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Summary 
Environmental exposure such as tobacco smoke is the principal cause of most lung cancer 

cases worldwide. However, only a small proportion of heavy smokers develop lung cancer 

which suggests that other factors such as genetic and/or epigenetic interindividual variations 

may be responsible for individual disease susceptibility. The overall aim of this study was to 

determine germline copy number variations (CNVs) associated with early-onset lung cancer risk 

and to further investigate the genetic and epigenetic interplay of microRNAs (miRNAs) and 

genes located in two candidate CNVs on 8q24.3 and 11p15.5 in lung cancer.  

A genome wide association study (GWA) had been performed using the Illumina Infinium 

platform Human Hap550 BeadChip on 492 early-onset lung cancer cases and 487 population 

based controls. Two computational CNV detection algorithms, QuantiSNP and PennCNV, were 

applied to this existing data set to identify CNVs and the overlapping CNVs between the two 

algorithms were further analyzed for association with the disease. Ten CNVs were significantly 

associated with early-onset lung cancer. Two CNVs were selected for strength of association 

and for containing miRNAs and genes likely to be relevant for lung cancer. To assess their 

functional relevance in non-small cell lung carcinoma (NSCLC), qPCR based expression 

analysis and quantitative methylation analysis using the MassCLEAVETM assay of genes and 

miRNAs in these regions were performed on NCSLC and matched normal lung tissue. The 

expression analysis showed that miR-661 on 8q24.3 was significantly upregulated in lung tumor 

compared to normal. The putative miR-661 promoter was hypomethylated in tumor tissue and 

revealed a significant negative correlation with expression in tumor. Additionally, the loss of 

methylation at these sites was significantly associated with worse outcome independent from 

stage, histology and gender. The most significant changes in the gain CNV region on 11p15.5 

were seen for miR-210 and Plakophilin 3 (PKP3) which both were significantly upregulated in 

NSCLC. Promoter hypomethylation at the transcription start site of PKP3 was inversely 

correlated with expression in NSCLC, suggesting that methylation regulates the PKP3 

expression. For further functional analysis of the two miRNAs, predicted targets were identified 

in silico and 3´UTR luciferase reporter assays for the predicted targets and expression analysis 

after ectopic overexpression in A549, H1299 and H1703 lung cancer cell lines were carried out 

to determine whether a direct link between the miRNAs and the targets could be shown. The 

results showed that mitogen associated protein 3 kinase 3 (MAP3K3) and Cadherin1 (CDH1) 

are direct targets of miR-661, suggesting that miR-661 has oncogenic properties in lung cancer. 
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Furthermore, miR-210 was shown to target the tumor suppressor gene Runt related 

transcription factor 3 (RUNX3), a transcription factor known to be involved in lung development 

and to be a crucial regulator of cell proliferation.  

The results from this study suggest that CNV analysis of GWAs data for lung cancer risk can 

point to functionally important regions in the genome that are deregulated in NSCLC and may 

contribute to lung tumorigenesis. Further investigation of the relevance of these CNVs to early-

onset lung cancer risk is needed to confirm our suggested finding of two risk markers. 

Furthermore, additional analyses on the functional role of miR-661 in lung cancer are desirable 

to elucidate to what extent this miRNA contributes to tumorigenesis. Taken together, this study 

provides evidence that interplay between genetic variations and epigenetic deregulation plays a 

pivotal role in NSCLC pathogenesis. 
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Zusammenfassung 
 

Umwelteinflüsse wie Tabakrauch sind die Hauptursache für die meisten Lungenkrebsfälle 

weltweit. Allerdings entwickelt nur ein kleiner Anteil der starken Raucher Lungenkrebs. Andere 

Faktoren, wie zum Beispiel genetische und / oder epigenetische interindividuelle Unterschiede, 

können dabei für die individuelle Krebsanfälligkeit verantwortlich sein. Das übergeordnete Ziel 

dieser Studie war es, die Variation der Genkopien (CNV) in der Keimbahn zu identifizieren die 

mit dem Risiko, an einer frühen Form von Lungenkrebs zu erkranken, assoziiert sind. Des 

Weiteren sollte das genetische und epigenetische Zusammenspiel von micro RNA (miRNA) und 

Genen aus den CNV Kandidaten Regionen 8q24.3 und 11p15.5 untersucht werden.  

 

Eine genomweite Assoziationsstudie (GWA) wurde unter Verwendung der Illumina Infinium 

Plattform Hap550 BeadChip in 492 Patienten mit Lungenkrebs in jungen Jahren und 487 

Populationskontrollen durchgeführt. Zur Detektion von CNVs wurden zwei rechnergestützte 

CNV Algorithmen, QuantiSNP und PennCNV, auf die existierenden Daten angewendet. Die 

überlappendenden CNVs der beiden Algorithmen wurden hinsichtlich der Assoziation mit der 

Krankheit weiter untersucht. Zehn CNVs waren signifikant mit frühmanifestiertem Lungenkrebs 

assoziiert. Zwei dieser CNVs wurden aufgrund der Stärke der Assoziation, sowie der Tatsache 

dass Sie miRNAs und Gene mit wahrscheinlicher  Relevanz für Lungenkrebs enthielten, 

ausgewählt. Um ihre funktionelle Bedeutung in nicht-kleinzelligem Lungenkarzinom (NSCLC) zu 

auzuklären, wurden Gene und miRNAs in diesen Regionen mittels qPCR basierter 

Expressionsanalyse und quantitativer Methylierungsanalyse unter Verwendung des 

MassCLEAVE Assays in NCSLC und normalem Lungengewebe untersucht. Die 

Expressionsanalyse zeigte, dass miR-661 auf Chromosom 8q24.3 in Lungentumoren verglichen 

mit Normalgewebe signifikant hochreguliert war. Der mutmaßliche miR-661-Promotor war im 

Tumorgewebe hypomethyliert und zeigte eine signifikant negative Korrelation mit der 

Expression. Unabhängig vom Stadium, von der Histologie oder vom Geschlecht war der Verlust 

der Methylierung an diesen Stellen mit deutlich schlechterem Behandlungsergebnis assoziiert. 

MiR-210 und PKP3 (engl. Plakophilin 3) waren beide in NSCLC-Gewebe deutlich hochreguliert 

und zeigten damit innerhalb der CNV Region 11p15.5 die signifikantesten Änderungen . 

Promotor Hypomethylierung an der Transkriptionsstartstelle von PKP3 war invers mit der 

Expression in NSCLC korreliert, was darauf hinweist dass Methylierung die PKP3 Expression 

regulierthinweist. Zur weiteren funktionellen Analyse der beiden miRNAs wurden deren 
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prognostizierte Zielstrukturen in silico identifiziert. In den Lungenkrebs-Zelllinien A549, H1299 

und H1703 wurden 3'UTR Luciferase-Reporter-Assays und Expressions-Analysen nach 

ektopischer Überexpression der prognostizierten Zielstrukturen durchgeführt, um eine direkte 

Verbindung zwischen den miRNAs und den Zielgenen zu zeigen. Die Ergebnisse zeigten, dass 

MAP3K3 (engl. Mitogen associated protein 3 kinase 3) und CDH1 (engl. Cadherin1) direkte 

Zielstrukturen von miR-661 sind, was auf die onkogenen Eigenschaften von miR-661 bei 

Lungenkrebs hinweist. Des Weiteren wurde gezeigt, dass das Tumorsuppressorgen RUNX3 

(engl. Runt related transcription factor 3), ein Transkriptionsfaktor der Lungenentwicklung und 

ein wichtiger Regulator für Zellproliferation, eine Zielstruktur von miR-210 darstellt.  

 

Die Ergebnisse dieser Studie deuten darauf hin, dass die CNV Analyse der GWAS-Daten 

funktionell wichtige genomische Regionen aufzeigen kann, die in NSCLC dereguliert sind, und 

damit zur Lungentumorigenese beitragen können,. Weitere Untersuchungen der Bedeutung 

dieser CNVs für das Lungenkrebsrisiko sind erforderlich, um unsere zwei Kandidaten Risiko 

Marker zu bestätigen. Darüber hinaus sind zusätzliche Analysen über die funktionelle Rolle von 

miR-661 bei Lungenkrebs wünschenswert, um herauszufinden, inwieweit diese miRNA zur 

Tumorentstehung beiträgt. Zusammenfassend liefert diese Studie Hinweise darauf, dass das 

Zusammenspiel zwischen genetischen Variationen und epigenetischer Deregulierung eine 

entscheidende Rolle bei der NSCLC Pathogenese spielt. 
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Abbreviations 
µg microgram HPRT Hypoxanthine-guanine 

phosphoribosyltransferase 
3´UTR three prime untranslated region HR Hazard ratio 

95% C.I. 95% confidence interval HRAS v-Ha-ras Harvey rat sarcoma viral oncogene 
homolog  

AdC Adeno carcinoma IGV Integrative genome viewer 

AGO2 ARGONAUTE 2 IHC Immunohistochemistry 

BAF B allele frequency IRF7 Interferon regulatory factor 7  

Bp Basepair LCLC Large cell lung carcinoma 

BT DNA Bisulphite converted DNA LRR Log R ratio 

Ca Cases LOH  Loss of heterozygosity 

CDH1 Cadherin 1 MAF1 Repressor of RNA polymerase III transcription 
MAF1 homolog 

CDK2Na Cyclin-dependent kinase inhibitor 2A MAP3K3 Mitogen associated protein 3 kinase 3 

cDNA complementary DNA MBP Methyl binding protein 

CNV Copy number variation miRNA microRNA 

CpG  Cytosine phosphate Guanine mut Mutant 

Cy3 Cyanine 3 ng nanogram 

Da  Dalton NSCLC Non-small cell lung cancer 

DEAF1 Deformed epidermal autoregulatory factor 1 
homolog 

ORF Open reading frame 

DGV Database for genomic variants PCR Polymerase chain reaction 

DIRAS3 Distinct subgroup of the ras family member 3  pg picogram 

DNA  Deoxyribonucleic acid PKP3 Plakophilin 3 

DNMT  DNA methyltransferase PLEC1 Plectin 

DNMT  DNA methyltransferase pre-
miRNA 

Precursor microRNA 

dNTP deoxyribonucleotide pri-
miRNA 

Primary microRNA 

EMT Epithelial to mesenchymal transition PTDSS2 Phosphatidylserine Synthase 2 

EXOSC4 Exosome Component 4 RIPK2 Receptor-Interacting Serine-Threonine Kinase 2 

FISH Fluorescence in situ hybridization RISC RNA-induced silencing complex  

FITC Fluorescein isothiocyanate RNA Riboxynucleic acid 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase  RNH1 Ribonuclease/Angiogenin Inhibitor 1 

GAS7 Growth arrest specific 7 RUNX3 Runt-related transcription factor 3 

gDNA genomic DNA SCC Squamous cell carcinoma 

GPAA1 Glycosylphosphatidylinositol anchor attachment 1 SCLC Small cell lung cancer 

GRINA Glutamate Receptor, Ionotropic, N-Methyl D-
Aspartate-Associated Protein 1 

SHARPIN SHANK-Associated RH Domain Interactor 

GSTM1 Glutathione S transferase mu1 SIGIRR Single immunoglobulin and toll-interleukin 1 
receptor (TIR) domain 

GSTT1 Glutathione S-transferase theta 1 SNAIL1 Snail homolog 1 

GWA Genome wide association  SNP Single nucleotide polymorphism 

H3K4me3 Histone 3 lysine 4 trimethylation TERT Telomerase reverse transcriptase 

HAT Histone acetylase transferase TGFβ1  Transforming Growth factor β 1 

HDAC Histone deacetylase TWIST1 Twist basic helix-loop-helix transcription factor 1  



  
 

-20- 
 



 1. Introduction 
 

-21- 
 

1. Introduction 

1.1 Cancer 
A cancer cell can be characterized by the classic six hallmarks of cancer that enable the cell 

to proliferate, resist cell death, induce angiogenesis, evade growth supressors, disseminate, 

invade and metastasize [1]. The understanding of the underlying genomic, epigenomic and 

proteomic diversity of a tumor cell behind these changes, has over the last few years 

increased considerably, through advanced sequencing technology. The genome of a cancer 

cell harbors several mutations and only a subset is thought to be causal and crucial for the 

cancer progression by contributing to clonal growth advantage. They are called drivers. The 

rest are called passengers and are defined as those that do not affect the fitness of the cell, 

but are acquired during the progression through e.g. genomic instability which leads to 

increased mutation rates and chromosomal rearrangements [2, 3]. Furthermore, it has 

become evident that not only the cancer cell alone but also the surrounding tumor-

microenvironment, is contributing to the hallmark properties. Another characteristics of 

cancer involves the inflammatory state that is driven by cells of the immune system, enabling 

tumor progression in various ways [4]. To understand the complexity of a tumor, the 

hallmarks of cancer proposed by Hanahan and Weinberg in 2000 and 2011, are valuable 

guidelines in the search for cancer risk factors, therapeutic targets or prognostic and 

diagnostic markers (Figure 1).  

 

 

Figure 1. Hallmarks of cancer. (From the review by Hanahan and Weinberg: Hallmarks of 
cancer: next generation, 2011 [4]). 
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1.2 Lung cancer 
Lung cancer is the most prevalent cancer related death with 1.37 million deaths per year [5]. 

The majority of primary lung cancers are lung carcinomas and can be divided into two 

groups; Small cell lung carcinoma (SCLC) and Non-Small Cell Lung Carcinoma (NSCLC). 

SCLC is an aggressive neuroendocrine tumor consisting of small tumor cells deriving from 

epithelial and neuroendocrine cells. This type of lung cancer is strongly associated with 

smoking with a poor prognosis. Due to fast spread of these tumors, patients with SCLC are 

rarely operated [6]. NSCLC accounts for approximately 80% of all lung cancers and includes 

three histological subtypes; adenocarcinoma (AdC), squamous cell carcinoma (SCC), and 

large cell carcinoma (LCC)[7]. In recent years, AdC of the lung has replaced SCC as the 

most frequent histologic subtype for both men and women [8]. AdC arises from cells with 

glandular or secretary properties in the periphery of the lung [9]. The shifts in histologic types 

are related to increased rates of smoking in women and to modern cigarettes that contain 

higher concentrations of certain carcinogens [10]. Most AdC cases are linked to cigarette 

smoke and account for 20% of all lung cancers. Yet, among non-smokers and women, AdC 

accounts for most cases. SCC accounts for 30% of all lung cancers [11]. SCC originate from 

multilayered squamous cells, which are normally not present in the respiratory epithelium, 

but arise from glandular or secretory cells by metaplastic change as a result of tobacco 

smoke [9, 12]. NSCLC is staged from IA to IV, IA having the best prognosis and IV being the 

worst, based on the degree of spreading from the primary tumor [13].  

1.2.1 Early-onset lung cancer 
The mean onset age for lung cancer has been estimated between 60-70 years. Less than 

10% of all cases develop lung cancer at an early age (younger than 51) [14]. Smoking is as 

well the major risk factor for this group, however, the histological type, gender distribution 

and genetic susceptibility have been shown to be different in early-onset lung cancer patients 

[15-17]. Risk studies have identified SNPs in matrix-metalloproteinase 1 (MMP1), 

Glutathione S transferase mu1 (GSTM1), and Cytochrome Cytochrome P 450 (CYP450) 

genes to be associated with early onset of the disease [18-20]. Additionally, risk studies in 

young lung cancer patients have shown an increased risk if the first degree relatives had 

cancer [17] or an even higher risk if the parent or a sibling was affected with lung cancer [21]. 

This suggests that genetic predisposition may have a stronger effect in early-onset lung 

cancer cases than among elderly cases.  
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1.2.2 Genomics and lung cancer 
The traditional decision for therapy in lung cancer has been based on histology classification. 

Lung cancer is a molecularly heterogeneous disease, with an ever increasing understanding 

of genetic alterations, they have become increasingly important for treatment decisions [22]. 

The most common driver mutations with oncogenic features and therefore suitable as targets 

for therapy in AdC, appear in Epidermal growth factor receptor (EGFR) and Kirsten rat 

sarcoma viral oncogene homolog (KRAS) comprising between 5-15% of the cases. Other 

well defined genetic aberrations appearing in 5% of AdC are the Echinoderm microtubule-

associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) fusion gene, 

estrogen-related receptor beta type 2 (ERRB2), NRAS, v-raf murine sarcoma viral oncogene 

homolog B1 (BRAF), phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha 

(PIK3CA), met proto-oncogene (MET) and cadherin-associated protein beta 1 (CTNNB1) 

mutations [23],[24]. There appears to be a significant difference in the genomic landscape of 

SCC [25]. For example, KRAS, EGFR mutations and ALK rearrangements are rare in 

comparison to AdC and rather the ERBB genes, Fibroblast growth factor receptor 1 

(FGFR1), the tyrosine kinase DDR2 and the JAK/STAT pathway are frequently altered by 

mutations or amplifications in SCC. This suggests that subtype specific alterations play a 

crucial role in treatment decisions in lung cancer. For instance, FGFR1 amplification and 

DDR2 mutations are treatment targets specifically for SCC [26, 27]. Specific tyrosine kinase 

inhibitors are used in targeted treatment for patients with EGFR mutations, but can cause 

fatal complications for patients without [28]. A common feature for both AdC and SCC, is a 

strong correlation between smoking status and number of mutations. Smokers have a 10 fold 

higher mutation rate compared to non-smokers [29]. Mutations in BRAF, JAK2, JAK3, TP53 

and mismatch repair genes are strongly associated with smoking, whereas EGFR, ROS1, 

and ALK rearrangements appear as well in never smokers [29].  
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1.3 Epigenetics 
Epigenetic modifications are stable marks, resulting from the covalent modification of 

proteins and DNA, which controls gene expression without involving a change in the DNA 

sequence itself (reviewed in [30]). Cells store their epigenetic information as histone 

modifications, DNA methylation, nucleosome positioning and non-coding RNAs. The histone 

modifications take place at well conserved amino acid residues located in N-termini of the 

histone tails and include lysine acetylation, arginine and lysine methylation and serine 

phosphorylation. These modifications make up a code, the histone code, which affects the 

chromosomal architecture and is involved in a range of nuclear processes such as gene 

transcription, DNA repair or DNA replication [31]. Active gene transcription involves interplay 

between DNA methylation, nucleosome positioning and histone modifications (Figure 2). 

Active promoters lack DNA methylation and have nucleosome depleted regions (NDR) 

upstream of the transcription start sites (TSS) [32]. The nucleosomes that flank these NDRs 

are marked with active histone modifications (H3K4me3, lysine acetylation and H2A.Z) which 

may destabilize nucleosomes to facilitate transcriptional initiation [33]. Enhancer regions also 

harbor histone modifications e.g. H3K4me1 and H3K27ac and deoxyribonuclease 1 (DNase 

1) sensitivity and nucleosome depletions [34].  

DNA methylation in mammals occurs mainly at the 5´-carbon position of cytosine at CpG 

dinuclotides. This epigenetic modification occurs at long stretches of CG rich sequences 

present in satellite repeat sequences, middle repetitive ribosomal DNA sequences, 

centromeric repeat sequences and CG rich sequences (CpG islands). CpG island sequences 

range from 200bp to 4kb in length, are found in promoter regions of almost half of the genes 

in the mammalian genome and are generally unmethylated in normal cells [30]. There are 

three DNA methyltransferases (DNMTs) present in the mammalian cells which are 

responsible for the de novo methylation during embryonic development and maintenance of 

the methylation pattern after replication [35]. The major role of DNA methylation is associated 

with transcription repression in several processes during development which require this 

function, such as differentiation and embryonic development, tissue specific gene expression 

regulation or gene silencing on the inactive X chromosome and imprinted genes. 

Additionally, methylation has been proposed as a genome defense against transposable 

elements [36]. Methyl-DNA binding proteins (MBPs) bind to methylated DNA sequences and 

are associated with histone deacetylases, building a bridge between the two epigenetic 

modifications. Moreover, hypermethylated DNA is often associated with an inactive 

chromatin mark, including deacetylated histone H3 and H4, H3K9 methylation and H3K27 

methylation [37]. 
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Figure 2. Illustration of the epigenetic interplay in mammalian cells (Adapted from [38]).  

 

1.3.1 The Epigenome of lung cancer 
The cancer epigenome is generally characterized by a loss of global methylation 

(hypomethylation) and increased methylation (hypermethylation) enriched at TSS in CpG 

islands or at CpG island shores [30, 39, 40]. Hypomethylation was the first known epigenetic 

mechanism associated with cancer development [40]. It can contribute to cancer 

development in several distinct ways e.g. chromosomal instability, transcriptional activation 

of retrotransposons, loss of imprinting and up regulation of oncogenic genes [30, 40-42]. The 

epithelial cell marker 14-3-3 sigma gene upregulation in NSCLC is one example where 

hypomethylation significantly correlates with increased expression in NSCLC and correlates 

with increased resistance to chemotherapy [43, 44]. Another example is the TP73 

hypomethylation and its correlation with a global loss of LINE1 methylation [43]. 

Hypermethylation in lung cancer is associated with gene silencing of genes involved in e.g. 

cell cycle, DNA repair, carcinogen metabolism, cell to cell interaction, apoptosis and 

angiogenesis [45]. During tumorigenesis, both alleles of a tumor suppressor gene need to be 

inactivated by for example chromosomal deletions or loss of heterozygosity (LOH) in the 

coding region of a gene or hypermethylation of CpG islands located in promoter regions of 

the gene. Epigenetic alterations are thought to be a key pathway for long term silencing of 

tumor suppressor genes, and thus, can constitute the second lesion in Knudson´s two hit 

model of how cancer develops [46]. A good example in lung cancer for this model is cell 

cycle regulator CDKN2A (p16). The CDKN2A tumor suppressor is frequently inactivated in 

NSCLC by methylation (21%), mutations (18%), exon 1β skipping (4%) or homozygous 
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deletion (29%) [25, 47-49]. Interestingly, CDKN2A promoter methylation has been shown to 

be correlated with smoking [50]. Other evidences that smoking contributes to methylation 

changes comes from studies in cell line systems and mouse models showing an effect on 

DAP kinase methylation [51, 52].  

1.3.2 miRNA biogenesis 
microRNAs were discovered for the first time in 1993 in Caenorhabditis elegans (C. Elegans) 

and since then the field has evolved rapidly and they are now one of the most studied 

molecules [53, 54]. microRNAs (miRNAs) are small, non-protein coding RNA molecules (18-

24nt long) and function as endogenous inhibitors of gene functions by pairing to the 3´ 

untranslated region (3´UTR) of the target gene triggering either degradation of the 

messenger RNA (mRNA) or translational inhibition [55] (Figure 3). They are transcribed 

mainly by RNA polymerase II into a primary transcript that ranges from a few hundred up to 

20kb or more [56],[57]. These long transcripts are characterized by a hairpin like structure 

and are further processed in the nucleus by RNAse III DROSHA complex which trims the 

primary transcript down to a precursor miRNA (pre-miRNA). An alternative pathway in the 

miRNA biogenesis without the DROSHA mediated cleavage, takes place during the splicing 

machinery. This is mainly true for intronic miRNAs (miRtrons) [58, 59]. The pre-miRNA is 

transported by Exportin 5 out of the nucleus to the cytoplasm where another RNAse III 

enzyme, DICER, cuts the hairpin loop and generates a miRNA duplex [60]. One strand acts 

as a guide strand incorporated in the miRNA-associated RNA induced silencing complex 

(RISC). The complementary passenger strand is thought to be degraded or further selected 

as a functional strand [61]. The mature, single stranded miRNA together with ARGONAUTE 

(AGO) act as guides to bring the RISC complex to its target. Preferentially, miRNAs regulate 

gene expression by binding to the complementary strand in the 3´UTR of the mRNA leading 

to mRNA degradation or translational inhibition. However, it is also now known that miRNAs 

can bind to 5´UTRs or open reading frames (ORF) and additionally also upregulate their 

targets [62].  
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Figure 3. Illustration of the miRNA biogenesis (Adapted from [63]).  

 

1.3.3 miRNAs and lung cancer 
The main function miRNAs have in the cell is to regulate cellular processes such as 

development, differentiation, proliferation and apoptosis [63]. It is well recognized how 

important miRNAs are for the normal cell function, and it is therefore evident that if miRNA 

deregulation takes place, this can have a severe impact on the cellular function. In 2004, the 

first evidence for the role of miRNAs in lung cancer was published [64]. The study identified 

the miRNA let-7 expression to be correlated with post-surgery survival in NSCLC. 

Additionally, overexpression of let-7 in A549 cells led to inhibition of growth, suggesting a 

tumor suppressor function of this miRNA. Later studies on let-7 in lung cancer have 

strengthened this hypothesis by showing that it targets the oncogene family RAS, a gene 

family that is mutated and upregulated in the majority of lung adenocarcinomas [24, 65]. 

Other genes such as CDC25a, CDK16 and Cyclin D involved in the G1/S transitions and 

BCL-2 involved in apoptosis, are further examples of oncogenes being regulated by let-7 [66, 

67]. The first oncogenic miRNA (oncomiR) reported in lung cancer was the miR cluster mir-

17-92 [68]. This cluster consists of several miRNAs located on 13q31.3, a frequently 
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amplified region in small cell lung cancer [69]. miR-21 is another well studied oncomiR in 

lung cancer and other cancers. The miR 21 is upregulated by EGFR signaling in lung 

cancers. This miRNA has been shown to target tumorsupressor PTEN in adenocarcinoma 

[70]. Also, genome wide copy number variation (CNV) discovery studies have revealed that 

very few miRNAs are located in common CNV regions in healthy individuals [71, 72]. 

Marcinkowska and colleagues studied specifically the co-localization of all miRNA loci with 

known CNV regions and found few overlaps throughout the genome, suggesting that 

miRNAs are underrepresented in polymorphic regions due to their biological importance and 

therefore might be affected by dosage [73, 74]. The functionality of miRNAs in CNVs 

associated with disease risk is still poorly understood.  
 

1.3.3.1 miRNAs and clinical significance in lung cancer 
miRNAs are stable molecules and thus might be suitable as biomarkers with clinical 

significance. The clinical outcome of lung cancer patients could be significantly improved by 

using non-invasive tools e.g. biomarkers for early detection, prognosis or for treatment 

decisions. Several studies have shown that miRNA expression signatures measured in body 

fluids e.g saliva, plasma, bronchoalveolar lavage fluid or sputum can be used to distinguish 

subtypes of lung cancer or be used as prognostic markers. One example of this was shown 

in study carried out in sputum from patients and healthy controls which showed it was 

possible to diagnose AdC using the expression pattern of miR-486, miR-21, miR-200b and 

miR-375 with 80.6% sensitivity and 91.7% specificity [75]. Another study using three 

overexpressed miRs in lung cancer; miR-205, mir-210 and miR-708 could distinguish SCC 

from healthy individuals (96% specificity and 73% sensitivity) [76]. Additionally, miRNA 

signatures for prognostics have been detected in plasma up to 2 years before CT diagnosis 

[77]. Moreover, lentiviral based delivery systems have successfully been used in animal 

models for miRNA let 7, which makes this miRNA and others potential targets for 

therapeutics [78].  

1.3.3.2 Epigenetic deregulation of miRNAs in lung cancer 
Deregulation of miRNA expression as a consequence of altered promoter DNA methylation 

has recently been shown in CLL and other cancers [79-81]. In lung cancer, this has been 

shown for miR-886-3p for which expression suppression by promoter methylation correlates 

with poor outcome in SCLC [82]. Other examples are miR-193 and miR-9-3 promoter 

hypermethylation associated with poor survival in SCC [83]. Additionally, upregulation 

through hypomethylation has been reported for miRNA let 7a-3 which targets IGF2 leading to 

an enhanced tumorigenic phenotype [84]. miRNAs can also themselves be involved in the 

epigenetic regulation by targeting components of the epigenetic machinery exemplified by 
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the miR-29 family which targets DNMT3a and DNMT3b in lung cancer [85]. The role of 

epigenetic regulation of miRNAs located in CNV regions as dosage compensation is not well 

understood in lung cancer and should be further investigated to understand the potential 

genetic and epigenetic interplay.  

1.4 Epithelial to mesenchymal transition (EMT) in lung cancer 
Lung cancer is often diagnosed at late stage, when local invasion and metastasis already 

have taken place. Therefore, a better understanding of the metastatic potential and 

molecular mechanisms behind in lung cancer is of high importance. One of the most crucial 

hallmarks in cancer is the ability of a cell to evade the extracellular matrix (ECM), migrate, 

and invade a new site and form a metastatic lesion [1]. For this, the cell needs to undergo 

epithelial to mesenchymal transition (EMT), a process defined as a phenotypic change where 

the cells lose their intercellular junctions through loss of e.g. E-cadherin, and the apical-basal 

polarity and becomes migratory and invasive [86]. E-cadherin mediates cell to cell adhesive 

interactions and contributes to intracellular signaling by its interaction with sigma Catenin 

which, through GTPase activation regulate EGFR activity [86]. Downregulation of E-cadherin 

can be explained by DNA hypermethylation, mutations or miRNA mediated repression [87-

91]. The best studied transduction pathway of EMT is the Transforming growth factor β1 

(TGFβ1) signaling pathway. TGFβ1 binds to type I and type II receptors which triggers EMT 

through activation of SMAD2 and 3. The activated SMAD proteins relocate to the nucleus 

where they together with transcription factors such as SNAIL1 and 2, TWIST and ZEB, 

regulate the expression of target genes leading to downregulation of epithelial markers e.g. 

E-cadherin and upregulation of mesenchymal markers e.g. n-Cadherin, Fibronectin, Vimentin 

and of metalloproteinases MMP2, 3, and 9 [92].  

 

EMT in lung cancer is less studied in comparison to other epithelial cancers e.g. breast 

cancer and colorectal cancer (reviewed in [93]). There is supporting evidence that invasive 

cells in lung cancer undergo EMT. For example, TGFβ expression has been shown to be 

positively correlated with lymph node metastasis in late stage and loss of E-cadherin has 

been shown to correlate with poor patient prognosis [90, 94] and higher risk of developing 

brain metastasis [95]. Additionally, TGF β-induced EMT in NSCLC leads to upregulation of 

SNAIL1 and TWIST. Upregulation of these proteins is associated with shorter overall survival 

[96-98]. The complexity of this multifaceted process, however, requires further investigation 

of EMT key players and their role in the progression of lung cancer.  

1.5 Genetic predisposition to lung cancer 
Environmental exposure such as tobacco smoke is the principal cause of most lung cancer 

cases worldwide. However, only a small proportion (10-15%) of heavy smokers develop lung 
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cancer which suggests that additional underlying factors such as genetic and/or epigenetic 

inter-individual variations may influence the individual disease susceptibility [99]. This is 

supported by several genome-wide association (GWA) studies for lung cancer risk which 

have pointed to risk SNPs associated with lung cancer on 15q25.1, 5p15.33 and 6p21.33 

[100-103]. For example the 15q25.1 locus harbors subunits of the neuronal nicotine 

acetylcholine receptors (nAchR) CHRNA3, CHRNA5 and CHRNB4. SNPs in the CHRNA3 

and CHRNA5 region have also been associated with smoking addiction [104, 105]. [100-

103]. Some genes within GWA-identified risk loci (e.g. CHRNA3 and CHRNB4 on 15q25.1 

and TERT on 5p15.33) have been found to play a role in tumorigenesis and to be 

deregulated by DNA methylation [106, 107]. Other polymorphisms associated with increased 

risk for lung cancer includes carcinogen-metabolizing genes (CYP1A, GSTM1, NAT2 and 

MPO), DNA repair gene XRCC1, inflammation related genes e.g. Matrix metalloproteases 

(MMPs) and cell cycle genes such as MDM2 and TP53 [108-110]. Moreover, miRNA 

polymorphisms have shown to be functionally related to disease and to be associated with 

poor survival [111]. Taken together, there is evidence that the genetic background plays a 

role in susceptibility to lung cancer by acting on crucial pathways that together with 

environmental factors participate in tumorigenesis. 

1.6 Germline CNVs and cancer 
The human population shows extensive genomic variations, consisting of both gains and 

losses of chromosomal regions known as copy number variations (CNVs) [71, 112-117]. 

CNVs are characterized as DNA segments that are 1kb or larger and present at variable 

copy numbers compared to a reference genome. A CNV can be simple in structure, such as 

tandem duplications, or may involve gains or losses of homologous sequences at multiple 

sites in the genome. Until recently, CNVs were thought to be a rare event in the human 

genome. However, population based genome wide studies have identified thousands of 

CNVs throughout the genome and it is now thought that CNVs encompass more total 

nucleotides and arise more frequently than SNPs [71, 118-120]. Several studies have shown 

that CNVs may contribute to the phenotypic differences between two individuals and 

additionally play a role in disease susceptibility by altering gene dosage, disrupt other genes 

or interfering with regulatory elements such as enhancer sequences or promoter 

regions[121-123]. However, the phenotypic variation associated with CNVs has not been 

evaluated thoroughly.  

 

The role of constitutional CNVs in cancer predisposition and development is so far not well 

explored. One of the first studies showing that common CNVs may contribute to cancer 

susceptibility was investigated in patients with Li Fraumeni syndrome, a familial cancer 

associated with TP53 mutations [124-128]. In this study, a screen of common cancer related 
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genes showed that 49 of these overlapped with CNV regions in more than one person in a 

large reference population. Based on these findings, they hypothesized that constitutional 

CNVs present in the germ line can predispose to cancer development and also initiate 

acquired CNVs in the tumor [129]. Furthermore, the Database of Genomic variants (DGVs) 

revealed that close to 40% of cancer related genes are interrupted by a CNV. Additionally, 

strong evidence that CNVs can be associated with disease risk have been shown for 

prostate cancer [130] and neuroblastoma [131]. 

 

CNV polymorphisms in the metabolic enzymes GSTM1 and GSTT1 belonging to the Phase II 

enzymes have been intensively studied in COPD and lung cancer [132]. For example, 

GSTM1 homozygous deletion has been associated with a small increased risk for lung 

cancer [133]. Furthermore, correlations have been shown between GST CNVs and mRNA 

expression in lung, suggesting that these CNVs are gene dosage dependent and may have a 

functional impact on the disease [134]. Also, CNVs in the Cytochrome P450 genes have 

been studied intensively in lung cancer [135]. Both losses and gains have been found to be 

associated with risk of different CYP genes. However, mRNA expression of the CYP2D6 

gene, has not shown concordance with numbers of copies, suggesting epigenetic 

mechanisms to play a crucial role in regulation of this gene family [136]. Moreover, recent 

studies have identified new novel functional susceptibility genes for risk and prognosis of 

lung cancer in the Chinese population, e.g. deletion of the mitogen associated kinase 

MAPKAPK2 and gain of the WWOX gene [137, 138]. The impact of CNVs associated with 

lung cancer risk and disease progression is not well characterized and more investigations 

are necessary to explore how miRNAs and genes located in these regions are regulated and 

what functional impact they have on lung tumorigenesis.  

 

1.6.1 CNV detection  
GWAs using SNP based arrays are frequently used to identify risk loci associated with 

disease susceptibility. The Illumina Infinium platform Human Hap550 BeadChip has more 

than 500 000 SNP probes and is a hybridization based assay which uses allele specific 

primer extension and signal amplification for genotype calls [139, 140]. Several different CNV 

detection algorithms based on Hidden markov models (HMM) have been developed over the 

last years, making it feasible to use array based SNP data for CNV identification genome 

wide (reviewed in [141]). For example, PennCNV was developed to identify copy number 

changes by using an integrated HMM algorithm [142]. This method is based on combining 

the log R Ratio (LRR), the measure of normalized total signal intensity, and the B allele 

frequency (BAF), a measure of normalized allelic intensity ratio together with the distance 

between neighboring SNPs. This information is incorporated and used in a sliding window 
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over the chromosome. Another CNV detection algorithm, QuantiSNP, is using a similar 

approach with the addition of the Objective Bayes HMM [143]. The Bayes factor provides a 

probability measure for the presence of a copy number variant in a region. The higher the 

Bayes factor is the stronger the evidence that the CNV exists. A combination of different 

algorithms is often used to increase the probability of detecting non-false positives. However, 

the robustness of these algorithms is not well reported. Therefore, replication studies and 

technical validations are important to determine whether CNVs detected from genome wide 

platforms are trustable. For validation, low throughput methods are used e.g. PCR based 

methods [144], Fluorescence in situ hybridization (FISH) [145] or multiplex ligation probe 

amplification (MLPA) [146]. The absolute quantification of copy number changes, is, 

however, challenging, and robust high-throughput quantitative methods are missing. 
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1.7 Aim of the study 
GWA studies in lung cancer have suggested several risk loci to play a role in the 

predisposition to the disease with some evidence for functionality in lung cancer. However, 

larger variations such as CNVs have not been well characterized and also not the function 

these variants may have in the tumorigenesis of the lung. Therefore, based on a GWA study 

on early-onset lung cancer, the overall aim of this study was to explore the functional impact 

of CNVs associated with lung cancer risk on lung tumorigenesis. 

 
The working hypotheses were:  

1. There are germline CNVs existing in the genome that contribute to disease 

predisposition in early-onset lung cancer. 

2. CNVs associated with lung cancer risk harbor genes and miRNAs that play a 

functional role in lung cancer progression. 

3. Epigenetic analysis in lung cancer and normal tissue can contribute to a better 

understanding of how miRNAs and genes located in risk CNVs are regulated and 

could be useful to identify possible tumor suppressors or oncogenes.  

 

The main objectives of the study were to 
1. Determine novel germline CNVs associated with lung cancer risk based on a GWA 

study carried out on early-onset lung cancer 

2. Establish and optimize a protocol for a high-throughput quantitative CNV analysis in 

blood. 

3. Perform a technical validation of the candidate CNVs associated with lung cancer risk  

4. Investigate the impact of candidate CNVs on tumorigenesis by 

a. Determination of mRNA and miRNA expression in NSCLC and adjacent 

normal tissue.  

b. Determination of DNA methylation as a potential expression regulator of 

genes and miRNAs in candidate CNV regions. 

c. Functional determination of miRNAs and genes in candidate CNVs in lung 
cancer cell lines to further understand how CNVs associated with risk may be 
functionally relevant for the disease progression. 
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2. Materials  

2.1 Computer software 
Table 1. Computer Softwares 

Name Company 

Multiple Experiment Viewer software suite L. Craig Venter Institute, San Diego, USA,  

Graphpad Prism 5 GraphPad Software Inc, La Jolla, CA, USA 

Typer 4.0  Sequenom, Hamburg, Germany 

Epityper 1.2 Sequenom, Hamburg, Germany 

ImageJ  Image/ImageJ, National Institute of Health, 

USA 

 

2.2 Equipment 
Table 2. Equipment 

Name Company 

Transilluminator Herolab E.A.S.Y 442 

Thermocycler Applied Biosystems 

Centrifuge 5430 Eppendorf, Hamburg, Germany 

Masspectrometer Sequenom, Hamburg 

LightCycler 480 Roche, Mannheim, Germany 

Electrophoresis Power Supply-300 Pharmacia Biotech, Wienna, Austria 

Nano drop Spectrophotometer ND-1000 peqLab Biotechnology, Erlangen, Germany 

E. coli pulser Bio RAD Labs, Munich, Germany 

Thermo cycler Eppendorf, Hamburg, Germany 

Biofuge fresco Heraeus,Hamburg, Germany 

MassARRAY nanodispenser Sequenom, Hamburg, Germany 
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2.3 Reagents 
Table 3. Reagents 

Name Company 

Shrimp Alkaline Phosphatase Sequenom, Hamburg, Germany 

10x Buffer Sigma, Hamburg, Germany 

HOT STAR taq polymerase Qiagen, Hilden, Germany 

Poly Acrylamide Carl Roth GmbH, Karlsruhe, Germany 

Tris-Borat-EDTA Carl Roth GmbH, Karlsruhe, Germany 

Ammonium persulphate Carl Roth GmbH, Karlsruhe, Germany 

TEMED (N´tetramethylethylenediamine) Carl Roth GmbH, Karlsruhe, Germany 

Transcleave mix: Sequenom, Hamburg, Germany 

RNAse A Sequenom Hamburg, Germany 

T cleavage mix Sequenom Hamburg, Germany 

DTT Sequenom Hamburg, Germany 

T7 RNA polymerase Sequenom Hamburg, Germany 

Resin Sequenom Hamburg, Germany 

RNAse/DNAse free water Sequenom Hamburg, Germany 

384-well plate Thermo Fischer Scientific, Waldorf, Germany 

Pipettes Matrix, Gilson, Lab Systems 

Pipette tips TipOne, Ahrensburg, Germany 

Ampicillin GE Health care, Neu-Isenburg, Germany 

TOP10 chemocompetent cells Invitrogen, Karlsruhe, Germany 

pCpGL vector Gift from Michael Rehli 

pMIR luciferase vector Qiagen, Hilden, Germany 

T4 ligase New England Biolabs, Ipswich, USA  

T4 ligation buffer New England Biolabs, Ipswich, USA  

Zeocin Invitrogen, Karlsruhe, Germany 

Bacto TM AGAR Becton, Dickinson and Co., New Jersey, 

USA 

Bacto TM Peptone Becton, Dickinson and Co., New Jersey, 

USA 

Bacto TM Yeast Extract Becton, Dickinson and Co., New Jersey, 

USA 

Millipore water GIBCO, Invitrogen, Karlsruhe, Germany 

peqGold Universal Agarose peqLab Biotechnology, Erlangen, Germany 

6xLoading dye Fermentas; Leon-Rot, Germany 
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HF and GC buffer Thermo Fischer Scientific, Waldorf, Germany 

Pfu tag polymerase Thermo Fischer Scientific, Waldorf, Germany 

RPMI 1640 medium GIBCO, Invitrogen, Karlsruhe, Germany 

F12 Kaighn´s L-glutamine GIBCO, Invitrogen, Karlsruhe, Germany 

Dulbecco´s Phosphate Buffered Saline GIBCO, Invitrogen, Karlsruhe, Germany 

Trypsin EDTA GIBCO, Invitrogen, Karlsruhe, Germany 

TRANS-IT MirusBio. Madison, WI, USA 

 

2.4 Commercial kits 
Table 4. Commercial kits 

Name  Company 

QIAMP DNA mini kit Qiagen, Hilden, Germany 

EZ DNA  Methylation kit Zymo Research, Orange CA, USA 

QIAquick PCR purification kit Qiagen, Hilden, Germany 

MassCLEAVETM Kit-T7 Sequenom Hamburg, Germany 

Spectro CHIP Arrays and Clean Resin Kit Sequenom Hamburg, Germany 

REPLI-g Mini Kit Qiagen, Hilden, Germany 

HI SPEED Midi kit Qiagen, Hilden, Germany 

miRscript Assay Qiagen, Hilden, Germany 

RNeasy kit II Qiagen, Hilden, Germany 
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2.6 Study populations 

2.6.1 GWA study 
A GWA study in early-onset lung cancer had previously been carried out in a collaborative 

project between DKFZ Heidelberg, Helmholtz center Munich (H.-E. Wichmann, J. Heinrich) 

and Göttingen University (H. Bickeböller, A. Rosenberger). Genome-wide SNP analysis was 

performed on 492 early-onset lung cancer cases and 488 population-based controls 

(Illumina, 550K) of the Helmholtz-Gemeinschaft Deutscher Forschungszentrum (HGF) lung 

cancer GWA study [19] including lung cancer cases diagnosed at ≤ 50 years from the Lung 

Cancer in the Young (LUCY) study [14], a multicenter study within 31 German hospitals, and 

the Heidelberg lung cancer study, a hospital-based case-control study conducted by the 

German Cancer Research Center (DKFZ). Controls were selected from the Cooperative 

Health Research in the Region of Augsburg [KORA][147]).The characteristics of the study 

population are presented in Table 5. 

 
Table 5. Characteristics of GWA study population 

Subjects Controls (n=488) Cases (n=492) 

Age at recruitment/diagnosis 45.6 ± 3.7 45.6 ± 3.7 

Gender   

Female 240 (49%) 187 (38%) 

Male 248 (51%) 306 (62%) 

Pack years (py) 11.1 ± 18.4 30.2 ± 19.6 

Smoking status   

Never 218 (45%) 38 (8%) 

Ex-smokers 141 (29%) 84 (17%) 

Current 129 (26%) 370 (75%) 

Histology   

SCC  98 (20%) 

AdC  178 (36%) 

SCLC  113 (23%) 

LCLC  19 (4%) 

Mixed type  1 (0%) 

NSCLC mixed type  33 (7%) 

Other  17 (3%) 

Unknown  33 (7%) 
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2.6.2 Study population primary NSCLC and adjacent normal tissue 
Tumor and distant matched unaffected lung tissue were received from NSCLC patients at the 

Thoraxklinik at Heidelberg University hospital, Germany. Patients gave their consent for the 

use of their resected tissue for the study. Tissues were snap-frozen within 30 minutes after 

resection and stored at -80°C until the time of analysis. Tumor histology was classified 

according to the 3rd edition of the World Health Organization classification system [148]. The 

study protocol was approved by the local Ethics Committee of the Heidelberg University, 

Germany (270/2001; 199/2001, 186/1996, 201/1998). Characteristics of study populations 

used for lung tumor and adjacent normal tissue are presented in Table 6.  

 
Table 6. Characteristics of the study populations used for lung tumor and adjacent normal 
tissue analysis 

Sample set set 1 set 2 set 3 

Subjects 
SCC 

(n=19) 

AdC 

(n=18) 

SCC 

(n=24) 

AdC 

(n=24) 

SCC 

(n=23) 

AdC 

(n=20) 

Age at diagnosis 61±13 64±10 66±10 62±9 61±10 60±10 

Gender       

Female 6 (32%) 5 (45%) 7(39%) 11 (61%) 4(44%) 5 (55%) 

Male 

13 

68%) 13 (50%) 17(59%) 12(41%) 19(56%) 15 (44%) 

Pack years (py) 
 42±24 40±22 40±20 28±24 41±21 40±21 

Smoking status       

Never 0 (0%) 3 (17%) 1(4%) 5(16%)   

Ex-smokers  

14 

(74%) 9 (50%) 9(38%) 11(44%) 9 (20%) 8 (19%) 

Current 5 (26%) 5 (28%) 14(58%) 10(40%) 14 (33%) 12 (28%) 

Unkown  1 (5%)     

Stage       

I 7 (36%) 9 (50%) 10 (41%) 9 (38%) 3 (7%) 3 (7%) 

II 6 (32%) 2 (11%) 9 (38%) 10 (41%) 13 (30%) 3 (7%) 

III 6 (32%) 7 (39%) 5 (21%) 5 (21%) 5 (12%) 11 (26%) 

IV     2 (5%) 3 (7%) 
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3. Methods 

3.1 CNV detection  
The CNV detection was carried out by Agnes Hotz-Wagenblatt (Division of Bioinformatics, 

Genomics and Proteomics, Core Facility, DKFZ, Heidelberg). CNV detection was carried out 

with PennCNV and QuantiSNP according to recommendations in reference [142] and [143], 

respectively. In brief, for PennCNV, the input signal intensity files were prepared with 

BeadStudio from the original Illumina data as described by PennCNV 

(http://www.openbioinformatics.org/PennCNV/PennCNV_input.html#_Toc214852004). After 

splitting, the CNV detection program of PennCNV was run with the data files hh550.hg18.pfb, 

hh550.hmm, and hh550.hg18.gcmodel. Stringent cut offs were applied with a minimum of 7 

SNPs having a log R ratio (LRR) > 0.25 for duplications and < 0.25 for deletions. To combine 

the CNVs of the cases and the controls, perl scripts calculated the minimal overlaps for 

overlapping CNVs, number of cases and controls, and filtered for CNVs detected in more 

than 10 samples (either cases or controls). QuantiSNP was run according to the manual with 

gc corrections. A perl script then filtered the QuantiSNP output files according to SNP 

number >= 7 and LRR std < 0.25. Further analysis for the combination of the CNVs was 

accomplished as described for PennCNV. 

3.2 CNV analysis with TyperAssay 
For quantitative, allele specific copy number analysis, a protocol for the TyperAssay 

application using the MassARRAY platform from Sequenom was optimized [149]. Absolute 

quantification for CNV analysis combines a multi-plex competitive PCR with the iPLEX primer 

extension reaction provided by Sequenom, followed by detection by MALDI-TOF and allele 

ratio analysis (Figure 4). In order to analyze allele specific and absolute copy number 

variation the assay was designed for the wild‐type (wt) allele at an informative SNP 

representing the genomic DNA (gDNA), and a mutant allele which represents the competitor 

DNA that serves as an internal standard. A known concentration (copy number) of competitor 

DNA was added to the reaction as a template, and by comparing the ratio of competitor allele 

to wt allele it is possible to determine the absolute copy number of the wt allele. A 2N control 

was included in the same plex for intra‐assay normalization standard to compare sample to 

sample loading variation and regions of interest against a known diploid control. 

http://www.openbioinformatics.org/penncnv/penncnv_input.html#_Toc214852004
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Figure 4. Workflow for allele specific copy number analysis using the TyperAssay application 
(Sequenom). PCR amplification is carried out to amplify a region of interest e.g. a SNP to be able to 

distinguish two alleles. In the same reaction, a co-amplification of a synthetic DNA identical to the 

target region except for the SNP base is carried out to be able to quantify the absolute copies in the 

reaction. After SAP treatment (see section 3.2.3), a primer extension step is performed to extend the 

PCR product with one base which distinguishes the alleles from each other in the masspectrometry.  

 

3.2.1 Competitor concentration determination 
A known concentration (copy number) of competitor DNA was included in the assay to serve 

as an internal control. To obtain the concentration of the competitor DNA representing the 

same amount of DNA molecules in the reaction as the gDNA, a serial dilution with competitor 

together with a fixed amount of DNA template (copies of molecules) of gDNA was analyzed. 

For each genomic region of interest, we used a competitor in the iPLEX reaction. Competitor 

PCR is a method that was established for quantification of mRNA by spiking a known molar 

quantity of a synthetic DNA template identical to the gene of interest that competes with the 

mRNA PCR amplification[150]. The amount of haploid copies in 20ng gDNA is 6210 

(Equation 1). The theoretical concentration of competitor DNA needed to equal 6210 copies 

is 2.06E-15 M (Equation 2).  
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Equation 1. Calculation for absolute copies of 20ng gDNA 

Size (bp) of 1 haploid genome: 

3.15*10^9 bp [151] 

Weight (pg) of 1 nucleotide pair: 

 1.02310^-9 pg 

Size (bp) of 1picogram (pg) of DNA: 

 0.978x10^9 bp 

Absolute copies of 20ng DNA: 

(0.978*10^9)*20000pg/3.15*10^9 bp= 6210 copies 

 

Equation 2. Concentration for competitor DNA that equals 20ng DNA 

Avogadro’s constant: 
 
6.0123*10^23 mol -1 
 
Amount of substance (n): 
 
 6210/ 6.0123*10^23 = 1.03122^-20 mol 
 
Concentration needed for iPLEX PCR in a final volume 5µl: 
 
1.03122^-20 mol / 5*10^-6 l = 2.06244E-15 M 
 

3.2.2 iPLEX PCR  
Target regions were amplified using primers listed in Table S1. The PCR reagents were 

purchased from Qiagen, Hilden, Germany. Multiplex PCRs were carried out in a final volume 

of 5µl using 20ng of template gDNA and competitor DNA amount equal to input gDNA (see 

section 4.2.1) containing 1X PCR buffer with 2nM MgCl2, 500µM dNTP mix, 100nM 

primermix and 0,5U Hot Star Taq. Thermal cycling was performed with following conditions: 

Initial pre-incubation at 95°C for 15 min followed by 35 cycles of denaturation at 94°C for 20 

s, annealing at 56°C for 30 s, elongation at 72°C for 1min and a final elongation step at 72°C 

for 3 min.  1µl of PCR product was run on a 3% agarose gel containing 5µg/ml Ethidium 

Bromide. A 100bp ladder (Fermentas, St-Leon Rot, Germany) was used to determine the 

size of the PCR products.  

3.2.3 SAP treatment 
For dephosphorylation of un-incorporated dNTPs, Shrimp Alkaline Phosphatase (SAP) 

treatment was carried out in a final volume of 2µl with 0.255U SAP and 1X SAP buffer and 

added to 5µl PCR product and incubated at 37°C for 40 min followed by deactivation of the 

enzyme at 85°C for 5 min.  



 3. Methods 
 

-44- 
 

3.2.4 Primer extension reaction 
To determine the two alleles of a SNP with MALDI-TOF, an extension primer reaction was 

carried out with an extension primer using the PCR product. The extension primers were 

designed to bind adjacent to a SNP to extend with one base dependent on the genotype. 

The mass shift dependent on the nucleotide was analyzed with MALDI-TOF using the Typer 

software. The extension reaction was carried out in a final volume of 9µl with 0.222X iPLEX 

plus buffer, 0.5 x iPLEX termination mix and 0.625µM or 1.25µM extension primer mix and 

0.5x iPLEX enzyme. The extension primer mix concentration was determined by high or low 

mass. Thermal cycling was performed under following conditions: Initial denaturation at 94°C 

followed by 40 cycles including 94°C for 5 s and 5 cycle steps at 52°C for 5s and 80°C for 5s 

followed by elongation at 72°C for 3 min.  

3.3 Fluorescence in situ Hybridization 

3.3.1 Lymphocyte fixation 
The lymphocytes were washed 3x with 1xPBS at 2400rpm for 10min. To preserve the cell 

morphology while permeabilizing the cells for labeled oligonucleotides, 2 ml of Fixative (3 

parts Methanol and 1 part Acetic Acid) was added dropwise while vortexing. Hypotonic 

treatment was done with KCL 0.075M and added dropwise while vortexing to a final volume 

of 12ml. The samples were incubated for 20-30min at 37°C. After incubation, samples were 

centrifuged for 10min at 2400rpm and the supernatant was removed. Fixative was added 

dropwise by vortexing and centrifuged for 10min at 2400rpm. The fixation step was repeated 

one time followed by centrifugation for 10min at 2400rpm.  

3.3.2 Bioprime direct labeling 
20µl 2.5x Random primer solution (Invitrogen, Karlsruhe, Germany) was added to 300-500ng 

BAC DNA in 10µl H2O and incubated for 5min at 100°C for denaturation and directly followed 

by incubation on ice. The denatured BAC DNA was incubated overnight at 37°C with 5mM 

dACG, 5mM dTTP, 1mM spectrum Orange-UTP, 40U/µl KLenow (Klenow Fragment in 

50mM Potassium Phosphate pH 7.0, 100 M KCl, 1mM DTT, 50% Glycerol) in a total volume 

of 50µl. The size of the DNA was determined on 1.2% agarose gel and treated with DNAse I 

for 30-60min at 15°C with 1:50 DNAse I (1.5µl) and 10x NT buffer (500 mM Tris, pH 7.5, 100 

mM MgCl2, 10 mM DTT, 0.5 mg/ml BSA) in a final volume of 60µl ( 48µl labeled BAC, 6µl 

10x NT buffer and 1.5 µl DNASe and H2O) to obtain DNA fragments with the size 500-700bp. 

5µl Stopmix was added after treatment to stop the amplification reaction.  

3.3.3 Precipitation of Bioprime labeled BAC probes 
Bioprime labeled BACs were precipitated together with 5µl salmon sperm, 30µl Cot DNA in a 

2.5X final volume of EtOH (100%) and incubated overnight at -20 °C.  
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3.3.4 Pre-treatment of BAC probes 
Precipitated BAC probes were spun down at 13000rpm at 4°C for 30 min. The supernatant 

was removed and the pellet was air-dried at room temperature. The pellet was dissolved in 

2.5µl of deionized formamide at 37°C on a shaker. 20% dextransulfate in 2x SSC was added 

to a final volume of 5µl. The probes were denatured at 73°C for 5 min followed by 30 min 

incubation at 37°C for pre-annealing to allow cot DNA to bind repetitive elements.  

3.3.5 Pre-treatment of slides 
Slides were equilibrated in 2x SSC followed by dropwise adding 150µl RNAse-solution 

(RNAse 20mg/ml in 10mM Tris-Hcl pH 7.5, 15mM NaCl diluted 1:200 in 2x SCC) to the slides 

and incubated upside down in a humid chamber for 1h at 37°C. The RNAse treated slides 

were washed 3x 5min in 2x SSC on a shaker at room temperature followed by pepsin 

treatment (60µl pepsin in 10mM 80ml HCl) for 8-10 min depending on the quality of the 

slides. To remove the HCl solution, slides were washed 2x 5min in 1x PBS on a shaker 

followed by 1x5min wash in 1xPBS plus 50mM MgCl2. To preserve the cell structure, slides 

were incubated in PBS-MgCl2-Formaldehyd (1%) for 10min and sub-sequentially washed in 

1x PBS for 5 min. To dry the slides 70, 90 and 100% subsequent wash was carried out for 3 

min in each ethanol concentration and afterwards air-dried. 100 µl denaturation mix (4.9mM 

HCl, 1.6XSSC, formamide) was added drop wise on the slides and covered by a cover glass. 

Denaturation was carried out at 73°C for 1.45 min and directly transferred to ice cold 70% 

EtOH and incubated for 3 min followed by 3min wash in 90 and 100% EtOH subsequently. 

5µl of pre-annealed precipitated BAC probes (described in chapter 4.3.4) was added to the 

slides and covered with 15x15mm2 cover glass and sealed with fixogum. The hybridization 

was carried out over night at 37°C in a dry chamber.  

3.3.6 Detection direct labeling Bioprime system (sp orange) 
Slides were washed in 2x SSC for 10min at room temp or 3x SSC a 5min at room 

temperature followed by 2x 7 min wash in 0.2 x SSC at 52 °C. The slides were then shortly 

washed in 4x SSC/Tween 20% before DAPI staining for 2-5min. The DAPI stained slides 

were washed in water and thereafter air dried. 2 drops of anti-fade was added on the 

coverslips and slides were stored at 4°C in dark. 

3.4 Isolation of DNA and RNA from tissue samples 
DNA and RNA isolation from tissue samples were carried out by Michael Meister, 

Thoraxklinik Heidelberg with the following protocol: for nucleic acid isolation 10 – 15 tumor 

cryo sections (10 – 15 µm each) were prepared for each patient. Only samples with a viable 

tumor content of ≥50% were used for subsequent analyses. Matched tumor free lung tissues 

were removed distant to the tumor and macroscopically reviewed to be devoid of tumor. 

Frozen cryo sections were homogenized with the TissueLyser mixer-mill disruptor (Qiagen, 
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Hilden, Germany) and normal lung tissues were homogenized using a Miccra D-8 rotor–

stator homogenizer with DS-5/K1 (Art-moderne Labortechnik, Muelheim, Germany). 

Genomic DNA and total RNA were isolated using an AllPrep DNA/RNA Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instruction with following modifications: the flow-

through from DNA spin columns was applied onto gDNA eliminator column (Qiagen, Hilden, 

Germany) and 1.5 volume of 100% ethanol was added to the flow-through before RNA 

isolation. Buffer RW1 was replaced with RWT buffer (Qiagen, Hilden, Germany). DNA and 

RNA quantification was carried out with a NanoDrop ND-1000 Spectrophotometer 

(NanoDrop Technologies, Wilmington, MA, USA). The quality of total RNA was assessed 

with an Agilent 2100 Bioanalyzer and Agilent RNA 6000 Nano Kit (Agilent Technologies, 

Boeblingen, Germany). RNA was considered sufficient for further analyses if it had an RNA 

integrity number (RIN) of at least 8.0. 

 

3.5 miRNA and mRNA expression with quantitative real time PCR (Cell lines) 
mRNA and miRNA isolation was carried out with RNeasy PLUS KIT II (Qiagen, Hilden, 

Germany) with following modifications; 350µl Buffer RLT Plus was added to the samples and 

mixed by vortexing for 1 min. The homogenate was transferred to the gDNA eliminator spin 

column and centrifuged for 30s at 8000xg. 1.5 volumes 100% ethanol was mixed with the 

flow-through and transferred to RNeasy Mini spin column and centrifuged for 15s at 8000xg. 

cDNA synthesis was carried out on 0.5 or 1µg RNA using miScript II RT kit from Qiagen 

according to the manufacturer´s recommendation with following modifications; The miScript 

HiFlex buffer was applied to synthesize both miRNA and mRNA. The cDNA synthesis was 

diluted in RNAse free water to 1:20 for subsequent expression analysis. miRNA  expression 

was carried out in duplicates (for tissue samples) and in triplicates (cell lines) with miScript 

Sybr Green PCR kit (Qiagen, Hilden, Germany) according to manufacturer´s 

recommendations. SCARNA17, and RNU6B, and SNORD25 expression were used for 

normalization. mRNA expression was carried out in duplicates with Roche Universal probe 

library system according to manufacturer´s recommendations. GAPDH and HPRT 

housekeeping genes were used for normalization.  

3.6 Quantitative methylation analysis with the MassCLEAVETM Assay (Sequenom) 

3.6.1 Bisulphite conversion 
DNA polymerase cannot distinguish between methylated and unmethylated cytosines in the 

genomic sequence and therefore the methylation patterns are lost after the PCR 

amplification. To preserve methylation patterns, genomic DNA was treated with sodium 

bisulfite, leading to deamination of unmethylated cytosine to uracil. The procedure includes 

sulfonation at the carbon 6-position of cytosine followed by irreversible hydrolytic 
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deamination at the carbon 4-positions to generate uracil sulfonate. The final step includes a 

subsequent desulfonation step under alkaline conditions to generate uracil. The rate of 

deamination of 5-methylcytosine is much slower and it is assumed that any remaining 

cytosines after this treatment were originally methylated [152]. Sodium Bisulfite treatment 

(BT) was carried out with the EZ DNA Methylation KIT (ZYMO research, Freiburg, Germany). 

In brief, 0.5µg or 1µg of genomic DNA was diluted with ddH2O to a total volume of 45µl and 

5µl of M-Dilution buffer in eight strip tubes (Thermo Fischer Scientific, Karlsruhe, Germany). 

The DNA was denatured to single strands by the addition of sodium hydroxide and incubated 

for 15 min at 37°C. For deamination by sodium bisulfite, 100 μl of conversion reagent was 

added to the samples and incubated in the dark for 16 h at 50°C followed by incubation at 

4°C for 10 min. Samples were transferred onto a column with the addition of 400 μl M-

Binding buffer. The columns were centrifuged at 3000 g for 5 min and washed with 500 μl M-

wash buffer. For desulphonation, 200 μl of M desulphonation buffer was added and columns 

were incubated at room temperature for 15-20 min followed by two additional washing steps 

with 500 μl M- wash buffer for removal of bisulfite salts and other interfering chemicals. The 

DNA was eluted two times with 30 μl Elution Buffer.  

3.6.2 BT PCR 
The PCR reaction was conducted in a 5μl total volume reaction containing 1μl BT DNA, 

200mM forward and reverse primers, 200nM dNTPs, 1x PCR Buffer and 0.2 U HOTSTAR 

polymerase. The PCR reaction was carried out in a Thermocycler (Eppendorf, Hamburg, 

Germany) with following conditions: Initial pre-incubation at 95°C for 15min, 45 cycles of 

denaturation at 95°C for 30 s followed by annealing at 54-60°C for 30 s and elongation at 

72°C for 1min followed by an additional extension step at 72°C for 7 min. 1μl PCR product for 

all samples was subjected to agarose gel electrophoresis with 2% Borat agarose gel. Gels 

were run at 150V for 40min and stained for 5 min in an ethidium bromide solution (5µg/ml). A 

100bp ladder (Fermentas, St Leon-Rot, Germany) was used to determine the size of the 

PCR products. 

3.6.3 SAP treatment 
For dephosphorylation of un-incorporated dNTPs in the PCR reactions, SAP treatment was 

carried in a final volume of 2µl using 0.3 U SAP and added to 5µl PCR product and incubated 

at 37°C for 20 min. The enzyme was deactivated in a subsequent heat inactivation for 5 min 

at 85°C.  

3.6.4 In vitro transcription and RNAse A cleavage 
During in vitro transcription, T7 polymerase starts to transcribe the double stranded BT DNA 

from the T7 promoter tag on the reverse primer sequence resulting in single stranded RNA.  

RNase A specifically cleaves single-stranded RNA at 3’ of every rCTP and rUTP residues. 
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The assay uses a specific rNTP/dNTP nucleotide mixture together with T7 polymerase, 

which allows incorporation of both types of nucleotides. Because the nucleotide mixture 

contains dCTP (instead of rCTP), rUTP, rGTP and rATP, this results in unique ‘T-cleavage’ 

of only rUTP by RNaseA. Methylation events are identified as a G-A sequence change 

(representing C-T differences at the DNA level introduced during BT), which leads to a 16Da 

mass shift of the cleaved products. 2µl SAP treated PCR was applied on 384 well plate 

(Thermo Fischer Scientific, Karlsruhe, Germany), and used as a template in a 7 μl 

transcription reaction, containing 3.14mM DTT, 2.5mM dCTP, 1mM rUTP, 1mM rGTP, 1mM 

rATP, 20U T7 R and DNA polymerase and 0.9 mg/ml RNAse A in 0.64 x T7 polymerase 

buffer. Transcription and digestion were performed simultaneously at 37°C for 3 h. Samples 

were diluted in 20µl ddH20 and 6mg of an ion-exchange CLEAN Resin (Sequenom) was 

added to the samples to condition the phosphate backbone of nucleic acid fragments for the 

MALDI-TOF analysis. 22µl of cleavage reaction was dispensed automatically onto silicon 

matrix preloaded chips (SpectroCHIPs; Sequenom). The mass spectra were analysed using 

MassARRAY mass spectrometer (Sequenom). The spectra’s methylation ratios were 

generated with MassARRAY v1.2 software (Sequenom). The software generated quantitative 

results for each cleaved CpG site or an aggregate of multiple CpG sites.  

3.7 Ectopic overexpression of miRNAs in lung cancer cell lines 
A549 lung cancer cells were seeded in F12K medium (Gibco, Invitrogen, Freiburg, Germany) 

with 10% fetal bovine serum (FBS) and transfected using Dharmafect transfection agent 

(Dharmacon) with either 5nM Syn-hsa-miR-661 miScript miRNA mimic, or 5nM miR mimic 

control Allstar (Qiagen, Hilden, Germany) for 24, 48 and 72 hours on a 6 well plate or 10cm 

culture plates. H1299 and H1703 lung cancer cell lines were seeded in RPMI 1640 medium 

(Gibco, Invitrogen, Freiburg, Germany) with 10% FBS and transfection was carried out as in 

A549 cells. 

3.8 3`UTR Luciferase reporter assay 

3.8.1 Cloning 3`UTR 
PCR amplification was conducted using Pfu taq DNA polymerase (Thermo Fischer Scientific, 

Karlsruhe, Germany). The Pfu enzyme allows for high fidelity PCR with fewer errors 

compared to other thermostable polymerases and processes blunt-ended products. The 

PCR was carried out with 100 ng genomic DNA in a 20 μl total volume reaction containing 1x 

GC or High-Fidelity buffer (Thermo Fischer Scientific, Karlsruhe, Germany), 400nM dNTP 

mixture (Invitrogen, Karlsruhe, Germany), 200mM of forward and reverse primers (Sigma 

Aldrich, Munich, Germany ), 3% DMSO, and 0.2 U Pfu HF (Thermo Fischer Scientific, 

Karlsruhe, Germany). Thermal cycling was carried out in Master Cycler Gradient (Eppendorf, 

Hamburg, Germany) with the following conditions: initial pre-incubation at 98°C for 30 s 
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followed by a second denaturation step at 98°C for 10 s, 40 cycles of annealing temperature 

56°C or 58°C for 30s followed by elongation at 72°C for 1 min and an additional elongation 

step at 72°C for 8 min. The PCR was performed with forward and reverse primers listed in 

Table S2. The PCR products were run with 6x Loadingbuffer (Fermentas, St Leon-Rot, 

Germany) and separated by electrophoresis on 1.0 % 1X borate agarose gel. A 1kb and 

100bp size ladders were run on the same gel to determine the size of the PCR product. The 

correct fragments were cut out from the gel and purified with Qiaquick PCR purification kit 

(Qiagen, Hilden, Germany) according to manufacturer´s protocol. To verify the correct size of 

the DNA fragment, 200ng was separated on a 1.2% 1X borate agarose gel and 

photographed. 

3.8.2 Restriction enzyme digest 
The PCR product (500ng) and the pMIR report vector (1µg) was digested with MluI and 

HindIII in a final volume of 30µl containing 1x NEB buffer, 1% BSA, 0.5U SAP and 0.2U MluI 

and HindIII ,respectively, for 3h at 37°C. The digested product was run on a 1% 1X borate 

agarose gel and the correct product was cut out and purified with Qiaquick PCR purification 

kit (Qiagen, Hilden, Germany) according to the manufacturer´s protocol.  

3.8.3 Ligation pMIR reporter plasmid 
MluI/HindIII digested DNA was ligated with pMIRreport vector in a 10 μl total reaction volume 

containing 50ng  pMIR report vector, 5:1 insert-vector, 1x T4 buffer and 0.5 U T4 ligase (New 

England Biolab) at room temperature for 1h followed by 10min heat-inactivation at 65 °C. 

Chemical competent Ecoli cells (Top10) were transformed according to manufacturer´s 

recommendations (Invitrogen, Karlsruhe, Germany). Clones were picked and incubated in 

2.5ml Ampincillin LB medium at 37°C over night in 15ml tubes. For mini preparation, a 

Miniprep kit (Qiagen, Hilden, Germany) was used according to manufacturer´s instruction. 

The concentrations were measured with Nanodrop (peqLab Biotechnologies GMBH, 

Erlangen, Germany). The DNA quality was checked by electrophoresis separation on 1% 1X 

Borate agarose gel. 

3.8.4 Co-transfection of mimic miR 661 and mimic miR 210 with pMIR reporter 
constructs 
A co-transfection assay was carried out to determine whether an ectopic overexpression of 

the miR- 661 and miR- 210 can affect the luciferase activity of the PMIR reporter construct 

with a cloned 3´UTR of target genes by binding to the predicted target sites. A transfection 

mix consisiting of 0.05µl Dharmafect reagent (Thermo Fischer Scientific, Karlsruhe, 

Germany) and 5µl RPMI 1640 (without FCS) per well were incubated for 5 min at room 

temperature to allow for liposome complex formation. 5nM final concentration of mimic RNAs 

were incubated together with transfection mix for 30 min at room temperature and applied to 
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the wells on a 384 well plate. As a negative control for the mimic overexpression, cells were 

transfected with a mimic all-star, which has no target in the human genome. 3000 human 

embryonic kidney (HEK T 293) cells in 50µl RPMI 1640 (10% FCS) were added to the 384 

well plate incubated for 24h at 37°C. A TransIT LT1 transfection assay (MirusBio. Madison, 

WI, USA) was carried out after 24h to introduce the pMIR report constructs to the mimic 

transfected HEK 293T cells. The cells were transfected with 10ng TK Renilla control vector 

(promega, Madison, WI, USA), 500pg pMIR reporter construct plasmids (Qiagen, Hilden, 

Germany) and 30ng empty vector in 15µl RPMI 1640. TK Renilla control vector was used as 

a control for transfection efficiency and viability of the cells. Basic pMIR report was used to 

normalize the background noise. A positive control for each miRNA mimic was created with 

4x perfect matched sequence cloned in PMIR reporter vector. For each assay 6 biological 

replications of each assay were conducted. Firefly luciferase activity of individual 

transfections was normalized against Renilla luciferase activity and pMiR report-basic 

activity.  

 

3.9 PCPGL luciferase reporter assay 
A luciferase reporter assay was carried out for determination of promoter activity and impact 

of CpG methylation on expression on a CpG island located 5kb upstream of the pre-miRNA 

661. A pCpGL vector with a firefly luciferase reporter gene was used. The luciferase reporter 

gene is located downstream of the multiple cleavage site of the vector and the activity of the 

gene is driven by the inserted promoter region. The enzyme luciferase catalyzes a reaction 

with a luciferin substrate to produce light and the photon emission can be detected by a 

luminometer (SpectraMax® M5e) to determine the activity of the promoter [153]. The pCpGL 

vector is CpG free allowing for optimal in vitro methylation assays for functional analysis of 

promoter CpG methylation [154]. 

3.9.1 Cloning PCR of the miRNA 661 promoter  
For molecular cloning of GC rich fragments, PCR amplification was conducted using Pfu 

DNA polymerase. The PCR was carried out with 100 ng genomic DNA in a 20 μl total volume 

reaction containing 1x GC or High-Fidelity buffer (Thermo Fischer Scientific, Karlsruhe, 

Germany), 400nM dNTP mixture (Invitrogen), 200mM of forward and reverse primers, 3% 

DMSO, and 0.2 U Pfu HF Thermal cycling was carried out in Master Cycler Gradient with the 

following conditions for a touch-down program: initial pre-incubation at 98°C for 30 s followed 

by a second denaturation step at 98°C for 10 s, 10 cycles with starting temperature at 65°C 

decreasing 0.5 °C per cycle, 25 cycles at 60°C followed by elongation at 72 °C for 1 min and 

an additional elongation step at 72°C for 7 min. The PCR was performed with primers listed 

in Table S2. The PCR products were run with 6x loadingbuffer and separated by 
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electrophoresis on 1.0 % 1X borate agarose gel. A 1kb and 100bp size indicator was run on 

the same gel to determine the size of the PCR product. The correct fragments were cut out 

from the gel and purified with Qiaquick PCR purification kit according to manufacturer´s 

protocol. To verify the correct size of the DNA fragment, 200 ng was separated on a 1.2% 1X 

borate agarose gel and photographed. 

3.9.2 Restriction enzyme digest 
The PCR product (500ng) and the PCPGL vector (1µg) was digested with BAMH1 and 

HindIII in a final volume of 30µl containing 1x NEB buffer, 1% BSA, 0.5U SAP, and 0.2U 

BAMHI and HindIII ,respectively for 3h at 37°C. The digested product was run on a 1% 1X 

Borat agarose gel and the correct product was cut out and purified with Qiaquick PCR 

purification kit according to the manufacturer´s protocol.  

 

3.9.3 Ligation PCPGL plasmid 
BAMHI/HindIII digested DNA was ligated with a pCpGL vector in a 10 μl total reaction 

volume containing 1μl pCpGL vector, 3μl insert DNA, 1x T4 buffer and 0.5 U T4 ligase over 

night at 16°C. To remove salt and bi products, the plasmid was precipitated with 1μl 

Glycogen, 6µl NH4Ac 7.5 M, 2.5 vol EtOH 100% and 100 μl EtOH 70%. The pellet was air 

dried and diluted in 5μl ddH2O. 35 μl electro-competent E. coli cells (PIR strain) were 

transformed with 1μl purified pCpGL plasmids using E pulser (Bio RAD Labs, Munich, 

Germany). Transformed E. coli were incubated with LB medium at 37°C for 45 min to 

activate the Zeocin resistance. 50 μl was applied on Zeocin positive agar plates and 

incubated over night at 37 °C. Positive clones were picked and incubated in 50 ml Zeocin LB 

medium at 37°C over night in Erlenmayer flasks. For midi preparation, a HISPEED MIDI kit 

(Qiagen, Hilden, Germany) was used according to manufacturer´s instruction with the 

following modifications: After isopropanol precipitation, samples were transferred to a 50ml 

Falcon tubes and centrifuged at 10000 rpm for 30 min. The pellet was washed with 70% 

EtOH followed by centrifugation for 30 min at 10 000 rpm at 4°C. The pellet was air dried at 

room temperature and diluted in 100 μl ddH2O (Qiagen, Hilden, Germany). The 

concentrations were measured with Nanodrop and adjusted to 100ng/microliter with EB 

buffer. The DNA quality was determined by electrophoresis separation on 1% 1X borate 

agarose gel. 

3.9.4 Transfection PCPGL constructs 
3000 HEK 293T cells were seeded in 50 μl RPMI 1640 10% FCS medium in a 384 well plate. 

The cells were grown for 24 h at 37°C prior transfection. The cells were transfected with a 

mixture of 30ng luciferase reporter vector and 10ng TK Renilla control vector, using TransIT-

LTI reagent. In brief, 0.15µl TransIT reagent and 4.85µl RPMI 1640 medium without FCS per 



 3. Methods 
 

-52- 
 

well was mixed and incubated at room temperature for 5 min. 20ngTK renilla control vector 

diluted in RPMI was added to the transfection mix and a master plate for each PCPGL 

construct was prepared. For each pCpGL construct, a master mix was conducted for 7 wells. 

30ng/ well pCpGL plasmid DNA was added to the TransIT and TK Renilla mix and incubated 

for 20-30 min at room-temperature. 20 μl Transfection mix (TransIT mix together with pRL TK 

and pCpGL plasmid DNA) was applied to each well and incubated for 48 hours at 37°C. pRL 

TK vector was used as a control for transfection efficiency and viability of the cells. For each 

assay, 6 biological replicates were applied and a CMV-PCPGL vector was used as a positive 

control for the assay. Basic pCpGL was used to normalize the background noise. Firefly 

luciferase activity of individual transfections was normalized against Renilla luciferase activity 

and pCpGL-basic activity. 

3.10 Western Blot 
Western blot was carried out on whole cell lysates from H1299, H1703, A549 and HEK293T 

cells. Cells were harvested with PBS and spun down at 700rpm for 5 min. 50-100µl SDS-

lysis buffer was added to the cell pellet and samples were incubated on ice for 30 min 

followed by 10min centrifugation at 13000xg to separate cell debris from supernatant. The 

supernatant was transferred to a new tube and boiled at 95°C for 10 min. Protein 

quantification was carried out with the BCA method described in [155]. 15-20µg protein was 

separated on a 10% SDS PAGE gel at 50-75 volt for 2h in 1x running buffer. The gel was 

transferred by wet blot in 1x transfer buffer at 200mA for 2h. Proteins were visualized using 

Horse Radish peroxidase (HRP) conjugated secondary antibodies (Santa Cruz, Biotech, 

Heidelberg, Germany) using the enhanced chemiluminescence detection system (Amersham 

Pharmacia Biotech, Little Chalfont, UK). Band intensities were quantified with ImageJ 

software (Image/ImageJ, NIH, USA).  

3.11 TGF β1 stimulation  
A549, H1299 and H1703 cells were treated with 2, 5 or 10ng/ml TGF β1 ligand ( Invitrogen, 

Hilden, Germany) between 8h-144h. Medium exchange with TGF β1 was carried out after 

three days. Cells were harvested with cold PBS and spun down at 600rpm for 10min and cell 

pellet were put at -80°C until RNA isolation. RNA isolation and expression was carried out 

according to protocol in chapter 3.6.  

3.12 Statistical analysis 
For case control comparison, the PennCNV tool was used to identify those stretches of 

SNPs that had significant copy number changes in cases versus controls using Fisher’s 

Exact Test with the raw CNV files. P-values for each SNP in one defined CNV region was 

combined using the Stouffer´s test described in [156]. The statistical analysis of the CNVs 

was performed by Agnes Hotz-Wagenblatt, DKFZ, Heidelberg. Significant differences in 
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miRNA, mRNA expression and DNA methylation between tumor tissue and matched 

adjacent normal tissue were calculated by Wilcoxon matched pairs signed rank test where p 

< 0.05 was set to be statistically significant. Two sided T-tests were used to assess statistical 

significance in mRNA expression between treated and untreated cell lines. Correlation 

between miRNA expression and target gene expression and between methylation and 

expression was carried out using Spearman´s correlation test where p< 0.05 was set to be 

statistically significant. Heat maps were created with the Multiple Experiment Viewer software 

suite (L. Craig Venter Institute, San Diego, USA, (http://www.tm4.org/mev/)) to visualize % 

methylation for each CpG site or CpG unit. Kaplan Meier plots were created with GraphPad 

Prism 5 and the significance was calculated with Log Rank (Mantel-Cox Test). The cutoff 

value for methylation state high and low was calculated by using the crit-level procedure 

described in [157] and ADAM statistical software SPSS 21.0 (DKFZ, Heidelberg, Germany). 

The survival time was calculated from the date of operation to the date of death or the date of 

last observation. Multivariate analysis was done using the Cox-proportional hazard 

regression analysis applying a stepwise backward procedure [158]. Thomas Muley, 

Thoraxklinik Heidelberg, was performing the multivariate analysis. 

 

http://www.tm4.org/mev/
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4. Results 

4.1 Germline CNV detection in early onset lung cancer  
To identify CNVs associated with lung cancer risk, the Illumina Infinium platform Human 

Hap550 BeadChip from a GWA study previously performed on 492 early onset lung cancer 

cases and 487 population-based controls was used (clinical characteristics are listed in Table 

5). In collaboration with Agnes Hotz-Wagenblatt (DKFZ Core facility for Genomics and 

Proteomics, DKFZ, Heidelberg), two CNV detection algorithms, QUANTISNP and PennCNV, 

were applied to the SNP data (see methods, 3.1). 41 CNVs were detected by QuantiSNP 

and 38 by PennCNV (a detailed description can be found in Supplemental Table S5 and 

Table S6). Among these, 25 CNVs were overlapping between the two algorithms. To identify 

CNVs associated with early onset lung cancer risk, Fischer´s exact test with a cut-off p value 

< 0.05 was performed on the 25 regions that overlapped between these algorithms. Ten of 

these CNV regions were significantly associated with lung cancer risk for both CNV detection 

algorithms (Figure 5 and Table 7). Associations with losses were detected on 1q21.1, 

8q24.23, 6q12, 11q11 and 19p12 and associations with gains were detected on 8q24.3, 

11p15.5, 12p12.3 and 22q11.21. The CNV loss on 1q21.1 is overlapping with a CNV region 

associated with neuroblastoma [131]. Two CNVs were found on 11q11 that harbor three 

members of the olfactory receptor family, OR4P4, OR4S2 and OR4C11. The olfactory 

receptor family is known to be variable between individuals and belongs to the most common 

CNVs in the genome [71, 112, 118, 119, 159]. CNVs without annotated genes were found on 

8q24.23, 6q12, and 19p12. A CNV identified on 12p12.3 harbors pleckstrin homology domain 

containing, family A (PLEKHA5) was more commonly observed in controls. A CNV on 

22q11.21 overlaps with a microdeletion that has been associated with DiGeorge syndrome 

[160]. This gain region was detected in controls and not in cases. In order to focus the study 

on the CNVs that may have a putative functional impact on lung cancer, the CNVs on 8q24.3 

and 11p15.5 were selected based on their restricted detection in cases and that the 

annotated genes and miRNAs in these regions have a potential role in lung tumorigenesis. 
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Figure 5. CNV detection workflow in early onset lung cancer GWA study. A GWA study was 

carried out on 492 early onset lung cancer cases and 487 population based controls using the Illumina 

Infinium platform Human Hap550 BeadChip. 41 and 38 CNVs were detected by QuantiSNP and 

PennCNV, respectively. Ten CNVs show a significant association with lung cancer for both algorithms 

(Fischer´s exact test p<0.05).  
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Table 7. Descriptive overview of CNVs associated with lung cancer risk detected by QuantiSNP 

and PennCNV. 

Cytoband CNV coordinates (hg18)a 
CNV 
type 

PennCNV 
n cases 

PennCNV 
n controls P valueb 

QuantiSNP 
n cases 

QuantiSNP 
n controls P valueb 

1q21.1 chr1:147305744-147478120 loss 

 

Gain: 5 

Loss: 17 

Gain:5 

Loss: 37 9.9x10-13 

Gain: 4 

Loss: 22 

Gain: 9 

Loss: 28 <10-18 

8q24.23 chr8:137898044-137913669 loss 

 

Gain: 0 

Loss: 0 

Gain: 0 

Loss:22 <10-18 
Gain:0 

Loss: 15 

Gain: 1 

Loss:28 2.2x10-16 

8q24.3 chr8:145090342-145223898 gain 

 

Gain: 18 

Loss: 0 

Gain: 0 

Loss: 0 <10-18 

Gain: 27 

Loss: 0 

Gain: 0 

Loss: 0 <10-18 

6q12 chr6:67093085-67105019 loss 

 

Gain: 0 

Loss: 39 

Gain: 0 

Loss: 67 8.9E-13 

Gain: 0 

Loss:55 

Gain: 0 

Loss: 84 3.7E-10 

11p15.5 chr11:548884-609789 gain 

 

Gain: 11 

Loss: 0 

Gain: 0 

Loss: 0 4.4x10-16 

Gain: 11 

Loss:1 

Gain: 0 

Loss: 0 <10-18 

11q11 chr11:55139733-55179162 loss 

 

Gain: 0 

Loss: 57 

Gain: 0 

Loss: 0 <10-18 

Gain: 0 

Loss: 80 

Gain: 0 

Loss: 2 <10-18 

11q11 chr11:55127597-55139733 loss 

 

Gain: 0 

Loss: 0 

Gain: 0 

Loss: 104 4.1x10-10 

Gain:0 

Loss: 0 

Gain: 0 

Loss: 117 1.93x10-3 

12p12.3 chr12:19360345-19431361 gain 

 

Gain: 0 

Loss: 0 

Gain: 11 

Loss: 0 <10-18 

Gain: 4 

Loss: 0 

Gain: 13 

Loss: 0 <10-18 

19p12 chr19:20422200-20473895 loss 

 

Gain: 0 

Loss:22 

Gain: 0 

Loss:38 1.7x10-8 

Gain: 0 

Loss:25 

Gain: 0 

Loss:33 4.08x10-2 

22q11.21 chr22:17257787-17355587 gain 

 

Gain: 0 

Loss: 0 

Gain: 12 

Loss: 0 <10-18 

Gain: 2 

Loss: 3 

Gain: 12 

Loss: 0 <10-18 
a genomic positions are defined according to start and end SNP detected by PennCNV. QuantiSNP genomic 
positions are presented in Table S8.  
b Fisher´s exact test was applied for each SNP and a combined p value for the CNV was calculated with Stouffers 
test [156].  
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4.2 CNV validation 

4.2.1 Sequenom Typer assay application for quantitative, allele-specific copy number 
analysis 
In order to establish a protocol for validation of the CNV candidates, an allele specific copy 

number analysis (ACN) application using the Sequenom massARRAY platform [149] was 

chosen .This method has been described to be able to distinguish copy numbers on specific 

alleles based on SNP information, and theoretically as being able to determine the absolute 

copy number in a sample. For the establishment of a protocol we used the GSTM1 locus 

which is known to be variable and associated with early onset lung cancer [20]. A former 

PhD student in the group, Maria Timofeeva, had previously identified the GSTM1 copy 

number in blood samples from lung cancer patients with a multiplex real time PCR method 

[144]. A subset of these samples was used for the method establishment. For normalization 

to a 2N control, recommendations from Sequenom were given for genomic regions without 

variations (Caren Vollmert, Sequenom, Hamburg, personal communication). Nine assays 

were designed for these regions and one control was identified as being 2N for GSTM1 (SNP 

rs6715929 on chr2:172640000-172700000, hg 18). This 2N control was included in all 

assays.  

4.2.1.1 Determination of competitor DNA concentration 
Competitor PCR is a method that was established for quantification of mRNA by spiking a 

known molar quantity of a synthetic DNA template identical to the gene of interest that 

competes with the mRNA PCR amplification[150]. To obtain the concentration of competitor 

DNA which represents the same amount of DNA molecules in the reaction as the gDNA, a 

serial dilution with competitor together with a fixed amount of DNA template (copies of 

molecules) of gDNA was analyzed. The amount of haploid copies in 20ng gDNA is 6210 

Equation 1, see section 3.2.1). The theoretical concentration of competitor DNA needed to 

equal 6210 copies was 2.06E-15 M (Equation 2, see section 3.2.1). The actual competitor 

concentration needed for a specific assay was determined by competitor titration against a 

fixed amount of gDNA to reach an equilibrium value (EC50) (Figure 6). To cover a wide 

range of copies, the following concentrations were used for each competitor:  

 

1.0*10 -13 M, 6.0*10-14 M, 3.0*10 -14 M, 1.0*10-14 M, 6.0*10 -15 M, 1.0*10 -15 M, and 1*10 -17 M.  

 

EC50 values were calculated to determine at which concentration the competitor equals the 

gDNA. An average EC50 concentration over the sample set for each assay was 

subsequently used for in the CNV analysis. 
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Figure 6. EC 50 determination for 2N control and GSTM1. A. Intensity signals conducted by MALDI 

TOF for the 2N control rs6715929 in a sample for this SNP. A third allele, the competitor allele (Comp 

allele) is highlighted in a square. Dose dependent increase in signal intensity of Comp allele and 

decrease of WT allele is illustrated in each graph. B. The gDNA frequency is plotted against the log2 

concentration of the competitor (Log C M). EC50 values were calculated to determine at which 

concentration the competitor equals the gDNA. Each dot represents the average of technical triplicates 

and the errorbars show standard deviations.  
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4.2.1.2 Copy number analysis of GSTM1  
CNV analysis was carried out in 13 patients with known GSTM1 copy number to determine 

whether the competitor PCR based method is valid for further analysis of the CNV 

candidates. The competitor concentration was set to 5.26E-15M based on the average EC50 

for rs6715929 for both assays. We could confirm the copy numbers for 12/13 patients for 

GSTM1 in a two plex consisting of the 2N control plus GSTM1 (Figure 7A). Additionally, the 

GSTM1 copy number in the same samples was determined using the EC50 concentration for 

GSTM1 and the EC50 concentration for the 2N control in order to compare the results 

(Figure 7B). The homozygous deletion could be confirmed. However, the other copy 

numbers were shifted upwards, suggesting that the EC50 concentration established for the 

2N control is more suitable than using individual concentrations.  

 

 
Figure 7. Copy number analysis for GSTM1 using two different concentrations for the 
competitor. A. The same competitor concentration for 2N control and GSTM1 was used based on the 

EC50 for the 2N control. B. Copy number analysis where the individual concentrations for the 

competitor were used based on EC50 determination.  
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4.2.1.3 Copy number analysis of 8q24.3 and 11p15.5 
In order to validate two CNVs detected by PennCNV and QuantiSNP, we used the protocol 

established for the TyperAssay to determine copy numbers of GSTM1. We included GSTM1 

in a three plex for the 8q24.3 region (SNP of interest, 2N control and GSTM1) as a control for 

those samples where the copy number is known (Figure S1). The assays for copy number 

determination of the CNV on 8q24.3 were designed for the SNPs rs4977177 and rs13255347 

located in the minimal overlapped region (Figure 8A). The analysis was carried out on 11 

patients where no copy number variation was detected by either PennCNV or QuantiSNP 

and 12 patients with detected copy number gain. The selection of samples for validation was 

based on DNA availability. The start and end of the CNV detected by QuantiSNP and 

PennCNV in each patient are shown in (Figure 8A). The copy number analysis for rs4977177 

was validated for 7/11 with 2N but did not confirm the expected copy gain in the samples 

analyzed (Figure 8B). The GSTM1 copy number were confirmed for 19/23 samples for 

rs4977177 assay (Figure S1A). Three patients with expected copy number gain at 8q24.3, 

sample T530, T699 and T2187, were confirmed in the analysis of rs13255347 (Figure 8C). 

The GSTM1 copy number was confirmed for T614 and T2187 but not for T530 in the same 

plex (Figure S1B). For copy number analysis at 11p15.5, two assays were designed in the 

overlapped region for rs1062099 and rs746707 (Figure 9A). The copy number variation for 

samples with expected copy number gain or loss was not confirmed for either assay (Figure 

9B-C). 
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Figure 8. 8q24.3 copy number analysis with TyperAssay. A. Locus overview with positions for 

rs4977177 and rs13255347 and genomic positions for CNVs detected by PennCNV and QuantiSNP in 

patients (red). B-C. Normalized copy number in blood from patients from TyperAssay for rs4977177 

(B) and rs13255347 (C). The graph shows the average copy number from three technical repeats and 

standard deviations in bars. The expected copies are based on PennCNV and QuantiSNP algorithms.  
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Figure 9. 11p15.5 copy number analysis with TyperAssay A. Locus overview with positions for 

rs1062099 and rs746707 and genomic positions for CNV gains detected by PennCNV and QuantiSNP 

in patients with gain (red) and loss (blue). B-C. Normalized copy number in blood from patients from 

TyperAssay for rs1062099 (B) and rs746707 (C). The graph shows the average copy number from 

three technical repeats and standard deviations in bars. The expected copies are based on PennCNV 

and QuantiSNP algorithms.  

 

4.2.2 CNV analysis using FISH 
Fluorescence in situ hybridization (FISH) is commonly used in cytogenetics and diagnostics 

to detect chromosomal aberrations associated with disease. In collaboration with Anna Jauch 

(Human Genetics, Heidelberg University), a FISH assay was carried out on lymphocytes 

from patients where the expected copies of 8q24.3 and 11p15.5 was determined by 

PennCNV and QuantiSNP. Two additional control samples were used known not to have any 

alterations on 8q24.3 and 11p15.5 (supplied by Brigitte Scholl, Human genetics, Heidelberg 

University, unpublished data).  
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4.2.2.1 BAC test  
To determine the specificity of the bacterial artificial chromosomes (BACs) used for FISH, the 

hybridization was carried out on cells in metaphase to determine the chromosomal location 

together with a probe for 8q and 11p. The genomic location of the BACs used for copy 

number analysis is illustrated in Figure 10. The genomic localization was confirmed for two 

BACs for each region, RP11-714N16 and CTD-3202E22 for 8q24.3 and for 11p15.5, CTD-

2647G13 and RP11-1007G14 (example in Figure 11).  

 
Figure 10. Genomic location for BAC probes used in FISH. A. Two BAC probes, CTD-3202E22 and 

RP11-714N16 were used for 8q24.3 CNV determination and was carried out in four patient samples. The red 

lines show the start and end genomic location for detected CNV by either PennCNV (pc) or QuantiSNP (qs). B. 

BAC probe CTD-32647G13 was used to determine the CNV on 11p15.5 in three samples.  

 

4.2.2.2 Copy number analysis in patient lymphocytes using FISH 
FISH analysis was carried out on lymphocytes in interphase from patients with detected copy 

number gains. In order to quantify whether the region showed a gain, 50- 100 cells were 

analysed per patient to determine the frequency of the event. Separate fluorescent signals 

for the BAC probes were not expected since the BAC size and size of CNV ratio were minor 

(Figure 10). Instead we hypothesized that if we observe size or fluorescent increase between 

the two alleles, this may indicate gain on one allele. To answer this question, quantification 

was carried out for the volume, particle size and integrated density of the signals using 

stacked pictures of each FISH result with Image J. Significant changes were observed in 

volume, size and integrated intensity in the patients (Example shown for patient T530 in 

Figure 12) indicating differences between the two alleles. The same parameters were 
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analyzed in the control samples and we compared whether the differences (ratios) between 

allele 1 and allele 2 could be distinguished between cases and controls. The parameters for 

quantification analyzed showed no significant difference between case and controls, thus, 

the copy number gain in these patients could not be confirmed by FISH (Figure 13).  

 

 

 
Figure 11. Copy number analysis for 11p15.5 and 8q24.3 with FISH. A. Cy3 coupled 11p probe 

(Red signal) was co-hybridized with FITC labeled probe CTD-2647G13 (green signal) to determine the 

right chromosomal location for 11p15.5. B-G. Lymphocytes in interphase were hybridized with Sp 

Orange labeled probes (red signal) for 11p15.5 (B-C) and 8q24.3 (D-G).  
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Figure 12. Quantification of FISH results with Image J software. Three parameters were analyzed 

between the two allele signals (dot1 and dot2) for patient T530 and control; volume (A-B), surface (C-
D), and integrated density (E-F). The two sided unpaired T test was used to determine significance 

(**** p< 0.0001).  

 

Figure 13. Comparison of volume, surface and integrated density determined by Image J 
between patient and control. A-C. The volume (A), surface (B) and integrated density ratio (C) 

between two alleles was compared between control sample and patient sample. No significant 

difference was observed between control sample and patient sample (two sided unpaired T test p> 

0.05). 

  



 4. Results 
 

-67- 
 

4.3 Chromosome 8q24.3 

4.3.1 Expression and methylation on chromosome 8q24.3 
In order to elucidate the mechanism by which the detected CNV gain on 8q24.3 affects lung 

tumorigenesis, an expression analysis was performed using RT qPCR in 36 tumor-normal 

pairs for all genes and the miRNA located in the minimal overlapped region (Figure 14). 

Among the genes and miRNAs expressed in lung tissue, the most significant difference was 

seen for miR- 661 which was shown to be consistently overexpressed in tumor tissue (p< 

0.0001, Wilcoxon matched pairs signed rank test) (Figure 14B). Upregulation was observed 

in 32/36 patients. PLEC1, GRINA, and MAF1 genes were significantly downregulated 

(downregulated vs upregulated: N=36, 26/1, p< 0.0001, 27/9 p<0.0001, and 9/3 p= 0.03) and 

EXOSC4 was upregulated in 12/36 tumors and downregulated in 2/36 tumors (p< 0.0001). 

The log2 foldexpression between tumor and normal is shown in (Figure 14I). PARP10, 

SPATC1 and OPLAH were detected at a high CT value in the normal and lung cancer (>33) 

and excluded from further analysis (data not shown). GPAA1 and SHARPIN and showed no 

significant difference between tumor and normal (Figure 14F-G). 
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Figure 14. RNA expression analysis of 8q24.3 region in lung cancer. A. 8q24.3 genomic 

representation with the genomic location of the minimal overlapped region detected with PennCNV 

and QuantiSNP. B-H. Expression analysis of miR-661, PLEC1, GRINA, EXOSC4, GPAA1, SHARPIN 

and MAF1 was carried out in 36 tumor and adjacent lung tissue. The expression is shown relative to 

HPRT. I. Heatmap over Log2 foldexpression in tumor tissue of 8q24.3 genes. The scale ranges from 3 

log2 in red to -3.0 log2 in green. The foldexpression is the average of HPRT and GAPDH 

normalization. Wilcoxon matched pairs signed rank test was used to determine significant differences 

between matched normal and tumor tissue (* p= 0.05, ** p=0.01 *** p= 0.0001, **** p< 0.0001).  
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4.3.2 miRNA 661 is upregulated and hypomethylated in lung cancer 
Deregulation of miRNA expression as a consequence of altered promoter DNA methylation 

has recently been shown in CLL and other cancers [79, 80]. Thus DNA methylation was 

analyzed as a possible mechanism of miR-661 overexpression in lung cancer. Amplicons 

were designed to cover the closest upstream CpG island (CpG island 61) located 5kb 

upstream of the precursor-miRNA and the amplicons were overlapped with publically 

available data for the active transcription mark H3K4me3 (ENCODE project [161]) (Figure 

15A). A heterogeneous methylation pattern was observed over the region (Figure 15B). The 

highest significant methylation differences between tumor and matched normal tissue were 

seen at amplicon A3. Hypomethylation in the tumor tissue with at least 20% methylation 

differences was seen for 23/36 matched tumor and normal pairs (Figure 15C). DNA 

methylation at amplicon A3 and miR-661 expression in the tumor tissue showed a significant 

inverse correlation (Spearman r =- 0.35 p= 0.04) indicating that loss of methylation at these 

CpG sites is associated with increased levels of miR-661 expression. The methylation data 

was validated in an additional sample set with 88 lung tumor and normal pairs and 

hypomethylation in 48% of the tumors was observed (Figure S2). Next, we determined 

whether the hypomethylated region harbors an active promoter site. The region was cloned 

in a 1.2kb DNA fragment covering the sequence of amplicon A3 into a luciferase reporter 

vector. A 9 fold increase in luciferase expression over the basic vector was seen (Figure 

15E). A truncated version of the fragment excluding the hypomethylated sequence 

significantly reduced the luciferase activity, indicating that this region is important for 

promoter activity. 

  



 4. Results 
 

-70- 
 

 
Figure 15. Demethylation at a putative promoter for miR-661 correlates with expression in 
tumor tissue. A. Overview of miR-661 locus with ENCODE data for H3K4me3 from K562 cells and 

NHLF cells (Extracted from Integrated Genome Viewer, Broad Institute (IGV [162])). Amplicons A1-A4 

cover the CpG island 61 5kb upstream from pre-miR-661. B. Heatmap shows methylation in % on a 

scale from yellow (0% methylation) to blue (100% methylation). Methylation for amplicon A1-A4 is 

shown for 36 normal lung and tumor pairs. Lines in grey depict missing data points. C. Average 

methylation of the amplicons A1 to A4 in normal (N) and tumor (T) tissue. Wilcoxon matched pairs 

signed rank test determines the significance D. Average % methylation at amplicon A3 in tumor (y 

axis) plotted against relative miR-661 expression in tumor (x axis). Correlation between methylation 

and expression was determined using Spearman correlation test (*p < 0.05,). E. Illustration of 

promoter luciferase construct PCPGL-1 (1.2kb) covering CpG island 61 and PCPGL-2 (750bp) without 

the hypomethylated region. Significance was determined by an unpaired two sided T- test (*p <0.05). 
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4.3.2.1 Methylation and clinical outcome in NSCLC 
Next, we investigated whether mir-661 promoter methylation correlates with clinical outcome 

in NSCLC. The analysis was carried out in set 1 and 2 (n=83). We defined two methylation 

states, high and low, based on the average methylation in amplicon A3 defining the high 

(>47%) and low (< 47%) methylation groups. The 5-year survival rate was 71.4% for high 

methylation state and 50.3% for low methylation state. In the multivariate analysis the 

methylation rate was a significant prognostic factor independent of stage, histology and 

gender with a hazard ratio (HR) of 2.27 (95% CI: 1.09-4.72) (p=0.029) (Figure 16).  

 

 
Figure 16. Low methylation is associated with worse overall survival. Kaplan Meier plot with high 

and low methylation state. The p value was obtained with Log rank (Mantel Cox) test.  
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4.3.2.2 Top hit genes targeted by miR-661  
miR-661 has over 2000 predicted targets. To determine which genes or pathways are 

regulated by miR-661, an overlap between five different prediction algorithms was made and 

targets present in at least two of the chosen prediction algorithms were further evaluated for 

expression in lung tissue. The selection of targets from each algorithm was carried out using 

the highest scores per prediction with cut-offs based on recommendations for each 

algorithm. For TargetScan 6.2, selection was based on the total context score with the cut-off 

at -0.50 [163]. For Diana microT-v5 cut-off recommendations were set to 0.8 [164]. For 

miRanda the “good” mirSVR score was set to <= -0.1 [165]. For miRDB a score  > 80 was 

recommended [166]. miRWALK combines scores from selected data bases and calculates a 

p-value where significance was set to p<0.05 [167]. mRNA expression was analyzed in 36 

lung tumor -normal tissue pairs of four targets, MAP3K3, RIPK2, DIRAS3 and GAS7 (Table 

8). All four genes were significantly downregulated in lung tumor (Figure 17A,C,E,G). The 

MAP3K3 mRNA expression and the DIRAS3 mRNA expression in tumors were negatively 

correlated with miR-661 expression in the same tumors  

(Spearman r = -0.38, p= 0.02 and r-0.45, p=0.005, respectively), indicating that the 

expression may be regulated by the miR-661. RIPK2 and GAS7 expression in tumor tissue 

showed an inverse correlation trend (Spearman r= -0.13, p= 0.42 and r= -0.19, p=0.27, 

respectively) (Figure 17B, D, F, H). 

 
Table 8. miR-661 top hit genes for five different target prediction tools 

Gene name TargetScan 6.2 [163] Diana -v5[164] miRanda[165] miRDB [166] miRwalk [167] 

MAP3K3 -0.95 0.97   p <0.05 

RIPK2   -1.0445  p <0.05 

DIRAS3   -1.04  p < 0.05 

GAS7  0.82  81 p <0.05 
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Figure 17. miR-661 top hit targets are downregulated in lung cancer. A-B. MAP3K3 was 

significantly downregulated in tumor tissue and negatively correlated with miR-661 expression 

Spearman r =-0.38, p=0.02). C-D. DIRAS3 was significantly downregulated in lung cancer and showed 

a reverse correlation with miR-661 expression in tumor (Spearman r =-0.45, p=0.005). E-G. RIPK2 

and GAS7 were downregulated in tumors but showed no significant inverse correlation with miR-661 

expression.  
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4.3.2.3 Top hit target expression after ectopic overexpression of miR-661 in lung 
cancer cell lines 
To further explore the relation between the predicted top hit genes listed in Table 8 and miR 

661 H1703, H1299 and A549 lung cancer cell lines were transfected with mimic miR-661 

during 24, 48 or 72h and a mRNA expression analysis of the targets was carried out (Figure 

18). GAS7 is not expressed in H1703, H1299 and A549 and therefore not further analyzed 

(Data not shown). MAP3K3, DIRAS3 and RIPK2 showed a significant reduction after ectopic 

overexpression of miR-661 (Figure 18A, B, C). MAP3K3 was additionally analyzed on protein 

level (MEKK3) and the same effect was observed (Figure 18D and E). When inhibiting the 

endogenous miR-661, MEKK3 protein was induced in H1703 and H1299 cells after 24h, and 

72h transfection (Figure 18D and E). This effect was not seen on mRNA level (data not 

shown).  

 

 
Figure 18. Top hit target expression after miR-661 ectopic overexpression or inhibition. A. 

MAP3K3 mRNA expression in H1703, H1299 and A549 cells after mimic and miRcon treatment. The 

expression analysis was carried out after 48 and 72 h treatment. B. DIRAS3 mRNA expression in 

A549 cells after 72h mimic or miRcon treatment. C. RIPK2 mRNA expression in H1703, H1299 and 

A549 cells after 48 and 72h mimic and miRcon treatment. GAPDH was used for normalization for 

mRNA expression. The fold change expression shows the average of three technical replications with 

standard deviations. The experiment was repeated three times. D. Protein expression of MEKK3 in 

H1703, H1299 and A549 cells after miRcon, mimic and anti-miR treatment. ACTINB was used as a 

loading control for protein expression.  
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4.3.2.4 EMT related gene targeted by miR-661  
miR-661 has previously been shown to play a role in EMT in breast cancer cells [168]. A 

second approach was therefore to further refine searches for target genes functioning in cell 

adhesion, cell to cell contact or known markers in EMT that may contribute to lung cancer. 

The MirWAlk data base was used to determine predicted targets of miR-661 with cut-off p 

value=0.05 for four target prediction algorithms (Diana-T, miRanda, PITA, and Targetscan) 

and with this approach transmembrane glycoprotein E-cadherin (CDH1) was identified. 

CDH1 mRNA expression in lung tumor showed a minor downregulation and upregulation 

with no significant inverse correlation with miR-661 expression (Figure 19A and B). Ectopic 

overexpression with miR-661 mimic in a lowly invasive cell line A549 reduced the mRNA 

expression significantly after mimic treatment as well as the protein (Figure 19C and D).  

 
Figure 19. CDH1 is a target of miR-661. A. CDH1 mRNA expression in normal (N) and tumor (T) 

tissue. B. No significant correlation between miR 661 expression and CDH1 in tumor tissue. 

(Spearman r= -0.27 p = 0.11). C-D. Ectopic overexpression of miR-661 in A549 cells represses CDH1 

mRNA and protein expression. Cells were harvested and mRNA expression and protein levels were 

analyzed 24h post-treatment. GAPDH and ACTINB were used as housekeeping genes for 

normalization and loading control. The band intensities were quantified with ImageJ.   
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4.3.2.5 MEKK3 and E-cadherin are direct targets of miR-661 
To link the direct targeting by miR-661 to the target genes, a co-transfection was carried out 

with mimic 661 and a 3´UTR luciferase reporter containing the binding sites for miR-661 in 

HEK293T cells (Illustrated in Figure 20A-B). A significant effect on luciferase activity was 

obtained for CDH1 and MAP3K3. The relative luciferase activity for the CDH1 was reduced 

to 57% by miR-661. A reversed effect was seen after site directed mutagenesis at the seed 

regions, indicating that the seed sequences are functional binding sites for the miRNA 

(Figure 20C). The relative luciferase activity for MAP3K3 3´UTR reporter was reduced to 

70% by miR-661 and the effect was reversed when three seed regions were mutated (Figure 

20D), suggesting that MAP3K3 is deregulated in lung cancer by miR-661. Reliable and 

reproducible data was not obtained for DIRAS3, RIPK2 and GAS7 (data not shown).  

 

 
Figure 20. miR-661 directly targets CDH1 and MAP3K3. A-B. Schematic figure of the three 8-mer 

seed regions for miR-661 at the CDH1 3´UTR and MAP3K3 3´UTR (Image adapted from TargetScan, 

version 6.2). CDH1 and MAP3K3 3´UTRs containing three seed regions for miR-661 were cloned into 

pmiR luciferase vector. C-D. HEK293T cells were transfected with CDH1 3´UTR or MAP3K3 3´UTR 

pMiR luciferase reporters and co-transfected with mimic miR-661 or miRNA control (miRcon).. The 

positive control is a 4 time repeat of the mature miR-661 sequence. Statistical analysis employed the 

unpaired two sided T-test (*p<0.05, **p <0.001, ***p <0.0001). The graphs show average values with 

standard deviations which were obtained from least 6 biological replicates for the luciferase assay.  
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4.3.3 miR-661 is induced during TGFβ1 induced EMT  
For a cell to lose intercellular junctions and the apical basal polarity and to gain migratory 

and invasive properties, downregulation of E-cadherin is one of the major hallmarks [169, 

170]. TGF β  is a multifunctional growth factor which can act as an inducer of invasion and 

metastasis in epithelial cancer through activation of SMAD proteins which in turn upregulates 

transcription regulators e.g. TWIST1 and SLUGs that represses CDH1 by binding to its 

promoter [171]. TGFβ1 treatment was carried out in order to stimulate EMT in lung cancer 

cells to determine the effect on miR-661 expression during EMT. The treatment was carried 

out in the A549 cell line which expresses E-cadherin  and is classified as a lowly invasive cell 

line [172]. miR-661 expression was induced after 12, 24 and 144h during the transition from 

epithelial to mesenchymal (Figure 21). SNAI1, Fibronectin 1 and Collagen (COL1A1) served 

as positive controls for the mesenchymal phenotype and E-cadherin served as a control for 

the loss of epithelial characteristics. The results indicates that miR-661 may play a role 

during EMT by, together with other regulators, targeting E -Cadherin.  

.  

 
Figure 21. Upregulation of miR-661 in TGF β1 stimulated A549 cells. A549 cells were treated with 

5ng/ml TGFβ 1 during 144 h. RNA expression of miR 661 (red), CDH1 (blue), SNAI1 (green), 

Fibronectin 1 (black) and COL1A1 (purple) was measured at 0, 8, 12, 24, 48, 72, 120, and 144h. The 

mRNA expression was normalized to GAPDH. The graph shows the average fold change from 

triplicates in mRNA expression comparing treated with non-treated cells. The error bars show the 

standard deviation from three replications. The experiment was repeated three times.  

  



 4. Results 
 

-78- 
 

4.4 Chromosome 11p15.5 

4.4.1 Expression analysis of genes and miRNAs on chromosome 11p15.5 
The two prediction algorithms detected 11p15.5 as a gain in cases. In order to elucidate the 

mechanism by which this may affect lung tumorigenesis, an expression analysis was 

performed using RT qPCR in two separate sample sets; set 1 for miRNA expression and set 

2 for gene expression (See clinical characteristics in Table 6). We extended the gene 

expression to the maximal gain region for the 11p15.5 CNV and obtained expression results 

for seven genes and one miRNA (Figure 22). The most striking change was seen for miR-

210 where all the tumors were highly upregulated (Figure 22G). Upregulation was also seen 

for PKP3 in 63% of the tumors (Figure 22B). SIGIRR, PTDSS2, RNH1, HRAS and DEAF1 

were significantly downregulated (Wilcoxon matched pairs signed rank test p< 0.0001) 

(Figure 22 C-F and I) and IRF7 showed no significant difference between tumor and normal 

(Figure 22H). Reliable expression data could not be obtained for B4GALNT4, ANO9, 

RASSF7 and PHRF1 (data not shown). 
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Figure 22. mRNA and miRNA expression of genes on chromosome 11p15.5 in normal lung (N) 
and lung tumor (T) A. Schematic view of the genomic location of genes on 11p15.5. The detected 

minimal overlapped CNV is shown in red. B-I. mRNA expression analysis of PKP3, SIGIRR, PTDSS2, 

RNH1, HRAS, IRF7 and DEAF1 was carried out in set 2 and miR-210 expression analysis was carried 

out in set 1. Wilcoxon matched pairs signed rank test was carried out to determine significance.  
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4.4.1.1 PKP3 methylation and survival analysis 
PKP3 encodes a member of the armadillo-like proteins Plakophilins which are expressed in 

desmosomes of epithelial cells. PKP3 have been reported to be upregulated in NSCLC and 

to be associated with disease progression [173, 174]. However, how this gene is regulated is 

unknown. In order to determine whether DNA methylation is regulating the PKP3 gene in 

lung cancer, quantitative methylation analysis was carried out in 46 tumor-normal pairs at the 

transcription start site of PKP3. The amplicon was designed to cover a CpG island located in 

the first exon and overlapped with histone modification marks associated with active 

transcription (H3K4me3) (ENCODE project [161]) (Figure 23A). The overall amplicon 

methylation showed a significant reduction in tumor tissue where 55% of the tumors showed 

>10% hypomethylation (Figure 23B-C). The average methylation over the amplicon in tumor 

was inversely correlated with expression in tumor which suggests that PKP3 is epigenetically 

regulated in lung cancer (Spearman r= -0.49, p= 0.0009) (Figure 22D). The hypomethylation 

was confirmed in an independent sample set (Figure S4, set 3, Table 6). To determine 

whether methylation state was associated with worse outcome, we separated the sample set 

(n=80) into two groups; low (< 39%) and high (> 39%) methylation based on median 

methylation in normal tissue. The five year survival for low methylation state was 52.5 % and 

for high methylation state 71.4%. We did not observe a significant difference between the 

states (p =0.18, HR 1.67, 95% C.I. 0.79-3.50) (Figure 23E). However, the trend indicates that 

low methylation state may contribute to worse outcome.  
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Figure 23. PKP3 is deregulated by hypomethylation in lung cancer. Quantitative methylation 

analysis was carried out in 46 normal (N) and 46 tumor (T) tissues at the transcription start site of 

PKP3. A. Schematic overview of the PKP3 locus. The amplicon analyzed is shown in blue overlapping 

with the active transcription mark H3K4me3 from cell lines indicated in black bars (ENCODE project) 

and CpG island shown in green. B. The heatmap shows methylation ranging from 0 (yellow) to 100% 

(dark blue) per CpG site or CpG unit in columns. Each row represents one tissue sample. The first 46 

rows show the normal lung tissue and the following 46 rows show the matched tumor tissue. C. 
Average % methylation over the amplicon is significantly hyp0methylated in tumor (p < 0.0001, 

Wilcoxon matched pairs signed rank test). D. The average % methylation in tumor tissue is plotted 

against the PKP3 mRNA expression in tumor (Spearman r =-0.49, **p= 0.0009). E. Kaplan Meier 

survival analysis of 80 patients grouped by PKP3 methylation. 
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4.4.1.2 miRNA 210 targets RUNX3 in lung cancer 
Several studies have shown that miR-210 is induced during hypoxia and has been shown to 

be upregulated in several cancers [175-178]. In the search for unique targets of miR-210, we 

combined lung cancer expression data of the top hit targets identified by TargetScan, 

miRanda and miRDB, and further investigated the runt- related transcription factor RUNX3. 

This gene encodes a transcription factor which is known to form a complex with Smads, the 

transducer of TGF β signaling and is required for the TGF β mediated induction of p21, a 

negative regulator of the cell cycle, and of BIM, a proapoptotic gene [179],[180]. It has also 

been shown to act as a tumor suppressor in lung adenocarcinoma [181]. mRNA expression 

was determined in 36 tumor-normal pairs and 100% showed downregulation in tumor  

(p< 0.00001, Wilcoxon matched pairs signed rank test) (Figure 24A). The expression of 

RUNX3 showed a significant inverse correlation with miR-210 expression in tumor, 

suggesting that the RUNX3 gene is a direct target of miR-210 (Spearman r = -0.50, p= 

0.005) (Figure 24B). To strengthen this hypothesis, we ectopically overexpressed miR210 in 

lung cancer cell lines and observed a significant reduction of the endogenous mRNA level of 

RUNX3 (Figure 24C). In order to elucidate the direct pairing of the miR-210 to the seed 

sequence in the 3´UTR, we performed a luciferase reporter assay with the cloned 3´UTR 

including the seed region for miR-210. The luciferase activity was reduced to 50% when 

miR210 mimic was co transfected. These results suggest a role of miR-210 in the regulation 

of RUNX3.  
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Figure 24. RUNX3 is a target of miR-210. A. RUNX3 mRNA expression was quantified in normal 36 

(N) and tumor (T) tissues and was significantly downregulated in T (p< 0.0001, Wilcoxon matched 

pairs signed rank test). B. The relative expression of miR-210 in tumor was inversely correlated with 

relative RUNX3 mRNA expression in tumor (Spearman r = -0.50, p= 0.005). C. miR-210 was 

ectopically overexpressed in H1299 cells and RUNX3 mRNA expression was significantly reduced to 

62% upon overexpression (p 0.001, two sided, unpaired T test). D. The 3´UTR including the seed 

region for miR 210 was cloned into a pMIR luciferase reporter assay and co tranfected with either 

miRcontrol or mimic mir210. The luciferase activity shows the average fold change from least 6 

biological repeats and the error bars show standard deviations. A two sided unpaired T test was used 

to determine significance (p <0.05).  
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5. Discussion 
Genome wide association studies have identified several risk loci in lung cancer that 

increase the susceptibility of developing the disease. However, the functionality of these 

variations and how they are regulated is not well known. In the current study, we identified 

and investigated germline CNVs associated with early-onset lung cancer risk and the 

potential function and epigenetic regulation of a subset of genes and miRNAs located in two 

copy number gain regions on chromosome 8q24.3 and 11p15.5.  

5.1 CNV detection on GWA data for early-onset lung cancer 
Two CNV detection algorithms, PennCNV and QuantiSNP, were applied on the SNP array 

data from a previously performed GWA study in early onset lung cancer. We focused on the 

CNVs identified by both methods to decrease the false positive CNVs. To use more than one 

algorithm for detection of CNVs is useful as the discrepancy between different software tools 

has been shown to be high [182, 183]. With this strategy 25 CNVs were detected with both 

tools (Table S7). To determine which of these CNVs were associated with lung cancer risk, 

Fisher´s exact test was performed on each SNP in the CNV region and a combined p-value 

for the region was obtained using Stouffer’s test [156]. Ten CNVs were identified to be 

associated with early-onset risk using both algorithms (Table 7). 

 

The current study focused on 8q24.3 and 11p15.5 based on the following criterias: 1) CNV 

was only present in cases, and 2) CNVs harbors miRNAs and genes with potential tumor-

relevant functions. This is not to exclude that the other regions e.g. those without annotated 

genes (CNVs on 8q24.23, 6q12, and 19p12), are not important. In fact, most SNPs 

associated with disease risk map to non-coding regions in the genome [184]. Recently, a 

comprehensive integrative approach was carried out combining epigenome data, 

transcription factor binding sites and breast cancer associated SNPs to reveal the functional 

relationship between them. The study found that risk SNPs were enriched for FOXA1 and 

ESR1 transcription factor binding sites and H3K4me1 histone modifications, affecting the 

binding affinity to chromatin [185]. SNPs on 8q24 associated with prostate cancer risk have 

also been found in FOXA1 binding sites [186]. Moreover, we identified a loss on 1q21.1 

partly overlapping with a CNV that has previously been associated with neuroblastoma [131]. 

The previous study identified this region in 15% of the cases and 9% of the controls. In 

contrast to their study, we identified a higher proportion of controls (3.4% cases and 7.6% of 

the controls with PennCNV and 4.4% cases and 5.7% of the controls with QuantiSNP). The 

fact that this region was more common in controls in our study may indicate that this 

particular CNV is not a suitable risk marker. Furthermore, our study identified two copy 
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number loss regions on 11q11, both harboring variants of the olfactory receptor family 

(OR4P4, OR4S2 and OR4C11). Interestingly, these regions are known as common CNVs in 

the genome [71, 112, 118, 119, 159]. Surprisingly, they appear significantly associated with 

early-onset lung cancer risk in our study (p< 10-18 and p=0.003). This finding highlights the 

importance of using an integrated approach combining GWA data with functional analysis to 

identify loci that have an impact on the disease. It has also been suggested that some 

common CNV regions appear only present in a fraction of blood cells, e.g. T cell receptors or 

immunoglobulin related genes as the results may be effected by different cell type 

composition between cases and controls [72, 142, 187]. Moreover, the 10 CNVs found to be 

associated with early-onset lung cancer did not replicate in a study carried out on more 

elderly lung cancer patients (unpublished data, data not shown), suggesting that these CNVs 

may be specific susceptibility loci in early-onset lung cancer. Further replication studies in 

larger populations focusing on early-onset lung cancer populations will be necessary to 

support our findings. Taken together, among the 10 CNVs associated with early-onset lung 

cancer, the copy number gain regions observed only in cases for 8q24.3 and 11p15.5 

appeared to be the most promising CNV regions to further investigate for functionality and 

relevance for lung tumorigenesis.  

5.2 Method optimization for copy number analysis with the TyperAssay 
The initial aim was to carry out a protocol optimization of the allele specific copy number 

(ACN) TyperAssay application from Sequenom in order to establish a cost effective, 

quantitative, high-throughput method with which several regions can be analyzed 

simultaneously in one sample. Such a method would be a very useful tool for replication 

studies of germline CNVs associated with risk. For the protocol optimization, we used 

samples with known copy numbers (homozygous deletion, 1 copy, and 2 copies) for GSTM1 

based on results from a qPCR based method published previously in our group [144]. 

GSTM1 copy number was analyzed and could be confirmed quantitatively by the TyperAssay 

(Figure 7A). We observed that one of the parameters for reliability of the assay lies in the 

optimal determination of the competitor concentration which we showed was crucial for the 

quantification of the exact copy number (Figure 7B). An alternative for the synthetic 

competitor has been proposed by Williams et al. in 2008, using chimpanzee gDNA as the 

competing strand. The advantage of this alternative is the use of only one extra competing 

DNA for all regions therefore decreasing the complexity of the multiplex PCR [188].  
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5.2.1 CNV validation with TyperAssay 
To validate the CNV gains on 8q24.3 and 11p15.5 detected by QuantiSNP and PennCNV, 

we designed assays for SNPs located in the overlapped region. The results from the 

TyperAssay protocol could not confirm the copy number gain in the tested samples (Figure 8 

and Figure 9). Very recently, the first comprehensive report using the MassARRAY platform 

for CNV analysis was published [189]. In contrast to our protocol, this study bases 

normalization only on an endogenous control (2N) and does not include the competitor 

sequence. The advantage of that study was the use of samples where copy numbers for 

both loss and gain were known i.e. included robust controls for both variants were available. 

A positive control for duplications was missing in our assay. Another paper published by 

Gaudam et al., report a similar strategy as ours using the competitor PCR. However, for copy 

number determination, that study normalized the EC50 values for each sample to the EC50 

value for the 2N control (three 2N controls included). They used the method for validation of 

deletions, duplications and 2N regions identified from the Affymetrix 50k Chip array. The 

overall validation concordance was 35% for duplications, 10% for deletions and 66% 

concordance for 2N regions [190], indicating that in this study copy number gain regions 

were better validated than regions with loss.  

 

A second attempt to validate the CNVs on 8q24.3 and 11p15.5 was to use FISH on 

lymphocytes from a subset of the patients with detected CNVs. The weakness of the setup of 

this assay was the probe size (Figure 10A). The probe size for FISH is optimal with at least 

100kb to reach a sufficient fluorescent signal. However, to determine a copy number gain 

which may be in tandem and have a size of 200kb, it is not possible to distinguish two 

separate dots (Figure 11). The probes we used were between 80kb and 100 kb and the in 

most cases expected CNV size was around 100-200kb. We observed an increased 

fluorescent signal on one allele in a subset of cells and hypothesized that these cells may 

have an extra copy (Figure 11). With quantification of the signal intensities, significance could 

not be reached. To improve this method for our particular purpose, custom-designed probes 

hybridizing to a smaller region is desirable for signal separation on the alleles. Taken 

together, neither TyperAssay CNV analysis nor FISH analysis, allowed a final conclusion on 

whether the CNV gains on 8q24.3 or 11p15.5 are present. Alternative approaches for 

technical validation such as next generation sequencing of CNV regions are likely to provide 

a better understanding of these candidate CNV regions. 
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5.3 The role of 8q24.3 in lung cancer 
In the current study we identified a germline CNV gain on 8q24.3 detected in 27 (QuantiSNP) 

or 18 cases (PennCNV). This region has previously not been reported to be associated with 

lung cancer risk. We compared data from the Database for genomic variants (DGV) to 

determine whether this is a commonly variable region in the population [115]. This region has 

been reported as a gain with low frequency in four healthy population studies [191-193]. 

Jakobsson et al found this region in 1/443 controls, Pinto et al in 1/6 and Park et al in 1/31 

controls. This indicates that observed gain may specifically be associated with early-onset 

lung cancer risk.  

5.3.1 Aberrant expression and regulation of miR-661 
One aim of the current study was to answer the question whether CNVs associated with lung 

cancer risk harbor genes or miRNAs that play a role in lung cancer progression. Since the 

algorithms detected this CNV as a gain in cases, we were searching specifically for 

oncogenic potential of this region. We hypothesized that copy number gain regions harbor 

upregulated genes. Expression of genes and miRNA in matched lung tumor-normal pairs 

was determined by with qPCR and the results showed that most genes were downregulated 

in tumor compared to normal tissue. However, miR-661 was significantly upregulated in the 

majority of the tumors (Figure 14). Genes and miRNAs in this region are likely tightly 

regulated on an individual level. In addition, it has been suggested that CNV miRNAs are 

more susceptible to gene-dosage than other genes due to their functional importance in the 

cell [73]. miR-661 belongs to the group of non-conserved miRNAs and shares high sequence 

homology only with Chimpanzee and Rhesus [194]. miR-661 is located within the second 

intron of the PLEC1 gene. This gene consists of 8 annotated isoforms in the human genome 

but the abundance of the transcripts is not well reported. It has been proposed that the 

transcription of these isoforms may be tissue specific [195]. The expression was analyzed 

specifically for the isoform 6, in which the miR-661 is located in the first intron. The 

expression of the isoform 6 was downregulated in lung cancer. This finding suggests that the 

miR-661 transcript and the host-gene are not co-regulated. This is in accordance with a 

study which showed that younger intragenic miRNAs more often than old ones, have evolved 

differently and therefore have their own promoter [196].  

 

The 8q24.3 region has been reported in lung cancer as an amplified region in less than 5% 

of the cases [197]. Therefore, we hypothesized that other mechanism than a gene dosage 

dependent effect may play a role in the regulation of miR-661. DNA methylation was 

analyzed at a 5kb distal CpG island in the same sample set and we found a potential 

promoter region of miR-661 to be hypomethylated and significantly negatively correlated with 

miR-661 expression (Figure 15B). Our finding goes in line with other studies that have shown 
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that miRNAs in the genome are frequently deregulated by methylation in cancer (reviewed in 

[80]). Additional studies on the exact transcriptional start site for the primary miR-661 are 

necessary to be certain that the sequence investigated is in fact the regulatory region. We 

provide data showing that promoter activity of these sites decreases when the demethylated 

region is excluded, demonstrating that the sequence where hypomethylation takes place is 

important for active transcription (Figure 15E).  

5.3.2 Clinical relevance of miR-661 hypomethylation 
Methylation at the putative promoter of miR-661 was significantly correlated with expression 

in tumor tissue (Figure 15B and E). However, hypomethylation was observed in a subset of 

the patients, which made us hypothesize that methylation at this locus may be useful as a 

prognostic marker. DNA methylation as a prognostic marker has been reported for other 

cancers, e.g. HPV driven oral squamous cell carcinoma [81]. We observed a significant 

association with overall survival revealing that low methylation is associated with worse 

outcome (Figure 16). The survival data is marginally significant, and thus, an extension of the 

study with a larger study population is necessary to strengthen our finding and its potential 

use in the clinics for prognosis.  

5.3.3 miR-661 targets  
miR-661 has more than 2000 predicted targets in the genome and to find those that may 

affect pathways involved in lung tumorigenesis is challenging. miR-661 has been reported in 

the context of breast cancer [168, 198], but its role in lung cancer is not known. Two 

approaches were used to find gene targets for the miR-661 in lung cancer. The first strategy 

was to combine the top hits from five prediction algorithms (TargetScan 6.2, Diana microT-

v5, miRanda, miRDB and miRwalk [163-167]). From among the target genes identified, a 

selection of genes was further investigated based on their high scores from the prediction 

algorithms. We investigated the interaction between miR-661 and the four target genes 

MAP3K3, DIRAS3, RIPK2, and GAS7 (Figure 18). Among them, MAP3K3 appeared to be a 

direct target of miR-661 supported by the 3´UTR luciferase reporter system in cell lines and 

including a site directed mutagenesis approach (Figure 20). This protein plays a role in the 

canonical activating pathway of NFkB [199]. Although overexpression of MAP3K3 has been 

shown to correlate with NFkB activity and tumor progression in breast and ovarian cancer 

[200], another study has revealed a potential tumor suppressor role of MAP3K3 by its 

involvement in cell cycle arrest by suppressing cyclin D1 [201]. Our study shows that 

MAP3K3 is significantly downregulated in NSCLC, suggesting that the function of MAP3K3 

may be cell type specific. The results reveal a link between miR-661 upregulation and 

MAP3K3 downregulation, which may indicate that MAP3K3 plays an unknown tumor 
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suppressor role in lung cancer. Further studies on the function of MAP3K3 in lung cancer are 

needed to support this hypothesis.  

 

The second approach was to focus on EMT related targets since it was previously shown 

that miR-661 may be an early regulator in this process [168]. Interestingly, we found the 

major marker for EMT, E-cadherin, to be a predicted target and hypothesized that 

upregulation of miR-661 in cells undergoing EMT contributes to invasiveness and metastasis 

via E-cadherin regulation. In the publication by Vetter et al. E-cadherin is used as a negative 

control and E-cadherin is said to not have any seed sequences for miR-661 in the 3´UTR 

[168]. The use of an earlier version of the MiRBASE prediction tool may be the reason for 

this contradiction. Our results demonstrate that ectopic overexpression of miR-661 reduced 

the mRNA and protein level of E-cadherin significantly in A549 lung cancer cells. 

Additionally, a direct link between the 3´UTR of E-cadherin and overexpression of miR-661 

was supported by a 3´UTR luciferase reporter assay. 

 

The function of E-cadherin in cancer during invasion and metastasis is well characterized 

[169, 170, 202] and several different mechanisms for its regulation have been reported. For 

example, downregulation by DNA methylation has been reported in several epithelial cancers 

[203-209]. The epigenetic regulatory mechanism for CDH1 which encodes E-cadherin has 

been shown to be controlled by the transcriptional repressor SNAIL1-G9a-DNMT1 complex 

where SNAIL1 directs the DNMTs to specific CG sites at the CDH1 promoter [210]. Other 

repressors e.g. the ZEB family is also responsible for deregulation of E-cadherin. 

Additionally, miR-9 and mir-10b target E-cadherin in cancer [88, 89] as well as the mir200 

family through indirect regulation via targeting the ZEB protein family [87, 211]. Our study 

uncovers an additional regulation of E-cadherin in lung cancer by miR-661. Heterogeneous 

mRNA expression was observed between the patients analyzed and a correlation could not 

be shown between the CDH1 expression and miR-661 expression (Figure 19). This may be 

explained by the fact that downregulation of CDH1 only occurs in cells undergoing EMT and 

these cells are located in the leading front of the tumor. Given that the RNA was isolated 

without selecting for this particular subpopulation of tumor cells this effect is diluted. We 

addressed this issue by using immunohistochemistry (IHC) to determine whether the E-

cadherin expression was reduced specifically at the invasive front (Figure S3). However, E-

cadherin was strongly expressed in the epithelial cells in the majority of the samples tested 

and it was not possible to distinguish quantitatively whether the invasive front showed a 

different expression pattern. Further supporting results e.g. using additional EMT markers, 

may be helpful to elucidate an EMT phenotype in these patients.  
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We further analyzed whether miR-661 expression is affected by inducing EMT with TGF β 

treatment in A549 cells over time and if the treatment changed the expression of the 

epithelial marker CDH1 and the mesenchymal markers, SNAI1, COL1A1 and Fibronectin 1 

(Figure 21). We observed a statistically significant increase of miR-661 expression after 48h 

and 144h treatment. However, the induction was minor in comparison with the other 

mesenchymal markers. TGF β1 is known to activate the SMAD proteins which then relocate 

to the nucleus where they interact with the transcriptional repressor SNAIL1 [171]. 

Additionally, it has been reported that SNAIL1 is also upregulating Fibronectin 1 [212]. In line 

with this, we observed that the induction of Fibronectin 1 expression was at a later time point 

than the SNAI1 gene. 

.
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5.4 The role of 11p15.5 in lung cancer 
Both PennCNV and QuantiSNP identified germline copy number gain at 11p15.5 in a small 

subset of early-onset lung cancer. As described for 8q24.3, expression analysis was 

performed on tumor and matched normal lung tissue to answer the question whether this 

predicted copy number gain region harbors potentially relevant genes for tumorigenesis.  

5.4.1 Plakophilin 3 (PKP3) 
In the CNV region on 11p15.5 PKP3 was found to be upregulated in NSCLC (Figure 22A). 

Furukawa et al. found that PKP3 upregulation in lung tumors correlated with worse prognosis 

and could serve as a potential therapeutic target in lung cancer [174]. Additional evidence for 

PKP3 upregulation in malignancies comes from studies in breast and prostate cancers [213, 

214]. PKP3 encodes a member of the arm-repeat (armadillo) and plakophilin gene families 

and is localized to cell desmosomes and in the nuclei, and participate in linking cadherins to 

intermediate filaments in the cytoskeleton [173, 215]. The mechanism how this gene may be 

upregulated in lung cancer is not known. Evidence in colon cancer has shown that the ZEB 

transcriptional regulator is responsible for repression of this gene [216]. We provide data 

revealing that the PKP3 promoter DNA methylation is decreased in tumor tissue and that the 

methylation pattern in tumor tissue inversely correlates with expression (Figure 23). To 

determine whether the hypomethylation would be suitable as a prognostic factor for survival, 

we divided the samples in high or low methylation state based on the average methylation at 

the transcription start site. The five year survival for low methylation state was 52.5 % and for 

high methylation state 71.4% but revealed no significant difference. Even if the difference is 

not statistically significant, the trend suggest that hypomethylation of PKP3 may have a 

negative impact on overall survival. Further investigation in a larger sample set is required to 

strengthen our finding. 

 

5.4.2 miR-210 
miR-210 is among the top upregulated miRNAs in lung cancer [217] and is a potential 

diagnostic marker as it is detected and associated with lung cancer in sputum [75, 76]. We 

could confirm the upregulation of miR-210 in NSCLC in our study (Figure 22G). Several 

targets for mir-210 have been identified and it is evident that this miRNA is a key player in 

hypoxia, cell survival and migration [177, 178, 218, 219]. In the current study, RUNX3 was 

shown to be a promising candidate target gene of miR-210 (Figure 24). Knockout mouse 

studies have shown an essential role for RUNX3 in lung development and a functional 

inhibitory role on lung epithelial proliferation during late phases of lung development [180, 

181]. The results in our study indicate an interaction between miR-210 and RUNX3 
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supported by ectopic miRNA overexpression experiments in lung cancer cell lines and a 

3´UTR luciferase reporter assay (Figure 24). Further studies to support a direct interaction 

and effect on RUNX3 suppression, should include site directed mutagenesis of the seed 

sequences to determine whether the luciferase activity can be rescued. We further show that 

RUNX3 is downregulated in NSCLC and significantly correlates negatively with miR-210 

expression (Figure 24). RUNX3 downregulation was shown in NSCLC before and is 

supported by several studies showing that RUNX3 is hypermethylated, especially in lung 

adenocarcinoma [220-224]. Additionally, downregulation of RUNX3 has been detected in 

peripheral whole blood in an early stage lung cancer case-control study, suggesting that 

RUNX3 may serve as a biomarker for lung cancer [225]. The results in the our study suggest 

miR-210 as an additional epigenetic regulator of RUNX3 in lung cancer.  
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6. Strengths and weaknesses of the study 
A limitation of the current study is the absence of a verification of the CNVs in a larger 

population study in early-onset lung cancer. Thus, a replication study is necessary to verify 

the associations and to answer questions regarding the possible impact of these copy 

number variations on early-onset risk. In addition, the 550k SNP array from Illumina is limited 

regarding CNVs because of the initial selection criteria of SNPs for the arrays where 

common CNV regions in segmental duplications have been excluded. Other platforms e.g. 

the Human SNP array 6.0 platforms by Affimetrix or Illumina´s 1 M SNP BeadChip have 

included common CNV regions and would be better suitable for CNV studies. Furthermore, 

the current study did not take into account stratification by ethnicity, gender, histology and 

smoking status which should in the future be considered. Moreover, a limitation of the study 

was that the GWA study included cases from all histologies but the expression and 

methylation analyses were carried out in NSCLC due to material not being available for the 

other subtypes.  

 

To our knowledge, the GWA study on which this work is based is the only one to date that 

identified CNVs associated with risk of early-onset lung cancer. The advantage of studying 

this subtype of lung cancer is the strong link to heritability in comparison to older lung cancer 

cases [17, 21], suggesting that genetic variations may play a bigger role in this subtype in the 

susceptibility to the disease.  

 

Genome wide association studies have identified several risk loci for almost all cancers and 

the field is now moving in the direction to identify the functional impact these regions may 

have on the disease [226]. A particular feature of this study is its width starting with a 

genome-wide association study as a platform for identifying important risk loci for early-onset 

lung cancer to further investigate the potential functionality of these regions on the 

tumorigenesis.  

 

One of the aims of the current study was to establish a robust protocol for quantitative CNV 

analysis in blood. GSTM1 deletions, 1 copy and 2 copies could be achieved with the 

TyperAssay, however, copy number gain on 8q24.3 and 11p15.5 could not be determined. 

There are several different variables that should be considered for further optimization of the 

protocol: robust controls for 2N regions for normalization, regions with known 3N or more 

copies and alternatives for the competitor strand that would be more equal to gDNA and thus 

increase the sensitivity of the assay. Furthermore, a verification of whether the copy number 

gains in blood would lead to acquired copy number alterations in tumor tissue is missing in 
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the current study. This link is missing in this study due to lack of available quantitative copy 

number analysis methods and availability of somatic tissue from cases included in the 

GWAs.  
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7. Conclusion and outlook 
The current study provides new insights into how GWAs could be used to point towards 

functionally relevant regions in the genome that may directly or indirectly modulate known 

oncogenic pathways in lung cancer. We identified ten novel CNVs associated with early –

onset lung cancer and focused further functional studies on two copy number gain regions of 

8q24.3 and 11p15.5. This study provides evidence that two CNV regions associated with 

early-onset lung cancer risk harbor aberrantly expressed miRNAs and genes in lung cancer 

and that epigenetic deregulation is responsible for fine tuning of the expression of specifically 

miR-661 on 8q24.3 and PKP3 on 11p15.5. Thus this study underscores the importance of 

combining analysis of genetic and epigenetic information. Additional functional analyses in 

lung cancer cell lines of miR-661 and miR-210 revealed their potential oncogenic features in 

lung cancer by direct targeting of the genes MAP3K3, CDH1 and RUNX3, which are all 

involved in tumor associated pathways with potential tumor suppressor functions.  

 

To identify and further understand the importance of heritable susceptibility loci for lung 

cancer, meta and pooled analyses for available GWA data are now ongoing and recently 

published [227]. This approach could also be used in the future to perform CNV analyses. 

Although there are limitations imposed by the old array technologies used, the vast numbers 

of GWA resources now available would enable subgroup analyses.  

 

It would be of interest to look in detail at the regions identified in this study without gene-

annotations since it has been shown that most SNPs associated with disease risk are 

located in intergenic regions [184]. These regions may consist of regulatory enhancers, 

noncoding RNAs, repressors or chromatin structures. Identification of such possible 

regulatory elements would be an important step in understanding the functional effect of 

these risk loci.  

 

The role of miR-661 in lung cancer has not been studied before. Further investigations of the 

function of miR-661 as a potentical oncomiR and its role in EMT would help understanding 

whether this miRNA may be a potential therapeutic target in lung cancer. In vivo models 

would be useful to determine the possible oncogenic feature and involvement in EMT or 

other mechanistically relevant pathways for lung cancer. One big challenge in understanding 

the functional role of a miRNA in the cell, is the identification of relevant target genes. In 

depth studies of the key pathways regulated by miR-661 could include expression profiling in 

the absence of or with stable overexpression of miR-661. Another way to identify specific 
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targets in lung cancer cells could be immunoprecipiation of the RISC complex in miR-661 

induced system and therefore identify which targets are bound to miR-661.  

 

Another important future approach should be focused on exploring whether germline CNVs 

leads to acquired copy number changes in somatic tissue and whether a direct dose 

dependency can be verified. This could be an important step towards better understanding 

the functionality and the effect of germline CNVs associated with risk of tumorigenesis. 

 

.
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Supplemental data 
Table S1. Primers for quantitative allele specific CNV analysis-TyperAssay 

SNP_ID Primer F Primer R Extension primer 

13255347 ACGTTGGATGCGCTGTCACGCGCTGCCTG ACGTTGGATGAGAGAAAGGGCGGCTTGGAG CCGAGACCCCTGCCCGC 

4977177 ACGTTGGATGATGCTGTGGAATCTGACTGG ACGTTGGATGTCAGGTGGAGGCCCGGAGAA AAGAGTGTGGGGAAGTGA 

1062099 ACGTTGGATGGACCCGGTCCTGATTTTAAC ACGTTGGATGAGACAGCGGGTGGATCCTC 
TTTTAACAGTAGACTTGAG
AAG 

6715929 ACGTTGGATGCCTCATGAAACAAGCTACCC ACGTTGGATGAAAAATCACAGCTGCGGAAG ACAAAAACTGGCTTTGC 

737497 ACGTTGGATGCCAGCATCCCCTTCCCATAA ACGTTGGATGCATTCGTTCATGTGACAGTATTCT TGAGTGCCCGGTCTCCTC 

746707 ACGTTGGATGTGCTCGCACGTGGATAGATG ACGTTGGATGAGGTGACAGTACTGATGAGG CCTCACACACCAGCAGGCA 
 
Table S2. List of expression primers for qPCR with Roche UPL system and SYBRgreen 

primer ID Primer F Primer R purpose UPL 

IRF7 AGCTGTGCTGGCGAGAAG CATGTGTGTGTGCCAGGAA 11p15.5 Sybr 

exp PKP3 new AGCCTGGAGGAGAAGGCTAAT AGTGCTGGCTATCCCAAGATACT 11p15.5 Sybr 

DIRAS3  TTCTAGGCTGCTTGGTTCGT TGCACAAGTTCTCCCACACT target 18 
CDH1 GGTCTGTCATGGAAGGTGCT GATGGCGGCATTGTAGGT target 5 
MAP3K3  GACACTCACGGACCTTAGCC GTTCAATGCCTCCTGTTCGT target 70 
HPRT F exp TGACCTTGATTTATTTTGCATACC CGAGCAAGACGTTCAGTCCT HKG 73 
GAPDH F exp AGCCACATCGCTCAGACAC GCCCAATACGACCAAATCC HKG 60 

RIPK2_2  CTTGGTGTAAATTACCTGCACAA ATGCGCCACTTTGATAAACC target 63 

GAS7_2  CCCCAGAGAAGGTTAGCTGTT GTGGAAGGATGACCGTCTG target 7 

RUNX3_1  TCAGCACCACAAGCCACTT AATGGGTTCAGTTCCGAGGT target 71 

GRINA  GGAGATCGTGTACGCCTCA CTCAGGGACAGCTGCTTGTT 8q24.3 38 

SIGIRR RT 1 F CTCAGAGCCATGCCAGGT CCTCAGCACCTGGTCTTCA 11p15.5 55 

PTDSS2_2 RT F GCCATTTTCCAGACCTCATC GAGAAACAGCTCGTAGACCACA 11p15.5 21 

OPLAH F 1 TCTGTCCTTCAAACTTGTCCAG CTGCAGTTGGGGACCTTG 8q24.3 63 

EXOSC4 F 1 TACATTGAGCAGGGCAACAC TGCTGAAGGTCGCTGAACTA 8q24.3 76 

GPAA1 F 1 GACACTGCTGGCGATTTATG GGGCCTGTGTGCTTACCA 8q24.3 43 

SHARPIN F 1 CTGCCCAGTCCACTCCAG GGGTGCTACACATCTCACAGC 8q24.3 4 

MAF1 F 2 TTCTTTAGCTGCCGTTCCAT CTCCATGTCCAGCTCGTTG 8q24.3 39 

RNH1 F 2 AGCAAAAAGGGGTGTCTCAG ATGGTGGAGGTGAAGAGTGG 11p15.5 13 

HRAS F GGCATCCCCTACATCGAGA CTCACGCACCAACGTGTAGA 11p15.5 88 

DEAF1 RT F GGGAGGCTATGAGCGAGTG TGCTGGTGATCCTTCCAGT 11p15.5 39 

SPATC1_1 F CATCCCAGAGAAGATCATCCA GAGCCTCTGGCACAGCTT 8q24.3 42 
PLEC1_61 CCCTGTGGTGCCTGCTAC ACACGATCCCGCTCATCT 8q24.3 Sybr 
SNAI1 GCTGCAGGACTCTAATCCAGA ATCTCCGGAGGTGGGATG TGFbeta 11 
Fibronectin1 GGAAAGTGTCCCTATCTCTGATACC AATGTTGGTGAATCGCAGGT TGFbeta 33 
COL1A1 GGGATTCCCTGGACCTAAAG GGAACACCTCGCTCTCCA TGFbeta 67 

  



 Supplemental data 
 

-112- 
 

Table S3. List of primers for BT PCR for massCLEAVETM assay 

Amplicon 
name 

Primer F Primer R (T7 promoter tag) CNV PCR  othe
r 

CDHR5_1 aggaagagagGTTTTTTTTTGTTTAAGTA
GG 

cagtaatacgactcactatagggagaaggctCTTCAAAATAAAAACC
CCAAC 

11p1
5.5 

54°C IRF7 

PKP3_38 aggaagagagGTGAAGATAGTTGGGTTT
GGAG 

cagtaatacgactcactatagggagaaggctCTAACCAAACTCAATC
TTTAAAAAAC 

11p1
5.5 

58°C CGI  
38 

PLEC1 aggaagagagGGGTTTGGTTTGGTTAGG
GTT 

cagtaatacgactcactatagggagaaggctCAACTTACACCCCCAT
ATACCC 

8q24.
3 

60°C CG1 
61 

mir661_5_n
ew_2 

aggaagagagAGGTTATGTGTTG
GAGGAGGGT 

cagtaatacgactcactatagggagaaggctCCACAAATCA
ACTACACCCTA 

8q24.
3 

56-
58°C 

CG1 

61 
mir661_6 aggaagagagGTTTAAGTTGGTTA

AGTATTTAG 
cagtaatacgactcactatagggagaaggctCACAAATCAA
CTACACCCTAAC 

8q24.
3 

56-
58°C 

CG1 

61 
mir661_7 aggaagagagGGTATATGGGGGT

GTAAGTTG 
cagtaatacgactcactatagggagaaggctCTACCTCTTAA
AATACCCCCCACT 

8q24.
3 

56-
58°C 

CG1 

61 
Table S4. List of primers for cloning 

Primer ID Sequence 5´to 3´ Method 

61_F3 (HINDIII) TTGGCCAAGCTTTGGCGGAGGTGGGCGATG promoter cloning 

61_F1 (HINDIII) TTGGCCAAGCTTCGAAGGCAAGGGCAGTGTTG promoter cloning 

61_R1(BAMHI) ACCTGAGGGATCCAGGGACCTTGAAGGATGTGTTTA promoter cloning 

CDH1_F1_newpMIR TGATCACGCGTTCACCCAGCACCTTGCAG  3´UTR cloning 

CDH1_R2 HINDIII ATGATCAAGCTTAATTCAGGAGTGAGAGTTGA 3´UTR cloning 

MAP3K3 F pMIR ATGATCACGCGTGCTCTCACGGCCACACAGCTG 3´UTR cloning 

MAP3K3 R pMIR ATGATCAAGCTTCTGGGTACAGCATAAGAGTGAC 3´UTR cloning 

pMIR seq primer F ACGACGGCCAGTGCCAAGCTA sequencing 

pMIR seq primer R GATCCTCATAAAGGCCAAGAAG sequencing 
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Table S5. CNVs detected with PennCNV.  

Chr Start End Start SNP End SNP #cases #controls CNV  cases CNV controls 

chr1 147305744 147478120 rs11579261 rs12409037 22 42 

Gain:5 

Loss:17 

Gain:5 

Loss:37 

chr1 243703662 243713984 rs6428923 rs12121903 0 12 

Gain:0 

Loss:0 

Gain: 0 

Loss:12 

chr2 41092148 41099005 rs12617846 rs2373974 41 57 

Gain:0 

Loss:41 

Gain:0 

Loss:57*1 

chr2 242565979 242593982 rs12987376 rs10189267 11 27 

Gain:0 

Loss:11 

Gain:0 

Loss:27 

chr3 152997280 153028731 rs17204697 rs1042201 0 14 

Gain:0 

Loss:0 

Gain:0 

Loss:14 

chr4 161276893 161290832 rs1796466 rs10084880 11 17 

Gain:0 

Loss:11 

Gain:0 

Loss:17 

chr5 28847546 28877702 rs2548010 rs2652689 14 14 

Gain:14 

Loss:0 

Gain: 14 

Loss:0 

chr5 97087517 97107276 rs12658613 rs10515261 23 30 

Gain:0 

Loss:23 

Gain:0 

Loss:30 

chr6 67093085 67105019 rs11758713 rs1634207 39 67 

Gain:0 

Loss:39 

Gain:0 

Loss:67 

chr6 124496015 124507628 rs11758638 rs2093502 0 10 

Gain:0 

Loss:0 

Gain:11 

Loss:0 

chr6 168078929 168138806 rs3800533 rs3778667 0 12 

Gain:0 

Loss:0 

Gain:12 

Loss: 

chr7 141419097 141429438 rs4329195 rs10265585 63 48 

Gain:0 

Loss:53 

Gain:0 

Loss:48 

chr7 38323070 38323848 rs17171329 rs11765884 0 16 

Gain:0 

Loss:0 

Gain:0 

Loss:16 

chr7 76270269 76395148 rs38635 rs3912067 0 11 

Gain:0 

Loss:0 

Gain:9 

Loss:2 

chr8 5583199 5591903 rs2527118 rs1635664 36 54 

Gain:0 

Loss:36 

Gain:0 

Loss:54 

chr8 145090342 145223898 rs11786896 rs2070688 18 0 

Gain:18 

Loss:0 

Gain:0 

Loss:0 

chr8 137898044 137913669 rs2582447 rs2681674 0 22 

Gain:0 

Loss:0 

Gain:0 

Loss:22 

chr10 47098898 47110350 rs4926057 rs12775238 27 0 

Gain:25 

Loss:2 

Gain:0 

Loss:0 

chr10 135125348 135182921 rs2252728 rs10776686 13 19 

Gain:12 

Loss:21 

Gain:19 

Loss:0 

chr10 67748487 67785209 rs4297361 rs2893986 0 12 

Gain:0 

Loss:0 

Gain:0 

Loss:12 

chr11 548884 609789 rs2061586 rs2246614 10 0 

Gain:10 

Loss:0 

Gain:0 

Loss:0 

chr11 55139733 55179162 rs573732 rs11230571 57 0 

Gain:0 

Loss:57 

Gain:0 

Loss:0 

chr11 55127597 55139733 rs2456022 rs573732 0 104 

Gain:0 

Loss:0 

Gain:0 

Loss:104 

chr12 7892179 7936264 rs16916683 rs11502980 14 10 

Gain:13 

Loss:1 

Gain:9 

Loss:1 

chr12 31271893 31276546 rs11051344 rs12831069 23 31 

Gain:23 

Loss:0 

Gain:31 

Loss:0 

chr12 19360345 19431361 rs10743315 rs2961370 0 11 

Gain:0 

Loss:0 

Gain:11 

Loss:0 

chr14 21831090 21832903 rs10483271 rs17198328 11 0 

Gain:0 

Loss:11 

Gain:0 

Loss:0 
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chr14 21834952 21838610 rs12588739 rs3811260 0 13 

Gain:0 

Loss:0 

Gain:0 

Loss:13 

chr18 64898548 64905367 rs11876036 rs13381870 21 24 

Gain:1 

Loss:20 

Gain:0 

Loss:24 

chr19 1189899 1201109 rs2301759 rs3746106 10 0 

Gain:10 

Loss:0 

Gain:0 

Loss:0 

chr19 20422200 20473895 rs10408291 rs2021399 22 38 

Gain:0 

Loss:22 

Gain:0 

Loss:38 

chr19 48197824 48205499 rs11881408 rs11668932 17 22 

Gain:4 

Loss:13 

Gain:4 

Loss:18 

chr19 59423491 59435029 rs17207328 rs17239607 0 20 

Gain:0 

Loss:0 

Gain:20 

Loss:0 

chr20 52081230 52088118 rs1557853 rs290469 21 29 

Gain:0 

Loss:21 

Gain:0 

Loss:29 

chr22 21392612 21401228 rs6003245 rs12484427 14 27 

Gain:14 

Loss:0 

Gain:27 

Loss:0 

chr22 24083777 24165514 rs5996921 rs1207587 17 26 

Gain:10 

Loss:7 

Gain:15 

Loss:9 

chr22 17257787 17355587 rs2543958 rs2518805 0 12 

Gain:0 

Loss:0 

Gain:12 

Loss:0 

chr22 21457585 21554058 rs11912861 rs2282667 0 17 

Gain:0 

Loss:0 

Gain:17 

Loss:0 
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Table S6. CNVs detected with QuantiSNP. 

Chr Start End StartSNP EndSNP CNV #SNP #cases #controls CNV cases CNV controls 

chr1 147305744 147478120 rs11579261 rs12409037 1 9 35 37 

Gain:3 

Loss:32 

Gain:9 

Loss:28 

chr1 195089653 195163711 rs16840607 rs4915318 1 10 11 8 

Gain:2 

Loss:9 

Gain:3 

Loss:5 

chr2 41092148 41099005 rs12617846 rs2373974 1 9 56 59 

Gain:0 

Loss:56 

Gain:0 

Loss:59 

chr2 89743465 89877778 rs17091423 rs13003799 1 9 21 18 

Gain:2 

Loss:19 

Gain:0 

Loss:18 

chr2 110228954 110339819 rs17842653 rs13386516 3 12 5 12 

Gain:3 

Loss:2 

Gain:6 

Loss:6 

chr3 152997280 153028731 rs17204697 rs1042201 1 11 11 16 

Gain:0 

Loss:11 

Gain:0 

Loss:16 

chr4 161276893 161290832 rs1796466 rs10084880 1 19 22 22 

Gain:0 

Loss:22 

Gain:1 

Loss:21 

chr4 162172873 162207355 rs4690999 rs1523553 3 9 5 10 

Gain:5 

Loss:0 

Gain:10 

Loss:0 

chr5 8756615 8800106 rs10073742 rs10434659 1 8 9 12 

Gain:0 

Loss:9 

Gain:0 

Loss:12 

chr5 97074222 97107276 rs2914928 rs10515261 1 13 34 36 

Gain:0 

Loss:34 

Gain:0 

Loss:36 

chr5 28842013 28912873 rs2548005 rs457561 3 17 10 6 

Gain:10 

Loss:0 

Gain:6 

Loss:0 

chr6 67093085 67105019 rs11758713 rs1634207 1 7 55 84 

Gain:0 

Loss:55 

Gain:0 

Loss:84 

chr6 168216329 168240295 rs2171983 rs10046330 3 10 10 0 

Gain:10 

Loss:0 

Gain:0 

Loss:0 

chr7 8810973 8826141 rs12702782 rs10486260 1 10 11 10 

Gain:0 

Loss:11 

Gain:0 

Loss:10 

chr7 38285864 38302045 rs2240826 rs2191311 1 13 12 11 

Gain:0 

Loss:12 

Gain:0 

Loss:11 

chr7 61075979 61752449 rs13247259 rs238258 3 9 20 0 

Gain:20 

Loss:0 

Gain:0 

Loss:0 

chr7 141420759 141429438 rs4281037 rs10265585 1 7 66 60 

Gain:0 

Loss:66 

Gain:1 

Loss:59 

chr8 5583199 5591903 rs2527118 rs1635664 1 6 56 51 

Gain:0 

Loss:56 

Gain:0 

Loss:51 

chr8 137898044 137913669 rs2582447 rs2681674 1 19 15 29 

Gain:0 

Loss:15 

Gain:1 

Loss:28 

chr8 145195417 145247517 rs4977177 rs13264654 3 7 27 0 

Gain:27 

Loss:0 

Gain:0 

Loss:0 

chr10 47013328 47110350 rs11259779 rs12775238 3 17 47 38 

Gain:43 

Loss:4 

Gain:34 

Loss:4 

chr10 67748487 67785209 rs4297361 rs2893986 1 13 14 12 

Gain:0 

Loss:14 

Gain:0 

Loss:12 

chr11 548884 609789 rs2061586 rs2246614 3 7 13 0 

Gain:11 

Loss:1 

Gain:0 

Loss:0 

chr11 50599126 51077585 rs1592593 rs4323853 3 3 42 14 

Gain:42 

Loss:0 

Gain:14 

Loss:0 

chr11 55127597 55139733 rs2456022 rs573732 1 2 0 117 

Gain:0 

Loss:0 

Gain:0 

Loss:117 

chr11 55139733 55193702 rs573732 rs17498926 1 8 80 2 

Gain:0 

Loss:80 

Gain:0 

Loss:2 

chr11 81174591 81194909 rs4409862 rs12293984 1 13 2 15 

Gain:0 

Loss:2 

Gain:1 

Loss:14 
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chr12 7899399 7990569 rs2889504 rs1473164 3 12 21 15 

Gain:16 

Loss:5 

Gain:12 

Loss:3 

chr12 19360345 19442103 rs10743315 rs2565666 3 17 4 13 

Gain:4 

Loss:0 

Gain:13 

Loss:0 

chr12 31257563 31276546 rs10771812 rs12831069 3 10 35 39 

Gain:35 

Loss:0 

Gain:39 

Loss:0 

chr12 31915523 31941353 rs1419311 rs1150971 3 14 10 11 

Gain:10 

Loss:0 

Gain:11 

Loss:0 

chr12 62269256 62351565 rs11175055 rs12231958 3 6 14 9 

Gain:11 

Loss:3 

Gain:5 

Loss:4 

chr14 21767514 21792564 rs10483269 rs10148895 1 6 10 0 

Gain:0 

Loss:10 

Gain:0 

Loss:0 

chr14 21834952 21838610 rs12588739 rs3811260 1 3 10 24 

Gain:0 

Loss:10 

Gain:0 

Loss:24 

chr14 21898729 21914810 rs2331662 rs4982619 1 3 0 15 

Gain:0 

Loss:0 

Gain:1 

Loss:14 

chr18 64898548 64905367 rs11876036 rs13381870 1 13 31 30 

Gain:0 

Loss:31 

Gain:1 

Loss:29 

chr19 20422200 20473895 rs10408291 rs2021399 1 9 25 33 

Gain:0 

Loss:25 

Gain:0 

Loss:33 

chr19 48093776 48160500 rs10405494 rs17279415 1 8 0 28 

Gain:0 

Loss:0 

Gain:3 

Loss:25 

chr20 52081230 52088118 rs1557853 rs290469 1 7 37 38 

Gain:35 

Loss:2 

Gain:0 

Loss:38 

chr22 17257787 17355587 rs2543958 rs2518805 3 21 5 12 

Gain:2 

Loss:2 

Gain:12 

Loss:0 

chr22 24017514 24215704 rs5752118 rs1930966 3 34 27 30 

Gain:19 

Loss:8 

Gain:20 

Loss:10 
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Table S7. Overlapped CNVs between QuantiSNP and PennCNV 

QuantiSNP 
    

PennCNV 
   Chr Start End #pval pval_comb Chr Start End #pval pval_comb 

chr1 1.47E+08 1.47E+08 9 3.2E-07 chr1 1.47E+08 1.47E+08 9 1.0E-12 

chr2 41092148 41099005 9 9.9E-01 chr2 41092148 41099005 9 2.5E-05 

chr3 1.53E+08 1.53E+08 11 8.0E-02 chr3 1.53E+08 1.53E+08 11 2.9E-03 

chr4 1.61E+08 1.61E+08 19 1.0E+00 chr4 1.61E+08 1.61E+08 19 2.7E-03 

chr5 97074222 97107276 13 <1e-18 chr5 97087517 97107276 13 2.8E-02 

chr5 28842013 28912873 17 <1e-18 chr5 28847546 28877702 17 1.0E+00 

chr6 67093085 67105019 7 3.7E-10 chr6 67093085 67105019 7 8.9E-13 

chr7 1.41E+08 1.41E+08 7 9.2E-01 chr7 1.41E+08 1.41E+08 7 9.8E-03 

chr8 5583199 5591903 7 9.7E-01 chr8 5583199 5591903 7 4.3E-06 

chr8 1.38E+08 1.38E+08 19 2.2E-16 chr8 1.38E+08 1.38E+08 19 <1e-18 

chr8 1.45E+08 1.45E+08 6 <1e-18 chr8 1.45E+08 1.45E+08 12 <1e-18 

chr10 47013328 47110350 17 2.3E-01 chr10 47098898 47110350 17 5.4E-01 

chr10 67748487 67785209 17 1.0E+00 chr10 67748487 67785209 17 3.5E-03 

chr11 548884 609789 10 <1e-18 chr11 548884 609789 10 4.4E-16 

chr11 55127597 55139733 1 1.9E-03 chr11 55127597 55139733 2 4.1E-10 

chr11 55139733 55193702 7 <1e-18 chr11 55139733 55179162 7 <1e-18 

chr12 7899399 7990569 21 1.1E-01 chr12 7892179 7936264 21 9.1E-01 

chr12 19360345 19442103 17 <1e-18 chr12 19360345 19431361 17 <1e-18 

chr12 31257563 31276546 10 8.5E-01 chr12 31271893 31276546 10 1.1E-02 

chr14 21834952 21838610 3 7.7E-05 chr14 21834952 21838610 3 1.0E+00 

chr18 64898548 64905367 13 1.0E+00 chr18 64898548 64905367 13 9.2E-01 

chr19 20422200 20473895 9 4.1E-02 chr19 20422200 20473895 9 1.7E-08 

chr20 52081230 52088118 7 1.0E+00 chr20 52081230 52088118 7 1.0E+00 

chr22 17257787 17355587 21 <1e-18 chr22 17257787 17355587 21 <1e-18 

chr22 24017514 24215704 34 <1e-18 chr22 24083777 24165514 34 1.7E-08 
aPval comb : P value combined was obtained according to reference [156] 
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Table S8. Significant CNVs associated with lung cancer risk (QuantiSNP)  

Cytoband CNV coordinates (hg18)a CNV type 
QuantiSNP 
n cases 

QuantiSNP 
n controls 

QuantiSNP 
p valueb 

1q21.1 chr1:147305744-147478120 loss 

Gain: 3 

Loss: 32 

Gain: 9 

Loss: 28 3.2x10-07 

8q24.23 chr8:137898044-137913669 loss 

Gain:0 

Loss: 15 

Gain: 1 

Loss:28 2.2x10-16 

8q24.3 chr8:145195417-145247517 gain 

Gain: 27 

Loss: 0 

Gain: 0 

Loss: 0 <10-18 

6q12 chr6:67093085- 67105019 loss 

Gain: 0 

Loss:55 

Gain: 0 

Loss: 84 3.7x10-10 

11p15.5 chr11:548884-609789 gain 

Gain: 11 

Loss:1 

Gain: 0 

Loss: 0 <10-18 

11q11 chr11:55139733-55193702 loss 

Gain: 0 

Loss: 80 

Gain: 0 

Loss: 2 <10-18 

11q11 chr11:55127597-55139733 loss 

Gain:0 

Loss: 0 

Gain: 0 

Loss: 117 1.93x10-3 

12p12.3 chr12:19360345-19442103 gain 

Gain: 4 

Loss: 0 

Gain: 13 

Loss: 0 <10-18 

19p12 chr19:20422200-20473895 loss 

Gain: 0 

Loss:25 

Gain: 0 

Loss:33 4.08x10-2 

22q11.21 chr22:17257787-17355587 gain 

Gain: 2 

Loss: 3 

Gain: 12 

Loss: 0 <10-18 

 

  



 Supplemental data 
 

-119- 
 

 

 

 

Figure S1. GSTM1 copy numbers in 3 plex assay for 8q24.3. A. Copy number determination in 3 

plex with 2N control and rs4977177. B. Copy number determination in 3 plex with 2N control and 

rs13255347.  

 
Figure S2. Validation of methylation at the putative promoter of miR-661. Average % methylation 

of amplicon A3 was carried out in normal lung (N) and lung tumor (T) of patients from set 2 and 3 

(n=88). Statistical analysis was carried out with Wilcoxon matched pairs signed rank test with a 

significance cut off at p<0.05. 
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Figure S3. E-cadherin immunohistochemical staining of primary AdC, SCC and bronchial and 
aveolar cells. A. Example of the invasion front in SCC B-C. NSCLC with low expression of E-

cadherin. D. AdC case with high expression of E-cadherin. E. SCC with high expression of E-cadherin. 

F. Expression of E-cadherin in alveolar and bronchus (normal lung tissue). IHC was performed by 

NCT and evaluation was made by pathologist Arne Warth, Institute of Pathology, University Hospital 

Heidelberg, Germany . 

 

 

Figure S4. Validation of methylation at the TSS of PKP3 in sample set 3. A. Methylation values 

are shown in the heatmap ranging from yellow (0%) to blue (100%) for each CpG or CpG unit 

(columns) for 34 tumor-normal pairs (rows). B. Average % methylation over the amplicon showed in A 

in N (normal lung) and T (lung tumor) Statistical analysis was carried out with Wilcoxon matched pairs 

signed rank test with a significance cut off at p<0.05.
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