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Summary 

Epigenetic factors such as DNA methylation, histone modification and 

noncoding RNAs are highly associated with early developmental processes, 

later environmental adaption and diseases development such as cancer. With 

the availability of current high throughput assays (microarray and next 

generation sequencing), one can already produce comprehensive picture of 

the epigenetic profile, especially the DNA methylome, in normal and 

tumor/diseased cells. However, managing and analyzing such vast datasets is 

challenging. In addition, interpretation of the observations from (epi)genetic 

information is also a limiting factor due to the lack of understanding epigenetic 

mechanisms and the interactions between genetic and epigenetic factors 

under environmental selection.  

Thus, during my PhD studies, two pipelines were developed to process 

genome-wide methylation data generated by Methyl-CpG-immunoprecipitation 

sequencing (MCIP-seq) for the ICGC early onset prostate project and whole 

genome bisulfite sequencing (WGBS) for the environment induced 

transgenerational epigenetic remodeling project. The WGBS pipeline was 

adjusted later for a modified WGBS protocol, tagementaion-based WGBS, 

which allows to investigate the whole methylome (around 27 million CpGs) at 

single base resolution by using only 10-20 ng of input DNA compared to 3-5 ug 

required for traditional WGBS. 

Developing these computational tools, provided an opportunity to look 

closely at methylation changes in prostate cancers. With an integrative 

meta-analysis of public prostate (epi)genomic data and a large cohort of 7682 

prostate cancer specimens, BAZ2A was found to be overexpressed in a large 

subset of prostate tumors that are characterized by early post-operative PSA 

recurrence and high tumor grades. In multivariate analyses, BAZ2A was found 
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to be an independent factor predicting recurrence. Furthermore, high levels of 

BAZ2A were tightly associated with a distinct molecular subtype demarked by 

aberrant genome-wide DNA methylation and elevated numbers of genetic 

alterations suggesting a CpG island-methylator phenotype (CIMP) to 

selectively occur in BAZ2A-upregulated tumors. In summary, this study 

showed the clinical impact of BAZ2A as a key epigenetic regulator linking 

aberrant DNA methylation and outcome in prostate cancer. 

In addition, epigenetic changes is not only important for the diseased 

individuals including cancer, but also for the healthy individuals to adapt the 

external environmental stimulus such as smoking. In order to investigate the 

interaction between the methylome and environmental factor in a human 

prospective mother-child study at single base resolution, tobacco 

smoke-induced changes to epigenetic programming during the prenatal period 

was studied by WGBS and targeted methylation analysis. In mothers and 

children a distinct, genome-wide epigenetic response is induced. While 

mothers showed a genome-wide hypomethylation profile, children revealed 

tobacco-smoke induced hyper- and hypomethylation. By focusing on 

chromatin regulators, differential DNA methylation with functionally 

deregulated histone modifiers was linked, which together induce epigenetic 

reprogramming upon exposure to tobacco smoking. Together with the 

observed deregulation of a number of disease related pathways, the identified 

aberrant DNA methylation was suggested as a possible molecular mechanism 

linking between prenatal exposure and disease outcomes later in life.  

In summary, comprehensive epigenomic analyses were performed on 

both diseased and healthy individuals in order to shed a light on how 

epigenetic factors influence the tumor development and interact with external 

environmental stimulus.  
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Zusammenfassung 

Epigenetische Faktoren wie DNA-Methylierung, Histonmodifikation und 

nicht-kodierende RNS sind stark assoziiert mit Prozessen der Frühentwicklung, 

der späteren Anpassung an Umwelteinflüsse oder der Krankheitsentwicklung 

wie z.B. Krebs. Moderner Hochdurchsatzmethoden (Microarrays und 

Tiefensequenzierung) ermöglichen eine ganzheitlicheres Bild epigenetischer 

Profile, insbesondere des DNA-Methyloms, in normalen und erkrankten oder 

Tumorzellen. Die Analyse solch riesiger Datensätze stellt allerdings eine 

besondere Herausforderung dar. Die Interpretation (epi)genetischer 

Information ist aufgrund mangelndem Verständnis epigenetischer 

Mechanismen und den Interaktionen zwischen genetischen und 

epigenetischen Faktoren im Bezug auf Umwelteinflüsse ebenfalls ein 

limitierender Faktor. 

Daher wurden während meiner Promotionsarbeit zwei Pipelines 

entwickelt: zum einen für Sequenzierungen aus 

Methyl-CpG-Immunopräzipitationen (MCIP-seq) des ICGC Prostataprojekts 

und zum zweiten für genomweite Bisulfitsequenzierungen (WGBS) zur 

Analyse umweltbeeinflusster, generationsübergreifender epigenetischer 

Remodellierung. Die WGBS Pipeline wurde im Verlauf an ein modifiziertes, auf 

tagmentation basierendes WGBS-Protokoll angepasst, das die Untersuchung 

des Gesamtmethyloms (ca. 27 Mio CpGs) auf Einzelnukleotidebene 

ermöglicht mit nur 10-20 ng DNS-Materialbedarf im Vergleich zu 3-5 μg der 

herkömmlichen Methoden. 

Die Entwicklung computergestützter Methoden bot die Gelegenheit zur 

detaillierten Untersuchung von Methylierungsveränderungen in 

Prostatatumoren. Mittels einer integrativen Metaanalyse publizierter 

(epi)genetischer Prostatadaten und einer großen Kohorte von 7682 
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Prostatatumorproben wurde ermittelt, dass das Gen BAZ2A überexprimiert 

wird in einem großen Anteil der Prostatatumore, für frühes Wiederauftreten 

postoperativen PSAs und ein hoher Tumorgrad charakteristisch ist. BAZ2A 

erwies sich in multivariater Analyse als unabhängiger prädiktiver Faktor für das 

Wiederauftreten. Des Weiteren ist ein hohes BAZ2A-Niveau eng assoziiert mit 

einem ausgeprägten molekularen Subtypen, der sich abgrenzt durch 

aberannte genomweite DNA-Methylierung und erhöhte Anzahl genetischer 

Veränderungen, was darauf hindeutet dass ein sog. CpG island methylator 

Phänotyp (CIMP) selektiv in BAZ2A-hochregulierten Tumoren auftritt. 

Zusammenfassend zeigt diese Studie die klinische Bedeutung von BAZ2A als 

Schlüsselfaktor epigenetischer Regulation, der die aberrante 

DNS-Methylierung mit dem klinischen Verlauf von Prostatatumoren verbindet. 

Epigenetische Veränderungen sind nicht nur wichtig für Personen mit 

Erkrankungen wie Krebs sondern auch für gesunde Individuen bei der 

Anpassung an externe Umwelteinflüsse wie beispielsweise das Rauchen. Der 

Einfluss von Umweltfaktoren (Tabakrauch) auf das Methylom auf der 

Einzelnukleotidebene wurde in einer langfristigen ausgelegten 

Mutter-Kind-Studie in der pränatalen Phase mittels WGBS untersucht. Sowohl 

bei Müttern als auch den Kindern wird ein individuelles Methylierungsmuster 

durch das Rauchen induziert. Während bei den Müttern ein genomweites 

Hypomethylierungsprofil sichtbar wurde, zeigten sich bei den Kindern sowohl 

Hyper- als auch Hypomethylierung. Durch Fokus auf Chromatinregulatoren 

konnte eine Verbindung zwischen differentieller DNA-Methylierung und 

funktionell deregulierten Histonmodifizierern hergestellt werden, durch die eine 

epigenetische Reprogrammierung in Folge des Rauchens induziert wird.  Die 

Deregulation einer Reihe von krankheitsrelevanten Signalübertragungswegen 

zusammen mit den beobachteten aberranten DNA-Methylierung deutet hin auf 

einen möglichen molekularen Wirkungsmechanismus zwischen pränataler 
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Exposition und einer Krankheitsentwicklung im späteren Leben. 

In der Zusammenfassung wurden epigenomische Analysen durchgeführt 

sowohl auf erkrankten wie gesunden Personen, die zur Aufklärung beitragen, 

wie epigenetische Faktoren die Tumorgenese beeinflussen oder auf 

Umwelteinflüsse reagieren. 
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摘要 

表观遗传因子，比如 DNA 甲基化，组蛋白修饰以及非编码 RNA 等，已经

被揭示与早期的发育过程，对环境的适应过程以及各种疾病（包括癌症）的发生

都有密切关联。 随着各种高通量技术的发展与成熟（从微阵列到第二代测序技

术）我们现在已经可以得到病变细胞和正常细胞的一幅比较完整的表观遗传图

谱，尤其是 DNA 甲基化图谱。但是，对于这类高通量数据的有效管理和分析还

存在很大的挑战。不仅如此，由于我们对表观遗传调控的机理和它在各种环境选

择下与遗传规律之间的互作的了解甚少，导致我们在面对这些数据时能做出的解

释也变得很有限。 

 所以，在我的博士期间，我建立了两套软件流程用来分析在国际癌症基

因组项目中产生的全基因组 DNA 甲基化数据，以及在另一个关于吸烟诱导的可

传代表观遗传重编程的课题中产生的数据。后来我又改良了全基因组重亚硫酸盐

测序的方案，传统的技术则需要 3-5 微克的 DNA，而改良的版本只需要 10-20

纳克的 DNA 就能得到全基因组的甲基化数据。 

 在开发相关的技术和软件的过程中，使得我有机会研究前列腺癌的全基

因组的甲基化的变化过程。根据对已经存在的公共数据的综合分析（包括）以及

对我们在汉堡的合作单位提供的 7682 个样本的检测，我发现 BAZ2A 这个基因

在一大批前列腺癌症样本中过度表达， 而这批前列腺癌样本基本都具有高复发

和高的肿瘤等级的特征。在多变量分析中，我证明了 BAZ2A 可以作为一个独立

的诊断预测标记用来预测前列腺癌的复发。而且，这批具有 BAZ2A 过度表达的

前列腺癌样本还具有非常高的全基因组范围的拷贝数变异。这些样本不仅在遗传

机制层面和其他 BAZ2A 正常表达的癌症样本有显著差异，而且在表观遗传层面，

也就是 DNA 甲基化水平上也呈现出 2 种不同的模式。所以我们认为这个基因可

以把前列腺癌更进一步分为 2 个亚型，一个是 BAZ2A 过度表达，所以导致后期

的复发和扩散，而另一个亚型是 BAZ2A 正常表达，所以比较癌症比较不易复发

和扩散。 

 另外，我的另一个课题是关于研究母亲在怀孕期间吸烟，是否对新生儿
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的基因组有影响，并且能否体现在 DNA 的甲基化水平上。我们分别对吸烟母亲

和不吸烟母亲已经她们的新生儿产生了一批精度能达到单个核苷酸水平的甲基

化测序数据。这是第一次在人类样本中获得此类数据。综合组蛋白编码分析和转

录组分析，我们发现吸烟对母亲和新生儿产生了完全不同的影响，具体表现在完

全不同的全基因组 DNA 甲基化变化上。并且我们还观察到组蛋白活性也有显著

的差异。所以我们提出一个假说，吸烟能通过改变基因组的 DNA 甲基化来影响

人的后期生活的各种疾病的易感性。 
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Chapter 1: Introduction 

1.1 Epigenetics 

The term, epigenetics, is derived from the word epigenesis. The early 

embryo is undifferentiated. As development proceeds, increasing levels of 

complexity emerge giving rise to the larval stage or to the adult organism. In 

1942, Conrad Waddington introduced the term epigenetics, which was defined 

as "the branch of biology which studies the causal interactions between genes 

and their products, which bring the phenotype into being"1.  

The consensus definition of epigenetics nowadays is non-sequence 

dependent inheritance. The most important features of epigenetics are thought 

to be heritable and reversible2,3. This phenomenon was first described in 

plants and has been expanded to yeast, Drosophila, mouse and, possibly, 

humans4-7.  

Epigenetic mechanisms mainly include DNA methylation, histone 

modifications, chromatin remodeling and regulation of non-coding RNAs. 

Epigenetic processes are heavily involved in diverse biological functions, such 

as genomic imprinting, X-chromosome inactivation, stem cell differentiation, 

tissue/organ regeneration and aging. Aberrations of epigenetic processes are 

found in many diseases, including cancer, cognitive dysfunction, and 

cardiovascular, reproductive, autoimmune, and neurobehavioral disorders. 

DNA methylation is one of the most important and best characterized 

epigenetic processes which involves the addition of a methyl group to a 

cytosine. In mammals and other vertebrates, nearly all DNA methylation 

occurs at the cytosine in the context of CpG dinucleotides8. The DNA 

methyltransferase (DNMT) gene family plays a critical role in mediating DNA 

methylation9. Methylation of DNA is catalyzed by three members of the DNA 
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methyltransferase family including DNMT1, DNMT2 and DNMT310. The 

maintenance methyltransferase, DNMT1, adds methyl groups to 

hemi-methylated DNA during DNA replication11,12. DNMT2 has been reported 

to catalyze RNA methylation13,14. The DNMT3 subfamily has three members: 

DNMT3A, DNMT3B and DNMT3L. DNMT3A and DNMT3B are responsible for 

the methylation pattern establishment without a template during embryonic 

development15,16. DNMT3L is thought to enhance the activity of DNMT3A and 

DNMT3B17,18. Genomic regions with at least 50% CG content and a ratio of 

observed CpGs to expected CpGs larger than 0.6 are known as CpG islands19 

which comprise of normally unmethylated CpGs are located in around 60% of 

human gene promoters and correlate with transcriptional regulation12,20-24. A 

small proportion of CpG islands are methylated during developmental 

processes involved in genomic imprinting and X chromosome inactivation25. 

De novo methylation is active in germ cells or early embryo stages26. A large 

fraction of highly methylated CpGs are found in repetitive sequences which is 

needed to maintain genomic stability by preventing the activation of mobile 

elements27,28  

Histone modifications contribute another important epigenetic alteration. 

Chromatin is the complex of histones and DNA that forms the scaffold for 

nuclear processes including transcription, replication and DNA repair29. 

Nucleosomes are the basic units of chromatin, consisting of a segment of DNA 

(147bp) wrapped around an octamer of histone protein cores (H2A, H2B, H3 

and H4). The amino-terminal of the histone proteins has a flexible tail which is 

conserved among species and is subject to different post-transcriptional 

modifications. There are at least eight kinds of modifications: acetylation, 

methylation, phosphorylation, ubiquitination, sumoylation, ADP ribosylation, 

deimination and proline isomerization30-32. All of these modifications form a set 

of combinations known as the "histone code" which act as markers that can be 
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read by other proteins to control the expression, replication, DNA repair, 

alternative splicing and chromosome condensation, which leads to distinct 

cellular outcomes33-37. The histone code may be heritable. There are two forms 

of chromatin. One is heterochromatin which is a condensed form and is 

characterized by a low level of acetylation and high levels of H3K9, H3K27 and 

H4K20 methylation which generally codes for transcriptional repression38. The 

other form is called euchromatin which has a looser structure and is often 

characterized by overall high levels of histone acetylation and trimethylated 

H3K4, H3K36 and H3K79 and thus provides the environment for active 

transcriptional processes39-41. Mounting evidences have suggested that 

histone modifications and histone-modifying complexes play critical roles in 

cellular processes and human cancer development. Furthermore, the dynamic 

regulation of histone modifications may have the potential to be molecular 

targets for human cancer treatment. 

Non-coding RNAs (ncRNAs) are RNAs transcribed normally, but are not 

translated into proteins. Long non-coding RNAs (typically > 200 nt) have been 

implicated in variety of biological functions42. During the last few years, more 

and more epigenetic control systems have been found to be mediated by long 

non-coding RNAs43-45. X-chromosome inactivation46-52 and genomic 

imprinting53-56 are two classical systems mediated by long non-coding RNAs 

which have been known for many years. However, the details of how these 

long non-coding RNAs are generated and regulated are still largely unknown. 

In summary, all these non-coding RNAs form a network to not only spatially but 

also temporally regulate transcriptional activity. 
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1.2 Cancer Epigenetics 

1.2.1 Overview of cancer epigenetics 

Cancer has been defined as a complex disease with both genetic and 

epigenetic components. Many genetic driver mutations have been found by 

sequencing efforts in large patient cohorts for many cancer types. In recent 

years there has been a growing interest in the rapidly advancing field of cancer 

epigenetics and the interplay between genome and epigenome57. 

Historically, there are three main models which address the origin of 

cancer defined in the early 1970s58. One model considered cancer as a 

disease of abnormal differentiation59. The second model suggested that 

cancers are caused by viruses, such as avian sarcoma virus60,61. The third 

model pointed out that cancer is a result of an accumulation of mutations62. 

Actually, the abnormal differentiantion is probably coupled by the two others. 

Thus, it might explain better when all three models are integrated into a single 

framework. Later, Kundson's two-hit model was proposed. One classical  

example for Kundson's hypothesis is the Rb-1 locus in retinoblastoma63. 

Numerous oncogenes and tumor suppressor genes were then identified in the 

following years64. However, mutations do not account for all alterations found 

in cancers. Later it was found that non-mutational (epigenetic) activation and 

inactivation of oncogenes and tumor suppressor genes were frequently 

observed in cancers65-67. Thus, epigenetic mechanisms are proposed to be 

highly responsible for a significant portion of the alterations in cancer initiation, 

development and metastasis68-70. 

In general, focal promoter hypermethylation and global hypomethylation 

are two patterns that play an important role in many cancer types. Changes to 

methylation do not only occur in CpG islands, but also in the peripherial 
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regions called CpG shores which are shown to possess a high degree of 

tissue-specific variation in DNA methylation71. Loss of imprinting (LOI), 

represented by biallelic expression or silencing of the imprinted allele, is 

another type of methylation change occurring in almost all tumor types72-74 and 

is currently considered as the most common early event in cancer75. In histone 

modifications, loss of monoacetylation and trimethylation of H4 appear early 

and accumulated during the tumor development76. This pattern has been 

observed in many other cancers77,78 and has been considered as a common 

cancer hallmark like global hypomethylation and CpG island promoter 

hypermethylation. 

 

1.2.2 Prostate cancer epigenetics 

One of the major cancers of older men is prostate cancer. Epigenetic 

alterations have been documented in most of human cancer development and 

progression. In prostate cancer, genes silenced by promoter hypermethylation 

are involved in DNA repair, apoptosis, cell cycle control, steroid hormone 

response and metastasis79. One of the best characterized genes is GSTP1 

which is consistently hypermethylated in the promoter region in the early stage 

of prostate tumorigenesis80-84. Similarly, the negative regulator of the Ras 

signaling pathway, RASSFIA, is also commonly downregulated by promoter 

hypermethylation79,85,86. Methylation levels of APC are highly related to 

biochemical recurrence in some prostate cancer studies87-89. In addition, 

polycomb target genes are preferentially hypermethylated in prostate cancer90. 

Global hypomethylation affecting repetitive elements has been observed in 

various cancer types91,92. In prostate cancer, hypomethylaton is likewise 

associated with progression rather than initiation, thus it is usually associated 

with advanced tumor stages93.  
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Besides, long non-coding RNAs are also contributed to the development 

of prostate cancer. For example, PTENP1 is a pseudo gene of the tumor 

suppressor gene PTEN and upregulate PTEN expression by binding to 

microRNAs that downregulate PTEN transcription94. Additionally, a recent 

study reported that two long non-coding RNAs, PRNCR1 and PCGEM1, 

enhance the androgen receptor associated transcriptional programs to 

promote the growth of prostate cancer95. 

 

1.2.3 CpG island methylator phenotype 

The CpG island methylator phenotype (CIMP) was first identified in 

colorectal cancer96. With the help of high throughput technology, it now refers a 

phenomenon that an exceptionally high frequency of CpG island 

hypermethylation occurs in a subset of tumors which suggests a potential 

epigenetic defect in this tumor subgroup. Later, this term was repeatedly used 

over the last several years in other tumor types including glioma97, breast98-100, 

renal101 and gastric cancers102-104. But for others, such as ovarian cancer105, no 

CIMP was identified. It was shown that CIMP is usually highly associated with 

clinical and pathological outcomes and thus is useful for the classification of 

prognosis in varies tumor types. Several studies suggested a third group of 

CIMP in colorectal cancer, namely, CIMP-high and CIMP-low. Although 

CIMP-low colorectal tumors have repeatedly been associated to KRAS 

mutations, this subgroup has many common clinical and pathologic features 

with non-CIMP colorectal tumors. Thus, no significant evidence could 

demenstrate that this is a distinct phenotype so far.  

One significant feature of CIMP is that it is tightly linked to somatic 

mutations, such as mutations of the BRAF oncogene106 in colorectal cancer, 

mutations of the IDH1 gene in glioblastoma107 and mutations of the TET gene 
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in leukemia108. So far, the best characterized CIMP is the IDH1 defined 

G-CIMP. Mutatant IDH1 can catalyzes the reduction of ɑ-ketoglutarate to 

2-hydroxyglutarate (2-HG) which is a potential oncometabolite109-112. Then, 

2-HG can inhibit the TET family that convert 5mC to 5-hydroxyl-methylcytosine 

(5hmC) via direct competition with ɑ-ketoglutarate which leads to an 

accumulation of 5mC and therefore influences the transcription of many genes. 

However, despite a clear rationale for the association of IDH1 mutation with 

G-CIMP, the molecular mechanism of CIMP is still not fully understood for 

almost all tumor types with CIMP identified and will remain an active area of 

investigation. With the help from the varies kinds of genome-wide analysis, the 

causal relationship between somatic mutations in chromatin remodeling genes 

and altered genome-wide DNA methylation profiles is a promising clue on the 

cause of CIMP113-116.  

In order to better define CIMP, a quantitative method should be used for 

the methylation frequency and extent measurement. In addition, genes with 

high methylation level in normal tissues have to be excluded to define the 

phenotype. This may be problematic in tumors such as breast and prostate 

tumors, in which a considerable fraction of the tissue is from the relevant 

normal cells. Third, a large sample size is needed to check whether CIMP is 

really existing and what are the best markers to define it. Fourth, appropriate 

statistical methods should be developed for the analysis of data from 

microarray or NGS. One possible approach could be to perform a k-means 

censuses clustering combined with unsupervised clustering to identify a 

minimal set of markers and then confirm it in a separate group of tumors.  

 

1.3 Environmental Epigenetics 

Biological science is undergoing a paradigm shift away from the fixed 



 

8 

 

genetic determinism of the 20th century and toward an understanding that 

environmental factors can alter gene expression and activity in a heritable 

manner. Genetic factors interact with the environment to contribute to disease 

risk. In gene-environment interactions, the genetic polymorphisms that modify 

the effects of environmental exposures are transmitted transgenerationally 

according to Mendelian genetics. A second interplay are the mutations induced 

by environmental exposures. It has been reported that genotoxic agents could 

cause mutations to increase disease the risk117 and these 

environmentally-induced DNA mutations can have a transgenerational effect  

(the consequence of genetic alterations in one generation can be inheritanted 

into the next generation) when occurring in the germline118,119.  

Similar to genetic polymorphisms, epigenetic aberrations could also make 

individuals more vulnerable to environmental insults. Animal studies have 

provided us with some examples, suggesting that epigenetic marks 

established during life can be passed onto the next generations120-125. This 

phenomena has been challenging to prove in humans and few debatable 

examples exist to suggest the inheritance of epigenetic states. For example, 

the DNA mismatch repair genes MLH1 and MSH2 were initially found to be 

deactivated by promoter hypermethylation in several generations with familial 

colorectal cancer126-128. However, underlying genetic mechanisms for these 

effects have been uncovered. 

In the last few years, many studies have investigated the correlation 

between environmental exposures and epigenetic changes including DNA 

methylation and histone modifications129, and identified several toxicants 

which can directly modify epigenetic marks. One example of an epigenetic 

toxicant is bisphenol A (BPA) which was frequently used in manufacturing of 

polycarbonate plastics. Exposure to BPA is reported to be associated with 

higher body weight, increased breast and prostate cancer development and 
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altered reproductive function. In mouse models, it has been shown that 

maternal BPA exposure shifted the coat color of spotted yellow agouti (Avy) 

mouse offspring toward to complete yellow by hypomethylation of an 

retrotransposable intra-cisternal A particle (IAP) sequence upstream of the 

Agouti gene130,131.  

Exposure to air pollution, such as particulate matter (PM), was associated 

with increased rate of cardiorespiratory disease and lung cancer risk132-136. It 

has also been shown that the inducible Nitric Oxide Synthase (iNOS) gene 

was upregulated due to the promoter hypomethylation in samples with 

exposure to PM with aerodynamic diameter < 10 um (PM10)
137. The 

upregulation of iNOS can contribute to inflammation and oxidative stress 

generation, which are primary mechanisms linking inhalation of air pollutants to 

their acute health effects138-140. Other exposures, such as to persistent organic 

pollutants (POPs), have been associated with hematopoietic malignancies 

mediated by the methylation changes in repetitive elements141. Another well 

studied environmental exposure is tobacco smoke. Several lines of evidence 

indicated that fetal exposure to maternal smoking during pregnancy is not only 

associated with hypomethylation in repetitive sequences including Sat2142, Alu 

and LINE1143, but also associated with hypermethylation of specific genes, 

such as AXK, PTPRO144 and IGF2145.  

In summary, accumulating evidence suggests that epigenetic processes 

could potentially mediate effects of environmental exposures to influence 

disease susceptibility. We now need to better understand the basic epigenetic 

mechanisms that operate and maintain proper epigenetic states in order to 

identify the most relevant periods and biomarkers of exposure. It is clear that 

statistical and bioinformatic approaches will be required to enable the efficient 

comprehension of these analyses, especially as we expand to the 

genome-wide scale. 
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1.4 High throughput assays for methylome analysis 

With the availability of current high throughput technologies (microarray 

and next generation sequencing), one can already produce a comprehensive 

picture of the epigenetic profile, especially the methylome, in normal and 

tumor/diseased cells146. Numerous epigenomic projects, such as the Human 

Epigenome Project and the NIH Epigenomic Roadmap Initiative, have been 

launched to uncover epigenetic mechanisms and to integrate epigenetic 

factors into regulatory networks147-150. For methylome data generation and 

analysis, there are several main approaches including microarray, chromatin 

immunoprecipitation (ChIP) and next generation sequencing (NGS) 

summarized in the following sub sections. 

 

1.4.1 Infinium HumanMethylation450 BeadChip 

The array based Illumina Infinium HumanMethylation450 BeadChip is a 

comprehensive platform for human methylome analysis. The CpGs on the chip 

are selected by experts in field and cover CpG islands and shores, non-CpG 

methylated sites identified in human stem cells, differentially methylated sites 

identified in tumor versus normal and across several tissue types and 

microRNA promoter regions. The low price and input DNA make it a powerful 

tool in epigenetics research, especially in epigenome-wide association studies 

(EWAS). For the data analysis, there are many R packages available for 

processing, normalization and downstream analysis151-153. 
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1.4.2 Methyl-CpG-immunoprecipitation followed by 

sequencing 

Methylated CpG enrichment approaches such as MeDIP154, MethylCap155 

and MCIP156 followed by next generation sequencing or microarray analysis 

are widely used methods for methylation profiling. Those methods provide 

enrichment values for different methylation states of genomic regions by 

counting read numbers or assessing relative fluorescence ratios of regional 

sequences. One drwaback is the readout from such approaches do not give 

quantitative values of CpG methylation levels. This can only be determined for 

regions of interest by additional follow up analysis like bisulfite sequencing of 

cloned sequences, pyrosequencing or mass spectrometric analysis. Generally, 

MCIP allows rapid enrichment of methylated CpGs in DNA. The affinity is 

increased with the density of methylated CpGs and lowered with higher salt 

concentrations in the buffer. After the enrichment, NGS can be performed to 

get unbiased genome-wide qualitative methylation profile. 

 

1.4.3 Whole genome bisulfite sequencing 

Comprehensive understanding of the role of genome-wide DNA 

methylation patterns, requires quantitative determination of the methylation 

states of all CpGs in a genome. Thus, we have to sequence the bisulfite 

converted genomic DNA to obtain the complete insight into the DNA 

methylome. The conventional WGBS protocol was described by Lister et al. in 

2009157. Generally, bisulfite treatment will convert all cytosines to uracil apart 

from 5-methyl-cytosines which helps us to distinguish methylated cytosines 

from unmethylated ones. The pool of DNA is then subjected to NGS and 

followed by bioinformatic analysis. Although the price is still high for this 
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technique, the advantage is that we can evaluate the methylation level of all 

potential cytosines including both CpG and CpH contexts in our genome, and 

allele specific differences in epigenetic patterns can be also detected. More 

recently, a tagmentation based whole genome bisulfite sequencing protocol 

was developed as a less time and input DNA consuming alternative approach 

to the conventional generation of next generation libraries 158. This protocol 

was later modified and used to investigate the whole methylome (around 27 

million CpGs) at single base resolution by using only 10-20 ng of input DNA, 

equivalent to around 1700-5100 cells, compared to 3-5 ug required for 

traditional WGBS. 

It is generally difficult to align bisuflite treated DNA sequences back to the 

genome, since the complexity of bisuflite treated reads is effectively reduced to 

3 bases which means that Cs in the read may also align to T positions in the 

genome. So far, there are two main algorithms designed for the mapping of 

bisulfite treated DNA sequences. One is 3-nt alignment which convert C to T 

and G to A in the reference genome159. In bisulfite sequencing, only T in reads 

could be mapped to C in the references, not the other way around. It seems 

that simply treat C and T equally introduces false mappings which need to be 

filtered in post-alignment processing. Actually, the post processing could not 

fully eliminate the mapping biases since some alignment information, such as 

the multiple hits information, is only available in alignment stage, but not fully 

recorded in the alignment output. So the 3-nt alignment algorithm has the 

advantage of speed but at the price of accuracy. However, if a read aligns to a 

wrong position (e.g. a read containing Cs aligns to a genomic position 

containing Ts) it might be indeed a mis-alignment. Thus, no methylation call 

would be made for these positions since they are no Cs in the genome. In 

essence, these reads should normally have no influence on the later 

estimation of methylation levels. The best way to avoid mis-alignments and 



 

13 

 

increase accuracy is to use high quality data (appropriately trimmed) and use 

stringent mapping parameters. Another one is called wildcard algorithm which 

uses a native algorithm to do the C->T alignment160. It has its own bias as well. 

If positions which are a C in the read but a T in the genome would receive a 

penalty when the wildcard algorithm is used, we would probably not see such 

mis-alignments. Hence it may bias the entire mapping output in favour of 

methylated reads over unmethylated reads. Here is an example to show that 

the wildcard algorithm may give rise to biases: 

Scenario 1: 

ATTGATCTGATTA (read sequence) (C methylated) 

ATTGATCTGATTA (genome position 1) 

ATTGATTTGATTA (genome position 2) 

The wildcard algorithm would align the read sequence uniquely to genome 

position 1, but genome position 2 would not be a valid alignment (mapping 

asymmetry). 

Scenario 2 (same sequence but with a T in the middle (C unmethylated)): 

ATTGATTTGATTA (read sequence) 

ATTGATCTGATTA (genome position 1) 

ATTGATTTGATTA (genome position 2) 

In this case, the read could either be derived from genome position 1 if the C 

was not methylated (and thus converted), or it could be derived from genome 

position 2. Thus, this read would be booted since it cannot be mapped 

unambiguously. By doing so, the wildcard algorithm would favour mapping of 

methylated reads so that potentially bias the methylation results depending on 

the methylation state of the read. 

In order to evaluate the accuracy, coverage, speed and the 

sensitivity/specificity for DMR calling for these two algorithms, a systematic 

benchmarking should be performed on a real WGBS dataset and a simulated 
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data. 

After mapping, DMR calling should be performed to detect the changes of 

methylation pattern between tumor and normal or other cases. Normally, DMR 

detection can be performed using a sliding window approach followed by 

Fisher's exact test when the coverage is relatively high. However, it is more 

common to have a low coverage WGBS data due to the high cost of 

sequencing. Thus, a smoothing function was applied to improve the accuracy 

of DMR calling accounting for biological variability when replicates are 

available even with low coverage161. Although It is true that in some parts of 

the genome, methylation is less smooth, so it is not all CpGs we expect 

smoothing to be extremely close to single CpG estimates, but it does not 

matter if we are interested in regional differences. 

Recent studies also pointed out that methylation change could be defined 

by the binding of transcription factor162. Thus, it's now possible to detect the 

potential active regulatory regions from high resolution methylation datasets. 

For this purpose, a computational method called MethylSeekR was developed 

to precisely detect the footprints from methylomes163. With this tool, partially 

methylated domains (PMDs) can be identified using a two-state Hidden 

Markov Model (HMM) with Gaussian emissions. In addition, this tool can 

reliably detect unmethylated regions (UMR) and lowly methylated regions 

(LMR) which are usually associated to proximal and distal regulatory regions 

across varies cell types and tissues. 

The identification of single-nucleotide polymorphisms (SNPs) from 

bisulfite sequencing data is challenging and important for accurate 

quantification of methylation levels due to the fact that 65% of all SNPs in 

dbSNP occur in CpG context164. In order to solve this problem, a probabilistic 

SNP caller, Bis-SNP, was developed for the SNP detection for bisulfite 

sequencing data. It uses Bayesian inference to evaluate a model of strand 
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specific base calls and base call quality scores, along with prior information on 

population SNP frequencies, experiment specific bisulfite conversion efficiency, 

and site specific DNA methylation estimates165. It has been shown that the 

accuracy for the DNA methylation calling and heterozygous SNPs 

identification from bisulfite sequencing data is significantly improved by using 

this tool. 
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Chapter 2: Computational evaluation of T-WGBS 

Note:  

 Dieter Weichenhan, Wei Wang and Marion Bähr performed the 

experiments. Bernhard Radlwimmer, Wei Wang, Jay Shendure, Volker 

Hovestadt and Andrew Adey contributed data. The DKFZ Genomics and 

Proteomics Core Facility provided technical support for the sequencing. 

2.1 Aim of the study 

T-WGBS technique is able to generate the genome-wide DNA methylation 

patterns at single CpG resolution using only 10-20 ng of input DNA, compared 

to 3-5 μg required for traditional WGBS. Since T-WGBS uses a hyperactive 

Tn5 transposase to fragment the DNA and to append sequencing adapters, it 

is highly important to investigate its reliability and reproducibility. In addition, it 

should be systematic evaluated that whether T-WGBS induces sequence 

dependent biases into the final methylation estimate.  

 

2.2 Methods and materials 

In order to keep the comparison bias as low as possible, DNA isolated 

from a human glioblastoma multiforme tumor biopsy was subjected to 

T-WGBS and conventional WGBS. Two independent tagmentations with 30ng 

input DNA each were carried out. Each tagmentation was used to build two 

libraries. The conventional WGBS was performed as described previously with 

5 ug input DNA for a single library. The four T-WGBS libraries were sequenced 

one lane per library, while the conventional WGBS library was loaded onto 

three lanes. 

A recently published mapping pipeline166 with modifications was used to 
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adapt for the T-WGBS data. Briefly, the human reference genome (37d5) was 

transformed in silico for both the top strand (C to T) and bottom strand (G to A). 

Before alignment, adaptor sequences were trimmed using SeqPrep 

(https://github.com/jstjohn/SeqPrep). The first read in each read pair was then 

C-to-T converted and the 2nd read in the pair was G-to-A converted. The 

converted reads were aligned to a combined reference of the transformed top 

and bottom strands using BWA167 using default parameters with disabling the 

quality threshold for read trimming (-q) of 20 and the Smith-Waterman for the 

unmapped mate (-s). After alignment, reads were converted back to the 

original states, and reads mapped to the antisense strand of the respective 

reference were removed. Duplicate reads were further removed, and the 

complexity was then determined by Picard (http://picard.sourceforge.net/). 

Reads with alignment scores less than 1 were filtered before subsequent 

analysis. Total genome coverage was calculated using the total number of 

bases aligned from uniquely mapped reads over the total number of mappable 

bases in the genome. At each cytosine position, reads that maintained the 

cytosine status were considered methylated, and the reads which were 

detected as thymine were considered unmethylated. Only bases with 

Phred-scales quality score ≥ 20 were considered. In addition, the 5 bp at the 

two ends of the reads were excluded from methylation calling according to 

M-bias plot quality control. For T-WGBS libraries, the first 9 bp of the second 

read and the last 9 bp before the adaptor of the first read were excluded before 

the methylation calling step. 

 

2.3 Results 

The four T-WGBS libraries were almost identical to each other and 

performed similarly well compared to the conventional WGBS library with 
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respect to the percentage of mapped reads, the overall methylation level 

assessment and the conversion frequency as shown below (Table 1).  

The relative higher duplication level in T-WGBS is probably due to the 

higher PCR cycle number used in T-WGBS (ten or eleven cycles) than in 

conventional WGBS (eight cycles). Compared to the CpG coverage (13.7X) 

from the conventional WGBS, T-WGBS provided only slightly lower CpG 

coverage (12.1X), when reads from three lanes for each were merged. The 

bisulfite conversion frequency of the T-WGBS libraries was marginally lower 

than that of the conventional WGBS library, 99.5% vs. 99.9%, and, in line with 

this, the average CpG methylation level in T-WGBS was slightly higher, 77.2% 

vs 75.8%; both differences likely reflect a better bisulfite treatment 

performance in the conventional WGBS rather than a better overall 

performance of the conventional method. High similarity in the performance 

between the two protocols was further supported by the high correlation of the 

methylation levels (Pearson correlation 0.95; Figure 1).  

To further quantify the consistency between the two WGBS protocols, a 

concordance metric was defined as the percentage of CpG sites (at least 30X 

coverage) with less than 20% difference in methylation level. The concordance 

between the two protocols was 97.3% (Figure 1). Such reliability was further 

supported from two human blood samples (Figure 2).  

As determined in the same manner, the concordance between two 

independent T-WGBS experiments was 97.8 % (r = 0.92; Figure 3), indicating 

high robustness and reliability of the T-WGBS protocol.  

T-WGBS and conventional WGBS also display similar sequencing 

coverage at CpG sites as a function of CpG density (Figure 4). Comparative 

analysis of sequencing coverage versus density of cytosines in CpG, CHG and 

CHH context (H can be A, C or T) or versus local GC content revealed similar 

patterns from T-WGBS and conventional WGBS.  
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Protocol Library Total Read Pairs Mapped

Uniquely Mapped

out of All Mapped

Duplication

Frequency

Coverage per

Strand at CG

Coverage per

Strand at CH
3

Average

Methylation

Level at CG

Average

Methylation Level

at CH
3

Conversion

Frequency
4

T-WGBS1_lib1 + T-

WGBS1_lib2 +T-

WGBS2_lib1
1

608,802,912 97.1% 92.7% 10.8% 12.1 12.4 77.2% 0.45% 99.50%

T-WGBS1_lib1
2

199,181,042 97.2% 92.6% 11.2% 4.0 4.0 77.2% 0.50% 99.45%

T-WGBS1_lib2
2

201,237,175 97.1% 93.0% 10.7% 4.0 4.2 77.1% 0.41% 99.55%

T-WGBS2_lib1
2

208,384,695 97.1% 92.4% 10.4% 4.0 4.1 77.2% 0.45% 99.50%

T-WGBS2_lib2
2

185,492,592 97.4% 92.9% 8.8% 3.8 3.9 77.1% 0.38% 99.58%

WGBS_lib1
1

606,295,337 96.5% 92.5% 4.3% 13.7 15.6 75.8% 0.18% 99.91%

WGBS_lib1
2

205,933,339 96.3% 92.5% 1.8% 4.7 5.3 75.8% 0.18% 99.91%

WGBS_lib1
2

213,939,066 96.8% 92.6% 1.2% 5.0 5.6 75.6% 0.19% 99.91%

WGBS_lib1
2

186,422,932 96.2% 92.4% 1.1% 4.2 4.8 75.9% 0.18% 99.91%

Conventional

Tagmentation-

based

1
Total read pairs and coverage refer to sum of 3 HiSeq 2000 lanes. 

2
Total read pairs and coverage refer to a single HiSeq 2000 lane. 

3
H can be A or C or T. 

4
Conversion frequency determined with spiked phage λ DNA for the conventional library and with the 9 bp filled-in unmethylated gaps for the T-WGBS 

libraries. 

 

Table 1 Sequencing statistics between WGBS and T-WGBS. Reads numbers, duplication levels, coverages, methylation levels and conversion rates are 

compared between libraries from WGBS and T-WGBS protocols. 
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Figure 1 Methylation level between WGBS and T-WGBS libraries. High consistency with 

Pearson correlation of r = 0.95 between the methylation levels of corresponding single CpGs 

covered at least 30-fold in T-WGBS and conventional WGBS. 

 

 For methylome characterization, genomic features like promoters, CpG 

islands, exons, introns and intergenic regions are of particular interest. The 

proportions of CpGs covered at least 10-fold in these features were all above 

90% and nearly identical between T-WGBS and conventional WGBS (Figure 

5;  

Table 2). 
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Figure 2 High consistency between T-WGBS and WGBS methylation data from two 

human blood samples. For each sample, two lanes of T-WGBS data and three lanes of 
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conventional WGBS were compared. Methylation levels were calculated based on scanning 

windows of 5 CpGs with at least 30-fold coverage and displayed in density plots. 

 

 

 

Figure 3 High reproducibility of T-WGBS. High reproducibility of T-WGBS indicated by 

strong agreement of the methylation levels (r = 0.92) in windows of 5 CpGs (read numbers too 

low for single CpG analysis) in libraries from 2 independent tagmentations analyzed on a 

single HiSeq2000 lane each. 
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Figure 4 Coverage vs. CpG density plot for both WGBS and T-WGBS. Nearly identical 

sequencing coverage of CpGs as a function of CpG density between T-WGBS and 

conventional WGBS. 

 

 

 

Figure 5 Genomic coverage between WGBS and T-WGBS. 90% or higher and almost 

identical proportions of CpGs covered at least 10-fold in 5 genomic features. T-WGBS and 

conventional WGBS reads from 3 lanes each were compared. 
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Coverage of

CpGs
1x 5x 10x 15x 20x

Total

(T-WGBS)
28,217,448 27,512,847 27,136,922 26,364,166 24,246,290 19,798,878

Percentage 100 97.5 96.2 93.4 85.9 70.2

Total (conv.

WGBS)
28,217,448 27,454,762 27,161,682 26,577,078 25,180,920 22,228,929

Percentage 100 97.3 96.3 94.2 89.2 78.8

 

Table 2 Comparison of CpG coverage between WGBS and T-WGBS. Number of CpGs 

covered by at least 1x, 5x, 10x, 15x and 20x is nearly the same between WGBS and T-WGBS. 

 

2.4 Discussion 

The power of T-WGBS is to generate complete methylomes from ultra low 

amounts of input DNA which substantially improves the practicality of the 

whole methylome sequencing and removes a key advantage of less 

encompassing methods such as RRBS168,169. This method particularly allows 

the comprehensive interrogation of methylation in many contexts where DNA 

quantity is a bottleneck, e.g., developing anatomical structures, microdissected 

tissues, or pathologies such as cancer, where the methylation profile is of 

interest but tissue quantity limits high-resolution WGBS.  

 Although the first bases of the T-WGBS reads show a base composition 

bias, there is a high consistency in base composition of sequencing reads 

between T-WGBS and conventional WGBS (Figure 6). This bias may only 

become problematic if it has a considerable impact on genomic coverage; 

such an impact, however, is not observed in this study. 
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Figure 6 Base composition of sequencing reads between T-WGBS (upper) and 

conventional WGBS (down) 

 

In order to further investigate the consistency, robustness and 

reproducibility of the T-WGBS method, a comparison between labs would be 

useful. 

In summary, the methylome data from T-WGBS is highly reliable and 

reproducible. By comparing the coverages of different genomic features and 

levels of DNA methylation between T-WGBS and conventional WGBS, no 

significant sequence dependent bias is observed.  
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Chapter 3: Identification of Genome-wide Methylation 

Alterations in Early Onset Prostate Cancer 

Note:  

 Dieter Weichenhan provided sequencing library preparation. The DKFZ 

Genomics and Proteomics Core Facility provided technical support for the 

MCIP-seq. German ICGC early onset prostate consortium provided 11 

prostate tumor samples and 1 normal sample. 

 

3.1 Aim of the study 

This aim of this project is to establish a pipeline that can be used for 

sequencing-based epigenomic data analysis for any other complex diseases 

and quantitative phenotypes and to profile the methylome of early onset 

prostate cancer by using MCIP-seq. 

 

3.2 Methods and materials 

The computational pipeline has been established by using the 11 tumor 

and 1 unmatched normal data. The whole pipeline starts with the alignment of 

raw reads and ends with the DMR calling and further downstream analysis 

including the model for validation analysis (the accuracy is around 87% for the 

early onset prostate cancer data) (Figure 7). 

Briefly, reads are mapped to the human genome reference sequence 

(Build 37) using the alignment software BWA167. Two types of quality control 

are performed: (1) duplication reads and reads with a MAQ score of <20 are 

removed; (2) samples with a saturation coefficient of <0.95 are re-sequenced 
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in order to make sure that reads covered all regions that can be captured by 

MCIp170. To detect regions of differential methylation between tumor and 

normal, three criteria (i.e., q value, coverage and fold change)  are applied 

both when using locus-specific analyses (focused approach) and unbiased 

analyses (genome-wide approach)171.   

 

 

 

Figure 7 Computational pipeline for DMR detection. The first quality control step is the 

saturation analysis to check whether the number of reads is enough to capture all regions from 

MCIP enrichment. Two approaches are performed to detect DMRs genome-wide or in certain 

genomic features. The detected DMRs validated by MassARRAY are then used for 

downstream analysis. 
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3.3 Results 

MCIP-seq was used to identify altered DNA methylation in tumor samples 

versus one normal epithelial control. Early onset prostate tumors were 

characterized by an average of 46095 DMRs (range 23585-61489). Focusing 

on promoter sequences identified an average of 10125 DMRs (range 

6740-12744). A total of 1,319 DMRs were common to all 11 tumor samples. Of 

these DMRs, 1,245 were hypermethylated and only 74 were hypomethylated, 

indicating a clear preponderance of genomic hypermethylation in the 

non-repetitive tumor sequences. The distribution of common DMRs on 

Chromosomal-wise indicated the difference between observed and expected 

proportion of common (in all 11 tumor samples) hypermethylated (red: 

observed; yellow: expected) and hypomethylated (blue: observed; green: 

expected) regions. P value is calculated by Chi-square test with Monte Carlo 

simulation (Figure 8). 

 

 

 

Figure 8 Chromosomal-wise common DMR distribution in early onset prostate tumors. 
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The majority of hypermethylated and hypomethylated regions locate in 

intergenic and intronic sequences. The proportion of hypermethylated as 

compared to that of hypomethylated regions is much higher in CGIs, CGI 

vicinal sequences, promoters and DNaseI-hypersensitive areas, whereas 

these proportions are more alike or even reversed for repetitive sequences 

(Figure 9). 

 

 

 

Figure 9 Proportion of common hypermethylated (red) and hypomethylated (blue) 

regions among 25 different genomic features 

 

It was further demonstrated that the observed occurrence of differentially 

methylated promoters among the 11 tumor samples deviates significantly 

(p-value < 0.0001) from a random distribution (Figure 10).  
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Figure 10 Non-random distribution of differentially methylated promoters throughout 

the prostate cancer genome.  X-axis displays the number of tumor samples, Y-axis 

indicates the number of differentially methylated promoters. Black and red curves show the 

expected and the observed distribution, respectively. The empirical P value is calculated 

based on 10,000 permutations. 

 

Among the hypermethylated and hypomethylated promoters, 92% and 

85%, respectively, are high CpG promoters (HCPs) with a CpG ratio >0.75. 

None of the hypermethylated and hypomethylated promoters belongs to the 

low CpG promoter (LCP) type with a CpG ratio <0.48 (Figure 11). 
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Figure 11 Frequency of differentially methylated promoters depending on GC content 

and CpG ratio 

 

To validate the methylome data, we chose 15 regions and validated the 

methylation status by MassARRAY in the twelve tumors and one normal 

epithelium. There was a concordance of 87% (155/178) strengthening the 

quality of the data set. A tumor-suppressor gene, APC, was token as an 

example to show the methylation pattern in its promoter region (Figure 12). 
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Figure 12 Promoter hypermethylation in APC. 
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3.4 Discussion 

Similar to previous reported172-176, a large number of DMRs were detected 

indicating the dramtic epigenetic reprogramming in cancers. The genomic 

distribution of DMRs and its non-random distribution pattern suggested that 

DMRs may have the functional potentials in the early onset prostate cancer 

development. Due to the normal contamination and MCIP intrinsic limitation, it 

is hard to detect hypomethylation in this study and it is difficult to evaluate the 

validation model due to the lack of normal samples. Thus, it would be 

interesting to use WGBS to further validate the DMR detected by MCIP-seq 

and increase the normal samples with high purity to refine the DMRs. 
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Chapter 4: BAZ2A links epigenetic remodeling and 

recurrence in prostate cancer 

Note: 

Christopher Oakes, Constance Baer and Melanie Weiss performed 

experimental work. Ruprecht Kunert, Guido Sauter, Katharina Grupp and 

Ronald Simon provided clinical samples or data. Anna Postępska-Igielska, 

Nina Schmitt, Christopher Schmidt, Daniela Wuttig, David Brocks and Olga 

Bogatyrova for assistance with experiments and data. The DKFZ Genomics 

and Proteomics Core Facility provided technical support for illumina 450k array 

data production. 

4.1 Aim of the study 

Epigenetic regulatory genes have emerged to be vital in cancer due to 

new insights from genomic and expression studies177. MicroRNA-based 

modulation of numerous onco- and tumor-suppressor genes is now recognized 

as a key aspect of the establishment and maintenance of the tumor 

phenotype178. Thus, an integrative analysis was performed in order to identify 

novel prostate cancer-relevant genes and their potential impact on prostate 

cancer development and treatment.   

4.2 Methods and materials 

4.2.1 Bioinformatic identification of mir:target pairs 

Six samples with RNA-seq and microRNA-seq data were downloaded 

from the European Genome-phenome archive database (hosted at the EBI) 

with accession number EGAS00001000258. In order to filter the low abundant 

microRNAs and genes, microRNAs with coverage of at least 1000 reads and 
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genes with at least 12 rpkm were kept for the following analysis. Then, 1.5 was 

set as the cut-off of fold change between tumor and normal. Five prediction 

tools (TargetScan, miRNAorg, PITA, PicTar and miRDB) were used for the 

microRNA target prediction and targets predicted by all 5 tools were extracted. 

MiR:target pairs not showing an inverse pattern of expression were filtered. 

Finally, genes that were found to involve other alterations (mutations, CNAs, 

SVs, LOH and promoter DMRs) were removed to enhance the likelihood that 

the target gene dysregulation was influenced by the microRNA. The general 

workflow is shown below (Figure 13). The large validation data was 

downloaded from the GEO database (GSE29079) and a t-test was used to 

calculate the significance of differential expression of BAZ2A and miR-133a 

(data used for validation of microRNA expression is not available in public 

databases). 

 

 

 

Figure 13 Computational pipeline for the detection of mir:target pairs. Analysis pipeline 



 

36 

 

comparing integrated RNA-seq and microRNA-seq data to identify high confidence, reciprocal 

expression of miRNA:gene pairs. Of the 25 pairs which fit all criteria, overexpression of the 

epigenetic regulator, BAZ2A, and downregulation of the tumor suppressor, miR-133a, was 

found. 

 

4.2.2 Evaluation of microRNA targeting 

Luciferase assays were performed in HEK293T cells grown in Dulbecco's 

Modified Eagle's Medium. 5 nM of miRNA mimics (Qiagen) or the 

non-targeting control (AllStar Negative Control, Qiagen) were transfected using 

DharmaFECT1 (Thermo Fisher Scientific) into cells grown in 384 well plates. 

BAZ2A 3’UTR fragments of 300-1609 bp were cloned into the pMIR-Report 

vector (Ambion) 3’ of the firefly luciferase gene. After 24 hrs, 0.3 ng of each 

pMIR-Report-BAZ2A 3’UTR construct was mixed with 10 ng of the TK-Renilla 

plasmid (Promega) and were transfected using TransIT-LT1 transfection 

reagent (Mirus Bio) with 6 replicates per construct. The read-out was 

preformed 48 h after reporter transfection as previously described179. Firefly 

luciferase activity was normalized to Renilla luciferase activity and the average 

of technical replicates was calculated. Each experiment was performed in 

triplicate. The effect overexpression of miRNAs on the endogenous expression 

level of BAZ2A was performed using miRNA mimics (Qiagen) transfected 

using INTERFERin transfection reagent (Polyplus transfection). DU145 and 

BPH1cells were grown in RPMI. Cells were grown 72 hours following 

transfection and RNA was isolated using RNeasy columns (Qiagen). BAZ2A 

expression was measured using the Universal probe library system (Roche) in 

a LightCycler 480 real-time PCR machine (Roche). Expression was measured 

by three independent primer-probes relative to the average of GAPDH, ACTB 

and HPRT. Each experiment was performed in triplicate for each cell line. 
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4.2.3 Methylation data analysis 

The minfi package was used to extract the raw methylation intensity data 

and perform the Subset-quantile within array normalization (SWAN). Probes 

with detection P-value <0.01 were excluded from the further analysis. The 

5000 most variable probes were selected for the k-means consensus 

clustering by ConsensusClusterPlus package with Spearman distance and 

average linkage over 1000 resampling iterations with random restart. The 

optimal number of clusters was determined by the Consensus Cumulative 

Distribution Function (CDF). Hierarchical clustering was then performed to 

visualize the methylation patterns within 35 samples. The CNV profile was 

detected using 450k data as previous described180.  

 

4.2.4 Tissue microarray 

Radical prostatectomy specimens were obtained from 11,152 patients undergoing surgery 

undergoing surgery between 1992 and 2011 at the Department of Urology and the Martini Clinics 

the Martini Clinics at the University Medical Center Hamburg-Eppendorf. Follow-up data were 

Follow-up data were available for a total of 9,628 patients with a median follow-up of 36.8 months 

follow-up of 36.8 months (range: 1 to 228 months;  

Table 3).  

Prostate specific antigen values were measured following surgery and 

recurrence was defined as a postoperative PSA of 0.2 ng/ml and increasing at 

first of appearance. All prostate specimens were analyzed according to a 

standard procedure, including a complete embedding of the entire prostate for 

histological analysis181. The TMA manufacturing process was described earlier 

in detail182. All hematoxylin and eosin-stained histological sections from all 

prostatectomy specimens were reviewed for the purpose of this study and the 

tumors were marked on the slides. One 0.6 mm tissue core was punched from 

a preselected area of each tumor and transferred in a tissue microarray. The 
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punch site was selected to contain the highest possible fraction of tumor cells. 

The tissues were distributed among 24 TMA blocks, each containing 144 to 

522 tumor samples. Presence or absence of cancer tissue was validated by 

immunohistochemical AMACR and 34BE12 analysis on adjacent TMA 

sections. For internal controls, each TMA block also contained various control 

tissues, including normal prostate tissue. 

 

4.2.5 Immunohistochemistry 

Freshly cut TMA sections were immunostained in a single day and as one 

experiment. Primary antibody specific for BAZ2A (polyclonal; rabbit, Abnova 

cat.# PAB21919; at 1/150 dilution) was applied, slides were deparaffinized and 

exposed to heat-induced antigen retrieval for 5 minutes in an autoclave at 

121°C in pH 7.8 Tris-EDTA buffer. Bound antibody was then visualized using 

the EnVision Kit (Dako). All stainings were analyzed by a single, experienced 

individual (K.G.). BAZ2A expression was predominantly localized in the 

nucleus with lower expression-levels in the cytoplasm of the cells. Nuclear 

BAZ2A staining was evaluated according to the following scoring system: The 

staining intensity (0, 1+, 2+, and 3+) and the fraction of positive tumor cells 

were recorded for each tissue spot. A final IHC score was built from these 

parameters as previously described183-185. Negative scores had complete 

absence of staining, weak scores had staining intensity of 1+ in ≤70% of tumor 

cells or staining intensity of 2+ in ≤30% of tumor cells; moderate scores had 

staining intensity of 1+ in >70% of tumor cells, staining intensity of 2+ in >30% 

but in ≤70% of tumor cells or staining intensity of 3+ in ≤30% of tumor cells; 

strong scores had staining intensity of 2+ in >70% of tumor cells or staining 

intensity of 3+ in >30% of tumor cells. As cytoplasmatic BAZ2A staining was 

rare and typically associated with high nuclear staining levels, it was thus not 

considered for analysis. 
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  No. of patients  

 

Study cohort on TMA, 

n=11,152 * 

Biochemical relapse rate in 

category, n=1,824 ** 

Follow-up (mo)     

Mean 53 - 

Median 37 - 

   Age (y) 
  

<50  318 (3%)    49 (18%) 

50-60 2,768 (25%)   460 (19%) 

60-70 6,548 (59%) 1,081 (19%) 

>70 1,439 (13%)   232 (19%) 

Pretreatment PSA (ng/ml) 
  

<4 1,407 (13%) 142 (11%) 

4-10 6,735 (61%) 827 (14%) 

10-20 2,159 (20%) 521 (28%) 

>20  720 (7%) 309 (49%) 

pT category (AJCC 2002) 
  

pT2 7,370 (66%) 570 (9%) 

pT3a 2,409 (22%) 587 (28%) 

pT3b 1,262 (11%) 618 (55%) 

pT4    63 (1%) 49 (80%) 

Gleason grade 
  

≤3+3 2,859 (26%) 193 (8%) 

3+4 6,183 (56%) 849 (16%) 

4+3 1,565 (14%) 573 (42%) 

≥4+4 482 (4%) 208 (50%) 

pN category  
  

pN0 6,117 (92%) 1,126 (21%) 

pN+ 561 (8%)    291 (59%) 

Surgical margin  
  

negative 8,984 (82%) 1,146 (15%) 

positive 1,970 (18%)   642 (37%) 

* / ** numbers do not always add up to 11,152/1,824 in categories because of cases with missing data. 

Abbreviation: AJCC, American Joint Committee on Cancer. *** p value not significant (ns) >0.05 

 

Table 3 Composition of the prostate prognosis tissue microarray containing 11,152 

prostate cancer specimens. The number and fraction of samples in each category, as well 
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as the number and fraction of samples with biochemical relaps within the different categories, 

are shown. 

 

4.2.6 Multivariate analysis 

Four multivariate analyses were performed evaluating the clinical 

relevance of BAZ2A expression in different scenarios. Scenario 1 was utilizing 

all post-operatively available parameters including pT, pN, margin status, 

pre-operative PSA value and Gleason grade obtained on the resected prostate. 

Scenario 2 was utilizing all postoperatively available parameters with the 

exception of nodal status. The rational for this approach was that 

lymphadenectomy is not a routine procedure in the surgical therapy of prostate 

cancer and that excluding pN in multivariate analysis increases case numbers. 

The next two scenarios tried to better model the pre-operative situation. 

Scenario 3 included the BAZ2A expression, pre-operative PSA, clinical stage 

(cT) and the Gleason grade obtained on the prostatectomy specimen. 

Because the post-operative Gleason grade varies from the pre-operative 

Gleason grade, another multivariate analysis was added as scenario 4. In this 

scenario, the pre-operative Gleason grade obtained on the original biopsy was 

combined with pre-operative PSA, clinical stage and BAZ2A expression. All 

four scenarios suggest a tendency towards BAZ2A representing an 

independent predictor of prognosis. 

 

4.3 Results 

By comparing the expression of all expressed genes with all expressed 

microRNAs, and combining somatic genomic variant (CNAs, LOH, SNVs) and 

DNA methylation data to filter for alternative (non-microRNA-mediated) 
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mechanisms of gene dysregulation, a list of significant microRNA:target gene 

pairs was generated. Among these pairs, miR-133a and BAZ2A were found to 

be downregulated and overexpressed, respectively. MiR-133a, a tumor 

suppressor in several cancer types186,187 has been recently reported to have 

tumor-suppressive properties in prostate cancer188,189. Its predicted target, 

BAZ2A, is a key component of the nucleolar remodeling complex and is known 

to interact with DNMTs190 and HDACs191 to establish epigenetic silencing of 

rDNA. Corresponding downregulation of miR-133a and overexpression of 

BAZ2A were confirmed in a larger second dataset192 (Figure 14) and the direct 

miR-133a:BAZ2A interaction was also able to be validated in vitro. Mir-133a 

was found to selectively suppress the expression of a luciferase-BAZ2A 

construct via an interaction with a single, highly conserved site within the 

3’UTR (Figure 15). Furthermore, overexpression of miR-133a significantly 

reduced BAZ2A levels in the normal prostate cell line BPH1 and the prostate 

cancer cell line DU145 (Figure 16). 

 

 

 

Figure 14 miR-133a and BAZ2A expression in tumor and normal. Validation of miR-133a 

downregulation and BAZ2A overexpression in secondary, larger datasets. 
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Figure 15 Validating mir:target interaction in vitro. Luciferase assay evaluating the direct 

interaction of miRNAs with the BAZ2A 3’UTR. MiR-133a specifically interacts with a distal 

conserved the site in the 3’UTR, versus miR-145, another miRNA predicted to target the 

3’UTR. 

 

 

 

Figure 16 miR-133a and BAZ2A expression in cancer cell lines. Overexpression of 

miR-133a results in downregulation of BAZ2A in BPH1 and DU145 prostate cell lines versus 

other miRNAs, miR-139 and miR-145. 

 

To investigate the role of BAZ2A protein expression, 
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immunohistochemistry was performed on a pilot tissue-microarray (TMA) of 

384 clinical prostate tumor samples. Indeed, BAZ2A immunostaining was 

variable within prostate cancers with strong staining in 59 (20.7%), moderate in 

55 (19.4%), and weak in 72 (25.4%) cancers while normal prostate epithelium 

did not show relevant staining. As BAZ2A is known to establish epigenetic 

silencing via the recruitment of DNMTs, whether upregulation of BAZ2A is 

associated with altered global DNA methylation was then investigated. From 

the pilot TMA, 22 and 13 prostate tumors with high and low BAZ2A levels were 

selected, respectively. Samples were also selected to have high (>70%) tumor 

content. DNA methylation analysis was performed using Illumina 450k Infinium 

arrays. Genome-wide analysis revealed that 32,707 CpGs were significantly 

altered (>±20%; q-value<0.05) versus 6 normal prostate samples, with 24,497 

and 8,210 CpGs being hyper- and hypomethylated, respectively. 

Unsupervised clustering of the 3,000 most variable of these CpGs identified 

two distinct DNA methylation subtypes. A statistical evaluation testing the 

optimal number of methylation subtypes confirmed the existence of two 

subtypes (Figure 17; Figure 18). 
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Figure 17 Unsupervised clustering of tumor samples based on methylation level. DNA 

methylation heatmap of the most variable 3000 CpGs. Hierarchical clustering of tumors 

identifies two DNA methylation subtypes displaying relatively high and low levels of 

methylation (termed CIMP+ and CIMP-, respectively). Tumors displaying high and low levels 

of BAZ2A from immunohistochemical (IHC) evaluation are illustrated by dark and light brown 

color, respectively. Increasing tumor (pT) stage (pT2, pT3a and pT3b) and Gleason score (3+4, 

4+3, ≥4+4) are illustrated by increasingly light grey, dark grey and black indicators, 

respectively. 
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Figure 18 Consensus clustering of tumor samples. The optimal number of methylation 

subtypes was determined by the Consensus Cumulative Distribution Function (CDF). 

 

One of the subtypes is characterized by a higher degree of 

hypermethylation within CGIs and sites associated with polycomb repression, 
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while simultaneously demonstrating hypomethylation of repetitive elements 

(such as LINEs) (Figure 19).  

 

 

 

Figure 19 Bean plot of methylation level in CGI, polycomb and LINE for two subgroups 

in prostate tumors and normals. DNA methylation levels of CpG island, 

polycomb-associated and LINE regions in CIMP+ and CIMP- subtypes as well as in normal 

tissue (CGI, CpG island; LINE, long interspersed element). 

 

Thus, based on descriptions of similar findings in other cancer types193-195, 

this subtype is termed as a CpG island hypermethylator phenotype (CIMP+) 

and, conversely, CIMP- for tumor samples from the other subtype. Strikingly, in 

the CIMP+ subtype, 21/22 samples have high BAZ2A levels, and for CIMP-, 

12/13 have low BAZ2A levels, linking BAZ2A to a high degree of abnormal 

methylation in prostate tumors. Relative to the CIMP- subtype, 6,155 CpGs 

were hypermethylated and 1,679 CpGs were hypomethylated (>± 20%) in the 

CIMP+/BAZ2A-high subtype. Hypermethylated CpGs were enriched in CpG 

islands (CGIs) as well as CGI shore regions (Figure 20). Along with 

enrichment of CpGs in transcription factor binding and DNase-hypersensitive 
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sites, enrichment at CGIs indicates that hypermethylation targets 

functionally-relevant regions of the genome in prostate cancer. Although less 

frequent, hypomethylation is also significantly enriched at non-CGI-associated 

promoters and enhancers. Thus, elevated BAZ2A levels are associated with 

widespread epigenetic remodeling, including functional regions, such as 

promoter and enhancer regions, and polycomb-associated domains. 

 

 

 

Figure 20 Enrichment plot for two subgroups in prostate tumors. Enrichment and/or 

depletion of genomic features in BAZ2A-high versus BAZ2A-low tumors. Annotation of 

enhancer and polycomb features are derived from ChIP-seq profiles from the prostate cancer 

cell line, LNCaP (TF, transcription factor). 

 

BAZ2A-associated alterations to DNA methylation were found to occur at 

numerous genes that are associated with prostate cancer as well as other 

malignancies. As expected from other studies that have identified omnipresent 

GSTP1 hypermethylation in prostate cancer196,197, the GSTP1 promoter CGI 

was found hypermethylated in the majority (>90%) of prostate tumors (Figure 

21). Importantly, hypermethylation was found to occur at similar levels in 
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CIMP+/BAZ2A-high and CIMP-/BAZ2A-low prostate tumors, confirming that 

differential methylation between subtypes does not result from differential 

sample tumor content. Similarly, the tumor-suppressor gene, APC, along with 

several other genes, was found to be hypermethylated at equal frequency in 

BAZ2A-high and low subtypes.  

 

 

 

 

Figure 21 DNA methylation profiles of GSTP1 and APC. GSTP1 and APC are consistently 

hypermethylated in all prostate tumor samples relative to normals, demonstrating that tumor 

content does not appreciably differ between tumor samples. 

 

Specific to BAZ2A-high tumors, hypermethylation of several 

tumor-suppressor genes with known roles in prostate cancer were observed, 

such as PAX6198, WT1199, GATA3200 and SFRP2201 (Figure 22; Figure 23). In 

addition, hypermethylation of microRNAs 9-1, 9-3, 34b/c and 124-2, all 

previously identified to inhibit androgen receptor expression202-204, were found 
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to predominate in BAZ2A-high tumors (Figure 24). Together, these findings 

demonstrate that in addition to epigenetic changes that broadly occur in 

prostate tumors, additional epigenetic remodeling occurs in BAZ2A-high 

expressing tumors. 

 

 

 

Figure 22 DNA methylation profiles of PAX6 and WT1. DNA methylation profiles of the 

promoter regions of the tumor-suppressor genes PAX6 and WT1 in CIMP+ and CIMP- tumor 

subtypes versus normal prostate tissue. 
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Figure 23 DNA methylation profiles of GATA3 and SFRP2. Hypermethylation of known 

tumor suppressors GATA3 and SFRP2 occurs primarily in the CIMP+/BAZ2A-high subtype. 

 

Recent data has demonstrated that altering BAZ2A expression levels 

modifies the telomeric and centromeric chromatin configurations leading to 

genomic instability205. Thus, whether CIMP+/BAZ2A-upregulated and 

CIMP-/BAZ2A-normal subtypes were also associated with variable amounts of 

genomic alterations was investigated. For this purpose, copy number 

alterations (CNAs) were inferred from the Illumina 450k Infinium array data. A 

dramatic increase in the number of CNAs in the BAZ2A-high subtype was 

observed, while few CNAs were present in BAZ2A-low tumors (P<0.001, Figure 

25). BAZ2A-upregulated tumors also are enriched for ERG fusions, as well as 

PTEN and TP53 deletions (P<0.01, Figure 17). These findings are also found 

across all samples analyzed by TMA (Figure 26). Together, these findings 

show that in addition to epigenetic alterations, BAZ2A levels are also 

associated with genetic instability in prostate cancer. 
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Figure 24 DNA methylation profiles of prostate tumor associated microRNAs. 

Hypermethylation of microRNAs 9-1, 9-3, 124-2, 34b and 34c, known to regulate androgen 

receptor expression, occurs primarily in the CIMP+/BAZ2A-high subtype. 



 

52 

 

 

Figure 25 CNV profiles in two subgroups of prostate tumors. Samples are clustered 
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according to the copy number alteration profile. (deletion = blue; amplification= red) 

 

 

 

Figure 26 BAZ2A expression correlates with ERG fusion, TP53 and PTEN deletion. The 

proportion of tumors that have strong, moderate or weak levels of BAZ2A staining from TMA 

analysis separated by either ERG fusion status, TP53 deletion or PTEN deletion. 

 

To further investigate the potential clinical impact of BAZ2A expression, a tissue microarray 

tissue microarray containing samples from >10,000 prostate cancers was investigated by means of 

investigated by means of immunohistochemistry. This analysis resulted in 7,682 informative 

7,682 informative samples for which clinical follow up data were available. Patient characteristics 

Patient characteristics and clinical data are displayed in  

Table 3. BAZ2A immunostaining was again categorized as negative 

(26.1%), weak (36.7%), moderate (18.5%) and strong (19.0%) (Figure 27; 

Figure 28).  
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Figure 27 Tissue microarray analysis of BAZ2A level. Representative examples of TMA 

histological sections showing negative, weak, moderate and strong BAZ2A staining 

classifications. 

 

 

 

Figure 28 Sample distribution based on BAZ2A expression in TMA. Distribution of 

negative, weak, moderate and strong BAZ2A tumors as assessed by tissue microarray 

analysis. 

 

Strong BAZ2A levels were highly associated with advanced pT stage, high 

Gleason grade, the presence of lymph node metastasis, high preoperative 

PSA level and positive surgical margin when considering all tumors or 

following subgrouping by ERG status (P<0.0001 each; Table 4). The time to 

postoperative PSA recurrence was significantly shorter in the BAZ2A strong 
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group (P<0.0001, Figure 29) and this finding was again observed to be 

independent of ERG status (P<0.0001, Figure 30). Using Cox regression 

multivariate analysis to determine the relative dependence of several 

prognostic and surgical parameters, the level of BAZ2A was determined to be 

independently predictive for the factor of PSA recurrence in multiple scenarios 

including various combinations of parameters (P<0.0001, Table 5). The 

independent predictive power of BAZ2A was further upheld following 

subdivision of the cases by ERG status (Table 5). 

 

 

 

Figure 29 PSA recurrence-free survival analysis for all prostate tumors. Kaplan-Maier 

analysis of the time to postoperative PSA recurrence versus BAZ2A levels in all prostate 

tumors. 
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Figure 30 PSA recurrence-free survival analysis for ERG positive and negative prostate 

tumors. Kaplan-Maier analysis of the time to postoperative PSA recurrence versus BAZ2A 

levels in prostate tumors separated by ERG status. 
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a) 

Parameter n 

Evaluable 

IHC result P 

Negative 

(%) 

Weak 

(%) 

Moderate 

(%) 

Strong 

(%) 

 

All cancers 

 

Tumor stage 

pT2 

pT3a 

pT3b 

pT4 

 

Gleason grade 

≤3+3 

3+4 

4+3 

≥4+4 

 

Lymph node metastasis 

N0 

N+ 

 

Preoperative PSA level (ng/mL) 

<4 

4-10 

10-20 

>20 

 

Surgical mergin 

Negative 

Positive 

7682 

 

 

4872 

1763 

951 

59 

 

 

1791 

4340 

1163 

341 

 

 

4376 

422 

 

 

877 

4594 

1543 

567 

 

 

6051 

1488 

26 

 

 

29 

22 

19 

24 

 

 

32 

26 

20 

21 

 

 

25 

18 

 

 

19 

27 

27 

30 

 

 

26 

24 

37 

 

 

38 

35 

33 

31 

 

 

43 

36 

33 

25 

 

 

35 

32 

 

 

36 

36 

36 

37 

 

 

37 

35 

18 

 

 

18 

19 

20 

17 

 

 

15 

20 

19 

21 

 

 

19 

20 

 

 

21 

19 

18 

14 

 

 

19 

18 

19 

 

 

15 

24 

29 

29 

 

 

11 

19 

29 

34 

 

 

21 

31 

 

 

23 

18 

19 

19 

 

 

18 

23 

 

 

< 0.0001 

 

 

 

 

 

< 0.0001 

 

 

 

 

 

< 0.0001 

 

 

 

< 0.0001 

 

 

 

 

 

0.0005 

 

NOTE. Number do not always add up to 7682 in different categories because of cases with missing data 
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b) 

Parameter n 

Evaluable 

IHC result P 

Negative 

(%) 

Weak 

(%) 

Moderate 

(%) 

Strong 

(%) 

 

All cancers 

 

Tumor stage 

pT2 

pT3a 

pT3b 

pT4 

 

Gleason grade 

≤3+3 

3+4 

4+3 

≥4+4 

 

Lymph node metastasis 

N0 

N+ 

 

Preoperative PSA level (ng/mL) 

<4 

4-10 

10-20 

>20 

 

Surgical mergin 

Negative 

Positive 

3786 

 

 

2508 

780 

459 

27 

 

 

825 

2127 

605 

213 

 

 

2206 

200 

 

 

367 

2246 

826 

311 

 

 

2997 

720 

37 

 

 

42 

36 

27 

37 

 

 

48 

39 

30 

27 

 

 

37 

26 

 

 

32 

39 

38 

43 

 

 

39 

38 

37 

 

 

38 

37 

37 

22 

 

 

40 

38 

35 

28 

 

 

38 

30 

 

 

38 

38 

36 

35 

 

 

38 

37 

13 

 

 

12 

15 

14 

22 

 

 

8 

14 

16 

20 

 

 

14 

19 

 

 

14 

13 

14 

11 

 

 

13 

12 

11 

 

 

8 

12 

23 

19 

 

 

4 

9 

19 

26 

 

 

12 

27 

 

 

16 

10 

12 

11 

 

 

10 

14 

 

 

< 0.0001 

 

 

 

 

 

< 0.0001 

 

 

 

 

 

< 0.0001 

 

 

 

0.0089 

 

 

 

 

 

0.018 

 

NOTE. Number do not always add up to 7682 in different categories because of cases with missing data 
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c) 

Parameter n 

Evaluable 

IHC result P 

Negative 

(%) 

Weak 

(%) 

Moderate 

(%) 

Strong 

(%) 

 

All cancers 

 

Tumor stage 

pT2 

pT3a 

pT3b 

pT4 

 

Gleason grade 

≤3+3 

3+4 

4+3 

≥4+4 

 

Lymph node metastasis 

N0 

N+ 

 

Preoperative PSA level (ng/mL) 

<4 

4-10 

10-20 

>20 

 

Surgical mergin 

Negative 

Positive 

3085 

 

 

1801 

841 

402 

23 

 

 

686 

1806 

465 

104 

 

 

1767 

186 

 

 

401 

1870 

559 

209 

 

 

2390 

637 

9 

 

 

10 

9 

7 

9 

 

 

11 

10 

6 

6 

 

 

9 

8 

 

 

6 

10 

7 

12 

 

 

9 

8 

35 

 

 

37 

34 

30 

39 

 

 

45 

34 

29 

17 

 

 

33 

31 

 

 

34 

33 

38 

39 

 

 

36 

33 

26 

 

 

27 

23 

27 

9 

 

 

26 

27 

23 

23 

 

 

26 

24 

 

 

28 

27 

25 

17 

 

 

26 

25 

30 

 

 

26 

34 

37 

43 

 

 

19 

29 

42 

54 

 

 

33 

38 

 

 

32 

29 

30 

32 

 

 

28 

34 

 

 

< 0.0001 

 

 

 

 

 

< 0.0001 

 

 

 

 

 

0.5818 

 

 

 

0.0044 

 

 

 

 

 

0.059 

 

NOTE. Number do not always add up to 7682 in different categories because of cases with missing data 

Table 4 Associations between BAZ2A expression and clinical outcomes. Strong BAZ2A levels were highly 

associated with advanced pT stage, high Gleason grade, the presence of lymph node metastasis, high preoperative 

PSA level and positive surgical margin when considering all tumors (a) or following subgrouping by ERG status (b 

and c). 
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Table 5 Multivariate analysis indicating BAZ2A being a independent predictor of prognosis. Cox regression multivariate analysis illustrating the relative 

dependence of several prognostic and surgical parameters on PSA recurrence in a) all cancers, b) ERG negative, and c) ERG positive prostate.
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Our results demonstrate a clear link of aberrant BAZ2A expression with 

prostate cancer. Specifically, overexpression of BAZ2A – potentially caused by 

downregulation of the tumor-suppressive miR-133a - is tightly associated with 

a molecular subtype defined by substantial genomic instability and an aberrant 

genomic pattern of DNA hypermethylation (CIMP). Given these substantial 

implications on the biology of cancer cells, it is not surprising, that BAZ2A 

overexpression has a strong prognostic impact, which is furthermore 

independent of classical prognostic markers. An increasing number of key 

epigenetic regulatory genes, including bromodomain-containing proteins, are 

currently found to be dysregulated across many cancer types and represent 

novel targets of a new generation of cancer therapeutics. BAZ2A may not only 

thus serve as a biomarker that may help to distinguish indolent from 

aggressive prostate cancer, but may also qualify as a potential target for future 

treatment of prostate cancer.  

 

4.4 Discussion 

The downregulation of the tumor suppressor, miR-133a, could be partially 

explained by hypermethylation of its putative promoter region, and the high 

BAZ2A expression further establishes the feedback loop to maintain the 

hypermethylation of its promoter region (Figure 31). However, where is the 

initial hypermethylation from is still unknown. A possible explaination is that 

randomly induced methylation variations hit the promoter of miR-133a and 

then leads to the downregulation followed by the upregulation of BAZ2A. The 

upregulation of BAZ2A then changes the global methylation profile to increase 

the epigenetic variability and destroy epigenetic signatures in tumor cells. This 

may arise cancer hallmarks by creating the heterogeneous environments and 

phenotypes which may increase the accumulation of genetic alterations that 
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are advantageous to tumor cell development by natural selection. That's why 

the high BAZ2A expression is observed in aggressive prostate tumors showing 

poorer prognosis.  

 

 

 

Figure 31 A conceptional model illustrating the possible BAZ2A driven epigenetic 

alterations in prostate cancers. 

 

So far, there are only three genes, BRAF, IDH1 and H3.3, discovered to 

associated with CIMP 107,180,206. All these genes are affected by mutations. 

However, the mutation rate is low in prostate cancer. Thus, epigenetic factors 

might play a key role instead of mutations. It's known that microRNAs can fine 

tune the expression of their target genes. BAZ2A is a key gene for chromotin 

remodeling with stronge effects to cell survive. Therefore, the dramatic 

changes from mutations or structure variations might kill cells. Instead, a slight 

expression change modulated by microRNA might already enough to reset the 

chromation structure and global methylation pattern. A recent study207 found 

that a long non-coding RNA, SChLAP1, contributes to the development of 
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lethal prostate cancer at least in part by antagonizing the tumor-suppressive 

functions of the SWI/SNF complex. Actually, the SWI/SNF complex is a 

nucleosome remodeling complex which have the overlapping function of 

BAZ2A. Unlike other known long non-coding RNAs such as HOTAIR which 

enhance the function of epignenetic complexes such as PRC2 and MLL 208-210, 

SChLAP1, however, impairs this key epigenetic complex with tumor 

suppresive function211-216. Thus, not only genetic mutations but also epigenetic 

factors can influence the epigenetic key complex and form the feedback loop 

to further enhancer and reprogram the epigenetic landscape in cancer. 

To further investigate the molecular mechanism of how BAZ2A induces 

(epi)genetic alterations, more functional experiments should be carried out. 

Nevertheless, this study identified an potential epigenetic key player which has 

a great prognostic power to distinguish the indolent and aggressive prostate 

tumor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Nucleosome
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Chapter 5: Environmentally induced epigenetic 

reprogramming in mothers and their newborn children 

Note:  

 Mario Bauer, Gunda Herberth, Dieter Weichenhan, Loreen Thürmann, 

Saskia Trump, and Kristin Junge performed experimental work, collected data 

and provided proband materials. The DKFZ Genomics and Proteomics Core 

Facility provided technical support for sequencing. Oliver Mücke, Marion Bähr, 

Monika Helf provided support in MassARRAY validation. Beate Fink, Anne 

Hain, and Melanie Nowak provided technical assistance and field work. 

Rolle-Kampczyk and Martin von Bergen provided urine cotinine 

concentrations. 

5.1 Aim of the study 

Increasing evidence has emerged that environmental exposure during the 

prenatal period can increase the risk to develop diseases later in life. 

Epigenetic mechanisms, such as changes in DNA methylation and histone 

modifications that together modify DNA accessibility for gene transcription in a 

persistent way, are discussed as potential link between early environmental 

exposure and later disease217. Prenatal exposure to tobacco smoke was 

described as a risk factor for a multitude of different diseases in the child, 

including lung diseases, obesity, and cancer218-220. Many studies have shown 

that maternal exposure to tobacco smoke induces diverse site-specific 

methylation changes, but the mechanistic insights derived from those 

epidemiological studies remain very limited221-223. How an important 

environmental stressor shapes the epigenome in healthy human individuals 

still remains unclear.  

Here, the genome-wide, environmentally induced methylation changes 
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and their functional relationship with chromatin regulators in mothers and their 

children during pregnancy was studied for the first time at base-pair resolution. 

A larger validation panel of 45 mother/child pairs was explored through 

targeted methylome analysis followed by a broad, functional validation of the 

discovered epigenetic changes by RNA and protein analysis.  

This integrative study provides a conceptual advance in our 

understanding how environmental factors act on the epigenome and suggests 

DNA methylation as a molecular mechanism for the long-lasting consequences 

of smoking during pregnancy. 

5.2 Methods and materials 

5.2.1 Study design 

For this study samples of a prospective mother-child cohort, LINA 

(Lifestyle and environmental factors and their Influence on Newborns Allergy 

risk), were used. This cohort of 629 mother–child pairs (622 mothers and 629 

children; 7 twins) were recruited between May 2006 and December 2008 in 

Leipzig, Germany, to investigate the pre- and postnatal influences of lifestyle 

and environmental factors on the immune system of the newborn and the 

disease risk of the child later in life. Mothers suffering from immune or 

infectious diseases during pregnancy were excluded from the study. Blood 

samples were obtained from mothers at the 36th week of gestation and cord 

blood at delivery224.  

During pregnancy standardized questionnaires were recorded, collecting 

data about smoking behavior of the parents, housing conditions, mould, traffic, 

noise, pets, renovation activities and personal lifestyle. Annually, starting at the 

child’s first birthday, disease outcomes of the children were assessed via 

questionnaire. All questionnaires were self-administered by the parents. 

During annual clinical visits blood samples were obtained and body weight and 
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length evaluated. 

Participation in the study was voluntary, and informed consent was 

obtained from all participants. The study was approved by the Ethics 

Committees of the University of Leipzig (046-2006, 160-2008). 

 

5.2.2 Exposure to tobacco smoke 

Exposure to environmental tobacco smoke (ETS) was recorded as 

smoking frequency at home (‘Did you or anybody else smoke inside your 

dwelling during the last 12 months?’). Answering this question as ‘(almost) 

daily’, ‘once a week or more’ or ‘occasionally’ was defined as exposure to ETS 

in the subsequent analyses and ‘never’ as no exposure to ETS in the dwelling, 

respectively. Furthermore, the numbers of smoked cigarettes per day in the 

dwelling (‘How many cigarettes per day were smoked by the mother /father 

/anybody else in your dwelling?’) was considered.  

In addition to questionnaire data, maternal urine cotinine levels were 

determined to assess objective smoking metabolites225.  

 

5.2.3 Anthropometric measurements 

Weight and growth development were assessed by calculating the z-score 

of “weight for age” and “weight for length” for each individual child in the 

discovery and validation panel respectively. Z scores were determined based 

on the WHO child growth standards using the WHO Anthro software (WHO 

Anthro for personal computers, version 3.2.2, 2011: Software for assessing 

growth and development of the world's children. Geneva: WHO, 2010) 

(http://www.who.int/childgrowth/software/en/). 

 

5.2.4 Sample selection 

Discovery panel. For whole genome bisulfite sequencing three smoking 

http://www.who.int/childgrowth/software/en/
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mothers were selected following two criteria: a measured urine cotinine 

levels > 100 µg/g creatinine and a positive answer regarding smoking during 

pregnancy. For the non-exposed group three mothers with urine cotinine levels 

< 1 µg/g creatinine were selected that have not smoked or were exposed to 

tobacco smoke. 

The age of smoking mothers (mean=26.21 years, S.D. 4.73) was similar 

to that of non-smoking mothers (mean=29.41 years, S.D. 6.27, p=0.518 from 

Student’s t-test). The birth weight of the children did not differ significantly 

between children of smoking and non-smoking mothers (3,190 g vs. 3,270 g, 

p=0.789 from Student’s t-test).  

Validation panel. For validation analyses 16 smoking mothers with 

measured cotinine levels > 100 µg/g creatinine and/or ten and more smoked 

cigarettes per day during pregnancy and 29 mothers with urine cotinine levels 

< 1 µg/g creatinine were selected that have not smoked or were exposed to 

tobacco smoke. The validation panel contained the discovery panel because 

we wanted to include also a technical validation of the sequencing data by 

MassARRAY. The age of smoking mothers (mean=28.36 years, S.D. 7.20) 

was similar to that of non-smoking mothers (mean=31.56 years, S.D. 4.41, 

p=0.073 from Student’s t-test) in the validation panel. The birth weight of the 

children did not differ significantly between children of smoking and 

non-smoking mothers (3,262 g vs. 3,373 g, p=0.463 from Student’s t-test).  

 

5.2.5 Isolation of gDNA from whole blood  

Maternal blood samples were collected four weeks before birth (36th 

gestational week) and cord blood samples at birth. Genomic DNA from whole 

blood samples (peripheral blood or cord blood) was isolated using the QIAmp 

DNA Blood Mini Kit (Qiagen, Hilden, Germany), according to manufacturer’s 

instruction.  
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5.2.6 Illumina WGBS Library Construction and 

Sequencing 

Illumina Libraries were prepared using the TruSeq DNA Sample Prep Kit 

v2-Set A (Illumina Inc., San Diego, CA, USA) according the manufacturer's 

instructions. Briefly, 2 µg genomic DNA in 55 µl nuclease-free water 

(Ambion/Life Technologies GmbH, Darmstadt, Germany) was fragmented 

using a Covaris S2 ultrasonicator (Covaris, Woburn, Massachusetts, USA) and 

the following settings: 10% duty cycle, intensity 5, 200 cycles per burst, 

frequency sweeping, for 6 minutes. The fragmented DNA was end-repaired, 

extended with an 'A' base on the 3′ end and ligated with TruSeq paired-end 

indexing adapters. Then, adapter-ligated fragment libraries were treated with 

bisulfite using the EpiTect Bisulfite Kit (Qiagen, Hilden, Germany) following the 

instructions in the Illumina WGBS for Methylation Analysis Guide (Part # 

15021861 Rev. B). After bisulfite conversion the fragment libraries were 

directly amplified using KAPA HiFi Uracil+ DNA Polymerase according to the 

settings for TruSeq™ DNA in the technical Data Sheet (KAPA HiFi HotStart 

Uracil+ Ready Mix, KR0413 - version 1.12, peqlab, Erlangen, Germany). Two 

50 µl PCR reactions per sample were prepared and 14 cycles of PCR 

performed. Amplified fragment libraries were pooled and purified with 1x 

Agencourt AMPure XP beads (Beckman Coulter GmbH, Krefeld, Germany). 

WGBS Illumina Libraries were validated using Agilent 2100 Bioanalyzer (DNA 

1000 Kit, Agilent Technologies) and Qubit flourometer (Qubit dsDNA HS Assay 

Kit, Invitrogen/ Life Technologies GmbH, Darmstadt, Germany). 

The final libraries were clustered on the cBot (Illumina Inc., San Diego, CA, 

USA) using TruSeq PE Cluster Kit v3 according the manufacturer`s 

instructions with a final concentration of either 9 pM or 10 pM (depending on 

the sample) spiked with 1% PhiX control v3 and an additional dedicated PhiX 
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control lane. Sequencing on HiSeq2000 (101 bp paired-end) was performed 

using standard Illumina protocols and the 200-cycles TruSeq SBS Kit v3 

(Illumina Inc., San Diego, CA, USA). 

 

5.2.7 Sequencing library preparation by tagmentation used 

for complementation of whole genome bisulfite sequencing 

Tagmentation-based whole genome bisulfite sequencing of sample 

LMCS00_004c and LMCS00_004m using about 20 ng genomic DNA as input 

was done as described previously with modifications226. Tagmentation adapter 

assembly was done with oligonucleotides Tn5mC-Apt1 and 

Tn5mC1.1-A1block; for the oligo replacement/gap repair step, oligonucleotide 

Tn5mC-ReplO1 was used. The transposome was generated using the adapter 

and Tn5 transposase (Epicentre via Biozym, Hessisch Oldendorf, Germany). 

After oligo replacement/gap repair, the DNA was bisulfite treated using the EZ 

methylation kit (Zymo Research, Freiburg, Germany). Sequencing libraries 

were prepared with primers Tn5mCP1 and Tn5mCBar5 (LMCS00_004m) and 

Tn5mCBar6 (LMCS00_004c), respectively with 12 PCR cycles on a 

LightCycler 480 (Roche Applied Science, Mannheim, Germany). These two 

libraries were sequenced on an Illumina HiSeq 2000 in the 101 bases 

paired-end mode. 

 

5.2.8 Sequence alignment and cytosine methylation 

estimation 

As described in 2.2. 

 

5.2.9 DMR calling, annotation and enrichment calculation 

BSmooth was used to smooth bisulfite sequencing data and call 

candidate DMR as described previously227,228. Then, calculated the average 
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methylation level of each DMR for each sample was calculated and a p-value 

was assigned to each of the DMRs using Welch's t-test. Based on the p-value 

(p < 0.05) and the level of methylation change (∆ methylation > 0.1), the DMR 

list was further filtered and ranked for later analysis. 

To assess the functional impact of each DMR, each DMR was first 

annotated to the closest TSS by HOMER229. Furthermore, enhancers were 

extracted from recently published data230, TFBS, DNAse cluster and microRNA 

regulatory target sites were derived from UCSC genome browser, and the 

distance between the center of each DMR to the center of each genomic 

feature was calculated. The closest genomic feature was then assigned to 

each DMR. 

For analysis of DMR enrichment in specific genomic sites, genomic 

features were first extracted from UCSC genome browser, recent published 

paper and online databases. The percentage of total genomic CpGs for each 

genomic feature was calculated as a background value. Thereafter, the 

percentage of total hyper/hypomethylated CpGs in each genomic feature was 

calculated based on the DMR list. The enrichment fold change was then set as 

the ratio between the two percentages above. In order to test the significance 

of the enrichment /depletion, the CpGs from all DMRs were randomly 

permutated in the whole genome for 10,000 times and Fisher's exact test was 

used to determine the significance of the difference between the observed and 

simulated results. 

 

5.2.10 Cellular composition estimation 

Promoter methylation levels from 4 lineage markers were used to assess 

the proportion of each cell type in each sample: CD14 for monocytes231, CD3D 

and CD3G for T cells232 and CD19 for B cells233,234. The rationale behind our 

approach was that specific promoter regions of marker genes are fully 
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demethylated in the respective cell lineage, whereas they are fully methylated 

for all other cell types. 

For each marker gene, all CpGs within the promoter region (TSS 

upstream 2 kb and downstream 500 bp) were extracted for each sample. Then 

uninformative CpGs which are lowly methylated (methylation level < 0.3) in all 

samples were removed. For the remaining CpGs, the average methylation 

level (ave_meth) was calculated in each sample. The proportion of the 

respective cell type was then estimated as 1-ave_meth. 

For granulocytes, a cell type specific methylation signature was derived 

based on BRD4 promoter methylation from a genome-wide methylation 

analysis235,236. The promoter region of BRD4 is unmethylated in granulocytes 

(granulocytic neutrophils) and methylated in B cells and hematopoietic 

stem/progenitor cells (HSPC)237. The 7 CpG sites that are unmethylated in 

granulocytes and methylated in the other hematopoietic lineages were derived 

according to the methylation signature by Houseman and colleagues. For each 

of the 7 CpG sites, the methylation level around it was carefully inspected in 

whole-genome bisulfite sequencing data from different blood cell types.  

 

5.2.11 RepliSeq based replication timing analysis  

The number of DMRs binned into 1 Mb windows was correlated with 

genome-wide replication timing data238. The Repli-Seq data used in this thesis 

is a wavelet-smoothed, weighted average signal where high (and low) values 

indicate early (and late) replication during S-phase. RepliSeq replication timing 

data was downloaded from http://genome.ucsc.edu/ENCODE for ten different 

cell lines: Gm06990, Gm12801, Gm12812, Gm12813, Gm12878, HepG2, 

HUVEC, K562, MCF7, NHEK. We used the mean value of genomic regions 

that maintain similar replication timing between these different cell types, 

determined by low standard deviation per window. 

https://dkfzowa0.dkfz-heidelberg.de/owa/redir.aspx?C=2ae798bbda914a9ea6aa2ec40aa584d3&URL=http%3A%2F%2Fgenome.ucsc.edu%2FENCODE#_blank
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5.2.12 Pathway enrichment analysis 

Enrichment of KEGG pathways was determined for DMRs in either 

mothers or children. Only DMRs, which were significantly different from the 

non-smoking control group (p < 0.05) with a difference in the methylation level 

higher than 10%, were considered for analysis. The latest update (2013/01/31) 

of the WEB-based Gene SeT AnaLysis Toolkit (WebGestalt)239 was used to 

calculate statistically significant enriched pathways. Calculation of enrichment 

was based on a hypergeometric test followed by a Benjamini & Hochberg 

multiple test adjustment. A minimum of 3 genes per pathway was required to 

be considered for enrichment. Enrichment was considered significant at an 

adjusted p-value < 0.05.  

 

5.2.13 MassARRAY methylation analysis 

Quantitative DNA methylation analysis of candidate DMRs was performed 

using Sequenom’s MassARRAY platform. Briefly, genomic DNA from whole 

blood samples was chemically modified with sodium bisulfite using the EZ 

methylation kit (Zymo Research, Freiburg, Germany) according to the 

manufacturer’s instructions. PCR primers were designed with an additional T7 

promoter tag for in vivo transcription for each reverse primer, as well as a 

10-mer tag on the forward primer. Bisulfite treated DNA was PCR amplified 

using HotStarTaq DNA Polymerase (Qiagen, Hilden, Germany) with the 

following cycling program: 95°C for 15 min, followed by 45 cycles of 94°C for 

30 sec, 72°C for 1 min and a final elongation step at 72°C for 5 min on a 

LightCycler 480 (Roche Applied Science, Mannheim, Germany). The PCR 

product was in vitro transcribed and cleaved by RNase A using the 

EpiTyper T Complete Reagent Set (Sequenom, Hamburg, Germany) and 

subjected to MALDI-TOF mass spectrometry analysis to determine 
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methylation patterns as previously described240. DNA methylation standards 

(0%, 20%, 40%, 60%, 80%, and 100% methylated genomic DNA) were used 

to control for potential PCR bias. Note that targeted methylation analysis 

based on Infinium HumanMethylation450 BeadChip would not be applicable 

here, since the latter would cover only less than a third of the DMRs tested 

here. 

 

5.2.14 RNA Extraction, cDNA Synthesis, and qPCR 

Total RNA was prepared from fresh blood by using peqGold RNA Pure 

(peqlab, Erlangen, Germany), according to manufacturer’s instruction. The 

cDNA synthesis was carried out with 5 µg of RNA by using ImProm-IITM 

Reverse Transcription System (Promega, Mannheim, Germany).  

Gene expression was measured using the 96.96 Dynamic Array 

Integrated fluidic circuits (IFCs) (Fluidigm, San Francisco, CA, USA). 

Intron-spanning primers were designed and UPL probes selected by the 

Universal Probe Library Assay Design Center 

(http://qpcr.probefinder.com/organism.jsp). A preamplification reaction was 

performed by pooling all primers (final concentration, 50 nM), 5 µl of cDNA and 

2x PreAmp Master Mix (Applied Biosystems/Life Technologies GmbH, 

Darmstadt, Germany). The cycling program consisted of 95°C for 10 min, 

followed by 14 cycles of 95°C for 15 sec and 60°C for 4 min on a LightCycler 

480 (Roche Applied Science, Mannheim, Germany). The qPCRs of 1:5 diluted 

with TE buffer preamplified templates were performed following manufacture’s 

instruction for UPL (Roche Applied Science, Mannheim, Germany) assays. 

Briefly, for each individual assay, a 10X Assay Mix that contained 2 µM of each 

forward and reverse primer, 1 µM UPL probe and 0.025% Tween-20 was 

prepared, and 5 µl of the mix was loaded into the assay inlets of the array. Into 

the sample inlets, 5 µl of the following solution was dispensed: 2.5 µl of 

http://qpcr.probefinder.com/organism.jsp
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PreAmp sample in 1.1X of FastStart Universal Probe Master Mix (Roche 

Applied Science, Mannheim, Germany). The cycling program consisted of 2 

min at 50°C, 10 min at 95°C, followed by 35 cycles of 95°C for 15 sec, 70°C for 

5 sec, and 1 min at 60°C. All reactions were performed in triplicates.  

Gene expression values were determined by using the 2-∆∆CT method241 

with GAPD, GUSB, PGK1 and PPIA as reference genes and normalized to the 

lowest measured value. 

 

5.2.15 Cytokine measurement 

Heparinized blood samples from mother-child pairs were obtained by 

venipuncture and processed within six hours for further analysis. After 

incubating for 4 h at 37°C, samples were diluted with RPMI-1640 medium 

without supplements in a ratio of 1:1 and centrifuged. Cell-free supernatants 

were collected and stored at -80°C until subsequent analysis. Concentrations 

of IL-6, MCP-1 (CCL2), and TNF-α in the supernatants of whole blood samples 

were detected by flow cytometry using the BD CBA Human Soluble Flex Set 

system (BD Bioscience, Heidelberg, Germany) according to the 

manufacturer’s instructions and as described previously242.  

In brief, cytokine specific antibody coated beads were incubated for 1 h 

with 25 µl of blood samples or standard solution. Thereafter, samples were 

incubated with the corresponding PE labeled detection antibodies for 2 h. After 

one washing step samples were measured by flow cytometry. Analysis of data 

and quantification of cytokines was performed using the FCAP ArrayTM 

software (Becton Dickinson, Heidelberg, Germany) on the basis of 

corresponding standard curves. Finally, plasma dilution factor was accounted. 



 

75 

 

5.3 Results 

Whole genome bisulfite sequencing (WGBS) of whole blood were 

performed on samples from twelve individuals (maternal blood at 36th week of 

gestation and cord blood from their corresponding newborns) in the discovery 

panel at an average coverage of 38x (range: 27-50x) and thus generated 26.3 

billion non-duplicate, 101 bp reads (Table 6). In order to rule out the blood 

cell-type composition induced methylation change in the tobacco smoke 

exposed vs. non-exposed individuals, the promoter methylation level from five 

lineage markers were used to assess the proportion of each cell type in each 

sample. It showed that the variation in response to tobacco smoke exposure is 

below 6% and 9% for all cell types in mothers and children (Table 7 and Table 

8). To exclude DMRs that are solely caused by differences in cellular blood 

composition between the exposed and non-exposed samples, a threshold of 

10% was used for DMR calling.  

Based on this DMR filter, 1981 and 1720 significant (p < 0.05, ∆ 

methylation > 0.1) DMRs were identified in mothers and children, respectively 

(Figure 32 and Figure 33). Interestingly, the ratio of hypo- vs. 

hypermethylated DMRs differed significantly between mothers and children 

(Fisher's exact test, p < 2e-16; Figure 33). While the mothers showed a 

dominant hypomethylation profile, children revealed hyper- and 

hypomethylated DMRs with a twofold higher rate of hypermethylated DMRs as 

their mothers. The patterns of genes associated with at least one DMR differed 

as well between mothers and children (Fisher's exact test, p < 2e-16) 

supporting the hypothesis that environmental modulation of the epigenome is 

distinct between adult and fetus. The density pattern of DMRs is highly 

significantly correlated with replication timing at genome-scale (Figure 34 and 

Figure 35). 
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Sample id Gender
a
 

Smoking 

status
b
 

% of genomic CpGs 

covered by 1x (10x) 
Average coverage 

 

children 

LMCS00_001c 

LMCS00_002c 

LMCS00_003c 

LMCS00_004c 

LMCS00_005c 

LMCS00_006c 

 

mothers 

LMCS00_001m 

LMCS00_002m 

LMCS00_003m 

LMCS00_004m 

LMCS00_005m 

LMCS00_006m 

 

 

M 

F 

F 

F 

M 

M 

 

 

F 

F 

F 

F 

F 

F 

 

 

0 

0 

0 

1 

1 

1 

 

 

0 

0 

0 

1 

1 

1 

 

 

98% (96%) 

98% (95%) 

98% (95%) 

98% (94%) 

98% (92%) 

98% (91%) 

 

 

98% (94%) 

98% (97%) 

98% (96%) 

98% (96%) 

98% (95%) 

98% (95%) 

 

 

45x 

38x 

44x 

27x 

31x 

29x 

 

 

38x 

50x 

48x 

32x 

36x 

36x 

a  F: female; M: male 

b  0: smoking or from smoking mother; 1: non-smoking or from non-smoking mother  

 

Table 6 Sequencing overage of study cohort.  

 

Cell type marker Smoking group
a
 Non-smoking group

a
 p-value

b
 

Mothers 

Granulocytes 

Monocytes 

T lymphocytes 

B lymphocytes 

 

BRD4 

CD14 

CD3D (CD3G) 

CD19 

 

0.853 (0.021) 

0.200 (0.026) 

0.180 (0.017) 

0.16 (0.01) 

 

0.793 (0.006) 

0.183 (0.02) 

0.219 (0.025) 

0.14 (0.01) 

 

0.10 

0.82 

0.15 

0.12 

Children 

Granulocytes 

Monocytes 

T lymphocytes 

B lymphocytes 

 

BRD4 

CD14 

CD3D (CD3G) 

CD19 

 

0.560 (0.159) 

0.237 (0.015) 

0.34 (0.087) 

0.17 (0.0053) 

 

0.633 (0.023) 

0.230 (0.017) 

0.258 (0.037) 

0.137 (0.006) 

 

0.70 

0.64 

0.27 

0.66 

a. mean (standard deviation) methylation level in the promoter region 

b. p-value was calculated by the Mann-Whitney U-test  

 

Table 7 Cell type distribution estimated by methylation signature ( WGBS ). 
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Cell type marker Smoking group
a
 Non-smoking group

a
 p-value

b
 

Mothers 

Granulocytes 

Monocytes 

T lymphocytes 

B lymphocytes 

 

BRD4 

CD14 

CD3D (CD3G) 

CD19 

 

0.805 (0.047) 

0.089 (0.043) 

0.154 (0.097) 

0.112 (0.020) 

 

0.791 (0.050) 

0.086 (0.058) 

0.260 (0.161) 

0.135 (0.047) 

 

0.34 

0.64 

0.11 

0.96 

Children 

Granulocytes 

Monocytes 

T lymphocytes 

B lymphocytes 

 

BRD4 

CD14 

CD3D (CD3G) 

CD19 

 

0.631 (0.057) 

0.090 (0.047) 

0.28 (0.121) 

0.152 (0.0042) 

 

0.610 (0.048) 

0.099 (0.057) 

0.343 (0.140) 

0.148 (0.050) 

 

0.04 

0.72 

0.32 

0.66 

a. mean (standard deviation) methylation level in the promoter region 

b. p-value was calculated by the Mann-Whitney U-test  

 

Table 8 Cell type distribution estimated by methylation signature ( MassARRAY ). 

 

 

 

Figure 32 Circular representation of DNA methylation levels for mothers and children. 

The height of each bar indicates the methylation change between the smoking and 

non-smoking group (red: hypermethylation, blue: hypomethylation). 
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Figure 33 Distribution of hyper/hypo methylation in children and mothers. Bar plots 

represent the number of hypo- vs. hypermethylated DMRs separately for children and mothers 

( ratio of these DMRs is significantly different between mothers and children, p < 2e-16 ). 

 

Among different genomic features, DMRs are enriched in gene regulatory 

regions such as promoters, enhancers and transcription factor binding sites 

(Figure 36). Out of the total of 124 DMRs that are shared between mothers 

and their children (e.g. MAPK9, Figure 38), none of them are found in 

imprinted regions. However, there is a highly significant enrichment of DMRs in 

imprinted genes in children (Figure 37), suggesting that in the embryonic 

period environmental factors preferentially influence imprinted genes and that 

the observed epigenetic modifications in the newborn child result from de novo 

effects in the fetal genome rather than from a transmission from mother to 

child. 
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Figure 34 Rainfall plots representing the genome-wide distribution of DMR densities in children and mothers. Each red dot symbolizes a 

hypermethylated, each blue dot a hypomethylated DMR. Color shading is only used for visualization purposes. Y-axis indicates the inter-DMR distance. 
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Figure 35 Correlation between DMR density and replication timing. Scatter plot 

correlating the number of DMRs (y axis) binned into 1Mb windows with genome-wide 

replication timing data (Repli-Seq) sorted from from “Late” to “Early” replication timing (x axis). 

Clearly, DMR density is inversely correlated with replication timing (Spearman’s rank 

correlation 0.83 (p=5.455e-7) and 0.77 (p=1.954e-4) for children and mothers, respectively). 

Upper (lower) panels represent genome-wide DMR distribution characteristics in children 

(mothers). 
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Figure 36 Enrichment of DMRs in general genomic features for children and mothers. 

 

 

Figure 37 Enrichment of DMRs in regulatory regions for children and mothers. 
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Figure 38 DMR profiles for MAPK9 in children and mothers. For MAPK9 methylation 

profiles are shown for the differentially methylated region (red shadowed area) discovered by 

DMR calling (smokers: black, non-smokers: green). 

 

A set of 52 DMRs, linked to pathway deregulation or epigenetic 

reprogramming, were then validated in a total of 505 CpG sites over 90 

samples (validation panel, Table 9 and Table 10) by targeted mass 

spectrometry-based methylation analysis (MassARRAY). The correlation 

between MassARRAY and WGBS based methylation analysis was remarkably 

high across all DMRs (Figure 39; Pearson correlation 0.90; p < 2e-16). Out of 

the 52 DMRs the methylation difference estimated from the discovery panel 

could be confirmed for 30 DMRs (58%) in the validation panel. Transcriptional 

expression of genes related to DMRs and DNA methylation was generally 

weakly correlated (Figure 40) as reported earlier in cancer243. Still, 10/50 

genes (20%) related to DMRs showed a significantly differential expression 

(Table 9 and Table 10) across the smoking/non-smoking samples in the 

validation panel. Thereby, the correlation between DNA methylation and 

transcriptional response was much higher in mothers compared to their 

children suggesting that environmental factors acting throughout the 
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developmental period may induce epigenetic marks that potentially impact 

disease only later in life244. 

 

 

 

Figure 39 Correlation of methylation changes determined by WGBS and MassARRAY 

for representative examples. Overall, methylation levels of all CpGs observed by 

MassARRAY in the discovery panel were highly correlated with those observed by WGBS in 

the validation panel (Pearson coefficient R=0.9, p < 10e-16). Green: non-smokers, black: 

smokers. 
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             Sequencing                       MassARRAY Transcription 

Gene name           DMR location 

proximal 

regulatory 

feature/ 

location 

Mother 

Child 

(M/C) 

hypo/ 

hyper 

mean meth.  

diff. 

number of 

CpGs  
p-value  

mean 

meth. 

diff. 

p-value  

total number 

of CpGs in 

amplicon 

CpGs  

used for 

statistics 

CpGs with 

reliable 

Mass-ARR

AY results 

fold-change p-value 

PDK1 chr2 173379024 173379341 enhancer C hypo -0.19 10 0.05 -0.055 0.013 12 8 9 1.0 0.848a 

MAPK9 chr5 179740711 179742200 intron C hypo -0.25 44 0.00 -0.073 0.01 16 4 12 1.6 0.505b 

SLC2A1 chr1 43472535 43473075 enhancer C hypo -0.11 36 0.01 -0.118 0.002 30 3 14 1.0 0.909b 

CYP2E1 chr10 135343009 135344280 intron C hypo -0.13 45 0.01 -0.070 0.039 8 6 6 2.0 0.306b 

FZD10 chr12 130704847 130705600 TFBS C hypo -0.11 19 0.01 -0.028 0.078 10 3 6 -1.3 0.702b 

FCGR2A chr1 161423750 161423827 DNAse Cluster C hyper 0.19 3 0.00 0.039 0.02 11 4 6 1.5 0.427b 

RUFY1 chr5 178985402 178987269 promoter-TSS C hyper 0.16 77 0.02 0.035 0.038 32 5 12 n.d. n.d. 

KDM5B chr1 202777861 202779663 TFBS C hyper 0.12 38 0.01 0.04 0.086 8 4 6 -1.2 0.056a 

METTL24 chr6 110617827 110618174 intron C hyper 0.18 11 0.00 0.080 0.039 9 3 5 1.6 0.749b 

PPP3CA chr4 101987882 101988016 intron C hyper 0.16 6 0.01 0.069 0.045 6 3 4 1.4 0.293a 

LMNA chr1 156093333 156095351 intron M hypo -0.11 36 0.02 -0.051 0.053 10 1 8 n.d. n.d. 

MAPK9 chr5 179740257 179742208 intron M hypo -0.31 44 0.00 -0.116 <0.001 16 4 12 -1.1 0.232b 

PLD1 chr3 171495495 171495665 intron M hypo -0.13 4 0.01 -0.047 0,018 4 3 4 -1.3 0.753b 

CACNA2D1 chr7 82073572 82074006 promoter-TSS M hypo -0.07 16 0.04 -0.032 0.026 16 2 13 n.d. n.d. 

PIK3R5 chr17 8869555 8870436 promoter-TSS M hypo -0.09 36 0.03 -0.050 0.026 13 2 10 1.5 0.119a 

MAPK7 chr17 19282195 19282738 promoter-TSS M hypo -0.14 30 0.01 -0.168 <0.001 36 6 19 -1.0 0.865b 

CACNG4 chr17 64959742 64960474 promoter-TSS M hypo -0.09 22 0.03 -0.044 0.043 12 1 5 n.d. n.d. 

F2RL3 chr19 16998279 16998796 DNAse Cluster M hypo -0.10 8 0.02 -0.095 0.046 11 1 5 -1.6 0.164a 

GABRB3 chr15 26873979 26874471 promoter-TSS M hyper 0.13 46 0.02 0.022 0.051 34 16 30 -3.0 0.067a 

METTL24 chr6 110617826 110618173 intron M hyper 0.15 11 0.03 0.152 0.016 9 5 5 -1.1 0.869a 
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FZD7 chr2 202904079 202904886 DNAse Cluster C hypo -0.13 14 0.01 -0.060 0.139 8 4 6 -1.3 0.734b 

PRKCB chr16 23864800 23864984 intron C hypo -0.24 3 0.00 -0.051 0.117 4 2 2 1.6 0.138a 

C18orf54 chr18 51915207 51916404 TFBS C hyper 0.16 9 0.01 0.087 0.204 6 2 2 1.1 0.944b 

CACNG4 chr17 64972219 64972396 intron M hypo -0.10 6 0.01 -0.029 0.144 11 3 9 n.d. n.d. 

LINC00032 chr9 27205855 27206391 intron M hyper 0.17 10 0.00 0.033 0.133 9 5 5 n.d. n.d. 

a
 Student’s t-test 

b
 Mann-Whitney U test 

n.d.
 not detectable 

Table 9 Correlation of DMRs identified by WGBS with differential methylation determined by MassARRAY and detected transcriptional changes. 
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Sequencing Transcription 

Gene 

name 
DMR location 

proximal 

regulatory 

feature/  

location 

Mother 

Child 

(M/C) 

hypo/ 

hyper 

mean 

methylation 

difference 

number 

of CpGs  
p-value  

fold-cha

nge 
p-value 

 
    

  

   

  

  KITLG chr12 88974836 88975118 promoter-TS

S 

C hypo -0.12 6 0.004 1.6 0.3461 a 

FHIT chr3 60942995 60943388 intron C hypo -0.13 11 0.005 1.4 0.5900 b 

FGF5 chr4 81190228 81190754 intron C hypo -0.10 9 0.015 -1.1 0.9415 a 

Wnt4 chr1 22586826 22587094 DNAse 

Cluster 

C hypo -0.14 3 0.005 n.d. n.d. 

FOXA2 chr20 22753930 22754460 DNAse 

Cluster 

C hypo -0.11 6 0.014 n.d. n.d. 

FOXO3 chr6 108883163 108883552 intron C hyper 0.12 50 0.017 1.1 0.9209 b 

RUNX1 chr21 36253761 36253874 intron C hyper 0.16 3 0.008 1.2 0.5048 a 

MIR657 chr17 79092655 79092814 intron C hyper 0.20 7 0.006 n.d. n.d. 

PLB1 chr2 28825272 28825928 intron C hyper 0.14 7 0.025 1.2 0.6480 a 

SETD9 chr5 56203809 56204994 promoter-TS

S 

C hyper 0.12 31 0.023 1.1 0.7536 a 

CTBP2 chr10 126850806 126851292 DNAse 

Cluster 

C hyper 0.20 35 0.003 1.7 0.1364 a 

DLG1 chr3 196876335 196876593 intron C hyper 0.15 5 0.027 1.1 0.3421 b 

PIK3CB chr3 138565356 138565607 TFBS C hyper 0.12 7 0.025 1.0 0.8310 a 

PLD1 chr3 171495495 171495665 intron C hyper 0.10 4 0.4 1.3 0.4535 a 

IL1A chr2 113541539 113542345 intron M hypo -0.14 12 0.009 1.3 0.7055 a 
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HLA-E chr6 30465492 30465759 DNAse 

Cluster 

M hypo -0.15 3 0.003 n.d. n.d. 

SP6 chr17 45929846 45930672 intron M hypo -0.11 24 0.015 n.d. n.d. 

SMAD3 chr15 67355626 67357164 TFBS M hypo -0.17 44 0.400 1.1 0.6746 a 

Wnt6 chr2 219726213 219726546 intron M hypo -0.14 5 0.004 n.d. n.d. 

GDF7 chr2 20868948 20872088 exon M hyper 0.22 177 0.003 -3.0 0.0536 a 

SETD9 chr5 56203809 56204891 promoter-TS

S 

M hyper 0.09 31 0.023 1.0 0.8142 a 

CABIN1 chr22 24424783 24425132 intron M hyper 0.24 5 0.001 -1.3 0.0623 b 

ZMAT3 chr3 178750749 178751252 intron C hypo -0.28 10 0.003 -1.2 0.0762 b  

C18orf54 chr18 51915207 51916404 TFBS M hypo 0.17 9 0.002 -1.5 0.0953 a 

CYP2E1 chr10 135316185 135316476 DNAse 

Cluster 

M hypo -0.10 4 0.021 -3.4 0.0003 a 

FASLG chr1 172770749 172770896 
DNAse 

Cluster 

M hypo -0.14  0.019 -1.9  0.0128 b 

FGFR2 chr10 123443190 123444420 TFBS M hypo -0.16 21 0.003 -2.5 0.0101 b 

NFAT1C chr18 77292133 77292782 TFBS M hypo -0.2565  0.0089 -1.5 0.0065 b 

Nostrin chr2 169690829 169691015 intron M hyper 0.17 12 0.006 1.8 0.1438 a 

THBS1 chr15 39873767 39874199 intron M hypo -0.12 12 0.005 2.3 0.0133 a 

         
a
      Student’s t-test

 

b
      Mann-Whitney U test 

n.d.
   not detectable 

Table 10 Correlation of significant DMRs with differential transcription. 
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Figure 40 correlation between methylation changes and transcription for MAPK9. 

MAPK9 hypomethylation is associated with a slight decrease in transcription in mothers, but 
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not in children. A weak correlation between methylation change and transcriptional expression 

is observed for MAPK9 in children, but not in their mothers. 

 

Pathway analysis was then performed to categorize the potential function 

of DMRs. Since the relevance of methylation changes in different genomic 

regions such as promoters, gene bodies, and enhancers, is not generally 

established, we considered all methylation changes attributed to a certain 

gene independent of its genomic location. Interestingly, only a small number of 

pathways, including the WNT signaling pathway, are jointly enriched in 

mothers and children (Figure 41). Aberrant WNT signaling is involved in the 

airway inflammatory response in healthy smokers and smokers with chronic 

obstructive pulmonary disease (COPD)245 and was also described as a 

hallmark of many tumors, including lung cancer246. Thirteen differentially 

methylated genes identified in smoking mothers belonged to the WNT 

signaling pathway and 16 genes aberrantly methylated were identified in their 

newborn children. The striking overlap between epigenetic perturbations in this 

pathway in mothers and children indicates prenatal programming of impaired 

lung function.  

The majority of affected pathways differ widely between children and 

mothers supporting our view that the environmental modulation of the 

epigenome is distinct in mothers and children (Figure 41). Despite the 

multitude of pathways enriched for DMRs in children, three functionally related 

groups emerged. First, signaling pathways involved in immune regulation and 

inflammation, among them MAPK, chemokine, and T cell receptor signaling. 

Perturbation of these pathways potentially results in an altered NFκB activation, 

which could be confirmed by measurements of NFκB subunit RNA expression 

(Figure 42) and blood concentrations of the NFκB target proteins IL-6, TNF-α, 
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and MCP-1(Figure 43). Those target proteins are up-regulated in children, but 

not in their mothers, supporting our conclusion of an increased tobacco 

smoke-induced inflammatory response in children compared to their mothers. 

Remarkably, this inflammatory phenotype is sustained until the age of one 

(Figure 44). 

Second, pathways involved in metabolic dysfunction, including insulin 

signaling, adipocytokine and Type II diabetes mellitus pathways, were 

frequently encountered. These pathways include central functions of the 

metabolism regulating glucose homeostasis and fatty acid oxidation. PRKCB 

which is hypomethylated and transcriptionally upregulated in children from 

smoking mother, has been described to contribute to impaired 

insulin-signaling247 and to participate in the regulation of glucose transport in 

adipocytes248. Smoking during pregnancy is increasingly accepted as risk 

factor for childhood overweight and obesity249,250 although the underlying 

mechanisms remain unknown. Pathway analyses in this study support the idea 

that epigenetic mechanisms are involved in metabolic programming by 

prenatal tobacco smoke exposure. Interestingly, a continuously increasing 

body weight (Z-score, Figure 45) was observed in tobacco smoke exposed 

children compared to children from non-smoking mothers, suggesting a link 

between the epigenetic dysregulation of metabolism and an overweight 

phenotype. 
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Figure 41 Pathway enrichment analysis. Depicted are the results of the pathway enrichment analysis using all DMRs with a differential methylation > 10% 

and a significance level < 0.05. Enrichment was determined for mothers and children separately with 1671 and 1496 genes related to DMRs identified used for 

analysis, respectively. Three particularly interesting groups of pathways emerge in children: pathways related to metabolic dysfunction (green), 

inflammation/immune regulation (orange) and cancer (blue). Pathways enriched for DMRs in both mothers and children are highlighted as “overlapping 

pathways” (grey). 



 

93 

 

 

 

 

Figure 42 Expression of mRNA of NFκB pathway genes. mRNA expression of REL, RELB, 
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NFκBIB and IKBKG in the validation panel of smoking mothers (n=27, black), non-smoking 

mothers (n=15, green) and their children are shown. Data are represented as box plots (first 

and third quartile, median), the whiskers indicate ranges without outliers. P-values from 

Mann-Whitney U test/Student’s t test. 

 

 

 

Figure 43 Blood concentrations of inflammatory cytokines. Concentrations of the 

inflammatory cytokines MCP-1, IL-6, TNF-a in the validation panel of smoking mothers (left, 

black, n=29), non-smoking mothers (left, green, n=16) and corresponding children (right). Data 
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are shown in box- plots (first and third quartile, median), the whiskers indicate ranges without 

outliers. P-values are from Mann-Whitney U test. 

 

 

 

Figure 44 Blood concentrations of inflammatory cytokines at one year after birth. 

Concentrations of MCP-1, IL-6, TNF-a one year after birth in the validation panel of smoking 

mothers (n=28, black), non-smoking mothers (n=10, green) and their children. Data are 
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represented as box plots (first and third quartile, median), the whiskers indicate ranges without 

outliers. P-values from Student’s t test of logarithmical data. Note that the inflammatory 

phenotype is sustained in children, but not in mothers one year after birth. 
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Figure 45 Difference in the growth and weight development of children from 

non-smoking and smoking mothers. Depicted are (A) weight, (B) z score for ”weight of age” 

and (C) z score for “weight of length” from birth up to the fourth year of age (mean +/- s.e.m) 

for both groups of children (black: from smoking mothers; green: from non-smoking mothers). 

Z scores were calculated using the WHO Anthro software (version 3.2.2, 2011). Data were 

fitted with a linear model using the LIMMA package of R and tested for statistical significance 

using ANOVA. Note that weight and ”weight of age” curves differ significantly, while there is no 

significant difference in “weight of length” between children from smoking and non-smoking 

mothers. 

 

Much fewer data exist regarding the association between maternal 

smoking during pregnancy and type 2 diabetes (T2D) or metabolic syndrome. 

Animal studies showed a disruption of T2D-related pathways including an 

impaired pancreatic β-cell function after prenatal nicotine exposure251,252. 

Furthermore, insulin resistance, closely related to T2D, was already found 

related to maternal smoking during pregnancy253. The here described 
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epigenetic modification in several genes within the T2D pathway indicates 

maternal smoking as a risk factor for T2D.  

Third, a surprisingly high number of cancer specific pathways were 

enriched in children. Seven out of a total of 14 cancer pathways (by 

KEGG-based analysis) were exclusively enriched in children, including 

essential signal transduction pathways related to cancer (p53, ErbB, hedgehog 

and WNT signaling). Thus, by epigenetically perturbing regulatory pathways, 

maternal smoking may also modify the cancer risk for children.  

In mothers, an enrichment of DMRs was observed in 

cardiomyopathy-related pathways, such as cardiac muscle contraction and 

hypertrophic or dilated cardiomyopathy. This result is in agreement with the 

observation that smoking increases the risk of heart diseases254,255. 

Interestingly, the hypomethylation of F2RL3 was detected which has been 

described to predict coronary heart disease256, in smoking mothers but not in 

their children (Table 9). 
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Gene 

name 
DMR location 

Proximal 

regulatory 

feature/ 

location 

Mother 

Child 

(M/C) 

Hypo/ 

hyper 

Mean 

methylation 

difference 

Number of 

CpGs 
p-value* 

 

Epigenetic 

modifier 

type            

HDAC7 chr12 48197035 48197612 intron C hyper 0.09 11 0.0307 repressive 

 KDM6B chr17 7742259 7743410 promoter-TSS C hyper 0.09 11 0.0882 activating** 

KDM5B chr1 202777861 

 

 

202779663 

 

TFBS C hyper 0.12 

 

38 

 

0.0893 repressive 

SMYD3 chr1 246234951 246236417 intron C hypo -0.10 23 0.0103 activating 

MLL3 chr7 152130609 152130970 intron C hypo -0.09 12 0.0221 activating 

KAT8 chr16 31127594 31128110 DNAse cluster C hypo -0.08 26 0.0273 activating 

NSD1 chr5 176555829 176555977 TFBS C hypo -0.11 4 0.0528 activating 

SMYD2 chr1 214399090 214399200 DNAse cluster C hypo -0.10 6 0.0240 activating 

SUV39H2 chr10 14954062 14955582 intron C hypo -0.07 23 0.0450 repressive** 

DNMT1 chr19 10296823 10298036 intron C hypo -0.06 26 0.0554 repressive** 

SETDB1 chr1 150897595 150898208 promoter-TSS M hyper 0.14 36 0.0393 repressive 

KDM4A chr1 44114745 44115121 promoter-TSS M hypo -0.13 17 0.0040 activating 

DOT1L chr19 2165738 2165990 intron M hypo -0.09 18 0.0098 activating 

KDM4C chr9 6942611 6943057 intron M hypo -0.09 6 0.0299 activating 

NSD1 chr5 176541826 176542008 enhancer M hypo -0.10 7 0.0727 activating 

* Welch’s test 

** deviation from pattern that repressive (activating) enzymes are hypermethylated (hypomethylated) 

Table 11 DMRs correlating to chromatin modifying enzymes in mothers and children determined by WGBS 
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Gene name 

Mother/ 

Child 

(M/C) 

Fold-change p-value 

 

Epigenetic  

modifier 

type 

      

AURKC C 1.30 0.0310 a activating 

HDAC8 C 2.70 0.0250 a repressive 

KDM5B C -1.20 0.0560 a repressive 

SMYD2 C 2.00 0.0217 a activating 

USP16 C -1.30 0.0162 a  

AURKC M 1.40 0.0350 b activating 

CSRP2BP M -1.70 0.0060 a activating 

HDAC10 M -1.90 0.0220 b repressive 

HDAC8 M -2.20 0.0260 b repressive 

HDAC9 M -2.00 0.0470 b repressive 

KAT2A M -1.70 0.0040 b activating 

KDM5B M 1.30 0.0520 a repressive 

MLL M -1.30 0.0070 a activating 

NCOA3 M -1.30 0.0587 b activating 

PRMT1 M -1.80 0.0004 b activating 

SETD8 M 1.70 0.0008 a activating 

SUV39H1 M -1.20 0.0606 a repressive 

SUV39H2 M -1.70 0.0052 b repressive 

UBE2A M -1.30 0.0032 a  

Table 12 Chromatin modifying enzymes showing a significant differential mRNA 

expression in mothers and children. 
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 Children  Mothers  

Gene name 
Fold 

change 
p-value  

Fold 

change 
p-value  

       

ASH1L -1.40 0.0800 b -1.30 0.3240 b 

AURKA 1.30 0.0310 a -1.20 0.7930 b 

AURKB 1.30 0.2990 a 1.10 0.7230 b 

AURKC -1.30 0.2030 a 1.40 0.0350 b 

CARM1 1.00 0.7880 b -1.20 0.2120 a 

CSRP2BP -1.30 0.3760 a -1.70 0.0060 a 

DNMT1 1.30 0.4570 a -1.50 0.0960 b 

DNMT3A -1.00 0.9020 b -1.00 0.9370 b 

DNMT3b  n.d.   n.d.  

DNMT3L  n.d.   n.d.  

DOT1L -1.00 0.9790 a 1.40 0.1550 b 

DZIP3 1.20 0.4130 a -1.30 0.1560 b 

EHMT2 1.20 0.7550 b -1.20 0.1310 b 

HAT1 1.10 0.6850 a -1.20 0.3510 b 

HDAC10 1.40 0.2510 a -1.90 0.0220 b 

HDAC11 1.30 0.1590 a -1.30 0.1850 b 

HDAC3 1.20 0.4490 a 1.10 0.6390 a 

HDAC4  1.40 0.2880 b -1.50 0.1810 b 

HDAC5 -1.20 0.2910 a -1.10 0.5290 b 

HDAC6  1.30 0.0940 b 1.10 0.5810 b 

HDAC7 -1.20 0.4650 b -1.80 0.1390 b 

HDAC8   2.70 0.0250 a -2.20 0.0260 b 

HDAC9  1.30 0.4370 a -2.00 0.0470 b 

KAT2A  1.30 0.3920 a -1.70 0.0040 b 

KAT2B  1.30 0.5120 a -1.00 0.9100 a 

KAT5 -1.10 0.5510 b -1.10 0.5630 b 

KAT6A -1.20 0.2760 a -1.00 0.7640 a 

KAT6B -1.80 0.5830 b 1.60 0.3760 a 

KAT7 -1.10 0.2570 b 1.10 0.3100 b 

KAT8 -1.10 0.5530 a 1.10 0.4510 b 

KDM1A  1.10 0.6230 a -1.20 0.2260 a 

KDM4A -1.30 0.6230 a -1.20 0.2260 a 

KDM4C  1.20 0.9210 b -1.40 0.6150 b 
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 Children  Mothers  

Gene name 
Fold 

change 
p-value  

Fold 

change 
p-value  

       

KDM5B  -1.20 0.0560 a 1.30 0.0520 a 

KDM5C  n.d.   n.d.  

KDM6B 1.40 0.4690 a -1.60 0.6550 b 

MGMT  n.d.   n.d.  

MLL -1.00 0.9660 b -1.30 0.0070 a 

MLL3 -1.10 0.4696 b 1.10 0.6553 b 

MLL5 -1.30 0.0614 a 1.10 0.6367 a 

MYSM1 1.40 0.4059 a 1.20 0.5904 b 

NCOA1 1.40 0.1340 a -1.30 0.2319 a 

NCOA3 1.00 0.8574 a -1.30 0.0587 b 

NCOA6 1.10 0.7088 a -1.20 0.2759 b 

NEK6 1.20 0.4556 a -1.00 0.8132 b 

NSD1 1.10 0.4492 a 1.10 0.6793 a 

PAK1 1.40 0.1571 a -1.10 0.5995 a 

PRMT1 1.30 0.0892 a -1.80 0.0004 b 

RNF2 -1.00 0.9891 a  n.d.  

RNF20 -1.10 0.7908 a -1.30 0.3446 b 

RPS6KA3 1.40 0.1897 a -1.30 0.4158 b 

RPS6KA5 1.10 0.7341 a -1.20 0.6365 b 

SETD1A -1.20 0.1545 a 1.00 1.0000 b 

SETD1B -1.00 0.7568 a 1.00 0.6314 a 

SETD2 -1.10 0.8205 b 1.20 0.2480 b 

SETD3 1.40 0.2396 a -1.70 0.3721 b 

SETD4 2.00 0.1333 a -2.60 0.2593 a 

SETD5 1.20 0.8933 b 1.20 0.5117 b 

SETD6 1.20 0.2541 a -1.30 0.1313 a 

SETD7 -1.00 0.5515 b 1.20 0.2533 b 

SETD8 1.20 0.2669 a 1.70 0.0008 a 

SETDB1 1.10 1.0000 b -1.10 0.9372 b 

SETDB2 1.40 0.9774 b -1.20 0.4004 a 

SMYD2 2.00 0.0217 a -1.10 0.6957 b 

SMYD3 -1.10 0.8445 a  n.d.  

SUV39H1 -1.30 0.3871 b -1.20 0.0606 a 

SUV39H2 1.50 0.2069 b -1.70 0.0052 b 

SUV420H1  n.d.   n.d.  
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 Children  Mothers  

Gene name 
Fold 

change 
p-value  

Fold 

change 
p-value  

       

UBE2A -1.10 0.5234 b -1.30 0.0032 a 

UBE2B -1.00 0.9206 b 1.10 0.3168 a 

USP16 -1.30 0.0162 a 1.10 0.5201 b 

USP21 -1.30 0.7499 b -1.70 0.5837 b 

USP22 -1.10 0.3843 a -1.20 0.1687 b 

WHSC1 -1.00 0.8316 b -1.60 0.1633 b 

n.d.  not detectable 

a   Student’s t-test 

b   Mann-Whitney U test 

 

Table 13 Chromatin modifying enzymes investigated by qPCR 

 

        

Gene 

name 
DMR location 

Proximal 

regulatory 

feature/   

location 

Mother 

Child 

(M/C) 

Correlation p-value 

        

NCOA3* chr20 46060706 46060979 enhancer C 0.808 0.052 

SMYD3* chr1 246388869 246389547 TFBS M 0.797 0.058 

HAT1* chr2 172779525 172780031 DNAse cluster M 0.793 0.060 

SETDB1* chr1 150897674 150898138 DNAse cluster C -0.774 0.071 

HDAC4* chr2 240417580 240418121 DNAse cluster C 0.730 0.099 

        

KDM5B** chr1 202777861 202779663 TFBS M / C −0.280   0.079 

        

*Methylation estimated from WGBS 

**Methylation estimated from MassARRAY 

 

Table 14 Chromatin regulators for which methylation correlates with DNMT1 expression 
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Finally, to examine whether the observed changes in DNA methylation in 

response to tobacco smoke exposure may be linked to other epigenetic 

modifiers, a key set of 74 chromatin regulators (Table 13) were analyzed. 

16/74 genes were differentially methylated in children or in mothers (Table 12) 

with only histone H3K36 methylase NSD1 shared between mothers and 

children. When considering the expression of activating (histone H3/H4 

acetylation, H3K4me1/me2/me3 and H3K36me1/me2 methylation) versus 

repressive histone marks (H3K9me2/me3, H3K27me2/me3) a striking 

epigenetic feature emerges: for 12/14 histone modifiers (except for KDM6B 

and SUV39H2) the enzymes that favor the active chromatin state were 

hypomethylated, while enzymes that favor repressive modifications were 

hypermethylated. For example, SETDB1, coding for the enzyme that sets the 

repressive H3K9me2/3 mark in euchromatin was hypermethylated, while the 

counteracting histone demethylases KDM4A and KDM4C that remove 

H3K9me2/3 were hypomethylated (Table 11). Likewise, SMYD2, which 

mediates the formation of the activating H3K36me2 mark, was 

hypomethylated and transcriptionally upregulated while the repressive H3K4 

demethylase KDM5B was hypermethylated and transcriptionally 

downregulated (Table 11and Table 12). This suggested that tobacco smoke 

exposure results in a distinct epigenetic landscape with the potential to induce 

a more activated chromatin state.  

It was previously shown that both SUV39H1 as well as the H3K9me2/3 

reader heterochromatin protein 1 (HP1) interact with DNMT1257-259; for a recent 

review on dependencies between histone methylation and DNA methylation260. 

Here, a highly significant transcriptional correlation between SUV39H1 and 

DNMT1 was observed in our validation panel (Figure 46). Furthermore, the 

transcription level of DNMT1 was correlated (p<0.1) with the methylation level 

of 6/72 chromatin modifying enzymes (Table 14), and with the overall 
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methylation level of all DMRs called in the discovery panel (Figure 47). This 

leads us to propose that tobacco smoke induced differential DNA methylation 

is linked to deregulated histone methylation patterns, and that this might be 

mediated by DNMT1, which has been reported to be regulated by nicotine in 

mice261. As nicotine was shown to act like an HDAC inhibitor262 and a number 

of differentially expressed histone (de)acetylases (Table 13) were identified, it 

emerges that the entire epigenetic program of smoking mothers and their 

children is changed on the level of DNA methylation, histone methylation and 

histone acetylation with the exact mechanisms still to be studied in detail.  
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Figure 46 Correlation of mRNA expression of different chromatin modifiers. The enzyme 

SETD1 sets the repressive H3K9me2/3 mark in euchromatin while KDM4A and KDM4C 
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remove this mark. Expression of SETDB1 versus KDM4A and KDM4C mRNA, respectively, is 

highly correlated in mothers and slightly less correlated in children (A,B). In addition, we 

observe a highly significant transcriptional correlation between SUV39H1 and DNMT1 (C), two 

chromatin modifying enzymes which have previously been described to interact through the 

H3K9me2/me3 "reader" protein, HP1 und UHRF1. Mothers: right panel, Children: left panel. 

Green: non-smoking, black: smoking. 

 

 

Figure 47 Correlation between DMR mean methylation and DNMT1 transcription. 

DNMT1 is significantly correlated with the overall methylation change across all DMRs 

suggesting that DNMT1 is involved in global maintenance of DNA methylation. 

 

In summary, this study provides novel insights into the mechanisms by 

which an environmental stressor reprograms the epigenetic landscape in both 

mothers and children. The aberrant DNA methylation pattern will persist over 

time in the newborn child even if it is no longer exposed to smoking, since it will 

be faithfully copied via DNMT1 through cell divisions. Together with the 
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observed drastic deregulation of a number of disease related pathways in 

particular in children, the identified aberrant DNA methylation may act as a 

molecular mechanism for the long-lasting consequences of smoking during 

pregnancy.  

5.4 Discussion 

Transgenerational epigenetic inheritance has been recently observed in 

plants263, C. elegans264 and mice265. But proving epigenetic inheritance in 

human is difficult. Researchers must first rule out the possibility of genetic 

changes. Second, researchers have to show that the epigenetic effect can 

pass through enough generations to rule out the possibility of direct exposure. 

Because in a pregnant mother, three generations (1st generation: mother; 2nd 

generation: fetus; 3rd generation: reproductive cells in fetus) are directly 

exposed to the same environmental conditions at the same time. An epigenetic 

effect that continues into the 4th generation could be inherited and not due to 

direct exposure.  

Although this study in the first time at a single base resolution showed a 

possible epigenetic mechanism to connect the maternal smoking and the 

influence to the next generation, the impact of this influence still needs to be 

validated by a longitudinal study. It will be interesting to see whether the 

alterations observed in newborns can be still observed after one year, five 

years and their later life.  

As known the difficulties in such study in human beings, the limited 

sample size, on one hand, may decrease the power to detect subtle changes 

between smoking and non-smoking groups and, on the other hand, increase 

the false positive rate due to the variation of methylation level between each 

individual. 

This study has revealed the association between the alteration of 
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methylation and the dysregulation of histone modifiers which fits the 

observations in C. elegans study which shows specific chromatin modifiers 

can induce an epigenetic memory264. Chip-seq on those observed 

dysregulated histone markers should be follow up in order to prove the 

functional consequence. More recently, the dysregulation of methyl group 

related metabolic pathways, such as folate metabolism265, have been shown to 

cause the transgenerational epigenetic instability. So it makes sense to 

perform a systematic screenning of all possible methyl group related 

metabolism pathways in order to integrate metabolome into the epigenetic 

transgenerational inheritance machinary. In addtion, Emma Whitelaw recently 

proposed that RNA might be particularly involved in epigenetic inheritance266. 

Thus, combining WGBS, Chip-seq and RNA-seq will give us a more complete 

picture of epigenetic inheritance in different levels. 
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Chapter 6: Perspectives  

The processes of epigenetics have been expanded from DNA methylation 

and histone modifications to non-coding RNA, prion changes and polycomb 

mechanisms and it is likely that additional epigenetic processes will be 

discovered in the near future. Together with novel epigenetic mechanisms 

discovered by recently advanced techniques, epigenetic processes have been 

observed to be heavily involved not only in cancer and disease development, 

but also in metabolism, stem cell behavior, X chromosome inactivation, tissue 

regeneration, genomic imprinting, transgenerational reprogramming, memory 

processes and aging. However, the cause and consequences of the basic 

epigenetic machinery still remains a mystery. For example, what distinguishes 

two alleles when both have the same sequence in the same nuclear 

environment? Whether and how transgenerational epigenetic reprogramming 

occurs? What are the epigenetic marks in the germ cell which are used to 

maintain the totipotent genome? And how are these epigenetic marks 

dynamically regulated? 

With the development of new techniques focused on the single cell level 

and the accumulation of longitudinal genome-wide epigenetic data in different 

populations or even different species, we will come closer to answer these 

fundamental questions in epigenetics. 

 

6.1 Single Cell Epigenomics 

Single cells are the fundamental units of life. Thus, single cell analysis will 

help us to better understand the fundamental biology of our life including how 

individual cells process information and respond to perturbations. The 

epigenome plays a key part in regulating the state of a single cell and makes 
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diversity in a population of cells.  

Today, the gold standard technique for comprehensive, genome-wide 

analysis, is whole genome bisulfite sequencing (WGBS), which is based on 

ensemble measurements and requires sequencing a cell population, not a 

single cell. The variability between each cell is present to some degree in any 

cell population, and the ensemble behaviors of a population cannot represent 

the behaviors of any individual cell267,268. Stem cells, for example, including 

embryonic stem cells, adult stem cells and induced pluripotent stem cells are 

all heterogeneous populations269,270. Single cell amplification can target 

specific populations and therefore elucidate signaling pathways and networks 

for self-renewal and differentiation. Cancer is a heterogeneous disease and 

dissecting cell-to-cell variations is extremely important in understanding tumor 

initiation, progression, metastasis and therapeutic responses. Therefore, the 

current widely-used approach can just provide the distribution of DNA 

methylation within cells271,272 or support models for the stochastic emergence 

of differential methylation273. The same problem exists with the ChIP-seq 

technique, which is used to generate genome-wide maps of histone 

modifications. It is impossible to know if a combination of transcription factors 

exists in a single individual cell.  

Thus, highly sensitive methods with single cell resolution and ideally down 

to the single molecules level are required to accurately understand the 

complex intrapopulation heterogeneity and its impact on cell behavior and 

biological responses in cell populations which would be very revealing in the 

understanding of cancer evolution and stem cell development. One of the 

biggest challenges is to physically capture a single cell. Several approaches 

including micropipetting274, FACS sorting275 and microfluidics276-278 already 

hold great promise. After capturing cells, one of whole genome amplification 

(WGA) strategies, named multiple displacement amplification (MDA)279, is 
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used to obtain sufficient DNA for sequence analysis with potential amplification 

biases280 and problems281. More recently, a new WGA method, named multiple 

annealing and looping-based amplification cycle (MALBAC), has been shown 

with considerable improvement on amplification fidelity282. Nevertheless, these 

methods extremely helped recent single-cell whole-genome analyses, 

especially in tumor evolution studies with low coverage single cell 

sequencing283. 

Unlike single cell genomic studies284-286, the application of single cell 

approaches to epigenomic analysis has so far been limited. In single cell 

genomics, Helicos Biosciences has developed a high-throughput, 

amplification-free method for transcriptome profiling which is the single 

molecule sequencing digital gene expression (smsDGE)287. Although a recent 

ChIP-Seq study has shown the possibility of using very few cells and only 50 

pg of input DNA288, nobody has really been able to achieve epigenetic profiling 

from any single cell yet. Challenges are from both wet lab and dry lab. A major 

challenge in bisulfite sequencing is the up to 90% degradation of DNA when 

we perform the bisulfite conversion. Since the input genomic DNA in single 

cells is very limited, the extensive degradation makes molecular manipulations 

more difficult. Thus, T-WGBS and enrichment based approach might be good 

options because there are no harsh denaturing conditions causing severe 

degradation and loss of genomic DNA. For the challenges in dry lab, 

algorithms have been developed to tackle problems intrinsic to single cell 

genomics289,290 but not for epigenomics due to the lack of real data. Thus, only 

proof-of-concept single cell epiegenetic analyses have been demonstrated for 

both DNA methylation291,292 and histone modifications293 so far. 

In the near future, there will be a high demand for the improvement for 

bioinformatics294 to study multiple individual cells to achieve statistical 

significance. Furthermore, interactions between cells and their extracellular 
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environment, need to be incorporated into experimental designs and data 

analyses295. 

 

6.2 Evolutionary Epigenomics 

In contrast to single cell analysis, another aspect of epigenetics is to put 

epigenetics dynamics in the light of evolution. While the genome contains all 

genes, it is the epigenome that decides which are expressed. Though 

evolutionary genomics has focused on comparing the genomes of similar 

species and finding the commonalities to determine how common traits are 

regulated, evolutionary epigenomics provides a more in-depth look at 

regulatory functions.  

The importance of epigenetics has long been appreciated at the molecular 

level. However, the role of epigenetics in evolution is a more recent focus. 

Epigenetic mechanisms interact with genetic and environmental factors, thus, 

play an important role in organism-environment interactions296. Epigenetic 

characters can be also stably transmitted across generations297-299. Therefore, 

epigenetics has now been considered in the framework of evolution and as a 

major force behind the evolutionary creation of new species. Indeed, 

epigenetic mechanisms play critical roles in phenotypic plasticity300,301, 

response to environmental stressors and conservation biology302. Therefore, 

the higher level of our understandings in epigenetics, the more insights of 

individual and population processes at evolutionary time scales will be 

gained303,304. 

DNA methylation is a source of interindividual phenotypic variation and 

has been shown to contribute to varies phenotypic variations among 

individuals305-308 such as flower shape and fruit pigmentation309,310, mouse coat 

color311,312, and traits differentiating queen and worker honeybees313. Thus, 

http://phys.org/tags/genes/
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DNA methylation may compensate for the decreased genetic variation in a 

new environment. The presence and stable transmission of an additional 

source of variation might be important. Therefore, it has to be incorporated into 

the evolutionary theory that epigenetic mechanisms mediate the increased 

phenotypic potential of certain genotypes. 

With the current availability of vast epigenomic datasets and the prospect 

of even more epigenomic data coming in the near future, we will be able to 

compare the epigenetic signatures over different time periods for a single 

individual, different generations in a family, different individuals in the same 

population, different population in the same species and different species. All 

these comparisons will incredibly enhance our understanding of epigenome 

dynamics, which will in turn provide the power to investigate disease 

susceptibility and incidence, human evolution and species origins. 

 

6.3 Multidisciplinary Epigenomics 

The epigenetic machinery is now recognized as a fundamental 

mechanism in modulating the transcriptome. Thus it has been applied in many 

fields including not only cancer research, but also other areas of biological 

research. It will further continue to merge with other disciplines to assist in the 

explortion of biological complexity.  

The brain is one of the most complex tissues in the human body, which 

remains one of the greatest mysteries in science and one of the greatest 

challenges to understand in medicine. Learning and memory are two basic 

functions of the brain. Thus, to understand the mechanisms of learning and 

memory now have become key questions that may have an essential 

epigenetic component. It is clear that environmental influences heavily affect 

the developing brain plasticity during postnatal development. By shaping 
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neural circuits, early environmental influences can determine structural and 

functional aspects of brain and behavior for the lifespan of the individual. How 

does the brain evolve? In particular, how (epi)genetic factors influence the 

brain functions under environmental selection? How to apply it to cure 

cognitive disease? These are questions future research is keen to answer.   

In summary, if genomics is the tip of the iceberg, then epigenomics is the 

vastness that lies beneath. 
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