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Comme il m’a paru, dès que j’ai commencé à observer les Polypes, que la connaissance des 

propriétés remarquables, qui se trouvent dans ces Animaux, pouvoit faire plaisir aux Curieux 

& contribuer en quelque chose aux progrès de l’Histoire Naturelle. 

 

 

It seemed to me from the start of my observations that knowledge of the remarkable 

properties of the polyps could bring pleasure to the inquisitive and contribute something to 

the progress of natural history. 

Abraham Trembley, 1744 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A. Trembley (1744)  
Mémoires, pour servir à l'histoire d'un genre de polypes d'eau douce, à bras en forme de cornes. 
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ABSTRACT 

 

Stinging cells or nematocytes are specialized cells that are unique to Cnidarians. 

They contain a highly sophisticated organelle, the nematocyst, used for locomotion, 

defence and capture of prey. The proteome of the nematocyst has provided unique 

insights into its molecular organisation. The goal of my thesis was to investigate 

novel molecular factors involved in aspects of nematocyst morphogenesis, structure 

and function. 

A critical part of nematocyst morphogenesis is the initiation of tubule formation by a 

constriction of the Golgi vesicle membrane. Nematomyosin, a newly identified non-

muscle myosin type II, in the present thesis is shown to localize to a collar around the 

outgrowing tubule indicating an essential role in this process. Blocking of myosin II 

activity by Blebbistatin leads to malformed nematocyst vesicles. Tubule size control is 

probably facilitated by a PKD2 channel, shown to be active at the point of maximal 

tubule outgrowth. 

The nematocyst structure has been characterized by stiff and tear-resistant 

minicollagens, although the discharge process is accompanied by extreme volume 

changes of the capsule. Here, I have characterized the novel elastic protein Cnidoin 

that shares structural homology with the spider silk protein Spidroin-2. Cnidoin is 

expressed in developing nematocytes and locates to wall and tubule structures. 

Recombinant Cnidoin showed a high tendency to aggregate and to form linear fibres. 

Cnidoin thus behaves as a typical elastic protein. Being an integral part of the mature 

nematocyst it could provide the molecular basis for the energy stored that is released 

in the ultrafast discharge process. 

The discharge of nematocysts is triggered by chemical and mechanical stimuli that 

are detected by the cnidocil at the apical end of the nematocyte. The cnidocil is 

surrounded by a set of stereocilia, providing a similar arrangement as vertebrate hair 

cells. A newly identified calcium channel of the TrpA family is shown to locate to 

stereocilia of the Hydra cnidocil apparatus. The protein can be visualized by 

immunostainings during developmental stages as well as in mature capsules and 

thus represents a candidate for mechanosensation during discharge. Nematocalcin, 

a penta-EF-hand protein, was also located to the stereocilia, but at a more basal 

position than TrpA, where it might act as a modulatory factor associated with the 

mechanosensory apparatus. 
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ZUSAMMENFASSUNG  

 

Nesselzellen oder Nematocyten sind spezialisierte Zellen, die nur bei den Cnidariern 

vorkommen. Sie besitzen eine hochentwickelte Organelle, die Nematocyste, die zur 

Fortbewegung, zur Abwehr und zum Beutefang eingesetzt wird. Das Proteom der 

Nematocyste lieferte einzigartige Einblicke in deren molekulare Organisation. Das 

Ziel meiner Doktorarbeit war es neue molekulare Faktoren, die an Prozessen der 

Nematocysten Morphogenese, Struktur und Funktion beteiligt sind,  zu untersuchen. 

Ein wichtiger Punkt der Nematocysten Morphogenese ist die Ausbildung des 

Schlauches durch ein Zusammenziehen der Golgivesikel-Membran. Nematomyosin, 

ein in dieser Arbeit neu identifiziertes Nicht-Muskel Myosin der Klasse II, ist in einem 

Kragen um den auswachsenden Schlauch herum angeordnet. Dies deutet auf eine 

essentielle Rolle von Nematomyosin bei diesem Prozess hin. Die Hemmung der 

Myosin II Aktivität durch Blebbistatin führt zu deformierten Kapselvesikeln. Die 

Kontrolle der Schlauchlänge wird wahrscheinlich durch einen PKD2 Kanal vermittelt, 

der zum Zeitpunkt der maximalen Schlauchausdehnung aktiv ist. 

Charakteristisch für die Struktur der Nematocysten sind die starren und reißfesten 

Minikollagen, der Entladungsprozess wird jedoch von ausgeprägten 

Volumenänderungen der Kapsel begleitet. In der vorliegenden Arbeit habe ich das 

neue elastische Protein Cnidoin untersucht, das strukturelle Ähnlichkeit zu dem 

Spinnenseidenprotein Spidroin-2 besitzt. Cnidoin wird während der Entwicklung der 

Nematocysten exprimiert, das Protein befindet sich in der Kapselwand und im 

Schlauch. Rekombinantes Cnidoin zeigt eine hohe Tendenz sich zusammenzulagern 

und Fäden auszubilden. Cnidoin verhält sich wie ein typisch elastisches Protein. Da 

es ein wesentlicher Bestandteil von reifen Nematocysten ist, könnte es die 

molekulare Grundlage für mechanisch gespeicherte Energie bilden, die im 

Entladungsprozess sehr schnell freigesetzt wird. 

Die Entladung von Nematocysten wird durch chemische und mechanische Reize 

ausgelöst, die durch das Cnidocil am apikalen Ende der Nematocyte detektiert 

werden. Das Cnidocil wird von mehreren Stereocilien umgeben, ähnlich der Struktur 

von Haarzellen bei Wirbeltieren. Ein neu identifizierter Calciumkanal der TrpA-Familie 

konnte in den Stereocilien des Cnidocilapparates nachgewiesen werden. Das Protein 

konnte mit Hilfe von Antikörperfärbungen sowohl während der Entwicklungsphasen 

als auch in reifen Nesselzellen nachgewiesen werden. Daher ist es wahrscheinlich, 
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dass TrpA als Mechanosensor eine essentielle Rolle für die Kapselentladung spielt. 

Das Penta-EF-Hand Protein Nematocalcin ist ebenfalls in den Stereocilien zu finden, 

allerdings an einer basaleren Position als TrpA. Es könnte als modulierender Faktor 

mit dem mechanosensorischen Apparat assoziiert sein. 
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1. INTRODUCTION 

 

1.1 The phylum Cnidaria 

Cnidarians are basal metazoans that form the sister group to all bilaterian animals 

(Figure 1.1). Corals, jellyfish and sea anemones belong to this phylum, however, not 

only seawater also freshwater organisms are found in the cnidarian clade. Among the 

four different classes of Cnidarians the Anthozoans are the most basal one. Corals 

and sea anemones, including the model organism Nematostella vectensis, belong to 

this class. Hydra groups into the Hydrozoans.  

Cnidarians were the first animals to develop a nervous system, they possess a 

nervenet which is a simple nervous system that spans their whole body (Hadzi, 1909; 

Sakaguchi et al., 1996). In Hydra, the mouth region called hypostome is surrounded 

by a ring of nerve cells and is the strongest innervated tissue. Thirty percent of all 

nerve cells are in the hypostome, the foot region is also rich in neurons (Bode et al., 

1973).  

 
Figure 1.1: Phylogeny of metazoans with focus on Cnidarians (Augustin et al., 2010). 

 

The presence of stinging cells (Cnidocytes) is the unifying and name giving feature of 

Cnidarians. Those cells contain a highly specialized organelle, the cnida or cnidocyst, 

which can be classified into three types: nematocysts, spirocysts and ptychocysts. 

While nematocysts are found in all Cnidarians, the presence of spirocysts and 

ptychocysts is restricted to the anthozoan subclass Hexacorallia and the 
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hexacorallian order Ceriantharia respectively (Fautin, 2009). Spirocysts are used to 

mechanically immobilize prey and by the use of ptychocysts cerianthid anemones 

build the tube in which they live. Nematocysts are used for defence, locomotion and 

capture of prey. Among Cnidarians, a large variety of nematocyst types exists. They 

can be classified into at least 25 types (Weill, 1934; Östman, 2000; Kass-Simon & 

Scappaticci, 2002) and can be used as a phylogenetic marker (Reft & Daly, 2011).  

 

1.2 Hydra as a model system 

The freshwater polyp Hydra (Figure 1.2 A) has been extensively studied since the 

mid of the 18th century. Experiments investigating the life cycle, organization and 

regeneration of Hydra were initially performed by Abraham Trembley (Trembley, 

1744). The body can be separated into the head with tentacles and mouth 

(hypostome), the body column and the foot that attaches the animal to the ground. 

Hydra has a simple diploblastic body plan and is radially symmetric (Figure 1.2 B). 

 

 
Figure 1.2: Anatomy of Hydra. A Photograph of Hydra magnipapillata (image by Dr. Melanie 
Mikosch and Prof. Dr. Thomas Holstein). B schematic representation of Hydra’s body plan (Bode, 
2001). C different cell types in Hydra (Technau & Steele, 2011). 
 

The tissue consists of two cell-layers: the ecto- and the endoderm (Figure 1.2 C). The 

endoderm harbours secretory gland cells that release digestion enzymes into the 

gastric cavity. In the ectoderm components of the nervous system such as the 

sensory neurons and the nematocytes can be found. The two tissue layers are 

separated by a gel-like extracellular matrix, the mesogloea. The tissue of Hydra is 

highly dynamic. As indicated by arrows in Figure 1.2 B the tissue is in constant 

movement. It migrates from a region beneath the ring of tentacles by entering the 

tentacles or by being replaced down the body column (Campbell, 1967). While some 
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tissue is lost at the tips of the tentacles and the basal disk, the biggest portion is 

incorporated into newly forming buds. The rates of growth and tissue loss control the 

body size of Hydra.  Hydra possesses three stem cell lineages. Endo- and 

ectodermal epitheliomuscular stem cells divide constantly to produce new epithelial 

tissue. The interstitial stem cell lineage (i-cells) gives rise to more specialized cell 

types like neurons, nematocytes, gland cells and germline cells (David & Murphy, 

1977). 

 
Figure 1.3: Life cycle of Hydra (Technau & Steele, 2011). 

 

Hydra can, depending on environmental conditions, either reproduce by budding or 

sexually (Figure 1.3). Under unfavourable environmental conditions they form 

gametes on their body column. The sperm are released into the water while the eggs 

remain attached to the mother animal, even after fertilization. The embryo covers 

itself with a solid embryotheca that protects it from the environment. In this state, the 

animals can survive for a long time. Under favourable conditions, the animal hatches 

and grows out into an adult polyp. If environmental conditions are good, the polyps 

can reproduce quickly by budding. Tissue from the adult animal is in constant 

movement and is replaced to form a bud. After the bud developed mouth and 

tentacles, it separates from the mother animal, settles and grows.  

The genomes of Hydra and Nematostella have recently been sequenced (Chapman 

et al., 2010, Putnam et al., 2007). With help of these two Cnidarian genomes, the 

basis for understanding general mechanisms in genome evolution is provided 

(Steele, 2012). The Hydra and Nematostella genomes were the first ones to be 

sequenced among Cnidarians. Their last common ancestor was the stem Cnidarian 

from which all Cnidarians originate. Both organisms are notably different although 

belonging to the same phylum (Table 1). The genome of Hydra is more than twice as 

large as the genome of Nematostella even though both organisms have a set of 30 
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diploid chromosomes and their genomes encode about 20 000 proteins. The Hydra 

genome is extremely rich in adenine and thymine whereas in Nematostella the bases 

occur in more equal amounts. Since the occurrence of the stem Hydra, a burst of 

transposable elements has been observed. Transposable elements might originate in 

horizontal gene transfer. Different life cycles, forms and environmental conditions 

lead to the loss as well as to the gain of specific genes. About 11 % of Hydra’s and 

Nematostella’s genes are thought to be lineage specific (Forêt et al., 2010). Not only 

is the content of the genomes but also the regulation of gene expression an important 

issue. Apart from alternative splicing (occurs in Hydra as well as in Nematostella, 

Steele, 2012) and trans-splicing  (not found in Anthozoans but in Hydra, Douris et al., 

2010) about 50 miRNAs are predicted from both genomes, in humans more than 600 

are found and regulate the gene expression by binding to transcripts and mediating 

degradation. 

 

Table 1: Comparison between Hydra (Chapman et al., 2010) and Nematostella (Putnam et al., 
2007) genomic data. Table adapted from Steele, 2012. * 17 of the identified 51 non-tRNA non-rRNA 
RNAs were identified as miRNAs, this is probably an underestimation. 

 Nematostella vectensis Hydra magnipapillata 

Genome size (Mbp) 357 900 

Chromosome number 15 (1N) 15 (1N) 

GC content 49 % 29 % 

Protein-coding genes ~ 18 000 ~ 20 000 

Transposable elements (% genome) 26 % 57 % 

miRNA 40 17 (51)* 

 

The genome data offers a powerful tool for comparative developmental and 

evolutionary analyses at the molecular level.   

 

1.3 Nematocytes in Hydra 

An adult, well-fed Hydra contains 122 000 cells, 56 700 (46%) of which are 

nematocytes and nematoblasts, their developmental stages (Bode et al., 1973). The 

tentacles of Hydra are densely packed with nematocytes (Figure 1.4 A), 91% of all 

cells in the tentacles are nematocytes (corresponds to 26 000, Bode et al., 1973). 

Hydra possesses four different types of nematocysts (Figure 1.4 B). The largest ones 

are the stenoteles. They belong to the penetrant type of nematocysts and are used 

for prey capture. The stylets at the base of the tubule perforate the prey’s integument 

and the tubule injects toxins into the prey organism. The holo- and the atrichous 
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isorhiza are glutinant capsules mainly used for locomotion. The smallest nematocytes 

are the volvents, the desmonemes. Their discharged tubule tightly coils around the 

prey and prevents it from escaping.  

Although structurally very diverse, all nematocysts share the same general build: they 

consist all of a capsule body and an attached tubule, which is coiled tightly inside the 

cyst (Figure 1.4 C). In mature nematocytes the nematocyst capsule fills most of the 

cell. 

 

 
Figure 1.4: Nematocytes in Hydra. A view of a tentacle of Hydra, densely packed with nematocytes 
(Balasubramanian et al., 2012). B isolated nematocysts. Different types are visible: the large 
stenoteles, the oval atrichous and holotrichous isorhiza and the small desmonemes (Balasubramanian 
et al., 2012). C the general built of a nematocyst can be considered as a capsule body (red) and a 
coiled tubule inside (green). D schematic representation of a nematocyte (Anderson & Bouchard, 
2009). E picture of a battery cell (Beckmann & Özbek, 2012). F schematic drawing of a battery cell 
(Holstein, 2012). 
 

At the apical end of the nematocyte the cnidocil, a modified cilium, is located (Figure 

1.4 D). Together with the surrounding stereocilia it serves as a mechanosensor. In the 

tentacles of Hydra, the nematocytes are arranged within so-called battery cells 

(Figure 1.4 E&F). The battery cells are modified epitheliomuscular cells, each 

containing about 20 nematocytes. They harbour one or two central stenoteles, 

surrounded by some isorhizas and ring of desmonemes as well as a sensory nerve 

cell (Hufnagel et al., 1985). The nematocytes of one battery cell are connected by 

neurons and up to five different battery cells are interconnected by neurons (Yu et al., 
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1985). The discharge of nematocytes is regulated by chemical and mechanical 

stimulation (Pantin, 1942; Hobmayer et al., 1990; Oliver et al., 2008). 

 

1.4 The cnidocil apparatus 

The mechanosensory cnidocil apparatus consists of different cytoskeletal elements 

that can be revealed upon detergent treatment (Figure 1.5 A). The cnidocil is build by 

a circular arrangement of 9 pairs of microtubules around a core with increasing 

amounts of microtubules along the length (Slautterback, 1967). It is encircled by 

stereocilia (also called outer microvilli, Hausmann & Holstein, 1985). The stereocilia 

are formed by parallel actin filaments and arise from the apical surface of the 

nematocyte in a semicircle. At their endings they converge and form a tubule around 

the central cnidocil (Figure 1.5 B, Hausmann & Holstein, 1985). A ring of small 

microvilli encircles the nematocyst and the cnidocil (Hausmann & Holstein, 1985), it 

extends to rods in the cytoplasm that belong to the microtubular basket. These 

microvilli are thought to anchor the stereocilia and the microtubular basket (Golz, 

1994). The basket of microtubules surrounds the capsule and stabilises it inside the 

cell (Stidwill & Honegger, 1989). At the apical part of the capsule microtubular rods 

lead over to finer microtubular structures, the microtubules are located directly 

adjacent to the nematocyst membrane (Stidwill & Honegger, 1989).  

 

 
Figure 1.5: The Cnidocil apparatus. A scanning electron micrograph of a Hydra nematocyte after 
detergent extraction that reveals the cytoskeleton (Stidwill & Honegger, 1989) R= rods (microtubular 
basket that surrounds the capsule), A= actin filament bundles, CL= cuticular layer (electron dense 
material that covers the operculum). B schematic representation of the stereocilia arrangement in 
Craspedacusta (Hausmann & Holstein, 1985). SC= outer stereocilia, CN= Cnidocil, IM= inner microvilli 
and supportive rods, NC= nematocyte, BC = battery cell. C drawing of a hair cell. The magnification 
shows tip-links and the transduction channel (Lin & Corey, 2005). 
 

The arrangement of the stereocilia is highly reminiscent of vertebrate hair cells, as 

they can be found in the inner ear or the lateral line for example. Deflection of these 

stereocilia into positive direction leads to stretching of tip-links, by which adjacent 

stereocilia are connected (Figure 1.5 C). The tip-links in turn are connected to 
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transduction channels. Upon deflection of the stereocilia, the mechanosensitive 

transduction channel opens. The resulting inward current depolarizes the cell and 

leads, in the case of inner ear hair cells, to an action potential. The stereocilia of the 

cnidocil apparatus have been shown to be connected to the cnidocil and to each 

other in the contact region (Golz & Thurm, 1991) so a similar mode of signal 

transduction as in hair cells can be assumed. The molecular nature of the links is 

unknown, in vertebrate hair cells cadherin23 (Siemens et al., 2004) and 

protocadherin15 (Ahmed et al., 2006; Kazmierczak et al., 2007) form the tip links.  

 

1.5 Nematocyst discharge 

The tissue surface is covered by a mucous cuticle with the cnidocil membrane being 

the only one with direct contact to the surrounding medium (Golz, 1994). Deflection of 

the cnidocil leads to a depolarization of the cell and the opening of calcium channels. 

Calcium is essential for the start of the discharge process (Gitter et al., 1994). The 

influx of water induces swelling of the capsule and increases the osmotic pressure, 

the stylets and tubule are expelled with an extreme acceleration of up to 5.410.000 g 

(Holstein & Tardent, 1984; Nüchter et al., 2006), which is higher than the acceleration 

of gun bullets and one of the fastest biological processes known. The stylet reaches 

an average velocity of 9.3–18.6 m/s.  

The actual discharge can be considered as an exocytotic process (Özbek et al., 

2009) as the membrane that surrounds the nematocyst capsule has to fuse with the 

nematocyte membrane. The capsules are loaded during maturation with poly-γ-

glutamate (Szczepanek et al., 2002). The negative charges inside the capsules are 

complexed by cations, it could be shown that most nematocysts are extraordinarily 

rich in calcium (Lubbock et al., 1981). Upon contact of the membrane with the 

surrounding medium the calcium is lost from the capsule, this enhances the osmotic 

pressure further (Lubbock et al., 1981). The increased osmotic pressure leads to the 

influx of water and the tubule everts explosively. First, the stylets eject and perforate 

the prey’s shell. Afterwards, the spines fold back and the tubule is expelled. The 

hydrostatic pressure thus leads to the discharge of the capsule; in addition it 

facilitates the injection of toxins through the hollow tubule into the prey organism 

(Figure 1.6).  

However, internal calcium is not alone responsible for the mechanism of discharge. It 

has been demonstrated that the speed of the discharge process itself depends on 

extracellular calcium (Watson & Hessinger, 1994; Nüchter et al., 2006), it can even 
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be inhibited by inferior concentrations of calcium as well as by blockers of 

mechanosensitive ion channels like the lanthanide Gadolinium (Salleo et al., 1994, 

Gitter et al., 1994). Although the osmotic pressure is without a doubt one of the 

driving forces of the slower phases of discharge, it can not provide all the energy 

needed for the extremely fast initiation (Holstein & Tardent, 1984), therefore 

mechanically stored energy is assumed to be present in the capsule. 

After the discharge, the volume of the nematocyst is reduced to 50% (Holstein & 

Tardent, 1984). The whole discharge process is completed in less than 3 milliseconds 

(Holstein & Tardent, 1984), the initial ejection of the spines takes as little as 700 

nanoseconds, while the following evagination of the tubule follows a slightly slower 

kinetic (Nüchter et al., 2006). 

 
Figure 1.6: Schematic illustration of the discharge of a stenotele (Nüchter et al., 2006). 

 

The discharge is highly regulated, as discharged capsules cannot be reused but have 

to be replaced and the costs for their synthesis are very high. The animal is able to 

distinguish between organisms that are not attacked and prey organisms as each 

organism produces a characteristic frequency of mechanical stimuli by its swimming 

behaviour. Other cnidarians like anemones have been shown to distinguish between 

their own and foreign tissue (self non-self recognition; Hidaka et al., 1997; Lubbock & 

Shelton, 1981). Chemical stimuli, derived from prey organisms, enhance the rate of 

discharge (Watson & Hessinger, 1989). Optimal discharge is achieved after a 

combination of chemical and mechanical stimuli (Pantin, 1942). 

 

1.6 Nematocyst development 

Nematocytes in Hydra arise from the i-cell lineage (Figure 1.7 A), a stem cell 

population located in the interstitial space of ectodermal epithelial cells. Those are 

exclusively located in the body column, so that the nematocyte development is 

restricted to the body column as well. During their development nematocytes migrate 

through the body column of Hydra.  
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After division of the i-cells, nests of 2-32 nematocytes develop (Slautterback & 

Fawcett, 1959; Holstein, 1981). The nematocytes are still connected by cytoplasmic 

bridges (Slautterback & Fawcett, 1959) and all cells of one nest become 

nematocytes of one type. The nematocyst is built as a self-organized secretion 

product in a giant post-Golgi vesicle (for details see Beckmann & Özbek, 2012).  

 

 
Figure 1.7: Nematocyst development A The life of a nematocyte from the determined i-cell to the 
mature nematocyte (Campbell, 1988). B Nematocyst development inside a single nematocyte 
(Beckmann & Özbek, 2012). 
 

Initially the capsule wall is produced, it consists of an outer electron dense (the 

sklera) and an inner electron lucent layer (the propria, Holstein, 1981). The tubule 

starts to grow on the outside of the capsule primordium (Figure 1.7 B). After reaching 

its final length, it is invaginated and coiled up in the capsule matrix (Holstein, 1981). 

After the invagination process, the formation of spines takes place (Koch et al., 1998) 

and the wall thins and hardens as a result of disulfide bond cross-linking (Watson & 

Mariscal, 1984b, Engel et al., 2001). Poly-γ-glutamate synthesis starts after 
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invagination of the tubule. Afterwards the nest breaks apart and the capsules migrate 

into the tentacles. Due to ongoing glutamate synthesis, the nematocysts swell as the 

osmotic pressure increases (Szczepanek et al., 2002). In mature capsules a pressure 

of 150 bar is achieved (Weber, 1989). Mature nematocytes are finally deployed into 

the battery cells in the tentacles.  

 

1.7 Aim of my work 

The elucidation of the capsule proteome (Balasubramanian et al., 2012) revealed not 

only interesting general features of the nematocyst, like its structural composition and 

venom content, but also offered the possibility to investigate its biochemical and 

physiological properties in more detail by focusing on molecular factors that exhibit 

specific functions. My work concentrated in detail on three aspects of nematocyst 

biology: the molecular basis of (1) its elastic properties, (2) the discharge control and 

(3) the regulation of the nematocyst development.  
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2. RESULTS 

 

2.1 Cnidoin – the elastic component of the nematocyst 

The nematocyst contains many proteins with ECM motifs (Balasubramanian et al., 

2012), and can therefore be considered as “a miniature extracellular matrix within a 

secretory vesicle” (Özbek, 2010). Collagenous components such as the 

minicollagens form the stiff and tear-resistant structure of the capsule wall and tubule 

(Figure 2.1 A). During maturation as well as during the discharge process, the 

nematocyst undergoes severe volume changes  (Figure 2.1 B) (Szczepanek et al., 

2002; Holstein & Tardent, 1984; Nüchter et al., 2006) and the mature capsule is 

charged with an extreme pressure of 150 bar (Weber, 1989). The discharge process 

is one of the fastest biological processes and is completed in milliseconds (Holstein & 

Tardent, 1984; Nüchter et al., 2006). A purely rigid capsule structure would not 

support these biomechanical requirements. It was found that all capsule types react 

in a similar way to osmotic conditions by swelling, shrinking or discharge (Weber, 

1989), so the underlying molecular principles are supposed to be the same for all 

capsule types.  

 

 
Figure 2.1: Structure and dynamics of a nematocyst. A isolated nematocysts with highlighted 
capsule wall. B Decrease in volume during discharge (modified after Beckmann et al., in revision). 
 

During the analysis of the capsule proteome, a candidate protein was found that 

might fulfil the required elastic function due to its possession of an extended glycine-

rich repeat domain. It was named Cnidoin because of its similarity to the spider silk 

protein Spidroin-2 (Hinman & Lewis, 1992). The corresponding gene has been cloned 

from cDNA (sequences are provided in the attachments). The sequence reveals the 

presence of a signalpeptide as well as a predicted propeptide. Propeptides in 
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nematocyte-specific proteins are usually cleaved after a conserved di-basic lysine-

arginine motif (Anderluh et al., 2000). The predicted propeptide sequence for Cnidoin 

is unusually long, comprising 90 amino acid residues. The mature protein contains 

three minicollagen cysteine rich domains (CRDs, Figure 2.2 A), one at the N-terminus 

and two as tandem on the C-terminus. CRDs can interlink structural proteins by 

disulfide bonds. The primary sequence of the mature protein contains 403 amino 

acids and has a calculated molecular mass of 41.44 kDa. The largest part of Cnidoin 

is formed by a central repetitive sequence that is similar to the spider silk protein 

Spidroin-2 (Hinman & Lewis, 1992). Both proteins do even share the same repetitive 

motif (GxGQQ, Figure 2.2 B). The repetitive sequence in total is extremely rich in 

glycine, glutamine and methionine (Figure 2.2 C).  

Spider silk is tear-resistant and elastic at the same time. This is achieved by the 

combination of crystalline poly-alanine domains and the elastic glycine- and 

glutamine-rich sequence (Römer & Scheibel, 2008). Extended stretches of alanine 

are missing in Cnidoin. Tear resistance could thus be provided by crosslinking the 

protein to other structural components of the nematocyst like minicollagens. 

 
Figure 2.2: Sequence features of Cnidoin. A schematic representation of Cnidoin and Minicollagen-
1 and alignment of the CRD domains of both proteins. B alignment of the repetitive domain of Cnidoin 
and Spidroin-2. C Amino acid composition of the elastic domain of Cnidoin. Modified after Beckmann 
et al., in revision. 
 

The expression pattern of Cnidoin was addressed by in situ hybridization 

experiments. Cnidoin was found to be expressed in the body column of Hydra, while 

the foot and head region as well as the tentacles were free of any signal (Figure 2.3 

A). The expression is restricted to nests of developing nematocytes (Figure 2.3 B), 

which could be confirmed by double in situ hybridization using a Minicollagen-1 probe 

(Figure 2.3 C). Minicollagen-1 is a well-defined nematocyst wall protein (Engel et al., 

2001). The expression pattern of Cnidoin and Minicollagen-1 overlap (Figure 2.3 D). 
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Figure 2.3:  Expression pattern of Cnidoin. A the in situ hybridization shows expression of Cnidoin 
in the body column. B magnification of A, nests of developing nematocytes are stained. C double in 
situ for Minicollagen-1 (red) and Cnidoin (blue). D magnification of C, the signals for both transcripts 
overlap. Modified after Beckmann et al., in revision. 
 

To localize Cnidoin on the cellular level, a polyclonal antibody against a CRD epitope 

was raised. Cnidoin could be detected in nests of developing nematocytes in the 

body column. The head, foot and the tentacle regions were free of signal (Figure 2.4 

A). This pattern is very reminiscent of other structural capsule proteins as 

Minicollagen-1 or -15 (Engel et al., 2001; Adamczyk et al., 2008) and confirmed the 

findings by in situ hybridization. The proteins can only be visualized by 

immunostainings in developmental stages. Later on, the capsules undergo massive 

wall compaction during maturation and individual structural components cannot be 

detected any longer. Depending on the fixation method either the wall or the tubule of 

developing nematocytes was stained (Figure 2.4 B - F). The detected structures 

could be co-stained by the corresponding structural minicollagens NCol-1 and NCol-

15.   
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Figure 2.4: Immunostaining of Cnidoin. A overview, B magnification, C co-staining with NCol-1, D 
co-staining with NCol-15, E close-up of a nest with NCol-1 co-staining, F co-staining of a nest with 
NCol-15 co-staining. A – C, E PFA-fixed. D, F Lavdovsky-fixed. Modified after Beckmann et al., in 
revision. 
 

In Nematostella, the antibody gave also a distinct signal in nematocytes in the 

tentacles (Figure 2.5). In anthozoans the pattern of nematocyst development differs 

from the one described for Hydra, the development takes place in the tentacles 

directly. Spirocysts were detected primarily (Figure 2.5 B). Despite this finding, no 

homolog protein could be detected by BLAST searches indicating high diversity at 
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the sequence level.  

 

 
Figure 2.5: Cnidoin in Nematostella. A overview of a tentacle stained for Cnidoin. B magnification, 
showing labelled spirocysts. 
 

In Western Blot analysis Cnidoin could be detected in whole Hydra lysate, as well as 

in isolated nematocysts. Even after extensive washing with SDS, Cnidoin was still 

present in the insoluble fraction, designated as nematocyst ghosts (Figure 2.6 A). 

Cnidoin could only be detected under reducing conditions indicating incorporation 

into the capsule polymer by disulfide bonds. 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2.6: Western Blot analysis of Cnidoin. A Detection of Cnidoin in Hydra and nematocyst 
lysate as well as recombinant protein. B Deglycosylationassay. Modified after Beckmann et al., in 
revision. 
 

Recombinant protein was produced in HEK293 cells as well as in bacteria. Both 

proteins were His-tagged and purified using Ni-NTA. The protein produced in 

HEK293 cells included the putative propeptide and had a calculated molecular weight 

of 53 kDa. This corresponded well with the apparent molecular weight in SDS-PAGE 

analysis indicating that a cleavage of the propeptide does not occur in HEK293 cells. 



RESULTS 
   

 15 

The detected molecular weight in Hydra is lower and corresponds with the calculated 

molecular weight lacking the propeptide. Although unusually long, the propeptide 

seems to be normally cleaved in Hydra. The bacterially produced protein showed 

indications of unspecific proteolysis probably caused by the denaturing purification 

procedure.  

Cnidoin contains no N-glycosylation but seven O-glycosylation sites. To test whether 

Cnidoin is posttranslationally modified, Hydra samples and nematocyst lysate were 

treated with a deglycosylation enzyme mix that is supposed to remove N- as well as 

O-glycosylations. No shift in molecular weight could be observed after treatment 

(Figure 2.6 B), excluding post-translational modifications by sugars.   

The presence of CRD domains in both termini of Cnidoin could indicate a linkage of 

the protein to the disulfide network of the capsule wall and tubule. This hypothesis is 

supported by the fact, that Cnidoin can only be detected by Western Blot analysis 

under reducing conditions. To investigate whether polymerization is an intrinsic 

feature of Cnidoin, recombinant protein has been treated with reduced glutathione. In 

the presence of reduced glutathione, recombinant bacterial Cnidoin monomers 

showed a strong tendency to polymerize (Figure 2.7 A).  

Figure 2.7: Polymerization of Cnidoin in the presence of reduced glutathione. A time dependent 
polymerization of Cnidoin. B increasing amounts of Cnidoin enhance the polymerization in a Cnidoin – 
NCol-1 mixture. Modified after Beckmann et al., in revision. 
 

The rate of recombinant NCol-1 MBP polymerization could be enhanced by the 

addition of increasing amounts of Cnidoin. This provides an indirect evidence for the 
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interaction of both proteins and the formation of a co-polymer by disulfide bonds via 

the CRDs (Figure 2.7 B). 

The bacterial recombinant protein could only be purified under denaturing conditions 

with 8M urea, otherwise it immediately aggregated to sheet-like structures. Even in 

8M Urea it was not stable. Frozen samples that were brought back to room 

temperature aggregated quickly and formed prominent macroscopic fibres (Figure 

2.8). This coacervation process is also reported for other elastic proteins like elastin 

(Bellingham et al., 2001). The fibres were unstructured and did not consist of regular 

unit fibres, even at high magnifications in the electron microscope (Figure 2.8 D). 

 

 
Figure 2.8: recombinant Cnidoin. A reaction tube after coacervation. B lighmicroscopic picture of 
fibres (modified after Balasubramanian et al., 2012). C scanning electron micrograph of fibres. D 
negative stained fibres in transmission electron micrograph (modified after Beckmann et al., in 
revision). 
 

The properties of recombinant Cnidoin are similar to the ones reported for other 

elastic proteins. To determine the elasticity of Cnidoin molecular dynamics (MD) 

simulations have been carried out at the Heidelberg Institute for Theoretical Studies 

(Beckmann et al., in revision). It has been shown (Cheng et al., 2010), that these 

simulations produce valuable predictions of the proteins elastic properties.  

By DisEMBL, Cnidoin is predicted to be highly disordered in its repetitive, putative 

elastic domain (Figure 2.9 A) while at least the N-terminal part of the protein appears 

to be structured. By applying a virtual pulling force on a fixed Cnidoin peptide (Figure 

2.9 B), the behaviour of the protein upon extension can be simulated. 

The MD simulations correspond in principle to theoretic atomic force microscopy 

measurements. The peptides are stretched and different parameters as the applied 

force, secondary structures and the solvent accessible surface area (∆SASA) are 

calculated. The force-extension profile of the two Cnidoin peptides is shown in Figure 

2.9 C. Cnidoin was stretched and the conformations were sampled at various 

distances (dZ). The average resisting force against stretching was calculated. A slight 
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plateau can be observed, overall Cnidoin can be easily extended. The forces were 

fitted with a worm-like chain model and the persistence length was calculated to be 

0.72±0.02 nm. The shorter the persistence length is, the higher is the tendency of the 

protein to coil and its elasticity. From the simulations it can be concluded that Cnidoin 

indeed behaves like an elastic protein, comparable to spider silk that has, under the 

same conditions, a persistence length of 0.74 nm (Cheng et al., 2010). The force 

needed to extend the peptides results from interactions within the peptide. Cnidoin 

shows a plateau in the force-extension curve, this shows an internal willingness to 

recoil and to work against the extension. At low extensions ∆SASA increases (Figure 

2.9 D). This indicates the burial of hydrophobic areas in the un- or little stretched 

configuration of the peptide. The burial of hydrophobic residues is the driving force for 

the collapse of a stretched Cnidoin molecule.  

 
Figure 2.9: MD simulations of Cnidoin. A DisEMBL prediction of the state of order of Cnidoin. The 
light blue box indicates the repetitive sequence. B exemplary conformations of Cnidoins. A pulling 
force (red arrow) was applied and extension and behaviour of the protein was simulated. C Umbrella 
sampling on stretched Cnidoin peptides at varying distances showing the resulting average resisting 
forces against extension. The resulting free energy is shown in the inset. D hydrophobic surface burial 
of two Cnidoin peptides measured by disappearance of solvent accessible surface area (∆SASA).  
Graphics by Dr. Senbo Xiao and Dr. Frauke Gräter (modified after Beckmann et al., in revision). 
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While the high abundance of glutamine and glycine in the elastic domain of Cnidoin 

can be explained by its elastic behaviour the role of methionine is still elusive (Figure 

2.2 C). The costs for synthesising methionine are high and as the third abundant 

amino acid within the elastic domain it probably will have a defined role. Whether this 

role consists in the crosslinking of different elastic domains or whether methionine 

has an impact on the elasticity of Cnidoin was addressed by additional MD 

simulations. In these calculations, all methionines in the peptides were replaced by 

alanines and the peptides were subjected to the same force-quench MD simulations 

as wildtype peptides. The mutated peptides showed the same behaviour as wildtype 

peptides, thus methionine has no impact on the elasticity and does not facilitate the 

nematocyst discharge process.  

 

Elastic protein sequences are unstructured and lack secondary structures like α-

helices, β-sheets and coiled coil domains. Infrared spectroscopy can be used to 

determine the amount of individual secondary structure elements in a protein sample. 

A construct of four repeated elastic domains was investigated by FTIR in cooperation 

with the Kirchhoff Institute for Physics (Beckmann et al., in revision; Figure 2.10 A). 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: FTIR measurements of Cnidoin. A exemplary measurement of Cnidoin showing 
individual spectral components that account for the measured signal. B Number of spectral 
components observed in Cnidoin and other reference proteins. The red triangles represent the 
average number of components derived from the experiments with their standard deviation. Blue dots 
are the results obtained from Byler & Susi, 1986. Graphics by Prof. Dr. Wolfgang Petrich (modified 
after Beckmann et al., in revision). 
 

As the infrared spectra of proteins depend on various environmental and 

experimental conditions, nine additional proteins were used. These proteins were 

previously investigated by FTIR (Byler & Susi, 1986). From these experiments it can 
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be concluded that a low number of spectral components represents a low abundance 

of ordered secondary structures in the protein. Thus these proteins can provide a 

reference for the obtained spectra of Cnidoin. The elastic domain is expected to be 

unstructured.  

FTIR on dried films of proteins of Cnidoin provided evidence that the elastic domain 

is lacking prominent secondary structures as it shows only a limited number of 

spectral components, comparable to casein, a protein known to lack secondary 

structures.  
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2.2 Molecular components of the mechanosensory cnidocil apparatus 
 

2.2.1 The ion channel TrpA 

Transient receptor potential (Trp) channels play an important role in many cellular 

processes. The family of Trp ion channels consists of 7 subgroups (Li et al., 2011), 

but all share a common topology with six transmembrane domains and intracellular 

C- and N-termini. The pore region is located between the fifth and sixth 

transmembrane domain and a functional channel is composed of four subunits. 

Several Trp channel play a role in mechanoreception especially TrpN and TrpA group 

members (Lin & Corey, 2005). A mouse TrpA homolog has been proposed as a 

candidate for the hair cell mechanoreceptor (Corey et al., 2004). Recently it was 

shown that TrpA is located in the sensory structures in the tentacles of the sea 

anemones Nematostella and Haliplanella (Mahoney et al., 2011). Nematocyst 

discharge in these anemones was affected by TrpA selective drugs. The discharge of 

nematocysts in Hydra is dependent on extracellular calcium (Nüchter et al., 2006) but 

so far, no calcium sensitive molecular components have been identified.  

On this basis the Hydra homolog of the Nematostella vectensis TrpA was cloned from 

cDNA (sequences are provided in the attachments). The protein consists of 1255 

amino acids and has a calculated molecular weight of 141.5 kDa. The N- as well as 

the C-terminus is predicted to point towards the cytosol, while 6 transmembrane 

helices span the membrane (Figure 2.11). The N-terminus contains 16 Ankyrin 

repeats. Ankyrin repeat domains are found in multiple protein families and serve for 

protein-protein interactions. Due to their folding they can be considered as molecular 

springs (Li et al., 2006; Gaudet, 2008). 

 
Figure 2.11: Schematic representation of the Hydra TrpA. 

 

The in situ hybridization of TrpA revealed the expression of the calcium channel in 
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nests of developing nematocytes in the body column. The tentacles as well as the 

foot region did not show any TrpA expression (Figure 2.12 A).  

In Western Blot analysis, the antibody detected a clear and single band at the 

expected molecular weight of 140 kDa (Figure 2.12 B). TrpA could be detected in 

whole Hydra lysate as well as in head and body column lysate. The preimmuneserum 

control was free of signal. While the expression of the protein is restricted to 

developing nematocytes in the body column of Hydra, the protein itself can be 

detected in the whole animal by Western Blot analysis.  

 
Figure 2.12: In situ hybridization and Western Blot analysis of TrpA. A the in situ shows 
expression in nests of developing nematocytes in the body column B the protein can be detected by 
Western Blot analysis in the body column as well as in the head of Hydra, indicating that the protein 
migrates with the maturating nematocytes into the tentacles after expression in the body column 
(Bachelor thesis from Bérénice Ziegler). 
 

The two localizations of the TrpA protein can also be observed in the 

immunostainings (Figure 2.13). In the body column of Hydra, TrpA is detected in 

nests of developing nematocytes, while in the tentacles, mature nematocytes are 

stained. By co-staining with the NOWA –CTLD antibody the nests that are positive 

for TrpA can be characterized in more detail. NOWA-CTLD stains the tubule in 

developing nematocysts. TrpA is mainly present in late stages of capsule 

development. The maturating nematocytes incorporate TrpA and migrate at their final 

step of development into the tentacles. In mature nematocytes TrpA can be detected 

in the stereocilia of the cnidocil apparatus that surround the cnidocils that are built by 

actin filaments. The sensory cnidocil originates in the middle of the TrpA positive 

stereocilia as visualized by co-staining with α-tubulin.    
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Figure 2.13: Immunostaining of TrpA. A overview of a bud. B nests of developing nematocytes in 
the body column. Co-staining with NOWA CTLD reveals that only late stages of development are 
positive for TrpA. C TrpA in the tentacles of Hydra. The calcium channel locates to the stereocilia of 
the cnidocil apparatus. The microtubular cnidocil originates in the middle of the stereocilia. 
 

Upon Hydroxyurea treatment, that causes the loss of interstitial stem cell and their 

derivatives, the signal is lost. Treatment with the calcium chelator EGTA or 

decnidocilation did not affect the presence or localisation of the protein in the 

stereocilia. 

A first hint on the function of TrpA during nematocyst discharge is obtained upon 

treatment of the animals with the styrol dye FM1-43. The dye is known to enter cells 

by the sensitive channel itself and blocks the channel then from the inside (Drew & 

Wood, 2007). Sensitivity for FM1-43 could also be shown for the hair cell 

mechanotransduction channel (Gale et al., 2001). Animals placed into medium 

containing the dye immediately show labelled nematocytes. The labelling is too fast 

to be caused by endocytosis, the dye has to enter the cell directly (Figure 2.14). 

 

 
Figure 2.14: Tentacle of a living Hydra that was incubated shortly in 5 µM FM1-43. The overall 
light red colour is due to the filter of the microscope as the transmitted light and fluorescence image 
were captured at the same time. Sequential images of both channels were not possible due to 
movements of the animals. No paralyzing agent was used to not induce artefacts. 
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Hydra that are incubated in FM1-43 containing Hydra medium are not able to catch 

Artemia anymore. The dye is not toxic to the animals, even long treatments do not 

cause any defects. Though it can be assumed that the effect of an abolished feeding 

behaviour is caused by inhibition of an essential factor of nematocyst discharge. 

Specific inhibitors and activators (Cinnamaldehyde, Polygodial, Zinc chloride, HC 

030031, A 967079) of TrpA have been tested at various concentrations, but so far 

none of them could be used as the needed concentrations were not supported by the 

animals, the chemicals were toxic to the Hydra.  

 

2.2.2 The penta-EF-hand protein Nematocalcin 

The analysis of the nematocyst proteome revealed the presence of a member of the 

penta-EF-hand protein family in the nematocyte. The protein was called 

Nematocalcin and the coding sequence was cloned from cDNA (sequence provided 

in the attachments). The protein consists of 201 amino acids and has a molecular 

weight of 22.62 kDa. It contains an N-terminal collagen-like (glycine and glutamine-

rich) domain and shows high sequence similarity to other calcium-binding proteins 

like Grancalcin or Sorcin (Figure 2.15). Those proteins have been studied intensively, 

providing some hints that could also apply to Nematocalcin. Penta-EF-hand proteins 

fall into two subgroups, with Sorcin and Grancalcin both being members of group II 

that probably evolved from group I (Maki et al., 2002). Penta-EF-hand proteins 

contain five EF-hand motifs for binding calcium, but not all motifs are functional, as 

some lack essential residues for the coordination of calcium. For Nematocalcin two 

overlapping EF-hand motifs have been predicted by sequence analysis. They 

correspond to EF2 and EF3 as derived from alignments. 

 
Figure 2.15: Alignment of Nematocalcin with two other penta-EF-hand proteins (human Sorcin 
[P30626] and Grancalcin [P28676]). Conserved amino acids are indicated by black and grey boxes, 
amino acids are grouped following their properties: GAVLI, FYW, CM, ST, KRH, DENQ, P. Highlighted 
is the collagen-like domain of Nematocalcin (green) as well as the helices of the EF-hand motifs. 
Residues important for calcium coordination are marked by asterisks (after Xie et al., 2001). 
 

The crystal structure of both calcium-free (Jia et al., 2000) and calcium-bound (Jia et 
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al., 2001) Grancalcin as well as calcium-free (Xie et al., 2001; Nastopoulos et al., 

2001) Sorcin have been resolved, providing a good evidence for the structure of 

Nematocalcin, as both proteins are highly conserved. The proteins are mainly alpha-

helical.  

 

For investigating the role of Nematocalcin in nematocytes, an antibody was raised. In 

Western Blot analysis, a signal in Hydra lysate as well as in head and body column 

lysate could be detected at the calculated molecular weight of 22.62 kDa (Figure 

2.16). In isolated nematocysts, the signal was not as strong as expected for a 

capsule protein, indicating that the nematocyst is not the major localisation of the 

protein although it has been isolated with the nematocysts during the proteome 

analysis. A signal for Nematocalcin could be detected in reducing as well as in non-

reducing probes, indicating that the protein is not crosslinked by disulfide bonds. 

 
Figure 2.16: Western Blot analysis of Nematocalcin. The protein can be detected in reducing (with 
ß-Mercaptoethanol) as well as in non-reducing (without ß-ME) samples. Nematocalcin is present in 
the whole animal. The Blot detected with the preimmunesera (PPI) shows some unspecific binding of 
the antibody. 
 

Immunostainings with Nematocalcin revealed that the protein is indeed correlated to 

nematocytes, but not with the capsule itself. Nematocalcin locates to the stereocilia of 

the cnidocil apparatus (Figure 2.17). The detection in capsules by Western Blot 

analysis and the presence in the capsule proteome indicate that it binds to the 

nematocyst in a specific or unspecific manner; the protein does not contain a signal 

peptide for the localization in capsules. In immunostainings, Nematocalcin could only 

be detected in mature capsules, no developing stages were visible. All types of 
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nematocytes showed a signal for Nematocalcin. 

To characterize the localization of Nematocalcin in relation to other components of 

the nematocyte, different co-stainings were performed (Figure 2.17). An antibody for 

Nematostella Minicollagen-1 was used to visualize mature capsules in the tentacles 

of Hydra. While Minicollagen-1 is a major structural component of the capsule wall, 

Nematocalcin is superposed to the capsule itself. It is located in the stereocilia that 

surround the cnidocil (Figure 2.17 D).  β-tubulin was used to visualize all 

microtubules, including the subsets of acetylated and tyrosinated tubulin. Acetylated 

tubulin forms the stable microtubules. They build the cnidocil. Tyrosinated tubulin 

builds dynamic microtubules. It is found in the microtubular basket surrounding the 

nematocyst as well as in sensory neurons encircling the mouth. Nematocalcin does 

not co-localize with microtubules in the cnidocil. In some nematocytes a co-

localization in the microtubular basket surrounding the nematocyst can be observed, 

but the most dominant localization of Nematocalcin is in the stereocilia of the cnidocil 

apparatus. Phalloidin was used to stain the actin cytoskeleton (Figure 2.17 D+F). 

Actin is one of the major components of the cnidocil apparatus stereocilia, but it does 

only partly overlap with Nematocalcin. While Nematocalcin is located at the basal 

part of the stereocilia, actin extends to more distal parts.  

 

 

 

 

 

 

 

Figure 2.17: Immunostaining of Nematocalcin. A co-staining with tyrosinated tubulin to visualize 
dynamic microtubule. Nematocalcin can only be detected in mature nematocytes, no developmental 
stages are visible. B tentacle of Hydra magnipapillata. Microtubules form the cnidocil and surround the 
nematocyst inside the cell to stabilize it. Nematocalcin localizes to the stereocilia that surround the 
cnidocil. C Nv NCol-1 marks the capsule wall, Nematocalcin is superposed to the actual capsule. D 
the cnidocil originates in the middle of the Nematocalcin containing stereocilia. E+F actin and 
Nematocalcin localize both to the stereocilia. While Nematocalcin is located at the basis, actin extends 
to more distal parts. Actin is visualized by Phalloidin. 
 

The localisation of Nematocalcin to the stereocilia of the cnidocil apparatus could be 

confirmed by immunogold labelled cryo-TEM (Figure 2.18).  
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Figure 2.18: Immunogold-labelled cryo TEM (images by Michael W. Hess, PhD, Associate 
Professor of Cell Biology, Innsbruck Medical University). A cross section of a nematocyte, the 
nematocyst (N), cnidocil (C), microvilli (M) and the stereocilia (S) as well as the surrounding plasma 
membrane (P) are visible. B Magnification of a nematocyte cross section. Immunogold particles are 
visible as little black dots (arrows) and localize to the stereocilia. 
 

Removal of the cnidocils by rinsing the animals with ethylenglycol (Golz & Thurm, 

1990) did not alter the Nematocalcin signal. The stereocilia are not tightly linked to 

the cnidocil and not removed upon decnidocilation. 

In the dependence of calcium penta-EF-hand proteins change their localisation. Such 

has been shown for example for Grancalcin (Teahan et al., 1992), Sorcin (Meyers et 

al., 1995) and Peflin (Kitaura et al., 2001). In the presence of calcium, they bind to 

membranes. Treatment of Hydra with EGTA could lead to a redistribution of 

Nematocalcin. In several experiments it was found to localize to the cnidocil or the 

microtubule basket surrounding the capsule after EGTA treatment. However, the 

same pattern could be observed in some non-treated animals. Thus the effect of an 

EGTA-mediated reduction in external calcium needs to be clarified in the future. 

Nematocalcin is located at the stereocilia of the cnidocil apparatus, as well as the 

calcium channel TrpA. To test whether both proteins localize to the same structure, 

co-stainings were performed (Figure 2.19), each together with another protein of the 

sensory cnidocil apparatus structure. None of the proteins co-localizes with 

microtubules. The Cnidocil originates in the middle of the stereocilia, where TrpA co-

localizes with actin, while Nematocalcin overlaps only a little and is mainly located at 

the basal part (Figure 2.19). As revealed by ultrastructure investigations (Golz & 

Thurm, 1991) only the upper part of the actin filaments in the stereocilia is 

membrane-attached. The basis reaches as a rootlet into the cytoplasm providing 

evidence that the sensory part is at the tip. On this basis, TrpA localizes to the 

sensory region, while Nematocalcin at the base might be part of the signal 

transduction machinery.  
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Figure 2.19: TrpA and Nematocalcin localize both to the stereocilia in the cnidocil apparatus. A 
co-staining of TrpA, Nematocalcin and α-tubulin. B co-staining of TrpA, Nematocalcin and actin. Actin 
is visualized by an actin antibody. 
 

Transgenic animals expressing Nematocalcin eGFP under control of the nematocyte 

specific NOWA promotor were created by microinjection into embryos (according to 

Wittlieb et al., 2006). The animals show GFP expression in developing nests of 

nematocytes as well as in mature capsules (Figure 2.20).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.20: Transgenic animals expressing Nematocalcin eGFP under the control of the 
NOWA Promotor. A overview of a living animal, paralysed by 3 mM Heptanol in Hydra medium. B 
confocal stack of a tentacle tip shortly fixed with PFA and stained with Hoechst to visualize the nuclei. 
The prominent cnidocil apparatus of some capsules is marked by arrowheads. C confocal stack of the 
body column of a shortly PFA fixed Nematocalcin transgenic animal. Due to expression under control 
of the NOWA promotor nests of developing nematocytes are visible. 
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In the immunostainings, no expression of Nematocalcin could be observed during 

nematocyte development. The presence of GFP-expressing nests in the transgenic 

animals thus results from the NOWA promotor, which might be active earlier than the 

native Nematocalcin promotor or drive stronger expression levels. In mature 

capsules, Nematocalcin GFP can be detected in the nematocytes as well as in the 

cnidocil apparatus. Thus the transgenic animals confirm the immunostainings for 

Nematocalcin and provide a powerful tool for further studies on this protein. The 

intracellular presence of Nematocalcin might be due to accumulation caused by 

overexpression.  

The putative active EF-hands EF2 and EF3 have been mutated by replacing the 

calcium coordinating aspartic acid and glutamic acid residues through alanine. The 

mutation of all residues avoids an expression of the whole protein in vivo, probably 

due to a massive misfolding, though a functional characterization of Nematocalcin 

could not be accessed. 

The in situ hybridization of Nematocalcin did not exclusively show the expected 

expression in nematocytes. The sense control did not show any signal, while the 

antisense probe gave an intense signal in the whole animal. Both endo- and 

ectodermal tissue showed expression (Figure 2.21).  

In the tentacles, some almost mature nematocytes had a strong signal. This might 

indicate the actual expression pattern of Nematocalcin, while the broad expression 

pattern might result from other, similar penta EF-hand proteins. 

 
Figure 2.21: In situ hybridization for Nematocalcin. A sense control. B antisense signal in the 
whole animal. C Nematocyte showing expression by staining with antisense probe. D expression in a 
tentacle by staining with antisense probe. Ecto- and endodermal tissue shows expression, only rarely 
a correlation to nematocytes can be observed. 
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2.3 Novel molecular factors in tubule morphogenesis 

 

2.3.1 Nematomyosin – shaping the nematocyst vesicle 

A non muscle myosin type II was identified in the nematocyst proteome analysis 

(Balasubramanian et al., 2012). To elucidate the function of a myosin in the context 

of the nematocyst the corresponding gene was isolated from Hydra magnipapillata 

cDNA, cloned and sequenced (sequence attached). It corresponds to the gene 

models Hma2.213345 and XP_002167357.1 respectively. The encoded protein is a 

typical type II myosin with a head and a tail domain. The head has ATP binding 

properties and the tail is thought to interact with other myosins by coiled coil 

interactions. As the protein was found in the nematocyst proteome and is therefore 

believed to be associated with the nematocysts of Hydra, it was called 

Nematomyosin, although it does not contain a signal peptide for the localisation in 

capsules. Nematomyosin consists of 1946 amino acids and has a theoretical 

molecular weight of 224.57 kDa. For functional characterization of the protein an 

antibody against the head region was created. 

With immunostainings Nematomyosin could be detected in the body column of 

Hydra, where it associates with nests of developing nematocytes (Figure 2.22).  

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 2.22: Immunostaining of Nematomyosin. A overview of a bud. B the co-staining with Cnidoin 
reveals the developmental stages. C-E Magnifications of the co-staining with Cnidoin. Different 
developmental stages are shown. 
 

Through co-staining with Cnidoin the developing capsule wall was made visible, so 

that it was possible to distinguish between different capsule types and developmental 

stages. In early developmental stages Nematomyosin surrounds the forming capsule 

wall (Figure 2.22 C). When the tubule grows out, Nematomyosin is restricted to a 
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collar around the tubule basis (Figure 2.22 D). In almost mature capsules with coiled 

tubule, some residual protein is left at the apical part of the nematocyst vesicle 

(Figure 2.22 E). The preimmunesera did not give any signal. 

Based on the immunostainings the assumption can be made that Nematomyosin 

plays an important role in the development of nematocytes. It is associated with the 

outgrowing tubule and the capsule wall. As a motile protein it could create the force 

to induce a constriction in the capsule vesicle and thus have an important influence 

on the shape of the developing nematocyst. Inhibition of Nematomyosin by the 

specific Myosin type II inhibitor Blebbistatin (Kovács et al., 2004) leads to malformed 

nematocysts (Eismann et al., manuscript in preparation; Figure 2.23). 

 

 
Figure 2.23: Nest of stenoteles after Blebbistatin treatment (1 µM). Severe deformations of the 
nematocyst vesicle are visible. (modified from the Bachelor thesis of Björn Eismann) 
 

By the hydrolysis of ATP, bound to the head region, myosins convert chemical 

energy into movement along actin fibres. So far, no interaction or co-localisation to 

actin could be shown in nematocytes. 
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2.3.2 PKD2 – a polycystin-2 like channel in Hydra nematocyte development 

Nematocysts within cnidarians and even within the four different types being present 

in Hydra differ in shape and size, particularly in the tubules. They can have 

dramatically different sizes and a variable amount of spines and attachments (Weill, 

1934). As the development of all nematocysts is considered to follow similar principal 

mechanisms, the formation has to be carefully regulated.  

Hydra possesses multiple Trp channels one of which is the putative 

mechanosensitive PKD2 channel. PKD2 is a well-characterized ion channel and 

mutations in either PKD1 or PKD2 lead in humans to polycystic kidney disease, one 

of the most abundant inherited diseases (see Köttgen, 2007 for review). PKD2 is 

thought to act as a mechanosensor and to detect liquid flow. The channel has been 

found to play important roles not only in the human kidney, but also in many other 

organisms such as in the cell wall repair of yeast (Aydar & Palmer, 2009), the 

Drosophila sperm or sea urchin acrosome reaction (Kierszenbaum, 2004) for 

example.  

PKD2 was identified as a non selective calcium channel, which means it gates 

calcium, but also other, smaller, cations (González-Perrett et al., 2001). HyPKD2 is a 

transmembrane ion channel with 839 residues and a molecular weight of 96.02 kDa. 

The protein contains six transmembrane domains and two calcium-binding EF-hand 

motifs in the C-terminal tail (Figure 2.24 A). Both, the C- as well as the N-terminal tail 

are predicted to point towards the cytoplasm. PKD2 does not contain a signal peptide 

for specific localization in the nematocyst vesicle. The corresponding gene has been 

cloned from Hydra magnipapillata cDNA (sequences are attached). 

The Nematostella homolog of PKD2 is expressed in nematocytes (Fabian Rentzsch, 

personal communication). The Hydra homolog of PKD2 could not be detected by in 

situ hybridizations. The sense and the antisense probe gave the same unspecific 

staining pattern, although different probes and conditions were tested. 

Nevertheless an antibody that was raised against a peptide sequence in the C-

terminal part of the Hydra PKD2 channel gave a clear signal in Western Blot analysis 

(Figure 2.24 B). The signal could be detected in whole Hydra lysate and was present 

in both head and body column lysate. The antibody against the Hydra protein also 

detected a signal in Nematostella lysate at ~100 kDa which matches the calculated 

theoretical molecular weight of 103.16 kDa). The preimmunesera did not show any 

prominent signals.  
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Figure 2.24: Domain organisation of PKD2 and Western Blot analysis. A schematic 
representation of Hydra PKD2 channel.  B PKD2 can be detected in Hydra lysate and is present in the 
head as well as in the body column lysate. The antibody against the Hydra PKD2 detects also a signal 
of the corresponding molecular weight in Nematostella. In capsules, no signal for PKD2, but a 
prominent smaller protein is detected. The preimmuneserum (PPI) does not show any prominent 
signal. 
 

 

Surprisingly, although expressed at least in nematocytes in Nematostella, the 

antibody did not detect the protein in lysate of isolated Hydra capsules in Western 

Blot analysis. Although the capsules were applied in excess, no band at 96 kDa was 

detectable, but signals with lower molecular weight were visible. This might be due to 

degradation of the channel inside the capsules or unspecific binding of the antibody.  

The detected signals differ in intensity (Figure 2.25). PKD2 is first present at the 

onset of tubule outgrowth. The brightest signal is obtained in nests of nematocytes 

with an outgrown tubule. The signal covers the complete nematocyst vesicle. This 

might indicate a massive expression and presence of the PKD2 protein during 

tubulation. The protein is correlated to the outgrowth of the tubule; other localisations 

might result from mass-flow due to the strong expression. When the tubule is 

invaginated, some remaining signal of PKD2 can still be detected associated to the 

tubule.  
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Figure 2.25: Immunostainings of PKD2 in Hydra magnipapillata. A overview of the staining 
pattern. PKD2 can be detected in nests of developing nematocytes in the body column. B Co-staining 
of PKD2 and anti-Dom1, a capsule wall marker. The detected signals differ in intensity during 
nematocyte development. PKD2 appears first at the onset of tubulation. At developmental stages with 
a maximal length of the non-invaginated tubule, PKD2 is most abundant in the nematocyte (see C). 
After Invagination the signal looses intensity. C Co-staining of PKD2 and Minicollagen-15 at outward 
tubule stage. D After invagination, PKD2 remains associated with the tubule. 
 

 

By triple staining of PKD2, Minicollagen-15 and Cnidoin or Dom1 respectively, the 

development of nematocytes and the different phases of tubulation can be visualized 

(Figure 2.26). While the tubular proteins Minicollagen-15 and Cnidoin mainly 

colocalize, PKD2 labels the onset of tubulogenesis and later on the whole 

nematocyte. By co-staining of the capsule outer wall protein Dom1 with Minicollagen-

15 and PKD2 all major components of the developing capsule (wall and tubule) can 

be detected. 
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Figure 2.26: fine-localisation of PKD2 by triple-immunostainings. A co-staining of the tubular 
proteins NCol-15 and Cnidoin with PKD2. B co-staining of the nematocyst wall antigen Dom1, the 
tubule protein NCol-15 and PKD2. 
 

PKD2 can also be detected by immunostainings in Nematostella vectensis where it is 

present in a subset of nematocytes in the tentacles (Figure 2.27). Some non capsule 

related, possibly unspecific staining signals were present in the mesenteries. Co-

staining with Minicollagen-1 reveals that those nematocysts showing a PKD2 signal 

are not positive for Minicollagen-1. They might represent different developmental 

stages. 

 

 
Figure 2.27: Staining of Nematostella with HyPKD2 antibody. A overview of a whole primary polyp 
co-stained for HyPKD2 and NCol-1. B magnification of a tentacle. 
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HyPKD2 could be involved in determining the tubule length by sensing the tension in 

the vesicle membrane, it has been proposed to control the growth of renal tubules as 

well (Lubarsky & Krasnow, 2003).  An inhibition of the channel should then lead to 

malformed capsules. Gadoliniumchloride is known to block mechanosensitive ion 

channels (Ermakov et al., 2010), even PKD2 mediated currents could be inhibited by 

GdCl3 application (González-Perrett et al., 2001). Treatment with 100 µM 

Gadoliniumchloride leads to a dramatic reduction of the PKD2 signal, higher 

concentrations are not tolerated by the animals (Literature values for PKD2: half 

block 206 µM, full inhibition 400 µM; Anyatonwu & Ehrlich, 2005).  

 

 
 
Figure 2.28: Gadoliniumchloride treatment and nematocyte morphology after treatment. A 
overview of the effect of Gadoliniumchloride on the presence of PKD2 as well as the overall presence 
of developing nematocytes visualized by Minicollagen-15. All images are acquired upon the same 
conditions. B close-up of developing nests after 14 days of Gadoliniumchloride treatment (23 days 
incubation with Gadoliniumchloride gave the same results) The staining pattern is the same as in 
untreated animals, but the intensity is reduced. 
 

The general number of developing nematocytes in the body column of Hydra seems 

not to be affected even after 23 days of treatment, as visualized by co-staining with 
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Minicollagen-15 (Figure 2.28 A). Although the amount of PKD2 seems to be reduced 

upon Gadoliniumchloride treatment, malformed capsules could not be observed. The 

morphology of the capsules remained unaffected and the remaining localisation of 

PKD2 was the same as for untreated animals (Figure 2.28 B).  

 
Figure 2.29: Expression of GFP-tagged PKD2 in yeast. A confocal section of yeast expressing wild-
type PKD2, the channel is retained inside the cell. B Expression of a C-terminal truncated mutant of 
PKD2. The channel is transported to the plasmamembrane. C growth tests on different media with 
yeast expressing wildtype and mutant PKD2 as well as the empty vector. 
 

To address functional properties of the HyPKD2 channel I performed experiments in 

yeast (Saccharomyces cerevisiae BY4741). The localisation of PKD2 within the cell 

seems to be regulated by the C-terminal cytoplasmic tail of the channel. In yeast, C-

terminal truncation of the protein alters the trafficking inside the cell. While the wild 

type channel is retained inside the cell in the ER, a mutant with a C-terminal 

truncation was transported to the plasma membrane (Figure 2.29). PKD2 is 

supposed to be a non-selective calcium channel. To test the activity of the ion 

channel, different growth tests were performed. Yeast expressing HyPKD2 wildtype, 

PKD2 C-terminal truncation and empty vector were compared regarding their growth 

on different media. On SD media the channel is not expressed, only in the galactose-
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containing SGal-media the expression of the transgenic construct is activated. The 

addition of sodium chloride or caesium chloride to the SGal-medium would result in 

an influx of caesium and sodium if the channel was active in the plasma membrane 

and toxicate the cells. Therefore a reduced growth was expected if the channel was 

functional. In the performed growth tests, no difference could be observed between 

yeasts expressing PKD2, PKD2 ∆C or empty vector. 
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3. SUMMARY, DISCUSSION AND PERSPECTIVES 

 

3.1 Cnidoin – elastic component of the nematocyst 

Different elastic proteins are used among the animal kingdom facilitating various 

functions. Examples can be found in mussels (byssal threads; Benedict & Waite, 

1986), in insects (spider silk, reviewed in Römer & Scheibel, 2008; jumping cicadas 

[resilin], Burrows et al., 2008) as well as in vertebrates (Elastin in blood vessels; 

Sage, 1982). 

The elastic protein Cnidoin from Hydra represents a basal member of elastomeric 

proteins. Cnidoin possesses a remarkable repetitive sequence, being rich in glycine, 

glutamine and methionine. While glycine and glutamine are well known components 

of elastic sequences, the role of methionine in this context is still elusive. The 

repetitive sequence is highly similar to the elastic sequence in Spidroin-2 (Hinman & 

Lewis, 1992) with the repetitive motif being GxGQQ. FTIR measurements confirmed 

the lack of secondary structures in the large elastic domain. Cnidoin contains a signal 

peptide for the incorporation in the nematocyst and a propeptide. The protein is 

uniquely expressed in nematocytes of all types and incorporated in the wall and 

tubule of the nematocyst. The fact that the different localizations of Cnidoin can only 

be revealed by applying different fixatives might indicate an altered molecular 

arrangement or different interaction partners of Cnidoin in the capsule wall and 

tubule.  

Cnidoin possesses terminal CRD domains and recombinant protein shows a strong 

tendency to aggregate and to form fibres even under harsh conditions like 8 M urea. 

In the presence of reduced glutathione it polymerizes with itself very quickly. This 

shows that Cnidoin has features to also act with other proteins containing CRD 

domains, like minicollagens or NOWA (Engel et al., 2001; Engel et al., 2002; 

Adamczyk et al., 2008) although a covalent interaction remains to be demonstrated. 

All these proteins are structural components of the capsule wall or tubule. Therefore 

the linkage of structural proteins by disulfide bonds can be considered as one of the 

major features of nematocysts. Disulfide bonds are very stable and the dense 

network provides the molecular basis for the extraordinary properties of the capsule. 

While the minicollagens form a stiff and tear resistant meshwork, the incorporation of 

Cnidoin renders the nematocyst structure elastic. The nematocyst is loaded with an 

extreme pressure of 150 bar by the synthesis of poly-γ-glutamate (Weber, 1989; 



DISCUSSION 
   

 39 

Szczepanek et al., 2002). The mature capsule has a stretched configuration (Figure 

3.1). The release of this mechanically stored energy enables the extreme 

acceleration by which the spines and the tubule are released during discharge.  As 

shown by MD simulations, Cnidoin acts like a typical elastic protein. The driving force 

for the collapse of Cnidoin is the burial of hydrophobic residues inside the protein. 

With Cnidoin, the long-time postulated elastic component of the nematocyst could be 

identified.   

 
Figure 3.1: Schematic representation of a nematocyst with the contributions of minicollagens and 
Cnidoin. In the discharge-ready nematocyst, the minicollagen-Cnidoin co-polymer is stretched. Upon 
discharge, the elastic Cnidoin relaxes, the stored energy is released. 
 

The elastic properties might not only play a role in the storage of mechanical energy 

to facilitate the discharge. They might also be used to stabilize the capsule and to 

prevent a rupture of the rigid collagenous network during discharge. The tubule is 

attached to the capsule wall and when it is expelled it must not rupture. Otherwise an 

adhesion on the prey or substrate would not be mediated. The prey could escape, 

nematocyst-mediated locomotion would be impossible. The rupture of the 

nematocyst would also risk damage of the surrounding tentacle tissue. This could be 

avoided by rendering the capsule structure elastic, so that it can withstand the 

biomechanical stress. 

The molecular properties make Cnidoin an interesting target for biotechnological 

applications. The elastic polymers could be used as biological plastic, the 

combination with minicollagens induces a stiffness and tear-resistance to these 
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polymers comparable to spider silk that have already been subjected to biotechnical 

applications (Omenetto & Kaplan, 2010). By the proportion of each component, the 

properties could be fine-tuned.  

 

3.2 The control of nematocyst discharge: TrpA & Nematocalcin 

The apical surface of nematocytes carries the cnidocil apparatus. A sensory structure 

by which the animal can detect prey-derived mechanical and chemical stimuli. The 

cnidocil apparatus consists of the central cnidocil and a horseshoe-like arrangement 

of stereocilia. The molecular components involved in triggering discharge were 

unknown so far. The cnidocil apparatus provides structural similarity to the hair cells 

in the inner ear of vertebrates, therefore a similar mechanotransduction machinery 

can be expected. Deflection of the cnidocil and the stereocilia by a passing prey 

could lead to a calcium influx, depolarisation of the cell and finally to nematocyst 

discharge. For hair cells in mice, TrpA has been proposed to be the 

mechanotransduction channel (Corey et al., 2004) but it was shown not to be 

essential for hearing in the mouse model (Kwan et al., 2006). Nevertheless, TrpA is 

clearly involved in mechanosensation in the nematode Caenorhabditis elegans (Kindt 

et al., 2007) and in the sea anemone Nematostella vectensis (Mahoney et al., 2011) 

were it triggers nematocyst discharge. 

The Hydra homologue of the TrpA ion channel could be identified and cloned. Its 

sequence comprises six transmembrane domains and 16 ankyrin repeats in the 

cytosolic N-terminus. 

The expression of HyTrpA1 was restricted to nematocytes and was shown to take 

place in nests of developing nematocytes. In Western Blot analysis, the protein can 

be detected in the whole animal, even in the tentacles. This means after expression 

in developing nematocytes, TrpA is incorporated into its final localization within the 

cell and migrates with the maturating nematocyte to the tentacles. In 

immunostainings the protein can be detected in nests of developing nematocytes as 

well as in the stereocilia of the cnidocil apparatus of mature nematocytes.  

The discharge process is known to depend on extracellular calcium. Therefore TrpA 

provides a good candidate for a mechanosensitive transduction channel. The N-

terminal ankyrin-repeats might bind to the actin cytoskeleton of the stereocilia. Due to 

the protein binding properties of the ankyrin-repeats and its spring-like behaviour 

(Gaudet, 2008), this linkage could correspond to the gating spring. A similar 
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arrangement has been proposed for the vertebrate hair cell, but could so far not been 

proven without doubt.  

In addition, the channel could be associated to tip-links that bind to adjacent 

stereocilia. While in vertebrate hair cells cadherin23 and protocadherin15 are known 

components of the tip-links (Siemens et al., 2004; Ahmed et al., 2006), the molecular 

nature of these links in cnidarians is still elusive, although the presence of inter-

stereocilia-connections has been shown by electron microscopy (Golz & Thurm, 

1991). So far, no cadherin23 or protocadherin 15 homologues have been identified in 

Hydra. 

Penta-EF-hand proteins have been shown to bind directly to ion channels. The 

penta-EF-hand protein Peflin binds to a TrpN channel from Xenopus in yeast two-

hybrid screens, GST-pulldowns and a cell model (Wiemuth et al., 2012), Sorcin has 

been shown to interact with the cardiac calcium release channel (ryanodine receptor, 

RyR) and to modify the open-probability of the channel (Lokuta et al., 1997). In Hydra 

the penta-EF-hand protein Nematocalcin could be detected in immunostainings in 

stereocilia as well as TrpA. But while actin and TrpA encompass a more distal part of 

the structure, Nematocalcin is located at the basal part. Indeed, only the upper part of 

the stereocilia is associated with membranes, the rods anchor the structure in the 

cytoplasm (Golz & Thurm, 1991). The tip of the stereocilia is therefore suspected to 

be the localisation of the mechanotransduction machinery. Whether Nematocalcin 

and TrpA interact on the molecular level has yet to be shown. So far, an interaction of 

both proteins could not be proven on the biochemical level. TrpA could interact with 

Nematocalcin or other calcium-sensitive proteins by its ankyrin-repeats to be 

regulated by calcium. Moreover calcium itself has been shown to influence the gating 

of TrpA directly (Doerner et al., 2007). The regulation and gating behaviour of TrpA 

will be subject of further studies, including the characterization in HEK293 cells by 

patch-clamp measurements. In this system a mechanical pulse can be applied by a 

pointed liquid flow to test the mechanosensitivity of the channel. A functional 

characterization of the channel in a hetereologous system seems to be essential, as 

functional studies in Hydra appear to be very hard to address. The inhibition of 

Hydra’s feeding behaviour by incubation with FM1-43 provides a first hint. But FM1-

43 is not selective for TrpA. It could also act on other Trp channels. Different specific 

chemical inhibitors and activators of TrpA have been applied (Cinnamaldehyde, 

Polygodial, Zinc chloride, HC 030031, A 967079), but none of them could provide 
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functional data as they were not tolerated by the animals. In Nematostella, a 

modulation of the TrpA ion channel by TrpA activators (URB-596 and Polygodial) and 

inhibitors (Ruthenium Red and streptomycin) has been shown to have an impact on 

the discharge rate (Mahoney et al., 2011). 

The cnidocil is mechanosenory without any doubt and the discharge process itself 

has been shown to depend on external calcium (Nüchter et al., 2006) but the calcium 

signals during discharge could not be visualized so far. Experiments I performed with 

the calcium-sensitive dye Fura-2 were not able to detect a calcium signal in Hydra 

nematocytes during discharge induced by electrical stimuli. It might be worthwhile to 

try a more sensitive dye but the problem may be that of the uptake of the dye as 

Hydra is covered by a mucous glycocalyx that might prevent internalisation of the 

dye. Furthermore all Hydra cells will take up the dye and it might be difficult to 

distinguish the nematocyte derived signal from the tissue background. Nevertheless 

it would be very interesting to visualize the calcium signals during discharge, as this 

could clarify the site of calcium entry from the surrounding medium and the 

progression of the signal inside the cell. It is still unclear whether other signalling 

molecules or proteins transport the calcium signal further. 

The identified penta-EF-hand protein Nematocalcin could play a role in calcium 

signalling prior to or during discharge. The protein is highly conserved when 

compared to other well-characterized penta-EF-hand proteins like Sorcin or 

Grancalcin. It has been shown that penta-EF-hand proteins like Grancalcin (Jia et al., 

2000) form dimers by the interaction of their fifth EF-hand motifs. Whether the same 

is true for Nematocalcin has to be clarified in the future. Nematocalcin can be 

detected in immunostainings in the stereocilia surrounding the cnidocil at a more 

basal position than TrpA. This localisation of Nematocalcin was also confirmed by 

immunogold TEM. Grancalcin has been shown to be relocated from the cytoplasm to 

the plasma membrane upon binding of calcium (Boyhan et al., 1992). Calcium 

signalling is thought to involve the N-terminal glycine and proline rich domain (Jia et 

al., 2000), binding of calcium results in structural changes and hydrophobic residues 

are exposed to the aqueous environment (Lollike et al., 2001) which facilitates 

localization to hydrophobic structures like the membranes. The localization of 

Nematocalcin in nematocytes in the absence of calcium remains controversial. In 

some preparations it could be detected in a more cytosolic distribution, maybe 

associated with the microtubular basket that surrounds the capsule. Whether this 
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behaviour is random, depends on received stimuli or on the presence of calcium will 

have to be clarified in future. As Nematocalcin was detected during the proteome 

analysis of isolated nematocytes, it can be speculated that it indeed is associated 

tightly with the nematocyst, at least a fraction of it.  

Grancalcin interacts with L-Plastin, a protein known to have actin bundling activity 

(Lollike et al., 2001). As actin is a major structural component of the stereocilia of the 

cnidocil apparatus in Hydra, this might provide a hint for the function of Nematocalcin. 

It might play a role in regulating the actin bundling of the stereocilia and therefore in 

adaption of the sensory structure to a given stimulation. For hair cells adaptation has 

been proposed to be mediated by a myosin, attached to tip-links and moving along 

actin filaments as well as calcium dependent closure of the transduction channel (see 

Hudspeth, 2005 for review). 

Although the immunostainings show a clear localization of Nematocalcin in the 

stereocilia of the cnidocil apparatus that has been confirmed by TEM and the 

transgenic animals, the in situ showed a broader expression. This could be due to 

very similar penta-EF-hand proteins in Hydra, which are expressed more 

ubiquitously. NCBI BLAST analysis of Nematocalcin against Hydra magnipapillata 

revealed the presence of four highly similar predicted proteins (Table 2). 

 

Table 2: Compilation of Nematocalcin-similar proteins in Hydra. 

Name Accession 
number 

Query 
coverage 

Identity 

peflin-like  
 

XP_002168493.2  90%  36%  

programmed cell death protein 6-like  
 

XP_002169270.2  83%  35%  

calpain-B-like  
 

XP_002167620.1  80%  37%  

grancalcin-like  
 

XP_004212885.1  61%  34%  

 
 

The observed expression pattern in the in situ hybridization might therefore be due to 

binding of the probe to similar transcripts or be caused by unspecific background 

staining. The gene is too short to select another probe of appropriate size. 

Nevertheless, some stained nematocytes could be observed, indicating expression of 

Nematocalcin in almost mature nematocytes.  



DISCUSSION 
   

 44 

The transgenic animals expressing Nematocalcin eGFP under the control of the 

NOWA promotor confirm the immunostainings and the presence of Nematocalcin in 

the cnidocil apparatus. Furthermore they provide a powerful tool for further research. 

Unfortunately the mutation of calcium-coordinating residues abolished expression of 

the corresponding transgenic construct. It might be worthwhile to check the 

expression of different intermediate variants or to change the amino acids to 

glutamine and asparagine instead of alanine in order to perturb the protein structure 

less and to produce a functional protein. 

 

3.3 Regulation of nematocyst morphogenesis: Nematomyosin & PKD2 

The formation of nematocysts in Cnidarians is a complex process that has to be 

carefully regulated. The different types of capsules require distinct morphologies of 

their tubules. Tubules of various capsules differ in shape, length and diameter as well 

as in the possession of spines (Weill, 1934). In Hydra, nematocytes differentiate from 

i-cells. The nematocyst is formed as a giant post-Golgi vesicle (Slautterback & 

Fawcett, 1959; Holstein, 1981). The capsule primordium is surrounded by an 

arrangement of microtubules (Slautterback, 1963) that originate in a pair of centrioles 

near the Golgi (Westfall, 1966). The microtubules might guide the arriving vesicles to 

the site of fusion (Slautterback, 1963) or change the size of the capsule primordium 

to shape the growing nematocyst (Holstein, 1981). Wall proteins form a thin layer 

along the vesicle membrane covered with microtubules that thickens by the addition 

of further structural proteins. The microtubules seem to be required for a straight 

capsule wall. If the wall extends above the microtubules it appears wrinkled (Watson 

& Mariscal, 1984b).  

The identified nematocyte-specific protein Nematomyosin belongs to the non-

muscular type II myosins. They are characterized by a head-domain, which 

hydrolyses ATP to convert chemical energy into movements, and a tail-domain, that 

can interact with other proteins by coiled-coil interactions. These myosins are 

responsible for movements of organelles and vesicles inside the cell along actin 

filaments. Non-muscle type II myosins have also been described to locate to Golgi 

membranes and on Golgi derived vesicles (Ikonen et al., 1997). The interaction of 

myosin II with the Golgi membrane is enhanced by G-protein activation. Myosin type 

II is involved in budding and coating of a subpopulation of non-clathrin coated 

vesicles (Narula & Stow, 1995) that derive from the trans-Golgi-network (TGN).  
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Nematomyosin has been shown to be associated with the nematocyst by its 

detection during the proteome analysis. Immunostainings revealed the presence of 

the protein in nests of developing nematocytes. The abundance of Nematomyosin 

alters during the developmental stages. While it surrounds the whole capsule at early 

stages, it is restricted to a collar around the basis of the outgrowing tubule. In almost 

mature capsules, only some protein is left at the apical part of the capsule. Due to its 

localization, a function of Nematomyosin during the outgrowth of the tubule can be 

assumed. Taking into account that myosins can create movements and forces, it 

could shape the nematocyst vesicle. By extending the vesicle in early phases of 

development it allows the capsules to assemble inside. When the tubule starts 

forming, a constriction of the nematocyst vesicle is needed. After the tubule has 

invaginated, the structure of the capsule is determined and the myosin is not 

necessary for the development of the capsule any more. It is crucial for the further 

understanding of Nematomyosin and the capsule morphogenesis itself to reveal 

interaction partners of Nematomyosin. Typically myosin interacts with actin, while 

forces along microtubules are created by dynein and kinesin. So far, no actin 

cytoskeleton appears to be involved with the capsule development. As described in 

the beginning of this section the nematocyst primordium is covered by a basket of 

microtubules. It might therefore important to consider a direct or indirect interaction of 

Nematomyosin with microtubules. Such interactions could be elucidated by binding 

assays and pulldown experiments. It has been proposed that myosin can bind to 

microtubules or microtubule associated proteins in vitro (Shimo-Oka et al., 1980) but 

the cross-play of myosins with actin and microtubuli is still elusive. It has been shown 

that myosins can intercalate directly in the membrane (Schewkunow et al., 2008) by 

inserting the tail region between the phospholipids of the membrane. Therefore 

Nematomyosin could be either inserted into the nematocyst vesicle membrane or 

interact with the proteinous capsule itself and shape the nematocyst primordium and 

growing tubule by tearing and constriction. Which possibility accounts for 

Nematomyosin remains to be shown. The fact that Nematomyosin is crucial for the 

development of intact capsules is provided by experiments where Nematomyosin is 

inhibited by Blebbistatin. This leads to malformed capsules. 

The scaffold of the outgrowing tubule is formed by the proteoglycan Chondroitin 

(Adamczyk et al., 2010) that is associated to Nematogalectin (Hwang et al., 2010). 

Nematogalectin in turn might recruit Minicollagens to the tubule by binding their N-
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glycosylation sugar residues (Engel et al., 2001). As soon as the everted tubule is 

formed outside of the capsule wall, the Golgi regresses and degrades (Slautterback 

& Fawcett, 1959). The tubule is inverted and coiled inside the matrix of the 

nematocyst. During the step of invagination fibres have been described (Watson & 

Mariscal, 1984a) to be located at the inner wall of the external tubule and the outer 

wall of the inverting tubule. These fibres interconnect pleats of the tubule and appear 

to bind calcium (Watson, 1988). The discrete function of these fibres is unclear. They 

might facilitate the invagination process. The invagination has been proposed to be 

accompanied by increased osmotic stress and therefore a loss of fluid from the 

capsule (Watson & Mariscal, 1984a).  

In immunostainings PKD2 can be detected in nests of developing nematocytes. The 

strongest signal can be detected at stages with maximally outgrown tubule. The 

signal appears first at the onset of tubulation, at the site were the tubule grows out. At 

these early stages of tubulogenesis PKD2 shows a similar distribution as 

Nematogalectin B (Hwang et al., 2010). Interestingly a Galectin-3 acts as a natural 

brake on cystogenesis (Chiu et al., 2006) in the polycystic kidney disease and 

Nematogalectin is important for the tubulation of Hydra nematocytes (Hwang et al., 

2010). Thus PKD2 and Nematogalectin might interact and control the outgrowth of 

the nematocyst’s tubule. Co-staining both proteins might provide further hints towards 

the mechanics and regulation of tubulation.  

At stages of outgrown tubule, the signal is very bright and located inside the whole 

nematocyte. This is probably due to massive expression and therefore large amounts 

of the protein in the ER. Nevertheless the protein is still thought to be in the 

membrane of the nematocyst vesicle. It could be involved in sensing the tension 

created by the outgrowing tubule. As different capsule types require different tubule 

length a regulation of the tubule growth is absolutely needed. A distinct signal, which 

could be mediated by PKD2, has to be given when the tubule is ready for 

invagination.  

Apart from pure calcium signalling, Polycystins have been shown or suspected to act 

on multiple signalling pathways: mTOR, NF-κB, Hippo (canonical Wnt is modulated 

by Hippo) (Boletta, 2009, Banzi et al., 2006, Happé et al., 2011, Varelas et al., 2010). 

Which ones are linked to nematocyst morphogenesis has to be shown. Interestingly it 

has been shown that NF-κB is essential for the nematocyte development in 

Nematostella (Wolenski et al., 2012). PKD2 could not only sense the size of the 
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outgrown tubule but also have an impact on the production and crosslinking of 

structural components as it was shown to regulate the secretion and assembly of 

ECM components (Mangos et al., 2010). In addition, PKD2 has been identified as an 

important factor of the growth of the Schizosaccharomyces pombe cell wall as well as 

in vesicle trafficking (Aydar & Palmer, 2009). In polycystic kidney disease, caused by 

mutations in either PKD1 or PKD2, defects in the ECM can be observed (Ramasubbu 

et al., 1998). This is of particular interest, as a significant portion of nematocyst 

proteins contain ECM motifs (Balasubramanian et al., 2012). 

As shown by the immunostainings, PKD2 seems to enter the nematocyst passively 

by tubule invagination. There, it is not thought to be active anymore. This fact is 

further proven by Western Blot analysis, in which the full-length protein could not be 

detected in isolated nematocysts. In Western Blot analysis, the protein was detected 

in head as well as in body column lysate. The presence in the head is unexpected if 

the protein plays a role in capsule development, as in the tentacles only mature 

capsules are present. The signal might result from contaminant body column tissue in 

the head lysate sample. In Immunostainings, no signal in the tentacles can be 

observed.  

A regulation of the localization of PKD2 is crucial in nematocytes to ensure its proper 

function. The experiments in yeast showed that the C-terminal domain of PKD2 is 

involved in protein trafficking. Only the C-terminal truncated mutant was transported 

to the plasmamembrane while the wildtype was retained in the ER when expressed 

in yeast. The C-terminal part of the protein contains clusters of acidic amino acids. 

Those might be recognized by the phosphofurin acidic cluster machinery (PACS), as 

it was already shown for the human PKD2 channel (Köttgen et al., 2005). Although 

located at the plasmamembrane in yeast, the channel did not show any activity in 

growth tests. This might indicate that it needs to be activated or the C-terminal 

truncation affects its function. PKD2 has been shown to be inhibited by low pH 

(González-Perrett et al., 2001) although no values are given, the growth conditions of 

yeast were maybe not optimal for the channel. 

In human renal tissue PKD2 interacts closely with PKD1 by coiling of their C- termini 

(Hanaoka et al., 2000), however both proteins do not completely overlap in 

localization in human renal tissue, suggesting that they might be active individually as 

well as in a complex together (Foggensteiner et al., 2000). The C- terminus of PKD1 

is thought to be cleaved upon mechanical stimuli and transported in the nucleus, 
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where it might act on gene expression (Chauvet et al., 2004). Several proteins from 

Hydra have been predicted as PKD1-like. It might be possible that both proteins do 

also interact in the capsule morphogenesis. 

As the functional characterization of PKD2 in Hydra is still missing, this gene might 

be a good candidate for siRNA treatment. By siRNA treatment the effect of PKD2 on 

developing nematocytes should be clearly visible. If it is required as a tube size 

sensor or as a regulator of polymerization, knock-down should lead to deformed 

capsules that show abnormal tubules. The inhibition of PKD by Gadoliniumchloride 

reduced the PKD2 signal, but no malformed capsules could be observed. The 

remaining channel activity might be sufficient to maintain normal development and 

the nematocyst development might follow the all-or-nothing principle. 
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4. MATERIALS & METHODS 
 

4.1 Animals 

Hydra magnipapillata was used for all experiments except the creation of transgenic 

animals. Animals were cultured in hydra medium (1 mM CaCl2, 0.1 mM MgCl2, 0.1 

mM KCl, 1 mM NaH2CO3, pH 7.8) at 18 °C and fed two to three times a week with 

freshly hatched Artemia salina nauplii. Animals used for the experiments were 

starved for 24 h.  

For the creation of transgenic animals, Hydra vulgaris AEP was used. Animals were 

fed daily for a month and then starved for a week to induce gametogenesis. 

The starlet sea anemone Nematostella vectensis was cultured in 1/3 seawater pH 7.8 

at 18°C. The animals were fed once a week with Artemia. To induce gametogenesis 

the incubation temperature was shifted from 18°C in the dark to 26°C in the light. An 

alternate method is to maintain the culture in aquariums. There the animals produce 

constantly some eggs and sperm that are released into the medium, where the 

fertilization occurs. The development from the embryo to the planula larvae takes 2 

days at 18°C, till a primary polyp is formed 10 days have passed. For 

immunostainings primary polyps were used. 

 

4.2 Transgenic animals 

For Nematocalcin transgenic animals were produced by injection (FemtoJet) of 

embryos according to Wittlieb et al., 2006. The transgenic construct consists of a 

pBluescript II SK- derivate with the NOWA promotor driving the gene expression. The 

protein is visualized in the animals by its C-terminal eGFP tag. Transgenic constructs 

were checked by gene gun whether they are expressed or not. 

To access the functional aspects of Nematocalcin, the putative calcium-coordinating 

sites (D86, D88, E97 for EF2 and D116, D118, E127 for EF3) were mutated to 

alanine by site directed mutagenesis by PCR. The mutated construct was not 

expressed in Hydra as determined by gene gun experiments. 

 

4.3 Nematocyst isolation 

Intact nematocysts were isolated from whole hydra tissue after freezing the tissue in 

1.5 ml reaction tubes for at least one hour at -80°C. The thawed tissue was 

homogenized by a syringe. The isolation of nematocysts represents a density 
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gradient centrifugation. 10% sucrose was added to the solutions in order to prevent 

an osmotic triggered discharge of the nematocysts. After addition of 50 % (v/v) 

Percoll in ddH2O with 10% sucrose and 0.003 % Triton-X 100 the homogenized 

tissue samples were centrifuged at 7 500 g and 4 °C for 15 minutes. The supernatant 

was discarded and the pellet was resuspended in 50 % (v/v) Percoll in ddH2O with 

10% sucrose and 0.003 % Triton-X 100 and centrifuged again for 15 minutes. The 

pellet was resuspended in PBS with 0.003% Triton-X 100, 10% Sucrose. After one 

more centrifugation for 10 minutes at 7500 g and 4°C, the capsules were 

resuspended in a little volume PBS, 10% Sucrose. Isolated nematocysts were 

quantified in a Neubauer counting chamber and used directly for experiments or 

frozen at -20°C. For counting an aliquot of the capsules was diluted 1:10. Each 

square of the chamber was counted and the mean was multiplied by 100.  

 

4.4 Preparation of cDNA and molecular cloning 

Isolation of whole RNA was performed using the RNeasy Mini Kit (Qiagen) according 

to the manufacturer's instructions. The isolated RNA was transcribed by Superscript 

III Reverse Transcriptase (Invitrogen) into cDNA. Using a pair of appropriate primers 

(see Table 3) the gene of interest was amplified by PCR.  

 

Table 3: Primer for gene amplification from cDNA.  

Tm = melting temperature 

* The Nematocalcin reverse primer comprises 3’UTR. Further subcloning was necessary to obtain a 

pure Nematocalcin cDNA clone. 

 primer sequence (5’- 3’) Tm (°C) 

Cnidoin forward ATGTCTCGATTACTACTTC 53.88 

Cnidoin reverse TTATCTCTTTTTACCAAAAGCTCC 59.98 

TrpA forward ATGGATAGCAACTCAGAGTCACTGG 66.74 

TrpA reverse TCAATCAACTTTGTTTTTGAACGAAGAACTTG 66.92 

Nematocalcin forward ATGGCATATCCAGGATACAATC 60.36 

Nematocalcin reverse CTAGCTGGGAAACAACCAG * 60.60 

Nematomyosin forward ATGGACAACGAAGAAGATAGTTTA 60.78 

Nematomyosin reverse TCAATCGGTGCCGTCCTCATC 67.37 

PKD2 forward ATGAGTGCTACAAAAAGAATTAGAAGTACAAAAG 65.62 

PKD2 reverse GTAATAATTTCACACTCACTCGCTG 62.96 
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The PCR product was purified and ligated at 4°C overnight into the pGEM-T vector 

(Promega) by TA cloning. As the Precisor polymerase was used in the PCRs to 

amplify the gene of interest from cDNA, an additional A-tailing with the EuroTaq 

polymerase had to be performed prior to ligation in pGEM-T. The ligation was 

precipitated with ethanol and transformed into E. coli by electroporation. Positive 

clones were selected by colony PCR. The plasmids were extracted by a Miniprep kit 

(Promega). The sequence was verified by automated sequencing at Eurofins MWG 

Operon.  

 

4.5 In situ hybridization 

The in situ probes were amplified from the pGEM-T clones by PCR using the M13 

forward and reverse primers. The purified and quality checked PCR product was 

transcribed in vitro to DIG labelled RNA by Sp6 and T7 RNA polymerases, purified by 

precipitation with ammonium acetate and quality checked on a 1% agarose gel (see 

Table 6 for a compilation of all probes used). The in situ probes were diluted to 

approximately 5 ng/µl with hybridizing solution and then used in a 1:100 – 1:1000 

dilution for the experiment. For TrpA a cocktail of four different probes was used. 

Animals were relaxed with 2% urethane in hydra medium and fixed overnight with 

freshly prepared 4% PFA in hydra medium. The fixed animals were transferred to 

100% ethanol and rehydrated in 5 minute steps using 75%, 50%, 25% ethanol in 

PBS, 0.1% Tween20 (PBT). After three 5 min washing steps with PBT the animals 

were incubated with 1x Proteinase K in PBT for 7 minutes. The reaction was stopped 

by adding 4 mg/ml glycine in PBT. Then, the animals were equilibrated in 0,1 M 

Triethanolamin (TEA) for 2x 5 min and incubated for 5 min each with 0.25% and 

0.5% acetanhydride in TEA, followed by 2 washing steps with PBT. Then, a re-

fixation with 4% PFA was performed for 20 min at room temperature, followed by five 

5 min washing steps with PBT. The animals were incubated with hybridizing solution 

(50% Formamide, 5x SSC [0.75 M NaCl, 0.075 M Trisodium citrate, pH 7.0], 1x 

Denhardt's [1% Polyvinylpyrrolidone, 1% Ficoll, 1% BSA], 200 µg/ml yeast RNA, 100 

µg/ml Heparin, 0.1% Tween20, 0.1% Chaps, 10% H2O) for 10 min and then pre-

hybridized in hybridizing solution for 2 hours at 55°C. The probes were diluted in 

hybridizing solution and denatured by heating (75°C, 10 min). The animals were 

incubated with the probes for 2.5 days at 55°C. Unbound probes were removed by 5 

minute washing steps with 100%, 75%, 50%, 25% hybridizing solution in 2x SSC 
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followed by 2 incubations for 30 min in 2xSSC, 0.1% Chaps. The animals were 

equilibrated in Maleic acid buffer (MAB: 100 mM Maleic acid, 150 mM NaCl, pH 7.5) 

for 2x 10 min and blocked in 1% blocking reagent (Roche) in MAB for 2 hours at 

room temperature. For the detection of the DIG labelled RNA probes an anti-DIG 

antibody coupled to alkaline phosphatase was used at 1:4000 in blocking solution at 

4°C overnight. Unbound antibody was washed out during eight 30-60 min washing 

steps with MAB, followed by an overnight washing step. To detect the signal the 

animals were first equilibrated 2x 10 min in NTMT (100 mM NaCl, 100 mM Tris pH 

9.5, 50 mM MgCl2, 0.1% Tween20) at room temperature and than incubated in 

NBT/BCIP (Roche, premixed solution) 1:50 in NTMT in the dark at 37°C. In some 

cases separate NBT and BCIP solutions (Roche) were used. 3.75 µl of each stock 

solution was added per ml staining solution. When reaching the optimal signal to 

background ratio, the reaction was stopped by adding 100% ethanol. The animals 

were rehydrated by incubation for 5 min in 75%, 50% and 25% ethanol in 0.1x PBS. 

After a final rehydration step in PBS the animals were mounted on microscopic slides 

in PBS 90% glycerol. 

For double in situ hybridization with Minicollagen-1 the animals were incubated 

simultaneously with DIG-labelled Cnidoin and FITC-labelled Minicollagen-1 probes. 

After incubation with the DIG antibody (1:2000) and MAB washing, the staining with 

NBT/BCIP was performed. The staining reaction was stopped with ethanol and after 

rehydration the animals were incubated with the FITC antibody (1:2000) overnight. 

After MAB washing, the minicollagen-signal was detected with the FastRed substrate 

(Roche). The reaction was stopped with 100 mM glycine, 0.1% Tween20, pH2.2. 

Samples were washed in PBS and mounted on microscopic slides with PBS 90% 

glycerol. In situ images were captured with the Nikon Eclipse 80i using DIC contrast. 

Image processing was performed with the Nikon software NIS Elements, Adobe 

Photoshop Elements or Gimp. 

 

4.6 Recombinant protein expression and purification 

Recombinant expression in E. coli BL21 (DE3) cells was performed from a pET21b 

vector (Novagen), which introduces a C-terminal polyhistidine tag and is inducible by 

IPTG. Cnidoin protein was exclusively found in inclusion bodies and purified under 

denaturing conditions (8M urea) using Ni-NTA beads. 

Expression in HEK293 cells was obtained by transfecting the cells with pCEP Pu 
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vector. The vector induced a His-tag and a BM40 signal peptide for the secretion of 

the recombinant protein into the medium. Protein purification from the medium was 

performed using Ni-NTA beads. Minicollagen-1 was expressed in HEK293 cells in 

fusion with the maltose binding protein (MBP) to prevent it from aggregation (after 

Engel et al., 2001). 

 

4.7 SDS PAGE & Western Blot 

Isolated nematocysts were solubilised by heating (95 °C, 10 min) in sample buffer 

with or without 2-mercaptoethanol as indicated in the experiments. Hydra lysate was 

prepared by dissolving an animal in reducing or non-reducing sample buffer by 

heating and vortexing. Nematocyst ghosts, the insoluble fraction of nematocysts, 

were obtained by extended SDS washing of the isolated capsules. The ghosts were 

afterwards solubilised in sample buffer. When Hydra head and body column lysate 

was analyzed, 5 heads and 1 body column were considered to contain equal 

amounts of tissue. The heads and body columns were dissolved in sample buffer by 

heating and vortexing. 

The samples were separated by SDS-PAGE, using 12% separating and 4% stacking 

gels, and transferred to nitrocellulose membranes (GE Healthcare, Amersham 

Hybond ECL) by wet blotting with 350 mA for one hour or overnight at 20 mA. 

Blocking was performed for 1 h with 5% skim milk or BSA (depending on the 

antibody, see Appendix Table 4) in PBS 0.2% Tween20. After 3x 10 min washing with 

PBS 0.2% Tween20 the membrane was incubated with the primary antibody (1:1000 

in 1% milk / BSA in PBS 0.2% Tween20) for 1.5 h or overnight, followed by three 10 

min washing steps. The primary antibody was detected using a secondary antibody 

coupled to horseradish peroxidase (1:10 000 in 1% milk / BSA in PBS 0.2% 

Tween20) for 1 h. Detection of chemoluminescent signals by ECL was used to 

visualize the signals on films (GE Healthcare, Amersham Hyperfilm ECL). 

For the polymerization assay of Cnidoin reduced glutathione was added to a final 

concentration of 1 mM to recombinantly expressed Cnidoin. The protein was 

incubated at 37°C. Samples were taken at indicated time points, mixed with non-

reducing sample buffer and boiled for 5 minutes at 95°C. Afterwards the samples 

were kept on ice, until all time points were covered. The samples were separated by 

a gradient SDS-PAGE (4-20%, Bio-Rad), blotted on nitrocellulose, blocked with 5% 

BSA and detected by an anti-penta-his antibody.  
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The copolymerization of recombinant Minicollagen-1 MBP (maltose binding protein) 

and Cnidoin was performed in the presence of 10 mM reduced glutathione. 

Minicollagen-1 MBP was purified by Ni-NTA from HEK293 cell culture supernatant. 

Cnidoin was obtained by isolating recombinant protein from E. coli. As indicated in 

the experiment, various amounts of Cnidoin were added to the Minicollagen-1 

containing sample in the presence of glutathione. The sample was mixed with non-

reducing sample buffer and boiled immediately at 95°. Separation was obtained by 

using 4-20% gradient SDS-PAGE and detection was performed as described above. 

Deglycosylation of Cnidoin was accessed by incubating nematocyst and Hydra 

samples with deglycosylation mix according to the manufacturer’s instructions (New 

England Biolabs, Protein Deglycosylation Mix). This enzyme mix will remove almost 

all N-linked and simple O-linked glycans. Incubation was prolonged to 6 hours. 10 

mM DTT were added to the 10x Glycoprotein Denaturating Buffer to break the 

disulfide bonds of the capsules. The control reaction (included in the kit) under the 

same modified conditions worked fine. Sample separation and detection were 

performed as described above. 

 

4.8 Immunocytochemistry 

Hydra magnipapillata were relaxed in 2% urethane in hydra medium and then fixed in 

freshly prepared 4% PFA in hydra medium, Lavdovsky fixative (50% ethanol, 10% 

formaldehyde, 4% acetic acid, 36% water) or ice-cold methanol depending on the 

antibody (see Appendix Table 4 for the requirements of each antibody). The fixative 

was removed by three 10 min washing steps with PBS 0.1% Triton X100. The 

antibody was diluted in PBS 1% BSA and incubated overnight at 4°C. For co-

stainings of two or three antibodies (see Appendix Table 5) all antibodies were 

incubated simultaneously overnight at 4°C. To remove unbound antibodies three 10 

min wash steps with PBS 0.1% Triton X100 were performed. The incubation with the 

second antibodies was performed for 2 hours at room temperature. The secondary 

antibodies were diluted 1:400 in PBS 1% BSA. In some experiments Hoechst33258 

staining of nuclei was performed. Therefore the samples were incubated with 

Hoechst33258 1:1000 in PBS after the incubation with the secondary antibody for 10 

minutes. To remove unbound antibodies the animals were washed 3 times with PBS 

and then mounted on object slides with PBS 90% glycerol. 

Nematostella were relaxed in the dark. Then they were paralyzed by the careful 
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addition of equal volume of 7.14% (350 mM) MgCl2 in Nematostella medium. 

Afterwards fixation and immunostaining was performed as described above. 

Fluorescence images were captured with the Nikon A1R confocal laser-scanning 

microscope, in part at the Nikon Imaging Center, Heidelberg. Image analysis and 

processing was performed with Nikon NIS Elements, Adobe Photoshop Elements 

and Gimp. 

 

4.9 Immunogold-labelled Transmission Electron Microscopy 

Native, untreated Hydra samples were rapidly frozen by high pressure freezing to 

prevent the formation of ice crystals that could damage the tissue (Holstein et al., 

2010). Cryo-fixation preserves the structures of the samples very well and prevents 

artefacts by chemical fixation. By freeze-substitution the samples were stabilized. 

The rehydrated and fixed samples were subjected to cryo-sectioning that preserved 

the fine internal structures very well. Resin-sections have been tried as well, but cryo-

sectioning produced better samples. Immunostainings were performed on these 

sections with the Nematocalcin antibody. The signal was detected with secondary 

antibodies that were coupled to colloidal gold particles. The electron dense gold is 

visible in the transmission electron microscope as a black dot.  

 

4.10 Transmission Electron microscopy of recombinant Cnidoin 

Supernatants of recombinant Cnidoin samples solubilised in 8M urea were absorbed 

to freshly glow-discharged thin carbon films supported by thick perforated carbon 

layers and negatively stained with uranyl formiate following standard procedures 

(Engel, 1994). 

 

4.11 Scanning Electron microscopy of recombinant Cnidoin 

Fibres from purified Cnidoin protein were washed several times with 8M Urea to 

remove smaller aggregates. The fibres were attached to poly-L-lysine (Sigma-

Aldrich) coated glass cover slides and incubated for 10 min in 0.2% glutaraldehyde, 

2% formaldehyde in aqua dest. After 3 washes (distilled water) the sample was 

incubated with 2.5% glutaraldehyde and after a 10 min washing step (distilled water) 

contrasted with 4% osmium tetroxide for 45 min at room temperature. The sample 

was dehydrated by washing with increasing concentrations of ethanol before 

transferring to 100% acetone. After critical point drying, the samples were coated and 
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imaged. 

 

4.12 Fourier-Transform Infrared-Spectroscopy (FTIR) 

The degree of ordering was assessed on the basis of Fourier-transform mid-infrared 

spectroscopy of dried films of Cnidoin elastic domain. For recombinant expression of 

the Cnidoin elastic domain a DNA fragment coding for amino acids GGQM-AGCG 

was amplified by PCR and cloned four times as a tandem repeat into the pet21 

vector (Novagen). Protein purification was performed under denaturing conditions via 

the C-terminal his-tag. For elution, buffer conditions were changed to PBS (PBS 

[136.9 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 8 mM Na2PO4] including 10 mM 

DTT, 500 mM NaCl, 250 mM Imidazole, protease inhibitor mix) and the eluted protein 

was immediately applied for the experiment. For comparison, nine further proteins 

(hemoglobin, bovine serum albumin, concanavalin, ribonuclease s, lysozyme, ferritin, 

cytochrome c, elastase, casein) were investigated in the same manner. Thus, 10 

different protein solutions at 1 mg/ml each were prepared in the elution buffer for 

Cnidoin elastic domain (see above). Each solution was pipetted to 10 wells (50 µL 

per well) of a 96-well silicon sample carrier and left to dry. This procedure was 

repeated on three further sample carriers and each sample carrier was henceforth 

investigated separately in order to check for consistency and reproducibility. Details 

of the technical setup for spectroscopy are described in Rohleder et al., 2005. After 

vector normalization in the region from 1600 cm-1 to 1715 cm-1 and background 

subtraction, the median absorbance of each 9-fold replication on each sample carrier 

was calculated. In order to investigate the degree of ordering of the proteins we 

followed the implications of Byler and Susi (Byler & Susi, 1986) in that, both, a low 

number of spectral components in the overall Amid I band as well as the existence 

and strength of a peak around 1645cm-1 are indicative for a low degree of ordering. 

The number of spectral components was estimated from fitting one Gaussian curve 

per spectral component and comparing the fit results on the basis of the Akaike 

Information Criterion (Akaike, 1974). Median spectra were fitted with up to 13 

Gaussian curves and up to 10 random starting conditions for any fixed number of 

Gaussian curves. An example of a median spectrum of Cnidoin is shown in Figure 

2.10 A together with a fit result for 5 Gaussian curves (i.e. five spectral components). 

All fit results were analyzed by means of the corrected Akaike Information Criterion 
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(AICc). Weights for the fit with i Gaussian curves were set to be 
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the weighted arithmetic mean was calculated in order to yield the optimum number of 

Gaussians as well as its standard deviation.  

For the investigation of peak positions and widths, those spectral components, which 

contributed less than 1% to the total signal (area under the curve) were omitted from 

further analysis in order to avoid misleading conclusions. The peak around 1645 cm-1 

in the case of Cnidoin had an average width of 17.3 cm-1 and, mathematically, the 

difference to the widths of the other peaks is significant on the basis of a two-sided t-

test.  

However, despite the clear indications for the lower degree of ordering in Cnidoin it 

has to be noted that many assumptions and simplifications enter into this analysis 

such that the results should be considered as supplementary information supporting 

the hypothesis of Cnidoin being a mainly unordered protein. 

 

4.13 Molecular dynamics (MD) simulations 

The overall organisation of Cnidoin was addressed by DisEMBL predictions (Linding 

et al., 2003). Two repetitive sequence units, namely QMQGCGQQMPPMMSGCGG 

and QMQGCGQQLPLMMPGCVG, were selected for investigation in MD simulations. 

Both of the units contain the GCGQQ motif and also a high content of methionine, 

two major features of Cnidoin.  

All simulations were carried out using MD software package Gromacs 4.5.3 (Hess et 

al., 2008). The two Cnidoin peptide units with extended initial structures were first 

solvated in boxes of TIP4P water with an ion concentration (Na+ and Cl-) of 0.1 

mol/litre (Jorgensen, 1983). A cut-off of 1.0 nm was used for non-bonded interactions, 

and the Particle-Mesh Ewald method for long-range electrostatic interactions (Darden 

et al., 1993). Periodic boundary conditions were employed to remove artificial 

boundary effects.  In order to use a time step of 0.2 fs, all covalent bonds were 

constrained using the LINCS algorithm (Hess et al., 1997). All simulations were 

performed under a constant temperature of 300 K and a constant pressure of 1 bar, 

using Nose-Hoover temperature coupling and Parrinello-Rahman pressure coupling 

methods, with coupling time constants of 0.4 ps and 4 ps respectively (Parrinello, 

1981; Hoover, 1985; Nose, 2002). The simulation systems were first energy 
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minimized by using the steepest descent method. Equilibration of the solvent 

molecules was carried out for 500 ps, with all heavy atoms in the peptide restrained 

by a force constant of 1000 kJ·mol-1·nm-2. The two Cnidoin units were then fully 

equilibrated for 500 ns individually. Energy and coordinates of the simulation systems 

were collected every 1000 time steps.  

Umbrella sampling along the end-to-end distance of the two-peptide units was 

performed to probe their elasticity. Structures of the two units with shortest end-to-

end distances in the above-mentioned 500 ns equilibration were chosen as starting 

points. Two new simulation systems comprising ~55,000 atoms, which were large 

enough to accommodate fully extended peptides, were set up. The peptides were 

extended by a pulling force in force-probe MD simulations (Grubmuller et al., 1996). 

Peptide conformations covering Z-components of end-to-end distances between 0.4 

and 7.0 nm were chosen as starting structures for umbrella sampling, with distance 

intervals of 0.4 nm. A force constant of 500 kJ·mol-1·nm-2 was used for the umbrella 

potential. The sampling times were changed with peptide extensions, with longer 

simulation times of 150 ns for extensions shorter than 2.0 nm because of higher 

fluctuations, and shorter times of 50 ns for longer extensions. The potential of mean 

force was calculated by using the weighted histogram analysis method (Kumar, 

1992).  

 

4.14 Gadolinium chloride treatment 

100 µM GdCl3 (Sigma Aldrich) were added to the culture medium. Animals were fed 

2-3 times a week Samples were taken at indicated timepoints and used for 

immunocytochemistry. 

 

4.15 Expression of HyPKD2 in yeast 

HyPKD2 was amplified by PCR with primers containing sites for homologous 

recombination (rec-sites). The PCR product and SalI linearized pGREG576 plasmid 

was co-transformed into Saccharomyces cerevisiae BY4741. By homologous 

recombination yeast creates the vector with the N-terminal GFP tagged PKD2 

(Jansen et al., 2005). The expression of the construct is driven by an inducible Gal-

promotor. Positive clones can be selected by growth on –ura and no growth on –his 

SD Plates.  

Growth tests on SGal –ura 500 mM NaCl, 50 mM CsCl as well as complementation 
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assays with the PLY240 strain (possesses no internal Potassium transporter) and 

growth inhibition zone assays with calcium and potassium were performed. They did 

not show any functionality of the channel. For the growth tests a fresh overnight 

culture was washed with water and brought to an OD600 of 1. 7 µl of this culture as 

well as 3 dilutions (1:10, 1:100m 1:1000) were applied on the appropriate agar 

plates. The wildtype channel was retained in the secretory pathway inside the cells 

as visualized by the Nikon A1R confocal. Therefore a C-terminal truncation mutant 

was created lacking amino acids 707 - 839.  

 

SD –ura plates: 

Yeast Nitrogen Base   5.9 g/l 

KH2PO4    1 g/l 

Drop out supplements –ura 1.94 g/l 

Glucose    2 % 

pH 5.6 – 5.8 through addition of arginine 

Agar     1.5% 

SGal –ura plates contain 4% galactose instead of glucose to drive protein expression 

through activation of the Gal-promotor. 

 

4.16 Hydroxyurea treatment 

Animals were treated with 10 mM Hydroxyurea in Hydra medium and fed daily to 

remove mature nematocytes. When the animals were not able to catch prey any 

more, they were used for further experiments. 

 

4.17 EGTA treatment 

The animals were incubated in 5 mM EGTA in Hydra medium at 18°C for 30 minutes 

and then used for immunostainings. 

 

4.18 Decnidocilation 

To remove the cnidocils, animals were rinsed with 6 % ethylene glycole in Hydra 

medium (after Golz & Thurm, 1990). Afterwards the animals were washed with Hydra 

medium and used for further experiments. 
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4.19 TrpA inhibitors and activators 

The styrol dye FM1-43 (life technologies, molecular probes) was added in 5 µM 

concentration to the culture medium. Stained nematocytes were immediately visible 

under the fluorescence microscope. Artemia were added but no feeding behaviour 

could be observed. 

The more specific activators (zinc chloride [Sigma Aldrich], polygodial [Tocris 

bioscience] and cinnamaldehyde [Sigma Aldrich]) and inhibitors (HC-030031 [Sigma 

Aldrich] and A 967079 [Tocris bioscience]) were added to the Hydra medium in 

various concentrations and incubated overnight to test toxicity of the substances. 

None of them was supported in the concentrations needed. Upon overnight 

incubation in Hydra medium containing these substances, the animals died and 

dissolved. Therefore even short-time incubation with these substances is not 

recommended as toxic effects might interfere with the experimental results. 

 
4.20 Fura-2 mediated calcium measurements 

To visualize the calcium signalling during nematocyst discharge first experiments with 

Fura-2 (Invitrogen, molecular probes) were performed. The dye changes its 

absorption upon binding of calcium from 340 nm to 380 nm. The emission is 

constantly at 510 nm. Therefore Fura-2 is considered as a ratiometric dye and used 

to measure intracellular calcium. The ratio of fluorescence upon excitation with 

340/380 nm represents intracellular calcium ratios. 

Hydra were incubated in 1 µM Fura-2 acetoxymethyl ester (Fura-2 AM) in Hydra 

medium. The ester mediates membrane permeability of the dye. Once inside the cell, 

the AM is cleaved by esterases so that the dye is trapped inside the cells. The 

animals were placed on an object slide were aluminium foil electrodes had been 

attached in close distance. The discharge of nematocysts was triggered by a electric 

pulse of 30 µsec and 24 V DC (according to Holstein & Tardent, 1984) given by a 

Grass SD 5 Stimulator. Not all nematocytes could be brought to discharge by this 

method. The fluorescence was excited with a Lambda DG-4 (Sutter Instrument) and 

observed on a Nikon microscope. No change in the 340/380 ratio of fluorescence 

could be observed. An additional problem was that the animals were still moving, so 

that individual areas were hard to track. The animals contracted upon the electrical 

pulse. Sectioning of the animal, 2% Urethane, 3 mM Heptanol and embedding in 5% 

Gelatine were used to immobilize the animals, but without success. 
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6. APPENDIX 

 
6.1 Antibodies 

Table 4: Compilation of primary antibodies characterized in this thesis.  
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Table 5: Compilation of primary antibodies used for co-stainings. 
 

 Fixation Dilution Species 

Minicollagen-1 

Lavdovsky is best, 

PFA for Cnidoin 

co-staining 

1:500 rabbit 

Minicollagen-15 Lavdovsky 1:1000 rabbit 

NOWA CTLD ice-cold Methanol 1:400 rabbit 

α-tubulin ice-cold Methanol 1:1000 mouse 

β-tubulin PFA 1:1000 mouse 

tyrosinated tubulin PFA 1:1000 rat 

Nematostella Minicollagen-1 
Lavdovsky is best, 

PFA works also 
1:500 guinea pig 

Phalloidin Alexa568 PFA 1:200 - 

actin ice-cold Methanol 1:90 mouse 

Domain 1 Lavdovsky 1:500 guinea pig 
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6.2 ISH probes 

 

Table 6: Compilation of all ISH probes used (unless otherwise stated the sense probe did not 
give a signal). 
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6.3 cDNA and protein sequences 

6.3.1 Cnidoin 
 
 1542 base pairs 
 
 513 amino acids in total (without signal- and propeptide 402 amino acids) 
 54.20 kDa for total transcript (without signal and propeptide 41.44 kDa) 
 
 signal peptide 
 propeptide 
 CRD 
 elastic domain 
 antigenic peptide 
 

   1 ATG TCT CGA TTA CTA CTT CTA TTA CTG GTT TGC TTG ATA TTG CAT AGA TAT GAG GTT GAG  

   1  M   S   R   L   L   L   L   L   L   V   C   L   I   L   H   R   Y   E   V   E 

    

  61 TCA AAG TCC GAA AAA AAA GAT CAT AAA ACG AAA GAG CAT CAA AAA GAA AAA CAC GAA GAA  

  21  S   K   S   E   K   K   D   H   K   T   K   E   H   Q   K   E   K   H   E   E 

 

 121 AAA AAA ATA ACT AAA GAT ATT GAA ATT GCA AAA GTG GAG GAT AAA AAA GGG AAC GAA GAA  

  41  K   K   I   T   K   D   I   E   I   A   K   V   E   D   K   K   G   N   E   E 

 

 181 AAA AAG AAA ACT CTC AAA TCA ACT GAA GAA TCT ACT GAA ACT GGA GAT GAA TCA GAA GGT  

  61  K   K   K   T   L   K   S   T   E   E   S   T   E   T   G   D   E   S   E   G 

 

 241 TCC GGA ACT CAA CGA TCA GAA ACG CTT GAG GCA AGA TCA GAT ACT GAT CAT ACT ACA TCC  

  81  S   G   T   Q   R   S   E   T   L   E   A   R   S   D   T   D   H   T   T   S 

 

 301 ACA GAC ACT GAG AAG ACG ACA ATT GCA AAA AGA GCT GCA CTT CCG GGA GGA GCA ACA TTC  

 101  T   D   T   E   K   T   T   I   A   K   R   A   A   L   P   G   G   A   T   F 

 

 361 TCT GTA CCA CAA GCA GTT AAG CAA TTG AGA TGC CCA GCA CCA TGT TCT CAA TCA TGT GCA  

 121  S   V   P   Q   A   V   K   Q   L   R   C   P   A   P   C   S   Q   S   C   A 

 

 421 TCA TCT GGA TGT TCT CCT AGC TGT TGC ATG AAT AGT ATG CCT CAA ATG CCA GCT TCT CTA  

 141  S   S   G   C   S   P   S   C   C   M   N   S   M   P   Q   M   P   A   S   L 

 

 481 TCA CCA ATG ATG GGT GGA TGT GGT AAT CAA ATG CAG GGT TGT GAC CAA CAA TAT ATG ATG  

 161  S   P   M   M   G   G   C   G   N   Q   M   Q   G   C   D   Q   Q   Y   M   M 

 

 541 GGG GGT TGC GGT GGA CAA ATG CAA GGT TGT GGA CAA CAA ATG CCT CAA ATG TCA ATG GGG  

 181  G   G   C   G   G   Q   M   Q   G   C   G   Q   Q   M   P   Q   M   S   M   G 

 

 601 TGT GGA GGA CAA ATG CAA GGA TGC GGA CAA CAA ATG CCT ATA ATG ATG CCA GGT TGT GGA  

 201  C   G   G   Q   M   Q   G   C   G   Q   Q   M   P   I   M   M   P   G   C   G 

 

 661 GCA CAA ATG CAA GGG TGT GGG CAA CAA ATG CCG CCA TTA ATG GGT GGT TGC GGA GGA CAA  

 221  A   Q   M   Q   G   C   G   Q   Q   M   P   P   L   M   G   G   C   G   G   Q 

 

 721 ATG CAA GGT TGT GGA CAA CAA ATG CCG CAA ATG GTC GGT GGA TGT TTT GGA CAA ATG GTG  

 241  M   Q   G   C   G   Q   Q   M   P   Q   M   V   G   G   C   F   G   Q   M   V 

 

 781 GGT TGC GGC ACA CAA ACA TTT CAA AGT TCA TTA AAA GCG CCC TGC GCA CCT AAC TCA ATT  

 261  G   C   G   T   Q   T   F   Q   S   S   L   K   A   P   C   A   P   N   S   I 

 

 841 GGT TGT GGT CAG CAG CTT CGT GCT CCA ATG GTA TCA ATG ACG CCA GGT TGT GGT GGA CAA  

 281  G   C   G   Q   Q   L   R   A   P   M   V   S   M   T   P   G   C   G   G   Q 

 

 901 ATG CAA GGT TGT GGA CAG CAA ATG CCA CCA ATG ATG TCT GGG TGT GGT GGA CAA ATG CAA  

 301  M   Q   G   C   G   Q   Q   M   P   P   M   M   S   G   C   G   G   Q   M   Q 

 

 961 GGT TGT GGG CAA CAA TCG CCA CCA ATG ATG TCA GGA TGT GTC GGA CAA ATG CAA GGT TGT  

 321  G   C   G   Q   Q   S   P   P   M   M   S   G   C   V   G   Q   M   Q   G   C 

 

1021 GGG CAG CAA TTG CCA CTG ATG ATG CCA GGT TGT GTC GGG CAA ATG CAA GGT TGT GGA CAA  

 341  G   Q   Q   L   P   L   M   M   P   G   C   V   G   Q   M   Q   G   C   G   Q 

 

1081 CAA ATG CCT CCA ATG ATG TCT GGG TGT GGT GGT CAA ATG CAA GGT TGT GGA CAA CAA ATG  

 361  Q   M   P   P   M   M   S   G   C   G   G   Q   M   Q   G   C   G   Q   Q   M 
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1141 CCA CCA ATG ATG TCT GGC TGT GGT GGT CAA ATG CAA GGT TGT GGG CAG CAA ATA ATG CCA  

 381  P   P   M   M   S   G   C   G   G   Q   M   Q   G   C   G   Q   Q   I   M   P 

 

1201 ATG ATG GCT CCT ATC ATG CCA GGT TGT GGC GGA CAA ATG CAA GCT GGC TGT GGT GGA CAG  

 401  M   M   A   P   I   M   P   G   C   G   G   Q   M   Q   A   G   C   G   G   Q 

 

1261 CAA GAA GAA CAA ATG CAG TTT AAA GTA AAA CTC CTT CCA CCT CAA ATT TAC TCT ATA CAA  

 421  Q   E   E   Q   M   Q   F   K   V   K   L   L   P   P   Q   I   Y   S   I   Q 

 

1321 CAA CAA CAA CCT CAA CAG CAA TCG CAA TGC CCA CCA CAA TGC CAG CCA CAA ACA TGT CAG  

 441  Q   Q   Q   P   Q   Q   Q   S   Q   C   P   P   Q   C   Q   P   Q   T   C   Q 

 

1381 ATT GGA TGT CCA CAA ACA TGT TGT ATG CAA TCT CAA CCT CAA ACT GCT ATG CAA ATG CCA  

 461  I   G   C   P   Q   T   C   C   M   Q   S   Q   P   Q   T   A   M   Q   M   P 

 

1441 CAA CCA ATG ATG GTA ATG GGT GGA TGT GCA CCT TCA TGC CAG CAG CAA TGC ATA CCT TCG  

 481  Q   P   M   M   V   M   G   G   C   A   P   S   C   Q   Q   Q   C   I   P   S 

 

1501 TGT CCA AGA GGT TGT TGT GGA GCT TTT GGT AAA AAG AGA TAA 

 501  C   P   R   G   C   C   G   A   F   G   K   K   R   *    
 

6.3.2 TrpA 
 
 3765 base pairs 
 
 1255 amino acids 
 141.53 kDa  
 
 Ankyrin-repeats 
 transmembrane domain 
 antigenic peptide 
 

 
   1 ATG GAT AGC AAC TCA GAG TCA CTG GAG TTA GAA AGA AGT AGT TAT TTT GAT GAG ACT GAC  

   1  M   D   S   N   S   E   S   L   E   L   E   R   S   S   Y   F   D   E   T   D 

 

  61 ATT AAG CTA GCA AAT CTT AGC CAT GAT AAA GAA ATA AAT AAA GAT GAA TTT GCA AAC TTT  

  21  I   K   L   A   N   L   S   H   D   K   E   I   N   K   D   E   F   A   N   F 

 

 121 GGC AAT GCT AAT GAA ACA GAT TTG ACT GAA TTA TTG GCA CAC AAA AAT TCA AAG GAA GTA  

  41  G   N   A   N   E   T   D   L   T   E   L   L   A   H   K   N   S   K   E   V 

 

 181 AAT TTA GAA AAA ACT GAT AAA AAA AAG TTA ACT ATA TAT GAG CAA CAG TCA TTG TCT AAT  

  61  N   L   E   K   T   D   K   K   K   L   T   I   Y   E   Q   Q   S   L   S   N 

 

 241 AAA AAT TCT AAA ACA TCT GTT AAG CTT AGA AAT CTT AAA CCT AGA GTA GAG GAT GAA AGA  

  81  K   N   S   K   T   S   V   K   L   R   N   L   K   P   R   V   E   D   E   R 

 

 301 GAA GGT TTA GTG CAC GCT GAA ATA CAA TCC TCT GAT ACT TCT TCT CTT CAA AGT GAA AAT  

 101  E   G   L   V   H   A   E   I   Q   S   S   D   T   S   S   L   Q   S   E   N 

 

 361 AAA GAT AAT CAA AAA GAT TCA TTA GAT GGA AAA AAA AGA ATA TCT ATG TTC AAC TTC CCA  

 121  K   D   N   Q   K   D   S   L   D   G   K   K   R   I   S   M   F   N   F   P 

 

 421 AAG TGG CTC AAA GAT TAT TCT AAT GGA AAA GTT GAA CAA TCA CCT AAA CCA GAG AAG GAG  

 141  K   W   L   K   D   Y   S   N   G   K   V   E   Q   S   P   K   P   E   K   E 

 

 481 ATT GAA GGT GAT TTT tCA AGG TTT tCT CTC CAT CTT GCT GCA AAA GAA GGA ACT ATA GGG  

 161  I   E   G   D   F   S   R   F   S   L   H   L   A   A   K   E   G   T   I   G 

 

 541 CGT ATT CAA CAC ATT ATT GAA AAT AAT AAA AAG CAA AAC TCA GTA ACA TCG AAA GAG TTT  

 181  R   I   Q   H   I   I   E   N   N   K   K   Q   N   S   V   T   S   K   E   F 

 

 601 ATC AGC ACA AGA GAT GGA TGG AAT AAA AAT GGT TTT AGT GCT TTG CAT TTA GCT GCA CGG  

 201  I   S   T   R   D   G   W   N   K   N   G   F   S   A   L   H   L   A   A   R 

 

 661 TAT AAT CAA AAA GAT GTT GTT GCA TAT CTG CTT GAA AAT GGA TCT TTA ATT GAT AGT CCA  

 221  Y   N   Q   K   D   V   V   A   Y   L   L   E   N   G   S   L   I   D   S   P 

 

 721 GAT AGA GAT GAT GGT AAT ACA GCT CTC TTA TTG GCA GCA AAA TAT GGA ATG ACA ACA ACT  

 241  D   R   D   D   G   N   T   A   L   L   L   A   A   K   Y   G   M   T   T   T 
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 781 GCA TCA TTT CTG ATT GAA AAA GGA GCA AAT GTT ATG TTT AAA AAT AAT TAT GGA ACT ACA  

 261  A   S   F   L   I   E   K   G   A   N   V   M   F   K   N   N   Y   G   T   T 

 

 841 GCA TTG CAC TAT GCA TGT AGG CGT GGT AAT AAA AAA CTT TTG CTT AAG ATT CTT AGC ATT  

 281  A   L   H   Y   A   C   R   R   G   N   K   K   L   L   L   K   I   L   S   I 

 

 901 CCA AAT GTA GAT ATA AAT GTT CAA GAC ATT AAT TTG AAT ACT CCG CTT CAT CTT GCT ATG  

 301  P   N   V   D   I   N   V   Q   D   I   N   L   N   T   P   L   H   L   A   M 

 

 961 AAT GGT GGT TGC ATA AGG GTA GTA AGT ACT CTT ATA AAC TAT GGA TCA AAT GTA TTT GCT  

 321  N   G   G   C   I   R   V   V   S   T   L   I   N   Y   G   S   N   V   F   A 

 

1021 ATA AAT AAT AAA GGG GAA ATT CCT ATA CAT TAT GCA GCT GCT TCA ACT GTA GAT AAC ATA  

 341  I   N   N   K   G   E   I   P   I   H   Y   A   A   A   S   T   V   D   N   I 

 

1081 AGA GAT GAG CTG AAT AAA GGA GAT TAC TTT GTC TTA GAA GAA ATC AGT AAT AAA ACT AAA  

 361  R   D   E   L   N   K   G   D   Y   F   V   L   E   E   I   S   N   K   T   K 

 

1141 GCT TTG CAA CAT GTT CCT TCA TCA ATT GTT GAA GAT CTT ATT GAG TTA CTT ATC AAA GGA  

 381  A   L   Q   H   V   P   S   S   I   V   E   D   L   I   E   L   L   I   K   G 

 

1201 GCT CTC AAA AAT GTT CCC GAA GAT AAA CAT GAA CAA CAG AGA AAC GCA TTT GTT AAC AGT  

 401  A   L   K   N   V   P   E   D   K   H   E   Q   Q   R   N   A   F   V   N   S 

 

1261 AAA ACC AAA GAG AAT CAC ACA CCT TTG CAT ATT GCA GCA TGT TGT GGT AAT GAA AAA TCA  

 421  K   T   K   E   N   H   T   P   L   H   I   A   A   C   C   G   N   E   K   S 

 

1321 TTA CAT AAA TTG TTG AGA GTT GGT GGA GAT GTC AAC GCT CAA ACA GAT TCT GGC TTA ACT  

 441  L   H   K   L   L   R   V   G   G   D   V   N   A   Q   T   D   S   G   L   T 

 

1381 CCT TTA CAC TTT GCT GCT ATG AGC GGG CAT GAA AGA GTA GTA AAT TTT TTA ATA ATG TAT  

 461  P   L   H   F   A   A   M   S   G   H   E   R   V   V   N   F   L   I   M   Y 

 

1441 GAT GCT AAT ATT CAA GCA GTT GAC AAT GAC TTA ATG ACT CCA TTG CAC AGG GCT TGT CTA  

 481  D   A   N   I   Q   A   V   D   N   D   L   M   T   P   L   H   R   A   C   L 

 

1501 TTC GGG CGA TTA TCA GTT GTT AAA TTA TTA GAT GAG AAA GGA GCT TTA CTT GAA GTT AAA  

 501  F   G   R   L   S   V   V   K   L   L   D   E   K   G   A   L   L   E   V   K 

 

1561 GAT AAA AAC AAC TTT ACT CCT GTT ATA TGT GCT GTG TGT AAG GGT CAT GTT GAA GTT ATA  

 521  D   K   N   N   F   T   P   V   I   C   A   V   C   K   G   H   V   E   V   I 

 

1621 ACA TAT CTG ATT GCT AGG GGT GTT CAA ATT AAT TCA ACT GAT GTT AAC AAT AAG AAT GCT  

 541  T   Y   L   I   A   R   G   V   Q   I   N   S   T   D   V   N   N   K   N   A 

 

1681 CTT CAT GTT GCA GTT AAA GAG AAC CAA TTA GAA ACT TTA AAG TTT TTA TTG GAT AAT CAT  

 561  L   H   V   A   V   K   E   N   Q   L   E   T   L   K   F   L   L   D   N   H 

 

1741 CAA TTT AAA AAG ATG AAT GAT TCA GAT AAA GAC AAT AGG GCA CCT GTG CAT TAT GCA GCA  

 581  Q   F   K   K   M   N   D   S   D   K   D   N   R   A   P   V   H   Y   A   A 

 

1801 GCT GAT GGA AAT CTT CAG GCA TTG GAA TTT TTA ATT CAA AAA AAT GCT CCA ATT GAT GTT  

 601  A   D   G   N   L   Q   A   L   E   F   L   I   Q   K   N   A   P   I   D   V 

 

1861 GGT GAT AAT CAA GAA AGG ACT CCT CTT CAT TTG GCA TCT GAG AAG GGT CAC TTA TCT TGT  

 621  G   D   N   Q   E   R   T   P   L   H   L   A   S   E   K   G   H   L   S   C 

 

1921 GTA AAA CTT CTC ATT TCT ACA TCT GCT GGA GAA ATT AAC TCT ACT GAT GCC CAT GGA ATG  

 641  V   K   L   L   I   S   T   S   A   G   E   I   N   S   T   D   A   H   G   M 

 

1981 ACT CCG CTT CAT TTA GCT GCA TCA AAT GAT CAT AGA AAA GTA GTG AAT CTC CTT ATT GAG  

 661  T   P   L   H   L   A   A   S   N   D   H   R   K   V   V   N   L   L   I   E 

 

2041 TCC GGT GCT GAT GTT TCT TTA CGT GAT AAT TGT GAC TGG AGC CCT TTA GAT TAT GCT GCA  

 681  S   G   A   D   V   S   L   R   D   N   C   D   W   S   P   L   D   Y   A   A 

 

2101 AAA AAT GGT CAT GAA AAG AGT CTG CAA ATT TTA CTT GAA AAT GGT GCT TTT ATT AAT GCT  

 701  K   N   G   H   E   K   S   L   Q   I   L   L   E   N   G   A   F   I   N   A 

 

2161 TGT GAC AAA AAT GGT TAT ACA CCT CTG CAC CAT GCA GCA CTT GCA GGA CAT GTT GAA TGC  

 721  C   D   K   N   G   Y   T   P   L   H   H   A   A   L   A   G   H   V   E   C 

 

2221 ATA GTT GCA TTA CTA GAT CAG GGT GCT AAT ATT CAA CTA CTA ACT AAG GAG AGA AAA AAT  

 741  I   V   A   L   L   D   Q   G   A   N   I   Q   L   L   T   K   E   R   K   N 

 

2281 TGT TTA TAT CTT GCA GTT GAG AAC TCA GAA AGA GAA GCT GGC ATG GCG ATT GTT AAG CAC  

 761  C   L   Y   L   A   V   E   N   S   E   R   E   A   G   M   A   I   V   K   H 
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2341 AAA AGA TGG CAT GAA GCT CTT CTC AAT ATA GAT AGC AAA AGA GCT CCT GTT ATG GAA AAA  

 781  K   R   W   H   E   A   L   L   N   I   D   S   K   R   A   P   V   M   E   K 

 

2401 ATA ATC GAA CTT GCA CCT GAA GTT GCA GAA GTT GCA TTA GAT AAT TGC ATT ACT TAT TCT  

 801  I   I   E   L   A   P   E   V   A   E   V   A   L   D   N   C   I   T   Y   S 

 

2461 GAT CTT GAT AAA AAA CAT TCT GAT TAT TCA ATT GAA TAC AAT TTT CAA TTT GTA GAT ACT  

 821  D   L   D   K   K   H   S   D   Y   S   I   E   Y   N   F   Q   F   V   D   T 

 

2521 GAC CCC ATA AAC AGT TTA AAT TCT TTT TTT GCA CCT TCT TTG ATT GTT CAA TAC AAA CGT  

 841  D   P   I   N   S   L   N   S   F   F   A   P   S   L   I   V   Q   Y   K   R 

 

2581 GGG AAA TTG TTG AGC CAT CCT CTA GTT GTT GAG CTT ATT AAT CAG AGG TGG TCT CGA ATG  

 861  G   K   L   L   S   H   P   L   V   V   E   L   I   N   Q   R   W   S   R   M 

 

2641 GGT CGG TGG GTG TAC TTA TCT TCA CTA AGT TTT TAT TTA GTG TTT GTT TCA CTT CTT ACA  

 881  G   R   W   V   Y   L   S   S   L   S   F   Y   L   V   F   V   S   L   L   T 

 

2701 GCA CTT GTG GTT ATA GAA AGA ATG AGT TTA AAC AAG CAA CCA ACA AAA ATA TGC TCA GGA  

 901  A   L   V   V   I   E   R   M   S   L   N   K   Q   P   T   K   I   C   S   G 

 

2761 AAG AAA TTT ACT GAC ATA ATT ACA TGG TCG ACT CTC GGC ATT GCA TGC ATA CAA ATT TTA  

 921  K   K   F   T   D   I   I   T   W   S   T   L   G   I   A   C   I   Q   I   L 

 

2821 TGG AAA TTG ATA TTA ACT ATA TAT ATT GGA ATA AGT TAT ATA AAC AAT CCA GTT AAA ATA  

 941  W   K   L   I   L   T   I   Y   I   G   I   S   Y   I   N   N   P   V   K   I 

 

2881 TTA GAA TTT TTT TTA TAC ATT TCA ACA GCA TTG TTT ATG GTT CCT TTT ATT ACT TGC CAA  

 961  L   E   F   F   L   Y   I   S   T   A   L   F   M   V   P   F   I   T   C   Q 

 

2941 TTT CAT TTG AAA ATG ACA AAT TTA GAG TCT ATG AAA TGG CAA TCT GGA TCA CTT TCA ATT  

 981  F   H   L   K   M   T   N   L   E   S   M   K   W   Q   S   G   S   L   S   I 

    

3001 TTA CTT GCA TGG TCA AAA ATA CTG TTA TAT TTA GAG AAT TTA CCA TTT ATC GGT TTA TAT  

1001  L   L   A   W   S   K   I   L   L   Y   L   E   N   L   P   F   I   G   L   Y 

 

3061 ATT GTC ATG TTT ACT GAG GTC CTT TAC ACA TTA CTA AAA GTT TTA TTG GTT TTT GGC ACT  

1021  I   V   M   F   T   E   V   L   Y   T   L   L   K   V   L   L   V   F   G   T 

 

3121 CTT CTA ATT GGT TTT GGT TTA TCT TTT TAT GCA CTA CTT GAT CTT CAA TCA GCA TTT AGT  

1041  L   L   I   G   F   G   L   S   F   Y   A   L   L   D   L   Q   S   A   F   S 

 

3181 GAT TAT GGG CGC TCT ATT GTC AAA ACA TTT GTC ATG ATG CTA GGT GAA ATA AGC TAC GAC  

1061  D   Y   G   R   S   I   V   K   T   F   V   M   M   L   G   E   I   S   Y   D 

 

3241 TCT ATC TTT ACA AAT AAC TAC TCA GAT GAA AAT AGT CAT CTT CTA CCT AAT TTA GAA ATA  

1081  S   I   F   T   N   N   Y   S   D   E   N   S   H   L   L   P   N   L   E   I 

 

3301 TCT ATT GTC ATT TTT CTT CTA TTT GCT ATG ATA ATG ATA ATT GTG GTT ATG AAT TTG CTT  

1101  S   I   V   I   F   L   L   F   A   M   I   M   I   I   V   V   M   N   L   L 

 

3361 GTT GGT CTT GCA GTT GGT GAT ATT GAA TCA GTT CGC AAC AAT GCA TAT CTA AGA GTT TTA  

1121  V   G   L   A   V   G   D   I   E   S   V   R   N   N   A   Y   L   R   V   L 

 

3421 CAG AGA CAA GTT TAT TTT TTA AGT ATT TTA GAT CGA ACC TAT CCT AAA TTT ATC AGA AAA  

1141  Q   R   Q   V   Y   F   L   S   I   L   D   R   T   Y   P   K   F   I   R   K 

 

3481 TTT GTG TAT AAA GCT TCT TAT ATA CAA AAA CCT AAT CAA AAG AGT TGG TTT AAA AAG TTT  

1161  F   V   Y   K   A   S   Y   I   Q   K   P   N   Q   K   S   W   F   K   K   F 

 

3541 ATC CTA TGG TTG GGT AAT TTT CAA AGG AAA GCA TTG GAA GAA GAA CAA ACA GAT GCA AAA  

1181  I   L   W   L   G   N   F   Q   R   K   A   L   E   E   E   Q   T   D   A   K 

 

3601 AAA GAT TTA ATA ATG CTT GAA ATT GCA TCT AAT AGG GAA GCA ATA ATA AAG CAA AAA AAA     

1201  K   D   L   I   M   L   E   I   A   S   N   R   E   A   I   I   K   Q   K   K 

 

3661 AAG ACT AAA TCG ATT TTA GAC GAT CTC GAA AAG CAA TTG AAA AGA ACT AAA AAA ATT GCT  

1221  K   T   K   S   I   L   D   D   L   E   K   Q   L   K   R   T   K   K   I   A 

 

3721 AAA TTC ATT GCA ACA AGT TCT TCG TTC AAA AAC AAA GTT GAT TGA  

1241  K   F   I   A   T   S   S   S   F   K   N   K   V   D   * 
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6.3.3 Nematocalcin 
 
 606 base pairs 
 
 201 amino acids 
 22.62 kDa 
 
 EF-hand motif 
 antigenic peptide 
 
   1  ATG GCA TAT CCA GGA TAC AAT CAA CCG GGT GCA TAC CCT GGG TAT GGT CAT CCT GGG GCT  

   1  M   A   Y   P   G   Y   N   Q   P   G   A   Y   P   G   Y   G   H   P   G   A 

 

  61  TAC GGT CCT CCT GGT GGT TAT TCT GGA TAT CCT CCT GGT GCA ATT GAC CCC CTT TTT GGA  

  21  Y   G   P   P   G   G   Y   S   G   Y   P   P   G   A   I   D   P   L   F   G 

 

 121  TAC TTC TCT GCT GTA GCA GGT CAT GAT CAA CAA ATT GAT GCT CGT GAG CTC CAA ACC TGC  

  41     Y   F   S   A   V   A   G   H   D   Q   Q   I   D   A   R   E   L   Q   T   C 

 

 181  TTA ACA TCT TCA GGA ATT GGT GGT TCA TAT CAA CAG TTC AGT TTA GAG ACT TGC CGT ATT  

  61     L   T   S   S   G   I   G   G   S   Y   Q   Q   F   S   L   E   T   C   R   I 

 

 241  ATG ATC AAT ATG CTT GAT AGA GAT TAT TCT GGC AAA ATG GGT TTT ACT GAG TTC AAA GAG  

  81  M   I   N   M   L   D   R   D   Y   S   G   K   M   G   F   T   E   F   K   E 

 

 301  TTA TGG AAT GCA CTA AAT CAA TGG AAG ACT ACA TTT ATG ATT TAT GAC AGA GAT CGA TCT  

 101  L   W   N   A   L   N   Q   W   K   T   T   F   M   I   Y   D   R   D   R   S 

 

 361  GGT ACA GTA GAG CCT CAT GAA ATG CAT CAA GCT ATA GCT TCT TGG GGA TAT AAT TTG AGT  

 121   G   T   V   E   P   H   E   M   H   Q   A   I   A   S   W   G   Y   N   L   S 

 

 421  GGT CAA GCG CTT AAT ATC ATT ATA AAA AGA TAT TCT GAT AAT GGT CGA ATT AAG TTC GAT  

 141  G   Q   A   L   N   I   I   I   K   R   Y   S   D   N   G   R   I   K   F   D 

 

 481  GAC TTT GTT TCT GCA GCT ATA AGG TTG CGA ATG TTA ACA GAT CAT TTT CGA CGT AGA GAT  

 161  D   F   V   S   A   A   I   R   L   R   M   L   T   D   H   F   R   R   R   D 

 

 541  GCC ACT CAA TCA GGA TAT GCT AGT TTT GCT TTT GAT GAT TTC ATT CAA GTG ACA ATG TTT  

 181  A   T   Q   S   G   Y   A   S   F   A   F   D   D   F   I   Q   V   T   M   F 

 

 601  TCA TAA  

 201    S   * 

 
 
 

6.3.4 Nematomyosin 
 
 5838 base pairs 
  
 1945 amino acids 
 224.57 kDa 
 
 head domain 
 tail domain 
 antigenic peptide 
 

 
   1  ATG GAC AAC GAA GAA GAT AGT TTA AAG TAT CTG TCT GTT GAT CGG CGT GCA ATA GCT GAC  

   1  M   D   N   E   E   D   S   L   K   Y   L   S   V   D   R   R   A   I   A   D 

 

  61  CCC GTT GCT CAC GCT GCT TGG GCT GCA CAG AAG TTA GTT TGG GTG CCT AGT GAA GAG CAT  

  21  P   V   A   H   A   A   W   A   A   Q   K   L   V   W   V   P   S   E   E   H 

 

 121  GGG TTT GTT TCT GCT AGT ATC AAA GAG GAA AAA GGG GAT AAA GTT ATT GCC GAA ATT GAA  

  41  G   F   V   S   A   S   I   K   E   E   K   G   D   K   V   I   A   E   I   E 

 

 181  GGA GGG AAA AGA GTG ACA TTT CAT AAA GAT GAT ATT CAA AGG ATG AAT CCA CCC AAA TTT  

  61  G   G   K   R   V   T   F   H   K   D   D   I   Q   R   M   N   P   P   K   F 

 

 241  GAC AAG GTG GAA GAC ATG GCT GAT CTG ACT TGT TTA AAT GAA GCT AGT GTG TTG CAT AAT  

  81  D   K   V   E   D   M   A   D   L   T   C   L   N   E   A   S   V   L   H   N 
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 301  ATT AAA GAT CGA TAT TTT TCA GAT CTC ATT TAT ACT TAC TCT GGT TTG TTT TGT GTT GTT  

 101  I   K   D   R   Y   F   S   D   L   I   Y   T   Y   S   G   L   F   C   V   V 

 

 361  GTA AAC CCA TAC AAG AAG ATA CCA ATA TAC AGT GAT AAT GTT GTT AAC TTA TAT CGA GGA  

 121  V   N   P   Y   K   K   I   P   I   Y   S   D   N   V   V   N   L   Y   R   G 

 

 421  AAA AAA CGA CAT GAG CTT CCA CCA CAT GTC TAT GCA ATT ACT GAT AAT GCA TAT CGC AGC  

 141  K   K   R   H   E   L   P   P   H   V   Y   A   I   T   D   N   A   Y   R   S 

 

 481  ATG TTA CAA GAT CGT GAT AAT CAG TCT ATC CTC TGC ACG GGT GAA TCT GGT GCA GGA AAA  

 161  M   L   Q   D   R   D   N   Q   S   I   L   C   T   G   E   S   G   A   G   K 

 

 541  ACT GAA AAC ACA AAA AAG GTT ATA CAG TAC TTG ACT GCT ATA GCT GGT CGT CAT AAA CAA  

 181  T   E   N   T   K   K   V   I   Q   Y   L   T   A   I   A   G   R   H   K   Q 

 

 601  GAT GAT AAA TCA GCA CAG GGT CAA CTT GAG GTA CAG TTA CTC CAA GCC AAT CCT ATT CTT  

 201  D   D   K   S   A   Q   G   Q   L   E   V   Q   L   L   Q   A   N   P   I   L 

 

 661  GAA GCA TTT GGA AAT GCA AAA ACT GTG AAA AAT GAT AAT TCA TCA CGT TTT GGT AAA TTC  

 221  E   A   F   G   N   A   K   T   V   K   N   D   N   S   S   R   F   G   K   F 

 

 721  ATC AGA ATT ATG TTT GAT AAT TCT GGT TTT ATC TCT GGA GCA AAC ATT GAG TCC TAT TTG  

 241  I   R   I   M   F   D   N   S   G   F   I   S   G   A   N   I   E   S   Y   L 

 

 781  TTG GAG AAA GGT CGA TTA GTT CGC CAA GCA CCA GAA GAA AGA CTT TTC CAC ATT TTT TAC  

 261  L   E   K   G   R   L   V   R   Q   A   P   E   E   R   L   F   H   I   F   Y 

 

 841  CAG TTG CTT TTG GGT GCA AGT CCT GAA GTT AAA AAA CAA TTT CTA CTT CTT GAT CCA AAA  

 281  Q   L   L   L   G   A   S   P   E   V   K   K   Q   F   L   L   L   D   P   K 

 

 901  AGT TAT ATT TTT ATG TCA AAT GGA CTT GTT CAG CTT CCT AAC ATG GAT GAC CGT GCA GAA  

 301  S   Y   I   F   M   S   N   G   L   V   Q   L   P   N   M   D   D   R   A   E 

 

 961  TTT AAA TTA ACT TTG GAG GCT ATG AGG GAT ATG GGT ATT ACC CAA GAA GAA CTT AAT CCT  

 321  F   K   L   T   L   E   A   M   R   D   M   G   I   T   Q   E   E   L   N   P 

 

1021  ATT TTC AAA GTT TTA TCA GCT TGT CTA TTA TTT GGT AAC TTG GAT TTC AAA ATG GAA AGA  

 341  I   F   K   V   L   S   A   C   L   L   F   G   N   L   D   F   K   M   E   R 

 

1081  AAA TCA GAT CAA GCT GCG TTG CCC GAT AAT ACT ATT TCA CAG CAA ATT TCT CAT CTT CTT  

 361  K   S   D   Q   A   A   L   P   D   N   T   I   S   Q   Q   I   S   H   L   L 

 

1141  GGA ATT GCT GTT ACT GAC TTT ACA AAT GCT TTA TTA AAA CCA AGA GTT AAA GTT GGA CGA  

 681  G   I   A   V   T   D   F   T   N   A   L   L   K   P   R   V   K   V   G   R 

 

1201  GAG TTT ACA CAA AAA GCT CAA ACT AAA GCT CAG TGC GAA TTT GCT GTT GAA GCT CTT ACA  

 401  E   F   T   Q   K   A   Q   T   K   A   Q   C   E   F   A   V   E   A   L   T 

 

1261  AAA GCT ATG TAT GAG CGT CTT TTC AAA TGG TTA GTC ACT CGC ATT AAC AAG AGT TTA AAT  

 421  K   A   M   Y   E   R   L   F   K   W   L   V   T   R   I   N   K   S   L   N 

  

1321  CGA TCA AAA CGT GAA GGT GCC TCT TTC GTT GGA ATC TTG GAT ATT GCT GGT TTT GAA ATT  

 441  R   S   K   R   E   G   A   S   F   V   G   I   L   D   I   A   G   F   E   I 

 

1381  TTC AAA ATA AAT TCA TTT GAA CAG TTA TGT ATA AAT TAT ACT AAT GAA AAA CTG CAA CAA  

 461  F   K   I   N   S   F   E   Q   L   C   I   N   Y   T   N   E   K   L   Q   Q 

 

1441  CTG TTC AAC CAC ACT ATG TTT ATT CTT GAA CAA GAA GAA TAC CAG AAA GAA GGA ATT GAC  

 481  L   F   N   H   T   M   F   I   L   E   Q   E   E   Y   Q   K   E   G   I   D 

 

1501  TGG AAA TTT ATT GAC TTT GGA CTT GAC TTA CAA CCA ACT ATT GAC TTG ATT GAG AAA CCT  

 501  W   K   F   I   D   F   G   L   D   L   Q   P   T   I   D   L   I   E   K   P 

 

1561  ATG GGC ATT ATG GCC TTA CTT GAT GAG GAA TGT TGG TTC CCA AAA GCT ACA GAT AAA AGT  

 521  M   G   I   M   A   L   L   D   E   E   C   W   F   P   K   A   T   D   K   S 

 

1621  TTA GTA GAG AAA ATA AAT AAA GCT CAT GCT AAG CAT CCA AAG TAC ATG AAA CCT GAC TTT  

 541  L   V   E   K   I   N   K   A   H   A   K   H   P   K   Y   M   K   P   D   F 

 

1681  AGA GCT AAC TCA GAT TTC TGT ATC ATT CAT TAT GCT GGT CGT GTT GAT TAT TCT GCA GCC  

 561  R   A   N   S   D   F   C   I   I   H   Y   A   G   R   V   D   Y   S   A   A 

 

1741  CAA TGG CTT ACA AAG AAT ATG GAT CCA CTA AAT GAC AAT GTT GTT GCT TTA TTG GCG GCT  

 581  Q   W   L   T   K   N   M   D   P   L   N   D   N   V   V   A   L   L   A   A 

 

1801  TCA AGC GAA CCA TTT GTA GAT GCA TTG TGG AAA GAT ATT GAA AAT GTT GTT AGC ATG AGT  

 601  S   S   E   P   F   V   D   A   L   W   K   D   I   E   N   V   V   S   M   S 
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1861  GTT ACA GAA GGT ATG GAT ACT GCA TTT GGT GCA GCA AAA ACA AAA AAA GGA ATG TTT AGA  

 621  V   T   E   G   M   D   T   A   F   G   A   A   K   T   K   K   G   M   F   R 

 

1921  ACT CTG TCG CAA CTT TAT AAG GAA CAA TTG CAA GGT CTC ATG AAT ACA TTA AAT TGT ACA  

 641  T   L   S   Q   L   Y   K   E   Q   L   Q   G   L   M   N   T   L   N   C   T 

 

1981  AAG CCA AAC TTT GTT CGT TGC ATC ATT CCA AAC TAT GAA AAA CGA AGT GGA AAG ATC ACC  

 661  K   P   N   F   V   R   C   I   I   P   N   Y   E   K   R   S   G   K   I   T 

 

2041  AAC TTT TTG GTT CTT GAC CAA CTG AGA TGT AAT GGT GTT TTA GAA GGT ATT CGT ATT TGC  

 681  N   F   L   V   L   D   Q   L   R   C   N   G   V   L   E   G   I   R   I   C 

 

2101  AGG CAA GGT TTC CCT AAC AGA ATT CTT TTC CAA GAA TTT AGA CAG CGA TAT GAA ATT CTT  

 701  R   Q   G   F   P   N   R   I   L   F   Q   E   F   R   Q   R   Y   E   I   L 

 

2161  TGC CCT GGT GTT GTT CCA AAA GGC TTT ATG GAT GGA CGC AAT GCA TCC AAG AAA ATG ATT  

 721  C   P   G   V   V   P   K   G   F   M   D   G   R   N   A   S   K   K   M   I 

 

2221  GAG GCT TTG GAA ATG GAT CCA AAT TTG TTC AGA ATC GGT CAA TCA AAA ATA TTT TTC CGT  

 741  E   A   L   E   M   D   P   N   L   F   R   I   G   Q   S   K   I   F   F   R 

 

2281  GCT GGT GTG TTA GCC CAT CTT GAA GAA GAA CGT GAT ATT AAA CTT ACT GAA ATA GTA ATT  

 761  A   G   V   L   A   H   L   E   E   E   R   D   I   K   L   T   E   I   V   I 

 

2341  CAA TTC CAA GCT TTT TGC AGA GGT AAT ATT GCT CGT AAA AAT TAT AAG AGG CGC ATT CAG  

 781  Q   F   Q   A   F   C   R   G   N   I   A   R   K   N   Y   K   R   R   I   Q 

 

2401  CAG TTA TCA GCT ATT AGA GTT ATT CAA CGA AAT GGT CGC AGC TGG ATG AAA TTA AGA AAT  

 801  Q   L   S   A   I   R   V   I   Q   R   N   G   R   S   W   M   K   L   R   N 

 

2461  TGG CAA TGG TGG CGC TTG TTC ACA AAA GTA AAA CCT TTG TTG AAT GTT ACA AGA CAC GAT  

 821  W   Q   W   W   R   L   F   T   K   V   K   P   L   L   N   V   T   R   H   D 

 

2521  GAA GAG CTT CGC GCC AAA GAA GAG GAG TAT AAA AAA GTT CTT GAT AAA TAC GAA AAA GTT  

 841  E   E   L   R   A   K   E   E   E   Y   K   K   V   L   D   K   Y   E   K   V 

 

2581  GAA AGT GCA CAC AAT GAC CTC AAA AAG AGT CAT GAC AAG CTT ACT GAT GAA AAT AAA CTG  

 861  E   S   A   H   N   D   L   K   K   S   H   D   K   L   T   D   E   N   K   L 

 

2641  TTA GCT GAG CAA CTT CAA GCT GAA ATA GAG CTG TGT CAA GAA GCA GAA GAG AAT GTT AGT  

 881  L   A   E   Q   L   Q   A   E   I   E   L   C   Q   E   A   E   E   N   V   S 

 

2701  CGT CTC CAG CAA CGA AAG ATT GAA TTA GAG GAA TTA TTG AAT GAT TTT GAA ATC AAG TTA  

 901  R   L   Q   Q   R   K   I   E   L   E   E   L   L   N   D   F   E   I   K   L 

 

2761  GCT GAG GAG GAA GAG AGA TCA GCC AAG ACT GCT GAG GAA AAA AAA AAG TTA CAA CAA GGA  

 921  A   E   E   E   E   R   S   A   K   T   A   E   E   K   K   K   L   Q   Q   G 

 

2821  ATT CAA GAA TTA GAA GAA AGT CTT GAG GAG GAA GAA GCT CAA AGA CAA AAG TTG CAA CTC  

 941  I   Q   E   L   E   E   S   L   E   E   E   E   A   Q   R   Q   K   L   Q   L 

 

2881  GAA AAG GTT CAA GTC GAA GCT AAA CTA AAA GCA TTA GAA GAC GAT TTA AGA CTA GTC GAA  

 961  E   K   V   Q   V   E   A   K   L   K   A   L   E   D   D   L   R   L   V   E 

 

2941  GAC TCC AAT GCT AAA CTA TCA CAA GAC AAA AAA CAA CTT GAA GAG AGA ATG GAT GAA CTA  

 981  D   S   N   A   K   L   S   Q   D   K   K   Q   L   E   E   R   M   D   E   L 

 

3001  AGC ACA AAG TTG TCG GCA GAA GAA GAT AAA TCA AAA GGT TTA ATA AAA TTA AAA GTT AAA  

1001  S   T   K   L   S   A   E   E   D   K   S   K   G   L   I   K   L   K   V   K 

 

3061  CAA GAA ACA TTA ATA TCA GAA TTA GAA GAA CGT GTT GCA AAA AGT GAA AAA ACT GCT GTT  

1021  Q   E   T   L   I   S   E   L   E   E   R   V   A   K   S   E   K   T   A   V 

 

3121  GAT TAC CAA AAA GAA ATT AGA AAA CTT CAG CAA GAA ATT AGT GAT TTG CGA AAT CAA TTG  

1041  D   Y   Q   K   E   I   R   K   L   Q   Q   E   I   S   D   L   R   N   Q   L 

 

3181  GCA GAA GCA CAA CAA CGT ATT GCT GAG TTA GAA GAT GAT CTT GCT CGT CGT GAT AAT GAA  

1061  A   E   A   Q   Q   R   I   A   E   L   E   D   D   L   A   R   R   D   N   E 

 

3241  CTG GCT GCA GCT ATC AAG AGA GGA GAT GAG GAA ATG TCA AAA AGA GTT AAT GTC GAA AAA  

1081  L   A   A   A   I   K   R   G   D   E   E   M   S   K   R   V   N   V   E   K 

 

3301  GCA AAA CGT GAT GTT GAA GCT CAT CTA GAA GAA GTT AAA GAT GAT TAT GAA CAA GAA AAA  

1101  A   K   R   D   V   E   A   H   L   E   E   V   K   D   D   Y   E   Q   E   K 

 

3361  GCA GCT CGT GAA AAA GTT GAA AAA GCT AAA AGA GAA CTA GAG AAG GAT CTT AAT GAA TTG  

1121  A   A   R   E   K   V   E   K   A   K   R   E   L   E   K   D   L   N   E   L 
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3421  CGT GAA GAA TTA GAA GTC AAC ACA GAT GCA ACT ACA GTG CAG AAA GAG CTT CAG CGT AAA  

1141  R   E   E   L   E   V   N   T   D   A   T   T   V   Q   K   E   L   Q   R   K 

 

3481  CGT GAA GAA GAT TTT AAT GAA TTA AAA AAA CAA GTT GAA ATA GAG GCT AGA GAA CAT GAA  

1161  R   E   E   D   F   N   E   L   K   K   Q   V   E   I   E   A   R   E   H   E 

 

3541  AAA CAA ATG GAC TCA CTG CGA GGA AAA CAC AAC CAA CTT GTG AAT GAA CTT CAG GAT CAG  

1181  K   Q   M   D   S   L   R   G   K   H   N   Q   L   V   N   E   L   Q   D   Q 

 

3601  TTG GAT CAA TTT AAA AAG GGA AAA AAT GCA CTG GAA AAA AAT AAA ACG GCA TTA GAG AAT  

1201  L   D   Q   F   K   K   G   K   N   A   L   E   K   N   K   T   A   L   E   N 

 

3661  GAG AAT GCT GAA ATT GCT GCT GAT TTG CAG CGT GTT TCT TTG TTG AAG CAG GAG AGC GAT  

1221  E   N   A   E   I   A   A   D   L   Q   R   V   S   L   L   K   Q   E   S   D 

 

3721  AGA AAA GCC AAA AAT TTT GAA GCT CAG TTA AGT GAA GCA AAT GCA ATT CGC ATG GGA CAA  

1241  R   K   A   K   N   F   E   A   Q   L   S   E   A   N   A   I   R   M   G   Q 

 

3781  GAG GAA ATG ATT TCA AAA CTT GAT GGA CAA TGT GCT AAG TTA ACT AAA GAA TGT GAT TCA  

1261  E   E   M   I   S   K   L   D   G   Q   C   A   K   L   T   K   E   C   D   S 

 

3841  TTA AAT CAA CAA ATT GAT GAA GTG GAA TCA AAA GCA GCC AAT CTC GAA CGA GCT AAA CAA  

1281  L   N   Q   Q   I   D   E   V   E   S   K   A   A   N   L   E   R   A   K   Q 

 

3901  GCT GCA GAG ACT TCT CTG TCA GAC CTT CAA GAT GCT TTA CAT GAA GAA ACA CGC CAG AAA  

1301  A   A   E   T   S   L   S   D   L   Q   D   A   L   H   E   E   T   R   Q   K 

 

3961  CTT GCT CTT CAA ACA AAA GTT CGC GAG GCT GAA GAT GAA GCC AAT CGT CTT CAA GAA CAA  

1321  L   A   L   Q   T   K   V   R   E   A   E   D   E   A   N   R   L   Q   E   Q 

 

4021  CTT GAA GAA GAA GAA GAT GAG AAA AAA GCT GTT CAA AAA ACT CTC ACA CAA GTT CAA TTG  

1341  L   E   E   E   E   D   E   K   K   A   V   Q   K   T   L   T   Q   V   Q   L 

 

4081  CAG CTT GAT AGT TGC AAA AAA GAA ATC GAA TTA AAA GTT ACA CTT CTT GAA GAA GCT GAG  

1361  Q   L   D   S   C   K   K   E   I   E   L   K   V   T   L   L   E   E   A   E 

 

4141  TCA GCT CGT CAA AAA CAA AAA CGA GAA AAT GAA GAA CTT CGC TCT GAC AAT GAG AGG TTT  

1381  S   A   R   Q   K   Q   K   R   E   N   E   E   L   R   S   D   N   E   R   F 

 

4201  CAG TCT GAA ATT TCC AAA CTT GAC AAA GCT CGT AAG AAG TTA CAA GGA GAT TTG GAT GAT  

1401  Q   S   E   I   S   K   L   D   K   A   R   K   K   L   Q   G   D   L   D   D 

 

4261  GTT ACT GTG CTC ATG GAA AGA GAA AGA AAT AAT GCA TCC CAA ATG GCT GCA AAA CAA AAG  

1421  V   T   V   L   M   E   R   E   R   N   N   A   S   Q   M   A   A   K   Q   K 

 

4321  AAA TTC GAT CAA CTT TTA TCT GAA GAA AAA TCT AGA TCC CAG GCT CTT GCA AGT GAG CGA  

1441  K   F   D   Q   L   L   S   E   E   K   S   R   S   Q   A   L   A   S   E   R 

 

4381  GAT AAT GTA GAA AAA GTT GCT CGT GCA AAT GAA ACA AAA ATT CTT TCA TTA CAA AGT GCA  

1461  D   N   V   E   K   V   A   R   A   N   E   T   K   I   L   S   L   Q   S   A 

 

4441  AAT GAA GAA TTA GAG GAC AAA TTA GCA GAG TCT GAG CGT GTA CGT AAA AGT CTT ATG GCA  

1481  N   E   E   L   E   D   K   L   A   E   S   E   R   V   R   K   S   L   M   A 

 

4501  GAA CTC CAA GAG CTT ATT GAT TCT AAA GAC GGT GCC GGT AAG AAT ATA CAT GAA CTT GAT  

1501  E   L   Q   E   L   I   D   S   K   D   G   A   G   K   N   I   H   E   L   D 

 

4561  AAA GCT AAA CGA CTT CTT GAA CAG CAA CTT GCC GAG CAG AAA ACT CAA GTT GAA GAA CTT  

1521  K   A   K   R   L   L   E   Q   Q   L   A   E   Q   K   T   Q   V   E   E   L 

 

4621  GAA GAT GAG CTG CAG GCC ACC GAA GAT GCC AAG CTA AGA TTA GAA GTA AAT ATG CAA GCA  

1541  E   D   E   L   Q   A   T   E   D   A   K   L   R   L   E   V   N   M   Q   A 

 

4681  CAA AAA GCT CAG TTT GAA AGA GAA CTT GCA GCA AAA GAA GAT TCT ATT GAA GAA GGA AGA  

1561  Q   K   A   Q   F   E   R   E   L   A   A   K   E   D   S   I   E   E   G   R 

 

4741  AAA GGA CTT ATC AAA CAG TTA CGT GAA ATG GAA CTC GAA CTT GAA GAG GAA CGC AAA GTA  

1581  K   G   L   I   K   Q   L   R   E   M   E   L   E   L   E   E   E   R   K   V 

 

4801  AGC AAA GCT GCT GGT GCA TCT AAA CGA AAG TTA GAG AGT GAT GTA AAG GAA CTT ACT GCT  

1601  S   K   A   A   G   A   S   K   R   K   L   E   S   D   V   K   E   L   T   A 

 

4861  CAG TTA GAT CAA GCT AAC AGA CTT AAA GAA GAT AGT CAA AAG CAG CTC AAG AAA TAT CAA  

1621  Q   L   D   Q   A   N   R   L   K   E   D   S   Q   K   Q   L   K   K   Y   Q 

 

4921  GTC CAT CTT AAA GAT GTT CAA CGT GAT TTA GAT GAA GCA AAG GCT GCA CGT GAA GAG TTG  

1641  V   H   L   K   D   V   Q   R   D   L   D   E   A   K   A   A   R   E   E   L 
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4981  TCT GCT CAG GTC AAA GAT AAT GAA AAG AAA TTA AAG GGA TTA GAG TCA GAT TTC GTA CAA  

1661  S   A   Q   V   K   D   N   E   K   K   L   K   G   L   E   S   D   F   V   Q 

 

5041  ATG CAA GAA GAT CTC AGC ACA GCT GAG CGT GCT CGT CGT ACT ATT GAA GCA GAA CGC GAT  

1681  M   Q   E   D   L   S   T   A   E   R   A   R   R   T   I   E   A   E   R   D 

 

5101  GAA CTT CTT GAA GAG TTA AAT AAC AAC ACT TCT GCA AAG ACA GCT GTA GCT GAA GAA CGC  

1701  E   L   L   E   E   L   N   N   N   T   S   A   K   T   A   V   A   E   E   R 

 

5161  AAA CGA TGG GAG GCT CAA ATT GCT GCC CTT GAA GAA GAA TTA GAA GAA GAA CGA ACT CAG  

1721  K   R   W   E   A   Q   I   A   A   L   E   E   E   L   E   E   E   R   T   Q 

 

5221  ACC GAG CTT ATG CAA GAT AAG GTT TCA CGA GGT AAT CTA CAA ATA GAC CAA ATG TCT GCT  

1741  T   E   L   M   Q   D   K   V   S   R   G   N   L   Q   I   D   Q   M   S   A 

 

5281  GAA TTA GCT GAA GAA AGA GCC GCT TTG CAA TCC CTT GAC AAC TCT CGT ATG ACA TTA GAA  

1761  E   L   A   E   E   R   A   A   L   Q   S   L   D   N   S   R   M   T   L   E 

 

5341  CGC GCC AAC AAA GAA TTG CAA AAT AAA CTT GCT GAT TTA GAA TCA AGT TTA CGC TCA CGT  

1781  R   A   N   K   E   L   Q   N   K   L   A   D   L   E   S   S   L   R   S   R 

 

5401  ACC AAG AAC ACA GTA GCA ACT CTT GAA GCC AAA ATT AGC AAT CTG GAA GCC CAA CTT GAT  

1801  T   K   N   T   V   A   T   L   E   A   K   I   S   N   L   E   A   Q   L   D 

 

5461  CAA GAA GCC AAA GAA AAA CAG AAT ATT ACA AAA TTA CTT AGA AGA ACT GAA AAG CGA GCT  

1821  Q   E   A   K   E   K   Q   N   I   T   K   L   L   R   R   T   E   K   R   A 

 

5521  AAA GAA CTT CAA GTG CTT GTT GAT GAG GAG CGT GGT CAC ACT GAA TCG TAC AAA CAA CAA  

1841  K   E   L   Q   V   L   V   D   E   E   R   G   H   T   E   S   Y   K   Q   Q 

 

5581  GTT GAG AAA GCT AAT AAC AGG GTA AAA AGC ATA AAA CGA CAA TTG GAT GAA TCC GAG GAA  

1861  V   E   K   A   N   N   R   V   K   S   I   K   R   Q   L   D   E   S   E   E 

 

5641  GAA GTT AGT AGA CTA AAC GGA ACC AAG AGA AAG ATG CAA AGA GAT CTT GAT GAA AAT ACC  

1881  E   V   S   R   L   N   G   T   K   R   K   M   Q   R   D   L   D   E   N   T 

 

5701  GAA GCG CTT GAA TCA GCA CAA AGA GAA CTT ACA CAG TTA AAA TCA AGG ATG AAG ACT GCC  

1901  E   A   L   E   S   A   Q   R   E   L   T   Q   L   K   S   R   M   K   T   A 

  

5761  ACT ACG CCT AGC ACC CGT TCT ACA GGA CGT CGC CGT AAA GAT GAC GAT GAA CAA AAT GAT  

1921  T   T   P   S   T   R   S   T   G   R   R   R   K   D   D   D   E   Q   N   D 

 

5821  GAG GAC GGC ACC GAT TGA  

1941  E   D   G   T   D   * 

 

 

6.3.5 PKD2 
 
 2520 base pairs 
 
 839 amino acids 
 96.02 kDa 
 
 transmembrane domain 
 EF-hand motif 
 antigenic peptide 
 
 
   1  ATG AGT GCT ACA AAA AGA ATT AGA AGT ACA AAA GAT TTA CAA CTG AGT CAA CAA CAG GAG  

   1  M   S   A   T   K   R   I   R   S   T   K   D   L   Q   L   S   Q   Q   Q   E 

 

  61  TTG TCG GTA CGT AAT GAC TAT CGC GGA TCA AGT GTC TCA TTT GCA TCA TCT AAA AGT TCA  

  21  L   S   V   R   N   D   Y   R   G   S   S   V   S   F   A   S   S   K   S   S 

 

 121  CCT TGG CAT GAT GAC ACT AGT TTT ATT TTA AAG CAA AAG GCT TTA TCT TCT AGC GAG AAA  

  41  P   W   H   D   D   T   S   F   I   L   K   Q   K   A   L   S   S   S   E   K 

 

 181  GAA TTA AGT AAT TTG CAA AGT ACA ACT TCT ATG AAT CAA TTC AAA AGA CCA AAG CCT ATA  

  61  E   L   S   N   L   Q   S   T   T   S   M   N   Q   F   K   R   P   K   P   I 

 

 241  CCT TTT AAG GAA ATG TTC TTG AGA AGC TTA AGA GGT TTA TGG AAA ACA CGA TAC TCT GAT  

  81  P   F   K   E   M   F   L   R   S   L   R   G   L   W   K   T   R   Y   S   D 

 



APPENDIX 
   

 

 82 

 301  GAA CTT AAG GAT AAA ACA GAA GCC ATG AAA GTT ACA TTG AAG GAA CTT GCA ATT TAT GTT  

 101  E   L   K   D   K   T   E   A   M   K   V   T   L   K   E   L   A   I   Y   V 

 

 361  TTT TTT TTA ATG ATT GCT TGT ATA ATT ACC TTT GGA ATG ACC AGC ACT TCA ATG TTT TAT  

 121  F   F   L   M   I   A   C   I   I   T   F   G   M   T   S   T   S   M   F   Y 

 

 421  ATG ACA AAT GCA ATC CAA GGT GTA CTT GCT CCC ACT CCT CCC AAA GAA ATG CCA GGA GAA  

 141  M   T   N   A   I   Q   G   V   L   A   P   T   P   P   K   E   M   P   G   E 

 

 481  AGT GGA GAT GTG TTT GAG TAT TTA AAA GAT ACA GTC ATA GGT GGA CTT TAT GTG GAA AAT 

 161  S   G   D   V   F   E   Y   L   K   D   T   V   I   G   G   L   Y   V   E   N 

 

 541  TAT TAT GAT GAT TCA CCT GTA AAA ACT TCT GAG TTG GGT TAT ATC TTT TTC GAA AAT AAG  

 181  Y   Y   D   D   S   P   V   K   T   S   E   L   G   Y   I   F   F   E   N   K 

 

 601  TTA TTA GGT CGC CCA AGA CTT CGT CAA GTT CGA GTT AGT AAT GAA TCT TGC ATA GTT CAT  

 201  L   L   G   R   P   R   L   R   Q   V   R   V   S   N   E   S   C   I   V   H 

 

 661  GAA TAT TTT CGA GAT GAA ATA AAA GAA TGT TAT GCC CCA TAC TCA CCT AGT ACT GAA TTT 

 221  E   Y   F   R   D   E   I   K   E   C   Y   A   P   Y   S   P   S   T   E   F 

 

 721  GTT GGG AAA TTT GGT TTG GAA AAT GGA ACT GCC TGG GAG TAT CAA TCT GAA AAA GAG CTA  

 241  V   G   K   F   G   L   E   N   G   T   A   W   E   Y   Q   S   E   K   E   L 

 

 781  GAT GGT CAA AGT TTT TCT GGG CCT ATA TCT ACT TAT GGA GGA GGT GGT TAT ACA GTT TTG  

 261  D   G   Q   S   F   S   G   P   I   S   T   Y   G   G   G   G   Y   T   V   L 

 

 841  TTT GGA GCA GAT AGC GCA GAG TCT AAT AGC ATT ATT GAT GCT CTA CAG AGT AAT CGA TGG  

 281  F   G   A   D   S   A   E   S   N   S   I   I   D   A   L   Q   S   N   R   W       

    

 901  CTT GAT CGT GGA ACA AGA GCT GTA TTT TTC GAT TTT GCT GTT TAC AAT GCC AAC ATT AAT  

 301  L   D   R   G   T   R   A   V   F   F   D   F   A   V   Y   N   A   N   I   N     

 

 961  CTG TTT TGT GTT GTT CGC TTG CTA CTT GAG TTT CCA GCT ACT GGT GGA TGC TTC CCG ATA  

 321  L   F   C   V   V   R   L   L   L   E   F   P   A   T   G   G   C   F   P   I 

 

1021  TTT TAT TTT CAA ACA TTA AAG CTG TTG CGC TAT GTG ACC TCT ATG GAT TAT TTT GTA ATG  

 341  F   Y   F   Q   T   L   K   L   L   R   Y   V   T   S   M   D   Y   F   V   M 

 

1081  GCG TGT GAA GCA ATA TTT ATC CTT CTT CTC ATT TAT TAC TCC ATT GAA GAA GCA ATT GAG  

 361  A   C   E   A   I   F   I   L   L   L   I   Y   Y   S   I   E   E   A   I   E 

 

1141  ATA AAA AAA CAT GGT ACT TCA TAT TTC TCA GAT GTA TGG AAT GTC ATG GAT ATT ATA ATA  

 381  I   K   K   H   G   T   S   Y   F   S   D   V   W   N   V   M   D   I   I   I 

 

1201  GTG TTA CTG GGT TTT ATT TGT GTG ATT TTT AAT GGT GTT CGT ACG GTA TCA GTT GCT AAT  

 401  V   L   L   G   F   I   C   V   I   F   N   G   V   R   T   V   S   V   A   N 

 

1261  AAG TTA CGT ATT ACG TTG GAG GAA CGA GAT AAG TAT GCA AAT TTT GAG ATA TTG GCT GAC  

 421  K   L   R   I   T   L   E   E   R   D   K   Y   A   N   F   E   I   L   A   D 

 

1321  ATG CAG ACA AAA TTT AAT GAC CTT GTA GCA GTT TAT ATA TTT CTT ATT TGG ATT AAG TTA  

 441  M   Q   T   K   F   N   D   L   V   A   V   Y   I   F   L   I   W   I   K   L 

 

1381  TTC AAG TAT CTC TCA TTC AAC AAA ACA ATG ACA CAG TTA CAA TCA ACT CTC TCT CGT TGT  

 461  F   K   Y   L   S   F   N   K   T   M   T   Q   L   Q   S   T   L   S   R   C 

 

1441  GCT AAA GAT ATT GCT GGT TTT TCA GTG ATG TTT TTT ATT GTT TTC TTC GCC TAT GCA TTA  

 481  A   K   D   I   A   G   F   S   V   M   F   F   I   V   F   F   A   Y   A   L 

 

1501  TGG GGC TAC CTA CTT TTA GGG CCT CAA TTA GCT GAT TAT TCT ACG TAC TTA AAC AGC ATA  

 501  W   G   Y   L   L   L   G   P   Q   L   A   D   Y   S   T   Y   L   N   S   I 

 

1561  TTT GCA TGT TTT CGT ATT ATT CTT GGT GAC TTT GCT TGG TCT GAT ATA AAT GGT GCT GCA 

 521  F   A   C   F   R   I   I   L   G   D   F   A   W   S   D   I   N   G   A   A 

  

1621  CCA AGT ATG GGC CCA ATA TTT TTC ATT TCT TAT GTA TTC ATG GTG TTT TTT ATT TTG ATC  

 541  P   S   M   G   P   I   F   F   I   S   Y   V   F   M   V   F   F   I   L   I 

 

1681  AAC ATG TTT TTG GCC ATT ATT AAT GAC ACT TAT TCT GAA GTG AAA TCA GAT CTT GCA GAG  

 561  N   M   F   L   A   I   I   N   D   T   Y   S   E   V   K   S   D   L   A   E 

 

1741  CAA AAA GAT GAA TTT GAA ATT GGT GAT TAC TTT AAA AAA GGA TAT GAT AAA ATG ATG AGC  

 581  Q   K   D   E   F   E   I   G   D   Y   F   K   K   G   Y   D   K   M   M   S 

 

1801  AAT TTA TCT TTT AAG CGA GAA AAA ATT GTT GAC ATT CAA AAA GCT CTT CAA ACT GCT GAT  

 601  N   L   S   F   K   R   E   K   I   V   D   I   Q   K   A   L   Q   T   A   D 
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1861  GTG AAC CAT GAT AAT ATG TTA GAC TTC GAA GAA TGG AGA GCA CAG TTA AAA TTG CGT GGC  

 621  V   N   H   D   N   M   L   D   F   E   E   W   R   A   Q   L   K   L   R   G 

 

1921  CAT GCT GAT TTA GAA ATT GAG GCT GTA TTT ACT CAG TAT GAT TTA GAT GGA GAT CGT GTA  

 641  H   A   D   L   E   I   E   A   V   F   T   Q   Y   D   L   D   G   D   R   V 

 

1981  CTC AAT GAA ATT GAA CAA CAA AAA ATG CAT GAT GAT CTT GAT ATA AAA ATG GAA GAG TTA  

 661  L   N   E   I   E   Q   Q   K   M   H   D   D   L   D   I   K   M   E   E   L 

 

2041  GAA GAT GAA ATT GAA GAA GTT CGC AAG TCA AAA GGA AAT TTA AAA AAA ATT CAA AGT AAA  

 681  E   D   E   I   E   E   V   R   K   S   K   G   N   L   K   K   I   Q   S   K 

 

2101  ATA AAC ATG AAA TCT GGT GAT GAT GAT GAT GAT GAT GAA GAT GAT GAT GAA AAT GAC AGT  

 701  I   N   M   K   S   G   D   D   D   D   D   D   E   D   D   D   E   N   D   S 

 

2161  GAA CCA ACA GGA CTT GTA AAA TAT GAA GAG TTC TCA ATC CTG GCT CGA CGC GTT GAT CGT 

 721  E   P   T   G   L   V   K   Y   E   E   F   S   I   L   A   R   R   V   D   R 

  

2221  GTT GAA CAA AGT ATT GGC AGT ATG GTG TTG AAG ATT GAT TCC GTT CTT TTA AAG TTG GAA  

 741  V   E   Q   S   I   G   S   M   V   L   K   I   D   S   V   L   L   K   L   E 

 

2281  GCT ATG GAT AAA GCT AAA ATA AAA GGA AGA GAG ACA ATG ACA AAG CTT TTA GAC AGT ATT  

 761  A   M   D   K   A   K   I   K   G   R   E   T   M   T   K   L   L   D   S   I 

 

2341  GCT GAG CAA GAA TTG AGT GTT TTT AAA GAG TTT GGG AAT AAA TCT AGC ACA AAT ATA TTT  

 781  A   E   Q   E   L   S   V   F   K   E   F   G   N   K   S   S   T   N   I   F 

 

2401  CGC CCA ACA TCA ACA ACT TCA AAA CAA TCT AAT GAT AGC GTC ATC TCT ATC AAA GAG GAC 

 801  R   P   T   S   T   T   S   K   Q   S   N   D   S   V   I   S   I   K   E   D 

  

2461  CAT GAT GGT GAT GAC GAT GAT GAT GGT GAT AAT GAT GAT GGT GAC GAT CCT GTT AAC TAA  

 821  H   D   G   D   D   D   D   D   G   D   N   D   D   G   D   D   P   V   N   * 
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