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Kurzfassung: 

Motivation dieser Arbeit ist es, ein tieferes Verständnis von Struktur und Mechanismus 

molekularer Selbstorganisation organischer Thiole auf Galliumarsenid (GaAs)-Substraten zu 

erlangen. Dazu werden als Modellsystem selbstaggregierende Monolagen (SAMs) auf diesen 

technischen wichtigen GaAs-Halbleitern hergestellt. Als Adsorbatmoleküle zur Präparation 

hochgeordneter, dichtgepackter SAMs werden unsubstituierte, bi- und terphenylsubstituierte 

sowie teilweise fluorierte Alkanthiole auf einer GaAs(001)-Oberfläche verwendet. Die SAMs 

werden detailliert mittels oberflächensensitiver Techniken charakterisiert, um sowohl die 

molekulare Orientierung als auch die Eigenschaften dieser Filme zu untersuchen. 

Zunächst wurde für alle untersuchten Systeme ein ausgeprägter Effekt der Kettenlänge der 

Adsorbatmoleküle auf die Qualität der Monolagen gefunden. Dieser äußerte sich in einer 

Verschlechterung der Packungsdichte mit abnehmender Länge der Molekülkette begleitet von 

einer partiellen Oxidation des GaAs-Substrats durch die verminderte Schutzwirkung des 

SAMs. 

Ferner konnte anhand einer Serie bi-und terphenylsubstituierter Alkanthiole die Existenz 

eines Verformungspotentials (engl. bending potential) an der Grenzfläche von Kopfgruppen 

und Substrat nachgewiesen werden. Dabei ist die GaAs-S-C-Bindung bevorzugt unter einem 

Winkel von 104° ausgerichtet. Bei den oben genannten SAMs spielt das 

Verformungspotential in der Bilanz der strukturbildenden Kräfte eine dominierende Rolle und 

führt damit zur Ausbildung eines Odd-Even-Effekts bezüglich molekularer Orientierung und 

Packungsdichte. Dieses Ergebnis zeigt, dass das Verformungspotential bei der Herstellung 

funktionaler, molekularer Filme auf GaAs stets berücksichtig werden muss. 

Der Einfluss der oben genannten Faktoren wie Kettenlängeneffekt und die 

Verformungspotential wird zusätzlich am Beispiel von zum Teil (partially) fluorierten 

Alkanthiol (PFAT) SAMs mit unterschiedlichen Längen der Fluorkohlenstoffkette untersucht 

CF3(CF2)n-1(CH2)11SH (FnH11SH, n= 6, 8, und 10). Zum besseren Verständnis der Struktur 

und Organisation der neuen Filme wurden zunächst entsprechende Studien an den PFAT/Au-

Referenzmonolagen durchgeführt, um so eine Vielzahl wertvoller allgemeiner Erkenntnisse 

über das Gleichgewicht der strukturbildenden Wechselwirkungen in komplexen Systemen zu 

gewinnen. Wie bei dem PFAT/GaAs-System waren die entsprechende SAMs hochgeordnet 

und dichtgepackt und damit in der Lage, die GaAs-Oberfläche vor Oxidation zu schützen. 

Auch bei diesen SAMs war bei einer kürzeren Fluorkohlenstoffkette aufgrund einer 

geringeren Filmqualität der Schutz der Oberfläche vor Oxidation weniger wirksam. Ferner 
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wurde mit abnehmender Länge des Fluorkohlenstoffkette eine fortschreitende 

Verschlechterung der Orientierung und ein geringfügiger Rückgang in der Packungsdichte 

beobachtet. Im Gegensatz dazu zeigten die Kohlenwasserstoff-Segmente in FnH11SH/GaAs 

ähnlicher Ausrichtung, mit einem durchschnittlichen Tiltwinkel nahe am Optimum einer 

durch das Verformungspotential bestimmt. Dies unterstreicht einmal mehr die wichtige Rolle 

des Verformungspotentials in der Bilanz der strukturbildenden Wechselwirkungen in 

aliphatischen SAMs auf GaAs. 
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Abstract: 

The major goal of this thesis is to gain a better understanding of the molecular self-

assembly on GaAs, which can be useful for design of functional self-assembled monolayers 

(SAMs) on this technologically important semiconductor substrate. For this purpose, high 

quality SAMs of non-substituted alkanethiols and some specially designed molecules, 

including 4,4´-terphenyl-substituted alkanethiols, -(4´-methyl-biphenyl-4-yl)-alkanethiols, 

partially fluorinated alkanethiols (PFAT), and dihexadecyl diselenide have been prepared on 

GaAs (001) through the optimization and careful control of the rigorous experimental 

conditions. These SAMs were investigated in detail by a combination of advanced surface 

characterization techniques, providing a deep insight into the molecular organization and 

properties of these films.  

In the first place, pronounced chain length effect for all studied SAM systems on GaAs 

was elucidated, viz. deterioration of the film quality occurs with decreasing length of the 

molecular chain, accompanied by a partial oxidation of the GaAs substrate, due to the less 

effective protection property.  

In the second place, by using the series of the 4,4´-terphenyl-substituted alkanethiols and 

-(4´-methyl-biphenyl-4-yl)-alkanethiols, the existence of so called bending potential at the 

headgroup-substrate interface in the SAM/GaAs(001) system with a preferable GaAs-S-C 

angle of ~104° was demonstrated. For the above SAMs, this potential plays the dominant role 

in the balance of the structure-building forces, mediating the odd-even behavior in the 

molecular orientation and packing density. This result suggests that the bending potential 

should always be taken into account at the design of functional molecular films on GaAs 

substrate.  

The influence of the above factors, viz. the chain length effect and the bending potential, 

were additionally studied by the example of PFAT SAMs with variable length of the 

fluorocarbon chain, viz. CF3(CF2)n-1(CH2)11SH (denoted as FnH11SH, n = 6, 8, and 10). To 

better understand the structure and organization of these films, the corresponding study of the 

reference PFAT/Au system was performed first, resulting in a variety of valuable general 

findings regarding the balance of the structure-building interactions in complex 

monomolecular films. As for the PFAT/GaAs system, the respective SAMs were found to be 

highly ordered and densely packed, and consequently able to protect the GaAs surface from 
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the oxidation. This protection depended on the chain length and was less effective for the 

films with shorter fluorocarbon chain due to their lower quality. Indeed, with decreasing 

length of the fluorocarbon segment, progressive deterioration of the orientation order 

accompanied by a slight decrease in the packing density was observed in the fluorocarbon 

part. In contrast, the hydrocarbon segments in FnH11SH/GaAs exhibited similar orientation, 

with the average tilt angles close to the optimum one determined by the bending potential. 

This underlines once more the important role of bending potential in the balance of structure-

building interactions in aliphatic SAMs on GaAs.  
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Chapter 1: Introduction 

 

Control and adjustment of surface and interfacial properties on microscopic and 

macroscopic length scales are important scientific and technological issues. An efficient 

approach in this regard is surface functionalization with specifically designed monomolecular 

films, denoted usually as self-assembled monolayers (SAMs).1,2 These films represent 2D 

polycrystalline assemblies of semi-rigid, rod-like molecules that are chemically anchored to 

the substrate.1-6  

Typical SAM precursors can be divided into three essential parts: the headgroup 

(anchoring moiety), molecular backbone (spacer), and specific terminal (tail) group. The 

headgroup guides the self-assembly process on a solid support, binding the molecule to the 

substrate surface through a specific bond. The interactions between the molecular chains 

mediated by the van der Waals, hydrophobic, and electrostatic forces ensures an efficient 

packing of the monolayer and stabilizes its structure. The terminal group confers specific 

properties to the surface such as the wetting properties, protein repelling, etc.; it can also be 

used to link different moieties, in particular biomolecules by weak interactions or covalent 

bonds.6  

 

The flexibility of the SAM design and the possibility to prepare such films on almost any 

substrate result in a variety of applications, such as tailoring surface properties (wetting, 

adhesion, lubrication, corrosion, and biocompatibility), sensor fabrication, molecular and 

organic electronics, as well as conventional and chemical lithography.6 Among different kinds 

 

Figure 1.1: Schematic diagram of an ideal, single-crystalline SAM of alkanethiolates supported on a 
gold surface with a (111) texture. The anatomy and characteristics of the SAM are highlighted. The 
Figure is taken from Love et al.6 
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of SAMs, the most popular systems are alkanethiolates on coinage metal substrates, such as 

Au(111), Ag(111), and Cu(111),1-7 mainly due to the well established preparation route and 

the versatility of the molecular design.6 Figure 1.1 shows a schematic diagram of a densely 

packed alkanethiolate SAM on Au (111); the different building blocks as well as their 

functions are highlighted.  

The packing density and structure of SAMs are generally determined by a complex 

interplay of a variety of factors which include intermolecular interaction, strength of the 

headgroup-substrate bond, corrugation of the binding energy hypersurface, and mismatch 

between the optimal molecular lattice and the substrate.2 It was generally believed that in 

many SAMs, in particular, in SAMs of alkanethiols (ATs) on the Au (111) and Ag (111) 

substrates, intermolecular interaction plays a predominant role.2,3,7,8 The substrate was 

assumed to affect only the packing density of alkanethiol (AT) moieties, through a 

corrugation of the sulfur-metal binding energy surface,2,3,8 which results in an 

incommensurate structure for the thiolate head groups on Ag with a lattice constant of ~4.67  

4.77 Å in the case of the weak corrugation, and in a commensurate lattice with a larger 

intersite spacing of ~5.0 Å on Au in the case of the strong corrugation.2,3,8 The proposed 

predominant role of the intermolecular interaction is then primarily reflected in the different 

orientation of the AT molecules on Au and Ag, with tilt angles of 10  12° and 27  35°, 

respectively.2,3,6-13 The substrate-S-C unit is assumed to behave as a “free joint”, enabling a 

necessary tilt of the alkyl chains to achieve their most effective arrangement with an optimal 

bulk-like chain-chain spacing of ~4.4 Å.2,14 (the chain-chain spacing is equal to the 2D-lattice 

constant multiplied by the cosine of the respective tilt angle) 

In contrast to the “free joint” model, which as mentioned above assumes that the metal-S-C 

joint can take any orientation driven by the intermolecular interaction, a different model, 

assuming the existence of a strong bending potential at the headgroup in AT SAM on coinage 

metal substrates was derived. Within this model, the bending potential of the anchoring group 

is believed to be one of the dominant factors determining the molecular orientation and 

structure of AT SAMs. Unambiguous proofs are in particular so called odd-even effects in 

phenyl-,15 methyl-terminated biphenyl-,16-20 and terphenyl-21-23 substituted AT SAMs. In these 

films, the packing density and orientation of the SAM constituents exhibit obvious odd-even 

variation rather than a simple persistence with varying number of the methylene units in the 

alkyl linker. Higher packing density, associated with smaller inclination of the SAM 

constituents, is observed for the SAMs with odd (even) number of methylene units on Au 
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(Ag) substrate. As an example, the schematic drawing of the odd-even behavior in terphenyl-

substituted AT SAMs is illustrated in Figure 1.2. The observed odd-even effects in these films 

were explained by the substrate-dependent bending potential, which favors a certain bond 

angle of the substrate-S (Se)-C joint, determining the orientation of the alkyl chains and 

consequently the structure of the SAMs.16-23 This angle depends on the substrate, and is ~104° 

and ~180° for Au (111) and Ag (111), respectively.16,17,24,25 In addition, it should be 

mentioned that similar odd-even effect was also observed in the alkaneselenolate SAMs on 

Au and Ag,24,25 with the same dependence on the alkyl chain parity; this underlines once more 

an important role of the substrate-dependent bending potential in the balance of the structure-

building forces.  

 

As mentioned above, SAMs on coinage metal substrates have been studied extensively in 

the past years, in particular in terms of the structure-building interactions. However, the metal 

substrates are technologically limited for certain applications. In this context, surface self-

assembly on semiconductor substrates has also attracted significant attention, particularly on 

the group IV and III-V semiconductors, taking into account their potential applications in the 

fields of electronic devices and sensors. In the case of the group IV semiconductors, assembly 

of monomolecular films on Si and Ge substrates through Si-O-Si,2,26 Si-C,27-29 Ge-C,29,30 and 

Ge-S covalent bonds31,32 has been reported. However, almost all these cases, except probably 

Ge-S, involve high energy bonds which hinder the most favorable self-organization of the 

grafted molecules. It can be understood that the molecules are strongly bonded to the silicon 

surface in deep wells with energies >> kBT, thus suppressing adsorbate translational 

mobility.33 In contrast, in the case of the III-V semiconductors, organothiol molecules were 

 

Figure 1.2: Schematic drawing of the orientation and packing of 
the terphenyl-substituted AT SAMs on Au and Ag. The Figure is 
taken from Shaporenko et al.21  

 

Au

Ag



Introduction 

 

- 4 - 
 

found to be able to form densely packed SAMs on the oxide free surface through thiolate 

bond, which is the same type of bond appearing in the most popular alkanethiolate SAMs on 

Au.6 The most potentially useful III-IV substrates for the thiolate based SAMs include 

GaAs,34 InP,35,36 and InAs37,38.  

Among the above III-IV semiconductors, GaAs is especially promising for the fabrication 

of nanostructure devices and sensors, because it permits a flexible band-gap engineering and 

is well suitable for heteroepitaxy.39-43 Nevertheless, some of its applications are severely 

restricted because of the chemical instability of the GaAs surface both at ambient conditions 

and in physiological electrolytes. A proper way to address this problem is to functionalize the 

GaAs surface with suitable monomolecular films, namely functional SAMs which can 

passivate and protect the surface as well as simultaneously modify its properties in a desired 

way. In this context, a variety of different SAMs have been prepared and studied to some 

extent, including non-substituted ATs (NSATs) of different lengths (CnH2n+1SH),33,34,44-49 

substituted ATs,50-53 as well as non-substituted and substituted aromatic thiols.51,54-59  

Despite a large variety of the organothiol molecules used for the monolayer preparation on 

the GaAs substrate, high quality SAMs could only be reproducibly prepared under quite 

rigorous conditions, which is related to the strong proneness of the GaAs surface towards 

oxidation and to its complex surface chemistry.34 In this context, SAM fabrication on GaAs 

substrate is a task in its own, and many factors should be taken into account during the 

preparation procedure, such as removal of the native oxide, control of humidity, and rigorous 

use of anaerobic conditions to prevent oxide regrowth during the preparation steps. Probably 

the most reliable preparation method has been brought out by D. L. Allara et al.;34 using this 

method, NSAT SAMs of high quality could be formed on GaAs surface in a reproducible 

fashion.33,34 In addition, this method is also suitable for the monolayer preparation from some 

substituted ATs.52,60  

Despite the above achievements, most of the previous studies have not dealt with the 

mechanism behind the self-assembly process, in particular, in terms of the structure-building 

factors. Notable exceptions are recent publications by D. L. Allara et al., in which this issue 

was considered in very detail by the example of NSAT SAMs, in particular octadecanethiol 

(ODT) monolayer on GaAs (001).33,45 The respective film represents pseudohexagonal 

overlayer with nearly vertically oriented alkyl chains (14°),34 and the packing density is given 

by ~21.2 Å2 per molecule.45 However, the above ordered structure could only be formed in 

much smaller domain size of ~74 Å45 as compared to ~250 Å45 and ~120 Å9 for AT SAMs on 
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Au(111) and Ag(111), respectively. Based on the analysis of the experimental data, the 

smaller domain size was attributed to the inherent mismatch between the substrate spacing 

(3.995 and 5.65 Å for NN and NNN spacing of As (or Ga) atoms) and symmetry of the square 

lattice pinning sites and the ideal molecular lattice spacing (4.70 and 5.02 Å) and hexagonal 

symmetry for crystalline packing of vertically oriented chains.45 The incommensurate 

structure of ODT SAM on GaAs (001) is shown in Figure 1.3. To obtain the preferred 

hexagonal molecular packing, the above mismatch is overcome by distortion of the GaAs 

(001) surface lattice, which is driven primarily by the kinetic factor of the intermolecular 

interaction.  

 

Comparing the results for GaAs and coinage metal substrates, one finds a structure 

discrepancy between the molecular orientation and packing density in the case of GaAs. The 

alkyl chains of the ODT molecules tilt (~14°)34 similarly like those in AT SAMs on Ag (111) 

(~10  12°),2,3,7-9 but have the lateral spacing (~5 Å) and reciprocal packing density (~21.2 Å2 

per molecule)45 which are comparable to those for AT SAMs on Au (111). (~5 Å and ~21.62 

Å2 per molecule, respectively)2,3,7,8,61 Neither the “free joint” nor “bending potential” models 

can explain the observed molecular organization unless GaAs has a strong bending potential 

which is similar to that on Ag (111).  

This suggests that the molecular organization on GaAs (001) should be studied in more 

detail, if possible, in terms of the structure-building factors behind it. For this purpose, SAMs 

of NSATs with different chain lengths and some specially designed molecules, including 

terphenyl- and methyl-terminated biphenyl-substituted ATs (scheme 1.1), partially fluorinated 

 

Figure 1.3: (A) The molecular unit cell embedded in a larger, ideal monolayer overlayer structure. The monolayer structure is 
shown in real space with respect to an ideal intrinsic As-terminated (001) GaAs surface. The gray ellipses represent top down 
vertical projections of untilted thiolate chains onto the substrate plane with the C–C–C planes indicated as blue bars. The relative 
twists of the chains show the herringbone pattern deduced from the IRS data. (B) Representation of a unit subcell and the 
associated lattice parameters. (C) Schematic side view representation of the monolayer structure along the [110] substrate 
direction. Note that the 5.02 Å adsorbate spacings determined from GIXRD do not match the ideal As atom spacings along the 
[110] direction in the intrinsic (001) substrate plane. Given the presence of S–As chemical bonds, this mismatch implies the As 
atoms must shift and reorganize during chemisorption of the alkanethiols to accommodate the molecular spacing. The Figure is 
taken from McGuiness et al.45  
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alkanethiols (PFAT) (scheme 1.2), and dihexadecyl diselenide (scheme 1.3) were prepared on 

GaAs (001) with high quality under rigorous experimental conditions. A variety of advanced 

surface characterization techniques, such as synchrotron-based High Resolution X-ray 

Photoelectron Spectroscopy, Near Edge X-ray Absorption Fine Structure spectroscopy, and 

Infrared Reflection Absorption Spectroscopy were applied to investigate these SAMs, 

providing a deep insight into their molecular organization. After unraveling the structure of 

these films, some basic structure-building factors of molecular assembly on GaAs were 

clarified; understanding of these factors can help one to design functional SAMs on this 

technological important semiconductor substrate, and, thus to realize its promising 

applications in the future. 

 

Based on the literature results,33,34,45 ODT SAM was selected to serve as a starting 

reference model for the more complex systems. Thus, firstly, a full set of surface 

characterization techniques were applied to check this monolayer, which was prepared using 

the method reported by D. L. Allara et al..34 The results were described in chapter 4, it was 

found the quality of the prepared ODT SAM was comparable to the best reported one,34 

which was essential to perform further work of molecular assembly on this complex 

semiconductor surface. Afterwards, pronounced chain length effect existing also for all other 

studied SAM systems on GaAs was elucidated through comparing the structure of the NSAT 

SAMs with different chain lengths.  

In addition to the chain length effect, another important structure-building factor, viz. the 

existence of the bending potential, which, as mentioned above, is essential for thiolate and 

 
Scheme 1.1: The structures of the TPn 
(n=0-6), and BPn (n=1-6) precursors 
studied.  

 

 
Scheme 1.2: The structures of the FnH11SH SAM 
precursors studied, along with their abbreviations.  

 

 
Scheme 1.3: molecular structure 
of C16Se and C16SH.  
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selenolate SAMs on metal substrates, was demonstrated by studying the odd-even effects in 

the specially designed terphenyl- and methyl-terminated biphenyl-substituted AT (scheme 

1.1) SAMs in chapter 5. These selected TPn (n = 0  6) and BPn (n = 1  6) monolayer 

systems are well suitable for the given purposes as discussed above and shown by the 

analogous studies for coinage metal substrates.16-23  

To extend the family of functional SAMs on GaAs and to have a better understanding of 

the interplay of the two structure-building factors discussed above, viz. chain length effect and 

bending potential, novel PFAT SAMs with variable length of the fluorocarbon segment, viz. 

CF3(CF2)n-1(CH2)11SH (FnH11SH, n = 6, 8, and 10) (scheme 1.2) were prepared on Au 

(reference) and GaAs (001) substrates, and characterized in detail. In these films, the 

attachment of the bulky fluorocarbon part with a van der Walls (vdW) diameter of 5.67 Å62,63 

as compared to 4.4 Å14 for the hydrocarbon part leads to an increase in the chain-chain 

spacing for the hydrocarbon moieties, which consequently results in a significant (by a factor 

of 23 as compared to AT SAMs) reduction of the intermolecular vdW interaction between 

the hydrocarbon segments. Thus, it is interesting to study the bending potential effect for the 

structure of these segments under this situation. By contrast, the interaction between the 

fluorocarbon segments also occurs separately from the hydrocarbon parts due to their inherent 

helical conformation,64-66 correlated with the larger vdW diameter of these segments. In the 

given FnH11SH series, the length of the fluorocarbon segment was varied, thus, the chain 

length effect was examined in the case of fluorocarbon chain instead of the hydrocarbon 

chain. As a reference system, the FnH11SH SAMs on Au were first addressed in chapter 6, 

providing a variety of valuable general finding regarding the balance of the structure-building 

forces in these systems. Afterwards, the characterizations of the analogous (FnH11SH) films 

on GaAs (001) were presented in chapter 7, the two structure building factors were 

highlighted after clarifying the structure of these FnH11SH films.  

In chapter 8, the characterization of one non-substituted alkaneselenolate SAM was 

presented, the results indicated the suitability of selenol anchor for the molecular assembly on 

GaAs. In addition, the structure of the formed selenolate SAM was compared with the 

analogous thioalte one.  

Finally, the results of this thesis are summarized in chapter 9.  
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Chapter 2: Basic Theory 

 

2.1 X-ray Photoelectron Spectroscopy (XPS)  

XPS is one of the most widely used surface analyzing techniques.67 Using XPS, the 

elemental composition of a sample up to a depth of 10-20 nm can be quickly obtained. During 

an XPS measurement, the atoms in the sample of interest, which can be solid, liquid or gas, 

are excited with X-rays of a given energy h, thus leading to ionization of the atoms and 

emission of photoelectrons with defined kinetic energies. The kinetic energy of the ejected 

photoelectron is characteristic of the element under study and is given by equation 2−1.  

KE = h− BE − spec                                                 (2−1) 

Where KE is the kinetic energy of the photoelectrons, h is the excitation energy, spec is the 

work function of the spectrometer and BE is the binding energy of the corresponding core 

level. The energy scale of an XPS spectrum is typically in binding energy units (Figure 2.1 as 

an example). The intensity of the XPS signal for a given element is described by the following 

equation:  

I = N × ××cos(× K                                            (2−2) 

where N is the average atomic concentration of the atom 

under consideration,  is the ionization cross-section as 

defined by Scofield,68  is the inelastic mean free path 

length, is the take-off angle and K an instrument constant 

that depends on several experimental factors such as the 

transmission function of the analyzer, the yield of the 

detector and the photon flux. 

 

2.1.1 Elemental specificity 

As explained above, XPS is element specific. More importantly, it is also sensitive to the 

environment of the atom under study (Figure 2.1); this can be understood that one can not 

only distinguish between the different elements in a sample but also between the different 

species of the studied element. For example, as shown in Figure 2.1, it is easy to distinguish 

between the different carbon atoms, which are bound to hydrogen or fluorine atoms. 

Moreover, it is possible to distinguish the different CFn species, like the −CF2− and −CF3 

terminal moiety. The same is true for all the elements.  

 

Figure 2.1: C 1s HRXPS of F10H11SH 
SAM on GaAs (001) acquired at a photo 
energy of 350 eV. 
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2.1.2 Surface sensitivity of XPS 

As illustrated in Figure 2.2, while X-rays 

can readily travel through solids, electrons 

exhibit significantly less ability to do so. In 

fact, for X-rays of 1 KeV (1254 eV and 1487 

eV for Mg and Al excitation sources, 

respectively), the X-rays will penetrate 1000 

nm or more into matter while electrons of this 

energy will only penetrate approximately 10 

nm. Because of this difference, XPS, in which 

only emitted electrons are measured, is surface 

sensitive. Photoelectrons emitted from X-ray 

citation below the uppermost surface zone can 

not penetrate far enough to escape from the 

sample and reach the detector.  

In XPS, only the electrons that have not lost 

energy contribute to the peak signal; while the 

electrons, which suffer from energy loss, but 

still have sufficient energy to escape from the surface, will contribute to the background.67 

The sample depth (d≈3) is referred to the characteristic, average length over which the 

electron can travel with no loss of energy. The quantitative evaluation of the surface 

sensitivity, correlated with the sample depth, is described by the attenuation length, as talked 

below.   

 

2.1.3 Attenuation length  

The attenuation length “” is defined as the average distance travelled by an electron 

between two inelastic collisions.67 It is derived using a model in which elastic collisions are 

neglected and thus differs from the inelastic mean free path (IMFP).69 varies with the 

kinetic energy of the photoelectrons for one given material. In this thesis, the material focuses 

on organic molecular films, so the attenuation length is given by equation 2−3, which 

applies for a wide variety of carbon-containing organic layers on kinds of substrates.70,71 

= 0.3 × KE0.64                                                    (2−3) 

 

 

 

Figure 2.2: X-rays will penetrate deeply into a sample, 
and stimulate electron emission throughout the specimen. 
Only those electrons emitted from the surface zone that 
have suffered no energy loss will contribute to the 
photoemission peak (a). Electrons emitted from the 
surface zone that have lost some energy due to inelastic 
interactions will contribute to the scattering background 
(b). Electrons emitted deep within a sample will lose all 
their kinetic energy to inelastic collisions and will not be 
emitted (c). The Figure is taken from Ratner et al.67  
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2.1.4 Intensity of the XPS signal and thickness calculation 

The photoemission signal can be attenuated with 

the upper overlayer, and its intensity is directly 

related to the attenuation length of the 

photoelectrons; this situation is quantitatively 

described in Figure 2.3.  

Thus, according to Figure 2.3, the thickness of 

overlayers can also be calculated. In this thesis, the 

thickness of organic monolayers on Au and GaAs 

substrates is calculated using the intensity ratio 

between the C1s emission and the emission from 

the core level atom of the substrate, i.e. Au 4f and 

As 3d for Au and GaAs substrate, respectively, and 

the equation is described as below:   

 

 

                                

𝐼𝑐
𝐼𝑠𝑢𝑏

(𝑠𝑎𝑚𝑝𝑙𝑒)

𝐼𝑐
𝐼𝑠𝑢𝑏

(𝑟𝑒𝑓𝑒𝑟)
=

1−𝑒𝑥𝑝
−𝑑𝑠𝑎𝑚𝑝𝑙𝑒
𝜆𝐶1𝑠(𝐸𝑐)

𝑒𝑥𝑝
−𝑑𝑠𝑎𝑚𝑝𝑙𝑒
𝜆𝑠𝑢𝑏(𝐸𝑠𝑢𝑏)

×
𝑒𝑥𝑝

−𝑑𝑟𝑒𝑓𝑒𝑟
𝜆𝑠𝑢𝑏(𝐸𝑠𝑢𝑏)

1−𝑒𝑥𝑝
−𝑑𝑟𝑒𝑓𝑒𝑟
𝜆𝐶1𝑠(𝐸𝑐)

                                (2−4) 

In equation 2−4, Ic and Isub are the intensities of the C1s emission and the emission from the 

core level atom of the substrate, the attenuation length “” of different photoelectrons (C1s, 

As3d, Au4f) depends on the kinetic energy. In addition, one proper reference film with a well 

known thickness value is required for the thickness evaluation.  

 

2.1.5 Enhancing the surface sensitivity  

In some cases, the sample depth (~3) of XPS might still be too large, and one typical case 

is just in the present thesis, viz. SAMs on GaAs (001) substrate. Some problems happen in the 

routine XPS measurement, such as: (1) the detailed component information of the target 

element (like the different As or Ga components) in the near surface (e.g. SAM-GaAs 

interface) can not be fully obtained; (2) the interested emission peak is interfered (like C1s) or 

even totally covered (like S2p) by other emissions from the GaAs substrate. These issues 

would also be described more in later chapters. However, the above limitations can be 

overcome through enhancing the surface sensitivity of XPS measurement, which can be 

realized mainly by two ways, as introduced below:  

 

 

Figure 2.3: (a) For electrons transmitted through a 
sample, Beer’s law of molecular absorption explains 
the total intensity loss for electrons that lose no 
energy in traversing the sample. (b) For electron 
emission from a thick sample, modifications of Beer’s 
law can explain the photoemission intensity from an 
overlayer or from the substrate covered by an 
overlayer. The Figure is taken from Ratner et al.67 
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2.1.5.1 Variation of the take-off angle 

As clearly seen in Figure 2.4, by tilting the sample, the effective sample depth decreases by 

a factor of cos; in the lab-XPS (Max-200) measurement, normally a take-off angle () of 

60° is applied to achieve a better surface sensitivity for samples on GaAs (001) substrate. 

 

 

2.1.5.2 Variation of the excitation energy 

According to equation 2−3, by reducing the excitation energy (h), the KE of the 

photoelectrons would decrease simultaneously, thus resulting smaller . This allows us to 

probe the sample composition up to a smaller sample depth (d≈3). The variation of the 

excitation energy can be realized in the synchrotron-based High Resolution XPS 

measurement. 

 

 

 

  

 

Figure 2.4: As the sample is rotated, maintaining the X-ray source and detector in fixed 
positions, the effective sampling depth decreases by a factor of cos. Note that the emitted 
photoelectron travels 80 Å through matter at all take-off angles. The take-off angle, , is defined 
relative to the normal to the surface. The Figure is taken from Ratner et al.67 

 



Basic Theory 

- 13 - 
 

2.2 Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy 

In a NEXAFS experiment, core level electrons are excited into non-occupied molecular 

orbitals, which are characteristic of specific bonds, functional groups, or the entire molecule. 

The respective absorption resonances provide then a clear signature of these entities. 

Moreover, the orientation of the molecular constituents, averaged over the probed ensemble, 

can be derived from the NEXAFS data since the cross-section of the resonant photoexcitation 

process depends on the orientation of the electric field vector of the linearly polarized 

synchrotron light with respect to the molecular orbital of interest, so called linear dichroism in 

X-ray absorption.72 This section only presents a brief overview of the basic principles of 

NEXAFS spectroscopy; for a complete review of the NEXAFS technique, including the 

mathematics behind it, please refer to the book by Joachim Stöhr.72  

2.2.1 Basic principles 

The sample is irradiated with monochromatic X-rays (synchrotron light) of varying 

energies below and up to 50 eV above the ionization potential (IP e.g. ~291 eV for the carbon 

K-edge).74 Figure 2.5a illustrates several distinct processes that can occur during the 

generation of the NEXAFS spectrum. The incident photon beam excites an electron from a 

core state into an unoccupied electronic state and the subsequent relaxation of the excited 

molecule results in the ejection of either an Auger electron or an energetic photon with the 

cross-section of each process being atomic number dependent.73 Indeed, it is generally 

possible to monitor each of these processes, as shown in Figure 2.5b, and thus there are 

several ways of obtaining a NEXAFS spectrum. Among them, partial electron yield (PEY) 

and Auger electron yield (AEY) are the most surface sensitive detection methods. In a 

NEXAFS experiment, unlike XPS, both elastically and inelastically scattered electrons are 

collected. In the PEY method, which is also used throughout this thesis work, heavily 

scattered and low kinetic energy electrons are excluded by applying a threshold voltage thus 

making this technique more surface sensitive. 

 

 

Figure 2.5 a: Schematic representation of the processes occurring during a NEXAFS experiment; b: Schematic 
representation of the different NEXAFS measurement methods. Figure 2.5 was taken from Watts et al.73  

a
a b
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2.2.2 Angular dependence of the NEXAFS signal 

The absorption resonance intensity, i.e. of a C1s → 1
* transition, depends on the 

orientation of the electric field vector of the synchrotron light with respect to the molecular 

orbital of interest (Figure 2.6). The absorption resonance intensity is proportional to the 

square of the dot product of the electric field vector of the X-rays (�⃗� ) and the orbital vector 

(�⃗� ).  

                                                              𝐼 ∝ |�⃗� ∙ �⃗� |
2
                                                     (2−5) 

 

A fingerprint of the orientation of the molecular orbitals is the linear dichroism, which is 

conveniently monitored by plotting the difference of the NEXAFS spectra acquired at normal 

(90°) and grazing (20°) angles of X-ray incidence. In contrast, a spectrum acquired at the so-

called magic angle of X-ray incidence (55°) is not affected by any effects related to the 

molecular orientation and only gives information about the chemical identity of the 

investigated samples.72  

In addition, the average tilt angle of the respective molecular orbital can be quantitatively 

calculated based on the linear dichroism of the NEXAFS spectra.72 The detailed evaluation 

process for different types of orbitals, like vector type of 1
* orbital or plane type of  R* 

orbital, would be introduced in later chapters.  

 

  

 

Figure 2.6: Schematic representation of the interaction of X-
rays with  (left) and  (right) orbitals of a diatomic 
molecule standing perpendicular to a surface. The intensity of 
the resonance associated with the  resonance is maximum if 
the X-ray is perpendicular to the surface (= 90°). By 
contrast, the intensity of the resonance associated with the  
resonance is maximum if the X-ray is in the grazing incidence 
geometry ( < 30°). The Figure was taken from Hähner.74 
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2.3 InfraRed Reflection Absorption Spectroscopy (IRRAS) 

IRRAS is a kind of infrared spectroscopy performed on the surface. As in a typical infrared 

(IR) experiment, the IR signal results from the interaction of the electromagnetic field of an 

infrared radiation with the oscillation dipole associated with a particular normal vibration 

mode. If the transition dipole moment (TDM) associated with the vibration of interest lies 

perpendicular to the surface or has a major component perpendicular to the surface, it will 

give rise to an absorption band in the IR spectrum. By contrast, if the TDM lies parallel to the 

surface, then no absorption band will be visible for the associated vibration. Thus, following 

this, high incidence angle (> 80°) of the IR light is required to achieve high signal to noise 

ratio. 

 

2.4 Ellipsometry 

Ellipsometry measures the change of polarization upon reflection. The exact nature of the 

polarization change is determined by the sample's properties, such as thickness, complex 

refractive index or dielectric function tensor. Although optical techniques are inherently 

diffraction limited, ellipsometry exploits phase information and the polarization state of light, 

and can achieve Angstrom (Å) resolution. In its simplest form, the technique is applicable to 

thin films with thickness less than a nanometer to several micrometers. The sample must be 

composed of a small number of discrete, well-defined layers that are optically homogeneous 

and isotropic. The schematic setup of the typical ellipsometry measurement is shown in 

Figure 2.7.  

 

 

 

 

 

 

 

 

Figure 2.7: Schematic setup of an 
ellipsometry experiment. 
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2.5 Contact angle goniometry 

2.5.1 Basic Principle 

In contact angle goniometry, one measures the angle (in Figure 2.8a) between a drop of 

liquid and a surface at equilibrium. The shape of the drop is defined by the properties of the 

liquid (L), the surface (S) and the vapor (V) as described in Figure 2.8a. This is described by 

the Young equation: 

SV=SL+ ∙cos                                                 (2−6) 

where SV is the interfacial energy between the solid and the vapor, SL is the interfacial 

energy between the solid and the liquid,  is the interfacial energy between the liquid and the 

vapor, and  is the equilibrium contact angle.75 

 

 

2.5.2 Advancing and static contact angle 

As shown in Figure 2.8b, small enough amount of liquid (Milli Q water in this thesis) is 

added to a drop until the contact line can not be pinned, the maximum contact angle is defined 

as advancing contact angle.  

 

 

 

  

 

Figure 2.8a: Schematic representation of a drop on a surface; b: Schematic 
representation of the advancing contact angle. Figure 2.8a was taken from 
Tadmor.75  

 

a b
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Chapter 3: Experimental Parts 

 

3.1 Substrates 

GaAs (001): Single side polished n+-type doped GaAs (001) wafers (Si dopant density 

(Ne) = 1.5~1.6 × 1018 cm-3) were purchased from American Xtal Technologies, Guangzhou, 

China; and they were used for all studies throughout this thesis work.  

Au (111): The standard gold substrates were prepared by thermal evaporation of 100 nm of 

gold (99.99% purity) onto polished single-crystal silicon (100) wafers (Silicon Sense) that had 

been precoated with a 5 nm titanium adhesion layer. Such evaporated films are polycrystalline 

in nature with a grain size of 20-50 nm as observed by atomic force microscopy. The grains 

predominantly exhibit a {111} orientation.76 

 

3.2 Chemicals 

Octadecanethiol (ODT, CH3(CH2)17SH) and Hexadecanethiol (HDT, C16SH, 

CH3(CH2)15SH) were purchased from Fluka Chemika, Dodecanethiol (DDT, CH3(CH2)11SH) 

was purchased from Sigmal-Aldrich. These NSAT molecules were used without further 

purification. 

4,4´-terphenyl-substituted alkanethiols, C6H5(C6H4)2(CH2)nSH (TPn, n = 0 − 6), molecules 

were custom synthesized;21 4´´-(mercaptomethyl)terphenyl-4-yl-carbonitrile 

CNC6H5(C6H4)2(CH2)SH (TP1CN) was synthesized according to Ref 79; -(4´-methyl-

biphenyl-4-yl)-alkanethiols, CH3(C6H4)2(CH2)nSH (BPn, n = 1 − 6 ), were custom 

synthesized,17 the structure of the TPn and BPn molecules can be be found in Scheme 1.1.  

PFAT precursors, CF3(CF2)n-1(CH2)11SH abbreviated as FnH11SH (n = 6, 8, and 10), 

(molecular structure shown in Scheme 1.2) were prepared following literature procedures77,78 

with slight modifications. See more in the Appendix (A1).  

Hexadecyl diselenide, C16H33SeSeH33C16 abbreviated as C16Se, (molecular structure 

shown in Scheme 1.3) was custom synthesized according to Ref 81.  
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3.3 SAM preparation on GaAs (001) 

3.3.1 NSAT SAMs: The optimum procedure for preparing high quality NSAT SAMs on 

GaAs substrates has already been reported33,34 and was also used in the experiment of this 

thesis. The procedure briefly follows as: the native oxide of GaAs was removed by immersing 

the substrates in concentrated NH4OH (PROLABO, 30% NH4OH in water) from 1 to 5 min. 

Immediately after immersion, the sample was rinsed with degassed absolute ethanol (Sigma 

Aldrich) and dried with a Ar stream. The substrates were then immersed in degassed ethanolic 

solutions (degassed through multiple freeze-pump-thaw cycles) containing 3 mM NSAT 

precursors (ODT, HDT, or DDT) and 10 mM NH4OH, and transferred into a nitrogen-purged 

glovebox for incubation of 24 hours at room temperature. After incubation, the samples were 

taken out of the solutions, rinsed carefully with Abs ethanol, and blow dry with Ar.  

In this thesis, ODT SAM is used as a reference to calculate the film thickness and packing 

densities for other SAMs. 

3.3.2 TPn and BPn SAMs: The preparation for TPn (n=0  6, also TP1CN) and BPn (n=1  

6) SAMs were carried out under inert (Ar) atmosphere to reduce surface oxidation. The 

optimum procedure follows briefly as: After the pretreatment, the GaAs substrates were 

etched in concentrated HCl (37%) for 1 min to remove the native oxide layer. This resulted in 

a As:Ga surface ratio of ~86%, as measured by XPS and in agreement with other studies,50 

and a root mean square (rms) value of 0.35 nm (scan area 1  1 m2), as compared to 0.21 

nm for the pristine GaAs. Thus, the etching step only roughens the initial substrate 

topography to a rather small extent, which is supported by the AFM results in Figure 3.1. The 

freshly etched substrates were immediately immersed into 0.1mM target solutions (TPn or 

BPn) in anhydrous ethanol, and incubated there for 24h at room temperature. Note that both 

the etching and immersion steps were carried out under Ar atmosphere using the schlenk-line 

setup. After the SAM formation, the 

samples were taken out of the reactor, 

rinsed softly with different organic 

solvents (in a sequence of abs ethanol, 

acetone, chloroform, and abs ethanol) to 

remove physisorbed molecules, dried by 

Argon flow and then preserved in Ar 

filled glass container.  

 

 

Figure 3.1: AFM contacting mode topography of the GaAs(001) 
surface: (a) starting native oxide covered substrate, (b) after HCl 
etching.  

 

a b
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3.3.3 PFAT (FnH11SH) SAMs: The optimum procedure for preparing PFAT SAMs was 

based on the developed one for TPn and BPn precursors above, with only slight modification 

in the rinsing step: After the SAM formation, the samples were taken out of the reactor, rinsed 

extensively with absolute ethanol to remove physisorbed molecules, dried by Argon flow and 

preserved in Ar filled glass containers.  

3.3.4 C16Se SAM: The optimum procedure for preparing C16Se SAM was also based on the 

developed one for TPn and BPn precursors, two modifications were made here: (1) The 

concentration of the incubation solution (C16Se) is 5 M since a M concentration is crucial 

for growing high quality selenolate SAMs.81-83 (2) After the SAM formation, the samples 

were taken out of the reactor, rinsed extensively with absolute ethanol to remove physisorbed 

molecules, dried by Argon flow and preserved in Ar filled glass containers.  

 

3.4 SAM preparation on Au (111) 

3.4.1 NSAT SAMs: HDT and DDT SAMs were prepared using the standard protocol:61 

Freshly prepared gold substrate was immersed into 1 mM solution of HDT (or DDT) in Abs 

ethanol for 24 h at room temperature. After immersion, the sample was thoroughly rinsed 

with pure Abs ethanol, and blown dry with Ar. DDT and HDT SAMs were used as reference 

to calculate the film thickness and packing densities for other SAMs on Au, respectively.  

3.4.2 TPn SAMs: The TPn (n=0  6) SAMs were prepared according to Ref 21, which 

follows as: the freshly prepared substrates were immersed into 1 mM TPn solution in THF at 

room temperature for 24 h. After immersion, the samples were carefully rinsed with pure 

solvent and blown dry with argon. No evidence for impurities or oxidative degradation 

products was found in the XPS spectra. 

3.4.3 PFAT (FnH11SH) SAMs: The PFAT SAMs were prepared by immersion of the fresh 

substrates in 1 mM PFAT solutions in analytical grade dichloromethane for 24 h at room 

temperature. After immersion, the films were rinsed with the solvent and blown dry with 

argon. Extensive characterization showed no evidence of impurities or oxidative degradation 

products. 
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3.5 SAM characterization 

The fabricated SAMs on Au and GaAs (001) were characterized by a variety of surface 

analyzing techniques, including XPS, synchrotron-based HRXPS and NEXAFS spectroscopy, 

IRRAS, ellipsometry, and contact angle goniometry. All these measurements were performed 

at room temperature. Ellipsometry and contact angle measurements were taken within 3 

minutes after the SAM formation; for other measurements, in particular the synchrotron-based 

measurements, the samples were preserved in Ar filled container until the measurements were 

carried out. 

 

3.5.1 XPS (Max-200)   

The schematic diagram of one XPS spectrometer with the key components is illustrated in 

Figure 3.2. The XPS measurements in our lab were carried out under UHV conditions (less 

than 2×10-8 mbar) with a MAX200 (Leybold-Heraeus) spectrometer equipped with an Mg K 

 

Figure 3.2: A schematic diagram of an XPS spectrometer using a monochromatized X-ray 
source. The key components of a modern spectrometer are identified. The Figure was taken 
from Ratner et al.67 
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X-ray source (200 W) and a hemispherical analyzer. The recorded spectra were corrected for 

the spectrometer transmission. 

Despite the GaAs wafers used throughout this thesis are conductive, the surface charging 

may still take place on this semiconductor surface during the X-ray irradiation (assuming to 

occur in a small extent). To avoid this, the binding energy (BE) scale was referenced to 

As3d5/2 assigned for bulk GaAs component at 41.1 eV when evaluating the XPS spectra of 

SAMs on GaAs (001).44,55,58 By contrast, the surface charging can be avoided in the case of 

Au substrate because of the associated conductivity of metal. The BE scale was referenced to 

Au4f7/2 at 84 eV.84  

 

3.5.2 High Resolution X-ray Photoelectron Spectroscopy (HRXPS) 

In this thesis, the HRXPS measurements were carried out in two synchrotron radiation 

centers: 1. Max-Lab in Lund, Sweden; 2. Bessy II in Berlin. The synchrotron-based HRXPS 

measurements at these two places would be introduced below:  

1. Max-Lab: The HRXPS measurements were carried out at the D1011 beamline of the 

synchrotron storage ring MAX II at MAX-Lab in Lund, Sweden, at room temperature and a 

base pressure lower than 1.5×10-9 Torr. The spectra were collected by a SCIENTA analyzer in 

normal emission geometry. The energy resolution was ~0.1 eV.  

2. Bessy II: The HRXPS measurements were carried out at the HE-SGM beamline (bending 

magnet) of the synchrotron storage ring BESSY II in Berlin, Germany, using a Scienta R3000 

spectrometer. The energy resolution was ~0.3 eV. 

During the HRXPS measurements in the beamtime at Max-lab (1) and Bessy II (2), the 

choice of photon energy (PE) for a particular spectrum was based on the optimization of the 

photoionization cross section for the corresponding core level and on adjustment of either 

surface or bulk sensitivity.85-87 The spectra acquisition time was selected in such a way that no 

noticeable damage by the primary X-rays occurred during the measurements.88-91  

The HRXPS spectra calibration was performed in the same way as routine XPS: The BE 

scale was referenced to As3d5/2 for the bulk GaAs component at 41.1 eV44,55,58 and to Au4f7/2 

at 84 eV84 for samples on GaAs and Au substrates, respectively.  

The decomposition of the HRXPS spectra was performed self-consistently over the entire 

data set. The spectra were fitted using Voigt peak profiles and a Shirley background. In the 

thesis work, to fit the doublets for Ga 3d, As 3d, S 2p and Se 3d emissions, we used two peaks 

with the same full width at half-maximum (fwhm), a reasonable spin-orbit splitting, and 

branching ratios of 2:1 (2p3/2/2p1/2) and 3:2 (3d5/2/3d3/2). The S.O.S. (Spin Orbital Splitting) 
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values for As 3d, Ga 3d, S 2p, Se 3d orbitals are 0.69, 0.43, 1.18, and 0.86 eV, respectively, 

these values were set according to literature data.44,55,58,81 Due to the ultimate energy 

resolution and the presence of the spectra dominated by a single doublet, we were also able to 

derive the initial setting for the respective parameters directly from the spectra taken at lower 

PE (PE ≤ 350 eV). The resulting accuracy of the binding energies and fwhm reported here is 

0.04-0.05 eV. These values are noticeably lower than the ultimate accuracy of the 

experimental setup (see, e.g., Ref 18), but mostly reflect the distribution of the resulting fit 

parameters over the spectra of different samples. 

 

3.5.3 NEXAFS spectroscopy 

Like HRXPS, the NEXAFS measurements in this thesis were carried out at two 

synchrotron radiation centers: 1. Max-Lab in Lund, Sweden; 2. Bessy II in Berlin, which are 

individually introduced as below:  

1. Max-Lab: The NEXAFS measurements were conducted at the synchrotron storage ring 

MAX II at MAX-Lab in Lund, Sweden, using the bending magnet beamline D1011 and an 

experimental station equipped with a SCIENTA SES200 electron energy analyzer and a 

partial electron yield (PEY) detector. The experiments were carried out under UHV 

conditions at a base pressure < 1.5×10-10 mbar. Spectra acquisition was carried out at the 

Carbon and Nitrogen K-edges in the PEY mode with retarding voltages of −150 V and −350 

V, respectively. Linear polarized synchrotron light with a polarization factor of ~95% was 

used. The spectra acquisition time was selected in such a way that no noticeable damage by 

the primary X-rays occurred during the measurements.88-91 

2. Bessy II: The NEXAFS spectroscopy measurements were performed at the HE-SGM 

beamline of the synchrotron storage ring BESSY II in Berlin, Germany, using a specially 

designed experimental station.92 During analysis the samples remained at room temperature 

with a base pressure < 1.5×10-9 mbar. Spectra acquisition was carried out at the Carbon K-

edge and Fluorine K-edge in the PEY mode with a retarding voltage of −150 V and −350 V, 

respectively. Linear polarized synchrotron light with a polarization factor of ~91% was used. 

The energy resolution was ~0.30 eV at the C K-edge and ~0.60.7eV at the F K-edge. The 

spectra acquisition time was selected in such a way that no noticeable damage by the primary 

X-rays occurred during the measurements.88-91 

For the NEXAFS measurements at both Max-lab and Bessy II, the incidence angle of the 

light was varied from 90° (normal incidence geometry; E-vector in surface plane) to 20° 

(grazing incidence geometry, E-vector near surface normal) in steps of 10-20° to monitor the 
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orientational order within the molecular films, the approach is based on the linear dichroism 

in X-ray absorption.72 The raw NEXAFS spectra were normalized to the incident photon flux 

by division through a spectrum of a clean, freshly sputtered GaAs sample. Before the 

normalization, a spectrum of freshly etched GaAs was subtracted from the raw spectrum of 

the varieties of SAMs on GaAs. The energy scale was referenced to the pronounced 1
* 

resonance of highly oriented pyrolytic graphite at 285.38 eV.93   

The decomposition of the NEXAFS spectra in the full dataset was performed with the 

WinXAS (version 3.2) software.  

 

3.5.4 InfraRed (IR) spectroscopy  

 

3.5.4.1 IR Measurement 

IR measurements were performed with a dry-air-purged Thermo FTIR spectrometer model 

NICOLET 6700 equipped with a liquid-nitrogen-cooled mercury cadmium telluride 

semiconductor detector. The spectra of the neat substances were measured employing a 

diamond attenuated total reflection (ATR) unit. For each substance, 64 scans were averaged. 

The spectra of the SAMs were recorded using p-polarized light directed at an angle of 80° 

with respect to the sample surface normal and are reported in absorbance units, A= logR/R0, 

where R is the reflectivity of the substrate with the monolayer and R0 is the reflectivity of the 

reference. A gold substrate covered with a perdeuterated dodecanethiolate SAM was used as 

reference for SAMs on Au substrate, whereas the freshly etched GaAs substrate was used as 

reference for SAMs on GaAs (001) surface. For every SAM, at least 1000 scans were 

averaged. A smooth baseline correction was applied to the IRRAS spectra. All spectra were 

measured at a resolution of 4 cm-1.  

3.5.4.2 Density functional theory (DFT) calculation 

In chapter 6, DFT calculation was used to better analyze the IR dataset for PFAT SAMs on 

Au, the assignment of the vibrational bands and the estimation of the orientation of their 

transition dipole moments (TDMs) were conducted with the help of DFT calculations of the 

isolated PFAT molecules at BP86/svp level employing Gaussian 09.94 The combination of the 

BP86 density functional95,96 and the svp97 basis set usually yields suitable vibrational spectra, 

combined with a relatively low consumption of computing time.  

Linear PFAT molecules with all trans (zig-zag) CH2-chains and CF2-helices with 168° 

dihedral angles between the C-atoms (equivalent to 15/7 conformation) were used as input 

structures, since the PFAT molecules in the SAM were expected to exhibit this or a similar 
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conformation. After geometry optimization, vibrational frequencies were calculated using the 

Hessian matrix (as implemented in the Gaussian program package). Upon geometry 

optimization, the dihedral angles in the CF2 helices became slightly smaller (ca. 162°). This 

small difference is probably due to the fact that single molecules were calculated, whereas 

168° is the dihedral angle of the stable helix in an assembly of many molecules in a solid 

polymer for a certain temperature range. A change in the dihedral angle can also be due to the 

overestimation of dispersion interactions, a well known problem of DFT. It should also be 

noted that because of their free electron pairs, F atoms turn out to be significantly more 

difficult to treat with quantum chemical methods than H atoms. Note that for all three PFAT 

molecules the calculated dihedral angles were almost identical. 

 

3.5.5 Ellipsometry  

The ellipsometry measurements were performed with an M-44 spectroscopic ellipsometer 

(J.A. Woollam Co. Inc., USA) at a fixed light incidence angle of ∼75° under ambient 

conditions. Thickness calculations were performed using a single-layer Cauchy model with a 

refractive index of 1.5. 

 

3.5.6 Contact angle measurement 

The advancing and static contact angles of Millipore water were measured on freshly 

prepared samples with a Krüss goniometer Model G1. The measurements were performed 

under ambient conditions with the needle tip in contact with the drop. The drop volume was 

about 2 L. At least three measurements at different locations on each sample were made. 

The averaged values are reported. Deviations from the average were less than 2°.  

 

3.5.7 Atomic Force Microscope (AFM) 

In the thesis, AFM results were only used to check the surface roughness of GaAs substrate 

before and after etching. Contacting mode AFM was performed with a SOLVER NEXT 

scanning probe microscope, using commercially available etched n-doped Si cantilevers with 

a  force constant of 0.1~0.5 N/m. The roughness values (rms) were obtained from height 

images using the Gwyddion software (version 2.31).  
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Chapter 4: SAMs of Non-Substituted Alkanethiols on GaAs (001) 

 

Based on the literature results,33,34,45 ODT SAM on GaAs (001) can serve as a starting 

reference model for more complex systems. However, as introduced in chapter 1, highly 

oriented and closely packed ODT SAM can only be formed under rigorous experimental 

conditions. Therefore, the first aim in this thesis was to prove that the quality of the prepared 

ODT SAM was comparable to the best reported one.  

Beyond ODT monolayer, two other NSAT monolayers with shorter chain length, namely 

HDT and DDT SAMs, were characterized. Through comparing the structure of these NSAT 

SAMs with different lengths, a pronounced “chain length effect” existing for all SAM 

systems on GaAs was elucidated.  

4.1 ODT SAM  

4.1.1 HRXPS  

The As 3d and Ga 3d HRXPS spectra of ODT SAM and etched GaAs (freshly etched 

GaAs was preserved in Ar filled container until the beam measurement) acquired at a photon 

energy (PE) of 580 eV are shown in Figure 4.1. Here, the normalized spectra are compared 

without fitting process due to the resolution limit at this PE level. As clearly seen in Figure 

4.1, the oxide-related features in the spectra of etched GaAs, viz. the spectra portion above 43 

eV and the shoulder like feature at ~20.4 eV 

in As 3d (Fig 4.1a) and Ga 3d (Fig 4.1b) 

spectra, respectively, are not perceptible in 

those of ODT SAM. Note the Ga3d spectra 

of ODT SAM (Figure 4.1b) looks 

symmetric, without showing the shoulder 

typical for GaxOy components. In reality, it is 

an easy, fast, and reasonable way to monitor 

the oxidation feature in the Ga 3d spectra by 

the spectral symmetry, in particular for the 

spectra taken at higher PE. This evaluation 

method is summarized after the analysis of 

 

Figure 4.1: As 3d (a) and Ga 3d (b) HRXPS spectra of ODT 
SAM on GaAs (001) and the etched GaAs. The spectra were 
acquired at a photon energy of 580 eV. The oxide related 
features in the As 3d (>43 eV) and Ga 3d (shoulder like 
feature at ~20.4 eV) HRXPS spectra of the etched GaAs are 
marked (see text for detail).  
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the synchrotron-based HRXPS and lab XPS spectra for varieties of samples on GaAs, as well 

as after the evaluation of the analogous spectra data in previous literatures.44,55,58  

To get the detailed component 

information at the ODT SAM-GaAs 

interface, the corresponding As 3d and Ga 

3d HRXPS spectra taken at lower PEs are 

required. Figure 4.2 illustrates these spectra, 

which were acquired at PEs of 300 eV and 

130 eV, while the latter PE is chosen to 

achieve the maximum surface sensitivity, 

corresponding to the smallest sample depth. 

(the electron mean free path reaches its 

minimum value at kinetic energies of 50-100 

eV)98,99 The derived parameters and the 

assignments of individual peaks are 

presented in Table 4.1. As seen in Figure 

4.2, both the As 3d and Ga 3d spectra are 

dominated by the peaks related to the 

stoichiometric GaAs (light gray), 

accompanying some contributions from 

other components, like surface Ga 3d states 

(possibly also some Ga2O3 coexisting) and 

elemental As. The spectra weight for the peaks related to the elemental As or surface Ga 3d 

states increases with decreasing the PE from 300 eV to 130 eV, this suggests these 

components are located at the near surface region, i.e. at the SAM-GaAs interface. In 

addition, a black doublet assigned to As-S species is observed at 42.3 ± 0.05 eV. As expected, 

the intensity of this doublet increases with decreasing sampling depth, as follows from the 

comparison of the spectra taken at PEs of 300 and 130 eV. In contrast to the As3d spectra, the 

decomposition of the Ga 3d spectra does not require an introduction of an additional (with 

respect to the bare substrate) doublet related to the Ga-S species. Nevertheless, the existence 

of such doublet, even though very weak, cannot be completely excluded, due to an ambiguity 

of the spectra fitting in the relevant BE region.  

 

Figure 4.2: As 3d and Ga 3d HRXPS spectra of ODT SAM on 
GaAs (001). The spectra were acquired at photon energies of 
130 eV (a and b) and 300 eV (c and d). The spectra are 
tentatively decomposed in several doublets related to 
individual chemical species. As 3d spectra: Light gray: 
stoichiometric GaAs; dark gray: elementary As; black: S-As. Ga 
3d spectra: Light gray: stoichiometric GaAs; dark gray: Ga 
oxide or surface Ga 3d component. The shoulders at the 
higher binding energy side of the shadowed doublets 
correspond to As and Ga oxides. The assignments were 
performed in accordance with refs 44, 55, 58, 59.  
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Table 4.1: Parameters of Individual Emissions in the Ga 3d and As 3d 

Spectra in Figures 4.2
a  

core 

level  
binding 

energy (eV)  
assignment  spin-orbit  

splitting (eV)  
branching  

ratio  

Ga 3d
5/2 

 19.2 ± 0.05  GaAs  0.43  3/2  

 19.5 ± 0.1 Ga
2
O

3
 or surface 

Ga3d component  
  

 >19.8 Ga oxides    

As 3d
5/2
 41  GaAs  0.69  3/2 

 41.85 ± 0.05  elementary As (As
0
)    

 42.3 ± 0.05  As-S    

 >43 As oxides    

 a The parameters were derived from a self-consistent fitting procedure. The errors 

reflect the scattering of the fitting parameters between the spectra for different PEs. The 

assignments were performed in accordance with refs
44,55,58

.  
 

Weak contributions from oxidation were observed in the As3d (AsxOy) and Ga3d (GaxOy) 

spectra, in particular those taken at the PE of 130eV; this agrees with the analogous HRXPS 

results in previous paper, in which ODT film on GaAs performs the best quality.44 The 

observed weak oxide-related features in these spectra are considered as one reflection of high 

quality ODT SAM on GaAs (001) surface, since highly ordered and densely packed SAM can 

passivate the GaAs substrate and simultaneously protect it from oxidation.44,55,58 Note it is a 

reliable method to evaluate the film quality for SAMs on GaAs surface by monitoring the 

proportion of oxidation features in the respective As 3d and Ga 3d HRXPS spectra; this 

method will also be applied throughout this thesis. 

Herein, it is necessary for us to trace the oxidation of GaAs surface: the pristine GaAs 

substrate is commonly covered with an oxidation layer (even though the wafer is preserved in 

Ar filled plastic package), which can be mostly removed during the etching step. The residual 

oxides can also be further exchanged through a “self-cleaning” process, which can be 

understood that the “O” atoms are replaced by the “S” atoms.34 Keeping these in mind, the 

still existing oxidation constituents after SAM formation mainly come from three sources: (1) 

native oxides which can not be removed both in the etching and exchange (self-cleaning) 

steps; (2) residual oxides (after etching) which are not replaced in the exchange step; (3) post 

oxidation after the monolayer formation. Thus, the observed weak oxidation feature of ODT 
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SAM in Figure 4.2 is attributed to two effects: on one hand, the ODT molecules clean the 

residual oxides after etching effectively; on the other hand, the well ordered and densely 

packed ODT film passivates the GaAs surface and protects it from oxidation. Here, the final 

extent of oxidation is predominantly determined by the latter effect, since the protection can 

only work to a certain extent, and a partial penetration of airborne oxidative species (O2, H2O) 

was in principle possible, in particular taking into account that the samples were preserved for 

several days before the HRXPS measurements.  

The binding information of the ODT molecules to GaAs substrate is provided in the S 2p 

HRXPS spectra, as presented in Figure 4.3 (a), along with the O 1s (b) and C 1s (c) 

comparison spectra of ODT SAM and etched GaAs substrate. In the S 2p spectra, only a 

single doublet at a characteristic BE position of ~162.5 eV (S 2p3/2) is observed, with no 

traces of unbound, disulfide or oxidized species. This BE value coincides with the analogous 

ones observed previously for both aliphatic and aromatic SAMs on GaAs (001),44,55,56,58,59 

which indicates ODT molecules bond to GaAs substrate through the conventional thiolate 

bond. Note the value of 162.5 eV is noticeably higher than that for the thiol-derived SAMs on 

noble metal substrates (162.0 eV),7,100-102 presumably related to the screening of the 

photoemission hole by the substrate electrons in the case of metal. The fwhm of the doublet is 

0.97 eV, this value is close to the reported one (~1.1 eV) in the previous study,44 but is much 

larger than the analogous values for the alkanethiolate SAMs on noble metal substrates (0.55-

0.6 eV),100 suggesting the higher inhomogeneity of the adsorption site geometry and exact 

bonding conditions at the SAM-GaAs interface.  

 

 

Figure 4.3: S 2p (a), O 1s (b) and C 1s (c) HRXPS spectra of ODT SAM on GaAs(001). In (b) and 
(c), the respective spectra of etched bare GaAs are also shown for comparison.  
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The O1s HRXPS spectra of ODT/GaAs exhibits no signal as compared to the etched 

GaAs, which coincides with the nearly oxidation free feature in the respective As 3d and Ga 

3d spectra (Figure 4.1) acquired at the same photon energy (580 eV). In addition, formation of 

contamination-free ODT SAM is further supported by its C 1s spectra, which exhibits a single 

pronounced peak at a BE position of 285 eV, with no trace of oxidized carbon species, usually 

correlated to the contamination, being detected. Note this BE value is nearly the same with the 

analogous one for ODT/Au SAM (284.95 eV).103  

4.1.2 NEXAFS spectroscopy 

Carbon K-edge NEXAFS spectra of ODT/GaAs 

SAM acquired at X-ray incident angles of 90°, 55°, and 

20° are presented in Figure 4.4, along with the 

difference between the 90° and 20° spectra. The spectra 

exhibit a C1s absorption edge related to C1s  

continuum excitations and all characteristic absorption 

resonances of extended alkyl chains in an all trans 

conformation, namely a sharp resonance at ~287.8 eV 

and two broader resonances at ~293.4 eV and ~301.6 

eV. The former resonance, denoted as R*, is attributed to 

mixed valence Rydberg states72,104 with a dominance of 

Rydberg states,105,106 while the two latter resonances are 

commonly related to valence, antibonding C-C * and 

C-C´ * orbitals.72,107 The molecular orbitals related to 

the R* resonance are oriented perpendicular to the alkyl 

chains,11,107,108 whereas the transition dipole moments 

(TDMs) of the orbitals corresponding to the C-C * and 

C-C´ * resonances are directed along the chain axis.108 Thus, the orientations of these 

orbitals unequivocally determine the orientation of the alkyl chain in the ODT SAM.  

The spectra exhibit pronounced dependence of the absorption resonance intensity on the 

incidence angle of X-ray, suggesting high orientation order of the ODT molecules on GaAs 

(001) substrate. Taking into account of the directions of the TDM of the R*, C-C * and C-C´ 

* orbitals, the positive peak at the position of R* resonance and the negative peaks at the 

positions of C-C * and C-C´ * resonances in the difference spectra indicate an upright 

orientation of the alkyl chains.  

 

Figure 4.4: C K-edge NEXAFS spectra of 
ODT/GaAs SAM acquired at X-ray incidence 
angles of 90°, 55°, and 20°, along with the 
difference spectra. The spectra are 
normalized to the height of the absorption 
edge. The characteristic absorption 
resonances are marked.  
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To determine the specific value of the average chain orientation in ODT SAM, a 

quantitative analysis was performed by measuring the intensity of the R* resonance as a 

function of the X-ray incidence angle, . The resulting dependence was then evaluated 

according to theoretical expressions (for a plane-type orbital):72 

           (4−1) 

where A is a constant, P is a polarization factor of the X-

rays, and  is the angle between the sample normal and the 

normal of the molecular orbital plane, namely the tilt 

angle of the alkyl chain axis. Instead of absolute intensity 

values, the intensity ratios were analyzed, for example, in 

the ratio of I()/I(20°), I() and I(20°) are the intensities of 

the R* resonance at X-ray incidence angles of  and 20°. 

Figure 4.5 shows the angular dependencies of intensity 

ratios for the R* resonance for ODT SAM, along with the 

theoretical fits marked by the red solid line. The results 

yield average tilt angles of 14.6°, 16.8° and 16.8° when 

using the intensity ratio of I()/I(20°), I()/I(55°) and 

I()/I(90°), respectively. Considering the standard error (± 

3 − 5°) from the NEXAFS measurement and data 

evaluation procedure, these values agree with each other 

and coincide with the value (14.9°) reported by D. L. 

Allara et al..34  

In addition to the above standard evaluation procedure for R* resonance, the NEXAFS data 

was also processed using difference spectra upon subtracting two NEXAFS spectra recorded 

at X-ray incidence angles  and 55°. For the vector type C-C * orbital, one obtains:72  

𝐼𝑣(𝜃) − 𝐼𝑣(55°) = 𝐶𝑣(1 − 3
2⁄ 𝑠𝑖𝑛2 𝛼)(cos2 𝜃 − cos2 55°)                 (4−2) 

  )cos1()1()1cos3()1cos3(1),( 2

2
122

4
1

3
2   PPAI

 

Figure 4.5: The angular dependence of the 
intensity ratios I()/I(20°), I()/I(55°), 
and I()/I(90°) for the R* resonance for 
ODT/GaAs SAM (black filled squares), 
along with the best theoretical fits (red 
solid lines). The derived values of the 
average tilt angles are given.  
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I() and I(55°) are the resonance intensities at X-

ray angles of  and 55°,  is the angle between the 

sample normal and the TDM of the vector orbital, 

and hence the tilt of the molecular chain. C in the 

formula (4−2) is the normalization constant, 

depending on the cross section of the excitation 

from the C 1s core level into specific molecular 

orbital. Plots of the intensity difference of the C-C 

resonance, i.e. “I() − I(55°)”, versus the 

parameter of (cos2  cos255°) show highly linear 

dependencies for ODT/GaAs and HDT/Au SAMs, 

as illustrated in Figure 4.6. The respective slope 

value “C(1-3/2sin2)”, which is function of the 

molecular orbital tilt angles “”, can be obtained 

after the linear fitting. Assuming 30° as the 

average tilt angle of the alkyl chain in the HDT/Au 

SAM, namely the tilt of C-C molecular 

orbital,11,34,107,108 we calculate the constant C for 

ODT/GaAs SAM, and obtain a value of 19° for the 

average tilt angle. Note here the slightly different 

value as compared to the previously reported one 

(~15°)34 is presumably related to the non-absolute 

chain tilt (~27 − 35°) for the reference (HDT/Au) 

SAM.7,10,109  

4.1.3 IRRAS 

Figure 4.7 illustrates the IRRAS spectra of 

ODT SAM on GaAs (001), in which the 

characteristic bands, assigning to different C-H 

stretching modes, are marked: 2850 cm-1 for 

symmetric methylene (−CH2−) stretching; 2917 cm-1 for asymmetric methylene (−CH2−) 

stretching; 2877 cm-1 for symmetric methyl (−CH3) stretching; and 2967 cm-1 for asymmetric 

methyl (−CH3) stretching. The presence of both positive and negative absorbance features in 

the reflection spectra results from well-known effects involving strong perturbations of the 

 

Figure 4.6: Plots of the intensities of the C-C  
difference peaks for HDT/Au (filled circles) and 
ODT/GaAs (filled squares) SAMs versus cos2-cos2 
(55°) along with the respective linear fits (solid and 
dashed lines, respectively) using least-squares 
analysis. The derived average alkyl chain tilt angles 
are given at the respective fits. The data for HDT/Au 
are given for comparison. See text for details.  
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Figure 4.7: IR reflection spectra (80° angle of 
incidence) of the C-H stretching region for an ODT 
monolayer on GaAs (001). The characteristic bands 
are marked. Note no baseline correction and smooth 
operation are done on this spectra.  
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electric fields by the real part of the optical functions of the film in the case of dielectric 

substrates.34,110 The first two distinct bands for −CH2− stretching modes locate at the same 

frequencies with those for ODT/Au SAM (2850 cm-1 and 2917 cm-1),7 and in particular, these 

two frequency values indicate the planar all trans conformation of the alkyl chain with a high 

degree of order.10,109 Apart from this conformation, the twist angle, defined by the rotation of 

the plane containing the all trans carbon backbone with respect to the plane spanned by the 

chain axis and the surface normal, can be calculated from the intensity ratio of the asymmetric 

and symmetric modes following the RATIO method by Debe.111 The resulting value of the 

twist angle is ~42°, which agrees quite well with the reported one (~43°).34  

4.1.4 Ellipsometry: monolayer thickness 

The NSAT SAMs (CnH2n+1SH) on GaAs (001) have been studied systematically by Single 

Wavelength Ellipsometry in the previous study by D. L. Allara et al.,45 both 3-layer-model 

(air/SAM/GaAs) and 4-layer-model (air/hydrocarbon/S-GaAs interface/GaAs) have been used 

during measurements. In this thesis, to determine the thickness of ODT SAM, ellipsometry 

measurement was carried out using a isotropic 3-layer-model with the refractive index of 1.50 

for the alkanethiolate moiety; a value of 21.5 Å was obtained, which agrees with the reported 

value (21 ± 2 Å).34,45  

4.1.5 Contact angle: monolayer wetting property 

The advancing (a) and static (s) contact angles were measured using a sessile drop mode, 

the results are 108° and 105° for a and s, respectively. As a reference, the respective contact 

angles of ODT/Au SAM were also measured, and the same results (108° and 105°) were 

obtained.  

In addition, the advancing and static contact angles of the NSAT SAMs with different 

chain length on GaAs (001) were measured, and the results are summarized in Table 4.2. 

Firstly, this set of data indicates the hydrophobic character of these NSAT monolayers on 

GaAs, similar behavior was also observed for NSAT SAMs on metal substrate.7 In addition to 

the general hydrophobic property, the decreasing contact angles (both a and s) with 

decreasing chain length also suggest the decaying film quality at going from ODT to DDT 

SAM.  
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Table 4.2: Advancing and Static Contact 

Angles of NSAT SAMs on GaAs (001) 

 a  s  

ODT  108°  105°  

HDT  106°  102°  

DDT  100°  97°  

 

4.2 HDT SAM: comparable film quality with ODT SAM 

The As 3d and Ga 3d HRXPS spectra of 

HDT SAM on GaAs (001) acquired at PEs 

of 580 eV and 300 eV are shown in Figure 

4.8. As expected, low intensities of oxide-

related signatures are observed in both As 3d 

and Ga 3d spectra, in particular those 

acquired at lower PE of 300 eV, 

corresponding to the smaller sample depth; 

this suggests the formation of high quality 

HDT SAM on GaAs (001) substrate. The 

spectra proportion for the oxides components 

in both As3d and Ga3d spectra (shoulders at 

higher BE side) is comparable to that in the 

case of ODT SAM (Figure 4.2), suggesting 

similar film quality of these two SAMs. In 

addition, similar like ODT SAM, a black 

doublet at ~42.4 eV, which is assigned to 

As-S species, is observed in the As 3d 

spectra of HDT monolayer, suggesting the 

As-S bond still as the predominant bonding 

fashion at the HDT-GaAs interface.  

 

 

Figure 4.8: As 3d and Ga 3d HRXPS spectra of HDT SAM on 
GaAs(001). The spectra were acquired at photon energies of 
300 eV (a and b) and 580 eV (c and d). The spectra are 
tentatively decomposed in several doublets related to 
individual chemical species. As 3d spectra: Light gray: 
stoichiometric GaAs; dark gray: elementary As; black: S-As. Ga 
3d spectra: Light gray: stoichiometric GaAs; dark gray: Ga 
oxide or surface Ga 3d component. The shoulders at the 
higher binding energy side of the shadowed doublets 
correspond to As and Ga oxides. The assignments were 
performed in accordance with refs 44, 55, 58, 59.  
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The S 2p, O 1s, and C1s HRXPS spectra of HDT SAM are presented in Figure 4.9. The 

characters of these spectra have already been demonstrated in the study of ODT SAM (Figure 

4.3). After comparing the respective spectra of HDT (Figure 4.9) and ODT (Figure 4.3) 

SAMs, it is found the spectral shape as well as the corresponding peak position are similar in 

both cases; this indicates: like ODT molecules, HDT molecules also form contamination free 

and densely packed SAM on GaAs (001) substrate. Note however, in the S 2p spectra (Figure 

4.9a), a narrower S2p3/2 (or S2p1/2) peak is observed for HDT SAM (fwhm of 0.88eV versus 

1eV), suggesting its more homogeneous bonding sites at the corresponding (HDT)SAM-GaAs 

interface.  

 

The Carbon K-edge NEXAFS spectra of HDT/GaAs SAM acquired different X-ray 

incidence angles are shown in Figure 4.10, along with the difference spectra between 90° and 

20° incidences. Those spectra behave similarly like those of ODT/GaAs SAM, such as the 

characteristic adsorption resonances of R*, C-C *, and C-C´ *, as well as their respective 

linear dichroism. Using the same, standard evaluation method mentioned above for ODT 

SAM, the orientation of the chain axis for HDT SAM was also obtained; the resulted value of 

the average tilt angle (18°) is quite close to that (17°) for ODT SAM.  

 

 
 
 
 

 
Figure 4.9: S 2p (a), O 1s (b) and C 1s (c) HRXPS spectra of HDT SAM on 
GaAs(001). The S 2p and C 1s spectra were fitted by a single doublet with 
branching ratio of 2:1 and a single peak, respectively.  

 
Figure 4.10: C K-edge NEXAFS spectra of 
HDT/GaAs SAM acquired at X-ray 
incidence angles of 90°, 55°, and 20°, 
along with the respective difference 
spectra. The characteristic absorption 
resonances are marked.  
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4.3 DDT SAM  

4.3.1 Film quality of DDT SAM 

The good quality of DDT SAM is mainly revealed in its As3d and Ga3d XPS spectra, as 

shown in Figure 4.11. (Here, the factor of etching time during DDT sample preparation is 

considered in these spectra, and will be discussed later) These spectra exhibit weak oxide 

related signatures, viz. there is little spectra portion above the BE region of 43eV in the As3d 

spectra while the Ga3d spectra look symmetric showing quite weak shoulder-like feature at 

~20.4 eV. However, compared with HDT and ODT monolayers, the coverage of DDT 

monolayer is much lower, which is supported by the C1s XPS spectra of these NSAT SAMs 

in Figure 4.12: the intensity of the C1s emission is much too low in the case of DDT SAM 

even after the consideration of its shorter chain length. In addition, the lower quality of DDT 

SAM is also supported by the corresponding lower contact angle values, as presented in Table 

4.2. 

 

The observed lower quality of DDT monolayer is due to the associated shorter chain length 

as compared to HDT and ODT monolayers, and this has been discussed in the previous 

study.45 However, it is necessary for us to confirm this important finding and to rule out other 

effect such as the improper preparation procedure. For this purpose, varieties of procedures 

for preparing DDT samples were tried to check if the quality can be enhanced to a higher 

level. The optimized parameters during sample preparation include the etching time, 

incubation time, and ammonia amount, and they would be demonstrated as follows: 

 
Figure 4.11: As 3d and Ga 3d XPS spectra of DDT SAMs on 
GaAs(001) prepared with etching time of 1 (bottom) and 5 
minutes (top). All spectra were taken with a 0° (normal) 
photoelectron take-off angle. The oxide-related features are 
marked in the respective spectra.   

Figure 4.12: C 1s XPS spectra of ODT, HDT 
and DDT SAMs on GaAs(001). The respective 
spectra for ODT and HDT SAMs were fitted 
by a single peak, and the corresponding 
fwhm values are given.  
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4.3.2 Optimizing preparation procedure for DDT SAM 

The As 3d and Ga 3d XPS spectra of DDT SAM prepared with the etching time of 1 and 5 

minutes are presented in Figure 4.11. There is nearly no difference between the respective 

As3d (or Ga3d) spectra for different etching time; they both exhibit weak oxidation related 

features, which implies that 1 minute etching is enough for the oxides layer removal, and the 

formation of DDT monolayer afterwards. In addition, the coverage is similar for DDT 

monolayers prepared with different etching time, which is supported by the similar intensities 

of the C 1s emission (not shown) as well as the emissions (As3d and Ga3d) from GaAs 

substrate. In reality, the wet etching, which induces microroughness to the GaAs surface,112,113 

is assumed to be aggressive to the GaAs substrate, hence the etching time of 1 minute is used 

for preparing NSAT SAMs in this thesis work.  

 

The C 1s spectra of DDT SAMs prepared with the incubation time of 24 and 48 hours are 

shown in Figure 4.13, along with the spectra of etched GaAs substrate. The C 1s spectra of 

DDT SAMs exhibit a peak at ~284.3 − 284.4 eV, which is assigned to the hydrocarbon 

backbone. This peak is interfered to some extent by one emission at ~281.5 eV from the Ga 

LMM Auger line, while this interference emission is not detected in the case of HDT or ODT 

monolayer because it is covered by the intense C 1s peak. As seen, the C1s peak intensity is 

 
Figure 4.13: C 1s XPS spectra of DDT SAMs on 
GaAs(001) prepared under incubation time of 24 
hours (top) and 48 hours (middle), along with the 
respective spectra for freshly etched bare GaAs 
(bottom) for comparison. All spectra were taken 
with a 0° (normal) photoelectron take-off angle. The 
interference emission from Ga LMM auger line is 
marked by the short dash line.  

 

 
Figure 4.14: C 1s XPS spectra of DDT SAMs on 
GaAs(001) prepared with different ammonia 
concentration in the target solutions. All spectra 
were taken with a 0° (normal) photoelectron take-
off angle.  
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the highest for the DDT monolayer incubated for 24 hours. When taking into account of the 

similar intensities of the As3d (or Ga3d) emissions (not shown), the DDT monolayer with 

better quality is obtained with the incubation time of 24 hours.  

In addition to the factors of etching and incubation time, the amount of ammonium 

hydroxide is also an important factor affecting the quality of NSAT SAMs on GaAs.114 To 

monitor the effect of this factor, the DDT samples were prepared in the target solution with 

different concentration of the ammonia hydroxide, ranging from 10 mM to 100 mM. The C 1s 

spectra of these DDT samples are compared in Figure 4.14, while they exhibit nearly no 

intensity difference. Since the intensities of the substrate (As3d or Ga3d) emissions are also 

similar for these samples, it can be concluded that the coverage (also film quality) of the DDT 

SAM can not be enhanced significantly by optimizing this factor. Considering the aggression 

character of ammonium hydroxide to the GaAs substrate, its concentration is set at 10 mM for 

preparing NSAT SAMs in this thesis.  

Consequently, in section 4.3, DDT SAM with good quality can be obtained, and thus be 

able to protect the GaAs surface from oxidation. Nevertheless, this quality is lower as 

compared to that for HDT and ODT SAMs, which is related to the intrinsic property of DDT 

precursor, namely its shorter chain length. In addition, the quality of DDT monolayer can not 

be enhanced to a comparable level for ODT and HDT SAMs through optimizing the 

parameters based on the “standard” procedure34. The optimum procedure for preparing DDT 

SAM is: (1) etching time of 1 minute; (2) incubation time of 24 hours; (3) ammonia 

concentration of 10 mM.  

 

4.4 Discussion 

4.4.1 As-S bonding 

As follows from the S 2p HRXPS spectra in Figure 4.3a and 4.9a, ODT and HDT 

molecules bond strongly to the bare GaAs (001) substrate through thiolate bond, the type of 

bonding commonly observed in alkanethiolate SAMs on metals.7,100 The As3d HRXPS 

spectra reveals As-S bond as the predominant bonding mode, which agrees with previous 

studies for both aliphatic and aromatic SAMs on GaAs.44,55,58 However, here we do not 

exclude the Ga-S bond, since existence of such bond is detected in the ToF-SIMS 

measurement of ODT SAM on GaAs (001);44,48,49 and in particular highly ordered and 

densely packed ODT SAMs can be formed on GaAs (111A) surfaces, which are terminated 
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exclusively by Ga atoms.33 In reality, the Ga-S bond is expected to be more energetically 

favorable than As-S bond from the thermochemical viewpoint.115-119 This would be consistent 

with earlier work on other III-V (001) surfaces, where the thiolate species bond 

predominantly to the group III atoms:35-38 for example, only In-S bond has been observed for 

alkanethiolate SAMs on InP;35,36 and also the dominant In-S bond is found for the ODT 

SAMs on InAs surface.37,38 In the present case, however, the dominant As-S bonding mode 

for these NSAT SAMs suggests the monolayer assembly process may be driven in a 

significant part by a kinetic factor, this can be understood more by discussing the “chain 

length effect” below. 

4.4.2 Chain length dependence of the film quality 

HRXPS and NEXAFS results demonstrate that ODT and HDT SAMs exhibit similar 

packing density and chain orientation, probably with a lower film order for the latter one, as 

deduced from the contact angle results in Table 4.2. By contrast, DDT SAM exhibits much 

lower quality compared with the former two films. To explain this, it is essential to 

understand one special factor in the molecular self-assembly on GaAs substrate but less 

important on Au and Ag substrates, viz. the ability of the GaAs substrate atoms to compliantly 

strain over distances of the molecular correlation lengths.33 This allows the molecular packing 

to achieve the types of structures which are only possible on a structureless substrate, but with 

much shorter range order.33 For example, ODT/GaAs(001) SAM can only form an 

incommensurate structure in a domain size of ~74 Å, which is only comparable to that for 

alkaneselenolate SAMs on Au (~60  75 Å)120 and much smaller than that for alkanethiolate 

SAMs on Au (~250 Å).45 The strain of the substrate surface atoms is primarily driven by the 

kinetic factor of “intermolecular interaction”. For these NSAT SAMs, the chain packing 

energies would be reduced by the lower number of van der Waals interactions in the shorter 

chains, so similarly, as the packing force decreases due to the decreasing chain length, the 

ability of the intermolecular interactions to force restructuring of the GaAs substrate surface 

atoms, i.e. distortion of the surface lattice, would gradually decrease, thus leading to a film 

with decaying order and lower coverage, namely lower quality.  
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Summary of chapter 4 

Highly ordered and densely packed ODT SAM has been formed on GaAs (001). ODT 

molecules bind to the substrate through thiolate bond, with predominantly bonding to As 

atoms. A full set of surface characterization techniques were applied to investigate its 

structure, and to confirm that its quality is comparable to the best reported one.34 Thus, ODT 

SAM can serve as reliable reference system for other monolayers of this study.  

In addition, two other NSAT SAMs with shorter chain length were also studied. One chain 

length effect for all SAM systems on GaAs was elucidated by discussing these NSAT SAMs: 

continuous deterioration of the film quality occurs with decreasing the chain length at going 

from ODT to DDT, which is especially pronounced in the case of DDT SAM.  
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Chapter 5: TPn and BPn SAMs on GaAs (001)  

 

The presence of a substrate-dependent binding geometry at the anchoring group and its 

energetics (bending potential) are known to be important in determining the lateral density 

and structure of self-assembled monolayers (SAMs) of thiolates and selenolates on coinage 

metal substrates. In this chapter, we show that on the technologically important GaAs (001) 

surface a bending potential exists for thiolate adlayers as well. For this, two series of 

terphenyl- (TPn, n=0  6) and biphenyl- (BPn, n=1  6) substituted ATs (Scheme 1.1) were 

used as test model systems. As introduced in chapter 1, the odd-even effects in these TPn and 

BPn SAMs were well suitable for detecting the bending potential as well as its impact to the 

structure of these films.  

 

5.1 TPn SAMs  

5.1.1 Optimization of the preparation procedure for TPn/GaAs SAMs 

In previous studies, the optimum procedure for preparing high quality aliphatic34 and 

aromatic55,58 SAMs on GaAs are different, so the procedure for preparing NSAT SAMs34 can 

not be directly transferred to the TPn/GaAs system. To determine the best procedure for these 

TPn (also TP1-CN) precursors, varieties of procedures were tried; the samples prepared under 

these procedures were evaluated mainly by the synchrotron-based results, i.e. HRXPS and 

NEXAFS spectra, as a result of their higher surface sensitivity. Compared with the “standard” 

procedure (also for NSAT SAMs) given by D. L. Allara et al.,34 our developed procedure for 

these TPn precursors has three major modifications: Firstly, the schlenk line setup was used 

instead of the glovebox; Secondly, the GaAs substrate was etched by concentrated HCl (37%) 

instead of concentrated NH3∙H2O (32%); Lastly, the samples were rinsed with a series of 

organic solvents after the monolayer formation. It is found the film quality can be improved 

significantly by these three modifications, which is supported by the HRXPS spectra, in 

particular. 
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(a) Schlenk line setup instead of glovebox: 

The rigorous control of O2 concentration for the molecular self-assembly on GaAs surface 

is essential, in particular considering the proneness of this substrate towards oxidation.34 The 

O2 concentration can be controlled below 5 ppm in the glovebox, however, the degassed 

solution together with the freshly etched GaAs transferred inside have to be exposed to 

normal atmosphere during their transportation into the glovebox; this transportation process 

would induce the oxidation of the GaAs substrate as well as the penetration of O2 molecules 

into the degassed solution. The above issue can be solved by preparing the sample in a 

schlenk line setup, which can ensure that both the etching and immersion steps were carried 

out under inert atmosphere (Ar) protection.  

 

To compare the advantage of glovebox and schlenk line setup, TPT/GaAs SAM was 

chosen as a test example because of its relatively lower quality as compared to other TPn 

(n=16) films; this can be understood that the quality of the grown TPT monolayer would 

depend more on the modifying procedure. Note it has also been reported that introduction of 

an alkane spacer chain between the thiol headgroup and aromatic moiety results in higher 

structural quality for biphenyl-substituted alkanethiol SAMs on Au as compared to the non-

substituted aromatic one.121 Since the weak oxide related features in the As 3d and Ga 3d 

HRXPS spectra can be considered as reflection of the high quality SAMs on GaAs 

substrate,44,55,58 the quality of the TPT film can be evaluated by the spectra proportion for 

these features in the respective spectra. As clearly seen in Figure 5.1, the TPT SAM prepared 

 
 

Figure 5.1: As 3d (left) and Ga 3d (right) HRXPS spectra of 
TPT SAMs on GaAs (001) prepared with the glovebox (top) 
and schlenk line (bottom) setup. The spectra were acquired at 
a photon energy of 580 eV. The oxide related features in As 3d 
(>43eV) and Ga 3d (>20eV) HRXPS spectra are marked. 

 

 
 

Figure 5.2: As 3d (left) and Ga 3d (right) HRXPS spectra of 
TPT SAMs on GaAs (001) prepared with concentrated 
NH3.H2O (top) and HCl (bottom) etching methods. The spectra 
were acquired at a photon energy of 350 eV. The oxide related 
features in As 3d (>43eV) and Ga 3d (>20eV) HRXPS spectra 
are marked. 
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with the schlenk line setup exhibits much weaker oxide related features in both As 3d (>43 

eV) and Ga 3d (>20 eV) HRXPS spectra, suggesting the advantage of this setup for the 

sample preparation of TPn precursors.  

(b) Etching with HCl (37%) instead of NH4OH (32%) 

The pristine GaAs is normally covered with an oxidation layer (even though preserved in 

Ar), which should be removed before incubating the GaAs into the target solution. The wet 

etching methods, including base and acid etching, were commonly used for removing this 

oxidation layer; the etching process happens so fast (~10 seconds), along with some 

additional surface microroughness. It has been shown the acid (HCl) etched surfaces are 

initially cleaner than the base (NH3∙H2O) treated ones since they are free of chemisorbed –

OH.112 Moreover, the acid etching also generate more excess, reactive As sites.122 In the 

previous studies for monolayer preparation on GaAs substrate, acid etching is commonly used 

for the precursors of aromatic thiols,55,58 while base etching is usually used for the precursors 

of aliphatic thiols.34 In the experiment, both these two etching methods were tested for the 

TPn/GaAs system. Here also, TPT/GaAs was selected as the test example, the As 3d and Ga 

3d HRXPS spectra of the TPT SAM with the two etching methods are shown in Figure 5.2. 

(the TPT samples are both prepared using the schlenk line setup) As clearly seen, much less 

oxide-related signatures are observed in both As 3d (>43 eV) and Ga 3d (>20 eV) spectra for 

the TPT monolayer grown on the HCl (37%) treated GaAs substrate, indicating the 

corresponding higher film quality. Thus, acid etching is chosen for the preparation of the TPn 

SAMs in this thesis.  

(c) Removal of physisorbed molecules with organic 

solvents 

As a result of the bulky size (terphenyl moiety) of 

TPn molecules, they can easily attach on the formed TPn 

SAMs; these physisorbed species can not be removed by 

the normal rinsing with ethanol solvent, and would be 

detected in the S 2p HRXPS afterwards, as shown in 

Figure 5.3, the doublet at the BE position of ~163.5 eV 

is assigned to these species. (here TP3/GaAs sample was 

selected as an typical example) To remove these 

physisorbed species, the sample should be rinsed softly 

 

Figure 5.3: S 2p HRXPS spectra of TP3 SAMs 
on GaAs (001) using different rinsing 
methods after sample incubation: ethanol 
(top) and organic solvents (bottom). 
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with series of organic solvents after incubation, in a sequence of ethanol, acetone, chloroform 

and then ethanol. Note that, the polar organic solvents of acetone and chloroform are both 

aggressive to GaAs surface or the grown monolayer, or probably both; so the rinsing should 

be performed softly. The S 2p HRXPS spectra of the TP3/GaAs sample, which is rinsed with 

different organic solvents after incubation, is also presented in Figure 5.3, with no trace of 

physisorbed molecules (~163.5 eV) being observed.  

5.1.2 Spectroscopy characterization of TPn SAMs: HRXPS 

The formation of high quality TPn (n=0 6) and TP1CN SAMs was, in particular, 

manifested by the As 3d and Ga 3d HRXPS spectra, as presented in Figure 5.4. These spectra 

can be decomposed into individual spectral components, with the parameters and assignments 

given in Table 5.1. The spectra are dominated by the signals from stoichiometric GaAs (light 

gray doublets), which are accompanied by much weaker contributions from elementary As 

(dark gray doublets in As 3d spectra) and surface states (dark gray doublets in Ga 3d spectra). 

In addition, a black doublet assigned to AsS could be traced at ~42.3 eV (As 3d5/2) in the As 

3d spectra, which means that the TPn molecules are preferably bonded to the As atoms. Note 

that even though the conclusion regarding the dominance of AsS bond agrees well with 

previous studies,44,55,58 bonding to the Ga atoms cannot be completely excluded.44,48,49  

Along with the above characteristic features, there are weak signals related to oxides 

(AsxOy and GaxOy) at ~44.3 eV and ~20.7 eV, respectively. In spite of all efforts, we have not 

succeeded in eliminating the oxides completely. They could be residuals from the etching 

procedure and self-cleaning process44 during the SAM formation but most likely appeared as 

a result of post-oxidation, during the transport and handling of the samples. Even though the 

GaAs surface was protected by the SAMs, this protection worked presumably to a certain 

extent only, so that a partial penetration of airborne oxidative species (O2, H2O) was in 

principle possible. The small extent of oxidation suggests, however, dense molecular packing 

in the SAMs.55,58  

In addition to the general weak oxidation signatures of these TPn SAMs, the spectral 

portion related to the oxide-related species exhibits an odd-even variation: this proportion is 

higher for the TPn (n=0 6) SAMs with an even (n) number of methylene units in the 

aliphatic linker, with only an exception of TP6. The larger extent of oxidation in the 

respective As3d and Ga3d spectra suggests the corresponding, less dense TPn films (even n) 

on the GaAs surface.  
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Table 5.1: Parameters of Individual Emissions in the Ga 3d and As 3d Spectra in 

Figures 5.4
a  

core 

level  
binding 

energy (eV)  
assinment  fwhm (eV) spin-orbit  

splitting (eV)  
branching  

ratio  

Ga 3d
5/2 

 19.21 ± 0.02  GaAs  0.50 ± 0.02  0.43  3/2  

 19.8 ± 0.1 Ga
2
O

3
 or surface 

Ga3d component  
   

 >19.8 Ga oxides     

As 3d
5/2
 41.1  GaAs  0.61 ± 0.02  0.69  3/2 

 41.77 ± 0.05  elementary As     

 42.29 ± 0.05  As-S     

 >43 As oxides     

 a The parameters were derived from a self-consistent fitting procedure. The errors reflect the 

scattering of the fitting parameters between the spectra for different samples and different PEs. 

The assignments were performed in accordance with refs
44, 55, 58

  

 

Figure 5.4: As 3d (a) and Ga 3d (b) HRXPS spectra of TPn (n = 0 - 6) and TP1-CN SAMs on GaAs(001). The spectra were acquired 
at a photon energy of 580 eV. The spectra are decomposed in several doublets related to individual chemical species: (a) As 3d 
spectra: Light gray: stoichiometric GaAs; dark gray: elementary As; black: S-As. (b) Ga 3d spectra: Light gray: stoichiometric 
GaAs; dark gray: Ga oxide or surface Ga 3d component. The shoulders at the higher binding energy side of the shadowed 
doublets correspond to As (a) and Ga (b) oxides. The assignments were performed in accordance with refs 44, 55, 58.  
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Formation of contamination-free and densely packed TPn (n=0 6) and TP1-CN SAMs 

were further supported by the S 2p and C 1s HRXPS spectra, as shown in Figure 5.5a and b, 

respectively. All the S 2p spectra exhibit a single S 2p3/2,1/2 doublet at the position of ~162.4 ± 

0.1 eV, which is commonly assigned to the thiolate-type sulfur bonded to the GaAs surfaces; 

and no traces of unbound, disulfide, or oxidized species are observed in the spectra. The BE 

values coincide with the analogous ones for both aliphatic44 and aromatic55,56,58 SAMs on 

GaAs. In addition, the fwhm values of the S 2p3/2 and S 2p1/2 peaks for these TPn SAMs 

(~0.77 ± 0.03 eV) is lower than that (~1 eV) for ODT/GaAs SAM, suggesting the more 

homogenous binding site geometry for these TPn films, since the fwhm value is a fingerprint 

of the homogeneity of the adsorption sites for the sulfur head groups. 

The C 1s spectra for TPn/GaAs (n=16) SAMs show a main emission peak at BE positions 

of 284.3 284.4 eV (284.6 eV for TPT/GaAs) assigned to the terphenyl backbone, and a 

shoulder at ~0.6 eV higher BE, while no trace of contamination could be detected, so that its 

content is considered as very low. Note that the shoulder has been observed previously for 

different aromatic SAMs76 and TPn SAMs in particular21,22. It is alternatively assigned to the 

carbon atom bonded to the sulfur headgroup or to shake-up process. As the probing depth of 

HRXPS is rather small at the given photon energy, the former assignment seems to be rather 

questionable and an assignment to shake-up process is more likely.  

The C 1s spectra for TP1-CN/GaAs SAM differs from those for TPn SAMs mainly in two 

aspects: on one hand, the main peak assigned for the aromatic backbone locates at somewhat 

higher BE position (~284.9 eV), which is attributed to the introduction of nitrile group to the 

end of terphenyl backbone. On the other hand, the shoulder at the BE position of ~286.4 eV is 

assigned to the nitrile carbon atom instead of shake-up process.123 Note, the above BE values 

of both the main peak (284.9 eV) and the shoulder (286.4 eV) for TP1CN/GaAs SAM agree 

with those reported for biphenylnitrile-based SAMs (NC(C6H4)2(CH2)nSH n=0 2) on Au.123  

The O1s spectra of TPn/GaAs SAMs (n=0 6) are presented in Figure 5.6, these spectra 

exhibit weak signal or nearly no signal (TPT, TP1, TP6), which correlates with the low 

intensities of the oxide-related signatures in the respective As 3d and Ga 3d spectra (Figure 

5.4) taken at the same photon energy (580 eV). The weak signal appearing in these O 1s 

spectra further proves the formation of densely packed TPn SAMs on GaAs, which can 

passivate the surface and protect it from oxidation.  
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5.1.3 Spectroscopy characterization of TPn SAMs: NEXAFS spectroscopy 

A typical C K-edge NEXAFS spectra of a TPn 

SAM (taking TP5/GaAs as an example) is presented 

in Figure 5.7, in which individual absorption 

resonances are marked. The spectra was acquired at 

a “magic” angle of 55°, in this angle, the spectra is 

exclusively representative of the electronic structure 

of the investigated film.72 The assignments and 

positions of these resonances are given in Table 5.2 

(next page).  

 

 

 

 

 

 

Figure 5.5: S 2p (a) and C 1s (b) HRXPS spectra of TPn (n = 0 - 6) and TP1-CN (only 
in b) SAMs on GaAs(001). The spectra were acquired at a photon energy of 350 eV.  

 

 

Figure 5.6: O 1s HRXPS spectra of TPn (n 
= 0 - 6) SAMs on GaAs(001). The spectra 
were acquired at a photon energy of 580 
eV. 
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Figure 5.7: C K-edge NEXAFS spectra of TP5 SAM 
on GaAs (001) acquired at an X-ray incident angle 
of 55°. Individual absorption resonances are 
shown.  
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Table 5.2: Assignments and Positions of the Characteristic NEXAFS Resonances in 

TPn/GaAs (001) 

resonance assignment
a  

1
*  R*/C-S*  R*  

2
*  

1
*  

2
*  

resonance positions
b
 (eV)  285  287  287.6  288.9  292.8 300 

a
The resonance assignment is performed in accordance with refs 21. 

b
There is no noticeable 

variation in the resonance position among the TPn films.  

The C K-edge NEXAFS spectra of the TPn (n=0 6) SAMs taken at this magic angle are 

shown in Figure 5.8a. As clearly seen, these spectra are dominated by the intense 1
* 

resonance of the phenyl rings, whereas the R* resonance characteristic for the aliphatic chains 

can not be clearly distinguished since it overlaps with the absorption edge. No features related 

to contamination could be traced, including a sharp resonance of COOH (typical component 

of adventitious carbon) at ~288.5 eV.55  

 

Apart from the electronic structure, molecular orientation in TPn SAMs was monitored, 

relying on the linear dichroism in X-ray absorption, i.e., dependence of the absorption cross-

section on the relative orientation of the molecular orbital and electric field vector of linearly 

 

Figure 5.8: C K-edge NEXAFS spectra of TPn ( n = 0 – 6 for (a) and n = 1 – 6 for (b) ) SAMs on GaAs (001) acquired at an X-ray 
incident angle of 55° (a) as well as at normal (90°) and grazing (20°) incidence of X-rays (b). The characteristic  resonance is 
indicated.  
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polarized X-rays.72 In Figure 5.8b, the C K-edge NEXAFS spectra of these films acquired at 

normal (90°) and grazing (20°) X-ray incidence are depicted; they exhibit pronounced linear 

dichroism of the π1
* resonance. Considering that the transition dipole moment (TDM) of this 

resonance is perpendicular to the plane of the phenyl rings, its larger intensity at normal 

incidence suggests the upright orientation of the terphenyl moieties in these TPn films. More 

importantly, the larger intensity difference between the spectra acquired at 90° and 20° 

incidence angles observed for odd n implies the odd-even variation in the orientation of the 

terphenyl moieties − a fingerprint of the bending potential.  

The orientation of the terphenyl moieties can be numerically evaluated using the entire set 

of the NEXAFS spectra and a standard evaluation procedure.72 For this purpose, the intensity 

of absorption resonances I was monitored as a function of the X-ray incidence angle . The 

π1
* resonance was selected due to its strong intensity. In order to extract its intensity from the 

experimental spectra, the entire spectra series were self-consistently fitted by several Gauss 

peaks representing the observed resonances listed in Table 5.2 and by one absorption edge 

(the standard shape)72 related to the C1s  continuum excitation.72 The positions and widths 

of the fitting peaks were determined from the difference spectra (90°–20°) following the 

procedure described by Outka et al.107 and Hähner et al.11 As an example, the decomposition 

of the C K-edge NEXAFS spectra of TP5/GaAs SAM acquired at the magic (55°) angle is 

presented in Figure 5.9.  

 

 

Figure 5.9: C K-edge NEXAFS spectra of TP5 SAM on GaAs (001) acquired at an X-ray incident angle of 55° along with the 
respective fit (purple line).  The positions of the individual absorption resonances are in accordance with Table 5.2 (see text for 
detail).  
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After extracting the intensities of π1
* resonance in the entire set of NEXAFS spectra, the 

resulting dependence of I and  were evaluated according to the theoretical expression (for a 

vector-type orbital):72  

I(,θ)=A {P×
1

3
[1+

1

2
∙(3∙ cos2 θ − 1)∙(3∙ cos2− 1)]+(1 − P)×

1

2
∙(sin2)}      (5−1) 

where A is a constant, P is a polarization factor of the X-

rays, and  is the average tilt angle of the molecular 

orbital. To avoid normalization problems, not the absolute 

intensities but the intensity ratios I()/I(90°) were 

analyzed,72 where I() and I(90°) are the intensities of 1
* 

resonance at X-ray incidence angles of and 90°, 

respectively. The intensity ratios of I()/I(20°) and 

I()/I(55°) were also analyzed. As an example, the 

resulting dependences of TP5/GaAs SAM are presented 

in Figure 5.10 together with the best theoretical fits.  

After knowing the tilt angle of the molecular orbital 

() through evaluating the NEXAFS data, the average tilt 

angle of the terphenyl moiety () can be calculated 

through the equation:  

cos()=sin()cos()79                                                 (5−2) 

which is suitable for a variety of aromatic SAMs. In this 

equation, “”is the twist angle of the aromatic backbone, 

which defines the rotation of the plane containing the terphenyl backbone with respect to the 

plane spanned by the surface normal and molecule axis. The twist is estimated at 45% using a 

nitrile-terminated terphenyl (TP1-CN) SAM.79 Note like the TPn molecules, the backbone of 

the TP1-CN molecule is consisted of three phenyl rings, hence it is reasonable to assume the 

same twist for all these terphenyl-based (TPn and TP1-CN) SAMs. The detailed procedure 

about how to get the twist will be introduced in next section (5.1.4).  

 

 

 

Figure 5.10: The angular dependence of 
the 

 resonance intensity ratios  
I()/I(20°), I()/I(55°), and I()/I(90°) for 
TP5 SAM on GaAs (001) (black filled 
squares), along with the best theoretical fits 
(red solid lines). The derived values of the 
average tilt angles are given at the 
respective fits.  
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5.1.4 Probing the twist angle for TPn SAMs using TP1-CN SAM 

The twist angle of the aromatic backbone for TPn SAMs can be derived through evaluating 

the NEXAFS data of TP1-CN/GaAs sample, assuming TPn and TP1-CN monolayers have the 

same twist in the aromatic moiety. The presence of the nitrile tailgroup in the target molecules 

is a crucial point since this group possesses two mutually perpendicular * orbitals, which, 

due to the hybridization with the * orbitals of the phenyl rings, are oriented either 

perpendicular (1
*) or parallel (3

*) to the ring plane.79 Further, the energies of these two 

orbitals are different,79 so that the orientation of their TDMs can be independently derived.  

The C K-edge and N K-edge NEXAFS spectra acquired with varying the X-ray incidence 

angles are shown in Figure 5.11. The former spectra are dominated by the 1
* resonance 

typical for the aromatic backbone, while the latter ones are dominated by the 1
* and 3

* 

resonances related to the −CN group124 at 398.5 and 399.5 eV, respectively. Both the C and N 

K-edge spectra exhibit noticeable linear dichroism, which is a clear signature of the 

orientational order in the TP1-CN SAM.  

 

 

 

 

Figure 5.11: Carbon K-edge (left) and Nitrogen K-edge (right) NEXAFS spectra of TP1-CN SAM on GaAs (001) 
acquired at X-ray incidence angles of 90°, 55° and 20°. The most prominent absorption resonances are marked.  
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The average tilt angles of all relevant * orbitals, , could be directly obtained from a 

quantitative analyze of the entire set of the NEXAFS spectra acquired at different X-ray 

incidence angle, , according to the theoretical equation (5−1) for a vector type orbital. The 

derived tilt angles for ph
* in the phenyl part (ph) as well as 1

* (1) and 3
* (3) in nitrile end 

group were all listed in Table 5.3.  

Table 5.3 Tilt and Twist Angles (°) of TP1-CN SAMs on GaAs 

(001) and Au derived from the NEXAFS data (accuracy ± 3~5°)  

 GaAs  Au  

tilt angle of the 
1

*
 orbital (phenyl) 

ph 
 65.8  67.3  

tilt angle of the 
1

*
 orbital (CN) 

1
 64.4  68.1  

tilt angle of the 
3

*
 orbital (CN) 

3
 64  66.3  

twist angle () from 
1 
and 

3
  45.4  47.1  

molecular tilt () from 
1 
and 

3
  38  33.3  

molecular tilt () from 
ph 

and  (α
1
,
 
α

3 
) 35.7  34.5  

 

Since the TDMs of the 1
* orbitals of the phenyl rings and the −CN group are collinear and 

perpendicular to the ring plane, the average tilt angle of the aromatic moiety can be calculated 

according to equation (5−2): cos()=sin()cos() with the twist angle  also unknown. For the 

3
* orbital of the CN group, with the TDM within the ring plane, equation (5−2) should be 

modified to:  

cos(3)=sin()cos(/2)                                                  (5−3)  

Thus, combining two equations (5−2) and (5−3), we can get the molecular tilt angle and 

twist angle , the two values were given in Table 5.3. Further, the derived twist angle () can 

be used to calculate the molecular tilt  on the basis of ph, according to equation (5−2). The 

calculated value agrees well with the molecular tilt value derived from equations (5−2) and 

(5−3) on the basis of 1 and 3. In Table 5.3, the respective values of the tilt or twist angles 



TPn and BPn SAMs on GaAs (001) 

 

- 53 - 
 

for TP1-CN/Au (values taken from Ref 79) are also listed and compared with the values for 

TP1-CN/GaAs, it is found they are close to each other, suggesting the similar structure of the 

aromatic backbone for the TP1-CN SAMs on these two substrates.  

Note here, during the twist angle probing process, a planar conformation of the aromatic 

backbone is assumed, however, if the phenyl rings are twisted differently as in the molecular 

state (torsion), the derived twist (45°) then represents the average twist of the phenyl rings in 

the aromatic backbone. 
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5.1.5 Odd-even effect for TPn SAMs  

 

The C K edge NEXAFS spectra acquired at incidence angles of 90° and 20° in Figure 5.8b 

has provided evidence for the odd-even variation in the orientation of the terphenyl moieties; 

The qualitative considerations were complemented by the numerical analysis of the NEXAFS 

data, further to obtain the average tilt angles of the aromatic backbones. Following the 

established theoretical procedure talked above, the derived values of the average tilt angles of 

the terphenyl backbones in TPn SAMs are shown in Figure 5.12a. (a twist of 45° is assumed 

for the terphenyl backbone) These values exhibit a systematic zigzag variation (6°10°) with 

varying length of the aliphatic linker: smaller molecular inclination is observed for odd n, 

while larger inclination occurs at even n.  

 

Figure 5.12: Derived parameters of TPn SAMs on GaAs(001): (a) The average tilt angles of the terphenyl backbones; (b) a 
proportionality factor C(1-3/2sin2) determined from the difference NEXAFS spectra – a fingerprint of the average tilt angle  of 
the  orbital; (c) S2p/As3d intensity ratio; (d) effective thickness, as measured by XPS (filled black circles) and as calculated 
based on the tilt and molecular structure (red open circles; scaled up by a factor of 1.15); and (e) a schematic structural picture. 
The data for the SAMs of TPT (C6H5(C6H4)2SH) are shown as well – for comparison. The intensity ratio in (c) is normalized to the 
analogous value for the ODT SAM. The higher absolute values for the XPS-derived thickness are presumably related to the 
possible difference in the attenuation lengths of the photoelectrons for alkanethiolate and TPn SAMs and to a possible 
uncertainty in the thickness of the reference ODT/GaAs sample.34  
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An independent demonstration of this behavior was provided by an alternative evaluation 

procedure of the NEXAFS data, relying on the difference spectra.72,125 As described in 

literature,72 the difference in the intensity of a particular resonance at angles 1 and 2, Iv(1) – 

Iv(2), is proportional to the parameter (cos21 - cos22), with a proportionality factor C(1-

3/2sin2), where  is the average tilt angle of a given molecular orbital and C is a constant 

which depends on the excitation probability from the core level into this orbital. Since this 

probability is the same for all TPn molecules as far as the 1
* orbital related to the common 

terphenyl building block is considered, the proportionality factor is a measure of molecular 

tilt, even though the exact value of C is not known. Based on these considerations, we 

calculated the proportionality factors for the 1
* resonance for all TPn SAMs and presented 

them in Figure 5.12b (1 was varied; 2 was 55°; the average values over different 1 were 

calculated). The odd-even variation of the molecular inclination is obvious, in agreement with 

the data in Figure 5.12a.  

The changes in the molecular inclination should be accompanied by the corresponding 

variation of the packing density. Using a high quality sample of ODT SAM on GaAs(001) as 

reference,33 we calculated the intensity ratios of the S 2p to the total As 3d photoemission 

signals and the effective thicknesses of the TPn SAMs. The derived values in Figures 5.12c 

and 5.12d, respectively, show a pronounced odd-even behavior corresponding to a higher 

packing density at an odd n and a lower packing density at an even n. This agrees with the 

observed changes in the molecular inclination: a smaller inclination corresponds to a higher 

packing density and vice versa, which is also supported by the comparison to the thickness 

values calculated on the basis of the tilt and the known molecular structure (Figure 5.12d). 

Note that the S 2p/As 3d intensity ratio is a direct measure of the packing density since the 

respective photoemission signals are similarly attenuated by the hydrocarbon overlayer.  

In Figure 5.12d, the effective film thicknesses of TPn SAMs were calculated by evaluating 

the intensity ratios of the C 1s and As 3d emission, using a standard expression:  

𝐼𝑐1𝑠
𝐼𝐴𝑠3𝑑

(𝑠𝑎𝑚𝑝𝑙𝑒)

𝐼𝑐1𝑠
𝐼𝐴𝑠3𝑑

(𝑟𝑒𝑓𝑒𝑟)
=

1−𝑒𝑥𝑝
−𝑑𝑠𝑎𝑚𝑝𝑙𝑒
𝜆𝐶1𝑠(𝐸𝑐)

𝑒𝑥𝑝
−𝑑𝑠𝑎𝑚𝑝𝑙𝑒
𝜆𝐴𝑠3𝑑(𝐸𝐴𝑠)

×
𝑒𝑥𝑝

−𝑑𝑟𝑒𝑓𝑒𝑟
𝜆𝐴𝑠3𝑑(𝐸𝐴𝑠)

1−𝑒𝑥𝑝
−𝑑𝑟𝑒𝑓𝑒𝑟
𝜆𝐶1𝑠(𝐸𝑐)

                                    (5−4) 

and ODT SAM as a reference system.126 The photoelectron escape depth  of Arsenic and 

Carbon depend on the X-ray source as well as the density of the layer material; for Mg K 

(1254 eV) they amount to As3d = 28.15 Å at a photoelectron kinetic energy of EAs = 1208 eV 

and C1s = 24.37 Å at a photoelectron kinetic energy of EC = 964 eV.70 The film thickness of 
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ODT SAM is set as 23.8 Å.34 Note similar odd-even variation like Figure 5.12d is observed 

when using the C1s/Ga3d intensity ratios during the thickness calculation. (data not shown) 

5.1.6 Odd-even effect for TPn SAMs on Au (111) 

The phase of the observed odd-even behavior in section 5.1.5 is the same as that for TPn 

SAMs on Au(111):21-23 higher molecular packing and smaller molecular orientation are 

observed in the TPn SAM with an odd n. In this section, I will confirm the odd-even behavior 

for TPn/Au SAMs by XPS and Ellipsometry results, and also make a comparison of this 

behavior for the TPn monolayer systems on Au (111) and GaAs (001) substrates.  

The effective film thicknesses of TPn/Au SAMs were calculated in a similar way like 

TPn/GaAs system. The intensity ratios of C 1s and Au 4f emission signals were evaluated 

instead of the C1s/As3d intensity ratios, and DDT/Au SAM with total thickness of 15 Å was 

used as a reference.127 Equation (5−4) should be modified to: 

𝐼𝑐1𝑠
𝐼𝐴𝑢4𝑓

(𝑠𝑎𝑚𝑝𝑙𝑒)

𝐼𝑐1𝑠
𝐼𝐴𝑢4𝑓

(𝑟𝑒𝑓𝑒𝑟)
=

1−𝑒𝑥𝑝
−𝑑𝑠𝑎𝑚𝑝𝑙𝑒
𝜆𝐶1𝑠(𝐸𝑐)

𝑒𝑥𝑝
−𝑑𝑠𝑎𝑚𝑝𝑙𝑒

𝜆𝐴𝑢4𝑓(𝐸𝐴𝑢)

×
𝑒𝑥𝑝

−𝑑𝑟𝑒𝑓𝑒𝑟
𝜆𝐴𝑢4𝑓(𝐸𝐴𝑢)

1−𝑒𝑥𝑝
−𝑑𝑟𝑒𝑓𝑒𝑟
𝜆𝐶1𝑠(𝐸𝑐)

                                        (5−5) 

In equation (5−5), for Mg K (1254 eV), other parameters amount to Au4f = 27.5 Å at a 

photoelectron kinetic energy of EAu = 1165 eV and C1s = 24.4 Å at a photoelectron kinetic 

energy of EC = 964 eV. The derived film thicknesses of TPn/Au SAMs are shown in Figure 

5.13a, from which the expected odd-even behavior can be clearly identified; this behavior is 

further confirmed by the Ellipsometry results in Figure 5.13b.  

 

 

Figure 5.13a, b: Effective film thickness of TPn (n=0-6) SAMs on Au derived from the XPS (a) and ellipsometry (b) data; Figure 
5.13c: packing densities of TPn (n=1-6) SAMs on GaAs (001) (red full squares) and Au (black full circles) derived from the XPS 
data.  
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In Figure 5.13a and b, the odd-even behavior seems not to be obvious from TP1 to TP2, 

revealed in particular from the Ellipsometry results (Figure 5.13b). This is understandable 

taking into account of previous studies of these monolayers on Au by STM and NEXAFS:23,21 

At room temperature, it is found TPn SAMs with odd n as well as TP2 SAM exhibit the same 

2√3×√3R30° structure, while TPn SAMs with even n (TP4 and TP6) have a different 

c(5√3×3) phase, corresponding to a lower packing density.23 In accordance with the above 

results from STM, the NEXAFS-derived average tilt angle of the terphenyl moity in TP2/Au 

is noticeably smaller than the value expected for the odd-even behavior.21  

In addition to the film thickness, the packing densities of TPn/Au SAMs were calculated 

from the intensity ratios of the S 2p and Au 4f emissions, following the approach of Refs 

[128] and [129]. The HDT SAM with well-known packing density of 21.62 Å2/molecule7,61 

was used as a reference system. Similarly, the packing densities of TPn/GaAs SAMs were 

calculated using a high quality ODT/GaAs SAM as a reference, with its packing density set to 

21.2 Å2/molecule.45 The derived values of the packing densities for TPn SAMs on Au and 

GaAs substrates are compared in Figure 5.13c. As clearly seen, obvious odd-even behavior 

with the same phase was observed for the TPn SAMs on these two substrates. In addition to 

this general behavior, the odd-even variation of the packing density, e.g. from n= 3 to 4, is 

more obvious for TPn SAMs on GaAs as compared Au, this may be probably related to the 

associated smaller domain size for SAMs on GaAs.33,45 Note that it is not realistic to compare 

the absolute packing densities of the respective TPn monolayers on the two substrates due to 

the uncertainty in the packing density of the reference film on GaAs (ODT/GaAs).45  

5.1.7 Discussion of TPn SAMs  

High quality TPn (n=0  6) and TP1-CN SAMs have been prepared on GaAs (001) 

substrate after the procedure optimization (section 5.1.1). These TPn (and also TP1-CN) 

SAMs were found to be highly ordered and densely packed, and thus able to protect the 

surface from oxidation. More importantly, an obvious odd-even effect has been observed in 

these TPn SAMs: higher packing density and less SAM constituent inclination are observed in 

the TPn SAM with an odd (n) number of the methylene units in the alkyl linker.  

5.1.7.1 Origin of the odd-even effect − bending potential 

Taking into account the negligible difference in the molecular composition between the 

odd and even counterparts in the alkyl chain linker, the observed odd-even effect in the 

molecular inclination and packing density can only be caused by the favored binding 
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geometry of the GaAs−S−C bond, mediated by the bending potential, as shown in Figure 

5.12e. This potential gives a predefined orientation to the alkyl linkage, which, as far as this 

linkage has all trans conformation or, at least, a sufficient rigidity, “transfers” this orientation 

to the terphenyl moiety. The bending potential enters the balance of the structure-building 

interactions either cooperatively or competitively.130 If the geometry of GaAs−S−C bond and 

the number of the CH2 groups fit to the energetically preferred, small inclination of the 

terphenyl moieties, high-density SAMs are formed in a cooperative way, as it happens for 

TPn SAMs with an odd n. By contrast, if the combination of this geometry and the number of 

the CH2 groups corresponds to a large inclination of the terphenyl moieties, the bending 

potential works against the intermolecular forces in a competitive way, and as the result, a 

compromise structure with a lower-density packing will be achieved, as it happens for TPn 

SAMs with an even n. Without the bending potential, the molecular orientation and packing 

density will be mostly mediated by the interaction between the terphenyl moieties  a 

common building block of all TPn molecules  and no odd-even effect will be observed.  

5.1.7.2 Non-universal Au-like bending potential  

The phase of the odd-even effect on GaAs is the same as reported for Au (111) but is 

opposite to that for Ag (111) where smaller molecular inclination and, consequently, higher 

packing density are observed at an even number of CH2 units in the alkyl linker of the TPn 

molecules.21,23 The system is nevertheless somewhat more complicated. On Au(111) and 

Ag(111), the different bending potentials result in different tilt and twist angles of the alkyl 

chains (~30° and ~53° for Au(111)16,17,20,21,23-25,131 and ~12° and 45° on Ag(111),2,7,9 

respectively). These values are adopted not only in NSAT-based SAMs but in the TPn series 

as well. For NSAT SAMs on GaAs(001) tilt and twist angles of 15-17° and ~43°, 

respectively, have been reported,33,45 suggesting a behavior similar to the one on Ag(111).132 

The current findings nevertheless suggest that in the TPn series on GaAs(001), the alkyl 

chains rather adopt a conformation similar to the one on Au(111). So obviously, the effect of 

the Au-like bending potential, which plays a dominant role in the TPn SAMs on GaAs(001), 

is compensated to some extent by other factors in the case of NSAT SAMs. A special factor, 

which is relevant for GaAs but less important for Au and Ag substrates, is the ability of the 

GaAs substrate to compliantly strain over distances of the molecular correlation lengths.33 

This allows the molecular packing to achieve the types of structures which are only possible 

on a structurless substrate, but with much shorter range order.33 Presumably, this factor is of 

major importance in the case of  NSAT SAMs, whereas a different balance of the structure-
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building interactions, with the stronger effect of the bending potential, occurs in other cases, 

such as TPn monolayers of the given study. 

 

5.2 BPn SAMs  

5.2.1 Spectroscopy characterization of BPn SAMs: HRXPS  

The As 3d and Ga 3d HRXPS spectra 

of BPn (n=3, 5, 6) SAMs on GaAs (001) 

are shown in Figure 5.14. These spectra 

were acquired at a PE of 350 eV 

(compared with 580 eV) in order to 

achieve higher surface sensitivity. These 

spectra are dominated by the peaks 

related to the stoichiometric GaAs, 

accompanied by much weaker 

contributions from elementary As (gray 

doublets in As 3d spectra), surface states 

(gray doublets in Ga 3d spectra), and 

oxide-related components (shoulders at 

higher BE). Similar like the TPn/GaAs 

monolayer systems, a black doublet 

assigned to As−S species could be traced at ~42.4 eV (As3d5/2) in the As 3d spectra, while the 

features for Ga-S species were obscured in the Ga 3d spectra; this suggests that the BPn 

molecules are also preferably bonded to the As atoms.  

The spectra in Figure 5.14 can be basically representative of the entire data set for BPn 

SAMs (n=1  6), however, the oxide-related signatures, which are assumed mainly from post-

oxidation,59 appear more for the BPn SAMs with shorter alkyl linker such as BP1 and BP2 

monolayers. The general weak oxidation feature for all BPn (n=1 − 6) SAMs suggests the 

dense molecular packing of these films,44,55,58 simultaneously accompanied by the relatively 

lower film quality for BP1 and BP2 SAMs.  

 

 

Figure 5.14: As 3d (a) and Ga 3d (b) HRXPS spectra of BPn (n = 3, 
5, 6) SAMs on GaAs(001). The spectra were acquired at a photon 
energy of 350 eV. The spectra are decomposed in several doublets 
related to individual chemical species: (a) As 3d spectra: Light 
gray: stoichiometric GaAs; dark gray: elementary As; black: S-As. 
(b) Ga 3d spectra: Light gray: stoichiometric GaAs; dark gray: Ga 
oxide or surface Ga 3d component. The shoulders at the higher 
binding energy side of the shadowed doublets correspond to As (a) 
and Ga (b) oxides. The assignments were performed in accordance 
with refs 44, 55, 58, 59.  
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Formation of contamination-free and densely packed BPn SAMs were further supported by 

the S 2p and C 1s HRXPS spectra, as presented in Figure 5.15a and b, respectively. The S 2p 

spectra exhibit a single doublet at 162.4 ± 0.1 eV (S 2p3/2) assigned to the typical thiolate 

bonding, and no traces of unbound, disulfide, or oxidized species are observed in the spectra; 

the BE values agree well with the analogous ones observed previously for both aliphatic and 

aromatic SAMs on GaAs (001),44,55,58 as well as those for TPn/GaAs SAM systems. The C1s 

spectra show one main emission peak at ~284.5  284.6 eV assigned to the biphenyl 

backbone, and another shoulder at higher binding energy (285.3  285.4eV) due to the shake 

up process,18,76 while no trace of contamination could be detected. Note the BE values for the 

aromatic backbone are close to the reported values for non-substituted and biphenyl-

substituted SAMs on GaAs,55,58 and the shoulder at higher BE side has also been observed 

previously for different aromatic SAMs,76 and biphenyl based SAMs in particular.18  

 

The intensities of the S 2p emission of these BPn (n=1  6) SAMs are shown in Figure 

5.16. When taking into account of the intensity of the S 2p emission, it mainly results from 

the interplay of two effects: On one hand, the packing density of the sulfur headgroups varies 

with n due to the either favorable or unfavorable packing conditions; on the other hand, the 

attenuation of the S 2p emission signal, governed by the effective film thickness, varies in the 

 

Figure 5.15: S 2p (a) and C 1s (b) HRXPS spectra of BPn (n = 1 - 6) SAMs on GaAs(001). The spectra were 
acquired at a photon energy of 350 eV.  
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opposite way, i.e., there is a larger attenuation for a densely packed film. In the present case, 

the odd-even variation in the headgroups’ density is overcompensated by the change of the 

effective film thickness. This effect is especially obvious for the intensities of the S 2p 

emission excited with low PE (e.g. 350eV), and is also observed for the TPn,22 and BPn18 in 

particular, SAMs on metal substrates. Note that the zigzag variation of the intensities of the S 

2p emissions, caused by the attenuation effect, can also be considered as one indirect proof of 

the odd-even behavior of the packing densities in these BPn SAMs.  

The O 1s HRXPS spectra of BPn (n= 1, 2, 5, and 6) SAMs are shown in Figure 5.17. The 

spectra BP5, and BP6 SAMs exhibit nearly no signal, while those of BP1 and BP2 films 

exhibit some signal related to the oxidized GaAs components, which further confirms the 

relatively lower quality in the BPn SAMs with shorter alkyl linker, such as BP1 and BP2 

monolayers.  

 

5.2.2 Spectroscopy characterization of BPn SAMs: NEXAFS spectroscopy 

The HRXPS results were complemented by the NEXAFS spectroscopy data. The C K-edge 

NEXAFS spectra of BPn SAMs for the so-called magic angle geometry are presented in 

Figure 5.18a. These spectra are only characteristic of the electronic structure of the probed 

films, sampling the unoccupied molecular orbitals.72 The spectra are typical of high quality 

aromatic SAMs;16 they are dominated by the intense 1
* resonance of the phenyl rings (at 

 
Figure 5.16: the intensities of the S 2p emission of 
BPn (n=1 - 6) SAMs on GaAs (001). The intensities for 
BPn SAMs were normalized to that for BP1 SAM.  

 

 
Figure 5.17: O 1s HRXPS spectra of BPn (n = 1, 2, 5, 
and 6) SAMs on GaAs(001). The spectra were acquired 
at a photon energy of 580 eV.  
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~285.1 eV) and exhibit several characteristic * resonances at higher photon energies. No 

features related to contamination could be traced. The R* resonance associated with the alkyl 

linker of the BPn molecules cannot be clearly distinguished since it overlaps with the 

absorption edge (~287.6 eV).  

 

Apart from the electronic structure, the molecular orientation in BPn SAMs can be 

monitored, relying on the linear dichroism of the NEXAFS spectra.72 In Figure 5.18b, the C 

K-edge NEXAFS spectra of these films acquired at normal (90°) and grazing (20°) X-ray 

incidence are depicted; they exhibit pronounced linear dichroism of the 1
* resonance. 

Considering the TDM of this resonance is perpendicular to the plane of the phenyl rings, its 

larger intensity at normal incidence suggests the upright orientation of the biphenyl moieties 

in these BPn SAMs. In addition, the larger intensity difference between the spectra acquired 

at 90° and 20° incidence angles observed for BPn with odd n implies the odd-even variation 

in the orientation of the biphenyl moieties. Similar odd-even behavior, generated by the 

bending potential, is also observed in TPn/GaAs monolayer systems.  

 

Figure 5.18: (a) C K-edge NEXAFS spectra of BPn (n = 1 – 6) SAMs on GaAs (001) acquired at an X-ray incident angle of 
55° (a) as well as at normal (90°) and grazing (20°) incidence of X-rays (b). The characteristic  resonance is indicated.  
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5.2.3 Odd-even effect for BPn SAMs   

The above qualitative considerations were 

complemented by the numerical analysis of the 

NEXAFS data using the same procedure described 

for TPn/GaAs monolayer systems in section 5.1.3. 

The twist angle of the biphenyl backbones was 

assumed to be 32°, note this twist (32°) is found for 

thioaromatic bulk materials. Besides, it is also based 

on theoretical estimates for the molecular 

arrangements in biphenyl and naphthalene 

mercaptan films on Au and on the experimental data 

for a series of oligo (phenylethynyl) benzenethiols.21 

The derived values of the average tilt angles of the 

biphenyl moieties in BPn SAMs are shown in Figure 

5.19. These values exhibit a clear odd-even variation 

with varying length of the aliphatic linker: smaller 

molecular inclination is observed for odd n, while 

larger inclination occurs at even n.  

The observed odd-even change of the molecular 

orientation should be accompanied by the 

corresponding variation in the packing density. The 

effective film thicknesses of BPn/GaAs SAMs were 

calculated according to equation (5−4), using a high 

quality sample of ODT SAM with a thickness of 

23.8 Å34 as a reference system.126 The spectra taken 

at a PE of 580 eV were used for the evaluation, the 

photoelectron escape depth  of Arsenic and Carbon 

at this PE amount to As3d = 16.7 Å at a 

photoelectron kinetic energy of EAs = 534 eV and C1s = 11.3 Å at a photoelectron kinetic 

energy of EC = 290 eV.70 The derived thickness values are presented in Figure 5.20, they 

show an obvious odd-even variation, while thicker film, associated with the higher packing 

density, is obtained for the BPn SAM with an odd n. This agrees with the observed odd-even 

behavior of the molecular inclination, i.e. smaller inclination corresponds to the higher 

packing density, and vice versa.  

 

Figure 5.19: Average tilt angles of biphenyl 
moieties in BPn/GaAs (001) SAMs derived from 
the NEXAFS data, the aromatic backbone is 
assumed to twist at 32°. The error bars represent 
the accuracy of the theoretical fit and are not 
representative for the accuracy of the NEXAFS 
experiment which is usually believed to be ± 3-5°.  
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Figure 5.20: The HRXPS-derived effective 
thickness of BPn (n=1 - 6) SAMs on GaAs (001).  
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5.2.4 Discussion of BPn SAMs 

5.2.4.1 Average tilt angles of the aromatic backbone in TPn and BPn SAMs  

After comparing the values of the average tilt angles of the aromatic backbone in TPn and 

BPn SAMs (the same twist of 32° was used in both TPn and BPn SAMs), it is found the 

respective value is larger in the latter monolayer series (BPn), e.g. the value for BP3/GaAs 

SAM is larger than that for TP3/GaAs SAM, ~28.5° versus ~13.5°; this phenomena agrees 

with the general tendency observed previously for aromatic SAMs on metal substrates, viz. a 

decrease of molecular inclination with increasing the aromatic backbone.133 Note, the average 

tilt angles calculated with a twist of 32° in TPn SAMs are not given in this thesis, however, 

they can be easily calculated from the values in Figure 5.12a 

5.2.4.2 Bending potential for thiolate monolayers on GaAs 

Like the TPn precursors, series of BPn (n=1 − 6) precursors also form contamination-free 

and densely packed SAMs on GaAs (001) substrate. The formed BPn SAMs protect the GaAs 

surface effectively from oxidation, while this protection weakens to some extent for the BPn 

SAMs with less number of CH2 units such as BP1 and BP2 monolayers, which is attributed to 

their relatively poor film quality. An obvious, systematic odd-even effect has been observed 

for these BPn SAMs, i.e. smaller molecular inclination, and consequently higher packing 

density is obtained for BPn SAMs with an odd n; the phase of the odd-even variation is the 

same with that for TPn/GaAs monolayer systems. Thus, the existence of bending potential for 

the thiolate monolayers on GaAs, correlated with the favored binding geometry (~104° of the 

GaAs-S-C angle), is further proven by using series of BPn SAMs. In addition, this potential 

plays the predominant role in the balance of structural building forces in these films. 

5.2.4.3 Relatively poor film quality of BP1 and BP2 SAMs 

Unlike TPn SAMs, which all show high quality, the situation is more complex for the BPn 

monolayer systems: the BPn (n=1, 2) SAMs with shorter alkyl linker length exhibit relatively 

lower film quality. The reason for this is: except for the dominant effect of bending potential, 

another chain length factor also affects the structure of these BPn SAMs. The “chain length 

effect” for all SAM systems on GaAs has already been demonstrated in chapter 4 by studying 

the NSAT SAMs with different length. The molecular chain length is directly associated to 

the intermolecular packing force, which force the GaAs substrate atoms to reconstruct in the 

molecular correlation lengths.33 This allows the molecular packing to achieve the types of 

structures which are only possible on a structureless substrate, but with much shorter range 
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order.33 Compared with the terphenyl-based (TPn) SAMs, the loss of one phenyl group in the 

aromatic backbone leads to a significant decrease of the intermolecular packing force in 

biphenyl-based (BPn) SAMs. In this context, the chain length effect, which is reflected in the 

length of the alkyl linker, should be taken into account in the given BPn monolayer systems, 

in particular those with shorter alkyl linker such as BP1 and BP2 SAMs. The GaAs surface 

atom reconstruction can not be well resolved for these two monolayers, thus resulting in their 

relatively poor quality. By contrast, the reconstruction issue can be well resolved in the case 

of BP5 and BP6 SAMs as a result of the correlated longer alkyl chain, thus leading to the 

films with better quality, which can protect the GaAs surface more effectively from oxidation.  
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Summary of chapter 5 

In summary, using series of TPn and BPn SAMs, we demonstrated the existence of a 

bending potential at the headgroup-substrate interface in the thiolate/GaAs(001) system with a 

preferable GaAsSC angle of ~104°, which is similar to the analogous value for the AT 

SAMs on Au. For both TPn and BPn SAM systems, this potential plays the dominant role in 

the balance of the structure-building interactions, mediating the odd-even variation in the 

molecular orientation and packing density. Therefore, bending potential should always be 

taken into account for the design of future, functional SAMs on technologically important 

type of semiconductor substrates such as GaAs (001).  

As for BPn SAMs, in addition to the predominant effect of bending potential, another 

chain length factor, reflected in the alkyl linker length, also contributed to the structure-

building factors, leading to the relatively poor quality of BPn SAMs with shorter alkyl chain, 

such as BP1 and BP2 monolayers.  
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Chapter 6: Structure of SAMs of Partially Fluorinated Alkanethiols with a 

Fluorocarbon Part of variable Length on Au (111)  

 

As introduced in chapter 1, the most extensively studied und used SAMs are those of ATs 

on coinage metal substrates, Au (111) in particular.1-6 One of the major advantages of these 

molecules is a relative ease of their substitution, which, as mentioned above, is important to 

redefine the properties of the SAM-modified surface in a desired way. A special kind of 

substitution is partial fluorination of the molecular backbone, resulting in PFAT, described by 

the general expression CF3(CF2)n-1(CH2)mSH and abbreviated as FnHmSH. Because of their 

hydrophobicity, rigidity, inertness, thermal stability, and potential use as nanoscale corrosion 

inhibitors, these films have gained substantial attention during the past years.63,66,134-145 The 

respective studies were devoted to basic properties of these systems such as 

wettability,138,140,143 thermal stability,138,145 and radiation sensitivity,146 as well as to 

understanding of their structure and organization.63,65,135,137-139,145 The latter characteristics 

were found to be strongly affected by a larger van der Waals diameter of the fluorocarbon 

parts (~5.67 Å),62,63 as compared to the hydrocarbon one (4.4 Å).14 This diameter is associated 

with the typical helical conformation of the fluorocarbon chains (in contrast to all trans planar 

conformation of the hydrocarbon chains),64 persisting usually in SAMs as well.65,66 In 

accordance with this conformation, atomic force microscopy (AFM) and X-ray diffraction 

data reveal an enlarged (relative to non-substituted AT SAMs) intermolecular spacing of ~5.8 

Å,63,65,66,135,147 suggesting also that the packing density of the PFAT SAMs is determined by 

the bulky fluorocarbon part. Typical structures on Au(111) are commensurate p(22) and 

c(77) arrangements, but non-commensurate structures, with the parameters close to these 

arrangements, were reported as well.63,65,135,147 The hydrocarbon chains, separated beyond 

their equilibrium spacing are, as far as they are not too short, however still capable to keep the 

all trans conformation typical of non-substituted AT SAMs.16,139 Also, in spite of the large 

separation, their orientation was reported to mimick that of non-substituted AT SAMs, due to 

the effect of the bending potential.16,139  

Until now, different combinations of fluorocarbon and hydrocarbon chains within the 

general FnHmSH architecture were studied with the goals to get systematic data for the PFAT 

monolayers and to monitor the effect of a particular combination on the structure and 

properties of these systems, assuming a close relationship between these basic characteristics. 
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As one of the available options, the length of the hydrocarbon chain was varied while keeping 

the length of the fluorocarbon chain constant (F10HmSH series).16,63,138,139,141,145 The 

orientational and conformational order of both parts was found to change to some extent upon 

variation of m.16,139 In particular, hydrocarbon segments become more ordered with increasing 

chain length.138,141,145 Both the wettability and the thermal stability of the monolayers could be 

tailored by selection of m.138 Alternatively, the length of the hydrocarbon part was kept 

constant but the length of the fluorocarbon part was varied (FnH11SH series).141,145 It was 

found that the hydrocarbon parts remain ordered upon increasing the length of the 

fluorocarbon segment. Finally, the lengths of both fluorocarbon and hydrocarbon chains were 

varied simultaneously while keeping the total length (n + m) constant to look for the effect of 

the extent of fluorination (FnHmSH series).137,140,141,145 This extent was observed to influence 

the wettability, structure, capacity, charge-transfer resistance, and resistance against exchange 

by a competing adsorbate.140 In addition, the fluorocarbon parts of the SAM constituents were 

found to be oriented more upright on the substrate for higher n than for smaller ones.  

Here in this chapter, we look more closely on the situation when the length of the 

hydrocarbon segment is kept constant while the length of the fluorocarbon segment is varied, 

putting special emphasis on the orientation and conformation of these moieties. Accordingly, 

we studied a series of the FnH11SH SAMs with n = 6, 8, and 10 (see Scheme 1.2) on Au 

(111) by a combination of several complementary spectroscopic techniques, which give a 

deep insight in the organization of these films. Consequently, we tried to understand this 

organization in terms of the structure-building interactions which are common for a variety of 

SAM-like systems; the obtained valuable findings could also be useful to better understand 

the analogous SAM systems on GaAs substrate in chapter 7. Note that the structure of the 

F10H11SH SAM has been studied in detail by a similar approach before,139 so that the results 

for this monolayer can also be considered as a reference for the two other films in the study.  

 

6.1 Results 

6.1.1 HRXPS 

S 2p HRXPS spectra of the FnH11SH SAMs are presented in Figure 6.1, along with the 

corresponding fits. Only a single S 2p doublet at a BE position of ~162.0 eV (S 2p3/2) is 

observed for all three monolayers with no traces of unbound, disulfide, or oxidized species. 

The above BE value corresponds to the thiolate species bonded to noble metal 

surfaces,7,76,101,102 which suggest that all molecules in the FnH11SH films are bound to the 

substrate via thiolate-gold bond, as can be found in similar systems. The fwhm of the S 2p3/2 
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and S 2p1/2 peaks (~0.54 eV) is essentially the same as that for non-substituted AT SAMs on 

gold (0.55-0.6 eV).76 Since the fwhm value is a fingerprint of the homogeneity of the 

adsorption sites for the sulfur head groups, the above results imply a rather high degree of 

homogeneity at the SAM-substrate interface. The intensity of the S 2p doublet decreases with 

increasing n, which agrees well with the expected attenuation of the respective photoelectron 

signal for the intact PFAT molecules bonded to the substrate via conventional thiolate bond – 

the longer molecule is then associated with stronger signal attenuation.  

 

Adsorption of the intact FnH11SH molecules onto the substrate surface and formation of 

well-defined SAMs are also confirmed by the C 1s HRXPS spectra in Figure 6.2. These 

spectra exhibit three distinguished peaks of different intensities, which, going from the low to 

high BE, can be clearly assigned to the hydrocarbon chain part, the CF2 chain part, and the 

CF3 terminal moiety (peak 5), respectively.139 The first two peaks are somewhat asymmetric 

and can therefore be decomposed into individual signals, viz. emissions 1 and 2 for the 

hydrocarbon part and emissions 3 and 4 for the CF2 chain part.82 Emission 2 corresponds to 

the terminal moiety connected to the fluorocarbon chain, resulting in an increase of the 

respective BE position as compared to all other CH2 units (peak 1). Similarly, the emission 

3 corresponds to the terminal CF2 moiety connected to the hydrocarbon chain, resulting in 

decrease of the respective BE position as compared to all other CF2 units (peak 4).  

 
Figure 6.1: S 2p HRXPS spectra of the FnH11SH SAMs on 
Au acquired at a photon energy of 350 eV (open circles). 
The spectra are fitted by a single doublet with a 
branching ratio of 2:1 (solid line). The background is 
shown by a dotted line.  

 
Figure 6.2: C 1s HRXPS spectra of the FnH11SH SAMs on 
Au acquired at a photon energy of 580 eV (open circles). 
The spectra are decomposed into individual emissions 
(gray solid lines) within a fitting procedure; these 
emissions are marked by numbers. The resulting fitting 
curve is shown by a thick solid line.  
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The intensities of the individual emissions show the expected behavior with varying n. The 

intensities of the peak 5 (CF3 terminal moiety) do not differ noticeably for all three films. 

Considering that the constituents of all these SAMs have only one CF3 tail group which, 

according to the standard architecture, is located at the SAM-ambience interface, the 

respective photoemission signal should only depend on the molecular density. The latter 

parameter seems then to be similar for all FnH11SH monolayers, with, probably, a slightly 

higher value in the n = 10 case. The intensity of the peaks 3 and 4 (fluorocarbon part) 

increases with the increasing length of the fluorocarbon chain as can be expected. By contrast, 

the intensity of the peaks 1 and 2 (hydrocarbon part) have an opposite behavior even though 

the length of the hydrocarbon chain is the same for all SAMs of this study. The reason for this 

intensity decrease is the stronger attenuation of the respective photoemission signal by the 

longer fluorocarbon chain. Based on these considerations, one can consider the intensity 

decrease as an additional evidence for the expected, upright orientation of the SAM 

constituents, anchored to the substrate by the thiolate group (see Figure 6.1).  

 

To further support this statement, C 1s HRXPS spectra of F10H11SH taken at different 

photon energies and normalized to the same height of peak 4 (CF2 part) are compared in 

Figure 6.3. It is clearly seen that the intensity of the CH2 component increases with 

increasing kinetic energy of the photoelectrons, following the increasing mean free path 

 
Figure 6.3: C 1s HRXPS and XPS spectra of the 
F10H11SH SAM on Au acquired at photon energies of 
350 eV, 580 eV, and 1254.6 eV (XPS) (open circles). The 
spectra are decomposed into individual emissions (gray 
solid lines) within a fitting procedure; these emissions 
are marked by numbers. The resulting fitting curve is 
shown by a thick solid line. 

 

 
Figure 6.4: F 1s HRXPS spectra of the FnH11SH SAMs on 
Au acquired at a photon energy of 750 eV (open circles). 
The spectra are fitted by a single emission (solid line). 
The background is shown by a dotted line. The vertical 
dashed lines highlight the BE positions of the emission.  
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governing the attenuation efficiency. Note that because of the lower resolution, peaks 2 and 3 

are not perceptible in the spectra taken at 1254 eV.  

In contrast to the C 1s spectra, F 1s HRXPS spectra of the FnH11SH monolayers in Figure 

6.4 exhibit only one emission peak related to the entire fluorocarbon chain, since it is well 

known that CF2 and CF3 species can not be distinguished in this spectral region.63,82,139 As 

expected, the intensity of the emission increases with increasing fluorocarbon chain length. At 

the same time, the BE position of this emission moves downwards with increasing length of 

the fluorocarbon segment, while the opposite behavior, related to the decreasing extent of 

screening of the photoemission hole by the substrate electrons could be expected based on the 

analogous data for SAMs on metal substrates.76,103 This effect can be explained by the 

vacuum-level-like pinning of the energetic levels in SAMs.148-151 According to this pinning 

model, BE positions of the C 1s and F 1s emissions become dependent on the work function 

of the system. In this context, the persistent downward shift of the F 1s emission at going 

from F6H11SH to F10H11SH, can be associated with progressive increase of the work 

function.150,151 In its turn, this increase can be associated with either increasing packing 

density of the FnH10SH species or less inclination of the fluorinated chain, since both, the 

density and the orientation of the CF3 terminal moieties, determine the work function of the 

PFAT/Au systems (the adsorption of the PFAT molecules results generally in an increased 

work function, with the prevailing contribution coming from the CF3 moieties).152 A 

combined effect of these two factors is also possible. 

 

6.1.2 XPS: Film thickness and packing density  

In addition to the spectra analysis, the film thickness values were calculated by evaluating 

the intensity ratios of the C 1s and Au 4f emissions according to equation (55) in chapter 

5,126,153 and using a DDT SAM – a film of well-defined thickness – as a reference system. For 

the thickness of the DDT SAM, a value of 15 Å was used;127 this value agrees well with the 

theoretical estimate of the SAM thickness, on the basis of the alkyl chain length (1.26 Å per 

CH2 moiety),154 molecular inclination (30-33.5°),2,4 and Au−S distance (1.8 A).8,155 The 

derived values of the effective thickness were 20.1, 22.9, and 24.2 Å for the F6H11SH, 

F8H11SH, and F10H11SH monolayers, respectively. Further, the packing densities were 

coarsely calculated from the intensity ratios of the S 2p and Au 4f emissions, following the 

approach of Refs 128 and 129. As a reference system with well known packing density 

(21.62 Å2/molecule),7,61 a HDT SAM on Au(111) was used. The derived areas per molecule 

were 28.4, 28.1, and 27.7 Å2 for the F6H11SH, F8H11SH, and F10H11SH SAMs, 
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respectively. All these values are quite close to the expected value for the helical 

conformation of the fluorocarbon chain and can be associated with an intermolecular spacing 

of 5.7-5.8 Å, close to the van der Waals diameter of this chain (5.67 Å) and to the lattice 

constant observed in previous AFM studies on analogous systems (5.7-5.9 Å).63,65,135,147 This 

suggests that the packing density of the FnH11SH monolayers is primarily governed by the 

bulky helical conformation of the fluorocarbon part and does not change significantly with the 

varying length of the fluorocarbon part. There is just a general tendency that the efficient 

packing density decreases slightly with decreasing n. Note that the attenuation length for 

photoelectrons in fluorocarbon films are almost indistinguishable from those in hydrocarbon 

films,142 which justifies the use of the DDT and HDT SAMs as references for the evaluation 

of the XPS data in terms of the effective film thickness and packing density. 

 

6.1.3 IRRAS 

Part I: General description     

The IRRAS spectra of the FnH11SH monolayers are depicted in Figures 6.5 and 6.6 for the 

spectral regions predominantly characteristic of the CF2 and CH2 related vibrations, 

respectively. Figure 6.5 presents additionally the spectrum of neat F10H11SH and the DFT 

calculated spectrum of the isolated F10H11SH molecule. The analogous spectra for the 

F6H11SH and F8H11SH cases are presented in the Appendix (Figure S1 and S2). The 

assignments of the main vibrational modes are provided in Table 6.1; these assignments and 

the estimation of the orientation of the respective TDMs were conducted with the help of DFT 

calculations of the isolated PFAT molecules (see more in section 3.5.4.2). Comparison of the 

experimental spectra with the calculations reveals a fair accordance. Also, the calculation 

results are in accordance with literature,65,134,139,147 regarding both the assignment of the 

relevant absorption bands modes and the orientation of their TDMs (vide infra).  

Part II: Fluorocarbon region  

The spectral region between 1100 and 1400 cm-1 (Figure 6.5) contains characteristic 

stretching and bending modes of the CF2 groups. In particular, the intense absorption bands in 

the 1150-1250 cm-1 region (among them bands 1 and 2) are characteristic of fluorocarbon 

entities (see Table 6.1 for details). They have a noticeable contribution from the asymmetric  
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CF2 stretching vibration with a TDM 

perpendicular to the helical axis.134 These modes 

are observed both for poly(tetrafluoroethylene) 

(PTFE) and for thin organic films containing 

fluorocarbon segments.2,66,134,139 The positions of 

these modes do not change significantly with the 

varying length of these segments and only 

intensity redistribution occurs.2,147,156  

In contrast to these modes, the absorption bands 

3 and 4 at 1322-1344 and 1368-1375cm–1, 

respectively, are identified as axial CF2 stretching 

vibrations with a strong component of the dynamic 

dipole moment along the helical axis.134 These 

modes are also characteristic of the helical 

conformation of the fluorocarbon chain and are 

commonly observed in thin organic films 

containing these entities.65,66,134,139,147 The 

appearance of these modes as well as bands 1 and 

2 for all investigated FnH11SH films implies that 

the fluorocarbon parts of the FnH11SH molecules in the densely packed layers on the Au 

substrate adopt a helical conformation. Significantly and in contrast to the absorption bands in 

the 1150-1250 cm-1 region, bands 3 and 4 are only observed for short fluorocarbon chain 

oligomers.156 The reason for their appearance is the finiteness of the fluorocarbon helix which 

causes certain modes to become active.157 The solution of the eigenvalue equation for such 

systems depends on the length of the oligomer.158 Accordingly, the positions of these bands 

shift continuously to higher wavelengths with increasing length of the fluorocarbon 

chain,66,141 which, as suggested by Colorado et al.,141 can even be used to determine the length 

of the fluorocarbon segment in PFAT SAMs regardless to the orientation of the segments 

within the film.  

In full agreement with the above literature data, the positions of bands 3 and 4 in the 

spectra of FnH11SH SAMs in Figure 6.5 move progressively to higher wavenumbers with 

increasing length of the fluorocarbon segment; the respective chain length dependence66,141 is 

also apparent in the calculated spectra (see Table S1-S3 in the Appendix).  

 

Figure 6.5: IR spectra of the FnH11SH SAMs on Au in 
the range characteristic of the CF2 vibrations (three 
upper curves), along with the spectrum of the neat 
F10H11SH substance (second curve from bottom), 
recorded with an ATR unit, and the theoretical 
spectrum of an isolated molecule, calculated using 
DFT. Two scale bars indicate the absorbance 
intensities of the experimental spectra for the SAMs 
and neat substance, respectively. The most prominent 
bands are marked with numbers. See text and Table 
6.1 for details. 
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Along with the positions of the absorption bands, their relative intensity is of importance as 

well. As can be deduced from comparison of the spectra of the FnH11SH SAMs with the ones 

of the respective neat substances (Figure 6.5 and Figure S1 and S2 in the Appendix), the 

perpendicular CF2 bands are strongly attenuated in the SAM spectra which can only be 

explained by a rather upright orientation of the fluorocarbon segments. For such an 

orientation, the bands with TDMs perpendicular to the fluorocarbon segments will be strongly 

suppressed on account of the surface selection rule on metals,159 and this is exactly what is 

observed in Figure 6.5. Exploiting further the selection rule, one can consider the relative 

intensity of the bands with TDMs along the segment axis and the bands with TDMs 

perpendicular to this axis as a fingerprint parameter for the degree of the molecular 

inclination. This relative intensity seems to increase slightly with increasing length of the 

fluorocarbon segment, suggesting that the inclination is somewhat smaller in the F10H11SH 

films as compared to the F8H11SH and F6H11SH SAMs.  

Table 6.1: Infrared Vibrational Modes of FnH11SH SAMs, along with the respective 

assignments
a  

 
mode assignment  F6H11SH  F8H11SH  F10H11SH  TDM

b

  

1   as CF
2
,  CH

2
  1146 s  1151 m  1154 m  almost perpendicular 

to helical axis  

2   as CF
3
,  as CF

2
,  

CH
2
  

1247 s  1246 s  1252 s  almost perpendicular 

to helical axis  

3   sym CF
2
,  sym CF

3
  1322 s  1335 s  1345 s  almost parallel to 

helical axis  

4   sym CF
2
,  CC helix  1368 s  1373 m  1375 m  almost parallel to 

helical axis  

5   sym CH
2
  2850 m  2851 m  2851 m  parallel to CCC 

backbone plane  

6   as CH
2
  2919 m  2920 m  2920 m  perpendicular to 

CCC backbone plane  

a
Wavenumbers are given in cm

-1
.
 
Mode 1-6 positions in the neat substance spectra and the calculated 

spectra of F6H11SH, F8H11SH and F10H11SH are listed in Tables S1-S3 in the Appendix. 

Abbreviations used: -stretch, -torsion, -wagging; as-asymmetric, sym-symmetric, vs-very strong, s-

strong, m-medium, w-weak. 
b
Information on the direction of the vibrational mode's transition dipole moment.  
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Part III: Hydrocarbon region 

The hydrocarbon part of the FnH11SH SAMs 

was probed by IRRAS as well, relying on the C–H 

stretching modes of the CH2 units (Figure 6.6). The 

spectra of all these monolayers exhibit distinct 

symmetric and asymmetric C–H stretching modes 

(5 and 6; see Table 6.1) at about 2850 and 2919 

cm–1, respectively, in accordance with the literature 

data for the analogous systems.141 These band 

positions are characteristic of the planar zigzag 

conformation of hydrocarbon chains with a low 

percentage of gauche defects,10,109 which is 

observed for both ordered polyethylene and well-

ordered aliphatic SAMs.7,81 Note the blue shift of 

the band positions of modes 5 and 6 in the neat 

substance spectra (see Table S1-S3 in the Appendix) indicates a higher amount of gauche 

defects in the bulk as compared to the SAMs. Interestingly, according to the IR spectra 

(Appendix), the degree of order in the F10H11SH bulk seems to be slightly higher than in the 

other two substances, probably a consequence of the longer fluorocarbon segment.  

Along with the above conclusions regarding the conformation of the hydrocarbon 

segments, information about their orientation can be derived from the IR spectra in Figure 6.6 

by taking into account that the TDMs of the C–H stretching modes are perpendicular to the 

molecular axis and to each other, and the electric field vector of the IR light in the grazing 

incidence geometry is oriented normal to the substrate. Under these conditions, the observed 

similar integral intensities of these modes for the FnH11SH monolayers of this study lead to 

the tentative conclusion that the hydrocarbon segments in all these SAMs have similar 

orientation. In addition, the twist angle of these segments can be estimated. This parameter 

determines the rotation of the plane containing the all trans carbon backbone with respect to 

the plane defined by the chain axis and the surface normal. The twist angle was calculated 

from the intensity ratio of the asymmetric and symmetric modes following the RATIO 

method by Debe.111 The resulting values of the twist angles are close to ~53° for all the three 

FnH11SH SAMs. Note that this value practically coincides with the corresponding value of 

53° found for the non-substituted AT SAMs on gold.7  

 

Figure 6.6: IR spectra of the FnH11SH SAMs on Au 
acquired in the C-H stretching region. The 
characteristic absorption bands are marked with 
numbers, see text and Table 6.1 for details. The 
vertical dashed lines highlight the positions of these 
bands.  
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6.1.4 NEXAFS spectroscopy 

Carbon K-edge NEXAFS spectra of the FnH11SH monolayers acquired at an X-ray 

incidence angle of 55° are presented in Figure 6.7; spectra acquired at this “magic” angle are 

free of orientational effects72 and, in this sense, are only representative of the electronic 

structure of the target systems. The spectra in Figure 6.7 contain two absorption edges at 

~287.8 and ~294.0 eV related to the C 1s  continuum excitations for the carbon atoms 

bonded to hydrogen and fluorine, respectively; the first edge is perceptible, the second is 

hidden due to the overlap with other features. The spectra are dominated by the pronounced 

resonances of the fluorocarbon part, viz. those related to the transitions from the C 1s state to 

the CF *, CC *, and CF´ * orbitals at ~292.5, ~295.5, and ~298.8 eV, 

respectively.82,160-162,134,139 The corresponding TDMs are oriented almost perpendicular (C 1s 

 CF *) or along (C 1s  CC *) the axis of the fluorocarbon chain, 

respectively.108,160,161,134 As to the hydrocarbon part, only a weak feature at ~288.0 eV, 

alternatively assigned to the C 1s excitations into predominantly Rydberg states,105,106 valence 

CH orbitals,72 or mixed valence/Rydberg states,104 is discernible in the spectra, with the 

corresponding TDMs oriented perpendicular to the alkyl chain axis.81,107,108 The further 

characteristic CC * and CC´ * resonances of the hydrocarbon parts at ~293.0 and ~302.0 

eV, respectively,81,107,108 overlap with the strong features related to the fluorocarbon segments 

and are, therefore, indistinguishable in the spectra.  

Both the positions of the resonances related to the fluorocarbon segments and the entire 

spectral shape are very similar to the calculated NEXAFS spectra of PTFE in the 

standard163,164 13/6 (or 15/7) helical conformation of the fluorocarbon chains.165 This behavior 

suggests that the fluorocarbon segments in all FnH11SH SAMs adopt the expected helical 

conformation, in full agreement with the conclusions made on the basis of the HRXPS and IR 

data. Distortions of the helical conformations in terms of the extent of coiling, stretching or 

elongation, relative orientation of the fluorine atoms, and location of the carbon atoms with 

respect to the chain axis are assumed to result in the modification of the NEXAFS spectra, 

with the extent and character depending on the kind and degree of distortion.165 At a large 

distortion, complete change of the spectral envelope can occur, while, at moderate distortion, 

shift and/or broadening of the absorption resonances can be expected.165 In our case, the 

general spectral envelopes are similar for all studied FnH11SH SAMs, suggesting that the 

decrease in the length of the fluorocarbon segment does not result in noticeable disturbance of 

the helix structure. At the same time, the positions of the characteristic absorption resonances 

of the fluorocarbon segment change slightly and the peaks become slightly broader with 
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decreasing n (in a systematic fashion), hinting on some minor distortions of the helical 

conformation in the F8H11SH and F6H11SH SAMs.  

 

Fluorine K-edge NEXAFS spectra of the FnH11SH monolayers acquired at an X-ray 

incidence angle of 55° are presented in Figure 6.8. All these spectra are very similar to those 

of PTFE166 and are dominated by the pronounced resonances at ~687.4 and ~691.0 eV 

assigned to the transitions from the F1s core level to the CF * and CF´ * orbitals. The 

similarity to PTFE which has the “standard” helical conformation is an additional evidence 

for the same conformation of the fluorocarbon segments in the FnH11SH SAMs.  

As introduced of the NEXAFS spectroscopy in chapter 2, the information about the 

orientational order and molecular orientation in the PFAT SAMs can be obtained from the 

linear dichroism of the NEXAFS spectra, i.e., their dependence on the incidence angle of the 

X-rays.72 A convenient way to monitor the linear dichroism is to calculate the difference 

between the spectra acquired at normal (90°) and grazing (20°) incidence of X-rays. Such C 

K-edge difference spectra are presented in Figure 6.9. They exhibit pronounced peaks at the 

position of the absorption resonances, which highlights the strong dependence of the 

resonance intensity on the angle of X-ray incidence, characteristic of well-ordered, densely 

packed monomolecular films. The resonances with TDMs oriented along and perpendicular to 

the axis of the fluorocarbon and hydrocarbon segments show, as expected, opposite behaviors 

with the varying incidence angle of X-rays. The positive peak at the position of the R* and C–

 
Figure 6.7: C K-edge NEXAFS spectra of 
the FnH11SH SAMs on Au acquired at 
an X-ray incident angle of 55°. The 
characteristic absorption resonances 
are marked.  

 

 
Figure 6.8: F K-edge NEXAFS spectra of 
the FnH11SH SAMs on Au acquired at an 
X-ray incident angle of 55°. The 
characteristic absorption resonances are 
marked.  

 

 
Figure 6.9: Difference between the C K-
edge NEXAFS spectra of the FnH11SH 
SAMs on Au acquired at the normal 
(90°) and grazing (20°) incidence of X-
rays. The difference peaks 
corresponding to the characteristic 
absorption resonances are marked. The 
horizontal dashed lines correspond to 
zero. 
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F * resonances and negative peaks at the position of C–C * resonances in the difference 

spectra suggest a predominantly perpendicular orientation of both fluorocarbon and 

hydrocarbon segments in the FnH11SH SAMs. Besides, the intensities of the R* resonance for 

all three of these SAMs are nearly the same. Consequently, considering that they have the 

same length of the hydrocarbon segments, we can conclude that the latter moieties have 

similar orientation in all FnH11SH SAMs, which also agrees with the IRRAS results.  

The above qualitative considerations were complemented by the quantitative analysis of 

the NEXAFS data within the standard theoretical framework.72 To this end, the average tilt 

angles of the fluorocarbon and hydrocarbon segments were derived from the angular 

dependence of the C–F * and R* resonance intensities using equation (41) typical for a 

plane-type orbital:72  

  )cos1()1()1cos3()1cos3(1),( 2

2
122

4
1

3
2   PPAI           (41) 

where A is a constant, P is a polarization factor of the X-rays, and is the angle between the 

sample normal and the normal of the molecular orbital plane. Note that both C–F * and R* 

orbitals were considered as plane ones, which is justified since the R* orbital is comprised of 

two mutually perpendicular orbitals with almost identical intensities,104 and the C–F * orbital 

can be related to the CF2 plane in the same manner as the R* orbital.  

The C–F * resonance was chosen because of its high intensity and its separation from the 

other resonances, while the R* resonance was selected as the single distinguishable resonance 

related to the hydrocarbon segment in the present case. To extract the intensities of the C-F * 

and R* resonances from the experimental spectra, the entire spectra series were self-

consistently fitted by several Gauss peaks representing the observed resonances and by two 

absorption edges (the standard shape)72 related to the C 1s → continuum excitations for the 

hydrogen- and fluorine-bonded carbon atoms (the standard shapes of the absorption edges 

were used)72. The positions and widths of the fitting peaks were determined from the 

difference spectra (90°–20°) following the procedure described by Outka et al.107 and Hähner 

et al.11 The positions of the absorption edges were obtained from consideration of the C 1s 

XPS spectra and literature data.82,146 As an example, the fitting of the C K-edge NEXAFS 

spectra of F10H11SH/Au acquired at 55° X-ray incidence angle is shown in Figure 6.10. In 

the evaluation process, to avoid normalization problems, not the absolute intensities but the 

intensity ratios I()/I(90°) were analyzed,72 where I() and I(90°) are the intensities of a 
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particular absorption resonance at X-ray incidence angles of and 90°, respectively. The 

results of this analysis are presented in Figure 6.11.  

 

The fits of the measured angular dependencies for the R* resonance intensity by the 

theoretical expression give average tilt angles of ~33°,~34°, and ~32° for the hydrocarbon 

segments in the F6H11SH, F8H11SH, and F10H11SH SAMs, respectively, suggesting that 

this parameter does not depend on the length of the fluorocarbon segment. Significantly, the 

derived values are very close to the analogous value for the non-substituted AT SAMs on 

Au(111).6,7,10-13 The accuracy of these values is 3°. The major source of errors is the 

relatively (as compared to * C–F and * C–C) low intensity of the R* resonance and the 

uncertainty of the exact location of the C1s (C–H) absorption edge, these characters can also 

be identified in the fitting spectra of F10H11SH SAM (example) shown in Figure 6.10.  

The fits of the measured angular dependencies for the C–F * resonance intensity by the 

theoretical expression give average tilt angles of ~38°, ~31°, and ~26° for the fluorocarbon 

segments in the F6H11SH, F8H11SH, and F10H11SH SAMs, respectively. It should be 

 
 
 
 
 
 
 

 
Figure 6.10: A fit of the C K-edge NEXAFS spectra of F10H11SH SAM 
on Au. The spectra acquired at an X-ray incidence of 55° is taken as an 
example. The characteristic resonances are marked with numbers, and 
their assignment is given; the two edges can be observed at ~287.8eV 
and ~294eV. (see text for detail)  

 

 
Figure 6.11: The angular dependence of the 
I()/I(90°) intensity ratios for the R* (top panel) and 
C–F  (bottom panel) resonances for the F10H11SH 
(circles), F8H11SH (triangles) and F6H11SH 
(diamonds) SAMs on Au, along with the best 
theoretical fits (solid lines). In the case of the R* 
resonance, the fitting curves for the different SAMs 
almost coincide practically and are therefore hardly 
distinguishable. The derived values of the average tilt 
angles for the hydrocarbon and fluorocarbon 
segments of the FnH11SH chains are given. The values 
for the fluorocarbon segments were further corrected 
(see text for details). 
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noted, however, that these values were obtained assuming that the molecular plane of the CF2 

entities is exactly perpendicular to the fluorocarbon chain axis.134 In reality, these planes are 

slightly tilted toward the helix axis with a tilt angle depending on the helix parameters. 

Assuming a standard 15/7 helix with a twist of about 13-15° per CC bond for the 

fluorocarbon segments in the FnH11SH SAMs,65,167-169 one obtains a tilt angle of 8-9° 

between the normal of the CF2 planes and the chain axis. Presumably, exactly this angle will 

be derived from NEXAFS spectra of vertically standing fluorocarbon chains. The real tilt 

angle of these moieties (0°) can then be tentatively obtained by a subtraction of the tilt angle 

of the CF2 planes from the measured value. Applying the same subtraction procedure in the 

present case we obtained the “effective” average tilt angles of ~30°, ~23°, and ~18° for the 

fluorocarbon segments in the F6H11SH, F8H11SH, and F10H11SH monolayers, respectively. 

The accuracy of these values is estimated to be ±3° or even somewhat lower. It is partly 

related to the uncertainty of the exact geometry of the fluorocarbon helix and to the simple 

angle subtraction procedure used to correct for the tilt of the CF2 planes with respect to the 

chain axis. But the general tendency is clear: Orientational and conformational order of the 

fluorocarbon segments decrease with decreasing chain length, accompanied, probably, by an 

increase in its inclination (on the average).  

In Figure 6.12, the schematic drawings of the 

molecular orientation in the FnH11SH SAMs are 

depicted. The NEXAFS-derived average tilt angles 

of fluorocarbon and hydrocarbon chains are 

indicated. Using the derived tilt angles and 

assuming a length of 1.3 Å,62 1.26 Å,154 and 1.8 

Å8,155 for the CF2, CH2, and CSunits, 

respectively, we can calculate the thicknesses of 

the PFAT films. The respective values are 20.2, 

22.9, and 25.9 Å for the F6H11SH, F8H11SH, and 

F10H11SH monolayers, which, with probably an 

exception of F10H11SH, agree well with the film 

thickness values calculated from the XPS data 

(section 6.1.2).  

 

 

 

Figure 6.12: Schematic drawing of the molecular 
orientation in the FnH11SH SAMs on Au. The average 
tilt angles of the fluoro- and hydrocarbon segments 
are marked.  
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6.2 Discussion 

The XPS, HRXPS, IRRAS, and NEXAFS data imply that the FnH11SH precursors form 

contamination-free, densely packed, and well-ordered SAMs on polycrystalline gold 

substrates with predominant (111) orientation. The molecules are bonded to the substrate by 

the thiolate-gold anchors, while the molecular backbones, consisting of the hydrocarbon and 

fluorocarbon segments, are oriented upright, as illustrated in Figure 6.12. The intermolecular 

packing density in the monolayers is governed by the fluorocarbon segments, which, 

according to the XPS (packing density), IRRAS (characteristic absorption modes), and 

NEXAFS (characteristic spectral envelope) data, have the helical conformation typical of 

these entities.  

Generally, the helical conformation of fluorocarbon chain results from a rotation about the 

CC bonds, which arises from dipolar repulsion between the 1,3-diaxial CF bonds.170 While 

a hydrocarbon chain can have a planar zigzag structure, the helical structure of the 

fluorocarbon chain is driven by the steric repulsion between the fluorine atoms of the adjacent 

–CF2 moieties since the van der Waals radius of a fluorine (1.35 Å)64 is larger than that of a 

hydrogen (1.1-1.2 Å).64 The respective twist angle is about 12-15° per CC bond, and the 

dihedral angle between adjacent planes (each plane contains three neighboring carbon atoms) 

is 160-165°.64,167,168 For a sufficiently long fluorocarbon chain, as can be found e.g. in PTFE, 

so called 15/7 and 13/6 helix structures are typical.163-165 In particular, the 13/6 helical 

structure is formed in a way that a planar zigzag chain becomes twisted 180° within 16.8 Å, 

6.5 zigzags or 13 chain atoms.64 (Note that the full 360° twist of the chain occurs in 33.6 Å 

and involves 13 zigzags or 26 chain atoms, but the actual period is half of this, because a 

zigzag consists of two lines of atoms, and a half twist brings the fourteenth atom on the 

second line directly above the first atom on the first line). This type of helix has been reported 

to be the stable form at lower temperatures (<19°C) while the 15/7 helix is claimed to be the 

stable PTFE structure at room temperature.163,164  

The number of the carbon atoms in the fluorocarbon segment of the FnH11SH precursors 

is much smaller than that associated with the full period of the 13/6 or 15/7 helix. 

Nevertheless, these parts keep this or a similar conformation, with the perfection which, 

according to the analysis of the NEXAFS data, reduces only slightly (if at all) with the 

decreasing length. This finding is supported by the results of the DFT calculations for the 

individual FnH11SH molecules, which resulted in similar parameters of the helix structures 

for n = 10, 8, and 6.  
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A characteristic feature of the FnH11SH SAMs is a slight decrease in the packing density 

with decreasing n, accompanied by the increase in the average tilt angle of the fluorocarbon 

segments. Generally, an increase in the average tilt angle does not necessary means a larger 

molecular inclination but a higher degree of conformational and orientational disorder. In the 

given case, association of the above average tilt angles with the inclination only will require 

noticeable changes (~9 %) in the packing density at going from F10H11SH to F6H11SH. 

Changes to such an extent are not observed, which only leave us with the assumption that the 

observed increase in the average tilt angle of the fluorocarbon segment with decreasing n is 

related to progressive deterioration of the orientational order in the fluorocarbon part of the 

FnH11SH SAMs. Note that dependence of the orientational order on the length of the 

precursors is typical for SAM-like systems4,6 and can therefore occur in the FnH11SH 

monolayers as well. Note also that the organization of the fluorocarbon and hydrocarbon (see 

below) segments in these monolayers is governed by the different factors (intersegment 

interaction and bending potential, respectively), so that the respective parts of the SAMs can 

be considered as partly decoupled. In this sense, the change in the length of the fluorocarbon 

segments at going from F10H11SH to F8H11SH and further to F6H11SH is quite essential, 

resulting, as assumed above, in a partial deterioration of the orientational order. As to the 

conformational order, presumably, it contributes only slightly to the variation of the average 

tilt angle, since it is mostly persisting through the FnH11SH series, exhibiting only slight 

deterioration of the fluorocarbon helix with decreasing n.  

The derived average tilt angle of the fluorocarbon chains for the F10H11SH monolayer 

(18°) agrees well with our previous result (20°),139 which underlines the reliability of the 

experiments and data evaluation procedure. The observed partial deterioration of the 

orientational order of the fluorocarbon segments with decreasing n agrees with the tentative 

conclusions by Lee et al. made for the analogous PFAT monolayers on the basis of the 

thermostability and contact angle data.145  

In contrast to the average tilt angles of the fluorocarbon segments, the average tilt angles of 

the hydrocarbon parts are almost the same for all studied FnH11SH monolayers, independent 

of the length of the fluorocarbon segments, as indicated by the NEXAFS data. In addition, the 

twist angles of the hydrocarbon segments in the FnH11SH SAMs are found to be quite similar 

as well, with these segments having the all trans planar conformation as implied by the 

IRRAS data. Significantly, the derived tilt (32-34°) and twist (52-53°) angles correlate well 

with analogous values of 27-35° and 53° for the non-substituted ATs on gold.6,7,10-13 The 

presumable reason for this behavior is the bending potential of the thiolate bond, which enters 
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into the balance of the structure-building interactions and predefines the Au–S–C angle.16,139 

This angle, which is close to 104° for Au(111),1 results then in certain inclination of the 

hydrocarbon segments, both in the non-substituted AT SAMs where the interchain spacing is 

close to the equilibrium value,6 and in the PFAT monolayers where the hydrocarbon segments 

are separated beyond their equilibrium spacing due to the presence of the bulky fluorocarbon 

segments.16,139 The equilibrium spacing can then only be achieved by a significantly stronger 

tilt of the hydrocarbon chains, which, however, works against the bending potential which 

appears to be stronger in the given case. Note that the effect of the bending potential has been 

observed in a variety of some other systems as well.16,17,19,21,131 This potential is frequently 

associated with a certain hybridization of sulfur,16,17,139 e.g. sp3-hybridization for Au(111),8 

but the recent observation of the effect of the bending potentials for selenolate SAMs24,25 

makes this hypothesis questionable. It is well known that the extent of the sp hybridization is 

very small in the case of selenium, thus it should be rather referred to a bonding configuration 

of the anchor group without the reference to the hybridization. 
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Summary of chapter 6 

A series of SAMs formed on Au(111) by PFAT molecules with a variable length of the 

fluorocarbon segment and a constant length of the hydrocarbon segment, viz. FnH11SH (n = 

6, 8, and 10) was studied using XPS, IRRAS, as well as synchrotron-based HRXPS, and 

NEXAFS spectroscopy. Independent of n, these segments were found to have helical and all 

trans planar conformations, respectively, typical of such entities. The packing density was 

governed by the bulkier fluorocarbon segments, with the average molecular spacing of 5.7-5.8 

Å, close to the van der Waals diameter of this segment. A slight decrease in the packing 

density was observed with decreasing length of the fluorocarbon segments, which correlated 

with the increasing average inclination of these segments at going from the F10H11SH to 

F6H11SH monolayers. The observed change in the inclination was however much stronger 

than the variation of the packing density, which led us to the assumption that this change is 

mostly associated with a partial deterioration of the orientational order in the fluorocarbon 

part of the FnH11SH SAMs. The conformational order of the fluorocarbon segments was 

mostly persistent through the FnH11SH series, contributing only slightly to the observed 

variation of the segment inclination.  

Whereas the orientational order in the fluorocarbon part of the FnH11SH SAMs varied 

with varying n and a slight variation of the conformational order could be assumed, the 

orientation and conformation of the hydrocarbon segments was found to be independent of 

this parameter. Both tilt and twist angles of the hydrocarbon segments are close to the 

analogous values for the non-substituted AT SAMs on Au(111), which was explained by the 

effect of the bending potential, predefining the Au–S–C bond angle. The energy contribution 

associated with this potential is obviously stronger than the thermodynamical drive to achieve 

the equilibrium spacing between the hydrocarbon segments through their larger inclination.  

The above results underline once more the complexity of seemingly simple 

monomolecular films and the potential of a suitable combination of complementary 

spectroscopic (and microscopic) techniques to get insight and better understanding of the 

structure and organization in these systems. 

Au (111)
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Order
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Chapter 7: Structure of Self-Assembled Monolayers of Partially 

Fluorinated Alkanethiols on GaAs (001) substrate 

 

In chapter 6, the structure and organization of the FnH11SH (n= 6, 8, 10) SAMs on Au has 

been discussed in detail by a combination of several complementary spectroscopic techniques. 

Here in this chapter, similar approach was used to study the same series of FnH11SH SAMs 

on GaAs (001) substrate, and the structure-building factors for molecular assembly on this 

complex semiconductor substrate were additional studied by unraveling the structure of these 

PFAT films.  

In addition, it has to be noted that, till now only limited substituted ATs have been used for 

the molecular assembly on GaAs substrate,50-53 these molecules include the carboxylic-

acid52and thiol50,51 terminated ATs, as well as the polyethylene-glycol (PEG) and biotinylated 

PEG based thiols.53 Here, we are the first to apply these novel PFAT precursors for the 

molecular assembly on the GaAs (001) substrate.  

 

7.1 Results 

7.1.1 HRXPS and XPS 

The formation of high quality FnH11SH 

and ODT SAMs on GaAs (001) was firstly 

manifested in the As 3d and Ga 3d HRXPS 

spectra, which are shown in Figure 7.1. As 

seen, after decomposing into individual 

spectral components, these spectra are 

dominated by the peaks from stoichiometric 

GaAs (light gray doublets), which are 

accompanied by much weaker contributions 

from elementary As (dark gray doublets in As 

3d spectra) and surface states (dark gray 

doublets in Ga 3d spectra). In the As 3d 

spectra, a black doublet assigned to AsS 

could be traced at ~42.3 eV (As 3d5/2), which 

means that these FnH11SH and ODT 

 

Figure 7.1: As 3d (a) and Ga 3d (b) HRXPS spectra of 
FnH11SH (n= 6, 8, and 10) and ODT SAMs on GaAs (001). The 
spectra were acquired at a photon energy of 580 eV. The 
spectra are tentatively decomposed in several doublets 
related to individual chemical species: (a) As 3d spectra: Light 
gray, stoichiometric GaAs; dark gray, elementary As; black, S-
As. (b) Ga 3d spectra: Light gray, stoichiometric GaAs; dark 
gray, Ga oxide or surface Ga 3d component. The shoulders at 
higher binding energy side correspond to As oxides. The 
assignments were performed in accordance with refs 44, 55, 
58, 59.  
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molecules are preferably bonded to the As atoms. In contrast to the As3d spectra, the 

decomposition of the Ga3d spectra does not require an introduction of an additional (with 

respect to the bulk GaAs component) doublet related to the Ga-S species. Nevertheless, the 

existence of these species can not be completely excluded,33,48,49 due to the ambiguous spectra 

fitting in the relevant binding energy region.  

Along with the above characteristic features, there are weak signals related to oxides 

(AsxOy and GaxOy) at higher BE side. The small extent of oxidation suggests, however, dense 

molecular packing in these FnH11SH and ODT SAMs.55,58 In Figure 7.1, the respective As 3d 

and Ga 3d spectra of ODT SAM are included for a comparison, the exhibited nearly oxidation 

free feature agrees with the analogous results in previous literatures, in particular by D. L. 

Allara et al;33,44 this suggests the reliability of the experimental process, in particular 

considering the nontrivial task of molecular assembly on GaAs substrate. In contrast to the 

nearly oxidation free feature of ODT SAM, the oxide-related signatures appear somewhat 

more for the FnH11SH monolayers, and the spectra proportion for these signatures increases 

slightly with decreasing the fluorocarbon chain length at going from F10H11SH to F6H11SH, 

as can be identified in the As 3d spectra in particular.  

The formation of high quality FnH11SH SAMs were further supported by the S 2p HRXPS 

spectra in Figure 7.2 (a), along with the O 1s and F 1s spectra in Figure 7.2 (b) and (c), 

respectively. All the S 2p (a) spectra exhibit one single doublet at a characteristic BE position 

of ~162.4 eV (S 2p3/2), with no traces of unbound, disulfide, or oxidized species being 

detected; the above BE value coincides with the analogous values observed previously for 

both aliphatic and aromatic SAMs on GaAs (001),44,55,56,58,59 suggesting that all these 

FnH11SH molecules bond to the substrate via a thiolate-GaAs bonding mode. Note this BE 

value (162.4 eV) is noticeably higher than that (162.0 eV) for the thiol-derived SAMs on 

noble metal substrates,7,76,101,102 presumably related to the screening of the photoemission hole 

by the substrate electrons in the case of metal.44 The fwhm values (0.9-1.0 eV) of the S 2p3/2 

and S 2p1/2 peaks for these FnH11SH monolayers are close to those for non-substituted AT 

SAMs on GaAs, but are noticeably larger than the analogous values for AT SAMs on noble 

metal surfaces (0.55-0.6 eV),76,80 this indicates the higher inhomogeneity of the bonding 

configuration at the SAM-GaAs interface as compared to the SAM-metal interface.44 The 

intensity of the S 2p doublet decreases with increasing the length of the fluorocarbon 

segments at going from F6H11SH to F10H11SH, which agrees well with the expected 
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attenuation effect, i.e. the respective photoelectron signal is attenuated more for the intact 

FnH11SH SAMs with thicker film, such as F10H11SH SAM.  

 

In the O 1s spectra (Figure 7.2b), only a small signal, correlated with the oxide-related 

feature in the respective As 3d and Ga 3d spectra (Figure 7.1) at the same PE (580eV), is 

observed for F6H11SH SAM, while nearly no emission signal is observed for the other two 

films. This agrees with the As 3d and Ga 3d spectra feature of these films, viz. less oxidation 

is observed for FnH11SH SAM with longer fluorocarbon segment.  

The F 1s spectra of FnH11SH SAMs in Figure 7.2 (c) exhibit only one emission peak 

related to the fluorocarbon chain, since it has been well accepted that CF2 and CF3 species can 

not be differentiated in this spectral region.63,80,82,139 As expected, the peak intensity increases 

when increasing the fluorocarbon chain length. At the same time, the BE position moves 

downwards with increasing the length of the fluorocarbon segments; this downward 

movement is also observed in the same series of FnH11SH monolayers on Au (Figure 6.4), 

which can be explained by the vacuum-level-like pinning of the energetic levels in SAMs.148-

151 According to this pinning model: BE positions of the C 1s and F 1s emissions depend on 

the work function of the system; the latter parameter increases with increasing the length of 

the fluorocarbon segments, and hence leading to the downward shift of the respective 

emission.80,150,151  

 

Figure 7.2: S 2p (a), O 1s (b), F 1s (c) HRXPS spectra of the FnH11SH (n= 6, 8, and 10) SAMs on GaAs (001). The spectra were 
acquired at photon energies of 350 eV (a), 580 eV (b), and 750 eV (c), respectively. The vertical dashed lines highlight the BE 
positions of the emissions.  
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In addition, the BE positions of 

FnH11SH SAMs on Au and GaAs 

substrates were compared in Table 7.1, 

it is found the BE value is larger for 

each FnH11SH monolayer on GaAs 

(001) as compared to that for Au, which is presumably related to the photoscreening effect in 

the case of metal. Note this effect also occurs in the S 2p spectra, which results the larger BE 

value (S 2p3/2 peak) for FnH11SH SAMs on GaAs as compared to Au (162.4 versus 162 eV).  

Adsorption of intact FnH11SH molecules on GaAs (001) surface and formation of well-

defined SAMs are further confirmed by the C 1s HRXPS spectra in Figure 7.3, which were 

acquired at PEs of 350 and 580 eV, respectively. These spectra exhibit three distinguished 

peaks of different intensities, while the first two asymmetric ones can be decomposed into 

individual emissions. After decomposing, emissions 1 and 2, emissions 3 and 4, and emission 

5 can be clearly assigned to the hydrocarbon (−CH2−) part, the fluorocarbon (−CF2−) part, 

and the CF3 terminal moiety, respectively.80,82,139 Emission 2 corresponds to the terminal 

moiety connected to the fluorocarbon chain, resulting in an increase of the respective BE 

position as compared to all other –CH2– units (emission 1). Similarly, emission 3 is related to 

the terminal –CF2– moiety linked to the hydrocarbon chain, leading to the decrease of the 

respective BE value as compared to all other –CF2– units (emission 4).  

 

Table 7.1: F 1s Binding Energy Positions for FnH11SH 

(n = 6, 8, 10) SAMs on GaAs(001) and Au(111)  

 F10H11SH  F8H11SH  F6H11SH  

GaAs (001)  688.7  689  689.2  

Au (111)  688.3  688.45  688.6  

 

Figure 7.3: C1s HRXPS spectra of the FnH11SH (n= 6, 8, and 10) SAMs on GaAs (001). The spectra were 
acquired at photon energies of 350 (left) and 580 (right) eV, respectively. The spectra are decomposed into 
individual emissions (gray solid lines) within a fitting procedure; these emissions are marked by numbers. (see 
text for detail)  
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In the C 1s spectra taken at both PEs, the intensities of the individual emissions show the 

expected behavior with varying n. The intensity of the peak 5 (CF3 terminal moiety) increases 

slightly with increasing the length of the fluorocarbon segments. Considering that the 

constituents of all these SAMs have only one CF3 terminal moiety, which, according to the 

standard architecture, is located at the SAM-ambience interface, the respective photoemission 

signal should only depend on the molecular density. The latter parameter seems then to 

increase slightly with increasing the fluorocarbon chain length. The intensities of 

fluorocarbon part (peak 3 and 4) increase with increasing the length of the fluorocarbon chain 

as can be expected. By contrast, the intensities of hydrocarbon part (peak 1 and 2) have an 

opposite behavior even though they all have the same hydrocarbon chain length; the intensity 

decrease is attributed to the stronger attenuation of the respective photoemission signal by the 

longer fluorocarbon chain, such as in F10H11SH SAM. Based on these considerations, one 

can consider this intensity decrease as an additional proof for the expected, upright orientation 

of the SAM constituents, anchored to the GaAs surface through the thiolate bond (see Figure 

7.2a). This statement is further supported by comparing the C 1s spectra taken at different 

PEs: for each FnH11SH SAM, the relative intensity of the –CH2– components increases with 

increasing the PE from 350 eV to 580eV, following the increasing probing sample depth, 

which is caused by the increase of the attenuation length.70  

In addition to the spectral analysis, the film thicknesses of the FnH11SH monolayers were 

calculated based on the XPS results by evaluating the intensity ratios of the C 1s and As 3d 

emissions according to equation (54) in chapter 5,126,153 and using ODT/GaAs SAM with a 

thickness of 23.8 Å34 as a reference model. The derived thickness values were 17.6 Å, 20.4 Å, 

and 23.9 Å for F6H11SH, F8H11SH, and F10H11SH monolayers, respectively.  

Furthermore, the packing densities were coarsely calculated from the HRXPS results using 

S2p/As3d intensity ratio following the approach of Refs 128 and 129, and ODT/GaAs 

SAM with the packing density of 21.2 Å2 per chain was selected as a reference.45 The 

obtained values for F6H11SH, F8H11SH, F10H11SH monolayers were 27.5, 27.2, and 27.5 

Å2 per chain, respectively. Here, the packing densities were calculated using the S 2p and As 

3d HRXPS spectra acquired at a PE of 350eV; however, we have to note the real packing 

densities should be calculated using the spectra taken at higher PE, like those taken under 

normal lab XPS setup, since the photoelectrons for the S 2p and As 3d emissions are 

attenuated similarly taking into account of their higher kinetic energy. However, the S 2p 

emission in that case can not be distinguished since it is totally covered by the strong Ga 1s 
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emission at the BE position of ~160 eV. As for the HRXPS spectra taking at PE of 350 eV, 

despite the packing densities can be calculated, the read trend for this parameter will deviate 

from the calculated result due to the strong attenuation effect, which has to be taken into 

account at this PE level. The photoelectrons from S 2p emission are attenuated more 

compared with those from As 3d emission as a result of their lower kinetic energy (183eV 

versus 304eV), keeping this in mind, the S2p/As3d intensity ratio can be underestimated, and 

this underestimation is more obvious for thicker FnH11SH monolayer. Therefore, the packing 

densities of these FnH11SH SAMs should increase slightly with increasing n rather than keep 

similar values.  

In addition to the slight increase of packing density with increasing the fluorocarbon chain 

length, it should be noted that these calculated packing densities (27.2~27.5 Å2 per molecule) 

are close to those (27.7-28.4 Å2 per molecule) for the FnH11SH SAMs on Au, and also 

noticeably larger than the analogous value for non-substituted AT SAM on GaAs (001) 

(~21.2 Å2 per molecule)45; these larger values (compared with 21.2 Å2 per molecule) can be 

associated with an intermolecular spacing of 5.67-5.7 Å, close to the van der Waals diameter 

of this chain (5.67 Å) and to the lattice constant observed in previous AFM studies on PFAT 

monolayer systems on Au (5.7-5.9 Å).63,65,135,147 Thus, the packing density of these 

FnH11SH/GaAs SAMs is also primarily governed by the bulky fluorocarbon segment, typical 

of the helical conformation; it does not change significantly with the varying length of the 

fluorocarbon part, only decreases slightly with decreasing n. Note that the attenuation length 

for photoelectrons in fluorocarbon films are almost indistinguishable from those in 

hydrocarbon films,142 which justifies the use of the ODT/GaAs SAM as a reference for the 

evaluation of the effective film thickness and packing density. 

 

7.1.2 IRRAS 

In section 6.1.3 in chapter 6, the IR dataset of FnH11SH SAMs on Au has been studied 

systematically. Unlike the IRRAS spectra of FnH11SH/Au SAMs, the C-H stretching region 

in the IRRAS spectra for FnH11SH/GaAs SAMs does not yield a noticeable signal. Because 

the intensity in the present case was – as expected – much lower as compared to SAMs on 

metal substrates where a substrate-mediated amplification of the FTIR signal occurs. Further, 

since the induced dipole is much weaker in the case of semiconductors as compared to metals, 

the selection rules are less strict, which makes it even more difficult to get the structural 

information from the IRRAS data.  



Structure of Self-Assembled Monolayers of Partially Fluorinated Alkanethiols on GaAs(001) substrate 

- 91 - 
 

The IRRAS spectra of the F10H11SH SAM on 

GaAs(001) in the range of the C-F stretching modes is 

depicted in Figure 7.4. This region exhibits pronounced 

stretching and bending modes of the CF2 groups, and the 

characteristic bands are marked with numbers like the 

FnH11SH SAMs on Au (chapter 6), the assignment of these 

bands along with their corresponding TDMs are provided in 

Table 6.1 in chapter 6. Interestingly, both positive and 

negative absorbance features appear in the reflection spectra 

in Figure 7.4, which can be explained by the well-known 

effects involving strong perturbations of the electric fields 

by the real part of the optical functions of the film in the 

case of dielectric substrates.34  

Absorption bands 3 and 4 at ~1345 and ~1375 cm-1, respectively, are identified as axial 

CF2 stretching vibrations with a strong component of the dynamic dipole moment along the 

helical axis.134 These two characteristic modes for the helical conformation of the 

fluorocarbon chain are commonly observed in thin organic films containing these 

entities.65,66,134,139,147 In the present case, these modes are clearly seen, which implies that the 

fluorocarbon segment in the densely packed F10H11SH/GaAs SAM adopts the expected 

helical conformation. It has to be noted that, the positions of these two bands depend on the 

fluorocarbon chain length,66,141 which as suggested by Colorado et al.,141 can be used to 

determine the length of the fluorocarbon segment in PFAT SAMs regardless of the orientation 

of the segments within the film. The above conclusion also applies without considering the 

type of substrate, since the positions of these two bands are the same for F10H11SH SAMs on 

Au and GaAs(001).  

The intense absorption bands in the 11501250 cm-1 region are also characteristic of 

fluorocarbon entities. The pronounced bands 1 (~1151cm-1) and 2 (~1262cm-1) have, in 

contrast to the axial CF2 stretches at ~1345 and ~1375 cm-1, a significant contribution from 

the asymmetric CF2 stretching vibration with a dynamic dipole moment perpendicular to the 

helical axis.134 These modes are commonly observed both for PTFE and for thin organic films 

containing fluorocarbon segments.2,66,134,139  

 

 

Figure 7.4: IR spectra of the F10H11SH 
SAM on GaAs (001) in the range 
characteristic of the CF2 vibrations. The 
scale bar indicates the absorbance 
intensity. The most prominent bands are 
marked with numbers. See text for 
details.  
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7.1.3 NEXAFS spectroscopy  

Carbon K-edge NEXAFS spectra of FnH11SH monolayers acquired at an X-ray incidence 

angle of 55° are shown in Figure 7.5 (a), the spectra taken at this “magic” angle are not 

affected by the molecular orientaion,72 and can only reflect the electronic structure of the 

target systems. The spectra in Figure 7.5 (a) contain two absorption edges at ~287.9 and 

~294.0 eV related to the C1s  continuum excitations for the carbon atoms bonded to 

hydrogen and fluorine, respectively. The spectra are dominated by the pronounced resonances 

at positions of ~292.5, ~295.5, and ~298.8 eV; these resonances are typical of the 

fluorocarbon part, and are assigned for the transitions from the C1s state to the C-F *, C-C 

*, and C-F´ * molecular orbitals, respectively.80,82,160-162,134,139 The corresponding transition 

dipole moments (TDMs) are believed to be almost perpendicular (C1s  C-F *) or along 

(C1s  C-C *) the chain axis.108,160,161,134 As to the hydrocarbon chain part, only a weak 

feature at ~287.9 eV, alternatively assigned to the C1s excitations into predominantly 

Rydberg states,105,106 valence C-H orbitals,72 or mixed valence/Rydberg states,104 is 

discernible, while its corresponding TDM is oriented perpendicular to the alkyl chain 

axis.82,107,108 The further characteristic C-C * and C-C´ * resonances of the hydrocarbon part 

at positions of ~293 and ~302 eV, respectively,82,107,108 are hardly distinguishable in the 

spectra since they overlap with the strong features related to the fluorocarbon segment.  

 

 

Figure 7.5: Carbon K-edge (a) and Fluorine K-edge (b) NEXAFS spectra of the FnH11SH (n= 6, 8, and 10) SAMs 
on GaAs (001) acquired at an X-ray incident angle of 55°. The characteristic NEXAFS resonances are indicated.  
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Both the positions of the resonances related to the fluorocarbon segments and the entire 

spectral shape are very similar to the calculated NEXAFS spectra of PTFE in the 

standard163,164 13/6 (or 15/7) helical conformation of the fluorocarbon chains;165 this behavior 

suggests that the fluorocarbon segments in these FnH11SH SAMs adopt the expected 

standard helical conformation, which is also supported by the HRXPS and IRRAS results. 

The definite structure models about the 13/6 and 15/7 helical conformation have been 

given,64,80 and it is difficult to distinguish between these two helix based on the NEXFAS 

data. As known, distortion of the helical conformation of the fluorocarbon chain is assumed to 

modify the corresponding NEXAFS spectra, with the extent depending on the degree of 

distortion:165 Large distortion would induce a complete change of the spectral envelope, while 

moderate distortion would lead to some shift and/or broadening of the absorption 

resonances.165 In the present case of FnH11SH SAMs, the general spectra envelopes are 

similar among all studied monolayers, suggesting that no noticeable disturbance of the helix 

structure occurs with varying the length of the fluorocarbon segment.165 At the same time, the 

peaks assigned for the characteristic resonance of the fluorocarbon segments become slightly 

broader with decreasing the fluorocarbon chain length, e.g. the fwhm values for the peak of 

C-F * resonance are 1.42, 1.49, and 1.55 eV for F10H11SH, F8H11SH, and F6H11SH 

monolayers, respectively. This tendency suggests some minor distortions of the expected 

helical conformation occurring in the FnH11SH SAMs with smaller n.  

Fluorine K-edge NEXAFS spectra of FnH11SH monolayers acquired at an X-ray incidence 

angle of 55° are presented in Figure 7.5 (b). These spectra are dominated by two pronounced 

resonances at ~690.8 eV and ~696.4 eV assigned to the transitions from the F1s core level to 

the C-F * and C-F´ * orbitals. In addition, these spectra are very similar to those of PTFE166 

as well as FnH11SH monolayers on Au, both of which exhibit the “standard” helical 

conformation in the fluorocarbon segments, thus, the similarity to them can be considered as 

additional evidence for the same conformation of the fluorocarbon segments in these 

FnH11SH/GaAs monolayers.  
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As introduced about NEXAFS spectra, the information about orientational order and 

molecular tilt of these FnH11SH SAMs can be obtained from the linear dichroism of the 

NEXAFS spectra, i.e., their dependence on the X-ray incidence angles.72 A convenient way to 

monitor the linear dichroism is to calculate the difference between the spectra acquired at 

normal (90°) and grazing (20°) incidence of X-rays. Such C K-edge difference spectra are 

presented in Figure 7.6. They exhibit pronounced peaks at the position of the absorption 

resonances, which highlights the strong dependence of the resonance intensity on the angle of 

X-ray incidence, typical for well-ordered, densely packed monomolecular films. As expected, 

the resonances with TDMs oriented perpendicular (e.g., C-F * or R*) or along (e.g., C-C *) 

the axis of the fluorocarbon and hydrocarbon segments show opposite behaviors with the 

varying incidence angles of X-rays. The positive peaks at the positions of the R* and C-F * 

resonances and negative peak at the position of C-C * resonance in the difference spectra 

indicate predominantly perpendicular orientation of both the fluorocarbon and hydrocarbon 

segments in the FnH11SH SAMs.  

 

 
Figure 7.6: Difference between the Carbon K-edge NEXAFS 
spectra of the FnH11SH (n= 6, 8, and 10) SAMs on GaAs 
(001) at the normal (90°) and grazing (20°) incidence of X-
rays. The difference peaks corresponding to the 
characteristic absorption resonances are marked. 

 

 
Figure 7.7: The angular dependence of the I()/I(90°) 
intensity ratios for the R* (top panel) and C–F  (bottom 
panel) resonances for the F10H11SH (circles), F8H11SH 
(triangles) and F6H11SH (diamonds) SAMs on GaAs (001), 
along with the best theoretical fits (solid lines). In the case of 
the R* resonance, ODT SAM (square) is included as a 
reference; the fitting curves for the FnH11SH SAMs almost 
coincide practically and are therefore hardly distinguishable.  
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The above qualitative considerations were complemented by the quantitative analysis of 

the NEXAFS data within the standard theoretical framework.72 The average tilt angles of the 

fluorocarbon and hydrocarbon chains can be derived by a numerical evaluation of the 

NEXAFS data, analyzing angular dependence of the C-F * and R* resonance intensities 

using the standard formula (equation 41) for a plane-type orbital:72 

I(,θ)=A {P×
2

3
[1 −

1

4
∙(3∙ cos2 θ − 1)∙(3∙ cos2− 1)]+(1 − P)×

1

2
∙(1+ cos2)}   (41) 

Where A is a constant, P is the polarization factor of the X-rays, and  is the angle between 

the sample normal and normal direction of the molecular orbital plane. Here, both C-F * and 

R* orbitals were considered as plane ones, which is justified the R* orbital is composed of two 

mutually perpendicular orbitals with almost identical intensities,104 while the C-F * orbital 

can be related to the CF2 plane in the same manner as the R* orbital.80  

The C-F * resonance was selected because of its high intensity and its separation from the 

other resonances, while the R* resonance was chosen as the only distinguishable resonance 

related to the hydrocarbon chain part in the present case. The extraction of the intensities for 

these two resonances has been introduced by the example of F10H11SH/Au SAM in chapter 

6. To avoid normalization problems, not the absolute intensities but the intensity ratios 

I()/I(90°) were analyzed,72 where I() and I(90°) are the intensities for * (or R*) resonance 

at X-ray incidence angles of and 90°, respectively. The angular dependences of the intensity 

ratios for R* and C–F * resonances are presented in Figure 7.7 along with the best theoretical 

fits.  

The fits of the measured angular dependencies for the R* resonance intensity by the 

theoretical expression give average tilt angles of ~39°, ~39°, ~40° for the hydrocarbon 

segments in F10H11SH, F8H11SH, and F6H11SH SAMs, respectively, suggesting that this 

parameter does not depend on the length of the fluorocarbon segments. The fitting results of 

the ODT SAM is also included as a comparison, the resulted value of the average tilt angle 

(~16°) coincides well with the analogous values (~14°) obtained based on the NEXAFS and 

IRRAS data.34 The accuracy of these values is ± 3°. The major source of errors comes from 

the relatively (as compared to * C–F and * C–C) low intensity of the R* resonance and the 

uncertainty of the exact location of the C1s (C–H) absorption edge. Significantly, these 

obtained values (~39−40°) are noticeably larger than that (~16°) for ODT monolayer, which 

has a comparable chain length with the studied FnH11SH (n = 6, 8, 10) precursors, and are 
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close to the optimum tilt value (~27−35°) governed by the bending potential. (the Au-like 

bending potential has already been discussed in chapter 5)  

The fits of the measured angular dependencies for the C-F * resonance intensity by the 

theoretical expression give average tilt angles of ~30°, ~38°, ~42° for the fluorocarbon 

segments in F10H11SH, F8H11SH, and F6H11SH SAMs, respectively. It should be noted, 

however, that these values were obtained assuming that the molecular plane of the CF2 

entities is exactly perpendicular to the fluorocarbon chain axis.134 In reality, these planes are 

slightly tilted toward the helix axis with the tilt depending on the helix parameters. Assuming 

the standard 15/7 helix for the fluorocarbon segments of these FnH11SH SAMs and using the 

same subtraction procedure described in section 6.1.4,80,82,139 viz. 8° is subtracted from the 

above values, the obtained “effective” tilt angles are ~22°, ~29°, ~34° for the fluorocarbon 

segments in the F10H11SH, F8H11SH, and F6H11SH monolayers, respectively. The 

accuracy of these values is estimated to be ±3° or even somewhat lower. It is partly related to 

the uncertainty of the exact geometry of the fluorocarbon helix and to the simple angle 

subtraction procedure used to correct for the tilt of the CF2 planes with respect to the chain 

axis. From these “effective” tilt angles, the general tendency is clear: Orientational and 

conformational order of the fluorocarbon segments decreases with decreasing fluorocarbon 

chain length, accompanied, probably, by a slight increase in its inclination (on the average).  

In Figure 7.8, the schematic drawings of the 

molecular orientation in FnH11SH/GaAs SAMs are 

depicted. The NEXAFS derived average tilt angles of 

both the fluorocarbon and hydrocarbon chains are 

indicated. Using the derived tilt angles and assuming 

a length of 1.3 Å,62 1.26 Å,154 and 2.3 Å46 for CF2, 

CH2, and −S− units, respectively, the thickness of 

these FnH11SH SAMs can be calculated, the 

respective values are 19.4 Å, 22.1 Å, and 25.1 Å for 

F6H11SH, F8H11SH, and F10H11SH SAMs. Note 

the NEXAFS derived thickness values are somewhat larger than those derived from XPS 

results, presumably because the “effective” tilt angles of the fluorocarbon segments mostly 

reflect the degree of the orientation order rather than the real inclination. (see more in 

discussion section below)  

 

 

Figure 7.8: Schematic drawing of the molecular 
orientation in the FnH11SH SAMs on GaAs (001). 
The average tilt angles of the fluoro- and 
hydrocarbon segments are marked.  
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7.2 Discussion 

The HRXPS and NEXAFS data indicate that FnH11SH precursors form contamination 

free, well ordered, and densely packed SAMs on GaAs (001) surface; these layers can 

passivate the GaAs substrate, further protect it effectively from oxidation. The molecules are 

strongly bonded to the bare GaAs substrate through the conventional thiolate bond, with 

predominantly bonding to As atoms. Both the hydrocarbon and fluorocarbon segments in the 

molecular backbone are orientated upright, as presented in Figure 7.8. The packing density of 

these PFAT monolayers is primarily governed by the fluorocarbon segments, which, 

according to HRXPS (packing density), IRRAS (characteristic absorption modes), and 

NEXAFS (characteristic spectral envelope) data, keep the helical conformation typical of 

these entities.  

7.2.1 Protection Ability  chain length effect 

The HRXPS spectra (Figure 7.1 and 7.2b) of the FnH11SH SAMs all exhibit weak oxide-

related features, which proves the high quality of these films on GaAs (001) surface.44,55,58 In 

addition to this general rule, the oxide-related features were found to be less intense for the 

FnH11SH SAM with longer fluorocarbon segment, this can be attributed to two effects: on 

one hand, the “self-cleaning” process44 is more effective for molecules with longer chain 

length;44 on the other hand, the SAM with longer chain can protect the surface more 

effectively from post-oxidation, which happens mostly during the transport and handling of 

the samples. Between these two effects, the latter “protection effect” is assumed to be more 

important in determining the extent of oxidation,59 in particular taking into account of the 

strong proneness of GaAs substrate towards oxidation. Despite the substrate is protected by 

the SAMs, this protection worked presumably to a certain extent only, so the oxidation of the 

airborne species was in principle possible.  

The better protection by the FnH11SH SAM with longer fluorocarbon chain is related to its 

higher film quality. In chapter 4, by using the example of the NSAT SAMs with different 

length (CnH2n+1SH), We have demonstrated the chain length dependence for SAMs on GaAs, 

viz. better film order and higher coverage can be obtained for the SAM with longer molecular 

chain length.33,44,45 Later in chapter 5, this chain length effect also contributes to structural 

building factors in the BPn (n=1  6) SAMs, resulting the relatively poor quality for BPn 

(n=1, 2) SAMs with shorter alkyl linker. The chain length is mainly associated with the 

intermolecular packing force, which drives the surface GaAs atoms reconstruction during the 
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molecular assembly. In the present case of more complex SAM system, instead of the 

hydrocarbon chain, the length of fluorocarbon chain is varied; however, the chain length 

effect should also apply irrespective of the chain composition (CF2 or CH2), and 

consequently result the higher quality and correlated, better protection property for the 

FnH11SH monolayer with larger n.  

7.2.2 Fluorocarbon segments  

In the given FnH11SH SAM systems, the length of the fluorocarbon segments is varied, 

thus the above mentioned chain length effect mainly contributes to the organization of these 

segments. Note that the organization of the fluorocarbon and hydrocarbon (see below) 

segments in these monolayers is governed by the different factors (intermolecular interaction 

and bending potential, respectively), so that the respective parts of the SAMs can be 

considered as partly decoupled. In this sense, the change in the length of the fluorocarbon 

segments at going from F10H11SH to F8H11SH and further to F6H11SH is quite essential, 

resulting in the decaying quality, namely the decreasing packing density and order of these 

segments. As known from HRXPS, the former parameter decreases slightly with decreasing n 

(the packing density of these FnH11SH SAMs is governed by the fluorocarbon part), 

however, this tendency does not correlate with the observed change of the average tilt angles 

of these segments. (22°→29°→34°, see Figure 7.8) For example, if the obtained tilt angles 

are associated with the inclination, noticeable decrease (~11%) in the packing densities at 

going from F10H11SH to F6H11SH SAM would be observed, however, such decrease is not 

detected. As known, an increase in the average tilt angle does not necessarily mean a larger 

molecular inclination but a higher degree of orientational and conformational disorder. Taking 

into account of the similar case for the FnH11SH/Au SAMs (chapter 6), the observed increase 

in the average tilt angle of the fluorocarbon segment with decreasing n is also mainly related 

to progressive deterioration of the orientational order in the fluorocarbon part of the 

FnH11SH/GaAs SAMs. As to the conformational order, it mostly persists through the 

FnH11SH series, accompanied by a slight deterioration of the fluorocarbon helix with 

decreasing n; and thus contributes only slightly to the variation of the average tilt angle.  

For these FnH11SH SAMs on both GaAs (001) and Au substrates, the average tilt angles 

of the fluorocarbon segments increase with decreasing the length of these moieties. In 

addition to this general tendency, it should be noted: for each FnH11SH SAM, the value of 

this angle is larger for GaAs as compared to Au, (22° versus 18° for F10H11SH, 29° versus 

23° for F8H11SH, and 34° versus 30° for F6H11SH); since this average tilt angle, as 
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discussed above, is mostly a reflection of the orientational order of the fluorocarbon segment, 

it is suggested that the orientational order of the fluorocarbon part is lower in the FnH11SH 

SAMs on GaAs as compared to Au, this is presumably related to the relatively shorter range 

order for the SAMs on GaAs.33,45  

7.2.3 Hydrocarbon segments  

In contrast to the fluorocarbon parts, the hydrocarbon segments exhibit similar orientation 

(~39°), which is independent of the length of the fluorocarbon segments. The similar tilt of 

the hydrocarbon segments in these FnH11SH monolayers is presumably caused by the 

bending potential of the anchoring (GaAs-S-C) bond; this potential enters into the balance of 

the structure-building interactions and predefines the GaAs-S-C angle, and thus results in a 

preferred orientation of the hydrocarbon chain. The existence of the bending potential for AT 

SAMs on GaAs has already been proven by investigating the odd-even effects in the TPn and 

BPn SAMs in chapter 5; this potential behaves like that for AT SAMs on Au rather than on 

Ag.59 In the present FnH11SH/GaAs SAMs, the derived values of the average tilt angles 

(~39°) are close to the analogous values for both non-substituted alkanethiol (2735°)6,7,10-13 

and FnH11SH SAMs (~3234°)80,139 on Au, suggesting the predominant role of bending 

potential in determining the orientation of the hydrocarbon segments in these FnH11SH/GaAs 

SAMs. However, the derived values of the average tilt angles (~39°) are slightly larger than 

the analogous value determined by the bending potential (2735°),59 this presumably suggests 

some conformational disorder of the hydrocarbon segments in these FnH11SH SAMs, i.e. the 

conformation of these segments is distorted to some extent as compared to the all trans form. 

Note the deterioration of the conformation order for short hydrocarbon chain, which is just the 

present case, has been observed in the study of DDT SAM on GaAs (001).45  

Despite the bending potential model explained the similar tilt of the hydrocarbon segments, 

it has to be noted the average tilt angles of the hydrocarbon segments coincide with the free 

joint model. According to this model, the most favorable intermolecular interaction is 

maximized with the equilibrium chain-chain distance near ≈4.4 Å.2,14 From the HRXPS 

results, the lattice distance for these FnH11SH monolayers is calculated to be ~5.7 Å, and 

these tilt angles (~39°) are well suitable to achieve the equilibrium spacing (4.4 Å) between 

the hydrocarbon chains. (the intermolecular spacing is equal to the 2D lattice constant 

multiplied by the cosine of the tilt angle) However, we think that the existing conformation 

disorder of the hydrocarbon segments is mostly responsible for these slightly larger angles 

(~39°) within the free joint model.  



Structure of Self-Assembled Monolayers of Partially Fluorinated Alkanethiols on GaAs(001) substrate 

 

- 100 - 
 

 

 

Summary of chapter 7 

    A series of SAMs formed on GaAs (001) by PFAT molecules with a variable length of the 

fluorocarbon segment and a constant length of the hydrocarbon segment, viz. FnH11SH (n = 

6, 8, and 10) was studied using XPS, IRRAS, synchrotron-based HRXPS and NEXAFS 

spectroscopy. These FnH11SH SAMs were found to be highly ordered and densely packed, 

and hence able to protect the GaAs substrate from oxidation. This protection is more effective 

for the FnH11SH film with the longer fluorocarbon segment due to its better film quality. The 

packing density of these FnH11SH films was governed by the bulky fluorocarbon segments 

typical of helical conformation, with the average molecular spacing of ~5.7 Å, close to the 

van der Waals diameter of this segment. The packing density exhibited a slight decrease with 

decreasing length of the fluorocarbon segment, but this tendency did not correlate with the 

observed change of the average inclination of these moieties. Thus, similar to the 

FnH11SH/Au system, the observed change was also mainly associated with a partial 

deterioration of the orientational order in the fluorocarbon part of the FnH11SH/GaAs SAMs.  

    In contrast to the fluorocarbon parts, the hydrocarbon segments in FnH11SH/GaAs exhibit 

similar orientation. The average tilt angles (~39°) of these segments are close to the optimum 

one (~27  35°) determined by the bending potential for AT SAMs on GaAs; this suggests, 

once more, the predominant role of this potential in determining the orientation of the 

hydrocarbon segments in substituted AT SAMs on GaAs. The slightly higher values of the 

average tilt angles on GaAs as compared to Au suggest that the conformation of the 

hydrocarbon chains in the FnH11SH SAMs is distorted to some extent as compared to the all 

trans form.  
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Chapter 8: SAM of Non-substituted Alkaneselenolate on GaAs (001) 

 

So far, the most popular headgroup for the preparation of SAMs on metals and 

semiconductors, in particular GaAs, is thiol, which provides a sufficient strong and stable 

bonding to the respective surfaces.6,34 A prospective alternative of the commonly used thiol is 

selenol, since the chemical properties of sulfur and selenium are quite similar. Both elements 

have the same valence electron configurations and are neighbors in the VIB column of the 

periodic table. However, despite these similarities, only limilted work has so far been done on 

selenol-derived SAMs, and only on metal substrates;24,25,81-83,120,171-180 these SAMs can be 

fabricated from the precursors of both selenol120,171,175-177,179 and diselenide,24,25,81-83,171-

174,177,178,180 with the film quality in some cases superior than the respective thiol analogue.83  

The Se-based precursors bond to the metal, commonly Au and Ag, substrate through one 

selenolate bond (metal−Se−C). Compared with the conventional thiolate bond (metal−S−C), 

this selenolate bond is considered to be stronger and weaker in the case of Au and Ag, 

respectively.81 In addition to the strength of the selenolate bond, it has been proven that the 

bending potential of the selenolate bond mimics that of the thiolate bond; and this potential is 

the deciding factor in the balance of structural building forces in alkaneselenolate SAMs on 

metal (Au and Ag) substrates.24,25  

In contrast to the metal substrates, till now, only thiol-based precursors have been used for 

molecular assembly on GaAs substrate.33,55,58,59 Accordingly, instead of the exclusively used 

thiol, one selenol-based diselenide (C16H33SeSeH33C16, denoted as C16Se with its molecular 

structure shown in Scheme 1.3), the type of which commonly used for growing selenolate 

SAMs on metals, has been used for molecular assembly on the GaAs (001) substrate. The 

structure of this non-substituted alkaneselenolate SAM has been studied in detail mainly by 

synchrotron-based HRXPS and NEXAFS spectroscopy. Both techniques are highly sensitive 

and chemically specific. They provide complementary information on chemical identity of the 

C16Se film and the C16Se/GaAs interface as well as give an insight into the film structure.  

 

 

 



SAM of Non-substituted Alkaneselenolate on GaAs (001) 

 

- 102 - 
 

8.1 Results 

8.1.1 HRXPS 

The As 3d and Ga 3d HRXPS spectra of C16Se and C16SH (hexadecanethiol, denoted as 

C16SH in this chapter) SAMs on GaAs (001) are presented in Figure 8.1 and 8.2, 

respectively; the spectra of C16SH SAM were included for comparison because of its 

comparable molecular chain length with C16Se in the SAM fashion. These spectra were 

acquired at photon energies (PEs) of 580 eV and 350 eV, while the latter photon energy (PE) 

is chosen to achieve a higher surface sensitivity, since the corresponding smaller effective 

sample depth (d≈3λ, ~35 Å)70 ensures a larger spectral weight for the contributions from the 

topmost layers. Both the As 3d and Ga 3d spectra can be tentatively decomposed like ODT 

SAM, as described in chapter 4.  

 

In Figure 8.1, The As 3d spectra of these two SAMs taken at different PEs are dominated 

by peaks related to the stoichiometric GaAs (light gray) and elemental As (gray), weak 

oxidation related features are observed, in particular in the spectra taken at lower PE (350 

eV). Like C16SH SAM, one black doublet at ~42.35 eV is observed for the C16Se SAM; this 

doublet is assigned to the species related to the anchoring group, namely Se-As. This suggests 

that C16Se molecules predominantly bond to the As atoms of the GaAs substrate, the 

predominant bonding to As atoms were also observed in alkanethiolate SAMs on GaAs.44,55,58 

In addition, the spectra proportion related to peaks for As-Se species, elemental As, and As 

oxides increases with decreasing kinetic energy of the photoelectrons, corresponding to the 

 
Figure 8.1: As 3d HRXPS spectra of C16Se and C16SH SAMs 
on GaAs (001). The spectra were acquired at photon energies 
of 350 (left) and 580 eV (right), respectively. The spectra are 
decomposed into several doublets related to individual 
chemical species: Light gray: stoichiometric GaAs; dark gray: 
elementary As; black: Se-As. The shoulders at the higher 
binding energy side of the shadowed doublets correspond to 
As oxides. The assignments were performed in accordance 
with refs 44, 55, 58.  

 

 
Figure 8.2: Ga 3d HRXPS spectra of C16Se and C16SH SAMs 
on GaAs (001). The spectra were acquired at photon energies 
of 350 (left) and 580 eV (right), respectively. The spectra are 
decomposed into several doublets related to individual 
chemical species: Light gray: stoichiometric GaAs; dark gray: 
Ga oxide or surface Ga 3d component. The shoulders at the 
higher binding energy side of the shadowed doublets 
correspond to Ga oxides. The assignments were performed in 
accordance with refs 44, 55, 58.  
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decreasing sampling depth, which indicates that all these components are located at the near 

surface region (i.e., at the SAM-GaAs interface).  

Similarly, the Ga3d spectra of C16Se and C16SH SAMs acquired at different PEs in 

Figure 8.2 are dominated by peaks related to the stoichiometric GaAs (light gray), while weak 

oxidation related features are observed, especially in the spectra acquired at lower PE. Despite 

the decomposition of the Ga3d spectra does not require an introduction of an additional (with 

respect to the bulk GaAs component) doublet related to the Ga-Se species, the Ga-Se bonding 

can not be excluded due to an ambiguity of the spectra fitting in the relevant BE region.  

As clearly seen, both the As 3d and Ga 3d spectra of C16Se SAM exhibit weak oxidation 

related feature, the extent of which is also comparable to that of C16SH monolayer; this  

suggests the good quality as well as the effective protection property for C16Se SAM.  

The formation of contamination-free C16Se SAM was demonstrated in the Se 3d and C 1s 

HRXPS spectra (spectra of C16SH were included for comparison) in Figure 8.3a and b, 

respectively, along with the corresponding fits. The results of fitting and a quantitative 

analysis of these spectra are provided in Table 

8.1. The Se 3d spectra of C16Se SAM 

exhibits only one single doublet, with its BE 

position (~54.5 eV) distinctly different from 

that for the bulk diselenide (~55.3 eV);178 this 

suggests: upon the adsorption of C16SeSeC16 

on GaAs, the covalent Se-Se bonds are 

cleaved through an oxidative addition 

mechanism, and selenolate-GaAs bonds are 

formed.81,82 Note the BE value is somewhat 

higher than the analogous one for 

alkaneselenolate SAMs on metal substrates 

(54.5 eV versus 54.15 eV),81 which is caused 

by the photoscreening effect in the case of 

metal; the same effect also occurs in the 

thiolate monolayers on metal and GaAs 

substrates, resulting the lower BE position (S 

2p3/2) of the S 2p emission in the case of 

metal.44 The fwhm value of the Se3d5/2 and 

 

Figure 8.3: Se 3d (a) and C 1s (b) HRXPS spectra of C16Se 
SAM on GaAs(001). The spectra were acquired at a photon 
energy of 350 eV. In (b), the C 1s spectra of C16SH SAM on 
GaAs(001) is included for comparison.  

 

Table 8.1. Binding Energy Positions (eV) and 

fwhm’s (eV; in brackets) of the Photoemission Peaks 

for C16Se and C16SH SAMs on GaAs (001)  

 C16Se  C16SH  
C 1s  

h= 350 eV  
284.76 
(0.94)  

285.01 
(0.83)  

Se 3d or S 2p  
h= 350 eV  

54.5 
(0.92)  

162.44 
(0.88)  
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Se3d3/2 peaks is 0.92 eV, which is larger than the analogous ones for alkaneselenolate SAMs 

Au (~0.74eV) and Ag (~0.51eV) substrates;81,82 taking into account that the fwhm value is a 

fingerprint of the homogeneity of the adsorption sites for the selenium head groups, these 

values suggest the increasing homogeneity of the binding sites for alkaneselenolate SAMs on 

different substrates, in a sequence of GaAs(001), Au(111), and Ag(111).  

The C 1s HRXPS spectra of C16Se and C16SH SAMs both exhibit one single emission 

peak, with no trace of contamination detected. The peak for C16Se SAM is broader as 

compared to that for C16SH SAM (0.94eV versus 0.83eV), suggesting the less homogeneity 

for the former film. In addition, the intensity of the C 1s peak for C16Se SAM is lower as 

compared to C16SH SAM. Considering these two SAMs have nearly the same molecular 

chain length in the SAM fashion, the lower intensity for the C16Se monolayer suggests its 

looser packing as compared to C16SH SAM.  

The looser packing of C16Se SAM is further supported by the effective thickness results, 

which were calculated using equation (54) by evaluating the intensity ratios of the C 1s and 

As 3d emissions, and a high quality ODT SAM with a thickness of 23.8 Å34 was selected as a 

reference model. The obtained thickness values are 15.7 Å and 21.2 Å for C16Se and C16SH 

SAMs, respectively.  

8.1.2 NEXAFS spectroscopy 

Carbon K-edge NEXAFS spectra of C16Se SAM 

acquired at X-ray incident angles of 90°, 55°, and 20° are 

presented in Figure 8.4, along with the difference between 

the 90° and 20° spectra for the C16Se and C16SH SAMs. 

The spectra exhibit a C1s absorption edge related to C1s  

continuum excitations and all characteristic absorption 

resonances of extended alkyl chains in all trans 

conformation, namely a sharp resonance at ~287.8 eV and 

two broader resonances at ~293.4 eV and ~301.6 eV. The 

former resonance, denoted as R*, is attributed to mixed 

valence Rydberg states72,104 with a dominance of Rydberg 

states,105,106 while the latter two resonances are commonly 

related to valence, antibonding C-C * and C-C´ * 

orbitals.72,107 The molecular orbitals (plane type) related to 

 

Figure 8.4: Carbon K-edge NEXAFS 
spectra of C16Se/GaAs SAM acquired at 
X-ray incident angles of 90°, 55°, and 20°, 
along with the difference between the 
90° and 20° spectra. For comparison, the 
analogous difference spectrum of 
C16SH/GaAs is also given by the dotted 
line. The characteristic absorption 
resonances are indicated.  
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the R* resonance are oriented perpendicular to the alkyl chains,11,107,108 whereas the TDM of 

the orbitals (vector type) corresponding to the C-C * and C-C´ * resonances are directed 

along the chain axis.108 Thus, the orientation of these orbitals unequivocally determine the 

orientation of the alkyl chains in the SAMs.  

The spectra exhibit pronounced dependence of the absorption resonance intensity on the 

incidence angle of X-ray, suggesting high orientation order in C16Se SAM. Considering the 

TDM directions of the R*, C-C * and C-C´ * orbitals, the positive peak at the position of R* 

resonance and the negative peaks at the positions of C-C * and C-C´ * resonances shown in 

the difference spectra indicate an upright orientation of the alkyl chains in both C16Se and 

C16SH SAMs. In addition, the peak amplitudes in the difference spectra of C16Se are 

noticeably smaller than those in the spectra of C16SH, which implies a larger molecular 

inclination in C16Se SAM, presumably also accompanying the lower orientational order.  

Apart from these qualitative considerations, a quantitative analysis can be performed, and 

the average tilt angles of alkyl chains of C16Se and C16SH SAMs can be determined. For this 

purpose, the same evaluation method as described 

in chapter 4 for ODT SAM is applied. The angular 

dependences of the R* resonance intensity ratio 

I()/I(20°) for the C16Se and C16SH SAMs are 

presented in Figure 8.5, along with the best 

theoretical fits. The derived values of the average 

tilt angles of the alkyl chains in these two SAMs 

are given at the respective fit curves; they are 18° 

and 37°, respectively. The accuracy of these values 

is ± 3−5°, which is just a general accuracy of the 

NEXAFS experiment and data evaluation 

procedure.  

8.1.3 Contact Angle Measurements 

The value of static contact angle for C16Se SAM is 102°, which suggests the hydrophobic 

property of the monolayer surface, and simultaneously indicates the formation of well-ordered 

C16Se SAM with the CH3 terminal moiety. In addition, this value is somewhat lower than the 

analogous ones for C16SH (105°) and ODT (108°) SAMs, suggesting the relatively lower 

quality of C16Se SAM as compared to these two NSAT SAMs. 

 

Figure 8.5: The angular dependence of the R* 
resonance intensity ratio I()/I(20°) for C16SH/GaAs 
(up filled triangles) and C16Se/GaAs (down open 
triangles) along with the best theoretical fits. The 
derived tilt angles are given at the respective fit 
curves.  
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8.2 Discussion 

The HRXPS, NEXAFS and contact angle data suggest that C16SeSeC16 molecules form 

contamination-free and well-ordered SAM on GaAs (001) substrate. Like NSAT SAMs, 

C16Se SAM can protect the GaAs surface effectively from oxidation. The molecules are 

bound to the substrate via a selenolate bond (GaAs-Se-C), with an upright orientation of the 

alkyl chain. The selenolate bond is formed after the cleavage of the Se-Se bond, which occurs 

by an oxidative addition mechanism upon the adsorption, similar to the formation of the 

thiolate bonds from the disulfide precursors.81-83 HRXPS results reveal the Se-As as the 

predominant bond, however, the Se-Ga bond can not be excluded as well; similar case also 

occurs in the thiolate monolayers on GaAs, i.e. S-As is observed as the predominant bonding 

mode while the existence of S-Ga bonding can not be ruled out.59  

The reported binding energy of the thiolate bond on GaAs surface (~2.1 eV) is comparable 

to that on Au.46 Here, through analyzing the Se 3d HRXPS spectra, one tentative comparison 

about the strength of the selenolate and thiolate bond on GaAs can be obtained. In the case of 

the C16Se/GaAs SAM, the Se 3d doublet (Se 3d5/2) has 0.35 eV higher BE position than that 

for alkaneselenolate SAM on Au,81 whereas the BE position of the S 2p (S 2p3/2) doublet in 

ODT/GaAs SAM is 0.5 eV higher than the analogous value in NSAT SAMs on Au.44 Since a 

lower BE is indirect indication of a higher extent of the charge transfer, i.e., a stronger bond; 

it can be assumed that the selenolate bond on GaAs is stronger than the thiolate one.81 Note, 

however, this statement is only a tentative one, since the charge transfer is not the only 

parameter affecting the BE positions of the Se 3d and S 2p doublets. Another parameter, 

namely the final state effects due to conduction electrons of the substrates (see e.g. Ref 58) 

should also be considered, in spite of the semiconductor substrate of GaAs in the present 

study.  

In spite of the effective protection property (Figure 8.1) of C16Se SAM, the quality of this 

monolayer is lower as compared to that of the C16SH SAM, including its lower coverage, 

larger molecular tilt, as well as lower orientational order. The observed lower quality is 

attributed to the difficulty in preparing selenolate SAMs, which is even difficult on Au 

substrate,81 and certainly a more complex task on such a substrate as GaAs.  
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Summary of chapter 8 

Instead of the frequently used thiol molecules, a representative selenol-based precursor, 

namely dihexadecyl diselenide (C16SeSeC16), has been successfully assembled on GaAs 

(001) surface in the SAM fashion. The molecules bond to the substrate through selenolate-

GaAs bond, which is formed after the cleavage of the Se-Se bond upon adsorption. The 

resulting C16Se SAM was found to be contamination-free and well-ordered, and thus able to 

protect the GaAs substrate effectively from oxidation.  

The structure of the C16Se SAM was compared with the analogous thiolate (C16SH) 

SAM, the C16Se SAM was found to exhibit lower packing, larger molecular tilt, as well as 

lower orientational order. These characteristics indicated its lower film quality, primarily due 

to the difficulty in preparing selenolate SAMs, in particular on the complex GaAs substrate.  
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Chapter 9: Conclusion 

 

Through careful adjustment and optimization of the preparation conditions, a variety of 

organothiol precursors, viz. NSATs, specially designed, substituted ATs, such as TPn (n = 0  

6), BPn (n = 1  6) and PFAT, as well as a representative organoselenol molecule have been 

successfully assembled on the GaAs (001) substrate in the SAM fashion; all these precursors 

form highly ordered and densely packed SAMs, and thus protect the GaAs surface from 

oxidation with the extent depending on the film quality. The structure and organization of the 

above monolayers were investigated in detail by a combination of complementary advanced 

surface characterization techniques, such as XPS, synchrotron-based HRXPS, NEXAFS 

spectroscopy, and IRRAS. The aim was to understand the molecular organization in terms of 

the structure-building interactions, which is essential for application-relevant design of the 

SAM systems.  

Firstly, as a starting point for this thesis work, the most commonly used ODT SAM was 

prepared on GaAs (001) using the method reported by D. L. Allara et al.,34 and characterized 

by a full set of the surface analysis techniques. Its quality was found to be comparable with 

the best reported one,34,33 which was essential to perform the further work on molecular 

assembly on this particular semiconductor substrate. Afterwards, through comparing the 

structure of the NSAT SAMs with different chain lengths, a pronounced chain length effect, 

existing also for all other studied SAMs on GaAs (001), was elucidated, viz. the quality of the 

SAM deteriorates with decreasing length of the molecular chain, which makes the protection 

of the GaAs substrate less effective, resulting in its partial oxidation.  

Secondly, using series of terphenyl- and methyl-terminated biphenyl-substituted AT (TPn 

and BPn) SAMs, we demonstrated the existence of a bending potential at the headgroup-

substrate interface in the AT/GaAs(001) system with a preferable GaAsSC angle of ~104°, 

which is similar to the analogous value for the AT SAMs on Au (111). In the case of TPn and 

BPn SAMs, this potential plays the dominant role in the balance of the structure-building 

interactions, mediating the odd-even variation of the molecular orientation and packing 

density. Therefore, bending potential should always be taken into account for design of future, 

functional SAMs on technologically important type of semiconductor substrates such as 

GaAs. For BPn SAMs, in addition to the predominant effect of the bending potential, chain 
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length effect was also of importance, resulting in relatively poor film quality in the case of the 

short alkyl linker, such as BP1 and BP2 monolayers.  

Thirdly, a series of SAMs formed on Au (111) by PFAT molecules with a variable length 

of the fluorocarbon segment and a constant length of the hydrocarbon segment, viz. FnH11SH 

(n = 6, 8, and 10) was studied using XPS, IRRAS, as well as synchrotron-based HRXPS, and 

NEXAFS spectroscopy. Independent of n, these segments were found to have helical and all 

trans planar conformations, respectively, typical of such entities. The packing density was 

governed by the bulkier fluorocarbon segments, with the average molecular spacing of 5.7-5.8 

Å, close to the van der Waals diameter of these segments. A slight decrease in the packing 

density was observed with decreasing length of the fluorocarbon segments, which correlated 

with the increasing average inclination of these segments at going from the F10H11SH to 

F6H11SH monolayers. The observed change in the inclination was however much stronger 

than the variation of the packing density, which led us to the assumption that this change was 

mostly associated with a partial deterioration of the orientational order in the fluorocarbon 

part of the FnH11SH SAMs. The conformational order of the fluorocarbon segments was 

mostly persistent through the FnH11SH series, contributing only slightly to the observed 

variation of the segment inclination.  

Whereas the orientational order in the fluorocarbon part of the FnH11SH SAMs varied 

with varying n and a slight variation of the conformational order could be assumed, the 

orientation and conformation of the hydrocarbon segments was found to be independent of 

this parameter. Both tilt and twist angles of the hydrocarbon segments are close to the 

analogous parameters for the non-substituted AT SAMs on Au (111), which was explained by 

the effect of the bending potential, predefining the orientation of these segments. The energy 

contribution associated with this potential is obviously large enough to keep the preferable 

orientation of the hydrocarbon segments even though they are separated beyond the 

equilibrium spacing.  

The above FnH11SH SAMs on Au served as a reference system for the analogous films on 

GaAs (001). The latter films were found to be highly ordered and densely packed, and hence 

able to protect the GaAs surface from the oxidation. This protection was more effective for 

the FnH11SH film with the longer fluorocarbon segment due to its better quality, in particular 

in terms of the high orientational order. Similar to the Au substrate, the packing density of the 

PFAT films on GaAs was governed by the bulky fluorocarbon segments, which had typical 

helical conformation. The packing density exhibited however, a slight decrease with 
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decreasing length of the fluorocarbon segment, but this tendency did not correlate with the 

observed change of the average inclination of these moieties. Thus, similar to the 

FnH11SH/Au system, the observed change was also mainly associated with a partial 

deterioration of the orientational order in the fluorocarbon part of the FnH11SH/GaAs SAMs.  

In contrast to the fluorocarbon parts, the hydrocarbon segments in FnH11SH/GaAs 

exhibited similar orientation. The average tilt angles (~39°) of these segments were close to 

the optimum one (~27  35°) determined by the bending potential for AT SAMs on GaAs; 

this suggests, once more, the predominant role of this potential in determining the orientation 

of the hydrocarbon segments in substituted AT SAMs on GaAs. The slightly higher values of 

the average tilt angles on GaAs as compared to Au suggest that the conformation of the 

hydrocarbon chains in the FnH11SH SAMs was distorted to some extent as compared to the 

all trans form.  

Finally, instead of the most frequently used thiol molecules, a representative selenol-based 

precursor, namely dihexadecyl diselenide (C16Se), was assembled on GaAs (001) in the SAM 

fashion. Compared with the analogous thiolate monolayer (C16SH/GaAs), the C16Se SAM 

exhibited lower film quality, in terms of the packing density and orientational order. The poor 

film quality is attributed to the general difficulty in preparation of selenolate SAMs, which is 

a particular complex task for such a substrate as GaAs.  

To sum up, after unraveling the structure of the NSAT monolayers and the specially 

designed SAMs, some basic structure-building factors for the molecular assembly on the 

GaAs (001) substrate such as the bending potential and the chain length effect were derived 

and studied in detail. The understanding of these factors can help one to design functional 

SAMs on this technologically important semiconductor substrate, opening an avenue for a 

variety of useful applications.  
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Appendix  

A1: Synthesis of the FnH11SH compounds  

The syntheses of the respective thiols mostly have been published,77,78 but were conducted 

with some alterations significant enough to be discussed here. For F6H11SH and F8H11SH, 

compounds with the respective carbon backbone were commercially available carrying a 

double bond in the vicinity of the perfluoroalkyl chain (FnCH=CH(CH2)9OH). This double 

bond could be hydrogenated in the presence of PtO2 (Pd on carbon did not work). To activate 

the carbon atom in 1-position, it was transformed into the respective alkyliodide using 

phosphorus and iodine. For comparison, the formation of the alkylbromide using PBr3 did not 

work out satisfactorily in our hands. The alkyliodides were reacted with thioacetate to form 

the alkyl thioacetates of which one (F8H11SH) directly was transformed into the thiol under 

the work-up conditions. For the other thioacetate, a separate hydrolysis step had to be 

performed. 

Since no similar starting material was available for the preparation of F10H11SH, we decided 

to use a protocol developed by Lee et al.,78 in which the commercially available 

perfluorodecyliodide (F10I) was coupled with undec-10-enylthioacetate via a radical addition 

reaction. To remove the iodine atom, we substituted the toxic tin compound suggested in ref 1 

by lithium tetrahydridoaluminate, which not only resulted in the replacement of the iodine 

atome by a hydrogen atom, but also in the removal of the acetyl group (see scheme below). 

The physical data of all the compounds fitted the ones given in the literature.77,78 

 

Syntheses of F6H11SH and F8H11SH: 

Hydrogenation of the 11-(perfluoro-n-hexyl)undec-10-en-1-ol and 11-(perfluoro-n-

octyl)undec-10-en-1-ol: 

The respective 11-(perfluoro-n-alkyl)undec-10-en-1-ol (5-6 mmol) was hydrogenated in 

absolute THF (50 ml) in the presence of PtO2 (80 mg) for 16 h at r.t. and a hydrogen pressure 

of 100 kPa. After filtration, the solvent was removed under reduced pressure to yield the 

colorless products (87% for the perfluorohexylderivative, 91% for the perfluorooctyl 

derivative), which were pure enough for the next step. 

1-Iodo-11-(perfluoro-n-hexyl)undecane and 1-iodo-11-(perfluoro-n-octyl)undecane: 

To the respective perfluoroalkylundecanol (5 mmol) red phosphorus (64 mg, 2.0 mmol) and 

iodine (0.66 g, 5.2 mmol) were added and the mixture was heated to 140 °C for 5 h. After 
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cooling, the product mixture was dissolved in diethyl ether and filtered through a pad of 

alumina. After removal of the solvent, the products were obtained as colorless solids (91% for 

the perfluorohexylderivative, 85% for the perfluorooctyl derivative), which were pure enough 

for the next step. 

11-(Perfluoro-n-hexyl)undecan-1-thiol and 11-(perfluoro-n-octyl)undecan-1-thiol via the 

thioacetates: 

To elemental sodium (0.16 g, 7.0 mmol) methanol (20 ml) was cautiously dropped under an 

atmosphere of nitrogen. After completion of the reaction, thioacetic acid (1.06 ml, 15.0 mmol) 

was added, followed by iodo compounds (~4.5 mmol). The resulting mixture was heated to 

70 °C for 18 h, before the volatiles were removed in vacuo. The remaining yellow solid was 

dissolved in diethyl ether and filtered through a pad of silica and the solvent was removed in 

vacuo. 

At this point, it turned out that in case of the perfluorooctyl derivative, the acetyl group was 

cleaved under the reaction conditions. This material therefore was directly purified by column 

chromatography (see below). 

The perfluorohexylundecyl thioacetate (yellowish oil, 84%) was reacted with NaOH (0.24 g, 

6.0 mmol) in methanol (20 ml) at reflux temperature under rigorous exclusion of air. After 

acidification with conc. HCl (3 ml), the volatiles were removed in vacuo and remaining 

material was chromatographed on silica using a gradient starting from 

cyclohexane/dichloromethane 99/1 to obtain the products. 

F6H11SH: colorless oil, 93%, 1H NMR (CDCl3, 200 MHz): δ/ppm = 1.20-1.48 (m, 15H, 

(CH2)7 and SH), 1.51-1.72 (m, 4H, CH2CH2SH and CH2CH2CF2), 1.88-2.24 (m, 2H, 

CH2CF2), 2.54 (q, 2H, J=7.3 Hz, CH2SH); MS (EI): m/z = 505 (4%, [M-H]+), 472 (100%, 

[M-H2S]+), 55 (92%, [C4H7]
+). 

F8H11SH: colorless solid, 88%, mp 46-47.5 °C (49.7 °C)77, 1H NMR (CDCl3, 200 MHz): 

δ/ppm = 1.21-1.48 (m, 15H, (CH2)7 and SH), 1.55-1.70 (m, 6H, CH2CH2SH, CH2CH2CF2, 

and CH2CF2), 2.54 (q, 2H, J=7.4 Hz, CH2SH); MS (EI): m/z = 605 (6%, [M-H]+), 572 

(100%, [M-H2S]+), 55 (64%, [C4H7]
+). 
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Synthesis of F10H11SH: 

 

To a mixture of perfluorodecyl-1-iodide (3.55 g, 5.5 mmol) and undec-11-enyl-1-thioacetate 

(1.14 g, 5 mmol) in a 10 mL Schlenk tube azoisobutyronitrile (AIBN, 10 mg) was added, 

before the mixture was heated to 90 °C under N2 for a total of 30 h. The addition of AIBN 

(10 mg each) was repeated every 3 h.  

After cooling, the reaction mixture was dissolved in THF and added dropwise to a suspension 

of LiAlH4 (0.48 g, 13 mmol) in THF (25 ml) at room temperature. After the mixture was 

stirred at 50 °C for 16 h, it was quenched with dil. HCl and the THF was removed by rotary 

evaporation. The product was extracted three times from the heterogeneous mixture with 

CH2Cl2, the organic extracts were washed with water and concentrated in vacuo. The crude 

product was chromatographed on silica using a gradient starting from 

hexane/dichloromethane 50/1 to obtain a colorless solid (2.0 g, 2.8 mmol, 56%). 

F10H11SH: mp 71-72 °C (73.4 °C)77, 1H NMR (CDCl3, 200 MHz): δ/ppm = 1.24-1.43 (m, 

15H, (CH2)7 and SH), 1.53-1.78 (m, 4H, CH2CH2SH and CH2CH2CF2), 1.85-2.32 (m, 2H, 

CH2CF2), 2.52 (q, 2H, J=7.4 Hz, CH2SH). 

  

CF3(CF2)9 I
S

O

9

9

S

O

CF3(CF2)9

I

9

SHCF3(CF2)9

+

AIBN

LiAlH4
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A2: Additional IR dataset for FnH11SH SAMs on Au  

 

Table S1. Infrared vibrational modes of F6H11SH, along with the respective assignments. 

Wavenumbers are given in cm
-1

.  

 
mode assignment

a
  IRRAS

b
  

neat 

substance
b
  DFT  TDM

c
  

1   as CF
2
  CH

2
  1146 s  1143 vs  1158  almost perpendicular to 

helical axis  

2   as CF
3
  as CF

2
  CH

2
  1247 s  1234 vs  1220  almost perpendicular to 

helical axis  

3   s CF
2
  s CF

3
  1322 s  1317 m  1272  almost parallel to helical 

axis  

4   s CF
2
  CC helix  1368 s  1365 m  1323  almost parallel to helical 

axis  

5   s CH
2
  2850 m  2856 m  2943  parallel to CCC 

backbone plane  

6   as CH
2
  2919 m  2926 m  2998  perpendicular to CCC 

backbone plane  
a) Abbreviations used: -stretch, -torsion, -wagging; as-asymmetric, s-symmetric  
b) Abbreviations used: vs-very strong, s-strong, m-medium, w-weak  
c) Information on the direction of the vibrational mode's transition dipole moment  
 

 

Figure S1: IR spectra of the F6H11SH species. a) IRRA spectrum of the F6H11SH SAM on Au. b) Spectrum of the neat substance, 

recorded with an ATR unit. c) Spectrum of an isolated molecule, calculated with DFT. Two scale bars indicate the absorbance 

intensities of the experimental spectra. A couple of bands are marked with numbers. See Table S1 for details.  
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Table S2. Infrared vibrational modes of F8H11SH, along with the respective assignments. 

Wavenumbers are given in cm
-1

.  

 
mode assignment

a
  IRRAS

b
  

neat 

substance
b
  DFT  TDM

c
  

1   as CF
2
  CH

2
  1151 m  1166 m  1161  almost perpendicular to 

helical axis  

2   as CF
3
  as CF

2
  CH

2
  1246 s  1231 vs sh  1222  almost perpendicular to 

helical axis  

3   s CF
2
  s CF

3
  CC helix  1335 s  1321 m  1285  almost parallel to helical 

axis  

4   s CF
2
  s CF

3
  CC helix  1373 m  1355 m  1328  almost parallel to helical 

axis  

5   s CH
2
  2851 m  2856 m  2943  parallel to CCC 

backbone plane  

6   as CH
2
  2920 m  2926 m  3000  perpendicular to CCC 

backbone plane  
a) Abbreviations used: -stretch, -torsion, -wagging; as-asymmetric, s-symmetric  
b) Abbreviations used: vs-very strong, s-strong, m-medium, w-weak, sh-shoulder  
c) Information on the direction of the vibrational mode's transition dipole moment  

 

Figure S2: IR spectra of the F8H11SH species. a) IRRA spectrum of the F8H11SH SAM on Au. b) Spectrum of the neat substance, 

recorded with an ATR unit. c) Spectrum of an isolated molecule, calculated with DFT. Two scale bars indicate the absorbance 

intensities of the experimental spectra. A couple of bands are marked with numbers. See Table S2 for details. 
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Table S3. Infrared vibrational modes of F10H11SH, along with the respective assignments. 

Wavenumbers are given in cm
-1

.  

 
mode assignment

a
  IRRAS

b
  

neat 

substance
b
  DFT  TDM

c
  

1   as CF
2
  CH

2
  CH

2
  1154 m  1149 vs  1146  almost perpendicular to 

helical axis  

2  
 as CF

3
  as CF

2
  CH

2 

 CH
2
  1252 s  1240 m sh  1226  almost perpendicular to 

helical axis  

3   s CF
2
  s CF

3
  CC helix  1345 s  1342 w  1297  almost parallel to helical 

axis  

4   s CF
2
  CC helix  1375 m  1374 w  1330  almost parallel to helical 

axis  

5   s CH
2
  2851 m  2851 w  2941  parallel to CCC 

backbone plane  

6   as CH
2
  2920 m  2921 m  2999  perpendicular to CCC 

backbone plane  
a) Abbreviations used: -stretch, -torsion, -wagging; as-asymmetric, s-symmetric  
b) Abbreviations used: vs-very strong, s-strong, m-medium, w-weak, sh-shoulder  
c) Information on the direction of the vibrational mode's transition dipole moment  

 

Figure S3: IR spectra of the F10H11SH species. a) IRRA spectrum of the F10H11SH SAM on Au. b) Spectrum of the neat 

substance, recorded with an ATR unit. c) Spectrum of an isolated molecule, calculated with DFT. Two scale bars indicate the 

absorbance intensities of the experimental spectra. A couple of bands are marked with numbers. See Table S3 for details.  
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A3: Abbreviations  

AT Alkanethiol 

ATs Alkanethiols 

BE Binding Energy 

BPn -(4´-methyl-biphenyl-4-yl)-alkanethiols, CH3(C6H4)2(CH2)nSH (n=1 − 6) 

C16Se Dihexadecyl Diselenide, C16H33SeSeC16H33 

C16SH Hexadecanethiol, C16H33SH 

DDT Dodecanethiol, C12H25SH 

FnH11SH CF3(CF2)n-1(CH2)11SH 

fwhm full width at half-maximum 

HDT Hexadecanethiol, C16H33SH 

HRXPS High Resolution XPS 

IRRAS InfraRed Reflection Absorption Spectroscopy 

KE Kinetic Energy 

NEXAFS Near Edge X-ray Absorption Fine Structure 

NSAT Non-substituted Alkanethiol 

NSATs Non-substituted Alkanethiols 

ODT Octadecanethiol, C18H37SH 

PE Photon Energy 

PFAT Partially Fluorinated Alkanethiols 

PTFE Poly(tetrafluoroethylene) 

rms Root mean square 

SAM Self-Assembled Monolayer 

SAMs Self-Assembled Monolayers 

TDM Transition Dipole Moment 

TDMs Transition Dipole Moments 

TPn 4,4´-terphenyl-substituted alkanethiols, C6H5(C6H4)2(CH2)nSH (n=0 − 6) 

XPS X-ray Photoelectron Spectroscopy 

vdW Van der Waals 
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