi+1,j+1|+bi+1,j+1

4h1h2

+
|bi,j |+bi,j

4h1h2

ai−1,j+ai,j
2h21

− |bi−1,j |+|bi,j |
2h1h2

−ai−1,j+2ai,j+ai+1,j

2h21

− |bi−1,j+1|−bi−1,j+1+|bi+1,j+1|+bi+1,j+1

4h1h2

− |bi−1,j−1|+bi−1,j−1+|bi+1,j−1|−bi+1,j−1

4h1h2

+
|bi−1,j |+|bi+1,j |+|bi,j−1|+|bi,j+1|+4|bi,j |

2h1h2

− ci,j−1+2ci,j+ci,j+1

2h22

ai+1,j+ai,j
2h21

− |bi+1,j |+|bi,j |
2h1h2

|bi−1,j−1|+bi−1,j−1

4h1h2

+
|bi,j |+bi,j

4h1h2

ci,j−1+ci,j
2h22

− |bi,j−1|+|bi,j |
2h1h2

|bi+1,j−1|−bi+1,j−1

4h1h2

+
|bi,j |−bi,j

4h1h2

A.8 Discretization of the Diffusion-Reaction System

By discretizing the equation (3.24), unknown uk+1
i,j can be explicitly computed

(the approximation is implicit in bias/reaction term):

∂tu = div
(
Ψ′(|∇u|2)∇u

)
− u− f

α
(A.17)

uk+1
i,j − uki,j

τ
= div

(
Ψ′(|∇uk|2)∇uk

)
− uk+1 − f

α
(A.18)

uk+1
i,j =

uki,j + τ
(
div
(
Ψ′(|∇uk|2)∇uk

)
+ f

α

)(
1 + τ

α

) (A.19)

Depending on the form of the Ψ′ function, discretization proceeds as previously.

E.g. for homogeneous regularizer and penalizer Ψ(|∇u|2) = |∇u|2 and matching

Mathematical Formulations Leading to a Discrete Explicit Scheme 124

diffusivity Ψ′(|∇u|2) = 1, discretization proceeds as follows:

uk+1
i,j =

uki,j + τ
(

div
(
∇uk

)
+ f
α

)
(
1 + τ

α

) (A.20)

uk+1
i,j =

uki,j + τ
(
ukxx + ukyy + f

α

)
(
1 + τ

α

) (A.21)

uk+1
i,j =

uki,j + τ

(
uk
i+1,j−2uk

i,j+u
k
i−1,j

h2
1

+
uk
i,j+1−2uk

i,j+u
k
i,j−1

h2
2

+ f
α

)
(
1 + τ

α

) (A.22)

uk+1
i,j =

τf

α+ τ
+

uki,j + τ

(
uk
i+1,j−2uk

i,j+u
k
i−1,j

h21
+
uk
i,j+1−2uk

i,j+u
k
i,j−1

h2
2

)
(
1 + τ

α

) (A.23)

uk+1
i,j =

τf

α+ τ
+

(
1− 2 τ

h2
1
− 2 τ

h2
2

)
uki,j + τ

h2
1
uki+1,j + τ

h2
1
uki−1,j + τ

h22
uki,j+1 + τ

h22
uki,j−1(

1 + τ
α

)
uk+1
i,j =

τf

α+ τ
+

stencil uk(
1 + τ

α

) , (A.24)

with same 3× 3 computation stencil as before for linear isotropic diffusion
(Section 3.2):

0 τ
h22

0

τ
h21

1− 2 τ
h21
− 2 τ

h22

τ
h21

0 τ
h22

0

The process is a blending between a diffusion and an original image.

A.9 Discriminant Steered Energy Functional Re-
questing Similarity to the Original Vector Field

Euler-Lagrange equations corresponding to the energy functional (3.31) are as
follows:

0 = Fu − ∂xFux − ∂yFuy ,

0 = Fv − ∂xFvx − ∂yFvy .
(A.25)

Mathematical Formulations Leading to a Discrete Explicit Scheme 125

Using the notation:

F =
(
H
(
(u− uorig)2 + (v − vorig)2

)
+ αΨ

(
|∇u|2 + |∇v|2

))
,

Fu = 2H(u− uorig),

Fv = 2H(v − vorig),

Fux = 2αuxΨ
′ (|∇u|2 + |∇v|2

)
,

Fuy = 2αuyΨ
′ (|∇u|2 + |∇v|2

)
,

Fvx = 2αvxΨ
′ (|∇u|2 + |∇v|2

)
,

Fvy = 2αvyΨ
′ (|∇u|2 + |∇v|2

)
,

(A.26)

following equations are obtained:

0 = 2H(u−uorig)− 2α∂x
(
Ψ′
(
|∇u|2 + |∇v|2

)
ux
)
− 2α∂y

(
Ψ′
(
|∇u|2 + |∇v|2

)
uy
)
,

0 = 2H(v− vorig)− 2α∂x
(
Ψ′
(
|∇u|2 + |∇v|2

)
vx
)
− 2α∂y

(
Ψ′
(
|∇u|2 + |∇v|2

)
vy
)
,

(A.27)

which can be rewritten as:

0 =
H

α
(uorig − u) + div

(
Ψ′(|∇u|2 + |∇v|2)∇u

)
,

0 =
H

α
(vorig − v) + div

(
Ψ′(|∇u|2 + |∇v|2)∇v

)
.

(A.28)

By forming a diffusion-reaction system and discretizing the diffusion equations,
unknowns uk+1

i,j , vk+1
i,j can be explicitly computed (the approximation is implicit in

bias/reaction term):

∂tu =
H

α
(uorig − u) + div

(
Ψ′(|∇u|2 + |∇v|2)∇u

)
,

∂tv =
H

α
(vorig − v) + div

(
Ψ′(|∇u|2 + |∇v|2)∇v

)
,

(A.29)

uk+1
i,j − uki,j

τ
=
H

α
(uorig − uk+1

i,j) + div
(
Ψ′(|∇uk|2 + |∇vk|2)∇uk

)
,

vk+1
i,j − vki,j

τ
=
H

α
(vorig − vk+1

i,j) + div
(
Ψ′(|∇uk|2 + |∇vk|2)∇vk

)
,

(A.30)

Mathematical Formulations Leading to a Discrete Explicit Scheme 126

uk+1
i,j =

uki,j + τ
(
div
(
Ψ′(|∇uk|2 + |∇vk|2)∇uk

)
+ H

α
uorig

)(
1 + H

α
τ
) ,

vk+1
i,j =

vki,j + τ
(
div
(
Ψ′(|∇uk|2 + |∇vk|2)∇vk

)
+ H

α
vorig

)(
1 + H

α
τ
) .

(A.31)

A.10 Optic Flow

A minimizer of a 2D functional:

E(u, v) =

∫
F (x, y, u, v, ux, uy, vx, vy)dxdy (A.32)

necessarily satisfies the Euler-Lagrange equations:

0 = Fu − ∂xFux − ∂yFuy ,

0 = Fv − ∂xFvx − ∂yFvy .
(A.33)

After calculation following equations are obtained:

0 = div (V ′(∇u,∇v)∇u)− 1

2α
(fx(fxu+ fyv + ft)) ,

0 = div (V ′(∇u,∇v)∇v)− 1

2α
(fy(fxu+ fyv + ft)) .

(A.34)

Diffusion-reaction equations are then:

ut = div (V ′(∇u,∇v)∇u)− 1

2α
(fx(fxu+ fyv + ft)) ,

vt = div (V ′(∇u,∇v)∇v)− 1

2α
(fy(fxu+ fyv + ft)) .

(A.35)

Again, depending on the form of the V ′ function, discretization proceeds as
previously, e.g. for homogeneous regularizer and penalizer V(|∇u|2, |∇v|2) =

Mathematical Formulations Leading to a Discrete Explicit Scheme 127

|∇u|2 + |∇v|2 and matching diffusivity V ′(|∇u|2, |∇v|2) = 1:

uk+1
i,j − uki,j

τ
= div

(
∇uk

)
− 1

2α

(
fx(fxu

k + fyv
k + ft)

)
,

vk+1
i,j − vki,j

τ
= div

(
∇vk

)
− 1

2α

(
fy(fxu

k + fyv
k + ft)

)
.

(A.36)

Modified explicit scheme is then:

uk+1
i,j − uki,j

τ
= ukxx + ukyy −

1

2α

(
fx(fxu

k+1 + fyv
k + ft)

)
,

vk+1
i,j − vki,j

τ
= vkxx + vkyy −

1

2α

(
fy(fxu

k + fyv
k+1 + ft)

)
,

(A.37)

which is rewritten as:

uk+1
i,j − uki,j

τ
=

(
uki+1,j − 2uki,j + uki−1,j

h2
1

+
uki,j+1 − 2uki,j + uki,j−1

h2
2

)
− 1

2α

(
fx(fxu

k+1 + fyv
k + ft)

)
,

vk+1
i,j − vki,j

τ
=

(
vki+1,j − 2vki,j + vki−1,j

h2
1

+
vki,j+1 − 2vki,j + vki,j−1

h2
2

)
− 1

2α

(
fy(fxu

k + fyv
k+1 + ft)

)
.

(A.38)

Explicitly computing uk+1
i,j , v

k+1
i,j gives the following system of coupled diffusion

reaction equations:

uk+1
i,j =

stencil uk − 1
2α

(
fx(fyv

k + ft)
)

1 + 1
2α
fxfx

,

vk+1
i,j =

stencil vk − 1
2α

(
fy(fxu

k + ft)
)

1 + 1
2α
fyfy

.

(A.39)

where stencil is:

0 τ
h22

0

τ
h21

1− 2 τ
h21
− 2 τ

h22

τ
h21

0 τ
h22

0

Mathematical Formulations Leading to a Discrete Explicit Scheme 128

A.11 Range Flow

Euler-Lagrange equations are:

0 = Fu − ∂xFux − ∂yFuy ,

0 = Fv − ∂xFvx − ∂yFvy ,

0 = Fw − ∂xFwx − ∂yFwy .

(A.40)

After calculation the following equations are obtained:

0 = div (V ′(∇u,∇v,∇w)∇u)

− 1

α
(fx(fxu+ fyv + ft) + βgx(gxu+ gyv + w + gt)) ,

0 = div (V ′(∇u,∇v,∇w)∇v)

− 1

α
(fy(fxu+ fyv + ft) + βgy(gxu+ gyv + w + gt)) ,

0 = div (V ′(∇u,∇v,∇w)∇w)

− 1

α
(β(gxu+ gyv + w + gt)) .

(A.41)

Diffusion-reaction equations are then:

ut = div (V ′(∇u,∇v,∇w)∇u)

− 1

α
(fx(fxu+ fyv + ft) + βgx(gxu+ gyv + w + gt)) ,

vt = div (V ′(∇u,∇v,∇w)∇v)

− 1

α
(fy(fxu+ fyv + ft) + βgy(gxu+ gyv + w + gt)) ,

wt = div (V ′(∇u,∇v,∇w)∇w)

− 1

α
(β(gxu+ gyv + w + gt)) .

(A.42)

Mathematical Formulations Leading to a Discrete Explicit Scheme 129

Modified explicit scheme can be written as:

uk+1 =
stencil uk − τ

α

(
fxfyv

k + fxft + β(gxgyv
k + gxw

k + gxgt)
)

1 + τ
α

(fxfx + βgxgx)
,

vk+1 =
stencil vk − τ

α

(
fyfxu

k + fyft + β(gygxu
k + gyw

k + gygt)
)

1 + τ
α

(fyfy + βgygy)
,

wk+1 =
stencil wk − τ

α

(
β(gxu

k + gyv
k + gt)

)
1 + τ

α
β

,

(A.43)

where stencil is one of the stencils from sections on linear isotropic, non-linear
isotropic, and anisotropic diffusion (Section 3.2).

Mathematical Formulations Leading to a Discrete Explicit Scheme 130

Appendix B

Ensemble Range Flow of the Fluid
Data With Estimated Depth

Ensemble range flow is applied to the fluid data i.e. a video of an submerged oil
leek. Used video sequence contains color channels, but offers no information
about the depth in the scene. Depth information is necessary in order to estimate
the range flow. Classical approaches for acquiring the depth information include
using multiple cameras or other special equipment (e.g. Kinect), usually not used
when recording scenes such as e.g. underwater spills. This problem is solved by
estimating depth information from single images as proposed in [38], [40], [39].

The depth is estimated for the entire image, but the information about depth
is required only in flow areas. In order to achieve this, depth gradients are set to
zero when there is no change in spacial gradients between two consecutive frames.

131

Ensemble Range Flow of the Fluid Data 132

B.0.1 Estimating Depth From Single Monocular Images

Approach from Learning depth from single monocular images [38] was used to
estimate depth information necessary for range flow estimation.

Depth estimation from a single monocular image was done by utilizing a
supervised learning approach. Training set of images was used together with
their corresponding ground-truth depth maps. Note that the training was done
on outdoor scenery images. Depth of an image was predicted as a function of
the image. Discriminatively-trained Markov Random Field (MRF) was used
with incorporated multiscale local and global features of the image. Depths at
individual points and the relation between depths at different points are modeled.

(a) (b) (c)

Figure B.1: (a) Frame 10 of the input image set of an opaque submerged buoyant
jet. (b) Depth estimation of the frame 10 using the algorithm from [38]. (c)
Depth gradients are set to zero (blue) when there is no change in spacial gradients
between two consecutive frames.

Fig. B.1(b) shows the result of the algorithm. Since the information about
depth is required only in flow areas, depth gradients are set to zero when there
is no change in spacial gradients between two consecutive frames. Fig. B.1(c)

Ensemble Range Flow of the Fluid Data 133

shows the depth image with irrelevant depth gradients set to zero. The algorithm
is considering the closer objects to be darker.

Depth images were calculated by utilizing the MATLAB code ([22]) provided
by the authors of [38]. Obtained depth images, together with the input video
sequence, are used as an input for estimating the ensemble range flow of the data.

B.0.2 Results

The color coding used for the range flow estimation is depicted in Fig. 5.1(a).
Color coding for the depth component of the range flow is interpolated between
blue for backward and orange for forward movement.

500 frames of the opaque submerged buoyant jet are used for testing. The
fluid is assumed to have an inverted-cone-like shape. Left column of Figure B.2
shows the result of the ensemble optic flow. Middle column of Figure B.2 shows
the result of the uv-flow of the ensemble range flow. Right column of Figure
B.2 shows the result of the depth w-flow of the ensemble range flow. Upper
row shows only 4 iterations of the algorithm. Optic range flow (upper row, left)
and uv-flow of the ensemble range flow (upper row, middle) already exhibit the
predominant upward movement. w component of the ensemble range flow (upper
row, right) still shows the mixed forward-backward movement. Considering the
middle row of the image, uv-flow exhibits a predominant upward movement and
depth w-flow predominant forward movement as expected. Inputing the reversed
video sequence to the algorithm results in opposite movements (lower row).

To further improve such approaches, depth estimation algorithm from sin-
gle images should be developed for and trained on underwater scenes, or scenes
should be recorded with equipment capable of recording depth.

Ensemble Range Flow of the Fluid Data 134

Figure B.2: 500 frames of the opaque submerged buoyant jet are used for testing. Upper
row 4 iterations, middle and lower row 40 iterations. Upper and middle row are the result
for the forward moving sequence, lower row is the result for the sequence played back-
ward. Left column: Ensemble optic flow. Middle column: uv-flow from the ensemble
range flow. Right column: Depth w-flow from the ensemble range flow.

Acknowledgement 135

Acknowledgement

Many people contributed in various ways to the successful completion of this
thesis. I thank all of them.

I thank Jens-Malte Gottfried and his volunteers for recording gestures using
the Kinect device, Frank Lenzen for advice on range flow, Oliver Stengele for
helping with the implementation. I also thank my advisors for useful comments
and suggestions.

I am especially grateful to my parents, Danijela and Geza, who have always sup-
ported and encouraged me.

Acknowledgement 136

Affidavit
Hereby I confirm that this thesis has been written only by the undersigned and

without any assistance from third parties. Furthermore I confirm that no sources

have been used in the preparation of this thesis other than those indicated in the

thesis itself.

Dorotea Dudaš

Declaration of Consent
Herewith I agree that this thesis will be made available through the library of the

Computer Science Department. This consent explicitly includes both the printed,

as well as the electronic form. I confirm that the electronic and the printed version

are of identical content.

Dorotea Dudaš

Affidavit 138

List of Figures

1.1 Introduction. Vortices. 1

2.1 Analytical Vortex Examples. First order critical points in 2D linear
vector field. 9

2.2 Analytical Vortex Examples. Fold bifurcation. 11
2.3 Analytical Vortex Examples. 2D vector field from analytical function. 12
2.4 Analytical Vortex Examples. First order 3D critical points. 13
2.5 Analytical Vortex Examples. Helical vector field. 14
2.6 Analytical Vortex Examples. Circular helical vector field. 15
2.7 Analytical Vortex Examples. Helical vortex with dislocated core. . . 16
2.8 Real-Time Fluid Simulation. Advection of density through a vector

field. 18
2.9 Real-Time Fluid Simulation. Hodge decomposition. 20
2.10 Real-Time Fluid Simulation. Real-Time Fluid Simulation. 20
2.11 Real-Time Fluid Simulation. Trilinear interpolation of a vector field

cell. 21
2.12 Real-Time Fluid Simulation. CUDA grid. 24
2.13 Recorded Data. Microsoft Kinect device and obtained range data. . 26

3.1 Diffusion. Diffusion of a 2D image. 29
3.2 Vortex Preserving Diffusion. Color coded magnitude and arrow

plots of test vector fields. 34
3.3 Vortex Preserving Diffusion. Critical points of test vector fields. . . . 35
3.4 Vortex Preserving Diffusion. Swirling areas of test vector fields. . . . 36
3.5 Vortex Preserving Diffusion. Nonlinear isotropic diffusion process

with diffusivity (3.27). 37

139

List Of Figures 140

3.6 Vortex Preserving Diffusion. Resulting arrow plots. 38
3.7 Vortex Preserving Diffusion. Non-swirling areas of test vector fields

together with swirling areas edge. 38
3.8 Vortex Preserving Diffusion. Nonlinear isotropic diffusion process

with diffusivity (3.27) with additional blurring of the swirling
structure edges. 39

3.9 Vortex Preserving Diffusion. Resulting arrow plots. 40
3.10 Vortex Preserving Diffusion. Grayscale mapping of the discriminant

d of test vector fields. 41
3.11 Vortex Preserving Diffusion. Nonlinear isotropic diffusion process

with diffusivity (3.28). 41
3.12 Vortex Preserving Diffusion. Resulting arrow plots. 42
3.13 Vortex Preserving Diffusion. Critical points in the resulting flow fields. 43
3.14 Vortex Preserving Diffusion. Nonlinear isotropic diffusion process

with diffusivity (3.27). 44
3.15 Vortex Preserving Diffusion. Nonlinear isotropic diffusion process

with diffusivity (3.29). 44
3.16 Vortex Preserving Diffusion. Nonlinear isotropic diffusion process

with diffusivity (3.30). 45
3.17 Vortex Preserving Variational Processes. Minimization of the energy

functional (3.31). 47
3.18 Vortex Preserving Variational Processes. Minimization of the energy

functional (3.33). 48
3.19 Vortex Preserving Diffusion. Vortex preserving diffusion processes

based on discriminant d. 50
3.20 Vortex Preserving Diffusion. Vortex preserving diffusion processes

based on vortex core/region detection. 51
3.21 Vortex Preserving Variational Processes. Vortex preserving varia-

tional processes based on discriminant d. 51
3.22 Vortex Preserving Variational Processes. Vortex preserving varia-

tional processes based on discriminant d or vortex core detection. . 52

4.1 Vortex Extraction Methods. Vortex region extraction. 55

List Of Figures 141

4.2 Vortex Extraction Methods. A curve of minimal bending energy. . . 57
4.3 Vortex Extraction Methods. Interactive plane probe within a data set. 58
4.4 Vortex Extraction Methods. Minimal bending energy extraction of

the vortex core from a helical flow field. 59
4.5 Vortex Extraction Methods. Optimal length of the vortex core can-

didate. 59
4.6 Vortex Extraction Methods. Circular vortex core in a bent helical

flow field. Vortex rotating in a plane perpendicular neither to its
core, nor to the vorticity. 60

4.7 Vortex Extraction Methods. Vortex core extraction from hurricane
Isabel data set, simulated cavity flow and flow behind a cylinder. . 60

4.8 Vortex Extraction Methods. Vortex core extraction with eigenvector
method. 61

4.9 Vortex Extraction Methods. Extraction of the linear vortex core seg-
ment within a single tetrahedron using the eigenvector method. . . 62

4.10 Vortex Extraction Methods. Reduced velocity is a projection of the
velocity to a plane perpendicular to the only real eigenvector. . . . 63

4.11 Stationary Flow PVO on the GPU. Dividing a cell into tetrahedrons. . 70
4.12 Stationary Flow PVO on the GPU. Close up view of the vortex cores

extracted from a helical flow field by using the PVO algorithm. . . 72
4.13 Stationary Flow PVO on the GPU. Close up view of the vortex cores

extracted from a bent helical flow field by using the PVO algorithm. 73
4.14 Stationary Flow PVO on the GPU. Vortex core extraction from var-

ious flow fields using eigenvector method via PVO implemented
in OpenCL. 74

4.15 Stationary Flow PVO on the GPU. Vortex cores extracted from
paused real-time simulated flow data using eigenvector method
via PVO. 75

4.16 Stationary Flow PVO on the GPU. Vortex cores extracted using the
higher order method via PVO. 76

4.17 Real-Time Flow Vortex Extraction. Interactive real-time flow simu-
lation. 77

List Of Figures 142

4.18 Real-Time Flow Vortex Extraction. Using a nonlinear isotropic dif-
fusion within the flow simulation. 78

4.19 Real-Time Flow Vortex Extraction. Comparison of the PVO extrac-
tion from data produced within the real-time simulation and out-
side of it. 81

4.20 Real-Time Flow Vortex Extraction. Real-time simulation of vorticity
threshold vortex extraction. 82

4.21 Real-Time Flow Vortex Extraction. Real-time simulation of Q crite-
rion vortex extraction. 83

4.22 Real-Time Flow Vortex Extraction. Real-time simulation of λ2 crite-
rion vortex extraction. 84

4.23 Real-Time Flow Vortex Extraction. Real-time simulation of Q crite-
rion and λ2 criterion vortex extraction. 85

4.24 Real-Time Flow Vortex Extraction. Real-time simulation of the
eigenvector method via PVO vortex extraction. 86

4.25 Real-Time Flow Vortex Extraction. Real-time simulation of the
eigenvector method via PVO vortex extraction (2). 86

4.26 Real-Time Flow Vortex Extraction. Real-time simulation of the
eigenvector method via PVO and Q criterion vortex extraction. . . 87

4.27 Real-Time Flow Vortex Extraction. Real-time simulation of the
eigenvector method via PVO and λ2 criterion vortex extraction. . . 88

4.28 Real-Time Flow Vortex Extraction. Real-time simulation of the
coplanar vectors operator vortex extraction. 88

4.29 Real-Time Flow Vortex Extraction. Real-time simulation of the par-
allel vectors operator and coplanar vectors operator vortex extrac-
tion. 89

5.1 Range and Optic Flow. Input pair of color images for optic flow and
resulting color coded magnitude of the estimated flow. 94

5.2 Range and Optic Flow. Calibrated input pair of depth images ob-
tained by the Kinect device. 94

5.3 Correction of Range Flow Computation. Magnitude of the resulting
range flow estimate with invalid areas included in input data. . . . 96

List Of Figures 143

5.4 Correction of Range Flow Computation. Thresholded derivative mag-
nitudes of the depth channel. 96

5.5 Correction of Range Flow Computation. Combined local-global
range flow with invalid depth areas removed prior to estimation. . 97

5.6 Correction of Range Flow Computation. Combined local-global
range flow of the office scene with invalid depth areas kept and
removed prior to estimation. 100

5.7 Correction of Range Flow Computation. Arrow plots of the resulting
depth flow. 100

5.8 Gesture Ensemble Range Flow Vortex Detection. Gestures. 102
5.9 Gesture Ensemble Range Flow Vortex Detection. Optic flow between

two gesture frames. 103
5.10 Gesture Ensemble Range Flow Vortex Detection. Ensemble flow of

the infinity gesture. 104
5.11 Gesture Ensemble Range Flow Vortex Detection. Ensemble flows of

the gestures. 105
5.12 Gesture Ensemble Range Flow Vortex Detection. Detecting vortices

of the ensemble range flow. 106
5.13 Gesture Ensemble Range Flow Vortex Detection. Vortex detection of

the ensemble range flows of the gestures. 107
5.14 Gesture Ensemble Range Flow Vortex Detection. Filtering out the

steep foci critical points from the result. 108
5.15 Gesture Ensemble Range Flow Vortex Detection. Filtering out the

steep foci critical points from the result (2). 108
5.16 Gesture Ensemble Range Flow Vortex Detection. Summing up of the

magnitude of the flow through every x and y coordinate produces
a histogram-like graph. 109

5.17 Gesture Ensemble Range Flow Vortex Detection. Graphs (and PCA
reconstructions) for the circle and infinity gestures. 110

5.18 Gesture Ensemble Range Flow Vortex Detection. Vortex preserving
diffusion of the ensemble range flow. 111

List Of Figures 144

6.1 Future Work. Fluid-object interaction. Butterfly flapping its wings
within a real-time fluid simulation. 114

B.1 Ensemble Range Flow of the Fluid Data With Estimated Depth. Esti-
mating depth from single images of a submerged buoyant jet. . . . 132

B.2 Ensemble Range Flow of the Fluid Data With Estimated Depth. Result-
ing ensemble optic flow of a opaque submerged buoyant jet. . . . 134

List of Tables

4.1 Stationary Flow PVO on the GPU. Choice of the underlaying struc-
ture of the cell used for calculation results in different number of
triangles to be processed by the algorithm. 71

4.2 Stationary Flow PVO on the GPU. Vortex core extraction from a heli-
cal flow field via eigenvector method (PVO) using different num-
bers of triangles per cells. 72

4.3 Stationary Flow PVO on the GPU. Vortex core extraction from a bent
helical flow field via eigenvector method (PVO) using different
numbers of triangles per cells. 73

145

List Of Tables 146

Bibliography

[1] J. Batlle, E. Mouaddib, and J. Salvi. Recent progress in coded structured
light as a technique to solve the correspondence problem: a survey. Pat.
Recog., 31(7):963–982, 1998.

[2] A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck:
Combining local and global optic flow methods. Int. J. of Comp. Vis.,
61:211–231, 2005.

[3] Guoning Chen, Konstantin Mischaikow, Robert S. Laramee, Pawel Pilar-
czyk, and Eugene Zhang. Vector field editing and periodic orbit extraction
using morse decomposition. IEEE Transactions on Visualization and Com-
puter Graphics, 13(4):769–785, July 2007.

[4] Chris Tangey, stilltalkincrazy.
http://www.youtube.com/.

[5] J.P. Den Hartog. Strength of Materials. Dover, New York, 1949.

[6] V. Dousset and A. Pothérat. Formation mechanism of hairpin vortices in the
wake of a truncated cylinder in a duct. J. Fluid Mech., 653:519–536, 2010.

[7] D. Dudas. Vortex core extraction of 3d vector fields based on minimal bend-
ing energy. Masters Thesis, University of Saarland, Max Planck Institute for
Computer Science, 2008.

[8] A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology
of 3d vector fields. Proceedings of IEEE Visualization ’91, pages 33–39,
October 1991.

[9] J.-M. Gottfried, J. Fehr, and C. S. Garbe. Computing range flow from multi-
modal Kinect data. 7th International Symposium on Visual Computing (ISVC
2011), 2011.

[10] S. Hadfield and R. Bowden. Kinecting the dots: Particle based scene flow
from depth sensors. In ICCV 2011, 2011.

147

Bibliography 148

[11] G. Haller. An objective definition of a vortex. J. Fluid Mech., 525:1–26,
2005.

[12] B. K. P. Horn and B. G. Schunck. Determining optical flow. AI, 17:185–203,
1981.

[13] B.K.P. Horn. The curve of least energy. ACM Transactions on Mathematical
Software, 9(4):441–460, December 1983.

[14] J. C. R. Hunt, A. Wray, and P. Moin. Eddies, stream, and convergence zones
in turbulent flows. Center for Turbulence Research Report CTR-S88, 1988.

[15] T. Iijima. Basic theory on normalization of pattern (in case of typical one-
dimensional pattern) (in japanese). Bulletin of the Electrotechnical Labora-
tory, 26:368–388, 1962.

[16] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard
Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Free-
man, Andrew Davison, and Andrew Fitzgibbon. Kinectfusion: real-time 3d
reconstruction and interaction using a moving depth camera. In Proceedings
of the 24th annual ACM symposium on User interface software and technol-
ogy, UIST ’11, pages 559–568, 2011.

[17] J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid
Mechanics, (285):69–94, 1995.

[18] Eva Kollorz, Jochen Penne, Joachim Hornegger, and Alexander Barke. Ges-
ture recognition with a time of flight camera. Int. J. Intell. Syst. Technol.
Appl., 5(3/4):334–343, November 2008.

[19] Leap Motion.
http://leapmotion.com/.

[20] Antoine Letouzey, Benjamin Petit, and Edmond Boyer. Surface Flow from
Depth and Color Images. In British Machine Vision Conference, Dundee,
Royaume-Uni, August 2011.

[21] Mathematica. Wolfram Research Inc., Champaign, Illinois, 2010.

[22] MATLAB. The MathWorks, Inc., Natic, Massachusetts, 2010.

[23] Mercedes-Benz Museum, Stuttgart, Germany.
http://www.mercedes-benz-classic.com.

Bibliography 149

[24] Microsoft Kinect.
http://www.xbox.com/en-GB/KINECT.

[25] Mitchell County Press News.
http://globegazette.com/mcpress/.

[26] H. P. Moreton. Minimum Curvature Variation Curves, Networks, and Sur-
faces for Fair Free-Form Shape Design. PhD thesis, Uinversity of California
at Berkeley, 1992.

[27] Renata Nascimento, Joo Paixo, Hlio Lopes, and Thomas Lewiner. Topol-
ogy aware vector field denoising. In Sibgrapi 2010 (XXIII Conference on
Graphics, Patterns and Images), pages 103–109, August 2010.

[28] OpenCL 1.2 Reference Pages.
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/.

[29] ParaView - Open Source Scientific Visualization.
http://www.paraview.org/.

[30] R. Peikert and M. Roth. A higher-order method for finding vortex core lines.
Proceedings of IEEE Visualization ’98, pages 143–150, 1998.

[31] R. Peikert and M. Roth. The “parallel vectors” operator - a vector field
visualization primitive. Proceedings of IEEE Visualization 2000, pages 263–
270, 2000.

[32] Pietro Perona and Jitendra Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12:629–639, 1990.

[33] A.E. Perry and H. Hornung. Some aspects of three-dimensional separation,
part 2: Vortex skeletons. Z.Flugwiss, Weltraumforsh. 8, Heft 3, pages 155–
160, 1984.

[34] C. Rabe, T. Müller, A. Wedel, and U. Franke. Dense, robust, and accurate
motion field estimation from stereo image sequences in real-time. In ECCV
2010, pages 582–595, 2010.

[35] M. Raffel, C. Willert, S. Wereley, and J. Kompenhans. Particle image ve-
locimetry: A practical guide. Springer Verlag 2nd Edition, 2007.

[36] Jan Reininghaus, Christian Lowen, and Ingrid Hotz. Fast combinatorial
vector field topology. IEEE Transactions on Visualization and Computer
Graphics, 17:1433–1443, 2011.

Bibliography 150

[37] M. Roth and R. Peikert. Flow visualization for turbomachinery design. Proc.
IEEE Visualization, pages 381–384, 1996.

[38] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from single monoc-
ular images. Neural Information Processing Systems (NIPS) 18, 2005.

[39] A. Saxena, S. H. Chung, and A. Y. Ng. 3-D depth reconstruction from a
single still image. International Journal of Computer Vision (IJCV), 2007.

[40] A. Saxena, M. Sun, and A. Y. Ng. Learning 3-D scene structure from a
single still image. ICCV workshop on 3D Representation for Recognition
(3dRR-07), 2007.

[41] Hanno Scharr and Joachim Weickert. An anisotropic diffusion algorithm
with optimized rotation invariance. In In Mustererkennung 2000, Proceed-
ings from 22. DAGM-symposium, pages 460–467. Springer, 2000.

[42] C. Schnörr. Segmentation of visual motion by minimizing convex non-
quadratic functionals. In 12th Int. Conf. on Patt. Rec., Israel, 1994.

[43] T. Schuchert, T. Aach, and H. Scharr. Range flow in varying illumina-
tion: Algorithms and comparisons. Patt. Analysis and Machine Intelligence,
32(9):1646 –1658, 2010.

[44] H. Spies, B. Jähne, and J. Barron. Range flow estimation. Comp. Vis. and
Image Understanding, 85(3):209–231, 2002.

[45] Karsten Staack and Christoph Sebastian Garbe. Ensemble Optical Flow. In
Flucome 2011, Keelung, Taiwan, pages 1–9, August 2011.

[46] Jos Stam. Stable fluids. In Proceedings of SIGGRAPH 99, Computer Graph-
ics Proceedings, Annual Conference Series, pages 121–128, August 1999.

[47] D. Sujudi and R. Haimes. Identification of swirling flow in 3d vector fields.
12th AIAA CFD Conference, pages AIAA Paper 95–1715, June 1995.

[48] The Visualization ToolKit.
http://public.kitware.com/VTK/.

[49] H. Theisel and H.-P. Seidel. Feature flow fields. Proc. Fifth Joint IEEE
VGTC Eurographics Symp. Visualization (VisSym), 2003.

[50] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. Three-dimensional
scene flow. In CV 1999, pages 722 –729 vol.2, 1999.

Bibliography 151

[51] P. Vuylsteke and A. Oosterlinck. Range image acquisition with a single
binary-encoded light pattern. IEEE Trans. Pat. Anal. Mach. Int., 12(2):148–
164, 1990.

[52] J. Weickert. Anisotropic Diffusion in Image Processing. PhD thesis, Teubner,
Stuttgart, 1998.

[53] Joachim Weickert. Coherence-enhancing diffusion filtering. Int. J. Comp.
Vis., 31:111–127, 1999.

[54] Joachim Weickert and Christoph Schnörr. A theoretical framework for con-
vex regularizers in pde-based computation of image motion. Int. J. Com.
Vis., 45:245–264, 2001.

[55] T. Weinkauf, J. Sahner, H. Theisel, and H.-C. Hege. Cores of swirling par-
ticle motion in unsteady flows. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1759–1766, 2007.

[56] Andrew P. Witkin. Scale-space filtering. In Proceedings of the Eighth in-
ternational joint conference on Artificial intelligence - Volume 2, IJCAI’83,
pages 1019–1022, 1983.

