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Abstract

It is well known that our genetic material influences our tendency to develop certain
conditions. Finding the causes behind these predispositions assumes the understanding of
mechanisms handling and maintaining the genome. While the problem is important from
the biological point of view, being one of the basic riddles of life, it also poses interesting
questions which may only be answered by physics. Topics include transport, reaction-
diffusion, polymer physics, equilibrium and non-equilibrium dynamics and chaos, amongst
others. Experimental techniques, like microscopy or molecular biology approaches provide
an ever improving insight in the structure of the nucleus, however, computational and
modelling approaches are still needed to explain unknown aspects of genetics.

In this thesis we tackle the problem of understanding the structure of the nucleus from
the two opposite sides of the experimental “blind-spot”. We develop alternative image
modelling and analysis tools which are able to capture and recreate the “large scale”
density patterns observed in confocal microscopy images of the nucleus. For this, we
introduce a generalized Potts model which is extensively analysed also from the statistical
mechanics point of view. Furthermore, we apply statistical mechanics and graph theory
calculations to study patterns registered with super resolution microscopy techniques. We
investigate the effect of irradiation and light stress on the structure of the chromatin, and
are able to quantitatively support prior experimental observations regarding structural
changes.

Understanding the interaction and classification of proteins, structures which perform
vastly different functions on molecular scales, is also important to achieve the final picture.
We contribute to this by elaborating a framework to assess topological similarity among
these chemicals. Our approach is based on recently developed computational topology
algorithms used to calculate fingerprints of the molecules. We discuss three different
modifications of the framework and investigate them on real-world datasets. In addition,
we recognize that the mentioned fingerprints can be used to calculate the fractal dimension
of certain objects, and offer an intuitive explanation for the observed relation.



Zusammenfassung

Wir wissen, dass unser genetisches Material die Tendenz zu bestimmten Entwicklun-
gen beeinflusst. Um die Griinde fiir diese Veranlagungen herauszufinden bedarf es dem
Verstédndnis der Steuerungsmechanismen, welche das Genom aufrecht erhalten. Dieses
Problem ist als eines der grundlegenden Rétsel des Lebens aus biologischer Sicht sehr
wichtig. Jedoch stellen sich hierbei auch interessante Fragen, die nur mit Hilfe der Physik
beantwortet werden kénnen. Die Themen umfassen unter anderem Transport, Reaktions-
Diffusion, Polymerphysik, Gleichgewichts- und Nichtgleichgewichtsdynamik sowie Chaos.
Experimentelle Methoden wie Mikroskopie oder molekularbiologische Ansétze bieten zwar
immer weiter verbesserte Einsichten in die Struktur des Zellkerns, jedoch sind auch Com-
putermodellierungsansitze noch immer erforderlich um unbekannte Gesichtspunkte der
Genetik zu erkléaren.

In dieser Dissertation behandeln wir das Problem des Verstdndnisses der Zellkern-
struktur von zwei kontriaren Seiten der experimentellen “Liicke”. Wir entwickeln alterna-
tive Werkzeuge zur Bildverarbeitung und -analyse, die in der Lage sind, Dichtemuster auf
der groflen Skale, die durch Konfokalmikroskopie des Zellkerns beobachtet werden, zu er-
fassen und zu reproduzieren. Dariiberhinaus wenden wir Berechnungen der Statistischen
Mechanik und der Graphentheorie an, um aus Superauflésungsmikroskopie gewonnene
Muster zu analysieren. Wir untersuchen die Auswirkungen von Strahlung und leichter
Spannung auf die Chromatinstruktur und sind in der Lage, quantitative Bestétigungen
fiir die experimentellen Beobachtungen struktureller Verdnderungen zu erbringen.

Das Verstédndnis fiir die Wechselwirkungen und Klassifikation von Proteinen, also
Gebilden, welche eine grofie Bandbreite unterschiedlicher Funktionen auf molekularer
Skala ausfiihren, ist ebenfalls wichtig, um ein Gesamtbild zu erreichen. Wir tragen
dazu durch die Ausarbeitung eines Frameworks zur Untersuchung von topolgischen Ahn-
lichkeiten zwischen diesen chemischen Einheiten bei. Unser Ansatz basiert dabei auf kiir-
zlich entwickelten computertopographischen Algorithmen, die fiir die Berechnung der Fin-
gerabdriicke dieser Molekiile verwendet werden. Wir diskutieren drei verschiedene Modi-
fikationen fiir dieses Framework und verwenden es fiir reale Datensétze. Zuséatzlich stellen
wir fest, dass die genannten Fingerabdriicke zur Berechnung der fraktalen Dimension bes-
timmter Objekte verwendet werden konnen und bieten eine intuitive Erklarung fiir die
beobachteten Verhéltnisse.
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Introduction

Curiosity of human nature initiated a journey in discovering the universe a few thousand
years ago. While in prehistoric times experience was passed to consecutive generations by
oral tradition, the development of writing allowed recording observations and spreading
knowledge regarding nature with higher fidelity. This not only enabled what we would
consider systematic research, but also contributed to the cultural evolution of societies [1].

Although most of the early observations were recorded to facilitate the life of the
communities, humans soon developed the desire to understand nature. Behind this desire,
however, there always were pragmatic reasons. In the light of the past millennia, the
journey is far from being over, and mankind’s hope to make new discoveries and the
demand for practical solutions keep pushing the frontiers of knowledge. This synergy
resulted in some spectacular developments in the recent decades.

Scientific knowledge proved to be an extremely important factor contributing to the
development of most of the contemporary societies. Mathematics and physics promoted
the invention of computers which infiltrated in the smallest aspects of our lives. High
technology materials developed by material scientists and chemists are built in most of
the objects we interact with on daily basis. The focus now is on biology, as it is on the
path to revolutionize medicine and extend life expectancy.

The advance of different scientific fields helped us understand how cells, basic building
blocks of life function. While a malfunction of cells is easily observed by its symptoms,
it is often not obvious what causes the abnormal behaviour. In fact, evidence shows that
disorders may have a genetic background. Genetic predisposition is observed not only to
diseases like cancer, cardiovascular disorders or diabetes but also to viral infections and
to conditions like substance dependence, depression or obesity [2-8]. On the other hand,
worm-, fly- and mouse-experiments showed that ageing, known to change the structure and
function of the cells [9-11], can be slowed by administrating drugs targeting the genetic
material of the cells [12].

Understanding the exact role of each gene, the structure of the genome and the mech-
anisms handling and maintaining it is thus crucial, and it is on of the biggest challenges
the scientific community is facing. The question is complex and can only be solved by
putting together the pieces of a huge puzzle. However, many of the pieces are still missing
and while a faint idea about the global picture is already formed, details may play a very
important role.

13



14 1. Introduction

Although experiments designed to reveal the structure of the cell nucleus — the or-
ganelle enclosing the genetic material of the eukaryote cell — have evolved rapidly, certain
aspects of the spatial organization of the genome are still not well understood. Despite
recently developed clever solutions to overcome diffraction effects, the resolution of light
microscopes is still limited and higher resolution microscopy techniques are rather inva-
sive. While, molecular biology approaches offer detailed information on macromolecular
scales, relatively little is known about the folding of the famous double-heliz DNA fibre — a
long macromolecule encoding the genetic information — into chromosomal structures [13].
However, computational methods offer possible explanations by fitting experimental data
with theoretical models, and have the potential to uncover the structures hidden behind
the “blind spot” of the microscopes and other experimental approaches [14-16].

Experimental evidence is strongly underpinning the current belief that the DNA fibre
is coiled in a hierarchical fashion, forming loops on different scales [17-25]. The first level
of folding is organized by histone protein cores around which the DNA wraps about 1.6
times forming nucleosomes. Nucleosomes are the basic, repeating units of DNA packing
and the roughly 10 nm thick fibre with the repeating nucleosome motif is commonly known
as the “beads-on-a-string” structure or the 10 nm chromatin fibre [26-28]. What happens
on the next level of packing is still highly debated. Nevertheless, models suggest that
entropy has an important contribution [29-33] and considerations about the 10 nm fibre
already offer the basis for theoretical and computational modelling.

1.1 Scope

Polymer physics offers excellent tools for studying such fibres both from theoretical and
computational perspectives. Polymer models have been applied successfully to reproduce
and thus explain a variety of experimental observations [34-38].

On the other hand, it is relatively hard to compare configurations generated by polymer
models to confocal microscopy images. Monte-Carlo computer simulations, for instance,
generate an ensemble of configurations. None of the configurations represents the system
by itself, quantities can only be measured in terms of averages over the ensemble. There-
fore, a direct comparison is not possible. Furthermore, computer simulations are costly
and polymer representation of the chromatin fibre must be coarse-grained especially for
large genomes [39-41].

Microscopy images are usually analysed within a generic image processing framework.
Images are segmented to detect different objects, then quantitative measurements may be
carried out and morphological properties may be determined using specialized computer
algorithms [42-46]. However, this task is relatively difficult when the concept of “object”
is not well-defined. This situation is obviously faced in the case of nucleus microscopy
images, unless certain specific loci are marked and the markers clearly define the objects
interesting for the study at hand.

One of the major focus-points of this thesis is to investigate alternative possibilities for
analysing and modelling the spatial density distribution observed in confocal and other
high resolution microscopy images of the cell nucleus. Our methods will be based mainly
on statistical mechanics, graph theory and probability theory. Some of the used approaches
belong to the framework of graphical models, a toolbox which takes advantage of an inter-
play between the aforementioned fields.

Besides investigating and modelling the biophysics of chromatin folding, the organi-
zation and functioning of the chromosomes is also tackled on the molecular scales. A
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huge amount of proteins — large molecules performing a vast amount of functions, and
therefore being extremely important — have been segmented and their structure is stored
in public databases [47]. To determine relations among these molecules, the structures
are then compared and classified with respect to their shape, sequence, function or other
criteria [48-56]. Flexibility turned out to be an extremely important feature of proteins
as it may influence binding affinity among other properties [57]. Still, flexibility is often
handled in a mechanistic or heuristic fashion by most classifiers.

Breaking with tradition, instead of comparing proteins based on calculated alignments
or heuristic features, we propose a method which builds on recently developed computa-
tional topology algorithms to characterize molecules in terms of topological invariants —
numbers which stay constant when structures are changed without altering a chemical
bond. The proposed framework is therefore an excellent alternative for currently existing
methods, handling flexibility in a “native” and mathematically rigorous manner.

During the development of the ideas related to image analysis and topological similar-
ity, several spin-off projects were also exploited: For instance, the model used to describe
confocal microscopy images turned out to be very interesting from the statistical mechan-
ics point of view and its thermodynamic properties were extensively studied. Furthermore,
we investigated and explained the relation of the used topological invariants to the frac-
tal dimension of objects. These spin-offs and the related results will also be presented
alongside the projects which inspired them.

1.2 Structure

The thesis is divided into four parts.

First part In the first part, consisting of two chapters, we sketch the biological and
experimental background and lay down the theoretical foundations of the used methods.

Second part In the second part we describe our approach to the modelling of the spatial
density distribution of the chromatin observed in confocal microscopy images of the cell
nuclei. Our method is based on the generalization of the Potts model. This being part of
the larger family of Markov random fields, we benefit from the tools developed in the latter
framework. Markov random fields provide the necessary tools to learn the parameters of
the model directly from microscopy images. After we ensure that the learning works
properly, we train our model on real world data.

On the other hand, we investigate the generalized Potts model from the statistical
mechanics point of view in the same chapter. We devise a mean field theory which helps
us to gain an insight and make predictions regrading the behaviour of the model. We
control and support our predictions with computer simulations.

Third part In the third part we describe the methods we applied to analyse the structure
of the nucleus and the chromatin either by graph theoretic approaches or by characterizing
the images with intensity distributions and their different momenta. We apply scaling of
the distributions to fit them to each other and to decide whether they belong to the same
family of distributions or not.

In particular, we investigate the effects of the ionizing irradiation over the structure of
the chromatin. We find that while the overall local properties do not change, heterochro-
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matic regions open after irradiation. We also observe that when enough healing time is
allowed to pass before fixation, this decondensation is reversed.

In the same chapter we analyse the spatial relation of the nuclear pore complexes and
lamin B receptor proteins. Our most important finding in this analysis shows, while lamin
B receptors prefer to be located in spatial proximity of the pore complexes, the position of
the nuclear pore complexes are not influenced by the locations of the lamin B receptors.

Fourth part In the last part of this thesis we present methods for assessing similarity
between proteins. The methods are based on recently developed computational topology
algorithms which are used to calculate persistence intervals, certain topological invariants,
of the chemical structures. We introduce three different approaches and apply them on
real world data.

Furthermore, we recognize that if persistence intervals indeed characterize the topol-
ogy, then, they should be able to capture properties like fractality. We derive an intuitive
relation between the fractal dimension of object and the structure of persistence diagrams
and use the diagrams to estimate the fractal dimension of certain objects with high pre-
cision.

While the author of this thesis took part in different collaborations, most of the results
presented here constitute his own work produced following the guidance of the principal in-
vestigators associated with the different projects. This completely excludes the preparation
and the acquisition of the experimental data. Other contributors are acknowledged in the
reference boxes.



Biological and Experimental Background

A Short Survey

In this chapter, we will introduce the biological and experimental concepts important from
the point of view of this thesis. Since the thesis is more inclined towards a theoretical
work, the needed knowledge in the mentioned two fields is not extensive. In turn, we
will spend more time (and text) on the mathematical and physical concepts required to
understand our work.

The two main topics that will be presented here are the structure of the nucleus and
the microscopy techniques used to capture image. Microscopy images are the main data
source laying at the heart of the analyses we will perform to validate our methods.

2.1 Structure and Function of the Eukaryote Cell Nucleus

The existence of membrane bound organelles, such as the nucleus, distinguish Eukaryotic
cells from Prokaryotes [58]. The nucleus (Figure 2.1), usually the largest organelle, plays
an important role in storing, protecting and utilizing genetic information [59]. The nuclear
envelope forms a boundary between the cell’s cytoplasm and the content of the nucleus, a
viscous and amorphous mass of material [59]. The nucleus of an interphase cell contains
the chromosomes in the decondensed state, in form of highly extended and entangled nu-
cleoprotein fibres, often referred to as chromatin [59]. Besides enclosing the chromosomes,
the nucleus contains one or more nucleoli, organelles playing a role in ribosomal RNA
synthesis [59]. The genetic material and proteins interacting with it are suspended in the
nucleoplasm.

2.1.1 The Nuclear Envelope

The appearance of the nuclear envelope can be considered a landmark in biological evo-
lution [59]. Its presence and role of separating the genetic material from its surroundings
is the most important distinction between eukaryotic and prokaryotic cells. The envelope
consists of two parallel membranes separated by a distance of 10 — 50 nm [59]. It pre-
vents ions, solutes and macromolecules from travelling freely between the cytoplasm and
nucleus.

17
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Figure 2.1: Diagram of the nucleus of a human cell.

The two membranes of the envelope fuse at certain locations to embed nuclear pore
complezxes [59], assemblies of different proteins which regulate the exchange of chemicals
between the cytoplasm and the nucleus [59]. Mammalian cells contain several thousand
of pore complexes on average [59].

The inner part of the nuclear envelope serves as attaching sites of integral membrane
proteins [60]. These membrane proteins bind to a filamentous nuclear lamina mesh [59].
The lamina mechanically supports the nucleus and creates attachment sites for the chro-
mosomes [59].

2.1.2 The Chromosomes in Interphase

The human cell contains roughly 6400 million base pairs of DNA [59]. This amount is
shared among 23 pairs of chromosomes. Each chromosome contains a single DNA molecule.
The total cumulative length of these molecules is about 2 m [59]. It is remarkable that a
molecule of this length fits into a container with a diameter of about 8 — 10 pm. While
during cell division the chromatin condenses to the well-known x-shaped structures, the
genetic material is in a diffuse, decondensed state for most part of the cell cycle [61].

What is Known About the Packing of the DNA

The lowest level of packing is governed by groups of histone proteins forming nucleosomes.
A nucleosome core particle (Figure 2.2) consists of 146 base pairs of DNA wrapped 1.67
times around a group of 8 histone proteins [62]. The diameter of a nucleosome is roughly
10 nm [59]. The DNA fibre wrapped around the regularly spaced nucleosomes create a
structure known as “beads-on-a-string” with a packing ratio of 5-10 to 1 [63].

Relatively little is known about the higher level structure of the chromatin fibre. When
chromatin is studied in vitro, a fibre with a diameter of approximately 30 nm is observed
[59]. However, experimental evidence is scarce for the existence of this packing stage of the
chromatin inside a living cell nucleus [64] and therefore, the existence of the 30 nm fibre is
highly debated. From the physics point of view its existence is also doubtful as it supposes
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The Nucleosome

DNA Core histones

Figure 2.2: Schematic diagram of a nucleosome core particle.

a crystal-like structure. Considering that experiments indicate that the mechanisms inside
the nucleus are highly dynamic [65], the stability of such a crystal is questionable.

Regardless of the existence of the 30 nm fibre, experimental evidence supports that
the chromatin is organized in a loopy structure [64,66—68]. Loops form on different scales
and it has been shown that entropy plays an important role in the process [68].

On the next scale, different chromosomes occupy different domains inside the nucleus
[69]. Experiments show that the arrangement of chromosomes in chromosomal domains is
not only a result of geometric constraints [69-72]. Furthermore, highly expressed regions
were found to be located significantly closer to the centre of the nucleus while regions with
lower expression levels, associated with densely a packed chromatin, were found closer to
the envelope [70]. Historically, these denser regions were termed heterochromatin however
according to a more precise definition, the formation of heterochromatin requires the
methylation of histone H3 at lysin 9 (H3K9me) and it is associated with transcriptional
silencing and repression of recombination [73].

Alteration in the structure of the nucleus, the condition of the envelope or the orga-
nization of the chromatin, has been linked to numerous diseases [74-77]. Therefore it is
crucial to understand the structure and the packing of the DNA. Moreover, besides being
an important topic from the point of view of biology and medicine, the problem of un-
derstanding how the genome functions also poses interesting questions for physicists. As
already pointed out, the inside of the nucleus is highly dynamic, creating a stage for a vast
amount of physical processes and understanding them may lead to exciting discoveries.

Defects of the DNA

Lesions in the DNA might be caused by many mechanisms and environmental agents.
UV and ionizing radiation, the presence of genotoxic chemicals, byproducts of normal
metabolic processes are all amongst the possible causes [78]. Besides these factors, the
process of DNA replication is prone to produce errors [79]. In fact, it had been estimated
that the DNA of individual cells may undergo as many as one million DNA changes per
day [61]. Single strand breaks, missing bases, chemically changed bases are all possible
forms of lesions. However, the most harmful damages are perhaps the double strand breaks
(DSB) [80].

DSBs are usually caused by ionizing radiations and there are two important repair
pathways which may be triggered to remedy these errors: homologous recombination and
non-homologous end joining [81]. The homologous recombination uses genetic information
stored in genetically identical or very similar molecules, most often the sister chromatid, to
repair the damage. Non-homologous end-joining, in turn, rejoins two broken ends of DNA
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in a sequence independent way. The rejoining, however, is often facilitated by short, 1 — 6
base-pair regions (microhomologies) at the end of the severed DNA fibres [81]. Because in
the first phase of the cell cycle (Gap 1 or G1 phase), the chromatin is highly compactified
and no redundant genetic information is present, non-homologous end-joining is the main
repair pathway in this phase. During the synthesis (S) and Gap 2 (G2) phase homologous
recombination is predominant [80].

2.2 Microscopy

Experiments have been an important driving force and the only validation technique in
natural sciences, especially when investigating phenomena less accessible to everyday ex-
periences. So it is the case in cell biology, where the dimension of the investigated samples
enforce special experimental techniques. Early investigations were possible by the inven-
tion of the microscope which dates back to the 16th century [82], although unattested
sources report earlier devices. Despite the early developments, improvements of the de-
vice were slow until the wave theory of light was developed around the beginning of the
19th century [82]. By the turn of the century, in the early nineteen hundreds, the limiting
optical resolving powers had been reached [82].

The resolution of the microscopes is limited by diffraction effects. Because of these
effects, a single point light-source will create a circular diffraction image with a bright disk
in the centre and concentric alternating bright and dark disks around it when imaged on
an optical system with circular elements. This pattern is known as the Airy diffraction
pattern while the bright disk in the centre is the Airy disk. According to the Reyleigh
criterion, the resolution can be given as the radius of the first dark ring in the Airy
pattern and it can be approximated by the Abbe equation as

A
TA= 0.615,
where ) is the wavelength of the light and Ay is the numerical aperture [83]. Two points
in the image can be resolved if the distance between the source of the points is larger then
the Airy radius r4. If the optical system is more complicated, the pattern generated by
a point light-source may differ from the Airy pattern and the observed three dimensional
intensity distribution is called the point spread function [84].

In standard light microscopy samples are illuminated by a light-source and images are
formed gathering the light scattered by the samples. However, this results in recording
light scattered from all the molecules suspended in the sample, and the obtained images
might be rather blurry. Fluorescence microscopy remedies this by recording the fluorescent
light emitted by fluorophores — fluorescent molecules [85,86]. Some fluorophores may
be naturally present in the studied samples, others might have been engineered to tag
specific regions or attach to given loci along the DNA [87]. This technique, thus, enables
the sharper imaging of the investigated structures capturing contour of fluorophores on a
very dark background. To trigger fluorescence, fluorphores are excited with high energy
photons, usually in the UV spectrum. Since the emitted fluorescent light has a longer
wavelength than the light used for excitation, the different wavelength can be separated
using spectral emission filters, thus the emitted light can be recorded separately [85].

Technologies to improve image contrast were emerging by the middle of the 20th cen-
tury. The interest of biologists was aroused by the developing of confocal microscopy. This
technique utilizes point-by-point imaging: instead of illuminating the whole specimen, it
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illuminates and images only a single point also blocking the light coming from other areas
of the specimen by allowing the light to pass only through a pinhole in the focal plane
of the objective [88]. By this arrangement the setup is able to produce much sharper
images, the resolution depending on the wavelength of used light and is typically about
200 nm [88].

Because the confocal setup filters and blocks any light source which is not in the
focus plane of the objective, a quasi three dimensional reconstruction of the sample is
possible [88]. The resolution in the axial dimension is limited by diffraction effects and
it is the range of a few hundred nm, also depending on the wavelength of the utilised
light [83].

In the last decades different techniques were developed in order to further improve
the resolution of microscopes. These techniques are collectively know as super-resolution
microscopy methods [89-92]. Some of these techniques aim to improve the point spread
function either by increasing the numerical aperture or by exploiting interference phe-
nomena [89]. Recorded data are post processed using computerized image processing
techniques to obtain the high resolution images.

One of the super-resolution techniques important from the point of view of this the-
sis is termed localization microscopy. This type of microscopy can be approached with
different experimental solutions, however, the idea behind all approaches is to optically
isolate fluorophores and avoid the overlapping of Airy disks [92]. In Spectral Position
Determination Microscopy (SPDM), a particular type of localization microscopy, this is
achieved by using fluorophores which can be bleached in two ways. Besides the regular
irreversibly bleached state, these fluorophores can enter a reversibly bleached state with a
certain probability. From this reversibly bleached state the fluorophores can stochastically
re-enter the fluorescent state in which they emit light for a few milliseconds [92]. Through
this process an uncorrelated fleshing of the fluorophores is achieved and if appropriate
time intervals are allowed between recording diffraction images, the distance between the
molecules recorded in a single image becomes large enough to achieve optical isolation [92].
Applying this technique, a resolution of a few nanometres can be achieved on the surface
of the samples, while the best resolution in middle of thicker samples is about 30 nm.

Shortly, this is the knowledge we will need to motivate certain approaches and to
interpret our findings. Along the thesis, we will complete the presented information, in
case this is needed. Now let us proceed to lay the foundations of our approach.
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Methods and Tools

Theoretical Introduction

In this chapter we will review the theoretical principles laying at the foundation of most
of the analysis we carry out in this work. We will use a variety of tools, mainly from
the fields of physics (especially statistical mechanics), graph theory and computational
topology. We will also describe the framework of graphical models. The term graphical
model is a “cover name” of many different models stemming from different fields, having the
common denominator of utilizing graph theory and probability theory to model complex
phenomena. The concept of graphical models is going to be important for one of the
centre-piece approaches of this thesis.

3.1 Physics

Over the centuries physics helped us to understand the world surrounding us. The
Archimedes principle, heliocentrism, the conservation of matter and energy, the wave
theory of light and the atomic theory of matter, X-rays and the discovery of the electron
are all among the discoveries that helped developing the present day understanding of the
universe.

Around the end of the 19th century, a special field of physics, statistical mechanics
emerged. Statistical mechanics aims to predict macroscopic properties of a system by
studying the structure and interaction of its microscopic components [93].

3.1.1 A System in the Canonical Ensemble

Starting from considerations regarding a system S containing N particles enclosed in a
volume V| immersed in a (infinitely) large heat reservoir S’ at a temperature T, it is pos-
sible to derive the Boltzmann distribution which is central to many statistical mechanics
applications and defines the probability p(F;) of finding the system in a state ¢ character-
ized by an energy F; [94]. The idea behind the derivation of the Boltzmann distribution
is to represent the system S + S’ with innumerably many identical copies of itself, that
is with an ensemble of systems and to think about the original system (S 4 S’) as the
average behaviour of this ensemble. While fixing the state F; of S;, any particular copy
is allowed to be in any of the allowed configurations of S’ compatible with the state of
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S. From other considerations of statistical mechanics we know that any configuration is
equally likely [95]. As a consequence, the probability of a state with a given energy E; will
be proportional to the number of configurations of S’ compatible with the energy F; [94].
Assuming thermal equilibrium in S + S, the expansion of the logarithm of the number of
these configuration yields the proportionality relation

P(E;) ~ e PE (3.1)

where, according to the definition, 5 = 1/kgT, kp being the Boltzmann constant [95].
The right hand side of the proportionality is known as the Boltzmann factor. Normalizing
(3.1) we get the Boltzmann distribution

e~ PE;

(3.2)
The summation in the denominator is over the possible states/configurations of the system
and is called the partition function, being often denoted by Z

Z=> el (3.3)

It can be shown that the partition function Z characterizes the system in thermody-
namic equilibrium as most thermodynamic quantities can be given as functions or deriva-
tives of Z:

F=—-kgpThZz
oF
5=- (w)m
OF
P=- (av)T,N
- (@F)
H=\oN )y

where F' is the free energy, S is the entropy, P is the pressure and p is the chemical
potential [94]. In case of a magnetic system, the magnetic field B replaces the volume [94]:

F=—-kgThhZz

oF
5= <3T>§,N
M:_(W)
0B/ 1N
_ (W)
H= ON T,§7

where M is the magnetization vector.
The specific heat C' and the magnetic susceptibility x can be calculated as fluctuations
of the energy and the magnetization [94]:

€= gz (B - (B)) (3.4
=y () = n?) (35

(3.6)
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The average value of a physical quantity A can be calculated using the Boltzmann
distribution (3.2) as
S A;ePEi

(A) = = (3.7)

The framework described here is sometimes referred to as the (7', V, N) ensemble,
as these are the quantities that are constant in the system. A more widely used term is
canonical ensemble.

3.1.2 Phase Transitions and Critical Phenomena

Thermodynamic functions (e.g. x, C) of systems consisting of interacting microscopic
components may exhibit discontinuities under certain circumstances. If the conditions are
favourable, microscopic components may interact with each other in a strong, cooperative
fashion and their behaviour may be correlated over large domains [96]. Such systems may
undergo a phase transition.

Phase transitions are common in nature, the condensing and freezing of water being
perhaps the most often used examples. They can be characterized by looking at the diverg-
ing thermodynamic function which is usually a derivative of the relevant thermodynamic
potential (the free energy F in the case of the canonical ensemble). If the function is the
first derivative of the free energy (for instance the magnetization M), we are dealing with a
first order phase transition. If the first derivative is continuous, but the second derivative
(like the susceptibility x, this being a derivative of M, thus second order derivative of F’)
is diverging we speak of a second order phase transition or a critical point. If the nth order
derivative is diverging but all lower order derivatives are continuous the phase transition
is an nth order phase transition [97,98]. This is the so-called Ehrenfest classification.

A more modern classification however divides the phase transitions in two groups
depending on whether the processes involve latent heat or not. According to this classifi-
cation, the phase transitions can either be first order or continuous. During a first order
phase transition the system releases or absorbs latent heat and this class corresponds to
the first order phase transitions of the Ehrenfest classification. No latent heat is involved
during continuous phase transitions, corresponding to second, third, etc. order phase
transitions in the Ehrenfest classification [99].

Systems can usually be described by an order parameter ¢ which characterizes the
ordering of the system. The order parameter is usually the first derivative of the relevant
thermodynamic potential (e.g. free energy F' in the canonical ensemble). Its value is zero
in the unordered phase and non zero in the ordered phase [98]. For magnetic systems, M
is often chosen as the order parameter.

As a system in an initially ordered state goes through a phase transition, the order
parameter drops to zero. Assuming ¢ = M, ¢ may drop to zero discontinuously for first
order phase transitions and continuously for second order phase transitions, according to
a scaling law [98]

o~ (1 -T/T¢), (3.8)

where T is the critical temperature. Similarly to the scaling equation (3.8), the specific
heat and the susceptibility also scales according to similar relations [98]:

C~ L - T/Te| ™, (3.9)
X~ |1 —T/Tc| ™. (3.10)

a, § and «y are called critical exponents.
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There is yet another quantity important in continuous phase transitions: the corre-
lation length £. In a magnetic spin system, for instance, where o; denotes the state at
position 7;, a correlation function G(7) can be defined as

G(ri =5 =7) = (0i0j) — (i) {0})- (3.11)
For large enough distances, the correlation function decays exponentially as
G(7) = e77/%, (3.12)

where r = |7]. Second order phase transitions can be characterized by diverging correlation
lengths £ [100] and the correlation length also scales around the phase transition according
to the relation

E~ (1-T/T0), (3.13)

where v is the critical exponent for the correlation length [97]. However this is only true
for infinitely large systems. For finite systems, the correlation length is limited by the size
of the system and £ ~ L, where L is the characteristic system size. On the other hand,
critical exponents are not independent [101]. This allows us to perform finite size scaling
analysis [102] which is especially useful in computer simulations.

3.1.3 Computer Simulations

Unfortunately, the vast majority of the models is analytically intractable. This is due to
the exponentially many terms in the partition function Z which makes calculating averages
very difficult if not impossible. Monte-Carlo computer simulations are popular tools and
they may come handy in such cases. These methods are used in many branches of science
(physics [103], chemistry [104], applied mathematics [105], biology [106], psychology [107]
etc.), but they proved to be useful also in finance [108], risk analysis [109] or different
industrial applications [110-112]. To understand Monte-Carlo simulations, however, first
we need to discuss some concepts such as Markov chains, ergodicity and balance.

Markov Chains and Markov Processes

In its simplest definition, a Markov Process is a stochastic process which does not have
memory and its present state depends only on its previous state. A Markov chain is a
time series in which the elements are consecutive configurations generated by a Markov
process [113].

For a given finite system S theoretically we could enumerate and index all the possi-
ble configurations which may be adopted by the system. Assuming that the time series
(St)ten+ defines a Markov chain and that the system at a given time ¢ has a configuration
k while Sy4+1 corresponds to the configuration [, then there must be a finite transition
probability 7y from state k to state [. The Markov process which generated (S¢);en+ 1S
defined by the transition matriz = [113].

A Markov chain is thus an ensemble of configurations. However, in order to be useful
from the statistical mechanics point of view, a Markov process has to satisfy certain
conditions:

e normalization
o ergodicity

e balance
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Normalization: Given any initial configuration k, the configurations {1,2,...,k, ...,
...} define a sample space, that is:

> m =1 (3.14)
l

Ergodicity: Broadly speaking it means, that the systems average is the same, no matter
if averaged over time or space. In mathematical terms this can be defined as follows: given
two configurations k and [, if p; > 0 and p; > 0, pi denoting the probability of finding the
system in state k, then there must be a positive integer number n such that (7™)g; > 0 [113].

Balance: In generic case, satisfying global balance is required. This means that the in
and out probability flux to and from a given state is equal, that is,

> TPk =Y Tpi, (3.15)
k k;

where p; is the probability of state k. However, since we eventually are interested in
generating ensembles with Boltzmann distribution, we can replace py with the form in Eq.
(3.2). This yields

Zﬂ'kle*ﬁEk = Zﬂ'lkeiﬁEl. (316)
k k
Because of the normalization (3.14), the sum on the right side vanishes
ZﬂklefﬁE’“ = e PEI (3.17)
k

This, in turn, means that if global balance holds, the Boltzmann distribution is the eigen-
function/eigenvector of = with eigenvalue 1 [113].
A stronger condition than global balance is detailed balance:

’/Tkle_BEk = ﬂ'lke_ﬁEl, (3.18)

and it is easy to see that if detailed balance holds, then global balance also holds.

The three enumerated properties are very important from the statistical mechanics
point of view as it is possible to show that if a Markov process satisfies these properties than
it generates a Boltzmann ensemble, that is, an ensemble characterized by the Boltzmann
distribution (3.2) [113].

3.1.4 The Metropolis algorithm

In the picture of the concepts discussed in the previous paragraphs, we can use a Markov
chain to generate an ensemble with configurations characterized by energy values following
the Boltzmann distribution. Because of ergodicity, we can use the averages calculated over
the ensemble to estimate time averages, which are normally measured during experiments.
The question is how to chose the transition matrix .

Note that for larger systems we cannot define 7w numerically as its dimension grows
exponentially with the size of the system. Therefore, we have to propose a transition
probability function, a function of the state S;, the state in which the system is before
the transition (initial state), and the state Sy, the state in which the system will be after
the transition (final state). The transition probability function 7(S; — Sy) gives the
probability of going from the configuration S; to configuration Sy.
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The detailed balance equation (3.18) of the transition probability function =(S; — Sy)
can be rearranged in the following form:

m(Si = 5f) _ _p[B(s;)-E(S))]
- i 1
W(Sf — SZ) ¢ ’ (3 9)

where F(S;) is the energy of the configuration S;. The aim is thus to find a transition
probability which satisfies the ratio (3.19). The Metropolis idea [114] defines a suitable
function 7(S; — Sf) as

7(S; = S¢) = min {1, e_B[E(Sf)_E(Si)]} : (3.20)

The Markov chain thus can be built by a simple procedure. The Metropolis algorithm
is summarized in Algorithm 1. The algorithm first initializes the Markov chain S; at
t = 1. The initial state can be a random configuration or a predefined state. Then, until
t < tmaz, tmae being the number of total Monte-Carlo time steps, the following steps
are repeated iteratively: First, another configuration S? is proposed. There are different
mechanisms to propose SP. For instance, SP can be drawn randomly from the set of
possible configurations or it can be a randomly changed version of S;. Then, the proposed
configuration is accepted with a probability dictated by the Metropolis transition function
(3.20) 7(Sy — SP). If the proposed configuration is rejected, the current configuration will
be assigned to the next state of the Markov chain, that is, Si41 = S;. Last t is increased
by one.

Algorithm 1 The Metropolis algorithm

1: procedure SAMPLE(S3, tyqz)

2 Initialize S1

3 fort=1,t <tme,t=1t+1do

4 propose randomly an SP configuration

5: Si+1 < MAKETRANSITION(Sy, S?, 3)

6 end for

7: end procedure

8: procedure MAKETRANSITION(S;, SP, [3)

9 if £(SP) < E(S;) then > E(SP) is the energy of the configuration SP
10: Sf 5P
11: else
12: x < rand(0,1) > z is a uniformly distributed on the interval [0, 1]
13: if © <exp{—B[E(SP)— E(S:)]} then
14: ST ¢« g
15: else
16: ST« 8,
17: end if

18: end if
19: return S/
20: end procedure

Running the Markov chain long enough, the described procedure guarantees that the
energy of the generated samples will be distributed according to the Boltzmann distribu-
tion (3.2). However, since the chain was started from a particular configuration, the first
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samples might deviate from the distribution. Therefore, when calculating averages, the
first samples are usually not considered. After a given thermalization time the Markov
chain represents a Boltzmann ensemble of the simulated system. This is achieved with-
out knowing the exact from of the distribution, and it is a big advantage as calculating
the partition function Z would be very costly even for small systems, since the number of
terms in the summation scales exponentially with the size of the system. The trick applied
here is to look at ratios of probabilities, thus Z will be cancelled out.

Besides the Metropolis formula (3.20), there are, of course, other possibilities to chose
the transition probability. Another popular choice is implemented by the Glauber dynam-
ics [115]. In this case, the transition probability has the form of

o BlESH)—E(S))]

1+ e BlESH-E(S)]

m(Si — Sy) = (3.21)

which also satisfies the detailed balance condition.

Once the Markov chain is implemented and samples are gathered, averages can be
calculated. For instance, in the case of a magnetic spin system, like the Ising model [116],
the magnetization can be calculated as the average value of the spins. From averages of
the magnetization we can calculate the susceptibility x by using equation (3.5). Similarly,
the specific heat C' can be estimated through calculating ensemble averages of the energy
and using equation (3.4).

By studying how the values of the measured and derived quantities change as the
function of the temperature, we can study the behaviour of the system in its ground state
or draw conclusions about the aspects of the exhibited phase transitions.

3.1.5 The Ising Model

All concepts introduced so far are rather abstract. To illustrate how simulations work in
practice, we use the already mentioned Ising model [116] as a concrete example. The Ising
model is a simple lattice model [117] of ferromagnetic materials [118].

The model consists of spins which can either point “up” or “down”, arranged accord-
ing to a lattice structure. The model has been studied in different dimensions and on
different lattices [119-128]. Here we present the two dimensional LxL square lattice case
as illustrated in Figure 3.1. The energy of the system is defined through the Hamiltonian

H = —J]ZO'iO'j —BIZJ,;, (3.22)
(i,3) i

where o; is the direction of spin ¢. The “up” direction is encoded by the value 1, the
“down” direction is indicated by the value —1. Jy is the strength of the coupling between
the spins and By is the external magnetic field pointing in the “up” direction.

The model was the first of its kind to properly capture the order-disorder phase transi-
tion at the Curie temperature, a phenomenon we can also study by computer simulations.
In Sections 3.1.4 we already introduced the general theory behind these simulations. Here
we will elaborate on the concrete steps we need to take to measure the average magneti-
zation (M), the specific heat C' and the magnetic susceptibility x of the Ising model with
no external field (B; = 0).

Configurations of the system are numerically stored as LxL matrices with values +1.
Each entry in the matrix corresponding to a spin in the system. The total number of spins
is N = L?. A value 1 represents a spin pointing “up”, a value —1 represents a spin pointing
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Figure 3.1: The two dimensional Ising model on a square lattice.
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“down”. The energy E(S;) of the configuration S; (represented by a matrix) is calculated
by the Hamiltonian (3.22), thus o; takes the value of the entry with linear index i in the
matrix representation of S;. If the magnetic field By is zero, the lowest energy is achieved
when all spins point in the same direction, either “up” or “down”. Thus the ground state
is degenerated in this case. If B is non-zero, the ground state will be determined by the
sign of By. If the field is positive, the ground state will be reached when all spins point
upwards. If the field is negative, all spins point down in the ground state. As already
stated, we will simulate the By = 0 case.

At finite (non-zero) temperatures, the entropic effect of the temperature will manifest
itself and, depending on the rapport of T with Jj, the system will undergo a second order
phase transition [129]. Since T" divides J; in the Boltzmann factor (3.1), the temperature
and the coupling are not two independent parameters of the simulation. Therefore, it is
convenient to set J; to a constant value, and vary only the temperature. For convenience
we will set the coupling J; to 1.

As indicated earlier, we chose the average magnetization (M) as the order parameter
of the system. To simulate the system at a desired temperature T, we fix the inverse
temperature 3 = 1/kpT and sample K’ configurations using the Metropolis algorithm.
However, to ensure a faster equilibration and more representative samples, the algorithm
is fine-tuned for spin-systems. In the updated version of the algorithm, described in Algo-
rithm 2, new configurations are proposed by flipping a randomly selected spin and saving
every Nth state of the Markov chain (n4.;4;s = N in Algorithm 2), thus allowing the chance
for each spin to be flipped between two consecutive states of the chain. The algorithm can
be summarized as follows: An initial state Sj is chosen and ¢ is set to 1. Then, in every
iteration the algorithm tries to flip a random spin. The flipped configuration is accepted
with the Metropolis transition probability (3.20). After N flip-trials the configuration of
the spins is saved in Sy and ¢ is increased by one. The N trials between two consecutive
saved states define a Monte-Carlo step. Algorithm 2, setting t,,4, to K.

Since the Markov chain in the Metropolis algorithm is started from an arbitrary config-
uration which might not be characteristic for the simulation temperature 7" (e.g. a random
configuration for 7' = 0), an initial thermalization is required to assure that equilibrium
is reached. Equilibrium in this case means that the Markov chain generates samples with
energy values distributed according to the Boltzmann distribution. To achieve this, the
first k samples will be discarded, keeping only K = K’ — k samples. To keep indexing of
samples simpler, we re-index the kept samples as S1 = Si+1, S2 = Skt2, - - -

Average values of the magnetization and energy can be calculated using these samples
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Algorithm 2 The Metropolis algorithm

1. procedure SAMPLE(S, tmaz, Mtrials)

2 Initialize S

3 fort=1,t <tmes, t =1t+1do

4 St Sy

5: for n =1, n < ngais, n =n+ 1 do

6 propose randomly an SP configuration
7 St < MAKETRANSITION(S?, SP, 3)
8 end for

9 St+1 «— S

10: end for

11: end procedure

12: procedure MAKETRANSITION(S?, SP, 3)

13: if £(SP) < E(S?) then > E(SP) is the energy of the configuration SP
14: ST« gp

15: else

16: x < rand(0,1)

17: if 2 < exp{—B[E(SP) — E(S%)]} then

18: ST « sp

19: else

20: ST« i

21: end if

22: end if

23: return S/
24: end procedure

in the following way:

K
(M) = NLKZZQ(SQ, (3.23)

t=1 1
K
(%) = g S-St (S) (324
(E) = %E(St), (3.25)
1
(E?) = ?E(St)g» (3.26)

where 0;(S;) is the state of spin 4 in configuration S; and F(S;) is the energy of the system
in configuration S; calculated using the Hamiltonian (3.22). Then, the specific heat C' and
the susceptibility x can be calculated using formulas (3.4) and (3.5).

Performing the simulation and gathering statistics for different temperatures 1" we can
plot the order parameter (M) as the function of the temperature. For convenience, during
the simulation we set kg = 1. Therefore, the temperature is expressed in units of kp.
Furthermore, we usually plot the averages as a function of § = 1/kgT instead of T. As
a consequence of using kg = 1, considering also that J; = 1, 8 is expressed in units of
Jr/kp.
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The plot in Figure 3.2 shows the average magnetization (M) (which is also used as
order parameter) for a 100x100 Ising model after £’ = 5000 thermalization Monte-Carlo
steps, with the average calculated over K = 10° samples. As this plot illustrates this, the
average magnetization is close to zero in the high temperature (small ) range. As the
temperature decreases (increasing () and reaches the Curie temperature T, the system
reaches its critical point and undergoes a phase transition. According to the exact solution,
Te = 2.2692 [129]. This corresponds to 8 = 0.4407, which is around the value where we
observe a jump in the order parameter.

0.8t

0.61

0.4+

0.2r

0.3 0.4 0.5 0.6 0.7

B

Figure 3.2: The average magnetization (M) used as order parameter, plotted as the function of
the inverse temperature [ for the two dimensional Ising model. Note the phase transition occurring
around S = 0.4407.

Figure 3.3 presents the diverging specific heat C' and the magnetic susceptibility x.
Although the plots show a jump in these two quantities, the divergence is not real as
this could only happen in infinitely large system. In order to observe real divergence, the
correlation length & should be infinitely large. Here, however, the correlation length is cut
by the finite size of the lattice.

The computer simulation method presented through the case study of the Ising model
can be easily adapted to many models. It constitutes a generic framework for simulations
in different sciences, as we shall see this later.

3.2 Elements of Graph Theory

Graph theory [130] emerged from the field of mathematics as a much needed tool to treat
problems involving pairwise connections among different entities. The famous paper by
Euler regarding the problem of seven bridges of Kénigsberg is often considered as the first
graph-theoretic approach to solve a problem [131].

From the point of view of the present thesis, graphs are twofold important. First,
they appear as a backbone on which probabilistic models are built (see graphical models
in section 3.3 and our applications in Chapter 4), secondly, they offer a framework for the
analysis of certain data (Chapter 5). Therefore, we consider it important to highlight the
basics of graph theory, at this stage confining ourselves only to definitions.
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Figure 3.3: The specific heat C' (in Panel A) and the magnetic susceptibility y (Panel B) as the
function of the inverse temperature § for the two dimensional Ising model.

A graph G is defined as the tuple G(V, E), where E is the set of edges between ver-
tices (or nodes) contained by the set V. The notion emphasises the data-structure-like
construction of graphs: given a set of vertices V relations among nodes are stored in edges
(a,b),a € V,b € V, that is, E = {(a,b)|a € V,b € V} which implies E C L x L. A graph
is directed, if the set of edges consists of ordered pairs of vertices. Unless otherwise stated,
we will work with undirected graphs, that is, (a,b) = (b, a) for any edge (a,b) € E.

Small graphs are easily illustrated with a diagram similar to the one in Figure 3.4, nodes
being represented by the black points while edges are marked by the lines connecting the
nodes. However, it is difficult to embed more complicated graphs in the two dimensional
space. In fact, the problem of embedding proves to be relatively difficult and, besides the
aspects of visualization, it finds many applications which are much beyond the scope of
this section [132]. In the following we introduce the nomenclature we will use and some

1

Figure 3.4: A sample graph G(V,E) with vertices V' = {1,2,3,4,5} and edges F =
{(1’3)7(1’5)’(273)’ (374)7(3’5)7(475)}'

basic concepts which might occur several times in the following stages.

A vertex v is said to be incident with an edge e if v € e. The two vertices incident
with an edge e are the end-vertices or ends of e, while e joins its two ends. Two vertices
x and y are adjacent if they are joined by an edge. Two edges are adjacent if they have
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a common end. If all vertices in a graph G are pairwise adjacent, then G is a complete
graph.

The graph G'(V', E') is a subgraph of G(V, E), if V' CV and E' C E.

The set of vertices adjacent with vertex x are the neighbours of x and they are denoted
by n(x). Similarly, the set of vertices adjacent with any of the vertices from a set U C V
are denoted by n(U) and are called the neighbours of U.

The degree of a vertex x is defined as the number of the neighbours of z, that is,
deg(x) = |n(x)|. The average degree deg(G) of a graph G can be computed as

Z deg(v (3.27)

veV

deg(G |V|

where |V| denotes the number of vertices in V.
It is possible to construct the degree distribution of a graph as

Z Sd,deg(v (3.28)

vEV

where ¢ is the Kronecker symbol. Then, of course, deg(G) must be the mean value of the
degree distribution h. Indeed, calculating the mean of h, we get

i dh(d) = Z Z Sd,deg(v Z deg(v) =: deg(Q). (3.29)
d=1

vEVd 1 vEV

A path is a nonempty graph P(V, E), so that, V = {x1,x2,..., 2} and E = {(x1, x2),
(x2,x3),...,(xxk—1,2k)}. The path P connects x1 with x. x; and z, are the ends of the
path P. The number of the edges in F, that is, |F| is the length [(P) of the path P. A
graph G(V, E) is connected, if there is a path between any two vertices from V.

In addition to the enumerated definitions, we introduce the concept of weighted graph.
A weighted graph G(V, E) is a graph in which a real number w(e) is assigned to each edge
e. w(e) is the weight or length of e. In order to have a unified framework, we can assign
weights 1 to all edges €’ of an unweighted graph G'(V'E’) so that w(e¢’) = 1, Ve’ € E'.
Then we can redefine the length of a path P as

(P)= > wle), (3.30)

e€&(P)

where &(P) denotes the set of edges of P.

3.3 Probabilistic Graphical Models

Probabilistic graphical models [133] are models taking advantage of an interplay between
graph theory and probability theory. These models represent the dependencies of ran-
dom variables with graph structures, thus creating a relatively transparent framework
for modelling complex data. The versatility of graphical models is already indicated by
its popularity and the numerous applications from different fields ranging from computer
vision to statistical mechanics [134-139].

There are two main types of graphical models: directed and undirected. As the names
suggest they are based on directed and undirected graphs, respectively. While directed
graphical models are very useful tools especially in machine learning and artificial intelli-
gence, undirected graphical models are more popular in physics applications. As we will
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see later, this is not a question of preference, but has rather well grounded reasons. For the
sake of completeness, however, we will introduce directed graphical models through the
means of a simple example. We will invest more effort in describing undirected graphical
models and emphasising their connections to physics.

Directed graphical models [140], also known as Bayesian networks or belief networks
represent a set of random variables and their conditional dependencies via directed graphs.
One of the classical textbook examples, as presented in [141], demonstrates how states and
events like rain fall, the functioning of the sprinkle, having a wet pavement, the slipperiness
of the pavement and the current season are related/conditioned upon each other. The
enumerated events and conditions constitute a system we might want to model. Thus, we
will represent each element by a random variable (season — Xi, rain fall — X5, sprinkler
— X3, wet pavement x4, slippery pavement — X5). Each variable is binary (for instance
X3 = 1 means the sprinkler is on, X3 = 0 means the sprinkler is off), except X; which
has four states. This defines a state space of 64 states and it seems fairly complicated to
assign probabilities for each of the states.

To simplify the model, we apply common sense, and illustrate the dependencies of the
variables by a directed graph, for instance, by the one shown in Figure 3.5. Doing so helps

Season

()
VAR
Sprinkler @\ /@ Rain
? Wet

Slippery

Figure 3.5: A simple Bayesian network, representing the dependencies of five random variables.

us to understand the dependencies among the random variables. While this seems easy in
a simple model like the present one, it gets complicated for complex models and thinking
in terms of directed graphs facilitates the modelling process. The graph clearly indicates
the factorization, and, based on the chain rule [142], we can rewrite the joint probability
distribution as

P(x1, 29,23, 24, 25) = P(x1)P(x2|z1)P(23]21) P(24|22, 23) P(25|74), (3.31)

where P(x1, 2,3, 24, 25) is a shortened notation for P(X; = x1, Xo = x9, X3 = 23, X4y =
x4, X5 = x5), and P(X3]|X1) denotes the conditional probability of the event Xo = z9
given the event X; = x1. The product on the right-hand side of (3.31) requires only 24
parameters, significantly less compared to 64 parameters required by the joint distribution.
Thus, applying a Bayesian network, we simplified the initial model represented by the joint
probability distribution P(xz1, z2, z3, 24, T5).

3.3.1 Undirected Graphical Models

Undirected graphical models, also known as Markov random fields [143], similarly to
Bayesian networks, represent the relationships of random variables with a graph struc-
ture. However, as the name suggest, undirected graphical models rely on undirected
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graphs, graph edges indicating stochastic interactions between random variables repre-
sented by nodes.

According to the definition, Markov random fields characterized by a graph G(X, E)
describe a joint probability distribution over a set of random variables X7, Xo,..., X, as
products of compatibility functions 1:

P(F) = P(a1, 22, ) = % TT ve(), (3.32)
cE?

where the product is over cliques 2, in the graph G and Z is a normalization constant.
Cliques are complete subgraphs of a graph, an example is given in Figure 3.6. The com-

Figure 3.6: A simple Markov random field illustrating cliques with different colours. The cliques
are {(le XQ) X3)’ (X37 Xﬁ)a (X47 X5, X67 X8)a (X47 X?)}

patibility functions v assess the affinity between their arguments. The higher the value of
Y(x,.x;,..) (i Tj, .. .) 18, the more compatible the values x;, z;,... are.

If P(Z) is strictly positive (it is nowhere zero), according to the Hammersley-Clifford
theorem the joint distribution can be represented as a Gibbs measure [143]

1 ~
P(%) = Ee*“f@), (3.33)

where £(¥) is called the energy function. Since the right-hand side of Equation (3.32) and
that of Equation (3.33) must be equal, the energy must have the form

E(E@) == logtpe(ae) = = > elde), (3.34)
where the functions ¢ are called potential functions.

3.3.2 Relation to Physics

Equations (3.33) and (3.34) reveal a clear relation between Markov random fields and the
formalism of the canonical ensemble. They resemble equations (3.2) and (3.22). In fact,
Markov random fields emerged from lattice models of physics, like the Ising model, as a
more generic and widely applicable framework. Therefore, it is not surprising, that &£ is
called energy and the Z normalising constant in equation (3.32) is termed as partition
function. However, these quantities do not necessarily have physical meaning. The case
is similar with the potential functions. In most of the cases they have nothing in common
with physical potentials.

It is clear now, that the Ising model described in Section 3.1.5 is a special Markov
random field, with a graph defined by a two dimensional square lattice and potential
functions o;0;, where 7 and j are neighbouring spins.
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Ising models, however, were studied not only on regular lattices, but also on graphs
with different properties [144-146]. There are also many modifications of the applied
energy function and it has become popular in image segmentation applications [147-149].

On the other hand, statistical mechanics also benefit from the synergy created by the
interdisciplinary approaches to applications of these models. Methodologies developed in
the generic framework of Markov random fields are applicable for the Ising model and its
generalized versions, as we will see in later parts of this thesis.

3.4 Elements of Algebraic and Computational Topology

As some of our approaches have a theoretical background relying on computational and
algebraic topology, this section will be dedicated to the introduction of the most important
theoretical concepts from the point of view of this thesis. Most of this introduction is based
on references [150] and [151].

Algebraic topology is the field of mathematics which barrows methods from abstract
algebra to study topological spaces. A topological space is, in fact, a set of points with
neighbouring relations. More exactly, for each a € A, let N(a) denote a non-empty
collection of subsets of A, called the neighbourhoods of a. Neighbourhoods are required to
satisfy the following conditions:

1. if n(a) € N(a), that is, if n(a) is a neighbourhood of a, then a € n(a).

2. If n(a) and n'(a) are neighbourhoods of a, then n”(a) = n(a) N n'(a) is also a
neighbourhood of a.

3. If n(a) is a neighbourhood of a and n’(a) C n(a), then n/(a) is also a neighbourhood
of a.

4. If n(a) is a neighbourhood of a and n/(a) = {bjb € n(a)}, then n’(a) is also a
neighbourhood of a. n/(a) is called the interior of n(a).

If the conditions are satisfied than the structure consisting of A and N(A) is called a
topological space [152].

3.4.1 Simplical Complexes

Let ug, u1, ..., u, denote points in the R% space. A point z = Zle Aiu;, where \; € R, is
an affine combination of u; if Zi?:l Ai = 1. The affine hull is the set of affine combinations.
If the vectors u; — ug and uj — ug, Vi,j € {1,2,...,k} are linearly independent, then th
vectors ug, ui, ..., u are affinely independent.

An affine combination = Y A\u; is a convexr combination if A; > 0,Vi. The set of
convex combinations is called the convex hull. A k-simplex o is the convex hull of k + 1
affinely independent points (o = conv{ug, u1,...,ur}). The dimension of o is k. The first
four k-simplexes correspond to well-known geometric objects: a O-simplex is a vertex, a
1-simplex is an edge, a 2-simplex is a triangle and a 3-simplex is a tetrahedron.

If o = conv{ug,u1,...,ux} is a k-simplex, then the convex hull 7 of any non-empty
subset of the k4 1 points is a face of o (denoted as 7 < ). T is a proper face if the subset
is not the entire set (7 < o). The boundary of o is the union of all of its proper faces.

A simplical complex is a finite collection K of simplexes, such that, if 0 € K and 7 < o,
then 7 € K, furthermore, if 0’ € K and ¢” = 0 No’, then ¢” = () or, alternatively, ¢’ < o
and o’ < o’.
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The nerve of a set A is the collection of all non-empty subcollections whose sets have
a non-empty common intersection, that is

NrvA ={BC A|(\B#0}. (3.35)

Let X be a finite set of points in R%. Let B,(r) = z 4+ rB? denote a closed ball
with radius r, centred around point . The Cech complex of X and r is the nerve of the
collection of the balls B,(r), z € X, but the balls in the complex are represented by their
centres. Mathematically speaking,

Cech(X,r) = {a C X[ () Balr) # @} . (3.36)

rEoT

A complex related to the Cech complex is the Vietoris-Rips complex. The latter contains
all simplexes whose edges are in the complex:

VR(X,r) ={o C X|diam(o) < 2r}, (3.37)

where diam(o) is the diameter of simplex o. Evidently, the edges in the Cech and Vietoris-
Rips complexes are the same for the same radius r, furthermore, é’ech(X ,7) CVR(X,r)
as the latter contains every simplex faced by the edges in the complex.
The Voronoi cell V,, of a point z € X is the set of points for which x is the closest,
that is,
Vo= {y e Rz —yl| < o’ — yll.Va' € X\ {}}. (3.38)

The collection of the Voronoi cells V,, as x runs over the elements of X is called the Vorono?
diagram.

Connecting the centres x and 2’ (x,2’ € X) of those Voronoi cells V,, and Vs which
meet in a common piece of their boundary, we get the Delaunay complexr. A geometric
realizations of the Delaunay complex is known as the Delaunay triangulation. Because
of its construction, the Delaunay triangulation is the dual of the Voronoi diagram. In
fact, the Delaunay complex is the nerve (more precisely is isomorphic to the nerve) of the
Voronoi diagram:

DT(X) = {a CX|(Va# @} . (3.39)

Denoting with R, (r) the intersection of the ball B, (r) with the Voronoi cell V,,, that
is, Ry(r) = Bg(r) NV, we define the alpha complex as the nerve of the collection of Ry (r)
as x runs over the elements of X:

Alpha(X,r) = {a C X| ) Ra(r) # @} . (3.40)

Obviously, because R,(r) C V., the alpha complex is a subcomplex of the Delaunay
complex.

3.4.2 Homology Groups

Let L be a simplical complex and &k a dimension. A k-chain is defined as a formal sum
of k-simplexes in L: v = )" ¢;04, where ¢; are coefficients. k-chains are added component-
wise: v+ = Y (¢; + ¢))oi, where v/ = 3" clo;. Coefficients are often only from the set
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{0,1} and they satisfy 1 +1 =0 (modulo 2 coefficients). The k-chains, together with the
addition operation form the group of k-chains denoted as (Cy, +) or simply Cy.

We can redefine the boundary of a k-simplex as similar formal sum of its £ — 1 dimen-
sional faces:

k
oo = Z O (3.41)
j=0

where the o_,, denotes the face in which u; is omitted.
For a k-chain, the boundary is the sum of the boundaries of its simplexes,

hy =) cibpo, (3.42)
that is, the boundary maps a k-chain to a (k — 1)-chain. We denote this by
Ci, — Ci_1. (3.43)

Based on the definition, dx (v + ') = Oy + 9/, which is the defining property of homo-
morphism, a map between groups commuting with the group operation. Therefore Jy is
referred to as the boundary map or boundary homomorphism. The chain complez is the
sequence of chain groups connected by the boundary map:

LEe oo 2oy 2oy B (3.44)

A k-cycle is defined as p-chain with empty boundary: 9y = 0. Since 0 commutes with
the addition operator, the k-cycles and the addition form the k-th cycle group, denoted as
(Z(L),+), or simply Z(L).

A k-boundary is a k-chain that is the boundary of a (k + 1)-chain: v = 0k, where
k € Cpgy1. Since 9 commutes with the addition operator, the k-boundaries and the
addition form the k-th boundary group, denoted as (By(L),+), or simply Bx(L) (not to
be confused with B, (r), the ball with radius r around point x).

The k-th homology group is the k-th cycle group is the k-th cycle group module the
k-th boundary group, that is, Hx(L) = Zg(L)/Bg(L). The k-th Betti number ¥ is the
rank of this group: ¥ = rank Hy(L).

Elements of Hy are eobtained by adding all k-boundaries to a given k-cycle. The
elements are called homology classes and they are homologous.

3.4.3 Persistent Homology

Let L be a simplical complex and f : L — R a monotonic (non-increasing) function, that
is, f(o0) < f(r) & o < 7. This implies that L(l) = f~!(—o0,l] is a subcomplex of L,
VI € R. We can find n + 1 values for [ denoting them as by lg,l1,...,1,, such that

WCLyCLiC...CL,CL, (3.45)

where L; = L(l;). This sequence is called a filtration. Exemples for this are the Cech and
the alpha complexes with the radius r corresponding the parameter .

Since for any ¢ < j there is an inclusion map from the underlying space L; to that
of Lj, an induced homomorphism f;”7 : Hy(L;) — Hg(L;) must exist for each dimen-
sion k. The filtration thus corresponds to a sequence of homology groups connected by
homomorphisms:

0= Hy(Lo) —» He(L1) — ... — Hy(L,) = Hy(L). (3.46)
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Homology classes may “born”, “stay alive” or “die” as we go from L; 1 to L;. We
group classes according to intervals of [ values over which they were “alive”.
The k-th persistent homology groups are the images of the homomorphisms

H}’ = imf}”, (3.47)

for 0 < i < j < n. The k-th persistent Betti numbers ﬁz’j are the ranks of these groups:
¥y) = rank H}”.

Persistent Diagrams We visualize the collection of persistent Betti numbers by plot-
ting persistent diagrams in the following way: We can calculate the number MZ;J of inde-
pendent k-dimensional classes that were alive over the interval [l;, [;] as

pl = O =0 = 07T =0, (3.48)

We will represent the classes with a horizontal bars on a graph. The abscissa will corre-
spond to [. Each class will be represented by a bar, therefore, we will draw sz bars with
starting point at /; and end-point at ;. The horizontal order of the bars is arbitrary.

The persistent diagram prepared in this manner can be considered to be a barcode or
fingerprint of the topology of L.
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Chapter Summary

Confocal microscopy images provide a non-invasive insight into the structure of the nu-
cleus. Since the resolution of the microscopes are limited by diffraction effects, these
microscopes are unable to resolve the chromatin fibre. However, the data provided by
images recorded with these techniques is still very valuable as it captures the spatial den-
sity distributions of the chromatin in a quasi three dimensional manner. Despite of the
accurate information regarding the three dimensional arrangements, modelling approaches
which capture these distributions are scarce.

In this chapter, we introduce a generalized Potts model, which is able to recreate the
density patterns observed in the microscopy images. The generalization consists in the
introduction of interactions between all spin states. A magnetic field, acting differently
upon different states is also introduced. In the most generic case, the model is parametrized
by the interactions between the states and the strengths of the field for each spin state
separately. We benefit from the relation of the Potts model and the more general class of
Markov random fields, and use learning techniques developed in the latter framework to
learn the parameters of our model using microscopy images as training data. Although
learning parameters is common in image processing techniques using Markov random
fields, it is less often the case in physics related applications. Therefore, we introduce the
concept of learning through a simple example in which we estimate the temperature of the
Ising model. Then, we describe the learning procedure used to train the generalized Potts
model. After testing the performance of the learning we apply the approach on nucleus
images and demonstrate that the framework correctly captures the density features of the
images.

As the generalized model is interesting from the statistical mechanics point of view, we
also study the thermodynamic properties of the model on a constrained parameter space.
We engage in theoretical calculations which predict a shift in the transition point as we vary
the model parameters. The developed mean field theory also indicates a highly degenerate
ground state for parameter combinations which correspond to an antiferromagnetic model.
We support our theoretical findings with computer simulations. Moreover, Markov Chain
Monte-Carlo calculations reveal a variety of interesting phases exhibited by the model.
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4.1 The Modified Potts Model for Confocal Microscopy Images
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A problem faced by modern biology and medicine is the understanding of the organiza-
tion of the chromatin fibre in the nucleus [153-155]. The structure of the fibre is know to
have a major impact on different precesses occurring in the nucleus. These process include
the repair of the damaged DNA, replication, silencing [156-160], etc. Understanding the
packing is thus crucial.

In recent years high throughput experiments boosted studies which deal with modelling
this packing [14,20,161-163]. Most approaches are based on polymer models [164] and
are able to explain many findings of the experiments. For instance, the levelling off of the
mean square physical distance between positions on the chromatin fibre when measured
as a function of the distance along the fibre can be explained with a polymer model which
is allowed to loop randomly [165].

Another experimental approach which allows non invasive investigation of the cell
nucleus is conventional confocal microscopy. Although this technique lacks a resolution
which would allow the observation of the fibre, it is a relatively good and reliable source
of information. Despite this, modelling approaches based on confocal images are scarce.
Although the images do not provide direct information about the fibre structure, they
might serve as a perfect source of data to model the statistical mechanics of the spatial
density distribution of the chromatin in the nucleus.

In this study, instead of concentrating on the chromatin fibre, we aim to develop a
method which models this density distribution. As we want to use confocal microscopy
images as the starting point of our approach, we need to consider two factors. First we
need to understand how to exploit the data and how image processing algorithms may
assist us. Second, we need to find a suitable model stemming from statistical mechanics.

The aim of image processing algorithms vary from segmenting the image to enhancing
it. Often, these algorithms are based on detecting contours, edges and thus objects in
pictures. However, defining objects in images of cell nucleus is not possible with con-
ventional approaches. The human eye and brain is trained to easily recognize objects on
natural images, neurons in the brain interact and form representations of objects within
fractions of the second [166], but this is only possible because we spend the first years
of our life training our brain to do so. Image processing algorithms can be trained in
a similar manner. We can devise different models which are able to represent the same
object and we can train the models, that is, learn the parameters of the models on real
world images [167].

On the other hand, we need to consider the physics of the nucleus. In physics and
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biology (and not just) one encounters many systems presenting self-organizing behaviour.
Self organization results from the interactions of units and leads to properties observed
on larger scales. Examples range from the fractal structures of bacteria colonies often
modelled with a diffusion limited aggregation process to the magnetic domains of certain
solids described with the well-known Potts model [168-175].

It turns out that the latter model generalizes very well and its applications include not
only the description of magnetization but also grain growth and network analysis amongst
others [176,177]. The Potts model is also a popular model in image processing, especially
in image segmentation [178-180].

4.1.1 The Potts model

The Potts model is one of the most investigated spin models of statistical mechanics. The
model is relatively well understood, therefore it offers a very good starting point for our
study.

The model consists of spin variables (scalers) arranged according to a given graph
which might be a regular lattice or an arbitrary network. Spins interact along the edges
of the graph and the energy stemming from the interactions is defined by the Hamiltonain

H=-J > 60i0;—h) 6, (4.1)

<i,j> i

where J is the interaction parameter, the notation < ¢,j > means a summation along
the edges of the graph, oy is the state of spin k and § is the kronecker symbol, A is the
magnetic field and a represents one of the g possible states. The probability of a given
configuration of the Potts model in the canonical ensemble is given by the Boltzmann

distribution:
e PH

P(sh = -, (42)

where Z is the partition function and 8 = 1/kgT , T being the temperature of the system
and kp the Boltzmann factor.

In an attempt to model nucleus densities with Potts models, different density levels
were assigned to spin variables and images were studied in the framework of the Potts
model. It has been shown that most of the configurations present in the density patterns
found in microscopy images (like the one in figure 4.1) are in the vicinity of the phase
transition emerging in a system defined by the Hamiltonian (4.1) [181]. In this region the
model is very sensitive to the value of the temperature-parameter and thus the model in
its classical form is not suitable to the accurate study of the images.

4.1.2 The Modified Potts Model

Because of the phase transition, the Potts model generates samples which are either mostly
random (above the critical point) or mostly ordered (below the critical point). Therefore
generating configurations with smoother spatial transitions as the ones observed in micro-
scope images is impossible. We either observe random densities or blocks of completely
uniform densities.

The domain structure of the latter is caused by the kronecker simbol in the Hamiltonian
(4.1) which drives the energy-function causing the aggregation of similar states. This leads
us to the idea of introducing interactions between different states in somewhat similar
fashion to the so-called XY-model [182] but in a more “open-minded” way. While the
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Figure 4.1: Sample of an ES cell.

XY model applies scalar products of the spin directions as interaction strength, we allow
arbitrary interaction values. That is, we define the model by the Hamiltonian

H==Y" Jso, — Z R (4.3)

<i,j>

where Jy,5; is a gxq symmetric matrix and h is a ¢ dimensional vector. We define the
model without further constraints on the parameters and when modelling the images, we
simply learn them from the images we model.

4.1.3 Learning

As mentioned, the Potts model has been extensively used in image processing for segmen-
tation purposes. In fact, the model is the member of a larger model-family called Markov
Random Fields (MRFs) [134], a particular class of the model-group referred to as graphical
models. Graphical models aim to use the results of graph theory and probability theory
to build powerful frameworks for statistical analysis, image processing, computer vision,
machine learning, etc. As the Potts model is a special case of the MRFs, methods and
techniques developed in the mentioned fields can be applied.

The main problem in image processing applications is finding the value of the tempe-
rature- and magnetic field-like parameters which would generate distributions represented
by some given sample-configuration. The difficulty in inference problems is caused by the
calculation of the partition function which contains exponentially many terms and quickly
becomes intractable. As a consequence, the likelihood function cannot be calculated.
Therefore, maximum likelihood estimation is often problematic. Luckily, there are plenty
of alternatives.
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Traditional Approach in the Ising Case

To demonstrate how estimating parameters is possible we start with a simple example,
the ¢ = 2 Potts model, also known as the Ising model. In this case parameters can be
inferred based on counting spins with certain neighborhood configurations [183]. In the
Ising model a spin can point either up or down (usually encoded by the values of +1 and
—1) and the Hamiltonian is given by

H = —Jrsing Z gi0j, (4.4)
<i,j>
where the < 4,7 > notation means neighboring 7 and j spins, that is the summation is
over edges of the network defined by the lattice. o; denotes the state of the spin ¢, and it
has a value of either +1 or —1.

From the Boltzmann distribution (4.2), the probability of spin k& being in the state -,
given the rest of the configuration can be given as

P(og = y{S}\ Sk) =

¢’ {—stmg 2 erneds(sy) T 1597 Ljentr) 0'7}

_ﬁ |:_J157lng Z(i,j)E]E\edg(Sk) Uia'j_JIsing’Y EjGn(k) Uj:|
doy—t1€

6_5 {_stmgv 2ientn) J]}

)
D=1 e’ [_JM"W 2ienthy U]}
where E is the set of pairs of indexes pointing to interacting spins, in the present case,
the nearest neighbor spins, edg(Sy) is the set of pairs of indexes pointing to interacting
spins, one of the spins always being spin S; and n(k) is the set of indexes pointing to the
neighbors of spin Sj. Since Jrgny and § are not independent of each other, we can absorb
B in Jrsing. Thus, finally we get

ejlsingfy Zjen(k) 93

P(oy =y[{S}\ Sk) = (4.5)

e—JIsmg ngn(k) oy + eJIsing Zjen(k) o’
On the other hand, because of the local Markov property, the state of the spin k
depends only on the state of its neighbors. Therefore,

Plor = v{5}\ Sk) = Plox = v[n(Sk)], (4.6)

where n(Sg) is the set of spins interacting with spin Sy (the neighbors of Si). Since in
the conditional probability (4.5) the neighborhood of Sy appears only as a summation of
the spin values in the neighborhood, we can characterize n(Sy) with this sum. Assuming
only nearest neighbor interactions, this sum can take only five values: —4, —2, 0, 2 and 4.
Therefore, we can give the condition in Eq. (4.6) as

Plog = In(SK)] = Pox =Y ony = af, (4.7)

where o can take one of the five mentioned values. Moreover, since spins are indistin-
guishable, we can estimate this probability as

P[ak :’Y|Z‘7n(k) :a] = 27?\@7
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where N is the number of spins pointing in the direction of v with its neighbors sum-
ming up to a. As a consequence, we can calculate the ratio of the following conditional
probabilities:

P [U}g =YX onm) = a] _ N_J . (4.8)
P [Uk ==X on) = 0‘] Na™

Replacing the left side of equation (4.8) with the closed forms of the conditional prob-
abilities obtain in equation (4.5), we obtain the following ratio:

JIsing"Ya N’Y
e_J : = —=. (49)
e Ising V& NOZ vy
Using equation (4.9) we can estimate the J Ising coupling as
1 N]
Jlsing = 207y log (N077> . (410)

Stochastic Approximation Procedure

While the method described in subsection 4.1.3 does not generalize to more complicated
models, plenty of approaches have been developed for estimating parameters in Markov
Random Fields.

The common starting point of most approaches is the derivative of the log-likelihood.
This derivative for the model defined in Eq. (4.4) can be given as

dlog P(6]{Se}) _ 1

0 =56 | 2 Joies =2 N ~logZ
<i,7> 7
dlog Z
= ¢0(So) — 50 (4.11)

where 0 = {Jypla,b € {1,2,...,q}} U{hgla € {1,2,...,q}} is the vector of parameters, Sy
is the observed data for which we want to estimate the 6 parameters and ¢y(S) is the
so-called potential corresponding to parameter 6. For instance, the potential for a given
Jap parameter can be given as

¢Jab = Z 5ao‘,~5b0j- (412)
<t,j>
Similarly
¢ha = Z 6@@-- (413)

The last term in the derivative (4.11) defines an average over the model distribution:

7Z<i,j> JwrZi ho,
loagez - Zutold)e 7 = ¢(S)P(S) = () m, (4.14)
S

which, as we already discussed this, is intractable.

Different methods handle this problem with different approaches. Some methods calcu-
late a pseudo-likelihood [184], others, like Markov chain Monte-Carlo (MCMC) maximum
likelihood estimation , use importance sampling to estimate the partition function [185].
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In the present study we used a method called stochastic approximation procedure
(SAP) [186], which make use of MCMC sampling to estimate the model average (¢g)m,-
SAP had been found to work very well on Markov random fields.

Let us define a Markov process characterized by a transition probability m(S; — Siy1)
which satisfies the detailed balance condition

P(St)w(St — StJrl) = P(St+1)7T(St+1 — St) (415)

We initialize M Markov chains with a random initial configuration {S;,S2,,...,SM,}.
The 6 parameter vector is also initialized with random values. We simulate the Markov
chains and after each Monte-Carlo step we calculate the (¢g(S?))ar¢ average of the poten-
tials over the Monte-Carlo samples. Based on these averages we update the parameters
according to the update rule

6 =0+ [90(50) — (d0(S)arc]

where 7 is the learning rate and it is decreased after each update. In case we have a set
{8§,88,..., S} of observed data sample, we can replace the ¢y(Sp) with the {¢g(So))
average calculated over the observed samples. In this case, the update rule is modified
and it writes as

6= 0+n[(60(S0)) — (¢6(S)nrc] - (4.16)

To achieve a better learning performance, we first set all J interactions to zero and
learn the h magnetic-field-like parameters which govern the intensity distribution of the
images. Then, using the learned fields, we restart the Markov chains and learn the .J
couplings. Furthermore we only need to learn the upper triangular part of J since J is
supposed to be symmetric.

The stochastic approximation procedure is summarized in algorithm 3.

In this work we used the Metropolis algorithm to calculate the 7(S; — Spy1) transi-
tions.

4.1.4 Testing

Before training our model in real-world data, we perform a few tests in order to make sure
that the method will produce the desired results.

Three different test-scenarios were devised, all based on samples generated with known
parameters. In the first scenario we analyze how the change of the number of allowed states
affect the mean squared error of the learning. In the second test we investigate how the
number of learning samples affect the learning error. In the final test we check how varying
inhomogeneity of the interactions effects the learning.

Changing the Number of States

In this test we generate samples with known parameters using the original ¢-state Potts
model and investigate how ¢ influences the efficiency of the learning. Changing ¢ influences
the number of parameters of the model as the model has ¢(¢+1)/2 interaction parameters
in J and g parameters in h.

Figure 4.2 plots the mean squared error as the function of the number of Monte-Carlo
updates. The figure illustrates how the estimated parameters approach the real ones as
the learning progresses, indicating a converging learning process.
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Algorithm 3 Estimating the 6 parameters with the SAP

1: procedure ESTIMATE({S{, S, ..., S}, m0)
2 for a,b € {1..q} do

3 Jup < 0

4 hg < rand

5: end for

6 for m € {1..M} do

7 ST* < rand

8 end for

9: t1

10: n < 1No

11: while & NOT converged do

12: for m € {1..M} do

13: Sample S’ using m(S; — Siy1)
14: end for

15: for a € {I..q} do

16: ha < ha +1n [% 7127:1 > 0ac; (50) — ﬁ J\m/[:1 > 5an(SZTZ):|
17: end for

18: Decrease n

19: end while

20: for a,b € {1..q} do

21: Jap  rand

22: end for

23:  for m € {1.M} do

24: ST* < rand

25: end for

26: t+1

27: n < "o
28: while i NOT converged do

29: for m € {1..M} do

30: Sample Si't; using 7(S; — Siy1)

31: end for

32: for a € {I..q} do

33: for b € {a..q} do

34: Jap — Japt+

35: 0 % Sni1 Xt Sao (58)000, (S8) = 17 Titoy St Sar (S0, (S|
36: end for

37: end for

38: Decrease 7

39: end while
40: end procedure
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Figure 4.2: The mean squared error of the learned parameters for samples generated with different
number of allowed states as a function of the number of Monte-Carlo updates of the learning
process. The error decreases as the learning progresses.

Figure 4.3 plots the standard error at the last Monte-Carlo step as the function of the
number of allowed states of the Potts model (i.e. q). We observe that the error increases
as we allow more states. This is a consequence of the decreasing statistics for increasing
number of potentials.
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Figure 4.3: The mean squared error of the parameters as a function of the number of allowed
states q.

Changing the Number of Samples

In this test we generate samples with known parameters for the ¢ = 10 state Potts model
(keeping ¢) constant. We analyze how the number of learning samples influences the
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learning error.

In figure 4.4 the mean squared error is plotted as a function of the number of Monte-
Carlo updates. The error is again presenting a decreasing trend as the learning progresses.
This means that the learning converges in all cases.
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Figure 4.4: Mean squared error of the learning as a function of the number of Monte-Carlo
updates. The number of parameters is kept constant while the number of learning samples varies.

Figure 4.5 plots the error at the last Monte-Carlo update as the number of the input
learning samples (Sp). The figure demonstrates that the error decreases as we feed more
and more learning samples to the algorithm. Increasing the number of learning samples
increases the statistics over the potentials, thus assuring a more precise update of the
parameters. Assuring enough input data, we can counter-balance the increased learning
error when the number of parameters is large.

Changing the Homogeneity of the Parameters

This test-case studies how the learning behaves when samples are generated within the
framework of the generalized Potts model. The number of states is kept constant at ¢ = 10,
the number of learning samples is also constant (using 20 samples). Instead we change
here the structure of J when generating the samples. While in the previous test-cases
J was strictly diagonal and h constant, here we step-by-step increase the off-diagonal
values of J and study how does this increase effect the learning efficiency. The increase is
constrained so that values on the different diagonal lines parallel to the main diagonal are
kept constant.

Figure 4.6 presents the mean squared error for this test case as the function of the
Monte-Carlo updates. We again see a converging learning procedure. Note that the
decrease of the error is non uniform.

Figure 4.7 plots the mean squared error for the present test case at the last Monte-Carlo
step. It is interesting to note that at an inhomogeneity level of 4 the error exhibits a peak.
This means that learning is difficult in this case. This is probably caused by a combination
of parameters which define a system close to a phase transition. This may prevent the
system to easily explore the configuration-space. However, since in real-world scenario we
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Figure 4.5: Mean squared error of the learning at the last Monte-Carlo update as a function
of the number of input samples. The error show a decreasing trend as the number of samples is
increased.

allow a total inhomogeneity of J we are far away from the region where learning might be
less efficient.

4.1.5 Applying the Method on Real-World Images

We apply the learning procedure on conventional confocal microscopy images of mice cells.
Samples were prepared so that activate genes were labeled with antibodies raised against
the trimethylation of histon H3 on lysine 4 (H3K4-Mes). An example image sampled from
an ES cell is presented in figure 4.1. The model is trained on data obtained from two
different cell lines: mouse embryonic stem (ES) cells and 3T3 fibroblasts.

Fifty 100x100 images were randomly sampled from 30 cells and discretized to 20 dif-
ferent density levels (¢ = 20), assuming that fluorescence intensity is proportional to the
density. We use these samples as training data for the learning algorithm. The J and h
parameters were learned with the described SAP. Figure 4.8 presents the progression of
a learning process of the J interaction matrix. The plot illustrates how after a transition
period each entry from J converges to a stable value.

In addition to the interaction parameters in J, it is also possible to learn the boundary
conditions. This is useful as it is known that the structure of the chromatin might differ
close to the nuclear envelope. Boundaries can be introduced in the model as an extra
state, and assigning an extra row and column in J for this state.

After learning the interaction and field parameters, we can use the Monte-Carlo pro-
cess used for the learning to generate samples. Figure 4.9 displays such a configuration
generated using parameters learned from 3T3 fibroblast images. Visually comparing it to
a real 3T3 sample (figure 4.10), they appear very similar.

Of course, we can also measure similarities, for instance the intensity distributions.
Figures 4.11 and 4.12 present the intensity distributions calculated on ES and 3T3 cells
and on the corresponding generated configurations, respectively. We observe a very good
agreement of these distributions.
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Figure 4.6: The figure illustrates the mean squared error as the function of the Monte-Carlo
updates. In this test, both the number of states and the number of learning samples was kept
constant while varying the structure of J by adding non-zero off-diagonal elements. The parameter
inhomogeneity with a value of z in the legend means that the first x — 1 diagonals from the main
diagonal of J are non-zero.

4.1.6 Discussion and Conclusions

We presented a novel approach for modelling confocal microscopy images. The approach
is based on a modification of one of the most known and successful models of statistical
mechanics, the Potts model. While in the original version the Potts model considers
interactions only among spins pointing in the same direction (or being in the same state),
in the modified version we introduced interactions between all spin-states. This allows
the model to exhibit configurations which present a local mixture of the states. While
in the original model a mixed configurations obligatorily meant a disordered state, this is
not the case any more in the modified model as these states may arise from the complex
interactions of the spins.

When density patterns are modelled in the framework of the Potts model and states
of the model represent density levels, the modified model enables a smooth transition
between densities. The original Potts model would generates patterns which are either
random, corresponding to a high-temperature case, or, below the critical temperature,
ordered same-state blocks would be observed. While the behaviour of the latter model
is suitable for image segmentation when objects need to be identified by such same-state
blocks, this behaviour was not desired and thus eliminated in the present approach by the
applied modification.

We introduced a stochastic approximation procedure which learns the model parame-
ters in two phases. First the magnetic-field like parameters are learned. Then, with the
obtained field parameters implemented in the model, the method learns the interactions in
a second state. We tested our approach on artificially generated data. We demonstrated
that the learning process always converges to the real generating parameters.

We applied the learning successfully on real world data obtained from mouse ES and
3T3 cells. Besides learning an “interaction” between pixel intensities, we also learned
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Figure 4.7: The mean squared error at the last Monte-Carlo update of the test case 4.1.4. The
horizontal axis represents the parameter inhomogeneity and its value represents the number of
non-zero diagonals in the upper (or lower) triangular part of J. It is interesting to note that at
inhomogeneity 4 we observe a peak of the standard error. This means that learning is difficult in
this case.

the boundary conditions found in the images, thus making sure that the structure of the
generated images resembles the original ones also close to the boundary.
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Figure 4.8: Example of the learning process of J. Each curve corresponds to an entry from the
interaction matrix.

Figure 4.9: Configuration generated using parameters learned on 3T3 fibroblast images.
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Figure 4.10: A slice from a 3T3 fibroblast cell nucleus.
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Figure 4.11: Intensity distributions of ES cells and configurations generated with parameters
learned from ES cell images.
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Figure 4.12: Intensity distributions of 3T3 cells and configurations generated with parameters

learned from 3T3 cell images.
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4.2 Thermodynamic Properties of the Generalized Potts Model

References

This section is adapted from our manuscript, which is intended to be submitted for
publication,

o G. Maté, R. Dickman and D.W. Heermann, A State Dependent Potts Model, in
preparation (2013).

Since its first appearance, the Potts model [187] gained popularity not just among
physicists but also scientists from other fields [188-194]. It was successfully applied in grain
growth simulations, image segmentation, modelling social and ecological phenomena and
data, etc. [176,178,195,196]. Inasmuch as the model is a member of the broader Markov
Random Field family [197], the general tools developed in the latter framework can be
easily applied to a given instance of the model. This also enables the useful generalization
of the model and as it was shown already in the early developments (Ising, vector Potts,
XY), the model generalizes very well. In this study we investigate a promising modification
of the Potts model, which contains the aforementioned generalizations as special cases.

The very well known g-state Potts model [187] is described by the Hamiltonian

Ho(S)==J Y 05,0, (4.17)
<i,j>

where S is a configuration, o; is the state of the spin with linear index ¢ in S, and J°
is the coupling constant. o; can have g states corresponding to ¢ different discrete spin
orientations. Let us denote these states by aq, g, ..., aq. Although studying the model
one may get insight in the behaviour of ferromagnetic systems [198], the fact that the
interactions are present only between similar states (similar spin directions) is a very
strong limitation of the model. The XY model [182] lifts this limitation by introducing
interactions between non similar states through the scaler product of the spins:

Hyy(5) =~ Y digy. (4.18)
<%,j>
One can rewrite the Hamiltonians (4.17) and (4.18) by discretizing the directions and
placing all the possible interaction scalers (d5,5,, 030;) to the appropriate positions of a
matrix

HC(S) = - Z JOC'iO'j7
<i,j>
Hyy(S) = — NASE
<1,5>
where J;;mj = 5(,in and JXYO'iO'j = 0;0;. As a matter of fact, nothing constraints us
from implementing an arbitrary function of &; and d;, provided that the given function is
symmetric with respect to its variables. Therefore, we will use an arbitrary ¢ dimensional
symmetric square matrix J as a generalized coupling between the spins and write the H

Hamiltonian of the generalized model as

H(S) ==Y Joo, (4.19)

<i,7>
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Of course this induces the broadening of the parameter-space but also makes the model
more flexible and capable of exhibiting a variety of interesting phases as this will be
shown in the following. Since this work aims to introduce the possibilities offered by
this generalization and not to exhaust the study of it, we will constrain ourselves in the
numerical studies to two dimensional systems and cases when the value of the parameters
on the individual diagonals of J are the same. We are, of course, aware that going from
two to three dimensions can drastically influence the behaviour of the system. We also
believe that, when it comes to apply the model for instance to biological data, the real
strength of the formalism is the case when J is only required to be symmetric. However, in
this case we would have to deal with (g+¢?)/2 parameters for a given value of ¢ and this is
inappropriate when studying the model. Nevertheless we will make additional comments,
if possible, on the cases when all the parameters are independent.

4.2.1 The Ising case

For the Ising (¢ = 2) case [199] J must be a 2 x 2 symmetric diagonal matrix with equal
values on the diagonal:

a 0
Jlsing = ( 0 a ) : (4.20)

Using the proposed generalization, we have non-zero off-diagonal elements, and thus

a b
J:<ba>' (4.21)

One can rewrite J in the following way:

J:(a_b)<a 0>+b=(“_b)JISmg+b. (4.22)

a 0 a a

As the system in the canonical ensemble can be characterized by the Boltzmann distribu-
tion, which gives the probability of a given configuration S as

p(S) = e PHE), (4.23)

where 8 = 1/kpgT is the inverse temperature, kp being the Boltzmann constant and Z
is the partition function. H(S) is the energy of a configuraiton S calculated with the
Hamiltonian (4.19). It is obvious that the (a — b)/a pre-factor in Equation (4.22) in
fact multiplies 8. Therefore, the model will behave like the original Ising model on a
temperature T'a/(a —b). While the +b constant on the right-hand side of Equation (4.22)
shifts the energy scale, it does not change the distribution.

Note that a particular combination of a and b parameters is not independent from S.
B, therefore, can be absorbed in J and the system can be parametrized only with the value
of a and b. For instance, a system with a = 1, b = 0.5 at an inverse temperature 5 = 2
will be equivalent with a system parametrized with a = 2, b = 1 at inverse temperature
B = 1. The absorption of £ in J is equivalent with fixing § = 1 and modifying only the «
and b values.

Note also that for b > a we get an antiferromagnetic Ising model. Furthermore, the
case when we have different values on the diagonal, that is

’_ ap 0
J —< 0 a2>7 (4.24)
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corresponds to a situation in which the model would include a special external field, but
this field acts on pairs of spins of the preferred state. In this sense the field influences
neighbourhoods. One can understand this by rewriting the Hamiltonian (4.19) in the
following way:

H(S) == Jooy == 2 Joic; =P Y 001020010, (4.25)

<i,5> <1,5> <i,7>

where h = as — a1. If h is positive, the model prefers neighbourhoods with state o,
otherwise o7 will be favoured.

4.2.2 The ¢ =3 case

As the classical Ising model was extensively studied in vast amount of studies (see for
instance references [200-204]) we proceed to the ¢ = 3 case. Similarly to (4.22) we can
rewrite J as follows:

a v a b 0
J=1V d V¥V |=[bab|+d=T+, (4.26)
d b d 0 b

using the notations a = @’ — ¢ and b = V' —¢/. Compared to the reduced interaction matrix
J, ¢ only rescales the energy. Therefore we study the system defined by J (obeying the
tacit constraints ¢ < @’ and ¢ < V).

The Bragg-Williams Approximation

Since a b > a situation resembles an antiferromagnetic model, we divide the system into
two sublattices according to a chessboard pattern, the black sites constituting one lattice
(denoted by A) while the white sites the other (denoted by B). We then rewrite the
Hamiltonian in the following form:

3
H = (b - a) Z Z 50’6Aak5063ak + bz<5aeAa150eAa3 + 506Aa350eA0<1) — 4N,b, (427)
e k=1 e

where the summation with index e is over the edges between neighboring spins on different
sublattices, and Ny is the number of spins in a sublattice (i.e., Ny = N/2).

At high enough temperatures we can replace the kronecker functions by their averages,
this is known as the Bragg- Williams approzimation [205]:

> b 0o yar, = ANTENE, (4.28)
e

where n£ =N, ,CL /N, NkL being the relative number of spins found in state aj on lattice
L. Therefore the Hamiltonian will have the following form:

3
H =4N |(b—a) Z ninB + bnftn? + bngnP —b| . (4.29)
k=1

The number of microstates on lattice L can be given as

. N,

~ NIINFINE (4:30)
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and the total number of microstates is Q = Q4QF. The entropy is then

3
S:SA—I-SB:—NZZnélnnﬁ, (4.31)
L k=1

Based on these, the free energy writes as

F =H-TS=
3 Alpna BinnB
AN {(b —a) Z [n‘,?nkB — Uk nzlzb_‘__?‘; S/ bnind + bngnP — b} .
k=1

(4.32)

The first term in the curly bracket corresponds to the free energy of the original Potts
model [206] at a shifted temperature. The shift depends on the (b—a) difference. Although
we do not believe that in reality the relation is as simple as this approximation predicts
it, nevertheless we conclude that larger b values require larger a values in order to reach
criticality, that is, the critical point is shifting according to a relation between a and b.

Note that the last terms in the expression (4.32) of the free energy are symmetric
in states a3 and ag, but do not include state as. Whenever states a; and as appear
in a configuration, the energy is increased. Since state as does not cause an energy
increase by this term, as will be preferred against «; and ag. This is only the case if
the value of parameter b is relevant compared to the value of a. In the b < a limit we
are approaching the Potts case, thus the extra terms are vanishing. However, we shell
see state ao dominating the system if b > a, which corresponds to an antiferromagnetic
interaction among neighbouring states a; and as and neighbouring states as and as.

If we think about the Bragg-Williams approximation as an expansion of the free energy,
it is important to note, that the coefficients of the terms in the approximation depend on
the a and b model parameters and possibly vanish for certain combinations of these. This
may be also the case for higher order terms in a non-linear expansion. This observation will
be important when interpreting the Landau expansion; as a matter of fact, we sketched
the Bragg-Williams approximation specifically to emphasize this point.

A Landau Expansion of the Model

As we already noted before, depending on the model parameters, the system is able to
exhibit ferromagnetic as well as antiferromagnetic behavior. Therefore we need order
parameters which are able to capture this propriety. Since the nﬁ quantities are not inde-
pendent (nf 4+nk +nk = 1), following reference [207], we define the following independent
combinations:

L
L = ny

L L
Vo = ny —ng,

where L can be either A or B. To observe both ferromagnetism and antiferromagnetism
it is useful to consider the following order parametrs:

Y1 = Y1a+YiB
o = s+ 2B
¢1 = Y1a—U1B

¢2 = oA — 2B
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In case of ferromagnetic behavior ;7 is independent of L, therefore ¢; and ¢o are zero
while in case of antiferromagnetic behavior the net magnetization is zero, that is >~ 15,
vanishes, that is ¢; and 2 are both zero.

The system exhibits two important symmetries: with respect to the exchange of states
1 and 3 (let us denote this symmetry operation by R) and with respect to the exchange
of subblattice A and B (operation denoted by P). Then the following relations hold:

Ry =
Ripg = —
Rpr = ¢
Rops = —¢o
Py =
Py = o
Ppr = —¢1
Pgs = —¢o.

Therefore, 1 may appear in all terms, while the rest of the order parameters are allowed
to appear only in even terms. The most generic expansion can be given as:

A=Ag+arp + a? + az + ag)t +
+ both3 + barhy + cathrhs +
+ dad] + eads + fa(] + ¢3)°

As it can be seen, the Landau expansion predicts a first order transition between the
disordered and ferromagnetic state and a second order transition between the disordered
and the antiferromagnetic state, depending of course on the model parameters.

Theoretically, it would be possible to express all the ; and ¢; in terms of n% Then,
we could identify the Bragg-Williams approximation in this form, extended with higher
order corrections, and eventually could find a direct relation between the coefficients of
the Landau expansion and the a and b model parameters. According to this argument,
and as we already pointed it out when discussing the Bragg-Williams approximation, the
coefficients of the Landau expansion may depend not only on the temperature, but also
on the model parameters. They may even vanish for certain combinations, changing the
nature of the phase transition.

Phase transitions in the system

In order to have a first glimpse in the behaviour of the system we measured two quantities,
the order parameter defined by
(n1 —n2)? + (n1 — n3)? + (ng — n3)?

r= e ) (4.33)

where, again, ny is the number of spins found in the state aj and N is the total number
of spins (N = L?). The second quantity measured is the energy per spin:

Z<i,j> JUin
7]\7 .

We generated samples using a simple Metropolis Monte Carlo procedure. In our attempt
to show that the model is capable of interesting behaviour, we scanned only a fraction of

E = (4.34)
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the parameter-space, namely the a € [0,2] and b € [0, 2] intervals. Figure 4.13 presents the
values of the order parameter for the specified intervals of a and b with nearest neighbour
interactions between the spins. It is interesting to see that the location of the phase

Figure 4.13: Order-disorder transition in the system. The order parameter (4.33) is represented
by the color-code. We observe a shift in the phase transition also predicted by the Bragg-Williams
approximation.

transition can be roughly defined by a straight line described by the a ~ 140.96b empirical
law, a shift already predicted by the Bragg-Williams approximation. For b = 0 (original
Potts model), we get a ~ 1. The value is expected to be around In(1 + ,/g) ~ 1.0051,
therefore, the agreement is relatively good.

The value of the energy per spin is presented in Figure 4.14. Analysing the plot we
observe two low energy regions. One is for big a values and small b values. This regions
corresponds to the ordered ferromagnetic phase. The other region is for small values of
a and big values of b. This suggests that there is another type of ordering in this region,
namely an antiferromagnetic ordering.

Figure 4.15 presents a particular configuration generated with parameters a = 0.4 and
b = 1.9. As predicted in the Bragg-Williams approximation, if b > a, state ay (repre-
sented by the green coloured squares in the configuration) dominates the configuration,
occupying roughly half of the spins. The other half is shared among state a; (orange)
and state a3. Dividing the configuration into two chessboard-like sub-lattices, ao occupies
almost entirely one of the lattices. Furthermore, because we have only nearest neighbour
interaction (spins do not interact diagonally), the other sub-lattice is simply a random
configuration of states a; and ag. Although it does not seem random, calculating the
auto-correlation of a single spin, presented in Figure 4.16, we see that the autocorrelation
decays with time exactly as it would with random spin-flip dynamics. Here we simulated
systems at ¢ = 0 and b = 1. As discussed earlier, the § = 1 case leaves a and b unchanged.
The 8 = oo case (equivalent with a = 0 and b = 00) corresponds to a system at zero
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Figure 4.14: Value of the energy per spin. The values represented by the color-code are calculated
with the formula (4.34). Note the low energy region in the lower right hand side of the figure. This
region suggests the existence of an antiferromagnetic ordering as here b > a.

temperature (7' = 0). In this case the system should remain forever in its ground state.
Samples with random spin flips were achieved by randomly flipping spins and disregarding
any interactions (as a matter of fact, this corresponds to the § = 0 case).

The energy of the system is also low when both a and b are large and approximately
equal. However, there is no ordering at these combinations, since in this case neighbouring
states a1 and ay and neighbouring states ag and a3 are “allowed” to mix as Figure 4.17
also illustrates this. This figure represents a configuration with parameters a = 1.8 and
b = 1.9. Note how states a; and «ay (orange and green) create interfaces, similarly do aq
and a3 (green and blue), while a; and a3 are seldom next to each other.

This phase constitutes a relatively low energy transitional phase between the ferro-
magnetic (b < a) and antiferromagnetic (b > a) phases. Then, it is logical to think that
the nature of the disorder-order phase transition changes as we increase the b parameter
and from the b < a phase we go through the a ~ b phase with the mixed states and
eventually reach b > a as for large enough b parameters we reach the antiferromagnetic
phase. Of course, this phase could be characterized with another order parameter which
defines structures composed of a mixture of «y states with ao states and the mixing of
g states with aj as order. Studying this order parameter we may find another phase
transition.

The chessboard-like pattern in Figure 4.15 was created as a result of nearest neigh-
bour interactions (no diagonal interaction among spins). If we include interaction be-
tween next-nearest neighbours (diagonal spins), this pattern will disappear, as Figure 4.18
demonstrates this. The ground state in systems with nearest and next nearest neighbour
interactions in the antiferromagnetic (b > a) case would be composed of rows or columns
of spins in state o; and ag always separated by rows (or columns) of spins in state ao.
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Figure 4.15: A configuration of the system for a parameter combination ¢ = 0.4 and b = 1.9.
State oy is coded by the colour orange, state as is represented by the green colour squares, while
state a3 is indicated by the blue squares. Note that the neighbouring spins prefer to be in different
states. If the system is divided into two chessboard-like sub-lattices, almost all of the spins in one
of the sub-lattices are in state two denoted by the green colour.

Thus state as would also dominate this phase. However, energies are not that reduced in
this phase, as the energy per spin plot prepared for a system with nearest and next nearest
neighbour interaction shows it in Figure 4.19. However, the disorder-ferromagnetic state
phase transition still occurs (Figure 4.20).

4.2.3 The ¢ =10 case

In order to gain further insight into the behaviour of the system, we study the ¢ = 10 case
with a Wang-Landau type calculation [208]. Instead of sampling the system according
to the Boltzmann distribution, the Wang-Landau algorithm aims to estimate the g(FE)
density of states (or number of microstates for the energy E). Since the probability of
hitting an energy E can be given as

1

= S g(B)e Bkt (4.35)

p(E)
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Figure 4.16: The autocorrelation of the spin states as the function of the number of flips in a
128x128 lattice of a system parametrized with a = 0 and b = 1. The “random flip” case corresponds
to f=0 (T = o0).

thus we don’t have to enumerate all the possible configurations to calculate Z, we can give
it as a sum over the energy levels

Z=Y g(E)e P/ksT, (4.36)
E

Then, we can calculate the free energy as
F=—kgThhZz. (4.37)

While here we will only look at the aspects of the phase transition, other quantities, of
course, can be further derived from the free energy.

The idea of Wang and Landau is very simple and the algorithm approximates the
density of states by visiting different random configurations and keeping record of the
energy-histogram gathered over the visits by counting how many times was a given energy
level E visited. Let us denote this quantity by v(E). The configurations are visited
according to a probability distribution dictated by the inverse of the current estimation of
the density of states g(FE). Since, if randomly picking a configuration, the probability of
hitting an energy E is proportional with g(F), visiting a configuration with a probability
1/g(F) results in a uniform distribution over E. The aim is thus to construct a g(F) so
that the histogram of the visited states v(FE) is acceptably flat.

The algorithm initializes the densities by a constant value (e.g. g(F) = 1,VE). Also,
the histogram is filled with zeros: v(F) = 0,VE. For the random walk in the energy
space, we can use the Metropolis algorithm with modified transition probabilities. Since
the probability of hitting a state is 1/g(F), the transition probability can be given as

m(Ex — Ey) = min [1, gg’gg] , (4.38)
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Figure 4.17: A configuration of the system for a parameter combination ¢ = 1.8 and b = 1.9.
State ay is coded by the colour orange, state as is represented by the green colour squares, while
state ag is indicated by the blue squares. Note the mixing of states oy with states as and the
similar behaviour of states as and ag. States a; and ag3 seldom create interfaces.

where Ex is the energy of the state (configuration) X (for details see the description of the
Metropolis algorithm in Section 3.1.4). At each visit of an energy level E, the algorithm
updates the histogram as v(E) = v(E) + 1 and the density by a multiplicative factor #:
g(F) = ng(F). While in the first steps v might be considered flat, it quickly develops a
peak around the most probable energy values. After v becomes flat enough, 7 is decreased
(n = /) and the histogram is reset (v(E) = 0,VE). Then the whole the procedure
of equalizing the histogram is repeated, however, this time the changes in g(FE) will be
smaller because of the smaller factor n. These steps are repeated until a desired precision
is achieved.

Note that the algorithm does not rely on the Boltzmann distribution an it is indepen-
dent of the temperature T and thus from . Knowing the density of states, we know the

behaviour of the system for the whole temperature range.

We implemented the algorithm for the ¢ = 10 generalized model defined by the coupling
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Figure 4.18: A configuration of the system with nearest and next nearest neighbour interactions
for a parameter combination ¢ = 0.4 and b = 1.9. State a; is coded by the colour orange, state
«g is represented by the green colour squares, while state gz is indicated by the blue squares.
Because of the interactions in the diagonal directions, the lowest energy configurations are rows
(or columns) of states a; and ag always separated by a row (or column) with spins in state as.
Thus state as will dominate this configurations too. However, since here a # 0, we observe a
mixture of horizontal and vertical bars.

matrix
a b 00 0
b a b 0 ... 0
J=| 0 b a b ... 0 |, (4.39)
0O ... 00 b a

Fixing a = ap and b = by parameters and calculating g(F), we in fact scan a line
passing through the origin of the a,b parameter space defined by b/a = const = by/ay.
For any a; value there is a by = bpai/ap parameter. As we discussed this earlier, for
any b1 /aj ratio we can find a temperature 7} so that the behaviour of the system can be
characterized by the Boltzmann distribution of the system defined by J(a = ag,b = by) at
temperature 77.

We implemented a Wang-Landau algorithm (reference) as this enables the investigation
of the system for a whole set of parameters with a single run. The reasoning behind this
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Figure 4.19: Value of the energy per spin. The values represented by the color-code are calculated
with the formula (4.34). Note the low energy region in the lower right hand side of the figure. This
region suggests the existence of an antiferromagnetic ordering as here b > a.

Figure 4.20: Value of the energy per spin. The values represented by the color-code are calculated
with the formula (4.34). Note the low energy region in the lower right hand side of the figure. This
region suggests the existence of an antiferromagnetic ordering as here b > a.
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statement is the following: The Wang-Landau algorithm calculates the density of states
g(F). From the density of states we can calculate the probability of a given state E at a
given temperature 1" by the relation

We calculated the density of states g(E) for three b/a ratios: 0, 0.36 and 0.53. The
corresponding curves are plotted in Figure 4.21. As the figure illustrates it, in the case of

1000

800

Figure 4.21: Density of states of the ¢ = 10 model.

b/a = 0.53 the first order phase transition disappears. This is indicated by the concave
shape of the function. A first order phase transition would be indicated by a “convex
intruder” [209]. The middle point of the b/a = 0 case is convex, although this is hardly
visible on the figure. Nevertheless, plotting the distribution of the energies at the transition
temperature To = 0.7574, we see the double-peak structure characteristic for first order
transitions (Figure 4.22). We found no clear double peak structure for the b/a = 0.36
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Figure 4.22: Distribution of the energies for the b = 0 case at the transition temperature T¢o =
0.7574.

case, however, looking to the “dynamics” of the curve as we continuously increase 1" from
a low temperature suggests that the phase transition is still present.

To get an insight what is happening in the system as we increase the value of the
b/a ratio, we performed classical Metropolis Monte-Carlo simulations for the ¢ = 10
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case and estimated the transition temperature based on the samples generated by these
simulations. We represented the b/a ratio by a single parameter, the angle € corresponding
to the arctangent of the ratio. We plotted the estimated critical temperature as the
function of 8 as presented in Figure 4.23. Critical temperatures were estimated by the
location of the maxima in the specific heat curves. Although the estimation method
might nor be the most precise, nevertheless, we can draw useful conclusions from the
arrangements we observe. b/a = 0.36 corresponds roughly to @ = 0.34 while the arctangent
of b/a = 53 is around 0.49. While the first case is still in the “safe” range of the plot, where
estimations were acceptable. However the transition temperatures estimated for 6 > 0.45
were unreliable. The plot indicates that there is no order-disorder transition roughly
in the range # € [0.51]. Considering numerical errors, this observation is in acceptable
agreement with our conclusions made based on the Wang-Landau calculations, however,
further calculations are needed to have a more precise comparison.
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Figure 4.23: The estimated transition temperatures of the ¢ = 10 generalized model for the
different angles 6 corresponding to different a/b = tan @ parameter ratios. Estimations for the
values corresponding to the interval 6 € [0.481] were either out of the simulated temperature range
or very imprecise, therefore we did not include them.

4.2.4 Discussions and Conclusions

We presented a theoretical and computational study of a generalized Potts model. The
generalization consisted of introducing extra couplings among neighbouring spin states.
More precisely, if the states of the spins are denoted by a1, s, ..., oy, then neighbouring
spin configurations of ajay decrease the internal energy by a factor of a while neighbours
configured as apayy1 decrease the energy by a factor of b (kK = {1,2,...,q}, ¢+ 1 =1).
We investigated the ¢ = 2, ¢ = 3 and ¢ = 10 cases in two dimensions.

We showed by a simple analytical calculation, that the ¢ = 2 case behaves like the
classical Ising model on a shifted temperature. We elaborated a mean field theory using
the Bragg-Williams approximation for the ¢ = 3 case. Based on the obtained expression,
we concluded that the transition point will shift to lower temperatures as we increase the
b parameter of the model. Furthermore, we observed, that state as is favoured by the
energy function if the value of b is relevant compared to that of a. We could also predict
form the topology of interactions that when b > a, the model will have a ground state
resembling a chessboard-like arrangement. Because o is preferred against a; and asg, at
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low temperatures and b > a, one of the sublattices (e.g. the white sites of the chessboard) is
occupied by aip while the other sublattice corresponds to a random configuration composed
of states a1 and as.

Markov chain Monte-Carlo simulations of the ¢ = 3 case supported this prediction.
Furthermore, we simulated lattices with next-nearest neighbour interactions (diagonal
interactions). In this case, the ground state consists of horizontal, or vertical lines of spins
of states a; or a3 always separated by a line of spins which are in state as. Thus state
ay dominates this case also. On low finite (non-zero) temperatures, however, the system
is in a state composed of a mixture of horizontal and vertical lines.

A Wang-Landau type of algorithm was implemented for the ¢ = 10 case. We observed
that the phase transition disappeared for certain combination of the parameters. To under-
stand what happened in that combination, we also performed Markov chain Monte-Carlo
simulations for the ¢ = 10 case and estimated the transition temperature of the model
for different combinations of the a and b parameters. We observed no phase transition
for a range of parameter combinations. These simulations are thus in agreement with the
results obtained by the Wang-Landau calculations.
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Intensitites, Distributions and Graphs

A Direct Insight in the Organization of the Chromatin
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Chapter Summary

This chapter will describe our approaches based partly on the calculation of intensity
distributions and their different momenta and partly on analysis of spatial graphs and
their properties like the degree distribution or edge-length distribution.

Different types of microscopy images will serve as the basis our analysis. In some cases
we will work directly on the images, using a more traditional image processing approach.
In other cases, after some preprocessing steps, we derive a spatial graph characterizing the
data based on the position of fluorescent markers. However, the relative intensity of these
markers can be influenced by different factors (e.g., microscope gain, different densities of
the dye molecules during staining, or structural changes). Assuming that images can be
described by a probabilistic model, we also assume that the intensities are governed by
such a law, too. This, in turn, allows us to correct for differences in microscope gain or to
detect uniform/non-uniform structural alterations (e.g. uniform/non-uniform dilation).
This is usually done by handling intensities, graph edge lengths, etc. as probabilistic
variables, and apply a probability transformation on the distribution characterizing them.
With the proper transformation, distributions can be scaled to each other and assessed
whether they belong to the same family or not.
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5.1 Reorganization of the Chromatin Fiber Under Light Stress

References

This section is adapted from our mansucript, which we intend to submit for publica-
tion,

o G.Maté, M. Tark-Dame and D.W. Heermann, Quantifying Effects of Light Stress
in Arabidopsis Thaliana, in preparation (2013).

Different experimental studies reported an alteration in the chromosomal organization
of the model plant Arabidopsis thaliana [210-212]. This is attributed to the acclimatization
capabilities of the plant. Here we attempt to develop a framework for quantitative analysis
of such differences between cells of plants grown under different light conditions.

Our experimental data consists of confocal microscopy images of the nuclei of Ara-
bidopsis thaliana plants. The plants were divided into two groups, the first group was
grown under normal light conditions, while the other group was covered with a mesh
which block non-selectively 80 % of the light. While naming the first group as control
group and the second group as “dark” group would be more appropriate, we will refer
to the first group as light-stressed and to the second group as mon-light-stressed. All
plants are transinfected to express yellow fluorescence proteins (YFP) attached to H2B
histones. Furthermore, A-T rich regions are marked with 4’,6-diamidino-2-phenylindole
(DAPI) stains.

We will characterize the samples by the density distribution of the chromatin in the
nucleus. Assuming stoichiometry, the density should be proportional to the intensity
recorded by imaging some uniform labelling along the chromatin. We will investigate
whether different reorganizations of the chromatin can be modelled with a density distri-
bution from the same family or not. Furthermore, we calculate different features of the
distributions in an attempt to discriminate the two groups. Moreover, the number of chro-
mocenters (regions of highly compactified chromatin) will also determined and compared
between the two groups

5.1.1 Analysis

First, the images are subject to standard image processing techniques. A deconvolution
with the point spread function of the microscope is performed, then the images are seg-
mented so that regions outside of the nuclei are excluded.

Segmentation

The segmentation is based on a multiple thresholding algorithm applied on the channel
defined by the YFP markers. First the intensity values in each image I are projected to
the [0,1] interval. Then the images are thresholded at an intensity igl). Objects defined
by neighbouring voxels with intensities above the igl) threshold are detected. The size of
each object is determined and smaller objects are remove keeping only the largest one.
The resulted binary image I thus contains only a single object. Each slice in the I, image
is eroded by 5 pixels.
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In the next step, the original image is again thresholded at an intensity i§2) < igl),

this resulting in an I, binary image. Objects, that is, groups of connected voxels with

(2)

intensities larger ore equal to 7, are detected and the object in I,,, overlapping with the
object in I is kept, the rest of the objects are discarded. Since iEQ) < igl), the volume
of the object in I, is larger or equal than the volume of the object in I, and possibly
contains more details.

A morphological closing [213] is performed on I,,,, then holes are filled. Finally I,,, is
morphologically opened. The object in I,,, obtained by this process will be used as a mask

for I and will define the region/volume subject to the performed analysis.
The thresholds igl) and 71,(52) were manually selected for the light-stressed and the non-

light-stressed set to ensure a best performance of the masking procedure and their value
is summarized in Table 5.1.

non-light-stressed | light-stressed
il 0.15 0.15
i? 0.12 0.13

Table 5.1: Table summarizing the threshold intensities used in the masking process.

Intensity Distributions

In order to analyse the images, we calculate the f (i) intensity distributions. As Figure 5.1
presents it, the distributions are consistent within the different experiments and staining
procedures.

The average distribution over the ensemble of images can be calculate for each partic-
ular experiment (Figure 5.2). The averages indicate that that chromatin structure differs
between non-light-stressed and light-stress exposed cells. We attempted to fit the curves
with known distributions, but we did not find a well-fitting distribution family.

In order to analyse whether differences in the average distributions indeed come from
different structure of the chromatin or it is simply a result of different marker-densities
(which might be the case especially with the DAPI markers) or different microscope gain,
we handle the intensities as random variables. In fact, we already treated them as such
when calculating the intensity distributions, as distributions are used to characterize ran-
dom variables.

Assuming a linear change in the intensity, described by a ¢(i) = ai function, it can be
shown that the distribution f(i) of the rescaled intensities can be given as

£(0) = S fo(0), (1)

where fy is the originally measured distribution.

We calculate the rescaled distribution for each of the curves from Figure 5.1, thus
fitting them to each other, using « as fitting parameter. This process assures a minimal
deviation between the different curves on each plot. After this step the scaled distributions
are averaged.

The averaged distributions can be fitted to each other in a similar manner. There
exists an o parameter which scales the average of the distributions calculated for the light-
stressed cells so that the rescaled distribution has a shape which is the most similar to the
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Figure 5.1: Distribution of the normalized intensities for each experimental image separately.
Panel A presents the distributions for the non-light-stressed set stained with DAPI markers, Panel
B contains the distributions for the light-stressed cells stained with DAPI. Panel C illustrates
the distributions exhibited by the YFPs in the non-light-stressed set while Panel D presents the
distributions calculated on the set of the light-stressed cells for the YFP markers. Dashed lines
represent the distributions while lines tracing the circles represent the average of the distributions.

shape of the distribution obtained through the averaging of the distributions corresponding
to the non-light-stressed cells.

These fits are presented in Figure 5.3 for the YFP markers and in Figure 5.4 for the
DAPI markers. As Figure 5.3 illustrates this, intensity distributions of the YFP markers
for the non-light-stressed and light-stressed samples seem to belong to the same family.
However, the distributions for the DAPI markers are obviously different. Compared to the
distributions calculated for the light-stressed samples, the distribution calculated over the
non-light-stressed set grows slower for low intensities and it drops faster for bigger values.

Features of the Images

To further investigate the differences, image features proposed by the authors of [214] are
calculated. The features can be calculated directly on the images, or on intensity values
scaled by the a parameters obtained in the fitting processes.

Figure 5.5 presents the amount of chromatin in the medium density regions relative
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Figure 5.2: Averages of the intensity distribution for the different experimental sets.
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Figure 5.3: Rescaled averaged intensity distribution calculated for the YFP markers.
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Figure 5.4: Rescaled averaged intensity distribution calculated for the DAPI markers.

to the total amount of chromatin, plotted as a function of the mean intensity. Medium
density regions are defined as regions of the nucleus having an intensity ranging from (i)—
stdev(7) to (i)+ stdev(i), where stdev(i) is the standard deviation of the distribution and
it can be given as /(i?) — (i)2. Although the exact amount of chromatin can not be
directly determined, because of stoichiometry the measured fluorescence intensity should
be proportional to the density of the chromatin. Therefore, the amount of chromatin
in medium dense regions is proportional to the integrated intensity of this region (the
sum of the intensity values of all the voxels in this region). Similarly, the total amount
of chromatin is proportional with the total integrated fluorescence intensity. Since here
we calculate a ratio of amounts, the proportionality constant is canceled and the relative
amount of the chromatin can be given as the ratio of the integrated intensity in the medium
dense regions and the total integrated intensity.

Figure 5.6 illustrates the same quantity as Figure 5.5 but calculated on the rescaled
intensities. The relative amount of chromatin in the mediumly condensed regions and the
mean intensity seem to be comparatively good discriminators as domains for non-light-
stressed and light-stressed samples can be separated in Figure 5.6. Inspecting the figure,
we observe that most light-stressed cells show more chromatin in the medium condensed
states than the non-light-stressed cells. The observation holds both for the YFP and DAPI
markers.

Chromocenters

A further point to analyse is the difference in the number of the chromocenters in non-light-
stressed and light-stressed cells. Chromocenters are detected through a simple thresholding
with an . threshold, after which objects smaller than a predefined V. volume are removed.
The i, threshold and the V, volume were determined based on visual checks of the result.
For YFP images i. was set to 0.3 while i, = 0.35 was used for DAPI markers. In both
cases V. was set to 30 in units of voxel-volume.

Figure 5.7 presents the histogram of the number of chromocenters counted on the YFP
markers. The mean number of chromocenters for the non-light-stressed cells is 6.52 with
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Figure 5.5: Relative amount of chromatin in medium density regions as a function of the average
of the intensity distribution. Each point corresponds to an image.
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Figure 5.6: Relative amount of chromatin in medium density regions as a function of the average
of the intensity distribution. The intensities are scaled so that the overlap of the distributions is
maximal. Each point corresponds to an image.
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Figure 5.7: Histogram of the number of chromocenters for the YFPs. The average number of
chromocenters is 6.52 + 0.441 for the non-light-stressed cells, while it is 7.6415 4+ 0.4797 for the
light stressed ones

a standard error of 0.441. We find that light-stressed cells contain 7.6415 chromocenters,
on avreage, the standard error being 0.4797.

Figure 5.8 illustrates the histograms for the number of chromocenters detected based
on the DAPI markers. The average number of chromocenters for the non-light-stressed
cells is 6.6 with a standard error of 0.358, while for the light stressed samples we detect
6.8302 chromocenters on average, with an error of 0.4797.

We observ a consistent increas of chromocenters for light-stressed cells, the measured
difference of the averages being larger than the standard error for the YFP markers.

5.1.2 Discussion and Conclusions

We analysed confocal microscopy images of Arabidopsis thaliana. Plants were separated
into two groups, one of them being grown in normal light condition, while plants in the
other group received 80 % less light. The nuclei of plants were imaged with conventional
confocal microscopy.

After segmenting the images, fluorescence intensity distribution were calculated. We
rescaled the individual distributions in order to aceahve a best fit among the probabil-
ity densities, thus eliminating effects of different microscope gain and possibly different
densities of dye molecules which might appear especially in the case of DAPI markers.

Differences in the distribution between non-light-stressed and light-stressed cells were
persistent even after rescaling of the intensities.

We illustrated that measures proposed by the authors of [214] also have a discriminative
potential, however, certain measures present obvious correlation. Nevertheless, compared
to the non-light-stressed cells, there is an increase in the relative volume of the medium
density areas in the light-stress exposed cells.
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Figure 5.8: Histogram of the number of chromocenters for the DAPI markers. The average
number of chromocenters is 6.6 £+ 0.358 for the non-light-stressed cells, while it is 6.8302 + 0.3883
for the light stressed ones

A significant change in the number of chromocenters was also assessed. On average,
we counted roughly 1.1 more chromocenters for the light-stress exposed cells.
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Double strand breaks (DSBs) are probably the most harmful damages the DNA fibre
may suffer as they can lead to the rearrangement of the genome [80]. DSBs are caused by
ionizing radiation, oxidizing agents, replication errors and certain metabolic products of
the cell [215]. As a response to the DSB, the repair process can take different pathways,
the chosen one mostly depending on the phase of the cell cycle. It has been observed
experimentally, that as a reaction to the presence of a DSB, the chromatin opens up in
the region affected by a DSB [216]. This might be viewed as a mechanism which facilitates
the repair.

Since DSBs are the causes of many pathologies, it is crucial to understand the repair
mechanisms and the occuring structural reorganization. In this project, we will investigate
the effects of ionizing radiation on the structure of the chromatin. Although biological
implications are very important, in the following we emphasise the analysis approaches we
used to gain an insight in the occurring structural changes.

Experimental Data

Experiments were performed on Hela cell cultures. Cells were transfected to stably express
green fluorescence proteins (GFPs) on histone H2B. Furthermore heterochromatic regions
were marked with antibodies tagging the histone H4 Lysine 20 methylation. Images were
captured by Spectral Position Determination Microscopy (SPDM), a relatively recently
developed super resolution technique, already described in Section 2.2. As a result of
the experiment, the most probable location of the fluorophores is recorded as pairs of
x,y coordinates in a two dimensional plane. The two dimensional points represent the
projection of a roughly 600 nm thick slice from the nucleus.

Cells were irradiated with doses of 0.5, 2 and 4 Gy doses. After irradiations cells were
either allowed a 48 hour repair time or fixed after 30 minutes. Furthermore, a control
group was also imaged.

5.2.1 Segmentation and Masking of Images

In the first step of the analysis we perform a segmentation of the image in order to detect
regions of interest. In this process we exclude the areas that have a considerably lower than
average number of localized fluorophores. This includes the area that is on the outside of
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the cell nucleus but also areas inside the nucleus that only have a small chromatin content,
e.g. at the site of nucleoli.

In the image, the fluorophores or antibodies represent a set of points in the two-
dimensional plane. To perform the segmentation we calculate a density distribution for
the fluorophores on the entire image by applying a gaussian kernel density estimation [217].
This means that for each point on the image we set a two-dimensional gaussian probability
distribution with the coordinates of the point as its mean value. We choose radially
symmetric gaussian distribution by setting the bandwidth matrix to a multiple of the
unit matrix. The multiplier is a parameter in the model which defines a correspondence
between the standard normal distribution and the physical scales in the experiment. We
set it to 40mm. The sum of all the gaussian probability distributions is then normalized
yielding a probability distribution of the position of the points from the image. Since
the values of the probability distribution are proportional to the density of points, the
obtained probability distribution in fact represents the spatial density distribution in the
nucleus.

Using the density distribution we calculate a mask that accepts all areas with a density
that is above 25% relative to the lowest value and blanks out all other areas. In order
to make sure that also the low density regions at the border of the cell nucleus are not
included, we further erode the masked area by another 150 nm. Thus we efficiently exclude
areas that are outside of the cell nucleus and areas which have a low marker density
indicating sites of nucleoli.

5.2.2 Calculated Measures

In order to analyse the spatial arrangement of the points, we calculate different measures
which may characterize the structure. Besides standard measures like the radial distribu-
tion function [218], we construct a spatial graph describing the neighbouring relations and
analyse the structure of this graph.

Radial Pair Correlation Function

The radial pair correlation function g(ry,rz) is a measure of structure for many particle
systems such as liquids. It is the probability distribution function that two particles are
at the positions ry and rp. Since absolute positions are not important, the correlation
function is in fact only dependent on the directed distance between the two positions
r =ri2 = rg —ry. Thus the radial pair correlation function can be simply written as g(r)
and is given by

1 /NN
o0 = 3 (L3 ot m)) 62
=1 j=1
The probability to find a second particle in the directed distance r of the first particle is
g(r)dr. Assuming an isotropic system, the pair correlation function only depends on the
undirected distance r = |r| and the probability to find a second particle in the distance
r of the first particle is given by 47rg(r)dr. The expression p(r) = 4nrg(r) denotes the

radial distribution (RDF).

For each image the pair correlation function is determined by calculating all pair
distances between points inside of the masked regions of interest. Due to the finite system
size, we cannot use all points for the calculation of g(r) since points that are close to
the border of the masked image do not have the correct surrounding. We therefore first
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reduce the masked image isotropically from the border by a distance dgppinr thus yielding
a second masked image that is considerably smaller than the first one. All points in the
second mask have then equal environments for distances up to dgppink. For each of the
points in the second mask we then calculate the distances to all other points that lie in
the original mask. The normalized distribution of these distances then give the radial pair
distribution function g(r) for the image.

We then average over the complete set of images to obtain the average g(r) for each
experimental setup. The standard deviation of the mean value is then used as a measure
for the uncertainty of the pair correlation function g(r) at each distance r.

The Spatial Graph of the Neighbourhoods

Another possibility to gain insight in the structure presented by the localization data is
to build a graph on the skeleton defined by the localized points. We then investigate this
graph by means of graph theoretical methods and conclude the topological or relational
properties of the underlying structure.

Graphs [219] are abstract mathematical objects designed to capture interdependencies
of certain entities. Entities are represented by nodes (or vertices) while the connections
are encoded by edges between nodes. A graph is usually denoted by G(V, E), where V is
the set of nodes and E = {(a,b)|a € V,b € V'} is the set of edges. Graphs have been used
to study a variety of structures and phenomena [220-224], most of these studies relying
on the mathematical field called graph-theory.

We are mainly interested in observing local properties of the geometric arrangements
formed by the points. Therefore, we choose the graph building procedure so that the
resulting graphs emphasize the local relations among the fluorophores. We build the
nearest-neighbor graph (NNG) in which each node is connected with its first-order neigh-
bours.

There are many possible ways to build the NNG for a given set of points. The most
widely used approach is the construction of the Delaunay triangulation [225] introduced in
Section 3.4. However, for a better understanding, let us give a more intuitive description
regarding the construction of the Delaunay triangulation. We start again by introduce
the dual of this triangulation, the Voronoi tessellation [226]. By definition, the Voronoi
tessellation of a set of points S is a tessellation in which each Voronoi cell V; corresponding
to the site S; consists of all the points of the space closer to .S; than any other site. The
faces of the Voronoi diagram consist of all the points in the space that are equidistant
to sites corresponding to touching Voronoi cells. Thus the Voronoi cell V; defines the
space dominated by the site S;. The Voronoi tessellation can be transformed into the
Delaunay triangulation by connecting the sites of the neighbouring Voronoi cells. Two
points will be considered neighbours if they are directly connected by an edge of the
Delaunay triangulation or equivalently, if their corresponding Voronoi cells are touching.
In Figure 5.9 we illustrate the Voronoi tessellation and the Delaunay triangulation for a
given set of points.

We construct the NNG defined by the Delaunay triangulation for each experiment
and calculate three properties of the obtained graphs: the degree distribution h(d), the
rescaled probability density f(r) of the edge lengths and the conditional probability p(r|r’)
of the edge lengths.

The degree of a node is defined as the number of connections of the node. The degree
distribution is the probability distribution of the degrees over the whole graph. Since the
degrees are integer numbers, h(d) is a discrete distribution. It is in fact the histogram of
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Figure 5.9: The Delaunay triangulation and its dual, the Voronoi tessellation for a random set
of points. The blue lines are the segments of the Voronoi tessellation, the red ones are the edges
of the Delaunay graph (triangulation)

the degrees of the nodes normalized such that the values in the histogram bins sum up to

one. That is, if h(d) is the frequency of the degree d then the degree distribution is given

as _

hD = g
d'=0

where dj,q; is the maximal degree in the graph. This definition is equivalent with the one

in Equation (3.29).

Let us denote the probability distribution of the length of the edges in a given graph
G(E,V) obtained by the Delaunay triangulation of a point-set corresponding to one of
the localization images by f(r). For different experiments, we expect to get different f(r)
distributions. These differences may stem either from different underlying structures or
from different experimental conditions as these can vary from experiment to experiment
(slightly different concentration of stains or different microscope gain). Provided that
different experimental conditions have a liner effect on the density p of marked sites,
variations in f(r) can be eliminated. This is achieved by rescaling the distributions to a
reference density pg. For this, we apply the following procedure: Since we are calculating
the f(r) distributions, we are, in fact, treating the edge lengths in a probabilistic manner,
that is, r is considered a random variable. Thus, the rescaling of the distributions to
a reference density pg is in fact a probability transformation over r. To see this, let
dij = d[(xi,v:),(z;,y;)] denote the length of the edge between vertexes i and j. If we
multiply the coordinates (x,y) of all the points with an positive real number o = pg/p,
the following relation holds:

(5.3)

d[(aw, ay;), (axj, ay;)] = ad[(zi, i), (25, 95)], (5.4)

On the other hand, this multiplication corresponds to a uniform dilation (or contraction)
of the system, that is, a uniform scaling of the density. Therefore, to calculate the scaled
probability density, we have to apply the probability transformation defined by

t(r) = ar. (5.5)
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Applying basic probability theory, we obtain the rescaled probability density

) = =

(07

1
s (5.6)
We can either define a reference density pg and calculate the corresponding transformations
for the different experiments, or, fit the probability densities to each other, using « as a
fitting parameter.

Certain local properties are averaged out both by the g(r) and the f(r). For instance,
non-regular density variations are not captured by these measures. Another example is
a situations when certain regular structures appears multiple times but the size of the
structures varies.

In order to detect these situations, we calculate the conditional probability p(r|r’)
of the edge lengths of the nearest neighbour graph. This conditional probability is the
probability of finding an edge with length r attached to a node which for sure has an
edge with length 7. The conditional probability can numerically be represented in a
matrix structure P where each row corresponds to a condition for a given interval over
" and each column represents an interval over r. The matrix entry P;; corresponding to
a given row ¢ and a column j will give the probability of finding an edge with a length
between 7; and r; + dr attached to a node which has at least one edge with a length
between 7} and r} + dr. In case the localization points are arranged according to a specific
structure, the P matrix will indicate a preferential attachment. For instance, in a long
chain which has constant link-lengths over larger domains, but different domains have
different link lengths, the P matrix will be almost diagonal. Figure 5.10 shows the P
matrix for two randomly generated data-set, one set containing points with coordinates
distributed uniformly while the other set has additional Gaussian clusters. As the figure
illustrates, uniformly distributed points will produce a rather uniform matrix, while point-
sets with clusters will have a more emphasised diagonal.

5.2.3 Exposure to lonizing Radiation Cause Local Changes

We first perform a segmentation of each of the images to cut out those areas in the image
that do not belong to the cell nucleus. We also neglect areas inside the nucleus that have a
very low density of markers since these areas are indicative for nucleoli. The segmentation
is based on the calculation of the density distribution of markers in the image. We only
take the areas with a density of more than 25% of the largest density into consideration.
Figure 5.11 shows the image with the localized H2B histones and their density distribution
and the final segmented image.

To assess how the overall organization of chromatin changes after cells are exposed to
ionizing radiation compared to untreated cells we calculate the pair correlation function
g(r) for localized H2B histones in untreated cells and cells that were exposed to ionizing
radiation. The pair correlation function is a measure for the positional correlation of
points in a many-particle system. At this, g(r)dr denotes the probability of finding two
points separated by a distance between r and r + dr for infinitesimal dr.

Results for the radial pair correlation function of H2B markers in untreated and irradi-
ated cells are shown in Figure 5.12. We analyzed images of untreated cells and cells fixed
30 min after they were exposed to 0.5 Gy, 2 Gy and 4 Gy of v-irradiation. For all setups we
can see deviations of g(r) from unity only for distances up to 300 nm. It thus shows that
structured organisation of chromatin in the cell nucleus is only apparent up to distances of
roughly 300 nm. Below this critical distance, locations of labeled histones H2B are visibly
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Figure 5.10: Conditional Probabilities of Edge Lengths for Random Data. The figures illustrate
how the p(r|r’) conditional probability looks for randomly generated point positions. A Conditional
probability of points with coordinates generated according to a uniform distribution. B Conditional
probability of points with coordinates generated according to a mixture of uniform distribution
and clusters of Gaussian distributions. In the latter example we observe an emphasised diagonal
which is the result of the Gaussian clusters. Tightly packed points tend to produce short edges,
while points from the edges of the clusters mostly have longer edges.

correlated. However, on distances larger than 300 nm the radial correlation function drops
to unity and the locations of histones can be viewed as being randomly distributed relative
to each other. The radial distribution functions for the H2B histones are lying on top of
each other and no deviations can be seen for cells that were exposed to ionizing radiation.

In order to assess the local positional correlations that are apparent up to a length of
300 nm we pursued a graph theoretical approach. We first calculated the nearest neighbour
distance distribution of the localized fluorophores. For this we performed a Delaunay
triangulation to obtain graphs for all points in the segmented images and then calculated
the length distribution of the edges of the graph. Results for H2B markers for untreated
cells and cells fixed 30 min after exposure to ionizing radiation are shown in Figure 5.13.
We observe that there is a significant difference between them, which can be seen in the
inset. However, the distributions belong to the same family since the rescaled distributions
f(r) are exactly the same. Therefore we can state that the observed differences may stem
either from different experimental conditions such as different overall marker density or a
uniform dilation/contraction of the system.

We also calculate the p(r|r’) conditional probability for the localized H2B markers. The
matrix representations P of the conditional probabilities are plotted in Figure 5.14, the
three panels corresponding to pre-irradiation configuration and to configurations fixed 30
minutes and 48 hours post-irradiation respectively. While the plots resemble a mixture of
the plots from figure 5.10, they do not exhibit big discrepancies amongst each other. Figure
5.15 presents the differences between the three panels from 5.14. This plot shows that for
samples imaged shortly after irradiation the diagonal of the conditional probability is more
prominent but for samples recorded after a longer healing time the diagonal recedes. This
means that, while upon irradiation the system changes towards a less uniform structure,
that is, towards a less homogeneous P matrix, with longer healing time the changes are
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Figure 5.11: Localization Microscopy Images. A. The green inset shows an area with a low
average density, which could correspond to euchromatin and the blue area corresponds to an
area with high point density, possibly belonging to heterochromatin. B. This panel shows the
calculated density distribution of the localized markers using a gaussian kernel density estimation
with a uniform gaussian kernels. C. The figure shows the localized points of the image. From the
points, areas with very low point density possibly corresponding to nucleoli can clearly be made
out visually. D. Shown is the segmented image where only the area of interest is kept for the
analysis. The segmentation was based on the intensity distribution with areas below an intensity
threshold were discarded for analysis.

reverted.

Our results demonstrate that positional correlations of H2B histones are not altered
by DNA damage caused by v-irradiation. As H2B histones are distributed homogeneously
along the genome we can conclude that ionizing radiation does not alter the overall orga-
nization of the chromatin in the cell nucleus.
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Figure 5.12: Results at different times after 0.5 Gy radiation dose. left: The radial pair correla-
tion function g(r) shows that correlations between the positions of labeled H2B histones exist up
to a distance of roughly 300 nm. Marker and thus chromatin densities in the surroundings of each
marker is elevated compared to the average density of markers in the cell nucleus. Above 300 nm
however, histone positions are uncorrelated and the marked histones can be viewed as being posi-
tioned randomly relative to each other. Furthermore, the radial pair correlation function for cells
exposed to 0.5 Gy ~v-irradiation is the same as for untreaded cells, regardless of the time passed
after irradiation.

5.2.4 Heterochromatic Regions Show a Decondensation

Antibodies for H4K20 made visible with the same fluorescence technique were used as
markers for heterochromatic regions. Microscopy for antibodies were performed at the
same time with the cells on the stably expressing histone H2B variant. Images were
processed and segmented with the same methods described above and in the Methods
subsection. In Figure 5.16 we show the density distribution of the heterochromatin anti-
body markers on panel A and the segmented image on panel B. The density distribution
shows clearly how heterochromatic regions can be seen as coarse clumps located within
the nucleus. These clumps are visible as bright spots in the density distribution.

The calculated radial pair correlation function for localized H4K20 antibodies in un-
treated cells and cells exposed to 0.5 Gy irradiation after different times are shown in Figure
5.17. The correlation function for the antibodies show apparent differences to the correla-
tion function for H2B histones. The high value of up to 20 times the average density that
can be found at small distances r reflects the fact that antibodies are clustered together in
small spots. The quick decay of g(r) to the average density in the nucleus indicates that
the clumps are relatively small confirming the visual impression of the images.

Upon irradiation, the value of the correlation function drops for small distances r. This
means that the average density of antibodies in the surrounding of each antibody is lower
after exposure to ionizing radiation. It indicates that the overall density becomes smaller
in the heterochromatic clumps. We can conclude that heterochromatic regions on average
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Figure 5.13: Results at different times after 0.5 Gy radiation dose. Shown are the rescaled
distribution of the length of edges in a Delaunay triangulation of the H2B marker positions. The
inset shows the original distributions for the different images. The differences in the edge length
distributions are due to the different marker densities in the images. We therefore performed a
rescaling of the distributions with respect to the point density to clear out this effect. The rescaled
distributions can be seen in the main panel and show that the distributions belong to the same
family.

become less compact and the strongly compacted organisation opens up and adopts a
more loose structure upon exposure to ionizing radiation. We observe an average drop of
70 % of the mean antibody density in a sphere with a radius of 30 nm around an antibody
for cells irradiated with 0.5 Gy ~-irradiation after 30min. Therefore, initial repair of DNA
double-strand breaks caused by irradiation in heterochromatin seems to require a drastic
decrease of the chromatin density and a strong relaxation of the compact organisation of
the chromatin fiber here. 48 h after irradiation, this value is only at around 30 % which
indicates that structures seem to have recovered after successful repair of the broken DNA
strands.

The conclusions drawn from the radial pair correlation function are verified by the
graph theoretical analysis. In Figure 5.18 the length distribution of the edges in the
Delaunay triangulation of the marked H4K20 antibodies is shown. The distribution for
unirradiated cells shows a very characteristical peak at small distances centered at around
30nm. This emphasizes that there is a characteristical nearest-neighbour distance for the
H4K20 markers thus meaning a preference of them to form clumps.

In cells at 30 min after exposure to ionizing radiation, the sharp peak in the edge length
distributions vanishes. Instead, the distribution becomes a uniform distribution up to
large lengths. The disappearance of the peak is a clear indicator that the heterochromatic
regions are no longer organized as compact clumps in the nucleus. This difference can be
seen visually in Figure 5.16C. Compared to the untreated cell nucleus shown in Figure
5.16A we clearly see that there the small bright spots have mostly vanished and the
heterochromatic regions in the irradiated cell are much more smeared out. Our graph
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Figure 5.14: Conditional Probability Distribution of the Edge Lengts. Panel A: The panel
shows the conditional probability distribution p(r|r’) for the H2B markers before irradiation. The
relatively prominent diagonal indicates locally a varying density. Panel B: The panel shows the
conditional probability for the H2B markers 30 minutes after irradiation. Panel C: The panel
shows the conditional probability for the H2B markers 48 hours after irradiation.

theoretical analysis therefore verify our observations of the behaviour of the pair correlation
function. The heterochromatic regions undergo a process of opening up after exposure to
ionizing radiation.

At 48 h after irradiation, the peak in the edge length distribution emerges again. Just
as the pair correlation function is again very similar to untreated cells, the edge length
distribution has now also the same shape as in the case of untreated cells.

Calculating the conditional probability p(r|r’) we see that the corresponding matrix-
representations are strongly diagonal (figure 5.21). This is due to the tight clusters of the
antibodies marking heterochromatic regions. This structure of the conditional probability
matrices support our previous conclusions. Upon irradiation the conditional probability
(panel B. in figure 5.21) becomes more homogeneous, indicating a more uniform structure.
48 hours after irradiation the conditional probability is again diagonal (panel C. in the
same figure). Note that in this case the colour-map has a wider range and values on the
diagonal are in fact very close to values from panel A., except for very small radii.

The differences of the conditional probabilities are plotted in figure 5.22. While the
changes upon irradiation barely depend on the condition (the value of r’), we observe
that before irradiation smaller radii were more abundant (red colour in panel A.). The
difference between the structure 30 minutes after irradiation and the structure we see 48
hours after hours after irradiation (in panel C.) indicates an almost uniform and uncon-
ditioned increase in the probabilities of the short edges, just as we saw it in the case of
the unconditioned edge length distribution.

Our results here show that heterochromatic domains undergo structural reorganiza-
tions after exposure to ionizing radiation. At 30 min after irradiation the previously very
compact and densely organized domains open up and adopt a more loose organization.
After 48 h the structures heal again and the organization approaches again the initial
configuration of the untreated cells.

5.2.5 Discussions and Conclusions

We analysed the effects of the reorganization of chromatin upon exposure to ionizing irra-
diation. Samples were imaged by Spectral Position Determination Microscopy (SPDM).
The samples were subject to a preprocessing step in which regions of interest were detected.

A nearest neighbour graph was built by calculating the Delaunay triangulation of the
localization points. The spatial organization of the fluorophores was characterized by
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Figure 5.15: Difference in the Conditional Probability Distribution of the Edge Lengts. Panel
A: The panel shows the difference of the conditional probabilities p(r|r’) measured for structures
recorded before irradiation and for structures registered 30 minutes after irradiation. Shades
towards red indicate values which are larger in the samples before irradiation, while values towards
the shades of blue indicate probabilities which are larger in images registered 30 minutes after
irradiation. The plot indicates slightly increased values along the diagonal after irradiation. This
might mean a slightly increased clustering of the points. Panel B: The panel shows the differences
of the conditional probability before irradiation and 48 hours after irradiation. Entries in shades
of red are larger in samples recorded before irradiation, while entries in shades of blue are larger in
the samples recorded 48 hours after irradiation. The trend is similar to that observed in Panel A,
however differences are less prominent. Panel C: The panel shows the differences if the conditional
probability measured 30 minutes and 48 hours after irradiation respectively. The red shades
indicate larger probabilities in samples recorded 30 minutes after irradiation while blue shades
indicate larger probabilities in samples registered 48 hours after irradiation. Here we observe a
reversed trend compared to Panel A.

different graph theoretic measures. Moreover, the radial distribution function was also
calculated.

Comparing the quantities calculated for non-irradiated and irradiated samples, we
found that although overall the chromatin may compactify to a certain degree, the local
neighbouring properties of the localized points do not change. For instance, the distri-
bution of the edge-lengths belong to the same family for irradiated and non irradiated
samples. At the same time, we found that heterochromatic regions, marked separately,
open up open irradiation. Furthermore, assuring a long enough healing time after irradia-
tion, we observe a recover of the heterochromatin from the mentioned opened state. Our
findings are in agreement with other experiments observing structural changes caused by
the presence of the double strand breaks.
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Figure 5.16: Localization Microscopy Images of Heterochromatin Markers. A. Shown is the
density distribution of the localized markers in a cell prior to irradiation. Small, bright spots where
markers are agglomerated can be seen. This means that heterochromatin is mainly organized in
coarse clumps. B. Shown is the segmentated image of the not irradiated cell that is used for
subsequent analysis of the marker distribution. C. The density distribution of a cell at 30 min
after irradiation with 0.5 Gy is shown here. Differences between this cell and the not irradiated cell
can be made out by visual inspection. We observe that the density has much less agglomerated
and bright spots and is instead much more homogeneous. D. This effect can also be seen by visual
inspection of the heterochromatin markers directly. Marker positions are visibly more spread out
and less strongly clumped together. Heterochromatin clearly undergoes structural changes upon
irradiation.
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Figure 5.17: Results at different times after 0.5 Gy radiation dose. The figure shows the ra-
dial pair correlation function for methylated histone variants H4K20 antibodies representing het-
erochromatin for unirradiated and irradiated cells. Error bars represent the standard deviation of
the mean value after averaging over the sample of cells. The value for g(r) at small distances goes
up to around 20, indicating the high marker densities in regions where heterochromatin is located.
The rapid drop off of the pair correlation function within a distance of less than 100 nm shows that
heterochromatin forms small clumps that are spread throughout the cell nucelus. Upon exposure
to 0.5 Gy v-irradiation, a dramatic change in the correlation function can be observed in cells that
were microscoped after 30 min. The value at small radial distances drops to around 6, or around
70 % smaller than in unirradiated cells. This indicates that the density in the heterochromatic
regions is on average much lower in irradiated cells, requiring that the organisation of the chro-
matin fiber in these regions has to have loosened compared to before due to DNA damage such
as double-strand breaks. In cells measured 48 h after irradiation, the correlation function have
recovered again and the value at small r is at around 14, only 30 % less than in unirradiated cells.
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Figure 5.18: Results at different times after 0.5 Gy radiation dose. The distribution of edge
lengths in the Delaunay triangulation of the markers confirms these observations. A sharp peak
in the distribution at around 30 nm can be seen in untreated cells. In 30 min post-irradiation cells
the peak vanishes and a spread distribution can be seen. In 48 h post-irradiation cells however,
the peak reappears again but less pronounced than in untreated cells.

% ' pre-irradiation + =
o 20r } -~ 0.5Gy —=— | ]
£ 4Gy =
Z 10} = ;
CIC) n a
g 15 | T~ N \ 1
g \\\!.\‘i\
(0] ﬁ “u \
> \
s 10f+ .
[e] r \ =g o
° 1 - _a
= \ 10 100
o L]
o N
sl -
3 I
© i = ——03 3 ™ = - =

0 1 1 1

0 50 100 150 200

radial distance [nm]

Figure 5.19: Results for different doses 30 min post irradiation.
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Figure 5.20: Results for different doses 30 min post irradiation.
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Figure 5.21: Conditional Probability Distribution of the Edge Lengts for Heterochro-
matin Markers. Panel A: The panel shows the conditional probability distribution p(r|r’) calcu-
lated for the positions of the antibodies marking heterochromatic regions before irradiation. Panel
B: The panel shows the conditional probability for the heterochromatin markers 30 minutes after
irradiation. Panel C: The panel shows the conditional probability for the heterochromatin markers
48 hours after irradiation. In all three cases the diagonal is very emphasised indicating preferen-
tial spatial distribution of the edges. This may stem from the clustering of the heterochromatin
markers. Note that although shades along the diagonal are darker in Panel C, the value of the
corresponding probabilities are very close to the probabilities along the diagonal of Panel A except
for small radii.
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Figure 5.22: Difference in the Conditional Probability Distribution of the Edge Lengts
for Heterochromatin Markers. Panel A: The panel shows the difference in the conditional
probability distribution p(r|r’) before irradiation and 30 minutes after irradiation. A red shade of
the colour-map means that the probability is higher before irradiation while a blue shade means
that it is higher after irradiation. The panel indicates a slightly stronger change along the diagonal
indicating a more homogeneous system after irradiation. However the change is almost independent
of the value of the condition 7’. Panel B: The panel shows the difference of the conditional
probability distribution calculated for samples before and 48 hours after irradiation. Shades of
red indicate higher probabilities for the samples recorded before irradiation while shades of blue
indicate higher probabilities in samples recorded after irradiation. Panel C: The panel illustrates
the difference of the conditional probability distribution 30 minutes and 48 hours after irradiation.
Red shades correspond to higher probabilities 30 minutes post-irradiation while shades of blue
indicate larger values 48 hours after irradiation. The difference between structures observed 30

minutes after irradiation and 48 hours after irradiation indicate a reversed trend compared to Panel
A.
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5.3 Relation of Nuclear Pore Complexes and Lamin B Receptors

References

This section is adapted from the mansucript, which we intend to submit for publica-
tion,

o G. Maté, L. Shopland and D.W. Heermann, Spatial Relation of Lamin B Recep-
tors and Nuclear Pore Complezes , in preparation (2013).

Nuclear pores are large protein complexes that perforate the nuclear envelope and
allow the transport of molecules through the membrane [227]. Nuclear Pore Complexes
(NPCs) are thought to contain more then 50 proteins called nucleoporins. On the other
hand Lamin B Receptors (LBRs) are receptor proteins that bind to the inner side of the
nucleus and serve as an anchor for the nuclear lamina [59]. In this project, we will explore
the spacial relation of the NPCs and LBRs by studying graphs constructed on positions
defined by fluorophores attached to respective proteins (or complexes).

Nuclear pore complexes were marked with Cyanine (Cy5) molecules while Lamin B
receptors were stained with antibodies raised against them (FITC). Images were recorded
by Three Dimensional Structured Illumination Microscopy (3D-SIM). This technique is
based on projecting a patterned (structured) light onto the sample. The light-pattern
interacts with the fluorescent probes in the samples and generates interference patterns, so-
called Moiré fringes. Patterns are analysed by extensive computer algorithms and finally
the image is reconstructed reaching a lateral and axial resolution double the resolution of
conventional wide-field microscopy [228].

5.3.1 Masking and Detecting Pores and Receptors

First, images are thresholded at an i; threshold intensity, calculated with Otsu’s method
[229] which assumes that pixels in the image belong to two classes: the region of interest
(ROI) and the background. Otsu’s method tries to minimize the intra class variance of
the intensity distributions. As a result of the thresholding, we have an I binary image,
where each voxel has a value of 1 (or true) if the corresponding voxel in the original image
I had an intensity above the i; threshold. Otherwise the voxel in I}, is set to 0 (or false).

The achieved binary image is improved in a quasi three dimensional procedure: Each
slice from the z-stack is processed together with its two neighboring slices. After a mor-
phological closing of the three slices, holes are filled. This is followed by the extraction
and a morphological opening of the middle slice. The resultant binary image is stored in
the corresponding z index of the mask.

After scanning the z-stack with the described procedure, connected components are
detected, their size is determined and smaller objects are removed from the mask, keeping
only the largest connected block of voxels. Two voxels are connected if they share a
common face. Let us denote the obtained mask by an M three dimensional matrix, so
that, M;j;, represents a voxel in the intensity image and it is either true or false. If it is
true than the corresponding voxel belongs to the ROI, if it is false, then the voxel belongs
to the background.

In the next phase, we extract the positions of the LBRs and the NPCs. This is done
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Figure 5.23: Intensity images presenting the (A, A’) nuclear pore complexes and the (B, B’)
marked Lamin B receptors. Panels A and B contain slices from the bottom part of the cell while
panels A’ and B’ illustrate slices from the middle of the same cell.

by a local thresholding of the original intensity images in the following way: First, the
mask constructed in the previous step is eroded six voxels in the z — y plane and two
voxels in the z direction. These erosions roughly correspond to 240nms, voxels in the
x —y direction having a size of 39.5nms, while their dimension along the z axis is 125nms.
The eroded mask is then subtracted from the original mask, creating an M’ shell-mask
covering a roughly 240nms thick shell of the nucleus. We exclude all the voxels from I
which are not marked as true by the M’ shell-mask, obtaining this way an I’ intensity
image. In the rest of the procedure we work with the I’ image.

Starting with an initial intensity threshold of 15 % of the maximal intensity in I’
we threshold the image and detect all the connected groups of voxels in the thresholded
image. We count the numbers of voxels in each connected group and if there are groups
with more then 125 voxels (this corresponding to a box with a side of ca. 280nms), we
increase the applied threshold by 5 % and re-threshold the regions in I’ corresponding
to these large voxel groups. We repeatedly re-threshold the large groups, each time also
increasing the threshold intensity by 5 %, until all the connected groups have a voxel-count
below 125. We scale the z, y and z coordinates according to the resolution of the image,
so that the positions, and consequently all the calculated distances, will be expressed in
units of nanometers. This means that z and y coordinates were multiplied by 39.5 while
z coordinates were scaled by 125.
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As a last step, we define the positions of the NPCs and LBRs as the centers of gravity
of the different groups of connected voxels. As the intensity images for the NPCs and
LBRs were recorded on separate channels, we can detect the NPCs and LBRs separately.

5.3.2 Constructing a Network

Analyzing the spatial arrangement and positioning of the NPCs and the LBRs is a complex
task. There are different approaches one might explore. One may count the NPCs and
the LBRs, measuring the densities and comparing the resulted values for the two different
sets or calculate the deviation of these values among the different cells.

Here, however, we apply a different approach. Since both the NPCs and the LBRs lie
along the surface defined by the nuclear envelope, instead of taking a three dimensional
approach, we perform our analysis along this surface. Also because of the confining effect,
the points defined by the NPCs and LBRs are embedded in a (quasi) two dimensional
space, it is very convenient to study the properties of the organization of the NPCs and
LBRs through the analysis of the network defined by the neighboring relations of the
objects.

In general, networks consist of a set of entities and certain relations among these. Sys-
tems from different fields has been studied in the framework of networks [220-224]. Most
of the studies rely on the mathematical representation of networks, called graphs [219].
Graphs are abstract mathematical objects, composed of nodes or vertexes (representing
the entities of the network) and edges or links (representing the relations among entities).
Graph theory provides reliable and useful tools for the study of networks. It enables us
to analyze the properties of our networks by calculating measures which characterize the
relations among the nodes (that is, the NPCs and LBRs, in the present case).

The two dimensional space allows an easy way to define neighbors by means of a
triangulation of the nodes. We will describe this procedure for the positions of the NPCs,
but we can follow the very same process for the position of the LBRs.

Let us assume that the positions of the NPCs define a point set A in the three dimen-
sional space. First, we calculate the Delaunay triangulation [230] of A. In general, the
Dt(P) Delaunay triangulation of an arbitrary set of three dimensional points P defines a
set of tetrahedrons on P, such that, no point is inside the sphere defined by the corners
of any of the tetrahedrons defined by the triangulation. Similarly, if P is two dimensional,
then the Dt(P) triangulation defines a set of triangles on P, such that, no point from P is
inside the circles circumscribing the triangles in Dt(P).

The Delaunay triangulation is often used to define the nearest neighbor relations [231—
233] among members of a given set of points. After calculating the Dt(A) triangulation
of A, we discard all the triangles containing edges which cross regions outside the M’
shell-mask. Let us denote the set of remaining edges by F4x (E4 = {(a,w)|o,w € A}).
Then, by following the described procedure we obtain a G(A, E4) graph structure which
describes the local geometric relations of the points. This graph structure is visualized in
figure 5.24 for one of the experimental images.

The G(B, Ep) can be calculated in a similar way for the B set of points defined by
the centers of the LBRs. This is illustrated in figure 5.25.

5.3.3 Calculating Properties of the Network

In the following we detail the analysis of the constructed networks. There are a few main
question we seek to answer: How similar the graphs are? Is there any ordering with respect
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Figure 5.24: Network defined by the position of the NPCs.

Figure 5.25: Network defined by the position of the LBRs.

to the position of the points? How similar the neighboring relations in the two graphs
are? And finally, we are also interested whether the positions of the LBRs depend on the
location of the pore complexes or not.

In order to characterize the networks and analyze the relation of the nodes, first,
we calculate three different quantities: the h(d) degree distribution [234], the g(r) radial
distribution function [218] calculated along the surface and the probability density function
of the length of the edges in E4 (respectively Fp), denoted by f(r).

The degree distribution is a discrete probability distribution and it simply measures the
probability of finding a node with a given number of edges, that is, h(d) is the probability
of finding a node in the graph with exactly d edges.

The g(r) radial distribution function is a function which is often applied in solid state
and statistical physics and is calculated to characterize the geometric relations among
points from a given set. It describes how the density varies as a function of the distance
from an arbitrary reference particle (it is averaged over all particle-positions). In the case
when points are positioned in a regular geometric structure (called a crystalline structure
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in physics), the g(r) would show that the density changes periodically. If p is the average
density of the considered points, then g(r)p is the expected density at a distance r from
an arbitrary particle.

The g(r) radial distribution function was devised in physics for studying fluids and
crystals. Its definition implies that g(r)dr is proportional to the probability of finding an
atom in a dr thick shell of radius r centered around another atom. In three dimensions,
for instance, 4mpg(r)r?dr gives the mean number of atoms in this volume-shell.

Given an n; histogram of pair separations which counts the number of pairs of atoms
which are separated by a distance of ca. r;, that is,

(i — Ddr <r; <idr, (5.7)

we can numerically estimate g(r) for a two dimensional system by the following relation
[235]:

A’I’Li
where A is the area of the system under investigation and N is the total number of
particles.

In the present case, however, calculating the ¢g(r) is not straightforward, mainly because
our points are constrained to a surface. Therefore, we will have to measure shortest
distances on the surface, that is, along paths allowed by M’. For this purpose we will
use the mesh defined by the triangulation and will approximate shortest distances by
calculating shortest paths on the graph G, using Dijkstra’s algorithm [236].

Dijkstra’s algorithm finds the shortest path from an « start node to every other node
in a given undirected graph G(V, E') with node set V' and edges E. It can also be used to
find the distance from node « to a given end node w by stopping the algorithm once w is
reached. A pseudo-code is detailed below in Algorithm 4.

When estimating the f(r) probability distribution, we think about the edge lengths
as random variables. Imagine that we write the length of each edge on indistinguishable
pieces of paper and put these papers in an urn. Then, f(r)dr gives the probability of
drawing a paper with a number between r and r + dr, that is, it is the probability of
finding an edge with a length between r and r + dr.

f(r) has an advantage over g(r). Since f is a probability density function, it can be
rescaled to eliminate different experimental conditions like deviations in marker-densities
and microscope settings.

As already said, when calculating f(r), we assume that the lengths are random num-
bers. Obviously, the lengths depend on the position of the markers recorded through the
imaging process. Assuming a linear dependence of the recorded intensity on the micro-
scope gain and dye concentration, the density of the recorded points also depends linearly
on these experimental conditions, just as it would depend on the “stretching” of the whole
system. In this sense, the observed distances between the recorded points in a low density
system should look the same as in a system with high density after undergoing a linear
transformation (stretching of the coordinate axis). Therefor, the probability density of
the distances can be rescaled to different marker-densities.

g(ri) = (5.8)

Given a probability density function f and a monotonic function g, the rescaled f,
probability density is given as:

L) =Flg7 W) 9 () (5.9)
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Algorithm 4 Calculating the length of the shortest path between node o and node w on
graph G(V, E).

1. procedure DIJKSTRA(«, V, E)

2 distance[a] = 0; > the distance to the starting node is 0
3 for y e V\ a do > initially, set the distance to every other node to oo
4: distance[y] = oo;

5: end for
6
7
8

U=V > unvisited nodes
while U # @ do
select ¢ € U, where distance[¢)]==min(distance) > visit the node with the
smallest distance, denote it by v
9: W ={~|(v,v) € E} > W is the set containing the neighbors of v
10: for vy e W do > visiting all the neighbors of
11: tempdistance = distance[y)] + d(¢, v) > d(¢, ) is the distance between 1
and ~y
12: if distance[y] > tempdistance then
13: distance[y] = tempdistance
14: end if
15: end for
16: U=U\7v¢ > marking 1 as visited

17: end while
18: end procedure

Results for the i(d), the g(r) and the f(r)

The h(d) degree distributions for the NPCs and LBRs were calculated and averaged over
the different images. The results are illustrated in figure 5.26. The distributions look
quite similar, they also decay in a similar way. The mean degree for the NPC network
is 10.008553 while it is 11.103745 for the network of the LBRs. These two numbers are
relatively close to each other. Thus, with respect to connectivity, these networks are very
similar to each other.

The radial distribution function, averaged over the different experimental data is pre-
sented in figure 5.27. The ¢(r) is low for small values of r and it has a first peak around
350nms for the NPCs and ca. 300nms for the LBRs. Afterwards the g(r) drops and stays
constantly around 1. First of all, this means that the LBRs are more tightly packed than
the NPCs. It also means that the NPCs prefer to be separated by a minimal distance and
perceive each other as hard spheres with a radius of around 175nms. This is also true for
the LBRs, when binding to the wall of the nuclear envelope. They perceive each other as
spheres with a radius of ca. 150nms. Of course, this rather is a consequence of complex
binding mechanisms and the packing of the heterochromatin and it does not stem from
the physical interactions between the LBRs.

Figure 5.28 depicts the averaged distribution of edge-lengths for the NPCs and LBRs.
As the figure shows, edges among LBRs are on average shorter then among NPCs, thus
the system of the LBRs is denser than that of the NPCs as this already was predicted
by the g(r). On the other hand, we cannot be sure that the difference in the density is
caused by differences in certain experimental conditions. Therefore we rescale the densities
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Figure 5.26: The h(d) degree distribution calculated for the networks of the NPCs and the LBRs,
respectively. The mean degree for the NPCs is 10.008553 and it is 11.103745 for the LBRs, the
two values being very close to each other.
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Figure 5.27: The g(r) radial distribution, calculated for the position of the NPCs and the LBRs,
respectively. The g(r) is low for small values of r, meaning that there is a certain excluded volume
interaction, that is, pores and receptor proteins behave like hard spheres when positioned on the
membrane and they like to be placed at a certain minimal distance from each other. This distance
is indicated by the first large peak of the g(r). The approximate radius of these spheres is around
200nms for the NPCs and is slightly smaller for the LBRs (the g(r) for the LBRs peaks at a smaller
value).

and fit them on each other. The fit is presented on figure 5.29. The figure shows that
while the shorter and longer edges are expected with the same probabilities for the density
normalized NPC and LBR networks, the preference regarding edges with average lengths
deviates in the two graphs. This clearly indicates that the two networks are different and
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there definitely is no one-to-one correspondence. We can safely state that the neighboring
relations are different for the two networks. However, based on the f(r)s, we cannot state
anything certain regarding this difference.
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Figure 5.28: The f(r) distance distribution, calculated for the position of the NPCs and the
LBRs, respectively.

5.3.4 Connecting the Networks

To analyze whether the positioning of the LBRs is indeed influenced by the locations of
NPCs, we construct a third graph by unifying the A and B sets. This way, a G(C, E¢)
graph can be constructed on the C' = AU B united set of points, as described in subsection
5.3.2. In order to represent solely the relation of the two different sets, we remove edges
connecting nodes only from A or only from B, keeping only edges defined by the following
relation:

Eq = {(o,w)|(o,w) € E¢, (e € ANweB)V(a€ BAwe A)}. (5.10)

In addition, we add an extra edge for each point in C, so that, each point from A will
be connected to the closest point from B — let us denote these edges by F4_,p — and
each point form B will be connected to the closest point in A — we denote these edges
by Ep_,a. This is required as in situations when points either only from A or only from
B cluster, certain nodes might be “shaded” from the other set and get disconnected as a
result from the removal of the edges which connect nodes from the same set. Eventually,
we can define the edge set as Ec = E U Ea,p U Ep_,4. A concrete G(C, E¢) graph is
illustrated in figure 5.30.
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Figure 5.29: The rescaled f(r), calculated for the position of the NPCs and the LBRs, respec-
tively. Although the two distributions for well for short and long edge lengths, they deviate around
the average value, thus the distributions are in fact different and in most cases the NPCs and LBRs
have a different arrangement except when tightly or very loosely packed.

Figure 5.30: Network defined by the position of the NPCs and LBRs.

Results for the g(r) and the f(r)

The g(r) for the network of the union of the NPCs and LBRs is plotted in figure 5.31. Ac-
cording to the radial distribution, there is a certain degree of excluded volume interaction
among members of the union, however, there is no preference regarding the separation
distance.

We can calculate a special g, (r) radial distribution by measuring the probability of
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Figure 5.31: ¢(r) calculated for the unified set of the position of the NPCs and the LBRs. Accord-
ing to this measurement, there is some excluded volume interaction between the pore complexes
and the receptor proteins, however, there is no preference regarding the separation distance.

finding a LBR at a distance r from a NPC. Similarly, we can also measure the probability
of finding a NPC at a distance r from a LBR. By doing so, we get the radial distributions
presented in figure 5.32. This figure indicates that the LBRs are closer, on average, to
the NPCs than the pore complexes are to the LBRs. This suggests that certain pore
complexes are further away from most of the Lamin B receptors.

The f(r) distribution of edge-lengths in the union network deviates from that of the
NPC or LBR network on all scales, as figure 5.33 shows this. This means that the NPCs
and LBRs “mix”, and because of this mixing, the nature of the neighbor-network of the
union is qualitatively different.

Distribution of Shortest Distances

Neither the g(r), nor the f(r) signals the presence of any special relation between the
position of the NPCs and the LBRs. However, the g,,(r) radial distribution suggested
that there is certain relation among the positioning of the LBRs and the positions of the
NPCs. To investigate this relation in more details, we calculate a further quantity, the
s(r) distribution of the length of the shortest edges for each of the pores and receptors,
respectively.

For any particular pore complex, there is a closest receptor, similarly, for any par-
ticular receptor there is a closest pore complex. Note that we already know the edges
corresponding to these shortest distances. They are stored in the 4,5 and in the Ep_, 4
edge sets. In fact, s(r) is the distribution of the lengths of the edges in F4_,p and in
Ep_, 4, respectively. We calculate the distributions for the two sets separately.

Figure 5.34 illustrates these distributions. According to the s(r)s, most of the pores are
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Figure 5.32: The g,,(r) radial distribution gives the radial distribution of the positions of the
LBRs — in red — (NPCs — in green) measured from centers defined by the positions of the NPCs
(LBRs, correspondingly). The plot suggests that the LBRs on average are closer to the NPCs than
the NPCs are to the LBRs. This means that there are certain pore complexes which are further
away from most of the LBRs.

placed to a preferred minimal distance of around 200nms from the receptors. However,
larger distances, even above 1000nms also have significant probabilities. On the other
hand, most receptors are positioned at a distance of about 250nms from some of the pores
and there are no receptors further away than 500nms from a pore complex. This means
that the position of the Lamin B receptors are somewhat influenced by the position of the
pore complexes. While not all pore complexes will be surrounded by a receptor, receptors
will always bind close to some of the pore complexes. In a more biological interpretation,
we could say that since NPCs are embedded in the envelope, they are less mobile. In turn,
LBRs can diffuse more easily and prefer to bind close to a pore complex.

Conditional Probabilities

Another way to investigate local structural properties of the constructed networks is by
calculating the conditional probability distribution describing the length of edges con-
nected to a given node, conditioned on finding an edge with a given length connected to
the respective node. In this case, the question we ask is the following: What is the prob-
ability of finding an edge of length r connected to a given node if we know for sure that
the node has an edge which has a length of r’. This probability can be shortly denoted
by p(r|r’) and can be numerically represented as a matrix. A structure in the graph, in
which certain nodes have only long edges while others only short ones and yet others have
edges with intermediate lengths, would be averaged out in the calculation of g(r) as the
radial distribution is averaged over all the nodes. It obviously would not count in the
calculation of f(r), as in this case we look only at the length of the edges and do not care
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Figure 5.33: The rescaled f(r), calculated for the union of the sets of the position of the NPCs
and the set of positions of th LBRs (in black), compared to the f(r) for the NPCs (in red) and for
the LBRs (in green) . The f(r) for the union deviates completely from the other two distributions.
Thus the local structure of the union is completely different from that of the NCSs and LBRs.

to which nodes are the different edges connected to. The p(r|r’) conditional probability
reveals this kind of information. If the graph is biased towards a structure in which edges
are organized in the mentioned way, p(r|r’) would have large values when r is close to r’/
and smaller values otherwise. This effect is demonstrated in figure 5.35. Here we show a
set of points which have some visually obvious features. However, both the g(r) and the
f(r) fail to indicate the presence of a structure in the set. On the other hand, the uneven
spacial distribution of the points is clearly indicated by the p(r|r’) conditional probability.
The brighter diagonal in the matrix-plot indicates the presence of the non-uniform spatial
arrangement.

Calculating these conditional probability distributions for the graphs defined by the
positions of the NPCs, LBRs and the unified set (figures 5.36, 5.37 and 5.38, respectively),
we observe only a slight preference driven by the v’ condition. This preference is slightly
more prominent in the case of the unified set. Nevertheless, the structures seem to be
relatively uniform.

5.3.5 Discussion and Conclusions

We presented an analysis of a set of 3D-SIM microscopy images of the nuclear envelope
in which nuclear pore complexes and Lamin B proteins were separately stained. We
described a procedure to detect the position of the pore complexes and the receptors.
We analyzed the spatial organization of the complexes and receptors within a network-
theory framework. We built the neighbor-network of the objects by means of a Delaunay
triangulation. Instead of applying a three dimensional approach, we removed all the edges
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Figure 5.34: The s(r) distributions of the shortest distances measured from each of the pore
complexes to any of the receptors (in red) and from each of the receptors to any of the pore
complexes (in green). While most of the pores are placed to a preferred minimal distance of around
200nms from the receptor proteins, larger distances, even above 1000nms, also have significant
probabilities. On the other hand, most receptors have a minimal distance of about 250nms from
the pores and no receptor is placed at distances larger than 500nms

from the network which do not run along the nuclear envelope, therefore, we studied the
system in a (quasi) two dimensional space. To gain information regarding the organization
of the pore complexes and the receptor proteins we calculated quantities like the degree
distribution, the radial distribution function, the distribution of the edge lengths (also
conditioned on the presence of a given length), the distribution of the shortest edges.

We found that the neighbor-networks of the pore complexes and the Lamin B receptor
proteins have a similar nature in terms of graph-topology, they have a similar degree
distribution, however, they are different in a geometrical sense: the arrangement of the
pore complexes is different from that of the Lamin B receptors. Both the pore complexes
and Lamin B receptors can be imagined as hard spheres when considering only the NPC-
NPC and LBR-LBR relations. In turn, an NPC versus an LBR is like a system composed
of two spheres which penetrate each other to a varying extend.

We showed that while the spreading of the pore complexes and the receptors along
the surface is rather uniform, the Lamin B receptors prefer to be located close to a pore
complex.
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Figure 5.35: Schematic figure illustrating the usefulness of p(r|r’) conditional probability. Panel
A: a set of points in the two dimensional space, exhibiting a spatial arrangement where certain
points “occupy” relatively large areas compared to other points. Panel B: Delaunay triangulation
of the point-set. Panel C: the g(r) of the points indicates that the points do not overlap (its
value is close to zero for very small distances) but reveals no other structure. Panel D: the f(r)
qualitatively is very similar to what we observe in the case of LBRs or NPCs. Panel E: the p(r|r’)
indicates the special arrangement by the higher probabilities along the diagonal. Shades correspond
to probability values indicated by the color-bar. The matrix is a right stochastic matrix, meaning
that entries in a row sum up to 1.
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Figure 5.36: Conditional probability distribution defined by the NPC graph.
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Figure 5.37: Conditional probability distribution defined by the LBR graph.
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Figure 5.38: Conditional probability distribution defined by the NPC+LBR graph.



Chapter 6

Mixing Topology and Geometry:
Barcodes

References

o C.J. Feinauer, A. Hofmann, S. Goldt, L. Liu, G. Maté and D.W. Heermann, Zinc
finger proteins and the 3D organization of chromosomes.. Adv Protein Chem
Struct Biol. 2013;90:67-117. doi: 10.1016/B978-0-12-410523-2.00003-1.

e G Maté, A Hofmann, N Wenzel and D.W. Heermann, A topological similarity
measure for proteins, Biochimica et Biophysica Acta (BBA) - Biomembranes,
Available online 10 September 2013, ISSN 0005-2736.

e G. Maté and D.W. Heermann, Statistical Comparison of Topological Features of
Proteins , PLoS One, under peer review (2013).

e G. Méaté and D.W. Heermann, Persistence Intervals of Fractals , Physica A,
under peer review (2013).

115



116 6. Mixing Topology and Geometry: Barcodes

Chapter Summary

This chapter is organized around the concept of persistence diagrams introduced in Section
3.4. While most of the sections of this chapter deal with assessing a similarity between
chemical structures, we will deviate from this topic in the last section, presenting a more
generic application of the persistence diagrams. Although the application is presented
from a theoretical point of view, it indicates that an analysis based on the mentioned
topological invariants can offer deeper insight in a particular folding of a protein.

We showed in our publication [57] that flexibility is a very important feature of proteins.
The theoretical model presented in the paper indicates that increasing flexibility, the
binding affinity may increase by orders of magnitude. We argued, that the CCCTC-
binding factor (CTCF) or 11-zinc finger protein, often called the master weaver of the
genome, is able to bind to many different sites partly because it is very flexible. In fact,
it behaves like a self avoiding random walk, with monomer size roughly corresponding to
the diameter of a zinc finger. Therefore, it is very important how we treat proteins when
comparing them. Flexibility is obviously a feature which must be considered properly.

In this chapter, we present the generic ideas of a framework which enables a compar-
ison considering geometry and flexibility in a natural way. We describe three different
variations of the approach. While they are all based on the calculation of persistent
homologies, each of the approaches has its own particularities. In order to ensure the
understandability of the different approaches, we will introduce the concept of Vietoris-
Rips and alpha complexes and that of the persistent diagrams in a more intuitive manner
at the appropriate sections. Since the sections are adapted versions of already published
papers or manuscripts which are currently under peer review, each section can be read
independently from the others. The mentioned approaches are described in Sections 6.1,
6.2 and 6.3.

We recognize that if the persistent diagrams indeed represent the topology of objects,
they also must encode properties like fractality, for instance. We show in Section 6.4 that
there is a simple and intuitive relation between the fractal dimension and the structure
of the diagrams and that this relation can be used to calculate the fractal dimension of
certain objects.
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6.1 The Hausdorff Distance Based Topological Similarity
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As we showed it in our publication [57], proteins are flexible structures. Then, it is
logical to ask how do we threat these flexible proteins? How do we compare them to other
chemicals? How do they bind to different structures? Can we predict potential binding
sites? It is obvious, that predicting these sites is not a lock and key problem. The following
subsection aims to introduce a very engaging method which promises to answer all these
questions.

To have a reference base, first we will summarize the presently still generic geomet-
ric treatment of proteins which presumes that they are crystalline structures. Then we
introduce a new approach to the problem and illustrate its potentials with a few examples.

6.1.1 Geometric Similarity

Let us now shortly describe how geometric similarity can be determined. Our aim here
is not to exhaust the meaning of geometric similarity, instead we would like to provide a
simple basis for the comparison with our approach.

In order to determine the similarity of chemical structures first we need to find an
adequate shape representation of the molecules. Calculating geometric similarity practi-
cally means calculating the similarity of shapes of the molecules. The shape of chemical
structures can be estimated by placing a sphere to the center of the structure’s each atom
with a radius corresponding to the atom’s Van der Waals radius. These spheres can be
Gaussian surfaces but in the most unsophisticated case we would use simple hard spheres.

A very important step when estimating geometric similarity is the calculation of the
best alignment of the structures as geometric similarity measures heavily depend on the
orientation of the shapes. In other words this means that no matter what the definition
of the geometric similarity is, we need to maximize it over all rotations and translations
of one of the structure while keeping the other one fixed. This is a computationally very
expensive process.

After we achieved the best alignment we can proceed with the last step of calculating
geometric similarity. For this reason we overlay the shapes and calculate the subsection
and union of volumes as it is illustrated in Figure 6.1 with the help of adenine (A) and
guanine (B).

The Hodgkin measure of geometric similarity [237] is defined as the Tanimoto measure
[238] of the volumes, that is the volume of the subsection over the volume of the union.
In more general case the volume can be replaced with other descriptors however, we will
constrain ourselves to calculating only volumes as it already provides the necessary base
for comparison.
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Figure 6.1: Geometric similarity is calculated as the ratio of the volumes of the subsection
(Vanp) and the union (Vaup) of the shapes representing the chemical structures.

A very good and detailed review of geometric similarity measures can be found in [237].

6.1.2 Geometry vs Topology

As it was pointed out, geometric similarity measures focus on how the actual shape of the
molecules compare. However, a vast amount of proteins we encounter in living organisms
are very flexible structures. This flexibility allows them to frame to different constraints
or to other shapes. On the other hand, the capability of such adaptability automatically
triggers the fact that there must be an almost unlimited number of shapes, an ensemble of
shapes, a protein could don. Some of these shapes are of course similar to each other, but
some of them might be totally different. If we randomly pick two shapes from the ensemble
odds are high that the geometric similarity measure indicates a reduced similarity between
the two. This is of course correct if we are talking strictly about geometry. However,
proteins are flexible for a good reason: to be able to adapt and bind to different shapes.
Thus, when talking about similarity measures as means of identifying potential bindings
we must not neglect the capability of a protein of changing its conformation. We should
be able to tell that the two conformations came from the same ensemble that is, they
represent the same protein or, at least, we should be able to indicate that small scale
(local) structures are built up in the same way. This means that structures like bonds,
rings, loops, etc. must be preserved. In a more mathematical language we would say that
the topology of the two systems must be the same.

We introduced here the key concept of our method: topology. To briefly summarize,
topology is the field of mathematics which studies properties of objects which are preserved
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under certain deformations like stretching and bending. Note that these deformations are
exactly the ones which allow a protein to change its shape. Thus, if we look at the topology
of proteins instead of their geometry, we should be able to decide whether two instances
are chosen from the same ensemble or not.

6.1.3 Using Topology to Compute Similarity

Looking at the topology of a given molecule carries a huge advantage. The topology of
a structure is invariant with respect to similarity transformations. This means that for
a given object no matter what the point of reference is, the topology is the same. Thus,
by looking at the topology of the objects one avoids the expensive calculation of the best
alignment.

When it comes to investigating the topology of a protein, we can think about a few
different approaches. One is to treat the proteins as graphs — abstract mathematical
objects consisting of nodes interconnected by edges or links — in which the nodes would
represent the atoms and edges the chemical bonds. Afterwards we could forget about
the protein itself and could carry on looking only at the graph. We can pick from a vast
amount of well-established and studied measures introduced by the experts of the field
which would characterize the topology of the graph. However, in this case we have to be
careful as these measures are usually independent of the physical size of the investigated
system that is, these measures are invariant with respect to the rescaling of the system.
In the present situation this behavior is not desired.

Another approach is to take advantage of the recent developments of computational
geometry as it promises suitable techniques crafted specifically to analyze topological
properties of a given object by calculating so-called topological invariants. The topological
invariants we will focus on are the number of connected components, the number of holes
and the number of voids in the investigated object. Connected component in this context
means parts which are connected to each other. For example, a regular ball has a single
connected component (since it is a single piece), no holes and a single void (inside). A
piece of paper also has a single connected component, no holes and no voids. If we would
tear the paper in two, the system composed from the two (now separated) pieces of paper
would have two connected components (since the two pieces are not connected to each
other anymore), no holes and no voids. If we would take a pencil and would poke a hole
in one of the papers we would end up with a system with two connected components, one
hole and no void. In the field of topology the mentioned topological invariants correspond
to the so-called Betti numbers [239]. The number of connected components is the Oth
Betti number, the number of holes is the 1st Betti number while the number of voids is
the 2nd Betti number.

If we would try to compare two objects relying only on the number of connected
components, holes and voids, we would quickly run into trouble. For instance, we would
find that a regular coffee cup (one component, one hole in the handler and no void) is
similar to a donut (one component, one hole in the middle and no voids).

A Barcode Representation of Topology

In order to avoid such blunders when comparing proteins we resort to the following ab-
straction. We remove all the bonds from the proteins keeping only the atoms. From now
on we are not interested in the physical meaning of atoms, thus we will refer to them
simply as points. Then we adopt the following procedure:
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o we define a distance scale d
e we connect all point pairs that are closer then d with a line
o we calculate the topological invariants for the obtained structure

We repeat these steps for different d values and follow how the topological invariants
behave as we vary d. To do this consistently, we define a minimal and a maximal value for
d and fix the number of values d will have between its extremities, that is we divide the
range defined by the minimum and the maximum to equal intervals. First, we set d to its
minimal value, register the values of the topological invariants at this value then increase
d to its next allowed value. We will repeat these steps until we exhausted the allowed
values for d.

At this point it is a valid question what is counted as a hole and how can voids
form when all we do is connecting points with lines. The answer lies in the definition
of topological building blocks which are points, lines, triangles, tetrahedrons and their
higher dimensional analogs. According to this, triangles do not count as holes, instead
they constitute faces. Similarly, the space enclosed by a tetrahedron is not counted as void.
Thus, any polygon which is not a triangle constitutes a hole, similarly, any polyhedron
which is not a tetrahedron contains a void. Note that the faces of the polyhedrons can
only be triangles — otherwise there would be a hole in the wall of the polyhedron, thus it
would not be a polyhedron anymore.

After we scan the system with the procedure described above we know the numbers of
connected components, holes and voids for each value of d. The acquired information can
be summarized in a diagram in the following way:

e each instance of connected component, hole and void will be represented by a bar

e the start point of the bar will correspond to the value of d when the instance came
into existence

e the end point of the bar will correspond to the value of d at which the instance
ceased to exist

The bars for connected components are somewhat special as connected components unite
as d increases. This process can be viewed as one of the connected components embeds the
other one. Accordingly, the bar of the embedded component will end at the point where
the component was embedded while the bar of the embedder component will continue until
the letter will be embedded in another component. The role of embedded and embedder
is arbitrary. It is easy to see that one of the bars for connected components will persist
even at the highest values of d as there will always be at least one connected component,
thus this bar can be neglected as it does not carry any information.

The diagram compiled in the previously described way will be a barcode-representation
of the topology of the system in which each bar represents the interval of d over which the
corresponding topological feature persists (persistence interval). An example for such a
barcode can be seen on Figure 6.10. This representation was developed by Carlsson and his
collaborators and a very good review of their work can be found in [240]. Betti numbers
and calculating persistence intervals are discussed with more details in the theoretical
introduction of this thesis, in Section 3.4.
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Figure 6.2: Barcodes for a given set of points in 2D. The horizontal axis represents the distance
parameter. Persisting “features” are arranged on the vertical axis in an arbitrary order. On the
top of the figure the procedure of connecting points is illustrated for a few values of d. Shaded
faces in these illustrations signal formed triangles. Each triangle has a different color.

A Barcode Based Topological Similarity Measure

So far we described how to represent the topology of proteins with barcodes. Since these
barcodes encode the topology, by comparing them we actually compare topologies. A very
important extra feature of the barcodes is that while they encode topological invariants,
they do not neglect the physical configuration of the proteins as they carry information
about distances. In principle it would be possible to reconstruct a configuration from
its barcode representation, however this would require solving an optimization problem.
Thus, comparing objects by looking at their barcode representation should correlate with
measuring their geometric similarity. In addition, it should be able to match geometrically
different but topologically similar structures.

Comparing barcodes to each other requires a definition of a distance measure. For this
purpose, we need to remember that each bar can be characterized by two numbers: its
start and end point. This means that we can represent the barcodes for a given topological
invariant as points in a two-dimensional plot in which one of the axes represents the start
points while the other axis represents the end points. If we plot for instance two sets of
barcodes for holes, we would get a diagram similar to the one in Figure 6.3 panel a. Then
for each point from one of the sets we could find the closest point from the other set (figure
6.3 panel b).

We measure the distances between the pairs of closest points. Choosing the largest
distance as a similarity distance assumes a worst-case similarity of the sets. In set theory
this is called the Haussdorff metric [241].

The concept of Hausdorff distance (or Pompeiu-Hausdorff distance) was developed



122 6. Mixing Topology and Geometry: Barcodes

o4 a oh b

"\é ° ¢ ° E — [\ \/
8— =ep 8— \/ =ep

- o SP S 1Y

o = 3

I start point (sp) | start point (sp)

Figure 6.3: A different representation of barcodes. The start and end values of the bars are
represented on different axes. Each bar corresponds to a point. Note that all points should be
above the line which is defined by the start values being equal to the end values since each bar
ends later than it starts. Blue and magenta points correspond to different shapes. The red and the
green lines connect closest points of the different sets. The red line indicates the largest distance
between the closest points.

in the field of set theory. Generally, the definition of the Hausdorff distance of the sets
C,D C R" is given by

dg(C,D) = sup |de(x) — dp(z)],
TER™

where d¢(z) is the distance of the point = from the set C' [241]. A more intuitive definition
can be given as follows:

dp(C, D) = max{sup inf d(z, y), sup inf d(y, x) }.
xeCYED yEDIEC

In our case we are dealing with subsets of R? as each element —each bar— is characterized
by two numbers. Thus, the Hausdorff distance can be applied straightforwardly.

We represent each of our objects with three different sets: persistence intervals for
number of connected components, number of holes and number of voids respectively. It
is not correct to compare the number of holes to the number of connected components.
Therefore, we have to calculate the Hausdorff distance for the corresponding pair of sets.
In a more formal description, let A and B be two objects for which the set representing the
barcodes for connected components is denoted by CC'4 and CCp, the set representing the
barcodes for holes is denoted by HL 4 and H Lp while the set representing the barcodes
for voids is denoted by VD4 and V Dp respectively. We chose to define our topological
similarity of A and B as

TSM =1 - [dH(CCA, CCp)+dy(HLA,HLB) +dy(V D4, VDB)].

This way, values of T'SM close to one mean very similar topologies while smaller values
indicate less similar topologies.

6.1.4 A Comparison between Geometric and Topological Similarity

In order to verify the previously defined topological similarity measure, we test it on a
benchmark database and compare it against the Hodgkin geometric similarity measure.
For this purpose we chose the DUD [242] database. We present the results for two tar-
get proteins: Acetylcholinesterase (AChe) and Thymidinkinase (TK). The DUD provides
105 ligands and 3732 decoys for AChe while for TK we have 22 ligands and 785 de-
coys. We divide each ligand and decoy in 2-3 subsystems depending on their size and
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homogeneously sample neighborhoods of similar sizes from AChe and TK. We compare
each ligand and decoy to its corresponding target by comparing all possible combinations
of pairs of neighborhoods between them. Topological invariants are calculated with the
freely available perseus software [243], while geometric similarities are calculated with an
in-house developed library. We mark the results of the comparison on a plot with the x
axis representing the topological similarity measure while the y axis represents the geo-
metric similarity. Since on these plots many of the points overlap we calculate the density
of the points and present them as a density-plot.

It is already clear by inspecting Figure 6.4 — the plot for the AChe target — that the
topological and geometric similarity measures do correlate, as it is naturally expected.
We can also see that while the geometric similarity ranks relatively low for some of the
neighborhood pairs they might still have very similar topologies. This suggests that the
introduced topological similarity measure is able to pick up additional potential binding
sites which is a very important achievement over the geometric similarity measure (lower
right side of the figure). Similar observations can be made inspecting figure 6.5 which
presents the results for the TK target.
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Figure 6.4: Topological vs geometric similarity for AChe.

In order to prove that our similarity measure is consistent and well-behaving, we
calculate the distribution of the highest similarity measure values for the decoys and the
ligands separately and expect a similar distribution for the two.

FExamining Figures 6.6 and 6.7 we can deduce that our expectations are satisfied. Thus,
we can conclude that the presented method works well on real-life scenarios and correlates
with the geometric similarity which was an expected behavior. Moreover, our method
has a huge advantage over the geometric similarity measure: it can indicate additional
potential binding sites which were totally neglected by the geometric similarity measure.
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Figure 6.5: Results for the topological and geometric similarity measures for TK.
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Figure 6.6: Distribution of the highest values of the similarity measure in case of AChe.



6.1. The Hausdorff Distance Based Topological Similarity 125

0.14 T T T

[ Decoys
[Ligands

0.12

relative frequency
o o
o 5 o
(o)} [e0) =

o
o
=

o
o
[N

0.8625 0.9025 0.9425 0.9825
Topological similarity measure

Figure 6.7: Distribution of the highest values of the similarity measure in case of TK.

6.1.5 An Application to CTCF

As a first test-application on CTCF we considered several configuration of the protein
achieved by bending some of the linkers and then relaxing the system. In our test we
chose the subunits composed by the bent linkers and the two zinc finger domains at the
end of the former and attempt to demonstrate that although these units changed their
geometry, we are still able to show that they are similar. The units are illustrated in
Figure 6.12.

To do this, first we coarse-grain the selected units as proper coarse-graining must not
change the topology and it improves computation. Then we calculate the topological and
geometric similarity measures. Results are summarized in Table 6.2.

Tests Hodgkin similarity | Topological similarity
subunit 1 vs subunit 2 0.532 0.98847
subunit 1 vs subunit 3 0.641 0.99012
subunit 1 vs subunit 4 0.602 0.99012
subunit 2 vs subunit 3 0.669 0.98378
subunit 2 vs subunit 4 0.667 0.98413
subunit 3 vs subunit 4 0.955 0.99997

Table 6.1: Table presenting results for the geometric and topological similarity comparison of
CTCF subunits.

Although geometric similarity indicates differences, it can be seen that topological
similarity clearly shows that the domains have similar topologies.
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Figure 6.8: CTCF subunits used in testing geometric versus topological similarity. They are

composed of two zinc finger domains and a flexible linker. Panel A subunit 1, Panel B subunit 2,
Panel C subunit 3 and Panel D subunit 4 (see table 6.2).

6.1.6 Discussions and Conclusions

In this section, we presented our first attempt for constructing a framework to measure
the similarity of flexible structures.

We introduced the concept of barcodes, that is, persistence diagrams, in an intuitive
manner. We defined the similarity measure as one minus the Haussdorff distance. We
tested the concept on ligands known to bind to two particular proteins, comparing them
against decoys, which do not bind in turn, although they are geometrically similar to
ligands. We found that the defined topological similarity correlates with the geometric
similarity. However, this is an expected behavior. On the other hand, the topological
measure assigns high similarity to extra pairs which are geometrically less similar. We also
tested our measure on different foldings of two zinc fingers connected by a flexible linker
protein. While geometrically the conformations were obviously different, the topological
similarity correctly assessed close resemblance.
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6.2 Average Jaccard Measure of Best Overlaps
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In the previous section we introduced a first attempt to apply computational topology
algorithms for assessing similarity among chemical structures. We saw that a persistence-
diagram based method considers both topology and geometry, furthermore, our experi-
ments indicated that the approach is more then a mere geometric comparison and is able
to predict extra similarities.

Now we want to establish an alternative way to perform the same task, that is, to
determine molecular similarity among chemical structures based exclusively on the phys-
ical configuration of these. We aim to develop a method which takes into account the
topological features and the geometry of the investigated structures.

We validate the method by calculating the similarities of different configurations of
two zinc fingers connected by a flexible linker protein. Then we apply the method on
the Directory of Useful Decoys: Enhanced (DUD-E) database [244], a docking database
which contains many membrane-proteins, ligands binding to these and decoys specifically
selected so that they do not bind.

For the sake of completeness, we will review all the previously presented concepts.

6.2.1 Comparing Proteins

The two generic approaches (comparing geometry and comparing the topology) may be
the easiest way to determine similarity among molecules, however, when purely applying
one or the other we discard important information. In order to demonstrate the flaws of
these methods, we briefly introduce them.

Topological Approach

Topology is the field of mathematics which investigates properties of objects which are
invariant under certain deformations, i.e., stretching, bending — excluding breaking and
tearing. Topological approaches (in fact all mathematical approaches) always require a
good representation of the investigated objects. For instance, it would be really hard and
thus unfeasible to represent a molecule with an abstract function.

Since, from the chemical point of view, the connectivity of the atoms is of crucial
importance, these approaches intend to capture this aspect when representing a chemical
structure. This information is easily stored by the chemical formula, but also by a more
complex mathematical object in form of a graph. Graphs are specially designed to capture
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connectivity information among different entities — atoms in the case of proteins, but they
are suitable to represent any kind of structures composed of separable but interacting parts,
commonly called networks. Usually, the interacting entities (e.g. representations of atoms)
are referred to as vertices or nodes while connections between nodes (encoding chemical
bonds, for instance) are represented by edges or links. Graphs can also be used to represent,
for instance, computer networks [245], where the connected entities are the computers, on-
line social networks [246], where nodes represent persons and edges represent friendships
but also the complex connectivity characterizing the human brain [247].

In a purely topological, graph-theory based approach each atom of the investigated
molecules is represented by a node and each bond is represented by an edge. The set of
nodes and edges corresponding to a given molecule is a well-defined mathematical object,
and there is a whole mathematical field built around these objects, called graph-theory.

Besides laying the foundations and defining the framework for handling graphs, graph-
theory also provides the necessary measures and algorithms to compare graph-objects
[248]. Without detailing these measures and methods, it is easy to understand now, that
such an approach completely neglects any geometric or physical constraint since the rep-
resentation of the data deals only with the connectivity information. Therefore, a purely
topological approach could assess high similarity between a molecule and a physically and
chemically incorrect copy of itself.

Geometric Approach

Comparing molecules from a geometric point of view in turn supposes representing molecules
as a form of volume. The easiest and perhaps the most realistic way to do this is by mod-
eling each atom by a hard sphere with a radius corresponding to van der Waals radius
of the atom. In this case, one can define geometric similarity as the Tanimoto or Jac-
card measure of the volumes [237,249] calculated for the best alignment. This measure is

defined as:
VanVp

VAUVB’

where O4 and Op denote two different molecules, while V4 and Vg denote the volumes
of O and Op, respectively. The operation V4 N Vp yields the subsection of the volumes
while the operation V4 U Vp yields the union of the volumes. Calculating the geometric
similarity supposes that we previously calculated the best alignments, i.e., we tried to
maximize this measure as a function of all possible rotations and translations. This is a
computationally very costly procedure.

S¢(04,0B) = (6.1)

Although this measure performs very well when one is strictly interested in geometric
similarity, proteins are flexible structures and flexibility turns out to be a very important
property as it influences binding affinity [250] and function [251]. By calculating only
geometric similarity we assess very reduced similarity between two different foldings of the
same protein, which is obviously a bad result. On the other hand, geometric similarity is
also sensitive to the difference in number of atoms.

6.2.2 Similarity and Topological Invariants

Based on the previous descriptions, it is clear that considering only topology or only
geometry may lead to an incorrect conclusions. There is a need for a method which is able
to handle flexible structures and assess the correct similarity value even in complicated
cases, for instance, when one compares two different distortions of the same object.
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We build our similarity measure around two concepts: topology and physical con-
straints. Considering only topology would result in high similarity between a structure
and its stretched version, which is an unwanted behavior. Note that considering physi-
cal constraints means that to some extent we are also interested in the geometry of the
structures we want to compare.

A possible way to characterize topology is to record properties of the structures which
are invariant under certain deformations of the object. Deformations which might fragment
the structures (breaking, tearing, gluing, etc.) are excluded. In a more mathematical
language, these deformations must correspond to a continuous transformations of the
topological space defined by the structures.

Just as in the Section 6.1, we will focus our attention to three quantifiable properties:
the number of components which are independent from each other and connections only
exist within components, the number of holes on the surfaces and the number of voids
inside the structures. Remember, the field of algebraic topology has special names for these
properties, they are called the Betti numbers of dimension zero, one and two, respectively,
and they turn out to be very important topological invariants which help distinguishing
between different topological spaces [239,252].

By comparing these quantities of two solid objects we can decide whether they have
the same topology or not. But molecules are not solid objects. They are better described
by the point-set defined by the coordinates of the atoms. Thus we need a method through
which we can actually define what we mean by components, holes and voids.

To accomplish this, we, in fact, need to convert the point-set into a solid object in
a similar fashion we did in the previous approach: First, we take the point-set defined
by the coordinates of the atoms and discard all the bond-information. From now on
we will work only with these points. Next, we want to define a geometric relationship
among the points. For this, we start growing spheres around each of them. Whenever two
spheres mutually embed each-other’s center we connect the centers of the spheres by a
line/edge. Points connected by an edge are considered to belong to the same component.
Any two points which are connected by a path through the existing edges are in the same
component. As we increase the radii of the spheres we can record each event of connecting
two previously disjoint components. By this we actually can follow how the number of
components changes as a function of the radius. First each point is a separate component,
while for a radius large enough each point is connected, and we end up with a single
component.

The definition of holes and voids also stems from this process. In order to build a
solid, beside points and lines, we need face and volume building blocks. For this, we
will use the simplest polygon and polyhedron, namely the triangle and the tetrahedron.
Whenever three edges form a triangle we consider not only the edges but also the face of
the triangle. Similarly, whenever four triangles form a tetrahedron, we consider the volume
of the tetrahedron as solid volume. The described procedure is presented in Figure 6.9 for
a particular set of points.

Once the surfaces and volumes are defined we can proceed and count the holes and the
voids. In fact, it is possible to register their number and also the number of components
for every separate value of the radius of the spheres. This will be important in the next
stage.
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Figure 6.9: Converting a point-set into a solid object. As the growing spheres mutually embed
the center of each-other the corresponding centers are connected by an edge (as shown in the left
column). Whenever a triangle/tetrahedron is formed, it is included in the solid as a face/volume
element(illustrated in the right column).
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A Barcode Representation of the Structure

We construct the barcodes in the similar way we did in the approach described in the
Section 6.1:

e each instance of component, hole and void will be represented by a bar

e the position and length of a bar represents the “lifetime” of the corresponding com-
ponent/hole/void

e the start point of the bar will correspond to the value of the radius at which the
instance came into existence

e the end point of the bar will correspond to the value of the radius at which the
instance ceased to exist

The bars, in fact, are graphical representations of the intervals of the radii over which cer-
tain topological features (components, holes, voids) persist and they are called persistence
intervals. The set of these bars characterizes how the topology of the object changes as
we coarsen the representation of the structure and it can be viewed as a barcode of the
topology on different scales. The barcode corresponding to point-set in Figure 6.9 can be
seen in Figure 6.10.

Note that for a given object we will have three different barcodes: one for components,
one for holes and one for voids. In a mathematical terminology they are often referred to
as dimension 0, dimension 1 and dimension 2 intervals, respectively.

To have a more physical understanding of the concept of components, holes and voids,
imagine a regular rubber ball. The ball obviously has a single component and a void
(usually filled with air) enclosed by the shell. If we poke a hole on the shell of the ball,
we practically destroy what we in the context of this paper would call a void, as through
the hole the air can escape. Now, in theory at least, we can grab the shell from the sides
of the hole and stretch the rubber ball to a flat surface. In a mathematical language, we
say that the ball with the hole is homeomorphic to a plane. Therefore, a single hole on a
closed surface is in fact not a hole. Perforating the shell again and stretching from one of
the holes results in an object homeomorphic with a plane with a “real” (topological) hole
on it. Note that all the so far created objects had just a single component. In order to
have two components we would need to cut the ball into two separated parts.

The bars/intervals for connected components (green lines on Figure 6.10) are somewhat
special as connected components unite as the radius increases. This process can be viewed
as one of the connected components embeds the other one. Accordingly, the bar of the
embedded component will end at the point where the component was embedded while the
bar of the embedder component will continue until the latter will be embedded in another
component. The role of embedded and embedder is arbitrary. It is easy to see that one
of the bars for connected components will persist even at the highest values of the radius
as there will always be at least one connected component, thus this bar can be neglected
as it does not carry any information. For this reason, this bar may even be removed from
the barcode.

Note that we are looking at the way the topology changes as we coarsen the representa-
tion of the structure we are investigating. By this we in fact implicitly consider geometric
information without having to perform the expensive calculation of the best alignments.
To understand how geometry is encoded in the barcodes let us return to the example with
the ball. As already pointed out, this ball has a single connected component (its shell),
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Figure 6.10: Barcodes for a particular set of points in 2D. The horizontal axis represents the
radius of the growing spheres. The green bars correspond to components while the purple ones
correspond to holes. Persisting “features” are arranged on the vertical axis in an arbitrary order.
On the top of the figure the procedure of connecting points is illustrated for a few values of the
radius. Here, shaded faces signal formed triangles. Each triangle has a different color. Note how
first each point constitutes a component, then as the radius increases the points start to connect
to each other, thus the number of separate components decreases. Also note that the first hole
forms at a radius value around 2.4 while at a radius if 4.3 everything is connected, every hole is
filled.

no holes (otherwise the air would escape) and a single void inside the shell. Thus, there
would be a single bar of a length corresponding to the diameter of the ball in the barcode
representing voids. It is clear that if we change the geometry of the ball by flattening it for
instance, we immediately would see the result of the change in geometry by the shrinkage
of the bar representing the void inside the ball.

Similarity Based on the Barcodes

At this point we are able to calculate a barcode-representation of certain important topo-
logical features for a given structure. As we argued above, these barcodes also encode
geometry. It is natural then to assess the similarity of two structures which may be of
high complexity through comparing their barcodes, the latter being rather simple mathe-
matical representation of the structures.

Since a barcode is in fact a set of bars, the first thing that comes to mind is the so-called
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Hausdorff distance [241] of the bar-sets. Although this approach would already provide an
insight regarding similarity [250], the Hausdorff distance is a distance and not a similarity
measure. It indicates the dissimilarity between two sets and its magnitude depends on
the magnitude of the set-elements, that is, it is impossible to decide from the value of the
Hausdorff distance of two sets whether the two sets are similar or not. We always have to
provide a frame of reference. Although interpreting values of similarity measures defined
on the interval [0, 1] is not straightforward either, at least we know that values closer to
one indicate high similarity, while values closer to zero mean reduced similarity.

Another classical way to compare sets is calculating their Jaccard or Tanimoto index
(or measure) [249]. The Jaccard index is in fact the count of the elements present in both
sets divided by the total number of elements, that is,

|M N N

SJ(MaN) = Wa

(6.2)
for any nonempty M and N sets. Unfortunately, in the case of the sets of the bars
(the barcodes) it is not straightforward to apply the Jaccard similarity index since, for
example, the coordinates are real valued numbers and bar-lengths may differ already
because of experimental errors, thus deciding whether two bars from two different barcodes
are equivalent or not is not a simple task. Also, we may consider two circles/rings similar
even if their radius differs (different radius would mean different bar lengths). However,
it is possible to define a measure based on the Jaccard index in the following way:

e we can calculate the Jaccard measure for every pair of intervals from two different
barcodes

e for each bar from one barcode there exists a bar from the other barcode for which
the Jaccard index is the highest

e we define our similarity measure as the average of these highest Jaccard measures

Within a more mathematical framework, we can define this barcode-overlap similarity
measure as

an b
> SupbeB + > su SUWPacA 7| » (6.3)
a€A beB

Sp0(4 B) = A 1E] rB|

where A and B denote two different barcodes while a and b denote different bars from
barcodes A and B, respectively. Figure 6.11 attempts to illustrate the calculation of this
similarity.

For the definition given in (6.3) it is possible to show that Spo is a similarity measure
in the mathematical sense. In the following, we present the proof of this statement.

Definitions

Let A, B and C be three nonempty sets:

A = A{ala = [as,ae],as,ac € Ry as < ae} (6.4)
B = {blb=[bs,be],bs,be € Ry, bs < be} (6.5)
¢ = {b|C = [08766]765706 €ERy, s < Ce}v (66)

where [z, y] denotes a closed interval with limits = and y.
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Figure 6.11: In this figure we illustrate the calculation of the proposed similarity measure.
Panel A presents two barcodes from two different molecules. Panel B illustrates the process of
selecting for each bar from the first barcode from Panel A, those bars from the second barcode
from Panel A for which the Jaccard index is the highest. Panel C illustrates this process for each
bar from the second barcode. Overlaps are illustrated in red in the rightmost plots of Panels B
and C. The (approximate) Jaccard indexes are also printed next to the illustrated overlaps. Our
similarity measure is, in fact, the average of these indexes, which, in the presented case, would give
a similarity of 0.8091.



6.2. Average Jaccard Measure of Best Overlaps 135

Let Spo(A, B) be a mapping defined as in Equation (6.3):

la N bl la bl

S A'B
so(4, B) = \A|+|Br 25 g+ 2 SR Ty

Aim

We intend to prove that Spo is a proper similarity measure. According to [253] Spo is a
similarity relation if it satisfies the following conditions:

0< Spo(4,B) <1 (6.2.C8)
A=DB= Spo(A,B)=1 (6.2.C9)
Spo(A, B) = Spo(B, A) (6.2.C10)
ACBCC=Spo(A,C) <Spo(A,B) (6.2.C11)
ACBCC= Spo(A,C) < Spo(B,C) (6.2.C12)

Proofs

Since for any a € A and b € B |aNb|/|aUb| is between 0 and 1 for any A and B, Spo(A, B)
will also be bounded by 0 and 1, thus (6.2.C8) is true.

For A = B supg inalaNb|/|laUb| =1 for any b € B and also supy inplaNb|/laUbl =1
for any a € A. Therefore, Spo(A, B) = (|A| + |B|)/(|A] + |B|) = 1, that is (6.2.C9) is
true.

Condition (6.2.C10) is true by definition.

Condition (6.2.C11) Proving AC B C C = Spo(A,C) < Spo(4, B).
Because of the relation A C B C C, the definition (6.7) for Spo(A, B) and Spo (A4, C)
can be rewritten in the following forms:

Spo(A, B) + > sup

_ sup
|A| + |B] 2 beb U 2 aeh |aUb)

1 la N b la N b|
aeA
Ny \aﬂbq
sup

1

= |A|+ > sup
e |4t 2

+
beAaE ’a’Ub‘ bGB\AaEA ‘an|

1] la bl
= 2 A1+ Y sw
AN - JoeAP Ubd

that is,

1 land||
204+ ) sup , (6.2.13)
[A]+ 1B beB\AaeA’ alb

Spo(A, B) =

similarly,

1 ﬁc|—
Spo(A,C 2|A . 6.2.14
BO( ) ‘A|+|C’ | |+CE§A2€A |CLUC| ( )
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Equation (6.2.14) can be further rewritten:

1 N N
S80(4,C) = o |24l + > sup ‘QUC‘ + ‘auc‘ (6.2.15)
A1el | A ehlaud Tz laue
Denoting
b
sup lan bl =z, (6.2.16)
beB\A“GA |an|
we finally have
1
Spo(A,B) = 2| A| + 2], (6.2.17)
[A]+1B]|
and
Spo(A,C) Lo rer Y supled (6.2.18)
BO\A4, =TT 2.
|A| + |C| CGC\BQGA la U |
Then we can proceed as follows:
Spo(A,C) < Spo(A,B) < (6.2.19)
1 |aﬂc[
—— _[2)A|+ 2+ su < (6.2.20)
A+ C] CE;\B sk laUd]
1
—— [2|A]| + 2] . (6.2.21)
| Al +|B|
But since
N
3 sup 2 anel o2 1m, (6.2.22)
CGC\BaE ‘ ‘
proving that
1 1
= 2IA|+ 2+ |C| - |B]) < (2|A| + z) (6.2.23)
Al +|C] |Al+B|

is a stronger condition. From equation (6.2.23) we can proceed in the following way:

24| + = +|C| = |B| _ 2/A|+|B|—|B|+=

< (6.2.24)
Al +[C] Al + | B|
|A| + z — | B| |A| — |B| + =
U . B el ok P et (6.2.25)
Al +C]| Al + | B|
|A| — |B| + |A| — |B| + =«
< (6.2.26)
Al +C]| Al + [ B

Inequality (6.2.26) is obviously true since |A| + |C| > |A| 4+ |B]| as A € B C C. Thus
(6.2.C11) is proved.

Condition (6.2.C12) Here we prove that A C B C C = Spo(A,C) < Spo(B,C).
The formula for Spo(B,C) can be rewritten similarly to (6.2.14) form of Spo (A4, C),

that is,

bNc|

Spo(B,C) = bEB |bUc[

BC | @ 2B+ ) su (6.2.27)

cEC\B
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Let bl
Nc
y:= Y sup bUe (6.2.28)
ceC\B beB
Therefore, (6.2.27) simplifies to
1
Spo(B,C) = ——— (2|B| +y). (6.2.29)
B[ +|C]|
Then, the statement we want to prove is
1 lanc] 1
——— 2|A| + z + sup < (2|B|+y). (6.2.30)
Al +[C] CE§BGGA laUcl| = [B]+[C]
Note that since A C B the fallowing inequality holds:
\aﬂc|_ |aﬁc|7 (6.2.31)
ceC\ B 9EA laU ¢l ccC\B9EB laU ¢l
that is,
A
sup land <. (6.2.32)
c€C\B acA |CL U C|
Therefore, if we can show that
1 1
e QA+ 2 +y) < s (218 +y) (6.2.33)
Al +1C| B[ +|C]|

is true, then relation (6.2.30) will also hold.

From (6.2.16) we see that x < |B| — |A| and from (6.2.28) it results that y < |C|— |B].
Since |A| + |C] < |B| +|C/|, one being the denominator on the left hand side of equation
(6.2.33) the other being the denominator on the right hand side of the same equation,
replacing y on both sides of the equation with |C| — |B|, will have a larger contribution on
the left hand side. Therefore, if the resulting inequality still holds, it means that (6.2.33)
also holds and therefore (6.2.30) holds, too.

By carrying out the substitution we get the following:

24| +[Cl = [B[+= _ 2[B[+|C| - |B|

< (6.2.34)
1Al +1C |B| +C]
[A[+[Cl+ A = B[ + = |B| +|C]
< (6.2.35)
Al +1C Bl +C]
|A| — |B| + =
e o S (PN (6.2.36)
Al +(C]
|A| — |B| + =
BBl r o, (6.2.37)
Al +(C]
Since |A| 4+ |C| > 0, (6.2.37) is equivalent with |A| — |[B| 4+ 2 < 0. But from (6.2.16) we
already saw that = < |B| — |A|, therefore, our last statement is true which means that

(6.2.30) is true, that is, (6.2.C12) is true.

By this we proved that Spo is a proper similarity measure. However, since we may
encounter the case when there are no holes or voids in our structure, we need to extend
the definition of our similarity measure so that we can handle these exceptions.
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Extension to Empty Sets

The extension can be achieved by recognizing that an empty set is completely similar
to another empty set. Therefore, we assign a value of 1 as the similarity between two
empty barcodes. Also, note that the case when there are no bars in the barcode is quite
different from the case when there are bars. Therefore, we assign a 0 similarity for this
case. Compressing these in a mathematical formula, we get the following:

Spo(A,B) A+0and B£0
Spor(A,B) =141 A=0and B=1 (6.2.38)
0 (A=0 and B#0) or (A# 0 and B =0)

Based on this definition, it is also possible to show that Spop is a proper similarity
measure.

Definitions

As the Jaccard index is not defined for empty sets, here we extend the proof presented
above to the case which allows comparing empty sets. Since the empty set is similar to
itself, we define the similarity of two empty sets as total similarity, taking the value 1.
Furthermore, since the empty set is totally different from any non-empty set, we assign the
value 0 to the similarity between the empty set and any nonempty set. In mathematical
terms, this means the we need to prove that the measure defined as

SBo(A, B) A 75 (Z)andB ?é @
Spon(A, B) =41 A=0and B =0 (6.2.39)
0 (A=0 and B #0) or (A# () and B = 0)

is a similarity measure.

Proof
The proofs for the conditions (6.2.C8), (6.2.C9) and (6.2.C10) are relatively simple:

e Since Spo € [0,1], Spog is also constrained to the interval [0, 1], therefore, (6.2.C8)
is true.

o If A = B, this means that both are either empty or not. If both are empty, then
according to the (6.2.39) definition Spog(h,0) = 1. If they are not empty then
Spor(A, B) = Spo(A, B). But we already saw that if A = B then Spo(A4, B) = 1.
Therefore, (6.2.C9) is true.

o Spog is symmetric by definition, that is (6.2.C10) is true.

Proving (6.2.C11) and (6.2.C12) In order to show that (6.2.C11) and (6.2.C12) both
hold, we need to consider four different cases of the condition A C B C C:

A#0,B#£0,C %0 (6.2.C40)
A=0,B#0,C %0 (6.2.C41)
A=0,B=0,C+10 (6.2.C42)
A=0,B=0,C =10 (6.2.C43)
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We now go through these different cases.

o case (6.2.C40) is obviously the case when Spor = Spo, therefore, both (6.2.C11)
and (6.2.C12) hold in this case.

e in case (6.2.C41) Spor(A,B) = 0, Spor(A,C) =0, Spor(B,C) = Spo(B,C) €
[0,1]. Therefore, condition (6.2.C11) is equivalent with 0 < 0, while condition
(6.2.C12) can be written as 0 < Spo(B,C). It is evident that both of these af-
firmations hold, therefore, both conditions are satisfied.

e in case (6.2.C42) Spog(A,B) = 1, Spor(A,C) =0, Spor(B,C) = 0. Therefore,
condition (6.2.C11) is equivalent with 0 < 1, while condition (6.2.C12) can be written
as 0 < 0. These affirmations again hold, therefore, both conditions are satisfied.

e in case (6.2.043) SBOE(A,B) = 1, SBOE(A, C) = 1, SBOE(B,C) = 1. Therefore,
condition (6.2.C11) is equivalent with 1 < 1, while condition (6.2.C12) can be written
as 1 < 1. Since these are all true, the original conditions are again satisfied.

Based on the previous points, we see that if Spp is a proper similarity, then Spog
is also a similarity measure. The pseudocode describing the calculation of the Spog
similarity measure is given in the Algorithm 5.

The next question we are facing is how to unify the three similarity values we get from
comparing the barcodes of connected components, holes and voids. Unfortunately, there
is no unique way to do this. For example, we could take the average of the three numbers
but we could also take the normalized Euclidean sum of the three, that is, summing the
square of the three numbers, divide the outcome by three and then take the square root of
the result. In fact, we could construct any method of unifying the values keeping in mind a
single constraint: the method should not change the ordering of classification, that is, if a
pair of objects is more similar in all the different barcodes then another pair of objects, the
resultant unified similarity should be higher for the first pair. Mathematically speaking,
we could apply any monotonically increasing function f which for any combination of
input arguments from the range between zero and one would yield a result constrained to
the same range, that is,

f 10,1 — [0,1]
f($17$27$3 S f(y17y27y3)7vxi S ylaxj — ijll 7& ]

Important to note is that we must be consistent in our choice. It is not possible to
compare two similarity values produced by two different forms of f. It makes even less
sense to directly compare numerical values of geometric similarity to the values produced
by Spog or any function of the latter.

For the sake of simplicity, we will define f as an average over the three arguments,

that is:
T+ X2 + T3

3 9

and thus, we define the unified similarity measure as

f(x1, 29, 23) = (6.2.44)

S(04,0p) = SpoE(Ace, Bee) + SBOE(z‘;hz, Bni) + Spor(Awvd, Bvd), (6.2.45)
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Algorithm 5 Calculating the Spop similarity

1: procedure Spop(A4, B)
2 if A= AND B = @ then
3 return 1
4 else if (A= @ AND B # @) OR (A # @ AND B = @) then
5: return 0
6 else
7 pos < 1
8 for a € A do > calculating the first sum from equation (6.3)
9: jac[pos| « 0
10 for b € B do
11: if Jaccard(a,b) > jac[pos] then
12: jaclpos] < Jaccard(a,b)
13: end if
14: end for
15: pos < pos + 1
16: end for
17: for b € B do > calculating the second sum from equation (6.3)
18: jac[pos| « 0
19: for a € A do
20: if Jaccard(a,b) > jac[pos] then
21: jaclpos] < Jaccard(a,b)
22: end if
23: end for
24: pos < pos + 1
25: end for
26: sim =0
27: for i + 1,pos — 1 do > averaging the results
28: sim <— sim + jacli]
29: end for
30: return sim/(pos — 1)
31: end if
32: end procedure
33: procedure Jaccard(a,b) > Calculates the Jaccard index of two bars
34: s<anb
35: u<aulb
36: return |s|/|u]

37: end procedure
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where O 4 and Op denote two different objects/structures, A.. and B, are the barcodes
corresponding to connected components of the structures O 4 and Op, Ap; and By, are the
barcodes for holes of the structures O 4 and Op, A,q and B,4 are the barcodes representing
voids of the structures O4 and Op, respectively.

Validation of the Method

As a validation of the method, here we calculate the Spor measures of the barcodes and
the geometric similarity for four conformations of two zinc finger domains connected by
flexible linker proteins, extracted from different configurations of CCCTC-binding factor
(11-zinc finger protein) as presented in Figure 6.12. Best overlaps among the configurations
are illustrated in Figure 6.13. We summarize the results of the comparison in table 6.2.

The first observation in these comparisons is that configuration A and B have the
smallest geometric resemblance. Comparing A against C yields a slightly larger geometric
similarity, while this comparison gives a large value for the Spog similarity. Configurations
B and C show higher geometric similarity than A and C, while the Sppr measure indicates
a slightly reduced similarity compared to the A-C case.

Note that the C and D configurations are almost identical, they indeed have a very
high geometric similarity, showing an increase of 0.3 compared to the A-C case, while
the Spog similarity barely changes, ranking both pairs as very similar. Also note that
comparing configuration B against any of the others consistently yields relatively reduced
(but still high) Spop similarity, probably because of the particular features in the fold,
while the geometric similarity of B to the other configurations is comparable to the values
of similarity we get when comparing configuration A to the others, although A and B have
the most reduced geometric similarity.

We remark that the Spog similarity of a value around 0.6 configuration B shows when
compared to the other configurations is considered relatively high as, comparing any of
these configurations against a completely random configuration of comparable size returns
a value averaging around 0.3 both for the Spog and the geometric similarity.

Tests geometric similarity | Spog
config. A vs config. B 0.532 0.63853
config. A vs config. C 0.641 0.97505
config. A vs config. D 0.602 0.97791
config. B vs config. C 0.669 0.63293
config. B vs config. D 0.667 0.63615
config. C vs config. D 0.955 0.98984

Table 6.2: Table presenting results for the geometric similarity and the introduced Spog simi-
larity measure among the configurations of the zinc finger proteins presented in Figure 6.12.

6.2.3 An Application

As a first application, we chose to compare the structures found in the Database of Useful
(Docking) Decoys: Enhanced (DUD-E) database [244]. This database contains active
ligands known to bind to given target-molecules and decoys which have geometries similar
to those of the ligands, but they are chemically different. Decoys were selected from a vast
amount of candidates and included in DUD-E based on two criteria. First, molecules were
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Figure 6.12: Different configurations of two zinc finger proteins connected by a flexible linker
protein. We use these configurations to validate our similarity measure (see table 6.2) for the
comparison.

Figure 6.13: Best alignments of the pairs of configurations from Figure 6.12. For the values of
the similarity measures for these pairs see table 6.2.
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selected so that they have a high geometric similarity to one of the ligands, second, only
those molecules were included in the database which were found to be inactive (molecules
which do not bind to the target proteins — thus the name decoy).

We selected ligands grouped around fifteen proteins (AA2AR, ABL1, ACE, ADA,
ADRBI1, AKT1, ALDR, ANDR, AOFB, BRAF, CAH2, COMT, CP2C9, DEF, HIVPR),
each of them known to bind at least to one of the targets. In this experiment we compare
the ligands against the decoys from the same groups.

Although DUD-E was designed as a docking database, we use it for testing purposes.
Since chemical differences must show up in the topology of the molecules, decoys and
actives must present such differences. Therefore, it is a perfect sandbox for testing our
similarity measure and to demonstrate that our measure picks up geometric similarity but
it is not equivalent with it.

The calculations have two stages. First, there is a preprocessing step in which the
barcodes are calculated. For this we used the Perseus software [243]. The calculated
barcodes can be stored and there is no need to recalculate them at every comparison.
A barcode, on average, can be calculated in roughly 12 seconds on a computer with a
processor having a clock rate of 3.2 GHz. After barcodes for the present dataset of fifteen
proteins were constructed, the similarities were calculated with a MatLab script. Using
the mentioned hardware, the runtime of the similarity calculations was 2684.2 seconds.
Thus a comparison is performed in 0.0020629 seconds which roughly corresponds to 484
comparisons per second.

By looking at the distribution of the values of the geometric similarity (Figure 6.14),
we see that the values are centered around a well-defined mean value. It is possible to
show, that these values actually follow a Gaussian distribution with a mean value around
0.6.

Looking now at the distribution of the values of the Spog similarity illustrated on
Figure 6.15, we see that instead of having a single peak, a second peak may appear, which
is caused by the unification of the different similarity values extracted from the barcodes of
connected components, holes and voids as these different features may emphasize different
aspects of the similarity. If we concentrate on the large peaks, we could say that the mean
values are roughly around 0.75.

In Figure 6.16, we present the values of the geometric similarity versus the values of the
Spog index. Pairs for which the values are presented were selected so that the geometric
similarity is among the largest values, roughly ranging from 0.8 to 0.95, well beyond the
0.55 average value. Note that almost all the corresponding Spor similarity values are
also above their 0.75 average, most withing the range between 0.75 and 0.92, that is, high
geometric similarity implies high Spog values. Figure 6.17, on the other hand, is prepared
so that the values of the Spog similarity index are among the highest ones. Note that
though the average of the corresponding geometric similarity is higher than the global
average, its values do not present such restriction as the values of the Spog similarity did
in the previous case. This experiment clearly shows, that restricting geometric similarity
to high values also restricts the Spog similarity index to higher values, while this is less
true the other way around. This clearly indicates that the Spor measures more than the
simple geometric similarity. In fact, it measures the similarity of the topological features
on given geometric scales.

The same effect is also noticeable when looking at the ligands and the decoys them-
selves. In Figure 6.18 we plotted pairs of ligands and decoys with the highest geometric
similarity, while in Figure 6.19 we show pairs of ligands and decoys for which both the
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Figure 6.14: Distribution of all the geometric similarity values among all the decoys and ligands
from the 15 target proteins. Colors correspond to the different target proteins.
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Figure 6.15: Distribution of all the Spor values among all the decoys and ligands from the 15
target proteins. Colors correspond to the different target proteins..
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Figure 6.16: Geometric similarity index versus Spog for pairs of decoys and ligands. The pairs
were selected so that their their geometric similarity is among the largest values. Colors stand for
the different target proteins.

geometric and Spop similarities rank high. As it can be seen, pairs geometrically resemble
each other even when comparing them between the two figures. In Figure 6.20, on the
other hand, we show pairs with the highest Spop similarities. As it can bee seen, these
configurations are very different from the configurations seen in Figures 6.18 and 6.19.

6.2.4 Discussion and Conclusions

In this section we introduced an alternative approach to assess similarities based on well-
established computational topology algorithms. The measure was designed for assessing
the similarity of different chemical structures but it may also be applicable in other fields.
We proved that our definition is rigorous and it satisfies the mathematical requirements
which are often neglected when new similarity measures are introduced.

Although the meaning of similarity is not clear-cut, being consistent in our choice is
probably the most important principle to follow. It was easy to understand already based
on our arguments that geometric similarity is not reliable and in certain cases it may fail.
If we require consistency, mixing the values yielded by a given geometric similarity with
other type of similarity measures is not viable. Therefore, we must construct similarity
measures which, on the one hand, are proper measures, and, on the other hand, consider
geometry, topology and other important factors at the same time. We believe that our
method may be a good starting point for such an approach as we observed a logical path
while welding geometry and topology and it is straightforwardly applicable when one is
strictly interested in conformational similarities.

It is also important to form a good idea about the meaning of similarity. This is
straightforward when it comes to geometry but it may not be so simple when one considers
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Figure 6.17: Geometric similarity versus Spog for pairs of decoys and ligands. The pairs were
selected so that their their Spog similarity is among the largest values. Colors stand for the
different target proteins.

other features. As for our method, we would like to emphasize again, that our aim was
to elaborate a measure which considers similarity beyond geometric resemblance, looks at
the number of rings and other topological features, takes into account all the scales, but
it is not scale invariant, while sticking to a rigorous mathematical background. Of course,
the method is easily extendible.
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6.3 The Wasserstein Distance of Barcodes
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As a continuation of the previously presented two approaches for assessing similarity
of proteins, we would like to introduce our last method. However, as this method is a bit
different from the other two, being more a classification method, we would like to motivate
our work and to place it in context by enumerating a few of the existing approaches.

First of all, the comparison methods can be divided into two broad classes: superposi-
tion and descriptor methods [254]. The former aim to calculate the best alignment of the
molecules and quantify the similarities as some measure of the overlap while methods in
the latter category describe the molecules with certain feature vectors and assess similari-
ties by comparing the features, thus being independent from molecular orientation. Most
methods in both categories treat molecules as rigid objects, however, in the last decade
plenty of methods emerged which address flexibility, too.

Aligners first choose a scoring function which indicates the overlap of the compared
molecules. Once the choice is made, the correspondence among molecules has to be found,
which is an optimization problem. Thus, the crucial step here is the choice of the scoring
function. Although there are few empirically parametrized models, the methods are based
on “ad hoc” scoring functions [255]. Flexibility is usually treated in the mechanical sense,
aligners define rigid substructures but allow movements at the joints of these [255].

Descriptor based methods seek to build a rotation and translation invariant signature
to represent a molecule and use the signature to compare these molecules [256]. However,
similarly to the scoring functions of the aligners, these signatures are mostly based on
heuristic algorithms and they seldom have a rigorous mathematical motivation. Perhaps
the methods with the most theoretical foundations are the ones based on graph theory
[257]. Additionally, descriptors come short to deal with flexible molecules as addressing
this issue in terms of signatures is still challenging [256].

Although, as noted above, many approaches exist, it is evident that they often lack
mathematical rigor, especially when treating flexible molecules, despite the fact that a solid
mathematical basis is required in order to ensure reliability. While methods, such as the
ones relying on geometric comparison of molecules, may fail when handling flexible struc-
tures, these approaches possess a proper theoretical foundation. Geometric comparison
methods, for instance, are usually based on volume overlaps, that is, set intersubsections in
a mathematical terminology, and they perform extremely well on rigid bodies. To achieve
a similar performance for flexible structures, it is indispensable to base the approaches on
mathematics specifically developed for studying flexible manifolds, namely mathematical
topology. Proper mathematical handling should be, of course, only the basis on which
methods should build the knowledge from chemistry, physics and biology. This is espe-
cially the case since in recent years flexibility turned out to be a very important feature
of many proteins [258] as it may influence binding affinity [250] and functionality [251].
Thus, it is crucial to minimize possible flaws and place methods addressing the comparison
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of flexible molecules in a proper mathematical context.

We, again, approach the problem of comparing flexible structures from this perspec-
tive, applying computational topology algorithms and following a proper mathematical
logic. Our approach is intended to demonstrate a basic comparison method relying on
the calculation of certain topological properties of the molecules on different geometric
scales. A given configuration of a protein is a representation of a topological space which
is homeomorphic with all the possible foldings of the given protein. Based on this, we
elaborate a method which enables a comparison which takes into account the possibly
flexible nature of certain molecules. We do not intend to build in information regarding
the chemical structure.

6.3.1 Topological Invariants

Our method relies on the calculation of the persistence intervals of the Betti numbers [239]
for the investigated structures. Betti numbers [252] are the counts of different topological
features like connected components (Oth Betti number), holes (1st Betti number), voids
(second Betti number) and their higher-dimensional generalizations. Of course, since real
world structures are three-dimensional ones, we do not have to deal with these general-
izations. The persistence intervals of these features denote the geometric scales on which
the given features do not change. To have a better understanding of the concept, let us
consider the following scenario. Let S = {(z,y,2)|z € R,y € R,z € R} be a point-set
sample of an unknown O object embedded in the three-dimensional space, where R is the
set of real numbers. Note that O could consist of multiple pieces (components). In order
to calculate the Betti numbers, that is, count the components, the holes and the voids
present in O based on the S sample, we have to reconstruct O from S. One could conceive
different ways of reconstructing the object. Perhaps the most straightforward method is to
connect each point with its nearest neighbors. We can define the nearest neighbors of the
points by calculating the Delaunay triangulation [230] of S and discard the edges which
are larger than an [. cutoff length. This cutoff length can be defined as some fraction of
the maximal edge-length in the triangulation, for instance. The remaining triangles are
considered face elements and the tetrahedrons are treated as solid volume.

Components are relatively easy to count. Any two points from S which have a path
between them along the edges of the triangulation (that is, they are connected) are in
the same component. Two points connected by no path are in different components.
Components thus can be counted by counting the subsets of S which are not connected
to each other through the edges of the triangulation.

Counting holes and voids is a bit more difficult. In order to illustrate the problem,
imagine a ball. It has a single component (everything is connected), no holes (otherwise
the air would escape) and a single void (the space enclosed by the shell of the ball). A
single perforation on the surface of the ball is not considered a hole. The reasoning behind
this is the following: in theory, we could hold the ball membrane from the boundaries of
the perforation and stretch it out until the membrane flattens out completely. Thus a ball
with an opening on a membrane is homeomorphic to a plane without holes. If we puncture
the shell again, we will have an object homeomorphic with a plane with a hole on it. Thus
only the second hole on the surface of the ball is counted as a hole. Note also that as soon
as we created the first perforation, the void disappears because of the homeomorphism
with the plane. When counting holes and voids, one has to take into account these effects.
For instance, only the triangle-faced polyhedrons create voids.

Considering these criteria, we can proceed with the calculation of the Betti numbers for
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the object obtained through the reconstruction process based on S. If S is a good sample
and is dense enough, that is, the distance between nearest neighbors in S is roughly
uniform and is much smaller than the diameter of O, then S captures well the topology
of O and the Betti numbers measured on S will be good descriptors of the topology of O.

However, if S is a sparse sample of O, the reconstruction procedure may yield an
incorrect representation of O. To render the method more robust, instead of considering
only one geometric scale defined by the fixed cutoff-length of the triangle edges, we consider
more geometric scales by varying [, from zero to infinity. We calculate the Betti numbers
for each value of [, and register it. Calculating the Betti numbers infinitely many times
is not feasible of course, however, in practice, it is enough to consider the length of the
longest edge in the triangulation as the upper bound for I..

In principle we could use any triangulation or any (even non-planar) graph defined on
the S set. The Delaunay triangulation, however, is a good compromise between calculation
complexity and memory efficiency when calculating the Betti numbers. Considering the
complete graph on S is, in computational topology terms, equivalent to the construction
of the Rips-complex [259], while the Delaunay construction is analogous to the calculation
of the a-complex [260].

Given that a hole exists at a particular [, cutoff, there is a largest I. < I. cutoff,
for which the hole is not yet present in the reconstructed object and there is a smallest
I > 1. for which the hole is filled in. The interval (I.,1”) is the persistence interval of the
mentioned hole.

Betti numbers are topological invariants as their value is invariant under continuous
deformation of the objects such as stretching or bending, for instance (tearing and gluing
are not continuous deformations). Continuous deformations do not change the topology of
the objects, thus Betti numbers are handy invariants when comparing different topologies.

6.3.2 A Graphical Representation of the Topology

There is a convenient way to represent the information gained through the scanning of
S described above. Instead of simply counting the components, holes and voids, we con-
struct a diagram for each of the Betti numbers. The horizontal axis of the diagram will
correspond to the [, cutoff. We represent each instance of components, holes and voids
on the corresponding diagram with a horizontal bar. The starting-point of the bar corre-
sponds to the cutoff value at which the instance was created while the end-point of the bar
is the cutoff value at which the instance ceased to exist. The vertical ordering of the bars
is arbitrary. This representation was developed by Carlsson and his collaborators (see, for
instance, [239]. For a short review see [261]). In figure 6.21 we present such a plot for a
particular point-set.

Carlsson’s diagrams can be viewed as a fingerprint, a barcode of the structure. It
encodes all the information regarding the Betti numbers on different scales. Betti numbers
can be extracted by drawing a vertical line at any cutoff value and counting the numbers
of the intersubsections with the bars of the diagram. Barcodes for components, holes and
voids are also called dimension zero, dimension one and dimension two intervals/barcodes,
respectively. These barcodes constitute the topological basis of our approach.

Dimension zero intervals are somewhat special. Since all the points exist for [, = 0, and
none of them are connected at this cutoff value, all the points are in different components.
There will be as many zero dimension intervals as many points there are and all these
intervals will have a starting point of zero. As we increase the [. cutoff, points will start
to be connected. Whenever two points from two different components are connected
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Figure 6.21: Persistence intervals for a particular set of points. Light gray bars represent the
dimension 0 intervals, dark gray bars represent dimension 1 intervals. Note that for connected
components there is an interval which closes at co. Since this bar is present for any nonempty
point-set, it carries no information, therefore it can be removed from the representation. The
process of connecting the points is also presented on the upper side of the figure for certain values
of the [, cutoff.

the components will be unified and the number of components is decreased, thus one
of the intervals representing the just connected components is closed. Note that for any
nonempty point-set there is always at least one component. Therefore, one of the intervals
will always range from zero to infinity. Being always the same, it carries no information,
thus it can be removed from the set of intervals.

The Distribution of Topological Features

Objects, in general, can be characterized by the size of their components, the way these are
joined together and the size of the holes and voids that form during the building process.
On the other hand, the end-points of the dimension zero bars have values statistically
proportional to the spacing between sub-components of the system, while their number
carry information regarding the size of the represented structure. The end-points of the
dimension one bars have values statistically proportional to the diameters of the holes
in the system. Similarly, end-points of the dimension two bars have values statistically
proportional to the diameters of the voids. The dimension zero intervals always start at
zero, thus it is only the end-point which matters in this case. The starting points of the
dimension one and two intervals would mostly depend on the density of the points. In this
sense, it is enough to describe the objects with the end-points of the intervals. Even more,
we can replace the set of the end- points by the distribution of these, thus representing an
object with a probability distribution. Then we can measure the similarity/dissimilarity
between two objects as the similarity /dissimilarity between the representing distributions.
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The Wasserstein Distance

There are a number of ways to compare two distributions. One can calculate any of
the suitable f-divergence measures [262], for instance, the Kullback-Leibler divergence
[263]. However, these measures are not necessary proper distances, in particular, they
may not be symmetric or transitive. Another approach is to calculate the Wasserstein (or
Vasershtein in the original spelling) distance (for a comprehensive review see [264] between
the probability densities). The Wasserstein distance is a proper metric and can informally
be introduced with a simple analogy: the distance is proportional to the physical work
needed to transform a pile of earth shaped like one of the density functions to a pile
shaped like the other density function. Based on this analogy, the Wasserstein distance
is sometimes referred to as the earth movers distance (EMD). In fact, the Wasserstein
distance is a class of distances parametrized with a p > 1 parameter in which the EMD
corresponds to the 1st (p = 1) Wasserstein distance. As in the present work we only use
the 1st Wasserstein distance, we may drop the notation regarding the parametrization or
we will simply refer to it as EMD.

Given two probability density functions f and g, a more mathematical definition of
the EMD can be given as

dEMD(fag) = Xwiﬁ)f/NgE [d(Xv Y)] ’ (6'3'46)

where d(X,Y) is a distance function and in the simplest case is the absolute difference of
the arguments, that is, d(X,Y) = |X =Y.

6.3.3 Application of the Method

We measure dissimilarity between two chemical structures as indicated in the previous
subsections. We treat a molecule as a point-set defined by the coordinates of its atoms. We
calculate the persistence intervals and compute the distribution of the upper boundaries of
the intervals. We proceed in this manner for each molecule we want to classify. Finally we
calculate the Wasserstein distance among each pair of distributions, constructing thus a
fully connected weighted graph of the molecule ensembles with the weights corresponding
to the Wasserstein distances.

In order to classify the molecules, we simply need to cluster the obtained graph. For
this purpose we apply the k-means algorithm [265].

We used different software to conduct our studies. We calculated the persistence
intervals using the Dionysus software [266], we computed the Wasserstein distances with a
code provided by the authors of [267], available for free online on their website. We carried
out the clustering step with the built-in k-means algorithm of the MatLab’s statistical
toolbox, but, of course, any implementation of k-means is suitable.

The Ensemble Protein Database

For testing and demonstrative purposes, we apply our approach to a set of structures ob-
tained from the Ensemble Protein Database (EPDB) [268]. We analyze five approximate
ensembles constructed for the following proteins: Barstar (1A19), Calmodulin (1CFD),
Ferredoxin-2 (1FXD), Alpha-Amylase inhibitor (IHOE) and Human CDC25B Catalytic
Domain (1QB0). There are 191 configurations for Barstar, 196 for Calmodulin, 141 for
Ferrodexin-2, 129 for the Alpha-Amylase inhibitor and 495 for the Human CDC25B Cat-
alytic Domain.
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Feeding the configurations to our method, without including any information about
the origin of the conformations, we expect that the approach is able to distinguish be-
tween the different proteins. We will compare each protein configuration with every other
configuration and calculate the Wasserstein distance for all of the pairs. It is convenient to
display the results of the comparison in a color-coded matrix where each row and column
corresponds to a protein. The ordering of the proteins in the rows and the columns are
the same. Throughout the rest of the paper we apply the same ordering of the proteins in
each figure, where the first 191 rows/columns represent the Barstar protein, the next 196
represent the Calmodulin, the next 141 contain results for the Ferrodexin-2, the follow-
ing 129 represent the Alpha-Amylase inhibitor, while the last 495 rows/columns display
results for the Human CDC25B Catalytic Domain.

Figure 6.22 presents the calculated Wasserstein distances for the dimension zero inter-
vals. Looking at the figure, we see that the Wasserstein distances within certain groups
are smaller than the inter-group distances and we actually can separate five groupings. In
order to give an explicit grouping of the configurations by applying the k-means algorithm,
we need to make sure that our guess of requesting k£ = 5 clusters based on the visual in-
spection of figure 6.22 is indeed a good choice. For this reason, we calculate clusterings
for different cluster numbers, letting &£ run from 1 to 10. For each k value, we randomly
select ten proteins from each class and we feed the fifty selected proteins to the k-means
algorithm. In order to decide whether a clustering is good or not, we calculate the mean
distance to the center for each cluster and characterize a clustering with the sum of these
means. In mathematical terms, we define this sum as:

k

S(k) =Y (1Zi —cill)z, (6.3.47)

=1

where Z; represents the “coordinates” of a protein in the ith cluster with center ¢; (¢; =
(Zi)z) and ||.|| is the euclidean norm. The coordinates are in fact the Wasserstein distances
to all other proteins, that is, a row in the distance-matrix. We consider a clustering with
k clusters good if the S(k) sum is low.
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Figure 6.22: Wasserstein distances for the distributions representing the dimension 0 intervals.
Each row and column corresponds to a protein-configuration, the ordering of the rows and the
columns are the same. A darker shade means small distance while lighter shades imply larger
distances. Note the dark blocks on the diagonal, they correspond to protein-groups which are close
to each other.
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To avoid problems caused by the probabilistic nature of k-means, we repeat the clus-
tering many times for different samples, thus generating an ensemble of clusterings, and
present the results averaged over this ensemble. In other words, the result of the cluster-
ings are presented in a matrix form where each row and column corresponds to a protein
and the matrix entry at the intersubsection of a given row and a given column is the
probability of finding the two proteins corresponding to the row and the column in the
same cluster, calculated based on the ensemble of the clusterings.

Figure 6.23 presents the S(k) curve for the clustering of the dimension zero data. As
it can be seen, the curve predicts that £ = 5 or k£ = 6 gives us a relatively good clustering.
If we look at the actual clusterings (shown for £ =5 in figure 6.24 and for k = 6 in figure
6.25) based on which S(k) was calculated, we see that the clusterings for k =5 and k = 6
are in fact equivalent. Setting k£ to 6 allows more flexibility for the clustering, than the
k =5 case, but it is clear that there are five groups, exactly corresponding to the different
proteins. Thus, this clearly indicates, that the method is able to find the original groups.
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Figure 6.23: The S(k) curve for the clustering of the dimension 0 data, calculated based on
equation (6.3.47).

Clustering the entire dataset in five clusters gives the results presented in figure 6.26.
We can clearly see the five groups of proteins, four smaller strongly coupled groups (cor-
responding to the proteins 1A19, 1CFD, 1FXD and 1HOE) and one larger group ( corre-
sponding to 1QB0). Members of the last group are not coupled as strongly as the members
of the other groups but they always classify in the same way and do not mix with the
other proteins. While there is some mixing in the first two and the fourth group, the core
groups are clearly distinguishable.

Figure 6.27 presents the Wasserstein distances for the dimension one intervals. Looking
at the figure it is obvious, that the dimension one intervals indicate two groups. Performing
the same check as in the case of the dimension zero intervals, we see in figure 6.28 that the
S(k) measure also indicates that clustering the dataset into two clusters is a good choice
in this case.

Performing the clustering for £ = 2 we get the results shown in figure 6.29, which clearly
gives two clusters, putting the first four groups of proteins (1A19, 1CFD, 1FXD, 1HOE)
in the same class while the last group (1QBO0) forms a different class. The explanation
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Figure 6.24: Probability of the event when two proteins are assigned to the same class when
k = 5 classes are requested. The probability is calculated for each pair of proteins from different
sub-samples of the ensemble. The proteins for a given position in a row/column were selected
randomly from the ensemble with the constraint that they always belong to the same group.
Probabilities are calculated by repeating the clustering multiple times and counting how many
times the pairs were co-classified.
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Figure 6.25: Probability of the event when two proteins are assigned to the same class when
k = 6 classes are requested. The probability is calculated for each pair of proteins from different
sub-samples of the ensemble. The proteins for a given position in a row/column were selected
randomly from the ensemble with the constraint that they always belong to the same group.
Probabilities are calculated by repeating the clustering multiple times and counting how many
times the pairs were co-classified.

behind this result is that while the proteins corresponding to the first four groups are
comparable in size (containing 89, 72, 58 and 74 residues, respectively), the last protein is
much larger (177 residues). In fact the mixing of the first two and the fourth group we see
in figure 6.26 is probably also a size-related effect as these groups are very close to each
other in size, while the third group is a bit smaller. Nevertheless, it is now clear that by
looking at the dimension one intervals, we in fact classify the proteins with respect to their
sizes but we avoid calculating the geometric similarity which is a computationally very
expensive procedure, as one needs to calculate the best overlaps among the structures.
For comparison, figure 6.30 gives the result for clustering the dimension one intervals
into five clusters. As it can be seen, no additional clusters were found, just the probabilities
for two proteins being in the same cluster decreased as the result of the non-optimal random
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Figure 6.26: Probability of the event when two proteins are assigned to the same class when
k = 5 classes are requested for the dimension 0 data. The probability is calculated for each pair of
proteins by repeating the clustering multiple times and counting how many times the pairs were
co-classified.
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Figure 6.27: Wasserstein distances for the distributions representing the dimension 1 intervals.
Each row and column corresponds to a protein-configuration, the ordering of the rows and the
columns are the same. A darker shade means small distance while lighter shades impliy larger
distances. Note the dark blocks on the diagonal, they correspond to protein-groups which are close
to each other.

sub-grouping of the samples.

Last, figure 6.31 illustrates the Wasserstein distances for the dimension two intervals.
Similarly to the distances for the dimension one intervals, we can distinguish two blocks,
the first four groups in the first block and the last group of configurations in a separate
block. However, groups two and three (1CFD, 1FXD) seem to have relatively reduced
distances to group five (1QB0) perturbing a bit the block-structure. If we look at the
corresponding S(k) curve (figure 6.32), we see that it indicates a single cluster as the
best solution, probably because of the coupling of the groups two and three to the fifth
group. Still, the jump of S(k) from k = 1 to k = 2 is less steep than the other increments,
therefore we can consider a two-cluster structure. Performing the clusterings for & = 2



6.3. The Wasserstein Distance of Barcodes 157

x10~

0 2 4 6 8 10

Figure 6.28: The S(k) curve for the clustering of the dimension 1 data, calculated based on
equation (6.3.47).
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Figure 6.29: Probability of the event when two proteins are assigned to the same class when
k = 2 classes are requested for the dimension 1 data. The probability is calculated for each pair of
proteins by repeating the clustering multiple times and counting how many times the pairs were
co-classified.

yields results presented in figure 6.33. Indeed, we find the two clusters which correspond
to the clusters found in 6.29. However, if we try to find more clusters, as presented in
figure 6.34, we see that there is an underlying structure of the clusters, which contains
three clusters, groups one and four (1A19, 1IHOE) corresponding to one cluster, groups two
and three (1CFD, 1FXD) to a second one while the fifth group (1QBO0) is again separated
from the rest forming its own cluster. This suggests a clustering which is influenced by
the geometric size and other topological factors.

6.3.4 Discussion and Conclusions

We described an approach for analyzing and grouping molecules from a purely mathe-
matical point of view. However, based on our arguments and the presented example, it
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Figure 6.30: Probability of the event when two proteins are assigned to the same class when
k = 5 classes are requested for the dimension 1 data. The probability is calculated for each pair of
proteins by repeating the clustering multiple times and counting how many times the pairs were
co-classified.
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Figure 6.31: Wasserstein distances for the distributions representing the dimension 2 intervals.
Each row and column corresponds to a protein-configuration, the ordering of the rows and the
columns are the same. A darker shade means small distance while lighter shades implies larger
distances. Not the dark blocks on the diagonal, they correspond to protein-groups which are close
to each other.

is clear that this simple topological analysis has a much deeper meaning: it considers the
topology and the geometry of the molecules within the same mathematical framework.
In contrast to the currently available heuristic methods, our approach follows a nice and
clear mathematical logic. It has a solid foundation, partially stemming from the field of
computational topology and partially based on methods of image processing, the Wasser-
stein distance being a standard tool in this field. It has been proven in the literature
that the distance is a real metric, thus applying a k-means algorithm to find the different,
topologically related groups in a given set of proteins is straightforward.

The method can be summarized in a few simple steps: First we analyze the structures
and check for the presence of topological features like components, holes and voids, using a
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Figure 6.32: The S(k) curve for the clustering of the dimension 2 data, calculated based on
equation (6.3.47).
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Figure 6.33: Probability of the event when two proteins are assigned to the same class when
k = 2 classes are requested for the dimension 2 data. The probability is calculated for each pair of
proteins by repeating the clustering multiple times and counting how many times the pairs were
co-classified.

technique developed in computational topology for arbitrary point-clouds. Then we assess
the similarity by statistically comparing the presence or absence of these features in the
different molecules.

We presented a test-case, where these groupings are a priori known, however, this
knowledge did not constitute an input to our analysis and it was used only for validating
the results. Our method was able to reveal the different ensembles with a high precision.
As it was demonstrated, a grouping which implies the geometry and size of the proteins
is implicitly possible, without having to calculate best alignments.

We mention that the method can be tuned for different scopes by choosing the lower
and the upper bounds of the I, cutoff. For instance, we chose the largest edge in the
triangulation as the biggest value for [.. This leads to a coarse-graining procedure in
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Figure 6.34: Probability of the event when two proteins are assigned to the same class when
k = 5 classes are requested for the dimension 2 data. The probability is calculated for each pair of
proteins by repeating the clustering multiple times and counting how many times the pairs were
co-classified.

which, when reaching larger scales, the geometry of the molecule is also encoded. If one
uses the largest bond-length as the biggest cutoff, one, in fact, will compare molecular
topologies and completely discard the information hidden in the folding of the molecule.

We believe that our method can constitute the basis of a new approach or be a part of a
framework which is able to deal with flexibility of chemical structures in terms of similarity
and dissimilarity. As there is no unique and well-defined way to classify proteins, we are
convinced that such approaches are needed to open up different perspectives for researchers
working in the field.
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Fractals surround us. They are present in nature [269], in the structure of our society
[270,271], in our economic systems [272,273] and in all kinds of technologies we deal with
day-by-day [274-276]. Their common property is their self-similar nature. Investigating
them on different scales leads to the same conclusions.

One way to characterize these fractal structures is through the calculation of their
dimension. For regular, exactly self-similar fractals this can be done analytically and there
are various ways to estimate the dimension numerically for less regular cases. Perhaps the
most wide-spread numerical method is the calculation of the Minkowski-Bouligand or box-
count dimension [277]. Felix Hausdorff gave a rigorous definition of the dimension of an
object [278] and it has been observed that these different definitions yield the same values,
specially for fractals satisfying the open set condition [279]. By the dimension of an object,
of course, we mean the “fractal dimension” and not the dimension of the space in which
the object is embedded.

Fractals are complex structures, their investigation boomed with the development of
high-speed computers and, in fact, the analysis of many of their aspects would be almost
impossible without the aid of these machines. As computational power is becoming less
and less an issue, methods which in the past seemed unfeasible might actually revolutionize
research in different fields. Since storing large topological complexes in the memory of the
computers is not a problem anymore, some of these methods are offered by computational
topology.

In this paper we intend to take a look at the relation between the dimension of fractal-
like objects and their topological fingerprints encoded as persistence intervals of Betti
numbers. The latter concept is a relatively new development in computational topology
[239].

6.4.1 Persistence Intervals

Topology can be investigated by calculating so-called topological invariants. Topological
invariants fix certain topological features of the topological space under investigation. The
invariants we will focus on are the number of connected components, the number of holes
and the number of voids in the investigated object. Connected component in this context
means parts which in some way are connected to each other. For example, a regular ball has
a single connected component (since it is a single piece), no holes and a single void (inside).
A piece of paper also has a single connected component, no holes and no voids. If we would
tear the paper in two, the system composed from the two (now separated) pieces of paper
would have two connected components (since the two pieces are not connected to each
other anymore), no holes and no voids. If we would take a pencil and would poke a hole
in one of the papers we would end up with a system with two connected components, one
hole and no void. In the field of topology the mentioned topological invariants correspond
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to the so-called Betti numbers [252]. The number of connected components is the Oth
Betti number, the number of holes is the 1st Betti number while the number of voids is
the 2nd Betti number. This enumeration, of course, can be extended with the number
of 4, 5, 6, etc. dimensional holes in higher dimensional spaces corresponding to 3rd, 4th,
5th, etc. Betti number.

A Barcode Representation of Topology

Since we want to look at fractality, we are interested how the topology of the object is
defined on different scales. Therefore we resort to the following abstraction: We will look
to the number of holes on different scales. In order to achieve this, we will think about our
objects as a dense (if it is the case) set of points and we adopt the following procedure:

e we calculate the Delaunay triangulation of the points
e we define a distance scale [

e we connect all point pairs that are connected by an edge in the triangulation and
are closer then [

e we calculate the Betti numbers for the obtained structure

We repeat these steps for all possible values of | up to a l,,,, maximal value and we
“record” the formed connected components, holes and voids for each value of I. [,4.
may be defined as the longest edge in the triangulation. This construction procedure is
analogous with the building of the so-called “alpha-complexes” [260].

At this point it is a valid question what is counted as a hole and how can voids
form when all we do is connecting points with lines. The answer lies in the definition
of topological building blocks which are points, lines, triangles, tetrahedrons and their
higher dimensional analogs. According to this, triangles do not count as holes, instead
they constitute faces. Similarly, the space enclosed by a tetrahedron is not counted as
void.

For understanding the definition of a hole, imagine again a ball. If we perforate the
membrane of the ball, in theory we could stretch the membrane out to a sheet, therefore a
ball with a perforation is homeomorphic to a plane, that is, a single hole on a surface of a
ball is in fact not a hole. If we perforate the ball again, this object will be homeomorphic
with a plane with a hole on it. One needs to take into account these effects when counting
holes.

After we scan the system with the procedure described above we know the numbers of
connected components, holes and voids for each value of [. The acquired information can
be summarized in a diagram in the following way:

e each instance of connected component, hole and void will be represented by a bar
on a different diagram

 the start point of each bar will correspond to the value of [ at which the corresponding
instance came into existence

e the end point of a bar will correspond to the value of [ at which the corresponding
instance ceased to exist
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The bars for connected components are somewhat special as connected components unite
as [ increases. This process can be viewed as one of the connected components embeds the
other one. Accordingly, the bar of the embedded component will end at the point where
the component was embedded while the bar of the embedder component will continue until
the letter will be embedded in another component. The role of embedded and embedder
is arbitrary. It is easy to see that one of the bars for connected components will persist
even at the highest values of | as there will always be at least one connected component,
thus this bar can be neglected as it does not carry any information.

The diagram compiled in the previously described way will be a barcode-representation
of the topology of the system in which each bar represents the interval of [ over which the
corresponding topological feature persists (persistence interval). An example for such a
barcode can be seen on Figure 6.35. This representation was developed by Carlsson and
his collaborators [239] and a very good review of their work can be found in [240]. There
are more and more software available for calculating this representation. In the present
study we used two of them: Perseus [280] and Dionysus [266].

Using the concept of the persistence intervals, the authors of [281] defined a P.H. di-
mension (persistent homology dimension) based on two variables: (b+d)/2 and arcsec(d/b),
where b is the start-point (or birth-point) of a given interval and d is the end-point (death-
point) of the same interval. Here, in turn, we want to analyze the relation of the persis-
tence intervals to the fractal dimension of objects, and are seeking a simple and intuitive
explanation for this relation.

6.4.2 Calculating the Dimension from Persistence Intervals

If we assume that the topology is indeed encoded in the barcodes introduced in the previous
subsection, it is natural to think that these barcodes should also represent fractality when
it comes to objects presenting this property. Indeed, for certain special fractal objects,
like the Sierpinski gasket [282] show in Figure 6.36, the fractal dimension dp can directly
be extracted from these barcodes. What is so special about the Sierpinski gasket is that it
is exactly self-similar. This implies that the missing parts (the holes) of the fractal scale
similarly as the volume of the fractal. This makes the calculation of the dimension easy
and the following logic applies to any fractal which has the mentioned property.

Starting from the simple scaling relation between the volume V of a regular solid object
and its characteristic diameter [, given as V ~ [, known from regular geometric spaces, d
being the dimension of the space, it can be easily shown that a generic fractal dimension
can be given as
_ In[m]
= m,

where s is the scale constriction factor and m is the multiplicity, that is, the number of
the self-similar copies on the smaller scale. For instance, for the Sierpinksi gasket m = 3
and s = 2 (the gasket is composed of three copies of itself scaled so that edges on the
small-scale are half of the edges of the original), therefore, the fractal dimension of the
gasket is In3/1In 2 (roughly 1.585).

In general, to approximate the fractal dimension from the barcodes, let us consider
the natural logarithm of the number of the bars for holes of a given scale as a function of
the natural logarithm of the endpoint of these bars. Note that the value of the end-point
of a bar is proportional to the diameter of the corresponding hole. This function, in fact,
characterizes how the object is scaling. To understand the reasoning behind this, let us
now concentrate on regular two dimensional fractals, noting that the logic generalizes to

dp (6.4.48)
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Figure 6.35: Barcodes for a particular set of points. The process of connecting points is also
illustrated in the upper part of the figure. Blue bars represent persistence intervals of the Oth
Betti number while purple bars represent intervals of the 1st Betti number. Note that for any
non-empty set of points there is an infinitely long bar for the components as there is always a
single component when everything is connected, however this bar carries no information, it can
even be removed from the diagram.

any dimension. As we pointed out in the introduction we will treat these objects as dense
sets of points. Since they are regular self similar structures, holes on a given scale will be
the same in any particular instance of this class. This would mean, that in the barcode
plot we would have as many bars of equal length as the number of the holes on that scale.
Let us denote by n(e) the number of the bars which have a length of £. On the other hand,
again because of self similarity, both € and n(e) changes according to a power law when
going from one scale to the other. For instance, in the case of the Sierpinski gasket, € on
a given scale is always the half (as s = 2) of its value on the next larger scale, while n(g)
is always tripled (m = 3). This, in general, means that the logarithms of these quantities
define a linear function which can be written as

In[n(e)] = alnle] +¢, (6.4.49)

where « is the slope and ¢ is a constant. In Figure 6.37 we plotted this relationship for
the Sierpinski gasket.
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Figure 6.36: The Sierpinski gasket is built by recursively replacing an equilateral triangle with
three copies of itself having an edge-length of half of the original triangle’s edge-length.

Consider now two different scales ¢; and ¢; so that ¢; < €;. This implies that n(e;) >
n(e;) as smaller scales are multiple copies of larger scales. In this case we can write the
slope as

_ Infn(e)] —In[n(e;)] _  In[n(e;)/n(e)]

T T [ei] —In[g4] - nlei/e;] (6.4.50)

Note now that the arguments of the logarithms are in fact some power of the multiplicity
(m® =n(ej)/n(e;)) and the same power of the scaling factor (s* = ¢;/e;). The exponent
x depends on the steps between the scales €; and €;. In fact, x = j —i. Replacing the
arguments in (6.4.50), we get the following form:

o=l Injm] (6.4.51)

In[s?] In[s]’

which is nothing else but the fractal dimension defined in equation (6.4.48), that is, dp =
—a. Therefore by fitting (6.4.49), we in fact are estimating the fractal dimension of the
system under investigation. Indeed, the fit on Figure 6.37 gives and estimate of dp = 1.579
for the dimension of the Sierpinski gasket, which is very close to the 1.585 (rounded)
theoretical value.

Here we note, that it is possible to estimate how consistent the scaling is (to which
extent does the object behave like a fractal) by calculating the goodness of the fit.
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Figure 6.37: The plot presents the natural logarithm of the number of bars of a given length as
a function of the natural logarithm of the length for the Sierpinski gasket. The dashed gray line is
a linear fit to the points.

4

6.4.3 Application

One may, of course, ask whether an approach based on the persistence intervals is useful or
not. Therefore, we demonstrate the potential of the method with another simple example.
Applying the proposed method enables the investigation of scaling in different lower, “non-
native” dimensions and this is what we seek to illustrate. Let us consider now the object on
Figure 6.38. The object is constructed of short segments, embedded in the two dimensional
space, arranged in a structure resembling concentric circles, also suggesting a given degree
of randomness.

Although the object is embedded in the two dimensional space, it is composed of short,
disconnected segments. Therefore, instead of looking at holes in the object, we will analyze
the persistence intervals of the Oth Betti number, which describe how components relate
to each other.

Since the object is at least seemingly random, our approach does not apply directly.
As Figure 6.39 shows, trying to plot the relation between ¢ and n(e) does not give us a
clear indication that there is any scaling in the object. However, we notice that there is a
certain grouping around certain values of ¢.

The spread around given values of € may and actually does stem from the randomness
present in the object. Taking into account that the smallest scales may be influenced by
overlapping because of the perceived randomness and large scales are distorted because of
the finite size of the object, we will consider € values only for the middle, well-pronounced
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Figure 6.38: A two-dimensional object, composed of a set of short segments arranged in a
circular structure.

six peaks of the histogram of ¢ presented also in Figure 6.39.

Summing up n(e) under the different peaks separately and plotting the sums against
the mean of the peaks (Figure 6.40) gives us a familiar picture. The slope of the fit
corresponds to a fractal dimension of 0.6292 which is very close to the In2/1n 3 dimension
of the Cantor set [283] (In2/1In3 ~ 0.6309). And indeed, the object is in fact composed
of fifty copies of a Cantor set “bent” to a semi circle, as shown on Figure 6.41, with radii
ranging 100 to 150 units and rotated with angles randomly drawn form the interval [—m, 7.

This is just a simple illustrative example which demonstrates the applicability and
the usefulness of the approach. There are, of course, plenty of situations where these
kind of calculations may come in handy. For instance, imagine a hyper-sphere whose very
edge is decorated with holes sized according to a power-law. Realizing that the boundary
of the object exhibits fractal-like behavior might be extremely difficult because of the
high-dimensionality of the space.

6.4.4 Discussion and Conclusions

We introduced a novel method for investigating fractality. The approach is based on cal-
culating Betti numbers, a class of useful topological invariants, on different scales. We
showed that analyzing how the Betti numbers change as the scale changes reveals infor-
mation regarding the fractal nature of the investigated objects. The method is particularly
useful when self-similarity is a characteristic “hidden” in a lower dimension of the object,
like in the presented example.



168 6. Mixing Topology and Geometry: Barcodes

* measured data
12} rescaled histogram|.

10} i

In[n(€)]

Z

In[g]

Figure 6.39: The plot presents the natural logarithm of the number of bars the 0th Betti number
of a given length as a function of the natural logarithm of their length for the object presented in
Figure 6.38. The dashed gray line is a scaled histogram of In(e), presented with the scope to show
that points group around certain values of In(e). The circles along the horizontal axis indicate
positions of local minima of the histogram. These minima will serve as values of ¢ according to
which we sort certain n(e) values to one peak or another.
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Although the fractal dimension of the objects dimension can be estimated only for a
given class of fractals in which holes scale as the object itself, the method is able to reveal
scaling on any type of objects, that is, it is able to estimate the fractal dimension of the
holes for any object. Moreover, possessing knowledge about the scaling of the volume of
the convex hull might enable us to estimate the fractal dimension of any object, however,
this needs further investigation.
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Figure 6.40: Data calculated by averaging data under the different peaks of Figure 6.39. The
dashed gray line is a liner fit to the logarithms.

100 1

60 1

40t .

~
-

-
-

—-100 -50 0 50 100

Figure 6.41: A Cantor set “bent” to a semicircle.
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Summary

7.1 Main Results

The topics and the results presented in this thesis are gathered around two main concepts:
(i) modelling microscopy images and (ii) using persistence diagrams as fingerprints of
topology. While they are somewhat unrelated topics, they meet in a common denominator
worded by the scope of this thesis, which is to develop theoretical and computational
ideas useful in analysing the spatial organization of the chromatin fibre inside the nucleus
eukaryote cells.

We described microscopy images by characteristic distributions. In some cases, these
distributions featured easily observed quantities like distances or local densities. In other
situations, they represented the image as a whole.

Markov random fields are notably useful in the latter context. They often special-
ize in representing very complex structures by means of local interactions. This is very
suggestive behaviour, as in physics we usually have a distance-dependent coupling among
components of systems. In the simplest cases we may resume to not more than the effect
of excluded volumes. It is not a surprise that Markov random fields show resemblance with
physical systems as, in fact, they emerged from interdisciplinary applications of statistical
mechanics models.

We used the inertia provided by generic tools developed in Markov random fields and
modelled confocal microscopy images by learning the parameters of a generalized Potts
model from image data. Our generalisation consisted of the introduction of interactions
between different spin states. This allows a smooth spatial transition between different
states and overcomes the formation of similar state domains which is characteristic for
ferromagnetic model. Since we wanted to represent different levels of chromatin conden-
sation with different states of the spin variables, observing a smooth transition was a
desired behaviour. While the spatial density distribution of the nucleus is rather inhomo-
geneous, it does not change abruptly. Our model proved to be able to capture the proper
distributions.

Besides being useful in modelling the images, and thus being able to generate artificial
samples with desired properties, the generalization of the Potts model proved to be very

171
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interesting from a statistical mechanics point of view. We extensively studied the thermo-
dynamic properties of the model both by analytic calculations and computer simulations.
Our analytical predictions were supported and extended by the results of the simulations.
Although we constrained the parameter space, we found that the model is capable to
exhibit different interesting phases. We showed that while for certain combinations of
the parameters the model functioned like a ferromagnet, for other values it behaved like
an antiferromagnet with highly degenerate ground state. Intermediate phases were also
found. Furthermore, we demonstrated, that the transition temperature is shifting, de-
pending on the parameters of the model. It is worth to mention that the generalization
contains models like the original Potts model or the XY model as special cases.

Little bit towards the more traditional side of image processing, we characterized
images by the distribution of the intensities and the different momenta of this distribution.
We argued that assuming stoichiometry, the intensity levels should be proportional to the
amount of chromatin in the case of uniform labelling of the fibre. While the aim was to
quantify differences between samples of plant cells grown under different environmental
factors, we argued that observed differences might also stem from different experimental
conditions like slight deviations in microscope gain. This might be especially the case if
images are thresholded and the resulted binary images is subjected to cluster analysis.
We showed how to correct for these differences and motivated our approach by probability
theory arguments. As for the result of the analysis itself, we were able to detect significant
differences even after corrections were applied.

Following the thread of image analysis, we investigated the effects of ionizing radiation
over the spatial organization of the chromatin. As a result of the irradiation, the DNA
fibre may be damaged and in the most serious cases both strands of the DNA may break.
This is known to result in a spatial reorganization of the chromatin in order to give access
to the repair mechanisms.

Super resolution images of non irradiated and irradiated HeLa cells were obtained by
localization microscopy techniques. This type of microscopy provides the data in form
of two dimensional points marking the position of projections of different chromatin la-
bels. Samples irradiated with different doses were analysed by means of graph theoretical
approaches. A network of localized points were built by connecting each point with its
nearest neighbours defined by the Delaunay triangulation. Quantities characterizing the
spatial structure of the constructed network were determined. Comparing the quantities
calculated for non-irradiated and irradiated samples, we found that although overall the
chromatin may compactify to a certain degree, the local neighbouring properties of the
localized points do not change. For instance, the distribution of the edge-lengths belong
to the same family for irradiated and non irradiated samples. At the same time, we found
that heterochromatic regions, marked separately, open up open irradiation. Furthermore,
assuring a long enough healing time after irradiation, we observe a recover of the hete-
rochromatin from the mentioned opened state. Our findings are in agreement with other
experiments observing structural changes caused by the presence of the double strand
breaks.

A similar graph theoretical analysis was performed to assess spatial relationships be-
tween nuclear pore complexes and lamin B receptor proteins. In a preprocessing step of the
images, obtained by Structured Illumination Microscopy, positions of the pore complexes
and the receptors were determined separately. Since the pore complexes and the receptors
are located in and along the nuclear envelope, we calculated the radial distribution along
the surface mesh defined by the positions of the pores and receptor proteins. We observed
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a short-range, fluid-like ordering between the pore-pore or receptor-receptor pairs. This
order disappears for pore-receptor pairs. Furthermore, we found that while the position
of pores are seemingly uncorrelated with the position of receptors, lamin B proteins prefer
to be located in the spatial proximity of the pores. This observation can be explained by
the reduced mobility of pore complexes as they are embedded in the nuclear envelope.

On the other front, we laid the basis of assessing similarity of molecules based on
calculating a set of topological invariants known as persistence intervals. These intervals
indicate geometric scales over which certain topological features, like holes and voids,
persist. We presented three different approaches. They differ not only in the way they
compare the persistence diagrams, but also by the topological space representation of
the molecules. The first and the second approach uses the same object representation,
the Vietoris-Rips complex, while in the third method we represented objects by alpha
complexes.

Our first approach defined the similarity of proteins based on the Haussdorff distance
between the sets of persistence intervals. We showed that while the method correlates
with the geometric similarity, calculated as the Jaccard measure of the volumes, high
similarity values were assigned not only to geometrically similar pairs but also to rather
different geometric configurations of the same protein. Nevertheless, the Haussdorff dis-
tance represents a “worst-case” measure and it is probably not the most appealing choice.
Furthermore, it is a distance, not a similarity, and its difficult to interpret the meaning of
the value of a given distance.

Our second approach is an improvement over the first one. Here we defined the simi-
larity as the average of the best Jaccard indexes. We rigorously proved that this average
is a similarity relation in its mathematical sense, that is, a value close to one means high
similarity, while a value closer to zero indicates a reduced similarity. Applying this mea-
sure on real world data, we saw that while it still correlates with the geometric similarity,
which is an expected behaviour, it is able to match not only different foldings of the same
molecule but also structures composed of similar molecular motifs.

We approach the problem from a different angle in our last method. Here we repre-
sent the proteins by the distribution of the end-points of the persistence intervals. Then
we define the similarity as the Wasserstein distance of the distributions. We apply the
approach on an ensemble of proteins, calculating the distance between all of the pairs.
By clustering the fully connected graph of proteins, we are able to classify the different
instances with a high precision.

We remarked that devising a similarity between chemical structures based on persis-
tence diagrams assumes that the diagrams indeed represent the topology. We supported
this assumption by showing that there a simple and intuitive relation between the structure
of the diagrams and the fractal dimension of certain objects. We were able to numerically
estimate fractal dimensions of the Sierpinski gasket and a specific Cantor set using this
relation with high accuracy.

7.2 OQutlook

Besides the many unexplored thoughts regarding possible approaches to certain problems,
sometimes independent from the content of this thesis, the developing of the presented
methods and models generated plenty of interesting ideas. Unfortunately, time is not
limitless, or at least not for Ph.D. projects. Nevertheless, there are a few aspects of the
presented works that worth to be further examined.



174 7. Summary

One of them is to extend the analysis of the generalized Potts model. There are many
approaches documented in the literature which might help us gain a deeper insight in
the behaviour of the model. Devising an alternative Landau theory, performing finite
size scaling analysis or applying renormalization [284-286] are just some of the possible
approaches which may help us understand the nature of the occurring phase transitions.
We can define alternative order parameters to capture the essence of the mixed phases. We
should investigate if frustration could arise for certain combinations of model parameters.
If so, than the system needs special treatment in this cases. Extending the parameter
space might be another possible way to continue. While recently we started performing a
finite size scaling analysis, other mentioned approaches should also be carried out.

The studied version of the model brakes the symmetry with respect to the exchange of
the spins which are in the states represented by the first and the last rows of the coupling
matrix J with any other state. Correcting the lack of this symmetry would render the
q = 3 case equivalent with the original Potts model. However, for ¢ > 3 the number of the
degenerated ground states of the antiferromagnetic phase would increase. Without the
symmetry, the switching from the first state to the last state (or the other way around) is
less likely then switching from the first state to the second state or from the last state to
the next to last state, in case if b > 0. This behaviour, for instance, blocks the model to
form sharp boundaries between very dark pixels and very bright ones, when consecutive
states correspond to image intensities. While mean-field treatment of the model is more
difficult because of the missing symmetry, the implication of its presence should be studied
if introduced.

When we look at the evolution of the Monte-Carlo sampling, consecutive samples create
the impression of the existence of a “flow” in the systems, especially when neighbouring
states are represented by a colour code, for instance grey values, such that strongly coupled
states have the smallest differences in shades. Even though Monte-Carlo dynamics are
not physical, such flows and other motifs may arise as a result of local interactions in
a similar manner as waves and other patterns form in cellular neural networks [287—
289]. Investigating this patterns may lead to exciting findings and may shed light on
further potential applications of the model. We also mention here that a quasi-physical
implementation could be studied on a CNN computer [290,291].

Other applications may be found in more interdisciplinary topics. Although the original
Potts model is established in fields like economy, sociology or other social sciences [177,
292,293], critics often emphasise the lack of the connection between the model and the
behaviour of real world systems. We believe that the presented generalization has several
advantages over the original model in such applications. Most importantly, it is much more
flexible and given enough data, parameters can be properly learned, thus ensuring a better
suitability for modelling complex behaviour. Another possibility is offered by evolutionary
game theory of spatially structured populations where individuals of a community interact
with their neighbours to develop optimal strategies in the posed situations [294].

Regarding the image processing side of the model, there are a few aspects to men-
tion. The first one considers the learning of the parameters. While, according to our
tests, learning converges and gives rather good estimates, it is also relatively slow. The
wide variety of available learning procedures offers us some flexibility and other learning
approaches should be tested.

On the other hand, it is important to mention that obviously, there is a connection
between the density distribution seen on microscopy and the arrangement of the chromatin
fibre. Therefore, we should also be able to find a correspondence between our model with
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parameters learned from data and polymer models which are able to generate ensembles
reproducing spatial proximity maps of genes seen in experiments like Hi-C [295]. However,
this first needs a careful investigation of the generic relation of polymer and lattice models.

The analysis of the localization data should also be extended. Presently, we are en-
gaging in applying topological approaches to detect repeating motifs of point sets. On
the other hand, we also analysed the Voronoi tessellation defined by the localized points.
Correlations of the area and characteristic diameter of the cells were calculated for pairs
of cells separated by a given distance. No significant linear correlation was found between
cells other than nearest neighbours. However, there might be a higher order relation, thus
the problem should be further examined.

Last, we would like to mention that the similarity measures presented in this thesis
can also be enhanced. Chemical information, for instance, can be built in the calculations.
This could be done, for example, by replacing the used topological representation with
a complex which is built strictly on the frame defined by the bond-connections between
atoms.

While this list could be continued, the suggested possibilities and challenges are nu-
merous enough to provide an accurate picture about what else can, and hopefully will be
done in the context of the presented methods. The author of this thesis had a great time
working on each of the projects and is highly motivated to carry on with them.
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