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Zusammenfassung:

Es wird ein Modell für die Unterdrückung von Υ-Mesonen im Quark-Gluon Plasma
(QGP) vorgestellt, welches in relativistischen PbPb-Kollisionen am LHC gebildet
wird. Das Modell berücksichtigt die sechs Bottomium-Zustände Υ(nS), χb(nP)
mit n = 1, 2, 3 und ist in drei Schritte unterteilt: Zunächst werden die Wellen-
funktionen und Zerfallsbreiten im Medium in einem nichtrelativistischen, kom-
plexen Potenzialmodell berechnet. Auf diese Weise werden die folgenden drei
Prozesse berücksichtigt: Abschirmung der Farbladung, Dämpfung durch weiche
Kollisionen und Gluodissoziation. Im zweiten Schritt wird eine numerische, hy-
drodynamische Berechnung der longitudinalen und transversalen Expansion des
Feuerballs durchgeführt, wobei das QGP als ideales, relativistisches Fluid be-
handelt wird. Durch Einsetzen der Ergebnisse aus Schritt Eins erhält man die
QGP-Unterdrückungsfaktoren RQGP

AA , die für jeden der sechs Zustände den Anteil
angeben, der den Feuerball überlebt hat. In Schritt Drei wird für die verbliebene
Bottomium-Population die Zerfallskaskade innerhalb der Bottomium-Familie und
in Dimyonpaare berechnet. Daraus ergeben sich die Unterdrückungsfaktoren RAA
der Υ(nS) Mesonen. Für eine realistische Wahl der Parameter stimmt das Mod-
ell gut mit den CMS-Ergebnissen des PbPb-Runs vom November 2011 überein.
Es zeigt sich jedoch, dass die Unterdrückung der angeregten Zustände Υ(2S) und
Υ(3S), im Vergleich zum Grundzustand Υ(1S), in diesem Modell nicht stark genug
ausfällt. Es müssen daher weitere Mechanismen berücksichtigt werden, die die
Υ(nS)/Υ(1S)-Verhältnisse modifizieren.

Abstract:

A model for the suppression of Υ mesons in the quark-gluon plasma (QGP), formed
in relativistic PbPb collisions at the LHC, is presented. The model takes the six
bottomium states Υ(nS), χb(nP) with n = 1, 2, 3 into account and consists of
three steps: First the in-medium wave functions and decay widths are calculated
from a non-relativistic, complex potential model. In this approach the following
three processes are taken into account: color screening, collisional damping and
gluodissociation. In the second step a numerical, hydrodynamical calculation of the
longitudinally and transversely expanding fireball is performed, where the QGP is
modeled as a perfect, relativistic fluid. Inserting the results of step one yields QGP-
suppression factors RQGP

AA , which give for each of the six states the fraction that has
survived the fireball. In step three the decay cascade is calculated for the remaining
bottomium population for decays within the bottomium family and into dimuon
pairs. This yields the final results for the suppression factors RAA of the Υ(nS)
mesons. It is found that the model is in good agreement with the CMS results
for the November 2011 PbPb run for a reasonable choice of parameters. However,
the calculated suppression of the excited states Υ(2S) and Υ(3S) relative to the
ground state Υ(1S) is not strong enough in this model. Additional mechanisms
have to be taken into account to modify the Υ(nS)/Υ(1S) ratios.
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Chapter 1

Introduction

In this thesis we take the unique window of opportunity that has opened up
with the energies available at the CERN Large Hadron Collider (LHC) to
combine the physics of the bottomium states with the physics of the quark-
gluon plasma (QGP) in a theoretical investigation.

Ever since the results from the CERN Super Proton Synchrotron (SPS)
and the BNL Relativistic Heavy Ion Collider (RHIC) it has been clear that,
for a very short interval of time, a new state of matter can be formed in rel-
ativistic heavy ion collisions, “whose description in terms of simple hadronic
degrees of freedom is inappropriate” (Back et al., 2005).

This state of matter, which apparently consists of individual quarks and
gluons, is commonly referred to as “quark-gluon plasma” even though many
of its properties have not been anticipated or are yet unknown.

With the start of the heavy ion program of the LHC it was therefore
a natural step to bring the investigation of this extreme state of matter to
a new level. While AuAu runs had been conducted with a center-of-mass
(CM) energy per nucleon-nucleon pair of up to

√
sNN = 200 GeV at RHIC,

two PbPb runs have been conducted within the LHC’s heavy ion program at√
sNN = 2.76 TeV in November 2010 and 2011, respectively. Further PbPb

runs at the maximum CM energy of
√
sNN = 5.5 TeV are scheduled for the

year 2015.
One of the cleanest probes for the properties of the QGP is the suppressed

yield of quarkonia, heavy quark-antiquark bound states. Quarkonia, and
especially bottomia, are very tightly bound so a fraction of them can survive
even the QGP-phase.

The resulting suppression pattern can be measured experimentally but
it is also calculable in theory. In this way it is possible to obtain an insight
into the strange and very poorly understood behavior of matter under these
extreme conditions.

1



2 CHAPTER 1. INTRODUCTION

While charmonium suppression has been studied extensively in the past as
a signature for the presence of a QGP, it has not been possible to do so for the
much heavier and more suitable bottomium. Only with the energies available
at the LHC it is now for the first time possible to study the suppression of
individual bottomium states in relativistic heavy ion collisions.

In this thesis we combine the theoretical description of bottomia and the
QGP with the most recent results from the LHC experiments ALICE and
CMS in a phenomenological model to calculate the suppression pattern of
bottomia, in particular of the Υ mesons, in PbPb collisions.

This thesis is organized as follows: In the remainder of this introductory
chapter we provide a bit more information on the properties of bottomia and
the QGP and outline the model for the calculation of Υ suppression at the
LHC.

In chapter 2 we elucidate the theoretical background needed to treat
bottomia immersed in a thermal medium. We review basic properties of the
theory of quantum chromodynamics (QCD), illustrate the transition from
the full theory to the effective field theories (EFT’s) of non-relativistic QCD
(NRQCD) and potential non-relativistic QCD (pNRQCD) and further to
the special case of heavy bottom-antibottom states in a thermal background
medium.

In chapter 3 we employ a potential model, using the finite-temperature
pNRQCD potentials augmented by some phenomenological input, to calcu-
late the bottomium wave functions and decay widths in the medium. The
complex potential model incorporates the effects of color screening and col-
lisional damping, while the effect of gluodissociation is accounted for in a
perturbative calculation.

In chapter 4 a numerical, hydrodynamical calculation is presented to sim-
ulate the evolution of temperature and expansion velocity of the fireball
formed in relativistic heavy ion collisions.

In chapter 5 we combine the results of chapter 4 with the in-medium
decay widths of chapter 3 to calculate QGP-suppression factors RQGP

AA . The
QGP-suppression factors give the amount of suppression of the individual
bottomium states within the fireball. Subsequently a decay cascade calcu-
lation is performed for the remaining bottomium population, taking into
account decays within the bottomium family and into dimuon pairs.

The final suppression factors RAA for the amount of Υ suppression are
presented in chapter 6, where they are compared to the most recent results
of ALICE and CMS. We summarize and critically review the results, com-
pare with current literature and give an overview of future questions and
challenges.



1.1. QCD AND THE QUARK-GLUON PLASMA 3

1.1 QCD and the quark-gluon plasma

In this thesis we investigate the properties of the strong interaction, which
acts on the six quark flavors of the three generations and binds them into
hadrons. Quantum chromodynamics is the accepted theory of this strong
interaction. On the other hand, QCD predicts quite exotic states of matter
to be formed under extreme conditions.

The theory of QCD has been inspired by its prototype quantum electro-
dynamics (QED), the most accurate physical theory known today. QCD is
a gauge theory like QED but with the gauge group SU(3) instead of U(1).
The non-abelian nature of the gauge group SU(3) gives QCD a much richer
structure and is the origin of a whole new range of phenomena which are not
present in QED.

The QCD interaction is mediated by eight different species of gluons,
which couple to three different types of “color charge”. Quarks carry one
type of color charge, antiquarks carry anticolor charge and gluons carry color
and anticolor charge, respectively. The large coupling strength and the fact
that gluons carry color charge themselves makes QCD processes very diverse
and complicated and theoretical calculations very involved but all the more
interesting.

QCD is backed up by many experiments, both qualitatively and quanti-
tatively, but due to theoretical and experimental complications the accuracy
of QED is by far not achieved.

A key aspect of QCD is the running of the coupling strength with the
momentum exchange in the interaction process. At low energies, or over large
distances, the gluons couple to color charges very strongly so that all quarks
and gluons are confined in the very tightly bound, color neutral hadronic
states of mesons and baryons (Wilson, 1974). It is due to this fact that no
individual quarks and gluons have been observed so far.

With increasing momentum exchange, corresponding to decreasing dis-
tance scales, however, the coupling strength increases. Hence, in high-energy
processes the coupling is very weak and quarks and gluons behave nearly
like free particles; a phenomenon called “asymptotic freedom” (Gross and
Wilczek, 1973; Politzer, 1973; ’t Hooft, 1985).

Asymptotic freedom suggests that in an environment with sufficiently
high energy density the color force becomes too weak to bind quarks and
gluons into hadrons. Hence every hadronic medium should undergo a phase
transition at some critical temperature Tc above which hadrons are dissolved
and individual quarks and gluons constitute the degrees of freedom of the
medium.

Such an exotic, partonic state of matter could be formed under high
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pressure and low temperature in the interior of a compact star or under high
pressure and high temperature in the early universe or in the fireball created
in relativistic heavy ion collisions.1 The last alternative is the one considered
in this thesis and obviously the only one currently accessible by laboratory
experiments.

Naively one would expect that this new state of matter would resemble
a gas of weakly interacting quarks and gluons and as such would constitute
the chromodynamical analogue of an ordinary, electromagnetic plasma: the
quark-gluon plasma (Collins and Perry, 1975).

The results obtained from heavy ion collision experiments at RHIC have
indeed pointed to the formation of a new state of matter with partonic degrees
of freedom (Adams et al., 2005; Adcox et al., 2005; Arsene et al., 2005;
Back et al., 2005). Early results from the LHC experiments ALICE, ATLAS
and CMS confirm the formation of a partonic state in PbPb collisions at√
sNN = 2.76 TeV (Aamodt et al., 2010a,b; Aamodt et al., 2011a; Aad et al.,

2010; Chatrchyan et al., 2011).
Despite some analogs it is clear that the QGP has also quite different

properties from an ordinary plasma due the peculiar nature of the strong
interaction. In particular experimental results indicate a strongly interacting
medium, which reaches thermal equilibrium within less than . 1 fm/c and
is surprisingly well described by perfect-fluid hydrodynamics as opposed to
the expected gas of quasi-free quarks and gluons.

The LHC data are compatible with lattice QCD (LQCD) results from the
HotQCD and RBC-Bielefeld collaborations, who predict the phase transition
to occur at the critical temperature

Tc = 154± 9 MeV (Bazavov et al., 2012),

Tc = 192± 7± 4 MeV (Cheng et al., 2006). (1.1)

Throughout this thesis we will use

Tc = 170 MeV. (1.2)

A number of different observables exist to verify the formation of a QGP in
heavy ion collisions (the following list is not complete, see e.g. Yagi et al.,
2008; Reygers, 2012, and references therein):

• Charged particle multiplicity at mid-rapidity provides a measure for
the initial energy density ε, which is found to be well in excess of the
critical energy density corresponding to Tc.

1Cold partonic matter should have properties quite different from hot partonic matter
of course; not to mention the effect of strong spacetime curvature present in neutron stars
as well as fast rotation (pulsars) or strong magnetic fields (magnetars).
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• Transverse momentum spectra for particles of different mass reveal
signatures of collective flow, well described by hydrodynamical models
of the QGP.

• Jet quenching, i.e. energy loss of partons produced in hard scattering
processes, provides a hard probe to determine properties of the QGP.

• Modified yields of quarkonia in heavy ion collisions as compared to the
expectation from scaled yields in nucleon-nucleon collisions indicate the
presence of a QGP.

We see that a lot of evidence points to the formation of a QGP. However,
as already mentioned there are many experimental and theoretical difficulties
in understanding the QGP so many questions remain unanswered about the
properties of this very exotic state of matter.

Both quarkonia and jets are hard probes, i.e. they can only be produced
in the early collision phase due to the large energies required. This makes
them an ideal probe; first because the QGP is not yet formed at this point
and second, because perturbative QCD (pQCD) is reliable in these hard
processes.

The nuclear suppression factor RAA quantifies the amount of quarkonium
suppression in collisions of heavy ions with mass number A. It compares
the yield NAA(b) measured in heavy ion collisions with impact parameter b
with the yield NNN in nucleon-nucleon collisions, scaled with the number of
binary collisions Ncoll(b),

RAA =
NAA(b)

NNNNcoll(b)
. (1.3)

Charmonium suppression has been studied since 1986 in great detail both
theoretically (Patra and Srivastava, 2001; Kharzeev, 2007; Kluberg and Satz,
2010) and experimentally at energies reached at the CERN SPS (Abreu et al.,
2000), BNL RHIC (Atomssa et al., 2009) and at the CERN LHC (Silvestre
et al., 2011; Aamodt et al., 2011a).

The suppression of individual bottomium states in relativistic PbPb col-
lisions at the LHC has been measured recently for the first time by the CMS
experiment (Khachatryan et al., 2011; Chatrchyan et al., 2011, 2012).

The model presented in this thesis investigates only the suppression of
bottomia since they represent a much cleaner probe for the properties of the
QGP. Before we continue to outline the model, however, we review some
basic properties of the bottomium family in the next section.
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Table 1.1: Masses of charmonia (left) and bottomia (right) and the lightest open charm
and bottom mesons as given by the PDG (Beringer et al., 2012).

State Mass (MeV) State Mass (MeV)
J/ψ(1S) 3096.916± 0.011 Υ(1S) 9460.30± 0.26
χc0(1P) 3414.75± 0.31 χb0(1P) 9859.44± 0.42± 0.31
χc1(1P) 3510.66± 0.07 χb1(1P) 9892.78± 0.26± 0.31
χc2(1P) 3556.20± 0.09 χb2(1P) 9912.21± 0.26± 0.31
ψ(2S) 3686.109± 0.014 Υ(2S) 10023.26± 0.31
D0 1864.86± 0.13 χb0(2P) 10232.5± 0.4± 0.5
D± 1869.62± 0.15 χb1(2P) 10255.46± 0.22± 0.50

χb2(2P) 10268.65± 0.22± 0.50
Υ(3S) 10355.2± 0.5
χb(3P) 10534± 9
Υ(4S) 10579.4± 1.2
B± 5279.26± 0.17
B0 5279.58± 0.17

1.2 The bottomium family

Quarkonium mesons consist of a heavy quark-antiquark pair, i.e. bb̄ (bottom-
antibottom) for bottomia or cc̄ (charm-anticharm) for charmonia. The J/ψ,
a charmonium with a mass of ∼ 3.1 GeV, was the first quarkonium to be dis-
covered simultaneously at the SLAC National Accelerator Laboratory (Au-
gustin et al., 1974) and the BNL (Aubert et al., 1974). The first bottomium
to be observed was the Υ(1S) meson. It was discovered only three years later
at Fermilab, having a mass of roughly ∼ 9.5 GeV (Herb et al., 1977). The
top quark was discovered in 1994 by the CDF experiment with the Tevatron
at Fermilab (Abe et al., 1994). Unfortunately the top decays too fast to form
bound states so there are no toponia to probe the QGP. Up-to-date masses
of charmonia and bottomia as given by the particle data group (PDG) are
summarized in table 1.1.

In following we will concentrate on the bottomium family but the char-
monium family is structured very similarly. The lightest bottom-flavored
mesons are the B± mesons, where the mass of a B+B− pair is larger than
the Υ(1S) mass by ∼ 1100 MeV. Analogous to QED bound states, this mass
gap can be thought of as some kind of binding energy in the sense that this
amount of energy has to be invested into the system to separate the heavy
bb̄ pair to infinity. The analogy should not be taken too serious, however,
because the nature of the strong interaction would prevent the isolation of
color charges by the creation of a light quark-antiquark pair from the invested
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energy to form a color neutral B+B−-pair. The picture is also more com-
plicated for the excited states as becomes apparent from the Υ(4S), whose
mass lies above the B+B−-threshold.

Due to the large mass of the bottom quark, bb̄ pairs can only be produced
in hard processes in the initial phase of the collision over timescales of the
order τbb̄ ∼ 1/(2mb), where mb is the mass of the bottom quark. This fact is
utilized in the Color-Singlet Model, an early quarkonium production model,
where the hard part of the production process is calculated in pQCD, while
soft part is captured in a bottomium wave function. It is assumed that color
and spin of the bb̄ pair do not change during the formation process so that
bottomia can only be formed from bb̄ pairs that have been produced in a
color-singlet state.2 In the Color Evaporation Model, on the other hand,
it is assumed that the bb̄ pair interacts softly with its environment during
the formation process so its initial quantum numbers are not conserved and
need not be related to their final values (for more information on quarkonium
production see e.g. Lansberg, 2006, and references therein).

Bottomia acquire quite unusual properties as compared to light mesons
or baryons due to the combination of the running coupling and the large
quark masses involved.

First, the bottomium mass is mostly due to the rest-mass of its con-
stituents whereas the mass of a light hadron results almost entirely from the
binding energy. Second, the large masses result in small hadrons, i.e. the
coupling strength is relatively weak inside bottomia. In this case the binding
becomes similar to that of a Coulomb bound state, especially for the lowest
lying bottomium states, so that potential models can be applied. Third, the
relatively small coupling causes small relative velocities of the quarks in the
bound state so that non-relativistic quantum mechanics is applicable.

While the binding of bottomia is still more complicated than the binding
of QED bound states, their properties can be modeled theoretically much
better and with much less effort than that of other QCD bounds state like
baryons or light mesons. This holds especially well for bottomium states due
to the much larger mass of the bottom quark. Jacobs et al. (1986), for ex-
ample, have reproduced elementary properties of bottomia (and charmonia)
quite well using a Schrödinger equation with the Cornell potential

VCornell(r) = σr − αeff

r
, (1.4)

where αeff is an effective Coulomb-like coupling and the string tension σ
represents the non-perturbative, phenomenological input.

2As we will see in chapter 2 the interaction potential of a color-octet pair is repulsive.
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Matsui and Satz (1986) first proposed quarkonia as probes for the prop-
erties of the QGP. They considered static, non-relativistic charm-anticharm
systems, governed by the Cornell potential (1.4). Asymptotic freedom sug-
gests that σ is a decreasing function of temperature T , which vanishes in
a deconfined medium where T > Tc. Hence Matsui and Satz argued that
Debye screening of the color charge would change eq. (1.4) to a screened
Coulomb potential,

VCornell(r)
T>Tc→ −αeff

r
e−mD(T )r, (1.5)

where mD(T ) is the Debye mass in the QGP. Such behavior is indeed backed
up by LQCD results (Kaczmarek and Zantow, 2005). It follows from this
argument that color screening forbids the existence of bound states above a
certain melting temperature Tm. Not surprisingly it is found that the melting
temperature decreases with increasing excitation of the state. Further Tm is
higher for bottomia than for charmonia, with the Υ(1S) being by far the
most stable state.

Even though the picture is really not as simple as originally proposed by
Matsui and Satz (1986), color screening remains an important effect for the
suppression of quarkonia in the QGP, especially for the excited states.

1.3 Theoretical outline, experimental input

We outline the phenomenological model used to calculate the amount of Υ
suppression in LHC PbPb collisions. Subsequently we present recent CMS
data that are used to test its accuracy.

The model is based on three successive steps:

1. Calculate the bottomium wave functions and decay widths from a non-
relativistic, complex potential model that properly accounts for the
temperature-dependent running of the coupling (chapter 3). This ac-
counts for three processes contributing to Υ suppression:

• Color screening which prevents the formation of bottomia above
the melting temperature Tm

• Collisional damping, represented by the imaginary part ImV of
the complex potential

• Gluodissociation, represented by the dipole interaction term in
the pNRQCD action
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2. Calculate the evolution of the QGP in the longitudinally and transver-
sly expanding fireball, formed in relativistic heavy ion collisions, us-
ing perfect-fluid hydrodynamics (chapter 4). Interpolating the decay
widths obtained in step one to the temperature values from the numer-
ically calculated profiles yields the amount of suppression within the
QGP.

3. Calculate the decay cascade within the bottomium family to find the
fraction of dimuon decays, Υ(nS) → µ+µ−, that originate from sur-
viving Υ states to obtain the final suppression factors RAA(Υ(nS))
(chapter 5).

The model separates the suppression process into two consecutive phases:
within the fireball and after it has cooled. The above mentioned processes
rapidly diminish the bottomium population within the QGP-lifetime of less
than 10 fm/c (Aamodt et al., 2011). After the fireball has cooled the surviv-
ing bottomia fly through the detector, decaying according to their vacuum
lifetimes that are of the order 104 fm/c (Beringer et al., 2012). The excited
bottomium states, however, have been efficiently dissociated in the fireball
so that missing feed-down to the ground state Υ(1S) represents another,
indirect source of suppression.

Suppression from cold-nuclear-matter (CNM) effects like the Cronin ef-
fect, nuclear absorption and (anti-) shadowing are currently not considered
in this model.

Given that a lot of effort has been made up to this point, both theo-
retically and experimentally, to study charmonium suppression in heavy ion
collisions, we should justify why only bottomia are treated in this model:

First, the theoretical treatment exploited in this work is suited for heavy
quarks, whereas the charm is rather a medium-mass quark. Even for botto-
mia a lot of approximations are necessary and the models have to be pushed
to their limits of validity when excited states are considered. This becomes
very clear when the scale hierarchy of excited bottomium states in the QGP
is considered (see appendix B).

Second, bottomia are more stable than charmonia. The mass gap to
the open bottom/charm threshold, for example, is approximately 1100 MeV
for Υ(1S) and 640 MeV for J/ψ. More processes will therefore contribute
significantly to charmonium suppression.

Third, the relatively large number of cc̄ pairs produced on average per
PbPb collision at the LHC leads to a significant amount of regeneration by
statistical hadronization (Braun-Munzinger et al., 1995; Braun-Munzinger
and Stachel, 2010).
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The following bottomium states are considered in this model:

Υ(1S), χb(1P), Υ(2S), χb(2P), Υ(3S), χb(3P),

with masses given in tab. 1.1. The masses of the χbJ(1P)- and χbJ(2P)-states
are averaged, weighted with their multiplicities 2J + 1 to yield

M(χb(1P)) = 9899.87, M(χb(2P)) = 10260.24. (1.6)

The experimental data to test the model is taken from the CMS experiment
from the November 2011 PbPb-run at

√
sNN = 2.76 TeV, where the mini-

mum bias suppression factors RAA(Υ(nS)) have been measured (Chatrchyan
et al., 2012),

RAA(Υ(1S)) = 0.56± 0.08 (stat)± 0.07 (sys),

RAA(Υ(2S)) = 0.12± 0.04 (stat)± 0.02 (sys),

RAA(Υ(3S)) = 0.03± 0.04 (stat)± 0.01 (sys), (1.7)

and also the double ratios,

[Υ(2S)/Υ(1S)]PbPb

[Υ(2S)/Υ(1S)]pp
= 0.21± 0.07 (stat)± 0.02 (sys),

[Υ(3S)/Υ(1S)]PbPb

[Υ(3S)/Υ(1S)]pp
= 0.06± 0.06 (stat)± 0.06 (sys). (1.8)

The relative yields Υ(nS)/Υ(1S) in the dimuon decay channel in PbPb and
pp collisions, both at the same energy, are given by

[Υ(2S)/Υ(1S)]pp = 0.56± 0.13 (stat)± 0.02 (sys),

[Υ(2S)/Υ(1S)]PbPb = 0.12± 0.03 (stat)± 0.02 (sys),

[Υ(3S)/Υ(1S)]pp = 0.41± 0.11 (stat)± 0.04 (sys),

[Υ(3S)/Υ(1S)]PbPb = 0.02± 0.02 (stat)± 0.02 (sys). (1.9)

CMS has also performed centrality dependent measurements of the two sup-
pression factors RAA(Υ(1S)) and RAA(Υ(2S)) as well as the double ratio
[Υ(2S)/Υ(1S)]PbPb

[Υ(2S)/Υ(1S)]pp
, which are compared to the theoretical results in chapter 6.



Chapter 2

Theoretical foundations

In this chapter we introduce basic theoretical concepts to treat bottomia in a
thermal environment. In section 2.1 we explain some basic QCD concepts and
relations and introduce the QCD action. The effect of finite temperature is
introduced in section 2.2. We integrate out the light quark degrees of freedom
to obtain the action of a bb̄ system immersed in a thermal medium consisting
of light quarks and gluons. In section 2.3 we sketch the derivation of the
pNRQCD action for the bb̄ system, where the hard and soft gluon degrees
of freedom have been integrated out. Finally, in section 2.4 we show how
the high-temperature interaction potential of the bb̄ system can be derived
in this formalism.

2.1 Quantum chromodynamics

Let S[Ψ, A] denote the QCD action, which is a functional of the quark fields,
collectively denoted by Ψ, and the gluon field A. QCD is a gauge theory
with the gauge group SU(Nc), where Nc = 3 is the number of colors. SU(Nc)
is the non-abelian group formed by the set of complex Nc ×Nc matrices U ,
which are unitary and have unit determinant,

U † = U−1, detU = 1, (2.1)

together with matrix multiplication as group operation. As such its action
S is invariant under the following local, simultaneous gauge transformation:

Ψ(x)→ Ψ′(x) = U(x)Ψ(x),

Ψ̄(x)→ Ψ̄′(x) = Ψ̄(x)U−1(x),

A(x)→ A′(x) =

(
U(x)A(x) +

1

ig
dU(x)

)
U−1(x), (2.2)

11
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where U(x) is an arbitrary, spacetime dependent SU(Nc)-matrix, g the QCD
coupling strength, d the exterior derivate and Ψ̄ = Ψ†γ0 is the Dirac con-
jugate of Ψ (γ0 is a Dirac matrix). The quark field Ψ is a Dirac spinor in
spacetime and transforms as a vector in the fundamental representation of
SU(Nc) in the Nc-dimensional color space. The gluon field A is a 1-form
in spacetime and a matrix in color space, which transforms in the adjoint
representation. Thus there are N2

c − 1 = 8 different gluon fields,

A = AaµTadx
µ, (2.3)

where Ta are the traceless, hermitian generators of SU(Nc). They satisfy the
following commutation and anticommutation relations,

[Ta, Tb] = ifabcTc, {Ta, Tb} =
1

Nc

δab + dabcTc, (2.4)

where fabc and dabc are the completely antisymmetric and symmetric struc-
ture constants, respectively. In the adjoint representation we have (TAa )bc =
−ifabc, whereas, in the fundamental representation of SU(3), the generators
are given in terms of the Gell-Mann matrices λa via T Fa = λa/2.

In quantum electrodynamics (QED), the transformation “matrix” U is
simply a complex number and the structure constants of this abelian gauge-
group vanish identically.

Two important identities, obeyed by the generators T F in the fundamen-
tal representation, are given by

T Fa T
F
a =

N2
c − 1

2Nc

1c, TrT Fa T
F
b =

1

2
δab, (2.5)

where 1c is the unit matrix in color space.
The transformation law in eq. (2.2) reminds of the transformation law

for a connection on a differentiable manifold and is dictated by the gauge
invariance of the QCD action. It gives rise to the gauge-covariant derivative

D = d− igAaTa, (2.6)

where the SU(3) generators Ta are given in the representation of the ob-
ject on which D is acting. The covariant derivative behaves under gauge
transformations according to

D → D′ = UDU−1. (2.7)

The QCD action may now be formulated completely analogous to the action
of QED, which is most conveniently written in terms of the electromagnetic
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field strength 2-form F = dA. Hence in QCD we may define a chromody-
namic field strength 2-form for the gluon field,

F =
1

2
F a
µνTadx

µ ∧ dxν , (2.8)

which is defined as

F =
i

g
[D,D], or equivalently D2ω = F ∧ ω, (2.9)

for an arbitrary differential form ω, which transforms as a vector under gauge
transformations. F is then given by

F = dA− igA ∧ A =
(
dAa +

g

2
Ab ∧ Acfabc

)
Ta. (2.10)

The quantity F a
µν in eq. (2.8) is the non-abelian generalization of the elec-

tromagnetic field strength tensor Fµν . It represents the field strength of the
8 independent gluon fields. From F a

µν we may define chromoelectric and
-magnetic fields, respectively,

Ei = Ea
i Ta =

i

g
[Di, D0], Bi = BiaTa =

i

2g
εijk[Dj, Dk]. (2.11)

From eq. (2.7) it follows that F transforms as a second rank tensor under
gauge transformations, F → UFU−1. Hence we find that the three most
simple, gauge invariant expressions read,

Ψ̄Ψ→ Ψ̄′Ψ′ = Ψ̄Ψ,

Ψ̄DΨ→ Ψ̄′D′Ψ′ = Ψ̄DΨ,

TrF ∧ F → TrF ′ ∧ F ′ = TrF ∧ F,
TrF ∧ ∗F → TrF ′ ∧ ∗F ′ = TrF ∧ ∗F, (2.12)

where ∗F means the Hodge dual of F . In the third and fourth lines we
have used the cyclic property of the trace. The most simple, gauge-invariant
expression of the QCD action is then given by

S = SA + SΨ,

SA = Tr

∫
F ∧ ∗F = −1

4

∫
d4xF a

µνF
aµν ,

SΨ =
∑
f

∫
d4x Ψ̄f (i /D −mf )Ψf
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=
∑
f

∫
d4x Ψ̄f (i/∂ + g /A−mf )Ψf , (2.13)

where f runs through the six quark flavors and we have used dΨ = ∂Ψ.
We have omitted F ∧ F in eqs. (2.13) since it can be rewritten as a total
derivative and therefore adds only a constant to the action. More specifically,
the gauge sector SA of the QCD action is given by

SA =
1

2

∫
dAa ∧ ∗dAa − g

4

∫ (
dAa ∧ ∗(Ab ∧ Ac) + Aa ∧ Ab ∧ ∗dAc

)
fabc

+
g2

8

∫
Aa ∧ Ab ∧ ∗(Ac ∧ Ad)fabefcde

=

∫
d4x

[
1

2
Aaα(ηαβ∂2 − ∂α∂β)Aaβ

− gfabcAµaAνb∂µAcν −
g2

4
fabefcdeA

a
µA

b
νA

µcAνd
]
. (2.14)

From this action we can perturbatively calculate the running of the coupling
strength g with the four-momentum exchange q in the interaction process.
Defining the strong coupling “constant”,

αs =
g2

4π
, (2.15)

we obtain to first order (see e.g. Srednicki, 2007; Peskin and Schroeder, 1995)

αs(Q) =
α(µ)

1 + α(µ)b0 ln Q
µ

, b0 =
11Nc − 2Nf

6π
, (2.16)

where Q = |q| and µ is an arbitrary reference scale. The strong coupling αs
manifestly decreases with in increasing Q, giving rise to asymptotic freedom.
The coupling diverges at a finite momentum scale ΛQCD, the QCD scale,

ΛQCD = µ exp

[
− 1

b0αs(µ)

]
, (2.17)

which marks the brake down of perturbation theory in low-energy processes
and the crossover into the non-perturbative regime of confinement.

A summary of results for higher orders in perturbation theory can be
found in Bethke (2009). Using up-to-date experimental results for αs(MZ),
the strong coupling evaluated at the mass of the Z boson, MZ = 91.2 GeV,
(Beringer et al., 2012) as well as Nc = Nf = 3, we obtain for ΛQCD (Bethke,
2013)

ΛQCD = 276.3 MeV, αs(MZ) = 0.1197, (2.18)
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where we have used the αs(MZ)-value that result from matching to charm
and bottom masses.

The full QCD action given in the first line of eqs. (2.13) represents our
starting point for further development of the formalism. In the following
sections we will specialize it to the case of non-relativistic bb̄ bound states
immersed in a hot, thermal medium.

2.2 Thermal modifications

Let us now rewrite the QCD action (2.13) in a way that is more appropriate
to treat heavy quarks moving in the thermal background medium. For this
purpose we introduce finite temperature and integrate out the light fermion
degrees of freedom so they appear in the resulting action as part of a thermal
background medium.

The following steps in this section are explained only very briefly. More
information on thermal field theory and the treatment of heavy quarks in a
thermal medium can be found in Kapusta (1989); Le Bellac (2000); Beraudo
et al. (2010) or in appendix A.

We want to separate the quark fields Ψf in eq. (2.13) into light quarks
qf = (u, d, s), which are treated as massless, and one heavy quark species b
(bottom) with a large mass mb,

S = SA +

∫
d4x b̄(i /D −mb)b+

∑
f

∫
d4x q̄f i /Dqf . (2.19)

As explained in sections 1.2 and 1.3, charm and top quarks are not considered
in this thesis because the former is neither light nor heavy whereas the latter
decays too fast to form bound states.

To investigate the properties of bottomium states in a thermal medium
with temperature T we consider the partition function Z of the system,

Z =

∫
DqDbDAe−SE , (2.20)

where the path integral measure is normalized to the free field theory. The
euclidean action SE is obtained by performing a Wick rotation to the imag-
inary time τ = it and considering fields periodic in τ with period β = 1/T .
The heavy quark field b, however, is not set to be periodic in τ , since the
heavy quarks might not be thermalized. The integration in position- and
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momentum-space in the euclidean sector becomes

∫
d4xE =

β∫
0

dτ

∫
d3x,

∫
d4kE
(2π)4

=
1

β

∞∑
n=−∞

∫
d3k

(2π)3
. (2.21)

Since this procedure breaks explicit Lorentz-invariance anyway, we find it
convenient to make use of the Coulomb-gauge.

In the high-temperature regime the coupling strength g becomes small so
we may treat the cubic and quartic terms in A in eqs. (2.19) as a perturbation
and neglect them for the present case. The euclidean action then reads

SE = Sbb̄ +

∫
d4xE

[
1

2

(
Aa0∆Aa0 + ~Aa(−∂2) ~Aa

)
+
∑
f

q̄f (−i /D)qf

]
,

Sbb̄ =

∫
d4xE b̄(−i /D +mb)b. (2.22)

Integrating out the light fermion degrees of freedom in the partition function
(2.20) yields a functional determinant so that

SE = Sbb̄ +

∫
d4xE

1

2

(
Aa0∆Aa0 + ~Aa(−∂2) ~Aa

)
−
∑
f

Tr ln

(
1− 1

−i/∂
g /AaTa

)
, (2.23)

where we have used the fact that the path integral measure is normalized to
the free field theory.

In the high temperature regime, with small g, we may approximate the
logarithm to quadratic order. Since the order linear in A does not contribute
we have

SE = Sbb̄ +

∫
d4xE

1

2

(
Aa0∆Aa0 + ~Aa(−∂2) ~Aa

)
− 1

2

∫
d4xEd

4yE A
a
µ(x)Πµν(x, y)Aaν(y), (2.24)

where Π is the gluon polarization tensor,

Πµν(x, y) =

∫
d4kE
(2π)4

eik(x−y)Πµν(k),

Πµν(k) = −g
2

2

∫
m

d4pE
(2π)4

Tr[S(iωm, ~p)γ
µS(iωm − iωn, ~p− ~k)γν ]. (2.25)
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The momentum-space expression of the polarization tensor is calculated in
appendix A.2. From the first line of eqs. (A.27) one can see that the contri-
bution of Πi0 vanishes in Coulomb gauge so we may define the longitudinal
and transverse gluon propagators, respectively, as

∆00(x) = −
∫

d4kE
(2π)4

eikx

~k2 + Π00(k)
,

∆⊥ij(x) = δij

∫
d4kE
(2π)4

eikx

k2 − Π⊥(k)
. (2.26)

In terms of these propagators we may rewrite the action (2.24) as

SE = Sbb̄ +
1

2

∫
d4xEd

4yE

[
Aa0(x)(∆−1)00(x− y)Aa0(y)

+ Aai (x)(∆−1
⊥ )ij(x− y)Aaj (y)

]
. (2.27)

We have now arrived at a euclidean action for a bb̄ system immersed in a
thermal background medium of light quarks and gluons.

2.3 NRQCD and pNRQCD

In this section we concentrate on the heavy quark section of the QCD action
and employ the EFT formalism (Caswell and Lepage, 1986) to make use of
the non-relativistic nature of bottomium.

The bb̄ part, Sbb̄, of the full QCD action (2.19) reads

Sbb̄ =

∫
d4xE b

†Hb, H = γ0
(
−i /D +mb

)
. (2.28)

This expression contains contributions from all momentum scales. The in-
termixture of different scales is very inconvenient for the treatment of bound
states since the binding of a bb̄ pair is an effect of soft-gluon exchange. Soft
gluons have a momentum of the order of the inverse radius 〈1/r〉 of the bound
state, as measured in the CM system. Hard or ultra soft gluons with mo-
menta of the order of the bottom mass mb or the binding energy E do not
contribute to the binding.

In an ideal case the hard, soft and ultra soft scales are well separated,

mb � 〈1/r〉 � E, (2.29)

which is encountered e.g. in QED bound states with their small coupling
α ≈ 1/137. It is this scale hierarchy which is utilized in the EFT approach.
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For the strong coupling, however, a large separation is rather optimistic.
Fortunately, the large bottom mass mb ensures that the scales at least satisfy

mb > 〈1/r〉 > E (2.30)

as long as the state under consideration is not too highly excited. In the
following we will, however, assume that the relations (2.29) indeed hold.

We would like to reduce eq. (2.28) into a form that exploits this separation
of scales in order to simplify the treatment of bottomia. The following scales
are important for a bb̄ bound state in a thermal medium:

hard scale mb

soft scale 〈1/r〉 ∼ mbv
ultra soft scale E ∼ mbv

2

QCD scale ΛQCD

temperature 2πT
Debye mass mD ∼ T

√
αs,

where v is the relative velocity in the bound state. Evidently the last
two scales are not present in the absence of a thermal medium. When a hot
background medium is introduced, however, thermal effects will lower the
soft and ultra soft scales, bringing them closer to ΛQCD.

We will see in the following chapters that mb � 〈1/r〉 and mb � 2πT
always holds for the QGP created in heavy ion collisions.1 The first relation
justifies the non-relativistic treatment whereas the second implies that inter-
actions with light medium particles do not change the bottomium trajectories
significantly.

While Caswell and Lepage (1986) derived the NRQCD formalism from
arguments based on the renormalization group, we prefer the less rigorous
but more vivid method using the Foldy-Wouthuysen transformation. From
NRQCD we then proceed to pNRQCD (Pineda and Soto, 1998) to obtain
a formalism for the interaction of a heavy bb̄ pair. More information on
the derivation of NRQCD and pNRQCD can be found in Braaten (1997);
Ghiglieri (2012).

In a first step we want to separate the quark and antiquark Weyl spinors
ψ and χ which constitute the Dirac spinor b = (ψ, χ)T . Working in the
Dirac-representation, where γ0 is diagonal, we diagonalize the Hamiltonian
by a unitary transformation (Foldy and Wouthuysen, 1950),

U = exp

[
− i /~D

2mb

]
, b′ = Ub, (2.31)

1Or rather mb > 〈1/r〉 and mb > 2πT , depending on the optimism of the reader.
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where slashed three-vectors ~a are defined as /~a = ~γ~a. In the following we only
need to keep terms of order 1/mb,

Sbb̄ =

∫
d4xE b

′†UHU †b′

=

∫
d4xE b

′†

(
H− [i /~D,H]

2mb

− [ /~D, [ /~D,H]]

8m2
b

)
b′ +O

(
1

m2
b

)
. (2.32)

From the properties of the γ-matrices we have

γiγj = −δij − iεijkγ5γ
0γk. (2.33)

Inserting this into eq. (2.32) yields

Sbb̄ =

∫
d4xE b

′†

(
Dτ + γ0

(
mb −

~D2 + g~σ ~B

2mb

)
+
ig /~E

2mb

)
b′, (2.34)

where Dτ = −iD0 = ∂τ − gA0. The chromoelectric field term relates quark
to antiquark Weyl spinors and hence has to be removed by another Foldy-
Wouthuysen transformation,

U ′ = exp

[
igγ0 /~E

4m2
b

]
, b′′ = U ′b′. (2.35)

Including yet another field redefinition b′′′ = exp [−γ0mτ ] b′′ to remove the
rest-mass term and renaming b′′′ → b yields

Sbb̄ =

∫
d4xE b

†

(
Dτ − γ0

~D2 + g~σ ~B

2mb

)
b. (2.36)

We will further drop the chromomagnetic field term since it belongs to a
higher order in the quark velocity (Bodwin et al., 1995). The resulting action,
written in terms of the Weyl spinors, then reads

Sbb̄ =

∫
d4xE

[
ψ†

(
Dτ −

~D2

2m

)
ψ + χ†

(
Dτ +

~D2

2m

)
χ

]
. (2.37)

The correct matching with the full, relativistic theory would require including
matching coefficients which are of the order 1 +O(α). This is, however, not
necessary for the order of accuracy required in the following chapters.
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It is appropriate to switch to the operator formalism now, where the
non-relativistic Hamiltonian of the system reads

Hbb̄ =

∫
d3x

[
ψ†

(
−gA0 −

~D2

2m

)
ψ + χ†

(
−gA0 +

~D2

2m

)
χ

]
. (2.38)

The non-relativistic action (2.37) or the Hamiltonian (2.38) represent the
starting point for NRQCD calculations. In order to obtain an appropriate
formalism for heavy quark bound states, however, we have to proceed to
pNRQCD. For this purpose we project the Hamiltonian (2.38) onto a bb̄-
bound state and perform path-ordering (Pineda and Soto, 1998),

Hbb̄ → P〈bb̄|Hbb̄|bb̄〉,

|bb̄〉 =

∫
d3x1d

3x2 Ψ(τ, ~x1, ~x2)ψ†(τ, ~x1)χ(τ, ~x2)|0〉, (2.39)

where P arranges operator-ordering from ~x1 (left) to ~x2 (right). We have
chosen equal imaginary times τ since a universal choice of time can be made
in this non-relativistic context. The wave function Ψ of the bb̄ system is a
2 × 2 matrix in spin space and a 3 × 3 matrix in color space. Dropping a
constant contribution, the projected Hamiltonian reads

Hbb̄ = P

∫
d3x1d

3x2 Ψ†(τ, ~x1, ~x2)

·

[
−g(A0(τ, ~x1)− A0(τ, ~x2))−

~D2
1 + ~D2

2

2m

]
Ψ(τ, ~x1, ~x2), (2.40)

while the corresponding action reads

Sbb̄ = P

∫
dτd3x1d

3x2 Ψ†(τ, ~x1, ~x2)

[
Dτ −

~D2
1 + ~D2

2

2m

]
Ψ(τ, ~x1, ~x2). (2.41)

In the following the gauge field A is meant to contain only contributions
of ultra soft gluons. This can be accomplished by separating the original
gluon field into soft and ultra soft parts, A = AS + AUS, and treating AS

and AUS → A as independent fields. The soft contributions may then be
integrated out by completing the square for AS under the path integral. The
soft part of the gluon spectrum is then included only indirectly through an
additional, non-local, potential term in the action,

S = SA + Sbb̄ + (gS)2
P Tr

∫
d4xE1d

4xE2 Ψ†(τ1, ~x1, ~x2)
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· Ta[∆00(τ1 − τ2, ~x1 − ~x2)−∆00(τ1 − τ2, 0)]TaΨ(τ2, ~x1, ~x2). (2.42)

In the lowest order, the potential term simply reads

αSs P Tr

∫
dτd3x1d

3x2
Ψ†(τ, ~x1, ~x2)TaTaΨ(τ, ~x1, ~x2)

|~x1 − ~x2|
, (2.43)

with the strong coupling evaluated at the soft scale, αSs = (gS)2/(4π) =
αs(〈1/r〉). Thermal contributions and higher order corrections to the poten-
tial may be included by inserting eq. (2.26) for the propagators.

In order to arrive at pNRQCD, however, we further have to perform a
multipole expansion of the ultra soft gluon field. Defining the relative-motion
(RM) and CM coordinates,

~r = ~x1 − ~x2, ~R =
~x1 + ~x2

2
, (2.44)

respectively, we may define the singlet and octet fields S and O = OaTa via

Ψ(τ, ~r, ~R) = P exp

ig ~x1∫
~x2

d~x ~A

 1c√
Nc

S(τ, ~r, ~R)

+ P exp

ig ~x1∫
~R

d~x ~A

√2O(τ, ~r, ~R) P exp

ig ~R∫
~x2

d~x ~A


≈ eig~r

~A(τ, ~R) 1c√
Nc

S(τ, ~r, ~R) + eig~r
~A(τ, ~R)/2

√
2O(τ, ~r, ~R)eig~r

~A(τ, ~R)/2,

(2.45)

where g is evaluated at the ultra soft scale and the factors 1c/
√
Nc and

√
2

normalize the traces over color indices to one. In this prescription, the singlet
and octet fields transform under gauge transformations according to

S(τ, ~r, ~R)→ S(τ, ~r, ~R),

O(τ, ~r, ~R)→ g(τ, ~R)O(τ, ~r, ~R)g−1(τ, ~R). (2.46)

Further, the multipole expanded covariant derivatives in eq. (2.41) read

DτΨ = ∂τΨ− gA0(τ, ~x1)Ψ + gΨA0(τ, ~x2)

= ∂τΨ− g[A0(τ, ~R),Ψ]− g~r

2
{~∇A0(t, ~R),Ψ},
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~D1/2Ψ =

(
1

2
~∇R ± ~∇r

)
Ψ− ig

(
1± ~r

2
~∇R

)
~A(t, ~R) Ψ. (2.47)

Inserting this into eq. (2.42) yields

S = SA +

∫
dτd3Rd3r

[
S† (∂τ +H1)S +Oa† (Dτ +H8)Oa

+ g

√
2

Nc

~rTr
(
S† ~EO + ~EO†S

)
+ g~rTr

(
O† ~EO +O†O~E

)]
= SA +

∫
dτd3rd3R

[
S† (∂τ +H1)S +Oa† (Dτ +H8)Oa

+
g√
2Nc

~r ~Ea
(
S†Oa +Oa†S

)
+
g

2
~r ~EaOb†Ocdabc

]
, (2.48)

where we have defined the singlet- and octet Hamiltonians H1 and H8, re-
spectively. In absence of a thermal background medium and using the lowest
order expression (2.43) we have,

H1 = −∆R

4m
− ∆r

m
+ V1(r), V1(r) = −CFα

S
s

r
,

H8 = −∆R

4m
− ∆r

m
+ V8(r), V8(r) =

αSs
2Ncr

, (2.49)

where we have used relations (2.5) and written CF = (N2
c − 1)/(2Nc). Note

the chromoelectric dipole interaction terms in the pNRQCD action (2.48).
The first term describes a singlet-octet transition of the bb̄ pair by the emis-
sion or absorption of an ultra soft gluon. This transition, in combination
with the repulsive octet potential, results in gluodissociation of the bound
color-singlet state.

Now we have nearly arrived at the envisaged point. With eq. (2.48) we
have obtained the right starting point to treat a non-relativistic bb̄ bound
state. In the next section we only have to include the effect of the thermal
background medium on the interaction potential.

2.4 The long-time interaction potential

In order to account for the influence of the QGP on bottomium states, we
have to include the contribution of the gluon polarization tensor to the heavy
quark interaction potential, given in eqs. (2.42).

Therefore we calculate the longitudinal gluon propagator to first order,

∆00(τ, ~x) =

∫
d4q

(2π)4
e−q

0τ+i~q~xρ(q0, ~q)(Θ(τ) +N(q0)), (2.50)
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where we have defined the spectral density ρ as
∞∫

−∞

dz

2π

ρ(z, ~q)

z − q0
=

−1

~q 2 + Π00(q0, ~q)
, (2.51)

or equivalently, replacing q0 → q0 + i0+ in eq. (2.51),

ρ(q0, ~q) =
2 Im Π00(q0, ~q)

(~q 2 + Re Π00(q0, ~q))2 + (Im Π00(q0, ~q))2
. (2.52)

The component Π00 of the polarization tensor and the corresponding Debye
mass mD are given in eqs. (A.26) and (A.25), respectively, to first order in
the hard thermal loop (HTL) approximation. Its imaginary part, Im Π00, is
only non-vanishing for |q0| < |~q|, which yields the spectral function

ρ(q0, ~q) =
πm2

Dq
0

|~q|
Θ(|~q| − |q0|)(

~q 2 +m2
D

(
1− q0

2|~q| ln
|~q|+q0
|~q|−q0

))2

+
(
πm2

Dq
0

2|~q|

)2 . (2.53)

Since the potential is formed by soft gluons with energies of the order 〈1/r〉,
much larger than the bottomium binding energy E, the bb̄ field Ψ in eq.
(2.42) varies much slower in time than the propagator ∆00. Hence we may
approximate

P Tr

τ∫
0

dτ1dτ2

∫
d3rd3RΨ†(τ1, ~r, ~R)

· Ta[∆00(τ1 − τ2, ~r)−∆00(τ1 − τ2, 0)]TaΨ(τ2, ~r, ~R)

≈ P Tr

∫
d3rd3R

1

τ

τ∫
0

dτ ′
(

Ψ†(τ ′, ~r, ~R)TaTaΨ(τ ′, ~r, ~R)
)

·
τ∫

0

dτ1dτ2 [∆00(τ1 − τ2, ~r)−∆00(τ1 − τ2, 0)], (2.54)

i.e. we replace the heavy quark-field by its mean value over the imaginary
time τ . We do not integrate to τ = β like for the periodic fields qf and A,
since the bottomium system is not equilibrated with its thermal environment
and hence Ψ is not periodic in the imaginary time.

We perform the temporal double integral of the propagator, taking the
τ -dependence from eq. (2.50),

τ∫
0

dτ1dτ2 e
−q0(τ1−τ2)(Θ(τ1 − τ2) +N(q0))
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=
τ

q0
− 1− e−q0τ + (2− eq0τ − e−q0τ )N(q0)

q02 . (2.55)

We are interested in the potential governing the behavior at large times,
t→∞, corresponding to τ → i∞, where the exponential may be written as

lim
τ→i∞

eq
0τ = 1 + iπδ(q0)(q0 + q02

τ). (2.56)

The double integral over the propagator then yields

1

τ

τ∫
0

dτ1dτ2 ∆(τ1 − τ2, ~r)

=

∫
d3q

(2π)3
ei~q~r
(∫

dq0

2π

ρ(q0, ~q)

q0
+

(
i

β
− i

2τ

)
lim
q0→0

ρ(q0, ~q)

q0

)
=

∫
d3q

(2π)3
ei~q~r
(

−1

~q 2 +m2
D

+
iπm2

D

β|~q|(~q 2 +m2
D)2

)
. (2.57)

In going from the first to the second line we have neglected 1/τ as compared
to 1/β and used ∫

dq0

2π

ρ(q0, ~q)

q0
=

−1

~q 2 + Π(0, ~q)
=

−1

~q 2 +m2
D

,

lim
q0→0

ρ(q0, ~q)

q0
=

πm2
D

|~q|(~q 2 +m2
D)2

, (2.58)

according to eqs. (2.51) and (2.53). Correspondingly, we obtain for the
expession (2.54)

P Tr

∫
d3rd3R

τ∫
0

dτ ′
(

Ψ†(τ ′, ~r, ~R)TaTaΨ(τ ′, ~r, ~R)
)

·
(
−mDr + e−mDr

4πr
− iφ(mDr)

4πβ

)
, (2.59)

where we have defined

φ(x) =

∞∫
0

dz 2z

(1 + z2)2

(
1− sinxz

xz

)
. (2.60)

The function φ takes values in the half-open interval [0, 1[. Further it obeys
the differential equation (

∂2
x − 1− 2

x2

)
φ(x) = −1, (2.61)



2.4. THE LONG-TIME INTERACTION POTENTIAL 25

which has the following solution:

φ(x) = 1 + Chi(x)

(
sinhx

x
− coshx

)
+ Shi(x)

(
sinhx− coshx

x

)
, (2.62)

where Shi and Chi are the hyperbolic sine and cosine integrals, respectively.
For large values of x a power series representation in even powers of 1/x is
also useful,

φ(x) =
∞∑
i=0

ai
x2i

, a0 = 1, ai+1 = 2((2i+ 1)i− 1)ai. (2.63)

Note that this is a non-convergent, i.e. asymptotic, series since all ai except
a0 are negative and grow faster than 1/x2i.

The the singlet- and octet-potentials of section 2.3 are now changed to
the same expressions as found earlier by Laine et al. (2007); Beraudo et al.
(2008); Brambilla et al. (2008),

V1(r) = −CFαSs
(
mD +

e−mDr

r
+ iTφ(mDr)

)
+O((αSs )2),

V8(r) =
αSs
2Nc

(
mD +

e−mDr

r
+ iTφ(mDr)

)
+O((αSs )2). (2.64)

Thus we have obtained a formalism which describes a heavy, non-relativistic
bb̄ pair immersed in a thermal medium. This represents a good background
to build a model for the suppression of bottomia in the QGP created in heavy
ion collisions.

It should be noted that, strictly speaking, the results of this section are
valid for 2πT � 〈1/r〉 only, which turns out to be satisfied most of the time
as we will see in chapter 3. For the Υ(1S) however, this relation does not
hold once T drops below ∼ 230 MeV. In this case a different potential has
to be used (Brambilla et al., 2008).
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Chapter 3

Dissociation of bottomium in a
thermal medium

In this chapter we consider the dissociation of bottomium states in a ther-
mal medium. Section 3.1 investigates the bound state solutions and corre-
sponding decay widths in a non-relativistic, complex potential model. The
potentials used are derived from pNRQCD as introduced in chapter 2 but
augmented by some phenomenological input to improve the approach in the
non-perturbative regime. Section 3.2 is concerned with the process of gluo-
dissociation, that results from the transition of a bound color-singlet state
to an unbound color-octet state by emission or absorption of an ultra soft
gluon. A comparison with the results of Peskin (1979); Bhanot and Peskin
(1979) is also made.

3.1 Bound state bottomium wave functions

In this section we calculate the in-medium color-singlet wave functions from
a potential approach in line with the formalism developed in chapter 2. The
bound state wave function ψnlm is characterized by the well known princi-
pal, angular and magnetic quantum numbers n, l and m, respectively, while
the corresponding bottomium state is given in the notation (n − l, l). The
Υ(nS) and χb(nP) wave functions obey the temperature-dependent, station-
ary Schrödinger equation(

2mb −
∆

mb

+ Vnl(r, T )−Mnl(T ) +
iΓnl(T )

2

)
ψnlm(~x, T ) = 0, (3.1)

where Γnl means the decay width, mb the bottom mass, Mnl the temperature-
dependent mass of the bound state and Vnl is a complex interaction potential.

27
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While it is tempting to simply use the singlet potential from eqs. (2.64) we
would like to modify Vnl such that it reduces to the Cornell potential in the
limit of zero temperature,

lim
T→0

Vnl(r, T ) = VCornell(r) = −αeff

r
+ σr. (3.2)

The Cornell potential, with its effective Coulomb- plus linear string term, has
proven appropriate to treat also higher excited quarkonia at zero temperature
(see e.g. Jacobs et al., 1986). Hence a combination of the potentials (2.64)
and (3.2) seems appropriate. Instead of a simple, linear term, we therefore
include a temperature-dependent string part which is parameterized as in
Karsch et al. (1988). The full singlet potential then reads

Vnl(r, T ) =
σ

mD(T )

(
1− e−mD(T )r

)
− CFαnl(T )

(
mD(T ) +

e−mD(T )r

r
+ iTφ(mD(T )r)

)
,

mD(T ) = T

√
4παT

2Nc +Nf

6
, (3.3)

where the string tension equals σ = 0.192 GeV2, the function φ is given in
eq. (2.60) and the Debye mass mD, calculated perturbatively in the HTL
approximation (see appendix A), contains the number of colors and flavors,
respectively, as degrees of freedom, where Nc = Nf = 3. The variables αT
and αnl denote the strong coupling constant αs evaluated at the thermal scale
2πT and the soft scale Snl(T ) = 〈1/r〉nl(T ) of the bottomium state (n− l, l),
respectively,

αT = αs(2πT ), αnl(T ) = αs(Snl(T )). (3.4)

In this thesis we use the first order expression for the strong coupling αs(Q)
as given in eq. (2.16) with the QCD scale ΛQCD for Nc = Nf = 3 as given in
eq. (2.18).

Obviously the potential Vnl reduces to eq. (3.2), in the limit T → 0,
with αeff = CFαnl(0). Eq. (3.3), however, includes the effects of the thermal
background medium on the bb̄-bindings which we arbitrarily denote by the
two different terms “color screening” and “collisional damping”.

The term “color screening” is due to the analogy with the classical phe-
nomenon of Debye screening in an electromagnetic plasma. It refers to the
exponential damping in the real part of Vnl, which introduces a color screen-
ing length rD, equal to the inverse of the Debye mass rD = m−1

D . As a con-
sequence the constituents of the QGP restrict the range of the color-singlet
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potential to a length of the order rD. The color screening length decreases
with increasing temperature, thus lifting all energy levels up towards the
continuum. Correspondingly, for every bottomium state there exists some
critical melting temperature Tm above which no bound state solutions to eq.
(3.1) exist.

“Collisional damping”, named after the classical phenomenon of Landau
damping, refers to the imaginary part of the potential Vnl. It describes the
break up of the bb̄-binding due to collisions with medium particles and hence
introduces a decay width Γnl into the Schrödinger equation (3.1),

Γnl(T ) = 〈nlm|2 ImV (T )|nlm〉

=

∫
d3x |ψnlm(~x)|2 2 ImVnl(r, T ). (3.5)

Quite frankly, the processes of color screening and collisional damping both
describe soft interactions of the medium with the bb̄ pair and their exchange-
gluons. The divide into two separate phenomena is due to historical rea-
sons since the imaginary part of the potential arises only in quantum theory
whereas Debye screening is also present in a classical plasma.

Let us now make the common separation Ansatz for central potentials,

ψnlm(r, θ, ϕ, T ) =
gnl(r, T )

r
Ylm(θ, ϕ), (3.6)

with the spherical harmonics Ylm, and define energy levels Enl such that

Enl(T ) =

{
Mnl(T )− 2mb + lim

r→∞
Vnl(r, T ), T > 0,

Mnl(0)− 2mb, T = 0.
(3.7)

Further we define the effective potential Veff,nl which vanishes at infinity only
for finite temperature,

Veff,nl(r, T > 0) =
l(l + 1)

mbr2
+ Vnl(r, T )− lim

r→∞
Vnl(r, T )

=
l(l + 1)

mbr2
−
( σ

mD(T )
+
CFαnl(T )

r

)
e−mD(T )r

− iCFαnl(T )Tφ(mD(T )r),

Veff,nl(r, T = 0) =
l(l + 1)

mbr2
+ lim

T→0
Vnl(r, T )

=
l(l + 1)

mbr2
− CFαnl(0)

r
+ σr. (3.8)
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The effective potential Veff,nl is depicted in fig. 3.1 for the 1S and 1P states
for different temperatures. The counter intuitive behavior of the real part at
zero temperature is due to the discontinuous transition for T → 0.

Thus we obtain the temperature-dependent, radial Schrödinger equation,

∂2
rgnl(r, T ) = mb

(
Veff,nl(r, T )− Enl(T ) +

iΓnl(T )

2

)
gnl(r, T ). (3.9)

Eq. (3.9) is solved numerically for the different bottomium states and dif-
ferent temperatures using the modified midpoint method for second-order
conservative equations (see Press et al., 2002, p. 928).

Since the coupling constant αnl(T ) depends on the solution gnl(r, T ) of eq.
(3.9) we have to resort to an iterative procedure. First we choose a starting
value S(0) for the soft scale in eq. (3.4), specific to the state and temperature,
and then evaluate eq. (3.9) via a shooting method in the complex (E,Γ)-
plane to obtain a first approximation of the wave function, energy and decay
width, g

(1)
nl , E

(1)
nl and Γ

(1)
nl , respectively. The so obtained solution g

(1)
nl is used

to calculate the soft scale S
(1)
nl = 〈1/r〉(1)

nl which may be used together with

E
(1)
nl and Γ

(1)
nl as initial values for the next step,

S(0) → g(1), S(1), E(1),Γ(1) → g(2), S(2), E(2),Γ(2) → . . . , (3.10)

The final solution is obtained when this series in (g(n), S(n), E(n),Γ(n)) has
converged to the desired degree of accuracy. Fig. 3.2 depicts the wave func-
tions gn0 of the lowest lying S-states that follow from this procedure. One
can see that the changes in the wave function are more pronounced for the
higher exited states and that the root-mean-square (rms) radius 〈r2〉1/2 in-
creases with temperature.

In this procedure, the bottom mass mb is fixed from the zero tempera-
ture case of the ground state, where Mnl(0) in eq. (3.7) is set to equal the
experimental Υ(1S)-mass given in tab. 1.1. This yields

mb = 4801 MeV, α10(0) = αs(1542 MeV) = 0.3984. (3.11)

Subsequently, for the other states and for finite temperature, mb is held fixed
at this value and both E and Γ are varied in order to satisfy eq. (3.9).

It has been mentioned at the end of section 2.4 that the proper choice of
the potential in pNRQCD depends on the relation of soft to thermal scale.
Since this phenomenological model is motivated by pNRQCD we should ap-
ply the second part of Vnl in eq. (3.3) only for 〈1/r〉nl(T ) � 2πT . At low
temperature, i.e. in the limit 〈1/r〉nl(T )� 2πT , however, we should replace
the pNRQCD part in eq. (3.8) by the potential (Brambilla et al., 2008)
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Figure 3.1: Complex bottomium interaction potential Veff,nl from eq. (3.8) for the Υ(1S)
and χb(1P) states (left and right, respectively) and temperature T = 0 MeV (black), 170
MeV (red), 250 MeV (green) and 500 MeV (blue). Real and imaginary parts are drawn
in solid and dotted lines, respectively. The real part of the potential behaves counter
intuitively at zero temperature due to the unsteady transition for T → 0. For T = 500
MeV the potential is only plotted for the 1S ground state since no exited states exist at
such high temperatures.
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whereas the ground state remains nearly unaffected.
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Veff,nl(r, T > 0)

=
l(l + 1)

mbr2
− σ

mD

e−mDr − CFαnl
r

[
1− Ncαnl

36π
(2πrT )2

+
3ζ(3)

4π2
2πrT (mDr)

2 − ζ(3)Ncαnl
12π3

(2πrT )3 − (mDr)
3

6

]
− iCFαnlT

[
N2
c α

2
nl

6
− ln 2Ncαnl

9π
(2πrT )2

+
(mDr)

2

6

(
2 ln

T

mD

+ 1 + 4 ln 2 + 2
ζ ′(2)

ζ(2)
− 2γE

)]
. (3.12)

Fig. 3.3 depicts the two potentials (3.8) and (3.12) for the Υ(1S)-state. Since
the limit r → ∞ of the low temperature potential (3.12) does not exist the
definition (3.7) of the binding energy Enl is not applicable for this potential
so instead we use

Enl(T ) = Mnl(T )− 2mb. (3.13)

A comparison between the thermal scale and the soft scales as they follow
from eq. (3.9) are shown in fig. 3.4. It is found that the low temperature
potential (3.12) is only applicable to the Υ(1S) for T . 230 MeV but not
for the exited states. Also the Υ(1S)-wave functions that follow from the
low temperature potential do not differ signifcantly from those of the high
temperature potential (3.8) in this case.

Fig. 3.5 depicts the binding energies according to eq. (3.7) and the rms
radii for all six states under consideration. For the Υ(1S) the two quantities
are plotted using the high and low temperature potential. While the rms
radii in both cases do not differ significantly from each other, the energies
values are quite different. This is, however, only due to the fact that the
low temperature potential (3.12) does not vanish at infinity so the zero point
is shifted. In the common picture color screening weakens the bb̄-binding,
causing the bound state to swell up to very large rms radii

√
〈r2〉 before

it eventually dissolves. The combination of color screening and collisional
damping, however, keeps

√
〈r2〉 approximately constant even down to point

of dissolution at the melting temperature Tm (see tab. 3.1).
The results for the decay width Γnl, however, are plotted in figs. 3.8 and

3.10, where they are compared to the results for the gluodissociation decay
width, that is calculated in section 3.2.

Detailed information on the temperature-dependent scales and decay
widths obtained from the potential model for the different bottomium states
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Figure 3.3: Comparison of the high and low temperature potentials (3.8) and (3.12) for
the Υ(1S) state (left and right, respectively) for temperature T = 170 MeV (red) and 250
(MeV) green. Real and imaginary parts are drawn in solid and dotted lines, respectively.
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Figure 3.4: Comparison of different scales in the potential model. The thermal scale 2πT ,
the Debye mass mD and ΛQCD are plotted in red, orange and black solid lines, respectively.
Soft scales Snl(T ) = 〈1/r〉nl(T ) (solid lines) and ultra soft scales 〈|Veff|〉nl(T ) (dashed lines)
are plotted for the Υ(1S) (blue) and χb(1P) (green) using the potential (3.8) and for the
Υ(1S) (red) using the potential (3.12) at low T .
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Figure 3.5: Binding energies E (left) and rms radii
√
〈r2〉 (right) of the different bot-

tomium states as a function of temperature T . Both quantities have been calculated from
the potential (3.8) for the whole T -range, using eq. (3.7) for the energy. For the Υ(1S),
however, results have also been calculated for low T using the potential (3.12) and eq.
(3.13) for the energy. While the energy values are strongly shifted with respect to each
other due to the different zero points the effect on the rms radius is fairly small. Remark-
ably the combined effect of color screening and collisional damping keeps the rms radii
approximately constant even for very small E.

is provided in appendix B. For the Υ(1S), χb(1P) and Υ(2S) states the scale
hierarchy (2.29) stays intact, whith 〈|Veff|〉 replacing E as the ultra soft scale;
but not so for the higher excited states. For this reason the non-perturbative
string part had to be included in the interaction potentials.

3.2 Gluodissociation of the Υ meson

A long time ago Bhanot and Peskin have considered the interaction of heavy
quark bound states with an external medium. One result of their work is
an expression for the cross section σdiss of the dynamic dissociation of the
bound state by gluons, a process called gluodissociation. Due to the large
gluon density in the fireball produced in heavy ion collisions at LHC energies,
gluodissociation represents a major process contributing to the in-medium
suppression of bottomia. We will derive σdiss and the corresponding decay
width Γdiss in a generalized manner in subsection 3.2.1 and calculate finite-
temperature results in subsection 3.2.2. In subsection 3.2.3 we treat the
special case of Coulomb bound states.
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Table 3.1: Melting temperatures Tm of the different bottomium states. Above Tm no
bound state solutions to eq. (3.9) exist.

State Tm (MeV)
Υ(1S) 655
χb(1P) 273
Υ(2S) 320
χb(2P) 206
Υ(3S) 228
χb(3P) ∼ 175

It should be noted at this point that in the strict pNRQCD approach
the contribution from different scales are clearly separated. Hence gluodis-
sociation as an ultra soft processes has to be treated separately from the
soft process of collisional damping that is accounted for by the potential
approach. Since our phenomenological model is influenced by pNRQCD we
should also treat gluodissociation separately so we do not neglect this signif-
icant contribution to the decay width.

3.2.1 Dissociation of bottomia in the medium

Let us consider a bb̄ bound state (n−l, l) with a wave function ψnlm, satisfying
eq. (3.1) with one of the effective potentials Veff,nl from eqs. (3.8) or (3.12).
The potential accounts for the soft dissociation processes of color screening
and collisional damping. The latter is a result of the imaginary part of the
potential and the corresponding decay width Γnl from section 3.1 is renamed
to Γdamp,nl in the following.

Processes occurring at the ultra soft scale 〈|Veff|〉 are represented by inter-
action terms in the pNRQCD action (2.48) and are calculated perturbatively.
At the lowest order we have the dipole interaction term

g√
2Nc

~r ~Ea
(
S†Oa +Oa†S

)
, (3.14)

which describes the transition of a color-singlet bb̄ state, that might be a
bound state, to a color-octet bb̄ state by the interaction with an ultra soft
gluon. Since the color-octet potential (2.64) is repulsive, this transition cor-
responds to a dissociation.

In order to allow for a better comparison of our approach to the original of
Bhanot and Peskin we would like to perform the following calculation in real
time t, using a vacuum gluon propagator. The result for the gluodissociation
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cross section σdiss is then folded with a Bose-Einstein distribution to obtain
the finite-temperature decay width Γdiss. This procedure is possible since
soft thermal processes are already encoded in the bb̄ wave functions.

In order to calculate the gluodissociation decay width Γdiss, we consider
the singlet and octet bb̄ propagators, where the singlet propagator is a so-
lution to the Schrödinger equation (3.1) with the aforementioned potentials.
The specific form of the octet potential, however, is left open for the mo-
ment. The position space propagators of the singlet and octet fields may be
expressed as

Sfi = RfiSrfi, Oabfi = δabRfiOrfi, (3.15)

where S and O are the singlet and octet propagators, respectively, R the
CM propagator and Sr and Or are the RM propagators. They describe
the propagation of the bb̄ pair from the positions ~xb,i and ~xb̄,i at time ti to
the positions ~xb,f and ~xb̄,f at time tf ≥ ti and depend on these spacetime
positions in the following way:

Sfi = S(tf , ~xb,f , ~xb̄,f ; ti, ~xb,i, ~xb̄,i),

Ofi = O(tf , ~xb,f , ~xb̄,f ; ti, ~xb,i, ~xb̄,i),

Rfi = R(tf , ~Rf ; ti, ~Ri),

Srfi = Sr(tf , ~Rf ; ti, ~Ri),

Orfi = Or(tf , ~Rf ; ti, ~Ri), (3.16)

where we have introduced the usual RM and CM coordinates,

~rf/i = ~xb,f/i − ~xb̄,f/i, ~Rf/i =
1

2

(
~xb,f/i + ~xb̄,f/i

)
. (3.17)

The CM propagator is given by

Rfi =

∫
d3Q

(2π)3
e
i ~Q(~Rf−~Ri)−i

~Q2t
4mb , (3.18)

where we have written t = tf − ti. In the infinite mass limit the CM propa-
gator approaches a δ-function,

Rfi → δ3(~Rf − ~Ri) for mb →∞. (3.19)

We may express the singlet and octet RM propagators in terms of the
Schrödinger wave functions,

Srfi =
∞∑
n=1

n−1∑
l=0

l∑
m=−l

ψnlm(~rf )ψ
∗
nlm(~ri) e

−iEnlt + (continuum states),
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Figure 3.6: First order correction to the singlet quarkonium propagator due to the singlet-
octet-transition. The single line represents a singlet and the double line an octet propa-
gator.

Orfi =
∞∑
l=0

l∑
m=−l

∞∫
0

dq χqlm(~rf )χ
∗
qlm(~ri) e

−i q
2t
mb , (3.20)

where Enl are the negative, discrete energy levels corresponding to the bound
state wave function ψnlm(~x) = 〈~x|nlm〉 from subsection 3.1 and q2/mb the
positive, continuous energies of the scattering wave functions χqlm(~x) =
〈~x|qlm〉 of a repulsive potential, respectively.

For the octet wave function we now make a similar separation ansatz as
in eq. (3.6) ,

χql(~r) =
hql(r)

r
Ylm(θ, ϕ). (3.21)

These wave functions are normalized by the completeness relation,

∞∑
l=0

l∑
m=−l

∞∫
0

dq χqlm(~r)χ∗qlm(~r ′) = δ3(~r − ~r ′), (3.22)

which yields for the radial wave functions,

∞∫
0

dq hql(r)h
∗
ql(r

′) = δ(r − r′). (3.23)

The continuous part of Sr has been omitted in eqs. (3.20) since only the
bound state wave functions are needed in the following.

The first order correction in g2 to the singlet propagator is due to the
singlet-octet dipole-vertex in eq. (2.48) and is depicted in fig. 3.6. It reads
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S1−8
fi = − ig2

2Nc

tf∫
ti

dx0dy0

∫
d3xd3y Srfy yiδabOryxxj Srxi·

·
∫
d3Xd3Y Rfy [∂x0∂y0∆

ab
ij (y0 − x0, ~Y − ~X)]RyxRxi, (3.24)

where g is evaluated at the ultra soft scale. The the ultra soft gluon propa-
gator is given by

∆ab
ij (x) = iδabδij

∫
d̃k
(
Θ(x0)eikx + Θ(−x0)e−ikx

)
, (3.25)

using d̃k = d3k/(2π)3/(2|~k|). In order to derive the gluodissociation cross
section we have to calculate the self-energy contribution Σ due to the singlet-
octet transition. We may calculate Σ from S1−8 via

− iΣnlm(~P )V te
−i( ~P2

4mb
+Enl)t

=

∫
d3rfd

3Rfd
3rid

3Ri e
−i ~P ~Rf ψ∗nlm(~rf )S1−8

fi ψnlm(~ri) e
i ~P ~Ri . (3.26)

Performing the spacial integrations and using δ3(0) = V we obtain

Σnlm =
iCFg

2

t

∞∑
l′=0

l′∑
m′=−l′

tf∫
ti

dy0

y0∫
ti

dx0

∫
d3Qdqd̃k ~k2|〈nlm| ~̂r |ql′m′〉|2

· δ3(~k + ~Q− ~P )
(
eiΣ

+
E(y0−x0) + e−iΣ

−
E(y0−x0)

)
,

Σ±E =
~P 2 − ~Q2

4mb

∓ |~k|+ Enl −
q2

mb

. (3.27)

Taking the limit t→∞ yields

Σnlm = iCFg
2

∞∑
l′=0

l′∑
m′=−l′

∫
dqd̃k ~k2|〈nlm| ~̂r |ql′m′〉|2

·
(

i

Σ+
E + i0+

− i

Σ−E − i0+

)
, (3.28)

where now ~P = ~Q + ~k. The width Γdiss for the singlet to octet plus gluon
decay, bb̄1 → bb̄8 + g, in the rest-frame of the bb̄1 is given by twice the imagi-
nary part of the self-energy, averaged over the magnetic quantum number m
of the incoming state,

Γdiss,nl =
1

2l + 1

l∑
m=−l

2

S
Im Σ, (3.29)
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with a symmetry factor S = 1. This yields the decay width

Γdiss,nl =
2πCFg

2

2l + 1

l∑
m=−l

∞∑
l′=0

l′∑
m′=−l′

∫
dqd̃k ~k2|〈nlm| ~̂r |ql′m′〉|2 δ(Σ−E). (3.30)

Inspecting Σ±E in the singlet rest-frame, where ~P = 0, we see that the δ-
function in eq. (3.27) enforces

Σ−E = |~k| −
~k2

4mb

+ Enl −
q2

mb

≈ |~k|+ Enl −
q2

mb

. (3.31)

This approximation is valid since |~k| ∼ mbg
4 for ultra soft gluons, so the

change in the CM-momentum due to the absorption of the gluon is negligible
to this order of accuracy. Thus the CM-motion is decoupled approximately
from the relative motion.

The gluodissociation cross section σdiss is connected to Γdiss via

Γdiss,nl = (N2
c − 1)Nc

∫
d3k

(2π)3
σdiss,nl(Eg), (3.32)

where we have renamed the gluon energy, Eg = |~k|. The factor (N2
c − 1)Nc

accounts for the summation of outgoing gluon species and colors of the octet
state included in Γdiss. In σdiss we keep only the average over the magnetic
quantum number m of the incoming singlet state. Then, writing

g2

4π
= α̃nl = αs(〈|Veff,nl|〉), (3.33)

we obtain for the cross section

σdiss,nl(Eg) =
2π2α̃nlEg

(2l + 1)N2
c

l∑
m=−l

∞∑
l′=0

l′∑
m′=−l′

∞∫
0

dq |〈nlm| ~̂r |ql′m′〉|2

· δ
(
Eg + Enl −

q2

mb

)
. (3.34)

Let us rewrite this expression as follows

σdiss,nl(Eg) =
π2α̃nlEg
N2
c

√
mb

Eg + Enl

∑
l′,m′,m

|~Iql
′m′

nlm |2

2l + 1
,

~Iql
′m′

nlm =

∫
d3xψ∗nlm(~r)~r χql′m′(~r), (3.35)
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where q ≡ qnl(Eg) =
√
mb(Eg + Enl) is understood in the continuous indices.

With wave functions ψnlm(~r) and χql′m′(~r) of the kind (3.6) and (3.21), suit-
able for a central potential, we can make use of the properties of the spherical
harmonics to calculate the angular part of the dipole integral,

1∫
−1

d cos θ

2π∫
0

dϕYlm(θ, ϕ)~er Y
∗
l′m′(θ, ϕ)

=

1∫
−1

d cos θ

2π∫
0

dϕYlm(θ, ϕ)
[
eiϕ sin θ

2
~e+ + e−iϕ sin θ

2
~e− + cos θ ~ez

]
Y ∗l′m′(θ, ϕ)

= ~e+
δm+1,m′√

2

[
δl−1,l′

√
(l−m−1)(l−m)
(2l+1)(2l−1)

− δl+1,l′

√
(l+m+1)(l+m+2)

(2l+1)(2l+3)

]
+ ~e−

δm−1,m′√
2

[
−δl−1,l′

√
(l+m−1)(l+m)
(2l+1)(2l−1)

+ δl+1,l′

√
(l−m+1)(l−m+2)

(2l+1)(2l+3)

]
+ ~ez δm,m′

[
δl−1,l′

√
(l+m)(l−m)
(2l+1)(2l−1)

+ δl+1,l′

√
(l+m+1)(l−m+1)

(2l+1)(2l+3)

]
, (3.36)

where ~e± = (~ex ∓ i~ey)/
√

2. Inserting this expression into eqs. (3.35) and
performing the sum yields

σdiss,nl(Eg) =
π2α̃nlEg
N2
c

√
mb

Eg + Enl

(l + 1)|Jq,l+1
nl |2 + l|Jq,l−1

nl |2

2l + 1
,

Jql
′

nl =

∞∫
0

dr r g∗nl(r)hql′(r). (3.37)

The results obtained so far for the cross section (3.37) and decay width
(3.32) are valid at zero temperature. To obtain a finite temperature decay
width Γdiss,nl(T ) from the zero temperature expression we need to weight the
gluodissociation cross section with a suitable gluon distribution function. In
fact the medium thermalizes very quickly so it seems reasonable to assume
a Bose-Einstein distribution for the gluons,

Γdiss,nl(T ) ≡ gd
2π2

∞∫
0

dEg E
2
g σdiss,nl(Eg)

eEg/T − 1
, (3.38)

where gd = 16 is number of gluon degrees of freedom. The bottomium states
are thus subject to the total decay width

Γtot,nl(T ) = Γdamp,nl(T ) + Γdiss,nl(T ). (3.39)
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The collisional damping decay width obtained from eq. (3.9) is thus directly
inserted into eq. (3.39) while the wave function is used to calculate the
gluodissociation cross section (3.37) and decay width (3.38).

In the next subsection we will specify an octet potential and derive actual
results for σdiss and Γdiss.

In this section we have obtained from the pNRQCD action (2.48) a gener-
alized form of the gluodissociation cross section (3.34) that has been derived
over 30 years ago in an operator product expansion (Peskin, 1979; Bhanot
and Peskin, 1979). This can be made manifest by writing

σdiss,nl(Eg) =
2πα̃nlEg

(2l + 1)N2
c

·
l∑

m=−l

Im

{
〈nlm| ~̂r 1

Eg + Enl −H8 − i0+
~̂r |nlm〉

}
, (3.40)

where H8 means the Hamiltonian of the intermediate octet state. Dropping
now the summation over m for S-states, approximating H8 by a free Hamil-
tonian and taking |nlm〉 as pure Coulomb states yields indeed the expression
derived by Bhanot and Peskin (1979).

While our approach has emerged from the background of the Bhanot-
Peskin result and the connection to thermal pNRQCD has only been drawn a
posteriori it is inevitably similar the approach in Ghiglieri (2012); Brambilla
et al. (2011), where the result (3.34) has been found independently. The
difference in our approach is that the gluons are initially not treated as
part of a thermal medium, i.e. the gluon propagator is represented by the
vacuum expression (3.25) instead of the finite-temperature propagator of in-
medium gluons. Only after the cross section is obtained a thermal average
is calculated.

3.2.2 Gluodissociation at finite temperature

Let us now consider bottomium states in a deconfined medium where the
interaction can be described by the potentials (3.8) and (3.12). We insert
the numerical solutions for the radial wave functions from eq. (3.9), into eqs.
(3.37). We do not consider temperature effects on the octet states, however,
since we are not interested in the further evolution of the color-octet bb̄ state.
Hence we still use the pure Coulomb octet potential from eq. (2.49) for the
outgoing channel.

Results for the gluodissociation cross sections for the Υ(1S), Υ(2S), Υ(3S)
and χb(1P), χb(2P), χb(3P) states are depicted in fig. (3.7) at the critical
temperature, T = Tc = 170 MeV. The critical temperature, above which the
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Figure 3.7: Gluodissociation cross section σdiss,nl for temperature T = 170 MeV according
to eqs. (3.37) using the singlet wave functions derived from eq. (3.9) for the potentials
(3.8) and (3.12).

bottomium states are embedded in a QGP, is the lowest temperature that
we consider in this model.

The decay widths Γdamp,nl, introduced in section 3.1, and Γdiss,nl, as ob-
tained from eq. (3.38), are displayed in fig. 3.8. It is evident that both
processes, collisional damping and gluodissociation, are important. For the
excited states, however, the larger part of the total width originates from
collisional damping. Whereas Γdamp increases almost linearly with tempera-
ture, Γdiss depends on the overlap of the gluodissociation cross section with
the thermal gluon distribution. While the peak of the Bose-Einstein distribu-
tion moves to larger gluon energies with increasing temperature the opposite
is the case for the shape of the cross sections (see fig. 3.9). In previous stud-
ies, where the running of the coupling was not considered in the Schrödinger
equation, this behavior had made itself manifest in the shape of the width
(Brezinski and Wolschin, 2012; Nendzig and Wolschin, 2013). Due to the de-
creasing binding energies at higher temperature, the cross section increased
but its peaks also moved to lower temperatures such that the resulting width
had achieved a maximum at a certain temperature. In the present model,
however, the decreasing ultra soft scale enhances the coupling at higher tem-
peratures so this behavior is obscured in the shape of the width. Only for
the χb(2P) and Υ(3S) the shape of Γdiss tends towards a maximum value as
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Figure 3.8: Partial decay widths Γdamp as obtained from the Schrödinger equation (3.9)
and Γdiss as given in eq. (3.38) are plotted versus temperature T for the bottomium states
Υ(1S), Υ(2S), Υ(3S) and χb(1P), χb(2P), χb(3P). The Υ(1S)-decay widths are plotted
with the potential (3.12) at low T and with the potential (3.8) for the whole T -range.

the melting temperature Tm is approached.
Fig. 3.10 depicts the total width, Γtot = Γdamp + Γdiss, that will be

combined with the results of the hydrodynamical fireball model (chapter 4)
to calculate the amount of suppression of the Υ(1S) ground state and the
Υ(2S), Υ(3S) excited states (chapter 5 and 6).

3.2.3 Gluodissociation of pure Coulomb states

In this subsection we consider gluodissociation of bottomia at zero tempera-
ture using pure Coulomb potentials. This interesting special case serves as a
reference for the behavior of the gluodissociation cross section for finite tem-
perature and it enables a closer comparison to the original results of Bhanot
and Peskin (1979).

The singlet and octet potentials are given by eqs. (2.49) in this case and
the corresponding Coulomb wave functions read

gnl(r) =

√
kn
n

(n+ l)!

(n− l − 1)!

(2knr)
l+1

(2l + 1)!
e−knrM(l + 1− n, 2l + 2, 2knr),

hql(r) =
|Γ(l + 1 + izq)|√

2π

(2qr)l+1

(2l + 1)!
e−iqr−πzq/2M(l + 1− izq, 2l + 2, 2iqr),

(3.41)
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Figure 3.9: Gluodissociation cross sections σdiss (left scale) of the Υ(1S) and Υ(2S) states
(red and green lines, respectively) for temperatures T = 170 (solid curves) and 250 MeV
(dotted curves) as functions of the gluon energy Eg. The thermal gluon distribution (right
scale; solid for T = 170 MeV, dotted for 250 MeV) is used to obtain the decay width Γdiss

according to eq. (3.38). The shapes of the cross sections move to lower energies and the
shape of the gluon distribution to higher energies as the temperature increases.

where the Kummer function M is defined as

M(a, b, x) =
∞∑
j=0

Γ(a+ j)

Γ(a)

Γ(b)

Γ(b+ j)

xj

j!
. (3.42)

For Coulomb states the binding energy and the coupling (3.4) are both in-
dependent of the angular momentum quantum number l,

Enl = En = −εn, αnl = αn. (3.43)

The variables in eq. (3.41) then read

kn =
mbCFαn

2n
, zq =

mbαn
4Ncq

. (3.44)

The coupling αn is evaluated at the soft scale Sn = kn of the singlet state.
Subsequently, the same αn is used to calculate the octet wave functions. This
is because octet states emerge from the dissociation of a singlet state so at
last initially the couplings should be comparable.
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Figure 3.10: Total decay width, Γtot = Γdamp + Γdiss, plotted for the different bottomium
states. The Υ(1S)-width is again plotted for both potentials (3.8) and (3.12). The large
widths will cause the dissolution of all excited states wherever a QGP is formed. Only the
ground state Υ(1S) is stable enough so that a sizable fraction can survive the QGP in the
more central regions of a collision.

Let us now make the definitions

εn = mb

(
CFαn

2n

)2

, xn = knr,

Qn =

√
Eg
εn
− 1, zq ≡ zn =

n

(N2
c − 1)Qn

, (3.45)

so that, for S-states, the first line of eqs. (3.37) may be reformulated to yield

σdiss,n0 =
π2α̃n0

N2
c k

2
n

1 +Q2
n

Qn

∣∣k3/2
n Jq1n0

∣∣2 , (3.46)

where q = knQn is understood in the indices. To calculate the cross section
for the Υ(1S), Υ(2S) and Υ(3S) we write down the necessary radial wave
functions in terms of these new variables

g10(r) = 2
√
k1 x1 e

−x1 ,

g20(r) = 2
√
k2 (x2 − x2

2) e−x2 ,

g30(r) = 2
√
k3

(
x3 − 2x2

3 +
2

3
x3

3

)
e−x3 ,
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hq1(r) =
|Γ(2 + izn)|√

2π Γ(4)
(2Qnxn)2e−iQnxn−πzn/2

·M(2− izn, 4, 2iQnxn). (3.47)

To draw the connection to the result of Bhanot and Peskin, we approximate
the octet wave function hq1 by a free wave function, zn = 0, which yields

hq1(r) =

√
2

π
Qnxn j1(Qnxn). (3.48)

The resulting cross section for the Υ(1S) reads

% ≡ σdiss,10

∣∣
z1=0

=
512πα̃10

N2
c k

2
1

Q3
1

(1 +Q2
1)5
. (3.49)

Replacing further α̃10 → α10 in eq. (3.49) and performing the large Nc limit
we indeed recover the original result of Bhanot and Peskin (1979) for the
1S-state. These simplifications are not necessary, however, since we can just
as well derive closed expressions for the cross section if zn 6= 0, using the
octet wave functions from eqs. (3.47).

Let us calculate the non-dimensional overlap integrals |k3/2
n Jq1n0|2 using the

following integral representation of the Kummer function (Abramowitz and
Stegun, 1968):

M(a, b, z) =
Γ(b)

Γ(b− a)Γ(a)

1∫
0

dt eztta−1(1− t)b−a−1, (3.50)

which is valid for Re b > Re a. The overlap integrals may thus be written as

|k3/2
n Jq1n0|2 =

e−πzn

2π

(2Qn)4

|Γ(2 + izn)|2

·

∣∣∣∣∣∣
∞∫

0

dxn x
3
n k
−1/2
n gn0(r)

1∫
0

dt e−iQnxn(1−2t)t1−izn(1− t)1+izn

∣∣∣∣∣∣
2

. (3.51)

We can perform the x-integration so the t-integral obtains a denominator,

(1 + iQn − 2iQnt)
j, j = 5, 6, 7. (3.52)

The t-integration can also be done in closed form (index n suppressed),

1∫
0

dt
t1−iz(1− t)1+iz

(1 + iQ− 2iQt)j
=

|Γ(2 + iz)|2

Γ(j)(1 +Q2)j−2

(
1 + iQ

1− iQ

)−iz
(3.53)
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·


2(2 +Qz), j = 5

4(5 + 5zQ−Q2 + z2Q2), j = 6
4(30 + 45zQ− 18Q2 + 18z2Q2 − 7zQ3 + 2z3Q3), j = 7

. (3.54)

For the Υ(1S) we then obtain the following expression for the cross section,
that has been found independently by Brambilla et al. (2011) and Brezinski
and Wolschin (2012):

σdiss,10 = % ·
(

1 +
1

2
Q1z1

)2
2πz1(1 + z2

1) e4z1 arctanQ1

e2πz1 − 1

=
289π2α̃10

18k2
1

Q2
1 + 1

64

(1 +Q2
1)5

earctan(Q1)/(2Q1)

eπ/(4Q1) − 1
, (3.55)

and for the Υ(2S),

σdiss,20 =
8192πα̃20

9k2
2

Q3
2

(1 +Q2
2)7

(
1 +

9

8
Q2z2 +

1

4
Q2

2z
2
2 −

1

2
Q2

2 −
1

8
Q3

2z2

)2

· 2πz2(1 + z2
2) e4z2 arctanQ2

e2πz2 − 1

=
6889π2α̃20

9k2
2

Q2
2 + 1

16

(1 +Q2
2)7

(
1− 34

83
Q2

2

)2
earctan(Q2)/Q2

eπ/(2Q2) − 1
. (3.56)

For the Υ(3S) we have

σdiss,30 =
61952πα̃30

9k2
3

Q3
3

(1 +Q2
3)9

(
1 +

41

22
Q3z3 +

10

11
Q2

3z
2
3 +

4

33
Q3

3z
3
3

−18

11
Q2

3 −
41

33
Q3

3z3 −
2

11
Q4

3z
2
3 +

3

11
Q4

3 +
1

22
Q5

3z3

)2

· 2πz3(1 + z2
3) e4z3 arctanQ3

e2πz3 − 1

=

(
2581π

16

)2
2α̃30

3k2
3

Q2
3 + 9

64

(1 +Q2
3)9

(
1− 2996

2581
Q2

3 +
408

2581
Q4

3

)2

· e
3 arctan(Q3)/(2Q3)

e3π/(4Q3) − 1
. (3.57)

These results are plotted in fig. (3.11) for the parameter values used in
chapter 3.1 together with the Bhanot-Peskin-like function %. For the Υ(1S)
the insertion of an octet eigenstate instead of a free bb̄ state causes a relative
deviation peaking at ∼ 22% and approaching 1− (17/16)2 ≈ 13%. One can
further see from fig. 3.11 that in this calculation the binding energy for the
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Figure 3.11: Comparison of the gluodissociation cross sections from eqs. (3.49) and (3.55)-
(3.57) as they apply to pure Coulomb states with the potentials (2.49). The cross section
% is computed for free octet states and is closely related to the Bhanot-Peskin result.

Υ(3S) is indeed larger than for the Υ(1S). This fact is due to the increase of
the coupling constant αn with decreasing soft scale 〈1/r〉n and clearly shows
that this formalism does not apply to highly exited states like the Υ(3S) for
pure Coulomb potentials (2.49) at zero-temperature. At finite temperature,
using the potentials (3.8) and (3.12), on the other hand, figs. 3.5 and 3.7
show that the binding energy decreases with increasing principal quantum
number n as expected.

It is worth to note that the gluodissociation cross section σdiss,10 has been
calculated for 1S Coulomb bound states at next-to-leading order (NLO) by
Song and Lee (2005); Park et al. (2007). Liu et al. (2013), on the other
hand, have calculated σdiss,10 beyond the dipole approximation. While the
resulting effect is indeed significant at T = Tc it decreases with increasing
temperature.



Chapter 4

Relativistic hydrodynamics

In chapter 3 we have obtained results for the temperature dependent decay
widths for bottomium dissociation in a QGP. In order to make use of these
results we have to model the so called fireball, which is produced in relativistic
PbPb collisions at the LHC.

In section 4.1 we introduce the equations of motion of a perfect, relativis-
tic fluid. Then in section 4.2 we define a coordinate system which expands
in time, parallel to the beam axis, such that it co-moves with the fireball
medium in the longitudinal direction. This will give a good starting point to
discretize the equations of motion and set up a numerical routine in section
4.3. Together with suitable initial conditions, introduced in section 4.4, this
routine yields time-dependent profiles of temperature and transverse expan-
sion velocity.

4.1 The fluid equations of motion

We will now introduce the basic hydrodynamical equations governing the
expansion of the fireball. For the purpose of this thesis it will suffice to
model the fireball as a relativistic perfect fluid consisting of gluons and light
up-, down- and strange-quarks which are treated as massless.

The derivation of the equations of motion is performed here only very
briefly. For a more detailed description the reader is referred to e.g. Yagi
et al. (2008). Due to the different coordinate systems used we rely partially on
coordinate-free formulations. For this purpose we make use of some concepts
of differential geometry. More information on these two issues can be found
in Misner et al. (1973).

The energy-momentum tensor of a relativistic, perfect fluid reads

T = (ε+ P )u⊗ u+ P, (4.1)

49
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where ε is the fluid’s internal energy density, P the pressure and u the fluid
four-velocity. From the energy-momentum tensor we may derive the equa-
tions of motion by means of the principle of energy conservation, or rather
four-momentum conservation. This means that the divergence of T has to
vanish,

∇ · T = 0, (4.2)

where ∇ means the covariant derivative. Given a coordinate basis {xµ}
and a metric g = (gµν), we take the energy-momentum tensor in the form
T = (T µν), so that eq. (4.2) may be written in component notation as

∂µT
µ
ν + ΓµµαT

α
ν − ΓαµνT

µ
α = 0, (4.3)

where the connection is given here by the Christoffel symbols Γ, the pendant
to gA in the gauge-covariant derivative.1

The Christoffel symbols are defined such that the covariant derivative of
the metric vanishes, ∇αgµν = 0, which implies

Γαµν =
1

2
gαβ (∂µgβν + ∂νgβµ − ∂βgµν) . (4.4)

Inserting eq. (4.4) into eq. (4.3) yields

∂µT
µ
ν + T µν∂µ ln det

√
|g| = 1

2
T µα∂νgµα, (4.5)

where we have used the symmetry of the energy-momentum tensor together
with

Γµµα =
1

2
gµβ∂αgµβ =

1

2
Tr(g−1∂αg) =

1

2
∂α Tr ln |g|. (4.6)

Making now use of the identity

Tr lnM = ln detM, (4.7)

valid for a general matrix M with non-vanishing determinant, we obtain eq.
(4.5). Let us further rewrite eq. (4.5) to read

1√
| det g|

∂µ

(√
| det g|T µν

)
=

1

2
T µα∂νgµα. (4.8)

1Compare with e.g. eq. (2.6) or the first line of eqs. (2.47).
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This equation represents a good starting point once a specific coordinate
system has been chosen. But let us now return again to the coordinate-free
notation for a moment.

The equations of motion are obtained by inserting eq. (4.1) into eq. (4.2),

∇ · ((ε+ P )u⊗ u) =

u∇ · ((ε+ P )u) + (ε+ P )∇uu = −∇P, (4.9)

where we have introduced the directional derivative ∇u = u · ∇. Projecting
eq. (4.2) parallel and perpendicular to the fluid four-velocity yields the energy
and Euler equations, respectively,

u · (∇ · T ) = 0 ⇔ ∇uε = −(ε+ P )Θ,

h · (∇ · T ) = 0 ⇔ (ε+ P )∇uu = −h · ∇P, (4.10)

where we have defined the four-volume expansion Θ = ∇·u and the projector
h = 1 + u ⊗ u. Both eqs. (4.9) and (4.10) could be used for further hydro-
dynamical calculations. However, we would rather combine the two sets to
form yet another set of four independent equations. Hence we consider both
sets in the following steps.

The system of equations of motion, either in the form of eq. (4.9) or eqs.
(4.10), is closed by adding the equation of state, appropriate for a perfect,
relativistic fluid,

P = c2
sε, cs =

1√
3
, ε = ε0T

4. (4.11)

Eq. (4.9) may then be reformulated as follows:

∇ · (T 4u⊗ u) = −1

4
∇T 4, (4.12)

whereas eqs. (4.10) read

∇ · (T 3u) = 0,

∇u(Tu) +∇T = 0. (4.13)

Since the entropy density is given by s = s0T
3 for the equation of state

(4.11) it becomes apparent that the first line of eqs. (4.13) expresses the
conservation of entropy along the fluid worldlines as is typical for a perfect
fluid.

From eq. (4.8) we infer that eq. (4.12) may be written in the index
notation as follows:

1√
| det g|

∂µ(
√
| det g|T 4uµuα) = −1

4
∂αT

4 +
1

2
T 4uµuν∂αgµν , (4.14)
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while eqs. (4.13) read

∂µ(
√
| det g|T 3uµ) = 0,

uµ∂µ(Tuα) + ∂αT =
1

2
Tuµuν∂αgµν . (4.15)

With the two sets of equations (4.14) and (4.15), we can now can proceed by
specifying a suitable reference frame in order to perform the actual hydro-
dynamical calculations.

4.2 The longitudinally co-moving frame

Let us consider two Pb-ions colliding in the laboratory frame (LF). The hot
fireball produced in these relativistic heavy ion collisions is rapidly expanding
along the beam axis, which represents the symmetry axis of this system.
Only gradually the high temperature of the medium drives the transverse
expansion of the fireball. While the transverse extend of the Pb-ions is
approximately 2RPb, they are strongly Lorentz contracted along the beam
axis to form “pancakes” of thickness 2RPb/γbeam. In a two-parameter Wood-
Saxon model (de Vries et al., 1987) and for LHC PbPb collisions at

√
sNN =

2.76 TeV we have

RPb = 6.62 fm, γbeam = 1476,
RPb

γbeam

≈ 4 · 10−3 fm. (4.16)

Hence the location along the beam axis as well as the moment of the col-
lision are essentially localized in the LF. Let us now define coordinates
(x0, x1, x2, x3) for the LF. The x3-axis is chosen to coincide with the beam
axis, where x3 = 0 is positioned at the center of the collision. The time coor-
dinate x0 is chosen with x0 = 0 at the moment of the collision. The fireball
has an almond-like shape in the transverse plane and the x1- and x2-axis are
chosen as depicted in fig. 4.1.

In the model of Bjorken (1983) the fireball expands only in the longitu-
dinal direction, i.e. transverse components of the fluid velocity are set to
vanish. Hence physical fields, like temperature, particle populations etc. are
homogenous in the transverse plane. The medium experiences a Hubble like
longitudinal expansion with velocity v3 and rapidity y,

v3 = tanh y =
x3

x0
, (4.17)

as measured in the LF. Hence every fluid element sees all other fluid elements
recede with a velocity proportional to the distance along the beam axis. The
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Figure 4.1: Sketch of the collision geometry in the transverse plane of PbPb collisions with
Wood-Saxon radius RPb, impact parameter b and the x1, x2 coordinates.

four-velocity of a fluid element, as measured in the LF, may then be written
as

u‖ = cosh(y) e0 + sinh(y) e3. (4.18)

According to eq. (4.17) the particles in the plasma should be strictly sorted
by their rapidity y along the beam axis at every instant of time. This as-
sumption is valid due to the small spatial extension of the system along the
beam axis in the momentum of the collision. Longitudinal relative velocities
can only be of the order 2RPb/(γbeamx

0). This is already fairly small at times
x0 ∼ 0.1 fm/c where we expect bottomium states to be formed. Hence we
consider all sorts of particles, be they light or heavy, to be co-moving with
the fluid in the beam direction.

Let us now introduce another coordinate system (τ, x1, x2, y), the longi-
tudinally co-moving frame (LCF), which utilizes the fact that the rapidity y
is a bijective function of x3. The velocity component v3 vanishes locally in
this frame, i.e. the LCF stretches along the beam axis such that it co-moves
with the longitudinal motion of each individual fluid element. The tetrad of
the of the LCF thus reads

eτ = u‖(y), ey = ∂yu‖(y), (4.19)

while e1 and e2 stay the same as in the LF. Consider now the worldline L of
a given fluid element which passes through the event (τ, x1, x2, y),

L(τ, x1, x2, y) = τeτ (y) + x1e1 + x2e2. (4.20)
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We may derive from the total differential dL of this expression a metric g,
which is valid on the future light cone of the collision plane,

g = η(dL, dL) = −dτ 2 + τ 2dy2 + g⊥,

g⊥ = (dx1)2 + (dx2)2, (4.21)

where η is the Minkowski metric,

η = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (4.22)

In these coordinates the determinant of the metric becomes

det g = −τ 2 det g⊥. (4.23)

In a realistic situation the fireball will also expand in the transverse direction
of course. The corresponding fluid velocity u is then obtained from u‖ by an
active boost,

u = γ⊥(eτ + v1e1 + v2e2),

γ⊥ =
1√

1− (v1)2 − (v2)2
. (4.24)

Note that with this definition the same transverse velocity components v1

and v2 are measured in the LCF as well as the LF. Hence experimental results
on pT -dependent quantities measured in the LF can be directly transferred
to the LCF where the numerical results are obtained an vice versa.

With the metric (4.21) and the fluid velocity (4.24), we have det g⊥ = 1
so the equations of motion (4.13) read

∂τ (τT
3γ⊥) + ∂1(τT 3γ⊥v

1) + ∂2(τT 3γ⊥v
2) = 0,

∂yT = 0,

γ⊥(∂τ + v1∂1 + v2∂2)(Tγ⊥v
1) + ∂1T = 0,

γ⊥(∂τ + v1∂1 + v2∂2)(Tγ⊥v
2) + ∂2T = 0. (4.25)

In the Bjorken model, where we have vanishing transverse expansion, v1 =
v2 = 0, eqs. (4.25) yield the solution

T (τ, x1, x2, y) = T (τ) = T0

(τ0

τ

)1/3

. (4.26)

For the important special case of a central collision Gubser and Yarom have
found an analytical solution to eqs. (4.25). In this case the fireball has cylin-
drical symmetry about the x3-axis so we can use polar coordinates (R,ϕ) in
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the transverse plane and have vϕ = 0 for symmetry reasons. The determi-
nant of the transverse metric in eq. (4.23) then reads det g⊥ = R2 and eqs.
(4.25) become

∂τ (τRT
3γ⊥) + ∂R(τRT 3γ⊥v

R) = 0,

∂yT = 0,

∂τ (Tγ⊥v
R) + ∂R(Tγ⊥) = 0,

∂ϕT = 0. (4.27)

These equations have the solution (Gubser, 2010; Gubser and Yarom, 2011)

vR =
2q2τR

1 + q2(τ 2 +R2)
,

T =
T 0

τ 1/3

(2q)2/3

[1 + q2(τ 2 +R2) + q4(τ 2 −R2)2]1/3
, (4.28)

with a free parameter q ≥ 0. This analytical solution has been used by
Kind (2013) to test our numerical routine for solving the hydrodynamical
equations of motion.

4.3 The numerical approach

For the numerical evaluation of eq. (4.2) a conservative form of the equations
of motion is most suitable. We follow Hujeirat et al. (2008) and choose the
three spatial components of eq. (4.12) as momentum equations and the first
line of eqs. (4.13) as energy equation. With the metric (4.21) and four-
velocity (4.24), choosing cartesian coordinates in the transverse plane, we
obtain the following equations of motion:

∂µ(τT 4uµua) = −τ
4
∂aT

4,

∂µ(τ T 3uµ) = 0, (4.29)

where a = 1, 2, 3. Excluding the trivial y-component, ∂yT = 0, we define the
entropy density-, pressure and momentum density-related quantities

S = τT 3γ⊥, P =
τ

4
T 4, Ma = τT 4γ⊥ua, (4.30)

and their corresponding currents,

JSa = Sva, JMa
b =Mbv

a, (4.31)
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where a, b = 1, 2. Thus we finally arrive at the following system of equations

∂τS + ∂1JS1 + ∂2JS2 = 0,

∂τM1 + ∂1(JM1
1 + P) + ∂2JM2

1 = 0,

∂τM2 + ∂1JM1
2 + ∂2(JM2

2 + P) = 0. (4.32)

These three equations are well suited for a numerical treatment. They de-
scribe the evolution of S and Ma in the LCF time τ . Temperature T and
transverse velocity va are connected to these quantities via

va =
Ma

M⊥

K
3

[
−1 + 2 cosh

(
1

3
arcosh

(
27

2K2
− 1

))]
,

T =

(
S
τγ⊥

)1/3

, (4.33)

where K = τM3
⊥/S4 and M⊥ =

√
M1

2 +M2
2.

For the numerical evaluation of eqs. (4.32) we define a N × N grid of
two-dimensional cells, depicted in fig. 4.2, where densities S, P and Mb are
evaluated at the cell centers and currents JSa and JMa

b at the cell faces.
The cell grid is thus divided into three sub-grids: One sub-grid comprises
N×N points located at the cell centers where the densities are defined, then
there is a staggered (N + 1)×N grid for currents in the x1-direction and a
staggered N × (N + 1) grid for currents in the x2-direction.

We use indices n, j, k to identify time and grid points according to

τn = εn + τn−1, x1
j = jd, x2

k = kd, (4.34)

with a constant grid spacing d and variable time steps εn. Typical dimensions
of d and the grid size N are

d = 0.1− 0.4 fm, N = 25− 100. (4.35)

The relative location of a grid point (j, k) for the cell centers and faces is
shown in fig. 4.2. In the following we use the abbreviated notation

Snj,k = S(τn, x
1
j , x

2
k) = S(τn, jd, kd),

(JS1)nj,k = JS1(τn, (x
1
j + x1

j−1)/2, x2
k) = JS1(τn, (j − 1/2)d, kd),

(JS2)nj,k = JS2(τn, x
1
j , (x

2
k + x2

k−1)/2) = JS2(τn, jd, (k − 1/2)d), (4.36)

and analogous for the other quantities. Note that for (JMa
b)
n
j,k only the

index a determines on which cell faces it is defined according to eq. (4.36),
but not the index b.
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Sj−1,k−1 Sj,k−1 Sj+1,k−1

Sj−1,k Sj,k Sj+1,k

Sj−1,k+1 Sj,k+1 Sj+1,k+1

JS1
j,k JS1

j+1,kJS2
j,k

JS2
j,k+1

Figure 4.2: Staggered grid discretization used in the hydrodynamical calculation. Densities
S, P and Mb are defined at the cell centers (black dots) and the corresponding currents
JSa and JMa

b, a, b = 1, 2, on the cell faces (dashed gray lines).

The discretized version of eqs. (4.32) thus reads

Sn+1
j,k = −εn

d

[
(JS1)nj+1,k − (JS1)nj,k + (JS2)nj,k+1 − (JS2)nj,k

]
,

M1
n+1
j,k = −εn

d

[
(JM1

1)nj+1,k − (JM1
1)nj,k + (JM2

1)nj,k+1 − (JM2
1)nj,k

+(dP1)nj,k
]
,

M2
n+1
j,k = −εn

d

[
(JM1

2)nj+1,k − (JM1
2)nj,k + (JM2

2)nj,k+1 − (JM2
2)nj,k

+(dP2)nj,k
]
, (4.37)

where the discretized pressure gradient dPa reads

(dP1)nj,k =
1

2

(
Pnj+1,k − Pnj−1,k

)
,

(dP2)nj,k =
1

2

(
Pnj,k+1 − Pnj,k−1

)
. (4.38)

Note that we have used a centered differencing scheme in eqs. (4.37) as well
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as eq. (4.38), since the currents are defined on the cell faces and the pressure
at the cell centers.

To solve eqs. (4.37) we need to impose initial conditions on temperature
T and transverse velocity va, both defined at the cell centers. Since the
initial transverse velocity is set to vanish, we only need to calculate the
initial temperature profile from the fireball model. We explain the numerical
procedure first, however, and postpone the closer specification of the initial
conditions to section 4.4.

With given profiles of T and va at time τn we readily calculate S, dPa
and Ma from eqs. (4.30) and (4.38). Further we define two velocity fields
vaC ≡ va and vaF defined at the cell centers and faces, respectively,

(v1
C)nj,k = v1

C(τn, x
1
j , x

2
k),

(v2
C)nj,k = v2

C(τn, x
1
j , x

2
k),

(v1
F )nj,k = v1

F (τn, (x
1
j + x1

j−1)/2, x2
k) :=

1

2

(
(v1
C)nj,k + (v1

C)nj−1,k

)
,

(v2
F )nj,k = v2

F (τn, x
1
j , (x

2
k + x2

k−1)/2) :=
1

2

(
(v2
C)nj,k + (v2

C)nj,k−1

)
. (4.39)

The new time step εn is then calculated in the following way:

εn = CFL
d

max
(
|vC |,

√
|dP/T 4|

) ∣∣∣
τ=τn

, CFL =
1

4
, (4.40)

where CFL, the Courant number, ensures that the Courant-Friedrichs-Lewy
condition is satisfied (Courant et al., 1928). Hence the next time step εn
is always chosen small enough so that the right-hand sides of eqs. (4.37)
are very unlikely to exceed 2CFL = 1/2. Subsequently the currents are
calculated in an upwind-scheme,

(JS1)nj,k =

{
Snj−1,k(v

1
F )nj,k for (v1

F )nj,k > 0
Snj,k(v1

F )nj,k for (v1
F )nj,k ≤ 0

,

(JS2)nj,k =

{
Snj,k−1(v2

F )nj,k for (v2
F )nj,k > 0

Snj,k(v2
F )nj,k for (v2

F )nj,k ≤ 0
, (4.41)

and analogous for JMa
b. Eqs. (4.37) may then be evaluated for S and Ma

at time τn+1 so T and vaC can be updated from eqs. (4.33).
Due to the symmetry of the system we infer that all physical quantities

under consideration are either symmetric or antisymmetric under the reflec-
tions x1 ↔ −x1 and x2 ↔ −x2. The quantities S, T and P , for example, are
symmetric under both reflections. The velocity component v1

C , on the other
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Table 4.1: Behavior of relevant thermodynamical quantities under the two reflections
x1 ↔ −x1 and x2 ↔ −x2.

Quantity x1 ↔ −x1 x2 ↔ −x2

S, P , T symmetric symmetric

J 1
S , v1

C , v1
F , dP1, M1 antisymmetric symmetric

J 2
S , v2

C , v2
F , dP2, M2 symmetric antisymmetric

JM1
1, JM2

2 symmetric symmetric

JM1
2, JM1

2 antisymmetric antisymmetric

hand, is antisymmetric under x1 ↔ −x1 but symmetric under x2 ↔ −x2 and
vice versa for v2

C . Tab. 4.1 lists the behavior of all relevant thermodynamical
quantities under these reflections. It is hence possible to solve eqs. (4.37) for
positive x1, x2 only. The following boundary conditions are then imposed on
JSa and JMa

b at the inner boundary:

(JS1)n+1
0,k = −(JS1)n1,k, (JS2)n+1

j,0 = −(JS2)nj,1,

(JM1
1)n+1

0,k = +(JM1
1)n1,k, (JM2

1)n+1
j,0 = −(JM2

1)nj,1,

(JM1
2)n+1

0,k = −(JM1
2)n1,k, (JM2

2)n+1
j,0 = +(JM2

2)nj,1, (4.42)

while at the outer boundary we set

(JS1)n+1
N,k =

{
SnN−1,k(v

1
F )nN,k for (v1

F )nN,k > 0
0 for (v1

F )nN,k ≤ 0
,

(JS2)n+1
j,N =

{
Snj,N−1(v2

F )nj,N for (v2
F )nj,N > 0

0 for (v2
F )nj,N ≤ 0

,

(JM1
1)n+1

N,k =

{
M1

n
N−1,k(v

1
F )nN,k for (v1

F )nN,k > 0
0 for (v1

F )nN,k ≤ 0
,

(JM2
1)n+1

j,N =

{
M1

n
j,N−1(v2

F )nj,N for (v2
F )nj,N > 0

0 for (v2
F )nj,N ≤ 0

,

(JM1
2)n+1

N,k =

{
M2

n
N−1,k(v

1
F )nN,k for (v1

F )nN,k > 0
0 for (v1

F )nN,k ≤ 0
,

(JM2
2)n+1

j,N =

{
M2

n
j,N−1(v2

F )nj,N for (v2
F )nj,N > 0

0 for (v2
F )nj,N ≤ 0

. (4.43)

The conditions at the inner boundary implement the reflection (anti-) sym-
metry while the conditions at the outer boundary simply state that energy,
momenta etc. may be carried out of the domain of calculation.
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4.4 The initial conditions

As explained in section 4.3 we need to impose initial conditions on T and va

at some intial LCF-time τinit in order to solve eqs. (4.37). The transverse
velocity is simply set to vanish initially, va(τinit) = 0, so we only have to
consider the initial temperature profile.

We model the number density of a lead nucleus in its rest frame by a two
parameter Woods-Saxon potential,

nPb(~x) =
n0

1 + e(|~x|−RPb)/a
,

∫
d3xnPb(~x) = A, (4.44)

where RPb = 6.62 fm, a = 0.546 fm (de Vries et al., 1987) and n0 normalizes
nPb to the nucleon number of lead, A = 208. Using the number density nPb

we can define the nuclear thickness and overlap T±A and TAA, respectively, as

T±A (b, x1, x2) =

∫
dx3 nPb(x1 ± b/2, x2, x3),

TAA(b, x1, x2) = T+
A (b, x1, x2)T−A (b, x1, x2). (4.45)

The nuclear overlap is an important quantity in the fireball model since it
is proportional to the number of collisions Ncoll and thus proportional to the
number of bb̄ pairs Nbb̄ produced at a given point (x1, x2) in the transverse
plain,

Nbb̄(b, x
1, x2) ∝ Ncoll(b, x

1, x2) ∝ TAA(b, x1, x2).

The number of inelastic binary collisions Ncoll and the number of participants
Npart, nucleons which underwent at least one inelastic collision, are given by

Ncoll(b) = σinel,pp

∫
d2xTAA(b, x1, x2),

Npart(b) =

∫
d2x

T+
A (b, x1, x2)

A

(
1−

(
1− σinel,pp

T−A (b, x1, x2)

A

)A)

+

∫
d2x

T−A (b, x1, x2)

A

(
1−

(
1− σinel,pp

T+
A (b, x1, x2)

A

)A)
, (4.46)

respectively. The cross section for inelastic pp-collisions at
√
s = 2.76 TeV

amounts to σinel,pp = 64 mb (Nakamura et al., 2010). Since all these quantities
depend neither on x0 nor x3 they may simply be transferred to the LCF,
where the numerical calculation is conducted.
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Table 4.2: Centrality bins c with their lower boundaries bc and corresponding bin-averaged
number of collisions 〈Ncoll〉c and participants 〈Npart〉c, respectively.

Centrality bin bc (fm) 〈Ncoll〉c 〈Npart〉c
0 - 5 % 0 1740 379.5
5 - 10 % 3.4 1384 326.2

10 - 20 % 4.9 990.3 257.9
20 - 30 % 7.0 610.3 183.8
30 - 40 % 8.6 349.2 124.8
40 - 50 % 9.9 183.0 80.0
50 - 100 % 11.1 26.8 17.5

To compare with measurements we have to average the theoretical results
over centrality bins. A quantity is averaged over the centrality bin c by
integrating over the impact parameter in the interval bc ≤ b < bc+1, weighted
with dσinel,AA/db, where σinel,AA is the cross section for an inelastic nucleon-
nucleon collision to occur in a heavy ion collision,

〈f〉c =

∫ bc+1

bc
db

dσinel,AA
db

(b)f(b)∫ bc+1

bc
db

dσinel,AA
db

(b)
, (4.47)

where dσinel,AA/db and σinel,AA are calculated as follows:

dσinel,AA

db
(b) = 2πb

(
1− e−Ncoll(b)

)
,

σinel,AA(b) =

b∫
0

db′
dσinel,AA

db′
. (4.48)

A centrality bin c is then determined by a lower bound bc such that the
fraction

σinel,AA(bc)

σinel,AA(∞)
(4.49)

takes a certain value. Here we use the same seven centrality bins as in the
CMS experiment, so that the above fraction amounts to 0, 0.05, 0.1, 0.2, 0.3,
0.4 and 0.5. The corresponding lower boundaries on the impact parameter
bc as well as averages of Ncoll and Npart according to eq. (4.47) are listed in
tab. 4.2.

Since the transverse temperature profile in the fireball produced in rela-
tivistic heavy ion collisions is quite uncertain, we will consider two scenar-
ios with different initial conditions, IC1 and IC2, respectively. In the first
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scenario we consider the temperature distribution to scale with the energy
liberated in binary collisions and in the second we consider a similar scaling
for the entropy instead. Since s ∝ T 3 this yields in the LCF

T (b, τinit, x
1, x2) = T0

Ncoll(b, x
1, x2)

Ncoll(0, 0, 0)
, (IC1)

T (b, τinit, x
1, x2) = T0

(
Nmix(b, x1, x2)

Nmix(0, 0, 0)

)1/3

, (IC2) (4.50)

respectively. Here we have introduced Nmix, which combines the number of
binary collisions Ncoll and participants Npart,

Nmix(b, x1, x2) =
1− f

2
Npart(b, x

1, x2) + fNcoll(b, x
1, x2), (4.51)

where f = 0.145 as determined from fits of the charged particle multiplicity
(Back et al., 2004; Aamodt et al., 2011b). For a pure Bjorken-flow one can
insert eqs. (4.50) into eq. (4.26) to obtain the LCF-temperature in absence
of transverse expansion,

Tlong(b, τ, x1, x2) = Tc
Ncoll(b, x

1, x2)

Ncoll(0, 0, 0)

(τQGP

τ

)1/3

, (IC1)

Tlong(b, τ, x1, x2) = Tc

(
Nmix(b, x1, x2)

Nmix(0, 0, 0)

)1/3 (τQGP

τ

)1/3

, (IC2) (4.52)

where Tc = 170 MeV as usual and τQGP is the maximum lifetime of the QGP
as measured in the LCF, i.e. the lifetime along the beam axis for a central
collision.

For the numerical solution of eqs. (4.37) we choose an initial time τinit in
the LCF, typically of the order 0.1 fm/c, and then use one the eqs. (4.50)
as initial condition for T . Typical values of the initial core temperature in
central collisions are: T0 = 550− 650 MeV.

Representative solutions for T and va are plotted in figs. 4.3 and 4.4,
respectively, both for a central collision (b = 0) and a peripheral collision
(b = 8 fm) using IC1 and IC2 from eqs. (4.50) with τinit = 0.1 fm/c and
T0 = 650 MeV. For a purely longitudinal flow we would have to set τQGP =
5.6 fm/c to obtain Tlong(0, τinit, 0, 0) = T0. The QGP-lifetime is of course
always smaller for a fireball expanding in the transverse and longitudinal
direction than for purely longitudinal expansion. Larger QGP-lifetimes can
be obtained by either increases τinit or T0.

Fig. 4.3 depicts temperature profiles for a pure Bjorken-flow as given
in eq. (4.26) and for the numerical solution of eqs. (4.37). Evidently the
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Figure 4.3: Profiles of the temperature T in the fireball for a central collision (b = 0, left)
and a peripheral collision (b = 8 fm, right) for times τ = 0.1 (black), 1.1 (red), 2.1 (green),
3.1 fm/c (blue) and 4.1 fm/c (orange), respectively. Left plots: T is plotted along the
x1-axis for a pure Bjorken-flow (4.26) in solid lines together with the numerical solution
of eqs. (4.37) in dash-dot-dotted lines using IC1 (top) and IC2 (bottom). Right plots:
T is plotted for a pure Bjorken-flow along the x1- and x2-axis in solid and dashed lines,
respectively, as well as in dash-dot-dotted and dotted lines for the corresponding numerical
solution, using IC1 (top) and IC2 (bottom). See text for more information.
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Figure 4.4: Profiles of the transverse velocity vaC ≡ va, a = 1, 2, in the fireball from eqs.
and (4.33) and (4.37) for a central collision (b = 0, left) and a peripheral collision (b = 8
fm, right) for times τ = 0.3 (black), 1.1 (red), 2.1 (green), 3.1 fm/c (blue) and 4.1 fm/c
(orange), respectively. Left plots: v1 is plotted along the x1-axis using IC1 (top) and
IC2 (bottom). Right plots: v1 and v2 are plotted along the x1- and x2-axis in solid and
dash-dot-dotted lines, respectively, using IC1 (top) and IC2 (bottom). See text for more
information.
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transverse expansion of the fireball speeds up the cooling of the QGP due to
the additional increase in volume. Using IC1 yields shorter QGP-lifetimes
than IC2 since the latter results in a much broader temperature distribution.
A comparison between the temperature profiles along the x1- and x2-axis is
also drawn for the peripheral collision, where the system has no cylindrical
symmetry about the x3-axis. Clearly the contribution of transverse expansion
is larger for more central collisions due to the longer QGP-lifetime.

The transverse velocity components are depicted in fig. 4.4. Apparently
the velocity grows very quickly in the more peripheral regions of the collision
and approaches the speed of light very closely. This is due to the rapidly
decreasing energy density at large distance from the collision center, which
makes the applicability of hydrodynamics doubtful in this region. This effect
becomes visible especially at early times at the outer boundaries. It does not
represent a problem for the numerical approach, however, since these remote
regions do not contribute significantly to the final results (see chapter 5) and
the transverse velocity is always directed outwards so no information from
the outer region can flow towards the center.
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Chapter 5

Υ suppression in PbPb
collisions at the LHC

We have obtained results for the in-medium bottomium decay width and
melting temperatures in chapter 3 and time-dependent fireball temperature
and velocity profiles in chapter 4. Thus we are now well prepared to calculate
the suppression of Υ mesons in relativistic PbPb collisions at the LHC.

In section 5.1 we calculate the amount of suppression that occurs within
the QGP and present the subsequent decay cascade calculation in section
5.2. The final results that include the decay cascade, however, are presented
and discussed in chapter 6.

5.1 Suppression in the quark-gluon plasma

Let us quantify the amount of suppression within the QGP of bottomium
states (n − l, l) with transverse momentum pT , as measured in the LF, in
terms of the QGP-suppression factor RQGP

AA,nl(c, pT ) for PbPb collisions in the
centrality bin c.

Since we have defined a pT -dependent quantity here, let us recall from
chapter 4 that the same transverse momenta pT are measured in the LF and
the LCF. Hence we may perform pT -dependent calculations in the LCF and
readily transfer the results to the LF, where the experimental data have been
measured.

The QGP-suppression factor is not directly measurable since it accounts
only for the amount of suppression inside the fireball due to the three pro-
cesses of color screening, collisional damping and gluodissociation. It is given
by the ratio of the number of bottomia that have survived the fireball to
the number of produced bottomia. As mentioned in chapter 4 the num-

67
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ber of produced bottomia at a given point in the transverse plain scales
with the number of binary collisions and hence with the nuclear overlap,
Nbb̄ ∝ Ncoll ∝ TAA. Thus we write RQGP

AA as follows:

RQGP
AA,nl(c, pT ) =

∫ bc+1

bc
db b

∫
d2xTAA(b, x1, x2)Dnl(b, pT , x

1, x2)∫ bc+1

bc
db b

∫
d2xTAA(b, x1, x2)

. (5.1)

Let us first consider the denominator in eq. (5.1): We integrate the nuclear
overlap TAA over the transverse plain which gives a result that scales with the
number of bottomia produced per transverse slice in the fireball. Since this
number does not depend on x3, or y for that matter, it also scales with the
total number of bottomia produced in the fireball for this impact parameter b.
The integration over b then yields a result which scales with the total number
of bottomia produced in the fireball for collisions in the centrality bin c. Up
to a constant factor the denominator in eq. (5.1) thus gives the bottomium
yield for pp-collisions scaled with TAA; i.e. it treats PbPb collisions like many
mutually independent pp-collisions.

A heavy ion collision is more than just a large number of nucleon-nucleon-
collisions since a hot medium is produced which is not present in pp-collisions.
Hence the same calculation is performed in the numerator in eq. (5.1),
whereas now a damping factor Dnl has been inserted. Dnl(b, pT , x

1, x2) gives
the fraction of bottomia of state (n− l, l) that have been produced at (x1, x2)
with transverse momentum pT in a collision with impact parameter b and
have survived until the fireball has cooled. The numerator of eq. (5.1) thus
scales with the total number of surviving bottomia for collisions in the cen-
trality bin c.

The damping factor Dnl is given by the temporal integral over the total
decay width Γtot,nl from eq. (3.39),

Dnl(b, pT , x
1, x2) = exp

− ∞∫
τF,nlγT,nl(pT )

dτ Γtot,nl

γT,nl(pT )

 ,
Γtot,nl = Γtot,nl(Teff,nl(b, pT , τ, x

1, x2)),

γT,nl(pT ) =

√
1 +

p2
T

M2
nl

, (5.2)

where τF,nl is the formation time in the bottomium rest-frame, γT,nl(pT ) the
Lorentz-factor due to transverse motion in the LCF, Mnl the experimen-
tally measured bottomium vacuum mass and Teff is an effective temperature
properly defined below.
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The decay width depends indirectly on impact parameter, transverse mo-
mentum and spacetime coordinates through the temperature distribution.
This allows us to use eq. (3.39) to obtain Γtot,nl as a function of spacetime.
The integral is performed in the LCF where the evolution of temperature
is calculated, but its result is Lorentz-invariant. The decay width, how-
ever, is evaluated in the bottomium rest frame and therefore a corresponding
Lorentz-factor has been included in the integrand.

We have written Teff instead of T in eqs. (5.2) to capture the effect of
a finite relative velocity between the bottomium states and the medium. In
the following we will consider all bottomia to flow in the same direction as
the medium with momentum p = pTv⊥/|v⊥|, energy Enl = (M2

nl+p2
T )1/2 and

velocity βnl = p/Enl in the LCF, where v⊥ is the transverse medium velocity,

v⊥ = v1e1 + v2e2, (5.3)

with the same components v1, v2 as in eq. (4.24).

Bottomium states are too inert to experience substantial change of their
momenta by collisions with the light medium particles. In addition they are
also color-neutral on large scales so the strong force can not mediate momen-
tum exchange very effectively. Hence p is constant, whereas the magnitude
of the medium velocity v⊥ is obviously changing in time. This yields a finite
relative velocity

vrel,nl =
v⊥
|v⊥|

|v⊥| − |βnl|
1− |v⊥||βnl|

. (5.4)

If there exists a finite relative velocity vrel,nl between the QGP and the bb̄
state, the relativistic Doppler shift will result in an angle-dependent, effective
temperature (Escobedo et al., 2011),

T ′eff(v, θ) = T

√
1− v2

1− v cos θ
, (5.5)

where v ≡ vrel,nl for clarity and θ is the angle between v and the line of sight.
The behavior of T ′eff as a function of θ is depicted in fig. 5.1 for different v.
In general T ′eff results in a blue-shifted effective temperature in the forward
direction and a red-shifted one in the backward direction. The effect of red-
and blue-shift gets more and more pronounced with increasing velocity v but
the red-shifted region is growing, while the blue-shifted region is restricted
to smaller and smaller angles θ; a fact that has already been pointed out by
Escobedo et al. (2013).
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Figure 5.1: Anisotropic temperature T ′
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dotted), 0.5 (green, dashed), 0.9 (blue, dotted), 0.99 (cyan, dash-dotted).

In this thesis we will not use eq. (5.5), however, but limit ourselves to
an approximation of the overall effect of this non-isotropic effective temper-
ature. For this purpose we define an isotropic effective temperature Teff(v)
by averaging T ′eff(v, θ) over the solid angle,

Teff(v) =
1

4π

∫
dΩT ′eff(v, θ)

= T
√

1− v2
artanh v

v
≤ T. (5.6)

Thus we find that the effect of red-shift dominates over blue-shift for all
relative velocities v > 0. To be more specific we reveal all dependencies by
writing Teff including all its arguments,

Teff,nl(b, pT , τ, x
1, x2) = T (b, τ, x1, x2)

√
1− v2

artanh v

v
,

v ≡ vrel,nl(b, pT , τ, x
1, x2) =

v⊥
|v⊥|
|v⊥|

√
M2

nl + p2
T − pT√

M2
nl + p2

T − |v⊥|pT
,

v⊥ = v⊥(b, τ, x1, x2), (5.7)

where T (b, τ, x1, x2) and v⊥(b, τ, x1, x2) are calculated numerically from the
hydrodynamical model of chapter 4.

To get a better understanding of the implications of this effective tem-
perature we have plotted in fig. 5.2 profiles of T and Teff for the Υ(1S) along
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the x1-axis in a central collision (b = 0), using IC1 of eqs. (4.50), T0 = 650
MeV, τinit = 0.1 fm/c and a formation time of τF,10 = 0.1 fm/c. The effective
temperature is plotted for Υ(1S) states moving with pT = 0, 6 and 12 GeV/c
through the QGP, respectively. One can very nicely see how the spatially
varying red-shift causes the Υ(1S) to see a reduced effective temperature.
Maximum red-shift is attained in the collision center, where the plasma is
locally at rest in the LCF. With growing distance to the center, however, Teff

approaches T and zero red-shift is achieved on a surface in the peripheral
regions of the collision where the QGP is locally co-moving with the botto-
mia. At larger distances the transverse QGP velocity exceeds the bottomium
velocity so the red-shift increases again. This causes Teff to achieve a max-
imum outside the collision center for large values of pT . Obviously location
and shape of this zero-red-shift surface vary with state, b, pT and τ .

Finally, to obtain the right expression for the damping factor Dnl we note
that a bottomium state with finite pT will not stay at the location (x1, x2)
where it was initially produced but instead move with the aforementioned
velocity βnl. Inserting all this into eq. (5.2) yields

Dnl(b, pT , x
1, x2) = exp

− ∞∫
τF,nlγT,nl(pT )

dτ Γtot,nl

γT,nl(pT )

 ,
Γtot,nl = Γtot,nl(Teff,nl(b, pT , τ, x

1 + β1
nlτ, x

2 + β2
nlτ)). (5.8)

Fig. 5.3 depicts profiles of the Υ(1S)-damping factor D10 and the weighted
damping factor TAAD10 that appears in the integrand of the numerator in eq.
(5.1). The two quantities are plotted for transverse momentum pT = 0 and
6 GeV/c, respectively, along the x1-axis for a central collision (b = 0), while
the other collision parameters are the same as before. In general bottomia
dissolve very rapidly near the collision center, where the decay width is large.
As the fireball cools, however, the dissociation rate decreases strongly. Time
dilation causes bottomia moving with pT = 6 GeV/c to be formed at a later
time where the QGP has already cooled down a bit in addition to the red-
shifted effective temperature seen by the bottomia. In general the amount
of suppression decreases with increasing pT .

The weighted damping factor TAAD10 in the numerator in eq. (5.1) di-
rectly scales with the number of surviving bottomia in the transverse plane.
Hence it is very instructive to take a look at the two-dimensional plots of
TAAD10 depicted in fig. 5.4, where again IC1, T0 = 650 MeV, τinit = 0.1 fm/c
and τF,10 = 0.1 fm/c have been used. The transverse TAAD10-distributions of
the Υ(1S) and Υ(2S) are displayed for central (b = 0) and peripheral collision
(b = 8 fm) for pT = 0 and 6 GeV/c, respectively. Most bottomia are formed
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in the center of the heavy ion collision, where most binary nucleon-nucleon
collisions occur. Due to the high central temperatures, however, strong sup-
pression changes the shape of the surface from cone-like (peripheral) into
volcano-like (central). Evidently, the Υ(2S) is suppressed much more effi-
ciently than the more stable Υ(1S), whereas large transverse momenta lead
to significantly less suppression. Also one should note that it is the action
of color screening that forbids the formation of bound bb̄ states above the
melting temperature Tm and thus discontinuously enforces Dnl = 0 within a
certain proximity to the collision center. This does not occur for the Υ(1S)
in this example since its melting temperature (see tab. 3.1) is slightly higher
than the maximum fireball temperature, Tm > T0. Choosing a higher T0,
however, would lead to complete suppression of even the Υ(1S) in the core
of the most central collisions.

Results for the QGP-suppression factor are depicted for the Υ(1S) in
fig. 5.5, using IC1 and IC2 of eqs. (4.50), different choices of the initial core
temperature T0 = 550, 650 MeV, τinit = 0.1 fm/c, formation times τF,10 = 0.1,
0.5 fm/c and transverse momenta pT = 0, 6, 12 GeV/c as well as pT -averaged
results. The pT -average has been calculated, in the way explained below,
from results for pT = 0 up to 28 GeV/c in steps of 2 GeV/c. We have plotted
RQGP
AA,10 not as continuous function of centrality but instead averaged over

centrality bins (see tab. 4.2) to achieve a better comparability with CMS
data. The plots confirm the intuitive expectation that higher temperatures
and shorter formation times increase the amount of suppression. On the
other hand, the amount of suppression decreases with increasing pT due to
the stronger red-shift of the effective temperature and the dilated formation
times. Also there is much less suppression for IC1 since the temperature
decreases much faster with growing distance from the center than for the
much broader distribution of IC2 (see fig. 4.3).

Using the bottomium production cross section σnl(pT ) as measured by
CMS (Khachatryan et al., 2011), the average over transverse momenta is
performed as follows:

〈f〉nl =

∫∞
0
dpT σnl(pT )f(pT )∫∞
0
dpT σnl(pT )

. (5.9)

The CMS experiment has measurement transverse momenta in the range
0 ≤ pT ≤ 30 GeV/c and correspondingly the production cross section is set to
vanish above this threshold, σnl(pT > 30 GeV/c) = 0. The same production
cross section is assumed for the χb(nP) states as for the corresponding Υ(nS)
state.

A comparison of RQGP
AA for the different bottomium states is depicted

in fig. 5.6 using IC1 for T0 = 650 MeV, τinit = 0.1 fm/c for transverse
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of Υ(1S) and Υ(2S) that survive suppression throughout the lifetime of the QGP due
to the three processes of color screening, collisional damping and gluodissociation. High
central temperatures cause strong suppression and thus change the shape of the surface
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Figure 5.5: QGP-suppression factor RQGP
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(red, green and blue lines, respectively) and averaged over all pT -values (black lines). In
general the pT -averaged results are close to the result for pT = 6 GeV/c ≈ 〈pT 〉.
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momenta pT = 0, 6, 12 GeV/c and pT -averaged, using the same formation
time of τF,nl = 0.1 fm/c for all states. Again, the pT -average has been
calculated from results for pT = 0 up to 28 GeV/c in steps of 2 GeV/c.
The ground state Υ(1S) is significantly less suppressed in the QGP than the
excited bottomia. Further the RQGP

AA -profiles are very similar among states of
equal principal quantum number n, but especially for the three states χb(2P),
Υ(3S) and χb(3P). The large in-medium decay widths of these highly excited
states result in almost complete suppression in the QGP so the overall QGP-
suppression factor is non-zero only due to contributions from the peripheral
collision regions where no QGP is formed. This explains the similarity in the
suppression pattern since the survival zone of these three states is basically
given by the collision geometry. Only for higher pT -values a difference among
the excited states can be noted since some fraction is created in the boundary
region of the QGP and can escape the plasma, seeing a strongly red-shifted,
effective temperature.

5.2 The decay cascade

In chapter 3 we have calculated bottomium wave functions and considered the
effect of color screening, collisional damping and gluodissociation in order to
obtain decay widths. Then in chapter 4 we have set up a numerical routine
for hydrodynamic simulations of the QGP in the fireball. Finally, in the
previous section we have combined the results of these two steps to calculate
the QGP-suppression factor RQGP

AA .
To obtain the experimentally measured suppression factor RAA(Υ(nS))

from the QGP-suppression factors we need to calculate the fraction of Υ(nS)
that decay into dimuon pairs. Therefore we consider in this section the decay
cascade of excited bb̄ states within the bottomium family. The corresponding
decay channels are depicted in fig. 5.7 with their branching ratios as given
by the PDG (Beringer et al., 2012). Since the branching ratios of the χb(3P)
have not been measured so far we resort to theoretical predictions of the
partial widths (Daghighian and Silverman, 1987),

Γχb(3P)→Υ(3S) = 10.33 keV,

Γχb(3P)→Υ(2S) = 3.36 keV,

Γχb(3P)→Υ(1S) = 3.16 keV, (5.10)

which are obtained from the widths for χbJ(3P)-decays by averaging over
total angular momentum J , weighted with the multiplicity 2J + 1. The
partial widths for the decays χb(3P) → χb(1P) and χb(3P) → χb(2P) have
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not been calculated. Assuming they are much smaller than the width for
χb(3P) decaying into Υ(nS), they are simply set to 10−7 keV in this thesis.
The total decay width of the χb(3P) is also undetermined, experimentally as
well as theoretically, and hence only the relative sizes of the χb(3P)-branching
ratios are known. The absolute values are obtained by scaling with a common
factor. However, we will see later that it is possible to absorb this factor into
the initial conditions so it cancels out in the final results. Consequently our
ignorance about the value of the total width does not introduce another free
parameter into the model.

Let N0
I and Nµ

n denote the number of bottomium states I produced ini-
tially on average in a collision event (pp or PbPb) and the number of dimuon
pairs that originate from the decay Υ(nS) → µ+µ−, respectively. The bot-
tomium states (n− l, l) are identified with I by means of the following enu-
meration:

1S =̂ 1, 2P =̂ 4,

1P =̂ 2, 3S =̂ 5,

2S =̂ 3, 3P =̂ 6. (5.11)

Let further M denote the 3× 6-matrix that connects N0
I to Nµ

n via

Nµ
n =

∑
I

MnIN
0
I . (5.12)

Let us postpone the specific definition ofM for the moment. With given N0
I

the linear system of equations (5.12) may be solved for Nµ
n . On the other

hand, we may also solve for N0
I if the dimuon yields Nµ

n are given together
with data on the χb(nP)-states (keep in mind thatM is not a square matrix).
Given the initially produced bottomia N0

I in pp-collisions, the numbers of
initially produced bottomia in PbPb collisions should then be the same, up
to a factor of proportionality. This is due to the fact that bottomia are
produced in the very early collision phase, where only the number of binary
collisions should play a role but no medium effects. Since the calculation of
RAA involves a ratio, the factor of proportionality will cancel out so we can
directly use the pp-results for N0

I in the PbPb case.
The amount of suppression in the QGP in PbPb collisions can be included

in the calculation by inserting RQGP
AA in eq. (5.12),

Nµ
n (c, pT ) =

∑
I

MnIN
0
IR

QGP
AA,I(c, pT ), (5.13)

i.e. we calculate the decay cascade with the reduced population N0
IR

QGP
AA,I .

Thus we are ready to properly write down the observable suppression factor
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Figure 5.7: Schematic illustration of the decay channels within the bottomium family
and from Υ(nS) into dimuon pairs. The corresponding branching ratios are taken from
the PDG (Beringer et al., 2012). The partial widths of the χb(3P), which has recently
been discovered at ATLAS (Aad et al., 2012), are not yet measured but are taken from a
theoretical model (Daghighian and Silverman, 1987). Its total width is also unknown but
cancels out in the final result.

RAA = RAA(Υ(nS), c, pT ), which compares the dimuon yields Nµ
n in PbPb-

and pp-collisions for Υ(nS) states measured in the centrality bin bc ≤ b < bc+1

with transverse momentum pT ,

RAA(Υ(nS), c, pT ) =

∑
IMnIN

0
IR

QGP
AA,I(c, pT )∑

IMnIN0
I

. (5.14)

Let us now concentrate on the matrix M, which describes the decay of
Υ(nS) states into dimuon pairs, given an initial bottomium population N0

I .
Considering decays within the bottomium family and into dimuon pairs, we
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have the following rate equations in the bottomium rest-frame:

dNI

dt
(t) = −ΓINI(t) +

∑
J>I

ΓIJNJ(t),

dNµ
n

dt
(t) = Γµ,nSNnS(t), (5.15)

where NI(0) = N0
I , t is the time coordinate in the bottomium rest-frame, ΓI

and ΓIJ are the total width of state I and partial widths for the decay J → I,
respectively, and Γµ,nS is the partial width for the decay Υ(nS)→ µ+µ−. A
state I = (n− l, l) is considered ”smaller” than a state J = (n′ − l′, l′) if

I < J ⇔ (n < n′) ∨ (n = n′ ∧ l > l′). (5.16)

The meaning of the first line of eqs. (5.15) is therefore quite intuitively that
the number of bottomium states I decreases through various decay channels
with total width ΓI while at the same time it receives contributions from
higher excited states J through channels with partial width ΓIJ .

Let us further rewrite eqs. (5.15) in terms of the branching ratios

BIJ =
ΓIJ
ΓJ

, for I < J, (5.17)

so that

ΓINI(t) = −dNI

dt
(t) +

∑
J>I

BIJΓJNJ(t),

dNµ
n

dt
(t) = Bµ±,nSΓnSNnS(t). (5.18)

It is now apparent that the first line of eqs. (5.18) gives a recursive relation,
expressing the number of states I in terms of its rate of change dNI/dt and
the numbers of higher excited states. For the χb(3P), the highest excited
state known to lie below the BB̄-threshold, the first line of eqs. (5.18) reads

Γ6N6(t) = −dN6

dt
(t). (5.19)

Hence we are able to define a “cumulative-decay” (CD) matrix C such that

ΓINI(t) = −
∑
J

CIJ
dNJ

dt
(t), (5.20)
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Table 5.1: Entries of the CD matrix C derived from the branching ratios given by the
PDG (Beringer et al., 2012). Transitions including the χb(3P) are only determined up to
a common factor given by its total decay width Γ6.

Υ(1S) χb(1P) Υ(2S) χb(2P) Υ(3S) χb(3P)
Υ(1S) 1 0.2211 0.3047 0.1231 0.1399 5.627/Γ6[keV]
χb(1P) 0 1 0.1785 0.02913 0.04163 1.029/Γ6[keV]
Υ(2S) 0 0 1 0.1303 0.1472 4.876/Γ6[keV]
χb(2P) 0 0 0 1 0.316 3.265/Γ6[keV]
Υ(3S) 0 0 0 0 1 10.33/Γ6[keV]
χb(3P) 0 0 0 0 0 1

where (Vaccaro, 2013)

CIJ =


∑J

K=I+1 BIKCKJ , I < J
1, I = J
0, I > J

. (5.21)

The CD matrix describes the decay of a state J into a lower lying state I,
accumulating contributions from all possible channels within the bottomium
family, including intermediate states K with J ≥ K > I. Its entries are
listed in tab. 5.1 as calculated from the branching ratios given by the
PDG (Beringer et al., 2012). As already mentioned, transitions including
the χb(3P) are only determined up to a common factor given by its total
decay width Γ6.

We may now insert eq. (5.20) into the second line of eqs. (5.18) and
integrate from 0 tot ∞ to solve for the number of dimuon pairs Nµ(∞).
Since no dimuon pairs from Υ(nS)-decays are present initially, Nµ

n (0) = 0,
and no bottomium states survive in the limit t→∞, NI(∞) = 0, we obtain

Nµ
n (∞) = Bµ±,nS

∑
J

CnS,JN
0
J . (5.22)

Comparing with eq. (5.12) shows that the matrixM is given in terms of the
CD matrix by

MnI = Bµ±,nSCnS,I . (5.23)

To match the yields from eqs. (1.9), measurement by the CMS experiment,
we define scaled dimuon- and initial bottomium-numbers, N µ

n and N 0
I via

N µ
n =

Nµ
n (∞)

Nµ
1 (∞)

, N 0
I =

N0
I

Nµ
1 (∞)

, (5.24)
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which yields for the LHC pp run at
√
sNN = 2.76 TeV (Chatrchyan et al.,

2012)

N µ
1 = 1, N µ

2 = 0.56, N µ
3 = 0.41. (5.25)

In order to solve for the initial populations we make use of the CDF results
for Υ(1S)-feed down from χb(nP) states in pp̄ collisions at

√
s = 1.8 TeV.

It has been found that [27.1 ± 6.9 (stat) ±4.4 (sys)]% of the Υ(1S) mesons
come from χb(1P)-decays, while [10.5 ± 4.4 (stat) ±1.4 (sys)]% come from
χb(2P)-decays and the contribution from χb(3P)-decays is estimated to be
less than 6% (Affolder et al., 2000). In this thesis we will assume the χb(3P)-
contribution to be at the estimated upper limit,

M12N 0
2 = 0.271, M14N 0

4 = 0.105, M16N 0
6 = 0.06. (5.26)

With these input data we obtain the following, scaled initial populations:

N 0
1 = 13.8, N 0

2 = 43.7, N 0
3 = 17.7,

N 0
4 = 45.6, N 0

5 = 10.9, N 0
6 = 7.7 Γ6[keV]. (5.27)

We find that the total width Γ6 indeed cancels out since N 0
6 is always mul-

tiplied by a factor Mn6 in the calculations.
Vaccaro et al. (2013) have found that the inclusion of the χb(3P) state

decreases the Υ(1S) suppression factor at most by 7%.
The final results may now be obtained by inserting the QGP-suppression

factors from section 5.1 into the cascade calculation outlined in this section.
However, we postpone the presentation of the theoretical results to the next
chapter, where they are compared to experimental results and their implica-
tions are discussed.
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Chapter 6

Results and conclusions

In this chapter the final results of the thesis are present and discussed. In sec-
tion 6.1 we present theoretical results for the suppression factors RAA(Υ(nS))
as well as the Υ(2S)- and Υ(3S)-double ratios, both as functions of centrality
and minimum bias values, and compare with experimental data. In section
6.2 we compare our results with other work in the literature. In section 6.3
we give a short summary of the model and discuss the implications of the
results.

6.1 Theoretical results

We present theoretical results for RAA(Υ(1S)), RAA(Υ(2S)), RAA(Υ(3S)),
Υ(2S)/Υ(1S)|PbPb

Υ(2S)/Υ(1S)|pp and Υ(3S)/Υ(1S)|PbPb

Υ(3S)/Υ(1S)|pp in figs. 6.1 - 6.5 as pT -averaged functions

of centrality. The suppression factor RAA(Υ(1S)) is also displayed in fig. 6.6
as centrality-averaged function of pT .

As in figs. 5.5 and 5.6 we have plotted the theoretical results as aver-
age over centrality bins (see tab. 4.2) and not as continuous functions of
centrality, because the latter would be misleading in the comparison with
experimental data.

The centrality dependent results for RAA(Υ(1S)), RAA(Υ(2S)) and also
Υ(2S)/Υ(1S)|PbPb

Υ(2S)/Υ(1S)|pp are compared with CMS data (Chatrchyan et al., 2012). Re-

cent ALICE data (Manceau, 2013) is also displayed in fig. 6.1. Note, however,
that ALICE has measured at rapidity 2.5 < y < 4 and CMS at y < 2.4. Also
ALICE data is given for the centrality bins 0 - 20% and 20 - 90%, respec-
tively, as opposed to the CMS centrality bins, which have been used for the
theoretical results.

All theoretical results in this chapter have been calculated using τinit = 0.1
fm/c and equal formation times τF,nl for all states. We have calculated results

85
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Figure 6.1: Results for RAA(Υ(1S)) as a function of centrality, averaged over pT , plotted
for τF,nl = 0.1, 0.3, 0.5 fm/c (red, green, blue lines, respectively). CMS (Chatrchyan et al.,
2012) and ALICE (Manceau, 2013) data are plotted in solid and dotted black, respectively.

for all combinations of initial conditions IC1, IC2, initial core temperatures
T0 = 550, 650 MeV and formation times τF,nl = 0.1, 0.3, 0.5 fm/c. The
average over transverse momentum has been calculated from results for pT =
0 up to 28 GeV/c in steps of 2 GeV/c.

The numerical calculation has been performed on a staggered grid with
51 × 51 cell centers and a grid spacing of 0.2 fm (see chapter 4). While this
appears to be a small grid, regarding e.g. the temperature profile for IC2 in
fig. 4.3, it has been found that the final results do not change even within
one order of magnitude more than the desired accuracy, if a larger grid is
chosen.

It becomes apparent from figs. 6.1, 6.2 and 6.3 that the best agreement
with experimental data is achieved for the two parameter combinations

IC1 IC2

T0 = 650 MeV T0 = 550 MeV

τF,nl = 0.1 fm/c τF,nl = 0.5 fm/c, (6.1)
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Figure 6.2: Results for RAA(Υ(2S)) as a function of centrality, averaged over pT , plotted
for τF,nl = 0.1, 0.3, 0.5 fm/c (red, green, blue lines, respectively). CMS data (Chatrchyan
et al., 2012) are plotted in black.

respectively, where slightly larger T0 or smaller τF,nl for IC2 might improve
the agreement even more. The theoretical minimum bias results are pre-
sented in tabs. 6.1 and 6.2, including RAA(Υ(3S)) and Υ(3S)/Υ(1S)|PbPb

Υ(3S)/Υ(1S)|pp , where

the best agreement with CMS data is achieved for the above combinations as
well. The relative strength of the suppression of the Υ(1S) ground state com-
pared to the excited Υ(2S) and Υ(3S) states is better reproduced using IC2,
which becomes evident from the plots of the Υ(2S)-double ratio depicted in
fig. 6.3.

Results for RAA(Υ(3S)) and Υ(3S)/Υ(1S)|PbPb

Υ(3S)/Υ(1S)|pp as functions of centrality are

depicted in figs. 6.4 and 6.5, respectively. However, no centrality dependent
data are available from experiment.

There are two peculiarities in the centrality dependent CMS data for
RAA(Υ(2S)) (see fig. 6.2), however, which can not be reproduced by the
model. First, there is strong suppression in the most peripheral bin, whereas
the model predicts RAA(Υ(2S)) to be close to one in this region. Second,
there is a jump in the RAA(Υ(2S))-data from the 10 - 20% to the 20 - 30%
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Figure 6.3: Results for Υ(2S)/Υ(1S)|PbPb

Υ(2S)/Υ(1S)|pp
as a function of centrality, averaged over pT , plotted

for τF,nl = 0.1, 0.3, 0.5 fm/c (red, green, blue lines, respectively). CMS data (Chatrchyan
et al., 2012) are plotted in black.

centrality bin. Experimental data of the double ratio Υ(2S)/Υ(1S)|PbPb

Υ(2S)/Υ(1S)|pp shows

corresponding. Both points represent quite counter-intuitive results, which
lack an explanation. Hence it is not unexpected that this model but also
other theoretical approaches do not account for this behavior.

6.2 Comparison with other work

In the following we compare our results with recent, complementary work in
the literature:

Emerick et al. (2012) have modeled bottomium suppression at RHIC
and LHC following an earlier approach (Grandchamp et al., 2006; Zhao and
Rapp, 2010; Zhao and Rapp, 2011). Bottomium properties are investigated
in a weak and a strong binding scenario (WBS and SBS, respectively), where
potential model parameters and spectral functions are checked against LQCD
results.
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Table 6.1: Minimum bias results for RAA(Υ(nS)) and (Υ(nS)/Υ(1S))PbPb

(Υ(nS)/Υ(1S))pp
using IC1, τinit =

0.1 fm/c and different core temperatures T0 and formation times τF,nl.

τF,nl (fm/c) 0.1 0.3 0.5 CMS (Chatrchyan et al., 2012)

T
0

=
55

0
M

eV

RAA(Υ(1S)) 0.61 0.77 0.84 0.56± 0.08 (stat)± 0.07 (sys)

RAA(Υ(2S)) 0.49 0.69 0.79 0.12± 0.04 (stat)± 0.02 (sys)

RAA(Υ(3S)) 0.38 0.59 0.71 0.03± 0.04 (stat)± 0.01 (sys)
(Υ(2S)/Υ(1S))PbPb

(Υ(2S)/Υ(1S))pp
0.81 0.90 0.93 0.21± 0.07 (stat)± 0.02 (sys)

(Υ(3S)/Υ(1S))PbPb

(Υ(3S)/Υ(1S))pp
0.62 0.77 0.85 0.06± 0.06 (stat)± 0.06 (sys)

T
0

=
65

0
M

eV

RAA(Υ(1S)) 0.53 0.68 0.76 0.56± 0.08 (stat)± 0.07 (sys)

RAA(Υ(2S)) 0.40 0.58 0.68 0.12± 0.04 (stat)± 0.02 (sys)

RAA(Υ(3S)) 0.31 0.49 0.60 0.03± 0.04 (stat)± 0.01 (sys)
(Υ(2S)/Υ(1S))PbPb

(Υ(2S)/Υ(1S))pp
0.77 0.86 0.90 0.21± 0.07 (stat)± 0.02 (sys)

(Υ(3S)/Υ(1S))PbPb

(Υ(3S)/Υ(1S))pp
0.59 0.72 0.79 0.06± 0.06 (stat)± 0.06 (sys)

In the WBS bottomium properties are temperature dependent, with val-
ues according to a screened Cornell potential, whereas they remain constant
at their vacuum values in the SBS. In-medium dissociation and regeneration
is calculated using a rate equation approach, where regeneration is found to
give significant contribution in the SBS only.

The processes under consideration are gluodissociation and “quasi-free
dissociation”, the latter being the pendant to collisional damping. The evo-
lution of the fireball is not modeled by a hydrodynamical approach but as
an isentropically expanding, isotropic firecylinder.

Suppression by CNM effects is also regarded and found to play a moderate
role, weaker at the LHC than at RHIC. Direct feed-down to the Υ(1S) is
considered in the calculation of the suppression factors, but not the complete
decay cascade.

The authors agree with us about the fact that even at the LHC the
Υ(1S) is very stable against color screening. On the other hand, the authors
argue that gluodissociation becomes inefficient for weakly bound quarkonium
states, which contradicts our findings.

It has been pointed out in subsection 3.2.2 that the gluodissociation width
Γdiss of the Υ(1S) is indeed relatively small, compared to Γdamp, and achieves
a maximum at a temperature T < Tm, when a constant coupling αeff is used.
The running coupling, however, increases with temperature as the soft and
ultra soft scales decrease. This results in higher melting temperatures and
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Table 6.2: Minimum bias results for RAA(Υ(nS)) and (Υ(nS)/Υ(1S))PbPb

(Υ(nS)/Υ(1S))pp
using IC2, τinit =

0.1 fm/c and different core temperatures T0 and formation times τF,nl.

τF,nl (fm/c) 0.1 0.3 0.5 CMS (Chatrchyan et al., 2012)

T
0

=
55

0
M

eV

RAA(Υ(1S)) 0.27 0.41 0.52 0.56± 0.08 (stat)± 0.07 (sys)

RAA(Υ(2S)) 0.08 0.24 0.36 0.12± 0.04 (stat)± 0.02 (sys)

RAA(Υ(3S)) 0.03 0.13 0.24 0.03± 0.04 (stat)± 0.01 (sys)
(Υ(2S)/Υ(1S))PbPb

(Υ(2S)/Υ(1S))pp
0.30 0.57 0.68 0.21± 0.07 (stat)± 0.02 (sys)

(Υ(3S)/Υ(1S))PbPb

(Υ(3S)/Υ(1S))pp
0.12 0.29 0.43 0.06± 0.06 (stat)± 0.06 (sys)

T
0

=
65

0
M

eV

RAA(Υ(1S)) 0.20 0.30 0.39 0.56± 0.08 (stat)± 0.07 (sys)

RAA(Υ(2S)) 0.05 0.14 0.22 0.12± 0.04 (stat)± 0.02 (sys)

RAA(Υ(3S)) 0.02 0.07 0.13 0.03± 0.04 (stat)± 0.01 (sys)
(Υ(2S)/Υ(1S))PbPb

(Υ(2S)/Υ(1S))pp
0.22 0.44 0.55 0.21± 0.07 (stat)± 0.02 (sys)

(Υ(3S)/Υ(1S))PbPb

(Υ(3S)/Υ(1S))pp
0.09 0.22 0.32 0.06± 0.06 (stat)± 0.06 (sys)

larger decay widths. It is evident from fig. (3.4) and tab. B.2 that at least
for the Υ(1S) the scale hierarchy stays intact up to the melting temperature
of Tm = 655 MeV ≈ 3.9Tc and that Γdiss may not be neglected.

Song et al. (2011, 2012) propose a model for bottomium suppression in
heavy ion collisions, which calculates in-medium production and dissociation
from a rate equation. The cross section is taken from NLO results for glu-
odissociation (Song and Lee, 2005; Park et al., 2007). Wave functions and
decay widths are calculated from a screened Cornell potential, i.e. the real
part of the first line of eqs. (3.3).

The fireball is modeled as a viscous, cylindrically symmetric fluid and
transversely averaged quantities are calculated. The inclusion of viscosity
allows for lower temperatures at the same QGP lifetime as compared to
perfect-fluid hydrodynamics.

The two effects of bottomium regeneration and gluonic (anti-) shadowing
are also included in the model, but both effects are found to have only small
impact on the final results. This finding supports the assumptions, made in
this thesis, that CNM effects may be neglected for bottomia.

However, the model does not include an imaginary part in the potential
to account for the significant contribution of collisional damping to the total
width. Also the running of the strong coupling αs is not considered, which
has the results mentioned above.

Strickland (2011); Strickland and Bazow (2012) model bottomium sup-
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Figure 6.4: Results for RAA(Υ(3S)) as a function of centrality, averaged over pT , plotted
for τF,nl = 0.1, 0.3, 0.5 fm/c (red, green, blue lines, respectively).

pression in heavy ion collisions by means of a non-relativistic, complex po-
tential model, with parameters guided by LQCD results. Momentum-space
anisotropies are taken into account both in the potential model and in the
viscous, hydrodynamical model of the longitudinally expanding fireball.

While the model is able to reproduce RHIC and LHC data, including
the effect of Υ(1S)-feed down from excited states, it does not account for
transverse expansion of the fireball and the full decay cascade. Also the
running coupling is fixed in the potential model.

It is also worth noting that Alford and Strickland (2013) have investigated
the dissociation of Υ and J/ψ for a vacuum Cornell potential and their mixing
with ηb and ηc, respectively, as induced by the strong magnetic fields present
in the initial phase of a nucleus-nucleus collision.

While the effect appears to be significant for J/ψ production it amounts
only to 2% for the Υ. However, the effect is expected to be stronger in a
thermal medium and for excited quarkonia. Since we have seen the strong
effect of missing feed-down on the Υ(1S) in chapters 5 and 6, there is the
possibility of indirect Υ(1S) suppression through strong magnetic fields.
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Figure 6.5: Results for Υ(3S)/Υ(1S)|PbPb

Υ(3S)/Υ(1S)|pp
as a function of centrality, averaged over pT , plotted

for τF,nl = 0.1, 0.3, 0.5 fm/c (red, green, blue lines, respectively).

6.3 Summary and conclusions

Let us now summarize the essence of the model proposed in this thesis so we
can properly interpret the results presented in the last section.

The model is based on the assumption that bottomia, and in particular
the Υ(1S), are very stable bound states so that only very few processes
can contribute to their suppression in the QGP. Therefore only the three
processes of color screening, gluodissociation and collisional damping are
considered.

Due to the large mass of the bottom quark non-relativistic methods be-
come applicable. Hence, the framework of EFT and in particular pNRQCD
represent a good starting point to treat bottomia immersed in a thermal
medium. Keeping in mind the scale hierarchy exploited in the EFT frame-
work it becomes clear that highly excited states can not be treated by means
of pure pNRQCD (see tabs. B.5 - B.7). Since our potential model is moti-
vated by pNRQCD, however, we have included the non-perturbative string
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Figure 6.6: Results for RAA(Υ(1S)) as a function of pT , averaged over centrality, plotted
for τF,nl = 0.1, 0.3, 0.5 fm/c (red, green, blue lines, respectively).

contribution into the interaction potentials to try and justify the treatment
of very important states χb(2P), Υ(3S) and χb(3P).

A major improvement over our recent work (Brezinski and Wolschin,
2012; Nendzig and Wolschin, 2013) is the inclusion of the running coupling
into the Schrödinger equation. Not only does the running of the coupling
increase the melting temperatures, especially for the excited states, but the
increased ultra soft coupling also results in a significantly larger gluodissoci-
ation decay width.

The in-medium decay widths and melting temperatures obtained in this
way are then inserted into a hydrodynamical model of the fireball, where the
QGP is treated as a relativistic, perfect fuid. The evolution of the fireball
temperature and transverse velocity is calculated numerically, where we have
improved the model significantly, compared to Nendzig and Wolschin (2013),
by taking into account the transverse expansion. Furthermore, we account
for finite transverse momenta of bottomia and their relative velocities with
respect to the surrounding QGP by means of an effective temperature.

In this way we are able to quantify the amount of suppression of bot-
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tomia in the QGP in terms of a QGP-suppression factor RQGP
AA . The final

suppression factor RAA is then calculated from RQGP
AA by performing a decay

cascade calculation and compared to the available data.
Comparing the results for the QGP-suppression factor RQGP

AA (Υ(1S)) in
fig. 5.5 with the results for RAA(Υ(1S)) in fig. 6.1 shows that, depending
on the parameters, missing feed-down from the excited states constitutes a
major or even the largest part of the Υ(1S)-suppression. Missing feed-down
is, however, only a result of the strong suppression of the excited states in
the QGP and is therefore not regarded as an independent process.

The relatively simple picture exploited in this model, which presently does
not include CNM effects, is supported to a large extent by experimental data
(see figs. 6.1, 6.2 and 6.3 as well as tabs. 6.1 and 6.2). On the other hand, the
model deviates from experiment on the relative strength of the suppression
of the Υ(1S) ground state and the excited Υ(2S) and Υ(3S) states. While
the deviation is quite significant for IC1, it is not so prominent if IC2 is used.
However, it appears unlikely to us that this issue can be cured by a clever
choice of parameters alone.

It appears doubtful to us whether stronger, relative suppression of the
excited states can be attained by inclusion of CNM effects as they should
influence all states almost equally and therefore essentially cancel out in the
ratio.

We conjecture that a refined treatment of the formation times could re-
solve the issue since shorter formation times for the excited states would
result in stronger suppression. However, this would also result in additional
suppression of the Υ(1S) by missing feed-down. Consequently the suppres-
sion pattern can only be improved by means of modified formation times if
a good balance between these two effects can be found.

The model presented in this thesis is able to reproduce experimental data
to a good extent, but the current picture has to be refined if higher accuracy is
desired. The broad range of different approaches in the field shows, however,
that a full account of the phenomenon of Υ suppression in relativistic heavy
ion collisions at the LHC is a very ambitious goal.

Straightforward improvements of the model are e.g. the inclusion of CNM
effects, statistical recombination or considering the effect of an anisotropic,
effective temperature in the QGP.

Probably the most interesting, outstanding problem concerns the gluodis-
sociation cross section. If the full, complex Hamiltonian is considered for the
intermediate octet states, instead of the pure Coulomb Hamiltonian as in
this thesis, the subsequent calculation changes dramatically. This and other
interesting, theoretical questions, however, are left for future work.
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Appendix A

Basic calculations in finite
temperature field theory

To keep this work as self-contained as possible we briefly recall some basic
expressions and calculations of thermal field theory in section A.1. The
one-loop gluon polarization tensor needed in chapter 2 is calculated in the
HTL approximation in section A.2. For a more detailed information see e.g.
Kapusta (1989); Le Bellac (2000); Blaizot and Iancu (2002).

A.1 Thermal propagators

First we derive the thermal propagator for a scalar field. The result can
then be used to conveniently derive expressions for the thermal propagators
of fermions and photons. In turn, the gluon propagator may be readily
obtained from the photon propagator.

The thermal propagator of a scalar satisfies(
−∂2 +m2

)
∆(x) = δ4(x), ∆(τ − β, ~x) = ±∆(τ, ~x), (A.1)

where x = (τ, ~x) and ∂2 = ∂2
τ + ∆. The periodic condition is relevant for

bosons and the antiperiodic for fermions. The most convenient representation
of this propagator is ∆(τ,~k), where a spatial Fourier transform has been
performed. Since the propagator is (anti-) periodic in the imarginary time
τ , we may write it as

∆(τ,~k) =
1

β

∞∑
n=−∞

e−iωnτ

ω2
n + ω2

k

, ωk =

√
~k2 +m2 (A.2)
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Figure A.1: Contour for the thermal propagator in eq. (A.2). The choice of C1 yields the
sum over Matsubara frequencies, while C2 yields the residues of the two poles at ±ωk.

where ωn = 2πn/β (bosons) or ωn = 2π(n+ 1/2)/β (fermions) for n ∈ N. In
many cases it is convenient to rewrite the frequency sum in eq. (A.2) as

1

β

∞∑
n=0

f(iωn) =

∫
C

dk0

2πi

f(k0)

2

{
coth(βk0/2), periodic
tanh(βk0/2), antiperiodic

, (A.3)

where the contour C = C1 is depicted in fig. A.1. This expression may be
rewritten as

1

β

∞∑
n=0

f(iωn) =

i∞+ε∫
−i∞+ε

dk0

2πi
f(k0)

(
1

2
+

1

± exp [βk0]− 1

)

−
−i∞−ε∫
i∞−ε

dk0

2πi
f(k0)

(
1

2
+

1

± exp [−βk0]− 1

)
, (A.4)

where the upper (lower) sign refers to the (anti-) periodic case. Let us now
define

n±(k0) =
1

eβk0 ∓ 1
, (A.5)
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where n+ = N is the Bose-Einstein distribution and n− = n is the Fermi-
Dirac distribution. The sum then reads

1

β

∞∑
n=0

f(iωn) =

i∞+ε∫
−i∞+ε

dk0

2πi

(
f(k0) + f(−k0)

)(1

2
± n±(k0)

)
. (A.6)

The first term on the right-hand side represents the vacuum contribution
to the frequency sum and the second term the medium contribution. The
vacuum part is already present at T = 0, while the medium contribution
exists only for finite temperature.

We may now write the scalar propagator in eq. (A.2) as

∆(τ,~k) =

i∞∫
−i∞

dk0

2πi

e−k
0τ

−k02 + ω2
k

±
i∞+ε∫

−i∞+ε

dk0

2πi

ek
0τ + e−k

0τ

−k02 + ω2
k

n±(k0). (A.7)

The contour in the second integral may be deformed into C2 (see fig. A.1)
hereby picking up the pole at k0 = ωk,

∆(τ,~k) =
Θ(τ)e−ωkτ + Θ(−τ)eωkτ

2ωk
± eωkτ + e−ωkτ

2ωk
n±(ωk). (A.8)

Another, very convenient way to express the thermal propagator is to use
the the free particle spectral function,

ρ0(k) = 2π sgn(k0)δ(k2 +m2)

=
π

ωk
(δ(k0 − ωk)− δ(k0 + ωk)), (A.9)

so that eq. (A.2) becomes

∆(τ,~k) =

∫
dk0

2π
e−k

0τρ0(k)
(
Θ(τ)± n±(k0)

)
. (A.10)

Using the identity

n±(−x) = ∓(1± n±(x)), (A.11)

one can show the equivalence between eqs. (A.8) and (A.10). From these
results, we may readily derive the thermal fermion propagator, which is given
by

S(k) = (−/k +m)∆(k), S(τ − β,~k) = −S(τ,~k). (A.12)
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Since the fermion propagator satisfies antiperiodic boundary conditions, we
have

S(τ,~k) =

∫
dk0

2π
e−k

0τρ0(k)(−/k +m)
(
Θ(τ)− n(k0)

)
. (A.13)

The thermal photon propagator is also readily obtained in principle from the
scalar field propagator. However, due to gauge freedom one can not give a
general expression. Specializing to Rξ-gauge, for example, yields

∆µν(k) = ηµν∆(k) + (ξ − 1)kµkν∆
2(k). (A.14)

In this thesis we make use of Coulomb-gauge which is appropriate for the
non-relativistic treatment of the heavy quarks. In this gauge, the thermal
photon propagator reads(

∆00(k) ∆0i(k)
∆i0(k) ∆ij(k)

)
=

(
−∆(k) 0

0 δij∆(k)− kikj∆2(k)

)
. (A.15)

A.2 The polarization tensor

Let us now calculate the one-loop gluon polarization tensor Πµν as given in
eq. (2.25) in Coulomb gauge. It contains contributions from light quarks,
which can be treated as massless. As a function of the complex variable q0,
the polarization tensor reads

Πµν(q0, ~q) = −Ndofg
2

2β

∫
d3p

(2π)3

∞∑
m=0

Tr
[
S(iωm, ~p)γ

µS(iωm − q0, ~p− ~q)γν
]
,

(A.16)

where Ndof is the number of the light fermion degrees of freedom. Since we
are interested in a QCD plasma we have inserted an additional factor of 1/2
in this expression which arises from the trace over color indices.

By means of the identity

1

β

∞∑
n=0

eiωnτ =
∞∑

l=−∞

(−1)lδ(τ − lβ), (A.17)

we may rewrite the polarization tensor as

Πµν(q) =
Ndofg

2

2

∫
d3p

(2π)3

β∫
0

dτ e−q
0τ Tr [S(β − τ, ~p)γµS(τ, ~p− ~q)γν ] ,

(A.18)
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where

S(iωn, ~p) =

β∫
0

dτ eiωnτS(τ, ~p), S(τ, ~p) =
∞∑
n=0

e−iωnτS(iωn, ~p). (A.19)

Inserting the expression (A.13) into eq. (A.18) and writing p1 = p, p2 = p−q
yields

2Πµν(q)

Ndofg2
=

∫
d3p

(2π)3

β∫
0

dτ e−q
0τ Tr [S(β − τ, ~p1)γµS(τ, ~p2)γν ]

=

∫
d3p

(2π)3

dp0
1dp

0
2

(2π)2

β∫
0

dτ e−p
0
1β+(p01−p02−q0)τρ0(p1)ρ0(p2)

· Tr[/p1
γµ/p2

γν ] (1− n(p0
1))(1− n(p0

2)). (A.20)

Calculating the trace and using the δ-functions from the spectral functions
yields

Π(q)

Ndofg2
= 2

∫
d3p

(2π)3

dp0
1dp

0
2

(2π)2

n(p0
2)− n(p0

1)

q0 + p0
2 − p0

1

ρ0(p1)ρ0(p2)

·
(
−p01p02 − ~p1~p2 −~p1p02 − ~p2p01
−~p2p01 − ~p1p02 1(p1p2)− ~p1 ⊗ ~p2 − ~p2 ⊗ ~p1

)

=

∫
d3p

(2π)3ω1ω2

[
n2 − n1

q02 − (ω1 − ω2)2

·
(
−(ω1 − ω2)(~p1~p2 + ω1ω2) −q0(~p2ω1 + ~p1ω2)
−q0(~p2ω1 + ~p1ω2) (ω1 − ω2)(1(~p1~p2 − ω1ω2)− ~p1 ⊗ ~p2 − ~p2 ⊗ ~p1)

)

− 1− n1 − n2

q02 − (ω1 + ω2)2

·
(

(ω1 + ω2)(~p1~p2 − ω1ω2) −iq0(~p2ω1 − ~p1ω2)
−iq0(~p2ω1 − ~p1ω2) (ω1 + ω2)(1(~p1~p2 + ω1ω2)− ~p1 ⊗ ~p2 − ~p2 ⊗ ~p1)

)]
. (A.21)

Taking the limit T → 0 of this expression would yield n1/2 → 0 so only the
vacuum polarization, Π(0) = Π|T=0, remains.

In the HTL approximation, valid at high temperature, only the term
∝ (n2−n1) in eq. (A.21) contributes, since the dominant contribution comes
from loop momenta p ∼ T , whereas the external momenta are of order
q ∼ mD � T (see e.g. Beraudo et al., 2008; Blaizot and Iancu, 2002).

In this case we may approximate

ω2 ≈ p− q cos θ, n1 − n2 ≈ (ω1 − ω2)(∂ωn)
∣∣
ω=p

, (A.22)
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and obtain for the polarization tensor

Π(q)

Ndofg2
=

∫
d3p

(2π)3

∂pn q cos θ

q02 − q2 cos2 θ

 2q cos θ q0

ω1ω2
(~p2ω1 + ~p1ω2)

q0

ω1ω2
(~p2ω1 + ~p1ω2) q cos θ

ω1ω2
(~p1 ⊗ ~p2 + ~p2 ⊗ ~p1)

.
(A.23)

The 00-component of the polarization tensor is readily calculated,

Π00(q)

Ndofg2
=

∫
dp p2

2π2
∂pn

1∫
−1

d cos θ
q2 cos2 θ

q02 − q2 cos2 θ

=
1

3β2

(
1− q0

|~q|
artanh

|~q|
q0

)
. (A.24)

We define the Debye screening mass via

m2
D =

Ndof

3

g2

β2
, (A.25)

to obtain

Π00(q) = m2
D

(
1− q0

|~q|
artanh

|~q|
q0

)
. (A.26)

Without loss of generality we take ~q = q~ez so θ becomes the azimuth angle
and we obtain for the i0 and ij components of the polarization tensor

Πi0(q)

Ndofg2
= δi3

∫
dp p2d cos θ

(2π)2

∂pn q cos θ

q02 − q2 cos2 θ

q0

ω2

((ω1 + ω2) cos θ − q) ∝ ~q

q
,

Πij(q)

Ndofg2
=

∫
dp p2d cos θ

(2π)2

∂pn q cos θ

q02 − q2 cos2 θ

q cos θ

ω1ω2

·

·
(
p2 sin2 θ hij + 2(p2 cos2 θ − pq cos θ)P ij

)
= Π⊥h

ij + Π‖P
ij, (A.27)

where P ij = δi3δj3 = (~q ⊗ ~q/q2)ij and hij = δij − P ij. Thus we can see that,
if the polarization tensor is sandwiched between the gauge field A, as in eq.

(2.24), the contribution of Πi0 vanishes since ~q
~̃
A(q) = 0 in Coulomb gauge.



Appendix B

Data tables

In this appendix we present tabulated data obtained from the theoretical
model, which have been used in the figures of chapters 3 and 6.

B.1 Results from the potential model

We present data on the partial decay widths Γdamp and Γdiss, obtained from
the potential model, supplemented by the scales involved in the calculation.

Table B.1: Data on the Υ(1S) from the potential model using the potential (3.12).

T mD 〈1/r〉 〈|Veff|〉 E Γdamp Γdiss

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
170 523.975 1481.42 1024.23 -565.725 29.7602 3.47212
180 543.693 1480.27 1011.22 -553.400 30.3093 4.80572
190 563.435 1479.23 999.108 -541.881 30.6542 6.41841
200 583.179 1478.31 987.805 -531.082 30.7867 8.31872
210 602.909 1477.51 977.242 -520.924 30.6996 10.5103
220 622.613 1476.85 967.352 -511.335 30.3857 12.9928
230 642.283 1476.32 958.076 -502.250 29.8393 15.7625
240 661.913 1475.94 949.362 -493.610 29.0547 18.8132
250 681.500 1475.70 941.159 -485.358 28.0267 22.1372

Table B.2: Data on the Υ(1S) from the potential model using the potential (3.8).

T mD 〈1/r〉 〈|Veff|〉 E Γdamp Γdiss

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
170 523.975 1423.23 786.300 -363.855 27.3595 7.78852
180 543.693 1417.62 765.991 -346.832 30.6275 10.3411

Continued on next page
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Table B.2 – continued from previous page
T mD 〈1/r〉 〈|Veff|〉 E Γdamp Γdiss

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
190 563.435 1411.93 746.685 -330.814 34.1089 13.3121
200 583.179 1406.19 728.314 -315.723 37.8050 16.6998
210 602.909 1400.40 710.809 -301.483 41.7172 20.4984
220 622.613 1394.57 694.109 -288.025 45.8468 24.7002
230 642.283 1388.71 678.158 -275.285 50.1946 29.2969
240 661.913 1382.82 662.904 -263.205 54.7616 34.2802
250 681.500 1376.90 648.300 -251.731 59.5484 39.6421
260 701.039 1370.97 634.306 -240.813 64.5555 45.3762
270 720.529 1365.03 620.882 -230.408 69.7830 51.4775
280 739.969 1359.09 607.998 -220.476 75.2311 57.9422
290 759.358 1353.14 595.622 -210.979 80.8994 64.7684
300 778.696 1347.21 583.728 -201.884 86.7876 71.9559
310 797.982 1341.28 572.292 -193.160 92.8948 79.5062
320 817.217 1335.37 561.294 -184.779 99.2201 87.4222
330 836.401 1329.48 550.716 -176.716 105.762 95.7084
340 855.535 1323.62 540.539 -168.946 112.520 104.370
350 874.620 1317.78 530.751 -161.448 119.492 113.415
360 893.656 1311.99 521.337 -154.203 126.676 122.851
370 912.644 1306.23 512.287 -147.191 134.070 132.686
380 931.584 1300.51 503.589 -140.396 141.672 142.929
390 950.478 1294.84 495.236 -133.802 149.479 153.589
400 969.327 1289.22 487.218 -127.395 157.489 164.675
410 988.131 1283.65 479.530 -121.162 165.700 176.194
420 1006.89 1278.14 472.164 -115.090 174.109 188.154
430 1025.61 1272.68 465.116 -109.168 182.712 200.559
440 1044.28 1267.28 458.381 -103.387 191.507 213.410
450 1062.92 1261.93 451.955 -97.7352 200.492 226.708
460 1081.51 1256.65 445.833 -92.2048 209.662 240.448
470 1100.06 1251.44 440.014 -86.7876 219.016 254.620
480 1118.58 1246.28 434.495 -81.4761 228.549 269.210
490 1137.05 1241.19 429.273 -76.2633 238.260 284.196
500 1155.49 1236.16 424.346 -71.1426 248.145 299.550
510 1173.89 1231.19 419.713 -66.1088 258.202 315.238
520 1192.26 1226.29 415.373 -61.1559 268.426 331.214
530 1210.59 1221.45 411.324 -56.2790 278.816 347.426
540 1228.89 1216.67 407.564 -51.4734 289.369 363.812
550 1247.15 1211.95 404.094 -46.7348 300.082 380.299
560 1265.38 1207.30 400.911 -42.0593 310.952 396.811
570 1283.58 1202.70 398.016 -37.4432 321.977 413.256
580 1301.74 1198.17 395.405 -32.8831 333.153 429.541
590 1319.87 1193.69 393.080 -28.3761 344.480 445.563
600 1337.97 1189.27 391.038 -23.9186 355.953 461.219
610 1356.04 1184.91 389.277 -19.5084 367.571 476.403
620 1374.09 1180.60 387.796 -15.1429 379.332 491.009
630 1392.10 1176.35 386.593 -10.8195 391.233 504.934

Continued on next page
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Table B.2 – continued from previous page
T mD 〈1/r〉 〈|Veff|〉 E Γdamp Γdiss

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
640 1410.08 1172.14 385.668 -6.53661 403.273 518.085
650 1428.04 1167.99 385.016 -2.29187 415.448 530.375

Table B.3: Data on the χb(1P) from the potential model using the potential (3.8).

T mD 〈1/r〉 〈|Veff|〉 E Γdamp Γdiss

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
170 523.975 634.428 469.571 -127.343 112.291 54.3876
180 543.693 628.870 450.575 -112.124 126.209 67.6851
190 563.435 623.383 433.043 -97.7730 141.074 82.9315
200 583.179 617.996 416.954 -84.1807 156.875 100.354
210 602.909 612.731 402.288 -71.2430 173.595 120.206
220 622.613 607.606 389.031 -58.8663 191.216 142.742
230 642.283 602.635 377.172 -46.9671 209.712 168.170
240 661.913 597.827 366.706 -35.4732 229.058 196.583
250 681.500 593.188 357.628 -24.3223 249.228 227.860
260 701.039 588.719 349.935 -13.4612 270.191 261.542
270 720.529 584.420 343.624 -2.84475 291.923 296.719

Table B.4: Data on the Υ(2S) from the potential model using the potential (3.8).

T mD 〈1/r〉 〈|Veff|〉 E Γdamp Γdiss

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
170 523.975 628.734 472.651 -134.978 137.402 75.3499
180 543.693 622.904 456.350 -122.576 153.337 88.8035
190 563.435 617.232 441.484 -110.968 170.189 103.064
200 583.179 611.731 428.018 -100.057 187.937 118.099
210 602.909 606.409 415.927 -89.7545 206.558 133.856
220 622.613 601.271 405.185 -79.9808 226.028 150.231
230 642.283 596.319 395.776 -70.6679 246.324 167.051
240 661.913 591.552 387.680 -61.7541 267.419 184.051
250 681.500 586.966 380.887 -53.1884 289.289 200.867
260 701.039 582.555 375.382 -44.9259 311.910 217.036
270 720.529 578.314 371.153 -36.9290 335.258 232.033
280 739.969 574.236 368.183 -29.1648 359.310 245.310
290 759.358 570.311 366.455 -21.6061 384.045 256.379
300 778.696 566.533 365.944 -14.2291 409.443 264.872
310 797.982 562.893 366.625 -7.01377 435.484 270.608
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Table B.5: Data on the χb(2P) from the potential model using the potential (3.8).

T mD 〈1/r〉 〈|Veff|〉 E Γdamp Γdiss

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
170 523.975 428.004 436.133 -47.0506 325.335 120.844
180 543.693 424.554 428.790 -33.5541 362.547 136.431
190 563.435 421.287 424.080 -20.3909 401.642 150.776
200 583.179 418.195 422.015 -7.48848 442.545 163.282

Table B.6: Data on the Υ(3S) from the potential model using the potential (3.8).

T mD 〈1/r〉 〈|Veff|〉 E Γdamp Γdiss

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
170 523.975 426.747 449.144 -63.4477 343.634 115.549
180 543.693 423.397 443.030 -51.7507 381.608 127.626
190 563.435 420.228 439.404 -40.4093 421.388 138.457
200 583.179 417.230 438.273 -29.3603 462.903 147.718
210 602.909 414.393 439.623 -18.5499 506.088 155.203
220 622.613 411.707 443.415 -7.93449 550.885 160.853

Table B.7: Data on the χb(3P) from the potential model using the potential (3.8).

T mD 〈1/r〉 〈|Veff|〉 E Γdamp Γdiss

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
170 523.975 353.132 546.879 -8.87933 633.336 114.209

B.2 Suppression factors and double ratios

We present data on the suppression factors RAA(Υ(nS)) and double ratios
[Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as pT -averaged functions of centrality and centrality-averaged

functions of pT . Minimum bias results are shown in tabs. 6.1 and 6.2.

Table B.8: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of centrality using IC1, T0 = 550 MeV, τnl = 0.1 fm/c, averaged over pT .

Centrality bin RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 - 5% 0.454 0.305 0.215 0.669 0.467
Continued on next page
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Table B.8 – continued from previous page

Centrality bin RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

5 - 10% 0.501 0.356 0.254 0.708 0.502
10 - 20% 0.580 0.450 0.325 0.775 0.558
20 - 30% 0.718 0.633 0.473 0.882 0.659
30 - 40% 0.881 0.840 0.716 0.955 0.818
40 - 50% 0.986 0.981 0.958 0.996 0.973
50 - 100% 1 1 1 1 1

Table B.9: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of centrality using IC1, T0 = 550 MeV, τnl = 0.5 fm/c, averaged over pT .

Centrality bin RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 - 5% 0.714 0.613 0.513 0.856 0.715
5 - 10% 0.773 0.685 0.586 0.887 0.757

10 - 20% 0.858 0.799 0.714 0.933 0.833
20 - 30% 0.961 0.946 0.904 0.985 0.944
30 - 40% 1 0.999 0.998 1 0.999
40 - 50% 1 1 1 1 1
50 - 100% 1 1 1 1 1

Table B.10: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of centrality using IC1, T0 = 650 MeV, τnl = 0.1 fm/c, averaged over pT .

Centrality bin RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 - 5% 0.375 0.235 0.168 0.623 0.441
5 - 10% 0.421 0.276 0.201 0.654 0.471

10 - 20% 0.496 0.353 0.259 0.711 0.519
20 - 30% 0.625 0.508 0.379 0.813 0.605
30 - 40% 0.800 0.739 0.588 0.925 0.738
40 - 50% 0.958 0.943 0.890 0.985 0.932
50 - 100% 1 1 1 1 1
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Table B.11: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of centrality using IC1, T0 = 650 MeV, τnl = 0.5 fm/c, averaged over pT .

Centrality bin RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 - 5% 0.605 0.488 0.400 0.803 0.654
5 - 10% 0.665 0.557 0.462 0.835 0.689

10 - 20% 0.759 0.671 0.574 0.884 0.753
20 - 30% 0.893 0.849 0.776 0.952 0.871
30 - 40% 0.987 0.983 0.965 0.995 0.978
40 - 50% 1 1 1 1 1
50 - 100% 1 1 1 1 1

Table B.12: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of centrality using IC2, T0 = 550 MeV, τnl = 0.1 fm/c, averaged over pT .

Centrality bin RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 - 5% 0.213 0.0386 0.012 0.16 0.0517
5 - 10% 0.226 0.0457 0.0152 0.182 0.0627

10 - 20% 0.247 0.0583 0.0206 0.215 0.0785
20 - 30% 0.283 0.0841 0.0314 0.277 0.106
30 - 40% 0.332 0.129 0.0506 0.372 0.147
40 - 50% 0.404 0.214 0.0882 0.518 0.212
50 - 100% 0.609 0.492 0.281 0.806 0.459

Table B.13: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of centrality using IC2, T0 = 550 MeV, τnl = 0.5 fm/c, averaged over pT .

Centrality bin RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 - 5% 0.422 0.242 0.135 0.546 0.292
5 - 10% 0.448 0.269 0.153 0.577 0.317

10 - 20% 0.492 0.317 0.188 0.625 0.359
20 - 30% 0.567 0.403 0.258 0.698 0.436
30 - 40% 0.663 0.526 0.371 0.786 0.546
40 - 50% 0.782 0.691 0.551 0.882 0.700
50 - 100% 0.943 0.922 0.861 0.977 0.915
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Table B.14: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of centrality using IC2, T0 = 650 MeV, τnl = 0.1 fm/c, averaged over pT .

Centrality bin RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 - 5% 0.145 0.0185 0.00596 0.108 0.0371
5 - 10% 0.157 0.0225 0.00792 0.125 0.0464

10 - 20% 0.176 0.0294 0.0110 0.149 0.0580
20 - 30% 0.209 0.0434 0.0172 0.190 0.0772
30 - 40% 0.253 0.0686 0.0283 0.253 0.107
40 - 50% 0.315 0.118 0.0507 0.357 0.155
50 - 100% 0.494 0.336 0.186 0.676 0.371

Table B.15: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of centrality using IC2, T0 = 650 MeV, τnl = 0.5 fm/c, averaged over pT .

Centrality bin RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 - 5% 0.295 0.131 0.0683 0.406 0.203
5 - 10% 0.316 0.148 0.079 0.433 0.221

10 - 20% 0.352 0.180 0.0985 0.479 0.252
20 - 30% 0.416 0.242 0.138 0.556 0.307
30 - 40% 0.504 0.338 0.206 0.652 0.389
40 - 50% 0.625 0.479 0.328 0.759 0.511
50 - 100% 0.84 0.774 0.667 0.922 0.794

Table B.16: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of pT using IC1, T0 = 550 MeV, τnl = 0.1 fm/c, averaged over pT .

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 0.547 0.423 0.319 0.774 0.584
2 0.561 0.437 0.330 0.779 0.588
4 0.585 0.464 0.349 0.793 0.596
6 0.617 0.501 0.377 0.812 0.610
8 0.655 0.546 0.411 0.834 0.627
10 0.695 0.597 0.451 0.860 0.649
12 0.735 0.651 0.493 0.886 0.671
14 0.775 0.705 0.541 0.909 0.699
16 0.813 0.755 0.590 0.929 0.726
18 0.847 0.799 0.639 0.943 0.755
20 0.878 0.836 0.691 0.952 0.787

Continued on next page
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Table B.16 – continued from previous page

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

22 0.902 0.865 0.740 0.959 0.820
24 0.923 0.894 0.787 0.968 0.852
26 0.940 0.918 0.832 0.977 0.884
28 0.955 0.940 0.872 0.984 0.912

Table B.17: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of pT using IC1, T0 = 550 MeV, τnl = 0.5 fm/c, averaged over pT .

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 0.778 0.699 0.611 0.899 0.786
2 0.798 0.724 0.637 0.907 0.797
4 0.830 0.766 0.677 0.922 0.816
6 0.867 0.813 0.730 0.939 0.843
8 0.902 0.862 0.788 0.955 0.873
10 0.934 0.906 0.843 0.970 0.903
12 0.959 0.942 0.895 0.983 0.933
14 0.978 0.970 0.937 0.992 0.958
16 0.990 0.987 0.968 0.997 0.977
18 0.997 0.995 0.987 0.999 0.991
20 0.999 0.999 0.998 1 0.998
22 1 1 1 1 1
24 1 1 1 1 1
26 1 1 1 1 1
28 1 1 1 1 1

Table B.18: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of pT using IC1, T0 = 650 MeV, τnl = 0.1 fm/c, averaged over pT .

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 0.469 0.346 0.263 0.738 0.561
2 0.483 0.357 0.272 0.740 0.563
4 0.508 0.381 0.288 0.750 0.567
6 0.539 0.412 0.311 0.764 0.576
8 0.576 0.450 0.339 0.782 0.588
10 0.614 0.494 0.372 0.805 0.606
12 0.653 0.542 0.407 0.830 0.623
14 0.691 0.592 0.446 0.857 0.645
16 0.729 0.642 0.487 0.881 0.668

Continued on next page
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Table B.18 – continued from previous page

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

18 0.765 0.691 0.528 0.903 0.691
20 0.801 0.739 0.572 0.923 0.715
22 0.832 0.780 0.616 0.937 0.741
24 0.861 0.816 0.660 0.948 0.766
26 0.886 0.845 0.705 0.954 0.795
28 0.907 0.871 0.747 0.961 0.824

Table B.19: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of pT using IC1, T0 = 650 MeV, τnl = 0.5 fm/c, averaged over pT .

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 0.679 0.583 0.501 0.858 0.737
2 0.705 0.612 0.527 0.869 0.747
4 0.742 0.657 0.565 0.885 0.762
6 0.785 0.710 0.616 0.904 0.785
8 0.829 0.765 0.673 0.923 0.811
10 0.871 0.818 0.731 0.940 0.839
12 0.906 0.867 0.789 0.956 0.871
14 0.935 0.908 0.845 0.971 0.904
16 0.959 0.942 0.894 0.982 0.932
18 0.976 0.966 0.932 0.990 0.955
20 0.988 0.983 0.961 0.996 0.973
22 0.995 0.993 0.981 0.998 0.986
24 0.998 0.998 0.993 1 0.995
26 1 1 0.999 1 0.999
28 1 1 1 1 1

Table B.20: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of pT using IC2, T0 = 550 MeV, τnl = 0.1 fm/c, averaged over pT .

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 0.211 0.0464 0.0192 0.220 0.0908
2 0.223 0.0506 0.0206 0.227 0.0925
4 0.246 0.0606 0.0237 0.247 0.0965
6 0.276 0.0772 0.0290 0.280 0.105
8 0.311 0.103 0.0365 0.329 0.117
10 0.350 0.140 0.0475 0.400 0.136
12 0.393 0.192 0.0617 0.489 0.157

Continued on next page
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Table B.20 – continued from previous page

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

14 0.443 0.264 0.0823 0.595 0.186
16 0.500 0.354 0.109 0.707 0.217
18 0.566 0.454 0.144 0.803 0.254
20 0.633 0.527 0.189 0.833 0.298
22 0.695 0.581 0.246 0.836 0.354
24 0.742 0.636 0.316 0.857 0.425
26 0.779 0.690 0.403 0.886 0.517
28 0.815 0.743 0.502 0.912 0.616

Table B.21: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of pT using IC2, T0 = 550 MeV, τnl = 0.5 fm/c, averaged over pT .

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 0.402 0.224 0.119 0.556 0.296
2 0.432 0.253 0.136 0.586 0.315
4 0.483 0.308 0.168 0.638 0.348
6 0.553 0.385 0.222 0.696 0.402
8 0.632 0.480 0.299 0.760 0.473
10 0.710 0.585 0.398 0.825 0.560
12 0.788 0.697 0.521 0.884 0.661
14 0.861 0.804 0.653 0.934 0.758
16 0.923 0.894 0.770 0.968 0.835
18 0.963 0.951 0.874 0.988 0.907
20 0.990 0.987 0.960 0.997 0.970
22 1 1 1 1 1
24 1 1 1 1 1
26 1 1 1 1 1
28 1 1 1 1 1

Table B.22: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of pT using IC2, T0 = 650 MeV, τnl = 0.1 fm/c, averaged over pT .

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 0.141 0.0257 0.0116 0.183 0.0822
2 0.153 0.0280 0.0124 0.183 0.0813
4 0.175 0.0332 0.0143 0.189 0.0813
6 0.204 0.0415 0.0172 0.203 0.0842
8 0.238 0.0539 0.0214 0.226 0.0898

Continued on next page
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Table B.22 – continued from previous page

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

10 0.274 0.0722 0.0273 0.264 0.0999
12 0.310 0.0979 0.0347 0.316 0.112
14 0.347 0.133 0.0452 0.385 0.130
16 0.386 0.180 0.0583 0.466 0.151
18 0.429 0.240 0.0751 0.559 0.175
20 0.479 0.318 0.097 0.663 0.203
22 0.533 0.403 0.125 0.757 0.234
24 0.594 0.490 0.159 0.825 0.268
26 0.651 0.543 0.202 0.834 0.310
28 0.704 0.590 0.253 0.838 0.359

Table B.23: Suppression factors RAA(Υ(nS)) and double ratios [Υ(nS)/Υ(1S)]PbPb

[Υ(nS)/Υ(1S)]pp
as func-

tions of pT using IC2, T0 = 650 MeV, τnl = 0.5 fm/c, averaged over pT .

pT (GeV) RAA(Υ(1S)) RAA(Υ(2S)) RAA(Υ(3S))
[ Υ(2S)
Υ(1S) ]PbPb

[ Υ(2S)
Υ(1S) ]pp

[ Υ(3S)
Υ(1S) ]PbPb

[ Υ(3S)
Υ(1S) ]pp

0 0.274 0.117 0.062 0.425 0.226
2 0.301 0.137 0.0717 0.455 0.238
4 0.346 0.175 0.0893 0.506 0.258
6 0.405 0.231 0.119 0.571 0.293
8 0.477 0.305 0.161 0.640 0.338
10 0.556 0.390 0.218 0.702 0.392
12 0.637 0.486 0.295 0.763 0.462
14 0.712 0.588 0.395 0.827 0.554
16 0.782 0.687 0.509 0.879 0.651
18 0.847 0.782 0.627 0.923 0.741
20 0.905 0.867 0.733 0.958 0.810
22 0.948 0.929 0.828 0.980 0.873
24 0.975 0.968 0.909 0.992 0.933
26 0.993 0.992 0.973 0.998 0.980
28 1 1 1 1 1
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