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born in: Karl-Marx Stadt (today’s Chemnitz), Germany

Oral examination: 05. February, 2014





A driven two-component BEC:
Chaos in a Macroscopic Quantum

System

Referees: Prof. Dr. Markus K. Oberthaler
Dr. Sandro Wimberger



Abstract

This work discusses the experimental realization of a mixed regular-chao-
tic phase space in a macroscopic quantum system. The effective Planck’s
constant of the system can be varied in a large range. Therefore, the
semi-classical limit of the system can be studied, where the initial size of
the many particle wave packet is much smaller than typical structures of
the phase space. Thus, different structures of the phase space can be re-
solved. In a weakly driven system, the Poincaré-Birkhoff scenario is inves-
tigated by the dispersion of the wave packet at a stable or unstable fixed
point. In a strongly driven system, different dynamics of a wave packet
is found, dependent on preparation in a regular island or the chaotic sea.
The time evolution can be described by a classical model, which is in good
agreement with experiment as well as the mean field model for the con-
sidered observables.
In an independent experiment using an atomic beam setup the genera-
tion of motional coherence of a single atom by spontaneous emission of a
single photon has been demonstrated.

Zusammenfassung

Diese Arbeit behandelt die experimentelle Realisierung eines gemischt
regulär-chaotischen Phasenraumes in einem makroskopischen Quanten-
system. Die effektive Planck-Konstante des Systems kann über einen gro-
ßen Bereich variiert werden. Dies ermöglicht eine Betrachtung des Sys-
tems im semi-klassischen Grenzfall, bei dem die anfängliche Größe eines
Vielteilchen-Wellenpakets deutlich kleiner ist als typische Strukturen des
Phasenraumes. Somit können unterschiedliche Bereiche des Phasenrau-
mes aufgelöst werden. In einem schwach getriebenen System wird das
Poincaré-Birkhoff Szenario über das Zerfließen der Wellenpakete an stabi-
len bzw. instabilen Fixpunkten untersucht. In einem stark getriebenen Sys-
tem zeigt sich eine unterschiedliche Dynamik der Wellenpakete, je nach-
dem, ob sie in einer regulären Insel oder dem chaotischen Phasenraum ge-
startet wurden. Die Beschreibung der Dynamik mit Hilfe eines klassischen
Modells führt zu einer guten Übereinstimmung sowohl mit den Messdaten
als auch einem "Mean-Field" Modell in den betrachteten Observablen.
In einem unabhängigen Experiment mit einem Atomstrahl wird die Er-
zeugung von Kohärenzen in den Impulszuständen eines einzelnen Atoms
durch die spontane Emission eines einzelnen Photons nachgewiesen.
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1. Introduction

The stability of an integrable (and thus regular) system subjected to a
perturbation is of wide interest – in classical mechanics as well as in quan-
tum systems. A large class of classical systems can be solved exactly
just in a linear approximation, while higher order contributions have to
be treated as a perturbation of the integrable system. Arising from the
discussion of the stability of certain solutions under perturbation, e.g. the
stability of the solar system, a new class of solutions was found for chaotic
regions. This opened up the route to structurally different physics, exam-
ined by nonlinear dynamics. Such behaviour was found for many different
systems, including the rings of saturn, chaotic behaviour of convection,
stability of lasers and plasmas, in acoustics and many more [4]. Further-
more, the theory of nonlinear dynamics provided seminal contributions to
philosophical aspects of physics, such as the disconfirmation of Laplace’s
demon [5].

The manifestation of chaos in a quantum system raised some questions,
which are closely related to the transition from the quantum to classical
regime. For an isolated system in the quantum regime, which is described
by a linear Schrödinger equation, the time evolution will be periodic or
quasi periodic, even if the classical counterpart behaves chaotic. How-
ever, if the effective Planck’s constant is decreased towards the semi clas-
sical regime, it has to describe the classical chaotic trajectories. Thus, the
discussion of the quantum-to-classical transition is inseparably interwo-
ven with the discussion of quantum states located in a classically chaotic
region.

Among the first experiments of a quantum system with a classically chaotic
counterpart were investigations of the δ-kicked rotor [6], due to its primary
role in classical nonlinear dynamics. Exploring the diffusion of particles ex-
posed to periodic kicks resulted in the discovery of quantum resonances
[7, 6]. This opens up the route for the observation of quantum accelerator
modes [8, 9], using quantum resonances by performing the kicks close to
multiples of the Talbot time. The difference of the period of the kicks to the
Talbot time is discussed as an effective Planck’s constant [10], providing
a system for the investigation of quantum to classical transition.
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The diffusion of particles in the quantum kicked system exhibits an anoma-
lous behaviour, which has no classical counterpart. Beyond the Heisen-
berg time, diffusion is almost zero due to dynamical localization [11, 12].
The closely related Anderson localization was also observed in microwave
billiards [13] and for Bose-Einstein condensates (BEC) in random poten-
tials [14, 15].

In contrast, the transport of particles in a δ-kicked potential can exhibit
quite counterintuitive behaviour even for classical systems. The ratchet
effect introduced by Feynman [16], describes the transport of an ensem-
ble against a gradient if the symmetries of the system are broken and
diffusion takes place. Substituting the diffusion by transport in the chaotic
sea leads to ratchet effects in Hamiltonian systems [17]. The atom opti-
cal implementations rely up to date on quantum resonances [18, 19] or
dissipation [20, 21, 22]. Furthermore, it was realized in a BEC [23].

A striking feature of quantum mechanics is the existence of tunneling
through a barrier, although the energy of the wave packet is well below
the barriers height. This is often discussed by means of the most simple
system – a double well potential. The periodic driving of such a system
can lead to complete suppression of tunneling [24, 25]. At another ab-
straction level dynamical barriers can arise in the classical mixed phase
space. Hence, the quantum counterpart should exhibit tunneling through
this dynamical barrier, discussed as dynamical tunneling and chaos as-
sisted tunneling (CAT) for the tunneling between two stable islands mod-
erated by states of the chaotic sea [26]. It was shown theoretically, that
CAT will increase the tunneling rate by orders of magnitude and critically
depends on the effective Planck’s constant [27]. This makes it quite at-
tractive for the quantum optics community, since many particle tunneling
could lead to the realization of ”cat”-states. An increase due to CAT could
raise the tunneling rate to experimental observable times, whereas the
typical tunneling times are experimentally not feasible.

For single atoms, chaos assisted tunneling was observed in [28, 29], how-
ever it is still challenging for many body systems. A very natural choice
for the investigation is a driven double well potential. This can be realized
in a BEC in external as well as internal degrees of freedom. The dynamics
can be mapped onto a Bloch sphere and is often referred to as driven or
kicked top. We will concentrate in the following on the implementation of
the driven double well in Fock space (driven Top) in internal degrees of
freedom in a BEC.

Chaos assisted tunneling is discussed in the framework of a driven top in
several works [30, 27] exhibiting a crucial dependency on the effective
Planck’s constant. Due to its direct dependency on the atom number in
the BEC, the effective Planck’s constant can be experimentally varied over
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several orders of magnitude Therefore, the system is perfectly suited for
studying the quantum-to-classical transition and reaching a semi-classical
limit. The prediction of chaos on the Bloch sphere can be found in several
theoretical works [31, 32, 33], a realization deep in the quantum regime
was reached in [34]. Since the work of [34] relies on internal states of
noninteracting atoms, the number of ”spins” is strongly limited yielding in
a ℏeff larger than typical structures of the phase space. The different sen-
sitivity of states on perturbations is discussed, wether located in regular
islands or in the chaotic sea. They find a much larger robustness for the
states in stable islands. Furthermore it is suggested, that quantum states
located in the classical chaotic sea will exhibit enhanced entanglement
[35, 36]. This is of great interest in context of many body systems.

The present investigation builds on the realization of the symmetric un-
driven top in a spinor BEC in our group [37, 38]. Here we present the
realization of a driven top in the semi classical regime. The driving is
implemented by altering the coupling strength periodically, experimental
details will be given in chapter 3. The derivation of the mean field and
a classical model as well as some basic properties of the system will be
outlined in the subsequent chapter.
In a weakly driven system, the Poincaré-Birkhoff scenario is investigated
in chapter 4 for the most simple system. The generation of elliptic and hy-
perbolic fixed points due to driving is supported by results of the spreading
of the wave packets. A mixed phase space is realized in a strongly driven
system in chapter 5 and verified by the different behaviour of the wave
packets depending on whether prepared in the chaotic sea or in a regular
island. Simulations with a mean field model as well as a classical model
fit quite well to the experimental data. This supports the idea to predict
some aspects of the behaviour of a wave packet in the driven system by
expectations obtained from the structure of the classical phase space.
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2. The driven double well
system

2.1. Bose-Hubbard Hamiltonian

The complete derivation of the Bose Hubbard Hamiltonian is treated in
different works [39, 40, 41, 42, 43], and thus only some key features will
be given in the following (see also [38]). The Hamiltonian can be written
[44, 45, 46, 41] in the second quantization for a spinor condensate driven
by an external field and assuming s-wave scattering as:

Ĥ = Ĥ0 + Ĥcop + ĤMF + Ĥnter (2.1)

Ĥ0 =
∑

=1,2

∫

d3rΨ̂†

(r)

�

−
ℏ2

2m
∇2 + V(r)

�

Ψ̂(r) (2.2)

Ĥcop = −
ℏΩR

2

∫

d3r
�

Ψ̂†
1
(r)Ψ̂2(r)eΔt + Ψ̂†2(r)Ψ̂1(r)e

−Δt
�

(2.3)

ĤMF =
∑

=1,2

4πℏ2

2m

∫

d3rΨ̂†

(r)Ψ̂†


(r)Ψ̂(r)Ψ̂(r) (2.4)

Ĥnter =
4πℏ212

m

∫

d3rΨ̂†
1
(r)Ψ̂†

2
(r)Ψ̂1(r)Ψ̂2(r) (2.5)

with Ψ̂† (Ψ̂) being the creation (annihilation) field operator fulfilling the
standard bosonic commutation relations. The form of Ĥ0 assumes the
same trapping potential V(r) for both spin species. The coupling term
Ĥcop includes a small detuning Δ and is written in the rotating frame ap-
proximation. Within the framework of a condensate in an external double
well potential [42] this term is equivalent to the hopping term describing
the tunneling between the wells. The self interaction of the field associ-
ated with the intra-species scattering length  leads to an additional term
ĤMF, which has some experimental implications treated in Sec. 3.3. The
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last interaction term Ĥnter describes the collision of two particles in differ-
ent spin states. This nonlinearity enables the system to show up a large
variety of effects.

In order to obtain a two mode model, the field operators are approximated
by:

ψ̂ = 0̂ (2.6)

with 0 as a scalar mode function and the operators ̂† and ̂ creating
or annihilating a particle in spin state . Throughout the rest of this work,
the hyperfine state |F = 1,mƒ = +1〉 = |1〉 will be denoted with index 1
and |F = 2,mF = −1〉 with index 2. As both spin species experience the
same potential V(r), their functions 0 are assumed to be equal. This
assumption1 is only valid if the system is in the miscible regime [47], but
is a good approximation if the trapping potential is very tight as in the
considered system. Thus the external degree of freedom is frozen and
uncoupled from the internal dynamics. Following [46, 38] the Hamiltonian
2.1 can be written in a two mode model:

Ĥ0 = E
�

̂†
1
̂1 + ̂†2̂2

�

(2.7)

ĤMF = χ11 ̂
†
1
̂†
1
̂1̂1 + χ22 ̂†2̂

†
2
̂2̂2 (2.8)

Ĥnter = 2χ12 ̂†1̂
†
2
̂1̂2 (2.9)

Ĥcop = −
Ω

2

�

̂†
1
̂2e

Δt + ̂†
2
̂1e

−Δt
�

(2.10)

with the coefficients in the single spatial mode approximation:

E =

∫

d3r∗
0

�

−
ℏ2

2m
∇2 + V(r)

�

0 (2.11)

χj =
4πℏ2 j

2m

∫

d3r|0|4 (2.12)

Ω = ℏΩR

∫

d3r∗
0
0 . (2.13)

1A more detailed analysis is given in [38].
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The Hamiltonian can be further simplified by introducing angular momen-
tum operators:

Ĵ =
1

2

�

̂†
1
̂2 + ̂†2̂1

�

(2.14)

Ĵy =
1

2

�

̂†
2
̂1 − ̂†1̂2

�

(2.15)

Ĵz =
1

2

�

̂†
2
̂2 − ̂†1̂1

�

(2.16)

fulfilling the standard commutation relations for a spin N/2 algebra. When
neglecting all constant terms (proportional to N and N2) the two mode
Hamiltonian can be written in the form:

Ĥ = χ Ĵ2
z
− ΩĴ + δĴz . (2.17)

The coupling Ω is experimentally well controlled and can be varied in the
range of a few Hertz up to 330Hz (times 2πℏ). The effective detuning:

δ = Δ + (2J − 1) (χ22 − χ11) (2.18)

depends on the chosen detuning Δ of the coupling and on particle density,
thus atom number in the BEC. This term is typically treated as constant. In
fact, the detuning changes with time since some atoms are lost during the
experimental sequence. The quantification and methods to compensate
this are described in Sec. 3.3.

Finally the nonlinearity χ can be written as:

χ = χ11 + χ22 − 2χ12 (2.19)

=
1

2
(g11 + g22 − 2g12)

∫

d3r|0|4 (2.20)

with gj =
4πℏ2j

m
. The corresponding term is quadratic in Ĵz leading to non-

linear dynamics and is thus the reason for the system being so attractive
for researchers. Absolute value as well as sign of χ can be tuned by chang-
ing the inter-species scattering length 12 close to a Feshbach resonance
(see Sec. 3.2.1 for details).
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Scaling the Hamiltonian

It should be noted, that the coefficients Ω, χ and δ are in units of energy.
On the other hand these quantities are experimentally determined as fre-
quencies, thus the Hamiltonian will be scaled accordingly. Furthermore
for numerical simulation of the dynamics it is favourable to express the
Hamiltonian in dimensionless variables, which will be derived in the fol-
lowing.

As a first step, the coefficients will be scaled by 2πℏ:

χ̃ =
χ

2πℏ
; Ω̃ =

Ω

2πℏ
; δ̃ =

δ

2πℏ
. (2.21)

Hence the scaled versions correspond to the experimentally measured
frequencies, which are typically in the order of χN ≈ 20Hz . . .35Hz and
Ω ≈ 10Hz . . .50Hz. It is common within the semiclassical approximation
of this Hamiltonian, to project the dynamics onto an unit sphere. In order
to be comparable to classical simulations, also the two mode hamiltonian
will be mapped on the unit sphere. Since creation and respectively an-
nihilation operators raise or lower the quanta in steps of one, the scaling
has to be introduced in a pre factor in the angular momentum operators.
Therefore the scaled angular momentum operators Ĵ reads as:

Ĵ =
2

N
Ĵ (2.22)

Expressing the Hamiltonian 2.17 in scaled terms yields in:

1

ℏ

2

N

1

2πΩ̃
Ĥ =

1

2

χ̃N

Ω̃
Ĵ 2
z
− Ĵ +

δ̃

Ω̃
Ĵz

Ĥ′ =
Λ

2
Ĵ 2
z
− Ĵ + εĴz (2.23)

with the relative nonlinearity Λ = χ̃N

Ω̃
and the scaled detuning ε = δ̃

Ω̃
.

The relative nonlinearity Λ plays an important role for the system as it
determines the relative strength of the nonlinearity to the coupling. If the
coupling exceeds the nonlinearity the system exhibits slightly deformed
Rabbi like oscillations [48]. On the other hand, if the nonlinearity is much
stronger than the coupling, the dynamics is completely changed. Details
of the dynamics will be discussed in Sec. 2.3.
The scaled detuning ε influences the system much less as it is chosen to

8



be smaller than one, ε� 1 and thus just tilts the axis of the Rabbi oscilla-
tions a bit.
The scaling factor 1

ℏ
2
N

1
2πΩ̃

of the Hamiltonian can be divided into several
distributions. One of them is the effective Planck’s constant of the sys-
tem. It can be determined by the commutator relations of the angular
momentum operators and calculates to :

ℏeff =
2

N
. (2.24)

Therefore the system exhibits the potential of behaving pure quantum me-
chanically for small, or classically for large N. For instance the experiment
in [34] was done with N = 7 implying that the effective ℏeff and thus a min-
imal uncertainty state is large compared to typical structures of the clas-
sical phase space. On the other hand, with a large atom number almost
classical experiments are available. Hence this system is ideally suited for
the experimental investigation of quantum to classical transition.

The remaining factor of 2πΩ̃ corresponds to a scaling of frequencies and
thus times:

ω̃ =
ω

2πΩ̃
(2.25)

t̃ = 2πΩ̃t (2.26)

and is required for the comparison of numerical and experimental results.
The scaled Hamiltonian (Eq. 2.23) can be solved numerically for a moder-
ate atom number up to the order of O(1 × 103), which is done in Sec. A.2.
The scaling apostrophe is omitted throughout the rest of this work.

The Bose-Hubbard Hamiltonian can also be cast into an effective single
particle Hamiltonian [49, 50] with a potential being similar to the classical
one but a z dependent modification of the effective mass. This is appreci-
ated for deeper insight into the quantum behaviour of the Hamiltonian or
if the particle number is too large for the numerical diagonalization. Since
one goal of this work is to translate findings from the classical model into
the mean field system, primarily the classical approximation and numeri-
cal solution of the Bose-Hubbard Hamiltonian will be used.

2.2. Semi-classical approximation

In order to get a feeling for the dynamics described by the Hamiltonian in
Eq. 2.17, a semiclassical model is derived. Following the route of [45], the
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angular momentum operator Ĵ is replaced by its expectation values:

Ĵ→
N

2

 

sinϑ cosφ
sinϑ sinφ
cosϑ

!

(2.27)

which is the standard form of a unit vector in spherical coordinates with
radius N/2 (due to dealing with a spin N/2 system). It is common to project
the dynamics onto a unit sphere with radius one and to express the Hamil-
tonian in terms of the height z instead of polar angle ϑ. Therefore the
angular momentum operators and thus the Hamiltonian will be written in
terms of scaled coordinates z = cosϑ and the azimuth angle φ:

Ĵ →
N

2

p

1 − z2 cosφ (2.28)

Ĵy →
N

2

p

1 − z2 sinφ (2.29)

Ĵz →
N

2
z . (2.30)

Substitution of these into the unscaled Hamiltonian 2.17 leads to:

H =
2πχ̃N2

4
z2 −

N

2
2πΩ̃

p

1 − z2 cosφ +
N

2
2πδ̃ z . (2.31)

Scaling this semi-classical Hamiltonian by N2πΩ̃/2 equivalently to the mean
field system yields:

H̃ =
Λ

2
z2 −

p

1 − z2 cosφ + εz (2.32)

using the same definitions for relative nonlinearity and detuning.

It should be noted that the presented derivation of the semi-classical model
is just a rough ”experimentalists point of view”. For a neat derivation, the
Ehrenfest theorem is used to derive the equation of motion for the ex-
pectation value of 〈Ĵ〉, and to derive an effective Hamiltonian from that
[51, 45]. The full analysis was provided by Steffen Löck and yields in the
same results [52].

The scaling of the Hamiltonian in Eq. 2.32 is done with the factor of
N2πΩ̃/2, thus actually all frequencies would have been scaled with the
same factor. This implies a scaling of frequencies by N/2 leading to wrong
conclusions. The experimental determined frequencies are (in first order)
independent of particle number N, hence these behave as a kind of "an-
gular" frequencies. The scaling with N/2 on the other hand would lead to
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frequencies at the surface of the sphere. Due to that reason and according
to the scaling of the mean field model, the factor of N/2 has to be omitted
leading to same scaling as Eq. 2.25.

2.2.1. Initial states

Although the number state base (see Sec. A.2) is a complete basis of the
Bose-Hubbard Hamiltonian in Eq. 2.23, it is not the proper choice for the
treatment of the problem. The more appropriate states are the eigen-
states of the angular momentum operators with an axis pointing towards
(ϑ,φ) [45]. Theses coherent spin states (CSS) can be written as [53, 32]:

|ϑ,φ〉 =
N
∑

k=0

�

N

k

�
1
2

cosk
�

ϑ

2

�

sinN−k
�

ϑ

2

�

e(N−k)φ |k,N − k〉 (2.33)

with N being the total atom number and k the number of particles in state
|2〉. It was shown that these states form a complete basis [53]. Coherent
spin states are minimal uncertainty states [45]. Experimentally, we can
create such states by preparing all atoms in the |1〉 state, which is shown
to be equivalent to a CSS. Since an arbitrary rotation transfers a CSS into
another one, we can prepare a CSS at a certain position (ϑ,φ) in phase
space by applying a high power coupling pulse onto the |1〉 state [54].

The CSS has a finite width on the Bloch sphere due to quantum mechan-
ical uncertainty principle, thus classical simulations working with a single
point state will differ from the quantum mechanical mean field model. In
order to make them comparable to the mean field model, a distribution of
points will be used [30, 34] for initial preparation. For large atom numbers
N, the binomial distribution of the CSS approaches a Gaussian distribution
with mean of (ϑ,φ) and a standard deviation of σ = 1/

p
N [32, 55]. There-

fore, we use a Gaussian distribution of points on the Bloch sphere as initial
distribution for the classical simulations, with parameters of the CSS. The
generation of the distribution is described in Sec. A.1.1. After calculat-
ing the time evolution for all points, the mean as well as the variance are
obtained for the resulting classical distribution.

2.3. Properties of the undriven system

Although the properties of the symmetrical system have been intensely
studied theoretically [44, 56, 41, 49, 50] as well as experimentally [57,
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42, 58, 59], some basic properties will be discussed in the following since
the undriven system serves as a starting point for the discussion of the
driven system.

2.3.1. Symmetrical system

Most of the features of the undriven system can be understood when de-
termining the fixed points of the system, their stability and linearized dy-
namics around. Since this can be obtained analytically for the symmetrical
system with ε = 0, we will focus briefly on this case. The full derivation
is presented in Sec. A.1.3, a summary of the results will be given in the
following.

The symmetrical system exhibits a fixed point at zP = 0;φP = 0 with a
frequency of surrounding orbits of ωP =

p
1 + Λ. This fixed point, labeled

with ”plasma”, will remain stable for all values of the relative nonlinearity.
On the other side of the Bloch sphere, a second fixed point is located
at zπ = 0; φπ = π with a frequency of ωπ =

p
1 − Λ (all frequencies will be

given in scaled units according to Eq. 2.25). This fixed point becomes
unstable at a critical value of Λ∗ = 1 and is named "π".

Figure 2.1.: Visualizing the Bifurcation. The phase spaces are plotted for
different values of Λ on the Bloch sphere. The bifurcation oc-
curs at a critical value of Λ∗ = 1, at the π-side of the Bloch
sphere.

At the same critical nonlinearity Λ∗ = 1, two new stable fixed points ap-

pear at z± =
Ç

1 − 1
Λ2
; φ = π. Orbits close by will oscillate with a frequency

of ω± =
p

Λ2 − 1. Therefore, the system exhibits a scenario at the "π"-side,
where one stable fixed point becomes unstable and two new stable fixed
points occur – a typical behaviour for a pitchfork [60] or period doubling
bifurcation [4]. The bifurcation is depicted in Fig. 2.1 on the Bloch sphere,
the fixed points and frequencies of adjacent orbits are depicted in Fig. 2.2,
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which is experimentally investigated in [58]. For a comparison, the tilted
system is included in the last graph, discussed in detail in Sec. 2.4.
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Figure 2.2.: Left: Pitchfork bifurcation for symmetric and tangent bifurca-
tion for asymmetric system. The positions of the stable fixed
points are depicted with solid lines, unstable fixed points with
dotted ones.
Right: Critical slowdown in the symmetric system. Approach-
ing the critical relative nonlinearity Λ∗ frequencies of orbits
close to the fixed point tend to zero in the classical approx-
imation. This is contrasted to simulations in the mean field
model performed for two different atom numbers and thus
ℏeff. The simulations for large atom numbers follow the classi-
cal approximation quite well – just failing in the vicinity of the
critical relative nonlinearity. In contrast, small atom numbers
deviates even for larger distance to the critical nonlinarity and
fails completely close by.

For large relative nonlinearities, the z± fixed points move towards the
poles – leading to macroscopic self trapping in the Josephson regime [57,
58].

2.3.2. Critical slowdown

When the relative nonlinearity approaches the critical value of Λ∗, fre-
quencies in the small amplitude approximation tend to zero independent
from which direction the limit is done. This critical slowdown is depicted
on the right panel of Fig. 2.2 for the analytical model as well as simulations
in the mean field regime for two different atom numbers. Regarding large
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atom numbers, thus semiclassical behaviour, frequencies of the simula-
tion fit to the analytical model quite well. Close to the critical value Λ∗,
the simulation breaks down due to limited ℏeff. On the other hand, the
deviation to theory is much more obvious for larger ℏeff in the transition
regime. Not only the simulation breaks down for a much larger distance
to the critical point, but also the deviation gets more pronounced.
A similar behaviour occurs in the mean field model when approaching
the unstable zπ fixed point in the bifurcated system. The difference of
eigenenergies, which determine the time evolution of the wave packet,
tends to zero close to the unstable fixed point. This is well known be-
haviour in classical mechanics of orbits close to a separatrix [51].

Would it be feasible to experimentally verify critical slowdown in an ex-
perimental system with limited time? Due to atom loss (Sec. 3.2.3) the
experimental available time is limited, therefore it is a hard task to mea-
sure small frequencies. In order to experimentally confirm the effect, a
large atom number should be used and loss effects will have to be com-
pensated. Additionally a trick known from determining trap frequencies of
condensates [61] can be used. A wave packet in a harmonic trap breathes
with approximate twice of the trap frequency, which can be measured by
obtaining variances. Although it is experimentally more time consuming
to measure variances, the desired frequencies can be raised by a factor
of two with this method. The physics close to the critical point is intensely
studied in [47] and references within.

2.3.3. Squeezing at the unstable fixed point

The dynamics close to the unstable fixed point at zπ = 0; φπ = π ex-
hibit an interesting feature, especially in conjunction with the underlying
many particle system. When the fixed point becomes unstable, the two
Lyapunov-exponents λ± = ±

p
Λ − 1 get real with opposite sign (see [4] or

Sec. A.1.3 and A.1.4). The Lyapunov-exponent with positive sign corre-
sponds to the exponential separation of points along the unstable mani-
fold, the one with negative sign to contraction along the stable manifold.
Applying this to the initially prepared distribution, it will be extracted along
the unstable axis and contracted along the stable one. Thus the distribu-
tion will be (number-) squeezed according to (see Sec. A.1.3):

ξ2
N
(t̃) = −

20

ln10

p

Λ − 1 t̃ (2.34)

(in [dB]), and be elongated along the axis with angle of αs =
π
2−rctn

�p
Λ − 1

�

to the φ-axis. This simple model fits quite well to the numerical simulation
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depicted in Fig. 2.3 for large atom numbers. A more advanced approach in
the quantum regime can be found in [55], the experimental realization in
[38, 59]. Squeezing in this kind of system is intensely discussed [45] as it
implies many particle entanglement and improvement of interferometric
techniques. It was shown for the external [62, 63] as well as the internal
system [54, 59, 38] and can be used to improve interferometry [54].
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Figure 2.3.: Squeezing at the unstable fixed point for Λ = 1.6, ε = 0 and
N = 700 atoms.
Left: Number squeezing vs. scaled time. The distribution
achieves its best squeezing for tsc ≈ 2.25, but getting bent
afterwards. The simple analytical model fits quite well to nu-
merics.
Right: Angle of axis of best squeezing vs. time [38]. The dis-
tribution is elongated along the unstable axis for the time of
best squeezing, which fits well with the analytic expression.

The comparison of the simple analytical model with classical and quantum
simulations reveals that certain aspects of the system, as mean and vari-
ances, can be well described classically even at exceptional points. This
requires a semiclassical system with a large atom number, the restric-
tion to short time scales and being not too close to the bifurcation point.
The last item can be understood when considering the system at the criti-
cal relative nonlinearity Λ∗. Putting a single classical particle close to the
fixed point, nothing will happen due to vanishing Lyapunov-exponents. On
the other hand, a quantum wave packet will start to diverge and will ”feel”
the potential afterwards. Thus time evolution close to the exceptional
point is dominated by quantum behaviour even in the small ℏeff limit and
classical dynamics play a secondary role.
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2.4. Tangent bifurcation

The symmetrical system described in the previous section is an excep-
tional case. Due to experimental noise, the symmetry will be broken in
most situations. Although the asymmetric system will merge into the sym-
metrical case for very small detunings, the question arises, how large the
experimental fluctuations are in relation to typical frequencies.

Even with our high precision magnetic field stabilization [38], the shot
to shot fluctuations of the magnetic field are in the order of ΔB = 50µG
equivalent to a detuning of 0.5Hz. Taking into account the nonlinearity of
Nχ ≈ 2π · 32Hz (for 700 atoms) and thus a required coupling strength of
Ω ≈ 2π · 20Hz to reach a medium bifurcated system, the magnetic field
fluctuations correspond to a scaled detuning of ε ≈ 0.025. Hence the
system would be tilted anyway for different realizations in an arbitrary di-
rection. In order to keep the asymmetry of the system from shot to shot in
sign and same order of amplitude, it is required to tilt the system on pur-
pose. The artificial tilt should be much larger than tilt due to fluctuations,
thus a value of ε ≈ −0.1 was chosen throughout the experiments. The
negative sign is preferable since the island close to F = 1 is enlarged by
that. There the atom loss is much less than in the other component (see
Sec. 3.2.1).

Due to the tilt, the bifurcation occurs at a larger value of Λ∗ =
q

1 + ε
2
3

3

(see Sec. A.1.3), corresponding to Λ∗ ≈ 1.3 for the chosen detuning. Fur-
thermore, atom loss also reduces the relative nonlinearity during time
evolution, thus a value significant larger than the bifurcation point Λ∗
has to be used. On the other hand one cannot chose quite low values of
the coupling strength since this would further reduce the available scaled
time. Thus an effective relative nonlinearity of Λ = 1.5 was chosen for the
experiments in the bifurcated regime.

The tilt shifts the fixed points a bit, however the behaviour of the system is
changed strongly. By increasing Λ, the stable zπ fixed point evolves contin-
uously into one of the z± fixed points (according to sign of ε) but remains
stable for all values of Λ. On the other hand, the bifurcation occurs ”out
of the blue sky” with the emergence of one stable and one unstable fixed
point (see Fig. 2.2). The bifurcation can be roughly understood in the fol-
lowing (refer to Fig. A.1 for details): consider a double well potential which
is so strong tilted, that the upper (old) fixed point exceeds the unstable
one in the center. Therefore, only the lower fixed point is present. When
decreasing the tilt, the rising edge of the stable fixed point in the untilted
system becomes zero at a value of Λ∗. At the same value, also the second
derivative becomes zero, indicating an inflexion point. Further decrease
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of the tilt leads to the emergence of a stable and an unstable fixed point
at this inflexion point. Therefore this type of bifurcation is named tangent
bifurcation [4].

The experimental verification of the blue sky bifurcation is a quite useful
tool to check system parameters independently. The method for determin-
ing the nonlinearity via measurement of plasma and π oscillations used in
Sec. 3.7 has some disadvantages. On one hand, due to the large coupling
strength necessary to remain in the low nonlinearity approximation, the
light field shift is different. Thus the measurement of the detuning can not
be used in the experiments with much lower Ω. On the other hand, the
frequencies of plasma and π oscillations are much larger due to the large
coupling strength. Hence the time scale of these measurements is much
shorter than the for the final experiments. Thus atom loss plays minor
role and the measured nonlinearity appears larger than that seen by the
atoms in the temporal mean due to loss.

2.4.1. Experimental realization

A rough summary of methods used to probe the blue sky bifurcation ex-
perimentally is given in the following, a more detailed description of ex-
perimental methods is given in Sec. 3. For some atom number N the non-
linearity Nχ is fixed2, however the relative nonlinearity Λ can be tuned
over a large range by changing the coupling strength Ω. In order to obtain
the same scaled detuning of ε = −0.1 for all values of Ω, the absolute
detuning 2πδ = 2πεΩ has to be adjusted accordingly.

For each parameter set of Ω and δ, the initial preparation is done close
to the stable fixed points, thus zπ for Λ < Λ∗ and at each of the stable
fixed points z± for the bifurcated system. In order to minimize effects
of atom loss (Sec. 3.2.3), the preparation was always carried out within
the lower hemisphere (thus at z− and −z+) and the sign of the detuning
was changed instead. Since the bifurcation point as well as position and
frequencies of the fixed points depend on detuning, a loss compensation3

was implemented to avoid an additional time dependent tilt due to mean
field shift.

The time evolution of z(t) is obtained by measuring the imbalance of the
two spin states by absorption imaging (Sec. 3.6) at different time steps.
Subsequently the data is filtered for a certain atom number (typically

2for fixed trap geometry and magnetic field
3see Sec. 3.3. Parameters for N = 500 atoms and mean imbalance of z = 0 where

used, thus τoss = 200ms and δoss = 14Hz.
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within a ±25 atom range) according to the loss for that atom number and
mean imbalance. This results in small amplitude oscillations, where ampli-
tude, offset and frequency can be deduced by a sine fit. The so obtained
data is plotted in Fig. 2.4, where the fitted offset is an approximation to the
position of the fixed point (left graph), the scaled frequency is depicted on
the right panel.
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Figure 2.4.: Experimental observation of the bifurcation of the tilted
system with ε ≈ −0.1 for different atom numbers (550
atoms/blue to 650 atoms/red).
Left: Position of fixed points deduced from mean value of os-
cillations (asterisk/circle with error bars and fit as solid line).
Right: Scaled frequencies of fast/deep fixed points (asterisk)
and slow ones (circle) with fits. The uncertainty of the fre-
quencies obtained by fitting procedure is given as a 95% con-
fidential interval. The universality of the system is revealed
since the curves for different atom numbers lie on top of each
other, although they exhibit a different nonlinearity.

For a comparison of the experiment with theory, fixed points as well as fre-
quencies obtained for several coupling strengths are used for fitting. The
nonlinearity Nχ and an offset detuning δo are treated as free parameters.
Since a closed analytical solution for fixed points and corresponding fre-
quencies is hard to derive in the tilted system, the Hamiltonian is approxi-
mated by a Taylor expansion (Sec. A.1.3). Solving the Taylor expansion for
fixed points, an approximated model can be derived which is used for the
fit. Due to strong anharmonicity, the expansion point has to be selected
with care.

The results of the fit with the analytical model exhibit a strange behaviour.
The nonlinearities for different atom numbers correspond just roughly to
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that determined by plasma- and π-oscillations (Sec. 3.7) but are out of er-
ror margins of the other measurements. Furthermore the values obtained
from the fit of the fixed points and that of the frequencies do not corre-
spond to each other within error bounds.
The behaviour can be explained by a violation of the small amplitude ap-
proximation of the analytical model. Due to non vanishing amplitudes of
the oscillations in the anharmonic system, a systematic error occurs in po-
sitions as well as in frequencies. To circumvent this limitation, a numerical
model for the fit was developed regarding the amplitude of the oscilla-
tions. This model is included in Fig. 2.4 revealing an excellent agreement
with the experiment. Furthermore, the parameters obtained by a fit of
position and that of frequencies agree to each other within error bounds
and also to plasma- respectively π-oscillations. It should be noted that this
numerical model shows some deviation to the optimal case in Fig. 2.2.

Approaching the bifurcation point from the right, the data exhibit a de-
creasing frequency of the slow fixed point. However a critical slowdown
beyond a linear behaviour can not be revealed. Albeit this was not the
intention of the experiment.

Comparing the data in scaled units for different atom numbers, all curves
fall onto the same universal one. This reveals the validity for the simple
model using only two parameters Λ and ε as well as the proper scaling be-
haviour. Consequently the simple semi classical model using two effective
parameters is a very well approximation of the considered system besides
all the experimental details such as atom loss.

The trapping potential was changed for all other measurements. There-
fore, the calibration obtained by the blue sky bifurcation can not be used
for the other measurements.

2.5. Driving the system

In this section, different ways to perturb the system and a motivation for
the choice of parameters will be discussed. As the overall aim is to re-
veal that the chosen system exhibits a KAM scenario (see Sec. 4) and a
mixed phase space can be realized, solely Hamiltonian systems will be
considered, precisely periodically driven ones.

The physics of a periodically driven system is well known since the ex-
ample of an sinusoidal driven harmonic oscillator is treated in most intro-
ductory courses of classical mechanics. When perturbing an undamped
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harmonic oscillator one finds resonance phenomena for driving frequen-
cies close to the frequency of the harmonic oscillator with a divergence
of amplitudes [64]. As the frequency of an orbit is independent on ampli-
tude, the whole phase space becomes unstable at the same time due to
driving.

In contrast, the KAM theorem (see Sec. 4) opens up a route to a mixed
phase space. Roughly speaking, it states for small driving amplitudes that
orbits with an irrational frequency to driving ratio will survive slightly per-
turbed. Vice versa one may conclude that the orbit is broken up when
a rational frequency ratio is chosen, i.e. the driving frequency is a small
multiple of the orbit frequency. For an anharmonic system, the resonance
condition will be fulfilled for a small range of orbits, others will remain
slightly changed. Thus it is likely to generate a mixed phase space when
driving an anharmonic system with a frequency being resonant (or a mul-
tiple of that) of some orbits.

To perturb the system in a controlled manner the two parameters Λ and
ε can be used to drive the system. The detuning ε is directly accessible
as the detuning of the coupling to the two photon transition and could
be changed in time via frequency modulation of the coupling RF or MW
fields. As the parameter Λ is the ratio of the nonlinearity to the coupling
strength, it could be either changed by driving the coupling strength or
the nonlinearity.

2.5.1. The parameters of choice

In all realised experiments throughout this work, the outcome is averaged
over many almost equal realizations of the same experiment. Thus a noisy
behaviour (with large variances) could not only be caused by time evolu-
tion in the chaotic sea, but also by technical noise leading to enhanced
shot-to-shot fluctuations. Therefore, it is experimentally quite favourably
to preserve a stable, regular part of the phase space even in the driven
system, i.e. a stable island of the undriven system is also present in the
driven one. On the other hand, as the system parameters are known to
some uncertainty it is advantageous to generate a large chaotic sea and
large moving islands by driving.

Since the parameter Λ defines the barrier height of the double well poten-
tial and the detuning ε the tilt, it is expected to perturb the deep islands
only slightly when driving the coupling. This is supported by simulations
and thus a sinusoidal driving of Λ was chosen through all driven experi-
ments within this work. It can be experimental realized by an amplitude
modulation of the coupling RF-field as described in Sec. 3.4.2.
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It should be noted, that this choice is not inalienable, the driven experi-
ments could have been done by driving the detuning with minor implica-
tions. Albeit the driving amplitude should be kept small for both cases. By
varying the coupling strength in a larger range, the light shift [65] will be
changed and thus the detuning too. Vice versa by changing the detuning
in a larger range, also the effective coupling will be modified. However,
this effect can be neglected for small driving amplitudes.

There are two quite different regimes for Λ, both of them were investi-
gated in this work. On one hand, for Λ = 0.7 the system is still not bifur-
cated and thus an example of a most simple model. On the other, with
Λ = 1.5 the system is bifurcated and exhibits a double well structure. For
both cases, a detuning in the order of ε = −0.1 was chosen to break the
symmetry of the system. Since our system exhibits an enhanced atom
loss in the F = 2 manifold (3.2.3), it is favourable to select a negative
sign for the detuning and start in the left hemisphere (when looking from
φ = π) to constrain the time evolution to negative z-values for short times
to minimize loss.

For sake of completeness, it should be mentioned, that also the nonlin-
earity can driven. On one hand, it can be controlled by changing the
inter-species scattering length close to the Feshbach-resonance via time-
periodic variation of the magnetic field (see Sec. 3.2.1 for details of the
magnetic field stability). On the other hand, the definition of the nonlin-
earity (see Eq. 3.2) offers a different route for a coherent control due to
changing the overlap of the wavefunctions of both atomic states. This
method is already implemented in atom chip experiments [66] to modify
and control the nonlinearity over several magnitudes [67].

2.5.2. Driving frequency

Day to day experience and knowledge from classical mechanics leads to
the conclusion, that driving with the frequency of the orbit will perturb the
system most. This is expanded by KAM theorem to all rational frequency
ratios. Unfortunately the experimental available time is limited by atom
loss (Sec. 3.2.3) to a few cycles of the undriven orbit. Thus the outcome
of the experiments relies on perturbation being as fast as possible.

In the following an approximation for the best driving frequency should be
derived in the quantum regime (see Sec. A.2.2 for details). Therefore time
dependent perturbation theory will be applied. The driven Hamiltonian
Ĥ(t) = Ĥ0 + ADŴ(t) is split into a time constant part Ĥ0 = Λ/2Ĵ 2

z
− Ĵ + εĴz

and a time varying part Ŵ(t) = − sin(ωDt + φD) Ĵ. Then the differential
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equations for slow time varying coefficients in the eigenbase of Ĥ0 are es-
tablished after separation of fast phase evolution of the undriven system.
With the assumption that these coefficients can be written in a power se-
ries in the driving amplitude, the differential equations can be uncoupled
leading to the solution for the first order perturbation coefficients:

b
(1)
k (t) = −

N

4

∑

n

b(0)
n
(J)kn

�

eφD
�

1 − e(Δωkn+ωD)t
�

Δωkn + ωD

−
e−φD

�

1 − e(Δωkn−ωD)t
�

Δωkn − ωD

�

.

(2.35)

The difference of eigenfrequencies is labeled with Δωkn = ωk − ωn, the
driving frequency with ωD, the initial occupation of state n with b(0)

n
and

the matrix element of the driving with ( J)kn. A significant contribution is
expected for the case when the denominator becomes small, thus if the
driving frequency hits one of the transition frequencies. Since all coef-
ficients and the frequencies depend on the diagonalization of Ĥ0, which
could not be done analytically, the conclusions are not universal and both
cases will be discussed separately.

Driving frequency for the bifurcated system

For the bifurcated system, the parameter set Λ = 1.53, ε = −0.07 and
as start point z0 = 0, φ0 = 2.51 was chosen, such that the rotational
frequency of the unperturbed system is in the order of ω0 = 0.76 (in
scaled units). By numerical diagonalization of Ĥ0 and a calculation of
the coefficients of the eigenstates with a coherent spin state located at
z0, φ0, a relatively sharp distribution of the zeroth order coefficients b

(0)
k

(around k) is obtained. Due to the double well structure and the non-
linearity, a nonlinear behaviour of eigenenergies (or frequencies) is ex-
pected, however in the region of k the differences of adjacent eigenfre-
quencies Δωk,k−1 equals the rotational frequency ω0 with minor linear cor-
rections. In the analogy of the harmonic oscillator, all eigenfrequencies
exhibits a frequency difference of ω0, leading to full rephasing after a time
Tper = 2π/ω0. The similar occurs in the considered system, however the
minor corrections to the frequency difference prevent a complete rephas-
ing of the wave packet.

Since only a few b(0)
n

have major contributions to the sum of Eq. 2.35,
also the structure of ( J)kn matters only for these n. For matrix elements
close to n = k, the significant contributing terms are the main diagonal
( J)n,n and the ones after the next ( J)n,n±2 elements. Terms along the
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off-diagonal ( J)n,n±1 are suppressed by approximately one order of mag-
nitude. Thus, to achieve a perturbation of the system as fast as possible,
it is more convenient to drive the system with twice of the rotational fre-
quency ωDriv ≈ Δωn,n−2 ≈ 2Δωn,n−1 ≈ 2ω0. Driving directly at the rotational
frequency would also disturb the system, but the perturbation would need
much longer time scale to grow. Since several eigenstates are involved
and the difference of their eigenfrequencies differ slightly, the resonance
condition is not sharp anymore. This leads to a smearing of resonant driv-
ing frequencies over the distribution of eigenfrequency differences of in-
volved states.
Consequently, within all the driven experiments at Λ = 1.53, the double
rotational frequency was chosen as driving frequency.

Driving frequency for the unbifurcated system

In order to reveal the KAM theorem in the most simple system, a parame-
ter set of Λ = 0.7, ε = −0.11 and z0 = 0.48, φ0 = π as start point was cho-
sen. Also in this case the difference of eigenfrequencies Δωn,n−1 around
the maximal b(0)k is close to the rotational frequency ω0 = 0.75 of this or-
bit. However, the distribution of matrix elements of (J)kn has changed.
The major contribution is along the main diagonal, but the correspond-
ing terms in the sum are independent of transition frequencies. The off
diagonal terms (J)n,n±1 and (J)n,n±2 are in the same order, however an
order of magnitude smaller than the main diagonal. Higher contributions
become quite small. In contrast to the Λ = 1.5 system, here the system
can be driven with ω0 or the twice, both choices lead to fast excitations of
the system. For the sake of consistency, also this system was driven with
twice of the rotational frequency.

To conclude, time dependent perturbation theory can not be consulted to
explain small shifts of position and rotational frequency of fixed points for
larger amplitudes being known from the classical system. However, the
choice of the proper driving frequency can be explained quite well.
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3. Realization of a driven two
component BEC

The Bose-Hubbard Hamiltonian can be realized in external [62, 68, 57, 42]
as well as internal degrees of freedom [58]. The internal implementation
has some advantages like an enhanced stability against environmental
noise and a direct accessibility to the phase of coupling. Therefore we
choose the internal realization.

The measurements were performed at a well-established experimental
setup. Hence just a short overview of some technical aspects will be
given. The basic apparatus was built by Bernd Eiermann and cowork-
ers, so most design thoughts can be found in his work [69]. The next
generation implemented the external Josephson system [70, 71]. A sig-
nificant improvement of the stability of the experiment was achieved in
the works of Christian Gross and Andreas Weller [72, 37] yielding the first
experiments in the internal system [54] at this machine. Properties of the
symmetric system (Sec. 2.3) and experimental efforts to realize this are
intensely studied in [58, 38].

Rubidium87 exhibits some features making it the system of choice for re-
alizing the internal system. A Feshbach resonance between the two hy-
perfine states |F = 1〉 and |F = 2〉 arises at low magnetic field of B = 9.1G
(Sec. 3.2.1), which is experimentally easily accessible. The hyperfine split-
ting of ΔνHF ≈ 6.8GHz and the Zeeman splitting of ΔνZ ≈ 6.3MHz (at this
field [73]) are in a range which can be directly addressed by commercial
radio hardware.
Furthermore the almost equal intra-species scattering lengths of the two
hyperfine species are experimentally quite favourable. On one hand, this
reduces the mean field shift (Sec. 3.3), on the other it is a requirement for
establishing the single mode approximation (Sec.2.1).
Additionally, the first order Zeeman shift is equal for the two hyperfine
states | F = 1,mF = +1〉 and | F = 2,mF = −1〉, since the correspond-
ing Landé-gF factors differ just in sign [74, 75]. Therefore implications
of magnetic field fluctuations are vastly reduced and the stability of the
experiment is enhanced.

25



3.1. Basic steps to reach Bose-Einstein
condensation

The realization of a Bose-Einstein condensate is a well known task nowa-
days, being first developed in [76, 77] using different atom optic tech-
niques [65, 43, 78]. In the following a short summary of the basic steps to
condense 87Rb will be given described in detail in [69, 72, 58]. In contrast
to the first implementation in our lab [69], the condensation is done in the
optical dipole trap and not in the magnetic trap by now.

A sample of 87Rb is evaporated in a vacuum chamber and pre cooled and
compressed by a funnel (2D magneto-optical trap (MOT) + push beam).
This creates an atomic beam which is transferred through a differential
pumping stage towards the experimental chamber. There the atoms are
trapped in a 3D-MOT and subsequently transferred into a magnetic trap. A
compression in phase space density and cooling close to Tc is achieved in
a TOP-trap (time orbiting potential) by evaporative cooling. The sample in
the |F = 1,mF = −1〉 state is subsequently transferred to a crossed dipole
trap (”waveguide” at 1030 nm), which is far detuned to atomic transitions.
Opening of the trap leads to further loss of fast atoms and thus evapora-
tive cooling to achieve condensation. After condensation and loosing all
spare atoms, an optical lattice at 820 nm is ramped up to realize a chain
of tight confined BEC’s. The condensate is subsequently transferred to the
|F = 1,mF = 1〉 state by an adiabatic passage [79].

Due to large detuning of the dipole traps to the atomic transitions at
780 nm and 795 nm [73], the trapping potential is equivalent for the dif-
ferent components. The waveguide is slightly focussed yielding in a tight
trap in transversal direction with 130Hz trapping frequency, but as low as
2.7Hz in longitudinal direction. In order to achieve a tight trap in longitudi-
nal direction, a pair of beams forming an optical lattice are superimposed
to the waveguide [72, 38] yielding in trapping frequencies of the order of
650Hz.

Using an optical lattice for longitudinal confinement rather than a single
focussed beam, has the big advantage of creating many almost equal
traps (up to 35 in our system), with a well spacing of at least 5.5µm [38].
The trap depth is large enough to suppress tunneling between adjacent
wells within experimentally investigated time scales. Therefore, the con-
densates of different wells are uncoupled and the same experiment is re-
peated many times at the same experimental run, enhancing the statistics
enormously.
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This method introduces some new drawbacks. In order to obtain struc-
turally the same dynamics in all wells, the according parameters have to
be the same. Thus, spacial homogeneity of the coupling and the magnetic
fields is required. An atom number inhomogeneity is observed due to
slight focussing of the wave guide, but can be excluded by post selection.
A discussion of inhomogeneities is given in [38], whereas an improvement
of the homogeneity of the coupling has been achieved since that.

3.2. Tuning the nonlinearity

According to Eq. 2.20 the nonlinearity χ depends on the difference of intra-
species scattering lengths 11, 22 to the inter-species scattering length
12. Since these are approximately equal for the investigated hyperfine
states of 87Rb [80], the nonlinearity almost vanishes at zero magnetic
field.

However, the inter species scattering length between the two hyperfine
states | F,mF〉 = | 1,+1〉 and | F,mF〉 = | 2,−1〉 can be tuned by using a
Feshbach-resonance around B0 = 9.1G (first reported in [80]). A general
introduction into Feshbach-resonances can be found in [40, 81], the lat-
est data were taken from [82, 37]. Therefore, by tuning the inter species
scattering length while retaining the intra particle scattering lengths, the
nonlinearity can be tuned over a large range.

3.2.1. Feshbach resonance

The basic idea of Feshbach resonance is the tuning of a molecular bound
state (e.g. via a magnetic field) to be close to resonance to an open chan-
nel in the scattering process of two atoms |1〉 and |2〉. The inter species
scattering length 12 is modified by a magnetic field according to [83, 81,
37]:

12(B) = 012

�

1 −
ΔB

B − B0 − γB2

�

. (3.1)

For the examined resonance between |F,mF〉 = |1,+1〉 = |1〉 and |F,mF〉 =
|2,−1〉 = | 2〉 the parameters were measured to B0 = 9.1047G as the
position and ΔB = 2.0mG as the width of the Feshbach-resonance in-
cluding a loss from the excited state with loss rate γB = 4.7mG and
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a background scattering length of 0
12
= 97.70 [82], with the Bohr ra-

dius 0 = 5.292 × 10−11m. The maximal achievable change in scattering
length is limited by the loss. The nonlinearity χ calculates in the single
mode approximation (Eq. 2.20):

χ =
1

2
(g11 + g22 − 2g12)

∫

dr|0|4 (3.2)

with gj = 4πℏ2j/m. Thus, while the intra species background scattering
lengths 11 = 100.40 and 22 = 95.470 [84, 37] are not affected by the
Feshbach-resonance, the nonlinearity χ can be varied in amplitude and
sign by tuning the inter species scattering length.

Close to the Feshbach resonance, two body and three body loss is en-
hanced [80, 85]. This limits on the one hand the time accessible for ex-
periments, on the other it results in a change of system parameters and in
decoherence. Thus a compromise between a strong nonlinearity and en-
hanced loss has to be found. In all experiments a value of B = 9.12G was
chosen, yielding in a nonlinearity of Nχ = 2π · (31.9 ± 2.3)Hz for N = 700
atoms and the current trap frequencies.

3.2.2. Temporal magnetic field stability

Fluctuations of the magnetic field alter the detuning due to higher order
Zeeman shifts. In order to limit these fluctuations well below the artifi-
cial detuning, a strong restriction on typical field fluctuations is required.
Therefore, the magnetic field is actively stabilized [37, 38], which ensures
a shot to shot stability of 50µG, equivalent to a detuning of δ = 0.5Hz.
Another limit arises due to the narrow width of the Feshbach-resonance
of ΔB = 2.0mG. To ensure an almost equal nonlinearity for all experi-
ments, the fluctuation of the magnetic field has to be much smaller than
this typical order. However, the limit due to detuning is the more stringent
condition, and thus the width of the Feshbach resonance is irrelevant for
further considerations.

As the 50Hz signal of the line influence the magnetic field compensation,
the high stability could only be achieved by locking the sequence to the
phase of the 50Hz signal. The remaining 50Hz component on our field
can be cancelled using a feed-forward technique to ensure also temporal
homogeneity.

In order to calibrate the feed-forward, the influence of the line on detuning
has to be determined. This is realized by measuring the outcome of short
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time Ramsey sequences [86, 87] at different phases (thus times) of the
line. A small shift in the magnetic field shifts also the resonance frequency
of the Ramsey. Therefore, amplitude and phase of the additional signal
can be adjusted in such a way, that the influence of the line vanishes in the
Ramseys during the full 50Hz cycle (see Fig. 3.1). Hence the influence of
the line can be reduced to the order of our shot-to-shot stability of 50µG.
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Figure 3.1.: Left: Detuning measured by a Ramsey depending on the start
delay to the 50Hz trigger, thus the phase of the line. The de-
tuning alternates with 50Hz.
Center: Applying the compensation signal. The amplitude
(center) and phase (right) of the fitted sine (from the left
graph) are plotted for different phases of the compensation
signal. Clearly a drop of the amplitude for a compensation
phase around 100° is observed.

Due to long time drifts of the magnetic field stabilization the offset field is
calibrated regularly by a Ramsey measurement (typically twice per hour).

3.2.3. Atom loss

The loss of atoms during the experiment has strong implications, since
the defining parameters of the experiment Nχ and δ depend directly on
the atom number. Therefore, a brief summary of atom loss in our experi-
mental system will be given.

As the lifetime due to background losses and scattering of trap light is in
the order of 20 s, it can be neglected for our experimental time scales of
a few ms. Furthermore, two different contributions to the loss are of im-
portance. Spin relaxation loss occurs if two atoms collide and one excited
atom relaxes to the ground state. The energy released by this process
is transferred to kinetic energy and suffice to loose both atoms from the
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trap. It is only important for the |F = 2〉 manifold and proportional to n2

[81].

Close to a Feshbach resonance, atom loss is strongly enhanced [80, 88,
81], due to 3-body recombination and enhanced two body loss. The basic
process of the Feshbach resonance is that the incoming states of the scat-
tering of two atoms are energetically close to a bound molecular state.
For 3-body recombination, a third atom contributes to the scattering pro-
cess, thus a real molecule can be formed and the redundant energy is
covered by the third atom. Thus all three atoms are lost in this 3-body
recombination, with a rate proportional to n3 [81].

Both loss processes depend on density, thus on total atom number. Fur-
thermore loss depends also on densities of each hyperfine species, thus
on imbalance z. On the one hand, two body loss is restricted to the |2〉
state, thus the loss is enhanced for states being close to z = 1 in contrast
to states close where all atoms are in the absolute ground state of the
system at z = −1. On the other hand, the probability for the scattering of
an atom in state |1〉 with an atom in state |2〉 depends on both atom num-
bers. Thus, considering a fixed total atom number N, this loss process is
maximized for equal atom numbers in both spin states N1 = N2, achieved
for z = 0.

Loss has some serious implications onto the system, since it changes the
system parameters with time and can cause decoherence [38]. On the
one hand, the nonlinearity Nχ depends directly on atom number, but also
χ has an implicity N dependency via the density. Thus Λ will decrease with
time for a fixed coupling strength. On the other hand, the detuning δ of
the system is changed due to the modification of the mean field shift (see
Sec. 3.3 for details). The implication of atom loss on detuning is the most
important one, since it alters the phase space drastically.

However, this effect can be compensated by changing the detuning of
the coupling with time (Sec. 3.4.2). For that purpose, the atom loss as
well as mean field shift (Sec. 3.3) have to be quantified. To determine
the loss rate, we measured the residual atom number after some time
t for different initial atom numbers and imbalances for our experimental
time scales. We see no deviation from exponential decay for these short
times, thus we cannot distinguish between the different loss processes.
Therefore, the data set for a certain initial atom number and imbalance
is fitted with an exponential N(t) = N0 exp(−γt), leading to an imbalance
and atom number depending loss rate γ(z,N).

Since the parameters of the system depend on atom number, the loss
rate has to be included into the post-selection of atoms in order to select
these atoms which have undergone the same time evolution (Sec. 3.6.2).
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Therefore, it is advantageous to deploy an simple formula for the depen-
dency of atom loss on imbalance and atom number, which is treated with
an heuristic model:

γ(z,N0) = (z2 + bz + c)
p

N0 + d . (3.3)

This model is in good agreement to the data for a range of N0 = 350 . . .700
and |z| < 0.9 with the parameters:

 = (−0.395 ± 0.008) 1
s

b = (0.147 ± 0.004) 1
s

c = (0.547 ± 0.022) 1
s

d = (−2.54 ± 0.50) 1
s
.

For an initial atom number of N = 700 and zero imbalance, a decay time
of τ = 84ms is obtained.

3.3. Mean field shift

When discussing the dynamics of a BEC within the Gross-Pitaevskii equa-
tion [39] the main difference to the Schrödinger equation is a nonlinear
term ∝ g|0|2 describing the influence of all other particles as a mean
field. Since the Rb-BEC is repulsive and thus the scattering lengths are
positive, the zero point energy is shifted upwards for each hyperfine spe-
cies when adding more particles. In the single mode approximation both
spin states share the same spacial mode 0 and are separated by 6.8GHz
in energy. Therefore, if both scattering lengths were equal the mean field
shift would lead to a joint shift of energies but transition frequencies would
be unchanged. Due to a small difference in the intra species scattering
lengths of the |F = 1〉 and |F = 2〉 hyperfine states [89] with 11 ¦ 22, the
ground state energy of the |F = 1〉 state is shifted slightly more than the
one of the other spin species. Thus the resonant transition frequency is
lowered when adding more particles, leading to a negative offset detun-
ing.

The same is obtained when revisiting the formula for the overall detuning
δ [90]:

δ ∼ Δ + (g22 − g11)n . (3.4)

It has to be noted, that the last term depends on density of atoms, thus
total atom number and trap geometry (the labelling is interchanged ac-
cording to the notation of [90]). If the total atom number is considered to
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be constant, the term Δν = (g22 − g11)n can be easily compensated by an
external detuning Δ and is thus omitted.

Since we are working close to a Feshbach resonance to enhance the non-
linearity, implying enhanced atom loss, the atom number cannot be trea-
ted as constant anymore. By loosing atoms the mean field shift implies
a change in overall detuning δ, thus the system is tilted during time evo-
lution. As shown later, the tilt is too large to be neglected. Therefore
in this section a method to measure and quantify the mean field shift is
presented.

In a fixed geometry, the density n depends in a nonlinear way on the
atom number N. Since the atoms interact with each other, by putting in
more atoms into a trap, the wavefunction expands. Hence the density
grows slower than with N. In the Thomas-Fermi approximation the density
depends on atom number as [40]:

n ∼ N
2
5 (3.5)

Given that the intra species scattering length is slightly larger in state |1〉
(3.2.1) and the density is positive and real, the detuning due to mean field
shift becomes negative. For sake of simplicity the model will be slightly
changed to:

Δν = −b
p

N (3.6)

with a positive real number b. In the interesting range of 300 to 700
atoms, the square root model differs in the order of O(1 · 10−3) from the
Thomas-Fermi approximation, which is more than sufficient for the cur-
rent considerations. A numerical solution of the GPE (provided by Eicke
Nicklas) supports this approximation.

In order to exclude effects of the mean field shift, we compensate the
detuning by changing the coupling frequency accordingly (Sec. 3.4.2). A
different approach to compensate the mean field shift is theoretically in-
vestigated in [91].

3.3.1. Determination of the mean field shift

As a Ramsey interferometer [86, 87] is perfectly suited to measure such
small frequency differences (a few Hz on top of 6.3MHz), it is used to
quantify the mean field shift. For the experimental determination of the
mean field shift, a magnetic field of B = 9.2G (further away from the Fesh-
bach resonance) was chosen to minimise loss and phase diffusion due to
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nonlinearity [37]. Since the mean field shift depends only on the density n
and on the intra species scattering lengths 11 and 22, the different mag-
netic field should not disturb the measurement of the mean field shift.

The atoms were initially prepared in the |F,mF〉 = |1,+1〉 state and are
transferred by a π/2 pulse (equivalent to a beamsplitter) into an equal
superposition of the spin states |1,+1〉 and |2,−1〉. After an evolution
time of t0 = 30ms an additional π/2 pulse translates the phase evolution
in atom number difference which is measured subsequently by absorption
imaging (see Sec. 3.6 for details). The phase of the second π/2 pulse is
chosen to have a π/2 phase shift according to the resonant atom number
N0 due to a maximal sensitivity there. Thus the measurement for all atom
numbers is within the rotating frame of the resonant atom number N0.
Therefore even a small detuning accumulates phase during time evolution
and could be detected afterwards.

The detected signal after the Ramsey sequence can be written as:

zR =  · cos (2πν(N, δ)t) =  · cos (2πν0t0 + π/2 + 2πΔν(N)t0)
= − · sin (2πν0t0 + 2πΔν(N)t0)

for the fixed time t0. Due to technical imperfections the visibility of the
Ramsey fringe is reduced which is covered by the additional pre factor .
Close to the Feshbach resonance, the visibility would have been further
reduced due to phase diffusion [37]. The frequency depends on the atom
number and the detuning δ.
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Figure 3.2.: Ramsey signal vs atom number. Left: One scan which is res-
onant around N0 = 650 atoms, a fit to the data is depicted as
a black line. Right: Rescaling all scans (depicted in different
colours) according to their offset detuning, all measurements
falls onto the same universal curve.

33



The Ramsey is resonant to the atom number N0, thus zR(N0, t0) = 0. In
conclusion, the resonant frequency calculates to ν0 = b

p

N0. Hence the
Ramsey signal can be rewritten as:

zR =  sin
�

2πbt0
�p

N −
p

N0
��

. (3.7)

By obtaining about 30 independent wells covering different atom numbers
within each shot, the Ramsey signal vs. atom number can be measured in
a few shots, as done in Fig. 3.2 (left graph). We observe a strong shift of
the frequency of the sine with atom number. Furthermore the used model
agrees well with the data.

Long term drifts of the magnetic field results in different resonant atom
number from scan to scan. To test the model, all bare data from different
scans are rescaled in a way, that they are resonant to the same atom
number. If the model is correct, then all scaled data points will fall onto
the same curve as shown in the right panel of Fig. 3.2. This is a clear
indication of an almost correct scaling behaviour. Thus, the parameter b
averages over many scans to:

b = (0.82 ± 0.02)Hz/
p

N. (3.8)

Linearizing the mean field shift around a certain atom number, e.g. 500
atoms, one obtains a gradient of 55 atoms/Hz.

δ
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ν

δ
0

t

ν

Figure 3.3.: Detuning due to mean field shift.
Left: Detuning vs. atom number. The resonant frequency is
depicted in black, the detuning due to mean field shift in blue,
which is shifted by an additional detuning δ0 (red).
Right: Detuning vs. time, assuming a constant offset detuning
δ0. Due to an exponentially decay of the atom number, the
detuning is increased. In the large atom limit, the detuning
deviates just slightly from a linear increase.
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All driven experiments were done with an initial atom number of N = 700.
However due to atom loss close to the feshbach resonance, more than
350 atoms were lost during the experimental sequence of maximal 60ms,
leading to a detuning of about 7Hz. Comparing this to the chosen detun-
ing of about 1.5Hz (for the Λ = 1.5 system) it turns out that the system is
massively changed by atom loss. Thus an compensation for the detuning
due to mean field shift was implemented (see App. 3.4.2).

The decay of atom number behaves exponentially, thus also the detuning
rises exponentially, although with twice of the decay time (see Fig. 3.3).
To compensate for the mean field shift, the additional detuning has to be
exponentially decreasing .

0 20 40 60
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

t [ms]

〈 z
 〉

δ = 14 Hz

0 20 40 60
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

t [ms]

〈 z
 〉

δ = −14 Hz

Figure 3.4.: Illustration of the influence of detuning compensation. Left:
The detuning compensation is applied with proper amplitude
and sign. All points scatter around the sine oscillation almost
equally. Right: The compensation is applied with wrong sign,
mimicing a twice as large atom loss. An overall shift is visi-
ble additional to the oscillation. The effect would be half as
strong as on the right side for a measurement without loss
compensation.

The technical implementation of the detuning compensation is described
in Sec. 3.4.2, an example of the resulting dynamics is given in Fig. 3.4.
The effect of loss driven detuning can be directly observed by measuring
the time dynamics of an initial preparation close to the stable fixed point
(for Λ > 1). In absence of loss, small oscillations around the fixed point
are expected. With loss and thus a time dependent detuning, the position
of the fixed point will be altered during time evolution. Therefore the time
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evolution resembles a sine with de- or increasing offset accompanied by
a change in oscillation frequency. The effect will be much stronger for
"weak" traps than for "deep" ones.

The measurement of the mean field shift indicates a dependency of the
detuning on the preparation sequence. In order to ensure the same con-
ditions for all experiments, the same preparation sequence1 was used.

3.4. Linear coupling of two spin states

The relevant level scheme for the discussion of linear coupling of the two
hyperfine states is given in Fig. 3.5. The two hyperfine states are sepa-
rated by 6.834GHz (·2πℏ) in energy, the linear Zeeman shift leads to sep-
aration of adjacent magnetic sublevels of 6.38MHz [73] for a magnetic
field of 9.12G.

F=2

F=1

10-1 2mF -2

δ = -200 kHz

νMW = 6.834 GHz

νRF = 6 MHz

Figure 3.5.: Level scheme of the relevant hyperfine states. The utilized
states |1〉 and |2〉 are accentuated in black. The relevant tran-
sition frequencies [73] are sketched not to scale. Furthermore
the levels are shifted due to light field shift of the off-resonant
couplings, which is omitted in the plot as it is much smaller.

The direct transition between |1〉 and |2〉 is forbidden in the dipole ap-
proximation due to a difference of ΔmF = 2. Therefore, the linear coupling
is realized by a two photon transition via an intermediate level −200kHz
detuned to the |F = 2,mF = 0〉 state. Thus, the coupling pulse consists of a
microwave at νMW = 6.834GHz and a RF pulse at νRF ≈ 6MHz (the exact

1with a fixed value of PWGBEC
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value has to be determined according to light field shift). The large detun-
ing of the intermediate state to the |F = 2,mF = 0〉 besides the relative low
field strength is sufficient to avoid populating the |F = 2,mF = 0〉 state.
The single photon Rabi frequencies are typically in the order of 10 kHz for
both the RF and the MW coupling, yielding in a two photon Rabi frequency
of several hundreds of Hertz.

The detuned single photon coupling of both RF as well as MW result an
AC-Stark shift [74]. Thus, the energy levels are slightly shifted, yielding
in an additional detuning depending on the power of RF and MW fields.
The light field shift is in the order of a hundred Hertz for the combined
RF and MW pulses at full power. Since several pulses are involved in the
experimental sequence, which require different power, the frequency of
each pulse has to be adjusted accordingly.

Compared to the nonlinearity of about 30Hz, the maximal linear coupling
suffices to realize almost clean π/2-pulses (or less) for preparation. The
influence of the nonlinearity in this regime is negligible. A residual small
phase offset can be compensated by the phase of the next pulse.

An important difference of one- to two photon transitions is the depen-
dency of the coupling strength on amplitude of the coupling field. For
(real) two photon processes the coupling scales quadratic with amplitude
rather than linear for a single photon transition [92]. However, since the
intermediate level is close to an atomic state, the system is quite similar
to a detuned Λ-system [92], often discussed in conjunction with STIRAP
[93]. Applying their findings to the considered case of a large detuning of
the intermediate state compared to the single photon Rabi frequencies, a
linear dependency of the two photon Rabi frequency on the amplitude of
the coupling fields is expected, which is good agreement with experimen-
tal findings. The dependency of the overall Rabi frequency on amplitude
is important, since the driving of the system is accomplished by driving
the amplitude of the coupling.

3.4.1. Tuning the relative nonlinearity Λ

As derived in Sec. 2.1, the interaction of particles can be described by the
dimensionless relative nonlinearity Λ. Since it is defined as the ratio of the
nonlinearity Nχ to the coupling Ω, it can be tuned either by changing the
magnetic field or trapping frequencies, or the amplitude of the coupling.

All experiments within this work were done at the same magnetic field and
thus a fixed nonlinearity χ. We choose to change the coupling instead for
the following reasons. On one hand, the coupling is experimentally much
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better and faster to control than the magnetic field. This is of importance
for the experimental sequence, where different regimes of the relative
nonlinearity are required (Λ� 1 for preparation and Λ > 1 for the experi-
ments). On the other, atom loss depends on the magnetic field, but should
be the same for all experiments. Therefore, the coupling is changed for
reaching different regimes of the relative nonlinearity.

3.4.2. Modulating the coupling

The coupling is restricted to provide the driving on one hand (Sec. 2.5.1)
and to be resonant at all times on the other, thus the frequency has to be
adapted during time (Sec. 3.3). Since a two photon transition is used and
the coupling depends linearly on both amplitudes (Sec. 3.4), either the MW
or the RF could be used for realizing the driving. In the microwave regime,
this is a hard task, but it can be easily done on the radio frequency by using
an arbitrary waveform generator. An Agilent 33522 A waveform generator
is perfectly suited for this task when using the high precision clock (OCXO,
oven controlled crystal oscillator). The high precision oscillator is required
in order to minimize jitter in the sampling rate.

For the driving, we alter the coupling strength periodically, which is pro-
portional to the amplitude of the RF signal. Thus by amplitude modulation
of the RF, arbitrary driving sequences can be implemented. We also mod-
ulate the frequency of the RF to compensate for the detuning due to mean
field shift. This corresponds to a frequency modulation with an exponential
slow down. As this is no standard task being covered by built in functions,
the AWG is used in the arbitrary waveform modus and the waveform is
calculated by a computer and sent to the AWG afterwards. Even with the
largest sampling rate of 250 mega samples per second, the maximal de-
sired sequence length of 60ms fits into the memory of the AWG, when
using the extended memory of 16 mega-samples.

Frequency modulation

The calculation of the frequency modulation will be outlined in the follow-
ing. As a basic idea, the current frequency is the derivative of the phase
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in respect to time [94]:

ω(t) =
dφ

dt

φ(t) =

∫ t

0

ω(t̃) dt̃ + φ0

Since the detuning scales with the square root of the atom number which
decays exponentially, the detuning also decays exponentially but with
twice of the decay time:

δ = −Δν = b
p

N = b

√

√

√

N0 exp

�

−
t

τ

�

= Δν0 exp

�

−
t

2τ

�

with Δν0 = b
p

N0. Hence the frequency has to fulfil:

ω(t) = 2π

�

ν0 + Δν0 exp

�

−
t

2τ

��

Integrating this equation leads to the time evolution of the current phase:

φ(t) = 2π

�

ν0t − Δν0 2τ exp
�

−
t

2τ

�

+ Δν0 2τ

�

where the last term is required to obtain the phase φ(t = 0) = 0. This is
the argument of the sine, whereas the amplitude modulation is achieved
by a subsequent multiplication of the signal with [1+ADriv sin (ωDrivt)]. For
the sake of convenience all offset phases are omitted in the equations.

The value of Δν0 can be calculated by evaluating equation 3.6 for exam-
ined atom number N0 = 700 to Δν0 = 21.6Hz (this detuning is on top of
the 6.3MHz signal). Although the decay time depends on the imbalance,
and thus on the particular time evolution, a fixed decay time was chosen.
The value for zero imbalance, and hence of τ = 86ms was used for all ex-
periments. As the detuning decays with twice of that, it is specified in the
experimental data (in the appendix) as 2 ·86ms as the loss compensation
decay time.
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3.5. Experimental sequence

In the following section, the experimental sequence will be summarized
briefly. Subsequently to condensation and ramping of the trapping po-
tentials to their desired values, a magnetic offset field is ramped up to
the specific value to activate the nonlinearity. A high power pulse around
J transfers the atoms from the |1〉 state to the desired start value of z.
Due to the large Rabi frequency of this pulse (≈ 310Hz), the nonlinear-
ity almost vanishes but yields in a small error in phase. Subsequently,
the coupling power is reduced (and therefore the frequency has to be ad-
justed) and the phase of the coupling pulse is adjusted according to the
desired φ preparation.

The phase shift of the coupling can be intuitively grasped by revisiting the
dynamics in the frame of the coupling. Thus the coupling always leads to a
rotation around −J. For sake of simplicity we assume a desired start value
of z = 0. The first pulse transfers the atoms from (0,0,−1) to (0,−1,0).
A subsequent time dynamics (without pulse and nonlinearity) leads to a
rotation of the atoms along the equator, with the frequency of the cou-
pling pulse. When the atoms have acquired a phase of φ, the attenuated
coupling pulse is switched on again and time dynamics according to the
desired Hamiltonian will start.

The frequency of the coupling is adjusted according to loss during time
evolution, the driving is implemented by amplitude modulation as de-
scribed in the previous section. The complete pulse is calculated by a
computer in advance and replayed by the AWG.

The measurement is achieved by absorption imaging of the atoms. Thus,
the only outcome is the number of atoms in state |1〉 and |2〉, and there-
fore each measurement of the system projects the wavefunction onto the
z-axis. In order to obtain phase information, e.g. to get full information
about the position in phase space, an additional tomography pulse has to
be applied. Since almost all investigated dynamics is at the π side of the
sphere, a π/2 pulse around −J was chosen for tomography. The imbal-
ance obtained after this pulse is equivalent to −y data.
The phase of the tomography pulse has to be selected with care. The dy-
namics is always within the rotating frame of the resonant coupling. Due
to atom loss, the frequency slightly changes, thus also the rotating frame
is changed. Therefore, the phase of the tomography pulse has to include
a phase offset according to atom loss.
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3.6. Detection and data processing

The atom numbers for spin up and spin down are detected by high-intensity
absorption imaging [78, 95], which projects the wave packet onto the z-
axis.

3.6.1. Imaging

The imaging involves the simultaneous detection of the two spin states
[38, 96], which requires several steps to obtain a good signal. Although it
can be done at high magnetic fields, it is found more reliable at low fields
due to the negligible Zeeman shift between the levels. Since atom loss is
enhanced in the F = 2 manifold and the magnetic field ramp needs some
time, the |F = 2,mF = −1〉 atoms are transferred by a microwave pulse to
the |F = 1,mF = −1〉 state. Subsequently, the magnetic field is ramped
down.

The imaging laser is on resonance to the 87Rb D2 line at 780 nm [73] of the
transition from the |F = 2〉 to the |F = 3〉 manifold. Therefore, the atoms
have to be transferred by a repumper to |F = 2〉 state before imaging. In or-
der to distinguish different magnetic sublevels, a Stern-Gerlach field (with
a magnetic field gradient) is applied and when the atoms are released
from the trap. The subsequent time-of-flight of 1.3ms leads to spacial
separation of magnetic sublevels on one hand and a lowering of densities
on the other. The resonant imaging laser is shined onto the atoms, and
imaged onto a CCD.

The signal is imaged by a high numerical aperture objective onto a CCD.
The resolution of the optical system of 1.1µm [97] is well below the sepa-
ration of adjacent wells. Design thoughts of the imaging optics are given
in [97]. Details of our imaging besides a careful calibration and analysis
of noise sources are published in [96].

3.6.2. Data processing

The imaging analysis yields in atom numbers for |F = 1〉 and |F = 2〉. Hence
the total atom number N = N1 + N2 and the imbalance z = N2−N1

N2+N1
can be

determined directly. Before investigating the measurement data, some
post selection and filtering has to be applied to the data.
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Post selection

Since both system parameters Λ and ε depend on atom number, different
experiments are comparable if and only if the atom number matches. In
the experiment, fluctuations of atom numbers both from well to well and
from shot to shot are always present. Therefore, a post selection of atom
numbers is mandatory.

Due to loss, atom number decreases with time. However, in order to
compare experiments for different times, the system parameters should
match. Therefore, the atom number for a certain time step has to be se-
lected according to the loss, thus N(t) = N0 exp(−t/τ) for a given time
t. Adjacent atom numbers give almost same dynamics, thus a range of
atom numbers (typically ±25) is selected to enhance statistics. The range
of atom numbers at a certain time is calculated according to the loss for
both boundaries. Throughout this work, if a reference to a certain atom
number is given, the value N0 without loss is meant.

The situation becomes more complicated due to atom number and im-
balance dependency of the loss rate 1/τ(N0, z). The atom number de-
pendency can be easily resolved since the fit of the loss rate (Sec. 3.2.3)
involves the same initial atom number N0 as the experiment.
For handling the imbalance dependency, a running average filter over the
time evolution of the mean z is used to determine the loss rate up to a
certain time. The atom number of the subsequent time step is filtered
according to this loss rate.

Detecting outliers

Due to the complex preparation procedure, a small error in one technical
component can lead to "false" results. Most likely, this will result in mea-
suring no atoms which can easily be removed in data analysis. However,
some imperfections can lead to "false" results in a single shot or a whole
scan which is not detected by bare eye or imaging statistics. Therefore, it
is required to remove such outliers on a statistical basis without altering
the statistics of the "real" results.

All experiments are repeated several times per parameter set (typically
6 to 8 times) for a certain experimental time. A huge advantage arises
from the fact the same experiment is done in parallel in different wells
within the same shot. In each shot 6 to 10 of the lattice sites contain atom
numbers in the post-selected range. Hence, a modification of a Z-Score
test [98] can be used to evaluate if a certain shot  is an outlier according
to all other measurements or not.
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For a certain parameter set and time, the mean and standard variation are
calculated for all measurements, however shot  is excluded. Assuming
normal distribution of the N measurements (including n values of shot ),
approximately M = 0.045·N values should be out of a 2σ neighbourhood to
the mean. This is a quite good approximation for a state close to gaussian
state, e.g. at small times or within a stable island. It is clearly violated for
a state after some time evolution in the chaotic sea, however the chosen
method yields not in an increase of outliers in these cases.
The shot  consists of n measurements, whereat k values are out of the
2σ neighbourhood. In a standard Z-score test, all points exceeding a fixed
threshold are rejected. Thus, a large threshold has to be chosen to avoid
altering the statistics due to removing rare events which belong to the
ensemble.

In contrast, the information of obtaining k outliers out of n can be used
to set up a more advanced threshold. If shot  is an outlier due to techni-
cal reasons, it is more likely to get many values which are out of the 2σ
neighbourhood within this shot. The joint probability of obtaining k outliers
out of M, by choosing n values out of N, is given by the hypergeometric
distribution2 [99]:

P(k) =

�M
k

��N−M
n−k

�

�N
n

�
. (3.9)

This probability is above 60% 3 if shot  belongs to the normal distribution
of this measurement. Contrary, the shot  is treated as an outlier with all
of its values if this probability is less than one percent. Although this is
a quite conservative limit, it suffices to exclude outliers due to technical
reasons but does not effect broad distributions, e.g. in the chaotic sea. A
large majority of the such detected outliers correlates with a jump in the
offset values of the magnetic field, which could have been excluded by
different methods.

Tomography data

The determination of φ from tomography data is done in the following way.
After the time evolution (driven or undriven), a π/2 tomography pulse is
applied, corresponding to a rotation around −J. Therefore, the measured
imbalance z̃ corresponds to −y of the original distribution. In conjunction

2The calculation fails if k exceeds M, thus k is set to k = M for these cases.
3This limit applies for our typical number of measurements but is not valid in general.
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with the imbalance data z, the phase is determined by:

φ = − rcsin
�

z̃
p

1 − z2

�

. (3.10)

The variance σφ is calculated according to Eq. A.49. It should be noted,
that the variances plotted in the flat phase spaces are not normalized
according to Eq. A.47. The normalization is done to obtain variances being
independent on mean z and φ values, thus they represent the variance on
the surface of the sphere. In contrast, the flat phase space plot is an
projection of the data, therefore the variances have to depend on mean
values and must not be normalized.

3.7. Determining system parameters

Nonlinearity

The relative nonlinearity Λ can be obtained by small amplitude oscillations
close to stable plasma and π fixed points. We achieve this with strong
coupling pulses in order to enter the small relative nonlinearity regime.
In the linear approximation, the (unscaled) frequencies calculate to ωP =
2πΩ

p
1 + Λ for the plasma fixed point and ωπ = 2πΩ

p
1 − Λ for the π one

(see Sec. A.1.3). Thus the relative nonlinearity can be determined by:

Λ =
ω2
P
− ω2

π

ω2
P
+ ω2

π

(3.11)

even if the coupling strength is unknown. An independent check of the
coupling can be achieved by comparing the experimentally chosen value

to the measured one of Ω =
Ç

1
2(ω

2
P
+ ω2

π
). The experimental determina-

tion gives a value of Nχ = (31.9 ± 2.3)Hz for N = 700 atoms.

This method has some drawbacks since it measures the nonlinearity at a
shorter time scale compared to the driven experiments due to the large
coupling strength (see also Sec. 2.4). Thus, the altering of Nχ due to atom
loss is less important. As an independent check one can measure the
position of fixed points and frequencies of small amplitude oscillations in
the bifurcated regime for a small coupling and compare this to numerical
values. This can be done for same parameter and time scales as in the
driven system. Since position as well as frequency depends on amplitude
of the oscillation due to nonlinearity, it is typically required to obtain the
dynamics of several start points in order to get a reliable value of Λ.
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Detuning

The detuning ε can also be determined by position and frequency of fixed
points in the same manner as the nonlinearity. In fact, a more sensitive
and much faster method exists to symmetrize the system. When prepar-
ing a wave packet at the unstable π fixed point in the bifurcated regime,
after a short time the distribution is squeezed in one direction and thus
spreads in the other (Sec. 2.3.3). The spreading is symmetric if and only
if the system is symmetric. Thus, the symmetry of the system can be ver-
ified within a few shots by looking at the symmetry of the spreading in
short time dynamics.

Since the detuning depends quite sensitive on the magnetic field, long
time drifts of the magnetic field yields in different detunings for larger
time scales. Although the magnetic field is actively stabilized (Sec. 3.2.2),
long term drifts remain, e.g. due to temperature sensitivity of electronic
circuits and sensors. Therefore the magnetic field is calibrated regularly
to accomplish a zero offset detuning. This is realized by a two-photon
Ramsey sequence [86, 87], which detects the detuning exactly on the ex-
perimental transition. During the measurements, after every two experi-
mental runs, a few shots of a Ramsey sequence were performed to obtain
the offset detuning and calibrate the magnetic field.
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4. Poincaré-Birkhoff Scenario

When an integrable Hamiltonian system is perturbed slightly, the question
arises, in which way the solution of the driven Hamiltonian differs from the
undriven one. This is a quite natural question, e.g. the gravitational two
body system is exactly solvable, but the solar system with some more
planets is not. In fact, the stability of the solar system was of moving
spirit behind the exploration of nonlinear dynamics [4]. A first answer to
the problem was given by Poincaré in the 19th century, however the more
general solution was found more than half a century later by Kolmogorov,
Arnold and Moser [100, 101] with the KAM theorem. It basically states,
that the non-resonant orbits1 of an integrable system exposed to a small
periodic perturbation, will survive slightly deformed [4, 51]. In contrast,
the tori being resonant to the driving will be disturbed.

The KAM theorem states which tori will survive the perturbation and which
will not. But it does not predict the behaviour of non-surviving tori. This is
discussed by the Poincaré-Birkhoff theorem [102], which will be outlined
briefly according to [4].
In the vicinity of a resonant orbit, there will be non-resonant tori with
higher or lower energy. These tori will remain close to the undriven dy-
namics, thus the direction of rotation within the Poincaré map will be pre-
served. One of these will rotate clockwise, the other one counterclock-
wise. Thus, there has to be a line of points in between, which will be
mapped just in radial direction under the action of the driving. Applying
the mapping at these points, the image will be another line of points. Since
the map is area preserving, these two lines have to intersect in an even
number of points. The intersection points are the fixed points of the map,
half of them being stable (elliptic), the other half unstable (hyperbolic).
Generally, there must be 2nq fixed points (with n being a natural number
and the driving hits a r : q resonance).
The manifestation of the Poincaré-Birkhoff theorem in quantum mechan-
ics has been shown theoretically for different systems [103, 104] and is
briefly discussed for a system similar to our investigated one in [105].

1Non resonant in the sense, that the ratio of eigenfrequency to driving is not a ”sim-
ple” rational number with small denominator.
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4.1. A simple model system

For a first test of the Poincaré-Birkhoff scenario in a macroscopic quantum
system we choose the system parameters such, that the system exhibits
a quite simple phase space in the undriven case. In the non-bifurcated
regime, for parameters Λ = 0.7, ε = −0.114 the system offers two sta-
ble fixed points associated to plasma- and π-oscillations, and otherwise
regular motion (see Fig. 4.1). The small detuning ε was chosen to break
the symmetry of the system. It is remarkable that there is a slight an-
harmonicity in the system leading to smaller frequencies for trajectories
closer to the stable fixpoint (at φ = π) and faster time evolution for trajec-
tories further away (see Fig. B.1).
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Figure 4.1.: Left: Phase space plot of the undriven system for the cho-
sen parameter set (obtained by classical numerics). The start-
ing point used in the experiments is marked with a circle. All
phase spaces within this work will have φ as -axis and z as
y-axis, however the labels will be omitted due to lack of space.
Right: Time evolution of the z-projection of 3 adjacent start-
ing points. The blue curve belongs to trajectories resonantly
driven by the external driving later. Due to anharmonicity of
the system, trajectories located close to the stable fixpoint
evolve slower, whereas trajectories located farther outside
will evolve faster than the driven one.

In the undriven case, by increasing Λ into the bifurcated regime, interest-
ing phase space structures will arise on the π-side. We will concentrate on
this side and center the phase spaces around φ = π. Trajectories at the π-
side rotate counterclockwise around the π-fixed point. It should be noted
that the Poincaré-Birkhoff scenario can also be realised on the plasma-side
without fundamental changes.
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4.2. Driving

The question arises how the system behaves after applying a small pertur-
bation due to external harmonic driving. The classical driven hamiltonian
reads as:

H(z, φ) =
Λ

2
z2 −

�

1 + ADriv sin (ωDrivt + φDriv)
�p

1 − z2 cos (φ) + εz

(4.1)

where the driving occurs due to the ADriv sin(ωDrivt + φDriv)-term and can
be experimentally controlled by changing the coupling strength. Follow-
ing the KAM-theorem ”non-resonant” orbits (i.e. with irrational frequency
to driving ratio, or at least not too close to simple rational ratios) will sur-
vive slightly deformed, orbits with a rational frequency to driving ratio will
be destroyed. The driving frequency ωDriv is chosen to hit a 1 : 2 reso-
nance of the undriven system, so the double of the natural frequency of
the selected starting point in Fig. 4.1. According to the Poincaré-Birkhoff
theorem this orbit breaks up into 2n ·2, n ∈ N fixed points [102, 4, 51], i.e.
at least 4 fixed points. Half of these fixed points show stable (elliptic), the
other half unstable (hyperbolic) behaviour.

The system’s behaviour is best shown in a Poincaré map, where the time
evolution of a starting point is plotted for times being multiples of the driv-
ing period in a phase space (Fig. 4.2).
Such a Poincaré map for the undriven system at the same times would
result in two points for the resonant trajectory2. All trajectories towards
the fixed point will result in points rotating clockwise (because the time
evolution is slower than the resonant one due to anharmonicity), a trajec-
tory located more outside will rotate counterclockwise due to its higher
frequency.

With this in mind, one can easily understand the location of the stable
respectively unstable manifolds emerging from the unstable fixed point
when the phase space is just slightly deformed by driving (compare to
[51]). In the detail plot of Fig. 4.2 points on the manifold a) are outside
the resonant one, so they move counterclockwise, points on the manifold
c) are closer to the center so they move clockwise, implying axis 1) is
the direction of the unstable manifold. The same arguments hold for the
other axis, so b) is rotating clockwise towards the unstable fixed point, d)
is rotating counterclockwise, i.e. also towards the unstable fixed point.
Thus line 2) is depicting the stable axis to the manifold.

2For the blue line in Fig. 4.1, the driving period is the half of the period of the orbit,
resulting in two points for this trajectory
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Figure 4.2.: Poincaré map for the driven system with Λ = 0.7, ε =
−0.114, ADriv = 0.03, ωDriv = 1.477
left: Two new stable fixed points (in orange) are created by
driving, just as well as two unstable fixed points (on the cross-
ing of the blue manifolds). The arrows depict the rotation di-
rection of points within the Poincaré map.
right: Zoom into upper right unstable fixed point

The thereby - dynamically - generated phase space has some features
similar to the undriven bifurcated system3 for Λ > 1 [58], notably the
unstable fixed points with corresponding manifolds. In context of macro-
scopic quantum systems unstable fixed points are intensely discussed as
a source of entanglement [45], so controlling the properties of an unsta-
ble fixed point could be the key ingredient for generation of many particle
entanglement.

As a major difference to the undriven system these unstable fixed points
can be generated dynamically even in systems, which don’t exhibit a bi-
furcation at all4. The properties of the unstable fixed point can be modified
by controlling the driving - which could be experimental more accessible.
One should note that the unstable fixed point will not rest in place during
time evolution, as the Poincaré map does not show full trajectories. In fact
it will move close to the orbit of the same starting point in the correspond-
ing undriven system. Associated to this also the stable/unstable manifolds
will wind through the phase space.

3Only valid for ε = 0, a detuned system bifurcates according to Eq. A.30 at the differ-
ent value of Λ = (1 + ε2/3)3/2.

4This scenario only requires an anharmonic system which can be resonantly driven.
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4.3. Measurement

In the numerical analysis of a mixed phase space, several methods are
known for an investigation of the time dynamics in different regimes in
phase space. Among these are the direct plot of the Poincaré map, cal-
culation of the autocorrelation function or fourier analysis of trajectories,
the calculation of local Ljapunov exponents for closely adjacent starting
conditions or using of delay coordinates [4]. Experimentally the maximal
evolution time is limited by atom loss to a few driving periods (Sec. 3.2.3).
For these short time scales a plot of experimental data in a Poincaré map
is pointless. Furthermore experimental noise could lead to superpositions
in fourier spectra. So we will focus on different methods.

Considering the many particle system with a finite ℏ, the initial prepa-
ration in phase space is not a single point but rather a wave packet with
finite size approaching a gaussian distribution with a standard deviation of
σ = 1/

p
N for larger atom numbers [45]. Retranslating this to the classical

numerical simulations, one should rather start with a bunch of gaussian
distributed points than a single one. So for short times it’s natural to ex-
tend the concept of Ljapunov exponents, which describes how fast two
infinitesimal adjacent points are separated by looking at the time evo-
lution of the variance of the distribution. Constraining to short times is
necessary since the variance will be no good measure if the distribution
becomes far from gaussian.

4.4. Review of time evolution in the
undriven system

We shortly remind ourselves of the time evolution of such a wave packet
in the undriven system using the classical picture. Consider the system for
Λ = 0.7 and the preparation of a distribution at the initial points marked in
Fig. 4.1, all points of the distribution located at the blue line will oscillate
with the same frequency. The part of the distribution which is closer to
the center will oscillate slower, the fraction away from center will have a
faster time evolution. Additional to the joint rotation of all points around
the center, this will lead to a shearing and dispersion of the distribution as
shown in Fig. 4.3.

This behaviour is experimentally confirmed in Fig. 4.4. The mean oscillates
around the stable fixed point whereas the variance grows with time. Since
the long axis of the distorted distribution is rotated during one period of
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Figure 4.3.: Classical simulation of time evolution in the undriven system
for Λ = 0.7, ε = −0.114.
The distribution with a size corresponding to N = 700 atoms
was initialized at the position of the unstable fixed point in
Fig. 4.2 and is plotted for multiples of the driving period, even
though in this case the amplitude of the driving was zero. A
divergence of the distribution occurs even in undriven system
due to its anharmonicity. The plot of the distribution is done
accordingly to sec. A.1.2 as for all simulated distributions. A
click on the picture starts a video, a detailed plot can be found
in Fig. B.3.

the mean, the variance shows an extra oscillatory behaviour due to dif-
ferent projection to measurement axis. Although the measured variance
exceeds the calculated one owing to the influence of experimental noise
and imperfections, a qualitative similar behaviour is observed.
The experimental data were used to determine more accurate values for
Λ and ε by a fit with the classical and the quantum model. Furthermore,
these values are used for the simulation of the time evolution in the driven
systems.

In contrast, preparing the distribution at the stable fixed point will lead to
a slight wobbling of the distribution but it remains overall at the position
of the fixed point. This is consistent with what would be expected from
the corresponding quantum system. For the chosen large atom numbers,
the CSS is quite narrow, so the initial distribution samples only a small
part in the vicinity of the minima of the potential and thus experiences the
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Figure 4.4.: Experimental data and simulation for the starting point z =
0.41, φ = 3.21 in the undriven system with Λ = 0.7, ε =
−0.114, N = 700
left: For the experimental data, the mean as well as the stan-
dard deviation (as errorbars) in z were plotted in blue, the sim-
ulation for the fitted parameter is plotted with the standard
deviation as a gray band
right: Plot of the measured variance in z in contrast to the
simulations, which were done classically as well as quantum
mechanically. The different simulation methods lie on top of
each other.
During one oscillation period of the mean, the variance also
oscillates due to tilt of the long axis of the distribution accord-
ing to the measurement axis (compare to Fig. B.3), leading
to an extra oscillatory behaviour of the variance during one
period. An overall increase of the variance is observed.

anharmonicity of the potential (compare to Fig. B.1) just slightly. This leads
to a large overlap of the initial distribution with the ground state of the
potential of approximately 97%. Since only the higher excited states lead
to some additional time dynamics, wobbling will be strongly suppressed.

A much more interesting case is the preparation of a wave packet at an un-
stable fixed point, as can be done in the undriven case for Λ > 1 (Fig. 4.5).
In the classical picture the distribution will be squeezed along the axis of
the stable manifold and diverge along the unstable manifold axis for small
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times. For larger times, the distribution will resemble the vicinity of the
unstable manifold [38, 45]. The time evolution shown in Fig. 4.5 exhibits

t = 0 t = 2 t = 4

t = 6 t = 8 t = 10

Figure 4.5.: Classical simulation of time evolution for preparation at an un-
stable fixed point in the undriven system with Λ = 1.6, ε = 0.
It should be noted that due to the projective character of the
measurement process, even for short times beyond the turn-
ing points interferences between two parts of the wave packet
for same z values could occur. These cannot be resembled
by classical simulations which limits the usage of the classical
analog to short times. A click on the picture starts a video.

two distinct features. For short times, the distribution achieves its best
squeezing at t = 2.25 (see Fig. 2.3). On the other hand, the wave function
exhibits a highly non-gaussian state for t ¦ 4. These states are expected
to exhibit many particle entanglement, which can be important for the
enhancement of quantum interferometry [54, 59].

To conclude, the previous examples in the undriven systems reveal that
one can understand the short time behaviour of a distribution (or even a
wave packet when neglecting interference) from the underlying Poincaré
map, even though for quite different timescales. The other way around,
time evolution of mean and variances of a distribution can be directly con-
nected to the underlying phase space. So measuring variances experi-
mentally is a tool (additional to the time evolution of mean) to confirm the
phase space structure.
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4.5. Time evolution in the driven system

The aim of this chapter is to test experimentally for a phase space struc-
ture emerging due to driving according to Poincaré-Birkhoff theorem (see
Fig. 4.2). For that a preparation at different points in phase space has to
be implemented.

The plotted Poincaré map shows the phase space for multiple times of the
driving period. This map can also be plotted with an additional time offset
which is equivalent to a driving with a driving phase φDriv. For a time offset
from tOffset = 0 to tOffset = tper (equally to φDriv = 0 . . .2π) the phase space is
rotated by 180° around the centered stable fixed point (see Fig. B.2) such
that the upper left stable fixed point is transferred to the lower right one.
Throughout this chapter the term stable/unstable fixed point is used solely
for the moving fixed points created by driving.

For the experimental realization, it is quite favourable to prepare the sys-
tem at the same point initially and change the driving phase. Otherwise by
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Figure 4.6.: Classical simulation of time evolution at the stable fixed point.
The distribution was initialized at z0 = 0.37, φ0 = 3.50, ADriv =
0.03, ωDriv = 1.477 and driven with φDriv = π, so it is initially
close to the stable fixed point. During the first oscillation pe-
riods, the distribution slowly broadens but get refocussed for
very long times (visible in the video), revealing the expected
dynamics of a wave packet in a weak trap. A click on the pic-
ture starts a video, a detailed plot can be found in Fig. B.4.
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preparing at different points, these different trajectories will experiencing
different loss rates (see Sec. 3.2.3) leading to complications in the data
analysis. By changing the driving phase5 the system offers the possibility
to prepare always at the same point but to rotate the whole phase space
instead to reach different regimes. It is worth reminding that the position
of stable and unstable fixed points are not transferred exactly into each
other by changing the driving phase, therefore a small preparation error
will occur due to this method.

In the following, some numerical results in the driven system will be com-
pared to the dynamics in the undriven system, before the experimental
data will be discussed in Sec. 4.5.1.

By now the results of the time evolution at the stable fixed point in the
undriven system (see Sec. 4.4) can be translated to the moving stable
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Figure 4.7.: Classical simulation of the time evolution at the unstable fixed
point z0 = 0.37, φ0 = 3.50, ADriv = 0.03, ωDriv = 1.477.
Preparing the distribution at the unstable fixed point initially,
the long axis broadens much faster than for the stable fixed
point as well as in the undriven system (Fig 4.3). For longer
times the distribution winds along the unstable manifold and
diverges furthermore in contrast to the stable fixed point. A
click on the picture starts a video, a detailed plot can be found
in Fig. B.5

5The driving phase can be experimentally controlled much better than the initial
preparation.
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fixed point created by driving the system. When preparing a distribution
at the stable fixed point it will remain there, although the stable fixed
point itself is rotating in the phase space during time evolution. Due to
the 2 : 1 resonance the original position will be retained after two driv-
ing periods. A closer look at the classical picture shows that a point
slightly displaced from the moving stable fixed point will oscillate around
it (within the Poincaré map) with a much slower frequency than an oscil-
lation around the stable fixed point in the undriven system will require.
Accordingly in the quantum picture the dynamically generated local trap
will be very shallow, so preparing a wave packet at the minimum of the
potential will lead to some overlap with the ground state aside with some
excitations of higher states6. This leads to slow breathing of the wave
packet within the dynamically created trap as revealed in Fig. 4.6.

In contrast preparing the system at the unstable fixed point will also lead
to a rotation within the phase space for shorter times but an additional
squeezing of the distribution along the axis of the stable manifold and a
divergence along the unstable manifold will occur. For longer times the
distribution will wind along the unstable manifold thus the mean cannot
follow the time evolution of the unstable fixed point anymore as shown in
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Figure 4.8.: Simulation of squeezing for a preparation at the unstable fixed
point, where the distribution is faster and deeper squeezed
than for the stable fixed point (compare to Fig. B.7). Oscilla-
tions of the squeezing during one period are not related to pro-
jection of the variance to the measurement axis as in Fig. 4.4.

6The form of the potential is rather elliptic than circular, so no perfect overlap of an
initial coherent spin state with the ground state of the local potential is expected
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Fig. 4.7. Even for a few driving periods and very weak driving (A = 0.03),
the distribution diverges along the long axis faster than in the stable fixed
point or the undriven system. This should be experimentally observable
in an increased variance along the long axis.

The contraction along the axis of the stable manifold leads to a faster
squeezing of the distribution than in the undriven system or within the
stable fixed point (see Fig. 4.8, Fig. B.7). By comparing how fast the distri-
bution is squeezed, numerical simulations indicate that the characteristics
of the unstable fixed point can be directly modified by changing driving pa-
rameters. Thus the distribution is faster squeezed for higher driving am-
plitudes and short times, but the squeezing quickly vanishes after shorter
times due to winding along unstable manifold or inset of chaotic behaviour
(depending on driving amplitude).

4.5.1. Experimental results of stable fixed point
preparation

For an experimental check of the expected behaviour within the stable is-
land a weak driving with ADriv = 0.03 or strong driving with ADriv = 0.2 was
chosen. As the initial system parameters are known just to some uncer-
tainties the position of the stable fixed point could vary to certain degree.
To ensure preparation within the island it is favourable to choose a prepa-
ration close to φDriv = 3/2π and φ0 = π due to a ”larger size” of the island
in phase space.
However, the time evolution at an unstable fixed point is much more sensi-
tive to the initial preparation than for the stable fixed point. Therefore the
preparation for the stable fixed point was done at the same position as the
unstable fixed point but a different driving phase. The position of the un-
stable fixed point was estimated numerically for both driving amplitudes
and preparation was done there (z0 = 0.41, φ0 = 3.21 for ADriv = 0.03 and
z0 = 0.5, φ0 = 3.21 for ADriv = 0.2) .

The experimental results of the time evolution for a driving phase φDriv =
0.7 ·2π are shown in Fig. 4.9 for about 3 driving periods (raw data included
in appendix C.1). The maximal measuring time is limited by loss in the
vicinity of the Feshbach resonance. For better comparability the time evo-
lution in the driven system is contrasted to the undriven dynamics, also
the corresponding phase spaces for the fitted parameter are plotted. Due
to the mentioned uncertainties in system parameters the preparation was
rather outside the center of the island. This should induce some additional
time dynamics in long time regime.
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Figure 4.9.: Experimental data for a preparation in the vicinity of the sta-
ble fixed point for Λ = 0.7, ε = −0.114, φDriv = 0.7 ·2π, ωDriv =
1.477, N = 700
upper: Classical phase spaces for different driving amplitudes.
The initial experimental preparation is marked with a dot, the
rectangle at φ = 2π, z = 0 indicates the size of the effective
Planck’s cell.
lower: Experimental data (solid lines) and classical simula-
tions (dotted lines) for different driving amplitudes (red: no
driving, green: ADriv = 0.03, blue: ADriv = 0.2), vertical lines
indicate full driving periods. The time evolution of the mean is
plotted left, the corresponding variances right.

For the weakly driven system the mean 〈z〉 follows the undriven system
quite well7. The difference to the strong driven regime is quite obvious.
Besides a larger amplitude (which is partly induced by the different start-
ing point) a slight shift in frequency is observed which is fully recovered

7The jump in the mean between t = 0ms and t = 8ms in the guide to the eye occurs
due to omitting of two measurement points to save measuring time.
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by classical simulations. This can be understood when rethinking the orig-
inal system. The system parameter Λ is the ratio of the nonlinearity to the
coupling strength. So by changing the coupling by about 20% (as done for
a driving amplitude of ADriv = 0.2) the system temporarily has a different Λ
leading to faster/slower time dynamics (according to actual phase) within
short times compared to the undriven system.

The situation is much more interesting looking at the time dynamics of the
variances in z. The simulation for the undriven case (red) exhibits the os-
cillatory behaviour due to projection to z-axis and is growing quite slowly.
The weakly driven system (green) follows this behaviour with marginal dif-
ferences due to a preparation too far from the stable fixed point to reveal
the expected trapping of the distribution. In contrast the strongly driven
(in blue) system indicates a suppression in variances (as in the middle of
the second and third driving period).

Although the measured variances exceeds the simulation a qualitative re-
lated behaviour is observed. At least at the end of the third driving period
a suppression of variance in the strong driven regime compared to the
undriven one is detected, indicating the creation of a moving trap (close
to the stable island) due to driving. This is a first hint, that the system can
be stabilized by driving.

4.5.2. Preparation at the unstable fixed point

The preparation for the experiments at the unstable fixed point is the
same as for the stable one except the driving phase was set to φDriv =
0.2 · 2π. Thus the unstable fixed point is initially localized close to the
zenith. As plotted in the phase spaces of Fig. 4.10, the preparation in the
weak driven system is aside from the unstable fixed point. Thus its influ-
ence to the time dynamics might be quite small. Due to inset of chaos
around the unstable fixed point in the strongly driven regime besides a
”better preparation”, the initial point is located quite well at the unstable
fixed point for this case.

Comparing the time evolution of the mean to the situation in the stable
fixed point (Fig. 4.9), only slight differences are visible. The weakly driven
system follows the undriven one quite well, as in the other case. However
in the strongly driven regime the signal appears to be shifted in phase.
A closer look to the stable fixed point (Fig. 4.9) reveals more differences.
There, the signal is slower than the undriven one at full periods of the driv-
ing (where the actual phase of driving is around 3/2π, thus the coupling
is smaller than in the undriven system). On the other hand, it is faster for
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Figure 4.10.: Experimental data for a preparation in the vicinity of the
unstable fixed point for Λ = 0.7, ε = −0.114, φDriv = 0.2 ·
2π, ωDriv = 1.477, N = 700. The colourcode is correspond-
ing to Fig. 4.9

half driving periods (slope is steeper than the undriven one). The situa-
tion is inverted for the unstable fixed point in Fig. 4.10, there the strong
driven system is faster around full periods of driving and slower in be-
tween, which is consistent with the temporal coupling strengths. Starting
with a large coupling strength for the unstable fixed point also implies a
smaller amplitude than for the stable one, which is experimentally con-
firmed.

In contrast, the difference is obvious when looking at the time evolution
of the variances in z. In the numerical simulations the weakly driven sys-
tem exhibits the same behaviour as the undriven one, as expected by the
wrong preparation. The measured variances for both cases exceed the nu-
merical one clearly, but as for the stable fixed point a similar qualitative
behaviour as in the simulations is obvious. Also the difference in variance
between weak driving and the undriven system is within experimental un-
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certainties.

The situation dramatically changes for the strongly driven regime. Within
the first driving period, both numerical simulations and the experiment fol-
low the undriven one well. Subsequently the variance is enhanced within
each driving period, but gets refocussed for full driving periods again. The
peaks in the variance within the last driving period exceeds the undriven
one by a factor of two. This shows the faster divergence along the unsta-
ble manifold created by driving.

The ultimate test for the expected behaviour at an unstable fixed point
would be the realization of enhanced squeezing along the stable manifold.
When looking at the variance in z, the axis of the stable manifold has to be
perpendicular to z-axis. This is the case for times where the distribution
reaches zenith respectively its lowest position. However the distribution
is strongest bent at these points. Squeezing is a sensitive measure for
such effects, so even numerically only slight squeezing is expected with
this measuring method. To be able to measure an enhanced squeezing
due to driving, the initial preparation (together with a properly chosen
driving phase) has to be in a way, that for the time of best squeezing the
wave packet achieves a position in phase space with minimized bending
(e.g. the mean in z should be at the position of the undriven stable fixed
point). The squeezing parameter of the state can be quantified by a tomo-
graphic readout. In the presented experiments, we restricted the analysis
to two perpendicular measurement axes. However, squeezing analysis
might be a further step for analysis of the system.

To conclude, a clear effect of the driving for the variances in z could be
observed leading to focussing for a stable fixed point and an enhanced
divergence for an unstable one as expected by classical theory.

4.6. Preparation between stable and
unstable fixed point

Also of interest is the question, in which way the dynamics is changed,
when shifting the initial preparation from the unstable fixed point towards
the stable one. With the preparation method described in the previous
chapter, this task can be fulfilled easily. The preparation is done at the
position of the unstable fixed point for a certain driving phase and the
experiment is repeated for a bunch of different driving phases.
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As seen in Fig. 4.7 the distribution (or wave packet) is rotating in the phase
space during time evolution. Thus at each time step the long axis is pro-
jected to the measurement axis along z slightly different such that the
measured variance is not meaningful for comparison of different times.
The problem could be solved by a subsequent tomography after the time
evolution. This is experimentally quite ”expensive”, so we will follow a
different route.

The situation could be compared to the preparation at an unstable fixed
point in the undriven system (Fig. 4.5), where the distribution mainly di-
verges along the unstable manifold. There, for short times the angle of
the long axis of the distribution is slightly tilted to the axis of the unstable
manifold, reaching the axis exactly for the moment of best squeezing and
getting bent afterwards. Thus to look for the maximum variance in that
system, it’s best to make a tomography such that the axis of the unstable
manifold is parallel to the measurement axis.

In the driven system, we get this for free. As the phase space is rotated
during time evolution, the measurement of the variances has to be done
at these times when the axis of the unstable manifold is parallel to the
measurement axis. Wether this will work is a matter of time scales -
the rate of ”diffusion” along the unstable manifold to the rotational fre-
quency of the unstable fixed point. Due to stronger bending of the un-
stable manifold, this will only work for short times. The phase space is
slightly asymmetric, therefore the times will differ a bit for the upper and
lower unstable fixed point. As size and shape of the stable fixed point
will vary for different driving amplitudes, also the position of the unstable
manifold changes, but this is a smaller effect. A numerical analysis for
ADriv = 0.05, φDriv = 0.2 · 2π gives the times for the unstable axis being
parallel to z as t = 14.3ms, t = 47.6ms for the lower fixed point and
t = 28.8ms for the upper one. These times are close to the maximum of
the simulated variances for strong driving in Fig. 4.10.

The measured variances in the long axis are plotted in Fig. 4.11 for differ-
ent driving phases and these special times, compared to simulations. For
short times of t = 13ms just a slight dependency of the variance from driv-
ing phase is detected which is within the experimental uncertainties. For
subsequent driving periods the situation changes: a strong dependency
of the variance from initial preparation is detected in the strongly driven
regime. The maximum of the measured variance is around φDriv = 0.3 · 2π
with the initial preparation at an unstable fixed point. It also exceeds the
variance in the undriven system revealing the generation of an unstable
axis due to driving. On the other side, around φDriv = 0.7 · 2π a minimum
is detected much smaller than in the undriven system. This indicates the
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Figure 4.11.: Dependency of the variance from the initial preparation
in experiment (solid lines) and classical simulation (dotted
lines).
red: undriven, green: slightly driven with ADriv = 0.03, blue:
strongly driven with ADriv = 0.2. The undriven system is in-
dependent on driving phase, thus the result of a single mea-
surement is given for that case.

occurrence of a moving island around the stable fixed point in the driven
system.

In this chapter the breakup of the regular phase space due to driving
accordingly to the Poincaré-Birkhoff theorem was experimentally inves-
tigated. The resonantly driven trajectory breaks up into a chain of stable
and unstable fixed points together with according manifolds. The experi-
ments reveal a similar behaviour at these fixed points as in the undriven
system for different parameters. Thus driving the system opens up the
route to the creation of special structures in phase space which could be
inaccessible in the undriven system. The behaviour of a wave packet ini-
tially prepared at an unstable fixed point is widely discussed, but driving
the system is an additional tool to create such a scenario.
For stronger driving the Poincaré-Birkhoff theorem together with the KAM-
theorem can be applied subsequently to describe a cascade of bifurca-
tions leading to chaos. Our experiments are the first step of such a cas-
cade and thus a first cornerstone towards chaos in macroscopic quantum
systems.
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5. Exploring Bloch sphere
chaos in a mixed system

Up to now, the influence of weak driving onto the system was investigated.
However, stronger driving alters the system beyond the creation of elliptic
and hyperbolic fixed points according to Poincaré-Birkhoff theorem. Con-
sidering the dynamics close to an elliptic fixed point, which is created by
driving. Some of the orbits close by will also be resonant to the perturba-
tion according to KAM theorem [4, 51]. Therefore, these orbits will break
up yielding in a series of bifurcations on finer and finer scales. Hence, a
fine layer of chaotic states arises between the remaining stable tori. How-
ever, this is of limited interest for an quantum system with finite ℏeff, since
it could not sample details on smaller scales than this fundamental limit.
Therefore, the perturbation is increased in order to obtain a large chaotic
sea.

Theoretical investigation of the driven system can be found in [32, 30, 33],
the kicked version is discussed in [27]. The experimental realization of
[34], which is deep in the quantum regime, was already discussed in the
introduction.
A similar model is discussed in literature as Duffing oscillator [51], where
the perturbation is equivalent to the driving of the detuning in our system.
It should be noted that the Duffing oscillator can be much better approx-
imated by a harmonic oscillator close to the undriven stable fixed points
than the investigated system.

5.1. Basic system properties

In chapter 4 the mechanism of Poincaré-Birkhoff was investigated. To ex-
plore a mixed system with a larger chaotic sea, why not just drive this
system at Λ = 0.7 harder? As can be seen in Fig. 4.9, due to the large an-
harmonicity, the system behaves quite stable for most of the phase space
even for a large driving amplitude of A = 0.2, where just a small chaotic
layer occurs. When recalling that Λ is the ratio of the nonlinearity to the
coupling strength, by driving the coupling with an amplitude more than
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A = 0.3 the system is not slightly changed but temporarily driven into a
completely different region. Particulary the system would bifurcate for a
short time. Thus additional effects are expected for very strong driving. To
avoid this, we choose to work deep in the bifurcated regime to circumvent
this effect.
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Figure 5.1.: Phase space of the investigated system with Λ = 1.53, ε =
−0.07, ωDriv = 1.5867.
Left: In the undriven system, a double well structure typical to
the bifurcated system appears. Due to the tilt in ε the phase
space is asymmetric in z.
Center: Driving with ADriv = 0.07, φDriv = 0. The two stable
fixed points of the undriven system survive slightly altered,
additional two moving islands are created by driving (black).
In between, a large chaotic sea arises.
Right: Phase space for strongly driven system. Both the two
stable islands and the moving island shrink and the chaotic
sea becomes more dominant.

We set the parameters to Λ = 1.53 and ε = −0.07, a phase space plot
can be found in Fig. 5.1. For these settings, on the π-side of the Bloch
sphere two stable fixed points exist at z+ = 0.72, z− = −0.79, φ± = π to-
gether with an unstable one at zs = 0.13 in between (see Sec. 2.3). The
different regime can be entered by changing the coupling strength from
40.6Hz (for Λ = 0.7) to 20.7Hz. However this implies some drawbacks
as the driving frequency and the scaled time also scale with the coupling
strength (Sec. 2.1), but the maximal experimental time is restricted by
loss. Thus, roughly half of the driving periods are experimentally accessi-
ble. For a more accurate determination of the driving frequency, the local
frequencies of the bifurcated system have to be considered.

The dynamics in the undriven bifurcated system were intensely studied in
[58, 38, 59, 45], where especially the dynamics in the quantum regime for
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a preparation at the unstable fixed point (see also Fig. 4.5) raised some
attention. For this work a few measurements in the undriven system were
performed for the same initial conditions as in the driven case. Addition-
ally to other calibration measurements (see. 3.7), the time evolution of
different start points within the undriven system serves on one hand to
obtain system parameters under realistic conditions, on the other as a
reference for comparing the dynamics in the driven regime.

The time evolution for some of the measured start points and selected
times is plotted in Fig. 5.2 in comparison to simulations. Measurements
for all start points with the simulation can be found in Sec. C.2.1. Besides
the z-data also the y-data (equivalent to φ) was acquired by an additional
tomography pulse after the time evolution, so the resulting mean values
can be plotted within the phase space with their variances. The classical
phase space is included in light gray and a simulation of the time dynamics
of a distribution as a density plot (see Sec. A.1.2).

When comparing the time evolution of different start points, a difference
not only in the mean, but also in the width of the distributions is observed.
Within the stable islands (as red and cyan) the distributions rotate around
the stable fixed points and variance remains small. In contrast, by start-
ing close to (but not at) the separatrix (blue and green) the distributions
are ripped apart quickly. A qualitatively similar behaviour between exper-
iment and simulation is observed also in the variances.

Of particular interest is the blue curve, as this is the starting point of most
of the other investigations. A simulation of the time evolution of the distri-
bution is plotted in Fig. 5.3. The distribution follows the classical trajectory
but disperses along it on a fast time scale. For the driven cases, the sys-
tem was driven at a 2 : 1 resonance compared to the frequency of this
orbit such that the stable and unstable fixed points created by the driving
are located close by.

A fit of the experimental data with classical respectively mean field model
serves as a calibration of the parameters Λ and ε. Due to the time evolu-
tion under realistic conditions, thus long times and same parameter range,
the determination of the parameter is more accurate than by plasma- and
π-oscillations. The fitted parameters are used for all simulations in the
driven regime. We observe a deviation of the start points of simulation and
theory. Even if the influence of the loss to the detuning is almost avoided,
it alters also the nonlinearity, thus the effective Λ. In contrast, the model
system of the simulation deals with constant nonlinearity and detuning,
thus acting as an effective model. These effects could be included into
the simulation, but then the theoretical description by Poincaré-plot and
fixed points will fail. Thus a time periodic model without loss is used and
the starting conditions in the simulation have to be altered according to
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t = 1 ms t = 9 ms t = 17 ms

t = 25 ms t = 33 ms t = 41 ms

t = 49 ms t = 57 ms

Figure 5.2.: Comparison of the time evolution in experiment and simula-
tion for different starting points in an undriven system. Classi-
cal phase space is plotted in light gray, the simulated distribu-
tions are shown as in the other plots. The experimental data
is plotted for each starting point with measured error bounds
as coloured crosses. The experimental variances are not nor-
malized according to A.50 (since the phase space plot shows
a projection).

the experimental ones to obtain a satisfactory agreement in the time evo-
lution between experiment and simulation.
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Figure 5.3.: Classical simulation of the time evolution in the undriven sys-
tem prepared at z0 = −0.3, φ0 = 2.68 with Λ = 1.53, ε = 0.07.
Even in the undriven system the distribution spreads on a
short time scale for this preparation.

5.1.1. Driven system

The phase spaces for the driven system with medium (ADriv = 0.07) and
strong driving amplitude (ADriv = 0.14) are also included in Fig. 5.1. The
driving frequency was chosen to ωDriv = 1.5867 at a 2 : 1 resonance to the
trajectory of the blue starting point in Fig. 5.2 and was kept constant for
all experiments within this chapter.

The two stable fixed points of the undriven system survive slightly altered,
additionally a stable moving fixed point (or period 2 orbit) is created for
medium driving. This is visible as two black islands at z = 0.68, φDriv =
2.28 and z = −0.61, φDriv = 4.09. By changing the driving phase (equiv-
alent to looking at a different time), these moving fixed points rotate
through the phase space close to the trajectory of the undriven system
and pass into each other after one driving period. Besides the moving sta-
ble fixed point an unstable one is created at z = 0.63, φDriv = 3.98 and
z = −0.56, φDriv = 2.21. In the vicinity of the moving stable fixed points,
dynamics will be regular in the rotating frame of the fixed point. Thus
an stable island is created close to each stable fixed point. In contrast,
the separatrix is broken up and a larger part of the phase space becomes
chaotic.
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Considering the fitted start point from the reference measurement in Fig. 5.2,
the stable fixed point is closest to our initial preparation point for a driving
phase of approx. φDriv = 0.38 · 2π, the unstable for φDriv = 0.9 · 2π.

For stronger driving with ADriv = 0.14 the stable moving island shrinks
and the chaotic sea becomes larger. Furthermore adjacent points in the
chaotic sea are ripped apart faster from each other than in the medium
driven case. This is confirmed by numerical investigation of Lyapunov
exponents (Fig. A.2) for different starting points in the phase space.

5.2. Time evolution at a stable/unstable
fixed point

The phase space of the driven bifurcated system in Fig. 5.1 exhibits on
the one hand some similar features as the system for Λ = 0.7 (in chapter
4), such as a stable moving island. On the other hand the unstable fixed
point is deep within the chaotic sea and from a simple point of view it
could be expected that a distribution is ripped apart faster than for the
unbifurcated system.

In close analogy to chapter 4 the behaviour of a distribution initially pre-
pared at an unstable respectively stable fixed point will be investigated in
the following.

5.2.1. Stable island

For all investigated driving amplitudes, the preparation is done at the
same start point as in the undriven system at z

ep
0 = 0, φep0 = 2.51 and

the driving phase is chosen in a way that the stable fixed point is close
to the initial preparation. Due to the deviation of the fitted start point to
the experimental one, the optimal driving phase at which the stable island
is close by, differs for experimental respectively fitted start point. Since
the experimentally obtained time evolution in the undriven system fits
best for the fitted start point, the proper driving phase should be chosen
accordingly to the fitted start point of z0 = −0.3, φ0 = 2.68 rather than
the experimental one. This implies a slight different value for hitting the
stable island.

The experimental data of the time evolution in mean and variance is in-
cluded in Fig. 5.4, the raw data for all measurements within this chap-
ter can be found in C.2. Beneath the undriven reference, measurements
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for increasing driving amplitude from slightly driven system ADriv = 0.035
(red) to strong driven system with ADriv = 0.14 (green) are included. The
corresponding classical simulation with N = 700 is plotted as a dotted line.
Since classical and quantum simulation coincides for the desired times,
the quantum simulation is omitted for better readability.
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Figure 5.4.: Experimental and theoretical time evolution 〈z〉 (left) and vari-
ance in z (right) for different driving amplitudes and prepara-
tion close to the stable fixed point (φDriv = 0.5 · 2π). The driv-
ing alters the mean due to preparation slightly off the center
of the island. Thus, the time evolution of the mean is a bit
faster. For variances stronger driving implies a slower growth,
thus a stabilisation of the distribution is achieved. For strong
driving the data is plotted for the deviating driving phase of
φDriv = 0.45 · 2π.

Comparing the evolution of the mean in z (left column), the driven system
follows the undriven one during the first driving period well. Subsequently
a shift in frequency is observed. For increasing driving amplitude the time
evolution becomes faster, which is also reproduced by simulations. In the
experiment, the preparation is not perfectly at the center of the island,
but rather at the boundary. This leads to the observed frequency shift -
for a preparation in the center of the island, this would not occur.

Another interesting point is the comparison of variances on the right (with
increasing driving amplitude from top to down). For later times, the vari-
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t = 1 ms t = 9 ms t = 17 ms

t = 25 ms t = 33 ms t = 41 ms

t = 49 ms t = 57 ms

Figure 5.5.: Comparison of the time evolution in the experiment (blue)
and the simulation close to the stable moving island. The
initial state is prepared at z0 = −0.3, φ0 = 2.68 and ADriv =
0.07, ωDriv = 1.59, φDriv = 0.5 · 2π, for the classical simulation
a distribution of N = 700 atoms is used.
Even though the preparation is not perfectly at the center of
the moving island, the distribution broadens just slowly. A click
on the picture starts a video, a detailed plot can be found in
Fig. B.8.
The video was calculated for optimal start conditions in the
moving island with φDriv = 0.4 · 2π. Apart from the oscillation
around both stable fixed points, a breathing of the distribution
within the moving island is observed.
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ance is largest for the reference measurements and decreases with in-
creasing driving amplitude, in qualitative agreement with the simulation.
This is the expected behaviour when preparing within a stable island,
where the island becomes deeper with increasing driving amplitude.

For the medium driven system with ADriv = 0.07 both the z data and φ
data was measured. Hence the time evolution in the experiment can be
plotted within the phase space (see Fig. 5.5). The classical phase space
for each time is plotted in light gray in the background. A classical sim-
ulation of a distribution of N = 700 atoms is included as a density plot,
the experimental data is plotted with the corresponding variances as blue
crosses.

The time evolution starts at the boundary of the stable island, however
due to the investigated short time scales the sticky region around the
stable island serves as an effective enlargement of the island. Thus the
distribution follows it through the phase space during time evolution quite
well. Compared to the reference measurement in Fig. 5.2, respectively
Fig. 5.3, it is obvious that the distribution broadens more slowly in the
driven than in the undriven system. Except the first point, the experimen-
tal data qualitatively agrees well with simulations - also the variances are
comparable.

Additionally the simulation with finer time steps is included in the ap-
pendix in Fig. B.8. In the digital version of this work, a click on Fig. 5.5
starts a video of the simulated time evolution started at the center of the
moving island (z0 = −0.29, φ0 = 2.39) with appropriate driving phase
φDriv = 0.38 · 2π. One can see, that the distribution is trapped within the
moving stable island for a long time. Besides, a breathing of the distri-
bution within the island appears. The breathing frequency is connected
to the trap depth [61]. Therefore, the dynamically created trap is much
deeper here, due to its much faster breathing than in the Λ = 0.7 system
(Fig. 4.6). Since the shape of the moving island is changed during its way
through the phase space – which is equivalent to different initial driving
phases – the overlap of a prepared CSS with the ground state of the is-
land changes for different driving phases. Thus the amount of breathing
depends on the initial driving phase.

5.2.2. Unstable fixed point

Changing the driving phase by π to φDriv = 0, the same starting condition
is close to a moving unstable fixed point, which is deep within the chaotic
sea. In Fig. 5.6 the time evolution of mean and variance for different driv-
ing amplitudes is plotted.
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Figure 5.6.: Comparison of the experimental time evolution of means and
their respective variances and simulations for a preparation
close to the unstable fixed point (φDriv = 0). For stronger
driving the time evolution of the mean is drastically changed.
The variances exhibit a strong growth for a weak and medium
driven system. Thus the unstable fixed point becomes more
”unstable” with higher driving amplitude. In the strongly
driven regime, the variance seems to grow not as fast as in
the other cases but this is due to the time evolution of the
mean being close to the south pole. The experimental points
have to scatter symmetrically around the mean. Thus, if the
mean is close to the boundary in a confined system, this im-
plies a restriction for the variance. For strong driving the data
is plotted for a driving phase of φDriv = 0.95 · 2π.

In contrast to the stable island in Fig. 5.4 the mean is not only slightly
altered compared to the undriven system. Rather the mean of the driven
system follows the reference for barely one driving period but diverges
completely from it subsequently.

The variances exhibit a strong growing tendency with a faster rate for
stronger driving. This is in qualitative agreement with the Lyapunov expo-
nents in Fig. A.2 (Sec. A.1.4). However, the Lyapunov exponent is the
averaged separation rate of adjacent points determined in the long time
limit. Thus it is not directly comparable to our measurements with a finite
ℏeff in the short time limit.
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t = 1 ms t = 9 ms t = 17 ms

t = 25 ms t = 33 ms t = 41 ms

t = 49 ms t = 57 ms

Figure 5.7.: Comparison of experimental time evolution and simulation
close to an unstable fixed point deep in the chaotic sea. The
preparation is done at z0 = −0.3, φ0 = 2.68 and φDriv =
0 · 2π, ωDriv = 1.59, a medium driving amplitude of A = 0.07
and N = 700 atoms for the classical simulations.
Within the first driving period the system follows the undriven
system quite well, but gets ripped apart soon evolving into a
non-gaussian state. A click on the picture starts a video, a
detailed plot can be found in Fig. B.9.

In the strongly driven regime the variance seems to behave differently.
Although, when comparing the raw data in appendix C.2.5, it becomes
obvious that the distribution becomes very broad but close to the south
pole. Since the dynamics is restricted onto the sphere, the variance in z
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cannot reach large values for a mean close to the poles.

Just as for the stable island, the time evolution in phase space is plotted
for the medium driven system in Fig. 5.7. This illustrates the mechanism
leading to a fast ripping apart of the distribution. During the first driving
period, it follows the undriven one, but gets catapulted towards the un-
stable fixed point of the undriven system. Subsequently it gets stretched
in the direction of the unstable manifolds of the undriven system, whose
impact is noticable in short time dynamics.

The experiment exhibits a qualitatively comparable behaviour to the sim-
ulation, not only in the mean, but also in the variances. Mind that the sim-
ulation looks a bit broader than it actually is due to nonlinear plot (A.1.2).
The variance grows much stronger than for the stable island indicating the
expected behaviour at an unstable fixed point or in the chaotic sea.

5.2.3. Comparison of stable and unstable fixed point

A direct comparison of the variances in z and y is included in Fig. 5.8.
The variances in z (depicted on the left) were measured twice, once with
additional 90° tomography rotation (dark blue/red), once without but with
enhanced statistics (light red/blue). Simulation is included as a dotted
line. In the vicinity of the stable island the width of the distribution in
z grows very slowly. In contrast for a start point in the chaotic sea it is
rapidly growing and reaches values about one order of magnitude larger
than in the stable island. The dip in the blue curve around 50ms occurs
because the distribution reaches the turning point in z.

The variance in y (so basically in φ) is depicted on the right. It exhibits
a slow growing tendency for both preparations on a completely different
scale than the variances in z. As above, the peak in the blue curve around
50ms is due to reaching the turning point. In result for times around
2Tper ≈ 61ms the variances in y are comparable although the variance in
z is much larger for starting in the chaotic sea. Without the information
about the variance in y and the simulations, the behaviour of the variance
in z could have be explained by a squeezed state, which is rotated in the
phase space such that once the long axis and in the other case the short
axis is measured. However the similar behaviour of variances in y for
larger times in conjunction with the huge difference in z variances, clearly
shows that the distribution is ripped apart in the chaotic sea in contrast to
the behaviour within the stable island.

76



0 20 40 60
0

0.1

0.2

0.3

0.4

t [ms]

va
r(

z)

0 20 40 60
0

0.01

0.02

0.03

0.04

0.05

0.06

t [ms]
va

r(
y)

Tomography

 

 
Exp: stable
Theo: stable
Exp: chaos
Theo: chaos

Figure 5.8.: Comparing time evolution of variances for a medium driving
amplitude of A = 0.07 and different driving phases. red:
φDriv = 0 · 2π, blue: φDriv = 0.5 · 2π. Light red and light blue are
corresponding measurements from a different run with higher
statistics.
Left: variances in z. The different behaviour in the stable is-
land (blue) and in the chaotic sea (red) is obvious.
Right: variances in y (so basically in φ), attention should be
paid to the different axes. The variances in y behave roughly
similar for both driving phases.

5.3. Preparations from chaotic sea to stable
island

So far, the behaviour of a distribution started in a stable island or deep in
the chaotic sea were presented. Thus the question arises, in which way
the resulting variance depends on different preparations within the phase
space. For experimental reasons, the route from chapter 4 is followed to
initially prepare always at the same point and rotate the phase space in-
stead by changing the driving phase. Due to the analogy of driving phase
to evolution time, this is equivalent to a fixed phase space and preparing
the distribution on different points along one trajectory, e.g. the blue dot-
ted one in the left part of Fig. 5.1. Thus by changing the driving phase
from 0 to 2π the transition from stable island via the boundary to deep
within the chaotic sea can be studied.

Since the variance in z exhibits a maximum for both extreme cases (stable
and unstable fixed point) for times around 2Tper and the stable island is
approximately elongated along z for quite a while, the dependency can be
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evaluated at time t = 2Tper. Thus an analysis of the best evolution time
as in chapter 4 can be omitted.

For a medium driven system with A = 0.07 the dependency of variance
in z and y (after applying a tomography pulse) on the driving phase is
depicted in Fig. 5.9. For z data (upper left) two different measurements
as in sec. 5.2.3 were available, the numerical simulation is included as
a dotted line. In the lower part simulated distributions for two extreme
cases can be found which reveal on one hand the trapping by the island
(right) on the other the fast diffusion in the chaotic sea (left).

A strong dependency of the variance on the driving phase is observed in
z. The maximum is close to the position where the unstable fixed point
is expected, the minimum close to the position of the stable island. The
transition from unstable to stable is quite steep and appears a bit later
than expected by a simple argument based on the distance of the starting
point to the stable island in the phase space. Also, the variance rests on
a low level for a larger range in driving phase, as the stable island is hit
in the preparation. The variance remains not only small within the stable
island, in fact it stays on the level also within the sticky region around the
stable island for short times.

The steepness is also shown by the Lyapunov exponents (see Fig. A.2),
where the start point is either within the stable island with vanishing Lya-
punov exponent or in the chaotic sea with a finite value. Since the sticky
region serves as a partial barrier [106, 107] being overwhelmed after fi-
nite time, it is not reflected in the Lyapunov exponents calculated on a
much larger time scale. Furthermore, due to finite size of the initial dis-
tribution depending on ℏeff, the transition should occur in minima at the
order of the initial distribution, although it is much smaller than the ob-
served steepness in the examined case.

The variance in y exhibits a weak dependency on the driving phase. The
distribution in the stable island is elongated almost vertically and even
in the chaotic sea this is the main direction at the time t = 2Tper. Thus
the y variance exhibits a weak dependency on driving phase and is not
the inverse of the z-data. This confirms, that the observed increase in z-
variance can be directly connected to the spreading of the initial gaussian
distribution in the phase space.

A comparison of the same dependency for different driving amplitudes is
included in Fig. 5.10. The reference measurement is depicted in gray, and
as it is independent of driving phase it is measured once and plotted as
a reference for all phases. It should be mentioned that the reference is
measured with less statistics.
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Figure 5.9.: Dependency of variances in z (left) and y (right) for a fixed
time evolution of t = 61ms (≡ 2.013 · Tper) on driving phase
for an amplitude A = 0.07. Red and blue are two different
measurement runs with same parameters, the red with higher
statistics. The vertical lines indicate the position of the sta-
ble/unstable fixed point.
Upper-left: Variance in z, a strong dependency on the driving
phase is observed. Experimental data exhibits a qualitatively
similar behaviour as simulation. Upper-right: Variances in y
measured after applying a π/2 pulse (corresponding to vari-
ances in φ). The data in y exhibits a much weaker dependency
on the driving phase and is not the inverted signal of z-data.
Lower: Simulated distribution for a driving phase φDriv = 0
(chaotic sea) on the left and for φDriv = π (vicinity of stable
fixed point) on the right.

However comparing the minimal variances of weak and medium driven
system to the reference, they exhibit a much narrower width in z than in
the undriven system indicating the trapping in the stable island. From sim-
ulation it is expected that the medium driving creates a deeper trap than
in the weakly driven system, thus the variance should remain smaller for
the medium driven system. Due to preparation at the border of the island,
the weakly driven system exhibits a slightly smaller variance instead. On
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Figure 5.10.: Variance after a time evolution of t = 61ms (≡ 2.013 · Tper)
for different driving phases and amplitudes.
The reference was measured only once (no driving phase de-
pendency), but the statistics is not as good as for the driven
cases. The medium driven system is already discussed in
Fig. 5.9. The slightly driven system shows a qualitatively sim-
ilar behaviour, although a bit shifted. However the variance
grows not as fast as in the medium driven case for a prepa-
ration close to the unstable fixed point.
For the strongly driven system, just the two preparation
phases for stable island or chaotic sea were measured. Al-
though the variances appear to be in the same order of mag-
nitude, the raw data in Sec. C.2.5 exhibits qualitatively dif-
ferent behaviour.

the other hand, in the chaotic sea the weakly driven system is growing less
than the medium driven system as expected by the Lyapunov exponents
(A.2).

5.3.1. Phase space mapping

Up to now, the different behaviour of starting in the chaotic sea or the
stable island is mainly deduced by the development of variances. To di-
rectly visualize the entirely different behaviour, we plot the time evolution
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t = 1 ms t = 9 ms t = 17 ms

t = 25 ms t = 33 ms t = 41 ms

t = 49 ms t = 57 ms

Figure 5.11.: Time evolution for different initial start points in the phase
space with parameters ADriv = 0.07, φDriv = 0.3 · 2π. The
different behaviour, whether the start point is located within
a stable island or in the chaotic sea is clearly visible in the
variances.

of different starting points with their variances in phase space (Fig. 5.11).
The experimental data is compared to a classical distribution.

The same start points as in the phase space plot of the undriven system
(Fig. 5.2) were used. The different regimes were sampled in the following
way: the blue one is located close to the moving island, the green one
inside the stable non-moving island, the cyan in the sticky region around
the stable fixed point, and the red one in the chaotic layer between moving
and non-moving islands.

81



Within the stable non-moving island, the distribution rotates around the
stable fixed point and variance remains on a low level, as confirmed by
experiment (green). In the vicinity of this island – at the sticky region
– the distribution also rotates around the stable island (cyan) however
the variance becomes larger than deep in the island. The behaviour of
the distribution close to the moving stable island was already explored in
Fig. 5.5, but for a different driving phase and thus a preparation closer to
the stable fixed point. Here, the behaviour differs not much, except the
variance grows a bit faster than in Fig. 5.5. Compared to the reference
measurement in Fig. 5.2, the distribution remains smaller in the driven
regime. Finally, starting in the chaotic sea, the distribution rips apart fast
as confirmed by the experiment (red).

In conclusion, the examples show that by using a distribution of points
rather than a single one the structure of a mixed phase space can be
directly confirmed even in the short time limit.

5.4. Sensitivity on initial conditions

One key ingredient of chaos is the exponential separation of close adja-
cent points, thus extreme sensitivity on initial conditions. This is reflected
by a positive Lyapunov-exponent, which is a measure for the separation
rate. In contrast, in a quantum mechanical system the initial preparation
is uncertain in the order of ℏeff. Hence a quantum preparation occupies a
phase space area which is not transported as a whole by the Hamiltonian
mapping. In this section we will shortly focus on the question how the
dependency on initial preparation manifest itself in the examined quasi
classical system. The arguments can be found in the books [4, 51].

As the classical system is Hamiltonian, the Liouville theorem states that
a phase space volume is preserved in time [4]. Thus, as one Lyapunov
exponent is larger than zero (see sec. A.1.4) the other1 has to be the
negative of the first one to fulfill Liouvilles theorem. This is equivalent to
the stretching of an area element in one direction and shrinking it in the
other. The bounded phase space and the appearance of all coordinates of
the ODE inside trigonometric functions – thus periodic boundaries apply –
acts as a form of folding.

The concept of stretching and folding is widely discussed in the context of
maps, where it leads to mixing. In the framework of Hamiltonian systems
it implies the existence of fractal basins within the chaotic regions of phase

1In a 2 dimensional phase space there are 2 Lyapunov exponents [4].
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space [4]. In the examined system, consider a small area in the vicinity of
the unstable fixed point of the undriven system. In the driven system, it is
stretched till it reaches the vicinity of both poles and evolves then back to-
wards the ”center”. As the unstable axis is continuously changing in time,
it doesn’t reach the origin perfectly and a second cycle starts. Repeated
application of this stretching and folding leads to an interweaving net of
the image of the initial area. As the system is ergodic within the chaotic
sea, the image of the initial area covers the whole chaotic sea, although
the total area does not change.

As our model system is the classical version of a quantum mechanical sys-
tem, the initial preparation has the size of 1/

p
N (Sec. 2.2.1). The stretch-

ing and folding of a gaussian distribution covering this area is depicted
in Fig. 5.15, where indications of a fractal structure can be seen. In the
experiment, the measurement process will always be afflicted with some
error (the readout uncertainty amounts roughly to Δz = 0.02 in the ac-
tual system), but also in simulation uncertainties occur. In this coarse
grained picture, the fractal image appears to fill the whole chaotic sea.
On the other hand, by measuring coarse grained, one cannot distinguish
to which basin the outcome belongs. This implies that an outcome cannot
be related to a certain start point - the memory of the system is erased
by coarse graining. Transferred to the experiment it follows that different
starting points within the chaotic sea will lead to the same results after
some time.

We will discuss the experimental data in the following. As in most other
measurements, instead of choosing different starting points the prepa-
ration was done at z0 = 0, φ0 = π (close to the unstable fixed point of
the undriven system) and the driving phase was changed to mimic differ-
ent start points in phase space. A comparison of the time evolution for
different initial preparations is shown in Fig. 5.12. The time evolution is
plotted as a histogram of all obtained z-values for each time step and is
normalized to the maximum to provide better visibility. On the left side,
the time evolution for a preparation at the position of the stable/unstable
fixed point is plotted. In this case, the driving phase determines whether
the preparation is within the stable island or close to the unstable fixed
point. Thus a huge difference is observed.

In contrast, by starting in the chaotic sea for all driving phases (depicted
on the right side), only slight differences are noticeable, e.g. the diagonal
hole shifts a little bit. This holds also for the other driving phases plotted
in Sec. C.2.7 which were omitted in Fig. 5.12 due to lack of space.

An attempt to quantify the similarity of the distributions after approxi-
mately 60ms of time evolution is given in Fig. 5.13. There the variance
for the obtained distributions is plotted for all different driving phases.

83



Stable FP

φ D
riv

 =
 0

.5
⋅ 2

 π

0 20 40 60
−1

−0.5

0

0.5

1

Unstable FP

φ D
riv

 =
 0

⋅ 2
 π

t [ms]
0 20 40 60

−1

−0.5

0

0.5

1

Chaotic Sea

0 20 40 60
−1

−0.5

0

0.5

1

t [ms]
0 20 40 60

−1

−0.5

0

0.5

1

Figure 5.12.: Comparing time evolution for starting at the stable/unstable
fixed point or within the chaotic sea for different driving
phases. For each time step a measured histogram is plot-
ted. For a better visibility the histograms are normalized to
the maxima.
Left: starting close to the stable/unstable fixed point at z0 =
0;φ0 = 2.5 (experimental parameters). The driving phase
was chosen to prepare close to the stable fixed point in the
upper (φDriv = 0.5 · 2π) and close to the unstable fixed point
(φDriv = 0 · 2π) in the lower graph.
Right: starting at z0 = 0;φ0 = 3.1 in the chaotic sea for same
driving phases. For a preparation deep in the chaotic sea just
slight dependency on the driving phase is observed.

The distributions are quite broad, thus some rare events contribute much
more to the variance in lack of high statistics for a single time. There-
fore, the distributions were summed over the last two time steps. This is
justified due to small changes in histograms for these times.
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Figure 5.13.: Approaching ergodicity: Variance vs driving phase for start-
ing in the chaotic sea at z0 = 0;φ0 = 3.1 and driving am-
plitude A = 0.07 (solid line: experiment; dotted line: simu-
lation). The variances are averaged over the last two time
steps, from t = 57ms to t = 61ms to avoid outliers due
to bad statistics. This is justified as the distribution differs
barely for the last time steps.

We find a weak dependency of the variance on the driving phases, where-
upon the systematic dependency is on the order of measurement noise.
This should be contrasted to the case in Fig. 5.10 for a preparation close to
stable/unstable fixed points with about one order of magnitude variation.
The obtained almost equal variances for all different driving phases, and
thus different preparations in phase space is a hint for an equalization of
distributions even for this short times.

A comparison of histograms for different driving phases is plotted in Fig. 5.14,
where the histograms were summed over the last three time steps. The
results for a preparation close to stable respectively unstable fixed point at
z0 = −0.3, φ0 = 2.68 and different driving phases were plotted on the left
column. This is contrasted by the results for a preparation in the chaotic
sea at z0 = 0.08, φ0 = 3.13 for the same driving phases at the right.

Although the peaked signal of the stable fixed point is smeared out a bit
on the left, a different behaviour is observed. A strong dependency on the
driving phase can be observed, not only in the position of the distribution,
but also in the shape. Close to the unstable fixed point the distribution
is spread all over the whole z-range, it’s quite broad there. Close to the
stable fixed point for φDriv = 0.4 · 2π the distribution gets peaked and rel-
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atively thin. Due to summation over several times, the plotted histogram
is broader than a realization for a single time would be.

In contrast, only slight differences are noticeable on the right. For almost
all driving phases a very broad distribution appears and only the position
of a small peak on top varies. The time scales of the experiment do not
allow the measurement of long time dynamics to completely verify ergod-
icity in the system. Also a full tomography to reconstruct the distribution
in phase space is experimentally too costly. Therefore a foresight in long
time dynamics is numerically investigated in Fig. 5.15.

A distribution is initialized in the chaotic sea and time evolution plotted for
multiples of the driving period. Even for relatively short times at t = 8Tper
the distribution occupies almost the whole area of the chaotic sea and fills
it completely for larger times. This is only part of the truth since the area
of the initial preparation is conserved in a Hamiltonian system. Thus the
distribution fills the phase space along a thin net, approaching a fractal
structure. As a potential measurement process is always coarse grained,
the fractal structure could not be resolved and the same result would be
obtained independent where the initial preparation has been done (as long
as done in the chaotic sea).

In conclusion the experiment exhibits a very weak dependency on initial
conditions for a preparation in the chaotic sea as expected for a chaotic
system. Although the time scales of the experiment do not allow for a
complete verification of ergodicity, the fast equalizing of distributions for
different starting conditions supports the assumption of an ergodic sys-
tem.
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Figure 5.14.: Histograms for different preparation, combined data ob-
tained for times from t = 53ms to t = 61ms . Blue: mea-
sured histograms, simulation is plotted in green.
Left: preparation close to the stable/unstable fixed point at
z0 = −0.3, φ0 = 2.68 for different driving phases.
Right: preparation in the chaotic sea at z0 = 0.085, φ0 = 3.13
for same driving phases.
For a preparation in the chaotic sea, much smaller sensitivity
on initial conditions is observed.
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Figure 5.15.: Classical simulation of the time evolution of a distribution
prepared at z0 = 0.085; φ0 = 3.13 for N = 700 atoms. Even
for short times at t = 2Tper the distribution is bent around the
stable fixed points multiple times and encloses a larger part
of the phase space. For larger times the chaotic sea is grad-
ually filled by the distribution. In a quantum simulation the
result would be different due to interference effects. Due to
finite size of ℏeff in a real world experiment one cannot sam-
ple fine details created by folding and stretching ( a video for
quantum system can be found here).
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6. Single photon beam splitter

In an unrelated experiment the generation of motional coherence of a sin-
gle atom by spontaneous emission of a single photon is examined, per-
formed at a different experimental setup. The work was published in
[108], therefore just a brief introduction will be given. A more general
introduction and a subsumption of this topic can be found in [109].

Coherent superpositions are at the heart of quantum mechanics, creating
them requires that the splitting process cannot distinguish between the
different outgoing states. Processes which give information about the indi-
vidual quantum states making them distinguishable lead to decoherence.
A paradigmatic example is spontaneous emission which destroys coher-
ence if the photon can carry information about the superposition state
[110, 111, 112]. We present a situation where spontaneous emission in-
duces coherence between motional atomic quantum states. In our setup
an atom spontaneously emits a single photon in front of a mirror. The in-
distinguishability of emission directions towards and away from the mirror
results in a coherent superposition between the corresponding correlated
atomic motion. This coherence is revealed in direct interferometric mea-
surements which are in quantitative agreement with an intuitive as well
as with a full quantum mechanical model. This is a paradigm example
that spontaneous emission per se is coherent and only in the limit of free
space it leads to full decoherence.

A reprint of [108] is given on the next pages, where Martin Kiffner con-
tributed the quantum mechanical description. Technical details can be
found in the supplementary information of [108] or in [127], where also
the calibration methods are described. A more general description of the
experimental setup can be found in [128].
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In spontaneous emission an atom in an excited
state undergoes a transition to the ground state
and emits a single photon. Associated with the
emission is a change of the atomic momentum
due to photon recoil1. Photon emission can be
modified close to surfaces2,3 and in cavities4. For
an ion, localized in front of a mirror, coherence
of the emitted resonance fluorescence has been
reported5,6. In free space experiments demon-
strated that spontaneous emission destroys mo-
tional coherence7–9. Here we report on motional
coherence created by a single spontaneous emis-
sion event close to a mirror surface. The coher-
ence in the free atomic motion is verified by atom
interferometry10. The photon can be regarded as
a beamsplitter for an atomic matterwave and con-
sequently our experiment extends the original re-
coiling slit Gedanken experiment by Einstein11,12

to the case where the slit is in a robust coherent
superposition of the two recoils associated with
the two paths of the quanta.

We consider an atom passing by a mirror which sponta-
neously emits a single photon (see Fig. 1a). As a result of
the photon momentum the atom receives a correspond-
ing recoil kick in the direction opposite to the photon
emission. In the absence of the mirror the observation
of the emitted photon direction implies the knowledge of
the atomic momentum resulting from the photon-atom
entanglement8. In the presence of the mirror the detec-
tion of a photon in a certain direction does not necessarily
reveal if it has reached the observer directly or via the
mirror. For the special case of spontaneous emission per-
pendicular to the mirror surface the two emission paths
are in principle indistinguishable for small atom-mirror
distances d� c/Γ, where c is the speed of light and Γ the
natural linewidth. This general limit is always fulfilled
in our experiments. Thus the atom after this emission
event is in a superposition of two motional states.

This is also true for the more general case of tilted

a)E-Mail: single-photon@matterwave.de

emission, as revealed in Fig. 1b for emission close to the
mirror surface. One expects residual coherence for emis-
sion angles where the optical absorption cross section of
the atom and the mirror atom observed by a fictitious ob-
server in the emission direction still overlap. This is visu-
alized in Fig. 1b, where the corresponding cross-sections
are indicated with the bars. The overlap as a function
of emission direction is depicted on the sphere (blue no
coherence, red full coherence). The result on the atomic
motion is indicated for one special trajectory which starts
with an atom moving parallel to the mirror surface and
a single photon emission under an angle to the mirror
normal. This case leads to an imperfect coherent super-
position of two momentum states separated by less than
two photon momenta h̄k0. The spatial distribution of
the atoms at the position of the detector is shown, where
the color corresponds to the degree of coherence. In Fig.
1c we contrast this to the case of larger distance to the
mirror, where the portion of coherent atomic momentum
is strongly reduced.

It is important to keep in mind that a single particle
detector cannot distinguish between coherent superpo-
sitions and mixtures but only gives the probability dis-
tribution. Thus an interferometric measurement13 has
to be applied to reveal the expected coherent structure
(see Fig. 2). For that, the two momentum states of in-
terest have to be overlapped and the coherence i.e. well
defined phase difference, is verified by observing an in-
terference pattern as function of a controlled phase shift
applied to one of the momentum states. The two outer-
most momentum states are expected to show the highest
coherence. Their recombination can be achieved by a
subsequent Bragg scattering off an independent standing
light wave (see Fig. 2b) with the suitable wavelength10,14.
The relative phase φB is straightforwardly changed shift-
ing the probing standing light wave. This is implemented
by moving the retroreflecting mirror by distance L. The
upper graph depicts the results obtained for large dis-
tances (> 54µm) of the atom to the mirror i.e. a free
atom. In this case no interference is observed, and thus
spontaneous emission induces a fully incoherent modi-
fication of the atomic motion. For a mean distance of
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FIG. 1. Motional coherence generated by a single spontaneous emission event. (a) The situation of interest is depicted – an
atom in front of a mirror spontaneously emits a single photon. For emission perpendicular to the mirror surface an observer
can in principle not distinguish if the photon has been reflected or not. Momentum conservation in the atom-photon system
implies that the atom after the emission is in a coherent superposition of two different momentum states separated by twice
the photon recoil. (b) Indistinguishability is also given for more general emission directions. With the spatial extension of the
atom corresponding to the optical absorption cross section, indistinguishability can be estimated by the projected overlap of
atom and its mirror-image. This overlap is represented colorcoded on a sphere for all emission directions (red: full coherence,
blue: no coherence). Repeating the experiment – single atom emits a single photon – leads to the indicated pattern at the
atom detector. The colorcode indicates the probability generating a coherent superposition for the corresponding event (red:
full coherence, blue: no coherence). (c) In the case of large distances to the mirror the coherent portion drastically reduces,
approaching the limit of vanishing coherence in free space.

2.8µm clear interference fringes are observed demonstrat-
ing that a single spontaneous emission event close to a
mirror leads to a coherent superposition of outgoing mo-
mentum states.

In the following we describe the essential parts of ex-
perimental setup shown in Fig. 2b, lower graph. Fur-
ther details are provided in the supplementary informa-
tion. Since the effect critically depends on the distance
between atom and mirror a well collimated and local-
ized beam of 40Ar atoms in the metastable 1s5 state is
used. In order to ensure the emission of only a single
photon we induce a transition 1s5 → 2p4 (λE = 715nm).
From the excited state 2p4 the atom predominantly de-
cays to the metastable 1s3 state via spontaneous emis-
sion of a single photon (λSE = 795nm) (branching ratio
of 1s5/1s3 = 1/30). The residual 1s5 are quenched to
an undetectable ground state with an additional laser.
Choosing the appropriate polarization of the excitation
laser the atomic dipole moment is aligned within the mir-
ror plane leading to the momentum distribution after
spontaneous emission shown in Fig. 2a. The interferome-
ter is realized with a far detuned standing light wave on a
second mirror. Finally the momentum distribution is de-
tected by a spatially resolved multi channel plate (MCP)

approx. 1m behind the spontaneous emission enabling to
distinguish between different momenta.

For systematic studies of the coherence we analyze the
probability for finding a particle in a coherent superpo-
sition of momentum states as a function of atom-mirror
distance d. This is done by analyzing the final momen-
tum distribution for different phases φB within the inter-
ferometer and fit for each resolved momentum (≈ 1/8 of
a photon momentum) an interference pattern given by

N = N0 +NA cos(φB + φ0). (1)

In Fig. 3 we plot the visibility V = NA/N0 (with N0 the
constant atom number, NA the oscillatory part) reveal-
ing that the coherence vanishes within distances of a few
micrometers to the mirror.

For a basic understanding of the physics behind the
experimental observation we use a simple semiclassical
model. We follow the picture of an atom and its image
by Morawitz15 and Milonni, Knight2 and assume a two
level system with ground state |g〉 and excited |e〉. In or-
der to deduce the indistinguishability between the atom
and its mirror atom, i.e. the photon emission towards
and away from the mirror, we attribute to the atom a
size corresponding the optical absorption cross section
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FIG. 2. Experimental confirmation of coherence induced by spontaneous emission. (a) Experimental observation of momentum
distribution does not reveal the coherence. In both cases - close to and far from the mirror - the momentum distribution is the
same (blue line). In order to compare the observed momentum distribution after spontaneous emission with theory (light gray)
the data has been deconvoluted by the initial momentum distribution. The deviation results from a residual filtering of high
spatial frequencies. (b) The coherence is revealed if the spontaneous emission event is employed as the first beamsplitter of an
atom interferometer. The recombination is accomplished by Bragg scattering from a standing light wave. The relative phase
of the two paths can be changed by moving the ”Bragg” mirror as indicated. In the case of a mean distance of 54 µm between
atoms and ”entangling” mirror (upper graph, error bars indicate poisson noise) no interference signal is observed confirming
the free space limit. The inset depicts the position of ”entangling” mirror to the atomic beam. For a mean distance of 2.8 µm
(lower graph) the two complementary outputs of the interferometer reveal an interference pattern with a maximal visibility of
5.9% ± 1.1%.

(σ = 3λ2/2π). In the direction perpendicular to the mir-
ror an observer can not distinguish atom and mirror atom
in principle and thus a coherent superposition of momen-
tum states is emerging |ψ〉 = 1/

√
2(|+h̄k0〉+|−h̄k0〉) with

the photon momentum prec = h̄k0. For emission direc-
tions other than perpendicular the probability P for gen-
erating |ψ′〉 = 1/

√
2(|+ h̄k′〉+ | − h̄k′〉) can be estimated

by the overlap region of atom and mirror atom with the
assigned effective size as shown in Fig. 1b. This overlap
depends on the distance between atom and mirror and
on the observation angle (for details see supplementary
information). In order to quantitatively compare with
the experimental data the finite resolution of momentum
detection has to be taken into account leading to an in-
tegration over different observation directions. Further
averaging due to the finite extension of the atomic beam
(width in transverse direction of 10µm) and the initial
momentum distribution results in a reduction of the vis-
ibility V . The prediction within this model is shown as
solid blue line in Fig. 3.

The comprehensive quantum mechanical model (for
details see supplementary information) takes into ac-
count the modified mode structure of the electromag-
netic field due to the presence of the mirror16. We derive
a master equation for the internal degrees of freedom of

the atom and its center of mass motion perpendicular to
the mirror surface. It is found that the quantum state
of the atomic center of mass motion after spontaneous
emission can be written as

%̂gg(t =∞) = α
3

8

1∫

0

du
(
|ψs〉〈ψs|+ u2|ψp〉〈ψp|

)
, (2)

where

|ψs〉 =
(
r∗se

ik0uẑ + e−ik0uẑ
)
|ψ0〉, (3)

|ψp〉 =
(
−r∗peik0uẑ + e−ik0uẑ

)
|ψ0〉. (4)

The operators e±ik0uẑ in Eqs. (3) and (4) describe the
transverse recoil momentum ±h̄k0u transferred to the
atom by the spontaneously emitted photon. The Fres-
nel coefficient rs (rp) accounts for the reflection of the
transversal electric (transversal magnetic) mode at the
mirror and |ψ0〉 describes the motional state of the atom
before spontaneous emission. The normalization is en-
sured by the normalization constant α. For a quantita-
tive comparison with the experiment we assume that

|ψ0〉 =

∫
dpf(p, d)e

i
h̄pdeiφf (p)|p〉 (5)
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FIG. 3. Dependence of visibility on the mean atom-mirror
distance. Measured data is depicted as blue points. The
mean distance is calculated from the position of the ”entan-
gling” mirror with respect to the center of the atomic beam
as indicated in the insets. The error bars indicate a 95% con-
fidential interval resulting from the fitting procedure to the
interference pattern. The expectation from the simple cross
section overlap model is shown with the blue line. The quan-
tum mechanical treatment is depicted as green line. One finds
good agreement between theory and experiment by including
details such as initial spatial and momentum distribution, av-
eraging over all distances, details of Bragg scattering and the
final spatial resolution of the atom detector. The mean atom-
mirror distance is adjusted by the position of the ”entangling”
mirror with respect to the collimation slit of the atomic beam.

is a coherent wave packet. The quantity |f(p, d)|2 repre-
sents the initial momentum distribution of atoms and
is inferred from an independent measurement of the
momentum distribution. The description of the initial
atomic state by a pure state is a sensible assumption since
the width of the slit collimating the atoms is chosen to
be close to the diffraction limit. The phase φf (p) deter-
mines the shape of the wavefunction in position space.
The Bragg grating is modeled as a beamsplitter with
a momentum dependent splitting ratio determined from
experimental measurements. After free evolution of the
atom we determine the probability to detect the atom
within the given resolution of the detector. The result of
this calculation is shown as green line in Fig. 3 where only
the phase φf (p) of the wavefunction in front of the first
mirror cannot be fully reconstructed acting as a free pa-
rameter. The uncertainty of this phase explains a smaller
visibility and the asymmetry between different diffraction
orders (see Fig. 4).

So far we have discussed the maximum coherence ob-
served in the experiment. In Fig. 4 the momentum de-
pendence of the coherence is shown for a mean distance
of 3.3µm from the mirror. This reveals that only the

outermost parts of the momentum distribution are in a
coherent superposition which is consistent with the sim-
ple picture of atom and mirror atom. It is important to
note that Bragg scattering itself exhibits a momentum
dependence (Bragg acceptance). For the chosen short
interaction length the Bragg acceptance is indicated by
the gray line in Fig. 4. Since the observed coherence
decays significantly within the Bragg acceptance we can
experimentally confirm that only the most extreme emis-
sion events i.e. perpendicular to the mirror surface, lead
to a significant generation of coherence. This angular de-
pendence is similar for all investigated mirror distances
since it is essentially given by the coherent momentum
spread of the strongly confined initial atomic beam.

0.5

0

20

40

60

80

100

0 +ћk0-ћk0

Br
ag

g 
A

cc
ep

ta
nc

e

Co
he

re
nt

 a
to

m
s 

pe
r p

ix
el

Momentum

p

Probabilitydistribution

FIG. 4. Observation of angular dependence of coherence. The
schematics show an idealized case of coherent momenta for
an atom in a fixed distance and an initial momentum parallel
to the mirror (red area within the momentum distribution).
Due to finite momentum distribution of the atomic beam, the
narrow coherent momenta is smeared out in the experimental
realization. The measured width of coherent momenta (red
points) is smaller than the angle-acceptance of the Bragg-
crystal (gray line), revealing that mainly atoms with momenta
of ±h̄k0 are in a coherent superposition. The data is shown
for a mean distance of 3.3 µm (in contrast to Fig. 2b (lower
graph), where the atom is much closer to the mirror). Error
bars are defined accordingly to Fig. 3.

Finally we would like to point out the differences to
other experiments where the connection between spon-
taneous emission and coherence is investigated. For ex-
ample the experiment in8 shows that the spontaneous
photon carries away information from the atom about
its position, and therefore destroys the coherence when
the two paths can be distinguished. The experiment5

on the other hand provides direct proof for the coher-
ence of photons emitted in the resonance fluorescence of
a laser-driven ion in front of a mirror. The observed in-
terference pattern can be regarded as indirect evidence
for the motional coherence of the trapped ion, well within
the Lamb-Dicke limit6. A different example in the con-
text of laser cooling is velocity selective coherent popu-
lation trapping17 where spontaneous emission populates
motional dark states. Here the direction of the emitted
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photon is indistinguishable since it is emitted in the direc-
tion of a macroscopic classical field that drives the atom.
The most salient feature of our experiment is that a single
spontaneous emission event in front of a mirror creates a
coherent superposition in freely propagating atomic mat-
ter waves, without any external coherent fields involved.
The emission directions of the spontaneous photon be-
come indistinguishable due to the mirror.

In the work by Bertet et al.12 photons from transitions
between internal states are emitted into a high finesse
cavity. Their first experiment reported in12 demonstrates
the transition from indistinguishability when emission is
into a large classical field to distinguishability and de-
struction of coherence between the internal atomic states
when emission is into the vacuum state of the cavity.
In their second experiment12 they show that, using the
same photon for both beamsplitters in an internal state
interferometer sequence, coherence can be obtained even
in the empty cavity limit. In our experiment the pho-
ton leaves the apparatus. We observe coherence only
when the photon cannot carry away which-path infor-
mation. This implies that the generated coherence in
motional states is robust and lasts. In this sense it is
an extension of Einstein’s famous recoiling slit Gedanken
experiment11. The single photon is the ultimate light
weight beamsplitter which can be in a robust coherent
superposition of two motional states. In free space the
momentum of the emitted photon allows to measure the
path of the atom. This corresponds to a well defined mo-
tional state of the beamsplitter i.e. no coherence. Close
to the mirror the reflection renders some paths indistin-
guishable realizing a coherent superposition of the beam-
splitter. The large mass of the mirror ensures that even
in principle the photon recoil cannot be seen. Thus the
atom is in a coherent superposition of the two paths. We
measure this generated coherence by matterwave inter-
ference.
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7. Conclusion

In this work a mixed phase space is realized in a driven macroscopic quan-
tum system. Different behaviour of the time evolution of a many particle
wave packet is found, whether it is initially prepared at a stable island or
in the chaotic sea. In previous works, classical dynamics in the undriven
system [58] and quantum behaviour at an unstable fixed point were inves-
tigated [38]. The existing setup has been extended to compensate for loss
effects and to provide driving in order to investigate the time dynamics in
a system described by a mixed phase space.

In a most simple system, featuring just an anharmonicity in the undriven
case, the Poincaré-Birkhoff scenario was investigated by weak driving.
Due to the driving, resonant orbits have been destroyed and stable and
unstable fixed points occur. The time evolution of a wave packet prepared
at these points is found to be similar to the dynamics at a stable respec-
tively unstable fixed point of the undriven system. Therefore driving can
stabilize the system for a preparation in a stable island or destabilize it at
an unstable fixed point.
Furthermore, a mixed phase space is realized, exhibiting regular dynam-
ics within a chaotic sea. Preparing the wave packet at different points
along the perturbed orbit, the time dynamics in a stable island and in
chaotic sea are studied. The experimental results reveal the expected be-
haviour obtained from classical phase space, although the time scales are
different. Furthermore, the dynamics within the chaotic sea exhibit little
dependency on initial parameters and the wave packets spreads much
faster than on the unstable fixed point in the Poincaré-Birkhoff scenario.

Extending the classical model by using a distribution of points instead of
a single one, classical simulations fit well to experimental data as well as
the mean field model for certain observables and short times. Beyond the
dynamics of the mean, also the qualitative behaviour of the variances can
be reproduced in simulations. Expectations obtained from the classical
phase space picture are used to develop an intuitive picture to under-
stand the time dynamics in the driven system. Although the time scales
of Poincaré map and experiment are rather different, the results are found
to be compatible. Thus the dynamics in the driven mean field model can
be predicted by simple arguments using the classical Poincaré map with-
out having to do full quantum simulations.
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With the first realization of a mixed phase space for an interacting many
body system in the semi-classical regime, the route opens up for the in-
vestigation of several aspects, being of importance for both, the chaos
and the quantum optics community.

Future prospects might involve the study of the transition from quantum
to semi-classical regime. Since the effective Planck’s constant of the sys-
tem depends directly on atom number, it can be varied over a large range.
Thus ℏeff dependent effects can be investigated – like flooding of islands
[129, 130] or regular to chaotic tunneling [131, 132]. The investigation
of these effects is beyond the scope of this work. Due to loss, the experi-
mental accessible time scales in the current system are too short for the
investigation of tunneling processes in phase space. Further optimization,
e.g. fine tuning of ℏeff according to the size of the stable island, could tune
the system towards the realization of these effects.

The closely related chaos assisted tunneling (CAT) would open up the
route to a very interesting field of physics. In this scenario, the tunneling
process between two stable islands is moderated by states of the chaotic
sea and thus could be enhanced by orders of magnitude [133, 26]. The
regular tunneling between two stable islands is experimentally not observ-
able in the undriven system, due to huge tunneling times even for mod-
erate particle numbers. In the context of macroscopic quantum systems,
the enhancement of the tunneling rate due to CAT could result in exper-
imentally observable many body tunneling. However, the occurrence of
CAT depends critically on the symmetry of the system [134], which is ex-
perimentally hard to realize. Candidates to circumvent this problem are
the moving period 2 islands investigated in this work. Since these islands
are created by perturbation of one orbit, they must have the same energy
in principle and thus at least the symmetry of these islands is ensured.

Furthermore, the tunneling rate in a CAT scenario depends critically on the
effective Planck’s constant [27], hence it could result in the investigation
of odd/even effects in a loss-free system. In order to detect these differ-
ences, the detection noise in particle number has to be less than one. An
enhanced detection is work in progress in our group and first promising
results were obtained [135].

With that, the current experiment is directly connected to "coherent de-
struction of tunneling" [24], where I started my research. We realized
the "single photon beam splitter" [108] afterwards with the same appara-
tus. Finally I switched to the BEC experiment in order to move forwards to
chaos assisted tunneling.
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A. Technical details

A.1. Numerical treatment of the classical
Hamiltonian

It is well known to establish the equation of motion out of a classical Hamil-
tonian. In the considered case, some numerical problems arise due to the
bounded phase space which will be discussed in the following.

Since the problem also arises in the undriven Hamiltonian, the solution is
shown for that case for simplicity. For the driven system, the solution can
be directly transferred. The undriven Hamiltonian including a detuning ε
reads as:

H =
Λ

2
z2 −

p

1 − z2 cosφ + εz (A.1)

resulting in the equation of motion:

ż = −
∂H
∂φ
= − sinφ

p

1 − z2

φ̇ =
∂H
∂z
= Λz + z

cosφ
p

1 − z2
+ ε (A.2)

Although a solution to A.2 can be found in [56] the main interest is in
solutions to the driven system where no analytical solutions exist. Thus
the set of coupled ODE’s will be solved numerically. Just as the undriven
system, also the driven version of eq. A.2 can be solved as an initial value
problem with standard Runge-Kutta solving techniques [136].

When solving the equation of motion with standard Matlab ODE solver,
for certain time and starting condition a complex solution will occur, even
with small error tolerances and different ODE-solvers. The problem ap-
pears when the solution comes close to the poles. As the algorithm takes
a linear approximation between two steps, it is in principle possible that
the approximated z-value is out of bounds [−1,1]. This implies complex
value for the derivative as the square root in A.2 becomes complex.
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In Matlab, no ODE solvers for an initial value problem with bounded so-
lutions are known. Expressing equation A.2 in terms of z and φ implies
also another numerical problem, which becomes obvious when consider-
ing plasma oscillations for small Λ in the untilted system with ε = 0. Start-
ing at z0 = −1, φ0 = π/2 and applying the Hamiltonian A.1, the system
undergoes Rabbi-oscillations [48] with a constant angular velocity from
z = −1 to z = 1 and back. In equation A.2 the velocity will depend on z,
thus the error in each step within the Runge-Kutta algorithm will differ for
several positions in phase space.

To circumvent both problems, equation A.2 will be rewritten with a trans-
formation of coordinates, where z is substituted by z = sinϑ:

p

1 − z2 = cosϑ

ż =
∂z

∂ϑ
ϑ̇ = cosϑ ϑ̇

yielding in an ODE in the new coordinates:

ϑ̇ = − sinφ
φ̇ = Λsinϑ + tnϑ cosφ + ε . (A.3)

Instead of substituting z by sinϑ also z = cosϑ could be used leading to
structurally similar ODE’s with minor changes. The corresponding driven
version reads as:

ϑ̇ = − sinφ
φ̇ = Λsinϑ + [1 + ADriv sin (ωDrivt + φDriv)] tnϑ cosφ + ε . (A.4)

For all classical simulations, the start point z0, φ0 is translated to ϑ0, φ0,
the time evolution is numerically calculated with the equations A.3 respec-
tively A.4, and the solution is retranslated to z, φ.

A.1.1. Generation of a Gaussian distribution

For the comparison of the quantum with classical simulations the input
state for the classical simulation should match the quantum one. In quan-
tum calculations, the input is given in form of a coherent spin state (Eq.
2.33), approaching a normal distribution with σ = 1/

p
N for larger atom

numbers. To obtain normally distributed points around mean values z0, φ0
on a sphere the polar method [137] was used.
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That’s how it works: choose two equally distributed random variables
1, 2 in the interval [−1,1]. Than calculate r = 2

1
+ 2

2
and reject the

points if r = 0 or r ≥ 1. With σ = 1/
p
N and

s =

√

√

√

−2
ln r

r

the desired coordinates calculate as:

1 = σ · 1 · s
2 = σ · 2 · s

In a flat geometry the resulting points would be shifted to the desired
mean values subsequently. In our case all points are rotated to the desired
z0, φ0 by usual rotation matrices in R3.

A.1.2. Plot of distributions

To visualize the time evolution of an initial gaussian distribution the follow-
ing approach was chosen. A set of gaussian distributed points (typically
105 to 1.5 · 105) is evolved in time according to the considered Hamilto-
nian so one obtains the set (z, φ). Then a regular grid on the surface of
a sphere is calculated (typically 500× 500 sites), the number of all points
(zj, φj) within a site is counted and the result for all sites is plotted either
on a 3D sphere or the flat phase space. The regular grid has to be chosen
carefully to provide an equal area for each site over the whole sphere as
described in [138, 139]. Otherwise the result would look disturbed.

Especially for the distributions in the chaotic sea a normalization of the
colormap to the maximal density would be quite unsatisfying due to large
fluctuations of the maxima even for small time steps. Instead of normal-
ization, a histogram of all densities is calculated which follows an exponen-
tial decay function (except for gaussian distributions). Than the maximum
in the colormap is set to twice of the "decay time" thus only a few very
high densities are above the threshold and structure within them is lost.
On the other side this enhances the visibility in mean densities.

Afterwards, to provide a better visibility, the contrast is enhanced by a
gamma correction with γ = 2 [140].
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A.1.3. Stationary points

Some basic insight into the system can be gained by obtaining its fixed
points and determining their dependency on system parameters. In the
following, the investigation of fixed points and a stability analysis will be
presented.

It is required for a fixed point that all first derivatives vanishes [141] to be
constant in time. Thus, we are looking for solutions of the ODE A.2:

żFP = − sinφ
Ç

1 − z2
FP

φ̇FP = ΛzFP + zFP
cosφFP
q

1 − z2
FP

+ ε (A.5)

fulfilling żFP = 0 and φ̇FP = 0.

Fixed points of the symmetrical system ε = 0

For the symmetrical system with ε = 0 some investigations can be done in
a closed analytical manner without any approximations, whereas approxi-
mations have to be applied for the tilted system with ε 6= 0. Therefore the
basic features will be shown for the symmetrical system.

One pair of solutions of Eq. A.5 can be directly given: φFP = 0;π and zFP =
0. Since these fixed points play an important role, they will be labeled
according to:

zP = 0; φP = 0 −→ Plasma (A.6)

zπ = 0; φπ = π −→ π . (A.7)

A motivation for this naming convention will be given shortly. Besides
this trivial solution two other fixed points occurs for φFP = π. The first
equation in A.5 vanishes for this choice of φFP, the second one leads to the
solution:

0 = ΛzFP −
zFP

q

1 − z2
FP

z± = ±

√

√

1 −
1

Λ2
. (A.8)
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Yet these fixed points are real if and only if the relative nonlinearity fulfills
Λ ≥ 1. Furthermore for the critical value of Λ = 1 the fixed points zπ and
z± coincides but differ for larger values of Λ. Hence the system exhibits a
bifurcation at Λ = 1.

Further analysis requires the knowledge of the stability of the fixed points,
which will be determined according to [4]. Therefore the coupled ODE’s:

�

ż
φ̇

�

= F (z, φ) =







− sinφ
p

1 − z2

Λz + z cosφ
p

1 − z2
+ ε






(A.9)

will be linearized for an orbit close to the stable fixed point zFP. The lin-
earization of the equation of motion is obtained by the Jacobian matrix of
F:

DF =







∂F1
∂z

∂F1
∂φ

∂F2
∂z

∂F2
∂φ






=









z sinφ
p

1 − z2
− cosφ

p

1 − z2

Λ + cosφ
p

1 − z2
3 − z sinφ

p

1 − z2









z=zFP
φ=φFP

(A.10)

evaluated at the desired fixed point. By determining eigenvalues and
eigenvectors of DF, the behaviour close to the fixed point can be pre-
dicted. If the eigenvalues are solely imaginary, the fixed point will be
stable with regular orbits around. On the other hand, if one eigenvalue is
real and larger than zero, a point close-by will be exponential separated
from the fixed point along the corresponding eigenvector. Contrary if the
eigenvalue is real and smaller than zero an adjacent point will exponen-
tially approach the fixed point.

The eigenvalues of DF can be determined to:

λ± = ±

√

√

√z2 sin2 φ − cos2 φ

1 − z2
− Λcosφ

p

1 − z2 . (A.11)

If the fixed point is stable, the angular frequency of a closed by orbit is
determined by the imaginary part of the eigenvalue [4]:

ω = ℑ(λ) (A.12)

On the other hand the eigenvalue coincides with the Lyapunov-exponent
for an unstable fixed point. This definition of the Lyapunov-exponent is
solely applicable at fixed points of the system, a numerical determination
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for a more general case is given in Sec. A.1.4. The eigenvectors of DF
for real eigenvalues corresponds to the stable respectively unstable man-
ifold/axis.

Evaluating the eigenvalue Eq. A.11 at the plasma fixed point zP = 0, φP =
0 one obtains:

λP± = ±
p

−Λ − 1 (A.13)

which is complex for all values of the relative nonlinearity since Λ is always
larger than zero. This indicates, that this fixed point is stable for all values
of Λ. The frequency of a surrounding orbit reads in scaled units as:

ωP = ℑ(
p

−1 − Λ) =
p

1 + Λ . (A.14)

A similar approach to derive small amplitude oscillations close to the plasma/π
fixed points is given in [56] leading to same results.

The fixed point at the π side shows a different behaviour, which is deter-
mined by its eigenvalue:

λπ± = ±
p

Λ − 1 . (A.15)

If the relative nonlinearity is smaller than one Λ < 1, the eigenvalue is
solely imaginary, indicating stable behaviour of adjacent orbits. The cor-
responding frequency in the small amplitude approximation calculates to:

ωπ =
p

1 − Λ . (A.16)

Therefore the frequency of the plasma fixed point is larger than on the π
side, which is indicated by the naming convention.

The two fixed points z± occurring at Λ = 1 are stable since the eigenvalue
λ±± = ±

p

1 − Λ2 is imaginary for Λ ≥ 1. The frequency of orbits close to
these new fixed points can be linearized by:

ω± =
p

Λ2 − 1 (A.17)

which fits perfectly with numerics and findings from the effective single
particle Schrödinger like equation in [49, 50].

Linearized dynamics at the unstable fixed point

When Λ is larger than one, the eigenvalues of zπ become real. Thus the
fixed point zπ becomes unstable at Λ = 1, the same value where the other
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two fixed points z± occur. Therefore the system undergoes a pitchfork or
period doubling bifurcation [4, 50] at Λ = 1.

Since the considered system is Hamiltonian, phase space volumes will re-
main unchanged. Thus the real eigenvalues appear in pairs with different
sign. The Lyapunov exponent λ+ =

p
Λ − 1 with positive sign leads to an

exponential separation of adjacent points located at the unstable axis with
a rate of eλ+ t. The unstable axis is determined by the eigenvector:





1p
Λ − 1
1



 . (A.18)

The angle of the unstable axis to the φ axis calculates1 to:

αs = rctn

�

1
p
Λ − 1

�

=
π

2
− rctn

�
p

Λ − 1
�

. (A.19)

On the other hand, the Lyapunov exponent with negative sign:

λ− = −
p

Λ − 1 (A.20)

corresponds to a contraction of points of the stable manifold. The stable
axis:





− 1p
Λ − 1
1



 (A.21)

encloses an angle to the φ axis of:

αs = rctn

�

−
1

p
Λ − 1

�

= rctn
�
p

Λ − 1
�

−
π

2
(A.22)

In general stable and unstable axis are not orthogonal to each other, ex-
cept for a value of Λ = 2.

The rate of squeezing

The initially prepared coherent spin state has the same uncertainty in all
directions. When prepared at the unstable fixed point, the state will be
stretched along the unstable manifold and squeezed along the stable one.
The rate of squeezing of a state will be calculated in the following.

1Note that in standard plots the φ axis corresponds to  and the z-axis to y.
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The Lyapunov exponent defined in Eq. A.20 describes the exponential sep-
aration of points, thus the smallest standard deviation σ of the state will
shrink by the rate σ(t̃) = σ0 exp

�

λ± t̃
�

. Contrary the number squeezing[37]
is defined by the time evolution of variances σ2 thus an additional factor
of two appears in the rate (in logarithmic scale):

ξ2
N
(t̃) = 10 log10

�

σ2(t̃)

σ2
0

�

(A.23)

=
10

ln10
2λ− t̃ (A.24)

Finally the number squeezing can be described by the time evolution in
scaled units:

ξ2
N
(t̃) = −

20

ln10

p

Λ − 1 t̃ . (A.25)

The best squeezing is obtained along the stable axis at an angle deter-
mined by Eq. A.22. At same time, the state rips apart along the unstable
axis. This approximation holds for short times as long as the small am-
plitude approximation is valid and quantum effects are negligible. This is
fulfilled for large N and not too close to the bifurcation point of Λ = 1, since
quantum dephasing is dominating over the classical dynamics close to the
bifurcation. A more detailed analysis of squeezing in the quantum system
is given in [55].

In a typical experimental scenario for using squeezing, one aims to achieve
a fast as possible squeezing. The nonlinearity Nχ is limited in our case,
e.g. by loss, but the coupling Ω can be chosen (almost) arbitrary. Since
the coupling is not only involved in the relative nonlinearity but also in the
scaling of the time t̃ = 2πΩt (Eq. 2.26), an optimal value should be found.
Therefore, the squeezing will be expressed in real time:

ξ2
N
(t) = −

20 · 2π

ln 10

Æ

NχΩ − Ω2 t . (A.26)

The gradient achieves its maxima for Ω = 1
2Nχ. Thus a relative nonlin-

earity of Λ = 2 leads to squeezing being as fast as possible (for a time
constant Hamiltonian). A scheme for faster squeezing due to pre squeez-
ing is proposed in [45].
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Tilted system

Prior to determining the fixed points of the tilted system with ε 6= 0, the
value of the relative nonlinearity should be determined, where the bifur-
cation occurs. Since the detuning ε adds a tilt to the system, one fixed
point of the bifurcated system is shifted upwards and one downwards in
energy (see Fig. A.1). Thus the downwards shifted island is getting more
stable and is named deep island, the upshifted island is called "weak".

−1 0 1

V

z

Figure A.1.: Schematic sketch of the inverted pseudo potential at φ = π
for different values of Λ and a fixed tilt ε. The relative nonlin-
earity is increased from blue to yellow. The potentials for dif-
ferent Λ coincide at z = 0, however a small offset was added
to provide better readability. The tangent bifurcation occurs
between red and cyan lines, therefore a new fixed point is
created with zFP < 0.

When increasing the tilt, the rising edge of the left fixed point becomes
more shallow, and reaching zero for some value. Therefore, the left fixed
point becomes unstable and coincides with the unstable fixed point in the
center for this choice of parameters. In order to obtain the bifurcation
point, additionally to the condition of a vanishing derivative for a fixed
point

0 = F2 =
∂H
∂z

�

�

�

�

φ=π
= Λz −

z
p

1 − z2
+ ε (A.27)

also the second derivative has to vanish [141]:

0 =
∂F2

∂z
= Λ −

1
�

1 − z2
�
3
2

. (A.28)
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These equations can be established for a value of φ = π since the condition
for ż = 0 is not changed by the tilt. The second equation gives a value for
the position z∗ of the bifurcation:

z∗ = ±

√

√

√

√1 −
1

Λ
2
3
∗

. (A.29)

Inserting this into Eq. A.27 yields in the condition for a bifurcation of the
system at a value of:

Λ∗ =
q

1 + ε
2
3

3

. (A.30)

The tilt changes the system just slightly, however the position of the fixed
points is shifted a bit. For fitting experimental data, it is useful to have
an analytical approximation of the position of fixed points. Since the con-
dition of Eq. A.27 cannot be solved directly for a non vanishing tilt, an
approximation will be developed.

As we saw in the untilted system, the interesting dynamics occurs at the
π side of the Bloch sphere. Thus we will concentrate at the φ = π fixed
points and omit the one at φ = 0. In order to obtain approximations for the
fixed points, taylor expansion of the hamiltonian will be applied around
appropriate start points. When the condition of a vanishing first derivative
can be solved for the approximated Hamiltonian and an approximation of
zFP is obtained.

For the π-fixed point and Λ < Λ∗ a second order taylor expansion around
z = 0 yields in the fixed point:

z(2)
π
=

ε

1 − Λ
. (A.31)

This deviates remarkably to the numerics, thus the fourth-order taylor ex-
pansion of the Hamiltonian:

H| z=0
φ=π
≈ −

z4

8
−
1

2
(1 − Λ)z2 + εz + 1 (A.32)

will be used instead. Differentiate with respect to z leads to the much
better approximation of:

zπ =
�

ε +
Æ

ε2 + Λ̃3
�

1
3
−

Λ̃
�

ε +
p

ε2 + Λ̃3
�

1
3

(A.33)
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with Λ̃ = 2
3 (1 − Λ) and φπ = π.

The fixed points z± for the bifurcated system with Λ > Λ∗ can be obtained
by taylor expansion of H around the fixed points of the untilted system

z0 = ±
Ç

1 − 1
Λ2

. Even when using higher order taylor expansion, the re-
sulting approximation does not fit well with numerics due to large anhar-
monicity of the Hamiltonian. A much better result can be obtained by
fourth order taylor expansion around the points:

z(0)± = ±

√

√

√

1 −
(1 ∓ ε)2

Λ2
. (A.34)

The formula can be solved analytically e.g. by computer algebra, but is
too long to be displayed here and does not lead to further insight into the
behaviour. It fits quite well with numerics.

A.1.4. Lyapunov-exponents

The Lyapunov-exponent for a Hamiltonian systems describes the rate by
that two adjacent points are separated in time. We follow the route of
[51, 142] to numerically calculate the largest Lyapunov-exponent using
the rescaling method. The basic idea is the following: one starts with two
adjacent points ~0 and ~y0 = ~0 + ~δ0 separated by a small amount |~δ0| in
an arbitrary direction. Subsequently the time evolution of both points is
calculated for a small time τ, thus ~τ, ~yτ leading to the new displacement
~δτ = ~yτ − ~τ. For the next iteration, the direction of the displacement
is kept, but the amount is rescaled to the original value, thus the new
start points is ~τ and ~τ +

δ0
δτ
~δτ. The largest Lyapunov exponent is when

calculated according to:

λL = lim
N→inf

1

Nτ

N
∑



ln

�

δ

δ0

�

The basic idea of this procedure is that the most unstable axis is dominat-
ing over all other axes. Thus two adjacent points will diverge mostly along
the unstable axis and with the rescaling in each step, the axis is remained
but the distance is rescaled to stay in close vicinity of the desired point.
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Figure A.2.: Lyapunov exponents of the driven system at Λ = 1.53 for dif-
ferent driving amplitudes. The calculation is done for many
start points in the phase space and plotted according to the
same colormap from blue to red.

A.2. Numerical methods to solve the
Bose-Hubbard Hamiltonian

In this part, the numerical treatment of the Hamiltonian will be addressed
shortly. The (undriven) scaled Bose-Hubbard Hamiltonian for a spin-N/2
system including a detuning ε reads as [49, 42, 44, 45]:

Ĥ0 =
Λ

2
Ĵ 2
z
− Ĵ + εĴz. (A.35)
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A.2.1. Numerical diagonalization

Following standard text books [75, 143] the Hamiltonian A.35 will be rewriten
in terms of creation and annihilation operators and diagonalized in the
number state basis. With the creation and annihilation operators ̂†

1
and

̂1 of one quanta in state |F = 1〉 (and corresponding operators ̂†2 and
̂2 for state |F = 2〉), the spin-N/2 operators can be written in the form
[44, 45]:

Ĵ =
1

N

�

̂†
2
̂1 + ̂†1̂2

�

(A.36)

Ĵy =
1

N

�

̂†
2
̂1 − ̂†1̂2

�

(A.37)

Ĵz =
1

N

�

̂†
2
̂2 − ̂†1̂1

�

(A.38)

where a different normalization was chosen to obtain a Bloch sphere with
radius of 1, such that the results of the quantum simulation are direct com-
parable with classical ones. By calculating some commutation relations of
the operators Ĵ , the value of the effective Planck’s constant is given by
2/N (see Eq. 2.24). In order to preserve the mapping of the operators
̂ to state |F = 〉 and to assign the expectation value of 〈Ĵz〉 ≡ −1 to all
particles being in state |F = 1〉, the labelling of term is swapped according
to [44].

The number state basis (equivalent to Fock basis [32]) for a fixed total
number N of particles (or spins) is composed by vectors:

|φk〉 =|k,N − k〉 (A.39)

where k denotes the number of particles in state |F = 2〉 and N − k the
number of particles with |F = 1〉. It should be noted the operator ̂2 is
acting on the first component of |φk〉 within this notation. Thus each state
can be decomposed into:

|ψ〉 =
N
∑

k=0

ck |k,N − k〉 (A.40)

with coefficients ck. By expressing the Hamiltonian A.35 in the number
state basis, an equivalent to the Schrödinger equation for the coefficients
ck is derived. The base vector |k,N−k〉 is assigned to the vector (. . . ,1, . . .)
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with a 1 at the k’th position. To obtain the matrix form of the the spin-N/2
operators, their action on a base state is calculated:

Ĵz |φk〉 =
1

N

�

̂†
2
̂2 − ̂†1̂1

�

|k,N − k〉

=
1

N

�p

k
p

k −
p

N − k
p

N − k
�

|k,N − k〉

=

�

2k

N
− 1

�

|k,N − k〉

thus Ĵz is equivalent to the matrix in number state base NB:

�

Ĵz
�

NB
=
2

N









0 − N 0 0 . . .
0 1 − N 0
0 0 2 − N
...

. . .









(A.41)

where the brakets around Ĵz indicates the matrix form of the operator in
the number state base. A verification of the expectation value of 〈0, N|Ĵz|0, N〉 =
−1 confirms the identification of the first component with the |F = 2〉man-
ifold. For Ĵ follows:

Ĵ |φk〉 =
1

N
(
p
k
p
N − k + 1 |k − 1, N − k + 1〉 +

p
k + 1

p
N − k |k + 1, N − k − 1〉 )

which is equivalent to the matrix:

�

Ĵ
�

NB
=
1

N







. . . p
k
p
N − k + 1 0

p
k + 1

p
N − k ← k + 1

. . .
↑k+1







where the central 0 is in the k+ 1’th column and row (the +1 is due to the
start with indice k = 0).

Although the matrix form of the operator Ĵy is not directly required to de-
velop the matrix form of the Hamiltonian, in the calculation of the expec-
tation value of φ it is needed. Therefore, it calculates as:

Ĵy |φk〉 =
1

N
( −

p
k
p
N − k + 1 |k − 1, N − k + 1〉 +

p
k + 1

p
N − k |k + 1, N − k − 1〉 )
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and thus:

�

Ĵy
�

NB
=
1

N







. . .

−
p
k
p
N − k + 1 0

p
k + 1

p
N − k

. . .






.

Henceforth the matrix form of the Hamiltonian (A.35) can be obtained by
substituting the operators by their matrix counterpart to obtain a N + 1 ×
N + 1 matrix:

�

Ĥ0
�

NB
=
Λ

2

�

Ĵz
�2

NB
−
�

Ĵ
�

NB
+ ε

�

Ĵz
�

NB
(A.42)

which can be diagonalized (as it is hermitian) to obtain eigenenergies Ek
and eigenvectors |φ̃k〉. For the typically investigated particle numbers be-
low 1000 atoms the diagonalization is numerically feasible. Thus each
input state can be decomposed into the new base:

|ψ0〉 =
∑

k

c̃k |φ̃k〉

and its time evolution can be directly written as:

|ψ(t)〉 =
∑

k

c̃k exp (−tEkN/2) |φ̃k〉 (A.43)

where the factor 2/N serves as an effective Planck constant [49]. The
additional factor of 2 is due to the different normalization of the radius of
the Bloch sphere.

On the other hand, the time evolution can be calculated numerically with-
out diagonalization by solving the N + 1 coupled ODE in the ck’s:













...

ċk

...













= −
N

2

�

Ĥ
�

NB













...
ck−1
ck
ck+1

...













(A.44)

Numerical treatment of the driven system

The driven system can be treated analogous when including the explicit
time dependency of the driving into the matrix form of the Hamiltonian
A.42:
�

Ĥ(t)
�

NB
=
Λ

2

�

Ĵz
�2

NB
− [1 + ADriv sin (ωDrivt + φDriv)]

�

Ĵ
�

NB
+ε

�

Ĵz
�

NB
(A.45)
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leading to an explicit time dependency in the coupled ODE’s of the coef-
ficients ck. This can be directly solved by a Runge-Kutta solver, however
it’s not the best way numerically. In our experiments, the initial state will
be a coherent spin state (CSS, see Sec. 2.2.1), which is a superposition of
many number states. Since none of the number states is an eigenstate of
the Hamiltonian, the occupation will vary rapidly leading to an enhanced
error in the numerical treatment.

Following the basic principle of time dependent perturbation theory (Sec. A.2.2
or [75]), the mentioned problem will be circumvented. The idea is for
small perturbations that the perturbed state will evolve similar to an un-
perturbed one (an eigenstate of the Hamiltonian) plus some correction in
the order of the perturbation in terms of the eigenbase of the Hamilto-
nian. Thus all operators within the Hamiltonian will be rewritten in the
eigenbase of the Hamiltonian (which is numerically known after diagonal-
ization):

�

Ĵ
�

NB
→

�

Ĵ
�

EH
�

Ĵz
�

NB
→

�

Ĵz
�

EH

where EH denotes the eigenbase of the Hamiltonian. Thus the matrix
form of the driven Hamiltonian can be deployed by substituting in equa-
tion A.45 the representations of all operators in the number state base by
their pendant in the eigenbase. This representation of the Hamiltonian

�

Ĥ
�

EH
=

Λ

2

�

Ĵz
�2

EH
− [1 + ADriv sin (ωDrivt + φDriv)]

�

Ĵ
�

EH
+ ε

�

Ĵz
�

EH

=
�

Ĥ0
�

EH
− ADriv sin (ωDrivt + φDriv)

�

Ĵ
�

EH
(A.46)

is diagonal for ωDrivt + φDriv = 2πN, and in general close to diagonal with
small time dependent entries in the off diagonals (for small ADriv). It can
be numerically integrated in analogy to equation A.44.

A comparison of both methods can be done for the undriven Hamiltonian,
as the quasi analytical solution is known. By calculating the overlap of
the wavefunctions obtained by analytical and numerical methods, an es-
timation of the error of the numerical method exists. The error depends
slightly on the start point, but usually the error for the ODE in the num-
ber state base is more than an order of magnitude higher than for the
ODE in the eigenbase. Although this comparison is somehow weak as the
off-diagonal terms are neglected.

Separation of the fast phase evolution in Eq. A.46 and rewriting the ODE in
slow varying terms according to Eq. A.56 of the time dependent perturba-
tion theory leads to no further speed improvements. Thus all simulations
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in the mean field picture were done with the ODE’s in the eigenbase ac-
cording to Eq. A.46.

Expectation values and variances

For a quantitative comparison of the experiment and the predictions of
the simulations, besides the expectation values in z and φ the correspond-
ing variances σ2

z
and σ2

φ
were required. In the classical simulations these

values are obtained for free, as the results are calculated in z, φ for a
distribution of points and mean and variances can be calculated as mean
respectively variance over the whole distribution.

In quantum mechanics expectation values and variances for a state ψ and
an operator Ô can be calculated by:

〈Â〉 = 〈ψ|Âψ〉
σ2
A
= 〈ψ|Â2ψ〉 − 〈Â〉2 (A.47)

where an operator equivalence is used in the last row. For φ no direct op-
erator exists, so σ2

φ
is derived from the variances in , y, z. From quantum

to classical correspondence, the expectation value 〈Ĵ〉 corresponds to 
(accordingly for the other coordinates and variances). The coordinates
transform as:

 =
p

1 − z2 cosφ

y =
p

1 − z2 sinφ

Utilizing the gaussian error propagation [99] for variances

σ2

=

�

∂

∂φ

�2

σ2
φ
+
� ∂

∂z

�2

σ2
z

yielding to:

σ2

=

�

1 − z2
�

sin2 φσ2
φ
+
z2 cos2 φ

1 − z2
σ2
z

σ2
y
=

�

1 − z2
�

cos2 φσ2
φ
+
z2 sin2 φ

1 − z2
σ2
z
. (A.48)
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Adding both equations and some minor transformations lead to the for-
mula for the variance in φ:

σ2
φ
=
σ2

+ σ2

y

1 − z2
−

z2σ2
z

�

1 − z2
�2

(A.49)

Thus with expectation values and variances for all 3 operators Ĵ, Ĵy, Ĵz
according to equation A.47 the variance in φ can be obtained.

Normalization of variances

A coherent spin state (CSS) should always have a variance of 1/N, with N
the number of atoms/spins [45]. When calculating the variance for an CSS
prepared at z = 0 either with the mean field or the classical model, this
result is obtained. But then rotating the same state towards the poles, the
measured variance in z shrinks due to projection. For an investigation in
the dynamics on the Bloch sphere, it would be much more appropriate to
uncouple the evolution of the variance from that of the mean, so that a
change in variance gives a direct hint if the distribution shrinks or broad-
ens. Thus all variances will be normalized to live on the surface of the
sphere according to:

P =
z

2
+
1

2

σ̃2
z
=

σ2
z

4P (1 − P)
σ̃2
φ
= σ2

φ
· 4P (1 − P) (A.50)

where the corrected/normalized variances are denoted with a tilde. The
factor 4P(1 − P) = 1 − z2 = (sinϑ)2 (with ϑ being the angle of spherical
coordinates ) can be derived by simple geometric considerations. All ex-
perimental and simulated variances within this thesis (except the phase
space plots like Fig. 5.11) are normalized according to A.50.

A.2.2. Time dependent perturbation theory

In order to gain some insight into short time dynamics beyond pure simu-
lations, time dependent perturbation theory will be applied to the driven
system. Structurally the considered driven system is quite similar to a
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two level atom subjected to an electro magnetic field in the dipole approx-
imation, as treated in many text books of atomic physics [75, 74, 92]. As
the system consists of much more energy levels and is initially not in an
eigenstate of the Hamiltonian, the considerations will be slightly modified.
The following route is mainly excerpted from [75], but will be given here
to ensure the proper definition of terms.

In order to shorten some terms, within this section the driving Amplitude
ADriv will be abbreviated with A, the driving frequency with ωD and the
driving phase with φD. The driven Hamiltonian can be written as:

Ĥ(t) = Ĥ0 + AŴ(t) (A.51)

with Ĥ0 as the undriven Hamiltonian and a perturbing part Ŵ(t):

Ĥ0 =
Λ

2
Ĵ 2
z
− Ĵ + εĴz

Ŵ(t) = − sin(ωDt + φD)Ĵ . (A.52)

Denoting the eigenvectors of Ĥ0 with |φn〉, an arbitrary state can be written
as

|ψ〉 =
∑

n

cn(t) |φn〉 (A.53)

with time dependent expansion coefficients cn(t) in the eigenbase of Ĥ0.
The following considerations will all be done in the eigenbase of Ĥ0. Since
it can’t be diagonalized analytically for an arbitrary choice of parameters
Λ and ε and more than a few atoms, the conclusions can’t be done in a
strong analytical way. This holds even in the approximation of time de-
pendent perturbation theory and some coefficients have to be obtained
numerically. Therefore predictions can be given for a certain set of pa-
rameters and starting values merely.

The coefficients ck(t) have to fulfill the coupled differential equations:

ℏ
d

dt
ck(t) = Ekck(t) + A

∑

n

cn(t)Wkn(t) . (A.54)

This is equivalent to the coupled ODE’s for the numerical treatment of
the driven Hamiltonian in Eq. A.46. Obviously, in this representation the
diagonal terms are in the order of Ek whereas the off-diagonal terms are in
the order of the driving amplitude, so typically much smaller. The matrix
elements of Ŵ are denoted with Wkn(t):

Wkn(t) = 〈φk | Ŵ(t) |φn〉 = − sin(ωDt + φD) ·
�

J
�

kn
. (A.55)
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Thus the perturbation term is proportional to the representation of Ĵ in
the eigenbase of Ĥ0. The first term of Eq. A.54 leads to the fast phase
evolution of the undriven system. Therefore it is more convenient to sep-
arate the fast time evolution ck(t) = bk(t)exp (−ωkt) and examine the
time evolution of slowly varying terms bk(t). For the undriven system,
these terms are time independent and completely determined by the ini-
tial preparation.

Applying the separation of different orders in time into Eq. A.54, the (ex-
act) ODE for the bk’s can be derived:

ℏ
d

dt
bk(t) = A

∑

n

Wkn(t)eΔωkntbn(t) (A.56)

with the eigenfrequency difference Δωkn = ωk−ωn. In order to dissolve the
dependency of coupled ODE’s, perturbation theory makes the assumption
that the bk(t) can be written in a power series in the driving amplitude:

bk(t) =
∑



Ab
()
k (t) . (A.57)

Inserting this into Eq. A.56 and comparing the same orders in A, one
obtains:

ℏ
d

dt
b
()
k (t) =

∑

n

b(−1)
n
(t)Wkn(t)eΔωknt . (A.58)

This implies that the time evolution of the coefficient in the () order is
completely determined by the (known) time evolution of the (− 1) coeffi-
cients. Therefore the differential equations were uncoupled.

Particularly one obtains for the zeroth order coefficients:

d

dt
b
(0)
k = 0 . (A.59)

Thus the b
(0)
k are constant (likewise in the undriven system) and as the

perturbation is switched on at t = 0, they are equal to the ck(0), hence
determined by the input state |ψ(0)〉. The first order correction term cal-
culates as:

ℏ
d

dt
b
(1)
k (t) =

∑

n

b(0)
n
Wkn(t)eΔωknt (A.60)

= − sin(ωDt + φD)
∑

n

b(0)
n

�

J
�

kn
eΔωknt (A.61)

= −
1

2

∑

n

b(0)
n

�

J
�

kn

�

e(Δωkn+ωD)t+φD − e(Δωkn−ωD)t−φD
�

(A.62)
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Since all coefficients on the right hand side are constant in time, Eq. A.62
can be directly integrated:

b
(1)
k (t) = −

N

4

∑

n

b(0)
n

�

J
�

kn

�

eφD
�

1 − e(Δωkn+ωD)t
�

Δωkn + ωD

−
e−φD

�

1 − e(Δωkn−ωD)t
�

Δωkn − ωD

�

(A.63)

by using ℏ = 2/N (see Eq. A.43). In case of the atomic two level system,
the driving frequency is close to resonance ωD ∼ |Δωkn|. Therefore, if
Δωkn > 0, the denominator Δωkn + ωD ∼ 2ωD becomes quite large besides
a fast phase evolution of the corresponding term. Hence, such terms are
neglected in the so called rotating wave approximation [92]. The same
argument holds for the second term if Δωkn < 0.

The similar can be done in the investigation of the driven system in Eq.
A.63. A remarkable contribution is expected for driving frequencies ap-
proaching one of the transition frequencies Δωkn. Since several eigen-
states are involved in the time evolution of an initially prepared coherent
spin state, the range of the driving frequency for hitting a resonance is
much larger here. For energies above the double well in the Λ = 1.5 sys-
tem one obtains numerically Δωkn ∼ O(k − n) by solving Eq. A.42, thus
being positive for k > n and vice versa. Therefore the first term can be
dropped for k > n and the second one for k < n. On the other hand, the
contribution of each term is determined by the product b0

n
·
�

J
�

kn
. If it

vanishes, the term does not contribute even at resonance, equivalently to
forbidden transitions in the atomic system.

In order to provide further conclusions, the structure of the coefficients
b0
n

as well as the matrix elements
�

J
�

kn
have to be investigated in detail.

The distribution of the b(0)
n

depends on system parameters and the ini-
tial preparation and has typically significant contributions for a subset of
eigenstates. Thus the coupling strength depends on the local structure of
a small subset of the matrix elements of

�

J
�

, such that the global structure
of
�

J
�

can be omitted.

To deviate remarkably from the undriven system, it is necessary to get
considerable contributions in the first order coefficients b(1)k , since the ze-
roth order coefficients are constant in time. Furthermore by revisiting the
differential equations for the b

()
k (Eq. A.58) it can be directly deduced

that higher contributions can grow not until the contribution of lower order
b
(−1)
k becomes significant. Therefore, as long as the first order coefficients

remain small, the system remains close to the undriven one. On the other
hand, even if first and higher order coefficients becomes large, it does not
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imply that the system has to deviate significantly from the undriven one
in terms of measuring mean or variances. This depends on all involved
coefficients and a cancellation of different contributions could occur.

Hence, the growth of the first order coefficients is a mandatory condition
to enable a deviation of the driven system from the undriven one, but it
is not sufficient. Therefore, the point of strong growing first order coef-
ficients gives a minimal time for the perturbation to act on the system
leading to significant changes.

The analysis is done in section 2.5.2 for the special cases of Λ = 1.5 and
Λ = 0.7 treated within this work. The consideration can not be generalized
to an arbitrary choice of parameters or even different start points.
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B. Supplementary information
for the unbifurcated system

B.1. Anharmonicity of the potential
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Figure B.1.: Anharmonicity of the system for Λ = 0.7, ε = −0.114
The x-axis shows the distance of the starting point to the fixed
point (corresponding to the amplitude of resulting oscillation),
the y-axis the scaled frequency.
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B.2. Phase space for different times
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Figure B.2.: Poincaré plot for different time offset (or driving phases) Λ =
0.7, ε = −0.114, ADriv = 0.03
The time is given in units of the driving period.
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B.3. Time evolution of distributions
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Figure B.3.: Classical simulation of time evolution in the undriven system
for Λ = 0.7, ε = −0.114
The time is given in units of the driving period although the
system is not driven.
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Figure B.4.: Classical simulation of time evolution in the driven system for
an initial preparation in the vicinity of the stable fixed point
with Λ = 0.7, ε = −0.114, ADriv = 0.03, ωDriv = 1.477, φDriv =
π, preparation at z0 = 0.37, φ0 = 3.50 (unstable fixed point
for φDriv = 0) The time is given in units of the driving period.
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Figure B.5.: Classical simulation of time evolution in the driven system for
the unstable fixed point with Λ = 0.7, ε = −0.114, ADriv =
0.03, ωDriv = 1.477, φDriv = 0, preparation at z0 = 0.37, φ0 =
3.50 The time is given in units of the driving period.
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Figure B.6.: Squeezing of a distribution in the undriven system for Λ =
0.7, ε = −0.114, z0 = 0.37, φ0 = 3.50.
Even in the regular system in absence of an unstable fixed
point, slight squeezing is generated for larger times due to
anharmonicity of the system. right: angle of the short axis of
the distribution.
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Figure B.7.: Comparison of number squeezing in the driven system for dif-
ferent preparation to the undriven system (QM simulation).
For weak driven system (ADriv = 0.03) the unstable fixed point
preparation is a bit faster and deeper squeezed than the un-
driven one, in contrast to the dynamics at the stable fixed
point which is less squeezed. Contrary, the dynamics is faster
and more squeezed at the unstable fixed point in the strong
driven regime.
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B.4. Time evolution in the bifurcated regime
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Figure B.8.: Classical simulation of time evolution in the driven system for
Λ = 1.53, ε = −0.07, ADriv = 0.07 prepared close to the stable
moving island.
The time is given in units of the driving period.
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Figure B.9.: Classical simulation of time evolution in the driven system for
Λ = 1.53, ε = −0.07, ADriv = 0.07 prepared close to the un-
stable period 2 orbit.
The time is given in units of the driving period.
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C. Raw-data

C.1. Raw-data for measurements at Λ = 0.7

C.1.1. Reference measurement of the undriven phase
space

Ω = 40.6 Hz (∗2π)
εset = −0.1
εfit = −0.114

Start points:
set from fit

z0 = 0.48 0.41
φ0 = π 3.21

Loss compensation

τLoss = 2 · 86 ms

ALoss = 21.6 Hz
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number of N = 700, loss included, outliers removed.
upper right: time evolution of variances
lower left: time evolution of mean including standard-variation as error-
bars
lower right: histograms for raw-data. The histogram for each time step is
normalized to the maxima.

Next figure: Fit to experimental data including variances for range of
atomnumbers from N = 500 to N = 800.
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C.1.2. Small driving amplitude A = 0.03

Ω = 40.6 Hz (∗2π)
εset = −0.1
εfit = −0.114

Driving:

ADriv = 0.03
ωDriv = 59.9 Hz

ωsced
Driv

= 1.47
φDriv = [0 π/5 2/5π 3/5π 4/5π π6/5π 7/5π/8/5π 9/5π]

Start points:
set from fit

z0 = 0.48 0.41
φ0 = π 3.21

Loss compensation

τLoss = 2 · 86 ms

ALoss = 21.6 Hz
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C.1.3. Median driving amplitude A = 0.2

Ω = 40.6 Hz (∗2π)
εset = −0.1
εfit = −0.114

Driving:

ADriv = 0.2
ωDriv = 59.9 Hz

ωsced
Driv

= 1.47
φDriv = [0 π/5 2/5π 3/5π 4/5π π6/5π 7/5π/8/5π 9/5π]

Start points:
set from fit

z0 = 0.55 0.5
φ0 = π 3.21

Loss compensation

τLoss = 2 · 86 ms

ALoss = 21.6 Hz
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C.2. Raw-data for measurements at Λ = 1.5

C.2.1. Reference measurement of the undriven phase
space

For a reference measurement, the time evolution for the preparation at
different points in phase space is obtained for an undriven system with
loss compensation. In addition to the measurement in z also the phase
information is obtained by a subsequent tomography pulse (after the time
evolution) with −π/2 around the  axis. Due to too high atom numbers
within this experimental run, only few wells were within the desired atom
filter.

Parameters:

Ω = 20.7Hz (∗2π)
εset = −0.1
εfit = −0.07

Start points:
zset 0 -0.92 -0.61 -0.33 -0.60 0 0.65
zƒ t -0.30 -0.87 -0.46 -0.52 -0.68 0.15 0.50
φset 2.51 3.40 3.96 3.27 3.25 π π
φƒ t 2.68 3.24 3.80 3.32 3.19 3.16 3.34

Loss compensation

τLoss = 2 · 86ms

ALoss = 21.6Hz

In the following we plot two graphs for each starting condition (per row):
the measured mean with standard deviation as errorbar in z in first col-
umn, a histogram vs. time in the second and the same for the phase data
(with tomography pulse) in the last two columns. The next graphs shows
per line the phase space, the measured points vs time, the mean together
with a simulation (the standard deviation is plotted as a gray band) and
the variances. In the subsequent line the same is plotted for the tomogra-
phy data.
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C.2.2. Small driving amplitude A = 0.035

Measuring the time evolution of the driven system with small driving am-
plitude ADriv = 0.035 for a single start point (Exp: z0 = 0, φ0 = 2.5; Fit:
z0 = −0.3, φ0 = 2.68) and different driving phases. Due to high atom
numbers within this experimental run, the statistics for N = 700 atoms is
not as well as for other driving amplitudes.

Parameters:

Ω = 20.7Hz (∗2π)
εset = −0.1
εfit = −0.07

Driving:

ADriv = 0.035
ωDriv = 33Hz

ωsc
Driv

= 1.587
φDriv = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9] · 2π

Loss compensation

τLoss = 2 · 86ms

ALoss = 21.6Hz
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C.2.3. Medium driving amplitude A = 0.07

Measuring the time evolution of the driven system with a medium driving
amplitude ADriv = 0.07 for a single start point (Exp: z0 = 0, φ0 = 2.51; Fit:
z0 = −0.3, φ0 = 2.68) and different driving phases.

Parameters:

Ω = 20.7Hz (∗2π)
εset = −0.1
εfit = −0.07

Driving:

ADriv = 0.07
ωDriv = 33Hz

ωsc
Driv

= 1.587
φDriv = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9] · 2π

Loss compensation

τLoss = 2 · 86ms

ALoss = 21.6Hz
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C.2.4. Medium driving amplitude A = 0.07 including
tomography data

Measuring the time evolution of the driven system with a medium driving
amplitude ADriv = 0.07 for a single start point (Exp: z0 = 0, φ0 = 2.51; Fit:
z0 = −0.3, φ0 = 2.68) and different driving phases. Additionally the phase
information is measured by applying a subsequent π/2 tomography pulse
around J.

Parameters:

Ω = 20.7Hz (∗2π)
εset = −0.1
εfit = −0.07

Driving:

ADriv = 0.07
ωDriv = 33Hz

ωsc
Driv

= 1.587
φDriv = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9] · 2π

Loss compensation

τLoss = 2 · 86ms

ALoss = 21.6Hz
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C.2.5. Strong driving amplitude A = 0.14

Measuring the time evolution of the driven system with a strong driving
amplitude ADriv = 0.14 for a single start point (Exp: z0 = 0, φ0 = 2.51; Fit:
z0 = −0.3, φ0 = 2.68) and different driving phases.

Parameters:

Ω = 20.7Hz (∗2π)
εset = −0.1
εfit = −0.07

Driving:

ADriv = 0.07
ωDriv = 33Hz

ωsc
Driv

= 1.587
φDriv = [2.8 5.94]

Loss compensation

τLoss = 2 · 86ms

ALoss = 21.6Hz
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C.2.6. Time evolution for different starting points for
a medium driving amplitude A = 0.07 including
tomography data

Measuring the time evolution of the driven system with a medium driving
amplitude ADriv = 0.07 for a several start points and one driving phase
φDriv = 0.3·2π. Additionally the phase information is measured by applying
a subsequent π/2 tomography pulse around J.

Parameters:

Ω = 20.7Hz (∗2π)
εset = −0.1
εfit = −0.07

Driving:

ADriv = 0.07
ωDriv = 33Hz

ωsc
Driv

= 1.587
φDriv = 0.3 · 2π

Loss compensation

τLoss = 2 · 86ms

ALoss = 21.6Hz

Start points:
zset 0 -0.92 -0.61 -0.33 -0.60
zƒ t -0.29 -0.87 -0.46 -0.52 -0.68
φset 2.60 3.40 3.96 3.27 3.25
φƒ t 2.74 3.24 3.80 3.32 3.19
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C.2.7. Medium driving amplitude A = 0.07 for
preparation within the chaotic sea

Measuring the time evolution of the driven system with a medium driving
amplitude ADriv = 0.07 for a single start point (Exp: z0 = 0, φ0 = 3.14; Fit:
z0 = 0.085, φ0 = 3.13) deep within the chaotic sea and for different driving
phases. Due to the tilted system, the preparation is chosen to lie beneath
the unstable fixed point of the undriven system at z0 = 0.134, φ0 = π to
avoid critical dependency of the system on technical noise. This leads to
same dynamics for all driving phases for small times, e.g. the distribution
starts in −z direction.

Parameters:

Ω = 20.7Hz (∗2π)
εset = −0.1
εfit = −0.07

Driving:

ADriv = 0.07
ωDriv = 33Hz

ωsc
Driv

= 1.587
φDriv = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9] · 2π

Loss compensation

τLoss = 2 · 86ms

ALoss = 21.6Hz
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[31] Haake, F., Kuś, M. & Scharf, R. Classical and quantum chaos for a
kicked top. Zeitschrift für Physik B 65, 381–395 (1987).

[32] Holthaus, M. & Stenholm, S. Coherent control of the self-trapping
transition. The European Physical Journal B 20, 451–467 (2001).

[33] Boukobza, E., Moore, M. G., Cohen, D. & Vardi, A. Nonlinear phase
dynamics in a driven bosonic Josephson junction. Phys. Rev. Lett.
104, 240402 (2010).

[34] Chaudhury, S., Smith, A., Anderson, B. E., Ghose, S. & Jessen, P. S.
Quantum signatures of chaos in a kicked top. Nature 461, 768–771
(2009).

[35] Prosen, T. Chaos and complexity of quantum motion. Journal of
Physics A 40, 7881 (2007).

[36] Jacquod, P. & Petitjean, C. Decoherence, entanglement and irre-
versibility in quantum dynamical systems with few degrees of free-
dom. Advances in Physics 58, 67–196 (2009).

175

http://link.aps.org/abstract/PRL/v100/e190405
http://link.aps.org/abstract/PRL/v100/e190405
http://link.aps.org/doi/10.1103/PhysRevLett.99.220403
http://link.aps.org/doi/10.1103/PhysRevLett.99.220403
http://link.aps.org/doi/10.1103/PhysRevE.50.145
http://stacks.iop.org/1367-2630/10/i=1/a=013024
http://stacks.iop.org/1367-2630/10/i=1/a=013024
http://www.sciencemag.org/content/293/5528/274.abstract
http://www.sciencemag.org/content/293/5528/274.abstract
http://www.nature.com/nature/journal/v412/n6842/abs/412052a0.html
http://www.nature.com/nature/journal/v412/n6842/abs/412052a0.html
http://link.aps.org/doi/10.1103/PhysRevA.65.033623
http://link.aps.org/doi/10.1103/PhysRevA.65.033623
http://dx.doi.org/10.1007/BF01303727
http://dx.doi.org/10.1007/BF01303727
http://dx.doi.org/10.1007/PL00011106
http://dx.doi.org/10.1007/PL00011106
http://link.aps.org/doi/10.1103/PhysRevLett.104.240402
http://link.aps.org/doi/10.1103/PhysRevLett.104.240402
http://dx.doi.org/10.1038/nature08396
http://stacks.iop.org/1751-8121/40/i=28/a=S02
http://www.tandfonline.com/doi/abs/10.1080/00018730902831009
http://www.tandfonline.com/doi/abs/10.1080/00018730902831009
http://www.tandfonline.com/doi/abs/10.1080/00018730902831009


[37] Gross, C. Spin squeezing and non-linear atom interferometry with
Bose-Einstein condensates. Ph.D. thesis, Combined Faculties for the
Natural Sciences and for Mathematics of the Ruperto-Carola Univer-
sity of Heidelberg, Germany (2010).

[38] Zibold, T. Classical Bifurcation and Entanglement Generation in an
Internal Bosonic Josephson Junction. Ph.D. thesis, Combined Facul-
ties of the Natural Sciences and Mathematics of the Ruperto-Carola-
University of Heidelberg, Germany (2012).

[39] Pitaevskii, L. P. & Stringari, S. Bose-Einstein condensation. No. 116
in International series of monographs on physics (Clarendon Press,
Oxford, 2008).

[40] Pethick, C. J. & Smith, H. Bose-Einstein condensation in dilute gases
(Cambridge University Press, Cambridge, 2006).

[41] Leggett, A. J. Bose-Einstein condensation in the alkali gases: Some
fundamental concepts. Rev. Mod. Phys. 73, 307–356 (2001).

[42] Gati, R. & Oberthaler, M. K. A bosonic Josephson junction. J. Phys. B
40, R61–R89 (2007).

[43] Meystre, P. Atom Optics (Springer, 2001).

[44] Steel, M. J. & Collett, M. J. Quantum state of two trapped Bose-
Einstein condensates with a Josephson coupling. Phys. Rev. A 57,
2920–2930 (1998).

[45] Micheli, A., Jaksch, D., Cirac, J. I. & Zoller, P. Many-particle entan-
glement in two-component Bose-Einstein condensates. Phys. Rev.
A 67, 013607 (2003).

[46] Cirac, J. I., Lewenstein, M., Mølmer, K. & Zoller, P. Quantum su-
perposition states of Bose-Einstein condensates. Phys. Rev. A 57,
1208–1218 (1998).

[47] Nicklas, E. A new tool for miscibility control: Linear coupling. Ph.D.
thesis, Combined Faculties of the Natural Sciences and Mathematics
of the Ruperto-Carola-University of Heidelberg, Germany (2013).

[48] Matthews, M. R., Hall, D. S., Jin, D. S., Ensher, J. R., Wieman, C. E.,
Cornell, E. A., Dalfovo, F., Minniti, C. & Stringari, S. Dynamical re-
sponse of a Bose-Einstein condensate to a discontinuous change in
internal state. Phys. Rev. Lett. 81, 243–247 (1998).

[49] Shchesnovich, V. S. & Trippenbach, M. Fock-space WKB method for
the boson Josephson model describing a Bose-Einstein condensate
trapped in a double-well potential. Phys. Rev. A 78, 023611 (2008).

176

http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/Dissertation_Christian_Gross.pdf
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/Dissertation_Christian_Gross.pdf
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/diss_zibold.pdf
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/diss_zibold.pdf
http://link.aps.org/doi/10.1103/RevModPhys.73.307
http://link.aps.org/doi/10.1103/RevModPhys.73.307
http://www.ub.uni-heidelberg.de/cgi-bin/edok?dok=http%3A%2F%2Fiopscience.iop.org%2F0953-4075%2F40%2F10%2FR01 ; 10.1088/0953-4075/40/10/R01
http://dx.doi.org/10.1103/PhysRevA.57.2920
http://dx.doi.org/10.1103/PhysRevA.57.2920
http://link.aps.org/doi/10.1103/PhysRevA.67.013607
http://link.aps.org/doi/10.1103/PhysRevA.67.013607
http://link.aps.org/doi/10.1103/PhysRevA.57.1208
http://link.aps.org/doi/10.1103/PhysRevA.57.1208
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/Dissertation_Eike_Nicklas.pdf
http://link.aps.org/doi/10.1103/PhysRevLett.81.243
http://link.aps.org/doi/10.1103/PhysRevLett.81.243
http://link.aps.org/doi/10.1103/PhysRevLett.81.243
http://dx.doi.org/10.1103/PhysRevA.78.023611
http://dx.doi.org/10.1103/PhysRevA.78.023611
http://dx.doi.org/10.1103/PhysRevA.78.023611


[50] Juliá-Díaz, B., Martorell, J. & Polls, A. Bose-Einstein condensates on
slightly asymmetric double-well potentials. Phys. Rev. A 81, 063625
(2010).

[51] Reichl, L. E. The transition to chaos. Institute for nonlinear science
(Springer, New York, Heidelberg, 2004), 2. edn.

[52] Löck, S. private communications (2011).

[53] Arecchi, F. T., Courtens, E., Gilmore, R. & Thomas, H. Atomic coher-
ent states in quantum optics. Phys. Rev. A 6, 2211–2237 (1972).

[54] Gross, C., Zibold, T., Nicklas, E., Esteve, J. & Oberthaler, M. K. Nonlin-
ear atom interferometer surpasses classical precision limit. Nature
464, 1165–1169 (2010).

[55] Juliá-Díaz, B., Zibold, T., Oberthaler, M. K., Melé-Messeguer, M., Mar-
torell, J. & Polls, A. Dynamic generation of spin-squeezed states in
bosonic Josephson junctions. Phys. Rev. A 86, 023615 (2012).

[56] Raghavan, S., Smerzi, A., Fantoni, S. & Shenoy, S. R. Coherent os-
cillations between two weakly coupled Bose-Einstein condensates:
Josephson effects, π oscillations, and macroscopic quantum self-
trapping. Phys. Rev. A 59, 620–633 (1999).

[57] Albiez, M., Gati, R., Fölling, J., Hunsmann, S., Cristiani, M. &
Oberthaler, M. K. Direct observation of tunneling and nonlinear self-
trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95,
010402 (2005).

[58] Zibold, T., Nicklas, E., Gross, C. & Oberthaler, M. K. Classical bifur-
cation at the transition from Rabi to Josephson dynamics. Phys. Rev.
Lett. 105, 204101 (2010).

[59] Hamley, C. D., Gerving, C. S., Hoang, T. M., Bookjans, E. M. & Chap-
man, M. S. Spin-nematic squeezed vacuum in a quantum gas. Na-
ture Physics 8, 305–308 (2012).

[60] Strogatz, S. H. Nonlinear dynamics and chaos. Studies in nonlinear-
ity (Westview, Cambridge, Mass., 2006).

[61] Jin, D. S., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell,
E. A. Collective excitations of a Bose-Einstein condensate in a dilute
gas. Phys. Rev. Lett. 77, 420–423 (1996).

[62] Orzel, C., Tuchman, A. K., Fenselau, M. L., Yasuda, M. & Kasevich,
M. A. Squeezed states in a Bose-Einstein condensate. Science 291,
2386–2389 (2001).

177

http://dx.doi.org/10.1103/PhysRevA.81.063625
http://dx.doi.org/10.1103/PhysRevA.81.063625
http://link.aps.org/doi/10.1103/PhysRevA.6.2211
http://link.aps.org/doi/10.1103/PhysRevA.6.2211
http://www.nature.com/nature/journal/v464/n7292/abs/nature08919.html
http://www.nature.com/nature/journal/v464/n7292/abs/nature08919.html
http://link.aps.org/doi/10.1103/PhysRevA.86.023615
http://link.aps.org/doi/10.1103/PhysRevA.86.023615
http://dx.doi.org/10.1103/PhysRevA.59.620
http://dx.doi.org/10.1103/PhysRevA.59.620
http://dx.doi.org/10.1103/PhysRevA.59.620
http://dx.doi.org/10.1103/PhysRevA.59.620
http://link.aps.org/doi/10.1103/PhysRevLett.95.010402
http://link.aps.org/doi/10.1103/PhysRevLett.95.010402
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1038/nphys2245
http://link.aps.org/doi/10.1103/PhysRevLett.77.420
http://link.aps.org/doi/10.1103/PhysRevLett.77.420
http://www.sciencemag.org/content/291/5512/2386.abstract


[63] Esteve, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K.
Squeezing and entanglement in a Bose-Einstein condensate. Nature
455, 1216–1219 (2008).

[64] Demtröder, W. Experimentalphysik 1 (Springer, Berlin, Heidelberg,
2013), 6. edn.

[65] Metcalf, H. J. & Straten, P. v. Laser cooling and trapping (Springer,
New York, Berlin, Heidelberg, 1999).

[66] Böhi, P., Riedel, M. F., Hoffrogge, J., Reichel, J., Hänsch, T. W. & Treut-
lein, P. Coherent manipulation of Bose-Einstein condensates with
state-dependent microwave potentials on an atom chip. Nature
Physics 5, 592–597 (2009).

[67] Riedel, M. F., Böhi, P., Li, Y., Hänsch, T. W., Sinatra, A. & Treutlein, P.
Atom-chip-based generation of entanglement for quantum metrol-
ogy. Nature 464, 1170–1173 (2010).

[68] Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quan-
tum phase transition from a superfluid to a Mott insulator in a gas
of ultracold atoms. Nature 415, 39–44 (2002).

[69] Eiermann, B. Kohärente nichtlineare Materiewellendynamik
- Helle atomare Solitonen. Ph.D. thesis, Mathematisch-
Naturwissenschaftliche Sektion, Universität Konstanz (2004).

[70] Albiez, M. Observation of nonlinear tunneling of a Bose-Einstein
condensate in a single Josephson junction. Ph.D. thesis, Com-
bined Faculties for the Natural Sciences and for Mathematics of the
Ruperto-Carola University of Heidelberg, Germany (2005).

[71] Gati, R. Bose-Einstein Condensates in a Single Double Well Po-
tential. Ph.D. thesis, Combined Faculties for the Natural Sciences
and for Mathematics of the Ruperto-Carola University of Heidelberg,
Germany (2007).

[72] Weller, A. Dynamics and Interaction of Dark Solitons in Bose-
Einstein Condensates. Ph.D. thesis, Combined Faculties for the Nat-
ural Sciences and for Mathematics of the Ruperto-Carola University
of Heidelberg, Germany (2009).

[73] Steck, D. A. Rubidium 87 d line data. Tech. Rep. 2.1.2, University of
Oregon (2009). URL http://steck.us/alkalidata.

[74] Hertel, I. V. & Schulz, C.-P. Atome, Moleküle und optische Physik 1
(Springer, Berlin, Heidelberg, 2008).

[75] Cohen-Tannoudji, C. Quantenmechanik (de Gruyter, Berlin, 1999).

178

http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1007/978-3-642-25466-6 ; http://dx.doi.org/10.1007/978-3-642-25466-6
http://dx.doi.org/10.1038/nphys1329
http://dx.doi.org/10.1038/nphys1329
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/diss_eiermann.pdf
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/diss_eiermann.pdf
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/diss_albiez.pdf
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/diss_albiez.pdf
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/diss_gati.pdf
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/diss_gati.pdf
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/diss_weller.pdf
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/diss_weller.pdf
http://steck.us/alkalidata
http://steck.us/alkalidata
http://dx.doi.org/10.1007/978-3-540-30617-7


[76] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. &
Cornell, E. A. Observation of Bose-Einstein condensation in a dilute
atomic vapor. Science 269, 198–201 (1995).

[77] Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee,
D. S., Kurn, D. M. & Ketterle, W. Bose-Einstein condensation in a gas
of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

[78] Ketterle, W., Durfee, D. & Stamper-Kurn, D. Making, probing and un-
derstanding Bose-Einstein condensates. In Inguscio, M., Stringari,
S. & Wieman, C. (eds.) Proceedings of the International School of
Physics "Enrico Fermi", vol. 140 of Bose-Einstein Condensation in
Atomic Gases, 67 – 176 (IOS Press, 1999).

[79] Vitanov, N. V., Halfmann, T., Shore, B. W. & Bergmann, K. Laser-
induced population transfer by adiabatic passage techniques. Annu.
Rev. Phys. Chem. 52, 763–809 (2001).

[80] Erhard, M., Schmaljohann, H., Kronjäger, J., Bongs, K. & Sengstock,
K. Measurement of a mixed-spin-channel feshbach resonance in
87Rb. Phys. Rev. A 69, 032705 (2004).

[81] Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances
in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

[82] Kaufman, A. M., Anderson, R. P., Hanna, T. M., Tiesinga, E., Julienne,
P. S. & Hall, D. S. Radio-frequency dressing of multiple feshbach
resonances. Phys. Rev. A 80, 050701 (2009).

[83] van Kempen, E. G. M., Kokkelmans, S. J. J. M. F., Heinzen, D. J. &
Verhaar, B. J. Interisotope determination of ultracold rubidium inter-
actions from three high-precision experiments. Phys. Rev. Lett. 88,
093201 (2002).

[84] Widera, A., Mandel, O., Greiner, M., Kreim, S., Hänsch, T. W. &
Bloch, I. Entanglement interferometry for precision measurement
of atomic scattering properties. Phys. Rev. Lett. 92, 160406 (2004).

[85] Smirne, G., Godun, R. M., Cassettari, D., Boyer, V., Foot, C. J., Volz,
T., Syassen, N., Dürr, S., Rempe, G., Lee, M. D., Góral, K. & Köhler,
T. Collisional relaxation of Feshbach molecules and three-body re-
combination in 87Rb Bose-Einstein condensates. Phys. Rev. A 75,
020702 (2007).

[86] Cornell, E., Hall, D., Matthews, M. & Wieman, C. Having it both ways:
Distinguishable yet phase-coherent mixtures of Bose-Einstein con-
densates. J. Low Temp. Phys. 113, 151–165 (1998).

179

http://www.sciencemag.org/content/269/5221/198.abstract
http://www.sciencemag.org/content/269/5221/198.abstract
http://link.aps.org/doi/10.1103/PhysRevLett.75.3969
http://link.aps.org/doi/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.3254/978-1-61499-225-7-67
http://dx.doi.org/10.3254/978-1-61499-225-7-67
http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.52.1.763
http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.52.1.763
http://link.aps.org/doi/10.1103/PhysRevA.69.032705
http://link.aps.org/doi/10.1103/PhysRevA.69.032705
http://link.aps.org/doi/10.1103/RevModPhys.82.1225
http://link.aps.org/doi/10.1103/RevModPhys.82.1225
http://link.aps.org/doi/10.1103/PhysRevA.80.050701
http://link.aps.org/doi/10.1103/PhysRevA.80.050701
http://link.aps.org/doi/10.1103/PhysRevLett.88.093201
http://link.aps.org/doi/10.1103/PhysRevLett.88.093201
http://link.aps.org/doi/10.1103/PhysRevLett.92.160406
http://link.aps.org/doi/10.1103/PhysRevLett.92.160406
http://link.aps.org/doi/10.1103/PhysRevA.75.020702
http://link.aps.org/doi/10.1103/PhysRevA.75.020702
http://dx.doi.org/10.1023/A%3A1022513609071
http://dx.doi.org/10.1023/A%3A1022513609071
http://dx.doi.org/10.1023/A%3A1022513609071


[87] Döring, D., Debs, J. E., Robins, N. P., Figl, C., Altin, P. A. & Close,
J. D. Ramsey interferometry with an atom laser. Opt. Express 17,
20661–20668 (2009).

[88] Tojo, S., Hayashi, T., Tanabe, T., Hirano, T., Kawaguchi, Y., Saito, H. &
Ueda, M. Spin-dependent inelastic collisions in spin-2 Bose-Einstein
condensates. Phys. Rev. A 80, 042704 (2009).

[89] Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. & Wieman, C. E.
Production of two overlapping Bose-Einstein condensates by sym-
pathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997).

[90] Tommasini, P., de Passos, E. J. V., de Toledo Piza, A. F. R., Hussein,
M. S. & Timmermans, E. Bogoliubov theory for mutually coherent
condensates. Phys. Rev. A 67, 023606 (2003).

[91] Goldstein, E. V., Moore, M. G., Pu, H. & Meystre, P. Eliminating
the mean-field shift in two-component Bose-Einstein condensates.
Phys. Rev. Lett. 85, 5030–5033 (2000).

[92] Meystre, P. & Sargent, M. Elements of quantum optics (Springer,
Berlin, Heidelberg, 2007).

[93] Bergmann, K., Theuer, H. & Shore, B. W. Coherent population trans-
fer among quantum states of atoms and molecules. Rev. Mod. Phys.
70, 1003–1025 (1998).

[94] Stadler, E. Modulationsverfahren / Modulation und Demodulation
in der elektrischen Nachrichtentechnik (Vogel, Würzburg, 1993), 7.
edn.

[95] Reinaudi, G., Lahaye, T., Wang, Z. & Guéry-Odelin, D. Strong satu-
ration absorption imaging of dense clouds of ultracold atoms. Opt.
Lett. 32, 3143–3145 (2007).

[96] Muessel, W., Strobel, H., Joos, M., Nicklas, E., Stroescu, I., Tomkovič,
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