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A. Integral calculus

01. Reducing 3-dimensional Integrals to 1-dimensional
Integrals

First we view the following integrals:

c
2∫

−c
2

b
2∫

−b
2

a
2∫

−a
2

g(x1, x2, x3) dx1dx2dx3 =
1∫

0

1∫
0

1∫
0

f(x1, x2, x3) dx1dx2dx3

= lim
µ→∞

lim
λ→∞

1∫
0

f(x1, 〈λ · x1〉, 〈µ · x1〉) dx1 (1)

We used the transformation formula see Forster [2] (§§2 and 13) and Corollary 3.2.8(He [3]
p.88):

We need the function

~A(x1, x2, x3) = (cx1 −
c

2
, bx2 −

b

2
, ax3 −

a

2
)

with jacobian matrix

D ~A(x1, x2, x3) =

 c 0 0
0 b 0
0 0 a


and determinant

detD ~A(x1, x2, x3) = c · b · a.

The function f is defined through:

f(x1, x2, x3) := a · b · c · g(cx1 −
c

2
, bx2 −

b

2
, ax3 −

a

2
)

〈 〉 is the fractional part of a number.

We can generalize this idea to every 3-dimensional integral. We view convex combina-
tions, see Barner [1] chapter 13.2 p.30. We construct the function

~A(x1, x2, x3) =

 x1 · a+ (1− x1) · b
x2 · c+ (1− x2) · d
x3 · e+ (1− x3) · f


from [0, 1]× [0, 1]× [0, 1] to [a, b]× [c, d]× [e, f ].

We calculate the jacobian matrix:

D ~A(x1, x2, x3) =

 (a− b) 0 0
0 (c− d) 0
0 0 (e− f)



7



A. Integral calculus

with detD ~A(x1, x2, x3) = (a− b) · (c− d) · (e− f).

Then we have the transformation:

b∫
a

d∫
c

f∫
e

g(x1, x2, x3) dx1dx2dx3 =
1∫

0

1∫
0

1∫
0

f(x1, x2, x3) dx1dx2dx3 (2)

with
f(x1, x2, x3) = |detD ~A(x1, x2, x3)| · g( ~A(x1, x2, x3))

The transformation to an 1-dimensional integral is the same as in equation (1).

For 2-dimensional integrals we need corollary 3.2.5 at He [3].

References

[1] Martin Barner, Friedrich Flohr “Analysis II” de Gruyter Verlag Berlin 1983

[2] Otto Forster “Analysis 3” 2.edition Vieweg Verlag Brunswick 1983

[3] Tian-Xiao He “Dimensionality reducing expansion of multivariate integration”
Birkhäuser Verlag Boston 2001

c© 2013 Harald Schröer
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A. Integral calculus

02. Surface area calculation

Let us view the surfaces as in the shown figures. Can we calculate the surface area?
Which quantities are important to the calculation? Are there quantities from which the
surface area is independent? Is it easy or difficult to calculate the surface area?

Here, two possibilities are shown:

The area is limited by f1(x), f2(x) to y. (see figure)

For the surface area calculation we need a formula of the integral calculus. With
Forster [1] §14 (14.7) p.142,143 the following is valid:

f : T → R is continuously differentiable
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A. Integral calculus

T ⊂ Rn−1

M := {(x1, . . . , xn) ∈ T ×R : xn = f(x1, . . . , xn−1)}
Thus, if the integral exists:

Voln−1(M) =
∫
T

√
1 + ||∇f(t)||2 dn−1t

|| · || = euclidean norm

Special case n = 3:
Now we insert x1 = x, x2 = y, x3 = z = f(x, y).

f : T → R is continuously differentiable.

T ⊂ R2 (x, y) ∈ T t = (x, y)

M = {(x, y, z) ∈ T ×R : z = f(x, y)}

Then we obtain:
O = Vol2(M) =

∫
T

√
1 + ||∇f(t)||2 d2t

with ∇f =

(
∂f
∂x
∂f
∂y

)
The searched surface is a special case of this formula:

T = {(x, y) ∈ R2 | x1 ≤ x ≤ x2 f1(x) ≤ y ≤ f2(x)}

With T , we can write the two dimensional integral in the following form:

O =
x2∫

x1

f2(x)∫
f1(x)

√
1 +

(
∂f(x, y)
∂x

)2

+
(
∂f(x, y)
∂y

)2

dy dx

This is the searched formula of the surface area.

The formula is valid, if the integrals exist and, if f(x, y) is continuously differentiable.
That means ∂f(x,y)

∂x and ∂f(x,y)
∂y are continuous to (x, y).

References

[1] Otto Forster “Analysis 3” 2.edition 1983 Vieweg Verlag Brunswick

c© 2001 Harald Schröer
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B. Differential calculus

03. The minimal distance

1. The minimal distance of real functions on the plane:

One function f(x) has a mimimal distance to the point P = (xp, yp). We want to
calculate this distance.(see fig.)

To distance D, it is valid:
D2 = (y − yp)2 + (x− xp)2

Then we derivate D2:

(D2)′ = 2 · (y − yp) · y′ + 2 · (x− xp)

Necessary condition of local extremes:

y′ · (y − yp) + x− xp = 0 (1)

If we derivate D, then we get (with the chain rule) the same result.

Examples:

y = p · xm

pmxm−1 · (pxm − yp) + x− xp = 0

y = sinx
cosx · (sinx− yp) + x− xp = 0

y = r · ax

rax ln a · (rax − yp) + x− xp = 0

Now we want to answer the question, whether the minimal distance is orthogonal to the
tangent of the function?

12



B. Differential calculus

m is the slope of the perpendicular of the tangent. Then it must be shown y′ ·m = −1.
It is valid:

m =
y − yp

x− xp

We obtain with (1):

y′ = −x− xp

y − yp

Check:
y′ ·m = −x− xp

y − yp
· y − yp

x− xp
= −1

The supposition is true.

2. Minimal distance between two-dimensional sets:

We look at the following figure:

Both areas are represented with A = ~a(p1, p2, t) and C = ~c(q1, q2, t).

p1, p2, q1, q2 are area parameters. t is the time or an additional parameter.

We obtain distance r:
r(p1, p2, q1, q2, t) =

√
(~a− ~c)2

We introduce the following notations:

D1 :=
d

dp1
D2 :=

d

dp2
D3 :=

d

dq1
D4 :=

d

dq2

13



B. Differential calculus

The product rule of scalar products:

D(~a · ~c) = D~a · ~c+ ~a ·D~c

It follows:
D(~a2) = 2 · ~a ·D~a

We have:
r2 = (~a− ~c)2

r and, therefore, r2 must be derivated:

D1r
2 = 2 · (~a− ~c) ·D1~a

D2r
2 = 2 · (~a− ~c) ·D2~a

D3r
2 = 2 · (~a− ~c) · −D3~c

D4r
2 = 2 · (~a− ~c) · −D4~c

Necessary criterion of local extremes:

Dir
2 = 0 for i ∈ 1, 2, 3, 4

It follows:
(~a− ~c) ·D1~a = 0

(~a− ~c) ·D2~a = 0

(~a− ~c) ·D3~c = 0

(~a− ~c) ·D4~c = 0

D1~a,D2~a,D3~c,D4~c are tangent vectors (see Forster [1] §15 theorem 1 p.148.)

We get the following result:

The minimal distance is orthogonal to both sets.

The result is valid to sets with many finite parameters, as well. This can be proven in
the same way.

In the case, A ∩ C = ∅ exists a minimal distance. If the four equations haven’t got a
solution, then the minimal distance is a boundary minimum.
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B. Differential calculus

Special cases:

A is a curve, if either p1 or p2 vanish.

C is a curve, if either q1 or q2 vanish.

A is a point, if p1 and p2 vanish.

C is a point, if q1 and q2 vanish.

If t vanishes, then the sets are (temporally) invariant.

Special choice of parameters:

for curves: i can be 1 or 2.

~a =

 pi

f1(pi)
g1(pi)

 ~c =

 qi
f2(qi)
g2(qi)


for areas:

~a =

 p1

p2

f1(p1, p2)

 ~c =

 q1
q2

f2(q1, q2)



References

[1] Otto Forster “Analysis 3” 2.edition 1983 Vieweg Verlag Brunswick

c© 2001 Harald Schröer
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B. Differential calculus

04. Described Triangles,Trapeziums and Rectangles

Here we treat different extremum problems with side conditions. Here the side conditions
are often constructed by general functions. If there are maxima or minima, this is
dependent from the side condition function. This is true for the existence of extrema, as
well. If we set the first derivative equal to zero, we get a necessary, but not a sufficient,
condition to the existence of local extrema. Here we learn to know the forms of these
necessary conditions. The second aim is to get the objective function in dependence from
the functions. Here there is no discussion about local extremum, maximum, minimum.
For this we must choose the side conditions functions at first. Then we can decide about
this with the second or higher derivative.

1. Isosceles triangle with one function

We want to calculate the maximum area of the following isosceles triangle. (see fig.)

Let y = f(x) be a axisymmetric function that means f(x) = f(−x). We assume that
the derivative y′ = f ′(x) exists.

For the triangle’s area F it is valid:

F = x · (yp − y) = xyp − xy

The necessary condition of a local extremum must be:

0 = F ′ = yp − y − xy′

The extremum condition can be written as:

y + xy′ = yp

This condition is valid to every axisymmetric function.

An example with p > 0 and m as even number:

y = pxm y′ = pmxm−1

16



B. Differential calculus

pxm + pmxm = yp p · (m+ 1)xm = yp

It follows:

x = m

√
yp

p · (m+ 1)

2. Trapezium described into one function

We look at the trapezium in the following figure: (xp, yp are let invariant.)

We assume that y = f(x) is differentiable, symmetric and convex. Here we search for
the maximum area, too. To the area F it is valid:

F =
(a+ c) · h

2

with the parallel sides a, c and the trapezium’s height h With c = 2xp, a = 2x and
h = yp − y it follows:

F = (yp − y) · (xp + x)

F ′ = yp − y − y′ · (xp + x)

Necessary condition of local extrema:

F ′ = 0 ⇒ y′ · (xp + x) = yp − y

Special case isosceles triangle: xp = 0

⇒ xy′ + y = yp

Now we view the rectangle with xp = x. Then we obtain the area:

F = 2x · (yp − y) F ′ = 2 · (yp − y)− 2xy′

We get as necessary condition F ′ = 0 to the rectangle:

xy′ = yp − y

Now we want to calulate the extremum perimeter. The perimeter is U = a + c + 2 ·√
(yp − y)2 + (x− xp)2. If a und c are inserted, it follows:

U = 2 · (x+ xp) + 2 ·
√

(yp − y)2 + (x− xp)2

17



B. Differential calculus

chain rule:

U ′ = 2 +
(−2) · (yp − y) · y′ + 2 · (x− xp)√

(yp − y)2 + (x− xp)2

With the necessary condition U ′ = 0 it becomes:

(yp − y)2 + (x− xp)2 = ((yp − y) · y′ − x+ xp)2

Special case isosceles triangle with xp = 0:

(yp − y)2 + x2 = ((yp − y)y′ − x)2

The rectangle with xp = x must be calculated separately.

Perimeter of the rectangle:

U = 4x+ 2 · (yp − y) U ′ = 4− 2y′

U ′ = 0 ⇒ y′ = f ′(x) = 2

3. The trapezium described into two functions

We view the trapezium in the figure:

x is variable, xp is invariant. We assume that the functions f1, f2 are axisymmetric and
concave respectively convex. With the elementary area formula we obtain:

F = (x+ xp) · (f1(x)− f2(xp))

with the product rule:

F ′ = (x+ xp) · f ′1(x) + f1(x)− f2(xp)

F ′ = 0 is necessary condition of local extrema, with that it follows:

f2(xp)− f1(x) = (x+ xp) · f ′1(x)

Now we work with the extremum perimeter:

U = 2 · (xp + x) + 2 ·
√

(x− xp)2 + (f1(x)− f2(xp))2

18



B. Differential calculus

U derived with the chain rule:

U ′ = 2 + 2 · x− xp + (f1(x)− f2(xp)) · f ′1(x)√
(x− xp)2 + (f1(x)− f2(xp))2

The necessary condition of local extrema U ′ = 0 leads to:

(x− xp + f ′1(x) · (f1(x)− f2(xp)))2 = (x− xp)2 + (f1(x)− f2(xp))2

For the special case xp = 0 we have a isosceles triangle. The condition of extremum area
is:

f2(0)− f1(x) = x · f ′1(x)
condition of extremum perimeter:

(x+ f ′1(x) · (f1(x)− f2(0)))2 = x2 + (f1(x)− f2(0))2

The formulas of the rectangle must be derived separately. We view the figure:

The area of the rectangle is:
F = (y1 − y2) · 2x

Derivative:
F ′ = 2 · ((y′1 − y′2) · x+ y1 − y2)

With the necessary condition F ′ = 0 it follows:

x · (y′1 − y′2) = y2 − y1

For y2 = k (constant) we get:
xy′1 = k − y1

Now we determine the perimeter of the rectangle:

U = 4x+ 2 · (y1 − y2) U ′ = 4 + 2 · (y′1 − y′2)

The necessary condition is U ′ = 0, it follows:

y′2 − y′1 = 2 y1 ≥ y2

More extremum problems can be found at Schröer [1].

References

[1] Harald Schröer, “Special extreme value problems and extremum principles”, Wis-
senschaft & Technik Verlag, Berlin, 2002

c© 2012 Harald Schröer
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B. Differential calculus

05. Inscribed pyramid and frustum of pyramid

Abstract: Here we treat two extremum problems with side conditions.If there are maxima or
minima, this is dependent from the side condition function. This is true for the existence of
extrema, as well. If we set the first derivative equal to zero, we get a necessary, but not a
sufficient, condition to the existence of local extrema. Here we learn to know the forms of these
necessary conditions. The second aim is to get the objective function in dependence from the
functions. Here there is no discussion about local extremum, maximum, minimum. For this we
must choose the side conditions functions at first. Then we can decide about this with the second
or higher derivative.

Key words: Extremum - side condition - pyramid - frustum of pyramid - maximum - minimum

1. Pyramid with one function

Now, we view a pyramid with a regular n-gon as base like in the figure:

Then the following equations are valid:

α =
π

n

A =
gx · cosα

2
with g = 2 · sinα · x

⇒ A = x2 · sinα cosα

Then to the base G it follows:

G = n ·A = n · x2 · cosα sinα

At last for the pyramid’s volume V we obtain:

V =
G · h

3
with h = yp − y and sin 2α = 2 · sinα cosα

20



B. Differential calculus

it follows:
V =

1
6
· nx2 · (yp − y) · sin

(
2π
n

)
With the product rule we get:

V ′ =
1
6
· n sin

(
2π
n

)
((yp − y) · 2x− x2y′)

The necessary criterion of local extrema V ′ = 0 leads to:

2 · (yp − y)− xy′ = 0

To the cylinder the following is valid:

G = πx2 V = G · h = πx2 · (yp − y)

The calculation is analogous. The criterion of local extremum remains unchanged.

2. Frustum of pyramid described with one function

For the two bases we have:

G1 = ax2 G2 = ax2
p with a =

1
2
· n · sin

(
2π
n

)
To the frustum of pyramid’s volume the known formula is valid:

V =
h

3
· (G1 +

√
G1G2 +G2) with h = yp − y

Insertion:

V =
yp − y

3
· (ax2 + axxp + ax2

p)

Derivation:

V ′ =
−y′

3
· a · (x2 + xxp + x2

p) +
yp − y

3
· a · (2x+ xp)

Necessary condition of local extrema:

V ′ = 0

It follows:
(yp − y) · (2x+ xp)− y′ · (x2 + xpx+ x2

p) = 0

Further examples can be found at Schröer [1].
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06. Extremum Angle

We view the triangle in the following figure:
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The function α = f(γ) is explained as:

tanα =
a · sin γ

b− a · cos γ
0 ≤ γ ≤ 180◦ b ≥ a (1)

We want to find local extrema of α in dependence of γ. The tangent is a strictly
increasing function in the interval [0, 180◦]. It is enough to view tanα.

We calculate the derivation of tanα to γ with the quotient rule:

d tanα
dγ

=
cos γ · a · (b− a cos γ)− sin γ · a · a · sin γ

(b− a cos γ)2

It is valid that tanα ≥ 0 for γ ∈ [0, 180◦]. With the Rolle’s theorem and a theorem about
continuous function about the existence of local extrema for example see Forster [1], §11,
theorem 2, p.67, we have got a local maximum in this interval.

Necessary condition of local extrema:

d tanα
dγ

= 0

It follows:
ab cos γ − a2 · (sin2 γ + cos2 γ) = 0

With sin2 γ + cos2 γ = 1 we obtain:

ab cos γ = a2

with that:
cos γ =

a

b

In the case a� b is γ ≈ 90◦.

sin γ =
√

1− cos2 γ =

√
1− a2

b2
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Insertion in (1):

tanαmax =

√
1− a2

b2
· a

b− a2

b

=
a
b ·
√
b2 − a2

1
b · (b2 − a2)

=
a√

b2 − a2

With that we have got:
tanαmax =

a√
b2 − a2

and
tanαmax ≈

a

b
for a� b

We have found a representation of the maximum angle. The problem of determination
the phase of planets is an application, see Voigt [3], chapter II.9.2, p.70,71. Further
extremum problems can be found at Schröer [2].
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07. The foot-rule problem

Now we view the figure in the foot-rule:

The kite is interesting that is spaned to four sides of a foot-rule.

We search the maximum area of the kite with known a and α. γ is the changable
variable.

Sine law:

f

sinα
=

a

sin(180◦ − γ
2 − α)

⇒ f =
a sinα

sin(180◦ − γ
2 − α)

s

sinα
=

a

sin(180◦ − γ − α)
and

e

2
= s · sin γ

2

⇒ e

2
=

a sinα sin γ
2

sin(180◦ − γ − α)

With the area’s formula F = ef
2 we obtain:

F =
a2 sin2 α sin γ

2

sin(180◦ − γ
2 − α) · sin(180◦ − γ − α)

α = const.

with sin(180◦ − β) = sinβ it becomes:

F (γ) =
a2 sin2 α sin γ

2

sin(γ
2 + α) · sin(γ + α)

(1)
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This area formula must be derived to γ. We calculate the denominator’s derivation with
the product rule and the chain rule:(

sin
(
γ

2
+ α

)
· sin(γ + α)

)′
=

1
2
· cos

(
γ

2
+ α

)
sin(γ + α) + sin

(
γ

2
+ α

)
cos(γ + α)

Counter:
(
sin γ

2

)′ = 1
2 · cos γ

2

Quotient rule:

F ′(γ)
a2 sin2 α

=
1

sin2
(γ

2 + α
)
· sin2(γ + α)

·
(

1
2
· cos

γ

2
· sin

(
γ

2
+ α

)
· sin(γ + α)

−
(

1
2
· cos

(
γ

2
+ α

)
· sin(γ + α) + sin

(
γ

2
+ α

)
· cos(γ + α)

)
· sin γ

2

)
The necessary condition of local extrema is F ′(γ) = 0.

1
2
· cos

γ

2
sin
(
γ

2
+ α

)
sin(γ + α)−

(
1
2
· cos

(
γ

2
+ α

)
sin(γ + α)

+ sin
(
γ

2
+ α

)
cos(γ + α)

)
· sin γ

2
= 0

It is valid sin β
cos β = tanβ. We divide through cos

(γ
2 + α

)
· cos(γ + α). Then it follows:

1
2
· cos

γ

2
tan

(
γ

2
+ α

)
tan(γ + α)−

(
1
2
· tan(γ + α) + tan

(
γ

2
+ α

))
· sin γ

2
= 0

divided through sin γ
2 · tan

(γ
2 + α

)
· tan(γ + α):

1
2 · tan γ

2

− 1
2 · tan

(γ
2 + α

) − 1
tan(γ + α)

= 0 (2)

With (2) we must determine γ in dependence of α. This can be done by replacing the
tangent-expressions through sine and cosine. In this case the application of the Newton’s
method is difficult.
To decide local maximum or local minimum, we must calculate the 2. derivation in the
concrete case. Saddle points are possible, too. (see figure)

For a kite it must be:

360◦ − γ − 2ϕ < 180◦ and ϕ = 180◦ − α− γ

⇒ 360◦ − γ − 2 · (180◦ − α− γ) < 180◦ ⇔ 2α+ γ < 180◦

⇒ γ < 180◦ − 2α ⇒ α <
180◦ − γ

2
In case 2α+ γ = 180◦ there is a isosceles triangle (a special kite).
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Further unusual extremum problems can be found at Schröer [1].
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26



B. Differential calculus

08. Formulas for logarithms as limits

Here we will give a representation of logarithms to any base.

We begin with the equation:
aloga x = x

This is equivalent to:

loga x =
lnx
ln a

(1)

ln is the natural logarithm.

For the derivation of ax is valid:

d

dx
ax = ax · ln a

If we think at the definition of the derivation:

ax · ln a = lim
h→0

ax+h − ax

h

= ax · lim
h→0

ah − 1
h

h is a null sequence. Thus we obtain:

ln a = lim
h→0

ah − 1
h

Now we use the formula (1) to get an expression of loga x:

loga x =
limh→0

xh−1
h

limh→0
ah−1

h

(2)
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= lim
h→0

xh − 1
ah − 1

For a = 10 we obtain a formula for the decimal logarithm of x:

log10 x = lim
h→0

xh − 1
10h − 1

Now we want to derive a second formula for the logarithm of any base.

Now we use the other derivation’s definition of ax.

ax · ln a = lim
h→0

ax − ax−h

h

= ax · lim
h→0

1− a−h

h

Then we have the following expression:

ln a = lim
h→0

1− a−h

h

Now we take equation (1) again:

loga x = lim
h→0

1− x−h

1− a−h
(3)

Thus we have proved a second formula for logarithms.
a = 10 yields the decimal logarithm:

log10 x = lim
h→0

1− x−h

1− 10−h

c© 2001 Harald Schröer
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09. The circle of curvature

Here we want to deal with the curvature of a function in R2. The function shall be no
straight line. This means that the second derivation of the function is unequal to zero.
We can take the following method:

We use the definition of the curvature in Bronstein [1] chapter 4.3.1.2 p.589:

k = lim
P0→P1

α(P1)− α(P0)
_

P0P1

_
P0P1 is the arc length between P0 and P1. Thus the curvature is the quotient of one
angular difference and one arc length. If we insert for the arc length and for the angular
difference, then we obtain: (f ′ = derivation of f)

k = lim
x→x0

arctan |f ′(x)| − arctan |f ′(x0)|
x∫

x0

√
1 + f ′(t)2 dt

Here we use l’Hospital’s rule:

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

g′(a) 6= 0

It must be f(a) = g(a) = 0, this is true in our case. Because of d
dx arctanx = 1

1+x2 with
this rule we get:

k = lim
x→x0

f ′′(x)
1+f ′(x)2√
1 + f ′(x)2

=
f ′′(x0)

(1 + f ′(x0)2)
3
2

Now we look at the following figure:
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Then we can conclude to the radius of curvature r:

k :=
α

u(α)
=

α
α
2π · 2πr

=
1
r

It follows for the radius of curvature:

r =
(1 + f ′(x0)2)

3
2

f ′′(x0)

It is f ′′(x0) 6= 0.
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10. Angular velocity and radius vector of any motion

We see a path ~a(t) in Rn. t is a given parameter, for example, the time.

We can construct to every path at any given place a circle of curvature.

~x(t) = curvature vector ~x(t) ∈ Rn

x(t) := |~x(t)| = measure of curvature | · | = absolute value
With Barner [1] chapter 14.1 p.91 it is valid for the curvature vector:

~x =
~̈a

ȧ2
− ~̇a · ~̈a

ȧ4
· ~̇a d~a

dt
=: ~̇a ȧ := |~̇a| (1)

and for measure of curvature:

|~x| =

√
ȧ2 · ä2 −

(
~̇a · ~̈a

)2

ȧ3
(2)

For the midpoint ~m of the circle of curvature the following formula is mentioned in
Barner [1] chapter 14.1 p.89:

~m = ~a+
~x

x2
(3)

The absolute value of the radius of curvature is:

R(t) =
1
x(t)

We get for the radius vector:
~R = ~a− ~m (4)

Now we introduce the angular velocity ~w in R3. It is shown for example in Budo [2] §14
p.72:

~̇a = ~w × ~R (5)

Now the problem is to determine ~w. Because ~w is perpendicular to ~R, it follows for the
absolute values of the vectors:

ȧ = R · w ⇒ w =
ȧ

R
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For the determination of ~w we need the vector operator method:

~R perpendicular to ~w yields:
~R · ~w = 0

With equation (5) we construct:

~̇a× ~R = (~w × ~R)× ~R

With the expansion theorem:

= (~w · ~R) · ~R− (~R · ~R) · ~w

Thus it follows:
~̇a× ~R = −R2 · ~w

or
~R× ~̇a = R2 · ~w

We transform:

~w =
~R× ~̇a
R2

(6)

Thus the problem is solved completely.
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11. Stability at systems of usual differential equations in virus
dynamics

Summary In this paper we discuss different models of differential equation systems,
that describe virus dynamics in different situations. The modeling of this situation is
realized in [NM]. We inquire the stability of differential equations. We use theorems of
the stability theory.

1. Introduction

In virus dynamics we examine which conditions are necessary for virus increasing or
decreasing. This is important for the development of disease. Increasing or decreasing
can be described well with differential equations. It is important to inquire for which
conditions we must calculate with decreasing or a constant level or an unchecked in-
creasing. For illustrating we use different models.
In chapter 2 we discuss a simple model of describing virus dynamics. Chapter 3 contains
a model of the HIV–virus. In chapter 4 we treat the dynamics of the Hepatitis B–virus
and in chapter 5 the dynamics of immune response. At last we have combined some
basic theoretical theorems for stability analysis in chapter 6.

2. A basic model

For description of a first model of virus dynamics we view the dynamics of three different
types of objects in a whole body, in a set of blood or tissue: we distinguish uninfected
cells from infected cells and virus particles. We want to describe the temporal changing
of this objects thus we view the number of these cells in a time interval [0, T ] ⊂ IR. We
define:

x = x(t) the number of uninfected cells,
y = y(t) the number of infected cells, and
v = v(t) the number of virus particles

A simple model that describes virus dynamics, is a usual differential equation system of
the form, see [NM], equation (3.1):

ẋ(t) = λ− dx(t)− βx(t)v(t)
ẏ(t) = βx(t)v(t)− ay(t) (2. 1)
v̇(t) = ky(t)− uv(t)

We have unknown functions x, y, v : [0, T ] → IR and the systems (2. 1) contains several
constant positive values.

λ = increasing rate of uninfected cells,
d = dying rate of uninfected cells,
a = dying rate of infected cells,
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u = dying rate of virus particles,
k = increasing rate of virus particles cause of infected cells, and
β = increasing rate of the virus particles cause of reactions between virus particles and
uninfected cells.

Typical values for these constants are for example λ = 105,d = 0.1, a = 0.5,β = 2 · 10−7,
k = 100 and u = 5. Fixed points play a major role for the stability analysis. A fixed
point x? is a constant for all t ∈ IR. If ẋ = f(x) is a differential equation, it is valid
ẋ = f(x?) = 0.

First we look at the following fixed points:

x? =
λ

d
y? = 0, v? = 0. (2. 2)

This simplifies the differential equation to:

ẋ = λ− dx =: f̃(x).

We need the differentiation for stability analysis:

Df̃(x) = −d.

We construct the characteristic polynomial with the unknown s:

det (Df̃(x)− s) = −d− s = 0

With the zero respectively the characteristic number:

s = −d < 0

Because of theorem 6.1 in the appendix, the fixed point (2. 2) is stable.

For stability analysis of (2. 1) we need the fixed points

x? =
au

βk
, y? =

(
βλk

adu
− 1

)
· du
βk

, v? =
(
βλk

adu
− 1

)
· d
β
. (2. 3)

With insertion in the equation (2. 1) we show, that the property of fixed points consists.
As the system (2. 1) we define:

f̃(x, y, v) := (λ− dx− βxv, βxv − ay, ky − uv)

The linearization leads to the Jacobi matrix

Df̃(x, y, v) =

 (−d− βv) 0 −βx
βv −a βx
0 k −u

 .
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Insertion of the fixed points:

Df̃(x?, y?, v?) =


−βλk

au 0 −au
k

d ·
(

βλk
adu − 1

)
−a au

k

0 k −u


We calculate the characteristic polynomial with the Sarrus rule:
E = unit matrix

det(Df̃(x?, y?, v?)− sE) = −s3 + s2 ·
(
−βλk
au

− a− u

)

+s ·
(
−βλk

u
− βλk

a

)
− βλk + aud

Multiplication with −1 leads to the normal form

s3 + a1s
2 + a2s+ a3 = 0.

with:
a1 :=

βλk

au
+ a+ u a2 :=

βλk

u
+
βλk

a
a3 := βλk − aud

Because of the theorem 6.2 in the appendix this polynomial has zeros with negative real
parts if and only if ∆1, ∆2 and ∆3 are larger than zero. It is

∆1 := a1 , ∆2 := det

(
a1 1
a3 a2

)
, ∆3 := a3 ·∆2.

Then we obtain
∆1 =

βλk

au
+ a+ u ,

∆2 =
(
βλk

au
+ a+ u

)
·
(
βλk

u
+
βλk

a

)
− βλk + aud ,

∆3 = (βλk − aud) ·∆2.

Thus the fixed point is stable if and only if the following is valid:

aud < βλk and ∆2 > 0

adu < βλk is equivalent to R0 = βλk
adu > 1 see [NM] chapter 3 p.19.

3. Anti-viral drug models

We have treated the basic model and now we view the HIV–virus. We begin with ”reverse
transcriptase inhibitors”. First we assume that the drug is 100 % effective. Then we can
set β = 0(see equation (2.1)):

ẏ = −ay (3. 4)
v̇ = ky − uv
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This system contains the following values:

y = number of infected cells,
v = number of free virus particles,
a = dying rate of infected cells,
k = increasing rate of free virus particles because of infected cells, and
u = dying rate of free virus particles

With the function f̃(y, v) := (−ay, ky − uv) we obtain the Jacobi matrix

Df̃(y, v) =

(
−a 0
k −u

)
.

Characteristic polynomial of linearized system: (E = unit matrix)

det (Df̃(y, v)− sE) = (−a− s) · (−u− s) = 0

With the eigenvalues s1 = −u < 0 and s2 = −a < 0 in case u 6= a we have a stable node
and in case u = a a stable star. This system only contains stable fixed points.

3.1. HIV: Protease inhibitors

Now we turn to the following differential equation system, with some further values:

ẏ = βxv − ay

v̇ = −uv (3. 5)
ẇ = ky − uw

It is:

x = number of uninfected cells,
y = number of infected cells,
v = number of virus particles,
w = number of uninfected virus particles,
β = increasing rate of infected cells because of reaction between uninfected cells and
virus particles,
a = dying rate of infected cells,
u = dying rate of virus particles and uninfected virus particles, and
k = increasing rate of uninfected virus particles.

We construct:
f̃(y, v, w) := (βxv − ay,−uv, ky − uw)

Jacobi matrix:

Df̃(y, v, w) =

 −a βx 0
0 −u 0
k 0 −u
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With the Sarrus rule we get the characteristic polynomial

det(Df̃(y, v, w)− sE) = (−a− s) · (−u− s)2 = 0.

With the zeros:
s1 = −a < 0 s2 = s3 = −u < 0

Thus there are only stable fixed points at this system.

Now we look at a more complicated system. This system contains uncomplete virus
particles and latently infected cells, too:

ẋ = λ− dx− βxv

ẏ1 = q1βxv − a1y1 + αy2

ẏ2 = q2βxv − a2y2 − αy2 (3. 6)
ẏ3 = q3βxv − a3y3

v̇ = ky1 − uv

with the new values:

y1 = number of virus-producing cells,
y2 = number of latently infected cells,
y3 = number of cells with uncomplete virus,
q1 = probability of virus-producing cells,
q2 = probability of latently infected cells,
q3 = probability of cells with uncomplete virus,
a1 = dying rate of virus-producing cells,
a2 = dying rate of latently infected cells,
a3 = dying rate of cells with uncomplete virus, and
α = rate of latently infected cells become reactivated to turn into virus-producing cells.

To the values λ, d and β see equation (2. 1)

Typical values for the constants are for example λ = 107, d = 0.1, a1 = 0.5, a2 =
0.01,a3 = 0.008,α = 0.4, β = 5 ·10−10, q1 = 0.55, q2 = 0.05, q3 = 0.4, k = 500 and u = 5.

We define:

f̃(x, y1, y2, y3, v) :=


λ− dx− βxv

q1βxv − a1y1 + αy2

q2βxv − a2y2 − αy2

q3βxv − a3y3

ky1 − uv
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Jacobi matrix:

Df̃ =


−d− βv 0 0 0 −βx
q1βv −a1 α 0 q1βx
q2βv 0 (−a2 − α) 0 q2βx
q3βv 0 0 −a3 q3βx

0 k 0 0 −u


We get the fixed points

x? =
x0

R0
and v? = (R0 − 1) · d

β

with
x0 =

λ

d
and R0 =

βλk

a1du
·
(
q1 +

q2α

α+ α2

)
through insertion in the system (3. 6) .
x0 is the fixed point of uninfected cells before infection and R0 the basic reproduction
ratio.

The characteristic polynomial is calculated with:

det(Df̃(x?, v?)− sE)

Multiplication of characteristic polynomial with −1 leads to the normal form

s5 + a1s
4 + a2s

3 + a3s
2 + a4s+ a5 = 0.

We define

∆1 := a1 , ∆2 := det

(
a1 1
a3 a2

)
, ∆3 := det

 a1 1 0
a3 a2 a1

a5 a4 a3

 ,

∆4 := det


a1 1 0 0
a3 a2 a1 1
a5 a4 a3 a2

0 0 a5 a4

 , ∆5 := a5 ·∆4.

It follows with theorem 6.2 in the appendix:

The normed polynomial has solutions with negative real parts, if and only if ∆1, ∆2,
∆3, ∆4 and ∆5 are all positive.
Thus the system is stable, if and only if ∆1, ∆2, ∆3, ∆4 and ∆5 all greater than zero.

Let us consider an anti-viral-therapy, which prevents infection of new cells. That means
β = 0. With system (3.6) we obtain:

ẏ1 = −a1y1 + αy2

ẏ2 = −a2y2 − αy2 (3. 7)
ẏ3 = −a3y3

v̇ = ky1 − uv
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We construct:

f̃(y1, y2, y3, v) :=


−a1y1 + αy2

−a2y2 − αy2

−a3y3

ky1 − uv


Jacobi matrix:

Df̃(y1, y2, y3, v) =


−a1 α 0 0
0 (−a2 − α) 0 0
0 0 −a3 0
k 0 0 −u


We determine the characteristic polynomial. We develop with the 4. column:

det(Df̃(y?
1, y

?
2, y

?
3, v

?)− sE)

= (−u− s) · (−a1 − s) · (−a2 − α− s) · (−a3 − s) = 0

We get

s1 = −u < 0 , s2 = −a1 < 0 , s3 = −a2 − α < 0 , s4 = −a3 < 0.

Thus this system has only stable fixed points.

4. Dynamics of hepatitis B virus

Now we turn to a model of dynamics of hepatitis B virus, through following differential
equation system (vgl. Novak [NM] p.45):

ẏ = βxv − ay (4. 8)
v̇ = −uv.

To the values see (2. 1). We define:

f̃(y, v) := (βxv − ay,−uv)

functional matrix:

Df̃(y, v) =

(
−a βx
0 −u

)
Characteristic polynomial:

det(Df̃(y, v)− sE) = (−a− s) · (−u− s)

The zeros are:
s1 = −a < 0 , s2 = −u < 0

In case a 6= u we have a stable node. In the case a = u there is a stable star.
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If we set β = 0, then we obtain the special system

ẏ = −ay (4. 9)
v̇ = −uv.

This system has the same characteristic polynomial and thus the same stability proper-
ties.

5. Dynamics of immune responses

Now we take the immune response into consideration. We look at different plausible
models. There are differences because of the CTL-reaction. We view a system with
self-regulating CTL-reaction:

ẋ = λ− dx− βxv

ẏ = βxv − ay − pyz (5. 10)
v̇ = ky − uv

ż = c− bz

Let be:

x = number of uninfected cells,
y = number of infected cells,
v = number of free virus particles,
z = CTL-reaction, that eliminates infected cells.
λ = increasing rate of uninfected cells,
d = dying rate of uninfected cells,
β = increasing rate of virus particles because of the reactions between uninfected cells
and virus particles
a = dying rate of infected cells,
p = dying rate of infected cells because of the reactions between infected cells and CTL-
reaction,
k = increasing rate of free virus particles,
u = dying rate of free virus particles,
c = increasing rate of CTL-reaction, and
b = dying rate of CTL-reaction.

Typical values for the constants are for example λ = 1, d = 0.01, a = 0.5, β = 0.005,
k = 50, u = 5, p = 1 and b = 0.05.

We construct:

f̃(x, y, v, z) :=


λ− dx− βxv
βxv − ay − pyz

ky − uv
c− bz
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Jacobi matrix:

Df̃(x, y, v, z) =


(−d− βv) 0 −βx 0

βv (−a− pz) βx −py
0 k −u 0
0 0 0 −b


Now we look at a system with nonlinear CTL-reaction:

ẋ = λ− dx− βxv

ẏ = βxv − ay − pyz (5. 11)
v̇ = ky − uv

ż = cyz − bz

We obtain:

f̃(x, y, v, z) :=


λ− dx− βxv
βxv − ay − pyz

ky − uv
cyz − bz


Jacobi matrix:

Df̃(x, y, v, z) =


(−d− βv) 0 −βx 0

βv (−a− pz) βx −py
0 k −u 0
0 cz 0 (cy − b)


Now we consider a system with linear immune response:

ẋ = λ− dx− βxv

ẏ = βxv − ay − pyz (5. 12)
v̇ = ky − uv

ż = cy − bz

We define

f̃(x, y, v, z) :=


λ− dx− βxv
βxv − ay − pyz

ky − uv
cy − bz

 .
Jacobi matrix:

Df̃(x, y, v, z) =


(−d− βv) 0 −βx 0

βv (−a− pz) βx −py
0 k −u 0
0 c 0 −b


For the characteristic polynomial of these 3 systems (as function from the fixed points)

det(Df̃(x?, y?, v?, z?)− sE)
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we get a polynomial
s4 + a1s

3 + a2s
2 + a3s+ a4 = 0.

The system is stable if and only if ∆1, ∆2, ∆3 and ∆4 are all positive. It is

∆1 := a1 , ∆2 := det

(
a1 1
a3 a2

)
,

∆3 := det

 a1 1 0
a3 a2 a1

0 a4 a3

 , ∆4 := a4 ·∆3.

Thus the criterion of stability is indicated.

Now we take a simplified approach. We neglect the numbers of uninfected and infected
cells. We assume that the virus population is only controlled by immune responses. We
view the differential equation system

v̇ = v · (r − pz) (5. 13)
ż = c− bz.

The new constants r and p are increasing respectively dying rates. We construct:

f̃(v, z) := (v · (r − pz), c− bz)

Jacobi matrix:

Df̃(v, z) =

(
r − pz −pv

0 −b

)
Characteristic polynomial:

det(Df̃(v, z)− sE) = (r − pz − s) · (−b− s)

The zeros are:
s1 = r − pc

b
, s2 = −b < 0

Thus we have a saddle point. There are stable and unstable areas. Because of the fixed
point condition z? = c

b , that can be recognized directly from (5. 13), it follows:
If r < pc

b , then v decreases gradually to zero. The immune system controlls the virus.
If r > pc

b , then v increases more and more. The immune system cannot controll the
virus.

Now we turn to the changed system

v̇ = v · (r − pz) (5. 14)
ż = cv − bz.
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We define:
f̃(v, z) := (v · (r − pz), cv − bz)

Jacobi matrix:

Df̃(v, z) =

(
r − pz −pv
c −b

)
characteristic polynomial with fixed points v?, z?:

det(Df̃(v?, z?)− sE) = s2 + bs+ cpv? = 0

We get the solutions

s1,2 =
−b±

√
b2 − 4cpv?

2
.

With the insertion of
v? =

rb

cp
z? =

r

p

in the differential equation (5. 14) we obtain the fixed point property.

Insertion of v? in the characteristic polynomial leads to the solutions

s1 < 0 , s2 < 0.

Thus the system is stable with v? = rb
cp and any given z?.

Now we change the system to

v̇ = v · (r − pz) (5. 15)
ż = z · (cv − b).

We construct:
f̃(v, z) := (v · (r − pz), z · (cv − b))

Jacobi matrix:

Df̃(v, z) =

(
r − pz −pv
cz cv − b

)
characteristic polynomial:

det(Df̃(v?, z?)− sE) = s2 + s · (−r − cv? + b+ pz?) + rcv? − rb+ pcv?z? + pz?b

For the fixed points we get from the system (5. 15)

v? =
b

c
z? =

r

p
.

These inserted in the characteristic polynomial

s2 + 2rb = 0.

The zeros are
s1,2 = ±

√
−2rb.

The decision remains open, because it is no linear system.
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6. Appendix

In this section we combine the main results that are necessary to the stability analysis.

Theorem 6.1 Let be x = x(t) : [0, T ] → IRn and A a n×n–matrix with real values. The
system ẋ(t) = Ax is stable,if and only if all eigenvalues of A have negative real parts.

With Leipholz [L] chapter 1.3.2 p.36 the following theorem is valid:

Theorem 6.2 Le be

H =


a1 1 0 0 0 0 . . .
a3 a2 a1 1 0 0 . . .
a5 a4 a3 a2 a1 1 . . .
. . . . . . . . . . . . . . . . . . . . .


the Hurwitz matrix to the polynomial sn + a1s

n−1 + . . . an−1s + an. Then the zeros of
the polynomial have negative real parts if and only if the chief minor determinants of the
matrix H are all positive. The chief minor determinants are the values

∆1 = a1 , ∆2 = det

(
a1 1
a3 a2

)
, ∆3 = det

 a1 1 0
a3 a2 a1

a5 a4 a3

 ,

. . . ,∆n−1 = det


a1 1 0 0 0 0 . . .
a3 a2 a1 1 0 0 . . .
a5 a4 a3 a2 a1 1 . . .
. . . . . . . . . . . . . . . . . . . . .

 , ∆n = an ·∆n−1.
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44



Chapter C.

Numerics

12. Convergence measures

1. Convergence measures in the set of real numbers

1.1. Real sequences

First we treat here real sequences. We assume that the sequence an converges to the
sequence bn.

lim
n→∞

an = lim
n→∞

bn

Then we define the convergence measure:

k(n) :=
|an − bn|

|an+1 − bn+1|

| · | is the absolute value of a number. A special case is for example bn = b. That means
the sequence an converges to a constant.

k is dependent upon n. k is a measure of the local speed of convergence. The larger k
is, the faster the convergence is.

For example we take the sequences an = 2
n and bn = 1

n . Then the convergence measure
is:

k(n) =
2
n −

1
n

2
n+1 −

1
n+1

=
n+ 1
n

1.2. Differentiable functions

At this function we can define another convergence measure. We assume that f and g
are real differentiable functions. Besides it shall be valid:

lim
x→+∞

f(x) = lim
x→+∞

g(x)

or
lim

x→−∞
f(x) = lim

x→−∞
g(x)

That means asymptotic approach of both functions. We look at the following figure:
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Then it is:
k :=

∣∣∣∣ ddx(f(x)− g(x))
∣∣∣∣ = |f ′(x)− g′(x)|

In the special case g(x) = b = const. is b an asymptote parallel to the x-axis. For
example we take f(x) = 1

x and g(x) = 1
x2 . We obtain the convergence measure:

k =
∣∣∣∣ ddx

(
1
x
− 1
x2

)∣∣∣∣ = ∣∣∣∣− 1
x2

+
2
x3

∣∣∣∣
2. Convergence measures in metric spaces

Now we have the occasion to get to know these convergence notions in any given metric
space.

Let M be any given set. A metric is a function

d : M ×M −→ R+

with following properties: x, y ∈M

d(x, y) = 0 ⇔ x = y

d(x, y) = d(y, x) symmetry

d(x, z) ≤ d(x, y) + d(y, z) triangle inequality

The pair (M,d) is called metric space. d is the distance function.

2.1. Sequences

Now we view the both sequences xn, yn ∈M . d is a metric. It’s assumed:

lim
n→∞

d(xn, yn) = 0
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This is equivalent to:
lim

n→∞
xn = lim

n→∞
yn

The convergence measure can be defined as in the first case:

k(n) :=
d(xn, yn)

d(xn+1, yn+1)

Here is valid, too that the convergence is faster the larger is k. k is here a measure of
local convergence, too.

2.2. Differentiable functions

Now we look at differentiable functions in metric spaces.

d(x(t), y(t)) t ∈ I ⊂ R

shall be differentiable to t. Additional assumed is:

lim
t→∞

d(x(t), y(t)) = 0 ⇔ lim
t→∞

x(t) = lim
t→∞

y(t)

or:
lim

t→−∞
d(x(t), y(t)) = 0 ⇔ lim

t→−∞
x(t) = lim

t→−∞
y(t)

Now we define the convergence measure as in the second case:

k :=
∣∣∣∣ ddtd(x(t), y(t))

∣∣∣∣
With d(x, y) = ||x − y|| we have defined at the same time the convergence measures in
normed space to every norm || · ||. The reason is that every norm is a metric, too.

Here the defined convergence measure for sequences is connected with the order of con-
vergence that is mentioned in many books about numerical mathematics.

c© 2001 Harald Schröer
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Complex analysis

13. The winding number

The problem is to determine the winding number of a closed path:

γ : [a, b] −→ U ⊂ R2 a, b ∈ R

with γ(a) = γ(b)

γ shall be piecewise continuously differentiable. The set R2 is isomorphic to the set
of complex numbers C. We identify the curve γ with the complex path of integration
β = γ1 + i · γ2, with i =

√
−1. The further proceeding can be done with Lieb [1] chapter

II §1 Def. 1.1 p.38, chapter IV §1 Def 1.2 p.101 and example 1 p.101.

β : [a, b] −→ C β(a) = β(b)

is a closed path of integration and shall be piecewise continuously differentiable.
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Now we use the line integral in C:

∫
β

f(z) dz :=
b∫

a

f(β(t)) · β′(t) dt β′ =
dβ

dt

How often the path of integration γ leads around the point p = (p1, p2) ∈ R2? In C it’s
the point z0 = p1 + i · p2 6∈ β([a, b]). Corresponding
p 6∈ γ([a, b]) is valid, too.

We get the searched winding number with Lieb [1] chapter IV §1 Def. 1.2 p.101:

n(γ, p) = n(β, z0) =
1

2πi
·
∫
β

dz

z − z0
(1)

n(γ, p) is a integer number see Lieb [1] chapter IV §1 theorem 1.2 p.103. If n(γ, p) is
positive, then we have the number of windings against the clockwise sense. If n(γ, p) is
negative, then the absolute value of this quantity is the number of the windings with
the clockwise sense.

Now the path of integration and p respectively z0 shall be known. We will change the
formula (1) in a pure real form. With β = γ1 + i · γ2,β′ = γ′1 + i · γ′2 and z0 = p1 + i · p2

we obtain:
β′

β − z0
=

γ′1 + i · γ′2
γ1 + i · γ2 − p1 − i · p2

=
γ′1 + i · γ′2

(γ1 − p1) + i · (γ2 − p2)

Now we use the decomposition:

x1 + i · x2

y1 + i · y2
=
x1y1 + x2y2

y2
1 + y2

2

+ i · x2y1 − x1y2

y2
1 + y2

2

Thus:
β′

β − z0
=
γ′1 · (γ1 − p1) + γ′2 · (γ2 − p2)

(γ1 − p1)2 + (γ2 − p2)2

+i · γ
′
2 · (γ1 − p1)− γ′1 · (γ2 − p2)

(γ1 − p1)2 + (γ2 − p2)2
=: A+ i ·B (2)
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Because of γ1(t), γ2(t), p1(t), p2(t) ∈ R, it follows A(t), B(t) ∈ R. It is a decomposition
into real- and imaginary part. Because of equation (2) we have:

n(γ, p) =
1

2πi
·

b∫
a

(A+ i ·B) dt =
1

2πi
·

b∫
a

Adt+
1
2π
·

b∫
a

B dt

From i2 = −1 we follow 1
i = −i and:

n(γ, p) =
1
2π
·

b∫
a

B dt− i · 1
2π
·

b∫
a

Adt

But n(γ, p) is a integer number, thus:

1
2π
·

b∫
a

Adt = 0

We get:

n(γ, p) =
1
2π
·

b∫
a

B dt

or inserted for B:

n(γ, p) =
1
2π
·

b∫
a

γ′2 · (γ1 − p1)− γ′1 · (γ2 − p2)
(γ1 − p1)2 + (γ2 − p2)2

dt

Assumptions: γ(a) = γ(b) (closed path) and γ must be piecewise continuously differen-
tiable.

Thus we have a pure real representation of the winding number.
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14. Projections on planes

1. Introduction

We have a set, a projection point and a plane. The aim of this work is to get a math-
ematical description of a projection on a plane. For the reader it may be interesting
to get an image of the central projection and to see the mathematical form of the pro-
jection. This problem can be compared to the optical image on the retina in human
beings and animals. I have not seen any derivation of this in any publication. With
this essay , I hope to close any gaps in usable mathematical equations. If we have a
representation of a figure in R2, then the figure can be drawn in a coordinate system.
The projections play a major role in mathematics, physics, biology and in science in
general including architecture, engineering and descriptive geometry. Applications of
projections in biology are, for example, in the book “Arctificial and biological vision
systems” [1]. Applications in architecture, engineering and technology are, as example,
in Salkowski [7], Graf [4],Rehbock [6] and Hohenberg [5].

2. The problem

Let us look at the following problem:

Let’s view the central projection of set V ⊂ R3 and from point ~z on plane ~E. We see
the projection on the plane ~E. ~E figures as a “screen” behind ~z. This situation can be
compared with the figure of a lens of an eye, if the distance between V and ~z is very
great compared with the distance between ~z and ~E.

3. The projection

Parametrization of the plane:
~E := ~p+ λ · ~v + µ · ~w λ, µ ∈ R ~p,~v, ~w ∈ R3
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Assumption: ~v and ~w are orthogonal.
A dependence on time t ∈ R is possible.

~p = ~p(t) ~v = ~v(t) ~w = ~w(t) ~z = ~z(t)

parametrization of V :

V = ~a(b1, b2, b3, c1, . . . , cn, t) = ~a(~b,~c, t) ~b = (b1, b2, b3) ∈ U ⊂ R3

~c = (c1, . . . , cn) ∈ Q ⊂ Rn

b1, b2, b3 are parameters of the area.
c1, . . . , cn are arbitrary parameters.

Projecting line (see figure):

~s := ~a+ ε · (~z − ~a) ε ∈ R

Figure on the plane:

intersection of the projecting line and the plane (see figure):

~a+ ε · (~z − ~a) = ~p+ λ · ~v + µ · ~w

The following results:
λ(~b,~c, t), µ(~b,~c, t), ε(~b,~c, t)

, because ~a is a function of ~b,~c and t.

The figure has the following coordinates:

~R(~b,~c, t) := ~a+ ε(~b,~c, t) · (~z − ~a) (1)

= ~p+ λ(~b,~c, t) · ~v + µ(~b,~c, t) · ~w

Shape of the figure on the plane:

~f(~b,~c, t) := ~R(~b,~c, t)− ~p

The point ~p is the origin of the coordinate system on the plane.

This is a figure in R3. The aim is to obtain a figure in R2.

With the rotation of the coordinate system, see e.g. Bronstein [2] chapter 2.6.5.2.3
p.216,217 we can obtain a figure in R2.
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A possible translation of the geometrical midpoint can be useful.

Eventually, the rotation in R2 e.g. see Bronstein [2] chapter 2.6.5.1.3 p.212,213 can be
necessary.

These 3 operations could be (dependent on the figure) affected in another order.

The aim of these operations is to get a simple representation of the figure.

4. To the assumption, that ~v and ~w are orthogonal:

The form of the pictures can be easily determined, if ~v and ~w are orthogonal. If ~v and
~w are not orthogonal, it would be favorable to make the directional vectors orthogonal.
But the plane cannot change itself.

Let’s use a normal vektor:
~n := ~v × ~w

and then:
~q := ~n× ~v

Then ~q is orthogonal to ~n and ~v. ~q is on the plane, because ~q is orthogonal to ~n.

~q can be calculated with ~q · ~n = 0 and ~q · ~v = 0, as well.(Scalar product)

Then ~q is determined except for the absolute value. The absolute value can be chosen.

The new orthogonal directional vectors are ~v and ~q.

If ~v and ~w are not orthogonal, the method must be done first.

5. The size of the picture:

Definition of the distance vector:

~r(λ, µ) := ~z − ~E(λ, µ) = ~z − ~p− λ · ~v − µ · ~w
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r(λ, µ) = |~r(λ, µ)|

The following minimal distance becomes interesting:

d := min{r(λ, µ) | (λ, µ) ∈ R2} = r(λ0, µ0)

The determination of λ0, µ0 with grad[r(λ, µ)] = 0 is more difficult. Let’s use a simple
method:

Let us first calculate the normal form of the plane with ~n := ~v × ~w, e.g. see Fischer [3]
chapter 0.5.5 p.25. We change the parametric form of the plane into the normal form.

Then we can determine the minimal distance d, e.g. see Fischer [3] chapter 0.4.6 p.21.

If plane E has a normal form

n1x+ n2y + n3z = e e ∈ R ~n = (n1, n2, n3)

, thus the distance d with ~z = (z1, z2, z3):

d =
|n1z1 + n2z2 + n3z3 − e|√

n2
1 + n2

2 + n2
3

If ~p,~v, ~w, ~z are functions of t, then r and d are functions of t, as well.

It is valid:

picture size ∼ d(t) (intercept theorem), if ~p,~v, ~w, V are constant and ~z is a function
of t.
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15. Rotations

Here we view an interesting rotation problem of vectors:

~a and ~b are rotated in the plane into the vectors ~c and ~d. ~a,~b,~c, ~d ∈ R3

At rotation, the absolute value of the vectors and the angle between the vectors remains
unchanged:

|~a| = |~c| |~b| = |~d|

α := 6 (~a,~b) = 6 (~c, ~d)

It follows for the absolute value of the vector product:

|~a×~b| = |~c× ~d| (1)

because of:
|~a×~b| = |~a| · |~b| · sinα |~c× ~d| = |~c| · |~d| · sinα

From the figure it’s clear that the vectors ~a ×~b and ~c × ~d show in the same direction.
With the equation (1) we can conclude:

~a×~b = ~c× ~d (2)

Now we deal with the problem to determine the fourth vector if three vectors are known.
We assume that ~a,~b,~c are known and ~d must be calculated. The simple solving of
equation (2) to ~d leads to no logical solution. To calculate ~d we must use another
method. With |~a| = |~c| and |~b| = |~d| and α = 6 (~a,~b) = 6 (~c, ~d) we get:

~a ·~b = |~a| · |~b| · cosα = |~c| · |~d| · cosα = ~c · ~d

Thus we have the following result about scalar products:

~a ·~b = ~c · ~d (3)

We calculate with equation (2):

(~a×~b)× ~c = (~c× ~d)× ~c
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Now we use the expansion theorem. (For example see Bartsch [1] chapter 7.3.2 p.275:)

= (~c · ~c) · ~d− (~d · ~c) · ~c

With equation (3):
= ~a2 · ~d− (~a ·~b) · ~c

We get:
(~a×~b)× ~c = ~a2 · ~d− (~a ·~b) · ~c

Now we can solve to ~d:
~d =

(~a×~b)× ~c+ (~a ·~b) · ~c
~a2

With the expansion theorem:

=
(~a · ~c) ·~b− (~b · ~c) · ~a+ (~a ·~b) · ~c

~a2

~c,~a,~b must lie in one plane. That means that the vectors must be linearly dependent.
From

k1 · ~a+ k2 ·~b+ k3 · ~c = 0

with k1, k2, k3 ∈ R doesn’t follow (k1, k2, k3) = (0, 0, 0). ~a,~b,~c must be carefully chosen
with each other. If this isn’t done, it can be that |~b| 6= |~d|. But the absolute values of ~b
and ~d must be equal.
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16. The barycenter

We look at the following areas:

Our aim is to determine the barycenter of these areas. We view a general area A ⊂ R2.
With u = (x1, x2) = (x, y) ∈ A ⊂ R2, the mass m(A) and the density ϕ(u) for the
position s(A) = (s1, s2) ∈ A of the barycenter is valid:

si(A) =
1

m(A)

∫
A

ϕ(u) · xi d
2u

It is i ∈ 1, 2.

Now we turn to the special areas above, then we can conclude with the figures:

f(a) = g(a) f(b) = g(b)

We assume that the density ϕ = c is constant. Then we have:

m(A) = F (A) · c (1)

F (A) is the area or the 2-dimensional volume of A. Now we calculate the x-coordinate
of the barycenter:

xs =
1

m(A)
·

b∫
a

f(x)∫
g(x)

c · x dydx

Now we insert equation (1) for m(A):

xs =
1

F (A)
·

b∫
a

x

f(x)∫
g(x)

dydx =
1

F (A)
·

b∫
a

x · [y]f(x)
g(x) dx
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We calculate:

xs =
1

F (A)
·

b∫
a

x · (f(x)− g(x)) dx

In the last equation we insert:

F (A) =
b∫

a

(f(x)− g(x)) dx (2)

We obtain:

xs =

b∫
a
x · (f(x)− g(x)) dx

b∫
a
(f(x)− g(x)) dx

(3)

Thus the x-coordinate is calculated. Now we deal with the y-coordinate of the barycenter.
We use again the general formula of the barycenter:

ys =
1

m(A)
·

b∫
a

f(x)∫
g(x)

c · y dydx

With equation (1) again:

ys =
1

F (A)
·

b∫
a

f(x)∫
g(x)

y dydx =
1

F (A)
·

b∫
a

[
y2

2

]f(x)

g(x)

dx

This leads to:

ys =
1

2F (A)
·

b∫
a

(f(x)2 − g(x)2) dx

Now we use again equation (2) and we get at last:

ys =

b∫
a
(f(x)2 − g(x)2) dx

2 ·
b∫
a
(f(x)− g(x)) dx

(4)

With the equations (3) and (4) the coordinates of the barycenter of the area A can be
determined. The formulae (3) and (4) are in Bartsch [1] chapter 10.11 p.437 third section
without proof.
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17. The diagonals in n-gon

Every point of a general n-gon is connected with n − 3 diagonals. With that we have
n · (n− 3) diagonals, see figure.
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Every diagonal has got two points of the n-gon. With that every diagonal is counted
twice. The number of diagonals is at least:

zD =
n · (n− 3)

2

Now we view a regular n-gon:

We want to determine the number of intersected diagonals at the m. diagonal, see figure.

hhhhhhhhhhhhhh

s
s s s

s

1. diagonal

2.

3.

On the one side from the m. diagonal there are m points. On the other side there are
n−m− 2 points.

With that the m. diagonal intersects m · (n−m− 2) diagonals in the regular n-gon.

The maximum:

Now we calculate the maximun of m · (n−m− 2) = mn−m2 − 2m.

Derivation to m:
f ′(m) = n− 2m− 2

Criterion of local extremum:

0 = f ′(m) = n− 2− 2m f ′′(m) = −2
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It follows:
m =

n− 2
2

It is a maximum. We will determine this maximum number of the even n-gon. Later we
will work with the uneven n-gon.
At the even n-gon n−2

2 is an integer number. This number can be inserted instead of m
in the formula m · (n−m− 2).

Insertion:
n− 2

2
·
(
n− n− 2

2
− 2

)
=
n− 2

2
· n− 2

2
=

(n− 2)2

4

In the even regular n-gon a diagonal can intersect at the most (n−2)2

4 diagonals.

In the uneven n-gon n−2
2 is no integer number. Because of this, the insertions must be

done to n−2
2 + 1

2 = n−1
2 and n−2

2 − 1
2 = n−3

2 .

Insertion of n−1
2 instead of m in m · (n−m− 2):

n− 1
2

·
(
n− n− 1

2
− 2

)
=
n− 1

2
· 2n− n+ 1− 4

2
=
n− 1

2
· n− 3

2

Insertion of n−3
2 :

n− 3
2

·
(
n− n− 3

2
− 2

)
=
n− 3

2
· 2n− n+ 3− 4

2
=
n− 3

2
· n− 1

2

Both maxima are equal. The diagonals can be intersected in the uneven regular n-gon
at the most (n−3)·(n−1)

4 diagonals.

Number estimation of intersection points of diagonals in the regular n-gon:

These conclusions can be seen at [1]. The connecting lines between 4 points yield inter-
section points of the diagonals. Intersection points of several diagonals are possible. We
have the result:

intersection points’ number of diagonals in the regular n-gon

≤
(
n

4

)
=

n!
4! · (n− 4)!

=
n · (n− 1) · (n− 2) · (n− 3)

24
≤ n4

24

On this way we have got an estimation.

Further infomations about the n-gon can be found at Schröer [2].
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18. A special ellipse

We view an usual ellipse:
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We need the canonical equation:
x2

a2
+
y2

b2
= 1

a and b are the semimajor and the semiminor axis. We transform to y2:

y2 = b2 ·
(

1− x2

a2

)
=
b2

a2
· (a2 − x2)

It follows:
y = ± b

a
·
√
a2 − x2

We derive with the chain rule:

y′(x) =
b

a
· −x√

a2 − x2

Now we look at the following figure:
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x

y
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x1 x2
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The arc length Us can be expressed generally:

Us =
x2∫

x1

√
1 + y′(x)2 dx

Thus the whole perimeter of the ellipse is:

U = 4 ·
a∫

0

√
1 + y′(x)2 dx (1)

= 4 ·
a∫

0

√
1 +

b2

a2
· x2

a2 − x2
dx

Now we introduce the linear eccentricity e and the numerical eccentricity ε. We have
the relations e2 = a2 − b2 and ε = e

a , then we obtain:

ε =
√
a2 − b2

a
⇒ ε2a2 = a2 − b2

At last:
b2 = a2 − ε2a2

In the case of ε = 1 follows b = 0. The case ε = 1 yields with equation (1) the perimeter:

U = 4 ·
a∫

0

√
1 + 0 dx = 4 ·

a∫
0

1 dx = 4 · a

In the case b = 0 we can see this result too. Then the ellipse looks like a line segment.

In general, we have for the ellipse’s perimeter the following formula (see Bartsch [1]
chapter 7.5.1 p. 302):

U = 2 · π · a · w
with:

w = 1−
(

1
2

)2

· ε2 −
(

1 · 3
2 · 4

)2

· ε
4

3
−
(

1 · 3 · 5
2 · 4 · 6

)2

· ε
6

5
− · · ·

For ε = 1 we have calculated U = 4a. Thus we can conclude for ε = 1:

4a = U = 2πa · w
Then we follow:

w =
2
π

for ε = 1

Finally we get the remarkable equation:

2
π

= 1−
(

1
2

)2

− 1
3
·
(

1 · 3
2 · 4

)2

− 1
5
·
(

1 · 3 · 5
2 · 4 · 6

)2

− · · ·
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19. The semiaxes-angular equation of the ellipse

We view the following ellipse:

a is the semimajor axis and b the semiminor axis. e =
√
a2 − b2 shall be the linear

eccentricity. In the case a = b is r in fact the radius of the circle (a special case of the
ellipse). We want to get the angular dependence of r. For the ellipse is valid for the
distance sum and the both focal points F1, F2:

PF1 + PF2 = 2a

We insert twice the cosine law:

2a =
√
e2 + r2 − 2er cosα

+
√
e2 + r2 − 2er cos(180◦ − α)

With cos(180◦ − α) = − cosα:

2a =
√
e2 + r2 − 2er cosα

+
√
e2 + r2 + 2er cosα

Squared:
4a2 = 2e2 + 2r2

+2 ·
√
e4 + 2e2r2 + r4 − 4e2r2 cos2 α

We solve to the root and then we square again:

(2a2 − e2 − r2)2

= e4 + 2e2r2 + r4 − 4e2r2 cos2 α

Multiplying out:
4a4 + e4 + r4 − 4a2e2 − 4a2r2 + 2e2r2

= e4 + 2e2r2 + r4 − 4e2r2 cos2 α
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Comprised:
4a4 − 4a2e2 − 4a2r2 = −4e2r2 cos2 α

Divided through 4a2:

a2 − e2 − r2 = − e
2

a2
· r2 cos2 α

We introduce a2 − e2 = b2 and the numerical eccentricity ε = e
a :

b2 − r2 = −ε2r2 cos2 α

Transformed:
b2 = r2 · (1− ε2 cos2 α)

Solving to r:

r =
b√

1− ε2 cos2 α
(1)

Thus we have r as function of the numerical eccentricity, the semiaxes and the angle α.
Now we want to derive a formula which contains only the semiaxes and the angle α. We
insert

ε =
e

a
=
√
a2 − b2

a

in the equation (1):

r =

√√√√ b2

1− a2−b2

a2 · cos2 α

Extension and simplification:

r =
ab√

a2 · (1− cos2 α) + b2 cos2 α

Because of sin2 α+ cos2 α = 1:

r =
ab√

a2 sin2 α+ b2 cos2 α

This is a semiaxes-angular equation, that can be transformed to:

a2 sin2 α+ b2 cos2 α =
a2b2

r2
(2)

c© 2001 Harald Schröer
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20. The “radius” of ellipsoid and the surface of the revolution
ellipsoid

1. The “radius” of ellipsoid

We view the following figures:
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r = “radius” of ellipsoid

a, b, c = semiaxes of ellipsoid

r is not a real radius. Only in the case of equal semiaxes r is the sphere’s radius. It is
interesting to consider r at ellipsoid, too. At ellipsoid r is not constant. r depends from
the coordinates x, y, z. The first equation follows with Pythagoras theorem:

r2 = x2 + y2 + z2 (1)

We obtain the second equation (for example with Bronstein [1] chapter 2.6.6.2 p. 233):

x2

a2
+
y2

b2
+
z2

c2
= 1 (2)

To the angles we get with the figure the relations:

tanα =
y

x
tan γ =

z

x

We transform equation (2) to z2 and we insert at z2 in equation (1):

r2 = x2 + y2 + c2 ·
(

1− x2

a2
− y2

b2

)

Now we have one equation for r that is only dependent from two coordinates and the
semiaxes. Solving to equation (2) to y2 and insertion in equation (1) yields:

r2 = x2 + b2 ·
(

1− x2

a2
− z2

c2

)
+ z2
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Rewriting from equation (2) to x2 and insertion in equation (1) leads to:

r2 = a2 ·
(

1− y2

b2
− z2

c2

)
+ y2 + z2

It is much more difficult to get an expression of r with only 2 angles and the 3 semiaxes.
Courageous readers can get down to this problem.

2. The surface of the revolution ellipsoid

We look at an ellipse:
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We need the canonical equation:

x2

a2
+
y2

b2
= 1 ⇒ y2 = b2 ·

(
1− x2

a2

)

Solving to y:

y = ± b
a
·
√
a2 − x2

We derive:
y′ :=

dy

dx
= ± b

a
· −x√

a2 − x2

Now we view the revolution ellipsoid in the following figure:
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For the lateral area of the revolution body is valid:

M(x1, x2) = 2π ·
x2∫

x1

y ·
√

1 + y′2 dx

It is −a ≤ x1 ≤ x2 ≤ a. Now we insert for the revolution ellipsoid:

M(x1, x2) = 2π · b
a
·

x2∫
x1

√
a2 − x2 ·

√
1 +

b2x2

a2 · (a2 − x2)
dx

= 2π · b
a
·

x2∫
x1

√
a2 − x2 +

b2

a2
· x2 dx

Then we achieve:

M(x1, x2) = 2π · b
a
·

x2∫
x1

√
a2 −

(
1− b2

a2

)
· x2 dx (3)

We transform this term further to: a > b > 0

M(x1, x2) = 2π · b
a
·

√
1− b2

a2
·

x2∫
x1

√√√√ a2

1− b2

a2

− x2 dx (4)

The integration can be done for example with Gröbner [2] chapter 236 p.52 Nr. 5f or
Bronstein [1] chapter 1.1.3.3 p.44 Nr. 157.∫ √

R2 − x2 dx =
x

2
·
√
R2 − x2 +

R2

2
· arcsin

x

|R|
+ c

c is the integration constant. This integral can be proved with differentiation. It is valid
a > b > 0. We insert for the revolution ellipsoid:

M(x1, x2) = 2π · b
a
·

√
1− b2

a2
·
[
x

2
·

√√√√ a2

1− b2

a2

− x2

+
1
2 · a

2

1− b2

a2

· arcsin

x
a
·

√
1− b2

a2

]x2

x1

Now let be x2 = h and x1 = 0:

M(0, h) = 2π · b
a
·

√
1− b2

a2
·
(
h

2
·

√√√√ a2

1− b2

a2

− h2

+
a2

2 ·
(
1− b2

a2

) · arcsin

h
a
·

√
1− b2

a2

)

70



D. Geometry

Now we simplify further for h = a, then we get the half surface:

M(0, a) = 2π · b
a
·

√
1− b2

a2
·
(
a

2
·

√√√√ a2

1− b2

a2

− a2

+
a2

2 ·
(
1− b2

a2

) · arcsin

√1− b2

a2

)

We make a intermediate calculation:√√√√ a2

1− b2

a2

− a2 =

√
a4

a2 − b2
− a2 =

√
a4 − a4 + b2a2

a2 − b2
=

ba√
a2 − b2

With this intermediate calculation we get:

M(0, a) = 2π · b
a2
·
√
a2 − b2 ·

 ba2

√
a2 − b2

· 1
2

+
a4

2 · (a2 − b2)
· arcsin

√1− b2

a2


At last we obtain:

M(0, a) = 2π ·

b2
2

+
ba2

2 ·
√
a2 − b2

· arcsin

√1− b2

a2


This formula is valid for a > b > 0. We get the whole surface O with:

O = 2 ·M(0, a) = M(−a, a)

= 4π ·

b2
2

+
ba2

2 ·
√
a2 − b2

· arcsin

√1− b2

a2


Now we examine the special case r = a = b (sphere). This case can’t be calculated
with the next to the last formula. We must begin with equation (3). We insert in this
formula:

M(0, r) = 2π ·
r∫

0

r dx = 2π[rx]r0 = 2πr2

M(0, r) is the surface of the half sphere.
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21. The fourth side and the area of a inscribed tetragon

Abstract: We want to derive two unknown area formulas and we calculate the fourth side, if 3
sides are given. The assumption is that the midpoint of the circle is in the tetragon.

Key words: Inscribed tetragon - diagonal - side - area - circumradius - angle

We add the areas of the 4 isosceles triangles with the bases a, b, c, d, at which we use the
half product of base and height (see figure).
For the area F we obtain:

F =
r

2
·
(
a · cos

αm

2
+ b · cos

βm

2
+ c · cos

γm

2
+ d · cos

δm
2

)
With the figure we have:

sin
αm

2
=

a

2r
sin

βm

2
=

b

2r
sin

γm

2
=

c

2r
sin

δm
2

=
d

2r

With sin2 ϕ+ cos2 ϕ = 1 we follow:

cos
αm

2
=
√

4r2 − a2

2r
cos

βm

2
=
√

4r2 − b2

2r

cos
γm

2
=
√

4r2 − c2

2r
cos

δm
2

=
√

4r2 − d2

2r
If we insert these expressions in the first area formula, then we yield:

F =
1
4
·
(
a ·
√

4r2 − a2 + b ·
√

4r2 − b2 + c ·
√

4r2 − c2 + d ·
√

4r2 − d2
)

(1)

Thus we have the area as function from radius and the four sides. Now we will see how
we can express one side through the other three sides.

In the inscribed tetragon is the sum of the corresponding angles equal to 180◦. Thus we
have α+ γ = 180◦. Because of the 4 isosceles triangles we recognize:

β1 = α2 δ1 = γ2

72



D. Geometry

We can conclude:
α = α1 + β1 γ = γ1 + δ1

and we get at last:
α1 + β1 + γ1 + δ1 = 180◦ (2)

With the 4 isosceles triangles we follow:

α2 + β2 + γ2 + δ2 = 180◦ (3)

With the figure it is:

cosβ1 =
a

2r
cos γ1 =

b

2r
cos δ1 =

c

2r

and with equation (2):

d

2r
= cosα1 = cos(180◦ − β1 − γ1 − δ1)

Thus:
d = 2r · cos

(
180◦ − arccos

a

2r
− arccos

b

2r
− arccos

c

2r

)
Thus the determination of the side d with the radius and the sides a, b, c is possible.
Because of this, the area is a function of radius and three sides.

With the heights of the triangles perpendicular to the radii we get with the area formula
of triangles:

F =
r2

2
· (sinαm + sinβm + sin γm + sin δm)

Because of the isosceles triangles we have αm = 180◦−2α2. By reason of sin(180◦−ϕ) =
sinϕ we can follow:

sinαm = sin(180◦ − 2α2) = sin 2α2

With this insertion we obtain:

F =
r2

2
· (sin 2α2 + sin 2β2 + sin 2γ2 + sin 2δ2) (4)

With equation (3) we can determine the fourth angle with three of these angles. The
area is a function of radius and three of these angles.

The following assumption is valid: The midpoint of the circle must be in the tetragon. If
the assumption is not valid, then we can use a formula at Bartsch [1] chapter 6.5 p.231
for the circumradius. To solve this equation to the fourth side, we need a numerical
method(for example Newton’s method). A more general area formula can be found in
Bronstein [2] chapter 2.6.1 p.193.
Further trigonometric problems that can be found scarcely in the literature are at
Schröer [3].
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22. The case of 4 faces at a trapezoid

The faces a, b, c and d in a trapezoid are known.
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α and β are acute angles. Then we yield the following equations:

a− c = p+ q q2 + h2 = d2 p2 + h2 = b2

Putting equal to h2:
d2 − q2 = b2 − p2

or:
b2 − d2 = p2 − q2

Division through a− c = p+ q:

b2 − d2

a− c
=
p2 − q2

p+ q
= p− q

To this equation we add p+ q = a− c. Then q vanishs and we obtain:

2p = a− c+
b2 − d2

a− c

or:

p =
(a− c)2 + b2 − d2

2 · (a− c)
Finally we calculate q = a− c− p. Now we view the case that α is an obtuse angle and
β is an acute angle.
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B
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.........................................................................................
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...............

p

pα β
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We can see the following equations:

p = a− (c− q) h2 = d2 − q2 h2 = b2 − p2

Equating:
d2 − q2 = b2 − p2

Thus:
p2 − q2 = b2 − d2

Division through p− q = a− c:

b2 − d2

a− c
=
p2 − q2

p− q
= p+ q

We add the equation p− q = a− c and we get:

2p = a− c+
b2 − d2

a− c

or:

p =
(a− c)2 + b2 − d2

2 · (a− c)

With q = p− a+ c the calculation is finished. Now we can work with the case that β is
an obtuse angle and α is an acute angle.
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We recognize the 3 equations:

p = c− (a− q) h2 = b2 − p2 h2 = d2 − q2

Equating:
b2 − p2 = d2 − q2

or:
b2 − d2 = p2 − q2
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Division through p− q = c− a:

b2 − d2

c− a
=
p2 − q2

p− q
= p+ q

If we add p− q = c− a to this equation, then we yield:

2p = c− a+
b2 − d2

c− a

or:

p =
(c− a)2 + b2 − d2

2 · (c− a)

Finally it follows q from q = p− c+ a.

In all three cases we find the height with h2 = b2 − p2 = d2 − q2.

Sums, differences, products and quotients of rational numbers are rational numbers. In
addition we conclude the following theorem:

If all four faces of a trapezoid are rational numbers, then p and q are rational
too.
h must not be rational.

In case c = 0 follows the same assertion for a general triangle as special case. The
transformations of p, q and h are valid to the following general triangles:
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c© 2001 Harald Schröer
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23. Geodesic lines on different surfaces and the maximum
distance on a spherical surface

1. Geodesic lines

Here we treat a problem of differential geometry. A line that connects two different
points on a surface with minimum perimeter is called geodesic line or geodesic. Now we
indicate, how to calculate the geodesic lines on a known surface in R3.

The general equation of geodesic lines is in Laugwitz [6], chapter II, task 4.13, p.41:

üi +
2∑

j,k=1

Γi
jku̇

j u̇k = λ · u̇i with λ = − d
2t

ds2
·
(
ds

dt

)2

The Christoffel symbols of second kind Γi
jk are explained by the equation (4.9) in Laug-

witz [6]:

Γr
ik =

2∑
l=1

glr

2

(
∂gil

∂uk
− ∂gik

∂ul
+
∂glk

∂ui

)
The quantity gil is introduced with equation (4.6) in Laugwitz [6]:

2∑
l=1

gilglk = δi
k gil = gli δi

k =

{
1 : i = k
0 : i 6= k

The metric fundamental element gik is defined with equation (3.16) in Laugwitz [6]:

gik = xixk

With xi = ∂x
∂ui because of equation (3.2) in Laugwitz [6], x is the surface patch because

of equation (3.1). In general the geodesic lines can be calculated on a known surface in
this way. An interesting part result is the Clairaut theorem on a surface of rotation see
Arnol’d [1], chapter 4.3.4.3, p.94 and figure 66 or Strubecker [8], equation (38.6). At
Köhnlein [5] triangles on surfaces of rotation are treated.

Strubecker [8] (chapter III 38, example 5, p.227–232) works with goedesic lines on
paraboloids of revolution.
We find geodesic lines on ellipsoids of revolution in Strubecker [8], chapter III 38, exam-
ple 6, p.232,233 together with an elliptic integral that must be determined numerically
perhaps with Hofreiter [4], Nr.244, 1)-3), p.81,82.
The problem of determination of geodesics on ellipsoids of revolution plays a major role
in geodesy, because the earth itself can be described as ellipsoid of revolution. In geodesy
there is the “second geodesic fundamental task”: Determination of the distance of two
points, that have known terrestrial longitude and latitude. In Schödlbauer [7] different
methods of distance calculation are presented for short, middle and long distances. In
this book also ellipsoidal triangles are calculated. This is also done in Heck [3], chapter
6.6, p.212-214 with sides all smaller than 1

10 of the earth radius. Similar formulas can
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be found partly at Großmann [2], §38.2, p.87.

At hyperboloid of revolution we have the equation:

z2

a2
− r2

b2
= 1

see figure:

We get:

z2 = a2 ·
(

1 +
r2

b2

)
This leads to:

z(r) =
a

b
·
√
b2 + r2

Further we obtain:
∂z(r)
∂r

=
a

b
· r√

b2 + r2

If we insert this in the equation (38.8) at Strubecker [8] p. 223, then we get the polar
equation of geodesics on a hyperboloid of revolution:

(ϕ− ϕ0) = k ·
∫ 1
r
·

√√√√1 + a2r2

b2(b2+r2)

r2 − k2
dr

2. The maximum distance on a spherical surface

Here we want to calculate the place with the greatest distance on the earth from towns
as for example Boston, New York, Washington, Paris, London, Berlin, Hamburg, Copen-
hagen, Stockholm, Helsinki.

We have the following quantities:
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R = radius of the (earth-) ball

α = latitude angle of the starting place α ∈ [−90◦, 90◦]

ϕ = longitude of the starting place ϕ ∈ [−180◦, 180◦]

Degree is the unit of longitude and latitude angle. The longitude is counted west of the
zero meridian as positive and east as negative. Often, atlas’ have the negative signs left
out in the eastern direction.

Now, we will search for the longitude and latitude angle with the maximum distance
from the starting place.

β, γ = latitude angle, longitude of the place that has the maximum distance from the
starting place.

For β we obtain β = −α with the first figure.

We get γ with the second figure:

γ◦ =

{
ϕ◦ − 180◦ if ϕ◦ ≥ 0
180◦ + ϕ◦ if ϕ◦ ≤ 0
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maximum distance = π ·R

(γ, β) determines the place with maximum distance from (ϕ, α).
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24. The solid angle through the isosceles triangle

We want to determine the solid angle Ω through the isosceles triangle. The method is
similar to Schröer [1] (chapter 5 and 6). We view the following triangles. The spherical
triangle is on the unit sphere.
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With the distance r and the sides a, c we get the following equation:

sin
γ

2
=

c

2a
(1)

We calculate the side w:
tanw =

a

r
The third side in spherical triangle can be presented with the cosine law for sides:

cos s = cos2w + sin2w · cos γ

We use the spherical law of sines to determine the other angles:

sinα
sinw

=
sin γ
sin s

Now we turn to the spherical excess ε and to the solid angle:

Ω = ε = γ + 2α− π

If r → 0, we have the maximum solid angle:

Ω → γ

2π
· 2π = γ = 2 · arcsin

(
c

2a

)
For a, c� r it is valid with equation (1):

Ω ≈ ca

2r2
· cos

γ

2
=

ca

2r2
·

√
1−

(
c

2a

)2

Φ = I · Ω with I as luminous intensity (radiant intensity) is the luminous flux (radiant
flux or radiant power) in vacuum.
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25. The solid angle through the right-angled triangle

We determine the solid angle Ω through the right-angled triangle. The method is similar
to Schröer [1] (chapter 5 and 6). We view the following triangles:
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a, b, c = sides of the right-angled triangle,
ā, b̄, c̄ = sides of the right-angled spherical triangle on the unit sphere,
r is the distance.

In both triangles we follow the equations:

tan ā =
a

r
tan b̄ =

b

r

tanα =
tan ā
sin b̄

tanβ =
tan b̄
sin ā

The both last equations are in [2](p.189, theorem 5). Now we calculate the spherical
excess ε and the solid angle:

Ω = ε = α+ β +
π

2
− π = α+ β − π

2
If r → 0, we have the maximum solid angle:

Ω → π

2 · 2π
· 2π =

π

2
For a, b� r it is valid:

Ω ≈ a · b
2 · r2

Φ = I · Ω with I as luminous intensity (radiant intensity) is the luminous flux (radiant
flux or radiant power) in vacuum.
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26. The solid angle through the vertical rectangle

We want to determine the solid angle Ω through the vertical rectangle. The method is
similar to Schröer [1] (chapter 5 and 6). We view the following rectangle:
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With the distance r and the sides a, b we get the following equations:
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=
b

a
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We look at the spherical triangles on the unit sphere:
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We get the side w with:

tanw =
√
a2 + b2

2r
With the cosine law for sides we calculate the other sides:

cos s1 = cos2w + sin2w · cos γ

cos s2 = cos2w + sin2w · cos δ

We use the spherical law of sines to determine the other angles:

sinα1

sinw
=

sin γ
sin s1

sinα2

sinw
=

sin δ
sin s2

If ε is the spherical excess, then it is valid:

ε1 = γ + 2α1 − π ε2 = δ + 2α2 − π
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For the solid angle we have:
Ω = 2 · (ε1 + ε2)

The maximum solid angle can be 2π, if r → 0.

In the case a, b� r it is valid:

Ω ≈ a · b
r2

Φ = I · Ω with I as luminous intensity (radiant intensity) is the luminous flux (radiant
flux or radiant power) in vacuum.
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27. The solid angle through the inclined rectangle

We want to calculate the solid angle through the inclined rectangle. The method is
similar to Schröer [1] (chapter 5). The rectangle is in the origin.
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We introduce the distance vector ~l = (r, r2, r1). We construct the difference vectors:

~p1 =

 0
−a
2
b
2

−~l ~p2 =

 0
a
2
b
2

−~l

~p3 =

 0
a
2
−b
2

−~l ~p4 =

 0
−a
2
−b
2

−~l
Now we determine the sides of both spherical triangles on the unit sphere:

cosα12 := cos 6 (~p1, ~p2) =
~p1 · ~p2

|~p1| · |~p2|

cosα23 := cos 6 (~p2, ~p3) =
~p2 · ~p3

|~p2| · |~p3|

cosα13 := cos 6 (~p1, ~p3) =
~p1 · ~p3

|~p1| · |~p3|

cosα34 := cos 6 (~p3, ~p4) =
~p3 · ~p4

|~p3| · |~p4|
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cosα14 := cos 6 (~p1, ~p4) =
~p1 · ~p4

|~p1| · |~p4|
We view the following figure:

We need the cosine law for sides to get two angles:

cosα13 = cosα12 cosα23 + sinα12 sinα23 cosϕ2

⇒ cosϕ2 =
cosα13 − cosα12 cosα23

sinα12 sinα23

cosα13 = cosα34 cosα14 + sinα34 sinα14 cosϕ5

⇒ cosϕ5 =
cosα13 − cosα34 cosα14

sinα34 sinα14

Now we use the spherical law of sines in the first triangle:

sinϕ1

sinα23
=

sinϕ2

sinα13
=

sinϕ3

sinα12

In the second triangle:
sinϕ4

sinα14
=

sinϕ5

sinα13
=

sinϕ6

sinα34

We obtain the spherical excess in radian measure:

ε1 = ϕ1 + ϕ2 + ϕ3 − π ε2 = ϕ4 + ϕ5 + ϕ6 − π

For the solid angle we get Ω = ε1 + ε2.

If a, b� r, then we have the approximation:

Ω ≈ ab · cosα
r2 + r21 + r22

with tanα =

√
r21 + r22

r

Φ = I · Ω with I as luminous intensity (radiant intensity) is the luminous flux (radiant
flux or radiant power) through the inclined rectangle in vacuum.

References
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F. Stochastics

28. Linear and nonlinear regression with series of
measurements

First method

We view the following series of measurements:

x11

x12

x13
...
x1i
...
x1n

y21

y22

y23
...
y2i
...
y2n

To every x1i ∈ R a y2i ∈ R i ∈ {1, . . . , n} is mesured.
We assume that one approximation y = f(x) exists so that
y2i ≈ f(x1i) for i ∈ {1, . . . , n}.

We make the approximation more exact or we adapt f(x) at the series of measurements.

We define: y1i := f(x1i) i ∈ {1, . . . , n}

Now we look at the values y11, . . . , y1n and y21, . . . , y2n. We will determine with linear
regression the function g(y) = my + b so that g(y1i) ≈ y2i i ∈ {1, . . . , n} and

n∑
i=1

(g(y1i)− y2i)2

is a minimun.

Next, we look at the following series of measurements:

x1, . . . , xn and y1, . . . , yn

Then, known formulas of linear regression are valid, see e.g. Bronstein [1], chapter
5.2.4.1, p.692.

x̄ =
1
n
·

n∑
i=1

xi ȳ =
1
n
·

n∑
i=1

yi

s2x =
1

n− 1
·

n∑
i=1

(xi − x̄)2 s2y =
1

n− 1
·

n∑
i=1

(yi − ȳ)2
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mxy =
1

n− 1
·

n∑
i=1

(xi − x̄) · (yi − ȳ)

r =
mxy

sx · sy

m = bY |X = r · sy

sx
=
mxy

s2x

b = ȳ −m · x̄

with
x̄, ȳ = means
s2x, s

2
y = sample variances

mxy = empirical covariance
r = empirical correlation coefficient
m = slope of the regression line
b = line segment of the regression line

The regression line can be written as:

y = mx+ b

These formulas can be used with the series y11, . . . , y1n and y21, . . . , y2n.

ȳ1 =
1
n
·

n∑
i=1

y1i ȳ2 =
1
n
·

n∑
i=1

y2i

S2
1 =

1
n− 1

·
n∑

i=1

(y1i − ȳ1)2 S2
2 =

1
n− 1

·
n∑

i=1

(y2i − ȳ2)2

m12 =
1

n− 1
·

n∑
i=1

(y1i − ȳ1) · (y2i − ȳ2)

m =
m12

S2
1

b = ȳ2 −mȳ1

r =
m12

S1 · S2
(correlation)

The searched function is g(y) = my + b.

corrected function:
y = m · f(x) + b

Thereby f(x) is adapted as a series of measurements.
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r is the correlation of g.

This method is mentioned shortly in Bronstein [1], chapter 7.1.5.1.2, p.788 on “lineariza-
tion”. Later, we see a second method of linearization.

Application to vectors:

This method can be generalised as vectors. The 2n vectors are measured as follows:

x11
...
x1i
...
x1n

y21
...
y2i
...
y2n

with

x1i =:

 x1i1
...

x1im

 ∈ Rm i ∈ {1, . . . , n}

y2i =:

 y2i1
...

y2im

 ∈ Rm i ∈ {1, . . . , n}

We assume that one approximation

f : U −→ V U, V ⊂ Rm f =:

 f1
...
fm


with y2i ≈ f(x1i) for i ∈ {1, . . . , n} exist.

Now we define:

f(x1i) =: y1i =:

 y1i1
...

y1im

 ∈ Rm

for i ∈ {1, . . . , n}

Now it is possible to use the linear regression componentwise.

y1ij and y2ij can be opposed. j ∈ {1, . . . ,m}

y11j
...

y1nj

y21j
...

y2nj
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Let be y =

 y1
...
ym

 ∈ V ⊂ Rm.

We search m functions of gj .
gj(yj) = mjyj + bj

and gj(y1ij) ≈ y2ij for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. We must determine m linear
functions of gj .

Application of the linear regression:

ȳ1j =
1
n
·

n∑
i=1

y1ij ȳ2j =
1
n
·

n∑
i=1

y2ij

S2
1j =

1
n− 1

·
n∑

i=1

(y1ij − ȳ1j)2 S2
2j =

1
n− 1

·
n∑

i=1

(y2ij − ȳ2j)2

m12j =
1

n− 1

n∑
i=1

(y1ij − ȳ1j) · (y2ij − ȳ2j)

Then we have:
gj(yj) = mjyj + bj j ∈ {1, . . . ,m}

with
mj =

m12j

S2
1j

bj = ȳ2j −mj · ȳ1j

rj =
m12j

S1j · S2j
(correlation of gj)

Adaptation of the series of measurements:

G(y) :=

 g1(y1)
...

gm(ym)


corrected function:

y = G(f(x)) =

 g1(f1(x))
...

gm(fm(x))



=

 m1f1(x) + b1
...

mmfm(x) + bm



with f =:

 f1
...
fm
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rj is an assertion about the quality of gj .

It is unknown, if r = 1
m

∑m
i=1 rj is a correlation of G?

If the corrected function is not exact enough, the corrected function can be used as f .
This is a second correction with G2. The twice corrected function is:

y = G2(G1(f(x)))

This function can be inserted again until

y = Gr(Gr−1(. . . G1(f(x)) . . .))

has the wanted exactness.

A proof of this method:

|| · || = euclidean norm

n∑
i=1

||y2i − y1i||2 =
m∑

j=1

n∑
i=1

(y2ij − y1ij)2

ȳ1i :=

 ȳ1i1
...

ȳ1im

 :=

 m1y1i1 + b1
...

mmy1im + bm


n∑

i=1

||y2i − ȳ1i||2 =
m∑

j=1

n∑
i=1

(y2ij − ȳ1ij)2

It can be recognized, because of the method of least squares, see e.g. Bronstein [1],
chapter 7.1.5.1, p.787,788 :

n∑
i=1

(y2ij − ȳ1ij)2 <
n∑

i=1

(y2ij − y1ij)2 (1)

if  y11j
...

y1nj

 6=
 y21j

...
y2nj


If the vectors are equal, there is a sign of equality at (1).

We conclude:
m∑

j=1

n∑
i=1

(y2ij − ȳ1ij)2 <
m∑

j=1

n∑
i=1

(y2ij − y1ij)2
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if  y11j
...

y1nj

 6=
 y21j

...
y2nj

 for one j ∈ {1, . . . ,m}

In case  y11j
...

y1nj

 =

 y21j
...

y2nj

 for all j ∈ {1, . . . ,m}

an adaptation is not necessary. q.e.d.

Second method

We view again the following series of measurements:

x11 y21

x12 y22

x13 y23
...

...
x1i y2i
...

...
x1n y2n

To every x1i ∈ R is mesured a y2i ∈ R. i ∈ {1, . . . , n}
We assume again that one approximation y = f(x) exist so that y2i ≈ f(x1i) for
i ∈ {1, . . . , n}.
Now we use another method to adapt the function f(x) at the series of measurements.

We define: y1i := f(x1i) x2i := f−1(y2i)
i ∈ {1, . . . , n}
It is assumed that f possesses an inverse function f−1.

The second possibility is to view the values x11, . . . x1n and x21, . . . , x2n. We determine
with linear regression a linear function g(x) = mx+b so that g(x1i) ≈ x2i i ∈ {1, . . . , n}
and

n∑
i=1

(g(x1i)− x2i)
2

is a minimum. This method is called linearization.

We again use the known formulas of linear regression.
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Then, it becomes:

x̄1 =
1
n
·

n∑
i=1

x1i x̄2 =
1
n
·

n∑
i=1

x2i

S2
1 =

1
n− 1

·
n∑

i=1

(x1i − x̄1)2 S2
2 =

1
n− 1

·
n∑

i=1

(x2i − x̄2)2

m12 =
1

n− 1
·

n∑
i=1

(x1i − x̄1) · (x2i − x̄2)

m =
m12

S2
1

b = x̄2 −m · x̄1

r =
m12

S1 · S2

The searched function is:
g(x) = mx+ b

The function f(x) is adapted at the series of measurements, if we insert g(x) instead of
x in f(x). The corrected function is:

y = f(mx+ b)

r is an assertion about the quality of

g(x) = mx+ b.

Thus, the second method of linearization is put in front.

Application to vectors:

This method can also be used by vectors. The following 2n vectors are measured:

x11 y21
...

...
x1i y2i
...

...
x1n y2n

with

x1i =:

 x1i1
...

x1im

 ∈ Rm i ∈ {1, . . . , n}

y2i =:

 y2i1
...

y2im

 ∈ Rm i ∈ {1, . . . , n}

Again we assume, that one approximation
f : U −→ V U, V ⊂ Rm
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with y2i ≈ f(x1i) for i ∈ {1, . . . , n} exists. f : U −→ V must be bijective, otherwise
there is no inverse function.

The following quantities will be defined:

f(x1i) =: y1i =:

 y1i1
...

y1im

 ∈ Rm i ∈ {1, . . . , n}

f−1(y2i) =: x2i =:

 x2i1
...

x2im

 ∈ Rm i ∈ {1, . . . , n}

It is favorable to use the linear regression componentwise.

x1ij and x2ij can be opposed. j ∈ {1, . . . ,m}

x11j
...

x1nj

x21j
...

x2nj

Let

x =

 x1
...
xm

 ∈ U ⊂ Rm

Then m functions of gj with gj(xj) = mjxj + bj and gj(x1ij) ≈ x2ij for i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m} are searched.

m functions of gj must be determined.

Application of the linear regression:

x̄1j =
1
n
·

n∑
i=1

x1ij x̄2j =
1
n
·

n∑
i=1

x2ij

S2
1j =

1
n− 1

·
n∑

i=1

(x1ij − x̄1j)2 S2
2j =

1
n− 1

·
n∑

i=1

(x2ij − x̄2j)2

m12j =
1

n− 1
·

n∑
i=1

(x1ij − x̄1j) · (x2ij − x̄2j)
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We obtain:
gj(xj) = mjxj + bj j ∈ {1, . . . ,m}

with
mj =

m12j

S2
1j

bj = x̄2j −mj · x̄1j

rj =
m12j

S1j · S2j
is the correlation of gj .

Adaptation to the series of measurements:

G(x) :=

 g1(x1)
...

gm(xm)


corrected function:

y = f(G(x)) = f(g1(x1), . . . , gm(xm))

= f(m1x1 + b1, . . . ,mmxm + bm)

rj is an assertion about the quality of gj . It is unknown, if r := 1
m ·
∑m

j=1 rj is a correlation
of G?

If the corrected function is not exact enough, the corrected function can be used as f .
There is a second correction with G2. The twice corrected function is:

y = f(G1(G2(x)))

This function can be inserted again until

y = f(G1(G2(. . . (Gr(x)) . . .)))

has the wanted exactness.

A proof of this method:

|| · || = euclidean norm

n∑
i=1

||x1i − x2i||2 =
m∑

j=1

n∑
i=1

(x1ij − x2ij)2

x̄2i :=

 x̄2i1
...

x̄2im

 :=


x2i1−b1

m1
...

x2im−bm
mm


n∑

i=1

||x1i − x̄2i||2 =
m∑

j=1

n∑
i=1

(x1ij − x̄2ij)2
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It can be seen, because of the method of least squares, e.g. Bronstein [1], chapter 7.1.5.1,
p.787,788 :

n∑
i=1

(x1ij − x̄2ij)2 <
n∑

i=1

(x1ij − x2ij)2 (2)

if

 x11j
...

x1nj

 6=
 x21j

...
x2nj


If the vectors are equal, there is a sign of equality at (2).

It follows:
m∑

j=1

n∑
i=1

(x1ij − x̄2ij)2 <
m∑

j=1

n∑
i=1

(x1ij − x2ij)2

if

 x11j
...

x1nj

 6=
 x21j

...
x2nj

 for one j ∈ {1, . . . ,m}

In case

 x11j
...

x1nj

 =

 x21j
...

x2nj

 for all j ∈ {1, . . . ,m}

an adaptation is not necessary. q.e.d.

At present we have described two methods that refine the approximative law y = f(x).
These methods can be used, if the form of the law is changed insignificantly. In the
nature of science this is important, for the following reason: In known law, there are
often variables that have a certain meaning. Perhaps, this is valid to other sciences as
well. Numerical mathematics developes methods that can totally change the form of the
wanted law.

Another problem is in finding the first approximation y = f(x). We can e.g. use the
methods in Bronstein [1], chapter 7.1.5, p.786-790 (method of the least squares, method
of the choosed point, averaging method). These methods can be used for refinements,
e.g. more mesured points or more parameters are possibilities.
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29. Buffon’s needle problem

We accidentally let a needle fall with the length L on a table. On the table are drawn
parallel lines with distance D. We assume L ≤ D.

We denote:

F=r ·D = area of the limited surface patch
x = distance of the needle’s geometric midpoint to one parallel (see figure). With the
figure we recognize:

cos
α

2
=

x(
L
2

) =
2x
L

We transform this equation to:

α = 2 · arccos
(

2x
L

)
= α(x)

In distance x the needle has a “rotation probability”of 2α
2π = α

π , if the needle intersects
to one parallel.

Now we introduce the probability w that the needle intersects one parallel:

w =
2r ·

L
2∫
0

2α(x)
2π dx

F
=

2r ·
L
2∫
0

2 arccos( 2x
L )

π dx

r ·D
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finally:

w =
4
πD

·

L
2∫

0

arccos
(

2x
L

)
dx

Now we use the integral:∫
arccos

x

a
dx = x · arccos

x

a
−
√
a2 − x2

This can be proved by differentiation.

Let it be that a = L
2 , then we get:

w =
4
πD

·

x · arccos
(

2x
L

)
−

√
L2

4
− x2

L
2

0

After evaluation at boundary of the interval:

w =
2 · L
π ·D

Now we generalize the Buffon’s needle problem.

We view a general convex set A ⊂ R2. That means that between two points of this set
the whole connecting line segment belongs to this set too. Let it be that (xp, yp) ∈ A,
then the angle α can be expressed with:

cosα =

(
x1 − xp

y1 − yp

)
·
(
x2 − xp

y2 − yp

)
∣∣∣∣∣
(
x1 − xp

y1 − yp

)∣∣∣∣∣ ·
∣∣∣∣∣
(
x2 − xp

y2 − yp

)∣∣∣∣∣
(x1, y1) and (x2, y2) are vectors from the intersection between the set’s A boundary and
the solution set of (y− yp)2 + (x− xp)2 = L2

4 . Only these two solutions may exist. Thus
the probability that this needle intersects or touchs the boundary can be written:

w =
1
πF

·
∫
A

αdypdxp
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We have to solve a two-dimensional integral. α must be in circular measure. The area
of the set A is denoted with F . We must think that x1, y1, x2, y2 are functions of xp and
yp, which must be inserted before the integration.

c© 2001 Harald Schröer
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30. Orbits with constant velocity on bodies of rotation shells

1. The frictionless case

In a body of rotation is a ball.

A shell rotates, then a ball on the shell moves to a higher position. There are several
questions. Is the ball in balance in this situation or does the ball fall down? Is there a free
play? Are there areas in which the ball cannot stay? It’s clear that the rotation velocity
of the shell plays a major role in this situation. What is with other quantities? Which
dependences are from this quantities? Are there quantities from which the situation is
independent? The situation of a rotating shell is physical equivalent to a circling ball on
a motionless shell. In all chapters the radius of the ball is very small compared to the
measurements of the body of rotation. We want to determine the dependence from r
and v (velocity) and the angular velocity w, too. Gravitation and centrifugal force must
be in balance. The centrifugal force often acts in everyday life. Everybody knows of the
centrifugal force for example at a round-about or driving a curve.

1.1. shell of the ball

At first the shell of the body of rotation shall be a shell of the ball. The angle of
inclination of the inclined plane is α.

m = mass of the small interior ball

Rk = radius of the ball’s shell (interior radius of the shell)

g = gravitation acceleration

α = 90◦ − (90◦ − γ) = γ with that α = γ
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Fz = falling force

Zz = centrifugal force against the falling force

Fz = mg sinα and Zz =
mv2

r
· cosα

see the following figures:

FN , ZN are normal forces.

It follows:
Zz = Z · cosα ZN = Z · sinα

we obtain:

Zz =
mv2

r
· cosα α = γ

r = Rk · sinα

insertion:

Zz =
mv2

Rk · sin γ
· cos γ

For Fz we get because of α = γ:

Fz = mg · sin γ
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For a stable orbit on the shell it must be Fz = Zz (balance), with that:

mg sin γ =
mv2

Rk · sin γ
· cos γ

transformed:

v2 = g ·RK · sin2 γ

cos γ
with

sin γ
cos γ

= tan γ

We get:
v(γ) =

√
g ·Rk · sin γ · tan γ

w =
v

r
w = angular velocity

w(γ) =
√
gRk sin γ tan γ
Rk sin γ

=

√
gRk sin γ tan γ
R2

k · sin
2 γ

=

√
g tan γ
Rk sin γ

=
√

g

Rk · cos γ

time of rotation: Ut =
2π
w

approximation:

For γ � 90◦ it is valid sin γ ≈ tan γ

It follows:
v ≈

√
g ·Rk · sin2 γ = sin γ ·

√
g ·RK

For γ near 90◦ we have sin γ ≈ 1:

v ≈
√
g ·RK · tan γ

If the barycenter is the midpoint of the ball, we can do the following.

R = radius of the small ball

Rk = Ri =radius of the shell of the ball (interior radius)

Ra = exterior radius
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With the figure we obtain the relation:

rm = r · sin γ ·Rk − sin γ ·R
sin γ ·Rk

(1)

With this we get:

rm = r · Rk −R

Rk

rm of a small ball is less smaller than r.

If we insert rm instead of r into the equations, we get the angular velocity and the
velocity at the barycenter. We assume that the small ball has a (local) constant density.
With the barycenter’s correction we obtain the barycenter’s velocity:

vm =
√
g · rm · tan γ with rm = Rk · sin γ ·

(
1− R

Rk

)
We get the velocity at the point of contact:

v = vm ·
Rk · sin γ

rm

1.2. general body of rotation

Now we look at the shell of a general body of rotation.

h(r) is the function of the body of rotation.

h′(r) = s = tanα = slope

α is the angle of inclination. We obtain as to the ball’s shell:

Fz = mg · sinα Zz =
mv2

r
· cosα

It is valid:
cosα =

1√
1 + tan2 α

sinα
cosα

= tanα

With this it follows:
sinα =

tanα√
1 + tan2 α

Now we insert s and we get:

Fz =
mgs√
1 + s2

Zz =
mv2

r
√

1 + s2

106



G.Mechanics

For a stable orbit it must be again Fz = Zz (balance), with that:

mv2

r
√

1 + s2
=

mgs√
1 + s2

⇒ v2 = g · r · s

With that it follows:
v = +

√
g · r · s

For the angular velocity we get:

w =
v

r
=
√
grs

r2
=
√
g · s
r

Because of s = h′(r) a transformation from v or w to r isn’t possible in general. This
must be done with a given function h(r).

If the barycenter is in the midpoint of the ball, we can do the following.

R is the radius of the ball.

For the angle δ it is valid: δ = 180◦ − 90◦ − (90◦ − α) = α With the figure we obtain:

rm = r · r −R · sin δ
r

With tanα = s and sin δ = tan δ√
1+tan2 δ

we conclude:

rm = r ·
r − R·s√

1+s2

r
(2)

with s = h′(r)

With a small ball rm is less smaller than r.

If we insert rm instead of r into the equations, we get the angular velocity and the
velocity at the barycenter of the ball. We assume that the small ball has a (local)
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constant density. This is valid to all chapters. The exact calculation with barycenter we
get the barycenter’s velocity (small ball):

vm =
√
g · rm · h′(r)

Angular velocity:

w =
vm

rm
=

√
g · h′(r)
rm

With
v = vm ·

r

rm

we obtain the velocity at the point of contact.

The rotation body’s function h(r) is always the interior one. Wir define:

r = ri = interior radius

ra = exterior radius

h(r) must have only one touching point with the ball. With that no “troughs” with two
touching points see figure:

From the general body of rotation we can derive different special cases.

1.3. Cone of rotation

Now we view a cone of rotation:
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α = apex angle of the cone

Because of the figure we recognize:

h(r) =
r

tanα
⇒ s = h′(r) =

1
tanα

If we insert in the general formula v =
√
grs for h(r) and s, we get the velocity:

v =
√
g · r
tanα

Transformed to r:

r =
v2 · tanα

g

We obtain the angular velocity:

w =
v

r
=
√

gr

tanα · r2
=
√

g

r · tanα

Transformed to r again:
r =

g

w2 · tanα
See Sommerfeld [5], §14.1, p.73.

Because of the using of equation (2) we calculate now s√
1+s2

.

s√
1 + s2

=
1

tanα ·
√

1 + 1
tan2 α

=
1√

tan2 α+ 1
= cosα

With equation (2) it follows:

rm = r · r −R · cosα
r

The consideration of barycenter leads to:

vm =
√
g · rm
tanα

w =
√

g

rm · tanα
v = vm ·

r

rm

1.4. Ellipsoid of revolution

We now treat the ellipsoid of revolution. The semi-axis a is on the x-axis and on the
y-axis, the semi-axis b on the z-axis. The z-axis shall be axis of rotation. The semi-axes
a and b can be arbitrary.
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The canonical equation of the ellipse is:

r2

a2
+
h2

b2
= 1

Transformed:

h2 = b2 ·
(

1− r2

a2

)
= b2 · a

2 − r2

a2

With this we follow:
h(r) = ± b

a
·
√
a2 − r2

Differentiation to r:

s = h′(r) =
b

a
· 1
2
· −2r
±
√
a2 − r2

= ± b
a
· r√

a2 − r2

With v = +
√
grs follows:

v = +

√
g · r · b

a
· r√

a2 − r2

at last:

v = r ·
√

b · g
a ·
√
a2 − r2

(3)

The angular velocity w can be written as:

w =
v

r
=

√
bg

a ·
√
a2 − r2

(4)

Approximation for r � a:

v ≈ r

a
·
√
bg w =

v

r
≈ 1
a
·
√
bg

Now we must search the relation between r and rm. In the case of the ellipsoid of
revolution we get for the expression:

s√
1 + s2

=
br

a ·
√
a2 − r2

· 1√
1 + b2r2

a2·(a2−r2)

=
br

a ·
√
a2 − r2 + b2r2

a2

=
br√

a4 − r2a2 + b2r2

We insert this term in equation (2):

rm = r ·
r − brR√

a4−r2a2+b2r2

r

rm = r

(
1− bR√

a4 − r2a2 + b2r2

)
(5)

With barycenter’s correction we get:

vm = rm ·
√

b · g
a ·
√
a2 − r2

v = vm ·
r

rm

The angular velocity is the same.
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1.5. A ball as special case of the ellipsoid of revolution:

It is possible to treat the ball as special case of the ellipsoid of revolution with the ball’s
radius Rk = a = b, too. With specialization of the formulas (3) and (4) we get:

v = r ·
√√√√ g√

R2
k − r2

w =
√√√√ g√

R2
k − r2

Approximation for r � Rk:

v ≈ r ·
√

g

Rk
w ≈

√
g

Rk

Specialization of (5):

rm = r ·
(

1− R

Rk

)
A calculation with barycenter yields:

vm = rm ·
√√√√ g√

R2
k − r2

v = vm ·
r

rm

The angular velocity remains unchanged.

1.6. Paraboloid

We now turn to the paraboloid of revolution. For the parabola it is valid:

x2 = 2py

We look at the following figure:

Notations:

focal length f = p
2 x = r , y = h

r2 = 2h · 2f = 4hf

With this we obtain:

h =
r2

4f
s = h′(r) =

r

2f
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With v = +
√
grs follows:

v =
√
gr · r

2f
= r ·

√
g

2f
For the angular velocity:

w =
v

r
=
√

g

2f
w is independent of r.

We transform the velocity equation to:

r = v ·
√

2f
g

To the relation between r and rm:
s√

1 + s2
=

r

2f ·
√

1 + r2

4f2

=
r√

4f2 + r2

With equation (2) we get:

rm = r ·
(

1− R√
4f2 + r2

)
A calculation with the small ball’s barycenter leads to:

vm = rm ·
√

g

2f
v = vm ·

r

rm

1.7. Hyperboloid

We now view the orbit on the hyperboloid of revolution’s shell:

Canonical equation of the hyperbola:

x2

a2
− y2

b2
= 1

Wise are the notations:

y = r, x = h
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We insert in the canonical equation:

h2

a2
− r2

b2
= 1

Transformed:

h2 = a2 ·
(

1 +
r2

b2

)
=
a2

b2
· (b2 + r2)

with that:
h =

a

b
·
√
b2 + r2

The slope s can be calculated as:

s = h′(r) =
a

b
· 1
2
· 2r√

b2 + r2
=
a

b
· r√

b2 + r2

With v = +
√
grs follows:

v =
√
gr · a

b
· r√

b2 + r2
= r ·

√
ag

b ·
√
b2 + r2

(6)

One approximation for a, b� r:

v ≈ r ·
√
ag

br
=
√
arg

b

asymptote: h′(r) ≈ a

b

angular velocity:

w =
v

r
=
√

ag

b ·
√
b2 + r2

for a, b� r:

w ≈
√
ag

br

Now we determine the ball’s midpoint velocity:

s√
1 + s2

=
ar

b ·
√
b2 + r2

· 1√
1 + a2r2

b2·(b2+r2)

=
ar

b ·
√
b2 + r2 + a2r2

b2

=
ra√

b4 + r2b2 + a2r2
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From (2) we conclude:

rm = r ·
r − Rra√

b4+r2b2+r2a2

r

at last:
rm = r ·

(
1− Ra√

b4 + r2b2 + r2a2

)
With this barycenter’s correction we get:

vm = rm ·
√

a · g
b ·
√
b2 + r2

v = vm ·
r

rm

The angular velocity is the same.

Generalizations:

a): Instead shell of rotation bodies we can view an arm that has got the form of the
rotation body.

This arm rotates and the body is in balance between gravitation and centrifugal force.
If the body glides frictionless, the same equations are valid. (We especially achieve this
with rotation bodies as balls, cylinder.)

b): The frictionless case in medium can be treated in the same way, if we insert instead
of g, g·(ϕK−ϕF )

ϕK
=g ·

(
1− ϕF

ϕK

)
(see for example Budo [2] §16 p.85) in the equations. ϕF

is the medium’s density (liquid or gas) and ϕK is the body’s density that is in balance
(not the density of the rotation body’s shell).

reasons:

There are only gravitation and centrifugal force in this balance case. The centrifugal force
is independent from medium, in the orbit case the centrifugal force is only dependent
from r and v, we can see it in the derivation of the centrifugal force, but not from
medium. The gravitation acceleration changes from g to g · ϕK−ϕF

ϕK
. Only with the

gravitation there is a change, because of this we can insert g ·
(
1− ϕF

ϕK

)
instead of g.
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In the case ϕF > ϕK the rotation body’s shell (respectively the arm) must be turned
round.

instead of then

Then the same equations are valid again.

2. The friction case

We introduce the following notations:

m = mass of the ball
R = radius of the ball
g = gravitation acceleration
FR = friction force
µ = general friction coefficient
µH = static friction coefficient
µG = sliding friction coefficient
µ′ = rolling friction coefficient
α = angle of inclination of the plane

We explain the factor δ in the following way:

δ :=


5
7 if µ′

R < µH (rolling)
1 if µH < µ′

R (sliding)
5
7 or 1 if µ′

R = µH 6= 0 (decision is open)
1 if 0 = µ′

R = µH (frictionless)

See Assmann [1], volume 1, chapter 11.10, p. 265.

The acceleration b on the inclined plane is:
b = δg · sinα, the velocity v and the distance s are v = δg sinα · t and s = 1

2 · δg · t
2 · sinα.

If a ball is rolling on the inclined plane, it is δ = 5
7 see for example Budo [2], §57, p.302,

equation (8). The moment of inertia J of a ball is J = 2
5 ·mR

2. The general formula for
rolling on the inclined plane can be written as:

b =
mg sinα
m+ J

R2

(7)

One derivation can be found at * (at the end of the chapter) or we can see this with
Budo [2], §57, p.302, equations (5)-(7). With the moment of inertia of the ball we get:

b =
mg sinα
m+ 2

5 ·m
=

5
7
· g sinα (8)
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Then we get in the case of rolling δ = 5
7 .

The forces are (see fig.):

F = mg sinα FN = mg cosα

friction force:
FR = µ · FN = mgµ cosα

In the friction case is:

µ =


µ′

R if µH > µ′

R (rolling)
µG if µ′

R > µH (sliding)
µG or µ′

R if µH = µ′

R (decision is open)

See Assmann [1], volume 1, chapter 11.10, p.265. In the case of friction is:

F = mg · (δ sinα− µ cosα) b = g · (δ sinα− µ cosα)

v = gt · (δ sinα− µ cosα) s =
1
2
· gt2(δ sinα− µ cosα)

If we consider orbits on rotation bodies shells and Z is the centrifugal force, the inequality
of stable orbits are see Sommerfeld [5], volume 1, §14.1, p.73:

Zz − Fz ≤ ZR + FR Fz − Zz ≤ ZR + FR

with:
Fz = δmg sinα FR = mg cosα · µ

To the centrifugal forces (see fig.):

Z = mv2

r = centrifugal force

ZN = Z · sinα Zz = δ · mv
2

r
· cosα

ZR= friction force of the centrifugal force

ZR = µ · ZN = µ · mv
2

r
· sinα
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2.1. Orbits on the ball’s shell

Now we view orbits on the ball’s shell with friction.

RK = ball’s radius (interior radius of ball’s shell)
γ = height angle of the ball’s shell
α = γ

The limit velocities of stable orbits can be obtained with the following equations:

Zz − Fz = ZR + FR (9)

Fz − Zz = ZR + FR (10)

It is r = sin γ ·RK and α = γ. With (9) it follows:

δ · mv
2
max cos γ

sin γ ·RK
− δmg sin γ = µ

mv2
max sin γ

sin γ ·RK
+mg cos γ · µ

with tan γ = sin γ
cos γ we get:

δmv2
max

tan γ ·RK
− δmg sin γ =

µmv2
max

RK
+mg cos γ · µ

ordered:
v2
max ·

(
δm

tan γ ·RK
− µm

RK

)
= mg cos γ · µ+ δmg sin γ

Solving:

v2
max =

g sin γ ·
(
δ + µ

tan γ

)
(

δ
tan γ − µ

)
· 1

RK

at last:

vmax =

√
gRK sin γ · (tan γ · δ + µ)

δ − µ tan γ

With equation (10) we can get with the same method an expression of the minimum
velocity:

vmin =

√
gRK sin γ · (δ tan γ − µ)

δ + tan γ · µ
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In general it is:
angular velocity = w =

v

r
=

v

sin γ ·RK

It exists one γmax and one γmin, which can be determined in the following way with the
maximum and minimum velocity.

vmax = ∞ if δ − µ tan γ = 0, it follows:

tan γmax =
δ

µ

vmin = 0 if δ tan γ − µ = 0 from this we get:

tan γmin =
µ

δ

We obtain in addition:
γmax + γmin = 90◦

With that the ball can move only in the interval [γmin, γmax] in a stable orbit. Outside
from this interval no stable orbits with constant height angle exist.

If we insert zero for µ we get from the maximum velocity and the minimum velocity the
same expression

v =
√
gRK sin γ tan γ

for the frictionless case. This is the formula of chapter 1.

The relation between r and rm is the same as in chapter 1 for the frictionless case.

2.2. The orbit on the general rotation body’s shell

h(r) = function of the rotation body see figure, s = h′(r).
h(r) has got only one touching point with the ball. With that there is no “trough”.
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We always mention the function of the rotation body the one of the interior shell.
r = interior radius

The following is valid:

s = tanα cosα =
1√

1 + s2
sinα =

s√
1 + s2

It follows:
Fz = δmg · s√

1 + s2
FR =

mgµ√
1 + s2

Zz = δ · mv2

r ·
√

1 + s2
ZR =

µmv2s

r ·
√

1 + s2

Now we again use the equation (9).

δmv2
max

r ·
√

1 + s2
− δmgs√

1 + s2
=

µmv2
maxs

r ·
√

1 + s2
+

mgµ√
1 + s2

simplified:
v2
max · δ
r

− v2
max · µs
r

= gµ+ δgs

v2
max

r
· (δ − µs) = g · (µ+ δs)

at last:

vmax =

√
rg · (δs+ µ)
δ − µs

On the same way we can derive a formula of the minimum velocity with the equation
(10). This formula is:

vmin =

√
rg · (δs− µ)
µs+ δ

We here have one smax and one smin that can be calculated with the equations of
maximum velocity and minimum velocity.

vmax = ∞ if δ − µs = 0 it follows:

smax =
δ

µ
(11)

vmin = 0 if δs− µ = 0 we obtain:
smin =

µ

δ
(12)

We find:
smin · smax = 1

In the frictionless case with µ = 0 we get:

vmax = vmin =
√
grs

119



G.Mechanics

This formula is the same as the one in chapter 1.

The relation between r and rm is the same as in chapter 1.

angular velocity = w = v
r

We can derive from the general body of rotation different special cases.

2.3. The cone of revolution

In this case we have:
h(r) =

r

tanα
s = h′(r) =

1
tanα

α = apex angle of the cone

We insert in the formula of the maximum velocity of the general rotation body:

vmax =

√
rg · (δs+ µ)
δ − µs

=

√√√√rg ·
(

δ
tan α + µ

)
δ − µ

tan α

at last:

vmax =

√
rg · (δ + tanα · µ)

δ tanα− µ

In the same way we get from the minimum velocity formula of the general rotation body
the minimum velocity of the cone of revolution:

vmin =

√
rg · (δ − µ tanα)
µ+ δ tanα

From the general limit conditions smax = δ
µ and smin = µ

δ we follow 1
tan αmax

= δ
µ and

1
tan αmin

= µ
δ , on this way we obtain:

tanαmax =
µ

δ
tanαmin =

δ

µ

At the cone of revolution there are no rmin,rmax but it exists αmin and αmax. If we
insert µ = 0 in both velocity formulas, we get the formula v =

√
rg

tan α for the frictionless
case. We know this formula from the chapter before. The relation between r and rm is
the same as in the chapter before with the frictionless case.

angular velocity = w = v
r
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2.4. The ellipsoid of revolution

We look at the figure:

From the canonical equation of the ellipse with the semi-axis a, b we get (see the chapter
before, too): b = axis of revolution

h(r) = ± b
a
·
√
a2 − r2 s = h′(r) = ± b

a
· r√

a2 − r2

We again use the formula of the maximum velocity of the general rotation body:

vmax =

√
rg · (δs+ µ)
δ − µs

=

√√√√√rg ·
(
δ · b

a ·
r√

a2−r2
+ µ

)
δ − b

a ·
µr√

a2−r2

at last:

vmax =

√√√√rg · (δbr + µa ·
√
a2 − r2)

δa ·
√
a2 − r2 − bµr

In the same way we can derive from the formula of the minimum velocity of the general
rotation body the following equation:

vmin =

√√√√rg · (δbr − µa ·
√
a2 − r2)

µbr + δa ·
√
a2 − r2

With the general limit conditions smax = δ
µ and smin = µ

δ we get the special conditions
of the ellipsoid of revolution:

δ

µ
=
b

a
· rmax√

a2 − r2max

µ

δ
=
b

a
· rmin√

a2 − r2min

Now, we transform to rmax:

δ2a2 · (a2 − r2max) = µ2b2r2max

δ2a4 − δ2a2r2max = µ2b2r2max

r2max =
δ2a4

µ2b2 + δ2a2

with that:

rmax =
δa2√

µ2b2 + δ2a2
< a
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The other limit condition can be tranformed to rmin in the same way:

rmin =
a2µ√

b2δ2 + a2µ2
< a

For µ� 1 it follows now:

rmin ≈
a2µ

bδ
rmax ≈ a

Insertion of µ = 0 in the formulas of maximum and minimum velocity leads to the known
formula for the frictionless case (see chapter 1):

v = r ·
√

gb

a ·
√
a2 − r2

The equation between r and rm is the same as in chapter 1.

angular velocity = w = v
r

2.5. Special case ball (a = b = RK)

With specializing the equations of the ellipsoid of revolution we obtain the equations of
the ball in dependence from r and not from the height angle. With a = b = RK we get:

vmax =

√√√√√rg · (δr + µ ·
√
R2

K − r2)

δ ·
√
R2

K − r2 − µr

vmin =

√√√√√rg · (δr − µ ·
√
R2

K − r2)

µr + δ ·
√
R2

K − r2

rmax =
δ ·RK√
µ2 + δ2

rmin =
RK · µ√
δ2 + µ2

For µ � 1 is rmin ≈ RK ·µ
δ and rmax ≈ RK . For the frictionless case µ = 0 we get with

the velocity formulas the known formula

v = r ·
√√√√ g√

R2
K − r2

from chapter 1 again.
The relation between r and rm is the same as in chapter 1.

angular velocity = w = v
r
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2.6. The paraboloid

Now we use the equations of the general rotation body to the paraboloid of revolution.
f is the focal distance of the paraboloid.

For the paraboloid is valid see chapter 1:

h(r) =
r2

4f
s = h′(r) =

r

2f

Now we insert the parabola function to the formula of the maximum velocity of the
general rotation body.

vmax =

√
rg · (δs+ µ)
δ − µs

=

√√√√√rg ·
(
δ · r

2f + µ
)

δ − µr
2f

With that it follows:

vmax =

√
rg · (δr + 2fµ)

2fδ − µr

In the same way we get from the minimum velocity formula the minimum velocity of
the paraboloid:

vmin =

√
rg · (δr − 2fµ)
µr + 2fδ

From the general limit condition smax = δ
µ and smin = µ

δ we obtain with insertion to s:

rmax

2f
=
δ

µ
with that: rmax = 2 · δf

µ

and
rmin

2f
=
µ

δ
with that: rmin = 2 · fµ

δ

In the case µ = 0 we get with the help of the velocity formulas the known formula for
the frictionless case (chapter 1):

v = r ·
√

g

2f

The equation between r and rm is the same as in chapter 1.

angular velocity = w = v
r
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2.7. The hyperboloid

Under consideration of the figure and the canonical equation of the hyperbola we obtain
as in chapter 1: a, b = semi axes

h(r) =
a

b
·
√
b2 + r2 s = h′(r) =

a

b
· r√

b2 + r2

If we insert the hyperbola equation in the formula of the maximum velocity (general
rotation body), we get:

vmax =

√
rg · (δs+ µ)
δ − µs

=

√√√√√rg ·
(
δ · a

b ·
r√

b2+r2
+ µ

)
δ − µra

b·
√

b2+r2

with that:

vmax =

√√√√rg · (δar + µb ·
√
b2 + r2)

δb ·
√
b2 + r2 − µra

In the same way we can conclude with the minimum velocity formula of the rotation
body:

vmin =

√√√√rg · (δar − µb
√
b2 + r2)

µar + δb
√
b2 + r2

If b� r, we can follow:
s = h′(r) =

a

b
· r√

b2 + r2
≈ a

b

Now it follows for b� r:

vmax ≈
√
rg ·

(
δ · a

b + µ
)

δ − µa
b

=

√
rg · (δa+ µb)
δb− µa

With the minimum velocity formula we can calculate in the same way in the case b� r:

vmin ≈
√
rg · (δa− µb)
µa+ δb

If we insert the formula of s into the general limit conditions smax = δ
µ and smin = µ

δ ,
we now get:

a

b
· rmax√

b2 + r2max

=
δ

µ

a

b
· rmin√

b2 + r2min

=
µ

δ
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We transform the first equation:

a2µ2r2max = δ2 · (b2 + r2max) · b2

a2µ2r2max = δ2b4 + δ2b2r2max

r2max =
δ2b4

a2µ2 − δ2b2

at last:

rmax =
δb2√

a2µ2 − δ2b2

From the equation of rmin with a similar calculation we obtain:

rmin =
µb2√

a2δ2 − µ2b2

As approximation for µ� δ ≤ 1:

rmin ≈
µb2

aδ
rmax ≈ b

For µ = 0 the velocity formulas lead to the known formula of chapter 1 for the frictionless
case:

v = r ·
√

ga

b ·
√
b2 + r2

For r and rm the same relation as in chapter 1 is valid.

angular velocity = w = v
r

to *: The derivation of formula (7):

Notations:

kinetic energy = Ekin = mv2

2
potential energy = Epot = mgh with h = hs sinα see fig.
rotational energy = Erot = Jw2

2 J = moment of inertia

law of conservation of energy:

mv2

2
+
Jw2

2
= mgh
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We assume that the body is only rolling not gliding. Then it is valid:
angular velociy = w = v

R R = radius of the rolling body

mv2

2
+
Jv2

2R2
= mghs sinα

With transformation we get:

v =

√
2mghs sinα
m+ J

R2

Because the rolling body has the constant acceleration b = g sinα, there is a uniform
accelerated motion. For this motion it is valid: v2 = 2hs · b transformed to b = v2

2hs
. Now

we insert the equation of v:

b =
2mghs sinα

2hs ·
(
m+ J

R2

) =
mg sinα
m+ J

R2

Then we have the wanted formula.

3. Inversions

3.1. Inversions to the frictionless case

The shell of the ball:

We take the notation of chapter 1.1.

angular velocity:

w =
√

g

Rk · cos γ
⇒ w2 =

g

Rk · cos γ

transformed to cos γ:
cos γ =

g

Rk · w2

velocity formula:
v2 = g ·Rk · sin γ · tan γ

with
sin2 γ + cos2 γ = 1 sin γ =

√
1− cos2 γ tan γ =

sin γ
cos γ

It follows:

v2 = gRk ·
√

1− cos2 γ ·
√

1− cos2 γ
cos γ

= gRk ·
1− cos2 γ

cos γ

multiplying out:
v2 cos γ = gRk − gRk cos2 γ

At last we get an quadratic equation:

cos2 γ +
v2

gRk
· cos γ − 1 = 0

126



G.Mechanics

Solution of the quadratic equation:

cos γ = +

√
1 +

(
v2

2gRk

)2

− v2

2gRk

Only the root with the positive sign makes sense, with a negative sign is cos γ < 0 and
in the interval [0, 90◦] there is no solution .

Ellipsoid of revolution:

We take the symbols of chapter 1.4. The problem is to obtain r as function of the
velocity v. Here we begin with the velocity equation (3) in chapter 1:

v = r ·
√

b · g
a ·
√
a2 − r2

It follows:
v2

r2
=

bg

a ·
√
a2 − r2

transformed:
v4a2

r4
· (a2 − r2) = b2 · g2

We change this expression to a polynomial:

v4a4 − v4a2 · r2 = b2g2 · r4

Normed form:

r4 +
v4a2

b2g2
· r2 − v4a4

b2g2
= 0

This expression is an quadratic equation to r2, with that:

r2 = +

√
v4a4

b2g2
+
(
v4a2

2b2g2

)2

− v4a2

2b2g2
(13)

Now we derive a formula of r in dependence to the angular velocity w. We begin with
the equation (4) in chapter 1 of the angular velocity.

w2 =
bg

a ·
√
a2 − r2

transformed: √
a2 − r2 =

bg

aw2

Solving to r:

r2 = a2 −
(
bg

aw2

)2

r =

√
a2 −

(
bg

aw2

)2

(14)
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ball as special case of the ellipsoid of revolution:

It is also possible to view the ball as special case of the ellipsoid of revolution with the
ball radius Rk = a = b. Specializing of (13) and (14):

r(v)2 = +

√
v4R2

k

g2
+
(
v4

2g2

)2

− v4

2g2

r =

√
R2

k −
(
g

w2

)2

Hyperboloid:

We take the notations of chapter 1.7. Now we try to get the radius r with the velocity
v, equation (6) of chapter 1:

v =
√
gr · a

b
· r√

b2 + r2
= r ·

√
ag

b ·
√
b2 + r2

transformed:
v2

r2
=

ag

b ·
√
b2 + r2

v4b2 · (b2 + r2) = a2g2r4

multiplying out:
v4b4 + v4b2r2 = a2g2r4

Normed form:

r4 − v4b2

a2g2
· r2 − v4b4

a2g2
= 0

This expression is an quadratic equation of r2.

r2 = +

√
v4b4

a2g2
+
(
v4b2

2a2g2

)2

+
v4b2

2a2g2

Determination of r with the angular velocity w:

w =
√

ag

b ·
√
b2 + r2

Transformation: √
b2 + r2 =

ag

bw2

solved to r:

r =

√(
ag

bw2

)2

− b2
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3.2. Inversions of the friction case

We take the notation of chapter 2.1 - 2.7. If we solve the formula of the maximum
velocity to the radius r or to the height angle γ, we get formulas of rmin respectively
γmin. One solving of the minimum velocity formula to r or γ leads to an expression of
rmax and γmax. At the cone of revolution we get:

rmin =
(δ tanα− µ) · v2

g · (δ + tanα · µ)
rmax =

(µ+ δ tanα) · v2

g · (δ − µ tanα)

At the paraboloid the solving to r is more complicated. The solving leads with the help
of an quadratic equation of r to the following expressions:

rmin = +

√(
2fµg + µv2

2δg

)2

+
2fv2

g
− 2fµg + µv2

2δg

rmax = +

√(
2fµg + µv2

2gδ

)2

+
2fv2

g
+

2fµg + µv2

2gδ

We must choose the positive root, because with a negative root the solutions are negativ,
too.

At the ellipsoid and the hyberboloid we can do such solvings to r, too. We then get
polynomials of degree 4 in r, which can still be solve exactly. The solving of the velocity
formula with height angle γ to γ leads to a polynomial of degree 4 in tan γ.

The formulas of velocities and angular velocities at orbits on the rotation body’s shell
can be written as a function of h (at the ellipsoid with the height angle γ, too). At all
special rotation bodies r = f(h) can be inserted. At the general rotation body we must
derive the case with h again. (From these equation we can perhaps prove the special
formulas again.) For the insertions of v, w = f(r) to v, w = f(h) are valid:

x = r, y = h

for ellipsoid:
r2

a2
+
h2

b2
= 1 (a ≤ b) or (a ≥ b)

for balls: r2 + h2 = R2
K

for hyperboloids:
h2

a2
− r2

b2
= 1

for paraboloids: r2 = 4hf

for cones of revolution: h = r · tanα
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4. Stable orbits on macro rotation body’s shell in the frictionless case

4.1. The general rotation body’s shell

A planet stays or moves uniformly in vacuum. The planet can be seen as a ball. Vertical
to the planet’s surface there is the axis of the general rotation body. The planet doesn’t
rotate at all.

Rp = radius of the planet
g = gravitational acceleration in P
mp = mass of the planet
G = gravitational constant
v = velocity
m = mass of the ball
t = tangent
h(r) = rotation body’s function
s = h′(r)
h(r) has got only one touching point with the ball.

g =
Gmp

(h+Rp)2 + r2

centrifugal force = Z = mv2

r

Now we must calculate sr. It is valid sr = f(s, h, r).

β = 90◦ − arctan
h+Rp

r

We have for sr:

arctan sr = arctan s+ β = arctan s+ 90◦ − arctan
h+Rp

r

because of tan(90◦ − a) = 1
tan a it follows:

arctan s+ arctan
r

h+Rp
= arctan sr
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We can find a simple relation by using the addition theorem of the tangent.

tan(a+ b) =
tan a+ tan b

1− tan a tan b

With this we get:

sr =
s+ r

h+Rp

1− sr
h+Rp

=
r + s · (h+Rp)
h+Rp − sr

In the case h, r � Rp is sr ≈ s.

condition of orbits: sr > 0 is equivalent to 0 < r + s · (h + Rp) and h + Rp − sr > 0.
sr < 0 is not possible here. We follow with the both conditions:

s >
−r

h+Rp
and

h+Rp

r
> s

Fz = falling force Zz = centrifugal force against the falling force

Fz = mg · sinαr Zz = Z · cosα

tanαr = sr tanα = s sinα = cosα · tanα

cosα =
1√

1 + tan2 α
⇒ cosα =

1√
1 + s2

sinαr =
sr√

1 + s2r

This leads to:
Fz =

mgsr√
1 + s2r

centrifugal force= Z = mv2

r we obtain:

Zz =
mv2

r ·
√

1 + s2

In the orbit we need Zz = Fz, with that:

mgsr√
1 + s2r

=
mv2

r ·
√

1 + s2
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At last it follows:

v =

√√√√grsr ·
√

1 + s2

1 + s2r

w =
v

r
=

√√√√gsr

r
·
√

1 + s2

1 + s2r

The relation between r and rm is the same.

In the general equations we can insert in s the formulas for s at cone of revolution,
ellipsoid of revolution, ball, paraboloid of revolution, hyperboloid of revolution. Then
we get the equations of the macro case in the frictionless case.

4.2. The macro ball’s shell with height angle

Now we treat the macro ball shell:
Rp = radius of the planet
mp = mass of the planet
RK = radius of the macro ball
m = mass of the ball
γ = height angle
α = inclination angle to the gravitation
K = gravitational force
G = gravitational constant

Law of cosines:

r2 = (RK +Rp)2 +R2
K − 2RK · (RK +Rp) · cos γ

In the frictionless case in the homogeneous field it was shown α = γ. In the gravitational
field the relation α = f(γ) is more complicated than the gravitational acceleration g:

g =
Gmp

r2
=

Gmp

(RK +Rp)2 +R2
K − 2RK · (Rp +RK) · cos γ

(15)

Once again the law of cosines:

(RK +Rp)2 = r2 +R2
K − 2rRK cosβ
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transformed and for r inserted:

cosβ =
r2 +R2

K − (RK +Rp)2

2rRK

=
RK − (RK +Rp) · cos γ√

(RK +Rp)2 +R2
K − 2RK · (RK +Rp) · cos γ

With the figure we see:

β = 180◦ − α ⇒ cosβ = cos(180◦ − α) = − cosα

It follows:
cosα =

(RK +Rp) · cos γ −RK√
(RK +Rp)2 +R2

K − 2RK · (Rp +RK) · cos γ
(16)

Fz = falling force
Zz = centrifugal force against the falling force

See figure.
Fz = mg sinα Zz = Z · cos γ

Z =
mv2

RK · sin γ
With tanα = sin α

cos α we get:

Zz =
mv2

RK · tan γ
An orbit on the macro ball shell needs Fz = Zz, with that:

mg sinα =
mv2

RK · tan γ

It follows:
v =

√
gRK sinα tan γ (17)

w = angular velocity

w =
v

RK · sin γ
=

√
gRK sinα tan γ
R2

K · sin2 γ
=

√
g sinα sin γ

RK sin2 γ cos γ

at last:

w =

√
g sinα

RK sin γ cos γ
(18)

In equation (17) and (18) for g and α equation (15) respectively (16) must be inserted.
The equation between r and rm remains unchanged. The generalization a) at the end
of chapter 1 is valid to the macro rotation body, too.
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5. Stable orbits on macro rotation body’s shell with friction

5.1. The general rotation body’s shell with friction

We take the notation of the frictionless case (chapter 4.1).

Rp = radius of the planet
g = gravitational acceleration in P
mp = mass of the planet
G = gravitational constant
v = velocity
m = mass of the ball
h(r) = rotation body’s function
s = h′(r)
h(r) has got only one touching point.

g =
Gmp

(h+Rp)2 + r2

It is valid see chapter 4.1:

Fz =
mgsrδ√
1 + s2r

Zz =
mv2δ

r ·
√

1 + s2

δ is there because of the friction case. (This is explained later)

FR = friction force of the gravitation
ZR = friction force of the centrifugal force

See the figures in chapter 4.1:
FR = mg cosαr · µ

ZR = Z sinα · µ Z =
mv2

r

µ is a general friction coefficient. This coefficient is explained with:

µ =


µ′

R if µH > µ′

R (rolling)
µG if µ′

R > µH (sliding)
µG or µ′

R if µH = µ′

R (decision is open)

and

δ :=


5
7 if µ′

R < µH (rolling)
1 if µH < µ′

R (sliding)
5
7 or 1 if µ′

R = µH 6= 0 (decision is open)
1 if 0 = µ′

R = µH (frictionless)

See Assmann [1], edition 1, chapter 11.10, p. 265.
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It is:

µG = friction coefficient of sliding
µH = static friction coefficient
µ′ = friction coefficient of rolling
R =Radius of the ball that is on the rotation body’s shell. To the reason of δ and µ see
chapter 2 at the beginning.

With chapter 4.1 it is: tanαr = sr and tanα = s we conclude:

cosα =
1√

1 + tan2 α
sinα =

tanα√
1 + tan2 α

It follows:

FR =
mgµ√
1 + s2r

ZR =
mv2µs

r ·
√

1 + s2

Stability inequality: | · | = absolute value

|Fz − Zz| ≤ FR + ZR

limit cases:
Zz − Fz = FR + ZR (19)

Fz − Zz = FR + ZR (20)

With (1) it follows:

mv2
max · δ

r ·
√

1 + s2
− mgsr · δ√

1 + s2r
=

mgµ√
1 + s2r

+
mv2

max · µs
r ·
√

1 + s2

simplified:
v2
max

r ·
√

1 + s2
· (δ − µs) =

g√
1 + s2r

· (µ+ sr · δ)

transformed:

v2
max = rg ·

√
1 + s2

1 + s2r
· µ+ sr · δ
δ − µ · s

at last:

vmax =

√√√√rg ·√1 + s2

1 + s2r
· µ+ sr · δ
δ − µs

(21)

In the same way we get with (20) an expression of the minimum velocity:

vmin =

√√√√rg ·√1 + s2

1 + s2r
· srδ − µ

µs+ δ
(22)

In the case r � Rp is sr ≈ s see chapter 4.1. In this case the equations (21) and (22)
lead to the formulas of the homogeneous field (chapter 2.2).

135



G.Mechanics

With µ = 0 we obtain with (21) and (22) the formula for the frictionless case (chapter
4.1).

vmax = ∞ if δ − µs = 0 see equation (21) it follows:

smax =
δ

µ

vmin = 0, if sr · δ − µ = 0 see equation (22).

⇒ sr min =
µ

δ

In chapter 4.1 is was derived:

sr =
r + s · (h+Rp)
h+Rp − sr

sr increases with s, if h+Rp − s · r > 0, it exists one smin. We transform to s:

sr · h+ sr ·Rp − sr · sr = r + sh+ sRp

Solving to s:
sr · h+ sr ·Rp − r = s · (r · sr + h+Rp)

⇒ s =
sr · (h+Rp)− r

sr · r + h+Rp

Insertion for sr min:

smin =
µ
δ · (h+Rp)− r
µ
δ · r + h+Rp

The relations between r to rm and to the angular velocity w are the same.

In the general equation s can be inserted the formulas of s at cone of revolution, ellipsoid
of revolution, ball, paraboloid of revolution, hyperboloid of revolution. Then we get the
equation of the analogous macro case.

5.2. Stable orbits on macro ball’s shell (case of friction)

Symbols are taken from chapter 4.2 (macro ball frictionless case).

Rp = radius of the planet
mp = mass of the planet
RK = radius of the macro ball
m = mass of the ball
γ = height angle
α = inclination angle to the gravitation
K = gravitational force
G = gravitational constant
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With chapter 4.2 it is valid:

Fz = mgδ sinα Zz =
mv2δ

RK · tan γ

δ is there because of the friction case. δ is explained in chapter 2 and in chapter 5.1.
FR = friction force of the gravitation
ZR = friction force of the centrifugal force

With chapter 4.2 we also get:(To µ see chapter 2 or chapter 5.1)

FR = mg cosα · µ ZR = Z sin γ · µ

with:

Z =
mv2

RK · sin γ
stability inequality :

|Fz − Zz| ≤ FR + ZR

limit cases:
Zz − Fz = FR + ZR (23)

Fz − Zz = FR + ZR (24)

With (23) it follows:

mv2
max · δ

RK tan γ
− δ sinα ·mg = mg cosα · µ+

mv2
max · µ
RK

simplified:
v2
max

RK
·
(

δ

tan γ
− µ

)
= g · (cosα · µ+ sinα · δ)

transformed to vmax:

vmax =

√√√√gRK · (cosα · µ+ sinα · δ)
δ

tan γ − µ
(25)

In the same way we get with (24) the following expression:

vmin =

√√√√gRK · (sinα · δ − cosα · µ)
µ+ δ

tan γ

(26)
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In the homogeneous case if RK � Rp is α ≈ γ. Then we obtain:

vmax ≈

√√√√gRK · (cos γ · µ+ sin γ · δ)
δ

tan γ − µ

with sin γ = cos γ · tan γ:

vmax ≈
√
gRK sin γ · (µ+ tan γ · δ)

δ − µ tan γ

In the same way we can view equation (26) with the using of sin γ = cos γ tan γ, it
follows:

vmin ≈
√
gRK sin γ · (tan γ · δ − µ)

µ tan γ + δ

These are the formulas, that were derived in chapter 2.1 (homogeneous case). For µ = 0
we conclude with (25) and (26):

v =
√
gRK sinα tan γ

This is the formula (3) of the frictionless case in chapter 4.

vmax = ∞, if δ
tan γ − µ = 0, see equation (25) with that:

tan γmax =
δ

µ

vmin = 0, if sinα · δ − cosα · µ = 0 with equation (26), with that it follows with
tanα = sin α

cos α :

tanαmin =
µ

δ

With chapter 4 equation (16) is:

cosα =
(RK +Rp) · cos γ −RK√

(RK +Rp)2 +R2
K − 2RK · (Rp +RK) · cos γ

cosα decreases, if γ increases.

With that α increases, if γ increases. It exist one γmin. For easier writing we introduce
some symbols:

cosα =
A cos γ −RK√
B − C cos γ
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with:

A := Rp +RK B := (RK +Rp)2 +R2
K C := 2RK · (Rp +RK)

Now we transform to cos γ:

cos2 α · (B − C cos γ) = (A cos γ −RK)2

cos2 α ·B −R2
K = A2 cos2 γ + (C cos2 α− 2ARK) · cos γ

B cos2 α−R2
K

A2
= cos2 γ +

cos2 α · C − 2ARK

A2
· cos γ

At last it follows:

cos γ1,2 = ±

√
B cos2 α−R2

K

A2
+

(C cos2 α− 2ARK)2

4A4
− C cos2 α− 2ARK

2A2

Additional condition: cos γ ≥ 0 (0 ≤ γ ≤ 90◦)

With this formula we can determine γmin with αmin. The equations between r and rm
and to the angular velocity w don’t change.
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139



G.Mechanics

31. Trajectories of balls on the inclined plane

1. The frictionless case

Throws are known phenomenons. We can call upon throws at sporting events for exam-
ple. The aim is to get a maximum throwing distance. Another example, is the trajectory
of projection of a canonball fired from a canon.
We know trajectories of projection as a part of mechanics. Trajectories are determined
by throwing angle and initial velocity. This is valid in vacuum and in a medium e.g. air.
We can view such trajectories of projection on the inclined plane as well. We will see
that the inclined throw in the homogeneous field is a special case of the throw on the
inclined plane. Here the trajectories of projection are dependent upon throwing angle
and initial velocity, also.
First, we will treat the frictionless case. Thereafter, it will be easier to understand the
friction case (chapter 2). In the frictionless case, a ball slides on the inclined plane.

a = angle of inclination of the inclined plane
β = throw angle on the inclined plane −90◦ ≤ β ≤ 90◦

s = distance
v = velocity
v0 = initial velocity
t = time

6

HHH
HHH

HHH
HHH

HHH
HHHY

.

...............

................

................

................

Sx z

α

On the inclined plane, there is the falling acceleration g · sin a.
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Formulation:
sy = sinβ · v0t−

1
2
· g sin a · t2 (1)

vy =
dsy

dt
= sinβ · v0 − g sin a · t (2)

sx = cosβ · v0t (3)

Equating (2) to zero and solved to t, then we get the time of climb ts for β > 0.

0 = vy = sinβ · v0 − g sin a · ts

it follows:
ts =

v0
g
· sinβ
sin a

ts inserted in (1) then we yield the maximum altitude of the throw for β > 0.

hmax = sy(ts) =
sinβ · v2

0 sinβ
g sin a

− 1
2
· g sin a · v2

0 sin2 β

g2 · sin2 a
=
v2
0 sin2 β

g sin a
− 1

2
· v

2
0 sin2 β

g sin a

thus

hmax =
v2
0 sin2 β

2g sin a

Equating of (1) to zero and solved to t, then we obtain the throwing time tw for β > 0.

0 = sy = sinβ · v0tw −
1
2
· g sin a · t2w

Transformation:
tw = 2 · v0

g
· sinβ
sin a

That means tw = 2 · ts.

tw inserted in equation (3), then we get the throwing range w for β > 0.

w = sx(tw) = cosβ · v0tw =
cosβ · v0 · 2v0 sinβ

g sin a
= 2 · v

2
0

g
· sinβ cosβ

sin a

at last we yield:

w =
v2
0

g
· sin(2β)

sin a
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because of sin(2β) = 2 sinβ cosβ

equation (3) solved for t:
t =

sx

cosβ · v0
and inserted in (1), then we have the equation of the trajectory:

sy =
sinβ · v0sx

v0 cosβ
− g sin a · s2x

2 cos2 β · v2
0

with sin β
cos β = tanβ

sy = sx · tanβ − 1
2
· s2x ·

g

v2
0

· sin a
cos2 β

therefore, a parabola

2. The case of friction

Now we take into consideration friction. This consideration is only valid for small relative
velocities.

s = distance
v = velocity
b = acceleration
v0 = initial velocity
a = angle of inclination of the inclined plane
β = throwing angle on the inclined plane −90◦ ≤ β ≤ 90◦

µ = µ′

R is the rolling friction with rolling friction coefficient µ′ and the ball’s radius R.
(see Assmann [1] chapter 11.10 p.265)
µH = static friction coefficient

δ :=

{
5
7 if µ′ > 0 (rolling)
1 if µ′ = 0 (frictionless)

for the ball see Budo [2] §57 p.302 equations (6) - (8)
t = time
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In general: z = sy · sin a is valid

The acceleration b on the inclined plane is:
b = δg · sin a, the velocity v and the distance s are v = δg sin a · t and s = 1

2 · δg · t
2 · sin a.

If a ball is rolling on the inclined plane, it is δ = 5
7 e.g. Budo [2] §57 p.302 equation (8).

The moment of inertia J of a ball is J = 2
5 ·mR

2. The general formula for rolling on the
inclined plane can be written:

b =
mg sin a
m+ J

R2

(4)

One derivation can be found at *, at the end of the chapter or we can see this with
Budo [2] §57 p.302 equations (5)-(7). The ball’s moment of inertia insertion leads to:

b =
mg sin a
m+ 2

5 ·m
=

5
7
· g sin a (5)

Then we have in the case of rolling δ = 5
7 .

For the forces we obtain (see fig.):

F = mg sin a FN = mg cos a

friction force:
FR = µ · FN = mgµ cos a

In the case of friction:

F = mg · (δ sin a− µ cos a) b = g · (δ sin a− µ cos a) (6)

v = gt · (δ sin a− µ cos a) s =
1
2
· gt2(δ sin a− µ cos a)

Formulation:

vy = sinβ · (v0 − µ cos a · gt)− g · (δ sin a− µ cos a) · t (7)

sy(t) =
t∫

0

vy(τ) dτ = sinβ · (v0t− µ cos a · g · t
2

2
)− g

2
· (δ sin a− µ cos a) · t2 (8)
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by(t) =
d

dt
vy(t) = −µ cos a · g sinβ − g · (δ sin a− µ cos a)

For the horizontal component we yield:

vx = cosβ · (v0 − µ cos a · gt)

sx(t) =
t∫

0

vx(τ) dτ

it follows:
sx = cosβ · (v0t−

µ

2
· cos a · gt2) (9)

Equating (7) to zero and solved for t, then we get the time of climb ts for β > 0.

0 = vy = sinβ · v0 − sinβ · µ cos a · gts − gδ sin a · ts + gµ cos a · ts

Transformation:
ts =

sinβ · v0
sinβ · µ cos a · g + gδ sin a− gµ cos a

at last:
ts =

sinβ · v0
µ cos a · g · (sinβ − 1) + gδ sin a

If we insert ts in t in (8), we obtain the maximum altitude hmax := sy(ts).

Equating (8) to zero and solved for t, then we get the throwing time tw for β > 0.

0 = sy = sinβ · v0tw − µ cos a · g · t
2
w

2
· sinβ − g

2
· (δ sin a− µ cos a) · t2w

Solving:

tw =
2 · sinβ · v0

µ cos a · g sinβ + g · (δ sin a− µ cos a)
= 2 · ts

Inserted tw in t in (9), then we get the throwing range w = sx(tw) for β > 0. Then it is
sy(tw) = 0.

In the case δ sin a− µ cos a ≤ 0 there is no free falling.

⇔ δ sin a ≤ µ cos a

⇔ tan a ≤ µ

δ
because of tan a =

sin a
cos a

In this case we have:
vy = sinβ · (v0 − µ cos a · gt) (10)

sy(t) =
t∫

0

vy(τ) dτ = sinβ ·
(
v0t− µ cos a · g · t

2

2

)
(11)
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Equating (10) to zero and solved for t, then we yield the time tE . After this time, the
ball stands still.

0 = sinβ · (v0 − µ cos a · gtE)

transformed:
tE =

v0
µ cos a · g

Inserted tE in t in (11), then we get the altitude at the end hE :

hE = sy(tE) = sinβ ·
(
v0 ·

v0
µ cos a · g

− 1
2
· µ cos a · g · v2

0

µ2 cos2 a · g2

)

=
sinβ · v2

0

µ cos a · g
− 1

2
· v2

0 sinβ
µ cos a · g

We obtain:

hE =
1
2
· sinβ · v2

0

µ cos a · g
Now we calculate the height of ascent in the special case β = 90◦ at tan a > µ

δ . Then
equation (5) changes to:

sy = v0t− µ cos a · g · t
2

2
− g

2
· (δ sin a− µ cos a) · t2

The time of climb can be written as:

ts =
v0

gδ sin a

Insertion:

hmax = sy(ts) =
v2
0

gδ sin a
− µ cos a · gv2

0

2g2δ2 sin2 a
− gδ sin a · v2

0

2g2δ2 sin2 a
+
gµ cos a · v2

0

2g2δ2 sin2 a

=
v2
0

gδ sin a
− µ cos a · v2

0

2gδ2 sin2 a
− v2

0

2gδ sin a
+
µ cos a · v2

0

2gδ2 sin2 a

at last it follows:

hmax =
v2
0

2gδ sin a

In the case β ≤ 0 there is no ts and tw.

More difficult is the treatment in consideration of a medium (gas, liquid).

Some remarks to the validity of these equations:

The sliding friction must be locked out, as in Budo [2] §57 p.302 equation (10) at the
ball, it is valid tan a ≤ 7

2 · µH . That means only at a small angle of inclination is the
sliding friction locked out. The relative velocity must be small, also. Lastly, the ball and
the inclined plane must be elastic. This is true for steel balls and the steel underlayer.
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to *: The derivation of formula (4):

Notations:

kinetic energy = Ekin = mv2

2
potential energy = Epot = mgh with h = hs sin a see fig.
rotational energy = Erot = Jw2

2 J = moment of inertia
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law of conservation of energy:

mv2

2
+
Jw2

2
= mgh

We assume that the body is only rolling not gliding. Then it is valid:
angular velocity = w = v

R R = radius of the rolling body

mv2

2
+
Jv2

2R2
= mghs sin a

With transformation we yield:

v =

√
2mghs sin a
m+ J

R2

Because the rolling body has the constant acceleration b = g sin a, there is a uniform
accelerated motion. For this motion it is valid: v2 = 2hs · b transformed to b = v2

2hs
. Now

we insert the equation of v:

b =
2mghs sin a

2hs ·
(
m+ J

R2

) =
mg sin a
m+ J

R2

Then we have the wanted formula.
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32. A ball’s motion with artificial acceleration on an inclined
plane

Let be:

m = mass of the ball
R = radius of the ball
α = angle of inclination of the plane
bk = artificial acceleration
Fz = force that is acting on the ball (on the inclined plane)
bz = Fz

m = affiliated acceleration
µ = µ′

R is the rolling friction with the rolling friction coefficient µ′ and the radius R of
the ball. (see Assmann [1] chapter 11.10 p.265)
µH = static friction coefficient

δ :=

{
5
7 if µ′ > 0 (rolling)
1 if µ′ = 0 (frictionless)

for the ball see Budo [2] §57 p.302 equations (6) - (8)
t = time

The acceleration b on the inclined plane is:
b = δg · sinα, the velocity v and the distance s are v = δg sinα · t and s = 1

2 · δg · t
2 · sinα.

If a ball is rolling on an inclined plane, it is δ = 5
7 , e.g. Budo [2] §57 p.302 equation (8).

The moment of inertia J of a ball is J = 2
5 ·mR

2. The general formula for rolling on the
inclined plane:

b =
mg sinα
m+ J

R2

(1)

One derivation can be found at *, at the end of the text or see Budo [2] §57 p.302
equations (5)-(7). The insertion of the ball’s moment of inertia leads to:

b =
mg sinα
m+ 2

5 ·m
=

5
7
· g sinα (2)

Thus δ = 5
7 .
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For the different forces we obtain (see fig.):

F = mg sinα FN = mg cosα

friction force:
FR = µ · FN = mgµ cosα

In the case of friction:

F = mg · (δ sinα− µ cosα) b = g · (δ sinα− µ cosα)

v = gt · (δ sinα− µ cosα) s =
1
2
· gt2 · (δ sinα− µ cosα)

Thus the force Fz can be written:

Fz = mδ · (g sinα+ bk)−mgµ cosα

We obtain the acceleration bz with:

bz =
Fz

m
= δ · (g sinα+ bk)− gµ cosα

The artificial acceleration bk vanishes at time t1. For the velocity we get:

vz =

{
bz · t : t ≤ t1

bz · t1 + g · (δ sinα− µ cosα) · (t− t1) : t ≥ t1

For the distance we yield:

sz =
1
2
· bzt2 for t ≤ t1

s̄z = distance of time t1 to time t

s̄z(t) =
t∫

t1

vz(τ) dτ =
t∫

t1

(bzt1 + g · (δ sinα− µ cosα) · (τ − t1)) dτ

=

[
bzt1τ + g · (δ sinα− µ cosα)

(
τ2

2
− t1τ

)]t

t1

= bzt1t+ g · (δ sinα− µ cosα) ·
(
t2

2
− t1t

)
− bzt

2
1 − g · (δ sinα− µ cosα) ·

(
t21
2
− t21

)
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= bzt1 · (t− t1) + g · (δ sinα− µ cosα) ·
(
t2

2
+
t21
2
− t1t

)
thus:

sz =

{
1
2 · bzt

2 : t ≤ t1
1
2 · bzt

2
1 + s̄z(t) : t ≥ t1

If we view the formula of vz(t) in the case of t ≥ t1, the velocity vz(t) reduces in the case
of δ sinα− µ cosα < 0 until vz(t) is zero at time t2.

0 = vz(t2) = bzt1 + g · (δ sinα− µ cosα) · (t2 − t1)

It follows:
t2 − t1 =

bz · t1
g · (µ cosα− δ sinα)

or
t2 = t1 ·

(
1 +

bz
g · (µ cosα− δ sinα)

)
Special case α = 0:

t2 − t1 =
bz · t1
g · µ

or
t2 = t1 ·

(
1 +

bz
g · µ

)
At vz(t) we recognize a uniform motion at t ≥ t1 in the case of δ sinα−µ cosα = 0 with
the velocity vz = bz · t1. This is equivalent to:

δ sinα = µ cosα

or
tanα =

µ

δ

because of sin α
cos α = tanα.

More difficult is the treatment in consideration of a medium (gas, liquid).

To the validity of these equations here are some remarks:

The sliding friction must be locked out, with Budo [2] §57 p.302 equation (10) at the
ball tanα ≤ 7

2 · µH is valid. Meaning, that only at a small angle of inclination can the
sliding friction be locked out. The relative velocity must be small, as well. Lastly the
ball and the inclined plane must be elastic. This is true for steel balls on a steel plane.

to *: The derivation of formula (1):
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Notations:

kinetic energy = Ekin = mv2

2
potential energy = Epot = mgh with h = hs sinα see fig.
rotational energy = Erot = Jw2

2 J = moment of inertia
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law of conservation of energy:

mv2

2
+
Jw2

2
= mgh

We assume the body is only rolling, not gliding. Thus, it is valid:
angular velocity = w = v

R R = radius of the rolling body

mv2

2
+
Jv2

2R2
= mghs sinα

With the transformation we yield:

v =

√
2mghs sinα
m+ J

R2

Because the rolling body has the constant acceleration b = g sinα, there is a uniform
accelerated motion. For this motion, it is valid: v2 = 2hs · b transforms to b = v2

2hs
. Now

we insert the equation of v:

b =
2mghs sinα

2hs ·
(
m+ J

R2

) =
mg sinα
m+ J

R2

Thus, the wanted formula.
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33. The vertical loop

We view the vertical loop of the earth’s surface with a small ball as shown in the figure.
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The figure shows the orbit of the loop. The small ball cannot escape the loop. Imagine
the lower part of the figure as a course for marbles. We need energy to place the ball at
a position in the lower part of the loop. For a position in the upper part of the loop a
minimum velocity is necessary. Otherwise the ball falls down.
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If we look at the figure, we recognize two forces, the gravity K = mg with m as mass of
the ball and the earth’s acceleration g. The other force is the centrifugal force Z = mv2

R
with radius R of the loop and the velocity of the ball v.
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The resultant force ~Fr = ~K + ~Z must be tangential to the figure, if the ball moves with
minimum velocity. The following equation is recognizable at the figure.

Z

K
= cos γ it follows

v2
min

gR
= cos γ
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with γ as height angle.

One transformation leads to:

vmin =
√
g ·R · cos γ

At the highest point: (γ = 0)
vmin =

√
g ·R

At the highest point we can equate Z = K. Then we get the same result.

Now we use a second method to get the formula of minimum velocity.

We assume an arbitrary ball’s velocity v. It is (see fig.)

F 2
r = K2 + Z2 − 2KZ · cos γ

It follows:

Fr =

√
m2g2 +

m2v4

R2
− 2m2gv2 cos γ

R

With the figure we can see (law of cosines):

K2 = F 2
r + Z2 − 2FrZ · cosβ

Transformation and insertion:

cosβ =
F 2

r + Z2 −K2

2FrZ
=
K2 + Z2 − 2KZ cos γ + Z2 −K2

2FrZ

=
2Z2 − 2KZ cos γ

2ZFr
=
Z −K cos γ

Fr

Insertion for Z and K:

cosβ =
mv2

R −mg cos γ√
m2v4

R2 +m2g2 − 2m2gv2 cos γ
R

~Fr is tangential, if β = 90◦. It follows cosβ = 0, with that:

0 =
mv2

min

R
−mg cos γ

at last, we obtain:
vmin =

√
g ·R · cos γ
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The result is proved twice.

At last we introduce the radius r of the small ball. If we take the barycenter of the small
ball into consideration, then we must insert R − r instead of R in the equations. We
assume that the small ball has a (local) constant density. Further results can be found
at Schröer [1].

References
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34. Falling from a ball

We treat the frictionless case:

δ = start angle
R = radius of the big ball
r = radius of the small ball, that moves on the big ball
v = velocity of the small ball
v0 = start velocity of the small ball
m = mass of the small ball
g = gravitational acceleration

In the frictionless case, a ball is sliding.

Law of conservation of energy:

mv2

2
+mgR cosα = mgR cos δ +

mv2
0

2
(1)

G = gravitational force
Z = centrifugal force

G = mg Z =
mv2

R

limit condition:
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cosα =
Z

G
=

v2

Rg

We transform equation (1) to v:

v2 =
mgR · (cos δ − cosα) + mv2

0
2

m
2

with that:
v2 = 2gR · (cos δ − cosα) + v2

0

We obtain:

cosα =
v2

Rg
=

2gR · (cos δ − cosα) + v2
0

Rg

cosα = 2 · (cos δ − cosα) +
v2
0

Rg

3 cosα = 2 cos δ +
v2
0

Rg

at last:

cosα =
2
3
· cos δ +

v2
0

3Rg

If α is bigger, then the small ball flies away from the big ball.

Special cases:

cosα =
2
3
· cos δ at v0 = 0

cosα =
2
3

+
v2
0

3Rg
at δ = 0

cosα = 2
3 at v0 = 0 and δ = 0

These formulas are valid for a body that moves down on a cylinder, the cylinder has the
same cross-section.

If we take in consideration the barycenter of the small ball, we must insert R+ r instead
of R in all equations. We assume that the ball has a constant density.

c© 2002 Harald Schröer
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35. Motionless balls

1. The frictionless case

1.1. Two balls in a spherical shell

We want to occupy ourselves with the balance of two balls on a spherical shell. We have
the following questions: Is this balance stable, unstable, or indifferent? What position
do the two balls have? Which quantities determine the balance?

Two balls with mass m1,m2 and radii R1, R2 are on a spherical shell with the radius
RK , see fig.

γ1 + γ2 = γg

R1 +R2 ≤ RK

We don’t take friction into consideration. At first, we assume a vacuum. The problem
is in determining the angles γ1, γ2.

γ1 = 6 FMS1 γ2 = 6 FMS2

Then, the force on an inclined plane with the angle of inclination β is:

F = mg sinβ

see fig.
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m = moved mass g = earth’s acceleration

On the spherical shell the forces are:

F1 = m1g sin γ1 F2 = m2g sin γ2

Here γ1, γ2 are the angles of inclination, see fig.

The spherical shell is balanced, thus F1 = F2. Equating, we get:

m1 · sin γ1 = m2 · sin γ2

We view the fig.

We need the cosine law to determine γg:

(R1 +R2)2 = (RK −R1)2 + (RK −R2)2 − 2 · (RK −R1) · (RK −R2) · cos γg

transformed:

cos γg =
(RK −R1)2 + (RK −R2)2 − (R1 +R2)2

2 · (RK −R1) · (RK −R2)

In this way, γg is known:
γg = γ1 + γ2 (1)

m1 · sin γ1 = m2 · sin γ2 (2)

(1) can be inserted with the addition theorem sin(a− b) = sin a cos b− sin b cos a.

m1 sin γ1 = m2 sin(γg − γ1) = m2 · (sin γg cos γ1 − sin γ1 cos γg)
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Insertion of cos γ1 =
√

1− sin2 γ1 and transformation:

m1 sin γ1 +m2 sin γ1 cos γg = m2 sin γg ·
√

1− sin2 γ1

squared:
sin2 γ1 · (m1 +m2 cos γg)2 = m2

2 sin2 γg −m2
2 sin2 γg sin2 γ1

solved for sin γ1:

sin γ1 =

√
m2

2 sin2 γg

(m1 +m2 cos γg)2 +m2
2 sin2 γg

=
m2 sin γg√

(m1 +m2 cos γg)2 +m2
2 sin2 γg

and γ2 = γg − γ1

with medium:

ϕF = density of the liquid (gas)
ϕKi = density of the ball i i ∈ {1, 2}
ai := 1− ϕF

ϕKi

(see Budo [2] §16 p.85)

In a medium (liquid or gas), the forces can be represented as:

F1 = a1gm1 sin γ1 F2 = a2gm2 sin γ2

The equations (1) and (2) change to (F1 = F2):

a1m1 sin γ1 = a2m2 sin γ2

γg = γ1 + γ2

We set Mi := ai ·mi with i ∈ {1, 2} and, thus, we transform in the same way as in a
vacuum. We obtain:

sin γ1 =
a2m2 sin γg√

(a1m1 + a2m2 cos γg)2 + a2
2m

2
2 sin2 γg

and γ2 = γg − γ1

1.2. 2 motionless balls in a body of revolution

So far, we have viewed the frictionless case on a spherical shell. Now we replace the
spherical shell with the shell of a body of revolution and work the same problem.

h(r) = revolution body’s function
s = h′(r)
R1, R2 = radii of the balls
m1,m2 = mass of the balls
Two balls lie on the shell of a body of revolution
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cosine law:

c2 = a2 + b2 − 2ab cos γ ⇔ cos γ =
a2 + b2 − c2

2ab
With the figure, we recognize:

a2 = (h2 +R2 cos γ2)2 + (r2 −R2 sin γ2)2

b2 = (h1 +R1 cos γ1)2 + (r1 −R1 sin γ1)2

c = R1 +R2

Positions of the midpoints (x1, y1) and (x2, y2):

x1 = r1 −R1 sin γ1 x2 = r2 −R2 sin γ2

y1 = h1 +R1 cos γ1 y2 = h2 +R2 cos γ2

(r1, h1) and (r2, h2) are the coordinates of the touching points between ball and body of
revolution.

h1 = h(r1) h2 = h(r2) s1 = h′(r1) s2 = h′(r2)

γ1, γ2 are pitch angles, as well, see figure.
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it is valid:
s1 = tanα1 s2 = tanα2

sinα =
tanα√

1 + tan2 α
cosα =

1√
1 + tan2 α

it follows:
sin γ1 =

s1√
1 + s21

sin γ2 =
s2√

1 + s22

cos γ1 =
1√

1 + s21

cos γ2 =
1√

1 + s22

With the following figure we recognize one equation:

γ = arctan
x1

y1
+ arctan

x2

y2

Falling force components:

F1 = m1g sin γ1 F2 = m2g sin γ2

see figure:

It must be F1 = F2.

⇒ m1g ·
s1√

1 + s21

= m2g ·
s2√

1 + s22
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We yield 2 equations:
m1s1√
1 + s21

=
m2s2√
1 + s22

(3)

γ = arctan
x1

y1
+ arctan

x2

y2
(4)

The equations of γ, x1, x2, y1, y2 must be inserted in equation (4). Then the equations
(3) and (4) are 2 equations of the unknowns r1, r2.
We note that the unknowns r1, r2 are in the equations of cos γ, and that sin γ1, sin γ2,
cos γ1, cos γ2 must be inserted, as well. Solving r1 and r2 is complicated.

In a medium the forces only change to:

F1 = m1a1g ·
s1√

1 + s21

F2 = m2a2g ·
s2√

1 + s22

with a1 = 1− ϕF
ϕK1

, a2 = 1− ϕF
ϕK2

ϕF = density of the medium (liquid, gas)
ϕK1 = density of the first ball
ϕK2 = density of the second ball
see Budo [2] §16 p.85

Equation (3) changes to:
m1a1s1√

1 + s21

=
m2a2s2√

1 + s22

Equation (4) is the same.

h(r) must be so, that the two balls have only one touching point.

Thus no throughs, where a ball settles down.

If we insert for h(r) the equations of an ellipse, parabola, hyperbola, or cone, we get the
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equations of revolution ellipsoid shells, revolution parabola shells, revolution hyperbola
shells, and revulution cone shells.

We assume that the densities of both balls are greater than the density of the medium.
If we have the reverse case, than the body of revolution must be turned round. see fig.

This inversion is valid to the friction case, as well (chapter 2). Instead of the revolution
body shell, we can view a lateral area of a general cylinder with the form of a revolution
body. see fig.

Then we have the same equations of motionless revolution bodies of the same type, thus
the same moment of inertia. This is valid to the later treated friction case, as well.
In the case of a spherical shell, it is a circular cylinder. In the case of a parabola shell,
it is a parabola cylinder.

In the frictionless case, both balls have a stable balance.

2. The friction case:

2.1. Motionless balls on a spherical shell with friction

Now we view the friction case. We will see that there is a free play because of the friction
forces - in contrast to the frictionless case.

The notation is the same as in chapter 1.1.
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m1,m2 = mass of the balls
R1, R2 = radii of the balls
RK = radius of the spherical shell

It is valid as in the frictionless case, see chapter 1.1:

cos γg =
(RK −R2)2 + (RK −R1)2 − (R1 +R2)2

2 · (RK −R2) · (RK −R1)
(5)

γg = γ1 + γ2 (6)

In the friction case, there is free play because of friction forces FR1 and FR2.

FR1, FR2 = friction case of the balls with the radii R1 and R2.

Here γ1, γ2 are pitch angles of the balls as in chapter 1.1. The forces can be written as:

F1 = δ1m1g sin γ1 F2 = δ2m2g sin γ2 (7)

FR1 = m1g cos γ1 · µ1 FR2 = m2g cos γ2 · µ2

with i ∈ {1, 2}

δi :=



5
7 if µ′i

Ri
< µHi (rolling)

1 if µHi <
µ′i
Ri

(sliding)
5
7 or 1 if µ′i

Ri
= µHi 6= 0 (decision remains open)

1 if 0 = µ′i
Ri

= µHi (frictionless)

see Assmann [1] edition 1 chapter 11.10 p. 265

µ′i = rolling friction coefficient of the ball i with radius Ri

µHi = static friction coefficient of the ball i
µGi = sliding friction coefficient of the ball i

and

µi =


µ′i
Ri

if µHi >
µ′i
Ri

(rolling)

µGi if µ′i
Ri
> µHi (sliding)

µGi or µ′i
Ri

if µHi = µ′i
Ri

(decision remains open)

163



G.Mechanics

see Assmann [1] edition 1 chapter 11.10 p.265

The acceleration b on the inclined plane is:
b = δg · sinα, the velocity v and the distance s are v = δg sinα · t and s = 1

2 · δg · t
2 · sinα.

If a ball is rolling on the inclined plane, it is δ = 5
7 i.e. Budo [2] §57 p.302 Gl. (8). The

moment of inertia J of a ball is J = 2
5 · mR

2. The general formula for rolling on the
inclined plane can be written:

b =
mg sinα
m+ J

R2

(8)

One derivation can be found at * at the end of the chapter or we can see this with
Budo [2] §57 p.302 Gl. (5)-(7). The ball’s moment of inertia insertion leads to:

b =
mg sinα
m+ 2

5 ·m
=

5
7
· g sinα (9)

Then we have, in the case of rolling, δ = 5
7 .

stability inequality: | · | = value in R

|F1 − F2| ≤ FR1 + FR2

limit cases:
F1 − F2 = FR1 + FR2 F2 − F1 = FR1 + FR2 (10)

With (1) we can determine γg and then with (2),(3),(4) and lastly γ1 and γ2 are searched.
We get subintervals of [0, 90◦] for γ1 and γ2.

In a medium with the factors:

ai = 1− ϕF

ϕKi
see Budo [2] §16 p.85

with

ϕKi = density of the ball i with radius Ri i ∈ {1, 2}
ϕF = density of the medium (liquid, gas)

only equation (7) changes to:

F1 = δ1m1a1g sin γ1 FR1 = m1a1g cos γ1 · µ1

F2 = δ2m2a2g sin γ2 FR2 = m2a2g cos γ2 · µ2

The equations (5),(6) and (8) remain unchanged. The calculation is the same.
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2.2. 2 motionless balls on a body of revolution with friction

Now we treat 2 motionless balls on a general revolution body shell with friction. The
notations are the same as in chapter 1.2.

h(r) = revolution body function
s = h′(r)
R1, R2 = radii of the balls
m1,m2 = mass of the balls

We make the same assumptions about the revolution body function h(r) as in the fric-
tionless case in chapter 1.2. δi and µi for i ∈ {1, 2} are defined as in chapter 2.1.

δi :=



5
7 if µ′i

Ri
< µHi (rolling)

1 if µHi <
µ′i
Ri

(sliding)
5
7 or 1 if µ′i

Ri
= µHi 6= 0 (decision remains open)

1 if 0 = µ′i
Ri

= µHi (frictionless)

µ′i = rolling friction coefficient of the ball i with radius Ri

µHi = static friction coefficient of the ball i
µGi = sliding friction coefficient of the ball i

and

µi =


µ′i
Ri

if µHi >
µ′i
Ri

(rolling)

µGi if µ′i
Ri
> µHi (sliding)

µGi or µ′i
Ri

if µHi = µ′i
Ri

(decision remains open)

see Assmann [1] edition 1 chapter 11.10 p.265

It is valid for i ∈ {1, 2}:

Fi = mig sin γi FR2 = mig cos γi · µi

We know from chapter 1.2:

sin γi =
si√

1 + s2i

cos γi =
1√

1 + s2i

with
si = h′(ri)

It follows:
Fi =

migsi · δi√
1 + s2i

FR =
mig · µi√

1 + s2i

Stability inequality: | · | = value in R

|F1 − F2| ≤ FR1 + FR2
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limit cases:
F1 − F2 = FR1 + FR2

F2 − F1 = FR1 + FR2

Both of these equations must be used instead of (3) from chapter 1. All the other
equations are the same as in the frictionless case in chapter 1.2. The unknowns r1, r2
are searched for these equations. Because of the stability inequality we get subintervals
of r1, r2.

In a medium (liquid, gas) the forces have the factors a1 = 1 − ϕF
ϕK1

and a2 = 1 − ϕF
ϕK2

see Budo [2] §16 p.85. ϕF is the density of the liquid and ϕK1, ϕK2 are the densities of
both balls. Then we obtain the forces:

Fi =
migsiai · δi√

1 + s2i

FRi =
migai · µi√

1 + s2i

All the other equations remain unchanged.

We get the equations of revolution conic sections (ellipsoid, paraboloid, hyperboloid,
cone) if we insert for h(r) the equation of an ellipse, parabola, hyperbola, or cone.

Both balls are in stable balance in a determined area. If we move the balls out of the
area, then the balls move to their previous position. However, in this determined area,
both balls can be shifted arbitrary. That means an indifferent balance in this determined
area.

to *: The derivation of acceleration at chapter’s begin:

Notations:

kinetic energy = Ekin = mv2

2
potential energy = Epot = mgh with h = hs sinα see fig.
rotational energy = Erot = Jw2

2 J = moment of inertia

law of conservation of energy:

mv2

2
+
Jw2

2
= mgh
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We assume that the body is only rolling not gliding. Then it is valid:
angular velociy = w = v

R R = radius of the rolling body

mv2

2
+
Jv2

2R2
= mghs sinα

With transformation we yield:

v =

√
2mghs sinα
m+ J

R2

Because the rolling body has the constant acceleration b = g sinα, there is a uniform
accelerated motion. For this motion it is valid: v2 = 2hs · b transformed to b = v2

2hs
Now

we insert the equation of v:

b =
2mghs sinα

2hs ·
(
m+ J

R2

) =
mg sinα
m+ J

R2

Then we have the wanted formula.
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167



G.Mechanics

36. The swinging body and the rotating disk

1. The swinging body

We view a swinging body as in the figure:

G=mg = gravitation with the earth’s acceleration g
m = mass of the swinging body
Z=mv2

r = centrifugal force with the velocity v and radius r

We only achieve a stationary state, if the resultant of G and Z is in the same direction
as the pendulum. l is the pendulum’s length and φ is the belonging angle. Resultant
force:

F =
√
G2 + Z2 = m ·

√
g2 +

v4

r2

The condition of stationary state means:

tanφ =
Z

G
=
v2

gr

It is valid r = l sinφ. We obtain:

tanφ =
v2

gl sinφ

transformed:
v =

√
gl sinφ tanφ

Inversion:
v2 = g · l · sinφ · tanφ

with
sin2 φ+ cos2 φ = 1 sinφ =

√
1− cos2 φ tanφ =

sinφ
cosφ

it follows:

v2 = gl ·
√

1− cos2 φ ·
√

1− cos2 φ
cosφ

= gl · 1− cos2 φ
cosφ

168



G.Mechanics

multiplied:
v2 cosφ = gl − gl cos2 φ

at last we get a quadratic equation:

cos2 φ+
v2

gl
· cosφ− 1 = 0

Solution of the quadratic equation:

cosφ = +

√
1 +

(
v2

2gl

)2

− v2

2gl

Only the root with the positive sign makes sense, there is no solution with
cosφ < 0 in the interval [0, 90◦].

We yield the angular velocity with r = l sinφ:

w =
v

r
=

√
gl sinφ tanφ
l2 sin2 φ

=
√

g

l cosφ
with sinφ = cosφ · tanφ

It is valid for the period of revolution:

T =
2π
w

=
2π√

g
l cos φ

= 2π ·
√
l cosφ
g

For φ� 90◦ it follows with cosφ ≈ 1 the approximation:

T ≈ 2π

√
l

g

The frictionless case in a medium can be treated in the same way. Instead of inserting
g, we insert g·(ϕK−ϕF )

ϕK
=g ·

(
1− ϕF

ϕK

)
(e.g. Budo [1] §16 p.85) into the equations. ϕF is

the medium’s density (liquid or gas) and ϕK is the body’s density.

reasons:

In this balance case, there are only gravitation and centrifugal force. The centrifugal
force is independent from the medium, in the orbit case the centrifugal force is only
dependent upon r and v. We can see it in the derivation of the centrifugal force, but
not from the medium. The gravitational acceleration changes from g to g · ϕK−ϕF

ϕK
. Only

with the gravitation is there a change, because of this we can insert g ·
(
1− ϕF

ϕK

)
instead

of g.
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In the case ϕF > ϕK the apparatus must be turned round.

instead of

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Zv

r

φ
l

. .................. ..................
..................

..................
.................

.................

then

�
�

�
�

�
�

�
�

�
�

�

vr

φ

l
. ............... ............... ............... ............... ...............

..............

Then the same equations are valid again.

2. The rotating disk and the swinging body

We look at the following figure: A (swinging) body hangs on a rotating disk.

G = gravitation with the earth’s acceleration g
m = mass of the swinging body
Z = centrifugal force
r = radius
w = angular velocity

We have the following equations (using the same notations):

tanφ =
Z

G
G = mg Z = mrw2 = m · (R+ l sinφ) · w2

With the tangent equation we obtain:

tanφ =
(R+ l sinφ) · w2

g

Transformed to the angular velocity:

w =

√
g tanφ

R+ l sinφ
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We get the following relationship to velocity:

v = w · r = w · (R+ l sinφ)

angle of deviation = φ = 6 (~G, ~G+ ~Z) = 6 (~G, ~F ) ~F = ~G+ ~Z

~F is the resultant force, it is valid:

F =
√
G2 + Z2 = m ·

√
g2 + (R+ l sinφ)2 · w4
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37. The general overtaking

We view the following figures:

-

6

v1

-

x1

︷ ︸︸ ︷l1

v2

-

x2

︷ ︸︸ ︷l2

− l2
2 + l2

2

x2

− l1
2 + l1

2

x1

Two trains with lengths l1 and l2 move in the coordinate system on the x-axis with the
velocities v1 and v2. The velocities shall be functions of the time t. l1 and l2 must not be
the real length. Combinations with distances are possible for example l1 = lr1 +2d1 and
l2 = lr2 + 2d2 (both sides equal distance) or l1 = lr1 + d11 + d12 and l2 = lr2 + d21 + d22

(different distances) with lr as the real length of the train.

First we want to calculate the observation times, these are the times in which an observer
can see the other train from a vertical viewpoint. We introduce for l1,l2 a coordinate l
with zero point at centre of the train. It is valid:

for l1 : − l1
2
≤ l ≤ l1

2

for l2 : − l2
2
≤ l ≤ l2

2

At time t = 0 the centres of the trains shall be at starting-points x1 and x2.

Observation time for l1:

At time t1 the following coordinates must be equal:

x1 + l +
t1∫

0

v1(t) dt = x2 −
l2
2

+
t1∫

0

v2(t) dt (1)

at t2:

x1 + l +
t2∫

0

v1(t) dt = x2 +
l2
2

+
t2∫

0

v2(t) dt (2)

We get the observation time tb = |t2 − t1|. One, several or no solutions of t1 and t2
are possible. The solutions can be positive or negative. Then we must view exactly the
positions of both train to decide when the observation time begins and ends respectively.
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Observation time for l2:

for t1:

x2 + l +
t1∫

0

v2(t) dt = x1 −
l1
2

+
t1∫

0

v1(t) dt (3)

for t2:

x2 + l +
t2∫

0

v2(t) dt = x1 +
l1
2

+
t2∫

0

v1(t) dt (4)

The observation time is again tb = |t2 − t1|. One or no or several solutions are possible
here too. At complex velocity functions the positions of the trains must be viewed.

The overtaking time:

Now we deal with the time that is necessary to the whole overtaking. The calculations
of the grenz-times are secured with the following conditions.

for t2:

x1 −
l1
2

+
t2∫

0

v1(t) dt = x2 +
l2
2

+
t2∫

0

v2(t) dt (5)

for t1:

x1 +
l1
2

+
t1∫

0

v1(t) dt = x2 −
l2
2

+
t1∫

0

v2(t) dt (6)

We yield the overtaking time tw = |t2 − t1|. For t1 and t2 one or no or several solutions
are possible. Especially in case of several solutions we must take into considerations the
positions of the trains.

The overtaking way is the shift of the train midpoint’s position xm to times t1 and t2.

at t2:

xm1 = x1 +
t2∫

0

v1(t) dt xm2 = x2 +
t2∫

0

v2(t) dt

at t1:

xm1 = x1 +
t1∫

0

v1(t) dt xm2 = x2 +
t1∫

0

v2(t) dt

Then we obtain the overtaking ways:

s1 =

∣∣∣∣∣∣
t2∫

0

v1(t) dt−
t1∫

0

v1(t) dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣

t2∫
t1

v1(t) dt

∣∣∣∣∣∣ (7)
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s2 =

∣∣∣∣∣∣
t2∫

0

v2(t) dt−
t1∫

0

v2(t) dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣

t2∫
t1

v2(t) dt

∣∣∣∣∣∣ (8)

Now we view the special case of temporal constant velocities.

Observation time for l1:

With the equations (1) and (2) we get after integration for t1, t2:

t1 =
x2 − x1 − l2

2 − l

v1 − v2
t2 =

x2 − x1 + l2
2 − l

v1 − v2

and then:
tb =

l2
|v1 − v2|

Observation time for l2:

Integration and solving of the equations (3) and (4) to t1 and t2:

t2 =
x2 − x1 + l − l1

2

v1 − v2
t1 =

x2 − x1 + l + l1
2

v1 − v2

we yield:

tb =
∣∣∣∣ −l1
v1 − v2

∣∣∣∣ = l1
|v1 − v2|

Now we calculate the overtaking time. Integration and solving of the equations (5) and
(6):

t2 =
x1 − x2 − l1

2 −
l2
2

v2 − v1
(9)

t1 =
x1 − x2 + l1

2 + l2
2

v2 − v1
(10)

To obtain the overtaking time tw we calculate the difference again:

tw =
∣∣∣∣−(l1 + l2)
v2 − v1

∣∣∣∣ = l1 + l2
|v2 − v1|

Integration of (7) and (8) and insertion of (9) and (10) leads to the overtaking ways:

s1 =
∣∣∣∣−v1 · (l1 + l2)

v2 − v1

∣∣∣∣ = (l1 + l2) ·
∣∣∣∣ v1
v2 − v1

∣∣∣∣
s2 =

∣∣∣∣−v2 · (l1 + l2)
v2 − v1

∣∣∣∣ = (l1 + l2) ·
∣∣∣∣ v2
v2 − v1

∣∣∣∣
The general equations are valid, if v1, v2 � c (light speed). If v1 + v2 >

c
10 we must

calculate relativisticly.

c© 2001 Harald Schröer
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38. The roll

1. A roll:

We view a model of a roll like in the figure:

We introduce:

d:= thickness of the cord
n:= number of rotations
U := length of the cord
First we assume that the cord has the length:

U = 2π · (r + d) + 2π · (r + 2d) + · · ·+ 2π · (r + nd)

With the sum of powers we get:

U = 2π ·
(
nr +

n · (n+ 1) · d
2

)
(1)

or:
U = πn · (2r + d · (n+ 1)) (2)

Now we solve the equation (1) to n:

U

2π
=

2rn+ dn2 + nd

2

Transformed:
dn2

2
+
(
d

2
+ r

)
· n =

U

2π
Normal form:

n2 +
(

1 +
2r
d

)
· n =

U

dπ

This is a quadratic equation in n. We use the known solution formula:

n = +

√
U

dπ
+
(

1
2

+
r

d

)2

− 1
2
− r

d
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Now we transform the equation (2) to d:

d =
U
πn − 2r
n+ 1

=
U − 2πrn
πn · (n+ 1)

At last we solve the equation (2) to r:

2r =
U

πn
− d · (n+ 1)

r =
U − πdn · (n+ 1)

2πn

2. Two rolls:

Now we view the spooling of a cord from one roll to another roll. We can think for
example of a film projector.

r1, r2 = radii of the rolls without cord
d = thickness of the cord (film-strip)
n1, n2 = number of rotations of the rolls n1, n2 ∈ R+

t = time

With equation (2) we have for the first roll:

U1 = πn · (2r1 + d · (n+ 1)) (3)

In regard to the rotation of the first roll the relation n1 = ϕ1

2π is valid. ϕ1 is the covered
angle of the first roll in circular measure. If we know the angular acceleration α1 of the
first roll, then it is:

ω1(t) =
∫
α1(t) dt+ c1

ω1 = angular velocity of the first roll
ci = integration constants

ϕ1(t) =
∫
ω1(t) dt+ c2
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In the special case of uniform rotation ϕ1 = ω1 · t + c2 is valid. Now we determine the
diameter D1 of the first roll with cord:

D1 = 2nd+ 2r1

The cord or the film-strip has a certain length Ug. This length is known. Thus we get
U2 = Ug − U1. With the equation (3) and n1 = ϕ1

2π we obtain:

U2 = Ug − π · ϕ1

2π
·
(

2r1 + d ·
(
ϕ1

2π
+ 1

))
On the other hand we can write U2 because of equation (2):

U2 = πn2 · (2r2 + d · (n2 + 1))

Now we solve this equation to n2. This can be done in the same way as solving from U
to n in the first part:

n2 = +

√
U2

dπ
+
(

1
2

+
r2
d

)2

− 1
2
− r2
d

Thus we have:
D2 = 2n2d+ 2r2

D2 is the diameter of the second roll with cord.

The cord is pulled with one acceleration b from the first roll.

b =
D1(t) · α1(t)

2
=
D2(t) · α2(t)

2

See the following figure:

It follows to angular acceleration of the second roll:

α2 =
D1 · α1

D2

To angular velocity of the second roll it is valid:
(ci = integration constants)

ω2(t) =
∫
α2(t) dt+ c3
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For the covered angle of the second roll we obtain:

ϕ2(t) =
∫
ω2(t) dt+ c4

Here the extension of n1, n2 to the set of positive real numbers is useful. Otherwise we
have difficulties with the integrals. It’s clear that these equations describe the motion
of both of the rolls only approximately. The equations are more accurate when the
thickness of the cord d is smaller.

c© 2001 Harald Schröer
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39. The basketball problem

In basketball there is the problem of hitting a basket at a determined distance and a
determined height. The quantities that can be changed during the inclined throw are
the initial velocity and the angle of throw. At first we neglect the air resistance.

The basket has from the point of throw P the distance x and the height y. The point
P shall be the origin (x = 0, y = 0) of the coordinate system.

x

y

P α

. ............. ............
............
...........
..
...........
..

..........

...

s Basketv0 ≥ 0
x ≥ 0

.

........................................................

....................................................

.................................................

.............................................

..........................................

......................................

...................................

...............................

............................

........................

.....................
..................
................
............... ............. ............ ............. ............. ..............

................
..

...............
......

..............
..........

a = angle of throw 0◦ ≤ a ≤ 90◦

v0 = initial velocity
g = earth acceleration

Now, we need the known equation of the inclined throw:

y = x · tan a− gx2

2v2
0 cos2 a

We solve to v0:
gx2

2v2
0 cos2 a

= x tan a− y

v0 =
x

cos a
·
√

g

2 · (x tan a− y)
(1)

Thus we have the initial velocity v0(a) as a function from the angle of throw.

Now, we want to calculate the angle of throw with consideration of the initial velocity.
We insert at the equation of the inclined throw cos2 a = 1

1+tan2 a
and we obtain:

y = x tan a− gx2 · (1 + tan2 a)
2v2

0

Transformed step by step:

2v2
0y

gx2
=

2v2
0 tan a
gx

− 1− tan2 a
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Then, we get the following quadratic equation for tan a:

tan2 a− 2v2
0 tan a
gx

= −2yv2
0

gx2
− 1

Now, we use the known quadratic formula:

tan a1,2 = ±

√√√√( v2
0

gx

)2

− 2yv2
0

gx2
− 1 +

v2
0

gx
(2)

Thus, two possible solutions for a(v0) exist. We have obtained the angle of throw with
consideration of the initial velocity. With the equations (2) and (1), we can find the
angle of throw to fit the initial velocity and vice versa.

Now, we treat the same problem in a medium (gas) with constant density. For trajecto-
ries of projection, it is valid (see Budo [1] §16 p.85 equation (22)):

mv̇x = −F (v) · vx

v

mv̇y = −mg − F (v) · vy

v

with:

v = absolute value of the velocity

v(t) = |(vx(t), vy(t))| :=
√
vx(t)2 + vy(t)2

t = time
m = mass of the ball
F (v) = retarding force in a medium
The point above v means the differential qoutient to time.

Now, we will occupy ourselves with the case F (v) = kv. k is a determined constant. This
assumption is actualized at small velocities and small bodies. Then, both differential
equations simplify to:

mv̇x = −kvx

mv̇y = −mg − kvy

If we insert ẋ = vx and ẏ = vy, we get (see Heuser [2] chapter 5 p.78):

x(t) =
mv0 cos a

k
·
(
1− e−

kt
m

)
(3)

y(t) =
m

k
·
(
v0 sin a+

mg

k

)
·
(
1− e−

kt
m

)
− mgt

k
(4)

the solution of both differential equations.
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Again, we have the problem of calculating the dependence between the angle of throw
a and the initial velocity v0. We transform the equation (3):

xk

mv0 cos a
= 1− e−

kt
m

⇒ e−
kt
m = 1− xk

mv0 cos a
finally:

t = −m
k
· ln

(
1− xk

mv0 cos a

)
Now, we insert the expressions of t and 1− e−

kt
m in the equation (4):

y =
m

k

(
v0 sin a+

mg

k

)
· xk

mv0 cos a
+
m2g

k2
· ln

(
1− xk

mv0 cos a

)
With tan a = sin a

cos a we obtain:

y = x tan a+
mgx

kv0 cos a
+
gm2

k2
· ln

(
1− xk

mv0 cos a

)
The solving of v0 or a is not possible. Here, we must use numerical methods (for example
Newton’s approximation formula). These methods lead to approximate solutions.

For very exact calculations, we must insert instead of g the acceleration g ·
(
1− ϕ

ϕK

)
(see Budo [1] §16 p.85). It is:

ϕ = density of the medium (gas)
ϕK = density of the body (ball)

For large velocities, the function F (v) = Cv2 is often used. Then C is a determined
constant. This case is treated at Timmermann [5], at Parker [6] and at Kooy [7]. At
Budo [1] §16 p.85,86, at Kamke [3] p.624 Nr.9-17 and at Lohr [4] p.197-205, it is indicated
what can be done for this case.
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40. Successive trajectories of projection

If a body falls to the floor, it is reflected and describes a trajectory of projection. A new
reflection is happening, and we view a smaller trajectory of projection. We look at the
following figure:

It is remarkable that the angles a0, a1, a2, a3, · · · , an, · · · are all equal. The body starts
at the altitude h over the floor. x1 is the x-coordinate at the first incidence on the floor.
We insert in the known equation of the inclined projection:

−h = x1 tanα− gx2
1

2v2
A · cos2 α

Let be:
α = angle of throw
g = earth’s acceleration
vA = initial velocity

Now we transform to x1:

x2
1 −

2v2
A · tanα cos2 α

g
· x1 =

2hv2
A cos2 α
g

This is a quadratic equation. We use the known solution formula:

x1 = +

√
2hv2

A cos2 α
g

+
v4
A tan2 α cos4 α

g2
+
v2
A tanα cos2 α

g

Now we use tanα = sin α
cos α :

x1 = +

√
2hv2

A cos2 α
g

+
v4
A sin2 α cos2 α

g2
+
v2
A sinα cosα

g

and with sin 2α
2 = sinα · cosα:

x1 = +

√
2hv2

A cos2 α
g

+
v4
A sin2(2α)

4g2
+
v2
A sin 2α

2g
(1)
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Thus x1 is known. To determine a0 we derive the equation of projection:

y = x tanα− gx2

2v2
A cos2 α

y′ =
dy

dx
= tanα− gx

v2
A cos2 α

x1 inserted:
y′(x1) = tanα− gx1

v2
A cos2 α

It is y′(x1) < 0 thus −y′(x1) = tan a0.

Now we determine the first bounce velocity v0 with the energy theorem:

m1v
2
0

2
=
m1v

2
A

2
+m1gh h > 0

m1 is the mass of the body.
⇒ v2

0 = v2
A + 2gh

Now we need the time tA till to the first bounce. We use the temporal equation of the
inclined projection:

−h = vAtA sinα− gt2A
2

It follows:
t2A −

2vA sinα · tA
g

=
2h
g

Thus a quadratic equation for tA. We use the known solution formula:

tA = +

√
2h
g

+
v2
A sin2 α

g2
+
vA sinα

g
(2)

To calculate the velocity v1 after the first collision, we need the velocity formula for the
partial elastic collision. The second body is the floor with the velocity zero before the
collision. Then we obtain with Kuchling [1] chapter 7.3.5 p.121 formula M 7.40:

v1 = v0 ·
∣∣∣∣m1 − km2

m1 +m2

∣∣∣∣ = v0 · a

m1 = mass of the body | · | = absolute value
m2 = mass of the floor
k = collision number k ∈ [0, 1]

The collision number can be determined with a method in Kuchling [1] chapter 7.3.5
p.122.
At k = 1 there is a elastic collision. At k = 0 we have an inelastic collision. In this
case the body is swallowed from the floor. Then there are no reflections and no further
trajectories of projection. Because of this we assume k > 0. Then the velocity is reduced
with a constant factor:

a :=
∣∣∣∣m1 − km2

m1 +m2

∣∣∣∣ (3)
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At the second collision the initial velocity of the projection reduces again with the factor
a. (v2 = a · v1 = a2 · v0)

For the initial velocity vn after the n. collision respectively for the n. trajectory of
projection we obtain:

vn = a · vn−1 = an · v0
Thus we can view the n. trajectory of projection. The angle of throw a0 remains the
same.

Temporal equation of projection:

ȳ = vn · t sin a0 −
gt2

2

Equation of projection:

ȳ = x · tan a0 −
gx2

2v2
n cos2 a0

Duration of ascent:
tsn =

vn · sin a0

g

Throwing time:

twn =
2vn · sin a0

g
=

2v0 · sin a0

g
· an

Height of ascent:

hsn =
v2
n · sin2 a0

2g
=
v2
0 · sin2 a0

2g
· a2n

In the case of perpendicular projection it is sin a0 = 1, then we get for the height of
ascent with equation (3):

hsn =
v2

2g
·
∣∣∣∣m1 − km2

m1 +m2

∣∣∣∣2n

In the case of elastic collision (k = 1) the height of ascent is:

hs =
v2
0 · sin2 a0

2g
·
∣∣∣∣m1 −m2

m1 +m2

∣∣∣∣2n

The range of throw can be written as:

swn =
v2
n · sin 2a0

g
=
v2
0 · sin 2a0

g
· a2n (4)

Now we calculate the duration tG of the whole process:

tG = tA +
∞∑
i=1

twi

= tA +
2v0 sin a0

g
·
∞∑
i=1

ai
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This is a geometirc series, for k ∈ (0, 1] we obtain:

tG = tA +
2v0 sin a0

g
· a

1− a

a and tA can be calculated with the equations (3) and (2).

Now we determine the whole way:

swG = x1 +
∞∑
i=1

swi

= x1 +
v2
0 sin 2a0

g
·
∞∑
i=1

a2i

Here we use again the geometric series for k ∈ (0, 1]:

swG = x1 +
v2
0 sin 2a0

g
· a2

1− a2

To determine x1 and a the equation (1) and (3) are useful. With the geometric sums

n∑
i=1

ai =
1− an+1

1− a
− 1

n∑
i=1

a2i =
1− a2·(n+1)

1− a2
− 1

we can calculate at last the sums:
n∑

i=1

twi and
n∑

i=1

swi
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41. Special case of the elastic collision and the ballistic
pendulum

1. Special case of the elastic collision

We want to investigate some interesting cases at the elastic collision. We know the
formulas of the elastic collision with v as velocity before the collision and u the velocity
after the collision.

Two masses m1 and m2 collide. In general you can say the following for the velocities
after the collision:

u1 =
2m2v2 + v1 · (m1 −m2)

m1 +m2

u2 =
2m1v1 + v2 · (m2 −m1)

m1 +m2

Now we view the case m1 � m2 and v1 � v2 as in the figure:

u1 ≈
2m2v2 −m2v1

m2
= 2v2 − v1 ≈ −v1

The last result represents for example the reflection of a particle on a wall. Under the
same conditions we get for u2:

u2 ≈
2m1v1 +m2v2

m2
=

2m1v1
m2

+ v2

If v2 = 0 then it follows:

u2 ≈
2m1v1
m2

Now we investigate the case m1 � m2 and |v2| � v1 with v2 < 0 (the second mass flies
against the first mass). Then we get:

u1 ≈
2m2v2 +m1v1

m1
= 2v2 ·

m2

m1
+ v1

In the case v1 = 0 the term simplifies to:

u1 ≈ 2 · v2 ·
m2

m1
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The term for u2 can be written as:

u2 ≈
2m1v1 −m1v2

m1
= 2v1 − v2

At v1 = 0 it follows u2 ≈ −v2.

In both cases the small mass is reflected with practically equal velocity in the opposite
direction. At the large mass ratio of mass and the own velocity before the collision are
important.

Now we view the case m1 � m2 and v1 � v2:

u1 ≈
v1 · (m1 −m2)
m1 +m2

≈ v1

u2 ≈
2m1v1 −m1v2

m1
= 2v1 − v2 ≈ 2v1

Now we are going to look at the case m1 � m2 and v1 � v2:

u1 ≈
2m2v2 −m2v1

m2
= 2v2 − v1 ≈ 2v2

u2 ≈
v2 · (m2 −m1)
m1 +m2

≈ v2

In the last two cases we get the following result:

The large mass changes its velocity insignificantly. The small mass obtains twice as
much velocity than the velocity of the large mass before the collision.

2. The ballistic pendulum

We view the following pendulum:
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A bullet with the mass m1 is fired from a gun or a pistol. This mass collides inelastic
with the mass m2 at the pendulum. The pendulum deflects at the angle α. The aim
is to determine the bullet’s velocity of the mass m1. l is the length of the pendulum.
The bullet with the mass m1 is shot with the velocity v1. It collides with the motionless
mass m2 inelastic. You can say that v2 = 0. After the collision both masses have the
velocity:

u =
m1v1

m1 +m2
(1)

The relation between the velocity u and the reached altitude can be determined with
the energy theorem. With M = m1 +m2 we have:

Mu2

2
= Mgh

It follows:
u =

√
2gh

g = earth’s acceleration

According to the figure is h = l · (1− cosα). It follows:

u =
√

2gl · (1− cosα)

Equation (1) transformed:

v1 =
u · (m1 +m2)

m1
(2)

We insert u:

v1 =
(m1 +m2) ·

√
2gl · (1− cosα)
m1

(3)

or

v1 =
(m1 +m2) ·

√
2gh

m1
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With that we have an expression for the bullet’s velocity v1. α or h must be measured.
If the deflection d is measured, we can calculate with d = l · sinα the angle α.
Now we solve the equation (3) to cosα:

m2
1v

2
1

(m1 +m2)2
= 2gl · (1− cosα)

⇒ cosα = 1− m2
1v

2
1

2gl · (m1 +m2)2

With that it is possible to determine vice versa from the bullet’s velocity v1 the angle α
and then the deflection d, too.

Now we are going to look at the usual case m2 � m1. If α is in circular measure, then
we can use the Taylor series of cosine:

1− cosα =
α2

2!
− α4

4!
+
α6

6!
−+ · · ·

n! = 1 · 2 · 3 . . . · n

In the case α� π
2 we get:

1− cosα ≈ α2

2
≈ d2

2l2

Inserted in equation (3) at 1− cosα:

v1 ≈ d ·
√
g

l
· m1 +m2

m1

transformed to d:

d ≈ m1v1
m1 +m2

·
√
l

g

In this case we can simplify both last terms with:

m1 +m2

m1
≈ m2

m1

c© 2002 Harald Schröer
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42. Interference of two wave sources

Interference is a known phenomenon of all waves, for example, acoustic, water, and
light waves. Optical interferences occur at Newton’s rings, slits, double slits, and thin
sheaths. Here, we will treat transverse waves. Electromagnetic waves and water waves
are examples of transverse waves. Acoustic waves are longitudinal waves that are not
treated here.

We study the interference area of two transverse wave sources.

d = distance of the two wave sources
b = phase difference
λ = wave length of the emited waves

First, we will treat a simple wave, the sinusoidal wave. At lines of interference it must
be b = 2n−1

2 · λ n ∈ N .

We calculate, at first, the angle a with the law of cosines:

d2 = (l + b)2 + l2 − 2 · (l + b) · l cos a

Solved:

cos a =
(l + b)2 + l2 − d2

2 · (l + b) · l
=

2l2 + 2bl + b2 − d2

2l2 + 2bl
= 1 +

b2 − d2

2l2 + 2bl
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Therefore, a ∈ [0◦, 180◦], it follows cos a ≤ 1. Thus:

1 +
b2 − d2

2l2 + 2bl
≤ 1 ⇔ b2 − d2

2l2 + 2bl
≤ 0

Therefore, l, b ≥ 0 thus 2l2 + 2bl ≥ 0 thus b2 − d2 ≤ 0 or b ≤ d.
This is a condition of phase difference lines or in the special case of interference lines.
In the interference case, we have:
b = λ

2 ,
3λ
2 , . . . ,

2nmax−1
2 · λ ≤ d thus:

2nmax − 1
2

· λ ≤ d ⇔ 2nmax − 1 ≤ 2d
λ

⇔ 2nmax ≤
2d
λ

+ 1

nmax ≤
d

λ
+

1
2

nmax ∈ N0

is the condition of the number of interference lines.

Now we derive the interference equation with the general phase difference b ≥ 0. There
are two circles, we use the equation of a circle:

(l + b)2 = y2 +
(
x+

d

2

)2

(1)

l2 = y2 +
(
x− d

2

)2

(2)

We subtract equation (2) from equation (1):

2lb+ b2 = 2xd ⇔ l =
2xd− b2

2b

Insertion of l at (2) and transformation to y:

y2 =

(
2xd− b2

2b

)2

−
(
x− d

2

)2

simpified:

y2 =
(
xd

b
− b

2

)2

−
(
x− d

2

)2

(3)

With this coordinate equation, we can determine lines with phase difference b. If we
insert b = 2n−1

2 · λ n ∈ N for the interference case, we get the interference equation:

y2 =
(

2xd
(2n− 1) · λ

− 2n− 1
4

· λ
)2

−
(
x− d

2

)2

1 ≤ n ≤ nmax

Another case is the maximum superposition, then it is b = n · λ n ∈ N0.

Approximations of (3):

y2 ≈
(
xd

b

)2

−
(
x− d

2

)2

x, d� b
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or in the interference case:

y2 ≈
(

2xd
(2n− 1) · λ

)2

−
(
x− d

2

)2

x, d� λ

Further special cases can be calculated.

The figure shows interference lines.

The differentiation of (3) is done with the chain rule:

y′ =

(
xd
b −

b
2

)
· d

b −
(
x− d

2

)
√(

xd
b −

b
2

)2
−
(
x− d

2

)2

for x� d, b:

y′ ≈
x ·
(

d2

b2
− 1

)
x ·
√

d2

b2
− 1

=

√
d2

b2
− 1

For the angle α we have:

tanα =
y

x
=

√(
xd
b −

b
2

)2
−
(
x− d

2

)2

x

In the case x� d, b it follows:

tanα ≈
x ·
√

d2

b2
− 1

x
=

√
d2

b2
− 1 (4)

That means exceeding the limit to tangent and asymptote.

c© 2001 Harald Schröer
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43. Falling ball in a viscous liquid (gas)

Let us view a falling ball in a viscous liquid(gas). First, one differential equation of the
falling ball in a viscous liquid (gas) is developed. Then, a solution of this differential
equation is obtained through the separation of variables. The solution is the velocity
function. With integration, the depth (height) is obtained.

��
��
��

?

LIQUID
(GAS)

r
m

v

quantities:

m= mass of the ball
r= radius of the ball
v= velocity of the ball
b= acceleration of the ball
s= depth (height) of the ball
ϕK= density of the ball
ϕ= density of the liquid (gas)
η= dynamic viscosity of the liquid (gas)
cw= drag coefficient
t= time
g= acceleration of free fall (due to gravity)
λ= mean free path (gas)

a := 1− ϕ

ϕK

F (v)= resistance in a medium

a) liquids:
F (v) = α1v

2 + β1v (1)

α1 and β1 are functions from r, ϕK , ϕ, η and cw. With Budo [1] §92 p.525 (92.28), §94
p.535 (94.6) ,Kuchling [3] chapter 10.3.1. p.165 (M 10.20) and Timmermann [5] this
formula is valid for ϕrv

η < 1.

b) gas:
F (v) = α1v

2 + β1v (2)

α1 and β1 are functions from r, ϕK , ϕ, η, cw and λ. This is valid for λ
r < 1, see Budo [1]

§92 p.525 between (92.28) and (92.29), see Kuchling [3] chapter 10.3.1. p.165 (M 10.20)
and Timmermann [5].
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equation of motion:

With Budo [1] §16 p.83 (16.3) and p.85 (16.21), it is valid:

mv̇ = mag − F (v) v(0) = 0

an initial-value problem

This initial-value problem can be treated through the seperation of variables.

F (v) = α1v
2 + β1v α1, β1 > 0

mv̇ = mag − α1v
2 − β1v

v̇ = A−Bv − Cv2 v(0) = 0

with
A := ag B :=

β1

m
C :=

α1

m
B,C > 0

If a = 1− ϕ
ϕK

> 0 then A > 0
(motion downward)

If a < 0 then A < 0
(motion upwards)

limits of velocity:
0 = v̇ = A−Bv − Cv2

0 = Cv2 +Bv −A

0 = v2 +
B

C
v − A

C

v1,2 = ±

√
A

C
+
(
B

2C

)2

− B

2C

= − B

2C
±

√
B2

4C2
+

4AC
4C2

=
1

2C
·
(
−B ±

√
B2 + 4AC

)
v1 =

1
2C

·
(
−B +

√
B2 + 4AC

)
> 0

if A > 0
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If A < 0, then v1 < 0.

v2 =
1

2C

(
−B −

√
B2 + 4AC

)
< 0

Factoring:
A−Bv − Cv2 = −C(v − v1)(v − v2)

partial fraction decomposition:

1
A−Bv − Cv2

=
α

v − v1
+

β

v − v2

1 = −Cα(v − v2)− Cβ(v − v1)

v = v1 ⇒ 1 = −Cα(v1 − v2) α =
−1

C(v1 − v2)

v = v2 ⇒ 1 = −Cβ(v2 − v1) β =
1

C(v1 − v2)

it follows:

1
v̇

=
1

A−Bv − Cv2
=

−1
C(v1 − v2)(v − v1)

+
1

C(v1 − v2)(v − v2)

=
−1

C(v1 − v2)

(
1

v − v1
− 1
v − v2

)
Integration: (seperation of variables)∫

dt =
∫

dv

A−Bv − Cv2
=
∫ −1
C(v1 − v2)

·
(

1
v − v1

− 1
v − v2

)
dv

=
−1

C(v1 − v2)
· (ln |v − v1| − ln |v − v2|) = t+ d1

d1, d2 and d are integration constants.

ln |v − v2| − ln |v − v1| = C(v1 − v2)(t+ d1)

ln
∣∣∣∣v − v2
v − v1

∣∣∣∣ = C(v1 − v2) · t+ d2

v − v2
v − v1

= deC(v1−v2)·t (3)

v − v2 = vdeC(v1−v2)·t − v1de
C(v1−v2)·t

v ·
(
1− deC(v1−v2)·t

)
= v2 − v1de

C(v1−v2)·t

v =
v2 − v1de

C(v1−v2)·t

1− deC(v1−v2)·t

with v(t = 0) = 0 and (3) we get v2
v1

= d

v =
v2 − v1

v2
v1
eC(v1−v2)·t

1− v2
v1
eC(v1−v2)·t

196



G.Mechanics

v2 < 0

v =
v2 ·

(
1− eC(v1−v2)·t

)
1 + |v2|

v1
eC(v1−v2)·t

v =
v2
(
e−C(v1−v2)·t − 1

)
e−C(v1−v2)·t + |v2|

v1

end velocity: v2 < 0

lim
t→∞

v(t) =
v2(0− 1)

0 + |v2|
v1

=
−v2
|v2|

· v1 = v1

v1 =
1

2C

(
−B +

√
B2 + 4AC

)
v =

E(eFt − 1)
eFt +G

with
F := −C(v1 − v2) E := v2 G :=

|v2|
v1

b(t) = v̇(t) = E · Fe
Ft(eFt +G)− (eFt − 1)FeFt

(eFt +G)2

= E · Fe
Ft(G+ 1)

(eFt +G)2

= v2
−C(v1 − v2)e−C(v1−v2)·t ·

(
|v2|
v1

+ 1
)

(
e−C(v1−v2)·t + |v2|

v1

)2

1) ϕK > ϕ ⇒ a > 0 ⇒ A > 0

v2 < 0 v1 > 0 C > 0

⇒ v1 − v2 > 0 ⇒ −C(v1 − v2) < 0 ⇒ v2 · (−C) · (v1 − v2) > 0

⇒ v̇(t) > 0

⇒ v(t) is a strictly increasing function.

2) ϕK < ϕ ⇒ a < 0 ⇒ A < 0

v2 < 0 v1 < 0

a) |v2| > |v1|

⇒ |v2|
v1

+ 1 < 0 and v1 − v2 > 0

⇒ −Cv2(v1 − v2) ·
( |v2|
v1

+ 1
)
< 0 ⇒ v̇(t) < 0
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⇒ v(t) is a strictly decreasing function.

b) |v2| < |v1|

This case doesn’t occur (see formulas v1 and v2).

Because v(0) = 0, it follows v(t) > 0 in case 1 (a > 0, motion downward) and in case 2
(a < 0, motion upwards) v(t) < 0.

Integration:

s(t) =
∫
v(t) dt =

∫
E(eFt − 1)
eFt +G

dt

see Gröbner [2] volume 1 Nr.311 p.107 2)

eFt = y thus t =
1
F

ln y

dt

dy
=

1
Fy

y(t) = eFt y(0) = 1

s(t) =

y(t)∫
y(0)

E(y − 1) dy
(y +G)Fy

=
E

F
·

y(t)∫
y(0)

(y − 1) dy
y2 +Gy

partial fraction decomposition:

1
y2 +Gy

=
δ

y
+

ε

y +G

1 = δ(y +G) + εy = y(δ + ε) + δG

1 = δG δ + ε = 0

⇒ δ =
1
G

ε = − 1
G

thus:
1

y2 +Gy
=

1
Gy

− 1
G(y +G)

test:
1
Gy

− 1
G(y +G)

=
y +G− y

Gy(y +G)
=

G

Gy(y +G)

=
1

y(y +G)
=

1
y2 +Gy

thus:

F

E
· s(t) =

y(t)∫
y(0)

(
y − 1
Gy

− y − 1
G(y +G)

)
dy
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see Gröbner [2] Nr.12 p.7 4c):

=

[
y

G
− ln |y|

G
− y − 1

G
− −1 ·G2 + (−1) ·G

G2
· ln |G(y +G)|

]y(t)

y(0)

=
[
y − ln |y|

G
− y − 1

G
+
G+ 1
G

· ln |G(y +G)|
]y(t)

y(0)

test using differentiation:

d

dy

E

F
·
(
y

G
− ln |y|

G
− y − 1

G
+
G+ 1
G

ln |G(y +G)|
)

=
E

F
·
(

1
G
− 1
Gy

− 1
G

+
G+ 1
G

· G

G(y +G)

)
=
E

F
·
(

1
G
− 1
Gy

− 1
G

+
G+ 1

G(y +G)

)
=
E

F
·
(
y − 1
Gy

+
−y −G+G+ 1

G(y +G)

)
=
E

F
·
(
y − 1
Gy

+
1− y

G(y +G)

)
=
E

F
·
(
y − 1
Gy

− y − 1
G(y +G)

)
The antiderivative is confirmed.

y(t) = eFt y(0) = 1

thus:
F

E
· s(t) =

eFt − Ft

G
− eFt − 1

G
+
G+ 1
G

· ln |G(eFt +G)|

− 1
G
− G+ 1

G
· ln |G(1 +G)|

=
eFt − Ft

G
− eFt − 1

G
− 1
G

+
G+ 1
G

ln

∣∣∣∣∣eFt +G

1 +G

∣∣∣∣∣
we conclude:

s(t) =
E

F

(
eFt − Ft

G
− eFt − 1

G
− 1
G

+
G+ 1
G

· ln
∣∣∣∣∣eFt +G

1 +G

∣∣∣∣∣
)

s(t) =
E

GF

(
eFt − Ft− eFt + 1− 1 + (G+ 1) · ln

∣∣∣∣∣eFt +G

1 +G

∣∣∣∣∣
)

s(t) =
E

FG

(
(G+ 1) · ln

∣∣∣∣∣eFt +G

1 +G

∣∣∣∣∣− Ft

)

F = −C(v1 − v2) G =
|v2|
v1

E = v2

s(t) =
v2 · v1

−C(v1 − v2) · |v2|
·

( |v2|
v1

+ 1
)
· ln

∣∣∣∣∣∣e
−C(v1−v2)·t + |v2|

v1

1 + |v2|
v1

∣∣∣∣∣∣+ C(v1 − v2) · t
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v2 < 0

=
v1

C(v1 − v2)
·

( |v2|
v1

+ 1
)
· ln

∣∣∣∣∣∣e
−C(v1−v2)·t + |v2|

v1

1 + |v2|
v1

∣∣∣∣∣∣+ C(v1 − v2) · t


thus s(t = 0) = 0

s must not be too large, because of the pressure (gas) and the density (liquid). The free
fall in air with pressure change is treated at Shea [4].
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44. Hollow ball suspending in a liquid

Abstract: We search a relation between radius and wall thickness of a hollow ball that is
suspended in a liquid.

Key words: Radius - wall thickness - hollow ball - liquid - gas - medium

We view the following hollow ball in a liquid:
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The wall thickness d of the hollow ball is given. Which radius x has the hollow ball for
suspending in the liquid?

In [2] an example is calculated. The Archimedes’ law is used. We will generalize this
calculation here. It is:
V = 4

3 · πx
3 = volume of the ball

V ′′ = 4
3 · π(x− d)3 = volume of the interior ball

V ′ = V − V ′′ = volume of the hollow ball

Now we turn to the weights. The interior of the ball contains gas with the density ϕG.
The hollow ball has the density ϕK . The weight is explained through:
G′ = g · ϕK · V ′ g = earth’s acceleration
G′′ = g · ϕG · V ′′

The total weight of the ball is the sum G = G′ + G′′. ϕF shall be the density of the
liquid. Now we use Archimedes’s law to the suspended ball:

g · V · ϕF = G = G′ +G′′ = (V ′ · ϕK + V ′′ · ϕG) · g

With the volume formulas
V =

4
3
· π · x3

V ′′ =
4
3
· π · (x− d)3
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V ′ =
4
3
· π ·

(
x3 − (x− d)3

)
we get:

ϕF · x3 = ϕK ·
(
x3 − (x− d)3

)
+ ϕG · (x− d)3

Now we solve d:
(ϕF − ϕK) · x3 = (ϕG − ϕK) · (x− d)3

(x− d)3 =
ϕK − ϕF

ϕK − ϕG
· x3

It follows:

x− d = x · 3

√
ϕK − ϕF

ϕK − ϕG

d = x ·
(

1− 3

√
ϕK − ϕF

ϕK − ϕG

)
(1)

It is now possible to solve d and x.

One example:

A hollow ball is suspended in water. In the ball is air with the density 0.0012928 kg
dm3 .

The hollow ball consists of aluminium with the density 2.702 kg
dm3 . The density of water

is 0.9982 kg
dm3 at 20 degree Celsius. What is the radius of the hollow ball, if the wall

thickness is d=0.015m?

density ϕK of aluminium = 2.702 kg
dm3

density ϕF of water = 0.9982 kg
dm3 at 20 degree Celsius

density ϕG of air = 0.0012928 kg
dm3

We search the radius x of the hollow ball.

We use the equation (1):

d = x ·
(

1− 3

√
ϕK − ϕF

ϕK − ϕG

)
Transformation:

x =
d

1− 3

√
ϕK−ϕF
ϕK−ϕG

We get x = 0.105m.

Further such examples can be found at Schröer [1].
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45. Acceleration in liquids and gas’

We dip a cuboid in a liquid. The cuboid has the mass m and the volume V .

LIQUID

CUBOID

γ and ϕ are the specific weight and density of the body. The specific weight and the
density of the liquid are denoted with γF and ϕF respectively. The force on the cuboid
in the liquid can be written as:

F = V · (γ − γF )

Now we view a ball in the same liquid. The question is, if the same formula is valid for
a ball, too?
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R is the ball’s radius. We can calculate the buoyant force with integration over the
pressure in the liquid:

F↑ = 2πγF ·
R∫

0

r · (t+
√
R2 − r2) dr

= 2πγF ·
R∫

0

tr dr + 2πγF ·
R∫

0

r ·
√
R2 − r2 dr

is the buoyant force in the depth t.∫
r ·
√
R2 − r2 dr = −1

3
· (R2 − r2)

3
2

follows with simple differentiation with the chain rule. Thus we obtain:

F↑ = 2πγF ·
[
tr2

2

]R

0

+ 2πγF ·
[
−1

3
· (R2 − r2)

3
2

]R
0

= 2πγF ·
(
tR2

2
+
R3

3

)

finally:

F↑ = πR2t · γF +
2
3
· πR3 · γF

The force that acts below can be expressed as:

F↓ =
4
3
· πR3 · γ + πR2t · γF −

2
3
· πR3 · γF

We yield the difference of both forces:

F↓ − F↑ =
4
3
· πR3 · γ − 4

3
· πR3 · γF = V · (γ − γF )

We find the same result with a ball. Is this result valid for all bodies in a liquid? This
question can be answered with “yes”. A proof is in Forster [1] §15 (15.5) p.157,158.

We look at an arbitrary body in a liquid. The acceleration in a liquid is the force divided
through the mass:

b =
V · (γ − γF )

m

We take into consideration the relations γ = g · ϕ and γF = g · ϕF , with g as earth
acceleration:

b =
V · g · (ϕ− ϕF )

m

With m
V = ϕ we obtain:

b = g ·
(

1− ϕF

ϕ

)
Now we have a term that is only dependent from densities and earth acceleration. These
considerations can be extended to gases, if we insert the density of gas in ϕF .

Now we view two masses m1 and m2 under a shade. The body 2 shall be greater than
the body 1. First the air is in the shade.
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The masses are chosen that the weight F is the same. The balance is in equilibrium.
Then the following equation is valid:

m1g ·
(

1− ϕG

ϕ1

)
= F = m2g ·

(
1− ϕG

ϕ2

)
(1)

ϕG is the density of the air (gas). ϕ1 and ϕ2 shall be the densities of the masses m1 and
m2.

Now the air is exhausted. The balance isn’t in equilibrium. For the weight forces in
vacuum F1 and F2 we get:

F1 = m1g =
F

1− ϕG
ϕ1

F2 = m2g =
F

1− ϕG
ϕ2

The larger body with mass m2 posess a smaller density because of (1). Thus we have
ϕ2 < ϕ1. But it follows F2 > F1. The balance bows in favor of the larger body.

If we construct m1 = F1
g and m2 = F2

g it follows m2 > m1, too. To the volumes we yield
the following equations:

V1 =
m1

ϕ1
=

F

g · (ϕ1 − ϕG)

V2 =
m2

ϕ2
=

F

g · (ϕ2 − ϕG)
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With ϕ2 < ϕ1 we get V2 > V1. If two mass are at the balance in equilibrium, then it
follows: A smaller density leads to a greater volume and vice versa. The greater volume
or the smaller density of the body 2 are the cause for the experimental result. Usually
it is reasoned that the body with greater volume experiences a greater lift force FA in
air than the other body. In fact this result follows from the equation FA = V · ϕG · g,
with the specific weight ϕG ·g of the gas (Archimedes’ law). But the cause is the greater
volume respectively the smaller density.

These considerations are valid for liquids too, if the liquid’s density is smaller than the
densities of both bodies. We must insert the liquid’s density in ϕG.
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46. Swimming cuboid

A cuboid swims in a liquid. The height h shall be not larger than 1
10 of the breadth

respectively the length of the cuboid. The density ϕ of the cuboid must be smaller than
the density ϕF of the liquid. Besides we assume that ϕ

ϕF
∈ (0, 0.2) ∪ (0.8, 1).

hr is the height under the liquid’s surface. First we want to determine this height. The
force of gravity in the liquid is with the basal plane A of the cuboid:

F↓ = A · h · γ

γ is the specific weight of the cuboid. With p as pressure we obtain for the buoyant
force:

F↑ = p ·A = γF · hr ·A

γF is the specific weight of the liquid. At swimming the force of gravity and the buoyant
force must be equal:

γ · h ·A = γF · hr ·A

If we take into considerations the relations γ = ϕ · g and γF = ϕF · g with the earth
acceleration g, we see finally:

hr

h
=

γ

γF
=

ϕ

ϕF
(1)

Now we view both of these cuboids 1 and 2 as in the figure:
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The cuboid 1 swims in the liquid. Then it is valid ϕ1 < ϕF .

ai, bi, hi = length, breadth, height of the i. cuboid i ∈ 1, 2
l, b = length, breadth of liquid’s bin

Assumed is here:

l, b� a1, b1 � a2, b2, h2 h1 ≤
1
10
·minimum{a1, b1}

The second cuboid is in the middle of the first cuboid. The edges of both cuboids shall
be parallel, see figure.

Here, both of the cuboids do not tip over. With the densities ϕ1 and ϕ2 of both cuboids
we can view the forces. At swimming force of gravity and buoyant force are equal:

g · (ϕ1a1b1h1 + ϕ2a2b2h2) = F↓ = F↑ = gϕFa1b1hr

We transform to:

hr =
ϕ1a1b1h1 + ϕ2a2b2h2

ϕFa1b1
=
ϕ1

ϕF
· h1 +

ϕ2a2b2
ϕFa1b1

· h2 (2)

Thus we have an expression of hr. The mass of cuboid 2 is in the counter of the second
term. Apparently the body 2 must not be a cuboid. But the body 2 must be in the
middle and the presumptions about the lengths must be true. Now we look at the
displaced volume Vs of the liquid:

Vs = a1b1hr for hr ≤ h1

Vs = (hr − h1) · a2b2 + a1b1h1 for hr ≥ h1

If we insert hr of equation (2), then we obtain:

Vs =
ϕ1a1b1h1

ϕF
+
ϕ2

ϕF
· a2b2h2 for hr ≤ h1

Vs =
((

ϕ1

ϕF
− 1

)
· h1 +

ϕ2a2b2h2

ϕFa1b1

)
· a2b2 + a1b1h1

for hr ≥ h1
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In general we have the first case. The second case occurs rarely. These formulas are only
valid, if the body 2 is a cuboid.

With Vs we can conclude to the height’s difference in the bin. Then we have:

∆r =
Vs

l · b

These considerations are valid for ϕ1

ϕF
∈ (0, 0.2) ∪ (0.8, 1). Besides ϕ2 must not be

extremly great.

c© 2001 Harald Schröer
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47. Soap Bubbles

Abstract: First we view a soap bubble with opening. Then we describe a system of two soap
bubbles. Finally we treat a connected system of n soap bubbles.

Key words: soap bubble - pressure - liquid - gas - medium - ball

1. The simple Soap Bubble

We view a soap bubble that is connected with a tap.

σ is the surface tension and r the soap bubble’s radius. re shall be the circular opening’s
radius of the tap. First we want to determine the soap bubble’s pressure p. The soap
bubble will have the shape of a spherical segment approximately. The force acting on
the soap bubble is denoted with F .

The spherical segment’s surface can be written:

A = m · πr2 0 < m ≤ 4

It is valid, if ∆r � r:
F = p ·A

We have the following work:
∆W = F ·∆r

It follows:
∆W = F ·∆r = p ·A ·∆r = p ·mπr2 ·∆r

The same work must be done for the surface’s increase:

∆W = σ ·∆A = σmπ · [(r + ∆r)2 − r2]

= σmπ(2r∆r + ∆r2)

If ∆r � r, then we get:
∆W = 2mσπr∆r

With equating we obtain:
pmπr2 ·∆r = 2mσπr ·∆r
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Then we have for the soap bubble’s pressure:

p =
2σ
r

A soap bubble consists of two boundary layers. Thus the whole pressure is:

p =
2σ
r

+
2σ

r + ∆r

If ∆r � r, we get:

p ≈ 4σ
r

This pressure formula will be used. To this derivation see Höfling [1] chapter 2.12.5,
p.286.

We want to see the movement of a deflating soap bubble, at open tap. We have for the
spherical segment’s surface:

O = 2πrh = 2πr · (r ±
√
r2 − r2e) (1)

In case of positive root’s sign it is clear that with smaller r the surface decreases. Now it
will be shown in case of negative root’s sign the surface decreases, if r increases, see the
figures at the beginning. We need the differentiation of the surface. We use the product-
and the chain rule:

O′(r) = 2π

(
r −

√
r2 − r2e + r ·

(
1− r√

r2 − r2e

))

= 2π ·
(

2r − 2r2 − r2e√
r2 − r2e

)
For re > 0 it is valid :

0 < r4e

It follows:
4r4 − 4r2r2e < 4r4 − 4r2r2e + r4e

Factor put before the brackets:

4r2 · (r2 − r2e) < 4r4 − 4r2r2e + r4e

Square root:
2r ·

√
r2 − r2e < 2r2 − r2e

This leads to:

2r <
2r2 − r2e√
r2 − r2e

Thus it is proved that O′(r) < 0. We conclude with the monotonicity theorem: The
surface decreases if r increases. It’s valid for the negative root sign.

We view the temporal deflating soap bubble. We have the following figure, see Jack-
son [2]:
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At Jackson [2] the time t(r) is calculated. A differential equation with separated variables
is solved. A spherical segment model is used. We follow that O(r(t)) decreases with t.

What happens with the surface, if r → ∞ ?

Then we have:
O(r) = 2πr(r −

√
r2 − r2e)

With the differentiation we conclude for h� a:
√
a−

√
a− h ≈ h

2
√
a

Thus for re � r:

r −
√
r2 − r2e ≈

r2e

2
√
r2

=
r2e
2r

Then we get:

O(r) ≈ 2πr · r
2
e

2r
= π · r2e

The surface reduces to the circular area of the opening.

2. A System of 2 Soap Bubbles

Now we look at two soap bubbles as in the figure with the taps A,B and C.
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First the tap C is closed. Both soap bubbles are generated. The taps A and B are open.
Then A and B will be closed and the tap C will be opened, see Höfling [1] chapter 2.12.5,
p.286.

We define:

σi, pi, ri, rei, hi = surface tension, pressure, radius, opening’s radius and height of the i.
soap bubble, i=1 or 2.

Assumption:
σ1

r1
<
σ2

r2
ri > rei

Then soap bubble 2 deflates, and soap bubble 1 expands. The force to a soap bubble
can be written as:

F (h) = O(h) · p(r(h)) = 2πrh · 4σ
r

= 8πσh

Now we use the energy theorem (potential energy). Only the situation at the end is
interesting for us. Thus the kinetic energy is zero. The potential energy by gravity (
m · g ·∆h ) can be neglected because of the small liquid’s and gas mass. We get:

WR + 8πσ1 ·
h3∫

h1

h dh = 8πσ2 ·
h2∫
0

h dh

The friction work is denoted with WR. h3 is the new height of soap bubble 1. After the
integration:

WR + 4πσ1 · (h2
3 − h2

1) = 4πσ2h
2
2

We solve to h3:

h2
3 − h2

1 =
4πσ2h

2
2 −WR

4πσ1

At last:

h3 =

√
σ2h2

2

σ1
− WR

4πσ1
+ h2

1

We get the radius with equation (1):

hi = ri ±
√
r2i − r2ei

Squared:
(hi − ri)2 = r2i − r2ei
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It follows:
−2hiri + h2

i = −r2ei
Finally we get:

ri =
h2

i + r2ei
2hi

=
hi

2
+
r2ei
2hi

In this model the viscosity belongs to WR. A special case is σ1 = σ2 = σ.

3. A system with n Soap Bubbles

The variables are analogous for i ∈ 1,...,n+ 1. Now we view a system like in the figure:

First the taps B1,...,Bn are closed. The taps A1,...,An are open. n soap bubbles are
generated. Then A1,...,An will be closed and the taps B1,...,Bn will be opened.

Assumption:
σ1

r1
<
σi

ri
for i ∈ 2, ..., n

Then soap bubble 1 expands and the other soap bubbles deflate. We generalize the
calculation. We search the new height hn+1 of soap bubble 1. We use the energy
theorem as before:

WR + 8πσ1 ·
hn+1∫
h1

h dh = 8π ·
n∑

i=2

σi ·
hi∫
0

h dh

Integration:

WR + 4πσ1 · (h2
n+1 − h2

1) = 4π ·
n∑

i=2

σih
2
i

Solving:

h2
n+1 − h2

1 =
4π ·

∑n
i=2 σih

2
i −WR

4πσ1

Finally we obtain:

hn+1 =

√√√√ 1
σ1
·

n∑
i=2

σih2
i −

WR

4πσ1
+ h2

1
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We get the radius as before from:

ri =
h2

i + r2ei
2hi

=
hi

2
+
r2ei
2hi

for i ∈ 1, ..., n+ 1

A special case is σ1 = σ2 = ... = σn = σ. We remark that n is limited because of the life
duration of soap bubbles.
We mention further literature to soap bubbles. Soap bubbles at low temperatures were
treated by Grosse [3]. The possible mathematical solutions of soap bubbles are presented
at Ferus [4]. Oscillations of soap bubbles can be found at Kornek [5].
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216



G.Mechanics

48. Ascent of a gas pocket in a liquid

Everybody has seen how air bubbles ascend in water. An interested observer remarks
that the air bubble’s diameter increases during the ascent, therefore the following ques-
tions. Why do air bubbles ascend and not descend? Why does an air bubble’s diameter
increase during ascent? How fast does an air bubble move? How long does it take till
an air bubble reaches the surface? Now, we will occupy ourselves with the motion of an
air pocket in a liquid.

We introduce the following quantities:

r = radius of the gas pocket
o = surface tension of the liquid
p = pressure
g = acceleration of gravity (earth’s acceleration)
ϕF = density of the liquid
ϕG = density of the gas
T0 = depth of the air pocket at the beginning in the liquid
h = height that the air pocket has ascended
see the figure:

6

m

SURFACE

LIQUID
T0

STARTING POINT

}
h

h is measured from bottom to top.

The pressure in a gas pocket can be written using Kuchling [4] chapter 11.1.2 p.169,170:

p =
2o
r

The gravity pressure in a liquid can be described, for example, using Kuchling [4] chapter
8.1.2 p.146:

p = g · (To − h) · ϕF

The pressures must be equal, thus:

2o
r

= g · (T0 − h) · ϕF
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It follows:
r =

2o
g · (T0 − h) · ϕF

Here, we recognize that the radius of the gas pocket decreases with the depth T0 − h.
Thus, with the ascent, the gas pocket becomes larger.

The mass m of the gas pocket must be known, then:

ϕG =
m

4
3 · πr3

We obtain, if we insert for r :

ϕG =
3mg3 · (T0 − h)3 · ϕ3

F

4π · 8o3
=

3mg3 · (T0 − h)3 · ϕ3
F

32 · πo3

Here we can answer the question: Why does a gas pocket move upwards in the liquid?
The density of the gas is in general much smaller than the density of the liquid.

We use the energy conservation law Eges = Epot + Ekin. It is:

Eges = total energy
Epot = potential energy
Ekin = mv2

2 = kinetic energy
We have the pontential energy difference Eges − Epot = m · g · h. It follows:

m · g · h =
mv2

2
or h =

v2

2g

We yield the falling acceleration b in a liquid using Budo [1] §16 p.85:

b =
(
ϕF

ϕG
− 1

)
· g

Now we can write the differential equation of the movement:

v̇ =
(
ϕF

ϕG
− 1

)
· g =

ϕF

ϕG
· g − g

The dot above v means differentiation with respect to time.

If we insert the expressions of h and ϕG, we get:

v̇ =
32 · πo3

3 ·mg2 ·
(
T0 − v2

2g

)3
· ϕ2

F

− g = F (v) (1)

and v(0) = 0 as the initial value problem. This differential equation, respectively, the
initial value problem, must now be solved.
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Separation of variables:
dv

dt
= v̇ = F (v)

Integration:(i.e. Forster [2] §11 Satz 1 p.111-113)

t∫
0

dt− c1 =
v∫

0

dv

F (v)
=

v∫
0

dv
k(

T0− v2

2g

)3 − g
=

v∫
0

(
T0 − v2

2g

)3
dv

k − g ·
(
T0 − v2

2g

)3

with k =
32 · πo3

3 ·mg2ϕ2
F

We divide the polynomials:(
T0 − v2

2g

)3

k − g ·
(
T0 − v2

2g

)3 = −1
g

+
k

g ·
(
k − g ·

(
T0 − v2

2g

)3
)

Thus, the integration yields:

v∫
0

(
T0 − v2

2g

)3
dv

k − g ·
(
T0 − v2

2g

)3 = −v
g

+
v∫

0

k dv

g ·
(
k − g ·

(
T0 − v2

2g

)3
)

We must calculate the zeros of the denominator of the last integral. If we know the
zeros, we can do an exact integration. Because of these zeros, which can be simple or
multiple, an approximation with numerical methods using the Simpson rule makes no
sense. We must factorize the denominator and than we can calculate the zeros with
respect to v. We use a special factorizing that can be found in many mathematical
collections of formulas i.e. Sieber [5] p.3.

a3 − b3 = (a− b) · (a2 + ab+ b2)

a2 + ab+ b2 = 0 is a quadratic equation with respect to a, we obtain a as:

a1,2 = ±

√
−b2 +

b2

4
− b

2
= ±i · b ·

√
3

2
− b

2
with i =

√
−1

Then we can do a further factorizing:

a2 + ab+ b2 =

(
a− i

√
3b

2
+
b

2

)
·
(
a+

i
√

3b
2

+
b

2

)

Together we get:

a3 − b3 = (a− b) ·
(
a− i

√
3b

2
+
b

2

)
·
(
a+

i
√

3b
2

+
b

2

)
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This factorizing can be used on the denominator of the integral:

k − g ·
(
T0 −

v2

2g

)3

=

(
3
√
k − 3

√
g ·
(
T0 −

v2

2g

))

·
(

3
√
k −

i
√

3 3
√
g

2
·
(
T0 −

v2

2g

)
+

3
√
g

2
·
(
T0 −

v2

2g

))

·
(

3
√
k +

i
√

3 3
√
g

2
·
(
T0 −

v2

2g

)
+

3
√
g

2
·
(
T0 −

v2

2g

))
We yield the following zeros:

vN1,2 = ±

√√√√2g ·
(
T0 − 3

√
k

g

)

vN3,4 = ±

√√√√√√k
1
3 − i

√
3g

1
3 T0

2 + g
1
3 T0

2

g−
2
3

4 − i
√

3g−
2
3

4

vN5,6 = ±

√√√√√√k
1
3 + i

√
3g

1
3 T0

2 + g
1
3 T0

2

i
√

3g−
2
3

4 + g−
2
3

4

The zeros can be simple zeros or multiple zeros.

The integral
v∫

0

k dv

g ·
(
k − g ·

(
T0 − v2

2g

)3
)

can be determined using Gröbner [3] chapter 11 Nr.14 or Nr.15 p.5,6.

At Nr.14, there is a partial fraction decomposition and then an integration - once with
pure complex and once without complex numbers.
At Nr.15, an integral is chosen. The coefficients must be determined. Here, a complex
calculation and a calculation without complex numbers is possible.

The 6 zeros vN1, . . . , vN6 can be (as a function of k, T0 and g) simple zeros or multiple
zeros. Thus, the methods of Nr.14 respectively Nr.15 are generally not favorable. It is
better to work with concrete values of g, T0, k. Then it can be decided clearly, if the
zeros are simple or multiple.

We must take into consideration the calculation of complex logarithms in Gröbner [3]
chapter 11 Nr.9a p.2.
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After calculation of the integral, the integration constant c1 must be chosen that v(t =
0) = 0.

Thus we have:

t(v) = −v
g

+
v∫

0

k dv

g ·
(
k − g ·

(
T0 − v2

2g

)3
) + c1

The function v(t) can only be approximately determined numerically.

A big problem is the calculation of h(t) respectively b(t) because of the relationships:

h(t) =
∫
v(t) dt b(t) = v̇

The function v(t) isn’t known exactly or can only be approximately determined. If we
want to calculate h(t) and b(t), as well, then we must use a numerical method, that
approximately determines v(t), b(t), and h(t) at the same time. To solve this problem,
literature on numerical mathematics must be searched for.

Here, we get the momentary depth:

T = T0 − h(t)

Thus, the motion is determined completly. The determination of the temporal motion
is, as we have seen, a complicated problem. We have treated a mathematical model with
inviscid fluid and spherical bubbles. With viscosity the situation can be different, see
Tuteja [6] or Miyagi [7].
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221



Chapter H.

Electricity

49. The minimum resistance

We view two points x, y ∈ Rn with n = 2, 3. If an electrical current flows from x to y ,
then the way of minimum resistance is chosen. We have a resistance function q(x̄) ∈ R
with x̄ ∈ Rn. One example is the lightning in the earth’s atmosphere.

s(τ) ∈ Rn shall be a connected path with s(a) = x and s(b) = y. x and y and q(x̄) are
known. Then the total resistance R can be written in the form:

R(s, x, y) =
∫

s[x,y]

q(s) ds =
b∫

a

q(s(τ)) ·
∣∣∣∣ ddτ s(τ)

∣∣∣∣ dτ
It is a line integral of first kind, see Bronstein [2] chapter 3.1.8.2 p.319 and Bartsch [1]
chapter 10.8 p.421.

Now we search the path s with minimum R. We define:

F (s, s′, τ) := q(s(τ)) ·
∣∣∣∣ ddτ s(τ)

∣∣∣∣
We use the Euler differential equations of variational calculus see Forster [3] §9 p.92:

d

dτ

∂F

∂s′i
(s, s′, τ)− ∂F

∂si
(s, s′, τ) = 0 (1)
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for i = 1, . . . , n, thus n equations n = 2, 3
and s(a) = x s(b) = y
It is an usual differential equation system of second order with 2 initial values.

We assume that s and F are twice continuous differentiable.
Now we insert F in the differential equation system: grad := gradient

d

dτ

[
grads′ |s′| · q(s)

]
− (gradsq(s)) · |s′| = 0

It is:
d

dτ
q(s) = 〈gradsq(s), s

′〉

with 〈 , 〉 = scalar product in Rn

with the chain rule in Forster [3] §6 p.50. Now we apply the product rule to the system:

d

dτ
[grads′ |s′|] · q(s) + grads′ |s′| · 〈gradsq(s), s

′〉 − (gradsq(s)) · |s′| = 0

Now we consider:

grads′ |s′| =
s′

|s′|
according to Forster [3] (5.4) S.37

With the product rule we obtain:

d

dτ

s′

|s′|
=

s′′

|s′|
− 1

2
· s′

|s′|3
· d
dτ

(|s′|2)

with:
d

dτ
(|s′|2) = 2 · 〈s′, s′′〉

For the system we get:[
s′′

|s′|
− s′

|s′|3
· 〈s′, s′′〉

]
· q(s) +

s′

|s′|
· 〈gradsq(s), s

′〉 − (gradsq(s)) · |s′| = 0 (2)

The solving of s′′ is possible. With that we have an explicit differential equation system
of second order. We can change this system in 2n differential equations of first order,
for example according to Forster [3] §10 p.99. Also this system is explicit. An exact
solution of this system of first order is perhaps only possible with series development for
example according to Kamke [4] part A §2 (6.3) p.38.

In dependence from the form of q(s) also other methods can be used.

From the system (2) and the initial conditions we can get one solution or several solutions
or even a family of solutions. In extreme cases there can be no solutions. In the case of
several solutions we look for the solution with the smallest R(s, x, y). In the case of a
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family of solution R(s, x, y) must be minimized. If there are no constraints at the family
of parameters, the minimizing is done with the gradient setting equal to zero and the
hessian matrix. If there are only equality constraints, the method with the Lagrange
multipliers can be used. Are there inequalities at these constraints, we must use methods
of non linear optimization.
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Optics
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50. Conic section mirrors

1. Conic section mirrors in general

Here we want to search for the reason why at all conic section mirrors the imaging
equations

1
f

=
1
g

+
1
b̄

G

B
=
g

b̄

are valid. It is:

f = focal length of the mirror
g = object distance
b̄ = image distance
G = object size
B = image size

See the following figure:

We know that at spherical mirrors these imaging equations are valid. Now we look at
the ellipse:
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a, b = major and minor semiaxis

We can write the canonical equation:

x2

a2
+
y2

b2
= 1

It follows:

y = b ·

√
1− x2

a2
=
b

a
·
√
a2 − x2

We derive:
dy

dx
=
b

a
· −x
±
√
a2 − x2

In the case a� x we obtain:
dy

dx
≈ ± b

a2
· x

Here it is interesting that the differentiation is proportional to x. This is valid for the
special case circle (a = b = r), too.

Now we deal with the hyperbola:

a, b = semiaxes of the hyperbola

Here we have the canonical equation:

y2

a2
− x2

b2
= 1

We get:

y = a ·

√
1 +

x2

b2
=
a

b
·
√
b2 + x2

We derive:
dy

dx
=
a

b
· x√

b2 + x2

227



Optics

In the case b� x we follow:
dy

dx
≈ a

b2
· x

The differentiation is proportional to x.

At last we view the parabola:

-

6

x

y.
..............
........

...............
......

...............
.....

...............
...
...............
..
............... .............. ............ ........... ......... ........ ....... ....... ...... ...... ....... ....... ........

.........
..........
............
.............
...............
................
..................

...................

.....................

......................

The equation of the parabola is y = mx2 with m ∈ R. Thus we get:

dy

dx
= 2mx

Here the differentiation is proportional to x, too.

At all conic sections the differentiation are proportional to x in small sections. That
means that the imaging equations are valid in the case G,B � a, b, r. Thus these
imaging equations are valid for spherical mirrors, parabolic mirrors and mirrors with the
form of revolution ellipsoids respectively revolution hyperboloids.

2. The deviation from focal ray

We view a spherical concave mirror with the radius r as in the following figure:

228



Optics

F = FOCAL POINT

X = PP ′

From the optics it is known that a axial parallel ray after the reflection goes approxi-
mately through the focal point. The problem is to determine this very small deviation.
This distance to the focal point shall be expressed with the angle α. Because of the
reflection law and the equality of alternate angles we have a isosceles triangle. Then we
can write:

x =
r

2 · cosα
The searched deviation is then:

D = x− r

2
=

r

2 · cosα
− r

2

or:
D =

r

2
·
(

1
cosα

− 1
)

D is the distance between the focal point and the intersection point of the ray at the
optic axis.

The maximum x can be equal to r. If we insert in the first equation, then we obtain:

r =
r

2 · cosαmax

It follows:
1
2

= cosαmax αmax = 60◦
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3. Proof that at the parabolic mirror axial parallel rays are reflected into
the focal point.

We view the following figure:

We prove that axial parallel rays after the reflection go through the focal point F . With
the reflection law we can conclude β = α. Thus we get the following equation:

tan 2α =
x

y − p
2

We use the vertex equation x2 = 2py. We insert this equation in the equation before at
y:

tan 2α =
x

x2

2p −
p
2

=
2px

x2 − p2

With the vertex equation follows y = x2

2p and dy
dx = x

p .

With the figure (pitch angle) we recognize tanα = p
x . Now we use the addition theorem

of tangent:

tan 2α =
2 · tanα

1− tan2 α

Insertion:

tan 2α =
2 · p

x

1− p2

x2

=
2px

x2 − p2

Both representations for tan 2α are equal. Thus at the parabolic mirror the axial parallel
rays go after the reflection through the focal point F .

c© 2001 Harald Schröer
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51. Refraction at a glass ball, refraction of rays at a
plane-parallel plate and the visual shift through a liquid

1. Refraction at a glass ball

Here we view the path of rays through glass balls. The environment shall be vacuum.
We look at the figure:

r = radius of the glass ball
α = angle of entry
n = refractive index of the glass ball

With the figure we recognize:

d = 2r · cosβ = 2r ·
√

1− sin2 β

We can write the refraction law in the form:

sinα
n

= sinβ

We insert the refraction law:

d = 2r ·

√
1− sin2 α

n2

or:
d =

2r
n
·
√
n2 − sin2 α n > 1 ≥ sinα

In the figure we see γ
2 + β = 90◦ with both right-angled triangles. With the refraction

law we obtain:
n =

sinα
sinβ

=
sinα

sin
(
90◦ − γ

2

)
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or:
cos

γ

2
=

sinα
n

For the transmission time of the ray through the glass ball we get:

t =
d · n
c

If we replace the vacuum with a gas, we must insert nGlas
nGas

instead of n. These both
refractive indices must be relative to the vacuum.

These equations can be used for liquids drops, too. But these drops must have the form
of a ball.

2. Refraction of rays at a plane-parallel plate

We look at the path of the ray through a glass plate as it is shown in the figure. Outside
the glass plate shall be vacuum.

n = refractive index of the plate
d = thickness of the plate
α = angle of entry
β = refraction angle

Then the refraction law is valid:
sinα
sinβ

= n

We search the parallel shift sr of the ray. With the figure we conclude:

s = d · (tanα− tanβ)

or:
s = d ·

(
tanα− sinβ

cosβ

)
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To the searched quantity sr there is the following relation:

sr = s · cosα

If we use sinα = cosα · tanα and sin2 β + cos2 β = 1, then we obtain:

sr = d ·

sinα− cosα sinβ√
1− sin2 β


Now we insert the refraction law at sinβ:

sr = d ·

sinα−
cosα · sin α

n√
1− sin2 α

n2


At last we get:

sr = d · sinα ·
(

1− cosα√
n2 − sin2 α

)
The refractive index is always larger than 1. With that it follows n > sinα. We can
determine the transmission length sl with:

sl =
d

cosβ
=

d√
1− sin2 α

n2

We calculate for the transmission time:

t =
sl · n
c

If we replace the vacuum through a gas with the refractive index nG, we insert the
quotient nP

nG
instead of n. Here nP is the refractive index of the plate relative to the

vacuum.

3. Visual shift through a liquid

We view the following figure:
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A receptacle contains a liquid with the height h. On the floor, there is a small pearl P .
If we look at the angle α on the liquid’s surface, then the pearl is visually shifted from
P to P ′. We have the law of refraction:

sinα
sinβ

= n or sinβ =
sinα
n

n = refractive index of the liquid
x = visual shift

With the figure for the visual shift we can conclude:

x = h · (tanα− tanβ)

With
tanβ =

sinβ
cosβ

=
sinβ√

1− sin2 β
because of sin2 β + cos2 β = 1

we obtain:
tanβ =

sinα

n ·
√

n2−sin2 α
n2

=
sinα√

n2 − sin2 α

With tanα = sin α√
1−sin2 α

we get the following expression of the visual shift:

x = h · sinα ·
(

1√
1− sin2 α

− 1√
n2 − sin2 α

)
(1)

We can generalize this problem. The vacuum can be replaced with any gas. If nG is
the refractive index of the gas and nF the refractive index of the liquid, then the law of
refraction can be written as:

sinα
sinβ

=
nF

nG

We must insert nF
nG

instead of n in equation (1).

c© 2002 Harald Schröer
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52. Similar figures of triangle in the eye

We want to ascertain which conditions are necessary for similar figures of triangle in the
eye. We look at the following figure:

We view two triangles with the vectors ~p11, ~p12, ~p13 ∈ R3 and
~p21, ~p22, ~p23 ∈ R3. Centre of stretching shall be the circumcentre ~pr of both triangles.
Then we have:

r1 = circumradius of the first triangle
r2 = circumradius of the second triangle

To determine ~pr we use the following 3 equations:

(~pr − ~p11)2 = (~pr − ~p12)2 = (~pr − ~p13)2 = r21

With these 3 equations ~pr is calculated. We introduce the ratio of stretching ā = r2
r1

.
Now we occupy with the points ~p21, ~p22, ~p23 of the second triangle:

(~pr − ~p1k) · ā = ~pr − ~p2k k ∈ 1, 2, 3

With this collinearity condition we have 9 equations to three vectors of the second
triangle. Now we represent the side vectors of both triangles:

~u11 = ~p11 − ~p12 ~u21 = ~p21 − ~p22

~u12 = ~p12 − ~p13 ~u22 = ~p22 − ~p23

~u13 = ~p13 − ~p11 ~u23 = ~p23 − ~p21

Now we give the position ~p ∈ R3 of the view point (eye). We look at the following figure:

235



Optics

For ~rE we use a formula that is derived in the appendix.

~rEik = ~pik +
~uik · (~p− ~pik)

|~uik|2
· ~uik − ~p (1)

| · | = euclidean value of a vector in R3

Now we define the object distance and the object size:

|~rEik| =: gik (object distance)

|~uik| =: Gik (object size)

In the eye the image distance b is given. The eye lens can change its focal length f . We
obtain the focal length using:

1
f

=
1
gik

+
1
b

Imaging equation:

Bik =
Gik · b
gik

(2)

Only in the case
B21

B11
=
B22

B12
=
B23

B13

we have a similar figure in the eye. This is not always so.
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In general we get a case as in this figure. Because of the equations

B1 =
G1 · b
g

B2 =
G2 · b
g

and
B = B1 +B2 = (G1 +G2) ·

b

g
=
G · b
g

we can insert G directly in equation (2).

Appendix:

Here we want to prove the formula (1). The problem is to determine the minimum
distance between the point ~p and a straight line.

The straight line has the form:

~v = ~b+ λ · ~a λ ∈ R ~b,~a ∈ R3

Distance vector:
~r = ~v − ~p = ~b+ λ · ~a− ~p

To absolute value of the distance we obtain:

r =
√

(~b+ λ · ~a− ~p)2

We differentiate r with the chain rule in λ:

dr

dλ
=

(~b+ λ · ~a− ~p) · ~a√
(~b+ λ · ~a− ~p)2

The necessary condition of a local minimum:

dr

dλ
= 0

Thus it follows:
(~b+ λmin · ~a− ~p) · ~a = 0

We transform to λmin:
λmin · ~a2 = ~a · ~p− ~a ·~b
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Thus we get the unique result:

λmin =
~a · (~p−~b)

~a2
(3)

We see the following figure:

It is clear that a minimum distance exists. λmin is unique, determined with equation (3).
Thus at λmin is a minimum distance. Now we calculate the minimum distance itself:

~rE = ~b+ λmin · ~a− ~p

Insertion of equation (3) at λmin:

~rE = ~b+
~a · (~p−~b)

~a2
· ~a− ~p (4)

Now it is shown that ~rE is perpendicular to ~a:

~rE · ~a = ~a ·~b+
~a · (~p−~b)

~a2
· ~a2 − ~a · ~p

= ~a ·~b+ ~a · ~p− ~a ·~b− ~a · ~p = 0

Thus ~rE is perpendicular to ~a. With the figure we can see that a minimum distance
exists. This minimum distance can be calculated with formula (4). Formula (1) is an
application of formula (4).

c© 2001 Harald Schröer
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53. The luminous flux through the inclined rectangle in
medium

Abstract: We calculate the luminous flux through a rectangle in a medium with constant
absorption coefficient. The first aim is to get a integral representation. This integral is reduced
to an integral over an intervall. To physical radiation dimensions analogous equations are valid
as to photometric radiation dimensions.

Key words: Optical engineering - geometrical optics - photometry - radiation - radiometry

1. Introduction

We view a light source Q with the luminous intensity I and a inclined rectangle with
the sides a und b in medium (gas). Density and absorption coefficient m are constant.
The gas shall be pure air. The absorption is treated in [2]. The integration is similar
to the inclined circle in [5]. With the transformation formula [3] we get integrals over
the unit square. This two-dimensional integral can be reduced to an integral over an
intervall (see [4]). Then we can use Simpson’s rule. The deviation is proportional to n−4

see [1]. n is the number of steps.

2. Calculation

We view the following figure:

q

q

�p
�p

Q

a

bMr

r1

r2

Fig.1. Light source Q with inclined rectangle, the distance r and the shifts
r1 and r2. r is the distance to the rectangle’s geometrical midpoint M.

We construct the distance vector (r, r2 + x1, r1 + x2) with x2 ∈ [− b
2 ,

b
2 ] and

x1 ∈ [−a
2 ,

a
2 ]. We obtain the illumination:

E(x1, x2) =
I · exp (−ml(x1, x2))

(l(x1, x2))2
(1)
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with
l(x1, x2) =

√
(r1 + x2)2 + (r2 + x1)2 + r2.

The angle of inclination β at the point (x1, x2) can be written:

cosβ(x1, x2) =
r

l(x1, x2)
. (2)

We define a function:

f(x1, x2) := E(x1, x2) · cosβ(x1, x2) .

We conclude for the luminous flux Φ through the rectangle:

Φ =

b
2∫

− b
2

a
2∫

−a
2

f(x1, x2) dx1dx2 . (3)

In special case r1 = 0 and r2 = 0 it is valid:

Φ = 4 ·

b
2∫

0

a
2∫

0

f(x1, x2) dx1dx2 (4)

Now we use the transformation formula to equation (3):

Φ =
1∫

0

1∫
0

g(x1, x2) dx1dx2

with the function
~A(x1, x2) = (bx1 −

b

2
, ax2 −

a

2
)

and
g(x1, x2) = ab · f(bx1 −

b

2
, ax2 −

a

2
).

It is valid:
1∫

0

1∫
0

g(x1, x2) dx1dx2 = lim
N→∞

1∫
0

g(x1, 〈Nx1〉) dx1

〈Nx1〉 is the fractional part of N · x1, and N is a natural number. Then we obtain:

Φ = lim
N→∞

1∫
0

g(x1, 〈Nx1〉) dx1.

The table shows the evaluation.
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Table 1. Luminous flux for a=2m,b=1.5m,I=1cd,r1=0.5m and
m= 0.00003 m−1 in dependence from r. Let be r2=0.

r[m] Φ[Lumen]
1 1.78

1.2 1.42
1.4 1.14
1.6 0.930
1.8 0.769

2 0.644
2.2 0.545
2.4 0.467
2.6 0.404
2.8 0.353

3 0.311
3.2 0.275
3.4 0.246
3.6 0.220
3.8 0.199

4 0.180
4.2 0.164
4.4 0.150
4.6 0.137
4.8 0.127

5 0.117

For x1, x2, a and b� r we have the approximation formula:

Φ ≈
Iab · exp (−m ·

√
r2 + r21 + r22) · cosα

r2 + r21 + r22

with the angle of inclination α. It is valid:

tanα =

√
r21 + r22

r
.

3. Conclusions

We got the luminous flux through the inclined rectangle with an one-dimensional inte-
gral. For r � a, b the deviation between exact evaluation and approximation is small.
The deviation becomes greater if not r � a, b. We get more accuracy if N = 10k and k
is a natural number. k is chosen that for every step of Simpson’s rule 〈Nx1〉 = 0. Then
the calculated values are independent from N .
These equations are valid for the analogous physical dimensions radiant intensity, irra-
diance and radiant flux or radiant power.
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54. Rectangle as radiator — the illumination (irradiance) in
vacuum

The rectangle is in the origin. a and b are the sides. We determine the illumina-
tion(irradiance). The method is similar to Schröer [2] (chapter 7). We view the following
rectangle:

�
�
�
�
�
�
�
�
�
�
��>

-

6

�
�

�
�

�
�

�
�

�
�

�
�

b

a

z

y

x

r (x,y,z)

We introduce the luminous intensity(radiant intensity) I. The luminous intensity den-
sity(radiant intensity density) is:

w =
I

ab

We define x1 ∈ [−a
2 ,

a
2 ] and x2 ∈ [−b

2 ,
b
2 ].

We have the distance:

l(x1, x2) :=
√
x2 + (y − x1)2 + (z − x2)2

We assume x > 0.

Then we can construct the illumination(irradiance) in vacuum:

~E(x, y, z) =

b
2∫

−b
2

a
2∫

−a
2

I

ab
·

 x
y
z

−
 0
x1

x2


∣∣∣∣∣∣∣
 x
y
z

−
 0
x1

x2


∣∣∣∣∣∣∣
3 dx1dx2 (1)

Now we construct an approximation for a, b� x:

~E ≈ w · ab
(x2 + y2 + z2)1.5

·

 x
y
z
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~E ≈ I

(x2 + y2 + z2)1.5
·

 x
y
z


⇒ | ~E| ≈ I

r2
for

√
x2 + y2 + z2 =: r � a, b

We view the special case y = z = 0:

Because of symmetry it follows:

~E(x, y, z) = (E1(x, y, z), 0, 0)

E1(x, y, z) =
Ix

ab
·

b
2∫

−b
2

a
2∫

−a
2

dx1dx2

(x2 + x2
1 + x2

2)1.5

For the integration see Bronstein [1] p.47 number 206 with c := x2 + x2
2:

a
2∫

−a
2

dx1

(x2
1 + c)1.5

=

 x1

c ·
√
x2

1 + c

x1=a
2

x1=−a
2

=
a

c ·
√

a2

4 + c

We get:

E1(x, 0, 0) =
Ix

b
·

b
2∫

−b
2

dx2

(x2 + x2
2) ·

√
a2

4 + x2 + x2
2

We obtain with “Mathematica”:

=
2I
ba
·

arctan

 a
2 · x2

x ·
√

a2

4 + x2 + x2
2

x2= b
2

x2=−b
2

We conclude because of − arctan(−s) = arctan s:

E1(x, 0, 0) =
4I
ba
· arctan

 ab

4x ·
√

a2+b2

4 + x2


For x� a, b we have the approximation:

E1(x, 0, 0) ≈ I

x2

In the case y, z 6= 0 with Bronstein [1] number 242,p.49 and number 250,p.50 ~E(x, y, z) =
(E1, E2, E3) can be reduced to one-dimensional integrals. These integrals can be treated
with numerical methods.

E1(x, y, z) =
I

ab
·

b
2∫

−b
2

a
2∫

−a
2

x dx1dx2

(l(x1, x2))3
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with l(x1, x2) =
√
x2

1 − 2yx1 + x2 + y2 + (z − x2)2

=
I

ab
·

b
2∫

−b
2

[
2 · (2x1 − 2y) · x

∆ · l(x1, x2)

]x1=a
2

x1=−a
2

dx2

with ∆ := 4 · (x2 + y2 + (z − x2)2)− 4y2

E2(x, y, z) =
I

ab
·

b
2∫

−b
2

a
2∫

−a
2

(y − x1) dx1dx2

(l(x1, x2))3

=
I

ab
·

b
2∫

−b
2

H(x2) dx2

with H(x2) :=

[
2y · (2x1 − 2y)− 4yx1 − 4 · (x2 + y2 + (z − x2)2)

∆ · l(x1, x2)

]x1=a
2

x1=−a
2

E3(x, y, z) =
I

ab
·

b
2∫

−b
2

a
2∫

−a
2

(z − x2) dx1dx2

(l(x1, x2))3

=
I

ab
·

b
2∫

−b
2

[
2 · (2x1 − 2y) · (z − x2)

∆ · l(x1, x2)

]x1=a
2

x1=−a
2

dx2

The absolute value is:

E(x, y, z) =

√√√√ 3∑
i=1

(Ei(x, y, z))2

To solve these integrals we can use the Simpson’s rule.
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55. Rectangle as radiator — the illumination in medium

Abstract: We calculate the illumination of a rectangle in a medium with constant absorption
coefficient. The first aim is to get a integral representation. This integral is reduced to an integral
over an interval.

Key words: Optical engineering - geometrical optics - photometry - radiation - radiometry

1. Introduction

We view a rectangle light source with the luminous intensity I in medium (gas). a and b
are the sides. Density and absorption coefficient m are constant. We assume the medium
is in the whole room. The gas shall be pure air. The absorption is treated in [2]. The
integration is similar to the inclined circle in [5]. With the transformation formula [3]
we get integrals over the unit square. These two-dimensional integrals can be reduced
to integrals over intervals (see [4]). Then we can use Simpson’s rule. The deviation is
proportional to n−4 see [1]. n is the number of steps.

2. Calculation

We view the following figure:

-

6

a

b y

z

Fig.1. Rectange light source with the sides a and b. The geometrical
midpoint is in the origin.

We introduce the luminous intensity density:

w =
I

ab

E is the illumination. The illumination at point (x, y, z) with x > 0 can be described as

~E =

b
2∫

− b
2

a
2∫

−a
2

~f(x1, x2) dx1x2 (1)

with

~f(x1, x2) := w · exp [−m · l(x1, x2)]
[l(x1, x2)]3

·

 x
y − x1

z − x2
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and
l(x1, x2) =

√
x2 + (y − x1)2 + (z − x2)2.

Now we use the transformation formula:

~E(x, y, z) =
1∫

0

1∫
0

~g(x1, x2) dx1dx2 (2)

with the function
~A(x1, x2) = (bx1 −

b

2
, ax2 −

a

2
)

and
~g(x1, x2) = ab · ~f(bx1 −

b

2
, ax2 −

a

2
).

It is valid:
1∫

0

1∫
0

g(x1, x2) dx1dx2 = lim
N→∞

1∫
0

g(x1, 〈Nx1〉) dx1

for every continuous function g. 〈Nx1〉 is the fractional part of N ·x1 and N is a natural
number.

We introduce ~E =(E1, E2, E3) and ~g = (g1, g2, g3) and get one-dimensional integrals.
We have for i ∈ 1, 2.3:

Ei(x, y, z) = lim
N→∞

1∫
0

gi(x1, 〈Nx1〉) dx1.

The table shows the evaluation.

Table 1. illumination for a = 2m, b = 1.5m, I = 1cd and m = 0.00003 m−1 in
dependence from x. Let be y = z = 0.

x[m] E[Lux]
4 0.0561

4.2 0.0514
4.4 0.0472
4.6 0.0435
4.8 0.0402
5 0.0373

5.2 0.0347
5.4 0.0323
5.6 0.0302
5.8 0.0282

6 0.0265
6.2 0.0249
6.4 0.0234
6.6 0.0220
6.8 0.0208
7 0.0197

7.2 0.0186
7.4 0.0177
7.6 0.0168
7.8 0.0160
8 0.0152

For r >> a, b we have the approximation formula:

E =
I · exp (−mr)

r2

with r =
√
x2 + y2 + z2.
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3. Conclusions

We got the illumination of rectangle light source with an one-dimensional integral. For
r >> a, b the deviation between exact evaluation and approximation formula is small.
The deviation becomes greater if not r >> a, b. We get more accuracy if N = 10k and k
is a natural number. k is chosen that for every step of Simpson’s rule 〈Nx1〉 = 0. Then
the calculated values are independent from N .
These equation are valid for the analogous physical dimensions radiant intensity and
irradiance for visual wavelengths.
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56. Luminous flux (radiant power, radiant flux) and solid angle
through the inclined ellipse

We want to determine the luminous flux(radiant power,radiant flux) and the solid angle
Ω through the inclined ellipse. The method is similar to Schröer [3] (chapter 7 and 9).
We view the following ellipse:

a and b are the semiaxes. r is the distance. We introduce the medium’s absorption
coefficient m and luminous intensity(radiant intensity) I of the point light source Q.
The angle of inclination of the ellipse is:

tanα =

√
r21 + r22

r

M is the geometrical midpoint of the ellipse.

We use the canonical equation:

x2

a2
+
y2

b2
= 1 ⇒ y

b
=

√
1− x2

a2

h(x) := y =
b

a
·
√
a2 − x2

We define x1 ∈ [−a, a] and x2 ∈ [−h(x1), h(x1)]. We construct the distance vector:

~l = (r, x1 + r2, r1 + x2)

It follows:
l(x1, x2) =

√
r2 + (x1 + r2)2 + (r1 + x2)2

Now we turn to the illumination(irradiance):

E(x1, x2) =
I · e−m·l(x1,x2)

(l(x1, x2))2

We need the angle of inclination at (x1, x2):

cosβ(x1, x2) =
r

l(x1, x2)
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We define:
f(x1, x2) := E(x1, x2) · cosβ(x1, x2)

We construct the luminous flux(radiant power,radiant flux) through the ellipse:

Φ =
a∫

−a

h(x)∫
−h(x)

f(x1, x2) dx2dx1 (1)

We see the approximation for a, b� r:

Φ ≈ I · e−m·
√

r2+r2
1+r2

2 · πab · cosα
r2 + r21 + r22

(2)

with:

tanα =

√
r21 + r22

r

With m = 0 and without I we get the solid angle through the ellipse.

We find a program to calculate (1) at Robinson [2].

We reduce the solid angle to an one-dimensional integral:

Let be m = 0 and we calculate the interior integral of (1):

h(x1)∫
−h(x1)

dx2

(l(x1, x2))3
=
[
2 · (2x2 + 2r1)
∆ · l(x1, x2)

]x2=h(x1)

x2=−h(x1)

=: Z(x1)

with
l(x1, x2)2 = x2

2 + 2r1x2 + r21 + (x1 + r2)2 + r2

and
∆ := 4 · (r21 + (x1 + r2)2 + r2)− 4r21

For the integration see Bronstein [1] number 242 p.49.

The solid angle can be written as:

Ω = r ·
a∫

−a

Z(x1) dx1 (3)

We can use numerical methods for example the Simpson’s rule.
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57. Ellipse as radiator — the illumination (irradiance)

The ellipse is in the origin. a and b are the semiaxes. We want to determine the
illumination(irradiance). The method is similar to Schröer [3] (chapter 7). We view the
following ellipse:

-

6
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We introduce the absorption coefficient m and the luminous intensity(radiant intensity)
I. The luminous intensity density(radiant intensity density) is:

w =
I

πab

We define x1 ∈ [−a, a] and x2 ∈ [−h(x1), h(x1)].

We use the canonical equation:

x2
1

a2
+
x2

2

b2
= 1 ⇒ x2

2 = b2 ·
(

1− x2
1

a2

)

It follows:
h(x1) := x2 =

b

a
·
√
a2 − x2

1

We have the distance:

l(x1, x2) :=
√
x2 + (y − x1)2 + (z − x2)2

We assume x > 0.

Then we can construct the illumination(irradiance)in vacuum:

~E(x, y, z) =
a∫

−a

h(x1)∫
−h(x1)

I

πab
·

 x
y
z

−
 0
x1

x2


∣∣∣∣∣∣∣
 x
y
z

−
 0
x1

x2


∣∣∣∣∣∣∣
3 dx2dx1 (1)
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The illumination(irradiance) in medium can be written:

~E(x, y, z) =
I

πab
·

a∫
−a

h(x1)∫
−h(x1)

e−m·l(x1,x2)

(l(x1, x2))3
·

 x
y − x1

z − x2

 dx2dx1 (2)

Now we construct an approximation for a, b� x:

~E ≈ w · π · ab · e−m·
√

x2+y2+z2

(x2 + y2 + z2)1.5
·

 x
y
z



~E ≈ I · e−m·
√

x2+y2+z2

(x2 + y2 + z2)1.5
·

 x
y
z


⇒ | ~E| ≈ I · e−mr

r2
for

√
x2 + y2 + z2 =: r � a, b

We find a program to calculate (2) at Robinson [2].

Now we view the special case y = z = 0 in vacuum, that means m = 0.

symmetry ⇒ ~E(x, y, z) = (E1(x, y, z), 0, 0)

E1(x, y, z) =
Ix

πab
·

a∫
−a

h(x1)∫
−h(x1)

dx2dx1

(x2 + x2
1 + x2

2)1.5

For the integration see Bronstein [1] p.47 number 206:

E1(x, y, z) =
Ix

πab
·

a∫
−a

 x2

c ·
√
x2

2 + c

x2=h(x1)

x2=−h(x1)

dx1

with c := x2 + x2
1

=
2Ix
πab

·
a∫

−a

h(x1) dx1

(x2 + x2
1) ·

√
(h(x1))2 + x2 + x2

1

=
2Ix
πa2

·
a∫

−a

√
a2 − x2

1 dx1

(x2 + x2
1) ·

√
b2 ·

(
1− x2

1
a2

)
+ x2 + x2

1

The calculation leads to elliptic integrals of first and third kind.

We can use numerical methods for example the Simpson’s rule.

In the case y, z 6= 0 and m = 0 with Bronstein [1] number 242,p.49 and number 250,p.50
~E(x, y, z) can be reduced to one-dimensional integrals. These integrals can be treated
with numerical methods.

254



J. Photometry

References

[1] Bronstein, Semendjajew “Taschenbuch der Mathematik”, 22.edition Teubner Ver-
lag Leipsic 1985

[2] Robinson, de Doncker, “Algorithm 45, Automatic computation of improper in-
tegrals over a bounded or unbounded planar region”, Computing, 27 (1981) 3,
p.253-284

[3] Harald Schröer “Luminous Flux and Illumination”,english and german edition,
Wissenschaft und Technik Verlag Berlin 2001

c© 2006 Harald Schröer
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K. Theory of relativity and microphysics

58. Velocity and temperature

Abstract: In this paper the velocity is determined as function of the temperature. The classic
and the relativistic case is treated.

Key words: Velocity - temperature - kinetic energy - relativistic statistics

We use the known formula of relativistic kinetic energy:

Ekin = mc2 ·

 1√
1− v2

c2

− 1

 (1)

v is the velocity, m the mass of a particle and c is the light velocity in vacuum.

We transform this formula to v:

Ekin

mc2
+ 1 =

1√
1− v2

c2

It follows: √
1− v2

c2
=

1
Ekin
mc2

+ 1

Then we get:
v2

c2
= 1−

(
1

Ekin
mc2

+ 1

)2

Solving to v:

v = c ·

√√√√1−
(

1
Ekin
mc2

+ 1

)2

At last:

v = c ·

√
1−

(
mc2

Ekin +mc2

)2

(2)

In the classical case we simple have:

v =

√
2 · Ekin

m

In thermodynamics (see Höfling [1], part 1, chapter 3.1.6, p.336) every particle has the
average kinetic energy:

Ekin =
3
2
· kT

k is the Boltzmann constant, and T is the temperature in Kelvin.
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It follows:

v =

√
3kT
m

(3)

Both formulas are valid, if the temperature is very small compared to 108 K.

In case of high temperatures in Neugebauer [2] chapter 3.2.2 p.85 a relation Ekin(T ) can
be found with Bessel functions. If we insert the function Ekin(T ) in the equation (2),
then we get the velocity v(Ekin(T )) - as function from the temperature.

Further relativistic problems that can be found scarcely in the literature are in Schröer [3].
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[2] Gernot Neugebauer “Relativistische Thermodynamik”, Akademie-Verlag, Berlin
1980
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59. Compton effect — deflection of the electron

If electromagnetic radiation hits motionless electrons, then the wavelength of the radi-
ation increases. This scattering is called Compton effect. We introduce the following
values:

λp, λs = primary wavelength respectively secondary wavelength of the radiation
fp, fs = primary frequency respectively scondary frequency of the radiation
me = mass of the electron
c = light velocity
h = Planck’s constant
ϑ = scattering angle

In many books of physics (for example in Höfling [1] chapter 8.1.5 p.725-729) a derivation
of the wavelength’s shift is given. This formula can be written as:

∆λ := λs − λp =
h

me · c
· (1− cosϑ)

We obtain with the wavelength - frequency - relation:

∆λ =
c

fs
− c

fp
=

h

mec
· (1− cosϑ) (1)

We solve this equation to fs:

fs =
c

h
mec · (1− cosϑ) + c

fp

Extension:

fs =
mefpc

2

h · (1− cosϑ) · fp +mec2
(2)

Now we view the following figure:
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The aim is to calculate the deflection angle α of the electron. We use the impulse
conservation law:

~pe = ~pp − ~ps

The indices e,p,s represent electron, primary radiation and secondary radiation. We can
it express with the cosine law, too:

p2
e = p2

p + p2
s − 2ppps · cosϑ (3)

We use the cosine law once again:

p2
s = p2

p + p2
e − 2pppe · cosα (4)

We transform the last equation to cosα and we insert for pe the equation (3):

cosα =
p2

p + p2
e − p2

s

2pepp
=

pp − ps · cosϑ√
p2

p + p2
s − 2ppps · cosϑ

We can write the photon momentums as:

pp =
h · fp

c
ps =

h · fs

c

An insertion in the last term from the equation of cosα leads to:

cosα =
fp − fs · cosϑ√

f2
p + f2

s − 2fpfs · cosϑ
(5)

Equation (1) transformed:

1− cosϑ =

(
c
fs
− c

fp

)
·mec

h

At last:

cosϑ = 1− mec
2

h
·
(

1
fs
− 1
fp

)
(6)

Now we can insert this expression in the equation (5) for cosϑ:

cosα =
fp − fs ·

(
1− mec2

h ·
(

1
fs
− 1

fp

))
√
f2

p + f2
s − 2fpfs ·

(
1− mec2

h ·
(

1
fs
− 1

fp

))
Thus we have the deflection angle as function of both frequencies. Both frequencies can
be measured. We can determine with the last equation the deflection angle. We yield
the scattering angle ϑ with equation (6).
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60. Gravitational acceleration at revolution ellipsoid, ball and
general revolution solid

Abstract: The gravitational accelerations on planets, which have the form of revolution ellipsoid,
ball and general revolution solid, are calculated.

Key words: Gravitational acceleration - gravitation - ball - revolution ellipsoid - revolution
solid - planet

m1,m2 are two masses with volumina V1, V2.

m1 generates a gravitational acceleration ~g1, and m2 has a gravitational acceleration
~g2. If G is the gravitational constant and ϕ1, ϕ2 the densities of m1 and m2, then the
accelerations can be expressed as:

~g1(~r, t) =
∫

V1(t)

Gϕ1(~x, t)
|~x− ~r|2

· ~x− ~r
|~x− ~r|

d~x (1)

~g2(~r, t) =
∫

V2(t)

Gϕ2(~x, t)
|~x− ~r|2

· ~x− ~r
|~x− ~r|

d~x (2)

t is the time. We have also included the case temporal changing fields. Now we turn to
the force:

~K1,2 = force, with that m2 is picked up by m1.
~K2,1 = force, with that m1 is picked up by m2.
These forces can be presented with:

~K1,2(t) =
∫

V2(t)

~g1(~x, t) · ϕ2(~x, t) d~x (3)

~K2,1(t) =
∫

V1(t)

~g2(~x, t) · ϕ1(~x, t) d~x (4)

Besides the 3. Newton axiom must be valid:

~K1,2(t) = − ~K2,1(t) (5)
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But we must assume at the three last equations, that m1 and m2 are motionless. If these
masses move, we have in general with ~v as velocity:

~K =
d

dt
(m(t) · ~v(t)) = m(t) · ~̇v + ṁ · ~v

Then the calculation will become more complicated.

Important special cases are, if both masses are motionless and ~g1 is local constant in the
area V2 repectively ~g2 in the area V1. Then we obtain:

~K1,2 ≈ m2(t) · ~g1(~x, t) (6)
~K2,1 ≈ m1(t) · ~g2(~x, t) (7)

In our case the masses are constant. The term ṁ ·~v must not be taken in consideration.
We can insert in the equations of the gravitation theory instead off G

|~x−~r|2 another suitable
function k(~x − ~r). With that the gravitational acceleration can be modified. This can
be used in the celestial mechanics, if the masses are considered as mass points.
At last we take into consideration that at changes of gravitational fields and at not
spherical bodies gravitational waves are radiated. The gravitational waves move with
light velocity c. Then instead of t we must insert:

t′ = t− |~x− ~r|
c

With that we get ϕ1(~x, t′) and ϕ2(~x, t′) instead of ϕ1(~x, t) and ϕ2(~x, t). The densities
ϕ1 and ϕ2 remain of course functions of ~x and t.
Now we treat different special cases of revolution solids.

1. Revolution ellipsoid

We assume that the midpoint of the revolution ellipsoid is in the origin:

α = latitude
ϕ = longitude
a, b = major and minor semiaxis a ≥ b

a, b can be functions of the time t. Now we must calculate R as function of a, b and of
the latitude α. We use the following equation:

x · tanα = z (8)
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and the canonical equation:
x2

a2
+
z2

b2
= 1 (9)

For R we have the equation R2 = x2 + z2. Equating of the first both equations leads to:

b ·

√
1− x2

a2
= x · tanα

or: (
b

a

)2

· (a2 − x2) = x2 · tan2 α

Now we solve to x2:

x2 =
b2

tan2 α+ b2

a2

=
b2a2

a2 tan2 α+ b2

With R2 = x2 + z2 and z = x · tanα we obtain:

R2 = x2 · (1 + tan2 α) =
a2b2

a2 tan2 α+ b2
·
(
1 + tan2 α

)
It is valid:

1 + tan2 α =
1

cos2 α
Then we get:

R2 =
a2b2

a2 tan2 α · cos2 α+ b2 · cos2 α
At last the relation tanα · cosα = sinα leads to:

R =
ab√

a2 sin2 α+ b2 cos2 α

With r = R · cosα we get:

r =
cosα · ab√

a2 sin2 α+ b2 cos2 α

For ~X we have the expression:

~X =

 x
y
z

 = r ·

 cosϕ
sinϕ
tanα


We must insert for r the equation before.

Now we want to write b in another form. We use the linear eccentricity e and the
numerical eccentricity ε:

e2 := a2 − b2 ε2 :=
e2

a2

Now we solve:
b2 = a2 − e2 = a2 − a2ε2 = a2 · (1− ε2)
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It follows:
b = a ·

√
1− ε2 ε ≤ 1

If we write b in the form b = a · k, then k =
√

1− ε2. Then we can introduce ā ∈ [0, a]
and b̄ = ā · k ∈ [0, b].

(ā, α, ϕ) is a suitable nature coordinate system for revolution ellipsoids. Now it follows
with ā und b̄ = ā · k:

~X =

 x
y
z

 =
cosα · ā · ā · k√

ā2 sin2 α+ ā2k2 cos2 α
·

 cosϕ
sinϕ
tanα



=
cosα · ā · k√

sin2 α+ k2 cos2 α
·

 cosϕ
sinϕ
tanα

 =: ~φ1(ā, α, ϕ)

~φ1 is the relation (ā, α, ϕ) −→ (x, y, z). We define
~y1 := (ā, α, ϕ).

2. Ball

The midpoint of the ball shall be in the origin.

We can introduce spherical coordinates:
α = latitude −π

2 ≤ α ≤ π
2

ϕ = longitude −π ≤ ϕ ≤ π

The ball’s radius shall be R(t). t is the time again. Now we take r ∈ [0, R]:

~X =

 x
y
z

 = r ·

 cosα cosϕ
cosα sinϕ

sinα

 =: ~φ2(r, α, ϕ)

To the last but one vector see for example Bartsch [1], chapter 7.2.1, p.265. ~φ2 is the
relation between (r, α, ϕ) and (x, y, z).

Now we can determine at revolution ellipsoid and at ball the gravitational acceleration
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~g. ~P belongs to surface. We use the general transformation formula (see for example
Forster [2] §13 theorem 2 p.120) of the moredimensional integral calculus:

~gi(~P ) =
∫
Vi

Gϕi( ~X, t)
| ~X − ~P |2

·
~X − ~P

| ~X − ~P |
d ~X

=
∫
Ui

G · (~φi(~yi)− ~P )

|~φi(~yi)− ~P |3
· ϕi(~φi(~yi), t) · |detD~φi(~yi)| d~yi

D~φi is the Jacobi-matrix of ~φi and Vi = ~φi(Ui). i = 1 is for the revolution ellipsoid and
i = 2 for the ball. Besides ~y1 = (ā, α, ϕ) and ~y2 = (r, α, ϕ) are defined. If we denote
the function under the last integral sign with ~hi(~yi, t), we obtain with (ā, α, ϕ) ∈ U1 =
[0, a]× [−π

2 ,
π
2 ]× [0, 2π] for the revolution ellipsoid on the surface:

~g1(~P ) =
a∫

0

π
2∫

−π
2

2π∫
0

~h1(ā, α, ϕ, t) dϕdαdā with ~P := ~φ1(a, α, ϕ)

For the ball we get with (r, α, ϕ) ∈ U2 = [0, R]× [−π
2 ,

π
2 ]× [−π, π] on the surface:

~g2(~P ) =
R∫

0

π
2∫

−π
2

π∫
−π

~h2(r, α, ϕ, t) dϕdαdr with ~P := ~φ2(R,α, ϕ)

In both cases we have 3-dimensional integrals. Of course we can use the integral of the
revolution ellipsoid for the case of the ball, too. But the second integral is easier to
calculate.

3. The natural coordinate system of the general revolution solid

Now we want to introduce natural coordinates for the general revolution solid:

α = latitude
ϕ = longitude
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We represent the vector ~X with:

~X =

 x
y
z

 =

 r cosϕ
r sinϕ
h1(r)

 =

 r cosϕ
r sinϕ
r tanα

 = r ·

 cosϕ
sinϕ
tanα

 =: ~φ3(r, α, ϕ)

for z ≥ 0, α ≥ 0 and r ∈ [0, r0]

~X =

 x
y
z

 =

 r cosϕ
r sinϕ
−h2(r)

 =

 r cosϕ
r sinϕ
r tanα

 = r ·

 cosϕ
sinϕ
tanα

 =: ~φ4(r, α, ϕ)

for z ≤ 0, α ≤ 0 and r ∈ [0, r0]

r0 is the equator radius of the revolution solid. (r, α, ϕ) are the wanted natural coordi-
nates of the revolution solid. Then we can express the gravitational acceleration with
the general transformation formula (see for example Forster [2], §13, theorem 2, p.120):

~g(~P ) =
4∑

i=3

∫
Vi

Gϕi( ~X, t)
| ~X − ~P |2

·
~X − ~P

| ~X − ~P |
d ~X

=
4∑

i=3

∫
Ui

G · (~φi(~yi)− ~P )

|~φi(~yi)− ~P |3
· ϕi(~φi(~yi), t) · |detD~φi(~yi)| d~yi

It is Vi = ~φi(Ui). i = 3 is for the north part and i = 4 for the south part of the
revolution solid. Besides ~y3 = (r, α, ϕ) and ~y4 = (r, α, ϕ) are defined. If we denote
the function under the last integral sign with ~hi(~yi, t), we obtain with (r, α, ϕ) ∈ U3 =
[0, r0]× [0, π

2 ]× [0, 2π] respectively U4 = [0, r0]× [−π
2 , 0]× [0, 2π]:

~g(~P ) =
r0∫
0

π
2∫

0

2π∫
0

~h3(r, α, ϕ, t) dϕdαdr +
r0∫
0

0∫
−π

2

2π∫
0

~h4(r, α, ϕ, t) dϕdαdr

With ~P := ~φ3(r0, α, ϕ) if α ≥ 0 and ~P := ~φ4(r0, α, ϕ) if α ≤ 0.

With that we have a sum of 3-dimensional integrals.

Such gravitational accelerations are used at Schröer [3] chapter 5, to calculate the total
acceleration and the visual vertical.
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61. Motions on a rotating planet

Here we want to describe the motion of a falling body on a rotating planet.

1. In general (spherical coordinates)

The planet rotates with an arbitrary changable angular velocity ~w(t) and has a transla-
tional acceleration ~atr(t). t is the time.

~r = (x, y, z) = localized vector r = |~r|
ϕ = longitude
α = latitude

The origin shall be the geometrical midpoint of the planet. We introduce spherical
coordinates e.g. Budo [1], §3, p.13:

x = r sin(90◦ − α) cosϕ = r cosα cosϕ
y = r sin(90◦ − α) sinϕ = r cosα sinϕ

z = r cos(90◦ − α) = r sinα

Now we turn to the gravitational force. For complicated gravitational fields the form
~F (~r, α, ϕ, t) or even ~F (~r, ~̇r, ~̈r, α, α̇, α̈, ϕ, ϕ̇, ϕ̈, t) is possible. Important simple is the central
field with:

~F = −f(|~r|) · ~r
|~r|

Very often Newton’s gravitation law is valid:

~F = −G ·M ·m
|~r|2

· ~r
|~r|

G = gravitational constant
M = M(t) = mass of the planet
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m = mass of the test piece m is constant.

For the motion in a rotating system we have see Budo [1], §14, p.74, equation (16):

m~̈r = ~F −m~atr −m · (~w × (~w × ~r))−m · ( ~̇w × ~r)− 2m · (~w × ~̇r) (1)

If we insert the vector

~r = r ·

 cosα cosϕ
cosα sinϕ

sinα


into the equation (1), we obtain 3 differential equations of r, α and ϕ.

initial conditions:
~r(t0) = ~r0 ~v(t0) = ~v0

The height can be presented with r(t)−Rp, Rp is the planet’s radius.

throwing angle β:
~v = ~̇r

6 (~r,~v) = 90◦ − β β = −(6 (~r,~v)− 90◦) = 90◦ − 6 (~r,~v)

With that:
sinβ(t0) = cos(90◦ − β(t0)) =

~r0 · ~v0
|~r0| · |~v0|

General pitch angle β(t):

sinβ(t) =
~r · ~v
|~r| · |~v|

The differential equation system (1) can be witten as:

~a = ~̇r (2)
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m~̇a = ~F −m~atr −m · (~w × (~w × ~r))−m · ( ~̇w × ~r)− 2m · (~w × ~a)

We get 6 differential equation of first order with the unknowns ~a(t), ~r(t) ∈ R3. This
differential equation is not linear because of ~F . For an exact solution the only possibility
is the expansion into a series see Kamke [4], A, §2, (6.3), p.38. This is valid to all central
fields. For the general gravitational field it is possible, when the differential equation
system is explicit solvable to ~̇r and ~̈r. If the system is not explicit solvable and ~w(t) is
not temporal constant, then no exact solution can be calculated. But with numerical
methods approximate solutions can be determined.

Instead of a planet sphere we can choose a general body of rotation. Even general bodies
are possible see Schröer [5], chapter 10.

2. Motion in a local coordinate system on planet’s surface:

In this case we assume ~atr = 0. M and m are constant. Further the gravitation shall be
a central field, with that:

~F = −m · f(|~r|) · ~r
|~r|

The angular velocity has the form ~w(t) = (0, 0, w(t)).

Now we introduce the centrifugal force ~Fz in this case:

Fz = mrw2 · cosα

resultant force:
~Fr = ~F + ~Fz

To the resultant acceleration we can write:

br(r, α, w) =
Fr

m
=
√
F 2 + F 2

z − 2FFz cosα
m

=
√

(f(r))2 + r2w4 cos2 α− 2f(r)rw2 cos2 α

with r = Rp + z. We use Rp as planet’s radius and z as height. With Budo [1], §24,
p.119,120 and equation (1) we get the differential equation system:

~̈r = ~br(r, α, w) + 2 · ~̇r × ~w − ~̇w × ~r (3)
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with the vectors:

~br =

 0
0
−br

 ~r =

 x
y
z

 ~̇r =

 ẋ
ẏ
ż



~w =

 −w cosα
0

w sinα

 ~̇w =

 −ẇ cosα
0

ẇ sinα


The meaning of the coordinates:

x = north-south-direction (south positive)
y = west-east-direction (east positive)
z = height (upwards positive)

The initial conditions with the direction angle γ and throwing angle β are:

~r(t0) = ~r0 ~v(t0) = ~v0

We introduce spherical coordinates:

~v0 = |~v0| ·

 cosβ cos γ
cosβ sin γ

sinβ

 γ ∈ [0, 360◦[
β ∈ [−90◦, 90◦]

~r(t) = (x(t), y(t), z(t)) presents the solution of the differential equation system. Insertion
of the vectors leads to the following differential equation system:

ẍ = 2ẏw sinα+ yẇ sinα

ÿ = −2żw cosα− 2ẋw sinα− xẇ sinα− zẇ cosα

z̈ = 2ẏw cosα− br + yẇ cosα
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We have an inhomogeneous linear differential equation system of second order. br =
br(r, α, w) and α shall be constants.

Transformation:
ẋ = a1

ẏ = a2

ż = a3

ȧ1 = 2a2w sinα+ yẇ sinα

ȧ2 = −2a3w cosα− 2a1w sinα− xẇ sinα− zẇ cosα

ȧ3 = 2a2w cosα− br + yẇ cosα

Then we have an inhomogeneous linear differential equation system of first order. If
w is not constant, the only exact method is the expansion of series see Kamke [4], A,
§2, (6.3), p.38. The alternative is a numerical calculation. If we know a fundamental
system of the belonging linear homogeneous system, we can determine the solution of the
inhomogeneous system with variation of constant, see Forster [2], §12, p.128, theorem 4.
If w is constant, we have a system with constant coefficients. In this case the calculation
of the exact solution is possible. This is done in Greiner [3], I.2, p.8-17.
We see that there are possibilities to solve this problem.
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62. Projection of angles and trajectories of projection on
inclined surface

1. Projections of angles

Here we want to look at the projection of angles. This is a theme that is mentioned
scarcely in the mathematical literature. The reader gets an impression of how angles
can be changed with projections.

A straight line turns round about an angle δ seeing from the edge. The plane is inclined
with the angle α:

ε is the respective angle of inclination at angular displacement δ. We can look at the
following figure:

Now we calculate ε. We have:
tan ε =

h

r1

h and r1 must be replaced:

h = d · tanα r1 =
d

sin δ

Then we obtain with insertion:

tan ε = tanα · sin δ (1)
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Special case: ε = α at δ = 90◦

Now we turn to the angle γ on the inclined plane. γ is the projection of δ on the inclined
plane.

From the figure we take:
tan γ =

r3
r2

We replace r3 and r2 through:

r3 =
d

cosα
r2 =

d

tan δ

We get:

tan γ =
tan δ
cosα

(2)

Special case: γ = δ for α = 0

The extension in 0 ≤ δ ≤ 180◦:

With the figure and equation (1) is:

tan ε = tanα · sin(180◦ − δ)
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With sin(180◦ − δ) = sin δ we get again equation (1).

For the angle γ we can follow with equation (2):

tan(180◦ − γ) =
tan(180◦ − δ)

cosα

With tan(180◦ − a) = − tan a we obtain again equation (2).

With that the equations (1) and (2) are valid for δ ∈ [0, 180◦].

2. One application: Trajectories of projection on inclined surface

We can use the information from section 1 to trajectories of projections on planet with
inclined surface. Because the gravitational field is locally homogeneous the trajectories
of projections are inclined parabolas. First we introduce a coordinate system x̄ and ȳ.
ȳ is parallel with gravitational direction ~g. x̄ is perpendicular to it.

v = initial velocity
t = time
a = throwing angle

Equations of trajectory of projection:

x̄ = vt · cos a (3)

ȳ = vt · sin a− gt2

2
(4)

ȳ = x̄ · tan a− gx2

2v2 cos2 a
(5)

Duration of ascent:
t̄s =

v · sin a
g
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Height of ascent:

h̄ =
v2 · sin2 a

2g
Through differentiation to the time we get the components of velocity:

dx̄

dt
= v̄x̄ = v · cos a

dȳ

dt
= v̄ȳ = v · sin a− gt

Then we can calculate the orbit velocity vB =
√
v̄2
x̄ + v̄2

ȳ . With sin2 a + cos2 a = 1 we
obtain:

vB =

√
v2 − 2g ·

(
vt · sin a− gt2

2

)
Because the plane is inclined the throwing range and the throwing time must be deter-
mined with another method. α is again the inclination angle of the plane. Because of
equation (1) it is valid:

− tan ε = tan(−ε) = tanα · sin(δ − 90◦) = − tanα · cos δ

With that we have tan ε = tanα · cos δ.

N = NORTH
O = EAST
S = SOUTH
W = WEST

To determine the throwing time tw:

sin a · v · tw −
gt2w
2

= tan ε · cos a · v · tw

We can divide through tw.

sin a · v − gtw
2

= tan ε · cos a · v

Solving to tw:

tw = 2 · sin a · v − tan ε · cos a · v
g

If we insert the throwing time in the equation (3), we get the throwing range w̄:

w̄ = cos a · v · tw
We can present ȳ to time tw with:

ȳw = sin a · v · tw −
gt2w
2

To get the real x and y we must turn the throwing parabola to the angle ε. y is
perpendicular and x is parallel to the surface.
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From these figures we can determine the equation:

y = cos ε · (ȳ − x̄ · tan ε) (6)

y = cos ε ·
(

sin a · vt− gt2

2
− tan ε cos a · vt

)
(7)

With differentiation:

dy

dt
= vy = cos ε · (sin a · v − gt− tan ε cos a · v)

With the last figures we also conclude:

x =
x̄

cos ε
+ y · tan ε (8)

278



L. Astronomy

It is vx = dx
dt . We get the orbit velocity with vB =

√
v2
x + v2

y . The real throwing angle is
equal to a− ε. With calculating the maximum of y (equation (7)) with the differential
calculus we can determine the duration of ascent and height of ascent relative to the
coordinates x and y. The throwing range relative to x we get through insertion of tw
for t in equation (8). We still have not talk about the absolute value of the angle α
on a planet. The inclination angle α is calculated in Schröer [1] at constant and non
constant rotation time (angular velocity). On earth at 50 degree north or south latitude
is α about one hundredth degree.
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279



L. Astronomy

63. Frequency shift of the radiation in gravitational field

The radiation’s frequency changes on the way through the gravitational field. First we
look at a planet:
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sM
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︷ ︸︸ ︷

r1

r2

The work between the distances r1 and r2 in gravitational field of a planet with mass
M is:

W =
r2∫

r1

g(r) ·m(r) dr

With:

g(r) = gravitational acceleration in distance r
m(r) = mass of a photon in distance r

For the energy of a photon it is valid W = h · f , with photon’s frequency f(r) and
Planck’s quantum h. Because of the frequency’s variation in gravitational field with the
distance, the frequency is a function of r. We get the photon’s mass with the equation
m(r) · c2 = h · f(r) with c as light speed e.g. Hammer [2] chapter 8.2.2.2 p.189. Thus
we obtain:

m(r) =
h · f(r)
c2

The frequency’s shift is expressed with the following equation:

h · (f(r2)− f(r1)) = −
r2∫

r1

g(r) ·m(r) dr (1)

With differentiation with respect to r follows the differential equation:

h · f ′(r) = −g(r) ·m(r)

with initial value f1 = f(r1) that is given. If we insert the photon’s mass, we get:

f ′(r) = −g(r)
c2

· f(r) (2)

Thus we have an initial value problem with a homogeneous linear differential equation
of first order. For the solution we can write e.g. Forster [1] §11 theorem 2 p.114:

f(r) = f(r1) · exp

− 1
c2
·

r∫
r1

g(r̄) dr̄
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In general it is g(r) = GM
r2 because of Newton’s law of gravitation. G is the gravitational

constant. Thus we obtain:

f(r) = f(r1) · exp

− 1
c2

r∫
r1

GM

r̄2
dr̄


= f(r1) · exp

(
GM

c2
·
(

1
r
− 1
r1

))
Then we have:

f(r) ≤ f(r1) if r ≥ r1
f(r) ≥ f(r1) if r ≤ r1

The first case means energy loss for the radiation respectively smaller frequency. In the
second case the radiation get more energy therefore the frequency increases.

Now we want to derive an approximation in the Newton case. We assume that the
frequency shift ∆f is very small compared to the frequency f(r1). Then the photon’s
mass m = hf(r1)

c2
is approximate constant. Now the work in gravitational field can be

written as:
∆W ≈ GMm ·

(
1
r1
− 1
r2

)
Besides we have ∆W = h ·∆f , then we find:

∆f ≈ GMf(r1)
c2

·
(

1
r1
− 1
r2

)
Then it is f(r2) = f(r1)−∆f .

Now we have gravitational fields of n planets with masses M1, . . . ,Mn.

����M1

����M2 kM3

mM4

mM5

kM6

fM7

First we assume that the frequency shift is very small. Then the photon’s mass is
constant again. The masses M1, . . . ,Mn are on positions ~x1, . . . , ~xn ∈ R3. Then in
Newton’s case a photon that moves from ~r1 to ~r2 ∈ R3 wins or loses the energy:

∆W ≈ Gm ·
n∑

i=1

Mi ·
(

1
|~r1 − ~xi|

− 1
|~r2 − ~xi|

)
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|·| is the absolute value of a vector. With ∆W = h·∆f and the photon’s massm ≈ h·f(~r1)
c2

we get:

∆f ≈ Gf(~r1)
c2

·
n∑

i=1

Mi ·
(

1
|~r1 − ~xi|

− 1
|~r2 − ~xi|

)
Now we view the case with large frequency shift. Then the photon’s mass is not constant.
For this case we have the following integral equation:

h · (f(~r2)− f(~r1)) = −
n∑

i=1

~r2∫
~r1

~gi(~r − ~xi) ·m(~r) d~r

= −
t2∫

t1

n∑
i=1

~gi(~r − ~xi) ·m(~r) · ~̇r dt

~r is a function of t. Besides we have ~r1 = ~r(t1) and ~r2 = ~r(t2) and the gravitational
accelerations ~g1, ...,~gn of the masses M1, ... , Mn. This is a line integral of second kind.
Differentiation with respect to t leads to the differential equation:

−
n∑

i=1

~gi(~r − ~xi) ·m(~r) · ~̇r = h · grad(f(~r)) · ~̇r

If we insert m(~r) = h·f(~r)
c2

, we obtain the partial differential equation:

0 = grad(f(~r)) · ~̇r +
f(~r)
c2

·
n∑

i=1

~gi(~r − ~xi) · ~̇r (3)

We have a linear partial differential equation. It is not easy to solve this equation. We
won’t solve it here. For the solution see Kamke [3] D. §1 chapter 3.10, 5.8, 6.9. These
chapters are surveys of solutions of partial differential equations.
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64. The local sector of ellipse

If we view a trajectory of projection on the earth’s surface in homogeneous field, then
we can find out that these trajectories of projection are parabolas.
In fact in the motion of celestial bodies there are other orbits, too, for example the ellipse.
A ball that is thrown with a small initial velocity describes a parabola in homogeneneous
field that means with constant gravitational acceleration. If we would do this experiment
in a height of 1000 km, then the ball describes until the arrival on the earth’s surface a
sector of an ellipse.

Now it’s obvious to suppose that a very small sector of an ellipse is similar to a parabola.
We will occupy with this theme.

F = FOCAL POINT

a,b = SEMIAXES

We view an ellipse and a circle with the radius R. R can be the earth’s radius or a
planet’s radius. We consider the difference h = r −R with the conic section equation:

h(ϕ) = r −R =
p

1 + e cosϕ
−R

ϕ = angle in circular measure (true anomaly)
e = numerical eccentricity
p = parameter

See for example Voigt [1] chapter II.2.2 a p.33. The derivation is with the reciprocal rule(
1
f

)′
= − f ′

f2 :

h′(ϕ) =
pe sinϕ

(1 + e cosϕ)2

At ϕ� 1 we obtain as approximation:

h′(ϕ) ≈ pe · ϕ
(1 + e)2

This is valid because of sinϕ ≈ ϕ and cosϕ ≈ 1 for ϕ � 1. Now we integrate this
approximation:

h(ϕ) ≈ pe

(1 + e)2
·
∫
ϕdϕ =

peϕ2

2 · (1 + e)2
+ c
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c = integration constant

Thus it is h(ϕ) ≈ kϕ2 + c. This is a parabola equation. We recognize that a small sector
of an ellipse is similar to a parabola. This is the mathematical reason why a trajectory of
an ellipse in a very small sector (homogeneous field h� R) converges against a parabola.
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65. The motion in gravitational and electromagnetic fields

Here we give a general description of the motion of a sample.

n bodies with mass mi(t) and charge Qi(t) are moving in a coordinate system in R3

in medium. t is time. The motions ~r1(t), . . . , ~rn(t) ∈ R3 are known. The sample has
the mass m(t) and charge Q(t). We are looking for the motion ~r(t) of the sample. We
assume that the sample has a small mass and a small charge compared to the other n
bodies. Thus the pertubing influence through the sample is not important. Thus:

mi(t) � m(t) and Qi(t) � Q(t) for all i ∈ 1, . . . , n

Now we introduce different forces:

~Fg = gravitational force
~FE = electric force
~Fm = magnetic force
~Fb = retarding force of the medium

~Fbi, ~Fgi, ~FEi, ~Fmi = retarding force (of the medium for example of the atmosphere) /
gravitational force / electric force / magnetic force of the i-th body.

ϕi, ~gi, ~Ei, ~Bi = density (of the medium for example of the atmosphere) / gravitational
acceleration / electric field intensity / magnetic flux density of the i-th body.

~Fp = force that is produced by the sample itself - for example if the sample is a rocket.

~Fba, ~Fga, ~FEa, ~Fma = retarding force (of the medium - for example interstellar matter) /
gravitational force / electric force / magnetic force, that is given in R3 without influence
of the n bodies and the sample.

ϕK = density of the sample (If the density in the sample is not spatially constant, then
ϕK is the average density that can be time-dependent.)

Now we turn to the notations used:

~y:= (m,m1,. . . , mn,Q,Q1,. . . , Qn,~r,~̇r,~̈r,~r1,~̇r1,~̈r1 ,. . . ,~ri,~̇ri,~̈ri,. . . ,~rn,~̇rn,~̈rn,~Fg1,~FE1,
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~Fm1,~Fb1,~g1, ~E1, ~B1,ϕ1, . . . ,~Fgi,~FEi,~Fmi,~Fbi,~gi, ~Ei, ~Bi, ϕi, . . . , ~Fgn,~FEn, ~Fmn,
~Fbn,~gn, ~En, ~Bn,ϕn, ~Fga,~FEa,~Fma ,~Fba,~ga, ~Ea, ~Ba,ϕa,ϕK)

~yi := (m,Q,mi, Qi, ~r, ~̇r, ~̈r, ~ri, ~̇ri, ~̈ri, ~gi, ~Ei, ~Bi, ϕi)

~ya := (m,Q,~r, ~̇r, ~̈r, ~ga, ~Ea, ~Ba, ϕa)

Thus we can have recursive relations that should be avoided in practical cases of course.
Now the dependences are:

m(t, ~y) Q(t, ~y) ϕK(t, ~y)

~Fgi(t, ~yi) ~FEi(t, ~yi) ~Fmi(t, ~yi) ~Fbi(t, ~yi)

~gi(t, ~yi) ~Ei(t, ~yi) ~Bi(t, ~yi) ϕi(t, ~yi)

~Fga(t, ~ya) ~FEa(t, ~ya) ~Fma(t, ~ya) ~Fba(t, ~ya)

~ga(t, ~ya) ~Ea(t, ~ya) ~Ba(t, ~ya) ϕa(t, ~ya)

Usually we have:

~Fg = m · ~g ~FE = Q · ~E ~Fm = Q · (~̇r × ~B)

~Fb = |~Fb(|~̇r|)| ·
~̇r

|~̇r|
= Fb(|~̇r|) ·

~̇r

|~̇r|
The retarding force function Fb is often written in the following form:

Fb(|~̇r|) = −C · |~̇r|2 or Fb = −K · |~̇r|

C and K are certain constants see Budo [1] §16 p.83.

~g, ~E, ~B, ϕ = gravitational acceleration/ electric field intensity/magnetic flux density/ den-
sity of the medium

~Fg = ~Fga +
n∑

i=1

~Fgi

~FE = ~FEa +
n∑

i=1

~FEi

~Fm = ~Fma +
n∑

i=1

~Fmi

~Fb = ~Fba +
n∑

i=1

~Fbi

ϕ = ϕa +
n∑

i=1

ϕi
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We introduce the quantity a = 1− ϕ
ϕK

. Then the total force on the sample without the
force from the sample itself is according to Budo [1] §16 p.83-85:

~Fges = a · (~Fg + ~FE + ~Fm) + ~Fb

If we finally combine ~Fges with the force ~Fp from the sample itself, then we get the
differential equation of the sample’s motion:

d

dt
(m(t) · ~̇r) = ~Fges(t) + a(t) · ~Fp(t) (1)

with initial values:

~r(t0) = ~r0 or ~̇r(t0) = ~v0 or ~̈r(t0) = ~b0

velocity = ~̇r acceleration = ~̈r

We can use this equation, if |~̇r| is smaller than c
10 . c is the velocity of light in vacuum.

The relativistic force can be used, too. Perhaps we can get more accurate results with
this force than with the classical force. The relativistic force is with Sandhas [2] chapter
27 p.67:

~F =
1√

1− ~v2

c2

· d
dt

 m · ~v√
1− ~v2

c2


Thus we get:

1√
1− ~̇r

2

c2

· d
dt

 m(t) · ~̇r√
1− ~̇r

2

c2

 = ~Fges(t) + a(t) · ~Fp(t) (2)

with initial values:

~r(t0) = ~r0 or ~̇r(t0) = ~v0 or ~̈r(t0) = ~b0

At velocities that are larger than c
10 we need the general theory of relativity because of

the accelerated frames. We do not consider this case here.

The retarding force ~Fb in medium can have a very complex form at supersonic velocity
and still larger velocities. Then we must take many effects (for example supersonic bang)
of the medium into consideration.

In the case ~Fb = 0 and a = 1 the motion is in the vacuum. ~FE = 0 and ~Fm = 0 lead to
the motion in gravitational fields. In the case ~Fp = 0 the sample is without own drive.

With ~Fges + a · ~Fp = 0 follows the most general force equilibrium that is possible here.
The area of ~Fg = 0 is called Roche limit or Roche area in the astronomy. Analogously
we set ~FE and ~Fm to zero. Then we get analogous areas for the electric and for the
magnetic forces.
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66. Trajectories in the gravitational field of a planet

We consider the trajectory of a thrown body whose initial velocity is large enough to
reach the outer space. Here the homogeneous field at the surface of a planet (earth)
cannot be used any more, we need to use the gravitational field instead.

We explain the following quantities:

hs = initial height
α = angle of throw
v0 = initial velocity
h = height of throw at the time t
re = planet’s radius (earth’s radius)
me = planet’s mass (earth’s mass)
G = gravitational constant
R := re + hs

r := re + h
r,R are distances from the planet’s midpoint.

A body with the mass m that moves from R to r has to do the work:

Wpot = Gmem ·
(

1
re + hs

− 1
re + h

)
If r is smaller than R, then this work adds to its kinetic energy. The energy theorem of
the trajectory of projection can be written as follows:

mv2
0

2
= Wpot +

mv2
B

2

vB is the orbital velocity with the height h. We obtain by substituting:

v2
B = v2

0 − 2Gme ·
(

1
re + hs

− 1
re + h

)
(1)

Now we look at the following two figures:
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We can infer:
~vB = ~v0 + ~vg = ~vr + ~vs

The orbital velocity is the vector sum of the initial velocity ~v0 and the gravitational
component ~vg. Besides ~vB can be decomposed in a perpendicular velocity ~vs and a
tangential velocity ~vr. With the second figure it is 6 (~vr, ~v0) = α0 and vr = v0 · cosα0. It
follows:

v2
B = cos2 α0 · v2

0 + v2
s (2)

Now we replace α0 with an expression that depends from the angle of throw α.
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The tangent is in the direction of ~vr. ~v0 indicates the direction of the perpendicular to
d. It is valid γ + β = 90◦ and β + 90◦ + α = 180◦. Then we obtain:

γ = 90◦ − (180◦ − 90◦ − α) = α

Analogously we get γ0 = α0. With the figure we deduce:

d

re + hs
= cos γ = cosα ⇒ d = cosα · (re + hs)

and:
d

re + h
= cos γ0 = cosα0

Now we substitute for d:
cosα0 =

cosα · (re + hs)
re + h

(3)

We solve equation (2) for vs and we insert expression (3) for cosα0 to reach:

vs =

√
v2
B − v2

0 cos2 α ·
(
re + hs

re + h

)2

If we want to solve for t, then we must calculate a solution of the differential equation
vs = dh

dt . With the separation of variables (see for example Forster [3] §11 theorem 1
p.112) we can transform the equation to:

t =
∫

dh

vs(h)
− c ,

where c is an integration constant. If we substitute the expression for vs in this equation
and then the term (1) for vB, we get finally:

c+ t =
∫

dh√
v2
0 − 2Gme ·

(
1

re+hs
− 1

re+h

)
−
(
v0 cosα · re+hs

re+h

)2
(4)

Before we integrate the equation, we will determine the throwing range. We have got:

vr = v0 · cosα0 = v0 cosα · re + hs

re + h

Now it is possible to calculate the angular velocity w from the planet’s midpoint.

w =
vr

re + h

With

ϕ =
t∫

0

w dt

we obtain the angle in circular measure as seen from the planet’s midpoint. γ = 180◦

π ·ϕ
is this angle in degrees (see figure):
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ELLIPSE HYPERBOLA

re + h and ϕ are the polar coordinates of the trajectory. If we insert the expression for
w together with the term for vr in the integral for ϕ, then we obtain:

ϕ = v0 cosα · (re + hs) ·
t∫

0

dt

(re + h(t))2
(5)

There is a relation between h(t) = 0 and the throwing time tw. The presumption is that
one hmax exists. This is not always the case. If tw exists, then we obtain the throwing
range w on the planet with:

w = v0 cosα · (re + hs)2 ·
tw∫
0

dt

(re + h(t))2

At hs = 0 we get the throwing range on the surface.

Now we calculate the integral (4) for t. This integral can be written as:

t− c3 =
∫ (re + h) ·

√
re + hs dh√

v2
0 · (re + h)2 · (re + hs)− 2Gme · (h− hs) · (re + h)− v2

0 cos2 α · (re + hs)3

with an integration constant c3.

We define:
a := v2

0 · (re + hs)− 2Gme

2b := 2v2
0re · (re + hs)− 2Gme · (re − hs)

c := v2
0r

2
e · (re + hs) + 2Gmehsre − v2

0 cos2 α · (re + hs)3

it follows:

t− c3 =
∫ (re + h) ·

√
re + hs√

ah2 + 2bh+ c
dh (6)

=
∫
re ·

√
re + hs dh√

ah2 + 2bh+ c
+
∫

h ·
√
re + hs dh√

ah2 + 2bh+ c

At integration it is important to distinguish, if a > 0,a = 0 or a < 0. Now we take a
closer look at a.

a := v2
0 · (re + hs)− 2Gme > 0
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It follows:

v0 >

√
2Gme

re + hs
(hyperbola)

a = 0 ⇒ v0 =

√
2Gme

re + hs
(parabola)

a < 0 ⇒ v0 <

√
2Gme

re + hs
(ellipse)

See Budo [2] §21.2. p.106 equation (17).√
2Gme

re + hs

is the escape velocity of the planet with mass me. This velocity is also called the velocity
of recession. At hyperbola and parabola h(t) is unique. In the case of ellipse hmax exists,
to a determined h can be attached several times.

1. The hyperbola

We would use for the calculation of equation (6) an integral from Ryshik [6] edition 1
p.115 Nr.2.261 and p.117 Nr.2.264. But we prefer integrals from Gröbner [4] chapter 231
p.37 Nr.8a and 7b. We take the integral decomposition of equation (6). The integral 8a
yields: ∫

re ·
√
re + hs dh√

ah2 + 2bh+ c
=
re ·

√
re + hs√
a

· ln
(
c1 ·

(
ah+ b√

a
+
√
ah2 + 2bh+ c

))
a > 0 is true. c1 = integration constant.

Now to the integral 7b:∫
h ·
√
re + hs dh√

ah2 + 2bh+ c
=
√
re + hs

a
·
√
ah2 + 2bh+ c− b

a
·
∫ √

re + hs dh√
ah2 + 2bh+ c

The sum of both integrals yields:

t =
√
re + hs

a
·
√
ah2 + 2bh+ c+

(
re −

b

a

)
·
∫ √

re + hs dh√
ah2 + 2bh+ c

+ c3

=
√
re + hs

a
·
√
ah2 + 2bh+ c+c2 +

(
re −

b

a

)
·
√
re + hs√
a

· ln
(
c1 ·

(
ah+ b√

a
+
√
ah2 + 2bh+ c

))
c1, c2, c3 = integration constants

The choice of the integration constants c1, c2 can be done through t(hs) = 0.

Now we turn again to equation (5) of ϕ for the cases of hyperbola, parabola and ellipse:

ϕ = v0 cosα · (re + hs) ·
t∫

0

dt

(re + h(t))2
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Now we use the substitution formula:

h = f(t) f(0) = h(0) = hs f(t) = h(t) = h

With the inverse mapping theorem:

dh

dt
=

1
d
dh(f−1(h))

=
1

d
dh t(h)

d

dh
t(h) =: T (h) ⇒ dh

dt
=

1
T (h)

The integral transforms into:

ϕ = v0 cosα · (re + hs) ·
h∫

hs

T (h) dh
(re + h)2

(7)

This equation is valid for hyperbola, parabola and ellipse. With equation (6) we have:

T (h) =
(re + h) ·

√
re + hs√

ah2 + 2bh+ c

For all conic sections follow:

ϕ = v0 cosα · (re + hs)
3
2 ·

h∫
hs

dh

(re + h) ·
√
ah2 + 2bh+ c

a 6= 0 holds in the cases of hyperbola and ellipse. Then the integration can be done
with Gröbner [4] chapter 231 p.38 Nr. 10a -10d. At the parabola a = 0 holds. Here the
integration is possible with Gröbner [4] chapter 212 p.28 Nr.9a -9c.

2. The parabola

In case of the parabola the integral (6) for t simplifies because of a = 0:
c3 = integration constant

t− c3 =
∫
re ·

√
re + hs√

2bh+ c
dh+

∫
h ·
√
re + hs√

2bh+ c
dh

with Bronstein [1] chapter 1.3.3.3. p.42 Nr. 124,125:

=
√
re + hs ·

2 ·
√

2bh+ c

2b
· re +

2 · (2bh− 2c)
3 · 4b2

·
√

2bh+ c ·
√
re + hs

=
√
re + hs ·

√
2bh+ c

b
·
(
re +

bh− c

3b

)
c3 is determined through t(hs) = 0.
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3. The ellipse

In this case a < 0 holds. We integrate the equation (6) using Gröbner [4] chapter 231
p.37 Nr. 7b and 8b. b2 − ac > 0 must hold.

t√
re + hs

=
∫

re dh√
ah2 + 2bh+ c

+
∫

h dh√
ah2 + 2bh+ c

+ c3

with integral 7b:

=
(
re −

b

a

)
·
∫

dh√
ah2 + 2bh+ c

+
√
ah2 + 2bh+ c

a
+ c4

integral 8b:

=
(
re −

b

a

)
· −1√
−a

· arcsin
(

ah+ b√
b2 − ac

)
+
√
ah2 + 2bh+ c

a
+ c5

ci = integration constants.

With that, t(h) is known. c5 can be chosen using t(hs) = 0. With this we have solved
the problem completly. In Budo [2] §21.3 p.107 ff. and §45.2 S.244 ff. there is another
solution of the problem. In Kamke [5] Kap. C.9 p.627 Nr.9.26 the corresponding three
dimensional vector differential equation is solved for every central force.
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67. Rotating disk, orbits in hollow balls and swinging body in
gravitational field — a trial

We introduce the following quantities:

~wp = angular velocity of the planet
Ut = rotation time of the planet
R = radius of the planet
m1 = mass of the planet
α = latitude
G = gravitational constant
ha = height above the surface of the planet

~wp shall be constant. First we assume that |~wp| is very small. Else we must take into
consideration the Coriolis force of the planet. This will be done later. | · | is the absolute
value of a vector. We look at a coordinate system of this planet:

The gravitational acceleration can be written as:

~g( ~X) = −Gm1

| ~X|2
·
~X

| ~X|
~X =

 x
y
z


The centrifugal acceleration can be presented as:

~bz( ~X) =
√
x2 + y2 · ~w2

p ·
1√

x2 + y2
·

 x
y
0

 = ~w2
p ·

 x
y
0


It is ~wp = (0, 0, |~wp|) with wp = 2π

Ut
.

Now we explain the spherical coordinates r, α1, α of ~X:
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r = | ~X| = R+ ha

α1 = longitude
α = latitude −90◦ ≤ α ≤ 90◦

90◦−α is the polar angle. The position is determined by R, ha, α1 and α. This leads to
following spherical coordinates:

~X = r ·

 sin(90◦ − α) cosα1

sin(90◦ − α) sinα1

cos(90◦ − α)

 = r ·

 cosα cosα1

cosα sinα1

sinα

 (1)

see Forster [3], §3, (3.6), p.33 und Bronstein [1], chapter 4.2.2.2, p.564

1. Rotating disk (round-about)

Ra = radius of the disk
~wa = angular velocity of the disk

~wa shall be constant. Now we turn to the known spherical coordinates |~wa|,α2,α3 of ~wa:

α2 = longitude angle
α3 = latitude angle −90◦ ≤ α3 ≤ 90◦

Then we obtain with equation (1):

~wa := |~wa| ·

 cosα3 cosα2

cosα3 sinα2

sinα3

 (2)
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Now we view the quantities:

ra = distance of the disk’s axis ~wa, This can be at the most equal to Ra.
α3 = latitude angle (inclination angle) of the disk and of ~wa

α2 = longitude angle of ~wa

α4 = longitude angle of the disk

We consider α3 in the interval [0, 90◦]. It is valid for 0 ≤ α4 ≤ 360◦, see appendix:

sinα5 = sinα3 · sinα4

tanα6 = cosα3 · tanα4

α5 is the latitude and α6 the longitude of ~ra. Now we have with equation (1):

~ra(α3, α4, ra) = ra ·

 sin(90◦ − α5) cosα6

sin(90◦ − α5) sinα6

cos(90◦ − α5)

 = ra ·

 cosα5 cosα6

cosα5 sinα6

sinα5


It is −90◦ ≤ α5 ≤ 90◦.

~ra and ~wa can be changed with a method in Schröer [4], chapter 7 into the surface
coordinate system.

Now we calculate the centrifugal acceleration ~z1 on the disk in distance ra:

~z1 = |~ra| · ~w2
a ·

~ra
|~ra|

= ~ra · ~w2
a

The total acceleration ~bges at the place ~X + ~ra can be expressed as:

~bges( ~X + ~ra) = ~z1 + ~g( ~X + ~ra) +~bz( ~X + ~ra)

β = 6 (~bges, ~g) is the deviation angle. Here we use the scalar product:

cosβ =
~bges( ~X + ~ra) · ~g( ~X + ~ra)

|~bges( ~X + ~ra)| · |~g( ~X + ~ra)|

2. Orbit in a hollow ball

We introduce following notations:

Rk = hollow ball’s radius
γ = inclination angle of the small ball’s orbit in the big hollow ball
~wa = angular velocity of the hollow ball, this quantity is constant.
Assumption: The radius of the small ball is very small compared to Rk. We can construct
with equation (1) spherical coordinates:
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~wa = |~wa| ·

 sin(90◦ − α3) cosα2

sin(90◦ − α3) sinα2

cos(90◦ − α3)

 = |~wa| ·

 cosα3 cosα2

cosα3 sinα2

sinα3

 (3)

with:
α3 = latitude angle of ~wa −90◦ ≤ α3 ≤ 90◦

α2 = longitude angle of ~wa

The angular velocity ~wb of the small ball in the big hollow ball can also be decomposed
in spherical coordinates with equation (1):

~wb = |~wb| ·

 sin(90◦ − γ) cosα4

sin(90◦ − γ) sinα4

cos(90◦ − γ)

 = |~wb| ·

 cos γ cosα4

cos γ sinα4

sin γ


with:
γ = inclination angle of the ball’s orbit (of ~wb) −90◦ ≤ γ ≤ 90◦

α4 = longitude angle of ~wb (the ball’s orbit)
γ and α4 are valid relative the coordinate system of the planet’s midpoint.

Now we work with accelerations:

~z1 = centrifugal acceleration of the rotating big hollow ball (~wa).
~zc = Coriolis acceleration of the big hollow ball (~wa)
~z2 = centrifugal acceleration of the small ball (~wb)

There are no further accelerations because ~wa is constant.
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Spherical coordinates of ~ra with equation (1):

~ra = Rk ·

 sin(90◦ − α5) cosα6

sin(90◦ − α5) sinα6

cos(90◦ − α5)

 = Rk ·

 cosα5 cosα6

cosα5 sinα6

sinα5


with:

Rk = |~ra|
α5 = height angle of ~ra −90◦ ≤ α5 ≤ 90◦

α6 = longitude angle of ~ra

~ra is the motion of the small ball in the big hollow ball. ~wa,~wb and ~ra can be transformed
with the method in Schröer [4], chapter 7 into the surface coordinate system.

With Budo [2], §14, equation (16), p.74 it is valid:

~z1 = −~wa × (~wa × ~ra) ~z2 = −~wb × (~wb × ~ra)
~zc = −2 · (~wa × ~v)

~v = velocity of the small ball in the big hollow ball

~v = ~wb × ~ra see Budo [2], §14, equation (8), p.72

The total acceleration ~bges can be presented as, see Budo [2], §14, equation (16), p.74:

~bges( ~X + ~ra) = ~g( ~X + ~ra) +~bz( ~X + ~ra) + ~z1 + ~zc + ~z2

We obtain the deviation angle β = 6 (~g( ~X + ~ra),~bges( ~X + ~ra)) with the scalar product:

cosβ =
~g( ~X + ~ra) ·~bges( ~X + ~ra)

|~g( ~X + ~ra)| · |~bges( ~X + ~ra)|
The special case ~wa = 0 is the inclined macro loop.

The angle β2 = 6 (~ra,~bges) plays a major role. With the scalar product we get:

cosβ2 =
~ra ·~bges( ~X + ~ra)

|~ra| · |~bges( ~X + ~ra)|
1) 0 ≤ β2 ≤ 90◦, the small ball remains at the shell of the big hollow ball.

2) 90◦ ≤ β2 ≤ 180◦, the small ball falls within the big hollow ball.

With

1) ⇔ 0 = cos 90◦ ≤ ~ra ·~bges

|~ra| · |~bges|
≤ cos 0◦ = 1

and

2) ⇔ 0 = cos 90◦ ≥ ~ra ·~bges

|~ra| · |~bges|
≥ cos 180◦ = −1

concrete conditions of remain or falling can be derived.
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3. The swinging body

We decompose the angular velocity ~wa of the body’s circular motion (without gravita-
tion) into spherical coordinates. This angular velocity shall be constant. With equation
(1):

~wa = |~wa| ·

 sin(90◦ − α3) cosα2

sin(90◦ − α3) sinα2

cos(90◦ − α3)

 = |~wa| ·

 cosα3 cosα2

cosα3 sinα2

sinα3


with the quantities:

α3 = latitude angle of ~wa −90◦ ≤ α3 ≤ 90◦

α2 = longitude angle of ~wa

l = length of the rope that is fastened to the body. l is known. l = |~la|
~la = motion of the swinging body

We introduce spherical coordinates with equation (1):

~la = l ·

 sin(90◦ − α5) cosα6

sin(90◦ − α5) sinα6

cos(90◦ − α5)

 = l ·

 cosα5 cosα6

cosα5 sinα6

sinα5

 (4)

with following quantities:

α6 = longitude angle of ~la
α5 = latitude angle of ~la
α5 and α6 are relative to the midpoint of the planet’s coordinate system. ~wa and ~la
can be transformed into the surface coordinate system with the method in Schröer [4],
Kapitel 7.

Now we turn to the centrifugal acceleration ~z1 of the swinging body:

~z1 = −~wa × (~wa ×~la) see Budo [2], §14, equation (16), p.74
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We write the total acceleration with the same equation in Budo [2]:

~bges( ~X +~la) = ~g( ~X +~la) +~bz( ~X +~la) + ~z1 (5)

We calculate the deviation angle β = 6 (~bges, ~g) with the scalar product:

cosβ =
~bges( ~X +~la) · ~g( ~X +~la)

|~bges( ~X +~la)| · |~g( ~X +~la)|

~bges must have the same direction as ~la:

~bges( ~X +~la)

|~bges( ~X +~la)|
=

~la

|~la|
(6)

With the equation (5) and (6) the motion ~la of the swinging body is described. l is
known. α6 and α5 must be determined with (5) and (6).
The angle γ = 6 (~la, ~wa) of the swinging body:

cos γ =
~la · ~wa

|~la| · |~wa|

In special case ~wa
|~wa| = ~X

| ~X|
is ~wa perpendicular to planet’s surface. The swinging body

moves in a circle.

Now we also determine the Coriolis acceleration caused through rotation of the planet.

~bc = −2 · (~wp × ~v) see Budo [2], §14, equation (16) p.74

~v = ~wp × ( ~X + ~ra) in the cases 1) and 2)

and
~v = ~wp × ( ~X +~la) in case 3)

see Budo [2], §14, equation (8), p.72.

It follows:

~bc( ~X + ~ra) = −2 · [~wp × (~wp × ( ~X + ~ra))] in cases 1) and 2)

~bc( ~X +~la) = −2 · [~wp × (~wp × ( ~X +~la))] in case 3)

We calculate the total accelerations see Budo [2], §14, equation (16), p.74.

Then it is valid in case 1):

~bges( ~X + ~ra) = ~z1 +~bc + ~g( ~X + ~ra) +~bz( ~X + ~ra)

in case 2):

~bges( ~X + ~ra) = ~g( ~X + ~ra) +~bz( ~X + ~ra) + ~z1 + ~zc + ~z2 +~bc
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in case 3) with equation (5):

~bges( ~X +~la) = ~g( ~X +~la) +~bz( ~X +~la) + ~z1 +~bc (7)

All other equations don’t change. ~wp is constant. |~wp| must not be very small. If |~wp| is
very small, the calculation can be done in all cases without ~bz and ~bc.

We collect the cases once again:

case 1): rotating disk (round-about)
case 2): orbits in a hollow ball
case 3): swinging body

If the angular velocities are not temporal constant, then there are further accelerations.
If we calculate the temporal motion, materials properties (at round-about and hollow
ball friction, at swinging body elasticity properties of the rope) must be taken into
consideration. This will not be done here.
The accelerations, caused through other planets, fixed stars, satellites and other masses
(on earth besides sun and moon), can be presented through ~br(t). But this additional
term is on earth strong temporal dependent.

On earth it is: � = sun E= earth M=moon

Gm�
r2E�

+
GmM

r2EM

≈ 6 · 10−3 m
s2

+ 4 · 10−5 m
s2

This is negligible with respect to g = 9.81m
s2 . This correction term is only necessary at

accurate calculations. But ~br(t) can be not negligible if for example two planets are not
far away from each other.
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Appendix

Here the theme is the derivation of sinα5 = sinα3 · sinα4 and
tanα6 = cosα3 · tanα4 for 0◦ ≤ α4 ≤ 360◦.

α5 = latitude of ~ra −90◦ ≤ α5 ≤ 90◦

α6 = longitude of ~ra

First we consider the case 0◦ ≤ α4 ≤ 90◦. Then it is α5 ≥ 0◦.

With Bronstein [1], chapter 2.6.4.3.2, p.209, equation (2.87) and (2.95):

sinα5 = sinα4 · sinα3

cosα3 = tanα6 · cotα4 =
tanα6

tanα4
⇒ tanα6 = cosα3 · tanα4

Now to the case 90◦ ≤ α4 ≤ 180◦, with α5 ≥ 0◦:

sinα5 = sin(180◦ − α4) · sinα3 = sinα4 · sinα3

cosα3 =
tan(180◦ − α6)
tan(180◦ − α4)

=
− tanα6

− tanα4
⇒ tanα6 = cosα3 · tanα4

The case 180◦ ≤ α4 ≤ 270◦: α5 ≤ 0◦
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− sinα5 = sin(−α5) = sinα3 · sin(α4 − 180◦) = − sinα3 · sinα4

⇒ sinα5 = sinα3 · sinα4

cosα3 =
tan(α6 − 180◦)
tan(α4 − 180◦)

=
tanα6

tanα4
⇒ tanα6 = cosα3 · tanα4

Finally to the case 270◦ ≤ α4 ≤ 360◦: α5 ≤ 0◦

− sinα5 = sin(−α5) = sinα3 · sin(360◦ − α4) = − sinα3 · sinα4

⇒ sinα5 = sinα3 · sinα4

cosα3 =
tan(360◦ − α6)
tan(360◦ − α4)

=
− tanα6

− tanα4
⇒ tanα6 = cosα3 · tanα4

With that the assertion is proved.
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68. The ellipsoid of revolution’s form in consequence of the
centrifugal force

We view the following ellipsoid of revolution:

We introduce:

a = major semiaxis
b = minor semiaxis
~w = ellipsoid of revolution’s angular velocity
T = ellipsoid of revolution’s rotation time
t = time
We assume w as temporal constant. Then we have the relation w = 2π

T .

Now we look at the following values:

centrifugal acceleration = ~bz = aw2

gravitational acceleration = ~g

The gravitational acceleration is known with the law of gravitation:

g =
G ·M
a2

G = constant of gravitation
M is the ellipsoid of revolution’s mass with:

M(t) =
∫

V (t)

ϕ(~x, t) d~x

with:

ϕ(~x, t) = ellipsoid of revolution’s density
(The density must be rotationally symmetric ϕ(~x, t) = ϕ(|~x|, t))
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Origin of the coordinate system = geometrical midpoint of the ellipsoid of revolution
V (t) = ellipsoid of revolution’s volumen
| · | = absolute value of a vector

Now we define the following value:

c :=
|~bz|
|~g|

=
aw2 · a2

GM
=
a3w2

GM
(1)

This value plays a major role to the ellipsoid of revolution’s form see Müller [1].

With Müller [1] chapter 3.4.2.4 p.99 the following relations:

A is the oblateness
A =

a− b

a
(2)

A = f(c) A = kc for A, c� 1 (3)

k= 0.5 (Roche model)
k= 1.25 (homogeneous model)

At A, c� 1 it follows:

1− b

a
= A = k · w

2a3

GM

We find:

b = (1−A) · a =

(
1− kw2a3

GM

)
· a

So we know the ellipsoid of revolution’s form for A, c� 1.

The real value of k of the planets in our solar system are not totally equal to the ideal
value of the Roche model respectively the homogeneous model. For the earth it is k
=0.98, for the Mars k = 1.11, for Jupiter k = 0.68 and for Saturn k = 0.58 see Müller [1]
chapter 3.4.2.4 p.100.

Because of this we must determine at the planets k with the oblateness A and c. The
rotation times are known. Then we obtain k. We have the possibility to calculate the
minor semiaxis b and the oblateness for other rotation times, if A, c� 1.

Problem: What happens if A, c aren’t small?

Then we must use the general formula of gravitational acceleration.

~g(~r, t) =
∫

V (t)

Gϕ(~x, t)
|~r − ~x|3

· (~r − ~x) d~x (4)
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Then the equations (1) - (4) must be inserted into one another. Besides A = f(c) must
be known.
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69. The apparent brightness of planets

Abstract: First the apparent brightness of planets are determined generally and then at inclined
circular orbits.

Key words: Brightness - phase - phase angle - circular orbit - planet - magnitude

1. Foundations

Through a telescope, we can see the planets Mercury and Venus in different phases,
similar to the moon. To determine the apparent brightness, the phase and the distance
are necessary. Mercury and Venus do not have the maximum apparent brightness at
minimum distance to earth. Then through a telescope we can see both planets as very
thin crescents. Both planets achieve the maximum apparent brightness, if Venus and
Mercury can be seen through a telescope as thick crescents. We want to inquire into the
apparent brightness of a planet in dependence of its motion. We introduce the following
quantities:

~rs(t) = position of a self-luminous body S (fixed star)

~rp(t) = position of a irradiated body P (planet), P is not self-luminous.

~rB(t) = position of another body B (planet) with an observer. B isn’t self-luminous.

~rs, ~rB, ~rp ∈ R3 t = time

Presumption: P and B posess no atmospheres.

All 3 bodies are balls with a small radius compared to the distance of the 3 bodies.
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The angle of reflection (phase angle):

α = phase angle of P at B

α = 180◦ − β cosα = cos(180◦ − β) = − cosβ

The angle β can be described with the scalar product:

cosβ =
(~rB − ~rp) · (~rs − ~rp)
|~rp − ~rB| · |~rs − ~rp|

It follows:
cosα =

(~rp − ~rB) · (~rs − ~rp)
|~rp − ~rB| · |~rs − ~rp|

(1)

Now we explain the following quantities:

Rs = radius of the ball S (fixed star)

Rp = radius of the ball P (planet)

RB = radius of the ball B (planet with observer)

Ra = radius of the crystalline lens of the observer

The problem is to determine the brightness of the ball P seen from B.

Φs,p = luminous flux coming from S through P .

I = luminous intensity of S

Ωs,p = solid angle of P seeing from S.

With Voigt [9] chapter V.1.1 p.177 we can write approximately the solid angle through:

Ωs,p =
πR2

p

|~rs − ~rp|2
Rp � |~rs − ~rp|

Φs,p = I · Ωs,p
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see Kuchling [6] chapter 27.2.4. p.387.

The luminous flux Φα with consideration to the phase, see Montenbruck [7] chapter
VI.3.2 p.112:

Φα =
1 + cos(π − α)

2
· Φs,p =

1− cosα
2

· Φs,p α in radian measure

We need:

a = albedo of the ball P

For the illumination E that gets the observer on the ball B we obtain with Kuchling [6]
chapter 27.2.7. p.389:

E =
Φα · a

|~rp − ~rB|2

The luminous flux through the observer is, see Kuchling [6] (O 27.21) p.389:

ΦB = π ·R2
a · E

ΦB and E can be seen as measure of the brightness. If we insert then we obtain:

E =
(1− cosα) · Φs,p · a

2 · |~rp − ~rB|2
=
π ·R2

p · I · a · (1− cosα)
2 · |~rs − ~rp|2 · |~rp − ~rB|2

(2)

These are the formulas of the brightness with the presumption that the whole space is
vacuum. With that there is no absorption. Now we take the absorption into consider-
ation. Now the whole space is filled with a medium. m is the absorption coefficient.
Then the following formulas change:

Φs,p = Ωs,p · I · e(~rs, ~rp, t)

and
E =

Φα · a
|~rp − ~rB|2

· e(~rp, ~rB, t)

e(. . .) are attenuation factors. In case of constant absorption coefficient m we have:

e(~rs, ~rp, t) = e−m·|~rs−~rp|

e(~rp, ~rB, t) = e−m·|~rp−~rB |

In the case of different absorption coefficient:

e(~x, ~y, t) = e−F (~x,~y,t)

with

F (~x, ~y, t) :=
1∫

0

m(~s(~x, ~y, τ), t) · |~x− ~y| dτ
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with
~s(~x, ~y, τ) = τ~y + (1− τ) · ~x τ ∈ [0, 1]

and
~s(τ = 0) = ~x ~s(τ = 1) = ~y

m(~x, t) is an absorption function with a dependence upon ~x ∈ R3 and t. The formula of
non uniform absorption is valid only for one extreme thin medium for example the outer
space. This formula is valid approximate. The lightrays are refracted in the non homo-
geneous medium. It is difficult to take the change of the direction into consideration. In
the case of very thin media as the extreme thin matter density of the outer space there
is no appreciable change of the direction.
The formula with non uniform absorption is a line integral of the first type, see Bron-
stein [3] chapter 3.1.8.2 p.319.

If we insert them just as in the vacuum case, then we get:

E =
πR2

pIa · (1− cosα) · e(~rs, ~rp, t) · e(~rp, ~rB, t)
2 · |~rs − ~rp|2 · |~rp − ~rB|2

or

ΦB =
π2R2

pR
2
a · Ia · (1− cosα) · e(~rs, ~rp, t) · e(~rp, ~rB, t)

2 · |~rs − ~rp|2 · |~rp − ~rB|2

In the case of absorption, the equations are valid only to light in the visual wavelength
range. Already in the neighbour ranges of ultraviolet and infrared there are additional
much emission and much scattering.

Plane polar coordinates can be used for ~rs, ~rp, ~rB to the motion in circular orbits on
the plane. This can be found at Schröer [8]. We need spherical coordinates for inclined
circular orbits.

2. The apparent brightness of planets on inclined orbits

We look at an example that is similar to those of sun, earth and Venus. The sun is
represented as fixed star S, the earth as observer planet B and Venus as irradiated
planet P . We assume circular orbits. We neglect the absorption.
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The orbit radii rp and rB, the start angles δp and δB and the masses mP and mB of
the planets P (Venus) and B (earth) are known. The fixed star S (sun) is in the origin
(~rs = ~0). ms shall be the mass of the fixed star (sun). Then it is easy to determine
the angular velocity of both planets. The angular velocities follow from the equality of
gravitation force and centripetal force at circular motion:

G ·msmp

r2p
= mp · rpw2

p it follows: wp =

√
G ·ms

r3p

G ·msmB

r2B
= mB · rBw2

B it follows: wB =

√
G ·ms

r3B

G is the gravitational constant. The circular orbit of the irradiated planet P shall be
inclined relatively to the circular orbit of the observer’s planet B. This inclination angle
is denoted with γ and shall be constant. This model will describe the motion of earth
and Venus.

The planet B with observer circles in a plane with the orbit vector:

~rB(t) = rB ·

 cos(δB + wB · t)
sin(δB + wB · t)

0

 = rB ·

 cosϕB

sinϕB

0


Further it is valid ϕp = δp + wp · t.

We view the following rectangular spherical triangle:
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Then the following equations are valid:

sin ε = sin γ · sinϕp (3)
tanψ = cos γ · tanϕp (4)

The derivation of both equations is in the appendix. Now we introduce spherical coor-
dinates, see the following figure:

The vector ~rp can be written as, see Bartsch [2], chapter 7.2.1, p.264,265:

~rp(t) = rp ·

 cos ε · cosψ
cos ε · sinψ

sin ε


The absolute value rp of ~rp is given.

From the first chapter we know the formulas:

cosα =
(~rp − ~rB) · (~rs − ~rp)
|~rp − ~rB| · |~rs − ~rp|

E =
π ·R2

p · I · a · (1− cosα)
2 · |~rs − ~rp|2 · |~rp − ~rB|2

ΦB = π ·R2
a · E

Here it is ~rs = ~0.

cosα =
(~rB − ~rp) · ~rp
|~rB − ~rp| · rp
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E =
π ·R2

p · I · a · (1− cosα)
2r2p · |~rB − ~rp|2

Now we must determine the numerator and the denominator of cosα.

We calculate the numerator of cosα:

(~rB − ~rp) · ~rp = ~rB · ~rp − ~r2p

Because of the scalar product property ~r2p = |~rp|2:

= rBrp ·

 cosϕB

sinϕB

0

 ·
 cos ε cosψ

cos ε sinψ
sin ε

− r2p

= rBrp ·
(

cosϕB

sinϕB

)
·
(

cos ε cosψ
cos ε sinψ

)
− r2p

= rp ·
[
rB ·

(
cosϕB

sinϕB

)
·
(

cos ε cosψ
cos ε sinψ

)
− rp

]
Now we construct the denominator of cosα:

|~rB − ~rp| · rp =
√
~r2B − 2 · ~rB · ~rp + ~r2p · rp

We use the scalar product property ~r2 = |~r|2 for ~r ∈ R3:

= rp ·

r2B + r2p − 2rBrp ·

 cosϕB

sinϕB

0

 ·
 cos ε cosψ

cos ε sinψ
sin ε




1
2

= rp ·
[
r2B + r2p − 2rBrp ·

(
cosϕB

sinϕB

)
·
(

cos ε cosψ
cos ε sinψ

)] 1
2

At last we get:

cosα =

(
rB ·

(
cosϕB

sinϕB

)
·
(

cos ε cosψ
cos ε sinψ

)
− rp

)
· rp

rp ·
[
r2B + r2p − 2rBrp ·

(
cosϕB

sinϕB

)
·
(

cos ε cosψ
cos ε sinψ

)] 1
2

In the denominator of the illumination E is the square of the denominator of cosα. We
obtain:

E =
π ·R2

p · I · a · (1− cosα)

2r2p ·
[
r2B + r2p − 2rBrp ·

(
cosϕB

sinϕB

)
·
(

cos ε cosψ
cos ε sinψ

)]
For the luminous flux:

ΦB = π ·R2
a · E
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We have the opportunity to treat the case of absorption, too. The absorption coefficient
m shall be spatial but not temporal changable. The medium must be extreme thin (for
example interplanetary space). At a dense medium we have at non constant m a greater
change of the radiation’s direction. In the case of absorption the illumination is, see
chapter 1:

E =
π ·R2

p · I · a · (1− cosα) · e(~rp, ~rB) · e(~rs, ~rp)

2r2p ·
[
r2B + r2p − 2rBrp ·

(
cosϕB

sinϕB

)
·
(

cos ε cosψ
cos ε sinψ

)]

It is:
e(~rp, ~rB) = e−F (~rp,~rB)

with:

F (~rp, ~rB) =
1∫

0

m(~s(~rp, ~rB, τ)) · |~rp − ~rB| dτ

at which:
~s(~rp, ~rB, τ) = τ · ~rB + (1− τ) · ~rp τ ∈ [0, 1]

Now we take ~rs = ~0 into consideration:

e(~rs, ~rp) = e(~0, ~rp) = e−F (~0,~rp)

with:

F (~0, ~rp) =
1∫

0

m(~s(~0, ~rp, τ)) · rp dτ

at which:
~s(~0, ~rp, τ) = τ · ~rp τ ∈ [0, 1]

If the absorption coefficient m is constant, then it follows for the illumination :

E =
π ·R2

p · I · a · (1− cosα) · e−m·|~rp−~rB | · e−m·rp

2r2p ·
[
r2B + r2p − 2rprB ·

(
cosϕB

sinϕB

)
·
(

cos ε cosψ
cos ε sinψ

)]

with:

|~rp − ~rB| =
[
r2B + r2p − 2rBrp ·

(
cosϕB

sinϕB

)
·
(

cos ε cosψ
cos ε sinψ

)] 1
2

With M as apparent brightness, E as illumination and ΦB as luminous flux it is valid
(see Voigt [9] chapter IV.1.1, p.139 or Wendker [10] chapter 4.1.2, p.78 equation (4-1))
for the conversion:

M1 −M2 = −2.5 · lg
(

ΦB1

ΦB2

)
= −2.5 · lg

(
E1

E2

)
We can found at Montenbruck [7] chapter VI.5, p.119 special formulas for the apparent
brightness of Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto. One
difficulty is Saturn’s ring. But this ring can be taken into consideration, too.
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Now we want to calculate the maximum and minimum illumination. We need the dif-
ferentiation of E. First we work with the vacuum case. We introduce the symbol k.

k := rBrp ·
(

cosϕB

sinϕB

)
·
(

cos ε cosψ
cos ε sinψ

)

The symbol h can be introduced:
h := cosα

We constuct the temporal differentiation of k:

k̇ = rBrp ·
[
ϕ̇B ·

(
− sinϕB

cosϕB

)
·
(

cos ε cosψ
cos ε sinψ

)

+

(
cosϕB

sinϕB

)
· d
dt

(
cos ε ·

(
cosψ
sinψ

))]
with:

d

dt

(
cos ε ·

(
cosψ
sinψ

))
= −ε̇ sin ε ·

(
cosψ
sinψ

)
+ ψ̇ cos ε ·

(
− sinψ
cosψ

)

With the equations (3) and (4):

ε = arcsin(sin γ · sinϕp)

ψ = arctan(cos γ · tanϕp)

With the chain rule we obtain:

ε̇ =
ϕ̇p · sin γ · cosϕp√
1− sin2 γ sin2 ϕp

(5)

ψ̇ =
ϕ̇p · cos γ · (tan2 ϕp + 1)

1 + cos2 γ tan2 ϕp
(6)

With that k is completly derived.

Now we can write the illumination as:

E =
π ·R2

p · I · a · (1− cosα)
2r2p · (r2B + r2p − 2k)

Now we construct the differentiation of E with the quotient rule:

Ė =
πR2

pIa

2r2p
·
sinα · α̇ · (r2B + r2p − 2k) + 2 · (1− cosα) · k̇

(r2B + r2p − 2k)2

Now we derive α:
cosα = h
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It follows:
α = arccosh

We get with the chain rule:

α̇ =
−ḣ√
1− h2

with:

h =
k − r2p

rp ·
√
r2p + r2B − 2k

quotient rule:

ḣ =
1

rp · (r2p + r2B − 2k)
·

k̇ ·√r2p + r2B − 2k − (k − r2p) ·
−k̇√

r2p + r2B − 2k


It is:

ϕB = δB + wB · t

ϕp = δp + wp · t

It follows:
ϕ̇B = wB ϕ̇p = wp

With that the illumination E is completly derived in the vacuum case.

The necessary extremum condition of the illumination is Ė = 0. With that:

sinα · α̇ · (r2B + r2p − 2k) + 2 · (1− cosα) · k̇ = 0

If we solve this equation to t, we get t-values with E(t) as local maximum or local
minimum or saddle point. If we have really an extremum, we must decide with Rolle’s
theorem or with the second derivation of E. Possibly we even need higher derivations
see Barner [1] chapter 8.4 p.295.

Now we work with the differentiation of the illumination in the case of absorption:
(~rs = ~0)

E =
πR2

pIa · (1− cosα) · e(~rp, ~rB) · e(~0, ~rp)
2r2p · (r2B + r2p − 2k)

The absorption coefficient m is spatial not constant. We apply the quotient rule:

Ė =
πR2

pIa

2r2p · (r2B + r2p − 2k)2
·
[ d
dt

(
(1− cosα) · e(~rp, ~rB) · e(~0, ~rp)

)
· (r2B + r2p − 2k)

+2k̇ · (1− cosα) · e(~rp, ~rB) · e(~0, ~rp)
]

with:

d

dt

(
(1− cosα) · e(~rp, ~rB) · e(~0, ~rp)

)
= sinα·α̇·e(~rp, ~rB)·e(~0, ~rp)+(1−cosα)· d

dt

[
e(~rp, ~rB) · e(~0, ~rp)

]
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at which:

d

dt

[
e(~rp, ~rB) · e(~0, ~rp)

]
=

d

dt
e(~rp, ~rB) · e(~0, ~rp) + e(~rp, ~rB) · d

dt
e(~0, ~rp)

We derive:
d

dt
e(~rp, ~rB) = −e−F1(~rp,~rB) · Ḟ1

The F -Funktion is indexed, because this function will be needed in different ways.

Ḟ1 is explained through:

Ḟ1 =
d

dt

 1∫
0

m(~s1(~rp, ~rB, τ)) · |~rp − ~rB| dτ


~s is indexed, because it will be needed in different ways.

We assume that m is continuous in R3 and the integrand is continuous differentiable
with respect to t. Then we can exchange differentiation and integration, see for example
Forster [4], §9, theorem 2, p.84, for weaker assumptions see Forster [5] §11, theorem 2
p.99:

Ḟ1 =
1∫

0

d

dt
[m(~s1(~rp, ~rB, τ)) · |~rp − ~rB|] dτ

The integrand is equal to:

d

dt
m(~s1(~rp, ~rB, τ)) · |~rp − ~rB|+m(~s1(~rp, ~rB, τ)) ·

d

dt
|~rp − ~rB|

with:
d

dt
|~rp − ~rB| =

d

dt
(~r2p + ~r2B − 2 · ~rp · ~rB)

1
2

=
d

dt
(r2p + r2B − 2k)

1
2 =

−k̇√
r2p + r2B − 2k

and:

d

dt
m(~s1(~rp, ~rB, τ)) = gradm(~s1(~rp, ~rB, τ)) · ~̇s1 gradm =

(
∂m

∂x
,
∂m

∂y
,
∂m

∂z

)
with:

~̇s1 = τ ˙~rB + (1− τ)~̇rp τ ∈ [0, 1]

It is:

˙~rB = rB ·
d

dt

 cosϕB

sinϕB

0

 = rB · ϕ̇B ·

 − sinϕB

cosϕB

0


with:

ϕ̇B = wB
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and:

~̇rp = rp ·
d

dt

 cos ε cosψ
cos ε sinψ

sin ε



= rp ·

 −ε̇ sin ε cosψ − ψ̇ cos ε sinψ
−ε̇ sin ε sinψ + ψ̇ cos ε cosψ

ε̇ cos ε


with the equations (5) and (6) of this chapter:

ε̇ =
ϕ̇p · sin γ · cosϕp√
1− sin2 γ · sin2 ϕp

ψ̇ =
ϕ̇p · cos γ · (tan2 ϕp + 1)

1 + cos2 γ · tan2 ϕp

and:
ϕ̇p = wp

Now we derive the second e-term:

d

dt
e(~0, ~rp) = −e−F2(~0,~rp) · Ḟ2

Now it is clear why the F -function and ~s must be indexed.

Ḟ2 =
d

dt

 1∫
0

m(~s2(~0, ~rp, τ)) · |~rp| dτ


m shall be continuous in R3. We assume that the integrand is continuous differentiable
in t. Then it is valid, see Forster [4], §9, theorem 2, p.84 (for weaker assumptions see
Forster [5] §11, theorem 2, p.99):

Ḟ2 = rp ·
1∫

0

d

dt
m(~s2(~0, ~rp, τ)) dτ

with:
d

dt
m(~s2(~0, ~rp, τ)) = gradm(~s2(~0, ~rp, τ)) · ~̇s2

at which:
~̇s2 = τ · ~̇rp τ ∈ [0, 1]

~̇rp was explained before.

With that the illumination E is completly derived.

Necessary condition of local extrema is Ė = 0. With that it follows:

d

dt
((1− cosα) · e(~rp, ~rB) · e(~0, ~rp)) · (r2B + r2p − 2k)
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+2k̇ · (1− cosα) · e(~rp, ~rB) · e(~0, ~rp) = 0

Now we view the special case with constant absorption coefficient m. Then it is gradm =
~0. We obtain:

Ḟ1 = m ·
1∫

0

d

dt
|~rp − ~rB| dτ

Ḟ2 = 0

3. Appendix

Here we make the derivation of sin ε = sin γ · sinϕp and
tanψ = cos γ · tanϕp for 0◦ ≤ ϕp ≤ 360◦.

ε = latitude angle −90◦ ≤ ε ≤ 90◦

ψ = longitude angle

First we view the case 0◦ ≤ ϕp ≤ 90◦. It is ε ≥ 0◦.

With Bronstein [3], chapter 2.6.4.3.2, p.209, equation (2.87) and (2.95):

sin ε = sinϕp · sin γ

cos γ = tanψ · cotϕp =
tanψ
tanϕp

⇒ tanψ = cos γ · tanϕp

Now to the case 90◦ ≤ ϕp ≤ 180◦, with ε ≥ 0◦:

sin ε = sin(180◦ − ϕp) · sin γ = sinϕp · sin γ

cos γ =
tan(180◦ − ψ)
tan(180◦ − ϕp)

=
− tanψ
− tanϕp

⇒ tanψ = cos γ · tanϕp

The case 180◦ ≤ ϕp ≤ 270◦: ε ≤ 0◦
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− sin ε = sin(−ε) = sin γ · sin(ϕp − 180◦) = − sin γ · sinϕp

⇒ sin ε = sin γ · sinϕp

cos γ =
tan(ψ − 180◦)
tan(ϕp − 180◦)

=
tanψ
tanϕp

⇒ tanψ = cos γ · tanϕp

Finally to the case 270◦ ≤ ϕp ≤ 360◦: ε ≤ 0◦

− sin ε = sin(−ε) = sin γ · sin(360◦ − ϕp) = − sin γ · sinϕp

⇒ sin ε = sin γ · sinϕp

cos γ =
tan(360◦ − ψ)
tan(360◦ − ϕp)

=
− tanψ
− tanϕp

⇒ tanψ = cos γ · tanϕp

With that the assertion is proved.
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70. Eclipses, a non conventional representation

We want to view the constellations at eclipses more accurately.

1. Spaces of eclipse

We look at three balls with the positions ~p0, ~p1, ~p2 ∈ R3. The vectors are relative to the
midpoints of the ball. The positions shall be dependent from the time t.

R0, R1, R2 = radii of the balls
The ball 0 shall be self beaming. (light source, fixed star)

The figure shows the core shadow cone and the half shadow cone. Now we introduce the
following vectors:

~r1 := ~p1 − ~p0 ~r2 := ~p2 − ~p0

ri= |~ri| is the absolute value of the vector ~ri. At core shadow cone we have the apex
angles wik:

sinwik =
R0

|~ri + τ · (~pi − ~p0)|
=

Ri

|τ · (~pi − ~p0)|
From this equation we get a τ for the core shadow eclipse. The apex of the core shadow
cone can be written as:

~sik := ~pi + τ · (~pi − ~p0)

For half shadows eclipses we look at the following double cone with the apex angle wih:

sinwih =
R0

|τ · ~ri|
=

Ri

|~ri − τ · ~ri|

From this we get τ for the half shadow cone. We get the cone apex with ~sih := ~p0 +τ ·~ri.
With that the apex of both cones are known. We define coswih =: cih and coswik =: cik.
Now we can write the cone equations for example see Köhler [1] chapter 10.2 p.10.3
equations (2) and (3), first for the core shadow cone:

(~x− ~sik) ·
−~ri
|~ri|

= |~x− ~sik| · cik i ∈ 1, 2 (1)
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For the half shadow cone:[
(~x− ~sih) · ~ri

|~ri|

]2
= c2ih · (~x− ~sih)2 i ∈ 1, 2 (2)

The equations (1) and (2) are valid to the lateral area of a cone. For the full cone a
smaller apex angle is also possible. From w′ < w follows cosw′ > cosw, with that we
obtain with equation (1) to the core shadow cone:

(~x− ~sik) ·
−~ri
|~ri|

≥ |~x− ~sik| · cik i ∈ 1, 2 (3)

For the half shadow cone:[
(~x− ~sih) · ~ri

|~ri|

]2
≥ c2ih · (~x− ~sih)2 i ∈ 1, 2 (4)

Now we need the ball’s equation:

(~x− ~pi)2 = R2
i i ∈ 0, 1, 2 (5)

See Köhler [1] chapter 9.1.2 p.9.2.

With ~yik we denote the intersection set of the solution sets from equations (1) and (5).
~yih shall be the intersection set of the solution sets of (2) and (5). ~yik and ~yih are circles
on the surface of the ball ~pi, with equal distance to ~p0.

Now we introduce the vectors ~aik := ~yik − ~p0 and ~aih := ~yih − ~p0. With the absolute
values of these new vectors we can form:

|~x− ~p0| ≥ aih (6)
|~x− ~p0| ≥ aik (7)

We get from equation (5):

(~x− ~pi)2 ≥ R2
i i ∈ 0, 1, 2 (8)

The intersection of solutions from inequations (3),(7) and (8) is the core shadow space
Mik of the ball ~pi. Further the half shadow space Mih of the ball ~pi is the intersection
of solutions from the inequations (4), (6) and (8).
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Mik(Oj) := core shadow space of the ball i on the ball j

Mih(Oj) := half shadow space of the ball i on the ball j

It must be i 6= j, with i, j ∈ 1, 2.

Mik(Oj) is the intersection of Mik and the solution set of equation (5) with j as index.
Further we can calculate Mih(Oj) as intersection of Mih and the solution set of (5) with
index j. Mik(Oj) is in the set Mih(Oj), we can recognize this from the figure.

2. projection pictures

Now we turn to the projection pictures.

~z = point, from that the pictures are seen. This point can also be changed temporal.

2.1. picture of the light source (corresponds to a solar eclipse)

~z is the apex of a cone. The ball i is in this cone.

apex angle wi:

sinwi =
Ri

|~pi − ~z|
ci := coswi

~ei :=
~pi − ~z
|~pi − ~z|

With Köhler [1] chapter 10.2 equation (2) and equation (3) in this text we can represent
the space without the cone in the following way:

(~x− ~z) · ~ei ≤ |~x− ~z| · ci i ∈ 1, 2 (9)
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With N we denote the intersection of the solution from (9) for i = 1 and 2 and the
inequation (~x−~p0)2 ≤ R2

0. That means a combination of 2 or 3 inequations in dependence
if the light source is covered from one ball or 2 balls. This intersection can also be a
function of time. Then the searched picture is the projection of N on an arbitrary plane
behind the projection point ~z. With that form and size of the picture are determined.
This problem will be dealt with in general in the publication “Projections on planes” [2].
The observer’s position ~z shall be on the surface of the ball i, then ~z must be in the
solution set of equation (5) for i.

2.2. picture of an eclipsed ball (corresponds lunar eclipse)

We look at the following figure:

Because of the inequation (3) the solution set of

(~x− ~sik) ·
−~ri
|~ri|

≤ |~x− ~sik| · cik i ∈ 1, 2 (10)

is equal to the space without core shadow cone. The space without half shadow cone
can be represented because of the inequation (4) as solution set from:[

(~x− ~sih) · ~ri
|~ri|

]2
≤ c2ih · (~x− ~sih)2 (11)

We introduce Nijk respectively Nijh as parts of the j. ball, that remain visible from
the projection point ~z. The lighted parts are considered as sets. The j. ball is perhaps
covered partly by the i. ball. The index k symbolizes the core shadow and h the half
shadow.

Nijh is equal to the solution set of (~x − ~pj)2 ≤ R2
j combined with the inequations (11)

and (9).
Nijk is the solution set of (~x − ~pj)2 ≤ R2

j combined with the inequations (10) and (9).
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Nijh and Nijk can also be dependent from the time.

Then we obtain the searched picture as projection of Nijh respectively Nijk with the
projection point ~z on an arbitrary plane. For this we again refer to the publication
“Projections on planes” [2]. The observer’s position ~z shall be on the surface of the i.
ball, then ~z must be in the solution set of equation (5) for i. With this picture is also
determined, whether it is a partial or total eclipse or a half shadow eclipse or a core
shadow eclipse.

Perhaps in all cases a generalization is possible with Ri = Rpi + di.Rpi is the proper
planet’s radius and di is the thickness of the (dense) atmosphere of the i. ball. This
generalization is only important for planets with very dense atmospheres. One example
is the Venus. There core shadow and half shadow are relative to Rpi. The shadows shall
be relative to Ri, then we have no exact bounds any more. Then we have often, because
of the atmosphere, a continual transition. In the case of no atmosphere it is of course
Ri = Rpi.
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71. Geographical latitude and geocentric latitude

We view an ellipse with the semimajor axis a and the semiminor axis b.
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We use the canonical equation of the ellipse:

x2

a2
+
y2

b2
= 1

We transform to y:

y = b · ±

√
1− x2

a2
= ± b

a
·
√
a2 − x2

We can calculate the differentiation with the chain rule:

y′ =
dy

dx
= ± b

a
· −x√

a2 − x2

For the relation between the angle α and the coordinates x and y we see the following
figure:
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We recognize:
x · tanα = y α ∈ [0◦, 360◦]
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We insert in the canonical equation:

x2

a2
+
x2 tan2 α

b2
= 1

To one denominator:
x2b2 + a2x2 tan2 α

a2b2
= 1

Now we solve this equation to x:

x2 =
a2b2

b2 + a2 tan2 α

or:
x =

ab√
b2 + a2 tan2 α

Now we insert this term into the differentiation equation:

y′(α) =
±b · −ab√

b2+a2 tan2 α

a ·
√
a2 − a2b2

b2+a2 tan2 α

= ∓
b2√

b2+a2 tan2 α√
a2b2+a4 tan2 α−a2b2

b2+a2 tan2 α

=
∓b2√

a4 tan2 α

Thus we obtain finally:

y′(α) = ∓
(
b

a

)2

· tan−1 α

Now we work with the problem to find a relation between the geographical latitude γ
and the geocentric latitude α.

-

6

,
,
,
,
,

Q
Q
Q
Q
Q
Q
Q
Q

.

................

................

................

...............

α

...............................................................
.............
.

............
...
γ

..................

...................

...................

....................
....................

.......................
.........................

...........................
............................

..............................................................................................................................................................................................................................................................
......................

.
..................
..

................
....

...............
....

..............
.....

.............

.....

.............

.....

..............
.....

...............
....

................
....

..................
..

......................
.

......................... ........................... ............................ ............................. ............................. ............................. ............................. ............................. .............................
............................

...........................
.........................

.......................
....................
....................

...................

...................

.................. x

y

a

b

330



L. Astronomy

With the figure we recognize:

−1
y′(α)

= tan γ α, γ ∈ [−90◦,+90◦]

If we insert y′(α), this leads to:

b2 · tan γ = −a2 · tanα

Then we get the expressions:

tan γ =
−a2

b2
· tanα tanα =

−b2

a2
· tan γ

Now we introduce the flattening A = a−b
a = 1− b

a . Then we follow
b
a = 1−A. This insertion yields:

tanα = −(1−A)2 · tan γ or tan γ =
− tanα
(1−A)2

Now we view the general revolution solid like in the following figure:
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The general revolution solid is described with y = f(x). Here we have the relation:

i(x)
tan γ

= f ′(x) (1)

with:

i(x) :=

{
−1 : x ≥ 0

1 : x < 0
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We can express the geocentric latitude α with the following equation:

tanα =
±f(x)
|x|

| · | = absolute value (2)

The function y = f(x) must be known of course. In concrete cases, if γ is known, we
must determine with equation (1) x. This inserted in equation (2) yields α. If α is
known, then we calculate with equation (2) x and finally we insert this x in equation
(1).
An unusual case is, if we know only a latitude α or γ. The problem is to determine the
coordinates x and y with the known function f : In the case of known α we can calculate
x with the equation (2). In the case of known γ we must use the equation (1) to get x.
In both cases we obtain y with y = f(x).
Equation (1) is for the conversion between x and γ and equation (2) is used for the
conversion between x and α.

c© 2001 Harald Schröer

332



L. Astronomy

72. An observer on a irregular body

Abstract: An observer is on a planet or planetoid that looks like a irregular body. Normal
vector, tangent vector, height and depth on a general surface are explained. The observer’s
position is described. The pitch angle is calculated.

Key words: Observer - planet - irregular body - normal vector - tangent vector - pitch angle -
height - depth - planetoid

We view a total irregular body (planet or planetoid) with an observer. The body is
parametrized through the function ~c : U −→ R3 with U ⊂ R4 and ~c(k1, k2, k3, t). k1

and k2 are surface parameters and k3 is a height parameter. t is the time:

Now the body shall rotate on some kind. This can be done by a further function
~d : V −→ R3 with V ⊂ R4 and ~d(~c(k1, k2, k3, t), t). With this rotation the observer has
the position:

~p(t) = ~d(~c(k1, k2, k3, t), t)

The expression of ~c has a temporal changing that has to do with the form of the body
but not with the rotation. In the expression of ~d is a temporal changing that has only
to do with the rotation.

Now k3b shall be the value of k3 on the surface.

Then we introduce the normal vector:

~n(k1, k2, k3b, t) =
∂

∂k1
~p(k1, k2, k3b, t)×

∂

∂k2
~p(k1, k2, k3b, t)

∂
∂k1

~p and ∂
∂k2

~p are tangent vectors see Forster [1], §15, theorem 1, p.148.
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Which normal vector is directed inwards relative to the surface? t is known and k3b is
fixed. Then we have the following equation:

~p(k1, k2, k3, t) = ~p(k1, k2, k3b, t) + k · ~n(k1, k2, k3b, t)

If a solution (k, k1, k2, k3) exists for all k with 0 ≤ k ≤ ka ∈ R+ or 0 ≥ k ≥ ka ∈ R−,
then k · ~n(k1, k2, k3b, t) is one inwards directed normal vector.

pitch angle:

We look at the following figure:

If we take the normal vector ~n = ~n(k1, k2, k3b, t) and the total acceleration ~bges, then we
get with the scalar product for the pitch angle γ:

cos γ =
k · ~n ·~bges

|k · ~n| · |~bges|

The height (or depth):

Now we determine the height (or depth) of ~pa := ~d(~c(k1a, k2a, k3a, t), t). k1a, k2a, k3a and
t are fixed.

First we must examine, if ~pa is over or under the surface. We have the following equation:

~pa = ~d(~c(k1, k2, k3, t), t)

If one solution (k1, k2, k3) of this equations exists, then ~pa is not over the surface. If no
solution (k1, k2, k3) exists, then ~pa is over the surface. Then it is clear, if it is a height
or a depth.

The surface O can be written as:

O := {~d(~c(k1, k2, k3b, t), t) ∈ R3 with (k1, k2) ∈ Ū ⊂ R2}
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k3b is the surface parameter again. k3b depends on the body itself. Now the distance is
interesting:

r := |~pa − ~d(~c(k1, k2, k3b, t), t)|

The minimum of r(k1, k2) with (k1, k2) ∈ Ū ⊂ R2 is the height (depth) over (under) the
surface.

With that we have a problem to determine a minimum under constraints. From the
restriction to the set Ū it follows that the constraints are in general inequalities. To
solve this problem we must view in literature of “Non linear optimization”.

In rare cases Ū can be characterized only through equations. Then the constraints are
equations. With that we have a minimum problem with equations as constraints. For
this case we have in analysis the method with the Lagrange multipliers.

Then we get a new function rmin(t), that can be examined over time intervals to maxima
and minima. For the determination of these extrema (if this function is known) the
differential calculus of one variable is sufficient.
These values are used at Schröer [2] chapter 5 to determine the total acceleration and
the visual vertical.
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335



L. Astronomy

73. The duration of a day on a planet

We want to determine, the time between two sunrises or sunsets on a planet. The sun
is always a fixed star. This fixed star is circled by a planet. We assume circular orbits.
This condition is approximately filled in our solar system with exception of Mercury and
Pluto. We explain the following values:

~wp = angular velocity with which the planet rotates around its own axis.

~w = angular velocity with which the planet circles around its fixed star (sun).

wp = |~wp| w = |~w|

Tp = rotation time of the planet in seconds

T = orbital period of the planet around its fixed star (sun) in seconds

These relationships are valid:

Tp =
2π
wp

T =
2π
w

or
2π
Tp

= wp
2π
T

= w

First we must determine the direction of rotation:

wp > 0 (Rotation of the planet from west to east, mathematical positive direction,
counterclockwise)

wp < 0 (Rotation of the planet from east to west, mathematical negative direction,
clockwise)

w > 0 (Circulation of the planet counterclockwise, mathematical positive direction)

w < 0 (Circulation of the planet clockwise, mathematical negative direction)
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P = position of the planet (or of the satellite)
S = position of the fixed star (or of the planet)

The orbital period T and the rotation time Tp are known. Additionally ~wp and ~w shall
be parallel and constant. Thus, we have ~wp and ~w. Now, we can define a day:

Duration of a day:= time that is needed until S is seen from P in the same direction
from a certain point on the planet’s surface.

Let us investigate the different cases. These cases can be imagined with models:

wp > 0 and w = 0
apparent motion of S from east to west

wp = 0 and w > 0
apparent motion of S from west to east

Thus we can conclude the following results:

wp − w > 0

apparent motion of S from east to west (wp > w) seen from P

w − wp > 0

apparent motion of S from west to east (w > wp) seen from P

w − wp = 0 w = wp

S apparently doesn’t move as seen from P , a bound rotation

We obtain the duration of a day Tw with:

Tw =
2π

|wp − w|

In the case of a bound rotation, Tw is infinite.

Of all planets in our solar system, it is valid w,wp > 0. Only at Venus is wp < 0.

These concepts can be used with planets and their satellites, as well. In this case, ~wp

is the angular velocity with which the satellite rotates around its axis, and ~w is the
angular velocity with which the satellite circles around its planet. We must assume
approximately circular orbits.
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These views cannot be used with Mercury and Pluto, because their orbits are ellipses
with large eccentricity. To Mercury, see Voigt [1] chapter II.9.3 p.74. But with all the
other planets of our solar system, we can determine with this method the duration of
one day.
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74. The number of new originated objects in space and the
average distance

1. The number of new originated objects in space

The model that is presented here is important in calculating the number of new orig-
inated objects in astronomy, for example, open star clusters, globular star clusters, or
associations. We know the average life time of these objects (see Voigt [1] chapter VIII.8
p.355).

At time, t, there are N(t) objects in the volume V (t) with the life time T (t).

Then a new object in V every T (t)
N(t) time unit (for example centuries, millenniums, hours)

originates.

With that N(t)
T (t) objects per time unit originates. Now we turn to the number of the new

originated objects. We view the time between t1 and t2:

N(t1 ≤ t ≤ t2) =
t2∫

t1

N(t)
T (t)

dt

N(t1 ≤ t ≤ t2) = number of objects that originate between t1 and t2.

The accuracy of these formulas is greater the larger N(t) is.

2. The average distance

Here, the viewed model is important in physics and astronomy. In physics, for example,
the model can be used for particles. In astronomy, typical objects are stars, star clusters,
nebulas, galaxies, planetoids, comets, meteors.

n(t) particles are distributed uniformly in the volume V (t). t is the time.
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r(t) = average distance between two particles = edge length of a cube

We obtain the average distance:

r(t) =
(
V (t)
n(t)

) 1
3

Now we treat the special case of the ball:

V (t) =
4
3
· πR3(t)

We solve for the average distance:

r(t) =
(

4π
3n(t)

) 1
3

·R(t)

Now we introduce the particle number density m(t) = n(t)
V (t) . It follows:

r(t) =
(

1
m(t)

) 1
3

The accuracy of these formulas is greater the larger n(t) is.
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