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Abstract

In this thesis we examine universal scaling properties of strongly-correlated systems near

and far from equilibrium. We discuss quantum phase transitions at vanishing temperature,

multicritical and dynamic critical behavior near thermal equilibrium, and scaling properties of

nonequilibrium steady states. We employ nonperturbative methods including the functional

renormalization group as well as Monte Carlo simulations. A general outline of the functional

renormalization group is given in the introductory chapters.

In the first part of this thesis, we investigate spinless fermions on the honeycomb lattice

interacting via short-range repulsive interactions. Such a system can be seen as a simple model

for suspended graphene. The short-range interactions control the ground state properties of

the system that may lead to a chiral phase transition from the semimetal to the charge

density wave (CDW)/Kekulé ordered state. We determine the universal scaling properties at

the chiral transition, and establish the presence of large anomalous dimensions indicating the

importance of strong fluctuations.

The competition of two nonvanishing order parameters and their corresponding multicrit-

ical behavior are investigated in the subsequent chapter. We characterize the bicritical and

tetracritical behavior in the purely bosonic O(N1) ⊕ O(N2) symmetric model and comment

on possible applications to condensed-matter and high-energy physics.

In the following chapter we discuss the long-time relaxational behavior at criticality of an

order parameter with O(N) symmetry coupled to an additional conserved density. We find

an anomalous diffusion phase with new dynamic scaling properties. Using the functional

renormalization group we determine the complete dynamic critical behavior of the model in

2 < d < 4 dimensions and compare our results to experiments.

Finally, we investigate the scaling properties of stationary states far from equilibrium.

At the example of the one-dimensional Burgers’ equation we develop a novel approach to

hydrodynamic turbulence using lattice Monte Carlo methods. We apply these techniques to

determine the statistical properties of small-scale fluctuations in this model and identify the

anomalous scaling behavior.



Zusammenfassung

Diese Dissertation befasst sich mit universellem Skalierungsverhalten in stark-korrelierten

Systemen nah und fern des Gleichgewichts. Wir untersuchen Quantenphasenübergänge bei

verschwindender Temperatur, multikritisches Verhalten und dynamisches kritisches Verhal-

ten im bzw. nahe dem thermischen Gleichgewicht, sowie das Skalierungsverhalten stationärer

Nichtgleichgewichtszustände mittels verschiedener nichtperturbativer Methoden, wie der funk-

tionalen Renormierungsgruppe, sowie Monte Carlo Methoden. In den einleitenden Kapiteln

dieser Arbeit geben wir einen kurzen Überblick zur funktionalen Renormierungsgruppe.

Im ersten Hauptteil dieser Arbeit, betrachten wir ein einfaches Modell für Graphen – ein

System aus spinlosen Fermionen auf dem hexagonalen Gitter mit kurzreichweitigen Wechsel-

wirkungen. Diese kontrollieren maßgeblich den Grundzustand des Systems, wobei im Falle

starker Kopplung ein chiraler Phasenübergang vom Semimetall zum Ladungsdichtewelle/Ke-

kulé-geordneten Zustand beschrieben wird. Hier bestimmen wir die kritischen Eigenschaften

am chiralen Phasenübergang und beobachten insbesondere große Werte für die anomale Di-

mension des Ordnungsparameters und der Fermionen, welche auf eine Dominanz starker Fluk-

tuationen hinweisen.

Die Wechselwirkung zweier nicht verschwindender Ordnungsparameter und das entspre-

chende kritische Verhalten nahe einem multikritischen Punkt wird im darauf folgenden Kapitel

diskutiert. In einem rein bosonischen Modell mit O(N1) ⊕ O(N2)-Symmetrie charakterisie-

ren wir entsprechendes bikritisches bzw. tetrakritisches Verhalten mittels der funktionalen

Renormierungsgruppe und beschreiben mögliche Anwendungen für stark-korrelierte Systeme

in der Festkörper- und Hochenergiephysik.

Im folgenden Kapitel befassen wir uns mit dem Langzeit-Relaxationsverhalten eines O(N)-

symmetrischen Ordnungsparameters nahe dem kritischen Punkt, in Anwesenheit einer zusät-

zlichen Erhaltungsgröße. Hier finden wir ein Regime anomaler Diffusion mit neuen dynamis-

chen Skalierungseigenschaften. Im Rahmen der funktionalen Renormierungsgruppe bestim-

men wir das vollständige dynamische Phasendiagramm des Modells in 2 < d < 4 Dimensionen

und vergleichen unsere Ergebnisse mit experimentellen Daten.

Schließlich untersuchen wir das Skalierungsverhalten in stationären Zuständen fern des

Gleichgewichts. Am Beispiel der eindimensionalen Burgers-Gleichung beschreiben wir einen

neuen Zugang zu hydrodynamischer Turbulenz mittels Monte Carlo Methoden. Wir bestim-

men das statistische Verhalten kurzreichweitigen Fluktuationen in diesem Modell, sowie deren

anomale Skalierungseigenschaften.
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1. Introduction

Phase transitions are ubiquitous in nature. They distinguish different thermodynamic phases

or ground state properties of quantum many-body systems. However, there are exceptional

points in the phase diagram where such a distinction becomes no longer possible. An example

for such a critical point is observed in the phase diagram of carbon dioxide CO2, where

above the critical temperature Tc the liquid-gas transition ceases to exist and the system is

described by a single supercritical fluid phase [1]. There are numerous other examples for such

continuous phase transitions ranging from ferromagnetic and liquid-gas systems encountered

in condensed-matter physics [2] to the critical endpoint in the phase diagram of quantum

chromodynamics (QCD) probed by high-energy heavy-ion experiments (see Ref. [3] for a

review). The single property that characterizes such points is the phenomenon of scale-

invariance. As one approaches the critical point the characteristic scale of correlations ξ

diverges and fluctuations become equally important on all length scales. This is beautifully

illustrated by the observation of critical opalescence in light-scattering experiments of critical

fluids. At the critical point where ξ →∞ the properties of the system become insensitive to the

microscopic details of the inter-atomic interactions and one observes universality. Independent

of the specific material properties, the critical behavior close to a continuous phase transition is

characterized by a set of critical exponents, universal amplitude ratios, and scaling functions

that determine the role of fluctuations for the system. Based on these quantities different

systems may be grouped together in universality classes that fully characterize the properties

of strongly-correlated systems in the critical state. While the concept of scale-invariance and

universality seem very appealing from a theoretical point of view, one might wonder why

our daily experience does not fit into this picture. Why do most systems exhibit a clear

scale-dependence while at the critical point the system seems to simplify so considerably?

As naive as this question might sound, it is a very fundamental one. In fact, the same

question arises in a somewhat different incarnation in quantum field theory, where back in

the 1960s calculations of the fundamental properties of quantum fields in quantum electrody-

namics (QED) were plagued by ultraviolet divergences (see Ref. [4] for a historical account).

To obtain finite results one has to add counterterms to the theory that lead to a cancellation

of divergences. However, to make contact with experiment an additional renormalization scale

needs to be supplied, where the theory is fit to experimental data. Providing this informa-

tion it is then possible to connect the behavior of the theory at different energy scales. Thus,

quantum field theory does not explain the fundamental origin of the parameters and couplings

in the theory, e.g., the U(1) gauge coupling, but rather provides an explanation why these
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quantities change with the energy scale at which they are measured. The scale-dependence

is due to the quantum fluctuations in the vacuum state. While this procedure has led to a

remarkable success of quantum field theory fitting extraordinarily well to high-precision QED

experimental data (see [5] for a comprehensive review), at that time many people remained

skeptical about the theoretical significance of the renormalization program. Indeed, back then

the requirement of renormalizability seemed to be of a mere technical nature, necessary to

yield finite results and was difficult to understand from a fundamental perspective.

In 1971 K. G. Wilson noticed the striking analogy between the scale-dependence observed

in quantum field theory and the theory of phase transitions leading to the development of

the renormalization group [6, 7] thereby giving a natural explanation for the seemingly ad

hoc renormalization procedure that was developed in field theory in the decades before. The

renormalization group interprets the scale-dependence of a given theory as the flow of its

parameters under renormalization group transformations in an abstract space of theories. A

single renormalized trajectory in this infinite-dimensional space therefore captures the be-

havior of a theory on a range of different scales. The significance of this idea was that the

renormalization group transformations naturally lead to fixed points where the the physics is

invariant under scale transformations. It is these special points in theory space that corre-

spond to the critical phenomena that one observes at a continuous phase transition. There

the behavior of the theory simplifies considerably, where the characteristics of fluctuations

is captured by a finite set of quantities. Based on the huge amount of accumulated data on

critical phenomena, both from experiment and numerical simulations, these ideas were simple

to test which led to an immediate acceptance of the theory.

The presence of fixed points in the renormalization group flow strongly influences the possi-

ble types of behavior dividing the theory space into different attraction domains. It thus gives

a clear explanation for the observation of universal scaling behavior. It relates to different

renormalization group trajectories running to one and the same fixed point of the renormal-

ization group. Thus, fixed points serve to characterize the infinite realm of possible theories

into distinct universality classes fixed by just a few properties like the dimensionality or sym-

metries of the problem. In fact, the simplicity of the renormalization group flow at these fixed

points allows for a straightforward classification and quantitative description of the critical

scaling properties which yields an impressive accuracy compared to experimental data (see

Ref. [8] for a comprehensive review). From the ground state properties of systems at zero

temperature to systems far from equilibrium, at a fixed point of the renormalization group

these theories drastically simplify. The renormalization group provides a unifying framework

for our understanding of the behavior of systems at different scales.

While the underlying idea of the renormalization group is both remarkably simple and pro-

found, in practice it might be very difficult to establish the critical properties of a particular

model. Close to a critical point the fluctuations generally lead to strong correlations in the

system, where perturbative techniques are only of limited use. An exception is given by the
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O(N) symmetric model which is super-renormalizable in three dimensions (see, e.g., [9]). This

allows for a direct calculation of the critical properties in d = 3 Euclidean dimensions in the

symmetric phase by use of sophisticated resummation techniques [10]. The ǫ-expansion devel-

oped in [11, 12] enables a computation of critical exponents around the upper or lower critical

dimension but also requires some resummation procedure. Alternative nonperturbative ex-

pansion schemes, e.g., in the number of field components N [13] provide valuable information

but are unable to access the physically interesting regime, where typically N ≃ O(1). Nonper-

turbative techniques that do not rely on the expansion in a small parameter are called for and

in particular necessary to capture the physics at strong coupling fixed points. The functional

renormalization group [14, 15] provides a nonperturbative formulation that is particularly

well-suited for practical calculations (see [16–18] for an elementary introduction). It has been

successfully applied to the calculation of static equilibrium critical properties [17, 19, 20], to

the dynamic critical scaling for purely relaxational models [21], to field theories driven to a

nonequilibrium steady state [22–24], as well as to stationary transport solutions described by

nonthermal fixed points [25, 26].

In chapter 2 of this thesis, we give an account of the functional renormalization group where

we derive the renormalization group flow equation that is employed extensively in this work.

In the following chapters we consider different examples of fixed point solutions relating to the

ground state properties of quantum many body systems, multicritical phenomena, dynamic

critical behavior near equilibrium, and scaling properties far from equilibrium. In the first

three chapters of this thesis, chapters 2 – 5, we apply the functional renormalization group

to determine the static and dynamic critical scaling properties. In chapter 6 we employ

Monte Carlo methods to determine the statistical properties of small-scale fluctuations in the

stationary state far from equilibrium. In the following, we give a detailed outline of this thesis:

In chapter 3 we consider the quantum ground state properties of a system of spinless

fermions on the honeycomb lattice. We discuss a particular example of a quantum critical

point that describes a transition from a semimetal to a charge density wave/Kekulé-ordered

state. In the semimetal phase this system features distinct points in the first Brillouin zone,

so-called Dirac points, where one observes a massless linear dispersion of the quasi-particles,

resembling the properties of low-energy excitations in graphene [27, 28]. The transition in

the ground state properties describes a change in the spectrum of the theory, leading to the

opening of a finite energy gap. Such a change can be induced either by applying an external

perturbation to the system, or dynamically by strong interactions. Indeed, the vanishing

density of states at the Dirac point rules out any screening of interactions and this makes

the system in particular susceptible to interaction effects. Whether such a quantum phase

transition is induced by the strong electron-electron interactions in suspended graphene has

been a much investigated question [29–35]. The current experimental evidence does not seem

to provide an indication for a finite gap however indicates the importance of interactions

which lead to a strong renormalization of energy spectrum [36]. Also other experimental

results indicate that graphene may be close to a quantum critical point (see, e.g., [30]). In
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that case, it is important to quantify the scaling behavior at the transition since it may

determine the physical response of the system [37]. Here, we determine the critical properties

of the continuous quantum phase transition using a low-energy effective U(2) symmetric

matrix-Yukawa model in the framework of the functional renormalization group, where we

find evidence for a strong dominance of fluctuations.

In chapter 4, we discuss the critical behavior in theories with two competing order parame-

ters. For such systems, the intricate interplay of fluctuations may yield a multicritical point in

the phase diagram where one observes scaling properties distinct from the respective critical

lines. In fact, the system is in a different universality class and new critical exponents may

occur. Such models have been applied to describe a wide variety of systems ranging from

ultracold atoms to extreme states of matter in QCD (see [38] for a review). Here, we give

an account of these models and investigate their critical scaling behavior with the functional

renormalization group. We find different fixed point solutions that relate either to bicritical or

tetracritical scaling behavior in the phase diagram and we discuss the relation of our results

to available data from field-theoretic expansions, experiment, and Monte Carlo simulations.

In chapter 5 we consider the dynamic critical scaling behavior of scalar models in the long-

time limit. The critical dynamics with a single relaxational order parameter has been studied

previously in the context of the functional renormalization group [21]. However, the presence

of conserved quantities strongly influences the dynamics [39] and it is therefore important to

couple the system to additional modes related to the relevant conservation laws. Here, we

provide a first analysis of such a scenario in the context of the functional renormalization

group at the example of a O(N) symmetric model coupled to a conserved density. This

model features a complex phase diagram with different types of dynamic critical behavior.

In particular, we establish the existence of an anomalous diffusion phase with new dynamic

scaling properties. The existence of such a phase has been controversially discussed in the

framework of the ǫ-expansion [40–43] with no clear conclusion on its existence or scaling

properties. A more recent work even ruled out its existence based on the ǫ-expansion to two-

loop order [43]. The functional renormalization group does not rely on such a small expansion

parameter and provides an unambiguous identification of this phase.

Finally, in chapter 6 we describe a new numerical approach to determine the scaling proper-

ties of nonequilibrium steady states based on the functional integral formulation of classical-

statistical dynamics [44–46] using lattice Monte Carlo simulations. Possible strategies to sam-

ple field configurations in the stationary nonequilibrium state are explored in detail explaining

necessary adaptions of lattice Monte Carlo techniques to real-time dynamics. We apply these

methods to a simple model for hydrodynamic turbulence – the random-force-driven Burgers’

equation (see, e.g., the reviews [47, 48]). This model provides for a clear understanding of the

basic mechanisms leading to the strong deviations from Gaussian behavior (intermittency)

associated to the universal anomalous scaling behavior observed in various systems displaying

hydrodynamic turbulence [49]. We determine the scaling spectrum of small-scale fluctuations
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and find indications for a transition to a universal scaling regime.
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2. Functional renormalization group

In the following, we give an account of the functional renormalization group (RG) and il-

lustrate how critical exponents can be determined for a particular system of interest. Very

good reviews exist in the literature [14, 16–20, 50–54] that give an overview over the technical

details of functional renormalization, formal developments, as well as physical applications.

For the interested reader (and for a more detailed account) we refer to these references. Here,

we consider the O(N) symmetric theory in d Euclidean dimensions as a simple example. We

illustrate the construction of the functional flow equation for the scale-dependent effective

action and discuss typical approximations that are used to solve the RG flow. We also com-

ment on the inclusion of fermions and the derivation of real-time properties from the effective

action.

The complete information about a theory or a physical system in general resides in corre-

lation functions which are defined in terms of the generating functional

Z[J ] =

∫
[dϕ] e−S[ϕ]+

∫
ddx Ja(x)ϕa(x) . (2.1)

The functional measure [dϕ] =
∏

x dϕ(x) is rigorously defined in the presence of some ultra-

violet cutoff Λ and (2.1) is defined in the limit, where the cutoff is removed from the theory

(assuming that such a limit exists). This provides a nonperturbative definition of the theory,

where the classical action S[ϕ] may include arbitrary powers of the fields. However, there are

few situation where the functional integral can be solved exactly. Typically, one has to rely

on some approximation based on an expansion in powers of a small parameter. On the other

hand, one may attempt to solve the theory using numerical lattice Monte Carlo methods (see,

e.g., [55, 56] for an introduction).

Here, however, we want to consider the full generating functional to derive an exact relation

that is susceptible to approximations that do not rely on a small parameter. We introduce

the generating functional of connected correlation functions

W [J ] = ln

∫
[dϕ] e−S[ϕ]+

∫
ddxJa(x)ϕa(x)

=

∞∑

n=1

1

n!

∫
ddx1 · · ·

∫
ddxn Ja1 · · · JanW

(n)
a1···an(x1, . . . , xn) , (2.2)

which defines the moments

W
(n)
a1···an(x1, . . . , xn) =

δnW [J ]

δJa1(x1) · · · δJan(xn)
, (2.3)
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that take the following form

W (1)
a (x) = 〈ϕa(x)〉 = φa(x) , (2.4)

W
(2)
ab (x, y) = 〈ϕa(x)ϕb(y)〉 − φa(x)φb(y) , (2.5)

to lowest order in the expansion (2.2). Note, that they are defined in the absence of external

sources, i.e., J = 0. While the generating functional defines the correlation functions and

includes all information on the theory, in practice it is more convenient to define an alter-

native functional that leads to a variational problem for the quantities of interest, i.e., field

expectation values or higher-order correlation functions. For that purpose, we perform the

Legendre-transform:

Γ[φ] = sup
J

{∫
ddxJa(x)φa(x)−W [J ]

}
, (2.6)

where the field-expectation value is φa is defined for nonvanishing J :

φa(x) =
δW [J ]

δJa(x)
= 〈ϕa(x)〉J , (2.7)

and Γ = Γ[φ] defines the generating functional for one-particle-irreducible (1PI) correlation

functions (see, e.g., Ref. [57] for the terminology). The functional (2.6) allows us to derive an

equation of motion for the system in the presence of nonvanishing sources:

δΓ[φ]

δφa(x)
= Ja(x) +

∫
ddy

{
δJb(y)

δφa(x)
φb(x)−

δW [J ]

δJb(y)

δJb(y)

δφa(x)

}
= Ja(x) . (2.8)

A solution φ = 〈ϕ〉J includes all contributions from quantum/statistical fluctuations. While

eq. (2.8) certainly provides for a clear interpretation, the quantity Γ still needs to be deter-

mined. After all, we have simply made definitions without actually computing (2.1). We may

obtain an expression for Γ by performing the transformation ϕ → φ + ϕ (which leaves the

functional measure invariant), whereby:

e−Γ[φ] =

∫
[dϕ] e

−S[φ+ϕ]+
∫
ddx δΓ

δφa(x)
ϕa(x) . (2.9)

Of course, this equations defines Γ in terms of a tremendously complicated equation, defining

an infinite hierarchy for the derivatives of the effective action where at each order we have to

solve the complete functional integral.

However, one might use an alternative definition of the theory that allows us to include

fluctuations in a controlled way. For that purpose we introduce an additional term to the

microscopic action

∆kS[ϕ] =
1

2

∫
ddq

(2π)d
ϕa(−q)Rk,ab(q)ϕb(q) , (2.10)

that depends on the scale-parameter k, controlling the importance of this operator. Note,

that (2.10) is quadratic in the fields and plays the role of a scale-dependent mass term. The

function Rk thus implements a mass-like cutoff that can be used to regulate the infrared

modes of the theory. This is akin to the Kadanoff-Wilson idea of successively integrating out
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momentum modes [12]. Of course, to make sure that the addition of such a term (2.10) in the

functional integral does not alter the physical properties of the theory one has to formulate

additional constraints that fix the possible form of the regulator function Rk. They are based

on the requirements that the modified theory should reproduce the correct classical limit, as

well as the full quantum/statistical correlation functions. In particular, in the limit where the

scale-parameter k is removed and all modes have been taken into account we should obtain

the full effective action Γk→0 = Γ. On the other hand, in the opposite limit, we would like to

restore the correct microscopic description of the theory. These requirements are expressed

in terms of the following limiting behavior of the regulator function

Rk(q) → ∞ , q2/k2 ≪ 1 , (2.11)

Rk(q) → 0 , q2/k2 ≫ 1 , (2.12)

The first constraint implements the requirement that the classical action should be restored

at the ultraviolet scale

lim
k→Λ

Γk = S . (2.13)

while the second property describes the inclusion of all fluctuations in the limit k → 0 where

the scale-parameter is removed and produces the full effective action:

lim
k→0

Γk = Γ . (2.14)

Apart from these conditions the regulator function may be chosen freely. By definition this

freedom should not affect the physical properties of the system, both in the classical and

quantum/statistical limit. It is important to point out that the implementation of the renor-

malization group flow in practice requires some truncation of the scale-dependent effective

action that in fact, introduces a residual dependency on the regulator. However, one may

employ certain optimization criteria to minimize their effect on the theory, when the limit

k → 0 is taken [58, 59].

The scale-parameter k can be used to to construct a flow equation for the scale-dependent

effective action Γk. We define this quantity by introducing the scale-dependent generating

functional

eWk[J ] =

∫
[dϕ] e−S[ϕ]−∆kS[ϕ]+

∫
ddx Ja(x)ϕa(x) , (2.15)

and considering its Legendre-transform:

Γk[φ] = sup
J

{∫
ddxJa(x)φa(x)−Wk[J ]

}
−∆kS[φ] . (2.16)

Taking the logarithmic scale derivative with respect to the quantity t = ln(k/Λ), where

∂

∂t
= k

∂

∂k
, (2.17)

we obtain

∂Γk

∂t
=

∂

∂t
{−Wk[J ]−∆kS[φ]} ,

=
1

2

∫
ddq

(2π)d
∂Rk,ab(q)

∂t

(
W

(2)
k

)
ab
(q) , (2.18)
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where the second functional derivative W (2)
k (q) (in the presence of nonvanishing sources J

and R) defines the inverse regularized propagator:

(
W

(2)
k

)−1
(q) = Γ

(2)
k (q) + ∆kS

(2)(q) = Γ
(2)
k (q) +Rk(q) . (2.19)

Note, that we write

W
(2)
ab (q) =

(2π)d

δ(0)

δ2Wk[φ]

δφa(−q)δφb(q)
, Γ

(2)
k,abq) =

(2π)d

δ(0)

δ2Γk[φ]

δφa(−q)δφb(q)
, etc. (2.20)

where the additional volume-dependency is removed from the two-point function by the formal

division of δ(0) = limp→0 δ(p). From these expressions, we finally derive the flow equation for

the effective average action [14]:

∂Γ

∂t
=

1

2
Tr

∫
ddq

(2π)d
∂Rk(q)

∂t

(
Γ
(2)
k (q) +Rk(q)

)−1
, (2.21)

where the trace Tr(· · · ) denotes a summation over field indices.

A similar derivation holds for fermionic degrees of freedom. In Euclidean dimension d the

Grassmann-valued fields ψ̄ and ψ define two independent degrees of freedom [60], and we

define the regulating part of the action as:

∆kS[Ψ] =
1

2

∫
ddq

(2π)d
{
ψ̄a(q)RF k,ab(q)ψb(q)− ψT

a (q)RF k,ab(q)ψ̄
T
b (q)

}
, (2.22)

where the transposition (· · · )T applies to the implicit Lorentz-indices of the spinors. Using

the property −RF k(q) = RF k(−q) we introduce the following field

Ψ(q) =

(
ψ(q)

ψ̄T (−q)

)
, (2.23)

which is convenient for later calculations. We see that we may write the regulator part of the

action in the form

∆kS[Ψ] =
1

2

∫
ddq

(2π)d
ΨT

a (−q)Rk,ab(q)Ψb(q) , (2.24)

resembling the structure of the regulating term for the scalar degrees of freedom. Here,

however, the regulator function Rk takes a block-nondiagonal form:

Rk,ab(q) =

(
0 RT

F k,ab(q)

RF k,ab(q) 0

)
. (2.25)

In fact, any additional degrees of freedom may be treated this way and we may define a formal

quantity χ that incorporates the complete field content of the respective model. Note, that it

does not correspond to a field, since the components transform in different representations of

the Lorentz group. In the following chapters we will consider theories involving both fermionic

and scalar degrees of freedom.
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Until now we have not specified the form of the regulator functions, stating simply that

they should satisfy certain limiting properties. To regulate the fluctuations, one typically

chooses regulators of the form

RB k(q) = ZB kq
2 rB k(q

2) , (2.26)

RF k(q) = ZF kq/ rF k(q
2) , (2.27)

where ZB and ZF correspond to the renormalization factors that we introduce below. They are

chosen to match the momentum-structure of the propagators which is convenient to display the

scaling properties at the fixed point. Eqs. (2.27) – (2.26) are fully defined in terms of the so-

called shape functions rB and rF that describe the scheme-dependence of the renormalization

group flow. For typical choices employed in this work see the Appendix B.

Before we go on to illustrate how the functional renormalization group flow equation can

be solved in practice, let us comment on possible applications to real-time dynamics. Apart

from our initial assumption that we restrict ourselves to d Euclidean dimension the techniques

presented here are completely extendable to calculate real-time properties. For this one typ-

ically defines the field theory on a closed time path which effectively leads to a doubling of

degrees of freedom (see, e.g., [26] for a review). This, simply enhances the field content of the

model. However, the real issue concerns the choice of the regulator function in the presence

of continuous spacetime symmetries, where the frequency/momentum-part of the propagator

is not positive-definite. Such a case requires a careful choice of the regulator function (see,

e.g., the discussion in Ref. [61]).

Of course, the solution of the flow equation relies on an appropriate truncation of the scale-

dependent effective action. Typically, an expansion around a homogeneous field configuration

φ = const. is considered, where one uses a derivative expansion [62–65]:

Γk[φ] =

∫
ddx

{
Zk(φ)(∂φ)

2 + Uk(φ) +O(∂2)
}
, (2.28)

Uk(φ) denotes the effective potential, which is defined by the momentum-independent contri-

bution to the effective action. It essentially controls the phase structure of the model while

the momentum-dependent part provides the contributions from fluctuations and is important

to obtain a reliable estimate for the critical exponents.

One might consider an expansion in an appropriate basis of field operators On(φ), where

Uk(φ) =
∑

n

ḡn,kOn(φ) , (2.29)

defined in terms of the bare couplings ḡn,k. Note, that the scale-dependence is indicated ex-

plicitly by an index and should not be confused with the expansion index. The bare couplings

may be written in the dimensionless form ḡnk
−dOn where dOn corresponds to the canonical

dimension of the operators On(φ) that are included in the expansion (2.29). Together with the

renormalization factor Zk = Zk(φ) that incorporates the effect of fluctuations, the complete
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set of couplings gn fully defines a particular truncation of the effective action to the given

order in the derivative expansion. Such a truncation to O(∂2) already captures significant

information about the critical properties at a fixed point. In particular, applied together

with the field expansion (2.29) it provides a reliable way to compute leading and subleading

critical exponents [62, 64–70]. We should note however, that the quality of the truncation

largely depends on the expected critical behavior of the model under investigation. While a

continuous phase transition is well-described by an expansion in powers of field operators, a

first-order may only be poorly resolved [71, 72].

We derive the renormalization group equations for the dimensionless renormalized cou-

plings which provides an appropriate parametrization of the RG flow to identify fixed points

solutions. Indeed, at the fixed point the physics is scale-independent and is characterized by

constant values of the parameters and couplings of the model, gn = gn,∗. The renormaliza-

tion group flow equations for the couplings gn (β-functions) decompose into a dimensional

part which comes from the canonical dimension of the corresponding operator On(φ) and an

additional contribution from (2.21)

βgn =
∂gn
∂t

= (−dOn + cnη)gn + · · · . (2.30)

The dimensional part of the flow receives additional corrections ∼ cnη from the field renor-

malization, which is encoded in the anomalous dimension

η(φ) = −∂ lnZk(φ)

∂t
, (2.31)

evaluated at the minimum of the effective action. We will write βn ≡ βgn in the following.

A fixed point corresponds to a special point theory space, where the β-functions vanish,

i.e., βn(g∗) = 0 for all n, and g∗ denotes the fixed point values. Such a point controls the

overall topology of the renormalization group flow and divides the theory space into distinct

attraction domains. It is thus important to ask about the properties of the flow in their

vicinity to understand the possible behavior of the theory. For that purpose, we consider the

linearized β-functions at the fixed point, taking the form:

βn =
∑

m

∂βn(g∗)

∂gm
(gm − gm,∗) +O(g2) . (2.32)

This enables us to ask about the stability properties under the successive inclusion of fluctu-

ations, where the fixed point will feature relevant and irrelevant directions, defined in terms

of the behavior of linear perturbations

gn − g∗ =
∑

I

cIv
I
n (k/Λ)

−θI . (2.33)

They are written in terms of the eigenbasis vI of the stability matrix (∂βn/∂gm), where

cI correspond to expansion coefficients, independent of the scale-parameter k, and Λ is the

ultraviolet scale in the system. The exponents θI define to the eigenvalues of the stability

matrix, where
∂βn(g∗)

∂gm
vIm = −θIvIn . (2.34)
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Note, that in general the eigenvalues θI may be complex. However, only the real part Re θI

determines the stability properties at the fixed point. In particular, considering the infrared

properties of the theory, we inspect the k → 0 behavior of perturbations. We may distinguish

the following cases: If Re θI > 0, the corresponding eigendirection vI describes a relevant

perturbation at the fixed point. In this case, the corresponding term (2.33) will grow when

approaching the limit k → 0, while Re θI < 0 characterizes an irrelevant perturbation that

eventually dies out in the infrared limit. In the special case, where Re θI = 0 the corresponding

operator is called marginal.

The scaling spectrum {θI} together with the anomalous dimension η characterizes the

scaling behavior in the vicinity of the critical point. Typically, however, not all critical

exponents will be independent of each other. Scaling relations might hold that relate their

values to each other. In the following chapters we will frequently encounter such relations.

For an overview on these relations we refer to [8].

This concludes our overview on the functional renormalization group. In the successive

chapters we will indicate the necessary adaptions, i.e., special choices of regulator functions

or alternative truncations explicitly.
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3. Quantum phase transition for

low-dimensional chiral fermions

Since the experimental realization of graphene [27, 28] there has been a tremendous activity

leading to new intriguing phenomena in condensed matter physics [73]. The characteristic

feature of graphene is the presence of the so-called Dirac points at the corners of the first

Brillouin zone. At these special points, a linear dispersion for the low-energy excitations

occurs [74], closely resembling that of massless relativistic fermions. The massless relativistic

dispersion leads to remarkable electronic properties. A prominent example is the observation

of the anomalous quantum Hall effect corresponding to a pseudospin–1
2 Berry phase [27,

75]. Moreover, graphene may serve as a simple toy model for studying long sought-after

quantum relativistic effects [73] as, e.g., Klein tunneling [76, 77] and Zitterbewegung [78].

These phenomena can be understood in the framework of noninteracting relativistic Dirac

fermions which are realized in monolayer graphene on a substrate. However, for suspended

graphene [79–81] the situation is different and the system is strongly influenced by the large

unscreened Coulomb interactions [82]. In what way the dynamics modifies the low-energy

behavior of the excitations in graphene is an important open question. This parallels the

situation in strongly interacting quantum field theories, as e.g., quantum chromodynamics

(QCD) where the interaction at low energies leads to the spontaneous breaking of chiral

symmetry [83]. In that sense, graphene can be seen as a laboratory for strongly interacting

fermions. For suspended graphene the essential question is whether the Coulomb interactions

are strong enough to drive the system close to an interacting fixed point. In the vicinity of a

fixed point the system is governed only by the low-energy modes. The details of the underlying

lattice theory are no longer relevant, and the theory drastically simplifies. There it often occurs

that one has additional symmetries that are not present in the lattice theory [84]. Striking

examples being the effective relativistic dispersion and the effective chiral symmetry for the

low-energy theory.

Here, we consider the situation where the low-energy theory is defined in the vicinity of

an interacting fixed point and we inquire specifically about its critical properties. In fact,

suspended graphene may be expected to be close to a nontrivial quantum critical point if

the coupling is sufficiently strong [29]. While in the perturbative regime short-range interac-

tions are irrelevant for the dynamics, at strong coupling this is not necessarily so. Local four

fermion interactions can be generated dynamically and may play an important role even for

the long-range correlated system [35, 85–87]. In the past, the role of the short-range repulsive
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interactions has been studied in the framework of the tight-binding model on the honeycomb

lattice where, depending on the strength of the interactions, a competition between the stag-

gered density and nontrivial topological phases was found [88]. Although both types of order

are conceivable, for the case of suspended graphene, one expects a semimetal-Mott insulator

phase transition [31, 32, 34, 35, 86, 87, 89–91], where the chiral symmetry is broken sponta-

neously by a nonzero vacuum expectation value of the chiral condensate. This corresponds

to a type of staggered density phase [90–92] that alternates on the two sublattices of the

bipartite honeycomb lattice.

We specifically address the critical properties for this chiral phase transition using the non-

perturbative functional renormalization group [14, 19]. In particular, we neglect the influence

of the long-range Coulomb interactions and characterize the properties of the short-range

repulsive quantum critical point. Our approach circumvents the problems of a purely per-

turbative approach close to criticality, and for the first time, allows us to follow the flow of

this model into the broken phase. Introducing composite degrees of freedom for the order

parameters, we show that our model has a continuous phase transition in the universality

class of a three-dimensional matrix Yukawa model with U(2) symmetry.

Here, we formulate the low-energy effective theory for spinless fermions on the honeycomb

lattice interacting via a short-range repulsive interaction. In particular, such a model may

be used to study the dynamics of strongly-interacting fermions in graphene. We discuss the

symmetry properties of the effective model and consider the physical significance of different

fermion bilinears in the microscopic lattice description. In the framework of the functional

renormalization group we derive the flow equations for the partially bosonized model and

determine the critical exponents at the continuous chiral phase transition. We find new

critical exponents that determine a universality class distinct from the Gross-Neveu model

typically considered for these models.

3.1. Low-energy theory

On a substrate the low-energy theory of graphene is described by the free Lagrangian

L = iψ̄aγµ∂µψ
a , (3.1)

with the linear dispersion of Dirac quasiparticles. The flavor index takes the values a =

1, . . . , Nf and characterizes the physical spin of the quasiparticles. For a single layer of

graphene, the number of Dirac fermions is Nf = 2. Here, we take Nf = 1, which corresponds

to a system of spinless fermions on the honeycomb lattice whose band structure can also be

modeled by photonic crystals [93–98]. In the following, we will leave the value Nf unspecified

as long as not stated otherwise. The low-energy excitations on the honeycomb lattice in

two space dimensions are described in terms a Lagrangian in d = 3 Euclidean space-time

dimensions, with the index µ = 0, 1, 2. That is, throughout this chapter we assume full
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Euclidean rotational invariance. For the 2+1-dimensional relativistic theory, this translates to

the statement that the dynamical critical exponent is assumed to be z = 1 and that the Fermi

velocity vF is noncritical. In fact, it has been argued that close to the semimetal-insulator

critical point Lorentz-symmetry breaking perturbations are irrelevant and that a description

in terms of a Euclidean-invariant low-energy theory is viable [87, 91, 99]. In Euclidean space-

time1 the Lagrangian (3.1) satisfies Osterwalder-Schrader reflection positivity [100], and the

spinors ψ† ≡ iψ̄γ0 are not conjugate to ψ, but instead define independent degrees of freedom.

Furthermore, we use a reducible chiral representation for the fermions where the gamma

matrices satisfy the Dirac algebra

{γµ, γν} = 2δµν , µ, ν = 0, 1, 2 , (3.2)

and are given explicitly by

γ0 =

(
0 −iσ3
iσ3 0

)
, γk =

(
0 −iσk
iσk 0

)
, k = 1, 2 , (3.3)

where σk, k = 1, 2, 3 denote the 2 × 2 Pauli matrices. Apart from these matrices the Dirac

algebra consists of the two matrices

γ3 =

(
0 1

1 0

)
, γ5 =

(
1 0

0 −1

)
, (3.4)

that anticommute with all γµ, µ = 0, 1, 2, and with each other, as well as their combination

γ35 = (i/2)[γ3, γ5]. Note, that these matrices do not appear in the Lagrangian (3.1) which

gives rise to a certain freedom to define the discrete symmetries [101] (see Sec. 3.2).

In the chiral representation the states with definite chirality

γ5ψ± = ±ψ± , (3.5)

are taken to define the excitations around the two distinct Dirac points ~K+ and ~K− =

− ~K+ at opposite corners of the first Brillouin zone. It is exactly at these two points where

the one-particle spectrum becomes linear and can be modeled by a theory of relativistic

Dirac fermions (3.1). The remaining components of the chiral left- and right-handed fermions

essentially characterize the excitations on the two triangular sublattices A and B of the

bipartite honeycomb lattice. To make this mapping explicit we give the connection to the

one-particle fermion operators that describe the hopping of electrons on the honeycomb lattice.

The free tight-binding Hamiltonian

H0 = −t
∑

〈i,j〉

(
u†a(~ri)v

a(~rj) + H. c.
)
, (3.6)

defines the dynamics, where a summation over the spin (flavor) indices a = 1, . . . , Nf is implied

(recall that the flavor index relates to the physical spin of the particles on the honeycomb

1For our Euclidean conventions see, e.g., [60].
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Figure 3.1.: (Left) The bipartite hexagonal lattice with the two sublattices A and B indicated

by full and open dots. The red arrows denote the nearest neighbor hopping in

the tight-binding Hamiltonian (3.6). (Right) The two inequivalent Dirac points
~K+ and ~K− at opposite corners of the first Brillouin zone.

lattice). Here, t is the hopping parameter and the sum is taken over all nearest neighbor

sites on the honeycomb lattice. The operators ua(~ri) and va(~rj) anticommute and define

the fermionic excitations on the two sublattices A and B. In the low-energy limit, where

we consider only the linear excitations around the two Dirac points, this model reproduces

the free Dirac Lagrangian (3.1) (in units where vF = ta
√
3/2 = 1, with a being the lattice

spacing). It is this limit that provides the connection between the microscopic degrees of

freedom that enter the dynamics (3.6) and the low-energy excitations of the continuum theory

(3.1). Following this correspondence, the Dirac spinor ψ has a direct representation in terms

of the single-particle fermionic operators ua± and va±, defined at the two Dirac points ~K±,

respectively. It is given by

ψ =




u+

iv+

iv−

u−




, ψ̄ = −
(
iv†−, u

†
−, u

†
+, iv

†
+

)
, (3.7)

up to a global phase factor, where we have dropped the flavor indices for simplicity, and we will

write them explicitly when needed. The relative phases follow from the chosen representation

of the Dirac algebra (3.3). It immediately follows that the two-component chiral left- and

right-handed fermions can be identified as

ψ+ =

(
u+

iv+

)
, ψ− =

(
iv−

u−

)
. (3.8)

Note that this identification of the spinor degrees of freedom in the chiral representation is

equivalent to the one given, e.g., in [30]. Both the decomposition of the honeycomb lattice

into the two sublattices, and the two inequivalent Dirac points in the first Brillouin zone are

illustrated in Fig. 3.1.

The low-energy theory of Dirac fermions (3.1) has a continuous U(2) chiral symmetry which

is not apparent on the level of the microscopic tight-binding model (3.6). It is generated by
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the matrices 1, γ3, γ5, and γ35 with following transformation properties

U1(1) : ψ → eiθψ , ψ̄ → ψ̄e−iθ , (3.9)

Uγ3(1) : ψ → eiγ3θψ , ψ̄ → ψ̄eiγ3θ , (3.10)

Uγ5(1) : ψ → eiγ5θψ , ψ̄ → ψ̄eiγ5θ , (3.11)

Uγ35(1) : ψ → eiγ35θψ , ψ̄ → ψ̄e−iγ35θ , (3.12)

where θ is a real parameter. In fact, this U(2) chiral symmetry leads to a global U(2Nf )

symmetry which plays an important role for the dynamics, as it constrains the possible in-

teractions for the low-energy theory close to the critical point. Specifically, for the local

four fermion interactions it is possible to define a complete set of operators that respect the

U(2Nf ) flavor symmetry [90, 91, 102]. The corresponding operators are quasi-local in the

microscopic lattice description (i.e., next neighbor and next-to-nearest neighbor). We have

four such interactions, two of which are of flavor-singlet type, with the vector Thirring-like

interaction

(ψ̄aγµψ
a)2 , (3.13)

and the scalar Gross-Neveu-like interaction

(ψ̄aγ35ψ
a)2 . (3.14)

Furthermore, there is a flavor-nondiagonal generalized Nambu-Jona-Lasinio interaction

(ψ̄aψb)2 − (ψ̄aγ3ψ
b)2 − (ψ̄aγ5ψ

b)2 + (ψ̄aγ35ψ
b)2 , (3.15)

and another flavor-nondiagonal interaction of vector-type

(ψ̄aγµψ
b)2 +

(
ψ̄aσµν√

2
ψb

)2

− (ψ̄aiγµγ3ψ
b)2 − (ψ̄aiγµγ5ψ

b)2 , (3.16)

where σµν = i
2 [γµ, γν ] and (ψ̄aΓ(j)ψb)2 ≡ ψ̄aΓ(j)ψbψ̄bΓ(j)ψa, with Γ(j) some element of the

Dirac algebra. This defines all interactions invariant under the global U(2Nf ) symmetry

[90, 91, 102]. However, this set of operators is over-complete. By Fierz transformations it

is possible to show that only two of the above operators are linearly independent. Thus,

we may choose to write any U(2Nf )-complete theory in terms of only the scalar and vector

flavor-singlet interactions

L = iψ̄aγµ∂µψ
a +

ḡV
2Nf

(
ψ̄aγµψ

a
)2

+
ḡS
2Nf

(
ψ̄aγ35ψ

a
)2

, (3.17)

which fully parametrize the short-range interactions. This theory is invariant also under the

discrete parity, charge, and time reversal operations.

3.2. Symmetry properties

A possible instability triggered by the local four fermion interactions can lead to very different

patterns of spontaneous symmetry breaking. Such an instability essentially leads to a non-

vanishing vacuum expectation value of some fermion bilinear 〈ψ̄Γ(j)ψ〉, with Γ(j) an element
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of the Dirac algebra. To identify the physical role of the order parameters in the low-energy

theory we review the properties of generic fermion bilinears under discrete symmetry trans-

formations. This enables us to map the order parameters in the low-energy theory onto the

corresponding quantities in the microscopic lattice model. Such an identification is necessary,

as different representations of the Dirac algebra may lead to very different interpretations

for the order parameters and for the fermion masses that are generated dynamically by the

interactions. It is this mapping that allows us to understand the properties of the possible

phases and their relevance for graphene.

3.2.1. Discrete symmetries

Here, we take the parity transformation to reverse both spatial coordinates. This choice re-

flects the direct mapping to the tight-binding model where the parity operation is defined

with respect to the center of the first Brillouin zone (see, e.g., the discussion in [30]). It is im-

portant to emphasize that reversing both spatial coordinates does not necessarily correspond

to a rotation in the two-dimensional plane, since the generators for both transformations in

spinor space do not have to coincide.

For the fermions parity acts in the following way

Pψ(x)P−1 = Pψ(x̃) , x̃ = (x0,−x1,−x2) , (3.18)

with the unitary matrix P acting on the spinor components. Parity transformations should

leave the kinetic term invariant, and we see that any operator of the form

P ∈ {γ0, iγ1γ2, iγ0γ3, iγ0γ5} , (3.19)

will do the trick. However, each of these possibilities can lead to very different transformation

properties for the fermion bilinears ψ̄Γ(j)ψ. E.g., in principle we could obtain a mass term iψ̄ψ

that is parity-odd. This is in contrast to the usual situation in three-dimensional relativistic

field theories where one doubles the degrees of freedom to define a parity-even mass term for

the fermions [101, 103]. Here, we want to find those order parameters that correspond to the

physical excitations on the honeycomb lattice. Therefore, we define the discrete symmetry

operations in such a way that they are consistent with the identification of the spinor com-

ponents with the one-particle fermion operators on the honeycomb lattice. It is clear that an

inversion about the center of the first Brillouin zone should exchange both, the Dirac points

and the sublattices. Since, in the chiral representation, the states with definite chirality cor-

respond to the excitations around the two inequivalent Dirac points ~K+ and ~K− = − ~K+,

this leaves only two possibilities for the operator P , namely those that exchange states with

opposite chirality: γ0 and iγ0γ5. In principle, we could choose any one of the two. We define

P = γ0 which yields the same transformation properties for the fermion bilinears ψ̄Γ(j)ψ as

in [30] so that the mass term iψ̄ψ and iψ̄γ35ψ are parity-even, whereas ψ̄γ3ψ and ψ̄γ5ψ are
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parity-odd.2 The components of the Dirac spinor (3.7) transform under parity according to




u+

iv+

iv−

u−



−→
P




v−

iu−

iu+

v+




, (3.20)

where it is understood that the transformed spinor has reversed spatial coordinates.

Charge conjugation is defined as

CψC−1 = (ψ̄C)T . (3.21)

with the unitary operator C being any one of the following possibilities

C ∈ {γ2, iγ0γ1, iγ2γ3, iγ2γ5} . (3.22)

This follows from the requirement that under charge conjugation iψ̄γµψ → −iψ̄γµψ should

hold. Again, the question is how to constrain this set of operators. It is clear that charge

conjugation should leave the two Dirac points invariant. However, it exchanges the sublattices

A and B as it transforms particles into antiparticles. We are left with two possibilities for the

operator C: γ2 and iγ2γ5. Here, we define C = iγ2γ5 where the fermion bilinears iψ̄ψ, ψ̄γ3ψ,

and iψ̄γ35ψ are even under charge conjugation, and ψ̄γ5ψ is odd. For the components of the

Dirac spinor charge conjugation acts as




u+

iv+

iv−

u−



−→
C




−v†+
−iu†+
iu†−

v†−




. (3.23)

Notice, that the chiral left- and right-handed components transform with a relative phase

factor.

We are left with the antiunitary time reversal3

TψT−1 = Tψ , (3.24)

where the unitary matrix T is given by

T ∈ {iγ2, γ0γ1, γ2γ3, γ2γ5} . (3.25)

Time reversal changes both the momentum and spin of the quasiparticles where we neglect

the part of the operator that acts on the physical spin, given by some nondiagonal matrix in

2Note, that the generator for parity transformations P = γ0 does not correspond to the generator of rotations
1
4
[γ1, γ2] in the two-dimensional plane, even though in both cases the sign of both spatial coordinates is

flipped.
3Note, that in Euclidean space time reversal simply complex conjugates c-numbers without changing the sign

of spatial momentum components or Euclidean time.

21



P C T

iψ̄ψ + + +

ψ̄γ3ψ − + +

ψ̄γ5ψ − − +

iψ̄γ35ψ + + −
iψ̄γµψ iψ̄γ̃µψ −iψ̄γµψ iψ̄γµψ

Table 3.1.: Transformation properties of fermion bilinears under P, C, and T where γ̃µ =

(γ0,−γ1,−γ2).

flavor space). As it reverses the momentum it should exchange the two inequivalent Dirac

points at opposing corners of the first Brillouin zone ~K+ and ~K− = − ~K+. Thus, it appears

that we again have two possibilities: iγ2 and γ2γ5. We take T = iγ2 for which the bilinears

iψ̄ψ, ψ̄γ3ψ, and ψ̄γ5ψ are even, and iψ̄γ35ψ is odd under time reversal. The action of the

transformation (3.24) on the components of the Dirac spinor is then given by



u+

iv+

iv−

u−



−→
T
−i




u−

iv−

iv+

u+




. (3.26)

However, it should be kept in mind that for simplicity we neglect the transformation that acts

on the true spin (i.e. flavor) indices.

From these considerations it follows that in the chiral representation the mass term iψ̄ψ is

invariant separately under P, C, and T. All other mass terms break at least one of the discrete

symmetries. The properties of the various fermion bilinears are summarized in Tab. 3.1.

Apart from the antiunitary time reversal symmetry

[D, iγ2K] = 0 , (3.27)

that was defined in the previous section, the Euclidean Dirac operator with a possible mass

term D = γµ∂µ +m has another antiunitary symmetry S = −iγ0γ1K which is written as

[D,−iγ0γ1K] = 0 . (3.28)

Here, the operator K denotes complex conjugation. In terms of the Dirac spinor components

the symmetry (3.28) exchanges the excitations on the two sublattices A and B, and also the

physical spin of the quasiparticles (as for the time reversal symmetry, we will neglect the

part acting on the spin components in the following). In contrast to the time reversal (3.24)

however, it does not exchange the two Dirac points. That is, it reverses the momentum of the

chiral left- and right-handed excitations independently, and in that sense eq. (3.28) can be

seen as a time reversal acting separately at the two inequivalent Dirac points [77]. While the

time reversal symmetry satisfies (iγ2K)2 = 1, and therefore defines an orthogonal symmetry
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here (an additional minus sign arises when including the true spin components), we have

(−iγ0γ1K)2 = −1 for the antiunitary operator (3.28), which corresponds to a symplectic

symmetry (in the spinless case). These two different antiunitary symmetries are essentially

due to the fact that one has an even number of two-component Weyl fermions in the low-

energy theory.

The commutator of both antiunitary operators T and S vanishes, and therefore their product

TS = iγ35 , (3.29)

gives a well-defined unitary operator, exchanging both the two Dirac points and sublattices

A and B. Clearly, if both T and S are symmetries of the theory then the discrete chiral

transformation TS also defines a symmetry operation. In Tab. 3.2 we have collected the

transformation properties of the fermion bilinears under the antiunitary and discrete chiral

transformations.

Let us comment on the importance of the antiunitary symmetries. Typically, in QCD-like

theories the antiunitary symmetry of the Dirac operator is related to the (pseudo)reality of

the fermion color representation. Though three-color QCD with quarks in the fundamental

representation does not fall into this class, examples are two-color QCD, adjoint QCD, or

the G2 gauge theory [104–106]. In these theories the antiunitary symmetry is responsible for

an enlargement of the SU(Nf ) × SU(Nf ) × U(1) chiral and baryon number symmetries to

a global SU(2Nf ) extended flavor symmetry when the fermions are massless. Furthermore,

it determines the dynamics of the low-energy excitations giving rise to different patterns of

spontaneous symmetry breaking [104–106]. Considering the low-energy theory of free massless

fermions (3.1) with the antiunitary symmetries (3.27) and (3.28) and the global SU(2Nf )

flavor symmetry, one is very much reminded of the situation in QCD-like theories with real or

pseudoreal fermion color representations. Here, however, the extended flavor symmetry is a

simple consequence of the reducible four-dimensional representation for the fermions in three

space-time dimensions. As far as the the antiunitary symmetries of the Dirac operator are

concerned, one has to ask whether they are relevant for the low-energy dynamics in presence

of interactions or disorder [107–111]. In fact, when the fermions are charged and couple

to an abelian U(1) gauge field, the Dirac operator in the gauge-field background does not

have the antiunitary symmetries (3.27) and (3.28). Such a 2+1 dimensional QED dynamics

can be modeled in the context of Random Matrix Theory by a chiral Gaussian Unitary

ensemble (chGUE), that belongs to the class AIII after Cartan’s classification of symmetric

spaces [112–116]. The spontaneous breaking of the antiunitary symmetries is then ruled out.

Of course, in the instantaneous approximation, the Coulomb field alone would not break

the time-reversal invariance. However, close to the charge neutral point this approximation

breaks down when the Fermi velocity increases due to the strong electron-electron interaction

[36, 117]. Therefore, in the following we are interested especially in the chiral symmetry

breaking mass term which leaves the antiunitary symmetries unchanged.
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T S TS

iψ̄ψ + + +

ψ̄γ3ψ + − −
ψ̄γ5ψ + − −
iψ̄γ35ψ − − +

iψ̄γµψ + + +

Table 3.2.: Transformation properties of fermion bilinears under the antiunitary and discrete

chiral transformations.

3.2.2. Order parameters

From the above discussion it follows that the expectation value i〈ψ̄ψ〉 is invariant under P, C,

and T whereas both 〈ψ̄γ3ψ〉 and 〈ψ̄γ5ψ〉 are parity-odd (compare Tab. 3.1). All three order

parameters break the extended U(2Nf ) flavor symmetry, generating a dynamical mass for the

fermions. The symmetry breaking pattern is given by [118–120]

U(2Nf )→ U(Nf )× U(Nf ) . (3.30)

It is clear how to identify these order parameters with the excitations in the underlying lattice

model. They can be mapped onto the staggered density phase where one has an alternating

density on the two different sublattices A and B [90–92, 121], and a bond ordered phase

that corresponds to a hopping texture on the nearest-neighbor links in the language of the

tight-binding model [122]. Indeed, a nonvanishing staggered density on the two sublattices

breaks parity and we may associate the order parameter 〈ψ̄γ3ψ〉 with such a phase. The

corresponding bilinear measures the imbalance in the local densities of the two sublattices

and therefore does not mix the chiral modes. This is immediately apparent when we write

the bilinear directly in terms of the one-particle fermion operators on the honeycomb lattice:

〈ψ̄γ3ψ〉 → 〈v†+v+〉+ 〈v†−v−〉 − 〈u†+u+〉 − 〈u†−u−〉 . (3.31)

The order parameter for the bond ordered phase however, should couple excitations both at

the two inequivalent Dirac points ~K+ and ~K− and on the two sublattices A and B [30, 122],

which is accomplished by the bilinear i〈ψ̄(cosα + γ5 sinα)ψ〉. The parameter α controls the

hopping texture, and depending on its value, one obtains either a parity-conserving, or a

parity-breaking type of order (see Tab. 3.1). Again, switching to the language of the single-

particle excitations on the honeycomb lattice this corresponds to the bilinear

i〈ψ̄(cosα+ γ5 sinα)ψ〉 → (cosα+ sinα)
(
〈v†−u+〉+ 〈u†−v+〉

)

+ (cosα− sinα)
(
〈u†+v−〉+ 〈v†+u−〉

)
. (3.32)

The condensate i〈ψ̄γ35ψ〉 is in a sense special, as it leaves the chiral symmetry intact. However,

it does break the time reversal symmetry. This corresponds to a topologically nontrivial phase
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that relates to counter-propagating currents on the two different types of sublattices [123, 124].

In terms of the one-particle fermion operators it is written as

i〈ψ̄γ35ψ〉 → −〈v†+v+〉+ 〈v†−v−〉+ 〈u†+u+〉 − 〈u†−u−〉 . (3.33)

The identification of the order parameters given here is equivalent to the one proposed in [30]

where a chiral representation for the Dirac algebra was used also. A complete classification

of all possible bilinears is given in [125, 126].

3.3. A simple model: Spinless fermions on the honeycomb

lattice

Here, we focus on the case of a single flavor Dirac Lagrangian with a local four fermion

interaction. This essentially corresponds to a low-energy theory of spinless fermions on the

honeycomb lattice with a nearest neighbor and next-to-nearest neighbor coupling [88]. In the

purely fermionic description, one may expect that above some critical value for the coupling,

the short-range repulsive interactions give rise to an instability. Here, we go beyond a mean

field approach by introducing a set of composite fields that allows us to follow the system into

the ordered phase. Even for this simple model there is a complex phase diagram with different

types of order: Depending on the strength of the interactions there is a competition between a

staggered density phase and a topologically nontrivial phase [88]. The global symmetry group

for this model is U(2) and the symmetry breaking pattern for the chiral transition is given

by SU(2)→ U(1) while the topological phase transition leaves the U(2) symmetry intact but

breaks time reversal invariance.

For this simple model the relevant dynamics of the SU(2) → U(1) chiral phase transition

is adequately described by taking into account only the fluctuations in a generalized Nambu-

Jona-Lasinio-type channel (3.15). To illustrate this point we make a Fierz-transformation

to write the flavor-singlet four fermion interactions in terms of a vector- and a NJL-type

interaction:

ḡV
2Nf

(ψ̄aγµψ
a)2 +

ḡS
2Nf

(ψ̄aγ35ψ
a)2

=
ḡV − ḡS
2Nf

(ψ̄aγµγ
a)2 − ḡS

2Nf

{
(ψ̄aψb)2 − (ψ̄aγ3ψ

b)2 − (ψ̄aγ5ψ
b)2 + (ψ̄aγ35ψ

b)2
}
.

(3.34)

One may recognize that line defined by ḡV −ḡS = 0 in the (ḡV , ḡS)-coupling plane defines a the-

ory where the vector-like interaction (ψ̄aγµψ
a)2 becomes irrelevant and the flavor-nondiagonal

NJL-type interaction dominates. In fact, this scenario is realized for small numbers of fermion

flavors Nf close to a non-Gaussian fixed point as has been demonstrated in a functional renor-

malization group investigation of the generalized Thirring model (3.17) in three dimensions
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[102]. Thus, we expect that the critical properties of spinless fermions on the honeycomb lat-

tice in the vicinity of the chiral critical point are well-described by a generalized NJL-model.

Of course, strictly speaking, this model may not be in the same universality class as the full

U(2)-symmetric single flavor model (3.17) which is characterized by three different interacting

fixed points that describe very different types of critical behavior. The continuous chiral phase

transition, however, corresponds to a Thirring-like fixed point which is very close to being the

pure NJL-type interaction with ḡV = ḡS for Nf = 1, but which moves towards the Thirring

axis ḡS = 0 for Nf →∞ [102].

To see how the repulsive interactions drive the system into the broken phase we integrate

out the flavor nondiagonal NJL-type interaction via a Hubbard-Stratonovich transformation.

In this way we obtain a matrix Yukawa model with a U(N) symmetry for N = 2 species of

massless, two-component Weyl fermions ψa and ψ̄a, a = 1, . . . , N . For the spinless fermions

on the honeycomb lattice N = 2, which corresponds to a single Dirac fermion Nf = 1 in the

reducible representation as, e.g., modeled in microwave photonic crystals [97, 98]. The Weyl

fermions couple to a Hermitian matrix field Φab and the action of this model is given by

S[Φ, ψ̄, ψ] =

∫
ddx

{
ψ̄ai∂/ψa + h̄ ψ̄aiΦabψ

b +
1

2
m̄2 tr Φ2

}
, (3.35)

where the trace tr(· · · ) acts on the indices of the matrix field. Here, and in the following,

we define ∂/ ≡ σµ∂µ which belongs to the irreducible representation γ0 = σ3, and γk = σk,

k = 1, 2. Eq. (3.35) constitutes the starting point for our investigation in the framework of

the functional renormalization group.

3.4. Functional renormalization group

The full information about the quantum dynamics of a theory is given by the quantum

effective action Γ, which is the generating functional for one-particle irreducible correlation

functions. The functional renormalization group is a nonperturbative approach to determine

the quantum effective action, taking into account all quantum fluctuations. Implementing

Wilson‘s renormalization group idea [6, 12], the fluctuations are included successively by

integrating out the higher modes. Thereby, one obtains the scale-dependent effective action

Γk with all the fluctuations included above the characteristic momentum scale k. The scale-

dependence is implemented by an infrared regulator Rk to suppress the fluctuations of the

low-momentum modes in the theory. In the limit k → 0, when all quantum fluctuations are

included, the functional renormalization group yields the full effective action Γ.

The flow equation for the scale-dependent effective action is given by [14, 16–20, 50–54]

∂Γk[χ]

∂t
=

1

2
STr

{
∂Rk

∂t

(
Γ
(1,1)
k [χ] +Rk

)−1
}
, (3.36)

where t = ln k/Λ defines the scale parameter, and Λ is some appropriate ultraviolet scale where

we impose the microscopic dynamics. The supertrace STr in (3.36) denotes a summation over
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fields and possible internal indices, as well as an integration over momentum, while it provides

a minus sign in the fermionic sector. The second functional derivatives of the scale-dependent

effective action Γ
(1,1)
k define the fluctuation matrix. In the momentum representation, we have

(
Γ
(1,1)
k [χ]

)
IJ

(p, q) ≡
−→
δ

δχT
I (−p)

Γk[χ]

←−
δ

δχJ (q)
, (3.37)

where the indices I, J label the different components of the auxiliary field χ that contains the

complete field content of our model: the matrix field Φab and N species of Weyl fermions ψa

and ψ̄a, i.e., 4

χT (−p) ≡
(
ΦT (−p) , ψT (−p) , ψ̄(p)

)
, (3.38)

and

χ(q) ≡




Φ(q)

ψ(q)

ψ̄T (−q)


 , (3.39)

where we have suppressed the flavor indices. Together with the infrared regulator Rk it

represents the full regularized inverse propagator
(
Γ
(1,1)
k +Rk

)
at the scale k.

The regulator function Rk takes the following form

Rk(p) =



RB,k(p) 0 0

0 0 RT
F,k(p)

0 RF,k(p) 0


 , (3.40)

where in the bosonic and fermionic sector, we have

RB,k(p) = ZB,kp
2rB,k(p

2) , (3.41)

RF,k(p) = ZF,kp/ rF,k(p
2) . (3.42)

Both are fully described by the regulator shape functions rB,k and rF,k that characterize

the scheme-dependence of the renormalization procedure. Since they depend only on the

dimensionless ratio y = p2/k2 we will drop the index k in the following. The fermion regulator

shape function rF is taken to satisfy the constraint p2(1 + rB) = p2(1 + rF )
2 and thus, is

completely determined by the choice of rB .

In practice, to solve (3.36) one is bound to rely on approximations for the scale-dependent

effective action Γk where one truncates the set of possible operators following an expansion

scheme, e.g., in powers of derivatives [62, 65, 66]. However, such an approximation also

induces a spurious dependence on the regulator for the full quantum effective action when the

scale k is sent to zero [58, 59, 127]. Here, we therefore employ two different types of infrared

regulators to test the regulator scheme-dependence of our results in the physical limit. We

consider the optimized regulator [58, 59]

rB(y) =

(
1

y
− 1

)
θ(1− y) , (3.43)

4Since the matrix-valued field Φ is Hermitian, Φ and Φ∗ are not independent degrees of freedom.
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and also an exponential-type regulator

rB(y) = (exp(y)− 1)−1 . (3.44)

3.4.1. Scale-dependent effective action

Our ansatz for the scale-dependent effective action is given by

Γk[Φ, ψ̄, ψ] =

∫
ddx
{
ZF,k ψ̄

ai∂/ψa +
1

2
ZB,k tr (∂µΦ)

2 + h̄k ψ̄
aiΦabψ

b + Uk(Φ)
}
. (3.45)

In contrast to the microscopic model, we have a kinetic term for the composite field and a

scale-dependent wavefunction renormalization both for the fermions and the bosons. Thus,

we include the bosonic fluctuations that give a nontrivial momentum structure for the fermion

interactions [83, 128]. Clearly, our ansatz (3.45) goes far beyond a simple mean-field approx-

imation where one neglects the fluctuations from the composite degrees of freedom.

For the U(N) matrix-model the effective average potential Uk(Φ) is a function of the in-

variants of the U(N) symmetry group. For system of N = 2 Weyl fermions there are exactly

two invariants both of which are quadratic, i.e., σ̄k = (tr Φ)2/2 and ρ̄k = trΦ2/2 in the fields.

A nonvanishing vacuum expectation value for the composite field Φab signals the dynamical

generation of a mass for the fermions. Depending on the flavor structure of the matrix field

we have different types of order: The chirally broken phase corresponds to a vacuum con-

figuration which is either nondiagonal, or diagonal nonuniform (so that the trace vanishes,

i.e., tr Φ = 0). On the other hand, Φab ∼ δab, breaking the discrete Z2 symmetry, in the

nontrivial topological phase which we will not consider here. Close to the phase transition

only those fluctuations of the Φ-field will play a significant role that give a contribution to

the quadratic invariant ρ̄k – the σ̄k-field is irrelevant there. Thus, to investigate the nature of

the chiral phase transition we may neglect the fluctuations of the σ̄k-field. However, we want

to emphasize that this approximation is no way essential for the following calculations.

We expand the effective average potential in powers of ρ̄k around the minimum ρ̄0,k, given

by the scale-dependent vacuum expectation value:

Uk(ρ̄k) = m̄2
k(ρ̄k − ρ̄0,k) +

nmax∑

n=2

λ̄n,k
n!

(ρ̄k − ρ̄0,k)n . (3.46)

This approximation captures all the relevant fluctuation at the chiral phase transition. In the

symmetric regime the vacuum expectation value ρ̄0,k is zero whereas in the chirally broken

phase ρ̄0,k 6= 0 and the mass m̄2
k becomes zero. In our ansatz we include the first set of

irrelevant operators according to a naive power counting with respect to the canonical mass

dimension.
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3.4.2. Flow equation for the effective average potential

To extract the flow equations for the parameters and couplings in the scale-dependent effective

action (3.45) one has to project the functional flow given by the r. h. s. of (3.36) onto the

corresponding operators. For the couplings that appear in the effective average potential

this is done by evaluating the second functional derivative Γ
(1,1)
k in a constant background

configuration of the matrix field Φab.

The flow equation for the effective average potential receives contributions both from the

boson and fermion degrees of freedom

∂Uk(Φ)

∂t
=
∂UB,k(Φ)

∂t
+
∂UF,k(Φ)

∂t
. (3.47)

To keep the notation clear, we will drop the k-index in the following. Where necessary, we

will revert to our original notation.

From (3.36) we obtain the boson contribution to the effective average potential

∂UB

∂t
=

1

2

∫
ddq

(2π)d
∂RB

∂t

∑

i

GB(M̄Bi) , (3.48)

where the full regularized boson propagator GB is given in the Appendix A. We sum over all

mass eigenvalues M̄2
Bi of the mass matrix as given by the second derivatives of the potential

M̄2
B(Φ) ab,cd =

∂2

∂ΦT abΦcd
Uk(Φ) (3.49)

The mass matrix in the nondiagonal constant background configuration Φab = Φ0Σab is given

by:

M̄2
B(Φ) ab,cd(p, q) =

[
∂Uk

∂ρ̄
δacδbd +Φ2

0

∂2Uk

∂ρ̄2
ΣabΣ

T
cd

]
δ(p, q) , (3.50)

where the eigenvalues are

M̄2
B,0 =

∂Uk

∂ρ̄
, M̄2

B,R =
∂Uk

∂ρ̄
+NΦ2

0

∂2Uk

∂ρ̄2
, (3.51)

corresponding to the masses of the Goldstone and radial modes.

For illustrational purposes we perform the derivation of the flow equation in the fermion

sector explicitly by integrating out the fermions in the action. To evaluate the fermion con-

tribution to the effective average potential it is useful to write the action in terms of the

four-component spinors

Ψ(q) =

(
ψ(q)

ψ̄T (−q)

)
, (3.52)

which is constructed from the two independent degrees of freedom ψ and ψ̄. In that case, the

fermion bilinear part of the action takes the form

Γk,ΨΨ =

∫

(q0>0)

ddq

(2π)d
ΨT a(−q)Dab(q)Ψ

b(q) , (3.53)

29



in momentum space. Note, that the domain of integration is restricted to positive frequencies

q0 > 0 to counteract the doubling of degrees of freedom that comes from switching to the

four-component spinors (3.52). In this basis, the inverse regularized fermion propagator is

given by

Dab(q) = ZF (1 + rF )

(
q/T

q/

)
δab + ih̄(q)

(
−ΦT

ab

Φab

)
, (3.54)

where h̄(q) ≡ h̄(−q, q) denotes the momentum-dependent Yukawa coupling.5 As for the

boson contribution, we evaluate the inverse propagator Dab(q) in a constant background field

Φab. Performing the integration over the Grassmann fields, the fermion contribution to the

potential takes the form

UF = −
∫

(q0>0)

ddq

(2π)d
ln detD(q) , (3.55)

where the determinant acts on the flavor and spinor indices. To evaluate this expression we

put Dab(q) in standard diagonal form. That is, by a unitary transformation we diagonalize

Φab = Φaδab, so that Dab(q) = Da(q)δab, and the determinant in (3.55) can be written as

detDa =
(
Z2
F (1 + rF )

2q2 + h̄(q)2Φ2
a

)2
. (3.56)

With this result, the fermion contribution to the flow equation (3.47) becomes

∂UF

∂t
= −2

∫
ddq

(2π)d
q2 ZF (1 + rF )

∂

∂t

(
ZF rF

) ∑

a

G̃F (M̄Fa) , (3.57)

where G̃F (M̄Fa) = (detDa)
− 1

2 . One may easily verify that this is just the result that is

obtained when the supertrace in (3.36) is computed directly, using the definition of the full

regularized propagators (see Appendix A), and the regulator RF . Here, the masses M̄Fa

denote the N eigenvalues of the N ×N matrix h̄(q)Φ.

Eq. (3.48) and (3.57) together give the full contribution to the effective average potential. To

investigate the critical properties at the phase transition, however, it is convenient to bring

the flow equations to a form where one may easily identify possible fixed point solutions.

For that purpose, we switch to dimensionless renormalized quantities ρ = k2−dZBρ̄ and

u(ρ) = k−dUk(ρ). Then, the flow equation for the potential is given by

∂u

∂t
= −du+ k−d ∂Uk

∂t

∣∣∣∣
ρ̄

+ (d− 2 + ηB)ρk
−d∂Uk

∂ρ

∣∣∣∣
t

, (3.58)

where we have introduced the scalar anomalous dimension ηB ≡ −∂ lnZB/∂t. Substituting

our previous result this finally gives

∂u

∂t
= −du+ (d− 2 + ηB)ρu

′

+ 2vd

{
(N2 − 2)l

(B)
0 (u′; ηB) + l

(B)
0 (u′ + 2ρu′′; ηB)

− 2Nl
(F )
0

(
2

N
ρh2; ηF

)}
, (3.59)

5For the momentum dependent Yukawa coupling h̄(−p, q) the momenta p and q denote the incoming fermion

momenta at the Yukawa vertex.
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where the prime u′ ≡ ∂u/∂ρ|t denotes differentiation with respect to the dimensionless

renormalized field ρ, and vd =
(
2d+1πd/2Γ (d/2)

)−1
. Furthermore, ηF ≡ −∂ lnZF /∂t and

h2 = kd−4Z−2
F Z−1

B h̄2 is the dimensionless renormalized Yukawa coupling. Here, we have

introduced the threshold functions l(B)
0 and l(F )

0 that parametrize the boson and fermion one-

loop integrals contributing to the effective average potential. They are defined in Appendix

B where their form is given explicitly for the optimized regulator (3.43). The corresponding

expressions for the exponential regulator (3.44) can be found in, e.g., [19, 83]. The threshold

functions carry the full scheme-dependence of the renormalization group equations. In that

sense, the flow equations are universal – only the dimensionality and symmetries determine

the flow and the regulator-dependence resides solely in the threshold functions.

In the symmetric regime, we may derive the flow equations for the dimensionless renor-

malized couplings ǫ = k−2Z−1
B m̄2 and λn = k(n−1)d−2nZ−n

B λ̄n, n = 2, . . . , nmax, from (3.59)

simply by differentiating with respect to field ρ, that is, we have ǫ = u′ for the mass parameter

and λn = u(n) for the couplings. The derivatives of the threshold functions are evaluated as

∂

∂w
l(B)
n (w; ηB) = − (n+ δn,0) l

(B)
n+1(w; ηB) , (3.60)

and equivalently for l(F )
n (w; ηF ). Here, we give the flow equations for the mass parameter ǫ,

and the couplings λ2, and λ3 in the symmetric phase:

∂ǫ

∂t
= (−2 + ηB)ǫ− 2vd

{(
N2 + 1

)
λ2 l

(B)
1 (ǫ; ηB)− 4h2 l

(F )
1 (0; ηF )

}
, (3.61)

∂λ2
∂t

= (d− 4 + 2ηB)λ2 + 2vd

{(
N2 + 7

)
λ22 l

(B)
2 (ǫ; ηB)−

(
N2 + 3

)
λ3 l

(B)
1 (ǫ; ηB)

− 8

N
h4 l

(F )
2 (0; ηF )

}
, (3.62)

∂λ3
∂t

= (2d− 6 + 3ηB)λ3 − 2vd

{
2
(
N2 + 25

)
λ32 l

(B)
3 (ǫ; ηB)

− 3
(
N2 + 13

)
λ2λ3 l

(B)
2 (ǫ; ηB) +

(
N2 + 5

)
λ4 l

(B)
1 (ǫ; ηB)

− 32

N2
h6 l

(F )
3 (0; ηF )

}
. (3.63)

The flow equations for the higher order couplings can be obtained by a simple differentiation

with respect to the field, and are not given here explicitly.

As the system goes over into the broken phase, the scale-dependent mass parameter ǫ goes

to zero, and the field assumes a nonvanishing expectation value ρ0 6= 0, defined by u′(ρ0) = 0.

Due to the scale-dependence of ρ0, which is given by

∂ρ0
∂t

= − 1

λ2

∂u′(ρ0)

∂t
, (3.64)

we get an additional contribution to the flow (3.59) in the broken phase:

∂λn
∂t

=
∂λn
∂t

∣∣∣∣
ρ0

+ λn+1
∂ρ0
∂t

. (3.65)
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There, the flow equations for ρ0, and the couplings λ2, and λ3 are given by

∂ρ0
∂t

= (2− d− ηB)ρ0 + 2vd

{(
N2 − 2

)
l
(B)
1 (0; ηB) +

(
3 +

2ρ0λ3
λ2

)
l
(B)
1 (2ρ0λ2; ηB)

− 4

λ2
h2 l

(F )
1

(
2

N
ρ0h

2; ηF

)}
, (3.66)

∂λ2
∂t

= (d− 4 + 2ηB)λ2 + 2vd

{(
N2 − 2

)
λ22 l

(B)
2 (0; ηB) + (3λ2 + 2ρ0λ3)

2 l
(B)
2 (2ρ0λ2; ηB)

−
(
2λ3 + 2ρ0λ4 −

2ρ0λ
2
3

λ2

)
l
(B)
1 (2ρ0λ2; ηB)

− 8

N
h4 l

(F )
2

(
2

N
ρ0h

2; ηF

)
− 4

λ3
λ2
h2 l

(F )
1

(
2

N
ρ0h

2; ηF

)}
, (3.67)

∂λ3
∂t

= (2d− 6 + 3ηB)λ3 − 2vd

{(
N2 − 2

) (
2λ32 l

(B)
3 (0; ηB)− 3λ2λ3 l

(B)
2 (0; ηB)

)

+ 2 (3λ2 + 2ρ0λ3)
3 l

(B)
3 (2ρ0λ2; ηB)

− 3 (3λ2 + 2ρ0λ3) (5λ3 + 2ρ0λ4) l
(B)
2 (2ρ0λ2; ηB)

+

(
4λ4 + 2ρ0λ5 −

2ρ0λ3λ4
λ2

)
l
(B)
1 (2ρ0λ2; ηB)

− 32

N2
h6 l

(F )
3

(
2

N
ρ0h

2; ηF

)
+ 4

λ4
λ2
h2 l

(F )
1

(
2

N
ρ0h

2; ηF

)}
. (3.68)

The flow equations for the higher order couplings can easily be obtained via (3.65).

Recall that the relevant symmetry breaking pattern for the simple model (Sec. 3.3) is given

by SU(2) → U(1). This is in direct correspondence to the O(3) → O(2) transition in the

three-component vector model [15, 129]. Building on our previous remark concerning the uni-

versality of the renormalization group flow, we observe that in the bosonic sector (neglecting

the fermion contributions) the flow equations for the effective potential are identical to the

flow equations for the three-dimensional O(3) vector model [129]. We want to emphasize that

this is a simplification that occurs only for the special case where N = 2. In the general case,

the flow equations for the effective potential correspond to the matrix Yukawa model with

U(N) symmetry.

3.4.3. Boson anomalous dimension

For the computation of the boson anomalous dimension ηB = −∂ lnZB/∂t we first evaluate

the flow equation (3.36) in a spatially varying field configuration Φ(x). This is necessary for the

projection onto the kinetic term and the wavefunction renormalization ZB . In particular, we

consider a distortion around the nondiagonal vacuum configuration Φab = Φ0Σab characterized

by a nonvanishing momentum Q, i.e.

Φab(x) = Φ0Σab +
(
δΦe−iQx + c.c.

)
︸ ︷︷ ︸

≡∆(x)

Λab , (3.69)

where the Hermitian matrices Σ and Λ satisfy the properties ΣT = −Σ and ΛT = Λ. Clearly,

the fluctuations in the Λ-direction are orthogonal to the ground state orientation. Though
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we take only one of the possible orthogonal directions for the fluctuations into account this

still yields a complete description of those contributions coming from the Goldstone modes.

Of course, in the broken phase, we also have fluctuations ∼ ∆′(x)Σab from the radial mode

that give additional contributions to the boson anomalous dimension.

In momentum space the configuration (3.69) reads

Φab(p) = Φ0δ(p, 0)Σab +∆(p,Q)Λab , (3.70)

where we define δ(p, q) ≡ (2π)dδ(d)(p− q), and the amplitude is given by

∆(p,Q) = (δΦδ(p,Q) + δΦ∗δ(−p,Q)) . (3.71)

Taking the ansatz (3.69) one may easily verify that

∂ZB

∂t
≡ 1

N
lim
Q→0

∂

∂Q2

[
lim
δΦ→0

∂

∂(δΦδΦ∗)

∂Γk

∂t

]
, (3.72)

gives us the flow equation for the momentum-independent part of the wavefunction renormal-

ization ZB . Here, we neglect all momentum-dependence of the wavefunction renormalization.

Eq. (3.72) defines a projection of the flow equation (3.36) onto the flow of the wavefunc-

tion renormalization, i.e., ∂Γk/∂t |ZB
≡ ∂ZB/∂t. In the following, we will use this notation

frequently.

To evaluate (3.72) we make use of a series expansion of the flow equation. Using the

decomposition of the full inverse regularized propagator

Γ
(1,1)
k +Rk = G−1

k + Fk , (3.73)

which is written in terms of Fk containing all field-dependent fluctuations around the back-

ground field configuration, and the inverse background field propagator G−1
k that carries the

explicit regulator dependence, we may write the flow equation (3.36) as a series expansion in

powers of the fields:

∂Γk

∂t
=

1

2
STr

∂Rk

∂t
Gk +

1

2
STr

∂̂

∂t

(
GkFk

)
− 1

4
STr

∂̂

∂t
(GkFk)

2 +O(F 3
k ) . (3.74)

Here we have defined the formal derivative operator

∂̂

∂t
≡ ∂Rk

∂t

∂

∂
(
G−1

k

) , (3.75)

that acts on the inverse regularized matrix propagator G−1
k (see Appendix A). In terms of

(3.69) the leading contribution to the fluctuation is Fn
k ∼ O(∆n) and for the calculation of the

anomalous dimension only the second order term δ(2)Γk in the fluctuation Fk is important.

Clearly, the lowest order term will not contribute, as it is independent of δΦ and δΦ∗ and

thus yields a vanishing contribution to (3.72). The δ(1)Γk term does include combinations of

the type ∼ δΦδΦ∗, however, they are independent of momentum Q2. Thus, the lowest order
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term relevant in (3.72) is the second order term δ(2)Γk in the series expansion, and specifically,

we will need those terms in Fk that are of linear order in the amplitude ∆. Apart from the

bosonic background Φab we need to specify the fermionic background configuration, where we

take

ψ = ψ̄ = 0 . (3.76)

Then, the matrix of second functional derivatives Γ
(1,1)
k becomes block-diagonal in the bo-

son and fermion subspaces and we may treat the boson and fermion contributions to (3.72)

separately.

We start with the bosonic sector. For matrix-valued fields, it is convenient to work in the

nondiagonal basis for the propagators and the fluctuations [130, 131]. We follow the outline

given above, and evaluate the second order term δ(2)ΓB = −1
4 STr ∂̂t (GBFB)

2 in the series

expansion where the index B denotes the corresponding quantities in the bosonic sector where

we have dropped the k-index for clarity, i.e., ΓB,k ≡ ΓB , GB,k ≡ GB , etc. For that we need

the boson propagator in the constant background configuration Φab = Φ0Σab which takes the

following form

(GB)ab,cd (p) =
1

A(p)

(
δacδbd −

B

A(p) +NB
ΣabΣ

T
cd

)
, (3.77)

where we have introduced the quantities

A(p) = ZB(1 + rB)p
2 +

∂Uk

∂ρ̄
, B = Φ2

0

∂2Uk

∂ρ̄2
. (3.78)

Furthermore, we need the contribution from the fluctuations to linear order in ∆, which is

given by

(FB)ab,cd(p, q) = ∆(p− q,Q)Φ0
∂2Uk

∂ρ̄2
(
ΣabΛ

T
cd + ΛabΣ

T
cd

)
+O(∆2) . (3.79)

With these results we can immediately compute the trace in δ(2)ΓB and evaluate the projection

onto the kinetic term:

δ(2)ΓB

∣∣∣
ZB

= −NΦ2
0

(
∂2Uk

∂ρ̄2

)2

lim
Q→0

∂

∂Q2

∫
ddp

(2π)d
∂̂

∂t

{
GB,0(p)GB,R(p+Q)

}
. (3.80)

The indices on the propagators GB refer to the corresponding eigenvalues of the mass matrix

M̄2
B, i.e., GB,0 ≡ GB(M̄B,0) etc. that are given by:

M̄2
B,0 =

∂Uk

∂ρ̄
, M̄2

B,R =
∂Uk

∂ρ̄
+NΦ2

0

∂2Uk

∂ρ̄2
. (3.81)

These propagators GB,0 and GB,R belong to the Goldstone modes and radial mode, respec-

tively. We want to emphasize that the derivative operator ∂̂/∂t appearing in (3.80) is different

from the one defined in (3.75). That is, we slightly abuse the notation and take

∂̂

∂t
≡ ∂tRB

∂

∂
(
G−1

B

) + 2

ZF

G̃−1
F (0)

1 + rF
∂t (ZF rF )

∂

∂
(
G̃−1

F

) , (3.82)
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from now on, where it is understood that G̃−1
F (0) is simply the kinetic part of G̃−1

F (evaluated

at zero mass). Since (3.75) is a matrix operator there is no risk of confusion. Notice, that

(3.80) is proportional to the vacuum amplitude Φ0 and thus, the boson contribution to the

wavefunction renormalization vanishes in the symmetric regime.

We evaluate the contribution to the flow equivalently in the fermion subspace. For the

nondiagonal background configuration (3.69) the fermion propagator is given by

GF =

(
0 G

(+)
F

G
(−) T
F 0

)
, (3.83)

where the components G(±)
F are take the form

(
G

(±)
F

)
ab
(p) = G̃F (p)

(
ZF (1 + rF )p/ δab ∓ ih̄(p)Φ0Σab

)
, (3.84)

and

G̃F (p) =
(
Z2
F (1 + rF )

2p2 + h̄(p)2Φ2
0

)−1
. (3.85)

In the fermion subspace the fluctuations are given by

(FF )ab (p, q) = ih̄(−p, q)∆(p− q,Q)

(
0 −ΛT

ab

Λab 0

)
+O(∆2) . (3.86)

Going through the same steps as above, that is, computing the trace in δ(2)ΓF , and evaluating

the projection (3.72) we obtain

δ(2)ΓF

∣∣∣
ZB

= −2 lim
Q→0

∂

∂Q2

∫
ddp

(2π)d
[
h̄(−p, p+Q)

]2

× ∂̂

∂t

{
ZF (p)(1 + rF (p))G̃F (p)

× ZF (p +Q) (1 + rF (p +Q)) G̃F (p+Q)

+ Φ2
0 h̄(p)h̄(p+Q)G̃F (p)G̃F (p+Q)

}
, (3.87)

where
[
h̄(−p, p+Q)

]2 ≡ h̄(−p, p + Q)h̄(−p − Q, p). Putting both results (3.80) and (3.87)

together ∂tZB = δ(2)ΓB

∣∣
ZB

+ δ(2)ΓF

∣∣
ZB

and using the definition ηB = −∂t lnZB we obtain

the evolution equation for the boson anomalous dimension:

ηB = 16
vd
d

{
ρ0 λ

2
2m

(B)
2,2 (ǫ, ǫ+ 2ρ0λ2; ηB) + h2m

(F )
4

(
2

N
ρ0h

2; ηF

)

+
2

N
ρ0h

4m
(F )
2

(
2

N
ρ0h

2; ηF

)}
. (3.88)

Here we have introduced the threshold functions m(B)
2,2 , m(F )

2 and m
(F )
4 that define the one-

loop contribution appearing in the calculation of the wavefunction renormalization. They are

given explicitly in Appendix B.

In the broken phase the wavefunction renormalization will get additional contributions from

the radial mode [15, 129]. In principle, these terms should be taken into account, however,

since most of the running takes place in the symmetric regime, we do not expect them to play

any major role.
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3.4.4. Fermion anomalous dimension and Yukawa coupling

The derivation of the flow equation for the fermion anomalous dimension ηF ≡ −∂t lnZF and

the Yukawa coupling h2 proceeds in the same way as explained in Sec. 3.4.3. Here, the only

difference is, that we need to choose a nonhomogeneous configuration for the fermion fields,

where in the momentum-representation we have

ψ(q) = ψδ(q,Q) , ψ̄(q) = ψ̄δ(q,Q) . (3.89)

The matrix field is evaluated in the constant background configuration Φab = Φ0Σab, where

the boson and fermion propagators are given by (3.77) and (3.84), respectively.

Starting from the ansatz for the fermions (3.89) we evaluate the fluctuation matrix

Fk(p, q) =




0 ih̄(p − q, q) ψ̄b(q − p)δac′ −ih̄(q,−q + p)ψT
a (−q + p)δbc′

−ih̄(−q + p,−p) ψ̄T
a′(q − p)δb′c 0 0

ih̄(−p, p− q)ψb′(−q + p)δa′c 0 0


 ,

(3.90)

where we indicate the flavor indices on the right-hand side explicitly. Recall, that the fluc-

tuation is defined as the field-dependent part of the second functional derivative of the

scale-dependent effective action. The functional derivative from the left is taken with re-

spect to the fields
(
ΦT
ab, ψ

T
c , ψ̄c

)
which defines the row indices. The primed column indices

are defined equivalently via the right-hand functional derivative. Together with the back-

ground field propagator Gk (see Appendix A) we evaluate the second order contribution

δΓ
(2)
k = −(1/4) STr ∂̂/∂t (GkFk)

2 in the series expansion. A short calculation yields

δΓ
(2)
k =

1

2

∫
ddq

(2π)d
ddp

(2π)d
∂̂

∂t

{[
h̄(p− q, q)

]2
(GB)ab,cd (p)ψ̄d(q − p)

(
G

(+)
F

)
ca
(q)ψb(q − p)

+
[
h̄(q, p− q)

]2
(GB)ab,dc (p)ψ

T
d (−q + p)

(
G

(−)
F

)T
cb
(q)ψ̄T

a (p− q)
}
. (3.91)

Inserting the expressions the boson and fermion propagators (3.77) and (3.84) this can be

written in the form:

δΓ
(2)
k =

1

N

∫
ddp

(2π)d
∂̂

∂t

{[
h̄(Q, p)

]2
G̃F (p)

[
ZF (1 + rF )

× ψ̄a p/
{ (
N2 − 2

)
GB,0(p −Q) +GB,R(p−Q)

}
ψa

+ ih̄(Q) ψ̄a Φ0Σab

{
2GB,0(p−Q)−GB,R(p −Q)

}
ψb
]}

. (3.92)

Projecting this equation onto the corresponding operators in the ansatz for the scale-dependent

effective action we obtain the evolution equation for the fermion anomalous dimension

ηF =
8

N

vd
d
h2
{
(N2 − 2)m

(FB)
1,2

(
2

N
ρ0h

2, ǫ; ηF , ηB

)
+m

(FB)
1,2

(
2

N
ρ0h

2, ǫ+ 2ρ0λ2; ηF , ηB

)}
,

(3.93)
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Figure 3.2.: Renormalization group flow (a) for the dimensionless renormalized parameter ǫ,

the (rescaled) dimensionless renormalized couplings 10−1λ2, and 10−2λ3, and (b)

for the boson and fermion anomalous dimensions ηB and ηF as a function of the

scale parameter t = ln(k/Λ) close to the critical trajectory. The full and dashed

curves refer to initial conditions just above and below the critical parameter ǫΛ,(cr),

respectively.

and the flow equation for the momentum-independent part of the Yukawa coupling

∂h2

∂t
= (d− 4 + 2ηF + ηB)h

2 − 8

N
h4vd

{
2 l

(FB)
1,1

(
2

N
ρ0h

2, ǫ; ηF , ηB

)

− l(FB)
1,1

(
2

N
ρ0h

2, ǫ+ 2ρ0λ2; ηF , ηB

)}

+
16

N
ρ0h

4vd

{
2λ2 l

(FB)
1,2

(
2

N
ρ0h

2, ǫ; ηF , ηB

)

− (2λ2 + 2ρ0λ3) l
(FB)
1,2

(
2

N
ρ0h

2, ǫ+ 2ρ0λ2; ηF , ηB

)}

+
32

N2
ρ0h

6vd

{
2 l

(FB)
2,1

(
2

N
ρ0h

2, ǫ; ηF , ηB

)
− l(FB)

2,1

(
2

N
ρ0h

2, ǫ+ 2ρ0λ2; ηF , ηB

)}
.

(3.94)

Here, we have defined the threshold functions m(FB)
1,2 , l(FB)

1,1 , l(FB)
1,2 , and l

(FB)
2,1 that are given

explicitly in Appendix B. Together with the flow equations for the parameters and couplings

of the effective average potential and the anomalous dimension for the bosons they constitute

a closed set of differential equations that can be solved numerically.

3.5. Critical properties of the quantum phase transition

We evolve the flow equations starting from an appropriate ultraviolet scale Λ to the physical

limit k → 0. The following results have been obtained for the set of initial conditions:

ZB,Λ = 10−10, ZF,Λ = 1, h̄2Λ = Λ, where the mass at the ultraviolet scale m̄2
Λ is taken

as a free parameter, and all higher order couplings are set to zero, i.e., λ̄n,Λ = 0, n =

2, . . . , nmax. By varying the dimensionless mass ǫΛ at the ultraviolet scale we may tune the
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system across a quantum phase transition. Here, δǫ = |ǫΛ− ǫΛ,(cr)| measures the deviation of

the parameter ǫΛ from its critical value ǫΛ,(cr). Close to ǫΛ,(cr) we find a fixed point solution

for the dimensionless renormalized parameters and couplings. That is, the parameters and

couplings stay nearly constant over a wide range of scales as illustrated in Fig. 3.2. This is a

clear indication for the presence of a continuous phase transition where the system displays

a universal scaling behavior. For δǫ > 0, where the mass parameter ǫΛ is above the critical

value ǫΛ,(cr), the solution stays in the symmetric regime. However, starting just below ǫΛ,(cr)

the scale-dependent mass eventually becomes negative which signals the transition into the

broken phase. This result does not depend on the special choice of initial conditions, that is,

we have checked the stability of our results for different initial values of ZB,Λ, h̄2Λ, and λ̄n,Λ.

Furthermore, the fixed point solution exists for all considered truncations of the effective

average potential (see Tab. 3.4), where we have taken the Taylor series expansion of the

effective potential up to the tenth order in the field Φ. The independence of the scaling

solution both on the initial conditions and higher order operators in the effective potential is

a manifestation of universality near a continuous phase transition.

In the symmetric phase both the wavefunction renormalization ZB and the renormalized

mass m2
R = Z−1

B m̄2 at the scale k receive large contributions from the massless fermions.

That is ηB → 1 for k → 0 even far from the phase transition which can be clearly seen in Fig.

3.2(b) where the boson anomalous dimension assumes a value close to one in the symmetric

phase. To compute the critical scaling we introduce the renormalized mass m̃2
R at a fixed

scale kc:

m̃2
R(kc, δǫ) = k2c

(
u′kc(0)− u

′
kc,(cr)

(0)
)
. (3.95)

It is given in terms of the first derivatives of the effective average potential in the symmetric

phase, where the scale kc = rcm̃R is defined via the parameter rc in a standard way [132, 133].

The critical exponent ν characterizes the divergence of the correlation length at the critical

point. Here, the correlation length is identified with the inverse renormalized mass [19, 129]

as given in (3.95) and the critical exponent ν is defined as [132, 133]

ν =
1

2
lim
δǫ→0

∂ ln m̃2
R(kc, δǫ)

∂ ln δǫ
= lim

δǫ→0
(ν̂(kc, δǫ) + ν̃(kc, δǫ)ν) , (3.96)

where

ν̂(k, δǫ) =
1

2

∂ ln m̃2
R(k, δǫ)

∂ ln δǫ

∣∣∣∣
t

, (3.97)

ν̃(k, δǫ) =
1

2

∂ ln m̃2
R(k, δǫ)

∂t

∣∣∣∣
δǫ

. (3.98)

The value for the critical exponent ν is independent of the parameter rc, as long as rc . 1.

This essentially corresponds to the requirement that the scale kc is sufficiently close to the

limiting value k → 0. In our calculations we have taken rc ≃ 0.01.

The critical exponent γ determines the divergence of the susceptibility which is encoded in

the nonrenormalized mass m̄2 = ZBm
2
R [19, 129]. Although it is evaluated in the symmetric
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4th order 6th order 8th order 10th order

ηB 0.989 0.999 1.003 1.000

ηF 0.223 0.211 0.207 0.210

ν 1.922 1.936 1.791 1.874

γ 1.942 1.939 1.786 1.875

ν(2− ηB) 1.942 1.939 1.786 1.875

β 1.911 1.935 1.793 1.874
1
2ν(d− 2 + ηB) 1.911 1.935 1.793 1.874

Table 3.3.: N = 2 critical exponents for different orders in the local potential approximation

(LPA). For comparison the exponents γ and β are also determined from the scaling

relations γ = ν(2− ηB) and β = ν(d− 2 + ηB)/2.

phase, it is not affected by the fluctuations of the fermions. We have

γ = lim
δǫ→0

∂ ln m̄2(δǫ)

∂ ln δǫ
. (3.99)

Finally, the critical exponent β measures the fluctuations of the renormalized order param-

eter ρ0,k and is defined in the broken phase:

β =
1

2
lim
δǫ→0

∂ ln ρ20
∂ ln δǫ

. (3.100)

We extract the anomalous dimensions ηB and ηF the same way as the critical couplings.

Close to the critical parameter ǫΛ,(cr) the renormalization group flow approaches the fixed

point solution where the system is scale-invariant. That is, the solutions to the flow equation

stay constant over a wide range of scales where we may extract the corresponding quantities.

The values of the anomalous dimensions ηB and ηF are defined at the critical point in the

window where we have a plateau (see Fig. 3.2). Our results are summarized in Tab. 5.1

where we show the values of the critical exponents. They are given for different orders of

the series expansion for the effective average potential and were obtained using the optimized

regulator (3.43). We have also calculated the critical exponents for the exponential regulator.

For that calculation, however, we neglect the dependence on the anomalous dimensions in

the threshold functions. Since the anomalous dimensions are of order one, this gives a very

rough estimate of the systematic error for our results. We find an agreement of the critical

exponents on the 10% level. The scaling relations γ = ν (2− ηB) and β = ν (d− 2 + ηB) /2

for the critical exponents provide a consistency check of our calculations and are also given

in Tab. 5.1. We see that our results show a reasonable convergence in the series expansion.

In Tab. 3.4 we give the values of the critical parameters and couplings, where the asterisk

denotes the fixed point values, i.e., ǫ∗ ≡ u′∗, λ2,∗ ≡ u
(2)
∗ etc. These quantities are not universal

and depend on the particular renormalization group scheme. It is important to comment

on their behavior in the series expansion of the effective average potential. Taking into
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4th order 6th order 8th order 10th order

ǫ∗ 0.4842 0.5242 0.5424 0.5288

λ2,∗ 10.7678 10.3744 10.1573 10.3210

λ3,∗ -48.5405 -73.0962 -54.6552

λ4,∗ -1956.82 -485.084

λ5,∗ 219713

h2∗ 12.8622 12.9203 12.9438 12.9264

Table 3.4.: N = 2 fixed point values for different orders in the local potential approximation

(LPA).

account only the relevant operators, that is, expanding the potential to fourth order, yields a

reasonably good result for the scaling exponents. This can also be seen directly in Tab. 3.4

where the inclusion of higher order irrelevant operators does not significantly alter the values

for the relevant critical couplings, in contrast to the higher order couplings, that vary strongly

for different orders of the expansion. The relevant couplings are completely stable and show

that the important physical information is captured already in the lowest truncation with all

relevant operators included.

3.6. Summary

We have calculated the critical exponents at the quantum critical point for the three-dimensional

matrix Yukawa type model with U(2) symmetry, which describes N = 2 species of Weyl

fermions. This theory captures the relevant fluctuations close to the chiral phase transition

for a low-energy effective model of spinless fermions on the honeycomb lattice. We have

shown that the calculated critical exponents at the continuous quantum critical point de-

fine a new universality class distinct from Gross-Neveu or Neveu-Yukawa type models. In

particular this system is special in the sense that it is characterized by large values of the

anomalous dimensions. Similar results have been obtained in a single Dirac cone model where

the semimetal-superfluid transition was investigated using functional renormalization group

techniques [134, 135]. There, also a second order phase transition was found with large values

for the anomalous dimensions, both for the anomalous dimensions of composite and fermion

fields. In the context of compact three-dimensional QED one also observes a large value for

the anomalous dimension of the gauge field ηA = 1, where the result holds exactly due to

gauge invariance [136, 137]. Whether these nontrivial properties can be found in suspended

graphene is still an important open question. To see if these results are indeed relevant for

graphene requires us to include the long-range Coulomb interactions. In that case one has

to ask whether the instantaneous interaction is relevant for the critical dynamics, or if one

has an effective restoration of Euclidean rotational symmetry. Although, there are indica-

tions for such a behavior in the critical region of a Gross-Neveu-Yukawa fixed point for the
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semimetal-insulator transition [87, 91] until now this is an open issue.
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4. Multicritical behavior of two competing

order parameters

Competing order parameters arise generically in a wide variety of systems ranging from ultra-

cold atoms to extreme states of matter in QCD. Typically, their interaction give rise to a rich

phase structure with first or second order phase transitions separating the different phases, as

well as special points in the phase diagram where one observes multicritical behavior. Such

multicritical points are encountered when critical lines meet or intersect and are characterized

by additional relevant operators. While the values of critical exponents are independent of

the position along a critical line, this is no longer true at its endpoints. There, the system

belongs to a different universality class and new critical exponents may occur. Due to the

interplay of different order parameters the physics at a multicritical point can be quite intri-

cate with a complex phase structure in its neighborhood. It is therefore useful to consider

simple examples that provide an understanding of the phase structure and the possible types

of scaling encountered at such points.

One example is given by the tricritical point which separates a line of critical points from

a first order line (see, e.g., [138] for a review). It was noticed early on, that such a situ-

ation is naturally encountered when a line of three-phase coexistence ends in an extended

parameter space of the system [139, 140]. According to this scenario, three critical lines meet

at the tricritical point, hence the terminology. The upper critical dimension of a tricritical

point is d = 3 where the scaling properties are completely described in terms of mean-field

exponents (up to logarithmic corrections [141–143]). Tricritical points have been discussed in

the literature in the context of, e.g., the two-fluid 3He – 4He mixing point [139, 144], transi-

tions in ordinary fluid mixtures [145, 146], and the chiral phase transition in QCD with two

massless quarks [147–151]. While a tricritical point can be modeled by theories with a single

order parameter and a nonordering field, we encounter more interesting examples if different

competing fields simultaneously become critical.

Examples for multicritical points that result from the competition of two distinct types

of order are the bicritical and related tetracritical point [152–155]. See Fig. 4.1 for an illus-

tration of the associated phase diagrams. A bicritical point marks the endpoint of a first

order line of two-phase coexistence. At this point, two critical lines meet, separating the two

ordered phases from a disordered phase. At a tetracritical point the first order transition is

replaced by a mixed phase which is bounded by two distinct critical lines. Both the bicritical

43



Ordered Phase 1

Ordered Phase 2

Symmetric

Phase

T

H Mixed

Phase

Ordered Phase 1

Ordered Phase 2

Symmetric

Phase

T

H

Ordered Phase 1

Ordered Phase 2

Symmetric

Phase

T

H

Figure 4.1.: Illustration of possible phase diagrams in the vicinity of a multicritical point as a

function of two relevant parameters, e.g., temperature T and external magnetic

field H. Thick lines represent a first order phase transition. (Left) A first or-

der line ends at a bicritical point, where two critical lines separate the ordered

phases from the symmetric phase. (Middle) A tetracritical point appears where

four critical lines merge at a single point. In contrast to the bicritical point an

additional mixed phase appears where both order parameters are nonvanishing.

(Right) First order transition at the multicritical point. The two distinct first-

order lines, separating the disordered from the respective ordered phase, end at

a tricritical point where a critical line continues.

and tetracritical point allow for nontrivial scaling behavior in three dimensions, in contrast

to the tricritical point. This makes them particularly interesting from a theoretical perspec-

tive. Experimentally, the spin-flop transition for anisotropic antiferromagnets in a uniform

external magnetic field provides a prominent example for such a multicritical behavior [152–

154, 156]. Furthermore, bicritical or tetracritical points may also be relevant for models of

high-temperature superconductivity [157–161] as well as the competition between supersolid

and superfluid order in 4He [162].

Certainly, more complicated situations are conceivable if the parameter space of the system

is enlarged. However, in the following we will focus only on the simplest case of two competing

types of order. Their interaction exhibits a wide range of possibilities for the phase structure of

the considered models, including the above mentioned multicritical points. A class of theories

that features such multicritical behavior is given by the O(N1)⊕O(N2) symmetric models [38,

163], composed of two real-valued vector fields φ1a, a = 1, . . . , N1 and φ2b, b = 1, . . . , N2 in the

irreducible representation of the O(N1) and O(N2) symmetry group, respectively. Depending

on the values of N1 and N2, these theories may realize different scenarios for the phase

diagram in the vicinity of a multicritical point, characterized by different fixed points of the

renormalization group [152–154]. The stability of such a fixed point, as well as its physical

accessibility determine the type of critical behavior that one observes for a given model. If no

stable fixed point exists, or if the microscopic model lies outside its domain of attraction, one

finds a first order phase transition in the system. However, the influence of further symmetry-

breaking fields may change the situation, possibly even restoring a continuous transition [164].

In the case where both fields have a Z2 Ising symmetry, the isotropic Heisenberg-like fixed
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point is expected to be the stable one [163]. It generally features an enhanced O(N1 + N2)

symmetry and describes either a bicritical or a tetracritical point. The fact, that the isotropic

fixed point can describe two distinct scenarios for the phase diagram is due to the presence of

a dangerously irrelevant operator [165, 166]. Further fixed points exist that are expected to

be stable for some combination of values N1 and N2. In particular, beyond some critical value

of N = N1+N2 one always expects a tetracritical point which is either described by a biconal

or decoupled fixed point. To determine the phase structure of the model, it is important to

understand which of these fixed points eventually determines the critical scaling. While a lot

of work has already been done [38, 152–154, 163, 167, 168], certain aspects of these theories are

still under debate. This is partly due to the fact that available data on the phase diagram of

specific microscopic models [169, 170] is challenging to interpret, where the presence of small

crossover exponents and intricate interplay of nonuniversal behavior complicate the analysis

of experimental and Monte Carlo data [171]. Clearly, a nonperturbative method that is able

to access both the scaling properties, as well as the nonuniversal physics is of advantage.

Here, we apply the nonperturbative functional renormalization group to theories with two

competing order parameters and determine their possible scaling solutions and respective

stability properties. The functional renormalization group avoids subtle issues in the re-

summation of high-order perturbative series for fixed dimension d = 3, and expansions in

ǫ = 4− d (see e.g., [172–174]) that are required to calculate critical exponents. Furthermore,

unlike numerical Monte Carlo techniques, it is free from finite-size effects and discretization

artifacts. In that sense, the functional renormalization group complements these methods.

Taken together, they provide us with the possibility to understand physical systems in great

qualitative as well as quantitative detail.

Of course, the O(N1)⊕O(N2) symmetric theories constitute only one example for theories

that feature multicritical phenomena. In fact, a wide class of matrix models can be reduced to

a coupled theory of two distinct order parameters in a certain range of their parameter space.

We have already seen in the previous chapter that the unitary matrix models naturally lead to

different order parameters in the bosonic sector with the possibility of multicritical behavior,

if the relevant parameters are appropriately tuned. In particular, for spinless fermions on the

honeycomb lattice we found a competition between a charge-density wave and a topological

insulator state [175] that might lead to a decoupled tetracritical point for the phase diagram

(see also the discussion of a Z2×O(2) symmetric biconal fixed point in a related model [99]).

In the following, we will consider only the bosonic sector, where we discuss the mapping from

the unitary matrix models to the O(N1) ⊕ O(N2) symmetric theories and point out their

relevance for low-energy effective theories considered in the context of QCD.
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4.1. Low-energy effective theory

To determine the low-energy properties of the O(N1)⊕O(N2) symmetric models, we use the

following ansatz for the scale-dependent effective action

Γk =

∫
ddx

{
1

2
Z1,k (∂φ1)

2 +
1

2
Z2,k (∂φ2)

2 + Uk(φ1, φ2)

}
, (4.1)

where Uk is the scale-dependent effective potential and Z1,k and Z2,k denote the renormal-

ization factors. The theory is defined in d Euclidean dimensions, where the dimension is

kept as a free parameter in the following. However, in the evaluation of the flow equations

we will be particularly interested in the case where d = 3. Here, we employ two different

approximations of the effective action (4.1). First, we consider the case of scale-independent

renormalization factors ∂Z1,k/∂k = 0 and ∂Z2,k/∂k = 0, i.e., Z1,k = Z2,k = 1, in the local

potential approximation (LPA). This defines the lowest order contribution of a systematic ex-

pansion in derivatives which yields a good approximation to the phase structure of the model,

while critical indices are only poorly resolved. Going beyond the leading order, we allow

for scale-dependent renormalization factors but neglect their field-dependence. This provides

a first reasonable approximation to determine the critical scaling properties. We derive the

flow equations for the renormalization factors using a correspondence from the unitary matrix

models. This is described in detail in Sec. 4.5.

For the potential we use a series expansion in a suitable basis of field operators Om(φ1) and

On(φ2), given by

U =
∑

m,n

ḡm,nOm(φ1)On(φ2) , (4.2)

where the quantities ḡm,n denote the generalized bare couplings, evaluated at the potential

minimum (we will drop the k index for all scale-dependent quantities in the following sections).

Such an approximation is justified near a continuous phase transition where the potential min-

imum continuously evolves from the high-momentum scale to the infrared. However, theories

with two competing order parameters exhibit a rich critical behavior which allows both for

first order and second order phase transitions [176, 177]. First order phase transitions, where

the field-expectation value evolves into a metastable state in the course of the renormalization

group flow, are difficult to capture by this approach. Instead one needs to resolve the full

field dependence of the potential [71, 72, 178, 179]. It is thus important to understand when

a truncated series expansion for the potential is applicable, giving controlled results for the

critical behavior near the transition. We will come back to this issue in detail when we discuss

possible scaling solutions to the flow equations (see Sec. 4.6).

4.2. Fluctuation matrix and mass spectrum

Here, we derive the field-dependent propagator and the related mass spectrum of the theory.

Both enter the exact flow equation for the scale-dependent effective action and thereby de-
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termine the RG flow equations for the one-particle irreducible n-point functions Γ(n). The

propagator is defined in terms of the inverse two-point function, which is given by

(
Γ
(2)
IJ

)
ab
(p) = ZIp

2δIJδab +
(
M̄2

IJ

)
ab
, (4.3)

and characterizes the fluctuations around the expansion point of the effective action (4.1). The

indices I, J = 1, 2 refer to the two sectors of the theory and we use the short-hand notation

where index pairs (I, a), (J, b), etc., denote the field components φIa and φJb, respectively.

The zero-momentum part of the two-point function defines the mass matrix M̄2 = Γ(2)(0),

and its eigenvalues determine the spectrum of the theory. We emphasize, that these quantities

are defined to be field-dependent. Only after deriving the flow equations for higher n-point

functions, we set the fields to the appropriate minimum configuration.

To determine the mass spectrum, it is convenient to parametrize the field-dependence in

terms of invariants of the O(N1) ⊕ O(N2) symmetry group, e.g., ρ̄1 = φ21/2 and ρ̄2 = φ22/2.

Also, we rotate both fields such that they point in the 1-direction, φIa = ||φI || δa1, a =

1, . . . , NI , where ||φI || =
√
φIaφIa defines the norm of the NI-component vector. With this

choice for the field configuration, the zero-momentum part of the two-point function takes the

following form

(
M̄2

IJ

)
ab

=
∂U

∂ρ̄I
δIJδab + 2

{
ρ̄I
∂2U

∂ρ̄2I
δIJ +

√
ρ̄I ρ̄J

∂2U

∂ρ̄I∂ρ̄J
(δI1δJ2 + δI2δJ1)

}
δa1δb1 . (4.4)

We find N1− 1 degenerate eigenvalues M̄2
1 = ∂U/∂ρ̄1, N2− 1 eigenvalues M̄2

2 = ∂U/∂ρ̄2, and

two modes with masses

M̄2
± =

1

2

(
M̄2

R,1 + M̄2
R,2 ±

√(
M̄2

R,1 − M̄2
R,2

)2
+ 4δ̄

)
, (4.5)

where M̄2
R,I = ∂U/∂ρ̄I + 2ρ̄I∂

2U/∂ρ̄2I , I = 1, 2, and the quantity δ̄ = 4ρ̄1ρ̄2
(
∂2U/(∂ρ̄1∂ρ̄2)

)2

parametrizes the coupling between the two sectors. In the RG flow equations these quantities

are evaluated for a specific field configuration which defines the expansion point for the effec-

tive action (4.1). Depending on the regime that one is interested in, different expansions of the

effective action may be appropriate. In fact, within our truncation the complete field depen-

dence of the model is carried by the effective potential and the question in particular concerns

which basis of field operators should be used for the expansion of the potential. Here, we ex-

pand the fields around their expectation values φ1,0 and φ2,0, defined by the scale-dependent

minimum of the effective potential. Thus, we may distinguish the following cases:

• In the symmetric phase, both φ1,0 and φ2,0 are zero, and we use an expansion for the

potential of the form

U = m̄2
1ρ̄1 + m̄2

2ρ̄2 +
∑

m+n≥2

λ̄m,n

m!n!
ρ̄m1 ρ̄

n
2 . (4.6)

In this case, the physical masses of the theory are

M̄2
1 = M̄2

+ = m̄2
1 , M̄2

2 = M̄2
− = m̄2

2 . (4.7)
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• If we assume that only one of the expectation values vanishes, say φ2,0 = 0 and φ1,0 6= 0,

then

U = m̄2
2ρ̄2 +

∑

m+n≥2

λ̄m,n

m!n!
(ρ̄1 − ρ̄1,0)mρ̄n2 , (4.8)

and the corresponding masses

M̄2
1 = 0 , M̄2

+ = 2ρ̄1,0λ̄2,0 , M̄2
2 = M̄2

− = m̄2
2 . (4.9)

Of course, a similar case applies if the sectors are interchanged.

• Finally, for both φ1,0 6= 0 and φ2,0 6= 0, we use the following expansion

U =
∑

m+n≥2

λ̄m,n

m!n!
(ρ̄1 − ρ̄1,0)m(ρ̄2 − ρ̄2,0)n , (4.10)

where the physical masses are given by

M̄2
1 = M̄2

2 = 0 , M̄2
± = ρ̄1,0λ̄2,0 + ρ̄2,0λ̄0,2 ±

√(
ρ̄1,0λ̄2,0 − ρ̄2,0λ̄0,2

)
+ 4ρ̄1,0ρ̄2,0λ̄21,1 .

(4.11)

This concludes our discussion of the mass spectrum.

4.3. RG flow of the effective potential

We derive the renormalization group flow equation for the effective potential from the exact

flow equation

∂Γ

∂t
=

1

2
Tr

∫
ddq

(2π)d
∂R(q)

∂t

(
Γ(2)(q) +R(q)

)−1
, (4.12)

where, as usual, t = ln k/Λ denotes the scale parameter (defined with respect to some UV

scale Λ), and the trace Tr · · · goes over the index pairs (I, a) etc. The theory is regularized by

a mass-like regulator function, which we choose such that it acts separately in the two sectors,

i.e., (RIJ)ab (p) = RI(p)δIJδab, I, J = 1, 2, while its momentum-dependence is determined by

the function RI(p) = ZI(k
2 − p2)θ(k2 − p2). Other choices for the regulator are possible,

e.g., where the two sectors are regularized independently. However, the above form is the

simplest choice that is compatible with the symmetries of the effective action (4.1). The

chosen regulator satisfies an optimization criterion [58, 59] which allows us to derive fully

analytic expressions for the nonperturbative β-functions.

Computing the trace over all diagonal contributions of the regularized propagator, we obtain
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the flow equation for the effective potential:

∂U

∂t
=

1

2

∫
ddq

(2π)d

{
∂R1(q)

∂t

[
N1 − 1

Z1q2 +R1(q) + M̄2
1

+
Z1q

2 +R1(q) + M̄2
R,2(

Z1q2 +R1(q) + M̄2
R,1

)(
Z2q2 +R2(q) + M̄2

R,2

)
− δ̄

]

+
∂R2(q)

∂t

[
N2 − 1

Z2q2 +R2(q) + M̄2
2

+
Z2q

2 +R2(q) + M̄2
R,1(

Z1q2 +R1(q) + M̄2
R,1

)(
Z2q2 +R2(q) + M̄2

R,2

)
− δ̄

]}
. (4.13)

Taking derivatives with respect to the fields and afterwards setting the fields to their minimum

values, we obtain the flow equations for higher n-point functions Γ(n). Here, we consider only

local interactions and thus, the RG flow of n-point correlation functions is reduced the to

a set of flow equations for the couplings that parametrize the higher order operators in an

expansion of the effective potential. The flow equation (4.13) therefore defines an infinite

hierarchy for the derivatives of the potential U (m,n) = ∂m+nU/(∂ρ̄m1 ∂ρ̄
n
2 ), m,n ≥ 1, that are

evaluated at the minimum of the potential. Their flow equations are given by

∂

∂t
U (m,n) =

∂

∂t
U (m,n)

∣∣
ρ̄1,0,ρ̄2,0

+ U (m+1,n)
∣∣
t

∂ρ̄1,0
∂t

+ U (m,n+1)
∣∣
t

∂ρ̄2,0
∂t

, (4.14)

and include the contributions both from the explicit scale-dependence of the potential and

the field expectation values (written in terms of the quadratic invariants ρ̄1,0 = φ21,0/2 and

ρ̄2,0 = φ22,0/2). Here, · · · |ρ̄1,0,ρ̄2,0 means that the respective quantity should be evaluated for

fixed ρ̄1,0 and ρ̄2,0, and equivalently · · · |t for a fixed scale parameter t.

The hierarchy (4.14) is closed by a truncated series expansion of the effective potential up

to some finite order in the fields

U = m̄2
1 (ρ̄1 − ρ̄1,0) + m̄2

2 (ρ̄2 − ρ̄2,0) +
nmax∑

m+n≥2

λ̄m,n

m!n!
(ρ̄1 − ρ̄1,0)m (ρ̄2 − ρ̄2,0)n , (4.15)

where we use an expansion that is adapted the case where both fields simultaneously become

critical. That is, we evaluate (4.15) in the symmetry broken phase where both masses are zero,

m̄2
1 = m̄2

2 = 0, while the fields assume a nonvanishing expectation value. In that case, we need

to determine the RG flow equations for ρ̄1,0 and ρ̄2,0. They are derived from the requirement

that both masses are fixed to zero and do not flow, i.e., ∂U (1,0)/∂t = ∂U (0,1)/∂t = 0 at the

minimum of the potential. From (4.14) we derive the set of linear equations

∂

∂t
U (1,0)

∣∣
ρ̄1,0,ρ̄2,0

= −U (2,0)
∣∣
t

∂ρ̄1,0
∂t
− U (1,1)

∣∣
t

∂ρ̄2,0
∂t

, (4.16)

∂

∂t
U (0,1)

∣∣
ρ̄1,0,ρ̄2,0

= −U (1,1)
∣∣
t

∂ρ̄1,0
∂t
− U (0,2)

∣∣
t

∂ρ̄2,0
∂t

. (4.17)

which we may solve in the nonsingular case, that is, when the quantity

∆̄ = det

(
∂2U

∂ρ̄I∂ρ̄J

)
= U (2,0)|tU (0,2)|t −

(
U (1,1)|t

)2
, (4.18)
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is nonvanishing. We obtain

∂ρ̄1,0
∂t

= ∆̄−1

(
−U (0,2)

∣∣
t

∂

∂t
U (1,0)

∣∣
ρ̄1,0,ρ̄2,0

+ U (1,1)
∣∣
t

∂

∂t
U (0,1)

∣∣
ρ̄1,0,ρ̄2,0

)
, (4.19)

∂ρ̄2,0
∂t

= ∆̄−1

(
U (1,1)

∣∣
t

∂

∂t
U (1,0)

∣∣
ρ̄1,0,ρ̄2,0

− U (2,0)
∣∣
t

∂

∂t
U (0,1)

∣∣
ρ̄1,0,ρ̄2,0

)
. (4.20)

If ∆̄ = 0, this solution does not apply, and we need to find an alternative strategy to derive

the flow equations. For that purpose, we solve the algebraic equation ∆̄ = 0 and substitute

one of the solutions, e.g., U (1,1)|t =
√
U (2,0)|t U (0,2)|t, into eqs. (4.16) and (4.17). This yields

a flow equation for a single radial excitation:

∂

∂t

(√
U (2,0)|t ρ̄1,0 +

√
U (0,2)|t ρ̄2,0

)

= −1

2

(
1√

U (2,0)|t
∂

∂t
U (1,0)

∣∣
ρ̄1,0,ρ̄2,0

+
1√

U (0,2)|t
∂

∂t
U (0,1)

∣∣
ρ̄1,0,ρ̄2,0

)
. (4.21)

In fact, this explains why we encountered the singular scenario in the first place. If ∆̄ = 0,

we see that the mass spectrum for the case of two nonvanishing fields ρ̄1,0 6= 0 and ρ̄2,0 6= 0,

reduces to M̄2
1 = M̄2

2 = M̄2
− = 0, M̄2

+ = 2
(
ρ̄1,0λ̄2,0 + ρ̄2,0λ̄0,2

)
. The theory then features an

enhanced continuous O(N1 +N2) rotational symmetry which is broken down to the O(N1 +

N2 − 1) symmetry group. The breaking of this symmetry gives rise to only one independent

nonvanishing expectation value, where the scale-dependence follows from the requirement

∂U (1,0)/∂t + ∂U (0,1)/∂t = 0. Note, that this implies that only one of the masses is fixed

to zero, since ∂U (1,0)/∂t − ∂U (0,1)/∂t is not fixed by the ∆̄ = 0 constraint. Thus, for the

symmetry enhanced case it is necessary to use a different expansion for the potential which

is adopted to this situation. In particular, we will use an expansion where only one of the

field expectation values is nonzero. We will come back to this phenomenon of symmetry

enhancement when we discuss scaling solutions to the flow equations (see Sec. 4.6).

Eqs. (4.13) – (4.21) define the complete set of flow equations to leading order in the deriva-

tive expansion for the O(N1) ⊕ O(N2) model. However, going beyond this approximation,

including the effect of scale-dependent anomalous dimensions, we furthermore need to provide

the flow equations for the renormalization factors Z1 and Z2. Their flow equations are given

in Sec. 4.5.

4.4. Scaling form of the RG flow equations

To identify possible fixed point solutions where the theory is scale-independent we write

the flow equations in terms of dimensionless renormalized quantities, i.e., we introduce the

associated invariants ρ1 = Z1k
2−dρ̄1 and ρ2 = Z1k

2−dρ̄2, as well as the dimensionless effective

potential u = k−dU . The order parameters in the two sectors are defined only in the k → 0

limit: limk→0 Z
−1
I kd−2ρI , I = 1, 2, when all fluctuations have been taken into account.
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The scaling form of the RG equation (4.13) reads

∂u

∂t
= −du+ (d− 2 + η1)ρ1

∂u

∂ρ1
+ (d− 2 + η2)ρ1

∂u

∂ρ2

+ 2vd

{
(N1 − 1)l0(ǫ1; η1) + l̃0(ǫR,1, ǫR,2, δ; η1)

+ (N2 − 1)l0(ǫ2; η2) + l̃0(ǫR,2, ǫR,1, δ; η2)
}
, (4.22)

where ǫR,1 = Z−1
1 k−2m̄2

R,1 and ǫR,2 = Z−1
2 k−2m̄2

R,2 denote the dimensionless renormalized

mass eigenvalues, and the coupling parameter δ = Z−1
1 Z−1

2 k4−dδ̄. The anomalous dimensions

η1 = −∂ lnZ1/∂t and η2 = −∂ lnZ2/∂t define the scaling contributions to the renormalization

factors and are given in Sec. 4.5.

Using the optimized regulator function, the threshold functions l0 and l̃0 take the following

form:

l0(w; η) =
2

d

(
1− η

d+ 2

)
1

1 +w
, (4.23)

l̃0(w1, w2, w3; η) =
2

d

(
1− η

d+ 2

)
1 + w2

(1 + w1) (1 + w2)− w3
. (4.24)

We have already defined the class of threshold functions ∂ln(w; η)/∂w = − (n+ δn0) ln+1(w; η),

n ≥ 0, by successive differentiations of l0. The function l̃0(w1, w2, w3; η) is of a similar type

and reduces to the l0 function in certain limits: limw3→0 l̃0(w1, w2, w3; η) = l0(w1; η), and

limw2→0 l̃0(w1, w2, w3; η) = l0(w1 − w3; η). These two properties of the threshold function

essentially describe the decoupling of the two sectors, as well as the vanishing of either one of

the field expectation values.

The effective potential is given by

u(ρ1, ρ2) = ǫ1 (ρ1 − ρ1,0) + ǫ2 (ρ2 − ρ2,0) +
nmax∑

m+n≥2

λm,n

m!n!
(ρ1 − ρ1,0)m (ρ2 − ρ2,0)n , (4.25)

where ǫ1 = Z−1
1 k−2m̄2

1, ǫ2 = Z−1
2 k−2m̄2

2, and λm,n = Z−m
1 Z−n

2 k(m+n)(d−2)−dλ̄m,n denote the

renormalized dimensionless masses and couplings in the given representation of the potential.

Here, we use truncations up to 12th order in the fields nmax = 2, . . . , 6, which is sufficient to

establish the convergence of critical exponents [63, 68, 69, 180, 181].

To determine the fixed point structure of the theory and their respective scaling properties,

we need to define an appropriate expansion point for the effective potential (4.25). Which

one is appropriate, is determined by the fixed point that one is interested in. Let us consider

first the case, where the potential is expanded around two simultaneously nonvanishing field

expectation values, ρ1,0 6= 0 and ρ2,0 6= 0. In that case, the dimensionless, renormalized

masses ǫ1 and ǫ2 are zero, and the RG flow equations for ρ1,0 and ρ2,0 take the following form

∂ρ1,0
∂t

= ∆−1

(
−λ0,2

∂

∂t
u(1,0)

∣∣
ρ1,0,ρ2,0

+ λ1,1
∂

∂t
u(0,1)

∣∣
ρ1,0,ρ2,0

)
, (4.26)

∂ρ2,0
∂t

= ∆−1

(
λ1,1

∂

∂t
u(1,0)

∣∣
ρ1,0,ρ2,0

− λ2,0
∂

∂t
u(0,1)

∣∣
ρ1,0,ρ2,0

)
, (4.27)
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where ∆ = λ2,0λ0,2 − λ21,1. As explained in the previous section, this set of equations applies

only if ∆ 6= 0. When ∆ = 0, we should expand around a field configuration where only one

of the expectation values is nonvanishing, e.g., ρ1,0 6= 0 and ρ2,0 = 0, while the masses ǫ1 = 0

and ǫ2 6= 0. The corresponding flow equation is given by

∂ρ1,0
∂t

= − 1

λ2,0

∂

∂t
u(1,0)

∣∣
ρ1,0

. (4.28)

Of course, due to the enhanced rotational symmetry, the choice of the sector where the vacuum

expectation value is nonvanishing is completely arbitrary.

Let us comment briefly on the validity of a truncation of the type (4.25) where the potential

is expanded in some basis of field operators. Typically, such a series expansion provides a

good approximation to the critical properties of the theory if we expand around the global

minimum of the effective potential. However, depending on the values of the couplings λm,n

different possibilities may appear, that are distinguished by the discriminant

∆ = λ2,0λ0,2 − λ21,1 . (4.29)

Here, the couplings have been evaluated at the expansion point of the potential. Eq. (4.29)

defines the determinant of the Hessian ∂2u/(∂ρI∂ρJ) that determines the behavior of the

potential in the vicinity of the expansion point. If ∆ > 0, it defines a minimum of the

potential (assuming both eigenvalues of the Hessian are nonnegative), ∆ = 0 corresponds to

a degeneracy point, whereas ∆ < 0 describes a saddle-point solution. Clearly, fixed point

solutions can be discarded if the couplings satisfy ∆ < 0. In that case, the potential is simply

not expanded around the minimum and the series expansion will capture the properties at

the transition only poorly. To properly resolve the full potential flow one should resort to grid

methods instead (see, e.g., [178]). Not only does the quantity (4.29) characterize the type of

extrema and the convergence properties of the truncation at the fixed point, it also plays an

important role for the stability and convergence properties of the RG flow. This is due to

the fact, that the sign of ∆ is a renormalization group invariant – it does not change in the

course of the RG flow. This is true, as long as the regulator function respects the possible

symmetries of the model. The invariance of ∆ has an important implication for the analysis

of scaling solutions: If a stable fixed point exists in a region of the parameter/coupling space

characterized by ∆ ≥ 0 we may follow the renormalization group flow of the ground state

from the microscopic theory to the low-energy effective theory within a series expansion of the

effective potential. For such a situation we observe a convergence of the critical exponents.

In contrast, in the region where ∆ < 0, one might encounter a first order transition. Thus, if

one wants to solve for the complete RG flow, it depends on the particular microscopic model

which truncation one should use for the effective potential.
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4.5. Relation to matrix models

Before we move on to determine the fixed point solutions to the RG flow equations, let us

comment on an interesting relation between the coupled scalar theories and matrix models.

The class of O(N1)⊕O(N2)-models appears naturally in theories where the order param-

eter is matrix-valued. Generally, matrix models can be phrased in terms of invariants of

the reducible tensor representation of a given symmetry group which essentially describe

the competing fields of the theory. Their identification relies on the decomposition of the

tensor representation into irreducible representations that determine the possible types of

symmetry breaking. This identification makes it possible to establish a correspondence to the

O(N1)⊕O(N2)-models simply by considering the dynamics in the two sectors of the theory

that feature the required symmetry. However, we point out that this does not mean that the

matrix model will necessarily show the same multicritical behavior in the phase diagram. The

presence of further ordering or nonordering fields might drastically change the nature of the

transition that one eventually observes for these models. Thus, a complete analysis of the

phase diagrams for such matrix models is typically quite intricate.

As an example, we consider the U(2) matrix model written in terms of a Hermitian 2 ×
2 matrix Φ, where the decomposition of the tensor representation 2 ⊗ 2 = 3 ⊕ 1 yields

a coupled theory of two scalar fields with O(3) ⊕ Z2 symmetry. The corresponding order

parameters define the two invariants of the U(2) matrix model that are written in terms

of the trace in the defining representation σ̄1 = (trΦ)2 /2 and σ̄2 = trΦ2/2. While the

invariant σ̄1 captures the breaking of the Z2 center symmetry of the O(3) ≃ SU(2) subgroup,

a nonvanishing vacuum expectation value for the order parameter σ̄2 leads to a breaking of

the SO(3) symmetry.1 The effective potential for such a matrix model can be written solely

in terms of these two invariants, i.e., U(Φ) = U(σ̄1, σ̄2), where higher order operators Φn can

be expressed completely in terms of linear combinations of σ̄1 and σ̄2 to some given power.

Note that both invariants define field monomials of degree two and thus lead to a similar

competition for the two order parameters, as discussed at the example of the O(N1)⊕O(N2)

models. Let us examine the expansion of the potential in terms of these invariants

U(Φ) =
∑

m+n≥2

λ̄m,n

m!n!
(σ̄1 − σ̄1,0)m (σ̄2 − σ̄2,0)n , (4.30)

where σ̄1,0 and σ̄2,0 denote the corresponding expectation values in the symmetry broken

phase. The mass spectrum for this theory is identical to the coupled O(3) ⊕ Z2 model. In

particular, it follows that the purely bosonic U(2) matrix model allows for a similar scenario

where the symmetry of the theory enhanced to a O(4) rotational symmetry. This is an

explicit example of universality – the flow equations are completely independent of the field

representations as long as the underlying symmetry and dimensionality of the problem are

the same.

1The global U(1) symmetry typically corresponds to charge conservation and is not broken by interactions.
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Let us use a different physical context to elucidate a subtlety in such matrix models: Another

prominent example featuring the U(2) symmetry group appears in the context of low-energy

effective models for QCD, e.g., the quark-meson model with two light quark flavors [130, 182,

183]. It features a similar SU(2)L × SU(2)R × U(1)A symmetry which is written in terms

of a generic complex matrix in the 2 ⊗ 2 representation. If we consider only the bosonic

sector, such a theory can be written in terms of four invariants σ̄i = tr
(
Φ†Φ

)i
, i = 1, . . . , 4,

of the symmetry group. Similar to the discussion above, examining a polynomial expansion

of the effective potential one could expect an enhanced O(8) symmetry at the multicritical

point. However, it turns out that the competing order parameters do not enter with the

same canonical mass dimension which leads to different dynamics compared to the Hermitian

U(2) matrix model. In particular, there are no competing operators of degree two (the only

mass-like invariant being TrΦ†Φ). The situation is different however, in the case without

the U(1)A axial symmetry, where an additional order parameter is allowed that violates this

symmetry. It can be expressed in terms of a linear combination of operators detΦ and detΦ†

which are quadratic in the fields.

For our purposes it is useful to focus on the U(N) symmetric matrix models. Here, we

demonstrate a mapping to the O(N1) ⊕ O(N2) theory, where we use a truncation for the

scale-dependent action of the form

Γ =

∫
ddx

{
1

2
ZΦ tr (∂Φ)2 + U(Φ)

}
. (4.31)

The trace tr · · · goes over the diagonal components of the matrix Φab, a, b = 1, . . . , N , in the

given representation and we introduce a scale-dependent renormalization factor ZΦ, neglecting

its possible field-dependence. This ansatz extends the discussion of the U(2) model (see

the previous chapter 3) to the general case of N components. The representation Φab can

be decomposed in the following way N ⊗N = (N 2 − 1)⊕ 1, where we associate the two

invariants σ̄1 = (tr Φ)2/2 and σ̄2 = trΦ2/2 to the Z2 and O(N2 − 1) order parameter,

respectively. In the following, we neglect all higher order operators, and expand the potential

only in σ̄1 and σ̄2, i.e., U(Φ) ∼ U(σ̄1, σ̄2). In that case, it is possible to exploit universality

to map the flow equations onto the class of O(N2 − 1) ⊕ Z2 symmetric theories.

For the given truncation (4.31), we use the results from the previous chapter leaving the

dimension of the matrix representation N as a free parameter. Only after deriving the flow

equations, we specify N (and set it to possibly noninteger values). In particular, we use

the scaling contribution to the renormalization factor, i.e., ηΦ = −∂ lnZΦ/∂t derived in

the previous chapter, to obtain an estimate of the critical exponents in the two-coupled

vector models. We emphasize at this point that the derivation of ηΦ takes into account

only the contributions from the massless Goldstone modes, which in the O(N2 − 1)⊕ Z2

decomposition are seen to originate from the sector with the continuous O(N2−1) symmetry.

Thus, the truncation (4.31) is equivalent to an ansatz (4.1) where the renormalization factors

are chosen such that Z1 = 0 and Z2 = ZΦ. This gives a reasonable approximation to the

multicritical scaling behavior for the class of O(N)⊕Z2 models, while the general case O(N1)⊕
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O(N2) with N1 6= 1 and N2 6= 1 is not accessible by such an identification. The anomalous

dimension ηΦ for the O(N)⊕ Z2 symmetric theories is thus given by

ηΦ = 8
vd
d
ρ2,0λ

2
0,2

{
m2,2 (0, ǫ+; ηΦ) +m2,2 (0, ǫ−; ηΦ)

−
(
m2,2 (0, ǫ+; ηΦ)−m2,2 (0, ǫ−; ηΦ)

)ρ1,0λ2,0 − ρ2,0λ0,2 − 4ρ1,0ρ2,0λ
2
1,1/(2ρ2,0λ0,2)√

(ρ1,0λ2,0 − ρ2,0λ0,2)2 + 4ρ2,0ρ0,2λ
2
1,1

}
.

(4.32)

where we have adopted the notation from the two-coupled field theories, and the threshold

function m2,2(w1, w2; η) = (1+w1)
−2(1+w2)

−2. We explicitly check that the parametrization

of the scaling contribution to the renormalization factor ZΦ captures the enhanced symmetry

scenario. Indeed, in the limit where λ1,1 =
√
λ2,0λ0,2, we obtain

ηΦ = 16
vd
d
ρ2,0λ

2
0,2m2,2 (0, 2 (ρ1,0λ2,0 + ρ2,0λ0,2) ; ηΦ) , (4.33)

which is identical with the corresponding result for O(N) vector models at the degeneracy

point, where λ2,0 = λ0,2 = λ and ρ1,0 + ρ2,0 = ρ0:

ηΦ = 16
vd
d
ρ0λ

2m2,2 (0, 2ρ0λ; ηΦ) , (4.34)

in the limit ρ1,0 → 0. We will keep the index “Φ” for the anomalous dimension to emphasize

that the the obtained results use the given correspondence from the reduced U(N) models.

With these results we may now ask for scaling solutions of the functional RG and investigate

their critical properties.

4.6. Fixed points from the functional RG

Scale-invariant solutions of the renormalization group are classified according to their symme-

try. The presence of these symmetries divides the theory space, spanned by the parameters

and couplings of the model, into distinct subspaces that are closed under renormalization

group transformations. If a fixed point exists in such a closed subspace, it defines a scale-

invariant solution that inherits the symmetry from the subspace it is embedded in. Thus, it

is reasonable to ask about the possible symmetries of the O(N1)⊕O(N2) symmetric theories

by discussing the properties of the vacuum manifold.

As a simple example, let us consider the coupled Z2⊕Z2 theory, where both sectors feature

a discrete Z2 Ising symmetry. To illustrate the symmetry properties of the theory, we consider

a series expansion for the effective potential to 4th order in the fields

u(ρ1, ρ2) =
1

2
λ2,0 (ρ1 − ρ1,0)2 +

1

2
λ0,2 (ρ2 − ρ2,0)2 + λ1,1 (ρ1 − ρ1,0) (ρ2 − ρ2,0) . (4.35)

where both field expectation values are nonvanishing, ρ1,0 6= 0 and ρ2,0 6= 0. Depending on

the values of the parameters and couplings, we may distinguish the following scenarios:
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• All couplings are zero – the theory is noninteracting. This defines a singular point in

theory space.

• If one of the sectors is trivial, either λ2,0 or λ0,2 is zero, and the coupling λ1,1 vanishes.

In this case, the theory is invariant under the discrete Z2 Ising symmetry. Thus, we

obtain two distinct Z2-invariant subspaces in the space of Z2 ⊕ Z2 models.

• Both the sectors are interacting, λ2,0 6= 0 and λ0,2 6= 0. Here, it is instructive to consider

a reparametrization of the fields, where ρ̃1 =
√
λ2,0 ρ1,0 and ρ̃2 =

√
λ0,2 ρ2,0 (we assume

that both λ2,0 and λ0,2 are positive). Then, the reparametrized potential takes the form

u(ρ̃1, ρ̃2) =
1

2
(ρ̃1 − ρ̃1,0)2 +

1

2
(ρ̃2 − ρ̃2,0)2 +

λ1,1√
λ2,0λ0,2

(ρ̃1 − ρ̃1,0) (ρ̃2 − ρ̃2,0) , (4.36)

where the parameter ξ = λ1,1/
√
λ2,0λ0,2 determines the symmetry properties of the

theory. For values in the range 0 < ξ < 1, the theory in general displays a discrete

Z2×Z2 symmetry. However, the points ξ = 0 and ξ = 1 are special, and the symmetry

of theory is enhanced.2

Discrete Z2 × Z4 symmetry : Let us first consider the situation when ξ = 0, where the

two sectors are decoupled. We define the complexified invariant ρ̃ = (ρ̃1 + iρ̃2)/
√
2

and write the potential as: u(ρ̃, ρ̃∗) = |ρ̃ − ρ̃0|2. In this case the theory allows for an

additional discrete Z2 symmetry, where ρ̃ ↔ ρ̃∗. In fact, for the two-scalar model this

symmetry is identical to a mirror symmetry that relates the two sectors in the case

when the expectation values satisfy ρ1,0 = ρ2,0, i.e., φ1 ↔ φ2. The value ξ = 0 defines

a closed subspace in theory space that is invariant under Z2 × Z4 symmetry.

Continuous O(2) symmetry : When ξ = 1 the couplings satisfy, λ1,1 =
√
λ2,0λ0,2. In

that case, we may write the rescaled potential in terms of the quadratic invariant ρ̃ =

ρ̃1 + ρ̃2: u(ρ̃) = (ρ̃ − ρ̃0)2/2. Clearly, in this form the potential exhibits an enhanced

continuous O(2) symmetry. This symmetry defines an invariant subspace given by

requirement that ∆ = 0, where different points on the hypersurface are equivalent up

to a reparametrization of the fields.

The discussed scenarios are summarized in Fig. 4.2. They divide the theory space in distinct

invariant subspaces and give a complete characterization of the symmetry properties of the

model (as well as possible fixed points of the RG). Of course, this discussion generalizes to

more elaborate truncations of the effective potential, where the classification of symmetries

is more complicated due to the presence of additional couplings. Also, these results similarly

apply to the class of O(N1)⊕O(N2) models, where the illustration of the possible symmetries

is more difficult. We find that possible fixed points of the theory are distinguished by the

O(N1 +N2), Z2 ×O(N1)×O(N2), and O(N2)×O(N2) symmetries.

2Let us point out that in principle, given the requirement of stability ∆ ≥ 0, a negative coupling −
√

λ2,0λ0,2 ≤

λ1,1 < 0 is also permissible. Thus we might consider the extended region −1 ≤ ξ ≤ 1. In that case, we find

another enhanced O(1, 1) symmetry (ξ = −1) which, however, is not compatible with the positivity of the

renormalization factors Z1 and Z2.
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Figure 4.2.: Effective potential u(φ1, φ2) for the Z2⊕Z2 scalar theory, expanded to 4th order

in the fields. We find several possible scenarios for the ground state manifold if

both field expectation values are nonvanishing: Two with a discrete symmetry

Z2 × Z4 and Z2 × Z2, and one with a continuous O(2) symmetry.

While the above symmetry considerations help to classify possible fixed point solutions,

their existence and stability properties are yet to be determined. The stability of scaling

solutions is given by the number of relevant parameters that require tuning to reach the con-

tinuous transition. At a multicritical point typically several parameters have to be adjusted,

and the fixed point with the least number of relevant parameters is the stable one. The crit-

ical indices for the noninteracting fixed points can be inferred completely from dimensional

analysis. The Gaussian fixed point (GFP) has five relevant directions and is never stable.

The partially interacting, decoupled Gaussian fixed points (DGFP) featuring either O(N1)

or O(N2) symmetry have at least two relevant directions that we may infer from the non-

interacting sector. Furthermore, one relevant direction is added from the knowledge of the

Wilson-Fisher fixed point. Similarly for the interacting models, we deduce the existence of

the Z2×O(N1)×O(N2) symmetric decoupled fixed point (DFP) with at least two relevant di-

rections, as well as the isotropic Heisenberg-like fixed point (IFP) with O(N1+N2) symmetry

and at least one relevant eigendirection. The remaining critical indices may receive sizable

corrections from fluctuations and are determined from the eigenvalues of the stability ma-

trix ∂β/∂g = (∂βi,j/∂gm,n) at the respective fixed point which is determined by numerically

solving the RG flow equations (4.22) – (4.28).

The stability matrix is defined by the derivatives of the nonperturbative β-functions βi,j =

∂gi,j/∂t with respect to the dimensionless, renormalized generalized couplings gm,n. We lin-

earize the β-functions at the fixed point defined by the couplings gm,n ∗:

βi,j =
∑

m,n

∂βi,j
∂gm,n

(gm,n − gm,n ∗) +O(g2) . (4.37)

The solution is written in the form

gm,n = gm,n ∗ +
∑

I

cI v
I
m,n(k/Λ)

−θI , (4.38)
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N θ1 = y2,2 θ2 = y2,0 θ3 = y4,4 θ4 = y4,2 θ5 = y4,0 φT

2 1.756 1.453 -0.042 -0.446 -0.743 1.209

3 1.790 1.362 0.086 -0.380 -0.756 1.314

4 1.818 1.292 0.196 -0.324 -0.775 1.407

5 1.842 1.240 0.289 -0.283 -0.797 1.485

10 1.908 1.116 0.568 -0.154 -0.879 1.710

100 1.990 1.010 0.951 -0.015 -0.988 1.970

∞ 2 1 1 0 -1 2

Table 4.1.: Critical indices for the isotropic fixed point (IFP) to 12th order LPA including

a scale-dependent anomalous dimension ηΦ. The leading and subleading O(N)

exponents are highlighted in italics. The critical indices can be related to the

scaling dimensions yi,j from Ref. [163]. The crossover exponent is given by φT =

y2,2ν where ν = 1/θ2 is the correlation length exponent.

where θI and vI define the eigenvalues and corresponding eigendirections of the stability

matrix at the fixed point:
∂β(g∗)

∂g
vI = −θIvI . (4.39)

If Re θI > 0 the corresponding eigendirection vI is relevant in the IR limit k → 0, while

Re θI < 0 characterize irrelevant eigendirections. If Re θI = 0 the eigendirection is marginal.

We want to point out that in general the eigenvalues may assume complex values. However,

since only their real part matters for the discussion of stability properties, we take θI to refer

to the real part only. Furthermore, we define the ordering for the eigenvalues: θ1 > θ2 > . . .

This concludes our discussion of possible scaling solutions and their respective stability

properties. In the following, we determine the fixed point solutions from the functional RG

in d = 3 Euclidean dimensions.

4.6.1. Isotropic Heisenberg-like fixed point

The invariant subspaces of the O(N1)⊕ O(N2) theory allow us to deduce both the existence

of fixed points as well as their critical exponents. In the previous section we have argued that

an isotropic Heisenberg-like fixed point should exist in the O(N1 + N2) symmetric subspace

from the knowledge of the Wilson-Fisher fixed point. It defines a special point on the ∆ = 0

hypersurface in theory space. The IFP features two critical indices θ1 and θ2 that are positive

for all values of N = N1 + N2. Only one of these exponents, namely θ2 = 1/ν, relates to

the correlation length exponent ν for the related O(N) model. Together with the subleading

exponent θ5 = −ω the known O(N) exponents are highlighted in italics in Tab. 4.1. The

remaining critical indices are determined from a 12th order LPA truncation including ηΦ,

where ρ1,0 6= 0 and ρ2,0 = 0, adapted to the enhanced symmetry at the fixed point.
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n 4 6 8 10 12

LPA 4.51 2.05 2.165 2.225 2.225

LPA+ηΦ 4.71 2.335 2.235 2.305 2.315

Table 4.2.: Stability transition of the O(N) symmetric IFP for different truncations of the ef-

fective potential. Results are shown for truncations up to 12th order LPA including

the anomalous dimension ηΦ. Beyond the 10th order truncation one expects a con-

vergence of the results for the transition, where at 12th order we obtain the value

N ≃ 2.23 (LPA) and N ≃ 2.32 (LPA+ηΦ).

In Tab. 4.1 we show only the five largest critical indices, that we compare to available

data for the scaling behavior at the IFP. High-temperature series expansions currently give

the best estimates of critical exponents: y2,2 = 1.7639(11) for N = 2, y2,2 = 1.7906(3) for

N = 3 and y2,2 = 1.8145(5) for N = 4 [171]. The RG scaling dimension y2,2 is associated

to the relevant quadratic tensor operator in the enhanced O(N) symmetric theory (see, e.g.,

[163]) and corresponds to the largest exponent θ1 in our functional RG calculations. We find

very good agreement at the given level of the truncation. The combination of the two largest

exponents θ1 and θ2 defines the crossover exponent φT = θ1/θ2 = y2,2ν. Here, we compare

our result φT = 1.314 for N = 3 with φT = 1.260 from the five-loop ǫ-expansion [163] and

φT = 1.275 from the two-loop ǫ = 4 − d expansion [167]. A similar quality of agreement is

found also for other values of N . The third-largest exponent θ3 relates to the scaling dimension

y4,4 of the cubic-symmetry perturbation [163]. For the case of y4,4, the Monte Carlo data from

Ref. [171] gives y4,4 = −0.108(6) for N = 2, y4,4 = 0.013(4) for N = 3 and y4,4 = 0.125(5) for

N = 4. Here, our values are larger, and we expect to obtain better precision at higher orders

in the truncation. From our results to 12th order LPA+ηΦ we observe that the exponent θ3 is

negative for small N and changes its sign between 2 < N < 3. Since the larger eigenvalues θ1

and θ2 are positive for all values of N , it is θ3 that decides about the stability of the IFP. We

determine the value of N , where θ3 changes its sign, to be N ≃ 2.32 in the given 12th order

LPA+ηΦ truncation (cf. Tab. 4.2). We may compare this results to the value N = 2.89(4)

obtained in six-loop calculation in fixed dimension [184] and N ≃ 2.6 from a two-loop ǫ-

expansion [167] as well the O(ǫ5) result N ≃ 2.87(5) from [184]. While the largest critical

exponents θ1 and θ2 already show good quantitative precision, the values for the subleading

exponents θ3, θ4, and θ5 are less accurate. Higher precision is expected to be achieved by a

extending the truncation to higher orders in the derivative expansion as, e.g., shown at the

example of the Ising model in Refs. [67, 70]. For instance, the seven-loop result for the critical

exponent of the correlation length, ν = 0.6304(13) [185] compares well to the functional RG

estimate in fourth order of the derivative expansion ν = 0.632 [67].

To study the effect of terms beyond our truncation, we vary the numerical value for ηΦ

by hand and test the variation the stability transition. Although this is not a self-consistent

solution to the set of flow-equations, it can provide a measure for the sensitivity of results
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on terms beyond the truncation. Assuming that the variation of the anomalous dimension

negligible, i.e., ∂ηΦ({g∗})/∂gm,n ≪ 1, we obtain a variation of ∆N ≃ 0.25 when varying ηΦ

of order O(0.1).

The presence of only two positive exponents θ1 and θ2 below N = 3, implies that two

parameters need to be tuned to reach the IFP in the case of the Z2 ⊕ Z2 model. This is

illustrated in Fig. 4.3 where the two relevant couplings are fixed to their respective critical

values. The IFP is IR attractive in this case and will dominate the RG flow as long as

the initial couplings lie inside its domain of attraction. The RG trajectories diverge if this

condition is not fulfilled. In this case one expects a first order transition for the phase diagram.

Of course, the situation changes for N ≥ 3 where the IFP becomes unstable and one needs

to tune an additional parameter to reach the fixed point. However, for a given model a third

tunable parameter may simply not be accessible. We may therefore expect that the IFP is

physically relevant only for two Z2 Ising-like critical lines meet.

The nature of the transition described by the IFP sensitively depends on the quantity ∆

[165, 166], which is a dangerously irrelevant operator at the fixed point (see, e.g., [186]). For

∆ < 0 one expects a bicritical point and for ∆ > 0 the transition should be tetracritical.

However, the IFP defines a special point on the ∆ = 0 hypersurface, where RG trajectories

may approach the fixed point from both sides, i.e., either from the ∆ > 0 or the ∆ < 0 region.

Therefore, depending on the initial microscopic model one will either observe a bicritical

or tetracritical behavior for the phase diagram (provided that it lies within the domain of

attraction of the IFP). To pin down the structure of the phase diagram in the vicinity of the

IFP requires a calculation of the scaling function of the free energy.

Finally, let us remark on previous application of the functional RG to a related N -vector

model with cubic anisotropy. There, the critical value for N for the stability transition was

determined to be N ≃ 3.1 [187]. In contrast to our calculations, an exponential instead

of an optimized regulator was used. Furthermore, a truncation up to 8th in the fields was

considered, and including derivative terms up to second order in momenta and 4th order in

the fields. In our calculations, we see a shift of roughly O(0.1) to larger values in the stability

transition N when going from 8th order LPA to 12th order (see Tab. 4.2). The same applies if

one asks about the ηΦ-dependence of our results, where a shift of similar magnitude to higher

values is observed. Thus, our results favor a transition N . 3 which is also found in high-order

perturbative field-theory expansions [184, 188–194]. One should wonder about the reason for

this discrepancy. Clearly, it gives an indication to go beyond the simple LPA truncation,

including also higher derivative terms, to investigate systematic errors of the truncation.

4.6.2. Decoupled fixed point

Apart from the isotropic fixed point, the decoupled fixed point (DFP) also features an en-

hanced symmetry, where the theory is invariant under Z2 ×O(N1)×O(N2). As for the IFP,
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Figure 4.3.: RG flow of the quartic couplings to 4th order LPA for the Z2 ⊕Z2 scalar model.

The relevant parameters are fixed to their respective critical values at the isotropic

fixed point (IFP). The RG trajectories converge to the stable IFP in the infrared

if the initial values are chosen within the domain of attraction (left). Otherwise

the flow diverges (right) in which case one expects a first order transition. Both

the ∆ = 0 and λ1,1 = 0 surfaces (highlighted in blue) define invariant subspaces

of the RG flow that are protected by symmetry.

symmetry constraints simplify our discussion of its stability properties. In fact, from the

fixed point potential, we see that it is the quartic perturbation gwφ
2
1φ

2
2 that determines the

stability at the DFP. It scales as two composite energy-like operators with scaling dimensions,

(1 − α1)/ν1 and (1 − α2)/ν2, where α1 and α2 correspond to the specific heat exponents in

the two sectors, and ν1, ν2 denote the corresponding correlation length exponents.3 From the

scaling relation αI = 2 − νId we obtain an exact expression for the RG scaling dimension of

the quartic perturbation [196–198]:

yw =
α1

2ν1
+
α2

2ν2
=

1

ν1
+

1

ν2
− d . (4.40)

Thus, the stability properties of the DFP are completely determined from the critical expo-

nents in the decoupled O(N1) and O(N2) sectors. Recall, that the two largest eigenvalues

θ1 = 1/ν1 and θ2 = 1/ν2 are positive for all values of N , while the subleading exponents

θ4 = −ω1 and θ5 = −ω2 are associated to the Wegner’s exponents in the two separate sectors

and are always negative. It is thus the third largest exponent θ3 which decides about the

stability of the DFP and we may identify θ3 = yw for this fixed point.

Here, we determine the five largest critical indices using the scaling relation and the O(N)

critical exponents from a 12th order LPA analysis including the anomalous dimension η (cf.

Tab. 4.3). Our results are summarized in Tab. 4.4. They are in accordance with data cited

3Note, that the composite operators scale as 〈φ2
I(k)φ

2
I(−k)〉 ∼ k−αI/νI at the critical point. They correspond

to the relevant part of the energy density (see, e.g., [195]).
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N νfRG νMC ηfRG ηMC

1 0.637 0.63002(10) 0.044 0.03627(10)

2 0.685 0.6717(1) 0.044 0.0381(2)

3 0.731 0.7112(5) 0.041 0.0375(5)

4 0.772 0.750(2) 0.037 0.0360(3)

Table 4.3.: Critical exponents for O(N)-models in three dimensions in a derivative expansion

to second order O(∂2) and an expansion of the effective potential to 12th order

in the fields in comparison to the Monte Carlo results in Ref. [199] for N = 1,

Ref. [200] for N = 2, Ref. [201] for N = 3 and Ref. [171]. These are values

obtained by the same truncation/regularization scheme presented in this work

and are employed to produce estimates for the critical exponent θ3 which decides

about the stability of the decoupled fixed point (DFP).

in [163, 167]. In particular, keeping the value N1 = 1 fixed we obtain the value N2 ≃ 2.31

for the stability transition, to be compared with, e.g., to N2 ≃ 2.17 from Ref. [167]. For

N & 4 this fixed point is always stable, and we conclude that this applies also for the case

N1 = 2, N2 = 3, relevant for high-temperature superconductors. Since the coupling between

the sectors vanishes at the DFP we expect that ∆ > 0 (due to stability requirements). Thus,

in its domain of stability we may associate a tetracritical behavior to this fixed point. The

relevant stability regions for the DFP and IFP are summarized in Fig. 4.4.

We may check the quality of our truncation by computing the exponent θ3 directly from

the diagonalization of the stability matrix at the DFP and comparing the obtained value with

the result from the exact scaling relation. We observe a discrepancy, yielding a shift of the

stability transition of the DFP in the (N1, N2)-plane to a slightly smaller values, roughly of

order O(0.01). In fact, the reason for this disagreement is clear – the scaling relation (4.40)

relates critical exponents of leading order to those that are subleading, which are typically

not well-resolved to lowest order O(∂0) in the derivative expansion. Thus, it is expected that

going to higher orders in the derivative expansion this deviation will disappear.

4.6.3. Biconal fixed point

Apart from the fixed points that feature an enhanced symmetry we find another interacting

fixed point with O(N1)×O(N2) symmetry as suggested by the symmetry considerations (see

Sec. 4.6). In the literature this solutions is known as the biconal fixed point (BFP). It has first

been discussed in Ref. [152] and was further studied in Refs. [163, 167]. To find this fixed point

a truncation to 8th order LPA was used without anomalous dimensions, i.e., η1 = η2 = 0.

The previous analysis of the IFP and DFP solutions was simplified due to the presence of

the enhanced symmetry, or by exploiting exact scaling relations. Here, in the absence of such

constraints, we need to solve for the complete set of parameters and couplings, which makes
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N N1 N2 θ1 = 1/ν1 θ2 = 1/ν2 θ3 = yw θ4 = −ω1 θ5 = −ω2

3 1 2 1.571 1.459 0.030 -0.728 -0.735

4 1 3 1.571 1.367 -0.062 -0.728 -0.748

4 2 2 1.459 1.459 -0.082 -0.735 -0.735

5 1 4 1.571 1.296 -0.133 -0.728 -0.768

5 2 3 1.459 1.367 -0.174 -0.735 -0.748

Table 4.4.: Critical exponents at the decoupled fixed point (DFP) as a function of field com-

ponents N1 and N2 to 12th order LPA. The anomalous dimension η1 and η2 are

included from the knowledge of the properties of the O(N) vector model (data

taken from Tab. 4.3), and using the exact scaling relation (4.40).

the search for fixed point solutions more demanding. The BFP is notoriously difficult to find.

This is partly due to its restricted domain of stability (see Fig. 4.4). In particular, from the

thin lines in Fig. 4.4 we see that this fixed point should exist and be stable only in the region

1.17 . N2 . 1.50, N1 = 1, at the given order of the truncation. On the other hand, we see

that by varying the number of field components, this fixed point traverses different regions

in theory space (cf. Fig. 4.4). While for small N2 < 1.17, N1 = 1 it is situated in the ∆ < 0

region, at the stability transition N ≃ 2.17 (8th order LPA) it collides with the IFP and

continues into the ∆ > 0 region. At N2 ≃ 1.5, N1 = 1, it merges with the DFP, which,

in this order of the approximation, is the stable fixed point beyond this value. Note, that

the position of the stability transition for the DFP is determined here without employing the

scaling relation (4.40), by directly competing the critical indices. This yields the consistent

result, that for each point in the (N1, N2)-plane, there is only one stable fixed point. Using

the scaling relation (4.40), will typically induce a shift of the stability transition to smaller

values of N2.

In the stability region (see Fig. 4.4) the couplings at the BFP satisfy ∆ > 0 and – similar

to the DFP – we might expect a tetracritical behavior for the phase diagram of the respective

model. It is thus important to distinguish the critical scaling properties properly to compare

the results for the stability regions in Fig. 4.4 with experiment or Monte Carlo simulations.

Since we have used only a 8th LPA truncation without anomalous dimensions to establish the

existence of this fixed point, it is necessary to extend this analysis to obtain also the scaling

exponents. This is left for future work.

4.6.4. Stability regions

Let us summarize the stability properties of the fixed point solutions for the O(N1)⊕O(N2)

model and comment on the quality of the different truncations used in our work. The stability

regions are illustrated in Fig. 4.4 as a function of the field components (N1, N2). We observe

that the stability region of the BFP is significantly enhanced when we include a nonvanishing
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Figure 4.4.: (Left) Fixed point values of the quartic couplings λ2,0 (green, solid line), λ0,2

(red, dashed line), and λ1,1 (blue, dotted line) at the biconal fixed point (BFP)

as a function of field components N2, while N1 = 1. The subleading exponent θ3

indicates the stability of the respective fixed point solutions. It is negative for the

BFP in the region 1.17 . N2 . 1.5 indicating its stability, whereas for N2 . 1.17

the isotropic fixed point (IFP) and for N2 & 1.5 the decoupled fixed point (DFP)

are stable. (Right) Stability regions for the O(N1) ⊕ O(N2) symmetric theory.

Thin lines correspond to the results from an 8th order LPA analysis, while thick

lines include the effect of a scale-dependent anomalous dimension ηΦ to 12th order

in LPA. The intermediate region (marked in red) indicates the stability region

of the BFP. For larger values of (N1, N2) the DFP is always stable, while for

N . 2.32 the IFP is the stable fixed point.

anomalous dimension ηΦ as compared to the lowest order O(∂0) LPA result. In particular,

we want to emphasize that a nonvanishing anomalous dimension in fact extends the stability

region in such a way that the N = 3 models (where a XY and Ising critical line meet) are

included in this region, which is especially relevant for the discussion of anisotropic antifer-

romagnets in an external field [152–154]. Of course, it is clear why such a large shift occurs

when we include a scale-dependent anomalous dimension in our truncation – the stability

transition lines in the (N1, N2)-plane sensitively depend on the position where the subleading

exponent θ3 changes sign. To accurately capture the stability properties of the competing

fixed points it is therefore necessary to go to higher orders in the derivative expansion to

obtain quantitative results also for subleading exponents [66, 67, 69, 70].

While it is important to properly resolve the stability regions of the interacting fixed points,

let us point out that the critical scaling exponents of the interacting fixed points in the

O(N1) ⊕ O(N2) are very similar. Compare, e.g., the critical indices of the IFP in Tab. 4.1
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Figure 4.5.: Two dimensionless mass eigenvalues in the Z2 ⊕ Z2 model as a function of scale

parameter t = ln k/Λ, on a trajectory connecting the DFP in the UV (high t)

with the IFP in the IR (low t).

with those of the DFP in Tab. 4.4. Similarly, the critical exponents of the BFP are very

close to those of the Heisenberg-like IFP with a difference of roughly O(0.001) in ν [163].

Thus, it might be very difficult in practice to associate given Monte Carlo data, or data from

experiments to a particular fixed point. In light of these difficulties, it is worthwhile to look

also for alternative quantities, e.g., universal amplitude ratios that might allow to distinguish

the different fixed points more reliably [163].

4.7. Applications

The class of O(N1) ⊕ O(N2) models and their respective fixed point solutions have been

discussed at length in the past, in particular in the context of condensed matter systems. For

anisotropic antiferromagnets in a uniform magnetic field where two critical lines in the XY

and Ising universality class meet (N = 3), our results from the LPA truncation including

anomalous dimensions favor the multicritical BFP. According to the sign of ∆ > 0 at the

fixed point, we conclude that the transition should describe a tetracritical point in the phase

diagram. This is in accordance with results from high-order perturbative expansions [163]

and [167, 169] and Monte Carlo simulations [171]. However, Monte Carlo data presented in

Ref. [170] indicate a bicritical point which is in accordance with experimental results [202,

203]. This discrepancy is probably due to the fact that the relevant microscopic model lies

outside the attraction domain of the stable BFP. However, due to the similar values of critical

exponents at the biconal FP and the isotropic Heisenberg-like FP it is very hard to distinguish

the two fixed points from experimental or Monte Carlo data [171].

Another model that has featured prominently, is the effective O(5) symmetric theory for

high-temperature superconductivity, where one has an O(3) antiferromagnetic and a com-

peting U(1) ≃ SO(2) order parameter associated with the d-wave superconducting state

[157, 160]. Here, our results suggest that the IFP with the enhanced O(5) symmetry is not
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stable, and one should rather expect that the DFP is the relevant fixed point for the model,

describing a tetracritical point in the phase diagram. However, the effect of fermions seems

to exclude a mixed phase as indicated by calculations of the t− t′ Hubbard model [204]. Typ-

ically, the investigation of these systems is quite involved, where one also needs to consider

effects of doping and random impurities. A detailed discussion of these systems and their

scaling properties may be found, e.g., in [163]. Finally, let us remark that the multicritical

DFP is also expected to describe the critical behavior in liquid crystals with two XY order

parameters (N = 4), at the nematic–smectic–A–smectic–C multicritical point [197].

In the previous sections, we have already commented on the possible relevance of the

O(N1)⊕O(N2) models in the context of the low-energy properties of QCD (see Sec. 4.5). Here,

we want to mention another interesting scenario for the coupled Z2 ⊕ Z2 model where both

fields feature a discrete Z2 Ising-like symmetry [205]. While the emergence of massless modes

from symmetry breaking is only expected from continuous symmetries this is obviously not

the case by inspecting the flow of the renormalized masses in the Z2⊕Z2 theory, see Fig. 4.5.

Here, we show a particular RG trajectory that connects the DFP in the UV with the IFP in

the IR (d = 3). Of course, at the IFP the discrete symmetry of the model is enhanced to a

continuous O(2) rotational symmetry, where its breaking leads to the generation of a single

massless mode, in accordance with Goldstone’s theorem. A similar scenario applies to the

extended class of Z2⊕Z2⊕· · · models where multiple Ising-like order parameters are coupled.

However, the fixed point structure of these models and their RG flow can in general be very

complex.

In principle such a mechanism might be invoked to generate a mass hierarchy in a system

where the microscopic Lagrangian contains equal masses. If the system allows for an en-

hancement of the symmetry, then a spontaneous breaking of this additional symmetry in the

infrared must produce a massless Goldstone mode. Small explicit symmetry breaking terms

can then give a small mass to this pseudo-Goldstone mode. Compared to the other masses in

the theory the pseudo-Goldstone boson mass could then remain rather small, thus producing

a hierarchy.

4.8. Discussion and outlook

Here, we have presented a first analysis of the O(N1)⊕O(N2) symmetric models within LPA-

type truncations of the functional renormalization group including anomalous dimensions. We

have discussed the possible fixed points of these theories as well as their scaling properties.

The largest critical exponents compare nicely with high-order field theoretic expansion at fixed

dimension d = 3 or in ǫ = 4− d or Monte Carlo data [163, 171, 184, 188–193, 206]. However,

to capture the subleading behavior requires more sophisticated truncations where we expect

in particular a change in the stability regions of the respective fixed point solutions in the

(N1, N2) phase diagram (see Fig. 4.4). Taking into account also the field-dependence of the
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renormalization factors, or going to higher orders in the derivative expansion might eventually

lead to a transition from the IFP to the BFP around N ≃ 3 in accordance with [187]. This

would be interesting, as it might explain data from experiments [202, 203] and Monte Carlo

simulations [170] that has been challenging to interpret. Let us emphasize however, that to

investigate physical systems of interest and to establish their phase diagram, it is necessary

to solve for the complete RG flow where one should apply grid methods to capture also the

nonuniversal physics.

Let us comment on possible extensions of this work. The multicritical points considered

here only take into account bosonic fluctuations of the order parameters. Close to a quantum

critical point also fermionic fluctuations become important. Thus, it would be interesting

to consider the possible scenarios that appear when fermions are included. We have already

discussed the RG flow equations for the case of spinless fermions on the honeycomb lattice in

the previous chapter. In that context, the presence of fermionic fluctuations may lead to new

multicritical fixed points with different scaling properties.

Finally, let us point out that the coupled scalar models considered here are typically applied

to describe the multicritical behavior of low-dimensional condensed matter systems [152–156],

or might be relevant to the discussion of low-energy models of QCD [207] where the presence

of a nonvanishing temperature leads to dimensional reduction and a decoupling of fermionic

degrees of freedom. However, it is important to remark that at T = 0 one may expect more

complicated behavior, where the fluctuations at the multicritical point are no longer described

by the two distinct order parameters. In that case, this may lead to a single continuous

transition between the two distinct ordered phases [208, 209] instead of a first order transition

as encountered in the context of the O(N1)⊕O(N2) models.
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5. Critical dynamics for relaxational models

close to thermal equilibrium

Dynamic properties such as transport coefficients or relaxation rates play a crucial role for

a wide variety of physical systems, ranging from dynamics of ultracold atoms at nanokelvin

temperatures to heavy-ion collisions at relativistic energies. Irrespective of the details of

the underlying microscopic dynamics, the systems can be grouped into different dynamic

universality classes close to a critical point. This classification extends the known static

universality classes that are essentially determined by the dimensionality and symmetries

of the system to include the presence of additional conservation laws. The corresponding

conserved quantities lead to a strong slowing down of the system and influence the type of

dynamics that one may expect following a small initial perturbation of the system in the

equilibrium state.

The simplest scenario for such a situation is the direct relaxation from an initially prepared

state towards equilibrium described phenomenologically by a stochastic Langevin equation.

Such an approach corresponds to a mesoscopic description of the dynamics where the noise

term models the thermal fluctuations close to equilibrium. Following the standard classifica-

tion scheme [39] the universality class of Model A is characterized by the purely relaxational

dynamics of a nonconserved N -component order parameter. This model has been much

studied in the literature [41, 210, 211] where it was first applied to describe the anomalous

attenuation of sound in 4He near the λ-point [39, 212] and is usually considered to describe

the critical dynamics of uniaxial magnetic systems [40, 210], e.g., the homogeneous Ising an-

tiferromagnet FeF2 [213] with sufficient nonconservation of magnetization. The presence of

strong fluctuations at the critical point leads to the phenomenon of critical slowing down,

with the critical dispersion ω ∼ kz, characterized by the dynamic scaling exponent z = 2+ cη

in the case of Model A [39, 210]. The dynamic exponent expressed in terms of the anomalous

dimension η, and an additional coefficient c which depends both on the spatial dimension d

and the number of field components N of the model [214] and bears no relation to static expo-

nents. In that respect, Model A is quite different compared to the other dynamic universality

classes that usually exhibit an exact scaling relation between the dynamic and static scaling

exponents.1

1The other notable exception being Model H [39, 215] at the gas-liquid critical point, where the dynamics of

the nonconserved order parameter couples to the heat and momentum current.
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Figure 5.1.: Illustration of dynamics in the kinetic Ising model with an additional coupling to

a conserved density. (a) The spins (different orientations, orange/purple) couple

to a conserved density (occupied or vacant lattice sites, red/green) via the mode-

coupling. (b) The magnetization is not conserved and single spin-flips are allowed

by the dynamics, while the conserved density is continuously distributed on the

lattice.

Typically, the presence of conservation laws strongly affects the dynamic critical scaling

properties, further slowing down the system at criticality where excitations cannot be removed

by a local dissipation process but are transported over a wide range of scales [216, 217]. In

fact, the presence of slow modes coupling to the order parameter may lead to quite complex

dynamics where the system persists in a nonequilibrium state even asymptotically for large

times [218, 219]. One example of such a system in the family of the relaxational models is

Model C [39]. It is characterized in terms of an N -component order parameter that exhibits

relaxational dynamics and is coupled to a conserved density. In contrast to Model A, the

dynamic critical behavior features a strong scaling region in the (N, d) phase diagram, where

the dynamic critical exponent z = 2 + α/ν is completely determined in terms of the spe-

cific heat exponent α and correlation length exponent ν [40, 220, 221]. Thus, there exists

an intimate relation between the dynamic and static scaling properties which appears quite

generically for systems with conservation laws. Typically, this model is discussed in the con-

text of ferromagnetic systems in the presence of large anisotropy [222] where an appropriate

microscopic description is given by the kinetic Ising model (N = 1) that couples the spins to

an additional conserved density. In this model the Z2 spins follow Glauber kinetics where a

single-spin flip is allowed for a given time step, while the conserved charge can only be dis-

tributed on the lattice (Fig. 5.1). The importance of this model is based on the observation

that the critical dynamics is described by strong scaling, i.e., z = 2+α/ν. Model C has a wide

range of application. It has been considered to describe critical dynamics of mobile impurities

[223, 224], structural phase transitions [225–227], long-wavelength fluctuations near the QCD

critical point [228, 229], and also in the context of out-of-equilibrium dynamics [218, 230].

Despite its importance and a long history of discussions [40, 42, 43, 46, 220, 221, 231], parts

of the phase diagram for the dynamic critical behavior of Model C are still controversial. The
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reason for this uncertainty is that the physics is nonperturbative and only few theoretical

approaches apply. Previous calculations have mainly relied on the ǫ-expansion in d = 4 − ǫ
dimensions, while direct numerical simulations [232] still represent an exception. The existence

of the so-called weak, strong, and decoupled scaling regions is undebated. However, there have

been conflicting claims on quantitative properties and even on the possible existence of another

distinctive region in the phase diagram of Model C. Earlier results [40, 42, 46, 220, 221] found

evidence for such a region, however, due to a multiplicative logarithmic correction it was

unclear whether the calculated dynamic scaling persists to higher orders in the ǫ-expansion.

Other results to second order showed that the field-theoretic β-function for the ratio of kinetic

coefficients exhibits an essential singularity in this region [42]. It was speculated that this

property might even restore critical behavior with a dynamic scaling exponent identical to

the strong scaling z = 2 + α/ν. However, in more recent work [43, 231] this peculiar region

was discarded as an artifact of the ǫ-expansion, which was argued to break down in the region

where 2 < N < 4 for dimensions close to d = 4.

Here, we compute the (N, d) phase diagram for the dynamic critical behavior of Model C

using the functional renormalization group. We establish an anomalous diffusion phase with

new scaling properties: It satisfies weak scaling for 2 < N < 4 close to d = 4, however,

the conserved density diffuses only on asymptotic times. We compute the scaling exponents

characterizing the different phases as well as subleading exponents to determine their stability

properties. This presents the first determination of the dynamic critical properties of relax-

ational models in the framework of the functional RG including the dynamics of conserved

quantities. Such an analysis can be extended to investigate also other dynamic universality

classes, or even to connect the dynamic low-energy properties with the microscopic physics of

relativistic theories such as QCD.

5.1. Mesoscopic dynamics

The effective dynamics for Model C is governed by the set of Langevin-type stochastic equa-

tions

∂

∂t
ϕa(x, t) = −Ω δH[ϕ, ε]

δϕa(x, t)
+ ηa(x, t) , (5.1)

∂

∂t
ε(x, t) = Ωε∇2 δH[ϕ, ε]

δε(x, t)
+ ζ(x, t) , (5.2)

where a = 1, . . . , N labels the field components of the order parameter field ϕa, and ε cor-

responds to the conserved density which satisfies an equation of diffusion-type. The kinetic

coefficients Ω and Ωε denote the relaxation rate and diffusion rate, respectively. The func-

tional H that essentially defines the dynamics depends both on the order parameter as well

as on the conserved density, and is given by

H =

∫
ddx

{
1

2
(∇ϕ)2 + 1

2
m̄2ϕ2 + 3

λ̄

4!

(
ϕ2
)2

+
1

2
ε2 +

1

2
γ̄εϕ2

}
. (5.3)
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It couples the conserved density to the composite operator ϕ2 and defines the stationary state

configuration for the dynamics. The stochastic driving terms ηa and ζ are assumed to be

centered and Gaussian

〈
ηa(x, t)ηb(x

′, t′)
〉

= 2ΩkBT δabδ(x − x′)δ(t − t′) , (5.4)
〈
ζ(x, t)ζ(x′, t′)

〉
= −2ΩεkBT∇2δ(x− x′)δ(t − t′) , (5.5)

where the temperature sets the scale for the amplitude of the stochastic noise. Thus, it

satisfies a fluctuation-dissipation theorem (where we will set kBT = 1 in the following), see

Sec. 5.1.1.

To investigate this class of systems we construct the generating functional for static and

dynamic correlation functions in terms of a functional integral formalism for stochastic dy-

namics [44–46, 233, 234]. We illustrate the construction of the field-theoretical classical action

for Model C, as it will serve as the appropriate starting point to construct low-energy effective

models. Also, we discuss some of the subtleties that may arise in the functional approach to

classical statistical dynamics.

We introduce the partition function

Z ∼
∫

[dϕ] [dε] [dη] [dζ] δ[ϕ− ϕη] δ[ε− εη ] exp
{
−1

4

∫

[t0,∞)
ddx dt

(
1

Ω
η2 +

1

Ωε
ζ(−∇−2)ζ

)}
,

(5.6)

which is given by the trace over all possible states of the system, i.e., all field-force configura-

tions for some given set of initial conditions. Here, ϕη and εζ denote field-configurations that

define solutions to the mesoscopic dynamics introduced above, while the information about

the initial conditions is taken to reside in the functional measure:

∫
[dϕ] [dε] =



∫ ∏

x,t∈[t0,∞)

dϕ(x, t) dε(x, t)


 Pϕ

[
ϕ(x, t0)− ϕ0

]
Pε

[
ε(x, t0)− ε0

]
, (5.7)

where an averaging over initial conditions is applied with the respective probability distribu-

tion functionals Pϕ/ε[· · · ]. The δ-functionals in (5.6) impose the dynamics, while the integra-

tion over the noise generates small perturbations around the classical dynamics. To integrate

out the noise, we perform the change of variables

δ[ϕ− ϕη ] = δ

[
∂

∂t
ϕ+Ω

δH
δϕ
− η
]
det

[
δη

δϕ

]
, (5.8)

where det [δη/δϕ] is the Jacobian from the change of variables η → φ. Let us forget about

the functional determinant for a moment, and consider what happens to the transformed

δ-functional. We may use the formal decomposition

δ

[
∂

∂t
ϕ+Ω

δH
δϕ
− η
]
∼
∫

[dϕ̃] exp

{
−
∫

[t0,∞)
ddx dt ϕ̃a

(
∂

∂t
ϕa +Ω

δH
δϕa
− ηa

)}
, (5.9)

where we have introduced the Martin-Siggia-Rose (MSR) response field ϕ̃ [44], with an appro-

priate measure
∫
[dϕ̃]. We may proceed similarly with the conserved density and introduce a
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Figure 5.2.: Tadpole diagrams contributing at one-loop in perturbation theory.

conjugate ε̃-field. Then, after performing the integration over the stochastic noise, we obtain

the Martin-Siggia-Rose/Janssen-de Dominicis functional integral [44–46]:

Z ∼
∫

[dϕ̃] [dϕ] [dε̃] [dε] e−S , (5.10)

where, after an appropriate rescaling of the fields ϕ̃ → Ω−1ϕ̃ and ε̃ → Ω−1
ε ε̃, we obtain the

field-theoretical classical action for Model C:

S =

∫

[t0,∞)
ddx dt

{
ϕ̃a

(
Ω−1 ∂

∂t
ϕa +

δH
δϕa

)
− Ω−1 ϕ̃2 + ε̃

(
Ω−1
ε

∂

∂t
ε−∇2 δH

δε

)
+Ω−1

ε ε̃∇2ε̃

}
.

(5.11)

Note, that we use a slightly different convention for the conjugate fields ϕ̃ and ε̃, where one

usually considers the Wick-rotated fields on the imaginary axis, i.e., ϕ̃→ iϕ̃ and ε̃→ iε̃.

Let us now comment on the role of the functional determinant that we have neglected

so far. In fact, it plays a subtle role and controls the contributions from tadpole diagrams

that are in principle allowed by the dynamics of the vertices in the microscopic action (cor-

responding perturbative one-loop diagrams of the microscopic action are shown in Fig. 5.2).

The propagators in the closed loops corresponds to the retarded/advanced propagators in the

fields ϕ̃ and ϕ. We, see that a nonvanishing contribution from these diagrams would lead to

additional terms in the effective potential that are not present in the classical action (5.11).

In fact, if we simply neglect the functional determinant such diagrams must be taken into

account explicitly in perturbation theory, or in the ansatz for the scale-dependent effective

action for dynamic correlation functions. However, writing the determinant in the following

form

det

[(
∂

∂t
+

δ2H
δϕa(t)ϕb(t′)

)
δ(t− t′)

]
∼ exp

{
θ(0)

∫

[t0,∞)
ddx dt

δ2H
δϕa(t, x)ϕb(t, x)

δab

}
,

(5.12)

we see that it defines an additional contribution to the classical action that is proportional to

the quantity θ(0). The same type of contributions appear if the one-loop tadpole diagrams in

Fig. 5.2 are evaluated. In fact, the functional determinant (5.12) exactly cancels the tadpole

diagrams that are obtained from the interaction terms in the original action [235].

Let us point out another interpretation of this problem. It relates to the coefficient θ(0) in

(5.12). The fact that such a coefficient must appear comes from the definition of the causal

propagation forward in time, where the free propagator ∂G(0)(t− t′)/∂t = δ(t− t′) is chosen

as G(0)(t− t′) = θ(t− t′), and from the evaluation of the trace in the functional determinant,

which yields ∼ θ(0). As it stands it is an ill-defined quantity. Only a given discretization
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for the action (5.11), provides an unambiguous definition of dynamics, where θ(0) is fixed

to a specified value [236, 237]. For the Itō backward-time prescription θ(0) is exactly zero

[235, 238]. In that case of course, we do not have to worry about additional contributions

from the diagrams shown in Fig. 5.2. In fact, we will drop the functional determinant in the

following, thereby implicitly assuming the Itō description holds for the discretized dynamics.

This is also reflected in the RG flow equations that are given in Sec. 5.4. No closed loops with

a single retarded or advanced propagator appear. We want to emphasize that this problem

generically appears for first-order differential equations and is absent for relativistic dynamics,

where the time-ordered propagator describes both a forward and backward-propagation in

time.

5.1.1. Fluctuation dissipation theorem and time-reversal symmetry

The coupled set of stochastic equations of motion (5.1) and (5.2) describe the relaxation from

some initial state which one has to specify to completely define the dynamics. However, one

might expect that the system generally relaxes to the equilibrium state at asymptotic times,

where it loses memory of the initial conditions. Formally, this may be achieved by sending

the initial time to t0 → −∞ and assuming the existence of a fluctuation-dissipation relation

(FDR). Thus, on the level of the microscopic action, we extend the time integration to infinity,

while the FDR is imposed directly by the choice of the coefficients for quadratic contributions

in the auxiliary fields, i.e., Ω−1ϕ̃2 and Ω−1
ε ε̃∇2ε̃. The quadratic operators characterize the

type of fluctuations around the saddle-point solution defined by the classical dynamics and

the scale of these fluctuations is set by the temperature. In fact, we see that on the level of

the action this is related to the presence of an additional time-reversal symmetry (TRS), i.e.,

t→ −t, where ϕa → ϕa and ε→ ε, while the auxiliary fields transform as [239]:

ϕ̃a → ϕ̃a −
∂

∂t
ϕa , ε̃→ ε̃+∇−2 ∂

∂t
ε . (5.13)

We may check that this leads to a fluctuation-dissipation relation by examining the transfor-

mation properties of the connected two-point correlation functions under this symmetry:

〈
ϕa(t)ϕ̃b(t

′)
〉
→
〈
ϕa(t

′)ϕ̃b(t)
〉
− ∂

∂t

〈
ϕa(t

′)ϕb(t)
〉
. (5.14)

Thus, using the property 〈ϕ(t)ϕ̃(t′)〉 ∼ θ(t− t′), the response function can be written in terms

of the time-derivative of the statistical correlation functions of the ϕ-field

〈
ϕa(t)ϕ̃b(t

′)
〉
= −θ(t− t′) ∂

∂t

〈
ϕa(t)ϕb(t

′)
〉
. (5.15)

This also makes the role of the auxiliary field clear – it models the infinitesimal fluctuations

that are put into the system by the stochastic noise.

A similar relation hold for the response function of ε-field, as well as for the mixed two-point
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functions:

〈
ε(t)ε̃(t′)

〉
= ∇−2θ(t− t′) ∂

∂t

〈
ε(t)ε(t′)

〉
, (5.16)

〈
ε(t)ϕ̃a(t

′)
〉

= −θ(t− t′) ∂
∂t

〈
ε(t)ϕa(t

′)
〉
, (5.17)

〈
ϕa(t)ε̃(t

′)
〉

= ∇−2θ(t− t′) ∂
∂t

〈
ϕa(t)ε(t

′)
〉
, (5.18)

Time-reversal symmetry provides a strong constraint for the dynamics – it reduces the number

of independent correlation functions. Breaking this symmetry, e.g., by evolving the system

from a generic initial state at finite time may, in the presence of slow modes, keep the system in

a nonequilibrium state for asymptotic times [218, 219, 240]. Here, we will keep this symmetry

and ask about the dynamic critical properties of the system close to equilibrium.

5.2. Low-energy effective dynamics

To investigate the low-energy effective dynamics we use the following truncation for the scale-

dependent effective action

Γk =

∫
ddx dt

{
φ̃a

(
Ω−1
k

∂

∂t
− Zk∇2

)
φa + φ̃a

∂Uk

∂φa
− Ω−1

k φ̃2

+ Ẽ
(
Ω−1
E,k

∂

∂t
− ZE,k∇2

)
E − Ẽ∇2∂Uk

∂E +Ω−1
E,kẼ∇2Ẽ

}
, (5.19)

which defines the generating functional of one-particle irreducible static and dynamic corre-

lation functions, and depends on the field expectation values φa = 〈ϕa〉, E = 〈ε〉, as well as

their corresponding response fields. At the scale k the theory is characterized in terms of the

kinetic coefficients Ωk and ΩE,k, the renormalization functions Zk and ZE,k, and the deriva-

tives of the effective potential Uk(φ, E). Eq. (5.19) provides a truncation to leading order in

the derivative expansion, where we take the renormalization coefficients to be scale-dependent

but neglect their field-dependence, i.e., ∂Zk/∂k 6= 0 and ∂Ωk/∂k 6= 0, and similarly in the

E-sector. This provides a first approximation to derive the dynamic critical scaling properties

of the O(N) model coupled to a conserved density. Of course, the quality of this truncation

is largely determined by the type of field expansion that is used for the effective potential.

Thus, let us comment on the type of truncations that we will consider in the following.

Here, we use a series expansion in an appropriate basis of field operators Om(φ) and On(E),
given by

U(φ, E) =
∑

ḡm,nOm(φ)On(E) , (5.20)

where ḡm,n denote the generalized bare couplings, defined at the expansion point of the

effective action. We drop the k-index in the following to ease the notation. The conserved

density E couples to the composite operator φ2 and we assume a linear coupling ∼ γ̄Eφ2/2.
Such an ansatz yields a momentum-independent interaction of the two sectors in Eq. (5.19)

via φ̃a∂U/∂φa = γ̄Eφ̃aφa, as well as a mixing term Ẽ∇2∂U/∂E = γ̄Ẽ∇2φ2/2 which carries a
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momentum-dependence. The same coupling γ̄ parametrizes two different types of interactions

and this strongly constrains the dynamics for this model as we will see in the following. We

expect that such a truncated series expansion will provide a reasonable approximation to

establish the static and dynamic critical scaling properties of Model C.

5.3. Propagators and mass spectrum

The dynamics of the theory at the expansion point of the scale-dependent effective action is

characterized in terms of the second functional derivatives of the effective action as well as

higher n-point functions Γ(n). From the ansatz (5.19) we obtain:

(
Γ
(2)

φ̃φ

)
ab
(q, ω) =

(
− iΩ−1ω + Zq2

)
δab +

∂2U

∂φa∂φb
, (5.21)

Γ
(2)

ẼE
(q, ω) = −iΩ−1

E ω + ZEq
2 , (5.22)

(
Γ
(2)

φẼ

)
a
(q, ω) = q2

∂2U

∂φa∂E
, (5.23)

(
Γ
(2)

Eφ̃

)
a
(q, ω) =

∂2U

∂φa∂E
, (5.24)

(
Γ
(2)

φ̃φ̃

)
ab
(q, ω) = −2Ω−1δab , (5.25)

Γ
(2)

Ẽ Ẽ
(q, ω) = −2Ω−1

E q2 , (5.26)

while the remaining two-point functions vanish identically, i.e., Γ(2)
φφ = Γ

(2)
EE = Γ

(2)
Eφ = Γ

(2)
φE =

Γ
(2)

Ẽφ̃
= Γ

(2)

φ̃Ẽ
= 0. Note, that the two-point functions with the two derivatives interchanged are

related to each other by complex conjugation, e.g., Γ(2)

φφ̃
=
(
Γ
(2)

φ̃φ

)∗
.

All information about the spectrum of the theory resides solely in the φ-sector. Therefore,

we define the mass matrix as the momentum-independent part of the two-point function Γ
(2)

φφ̃

in the φ-sector only, i.e. (M̄2)ab = ∂2U/(∂φa∂φb). To evaluate its form, we write the potential

in terms of the quadratic invariant ρ̄ = φ2/2, and consider a field configuration that is rotated

in the one-directions, i.e., φa = ||φ||δa1, exploiting the O(N) rotational symmetry of the theory.

We obtain:
(
M̄2
)
ab

=
∂U

∂ρ̄
δab + 2ρ̄

∂2U

∂ρ̄2
δa1δb1 . (5.27)

Its eigenvalues are easily determined, and we have N−1 degenerate masses M̄2
0 = ∂U/∂ρ̄ and

one eigenvalue M̄2
R = ∂U/∂ρ̄ + 2ρ̄∂2U/∂ρ̄2. We emphasize that the mass matrix is defined

to carry a field dependence. Only, after deriving the full set of flow equations for the n-

point functions Γ(n), do we evaluate the masses at the physical point, defined by the field

configuration minimizing the effective potential.

In principle, we could consider similar models with competing order as in the previous

section, where both field expectation values are nonvanishing [168, 241, 242]. However, here

we are interested in the dynamic critical properties at the Wilson-Fisher fixed point and
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we consider the theory in the symmetry broken phase, where only the scale-dependent field

expectation value ρ̄0 6= 0 is nonvanishing and E = 0. For that purpose, we use an expansion

of the potential to 4th order in the fields:

U(φ, E) = λ̄

2
(ρ̄− ρ̄0)2 + γ̄E (ρ̄− ρ̄0) , (5.28)

where the physical masses are evaluated to:

M̄2
0 = m̄2

0 = 0 , M̄2
R = m̄2

R = 2ρ̄0λ̄ . (5.29)

Together with the second functional derivatives of the effective action, the mass spectrum

defines the propagators of the theory. Here, we give the propagators and vertices for the

theory (5.19) that we use later on to evaluate the diagrams that contribute to the RG flow.

In particular, we discuss the two different scenarios, where the coupling between the sectors

is zero, and where it is nonvanishing:

• Let us first consider the case where the coupling γ̄ is zero. The regularized retarded

propagator in the φ-sector is given by

Gφφ̃(q, ω) =
(
−iΩ−1ω + Zq2 +Rφ(q, ω) + M̄2

)−1
, (5.30)

where the mass matrix is defined in (5.27) and for now the regulator function Rφ(q, ω)

is completely arbitrary, assuming only a frequency and momentum dependence. Later,

when we derive the renormalization group equations we will specify its form. In the

E-sector the retarded propagator is evaluated to

GEẼ (q, ω) =
(
−iΩ−1

E ω + ZEq
2 +RE(q, ω)

)−1
, (5.31)

where RE(q, ω) defines the corresponding regulator function. The advanced propagators

have a similar form and are obtained by simple complex conjugation, e.g., Gφ̃φ =
(
Gφφ̃

)∗
,

while the statistical correlation functions are defined by the fluctuation-dissipation re-

lation (kBT = 1):2

Gφφ(q, ω) =
2

ω
ImGφφ̃(q, ω) , (5.33)

GEE(q, ω) =
2

ω
q2 ImGEẼ (q, ω) . (5.34)

Eqs. (5.30) – (5.34) are the only nonvanishing propagators in the decoupled case. In

particular, there are no nondiagonal entries in the matrix propagator that mix the two

sectors.
2In fact, this follows immediately from (5.15), where by Gφφ(t−t′) = 〈ϕ(t)ϕ(t′)〉 and Gφφ̃(t−t′) = 〈ϕ(t)ϕ̃(t′)〉,

we obtain:

2i ImGφφ̃(t− t
′) = 〈ϕ(t)ϕ̃(t′)〉 − 〈ϕ̃(t′)ϕ(t)〉 =

(5.15)
−

∂

∂t
〈ϕ(t)ϕ(t′)〉 = −

∂

∂t
Gφφ(t− t

′) , (5.32)

and thereby (5.33) in the frequency/momentum representation. Similarly we may derive equivalent relations

for the remaining two-point functions.
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• In the case where the coupling is nonvanishing, i.e. γ̄ 6= 0, the propagators assume

a more complicated form. In the φ-sector we must distinguish the propagator for the

radial and massless modes:

Gφφ̃(q, ω) =





(
−iΩ−1ω + Zq2 +Rφ(q, ω) + M̄2

R −
q2(∂2U/(∂φ∂E))

2

−iΩ−1
E

ω+ZEq2+RE (q,ω)

)−1

(radial) ,
(
− iΩ−1ω + Zq2 +Rφ(q, ω) + M̄2

0

)−1
(massless) .

(5.35)

In the E-sector, we have

GEẼ (q, ω) =

(
−iΩ−1

E ω + ZEq
2 +RE(q, ω)−

q2
(
∂2U/(∂φ∂E)

)2

−iΩ−1ω + Zq2 +Rφ(q, ω) + M̄2
R

)−1

.

(5.36)

Furthermore, the presence of the nonzero coupling leads to the mixed propagators:

GEφ̃(q, ω) =
γ̄q2φ(0)

Ω

[ (
−iΩ−1ω + Zq2 +Rφ(q, ω) + M̄2

R

) (
−iΩ−1

E ω + ZEq
2 +RE(q, ω)

)

− q2
(
∂2U/(∂φ∂E)

)2 ]−1
, (5.37)

and

GφẼ(q, ω) =
γ̄q2φ(0)

ΩE

[ (
−iΩ−1ω + Zq2 +Rφ(q, ω) + M̄2

R

) (
−iΩ−1

E ω + ZEq
2 +RE(q, ω)

)

− q2
(
∂2U/(∂φ∂E)

)2 ]−1
. (5.38)

The remaining nonvanishing propagators can be expressed in terms of the retarded and

advanced propagators by virtue of the fluctuation dissipation theorem. This yields the

statistical correlation functions:

Gφφ(q, ω) =
2

ω
ImGφφ̃(q, ω) , (5.39)

GEE (q, ω) =
2

ω
q2 ImGEẼ(q, ω) , (5.40)

GφE (q, ω) =
2

ω
ImGφẼ (q, ω) , (5.41)

GEφ(q, ω) =
2

ω
q2 ImGEφ̃(q, ω) . (5.42)

Let us point out, that the propagators in the E-sector, or the mixed propagators only

couple to the radial part of the φ-sector. This is evident from the structure factors where,

e.g., the mixed propagators have only a nonvanishing component in the 1-direction.

We use the following diagrammatic rules for the retarded and statistical propagators:

Gφφ(q, ω) =
φ φ

ω, q

Gφφ̃(q, ω) =
φ φ̃

ω, q

etc. (5.43)

and similarly for the propagators in the E-sector, as well as the mixed propagators. The

advanced propagators are written in terms of the same diagrammatic expression however, with
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both the frequency and momentum reversed, since Gφ̃φ(q, ω) =
(
Gφφ̃(q, ω)

)∗
= Gφφ̃(−q,−ω),

assuming that the effective action is real. The statistical correlation function is defined as

the imaginary part of the retarded propagator and is therefore real by construction, i.e.,

Gφφ(q, ω) = Gφφ(−q,−ω).

The nonvanishing three-vertices Γ(3) take the following form:

Γ
(3)

φφẼ
(q′, ω′; q, ω) =

Ẽ
φ

φ
ω, q

ω′, q′

−ω − ω′,−q − q′

= q2
∂3U

∂2φ∂E , (5.44)

Γ
(3)

Eφφ̃
(q′, ω′; q, ω) =

φ̃
φ

E ω, q

ω′, q′

−ω − ω′,−q − q′

=
∂3U

∂2φ∂E , (5.45)

Γ
(3)

φφφ̃
(q′, ω′; q, ω) =

φ̃
φ

φ
ω, q

ω′, q′

−ω − ω′,−q − q′

=
∂3U

∂φ3
. (5.46)

Of course, within our truncation (5.28) we may evaluate the derivatives with respect to the

fields and obtain, i.e., ∂3U/(∂φa∂φb∂E) = γ̄δab and the known structure factor from the O(N)

theory ∂3U/(∂φa∂φb∂φc) = λ̄ (φcδab + φaδbc + φbδca).

We will use these expressions in the next session to illustrate the contributions that are

obtained for the RG flow equations of static and dynamic correlation functions.

5.4. RG flow equations

From the propagators and the given higher n-point functions, we derive the renormalization

group equations from the exact flow equation for the scale-dependent effective action Γ. It is

given by
∂Γ

∂s
=

1

2
Tr

∫
ddq

(2π)d
dω

2π

∂R(q, ω)

∂s

(
Γ(2)(q, ω) +R(q, ω)

)−1
, (5.47)

where we denote the logarithmic scale derivative by s = ln(k/Λ) in contrast to the previous

sections, to distinguish the RG scale from the physical time. The classical action (5.11) is

imposed at the high-momentum reference scale Λ. The trace in (5.47) denotes a summation

over fields and internal indices – in particular, it includes a summation over both the physical

fields as well as their response fields. The second functional derivative of the scale-dependent

effective action were given in (5.21) – (5.26). Here, we use a mass-like regulator R that takes

a block nondiagonal structure in the retarded/advanced basis, where it regulates the retarded

and advanced components in the same way (see (5.30) – (5.38)). Furthermore, the regulator is

chosen such that it acts only in the φ-sector of our model, i.e., RE = 0. This choice is sufficient
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to regulate all contributions that appear in the evaluation of the renormalization group flow

equations. We will drop the φ-index in the following, and write R(q, ω) = Rφ(q, ω).

Here, we regulate only the spatial momenta leaving the frequencies untouched, where R(q) =

Z(k2 − q2)θ(k2 − q2), its shape being motivated by optimization criteria [58]. This provides

a convenient choice, since that way the frequency integration can be performed analytically

on the level of the flow equations. In fact, we will see shortly, that this greatly simplifies the

discussion on the behavior of the RG flow.

With the regularized propagators defined in the previous section, Sec. 5.3, we evaluate the

trace and obtain the flow equation

∂Γ

∂s
= Re

∫
ddq

(2π)d
dω

2π

∂R(q)

∂s

[
N − 1

−iΩ−1ω + Zq2 +R(q) + M̄2
0

+
−iΩ−1

E ω + ZEq
2

(
−iΩ−1ω + Zq2 +R(q) + M̄2

R

) (
−iΩ−1

E ω + ZEq2
)
− q2

(
∂2U/(∂φ∂E)

)2

]
,

(5.48)

that sums up both the two retarded and advanced contributions to the flow equations since

we consider the real part of the diagrams. It is important to point out, that (5.48) provides

only a formal definition of the flow equation for the scale-dependent effective action. The

diagrams correspond to the closed one-loop retarded and advanced propagators with a single

vertex insertion. Following the discussion in Sec. 5.1 these contributions are exactly zero.

However, taking derivatives with respect to the fields, and afterwards setting them to their

minimum values, we generate a hierarchy of flow equations for the higher n-point functions

Γ(n). The diagrams for the RG flow of these quantities will in general be nonvanishing.

Of course, the dynamic properties of the theory are captured in the frequency-dependence

of the propagators. Thus, to extract the dynamic behavior we should perform derivatives

with respect to fields with a nonvanishing frequency-dependence. Then we may ask for the

frequency-dependent contributions to ∂Γ(n)(· · · ; p, ω)/∂s. Only after performing derivatives,

is the frequency integration carried out. However, for the static properties of the theory it is

irrelevant in which order we evaluate the frequency integral. In fact, performing the frequency

integration first greatly simplifies the structure of the diagrams that contribute to the RG flow

of static correlation functions. Furthermore, this illustrates that static couplings and scaling

properties are in fact independent from the dynamics. Let us therefore consider first the

static properties of the theory (5.19). Performing the frequency integration, we obtain the

generating functional for static correlation functions

∂Γ

∂s
=

1

2

∫
ddq

(2π)d
∂R(q)

∂s

[
N − 1

Zq2 +R(q) + M̄2
0

+
1

Zq2 +R(q) + M̄2
R −

(
∂2U/(∂φ∂E)

)2
/ZE

]
,

(5.49)

fully resembling the flow equations of the O(N) symmetric models. However, there are im-

portant differences. The first is the presence of the explicit E-field dependence in the mass

eigenvalues. On the other hand, the frequency integration induces as shift of the quartic
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Figure 5.3.: Subset of diagrams that contribute to the frequency and momentum-dependent

part of the two-point function Γ
(2)

φ̃φ
(p, ω). These diagrams are evaluated to obtain

the RG flow of the renormalization factor Z and the dynamic coefficient Ω−1,

and their respective scaling contributions η and ηΩ. We evaluate only the contri-

butions from the Goldstone modes which typically yields a good approximation

close to the critical point where the massless modes dominate the dynamics.

coupling given by the mixing ∂2U/(∂φ∂E) between the two sectors. If we evaluate the masses

at the potential minimum, we obtain: M̄2
0 = m̄2

0 = 0, M̄2
R = m̄2

R = 2ρ̄0(λ̄ − γ̄2/ZE).3 The

renormalization factor ZE for the conserved density yields the partially renormalized coupling

γ̄2/ZE that renormalizes in the same way as the quartic coupling λ̄ in the φ-sector. Indeed, we

may use this relation to redefine the quartic coupling in the following way, i.e., λ̄→ λ̄− γ̄2/ZE .

After this identification, we see that the RG flow equations for frequency-independent n-point

functions ∂Γ(n)/∂s take the same form as the flow equations that we know from the O(N)

model. That is, the φ-sector is completely independent of the dynamics in the E-sector, and

we may use the results from the previous chapter.

From the flow equation (5.49) we may furthermore derive the scaling contribution to the

renormalization factor. We evaluate the flow equations for the renormalization factor Z from

the Goldstone modes only, neglecting the radial part. This usually provides a good approxi-

mation close to the critical point, where the massless modes give the dominant contribution.

We obtain

− 1

Z

∂Z

∂s
= ρ̄0λ̄

2 lim
p→0

∂

∂p2

∫
ddq

(2π)d
∂̂

∂s

[
1

Zq2 +R(q)

1

Z(q + p)2 +R(q + p) + 2
(
λ̄− (γ̄2/ZE)

)
ρ̄0

]
,

(5.50)

by projection onto the corresponding diagram, where the derivative ∂̂/∂s is defined in the

usual way (see chapter 3). Only after the identification λ̄ → λ̄ − γ̄2/ZE do we restore the

3The additional field-dependence drops out at the physical point, where 〈ε〉 = 0.

81



E Ẽ

φ φ

φ̃ φ

Figure 5.4.: Single diagram contributing to the flow equation of the two-point function

Γ
(2)

ẼE
(p, ω). This diagram gives the only contribution to the anomalous dimen-

sion ηE and includes propagators only from the φ-sector. Apart from the vertex

insertions the same loop-integral contributes also to the potential flow.

known result from the O(N) model.

Let us now comment on the dynamic properties of the model. Although the flow equation

for the effective action (5.48) takes a rather simple form, functional derivatives with respect

to frequency and momentum-dependent fields yield a large number of diagrams that may

contribute in the flow. The diagrams that are evaluated to obtain the frequency dependence

of the two-point functions Γ(2) are shown in Fig. 5.3. These are evaluated in the symmetry

broken phase, where the order parameter assumes a nonvanishing expectation value. While

the expression for each single diagram can be quite complicated, there is a considerable sim-

plification if all diagrams are combined. We give the complete result for the flow equation

after carrying out the momentum and frequency integration in the following section Sec. 5.5.

For the corresponding parameters in the E-sector, i.e., ZE and Ω−1
E , there is only one single

diagram that we have to evaluate, which is shown in Fig. 5.4. In fact, we may immediately infer

from the structure of the diagram that the dynamic coefficient Ω−1
E does not evolve with the

RG flow. This is due to the momentum-dependent vertex Γ
(3)

φφẼ
(· · · ; p, ω) = p2∂3U/(∂φ2∂E)

(see (5.44)), which projects out the only contribution to ∂Ω−1
E /∂s:

∂Ω−1
E

∂s
∼ Im


 lim
ω,p→0

∂

∂ω E Ẽ

φ φ

φ̃ φ

−ω,−pω, p

ω′ − ω, q − p


 = 0 , (5.51)

In fact, this behavior fits our expectation that only the ratio of the two kinetic parameters

should be physically relevant. One of the two frequencies Ω or ΩE is chosen to set the time-

scale, while the other one measures the relative importance of the competing dynamics. The

fact, that the diffusion rate is not renormalized is used to fix ΩE = 1 and to measure the

relaxation rate Ω with respect to this quantity.

Let us point out, that the momentum-structure of the three-vertex Γ
(3)

φφẼ
also implies that no

momentum-independent couplings are generated in the E-sector. This is consistent with the

initial requirement, that E should be a nonordering field. The contributions to the RG flow in

the coupled E-sector therefore turn out to be very simple, as far as this particular truncation

is concerned. We only need to determine the scale-dependence of the renormalization factor

ZE in terms of the anomalous dimension ηE = −∂ lnZE/∂s at the fixed point. Similarly to
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the derivation of the flow equation for renormalization factor Z, we may directly carry out

the frequency integration of the corresponding diagram. At the physical point, we obtain:

− 1

ZE

∂ZE

∂s
=
(
γ̄2/ZE

) ∫ ddq

(2π)d
∂̂

∂s

[
N − 1

(Zq2 +R(q))2
+

1
(
Zq2 +R(q) + 2

(
λ̄− (γ̄2/ZE)

)
ρ̄0
)2

]
.

(5.52)

Here, we have summarized the contributions to the RG flow equations for Model C. In the

following section these flow equations are given in their scale-invariant form, where we ask for

possible fixed points solutions of the flow.

5.5. Scaling form of flow equations

To investigate the critical properties, we write the flow equations in a form such that the scale

derivatives vanish at a fixed point. For that purpose, we introduce the dimensionless renor-

malized field squared ρ = k2−dZ φ2/2 and potential u(ρ, E) = k−dU(ρ, E). The dimensionless

renormalized coupling between the sectors is given by γ = kd/2−2Z−1Z
−1/2
E γ̄. To characterize

the behavior of the ratio of renormalized kinetic coefficients Ω−1Z−1ZE (recall that we have

set ΩE = 1), it is convenient to introduce the kinetic parameter κ = 1/(1+Ω−1Z−1ZE) which

varies in the range 0 ≤ κ ≤ 1 and captures the asymptotic scenarios, i.e., where the relaxation

rate Ω→ 0 and Ω→∞ (compared to the diffusion time-scale).

In the scaling regime we need the flow equations for the case of a nonvanishing rescaled field

expectation value or potential minimum, ρ0 6= 0, defined by u′(ρ0) = 0 with u′ ≡ ∂u/∂ρ. At

a fixed point, ρ0 is constant and limk→0 k
d−2ρ0/Z denotes the order parameter [19]. Within

the 4th order local potential approximation (LPA) truncation around ρ0, we obtain the flow

equations for ρ0 and the redefined effective coupling λ→ u(2,0)(ρ0, 0)− γ2:

∂ρ0
∂s

= (2− d− η)ρ0 + 2vd {(N − 1)l1 (0; η) + 3l1 (2ρ0λ; η)} , (5.53)

∂λ

∂s
= (d− 4 + 2η)λ+ 2vdλ

2 {(N − 1)l2 (0; η) + 9l2 (2ρ0λ; η)} . (5.54)

Here vd =
(
2d+1πd/2Γ (d/2)

)−1
and the anomalous dimension is defined as η = −∂ lnZ/∂s.

We encounter the same threshold functions as in the previous sections, given by ln(w; η) =

(2n/d) (1− η/(2 + d)) (1 + w)−n−1 that parametrize the integral appearing from (5.47) and

describe the net decoupling of heavy modes [19]. The flow equation for the coupling γ reads

∂γ

∂s
= (d/2 − 2 + η + ηE/2) γ + 2vdγ(λ+ γ2) {(N − 1)l2 (0; η) + 3l2 (2ρ0λ; η)} , (5.55)

which has an explicit dependence on the anomalous dimension ηE = −∂ lnZE/∂s. The scale-

dependence of the kinetic parameter takes the form

∂κ

∂s
= κ(1 − κ) {ηΩ(κ) − η + ηE} , (5.56)
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which depends also on the scaling contribution to the kinetic coefficient, ηΩ = −∂ lnΩ−1/∂s.

The anomalous dimensions are given by

η = 16
vd
d
ρ0λ

2m2,2 (0, 2ρ0λ; η) , (5.57)

ηE = −2vdγ2 {(N − 1)l2 (0; η) + l2 (2ρ0λ; η)} , (5.58)

where m2,2(w1, w2; η) = (1 + w1)
−2(1 + w2)

−2 is η-independent in our case, and the scaling

contribution to the kinetic coefficient reads

ηΩ =
1

ρ0
2vd

{
l1(0; η) + l1(2ρ0λ; η) − 2h1

(
ρ0(λ+ γ2), γ2ρ0(1− κ)/κ, (1 − κ)/κ; η

) }
. (5.59)

The function h1 parametrizes the contributions to the kinetic coefficient and is a threshold

function of similar type as l1 in the family of ln threshold functions. It is given by

h1(w1, w2, w3; η) =
1

(1 + w1)2

{
(1 + w1)

(
w2 + (1 + w3)

2
)

1 + w1 − w2 + w3 + w1w3

+

(
2

d
− 1

)
2F1

(
1,
d

2
;
d+ 2

2
;

w2

w1 + 1
− w3

)

− d

d+ 2
(w2 + 2w3) 2F1

(
1,
d+ 2

2
;
d+ 4

2
;

w2

w1 + 1
− w3

)

− d+ 2

d+ 4
w2
3 2F1

(
1,
d+ 4

2
;
d+ 6

2
;

w2

w1 + 1
− w3

)

− η

2

[(
2

d
− 1

)
2F1

(
1,
d

2
;
d+ 2

2
;

w2

w1 + 1
− w3

)

− d

d+ 2
(w2 + 2w3 − 1) 2F1

(
1,
d+ 2

2
;
d+ 4

2
;

w2

w1 + 1
− w3

))

− d+ 2

d+ 4

(
w2
3 − w2 − 2w3

)
2F1

(
1,
d+ 4

2
;
d+ 6

2
;

w2

w1 + 1
− w3

)

+
d+ 4

d+ 6
w2
3 2F1

(
1,
d+ 6

2
;
d+ 8

2
;

w2

w1 + 1
− w3

)]}
. (5.60)

It is important to emphasize that (5.59) and in particular the form of the scaling function

(5.60) are essentially the new results obtained within this work. They capture the complete

information about the dynamics close to criticality. While the β-function (5.56) already

suggests a set of fixed point solutions (namely κ = 0 and κ = 1) their existence and stability

properties are determined by the function h1. Therefore, before we go on to consider possible

scaling solutions to the RG flow equations let us ask about the limiting properties of this

function. In particular, we inquire about the two limits where κ→ 0 and κ→ 1.

• Let us start by examining the κ→ 1 case. In this limit, we may expand the hypergeo-

metric function 2F1 (1, a; a + 1; z) and obtain

2F1 (1, a; a + 1; z) = 1 +
a

1 + a
z +O(z2) , (5.61)

where in this case z = −1/
(
1 + γ2ρ0/(1 + λρ0)

)
(1−κ)/κ and the coefficient a = d/2+n

is determined by the spatial dimension d plus some integer value of n. We see that z → 0
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in the κ→ 1 limit and the hypergeometric functions in (5.60) all evaluate to one. Thus,

we get

h1(w, 0, 0; η) = (2/d)(1 − η/(2 + d))(1 + w)−2 = l1(w; η) (5.62)

and the scaling contribution to the dynamic coefficient Ω−1 drastically simplifies:

ηΩ =
1

ρ0
2vd

{
l1(0; η) + l1(2ρ0λ; η)− 2l1

(
ρ0(λ+ γ2); η

)}
. (5.63)

It can be expressed solely in terms of l1 threshold functions. This limit captures the

region where relaxation rate diverges and the system is characterized by a diffusive

process in the presence of a homogeneous background field (see the following section for

the physical interpretation of the scaling solutions).

• On the other hand, the opposite limit κ→ 0 is a bit more tricky. An expansion of the

hypergeometric functions gives:

2F1 (1, a; a + 1;−1/z) = Γ(1 + a)

{
zaΓ(1− a) + z

(
1− 1− a

2− az +O(z
2)

)
Γ(a− 1)

Γ(a)2

}
,

(5.64)

where in this case z =
(
1 + γ2ρ0/(1 + λρ0)

)
κ/(1 − κ) and the property that z > 0

is assumed in the expansion (5.64). In the z → 0 limit (κ → 0) the hypergeometric

functions do not reduce to a simple form. However, it is possible to show that the

threshold function h1 reduces to the following form:

lim
y→∞

h1(w1, w2y, y; η) = (2/d)(1− η/(2 + d))(1 +w1 −w2)
−2 = l1(w1 −w2; η) . (5.65)

For the scaling contribution ηΩ this yields the same expression in the κ→ 1 limit, albeit

without the γ-dependence:

ηΩ =
1

ρ0
2vd {l1(0; η) + l1(2ρ0λ; η)− 2l1(ρ0λ; η)} . (5.66)

In fact, this is just the known result for Model A (assuming that the derivation takes

into account only the contributions from the Goldstone modes). Apparently, in the

regime where the kinetic parameter κ → 0 the scaling contribution to Ω−1 decouples

from the conserved density – the γ-dependence drops out – yielding an RG flow which

resembles that of the purely relaxational model. We will see shortly that this is indeed

what happens.

This concludes our discussion of the flow equations and we now proceed to discuss their

scaling solutions. Eqs. (5.53) – (5.59) constitute the full set of flow equations for this model,

whose fixed point solutions are computed numerically.

5.6. Dynamical scaling regions

At a fixed point the coefficients Z ∼ k−η, ZE ∼ k−ηE , and Ω−1 ∼ k−ηΩ assume their scaling

form while the anomalous dimensions η, ηE , and ηΩ take on their scale-independent critical

85



values. The dynamic critical exponents are derived by examining the scaling behavior of the

spectral function which is defined in terms of the imaginary part of the retarded propagator.

At the critical point −i ImGφφ̃ ∼ k−2+η, where it is assumed that q ∼ k and ω ∼ kz. The

scaling assumption requires

Ω−1Z−1kz−2 ∼ kz−2+η−ηΩ = const. , (5.67)

and we obtain z = 2− η + ηΩ. Similarly, from the scaling properties of the spectral function

−i ImGEẼ we derive the dynamic critical exponent zE = 2 − ηE , keeping in mind that the

scaling contribution to the kinetic coefficient ΩE is exactly zero.

The static critical behavior is encoded in the flow equations (5.53) and (5.54) characterizing

the potential flow with the anomalous dimension (5.57). They form a closed set of equations

and only depend on N and d for the O(N) symmetric potential, which reflects the fact that

the static universality class does not depend on the dynamic properties. In addition to the

static properties, the dynamic universality class is further characterized in terms of the fixed

point values of γ∗ and κ∗ along with the scaling exponents z and zE . From the form of the flow

equations (5.55) and (5.56) we may already infer the possible scaling solutions. Of course,

the existence and stability of these solutions is yet to be determined. We find the following

possibilities:

• Weak scaling region: For κ∗ = 0 and γ∗ 6= 0 at the fixed point (region I), we obtain

two independent dynamic scaling exponents z and zE , where z > zE . Since the kinetic

parameter vanishes, the ratio of the renormalized relaxation rate of the order parameter

and the diffusion rate is zero. Therefore, the order parameter relaxes only asymptotically

compared to the diffusion time-scale in this regime, i.e., Ω/ΩE = 0.

• Strong scaling region: For 0 < κ∗ < 1 and γ∗ 6= 0, we find from (5.56) with ∂κ/∂s = 0

at the fixed point that ηΩ − η + ηE = 0 (region II). This leads to a locking of the

dynamic critical exponents in both sectors, with z = 2 − ηE = zE . This strong scaling

holds when the fluctuations of the conserved density dictate the dynamic critical scaling

for the order parameter. The kinetic parameter κ∗ is in the intermediate range and

the relaxation and diffusion process compete on equal terms. It is this region that is

commonly referred to as Model C.

• Anomalous diffusion region: For critical κ∗ = 1 and γ∗ 6= 0 (region III), we find another

weak scaling solution with independent values for the scaling exponents, i.e. z < zE , in

contrast to region I. This corresponds to different fixed point values for ηE and ηΩ in

these regimes, since they depend on γ∗ and κ∗ according to (5.58) – (5.59). Because the

kinetic parameter is unity, the ratio of the renormalized diffusion rate and the relaxation

rate must vanish. Since we have fixed ΩE = 1, the φ-field must relax on extremely short

time-scales. Thus, this scaling region describes the peculiar situation of a purely diffusive

process in the presence of a practically homogeneous order-parameter field.

• Decoupled scaling region : If the two sectors decouple, i.e. γ∗ = 0, then ηE = 0 according
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Figure 5.5.: Phase diagram for Model C as a function of dimension d and the number of field

components N from the functional RG. For comparison to the ǫ-expansion, thick

lines near d = 4 denote O(ǫ) results [221]; thin/dashed lines denote the O(ǫ2)
results according to [43, 231].

to (5.58) (region IV). In this case, the conserved density displays dimensional scaling

with zE = 2. In this region, the physical field shows a dynamic critical scaling with

leading exponent z in the Model A universality class. However, there can be nontrivial

subleading corrections to the dynamic scaling even if the mode-coupling is zero [221].

The kinetic coefficient assumes the fixed point value κ∗ = 0 which, similar to the weak

scaling region I, describes a scenario where the order parameter relaxes asymptotically

compared to the diffusion process.

Depending on the number of field-components N and the dimensionality d of the system

the dynamic scaling properties of respective theory at the critical point can be characterized

by either one of the above solutions (based on the assumption that there is always a sta-

ble fixed point). Our results, obtained within the 4th order LPA truncation, are shown in

Fig. 5.5 where the different scaling regions (I – IV) are clearly visible. At their boundaries

the corresponding fixed points exchange their stability properties, determined by the number

of relevant eigendirections.

Therefore, let us examine the eigenvalues of the linearized RG flow around the fixed point

values. This will give us the critical indices and the corresponding eigendirections that essen-

tially define the stability of the above fixed point solutions. To derive the stability matrix,

∂βi,j/∂gm,n, we write the βi,j-functions in terms of the generalized couplings gm,n ∈ {λ, γ, . . .}
with βλ ≡ ∂λ/∂s etc. After computing the solutions of the fixed point condition, where the

β-functions vanish βλ(g∗) = βγ(g∗) = 0 etc. we determine the critical indices at the fixed
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Figure 5.6.: (Top) Dynamic critical exponents z (red, dashed) and zE (blue, continuous) as a

function of N at fixed dimension d = 3.75. The different regions I – IV are clearly

visible, along with the locking phenomenon (z = zE) in region II and the distinct

values in the independent scaling regimes I and III. (Bottom) The subleading

exponents θγ (orange, dashed) and θκ (purple, continuous) indicate the stability

of the fixed point solutions. θγ controls the decoupling transition between regions

I and IV, while θκ characterizes the kinetic properties of the respective phases

where the fixed point coupling γ∗ 6= 0. This is illustrated in the inset which shows

an enlarged version the transition region around N ≃ 3.35 (d = 3.75).

points.4 For a given fixed point determined by the couplings gm,n ∗ ∈ g∗, we have

βi,j =
∑

m,n

∂βi,j
∂gm,n

(gm,n − gm,n ∗) +O(g2) , (5.68)

where the expansion

gm,n = gm,n ∗ +
∑

I

cI v
I
m,n(k/Λ)

−θI , (5.69)

is given in terms of the eigenvalues −θI and eigendirections vI of the stability matrix at the

fixed point, i.e.,
∂β(g∗)

∂g
vI = −θIvI . (5.70)

If Re θI > 0 the corresponding eigendirection vI defines a relevant perturbation in the IR

limit k → 0, while in the case Re θI < 0 the perturbation is irrelevant. As usual, for the

discussion of the stability properties only the real part of θI is important, and we will denote

by θI the real parts only. In the 4th order LPA truncation, apart from the leading order

exponent θ1 = 1/ν being positive for all values of N and the subleading Wegner exponent

4Note, that g and g∗ are defined to include the complete set of generalized couplings gm,n.
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Figure 5.7.: Fixed point values for the mode coupling γ∗ (blue, continuous) and kinetic pa-

rameter κ∗ (red, dashed) as a function N at d = 3.75. The asymptotic result

for κ∗ in the limit d→ 4− is shown for comparison (thin, dashed line) where the

region III extends over the range 2 < N < 4.

θ2 = −ω which is always negative, we obtain two further exponents that relate to the scaling

properties of the coupling γ and the kinetic parameter κ. We will denote them by θγ and θκ

to mark their origin. In fact, these critical indices are determined exactly by the derivatives

θγ = ∂βγ/∂γ and θκ = ∂βκ/∂κ at the fixed point – there is no mixing contributions from

derivatives ∂βλ/∂λ etc., from the static sector (and vice versa). Thus, these critical indices

define a genuine extension of the known static universality class.

Our results for the correlation length exponent ν and for the anomalous dimension η (see

Tab. 5.1) agree with those documented for functional renormalization group studies on the

static universality class at this truncation level [19]. The characteristic behavior of the eigen-

values θγ and θκ is exemplified in Fig. 5.6 for fixed dimension d = 3.75 as a function of field

components N . The eigenvalues are negative except at the boundaries between the phases

(regions I to IV), where different fixed point solutions exchange their stability. The stable

fixed point is characterized by only one relevant eigendirection, θ1 = 1/ν > 0, while θ2 < 0,

etc. In Fig. 5.7 also the corresponding fixed point values of γ∗ and κ∗ are shown that define

the scaling regions I – IV. This provides additional information on properties of the fixed

points as N is varied. In fact, from Fig. 5.7 it can be seen that the fixed point solutions with

γ∗ 6= 0 not only loose their stability but cease to exist beyond some value of N where the two

sectors decouple, e.g., given by N ≃ 3.4 (d = 3.75).

5.7. Constraints on scaling behavior

Model C is special compared to other models for critical dynamics, as the dynamic critical

scaling properties are directly related to the static close to criticality. In particular, there

exists an exact scaling relation [40, 220, 221]

ηE = −α/ν , (5.71)
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which relates the anomalous dimension ηE to the specific heat and correlation length expo-

nents, α and ν, respectively. It applies only when the specific heat diverges α > 0, while it is

absent for α < 0. Eq. (5.71) is derived from the observation that the operator ε corresponds

to the relevant scaling part of the energy density ε ∼ ϕ2 (see, e.g., [9]) where the RG scaling

dimension of the composite operator ϕ2 is given by (1−α)/ν. Thus, at the critical point the

two-point correlation function assumes a scaling form

〈
ϕ2(k)ϕ2(−k)

〉
∼ k2(1−α)/ν−d , (5.72)

where, using the scaling relation 2 − α = νd and from the knowledge that the two-point

function satisfies 〈ε(k)ε(−k)〉 ∼ kηE , we deduce (5.71). The anomalous dimension ηE enters

the dynamic scaling exponent of the conserved density zE = 2−ηE and furthermore determines

the dynamic critical exponent of the order parameter in the strong scaling regime (III). In

this region, the dynamic critical scaling behavior of the order parameter is completely fixed

by the static critical behavior, i.e. z = 2 + α/ν. We point out that such a relation does not

hold, e.g., in the purely relaxational Model A [39].

From the scaling relation (5.71), we may infer certain properties of the (N, d) phase diagram

solely from the static equilibrium properties of the O(N) vector model. Here, we observe that

our result for the phase diagram (Fig. 5.5) is compatible with known data for both critical

dynamics and statics. In particular, the boundary between the scaling regions I and IV, which

is characterized by the requirement that the coupling γ∗ vanishes, and therefore ηE = 0, can

be derived from the α = 0 line. For the two-dimensional Ising model, where α = 0 is known

exactly from the Onsager solution, our result for the phase boundary in Fig. 5.5 still occurs

remarkably close to the exact result in comparison to the ǫ-expansion, considering the expected

quality of our truncation. For the three-dimensional XY model the specific heat exponent is

known to be negative α = −0.01056(38) [243], while α = 0.110(2) in the three-dimensional

Ising universality class [244] (see in particular the compilation of critical exponents in Ref. [8]).

This implies that at d = 3 the decoupling transition (I – IV) should lie between 1 < N < 2.

Our 4th order LPA results are consistent with this observation. Finally, close to the upper

critical dimension d → 4−, α is known to vanish at N = 4 which holds exactly within our

truncation.

In the strong scaling region, we may directly compare our results for the dynamic critical

exponent to the value obtained from the corresponding scaling relation z = 2 + α/ν. Using

most accurate high-temperature expansion data for N = 1 in d = 3 from Ref. [8], we obtain

from this relation z = 2.176(3). Our result z = 2.059 in comparison (see Tab. 5.1 for a

summary of results) is reasonable considering the expected quality of a lowest-order derivative

expansion in the presence of sizable anomalous dimensions. Note, that the Ising model in

three dimensions is the only model with integer values of N and d that lies within the strong

scaling region. In fact, it is the only case where the coupling to the conserved density is

relevant (excluding the N → 0 limit). For large values of N the conserved charge effectively

decouples which yields Model A dynamic critical scaling.
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N ν η z zE

1 0.523 0.055 2.059 2.059

2 0.604 0.059 2.027 2

3 0.685 0.054 2.025 2

4 0.747 0.047 2.021 2

∞ 1 0 2 2

Table 5.1.: Critical exponents (d = 3) calculated from the functional RG to 4th order in the

local potential approximation. The dynamic critical exponents z and zE are in the

Model C universality class in the strong scaling region (N = 1), while the leading

dynamic critical scaling for d = 3 and N > 1 is in the Model A universality class.

In the weak and decoupled scaling regions (I and IV), where κ∗ = 0, the leading dynamic

scaling behavior of the physical field features a dynamic exponent in the universality class of

Model A. We compare the contributions to z − 2 = ηΩ − η directly to the flow equations for

Model A derived in Ref. [21] to O(∇2) in the derivative expansion. We find that ηΩ−η = cη is

satisfied exactly on the level of the RG flow equations in this region using the standard notation

[39]. Furthermore, knowledge about the values of cη allows us to deduce the shape of the

transition line between the weak and strong scaling regions (I and II), which is characterized

by the locking of dynamic critical exponents z = zE . In particular, the boundary is defined

by the relation α/ν = cη. Using available data on the quantity cη from the critical dynamics

of Model A [214, 215, 245] and the static critical exponents α and ν [8] we find that cη > 0

(d = 2) and cη − α/ν < 0 (d = 3). Thus, we conclude that the phase boundary for N = 1

should pass between between 2 < d < 3, which is in very good agreement with our results.

Let us comment on the limit N → 0 since here the situation is less clear. In this limit,

the O(N) model is known to describe the statistical properties of linear polymers in dilute

solutions and in the good-solvent regime [246]. In particular, this allows for a mapping

of certain self-avoiding walk (SAW) models to this case (see, e.g., [8] for a review) where

the scaling behavior of static correlation functions has been explored extensively. It is in

this limit, that we observe an interesting behavior, where the boundary between regions

I and II bends down for small values of N and finally runs into the point at N = 0 in

d = 4 dimensions (see Fig. 5.5). Data from SAW models [247] for the case N = 0 and

field-theoretic results [8] indicate that α/ν is positive between the upper and lower critical

dimension 1 < d < 4. However, we find a small negative contribution to the dynamic critical

exponent of the conserved density, i.e. zE −2 < 0 (as seen also in Fig. 5.6), while the dynamic

critical exponent z receives a positive contribution in this regime and is compatible with a

lower bound derived for the relaxational models [248]. We expect that this behavior is an

artifact of the truncation and will disappear if higher order operators are included in the

truncated series expansion for the effective potential. On that note, let us emphasize that

the phase boundaries are determined by the stability transition between fixed points and
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rely on an accurate computation of subleading scaling exponents. As we have seen at the

example of the two-coupled scalar models in the previous chapter, these phase boundaries

may shift substantially when the truncation is extended both to higher orders in the gradient

expansion (including the field-dependence in the renormalization factors) as well as to higher

orders in the fields for the series expansion of the effective potential. Thus, to obtain a better

quantitative control over the phase structure of this model it is mandatory to consider more

elaborate truncations.

5.8. Extended truncations

To improve the quality of our results and to check the convergence of critical indices it is

necessary to go to higher orders in the derivative expansion and to use an extended basis

of field operators for the truncated series expansion of the effective potential. In fact, we

considered extended truncations of the type where higher order operators are included only

in the φ and φ̃-dependent part of the effective action:

Γ ∼
∫
ddx dt

{
φ̃a
(
−iΩ−1ω − Z∇2

)
φa + φ̃aOa(φ) + . . .

}
, (5.73)

while the E-dependent part and in particular, the coupling between the two sectors is kept

fixed. This corresponds to a partial improvement on the truncation of the effective potential,

which enters Eq. (5.19) via the derivatives ∂U/∂φ and ∂U/∂E . While such an extended ansatz

yields better results close to the upper critical dimension d = 4 near N ≃ 4, that are consistent

with previous results obtained with the ǫ-expansion [40, 42, 43, 46, 220, 221, 231], around

d = 3 an expansion of this form fails to reproduce the known behavior of the phase boundary

between region I and IV. In particular, using an extended truncation (5.73) in d = 3 to 8th

order in the fields shifts this phase boundary to larger values around N ≃ 2.7, while the static

equilibrium properties indicate that the stability transition should lie between 1 < N < 2.

It is clear why such a truncation must fail – it does not define a consistent expansion, as

one would expect that the corresponding field operators included in the extended ansatz for

∂U/∂φ couple also to the E-sector via the interaction term ∼ Ẽ∇2∂U/∂E . Any truncation

that extends upon our 4th order LPA results should therefore simultaneously include higher

order operators On(φ) in both sectors, improving both on the potential in the φ-sector and

the momentum-dependent coupling between the sectors.

Let us also point out that the diffusive dynamics (5.2) strongly constrains possible extensions

of the truncation where higher order operators On(E) are included. The assumption of a linear

diffusion process requires that the operators E and Ẽ should enter the scale-dependent effective

action only in a bilinear form. Ignoring this constraint might yield a low-energy effective

model that is in a different dynamic universality class, other than Model C. Also, different

types of stochastic diffusion equations may require a different choice for the discretization of

the dynamics. In that case, additional diagrams may contribute to the flow equations.
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5.9. Summary and outlook

Here, we have studied a simple system with relaxational dynamics for the order parameter

field in the presence of a diffusive mode in the framework of the functional RG, using a 4th

order LPA truncation. We find that the dynamic critical properties are strongly constrained

by the scaling properties of static correlation functions. However, interactions lead to a

complex structure with a variety of possible phases with different dynamic scaling properties

and nontrivial subleading scaling corrections. While the existence of the anomalous diffusion

region and its associated dynamic critical scaling behavior was for a long time unclear [39,

40, 42, 42, 46, 220, 221] we unambiguously establish its existence and scaling properties. This

is in contrast to the O(ǫ2) results presented in [43, 231] which seemed to indicate that this

region is an artifact of the ǫ-expansion. Our results, do not rely on such an expansion and

therefore might lead to a different conclusion on the phase structure of Model C in this region.

Of course, given the expected quality of the 4th order LPA truncation it would be desirable

to obtain a better quantitative control over the phase diagram. This requires a reliable deter-

mination of subleading critical indices and thus requires us to consider extended truncations

going to higher order in the derivative expansion. This was shown to yield accurate results

at the example of the static scaling exponents in the three-dimensional Ising model [66, 67].

Possible extensions in this direction are left for future work.

It would be striking if one could establish the scaling properties of region III experimentally.

In this region, the dynamics describes a diffusion process in the presence of a homogeneous

scalar field configuration. Nevertheless, fluctuations of the order parameter are important and

the nonzero coupling γ∗ 6= 0 strongly affects the scaling properties of the conserved density, i.e.

zE = 2−ηE > 2 which leads to sub-diffusion. It would be interesting to see if this region of the

phase diagram is accessible with Monte Carlo simulations for fractal dimensions 3 < d < 4 if

the real-time dynamic critical behavior is identified with the dynamic properties of the Monte

Carlo sampling process [249–252].
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6. Universality and anomalous scaling far

from equilibrium

In the previous chapter we considered the extensions of static universality classes by consid-

ering the long-time dynamics following a small perturbation in the critical equilibrium state.

Our analysis relied on the assumption of linear response where at sufficiently long times the

system always reaches thermodynamic equilibrium. However, the time evolution starting from

a generic state certainly is much more complex and we may wonder if steady states exist also

far from equilibrium. Such states are characterized by time translation invariance and might

feature similar scaling properties as thermodynamic systems close to criticality. Practically

such a state might be hard to reach from some initial state requiring a delicate tuning of

parameters. Stochastic driven systems allow for a much more robust way to reach nonequi-

librium, where typically some injection process leads to a strong occupation of modes which

are removed by dissipation. If the injection scale sufficiently far away from the dissipation

scale nonlinear interactions will transfer the excitations that were put into the system through

an intermediate range of scales. In such a case one will observe a nonvanishing flux in the

so-called inertial range. There the dynamics is effectively independent of the driving and

dissipation mechanisms and one may expect universal scaling behavior characterized by the

presence of dynamically conserved quantities.

A prominent example where such a nonequilibrium scaling behavior has been discussed is

in hydrodynamic turbulence [49], as described by the incompressible Navier-Stokes equations

∂ua
∂t

+ ub∇bua − ν0∇2ua = −∇ap+ fa(x, t) . (6.1)

Here, ua is the velocity field, ν0 is the kinematic viscosity, and p is the thermodynamic pressure.

The incompressibility constraint ∇aua = 0 is enforced by projecting out the longitudinal

modes via the projection operator Pab(∇) =
(
1− (∇a∇b)∇−2

)
. This introduces an advective

nonlinearity ∼ Pab(∇)uc∇cub in (6.1) which essentially yields the strong nonlocal interactions

characteristic of turbulent hydrodynamic flow. Of course, eq. (6.1) should be supplemented by

some initial state and appropriate boundary conditions. The stochastic random force fa(x, t)

is chosen to be Gaussian and white-in-time, i.e.,

〈fa(x, t)fb(x′, t′)〉 = 2Pab(∇)D(x− x′)δ(t − t′) . (6.2)

where the angular brackets denote an averaging with respect to the stochastic noise, while

its spectrum of the driving force is completely characterized by the function D(x− x′). For
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turbulent flow stirred at large scales and far from the boundaries one expects a universal

scaling for the small-scale fluctuations. Indeed, experiment gives strong indications for such

universal behavior in Navier-Stokes turbulence [253–257]. However, the exact values of the

scaling exponents are still under debate.

Theoretically, the similarity of the problem to the theory of critical phenomena [258, 259]

has led to many attempts to apply renormalization group methods [260–266], also in the

context of the functional renormalization group [267, 268]. However, the nature of the fixed

points and the competing scales of the system make the problem very hard to tackle, and

until now there is no consensus on the relevance of fixed point solutions for hydrodynamic

turbulence (see, e.g., Ref. [265, 269, 270] for an overview of the subject).

In such a situation it is useful to have a model system at hand that shares some essential

properties with the original problem and allows for a clear physical understanding. One

example that has featured prominently in this respect, is the Kraichnan model of linear

passive advection [271]. Since the problem is linear, it is possible to close the equations of

motion for n-point correlation functions and determine their scaling behavior exactly. This

has lead to the understanding of a basic mechanism that might explain the anomalous scaling

in hydrodynamic turbulence [272–275]. In fact, in this model anomalous scaling is related

to the presence of zero modes while the nonanomalous part stems from the dimensional

scaling contribution of the random forcing mechanism. Thus, in general, one may suspect

a subtle interplay between the different scaling contributions. Although, the problem has

little resemblance to the strong nonlocal interactions present in the Navier-Stokes equation,

it nevertheless provides a first explanation for the observed universality of scaling behavior

in hydrodynamic systems far from equilibrium. Of course, one must ask if these ideas can be

extended to the case where strong nonlinear interactions dominate the dynamics.

Another model that has featured prominently over the years is the random-force-driven

Burgers’ equation [47, 48]. It displays the same type of advective nonlinearity that is present

in the Navier-Stokes equation however, without the strong nonlocal interactions that are

induced by incompressibility. Similar to the Kraichnan model it has led to an increased

understanding of intermittency and anomalous scaling based on applications of field-theory

techniques, e.g., where it was shown that the breaking of Galilei invariance by the forcing

mechanism is responsible for intermittency [276, 277]. On the other hand instanton calcula-

tions [278–282] showed that certain field-force configurations give the dominant contribution

to the asymptotic tails of the velocity distribution functions. Efficient numerical techniques

[283] have also contributed strongly to determine the scaling spectrum of correlation func-

tions [284, 285]. Nevertheless, the interpretation of the data is still somewhat unclear as

the measured scaling behavior might be strongly influenced by different scaling contributions

[286].

Here, we employ lattice Monte Carlo methods (see [55, 56] for an introduction) based on the

functional integral formulation for classical dynamics [44–46, 234, 287] to determine the scaling

96



properties in the case where the system is driven to a nonequilibrium steady state. These

techniques define a Markov process that leads to an optimal sampling of the functional integral.

Since they rely only on the definition of a fundamental microscopic action, Monte Carlo

simulations are directly transferable to other systems of interest and are free of any modeling

assumptions. Though not directly competitive with conventional time-advancing methods

as, e.g. pseudo-spectral or finite-difference methods, Monte Carlo simulations may provide

a unique perspective on such important problems as, e.g. intermittency in fully developed

turbulence [281]. In view of the well-established anomalous scaling behavior of Burgers’

turbulence [48, 286] and the physical picture of the underlying mechanisms for intermittency

[277, 279, 281], this provides an ideal setting to test these methods and understand possible

systematic effects.

6.1. Random-force-driven Burgers’ equation

The random-force-driven Burgers’ equation

∂u

∂t
+ u∇u− ν0∇2u = f(x, t) , (6.3)

was originally conceived as a one-dimensional model for compressible hydrodynamic turbu-

lence [288] and provides a useful benchmark setting to test new analytical and numerical

methods for real-world turbulence [47, 48]. We will consider the special case where the sys-

tem is driven by a self-similar Gaussian forcing that is white in time. The two-point correlation

function of the stochastic forcing in Fourier space is given by

〈f(k, t)f(k′, t′)〉 = 2D0|k|3−yδ(k + k′)δ(t− t′) , (6.4)

where the parameter y determines the relative importance of the stirring mechanism at differ-

ent scales, and the dimensionful constant D0 measures its strength. Note, that the definition

of the exponent y is chosen in accordance with the literature [260, 261, 265]. While large

values of y lead to a forcing that acts predominantly in the infrared (IR), in the opposite case

the system is strongly driven in the ultraviolet (UV). Independent of the forcing mechanism,

kinematic viscosity ν0 provides a dissipation scale η and for ν0 → 0 the two characteristic

scales η, and the finite system size L separate. In that case, the stochastic forcing drives the

system into a nonequilibrium steady state, where in the range η ≪ k−1 ≪ L the energy flux

through wavenumber k behaves as Πε(k) ∼ k4−y. Thus, the parameter y serves to control the

type of scaling behavior. Of course, depending on the value of this parameter the character

of excitations in the system will be very different. While the large-scale dominated forcing

leads to the appearance of coherent shocks (see Fig. 6.1) the short-range correlated regime is

characterized by the the absence of such structures.

A particularly interesting scenario was first considered in [289, 290] where it was found

that the special choice y = 4 for the stirring mechanism induces a constant flux of energy
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Figure 6.1.: Typical velocity profile u(x) from a simulation on a 254× 1024 (space × time)

lattice, where x is taken in units of the spatial lattice size L. The system is forced

with equal strength on all scales corresponding to the tuning parameter y = 4,

where the flux Πε(k) ∼ k4−y = const., yielding a Kolmogorov energy spectrum.

Πε ∼ const. (up to logarithmic corrections) where the interplay of the stochastic forcing and

advective term leads to a Kolmogorov energy spectrum E(k) ∼ k−5/3. The physical picture

behind this scenario is the appearance of shocks with a finite dissipative width (see, e.g.,

Fig. 6.1). The large fluctuations associated with the negative gradient of the front give the

dominant contribution to the anomalous scaling of velocity differences δru = u(x+ r)−u(x),
where 〈|δru|n〉 ∼ rζn , and the scaling exponents ζn = 1 for n ≥ 3 strongly deviate from

the Kolmogorov scaling prediction ζn = n/3 that follows from a naive dimensional analysis

[47, 48]. These rare fluctuations are strongly non-Gaussian and lead to the known asymptotic

left tail of the probability distribution function (PDF) for velocity differences P(δru) [281].

6.2. Field-theoretic approach

Here, we consider the problem of hydrodynamic turbulence from the functional integral point

of view [45, 234, 287]. The functional integral gives a nonperturbative definition of the field

theory and thus, it is ideally suited to study the strong and rare fluctuations present in fully

developed turbulence that give the main contribution to the high-order moments of velocity

differences.

The classical field-theoretic action for the random-force-driven Burgers’ equation is obtained

via the Martin-Siggia-Rose formalism [44–46, 234, 287]. The construction of the classical

action follows the discussion in the previous chapter 5. That is, introducing the auxiliary

response field ũ, we obtain the partition function

Z ∼
∫

[dũ][du] e−S , (6.5)

with the classical action

S =

∫

[t0,∞]
dt dx

{
ũ

(
∂u

∂t
+ u∇u− ν0∇2u

)
−D0 ũ(−∇2)(3−y)/2ũ

}
, (6.6)
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where the quadratic noise term ∼ ũ|∇|3−yũ models the fluctuations that are put into the

system by the stochastic forcing (6.4). One might notice the similarity of (6.6) to the field-

theoretical action that we derived for Model C. However, here, the noise term yields a fluctu-

ation dissipation relation only in the special case, where y = 1. For generic values of y > 0,

fluctuations are equally important on all scales leading to strong correlations in the system.

There is another important difference that distinguishes the dynamics from the case of the

relaxational models that we considered in the previous chapter. It is related to the presence

of a continuous symmetry. In particular, the action (6.6) is invariant under Galilean boosts,

where under an infinitesimal Galilean transformation δG the fields transform as

δGu = δv
(
1− t∇u

)
, δGũ = −δv t∇u , (6.7)

with the corresponding real infinitesimal parameter δv. It is this symmetry that essentially

determines the phenomenology of the system and leads to the complex scaling behavior [265,

277]. Note, that the functional integral is defined for the Wick-rotated field ũ → iũ which

yields an action that is bounded from below.

The classical action (6.6) is well-suited for analytic calculations where the auxiliary field

is introduced to compute real-time correlation functions, e.g., response functions to some

external perturbation. However, in the form (6.6) the action is hard to handle via lattice

Monte Carlo techniques, where the additional phase factor ∼ iũ(∂u/∂t + · · · ) leads to a

poor importance sampling. Instead, we may integrate out the auxiliary field which yields the

modified action

S =
1

4D0

∫

[t0,∞]
dt dx

(
∂u

∂t
+ u∇u− ν0∇2u

)
(−∇2)−(3−y)/2

(
∂u

∂t
+ u∇u− ν0∇2u

)
, (6.8)

depending only on the physical field u. It defines a positive definite probability distribution

functional, which may by sampled via Monte Carlo methods. We emphasize that we keep

the initial time t0 dependence in the following. This is of course necessary for practical

reasons, since any numerical simulation must be carried out on a finite size system. In that

case, it is an important question if the class of initial states that one is studying lies in the

domain of attraction of the nonequilibrium steady state, since for generic initial conditions the

system will typically relax to equilibrium after a short amount of time. The stochastic forcing

mechanism is provided exactly for this reason – independent of the initial conditions it should

always drive the system to the steady state. We will comment on the effect of the initial

conditions in later sections when we consider the scaling behavior of correlation functions.

6.3. Scaling regimes

The classical action (6.6) depends on a single dimensionless coupling constant

g20 =
D0

ν30Λ
y
, (6.9)
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defined at the ultraviolet scale Λ, which is given in terms of the dimensionful force amplitude

D0 and the kinematic viscosity ν0. It naturally appears in a perturbative treatment of the

problem (see, e.g., [260]), where one typically considers the following rescaling of the fields

t→ ν0t , u→ (ν0/D0)
1/2u , ũ→ (D0/ν0)

1/2ũ , (6.10)

to endow the nonlinear interaction term ∼ ũ(u∇u) in (6.6) with the coupling g0. Apart from

the coupling constant g20 , the ratio between the lattice scale Λ and the infrared cutoff 1/L

defined by the inverse lattice size provides for a second dimensionless quantity that we may

control. Eventually, we will be interested in the scaling behavior of correlation functions in

the range between 1/L ≪ k ≪ Λ, where both limits Λ → ∞ and L → ∞ are taken at the

end. Depending on the values of the renormalized coupling in the limit where both cutoffs

are removed one might expect different fixed point solution that lead to a universal scaling

behavior. Here, we give an overview on the dimensional scaling predictions:

Let us consider the simplest scenario first, where g20 = 0. In particular, we may identify

this limit with the situation where the dimensionful force amplitude vanishes. The only

dimensionful parameter left is the kinematic viscosity which is assumed to take a nonvanishing

finite value, ν0 6= 0. From dimensional analysis we infer the possible infrared scaling behavior

〈δru〉 ∼ ν0r−1 , (6.11)

for the first-order moment of field differences δru = u(x + r) − u(x). At small-scales the

effect of a finite viscosity leads to nonuniversal behavior where the properties of fluctuations

strongly depend on the dissipative mechanism.

Keeping g20 = 0 we inquire about the limit ν0 → 0 where the viscous scale is removed. Here,

we leave the infrared cutoff L finite and consider L → ∞ only in the end. The situation is

very different from the naive expectation – the presence of a dissipative anomaly [277] implies

that removing the viscosity from the system still produces a finite effect. Thus, the mean

dissipation rate ε ∼ 〈u2〉3/2/L is nonzero in the ν0 → 0 limit and defines a characteristic

ultraviolet scale η = (ν30/ε)
1/4 → 0+. Together with the infrared scale L this defines an

intermediate region η ≪ k−1 ≪ L where the assumption of scaling by dimensional analysis

then leads to following behavior for velocity differences:

〈δru〉 ∼ (εr)1/3 . (6.12)

This is simply the Kolmogorov scaling assumption that was used to derive the scaling spectrum

of higher order moments for incompressible Navier-Stokes turbulence, i.e., 〈(δru)n〉 ∼ rζn ,

ζn = n/3. From the second-order moment we obtain Kolmogorov’s prediction for the energy

spectrum

E(k) ∼ k−5/3 , (6.13)

in the scaling region η ≪ k−1 ≪ L. If we assume that this scaling solution indeed corresponds

to a fixed point of the RG, then it must be characterized by stationarity. Since the dissipative
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anomaly leads to a finite dissipation in the UV the scale-invariant solution describes a flux

state, where one observes a constant flux of energy ∼ ε from the infrared to the ultraviolet.

If the coupling g20 is nonzero, the forcing essentially controls the scaling properties of the

fluid and we obtain

〈δru〉 ∼ D1/3
0 r−1+y/3 , (6.14)

from power counting. It is important to emphasize, that this result implies that the viscous

scale is removed ν0 → 0, to leave the single dimensionful parameter D0. Let us consider the

associated energy spectrum for this particular scaling solution. From the Fourier transform

of the second moment, we obtain

E(k) ∼ D2/3
0 k1−2y/3 , (6.15)

which depends on the continuous parameter y. In particular, in Ref. [261] it was observed that

(6.15) yields a Kolmogorov energy spectrum if y = 4. While this result has been motivated

by perturbative renormalization group calculations, the existence of such a scaling solution

has been put to doubt [265]. The essential problem concerns the role of infrared divergences

that have to be controlled when the limit L→∞ is taken.

Of course, the given scaling scenarios simply follows from dimensional analysis and one must

assume that the scaling is modified by anomalous dimensions of the corresponding operators.

This applies in particular to the high order moments 〈(δru)n〉 where both experiments and

numerical simulations indicate strong intermittency effects. Also, the presence of a finite

regulator in the IR may manifest itself in additional L-dependent scaling corrections. In fact,

it is these scaling corrections, and the subtle interplay between the different scaling regions

that makes it in practice quite difficult to extract scaling exponents under realistic conditions.

6.4. Lattice theory

The theory is defined on the sites of a regular space-time lattice. This way, we impose an

ultraviolet cutoff that eliminates the details of those processes occurring deep in the dissipative

regime. The measure in the functional integral (6.5) is then given by [du] →∏
dux,t, where

ux,t define the site variables, and the action in (6.8) needs to be discretized appropriately. For

that purpose, we replace the dynamics with a finite-difference equation using the backward-

time discretization

∂u

∂t
+ u∇u− ν0∇2 → 1

at
(ux,t − ux,t−1) + ux,t−1∇̂ux,t−1 − ν0∇̂2ux,t−1 , (6.16)

where at denotes the lattice spacing in the time-direction and ∇̂ defines the lattice derivative

operator. Eq. (6.16) corresponds to a causal propagation forward in time according to the

Itō prescription. With this choice, it is safe to ignore the functional determinant that arises

in the derivation of the classical-statistical action (6.6) (see the related discussion in Sec. 5 of
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the previous chapter). The discretized action takes the form

S = at
∑

t

a2x
∑

x,x′

(
1

at
(ux,t − ux,t−1) + ux,t−1∇̂ux,t−1 − ν0∇̂2ux,t−1

)

×D−1
x,x′

(
1

at

(
ux′,t − ux′,t−1

)
+ ux′,t−1∇̂ux′,t−1 − ν0∇̂2ux′,t−1

)
, (6.17)

given in units of the system size, where D−1 defines the inverse force spectrum (and includes

the force amplitude D0). So far, we have not specified the discretization for the spatial

derivative. Here, we will consider the following choice

∇̂ux,t =
1

2ax
(ux+1,t − ux−1,t) . (6.18)

It is necessary to map the discretized theory to its continuum counterpart and one has to

ensure that the parameters are well-defined in the continuum limit. For that purpose the

kinematic viscosity is identified with ν0 = ν̂0 a
2
x/at where ν̂0 is the bare viscosity in lattice

units, and the Reynolds number scales as Re ∼ ν−1
0 . Furthermore, we have to ensure that the

relevant scales of the system are resolved. In particular, we have to ensure that the dissipation

scale fits on the lattice, i.e. η = Re−3/4L & ax where L is the IR scale present in our system

as a consequence of the finite lattice size. One may immediately recognize that this imposes

a hard constraint on the realization of lattice simulations – fully developed turbulence, in

the limit Re → ∞ requires a large computational effort where the number of lattice sites in

the intermediate scaling regime increases as L/η ∼ Re3/4, for given L. In practice, we are

therefore bound to work at nonzero viscosity ν0.

Let us point out, that the choice of discretization is a subtle issue for real-time dynamics.

While an appropriate discretization in time is important for the cancellation of the functional

determinant, it also controls the character of physical solutions to the dynamics. In fact, this

is well-known from the direct numerical solution of first order partial differential equations,

where certain discretization schemes simply do not yields globally regular solutions. The

most prominent example for such a behavior is the forward-time centered-space discretization

(FTCS) scheme for the linear advective equation (see, e.g., [291]). On the other hand, other

discretizations may provide a dynamics that is conditionally stable, depending on the choice

of the parameters in the problem. These observations are typically based on a linear stability

analysis of the equations of motion and cannot be applied to nonlinear systems. However, we

find that a similar constraint applies for our choice of discretization. In particular, the dynam-

ics is only conditionally stable which relates to the value of the lattice viscosity. If the lattice

viscosity is chosen to be larger than ν̂0 ≃ 1/2 the dynamics will always feature instabilities.

In fact, this particular bound is well understood from a similar discretization of the diffusion

equation [291]. This immediately poses the question if these problems may be overcome by

using implicit time-differencing schemes as one usually applies for direct numerical solvers of

partial differential equations (see, e.g., [292]). In what sense such discretizations are optimal

and may lead to unconditionally stable dynamics is left for future work.

102



6.5. Lattice Monte Carlo methods for classical-statistical

dynamics

In this work two different types of algorithms are employed, an improved overrelaxation

algorithm [293, 294] and a variant of the Hybrid Monte Carlo algorithm [295]. While both

have been discussed at length in the literature in the context of equilibrium systems, we explain

necessary adaptions and their application for simulations of classical-statistical dynamics in

the presence of a stochastic driving term.

6.5.1. Overrelaxation algorithm

Depending on the specific discretization of the classical action or the type of real-time dy-

namics that one considers different lattice Monte Carlo algorithms may be applicable. In

particular, it is possible to apply a local overrelaxation algorithm in the case where the dis-

cretized action assumes a multiquadratic form [293, 294, 296] for which specific improvements

have been shown to reduce relaxation times significantly [297–299].

For the case of the discretized action for Burgers’ equation (6.17) it is possible to define the

single-site action in the following form

Ssingle-site = β(ux,t − µ)2 + c , (6.19)

where the coefficients β, µ, and c are in general complicated functions of the field variables,

excluding the field value on the updated lattice site, e.g., µ = µ
(
{ux′,t′}(x′,t′)6=(x,t)

)
. This relies

on the particular discretization, where the advective term is defined as

ux,t∇̂ux,t = ux,t
ux+1,t − ux−1,t

2ax
. (6.20)

Any other choice, where ux,t∇̂ux,t contains contributions that are quadratic in the fields ∼ u2x,t
will lead to a more complicated action and cannot be treated by this procedure.

Writing the classical action in the form (6.19) the functional integral is sampled by applying

a heatbath with effective temperature ∼ β−1 locally to each single-site variable ux,t. Thus,

we obtain the transition probability P (u′x,t|{ux′,t′}) for ux,t 7→ u′x,t while keeping the other

field values fixed. The newly updated field value is given by

u′x,t = µ+
√

2β−1 ξ , (6.21)

where ξ implements the unit variance Gaussian noise. A single Markov step is composed of a

complete update of all lattice sites.

The overrelaxation algorithm defines a particular improvement of the heatbath procedure,

where the introduction of an additional relaxational parameter ω yields the transition prob-

ability Pω

(
u′x,t |

{
ux′,t′

} )
), with the suggested field value

u′x,t = ωµ+ (1− ω)ux,t +
√

2β−1 ξ . (6.22)
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Here, the parameters µ and β are determined from the single-site action (6.19), while the

parameter ω can be chosen freely in the range 0 < ω < 2. Of course, choosing ω = 1 simply

corresponds to the heatbath algorithm (6.21). However, setting the relaxational parameter

ω ≃ 2 has been shown to significantly reduce relaxation and autocorrelation times [297–299].

This corresponds to an “overshooting” of the naively expected optimal value µ, which defines

the minimum of the single-site action (6.19).

Here, we have implemented a variant of this algorithm where the parameter ω is adapted

iteratively during the Markov process, corresponding to the so-called Chebyshev acceleration

[300], i.e.,

ωn+1 =





1 , n = 0 ,(
1− (ρ2/2)ωn

)−1
, n = 1 ,(

1− (ρ2/4)ωn

)−1
, n ≥ 2 .

(6.23)

n ≥ 0 is a discrete index and labels the number of Markov steps, while the tuning parameter

is fixed to some value in the range 0 ≤ ρ2 < 1. In our simulations, we have set ρ2 ≃ 0.9999.

Note, that one might achieve better performance if the relaxation parameter is adapted only

after a certain number nChebyshev of Markov steps, while keeping its value fixed in between.

We have found nChebyshev ≃ 50 to be an optimal choice.

6.5.2. Improved Hybrid Monte Carlo algorithm

While the overrelaxation algorithm decreases the characteristic relaxation time of the Markov

process, it might not be the best choice for an efficient sampling of configurations if the

action is nonlocal. In such a case, it might take a large number of Monte Carlo steps to

produce a new statistically independent field configuration. This applies in particular to the

case of hydrodynamic turbulence where the forcing mechanism strongly couples the degrees

of freedom on all scales. Furthermore, since the range of applicability of the overrelaxation

algorithm was strongly constrained by the discretization prescription, it might be useful to

consider alternative methods that are generally applicable. What we want is an algorithm that

updates field configurations globally and takes large steps through configurations space, while

it should both feature short relaxation times and decrease the autocorrelation of measured

observables.

An algorithm that was developed exactly for this purpose is the Hybrid Monte Carlo (HMC)

[295, 301]. It was originally introduced for computations in lattice QCD involving dynamical

fermions where the nonlocality arises from the inclusion of the fermion determinant (see,

e.g., [302]). It is particularly well-suited as it allows for specific improvements to control

the performance of the algorithm, e.g., mass preconditioning [303, 304], multiple time-scale

integration [305], and preconditioning techniques [306, 307].

The HMC algorithm is based on the idea that the fields on the lattice should be updated
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according to fictitious Hamiltonian

Heff =
1

2

∑

x,t

π2x,t + S(u) , (6.24)

where the set of conjugate momenta πx,t are introduced. The effective Hamiltonian Heff

defines the generator for the fictitious time-evolution on an extended phase space (u, π) ∈ Ξ

and can be used to efficiently suggest new field configurations via a Molecular Dynamics (MD)

update that integrates Hamilton’s equations of motion:

∂u

∂τ
=
∂Heff

∂π
= π ,

∂π

∂τ
= −∂Heff

∂u
= −∂S

∂u
. (6.25)

That is, starting from a given initial state (u, π) at initial time τ = 0, eq. (6.25) defines a

trajectory on the constant energy surfaceHeff = const. to (u′, π′) at final time τ . The MD time

evolution of this system preserves the measure and is exactly reversible. It therefore satisfies

the basic criteria for a Markov chain Monte Carlo update [55, 302]. In practice, any integration

routine will proceed by evaluating the MD time evolution on a finite number of time steps

τn = n∆τ , n = 0, . . . , nsteps−1, ∆τ = τ/nsteps, thereby introducing a systematic error that is

important to control. To avoid a necessary extrapolation to smaller stepsizes, thereby ruling

out any systematic errors in the calculated observables, the newly suggested configuration is

subjected to a final Metropolis acceptance step. This gives a penalty to those configurations

that lead to a strong violation of energy conservation, i.e., δHeff = Heff(u
′, π′) − Heff(u, π),

such that on the average 〈e−δHeff〉 = 1.

While the Molecular Dynamics procedure certainly provides for candidate configurations

that are far from the starting point, it is not ergodic since the dynamics takes place only on the

Heff = const. hypersurface. It updates the system according to the microcanonical ensemble,

while we want to sample the canonical distribution ∼ e−Heff . Of course, this restriction is

easy to circumvent – we simply update the conjugate momenta regularly, after performing an

MD update. This defines a fully ergodic algorithm with the desired fixed point distribution.

The HMC is built out of the following steps:

• A momentum update where the conjugate momenta are drawn from a Gaussian distri-

bution with unit variance, i.e., P (π) ∼ e−
∑

π2
x,t/2.

• Molecular Dynamics (MD) update according to an approximate integrator

T (τ) : (u, π) 7→ (u′, π′) , (6.26)

that should be area-preserving

det
∂(u′, π′)

∂(u, π)
= 1 , (6.27)

and satisfy reversibility, R ◦ T (τ) ◦ R ◦ T (τ) = 1, where R : (u, π) 7→ (u,−π) describes

a reversal of the conjugate momenta.
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• Metropolis accept/reject step given by the conditional acceptance probability

Pacc(u
′, π′|u, π) = min

(
1, e−δHeff

)
. (6.28)

This final step makes the Hybrid Monte Carlo an exact algorithm free of systematic

stepsize errors.

Thus, a single HMC update is given by

(
u′, π′

)
=
(
R ◦ T (τ) θ(e−δHeff − r) + 1 θ(r − e−δHeff)

)
(u, π) , (6.29)

where r is a random number drawn uniformly in the region r ∈ [0, 1], and the θ-functions

implement the Metropolis accept/reject step. Note, that the final reversal of the momenta

applies only in the case if the suggested configuration is accepted.

Any practical implementation of this algorithm will have to provide an integration scheme

T (τ) that solves for the MD trajectory. A large class of integrators that preserve the measure

and satisfy reversibility are the symmetric symplectic integrators [308]. These integrators

are built on the observation that from the decomposition Heff = H1 + H2 of the effective

Hamiltonian (6.24), where H1 = H1(π) and H2 = H2(u) denote the momentum and field-

dependent part, one may construct a single update by a symmetric combination of operators

T1(∆τ) : (u, π) 7→
(
u+∆τ

∂H1

∂π
, π −∆τ

∂H1

∂u

)
=
(
u+∆τπ, π

)
, (6.30)

T2(∆τ) : (u, π) 7→
(
u+∆τ

∂H2

∂π
, π −∆τ

∂H2

∂u

)
=

(
u, π −∆τ

∂S

∂u

)
. (6.31)

A simple example for such an integrator is the single-level Strömer-Verlet (leapfrog) method

[291], where a symmetric integration

T (τ) =
[
T1(∆τ/2)T2(∆τ)T1(∆τ/2)

]nsteps , (6.32)

is performed. This scheme preserves the energy to order O(∆τ2) in the stepsize, and im-

proves on the naive application of T (τ) without such a decomposition, which yields an O(∆τ)
stepsize error. Higher-order integrators O(∆τn) apply multiple steps and quickly increase in

complexity. If the computations required to determine ∂S/∂u are very expensive it might be

better to use a lower level integrator. Here, we adopt the two-level Omelyan integrator

T (τ) =
[
T1(λ∆τ)T2(∆τ/2)T1

(
(1− 2λ)∆τ

)
T2(∆τ/2)T1(λ∆τ)

]nsteps , (6.33)

which reduces the coefficient of the O(∆2) stepsize errors observed with the leapfrog integrator

by an appropriate tuning of the parameter λ, where the standard value based on optimization

criteria is λ ≃ 0.1932 [309]. A standard check for the numerics is to see if reversibility is

satisfied. Furthermore, energy conservation should hold on average, i.e., 〈e−δHeff〉 = 1. Both

these criteria are met by our implementation of the algorithm.

With the basic HMC algorithm introduced, let us ask about its properties when applied to

classical-statistical systems with a stochastic forcing acting on all scales. A useful quantity
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Figure 6.2.: Molecular Dynamics (MD) force spectrum |Fk,t| = |∂S/∂uk,t| computed in the

stationary regime of the Markov chain Monte Carlo. The force spectrum is mea-

sured on a 512 × 1024 lattice (space × time) as a function of lattice momentum

k for different choices of the power-law spectrum (6.4) given by the exponent y.

The time-averaged forces scale as |Fk,t| ∼ k(y−3)/2.

that one may employ to monitor the performance of the algorithm is the contribution F =

−∂S/∂u to the equations of motion (6.25). Typically, the system will strongly emphasize

certain modes, while others are slowed down in comparison. This is illustrated in Fig. 6.2

where we show a typical sample of single-time measured MD forces |Fk,t| in the Fourier

representation for a fixed value of the physical time t in a single configuration. Clearly, the

power-law forcing induces strong variations in the MD spectrum, where |Fk| ∼ k(y−3)/2 on

average, for y = 1, . . . , 7. What is even more striking are the strong fluctuations induced by

the real-time dynamics which cover a range of roughly two orders of magnitude. This makes

the numerical solution quite demanding as the integrator has to tackle the different scales

and avoid possible instabilities [310] triggered by a large values of the stepsize ∆τ . In fact, a

naive application of the HMC will not work unless the stepsizes are chosen extremely small,

which might stabilize the integrator but slows down the dynamics considerably.

Fortunately, there is a well-known technique that addresses this problem which is known as

Fourier acceleration [311, 312]. It suggests an alternative MD update adapted to the situation

where certain modes are strongly emphasized by the dynamics, which is based on the modified

effective Hamiltonian

HFACC
eff =

1

2

∑

x,x′;t

πx,tΩx,x′πx′,t + S(u) . (6.34)

This choice yields an improved sampling of the conjugate momenta, and adapts the stepsizes

in the Molecular Dynamics to the force strength for a given mode. This is best illustrated by

writing the equations of motion in this case

∂uk
∂τ

= Ωkπk ,
∂πk
∂τ

= − ∂S

∂uk
, (6.35)

and performing the rescaling πk → Ω
1/2
k πk and τ → Ω

1/2
k τ , which yields a trajectory length
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Figure 6.3.: Typical configurations (512 × 1024 lattice) generated for different values of the

tuning parameter y chosen between the ultraviolet (y ≃ 1) and infrared dominated

regime (y ≃ 7), with increasing values from left to right. A transition in the

qualitative behavior of the configurations is clearly visible.

that is effectively momentum-dependent. In practice, Ωk should be chosen such that it com-

pensates for the strong fluctuations that are put into the physical field u by the stochastic

forcing mechanism. In particular, we might choose Ωk ∼ |Fk|
−1/2

which accounts for the

overall scale-dependence. However, we still have to deal with the strong fluctuations that are

due to the real-time evolution of the system and may trigger an instability for the integra-

tor. We therefore adapt Ωk after each Markov step iteratively, where Ωk,t = |Fk,t|−1/2 up to

some proportionality factor that is related to the overall trajectory length. This stabilizes the

HMC and enables simulations for any choice of stochastic forcing. We should point out, that

a field-dependent Ω adapted at each step in the Markov process might alter the convergence

properties of this HMC algorithm. In practice, one must certainly check if the right fixed

point distribution is sampled.

With these observations we have chosen to implement an adaption of the HMC which is

local in time but global in spatial dimension with a field-dependent sampling of the conjugate

momenta. This requires a even-odd type update for the fields in the physical time direction.

Such a quasi-local HMC enables us to monitor the behavior of the algorithm and check its

performance for real-time dynamics of classical-statistical systems. The presented adaptions

at the example of the overrelaxation algorithm and the HMC have proven to be sufficient to

yield a stable algorithm for stochastic driven system. However, it is worth noting that it is

not clear if a quasi-local algorithm (in time) is a necessary requirement to efficiently sample

configurations for these systems. Also, while the suggested Fourier acceleration is absolutely

mandatory for the stability of the HMC there is no such constraints for the overrelaxation

algorithm. In fact, it has been shown that the overrelaxation algorithm is competitive with

a stochastic optimal Fourier accelerated Langevin-type algorithm [294]. This might explain

why the overrelaxation method performed so well without any significant amount of tuning

necessary.
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Figure 6.4.: Log-log plot of the energy spectrum 〈Ek〉 = 〈|uk|2〉 for different values of the

tuning parameter y with the stochastic forcing acting on all scales. Around yc ≃ 6

we observe a transition, where the ultraviolet scaling behavior is not dominated by

the power-law forcing. The spectra were measured on a lattice size of 512× 1024

(space × time).

6.6. Scaling behavior far from equilibrium

Here, we comment on the results obtained with the above introduced Monte Carlo techniques.

Results obtained with the local overrelaxation algorithm focused on the special case where

the power-law forcing leads to a Kolmogorov-type energy spectrum. These simulations have

produced a significant amount of data, with a sample size, consisting of roughly O(106)
configurations. Such a data set is sufficient to capture the rare fluctuations that give the

dominant contribution to high order moments, 〈(δru)n〉 up to 5th order. The HMC in contrast

has so far been tested mainly for its stability and algorithmic improvements and has produced

only a relatively small sample of O(104) configurations. Nevertheless, even on such a small

sample size we may draw conclusions based on the energy spectrum and a possible transition

to universal scaling behavior. With these simulations we have explored the complete region

from the IR to the UV dominated regime, and we can in particular ask about the mechanism

underlying the transition to the universal scaling behavior of small-scale fluctuations.

6.6.1. Transition to the large-scale forcing dominated regime

Forcing the system at equal strength over a wide range of scales will strongly affect the scaling

properties of correlation functions measured in the intermediate range of scales 1/L≪ k ≪ Λ.

This can already be seen at the example of typical configurations generated by the Markov

chain Monte Carlo, where the characteristics of the stochastic forcing are changed by tuning

the value of the exponent y, see Fig. 6.3. The system shows vastly different behavior going

from the regime where only thermal noise is present (y = 1) to the IR dominated regime

where coherent large-scale excitations dominate the flow.
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Tuning the spectral characteristics of the forcing mechanism one might expect that beyond

some finite value yc the high-momentum modes will not be affected too much, while the IR

behavior is still dominated by the Gaussian forcing. Here, for the case of the one-dimensional

Burgers’ equation, we see an indication for such a behavior when we examine the energy

spectrum of the system for different values of y, Fig. 6.4. Beyond the value of yc ≃ 6 the

overall energy drops exponentially in the UV and the functional form is no longer determined

by the power-law behavior of the stochastic forcing mechanism. In fact, this has an important

consequence for the UV scaling properties of the fluid. In such region the scaling properties of

small-scale fluctuations might exhibit universality. In fact, such a behavior was demonstrated

in the case of the three-dimensional incompressible Navier-Stokes equation [313, 314], where

a similar transition was observed also on the level of the scaling exponents ζn for moments of

velocity differences.

6.6.2. Kolmogorov scaling in Burgers’ equation

Here, we want to focus on the special case where the forcing spectrum is chosen to produce the

Kolmogorov-type scaling (corresponding to the exponent y = 4 for the stochastic power-law

forcing). We evaluate moments of velocity differences 〈|δru|n〉 over an ensemble of configu-

rations generated by the Markov chain Monte Carlo procedure. This analysis relies on the

Monte Carlo data generated by the overrelaxation algorithm, where a sufficiently large sample

of 5× 105 statistically independent field configurations was gathered. For every configuration

we measure velocity differences from a randomly chosen starting point. This dramatically

reduces autocorrelations for our sample. In Fig. 6.5 we show, as an example, the 5th order

structure function calculated for an ensemble from a 254× 1024 lattice simulation. To deter-

mine the scaling range a priori is difficult, and a well-known problem in the literature (see,

e.g., [49]). Here, we employ a working definition where it is defined as the range of scales that

minimizes the χ2 of a linear least-squares (LLS) fit to the fifth order structure function in

the log-log plot. The corresponding region is indicated in Fig. 6.5. For comparison we have

included the values of the local slope (evaluated over three consecutive space points) in the

inset. We identify a plateau where the local exponents are nearly constant – this defines the

value of the scaling exponent for the given moment 〈|δru|5〉. We obtain the scaling spectrum

(Fig. 6.5) where the error bars given are those of the LLS fit in the scaling range. Clearly,

the n = 5 data point in Fig. 6.5 has minimal error which follows simply from our definition of

the scaling range. We see that the scaling exponents are close to the bifractal scaling predic-

tion [47, 48], and within error bars agrees with the results of [286], obtained at high spectral

resolution.

We should point out that in general, with this method, we cannot rule out subleading

terms or possible logarithmic corrections that may influence the scaling behavior [286, 313,

314]. In fact, such a situation is very likely and can lead to the appearance of multiscaling,

corresponding to a continuous set of independent scaling exponents ζn [286] While in principle
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Figure 6.5.: (Left) Log-log plot of 5th order moment 〈|δru|5〉 with a linear scaling function

plotted for comparison (y = 4). The vertical bars indicate the region for the

extraction of scaling exponents, while the inset shows the local slopes versus r.

(Right) Scaling exponents ζn for nth order moment 〈|δru|n〉 versus n. The black

curve indicates the bifractal scaling prediction [48, 48].

these contributions should be taken into account for the accurate determination of the scaling

behavior, in practice it is difficult to distinguish different types of scaling contributions without

any further assumptions. Since we are dealing with a finite system both in space and time

one may also expect finite size effects. In our simulations we have chosen periodic boundary

conditions in space and a zero initial state with a free boundary at final time. For a space-time

lattice of infinite extent the probability measure defines a stationary process at sufficiently

late times, i.e., correlation functions will only depend on time differences. We have checked

this property explicitly in our analysis – sufficiently far from the initial state the system is

approximately in a stationary state.

We also check the statistics for velocity differences directly on the level of the probability

distribution functions P(δru). This gives valuable qualitative information on the physical

behavior in our simulations of Burgers’ turbulence. In Fig. 6.6 we show the PDF of velocity

differences for a set of values of the separation r, where we use the dimensionless variable

φ = δru/〈(δru)2〉1/2 to quantify the fluctuations. At large scales, far from the inertial range

we clearly recognize the effects of the random Gaussian forcing (red). In the dissipative region

the left tail of the PDF is especially pronounced and captures the strong fluctuations described

by the shocks (orange). For separations η ≪ r≪ L in the inertial range we see that the PDF

P(δru), plotted for three different values of r, nicely collapse onto each other (blue). In

particular, in the regime where the fluctuations are much smaller than the root-mean-square

velocity |δru| ≪ urms (generated by the stochastic forcing mechanism), the PDF of velocity

differences has a universal scaling form

P(δru) = r−zf(δru/r
z) , (6.36)

where z is the dynamic exponent and f(u/rz) is a scaling function for the PDF. In the

asymptotic region −δru/rz ≫ 1 where δru < 0 we expect the algebraic scaling P(δru) ∼
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Figure 6.6.: Probability distribution functions P(δru) as a function of the dimensionless vari-

able φ = δru/〈(δru)2〉1/2 plotted for different values of r (y = 4). (Left) Collapse

of the PDF in the universal regime (blue). In the energy-containing range (red)

the fluctuations become Gaussian – the random forcing dominates – whereas

in the dissipative regime (orange) fluctuations are strongly enhanced. (Right)

Scaling region for the left tail of the PDF. The black line indicates the scaling

prediction with exponent γ = −4.

(δru)
γ with exponent γ = −4 [315]. The relevant region is shown in Fig. 6.6 (indicated by the

arrow). The corresponding scaling prediction with exponent γ = −4 is plotted for comparison

as the black slope in Fig. 6.6. Though our statistics are not sufficient to give a tight prediction

on the scaling exponent, indications for the conjectured scaling behavior can be inferred from

Fig. 6.6.

Finally, let us point out that the presence of the continuous Galilei symmetry in principle

requires a gauge fixing to avoid an over counting of physically equivalent field configurations.

These additional modes may be eliminated by a Faddeev-Popov procedure [9]. While gauge

fixing is unavoidable for generic correlators [316, 317] this is not so for velocity differences

δru, as solely considered in this work which are manifestly invariant under Galilean transfor-

mations.

6.7. Outlook

Also, we want to give a short remark on some issues that arise when turning to incompress-

ible three-dimensional Navier-Stokes turbulence. It is well-known, that the inclusion of the

pressure term is one of the main obstacles in simulations of turbulence, as the requirement of

incompressibility introduces strong nonlocal correlations. In the functional integral formula-

tion this leads to a nonvanishing Faddeev-Popov determinant that can be treated by standard

procedures (see, e.g., [55]).

Let us finally comment on the possible applications of lattice Monte Carlo methods beyond

the results presented in this work. In contrast to direct solvers, Monte Carlo techniques allow
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for the simple inclusion of additional constraints in the microscopic action. Applying the

importance sampling to such “improved actions” with additional constraints on the dynamics

might lead to an efficient sampling of field configurations that contribute significantly to a

specific class of observables. This is especially interesting since it was suggested that instanton

configurations might play an important role to explain the asymptotic behavior of probability

distribution functions and the scaling behavior of high-order moments [278, 280, 281]. A

recent direct numerical simulation of the stochastic Burgers’ equation [318] applying filtering

techniques showed that such instantons might play an important role to describe the large

fluctuations in this system. Of course, it remains an interesting questions for future work if

it is possible to access such a regime directly via Monte Carlo methods.

6.8. Summary

Here, we have presented a first attempt to access the classical-statistical dynamics described

by classical action (6.8) via lattice Monte Carlo methods. We have shown that lattice Monte

Carlo simulations of driven nonequilibrium states are possible but require a careful set up.

In particular, we have discussed the issue of proper discretization as well as the possible

regulation of the dynamics in the context of numerical methods. In that respect, the Burgers’

equation provides an ideal setting to test new numerical approaches. We have demonstrated

that our simulations are able to reproduce the well-known anomalous scaling for large order

moments of velocity differences, where the forcing acts over a wide range of scales and leads

to a Kolmogorov energy spectrum. It is important to remark that this is possible without

exploiting the integrability property of the Burgers’ equation, as was done, e.g., with a fast

Legendre transform algorithm in [283, 286]. Thus, Monte Carlo simulations are directly

applicable to other physical systems of interest where it is important to have alternative

methods at hand to establish nonequilibrium scaling behavior.

An important point, isolated from the numerical efficiency, concerns the role of sublead-

ing scaling corrections and their impact on the determination of the scaling spectrum [286,

313, 314]. The dynamics of the Burgers’ equation with a power-law forcing induces scaling

corrections that lead to a subtle interplay of different types of scaling behavior. A detailed

analysis of the data, and the necessary extrapolation to the limits Λ → ∞ and L → ∞,

certainly requires a thorough understanding of possible scaling contributions aided by, e.g.,

renormalization group studies.
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7. Conclusions

In this thesis we have applied different nonperturbative techniques to determine the scaling

behavior of strongly correlated systems near and far from equilibrium. We have shown that

the functional renormalization group allows to access important nonperturbative information,

from the static scaling behavior near the quantum phase transition of graphene-like systems to

real-time scaling properties near thermal equilibrium. We have also established Monte Carlo

simulations as a new approach to determine the anomalous scaling behavior of high-order

moments in stationary states far from equilibrium.

At zero temperature the ground state properties of many-body systems are essentially

determined by strong short-range interactions. Their presence may drive the system to a

strongly-correlated state where fluctuations play a dominant role. In this work, we considered

a system of spinless fermions on the honeycomb lattice which can be seen as a simple model

for suspended graphene. For the low-energy degrees of freedom we found that the theory

is adequately described by a U(2) symmetric matrix-Yukawa model, and we discussed the

physical relevance of possible order parameters. In particular, we noticed the possibility of

two phase transitions – a transition to a nontrivial topological insulator state, as well as

a chiral phase transition between the semimetal and charge density wave (CDW)/Kekulé

ordered phase. We discussed the critical properties specifically at the chiral phase transition

which is effectively described by an NJL-type instability and is characterized by large values

of the anomalous dimensions, ηB ≃ 1 for the order parameter and ηF ≃ 0.25 for the fermions,

indicating the dominance of strong fluctuations. This has been corroborated by an extensive

functional renormalization group study of a dynamically bosonized U(N) symmetric Thirring

model [319] where for small values of the flavor number a similar behavior was found. Let

us comment on possible extensions of this work. It is important to include the unscreened

long-range Coulomb interactions that are present at the charge-neutral point and control the

presence of the phase transition in suspended graphene. Current experiments do not seem to

indicate the transition to a gapped phase, however show that the strong Coulomb interaction

leads to a renormalization of the Fermi velocity [36]. It would be interesting to see if the

functional renormalization group can capture this behavior. Also, it is important to explore

the relation of our results to lattice Monte Carlo simulations of the three-dimensional Thirring

model [320, 320, 321] and models including the Coulomb interaction [31–33, 322, 323].

In the second chapter, we analysed the nature of possible multicritical behavior in a O(N1)⊕
O(N2) symmetric model without fermions. Here, we determined the fixed points that relate to
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multicritical behavior and analysed their corresponding stability regions. The largest critical

exponents compare nicely with high-order field theoretic expansions at fixed dimension d = 3,

or in ǫ = 4−d, as well as Monte Carlo data [163, 171, 184, 188–193, 206]. However, to capture

the subleading scaling behavior requires more sophisticated truncations where we expect in

particular a change in the stability regions of the respective fixed point solutions in the

(N1, N2) phase diagram. It is important to see, if taking into account the field-dependence of

the renormalization factors, or going to higher orders in the derivative expansion will provide

a clear picture for the nature of the multicritical point of the N = 3 model where conflicting

results have been published indicating either a bicritical [170, 202, 203] or tetracritical point

for the phase diagram [163, 171, 193, 206]. Here, the functional renormalization group may

provide a different perspective on the problem. A particularly interesting line of inquiry is

the inclusion of fermions. In fact, two competing order parameters naturally occur in the

U(2) symmetric matrix-Yukawa model relating to the topological and chiral phase transition.

Here, it is interesting to see if the interplay between bosonic and fermionic fluctuations might

lead to a different conclusion on the low-temperature regime of the phase diagram, where the

two critical lines of the toplogical and chiral transition meet [88].

The presence of conservation laws strongly affects the dynamic scaling behavior, where we

have investigated a system consisting of a O(N) symmetric order parameter coupled to an

additional conserved density. For the long-time relaxation dynamics near equilibrium we es-

tablished a new scaling region that describes the anomalous diffusion of a conserved density

in the presence of a homogeneous order parameter. Previous studies of this model in the

context of the ǫ-expansion produced ambiguous results [40, 42, 220, 221], while more recent

work even excluded the existence of such a phase based on the observation of an essential sin-

gularity that previous applications of the ǫ-expansion could not resolve [43, 231]. In contrast,

we give a clear statement on the existence of this phase using the nonperturbative functional

renormalization group that does not rely on such an expansion. This clearly illustrates the

importance of nonperturbative functional techniques that take into account the strong corre-

lations in the system. Let us mention that this also allows for a direct approach to theories

of fundamental interactions, independent of any assumption concerning their low-energy ef-

fective behavior, with possible applications to the dynamic scaling properties at the QCD

critical point [229, 324].

In the final chapter, we introduced a new numerical approach to the problem of hydrody-

namic turbulence via Monte Carlo simulations. Monte Carlo methods are generally applicable

and provide a direct link to other field-theoretical approaches, e.g., based on the functional

renormalization group [22, 23, 325]. We have demonstrated that such simulations are possible

and lead to the well-known scaling behavior of small-scale fluctuations in the one-dimensional

random-force-driven Burgers’ equation [286]. This provides an important check of Monte

Carlo techniques and furthermore allows a direct and controlled investigation of possible

subleading scaling contributions. It is important to separate these systematic effects before

considering more complicated models. Although this approach is not the method of choice
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for general-purpose studies, it is unique for studying rare and intense structures associated to

instantons [278, 280, 281] that dominate the distribution of rare events on the attractor. A

recent work based on filtering techniques applied to direct numerical simulations gives a clear

indication for the importance these configurations for realistic hydrodynamic flow [318]. For

future work, it will be interesting to see if it is possible to introduce an importance sampling

to highlight – in a fully non-perturbative way – those configurations that contribute to the

tails of the probability distribution functions.
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Appendix A.

Definition of propagators

In our calculations we frequently need the full regularized propagator G evaluated in a constant

background field. For the inverse regularized propagator we have

G−1(q) =



ZB(1 + rB)q

2 + M̄2
B 0 0

0 0 ZF,k(1 + rF )q/
T − iM̄F

0 ZF (1 + rF )q/+ iM̄F 0


 , (A.1)

where M̄2
B and M̄F define the scale-dependent mass matrices that depend on the particular

background field configuration. The regulator shape functions are provided in Appendix B.

The background field propagator takes the form

G(q) ≡



GB(q) 0 0

0 0 G
(+)
F (q)

0 G
(−) T
F (q) 0


 , (A.2)

where the boson propagator is given by

GB(q) =
(
ZB(1 + rB)q

2 + M̄2
B

)−1
, (A.3)

and the fermion propagator

G
(±)
F (q) = G̃F (M̄F )

(
ZF (1 + rF )q/∓ iM̄F

)
, (A.4)

with

G̃F (q) =
(
Z2
F (1 + rF )

2q2 + M̄2
F

)−1
. (A.5)

Since the propagators are functions of the mass matrices M̄B and M̄F , they do not necessarily

have to be diagonal in flavor space. While it is easy to evaluate the flow equation for the

effective potential in the diagonal basis, it is useful to keep the propagators in their nondiag-

onal form for the computation of flow equations for the anomalous dimensions and Yukawa

coupling.
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Appendix B.

Threshold functions

For generic regulators the threshold functions are defined by

l(B)
n (w; ηB) =

δn,0 + n

2

∫ ∞

0
dy y

d
2
−1 1

ZB

∂RB

∂t
[ZBGB (ZBw)]

n+1 (B.1)

l(F )
n (w; ηF ) = (δn,0 + n)

∫ ∞

0
dy y

d
2ZF (1 + rF )

∂

∂t
(ZF rF )

[
Z2
F G̃F

(
Z2
Fw
)]n+1

(B.2)

l(FB)
n1,n2

(w1, w2; ηF , ηB) = −1

2

∫ ∞

0
dy y

d
2
−1 ∂̂

∂t

{[
Z2
F G̃F

(
Z2
Fw1

)]n1

[ZBGB (ZBw2)]
n2

}

(B.3)

m
(F )
2 (w; ηF ) = −1

2

∫ ∞

0
dy y

d
2
−1 ∂̂

∂t

{[
Z2
F G̃F

(
Z2
Fw
)]2 ∂

∂y

[
Z2
F G̃F

(
Z2
Fw
)]}2

(B.4)

m
(F )
4 (w; ηF ) = −1

2

∫ ∞

0
dy y

d
2
+1 ∂̂

∂t

{
∂

∂y

[
(1 + rF )Z

2
F G̃F

(
Z2
Fw
) ]}2

(B.5)

m(B)
n1,n2

(w1, w2; ηB) =
1

2

∫ ∞

0
dy y

d
2
∂̂

∂t

{
[ZBGB (ZBw1)]

n1
∂

∂y
[ZBGB (ZBw1)]

× [ZBGB (ZBw2)]
n2

∂

∂y
[ZBGB (ZBw2)]

}
(B.6)

m(FB)
n1,n2

(w1, w2; ηF , ηB) = −1

2

∫ ∞

0
dy y

d
2
∂̂

∂t

{
(1 + rF )

[
Z2
F G̃F

(
Z2
Fw1

)]n1

× [ZBGB (ZBw2)]
n2

∂

∂y
[ZBGB (ZBw2)]

}
(B.7)

where we have defined the dimensionless quantity y = q2/k2. Here, it is understood that the

regulators and propagators are taken as functions of y, i. e. RB(y) ≡ RB(q
2)/k2, GB(y) ≡

k2GB(q
2), etc. and the parameters w, w1, and w2 denote dimensionless renormalized quanti-

ties. Furthermore we use the formal scale derivative

∂̂

∂t
≡ ∂tRB

∂t

∂

∂
(
G−1

B

) + 2

ZF

G̃−1
F (0)

1 + rF

∂

∂t
(ZF rF )

∂

∂
(
G̃−1

F

) , (B.8)

that includes the scale-dependence of the regulator functions.
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Optimized regulator and threshold functions

For the optimized regulator [58, 59] the shape functions are given by

rB(y) =

(
1

y
− 1

)
θ(1− y) , (B.9)

rF (y) =

(
1√
y
− 1

)
θ(1− y) , (B.10)

and the threshold functions can be calculated analytically. They take the following form:

l(B)
n (w; ηB) =

2(δn,0 + n)

d

(
1− ηB

d+ 2

)
1

(1 + w)n+1
(B.11)

l(F )
n (w; ηF ) =

2(δn,0 + n)

d

(
1− ηF

d+ 1

)
1

(1 + w)n+1
(B.12)

l(FB)
n1,n2

(w1, w2; ηF , ηB) =
2

d

1

(1 + w1)n1(1 + w2)n2

{
n1

1 +w1

(
1− ηF

d+ 1

)

+
n2

1 + w2

(
1− ηB

d+ 2

)}
(B.13)

m
(F )
2 (w; ηF ) =

1

(1 + w)4
(B.14)

m
(F )
4 (w; ηF ) =

1

(1 + w)4
+

1− ηF
d− 2

1

(1 + w)3

−
(
1− ηF
2d− 4

+
1

4

)
1

(1 + w)2
(B.15)

m(B)
n1,n2

(w1, w2; ηB) =
1

(1 + w1)n1(1 + w2)n2
(B.16)

m(FB)
n1,n2

(w1, w2; ηF , ηB) =

(
1− ηB

d+ 1

)
1

(1 + w1)n1(1 + w2)n2
(B.17)
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