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Abstract

This thesis aims to establish a demand model for commodities that takes all crucial in-
fluencing factors into account. To begin with, we analyze the dependency of the demand
on prices, market parameters, and specific characteristics of the customers in order to
provide the mathematical framework for a general demand model. In particular, this
approach takes account of effects that are caused by price-based substitution of products
irrespective of their availability.
Fundamental market models that include supply-demand interactions gain importance in
the context of commodity pricing. We explicitly develop demand models for petrochem-
ical products that are applicable within the profit maximization problem of a monopoly
in order to determine optimal price and sales decisions. The solvability of the market
optimization problem requires additional restrictions on the modeling.
Basically, the model displays the nonlinear demand-price relationship. Model extensions
incorporate the changes of macroeconomic indices, which quantify changes in the eco-
nomic situation. Moreover, our approach to modeling demand comprises the impacts of
varying prices of substitutable and complementary products, and establishes a connec-
tion to the characteristics of the consumer’s side.
Integrating the demand models to real market models necessitates the identification of
the demand parameters. We discuss the difficulty to get reliable parameter estimates
in the situation of incomplete data and investigate two methods based on additional
assumptions in order to estimate the demand parameters. For the demand model that
includes the dependency on the price and macroeconomic indices, a heuristic method-
ology firstly determines parameters based on market simulations. The second approach
creates an inequality constrained parameter identification problem, where the constraints
reflect additional assumptions on the shape of the demand model function. This problem
can be solved using the generalized Gauss-Newton method.
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Zusammenfassung

Ziel dieser Arbeit ist es, ein Nachfragemodell für Rohstoffe aufzustellen, das alle wesent-
lichen Einflussfaktoren berücksichtigt. Zu Anfang analysieren wir die Abhängigkeit der
Nachfrage von Preisen, Marktparametern und spezifischen Eigenschaften der Abnehmer,
um die mathematischen Rahmenbedingungen für eine allgemeine Nachfragemodellierung
festzulegen. Insbesondere berücksichtigt unser Ansatz Effekte, die durch preisbasierte
Substitution ungeachtet der Verfügbarkeit der Waren entstehen.
Fundamentalmarktmodelle, die das Zusammenwirken von Angebot und Nachfrage ab-
bilden, gewinnen im Rahmen der Preisfindung für Rohstoffe an Bedeutung. Mit dem
Ziel optimale Preis- und Absatzmengenentscheidungen für petrochemische Produkte zu
bestimmen, entwickeln wir explizit Nachfragemodelle, die sich zur Einbettung in das Pro-
fitmaximierungsproblem eines Monopolisten eignen. Dabei sind zusätzliche Bedingungen
an die Modellierung erforderlich, um die Lösbarkeit des Marktoptimierungsproblems si-
cherzustellen.
Grundsätzlich stellt das Modell den nichtlinearen Zusammenhang zwischen Preis und
Nachfrage dar. Modellerweiterungen beinhalten makroökonomische Kennzahlen, die die
Änderung der Wirtschaftslage quantifizieren. Darüber hinaus erfasst unser Modellansatz
für die Nachfrage die Wirkung von Preisänderungen bei Substituten und komplementären
Produkten und stellt eine Verbindung zu den Eigenschaften der Abnehmerseite her.
Die Eingliederung der Nachfragemodelle in reale Marktmodelle erfordert die Identifika-
tion der Nachfrageparameter. Wir erörtern die Problematik einer verlässlichen Para-
meterschätzung angesichts unvollständiger Daten und untersuchen zwei Methoden, die
auf zusätzlichen Annahmen basieren, um die Nachfrageparameter zu schätzen. Für
das Nachfragemodell, das die Abhängigkeit von Preis und makroökonomischen Kenn-
zahlen darstellt, bestimmt ein heuristischer Ansatz die Parameter zunächst durch Markt-
simulationen. Die zweite Methode erstellt ein Parameteridentifikationsproblem mit Un-
gleichungsnebenbedingungen, die die zusätzlichen Annahmen über das Verhalten der
Nachfragefunktion wiedergeben. Dieses Problem kann mit dem verallgemeinerten Gauss-
Newton Verfahren gelöst werden.
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1 Introduction

The formation of demand is one of the most complex mechanisms in commodity markets
and its modeling still poses several challenges. Nevertheless, modeling the connections of
demand and its essential influencing factors is of high interest for researchers, as well as
for market participants seeking guidance with respect to production planning, pricing and
trading strategies, and risk management. Regarding the relationship between demand
and price, developing an adequate demand model is a challenge. This is because it
comprises more than just describing the sales quantity at the market, which is only the
intersection of supply and demand. In fact, demand is the quantity the consumer is
willing to buy at a certain price given the market situation and, therefore, reflects the
consumer’s preferences in this way. Consequently, a demand function with respect to
price describes the relationship of required quantities and prices over the whole price
region.
So far, the issue of analyzing and modeling demand has appeared in multiple research
areas (e.g. microeconomics [MCWG95], operations research [KGvB+09, BC03], market-
ing [LKM92], or commodity pricing [BGS07, EW03]) and comprises different concepts.
The neoclassical consumer theory is a powerful tool for describing consumer behavior
[DM80b, MCWG95, Var92, Var10] and provides the basis for multiple demand models
in economics [DM80b, BS09, TC87, MCWG95]. Likewise, modeling the utility maxi-
mization problem of consumers is also used in many applications ranging from supply
chain management [vRM99, LB08] to modeling demand for specific services or products
[DM96, W+97, Pin79]. In contrast, numerous application-specific demand models are
built on rather phenomenological assumptions [Jä08, NR03, HX08, KF07]. As for opti-
mization models to determine optimal pricing and production quantities, demand is mod-
eled as function with respect to price [Kan08, KGvB+09, Cha05] or as a stochastic ran-
dom variable [GM03, BT06]. Equally, stochastic demand models are applied in revenue
management [GvR94, BC03]. In particular, the aspects of substitution are included in
demand models as part of assortment optimization in retail [vRM99, SA00, HX08, KF07].
This thesis focuses on analyzing and modeling the demand for commodities. As we are
aiming to provide an explicit demand model for commodities that reflects the nonlin-
ear demand-price relationship and includes all essential influencing factors, we provide
a framework for demand models based on phenomenological assumptions. According to
Kannegiesser et al. [KGvB+09], commodities display some specialities: they are prod-
ucts of standard quality that are produced and sold in large quantities and the most
important influence factor is the price. Therefore, in commodity markets, the question
is rather how much to buy than whether to buy at a certain price, which is often studied
in discrete choice models [AdPT92, DM96, BC03].
In addition to the nonlinear relationship between demand of a commodity and its price,
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Figure 1.1: Exemplary connections of influencing factors of demand for petrochemical
products

we also include model components reflecting the influences of substitutes and comple-
ments. Moreover, we investigate the impacts of the economic situation as well as char-
acteristic variables of the consumer’s side. Our description is suitable for business-to-
business markets as well as for end-consumers which, for example, require heating oil.
Motivated by the development of a supply-demand trade network optimization model, a
further objective of this thesis is to provide explicit demand functions in order to simulate
prices and sales quantities of commodities. In doing so, finding the appropriate model is
of high significance, because the profit maximization of the supply side goes according
to the demand-price relationship. Hence, such market models based on explicit demand
models are an important tool to investigate the complexity of the pricing mechanism.
Moreover, they suitably reflect the common price development of commodities that share
common features and are linked either by their production processes or identical purpose
of use.
More precisely, since we aim to apply this network optimization model to the petro-
chemical industry, the purpose of modeling demand is the applicability to petrochemical
products. The demand of these products is influenced by various influencing factors as
shown in figure 1.1. In addition to the consumption caused by different industrial sectors
on the right, demand of the respective products is also driven by other products. For
example, the demand for product 1 is not only determined by the demand of product
14 and 4, but also on prices of its substitute products 48 and 96. On the supply side,
the chemical products are connected by their production processes, where crude oil and
natural gas are starting products of the production network so that their demand is also
related to the demand of petrochemical products if only in a small part.
This thesis is part of the pioneering project Modeling, Simulation, and Optimization of
Price Dynamics initiated by the Interdisciplinary Center for Scientific Computing Hei-
delberg, which combines methods from optimization and economics in order to model
the price formation in the petrochemical industry. This results in an inequality con-
strained nonlinear optimization problem of a monopoly, where the constraints are given
by the production capacities limits, the sales-production-transportation restrictions, and
the market design (e.g., principle of no arbitrage). In addition to this modeling aspect of
a supply-demand trade network optimization problem for multiple commodities, which
is accomplished in cooperation with Kramer [Kra13], methods for network reduction are
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of utmost importance since information on all market components is hardly available.
Therefore, Kramer [Kra13] presents a reduction method tailored to the multi-commodity
production network. Her approach combines decomposition methods with concepts of
graph theory. In doing so, subnetworks are identified that are suited to be approximated
by an aggregated input/output-profit/cost relationship.

Contributions and Results

The main objective of this thesis is to develop a quantitative nonlinear demand model
that reflects the influences of all products’ prices in the market. This is in addition
to other essential influencing factors such as, for example, the change in the economic
situation. Therefore, we can summarize the contributions and results we have achieved
as follows.

• We determine and analyze crucial influencing factors of demand for commodities
to provide a basis for explicit demand models. Prices of all products in the market
play a principal role in the demand formation of a specific product to a great extent.
In addition to the price of the commodity under consideration, we investigate the
dependencies that occur in terms of substitutes and complements. Moreover, we
analyze the impacts of the economic situation and describe the influences of the
consumer’s characteristics.

• Notably, our approach to modeling demand for commodities comprises price-based
substitution irrespective of their availabity, which represents a new approach in
modeling demand for commodities. For this reason, we investigate in detail the
various possibilities to switch production processes on behalf of the customer, which
implicate substitution effects on the demand. To integrate this in our model, we
aggregate all substitution possibilities and propose a demand model including sub-
stitution because of gradual switching.

• We develop an explicit demand model that can be applied to simulate the interac-
tions of supply and demand, in order to determine optimal pricing and production
strategies. Moreover, the parameterization chosen allows an easy interpretation.
First simulation results of a small part of the petrochemical market show that our
demand model integrated in the supply-demand trade network optimization model
provides reasonable price and sales quantities results.

• In particular, our demand model for a specific product is a nonlinear decreasing
function with respect to its price and includes the change in the economic situation
specified by changes of macroeconomic indices. In addition, it reflects the influences
of other products’ prices on the demand under consideration.

• To identify parameters of our demand model including the influence of the product’s
own price and selected economic indices we investigate two approaches based on

3



Chapter 1. Introduction

additional assumptions in order to cope with the incomplete data base. First, the
heuristic approach takes information on the whole market into account in order to
determine the demand parameters by simulating prices and sales quantities. The
second approach results in a constrained weighted least-squares problem, where
the constraints reflect additional assumptions on the shape of the demand model
function.

Structure of the Thesis

The second chapter provides an overview of existing demand modeling approaches. In
the first instance, we summarize the concept of neoclassical utility theory and present
models for demand of households based on this concept. In addition, we summarize
important issues with respect to demand that are considered in neoclassical production
theory. Moreover, this summary comprises application-specific demand models in supply
chain and revenue management. In particular, we review approaches to modeling the
influence of substitution on demand in the context of assortment planning problems.
Finally, we describe various approaches to modeling demand for specific services or prod-
ucts (e.g., urban traffic or energy).

In the third chapter, we give a general description of the characteristics of a demand
model for commodities. In addition to the analysis of the relationship between demand
and price, we consider the effects of economic indices quantifying the change in the eco-
nomic situation. Moreover, we examine the effects of the specific consumer’s characteris-
tics and the influences of other products’ prices. As a result, we transfer our assumptions
concerning these factors influencing demand into a mathematical framework to provide
a basis for explicit demand functions.

In the fourth chapter, we present a supply-demand trade network optimization model
to simulate prices and sales quantities in a multi-commodity market. In this regard, we
first review a selection of existing production and sales optimization models in the field
of supply chain management or chemical engineering. Then, we outline our approach to
determine the optimal pricing, production, and transport strategies by maximizing the
overall profit in a multi-regional and multi-commodity market. Furthermore, we discuss
the specialities of our optimization model with regard to the nonlinear demand-price
relationship.

The fifth chapter comprises the theory of constrained optimization as well as algorithms
to solve inequality constrained nonlinear optimization problems that are used throughout
the thesis. In particular, it describes algorithms to solve least-squares problems such as
the generalized Gauss-Newton method, which are applied to estimate parameters.

In the sixth chapter, we develop an explicit demand model that can be integrated in
the supply-demand trade network optimization model applied to a product network of
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the petrochemical industry. In this context, we extend the basic model that reflects the
relationship between demand and price, and include model components for the influence
of changes in the economic situation, as well as the influence of substitutable and com-
plementary products.

In the seventh chapter, we investigate methods to identify the demand parameters in
the situation of incomplete data. In this context, the challenge is to tackle the problem
that the presumed nonlinear structure is not evident from the available data. For this
reason, we propose two different approaches. First, the heuristic method determines
the parameters based on price and sales quantities simulations. Second, we establish
a constrained parameter identification problem that can be solved by the generalized
Gauss-Newton method.
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2 Approaches to Modeling Demand in
the Literature

This chapter encompasses a summary of distinct approaches to analyzing and model-
ing demand. Notably, publications on this subject arise out of different research areas
ranging from neoclassical consumer theory to applications in supply chain and revenue
management. In consequence of this variety, the contributions selected for this summary
show the range of distinct possible applications and the different issues and requirements
involved with regard to building appropriate quantitative demand models. Therefore, by
summarizing their results we concentrate on describing the aspects of modeling demand
and their influence on the respective problems under consideration.
In section 2.1, we summarize the theoretical concept of neoclassical consumer theory and
outline important results provided by standard economics literature (e.g., [Var92, Var10,
MCWG95]). Furthermore, we review a selection of approaches to modeling demand of
households based on utility maximization and outline challenges regarding the empirical
applicability of these models. Especially, the presence of aggregated data requires addi-
tional attention with regard to modeling demand. In addition to household theory, we
survey a selection of papers dealing with the theoretical effects of uncertain demand on
production theory based on utility theory.
Section 2.2 contains a review of different approaches to modeling demand in operations
research or management science. In this research area, demand models are developed
with the purpose to be incorporated in optimization problems of market participants
(e.g., a firm, an industrial sector, a service company, or a retailer) to determine pricing
and production strategies. Special focus of this summary is on approaches to include
substitution in the demand model used to solve assortment planning problems.
In section 2.3, we review distinct demand models that are tailored for specific products
(e.g., energy) or services (e.g., urban travel). The variety of these approaches once more
display the distinct methods to build mathematical models for demand.

2.1 Modeling Demand in Economic Theory

In economics, analyzing and modeling demand is a central topic be it as independent
research area or as part of others fields of research (e.g., equilibrium theory, welfare
economics). The concept of neoclassical economics is a very powerful tool for describing
consumer behavior. In section 2.1.1, we present the concept of rational choice and utility
theory that provides the basis of neoclassical economic analysis. Section 2.1.2 comprises
the various models for demand of a household. Furthermore, we discuss challenges with
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regard to empirical applications. The scope of section 2.1.3 is to give an overview of
issues that are considered in neoclassical production theory with respect to demand.

2.1.1 Neoclassical Consumer Theory

In this section, we present the theoretical framework that provides the basis for establish-
ing demand functions in neoclassical consumer theory. For this purpose, we follow the
book of Deaton and Muellbauer [DM80b] and begin with listing the axioms of choice.
In doing so, we adopt their notation and denote the prices by p = (p1, . . . , pn)′, the
quantities by q = (q1, . . . , qn)′, and the disposable budget by x. If two bundles q1 and
q2 consisting of n products are compared and q1 is at least as good as q2, their notation
is q1 % q2. Let the utility function v(q) be a monotone increasing function that assigns
a value to each bundle. Hence, it expresses the preferences of a consumer being faced
with the set of available bundles.1 For a detailed consideration of preferences, choice,
and utility we refer to [MCWG95, Var92, Var10].

Axioms of choice.

1. Reflexivity. q % q for each possible bundle q.

2. Completeness. Any two bundles in the choice set q1 and q2 can be compared: q1 %
q2, or q2 % q1.

3. Transitivity or consistency. q1 % q2 and q2 % q3 implies q1 % q3.

4. Continuity. Given bundle q1, let A(q1) = {q|q % q1} contain all bundles that are
at least as good as q1 and let B(q1) = {q|q1 % q} contain all bundles that are
not better than q1. Then, both sets A(q1) and B(q1), for any q1 in the choice set,
contain their own boundaries.

5. Nonsatiation. The utility function v(q) is nondecreasing in each qi, i = 1, . . . , n
and increasing in at least one qi, i = 1, . . . , n,.

6. Convexity. q1 % q0 implies λq1 + (1− λ)q0 % q0 for 0 ≤ λ ≤ 1.2

The first three axioms allow a preference ordering, but are not sufficient to establish a
utility function. If, however, the first four axioms of choice hold, the preferences can be
expressed by such a utility function. Finally, the fifth axiom ensures that the total budget
is spent in order to maximize the utility. Hence, the theory outlined in the following is
mainly based on these five axioms.
To begin with, we present the utility maximization problem of a consumer, where his
expenses are constrained by his disposable income x. From now on, we assume strict
convexity of preferences and smoothness of the utility function because, in this case, the
optimization problem can be solved using differential calculus. Examples of nonconvex

1Note that utility functions are only defined up to the transformation by a monotone increasing function,
i.e., their values have no meaning except the comparability.

2Preferences are convex if and only if the representing utility function is quasi-concave.
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2.1. Modeling Demand in Economic Theory

preferences are shown by Deaton and Muellbauer [DM80b].
Given prices pi, i = 1, . . . , n, and income x, the consumer’s choice problem is

max
q

v(q) subject to
n∑
i=1

piqi = x, (2.1)

where the equality constraint is due to the fifth axiom of choice and also known asWalras’
law (cf. [MCWG95]). The solution functions with respect to prices p and income x of
problem (2.1) are called Marshallian demand functions qi = gi(x,p), i = 1, . . . , n. In
addition, if the prices are fixed, the relation qi = g∗i (x), i = 1, . . . , n, is called Engel
curve.
Problem (2.1) can be reformulated by its dual problem: here, the consumer minimizes
his expenses x = p · q ensuring that a certain level of utility u is reached.3 Hence,

min
q
p · q subject to v(q) = u. (2.2)

This expenditure minimization problem results in demand functions with respect to u
and p, which are called Hicksian demand functions. Both solutions coincide, i.e.,

qi = hi(u,p) = gi(x,p), i = 1, . . . , n.

Substituting gi(x,p), i = 1, . . . , n, into the optimization problem (2.1) results in the
indirect utility function

u = v(q1, . . . , qn) = v(g1(x,p), . . . , gn(x,p)) = ψ(x,p). (2.3)

Likewise, substituting hi(u,p), i = 1, . . . , n, into optimization problem (2.2) leads to the
cost function with respect to utility u and prices p, i.e.,

x =
n∑
i=1

pihi(u,p) = c(u,p), (2.4)

which satisfies the following properties.

Properties of the cost function.

1. Homogeneity of degree one in prices: c(u, θp) = θc(u,p) with θ > 0.

2. The cost function increases if u increases.

3. The cost function is nondecreasing, concave, and continuous in p. In addition,
the first and the second derivatives with respect to p exist everywhere except at a
set of measure zero. Moreover, the cost function increases if at least one price
pi, i = 1, . . . , n, increases.

3For more information on dual problems, we refer to standard optimization textbooks (e.g. [NW06] or
[BV04] for convex optimization problems).
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4. The Hicksian demand function qi, i = 1, . . . , n, are equal to the partial derivatives
of the cost function with respect to prices

qi = hi(u,p) ≡ ∂c(u,p)
∂pi

if they exist.

The fourth property is known as Shephard’s Lemma and relates the cost function to the
corresponding cost-minimizing demand function.
Furthermore, differentiation of the indirect utility function ψ(c(u, p), p) = u with respect
to pi leads to Roy’s identity (see [DM80b] for details)

qi = gi(x,p) = −∂ψ/∂pi
∂ψ/∂x

, i = 1, . . . , n. (2.5)

In the following, we list the properties of Hicksian and Marshallian demand functions
(see again [DM80b] for more information).

Properties of utility-based demand functions.

1. Adding Up. The sum of both Hicksian and Marshallian demands times prices is
equal to total expenditure x

n∑
i=1

pihi(u,p) =
n∑
i=1

pigi(x,p) = x.

2. Homogeneity. Both the Hicksian demand functions and the Marshallian demand
function are homogeneous of degree zero: the former in prices and the latter in
expenditure and prices

hi(u, θp) = hi(u,p) = gi(θx, θp) = gi(x,p),

where θ > 0.

3. Symmetry. Differentiating the Hicksian demand functions hi(u,p), i = 1, . . . , n,
with respect to prices pj , j 6= i, j = 1, . . . , n, leads to

∂hi(u,p)
∂pj

=
∂hj(u,p)
∂pi

, i 6= j, i, j = 1, . . . , n.

.

4. Negativity. The n×n-matrix with elements ∂hi
∂pj

, i, j = 1, . . . , n, is negative semidef-
inite, i.e.,

n∑
i=1

n∑
j=1

ξiξj
∂hi
∂pj
≤ 0 (2.6)

for any n-vector ξ.

10
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Moreover, the symmetric and negative semidefinite matrix with entries sij = ∂hi
∂pj

is known
as substitution matrix or Slutsky matrix of compensated price responses. Equation (2.6)
implies for all i

sii ≤ 0, i = 1, . . . , n,

so that we can infer that the demand of good i, i = 1, . . . , n falls or remain unchanged
if the respective price pi, i = 1, . . . , n rises. This result is also known as law of demand.

Remark 2.1. Mas-Colell [MCWG95] distinguishes between the property of compensated
law of demand if

(p1 − p2) · (hi(u,p1)− hi(u,p2)) ≤ 0, i = 1, . . . , n, (2.7)

and the property of uncompensated law of demand if

(p1 − p2) · (gi(x,p1)− gi(x,p2)) ≤ 0, i = 1, . . . , n. (2.8)

More generally, this law implies that if one thinks of the product as a collection of goods
in a fixed ratio and its price is equal to the prices of its parts, the demand of this product
also decreases if the respective price increases. This implication is known as the law
of demand in the multi-commodity case. We refer to [JQ08] for a survey of the law
of demand in different contexts. Likewise, they underline that the law of demand in
its different versions also plays an important role in equilibrium theory, because strict
monotonicity of excess demand implies uniqueness and stability of an equilibrium.
So far, the substitution matrix is written in terms of the Hicksian demand. Through the
Slutsky equation

sij =
∂hi
∂pj

=
∂gi
∂x
· qj +

∂gi
∂pj

, i, j = 1, . . . , n, (2.9)

the elements sij , i, j = 1, . . . , n can be expressed using the Marshallian demand func-
tions. This notation provides some advantages: since the right-hand site of equation
(2.9) is in principle observable, the substitution matrix can be calculated empirically
and, hence, symmetry and negativity are testable. Furthermore, equation (2.9) reveals
that the effects of a price change on Marshallian demand functions ∂gi

∂pj
, i, j = 1, . . . , n,

can be decomposed into a substitution effect ∂hi
∂pj

, i, j = 1, . . . , n, and an income effect
∂gi
∂x · qj , i, j = 1, . . . , n. This means, changes in the price of a good implies that the
exchange rate, for which two goods are substituted, varies, and also that the purchasing
power of income changes (cf. [Var10]). Likewise, this notation allows for new informa-
tion regarding the Marshallian demand functions. For example, the law of demand is not
necessarily valid: a good i, i = 1, . . . , n, can exhibit a positive price derivative, because
the negative price compensated response is outweighted by a positive income effect (cf.
[DM80b]), which is a phenomenon that is, however, quite rare.4 The connections of the
terminology explained so far is illustrated in figure 2.1.

4A popular example for these Giffen goods are potatoes in the 19th century. People spending their
total income for food purchase more potatoes than meat if the price of potatoes rises. In comparison,
inferior goods are products for which the demand increases if income decreases.
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Utility Maximization Cost Minimization

Marshallian
demand functions

Hicksian 
demand functions

Slutsky  equation

Indirect utility function    Cost functioninversion

Roy's
 identity

Duality

Figure 2.1: Connections of utility maximization and cost minimization in neoclassical
consumer theory

We are now in the position to present a very important result of the neoclassical con-
sumer theory, which is known as the integrability problem: given a set of goods, their
demand functions are the result of the consumer’s utility maximization and hence, there
is a preference ordering if and only if the demand functions add up, are homogeneous of
degree zero, and the substitution matrix is symmetric and negative semidefinite.
Subsequently, for the sake of completeness, we present additional useful terminology in
the context of demand analysis: we start with presenting the weak axiom of revealed
preferences according to the definition of Mas-Colell [MCWG95].

Definition 2.1. Weak Axiom of Revealed Preferences
Given two pairs of prices and income (p1, x1) and (p2, x2)

p1 · q(x2,p2) ≤ x1 implies p2 · q(x1,p1) > x2.

In words, under the assumption of unchanged preferences, if q(x1,p1) is chosen over
q(x2,p2), although q(x2,p2) is also affordable, then under no conditions q(x2,p2) is
preferred to q(x1,p1). That means, if q(x2,p2) is chosen, q(x1,p1) is not affordable.
Note that this property is an implication of utility maximization. The strong axiom of
revealed preferences implies that, for a given set (p1, x1), . . . , (pn, xn), if q(x1,p1) is either
directly or indirectly preferred to q(xn,pn), q(xn,pn) cannot be chosen over q(x1,p1).
Choices for which the strong axiom holds are consistent with the utility maximization
model. We refer to [Var92, Var10, MCWG95] for a more detailed discussion of revealed
preferences. Lastly, before passing on to the modeling approaches, there remain the
elasticities to be defined (cf. [MCWG95, Var92, Var10]).

Definition 2.2. Total Expenditure Elasticity

ei =
∂gi(x,p)

∂x
· x

gi(x,p)
=
∂ log(gi(x,p))

∂ log(x)
, i, j = 1, . . . , n. (2.10)

If ei > 0, i = 1, . . . , n, good i is classified to be a normal good, whereas, if ei < 0, i =
1, . . . , n, good i is termed inferior good. If ei > 1, i = 1, . . . , n, good i is a luxury good,
and if ei < 1, i = 1, . . . , n, it is classified as a necessity.

12
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Definition 2.3. Price Elasticity

eij =
∂gi(x,p)
∂pj

· pj
gi(x,p)

=
∂ log(gi(x,p))
∂ log(pj)

, i, j = 1, . . . , n. (2.11)

If eij > 0, i, j = 1, . . . , n, the goods are classified as gross substitutes, and if eij <
0, i, j = 1, . . . , n, the goods under consideration are gross complements. This defini-
tion is mostly frequently applied in economics text books although there are alternative
definitions which additionally include further aspects (see [BS09] for other elasticity def-
initions). For example, Hicks [Hic46] suggested to make use of the Slutsky equation (2.9)
to classify goods, since the classification above ignores the income effect. Consequently,
according to this definition good i and good j are complements if sij , i, j = 1, . . . , n, is
negative, and they are substitutes if sij is positive.
In contrast to derivatives, these measures capturing the demand responsiveness are unit-
free. To conclude, the elasticity of substitution indicates how easy a good can be sub-
stituted by another ensuring that the utility level remains unchanged. Subsequently, we
adopt the definition of Varian [Var92].5

Definition 2.4. Elasticity of Substitution
Given two goods qi and qj

esubij =
MRS

qj/qi

d(qj/qi)
d(MRS)

=
d(ln(qj/qi)
d(ln(MRS))

, i, j = 1, . . . , n, (2.12)

where the marginal rate of substitution for sustaining the utility level is given by MRS =
− ∂U(q)/∂qi
∂U(q)/∂qj

.

2.1.2 Demand of Households

In this section, we summarize the properties of selected approaches to modeling demand
that are presented in established theory books. Likewise, we give a short overview of
empirical results and list shortcomings, since not all of these models, for example, fulfill
the integrability conditions. Concerning the chronology we orientate ourselves by that of
Deaton and Muellbauer [DM80b] supplemented by examples of Barnett [BS09]. Similarly,
Theil [TC87] present certain models of consumption theory.
In doing so, the first two models presented in this section are not established with ref-
erence to the utility theory and hence, do not exhibit the properties described above.
Their presentation starts with the log-log Demand System that models the logarithm of
demand as function of income and prices of the goods under consideration

log qi = αi + ηi log x+
n∑
j=1

ηij log pj , i = 1, . . . , n. (2.13)

5The elasticity of substitution is also an important index in production theory. We refer to [Var92,
Hic63] for more information.
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Here, the coefficients αi, ηi and ηij are constant. In accordance with the definitions 2.2
and 2.3, ηi is the income elasticities of demand and ηij is the price elasticity of good i.
For this reason, this approach has often been estimated on time series to measure the
elasticities. However, Deaton and Muellbauer [DM80b] show that equation (2.13) does
not satisfy adding up.
Under the Working model, the budget share wi for good i, i = 1, . . . , n, is specified as
function of the logarithm of income x

wi =
pi · qi
x

= αi + βi log x, i = 1, . . . , n. (2.14)

The fact that the sum of the budget shares is equal to 1 implies
∑n

i=1 αi = 1 and∑n
i=1 βi = 0. Hence, this model approach is consistent with adding up.

Stone [Sto54b] starts to combine the theory of preferences with the traditional approaches
to modeling demand as function of prices and income. By proposing to individually
model the demand for each commodity based on utility maximization, he offers flexibility.
Deaton and Muellbauer [DM80b] present his methods and results using the example of
model (2.13). Substituting the Slutsky equation (2.9) in elasticity form eik = e∗ij − eiwj ,
where e∗ij is the compensated cross-price elasticity ∂hi

∂pj
, they derive

log qi = αi + ei log(x/P ) +
n∑
j=1

e∗ij log pj , i = 1, . . . , n, (2.15)

where
∑n

j=1wj log pj = log(P ). If
∑n

j=1 e
∗
ij = 0, homogeneity is fulfilled. Therefore, all

prices can be deflated by the index P and equation (2.15) is approximately equivalent to

log qi = αi + ei log(x/P ) +
n∑
j=1

e∗ij log(pj/P ), i = 1, . . . , n. (2.16)

Since e∗ij = 0 for unrelated good i and j, the sum in the last term of equation (2.16) is
reduced to a set K of substitutes and complements of good i, i = 1, . . . , n.
Following the chronology of Deaton and Muellbauer [DM80b], an alternative modeling
approach is the Linear Expenditure System that is also studied by Stone [Sto54a]. Im-
posing the restrictions of adding up, homogeneity, and symmetry on the general linear
demand model

piqi = βix+
n∑
j=1

βijpj , i = 1, . . . , n, (2.17)

leads to
piqi = piγi + βi(x−

∑
j

pjγj), i = 1, . . . , n, (2.18)

where
∑n

j=1 βj = 1. This is the only valid form of equation (2.17) satisfying the above
restrictions. If βi ≥ 0 for i = 1, . . . , n and x ≥

∑n
i=1 piγi implies qi ≥ γi for i = 1, . . . , n,

the corresponding cost function c(u,p) =
∑n

i=1 piγi + u
∏n
i=1 p

βi
i is concave and hence,
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equation (2.18) is consistent with utility maximization.6 The linear expenditure system
provides the following interpretation: if γi ∀i = 1, . . . , n, are positive, they can be seen
as minimum required quantities that are bought first. The remaining disposable income
is then split up between the goods.
Nevertheless, their analyses and the estimation results of Stone show that the linear
expenditure system is also too restrictive. Among other results, the estimation results,
for example, indicate that price and income elasticities are proportional.
According to Barnett and Serletis [BS09], the Rotterdam model studied by Theil [The65]
and Barten [Bar67] is a mile stone in empirical demand analysis. Having totally differ-
entiated equation (2.13), they derive

d log qi = eid log x+
n∑
j=1

eijd log pj , i = 1, . . . , n, (2.19)

where they assume that ei and eij are not necessarily constant. Using again the Slutsky
decomposition leads to

wid log qi = bid log x̄+
n∑
j=1

cijd log pj , i = 1, . . . , n, (2.20)

where

d log x̄ = d log x−
n∑
k=1

wkd log pk =
n∑
k=1

wkd log qk,

bj = wiei,

cij = wie
∗
ij =

pi · pj · sij
x

.

If the differentials are replaced with finite approximations and under the assumptions
that bi and cij are constant, an estimation of the parameters is possible. The adding-up
restrictions

∑n
k=1 bk = 1 and

∑n
k=1 ckj = 0 for all j, are already included in the data and

hence are no further constraint (cf. [DM80b]). Homogeneity (i.e.,
∑n

i=1 cji = 0 for all j)
and symmetry (i.e., cij = cji since symmetry of the substitution matrix implies symmetry
of C), however, can be tested. Among others, Deaton [Dea74] estimates different versions
of this model using British household consumption data from the twentieth century.
His tests, as others before, reveals that homogeneity is rejected, while symmetry as an
additional restriction is not very strict and decisive. As for him, he emphasizes the
advantage that the symmetric version of the Rotterdam model provides for the first
time a symmetric substitution and, hence, allows for an identification of substitutes and
complements (see [DM80b] or [Dea74] for a detailed discussion of the estimation results).
In contrast, there is a variety of contributions that use a particular functional form for the
utility function, the indirect utility, or the cost function following the approach developed

6See [TC87, Var92] for the derivation of the linear expenditure system on the basis of a specific utility
function.
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by Diewert [Die71]. However, functional forms that are consistent with the theoretical
restrictions prove to be too stringent. For example, the CES (Constant Elasticity of
Substitution) functional form

U(q) =
n∑
j=1

(αjqrj )
(1/r), 0 < αj < 1, −∞ < r < 1, (2.21)

results in constant elasticities 1/(1 − r) between any two pairs of goods (cf. [BS09]).
Alternatively, (locally) flexible functional forms represent approximations to a (indirect)
utility function or a cost function that provide enough parameters in order to derive the
corresponding demand system. However, although these flexible demand systems allows
for the inclusion of neoclassical microeconomic theory in econometric applications, the
theory does not hold for all prices and income and, thus, global integrability is not
possible (see also [BS09] for further information). An example for flexible functional
forms is the translog indirect utility function studied by Christensen et al. [CJL75]

ψ(p, x) = α0 +
n∑
i=1

αi log
(pi
x

)
+

1
2

n∑
i=1

n∑
j=1

βij log
(pi
x

)
log
(pj
x

)
(2.22)

that approximates the indirect utility function for appropriate parameters α0, αi, i =
1, . . . , n, and βij , i, j = 1, . . . , n (see [CJL75, BS09] for more details). Another example is
the AIDS - Almost ideal demand system developed by Deaton and Muellbauer [DM80a,
DM80b]. Their choice of the specific cost function

log c(u,p) = a(p) + ub(p), (2.23)

where (see also [DM80b])

a(p) = α0 +
∑
i

αi log pi +
1
2

n∑
i=1

n∑
j=1

γ∗ij log pi log pj ,

b(p) = β0

n∏
i=1

pβii ,

ensures that the resulting demand functions are first-order approximations to any demand
function that is consistent with utility theory. Moreover, c(u,p) is homogeneous in p if∑n

i=1 αi = 1,
∑n

i=1 γ
∗
ij =

∑n
j=1 γ

∗
ij =

∑n
i=1 βi = 0, and represents a special class of

preferences called PIGLOG, which allows exact aggregation of all consumers’ demand.7

Given
∂ log c(u,p)
∂ log pi

=
piqi
c(u,p)

= wi (2.24)

7A representative consumer exists if the average budget share can be expressed as a function of prices
and a scalar, which is again a function of all prices and all incomes. This is, for example, the case if
the budget shares of the households result from a cost function with a “price-independent generalized
linearity - logarithm (PIGLOG)” form (see [DM80a, DM80b] for more information). Hence, the
market demand can be seen as the demand of a rational representative consumer. In section 2.1.2.1
we summarize important results in the field of aggregation.
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and x = c(u,p) they substituted for u and derived

wi = αi +
∑
j

γij log pj + βi log(x/P ), (2.25)

where P is defined by

logP = α0 +
n∑
k=1

αk log pk +
1
2

n∑
k=1

n∑
l=1

γkl log pk log pl (2.26)

and γij = 1
2(γ∗ij + γ∗ji) = γji. The theoretical restrictions are satisfied if∑n

i=1 αi = 1,
∑n

i=1 βi = 0,
∑n

i=1 γij = 0 (Adding up)∑n
i=1 γji = 0, j = 1, . . . , n (Homogeneity)

γij = γji, i = 1, . . . , n, j = 1, . . . , n (Symmetry).

The change of expenditures are influenced by βi, where the sign of βi indicates whether
goods are luxuries or necessities. Having set up the system of demand functions for
aggregated demand of households, parameter estimation is realized with aggregate time
series data to test the model. Once more, tests of homogeneity show conflict with the the-
ory. Deaton and Muellbauer [DM80b] note that the imposition of homogeneity provokes
correlation in the errors, which is, among others, caused by the fact that the dynamical
behavior of demand is insufficiently modeled. Furthermore, the test for symmetry pro-
vides an indication for a further rejection. However, as in the Rotterdam model, they
state that it is not possible to have a unique statement about the rejection of symme-
try beyond homogeneity (cf. [DM80b]). Nevertheless, they emphasize that their model
possesses considerable advantages compared to others, and serves as a tool for testing,
extending, and improving demand analysis (cf. [DM80a]).
To conclude, we aim to summarize the remarks of Deaton and Muellbauer [DM80b] with
respect to arising problems in the application of these theoretical models. They state
that a more detailed theoretical analysis is necessary to obtain better illustrative models.
Hence, there are a range of further aspects that are fundamental for better comprehend-
ing the customer’s decision-making.

• Aggregation over commodities: otherwise detailed analysis of a large number of
commodities is too complex.8

• Aggregation over consumers: so far, many studies have neglected the emerging
problems and have treated aggregated demand as if there was exact one single
representative consumer, but this did not necessarily hold.9

• Relation and influence of labor supply, savings, and total expenditure, which is not
necessarily given exogenously and to be spent.

8We refer to [Hil94] who distinguishes between elementary commodities and commodities aggregates
and establishes a relation between them prior to his empirical studies.

9We will further consider important aspects of aggregation theory in section 2.1.2.1.
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• Inclusion of durable commodities, product availability, or rationing of products is
essential.

• There is uncertainty regarding the consumer’s behavior in the short and long run.
For example, they do not have full information about the quality or the durability
of their purchases. Likewise, they do not know all current prices when they decide
to purchase.

In the course of their book, Deaton and Muellbauer [DM80b] investigate the theoreti-
cal impacts of the issues mentioned above. In section 2.1.2.1, we take up the question
of appropriate aggregation and give a summary of research topics. In this context,
Barnett [BS09] state that extensions of the basic demand models include household-
production/labor-combinations and intertemporal utility models for dynamic household-
production models. For more information about intertemporal models, we refer to
[MCWG95, Var10, DM80b]. In section 2.1.3, we give an overview of questions concerning
effects of demand in production theory.

2.1.2.1 Aggregation Theory

In the context of modeling demand, aggregation over consumers is an important issue be-
cause of several reasons. Predominantly, only aggregated data is available for case studies.
A survey of research questions regarding aggregated demand is provided by Mas-Colell
[MCWG95]. Among others, these comprise the functional form and general properties
of the aggregated demand function. Likewise, Deaton and Muellbauer [DM80b] investi-
gated under which conditions the aggregated behavior can be expressed as function of
prices and aggregated income, i.e., as the demand of a single representative consumer.
Hildenbrand [Hil94, Hil08] studies under which conditions the aggregated demand fulfills
the law of demand.
In the following, we will consider these topics in more detail. Concerning the former
question, we again adopt the notation of Deaton and Muellbauer [DM80b] (cf. also
[MCWG95]). Exact linear aggregation, i.e., writing aggregate or market demand of good
qi, i = 1, . . . , n as function of prices pi, i = 1, . . . , n and aggregated expenditure x̄

q̄i =
1
H

∑
h

qhi (xh,p) = qi(x̄,p), i = 1, . . . , n, (2.27)

necessitates that the marginal propensities to spend ∂qhi /∂x
h, i = 1, . . . , n, are identical

for all households, which implies that

qhi = αhi (p) + βi(p)xh, i = 1, . . . n, h = 1, . . . ,H, (2.28)

where βi(p) is identical for all households h = 1, . . . ,H. Hence, q̄i = αi(p) + βi(p)x̄ . If
this holds for all x̄, αhi (p) = αi(p) = 0 so that qhi and q̄i are proportional to xh and x̄.
If, in addition, consistence with utility maximization is required, the corresponding cost
function must be of the form

ch(uh,p) = ah(p) + uh · b(p) (2.29)
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(see [DM80b] for the proof and the connection of the coefficients of qhi and ch(uh,p)).10

This, however, is quite stringent, because commodities that are only consumed at higher
budget are not included at all. Consequently, linear aggregation is rather reasonable for
broadly defined groups of commodities.
Alternatively, nonlinear aggregation also allows for new consumers entering the market.
By aggregating over expenditure patterns instead of quantities

w̄i =
pi
∑

h q
h
i∑

h x
h

=
H∑
h=1

xh∑
xh
· whi (2.30)

they consider the average aggregate budget share w̄i which is the weighted average of
individual household patterns. Basically, w̄i depends on all prices pi, i = 1, . . . , n, and
each household’s expenditure xh, h = 1, . . . ,H. Requiring that w̄i can be written as
function of prices and a representative level of total expenditure x0, it can be assumed
to represent a single representative consumer. Therefore,

w̄i =
∂ log c(u0,p)
∂ log pi

=
H∑
h=1

xh∑
xh
∂ log ch(uh0 ,p)

∂ log pi
, (2.31)

where c(u0,p) is the cost function of the representative consumer and ch(uh0 ,p) is the cost
function of household h. The conditions for the cost functions ch(uh0 ,p) so that a represen-
tative consumer exists and exact nonlinear aggregation is possible are provided by Deaton
and Muellbauer [DM80b] and are called “generalized linearity (GL)”-conditions.11 For
more details, we refer to [DM80b]. Alternative contributions considering the aggregated
demand as function of characteristics of the wealth/income distribution are presented by
[MCWG95, Hil08].
Concerning the properties of the aggregated demand function, Hildenbrand [Hil94, Hil08]
identifies under which conditions the law of demand is satisfied by market demand.12 In
doing so, he does not require that the individual demand function satisfies the law of
demand but investigates necessary and sufficient characteristics of the distribution of sin-
gle demand of all households with fixed income in case of a very large and heterogenous
population so that the mean demand is strictly decreasing, i.e.,

(p1 − p2) · (D(p1)−D(p2)) < 0, p1,p2 ∈ RL
++. (2.32)

In general, he assumes that the demand of each household depends on the price system,
the expected future prices, the present and the expected future income, the past con-
sumption, and the household characteristics. At this point, we don’t pursue this topic
further and refer to [Hil94] for a detailed presentation of his research results.

10The corresponding preferences of this cost function are called quasi-homothetic preferences.
11Special cases are called PIGL (price independent generalized linearity) and PIGLOG. For example,

the cost function of AIDS model described in section 2.1.2 satisfies the conditions of PIGLOG.
12Note that the law of demand refers to a hypothetical situation and, hence, cannot be tested empirically.
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2.1.3 Effects of Demand in the Context of Production Theory

In the following section, we will proceed with focusing on the profit maximization, re-
spectively expenditure minimization of firms. For a general comparison of firms and
households, we refer to [Spu09]. The concepts of utility maximization in the neoclas-
sical theory can also be applied to describe behavior of a firm. Mas-Colell [MCWG95]
and Spulber [Spu09] state that the firm’s objective is profit maximization (cf. “Fisher-
separation theorem” discussed in [Spu09]). Given a vector of prices for inputs and outputs
the firm aims to maximize profit, i.e.,

max
y
p · y subject to y ∈ Y, (2.33)

where X is the set of all production possibilities, or, alternatively, to minimize costs

min
y
w · y subject to y ∈ Y. (2.34)

If the firm only produces one good y = f(z), where f(·) is the production function
dependent on the input quantities z, the profit maximization problem can be written as

max p · f(z)−w · z, (2.35)

where the scalar p is the price for output f(z). Then, the optimal input quantity func-
tion zi(p,w) for input product i with respect to a vector of prices (p,w)′ is called fac-
tor demand function. In parallel to the demand function in section 2.1.1, xi(p,w) is
homogeneous of degree zero, has a negative slope and its substitution matrix is sym-
metric (see [Var92]). For further results regarding the firm’s behavior (weak axiom
of profit maximization, properties of profit function), we refer the interested reader to
[Var92, MCWG95].
In general, if the firm operates under imperfect competition, the output prices also be-
come decision variables, i.e., the price depends on the quantity in the market yM , or the
output, respectively p(yM ) (cf. [Var10]).
In the following, we summarize a selection of publications dealing with theoretical im-
pacts of demand uncertainty on production and pricing decisions of firms. In this con-
text, neoclassical models of both competitive and monopolistic firms are extended with
stochastic components to analyze optimal output and input decisions while keeping the
demand models very general. With regard to demand analysis the results are interesting
from two points of view: the influence of uncertainty in general or random demand in
particular on their output as well as on their demand for input products.
To begin with, Mills [Mil62] investigates a firm’s decision problem to determine optimal
prices and output quantities in the situation of imperfect competition.He assumes that
demand can be modeled as the sum of deterministic demand function dependent on price
and a random variable. Therefore, he shows that the optimal price and output decisions
differ from the results in a deterministic setting, and gives conditions under which the
price is lower in the uncertain case than the resulting price of the static model. Dhrymes
[Dhr64] analyzes the effects of uncertainty on optimal output mix of a monopolistic firm
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producing multiple products, where the price is modeled as a function of output quanti-
ties and a random variable. He splits the decision-making problem: first optimal output
is determined by maximizing expected utility, then optimal input quantities are the solu-
tion of the cost minimization problem with given output. He concludes that determining
the influence of uncertainty on output quantities is more complex than in the single
product case.
Whereas Baron [Bar70] investigates the firm’s decisions in a purely competitive setting
and emphasizes the impact of the attitude towards risk on the decision-making, Leland
[Lel72] considers the influences on decision-making of a monopolistic firm assuming that
demand is downward sloping and stochastic. He shows that, in addition to the attitude
towards risk, the behavioral mode of the firm plays a prevalent role.
Moreover, Batra et al. [BU74] provide theoretical results for optimal output and input
demand for labor and capital of a purely competitive firm that maximizes expected utility
of profit given an uncertain market price. Likewise, they noted that the attitude towards
risk is crucial for determining the changes of output decisions and the behavior of the
production function is decisive to the input demand functions. On the basis of Leland’s
approach for modeling demand [Lel72], Holthausen [Hol76] studies the influence of un-
certain demand on input decisions of a competitive firm as well as a firm in imperfect
competition with quantity-setting decisions and price-setting decisions. Whereas output
and input decisions are made simultaneously in the first two situations, input choices of
a price-setting firm has to be made before the output decision is made and, hence, they
are also influenced by the attitude towards risk.

2.2 Modeling Demand in Operations Research and
Management Science

In this section, we review a selection of publications dealing with approaches to modeling
demand in the field of supply chain management, assortment planning, or revenue man-
agement. Setting up distinctive optimization problems tailored to the specific features
of the respective sector (e.g., industry, service, or retail), they aim to determine optimal
strategies in procurement, production, distribution, assortment, or pricing. As these op-
timization models display very different modeling concepts ranging from mixed integer
nonlinear to stochastic optimization problems, the approaches to modeling demand also
vary in many aspects.
In the field of production optimization along a value chain (e.g., in chemical engineer-
ing), demand is often assumed to be price-insensitive and stochastic. Here, a common
approach is to model the uncertain demand as random variable (cf. [BT06, GM03,
GMB+05, CL04]). If, additionally, pricing decisions are included, demand models with
respect to prices are incorporated in the optimization model. These comprise linear
models (cf. [KGvB+09]) and nonlinear models (cf. [Cha05, LB08]).13 The arising opti-
mization problems are mainly solved by means of two-stage stochastic programs. More
details of these optimization models are provided in section 4.1.
13Such models are also used to analyze demand in the research area of marketing (cf. [LKM92]).
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In addition, some publications deal with specific situations focusing on few products.
Regarding distribution, for example, Bernstein and Federgruen [BF03] investigate op-
timal strategies of a supplier being faced with multiple retailers in the case of both a
centralized and a decentralized setting. The demand rate of one retailer i also depends
on all others retailers’ prices pj , j 6= i, j = 1, . . . , n, i.e., their demand model is given by

di(p) = ai − bipi +
∑
j 6=i

βijpj , i = 1, . . . , n, (2.36)

where ai > 0, bi > 0, and βij > 0 so that the retailer’s prices represent substitutes.
Moreover, bi >

∑
j 6=i βij for all i 6= j, i = 1, . . . , N , implies that the products are also

substitutes with regard to the inverse demand function. In particular, in the decentral-
ized system, in which the retailers select sales quantities and replenishment strategies,
the coordination mechanism is based on discount schemes. For further detailes about
contracts in supply chain management we refer to [CL05].
Goyal and Netessine [GN11] study the benefits of volume and product flexibility of a
single firm that produces two products i = 1, 2. They assume that the demand-price
relationship is given by

pi(qi, q3−i) = Ai − qi − βq3−i, i = 1, 2, (2.37)

where β ∈ (−1, 1). If β > 0, the products are substitutes, and if β < 0, the products are
complements. Moreover, the demand for both product is correlated by assuming that the
intercepts Ai ∈ R+, i = 1, 2 follow a bivariate continuous distribution with covariance
factors σ12 = ρσ1σ2. Their analyses highlight the impacts of demand correlation ρ and
the product substitutability parameter β on the decisions, and show the importance of
managing the production together.
As already stated, modeling demand also plays an important role in revenue management.
Here, the objective is to determine optimal pricing strategies and to ensure product avail-
ability in order to maximize profit of retail or service companies (e.g., airline industry, car
rental agencies). In this context, the concept of dynamic pricing plays a dominant role.
We refer to [BC03] for an overview of pricing models in the field of revenue management.
Concerning the modeling for demand, cumulative potential demand is often described
by a stochastic process dependent on the information available for the customer. The
decision whether to purchase or not depends largely on prices. For example, given an
initial assortment Gallego and van Ryzin [GvR94] investigate optimal pricing strategies
modeling realized demand as Poisson process with intensity λ(p) dependent on the price
p.
The effects of substitution are of importance in order to determine optimal strategies
in assortment planning problems of a retailer. Substitution effects occur if a product is
out of stock or is, generally, not available at the store under consideration. In general,
there are two common possibilities to model demand substitution: substitution models
associating a utility with each product and exogenous models of substitution which allow
for choosing an available variant if the first choice is out of stock. As an example for
the utility-based approach, van Ryzin and Mahajan [vRM99] employ the multinominal
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logit model in order to model consumer choice: given a set of available products S, each
consumer associates a utility with each product i ∈ S, and prefers the one for which his
utility is at the maximum. The multinominal logit approach defines the utility of buying
product j as Uj = uj +ζj , where uj is deterministic and ζj follows a Gumbel distribution
with mean zero and variance µ2π2/6.14 Then,

P (Uj = max[Ui, i ∈ S ∪ {0}]) =
euj/µ∑

i∈S e
ui/µ + eu0/µ

, (2.39)

where 0 represents the case of no purchase. Moreover, the consumer has only one choice.
If his preferred product is out of stock, the sale is not realized. This model satisfies the
“independence from irrelevant alternatives (IAA)”-property, which claims that the ratio
of choice probability for two products i and j is independent of the alternatives. In
their approach, they also distinguish between aggregation of independent consumers and
aggregation of consumers following trends.15

Regarding exogenous models of substitution, a customer has a first choice and if the
preferred product is not available, he chooses another product with given substitution
probability. Smith and Agrawal [SA00] present a probabilistic demand model: let xi, i =
1, . . . , n, indicate whether a product i is available (xi = 1) in the assortment or not
(xi = 0). Given the substitution probability αji of two items j 6= i, the probability that
item i with xi = 1 is required by the m-th customer is given by

Pi(x,m) = fi +
∑
j 6=i

(fj − xjAj(x,m))αji, i = 1, . . . , n, (2.40)

where fk, k = i, j, is the probability that the customers initially prefers k, k = i, j. On
this basis, they determine the effects of substitution on demand distributions given that
the number of arriving customers follows a negative binomial distribution. Moreover,
they propose a method to determine optimal inventory levels.
The work of Netessine and Rudi [NR03] is another example for determining optimal
stocking strategies for multiple products if substitution is possible. They assume that
demand D = (D1, . . . , Dn) for the products 1, . . . , n follows a continuous multivariate
distribution. If the product required is out of stock, a deterministic fraction of the demand
is satisfied by other products. Thus, the total demand of product i, i = 1, . . . , n, is given
by

Ds
i = Di +

∑
j 6=i

aji(Dj −Qj)+, i = 1, . . . , n, (2.41)

14The corresponding distribution function is given by

P (ζi ≤ x) = exp(− exp(−(x/µ) + γ)), (2.38)

where γ = 0.5772 is Euler’s constant.
15In general, discrete choice models as introduced above often appear in revenue management and

assortment optimization but also for modeling travel demand. For more information, we refer to
[AdPT92]. Moreover, the book of Domencich and McFadden [DM96] provides a comprehensive
survey of various modeling approaches for urban travel demand (see also section 2.3).
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whereDi, i = 1, . . . , n, is the initial demand of product i, Qi, i = 1, . . . , n, are the units of
product i stocked at the beginning of the sales period, and aji is the deterministic fraction
of the excess demand for product j that will be substituted by product i. They determine
optimal inventory levels for both centralized and decentralized inventory management.
For the former case, they show that profit decreases if demand correlation increases.
Kök and Fisher [KF07] also consider an assortment optimization problem of a retailer in
which substitution can take place in subcategories of the product range containing, in
total, n products. Let S be the set of products available at the retail. If the preferred
one is not available, the consumer selects a substitute product with probability δ. Then,
the effective demand rate for product i

Di(f ,d) = di + (
∑
k/∈S

αkidk +
∑
k∈S

αkiLk(fk, dk)), i = 1, . . . , n, (2.42)

is composed of the original demand rate di for product i, the supplementary demand αkidk
because of assortment-based substitution, and the incremental demand because of the
stockout-based substitution αkiLk(fk, dk). In this case, Lk(fk, dk) denotes the lost sales
of product k. The probability that product i substitutes product k is denoted by αki and
depends on the general probability to substitute δ. In addition, they develop a method
to estimate the demand and substitution parameters given varying data availability.
The resulting optimization problem is a knapsack problem, where the objective function
is nonlinear and nonseparable. Applying the model to the assortment of a supermarket
chain, their iterative heuristic algorithm reveals the optimal assortment to increase profit.
Hopp and Xu [HX08] present a static approximation of dynamic demand substitution
by using a memoryless flow network in order to model the substitution process. Let
ri, i = 1, . . . , n, be the attraction factor for product i, i = 1, . . . , n, dependent on
price and quality, and si, i = 1, . . . , n, represents the constant service rate for product
i, i = 1, . . . , n. The number N of customers arriving is a continuous random variable.
Then, the expected effective demand for product i is given by

E(De
i ) = E(N)

risi

r0 +
∑L

j=1 rjsj
, i = 1, . . . , n.

Their model is applied to determine optimal prices, service, and product assortment
strategies in competitive and noncompetitive markets.
So far, the models presented do not explicitly include the effect of prices on the sub-
stitution. In contrast, price-dependent substitution in a two vertically differentiated
product setting is studied by Transchel [Tra11]. Here, the customers are willing to buy
the high-quality product, if the low-quality product is out of stock. The demand for
the low-quality product L is modeled as a price-insensitive random variable and the de-
mand for the high-quality product H as a function dependent on price rH and a random
variable. The substitution rate depends on the price difference and is defined as

γ(rH) =


1 if rH ≤ rL,
(0, 1) if rH ∈ (rL, rs0),
0 if rH ≥ rs0,
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where rs0 is the minimum price of the high-quality product H if the substitution rate is
zero, and rL is the price of the low-quality product. Her studies reveal that the price-
sensitivity of substitution is a critical factor because of its influence on revenue and price
effects. Alternatively, an example of demand learning in assortment planning is provided
by Talebian et al. [TBS12]. They solve the assortment and pricing decision problem of
a retailer with stochastic dynamic programming, where new insights about demand are
obtained using Bayesian updating, and are incorporated in the optimization problem.

2.3 Miscellaneous Demand Models for Specific Products

This section summarizes demand models that are tailored to specific services (trans-
portation), products (e.g. automobiles or electric appliance) or commodities (e.g. en-
ergy). These models are based on different concepts: whereas some contributions select
approaches to modeling the utility, others are rather phenomenological.
In the range of travel demand, Domencich and McFadden [DM96] present a behavioral
model based on the concept of discrete choice theory that is also used in the context
of revenue management and assortment planning (see section 2.2). They start with a
rather general framework before passing on to develop concrete models with a sufficiently
simple structure to facilitate the usage of estimation methods. For instance, separability
of the decisions is required to simplify data analysis. In general, decisions of the passen-
gers related to transportation include location of residence and job, sales of labor and
purchase of commodities, frequency of work and leisure activities, destination of trips,
time and mode of travel.
On the basis of consumer choice theory, the utility function U(xi, s) = V (xi, s)+η(xi, s)
of each passenger for option i, i = 1, . . . , J , is a function of a deterministic part V (xi, s),
which is assumed to be representative for the population under consideration, and a ran-
dom term η(xi, s), where both depend on the observable attributes xi of option i and
on the socioeconomic characteristics s. Let η(xi, s), i = 1, . . . , J , be a random variable
with

P (η(xi, s) ≤ η) = exp(− exp(−(η + α)), i = 1, . . . , J,

where α is a parameter of the respective distribution. Then, the probability of choosing
option i can be written as

Pi = P (U(xi, s) > U(xj , s) for j 6= i, j = 1, . . . , J) (2.43)

=
eV (xi,s)∑J
j=1 e

V (xj ,s)
, (2.44)

where α is absorbed into V (xi, s), which means that option i optimizes the passengers’
utility, This result is known as multinominal logit model (cf. model equation (2.39)).
Likewise, they study alternative probability distributions for η(·, ·) and establish proba-
bility models that are consistent with the theory of individual utility maximization.
Now, we turn our attention to demand models for energy. To identify the demand of
energy in Baden-Wuerttemberg, Weber et al. [W+97] analyze consumer behavior with
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regard to energy and energy-consuming goods in households. In this context, they model
the demand for habitation, automobiles, electric appliance, and other household’s needs
by means of household production theory and develop a hierarchical decision model, in
which the decision parameter of lower level influence the superior decisions in a aggre-
gated way. At each level, the most important influencing factor is the remaining budget.
Among others, they propose to model the budget shares for automobile purchase and
maintenance in the framework of the Almost Ideal Expenditure System. Concerning the
intensity of automobile utilization, they use a generalized CES utility function. Addi-
tionally, to determine energy demand in the production and service sector and its change
because of technological changes, they apply input-output analysis.
Likewise, Pindyck [Pin79] uses the concept of neoclassical consumer theory to model
energy demand for different sectors. In particular, he investigates different formulas to
describe the demand formation: the indirect translog utility function in order to model
energy demand for households, an analogous second-order approximation for the cost
function in order to model industrial energy demand and a “simultaneous equation model”
for the transportation sector for which the required quantity is a function of stock, fuel
efficiency, and distance gone by car.
Different world oil models are studied and compared by Huntington [Hun93]. In general,
the main influencing factors for most of these models under consideration are crude oil
price, gross domestic product (GDP), prices of substitutes, and time trend for improve-
ments. To estimate and compare the response of each model to important factors, he
specifies oil demand q as loglinear form of

qt
qt−1

= αλpλβ
yt
yt−1

a
yλat−1q

−λ
t−1e

−λg(t−1), g < 0, a > 0, (2.45)

which is function of price p, the constant rate of improvements in efficiency g and the
GDP y. According to him, this corresponds to the structure of most demand models in
his study. That means, his procedure is as follows: on the basis of multiple scenarios
reflecting different price trends and different growth rates of GDP, each model generates
demand data. On the basis of this data base, he estimates the coefficients of his specifi-
cation using the method of least-squares in order to compare the econometric response
of these models.
Another model for oil demand is developed by Jäger [Jä08] with the intention to analyze
the dynamics in the oil market. In addition to the oil price, he assumes that the general
level of income or economic activity determines the demand for oil. Since he emphasizes
that demand need to be distinguished from the sum purchased in the market, which
is less or equal to the supply, he structures the demand as follows. Firstly, he defines
potential demand D∗(t) to be the overall quantity that can be applied in the market.
Assuming that this quantity is influenced by economic or technological factors, he uses
a log-linear demand approach

D∗(t) = c

n∏
i=1

Zi(t)θi , (2.46)
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where Zi, i = 1, . . . , n, represent the influencing factors such as gross domestic product,
population size, number of vehicles, or indices quantifying technological change, and
seasonality.16 Secondly, the budget conditioned demand DB(t) depends on the oil price
P (t), the gross domestic product Z1(t), and the potential demand D∗(t).

DB(t) = min[ε(P (t))Z1(t), D∗(t)] (2.47)

where
ε(P (t)) = ξ0 +

ξ1

ξ2 + ξ3P (t)
. (2.48)

Thus, he proposes to state the strategy of the consumer, i.e., the actual demand, as
follows

D(t) = D0(t) + γ(X(t))[DB(t)−D0(t)]+ (2.49)

where D0(t) is the minimum demand and

γ(P ) = φ(1 + θ(P ∗ − P )). (2.50)

In words, if demand exceeds supply, customers accept price increases as long as the price
is below a certain threshold P ∗.
Modeling demand for electricity represents a special case, since demand is predominantly
modeled price-insensitive and depends on the season, the day of the week, the hour of the
day as well as the weather (cf. [BGS07, EW03] for a more detailed discussion). Another
possibility is provided by Barlow [Bar02], who determines electricity spot prices by means
of a fundamental market model, for which electricity demand is modeled as stochastic
differential equation

Dt = a1 − σ1Yt, where dYt = −λYtdt+ dWt, (2.51)

an Ornstein-Uhlenbeck process.
So far, the models presented in this section are applicable to commodities, which are
products of standard quality and required in large quantities. In contrast, Huschto et
al. [HFH+11] develops a pricing model for conspicuous products, i.e., luxuries that are
bought because of their reputation, which is supposed to increase if prices increase.

16In general, his modeling approach allows to distinguish between developed regions and emerging
regions, whereas he simply considers the sum of potential demand for both regions.
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3 General Approach to Modeling
Demand for Commodities

In this chapter, we state our basic assumptions concerning modeling demand, i.e., we
give a general market description and we collect fundamental characteristics and depen-
dencies of demand. In doing so, we prefer a phenomenological approach to establishing
a utility function of a customer. This basically means that we directly model the depen-
dencies of demand without quantifying the consumer’s preferences, which would require
an elaborate structuring of their decision-making.1

The distinct approaches to modeling demand reviewed in chapter 2 reveal that the re-
lationship between demand and prices plays a predominant role. In addition, numerous
models include more influencing factors on demand, be it income of households, prices
of other products, assortment, or economic factors. The focus of our approach is on the
dependencies of prices and economic factors, but we also take characteristics of the con-
sumer into account. Moreover, we aim to retain fundamental characteristics of a demand
function such as negativity of its derivative with respect to the price or symmetry of the
cross-price derivatives (cf. section 2.1.1).
Thus, we provide the framework for a general demand model within which we will be able
to present a quantitative demand function for various applications in different markets.
In doing so, we propose model components that can be added to the model whenever
corresponding market data is available. At this stage, we restrict our general approach to
be deterministic and keep it simple by aggregating all consumers unless more information
becomes available. In doing so, our basic framework is supposed to serve as a manage-
able tool for establishing explicit demand models that are also integrable in production
optimization and pricing models.
This chapter is structured as follows: In section 3.1, we draft our concept to model
demand and list our basic assumptions concerning the market under consideration, the
dependencies of demand, and the properties of a respective demand model function. Sec-
tion 3.2 addresses the relationship between the demand of a product and its price. In
section 3.3, we explain our approach to integrate the influences of changes in the economic
situation of the market through economic indices. Section 3.4 considers the impacts of
the consumer’s characteristics on his demand. In section 3.5, we examine the occurrences
of price-based substitution. To cope with the arising complexity, we aggregate all sub-
stitution possibilities and consider the effects of substitution on demand as if it is based
on gradual switching. Finally, section 3.6 proposes a model enhancement to include the
effects of complementary products.

1To compare, the profit maximization problems described in section 2.1.3 display the theoretical struc-
ture of such a decision process of an industrial consumer.
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3.1 General Market Description and Approach to Modeling
Demand

In this section, we restrict our description to one region. Hence, we consider from now
on a general market in a region r with the following properties, where PM is the set of
products produced and sold in the market.

Assumptions 3.1. Demand-related characteristics of the market

1. All consumers act independently, but have the same demand behavior and can be
seen as just one consumer by aggregating their demand. Consequently, by referring
to the consumer, we explicitly bear the whole economy, i.e., all sectors, in mind.

2. The products p ∈ PM are connected by their production processes and possibly by
their subsequent processing or by their end consumption.

3. The products p ∈ PM are of standard quality and are in demand of large quantities
with the price as main influencing factor for demand (cf. [KGvB+09, Kan08]).

Example 3.1. This market description corresponds to most commodity markets. Among
others, the market for agricultural products, the petrochemical market or energy markets
(e.g., fuel oil or natural gas) satisfy these characteristics.2 For instance, the dependency
on crude oil of natural gas, which arises because of identical purposes of use, is studied
in [Kel09].

In addition to the price, there are more influencing factors on demand summarized in
the following.

Assumptions 3.2. Dependencies of demand
In a market that satisfies the assumptions 3.1, we assume that the demand φp,r,t of a
certain product p ∈ PM in region r at time t can be specified as a function of the following
factors:

1. time t,

2. prices xπpi,r,t of products pi ∈ P ⊆ P
M ,3

3. present economic situation aζr,t in region r at time t or rather the change in
the economic situation ∆aζr,t from previous times to t,4

2The electricity market is a counterexample, since the demand for electricity is often price-insensitive
in the short-run (see also [Kra09] for a detailed discussion of demand for electricity).

3Note that we consider a unique price for all products. In contrast, Kannegiesser [KGvB+09, Kan08]
assumed that the products can be sold at diverse prices at the spot market. In addition, his model
also includes contract prices. For more information on price discrimination see also [LKM92].

4Among others, the current economic situation, e.g., in terms of GDP growth, influences demand for
energy according to [Jä08, Hun93, Pin79].
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4. forecast of future economic situation aEζr,t,t+1 in region r for time t + 1 at
time t, respectively the forecast of the economic development ∆aEζr,t,t+1 given
aEζr,t−1,t or a

ζ
r,t, and

5. characteristics of the consumer summarized in the vector αconsumerr,t . For ex-
ample, his budget αbudgetr,t , his maximum capacity αmax_quant

p,r,t , or his expectation on
the price development αEπp,r,t are included.5

In this modeling approach, we concentrate on influencing factors that are straightfor-
wardly determinable and preferably even observable. For example, we decide to omit
further influencing factors such as technological progress of the industry, because its in-
fluence cannot easily be quantified. Moreover, we suggest that it is for the most part
covered by other influencing factors. To summarize, we define the demand function as
follows.6

Definition 3.1. The demand of a single product p in region r at time t is given by
φp,r,t : (R+

0 )|P | × R× RI × RI × RC → R+
0 ,

φp,r,t(xπr,t; t,∆a
ζ
r,t,∆a

Eζ
r,t,t+1,α

consumer
r,t ),

where xπr,t = (xπp1,r,t, . . . , x
π
p|P |,r,t

)′, I is the number of the economic indices, and C is the
number of the consumer’s characteristics included. More generally, the demand of all
products at time t is given by φr,t : (R+

0 )|P | × R× RI × RI × RC → (R+
0 )|P |

φr,t(x
π
r,t; t,∆a

ζ
r,t,∆a

Eζ
r,t,t+1,α

consumer
r,t ) = φp1,r,t(x

π
r,t; t,∆a

ζ
r,t,∆a

Eζ
r,t,t+1,α

consumer
r,t )

...
φp|P |,r,t(x

π
r,t; t,∆a

ζ
r,t,∆a

Eζ
r,t,t+1,α

consumer
r,t )

 .

For the sake of simplicity, we omit the parameters in the following and write φp,r,t(xπr,t)
instead of φp,r,t(xπr,t; t,∆aζr,t,∆a

Eζ
r,t,t+1,α

consumer
r,t ), as we will do for all extended de-

mand functions in the course of this chapter.
Before we start analyzing these dependencies and further characteristics of demand, we
have to make further assumptions. To begin with, we suggest the following regarding
the customer’s behavior.

Assumptions 3.3. The customer’s decisions are rational. That means he acts to opti-
mize his personal benefit.

5Most models in economic theory include the budget as influencing factor, whereas the others factor
mentioned above are mostly neglected. Therefore, if the customer is confronted with uncertainty,
they investigate the attitude towards risk which is supposed to influence the decision process (see
section 2.1.3 or [Hol76]). Regarding demand models for energy, Jäger [Jä08] included the maximum
potential demand and the minimum demand in his model.

6By way of comparison, Hildenbrand [Hil94] assumed that demand is influenced by the price system,
expected future prices, present and expected future income, past consumption, and household char-
acteristics.
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The influencing factor that is considered most frequently in demand theory is the own
price xπp,r,t of product p. In general, we assume that demand can be modeled as a
nonlinear, strictly decreasing function of xπp,r,t. Regarding the prices of other products,
we suppose that there are two reasons why prices influence each other. First, the products
under consideration are substitutes and can be interchanged in their further processing
or in their end consumption. Second, the products are complements and can only be
processed in a fixed ratio. Prices of products that are neither substitutes nor complements
have no impact on the demand under consideration.
We will analyze these demand-price relations in more detail in the following sections. For
this purpose, the following assumptions are crucial.

Assumptions 3.4. Characteristics of demand function

• Demand and price are always non-negative as defined in definition 3.1.

• The demand function φp,r,t is differentiable with respect to xπpi,r,t ∀pi ∈ P .

Although, we model the demand function for a fixed time and not dynamically, we
explicitly want to include temporal aspects in the modeling expressed by the parameter
t in the definition above. Namely, among others, intertemporal considerations occur in
modeling substitution or modeling the influence of the customer’s expectation on the
future price development. Moreover, we make the following assumption concerning past
consumption and price data.7

Assumptions 3.5. Influence of historical data on demand’s parameters
Instead of modeling the time-dependency explicitly, we assume that the remaining demand
parameters of time t are influenced by historical data such as the sales quantities and the
prices at previous times t− 1, t− 2, . . ..

In the following sections, we specify the dependencies of demand defined in assumptions
3.2. In section 3.2, we focus on the influence of the products’ price. The impacts of
the market’s economic situation are analyzed in section 3.3. Section 3.4 comprises the
studies on the influence of the consumer’s characteristics. Regarding the influences of
others products’ prices, the impacts of substitutes are considered in section 3.5 and the
impacts of complements in section 3.6.

3.2 Influence of the Product’s Price

Obviously, the price of the product under consideration plays a crucial role of demand. In
general, we assume that demand of a product rises if the price of this product decreases
and hence, we state monotonicity of the demand function. In doing so, our modeling
satisfies the law of demand, an attribute which is also required in the model contributions
presented in section 2.1 (cf. [JQ08]).

7We return to this assumption in chapter 7, in which we discuss methods to identify parameters of
explicit modeling approaches.
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Characteristics of demand 3.1. Dependency on the product’s price
Under the assumption that there are neither substitutes nor complements in the market,
we state the following property of φp,r,t

∂φpl,r,t
∂xπpl,r,t

(
xπr,t
)
≤ 0 for all l = 1, . . . , |P | (3.1)

and
∂φpl,r,t
∂xπpm,r,t

(
xπr,t
)

= 0 for all l, m = 1, . . . , |P |, l 6= m. (3.2)

Consequently, there are no Giffen goods in the market under consideration because the
derivative of the demand function with respect to the price is negative.
Note that other influencing factors can counteract these characteristic. For example, in-
corporating the consumer’s expectation on the future price development causes scenarios,
in which price and demand rise in common because the consumer expects even higher
prices in the future. Another example is the effect of changes in the economic situation,
which are covered in the next section.

3.3 Influence of Economic Development

In general, we suppose that, compared to the economic state in region r at previous
dates, a better, i.e., auspicious, economic situation or a boom phase boosts the demand
of products reprocessed in the industry as well as end products. In other words, the
consumer is willing to pay a higher price for the same quantity if he believes that the
economy is stipulated. In addition, his financial situation is favorable. Otherwise, a
negative economic development or a downturn causes the demand to decrease.
To include this effect in our modeling, we assume that the rating of the economic situation
at time t can be described by the change of economic statistics or indices such as the
gross domestic product (GDP) from previous times to t.8

Hence, we refer to an economic index as ζi, i = 1, . . . , I, where I is the number of
the economic statistics, and denote its absolute value in region r at time t by aζir,t. For
instance, ζi can be the gross domestic product, the industrial production index, or a
specific product-related index. Consequently, we write

aζr,t =
(
aζ1r,t, . . . , a

ζI
r,t

)′
for the vector representing the economic situation in region r at time t. Accordingly, the
vector

∆aζr,t =
(

∆aζ1r,t, . . . ,∆a
ζI
r,t

)′
.

8The GDP is the sum of all output in an economy (cf. [BFD08], page 742). For example, Belke et al.
[BDdH10] employ the gross national product (GNP) per capita to approximate the economic growth
in their study about energy consumption. Likewise, Jäger [Jä08] and Huntington [Hun93] include
this economic indicator in their models, where Huntington considers the GDP as measure for the
income of the whole economy.
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describes the economic development from previous times to time t. To define ∆aζir,t for
all available statistics, we make the following assumption.

Assumptions 3.6. Rating of the economic situation
The consumer considers the economic situation at time t as positive if the change of the
economic indices from the previous time points to time t is positive.

Therefore, we add a further index to ∆aζir,t representing the number of past years that
will be included in the calculation of our approach and write

Definition 3.2. Definition of ∆aζr,t,J

We define ∆aζir,t,J for an economic index ζi as follows

∆aζir,t,J :=
J∑
j=1

wj · (aζir,t − a
ζi
r,t−j), (3.3)

where J is the number of data for which we assume that they influence the economic
situation. Consequently,

∆aζr,t,J := (∆aζ1r,t,J , . . . ,∆a
ζI
r,t,J)′. (3.4)

Note that we include weighting factors, since we assume that older data has less influence
than current data. In the following, we give some examples how to weight historical data.

Example 3.2. Weighting factors of historical data
Given J we propose two possibilities for weighting factors wj , j = 1, . . . , J :

• exponentially weighting

wj = λ · (1− λ)j−1 j = 1, . . . , J, (3.5)

where limJ→∞
∑J

j=1wj = 1 and 0 < λ < 1,

• and linear weighting

wj =
2(J + 1− j)
J(J + 1)

j = 1, . . . , J, (3.6)

where
∑J

j=1wj = 1.

These weighting techniques are known as weighted moving averages techniques, which are
often applied to time series in finance (e.g., to calculate the volatility of energy prices
(see [EW03, BGS07])). In this context, J denotes the length of the moving window of
data included.
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Accordingly, we denote the forecast of the future economic situation by

aEζr,t,t+1 = (aEζ1r,t,t+1, . . . , a
EζI
r,t,t+1)′

and the corresponding forecast for the future development with

∆aEζr,t,t+1,J = (∆aEζ1r,t,t+1,J , . . . ,∆a
EζI
r,t,t+1,J)′.

Note that both parameters aEζr,t,t+1 and ∆aEζr,t,t+1,J display the prediction for time t + 1
given all information available at time t. In analogy with definition 3.2, we specify the
entries as follows.

Definition 3.3. Definition of ∆aEζr,t,t+1,J

The entries ∆aEζir,t,t+1,J of ∆aEζr,t,t+1,J are defined as

∆aEζir,t,t+1,J :=
J+1∑
j=1

wj · (aEζir,t,t+1 − a
ζi
r,t+1−j). (3.7)

Since we assume that demand rises if the change in the economic situation is positive,
we conclude, that demand rises if ∆aζir,t,J rises. Hence, we obtain

Characteristics of demand 3.2. Influence of economic development on demand
Let φp,r,t be differentiable with respect to ∆aζir,t,J and ∆aEζir,t,t+1,J . Then, the demand
function for product p in region r at time t satisfies

∂φp,r,t

∂∆aζir,t,J

(
xπr,t
)
≥ 0 for all i = 1, . . . , I,

and accordingly
∂φp,r,t

∂∆aEζir,t,t+1,J

(
xπr,t
)
≥ 0 for all i = 1, · · · , I.

This implies that consumption rises if the forecasted change of economic indices rises.
In the following, the focus is on characteristics of the consumer that affect his buying
decisions.

3.4 Influence of Specific Consumer’s Characteristics

In addition to effects from market parameters, characteristics of the consumer such as
the availability of facilities or production settings considerably influence the formation of
demand. Moreover, financial aspects play a crucial role regarding his purchase decisions
because, for instance, the expenses of the customer are limited by his budget.
In this section, we list the most important influencing factors on behalf of the consumer.
Note that, whereas a stands as a symbol for parameters with respect to the economic
situation, we refer to the characteristics of the consumer as α.
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αb1 αb2 αb3

αmax
p,r,t

αmin
p,r,t

Figure 3.1: Illustration of the nonlinear relationship between demand and price according
to the assumptions on the customer’s behavior in different price ranges

To begin with, we distinguish several price ranges in which we assume that the consumer
behaves differently.9 Figure 3.1 illustrates the shape of such a demand behavior. To be
more precise,

• In lower price regions [0, αb1p,r,t), the consumer buys/consumes/invests according
to his possible production and inventory capacities. Consequently, since prices
are low, the consumer completely utilizes his (production and inventory) capacity
α

max_quant
p,r,t .10. This quantity is also called possible demand or potential demand.

• In the second price range [αb1p,r,t, α
b2
p,r,t), the demand is strictly decreasing if prices

rise.

• In the third price range [αb2p,r,t, α
b3
p,r,t), demand is on a minimum level. In other

words, if prices exceed a certain price level αb2p,r,t, the consumer reduces his pro-
duction. Since prices are high, he buys as little as necessary αmin_quant

p,r,t , but still
enough to satisfy existing contracts or to meet his basic needs.

• If αb3p,r,t ≤ xπp,r,t, demand is equal to zero. The consumer cannot afford to purchase
anything.

In addition to the arrangement of price intervals to describe consumer behavior, we also
insert the notion of the consumer’s maximum price αmax_price

p,r,t , which is characterized by
the following pattern: the demand is positive for all prices xπp,r,t < α

max_price
p,r,t and it is zero

at αmax_price
p,r,t . The description above induces that αmax_price

p,r,t = αb3p,r,t for α
min_quant
p,r,t > 0.

In case αmin_quant
p,r,t = 0, there is no maximum price included in the model. For some

commodities, there is αmax_price
p,r,t < αb2p,r,t such that φp,r,t(xπr,t) = 0. The effects of these

distinctions on modeling the demand function are summarized in the following.

9Jäger [Jä08] also distinguishes between different kinds of consumption behavior (see also section 2.3).
10This capacity also includes storage capacities of the consumer. This aspect needs also to be taken into

account by modeling demand for multiple time points because the surplus stored at time t reduces
the maximal capacities at time t+ 1.
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Characteristics of demand 3.3. Influence of consumer’s characteristics on demand
To reflect the varying demand-price relationship described above, we define the demand
function as follows

φp,r,t(xπr,t) = α
max_quant
p,r,t · 1[0,αb1p,r,t)

(xπp,r,t) + ϕp,r,t(xπr,t) · 1[αb1p,r,t,α
b2
p,r,t)

(xπp,r,t)

+ α
min_quant
p,r,t · 1[αb2p,r,t,α

b3
p,r,t)

(xπp,r,t) + 0 · 1[αb3p,r,t,∞)(x
π
p,r,t), (3.8)

where ϕp,r,t w.r.t. xπp,r,t is differentiable and strictly decreasing, i.e.,

∂ϕp,r,t
∂xπp,r,t

(xπr,t) < 0 if xπp,r,t ∈
[
αb1p,r,t, α

b2
p,r,t

)
.

In general, φp,r,t w.r.t. xπp,r,t is continuous on the price interval [0, αb3p,r,t) if

ϕ(xπr,t) =αmax_quant
p,r,t for {xπr,t|xπp,r,t = αb1p,r,t} (3.9)

and lim
xπp,r,t→αb2p,r,t

ϕ(xπr,t) =αmin_quant
p,r,t , (3.10)

and differentiable w.r.t. xπp,r,t on [0, αb3p,r,t) if

∂ϕ

∂xπp,r,t
(xπr,t) = 0 for {xπr,t|xπp,r,t = αb1p,r,t} (3.11)

lim
xπp,r,t→αb2p,r,t

∂ϕ

∂xπp,r,t
(xπr,t) = 0. (3.12)

Note that, in addition, φp,r,t w.r.t. xπp,r,t is differentiable on [0,∞) if

α
min_quant
p,r,t = 0. (3.13)

If αmax_price
p,r,t < αb2p,r,t, the domain of the demand function (3.8) reduces w.r.t. xπp,r,t to

the interval [0, αmax_price
p,r,t ].

All in all, the demand is constrained by the consumer’s capacity limits and zero

0 ≤ φp,r,t(xπr,t) ≤ α
max_quant
p,r,t . (3.14)

In the next step, we turn our attention to financial constraints. In household consump-
tion theory, income plays a major role in determining the demand and limits the purchase
possibilities (cf. equation (2.1) in section 2.1.1 and section 2.1.2 for corresponding mod-
els). Regarding firms or industry in general, the available budget αbudgetr,t gets important.
Therefore, a further common constraint on the demand functions φp,r,t, p ∈ P , has to
be included in the model ∑

p

xπp,r,t · φp,r,t(xπr,t) ≤ α
budget
r,t . (3.15)

Here, we assume that the budget is fixed and cannot change on behalf of the consumer
in case of unexpected price developments.11

11Basically, the available budget αbudgetr,t can comprise credits or savings that will only be used in case
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3.4.1 Influence of Price Expectation and Contracts

The focus of this section is to propose supplementary demand model components in order
to incorporate the influence of the consumer’s expectation on the price development as
well as the impact of including contracts. Whereas the former aspect is, to our knowledge,
quite a new approach in collecting demand dependencies, contracts are often part of
contributions in management science (cf. [BF03, CL05]).
First, we assume that the consumer’s expectation influences the demand at prices xπp,r,t ∈
[αb1p,r,t,∞).12 To be more precise,

Assumptions 3.7. Expectation on Price Development
The personal expectation on the price development of the consumer is assumed to be equal
to the common expectation in the market. In general, this aspect can be incorporated
through growth forecasts provided by economic organizations or forecasts of economic
indices.

This leads to the following characteristics.

Characteristics of demand 3.4. Influence of the consumer’s expectation
Let αEπp,r,t be the expectation on the price development at time t for time t+z, z = 1, 2, . . ..
We define

αEπp,r,t :=


−1 if the consumer expects a higher price in the future,
0 if the consumer has no influencing expectations on price development,
1 if the consumer expects a lower price in the future.

Then, we rewrite the demand as

φEπp,r,t(x
π
r,t) := φp,r,t(xπr,t)− αEπp,r,t · φ

q_add
p,r,t (xπr,t) (3.16)

where φq_addp,r,t (xπr,t) is the additional quantity he orders and the notation φEπp,r,t indicates
that the consumer’s expectation on a price change influences the demand at time t. Note
that the additional quantity depends on the price xπp,r,t providing that φEπp,r,t(xπr,t) satisfies
the inequality (3.14).

While giving a description of consumer’s influences on demand, it is indispensable to
discuss the influence of contracts.13 We show in the following that, in case of available

of very high prices, but are not planned to be spent for product p if xπp,r,t ≤ αb2p,r,t. Obviously, such
an increase of capital influences the budget in the future, since, for example, the consumer will have
further liabilities. However, analyzing these effects on budget and demand is beyond the scope of
this thesis.

12For example, we suppose that if the customer expects prices to rise in the future, he is willing to
purchase now a higher quantity and to store the surplus.

13Kannegiesser [Kan08] emphasized that the distinction between contract sales and spot sales plays an
important role in the chemical industry. Therefore, he distinguished between consumption structured
by contracts and consumption at the spot market described by linear demand functions, which
automatically leads to different prices. In addition, he assumed that quantities can be sold at different
prices in the spot market, too.
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information about contracts, this can easily be embedded in our standard modeling
approach. Therefore, we assume that the producer and the customer arrange that the
consumer purchases a certain quantity αq_conp,r,t at time t. In addition, this contract can
include a price discount, but this is not mandatory.14

Characteristics of demand 3.5. Including discount contracts we define the demand
function as follows

φcon
p,r,t(x

π
r,t) := φp,r,t(xπr,t)− αcon

p,r,t · α
q_con
p,r,t , (3.17)

where

αcon
p,r,t :=

{
0 if there is a bilateral contract,
1 if there is no bilateral contract.

The notation φcon
p,r,t indicates that the possibility of contracts is included in the model.

Besides planning certainty, there can be more benefits for both customer and producer. If
there is a price discount, the customer has to pay less, whereas the producer’s advantage
is reduction in storage costs and customer satisfaction, respectively customer loyalty.

3.5 Influences of Other Products’ Prices on Demand:
Price-based Substitutes

In addition to the influence of the own price of product p on its demand, prices of other
products can also have an immense influence, e.g., if products are substitutes for each
other. The issue of substitutes occurs in diverse contributions in neoclassical consumer
theory (cf. section 2.1.2 and [DM80b, BS09]), but also assortment planning (cf. section 2.2
and [vRM99, NR03, HX08, KF07, Tra11]). Whereas, in the first field, the dependencies
of the substitutes are expressed by the consumer’s utility maximization, the publications
in the second research area model substitution that is caused by the non-availability of
products.
In this section, we develop a new approach to include the substitution aspect in our
demand model, where substitution is controlled by price differences of substitutes. For
that reason, we start with the formation of subsets consisting of all products that are
substitutes to each other.
Suppose P = {P1, ...,Pm} is a partition of the set P of all products such that

P = P1 ∪ ... ∪ Pm,

where Pi ∩Pj = ∅, i 6= j, and so that if pi1 ∈ Pi and pi2 ∈ Pi, pi1 and pi2 are substitutes.
In the following, we consider a set Pi = {pi1 , . . . , pin}. To begin with, we write down our
assumptions concerning the consumer’s behavior in the case of substitution.

14For comparison, we refer to Cachon and Lariviere [CL05] for a presentation of different types of
contracts in supply chain management (e.g., revenue-sharing contracts, buy-back contracts, price-
discount contracts, or quantity discounts).
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Assumptions 3.8. Substitution

• The customer switches to the substitute if he can buy it at a lower price. Hence, in
contrast to many other publications on substitution (see section 2.2 for examples),
we consider substitution that is not due to the non-availability of products.

• If a product is substitutable, it is not necessarily substitutable for all applications,
i.e., for each single application a (e.g., production process or end use). We split
the total demand for pij into a basis demand φbpij ,r,t, which can only be satisfied by

product pij , and a substitutable demand φaPi,r,t. Whereas φbpij ,r,t only depends on
the price of the product pij under consideration, the substitutable demand is subject
to both prices under consideration.

• The share of the substitutable demand assigned to the respective product depends on
the corresponding price ratio.

Note that from now on, our analysis is restricted to positive prices xπpi,r,t > 0, pi ∈ Pi. In
general, we distinguish between two types of substitution depending on the customer’s
situation: abrupt switching and gradual switching. Concerning gradual switching, we as-
sume that some applications of the customer have a transition price range. This means,
if prices of substitute products are in the same price range, a mixture of the products
is required. In other words, switching does not happen completely and immediately if a
certain price ratio barrier is crossed. We develop a modeling approach during the course
of this section.
In case of complete switching, the full substitutable demand φaPi,r,t needed for application
a passes over to the cheaper product if the price ratio crosses the specified bound. In
contrast to gradual switching, which solely depends on the prices, we assume that such
an abrupt and complete change in demanding can also depend on time and costs of the
switching process. This makes it more complex to develop a model, because, in theory,
each application of the customer that provokes such a switch has different production
factors.
In the following section, we briefly illustrate the emerging complexity of such a detailed
modeling approach and discuss under which assumptions we can circumvent these dif-
ficulties by modeling the sum of all abrupt, complete switchings as a gradual switching
process. In other words, we consider the aggregation of all applications leading to a
complete change instead of each single switching process.

3.5.1 Abrupt Switching

In this section, we restrict our analysis to two substitute products, i.e., Pi = {pi1 , pi2}.
In case of an abrupt and complete switching from one product to another, we can again
distinguish between different application-specific cases. Thus, we consider the following
situations.

1. Switching is costless and not time-consuming.
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2. Switching is cost-intensive and not time-consuming.

3. Switching is cost-intensive and time-consuming.

Note that, in this section, we propose demand functions that include the effects of sub-
stitution caused by abrupt switching processes. These are, however, not differentiable
with respect to prices.
Including the first case in our modeling approach is straightforward, since the customer
simply switches to another production mode and uses the cheaper product. Consequently,
we state the following characteristics.

Characteristics of demand 3.6. Model for abrupt switching 1
We assume that for application a switching from one product to its substitute product is
costless and not time-consuming. If pij , j ∈ {1, 2}, was consumed at time t − 1, i.e.,
xπpij ,r,t−1 < xπpi3−j ,r,t−1, the demand at time t is given by

φa,bpij ,r,t
(xπr,t) =

φ
b
pij ,r,t

(xπr,t) if xπpi3−j ,r,t < xπpij ,r,t
,

φaPi,r,t(x
π
r,t) + φbpij ,r,t

(xπr,t) if xπpi3−j ,r,t ≥ x
π
pij ,r,t

.
(3.18)

Remark 3.1. Given xπpi,r,t := minpi∈Pi(x
π
pi,r,t) the substitutable demand is given by

φaPi,r,t(x
π
r,t) = α

max_quant
Pi,r,t 1[0,αb1Pi,r,t

)(x
π
pi,r,t) + ϕp,r,t(xπr,t) · 1[αb1Pi,r,t

,αb2Pi,r,t
)(x

π
pi,r,t)

+ α
min_quant
Pi,r,t 1[αb2Pi,r,t

,αb3Pi,r,t
)(x

π
pi,r,t) + 0 · 1[αb3Pi,r,t

,∞)(x
π
pi,r,t). (3.19)

So far, including a complete switching is simple. If we consider situations, in which such
a product switching is cost-intensive, we have to take additional factors into account.
Certainly, the most important influencing factors are additional switching costs αscpi1 ,pi2 ,t.
Including these additional costs in the modeling leads to the following assumption.

Assumptions 3.9. Switching is only profitable if at least one of the products’ prices
is element of the price range [αb1Pi,r,t, α

b2
Pi,r,t), i.e., xπpi2 ,r,t ∈ [αb1Pi,r,t, α

b2
Pi,r,t) ∨ x

π
pi1 ,r,t

∈
[αb1Pi,r,t, α

b2
Pi,r,t).

In all other cases, we assume that demand is price-insensitive, because other factors
outweigh the prices (see section 3.4). Hence, switching mainly causes higher costs and
procures no further benefit.

Characteristics of demand 3.7. Model for abrupt switching 2
If for application a switching from one product to its substitute product is cost-intensive
but not time-consuming, we assume that the consumer does not switch immediately from
the product in use to the possibly cheaper product, but switches if the corresponding price
ratio xπpi1 ,r,t/x

π
pi2 ,r,t

crosses a specified barrier δpi1 ,pi2 ,t > 1. Under the assumption that
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product pi1 was consumed at time t−1, i.e., xπpi1 ,r,t−1 < δpi1 ,pi2 ,t−1 ·xπpi2 ,r,t−1 the demand
for product pi1 at time t is given by

φa,bpi1 ,r,t
(xπr,t) =


φbpi1 ,r,t

(xπr,t) if δpi1 ,pi2 ,t · x
π
pi2 ,r,t

< xπpi1 ,r,t

and xπpi2 ,r,t ∈ [αb1Pi,r,t, α
b2
Pi,r,t)

∨xπpi1 ,r,t ∈ [αb1Pi,r,t, α
b2
Pi,r,t)

φaPi,r,t(x
π
r,t) + φbpi1 ,r,t

(xπr,t) if δpi1 ,pi2 ,t · x
π
pi2 ,r,t

≥ xπpi1 ,r,t,

(3.20)

and for pi2 by

φa,bpi2 ,r,t
(xπr,t) =


φaPi,r,t(x

π
r,t) + φbpi2 ,r,t

(xπr,t) if δpi1 ,pi2 ,t · x
π
pi2 ,r,t

< xπpi1 ,r,t

and xπpi2 ,r,t ∈ [αb1Pi,r,t, α
b2
Pi,r,t)

∨xπpi1 ,r,t ∈ [αb1Pi,r,t, α
b2
Pi,r,t)

φbpi2 ,r,t
(xπr,t) if δpi1 ,pi2 ,t · x

π
pi2 ,r,t

≥ xπpi1 ,r,t.

(3.21)

At this point, the question arises which factors have influence on δpi1 ,pi2 ,t. To get a lower
bound, we assume that the consumer switches from pi1 to pi2 at time t if

xπpi1 ,r,t
· φaPi,r,t(x

π
r,t) > xπpi2 ,r,t

· φaPi,r,t(x
π
r,t) + αscpi1 ,pi2 ,t

(3.22)

and if xπpi2 ,r,t ∈ [αb1Pi,r,t, α
b2
Pi,r,t) ∨ x

π
pi1 ,r,t

∈ [αb1Pi,r,t, α
b2
Pi,r,t). Since xπpi2 ,r,t < xπpi1 ,r,t

we can
set

φaPi,r,t(x
π
r,t) = α

max_quant
Pi,r,t · 1[0,αb1Pi,r,t

)(x
π
p2,r,t) + ϕaPi,r,t(x

π
r,t) · 1[αb1Pi,r,t

,αb2Pi,r,t
)(x

π
p2,r,t)

≤ αmax_quant
Pi,r,t .

This implies that switching from pi1 to pi2 is profitable if

xπpi1 ,r,t

xπpi2 ,r,t
> 1 +

αscpi1 ,pi2 ,t

xπpi2 ,r,t
· φaPi,r,t(x

π
r,t)
≥ 1 +

αscpi1 ,pi2 ,t

xπpi2 ,r,t
· αmax_quant
Pi,r,t

. (3.23)

Hence, we obtain a lower bound for the price ratio indicating the change of consumption
from pi1 to its substitute pi2 at time t

δlower-bound
pi1 ,pi2 ,t

= 1 +
αscpi1 ,pi2 ,t

xπpi2 ,r,t
· αmax_quant
Pi,r,t

. (3.24)

Example 3.3. Let Pi = {pi1 , pi2}. To illustrate a possible course of prices over mul-
tiple times we set for all t = t1, . . . , t9 α

sc
pi1 ,pi2 ,t

= αscpi2 ,pi1 ,t
= 200, αmax_quant

P,r,t = 100,
αb1P,r,t = 7 and αb2P,r,t = 25. Furthermore, we set δpi1 ,pi2 ,t = δlower-bound

pi1 ,pi2 ,t
. Figure 3.2

shows an exemplary course of the prices xπpi1 ,r,t and x
π
pi2 ,r,t

at t = t1, . . . , t9 for situation
1. The customer buys product pi1 at t1, t5, t6, t7, t8 and product pi2 at t2, t3, t4, t9. The
situation 2 is illustrated in figure 3.3. The consumer switches to the cheaper product if
the lower bounds δpi1 ,pi2 ,t or δpi2 ,pi1 ,t are crossed. Consequently, he purchases product pi1
at t1, t2, t6, t7, t8 and product pi2 at t3, t4, t5, t9.
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Figure 3.2: Illustration of a possible
course of prices and the resulting pur-
chase decision if switching from one prod-
uct to another is costless and not time-
consuming (situation 1)
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Figure 3.3: Illustration of a possible
course of prices and the resulting pur-
chase decision if switching from one prod-
uct to another is cost-intensive and not
time-consuming (situation 2)

Considering an application, in which switching from one product to another is both
cost-intensive and time-consuming, requires still more information. We assume that the
customer’s decision depends, among others, on data of demand and prices before the
possible switching as well as the expectation about the price development in the future.
Moreover, technical details such as duration of the switching is crucial, since it takes
some time until the switching process is terminated and production or final consumption
proceeds. The need of all this additional data implies that explicitly modeling such a
complex decision-making is quite difficult if not impossible unless stochastic components
are included. Therefore, we restrict ourselves to describe an exemplary scheme of a cost-
intensive and time-consuming switching (see example 3.4) before proceeding to aggregate
single abrupt switches to a gradual switching.

Example 3.4. Cost-intensive and time-consuming substitution
In the following table, we draft a scenario in which the customer reprocessing pi1 and
pi2 decides to switch his production mode from pi1 to pi2 at time t, which is both cost-
intensive and time-consuming. z1 denotes the time period for which the customer expects
a positive price development. z2 denotes the time needed to change the production process
so that production with the substitute is possible. Moreover, let δpi1 ,pi2 ,τ > 1 ∀τ =
t− 1, . . . , t+ z2 + 1.
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Time Market situation and Customer’s decision
t− 1 If xπpi1 ,r,t−1 < δpi1 ,pi2 ,t · x

π
pi2 ,r,t−1, he purchases pi1 at time t− 1.

t If assumption 3.9 holds, δpi1 ,pi2 ,t · x
π
pi2 ,r,t

< xπpi1 ,r,t
, and αEπpi2 ,r,t+z ≥

αEπpi1 ,r,t+z
∀z = 1, . . . , z1, i.e., he expects that xπpi2 ,r,t+z

<
xπpi1 ,r,t+z

∀z = 1, . . . , z1, he switches and reduces his consumption,

i.e., φa,bpi1 ,r,t(x
π
r,t) = φbpi1 ,r,t

and φa,bpi2 ,r,t(x
π
r,t) = φa,storagePi,r,t (xπr,t)+φbpi2 ,r,t

,
where φa,storagePi,r,t(xπr,t)

< φaPi,r,t(x
π
r,t) is the quantity he is able to store at

time t until the production process is completed.
t+1 to t+z2−1 Further reswitching is not profitable and causes loss. Hence, the con-

sumer only purchases the basis demand φbpi1 ,r,τ , τ = t+1, . . . , t+z2−1

of pi1 and φa,bpi2 ,r,t(x
π
r,t) = φa,storagePi,r,τ (xπr,t) + φbpi2 ,r,τ

, τ = t + 1, . . . , t +
z2 − 1.

t+ z2 The switching is completed. The substitutable demand is completely
satisfied by pi2, i.e., φ

a,b
pi2 ,r,t+1(xπr,t+1) = φaPi,r,t+1(xπr,t+1) + φbpi2 ,r,t+1.

from t+ z2 + 1
on

The customer is not willing to reswitch again, unless the market sit-
uation changes to a larger extent, i.e., δ̃pi1 ,pi2 ,t+z2+n · xπpi2 ,r,t+z2+n >

xπpi1 ,r,t+z2+n where δ̃pi1 ,pi2 ,t+z2+n < δpi1 ,pi2 ,t and n = 1, 2, 3, . . ..

Note that we have no information about the storage opportunities, hence, it is possible
that φa,storagePi,r,τ (xπr,t) = 0, τ = t, . . . , t+ z2− 1. Summing up, the demand of products with
applications for which substitution is cost-intensive and time-consuming, depends, among
others, on the price ratio δpi1 ,pi2 ,t, the switching costs, the expectation regarding the price
development αEπpi1 ,r,t+z and αEπpi2 ,r,t+z for z = 1, . . . , z1, and the duration of the switching
process z2.

Remark 3.2. This example successfully shows the complexity of such switching pro-
cesses, which are cost-intensive and time-consuming. Therefore, stochastic optimization
models might be an appropriate tool in order to model the decision process of a customer
because, obviously, he has to decide under uncertainty whether to switch the production
process or not. In the following, we will explain how we circumvent this by aggregating
the sum of all single abrupt substitutions.

As stated above, from now on, we do not consider each application explicitly, but aggre-
gate all demand, which possibly arises from all applications of the customer.

Assumptions 3.10. Aggregation of substitutable demand
Under the assumption that there are a lot of applications differing in their production
settings and switching features, the switching of the aggregated substitutable demand

φaggPi,r,t(x
π
r,t) :=

∑
a

φaPi,r,t(x
π
r,t) (3.25)

can be approximately modeled by the gradual switching approach (described in the follow-
ing section).
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3.5.2 Gradual Switching

Again, we suppose we have two substitutes pi1 and pi2 with prices xπpi1 ,r,t and xπpi2 ,r,t
,

respectively. If one of the products is clearly cheaper than the other product, the con-
sumer’s substitutable demand is absorbed by the cheaper one. If both prices are com-
parable, their common substitutable demand φPi,r,t is split. In the following, we aim to
model this behavior by means of “splitting functions” ρpi1 and ρpi2 determining the share
of the common demand for the products pi1 and pi2 .
Therefore, ρpi1 and ρpi2 have to satisfy certain properties, which we describe below.

Assumptions 3.11. Necessary characteristics of ρpi1 and ρpi2
For appropriate splitting functions ρpi1 : R+

0 → [0, 1] and ρpi2 : R+
0 → [0, 1], the following

characteristics hold

• ρpi1 and ρpi2 are functions of the ratio of the prices xπpi1 ,r,t and x
π
pi2 ,r,t

and differ-
entiable with respect to xπpi1 ,r,t and x

π
pi2 ,r,t

.

• ρpi1 (1) = ρpi2 (1) = 1
2 .

• ρpi1 (y) + ρpi2 (y) = 1 for y ∈ R+.

• ρpi1 (y) = ρpi2

(
1
y

)
for y ∈ R+.

Having specified the required characteristics for ρpi1 (xπpi1 ,r,t/x
π
pi2 ,r,t

) and ρpi2 (xπpi1 ,r,t/x
π
pi2 ,r,t

)
we can now build the demand model for gradual substitution.

Characteristics of demand 3.8. Gradual substitution
Let φPi,r,t : (R+

0 )|P | × R × RI × RI × RC → R+
0 , x

π
r,t 7→ φPi,r,t(x

π
r,t) be the demand

function for the substitutable demand for all p ∈ Pi, or the differentiable approximation
of the substitutable demand function for φaggPi,r,t(x

π
r,t), respectively.15 Assuming that the

switching process is gradual, the demand for pi1 is given by

φsub
pi1 ,r,t

(xπr,t) = ρpi1

(
xπpi1 ,r,t

xπpi2 ,r,t

)
· φPi,r,t(xπr,t) + φbpi1 ,r,t

(xπr,t), (3.26)

and for pi2 by

φsub
pi2 ,r,t

(xπr,t) = ρpi2

(
xπpi2 ,r,t

xπpi1 ,r,t

)
· φPi,r,t(xπr,t) + φbpi2 ,r,t

(xπr,t), (3.27)

where ρpi1 (xπpi1 ,r,t/x
π
pi2 ,r,t

) and ρpi2 (xπpi2 ,r,t/x
π
pi1 ,r,t

) := 1− ρpi1 (xπpi1 ,r,t/x
π
pi2 ,r,t

) satisfy the
assumptions 3.11.

Note that the superscript sub indicates that the effects of substitutes have been explicitly
taken into account.
15Remember that we omit the parameters in the notation of the demand functions for a better compre-

hension.
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Remark 3.3. Given Pi = {pi1 , pi2}. Provided that ∂φPi,r,t
∂xπpi1 ,r,t

(
xπr,t
)

= ∂φPi,r,t
∂xπpi2 ,r,t

(
xπr,t
)
,

∂φsub
pi2 ,r,t

∂xπpi1 ,r,t

(
xπr,t
)

=
∂ρpi2
∂xπpi1 ,r,t

(
xπpi2 ,r,t

xπpi1 ,r,t

)
· φPi,r,t(xπr,t) + ρpi2

(
xπpi2 ,r,t

xπpi1 ,r,t

)
·
∂φPi,r,t
∂xπpi1 ,r,t

(
xπr,t
)

=
∂ρpi1
∂xπpi2 ,r,t

(
xπpi1 ,r,t

xπpi2 ,r,t

)
· φPi,r,t(xπr,t) + ρpi1

(
xπpi1 ,r,t

xπpi2 ,r,t

)
·
∂φPi,r,t
∂xπpi2 ,r,t

(
xπr,t
)

=
∂φsub

pi1 ,r,t

∂xπpi2 ,r,t

(
xπr,t
)
,

since
∂φbpij ,r,t

∂xπpik
,r,t

(xπr,t) = 0 (cf. assumptions 3.8). Consequently, in the case of substitutes,

the cross-price derivatives are symmetric. This is automatically fulfilled for independent
products pk, pl since

∂φpk,r,t
∂xπpl,r,t

= 0 (cf. characteristics of demand 3.1).

Remark 3.4. In case more than two products are substitutes, the model (3.27) can be
enhanced to n substitutes including n splitting functions instead of two. We obtain

φsub
pij ,r,t

(xπr,t) = ρpij ,Pi(x
π
pi1 ,r,t

, . . . , xπpin ,r,t)·φPi,r,t(x
π
r,t)+φbpij ,r,t(x

π
r,t), j = 1, . . . , n, (3.28)

where Pi = {pi1 , . . . , pin} and ρpij ,Pi(x
π
pi1 ,r,t

, . . . , xπpin ,r,t), j = 1, . . . , n, satisfy, among
others,

ρpij ,Pi(x
π
pi1 ,r,t

, . . . , xπpin ,r,t) =
1
n

if xπpi1 ,r,t = . . . = xπpin ,r,t

and
n∑
j=1

ρpij ,Pi(x
π
pi1 ,r,t

, . . . , xπpin ,r,t) = 1.

To get a more detailed description further analysis is necessary. This, however, is beyond
the scope of this thesis.

For the sake of completeness, we set up the following property concerning the dependency
of the substitutes’ prices.

Characteristics of demand 3.9. Influence of substitutes on demand
Let φsub

p,r,t be differentiable w.r.t. xπp,r,t, p ∈ P . Given the set of products P , if there are
two products {ps, pl} ∈ P with

∂φsub
pl,r,t

∂xπpl,r,t

(
xπr,t
)
≤ 0 (3.29)

and
∂φsub

pl,r,t

∂xπps,r,t

(
xπr,t
)
≥ 0, (3.30)

46



3.6. Influences of Other Products’ Prices on Demand: Complements

and for all other products pm ∈ P \ {pl, ps},m 6= l, s,

∂φsub
pl,r,t

∂xπpm,r,t

(
xπr,t
)

= 0 for all m = 1, . . . , |P |, m 6= l, s, (3.31)

then ps is a substitute product for product pl and the remaining products are independent,
i.e., they are neither substitutes nor complements of these two products.

For comparison, in economic studies, it is common to refer to goods as substitutes if the
corresponding price elasticity (see definition 2.3) is positive. In contrast to derivatives,
these measures capturing the demand responsiveness are unit-free. However, we restrict
our analysis to the derivatives for the classification of the products assuming that prices
are positive.
Note that our approach to including substitutes in the demand model implicates that this
feature does not necessarily hold for all situations. In the case of aprubt cost-intensive
switching, the substitution effect stated above gets lost in the presence of other effects
such as high switching costs or a reverse expectation on the price development. This
effect also occurs in the gradual modeling approach, because the effect of decreasing
substitutable demand can superimpose the positive effect of the splitting function. We
will elaborate this using the example of a specific demand function in the following
chapter.

3.6 Influences of Other Products’ Prices on Demand:
Complements

In this section, we consider the case in which the consumer wants to purchase a set of
products in a specified ratio, because he only needs or can reprocess a certain combina-
tion of these products. As with substitutes, such complements also arise in neoclassical
consumer theory (cf. section 2.1.2 and [DM80b, BS09]).
Here, we present a new approach to include this dependence of multiple products in a
phenomenological way. Again, we group the products under consideration. Let C =
{C1, . . . , Cm} be a partition of the set P so that

P = C1 ∪ . . . ∪ Cm,

where Ci ∩ Cj = ∅, i 6= j, and pi1 and pi2 are complementary products if pi1 ∈ Ci and
pi2 ∈ Ci. That means, the customer only demands them in a specified ratio acom

pi1 ,pi2 ,t
.

Hence,
φcom
pi1 ,r,t

(xπr,t) = acom
pi1 ,pi2 ,t

· φcom
pi2 ,r,t

(xπr,t), (3.32)

where the superscript com implies that the demand function includes the effect of com-
plementary products. Notably, so far, the additional basic demand for each product that
can only be satisfied by each product separately has not been taken into account. We
will return to this later on. In the following, we consider Ci = {pi1 , . . . , pin}.
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Assumptions 3.12. If the customer requires a product pij ∈ Ci, he simultaneously is
in demand for a combination of all products of Ci. Figuratively speaking, the customer
demands a basket of products filled with the respective weight proportion acom

pij ,Ci,t
, j =

1, . . . , n, of the single products pij he needs for further usage or processing.
Consequently, the demand of this basket φCi,r,t and, hence, the demand for each single
product pij is influenced by the sum of all complementary products’ prices ΨCi,r,t(x

π
r,t) =∑n

k=1 a
com
pik ,Ci,t

· xπpik ,r,t, which is the cost function of the basket consisting of all products
pij ∈ Ci.

Characteristics of demand 3.10. Demand model for n complements
Let φCi,r,t : (R+

0 )|P |×R×RI ×RI ×RC → R+
0 ,x

π
r,t 7→ φCi,r,t(x

π
r,t) be the demand function

for the mixture of products p ∈ Ci weighted by the respective factor acom
p,Ci,t with respect to

prices.16 Then, the demand for each single product pij ∈ Ci can be expressed by

acom
pij ,Ci,t

· φCi,r,t
(
xπr,t
)
, (3.33)

where acom
pij ,Ci,t

represents the respective proportion of pij in the mixture required. All in
all, the total demand for a product pij ∈ Ci is given by

φcom
pij ,r,t

(xπr,t) = acom
pij ,Ci,t

· φCi,r,t
(
xπr,t
)

+ φbpij ,r,t
(xπr,t), (3.34)

where φbpij ,r,t(x
π
r,t) is the basis demand that can only be satisfied by pij .

Remark 3.5. We assume that φCi,r,t
(
xπr,t
)

= φbundle
Ci,r,t

(
ΨCi,r,t(x

π
r,t)
)
, where φbundle

Ci,r,t : R+
0 ×

R×RI×RI×RC → R+
0 , y 7→ φCi,r,t(y), and ΨCi,r,t : (R+

0 )|P | → R+
0 , x

π
r,t 7→

∑n
k=1 a

com
pik ,Ci,t

·
xπpik ,r,t

. Then, given pij , pik ∈ Ci,

∂φcom
pij ,r,t

∂xπpik ,r,t

(
xπr,t
)

= acom
pij ,Ci,t

·
∂φCi,r,t
∂xπpik ,r,t

(xπr,t)

= acom
pij ,Ci,t

·
∂φbundle
Ci,r,t
∂y

(
ΨCi,r,t(x

π
r,t)
)
·
∂ΨCi,r,t
∂xπpik ,r,t

(
xπr,t
)

= acom
pij ,Ci,t

·
∂φbundle
Ci,r,t
∂y

(
ΨCi,r,t(x

π
r,t)
)
· acom

pik ,Ci,t

=
∂φcom

pik ,r,t

∂xπpij ,r,t

(
xπr,t
)
,

since
∂φbpij ,r,t

∂xπpik
,r,t

(xπr,t) = 0 (cf. assumptions 3.8). Thus, in the case of complements, the

cross-price derivatives are also symmetric.

The following characteristics concerning complementary products completes our analysis.
16Note that we omit the parameters in the notation of the demand functions for sake of simplicity.
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Characteristics of demand 3.11. Influence of complements on demand
Let P be the set of products in the market under consideration. Product pc is a com-
plement of product pl, while the remaining products of P are neither substitutes nor
complements of pl if

∂φcom
pl,r,t

∂xπpl,r,t

(
xπr,t
)
≤ 0, (3.35)

∂φcom
pl,r,t

∂xπpc,r,t

(
xπr,t
)
≤ 0, (3.36)

and
∂φcom

pl,r,t

∂xπpm,r,t

(
xπr,t
)

= 0 for all m = 1, . . . , |P |, m 6= l, c. (3.37)

Remark 3.6. Remarks 3.3 and 3.5 as well as the characteristics of demand 3.1, 3.9,
and 3.11 ensure that all cross-price derivatives of the demand function φp,r,t

(
xπr,t
)
are

symmetric.

3.7 Conclusion

In this section, we provide the fundamental framework that permits to develop precise
demand models for commodities. As stated above, we prefer a phenomenological ap-
proach rather than establishing the utility function, as pursued by many approaches to
modeling demand (cf. section 2.1.2). However, some characteristics of the Marshallian
and Hicksian demand function are transferred to the phenomenological demand function
φp,r,t (e.g., symmetry of the cross-price derivatives, negativity of the derivative with re-
spect to each price (cf. section 2.1.1)).
To sum up, we examine the impacts of all prices in the market ranging from the own
price to the prices of substitutes and complements. Likewise, we analyze the influences
of changes in the economic situation and influences on behalf of the consumer, who is
only able to purchase according to his background (e.g., his budget and capacities). In
doing so, our framework explicitly allows for the representation of a nonlinear demand
function with respect to price for commodities. Regarding substitution, the approaches
to model substitution in assortment planning are not applicable to commodities in gen-
eral (cf. section 2.2). Here, the question is rather how the total quantity is allocated to
multiple products because of price differences. Therefore, we propose a demand model
that incorporates price-based substitution.
So far, our analyses are based on the assumption that the demand in a market can be
described by the demand behavior of one single consumer by aggregating the demand of
all consumers. At this early stage, such a simplified model is necessary because there is
not enough information available to break down all the complex processes in the demand
formation. Provided that more knowledge is accessible, the usage of multi-agent models
seems appropriate to investigate the effects of multiple consumers in the market in a
further step.
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Another elaborate opportunity to extend the model are stochastic components. Through-
out this section, our analysis reveals that including stochastic components might be
useful. For instance, stochastic modeling of the development of the economic situa-
tion improves forecasts. In addition, by describing the consumer’s characteristics, it
might be convenient to model components such as the maximum capacity αmax_quant

p,r,t ,
the maximum price αmax_price

p,r,t , or the existence of contracts αcon
p,r,t as random variables.

Moreover, stochastic optimization models serve as an appropriate tool to display the
decision process of a consumer, especially in case of complex switching decisions that
include time-consuming and cost-intensive components.
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4 Modeling a Supply-Demand Trade
Network for Commodities

This chapter contains an overview of existing publications regarding decision-making in
supply chain management or chemical engineering, i.e., procurement, production, distri-
bution, and sales. Moreover, we present a new market optimization model that includes
supply-demand interaction to determine optimal price and production quantity strategies
that maximize profit in a commodity market. Among others, this model is applicable to
the petrochemical industry that is characterized by production processes, which produce
and reprocess various chemical products.
Concerning models of commodity prices in general, there exist two different approaches:
“stochastic reduced form” models and fundamental market models. The first approach
mentioned adapts methods of pricing assets in finance and models price dynamics by
means of stochastic processes that reflect the statistical properties of the prices (see
[Gem05, EW03, Pil07]). Such models often serve as a basis for derivative pricing (cf.
[Bod12] or [Ruj08]), portfolio optimization (cf. [Lud13]), and risk management.
In contrast, fundamental market models determine the price as the intersection of supply
and demand (cf. [Kra09]). Evidently, such explicit modeling of these market components
requires extensive knowledge of market mechanisms as well as of consumption properties
on the demand side, and procurement, production settings, storage, and distribution on
the supply side. This elaborate approach, however, provides a detailed presentation of
the complexity of price development, and helps us to understand which components have
a significant influence on price formation.
Modeling and optimizing production input-output flows are also an important part of
supply chain management. The respective modeling approaches often show a network
structure where vertices represent distinct facilities (e.g., different production locations,
warehouses and markets) and edges represent the conjunctions between them. In addi-
tion to input-output flows of the different vertices and transportation along the edges,
operation settings within the vertices are also controlled to optimize the supply chain.
We refer to Stadtler [Sta08] and Fleischmann et al. [FMW08] for an introduction to
organizational tasks and planning efforts within such a supply network as well as an
overview of various partial aspects along a typical supply chain. An expedient and im-
portant feature in this framework is demand planning, because, among others, input
quantities or specific settings of a production process may have to be determined prior
to real demand becoming known.1 Kilger and Wagner [KW08] gave an overview of the
requirements and procedures of demand planning. Given a forecast of future demand,

1In this context, corresponding studies with a focus on sales and services are often summarized under
the heading “demand chain planning”.
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the overall objective in supply chain management is to optimize production and trading
strategies in the whole system. In addition, pricing decisions are often included in the
optimization problem if the decision-maker has a market-dominating role.
In section 4.1, we review distinct methods of modeling and solving production optimiza-
tion problems in the field of supply chain management or chemical engineering. In this
context, many distinct research fields play a decisive role: modeling demand forecast,
network design and network optimization, optimization theory, stochastic programming,
etc.
In section 4.2, we present our approach to determine optimal pricing, production and
transportation quantities by including the nonlinear demand-price relationship in the
model. Thus, we explicitly combine optimal production and pricing decisions. To be
more precise, we determine prices and production quantities for the whole product range
in each region of the market as well as transportation quantities between regions in case
of multiple time periods. In doing so, we present a version of the supply-demand trade
network optimization model that is tailored to reflect the influence of the relationship
between demand and price and also serves as a basis for the model reduction methods
developed by Kramer [Kra13].2 Finally, we outline essential differences in modeling de-
mand compared to the cited publications and investigate which requirements a demand
model has to fulfill so that a solution of our emerging optimization model exists.

4.1 Literature Review and Model Approaches

This section summarizes distinct modeling and planning concepts with regard to pro-
duction optimization and supply chain management. Besides models tailored to the par-
ticularities of refineries or chemical engineering, this summary comprises more general
modeling approaches. Depending on the design and objectives, these complex decision-
making problems can be further classified regarding different aspects:
In the first place, according to the time horizon of the decision-making process the vari-
ables of the optimization models under consideration can be categorized in strategic,
tactical, or operational decisions. In addition, as already mentioned above, the models
can be classified into models without pricing decisions (i.e., prices are fixed and exoge-
nously given from outside the network) and models including prices as variables to be
optimized subject to given demand (forecast). In connection with that, broader diversity
is caused by different modeling assumptions on demand. At first, the publications can be
distinguished depending on whether they presume that demand is price-inelastic or not.
Evidently, the latter gives rise to a demand model dependent on price. In addition, there
are publications supposing that demand is deterministic, whereas a wide range of studies
considers demand as a source of uncertainty and prefers a stochastic modeling, which, in
turn, requires stochastic programming methods. This leads to the last item: the methods
used to solve the decision-making problems include linear, nonlinear, mixed-integer, and

2Since this optimization problem was accomplished together with Kramer [Kra13], her PhD thesis
“Modeling Price Formation in a Multi-Commodity Market - A Graph-Theoretical Decomposition
Approach to Complexity Reduction” also discusses some modeling aspects.
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stochastic programming.
In the following, we present a selection of publications structured according to their in-
corporation of demand. To begin with, we present contributions based on the assumption
that demand is price-insensitive.
Bertsimas and Thiele [BT06] test a robust optimization approach to determine optimal
order decisions in a plant network subject to uncertain demand. By restricting the aggre-
gated scaled deviation of the demand variables from the respective mean, their proposed
deterministic model results in a (mixed-integer) linear program with a modified demand
sequence compared to the case in which demand is fixed to the mean value. Their ap-
proach does not require much information about the distribution of demand so that it is
applicable to a broad range of demand distributions.
In comparison, Gupta and Maranas [GM03] investigate the effects of uncertain demand
in the tactical and operational planning process of a supply chain in chemical engineering
under the assumption that the quantity required is normally distributed with a known
mean and standard deviation. Their network model encompasses multiple sites, multiple
products, and multiple periods. To determine optimal production and logistic quantities
they set up a two-stage stochastic program. In the first place, production costs and the
expected value of logistic costs are minimized by determining optimal manufacturing de-
cisions before real demand is known. In the second place, the logistic decisions are made
given production quantities and real demand. In an extension of their work, the model
also serves as a tool for risk management.
In contrast, Guillèn et al. [GMB+05] consider the supply chain at the strategic level and
chose a multi-objective approach, i.e., they aim to maximize the net present value of the
supply chain, to maximize demand satisfaction, and to minimize financial risk. On the
basis of demand scenarios associated with the respective probability of occurrence, they
determine the number, location, and capacities of plants, as well as production rates and
flow of material. To solve their stochastic mixed integer optimization problem they make
use of the ε-constraint method. In this way, their approach results in a set of Pareto-
optimal solutions reflecting the trade-off among the multiple objectives.
Another scenario-based demand modeling approach integrated into a multi-objective op-
timization approach is studied by Chen and Lee [CL04]. To solve the supply chain
network given uncertain demand and prices they propose a two-phase fuzzy decision-
making method.
Now, we will summarize publications that explicitly take the demand-price relation into
account. Kannegiesser et al. [KGvB+09] (see also [Kan08]) develop a mixed-integer linear
optimization model for sales and supply planning of chemical commodities. Therefore,
the objective is to optimize expected profit by making decisions about monthly sales
quantities and prices over a period of multiple months. Regarding the supply side, the
production is assigned to different production facilities at different locations, and the
production processes are modeled with linear raw material recipe functions reflecting
the quantitative relationship of required raw material input and produced output. A
minimum quantity to be produced guarantees stability. So far, they neglect inventory,
transportation, and exchange rates.
Concerning demand, they distinguish contract and spot demand at each location. Whereas
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the contract sales quantities and prices are fixed, spot demand and spot prices are unsure.
Under certain assumptions concerning the spot market situation, they model the relation
of aggregated spot demand and average spot price as linear function given control param-
eters for minimum and maximum spot demand. To incorporate the uncertainty of the
spot prices, they add additional price factors associated with their respective probability
of occurrence. Within this scenario-based model approach, the demand functions differ
in each scenario, whereas the price elasticities remain identical.3 In the next step, they
approximate the resulting quadratic turnover function with a piecewise linear function
and maximize expected profit using two optimization strategies. First, they incorporate
the weighted average of all scenario-based approximated sales turnovers in the objec-
tive function. Alternatively, they propose a two-phase optimization strategy that first
computes the minimum profit of all scenarios which then serves as lower bound in the
subsequent optimization problem. In doing so, the supply decisions does not vary for
each scenario, only the prices differ. Finally, with this modeling approach they are able
to analyze the influence of different price developments, different price elasticities, and
different raw material prices on profit.
Chakravarty [Cha05] also presents a quantitative model for optimal production and pric-
ing, but, in addition, he incorporates strategic decisions in his model. Thus, the decision
variables of the resulting profit maximization of a monopolist includes production quan-
tities and prices of a certain product in multiple countries as well as investment decisions
in each of these countries. Concerning the demand-price relation, he uses the general
model Demand = a · Pricen with a > 0 and n < 0 given, which is intensively studied in
different fields of economics or marketing theory (cf. Lilien et al. [LKM92]).4 To ensure
reasonable sales quantities, an upper bound depending on each country’s population lim-
its total demand.
Taking advantage of the special structure of his constrained nonlinear convex optimiza-
tion model, he develops an algorithm based on grid search to find a fast solution. In doing
so, his approach allows to investigate the influence of several factors including overhead
allocation, import tariffs, and demand but also the effects of local content rules, local
taxes, long-term exchange rates, and market size in a single country.
For comparison, Lakkhanawat and Bagajewicz [LB08] combine microeconomic and math-
ematical methods to integrate the demand-price relation in their planning and scheduling
model for refinery operations. To be more precise, they propose a demand function de-
rived from a common utility function with constant elasticity of substitution.5 The
decision variables of their optimization model are crude oil input, processing, inventory,
blending quantities over discretized time periods, and prices. Many model components
such as the demand function are linearized to speed up computation. In addition to a de-
terministic version, they also investigate the influence of stochastic demand components

3Price elasticities are interpreted as the relative change of the spot price divided by the relative change
of the spot sales quantity (see also section 2.1.1 for the definition).

4This demand model provides a constant price elasticity, in fact the price elasticity is equal to n
(cf. section 2.1.1).

5We refer to section 2.1.1 for an introduction to neoclassical consumer theory (as part of microeconomic
theory) as well as the description of the terminology.
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using a two-stage stochastic optimization approach. At the end, they apply concepts of
financial risk management to include distinct attitudes towards risk in the model.

4.2 Supply-Demand Trade Network Optimization Model

In this section, we present a general optimization model including supply-demand inter-
actions to determine prices and production quantities of commodities. This model was
developed in cooperation with Kramer [Kra13] with the intention to apply the resulting
supply-demand trade network optimization model to the petrochemical industry.
To begin with, the goal was to build a model that determines the optimal pricing, pro-
duction and transport strategies for multiple time periods as to maximize the profit in a
market consisting of various operating possibilities related to different production sites.
In other words, we consider an interorganizational and interregional supply network in
which the single operators cooperate with each other to maximize joint profit. Thus,
we assume that all single production sites and all decisions are under the control of one
decision maker. Hence, the objective function of the optimization problem is the profit
of a monopolist.
We consider a set of products p ∈ PM produced, required and sold in different regions
r ∈ R at time periods t ∈ T . Since these products differ in their demand characteristics
as well as in their utilization in the supply chain, we classify them into subgroups. The
set Pex contains all products, of which the prices aπp,r,t are fixed and given from mar-
kets distinct from the market under consideration. Intermediate products p ∈ Pmid are
simply produced and reprocessed in the regarded market, but are not required by other
markets and, hence, are not sold. Lastly, p ∈ Pout are products that are in demand by
other markets (e.g., industrial sectors, households), i.e., their demand is driven by the
corresponding prices and we include their demand-price relation by means of a nonlinear
function in the market model.
This application serves as basis for the further research in this PhD thesis. Since the
incorporation of price-dependent demand requires a more comprehensive study of nonlin-
ear modeling approaches for demand, we will return to this topic later on discussing the
conditions of a suitable demand model in the context of the proposed optimization model.
Besides, the development of an appropriate demand model is described in full detail in
sections 3 and 6. At this point, we confine ourselves to the description of characteristics
that are important for setting up our market model. As a matter of fact, the demand of
a product is split into demand by different sectors, represented by different customers.
Consequently, assuming that |P | = 1, we obtain the aggregated demand function as the
sum of the single demand functions with respect to the product’s price xπpout,r,t

φpout,r,t(x
π
pout,r,t) =

∑
c

φc,pout,r,t(x
π
pout,r,t), (4.1)

where the sectors or customers act independently, but are assumed to have the same
preferences.6 If their single behavior can be expressed by a demand model with identical

6For an overview of the implications of aggregation in neoclassical consumer theory see section 2.1.2.1.
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Figure 4.1: Illustration of a section of the product network

Figure 4.2: Illustration of a production process

consumer-related parameters λφc,p,r,ti , i ∈ I, their aggregated demand model equals to
the demand of one single representative consumer given by

φpout,r,t(x
π
pout,r,t) = |C| · φc,pout,r,t(xπpout,r,t), (4.2)

where C is the set of consumers in the market. Regarding the supply side, the opera-
tions of production sites, i.e., the processing and production of the products, are given
by corresponding processes s ∈ S. Figure 4.1 exemplarily illustrates the resulting con-
nections for a selection of products. Here, if two products are linked by an arrow, the
one on the left is a resource product and one on the right reflects an output product in
a specific production process. In the model, corresponding operational process factors
afs,p,t characterize each process s providing information about the relative quantities of
inputs and outputs at time t. Consequently, input products of a process have negative
factors and the factors for output products have positive a sign. An example is given
in figure 4.2: two products with fixed prices are converted into an intermediate product
and a product with external demand. The capacity of each production side is arbitrary
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between zero and the maximum capacity. In other words, there is no minimum produc-
tion quantity required to ensure the efficiency of the production sites and production is
assigned to the cheapest operations. Moreover, we neglect fixed costs and consider pro-
duction costs as variable costs. We approximate them by only considering the resource
costs of a production process and neglect further costs (eg., removal costs, labor costs)
or taxes. Furthermore, the model approach does not include integer decisions which in-
dicate whether a production site is switched on or not. Likewise, we neglect the sequence
of processes and aggregate the processes over the time period t (cf. [Kra13]).
Since fixed costs for a production site and transportation costs between plants of the
same region are neglected, we assign their capacities directly to the respective processes
and omit the specification of production sites in the optimization model. Likewise, the
variable costs are directly related to the processes. In doing so, we transform the pro-
duction network with plants as vertices to a product network with products as vertices
linked by their respective production processes. Furthermore, we also include the pos-
sibility of trade between different regions. However, we neglect the possible occurrence
of time lags in case the time period t exceeds the transit time from one region to each
other. Transportation costs from one region to another are integrated being proportional
to the transportation quantities and transport distance.
Summing up, our optimization problem is a profit maximization problem of a monopo-
list given aggregated demand functions with respect to the product’s price for all prod-
ucts p ∈ Pout. The model combines tactical and operational decisions to determine
optimal prices, production, and transport quantities, where the optimal production is
constrained by the production capacities. Before formulating the supply-demand trade
network optimization model, we conclude this introduction by characterizing the market
under consideration.

Assumptions 4.1. We consider a market that comprises producing and selling in mul-
tiple regions with the following characteristics

1. All consumers of a region r act independently and have the same demand behavior.
Therefore, aggregation of their demand equals the demand of one consumer in
each region.

2. The producers coordinate with each other and have a common objective, namely
overall profit maximization.

3. There is interregional trade.

4. The products are connected by their production processes and possibly by their
subsequent processing or by their end consumption.

5. The products are of standard quality and are in demand of large quantities with
the price as main influencing factor for demand.

6. The market is arbitrage-free.7

7A market is arbitrage free if there is no possibility to make risk-free profit because of price differences.
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In the following, we present the nomenclature of our model.

Nomenclature of the Supply-Demand Trade Optimization Model
Sets:
PM products in the market (Pex ∪ Pmid ∪ Pout)
Pex products with fixed prices, which are given from outside the network
Pmid intermediate products without external demand
Pout products with external demand
R regions
S processes
C consumers
T time periods
I demand parameter indices

Parameters:
a
cap_max
s,r,t capacity of process s in region r at time t
aπpex,r,t price of product pex in region r at time t
afs,p,t input/output factor of product p ∈ Pex ∪ Pmid ∪ Pout in process s at time t
atrr1,r2,t transport costs to deliver one unit from region r1 to region r2 at time t
a
c_stor
p,r,t storage costs for a unit of product p ∈ Pmid ∪ Pout in region r at time t
a
cap_stor
s,r,t storage capacity for product p ∈ Pmid ∪ Pout in region r at time t

Variables:
xπp,r,t ≥ 0 price of product p ∈ Pmid ∪ Pout in region r at time t
xqs,r,t ≥ 0 production quantity of process s in region r at time t
xtrp,r1,r2,t ≥ 0 transport quantity of product p ∈ Pmid ∪ Pout from r1 to r2 at time t
xstorp,r,t ≥ 0 storage quantity of product p ∈ Pmid ∪ Pout in region r at time t

Functions:
φc,pout,r,t(·) demand function of a single customer c ∈ C w.r.t. xπpout,r,t, R+

0 → R+
0 ,

xπpout,r,t 7→ φc,pout,r,t(xπc,pout,r,t) for product pout in region r at time t
φpout,r,t(·) aggregated demand function w.r.t. xπpout,r,t, R+

0 → R+
0 ,

xπpout,r,t 7→ φpout,r,t(xπpout,r,t) for product pout in region r at time t

Demand Parameters:

λ
φ(c,)p,r,t

i , i ∈ I parameter of consumer c’s demand function for product pout
in region r at time t
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Regarding the optimization problem for one time period, we exclude the possibility of
storage. In the following, we present the optimization model at time t comprising the
profit function of the producer as the objective function and corresponding constraints
that are explained in more detail below.

max
xπpout,r,t, x

q
s,r,t

xtrpout,r1,r2,t
, xtrpmid,r1,r2,t

[ ∑
pout∈Pout
r∈R

xπpout,r,t · φpout,r,t(x
π
pout,r,t)

+
∑

pex∈Pex
r∈R, s∈S

xqs,r,t · a
f
s,pex,t · a

π
pex,r,t −

∑
p∈Pmid∪Pout
r1∈R, r2∈R

xtrp,r1,r2,t · a
tr
r1,r2,t

]
(4.3a)

subject to
∀s ∈ S, ∀r ∈ R

xqs,r,t ≤ a
cap_max
s,r,t , (4.3b)

∀pmid ∈ Pmid,∀r1 ∈ R∑
r2∈R

(xtrpmid,r1,r2,t − x
tr
pmid,r2,r1,t

) ≤
∑
s∈S

xqs,r1,t · a
f
s,pmid,t

, (4.3c)

∀pout ∈ Pout,∀r1 ∈ R

φpout,r1,t(x
π
pout,r1,t) ≤

∑
s∈S

xqs,r1,t · a
f
s,pout,t −

∑
r2∈R

(xtrpout,r1,r2,t − x
tr
pout,r2,r1,t), (4.3d)

∀p ∈ Pmid ∪ Pout, ∀r1 6= r2 ∈ R

xπp,r1,t ≤ x
π
p,r2,t + atrr2,r1,t, (4.3e)

and ∀s ∈ S, ∀r ∈ R

0 ≤ xqs,r,t · (
∑

p∈Pmid∪Pout

afs,p,t · xπp,r,t +
∑

pex∈Pex

afs,pex,t · a
π
pex,r,t). (4.3f)

The profit as defined in the objective function (4.3a) is equal to the revenue of selling
products with external demand and products with fixed prices minus the costs of pro-
ducing these products minus the transport costs for quantities sold in regions other than
the region of production. If there is pexi with a

f
s,pexi ,t

< 0, the corresponding term of the

second sum captures the input costs for pexi . If, in contrast, afs,pexj ,t > 0, this term adds
the revenue of selling product pexj to the profit.
The restrictions from the production sites are included through the capacity constraint
(4.3b). The production-transport constraint (4.3c) ensures that the net transport quan-
tities of the intermediate products do not exceed the production quantities, whereas
constraint (4.3d) guarantees that demand at the optimal price for each product in each
region is met by production and transport. Concerning pricing, constraint (4.3e) ensures
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that the difference in price in distinct regions is smaller than or equal to the respective
transportation costs. Consequently, the market is arbitrage free. By means of constraint
(4.3f) we include upper and lower bounds for the prices of intermediates in the model to
guarantee that each production process is profitable. However, this model is not suited
to uniquely determine the corresponding prices.
The modeling approach implicates that full demand is satisfied by the monopoly. Oth-
erwise, if there is a difference in demand and sales quantity, the monopolist has the
incentive to adjust his settings to optimize profit.8

In case contracts exist between the producer and some customers in the market under
consideration, the corresponding quantity can be easily separated from the total quantity
by establishing an extra term in the objective function and demand-related constraints.
Provided that the demand function is differentiable with respect to the price, the pro-
posed optimization problem can be solved by means of optimization methods based on
derivatives such as SQP-methods or interior-point methods (see section 5.2 for descrip-
tion). For comparison, Kramer [Kra13] presented a more detailed formulation of the
supply-demand trade network optimization model specifying each plant associated with
corresponding production processes, capacity, and fixed costs for running a proceed at
a plant. In this case, the optimization problem includes integer decisions which necessi-
tates mixed-integer nonlinear optimization methods.
So far, optimization determines prices and production quantities for a fixed time period.
Integrating the possibility of storage, the optimization model over a set of time periods
T = t1, . . . , tn is given by

max
xπpout,r,ti

, xqs,r,ti
xtrpout,r1,r2,ti

, xtrpmid,r1,r2,ti

xstorpout,r,ti
, xstorpmid,r,ti

, ti∈T

[∑
ti∈T

( ∑
pout∈Pout
r∈R

xπpout,r,ti · φpout,r,ti(x
π
pout,r,ti)

+
∑

pex∈Pex
r∈R, s∈S

xqs,r,ti · a
f
s,pex,ti

· aπpex,r,ti

−
∑

p∈Pmid∪Pout
r1∈R, r2∈R

xtrp,r1,r2,ti · a
tr
r1,r2,ti

−
∑

p∈Pmid∪Pout
r∈R

xstorp,r,ti · a
c_stor
p,r,ti

)]
(4.4a)

subject to
∀s ∈ S, ∀r ∈ R,∀ti ∈ T

xqs,r,ti ≤ a
cap_max
s,r,ti

, (4.4b)

∀pmid ∈ Pmid, ∀r1 ∈ R, ∀ti ∈ T∑
r2∈R

(xtrpmid,r1,r2,ti −x
tr
pmid,r2,r1,ti

) +xstorpmid,r1,ti
−xstorpmid,r1,ti−1

=
∑
s∈S

xqs,r1,ti · a
f
s,pmid,ti

, (4.4c)

8This discrepancy is often denoted as lost demand (cf. Lakkhanawat [LB08]).
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∀pout ∈ Pout, ∀r1 ∈ R, ∀ti ∈ T

φpout,r1,ti(x
π
pout,r1,ti) +

∑
r2∈R

(xtrpout,r1,r2,ti − x
tr
pout,r2,r1,ti) + xstorpout,r1,ti − x

stor
pout,r1,ti−1

=
∑
s∈S

xqs,r1,ti · a
f
s,pout,ti

, (4.4d)

∀p ∈ Pmid ∪ Pout, ∀r1 6= r2 ∈ R, ∀ti ∈ T

xπp,r1,ti ≤ x
π
p,r2,ti + atrr2,r1,ti , (4.4e)

∀s ∈ S, ∀r ∈ R, ∀ti ∈ T

0 ≤ xqs,r,ti · (
∑

p∈Pmid∪Pout

afs,p,ti · x
π
p,r,ti +

∑
pex∈Pex

afs,pex,ti · a
π
pex,r,ti), (4.4f)

and ∀pout ∈ Pout, ∀r ∈ R, ∀ti ∈ T

xstorp,r,ti ≤ a
cap_stor
p,r,ti

, (4.4g)

where xstorp,r,t0 = 0 ∀pmid ∈ Pmid,∀r ∈ R. The basic optimization model (4.3) changes
as follows. In addition to the storage capacity constraints (4.4g) added, the constraints
regarding the transportation-production(-sales) dependencies (4.3c) and (4.3d) change
into constraints (4.4c) and (4.4d) to take the possibility of storage into account. Further-
more, the costs of storage are subtracted from the profit (cf. objective function (4.4a)).
In the course of this thesis, we go back to the one-periodic model to analyze and test sev-
eral modeling approaches for demand (cf. section 6.3). Therefore, it remains to specify
the demand function to apply the optimization problem. In addition to the market-
related characteristics, the structure of the proposed optimization model imposes some
conditions to a useful demand model. These are discussed in the following section and
compared to demand characteristics in the publications cited above.

4.3 Concluding Remarks - Distinctive Features of the
Demand Function

To summarize, the modeling approaches of [KGvB+09, Cha05, LB08] most resemble the
supply-demand optimization model proposed in the previous section. Since, among oth-
ers, they explicitly include model components describing the demand-price relation, many
assumptions and concepts agree with our optimization modeling approach. Regarding
the work of Kannegiesser et al. [KGvB+09], they also group the consumers according to
their regional or industry-specific sales locations. Likewise, their description of an intra-
organizational production network with its frequently and continuously processed inputs
is quite similar to our approach, but their value chain is not controlled by a monopolist.
This feature is evident in the model of Chakravarty [Cha05] instead.
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In the following, we limit ourselves to comparing and discussing the details of the ap-
proaches to modeling demand. As stated above, we explicity aim to incorporate the non-
linear aggregated demand-price relation in the optimization model, which necessitates
nonlinear optimization methods. This concept also appears in the work of Chakravarty
[Cha05] and Lakkhanawat [LB08]. Even, Kannegiesser et al. [KGvB+09] mention that
demand could be nonlinearly modeled, and argue that a linear function is sufficient as a
statistical fit.
In any case, it is necessary to take note of some requirements. First, the structure of
the proposed optimization model necessitates the incorporation of saturation quantities
in case of low prices as well as a maximum price for which the demand becomes zero.
Otherwise, the optimization problem could get unbounded or may provide unreasonable
solutions.9 This can be realized by additional variable bounds preventing the respective
quantities from becoming too extreme or by a demand model including the consumer’s
saturation quantity as well as the consumer’s maximum price. In particular, the latter
leads to a modeling approach that reflects demand behavior in every price range (see
section 3.4). In contrast to our modeling approach, Chakravarty [Cha05] does not fix
the production capacities but related it to investment quantities in each country. This,
however, represents a lower bound for quantities and, thus, demand because he requires
that the investment costs are covered by a selection of products produced in this country.
To conclude, further advantageous characteristics of a demand function are differentia-
bility and concavity. Kramer [Kra13] shows that if the demand function is concave, the
optimization problem is convex and, therefore, a unique solution exists. In the remaining
part, we will concentrate on differentiable functions so that optimization methods based
on derivatives can be applied. Chapter 6 comprises a new explicit demand model for
petrochemical products that is tailored to the proposed optimization model. Simulation
results are presented in section 6.3.

9We suggest that selling an infinitesimal quantity at very high prices is unrealistic concerning the
customer’s and the supplier’s preferences.
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5 Constrained Optimization - Theory,
Algorithms, and Application

The scope of this chapter is to explain the methodology that is applied to solve the di-
verse inequality constrained optimization problems arising in the course of this thesis. In
addition to the network optimization problem (4.3) presented in section 4.2, these will
also occur in terms of parameter identification problems in section 7.
In section 5.1, we summarize the optimality conditions for constrained optimization prob-
lems, before we pass on to methods that solve inequality constrained optimization pro-
grams in section 5.2. For more detailed information, we refer to numerous textbooks
about optimization methods, e.g., [NW06, Fle01, GMW08, BGLS06].
In section 5.3, we discuss the features of the least-squares method that is most often ap-
plied to parameter estimation and data fitting problems. In this context, we present the
Gauss-Newton algorithm used to solve nonlinear least-squares problems. Furthermore,
we outline a generalization to solve constrained least-squares problems.
We refer to [Str11, NW06] for more information on the concept of least-squares, and to
[Boc87, BKS07] for more details on the generalized Gauss-Newton algorithm for con-
strained least-squares problems.

5.1 Optimality Conditions for Constrained Optimization
Problems

In general, most textbooks about optimization include sections on these optimality con-
ditions, e.g., [NW06, Fle01, GMW08, BGLS06]. Principally, we sketch this section on
[NW06], chapter 12. To begin with, the general optimization problem reads as

min
x∈Rn

f(x) (5.1a)

subject to
ci(x) = 0, i ∈ E ci(x) ≥ 0, i ∈ I, (5.1b)

where f, ci : Rn → R are smooth and E and I are finite sets of indices. In the following,
the first-order derivative w.r.t. x is denoted by ∇ and the second-order derivative w.r.t.
x by ∇2. Obviously, Ω = {x|ci(x) = 0, i ∈ E ; ci(x) ≥ 0, i ∈ I} is the set of all feasible
points of problem (5.1). Additionally, the following definitions are used to characterize
solutions of problem (5.1).

Definition 5.1. Local Solution
If x∗ ∈ {x|ci(x) = 0, i ∈ E ; ci(x) ≥ 0, i ∈ I} and there is a neighborhood N of x∗, where

63



Chapter 5. Constrained Optimization - Theory, Algorithms, and Application

f(x) ≥ f(x∗) for x ∈ N ∩ {x|ci(x) = 0, i ∈ E ; ci(x) ≥ 0, i ∈ I}, then x∗ is a local
solution of problem (5.1).

Moreover, we consider the set of indices for which the constraints are equal to zero, i.e.,

Definition 5.2. Active Set
The active set A(x) at x is given by

A(x) = E ∪ {i ∈ I|ci(x) = 0}. (5.2)

For a local minimizer x∗ of an unconstrained optimization, it is necessary that ∇f(x∗) =
0 and∇2f(x∗) is positive semidefinite. To build the optimality conditions for constrained
optimization problems, the Langrangian function is central.

Definition 5.3. Lagrangian Function
The Lagrangian function of problem (5.1) is defined as

L(x,λ) = f(x) +
∑
i∈E∪I

λici(x), (5.3)

where λi ∈ R, i ∈ E∪I are the Lagrange multipliers of the respective constraints ci(x), i ∈
E ∪ I.
Definition 5.4. Set of Linearized Feasible Directions

F(x) = {d|dT∇ci(x) = 0, ∀i ∈ E , dT∇ci(x) ≥ 0, ∀i ∈ A(x∗) ∩ I}
is the set of linearized feasible directions.

In general, the first-order necessary optimality conditions can be established provided
that certain qualification conditions at x∗ hold (cf. [NW06, GMW08, BGLS06]). In
the following, we define the linear independence constraint qualification following again
Nocedal [NW06] who establishes the optimality conditions in terms of the following
qualification constraint.

Definition 5.5. LICQ
The linear independence constraint qualification (LICQ) holds if the set of active con-
straint gradients {∇ci(x), i ∈ A(x)} is linearly independent.

Consequently, we outline the first-order necessary conditions given the LICQ defined
above.

Theorem 5.1. First-Order Necessary Conditions
Under the assumption that x∗ is a local solution of problem (5.1), where f and ci are
smooth, and that the LICQ holds at x∗, there exists a Lagrange multiplier vector λ∗ with
components λ∗i , i ∈ E ∪ I, so that the following conditions are fulfilled at (x∗,λ∗)

∇L(x∗,λ∗) = 0, (5.4a)
ci(x∗) = 0, ∀i ∈ E , (5.4b)
ci(x∗) ≥ 0, ∀i ∈ I, (5.4c)

λ∗i ≥ 0, ∀i ∈ I, (5.4d)
λ∗i ci(x

∗) = 0, ∀i ∈ E ∪ I. (5.4e)
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Proof: see [NW06] (page 323ff).

These conditions (5.4) are called the Karush-Kuhn-Tucker (KKT) conditions and the
point (x∗,λ∗), for which the KKT-conditions hold, is called a Karush-Kuhn-Tucker
(KKT) point. More precisely, the conditions (5.4e) are called complementarity condi-
tions. They ensure that at least one of λ∗i and ci(x

∗) is equal to zero. As a consequence,
strict complementarity is defined as follows.

Definition 5.6. Strict Complementarity
Suppose x∗ locally solves problem (5.1) and λ∗ satisfies the KKT conditions. The strict
complementarity conditions holds if either λ∗i or ci(x∗) = 0. That means, λ∗i > 0 for all
i ∈ I ∩ A(x∗).

The next theorem provides the necessary second-order conditions using the Hessian of
the Lagrangian function of problem (5.1).

Theorem 5.2. Second-Order Necessary Conditions
Under the assumption that x∗ is a local solution of problem (5.1), that the LICQ con-
ditions hold, and that λ∗ is the Lagrange multiplier vector for which the Karush-Kuhn-
Tucker conditions hold,

wT∇2L(x∗,λ∗)w ≥ 0, ∀w ∈ C(x∗,λ∗), (5.5)

where

C(x∗,λ∗) := {w ∈ F(x∗)|∇ci(x∗)Tw = 0, all i ∈ A(x∗) ∩ I with λ∗i > 0}. (5.6)

Proof: see [NW06] (page 332f).

In addition, sufficient conditions can also be shown in terms of the Hessian of the Lan-
grangian.

Theorem 5.3. Second-Order Sufficient Conditions
Under the assumption that for x∗ ∈ Ω, there is a Langrange multiplier vector λ∗ so that
the KKT conditions hold. If

wT∇2L(x∗,λ∗)w > 0, ∀w ∈ C(x∗,λ∗), w 6= 0, (5.7)

where

C(x∗,λ∗) := {w ∈ F(x∗)|∇ci(x∗)Tw = 0, ∀i ∈ A(x∗) ∩ I with λ∗i > 0}, (5.8)

x∗ is a strict local solution for problem (5.1).

Proof: see [NW06] (page 333f).

For further information, we refer to [NW06, GMW08, BGLS06]. Likewise, Boyd and
Vanderberghe [BV04] discuss the KKT conditions for convex problems.
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Remark 5.1. Note that problem (5.1) is convex if the objective function f(x) is con-
vex, the inequality constraint functions −ci(x) ≤ 0, i ∈ I are convex, and the equality
constraints functions ci(x) ≥ 0, i ∈ E are affine. Thus, the feasible set of a convex opti-
mization problem is convex. As a consequence, a local solution of a convex optimization
problem is a global solution (see [BNO03]).

5.2 Methods to Solve Inequality Constrained Problems

In this section, we summarize common methods to solve inequality constrained problems.
According to Nocedal [NW06], there are two powerful algorithms to solve large-scale
nonlinear optimization problems: SQP (sequential quadratic programming) methods and
interior-point methods. To begin with, we briefly outline the concept of the active set
method for quadratic optimization problems, which are often part of the more general
SQP methods.

5.2.1 Active Set Method for Quadratic Programming

Following [NW06], we restrict our presentation to convex quadratic problems of the form

min
x
q(x) =

1
2
xTGx+ xTc (5.9a)

subject to

aTi x = bi, i ∈ E , (5.9b)

aTi x ≥ bi, i ∈ I, (5.9c)

where G is a positive semidefinite n× n matrix; E and I are finite sets of indices; c, x,
and ai, i ∈ E ∪ I, are vectors in Rn, and bi ∈ R, i ∈ E ∪ I.
Subsequently, we summarize the primal active-set method for quadratic programming.
Evidently, a solution x∗ of the quadratic optimization problem (5.9) satisfies the KKT
conditions

Gx∗ + c−
∑

i∈A(x∗)

λ∗iai = 0, (5.10a)

aTi x
∗ = bi, ∀i ∈ A(x∗), (5.10b)

aTi x
∗ ≥ bi, ∀i ∈ I \ A(x∗), (5.10c)
λ∗i ≥ 0, ∀i ∈ I ∩ A(x∗). (5.10d)

Note that theorem (5.1) was formulated assuming that the LICQ is satisfied. As men-
tioned above, there are alternative constraint qualifications (see also [NW06], section
12). For instance, linearity of the constraints ensure that theorem (5.1) holds, which is
satisfied by the quadratic problem (5.9) (see [NW06], section 16).
In general, a step k of the active set method consists in solving a quadratic equality
constrained subproblem, where all equality constraints and some inequality constraints
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are included as equalities. The corresponding indices are summarized in the working
set Wk. To be more precise, provided that the given iterate xk does not minimize q(x)
subject to aTi x = bi, i ∈ Wk, the following equality constrained subproblem is solved to
compute a step ∆xk

min
∆xk

[
1
2
∆xTkG∆xk + gTk∆xk

]
(5.11a)

subject to
aTi ∆xk = 0, i ∈ Wk, (5.11b)

where gk = Gxk + c. We refer to [NW06] for methods for computing the solution ∆xk
of problem (5.11). Therefore, the new iterate for problem (5.9) is given by

xk+1 = xk + αk∆xk, (5.12)

where

αk = min

[
1, min
i/∈Wk,a

T
i ∆xk<0

bi − aTi xk
aTi ∆xk

]
, (5.13)

i.e., the step-length αk is the largest value in [0, 1] so that all constraints of problem (5.9)
are satisfied. The iteration stops if ∆xk = 0. Then, a solution x̂ is found that minimizes
the quadratic objective function given the current working set Ŵ. Consequently, we get
from the optimality conditions of problem (5.11)∑

i∈Ŵ

aiλ̂i = Gx̂+ c (5.14)

for some Lagrange multipliers λ̂i, i ∈ Ŵ. If the multipliers λi, i /∈ I ∩ Ŵ are set equal
to zero for the inequalities constraints that are not imposed to be equalities, x̂ and λ̂
satisfy equation (5.10a). Moreover, since the computation of the step length ensures that
(5.10b) and (5.10c) hold, it remains to verify the fourth KKT condition so that (x̂, λ̂) is a
KKT point for the original problem. Thus, (x̂, λ̂) is a KKT point if λ̂i ≥ 0, i ∈ Ŵ∩I. In
this case, since G is positive semidefinite, x̂ is a global solution of the quadratic problem
(5.9) (see Nocedal [NW06], chapter 16).
If there is λj < 0, j ∈ Ŵ ∩ I, the index j is removed from the working set and the
subproblem is solved without the corresponding imposed equality constraint. In doing
so, the following theorem shows that the resulting step is feasible with respect to the
removed constraint.

Theorem 5.4. Given Ŵ, suppose that the solution x̂ satisfies equation (5.14) and aTi x̂ =
bi for all i ∈ Ŵ. In addition, suppose that the constraint gradients ai, i ∈ Ŵ, are linearly
independent, and there is λ̂j < 0 for j ∈ Ŵ. If ∆x is the solution of

min
∆x

[
1
2
∆xTG∆x+ gTk∆x

]
(5.15a)

subject to
aTi ∆x = 0, i ∈ Wk \ {j}, (5.15b)
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then aTj ∆x ≥ 0. Moreover, ∆x is a descent direction, i.e., aTj ∆x > 0 if the second
order conditions of (5.15) are satisfied by ∆x.

Proof: see [NW06]

To conclude, we sum up the algorithm assuming that the objective function of problem
(5.9) is bounded in the feasible set.

Algorithm 1 Active-set Method
Input: x0, W0

1: k ← 0
2: while no solution found do
3: Solve min∆x

[
1
2∆xTG∆x+ gTk∆x

]
subject to aTi ∆x = 0, i ∈ Wk

4: if ∆x = 0 then
5: Compute λ̂i so that

∑
i∈Ŵ aiλ̂i = Gx̂+ c, where Ŵ =Wk

6: if λ̂i ≥ 0 for all i ∈ Wk ∩ I then
7: Solution found x∗ = xk
8: else
9: j ← arg minj∈Wk∩I λ̂i

10: xk+1 ← xk; Wk+1 ←Wk \ {j}
11: end if
12: else
13: Compute αk from αk = min

[
1,mini/∈Wk,a

T
i ∆xk<0

bi−aTi xk
aTi ∆xk

]
14: if αk < 1 then
15: Wk+1 ←Wk ∪ {i∗}
16: k + 1← k
17: end if
18: end if
19: end while

5.2.2 Sequential Quadratic Programming

The sequential quadratic programming (SQP) is an effective method for nonlinearly
constrained problems. Here, each iteration consists in solving a quadratic subproblem to
generate a step. That means, the SQP method solves problem (5.1) by solving iteratively

min
∆x

[
f(xk) +∇f(xk)T∆x+

1
2

∆xT∇2L(xk)∆x
]

(5.16a)

subject to

∇ci(xk)T∆x+ ci(xk) = 0, i ∈ E , (5.16b)

∇ci(xk)T∆x+ ci(xk) ≥ 0, i ∈ I. (5.16c)
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These resulting subproblems are solved using, for example, the active set method as
described in the section above, which can also include line-search or trust-region glob-
alization. The basic SQP algorithm is shown below. Instead of explicitly comput-
ing the Hessian of the Lagrangian, SQP algorithms often use approximated versions
H(xk) ≈ ∇2L(xk) . We also refer to [NW06] for more details on these extensions
and refinements, and proceed to the convergence of the SQP methods. Excluding the
inequalities, solving problem (5.1) using the SQP algorithm with exact Hessian of the
Lagrangian is equivalent to the application of Newton’s method to the KKT conditions
of (5.1). Therefore, the SQP method converges quadratically for equality constrained
problems.

Algorithm 2 Local SQP Algorithm
Input: x0, λ0

1: k ← 0
2: while no convergence test is satisfied do
3: Compute f(xk), ∇f(xk), ∇2L(xk,xk) and ci(xk), ∇ci(xk) ∀i ∈ E ∪ I
4: Solve quadratic problem (5.16) to derive ∆xk and Lagrange multiplier lk
5: xk+1 ← xk + ∆xk, λk+1 ← lk
6: k ← k + 1
7: end while

5.2.3 Interior Point Methods

In this section, we sum up the principle of the interior point method, where the general
optimization problem (5.1) is written in the form

min
x∈Rn

f(x) (5.17a)

subject to cE(x) = 0, (5.17b)
cI(x)− s = 0, (5.17c)

s ≥ 0. (5.17d)

Precisely, the vector cI(x) consists of the scalar functions ci(x), i ∈ I and cE(x) is
formed by its components ci(x), i ∈ E . There are two possibilities to interpret the
interior point methods. First, the KKT conditions with y and z as Lagrange multipliers
are pertubed by a factor µ

∇f(x)− JET (x)y − JIT (x)z = 0, (5.18a)
Sz − µe = 0, (5.18b)
cE(x) = 0, (5.18c)

cI(x)− s = 0, (5.18d)
(5.18e)
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with µ = 0,
s ≥ 0, z ≥ 0, (5.19)

where S is the diagonal matrix with entries s and Z is the diagonal matrix with entries
z. If µ = 0, the inequalities necessitate that optimal active sets have to be determined.
If µ > 0, s and z are positive. The aim is to solve the pertubed KKT conditions
(5.18) for µk → 0 ensuring that s, z > 0. Under the assumption that the LICQ, the
complementarity condition, and the second-order sufficient conditions are satisfied for
a solution (x∗, s∗,y∗, z∗), there is a locally unique solution (x(µ), s(µ),y(µ), z(µ)) of
the system (5.18) for all sufficiently small positive µ in the neighborhood. Furthermore,
(x(µ), s(µ),y(µ), z(µ)) converges to (x∗, s∗,y∗, z∗) for µ→ 0.
In addition, the interior point method is regarded as barrier method. Here, the problem
(5.17) is solved by considering a sequence of auxiliary problems

min
x,s

f(x)− µ
m∑
i=1

log(si) (5.20a)

subject to cE(x) = 0, (5.20b)
cI(x)− s = 0, (5.20c)

where µ > 0. The barrier term −µ
∑m

i=1 log(si) effects that the components are not too
close to zero. The corresponding KKT conditions are

∇f(x)− JET (x)y − JIT (x)z = 0, (5.21a)

−µS−1e+ z = 0, (5.21b)
cE(x) = 0, (5.21c)

cI(x)− s = 0. (5.21d)

Multiplying equation (5.21b) with S leads to the same KKT conditions as the first
method proposed.
In the following, we outline the basic concept of interior point algorithms. Applying
the Newton method to equations (5.18) in the variables xk, sk,yk, zk generates step
p = (pxk,psk,pyk,pzk) through

∇2L 0 −JET (x) −JIT (x)
0 Z 0 S

JE(x) 0 0 0
JI(x) −1 0 0



px

ps

py

pz

 = −


∇f(x)− JE(x)Ty − JI(x)Tz

Sz − µe
cE(x)

cI(x)− s

 .
(5.22)

Then, the new iterate is given by

xk+1 = xk + αs,maxk pxk, sk+1 = sk + αs,maxk psk, (5.23a)
yk+1 = yk + αz,maxk pyk, zk+1= zk + αz,maxk pzk, (5.23b)
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where

αs,maxk = max{α ∈ (0, 1] : sk + αpsk ≥ (1− τ)sk}, (5.24a)
αz,maxk = max{α ∈ (0, 1] : zk + αpzk ≥ (1− τ)zk}, (5.24b)

with τ ∈ (0, 1). These conditions ensure that the variables s and z do not converge too
quickly to zero. Given the error function based on the KKT conditions (5.18)

E(xk, sk,yk, zk+1) = max{‖∇f(x)− JE(x)Ty − JI(x)Tz‖, ‖Sz − µe‖,
‖cE(x)‖, ‖cI(x)− s‖} (5.25)

as proposed by Nocedal [NW06], the basic algorithm can be summarized as follows.

Algorithm 3 Basic Interior Point Algorithm
Input: x0, s0 > 0, µ0 > 0, σ, τ ∈ (0, 1)
1: Compute y0 and z0 > 0
2: k ← 0
3: while no convergence test is satisfied do
4: while until E(xk, sk,yk, zk;µk) ≤ µk do
5: Solve equation (5.22) to obtain p = (pxk,psk,pyk,pzk)
6: Compute αs,maxk , αz,maxk using (5.24)
7: Compute (xk+1, sk+1,yk+1, zk+1) using (5.23)
8: µk+1 ← µk and k ← k + 1
9: end while

10: Choose µk ∈ (0, σµk)
11: end while

Here, µk is kept fixed until a approximated solution of the KKT-conditions is found
E(xk, sk,yk, zk;µk) ≤ µk. Alternatively, µk can be updated in each iteration depending
on the progress. In case of more difficult problems, this strategy is more robust and
described in more detail in [NW06].
We also refer to Nocedal [NW06] for the description of interior point methods including
line search and trust region strategies. Moreover, he showed that under certain condi-
tions, the barrier parameter µ can be controlled so that the iterates converge superlinearly
to the solution (x∗, s∗,y∗, z∗).
All in all, interior point methods are suitable for large-scale problems. Wächter and
Biegler [WB06] implemented a line search filter interior point in Ipopt (see also [Wä09]).

5.3 Least-Squares Problems

As mentioned above, the method of least-squares is the most common method to solve
parameter estimation and fitting problems in physics, chemistry, finance, or economics.
Therefore, these kind of problems play an important role in optimization theory.
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In this section, we present the fundamental concept of this technique and outline cor-
responding algorithms. For more information, we refer to [Str11], who provides a com-
prehensive introduction, or to standard optimization literature (e.g., [BV04, NW06]).
Supplementary details on the characteristics of the resulting parameter estimators can
be found in literature about regression methods (e.g., [FBM04, Fox97, FKL09, Rya97]).
Special focus of this section lies in the Gauss-Newton algorithm for nonlinear least-
squares problems. In section 5.3.4, we outline a generalization for constrained nonlinear
least-squares problems, which was developed by Bock [Boc83, Boc87, BKS07].1

5.3.1 Concept of Least-Squares Method

This section is mainly sketched on [NW06, Str11]. To begin with, we explain the idea of
the least-squares method on the basis of the following setting. Given a model function
φ(xi,p) : Rn × Rl → R that describes the relation between a set of observations yi, i =
1, . . . , n and its corresponding input data xi, i = 1, . . . , n, we assume that

yi = φ(xi,p) + εi, (5.26)

where εi ∼ N (0, σ2
i ) represents the error related to each observation yi. To get an

estimation for the parameters p ∈ Rl, the least-squares-approach minimizes the sum of
the squared residual errors that are optionally weighted by corresponding factors wi 6= 0

min
p
f(p) =

1
2

n∑
i=1

[wi · (yi − φ(xi,p))]2. (5.27)

In theory, the weighting factor wi is equal to 1
σi
. However, in practice, the true distribu-

tion of the errors is usually unknown and, therefore, the variances have to be estimated
in advance. Alternatives to get rough estimates of the weights wi are provided by Strutz
[Str11].2

From now on, we write ri(p) = wi · (yi − φ(xi,p)) and assume that ri, i = 1, . . . , n, is
smooth. Then, the Jacobian Matrix of r(p) = (r1(p), . . . , rn(p))T is given by

J(p) =
[
∂ri
∂pj

]
i=1,...,n
j=1,...,l

=


∇r1(p)T

∇r2(p)T
...

∇rn(p)T

 . (5.28)

Moreover, we obtain

∇f(p) =
n∑
i=1

ri(p)∇ri(p) = J(p)Tr(p) (5.29)

1This method will be applied in the subsequent chapter, in which we develop methods to identify
parameters for the nonlinear demand model presented in section 6.2.

2If all observations are equally reliable, then σi = σ = 1. However, this is not recommendable if the
available data comprises outliers, which probably occurs in most cases.
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and

∇2f(p) =
n∑
i=1

∇ri(p)∇ri(p)T +
n∑
i=1

ri(p)∇2ri(p)

= J(p)TJ(p) +
n∑
i=1

ri(p)∇2ri(p). (5.30)

If ri, i = 1, . . . , n, is almost affine or, in general, rather small, the second term of (5.30)
can be neglected. Many algorithms tailored to solve least-squares problems (5.27) take
advantage of this feature. In general, these algorithms are modifications of Newton or
quasi-Newton methods including the strategies for global convergence line search and
trust region.3

5.3.2 Linear Least-Squares Problems

In the simplified case that the model equation φ(·) is linear. i.e.,

f(p) =
1
2
‖W (Jp− y)‖22, (5.31)

where

W =

w1

. . .
wn

 (5.32)

and ∇f(p) = JTW (Jp− y). Here, the solution p∗ satisfies the normal equations

JTWJp∗ = JTWy

of problem (5.31). Nocedal [NW06] presents three possible algorithms to compute p∗

provided that n ≥ l and J has full rank. These techniques are based on Cholesky factor-
ization, QR factorization, and singular value decomposition. In case of large problems,
iterative techniques such as the conjugate gradient method might be more efficient. For
the description and advantages of these possible methods we refer to Nocedal [NW06].
Before studying the algorithms for constrained least-squares problem, we shortly consider
statistical aspects of the resulting estimator.

5.3.2.1 Statistical Analysis of Linear Least-Squares Problems

In this section, we shortly present some important statistical results of the solutions of
linear least-squares problems (cf. [FBM04, Fox97, FKL09, Rya97]).

3We refer to [NW06, BGLS06, GMW08] for a detailed description of Newton methods and globalization
strategies.
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• A linear regression model relates a dependent variable y with a number of inde-
pendent variables x1, . . . , xl, and an error εi, i.e.,

y = β0 + β1x1 + β2x2 + . . .+ βlxl + ε.

If yi, i = 1, . . . , n are observations for y and xi,1, . . . , xi,l are observations for
xi, i = 0, . . . , n, we obtain

yi = β0 + β1x1,i + . . .+ βlxl,i + εi,

where ε1, . . . , εn, are uncorrelated random variables with E(εi) = 0 and Var(εi) = σ2

for all i = 1, . . . , n, and Cov(εi, εj) = 0 if i 6= j.
Then, the Gauss-Newton theorem shows that the least-squares estimator provides
the best linear unbiased estimator for β = (β1, . . . , βl)T . That means, this estima-
tor has lowest variance. For more information, we refer to Falk et al. [FBM04].

• Let εi = N (0, σi), i = 1, . . . , n. If, in addition, the errors are independent from
each other, the resulting maximum-likelihood estimator is equal to the result of the
least-squares estimation (see [Str11, Fox97]).

• According to Fox [Fox97], if (JTWJ) is invertible and εi = N
(

0, σ
2
ε

w2
i

)
, the resulting

estimators in the linear case (5.31) are

p̂ = (JTWJ)−1JTWy

and

σ̂2
ε =

∑
((y − Jp̂)/wi)2

n
.

The estimated asymptotic covariance matrix of p̂ is equal to

Cov(p̂) = σ̂2
ε ((J

TWJ))−1.

• Notably, the least-squares method is a heavy tool for many kinds of fitting problems.
However, if the errors are nonnormally distributed, the Least-Squares estimator is
less efficient, because heavy-tailed distributions lead to outliers. We refer to [Str11,
Fox97] for possibilities to detect outliers, nonconstant variance, or nonnormality.

5.3.3 Nonlinear Least-Squares Problems

In general, there are two algorithms to compute the solution of nonlinear least-squares
problems: Gauss- Newton and Levenberg-Marquardt.
The idea of the Gauss-Newton method is to solve the nonlinear least-squares problem
by iteratively solving linearizations in each loop. That means, a problem of the form
minp 1

2‖r(p)‖22 can be solved by means of the following linearized problem

min
∆pk

1
2
‖r(pk) + J(pk)∆pk‖22. (5.33)
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Then, the iteration pk is replaced by

pk+1 = pk + λk∆pk (0 ≤ λmin ≤ λk ≤ 1). (5.34)

According to Nocedal [NW06], possibilities for step length conditions in line search are
Armijo orWolfe conditions. In case that the Jacobian J(p) is (almost) rank-deficient, the
Gauss-Newton method does not necessarily converge, since the Gauss-Newton step ∆pk
is not unique. Alternatively, the Levenberg-Marquardt method can be used (cf. [NW06,
BGLS06]). Here, the linearized subproblem at each iteration is given by

min
∆pk

1
2
‖r(pk) + J(pk)∆pk‖22, subject to ‖∆pk‖2 ≤ ∆k. (5.35)

If for the solution of the Gauss-Newton algorithm ‖∆pGNk ‖2 ≤ ∆k , then ∆pGN is also
a solution of problem (5.35). Otherwise, Nocedal [NW06] proves that, given λ > 0 the
solution of (5.35) satisfies ‖∆pGNk ‖2 = ∆k and

(JTJ + λLM1)p = −JTr. (5.36)

For more details (e.g., implementation and convergence), we refer to [NW06]. In case
of large residuals, both algorithms are not appropriate because the second-order part of
∇2f(p) is too significant to be neglected in the quadratic term. Hence, the asymptotic
convergence is only linear. Nocedal [NW06] proposes to use Newton or Quasi-Newton
methods or hybrid algorithms, which combine Gauss-Newton and (Quasi-)Newton meth-
ods.

5.3.4 Constrained Nonlinear Least-Squares Problems

Bock [Boc83, Boc87] (see also [BKS07]) presents a generalization to solve constrained
nonlinear optimization problems of the form

min
p

1
2
‖r1(p)‖22 (5.37a)

subject to

r2(p) = 0, (5.37b)
r3(p) ≥ 0, (5.37c)

where r1 : Rp → Rn1 , r2 : Rp → Rn2 ,and r3 : Rp → Rn3 . Given an initial guess p0, pk is
iteratively improved by

pk+1 = pk + λk∆pk (5.38)

where 0 < λmin ≤ λk ≤ 1 and ∆pk is the solution of

min
∆pk

1
2
‖r1(pk) + J1(pk)∆pk‖22 (5.39a)
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subject to

r2(pk) + J2(pk)∆pk = 0 (5.39b)
r3(pk) + J3(pk)∆pk ≥ 0. (5.39c)

Therefore, each iteration consists in solving a quadratic subproblem (e.g., with active set
methods). The algorithm is described below.

Algorithm 4 Gauss Newton Algorithm
Input: p0, TOL, r1(p), J1(p), r2(p), J2(p), r3(p), J3(p)
1: k ← 0
2: while ‖∆pk‖2 > TOL do
3: Compute ri(pk) and Ji(pk) for all i = 1, · · · , 3
4: min∆pk

1
2‖r1(pk) + J1(pk)∆pk‖22

5: s.t. r2(pk) + J2(pk)∆pk = 0, r3(pk) + J3(pk)∆pk ≥ 0
6: pk+1 ← pk + ∆pk
7: k = k + 1
8: end while

Principally, this method is analyzed and developed in the context of parameter estimation
problems for nonlinear ordinary differential equations (see [Boc83, Boc87, BKS07]) and,
therefore, this algorithm is applied in many areas. For example, Bauer [Bau99] and
Körkel [Kö02] apply this method to estimate parameters for models in chemistry and
process engineering in the context of optimum experimental design. Jäger [Jä08] uses
the Gauss-Newton method with trust region globalization to estimate parameters in
the field of commodity pricing. Regarding the trust region globalization strategy, the
linearized subproblem of a nonlinear equality constrained least-squares problem is given
by

min
∆pk

1
2
‖r1(pk) + J1(pk)(∆pk)‖22 (5.40a)

subject to
r2(pk) + J2(pk)∆pk = (1− α)r2(p), 0 < α ≤ 1, (5.40b)

and
‖∆pk‖22 ≤ ∆2, (5.40c)

where ∆ is the trust region radius and α is the relaxation factor that ensures feasibility.
The corresponding Karush-Kuhn-Tucker conditions are given by

(J1
T (p)J1(p) + λLM1)∆pk + J2

T (p)λ = −J1
T (p)r1(p)

J2(p)∆pk = −αr2(p),

with λLM = 0 if ‖∆pk‖ ≤ ∆.

76



5.3. Least-Squares Problems

5.3.4.1 Analysis of Solutions for Linearized Problems

In this section, we summarize the results of analyzing the solutions obtained by using
the Gauss-Newton method presented above. This section will be mainly sketched on
[Boc83, Boc87, BKS07, Bau99, Kö02]. From now on, we write

rc(p) : =
(
r2(p)
r̃3(p)

)
, Jc(p) : =

(
J2(p)
J̃3(p)

)
, (5.41)

where r̃3(p) comprises the active inequality constraints at p, J̃3(p) is the correspond-
ing Jacobian matrix and nc := n2 + ñ3, where ñ3 is the number of active inequality
constraints.

Remark 5.2. (p∗,λ∗) is a Karush-Kuhn-Tucker point of problem (5.37) if and only if
(0,λ∗) is a Karush-Kuhn-Tucker point of (5.39) with pk = p∗.

Bock [Boc87] demonstrates that the local convergence behavior of inequality constraint
problem is equal to the behavior of the equality constraint problem. Hence, only the latter
needs to be considered from now on. The solution of problem (5.39) can be written by
means of a generalized inverse J+.

Theorem 5.5. Existence of generalized inverse
Given the linearized problem (5.39),

[CQ] Constraint Qualification: rank Jc = nc (5.42)

and

[PD] Positive Definiteness: rank
(
J1

Jc

)
= l (5.43)

([PD] ⇔ yTJ1
TJ1y > 0 for all y ∈ Kern(Jc(p) \ {0})) hold. Then,

• there exists one Karush-Kuhn-Tucker point (∆p∗,λ∗) of problem (5.39) and ∆p∗

is a strict minimum and

• there is a linear mapping J+ : Rl → Rn1+nc, such that

∆p∗ = −J+

(
r1

rc

)
is a solution of (5.39).

J+ =
(
1 0

)(J1
TJ1 J2

T

J2 0

)−1(
J1

T 0
0 1

)
(5.44)

satisfies J+JJ+ = J+ and is called generalized inverse of J .

Proof: See [Boc87].

77



Chapter 5. Constrained Optimization - Theory, Algorithms, and Application

Remark 5.3. In case of r2 = J2 = 0, we obtain

J+ = (J1
TJ1)−1J1

T . (5.45)

Likewise, Bock [Boc87] proves the following contraction theorem, which characterizes the
convergence behavior of the generalized Gauss-Newton method.

Theorem 5.6. Local Contraction Theorem
Let J+(p) be the generalized inverse of the Jacobian J(p) of r(p) ∈ C1(D). Under the
assumption that the Lipschitz conditions for J resp. J+ for all t ∈ [0, 1] and for all
p,p′,p′′ ∈ D, p− p′ = J+(p)F (p),

‖J+(p′)(J(p+ t(p′ − p))− J(p))(p′ − p)‖ ≤ ωt‖p′ − p‖2 (5.46)

and

‖(J+(p′′)− J+(p))R(p)‖ ≤ κ‖p′′ − p‖, (5.47)

where R(p) : = r(p) − J(p)J+(p)r(p) and κ < 1, are satisfied. Then, for all p0 ∈ D
with

δ0 : = κ+
α0ω

2
< 1 (αj := ‖J+(pj)r(pj)‖) (5.48)

and

D0 := K̄

(
p0,

α0

1− δ0

)
⊂ D, (5.49)

1. the iteration pj+1 = pj + ∆pj, ∆pj = −J+(pj)r(pj), is well-defined and stays in
D0,

2. there is a p∗ ∈ D0 so that pj → p∗, i.e., J+(p∗)F (p∗) = 0,

3. the a-priori-estimate ‖pj − p∗‖ ≤ δ
j
0

α0

1− δ0
, and

4. the convergence is linear: ‖∆pj+1‖ ≤ δk‖∆pj‖ = (αjω2 + κ)‖∆pj‖.

Proof: see [Boc87].

Remark 5.4. Nonlinearity is expressed through ω, and κ is the incompatibility constant
(see [Boc87, Kö02]).

Remark 5.5. Formulated in a generalized version this theorem characterizes the local
convergence of Newton-type methods in general.
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5.3.4.2 Statistical Analysis of Solutions for Linearized Problems

In this section, the analysis is described for the case r3 = 0, but can also be applied to
the generalized case. Since the residuals of the initial problem are random variables, the

solution of the Gauss-Newton method is also random. It follows that ∆p = −J+

(
r1

r2

)
follows a normal distribution with E(∆p) = 0 and (approximate) covariance matrix

C = J+

(
1 0
0 0

)
(J+)T (5.50)

(cf. [Kö02] for the computation). According to Bock [Boc87], given a parameter esti-
mation problem with l variables and n2 equality constraints, the linearized confidence
region GL(α) for the optimal solution p∗ with significance level α is given by

GL(α) =
{
p∗ + ∆p ∈ Rl

∣∣∣ ‖J1(p∗)∆p‖22 ≤ γ(α),J2(p∗)∆p = 0
}

(5.51)

=
{
p∗ + J+(p∗)

(
−J1(p∗)∆p

0

) ∣∣∣ ‖−J1(p∗)∆p‖22 ≤ γ(α)
}

(5.52)

with γ(α) := (l − n2)F(1−α)(l − n2, n1 − (l − n2)), where F(1−α) is the (1 − α)-quantile
of the F-distribution (see [Boc87] for the proof). The following theorem provides an
approximation of the confidence region.

Theorem 5.7. Let
θi :=

√
ciiγ(α), i = 1, . . . , n, (5.53)

where cii is the entry of the i-th principal diagonal of the covariance matrix C. Then,
the linearized confidence region is enclosed

GL(α) ⊆ [p∗1 − θ1, p
∗
1 + θ1]× . . .× [p∗l − θl, p∗l + θl]. (5.54)

Proof: see [Boc87]

Remark 5.6. In case the variances σ2
i , i = 1, . . . , n, are only known up to a factor β2,

the approximating intervals for the confidence region 5.54 are given by

θi = b ·
√
ciiγ(α), i = 1, . . . , n, (5.55)

where b2 := ‖r1(p∗)‖22
n1−(l−n2) is an estimator for β2 (cf. [Boc87, Bau99]).
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6 A Heuristic Demand Model for
Petrochemical Products

Having collected characteristics and dependencies described in our general framework in
chapter 3, we are in a position to develop a quantitative demand model for the petro-
chemical market that is applicable to our supply-demand optimization problem proposed
in chapter 4. In other words, our demand model is supposed to reflect the demand-price
relation of petrochemical products in the framework established in the previous chapter
and is simultaneously suitable for the optimization problem applied to the petrochemical
market. So far, this problem is a quite unexplored field of research, since most of the
literature provides approaches to modeling demand, which are not suitable. So far, most
demand models are price-insensitive or employ the concept of utility function (cf. section
2). Therefore, we will start by analyzing very basic model functions with preference given
to a phenomenological approach.
Another challenge of modeling demand for petrochemical products lies in the missing
information in consumer behavior under certain conditions. For example, there is no
data available about the hypothetical situation that prices are close to zero. Hence, our
modeling relies on additional a-priori assumptions.
For this purpose, this chapter is structured as follows. To gain a better insight, we
will summarize the difficulties and the problems we are faced with before discussing our
heuristic approach to modeling demand. In section 6.2, we propose a basic demand model
for product pi in region r at time t with respect to price xπpi,r,t, the tanh-demand model,
as well as enhancements to include the influences of the change of the economic situation
∆aζr,t,J and prices of other products xπpj ,r,t, j 6= i. We are able to prove that our model
satisfies the general characteristics defined in chapter 3 to the greatest extent. In section
6.3, we integrate our demand model in the supply-demand trade network optimization
problem and simulate reasonable prices and sales quantities for different scenarios.

6.1 Preliminaries

Above all, developing explicit model functions benefits from detailed data analysis. How-
ever, we rely on a heuristic approach, because the available data only provides incomplete
information. Figure 6.1 reflect the structure of stereotypical yearly price and sales data
and reveal very well the difficulties with which we are faced. These include:

1. Data exhibits years in which prices are close but sales quantities differ considerably.

2. There are consecutive years in which sales quantities and prices rise or fall.
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Figure 6.1: Exemplary price and consumption time series that display stereotypical fea-
tures of yearly data

3. There is no information available about consumption in the whole price range.

Thus, we can draw the following conclusions, which makes straight modeling more com-
plex.

1. There are definitely more factors which influence sales than solely price. In addition,
these seem to partially overlap making it impossible to consider them separately.

2. The underlying nonlinear decreasing dependency of demand on price that we expect
to exist is not evident. If the data exhibits a tendancy to express nonlinearity, it is
not necessarily the hypothetical behavior of the consumer at a fixed time that we
aim to model.

3. The historical data mainly provides information about the temporal process of
demand data.

Reducing the study to the relationship between demand and price, there exist alternative
models that do not imply that demand decreases if prices rise. For example, Huschto et
al. [HFH+11] develop a pricing model for conspicuous products, i.e., in which luxuries are
purchases because of their reputation. Therefore, demand also increases if price increases.
Such an assumption, however, is not adequate to describe the demand of commodities,
which are of standard quality and purchased in large quantity for further processing or
end consumption.
Hence, as Hildenbrand [Hil94] has already noted, we have to establish the demand func-
tion at a fixed time with the means of auxiliary a-priori assumptions.1

1In the framework of his studies on market demand, Hildenbrand also discusses the difficulties of
modeling household demand given incomplete data. Since his empirical studies show the necessity of
including demographic facts, but give no qualitative reference, his approach to modeling is also built
on a-priori assumptions whenever necessary (see [Hil94], page 12ff).
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On the basis of the assumptions made for our general approach to modeling in section
3, we set up a demand model that maps prices unambiguously to quantities required at
these prices. In doing so, we keep in mind the incompleteness of information we have
about the consumer and aim to avoid, as far as possible, parameters referring to influ-
encing factors, which are not available.2 This is also essential with regard to a robust
parameter identification, which we discuss in section 7. To be more precise, we include
the dependencies of prices and economic factors in the model.
Taking all aspects into account, we attribute the following characteristics to a quanti-
tative demand function φp,r,t for product p in region r at time t in the petrochemical
industry. In this section, we consider the demand functions for |P | = 1 und |P | = 2.

Assumptions 6.1. Characteristics of the heuristic demand function

1. Demand and price are always non-negative.

2. The demand depends on prices and economic factors, which represent the economic
situation.

3. The influence of price and economic factors may change in the course of time.

4. φp,r,t is nonlinear and continuous w.r.t. xπp,r,t.

5. We set αmin_quant
p,r,t = 0. More precisely, given |P | = 1, either there is a maximum

price αmax_price
p,r,t so that φp,r,t(α

max_price
p,r,t ) = 0 or, in case the model does not include

the consumer’s maximum price, φp,r,t(xπp,r,t)→ 0 for xπp,r,t →∞.

6. In addition to the continuity of the demand function, φp,r,t is differentiable w.r.t. xπp,r,t.

7. φp,r,t satisfies the characteristics of demand 3.1 to 3.10 defined in section 3.

As stated in section 3.1, petrochemical products are commodities and, hence, are offered,
required, and purchased in large quantities of standard quality, thus we assume a contin-
uous demand-price dependency. Moreover, we assume that the demand function satisfies
the law of demand, i.e., it is decreasing. Its nonlinearity is due to the distinct consumer’s
behavior in the different price ranges.
As mentioned in section 4.3 the structure of the supply-demand trade network optimiza-
tion model proposed in chapter 4.2 requires the inclusion of additional modeling aspects
to prevent the problem from becoming unbounded. Therefore, we assume that φp,r,t
converges to zero for high prices or that there is a maximum price that indicates the
consumer’s maximum willingness to pay. Otherwise, the optimum quantity can become
infinitesimally small, sold at an infinitely high price. In addition, including a saturation
quantity ensures that consumption is not infinite if prices are close to zero. In doing so,
no additional constraints limiting the price are necessary in the optimization problem.
So far, the optimization model is deterministic in order to keep the complexity of the

2For instance, data about the budgets of firms which require petrochemical products is rarely available.
Likewise, information concerning their subsequent production processes is not available.
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optimization methods simple. Therefore, we do not include stochastic components as,
for example, Domencich and McFadden [DM96] proposed in their explicit modeling for
travel demand. Likewise, we require differentiability of the demand function. Conse-
quently, we are able to solve the network optimization problem described in section 4.2
with optimization methods based on derivatives. Concerning the dynamic aspects, we
include the specific time-dependent influence on demand in the parameter identification
process (see chapter 7).
Note that some of these properties were already discussed or required in the charac-
teristics of demand 3.1 to 3.10. However, we would like to put emphasis on properties
as differentiability, nonlinearity, monotonicity, and dependency on time, because they
are fundamental in our approach to modeling. In general, there are multiple options to
determine a parametric demand model that satisfies the characteristics mentioned above:

• choose a suitable nonlinear function, or

• construct a suitable function by matching appropriate piecewise defined functions.

Since figure 3.1 in section 3.4 resembles to a class of functions consisting of different
piecewise defined functions in each price region, the concept of piecewise defined models
initially seems appropriate to explicitly model the demand-price relation. However, this
approach to modeling is in general not appropriate due to several reasons outlined in the
following. Above all, such approaches implicate a high number of parameters and are
not necessarily differentiable.3

Alternatively, another option is to replace the linear terms in the second price range with
a nonlinear function and to impose the condition of differentiability at the respective
boundary points. However, the question arises why we do not take advantage out of a
nonlinear function φp,r,t(xπp,r,t) that displays the shape we have in mind for the demand,
i.e., a function with two points of deflection and convergence if xπp,r,t →∞. For instance,
the hyperbolic tangent function seems appropriate. In the following section, we show that
it can be adapted to satisfy these properties as well as the assumptions 6.1. Moreover,
such a modeling gets by with less parameters. For example, the saturation quantity in
case of low prices is well reflected (see also section 6.2). This simplifies the parameter
identification but also the interpretation of the parameters.4

6.2 The Tanh-Demand Model

This section contains the presentation of our approach to modeling demand that is appli-
cable to the supply-demand trade network optimization model described in section 4.2.
To begin with, we concentrate on the demand-price relation by separately considering

3This, in combination with the current data availability, complicates a parameter identification. How-
ever, by means of sufficient data, a piecewise linear function can provide an adequate approximation
of real demand, which also can have kinks.

4Note that the hyperbolic function can also be expressed in terms of the exponential function, which
provides a basis for many mathematical approaches to modeling. We prefer the hyperbolic tangent,
because its parameters allow intuitive interpretation (see below).
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a single petrochemical product and neglect the effects of prices of substitutes and com-
plements as well as economic factors on demand in section 6.2.1. Accordingly, section
6.2.2 provides an extended model including economic factors. In addition, the inclusion
of dependencies on substitutes and complements is examined in section 6.2.3.

6.2.1 Modeling Dependencies on the Product’s Price

Since we assume that demand is nonlinear in prices the way described in section 3.4 (cf.
figure 3.1), we select the negative hyperbolic tangent function as starting point for the
demand model. Therefore, given |P | = 1, we set up the following basic model

φp,r,t(xπp,r,t) = max

[
λ
φp,r,t
1 · tanh

(
λ
φp,r,t
2 − xπp,r,t
λ
φp,r,t
3

)
+ λ

φp,r,t
4 , 0

]
, (6.1)

where φp,r,t(xπp,r,t) : R+
0 → R+

0 and λ
φp,r,t
3 > 0. Furthermore, we assume that λφp,r,ti ≥

0, i = 1, 2, 4. This parameterization has some advantages regarding the interpretation of
the values: to be more precise, we can relate the consumer’s saturated demand quantity
α

max_quant
p,r,t and the consumer’s maximum willingness to pay αmax_price

p,r,t , which we have
both introduced in section 3.4, to the proposed parameters. First, since

φp,r,t(0) = λ
φp,r,t
1 · tanh

(
λ
φp,r,t
2

λ
φp,r,t
3

)
+ λ

φp,r,t
4 ,

we derive

φp,r,t(0) = α
max_quant
p,r,t < λ

φp,r,t
1 + λ

φp,r,t
4 since tanh

(
λ
φp,r,t
2

λ
φp,r,t
3

)
< 1. (6.2)

Thus, λφp,r,t1 + λ
φp,r,t
4 provides an upper bound for the consumer’s saturated demand

quantity. Likewise, given that λφp,r,t4 < λ
φp,r,t
1 , we have φp,r,t(α

max_price
p,r,t ) = 0, where

α
max_price
p,r,t = λ

φp,r,t
2 −λφp,r,t3 ·artanh

(
−λφp,r,t4

λ
φp,r,t
1

)
= λ

φp,r,t
2 +λφp,r,t3 ·artanh

(
λ
φp,r,t
4

λ
φp,r,t
1

)
<∞.

(6.3)

In the following, we check if the proposed model (6.1) satisfies the basic price-related
characteristics summarized in assumptions 6.1 and adapt the model to the requirements
if necessary.5 Since λφp,r,ti depends on time t for each i ∈ {1, · · · , 4}, we make sure
that the demand function φp,r,t changes in the course of time. Obviously, the demand
function φp,r,t is nonlinear and continuous w.r.t. xπp,r,t. Next, we examine the demand at
high prices. If λφp,r,t4 > λ

φp,r,t
1 ,

lim
xπp,r,t→∞

φp,r,t(xπp,r,t) = λ
φp,r,t
4 − λφp,r,t1 > 0,

5Note that, so far, we concentrate on the demand’s dependency on own prices and integrate economic
factors as well as the effects of substitutes and complements afterwards.

85



Chapter 6. Heuristic Demand Modeling

which contradicts the assumption 6.1. Thus, we have to require λφp,r,t4 ≤ λ
φp,r,t
1 in the

modeling approach.
However, given λφp,r,t4 ≤ λφp,r,t1 our proposed model (6.1) is not differentiable at

xπp,r,t = λ
φp,r,t
2 + λ

φp,r,t
3 · artanh

(
λ
φp,r,t
4

λ
φp,r,t
1

)
.

Consequently, to fulfill the assumption of demand’s differentiability with respect to prices
we have to restrict the domain of φp,r,t(xπp,r,t). Given λφp,r,t4 ≤ λφp,r,t1 , φp,r,t(xπp,r,t) ≥ 0 if

xπp,r,t ≤ λ
φp,r,t
2 − λφp,r,t3 · artanh

(
−λφp,r,t4

λ
φp,r,t
1

)
= λ

φp,r,t
2 + λ

φp,r,t
3 · artanh

(
λ
φp,r,t
4

λ
φp,r,t
1

)
.

Thus, φp,r,t(xπp,r,t) is differentiable at the interval (0, λφp,r,t2 +λφp,r,t3 ·artanh(λφp,r,t4 /λ
φp,r,t
1 )).

In addition, given λφp,r,t4 < λ
φp,r,t
1 , the left-sided limit of the derivative exists for xπp,r,t ↗

α
max_price
p,r,t and is equal to ∂φp,r,t

∂xπp,r,t
(αmax_price

p,r,t ). Likewise, if xπp,r,t ↘ 0, the right-sided limit

of the derivative exists and is equal to ∂φp,r,t
∂xπp,r,t

(0). Thus, we set

D1,p,r,t :=


[
0, λφp,r,t2 + λ

φp,r,t
3 · artanh

(
λ
φp,r,t
4

λ
φp,r,t
1

)]
if λφp,r,t4 < λ

φp,r,t
1

R+
0 if λφp,r,t4 = λ

φp,r,t
1 .

(6.4)

Consequently,
φp,r,t(xπp,r,t) : D1,p,r,t → D2,p,r,t,

where

D2,p,r,t :=


[
0, λφp,r,t1 · tanh

(
λ
φp,r,t
2

λ
φp,r,t
3

)
+ λ

φp,r,t
4

]
if λφp,r,t4 < λ

φp,r,t
1(

0, λφp,r,t1 · tanh
(
λ
φp,r,t
2

λ
φp,r,t
3

)
+ λ

φp,r,t
4

]
if λφp,r,t4 = λ

φp,r,t
1 ,

(6.5)

is differentiable. It remains to examine the accordance with the characteristics of demand
3.1 and 3.3 defined in section 3. Since

∂φp,r,t
∂xπp,r,t

(xπp,r,t) =

(
−λφp,r,t1

λ
φp,r,t
3

)
· sech2

(
λ
φp,r,t
2 − xπp,r,t
λ
φp,r,t
3

)
≤ 0

for λφp,r,t1 /λ
φp,r,t
3 ≥ 0, the model is decreasing in the price. Moreover,

0 ≤ φp,r,t(xπp,r,t) ≤ α
max_quant
p,r,t

if αmax_quant
p,r,t = φp,r,t(0) = λ

φp,r,t
1 · tanh(λφp,r,t2 /λ

φp,r,t
3 ) + λ

φp,r,t
4 . Thus, φp,r,t satisfies the

characteristics of demand 3.3. Hence, we are able to establish the following theorem for
the demand model.
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Theorem 6.1. Demand model
Under the assumption that the influence of the economic situation is equal to zero and
all products p are required independently from each other, the demand model given by
φp,r,t(xπp,r,t) : D1,p,r,t → D2,p,r,t,

φp,r,t(xπp,r,t) = λ
φp,r,t
1 · tanh

(
λ
φp,r,t
2 − xπp,r,t
λ
φp,r,t
3

)
+ λ

φp,r,t
4 (6.6)

and α
max_quant
p,r,t = λ

φp,r,t
1 · tanh(λφp,r,t2 /λ

φp,r,t
3 ) + λ

φp,r,t
4 satisfies the characteristics of a

demand function stated in assumption 6.1 if

0 ≤ λφp,r,t2 , 0 < λ
φp,r,t
3 , 0 ≤ λφp,r,t4 ≤ λφp,r,t1 .

In the following, we refer to equation (6.6) as tanh-demand model. An exemplary illus-
tration of this model is shown in figure 6.2, together with the special case described in
the following remark.

Remark 6.1. If, in some application of our optimization model, there is no need to
model the demand close to zero consumption, a special case/simplification of the tanh-
demand model can be used to reduce the number of parameters: Setting λφp,r,t4 = 0, the
demand function reduces to

φAp,r,t(x
π
p,r,t) = λ

φp,r,t
1 · tanh((λφp,r,t2 − xπp,r,t)/λ

φp,r,t
3 ), (6.7)

where φp,r,t(xπp,r,t) : [0, λφp,r,t2 ] → [0, λφp,r,t1 · tanh(λφp,r,t2 /λ
φp,r,t
3 )]. Likewise, αmax_quant

p,r,t =

λ
φp,r,t
1 · tanh(λφp,r,t2 /λ

φp,r,t
3 ) and αmax_price

p,r,t = λ
φp,r,t
2 .

Thus, if the domain of the demand function is restricted in the optimization model, λφp,r,t4

can become redundant. This version is denoted by φAp,r,t and is also illustrated in figure
6.2. In the following, we refer to equation (6.7) as tanh-demand model A.

Example 6.1. To present an example of the tanh-demand model in figure 6.2 we set
λ
φp,r,t
1 = 200, λφp,r,t2 = 300, λφp,r,t3 = 50 and λ

φp,r,t
4 = 190. Likewise, we select the

following values λφp,r,t1 = 390, λφp,r,t2 = 300 and λφp,r,t3 = 50 to illustrate tanh-demand
model A.

In the following, we integrate the change of the economic situation (section 6.2.2) and
the effects of other products’ prices (section 6.2.3.1) separately from each other in the
basic demand model proposed in theorem 6.1.

6.2.2 Modeling Dependencies on Economic Factors

In the next step, we include the influence of the economic development on the demand.
Therefore, we select two macroeconomic time series that represent well the economic
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Figure 6.2: Illustration of tanh-demand model and tanh-demand model A that both reflect
the nonlinear relationship between demand and price

development from our point of view: the gross domestic product (GDP) and an index
representing the state of industrial production (IndPro).6 That means, we set

∆aζr,t,J := (∆aGDP
r,t,J ,∆a

IndPro
r,t,J ).

To include these economic factors in the model we make the following assumption.

Assumptions 6.2. Inclusion of economic data in the demand function
The change of GDP influences the willingness to pay and the change of an index for
industrial production influences the quantities in demand.

Consequently, our model function (6.6) turns into

φeco
p,r,t(x

π
p,r,t) =

(λφp,r,t1 + λ
φp,r,t
IndPro ·∆a

IndPro
r,t,J ) · tanh

(
λ
φp,r,t
2 + λ

φp,r,t
GDP ·∆aGDP

r,t,J − xπp,r,t
λ
φp,r,t
3

)
+ λ

φp,r,t
4 , (6.8)

where λφp,r,tGDP ≥ 0 and λ
φp,r,t
IndPro ≥ 0. The superscript eco indicates that the economic

factors are included in the explicit demand model. In doing so, the relation of parame-
ters to consumer’s saturated demand quantity αmax_quant

p,r,t and the consumer’s maximum
willingness to pay αmax_price

p,r,t changes into

α
max_quant
p,r,t < λ

φp,r,t
1 + λ

φp,r,t
IndPro ·∆a

IndPro
r,t,J + λ

φp,r,t
4 (6.9)

6To compare, we refer to Pindyck [Pin79] who investigated the structure of energy demand. He em-
phasized that the causal relationship between macroeconomic indices and energy demand is mutual,
i.e., energy growth also influences the GDP growth.
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since tanh((λφp,r,t2 + λ
φp,r,t
GDP ·∆aGDP

r,t,J )/λφp,r,t3 ) < 1 and, provided that λφp,r,t4 < λ
φp,r,t
1 ,

α
max_price
p,r,t =

λ
φp,r,t
2 + λ

φp,r,t
GDP ·∆a

GDP
r,t,J + λ

φp,r,t
3 · artanh

(
λ
φp,r,t
4

λ
φp,r,t
1 + λ

φp,r,t
IndPro ·∆aIndPro

r,t,J

)
. (6.10)

In analogy with theorem 6.1, we define

Deco
1,p,r,t :=

{[
0, deco1,p,r,t

]
ifλφp,r,t4 < λ

φp,r,t
1 ,

R+
0 ifλφp,r,t4 = λ

φp,r,t
1 ,

(6.11)

where

deco1,p,r,t : = λ
φp,r,t
2 +λ

φp,r,t
GDP ·∆a

GDP
r,t,J +λ

φp,r,t
3 ·artanh

(
λ
φp,r,t
4

λ
φp,r,t
1 + λ

φp,r,t
IndPro ·∆aIndPro

r,t,J

)
, (6.12)

and

Deco
2,p,r,t :=

{[
0, deco2,p,r,t

]
ifλφp,r,t4 < λ

φp,r,t
1 ,(

0, deco2,p,r,t

]
ifλφp,r,t4 = λ

φp,r,t
1 ,

(6.13)

where

deco2,p,r,t := (λφp,r,t1 + λ
φp,r,t
IndPro ·∆a

IndPro
r,t,J ) · tanh

(
λ
φp,r,t
2 + λ

φp,r,t
GDP ·∆aGDP

r,t,J

λ
φp,r,t
3

)
+ λ

φp,r,t
4 , (6.14)

to establish the following theorem.

Theorem 6.2. Demand model including the influence of the economic situation
The demand model comprising the influence of the economic situation given by φeco

p,r,t :
Deco

1,p,r,t → Deco
2,p,r,t,

φeco
p,r,t(x

π
p,r,t) =

(λφp,r,t1 + λ
φp,r,t
IndPro ·∆a

IndPro
r,t,J ) · tanh

(
λ
φp,r,t
2 + λ

φp,r,t
GDP ·∆aGDP

r,t,J − xπp,r,t
λ
φp,r,t
3

)
+ λ

φp,r,t
4 (6.15)

with

α
max_quant
p,r,t = (λφp,r,t1 + λ

φp,r
IndPro ·∆a

IndPro
r,t,J ) · tanh

(
λ
φp,r,t
2 +λ

φp,r,t
GDP ·∆a

GDP
r,t,J

λ
φp,r,t
3

)
+ λ

φp,r,t
4

satisfies the assumptions 6.1 if

λ
φp,r,t
1 + λ

φp,r,t
IndPro ·∆a

IndPro
r,t,J ≥ λφp,r,t4 ≥ 0,

λ
φp,r,t
2 + λ

φp,r,t
GDP ·∆aGDP

r,t,J ≥ 0,

λ
φp,r,t
3 ≥ 0,
λ
φp,r,t
GDP ≥ 0,

λ
φp,r,t
IndPro ≥ 0.
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Proof: It remains to verify that our model approach satisfies the characteristics of demand
3.1 and 3.2. First, we have

∂φeco
p,r,t

∂xπp,r,t
(xπp,r,t) =

−(λφp,r,t1 + λ
φp,r,t
IndPro ·∆a

IndPro
r,t,J )

λ
φp,r,t
3

· sech2

(
λ
φp,r,t
2 + λ

φp,r,t
GDP ·∆aGDP

r,t,J − xπp,r,t
λ
φp,r,t
3

)
≤ 0

since
λ
φp,r,t
1 +λ

φp,r,t
IndPro·∆a

IndPro
r,t,J

λ
φp,r,t
3

≥ 0. Furthermore,

∂φeco
p,r,t

∂∆aIndPro
r,t,J

(xπp,r,t) = λ
φp,r,t
IndPro · tanh

(
λ
φp,r,t
2 + λ

φp,r,t
GDP ·∆aGDP

r,t,J − xπp,r,t
λ
φp,r,t
3

)
≥ 0

since λφp,r,tIndPro ≥ 0 and λφp,r,t1 + λ
φp,r,t
IndPro ·∆a

IndPro
r,t,J ≥ 0. Likewise,

∂φeco
p,r,t

∂∆aGDP
r,t,J

(xπp,r,t) =

λ
φp,r,t
GDP · (λ

φp,r,t
1 + λ

φp,r,t
IndPro ·∆a

IndPro
r,t,J )

λ
φp,r,t
3

· sech2

(
λ
φp,r,t
2 + λ

φp,r,t
GDP ·∆aGDP

r,t,J − xπp,r,t
λ
φp,r,t
3

)
≥ 0

since λφp,r,tGDP ≥ 0.

In the following, we refer to model (6.15) as tanh-demand model eco.

Example 6.2. Figure 6.3 illustrates tanh-demand model eco (6.15). In this example,
λ
φp,r,t
1 = 200, λφp,r,t2 = 300, λφp,r,t3 = 50, λφp,r,t4 = 190, λφp,r,tIndPro · ∆a

IndPro
r,t,J = 40, and

λ
φp,r,t
GDP ·∆aGDP

r,t,J = 50.

6.2.3 Modeling Dependencies on Prices of Other Products

The following section comprises the integration of the demand’s dependency on substi-
tutes (section 6.2.3.1) and complements (section 6.2.3.2). In doing so, we restrict our
modeling approach to the case of two products, i.e., |P | = 2, and exclude the economic
influence. Whereas the extension to the case of n products is straightforward for com-
plements (cf. section 3.6), modeling demand in case of n substitutes requires further
examination of the respective dependencies. However, this is beyond the scope of the
thesis.

6.2.3.1 Substitutes

In this section, we transfer the general modeling approach for two substitutable prod-
ucts proposed in section 3.5 to the explicit tanh-demand model. Under the assumption
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Figure 6.3: Illustration of tanh-demand model eco that reflects the nonlinear relationship
between demand and price and, in contrast to tanh-demand model, includes influences of
economic factors

that the sum of all abrupt changes can be covered by modeling gradual substitution, we
integrate appropriate splitting functions such that the characteristics of demand 3.8 are
satisfied. Note that from now on, we restrict our modeling to positive prices. The follow-
ing proposition comprises appropriate splitting functions in the case of two substitutable
products.

Proposition 6.1. Let P = {pi, p3−i} be a set of substitutable products with prices xπpi,r,t >
0, i = 1, 2. A rational function of the form

ρpi

(
xπpi,r,t
xπp3−i,r,t

)
=

1 +
m∑
k=1

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
(

xπpi,r,t
xπp3−i,r,t

+ 1
)n , (6.16)

where i = 1, 2, n ∈ N, and m = b0.5 · nc, satisfies the assumptions 3.11.

Proof: Obviously, 0 ≤ ρpi
(

xπpi,r,t
xπp3−i,r,t

)
≤ 1, i = 1, 2. Likewise,

ρp3−i

(xπp3−i,r,t
xπpi,r,t

)−1
 =

1 +
m∑
k=1

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
(

xπpi,r,t
xπp3−i,r,t

+ 1
)n = ρpi

(
xπpi,r,t
xπp3−i,r,t

)
.

Moreover, given m = b0.5 · nc

ρpi

(
xπpi,r,t
xπp3−i,r,t

)
+ ρp3−i

(
xπp3−i,r,t

xπpi,r,t

)
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=
1 +

m∑
k=1

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
((

xπpi,r,t
xπp3−i,r,t

)
+ 1
)n +

1 +
m∑
k=1

(
n
k

)(
xπp3−i,r,t
xπpi,r,t

)k
((

xπp3−i,r,t
xπpi,r,t

)
+ 1
)n

=
1 +

m∑
k=1

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
+
(

xπpi,r,t
xπp3−i,r,t

)n
+

m∑
k=1

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)n−k
((

xπpi,r,t
xπp3−i,r,t

)
+ 1
)n

=
1 +

m∑
k=1

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
+
(

xπpi,r,t
xπp3−i,r,t

)n
+

n−1∑
k=m+1

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
((

xπpi,r,t
xπp3−i,r,t

)
+ 1
)n

=

n∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
((

xπpi,r,t
xπp3−i,r,t

)
+ 1
)n = 1.

As a consequence, if xπpi,r,t = xπp3−i,r,t,

ρpi(1) = ρp3−i(1) = 1− ρpi(1).

Thus, ρpi(1) = ρp3−i(1) = 1
2 .

Example 6.3. Inserting n = 3, equation (6.4) implies

ρpi

(
xπpi,r,t
xπp3−i,r,t

)
=

1 + 3 ·
(

xπpi,r,t
xπp3−i,r,t

)
(

xπpi,r,t
xπp3−i,r,t

+ 1
)3 , i = 1, 2, (6.17)

and given n = 5, we obtain

ρpi

(
xπpi,r,t
xπp3−i,r,t

)
=

1 + 5 ·
(

xπpi,r,t
xπp3−i,r,t

)
+ 10 ·

(
xπpi,r,t
xπp3−i,r,t

)2

(
xπpi,r,t
xπp3−i,r,t

+ 1
)5 , i = 1, 2. (6.18)

We illustrate the shape of these splitting functions in figure 6.4 as well as the splitting
functions for n = 15 and n = 19. Note that for small n the fraction that is associated
with the more expensive product decreases slower than for large n.

Based on equation (3.26), which is established in the characteristics of demand 3.8, the
substitutable demand φsub

pi,r,t, i = 1, 2, is composed of the demand that can be satisfied
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Figure 6.4: Illustration of the splitting functions (6.16) for n = 3, n = 5, n = 15, and
n = 19 that indicate the allocation of the substitutable demand for two products p1 and
p2 dependent on their prices.

by all substitutes and a basic demand only associated with pi

φsub
pi,r,t(x

π
pi,r,t, x

π
p3−i,r,t) = ρpi

(
xπpi,r,t
xπp3−i,r,t

)
· φP,r,t(xπpi,r,t, x

π
p3−i,r,t) + φbpi,r,t(x

π
pi,r,t), (6.19)

where i = 1, 2. Assuming that the substitutable demand is independent of all other
products pj 6= pi, i = 1, 2, we can write the demand as function of pi, i = 1, 2. Since
the splitting function is not defined for xπpi,r,t = 0, i = 1, 2, we restrict the domain of
φsub
pi,r,t : (xπpi,r,t, x

π
p3−i,r,t) 7→ φsub

pi,r,t(x
π
pi,r,t, x

π
p3−i,r,t), i = 1, 2, to Dsub

1,pi,r,t
, where

Dsub
1,pi,r,t :=

(
(D1,P,r,t \ (0, 0)) ∩

(
Db

1,pi,r,t × [0,∞)
))

. (6.20)

Note that Db
1,pi,r,t

is established according to equation (6.4). Correspondingly, given

λ
φP,r,t
4 = λ

φP,r,t
1 and λ

φbp,r,t
4 = λ

φbp,r,t
1 , we define

dsub2,pi,r,t := λ
φP,r,t
1 · tanh

(
λ
φP,r,t
2

λ
φP,r,t
3

)
+ λ

φP,r,t
4 + λ

φbp,r,t
1 · tanh

λφbp,r,t2

λ
φbp,r,t
3

+ λ
φbp,r,t
4 , i = 1, 2,

(6.21)
and obtain

Dsub
2,pi,r,t :=

{(
0, dsub2,pi,r,t

)
if λφP,r,t4 = λ

φP,r,t
1 and λ

φbp,r,t
4 = λ

φbp,r,t
1[

0, dsub2,pi,r,t

)
otherwise.

(6.22)

Concerning the modeling of φP,r,t(xπpi,r,t, x
π
p3−i,r,t), the following assumptions hold.
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Assumptions 6.3. Modeling approach for the substitutable demand
So far, we have not specified the dependence of φP,r,t on the prices xπpi,r,t and x

π
p3−i,r,t. In

general, we assume that demand is high if at least one of these prices is low and decreases
if both prices increase. Therefore, we set

φP,r,t(xπpi,r,t, x
π
p3−i,r,t) = λ

φP,r,t
1 · tanh

(
λ
φP,r,t
2 −min(xπpi,r,t, x

π
p3−i,r,t)

λ
φP,r,t
3

)
+ λ

φP,r,t
4 , (6.23)

where

D1,P,r,t :={
(xπpi,r,t, xp3−i,r,t) ∈ R+

0 × R+
0 |min(xπpi,r,t, x

π
p3−i,r,t) ≤ λ

φP,r,t
2 + λ

φP,r,t
3 · artanh

(
λ
φP,r,t
4

λ
φP,r,t
1

)}
Remark 6.2. This modeling approach for the substitutable demand (6.23) including the
min-function does not satisfy the assumption that the demand function is differentiable.
Therefore, to apply the demand function for substitutes in the optimization model in
section 6.3, we will approximate the min-function by the differentiable function

fmin(xπpi,r,t, x
π
p3−i,r,t) =

1
2

(
xπpi,r,t + xπp3−i,r,t −

√
(xπpi,r,t + xπp3−i,r,t)

2
)
, i = 1, 2.

Example 6.4. Let P = {p1, p2}, λ
φP,r,t
1 = 200, λφP,r,t2 = 300, λφP,r,t3 = 200, λφP,r,t4 =

200, and φbp1,r,t = φbp2,r,t = 0. Concerning the splitting function, we select n = 5, i.e.,
equation (6.18).
Since we model the substitutable demand by means of the min-function (cf. figure 6.7),
the following case differentiation is necessary.

∂φP,r,t
∂xπp3−i,r,t

=


0 if xπpi,r,t < xπp3−i,r,t

−λ
φP,r,t
1

λ
φP,r,t
3

· sech2

(
λ
φP,r,t
2 −xπp3−i,r,t

λ
φP,r,t
3

)
if xπpi,r,t > xπp3−i,r,t

(6.24)

Obviously, φP,r,t is not differentiable at xπpi,r,t = xπp3−i,r,t. The resulting demand functions
φsubp1,r,t and φ

sub
p2,r,t are illustrated in figures 6.5 and 6.6. These illustrations reveal that in

case xπpi,r,t > xπp3−i,r,t the demand decreases if the prices exceed a certain level. Figure
6.8 show the respective price combinations for which the derivative with respect to the
substitute’s price is negative. The red area represents the price combination for which the
derivative is negative. Hence, for these prices, the demand decreases if the substitute’s
price rises.

This example reveals that, in general, our modeling approach does not provide

∂φsub
pi,r,t

∂xπp3−i,r,t
=

∂ρpi
∂xπp3−i,r,t

· φP,r,t + ρpi ·
∂φP,r,t
∂xπp3−i,r,t

≥ 0, (6.25)

which is a characteristic that identifies substitutes (cf. the characteristics of demand 3.9).
To conclude, we summarize the results of our investigation in the following theorem.
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6.2. The Tanh-Demand Model

Figure 6.5: Illustration of the demand
model φsubp1,r,t (6.19) with parameters given
in example 6.4

Figure 6.6: Illustration of the demand
model φsubp2,r,t (6.19) with parameters given
in example 6.4

Figure 6.7: Illustration of the model for
substitutable demand φP,r,t (6.23) with
parameters given in example 6.4

Figure 6.8: Illustration of the conversion
of the derivative (6.24) with parameters
given in example 6.4

Theorem 6.3. Demand model for substitutable products
Let P = {pi, p3−i} be a set of substitutes. Then, the demand function
φsub
pi,r,t : D

sub
1,pi,r,t

→ Dsub
2,pi,r,t

,

φsub
pi,r,t(x

π
pi,r,t, x

π
p3−i,r,t) = ρpi

(
xπpi,r,t
xπp3−i,r,t

)
· φP,r,t(xπpi,r,t, x

π
p3−i,r,t) + φbpi,r,t(x

π
pi,r,t) (6.26)

satisfies the assumptions 6.1 excluding differentiability at xπpi,r,t = xπp3−i,r,t if φP,r,t and
φbpi,r,t fulfill the assumptions given by theorem 6.1 (excluding differentiability of φP,r,t at
xπpi,r,t = xπp3−i,r,t).
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Proof: It remains to verify that
∂φsub

pi,r,t

∂xπpi,r,t

(
xπpi,r,t, x

π
p3−i,r,t

)
≤ 0 if xπpi,r,t 6= xπp3−i,r,t. We have

∂φsub
pi,r,t

∂xπpi,r,t
=

∂ρpi
∂xπpi,r,t

· φP,r,t + ρpi ·
∂φP,r,t
∂xπpi,r,t

+
∂φbpi,r,t
∂xπpi,r,t

,

given xπpi,r,t 6= xπp3−i,r,t, where

∂φP,r,t
∂xπpi,r,t

(
xπpi,r,t, x

π
p3−i,r,t

)
=


0 if xπp3−i,r,t < xπpi,r,t

−λ
φP,r,t
1

λ
φP,r,t
3

· sech2

(
λ
φP,r,t
2 −xπpi,r,t
λ
φP,r,t
3

)
if xπp3−i,r,t > xπpi,r,t.

(6.27)

Thus, to prove that
∂φsub

pi,r,t

∂xπpi,r,t

(
xπpi,r,t, x

π
p3−i,r,t

)
< 0 it remains to prove ∂ρpi

∂xπpi,r,t

(
xπpi,r,t
xπp3−i,r,t

)
<

0. We have

∂ρpi
∂xπpi,r,t

(
xπpi,r,t
xπp3−i,r,t

)

=

(
xπpi,r,t
xπp3−i,r,t

+ 1
)n
·
m∑
k=1

(
n
k

)
k

(xπpi,r,t
)k−1

(xπp3−i,r,t
)k(

xπpi,r,t
xπp3−i,r,t

+ 1
)2n

−

(
xπpi,r,t
xπp3−i,r,t

+ 1
)n−1

· n

xπp3−i,r,t
·
m∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
(

xπpi,r,t
xπp3−i,r,t

+ 1
)2n

=

(
xπpi,r,t
xπp3−i,r,t

+ 1
)
·
m∑
k=1

(
n
k

)
k

(xπpi,r,t
)k−1

(xπp3−i,r,t
)k
− n

xπp3−i,r,t
·
m∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
(

xπpi,r,t
xπp3−i,r,t

+ 1
)n+1

=

(
xπpi,r,t
xπp3−i,r,t

+ 1
)
·
m∑
k=1

(
n

k − 1

)(
xπpi,r,t
xπp3−i,r,t

)k−1

− n ·
m∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
(
xπp3−i,r,t

)
·
(

xπpi,r,t
xπp3−i,r,t

+ 1
)n+1

=

(
xπpi,r,t
xπp3−i,r,t

+ 1
)
·
m−1∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
− n ·

m∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
(
xπp3−i,r,t

)
·
(

xπpi,r,t
xπp3−i,r,t

+ 1
)n+1
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=

m−1∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k+1

+
m−1∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
− n ·

m∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
(
xπp3−i,r,t

)
·
(

xπpi,r,t
xπp3−i,r,t

+ 1
)n+1 .

Since the prices are positive, only the numerator can be checked for negativity. We check

this by equating coefficients of
(

xπpi,r,t
xπp3−i,r,t

)ε
, ε = 0, . . . ,m. We obtain

ε = 0 : 1− n < 0

ε = 1, . . . ,m− 1 :
(

n
ε− 1

)
+
(
n
ε

)
− n ·

(
n
ε

)
=
(
n+ 1
ε

)
− n ·

(
n
ε

)
=

n!
ε!(n− ε)!

·
(

n+ 1
n+ 1− ε

− n
)

=
n!

ε!(n− ε)!
·
(
n+ 1− n2 − n+ n · ε

n+ 1− ε

)
<

n!
ε!(n− ε)!

·
(

1− 0.5 · n2

n+ 1− ε

)
< 0

ε = m :
(

n
m− 1

)
− n ·

(
n
m

)
=

n!
(m− 1)!(n−m)!

·
(

1
n−m+ 1

− n

m

)
=

n!
(m− 1)!(n−m)!

·
(
m− n2 + n ·m− n

(n−m+ 1) ·m

)
<

n!
(m− 1)!(n−m)!

·
(

0.5 · n− n+ 0.5 · n2 − n2

(n−m+ 1) ·m

)
< 0.

Thus,

m−1∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k+1

+
m−1∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
− n ·

m∑
k=0

(
n
k

)(
xπpi,r,t
xπp3−i,r,t

)k
< 0.

From this it follows that ∂ρpi
∂xπpi,r,t

(
xπpi,r,t/x

π
p3−i,r,t

)
< 0 and ∂φP,r,t

∂xπpi,r,t

(
xπpi,r,t, x

π
p3−i,r,t

)
< 0.

6.2.3.2 Complements

Finally, this section contains the enhancement of the model for products that are comple-
mentary to each other. On the basis of the modeling approach in section 3.6, we consider
a set of two complements C = {pi, p3−i}. Since the demand of these products is in a
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specified ratio representing the requirements for reprocessing, we consider the common
demand of this mixture that is given by

φC,r,t(xπpi,r,t, x
π
p3−i,r,t) = λ

φC,r,t
1 · tanh

(
λ
φC,r,t
2 −

∑2
k=1 a

com
pk,C,t · x

π
pk,r,t

λ
φC,r,t
3

)
+ λ

φC,r,t
4 . (6.28)

The corresponding domain is given by

D1,C,r,t :=

{
D̃1,C,r,t if λφC,r,t4 < λ

φC,r,t
1

R+
0 × R+

0 if λφC,r,t4 = λ
φC,r,t
1 ,

(6.29)

where

D̃1,C,r,t :={
(xπpi,r,t, x

π
p3−i,r,t) ∈ R+

0 × R+
0 |

2∑
k=1

acom
pk,C,t · x

π
pk,r,t

≤ λφC,r,t2 + λ
φC,r,t
3 · artanh

(
λ
φC,r,t
4

λ
φC,r,t
1

)}
.

Accordingly, the codomain is given by

D2,C,r,t :=


[
0, λφC,r,t1 · tanh

(
λ
φC,r,t
2

λ
φC,r,t
3

)
+ λ

φC,r,t
4

]
if λφC,r,t4 < λ

φC,r,t
1(

0, λφC,r,t1 · tanh
(
λ
φC,r,t
2

λ
φC,r,t
3

)
+ λ

φC,r,t
4

]
if λφC,r,t4 = λ

φC,r,t
1 .

(6.30)

Consequently, the demand for the single product pi, i = 1, 2 can be expressed by

φcom
pi,r,t(x

π
pi,r,t, x

π
p3−i,r,t) = acom

pi,C,t · φC,r,t(a
com
pi,C,t · x

π
pi,r,t + acom

p3−i,C,t · x
π
p3−i,r,t), i = 1, 2, (6.31)

where Dcom
1,pi,r,t

:= D1,C,r,t, i = 1, 2, and

Dcom
2,pi,r,t :=


[
0, acom

pi,C,t ·
(
λ
φC,r,t
1 · tanh

(
λ
φC,r,t
2

λ
φC,r,t
3

)
+ λ

φC,r,t
4

)]
if λφC,r,t4 < λ

φC,r,t
1(

0, acom
pi,C,t ·

(
λ
φC,r,t
1 · tanh

(
λ
φC,r,t
2

λ
φC,r,t
3

)
+ λ

φC,r,t
4

)]
if λφC,r,t4 = λ

φC,r,t
1 , i = 1, 2.

(6.32)

Theorem 6.4. Demand model for complementary products
Let C = {pi, p3−i} be a set of complementary products. Then, the demand function
φcom
pi,r,t : D

com
1,pi,r,t

→ Dcom
2,pi,r,t

,

φcom
pi,r,t(x

π
pi,r,t, x

π
p3−i,r,t) = acom

pi,C,t · φC,r,t(a
com
pi,C,t · x

π
pi,r,t + acom

p3−i,C,t · x
π
p3−i,r,t), i = 1, 2, (6.33)

with

α
max_quant
pi,r,t

= acom
pi,C,t · (λ

φC,r,t
1 · tanh

(
λ
φC,r,t
2

λ
φC,r,t
3

)
+ λ

φC,r,t
4 ), i = 1, 2,

satisfies the assumptions 6.1 if φC,r,t : D1,C,r,t → D2,C,r,t defined by model (6.28) and
fulfills the assumptions required in theorem 6.1.
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Optimization Problem

Proof: The accordance of equation (6.33) with the characteristics of demand 6.1 imme-
diately results from its construction. Besides, the characteristics of demand 3.11 are
satisfied because

∂φcom
pi,r,t

∂xπp3−i,r,t
(xπpi,r,t, x

π
p3−i,r,t) =

−acom
p3−i,C,t · a

com
pi,C,t · λ

φC,r,t
1

λ
φC,r,t
3

· sech2

λφC,r,t2 − acom
pi,C,t · x

π
pi,r,t − a

com
p3−i,C,t · x

π
p3−i,r,t

λ
φC,r,t
3

 ≤ 0

and in the same manner
∂φcom

p3−i,r,t
∂xπpi,r,t

≤ 0.

Example 6.5. Let C = {p1, p2}, λ
φC,r,t
1 = 200, λφC,r,t2 = 300, λφC,r,t3 = 50, λφC,r,t4 = 190,

and φbp1,r,t = φbp2,r,t = 0. Then, given acom
p1,C,t = 1 and acom

p2,C,t = 2 the demand functions
φcom
p1,r,t and φ

com
p2,r,t are illustrated in figures 6.9 and 6.10.

Figure 6.9: Illustration of φcom
p1,r,t (see

model (6.33)) with parameters given in
example 6.5

Figure 6.10: Illustration of φcom
p2,r,t (see

model (6.33)) with parameters given in
example 6.5

6.3 Including the Demand Models in the Supply-Demand
Trade Network Optimization Problem

In this section, we apply the tanh-demand model (6.6), the tanh-demand model eco (6.15),
the tanh-demand model for substitutes (6.26), and the tanh-demand model for comple-
ments (6.33) in the supply-demand trade network optimization model. Therefore, we
first present the subsystem of the petrochemical network that we will use for the sim-
ulations of prices and sales quantities. For this network, we propose several demand
scenarios for products with external demand and analyze the results of the respective
profit maximization.
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Number
|PM | 20
|Pext| 15
|Pmid| 0
|Pout| 5
|R| 1
|S| 18
|C| 1
|T | 1

Table 6.1: Components of the petro-
chemical subnetwork under considera-
tion

Scale
a
cap_max
s,r,t 102 − 103

aπpex,r,t 102 − 103

afs,p,t 100

aπpout,r,t 102 − 103

aqpout,r,t 102 − 103

∆aGDP
r,t,1 102

∆aIndPro
r,t,1 101

Table 6.2: Parameter scales of the
petrochemical subnetwork under con-
sideration

6.3.1 Description of the Subnetwork

We select a subnetwork of the petrochemical industry in cooperation with experts and
add further estimates whenever historical data is not available. Applying the algorithm
developed by Kramer [Kra13] to obtain a consistent network, the subnetwork includes the
components summarized in table 6.1. For confidentiality reasons we do not provide the
real notation and denote the respective components of the sets as follows: T = {tsim},
R = {A}, and Pout = {1, 2, 3, 4, 5}. Likewise, we only give the scales of the data available
for the network simulation.
The product network is shown in figure 6.11. Note that the reduction to one region causes
some inconsistencies. In case the maximum capacity for producing a certain product is
lower than historical sales quantities, we add an additional process with fixed costs and
without inputs representing the purchase of the product from another region. To be more
precise, the corresponding fixed costs are equal to a rough estimation of the production
costs in another region plus the transportation costs to region A. Obviously, there is no
further information about demand available. Therefore, we create some demand scenarios
in the subsequent section.7

6.3.2 Simulation of Sales Quantities and Prices using Different Demand
Scenarios

To integrate our demand model in the supply-demand trade network optimization prob-
lem, we propose different demand scenarios

• Scenario basic: all products p ∈ Pout are required independently from each other,
but have the same demand parameters λφp,r,t1 = 1000, λφp,r,t2 = 3500, λφp,r,t3 = 1500,
and λφp,r,t4 = 250 for all p ∈ Pout.

7Motivated by the objective to investigate price formation of the past and forecast prices and sales
quantities, we consider methods for identifying parameters of the demand function based on the data
given in chapter 7.

100



6.3. Including the Demand Models in the Network Optimization Problem

  

5 4 21

3

Figure 6.11: Illustration of the product network in the subsystem: the grey boxes depict
product with fixed prices, the numbered boxes present products with external demand.
The colored connections reflect their production processes, where inputs are above and
outputs below.

• Scenario eco: all products p ∈ Pout are required independently from each other,
but have the same demand parameters λφp,r,t1 = 1000, λφp,r,t2 = 3500, λφp,r,t3 = 1500,
and λφp,r,t4 = 250, λφp,r,tGDP = 0.1, and λφp,r,tIndPro = 10 for all p ∈ Pout. The change of
the economic situation was calculated using J = 1: ∆aζir,t,1, ζi ∈ {GDP, IndPr}.

• Scenario sub 1: let P = Psub = {p1, p2}, where λ
φP,r,t
1 = 1000, λφP,r,t2 = 3500,

λ
φP,r,t
3 = 1500, λφP,r,t4 = 250. Additionally, λ

φbpsub,r,t
1 = 500, λ

φbpsub,r,t
2 = 3500,

λ
φbpsub,r,t
3 = 1500, and λ

φbpsub,r,t
4 = 250 for all psub ∈ Psub. That means, starting

from scenario basic, half of the demand of products p1 and p2 is supposed to
be substitutable. For the splitting function, we select n = 19. The remaining
products pout ∈ Pout \Psub are required independently from each other. They have
the same demand parameters λφpout,r,t1 = 1000, λφpout,r,t2 = 3500, λφpout,r,t3 = 1500,
and λφpout,r,t4 = 250 for all pout ∈ Pout \ Psub.

• Scenario sub 2: let P = Psub = {p1, p2}, where λ
φP,r,t
1 = 2000, λφP,r,t2 = 3500,

λ
φP,r,t
3 = 1500, and λ

φP,r,t
4 = 250. As above, we select n = 19 for the splitting,

but, this time, φbpsub,r,t(x
π
p,r,t) = 0 for all psub ∈ Psub. Likewise, the remaining

products pout ∈ Pout \ Psub are required independently from each other, but have
the same demand parameters λφpout,r,t1 = 1000, λφpout,r,t2 = 3500, λφpout,r,t3 = 1500,
and λφpout,r,t4 = 250 for all pout ∈ Pout \ Psub.

• Scenario com 1: let C = Pcom = {p1, p2} with acom
pi,Pcom,t

= 1, i = 1, 2. Re-

garding the demand for these complements, we set λφPcom,r,t1 = 1000, λφPcom,r,t2 =
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Scenario Product 1 Product 2 Product 3 Product 4 Product 5 Total Profit
Basic 2648.10 2645.86 2635.87 2788.69 2633.37 8.96 · 106

Eco 2700.56 2698.48 2688.49 2838.02 2686.16 8.32 · 106

Sub 1 2524.70 2910.31 2639.25 2788.69 2633.37 9.33 · 106

Sub 2 2633.97 3807.44 2639.25 2788.69 2633.37 9.33 · 106

Com 1 2504.01 3046.44 2639.25 2788.69 2633.37 9.95 · 106

Com 2 2844.59 2925.77 2641.14 2788.69 2645.68 1.24 · 107

Table 6.3: Simulation results of prices and profit for each demand scenarios given the
subnetwork described in section 6.3.1

∑
pi∈Pcom a

com
pi,Pcom,t

· 3500 = 7000, λφPcom,r,t3 = 1500, and λφPcom,r,t4 = 250.8 The re-
maining products pout ∈ Pout\Pcom are required independently from each other, but
have the same demand parameters λφpout,r,t1 = 1000, λφpout,r,t2 = 3500, λφpout,r,t3 =
1500, and λφpout,r,t4 = 250 for all pout ∈ Pout \ Pcom.

• Scenario com 2: let C = Pcom = {p1, p2} with acom
p1,Pcom,t

= 1 and acom
p2,Pcom,t

= 2.

Similarly to scenario com 1 above, we select λφPcom,r,t1 = 1000, λφPcom,r,t2 =∑
pi∈Pcom a

com
pi,Pcom,t

· 3500 = 10500, λφPcom,r,t3 = 1500, and λφPcom,r,t4 = 250. The re-
maining products pout ∈ Pout\Pcom are required independently from each other, but
have the same demand parameters λφpout,r,t1 = 1000, λφpout,r,t2 = 3500, λφpout,r,t3 =
1500, and λφpout,r,t4 = 250 for all pout ∈ Pout \ Pcom.

The optimization model was implemented in AMPL and solved using Ipopt-3.8.3 for each
demand scenario. As initial values for the price variables, we select the prices from the
previous year. Since the demand model for substitutes (6.26) is not differentiable at the
whole domain Dsub

1,pi,r,t
, we approximate the min-function with

fmin(xπpi,r,t, x
π
p3−i,r,t) =

1
2

(
xπpi,r,t + xπp3−i,r,t −

√
(xπpi,r,t + xπp3−i,r,t)

2
)
, i = 1, 2.

Having established the scenarios we obtain the corresponding price and sales quantity
simulations by solving the optimization problem (4.3) defined in section 4.2 for the sub-
network presented above. The results are shown in tables 6.3 and 6.4. Exemplarily,
figures 6.12 to 6.19 illustrate the corresponding demand functions or the substitutable
demand function, respectively, of products 1 and 2, together with the optimal solutions.
All in all, the simulation results are satisfactory. In particular, we observe the following
behavior.

• The demand functions in scenario basic and scenario eco are identical for all
products p ∈ Pout. The differences of the optimal solutions are due to the produc-

8Basically, we assumed that almost all parameters are equal to scenario basic except λφPcom,r,t

2 as
variable for the maximum price, which is set equal to

P
pi∈Pcom

acom
pi,Pcom,t · λ

φpi,r,t

2 .

102



6.3. Including the Demand Models in the Network Optimization Problem

Scenario Product 1 Product 2 Product 3 Product 4 Product 5
Basic 763.839 764.936 769.814 691.593 771.030
Eco 795.946 796.972 801.89 724.701 803.034
Sub 1 923.008 621.729 768.168 691.593 771.030
Sub 2 1219.980 321.492 768.168 691.593 771.030
Com 1 997.104 997.104 768.168 691.593 771.030
Com 2 1084.440 2168.880 767.248 691.593 765.027

Table 6.4: Simulation results of sales quantities for each demand scenarios given the
subnetwork described in section 6.3.1
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Figure 6.12: Demand φp1,r,t for product
1 of scenario basic and scenario eco:
change of optimal solution due to a change
in the economic situation
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Figure 6.13: Demand φp2,r,t for product
2 of scenario basic and scenario eco:
change of optimal solution due to a change
in the economic situation

tion processes. The results for products 1 and 2 are illustrated in the figures 6.12
and 6.13.

• Comparing the simulation results of scenario basic and scenario eco, the effects
of a positive change in the economic situation is conspicuous. According to our
model, the demand curve in scenario eco is shifted to the right compared to the
respective demand function in scenario basic. This results in a higher price for
slightly lower sales quantities.

• The model works well if the substitutable products are required independently from
each other as proposed in scenario sub 1. Compared to the results of scenario
basic, one of the substitutes becomes cheaper, whereas the other one becomes
more expensive. This is plausible with regard to the substitutable demand that is
driven and satisfied by the cheaper product. Consequently, the cheaper product
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Figure 6.14: Substitutable demand φP,r,t
for products 1 and 2 of scenario sub 1:
optimal solution highlighted

Figure 6.15: Substitutable demand φP,r,t
for products 1 and 2 of scenario sub 2:
optimal solution highlighted

Figure 6.16: Demand φcom
p1,r,t for product

1 of scenario com 1: optimal solution
highlighted

Figure 6.17: Demand φcom
p2,r,t for product

2 of scenario com 1: optimal solution
highlighted

compensates the effect of increasing the price of the other product. As a result, the
optimization results in higher profit compared to the profit of scenario basic.

• Scenario sub 2 represents the case, in which the basis demand φbpsub,r,t is zero
for all psub ∈ Psub. The demand model does not include a maximum price for the
more expensive product, because the substitutable demand only limits the price
of the cheaper product. Consequently, our optimization model indicates that the
monopolist is tempted to drive up the price. The results reveal that this aspect
has to be further analyzed in future research. Moreover, varying the initial values
provokes a different local solution with a slightly lower or higher objective function
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Figure 6.18: Demand φcom
p1,r,t for product

1 of scenario com 2: optimal solution
highlighted

Figure 6.19: Demand φcom
p2,r,t for product

2 of scenario com 2: optimal solution
highlighted

value. Clearly, the nonconvexity of the optimization problem comes from the fact
the substitutable demand function is not concave (cf. figure 6.14 and 6.15).

• Likewise, the results of scenario com 1 and scenario com 2 are reasonable.
However, the choice of the parameters induces that the demand is considerably
high at high prices. This leads to higher sales quantities in the case of complements
and also to a very high profit. Consequently, more data analysis is necessary to
determine the demand parameters for complements. Especially, values for λφPcom,r,t3

influence the shape of the demand function if λφPcom,r,t1 and λφPcom,r,t2 are fixed. It
is, however, plausible that it is optimal for the producer to produce more of the
products he sells in a “basket”. For that reason, the prices of products 3 and 5 are
increased so that higher quantities of complementary products 1 and 2 are produced
and sold.

To conclude, our approach to modeling demand induces reasonable results. Thus, our
demand model is applicable to the supply-demand trade network optimization model.
Moreover, Kramer [Kra13] used the tanh-demand model eco in order to simulte prices
and sales quantities in a three-region network over multiple time periods and obtained
valuable results. However, it becomes obvious that more information about the products
is necessary to create realistic scenarios for the multi-commodity demand models. More-
over, the identification of the model parameters is essential. Therefore, the subsequent
chapter investigates methods for identifying the demand parameters of φecop,r,t(xπp,r,t).
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Chapter 6. Heuristic Demand Modeling

6.4 Conclusion

In this section, we develop a quantitative demand model that is applicable in our opti-
mization model and satisfies the characteristics summarized in the assumptions 6.1 to
the greatest possible extent. To be more precise, we establish demand models including
changes in the economic situation or considering the aspects of complementary prod-
ucts such that the model functions satisfy the demand characteristics summarized in
assumptions 6.1. Including price-dependent substitutes is more complex than the other
modeling approaches. Indeed, our approach to modeling demand of substitutes does not
satisfy the requirement of being differentiable at the whole domain. Nevertheless, we are
able to approximate the substitutable demand function by a differentiable function and
insert this approximation in the network optimization model which leads to reasonable
results in section 6.3.
Hence, our tanh-demand model offers a reasonable tool to simulate prices and sales quan-
tities by providing the following advantages:

• The model function is bounded, nonlinear, continuous, and decreasing.

• The model function is differentiable with respect to the price almost everywhere.
If this is not the case, an approximation for the demand function is offered to solve
the optimization problem with algorithms based on derivatives.

• The model offers a saturation quantity.

• Including the demand model in the supply-demand trade network optimization
model results in reasonable price and sales quantities simulations.

• The model function includes few parameters.

Nevertheless, to make statements about real price formation and provide price forecasts,
it is necessary to estimate the parameters of the demand model. A prerequisite is,
however, that sufficient information to estimate parameters is available. The subsequent
chapter proposes two methods to identify the parameters that are tailored to the available
data.

106



7 Methods to Identify the Demand
Parameters of Petrochemical Products

Having established explicit demand models in chapter 6, our next step comprises the
development of methods for identifying parameters. The objective of this identification
process is not only to estimate the historical demand function given historical data, but
also to provide a forecast of the future demand that is applicable in our supply-demand
trade network optimization model presented in section 4.2 to simulate price and sales
quantity forecasts in the petrochemical industry. In this chapter, our studies focus on
identifying the parameters of the tanh-demand model eco

φecop,r,t(x
π
p,r,t) =

(λφp,r,t1 + λ
φp,r,t
IndPro ·∆a

IndPro
r,t,J ) · tanh

(
λ
φp,r,t
2 + λ

φp,r,t
GDP ·∆aGDP

r,t,J − xπp,r,t
λ
φp,r,t
3

)
+ λ

φp,r,t
4 , (7.1)

where |P | = 1. In section 7.1, to begin with, we discuss the emerging difficulties of
identifying the parameters

λ
φp,r,t0
1 , λφp,r,t02 , λφp,r,t03 , λφp,r,t04 , λφp,r,t0GDP , and λφp,r,t0IndPro

for a fixed time t0 by means of data consisting of yearly prices, yearly sales quantities, and
yearly economic indices. Obviously, the fact that the assumed nonlinear structure is not
evident from available data poses a big challenge. Therefore, we propose two methods
for parameter identification that we tailor to the available data set.
In section 7.2, we approximate the demand function by determining a range of possible
parameter values on the basis of several data statistics (i.e., we make several a-priori
assumptions) and recalculate the optimal price formation of preceding years for these
parameter values by use of the supply-demand trade network optimization model (4.3)
presented in section 4.2. Then, we calculate the average deviation of the resulting price
and sales quantity simulations from the historical data for each parameter fit. Finally,
we accept those parameter values that minimize the differences of the simulations to the
historical values as the most appropriate parameters for time t0.
Alternatively, in section 7.3, we propose an optimization problem with constraints that
reflect assumptions on the shape of the demand function. Applying the generalized
Gauss-Newton method for constrained weighted least-squares problems, we estimate the
demand parameters for each product separately.
To conclude, in section 7.4, we integrate the respective demand functions obtained by
both approaches for each product in the supply-demand trade network optimization
problem (4.3) and compare the resulting price and sales quantity simulations with each
other.
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7.1 Difficulties of Realizing a Parameter Identification

We have already discussed the shortcomings of yearly data with regard to establishing
explicit demand models in section 6.1. Likewise, identifying parameters of the demand
model (7.1) gets also complicated by means of the available historical data as the following
parameter identification-related issues reveal (using again the example of data shown in
the figure 6.1).

1. The effect of prices on demand does not clearly arise from the given data. In
other words, the demand-price relation is not distinguishable from other influencing
factors.

2. There is no information available about consumption in high and low price ranges.

As a result, we draw the following conclusions for the identification process.

1. Two, possibly consecutive, price and sales quantity tuples at two different times re-
sult from different states of the economic and consumer-related influencing factors.

2. To estimate the parameters for a given fixed time we cannot rely on a high number
of years in which the market situation is similar. Hence, we reduce the estimation
input to price-sales combinations of years in which the market situation is compa-
rable and additionally weight the data with a time-dependent factor if necessary.

3. Further information is essential for a reasonable approximation of the consumer’s
behavior in the unobserved price ranges.

Subsequently, we show how to tackle the problem in two different ways. Therefore, our
research is restricted to the tanh-demand model eco, because

1. the available database does not provide information that indicates which products
in the petrochemical network are substitutes or complements,1 and,

2. as stated above, influences of prices and other influencing factors are not easily
distinguishable. In other words, there is no consumption data available that is
adjusted to changes in the economic situation,

Both of the following techniques require additional assumptions to provide an efficient
parameter identification. Concering the data needed, the first technique is rather circum-
stantial and elaborate, because it includes numerous simulations of the whole market,
whereas the second approach is more general and is only based on price and consumption
data of the regarded petrochemical product as well as on economic factors.

1Kök and Fisher [KF07] also note that information about substitution of products, i.e., how much is
required because of the substitution effect, usually is not available.
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7.2 Simulation-based Approach to Approximate the
Demand Parameters

This section comprises our concept to approximate the basic parameters λφp,r,t01 , . . . , λ
φp,r,t0
4

and subsequently λφp,r,t0GDP and λφp,r,t0IndPro based on historical market information. As stated
in section 6.2, we assume that λφp,r,ti ≥ 0, i = 1, 2, 4, λφp,r,t3 > 0 and λ

φp,r,t0
k ≥ 0, k ∈

{GDP, IndPro}. Under the assumption that the upper bound of consumer’s maximum
quantity, αUB_max_quant

p,r,t0
, and the consumer’s maximum price, αmax_price

p,r,t0
, can be mod-

eled as a function of past consumption, aqp,r,τ , τ ∈ Tt0 , and price data, aπp,r,τ , τ ∈ Tt0 ,
respectively, we have

α
UB_max_quant
p,r,t0

= αmqp,r,t0 · f((aqp,r,τ )τ∈Tt0 ), (7.2)

α
max_price
p,r,t0

= αmpp,r,t0 · f((aπp,r,τ )τ∈Tt0 ), (7.3)

where Tt0 includes all years whose data is assumed to influence the consumer’s charac-
teristics at t0. In doing so, we restrict our approximation to the case λφp,r,t04 < λ

φp,r,t0
1 .

Basically, we propose formulas for the upper bound of the maximum consumption and
the maximum price using historical data without taking into account the influences of
economic factors so far. Having determined the basic demand parameters, we estimate
the shift caused by changes in the economic situation using the method of least squares.
In short, our way of proceeding is as follows. For different factors αmqp,r,t0 and αmpp,r,t0 ,

1. we propose modeling approaches for the upper bound of αmax_quant
p,r,t0

as well as
α

max_price
p,r,t0

α
UB_max_quant
p,r,t0

= αmqp,r,t0 · f((aqp,r,τ )τ∈Tt0 ) = λ
φp,r,t0
1 + λ

φp,r,t0
4 (7.4)

α
max_price
p,r,t0

= αmpp,r,t0 · f((aπp,r,τ )τ∈Tt0 ) = λ
φp,r,t0
2 + λ

φp,r,t0
3 · artanh

(
λ
φp,r,t0
4

λ
φp,r,t0
1

)
(7.5)

and relate them with the basic demand parameters still excluding the influence of
economic factors,

2. we determine λφp,r,t01 , . . . , λ
φp,r,t0
4 by assuming that the data of the previous year

t0 − 1 satisfies the demand function and the relations above,

3. we integrate economic factors and estimate λφp,r,t0GDP and λφp,r,t0IndPro using the method
of least-squares described in section 5.3,

4. we simulate historical prices and sales quantities using the supply-demand trade
network optimization model proposed in section 4.2 including the demand function,
and

5. we compute the error, i.e., the deviation of the simulations from the historical data.
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By computing error statistics, we determine the best parameter fit to be equal to those
values that minimize the average deviation of simulations from the historical values. In
the following, we explain our assumptions concerning the parameter identification and
explicate our approach to determine the most appropriate parameter fit. Afterwards, we
test this method using an exemplary subsystem of the petrochemical network.

7.2.1 Heuristic Principle to Approximate Parameters

We start with determining the parameters λφp,r,t01 , . . . , λ
φp,r,t0
4 by expressing the upper

bound of consumer’s maximum quantity and the consumer’s maximum price by a function
of past consumption and price data, respectively. In doing so, we propose the following
principle:

Assumptions 7.1. Principle to determine parameters of the tanh-demand model A
In section 6.2, we have established for the tanh-demand model A that

λ
φp,r,t0
1 = α

UB_max_quant
p,r,t0

, λ
φp,r,t0
2 = α

max_price
p,r,t0

. (7.6)

That means, λφp,r,t02 displays the maximum price that the consumer is willing to pay at
time t0 and λφp,r,t01 displays the upper bound of the maximum capacity of the consumer
at time t0. On the basis of these definitions, we compute λφp,r,t03 in the following way: as
long as no adaption to the economic changes has occurred yet we assume that the tuple of
the previous year (aπp,r,t0−1, a

q
p,r,t0−1) satisfies the demand function for the current time

t0, i.e.,

aqp,r,t0−1 = λ
φp,r,t0
1 · tanh

(
λ
φp,r,t0
2 − aπp,r,t0−1

λ
φp,r,t0
3

)
. (7.7)

Thus, λφp,r,t03 can be written in terms of the parameters λφp,r,t01 , λφp,r,t02 , and data given
from the previous year:

λ
φp,r,t0
3 =

λ
φp,r,t0
2 − aπp,r,t0−1

artanh
(
aqp,r,t0−1

λ
φp,r,t0
1

) . (7.8)

Note that λφp,r,t03 exists and is positive if λφp,r,t02 = α
max_price
p,r,t0

> aπp,r,t0−1 and λφp,r,t01 >

α
UB_max_quant
p,r,t0

> aqp,r,t0−1 which holds for aπp,r,t0−1 ∈ D1,p,r,t and a
q
p,r,t0−1 ∈ D2,p,r,t.

Concerning the general model (6.6), the following assumption holds.

Assumptions 7.2. Principle to determine parameters of the tanh-demand model
On the basis of the relations established in section 6.2 and assumptions 7.1, we set

λ
φp,r,t0
1 = αshift · αUB_max_quant

p,r,t0
, λ

φp,r,t0
4 = (1− αshift) · αUB_max_quant

p,r,t0
(7.9)
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where 0.5 < αshift < 1. By doing this, the upper bound for the maximum consumption is
identical in both models and we make sure that φp,r,t0(αmax_price

p,r,t0
) = 0. Moreover,

λ
φp,r,t0
2 + λ

φp,r,t0
3 · artanh

(
λ
φp,r,t0
4

λ
φp,r,t0
1

)
= α

max_price
p,r,t0

. (7.10)

Assuming that the tuple of the previous year (aπp,r,t0−1, a
q
p,r,t0−1) satisfies the demand

function, we obtain

aqp,r,t0−1 = λ
φp,r,t0
1 · tanh

(
λ
φp,r,t0
2 − aπp,r,t0−1

λ
φp,r,t0
3

)
+ λ

φp,r,t0
4 . (7.11)

By analogy with equation (7.8), substituting equation (7.10) into (7.11), λφp,r,t03 is given
by

λ
φp,r,t0
3 =

α
max_price
p,r,t0

− aπp,r,t0−1

artanh
(
λ
φp,r,t0
4

λ
φp,r,t0
1

)
+ artanh

(
aqp,r,t0−1−λ

φp,r,t0
4

λ
φp,r,t0
1

) . (7.12)

Note that λφp,r,t03 exists and is positive if αmax_price
p,r,t0

> aπp,r,t0−1 and λφp,r,t01 > aqp,r,t0−1 −
λ
φp,r,t0
4 > 0.

So far, in case there is no information about the consumer’s characteristics available, we
model αUB_max_quant

p,r,t0
and αmax_price

p,r,t0
on the basis of historical data.

Assumptions 7.3. General modeling of consumer’s characteristics
We consider αUB_max_quant

p,r,t0
and αmax_price

p,r,t0
and assume that these consumer’s character-

istics are proportional to specific statistics of the historical data (e.g., weighted mean or
maximum). Furthermore, let Tt0 be a set of previous times whose data is supposed to
influence the situation at present time t0, let α

mq
p,r,t0

> 1 be the maximum quantity factor,
and let αmpp,r,t0 > 1 be the maximum price factor. Consequently,

α
UB_max_quant
p,r,t0

= αmqp,r,t0 ·
∑
τ∈Tt0

wτ · aqp,r,τ , (7.13)

or α
UB_max_quant
p,r,t0

= αmqp,r,t0 ·max(aqp,r,τ )τ∈Tt0 (7.14)

are possible formulas, where examples for the weighting function wτ are given in example
3.2. Similarly,

α
max_price
p,r,t0

= αmpp,r,t0 ·
∑
τ∈Tt0

wτ · aπp,r,τ , (7.15)

or α
max_price
p,r,t0

= αmpp,r,t0 ·max(aπp,r,τ )τ∈Tt0 . (7.16)

In the following, we refer to equations (7.13) and (7.15) as modeling mult_y (multiple
years). Using equation (7.14) and (7.16) is denoted by max_y (maximum year).
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Example 7.1. Given Tt0 = {t0 − 1} we obtain λφp,r,t01 = amqp,r,t0 · a
q
p,r,t0−1 and λφp,r,t02 =

ampp,r,t0 · a
π
p,r,t0−1 using mult_y. For tanh-demand model A, equation (7.8) simplifies to

λ
φp,r,t0
3 =

(αmpp,r,t0 − 1) · aπp,r,t0−1

artanh
(

1
αmqp,r,t0

) .

So far, using historical data, we obtain an approximation of the demand function, which
rather corresponds to the demand-price relation of the previous year. The next step com-
prises the estimation of λφp,r,t0GDP and λ

φp,r,t0
IndPro using the least squares approach to adjust

the demand function to the economic situation at t0.
In comparison to Tt0 , which includes all years that are assumed to influence the con-
sumer’s characteristics at t0, let T0 be the set of preceding years to be included in the
parameter identification process for time t0. To get a reasonable estimation, T0 contains
all years in which the market situation is comparable to that of t0. Hence, the following
simplification gets useful.

Assumptions 7.4. Change in the economic situation for T0

λ
φp,r,t
GDP and λφp,r,tIndPro are constant for all t ∈ T0 ∪ t0.

Under this assumption we can omit the time index for these two parameters in the re-
maining section. As stated above, we determine the parameters λφp,r,t1 , λ

φp,r,t
2 , λ

φp,r,t
3 , and

λ
φp,r,t
4 for all t ∈ T0 under the assumption that they are not influenced by the change in

the economic situation, i.e., using the principles explained in assumptions 7.1 and 7.2.
Then, to add the change in the economic situation we estimate λφp,rGDP and λφp,rIndPro using
the method of least squares (described in section 5.3).
Consequently, given λφp,r,t1 , λ

φp,r,t
2 , λ

φp,r,t
3 , λ

φp,r,t
4 ∀t ∈ T0, our parameter identification prob-

lem is
min

λ
φp,r
GDP,λ

φp,r
IndPro

∑
r∈R

∑
p∈P

∑
t∈T0

(aqp,r,t − φecop,r,t(aπp,r,t))2 (7.17a)

subject to

0 ≤ λφp,rGDP, (7.17b)

0 ≤ λφp,rIndPro. (7.17c)

This is a constrained least-squares problem that can be solved using the generalized
Gauss-Newton method. We illustrate the formation of the basic demand function as
well as the shifted demand function that reflects the influence of the economic factors in
figure 7.1. Basically, the resulting upper bound for maximum consumption is equal to
α

UB_max_quant
p,r,t0

+ λ
φp,r
IndPro · a

IndPro
r,t,J and the maximum price at t0 is equal to αmax_price

p,r,t0
+

λ
φp,r
GDP · aGDP

r,t,J . Note that all parameters λφp,r,t01 , λ
φp,r,t0
2 , λ

φp,r,t0
3 , λ

φp,r,t0
4 , λ

φp,r
GDP, and λ

φp,r
IndPro

are determined subject to a specific αmqp,r,t0 and αmpp,r,t0 .
To identify the most suitable factors for the current market situation, we propose several
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Figure 7.1: Illustration of the heuristic approach: approximation of the basic demand
parameters and shift due to economic factors

factors for αmqp,r,t0 and αmpp,r,t0 and solve the supply-demand trade network optimization
model developed in section 4.2 to simulate corresponding prices and sales quantities for
each combination of αmqp,r,t0 and αmpp,r,t0 . In the following, these tuples are denoted by

(xπp,r,t0(αmqp,r,t0 , α
mp
p,r,t0

), xqp,r,t0(αmqp,r,t0 , α
mp
p,r,t0

)).

To compare the results and detect the most reliable simulation, we further compute
the deviations of the simulations from real data and construct quantitative indices that
indicate the fit with the minimum deviation on average. Therefore, we compare the fits
by means of three indices: the mean squared error2 of prices MSEPrice and sales quantities
MSEQuantity

MSEPrice(α
mq
p,r,t0

, αmpp,r,t0) =

1
|R|

∑
r∈R

 1
|Pout|

∑
p∈Pout

 1
|T |

∑
t0∈T

(
1−

xπp,r,t0(αmqp,r,t0 , α
mp
p,r,t0

)
aπp,r,t0

)2
 , (7.18)

MSEQuantity(αmqp,r,t0 , α
mp
p,r,t0

) =

1
|R|

∑
r∈R

 1
|Pout|

∑
p∈Pout

 1
|T |

∑
t0∈T

(
1−

xqp,r,t0(αmqp,r,t0 , α
mp
p,r,t0

)
aqp,r,t0

)2
 , (7.19)

as well as the average distance of the tuples (xπp,r,t(α
mq
p,r,t0

, αmpp,r,t0), xqp,r,t(α
mq
p,r,t0

, αmpp,r,t0))

2Note that, in some textbooks, the mean squared error is defined as the standard deviation of the model
residuals (cf. Pilipovic [Pil07]).
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and (aπp,r,t, a
q
p,r,t) in Deco

1,p,r,t ×Deco
2,p,r,t

A_Dis(αmqp,r,t0 , α
mp
p,r,t0

) =
1
|R|

∑
r∈R

 1
|Pout|

∑
p∈Pout

 1
|T |

∑
t0∈T

dist(αmqp,r,t0 , α
mp
p,r,t0

)

 , (7.20)

where

dist(αmqp,r,t0 , α
mp
p,r,t0

) =√(
xqp,r,t0(αmqp,r,t0 , α

mp
p,r,t0

)− aqp,r,t0
)2 +

(
xπp,r,t0(αmqp,r,t0 , α

mp
p,r,t0

)− aπp,r,t0
)2
. (7.21)

In contrast, this error measure includes both simulation results simultaneously and en-
ables a straightforward comparison of the simulations.3 Note that, in case we aim to
determine the structure of historical demand real data of t0 is available. To forecast the
demand at time t0 it is only possible to compare simulation of the previous times t ∈ T0

with real data.
In the following section, we test this approach using the subsystem of the petrochemical
industry already presented in section 6.3.1.

7.2.2 Application to the Petrochemical Market

We apply the approach proposed above to the subsystem presented in section 6.3.1. Thus,
the optimization model simulating the price formation of this subsystem comprises the
demand function of five different products p ∈ Pout = {1, 2, 3, 4, 5} and all products are
produced and sold in one region so that there is no trade included. As above, since
the network under consideration has not sufficient capacity for all product, we add an
additional process with fixed costs if necessary.
To solve the resulting supply-demand trade network optimization problem (cf. section
4.2), we make use of the interior point solver Ipopt-3.8.3 (see [WB06, Wä09]) through
AMPL (see [FGK02]). In all examples, we assume (αmqp,r,t0 , α

mp
p,r,t0

) to be identical for
all p ∈ Pout and determine the demand parameters modeling the upper bound for the
maximum quantity and the maximum price by means of max_y and the values

(αmq, αmp) ∈ {1.3, 1.5, 1.7, 1.9} × {1.2, 1.4, 1.6, 1.8},

where we omit the indices for simplicity in the remaining section. Establishing the de-
mand parameters for each combination (7.2.2), we obtain sixteen different demand models
so that there are sixteen scenarios for the price formation in the petrochemical network.
To distinguish, table 7.1 comprises the corresponding notation referring to each scenario
according to the combination that determines the demand function. Furthermore, it
remains to determine the default parameter settings for

3Using the distance of simulation and data tuple as error index is more suitable than comparing the
profit resulting from the simulations to the historical profit. In this way, we prefer the simulations
whose price and sales are both close to the original data. Analyzing, the profit is not appropriate,
because, for example, a high price and a small amount can also achieve profit close to the historical
one, although each single result is rather unrealistic.
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1.3 1.5 1.7 1.9
1.2 1.3_1.2 1.5_1.2 1.7_1.2 1.9_1.2
1.4 1.3_1.4 1.5_1.4 1.7_1.4 1.9_1.4
1.6 1.3_1.6 1.5_1.6 1.7_1.6 1.9_1.6
1.8 1.3_1.8 1.5_1.8 1.7_1.8 1.9_1.8

Table 7.1: Notation of the scenarios with reference to the composition used to determine
the demand parameters

αshift, T0, (Tt)t∈T0 , and T .

to simulate prices and sales quantities of p ∈ Pout for each of the sixteen scenarios by
solving the supply-demand trade network optimization model. To compare the simulation
results, we calculate the error statistics (7.18), (7.19), and (7.20) to which we refer as
multi-product error statistics in the following. In addition, we also calculate the average
distance A_Dis (error (7.20)) for each product separately by setting P = {p}, ∀p ∈ Pout
in the formula. For this reason, the respective scenario that minimizes the average
distance of the simulations to the historical values can be determined for each single
product. Accordingly, we call these indices single-product error statistics. To better
detect the results of each error statistic, we mark the minimum values in the respective
tables with green color. Subsequently, we discuss two different applications. In section
7.2.2.1, we aim to approximate the demand function at time tsim based on all information
available at time tsim. In section 7.2.2.2, our objective is to forecast the demand at time
tsim based on information up to time tsim − 1. Obviously, the different approaches differ
in T : whereas prices and sales at tsim are known in the first approximation, we have to
determine the optimal factors by comparing the simulations for preceding times t ∈ T0

for which we assume that the change in the economic situation is constant in the second
approach.

7.2.2.1 Approximation of Historical Demand

To summarize, we have Pout = {1, 2, 3, 4, 5}, R = {A}, T0 = {tsim − 7, . . . , tsim − 1}, and
Tt = {t− 4, . . . , t− 1} for all t ∈ T0∪T , where T = {tsim}. Concerning the change in the
economic situation, we set J = 1 (cf. section 3.3). Moreover, we assume that αshift = 1.
The resulting values of the multi-product error statistics defined above are outlined in
table 7.2. In general, these errors reveal that the price formation gets better results if
the assumed maximum price is rather small. More precisely, for each value of αmq fixed,
the MSEPrice, Pout rises if αmp rises. All in all, the MSEPrice, Pout achieves its minimum
at combination 1.9_1.2, whereas MSEQuantity, Pout is minimal for combination 1.3_1.6.
Since these results differ, it is preferable to consider the error statistic A_Dis, Pout that
combines both variables to get a unique decision guidance. Here, the best fit is achieved
for combination 1.9_1.6. For this combination, table 7.3 provides the corresponding
demand parameters. Regarding the demand parameters for the economic influence, we
also present the standard deviation (STDi) as well as values θi, i = {GDP, IndPro} so
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MSEPrice MSEQuantity A_Dis
Scenario Pout Pout Pout
1.3_1.2 0.052 0.119 534.49
1.3_1.4 0.088 0.089 485.75
1.3_1.6 0.150 0.031 496.13
1.3_1.8 0.237 0.047 672.52
1.5_1.2 0.046 0.136 559.29
1.5_1.4 0.076 0.102 486.34
1.5_1.6 0.132 0.035 467.76
1.5_1.8 0.213 0.050 638.00
1.7_1.2 0.042 0.150 577.25
1.7_1.4 0.069 0.111 490.75
1.7_1.6 0.122 0.037 451.23
1.7_1.8 0.199 0.051 618.09
1.9_1.2 0.039 0.162 589.61
1.9_1.4 0.064 0.119 496.51
1.9_1.6 0.115 0.038 440.49
1.9_1.8 0.191 0.052 605.18

Table 7.2: Multi-product error statistics A_Dis of the prices and sales quantities simu-
lations given αshift = 1

that for the linearized confidence region GL(0.05) (cf. section 5.3.4.2 and [Boc87, Bau99,
Kö02])

GL(0.05) ⊆

[λ
φ
p,r,tsim

GDP − θGDP, λ
φ
p,r,tsim

GDP + θGDP]× [λ
φ
p,r,tsim

IndPro − θIndPRo, λ
φ
p,r,tsim

IndPro + θIndPro]. (7.22)

However, the overall result is not necessarily the best for each single product. Table
7.4 summarizes the error statistics A_Dis, P = {p} for each single product p ∈ Pout
provided that the demand function for all products are determined with the same com-
bination.4 In this regard, solely A_Dis, P = {2} is minimal for combination 1.9_1.6,
whereas the resulting demand functions for the other products are quite different. The
corresponding demand parameters together with the respective notation for the scenario
combination are outlined in table 7.5. In comparison with the parameters minimizing
the multi-product average distance, only the result for product 5 totally differs.
In general, we might expect that errors are smaller if the demand function for each single

4Since the input quantities for the market under consideration are constrained, the optimal prices
and sales quantities can influence each other in case the input quantities are exhausted. Therefore,
considering the price formation for each product separately does not necessarily provide an absolute
decision guide.
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p λ
φ
p,r,tsim

1 λ
φ
p,r,tsim

2 λ
φ
p,r,tsim

3 λ
φ
p,r,tsim

4 λ
φ
p,r,tsim

GDP λ
φ
p,r,tsim

IndPro

1 1483.90 3024.00 2040.90 - 0.14 1.12
STDi ±0.0007 ±0.3815

θi ±0.0016 ±0.9339
2 4288.30 2185.62 1500.68 - 0.09 433.78
STDi ±0.0001 ±0.5171

θi ±0.0003 ±1.2657
3 2601.10 1584.34 1015.54 - 0.00 558.46
STDi ±0.0000 ±0.8163

θi ±0.0000 ±1.8467
4 1263.50 3216.00 2916.06 - 0.32 0.00
STDi ±0.0006 ±0.0000

θi ±0.0014 ±0.0000
5 1609.30 2592.00 1661.44 - 0.10 212.12
STDi ±0.0004 ±0.5370

θi ±0.0010 ±1.3143

Table 7.3: Demand parameters of the scenario 1.9_1.6 that minimizes the multi-product
error A_Dis given αshift = 1 as well as standard deviations (STD) and boundaries for
the 95%-confidence region of λ

φ
p,r,tsim

GDP and λ
φ
p,r,tsim

IndPro

product is modeled separately. Therefore, we simulate prices and sales quantities based
on different factors αmq and αmp as indicated in table 7.5. Indeed, using these demand
parameters, the multi-product average distance A_Dis = 318.201, Pout is smaller com-
pared to the results of table 7.2. Moreover, the results for each single product coincide
with the minimum errors in table 7.4.5 In other words, this simulation does not generate
even better results for each single product, but it improves the overall market simulation.
Note that A_Dis represents the absolute distance. For this reason, the specific results
for each product cannot be compared with each other, i.e., the results do not reveal if
prices and sales quantities can be more effectively simulated for one product than for the
others.
Subsequently, we change our settings by assuming αshift = 0.6 and solve our supply-
demand trade network optimization problem with Pout = {1, 2, 3, 4, 5}, R = {A}, T =
{tsim}, T0 = {tsim − 7, . . . , tsim − 1}, Tt = {t− 4, . . . , t− 1} for all t ∈ T0 ∪ T , and J = 1
for each scenario again. The multi-product errors are outlined in the table 7.6. The min-
imum MSEPrice, Pout is achieved at 1.9_1.2, whereas scenario 1.3_1.2 provides the best
results concerning MSEQuantity, Pout and A_Dis, Pout. For this reason, the correspond-
ing demand parameters of 1.3_1.2 (together with standard deviation and boundaries of
the 95%-confidence region) are outlined in table 7.7.

5This indicates that the capacities are not exhausted, i.e., the optimal prices and sales quantities are
interior solutions.
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A_Dis A_Dis A_Dis A_Dis A_Dis
Scenario P = {1} P = {2} P = {3} P = {4} P = {5}
1.3_1.2 90.66 799.95 675.41 679.62 426.80
1.3_1.4 111.67 328.39 798.54 874.56 315.57
1.3_1.6 295.87 306.32 393.16 1077.76 407.54
1.3_1.8 490.42 512.07 493.00 1285.45 581.67
1.5_1.2 154.48 799.57 787.07 627.93 427.42
1.5_1.4 73.71 384.39 819.73 819.05 334.83
1.5_1.6 248.56 281.94 421.15 1020.09 367.08
1.5_1.8 438.36 489.72 503.10 1224.81 534.00
1.7_1.2 202.33 799.41 864.67 592.68 427.17
1.7_1.4 57.97 422.65 830.90 784.75 357.47
1.7_1.6 221.34 268.42 435.48 986.15 344.77
1.7_1.8 409.10 476.09 508.74 1190.02 506.52
1.9_1.2 239.73 799.34 916.03 566.54 426.40
1.9_1.4 55.60 450.21 837.97 761.55 377.24
1.9_1.6 203.62 260.14 443.66 963.89 331.16
1.9_1.8 390.32 467.00 512.19 1167.58 488.79

Table 7.4: Single-product error statistics A_Dis of the prices and sales quantities simu-
lations given αshift = 1

As above, we also compare the respective single-product average distance for each prod-
uct summarized in table 7.8. In accordance with the multi-product results, scenario
1.3_1.2 minimizes the single-product average distance A_Dis, P = {3}. Combination
1.3_1.4 is most suitable for product 1 and 1.9_1.2 achieves the best result for product 4.
The respective distance errors of product 2 and product 5 are minimal for combination
1.9_1.4. Table 7.9 shows the corresponding demand parameters for each product based
on the different results of the single-product average distance. Remarkably, the influ-
encing of the economic factors is given by λ

φ
p,r,tsim

GDP since λ
φ
p,r,tsim

IndPro = 0 for all p ∈ Pout.
However, this estimation results does not occur in every scenario simulation. To con-
clude, we also simulate optimal prices and sales quantities on the basis of these demand
parameters. The resulting average distance A_Dis = 271.611 is lower than the min-
imum multi-product average distance. Notably, the minimum single-product average
distances of this simulation are equal to those listed in table 7.8. Thus, allowing different
combinations for the products p ∈ Pout leads to a better market simulation.
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p λ
φ
p,r,tsim

1 λ
φ
p,r,tsim

2 λ
φ
p,r,tsim

3 λ
φ
p,r,tsim

4 λ
φ
p,r,tsim

GDP λ
φ
p,r,tsim

IndPro

1 ( 1.9_1.4) 1483.90 2646.00 1394.79 - 0.13 0.00
STDi ±0.0005 ±0.0000

θi ±0.0010 ±0.0000
2 (1.9_1.6) 4288.30 2185.62 1500.68 - 0.09 433.78

STDi ±0.0001 ±0.5171
θi ±0.0003 ±1.2657

3 (1.3_1.6) 1779.70 1584.34 583.37 - 0.00 333.22
STDi ±0.0000 ±0.5229

θi ±0.0000 ±1.1828
4 (1.9_1.2) 1263.50 2412.00 1541.79 - 0.35 0.00

STDi ±0.0003 ±0.0000
θi ±0.0006 ±0.0000

5 (1.3_1.4) 1101.10 2268.00 636.27 - 0.13 163.96
STDi ±0.0004 ±0.3907

θi ±0.0009 ±0.9562

Table 7.5: Demand parameters of the respective scenario that minimizes the single-
product error A_Dis given αshift = 1 as well as standard deviations (STD) and boundaries
for the 95%-confidence region of λ

φ
p,r,tsim

GDP and λ
φ
p,r,tsim

IndPro

Remark 7.1. Comparing the results with each other, the lower average distance is
achieved with αshift = 0.6. Namely, combination 1.3_1.2 achieves as minimum average
distance A_Dis = 335.391, Pout, whereas combination 1.9_1.6 with αshift = 1 results
in A_Dis = 440.492, Pout. Likewise, simulating prices and sales quantities on the basis
of different factors αmq and αmp the average distance is lower for αshift = 0.6 than
for αshift = 1. Consequently, our results reveal that further simulations with different
factors αmq and αmp as well as different shifting factors might be beneficial. Note that
considering the single-product average distance results, lower values are achieved for
products 1, 2, 4, and 5 with αshift = 0.6 and for product 3 with αshift = 1. Figures
7.2 to 7.6 show the corresponding demand functions together with the auxiliary demand
function and historical data. Notably, the demand function imply considerably high
consumption for low prices, but if price increases demand strongly decreases.
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MSEPrice MSEQuantity A_Dis
Scenario Pout Pout Pout
1.3_1.2 0.038 0.038 335.39
1.3_1.4 0.062 0.056 382.90
1.3_1.6 0.093 0.073 446.85
1.3_1.8 0.143 0.077 544.160
1.5_1.2 0.035 0.061 394.49
1.5_1.4 0.051 0.061 368.93
1.5_1.6 0.081 0.071 450.17
1.5_1.8 0.124 0.082 513.66
1.7_1.2 0.033 0.090 453.09
1.7_1.4 0.045 0.066 361.34
1.7_1.6 0.074 0.077 451.72
1.7_1.8 0.122 0.100 586.42
1.9_1.2 0.031 0.121 502.41
1.9_1.4 0.0410 0.070 356.63
1.9_1.6 0.070 0.079 442.33
1.9_1.8 0.117 0.103 581.14

Table 7.6: Multi-product error statistics A_Dis of the price and sales quantities simula-
tions given αshift = 0.6
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Figure 7.2: Demand function for product
1 at tsim: result of the heuristic approach
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Figure 7.3: Demand function for product
2 at tsim: result of the heuristic approach

7.2.2.2 Forecast of Future Demand

As above, we set Pout = {1, 2, 3, 4, 5}, R = {A}, J = 1, T0 = {tsim − 7, . . . , tsim − 1},
and Tt = {t − 4, . . . , t − 1} for all t ∈ T0 ∪ T , where, in contrast, T = {tsim − 1}.
We simulate optimal prices and sales quantities by solving the supply-demand trade
network optimization problem for αshift ∈ {0.6, 1}. Here, we do not specify all results of
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p λ
φ
p,r,tsim

1 λ
φ
p,r,tsim

2 λ
φ
p,r,tsim

3 λ
φ
p,r,tsim

4 λ
φ
p,r,tsim

GDP λ
φ
p,r,tsim

IndPro

1 609.18 2036.46 287.73 406.12 0.16 0.00
STDi ±0.0003 ±0.0000

θi ±0.0008 ±0.0000
2 1760.46 1484.03 192.85 1173.64 0.15 0.00
STDi ±0.0000 ±0.0000

θi ±0.0001 ±0.0000
3 1067.82 1083.56 130.10 711.88 0.16 0.00
STDi ±0.0002 ±0.0000

θi ±0.0003 ±0.0000
4 518.70 1935.17 592.54 345.80 0.39 0.00
STDi ±0.0003 ±0.0000

θi ±0.0008 ±0.0000
5 660.66 1772.72 212.84 440.44 0.27 0.00
STDi ±0.0004 ±0.0000

θi ±0.0008 ±0.0000

Table 7.7: Demand parameters of the scenario 1.3_1.2 that minimizes the multi-product
error A_Dis given αshift = 0.6 as well as standard deviations (STD) and boundaries for
the 95%-confidence region of λ

φ
p,r,tsim

GDP and λ
φ
p,r,tsim

IndPro
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Figure 7.4: Demand function for product
3 at tsim: result of the heuristic approach
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Figure 7.5: Demand function for product
4 at tsim: result of the heuristic approach

A_Dis as above, but only give the result of comparing the minimum distances in table
7.10. Notably, the forecasted demand parameters for product 2 and 4 are identical to
the results in section 7.2.2.1. The corresponding demand parameters are indicated in
table 7.11 together with standard deviation and approximated boundaries for the 95%-
confidence region.
In the course of this section, we will test the predictive value of this approach and compare
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A_Dis A_Dis A_Dis A_Dis A_Dis
Scenario P = {1} P = {2} P = {3} P = {4} P = {5}
1.3_1.2 143.07 205.14 565.65 575.25 187.85
1.3_1.4 44.46 234.50 679.13 729.70 226.68
1.3_1.6 159.81 172.52 757.95 894.72 249.27
1.3_1.8 310.99 243.51 779.02 1065.71 321.56
1.5_1.2 233.55 354.93 635.83 546.58 201.56
1.5_1.4 79.86 195.66 733.48 669.74 165.93
1.5_1.6 103.43 358.06 725.92 829.79 233.68
1.5_1.8 261.27 243.38 804.55 1005.73 253.38
1.7_1.2 308.10 478.37 696.39 531.62 250.95
1.7_1.4 118.69 168.66 770.78 631.14 117.45
1.7_1.6 77.52 390.97 744.02 794.71 251.35
1.7_1.8 225.83 576.09 772.59 968.56 389.01
1.9_1.2 370.79 577.34 749.01 513.72 301.18
1.9_1.4 148.41 150.73 796.27 604.22 83.50
1.9_1.6 65.32 386.24 756.71 773.12 230.29
1.9_1.8 208.72 578.45 782.51 950.21 385.82

Table 7.8: Single-product error statistics A_Dis of the price and sales quantities simula-
tions given αshift = 0.6
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Figure 7.6: Demand function for product
5 at tsim: result of the heuristic approach

the simulation results for tsim with forecasts provided by the parameter identification
problem presented in section 7.3.
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p λ
φ
p,r,tsim

1 λ
φ
p,r,tsim

2 λ
φ
p,r,tsim

3 λ
φ
p,r,tsim

4 λ
φ
p,r,tsim

GDP λ
φ
p,r,tsim

IndPro

1 (1.3_1.4) 609.18 2214.63 536.05 406.12 0.15 0.00
STDi ±0.0005 ±0.0000

θi ±0.0012 ±0.0000
2 (1.9_1.4) 2572.98 1458.60 563.94 1715.32 0.12 0.00

STDi ±0.0001 ±0.0000
θi ±0.0002 ±0.0000

3 (1.3_1.2) 1067.82 1083.56 130.10 711.88 0.16 0.00
STDi ±0.0002 ±0.0000

θi ±0.0003 ±0.0000
4 (1.9_1.2) 758.10 1699.29 885.67 505.40 0.36 0.00

STDi ±0.0002 ±0.0000
θi ±0.0005 ±0.0000

5 (1.9_1.4) 965.58 1755.98 636.27 643.72 0.11 0.00
STDi ±0.0003 ±0.0000

θi ±0.0007 ±0.0000

Table 7.9: Demand parameters of the respective scenario that minimizes the single-
product error A_Dis given αshift = 0.6 as well as standard deviations (STD) and bound-
aries for the 95%-confidence region of λ

φ
p,r,tsim

GDP and λ
φ
p,r,tsim

IndPro

Minimum A_Dis Pout P = {1} P = {2} P = {3} P = {4} P = {5}
Shift 0.6 0.6 0.6 0.6 0.6 1
Scenario 1.3_1.2 1.5_1.4 1.9_1.4 1.5_1.2 1.9_1.2 1.3_1.4

Table 7.10: Overview of scenarios that minimize A_Dis, Pout and A_Dis, P = {p} for
all p ∈ Pout at time tsim − 1 in order to forecast demand at time tsim

7.2.3 Discussion

The structure of this method is rather elaborate and, in addition, the examples presented
above reveal that it is not geared to providing a parameter identification that is widely
accepted, since there are too many factors and additional assumptions that have to be
made prior to the identification process. In addition, we only search for optimal param-
eters over a discrete set of factors αmqp,r,t, α

mp
p,r,t, and αshift. Moreover, since this approach

includes the assumption that closeness of the simulations to the historical values is a
good indicator for the most appropriate demand function, complete data of all regions is
needed to accurately model the price formation in the whole market. Therefore, we only
refer to the results of this identification approach as approximation.
Here, the results are obtained by optimizing prices and sales quantities of a single region.
Extending the optimization model to multiple regions gives rise to additional influencing
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p λ
φ
p,r,tsim

1 λ
φ
p,r,tsim

2 λ
φ
p,r,tsim

3 λ
φ
p,r,tsim

4 λ
φ
p,r,tsim

GDP λ
φ
p,r,tsim

IndPro

1 (1.5_1.4/0.6) 702.90 2133.98 636.27 468.60 0.14 0.00
STDi ±0.0004 ±0.0000

θi ±0.0009 ±0.0000
2 (1.9_1.4/0.6) 2572.98 1458.60 563.94 1715.32 0.12 0.00

STDi ±0.0001 ±0.0000
θi ±0.0002 ±0.0000

3 (1.5_1.2/0.6) 1232.10 1063.99 154.42 821.40 0.15 0.00
STDi ±0.0001 ±0.0000

θi ±0.0002 ±0.0000
4 (1.9_1.2/0.6) 758.10 1699.29 885.67 505.40 0.36 0.00

STDi ±0.0002 ±0.0000
θi ±0.0005 ±0.0000

5 (1.3_1.4/1) 1101.10 2268.00 636.27 - 0.13 163.96
STDi ±0.0004 ±0.3907

θi ±0.0009 ±0.9562

Table 7.11: Demand parameters of scenarios that minimize A_Dis, P = {p} for all
p ∈ Pout at time tsim − 1 in order to forecast demand at time tsim

factors on demand. For example, trade between these regions might also have crucial
influence on the simulation results and, hence, also on the determination of the demand
functions according to this scheme.
However, this method provides some benefits. First, this method is able to yield rea-
sonable demand function approximations that provide a lot of information for further
studies. Moreover, it allows to test additional assumptions and conduct further scenario
simulations to analyze the effects of input factors (e.g., the effect of changes in the eco-
nomic parameters or the production settings) on optimal prices and sales quantities, but
also on the market model in general. Nevertheless, as more simulations have to be made,
the more time-consuming this method is. This motivates us to look for an alternative
method still having in mind the conclusions we can draw from the presented heuristic
approach. For example, the historical prices and sales quantities show a different struc-
ture for each product that is also reflected in the parameter estimates. Consequently, the
results of this procedure reveal the importance of estimating the demand function of each
product separately. Therefore, in the next step, we investigate a parameter identification
method reduced to the product-specific data.
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7.3 Development of an Optimization Model to Identify
Demand Parameters

In this section, we set up a least-squares optimization problem to identify the parameters
of the tanh-demand model (7.1). As mentioned above, further assumptions are necessary
to compensate the insufficiency of data regarding the demand in low or high price ranges.
In the following, we summarize the additional assumptions that are required to enable
an efficient parameter identification and present our resulting parameter identification
problem. As above, we test this approach using data from a small subsystem of the
petrochemical network and illustrate the results below.

7.3.1 Parameter Identification Problem (PIP)

The least-squares method described in section 5.3 is an appropriate tool for various
parameter estimation problems. Likewise, our objective is to identify parameters using
this approach. Before setting up the parameter identification based on least-squares
estimation, further assumptions are required (cf. section 7.1).

Assumptions 7.5. Assumptions regarding the optimization problem
1. As specified in section 6.2, λφp,r,ti ≥ 0, i = 1, 2, 4, λφp,r,t3 > 0 and λφp,r,tk ≥ 0, k ∈
{GDP, IndPro}.

2. Suppose we aim to identify the parameters at time t0. Given a data set Tt0 consisting
of prices and sales quantities of selected past years that are supposed to influence
the situation at time t0, we suggest that it is more likely that recent data satisfies the
demand function at time t0 than older data.6 To integrate this assumption we add
weighting factors to each residual in the least-squares functional, where we attach
greater weight to more recent data and smaller weight to older data. In particular,
we define

wt = λ · (1− λ)t−1 t = 1, . . . , Tt0 , (7.23)

where 0 < λ < 1. In other words, we assume that the variance of the errors(
aqp,r,t − φecop,r,t0

(
aπp,r,t

))
, t ∈ Tt0 is time-dependent and increases if t0 − t increases.

3. We assume that our data is located in the second price range. In other words, we
suggest that the demand function is strictly decreasing at historical prices aπp,r,t, t ∈
Tt0, given the economic situation, i.e.,

∂φecop,r,t0
∂xπp,r,t0

(aπp,r,t)

= −
λ
φp,r,t0
1 + λ

φp,r,t0
IndPro ·∆a

IndPro
r,t0,J

λ
φp,r,t0
3

·sech2

λφp,r,t02 + λ
φp,r,t0
GDP ·∆aGDP

r,t0,J
− aπp,r,t

λ
φp,r,t0
3

 ≤ s,
(7.24)

6Compare assumption 7.1 and 7.2 in the heuristic approach: under the assumption of no change in the
economic situation from time t0 − 1 to t0 the data of t0 − 1 satisfies the demand function at time t0.
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where s < 0.

4. In addition, we assume that in the first price range, the demand function is almost
constant, i.e., we assume that the derivative w.r.t. xπp,r,t at aπp,r,t = 0 is approxi-
mately zero:

0 >
∂φecop,r,t0
∂xπp,r,t0

(0) ≥ a, (7.25)

where a� −1. That means, we assume that

−
λ
φp,r,t0
1 + λ

φp,r,t0
IndPro ·∆a

IndPro
r,t0,J

λ
φp,r,t0
3

· sech2

λφp,r,t02 + λ
φp,r,t0
GDP ·∆aGDP

r,t0,J

λ
φp,r,t0
3

 ≥ a, (7.26)

where 0 > a > s.

To include those assumptions in the parameter identification, we gain from the char-
acteristics of the sech-function. In addition, we establish the following notation: aπp,r,t0
is the maximum price for all t0 ∈ Tt0 and aπp,r,t0 is the minimum price for all t ∈ Tt0 .
Regarding inequality (7.24), if

λ
φp,r,t0
2 + λ

φp,r,t0
5 ·∆aGDP

r,t0,J − a
π
p,r,t0 ≥ 0, (7.27)

we obtain

0 ≤ sech2

λφp,r,t02 + λ
φp,r,t0
GDP ·∆aGDP

r,t0,J
− aπp,r,t0

λ
φp,r,t0
3


≤ sech2

λφp,r,t02 + λ
φp,r,t0
GDP ·∆aGDP

r,t0,J
− aπp,r,t0

λ
φp,r,t0
3


≤ sech2

λφp,r,t02 + λ
φp,r,t0
GDP ·∆aGDP

r,t0,J
− aπp,r,t0

λ
φp,r,t0
3

 (7.28)

for all t ∈ Tt0 . Therefore, it suffices to require that the inequality (7.24) holds at the
historical minimum price instead of including this inequality for all prices aπp,r,t, t ∈
{t0 − 1, . . . , t0 − J}.
Next, we investigate which values ∆aGDP

r,t and ∆aIndPro
r,t , t ∈ Tt0 have the most adverse

effect to the derivative with respect to the price of the demand function. In other words,
we determine the worst-case scenario of the historical values, since we have no informa-
tion about the real development of the economic situation at time t0, i.e., ∆aGDP

r,t0,J
and

∆aIndPro
r,t0,J

. If inequality (7.24) is also satisfied for these values, it is supposed to hold under
more moderate conditions. Obviously, the absolute value of the derivative is smallest for
minimum change in the index of industrial production ∆aIndPro

r,t0,J
. Furthermore, if

λ
φp,r,t0
2 + λ

φp,r,t0
GDP ·∆a

GDP
r,t0,J − a

π
p,r,t0 ≥ 0, (7.29)

126



7.3. Development of an Optimization Model to Identify Demand Parameters

i.e.,

sech

λφp,r,t02 + λ
φp,r,t0
GDP ·∆aGDP

r,t0,J
− aπp,r,t0

λ
φp,r,t0
3

 ≥ 0, (7.30)

the derivative with respect to the price is closest to zero for the maximum change of the
gross domestic product ∆aGDP

r,t (cf. equation (7.28)). Thus, it suffices to require

−
λ
φp,r,t0
1 + λ

φp,r,t0
IndPro ·∆a

IndPro
r,t0,J

λ
φp,r,t0
3

· sech2

λφp,r,t02 + λ
φp,r,t0
GDP ·∆aGDP

r,t0,J
− aπp,r,t0

λ
φp,r,t0
3

 ≤ s (7.31)

and
λ
φp,r,t0
2 + λ

φp,r,t0
GDP ·∆a

GDP
r,t0,J − a

π
p,r,t0 ≥ 0 (7.32)

in the parameter identification problem. Likewise, we can reduce the number of inequal-
ities expressing the saturation quantity at price zero to one. Contrary to above, we
determine the worst-case-scenario such that there is an upper bound on the derivative.
Restricted to the historical data, the derivative is at its maximum for maximum change
of the index of industrial production, ∆aIndPro

r,t0,J
, and for minimum change of the GDP,

∆aGDP
r,t0,J

, provided that λφp,r,t02 + λ
φp,r,t0
GDP ·∆aGDP

r,t0,J
− aπp,r,t0 ≥ 0. Thus, by including

−
λ
φp,r,t0
1 + λ

φp,r,t0
IndPro ·∆a

IndPro
r,t0,J

λ
φp,r,t0
3

· sech2

λφp,r,t02 + λ
φp,r,t0
GDP ·∆aGDP

r,t0,J

λ
φp,r,t0
3

 ≥ a, (7.33)

we ensure that inequality (7.25) is satisfied if the change in the economic situation does
not exceed the presumed worst case.7

Including these inequalities leads to a constrained weighted least-squares problem, which
will be presented and explained in the following. In contrast to our heuristic approach,
we do not predetermine some parameters, but estimate all six parameters simultaneously.
The parameter identification problem (PIP) is then given by

min
λ
φp,r,t0
1 , λ

φp,r,t0
2 , λ

φp,r,t0
3 ,

λ
φp,r,t0
4 , λ

φp,r,t0
GDP , λ

φp,r,t0
IndPro

∑
t∈Tt0

(
wt ·

(
aqp,r,t − φecop,r,t0

(
aπp,r,t

)))2 (7.34a)

subject to

0 ≤ λφp,r,t01 + λ
φp,r,t0
IndPro ·∆a

IndPro
r,t0,J − λ

φp,r,t0
4 , (7.34b)

0 ≤ λφp,r,t02 + λ
φp,r,t0
GDP ·∆a

GDP
r,t0,J − a

π
p,r,t0 , (7.34c)

spos ≤ λφp,r,t03 , (7.34d)

7Note that our resulting restrictions are sufficient but not necessary for the assumptions to hold.
Moreover, in general, the change of GDP and the change of the index for industrial production is not
supposed to be extremely reverse, i.e., if one of the indices heavily decreases, the other one does not
heavily increase at the same time.
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0 ≤ λφp,r,t04 , (7.34e)

0 ≤ λφp,r,t0k k ∈ {GDP, IndPro}, (7.34f)

0 ≤
λ
φp,r,t0
1 + λ

φp,r,t0
IndPro ·∆a

IndPro
r,t0,J

λ
φp,r,t0
3

· sech2

λφp,r,t02 + λ
φp,r,t0
GDP ·∆aGDP

r,t0,J
− aπp,r,t0

λ
φp,r,t0
3

+ s,

(7.34g)
and

0 ≤ −
λ
φp,r,t0
1 + λ

φp,r,t0
IndPro ·∆a

IndPro
r,t0,J

λ
φp,r,t0
3

· sech2

λφp,r,t02 + λ
φp,r,t0
GDP ·∆aGDP

r,t0,J

λ
φp,r,t0
3

− a. (7.34h)

Constraints (7.34b) to (7.34f) are due to theorem 6.2 in section 6.2.2. Note that the
factor spos > 0 is inserted in equation (7.34d) to ensure λφp,r,t03 > 0.8 Additionally, we
include the constraints (7.34g) and (7.34h) mentioned above that reflect our assumptions
concerning the shape the demand function.
In the subsequent section, we apply this parameter identification approach to the sub-
system of the petrochemical network that was already used to test the first method in
section 7.2.

7.3.2 Forecast of Future Demand

We implemented the generalized Gauss-Newton algorithm described in section 5.3.3 in
MATLAB using active set methods to solve the quadratic subproblems. To test our
method, we solve the parameter identification problem (PIP) for the five products with
external demand Pout = {1, 2, 3, 4, 5} of the subsystem that we already considered in
section 6.3 and 7.2.2. We set J = 1 to compute the change in the economic situation (cf.
section 3.3) and Ttsim = {tsim − 10, . . . , tsim − 1}. We include the exponential weighting
factors with λ = 0.4. Moreover, we select s = −0.03, a = −0.01, and spos = 1 and set the
initial values equal to the respective best results of our heuristic approach. The algorithm
converges to a local solution for all products except products 3 and 4.9 Therefore, we
start with solving a subproblem by reducing the number of data {tsim−10, . . . , tsim−5}.
Then, we use these solutions as initial values in order to solve the PIP based on the whole
range of data, which leads to a solution on this occasion. The resulting demand param-
eters for tsim are presented in table 7.12. Likewise, we calculate the standard deviation
(STDi) and approximated boundaries for the 95%-confidence region θi for all parameters
λ
φ
p,r,tsim

i , i = {1, 2, 3, 4, GDP, IndPro}. If the estimated parameters are equal to zero

(e.g., λ
φ
p,r,tsim

4 and λ
φ
p,r,tsim

GDP for p = 1), the corresponding constraints are active (e.g.,

8Note that λφp,r,t0
3 controls the rapidness of the negative hyperbolic tangent to decrease. The bigger

λ
φp,r,t0
3 , the smaller tanh((λ

φp,r,t0
2 +λ

φp,r,t0
GDP ·∆aGDP

r,t0,J−x
π
p,r,t)/λ

φp,r,t0
3 ) given xπp,r,t ≤ λ

φp,r,t0
2 , t ∈ Tt0 ,

i.e., the smaller the price aπp,r,t for which tanh((λ
φp,r,t0
2 + λ

φp,r,t0
GDP ·∆aGDP

r,t0,J − x
π
p,r,t)/λ

φp,r,t0
3 ) ≈ 0.

9The algorithm stops if ‖(λφp,r,t0
1 , λ

φp,r,t0
2 , λ

φp,r,t0
3 , λ

φp,r,t0
4 , λ

φp,r,t0
GDP , λ

φp,r,t0
IndPro )′‖2 ≤ 10−7.
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p λ
φ
p,r,tsim

1 λ
φ
p,r,tsim

2 λ
φ
p,r,tsim

3 λ
φ
p,r,tsim

4 λ
φ
p,r,tsim

GDP λ
φ
p,r,tsim

IndPro Iter.
1 817.29 5925.00 2400.30 0.00 0.00 7.54 8

STDi ±3.51 ±63.49 ±39.78 ±0.00 ±0.00 ±3.19
θi ±10.49 ±189.59 ±118.79 ±0.00 ±0.00 ±9.53

2 2271.70 2205.70 502.41 0.00 0.04 6.81 14
STDi ±5.32 ±82.04 ±50.17 ±0.00 ±0.03 ±5.29

θi ±22.65 ±349.36 ±213.65 ±0.00 ±0.12 ±22.55
3 696.32 2179.10 733.30 702.45 0.00 1.50 12

STDi ±7.93 ±36.82 ±16.18 ±6.04 ±0.00 ±3.37
θi ±23.67 ±109.95 ±48.31 ±18.05 ±0.00 ±10.07

4 702.27 4123.10 1558.80 0.00 0.00 19.16 10
STDi ±3.34 ±55.83 ±32.11 ±0.00 ±0.00 ±3.79

θi ±9.98 ±166.73 ±95.88 ±0.00 ±0.00 ±11.31
5 445.37 3242.20 1327.60 445.37 0.00 0.00 8

STDi ±1.00 ±1.68 ±0.08 ±1.00 ±0.00 ±0.00
θi ±2.27 ±3.80 ±0.19 ±2.27 ±0.00 ±0.00

Table 7.12: Demand parameter results of the PIP for tsim

constraint (7.34e) and (7.34f) for k = GDP and p = 1). In this case, the standard devi-
ation is also zero, which indicates that the parameters can be neglected for the product
under consideration at time tsim.
In addition to these active inequalities, the choice of s and a provokes that the correspond-
ing constraints (7.34g) and (7.34h) are also active at the solution for all p ∈ Pout. Thus,
additional assumptions in this manner are necessary in order to get a reliable parameter
identification. Selecting values for s and a that are closer to zero can provoke that the
generalized Gauss-Newton algorithm does not converge.10 To conclude, figures 7.7 to
7.11 show the resulting demand functions together with the historical data. Notably, the
consumption for price zero is in the price range of the historical data, and the demand
function slowly decreases if price rises so that the customer’s willingness to buy is high.
In chapter 7.4, we return to these results by simulating prices and sales quantities inte-
grating the demand functions in the supply-demand trade network optimization problem.

7.3.3 Discussion

Because of the insufficient data available, applying the method of least-squares to esti-
mate demand parameters of the tanh-demand model eco relies on additional assumptions
that can change the result considerably. Therefore, the additional components have to
be selected carefully such that the assumptions 7.5 are well integrated. These are the set

10In the subsequent section, we discuss an alternative approach to include additional assumptions in the
PIP. However, these are more restrictive than the constraints (7.34g) and (7.34h).
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Figure 7.7: Demand function for product
1 at tsim: optimal solution of the PIP
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Figure 7.8: Demand function for product
2 at tsim: optimal solution of the PIP
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Figure 7.9: Demand function for product
3 at tsim: optimal solution of the PIP
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Figure 7.10: Demand function for product
4 at tsim: optimal solution of the PIP

Tt0 , the weighting factors wt, t ∈ Tt0 , and the factors s, a, and spos. Most important,
appropriate initial values are essential to ensure local convergence. Here, the results of
the heuristic approach serve as appropriate initial values so that the algorithm converges
to a local solution. If they are not available, globalization techniques become necessary
(cf. standard optimization textbooks, e.g., [NW06]).
Supplementary, suppose that reliable prognoses exist about the behavior of the cus-
tomer in the high price range ãπ,kp,r,t0 > max(aπp,r,t)t∈Tt0 or the low price range ãπ,kp,r,t0 <
min(aπp,r,t)t∈Tt0 , respectively. We can take advantage of this information by including it
in the least-squares estimation as follows.
Given auxiliary prognoses

(
ãπ,kp,r,t0 , ã

q,k
p,r,t0

,∆aGDP,kr,Tt0
,∆aIndPro,kr,Tt0

)
, k = 1, . . . ,K, where

ãq,kp,r,t0 − φ
eco
p,r,t0

(
ãπ,kp,r,t0

)
∼ N

(
0, σ̃2

k

)
, (7.35)
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Figure 7.11: Demand function for product
5 at tsim: optimal solution of the PIP

we add
K∑
k=1

(
1
σ̃k

(
ãq,kp,r,t0 − φ

eco
p,r,t0

(
ãπ,kp,r,t0

)))2

(7.36)

to the objective function of the PIP (7.34a) (cf. section 5.3.1) . As a result, the con-
straints (7.34g) and (7.34h) can become redundant because the additional information
determines the shape of the demand function instead. This concept, however, implies
stronger assumption on the behavior of the customer in low and high price ranges. There-
fore, adding notional data need to be based on reliable scenario analysis.
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7.4 Comparison, Discussion, and Outlook

In this section, we compare and discuss the results of the heuristic approach and our
parameter identification problem (PIP). Therefore, in section 7.4.1, to compare the effects
of their distinct results in our supply-demand trade network optimization problem (4.3)
defined in section 4.2, we will simulate prices and sales quantities at tsim by means of the
respective forecasted demand functions for time tsim (see section 7.2.2.2 for the heuristic
approach and section 7.3.2 for the PIP). Afterwards, we discuss the differences, the
respective advantages, and the open problems of both methods.

7.4.1 Including the Estimated Demand Models in the Supply-Demand
Trade Network Optimization Model

Having integrated the demand parameters from the respective forecast for tsim in the
supply-demand trade network optimization problem, we simulate prices and sales quan-
tities at time tsim. For this purpose, we assume that the change in the economic situation
at this time is known.11 The results are summarized in table 7.13 and 7.14. Moreover,
figures 7.12 to 7.16 illustrate the optimal solution on the corresponding demand function
as well as the real data at tsim.

Method Product 1 Product 2 Product 3 Product 4 Product 5
Heuristic 1960.33 1524.25 1200.07 1882.08 1858.86
PIP 3987.40 2190.66 2180.66 2872.69 3242.20
PIP + assump. 7.6 2737.12 2004.50 1655.25 2396.59 2663.85

Table 7.13: Comparison of the price simulations in $/t at tsim obtained by integrating
the respective demand models in the supply-demand trade network optimization model

Method Product 1 Product 2 Product 3 Product 4 Product 5
Heuristic 767.55 1865.18 764.40 611.00 1079.05
PIP 561.61 239.64 700.96 506.69 445.37
PIP + assump. 7.6 618.57 1231.53 895.96 536.79 595.01

Table 7.14: Comparison of the sales quantities simulations in 1000t at tsim obtained by
integrating the respective demand models in the supply-demand trade network optimiza-
tion model

The resulting demand functions display distinct behavior over the whole price range.
In general, the heuristic approach indicates higher consumption for lower prices than
the PIP method. Note that the heuristic approach does not need to get along with the
11For a true forecast, changes in the economic factors also need to be forecasted. This, however, is

beyond the scope of this thesis.
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Figure 7.12: Comparison of the optimal
solution for product 1 at tsim obtained by
integrating the respective demand models
in the network optimization model (4.3)
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Figure 7.13: Comparison of the optimal
solution for product 2 at tsim obtained by
integrating the respective demand models
in the network optimization model (4.3)
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Figure 7.14: Comparison of the optimal
solution for product 3 at tsim obtained by
integrating the respective demand models
in the network optimization model (4.3)

0 1000 2000 3000 4000 5000 6000
0

200

400

600

800

1000

1200

1400

1600

Price [Dollar/Ton]

D
em

an
d 

[1
00

0 
T

on
]

 

 

Data tsim

Demand (PIP) for tsim

Simulation (PIP) for tsim

Demand (heuristic) for tsim

Simulation (heuristic) for tsim

Figure 7.15: Comparison of the optimal
solution for product 4 at tsim obtained by
integrating the respective demand models
in the network optimization model (4.3)

additional assumption in case the price is zero (inequality (7.25)). On the other hand,
the results of the PIP do not give any hint to the real maximum price or maximum con-
sumption. Whereas the heuristic method approximates an upper bound on the maximum
consumption and indicates an maximum price, this is not true for the PIP.
The solutions of the network optimization problem (4.3) with demand parameters esti-
mated by the PIP consistently results in higher prices and lower quantities. The results
obtained from the heuristic forecast achieve a better simulation of prices and sales quanti-
ties. These results are not surprising because the heuristic approach takes all production
processes and available market information into account, whereas the PIP methodology
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Figure 7.16: Comparison of the optimal
solution for product 5 at tsim obtained by
integrating the respective demand models
in the network optimization model (4.3)

is only built on exogenous information. Basically, the second approach has the advantage
of identifying the demand parameters independent of the market model, but is in need
of more information about the consumer behavior, especially for high prices (cf. section
7.3.3). If knowledge about the consumer’s maximum willingness to pay is provided, we
expect that the PIP methodology achieves better results.
To support this statement, we again identify the demand parameters for all p ∈ Pout =
{1, 2, 3, 4, 5} of the subsystem as in section 7.3.2 (i.e., J = 1, Ttsim = {tsim−10, . . . , tsim−
1}, λ = 0.4, s = −0.03, a = −0.01, spos = 1, and the initial values are set equal to the
respective best results of our heuristic approach (see section 7.2.2.2)) by adding further
assumptions to the PIP (7.34).

Assumptions 7.6. Assuming that there is information available in order to add one
scenario, i.e., K=1 in equation (7.35) and (7.36), to the database used in section 7.3.2
to solve the PIP (7.34) let(

ãπ,1
p,r,tsim

, ãq,1
p,r,tsim

,∆aGDP,1
r,T

tsim
,∆aIndPro,1

r,T
tsim

)
=(

2 · aπp,r,tsim−1, 0,∆a
GDP
r,tsim−1,1,∆a

IndPro
r,tsim−1,1

)
, (7.37)

where
φecop,r,tsim

(
ãπ,1
p,r,tsim

)
∼ N

(
ãq,1
p,r,tsim

, σ̃2
1

)
, (7.38)

with σ̃1 = 60.97 so that

P
(
φecop,r,tsim

(
ãπ,1
p,r,tsim

)
∈
[
ãq,1
p,r,tsim

− 100, ãq,1
p,r,tsim

+ 100
])

= 0.9. (7.39)

Remark 7.2. Adding this assumptions to the PIP has the purpose to show that this
approach is able to deliver better results if more information about the consumer behavior
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is available. However, the assumptions 7.6 represent an exemplary scenario and do not
reflect prognoses about the real behavior. Consequently, further information about the
consumer’s maximum willingness to pay is necessary, which, for example, can be obtained
from consumer questioning.

The corresponding demand parameters for each product p ∈ Pout obtained by the PIP
(7.34) together with the assumptions 7.6 are summarized in table 7.15 and the corre-
sponding simulation results of the network optimization problem (4.3) are given in the
tables 7.13 and 7.14. The resulting demand functions together with the results obtained
from the heuristic approach, which were already presented above, are illustrated in the
figures 7.17 to 7.21. Notably, using the extended PIP provides better simulations of the
prices and sales quantities.

p λ
φ
p,r,tsim

1 λ
φ
p,r,tsim

2 λ
φ
p,r,tsim

3 λ
φ
p,r,tsim

4 λ
φ
p,r,tsim

GDP λ
φ
p,r,tsim

IndPro Iter.
1 798.40 3676.10 970.01 0.00 0.00 9.28 10

STDi ±3.10 ±74.11 ±40.51 ±0.00 ±0.00 ±3.12
θi ±10.83 ±258.85 ±141.47 ±0.00 ±0.00 ±10.88

2 1209.90 2034.70 498.98 1061.90 0.05 6.98 13
STDi ±58.83 ±75.30 ±48.93 ±60.74 ±0.03 ±5.37

θi ±275.55 ±352.67 ±229.16 ±284.50 ±0.13 ±25.14
3 1399.70 2078.60 579.03 0.00 0.00 11.84 11

STDi ±3.24 ±27.37 ±11.57 ±0.00 ±0.00 ±3.10
θi ±11.30 ±95.59 ±40.41 ±0.00 ±0.00 ±10.83

4 707.25 3233.60 1117.10 0.00 0.09 28.46 16
STDi ±3.71 ±109.55 ±52.56 ±0.00 ±0.01 ±4.08

θi ±12.96 ±382.61 ±183.58 ±0.00 ±0.04 ±14.24
5 891.08 3747.70 1344.90 0.00 0.00 0.22 9

STDi ±2.81 ±38.83 ±20.38 ±0.00 ±0.00 ±2.96
θi ±8.19 ±113.29 ±59.45 ±0.00 ±0.00 ±8.63

Table 7.15: Demand parameter results of the extended PIP for tsim: assumptions 7.6
were added to the PIP

7.4.2 Concluding Remarks

Both approaches are applicable to varying historical data time series as exemplarily shown
in sections 7.2.2 and 7.3.2 and provide demand parameters. They consider different
minimization problems: whereas the heuristic approach seeks for the demand function
so that corresponding price and sales simulations are close to the historical values, the
PIP determines the demand parameters such that historical values are approximated.
Equally, the real historical value is also located near the demand function determined by
the PIP. However, regarding the simulation results of the network optimization model
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Figure 7.17: Comparison of the optimal
solution for product 1 at tsim obtained by
integrating the respective demand mod-
els, where assumptions 7.6 were added
to the PIP, in the network optimization
model (4.3)
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Figure 7.18: Comparison of the optimal
solution for product 2 at tsim obtained by
integrating the respective demand mod-
els, where assumptions 7.6 were added
to the PIP, in the network optimization
model (4.3)
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Figure 7.19: Comparison of the optimal
solution for product 3 at tsim obtained by
integrating the respective demand mod-
els, where assumptions 7.6 were added
to the PIP, in the network optimization
model (4.3)
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Figure 7.20: Comparison of the optimal
solution for product 4 at tsim obtained by
integrating the respective demand mod-
els, where assumptions 7.6 were added
to the PIP, in the network optimization
model (4.3)

(4.3), its shape induces a higher price as optimal solution than the demand function
resulting from the heuristic approach.
Both methods are in need of numerous a-priori assumptions that also risk to falsify the
simulations by misinterpreting the current market situation.12 Therefore, we content
12Certainly, reducing the parameter identification to the intermediate interval simplifies the estimation
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Figure 7.21: Comparison of the optimal
solution for product 5 at tsim obtained by
integrating the respective demand mod-
els, where assumptions 7.6 were added
to the PIP, in the network optimization
model (4.3)

ourselves with giving some examples and do not claim to obtain an overall solution.
Nevertheless, the parameter identification process is applicable to a wide product range
differing in historical time series. Moreover, using the concept of exponentially smoothing
the historical values results in time-varying demand functions.
However, as said before, both techniques require additional information to deliver reliable
results, and if this is not available, auxiliary assumptions are necessary. As a consequence,
the solutions have quite different features. More precisely, the first approach provides
a rather high maximum consumption at price zero with a strict decline and a maxi-
mum price, which is close to the historical data. The second method provokes that the
maximum consumption at price zero is in the price range of the historical prices, and
consumption shows a flat decline implying a large price range. Although the simulation
results of the heuristic approach are closer to real data, there is no reason to prefer this
approach in every aspect. In general, the PIP methodology preferably provides a ex-
ogenous solution without using market data, but needs more information than currently
available. Given assessments of the consumer’s maximum willingness to pay the PIP is
expected to give better results (cf. the results because of assumptions 7.6). To conclude,
we emphasize that more information is necessary to establish a unique demand model
with reliable parameter estimations.

process. Since we aim to apply our demand model in the optimization model to simulate prices and
sales quantities, it is necessary to estimate the parameters of the demand model in the whole domain
by means of historical data.
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8 Conclusion

This thesis has established a general approach to modeling aggregated demand for com-
modities, which takes into account all essential influencing factors. On this basis, explicit
demand models were studied and applied to our case study of the petrochemical market.
We decided on a phenomenological approach instead of modeling the utility function of
the customers, because quantifying the customers’ preferences requires more extensive
assumptions about their decision-making.
Thus, our first question was to collect and analyze essential influencing factors of de-
mand in order to transfer the characteristics of demand and its crucial impacts into a
mathematical framework. In addition to the own price of the product in demand, these
included market parameters such as economic indices quantifying the changes in the eco-
nomic situation, prices of substitutes and complements, and also specific characteristics
of the customers. So far, however, we have assumed that all customers in the market
act independently, but have identical behavior and can be considered as one customer
by aggregating their demand. Consequently, our approach was restricted to the case of
a homogeneous population of customers.
Regarding the influences of prices of substitutes, we analyzed the effects of different pos-
sibilities to switch production processes as reason for substitution on demand. To cope
with this emerging complexity we aggregated all substitution possibilities and proposed a
demand model including substitution because of gradual switching. This model includes
a moderate price region for which the substitutable demand that can be satisfied by all
substitutes is split up according to the respective price ratio. If one of the products
becomes considerably cheaper, the whole demand is absorbed by it.
In conjunction with the market optimization problem including the supply-demand in-
teractions that we developed in cooperation with Kramer [Kra13] to simulate prices and
sales quantities in a multi-commodity market, we aimed to integrate demand models that
were based on our phenomenological approach. Therefore, we were aware of computa-
tional practicality in solving the optimization problem by giving preference to smooth
model functions.
For this purpose, this thesis provided an explicit demand model for the petrochemical
market that reflects the nonlinear relationship between demand and price. Moreover,
we presented model extensions including the impacts of other products’ prices and the
change of the economic situation and proved that these models satisfy the assumptions
stated in chapter 3 to the greatest extent. In the case of substitutes, finding a suitable
model turned out to be more complex and the model function was not differentiable. In
addition, the choice of parameterization enabled a simple interpretation of the values.
They provided an upper bound for the consumption at price zero and indicated at which
price demand is zero.
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To integrate these demand models in the network optimization problem in order to deter-
mine optimal pricing and production strategies, their parameters needed to be identified.
However, it was a challenge to estimate demand parameters if only incomplete informa-
tion on the customer’s behavior is available. By means of additional assumptions, we
came up with two approaches. Firstly, the heuristic approach determined appropriate
values by simulating prices and sales quantities. In the second approach, we solved a
constrained weighted least-squares problem. Both approaches succeeded in providing
demand parameters. Since these differ, further information is necessary to accomplish
our case study. Nevertheless, our methods to identify parameters reveal some benefits.
Taking into account the temporal effect, techniques resembling the moving average fil-
ter are applied in both parameter identification methods. Consequently, we are able to
provide parameter estimations for each product in each region each year.
There are several possibilities to extend this work:

• So far, our approach of modeling demand is simplified by aggregating the customers’
demand under the assumption that all customers act independently and have the
same consumption behavior. Provided that information is available that enables
us to break down the complex effects of interacting customers, multi-agent models
might be appropriate to investigate the influences of a structured population of
consumers on aggregated demand.

• Including uncertainty in the demand model gives rise to more sophisticated ap-
proaches. In addition to modeling the change of the economic situation or various
characteristics of the consumer as random variable, setting up a stochastic op-
timization model that represents the decision process of the consumer might be
especially convenient with regard to the complexity of substitution processes.

• Assuming that the multi-commodity market under consideration is an oligopoly the
concept of game theory may serve as an appropriate tool to model price formation
in case multiple market participants are involved. Therefore, interactions between
producers and customers have to be explicitly modeled.

• All in all, reseachers need a database that provides information to break down
the complex decision processes of customers, and their influence on the aggregated
demand-price relationship. In addition, more information about the behavior in
low or high price ranges is crucial with regard to parameter identification. This is
because so far it has only been possible to estimate parameters by including addi-
tional assumptions. It would be desirable to uniquely identify demand parameters
using only historical data.
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Notation

The following lists contain the notation used to present the general approach to modeling
demand in chapter 3, to establish the explicit tanh-demand model in chapter 6, and to
discuss methods to identify demand parameters in chapter 7.

Variables

xπr,t Price vector in region r at time t section 3.1

Parameters

aζir,t Absolute value of an economic index ζi in region r at time
t

section 3.3

∆aζir,t(,J) Change of the value of an economic index ζi from previ-
ous times to t. J is the number of previous times to be
included in the computation

section 3.3

aEζir,t,t+1 Forecast of absolute value of an economic index ζi at time
t for t+ 1

section 3.3

∆aEζir,t,t+1(,J) Change of the forecasted value of an economic index ζi at
time t for t+ 1. J is the number of previous times to be
included in the computation

section 3.3

wj Factor to weight historical data from time t− j by deter-
mining influencing factors of demand φp,r,t(·)

section 3.3

αconsumer
r,t Vector containing the characteristics of the consumer in

region r at time t.
section 3.1

α
min_quant
p,r,t Minimum quantity of product p the consumer need to

produce to fulfill his commitments at time t
section 3.4

α
max_quant
p,r,t Maximum quantity of product p the consumer can re-

process or store at time t, i.e., this quantity can also be
considered as maximum capacity

section 3.4

αb1p,r,t First price barrier: if xπp,r,t ≤ ab1p,r,t the potential demand
will be fulfilled because of exceptionally low prices

section 3.4
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αb2p,r,t Second price barrier: if αb1p,r,t ≤ xπp,r,t ≤ αb2p,r,t, demand is
strictly decreasing

section 3.4

αb3p,r,t Third price barrier: if αb2p,r,t ≤ xπp,r,t ≤ αb3p,r,t, demand
is reduced to a minimum level. If αb3p,r,t ≤ xπp,r,t, then
demand is zero.

section 3.4

α
max_price
p,r,t Maximum price for product p in region r at time t the

consumer is willing to pay.
section 3.4

αbr,t Available budget of the consumer in region r at time t section 3.4

αEπp,r,t+z Integer parameter to express consumer’s expectation of
price change for product p for time t+ z at time t

section 3.4

αcon
p,r,t Binary parameter indicating whether there is a contract

between producer and consumer for product p in region
r at time t

section 3.4

α
q_con
p,r,t Contract quantity the customer purchases of product p in

region r at time t
section 3.4

δpi1 ,pi2 ,t Switching barrier for the price ratio pi1
pi2

at time t section 3.5

ascpi1 ,pi2 ,t
Additional costs for switching from pi1 to pi2 at time t section 3.5

acom
pij ,pik ,t

Ratio of products pij and pik required for reprocessing section 3.6

acom
pij ,Ci,t

Weight proportion of product pij in the basket of products
of Ci

section 3.6

λ
φp,r,t
1 , λφp,r,t2 ,
λ
φp,r,t
3 , λφp,r,t4

Demand parameters for product p in region r at time t in
the tanh-demand model

section 6.2

λ
φp,r,t
GDP ,
λ
φp,r,t
IndPro

Demand parameters for product p in region r at time t in
the tanh-demand model eco

section 6.2

aπp,r,t Historical minimum price of the time interval Tt section 7.3

aπp,r,t Historical maximum price of the time interval Tt section 7.3

∆aGDP
r,t,J Historical minimum change in the GDP of time interval

Tt. J is the number of previous times to be included in
the computation

section 7.3

∆aGDP
r,t,J Historical maximum change in the GDP of time interval

Tt. J is the number of previous times to be included in
the computation

section 7.3

∆aIndPro
r,t,J Historical minimum change in the index for industrial pro-

duction of time interval Tt. J is the number of previous
times to be included in the computation

section 7.3
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∆aIndPro
r,t,J Historical maximum change in the index for industrial

production of time interval Tt. J is the number of previ-
ous times to be included in the computation

section 7.3

ãπ,kp,r,t0 , ã
q,k
p,r,t0

,
∆aGDP,kr,Tt0

,

∆aIndPro,kr,Tt0

Data for scenario k in region r at time t0 section 7.3

Functions

φp,r,t(·) Demand function for product p in region r at time t
φp,r,t : (R+

0 )|P | × R× RI × RI × RC → R+
0

section 3.1

ϕp,r,t(·) Demand function restricted to the price range
[αb1p,r,t, α

b2
p,r,t) in which the demand strictly decreases

ϕp,r,t : (R+
0 )|P | × R× RI × RI × RC → R+

0

section 3.4

φ
q_add
p,r,t (·) Demand function for product p in region r at time

t capturing the additional quantity the customer or-
ders because he expects the price to rise in the future
φ
q_add
p,r,t : (R+

0 )|P | × R× RI × RI × RC → R+
0

section 3.4

φEπp,r,t(·) Demand function for product p in region r at time t
including the consumer’s expectation on price changes
φEπp,r,t : (R+

0 )|P | × R× RI × RI × RC → R+
0

section 3.4

φconp,r,t(·) Demand function for product p in region r at time t in-
cluding the possibilities for contracts
φconp,r,t : (R+

0 )|P | × R× RI × RI × RC → R+
0

section 3.4

φbp,r,t(·) Demand function for product p in region r at time t cap-
turing the basis demand to be satisfied by p
φbp,r,t : (R+)|P | × R× RI × RI × RC → R+

0

section 3.5

ρpi1 (·) Splitting function determining the share of the substi-
tutable demand for product pi1 w.r.t. xπpi1 ,r,t/x

π
pi2 ,r,t

ρpi1 ,pi2 : R+ → [0, 1]

section 3.5/
section 6.2

φaPi,r,t(·) Demand function in region r at time t capturing the sub-
stitutable demand for application a to be satisfied by all
products pi ∈ Pi
φaPi,r,t : (R+)|P | × R× RI × RI × RC → R+

0

section 3.5

φa,bp,r,t(·) Demand function for product p in region r at time t in-
cluding the sum of the share of φapi,r,t(·) and φbpi,r,t(·) for
pi ∈ Pi
φa,bp,r,t : (R+)|P | × R× RI × RI × RC → R+

0

section 3.5
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φagg
Pi,r,t(·) Aggregated demand function for product p in region r at

time t capturing the substitutable demand to be satisfied
by all products pi ∈ Pi
φagg
Pi,r,t : (R+)|P | × R× RI × RI × RC → R+

0

section 3.5

φPi,r,t(·) Approximation of aggregated demand function φagg
Pi,r,t(·)

for product p in region r at time t capturing the substi-
tutable demand to be satisfied by all products pi ∈ Pi
φPi,r,t : (R+)|P | × R× RI × RI × RC → R+

0

section 3.5/
section 6.2

φsub
p,r,t(·) Demand function capturing the influence of substitutable

products for product p in region r at time t
φsub
p,r,t : (R+)|P | × R× RI × RI × RC → R+

0

section 3.5/
section 6.2

φcom
p,r,t(·) Demand function capturing the influence of complemen-

tary products for product p in region r at time t
φcom
p,r,t : (R+

0 )|P | × R× RI × RI × RC → R+
0

section 3.6/
section 6.2

φCi,r,t(·) Demand function for the basket of p ∈ Ci weighted by
their respective factors acom

p,Ci,t, p ∈ Ci in region r at time t
φCi,r,t : (R+

0 )|P | × R× RI × RI × RC → R+
0

section 3.6/
section 6.2

φbundle
Ci,r,t (·) Demand function for the basket of p ∈ Ci weighted by

their respective factors acom
p,Ci,t, p ∈ Ci in region r at time t

φbundle
Ci,r,t : (R+

0 )× R× RI × RI × RC → R+
0

section 3.6

ΨCi,r,t(·) Cost function of the basket of p ∈ Ci weighted by their
respective factors acom

p,Ci,t, p ∈ Ci
ΨCi,r,t : (R+

0 )|P | → R+
0

section 3.6

φeco
p,r,t(·) Demand function capturing the influence of the economic

situation for product p in region r at time t
φeco
p,r,t : (R+

0 )|P | × R× RI × RI × RC → R+
0

section 6.2

Time Sets

{t−1, . . . , t−J} Set of data points for which we assume that they influence
the economic situation at time t

section 3.3

Tt Set of data points for which we assume that they influence
the demand parameters at time t

section 7.2/
section 7.3

T0 Set of data points for which we assume that the market
situation is comparable

section 7.2

T Set of data points used to simulate prices and sales quan-
tities in the heuristic approach to identifying parameters

section 7.2
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