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1. Summary 

Cell migration is not only crucial for a range of physiological processes, such as embryonic 

development or wound healing, but also a major determinant for pathological processes, 

including cancer dissemination and metastasis. Cancer cell migration relies on two 

coordinated and interdependent functions, adhesion and proteolysis. While cell adhesion 

receptors of the integrin family orchestrate interactions between cells and the extracellular 

matrix (ECM), matrix metalloproteinases (MMPs) degrade matrix barriers and subsequently 

create space for cell movement. Most studies on cancer cell migration are based on two model 

systems: collagen gels and reconstituted basement membrane extracts. The ECM however, is 

a highly complex structure that consists of several components whose function and 

contribution to cell migration in physiological and pathological conditions is still poorly 

understood. Hence, new model systems are required to gain a more profound understanding 

about the interactions between tumor cells and their microenvironment, which in turn drive 

malignancy. Accordingly, fibronectin (FN), an adhesive fibrillar ECM protein, came into 

focus, since its expression levels are upregulated in several tumors and it has been associated 

with the formation of premetastatic niches. In this thesis, cell migration of human 

fibrosarcoma cells was investigated in two-dimensional (2D) and three-dimensional (3D) FN 

environments. In 2D environments, FN molecules in their globular form were physisorbed 

onto surfaces to form a thin, homogenous layer. 3D environments were assembled via a cell-

driven process leading to the formation of fibrillar FN networks. Cell migration behavior in 

these two types of FN environments was examined using integrin blocking approaches and 

FN cell-binding site mutation. Here, it was demonstrated that on 2D FN coatings, cell 

migration is strongly dependent on α5β1 integrin, whereas within 3D FN matrices neither α5β1 

nor αvβ3 mediate cancer cell migration. Furthermore, the impact of proteolytic activity on 

cancer cell migration within both FN environments was investigated. The results of this thesis 

suggest that general inhibition of MMPs does not influence fibrosarcoma cell migration on 

FN, regardless of its topography. However, as demonstrated by RNA interference, silencing 

of a membrane-type MMP, namely MT1-MMP, had opposite effects on cancer cell migration 

behavior in both FN environments. Depletion of MT1-MMP on 2D FN resulted in reduced 

migration speed and loss of directionality through inactivation of cofilin activity, which is 

associated with reduced actin dynamics. On 3D FN matrices, migration speed and cofilin 

activity was increased upon MT1-MMP silencing.  
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Since cancer cells are able to switch between proteolysis-driven and actomyosin-based 

migration modes, the influence of the myosin II inhibitor blebbistatin on cancer cell 

locomotion was further investigated. In this thesis, fibrosarcoma cell migration in 3D fibrillar 

FN was highly dependent on myosin II contractility, whereas blebbistatin treatment did not 

influence the migratory behavior on 2D FN coatings. Therefore, cell migration on both 

substrates showed remarkable differences regarding adhesion, protease activity and myosin II 

mediated contractility. 

These results highlight the importance of substrate topography for regulating cell migration 

and the need for more physiological model systems to investigate cancer cell migration. They 

further suggest that targeting of matrix molecules, rather than cellular receptors or proteolytic 

enzymes, is a promising approach to inhibit metastatic processes. 



Zusammenfassung 

8 

 

 

2. Zusammenfassung 

Zellmigration ist nicht nur ein essentieller Vorgang für eine Vielzahl biologischer Prozesse, 

wie der Embryonalentwicklung oder der Wundheilung, sondern auch ein bestimmender 

Faktor pathologischer Prozesse, wie etwa der Ausbreitung von Krebs oder der 

Metastasierung. Krebszellmigration beruht auf zwei aufeinander abgestimmten, 

ineinandergreifenden Vorgängen, der Adhesion und der Proteolyse. Während 

Zelladhäsionsrezeptoren der Integrinfamilie die Interaktionen zwischen Zellen und der 

extrazellulären Matrix regulieren, bauen Matrixmetalloproteinasen Matrixbarrieren ab und 

schaffen somit den notwendigen Raum für die Zellmigration. Die meisten Studien, die sich 

mit Zellmigration beschäftigen, basieren auf zwei Modellsystemen: Kollagengelen oder 

Basalmembranextrakten. Die extrazelluläre Matrix ist jedoch eine hoch komplexe Struktur, 

die aus vielen unterschiedlichen Komponenten aufgebaut ist. Funktionen und Einfluss dieser 

Komponenten auf die Zellmigration unter physiologischen und pathologischen Bedingungen 

sind noch wenig verstanden. Aus diesem Grund werden neuartige Modellsysteme benötigt, 

mit deren Hilfe man ein tieferes Verständnis über diejenigen Interaktionen zwischen 

Tumorzellen und ihrem Mikromilieu gewinnt, welche die Malignität fördern. Hierbei rückte 

Fibronektin, ein adhesives fibrilliäres Protein der extrazellulären Matrix, in den Fokus, da 

dessen Expression in vielen Tumoren hochreguliert ist und es die Bildung von 

prämetastatischen Nischen induzieren kann. In dieser Doktorarbeit wurde das 

Migrationsverhalten von Fibrosarkomzellen sowohl in einer zweidimensionalen als auch in 

einer dreidimensionalen Fibronektinmikroumgebung untersucht. Die zweidimenionale 

Mikroumgebung wird durch Physisorption globulärer Fibronektinmolekülen auf geeigneten 

Oberflächen als homogener Film hergestellt. Die dreidimensionale Mikroumgebung 

hingegen, besteht aus einem fibrillären Fibronektinnetzwerk, welches durch zellgesteuerte 

Prozesse gebildet wird. Durch Blockieren von Integrinen und Mutation der 

Fibronektindomäne welche die Interaktion mit Zellen ermöglicht, wurde das 

Zellmigrationsverhalten auf beiden Mikroumgebungen untersucht. Dabei konnte gezeigt 

werden, dass Zellmigration auf Fibronektinfilmen stark von Integrin α5β1 abhängig ist, 

während Zellen zur Migration innerhalb des Fibronektinnetzwerkes weder Intergin α5β1 noch 

Integrin αvβ3 benötigen. Darüber hinaus wurde der Einfluss von proteolytischer Aktivität auf 

die Krebszellmigration untersucht. 
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Die Ergebnisse dieser Arbeit legen nahe, dass eine generelle Inhibition von 

Matrixmetalloproteinasen das Migrationsverhalten von Fibrosarkomzellen nicht beeinflusst 

und zwar unhabhängig von der Beschaffenheit der angebotenen Fibronektinmikroumgebung. 

Interessanterweise konnte durch RNA Interferenz gezeigt werden, dass eine Membran-

assoziierte Metalloproteinase, nämlich MT1-MMP, einen entgegengesetzten Einfluss auf die 

Zellmigration innerhalb beider Mikroumgebungen ausübt. Auf den Fibronektinfilmen führte 

die Herunterregulierung der MT1-MMP Expression zu einer Verminderung der 

Migrationsgeschwindigkeit und dem Verlust von gerichteter Zellmigration. Diesem 

Phänomen liegt eine Inaktivierung von Cofilin zugrunde, die wiederum eine reduzierte 

Aktindynamik zur Folge hat. Auf den fibrillären Fibronektinnetzwerken erhöhte sich die 

Migrationsgeschwindigkeit durch entsprechende Steigerung der Cofilinaktivität, infolge der 

MT1-MMP Stilllegung. 

Da Krebszellen zwischen proteolytisch-gesteuerter und aktinmyosin-basierter Zellmigration 

umschalten können, wurde der Einfluss des Myosin II Inhibitors Blebbistatin auf die 

Krebszellmigration untersucht. Es konnte gezeigt werden, dass die Migration von 

Fibrosarkomzellen auf dreidimensionalen Fibronektinnetzwerken stark von Myosin II 

abhängig ist. Im Gegensatz dazu, wurde das Zellmigrationsverhalten auf zweidimensionalen 

Fibronektinfilmen durch die Behandlung mit Blebbistatin nicht beeinflusste. Demnach konnte 

hier gezeigt werden, dass die Zellmigration auf den beiden Fibronektinmikroumgebungen 

bemerkenswerte Unterschiede hinsichtlich Zelladhesion, proteolytischer Aktivität und 

Myosin II vermittelter Kontraktilität aufweist. 

Die Ergebnisse dieser Arbeit verdeutlichen, welche Bedeutung die Substrattopographie für 

Regulierung von Zellmigration hat und dass neue physiologischere Modellsysteme zur 

Erfoschung von Krebszellmigration benötigt werden. Sie legen weiterhin nahe, dass die 

direkte Manipulation von Matrixmolekülen und weniger von proteolytischen Enzymen oder 

zellulären Rezeptoren, ein vielversprechender Ansatz ist Metastasierung erfolgreich zu 

inhibieren. 
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3. Introduction 

After cardiovascular diseases, cancer is the second most common cause of human deaths in 

industrial nations [1, 2]. In fact, every third person falls victim to this disease [3]. In the EU, it 

accounted for 166.9 deaths per 100,000 inhabitants in the years between 2000 and 20101. 

Since there is a strong correlation between age and cancer risk, aging of the European 

population will lead to a strong increase in cancer incidences and death rates [4]. Accordingly, 

almost every second person will be diagnosed with cancer during their life-time [1]. Despite 

many discoveries made in cell and molecular biology so far, the development of potent anti-

cancer drugs shows one of the poorest clinical success rates [5, 6]. These difficulties in anti-

cancer drug development originate from the complexity and heterogeneity of this disease. In 

the following chapter, the current state of cancer research and current challenges for basic 

research are discussed. 

 

 

3.1 Cancer – a complex disease 

The human body consists of billions of cells forming multiple tissues with diverse functions. 

Under physiological conditions, tissues are in homeostasis whereby cells proliferate only 

when necessary and undergo apoptosis when they are either not needed anymore or show 

signs of genomic damage beyond repair. These processes are controlled by complex cellular 

mechanisms. Over time, cells may acquire mutations that overcome regulatory control 

processes resulting in the transformation of normal cells into tumor cells. Usually, 

transformed cells first form benign tumors which may later progress into malignant neoplasm 

through additional genomic alterations. Depending on their genotype and origin, cancers can 

be classified into more than 100 distinct types and tumor subtypes [7, 8]. In fact, even within 

a single carcinoma, genetic alterations and phenotypes may vary from cell to cell [8], 

suggesting that there might be no two tumors alike. This heterogeneity impedes not only 

diagnosis but also the development of generalized potent anti-cancer therapies. 

Hanahan and Weinberg suggest that genomic instability and mutations enable cancer cells to 

acquire a specific set of capabilities which are essential for tumor growth and cancer 

progression [7, 9]. These so-called hallmarks of cancer (figure 1) help categorizing the vast 

amount of tumor promoting genomic alterations and provide a common framework for tumor 

                                                           
1
 http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Causes_of_death_statistics 
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biology. According to this, cancer cells not only need to sustain proliferative signals and 

inhibit growth suppression, but also have to evade cell death and gain a limitless replicative 

potential to survive. In addition, cancer cells have to be able to induce angiogenesis to sustain 

the supply of oxygen and nutrients within the tumor. Furthermore, malignant cancer cells 

acquire the ability of invasion and formation of metastases at distant sites. Beside these six 

well established capabilities characterizing cancer cells, two new hallmarks have emerged in 

the past few years [9]. First, cancer cells often adjust their metabolism to provide enough 

energy for sustained cell proliferation. Second, cancer cells develop mechanisms to evade 

eradication by immune cells. The immune system does not only fight cancer cells, on the 

contrary, especially cells of the innate immune response show tumor-promoting abilities. 

While inducing inflammation in the tumor tissue, immune cells excrete a variety of molecules 

including growth factors, survival factors, proangiogenic factors as well as proteolytic 

enzymes, such as matrix metalloproteinases (MMPs), that remodel the tumor 

microenvironment enabling angiogenesis, invasion and metastasis [10]. In doing so, immune 

cells contribute to the acquisition of hallmark capabilities [9]. 

 
Figure 1: Hallmarks of cancer (adapted from [9]) 

Enabling characteristics (indicated as pentagons) allow cancer cells to acquire a specific set of abilities, the so-
called “hallmarks” of cancer, which are crucial for malignancy. Each hallmark can be obtained through various 
mechanisms and thus represents a mean to categorize the vast amount of cellular alterations present in cancer. 
Established hallmarks (indicated as rectangles) describe validated abilities that can be attributed to each 
carcinosis, whereas emerging hallmarks (indicated as ellipses) are not yet generalized and need to be further 
evaluated. 
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3.2 Metastasis 

The actual death of cancer patients is mainly caused by metastases [8, 11]. Accordingly, 

inhibition of metastasis is a promising strategy for reducing cancer-associated deaths. 

Metastasis is a multistep process through which cancer cells disseminate from the primary 

tumor to some distal tissue [9, 11] (figure 2). 

 

 

Figure 2: Scheme of the metastatic process [12] 

Transformation of epithelial cells is characterized through detachment of cells from the epithelium and the 
formation of a carcinoma in situ. After breaching the basement membrane, tumor cells invade the local stroma, 
enter the blood or the lymph system and circulate until arrest in small capillaries of distant tissues occurs. Here, 
they extravasate into the local stroma and eventually colonize. 
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More than 80 % of human cancers originate within the epithelium [13]. In this case, tumor 

cells first need to breach the basement membrane to be able to invade the surrounding tissue 

[9, 11, 12]. Subsequently, they enter the blood circulatory system directly via blood vessels or 

indirectly through the lymphatic system, a process called “intravasation”. The blood flow 

carries cancer cells to nearby organs where they are arrested in small capillaries by size 

restriction and subsequent extravasate in the local parenchyma. These steps are performed 

with high efficiency, as most of the invading cancer cells successfully reach secondary sites 

[11]. 

However, only a small percentage of these cells is able to form micrometastases and even 

fewer persist to progress into vascularized macrometastases [14, 15], a process termed 

“colonization”. The inefficient formation of solid tumors at secondary sites is based on the 

different microenvironments cancers cells are exposed to. Different tissues show specific 

extracellular as well as cellular compositions with distinct proteomic expression patterns. 

Hence, the mechanisms cancer cells acquired for surviving at primary sites might be 

ineffective at their new location. As such, metastases formation only occurs if the cancer cell 

obtains hallmark abilities that ensure its survival at the new site [16] and if the 

microenvironment favors tumor cell proliferation [11]. 
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3.3 The tumor microenvironment 

The metastatic process depends on more than genetic alterations in malignant tumor cells 

[17]. In fact, cancer can be referred to as a complex tissue which contains, in addition to 

neoplastic cells, various non-malignant cell types, secreted molecules (such as MMPs) and 

non-cellular structures (such as fibrillar ECM proteins). These components form the so-called 

“tumor microenvironment”. In the following paragraphs, the contribution of non-neoplastic 

cells and of the ECM to malignant progression, are discussed. 

 

3.3.1 Non-neoplastic cells 

Normal cells in the body are recruited by cancer cells to participate in tumorigenesis [7, 9]. As 

mentioned in paragraph 3.1, some immune cells are involved in cancer progression, causing 

tumor promoting inflammation. In addition, endothelial cells are stimulated to form new 

blood vessels to supply the growing tumor mass with oxygen and nutrients and recycle 

metabolic waste products [18]. In contrast to normal blood vessels, which are formed by a 

monolayer of tightly connected endothelial cells, tumor vasculature shows a defective 

endothelial monolayer with intercellular openings and transcellular holes [19]. This leakiness 

of tumor vasculature facilitates cancer cell intravasation as well as immune cell infiltration 

and subsequent cancer progression. Another cell type found in multiple carcinomas is the 

fibroblastic cell type [9]. By secreting diverse components of the ECM as well as MMPs, 

cancer-associated fibroblasts (CAFs) form the stroma of many malignant tumors and thus 

promote tumorigenesis. 

 

3.3.2 The ECM in cancer 

The ECM is a crucial regulator of organ homeostasis and function [20]. Hence, its production, 

degradation and remodeling is tightly regulated [21]. In cancer patients, ECM dynamics are 

disturbed, promoting tumor growth and dissemination [13]. As mentioned above, MMPs are 

key players in matrix remodeling (for more information on MMPs see 3.7). Their expression 

is highly upregulated in almost every tumor [22, 23], leading to destruction of the healthy 

ECM and its subsequent replacement by a microenvironment that favors tumor cell 

proliferation and promotes malignancy [13]. Accordingly, deposition of the ECM components 

collagen and fibronectin (FN) by CAFs is increased in malignant tissue [24]. Another 

common ECM alteration is the enhanced stiffness of the tumor stroma in comparison to 

healthy tissue, which can be elevated up to ten-fold in the case of breast cancer [25-27]. It has 
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been shown recently, that these changes in the physical properties of the ECM are already 

present in pre-malignant tissue and drive malignancy [27]. The increased stiffness is mainly 

caused by enhanced crosslinking of collagen through lysyl oxidases and subsequent 

linearization of collagen fibers [27]. This increase in tissue stiffness leads to clustering of cell 

adhesion receptors of the integrin family [28] (introduced in 3.6). Integrin clustering 

accompanied by increased mechanotransduction enables cell migration, (discussed in 3.9) 

which is crucial for metastasis. 

Moreover, the ECM surrounding tumor blood vessels, the so-called basement membrane, is 

more porous and fragmentary than in healthy vasculature [29], contributing to leakiness of 

tumor blood vessels. Interestingly, remodeling of the ECM is not only a local phenomenon. In 

fact it has been observed recently, that yet unidentified growth factors excreted by different 

tumor cell lines (LLC and B16 cells) implanted in mice led to enhanced deposition of FN at 

distant sites, initiating the formation of pre-metastatic niches [30, 31]. The location of these 

pre-metastatic niches shows a tumor-specific distribution pattern, suggesting that each tumor 

synthesizes its own set of soluble factors that acts only in specific tissues. Hence, tumors 

actively create sites for future formation of metastases. 

In contrast, there is some evidence that cancer cells might be restored to a normal phenotype 

if their surrounding ECM is manipulated accordingly [32]. 

For the development of new anti-cancer drugs, it will be important to gain a better 

understanding on how the tumor microenvironment, in particular the ECM, influences cancer 

progression and tumor invasion during metastasis. 
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3.4 Composition and function of the ECM 

Since the ECM is a crucial determinant of tumorigenesis, more information on its function 

and composition within healthy tissue is presented in the following paragraphs. 

Within tissues, cells are surrounded by a complex, insoluble network of various 

macromolecules that form the ECM [33, 34]. The ECM provides the structural support for 

tissues and plays a pivotal role for mediating signals that regulate cell fate [20, 33, 34] 

(figure 3). Such signals are transmitted through different mechanisms. First, cells can interact 

with ECM components via specific receptors such as integrins that induce cell adhesion and 

signal transduction. Depending on the tissue type, the ECM is composed of a different set of 

molecules with distinct physical, biochemical and mechanical properties. In fact, even within 

tissues the ECM is constantly remodeled to ensure organ function [35]. Cell adhesion 

receptors mediate ECM characteristics inside the cell and induce the appropriate molecular 

responses. A second mechanism is based on the interaction of cells with soluble growth 

factors. Their distribution, activity and availability are regulated by ECM components which 

bind these factors and enzymes such as MMPs that release these molecules. Hydrolyzed ECM 

fragments generated by proteases provide further signaling cues. 

 
Figure 3: ECM functions [18] 
This scheme provides an overview of the diverse ECM functions which are based on its physical, biochemical 
and mechanical properties. Accordingly, it provides an anchorage site for epithelial cells (1). Depending on the 
context, the ECM functions either as migration barrier (2) or migration track (3). By binding to diverse soluble 
molecules, it acts as a signal reservoir and contributes to create diffusion gradients (4). While binding soluble 
factors, some ECM components function as co-receptors (5) or signal presenters (6). After processing through 
MMPs, ECM fragments provide further signaling cues (7). Mechanical properties such as ECM stiffness regulate 
cell behavior (8). 
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There are two main structural types of ECM [33, 34]: the ECM present in the connective 

tissue and a specialized ECM sheet that organizes and regulates epithelial tissues, the basal 

lamina or basal membrane. Both types of ECMs are altered during tumorigenesis to promote 

cancer progression [18]. In the following paragraphs their composition and functions are 

discussed. 

 

3.4.1 Composition and function of the basal membrane 

The basal lamina is a 2D sheet-like meshwork with a thickness of only 40-120 nm [33, 34]. It 

surrounds not only individual cells (e. g. muscle or fat cells), but also entire tissues, such as 

endothelia and epithelia. Within epithelia, the basal membrane constitutes a cellular 

anchorage site and thus separates the epithelium from the connective tissue and concomitant 

connects both structures. Furthermore, it provides cues for the establishment of basal cell 

polarity and cell differentiation [13] and acts as migration pathway during development or 

tissue regeneration [33, 34]. 

The basal membrane is mainly formed by the fibrillar glycoproteins laminin and collagen IV 

as well as the proteoglycan perlecan. While laminin and collagen IV form branched networks, 

perlecan functions as their cross-linker. Depending on the tissue type, a variety of additional 

ECM components are intertwined in this meshwork, including FN. 

 

3.4.2 Composition and function of the ECM in the connective tissue 

In the human body, the connective tissue has the highest variety of ECM components [33, 

34]. Depending on its composition, the ECM can become solid, as in the case of calcified 

bone or teeth, it can form hydrogel structures, such as the corpus vitreum of the eye or 

structures such as the tendons that have to withstand extremely high tensile strengths. The 

main components of these different structures are glycosaminoglycans (GAGs) and fibrillar 

proteins. 

GAGs are unbranched polysaccharide chains that are usually covalently bound to proteins as 

proteoglycans. They form porous hydrated gels, allowing the ECM to resist compressive 

forces. The fibrillar components of the ECM are embedded in these GAG gels. Collagen I is 

the most abundantly expressed fibrillar protein within the connective tissue that assembles 

into large polymers called “collagen fibers”, which bestow upon the matrix the ability to 

withstand stretching forces. Another type of fibers present in the ECM is elastin fibers that 

provide resilience. The final class of fibrillar ECM components consists of adhesive 
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molecules that allow cells to attach to the matrix and are crucial for cell migration. The key 

member of this group is FN. Structure and function of FN is discussed below. 

 

3.4.3 Fibronectin and its assembly into a fibrillar matrix 

FN is a multi-adhesive fibrillar protein of the ECM that is not only able to bind other FN 

molecules, but also provides binding sites for GAGs, other extracellular proteins as well as 

cellular receptors [36]. There are two major classes of FN molecules, namely plasma FN and 

cellular FN [34]. Plasma FN is excreted by hepatocytes into the blood in a soluble, compact, 

inactive form [37]. It has an important function during early stages of wound healing by being 

incorporated into the fibrin clot that closes the open wound. Cellular FN is expressed by many 

cell types, in particular fibroblasts, and assembled into a complex fibrillar network which 

constitutes a part of the ECM [33, 34]. 

FN forms a 440 kDa large dimer through a pair of antiparallel c-terminal disulfide bonds [38]. 

Each subunit shows a modular multidomain structure (figure 4) [36]. In humans, there are 20 

isoforms that are generated by alternative splicing at three domains (EIIIA/EDA, EIIIB/EDB 

and the variable region V). The molecular weight of these subtypes ranges between 230-

270 kDa. All FN subtypes consist of three types of modules: the type I, II and III repeats. 

Cells can interact with FN via the cell binding domain consisting of two type III repeats, the 

III 9 synergy site and the III10 RGD site. The RGD site contains the tripeptide sequence Arg-

Gly-Asp and can induce integrin binding even if the synergy site is lacking [36]. There are at 

least nine integrin receptors that are able to interact with FN, namely α3β1, α4β1, α5β1, α8β1, 

α9β1, αvβ1, αvβ3, αvβ6, and αIIbβ3 [39, 40]. Except for integrin α3β1, α4β1 and α9β1 all integrins 

bind to the RGD sequence of FN [40, 41]. Of all FN-binding integrins, α5β1 integrin has the 

highest affinity to bind FN and the highest FN binding strength [36]. A single point mutation 

exchanging the amino acid aspartic acid (D) to glutamate (E) results in the formation of an 

inactive RGE site which does no longer support integrin binding [42]. In vivo, mice embryos 

with a homozygous FN-RGE mutation develop severe vasculature defects and die before birth 

[43]. 
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Figure 4: Schemata of FN with its different domains and binding sites [36] 

FN is depicted as multi-domain protein consisting of three different types of modules, namely type I 
(hexagonal), type II (quadratic) and type III (cylindric) repeats. Domains that are necessary for FN matrix 
assembly are highlighted in red. Alternative splicing sites are indicated in white. All other domains are shown in 
green. Important domains and binding sites are indicated by name. 

 

FN in solution has a compact conformation and shows no self-assembly ability, even at high 

concentrations [36]. For the formation of insoluble FN matrices in vivo, cellular participation 

is crucial. In figure 5, the process of FN matrix formation is depicted schematically [36]. FN 

dimers bind to integrins (mainly α5β1 integrin) via their RGD and synergy sites. Interestingly, 

cells are also able to assemble FN matrices containing an RGE sequence through binding of 

αvβ3 integrin to an isoDGR motif present in the FN module I5 [43]. FN binding induces local 

clustering of integrins that triggers the recruitment of multiple cellular molecules to the 

integrin cytoplasmatic domains and connect the integrins with the actin cytoskeleton [44]. 

This connection allows the transmission of forces generated by actin-myosin II contractility to 

the FN dimers resulting in unfolding of FN molecules. These stretch-induced conformational 

changes render cryptic FN-binding sites accessible. As a consequence, multiple FN-FN 

interactions via the N-terminal assembly domain I1-5 and other FN binding sites (III1-2, III4-5 

and III12-14) are induced, resulting in the formation of extended insoluble FN fibers. 
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Figure 5: Scheme of FN matrix assembly [36] 

The four main steps in FN matrix assembly are depicted. a) First, FN dimers (dark and light orange) bind to 
integrin receptors (gray) recruiting varies cellular molecules (pink, blue, yellow) which connect the 
cytoplasmatic tail of integrins with the actin cytoskeleton. b) Second, the FN dimers are unfolded through 
contractile forces transmitted via the integrin-actin connection. c) Unfolding of the FN molecules and integrin 
clustering induce FN-FN interactions and further conformational changes in FN resulting in the assembly of an 
insoluble fibrillar FN network (d). The red box indicates FN-FN interactions that lead to FN fiber formation. i) 
FN dimers associated via their n-terminal regions. ii ) Lateral interactions between FN fibers are marked with X. 
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3.5 Cell-matrix adhesions 

Cell–matrix adhesions are crucial for cell migration, differentiation as well as tissue 

organization and subsequently regulate embryonic development and tissue homeostasis [45]. 

In addition, adhesion-mediated signaling is a fundamental requirement for physiological 

processes such cell survival or cell proliferation and pathological indications, such as wound 

healing or tumorigenesis [45]. The molecular composition, stability and shape define several 

different types of cell-matrix adhesions. Most of these structures have been identified in vitro 

on 2D surfaces. Their existence within 3D environments has also been demonstrated, though 

with varying molecular composition and morphology [45]. 

 

3.5.1 Nascent adhesions and focal complexes 

The first adhesive structures that can be observed in migrating cells on 2D environments are 

nascent adhesions and focal complexes [46]. Nascent adhesions are small structures that either 

continue to mature into focal adhesions (FAs) or disassemble fast. They are formed within the 

lamellipodium and are dependent on actin. Due to their transient nature and small size, it is 

challenging to observe them. Focal complexes are found at the lamella-lamellipodium 

boundary and are associated with myosin [46]. This type of adhesion is larger than nascent 

adhesions, but shares their transient nature. 

 

3.5.2 Focal adhesions 

Mature 2D adhesion structures, so-called FAs, form slowly over time [47] and are usually 

linked to prominent actomyosin stress fibers [48]. FAs are complex structures that contain 

more than 150 molecules [49]. By using 3D super-resolution fluorescence microscopy, the 

organization of some key molecules within FAs has recently been revealed [50]. As shown in 

figure 6, the cell binds to the ECM with multiple integrins. Integrin clustering induces talin 

binding and the recruitment of other molecules like focal adhesion kinase (FAK) and paxillin 

to the cytoplasmic tail of integrins forming the integrin signaling layer. Recently, an 

alternative mechanism has been published, according to which talin is recruited to adhesive 

structures by FAK [51]. FAK is a key regulator in integrin signaling and modulates FA 

formation and turnover, processes that are crucial for cell migration and invasion [52]. Upon 

activation through autophosphorylation at tyrosin residue 397 (Tyr397), FAK can interact 

with diverse adaptor proteins and subsequently trigger different signaling pathways including 

the mitogen-activated protein kinase (MAPK) / extracellular-signal-regulated kinase-2 
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(ERK2) cascade [12]. ERK2 activation is important for cell proliferation and survival. In 

addition, it can influence adhesion dynamics in migrating cells. Due to its vertical orientation, 

talin further functions as a direct linker between the cytoplasmic tails of integrins and actin 

filaments [50]. Together with vinculin it forms an intermediate force transduction layer. Zyxin 

and vasodilator-stimulated phosphoprotein (VASP) coordinate the assembly of actin filaments 

at FAs and are hence located in close proximity to actin. Other proteins like α-actinin help to 

organize actin-filaments. 

 

 
Figure 6: Schematic model of focal adhesion architecture [50] 

The organization of some important molecules within FAs is depicted as a non-stoichometric model. 

 

3.5.3 Invadopodia 

Malignant tumor cells often form adhesive membrane protrusions termed “invadopodia” [53, 

54]. These structures have no defined adhesive borders and display an invasive potential, 

since they are associated with proteases such as MMPs. Co-localization of ECM degradation 

and actin polymerization is a main characteristic of these structures. Although it has been 

demonstrated that integrin α5β1 and αvβ3 are important components of invadopodia in different 

cancer cells [55, 56], no major integrin clusters are detectable. Accordingly, the mechanism 

how these protrusions interact with the ECM remains to be determined [54]. 

Non-neoplastic cells can form similar structures, so-called podosomes, that also show matrix 

degrading abilities [54]. 
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3.6 Cell adhesion receptors of the integrin family 

In vertebrates, integrins constitute the major class of cell adhesion receptors. They are not 

only major determinants in many physiological processes such as embryonic development, 

immune response and homeostasis, but are also involved in pathological events including 

cancer [41]. Intergin receptors are heterodimeric molecules consisting of an α- and a β-chain 

that are non-covalently linked. In mammals, 18 α and 8 β subunits have been identified that 

can form 24 different receptors. Both integrin subunits are transmembrane proteins with a 

large N-terminal extracellular domain and a small C-terminal intracellular tail [33, 34]. The 

extracellular part of an integrin binds to its respective ligands and the cytoplasmic tail 

interacts with numerous proteins that eventually connect the integrins to the cytoskeleton, 

enabling cell migration. Ligand specificity is determined by the combination of α and β 

subunits. An overview of integrins and their respective ligands is given in figure 7. Integrins 

can be activated through either ligand binding (outside-in activation) or via intracellular 

regulatory molecules that induce talin binding to cytoplasmatic domains of integrin β-subunits 

(inside-out activation) [33, 34]. Although some integrins share the same ligands, various 

knockout experiments in mice demonstrated that each integrin has specific, non-redundant 

functions [41]. 

 

 

Figure 7: Integrin receptors and their ligands [41] 

The associations of the 18 α and 8 β integrin subunits into 24 distinct receptors are depicted. They are further 
classified into subfamily according to evolutionary relations (indicated by colored α subunits), ligand specificity 
or exclusive expression on leukocytes. 
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3.6.1 Integrins in cancer 

As discussed above, integrins regulate adhesion to ECM components and subsequently 

transduce various signals inside the cell that regulate cell fate. In doing so, integrins also 

modulate cancer cell proliferation, survival, invasion, migration as well as angiogenesis [57].  

One common characteristic of cancer cells is their ability to upregulate the expression of 

integrins, such as αvβ3, α5β1 and αvβ6, which positively regulate proliferation, survival and 

migration. In contrast, the expression of integrins that context-dependently suppress tumor 

progression, such as α2β1 and α3β1, is usually lost [57, 58]. Integrin mediated FAK signaling 

which is associated with tumor growth, metastasis and cancer cell migration, is activated in 

many tumors [59, 60]. Furthermore, integrins are involved in ECM remodelling during 

tumorigenesis, since they recruit and activate proteases, including MMPs. Accordingly, αvβ3 

integrin localizes pro-MMP2 to the plasma membrane, where it forms a complex with tissue 

inhibitor of matrix metalloproteinases 2 (TIMP2) and MT1-MMP, thus resulting in its 

activation [61, 62]. 
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3.7 Matrix metalloproteinases (MMPs) 

Remodeling of the ECM by production and degradation of its components is important for 

organ development and for maintaining organ function. As such, these processes are tightly 

regulated [21]. In cancer, ECM dynamics are abnormal, thus resulting in defective organ 

homeostasis and function [18]. During the last decades, a family of proteolytic enzymes, the 

matrix metalloproteinases (MMPs), have become of major interest due to their role in tissue 

remodeling under physiological and pathological conditions [21, 22, 61]. The expression of 

many MMPs is upregulated in various cancer types and their involvement in almost every 

step of tumorigenesis has been demonstrated [22, 23]. For efficient ECM degradation during 

tumor cell invasion, MMP activity is confined and concentrated to the pericellular 

microenvironment [63]. 

MMPs are multidomain calcium-dependent zinc-containing endopeptidases. In 1962, the first 

member of this family was discovered as an enzyme present in different tissues of a tad pol, 

being able to degrade fibrillar collagen [64]. Up-to-date, at least 26 different MMPs have been 

identified in human [65].These enzymes can be separated into two major groups, soluble 

enzymes that are excreted into the extracellular microenvironment and so-called membrane 

type MMP (MT-MMPs) that are present at the cell surface. Almost all MMPs contain at least 

three domains (figure 8), namely the aminoterminal signal sequence (Pre), important for 

transport in the endoplasmatic reticulum (ER), the pro-peptide (Pro), usually containing a 

furin-cleavage site, and a catalytic domain [23]. In addition, many MMPs have a hemopexin-

like domain which is usually connected with the catalytic domain through a flexible hinge 

region. MT-MMPs are inserted in the plasma membrane either via a transmembrane region 

which is linked to a cytoplasmatic tail, or through a glycosylphosphatidylinositol (GPI) 

anchor. 
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Figure 8: Domain composition of MMPs (adapted from [23]) 

This scheme provides an overview on the domains present in MMPs. Pre: aminoterminal signal sequence, Pro: 
pro-domain containing a thiol-group and an optional furin-cleavage site, Catalytic: catalytic domain including a 
zinc-binding site and optional FN domains, Hinge: hinge region, Hemopexin: hemopexin-like domain, TM : 
transmembrane domain, Cy: cytoplasmatic tail and GPI: a GPI-anchor. MMP23 has a unique structure including 
SA: an amino-terminal signal anchor, CA: a cysteine array and Ig-like:  an immunoglobulin (Ig)-like domain. 

 

MMPs are synthesized as inactive zymogens. A cysteine residue within in the pro-domain 

blocks the catalytic center of the enzyme through interaction with the zinc ion present in the 

catalytic site. Activation occurs through pro-domain cleavage or chemical alteration of the 

cysteine residue, a process called “cysteine-switch” [23]. The main physiological mechanisms 

to regulate the activity of MMPs are the conversion of the zymogen to the active protease as 

well as the expression of physiological MMP inhibitors, in particular tissue inhibitors of 

metalloproteinases (TIMPs). For membrane type 1 matrix metalloproteinase (MT1-MMP) an 

additional activity control mechanism has been reported. Its catalytic active domain can be 

shed through autocatalytic or MMP-2 mediated cleavage, resulting in the generation of a 

44 kDa metabolite [66, 67]. 

Each MMP is able to degrade a specific set of ECM components with partially overlapping 

substrate specificities to other members of its family. Hence, the variety of MMPs not only 

enables the degradation of nearly every component of the ECM, but also the compensation for 

the loss of one member. This has been demonstrated in MMP-knockout experiments in mice, 

where the loss of a single MMP did not strongly affect the development of the animals, with 

the exception of MT1-MMP [68-70]. MT1-MMP deficient mice showed severe defects in 

organization of the connective tissue due to inefficient collagen turnover resulting in 

dwarfism, osteopenia and arthritis [68]. 
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3.8 Membrane type 1 – matrix metalloproteinase (MT1-MMP) 

MT1-MMP, a 66 kDa protease, was the first MT-MMP to be discovered in 1994 [71]. Its 

expression levels are highly upregulated in invasive and metastatic cancer [72] as well as 

during angiogenesis [69] and tumor progression in general [73]. Therefore, it is a potentially 

important target for the development of therapeutic interventions. Up to date, only general 

MMP inhibitors against the catalytic activity of MMPs were developed. However, clinical 

trials did not yield the desired benefits for patients [74, 75]. 

The proteolytic function of MT1-MMP is well understood. MT1-MMP is able to activate pro-

MMP2 [71] as well as pro-MMP13 thereby acting as a pacemaker of proteolytic cascades 

[76]. Moreover, it cleaves different extracellular matrix (ECM) components, for instance 

collagen or fibronectin as well as various cell surface associated molecules including integrins 

[77, 78]. By doing so, MT1-MMP alters the pericellular microenvironment and influences 

cellular fate. It is known that MT1-MMP proteolytical activity is necessary for degrading the 

basement membrane during cancer invasion [79]. Pericellular matrix degradation at FAs, an 

important process during cell invasion, is mediated through a complex between MT1-MMP 

and FAK-p130Cas [80]. In addition, MT1-MMP degrades the ECM surrounding blood 

vessels during angiogenesis [81, 82].Beyond its function in degrading ECM components to 

create space for cell migration, MT1-MMP directly interacts with integrins and subsequently 

regulates locomotion of cancer cells in a more defined way. In fact, MT1-MMP acts as an 

integrin convertase by processing different pro-forms of integrins including αv and α5 subunits 

[83]. MT1-MMP processed αvβ3 integrins are more efficient in promoting FAK 

phosphorylation and cancer cell migration [84]. It was further demonstrated that MT1-MMP 

co-localizes with αvβ3-integrin at motility-associated structures where it degrades ECM 

components and promotes endothelial cell migration [85]. In 3D collagen matrices, β1 

integrins localize with MT1-MMP at the leading edge of cancer cells, promoting matrix 

degradation and cancer cell migration [86].During the last decade, non-proteolytic functions 

of MT1-MMP came into focus. As a membrane-bound enzyme, MT1-MMP possesses a 

cytosolic domain that is important for its trafficking and intracellular signaling processes [87]. 

Thus, it has been demonstrated that MT1-MMP is able to enhance ERK and reduce FAK 

autophosphorylation, promoting FA turnover and consequent cell migration in a 2D FN 

environment [88].Despite the information on single aspects of MT1-MMP function, it is still 

not completely understood which changes within the complex interplay of MT1-MMP and the 

ECM drive cancer cell migration within 3D environments, especially concerning FN. 
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3.9 Tumor cell migration 

Adhesion and proteolysis represent the main mechanisms that govern the metastatic process 

and are essential for cancer cell invasion and migration [12]. According to Friedl and Wolf 

[89, 90], cancer cells move either as a collective or as individuals assuming an amoeboid or 

mesenchymal migration mode. Here, only single cell migration types are introduced, since 

fibrosarcoma cells – the cell type studied in this thesis - disseminate as single cells [90]. 

 

3.9.1 Mesenchymal migration 

Mesenchymal migration is observed in 2D as well as in 3D environments [45]. It is maybe the 

best characterized migration mode and can be divided into multiple steps [33, 34, 90]. First, 

membrane protrusions extend at the leading edge of the cell by actin polymerization. The cell 

binds to a component of the ECM via cell adhesion receptors (mainly integrins). These 

interactions induce integrin clustering and the formation of focal contacts that may evolve into 

FAs. Actin filament contraction mediated by the motor protein myosin II results in forward 

movement of the cell body [91, 92]. Therefore, MMP-dependent, pericellular proteolysis of 

the surrounding substrate creates the required space [90]. Finally, FAK mediates the 

disassembly of FAs and subsequent recycling of their components at the trailing edge [90]. 

This process is further enhanced by MMP-dependent degradation of the substrate. 

Migration speed is dependent on the turnover rate of FAs [93, 94]. On the one hand, cells 

have to form FAs to be able to exert forces required for their forward movement. On the other 

hand, FAs that are not disassembled fast enough hinder migration. As such, an intermediate 

level of adhesion is favorable for fast cell migration [93, 94]. Beside the importance of FA 

turnover, dynamic modulation of the actin cytoskeleton is crucial for fast cell migration. A 

main regulator of actin dynamics during cell migration in cancer is cofilin [95-99]. 

Depolymerisation of actin filaments by cofilin creates a pool of free actin monomers for new 

actin polymerization and subsequently enhances actin filament dynamics [100]. In addition, it 

leads to the formation of free barbed ends that are needed for the initiation of actin 

polymerization [101]. Activity of cofilin is inhibited by phosphorylation of serin at residue 3 

(Ser3) [102]. 
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3.9.2 Amoeboid migration 

Besides the mesenchymal migration type, cells also exhibit a less adhesive amoeboid 

movement in 3D environments [90, 103, 104]. Characteristics of amoeboid migration are 

weak and transient interactions between cells and their substrate as well as the lack of FAs 

and actin stress fibres. In fact, cell movement is driven by cortical filamentous actin and 

myosin activity. Instead of using proteolytic activity to degrade migration barriers, amoeboid 

cells are highly deformable and squeeze their body through holes in the ECM meshwork. The 

absence of FAs enables these cells to move 10-30 times faster than cells showing 

mesenchymal migration [104]. 
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4. Motivation 

During metastasis, cell migration is driven by interaction of cancer cells with the tumor 

microenvironment, including the ECM. In order to study such interactions in vitro, two main 

model systems, namely 3D fibrillar collagen gels or Matrigel (reconstituted basement 

membrane) have been used [79]. The study of other ECM proteins, in particular FN, has not 

received much attention in the context of 3D matrices. FN is usually studied in a non-

physiological state, where globular FN molecules are physisorbed onto 2D plastic or glass 

surfaces. Experiments with fibroblasts demonstrated that cells show differences in 

morphology, adhesion, proliferation and cell signaling between 2D and 3D FN environments 

[105]. These findings highlight the need for more physiological systems to study the influence 

of 3D FN environments on cancer cell migration. In this thesis, a more physiological 

approach, using cell derived 3D fibrillar FN matrices, is proposed. 

The aim of this work was to compare HT1080 cell migration behavior on 2D FN coatings and 

3D FN fibrillar matrices. Using time-lapse microscopy HT1080 cell migration was monitored 

on both substrates. While cell morphology and the interaction between cells and FN fibers 

were studied qualitatively, average velocity and directionality of cell migration were analyzed 

in a quantitative manner. The involvement of some key molecules in ECM remodeling and 

cancer cell migration, namely α5β1 and αvβ3 integrins as well as MT1-MMP, were 

investigated. 

 

In this thesis, the following questions were addressed: 

1) Do HT1080 cells show the same phenotype and migration mode on 2D and 3D FN 

environments? 

2) Are there any differences concerning average velocity and directionality of cell 

migration between both FN environments? 

3) Which impact do α5β1 and αvβ3 integrins have on cancer cell migration on 2D and 3D 

FN environments? 

4) How do MMPs, and in particular MT1-MMP, influence cancer cell migration on both 

FN environments? 
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5. Materials and Methods 

 

5.1 Cell Culture 

All experiments in this section were performed under a sterile bench (# 51022515, Herasafe 

KS12, Thermo Fisher Scientific, Kendro Laboratory Products GmbH, Germany) with sterile 

equipment from Greiner Bio-One GmbH, (Germany) and BD Biosciences (Falcon™, 

Germany) to prevent contamination of samples and cells. 

5.1.1 Cell lines and culture conditions 

Different cell lines (see table 1) were cultured in the respective medium supplemented with 

10 % (v/v) fetal bovine serum (FBS; # F7524, Sigma-Aldrich Chemie GmbH, Germany) or 

newborn calf serum (NCS; # 16010, Life Technologies GmbH, Gibco®, Germany), 1 % (v/v) 

L-Glutamine (# 25030, Gibco®) and 1 % (v/v) Penicillin/Streptomycin (# 15140-122, Gibco®) 

(see table 1). 

 

Table 1: Information on cell lines and culture media 

Cell line Origin Culture medium 

HT1080 [106] Homo sapiens 
connective tissue; 
fibrosarcoma 

DMEM (# 10938, Gibco®) 
+ 10 % FBS 
+ 1 % L-Glutamine 
+ 1 % Penicillin/Streptomycin 

MCF7 [107] Homo sapiens 
mammary gland (breast); 
adenocarcinoma  

RPMI (# 31870, Gibco®) 
+ 10 % FBS 
+ 1 % L-Glutamine 
+ 1 % Penicillin/Streptomycin 

MV3 [108] Homo sapiens 
epithelial cell line; 
melanoma 

RPMI 
+ 10 % FBS 
+ 1 % L-Glutamine 
+ 1 % Penicillin/Streptomycin 

COS [109, 110] 
 

Cercopithecus aethiops 
fibroblast cell line from 
kidney; 
SV40 transformed 

αMEM (# P04-21250, Pan Biotech 
GmbH, Germany) 
+ 10 % FBS 
+ 1 % L-Glutamine 
+ 1 % Penicillin/Streptomycin 

NIH3T3 FN-YPet2 [111] Mus musculus 
embryonic fibroblast stably 
expressing YPet-fibronectin 

DMEM 
+ 10 % NCS 
+ 1 % L-Glutamine 
+ 1 % Penicillin/Streptomycin 

FNRGE/RGE 3 [43] Mus musculus 
embryonic fibroblast stably 
expressing fibronectin with 
mutated cell binding domain 

DMEM 
+ 10 % FBS 
+ 1 % L-Glutamine 
+ 1 % Penicillin/Streptomycin 

                                                           
2
 Kindly provided by T. Ohashi and HP Erickson, Duke University, USA 

3
 Kindly provided by R. Fässler, Max Planck Institute for Biochemistry, Martinsried, Germany 
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Cells were kept in an incubator at 37 °C under 5 % CO2 atmosphere. After reaching 90-100 % 

confluence, culture medium was removed and the cell monolayer was washed once with 

warm Dulbecco´s phosphate buffered saline (DPBS; # H15-002, GE Healthcare, PAA 

laboratories GmbH, Germany) to remove residual medium. Cells were detached by using 

0.05 % Trypsin-EDTA (# 25300, Gibco®). The enzymatic reaction was neutralized by adding 

culture medium and cells were passaged in a 1:10 dilution. 

 

5.1.2 Preparation of fibronectin (FN) and vitronectin (VTN) coatings 

Human cellular fibronectin (# F2518, Sigma-Aldrich) and human plasma vitronectin (VTN; 

# V8379 Sigma-Aldrich) were shipped as lyophilized powder. The FN stock solution 

[1 mg / ml] was prepared by adding 0.5 ml sterile MilliQ-water to 0.5 mg FN. For optimal 

solubilization, the FN solution was incubated for 30 min at room temperature (RT) without 

agitation. In contrast, 50 µg VTN was resuspended in 1 ml sterile MilliQ-water. The VTN 

stock solution [50 µg / ml] was filtered through a 0.2 µm sterile cellulose mixed esters syringe 

filter (# KH54.1, Carl Roth GmbH & Co. KG, Germany). Both solutions were aliquoted and 

stored at -20 °C. 

The FN working solution [10 µg/ml] was obtained by diluting the FN stock solution with 

sterile DPBS. For coating of 35 mm high µ-dishes (# 1156, ibidi GmbH, Germany), 300 µl of 

FN working solution was pipetted in the inner circle of the dish (area: 3.5 cm2) and incubated 

for at least 45 min at RT. For coating of 8-well µ-slides (# 80826, ibidi), 200 µl of FN 

working solution was pipetted in each well (area: 1 cm2) and incubated for at least 45 min at 

RT. 

The VTN working solution [0.5 µg/ml] was obtained by diluting the stock solution with 

sterile MilliQ-water. 200 µl/cm2 working solution was pipetted in the inner circle of a 35 mm 

dish. The surfaces were incubated at 37°C for 1-2 h. Before cell seeding, excess solution was 

removed and surfaces were gently rinsed with DPBS. 

 

5.1.3 Preparation of fibrillar fibronectin matrices 

An overview of the preparation of fibrillar FN matrices is shown in figure 9. Either 35 mm 

high µ-dishes or 8-well µ-slides were used. All solutions/liquids were applied at a volume of 

1 ml per 35 mm dish and 250 µl per well of an 8-well µ-slides respectively. Dishes/slides 

were coated with a silane solution containing 5.4 ml 100 % ethanol (EtOH; # A3678, 

AppliChem GmbH, Germany), 400 µl MilliQ-water and 120 µl 3-aminopropyl triethoxysilane  
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(# A3648, Sigma-Aldrich) for 1 h at RT. The used dishes/slides were plasma-treated by the 

manufacturer to render them hydrophilic (ibiTreat). Hence, the silane reacted with available 

OH-groups and bound covalently to the surfaces. Then, the dishes/slides were washed twice 

with 100 % EtOH as well as MilliQ-water, followed by a 30 min incubation in a 2 % (v/v) 

glutaraldehyde solution (# G7651, Sigma-Aldrich) diluted in MilliQ-water. After rinsing with 

MilliQ-water the dishes/slides were incubated in plasma FN solution [10 µg / ml] (# F1141, 

Sigma-Aldrich) for 15-30 min. The cross-linking agent glutaraldehyde reacted with amino 

groups of the silane and immobilized FN on the surfaces. This procedure helped to increase 

adhesiveness of cells and their produced FN matrix on the culture dishes/slides. Before 

plating NIH3T3 FN-YPet or FNRGE/RGE cells (3.5 x 105 cells per 35 mm µ-dish, 0.5 x 105 cells 

per well of the 8-well µ-slides), the dishes were rinsed with MilliQ-water. Cells were cultured 

for four days until reaching confluence. During this time the fibroblasts expressed cellular FN 

and preassembled it into FN matrices. To obtain cell-free FN matrices, cells were washed 

once with warm DPBS and then lysed according to an adapted protocol published in [112]. In 

brief, cells were washed once with buffer 1 (100 mM Na2HPO4, 2 mM MgCl2, 2 mM EGTA; 

pH: 9.6). Cell lysis buffer (8 mM Na2HPO4, 1 % NP-40; pH: 9.6) was added and the samples 

were incubated for 10 min at 37 °C, followed by an additional 20 min incubation at 37 °C 

with fresh lysis buffer. The FN matrix was washed once with buffer 2 (300 mM KCl, 10 mM 

Na2HPO4; pH: 7.5) and subsequently rinsed with MilliQ-water as well as DPBS. Although 

FN matrices can be stored for several days at 4 °C, they were freshly prepared for each 

experiment. 

 
Figure 9: Preparation of fibrillar FN matrices 
Here, an overview of the preparation of fibrillar FN matrices is shown. a) Surfaces were crosslinked with plasma 
FN by silane and glutharaldehyde. b) NIH3T3 FN-YPet or FNRGE/RGE cells were seeded on the substrates and c) 
cultured until reaching confluence. During this time the cells expressed cellular FN and preassembled it into FN 
matrices. d) Fibroblasts were lysed and e) HT1080 cells were seeded on the FN matrices for further analysis. 
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5.1.4 MT1-MMP silencing via small interfering ribonucleic acids (siRNAs) 

RNA interference (RNAi) is a widely-used method for effective and selective inhibition of 

protein expression. Cells are transfected with synthesized single stranded RNA molecules that 

are designed to bind selected mRNA transcripts. The formation of double stranded RNA 

molecules activates the ribonuclease Dicer, which degrades these complexes and hence 

prevents their transcription. The reduction in protein expression is further dependent on the 

stability/half-life of the respective protein. 

For silencing MT1-MMP protein transcription, the ON-TARGETplus Human MMP14 siRNA 

SMARTpool (# L-004145-00-0005, Thermo Fisher Scientific, Abgene Ltd, Dharmacon®, 

UK) was chosen. In the text, it is named “siMT1-MMP” or “siM”. As non-targeting control 

siRNA#1 was selected (# D-001210-01-05, Dharmacon®) indicated with “siControl” or “siC”. 

A 100 µM siRNA stock solution was prepared by resuspending 5 nM siRNA with 50 µl of 

siRNA buffer (5x) (# B-002000-UB-100, Dharmacon®) diluted in RNase-free water (# B-

002000-WB-100, Dharmacon®). For optimal solubilization, the siRNA solution was 

incubated on an orbital shaker for 30 min at RT. The siRNA was aliquoted and stored at          

-20 °C. 

The optimal conditions for MT1-MMP silencing in HT1080 cells were determined. One day 

before siRNA-transfection, HT1080 cells were seeded in a 24-well plate at different cell 

densities: 0.6 x 105, 1.2 x 105 and 1.8 x 105 cells per well (area: 2 cm2). The siRNA-

transfection was performed with the DharmaFECT transfection reagent number 4 (# T-2004-

01, Dharmacon®) according to manufacturers’ instructions. A 5 µM siRNA working solution 

was prepared by diluting the 100 µM stock solution with siRNA buffer. For each well 2.5 µl 

of this siRNA solution was mixed with 47.5 µl Opti-MEM® (# 31985, Gibco®). Meanwhile, 

DharmaFECT transfection reagent 4 (recommended for transfecting HT1080 cells) was mixed 

with Opti-MEM® to a final volume of 50 µl. Different volumes of transfection reagent (0.5 µl, 

1 µl, 1.5 µl or 2 µl) were used to find the optimal conditions for MT1-MMP silencing. The 

siRNA and the transfection reagent solutions were incubated for 5 min at RT. Then, both 

solutions were combined, gently mixed and further incubated for 20 min at RT. Culture 

medium was removed and HT1080 cells were washed once with warm DPBS. Finally, 400 µl 

antibiotic-free complete medium was added, followed by dropwise pipetting of 100 µl 

transfection mix per well. The next day, the medium was replaced by standard culture 

medium. Subsequent steps (e. g. FACS-staining, RNA-extraction, western blot) were 

performed 48 h and/or 72 h after siRNA-transfection if not indicated otherwise. 
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5.1.5 Integrin blocking approach 

To study the influence of α5β1 and αvβ3 integrin binding to FN matrices, the blocking effect of 

antibodies directed against these integrins was investigated. FN and VTN coatings were 

prepared according to recommendation of the manufacturer (see 5.1.2). Bovine serum 

albumin [10 µg/µl in DPBS] (BSA; # B4287-5G, Sigma-Aldrich) coated surfaces were used 

as a negative control. 

After removing culture medium and washing HT1080 cells with DPBS, cell were incubated 

with cell dissociation buffer (# 13150-016, Gibco®) for 5 min at 37 °C. After adding standard 

culture medium, the cell number was determined with a Neubauer counting chamber 

(# 718605; Brand GmbH & Co. KG, BlauBrand®, Germany). Then, 1.5 x 105 cells were 

centrifuged at 500 x g for 5 min in a microcentrifuge (5417R, Eppendorf Vertrieb 

Deutschland GmbH, Germany). Cell pellets were resuspended in 50 µl serum-free DMEM 

containing 2 mg/ml BSA and a 1:20 dilution of primary antibodies against αvβ3 (# MAB1976, 

Millipore, Merck KGaA, Germany), α5β1 (# MAB1969, Millipore, Merck) or mouse IgG 

(# I5381, Sigma-Aldrich). Cells were incubated on ice for 30 min, centrifuged at 500 x g for 

5 min at 4 °C, resuspended in culture medium and plated on coated surfaces. After 1 h, non-

adherent cells were removed by DPBS rinsing. Images from five different fields were 

acquired per sample with a brightfield microscope Axiovert 40C and an A-PLAN 10 x Ph1 

phase contrast objective (both Carl Zeiss AG, Germany). The experiment was performed in 

three biological replicates. Cell number was determined with the cell counter plugin of 

Image J [113]. For data analysis and statistical testing see paragraph 5.7.1. 
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5.2 Analysis of integrin mRNA expression in different cell lines 

 

5.2.1 Phenol-chloroform based RNA extraction 

To determine integrin mRNA expression in different cell lines, 2.4 x 106 cells of each cell line 

were seeded in 100 mm plates and cultured until complete confluence was reached. RNA was 

extracted using peqGOLD RNAPure (# 30-1010, Peqlab Biotechnologie GmbH, Germany) 

according to the manufacturers’ instructions. All centrifugation steps were performed at 

12,000 x g in a precooled centrifuge at 4 °C. Cells were lysed by mixing with 6 ml peqGOLD 

RNAPure reagent. Samples were kept at RT for 5 min to ensure dissociation of nucleotide 

complexes. After adding 1.2 ml chloroform, samples were shaken vigorously for 15 s, 

followed by an incubation on ice for 3-10 min. Subsequent centrifugation for 5 min leads to 

separation of the solution in three different phases: a lower yellow phenol-chloroform phase, 

an interphase and an upper aqueous phase containing the RNA. The watery phase was 

transferred into a fresh 1.5 ml tube. Precipitation of the RNA was achieved by adding equal 

volumes of isopropanol. After 15 min incubation on ice, RNA-lysates were centrifuged for 

10 min. The supernatant was removed and the RNA precipitate was washed with 1 ml 

75 % EtOH followed by another centrifugation for 10 min. The RNA pellet was air dried and 

then resuspended in RNAse-free water. Heating the RNA solution to 55-60 °C facilitated the 

solubility. Quality and quantity of the RNA were determined using the spectrophotometer 

ND-1000 (Peqlab). 

 

5.2.2 CopyDNA (cDNA) synthesis 

For cDNA synthesis with the RevertAid™ first strand cDNA synthesis kit (# K1622, Thermo 

Fisher Scientific Inc., Fermentas GmbH, Germany), 1 µg total RNA was used. Oligo(dT) 

primer (1 µl) were mixed with the RNA solution and diethylpyrocarbonate (DEPC) treated 

water to a final volume of 13 µl. After incubation of the RNA-oligo(dT) mix for 5 min at 

70 °C, 7 µl of a mastermix containing 4 µl reaction buffer (5 x), 1 µl inhibitor and 2 µl dNTP 

mix [10 mM] were added. The reaction mixture was incubated for 5 min at 37°C. Finally, 1 µl 

of reverse transcriptase was added and the reaction mix was placed in a PCR machine (Bio-

Rad Laboratories GmbH, DNAEngine®, Germany). The samples were first incubated for 

60 min at 42 °C, followed by an incubation at 70 °C for 10 min. Quality and quantity of 

cDNA samples were determined using the spectrophotometer ND-1000. The cDNAs were 

stored at -20 °C until usage. 
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5.2.3 Polymerase chain reaction (PCR) of integrin transcripts 

PCR-products of different integrin transcripts were amplified with sequence specific primers 

(Table 2) using the HotSTARTaq Master Mix Kit (# 203443, Qiagen GmbH, Germany). 

Therefore, 1 µl of cDNA [500 ng/µl] was mixed with 0.625 µl forward and 0.625 µl reverse 

primer (final concentration 0.25 µM each), 12 µl of a master mix (2 x) (containing Taq 

polymerase, dNTPs PCR-buffer and MgCl2) and 10.75 µl PCR water. In table 3 the applied 

PCR program is shown. 

 

Table 2: Primers used for integrin PCR 
Primers were purchased from Life Technologies. Upon arrival, nuclease-free water (# C7112985, US Biological, 
Biomol GmbH, Germany) was added to each vial to obtain a primer stock concentration of 100 µM. 
 

Name Sequence (5’ to 3’) Fragment size Reference 

αv for AGAATCATTCCTATTCTCTG  

260 bp [114] 
DNA-sequence: NM_002210.3 
homo sapiens integrin, alpha v 

αv rev TTCTTCTTGAGGTGGCCGGA 

α5 for CCTCACTTACGGCTATGTCA  

347 bp designed with NCBI Primer-
BLAST Primer designing tool, 
DNA-sequence: NM_002205.2  
homo sapiens integrin, alpha 5  

α5 rev CGATGGCCACATCATTTAG 

β1 for CAAGGTAGAAAGTCGGGACA  

308 bp designed with NCBI Primer-
BLAST Primer designing tool, 
DNA-sequence: NM_033667.2  
homo sapiens integrin, beta 1 

β1 rev TGGCATTCATTTTCTCCTTTTCA 

β3 for CCTACATGACGAAAATACCT  

516 bp [114] 
DNA-sequence: NM_000212 
homo sapiens integrin, beta 3 

β3 rev AATCCCTCCCCACAAATACTG 

GAPDH for GCATCCTGGGCTACACTG  

305 bp [114] 
DNA-sequence: NM_002046.3 
homo sapiens GAPDH 

GAPDH rev GTGAGGAGGGGAGATTCAG 

 

Table 3: PCR program for the amplification of integrin transcripts  

Time Temperature Number of cycles Description 

15 min 95 °C 1 activation step for Taq polymerase 
30 s 95 °C  

35 cycles 
denaturation of double stranded cDNA 

30 s 51 °C annealing of sequence specific primer 
1 min 72 °C amplification of target sequences 
10 min 72 °C 1 final extension 
∞ 4 °C 1 storage 
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5.2.4 Agarose gel electrophoresis of integrin amplicons 

2 % (w/v) agarose (#11404.05, Serva Electrophoresis GmbH, Germany) was dissolved in 

Tris-acetate-EDTA (TAE) buffer (40 mM Tris, 1 mM EDTA, 40 mM acetic acid) by heating 

it until obtaining a viscous solution. After a brief cooling, the solution was poured into a gel 

chamber, where 0.5 µg/ml ethidium bromide solution (# E1510-10ML, Sigma-Aldrich) was 

added and evenly distributed with a pipette tip. For the formation of wells in the agarose gel, a 

comb was mounted. The polymerized agarose gel was placed in an electrophoresis chamber 

filled with TAE buffer. The amplicons generated via PCR (see 5.2.3) were mixed with 

loading dye solution (6 x) (# R0611, Fermentas) and loaded together with GeneRuler™ 

100 bp DNA ladder (# SM0243, Fermentas) as a marker. Separation of PCR fragments was 

achieved by applying 150 V for 1-2 h. The amplicons were detected in a transilluminator 

(Peqlab). 
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5.3 Analysis of gene expression with RT2 Profiler ™  PCR Arrays 

By means of the PCR Array Human Cell Motility (# 330231 PAHS-128G, Qiagen GmbH, 

SABiosciences, Germany), it was investigated if MT1-MMP silencing has an effect on the 

expression of genes that are involved in cell migration. This array is provided in a 384-well 

plate format (4 x 96), where four different samples can be analyzed at once. In total, the 

mRNA expression of 84 genes involved in cell migration can be investigated. Here, cells were 

either transfected with siMT1-MMP or left untreated. 32 h after siRNA transfection, 1.5 x 105 

cells were plated on 35 mm ibiTreat dishes or on freshly prepared FN matrices. Samples were 

incubated at 37° C for 16 h before extraction of RNA. 

 

5.3.1 RNA extraction 

RNA extraction was done with the RNeasy® Mini Kit (# 74104, Qiagen) as described in the 

RNeasy® Mini Handbook. Cells were lysed directly by adding 350 µl Buffer RLT. Cell 

lysates were collected with a cell scraper, transferred to a microcentrifuge tube and mixed 

thoroughly to avoid the formation of cell clumps. Samples were pipetted into a QIAshredder 

spin column (# 79656, Qiagen) and centrifuged at 20,000 x g for 2 min. Cell lysates were 

mixed with 350 µl of 70 % EtOH for homogenization. The mixture was transferred to an 

RNeasy spin column. After centrifugation at 8,000 x g for 15 s, the spin column membrane 

was washed by adding 350 µl of Buffer RW1, followed by another brief centrifugation. Then, 

an on-column DNA digestion was performed with the RNAse-free DNAse set (# 79254, 

Qiagen). 10 µl of DNAse I stock solution was mixed with 70 µl Buffer RDD and then 

carefully applied on the spin column membrane. After 15 min incubation at RT, 350 µl of 

Buffer RW1 was added and the samples were centrifuged at 8,000 x g for 15 s. The spin 

column membrane was washed with 500 µl Buffer RPE and centrifuged at 8,000 x g for 

2 min. To avoid carryover of EtOH that may affect downstream reactions, the spin columns 

were centrifuged at 20,000 x g for an additional 1 min. The RNA was eluted by adding 30 µl 

of RNase-free water and by centrifuging the samples at 8,000 x g for 1 min. Quality of RNA 

was measured with the spectrophotometer ND-1000. The RNA was only used for cDNA 

synthesis if it matched the following criteria (see RT2 Profiler™ PCR Array System 

Handbook): 

- A260 : A230 greater than 1.7 

- A260 : A280 ratio 1.8 to 2.0 

- Concentration by A260 > 40 µg / ml total RNA 
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5.3.2 cDNA synthesis for RT2 Profiler ™  PCR Arrays 

The cDNA synthesis was performed as described in the RT2 Profiler™ PCR Array System 

Handbook with the RT2 First Strand Kit (# C-03/330401, SABiosciences). Thereby, 400 ng 

total RNA was used. The genomic DNA (gDNA) elimination mixture was prepared by 

pipetting 2 µl of gDNA Elimination Buffer (5 x) to the RNA. Water was added to a final 

volume of 10 µl. The solution was mixed by gentle pipetting, followed by a brief 

centrifugation. After 5 min incubation at 42 °C, the samples were directly placed on ice for at 

least 1 min. Meanwhile, the RT-PCR cocktail was prepared. Therefore, 16 µl of RT Buffer 

(5 x), 4 µl of Primer and External Control Mix, 8 µl of RT Enzyme Mix 3 and 12 µl of water 

were combined. The first strand cDNA synthesis reaction was prepared by adding 10 µl of the 

RT-PCR cocktail to each 10 µl gDNA elimination mixture. The solution was gently mixed 

and incubated at 42 °C for exactly 15 min. The cDNA synthesis was immediately stopped by 

heating the samples to 95 °C for 5 min. To each cDNA reaction mix 91 µl water was added. 

The solution was mixed and then placed on ice until preparation of the RT2-PCR. 

 

5.3.3 RT2-PCR with RT2 Profiler ™ PCR Arrays 

The reaction mixes were prepared by combining 550 µl of RT2 SYBR®Green qPCR 

Mastermix (2 x) (# 330509, Qiagen) with 102 µl of the respective cDNA and 448 µl of water. 

The experimental cocktails were dispensed in a RT2 PCR Array Loading Reservoir 

(# 338162, SABiosciences). With help of a multichannel pipette and the provided 384 

EZLoad™ Covers 10 µl of the experimental cocktails were loaded per well. The 384-well 

plate was analyzed with a LightCycler® 480 System (Roche Diagnostics Deutschland GmbH, 

Germany) kindly provided by the Genomics and Proteomics Core Facilities (Microarray Unit) 

at the DKFZ. The programs for RT2-PCR and for melting curve analysis respectively are 

shown in table 4 and 5.4 

 

Table 4: Two-step cycling program for the RT2-PCR Array  

Time Temperature Number of cycles Description 

10 min 95 °C 1 activation step for HotStart DNA polymerase 
15 s 95 °C  

45 cycles 
denaturation of double stranded cDNA 

1 min 60 °C 
annealing of sequence specific primer and 
amplification of targeted sequences 

 

                                                           
4 More detailed information about the instrument settings can be found in the Instrument Setup guide available     
  on the Sabioscience Hompage: http://sabioscience.com/pcrarrayprotocolfiles.php 
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Table 5: Program for melting curve analysis 

Temperature Hold Acquisition mode Ramp rate Description 

60 °C 15s none 4.8 °C/s all cDNAs are double stranded 

95 °C - continuous 0.3 °C/s 
denaturation of double stranded cDNA; 
denaturation temperature depends on length 
of the transcripts and their GC content 

 

The data was analyzed with an online tool from SABioscience that was further used for the 

generation of graphs.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                           
5 See http://sabiociences.com/pcrarraydataanalysis.php 
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5.4 Protein expression analysis 

 

5.4.1 Preparation of protein lysates 

Culture medium was removed and cells were washed once with ice cold DPBS. The 12-well 

plates were placed on ice, 150 µl of cell lysis buffer (1 % NP-40, 0.25 % DOC, 50 mM Tris-

HCl, 5 M NaCl, 0.67 M EDTA, 100 mM PMSF, 200 mM Na3VO4) supplemented with 

protease inhibitor (# 11836170001, Roche) was added per well. Cells were detached from the 

culture dish/well with a cell scraper and incubated on ice for 45 min while shaking. Lysates 

were transferred into tubes and centrifuged in a precooled centrifuge at 20,000 x g for 15 min 

at 4 °C. After centrifugation, protein extracts were transferred into new tubes and the pellet 

containing cell debris was discarded. Protein lysates were stored at -20 °C. 

 

5.4.2 Determination of protein concentration with BCA Protein Analysis Kit (Pierce) 

To load equal amounts of cell lysates, the protein concentration of each sample was 

determined with the BCA Protein Analysis Kit (# 23227, Pierce®, Thermo Fisher Scientific, 

p/a Perbio Science, Germany) according to manufacturers’ instructions. The assay was 

performed in a 96-well plate format. First, BSA standards with the following concentrations 

were prepared by dissolving BSA in cell lysis buffer: 2 mg/ml, 1.5 mg/ml, 1 mg/ml, 

0.75 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml, 0.025 mg/ml and a blank sample (lysis 

buffer only). Then, 25 µl of the BSA standards and samples were pipetted in each well. After 

adding 200 µl of the working reagent (50:1 mixture of solutions A and B), the 96-well plate 

was shaken for 30 s followed by an incubation at 37 °C for 30 min. The 96-well plate was 

equilibrated to RT and absorption of the solutions was measured at 562 nm with the 

microplate reader Infinite® M200 (Tecan Deutschland GmbH, Germany). Data was analyzed 

with the provided Magellan™ data analysis software (Tecan Software Competence Center 

GmbH, Germany) calculating standard curve and protein concentration of each sample. 

 

5.4.3 Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

The SDS-PAGE was performed with Life Technologies equipment. Equal amounts of total 

protein lysates were mixed with LDS sample buffer (4x) (# NP0007), sample reducing agent 

(10x) (# NP0009) as well as MilliQ-water and heated for 10 min at 70 °C. Samples were 

loaded either on 4-12 % Bis-Tris gels (# NP0321BOX) in MOPS SDS running buffer (20x) 

(# NP0001) or on 3-8 % Tris-Acetate gels (# EA0375BOX) in Tris-Acetate SDS running 
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buffer (20x) (# LA0041) according to the molecular weight of the protein of interest. 

Precision Plus Protein™ Standard Dual Color (# 161-037, Bio-Rad Laboratories GmbH, 

Germany) was used as a molecular weight marker. Separation of proteins was achieved by 

applying 150 V for 1.5 h. 

 

5.4.4 Western blot 

Transfer of proteins from the polyacrylamide gel to a polyvinylidene fluoride (PVDF) 

membrane was achieved with the iBlot® Gel Transfer Device, a dry blotting system (Life 

Technologies). After protein transfer, the membrane was blocked with 5 % (w/v) milkpowder 

(# T145.2, Carl Roth GmbH und Co. KG, Germany) in DPBS including 0.1 % (v/v) 

Tween® 20 (# 9127.1, Carl Roth) while incubating on a shaker for 1 h. Then, the membrane 

was incubated in 5 % (w/v) milk powder/DPBS-T containing the primary antibody while 

shaking (see table 6) either for 1 h at RT or overnight (ON) at 4 °C. The membrane was 

washed three times for 10 min with DPBS-T, followed by an incubation at RT in 5 % (w/v) 

milk powder in DPBS-T containing the secondary antibody on a shaker (see table 7) for 

45 min. After washing the membrane as described above, the protein bands were detected 

with the luminescent imaging analyzer LAS-3000 (Fujifilm Europe GmbH, Germany) using 

the ECL Plus Western Blotting detection Kit (# RPN2132, GE Healthcare Europe GmbH, 

Amersham, Germany). 

 

5.4.5 Dot Blot 

The purity of FN matrices and presence of collagen I were tested with a dot blot. NIH3T3 FN-

YPet and FNRGE/RGE cells were seeded and cultured as described in 5.1.3 in 35 mm dishes. 

Protein cell lysates were obtained as described in 5.4.1. 

5 µg of each lysate was pipetted on a nitrocellulose transfer membrane (Protran® BA 79, 

# 10402096, Schleicher und Schuell BioScience GmbH, Germany). As positive control for 

FN, human FN was used. Rat tail collagen I (# 354249, BD Biosciences) was taken as control 

for collagen I detection. BSA was chosen as negative control. Per control 5 µg protein 

solution was applied on the nitrocellulose membrane. 

To ensure the complete binding of proteins to the membrane, the membrane was incubated for 

1 h at RT until it was completely dried. Empty binding sites were blocked with 5 % (w/v) 

milk powder in DPBS-T for 1 h at RT. Then, the membrane was incubated in 5 % (w/v) milk 

powder/DPBS-T containing the primary antibody (see table 6) while shaking ON at 4 °C. The 



Materials and Methods 

45 

 

 

membrane was washed three times for 10 min with DPBS-T, followed by an incubation in 

5 % (w/v) milk powder in DPBS-T containing the secondary antibody (see table 7) on a 

shaker for 45 min at RT. After washing the membrane as described above, samples were 

analyzed with the ECL Plus Western Blotting detection Kit in the luminescent imaging 

analyzer LAS-3000. 

 

Table 6: Information on primary antibodies for blot ting techniques 

Antigene / Clone Host / Isotype Manufacturer / 

Order number 

Concentration 

→ Dilution 

α-Tubulin / B-5-1-2 mouse / IgG1 Sigma-Aldrich / T6074 2 mg/ml  
→ 1:1000 

β-Actin / AC-15 mouse / IgG1 Sigma-Aldrich / A1978 ~2 mg/ml 
→ 1:4000 

Cofilin rabbit / polyclonal Cell Signaling / 3312S NA 
→ 1:500 

Collagen I / COL-1 mouse / IgG1 Sigma-Aldrich / C2456 NA 
→ 1:1000 

ERK / 16/ERK (pan ERK) mouse / IgG2a BD Biosciences / 610123 250 µg/ml 
→ 1:1000 

FAK / 77/FAK mouse / IgG1 BD Biosciences / 610087 250 µg/ml 
→ 1:1000 

FAK (pY397) / 14/FAK(Y397) mouse / IgG1 BD Biosciences / 611722 250 µg/ml 
→ 1:1000 

Fibronectin rabbit / polyclonal Sigma-Aldrich / F3648 0.5 - 0.7 mg/ml  
1:1000 

Integrin α5  / 1/CD49e mouse / IgG2a BD Biosciences / 610633 250 µg/ml 
→ 1:1000 

Integrin β1  / 18/CD29 mouse / IgG1 BD Biosciences / 610467 250 µg/ml 
→ 1:1000 

MMP14 / EP1264Y rabbit / IgG Epitomics / 2010-1 NA 
→ 1:1000 

p44/42 MAPK (Erk1/2) / 137F5 rabbit / IgG Cell Signaling / 4695S NA 
→ 1:1000 

Phospho-Cofilin (Ser3) / 77G2 rabbit / IgG Cell Signaling / 3313S NA 
→ 1:500 

 

Table 7: Information on secondary antibodies for blotting techniques 

Reactivity / Conjugate Host / Isotype Manufacturer / 

Order Number 

Concentration / 

Dilution 

α-mouse / HRP conjugated goat / IgG Santa Cruz / sc-2005 400 µg/ml 
→ 1:4000 

α-rabbit / HRP conjugated goat / IgG Santa Cruz / sc-2004 400 µg/ml 
→ 1:4000 
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5.5 Fluorescence staining techniques 

5.5.1 Indirect immunofluorescence staining (IIF) of cells 

Medium was removed and cells were washed with DPBS. All following steps were performed 

at RT. First, cells were fixed with 3.7 % (w/v) paraformaldehyde (PFA) in DPBS for 30 min. 

Then, cells were permeabilized by incubation in 0.2 % (v/v) Triton-X 100 diluted in 3.7 % 

PFA/DPBS for 1 min. After rinsing three times with DPBS, samples were kept in 1 % (w/v) 

BSA/DPBS for 30 min to reduce background signal. Afterwards, cells were incubated with 

the primary antibody (see table 8) diluted in 1 % (w/v) BSA/DPBS for 1 h. Samples were then 

rinsed three times with DPBS and incubated with the secondary antibody (see table 9) diluted 

in 1 % (w/v) BSA/DPBS for 45 min. After rinsing three times with DPBS, samples were 

mounted with ibidi mounting medium (# 50001, ibidi). 

 

5.5.2 IIF staining of FN matrices 

FN matrices were incubated in 1 % (w/v) BSA/DPBS for 30 min. Then, cells were incubated 

with the primary antibody (see table 8) diluted in 0.1 % w/v BSA/DPBS for 1 h. Samples 

were rinsed three times with DPBS and incubated with the secondary antibody (see table 9) 

diluted in 0.1 % (w/v) BSA/DPBS for 45 min. After rinsing three times with DPBS, samples 

were stored in DPBS. 

 

Table 8: Information on primary antibodies for IIF stainings 

Antigene / Clone Host / Isotype Manufacturer / Order number Concentration 

/ Dilution 

MMP14 / EP1264Y rabbit / IgG Epitomics / 2010-1 NA 
1:200 

Fibronectin rabbit / polyclonal Millipore / AB2033 1 mg/ml 
1:80 

Vinculin mouse / IgG1 Sigma-Aldrich / V9131 NA 
1:400 

 

 
Table 9: Information on secondary antibodies for IIF stainings 

Reactivity / Conjugate Host / Isotype Manufacturer / Order number Concentration 

/ Dilution 

α-rabbit / Alexa Fluor® 488 goat / IgG Life Technologies / A-11034 2 mg/ml 
1:200 

α-mouse / Alexa Fluor® 647 goat / IgG Life Technologies / A-21236 2 mg/ml 
1:200 
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Table 10: Information on additional fluorescence markers 

Name Target structure Manufacturer / Order number Concentration 

/ Dilution 

Phalloidin-TRITC F actin Sigma-Aldrich / P1951 0.5 mg/ml        
/ 1:200 

 

5.5.3 Fluorescence activated cell sorting (FACS) analysis 

For analysis of integrin surface expression 2.5 x 105 HT1080 and 3.5 x 105 MCF7 cells were 

seeded per well of a 12-well plate (area of one well: 3.8 cm2) and cultured until they reached 

100 % confluence. In contrast, for MT1-MMP silencing, cells were seeded in a 24-well plate 

at different cell densities: 0.6 x 105, 1.2 x 105 and 1.8 x 105 cells per well. FACS-staining was 

performed 48 h and 72 h after siRNA-transfection (see 5.1.4). 

Culture medium was removed and cells were washed once with DPBS. Cells were gently 

detached with 100 µl cell dissociation buffer while incubating for 5 min at 37 °C. The 

reaction was stopped by adding 500 µl of culture medium. For each sample two aliquots of 

200 µl were prepared. Cells were centrifuged at 500 x g in a pre-cooled centrifuge for 5 min 

at 4 °C. The medium was removed and the cell pellet resuspended in 50 µl FACS-buffer 

(DPBS, 5 % (v/v) heat inactivated NCS, 0.5 % (w/v) BSA, 0.5 % (w/v) N3) containing the 

corresponding primary antibody (see table 11). The second sample was resuspended in 50 µl 

FACS-buffer without antibody (non-antibody control). After 20 min incubation on ice, cells 

were washed with 500 µl FACS-buffer and centrifuged as described above. The FACS-buffer 

was discarded and the cell pellet resuspended in 50 µl FACS-buffer containing the secondary 

antibody (see table 12). After a 20 min incubation period on ice, cells were washed with 

500 µl FACS-buffer and centrifuged as described above. FACS-buffer was removed and the 

cell pellet was resuspended in 150 µl FACS-buffer containing 2 % (w/v) PFA dissolved in 

DPBS. Cells were stored at 4 °C until measurement with a FACS machine (FACScan, Becton 

Dickinson GmbH, Germany) at the Institute of Immunology (University Heidelberg). 

Fluorescence intensity of 104 cells was measured for each sample. The generated data was 

analyzed with the flow cytometry data analysis software FlowJo (Tree Star, Inc., USA). For 

information on statistical testing, see paragraph 5.7.1. 
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Table 11: Information on primary antibodies for FACS 

Antigene / Clone Host / Iso type Manufacturer / Order number Concentration 

/ Dilution 

Integrin α5 / SAM-1 mouse / IgG GeneTex / GTX26131 2 mg/ml 
→ 1:100 

Integrin αv / AV1 mouse / IgG1 Millipore / MAB2021Z ~110 µg/ml  
→  1:10 

Integrin αvβ3 / LM609 mouse / IgG1 Millipore / MAB1976 1 mg/ml 
→ 1:50 

Integrin β1 / LM534 mouse / IgG Millipore / MAB1981 NA 
→ 1:10 

Integrin β3 / B3A mouse / IgG Millipore / MAB2023Z 1 mg/ml 
→ 1:25 

MMP14 / EP1264Y rabbit / IgG Epitomics / EP1264Y NA 
→ 1:50 

 

Table 12: Information on secondary antibodies for FACS 

Antigene / Conjugate Host / Iso type Manufacturer / Order number Concentration 

/ Dilution 

α-mouse / PE goat / F(ab´)2 fragment Dianova / 115-116-146 NA 
→ 1:200 

α-rabbit / PE  donkey / F(ab´)2 fragment Dianova / 711-116-152 NA 
→ 1:200 
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5.6 Imaging techniques 

5.6.1 Fluorescence microscopy 
Fluorescence images were acquired with an inverted fluorescence microscope (Olympus IX, 

Olympus Europa Holding GmbH, Germany) and a Delta Vision system (Applied Precision 

Inc., Canada). Three different objectives were used: a 20 x UPlan FL PHI (Olympus), a 40 x 

Plan NEOFLUAR (Zeiss) and a 60 x PlanApo Oil (Olympus). 

 

5.6.2 Confocal laser scanning microscopy 

Confocal images or image stacks were acquired with a confocal laser scanning system (C1-

CLEM) on a fully automated, inverted Nikon microscope (Eclipse Ti) equipped with three 

lasers (405 nm, 488 nm and 561 nm) at the Nikon Imaging Center Core Facility (University 

Heidelberg, Germany). The following Nikon objectives were used: a 40 x Plan Fluor Oil DIC 

objective and a 60 x Plan Apo VC Water PFS objective. 

 

5.6.3 Live cell imaging of HT1080 cells on different FN surfaces 

HT1080 cells were seeded on freshly prepared FN matrices or on FN coatings (for preparation 

of surfaces see 3.1.2 and 3.1.3) for migration studies. 

Cells were detached from the culture dishes with an EDTA-based cell dissociation buffer for 

5 min at 37°C. For each condition 1.5 x 105 cells were resuspended in 1 ml Opti-MEM® 

containing a final concentration of 10 µM of an unspecific cytoplasma labeling dye, 

CellTracker™ Red CMTPX (# C34552, Life Technologies, Molecular Probes®). Cells in 

suspension were first incubated for 30 min at 37°C and then centrifuged at 500 x g for 5 min. 

The labeling solution was removed by aspirating and the cell pellet was resuspended in 1.2 ml 

culture medium. For general MMP inhibition, the broad-spectrum hydroxamic acid inhibitor 

of matrix metalloproteinases GM6001 (# 364205, Merck, Calbiochem®) and GM6001 control 

(# 364210, Calbiochem) respectively were added to the culture media to a final concentration 

of 10 µM each. SiRNA transfected cells were used 48 h after transfection (see 3.1.4 for 

transfection protocol). Integrin receptor blocking was performed as described under 3.1.5. 

Cells were seeded on FN matrices or on FN coatings at a density of 2.5 x 104 per well. For 

myosin II inhibition, blebbistatin (#B0560-1MG, Sigma-Aldrich) was added to a final 

concentration of 50 µM or 25 µM, directly before imaging. Table 13 gives an overview of the 

different conditions. Live cell imaging was performed at a constant temperature of 37 °C 
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under 5 % CO2 atmosphere. The migration behavior was monitored using an Olympus IX 

inverted fluorescence microscope and a 20x objective (see 5.6.1). 

For a quantitative analysis of FN dependent cell migration, images of at least three different 

areas were acquired every 10 min for an observation period of 15 h per condition. 

Experiments were repeated at least three times. Cells that left the observation field (i), 

underwent apoptosis (ii), did not move at all (iii), were affected in their movement by 

neighboring cells (iv), migrated in areas where the FN matrix was either lacking or very 

sparse (v), or mitotic cells (vi) were not considered for further analysis. All other cells were 

tracked by a manual tracking plugin of Image J software [113]. The distance the cells moved 

during each time step was used for calculating migration speed values. The average velocities 

were determined by dividing the complete trajectory length by the duration of the observation 

period. 

 

Table 13: Information on different conditions for cell migration experiments 

Presentation of 
fibronectin 

Blocked integrin 
receptor 

 

SiRNA treatment Inhibitor 

 
 
 
 
 

fibrillar FN matrix 
 
 

- - - 
a5ß1 - - 
avß3 - - 

a5ß1 and avß3 - - 
a5ß1 siMT1-MMP [5 µM] - 

- siMT1-MMP [5 µM] - 
- sicontrol [5 µM] - 
- - GM6001 [10 µM] 
- - GM6001 control [10 µM] 
- - blebbistatin [50 µM] 
- - blebbistatin [25 µM] 

fibrillar FN-RGE matrix - - - 
 
 
 
 
 

FN coating 
 

- - - 
a5ß1 - - 
avß3 - - 

a5ß1 and avß3 - - 
a5ß1 siMT1-MMP [5 µM] - 

- siMT1-MMP [5 µM] - 
- sicontrol [5 µM] - 
- - GM6001 [10 µM] 
- - GM6001 control [10 µM] 
- - blebbistatin [50 µM] 
- - blebbistatin [25 µM] 
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In order to determine the directionality of cell migration another variable was analyzed, 

namely the persistence. The persistence is defined as the ratio between the linear distance of 

start and end point of the trajectory and the complete length of the trajectory. This ratio gives 

a factor of 1 if cells migrate in a perfectly straight line and is smaller otherwise [115]. Time 

dependent migration behavior was estimated by grouping the trajectories into 2 h-long 

segments for both average velocity and persistence data. 
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5.7 Statistical analysis 

 

5.7.1 Statistical analysis of integrin blocking and MT1-MMP silencing experiments 

Considering the integrin blocking experiments (see 5.1.5), average number of cells counted on 

all five images was calculated for each experimental run. Accordingly, average fluorescence 

intensity levels were calculated for each treatment group in the MT1-MMP silencing 

experiment (see 5.1.4). Next, the mean of the average numbers and fluorescence intensities of 

all biological replicates were determined. The statistical analysis was conducted using the 

software Sigma Stat 3.0 (SSPS Inc. USA). In order to similarities between the mean values, 

the data was analyzed by a one way analysis of variance (ANOVA) adjusted by Holm-Sidak. 

The Null-hypothesis was that the mean values are equal and it was rejected at α = 0.05. The 

alternative hypothesis was that the mean values differ from each other. Significant differences 

between the mean values are differentiated with highly significant (P < 0.005) and extremely 

significant (P < 0.001). The respective bar chart were generated in OriginPro 9.0 (OriginLab 

Corporation, USA) and indicate mean values with standard error of the mean (SEM). 

 

5.7.2 Statistical analysis of cancer cell migration experiments 

For each treatment group approximately 100 cells from three to five experimental runs were 

evaluated. The statistical analysis and the generation of graphs were kindly performed by Dr. 

Tamás Haraszti (University Heidelberg, Germany). The programming language R was used 

for all statistical testing as well as for generation of box-and-whisker plots. Gnuplot was used 

for plotting polar histograms of angular persistence angles, the histograms of average 

velocities or migration persistence. Considering the box-and-whisker plots, each box is 

defined by the 1st and 3rd quartile of the data with the median marked by a line. The whiskers 

either extend to the extreme of the data, or to maximum 1.5 times the interquartile range. Data 

values that exceed the whiskers, the so-called outliers, are indicated by black squares. 

The polar plot show persistence migration as normalized histogram of the angles between 

consecutive steps, generated for 10 degree broad pockets (with 36 values between -π – π), The 

direction of the bars indicate the middle value of the histogram pockets, whereas the bar 

length is proportional to the probability density at a certain angle. The velocity histograms 

were generated based on the calculation of 50 pockets between the minimum and maximum 

of the data set. They were plotted as scatter plots including a line calculated by a cubic spline 

interpolation. 
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In order to test similarities between the mean values of data sets (for velocities or persistence 

angles), the Wilcoxon rank sum test was used. The null hypothesis was that the difference of 

the means is zero. Hence, the alternative hypothesis was that the means are not equal. For data 

sets with more than 50 elements, p-values were calculated according to a normal 

approximation. Similarities of sample distributions were evaluated using the two-sided 

Kolmogorov-Smirnov test. The null hypothesis was that both tested data sets show the same 

distribution. Since all samples have data with ties for which exact p-values cannot be 

calculated, asymptotic distributions were used. 
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6. Results and Discussion 

FN is an important mediator of cell adhesion and migration [33, 34]. In cancer, FN is often 

overexpressed by CAFs and can initiate pre-metastatic niche formation [30]. So far, FN-

dependent cancer cell migration was mainly investigated on 2D environments. Studies on 

fibroblasts highlighted the importance of more physiological FN model systems, since the 

conformation of FN (e.g. 2D FN: globular; 3D FN: fibrillar) strongly influences cell behavior 

[105]. The aim of this thesis was to characterize cancer cell migration on 2D FN coatings and 

3D fibrillar FN matrices. Here, the main emphasis was placed on the interaction of FN with 

α5β1 and αvβ3 integrins as well as MT1-MMP, proteins that have been reported as important 

regulators of cancer cell migration on 2D FN environments [88, 116]. 

 

6.1 Analysis of integrin and MT1-MMP expression in different cell lines 

Since one aim was to create a more physiological in vitro model system for FN-dependent 

cancer cell migration, a tumor cell line was selected that endogenously expressed the FN-

binding integrins α5β1 and αvβ3 as well as MT1-MMP. Accordingly, no molecules had to be 

introduced artificially. 

 

6.1.1 Evaluation of integrin mRNA expression via PCR analysis 

First, three human cancer cell lines (MV3, MCF7 and HT1080 cells) and a transformed cell 

line originated from a green monkey (COS), each of them being widely used for studying 

cancer cell migration [84, 88, 104, 117], were screened for expression of the relevant FN-

binding integrins at the mRNA level. PCR analysis revealed a distinct mRNA expression 

pattern of the tested integrin subunits α5, αv, β1 and β3 for each cell line (figure 10). HT1080 

cells were the only ones that expressed all relevant integrin transcripts and were thus chosen 

for all further experiments. This cell line originates from a fibrosarcoma biopsy and is 

characterized by a highly invasive phenotype and a high potential to form metastasis [106]. 

This qualifies HT1080 cells as an optimal cell line to study FN-dependent cancer cell 

migration. 
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Figure 10: Agarose gel electrophoresis of integrin transcripts 
mRNA expression of the integrin subunits α5, αv, β1 and β3 was analyzed in different cell lines (MV3, MCF7, 
COS and HT1080) via PCR and agarose gel electrophoresis. GAPDH (G) was chosen as an external positive 
PCR control. As DNA standard (M) 8 µl GeneRuler™ 100 bp DNA ladder was loaded on the agarose gel. To 
verify that the PCR components (e. g. water, primer and Taq polymerase) were not contaminated with gDNA, a 
negative control (neg. ctrl.) containing no template was used for each primer pair. 
The results are summarized in a table indicating either no expression (-) or expression (+) of the respective 
integrin subunits, independent on the fluorescence intensity of the detected bands. 
 

 

6.1.2 Evaluation of integrin and MT1-MMP protein expression via flow cytometry 

In order to confirm that the studied integrins subunits α5, αv, β1, and β3 were expressed also at 

the protein level and presented at the plasma membrane, protein surface localization was 

investigated by flow cytometry. All four integrin subunits were detected at the plasma 

membrane of HT1080 cells (figure 11 A). These results are congruent with former studies on 

integrin expression in HT1080 cells [118, 119]. 

In addition, MT1-MMP protein expression in HT1080 cells was validated by flow cytometry 

analysis (figure 11 B) in agreement with previous reports [120]. 
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Figure 11: Flow cytometry histograms of integrin and MT1-MMP IIF stainings in HT1080 cells 
Cell surface expression of the integrin subunits αv, β3, α5, β1, the whole αvβ3 receptor and MT1-MMP was 
analyzed via flow cytometry as described in paragraph 5.5.3. The histograms reflect the relative fluorescence 
intensities of differentially stained cell populations. Here, relative fluorescence intensity is plotted in a 
logarithmic scale on the x-axis and cell count is plotted on the y-axis. The black histograms marked with α-ms 
PE and α-rb PE, represent the autofluorescence intensities of unstained cells. As control for unspecific binding of 
the secondary antibody, cells were stained with the indicated PE-labeled secondary antibodies (red tainted 
histograms). In all other figures, black histograms refer to the fluorescence intensities of cells stained with these 
corresponding secondary antibodies. The red tainted histograms in those figures mark the cell population stained 
for the indicated molecules. Three biological replicates of this experiment were performed. For each tested 
protein a representative measurement was chosen. 
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6.1.3 Evaluation of MT1-MMP protein localization via IIF stainings 

Further information on the intracellular localization of MT1-MMP molecules is provided 

through IIF images (figure 12). MT1-MMP was detected at cellular protrusions associated 

with migration where it co-localizes with filamentous actin. In addition, strong fluorescence 

signals were observed in the middle of the cells. This area is interpreted to be the ER, where 

MT1-MMP is synthesized. Moreover, fluorescent puncta localized between the ER and 

membrane protrusions were visible. Similar localization of MT1-MMP has already been 

demonstrated in other cell lines [85, 121, 122]. During cell migration, MT1-MMP is targeted 

to lamellipodia for local degradation of FA and the ECM barrier [121, 123, 124]. 

Accordingly, the observed fluorescent puncta are likely MT1-MMP-rich vesicles transported 

from the trans-Golgi network to membrane protrusions to sustain the amount of enzymes at 

the cell surface [125].There, MT1-MMP co-localized with actin filament, which is important 

for remodeling of the ECM in invading tumor cells [126]. 

 

 

Figure 12: IIF staining of MT1-MMP in HT1080 cells 
Cells are seeded at a density of 6 x 105 cells per 35 mm dish and kept ON at 37°C and under 5 % CO2 
atmosphere. IIF staining of MT1-MMP (green) is performed as described in paragraph 5.5.1. Actin filaments are 
stained with TRITC-Phalloidin (red). Each confocal image represents a maximum projection of 48 z-stacks with 
a step size of 0.3 µm. Scale bar, 25 µm. 
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6.2 Quality assessment of fibrillar FN matrices 

In contrast to fibrillar collagens that spontaneously form 3D matrices in vitro, FN does not 

form fibers by self-assembly [34]. FN fibrillogenesis is a cell-mediated process which is 

dependent on the interaction of dimeric FN molecules with integrins, in particular α5β1 

integrin, and requires contractile forces [36]. 

Here, FN matrices were prepared using a modified procedure published previously [112]. For 

improved adhesion of the cell-derived FN matrices, fibroblasts were seeded on ibiTreat dishes 

with immobilized plasma FN as described in 3.1.3. This procedure improved matrix integrity 

and organization of the cell-free FN matrices. Apart from FN matrices assembled by NIH3T3-

YPet cells, FNRGE/RGE cells were used for the generation of FN-RGE networks. FN-RGE 

contains a point-mutation in the RGD site, whereby aspartic acid (D) is replaced through 

glutamic acid (E). This alteration impairs binding of integrin to the RGD motif [42]. 

 

6.2.1 Evaluation of FN matrix quality by fluorescence microscopy 

First, the structure of cell-derived FN matrices was examined by fluorescence microscopy. 

NIH3T3-YPet cells express YPet-labeled FN which enables direct analysis of fibrillar FN 

networks (figure 13 A). For imaging FN-RGE matrices assembled by FNRGE/RGE cells, FN 

fibrils were immunostained (figure 13 B). Although the antibody staining shows a higher 

background which complicates the identification of FN structures, the fibrillar organization 

and pore size of both types of FN matrices is considered as comparable. 
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Figure 13: Fluorescence images of preassembled FN matrices 

A) The FN matrix was preassembled by NIH3T3-YPet cells. Confocal iImages were acquired after lysis of 
fibroblasts with an inverted microscope and a 60 x objective. Image represents a maximum projection of 23 z-
stacks with a step size of 0.3 µm. Scale bar, 25 µm. B) The FN-RGE matrix was preassembled by FNRGE/RGE 
cells. After cell lysis the matrix was stained by IIF as described in paragraph 5.5.2. Image was acquired with an 
inverted microscope and a 40 x objective. Scale bar, 50 µm. 

To evaluate how lysis of fibroblasts influenced matrix integrity, images of the same matrix 

area were acquired before and after cell lysis (figure 14). No matching structures could be 

identified between both images. Since the pore size was not altered by the cell lysis 

procedure, the observed differences in FN fiber arrangement might be caused by superficial 

FN lysis resulting in a reduced matrix thickness. Indeed, measurements of matrix thickness in 

z-direction showed that prior to cell lysis FN matrices had a thickness of 10-15 µm, whereas 

after treatment with the lysis buffer the final matrix thickness was approximately 5-10 µm. 

These findings are in agreement with previous publications [112] 

 

Figure 14: Fluorescence images of preassembled FN matrices 

FN matrix was prepared as described in paragraph 5.1.3. Images were acquired before (A) and after (B) lysis of 
fibroblasts with an inverted microscope and a 40 x objective. Scale bar, 20 µm. 

 

Although cell-derived FN matrices are more physiological than 2D FN coatings, one 

limitation of this system remains their modest thickness. As shown in figure 15, HT1080 cells 

are not completely embedded in FN (figure 15). The fibrillar FN organization is nonetheless 

referred to as 3D as it is commonly done in the literature [112]. 
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Figure 15: 3D projection of fluorescence images from HT1080 cells on FN matrix 

HT1080 cells (red) were stained with a cytoplasmatic labeling dye and seeded on a freshly prepared FN matrix 
(green). The confocal image represents a 3D-projection of 20 z-stacks with a step size of 0.5 µm. 

 

6.2.2 Evaluation of FN matrix purity by dot blot analysis 

The ECM in the human body consists of different components with collagen I being the most 

abundantly expressed protein [33, 34]. Since the fibrillar FN matrices were produced by cells, 

it is possible that they also expressed collagen I and thereby “contaminate” the FN matrices. 

The presence of collagen I in this system would definitely complicate the conclusion of cell 

migration experiments. In order to clarify, whether the generated matrices contain FN only, a 

dot blot with cell/matrix lysates was performed. According to figure 16, NIH3T3-YPet cells 

do not produce collagen I and FNRGE/RGE cells excrete only minor amounts of collagen I. This 

is an important finding because cells can interact with collagen I through their α2β1 integrin 

receptors [127]. The absence of this protein from fibrillar FN matrices guarantees an unbiased 

experimental set-up. For interpreting results on FN-RGE matrices, the presence of collagen I, 

albeit expressed only in low levels, should be kept in mind. 
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Figure 16: Dot blot for collagen I and FN of fibrillar FN matrices 
Purity of the fibrillar FN matrices produces by NIH3T3 FN-YPet and FNRGE/RGE cells was determined with a dot 
blot. Here, 5 µg of total cell/matrices lysates are dropwise applied on a nitrocellulose membrane. As positive 
control 5 µg of the relevant proteins (rat tail collagen I or FN) was used. 5 µg of BSA serves as a control for 
unspecific binding of antibodies. 
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6.3 Cancer cell migration on different FN environments 

Most of the research concerning FN dependent cancer cell migration has been performed on 

2D rigid surfaces coated with globular FN. Within the connective tissue, however, FN is 

mainly presented to cells in a 3D fibrillar network structure. The aim of cell migration 

experiments presented in this section was to characterize and compare the migratory behavior 

of cells on 2D FN coatings and on 3D fibrillar FN matrices. First, cell morphology and 

interaction of HT1080 cells with fibrillar matrices was investigated in a qualitative manner. 

Next, quantitative analysis of both average velocity and directionality of cell migration, 

referred to as persistence, was performed. 

 

6.3.1 The topography of presented FN molecules influences HT1080 cell morphology 

It is known that the morphology of fibroblasts is affected by the conformation of presented 

FN molecules [105]. On 2D FN coatings, where FN shows a globular conformation; 

fibroblasts possessed fan-shaped lamellipodia while on 3D fibrillar FN matrices they assumed 

elongated spindle-like shapes. Here, similar changes were observed using HT1080 cells 

(figure 17). Cells seeded on FN coatings were flat and more round in shaped with large 

lamellipodia. In contrast, cells on FN matrices were elongated and formed long protrusions. 

On FN matrices containing a mutated RGE site, HT1080 cells were spindle-shaped, but did 

not spread as much as on FN matrices with a functional RGD motif. In addition, there were an 

increased number of round cells present. 

 

Figure 17: Fluorescence images of HT1080 cells on different FN surfaces 

Fluorescence images show HT1080 cells on different FN environments (FN coating, FN matrix or FN-RGE 
matrix). Images were acquired 2 h after cell seeding with an inverted fluorescence microscope and a 20 x 
objective. Scale bar, 50 µm. The insets (red boxes) indicate zoom-ins of selected cells. The outline of the cell 
body is marked with a yellow line in order to discriminate cell morphology. Scale bar of insets, 15 µm. 
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These findings imply that interactions of cells with the RGD site in FN are important for 

spreading of HT1080 cells on fibrillar FN matrices. Cell morphology in general seems to be 

governed by FN topography. 

 

6.3.2 HT1080 cells modulate FN matrices through FN fiber breakage 

Single cell migration was observed via time-lapse live cell microscopy over a period of 15 h. 

Since FN matrices were completely destroyed by HT1080 cells over time, a closer look was 

taken at interactions between HT1080 cells and FN fibers. As shown in figure 18, the cancer 

cells wrap themselves with or move along FN fibers. Furthermore, cells preferentially migrate 

at places where FN matrix is still present and avoid FN-free areas. This leads to cell 

clustering, especially at later time points when only few FN fibers remain. Since these factors 

could influence cell migration behavior, only trajectories for the time period of 8 h were 

considered for further analysis, where FN matrices were still intact. 

HT1080 cells seeded on FN-RGE matrices still interacted with the mutated FN to some 

extent. In fact, fluorescence intensity levels around cells increased over time, suggesting a 

rearrangement of FN fibers at these locations. There are two possible explanations for this 

observation. First, HT1080 cells do not interact with FN directly, but either through binding to 

the antibodies used to stain FN molecules or through binding to collagen I, which is present in 

minor amounts within FN-RGE matrices (figure 16). In order to avoid that FN binding 

antibodies interfere with cell migration behavior, FN-RGE matrices were not stained during 

cell migration experiments. Second, HT1080 cells could interact with FN via binding sites 

apart from RGD. It has been shown previously, that α9β1 and α4β1 can bind to FN via its EIIIA 

domain [40] and subsequently mediate adhesion to fibrillar FN independent of the RGD-

motif. In addition, integrin αvβ3 can interact with an isoDGR motif present in the FN module 

I5 [43]. 

Apart from that, HT1080 cells are not able to disrupt the fibrillar FN-RGE network as in case 

of FN matrices, at least not during the observed time period of 15 h. These results suggest that 

the disintegration of FN matrices is mainly mechanical in nature and might depend on cellular 

interaction with the RGD site in FN. It has previously been shown that detachment of HT1080 

cells from FN matrices under shear is mediated through FN fiber breakage, while the 

detachment from FN coatings occurs through release of interactions between α5β1 integrin and 

FN [128]. Accordingly, it can be assumed that HT1080 cells bind to FN fibers and pull them 

along their migration track until tearing of fibers. 
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Figure 18: Fluorescence image time series of HT1080 cells on different FN environments 

HT1080 cells (red) stained with a cytoplasmatic labeling dye were plated either on FN coating, FN matrix 
(green) or FN-RGE matrix (green) and were imaged over a period of 15 h. Here, representative time series for 
0 h, 2 h, 4 h, 6 h 8 h and 15 h, are depicted. The colored lines indicate individual cell tracks. Scale bar, 50 µm. 
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6.3.3 3D FN matrices allow fast migration of HT1080 cells, which depends on the RGD-

motif  

Next, average velocity was calculated for cell migrating on FN coatings, FN matrices and FN-

RGE matrices. As shown in figure 19 A and 19 B, HT1080 cells migrated faster on FN 

matrices (green) than on FN coatings (red) or FN-RGE matrices (cyan). According to the 

probability distribution plots (figure 19 C), the observed variations in cell migration speed 

between cells migrating on FN matrix and FN coatings or FN-RGE matrices are significantly 

different. The reduced migration speed of cells plated on FN matrices with a mutated RGE 

motif suggests that in a fibrillar FN environment migration is regulated by interactions of cells 

with the RGD site of FN. The results on the differences in migration speed between cells 

plated on FN coatings and FN matrices are in agreement with previous studies on NIH3T3 

fibroblast and on human keratinocytes migration [129]. Both cell lines migrated significantly 

faster on fibrillar FN than on FN coatings. Hence, the observed changes in HT1080 cell 

migration on fibrillar FN cannot be attributed to cancer cells only but appear to be based on a 

general mechanism. Interactions between cells and their environment are regulated by 

variation of matrix stiffness [130]. In comparison to 2D FN coatings, 3D fibrillar matrices 

have a reduced matrix stiffness, resulting in low adhesion structures that enable fast cell 

migration [131]. The mechanical properties of the matrix are sensed through integrins and 

transduced inside the cell, where appropriate responses are triggered [20], suggesting that 

differenr integrin receptors could be involved in cell migration on FN coatings and on FN 

matrices. 

One criterion for calculating the average velocity was that only cells that did not leave the 

observation field during the entire observation period were considered for analysis. It is more 

likely for a cell to stay within the observation field during shorter periods (4 h) than longer 

periods (8 h). Consequently, if the observation period is shortened (4 h), the number of 

analyzed trajectories increases, making the statistical evaluation more reliable. On the other 

hand, information on changes occurring over time might be lost. In order to evaluate which 

time period provides enough data for reliable statistical analysis but does not neglect time 

dependent effects, box-and-whisker plots for 4 h and 8 h observation periods were generated 

(figure 19 A and B). As shown in both box-and-whisker plots, on each FN substrate HT1080 

cells migrate with constant speed over time. Hence, the 4 h period was chosen for all further 

calculations and statistical analysis. 
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Figure 19: Analysis of migration speed and persistence of HT1080 cells in different FN environments 

Different cell migration parameters were analyzed for HT1080 cells seeded on FN coating (in red), FN matrix 
(in green) and FN-RGE matrix (in cyan). A, The first box of each colored group shows average migration speed 
for the observation period of 0-2 h, the second box for 2-4 h. The boxes are defined by the first and third quartile 
and the median indicated by the line. Data points outside the whiskers are outliers. B, Same as in A with 
additional time periods; the third box of each group shows the data for 4-6 h, the fourth box for 6-8 h. C The 
velocity histograms are plotted as scatter plots. Lines are fitted using a cubic spline interpolation. D/E, Analysis 
of directionality of migration, indicated as persistence for 0-2 h (first box of each group) and for 2-4 h (second 
box of each group) in the box-and-whisker plot (in D), and as persistence angle in the polar plots (in E). 
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6.3.4 3D FN matrices increase directionality of cell migration  

For further analysis of cell migration behavior, directionality of cell migration was quantified. 

As shown in figure 19 D, HT1080 cells migrated with higher persistence on both fibrillar FN 

environments (FN matrix and FN-RGE matrix) than on FN coating. Polar plots (figure 19 E) 

give further information on the relative distance and direction of migrating cells. Here, the 

step angles of all cell tracks within the observation period of 4 h are plotted in 10° degree 

broad pockets with the horizontal line indicating no deviation (0° degree). Hence, the right 

side of the circle represents forward and the left side backward movement, whereby the bar 

length indicates the probability density at a certain angle. Directionality of migration was 

evident only for HT1080 cells on FN matrix (green) and on FN-RGE matrix (cyan). HT1080 

cells migrating on FN coatings (red) showed a more randomized migration behavior. 

An explanation for the enhanced persistence of migrating cells on fibrillar FN matrices can be 

found in the different organization of the two FN environments [129]. The fibrillar FN fibers 

provide a framework with an inherent directionality. Cells interacting with these fibers follow 

their direction and hence show a more directed movement implying contact guidance as 

potential mechanism for efficient cell movement. On FN coatings, FN molecules are 

randomly distributed with a high ligand density. Hence, migrating cells have numerous 

possibilities for choosing their migration pathway resulting in a less directed movement. 

These different migratory phenotypes can also explain the observed variation in cell 

morphology (figure 10). On fibrillar FN matrices, HT1080 cells are more elongated due to 

their alignment with the FN fibers, whereas on FN coatings they can bind to each FN 

molecule in their proximity and thereby assume a more round-shaped form. At the same time, 

cells migrating on FN-RGE matrices show a higher probability for moving backwards than on 

fibrillar FN with an intact RGD site (figure 19 E), suggesting cell adhesion to FN fibers via 

the RGD site is important for regulating persistence of cancer cells. 
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6.4 Evaluation of integrin receptor blocking on FN dependent cancer cell migration 

So far, the results suggest that morphology and migration behavior of HT1080 cells is 

governed by the organization of FN. On 3D fibrillar FN matrices, cancer cells assume an 

elongated, spindle-shaped form, migrate with relatively high average speed and keep a certain 

direction over time. In contrast, on 2D FN coatings, HT1080 cells are round-shaped and show 

a less directed, slower movement. These findings suggest that cell migration on both types of 

FN environments may be based on different migration modes. 

By using FN matrices with a mutated RGD-binding motif that inactivates this site for integrin 

binding [43], the involvement of the RGD site for cell migration on fibrillar FN was 

demonstrated (figure 19). There are at least eight integrin receptors that are able to interact 

with FN, namely α3β1, α4β1, α5β1, α8β1, α9β1, αvβ1, αvβ3, αvβ6, and αIIbβ3 [39, 40]. Except for 

integrin α3β1, α4β1 and α9β1, all integrins bind to the RGD site of FN [40, 41]. A promising 

candidate that could influence cell migration on fibrillar FN matrices is α5β1 integrin. It is the 

main FN-binding receptor and the most important regulator of FN fibrillogenesis [36]. Since 

the αv integrin subunit has the most similar structure to integrin α5 [127] and this integrin can 

further replace the role of integrin α5 in adhesion to FN as well as FN matrix assembly in α5–

null cells [39], the αvβ3 integrin was chosen as second candidate possibly involved in cancer 

cell migration on FN. Here, the influence of α5β1 and αvβ3 integrin receptors on FN dependent 

cancer cell migration was evaluated by impairing the adhesion of those integrins to FN via 

function blocking antibodies. 

 

6.4.1 Evaluation of integrin blocking antibodies 

Initially, the effectiveness of α5β1 and αvβ3 blocking antibodies was analyzed. It was 

demonstrated previously that adhesion of HT1080 cells on FN coatings [132] and fibrillar FN 

matrices [128] can be significantly decreased by functional blocking of α5β1 integrin 

receptors. Blocking of αvβ3 integrin in HT1080 cells had no effect on FN dependent cell 

adhesion [128, 132], although this integrin receptor is able to bind FN in other cell lines 

[133]. Since a different anti- α5β1 antibody was used in this thesis, the functionality of this 

clone (JBS5) was evaluated on FN coatings. Adhesion of preblocked and untreated HT1080 

cells on FN coatings was quantified 1 h after cell seeding by phase contrast microscopy 

(figure 20 A). Preblocking of α5β1 integrin receptors, alone or in combination with preblocked 

αvβ3 integrins, led to a significant decrease of adherent cells (figure 20 B). In 
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contrast, preblocking of αvβ3 integrin receptors did not influence adhesion of HT1080 cells on 

FN coatings. The adherent cell populations were then analyzed in respect to their spreading 

state (figure 20 C). Cells were characterized as non-spread based on their round shape and 

presence of only few protrusions. In the control sample, approximately 60 % of the cells were 

spread. Treatment of cells with α5β1 integrin antibodies, alone or in combination with αvβ3 

antibodies, led to a decreased fraction of spread cells (27 %). 

 

 

Figure 20: Blocking of cell adhesion on FN coatings 

The blocking potential of antibodies directed against the integrin receptors αvβ3 and α5β1 was tested on FN 
coatings. A) The coating, either FN or BSA (used as negative control) and the antibody treatment is indicated in 
each brightfield image (control: untreated cells, msIgG: isotype control, αvβ3 and α5β1: cells preblocked with 
the relevant antibodies). Scale bar, 50 µm. B). The column chart shows mean of cell number and standard error 
of the mean (SEM) per treatment. Here, significant results are differentiated between highly significant (**) with 
P < 0.005 and extremely significant (***) with P < 0.001. C) The stacked column plot shows the proportion of 
spread and non-spread cells within a certain group. 
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These findings demonstrate that the JBS5 antibody efficiently blocks the binding of α5β1 

integrin receptors to FN. 

Since blocking of integrin αvβ3 did not affect HT1080 cell adhesion on FN, the anti-αvβ3 

integrin antibody blocking efficacy on VTN coatings, the main substrate for αvβ3 integrins 

[127] was evaluated. Surprisingly, HT1080 cells scarcely spread on VTN surfaces 

(figure 21 A). In addition, preblocking of cells with anti-αvβ3 integrin antibodies did not 

influence adhesion on VTN (figure 21 B). Nevertheless, the anti-αvβ3 integrin antibody clone 

LM609 used in this thesis was able to block the binding of αvβ3 integrin to VTN and FN in 

former studies [134, 135]. Taking these findings into consideration, along with the flow 

cytometry results (figure 11 A) that demonstrated only slightly elevated mean fluorescence 

intensity levels compared to unstained cells, it can be concluded that αvβ3 integrins must be 

expressed only in minor levels at the plasma membrane and do not play a major role in 

adhesion of HT1080 cells on FN or VTN. Although αvβ3 integrins are not required for 

attachment of cells on FN, it was demonstrated that they can still bind to fibrillar FN under 

certain circumstances [133]. Indeed, integrin αvβ3 can be chemically cross-linked to FN 

60 min after plating HT1080 cells on FN coatings [132]. Overall, these results hint that αvβ3 

integrins may still influence the migratory behavior of HT1080 cells on FN. 
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Figure 21: Blocking of cell adhesion on VTN 

The blocking potential of the anti-αvβ3 antibody LM609 for cell adhesion on VTN was tested. A) Cells were 
either preblocked with antibodies directed against integrin αvβ3 or left untreated before plating on VTN coatings. 
B). Cell number mean and SEM are plotted for each indicated condition. C) The proportion of spread and non-
spread cells within a certain treatment group is depicted. 
 

To summarize these findings, adhesion of HT1080 cells on FN coatings can be efficiently 

blocked with antibodies directed against α5β1 integrins but not with antibodies directed against 

αvβ3 integrins. Furthermore, HT1080 cells show an impaired ability to adhere and spread on 

VTN coatings. Blocking of αvβ3 integrins has no effect on cell adhesion to VTN. 
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6.4.2 Preblocking of α5β1 integrin affects cell morphology but not FN fiber breakage 

Next, the effect of preblocking α5β1 and αvβ3 integrins on cell morphology and interaction 

between cells and FN fibers was examined. As shown in fluorescence images, HT1080 cells 

with preblocked α5β1 integrins, alone or in combination with αvβ3 integrins, were small and 

round-shaped in contrast to untreated cells or cells with preblocked αvβ3 integrins only 

(figure 22). Preblocking of integrins did not seem to impair the ability of HT1080 cells to 

rearrange the FN network. These findings suggest that α5β1 integrins are important for 

adhesion of HT1080 cells to FN, while the migratory behavior of α5β1 integrin-blocked cells 

remains unchanged. In contrast, αvβ3 integrins seem not to be involved in any of these 

processes. 

 

Figure 22: Fluorescence images of HT1080 cells with preblocked integrin receptors on FN matrices 

HT1080 cells (red) were and plated on FN matrices (green). Fluorescence images are shown for time point 0 h, 
2 h and 4 h. (control: untreated cells, α5β1: preblocked α5β1 integrin receptors, αvβ3: preblocked αvβ3 integrin 
receptors and α5β1 + αvβ3: preblocked α5β1 and αvβ3 integrin receptors). Scale bar, 50 µm. 
 

 

 



Results and Discussion 

73 

 

 

6.4.3 Integrin α5β1 promotes cell migration on 2D FN coatings but not on 3D fibrillar 

matrices 

As shown in paragraph 6.4.1, preblocking of α5β1 integrins but not of αvβ3 integrins 

significantly reduced initial adhesion of HT1080 cells on FN coatings. Here, the influence of 

integrin blocking on cancer cell migration behavior on both 2D and 3D FN environments was 

investigated. Therefore, α5β1 and αvβ3 integrins were preblocked prior to seeding HT1080 cells 

on either FN coatings or FN matrices and average velocity and directionality of cell 

movement were calculated. Cells that did not move were not considered in this analysis. 

As shown in figure 23 A, preblocking of α5β1 integrin receptors reduced migration speed of 

HT1080 cells on FN coatings, while a slight increase in average velocity was observed for 

α5β1 preblocked cells on fibrillar FN matrices. Blocking of αvβ3 integrins did not alter average 

velocity on both FN environments. According to the probability density plots (figure 23 B and 

C) the observed reduction in cell migration speed for α5β1 preblocked cells on FN coating is 

statistically significant. These results suggest that α5β1 promotes cell migration on 2D FN 

coatings, but not on 3D fibrillar matrices, which raises the question how migration on fibrillar 

FN is regulated. 

The following two hypotheses might explain cancer cell migration on fibrillar FN. First, 

HT1080 cells change their mode of migration from the mesenchymal type, which involves FA 

and actin stress fiber formation, to an amoeboid migration, with no or only weak adhesive 

interactions [136]. On 2D FN coatings, HT1080 cells show characteristics of mesenchymal 

migration. In its globular conformation, FN primaryly interacts with α5β1 integrins [137]. 

During FN fibrillogenesis, this interaction induces receptor clustering and the formation of 

FAs connecting the actin cytoskeleton with the substrate [41]. This connection allows the cell, 

after activation of downstream signaling cascades, to generate traction forces which lead to a 

forward movement of the cell body [138]. By blocking α5β1 integrins on 2D FN coatings, 

HT1080 cells might fail to generate FAs and consequently traction forces [139], resulting in a 

reduced migration speed. In contrast, HT1080 cell migration within a 3D FN environment 

might be independent from FA formation in general because it is based on an amoeboid 

migration mechanism which is characterized by only weak adhesive interactions. As a 

consequence, α5β1 and αvβ3 integrins are not necessary for cell migration on fibrillar FN 

(figure 23 A). In fact, preblocking of α5β1 integrin did even increase average velocity of 

HT1080 cells on FN matrices to a minor extent. Amongst all FN-binding integrins, α5β1 

integrin has the highest affinity to bind FN and the highest FN-binding strength [36]. HT1080 



Results and Discussion 

74 

 

 

cells might be held back in their movement by FN fibers because the adhesions of α5β1 

integrins to FN are not disassembled [128]. If α5β1 integrins are blocked, HT1080 cells can 

move forward without hindrance. 

A second explanation on how cell migration is regulated within fibrillar FN matrices is that 

other than α5β1 or αvβ3 integrins might be involved. Due to its unfolded and stretched 

confirmation, fibrillar FN induces the binding of integrins other than α5β1 or αvβ3 [39]. The 

FAs formed by these integrins might be less stable than the FAs formed between α5β1 

integrins and FN. FA stability has been shown to be a crucial regulator of cell migration 

velocity on 2D FN coatings, whereby less stable FA and subsequent higher FA turnover 

enabled fast cell migration [88]. Although α5β1 integrin is necessary to promote cell migration 

on FN coatings, the high binding strength of α5β1 might allow only slow FA turnover and thus 

relatively slow cell migration. In contrast, cells on fibrillar FN, which might form less stable 

FAs, could thus achieve higher speed. Since the RGD motif is necessary for promoting fast 

cell migration on 3D fibrillar FN matrices (figure 19 A and B) and the involvement of α5β1 as 

well as αvβ3 integrins could be excluded (figure 23 A), one or more of the following RGD-

binding integrin receptors might regulate migration on 3D fibrillar matrices, namely α8β1, 

αvβ1, αvβ6, or αIIbβ3 integrin. This speculation is in agreement with the hypothesis raised in 

6.3.3, according to which cells interact with FN coating and FN matrix through distinct 

integrins resulting in different migration behavior as an answer on variations in matrix 

stiffness. 

 

6.4.4 Integrin α5β1 regulates directionality of cell migration on 2D FN coatings but not 

on 3D fibrillar matrices 

At last, the influence of integrins on directionality of HT1080 on FN-dependent cell migration 

was investigated. Concerning the persistence of cell migration on FN coatings (figure 23 D 

and E), blocking of α5β1 integrin resulted in a more random cell migration, as cells showed 

increased probability of backwards movement. In contrast, αvβ3 integrin did not affect the 

directionality of cell movement. On fibrillar FN matrices (figure 23 D and F), blocking of 

integrin α5β1 or αvβ3 had no effect on the directionality of HT1080 cell migration. These 

findings are in agreement with the results obtained for FN-RGE matrices (6.3.4) suggesting 

that both substrate topography and cell adhesion are main regulators for directed cell 

migration on FN environments. 
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Figure 23: Effect of α5β1 and αvβ3 integrin blocking on migration speed and persistence of HT1080 cells on 
different FN environments 

HT1080 cells were either preblocked with antibodies directed against integrin α5β1 (dark red/dark green), integrin 
αvβ3 (orange/light green), both integrins (pink/oliv) or left untreated (red/green), before seeding on FN coatings 
(red colors) or FN matrices (green colors). A) Migration speed of cells is plotted as a box-and-whisker plot 
comparing indicated groups and time periods (first box of each group: 0-2 h, second box of each group: 2-4 h). 
B/C) Probability density of average migration values for 4 h is plotted as a scatter plot for all indicated groups 
for B) FN coating and C) FN matrix. D) Box-and-whisker plot depicts directionality of cell migration on both 
FN environments. E/F) Polar plots show probability density of persistence angles for 4 h on FN coating (E) and 
on FN matrix (F). 
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6.5. Influence of MMP and myosin II inhibition on FN dependent cell migration 

Beside the importance of integrins for cancer cell invasion, proteases, such as MMPs, are 

important regulators of tumor cell dissemination by degrading migration barriers as well as 

remodeling of the local tumor microenvironment [23]. In fact, there is a close relationship 

between cell adhesion, proteolysis and force generation [140, 141]. In this section, the 

influence of MMP activity on FN dependent cancer cell migration was examined. MMP 

activity was blocked with the broad-spectrum hydroxamate inhibitor GM6001 [142-144]. The 

hydroxamic acid group of GM6001 forms a complex with the zinc ion present at the catalytic 

active site [143], inhibiting enzyme activity of a broad range of MMPs. It has been observed 

that cancer cells are able to switch between protease dependent motility and contractility 

driven migration if MMPs are inhibited [90, 103, 145]. Consequently, the influence of myosin 

II inhibition on FN dependent cancer cell migration was further investigated. 

 

6.5.1 Inhibition of myosin II influences morphology of HT1080 cells on 3D fibrillar FN 

matrices 

Initially, effect of GM6001 and blebbistatin treatment on cell morphology was analyzed by 

fluorescence microscopy. Myosin II inhibition strongly influenced HT1080 cell morphology 

on FN matrices at both molar concentrations used (figure 24, left). Cells treated with 

blebbistatin assumed thin elongated shapes with multiple branching filopodia. On FN 

coatings, on the other hand, application of 25 µM myosin II inhibitor had no effect on cell 

morphology; while cell shape was altered to a small extent when 50 µM blebbistatin was 

applied (figure 24, right). In this case, some cells formed filopodia which was not observed 

for untreated cells (figure 17). 

In contrast, MMP inhibition with GM6001 did not affect cell morphology of HT1080 cells 

cultured either on FN coatings or on fibrillar FN matrices (figure 25). 
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Figure 24: Fluorescence images of myosin II inhibited cells on different FN surfaces 

HT1080 cells were plated on FN matrices or FN coatings and treated with 25 µM or 50 µM blebbistatin. Here, 
representative images are acquired 2 h after cell seeding. Scale bar, 50 µm. 
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6.5.2 Disruption of the fibrillar FN matrices is caused by contractile forces and not via 

proteolytic activity 

Next, interactions between FN fibers and HT1080 cells treated with either GM6001 or 

blebbistatin were evaluated. The ability of HT1080 cells to remodel the fibrillar FN network 

(figure 18) was not impaired by MMP inhibition (figure 25). Accordingly, MMP activity 

seems not to be necessary for disruption of the FN matrix. In contrast, cells with myosin II-

based contractility inhibited, leave the FN fibrillar matrices unaltered (figure 25). These 

results corroborate the hypothesis raised in paragraph 6.3.3, that the observed disruption of 

the fibrillar FN matrices is mainly caused mechanically through tearing FN fibers. In order to 

analyze if concentrated local proteolytic action might contribute to FN matrix disintegration 

by HT1080 cells, cell matrix interactions have to be studied at a higher resolution. 

 

6.5.3 Evaluation of MMP and myosin II activity on average velocity 

The influence of MMP and myosin II activity on migration speed within different FN 

environments was investigated by time-lapse microscopy. Inhibition of MMP activity by 

GM6001 did not alter migration speed of HT1080 cell migration on neither FN coatings nor 

FN matrices (figure 26), suggesting that proteolytic activity is not required for cell migration 

on FN. Similar results have been shown for breast cancer cells migrating in 3D collagen 

matrices [146]. Hereby, cancer cell migration was promoted through upregulation of ROCK1 

activity, while MMP activity had only minor influence. In fact, tumor cells can escape MMP 

inhibition by switching their migration behavior from protease-driven locomotion to 

contractility dependent movement which requires upregulation of ROCK activity [147, 148]. 

To study this possibility, cell contractility was blocked by myosin II inhibition. Migration 

experiments demonstrated that addition of blebbistatin significantly reduces migration speed 

of HT1080 cells on FN matrices, but not on FN coatings (figure 26 A-C). These results are in 

agreement with previous studies on NIH3T3 cells [129, 149] and corroborate the hypothesis 

that HT1080 cell movement on FN coating is based on a mesenchymal mode of migration, 

while cell locomotion within 3D environments is mainly based on myosin II activity, as 

observed for amoeboid migration. Myosin contractility was demonstrated to increase the 

mechanical coupling between cell adhesions and acto-myosin resulting in larger cellular 

protrusions and fast cell movement [149]. This could further explain the increased migration 

speed of HT1080 on fibrillar FN matrices compared to FN coatings. 
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However, cell migration on FN coatings was neither effected by blebbistatin treatment nor by 

MMP inhibition. It has been shown previously that general MMP inhibition with GM6001 

can increase expression of MT1-MMP in fibroblast cultured within collagen matrices [150, 

151]. Accordingly, it might be possible that MT1-MMP activity compensate the inhibitory 

effect of GM6001 in HT1080 cells. 

 

 

Figure 25: Fluorescence images of MMP and myosin II inhibited HT1080 cells on FN matrices 

HT1080 cells (red) seeded on FN matrices (green) were treated with 10 µM of the GM6001 control (ctrl .) and 
the general MMP inhibitor (GM6001) or with 50 µm of the myosin II inhibitor (blebbistatin). Here, 
fluorescence images for 0 h, 2 h, and 4 h are depicted. Scale bar, 50 µm. 
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Figure 26: Analysis of migration speed and persistence of MMP inhibited cells on FN matrices 

Migration of HT1080 cells, cultured in the presence of either 50 µM blebbistatin, 10 µM GM6001 or GM6001 
control was monitored on FN coating (red colors) and FN matrix (green colors). A) Average velocity is plotted 
as a box-and-whisker plot comparing indicated groups for the time periods 0-2 h (left box of each group) and 2-
4 h (right box of each group). B/C) Velocity is plotted as probability density for the first 4 h of the migration 
experiment. Cells were either plated on FN coatings (B) or on fibrillar FN matrices (C) Treatments are indicated 
on the upper right. D) Persistence angles for 4 h are plotted as polar plots. The left polar plot shows data on FN 
coatings with control (red), GM6001 (dark red) and blebbistatin (pink). On the right polar plot data for cells 
migrating on FN matrices is depicted with control (green), GM6001 (dark green) and blebbistatin (oliv). 
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6.5.4 Evaluation of MMP and myosin II activity on directionality of cell migration 

Finally, the effect of GM6001 and blebbistatin treatment on the directionality of cell 

migration was quantified. As shown in figure 26 D general MMP inhibition did not affect 

persistence of HT1080 cells migration on both FN environments. Furthermore, directionality 

of cell movement was not influenced by myosin II inhibition on FN coatings. In contrast, cells 

on 3D fibrillar FN environments showed a more random cell migration when treated with 

blebbistatin in comparison to the control group, indicated by a higher probability for 

backward movement. These findings highlight the importance of myosin II-driven 

contractility for directed movement within fibrillar FN environments [149]. 
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6.6 Influence of MT1-MMP on FN dependent cell migration 

Within the MMP family one member, namely MT1-MMP, is of particular interest regarding 

its effect on FN dependent cell migration. It has previously been shown that MT1-MMP 

regulates cell migration through modulation of focal adhesion stability on FN coatings [88]. 

This is achieved by local lysis of FN at cell adhesions, facilitating FA turnover [152]. 

Furthermore. MT1-MMP activity might compensate GM6001 blocking effects on FN 

coatings. Here, the influence of MT1-MMP downregulation via RNA interference (RNAi) on 

cell migration was studied on FN coatings and fibrillar FN matrices. 

 

6.6.1 Evaluation of MT1-MMP silencing efficiency 

First, the conditions for MT1-MMP silencing were optimized in respect to the amount of 

transfection reagent, cell density and the point in time when cells were analyzed. In all cases, 

siRNA treatment led to a significant decrease in protein expression regardless of the altered 

parameter (figure 27 A). Consequently, the most convenient conditions were selected for all 

further experiments. Hence, 1.2 x 105 cells were seeded per well of a 24-well plate, 

transfection was performed with 1.5 µl of transfection reagent and cells were analyzed 48 h 

after transfection. 

The effectiveness of MT1-MMP silencing under the selected conditions was assessed by flow 

cytometry (figure 27 B) and by western blot analysis (figure 27 C). Treatment of cells with 

siMT1-MMP decreases protein expression by 87 % compared to untreated cells (figure 27 A). 

The procedure for RNA silencing seems to have a minor influence on gene expression in 

general, as cell transfection with a non-targeting siRNA slightly reduces MT1-MMP 

expression levels. These results indicate that MT1-MMP protein expression can be 

successfully downregulated by transfection with siRNAs directed against MT1-MMP 

transcripts. Hence, it is possible to study the dependence of MT1-MMP on cell migration by 

comparing HT1080 cells with downregulated protease expression levels to control HT1080 

cells. 
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Figure 27: FACS and western blot analysis of MT1-MMP silencing in HT1080 cells 

A) Different conditions to optimize MT1-MMP silencing are tested. Altered factors are the amount of 
transfection reagent (TR) used: a: 1.5 µl or b: 2 µl, cell density: A:  1.2 x 105 or B: 1.8 x 105 cells per well and 
the point in time when cells are analyzed: 48 h or 72 h after transfection. Cell surface expression of MT1-MMP 
is analyzed via FACS measurements. Here, the means of the respective relative fluorescence intensities and SEM 
are plotted. Here, significant results are differentiated between highly significant (**) with P < 0.005 and 
extremely significant (***) with P < 0.001. For simplifying the graphs, p-values are assigned to entire treatment 
groups. If within a group a p-value differs it is indicated above the respective column by red asterisks. 
B) Representative FACS figures for the following conditions are chosen: 1.5 µl TR, 1.2 x 105 cells per well, 48 h 
after siRNA transfection. The histograms reflect the relative fluorescence intensities of differentially stained cell 
populations. Here, relative fluorescence intensity is plotted in a logarithmic scale on the x-axis and cell count is 
plotted on the y-axis. Black histograms represent the level of autofluorescence of cells stained with the 
secondary antibody only. The relative fluorescence intensities of MT1-MMP stained cell populations are 
indicated by black framed colorless histograms. Red histograms mark cell populations that are either mock (TR 
only), siC (non targeting siRNA) or siM transfected (siMT1-MMP) as indicated. 
C) Western blot was with 5 µg total potein lysates from untreated cells (ctrl.) , cells treated with TR only 
(mock), cells treated with non targeting siRNA (siC) and cells treated with siMT1-MMP (siM). As loading 
control β-actin is detected. 
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6.6.2 MT1-MMP does not influence cell morphology on fibrillar FN 

First, cell morphology and cell-FN fiber interactions upon MT1-MMP depletion were 

investigated. MT1-MMP silencing in HT1080 cells cultured on FN matrices had no effect on 

cell shape or on the ability of cells to disrupt the fibrillar FN network, if compared to cells 

transfected with a non-targeting siRNA (figure 28). This finding is in agreement with the 

results of general MMP inhibition presented in paragraph 6.5.1 and 6.5.2. Additional blocking 

of α5β1 integrins in MT1-MMP silenced cells produced no supplementary outcome. 

 

 

igure 28: Fluorescence images of siMT1-MMP silenced HT1080 cells on FN matrices 

48 h after siRNA transfection, HT1080 cells (red) were seeded on FN matrices (green). Here, representative 
fluorescence images acquired at 0 h, 2 h and 4 h are depicted per condition (siC: cells transfected with siControl; 
siM:  cells transfected with an siRNA targeting MT1-MMP transcripts; siM/α5β1:  same as siM with additional 
preblocking of α5β1 integrins). Scale bar, 50 µm. 
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6.6.3 MT1-MMP promotes cell migration on 2D FN coatings, but not in 3D fibrillar FN 

matrices 

MT1-MMP silenced HT1080 cells from the same batch were seeded on FN coatings or FN 

matrices and their MT1-MMP expression levels were analyzed after 1 h. Interestingly, MT1-

MMP expression levels were higher on FN coatings compared to cells seeded on FN matrices 

(figure 29 A). The observed increase of MT1-MMP expression post seeding suggest that 

MT1-MMP-silenced cells on FN coatings try to compensate for MT1-MMP depletion, either 

by enhancing its expression or by stabilization the protein at the plasma membrane. 

Next, the influence of MT1-MMP on HT1080 cell migration was evaluated. MT1-MMP 

silencing significantly decreased average velocity of HT1080 cells on FN coatings 

(figure 29 B and C), while on fibrillar FN matrices migration speed slightly increased 

(figure 29 B and D). Interestingly, MT1-MMP silencing resulted in a more randomized 

migration on both FN environments (figure 29 E). These results suggest that MT1-MMP is in 

general important for directed cell movement and promotes fast cell migration on FN 

coatings. 

The aformentioned differences in migration behavior might be connected to the ability of 

MT1-MMP to cleave different integrin subunits [83]. Hence, the influence of MT1-MMP 

silencing on α5 and β1 integrin expression was determined by western blot analysis. It is 

shown in figure 29 A, that MT1-MMP silencing resulted in slightly elevated expression levels 

of α5 (1.4-fold) and β1 (1.3-fold) integrins on FN coatings. Accordingly, MT1-MMP might 

positively regulate migration speed by cleavage of α5β1 integrins which enhances FA turnover. 

In contrast, integrin expression levels on fibrillar FN remained unaltered upon MT1-MMP 

silencing. On FN coatings, MT1-MMP-silenced cells additionally preblocked with α5β1 

integrin antibodies migrated with significantly reduced speed and showed a more randomized 

cell migration compared to the control and MT1-MMP-silenced groups (figure 29 B, C and E) 

In contrast, the combination of both treatments had no cooperative effect on average velocity 

or directionality of cell migration on fibrillar FN matrices (figure 29 B, D and E). 
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Figure 29: Analysis of migration speed and persistence of siMT1-MMP silenced cells on FN matrices 

HT1080 cells were first transfected with siRNA directed against MT1-MMP transcripts (siM) or with a non-
targeting siRNA (siC). 48 h after transfection cells were seeded on FN coatings or FN matrices. In addition, 
some MT1-MMP silenced cells were further preblocked with α5β1 specific antibodies to inhibit integrin receptor 
function. A) Western blot of integrin subunits α5 and β1 as well as MT1-MMP was conducted 1 h after seeding 
the cells on different FN substrates. As loading control β-actin was detected. B). Average migration speed of 
cells is plotted as a box-and-whisker plot comparing indicated groups at 0-2 h (left box) and 2-4 h (right box). 
C/D) Distribution of velocity values are plotted as scatter plots for the time period of 4 h on either FN coating 
(C) or FN matrices (D). E) Persistence angles are depicted as polar plots for HT1080 cells plated on either FN 
coating (left) or FN matrix (right). 
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6.7 Influence of MT1-MMP on adhesion mediated signaling within different FN 
environment 

As demonstrated in paragraph 6.6, MT1-MMP differentialy regulates cell migration on FN 

coatings and on FN matrices. While MT1-MMP promotes cell migration on 2D FN coatings, 

it is not required for cell locomotion in a fibrillar FN matrices, where it seems to have an 

inhibtory effect. It has been suggested, that MT1-MMP influences cell migration behavior on 

FN coatings by modulating adhesion mediated signaling pathways [88]. Accordingly, the 

involvement of MT1-MMP in phosphorylation of FAK, ERK1/2 and cofilin were investigated 

in HT1080 cells cultured either on FN coatings or on fibrillar FN matrices by western blot 

analysis (figure 30). 

 

 
Figure 30: Western blot analysis of adhesion mediated signaling 

48 h after siRNA transfection HT1080 cells were plated on either fibrillar FN matrices or on FN coatings. After 
1 h, expression and phosphorylation of FAK (Tyr397), ERK1/2 (Tyr204/187) and cofilin (Ser3) were 
investigated by western blot analysis for the following treatment groups. ctrl. : untreated cells, siC: cells 
transfected with non-targeting siRNA and siM: cells transfected with siMT1-MMP. As loading control β-actin 
and α-tubulin were chosen. 
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MT1-MMP silencing has an opposite effect on protein expression and phosphorylation, if 

HT1080 cells are cultured on 2D FN coatings or 3D fibrillar FN matrices (figure 30): 

On FN coatings, MT1-MMP depleted cells showed increased cofilin expression levels 

resulting in a 1.8-fold upregulation of cofilin phosphorylation, while expression and 

phosphorylation of FAK and ERK2 remain unaltered. In contrast, HT1080 cells cultured on 

FN matrices, showed a 2.9-fold downregulation of cofilin expression and subsequent 

phosphorylation as well as a 1.2-fold downregulation of FAK phosphorylation upon MT1-

MMP silencing. 

Integrin-mediated cell migration is dependent on FAK phosphorylation [153]. It was 

previously demonstrated on FN coatings, that MT1-MMP regulates FAs stability and turnover 

via FAK cleavage [88, 152]. In these experiments, any changes in FAK protein expression or 

phosphorylation were observed, when cells were seeded on FN coatings. A possible 

explanation might be that HT1080 cells need to be cultured for longer periods than 1 h on FN 

coatings in order to affect FAK phosphorylation. In contrast, on FN matrices, FAK 

phosphorylation was slightly reduced (-1.2-fold) upon MT1-MMP silencing suggesting that 

MT1-MMP positively regulates FAK phosphorylation at Tyr397. It has been shown 

previously that reduced FAK Tyr397phosphorylation is connected to higher turnover of FAs 

promoting cell migration on FN coatings [88]. Accordingly, upon MT1-MMP silencing 

HT1080 cells migrate faster on fibrillar FN matrices due to reduced FAK Tyr397 

phosphorylation. 

Here, MT1-MMP is presented as an additional regulator of cofilin activity. On FN coatings, 

cofilin shows lower phosphorylation levels and subsequently higher activity if MT1-MMP is 

present. It has been demonstrated previously that α5β1 integrin-mediated adhesions on FN 

coatings lead to phosphorylation and subsequent inactivation of cofilin [154]. Consequently 

actin dynamics are reduced, resulting in more randomized cell migration. These findings 

support those results which showed reduced average speed and persistence of HT1080 cells 

migrating on 2D compared to 3D FN environments. Interestingly, MT1-MMP counteracts the 

α5β1 integrin dependent phosphorylation of cofilin. If MT1-MMP is depleted, 

phosphorylation/inactivation of cofilin increases (1.8-fold), resulting in lower migration speed 

and less directed cell migration. Hence, this new function of MT1-MMP allows cells to 

differentially regulate cell migration behavior on FN coatings. 

Within 3D fibrillar FN matrices, MT1-MMP activity is associated with 

phosphorylation/inactivation of cofilin, as MT1-MMP depleted cells show reduced cofilin 
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expression (2.8-fold) and subsequent phosphorylation. Accordingly, cells migrate faster on 

fibrillar FN matrices in case of MT1-MMP depletion since in this case cofilin activity and 

actin dynamics are enhanced. 

 

Figure 31: MT1-MMP differentially regulates cell migration on FN coatings and FN matrices 

This scheme depicts molecular mechanisms that govern cell migration on A) FN coatings and B) FN matrices. 
The left side of the cell is showing integrin-mediated signaling events under control conditions, whereas the right 
site of the cell depicts the cellular response on MT1-MMP silencing. It is important to note that “slow” and “fast 
migration” are relative terms, describing the effect on MT1-MMP on average velocity in a specific FN 
environment. 
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6.8 Influence of MT1-MMP and fibrillar FN on cell motility gene expression 

Up to now, the presented data validate MT1-MMP as an important regulator of cell migration 

behavior in FN environments. To determine if MT1-MMP further acts through changing the 

expression levels of genes relevant for cell migration, an mRNA expression screening on 

genes involved in cell migration was performed using a RT-PCR array6. 

As depicted in figure 32, MT1-MMP silencing only affected its own gene expression. 

Interestingly, siMT1-MMP transfected HT1080 cells cultured on ibiTreat dishes showed a 

more efficient downregulation of MT1-MMP gene expression (-14.5-fold; figure 32 B) than 

cells cultured on FN matrices (-5.3-fold, figure 32 A). As observed in western blot analysis 

(figure 29 A), MT1-MMP protein expression in MT1-MMP-silenced cells is higher on FN 

coatings than on FN matrices. Taken these findings into consideration, HT1080 cells might 

counteract MT1-MMP depletion upon adhesion to FN, whereby they are more efficient on FN 

coatings than on FN matrices. 

It should be noted that this experiment was performed in two biological replicates. Hence, 

only major changes in gene expression could be detected. Since the software used for 

analyzing the array data requires three datasets for detecting small but significant changes in 

gene-expression, an additional experiment has to be conducted. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
6 A complete list of genes tested with the RT-PCR array Human Cell Motility can be found in the appendix 
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Figure 32: Scatter plots of results from the Cell Motility RT 2-PCR Array 
Gene expression of HT1080 cells cultured on either FN matrix or ITDs for 16 h was analyzed using a RT2-PCR 
array. The scatter plots compare the normalized expression of every analyzed gene between two groups indicated 
on the x- and y-axis: FN/control:  cells cultured on FN matrices, FN/siMT1-MMP:  MT1-MMP silenced cells 
cultured on FN matrices, ITD/control:  cells cultured on ibiTreat dishes and ITD/siMT1-MMP:  MT1-MMP 
silenced cells cultured on ibiTreat dishes. Unchanged gene expression is marked by the central line. All data 
points below that line indicate genes with downregulated expression, all data points above that line indicate 
genes with upregulated expression. The two boundaries next to the central line mark the threshold set at 2.0 
which corresponds to a 2-fold change in gene expression. Genes outside this boundary are indicated by name and 
color (green for down- and red for up regulation of gene expression). A) Test group: FN/siMT1-MMP vs. control 
group: FN/control, B) Test group: ITD/siMT1-MMP vs. control group: IDT/control, C) Test group: FN/siMT1-
MMP vs. control group: ITD/siMT1-MMP, D) Test group: FN/control vs. control group: IDT/control.  
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6.9 Analysis of adhesion structures within 3D fibrillar FN matrices 

In order to investigate the hypothesis that cell migration on 3D fibrillar FN matrices is based 

on an amoeboid migration mode which is associated with weak adhesions, adhesive structures 

indicated by vinculin straining were monitored in HT1080 cells by fluorescence microscopy. 

The analysis of 3D adhesions has proven itself to be a challenging procedure which needs 

further optimization. As depicted in figure 33, the FN matrix is already strongly remodeled 

resulting in huge FN-free areas where cells can interact with the surface of the culture dish 

instead of the FN fibers. Accordingly, it is hard to judge which of the observed adhesions are 

truly cell-matrix adhesions and which are interactions of cells with the underlying culture dish 

surface. In future work, images should be taken at earlier time points, e. g. 2 h after cell 

seeding, to ensure a homogenous FN matrix coverage. In addition, the usage of a confocal 

microscopy combined with z-stack recording should improve the resolution of the images. 

 

 
 
Figure 33: IIF images of FAs in HT1080 cells cultured on FN matrices 
Vinculin was stained by IIF to indicate adhesions in HT1080 cell cultured on fibrillar FN matrices. Images were 
acquired with an inverted fluorescence microscope 6 h after cell seeding. Scale bar, 25 µm. 
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7. Conclusion and Outlook 

In this thesis, the migration behavior of a human fibrosarcoma cell line (HT1080) on 2D FN 

coatings and 3D fibrillar matrices was investigated by analyzing different parameters such as 

the ability of cancer cells to rearrange the fibrillar FN network, cell morphology, average 

velocity and directionality of cell migration. The results of this thesis suggest that the 

topography of ECM structures is the main regulator of cell migration behavior. 

In agreement with this hypothesis, it was demonstrated that HT1080 cells showed great 

differences in average velocity and directionality of migration depending on the type of FN 

environment presented (figure 34). The mechanical properties of both FN substrates are 

transmitted inside the cell via integrins, inducing the appropriate responses. 2D coatings 

constituted by globular FN show a random distribution and high density of α5β1 integrin 

ligands. Accordingly, α5β1 integrin binding of HT1080 cells induces flat and round-shaped 

cell morphology as well as a less directed and slower migration compared to 3D fibrillar FN 

matrices. In a fibrillar FN environment, HT1080 cells align along FN fibers due to adhesions 

that are mediated by an RGD-binding integrin other than α5β1 or αvβ3. Since RGD sites are 

distributed in an inherent order (along the FN fibers) HT1080 cells assume elongated shapes, 

allowing fast and persistent cell movement based on contact guidance. 

The observed differences in cell migration are based on distinct molecular mechanisms which 

are triggered by the biochemical and physical properties of both types of FN environments. 

On 2D coatings, cancer cell migration is dependent on adhesion, mediated by α5β1 integrins 

and MT1-MMP activity. It is speculated that MT1-MMP facilitates FA turnover by cleavage 

of α5β1 integrins, and actin polymerization through activation of cofilin, thus promoting 

cancer cell migration and persistence. The exact mechanism describing how cofilin is 

activated by MT1-MMP remains to be elucidated. It is further proposed that the relative slow 

and random cell movement on FN coatings observed in HT1080 cells is based on the 

mesenchymal migration mode. 

In contrast, the experiments conducted in this thesis demonstrated that cell migration on 3D 

FN matrices is highly dependent on myosin II contractility, whereas proteolytic activity seems 

not to be involved. On the contrary, MT1-MMP silencing enhances migration speed in 

fibrillar FN matrices through reduction of FAK Tyr397 phosphorylation which in turn 

enhances turnover of adhesions, and through increase in cofilin activity, resulting in increased 

actin dynamics. 
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Figure 34: HT1080 cell migration is differentially regulated on FN coatings and on FN matrices 
Scheme indicating how cell migration is regulated on FN coating and FN matrices 
 

 

The exact nature of 3D adhesions and cell-matrix interactions that drive migration within this 

3D fibrillar FN environment needs to be determined in future work. So far, it has been 

observed that cancer cells wrap themselves in FN and have furthermore the ability to 

rearrange the fibrillar network. The results presented here suggest that general MMP 

inhibition or MT1-MMP silencing is not involved in FN-matrix interactions. The 

disintegration of FN matrices seems to be mechanical in nature and might depend on myosin 

II contractility or cellular interaction with the RGD site in FN. It was further shown that these 

interactions do not require α5β1 or αvβ3 integrins. A promising candidate for mediating cell 

adhesion to fibrillar FN might be αvβ1 integrin [39]. Revealing the nature of the adhesion 

structure and their dynamics would give further insight whether cell migration on fibrillar 

matrices is indeed based on the amoeboid mechanisms, as speculated. 
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To summarize, integrin-mediated adhesions and proteolytic activity are important 

determinants of cell migration. Interestingly, integrins and MT1-MMP differentially regulate 

FN-dependent cell migration as a response on structural properties of the extracellular 

environment. Targeting structural components of the tumor microenvironment should 

therefore be considered as promising strategy to hinder cancer cell dissemination and 

metastasis. 
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8. Appendix: 
 

8.1 List of genes analyzed with the Human Cell Motility RT 2-PCR Array 7 

GeneBank Description Gene Name 
NM_001102 Actinin, alpha 1 FLJ40884, FLJ54432 
NM_001104 Actinin, alpha 3 MGC117002, MGC117005 
NM_004924 Actinin, alpha 4 ACTININ-4, DKFZp686K23158, FSGS, FSGS1 
NM_005722 ARP2 actin-related protein 2 homolog (yeast) ARP2 
NM_005721 ARP3 actin-related protein 3 homolog (yeast) ARP3 
NM_005163 V-akt murine thymoma viral oncogene homolog 1 AKT, MGC99656, PKB, PKB-ALPHA, PRKBA, RAC, RAC-ALPHA 
NM_001663 ADP-ribosylation factor 6 DKFZp564M0264 
NM_004309 Rho GDP dissociation inhibitor (GDI) alpha GDIA1, MGC117248, RHOGDI, RHOGDI-1 
NM_003899 Rho guanine nucleotide exchange factor (GEF) 7 BETA-PIX, COOL-1, COOL1, DKFZp686C12170, DKFZp761K1021, 

KIAA0142, KIAA0412, Nbla10314, P50, P50BP, P85, P85COOL1, 
P85SPR, PAK3, PIXB 

NM_006340 BAI1-associated protein 2 BAP2, FLAF3, IRSP53 
NM_014567 Breast cancer anti-estrogen resistance 1 CAS, CAS1, CASS1, CRKAS, FLJ12176, FLJ45059, P130Cas 
NM_005186 Calpain 1, (mu/I) large subunit CANP, CANP1, CANPL1, muCANP, muCL 
NM_001748 Calpain 2, (m/II) large subunit CANP2, CANPL2, CANPml, FLJ39928, mCANP 
NM_001753 Caveolin 1, caveolae protein, 22kDa BSCL3, CGL3, MSTP085, VIP21 
NM_001791 Cell division cycle 42 (GTP binding protein, 

25kDa) 
CDC42Hs, G25K 

NM_005507 Cofilin 1 (non-muscle) CFL 
NM_016823 V-crk sarcoma virus CT10 oncogene homolog 

(avian) 
CRKII 

NM_000757 Colony stimulating factor 1 (macrophage) MCSF, MGC31930 
NM_005231 Cortactin EMS1, FLJ34459 
NM_005219 Diaphanous homolog 1 (Drosophila) DFNA1, DIA1, DRF1, FLJ25265, LFHL1, hDIA1 
NM_001935 Dipeptidyl-peptidase 4 ADABP, ADCP2, CD26, DPPIV, TP103 
NM_001963 Epidermal growth factor HOMG4, URG 
NM_005228 Epidermal growth factor receptor ERBB, ERBB1, HER1, PIG61, mENA 

NM_001008493 Enabled homolog (Drosophila) ENA, MENA, NDPP1 
NM_003379 Ezrin CVIL, CVL, DKFZp762H157, FLJ26216, MGC1584, VIL2 
NM_004460 Fibroblast activation protein, alpha DKFZp686G13158, DPPIV, FAPA 
NM_002006 Fibroblast growth factor 2 (basic) BFGF, FGFB, HBGF-2 
NM_000601 Hepatocyte growth factor (hepapoietin A; scatter 

factor) 
DFNB39, F-TCF, HGFB, HPTA, SF 

NM_000618 Insulin-like growth factor 1 (somatomedin C) IGF-I, IGF1A, IGFI 
NM_000875 Insulin-like growth factor 1 receptor CD221, IGFIR, IGFR, JTK13, MGC142170, MGC142172, MGC18216 
NM_004517 Integrin-linked kinase DKFZp686F1765, ILK-2, P59 
NM_000885 Integrin, alpha 4 (antigen CD49D, alpha 4 subunit 

of VLA-4 receptor) 
CD49D, IA4, MGC90518 

NM_002211 Integrin, beta 1 (fibronectin receptor, beta 
polypeptide, antigen CD29 includes MDF2, 

MSK12) 

CD29, FNRB, GPIIA, MDF2, MSK12, VLA-BETA, VLAB 

NM_000211 Integrin, beta 2 (complement component 3 receptor 
3 and 4 subunit) 

CD18, LAD, LCAMB, LFA-1, MAC-1, MF17, MFI7 

NM_000212 Integrin, beta 3 (platelet glycoprotein IIIa, antigen 
CD61) 

CD61, GP3A, GPIIIa 

NM_002314 LIM domain kinase 1 LIMK, LIMK-1 
NM_002745 Mitogen-activated protein kinase 1 ERK, ERK2, ERT1, MAPK2, P42MAPK, PRKM1, PRKM2, p38, p40, 

p41, p41mapk 
NM_000245 Met proto-oncogene (hepatocyte growth factor 

receptor) 
AUTS9, HGFR, RCCP2, c-Met 

NM_004995 Matrix metallopeptidase 14 (membrane-inserted) 1, MMP-14, MMP-X1, MT-MMP, MT-MMP 1, MT1-MMP, 
MT1MMP, MTMMP1 

NM_004530 Matrix metallopeptidase 2 (gelatinase A, 72kDa 
gelatinase, 72kDa type IV  

collagenase) 

CLG4, CLG4A, MMP-II, MONA, TBE-1 

NM_004994 Matrix metallopeptidase 9 (gelatinase B, 92kDa 
gelatinase, 92kDa type IV collagenase) 

CLG4B, GELB, MANDP2, MMP-9 

NM_002444 Moesin - 
NM_005964 Myosin, heavy chain 10, non-muscle MGC134913, MGC134914, NMMHCB 
NM_002473 Myosin, heavy chain 9, non-muscle DFNA17, EPSTS, FTNS, MGC104539, MHA, NMHC-II-A,  

                                                           
7
  The table was adapted from http://www.sabiosciences.com/genetable.php?pcatn=PAHS-128Z 
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NMMHCA 
NM_006097 Myosin, light chain 9, regulatory LC20, MGC3505, MLC2, MRLC1, MYRL2 
NM_053025 Myosin light chain kinase DKFZp686I10125, FLJ12216, KRP, MLCK, MLCK1, MLCK108, 

MLCK210, MSTP083, MYLK1, smMLCK 
NM_002576 P21 protein (Cdc42/Rac)-activated kinase 1 MGC130000, MGC130001, PAKalpha 
NM_005884 P21 protein (Cdc42/Rac)-activated kinase 4 - 
NM_005022 Profilin 1 - 
NM_006218 Phosphoinositide-3-kinase, catalytic, alpha 

polypeptide 
MGC142161, MGC142163, PI3K, p110-alpha 

NM_002659 Plasminogen activator, urokinase receptor CD87, U-PAR, UPAR, URKR 
NM_002660 Phospholipase C, gamma 1 NCKAP3, PLC-II, PLC1, PLC148, PLCgamma1 
NM_002662 Phospholipase D1, phosphatidylcholine-specific - 
NM_002737 Protein kinase C, alpha AAG6, MGC129900, MGC129901, PKC-alpha, PKCA, PRKACA 
NM_000314 Phosphatase and tensin homolog 10q23del, BZS, DEC, GLM2, MGC11227, MHAM, MMAC1, PTEN1, 

TEP1 
NM_005607 PTK2 protein tyrosine kinase 2 FADK, FAK, FAK1, FRNK, pp125FAK 
NM_004103 PTK2B protein tyrosine kinase 2 beta CADTK, CAKB, FADK2, FAK2, PKB, PTK, PYK2, RAFTK 
NM_002827 Protein tyrosine phosphatase, non-receptor type 1 PTP1B 
NM_002859 Paxillin FLJ16691 
NM_006908 Ras-related C3 botulinum toxin substrate 1 (rho 

family, small GTP binding protein Rac1) 
MGC111543, Rac-1, TC-25, p21-Rac1 

NM_002872 Ras-related C3 botulinum toxin substrate 2 (rho 
family, small GTP binding protein Rac2) 

EN-7, Gx, HSPC022 

NM_002890 RAS p21 protein activator (GTPase activating 
protein) 1 

CM-AVM, CMAVM, DKFZp434N071, GAP, PKWS, RASA, 
RASGAP, p120GAP, p120RASGAP 

NM_002906 Radixin DFNB24 
NM_000539 Rhodopsin CSNBAD1, MGC138309, MGC138311, OPN2, RP4 
NM_001664 Ras homolog gene family, member A ARH12, ARHA, RHO12, RHOH12 
NM_004040 Ras homolog gene family, member B ARH6, ARHB, MST081, MSTP081, RHOH6 
NM_175744 Ras homolog gene family, member C ARH9, ARHC, H9, MGC1448, MGC61427, RHOH9 
NM_005168 Rho family GTPase 3 ARHE, Rho8, RhoE, memB 
NM_005406 Rho-associated, coiled-coil containing protein 

kinase 1 
MGC131603, MGC43611, P160ROCK, PRO0435 

NM_014631 SH3 and PX domains 2A FISH, SH3MD1, TSK5 
NM_005417 V-src sarcoma (Schmidt-Ruppin A-2) viral 

oncogene homolog (avian) 
ASV, SRC1, c-SRC, p60-Src 

NM_003150 Signal transducer and activator of transcription 3 
(acute-phase response factor) 

APRF, FLJ20882, HIES, MGC16063 

NM_003174 Supervillin DKFZp686A17191 
NM_000660 Transforming growth factor, beta 1 CED, DPD1, LAP, TGFB, TGFbeta 
NM_003255 TIMP metallopeptidase inhibitor 2 CSC-21K 
NM_006289 Talin 1 ILWEQ, KIAA1027, TLN 
NM_003370 Vasodilator-stimulated phosphoprotein - 
NM_003373 Vinculin CMD1W, CMH15, MVCL 
NM_003376 Vascular endothelial growth factor A MGC70609, MVCD1, VEGF, VPF 
NM_003380 Vimentin FLJ36605 
NM_003931 WAS protein family, member 1 FLJ31482, KIAA0269, SCAR1, WAVE, WAVE1 
NM_006990 WAS protein family, member 2 SCAR2, WAVE2, dJ393P12.2 
NM_003941 Wiskott-Aldrich syndrome-like DKFZp779G0847, MGC48327, N-WASP, NWASP 
NM_003387 WAS/WASL interacting protein family, member 1 MGC111041, PRPL-2, WASPIP, WIP 
NM_001101 Actin, beta PS1TP5BP1 
NM_004048 Beta-2-microglobulin - 
NM_002046 Glyceraldehyde-3-phosphate dehydrogenase G3PD, GAPD, MGC88685 
NM_000194 Hypoxanthine phosphoribosyltransferase 1 HGPRT, HPRT 
NM_001002 Ribosomal protein, large, P0 L10E, LP0, MGC111226, MGC88175, P0, PRLP0, RPP0 
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8.2 List of abbreviations 

2D two-dimensional 
3D three-dimensional 
ANOVA one way analysis of variance 
Arg arginine 
Asp aspartic acid 
CAF cancer-associated fibroblast 
cDNA copyDNA 
D aspartic acid 
DEPC diethylpyrocarbonate 
DIC differential interference contrast 
DMEM Dulbecco´s Modified Eagle´s Medium 
DNA desoxyribonucleic acid 
DPBS Dulbecco´s phosphate buffered saline 
E glutamate 
ECM extracellular matrix 
EDTA ethylenediaminetetraacetic acid 
ER endoplasmatic reticulum 
ERK2 extracellular-signal-regulated kinase-2 
EtOH ethanol 
FA focal adhesion 
FACS fluorescence activated cell sorting 
FAK focal adhesion kinase 
FBS fetal bovine serum 
FN fibronectin 
G glycine 
GAG glycosaminoglycan 
gDNA genomic desoxyribonucleic acid 
GPI glycosylophosphatidylinositol 
Gly glycine 
IIF indirect immunofluorescence 
ITD ibiTreat dishes 
MAPK mitogen-activated protein kinase 
min minute 
MMP matrix metalloproteinase 
MT1-MMP membrane-type 1 matrix metalloproteinase 
NCS newborn calf serum 
ON over night 
PCR polymerase chain reaction 
PFA paraformaldehyde 
PVDF polyvenylidene fluoride 
R arginine 
RNA ribonucleic acid 
RNAi RNA interference 
RPMI Roswell Park Memorial Institute (name of cell culture medium) 
RT room temperature 
RT2-PCR realtime PCR 
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SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis 
SEM standard error of the mean 
Ser serine 
siRNA small interfering ribonucleid acid 
TAE Tris-acetate-EDTA 
TIMP tissue inhibitor of matrix metalloproteinases 
Tyr tyrosine 
VASP vasodilator-stimulated phosphoprotein 
VTN vitronectin 
YPet yellow fluorescent protein optimized for FRET 
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