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Abstract 

The L-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) 

are glutamate-gated ion channels that are important for fast synaptic transmission and 

synaptic plasticity in the central nervous system. The AMPARs’ gating properties are 

tightly regulated by receptor number, subunit composition, co-transcriptional as well 

as post-translational subunit modifications and by their interactions with auxiliary 

proteins. Recently, a novel endogenous auxiliary protein of AMPARs, CKAMP44, 

was identified. CKAMP44 modulates the gating kinetics of AMPARs, such as 

deactivation, desensitization and recovery from desensitization. However, the detailed 

molecular mechanisms for the CKAMP44/AMPAR interaction and CKAMP44 

regulation of AMPAR gating remain to be resolved. This dissertation unravels 

different CKAMP44 domains involved in AMPAR interaction and modulation, and 

investigates new roles of CKAMP44 in neuronal morphogenesis of primary neurons. 

In order to identify CKAMP44 protein domains that are essential for 

CKAMP44/AMPAR interaction, AMPAR-mediated current modulation, and 

CKAMP44 spine delivery, a series of CKAMP44 deletion mutants were generated, 

expressed in HEK293 cells, primary hippocampal neurons and in neonatal mouse 

brains, and analyzed by co-immunoprecipitation, immunostaining and 

electrophysiological recordings. Our results show that the extracellular CKAMP44 

domain triggers the modulation of AMPARs’ gating properties. The intracellular C-

terminal domain of CKAMP44 is required for postsynaptic localization of 

CKAMP44, and the R/K domain is needed for the physical CKAMP44/AMPAR 

interaction as well as for the efficient spine targeting of CKAMP44. The requirement 

of the R/K domain in CKAMP44/AMPAR binding might explain why the 

recombinantly expressed CKAMP44 extracellular domain failed to modulate 

AMPAR activity. 

In addition to the regulatory function of CKAMP44 on AMPAR-mediated 

currents, our bidirectional manipulation of CKAMP44 expression in primary 

hippocampal neurons of Ckamp44–/– and wild-type mice provided evidence that 

neuronal morphogenesis is modulated by CKAMP44. Primary neurons derived from 

Ckamp44–/– mice exhibited increased dendritic arborization and spine volume, but 

decreased spine density when compared to CKAMP44 expressing neurons. 
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CKAMP44 overexpression in neurons leads to the opposite results. In addition, 

CKAMP44 overexpression induced irregular spine morphology and multiple synapses 

generated at single spines. Therefore, we suggest that, in addition to the modulation of 

the AMPAR gating, CKAMP44 can tune dendritic arborization and spine formation 

during neuron maturation.  
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Zusammenfassung 

Bei L-α-Amino-3-hydroxy-5-methyl-4-isoxazol-propionsäure-Rezeptoren (AMPARs) 

handelt es sich um Glutamat-gesteuerte Ionenkanäle, die eine wichtige Rolle bei der 

schnellen synaptischen Transmission und bei der synaptischen Plastizität im 

Zentralnervensystem spielen. Die Ionendurchlässigkeit von AMPARs wird durch 

Rezeptoranzahl, Zusammen-setzung der Rezeptoruntereinheiten, co-transkriptionale 

sowie posttranslationale Modifikationen der Rezeptoruntereinheiten und durch die 

Wechselwirkung mit eng assoziierten Proteinen streng reguliert. Vor kurzem wurde 

ein neues endogenes, mit AMPA-Rezeptoren wechselwirkendes Membranprotein, 

CKAMP44, von unserer Arbeitsgruppe beschrieben. CKAMP44 verändert die 

Deaktivierung, die Desensitisierung und die Aktivierungskinetik nach der 

Desensitisierung von AMPA-Rezeptoren. Die genauen molekularen Mechanismen 

der CKAMP44/AMPAR-Wechselwirkung sowie die Regulation der Ionenkanal-

Steuerung durch CKAMP44 waren jedoch bislang unklar. In dieser Dissertation 

werden verschiedene CKAMP44-Domänen charakterisiert, die an der 

Wechselwirkung und der Modulation von AMPA-Rezeptoren beteiligt sind, und es 

werden neue Einflüsse auf die neuronale Morphogenese primärer Neuronen durch 

CKAMP44 untersucht. 

Um CKAMP44-Proteindomänen zu identifizieren, die essentiell für die 

CKAMP44/AMPAR-Wechselwirkung, die Modulation AMPAR-vermittelter 

Ionenströme und möglicherweise für die neuronale Morphogenese sind, wurde eine 

Auswahl an verkürzten CKAMP44-Proteinen hergestellt, welche in HEK293-Zellen, 

primären hippocampalen Neuronen und neonatalen Mäusegehirnen exprimiert und 

mittels Co-Immunopräzipitation, Immunfärbung und elektrophysiologischer 

Aufzeichnung analysiert wurden. Die Ergebnisse zeigen, dass die extrazelluläre 

Domäne von CKAMP44 für die Modulation der Ionenkanal-Durchlässigkeit von 

AMPA-Rezeptoren verantwortlich ist. Die intrazelluläre, C-terminale Domäne von 

CKAMP44 ist für die postsynaptische Lokalisation verantwortlich, während die R/K-

Domäne für die CKAMP44/AMPAR-Wechselwirkung und für eine effiziente 

Translokation von CKAMP44 in die dendritischen Dornen unabdingbar ist. Die 

Notwendigkeit der R/K-Domäne für die Bindung von CKAMP44 an den AMPA-
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Rezeptor könnte erklären, weshalb die rekombinant exprimierte, extrazelluläre 

CKAMP44-Domäne nicht in der Lage ist, die AMPAR-Aktivität zu verändern. 

Zusätzlich zu der regulatorischen Wirkung von CKAMP44 auf AMPAR-

gesteuerte Ionenströme zeigte die bidirektionale Manipulation der CKAMP44-

Expression in primären hippocampalen Neuronen von Ckamp44–/– und Wildtyp-

Mäusen, dass auch die neuronale Morphogenese durch CKAMP44 beeinflusst wird. 

Primäre Neuronen aus Ckamp44–/– Mäusen zeigten eine stärkere dendritische 

Verzweigung und ein größeres Volumen der dendritischen Dornen, jedoch eine 

niedrigere Dornendichte im Vergleich zu Wildtyp-Neuronen. Eine Überexpression 

von CKAMP44 in primären Neuronen führte zum entgegengesetzten Effekt. Darüber 

hinaus besaßen die dendritischen Dornen in diesem Fall eine unregelmäßige Form 

sowie multiple Synapsen am selben Dorn. Daher sollten zukünftige Analysen 

berücksichtigen, dass CKAMP44 nicht nur die Modulation der AMPAR-gesteuerten 

Ionenströme, sondern auch die Verzweigung der Dendriten und die Ausbildung 

dendritischer Dornfortsätze während der neuronalen Morphogenese beeinflussen 

kann. 
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1. Introduction 

The L-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) 

are glutamate-gated ion channels that play a critical role in fast excitatory synaptic 

transmission. Upon glutamate binding, AMPAR ion channels are permeable for 

extracellular sodium ion influx, which results in membrane depolarization, and can 

lead to the firing of an action potential. In addition, AMPARs are also of vital 

importance in activity dependent synaptic plasticity – a potential molecular 

mechanism for learning and memory.  

AMPARs are heterotetramers assembled from four different subunits, GluA1-4 

(Hollmann et al., 1990; Keinanen et al., 1990; Rosenmund et al., 1998). AMPARs 

with different subunit compositions exhibit diverse functional features (Hollmann and 

Heinemann, 1994; Rosenmund et al., 1998). The expression of different AMPAR 

subunits is brain region specific (Keinanen et al., 1990) and their distribution is 

developmentally regulated (Monyer et al., 1991). All four AMPAR subunits are 

expressed in different isoforms by alternative RNA splicing (Monyer et al., 1991; 

Sommer et al., 1990) and site-selective RNA editing (Lomeli et al., 1994; Sommer et 

al., 1991), making the diversity of AMPARs even more complex. Thus, the 

heterogeneity of AMPAR subunits is a major factor that regulates AMPAR-mediated 

synaptic transmission. 

In heterologous expression system, AMPAR subunits can assemble and form 

functional AMPARs with glutamate-gated ion channel activity (Boulter et al., 1990; 

Keinanen et al., 1990). However, the kinetics of recombinantly expressed AMPARs 

and native AMPARs do not match perfectly, e.g. the deactivation and desensitization 

of recombinant AMPARs expressed Xenopus oocytes (Mosbacher et al., 1994) are 

always faster than those of native AMPARs (Colquhoun et al., 1992; Geiger et al., 

1995). Additionally, the single particle analysis obtained by EM imaging suggests that 

native AMPARs are significantly bigger than postulated AMPAR 3D structure by 

computer modeling (Nakagawa et al., 2005). 

The discrepancy between recombinant and native AMPARs was resolved with 

the discovery of stargazin as a type of AMPAR auxiliary proteins, which is mutated in 

stargazer mice (Letts et al., 1998; Noebels et al., 1990). Stargazin, also named as 

TARP γ2 (transmembrane AMPAR modulatory protein) was found to be able to 
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shape diverse aspects of AMPAR functions, including ion channel gating kinetics 

(Milstein et al., 2007; Tomita et al., 2005a), single channel conductance (Soto et al., 

2007; Tomita et al., 2005a), as well as activity dependent trafficking (Chen et al., 

2000) and synaptic plasticity (Rouach et al., 2005; Tomita et al., 2005b). The 

discovery of TARP γ2 opened the view that AMPARs function as a big complex with 

auxiliary proteins, and the latter ones constitute another type of major determinants 

for native AMPAR behavior. 

After the description of TARP γ-2 as an AMPAR auxiliary protein, several 

other TARP family members (TARP γ-3, -4, -5, -7, -8) were subsequently found to 

differentially regulate AMPAR functions (Kato et al., 2008; Kato et al., 2007; Tomita 

et al., 2003). In addition to TARPs, further proteomic research of native AMPARs 

also identified additional AMPAR auxiliary proteins, among which cornichon 2/3 

(CNIH-2/3) (Schober et al., 2011; Schwenk et al., 2009; Shi et al., 2010) and 

CKAMP44 were most intensively studied (von Engelhardt et al., 2010). This chapter 

gives an introduction of the molecular biology and functionality of AMPARs, and 

their auxiliary proteins including TARPs, CHINs and CKAMP44. 

1.1. AMPARs  

1.1.1. AMPARs subunit composition 

AMPARs are heterotetramers composed of four closely related subunits GluA1-4 

encoded by four separate genes. The predominant AMPARs in adult hippocampal 

excitatory neurons are GluA1/2 and GluA2/3 heterodimers (Wenthold et al., 1996). 

All four subunits exhibit similar functional domain organization, starting with an 

extracellular N-terminal domain (NTD) important for subunit dimerization, followed 

by a ligand binding domain (LBD) composed of S1 and S2 segments, three 

membrane-spanning domains (M1, M3 and M4), a pore-forming membrane re-entry 

loop (P-loop) determining Ca2+ permeability and a C-terminal intracellular domain 

required for partner binding and receptor trafficking (Sobolevsky et al., 2009) 

(Fig. 1). 
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Fig. 1. Structure and composition of AMPARs. (A) Primary structure of AMPAR subunits 
(GluA1-4) with identical functional domains. NTD, N-terminal domain; S1, ligand binding 
domain 1; M1, membrane spanning α-helix 1; P, pore loop α-helix; M3, membrane spanning 
α-helix 3; S2, ligand binding domain S2, and M4, membrane spanning α-helix 4; NH2, N-
terminus; COOH, C-terminus. In yellow represents the hydrophobic signal peptide which is 
cleaved off during the membrane insertion of the subunit. Post-transcriptional alternative 
spliced protein segments are outlined in green lines and RNA editing sites are given in blue 
filled circles. Hydrophobic segments are depicted in barrels. (B) Postulated secondary 
structure of a single AMPAR subunit in the membrane before (left) and after channel 
assembly (right). Subunits are given in different colors. Lettering is as in (a), except that 'M' is 
missing in M1, M3 and M4 [figure and legend are adapted from (Sprengel, 2006)]. 

 

GluA1-4 share high degree of homology in the LBD, M and P-loop domain, but 

are variable in their C-terminal cytoplasmic domains, which determine specific 

partner interactions for each subunit. Besides the heterogeneity of the different 

AMPAR subunit sequences, each subunit also has variable isoforms due to alternative 

RNA splicing and RNA editing.  

1.1.1.1. Alternative splicing 

Commonly found in eukaryotes, alternative splicing allows the expression of several 

proteins from a single coding gene, thus greatly increasing the complexity of the 

genome encoded genetic information. GluA2 and GluA4 occur in two different 

spliced isoforms with long or short C-terminal tails, namely GluA2L, GluA2S, 
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GluA4L and GluA4S. All four AMPAR subunit genes contain two alternative spliced 

exons 14 and 15 (Sommer et al., 1990), “flip” and “flop (Fig. 1). The “flip” and 

“flop” isoforms have distinct pharmacological and channel properties. For example, 

compared to the “flip” form, the “flop” variant desensitizes more rapidly, and is less 

responsive to cyclothiazide, a pharmacological reagent which blocks desensitization 

(Mosbacher et al., 1994). The alternative splicing event is developmentally controlled 

(Monyer et al., 1991), for example, the “flip” forms of AMAPR subunits are 

prominent in early development, while the expression of “flop” forms is increasing 

during postnatal development. In adult rodent brains the “flip” and “flop” isoforms 

are expressed at similar levels.  

1.1.1.2. RNA editing 

In addition to RNA splicing, further AMPAR subunit complexity is introduced by 

RNA editing, resulting in single nucleotide conversion (adenosine to inosine) 

mediated by dsRNA adenosine deaminase during RNA maturation (Higuchi et al., 

2000). Two different RNA editing sites are found in AMPAR subunit genes (Sommer 

et al., 1991) (Fig. 1). The most prominent one occurs exclusively in the GluA2 

subunit, converting the codon for glutamine (Q) to an arginine (R) codon (CAA to 

CGA) with 100% efficiency during pre-mRNA maturation (Higuchi et al., 1993). The 

functional consequence of this Q/R-site editing for GluA2 containing AMPARs is a 

decreased permeability for divalent cations, in particular Ca2+ ions, making GluA2 

subunit distinct from three other subunits (Burnashev et al., 1992). Thus GluA2 

containing AMPARs exhibit low channel conductance and impermeability to Ca2+ due 

to the positively charged arginine in the channel pore (Burnashev et al., 1992), and 

genetically modified mice deficient for GluA2 Q/R editing die at early phase of 

postnatal development (Brusa et al., 1995). In addition to the role in controlling Ca2+ 

permeability, Q/R editing in GluA2 also regulates AMPAR assembly (Greger et al., 

2003) and AMPAR exit from the endoplasmic reticulum (Greger et al., 2002). Due to 

this Q/R editing, the presence of GluA2 shape AMPARs with linear current-voltage 

relationships (I-V), while AMPAR lacking GluA2 exhibit rectifying I-V relationships 

(Burnashev et al., 1992; Hayashi et al., 2000; Hollmann et al., 1991). 

Another RNA editing site, termed as R/G editing site, is localized in the S2 

segment encoding exons of GluA2-4 subunit genes (Gria 2-4). Within the Gria 2-4 

pre-mRNAs, the codon for arginine can be converted to a glycine codon (AGA to 
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GGA). The edited AMPARs show higher recovery from desensitization compared to 

unedited receptors (Lomeli et al., 1994).  

1.1.2. AMPARs function in synaptic transmission, synaptic plasticity as well as 

learning and memory 

Fast excitatory synaptic transmission involves presynaptic glutamate release, and 

postsynaptic receptor binding and activation (Fig. 2). During synaptic transmission, 

glutamate released from presynaptic neurons binds to AMPAR ligand binding 

domain, inducing conformational changes and the opening of the ion channel gate. 

Due to the Q/R editing, GluA2 containing AMPARs are selectively permeable to 

monovalent Na+ ions, and the strong Na+ ions influx depolarizes the local 

postsynaptic membrane, enabling the release of Mg2+ block in co-localized N-Methyl-

D-aspartate receptors (NMDARs). Once the Mg2+ block is removed, NMDARs are 

ready to be activated, and another pulse of glutamate release from the same 

presynapse can activate both postsynaptic AMPA- and NMDARs. Different from 

AMPARs, NMDARs are Ca2+ permeable. Therefore, now the signal transmission via 

Na+ is accompanied by strong Ca2+ influx into dendritic spines. Ca2+ binds to 

Calmodulin which activates Ca2+ /calmodulin-dependent protein kinase II (CaMKII). 

CaMKII phosphorylates AMPARs to increase single channel conductance, and 

activates a number of postsynaptic cellular processes including the translocation of 

AMPARs from perisynaptic to postsynaptic sites, resulting in an increased synaptic 

transmission. The increased excitatory transmission can last for hours, days or 

months, and was described as long-term potentiation (LTP). Experimental data 

showed that GluA1 deficient mice failed to show any induced field LTP at the 

hippocampal CA3-CA1 synapses (Zamanillo et al., 1999). Therefore, AMPARs are 

not only important for mediating fast excitatory transmission, but also for induction of 

some forms of LTP. 

It is commonly believed that learning and memory are both based on a change 

of the synaptic strength. LTP, as one phenomenon of synaptic plasticity, is thus 

thought to be an important molecular mechanism underlying learning and memory 

(Morris et al., 1986; Tsien et al., 1996).  Indeed, previous reports showed that GluA1 

knock-out mice which fail to have the expression of the early LTP component and 

field LTP at hippocampal synapses are impaired in spatial working but not in spatial 
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reference memory (Reisel et al., 2002; Zamanillo et al., 1999), indicating that 

AMPARs participate in certain form but not all of the learning and memory.  

 

Fig. 2. Six scenarios of synaptic transmission at glutamatergic synapses. (a) 
Glutamatergic synapses with opposed pre- and post-synaptic component. Presynapse contains 

Glutamatergic 
synapse

b) First transmitter release 
Activation of AMPA 

receptors

c) Signal transmission 
Release of Mg2+- block at

NMDA receptors

d) Second transmitter release 
Activation of AMPA and

NMDA receptors

e) Signal transmission
Ca2+ signaling and

AMPAR mobilisation

f) Improved signal
transmission 

(more AMPARs)

g) Stabilized and improved
signal transmssion

(AMPAR subtype replacement)

a)

?Ca2+ signaling
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synaptic vesicles filled with signal transmitter glutamate (Glu, orange filled triangle), which 
once is released into synaptic cleft, will bind to AMPARs (green) and NMDARs (blue) on the 
postsynaptic membrane. In the absence of Glu, all receptors are in closed state, and the 
postsynaptic membrane lies at resting potential (indicated by -70 mV). Free ions including 
Na+ and Ca2+ ions in the synaptic cleft are depicted in grey and black filled circles. (b) The 
first step of fast synaptic transmission mediated by AMPARs, starting from the presynaptic 
Glu release triggered by the action potential in the presynaptic neuron. Released Glu binds to 
AMPA- and NMDAR ligand binding sites. The AMPAR ion channel pores are open while 
NMDAR ion pores are closed due to the Mg2+ ion block at the channel pore. (c) Mg2+ block 
release from NMDARs after the signal transmission. The postsynaptic membrane is 
depolarized (indicated by -20 mV), triggering the removal of Mg2+ ion from the NMDAR ion 
pore. (d) Activation of both AMPA- and NMDARs by another round of Glu release. (e) 
Further signal transmission by activated NMDARs as well as AMPARs. At this time point, 
the participation of NMDARs introduces Ca2+ in addition to Na+ ion influx, and Ca2+ ion as an 
important second messenger induces downstream signal pathways, which translocate 
AMPARs from the perisynaptic to the postsynaptic membrane, resulting in increased number 
of postsynaptic AMPARs. (f) To this end, the postsynapse will exhibit a stronger response to 
glutamate, which can be recorded as an improved chemical signal transmission. (g) The long-
lasting changes of this improved transmission are stabilized over time. This process is 
dependent on protein synthesis and might be mediated by an exchange of newly incorporated 
AMPARs by AMPARs with a different subunit combination. However, the long lasting 
changes are very complex and need more investigation [Figure and figure legend adapted 
from (Sprengel, 2013)]. 

 

1.2. AMPAR auxiliary proteins 

Accumulating evidences indicate that native AMPARs are big complexes composed 

not only of AMPAR subunit tetramers but also of a number of auxiliary proteins, 

which regulate the trafficking and gating kinetics of AMPAR ion channels. Among 

them, TARPs, CNIHs and CKAMP44 are most intensively studied (Fig. 3). 

 

Fig. 3. Schematic illustration of 
a membrane localized AMPAR. 
An AMPAR with permeability for 
sodium (Na+) but limited 
permeability for calcium (Ca2+) 
ions is depicted in grey. The 
AMPAR ligand binding site is 
occupied with glutamate (yellow). 
Three auxiliary subunits (TARP, 
CNIH, and CKAMP44) are drawn 
in different colored structural 
barrel cartons next to AMPAR. 
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1.2.1. TARPs  

1.2.1.1. Discovery of the prototypical TARP stargazin/γ-2 

The first identified AMPAR auxiliary protein was stargazin/γ-2 discovered in 

STARGAZER mice, which show characteristic ataxia and seizure behavior (Letts et 

al., 1998; Noebels et al., 1990). Detailed analysis showed that in stargazer mice a 

single gene was disrupted in both alleles, and the disruption of this gene was 

responsible for the “star-gazing” phenotype. The translated protein from this disrupted 

gene was therefore named after the mutant mouse model as stargazin, or as γ-2 due to 

its sequence similarity to the gamma subunit of skeletal muscle voltage-dependent 

calcium channel (VDCC) γ-1 (Letts et al., 1998).  Stargazin/γ-2 was thought to be a 

subunit for VDCC, and neurological disorder in STARGAZER mice might be the 

consequence of neuronal VDCC dysfunction (Letts et al., 1998). But further 

molecular and physiological analysis proved that stargazin/γ-2 contributed only a 

minor effect on calcium channel properties (Green et al., 2001; Klugbauer et al., 

2000; Osten and Stern-Bach, 2006; Rousset et al., 2001). On the contrary, AMPAR 

component mEPSC in the cerebellum mossy fiber to granule cell synapse was greatly 

impaired in STARGAZER mice	  (Chen et al., 1999; Hashimoto et al., 1999), indicating 

the loss of functional AMPARs on the surface of cerebellar granule cells. The rescue 

experiment by overexpressing wild-type stargazin in STARGAZER mice could restore 

AMPAR mEPSC (Chen et al., 2000), providing evidence that stargazin/γ-2 is 

indispensible to facilitate AMPAR trafficking to postsynaptic membrane. 

1.2.1.2. TARP family members, structure and distribution 

The discovery of stargazin/γ-2 triggered a new round of molecular cloning 

experiments, and in total eight stargazin-related proteins could be identified (γ-1 to γ-

8) (Tomita et al., 2003), among which four (γ-2, γ-3, γ-4 and γ-8) were collectively 

named as TARPs (transmembrane AMPAR regulatory proteins) due to their very 

similar influence on the trafficking and gating kinetics of AMPARs in distinct cell 

types (Tomita et al., 2003). Later studies further confirmed that γ-5 and γ-7 also 

selectively modulate certain subgroups of AMPARs (Kato et al., 2008; Kato et al., 

2007), and thus γ-5 and γ-7 were classified as type II TARPs (Kato et al., 2008), 

while γ-2, γ-3, γ-4 and γ-8 were grouped as type I TARPs.	  All type I TARPs have a 

PDZ binding motif (-RR/KTTPV) at the carboxyl terminus for associating with 
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PSD95 at the synapse (Bats et al., 2007). Type II TARPs contain an atypical C-

terminal PDZ-binding motif (–S/TTPC) at the COOH terminus, which might also be 

associated with AMPARs at the synases (Kato et al., 2007). 

All TARPs share similar secondary structure, with four membrane-spanning 

domains, a short cytosolic N-terminal domain, two extracelluar domains, one of 

which is involved in modulating AMPAR channel properties and a C-terminal 

intracellular domain with typical (–TTPV) or atypical (–S/TTPC) PDZ binding motif 

at the carboxyl terminus. 

TARPs exhibit an overlapping distribution in the mouse brain as demonstrated 

by in situ hybridizations and western-blots (Fukaya et al., 2005; Tomita et al., 2003). 

Thus, one cell type might exhibit the expression of multiple TARPs. However, each 

TARP gene has preferable expression in distinct brain areas, e.g. TARP γ-2 shows 

high expression in cerebellum (Tomita et al., 2003), TARP γ-3 in cerebral cortex 

(Tomita et al., 2003), TARP γ-4 in neonatal forebrain (Tomita et al., 2003),	  TARP γ-5 

in Bergman glia cells of the cerebellum (Fukaya et al., 2005), TARP γ-7 in 

cerebellum (Fukaya et al., 2005; Kato et al., 2007; Tomita et al., 2003), and TARPs γ-

8 in hippocampus (Fukaya et al., 2005; Tomita et al., 2003). The redundancy of 

TARPs expression is crucial for maintaining AMPAR function as most of single 

TARP knock-out mice don’t show behavioral impairments, possibly due to the 

compensation by other TARPs (Menuz et al., 2009; Menuz et al., 2008). 

1.2.1.3. TARPs regulate AMPAR trafficking 

As described above TARP γ-2 is of great importance in facilitating AMPAR 

trafficking, which is best documented by STARGAZER mice and by stargazin/γ-2 

rescue experiments (Chen et al., 1999; Chen et al., 2000; Hashimoto et al., 1999). The 

current model suggests that in the ER TARP γ-2 associates with tetrameric AMPARs 

to facilitate efficient transportation from ER to Golgi (Vandenberghe et al., 2005a, b). 

In Golgi, the neuronal isoform of protein-interacting specifically with TC10 (nPIST) 

binds to the C-terminal domain of TARP γ-2, and chaperone the TARP-AMPAR 

complex to the cell surface (Cuadra et al., 2004).  

The surface delivery of AMPARs is independent of C-terminal PDZ binding 

domain of TARP γ-2 (Chen et al., 2000). However, the postsynaptic delivery of 

AMPARs, as the second mechanism of AMPAR trafficking, requires the TARP PDZ 
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domain (Chen et al., 2000), which directly binds to PSD95 (Chen et al., 2000; Schnell 

et al., 2002) and other membrane-associated guanylate kinases (MAGUKs) (Dakoji et 

al., 2003; Elias et al., 2006) to anchor the AMPAR complex on the postsynaptic 

membrane. Indeed, removal of the four C-terminal residues of stargazin (stargazinΔC) 

failed to rescue AMPAR EPSCs in STARGAZER granule cells (Chen et al., 2000). 

Similar results were obtained in hippocampal slice cultures, which showed that 

AMPARs are localized to synapses through direct binding of the first two PDZ 

domains of synaptic PSD-95 to stargazin. When PSD95 expression level was not 

increased, only extrasynaptic AMPAR but not synaptic AMPAR current could be 

enhanced by stargazin overexpression (Chen et al., 2000; Schnell et al., 2002). 

1.2.1.4. TARPs regulate the physiological properties of AMPARs  

TARPs modulate not only AMPAR trafficking, but also AMPAR gating properties. In 

heterologous system, coexpression of GluA1 and TARP γ-2 could increase glutamate-

evoked AMPAR currents by facilitating single channel conductance as well as surface 

AMPAR expression (Chen et al., 2003; Tomita et al., 2005a; Tomita et al., 2004; 

Yamazaki et al., 2004). TARPs prolong channel opening and enhance the recovery 

from desensitization of AMPARs (Cho et al., 2007; Korber et al., 2007; Priel et al., 

2005; Tomita et al., 2005a). The overall output of TARP modulation is an enhanced 

charge transfer through TARP-associated AMPARs.  

Despite of the consensus in AMPAR regulation of different TARPs, subtle 

differences can be observed between different TARP subtypes. For example, TARP γ-

4 and γ-8 exhibited slower AMPAR deactivation and desensitization compared to γ-2 

and γ-3 due to the amino acid variability in the first extracellular loop of TARPs (Cho 

et al., 2007; Kott et al., 2007; Milstein et al., 2007). Consistently, rescue experiments 

in stargazer granule cell culture by different TARPs also showed that γ-4 induced 

dramatically slower decay of AMPAR mEPSC than other TARPs, and knocking out 

endogenous γ-4 resulted in faster decay and rise time of mEPSC (Milstein et al., 

2007). Thus, the heterogeneity of TARPs has a strong impact on the kinetics of native 

AMPARs in central synapses. 

In addition, TARPs modulate the pharmacological properties of AMPARs. 

Native AMPARs respond better to kainate than to glutamate, while AMPARs 

expressed in heterologous system behave in the opposite way, which can be converted 
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by overexpressing TARPs (Tomita et al., 2005a; Tomita et al., 2007; Turetsky et al., 

2005). These results demonstrate that native AMPARs complex contain TARPs, and 

also prove that TARPs could shape the pharmacology of AMPARs in an TARP 

subtype dependent manner. TARPs also increase the affinity and efficacy of AMPAR 

potentiators including cyclothiazide, PEPA and CX546, which increase signaling by 

blocking channel closure (Tomita et al., 2006). 

1.2.2. CNIHs 

Following the discovery of TARPs, another type of AMPAR auxiliary proteins, 

cornichons (CNIH2 and 3), was identified by proteomics (Schwenk et al., 2009). 

CNINs are trimembrane spanning proteins that modulate channel properties of 

AMPARs and promote AMPAR surface expression in heterologous cells. 

1.2.2.1. Roles of CNIHs in AMPAR trafficking 

Before CNIHs were identified as AMPAR auxiliary proteins, their homologs in 

Drosophila melanogaster (Bokel et al., 2006), Saccharomyces cerevisiae (Castillon et 

al., 2009) and	  Gallus domesticus (Hoshino et al., 2007), were reported as chaperon 

like endoplasmic reticulum (ER) cargo exporters for epidermal growth factor receptor 

(EGFR) ligands. In 2009, Schwenk et al. found that CNIH2/3 were associated with 

native AMPAR auxiliary proteins in rat neurons (Schwenk et al., 2009). The authors 

described that CNIH2/3 increased surface expression of AMPARs in cultured rat 

primary neurons and in Xenopus laevis oocytes, most likely by using their conserved 

role as a cargo exporter from the ER	   as suggested by later studies of CNIH-2 

functions in AMPAR processing in heterologous cells and primary rat neurons 

(Harmel et al., 2012; Shi et al., 2010). 

1.2.2.2. Roles of CNIHs in modulating AMPAR gating 

In addition to AMPAR trafficking, CNIHs are involved in modulating AMPAR 

gating similar as TARPs. In heterologous system, CNIH2 slows AMPAR decay 

kinetics and alters the pharmacology of kainate and AMPAR potentiators (Schober et 

al., 2011; Schwenk et al., 2009; Shi et al., 2010). 

It seems that CNIH2/3 differentially modulate channel properties of AMPARs 

associated with different TARPs, as CNIH2 overexpression slowed AMPAR mEPSC 

kinetics of neurons expressing γ-8, but did not alter mEPSC from neurons expressing 
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γ-2/stargazin (Shi et al., 2010). The interaction between CNIH-2 and specific TARPs 

within the AMPAR complex was first suggested by Kato et al. (Kato et al., 2010). 

The authors showed that in heterologous system, the overexpression of TARP γ-4, γ-

7, or γ-8 caused resensitization which is not present in γ-8 containing hippocampal 

neurons, and co-expression of CNIH-2 with γ-8 abolished this phenomenon (Kato et 

al., 2010). Further more, genetic disruption of γ-8 markedly and selectively reduced 

CNIH-2 and GluA protein levels. From those data, Kato et al. suggested that CNIH-2, 

TARP γ-8 and AMPARs form a tripartite protein complex in native neurons (Kato et 

al., 2010). The interplay between AMPAR subunits, CNIHs and TARPs was further 

validated by using CNIH-2 and CNIH-3 conditional knock-out mice (Herring et al., 

2013). CNIHs knock-out in hippocampus selectively reduced AMPAR-mediated 

synaptic transmission, mostly by removing GluA1/A2 AMPARs, leaving fast 

GluA2/A3 γ-8 AMPAR complexes, whose interaction with CNIHs is prevented by the 

presence of γ-8. Therefore, the interplay among CNIHs, AMPARs, and TARPs 

determines the trafficking and gating properties of individual AMPARs. 

1.2.3. CKAMP44 

After the discovery of TARPs and CNIHs as AMPAR auxiliary proteins, 

immunoprecipitation combined with mass spectrometry identified the cystine-knot 

AMPAR modulating protein with predicted molecular weight of 44 kDa (CKAMP44) 

as an additional AMPAR auxiliary protein in the native AMPAR complexes (von 

Engelhardt et al., 2010).  

1.2.3.1. Primary structure and CKAMP or Shisa protein family 

CKAMP44 is a type I transmembrane protein. The CKAMP44 precursor protein is 

424 amino acid residues in length and contains an N-terminal signal peptide, an 

extracellular domain with eight cysteines, followed by a single membrane spanning 

segment and C-terminal intracellular domain terminated by a PDZ binding motif. 

The primary amino acid sequence of CKAMP44 identifies CKAMP44 as a 

member of the endogenous Shisa protein family. Therefore CKAMP44 is also called 

Shisa9 according to the numbering of the 9 proteins of the Shisa family (Shisa1-9) 

(Fig. 4) (Pei and Grishin, 2012). Notably, CKAMP44 and other members of Shisa 

family exhibit the same cysteine pattern (‘C*C*CC*C*CC*C’, * represents a stretch 



1. Introduction Ling Zhang PhD dissertation 
 

 13 



1. Introduction Ling Zhang PhD dissertation 
 

 14 

Fig. 4. Multiple sequence alignment of Shisa proteins. The cysteine-rich domains and 
transmembrane regions of representative Shisa proteins (with a ‘C*C*CC*C*CC*C’ pattern) 
from nine vertebrate Shisa subfamilies (Shisa1–9) and one sequence from Branchiostoma 
floridae (Shisa_Bf) are included in this alignment. NCBI accession numbers are shown. A 
few proteins were derived from genome or EST sequences (accession numbers in italic and 
underlined). Starting and ending residues numbers for sequences with protein accession 
numbers are shown before and after the sequences, respectively. Protein lengths are shown in 
brackets. Conserved cysteines are shaded in yellow or red (the additional two cysteine 
positions compared to Shisa-like proteins). Non-charged residues in positions with mainly 
hydrophobic residues were shaded in cyan. Prolines and glycines are shown in red letters. 
Cysteines within and after the predicted transmembrane segments are shaded in gray. 
Arginines and lysines, occurring frequently C-terminal to the predicted transmembrane 
segments (TM), are shown in blue letters. Species name abbreviations shown after the 
accession numbers are as follows: Bf, Branchiostoma floridae; Dr, Danio rerio; Gg, Gallus 
gallus; Hs, Homo sapiens; Om, Oncorhynchus mykiss; Oa, Ornithorhynchus anatinus; Xt: 
Xenopus tropicalis; and Xl, Xenopus laevis [Figure and figure legend are from (Pei and 
Grishin, 2012)]. 

 
of 2 to 15 amino acids) in the N-terminal extracellular domain, but with different 

number of residues between two neighboring cysteines (Fig. 4).  

Within the family of Shisa proteins CKAMP44 shows the highest similarity to 

Shisa-6, -7 and -8, which Sprengel et al. described in 2009 as CKAMP59, 52 and 39, 

respectively, according to their predicted molecular weight (Pei and Grishin, 2012; 

Sprengel et al., 2009). Compared to Shisa1-5, the CKAMPs don’t have multiple 

cysteines after the TM region in the cytoplasmic domain (Fig. 4). Thus, in this thesis, 

we consider only Shisa-6, -7 and -8 as CKAMP44 homologs. 

1.2.3.2. CKAMP44 expression and subcellular distribution 

The expression of CKAMP44 is brain specific, and can be detected during embryonic 

and postnatal development as indicated by tissue-specific Northern blot and in situ 

hybridization. CKAMP44 is enriched in Triton X-100–insoluble postsynaptic density 

and colocalized with AMPARs at spine heads as demonstrated by subcellular 

fractionation and immunocytochemistry (von Engelhardt et al., 2010). 

1.2.3.3. CKAMP44 modulation on AMPARs 

When expressed in Xenopus laevis oocytes, CKAMP44 could reduce GluA1- and 

GluA2-mediated steady-state currents, as well as the potency of cyclothiazide (CTZ) 

in preventing AMPAR desensitization. In hippocampal CA1 pyramidal neurons, 

overexpression of CKAMP44 resulted in a faster desensitization and slower recovery 

from desensitization. In dentate gyrus granule neurons with high CKAMP44 
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expression, CKAMP44 knock-out caused an increase in the paired-pulse ratio of 

AMPA currents in lateral and medial perforant path–granule cell synapses (von 

Engelhardt et al., 2010), indicating that CKAMP44 modulates short-term plasticity at 

specific synapses. 

1.3 Objectives of this study 

1.3.1 Why do we study CKAMP44?  –  CKAMP44 is unique in many aspects 

Compared to other AMPAR auxiliary proteins CKAMP44 has unique structural 

features and has very specific effect on the function of AMPARs. First, CKAMP44 

has only one TM segment while CNIHs and TARPs have three and four TM 

segments, respectively. Most remarkable, in the extracellular domain, CKAMP44 has 

multiple cysteines presumably forming a Cystine-knot, similar to many cysteine-rich 

neurotoxins that interact with ion channels. Second, the modulation of AMPAR 

desensitization is different between CKAMP44 and TARPs or CNIHs, e.g. 

CKAMP44 increases desensitization time constant and slows the recovery from 

desensitization, opposite to what TARPs and CNIHs do. 

1.3.2 Scientific questions that need to be addressed 

The novel structural and AMPAR modulatory functions of CKAMP44 and its relation 

to Shisa1-8 proteins raises the questions whether the cysteine-rich extracellular 

domain of CKAMP44 functions like neurotoxins and whether CKAMP44 has 

additional functions on neuronal morphogenesis, similar to the regulation of 

morphogenic features (head formation and segmental patterning) of Shisa 1 and 2 in 

Xenopus laevis larvae. Therefore, CKAMP44 deletion mutants were expressed and 

functionally analyzed in several systems, starting from E. coli up to Mus musculus.  
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2. Result 

2.1. Expression of CKAMP44-Ex in E. coli, and functional analysis 
2.1.1. Setting up E. coli expression system 

To express the CKAMP44 extracellular domain (CKAMP44-Ex) in E. coli, we first 

started out to setup the E. coli expression system by expressing a cell-permeable Cre 

protein and a series fluorescent proteins (FPs).  

2.1.1.1. Cre recombinase expression  

Expressed from pTriex-HTNC in BL21(DE3)placI E. coli strain, the Cre recombinase 

(Cre) was fused with a His tag for affinity purification, a TAT transduction domain 

derived from HIV for cell permeability and a nuclear localization signal (NLS), and 

thus was named as HTNCre (Fig. 5A) (Peitz et al., 2002). HTNCre was over-

expressed after IPTG induction, and was successfully purified by immobilized-metal 

affinity chromatography (Ni2+ column), as shown by SDS-PAGE (Fig. 5B). Purified 

HTNCre was able to exert efficient recombination activity as commercial Cre (NEB) 

did, as shown by the releasing of an additional 3136 bp DNA fragment after HTNCre 

incubation with a linearized 4996 bp DNA containing two parallel loxP sites (Fig. 5C) 

(Shimshek et al., 2002). The functionality of HTNCre was further validated in 

CV1/lacZ indicator cells (Ludwig and Stringer, 1994). HTNCre recombination in 

cells results in the removal of floxed transcriptional stop insert and the expression of 

β-galactosidase (β-gal), which could later be detected by lacZ staining. Our results 

showed that after lacZ staining, HTNCre treated CV1/lacZ cells had some populations 

of recombination-positive cells with blue color, while CV1/lacZ cells treated by 

normal Cre recombinase lacking TAT and NLS tags didn’t show β-gal expression 

(Fig. 5D). 
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Fig. 5. Functional prokaryotic expression of HTNCre in E. coli. (A) Schematic diagram 
representing recombinant cell permeable HTNCre with His tag, TAT tag and nuclear 
localization signal (NLS) at the N-terminal. Protein sequence of the amino terminus is 
depicted with TAT in red and NLS in grey (adapted from (Nolden et al., 2006)). (B) E. coli 
expression and purification of HTNCre. Total cell lysate in the first two lanes shows induced 
HTNCre expression by IPTG, and the last lane indicates purified HTNCre by Ni2+ column. 
(C) In vitro recombination activity of HTNCre with commercial NEB Cre as a positive 
control. Linearized 4996 bp dsDNA with two parallel loxP sites is subjected to Cre 
recombination, generating an additional DNA band with 3136 bp. (D) In vivo recombination 
activity of HTNCre, with commercial NEB Cre as a negative control. Cre reporter cell line 
CV1/lacZ showed blue positive cells two days after HTNCre transduction and lacZ staining, 
but not after cell impermeable NEB Cre treatment. Cells were counterstained by Eosin Y. 

 

2.1.1.2. Fluorescent protein expression 

Genes of fluorescent proteins (FPs) were sub-cloned into pET expression vector with 
six repeated histidines (H6) at the C-terminus of FPs (Fig. 6A). Expression trails were 
carried out in XL-Blue, BL21 and Tuner(DE3)pLysS E. coli strains for superfolded 
GFP (SFGFP), and finally Tuner(DE3)pLysS strain which gave the highest 
expression yield for SFGFP was chosen for the following expression including 
CKAMP44-Ex (Fig. 6B).            

The expression of various FPs after IPTG induction could be detected by SDS-

PAGE (Fig. 7A), and the expressed FPs were able to emit corresponding color after 

UV light excitation (Fig. 7B). The expressed FPs were later used for screening stable 

FPs that could preserve maximum fluorescence during the optical clearing process of 

mouse brain for light-sheet fluorescence microscope imaging (Niedworok et al., 

2012).  
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Fig. 6. Expressing conditions for high yield protein production in E. coli. (A) Schematic 
diagram for FP expression with six repeated histidines at the C-terminus. (B) SDS-PAGE 
analysis of different E. coli strains used for SFGPF expression. In total, three E. coli strains 
were tested, including Tuner(DE3)pLysS (Tuner), XL-Blue and BL21, with two colonies for 
each strain. Under the same conditions, Tuner(DE3)pLysS strain gave the highest yield of 
SFGFP expression (arrow) after IPTG induction. + and – represent total protein lysate before 
and after IPTG induction. 

 

Fig. 7. Functional prokaryotic expression of FPs in E. coli. (A) SDS-PAGE analysis of FP 
expressions in E. coli after IPTG induction. Arrows indicate the expressed FPs. (B) 
Fluorescence emitted by E. coli culture overexpressing different FPs under the UV light (260 
nm) stimulation, with the same order as presented in A.  

 

In short, we were able to establish an E. coli expression system that successfully 

expresses active FPs and functional HTNCre, paving path for following CKAMP44-

Ex expression in vitro. 

2.1.2. Soluble expression of CKAMP44-Ex in E. coli 
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we expressed the extracellular domains (Ex) from all four mouse CKAMPs in E. coli. 
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Ex gene fragments from four CKAMP proteins CKAMP44, 39, 52 and 59 were 

subcloned into the same pET vector used for FPs in Fig. 6 and 7, and the proteins 

were expressed in E. coli Tuner(DE3)pLysS strain at 37 °C for 3 h after IPTG 

induction (Fig. 8). The results showed that only CKAMP44-Ex showed a clear IPTG-

induced protein expression, and most of the expressed CKAMP44-Ex was in 

inclusion bodies (Fig. 8B pellet fraction). CKAMP39-, 52- and 59-Ex were expressed 

only at low levels. The soluble supernatant of the CKAMP44-Ex expressing total cell 

lysate was subjected to Ni2+ column, and the soluble CKAMP44-Ex was concentrated 

and purified by Ni2+ column (Fig. 8B). The purified CKAMP44-Ex was used for 

functional tests in electrophysiological recordings, and was proven to be 

dysfunctional (Fig. 10), which might be simply due to too little CKAMP44-Ex protein. 

                                 

Fig. 8. E. coli expression and purification of soluble CKAMP44-Ex. (A) Schematic 
representation of four different CKAMP extracellular domain (CKAMP-Ex) expressions in E. 
coli, with His tag at the C-terminus. (B) SDS-PAGE analysis of CKAMP-Ex expression in E. 
coli after IPTG induction, and CKAMP44-Ex purification by immobilized metal affinity 
chromatography (Ni2+ column). Induced proteins in total cell lysate and purified CKAMP44-
Ex are indicated by arrows and an arrowhead, respectively. S and P: supernatant and pellet 
after cell lysis. 

 

Therefore, to improve the expression and solubility level, pET32a vector and 

Rosseta-gamiB(DE3)pLysS E. coli strain was used. The pET32a vector expresses 

target proteins with thioredoxin tag (Trx-tag) to facilitate protein folding (Fig. 9A), 

and the Rosseta-gamiB(DE3)pLysS E. coli strain could enhance both the expression 

yield of eukaryotic proteins and the disulfide bond formation of target proteins. Since 

only CKAMP44 has known function, we focused on CKAMP44-Ex in the following 

experiments.  

H6CKAMP-Ex

CKAMP39-Ex

IPTG – + – +– + – +

37

26
19
15

6

(kDa)
purifiedS P

total cell lysate

CKAMP44-Ex

CKAMP52-Ex

CKAMP59-Ex

CKAMP44-Ex

NH2 COOHA

B



2. Result Ling Zhang PhD dissertation 
 

 20 

The expression level of recombinant Trx-CKAMP44-Ex was much higher than 

CKAMP44-Ex expression in Tuner(DE3)pLysS, and the purification from Ni2+ 

column using gradient imidazole elution resulted in high protein yields with satisfying 

purity (Fig. 9C).  

 

Fig. 9. Recombinant E. coli Trx-CKAMP44-Ex expression, enzymatic digestion and 
further purification of CKAMP44-Ex in vitro. (A) Schematic representation of 
recombinant Trx-CKAMP44-Ex, with thioredoxin (Trx) and His tag (H6) at the N-terminal to 
facilitate protein folding and subsequent protein purification. In between tags and CKAMP44-
Ex are Thrombin and Enterokinase cleavage sites with indicated recognition sequence. (B) 
Summary of the theoretical protein size after two different protease digestions. (C) SDS-
PAGE showing that Trx-CKAMP44-Ex (arrow) was expressed after IPTG induction, purified 
by immobilized metal affinity chromatography (Ni2+ column), and digested by Enterokinase 
with increasing amount of Trx-CKAMP44-Ex. Arrowhead and question mark (?) indicate 
protein product that does not match the theoretical digestion. (D) SDS-PAGE showing 
different conditions tested for Thrombin digestion, with increasing Thrombin amount (but 
fixed Trx-CKAMP44-Ex amount) and incubation time of 0.5, 1, 2, and 4 h. Asterisk (*) 
points out the chosen condition. (E) SDS-PAGE analysis of CKAMP44-Ex purification after 
thrombin digestion, including Ni2+ column reloading and an anion exchange Q column. –T 
and +T indicate before and after thrombin digestion; FT: flowthrough; E: elution; E1 and E2: 
Elution fraction 1 and 2. 
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Further protease digestion was applied to obtain CKAMP44-Ex protein. 

Enterokinase was first selected for the protease digestion, but the digestion resulted in 

one major protein band with two other smear bands (Fig. 9C), which could not match 

with the theoretical protein size of CKAMP44-Ex (Fig. 9B). Therefore, Thrombin 

digestion was used as an alternative approach (Fig. 9D). Different parameters were 

optimized for the thrombin digestion, including sample/enzyme ratio and incubation 

time. Finally, 50 µg Trx-CKAMP44-Ex/unit thrombin for 2 h digestion at RT was 

used. 

To separate CKAMP44-Ex from Trx-tag, two different separation methods were 

tried, Ni2+ column reloading and anion Q column exchange (Fig. 9E). Ni2+ column 

reloading could not efficiently separate CKAMP44-Ex protein from Trx-tag, since 

except in flowthough, CKAMP44-Ex was also coeluted with Trx-tag in elution. In Q 

column exchange experiment, CKAMP44-Ex can be completely separated from Trx-

tag, but thioredoxin was present in higher amounts than the CKAMP44-Ex protein, 

indicating that most of the CKAMP44-Ex protein aggregated during Q anion 

exchange preparation (probably because of the buffer change), and was clogged in 

column.  Finally, 20 ml of 0.2 µg /µl CKAMP44-Ex (about 10 µM) was prepared and 

used for functional analysis in electrophysiological recordings (described in 2.1.3 and 

Fig. 10).  

2.1.3. Functional assay of CKAMP44-Ex in hippocampal dentate gyrus neurons 

by patch-clamp 

The function of purified proteins was investigated by applying purified proteins onto 

outside-out patches of hippocampal dentate gyrus neurons while recording glutamate 

evoked AMPAR-mediated currents (carried out by Dr. J. von Engelhardt, DKFZ, 

Heidelberg). With the exception of Trx-CKAMP44-Ex influence on 20-80% rise time 

and deactivation time constant which was thought to be unspecific (Fig. 10), no 

obvious modulation on AMPAR-mediated currents, including peak amplitude, 

desensitization time constant, and recovery from desensitization, was observed for 

any of proteins that were prepared. 
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Fig. 10. E. coli expressed CKAMP44-Ex failed to modulate AMPAR-mediated current 
measured by outside-out patches in dentate gyrus granule cells of acute mouse brain 
slices. The AMPAR responses in current tracings in A, B, and C are shown on the left, and 
the bar graph statistics is on the right. Control condition without the presence of E. coli 
expressed proteins is given in black, while the addition of Trx-CKAMP44-Ex and 
CKAMP44-Ex are in green and red, respectively. (A) Analysis of AMPAR deactivation. 
Short pulse of glutamate (1 ms Glu) triggers the opening of AMPARs, which afterwards 
undergo deactivation. The peak amplitude, 20-80% rise time and deactivation time constant 
were analyzed on the right. The continuous presence of Trx-CKAMP44-Ex significantly 
increased 20-80% rise time and deactivation time constant. However, this might be due to the 
side effect of the high viscosity of the protein sample, since no other kinetics was altered (see 
B, C and D) which should also be changed by functional CKAMP44. Thus, CKAMP44-Ex 
had no obvious impact on AMPAR deactivation. (B, C) Analysis of AMPAR desensitization 
and steady state current. Continuous exposure to glutamate (500 ms Glu) induced AMPAR 
desensitization. Statistics shows that none of the recombinant proteins has any effect on 
AMPAR desensitization or steady state current. (D) Analysis of AMPAR recovery from 
desensitization. The recovery from desensitization makes AMPARs sensitive to glutamate 
again, and is tested by several subsequent waves of glutamate stimuli. No modification of the 
AMPAR recovery from desensitization was observed for any of the E. coli expressed protein. 
The data was kindly provided by Dr. J. von Engelhardt. 

 

In conclusion, the prokaryotic E. coli expression system successfully expressed 

biologically functional FPs and recombinant Cre recombinase, but failed to express 

functional CKAMP44-Ex. Although it cannot be excluded that the amount of 

CKAMP44-Ex that was used in the electrophysiological recording was below the 
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threshold, it is more likely that CKAMP44-Ex was misfolded in E. coli, which is the 

limitation for the prokaryotic protein expression system. Due to the unknown cystine 

pattern of CKAMP44-Ex and that of native CKAMP44, it is difficult to evaluate if the 

CKAMP44-Ex was expressed in the correct conformation. Therefore, the eukaryotic 

Baculovirus expression system might be more suitable to achieve the expression of 

functional CKAMP44-Ex. 

2.2. CKAMP44 domain mapping 

CKAMP44 belongs to a small vertebrate and brain specific protein family comprising 

three other members CKAMP39, 52 and 59, whose functions remain to be explored. 

In the literature, CKAMPs are also classified as Shisa protein family members, and 

are named as Shisa6, 7, 8 and 9 for CKAMP59, CKAMP52, CKAMP39 and 

CKAMP44, respectively (Pei and Grishin, 2012). All CKAMPs share similar protein 

domains (Fig. 11A), including an N-terminal signal peptide (SP), an extracellular 

domain, a single alpha helical membrane-spanning segment (M) that is followed by a 

short hydrophilic region rich in positively charged residues (R/K) and the C-terminal 

intracellular domain (CT) (Fig. 11C). The extracellular domain is further divided into 

an N-terminal domain (NT), a highly conserved cysteine-rich domain (Cys-knot) and 

a linker domain (L) (Fig. 11B). The CT domain is highly variable between CKAMPs, 

and it is encoded by different exons which can be alternatively spliced. The C-

terminal domain is terminated by a PDZ type II ligand motif that might be important 

for postsynaptic localization (Fig. 11D). 

For the analysis of CKAMP44 domain functions, a series of pAAV expressing 

EGFP or Venus tagged CKAMP44 deletion mutants were generated (Fig. 11E). 

Subsequently, the CKAMP44 mutant expression vectors were used to investigate the 

CKAMP44/AMPARs interaction in HEK293 cells, the CKAMP44 subcellular 

localization in transfected primary neurons, and the AMPAR modulation activity in 

acute brain slices of infected mouse brains. 
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Fig. 11. CKAMP family domain arrangement and domain mapping scheme for 
CKAMP44. (A) Schematic drawing of CKAMP44 as a single membrane-spanning protein 
with an N-terminal extracellular domain and a C-terminal intracellular domain. According to 
the sequence alignment within CKAMP protein family in B, C and D, the extracellular 
domain is divided into an N-terminal domain (NT) with less similarity within CKAMP 
family, a highly conserved cysteine rich domain (Cys-knot) and a linker domain (L) linking 
Cys-knot and membrane spanning region. Shortly after the membrane-spanning region (M), 
there is a short region (20 amino acids) rich in hydrophilic basic residues arginine R and 
lysine K (5 out of 20 for CKAMP44, 52 and 59 or 6 out of 20 for CKAMP39), and is 
therefore named as R/K domain. The remaining intracellular C-terminal domain is terminated 
with type II PDZ binding motif. (B) Sequence alignment of the extracellular domain within 
CKAMP protein family, with residue numbers on the left side. Conserved residues (2 out of 4 
proteins) are shaded in black background, and conserved cysteines are highlighted in yellow. 
Divided subdomains including N-terminal domain (NT), cysteine rich domain (Cys-knot) and 
linker domain (L) are indicated on top of the alignment. The conserved eight cysteines in 
Cys-knot domain are highlighted by red filled circles underneath. (C) Sequence alignment of 
the R/K domain. Basic residues R and K are highlighted in green. (D) Conserved C-terminal 
type II PDZ binding motif (-EVTV). (E) Sequence alignment of AMPAR interacting domains 
in the C-terminal intracellular domain of TARP γ2, 3, 4 and 8, which are also rich in R and K 
highlighted in green. (F) Domain mapping scheme for CKAMP44. Full-length CKAMP44 
with GluA1 signal peptide and Venus at the N-terminal (VenusCKAMP44) and flag-tagged 
CKAMP44 coexpressed with Venus using IRES as a linkage (CKAMP44(f)) were used as 
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positive controls. Each domain is marked with the number for the starting amino acid on the 
top of the diagram. For both CKAMP44(f) and CKAMP44(fCD4M), the flag tag is inserted 
between amino acid (Aa) 29 (histidine) and 30 (glycine). CKAMP44 mutants are named 
according to the deleted domains. In CKAMP44(HT), a his-tag with six histidine repeat was 
inserted after the SP and a thrombin recognition site (LVPRGS) was placed in front of M 
domain by sequence replacement. SP: GluA1 signal peptide; M: TM domain from CD4 
protein; flag: Flag tag; H: his-tag; T: thrombin recognition site. 

 

2.2.1. CKAMP44 and AMPAR association in HEK 293 cells 

First, we analyzed the molecular interaction between CKAMP44 variants and 

homomeric GluA1 AMPARs after transient transfections in HEK293 cells by co-

immunoprecipitation (Co-IP). As expected, Venus-tagged full length CKAMP44 

(VenusCKAMP44), but not Venus, was found to be associated with GluA1, 

indicating that the interaction between CKAMP44 and GluA1 can be traced by Venus 

and is independent of other AMPAR associating proteins that are absent in HEK293 

cells (Fig. 12). Similarly, CKAMP44 deleted mutants CKAMP44∆CT, 

CKAMP44∆NT∆CT and CKAMP44∆L∆CT could co-precipitate GluA1 in Co-IPs, 

suggesting that the C-terminal domain and two non-cysteine containing regions in the 

extracellular domain, namely NT and L domain, are not important for the 

CKAMP44/AMPAR interaction.  

To further identify the function of the R/K and M domain of CKAMP44 in 

AMPAR interaction, we truncated the R/K domain (CKAMP44∆R/K∆CT) and 

generated M domain replacement by the transmembrane region of the membrane 

protein CD4 (CKAMP44(fCD4M)). In CKAMP44(fCD4M), Venus was co-expressed 

by an IRES containing bicistronic mRNA. The very inefficient co-precipitation of 

CKAMP44∆R/K∆CT and AMPARs showed that the deletion of the R/K domain 

diminished the tight association between CKAMP44 and AMPARs. The strong 

reduction of CKAMP∆R/K∆CT/GluA1 binding could be restored by introducing the 

R/K domain in CKAMP44(fCD4M), since GluA1 was efficiently co-

immunoprecipitated with CKAMP44(fCD4M). This result indicates that the 

CKAMP44 R/K rather than the M domain is important for a strong 

CKAMP44/AMPAR interaction. This finding is reminiscent with previous report 

showing that AMPAR auxiliary protein TARP γ2 associates with AMPARs using part 

of an intracellular C-terminal domain localized shortly after the fourth TM of TARP 

(Tomita et al., 2004). Interestingly, the AMPAR binding domain in TARP γ2 is also 
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rich in R and K (10 out of 57 Amino acids), and like CKAMP family, this domain is 

also conserved within TARP family, including TARP γ3, γ4, and γ8 (Fig. 11D). This 

data suggests that CKAMP44 and TARPs interact with AMPARs using a similar 

mechanism. 

 In short, our Co-IP studies in HEK293 cells demonstrate that the R/K domain is 

critically involved in CKAMP44/AMAPR interaction (Fig. 13).  

 

Fig. 12. Co-immunoprecipitation for different CKAMP44 mutants with GluA1 subunit 
in HEK 293 cells. CKAMP44 mutants were co-transfected with GluA1 in HEK293 cells and 
the total cell lysate was used for following Co-IPs. Co-IP experiments were done by rabbit α-
GFP or mouse α-Flag, and detected by rabbit α-GluA1 antibody (upper panels), mouse α-GFP 
and mouse α-Flag antibody (lower panels). The inefficient enrichment of GluA1 in α-GFP 
Co-IP is boxed in red. 

 

Fig. 13. Summary of CKAMP44 variant interaction with AMPARs based on the Co-IP 
shown in Fig. 12. ‘+’ and ‘–’ represent positive and negative interaction with AMPARs, 
respectively, as demonstrated in Co-IP experiments in HEK293 cells. Symbols and constructs 
are given as in Fig. 11. 

 

Fig. 2. A. Summary of AMPAR binding ability of different CKAMP44 variants, accroding to the Co-IP 
results shown in B. B. Co-immunoprecipitation for different CKAMP44 variants with GluA1 subunit in 
HEK 293 cells. CKAMP44 variants were co-transfected with GluA1 in HEK293 cells, and the total cell 
lysate were used for following Co-IP. Co-IP experiments were done  by Rat anti-GFP or Mouse anti-
Flag, and detected by Rabbit anti-GluA1 antibody (upper panel), mouse anti-GFP and mouse anti-
Flag antibody (lower panel). 
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2.2.2. Subcellular localization of CKAMP44 variants in primary neurons 

The domain mapping of CKAMP44 by Co-IPs unraveled the domain important for 

CKAMP44/AMPAR association. To analyze the different domain functions in 

CKAMP44 spine targeting, we analyzed the subcellular distribution of the CKAMP44 

variants in transfected rat hippocampus primary neurons by immunocytochemistry 

(Fig. 14). Given that CKAMP44 is primarily localized in synaptic spines (von 

Engelhardt et al., 2010), the subcellular distribution studies were focused on dendritic 

expression. 

The spine head localization of different CKAMP44 variants was evaluated by 

the colocalization of Venus or EGFP with GluA1 (Fig. 14A). The spine targeting was 

quantified by the ratio of green fluorescence intensity in spines to that in dendritic 

shaft (Fig. 14B).  Cytosolic Venus as a negative control was not able to be targeted to 

spine head as indicated by the non-overlapping red GluA1 signal at the tip of the 

spines (arrows in Fig. 14A). But as a commonly used spine-labeling tool, Venus could 

be expressed in spines with a mean spine/dendritic shaft ratio of 1.26 ± 0.03. The N-

terminal Venus-tagged full length CKAMP44 (VenusCKAMP44), instead, could be 

targeted to spine head, as depicted by the perfect overlapping with GluA1 signal in 

spines (arrowheads in Fig. 14A), and showed a privileged localization in spines over 

dendritic shafts (spine/dendritic shaft ratio 2.5 ± 0.05, Fig. 14C).  

Similar to the N-terminal Venus fused CKAMP44 (VenusCKAMP44), the C-

terminal Venus fused CKAMP44 mutant CKAMP44(HT), as well as flag-tagged 

CKAMP44(f) and CKAMP44(fCD4M) stained by flag-tag antibody could also co-

localize with GluA1 at spine heads (Fig. 14A) and showed stronger expressions in 

spines than in dendritic shafts (spine/dendritic shaft ratio 1.82 ± 0.1, 2.4 ± 0.02, 3.0 ± 

0.27, respectively) (Fig. 14C). These data implies that Venus fusion, regardless of N- 

or C-terminal fusion, different tag insertions in the extracellular domain and 

transmembrane domain replacement does not inhibit the postsynaptic localization 

nature of CKAMP44. 
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Fig. 14. Spine targeting of CKAMP44 variants and their colocalization with GluA1 in 
rat primary hippocampal neurons. (A) Dendrites from primary hippocampal neurons 
transfected with indicated CKAMP44 variants, and double immuno-stained for GFP-fused 

Fig.3. Spine targeting of CKAMP44 variants and their colocalization with GluA1 in rat primary 
hippocampal neurons. A. Dendrites from primary hippocampal neurons transfected with indi-
cated CKAMP44 variants, and double stained for GFP-fused CKAMP44 variants (green) and endog-
enous GluA1 (red) or triple stained with additional flag antibody (blue) for neurons transfected 
with CKAMP44 (fCD4TM)-IRES-Venus and CKAMP44(f )-IRES-Venus. In triple stained images, blue 
flag signal stands for CKAMP44 variants, green signal is for cytosolic Venus expression, and red 
GluA1 still represents endogenous GluA1 singal. Arrows indicate spines that lack Venus or EGFP 
signal in spine heads, and arrow heads point spines with perfectly overlapping Venus or EGFP and 
GluA1 signal. B. Example image of a dendritic segment showing the measurement of spine ( man-
nually drawn red line )/dendritic shaft (blue rectangle) intensity done in ImageJ. C.  Quantification 
of fluorescence intensity in spines versus dendritic shafts of each CKAMP44 variant as index of 
synaptic targeting. VenusCKAMP44 was compared with Venus control, and all other CKAMP44 
variants were compared with VenusCKAMP44.  Analsis was done by one way ANOVA  followed 
by Bonferroni’s post-hoc comparision test. All values are shown in mean ± SEM. **P<0.01, 
***P<0.001, n.s: not significant.
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CKAMP44 variants (green) and endogenous GluA1 (red) or triple stained with additional flag 
antibody (blue) for neurons transfected with CKAMP44 (fCD4M)-IRES-Venus and 
CKAMP44(f)-IRES-Venus. In triple stained images, blue flag signal stands CKAMP44 
variants, green signal for cytosolic Venus expression, and red signal for endogenous GluA1 
signal. Arrows indicate spines that lack Venus or EGFP signal at spine heads, and arrowheads 
point spines with perfectly overlapping Venus or EGFP and GluA1 signals. (B) Example 
image of a dendritic segment showing the measurement of spine (manually drawn red 
line)/dendritic shaft (blue rectangle) intensity done in ImageJ. (C) Quantification of 
fluorescence intensity in spines versus that in dendritic shafts of each CKAMP44 variant as 
an index of spine targeting. VenusCKAMP44 was compared with Venus control. All other 
CKAMP44 variants were compared with VenusCKAMP44.  Analysis was done by one-way 
ANOVA followed by Bonferroni’s post-hoc comparison test. All values are shown in mean ± 
SEM. **P<0.01, ***P<0.001, n.s: not significant. 

 

However, the C-terminal domain truncated CKAMP44 (CKAMP44∆CT), 

which could still interact with GluA1 homomers in HEK293 cells, was not co-

localized with AMPARs at spine heads (Fig. 14A), and showed an even distribution 

in spines and dendritic shafts like the Venus control (spine/dendritic shaft ratio 1.01 ± 

0.05) (Fig. 14C). This finding suggests that the intracellular C-terminal CKAMP44 

domain is required for postsynaptic spine head localization and enriched spine 

expression, and that the correct subcellular localization is independent of AMPAR 

receptor interaction.  

Partial extracellular domain deleted CKAMP44, including CKAMP44∆NT∆CT 

and CKAMP44∆L∆CT, as well as conserved intracellular R/K domain deleted 

CKAMP44 (CKAMP44∆R/K∆CT) could not be localized at spine heads (Fig. 14A), 

consistent with the result of CKAMP44∆CT. Different from CKAMP44∆CT, they all 

showed impaired spine expressions with spine/dendritic shaft ratio of 0.40 ± 0.03, 

0.308 ± 0.03 and 0.243 ± 0.02, respectively (Fig. 14C). These findings suggest that 

the extracellular domain and the R/K domain is important for spine expression. 

However, we could not rule out the possibility that double domain deletions, which 

are ∆NT∆CT, ∆L∆CT and ∆R/K∆CT, lead to protein dysfunction. Therefore, further 

experiments with single domain truncation should be carried out to verify the function 

of the extracellular and the R/K domain in CKAMP44 spine expression.   
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Fig. 15. Dominant negative effect of CKAMP44∆R/K∆CT on AMPAR expression in 
transfected rat hippocampal neurons. (A and B) Co-immunostaining of GFP (green) and 
GluA1 (red) in VenusCKAMP44 (for A) and CKAMP44∆CT (for B) overexpressed 
hippocampal neurons. Upper panels represent neuron overview and lower panels show 

proximal dendrites
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enlarged dendritic segments of the boxed areas in upper panels, demonstrating that GluA1 
expression was normal in GFP positive neurons. (C) Co-immunostaining of GFP and GluA1 
in CKAMP44∆R/K∆CT overexpressed hippocampal neurons, demonstrating that the GluA1 
expression was greatly diminished in GFP positive neurons (pointed by arrows) compared to 
neighboring neurons. 1 and 2 are higher magnification images of the boxed areas in the upper 
panel, showing proximal and distal dendrites. It seems that inefficient CKAMP44∆R/K∆CT 
and GluA1 expression is more sever in distal dendrites than in proximal dendrites. 

 

What is worth mentioning is that CKAMP44∆R/K∆CT had a dominant negative 

effect on the AMPAR expression in both somata and dendrites, as seen by the week 

GluA1 signal compared to the one from neighboring neurons (Fig. 15C). This 

phenomenon became more severe in distal dendrites than in proximal dendrites. This 

dominant negative effect might be related to the AMPAR/CKAMP44 interaction, 

since similar effect could not be found by the overexpression of VenusCKAMP44 or 

CKAMP44∆CT which maintain AMPAR binding ability (Fig. 15A and 15B). We 

hypothesized that CKAMP44/AMPAR interaction can be involved in the dendritic 

stabilization of the AMPARs, which cannot be achieved when the 

CKAMP44/AMPAR interaction is disturbed by negative competitors like 

CKAMP44∆R/K∆CT. 

 

Fig. 16. Summary of subcellular distribution of different CKAMP44 variants in primary 
neuron culture. Spine head localization was evaluated by observing the overlay of Venus or 
EGFP and GluA1 signal at spine heads. Spine targeting was evaluated by the green signal 
intensity in spines over that in dendritic shafts. The C-terminal domain is required for 
CKAMP44 localization in spine heads, while the NT, L and R/K domain are involved in 
efficient spine targeting of CKAMP44. 

 

 In summary (Fig.16), the subcellular distribution of different CKAMP44 

deletion mutants in primary neurons suggests that (i) the TM domain is not important 
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for the subcellular localization, (ii) the C-terminal domain is required for spine 

enrichment and spine head expression and (iii) the extracellular and intracellular R/K 

domain are necessary for CKAMP44 expression in spines. The R/K domain deletion 

has a dominant negative effect on AMPAR expression, especially in distal dendrites. 

2.2.3. rAAV-mediated CKAMP44 variants overexpression in vivo 

To investigate different CKAMP44 domain functions in CKAMP44 subcellular 

distribution and AMPAR modulation in vivo, all different CKAMP44 variants were 

overexpressed in hippocampi of Ckamp44–/– mice by rAAV mediated gene transfer at 

P0 and post-mortem analyzed at P26-40 by immunohistochemistry and 

electrophysiological recordings. 

2.2.3.1. CKAMP44 variants overexpression in vivo 

Our immunohistological studies showed that all CKAMP44 variants provided 

comparable expression pattern in mouse hippocampi. GFP or Venus signal could be 

observed in somatic layers of CA1, CA3 and DG, and also in stratum oriens, stratum 

radiatum, stratum lacunosum moleculare and DG molecular layers (shown for 

VenusCKAMP44 in Fig. 17). In sharp contrast, the CKAMP44 with deleted R/K and 

C-terminal domains (CKAMP44∆R/K∆CT) exhibited exclusively somatic expression 

in CA1, CA3 and DG (Fig. 17). CKAMP44∆R/K∆CT showed more severe deficiency 

in vivo than in vitro primary neuron experiments (Fig. 15), which showed that 

CKAMP44∆R/K∆CT cannot be targeted to spines, although it is still expressed in 

dendritic shafts. These data provided further evidence that R/K domain is important 

for the correct subcellular distribution of CKAMP44. 

2.2.3.2. AMPAR modulation of CKAMP44 variants in vivo 

The rescue of AMPAR modulation by different overexpressed CKAMP44 variants in 

Ckamp44–/– mice was evaluated in outside-out patches of DG granule cells from acute 

mouse brain slices by measuring glutamate evoked extrasynaptic AMPAR-mediated 

excitatory postsynaptic currents (EPSC) by the research group of Dr. J. von 

Engelhardt. 

Electrophysiological recordings showed that the truncation of CKAMP44 C-

terminal domain (CKAMP44∆CT) could still exert CKAMP44 modulatory activity on 
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Fig. 17. R/K domain deletion disrupts CKAMP44 dendritic expression in vivo. 
CKAMP44 variants were overexpressed in mouse brain by rAAV-mediated gene delivery at 
P0, and the injected mice were analyzed post-mortem by immunohistochemistry. Example 
images are given for VenusCKAMP44 (left) and CKAMP44∆R/K∆CT (right) overexpressed 
mouse brain, demonstrating that full-length CKAMP44 (VenusCKAMP44) exhibited 
efficient expression in both somata and dendritic areas, while CKAMP44∆R/K∆CT showed 
exclusively somatic expression. (A) Hippocampal areas of horizontal mouse brain sections, 
stained by α-GFP (green), α-NeuN (red) and α-GluA1 (blue) antibodies. Upper panels are the 

CKAMP44∆R/K∆CTA

B

Fig. 4. A. Example Immunohistological images of CKAMP44-/- mice injected by rAAV virus at P0. B. Normalized 
amplitude of extrasynaptic AMPAR-mediated currents measured for CKAMP44-/- and rAAV viruses injected 
CKAMP44-/- mice. ori: striatum oriens; Py, pyramidal cell layer; s.rad: striatum radiatum;  slm:stratum lacunosum 
moleculare; molDG: molecular layer of dentate gyrus; PoDG:  polymorphic layer of dentate gyrus,  GrDG: granule 
cell layers of the dentate gyrusr; sl-m, stratum lacunosum moleculare of the hippocampus; sl: stratum lucidum 
of CA3.

CA1

CA3 DG

 s. ori

 s. rad
 Py

  slm

molDG

PoDG
GrDGsl

VenusCKAMP44

Overlay:
Green:GFP; Red: NeuN; Blue: GluA1

Hippocampus

GFP

CA
1

100 µm

200 µm200 µm

50 µm

50 µm

CKAMP44∆R/K∆CTVenusCKAMP44

Overlay GFP Overlay GFP

CA
3

D
G



2. Result Ling Zhang PhD dissertation 
 

 34 

merged images of three mentioned immunosignals, and the lower panels represent GFP signal 
alone. CA1, CA3 and DG areas are indicated. VenusCKAMP44 showed expression 
throughout the hippocampus, both in somata and in areas outside of somata. However, 
CKAMP44∆R/K∆CT was only localized in somata. The somata of neurons are aligned in 
pyramidal cell layers (Py) of CA1 and CA3 and granule cell layer of the dentate gyrus 
(GrDG). The dendritic layers, including striatum oriens (s. ori), striatum radiatum (s. rad), 
stratum lacunosum moleculare (slm), stratum lucidum (sl) of CA3, molecular layer of dentate 
gyrus (molDG) are indicated. molDG, polymorphic DG layer. (B) Higher magnification of 
the subregion images of the hippocampi shown in A, including CA1, CA3 and DG. Overlay 
images represent merging signal of GFP, NeuN and GluA1. 
 

AMPAR-mediated currents (Fig. 18), as it could increase peak amplitude and 

deactivation time constant, and could slow the recovery of AMPARs from 

desensitization, similar to full-length CKAMP44 (von Engelhardt et al., 2010). But 

further deletion of R/K domain (CKAMP44∆R/K∆CT) completely abolished the 

CKAMP44 modulation of AMPAR properties (Fig. 19). Since R/K domain is 

involved in AMAPR association as shown by Co-IP (Fig. 12 and 13), the failure in 

AMPAR modulation for CKAMP44∆R/K∆CT might only be because the 

CKAMP44/AMPAR association is disrupted. Thus, one cannot conclude from these 

experiments that the R/K domain is important for AMPAR modulation.  

Except for the central Cys-knot domain (cysteine mutation analysis done by our 

collaborators, see discussion), two non-cysteine containing regions franking Cys-knot 

are also essential for CKAMP44 function, since deletion of either N-terminal 

(∆NT∆CT) or C-terminal (∆L∆CT) part of extracellular domain was correlated with a 

loss of AMPAR current modulation (Fig. 19), although CKAMP44∆NT∆CT and 

CKAMP44∆L∆CT could still interact with AMPARs by our Co-IP result.  

Sequence replacement of C-terminal part of extracellular domain by thrombin 

recognition site (CKAMP44(HT)) still kept CKAMP44 modulatory activity on the 

gating properties of AMPARs (Fig. 20), suggesting that it is important to keep a 

certain length between central Cys-knot and TM region.  
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Fig. 18. Overexpression of CKAMP44∆CT rescues AMPAR-mediated current in 
dentate gyrus granule cells of Ckamp44–/– mice, measured by outside-out patches. 
CKAMP44∆CT increases peak current (A) and deactivation time course (C), while decreases 
desensitization time constant as well as steady state current (E) and slows the recovery from 
desensitization (F). Error bar representations are depicted for each diagram. Analysis was 
done by t-test. **P<0.01, ***P<0.001. ms, milliseconds; IEI, interevent interval. The data 
were provided by Dr. J. von Engelhardt. 

 

Taken together, our CKAMP44 domain mapping in vivo indicated that (i) the C-

terminal domain is not required for CKAMP44 modulation of AMPAR-mediated 

extrasynaptic currents, (ii) the extracellular domain is important for modulatory 

activity of CKAMP44, (iii) the R/K domain of CKAMP44 is important for the 

dendritic CKAMP44 distribution when overexpressed in vivo, (iv) the R/K domain 

truncation abolished AMPAR modulatory activity of CKAMP44, possibly due to the 

loss of CKAMP44/AMPAR interaction and (v) the L domain is more length rather 

than sequence sensitive for the AMPAR modulation of CKAM44. 
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Fig. 19. Collective electrophysiological results obtained from CKAMP44 variant 
overexpressions in Ckamp44–/– mice. Only peak amplitude, deactivation (τdeact) and 
desensitization (τdes) kinetics are shown here (mean ± SEM) for four CKAMP44 variants. All 
values are normalized to that outside-out patches from neighboring Ckamp44–/– control 
neurons. Statistic analysis was performed by one-way ANOVA followed by Bonferroni’s 
post-hoc comparison test. *P<0.05, **P<0.01, ***P<0.001. The original data were provided 
by Dr. J. von Engelhardt. 

 

 

Fig. 20. Summary of AMPAR modulatory activity of different CKAMP44 variants in 
vivo. Extracellular domain is critically involved in AMPAR modulation. ‘+’ and ‘–’ represent 
positive and negative modulation of AMPARs, respectively, as demonstrated in 
electrophysiological recordings in acute brain slices of rAAV transduced DG granule cells of 
Ckamp44–/– mice. Symbols and constructs are given as in Fig. 11; n.t: not tested. 
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2.3. CKAMP44 disruption and AMPAR expression 

2.3.1. AMPAR expression in the total membrane fraction 

According to the electrophysiological data recently obtained by our collaborators 

(private communication with Dr. J. von Engelhardt, unpublished), CKAMP44 

overexpression increases, while CKAMP44 depletion decreases functional synaptic 

and extrasynaptic AMPAR expression. To analyze whether the same result can be 

obtained at the molecular level, AMPAR expression level in the total membrane 

fractions was compared between Ckamp44–/– and wild-type mice by western blots, 

with four animals for each group. Surprisingly, the results showed that, compared to 

wild-type mice, Ckamp44–/– mice showed a 1.7 fold increase in GluA2 expression, 

and a trend in increased GluA1 levels, although not significantly (Fig. 21A). This 

result is unexpected and not consistent with the electrophysiological data. Possible 

explanations are that the overexpressed AMPARs are immature or non-functional or 

not efficiently targeted to the postsynaptic plasma membrane. 

2.3.2. AMPAR maturation 

In order to analyze whether the genetic disruption of CKAMP44 has an effect on 

AMPAR maturation, the glycosylation pattern of AMPARs was compared between 

Ckamp44–/– and wild-type mice using Endoglycosidase H (Endo H) digestion. It is 

known that AMPARs are N-glycosylated at their extracellular domains, and the 

degree of complexity of this posttranslational modification, as reflected by differential 

resistance against glycosidase digestion, is frequently used as an indicator for protein 

maturation (Hollmann et al., 1994; Sans et al., 2001). Like many other glycoproteins, 

intermediate immature AMPARs often contain higher degree of N-linked high-

mannose carbohydrates, which are sensitive to Endo H (Sans et al., 2001). Among all 

subunits, GluA2 is the most prominent one in Endo H sensitivity (Sans et al., 2001). It 

has been reported that two other types of AMPAR modulatory proteins TARPs and 

CNIHs could change the glycosylation pattern of AMPARs (Herring et al., 2013; 

Rouach et al., 2005; Sumioka et al., 2011; Tomita et al., 2003). To find out if 

CKAMP44 has similar function in AMPAR glycosylation, we treated hippocampal 

homogenates from Ckamp44–/– and wild-type mice with Endo H, and PNGase F, 

which removes all N-type glycosylations, and can serve as a control for Endo H 
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sensitive glycoproteins. But no significant difference in the ratio of Endo H resistant 

to Endo H sensitive GluA2 was found between the two genotypes (Fig. 21B).    

 

Fig. 21. CKAMP44 depletion increases AMPAR expression. (A) Immunoblot analysis of 
total hippocampal membrane fractions from four Ckamp44–/– and four wild-type mice, 
comparing the expression of AMPAR subunits GluA1 and GluA2 as well as NMDAR subunit 
GluN1. CKAMP44 antibody detection confirms the absence of CKAMP44 in Ckamp44–/– 
mice. Bar graph to the right represents the average expression of GluA1, GluA2 and GluN1 in 
Ckamp44–/– mice normalized to wild-type mice, showing a significant increase of GluA2 in 
Ckamp44–/– mice. (B) Enzymatic deglycosylation analysis of GluA2 in Ckamp44–/– and wild-
type mice by Endo H treatment. Glycosylation is removed by unspecific N-glycosidase 

GluA1

GluN1

GluA2

C
ka
m
p4
4 
–/
–

W
T

Endo H PNGase

W
T

- ++ + - ++ +

GluA2

Syn/Tx PSD

Synaptophysin

GluA3

GluA1

GluN1

PSD-95

CKAMP44

C
ka
m
p4
4 
–/
–

W
T

C
ka
m
p4
4 
–/
–

W
T

GluA2

A

B

C

Endo H Res.
Endo H Sen.

Relative ratio
0.0 0.5 1.0 1.5 2.0

GluN1

GluA2

GluA1 Ckamp44–/–
WT

0.0

0.5

1.0

1.5
E

nd
o 

H
 R

es
./S

en
.

C
ka
m
p4
4 
–/
–

**
*

Syn/Tx
1.02.0

PSD
0.0 1.0 2.0

Ckamp44 –/–

WT

Fig. CKAMP44 knocking out only slightly alters AMPAR expression in mouse brain. (A). Western blot of 
hippocampus membrane protein fraction from four CKAMP44–/– and four wild-type mice (left). Quantification 
analysis (right) revealed that CKAMP44–/– significantly increased GluA2 expression, but not GluA1 or GluN1 
expression. (B). Glycosylation state of AMPARs in hippocampus homogenates from CKAMP44–/– and wild-
type mice, shown by Endo H and PNGase treatment. Endo H selectively reomoves glycosylation from imma-
ture AMPARs, while PNGase removes glycosylation from all types of AMPARs, thus serves as a positive 
control for EndoH sensitive GluA2. No significant differenence is observed in the ratio of Endo H resistant to 
Endo H sensitive GluA2 between two genotypes. (C) Western blot of hippocampal Triton X-100 soluble 
perisynaptic membrane (Syn/Tx) and Triton X-100 insoluble postsynaptic density (PSD) fractions from 
CKAMP44–/– and wild-type mice. Synaptophysin and PSD-95 are markers for perisynaptic membrane and 
postsynaptic density. Except for higher GluA1 expression in  Syn/Tx fraction from CKAMP44–/– mice,  no 
obvious difference in GluA2, GluA3, GluN1 expression in either Syn/Tx or in PSD fraction was observed 
between two genotypes. 

1   2   3   4 1   2   3   4

CKAMP44



2. Result Ling Zhang PhD dissertation 
 

 39 

PNGase F, shown in the last lane on the right for wild-type mice. Endo H resistant (Res.) and 
Endo H sensitive (Sen.) GluA2 are indicated by arrow and arrowhead, respectively. Statistic 
analysis on the right shows that there is no significant difference in the ratio of Endo H Res. 
to Endo H Sen. GluA2 between Ckamp44–/– and wild-type mice (C) Subcellular fractionation 
analysis of Triton-solubilized synaptosome (Syn/Tx) and postsynaptic density (PSD), 
representing extrasynaptic and synaptic fraction, respectively. An increase in the extrasynatic 
GluA1 was found in Ckamp44–/– mice, but no significant difference in the synaptic fraction 
was observed. Synatophysin serves as a control for extrasynaptic fraction, while PSD95 for 
PSD fraction. Syn/Trx: TritonX-100 solubilized synaptosome. PSD: postsynaptic density. 
Error bars represent SEM.  ***P<0.001. 

 

2.3.3. Extrasynaptic and synaptic expression of AMPARs 

To investigate whether CKAMP44 has a differential effect on extrasynaptic and 

synaptic distribution of AMPARs like TARP γ-8 does (Rouach et al., 2005), 

subcellular fractionation using sucrose gradient was performed for both Ckamp44–/– 

and wild-type mice. GluA1, GluA2, GluA3 and GluN1 were analyzed, and 

synaptophysin which is a synaptic vesicle glycoprotein specifically localized in 

presynapse was used as a TritonX-100 solubilized extrasynaptic marker (Syn/Tx). 

PSD-95 served as a specific postsynaptic marker. Our results showed that GluA1 in 

the Syn/Tx fraction in Ckamp44–/– mice was two-fold higher than that in wild-type 

mice, but no significant difference was observed in the PSD fraction (Fig. 21C).  

In conclusion, western blot analysis of the total AMPAR expression showed 

that GluA2 was increased in Ckamp44–/– mice, which cannot be explained by a bigger 

pool of immature GluA2. There was a stronger increase in extrasynaptic than in 

synaptic GluA1. The western blot analysis represents AMPARs from both surface and 

intracellular AMPARs pool, and the electrophysiolgical observation was only from 

functional AMPARs expressed on the cell surface, which might explain the 

discrepancy between the two different methods. Surface AMPAR labeling using 

biotinylation assay on mouse hippocampal slices is required for analyzing CKAMP44 

effect on surface AMPAR expression. Several trials were made for biotinylation, but 

failed to give any result due to technical problems. 
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2.4. CKAMP44 expression modulates neuronal morphogenesis 

2.4.1. CKAMP44 studies in primary rat hippocampal neurons  

Previous reports showed that many postsynaptic proteins are actively involved in 

regulating neuronal morphology, such as PSD95 (El-Husseini et al., 2000), SHANK2 

(Berkel et al., 2012), SPAR (Pak et al., 2001), etc. In the spine targeting analysis, I 

observed that the overexpression of VenusCKAMP44 increased spine density in rat 

primary neurons (see Fig. 14). Since CKAMP44 is preferentially expressed in spines, 

VenusCKAMP44 will also label spines above or below the dendritic shaft, which are 

not visible in control neurons with Venus overexpression. Therefore, to investigate 

whether CKAMP44 exerts any effect on neuronal morphology and spine 

morphogenesis, CKAMP44-IRES-Venus was used for CKAMP44 overexpression (10 

DIV to 20 DIV by lipofectamine transfection). The green fluorescence protein Venus 

is able to outline neurons as well as label spines. Thus CKAMP44-IRES-Venus 

allows us to overexpress CKAMP44 and to visualize cells using soluble Venus. 

Sholl analysis was employed to analyze dendritic branching, by placing the 

centroid of a soma in the centroid of series concentric circles and counting the number 

of dendrite intersections for concentric circles (Fig. 22A). The analysis of eight 

CKAMP44-IRES-Venus and ten Venus overexpressing neurons showed that the 

number of total intersections as well as dendritic branches 50 to 175 µm away from 

soma was significantly decreased by CKAMP44 overexpression compared to Venus 

control (Fig. 22B and 22C), demonstrating the role of CKAMP44 in regulating 

dendritic arborization. 

To analyze spine volume and spine density, high resolution z-stack images of 

secondary or tertiary dendritic segments longer than 50 µm were taken, and were 

converted to single image by z-projection with maximum intensity. Spine volume was 

calculated by measuring green immunofluorescence intensity in spines over mean 

intensity in dendritic segments, and normalized to Venus expressed neurons. Spine 

density was calculated by manually counting the number of spines in dendritic 

segments with known length (Fig. 22A). The analysis of 10 dendritic segments and 

930 spines from CKAMP44 overexpressing neurons as well as 23 dendritic segments 

and 2339 spines from Venus overexpressing neurons showed that CKAMP44 

overexpression could significantly reduce spine volume by 16.8% (0.832 ± 0.011) and 
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increase spine density by 48.6% (11.87 ± 0.438 per 10 µm), when compared to Venus 

overexpressed control neurons (spine volume 1 ± 0.009, and spine density 7.989 ± 

0.179 per 10 µm) (Fig. 22C). 

 

Fig. 22. CKAMP44 overexpression in rat primary neurons decreases dendritic 
arborization and spine volume and increases spine density. (A) Upper panel, example 
image of a primary neuron and superimposed ten concentric circles used for sholl analysis. 
The radius interval between circles is 25 µm per step; lower panel, example dendritic segment 
showing that spine density was calculated by counting spines (red circles) in a dendritic 
segment with known length (red line). (B) Representative rat neurons (upper panel) and 
dendritic segments (lower panel) transfected with Venus or CKAMP44-IRES-Venus 

0

4

8

12

n
u

m
b

e
r 

o
f 
s

p
in

e
s

 p
e

r 
1

0
 µ

m

WT CKAMP44 overexpression

0

40

80

120

160

n
u

m
b

e
r 

o
f 
to

ta
l i

n
te

rs
e

c
ti
o

n
s

25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

0

5

10

15

20

25

n
u

m
b

e
r 

o
f 
in

te
rs

e
c

ti
o

n
s

0.0

0.4

0.8

1.2

n
o

rm
a
liz

e
d

 s
p

in
e

 v
o

lu
m

e

***
***

***

*** ***

*
*

***

***

Distance from soma (µm)

CKAMP44-IRES-Venus

50 µm

Fig. 7. CKAMP44 overexpression in rat primary neurons could decrease dendritic arborization and spine 
volume and increase spine density.  A. Upper panel, example image of a primary neuron and superimposed 
ten conncentric circles used for sholl analysis. The radius interval between circles was 25 µm per step; 
lower pannel, example dendritic segment showing that spine density was calculated by counting spines 
(red circles) in a dendritic segment with known distance (red line) B. Representative rat neurons transfected 
with Venus or CKAMP44-IRES-Venus demonstrating that CKAMP44 overexpression could decrease den-
dritic arborization. B. Representative neurons (upper panel) and dendritic segments (lower pannel) show-
ing that CKAMP44 overexpression decreases spine volume and increases spine density. C. Left to right, 
quantification of total dendritic arborization, dendritic distribution, spine density, and relative spine volume. 
CKAMP44 overexpression group is compared with wildtype group. Total intersections, spine density and 
spine volume were analyzed by t-test. Dendritic arborization was analyzed by two way ANOVA followed by 
Bonferroni posttest.  All values are shown as mean+SEM. **P<0.01, ***P<0.001. D. Example spines in con-
trol neurons transfected with Venus, including mushroom, stubby, thine and branched spines. *: The 
branched spine is having a mushroom spine on its leftside. E. Example irregular spines induced by 
CKAMP44-IRES-Venus overexpression, such as thorny spine, multi-stubby spine and cluster spine. F. 
Dendrites from neurons transfected with Venus (left) and CKAMP44-IRES-Venus (right), doubled-stained 
for Venus (green) and presynaptic marker synaptophysin (red). Arrow heads in left images indicates spines 
contacting with single synaptophysin cluster, and arrows in right images point out spines opposing to multi-
ple distinct synaptophysin clusters. Stars (*) in right images label irregular spines.

A B

C

CKAMP44-IRES-Venus

D

5 µm

50 µm

mushroom stubby thin branched*

CKAMP44 induced irregular spines

5 µm

Venus

Venus

Synaptophysin

merged

F

E

*

* *

*

thorny clustermulti-stubby

Regular spines in ctrl condition

Venus

merged

CKAMP44

CKAMP44-IRES-Venus

5 µm

G

a b c d e f

2 µm

Venus

5 µm



2. Result Ling Zhang PhD dissertation 
 

 42 

demonstrating that CKAMP44 overexpression could decrease dendritic arborization and 
increase spine density. Note that CKAMP44 also increases the total length as well as the 
thickness of dendritic branches. (C) Left to right, quantification of total dendritic arborization, 
dendritic distribution, spine density, and relative spine volume. The CKAMP44 
overexpression group is compared with the wild-type group. (n=2; 8 neurons, 10 dendritic 
segments and 930 spines for CKAMP44-IRES-Venus overexpressing condition; 10 neurons, 
23 dendritic segments and 2339 spines for Venus overexpressing condition). Total 
intersections, spine density and spine volume were analyzed by t-test. Dendritic arborizations 
were analyzed by two-way ANOVA followed by Bonferroni posttest.  All values are shown 
as mean ± SEM. **P<0.01, ***P<0.001. (D) Example spines in control neurons transfected 
with Venus, including mushroom, stubby, thin and branched spines. *, the branched spine is 
having a mushroom spine on its leftside. (E) Example irregular spines induced by 
CKAMP44-IRES-Venus overexpression, such as thorny spine (a and b), multi-stubby spine (c 
and d) and cluster spine (e and f). (F) Dendrites from neurons transfected with Venus (left) 
and CKAMP44-IRES-Venus (right), doubled-stained for Venus (green) and presynaptic 
marker synaptophysin (red). Arrowheads in left images indicate spines contacting with single 
synaptophysin cluster, and arrows in right images point out spines opposing to multiple 
distinct synaptophysin clusters. Asterisks (*) in right images label irregular spines. (G) Co-
immunostaining of GFP (green) and CKAMP44 (purple) of the dendritic area boxed in white 
in the merged image of F, demonstrating that CKAMP44 is localized in spines. Co-localized 
signal in merged image is in white. 
 

In addition to spine volume and density, some changes in spine morphology in 

CKAMP44 overexpression neurons were also observed. In general, there are four 

types of commonly recognized spine types, including mushroom, thin, stubby and 

branched spines (Fig. 22D). In matured neuron culture, most of the spines are 

mushroom shaped with thin necks and well-defined spine heads, smooth in contour 

and globular in shape. Instead, spines in CKAMP44-IRES-Venus overexpressed 

neurons are not regular in shape and not smooth in the outline (Figs. 22E, F). Similar 

irregular spines were also reported before by overexpressing some postsynaptic 

proteins. For example, overexpressing SPAR, a Rap-specific GTPase-activating 

protein, could induce “thorny spines” with sharp projections or outgrowth and 

“multilobed spine” with multiple heads fused together at the top of a single neck (Pak 

et al., 2001). And overexpression of kalirin-7, a GDP/GTP exchange factor for Rac1, 

triggers the generation of spines with divergent morphology, including massive 

lamellipodia, long and highly branched, short and highly branched small and very 

densely placed (Penzes et al., 2001). By referring to the above mentioned reports, I 

generalize those irregular spines to three major groups, “thorny spines” with sharp 

projections (Fig. 22Ea, Eb), “multi-stubby spines” with several stubby spines on top 

of lamellipodia like structure (Figs. 22Ec, Ed), and  “cluster spines” crowed with 
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several spines that are not well separated from each other (Fig. 22Ee, Ef). 

Immunostaining of CKAMP44-IRES-Venus transfected neurons showed that 

CKAMP44 was primarily expressed in spines (Fig. 22F and G). Moreover, many of 

the spines were in contact with multiple synaptophysin clusters, indicating that 

overexpression of CKAMP44 induced the formation of multiple synapses on 

individual dendritic spines (arrows in Fig. 22F). 

Therefore, our studies in primary rat hippocampal neurons showed that 

CKAMP44 overexpression could significantly decrease dendritic arborization and 

spine volume, increase spine density and change spine morphology. 

 

2.4.2. CKAMP44 studies in primary mouse hippocampal neurons  

The rat primary hippocampal neuron studies indicate that CKAMP44 overexpression 

could modulate neuronal morphogenesis. We next asked whether CKAMP44 knock-

out also has an effect on neuron morphology. Therefore, primary mouse hippocampal 

neurons from Ckamp44–/– and wild-type mice (WT) were prepared and Venus 

transfections were performed for cell labeling. To bidirectional investigate the 

correlation between neuronal morphology and CKAMP44 expression, CKAMP44-

IRES-Venus was overexpressed in WT primary neurons by lipofectamine 

transfections. 

The mouse primary neuron culture was very healthy after plating, but they 

appeared to be quite vulnerable for long time exogenous gene expression between 10 

to 20 days in vitro (DIV). Therefore, the transfection of mouse primary neurons was 

performed at DIV18, and the neurons were analyzed already two days after the 

transfection at DIV20. 

Quantitative analysis of the structure of dendritic arbor using Sholl analysis 

from seven Ckamp44–/– neurons (Ckamp44–/– + Venus), fifteen wild-type neurons 

(WT + Venus) and eleven CKAMP44 overexpressing neurons (WT + CKAMP44-

IRES-Venus) demonstrated that Ckamp44–/– neurons exhibited an overall increase in 

the number of total intersections, and showed more dendritic intersections between 75 

and 150 µm away from soma when compared to neurons of wild-type mice (Fig. 23). 

CKAMP44 overexpressing neurons, on the other hand, didn’t show any significant 

difference in dendritic arborization compared to wild-type neurons.  
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For the quantification of spine volume, 515, 1945 and 650 spines were analyzed 

for CKAMP44 KO, wildtype and CKAMP44 overexpression neurons, respectively. 

For the assessment of spine density, 13, 19 and 9 dendritic segments were analyzed 

for CKAMP44 KO, wildtype and CKAMP44 overexpression neurons, respectively. 

The result indicated that CKAMP44 KO resulted in 126% increase in spine volume 

(2.26 ± 0.15) and 18% decrease in spine density (7.32 ± 0.28 per 10 µm) when 

compared to wild-type neurons (1 ± 0.04 relative spine volume and 8.91 ± 0.38 per 10 

µm spine density). Although a trend towards an increase of spine density in 

CKAMP44 overexpressing neurons (9.71 ± 0.24 per 10 µm) was observed, the 

difference was not significant. No difference was observed for CKAMP44 

overexpression neurons in spine volume (1.03 ± 0.03) (Fig. 23). Thus, compared to 

neurons of wild-type mice, the depletion of CKAMP44 was correlated with a decrease 

in spine density and an increase in spine volume, while CKAMP44 overexpression, 

on the other hand, did not exert a strong effect on spine density and spine volume. 

Taken together, the mouse primary hippocampal neuron studies revealed that 

deletion of CKAMP44 increases dendritic arborization and spine volume and 

decreases spine density. 

 Overexpressing CKAMP44 in mouse neurons failed to have significant effect 

on neuronal morphology as it was observed in primary hippocampal neurons of rats. 

This was most likely due to the different time windows used for the transfection of 

mouse and rat primary neurons (DIV18-20 and DIV10-20 for mouse and rat neurons, 

respectively). There are two explanations possible, one is that the overexpression of 

CKAMP44 was not long enough to exert CKAMP44 function, and the other reason 

might be that neurons have already finished their differentiation at DIV18, and 

CKAMP44 cannot modulate the morphology of adult neurons.  

In conclusion, results from the primary neuron culture studies suggested that, in 

addition to AMPAR modulation, CKAMP44 modulates dendritic arborization, spine 

number and spine morphology. 
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Fig. 23. CKAMP44 depletion in mouse primary hippocampal neurons increases 
dendritic arborization and spine volume, but decreases spine density. (A) Representative 
Venus transfected neurons (upper panel) and dendritic segments (lower panel) demonstrating 
that the loss of CKAMP44 (Ckamp44–/–+Venus) increases the complexity of the dendritic 
arbor, increases spine volume and decreases spine density. The overexpression of CKAMP44 
(WT+CKAMP44-IRES-Venus), however, does not change those neuronal features, but can 
induce irregular spine shape. (B) Left to right, quantification analysis of the total number of 
intersections, dendritic distributions, spine volume and spine density, by using one-way 
ANOVA and two-way ANOVA (for dendritic distribution). Ckamp44–/–+Venus and 
WT+CKAMP44-IRES-Venus neurons were compared to WT+Venus neurons. All values are 
shown as mean ± SEM. **P<0.01, ***P<0.001. (n=2; 7 neurons, 13 dendritic segments and 
515 spines for Ckamp44–/–+Venus condition; 15 neurons, 19 dendritic segments and 1945 
spines for WT+Venus condition; 11 neurons, 9 dendritic segments and 650 spines for 
WT+CKAMP44-IRES-Venus condition.) 
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Fig. 5. CKAMP44 expression level has an effect on spine density, spine volume and dendritic arborization.  
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3. Discussion 

CKAMP44 is an endogenous AMPAR auxiliary protein which regulates many aspects 

of AMPAR functions, including AMPAR trafficking and the electrophysiological 

properties of AMPARs. The previous analysis of CKAMP44 was mainly focused on 

electrophysiological studies. This study investigated different CKAMP44 domain 

functions, analyzed AMPAR expression in hippocampal neurons of Ckamp44–/– mice 

and described new functions of CKAMP44 in neuronal morphogenesis, by using 

western-blot, co-immunoprecipitation, immunocytochemistry, immunohistochemistry 

and electrophysiological recordings. 

 In the presented study, i) specific domains responsible for CKAMP44/AMPAR 

interaction, AMPAR modulation and subcellular distribution of CKAMP44 were 

identified, ii) the expression of AMPAR subunits in Ckamp44–/– and wild-type mice 

was compared and iii) further functions of CKAMP44 in modulating neuronal 

morphogenesis were described. Our results provide the molecular basis for 

understanding the biological functions of the postsynaptic protein CKAMP44 and 

give novel insights into the native AMPAR complex. We propose that CKAMP44 

plays an important role in neuronal function by regulating multiple aspects of synaptic 

plasticity. 

 

3.1. Domain mapping 

In this study, a series domain deletions of CKAMP44 identified CKAMP44 domains 

involved in CKAMP44/AMPAR interaction, AMPAR modulation, and CKAMP44’s 

subcellular distribution (Fig. 24). Our results showed that the extracellular cysteine-

rich domain is essential for AMPAR modulation, the R/K domain is involved in 

CKAMP44/AMPAR interaction as well as in subcellular distribution of CKAMP44 

and the C-terminal domain is required for postsynaptic localization.  
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Fig. 24. Schematic representation of different CKAMP44 protein domain functions. By 
overexpressing a series of recombinant CKAMP44 deletion mutants, the functions of 
CKAMP44 protein domains were identified. N and C, amino and carboxyl terminal, 
respectively; NT and CT, N-terminal and C-terminal domain, respectively; Cys-knot, cystine-
knot domain; L, linker domain; M, membrane spanning segment; R/K, arginine (R) and lysine 
(K) rich domain;  

 

3.1.1. Extracellular domain 

According to our Co-IP experiments, the extracellular Cys-knot containing domain is 

not important for the tight CKAMP44/AMPAR association, but it is required for 

AMPAR modulation as evidenced by electrophysiological recordings, since the 

removal of the two Cys-knot flanking extracellular segments NT and L didn’t 

influence CKAMP44/AMPAR association, but failed to rescue impaired AMPAR 

current in Ckamp44–/– DG granule neurons. In addition, our collaborators showed that 

disrupting the disulfide bond formation by three single cysteine mutations disabled 

the CKAMP44 modulatory activity (Dr. J. von Engelhardt, unpublished), indicating 

that the Cys-knot is indispensible for CKAMP44 modulation of AMPARs. Similar 

results are reported for TARPs, which also interact with and modulate AMPARs 

using the extracellular domain Ex1 (Tomita et al., 2005a; Turetsky et al., 2005). 

The CKAMP44 extracellular domain is unique in having eight cysteines (Fig. 

11). Many cysteine-rich neurotoxins, e.g. ω-conotoxin (Heinemann and Leipold, 

2007) and bungarotoxin (Mebs et al., 1972; Narita et al., 1972), are specific blockers 

for voltage-gated calcium channels and nicotinic acetylcholine receptors (nAchRs), 

and contain six and ten cysteines, respectively. Notably, bungarotoxin shares exactly 
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the same cysteine-pattern and high sequence homology with lynx1, an endogenous 

GPI-anchored membrane protein in the central nervous system (Ibanez-Tallon et al., 

2002; Miwa et al., 1999; Miwa et al., 2006). Lynx1 functions as an nAchRs 

modulator in a similar manner as bungarotoxin does (Miwa et al., 1999). Therefore, 

lynx1 is described as an endogenous prototoxin, and gives rise to the initial idea for 

“tethered toxin” (t-toxin) by anchoring exogenous toxins on the cell surface to 

achieve specific blocking of ion channels and receptors (Auer et al., 2010; Ibanez-

Tallon et al., 2004). In this configuration, the distance between the toxin and the 

membrane anchor is important for the function of the membrane-tethered neuronal 

toxins. This model explains our finding that the CKAMP44 L domain is required for 

AMPAR modulation and that the L domain can be replaced by heterologous amino 

acid residues without interfering with the function of CKAMP44. 

Therefore, CKAMP44 might also function as an endogenous prototoxin. 

Although no naturally occurring toxins with high sequence similarity are identified, 

the first six cysteines of CKAMP44 and the six cysteines of ω-conotoxin share a very 

similar pattern (von Engelhardt et al., 2010). In order to investigate whether the 

cysteine-rich extracellular domain (CKAMP44-Ex) itself can function as an AMPAR 

modulator, we expressed the CKAMP44-Ex in E. coli. The purified recombinant 

protein, however, failed to modulate AMPAR-mediated currents. Possible reasons are 

i) the correct folding of the extracellular domain requires the assistance of other 

domains; ii) the binding affinity of the extracellular domain to AMPARs is too low. 

Our following Co-IP result favors the later explanation, since it showed that 

CKAMP44/AMPAR association is mainly mediated by R/K domain.  

In addition to its role in AMPAR modulation, the CKAMP44 extracellular 

domain seems to be involved in CKAMP44 spine targeting, since the removal of 

either the NT or the L segment dramatically impaired the ability of CKAMP44 to be 

expressed in spines of transfected primary neurons. This finding is distracting the idea 

that the AMPAR interaction via the R/K domain is sufficient for CKAMP44 spine 

targeting (see below). It indicates that several discontinuous domains are involved in 

CKAMP44 expression in spines. However, further experiments are required to 

confirm the function of the extracellular domain in CKAMP44 spine targeting. 
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3.1.2. R/K domain 

3.1.2.1. R/K domain function in AMPAR binding 

The finding that R/K domain is important for CKAMP44/AMPAR association is 

surprising, since this domain is short, and does not have a well-defined secondary 

structure according to the modeling using the HMM-based protein structure 

prediction, SAM-T08 (data not shown). As described in the result section 2.2, the R/K 

domain is a 20 residue stretch after the membrane-spanning domain, and is enriched 

in positively charged amino acids R and K. Similar R/K domain is also found in other 

Shisa family members, and thought to help determine the topology of Shisa proteins 

based on the “positive inside” rule (Pei and Grishin, 2012; von Heijne, 1989). 

However, in CKAMPs, the R/K domain is extended and more pronounced than that in 

Shisa 1-5 (Fig. 4), indicating that the R/K domain in CKAMPs has additional 

function. 

A R/K rich region seems also to be involved in the TARP/AMPAR interaction 

(Tomita et al., 2004). It can be found in C-terminal cytosolic domain of type I TARPs 

(γ-2, γ-3, γ-4 and γ-8) but not in type II TARPs (γ-5 and γ-7, which selectively 

modulate certain subgroups of AMPARs) or non-TARPs (γ1 and γ6). This provides 

further support to the finding that the R/K rich region is a specific motif that directly 

mediates the physical interaction of AMPARs to TARPs and CKAMP44.  

3.1.2.2. R/K domain function in CKAMP44 subcellular expression 

CKAMP44 is postsynaptically localized together with AMPARs and PSD95 (von 

Engelhardt et al., 2010). The presented data shows that in transfected primary 

neurons, the removal of R/K domain abolished CKAMP44 spine targeting, and had a 

dominant negative effect on the expression of GluA1. In mouse hippocampi, the R/K 

domain deleted CKAMP44 (CKAMP44∆NT∆CT) showed somatic expression and a 

loss in dendrite expression, suggesting that the R/K domain is critically involved in 

correct subcellular distribution of CKAMP44 both in vitro and in vivo.  

3.1.3. Intracellular C-terminal (CT) domain 

The CT domain is not important for AMPAR binding or for AMPAR modulation, but 

we found that the CT domain is necessary for the localization of CKAMP44 at spine 

heads since the CT truncated CKAMP44 could not colocalize with GluA1 at spine 
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heads, and showed an even distribution in dendritic shafts and spines. The CT domain 

has a PDZ type II ligand motif at its C-terminus, which might mediate CKAMP44-

PSD95 interaction, and enable clustering of CKAMP44 at the postsynaptic density. 

Therefore, the failure in spine head targeting of CKAMP44ΔCT is most likely due to 

the loss of the PDZ binding motif at the C-terminus. 

 

3.2. AMPAR expression in the hippocampi of Ckamp44–/– mice 

In this study, our comparative immunoblot analysis showed that the expression level 

of GluA2, but not GluA1 or GluN1, was altered in the hippocampi of Ckamp44–/– 

mice. This is in contrast to the results obtained from other AMPAR auxiliary protein 

knockout experiments, which frequently showed reduced levels of both GluA1 and 

GluA2. For example, genetic disruption of γ-8 in hippocampus substantially reduced 

GluA1 and GluA2/3 by 85% (Rouach et al., 2005), and CNIH2 knock-out mice 

exhibited mild decrease of GluA1 and GluA2 (15% reduction) in hippocampus 

(Herring et al., 2013).  

However, similar to Ckamp44–/– mice, TARP γ-2–/– stargazer mice have a mild 

disruption in total AMPAR level, but show a strong reduction of functional AMPARs 

at the cell surface (Hashimoto et al., 1999), indicating the importance of TARP γ-2 in 

regulating AMPAR trafficking. Similarly, CNIH2 knock-out mice (NexCnih2–/–) also 

exhibit increased immature AMPARs presumably retained in the ER in the absence of 

CNIH2 (Herring et al., 2013). We therefore examined AMPAR maturation in 

Ckamp44–/– mice. Surface biotinylation assay in mouse hippocampal slices can 

directly detect the proportion of functional AMPARs on the cell surface. Several trails 

carried out for surface biotinylation of AMPARs ended up with either insufficient 

surface labeling or contamination from cytosolic proteins. So we used the 

glycosylation of AMPAR subunits to analyze the maturation of AMPARs. The result 

showed that the glycosylation of GluA2 in Ckamp44–/– and wild-type mice is similar, 

indicating the maturation of AMPARs is comparable between Ckamp44–/– and wild-

type mice. 

 After the induction of synaptic plasticity, perisynaptic AMPARs are thought to 

diffuse into postsynaptic membrane, contributing to the enhancement of synaptic 

transmission. It was reported that TARP γ-8 preferentially regulates extrasynaptic 
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AMPARs (Rouach et al., 2005). To find out if CKAMP44 also differentially 

modulates perisynaptic and postsynaptic AMPARs, subcellular fractionation was 

performed with brain extracts from Ckamp44–/– and wild-type mice. First, in 

extrasynaptic (Syn/Trx) fractions, increased GluA1 expression in Ckamp44–/– mice 

was observed. Second, in the postsynaptic density (PSD) fraction, no obvious 

differences were found for GluA1, GluA2, GluA3 and GluN1 between Ckamp44–/– 

and wild-type mice. However, for the subcellular fractionation experiments, the n 

number is low (four pooled brains of each genotype), which might lead to high 

experimental error. But at least our experiments can exclude a massive reduction of 

either extrasyanptic or synaptic AMPARs expression in the hippocampi of Ckamp44–

/– mice. Instead, our analysis of AMPAR subunit expression in Ckamp44–/– mice 

suggested that CKAMP44 removal leads to increased expression of GluA2 and 

enhanced level of extrasynaptic GluA1, but has no influence on AMPAR maturation.  

Thus, as indicated by Ckamp44–/– mice, CKAMP44 seems not to be essential 

for the normal expression and maturation of AMPAR subunits, compared to other 

AMPAR auxiliary proteins (Chen et al., 2000; Herring et al., 2013; Rouach et al., 

2005). However, compensation mechanisms by other CKAMP family members or 

other AMPAR auxiliary proteins in Ckamp44–/– mice cannot be excluded.  

 

3.3. CKAMP44 modulates neuronal morphology 

In addition to AMPAR modulation, we observed that CKAMP44 also 

modulates neuronal morphogenesis. Our data showed that overexpression of 

CKAMP44 in rat primary neurons decreased dendritic arborization and spine volume, 

and increased spine density. CKAMP44 downregulation showed the opposite effect. 

Moreover, overexpression of CKAMP44 was correlated with irregular spine shapes 

with more complex morphology and multiple synapses at single spines.  

The currently proposed model for dendritic and spine morphogenesis is the 

dynamic regulation of the cytoskeleton (Matsuzaki et al., 2004; Nagerl et al., 2004; 

Okamoto et al., 2004). Dendritic trees and spines are undergoing dynamic 

cytoskeleton-dependent changes in size and shape in response to neuronal activities 

(Fischer et al., 1998; Matsuzaki et al., 2004; Nagerl et al., 2004), and are believed to 

be regulated by an interplay between an intrinsic genetic program, extrinsic factors, 
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and neuronal activity (Parrish et al., 2007). What are the signaling pathways that link 

CKAMP44 to the regulation of cytoskeleton?  

3.3.1. AMPAR and spine morphogenesis 

As mentioned before, CKAMP44 modulates AMPAR gating properties, and recently 

our collaborators showed that CKAMP44 promotes AMPAR surface expression (Dr. 

J. von Engelhardt, unpublished). Therefore, we asked: “whether CKAMP44 

modulation in neuronal morphology is indirectly mediated by increased AMPAR 

expression which triggers downstream pathways related to cytoskeleton regulation?” 

It was reported that overexpression of GluA2 subunit could increase spine density as 

well as spine size, and GluA2 downregulation could inhibit spine morphogenesis, 

possibly through NTD domain interaction with N-cadherin, but with unknown 

downstream signaling pathway (Passafaro et al., 2003). Additionally, GluA1 subunit 

was also implicated in spine morphogenesis, since mutant GluA1 with deficiency in 

phosphorylation at one functionally-relevant site does not enter synapses in response 

to LTP stimuli, and blocks LTP-induced spine enlargement (Kopec et al., 2007). The 

same study also showed that C-terminal domain of GluA1 alone is driven to spines 

during LTP induction, and is sufficient to induce spine enlargement, indicating that 

GluA1 could directly interact with intracellular signaling to induce appropriate 

cytoskeleton changes.  

However, the detailed signaling pathway that link AMPAR and spine 

morphogenesis is poorly understood. A big step that might solve this puzzle is the 

report that guanine nucleotide exchange factor (GEF) kalirin-7 (Kal7) binds to 

AMPAR, enhances AMPAR-mediated synaptic transmission and promotes spine 

growth by activating small GTPase Rac1, which in turn regulates the actin 

cytoskeleton (Xie et al., 2007). However, this report suggests that Kal7 regulates 

AMPAR trafficking and stabilization at spines, rather than AMPARs regulates Kal7, 

and AMPAR enrichment is a parallel event with spine enlargement. Although other 

AMPAR interacting partners such as 4.1N and SAP97 which promote AMPAR 

surface expression and AMPAR synaptic trafficking were reported to play a role in 

modulating spine morphogenesis (Li et al., 2007; Rumbaugh et al., 2003), there is no 

evidence showing a direct link between AMPAR trafficking and spine morphogenesis 

via these two proteins. 
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Therefore, it still remains to be resolved whether enhanced AMPAR surface 

expression and AMPAR synaptic trafficking is responsible for spine morphogenesis 

or whether these two events are both consequences of two different intracellular 

signal transductions. Similarly, it is difficult to predict whether CKAMP44 

modulation of AMPARs and spine morphogenesis are in an upstream and 

downstream relationship or whether they are two different outputs of the same or 

different pathways. 

Interestingly, Kal7 triggers irregular spine morphology, such as massive 

lamellipodia, small and very densely placed spines (Penzes et al., 2001), very similar 

to what can be observed by CKAMP44 overexpression. As mentioned above, Kal7 

also modulate AMPAR synaptic trafficking and stabilization (Xie et al., 2007). Kal7 

is also postsynaptically localized, providing the chance to physically interact with 

CKAMP44 (Peitz et al., 2002). It seems like Kal7 builds a bridge between spine 

morphogenesis and AMPAR modulation observed for CKAMP44. Therefore, Kal7 is 

one possible candidate that transmits CKAMP44 signal, and induces the regulation of 

spine morphogenesis as well as AMPAR surface expression. 

3.3.2. Does CKAMP44 preserve the function of Shisa1/2? 

CKAMP44 belongs to the Shisa family (Pei and Grishin, 2012), and several Shisa 

family members were described as antagonists for Wnt and FGF signaling by 

retaining Fz and FGFR in the ER and preventing the maturation of these two 

receptors, and knock-down of Shisa1 inhibits head formation (Shisa1) and depletion 

of Shisa2 disrupts segmental patterning during development (Furushima et al., 2007; 

Nagano et al., 2006; Yamamoto et al., 2005). On the other hand, Wnt signaling was 

also reported to play a key role in the formation and regulation of neuronal circuits, 

by controlling neuronal differentiation	   (Hall et al., 2000; Packard et al., 2002), axon 

outgrowth and guidance (Hall et al., 2000), dendrite development (Rosso et al., 

2005), synapse formation (Ahmad-Annuar et al., 2006), and neuronal plasticity (Chen 

et al., 2006; Lim et al., 2010). There are three major branches of Wnt signaling 

(Rosso and Inestrosa, 2013), including canonical pathway by activating β-catenin and 

initiating gene tanscription, planar cell polarity pathway (PCP) by activating Rho-

GTPases and JNK and triggering cytoskeleton remodeling, as well as Ca2+ pathway 

through the activation of CaMKII and PKC for gene transcription. Interestingly, Kal7 

regulates spine morphogenesis through Rac1 signaling, which is one of the Rho-
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GTPase family members (Penzes et al., 2001). Therefore, it is possible that 

CKAMP44 retains the conserved function of Shisa1 and 2 by regulating Wnt 

signaling, in particular the PCP pathway, and thus achieves the modulation of 

dendritic arborization and spine morphogenesis. 

 

3.4. Outlook 

The study of CKAMP44, one of the AMPAR auxiliary proteins, has a putative 

relevance for the therapeutic pharmacology. It was reported that the dysfunction of 

AMPARs are related to neurological and psychiatric disorders (Rogers et al., 1994; 

Soundarapandian et al., 2005; Talos et al., 2006a; Talos et al., 2006b; Wu et al., 

2007). Thus, the CKAMP44-AMPAR interaction can be a potential therapeutic target 

for AMPAR-related diseases. The identification of different CKAMP44 domains 

involved in AMPAR binding and regulation, thus, provides the molecular basis for 

the regulation of CKAMP44-AMPAR interaction in the future. 

The finding that CKAMP44 modulates neuronal morphogenesis opens a new 

perspective concerning the function of CKAMP44 in the plasticity of the central 

nervous system. Therefore, it might be of interest to determine which intracellular 

signaling pathways mediate CKAMP44 induced neuronal morphogenesis, and 

whether this modulation is AMPAR dependent. In particular, the Kal7 activated small 

GTPase Rac1 signaling pathways are promising candidates for further analysis in 

CKAMP44 deficient and overexpressing mice. 
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4. Materials and methods 

4.1. Basic molecular biology 

4.1.1. Molecular cloning 

All standard molecular cloning methods, including PCR techniques, Restriction 

digestion, ligation, transformation of competent E. coli cells, bacteria culture, and 

plasmid preparation, were derived from classical published protocols (Ausubel et al., 

2000; Sambrook et al., 2001). All pET plasmids for expressing various fluorescent 

proteins and CKAMPs Cysknot protein were modified from pET C6His KanR-

SFGFP. The genes were first amplified from existing plasmids containing the 

corresponding genes and then inserted as NdeI-BamHI fragments into pET C6His 

KanR-SFGFP. All pET32a plasmids for expressing CKAMPs Ex were generated by 

inserting target genes into the multiple cloning sites of pET32a vector using NcoI and 

XhoI. For CKAMP44 domain mapping studies in eukaryotic system, plasmids 

expressing CKAMP44 truncations were modified from pAAV-syn-CKAMP44∆CT-

EGFP (Dr. V. Mack) by replacing CKAMP44∆CT gene with the genes expressing 

other CKAMP44 truncations. To generate pAAV-syn-CKAMP44(fCD4M)-IRES-

Venus, a StuI site was introduced into the C terminal of CKAMP44 in pAAV-syn-

CKAMP44-IRES-Venus construct (von Engelhardt et al., 2010), and synthesized 

CKAMP44N-CD4M (Genscript, USA) gene fragment was inserted into mutated 

pAAV-syn-CKAMP44-IRES-Venus plasmid by BamHI and StuI. All plasmid 

constructs were confirmed by DNA sequencing in GATC Biotech (Konstanz). 

4.1.2. Western-blot 

Protein samples were loaded on SDS-PAGE, and then transferred to 0.45 µm 

nitrocellulose membranes in blotting buffer (25 mM Tris, 200 mM Glycine, 20% 

Methanol in H2O) at 120 V and 400 mA at RT for 1.5 h with icebox or at 30 V and 90 

mA for overnight. Membrane was later blocked with blocking buffer (5% BSA in 

TBST) at RT for 1 h, probed by primary antibody at RT for 2 h or 4 °C for overnight, 

and incubated in HRP-conjugated secondary antibody at RT for 1 h and 4 to 6 times 

wash in TBST. Western-blots were developed by ECL kit (GE healthcare) and 

chemiluminescence was detected either by CCD camera equipped in Fuji-Las-3000 

system or by imaging film (GE Healthcare) in dark room. 
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4.1.3. Immunocytochemistry and immunohistochemistry 

Transfected neurons were first fixed by 4% paraformaldehyde (PFA)/PBS, pH 7.5 at 

37 °C for 10 min, and subsequently washed by PBS for 3 times. Vibratome-sectioned 

brain slices were selected and placed in 24 well plate with one slice per well. Staining 

protocol is similar for cultured neurons and brain slices. Cells or brain slices were 

blocked and permeabilized by blocking buffer (1% BSA, 5% NGS, 0.5% Triton X-

100, PBS, pH 7.5) at room temperature for 1 h, followed by incubation in appropriate 

primary antibodies (prepared in blocking buffer) for overnight at 4 °C for cultured 

neurons and at room temperature for brain slices. The next day, cells or brain slices 

were washed by PBS for four times, and then stained by fluorescence-coupled 

secondary antibodies for 1 h at room temperature, followed by four times PBS and 

one time 10 mM Tris buffer (pH 7.5) wash. Coverslips bearing neuron cells or glass 

slides with brain sections on top were dehydrated on tissue paper and mounted 

afterwards using Vectorshield H1000. Primary antibodies and their dilution used in 

this study are listed as follows: rabbit α-GluA1 (Millipore) 1:1,000, mouse α-NeuN 

(Chemicon) 1:1,000, mouse α-FLAG (Sigma-Aldrich) 1:500, rabbit α-CKAMP44 

1:1,000, mouse α-synaptophysin 1:4,000, mouse α-PSD95 1:5,000, chicken α-GFP 

1:4,000. Secondary fluorescence antibodies used in this study are FITC, Cy3 or Cy5 

conjugated anti-chicken, anti-mouse or anti-rabbit (1:400 dilution) (Jackson Immuno 

Research). 

 

4.2. Prokaryotic protein expression, purification and characterization 

4.2.1. HTNCre expression and purification from E. coli  

HTNCre expression plasmid (Plasmid 13763: pTriEx-HTNC from Addgene) was 

retransformed into BL21(DE3)placI E. coli strain (Novagen), and the protein 

expression was performed as previously described (Peitz et al., 2002). Briefly, single 

colonies were picked and inoculated in 3 ml LB medium supplemented with 0.5% 

glucose (v/v) with shaking (140 rpm) for overnight at 37 °C. The next day, the 

densely grown overnight culture was transferred to fresh TB medium plus 0.5% 

glucose using 1:50 ratio, and let grow in the same condition till OD600 reached 1.5. 

IPTG was then added to the E. coli culture to a final concentration of 0.5 mM, which 

was kept in culturing for another 1 h. Subsequently, the cells were harvested by 
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centrifugation at 5,000 rpm for 10 min at 4 °C, and the resulting pellet was 

resuspended in Lysis buffer (50 mM Na2HPO4, 5 mM Tris-HCl, pH 7.8) 

supplemented with lysozyme (1 mg/ml) and later with benzonase (25 U/ml). After 

incubation at RT for 30 min, the cell lysate was subjected to sonication, followed by 

tartaric salt buffer (50 mM NaH2PO4, 5 mM Tris-HCl, pH 7.82, 2 M L-Tartaric acid, 

disodium salt, and 20 mM Imidazol) addition, and 5 min incubation on ice. The 

supernatant of total lysate was loaded to pre-equilibrated Ni2+ column, and HTNCre 

was eluted by gradient increase of imidazole. HTNCre sample was further 

concentrated by dialyzing against Gylcerol Buffer (50% glycerol, 500 mM NaCl, 20 

mM HEPES, pH 7.4) for twice at 4 °C. The concentrated HTNCre Glycerol stock was 

kept at -20 °C till use. 

4.2.2. Functional test for HTNCre in vitro 

To test HTNCre recombination activity at DNA level, linearized dsDNA bearing two 

parallel loxP sites was first generated by restriction digestion of pLoxPNeo-1 (Dr. R. 

Sprengel) and purified by gel separation and recovery. Linearized dsDNA was then 

incubated with HTNCre in Cre working buffer (500 mM Tris-HCl pH 7.5, 100 mM 

MgCl2, 1 mg/ml DNAse-free BSA, 10 mM PMSF) at 37 °C for 30 min, and loaded 

into DNA gel electrophoresis for evaluation. To test HTNCre recombination activity 

at cellular level, Cre reported cell line CV1/lacZ was plated onto 24 well plate, treated 

with different concentration of HTNCre on the next day, fixed by 4% PFA/PBS and 

stained by lacZ staining (50 ml staining buffer: 0.5 ml K3[Fe(CN)6], 0.5 ml 

K4[Fe(CN)6]·3H2O, 0.5 ml 0.2 M MgCl2, 5 ml X-gal (20 mg/ml), 43.5 ml PBS) on the 

fourth day. Eosin Y was used for counterstaining for imaging under microscope. 

4.2.3. Fluorescent protein and CKAMPs-Ex expression and purification from 

E. coli  

Plasmids were retransformed into E. coli expression host strains, including Tuner 

(DE)3 pLysS  for fluorescent proteins and CKAMPs-Ex and Rosseta-gami B (DE3) 

pLysS for Trx-CKAMP44-Ex. Single colony was picked and cultured in 3 ml ST-1 

medium at 37 °C, 140 rpm for overnight. The culture was then transferred to fresh 

200 ml ST-1 medium in a ratio of 1:50, and let grow at 37 °C, 140 rpm for 3-4 h till 

OD600 reached 0.8. IPTG stock was subsequently added to the culture to the final 

concentration of 1 mM, and the cells were continuously cultured at 37 °C, 140 rpm 
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for another 4 h. The E. coli cells were harvested by centrifugation (6,000 rpm at 4 °C 

for 10 min), resuspended in Ni2+ column binding buffer (20 mM sodium Phosphate, 

0.5 M NaCl, 20 mM imidazole, pH 7.5) and lysed by lysozyme treatment (0.5 mg/ml) 

on ice for 1 h. Cell lysate was further centrifuged at 10,000 rpm for 20 min, and 

supernatant was loaded to immobilized metal-ion affinity chromatography (Ni2+ 

column) and the protein of interest was eluted by gradient increase of imidazole 

concentration.  

4.2.3.1. Cleaving off Trx-tag using Enterokinase and Thrombin protease 

digestion 

For Enterokinase (2 unit/µl, Roche) digestion, 1 µg Trx-CKAMP44-Ex was incubated 

with 3 units Enterokinase in working solution (20 mM Tris-HCl pH 7.4, 50 mM 

NaCl, 2 mM CaCl2) at RT for 16 h. For Thrombin digestion (Sigma-Aldrich), and 

prepared as 0.2 unit/µl in thrombin storage buffer: 50 mM sodium citrate pH 6.5, 200 

mM NaCl, 0.1% PEG-8000, 50% Glycerol), 50 µg Trx-CKAMP44-Ex was used for 1 

unit thrombin digestion at RT for 2 h. Thrombin working solution: 20 mM Tris-HCl 

pH 8.4, 150 mM NaCl, 2.5 mM CaCl2. 

4.2.3.2. Separation of Trx-tag and CKAMP44-Ex 

To isolate CKAMP44-Ex from Trx-tag, the thrombin treated protein sample was 

loaded either to Ni2+ column or to anion Q ion-exchange column. For Ni2+ column 

reloading, the protein solution was directly loaded to Ni2+ column, and the 

flowthrough was collected as CKAMP44-Ex protein sample. For anion Q column 

loading, the sample solution was first exchanged to Q column starting buffer (20 mM 

Tris-HCl, pH 7.6) by desalting column, and then loaded to Q column. Proteins were 

eluted by gradient increase of NaCl concentration.  

 

4.3. HEK293 cell culture 

4.3.1. HEK293 cell culture and transient transfection 

HEK293 cells were cultured in minimum essential medium (MEM, Invitrogen) with 

10% FCS (fetal calf serum), 1 x Penicillin/ Streptomycin, and 2 mM L-Glutamine, at 

37 °C incubator supplied with 5% CO2.  HEK293 cells were seeded at a density of 4.0 

x 106 per 10 cm dish 24 h prior to transfection. The next day, HEK293 cells were 
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transfected with 20 µl DNA per well using classical calcium-phoshphate precipitation 

method (Chen and Okayama, 1987). On the third day, the HEK293 cell culture was 

subjected to competent MEM medium exchange, and was left grown for 48 h until 

further analysis.  

4.3.2 Co-Immunoprecipitation (Co-IP) of CKAMP44 variants with GluA1 from 

HEK293 cell lysate 

HEK293 cells co-transfected with different CKAMP44 variants and GluA1 

expression plasmids were harvested by lysis buffer (50 mM Tris HCl, pH 7.4, with 

150 mM NaCl, 1 mM EDTA, and 1% Triton X-100). In general, 800 µg total cell 

lysate was incubated with settled 10 µl α-GFP Agarose beads (MBL) or 20 µl α-

FLAG beads (Sigma-Aldrich) pre-equilibrated in lysis buffer at 4 °C for overnight. 

The next day, the beads were pelleted down by short spin followed by 2 min settle 

down and the supernatant was kept as flow-through, while beads were washed 4 times 

by TBS (50 mM Tris HCl, with 150 mM NaCl, pH 7.4). Precipitated protein complex 

was eluted by 50 µl protein loading buffer at 99 °C for 10 min, and detected by 

western blot using mouse α-GFP and rabbit α-GluA1 antibodies. 

 

4.4. Primary hippocampal neuron culture 

4.4.1. Coating of cover slips by poly-L-lysine 

Before neuron culture preparation, 24 well plates (normally with coverslips in each 

well for future immunocytochemistry analysis) used for neuron culture need to be 

coated with poly-L-lysine to ensure better cell attachment and growth. Coverslips 

with 13 mm diameter were autoclaved, put individually into 24 well plates, followed 

by incubation with 300 µl poly-L-lysine solution (0.1 mg/ml in 100 mM Boric-Acid, 

pH 8.5) at 37 °C for 30 min to overnight and 3 times PBS wash afterwards. poly-L-

lysine treated 24 well plates were supplied with 500 µl plating medium, and placed at 

37 °C for at least 30 min before use. 

4.4.2. Primary hippocampal neuron preparation 

Primary neuron culture from either rat or mice was prepared using previously 

described protocol. In brief, hippocampi of embryos at E18 were dissected out in cold 

PBS/Glucose/Hepes buffer and treated with Trypsin at 37 °C for 10 min, followed by 
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repeated manually pipetting up and down with a fire-polished Pasteur pipette to 

achieve single cell isolation. After counting and resuspension in plating medium 

(Minimum Essential Medium supplemented with Fetal Bovine Serum, Glucose, 

Sodium pyruvate, Penicillin/Streptomycin and L-Glutamate), cells were plated at a 

density of 5 x 104 cells/well in 24 well plates pretreated with poly-L-lysine and 

incubated at 37 °C supplied with 5% CO2. The next day, the medium was changed to 

growth medium (Neurobasal Medium with B27 Supplement, L-Glutamine and 

Penicillin/Streptomycin), and the primary neuron culture was left grown till use.  

4.4.3. Transfection of primary hippocampal neurons  

Primary neurons were transfected by lipofectamine 2000 (Invitrogen) at day 10 in 

vitro (DIV10) for rat neurons or at DIV18 for mouse neurons in 24 well plates 

according to the manufacturer’s instruction, and was used for immunostaining at 

DIV20. In brief, for each well reaction, 2 µl lipofectamine was mixed with 100 µl 

growth medium and incubated at RT for 5 min. 600 ng DNA plasmid (100 ng for 

pAAV-syn-Venus to achieve relevant expression level as the other constructs) was 

added into the medium containing lipofectamine, mixed and incubated at RT for 20 

min. In the last 5 min of incubation time, the competent medium of the neuron culture 

was taken out, and kept in 37 °C incubator. The neuron culture was subsequently 

washed once by prewarmed fresh neurobasal medium (NBM) to get rid of residual 

BSA. Meanwhile, 200 µl prewarmed NBM was added into the 100 µl DNA-

lipofectamine-medium mixture, and the 300 µl resulting mixture was added to each 

well.  After 4 h incubation at 37 °C, the lipofectamine containing medium was taken 

out and changed to the competent growth medium. The transfected neuron culture 

was left grown till further analysis. 

4.4.4. Infection of primary hippocampal neurons  

Primary hippocampal neurons were used to check the infectivity of purified rAAVs. 

A series of rAAV dilution ranging from 0.1 µl to 5 µl per well was applied directly to 

the culture medium at DIV4 and the green fluorescence expressed by the transduced 

neurons was observed at DIV18 by fluorescence microscope. For good virus 

preparation, 0.1 µl/well infection was normally enough to give fluorescent protein 

expression. 
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4.5. Production and characterization of rAAVs  

4.5.1. Large scale rAAV production and purification 

rAAVs of Serotype S1/2 was produced by transient co-transfection of HEK293 cells 

using a pAAV vector expressing gene of interest together with a helper plasmid 

carrying helper gene pF6∆ and serotype 1 and 2 plasmids bearing corresponding rep 

and cap genes pH21 and pRV1. In general, ten 10 cm HEK293 dish culture were used 

for one virus production. Virus purification was performed as previously described 

(Smith et al., 2009). Briefly, HEK293 cells were harvested and lysed in TNT buffer 

(20 mM Tris, 150 mM NaCl, 1% TritonX-100, 10 mM MgCl2, pH 7.5) 72 h after 

transfection at RT for 10 min. Cell lysate was treated with Benzynase (Sigma-

Aldrich) at 37 °C for 1 h to get rid of unpackaged DNA, and centrifugated at 4,000 

rpm for 10 min at 4 °C. Supernatant together with harvested cell medium were 

combined and filtered through 0.22 µm. Filtered crude virus solution was then loaded 

into AVB sepharose high performance affinity column (GE Healthcare) and virus was 

subsequently eluted by 50 mM Glycine, pH 2.7, washed 3 times by PBS and 

concentrated into small volume (100-200 µl) using Amincon Ultra-4 centrifugal 

filters 100K (Millipore). Purified virus was sterilized by filtering through a 0.22 µm 

syringe filter (0.22 µm Millex Filter Units, Millipore), aliquoted and stored at -80 °C 

till use. 

4.5.2. rAAV analysis 

Purified rAAVs were analyzed for capsid protein, purity, genomic titer, packing 

efficiency and infection efficiency by Bradford assay, SDS-PAGE, quantitative real-

time PCR, transmission electron microscope imaging and infection in primary 

hippocampal neuron culture. In general, 10 µl virus solution was used for protein 

determination using Bradford assay. Afterwards, virus with 500 ng relevant protein 

was used for SDS-PAGE (10% resolving gel) and stained by coomassie blue solution 

to check the purity.  

4.5.3. Genomic titration of rAAVs 

Genomic titers of rAAVs were determined by RT-PCR (7500 Real-Time PCR 

System, Applied Biosystems) using primers against the WPRE element. Primers and 

probe sequences: WPRE forward primer 5’-CTA TGT TGC TCC TTT TAC GCT 

ATG-3’; WPRE reverse primer 5’-TCA TAA AGA GAC AGC AAC CAG GAT-3’; 
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TaqMan® probe 6-FAM-CCT TTG TAT CAT GCT ATT GCT TCC-MGB. Reaction 

mix: 10 µl 2x TaqMan Fast Universal PCR Mastermix, 0.5 µl 20x WPRE 

primer/probe mix, 1 µl plasmid standard (six standards ranging from 10 ng to 0.0001 

ng) or virus sample and 8.5 µl ultrapure water. Real-time PCR cycling conditions: (a) 

polymerase activation and predenaturation at 50 °C for 2 min and at 95 °C for 10 min; 

(b) 35 cycles of denaturation at 95 °C for 20 s and annealing/extension at 60 °C for 1 

min. 

4.5.4. Transmission electron microscopical analysis of rAAV particles 

The titration of virus particle to evaluate the rate of DNA filled rAAV was carried out 

by transmission electron microscopy. rAAV vectors were applied to carbon-coated 

grids, negatively stained with 1% uranyl acetate, and examined by transmission 

electron microscopy at 63,000x magnification (Zeiss 912 Omega Transmission 

Electron Microscope). Empty capsids were stained with uranyl acetate in the capsid 

core and exhibit a ring-like architecture, while filled rAAV particles were 

impermeable to uranyl acetate and showed no staining in the middle. Thus the rAAV 

filling rate could be calculated by manually counting the filled rAAV particles over 

the total number of rAAV particles. 

 

4.6. Animals 

4.6.1. Legal aspects and Animal housing 

All animal handling and experimental procedures were performed according to the 

animal welfare guidelines of the Max Planck Societey, and under the license at the 

Regierungspräsidium Karlsruhe 35-915.81/G-71/10. 

Ckamp44–/– mouse line was maintained in an animal facility (Interfaculty Biomedical 

Research facility, IBF, University of Heidelberg and Max Planck Institute for Medical 

Research), and kept individually or in groups of two to four animals at RT between 21 

and 23 °C and at a humidity of 90%. A circadian rhythm of 12 h/12 h was maintained 

with light phase starting at 7 or 8 a.m. All experimental procedures were performed 

during the light phase. Food and water were provided ad libitum. 
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4.6.2. Protein extraction from mouse brain 

To compare AMPAR expression level between Ckamp44–/– and wild-type mice, 

hippocampi were dissected out from the brains of deeply anaesthetized mice, placed 

into a tissue grinder prefilled with chilled HEPES-buffer sucrose (4 mM HEPES pH 

7.4, 0.32 M Sucrose, complete protease inhibitor cocktail), and mechanically 

homogenized with 10 strokes. Total protein extraction: The brain lysate was 

subjected to low speed centrifugation (1,600 rpm for 10 min at 4 °C) to get rid of 

DNA debris and big particles (P1), and the supernatant (S1) was kept as total protein 

extraction. Total membrane fraction: The total protein extraction was further 

centrifuged at high speed at 10,000 g for 20 min. The resulting pellet (P2) was 

resuspended in TritonX-100 containing buffer (25 mM Hepes buffer pH 7.4, 150 mM 

NaCl, 1% Triton X-100 plus protease inhibitor), incubated on ice for 30 min, and used 

as total membrane fraction. Subcellular fractionation: Subcellular fractions were 

prepared as previously described with some modifications (von Engelhardt et al., 

2010).  Initial steps were the same as described above, except that the P2 was washed 

once by HEPES-buffered Sucrose and pelleted again to obtain crude synaptosomal 

fraction (P2’). P2’ was hypoosmotic shock by ice-cold H20 supplemented with 

protease/phosphatase inhibitors in homogenizer, mixed constantly for complete lysis, 

and centrifuged again at 25,000 g for 20 min to yield P3 pellet (lysed synaptosomal 

membrane fraction). The resuspended P3 pellet was loaded onto discontinuous 

sucrose gradient (0.8/1.0/1.2 M), and ultracentrifuged at ~150,000 g for 2 h. The 

synaptic plasma membrane (SPM) was recovered in the layer between 1.0 and 1.2 M 

sucrose. To obtain postsynaptic density (PSD) fraction, 0.5% Triton X-100 was added 

into the SPM, mixed and centrifuged at 32,000 g for 20 min. The supernatant was 

kept as Triton X-100 soluble synaptosome (Syn/Trx), and the pellet was PSD-1T 

pellet. The PSD-1T pellet was resuspended in 50 mM HEPES pH 7.4, 0.5% Triton X-

100, 2 mM EDTA plus protease/phosphatase inhibitors, mixed and ultracentrifuged at 

200,000 g for 20 min to obtain PSD-2T pellet. The PSD-2T was then resuspended in 

50 mM HEPES pH 7.4, 2 mM EDTA buffer with 0.2% SDS, heated at 65 °C for 5 

min, and the resulting solution was used as the final PSD fraction. 

4.6.3. Delivery of rAAV into brains of newborn mice  

To investigate the rescue effect of different CKAMP44 variants on AMPAR activity 

in Ckamp44–/– mice, rAAVs carrying correspondingCKAMP44 variant genes were 
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stereotaxically injected into bilateral lateral ventricles and hippocampi of neonatal 

Ckamp44–/– mouse brains using following coordinates relative to lambda: for lateral 

ventricle, rostral 2 mm, lateral 0.7 mm and ventral 1.5 mm; for hippocampus, rostral 1 

mm, lateral 1 mm and ventral 1.5 mm. In brief, newborn pups were separated from 

mother and anesthetized on ice with the cover of wet tissue paper for 3-4 min till 

immobilized. The rAAV was injected through a 33-gauge beveled needle connected 

to a 100 µl preloaded syringe. The injection was controlled by a microprocessor-

controlled WPI (World Precision Instruments) infusion-pump at a speed of 1 µl/min. 

Following electrophysiology and immunohistochemistry were carried out one month 

after the injection. 

4.6.4. Vibratome sectioning of mouse brains 

Mice were anaesthetized by isoflurane and perfused intracardially with warm PBS 

and 4% paraformaldehyde (PFA) in PBS prior to decapitation. Brains were taken out 

and fixed in 4% PFA for 2 h or overnight (in case of bad perfusion) at 4 °C. After 

embedded in 2.5% agarose/PBS, the brains were coronally sliced on a vibratome into 

70 µm sections, starting from rostral to caudal. Sectioned brain slices were stored in 

PBS with 0.02% sodium azide at or cryoprotected and stored at -20 °C. 

4.6.5. Electrophysiological recording 

Outside-put patches were carried out as previously described (von Engelhardt et al., 

2010). Briefly, mouse brains were dissected out from deeply anaesthetized 

(isoflurane) P16-P30 mice, and cut into 250 µm thin slices in ice-cold dissection 

buffer containing (in mM): 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 2 CaCl2, 

1 MgCl2, 25 glucose, saturated with 95% O2/5% CO2 (pH 7.4). Slices were then 

gently transferred to ACSF buffer (25 mM NaCl, 25 mM NaHCO3, 1.25 mM 

NaH2PO4, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 25 mM glucose, pH 7.4, bubbled 

with 95% O2/5% CO2) for at least 1 h prior to recording. Borosillicate glass recording 

pipettes (5-7 MΩ) were filled with solution containing (in mM) 120 (Cs)gluconate, 8 

KCl, 10 CsCl, 0.2 EGTA (pH 7.3), 10 HEPES, 2 (Mg)ATP, 0.3 (Na3)GTP, 10 

(Na2)phosphocreatine. Fast application of glutamate onto outside-out was performed 

using theta glass tubing mounted on a piezo translator. Application pipettes were 

tested by perfusing solutions with different salt concentrations through the two barrels 

onto open patch pipettes and recording current changes with 1 and 100 ms moves of 
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the application pipette. Only application pipettes with current change 20-80% rise 

times below 100 µs and with a reasonable symmetrical on- and offset were used. The 

application solution contained (in mM): 135 NaCl, 10 HEPES, 5.4 KCl, 1.8 CaCl2, 

1 MgCl2, 5 glucose (pH 7.2). 

 

4.7. Imaging  

Confocal images were acquired using Leica TCS confocal microscope (SP2) 

equipped with 543 nm HeNe and 450-530 nm Argon lasers and 10x, 20x, 63x 

glycerol lens. Images were analyzed by ImageJ. For spine density and spine volume 

studies, high-resolution 7 z-stack images of dendrites with 350 nm step interval were 

acquired by using 63x glycerol objective and 2x optical zoom. In a typical 

experiment, secondary dendrites longer than 50 µm with evenly distributed spines 

were selected for counting. Other images were taken with 16 times scanning of single 

focal plane.  

 

4.8. Imaging analysis 

To describe the amount and distribution of dendrites, the center of a neuron soma was 

placed in the centroid of 10 series concentric circles with the same radius interval 

representing 25 µm. The intersections between neuron dendrites and each circle were 

manually counted. For spine density and spine volume studies, z-stack images of 

dendrites were reconstituted to a single image by doing Z projection with maximum 

intensity in ImageJ. Spine density was obtained by counting the number of spines 

over a known dendritic length. To obtain spine volume, the mean fluorescence 

intensity of individual spines in a fixed circle area and total dendrites traced by 

perimeter was measured, and the average spine/dendrite intensity value was 

calculated as spine volume. To quantify the spine targeting efficiency, the ratio of 

pixel intensity of each spine and the mean pixel intensity of dendritic area was 

calculated. 
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4.9. Materials 

4.9.1. Plasmid list  

Plasmid name Source / Reference 

pET-C6His KanR-SFGFP Dr. R. Sprengel, MPI for Medical Research, Heidelberg 

pET-C6His KanR-CYPet generated in this thesis 

pET-C6His KanR-Pet generated in this thesis 

pET-C6His KanR-mOrange generated in this thesis 

pET-C6His KanR-Tag RFPT generated in this thesis 

pET-C6His KanR-keima-Red generated in this thesis 

pET-C6His KanR-TFP generated in this thesis 

pET-C6His KanR-Venus generated in this thesis 

pET-C6His KanR-hGFP generated in this thesis 

pET C6HIS KanR-CKAMP39 Ex generated in this thesis 

pET C6HIS KanR-CKAMP44 Ex generated in this thesis 

pET C6HIS KanR-CKAMP52 Ex generated in this thesis 

pET C6HIS KanR-CKAMP59 Ex generated in this thesis 

pET32a-Trx-CKAMP44 Ex generated in this thesis 

pET32a-Trx-CKAMP39 Ex generated in this thesis 

pET32a-Trx-CKAMP52 Ex generated in this thesis 

pAAV-Syn-CKAMP44-IRES-Venus Dr. J. von Engelhardt 

pAAV-Syn-CKAMP44(flag)-IRES-Venus Dr. J. von Engelhardt 

pAAV-Syn-CKAMP44(flag,hCD4TM)-

IRES-Venus 

generated in this thesis 

pAAV-Syn-VenusCKAMP44 Anja Groß, Bachelor thesis (2011) 

pAAV-Syn-CKAMP44∆CT-EGFP Dr. V. Mack, Evotec AG Hamburg, Germany 

pAAV-Syn-CKAMP44∆NT∆CT-EGFP generated in this thesis 

pAAV-Syn-CKAMP44∆L∆CT-EGFP generated in this thesis 

pAAV-Syn-CKAMP39∆CT-EGFP generated in this thesis 

pAAV-Syn-CKAMP44∆R/K∆CT-EGFP generated in this thesis 

pAAV-Syn-CKAMP44N-hCD4TM-Venus generated in this thesis 

pRK-CKAMP44(HT)-EGFP generated in this thesis 
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4.9.2. Antibodies 

Antibody Specifications 

Primary antibody Species Dilution Manufacturer 

α-GFP mouse 1:10,000 (WB), 

1:4,000(ICC/IHC) 

Clontech 

α-GFP chicken 1:4,000 (ICC/IHC) Abcam 

α-Flag mouse 1:500 (WB/ICC/IHC) Sigma-Aldrich 

α-NeuN mouse 1:1000 (IHC) Chemicon 

α-GluA1 rabbit 1: 2,000 (WB) 

1:1,000 (ICC/IHC) 

Millipore 

α-CKAMP44 rabbit 1:1,000 (WB/ICC/IHC) Covance 

α-2A rabbit 1:2,000 (WB) 

1:1,000 (ICC/IHC) 

Millipore 

α-PSD95 mouse 1:8,000 (WB) 

1:4,000 (ICC/IHC) 

Thermo 

α-synaptophysin mouse 1:8,000 (WB) 

1:4,000 (ICC/IHC) 

Sigma-Aldrich 

α-GAPDH mouse 1: 10,000 (WB) Abcam 

α-βActin mouse 1:5,000 (WB) Sigma-Aldrich 

Secondary antibody Species Dilution Manufacturer 

FITC-labeled α-chicken donkey 1:600 (ICC/IHC) Jackson Immuno Research 

Cy3-labeled α-mouse goat 1:600(ICC/IHC) Jackson Immuno Research 

Cy5-labeled α-rabbit goat 1:600(ICC/IHC) Jackson Immuno Research 

Peroxidase-coupled α-mouse goat 1:15,000 (WB) Vector Laboratories 

Peroxidase-coupled α-rabbit goat 1:15,000 (WB) Vector Laboratories 
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