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Kurzfassung 

 

      Motivation für diese Arbeit was die Entwicklung einer neuen Präparationsmethode, um eine 

Einzelstrang-DNA (engl.: single stranded DNA, ssDNA ) innerhalb eines biokompatiblen Templats zu 

immobilisieren und zudem ssDNA-Muster beliebiger Form und Größe herzustellen. Als Ansatz wurde 

eine strahlungsinduzierte Austauschreaktion (engl.: irradiation promoted exchange reaction, IPER) im 

Rahmen des konzepts der Chemischen Lithographie verwendet. IPER ermöglicht es mittels 

Elektronenbestrahlung, das Ausmaß der Austauschreaktion zwischen einer primären, das Substrat 

bedeckenden selbstorganisierten Monoschicht (engl.: self-assembled monolayer, SAM ) und einem 

molekularen Substituent je nach Dosis zu steuern. Physikalisch bedeutet IPER die Erzeugung von 

chemischen und strukturellen Defekten in dem primären SAM, die die Austauschreaktion fördern. Im 

dieser Arbeit wurde der IPER Ansatz auf eine kontrollierte und ortsspezifische Immobilisierung von 

ssDNA auf Au(111)-Substraten erweitert. Um eine unspezifische Adsorption außerhalb der ssDNA 

bedeckten Bereiche zu verhindern, wurde als Ausgangsmatrix eine biokompatible Oligoethylenglykol-

substituierte Alkanthiol (OEG-AT) Monolage verwendet. 

        Im ersten Abschnitt  wurden thiol-terminierte ssDNA als Substituenten eingesetzt. IPER mit diesen 

Substituenten und einem OEG-AT-SAM als Vorlage führten zu homogen gemischten ssDNA/OEG-AT 

Filmen der gewünschten Zusammensetzung, die anhand der eingestellten Dosis angepasst werden 

konnte. Basierend auf diesen Ergebnissen wurde IPER mit Elektronenstrahllithographie (EBL) verwendet, 

was die Herstellung komplexer ssDNA-Muster mit der gewünschten Form und Nanometergröße (bis zu 

25-50 nm) innerhalb der biokompatiblen Matrix erlaubte. Diese Muster wurden dann als Vorlagen für 

die oberflächeninitiierte, enzymatische Polymerisation (SIEP) eingesetzt, was die Präparation von 

komplexen, räumlichen ssDNA Bürsten erlaubte. 

        Ausgehend von den genannten Ergebnissen wurde die Möglichkeit überprüft, IPER mit kommerziell 

verfügbaren ssDNA-Disulfid Substituenten durchzuführen. Zunächst wurde eine Studie unter 

Verwendung eines Referenzfilms aus einem nicht-substituierten AT auf Gold und einem symmetrischen 

COOH-substituierten Dialkyldisulfid als Substituent durchgeführt. Dabei wurde festgestellt, dass IPER mit 

Disulfid-Substituenten in der gleichen Weise wie mit Thiolen durchgeführt werden kann. Es konnte 

gezeigt werden, dass die Kinetik der Austauschreaktion in beiden Fällen ähnlich ist, wenn auch das 

Ausmaß der Reaktion bei den Disulfiden geringer war. Dennoch konnten gemischten SAMs mit einer 

Konzentration der substituenten Spezies von bis zu 60% hergestellt werden. 

        Basierend auf diesen Ergebnissen wurde die Möglichkeit verschiedener symmetrischer wie 

asymmetrischer ssDNA-Disulfide als Substituenten für IPER untersucht, wobei beide Systeme sich als 

geeignet für die IPER erwiesen. Die asymmetrischen Disulfide zeigten ähnlich hohe Wirkungsgrade, 

während die Effizienz der symmetrischen Disulfide insbesondere bei niedrigen Bestrahlungsdosen (< 0,6 

mC/cm² ) deutlich niedriger war.  

        Die Verwendung von IPER erfordert Hochvakuum und im Fall komplexer  Strukturierung aufwändige 

Versuchsaufbauten wie Rasterelektronenmikroskop. Daher wurde in einem weiteren Abschnitt UV-Licht 

als Initiator für die Austauschreaktion zwischen der primären OEG-AT Matrix und den ssDNA 

Substituenten eingesetzt. UV-Licht wurde zur homogenen und lithographischen Strukturierung, zur 

Herstellung gemischter ssDNA/OEG-AT Filme und ssDNA Muster eingebetten in eine biokompatible 

OEG-AT Matrix verwendet. Auch hierbei konnte die Zusammensetzung der gemischten Filme durch die 

Wahl der Dosis eingestellt werden. Es wurde auch gezeigt, dass das UV-Licht unterschiedlicher 

Wellenlängen (254 oder 365 nm) neue Möglichkeiten für die Lithographie eröffnet. 

        Zuletzt wurde eines der Systeme, ssDNA Polymerbürsten gekoppelt an ein monomolekulares ssDNA 

Templat, im Rahmen dieser Arbeit detailliert untersucht. Eine Kombination von mehreren 

komplementären spektroskopische Techniken wurde verwendet, um die chemische Integrität, Reinheit 

und molekulare Ausrichtung dieser mittels SIEP hergestellten Objekte zu untersuchen. Die Spektren der 



 

  

Polymerbürsten waren nahezu identisch mit denen der monomolekularen ssDNA Vorläufer und wiesen 

keine Spuren von Verunreinigungen auf. Neben der wohldefinierten chemischen Integrität und dem 

kontaminationsfreien Charakter, zeigten die Bürsten eine vergleichsweise hohe Orientierungsordnung, 

mit vorzugsweise aufrechter Ausrichtung der einzelnen Stränge.  

         Die entwickelten Herstellungsmethoden beiten die Möglichkeit, ssDNA/OEG–AT Filme und Muster 

für die Bindung und den Nachweis der komplementär ssDNA Stränge sowie für die Erkennung von DNA-

bindenden Proteinen zu präparieren, was unter anderem eine Grundlage für Sensorfabrikation bildet. 

Ferner dienen sie als vielseitige Plattform für Nanofabrikation, wie anhand der komplexen ssDNA Bürste 

in dieser Arbeit demonstriert wurde. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

Abstract  
 

        The motivation behind this work was the development of a new approach to immobilize single 

stranded DNA (ssDNA) within a biorepulsive template in a broad range of compositions and to fabricate 

ssDNA patterns of arbitrary shape and size imbedded into biorepulsive matrix. This approach relies on so 

called irradiation promoted exchange reaction (IPER) within the general concept of Chemical 

Lithography. The key idea of IPER is tuning the extent of the exchange reaction between the primary 

self-assembled monolayer (SAM) covering the substrate and a molecular substituent in solution by 

electron irradiation, which allows fabrication of binary mixed SAMs of variable compositions depending 

on the selected dose. The physics behind this method is the creation of chemical and structural defects 

in the primary SAM, which promote the exchange reaction. Within this thesis work, the IPER approach 

was extended to a specific task of controlled and site specific immobilization of ssDNA on Au (111) 

substrate. To suppress the nonspecific adsorption events beyond the seeded ssDNA species, a 

biorepulsive oligo(ethylene glycol) substituted alkanethiolate (OEG-AT) monolayer was used as the 

primary matrix for the exchange reaction.  

      In the first sub-project within this framework, thiolated ssDNA were used as substituents. IPER with 

these substituents and an OEG-AT monolayer as template resulted in homogeneously mixed 

ssDNA/OEG-AT films of desired composition that could be precisely adjusted by selected dose. Based on 

these results, IPER was combined with electron beam lithography (EBL), which allowed fabricating 

complex ssDNA patterns of desired shape and nanosize (down to 25-50 nm) in the biorepulsive matrix. 

These patterns were used as templates for surface-initiated enzymatic polymerization (SIEP), which 

resulted sculpturing of complex 3D ssDNA brush patterns.  

     Inspired by the above results, a possibility to perform IPER with a disulfide ssDNA substituent was 

tested, in view of the commercial availability of such molecules. Before these experiments, a reference 

study utilizing a film of a non-substituted AT on gold as the primary template and symmetric –COOH 

substituted dialkyldisulfide as the substituent was performed as an independent sub-project. It was 

found that IPER could be successfully conducted with disulfide substituents in the same manner as in 

the case of thiols. The kinetics of the exchange reaction was found to be similar in both cases but the 

extent of this reaction was smaller for disulfides. Nevertheless, mixed SAMs with a concentration of the 

substituent-stemming species up to 60% could be prepared. 

      Based on the above results, the ability of different disulfide ssDNA precursors to serve as 

substituents in IPER was demonstrated for both asymmetric and symmetric ssDNA disulfides. Both these 

precursors were found to be suitable for the promoted exchange reaction. The asymmetric disulfide 

exhibited similar, quite high efficiency as thiolated ssDNA, while the efficiency of the symmetric disulfide 

was noticeably lower, especially at low irradiation doses (< 0.6 mC/cm
2
).  

     The application of the IPER approach requires high vacuum and, in the case of advanced patterning, 

relies on complex experimental setups such as scanning electron microscope with pattern generator 

system. Consequently, in a further sub-project, not the electrons but UV light was used as the primary 

tool for the promotion of the exchange reaction between the OEG-AT matrix and ssDNA substituents. 

The UV light was employed  both in homogeneous and lithographic fashion resulting in the fabrication of 

mixed ssDNA/OEG-AT films and ssDNA patterns in the biorepulsive OEG-AT background, respectively. 

Significantly, the composition of the mixed films could be precisely adjusted in almost entire 

composition range by the UV dose. It was also demonstrated that the procedure can be performed with 

UV light of different wavelengths (254 or 365 nm), which opens new possibilities for lithography.  

       Finally, one of the novel systems addressed within this thesis, viz. ssDNA brushes grown on the 

monomolecular ssDNA templates, was studied in more detail. A combination of several complementary 



 

  

spectroscopic techniques was employed to probe the chemical integrity, purity and possible internal 

alignment of these brushes prepared by SIEP. The spectra of these brushes were found almost identical 

to those of the monomolecular ssDNA precursor, with no unambiguous traces of contamination. Apart 

from the well-defined chemical integrity and contamination-free character, the brushes were found to 

have comparably high degree of orientational order, with preferable upright orientation of individual 

strands.  

     The developed methodology opens the way to fabricate ssDNA/OEG-AT films and patterns, which can 

be used for binding and detection of their complementary ssDNA targets and recognition of DNA 

binding proteins, providing a basis for sensor fabrication. Also they can serve as a versatile platform for 

nanofabrication, as demonstrated by the preparation of the complex ssDNA brush patterns. 
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1 Introduction 

 

 

         There is a significant demand to miniaturize devices, in order to provide intelligent and 

multifunctional services in most efficient and less expensive way. In particular, the capability to 

generate small structures has become crucial for microelectronics industry and many other 

fields of modern technology. The major technique to meet these demands is lithogtaphy,  

including photolithography,1  interference lithography,2  UV and extreme UV lithography,3-4  X-

ray lithography,5 electronbeam lithography,6  nanoimprint lithography,7  microcontact 

printing,8  and scanning probe methods (for example, dip-pen nanolithography, “constructive” 

nanolithography, and near field photolithography).9-11  

         Among these methods, photolithography is probably the most popular approach for 

micro-fabrication,12-13 especially in semiconductor industry, since its invention in 1959. Most of 

the integrated circuits are currently made by this technology,14 and most recently, also by 

popular immersion lithography15-16 (a sort of a resolution enhanced photolithography 

approach). Today, it is possible to integrate more than 2 billion transistors of a structure size of 

32 nm on a chip. Consequently, continuous shrinking of feature sizes and other technological 

restrictions pose new challenges on photolithography. In this contest, X-ray lithography5 and 

electron-beam lithography (EBL)6 are currently discussed to realize further miniaturization. 

These lithographic tools are capable of much higher lateral resolution (down to a few 

nanometers).17 In particular, EBL18 developed in the 1960s using existing scanning electron 

microscope (SEM) technology, can be performed both in proximity printing geometry using a 

stencil mask and by direct writing with a focused electron beam as it scans line by line across a 

resist-coated substrate, with a lateral resolution limited mostly by the diameter of the beam. 

Of course, EBL is not suited well for the chip mass production as it requires expensive 

instruments, ultra high vacuum for operation, and the inherently serial patterning, but it is the 

only technique to create sub-microscale patterns with nanometre precision and it is also 

popular in other areas such as research, micro-optics, cell receptors, biotechnology, micro 

reactors, biochips, micro sensor fabrication, etc. 

          Within the EBL approach, the resist material is one of the limiting factors for the lateral 

resolution, since it is not only determined by the diameter of the electron beam, but also by 

the thickness of the resist film, due to so-called proximity effect. As a result of this effect, 

mediated by scattered and backscattered electrons, the size of the effectively exposed area is 

always larger than the diameter of the electron beam. The higher the energy of the electron 

beam, the larger distortion by backscattered electrons. On the other hand, lowering the 

energy of electron beam will decrease its focusability and, result in a lower penetration depth 

into the resist material which will be no longer completely exposed. In particular, the minimum 

film thickness for the standard PMMA resist deposited by spin-coating is ~50 nm, which 

requires an electron energy of at least 5 keV and, because of the proximity effect, results in a 

resolution of about 100 nm.19 In order to produce smaller structures by EBL, a completely 

different resist material must be used. The introduction of such materials, complementary to 
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the currently used photopolymers can improve the current technology as well as enable the 

development of principally new lithographic approaches.  

         In this context, promising resist materials are self-assemble monolayers (SAMs) which are 

a perfect platform for the micro- and nanostructure fabrication due to the possibility to adjust 

their performance as resists, nanometer 

thickness, and the molecular size of their 

elements. Molecules capable to build SAMs 

consist usually of three major parts, viz. a head 

group that anchors the molecule to the 

substrate, a tail group that defines the surface 

properties of the entire system, and a spacer 

connecting the head and tail groups and 

facilitating the self-assembly process (figure 

1.1).20-21  Within this general architecture, 

flexible combination of different functional 

moieties is possible depending on a specific 

application, including a broad variety of different tail groups. A certain tail group means 

specific chemical and physical properties of the surface or interface, which are redefined, as 

compared to the original substrate, upon the SAM formation. An additional flexibility appears 

if the molecules bearing different tail groups are mixed in a SAM. This allows tuning a specific 

property between the ultimate values associated with both groups; such a tuning can be easily 

performed by varying the portions of both constituents in 

the mixed monolayer.  

                 In addition to the standard approaches to 

prepare mixed SAMs, such as coadsorption,22-29  adsorption 

of asymmetric  two-chain molecules (e.g., disulfides),30-33 or 

subsequent adsorption of both components,34-36 Zharnikov 

and coworkers developed recently a new technique named 

irradiation-promoted exchange reaction (IPER).37-38 The key 

idea of this method is tuning the extent of the exchange 

reaction between the primary SAM covering the substrate 

and a potential molecular substituent by electron 

irradiation, which allows fabrication of binary mixed SAMs 

of variable composition depending on the selected dose. 

The physics behind this method is the creation of 

irradiation-induced, chemical and structural defects in the 

primary SAM, which promote the subsequent  exchange 

reaction with the substituent molecules.38  For example, as 

shown in the figure 1.2 a binary mixed SAM of 

dodecanethiol (DDT) and mercaptoundecanoic acid 

(MUDA) was fabricated by the homogeneous irradiation of 

the primary DDT template. Since irradiation can be 

performed not only homogeneously but by a focused 

electron beam as well, IPER can be directly implemented in 

 

Figure 1.1  Self-assembled monolayer on a gold 
substrate (yellow) with a thiolate head group 
(red), a spacer group (gray) and an optional end 
group. 

 

 

Figure 1.2  Schematic sketch of the 
irradiation-promoted exchange 
reaction[38]. 
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the lithographic framework and used for the fabrication of different chemical patterns down to 

the nanometer scale.  

                As impressive example for the possibilities of the IPER technique, preparation of 

protein patterns down to micrometer scale has been demonstrated.39 In these experiments, a 

protein repelling oligo(ethylene glycol) substituted alkanethiolate 

(OEG-AT) SAM on gold substrate was used as the primary template 

and the biotin-terminated OEG-AT molecules served as the 

substituents.39 These components could be mixed by IPER in a 

broad range of compositions, resulting in precise control over the 

amount of the biotin terminated molecules imbedded into the 

protein-repelling OEG-AT matrix.40 In combination with EBL, this 

allowed the preparation of specific protein affinity patterns, as 

mentioned above and gradient protein pattern as shown in figure 

1.3. This approach could be modified  further to utilize not only 

electrons but also UV light as the primary modification and writing 

tool by using a combination of UV-promoted exchange reaction (UVPER) and UV lithography 

with the OEG-based matrix for protein patterning41. These techniques were proven to be 

suitable for the fabrication of arbitrary large arrays of proteins with nanometer scale precision.  

In other studies, EBL was used as a writing tool for the generation of patterns over a length 

scale ranging from centimeters to nanometers,42-45 with no limitations to the pattern shape.43-

44 

             Another important class of biomolecules, crucial for the fabrication of biosensors and 

biological assays are DNA, relying 

on site- sequence-specific hybrid-

ization.46-48 Accordingly, the 

immobilized of various single 

stranded DNA (ssDNA) probes on 

solid support can be applied to the 

production of multichannel 

biosensors due to the diversity of 

complementary ssDNA conjug-

ates, thus making it suitable in a 

DNA chip for the detection of 

target genes49 and in a protein 

chip for the detection of target 

antigens. The ssDNA chip can be 

converted into a protein chip via 

site specific hybridization of 

antibody-ssDNA conjugate and the 

protein surface can be converted 

back into a DNA surface by dehybridizing the complementary DNA (as shown in figure 1.4).50-51 

In this context, controlled immobilization of ssDNA on solid support is an important issue of 

practical relevance.  

 

Figure 1.3 AFM images 
(3D) of complex, gradient-
like protein patterns 
fabricated by EBL in EG6 
matrix.[39] 

 

 

Figure 1.4 Schematic of (A) DNA-directed immobilization of DNA-
protein conjugates using complementary hybridization of DNA, 
and (B) DNA-directed antibody immobilization by the protein G-
DNA conjugate.[50,51] 
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           Subsequently, motivated by the recent works on protein patterning by IPER-EBL (see 

above),37,39-40 a dedicated approach was developed within the given thesis work to prepare 

mixed ssDNA/OEG-AT films in a broad range of compositions and ssDNA/OEG-AT patterns of 

arbitrary shape. As a primary test system, thiolated ssDNA were used. The mixing of OEG-AT 

and thiolated ssDNA occurred through the exchange reaction between the primary OEG-AT 

molecules assembled in the SAM fashion on a gold substrate and ssDNA species in solution. 

The extent and rate of this reaction could be precisely tuned by preliminary electron 

irradiation of the primary OEG-AT monolayer with a suitable dose, resulting in a 

homogeneously mixed ssDNA/OEG-ATs monolayer of desired composition. Noticeably, the 

cross section of the ssDNA strand (120-190 Å²) is about 10 times larger than that of the OEG-

AT species (~21.4 Å²),52 so that the exchange of the e-beam modified OEG-AT species for 

thiolated ssDNA is not a trivial process, involving presumably several molecules in the OEG-AT 

matrix in the single event.53 In addition to the development of new nanolithographic method, 

the versatility of the approach was demonstrated by its combination with TdT catalyzed 

surface-initiated enzymatic polymerization (SIEP) that allowed amplification of the 

ssDNA/OEG-AT patterns, including gradient ones, in the z-direction. Importantly, the ability to 

introduce gradients in the surface concentration of the ssDNA by IPER allows the formation of 

nanostructures with a structural complexity that is not possible by other nanofabrication 

methodologies. 
 

         The above procedures rely on the specific affinity of thiolated ssDNA to gold, provided by 

the thiol anchor group. However, thiolated ssDNA are not the only precursors for the 

formation of ssDNA monolayers on coinage metal substrates. Alternatively, and even more 

frequently, asymmetric and symmetric disulfides, including commercial ones are used for this 

purpose,54-57 relying on the substrate mediated cleavage of the disulfide bond and formation of 

the thiolate bonds with the substrate for both chain parts.  As compared to thiols, disulfides 

are less prone to oxidation and can therefore be better preserved or stored for a prolonged 

time. The resulting SAMs exhibit usually similar properties as those formed from thiols, which 

makes both these precursors equally good. In this context it was important to test the 

possibility to perform IPER with disulfide ssDNA precursors, which should broaden significantly 

the application range of IPER.  
 

          As a reference system and as an independent study, the possibility to perform IPER with 

a disulfide substituent was tested by using films of non-substituted alkanethiolates (AT) on 

gold as templates and symmetric dialkyldisulfides substituted with –COOH and 

bromoisobutyrate (BIB) groups as the substituents. The results were compared to the well-

studied reference system of the same primary matrix and –COOH substituted ATs as 

substituent.45  The effect of electron irradiation and exchange process were monitored in 

detail, which gave information about both kinetics of the substitution reaction and 

composition of the resulting mixed films. The usefulness of the approach was demonstrated by 

the fabrication of complex chemical templates for the growth of polymer micro- and 

nanobrushes. These templates were prepared by IPER-EBL using as substituent a disulfide 

molecule bearing the BIB group serving an initiator for surface initiated polymerization.  
 

         Based on the above results, ssDNA/OEG-AT monolayers from ssDNA-based disulfide 

precursors were prepared and tested. These precursors served as substituents for the OEG-AT 

matrix exposed to electrons within the framework of the IPER approach. As test ssDNA 
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moieties, a well defined adenine-based thiolated homo-oligonucleotide (25-mer) (reference), 

asymmetric disulfide, and symmetric disulfide were chosen. In all cases, the ssDNA strands 

were connected to the anchor group by a short alkyl chain. In the case of the asymmetric 

disulfide, the second chain part was comprised of mercaptohexanol; this moiety is sometimes 

described as a protective group.58 Along with the application of the above precursors in the 

framework of the IPER approach, a detailed study was performed for the comparative 

characterization of the ssDNA monolayers fabricated on the basis of the same ssDNA 

molecules within the standard immersion procedure.20 
 
 

         The application of the IPER approach requires high vacuum and, in the case of advanced 

patterning, relies on complex experimental setups such as scanning electron microscopes 

(SEM) with pattern generator systems.39,53,59-60 In contrast, the use of this approach in 

combination with ultraviolet (UV) lithography does not need such complex equipment and can 

be performed under ambient conditions.41,61  Similar to electrons, UV light is capable to 

introduce defects into the aliphatic SAMs and OEG-AT monolayers in particular.41,61-64 The 

primary processes are photooxidation of the thiolate headgroups, resulting in significant 

weakening of the headgroup-substrate bond,65-67  and, in the case of the OEG-AT SAMs, 

noticeable damage of the OEG segments.41,61-62  Both these processes are well suitable to 

promote exchange reaction between the damaged SAM constituents in the film and potential 

substituents in solution,41,61  providing a basis for UVPER and related lithography with the OEG-

AT SAMs as primary templates. Significantly, nanometer scale and large area patterning are in 

principle possible with UV light if laser-based lithography setups, possibly in combination with 

diffraction equipment, are used.62-64 In view of the above arguments, fabrication of 

ssDNA/OEG-AT monolayers and patterns by UV light promoted exchange reaction (UVPER) 

approach was tried. The UV irradiation was performed at two different wavelengths, viz. 254 

and 365 nm. UV light with a wavelength of ~254 nm is most frequently used for SAM 

patterning, requiring, however, quite expensive UV laser sources and UV compatible optics in 

the case of high resolution patterning.64,68-69 UV light with a wavelengths of ~365 nm or even 

higher (up to 390 nm) is also suitable for SAM patterning41,61 and can be potentially combined 

with well-developed standard optics as well as with commercial patterning strategies such as 

maskless lithography.70-71 
 

          In contrast to surface-initiated polymerization (SIP) of synthetic polymers, there have 

been limited efforts dedicated to the in situ synthesis of biopolymer brushes on solid supports. 

Although DNA and peptides can be chemically synthesized on a solid support, these methods 

are limited to less than 150 nucleotides and 40 amino acids in length. Therefore, they do not 

allow the surface-initiated synthesis of high molecular weight polynucleotides and 

polypeptides. In this context, the methods to grow these types of polymers directly at an 

interface are of great interest. Motivated by this rationale, Chilkoti and coworkers developed 

recently surface-initiated enzymatic polymerization (SIEP) of deoxyribonucleic acids (DNA) 

polynucleotides.53,72-74 Whereas, the fabrication methodology and application of TdT for SIEP of 

ssDNA are fairly well developed, there is significantly less information about the structure of 

these DNA brushes. To this end a detailed spectroscopic characterization of ssDNA brushes, 

polymerized by SIEP was performed using a combination of synchrotron-based X-ray 

photoelectron spectroscopy (XPS) and angular-resolved near-edge X-ray absorption fine 

structure (NEXAFS) spectroscopy. Whereas XPS gives information on the chemical composition 
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of the samples, relying on the specific core level photoemissions and their chemical shifts, 

NEXAFS spectroscopy provides analogous information by sampling the unoccupied molecular 

orbitals, which in some cases are more specific than the core levels probed by XPS. In addition, 

relying on the symmetry selection rules for the transitions between the primary core level and 

unoccupied molecular orbitals, NEXAFS spectroscopy gives access to molecular orientation and 

orientational order in the system of interest. In view of this specificity, XPS and NEXAFS 

spectroscopy as well as their combination are frequently used for the characterization of the 

ssDNA systems, resulting in specific, molecular level information.53-55,57-58,75-79 

 

         In summary, this thesis describes a new and potentially universal approach to prepare 

both mixed ssDNA/OEG-AT films in broad range of compositions and complex ssDNA/OEG-AT 

patterns of arbitrary shape by a combination of the promoted exchange reaction with electron 

beam and UV light printing tools. The contents of the thesis are presented as follows, 

         Chapter 2 provides basic information regarding SAMs, mixed films, and the relevant 

patterning techniques.  

         Chapter 3 is a general overview of different analytical techniques applied for the 

characterization of the relevant SAMs system, fabricated patterns and polymer brushes.  

          Chapter 4 presents a new approach based on IPER for the preparation of mixed 

ssDNA/OEG-AT films and ssDNA/OEG-AT patterns of arbitrary form on micrometer and 

nanometer length scale. Among other issues, the characterizations of the mixed ssDNA/OEG-

AT films by XPS and NEXAFS spectroscopy are discussed.    

          In chapter 5 the results of IPER with disulfide precursors are presented. Here the 

preparation of mixed SAMs of non-substituted AT and symmetric dialkyldisulfides substituted 

with –COOH and BIB groups is reported and the results are compared to the well-studied 

reference system of the same primary matrix and –COOH substituted AT as substituent. The 

effects of electron irradiation and exchange process are discussed in detail. 

         Chapter 6 describes IPER with disulfide ssDNA precursors and the characterization of 

prepared mixed OEG-AT and disulfide-stemming ssDNA films by XPS and NEXAFS spectroscopy.  

         In chapter 7 the preparation of mixed ssDNA/OEG-AT films and ssDNA/OEG-AT patterns 

by UVPER is reported. The UV irradiation was performed at two different wavelengths, viz. 254 

and 365 nm.  

         In chapter 8 a detailed spectroscopic characterization of ssDNA brushes, prepared by SIEP 

on ssDNA templates is described. 

          Major results and achievements of the given thesis work are summarized in chapter 9. It 

also includes certain considerations and suggestions for the future work. 

          Finally, in chapter 10, the experimental part of this thesis is presented. 
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2 Theoretical background 
 

          In the following section, the existing knowledge in literatures related to this work will be 

reviewed. First, the concept of surface modification with organic layer will be discussed. In the 

following sections, different patterning techniques and an overview of surface initiated 

polymerization process will be given.  

2.1  Surfaces in nanoscience 
 

         Nanometerscale structures have a very distinguishing characteristic, that is, a high 

percentage of their constituent atoms are at the surface, unlike macroscopic materials. 

Molecules and atoms at the surface of a material experience diverse environment from those 

in the bulk and thus have different free energies, electronic states, reactivities, mobilities, and 

structures.80 Many physical properties, viz, thermal and electrical conductivity, hardness, and 

plasticity are determines by the structure and chemical composition within macroscopic 

objects. In contrast, the physical properties of nanostructures depend to a much greater 

extent on their surface and interfacial environment than do bulk materials.20 Bare surfaces of 

metals and metal oxides tend to lower the free energy of the interface between the metal or 

metal oxide and the ambient environment by adsorbing adventitious organic materials. These 

materials also alter interfacial properties and can have a significant influence on the stability of 

nanostructures of metals and metal oxides; the organic material can act as a physical or 

electrostatic barrier against aggregation, decrease the reactivity of the surface atoms.  

           In this context, a reproducible and defined modification of surfaces can be achieved, e.g. 

by applying an organic monolayer. A well-known and extensively studied example for organic 

layer is the self assembled monolayer (SAM). 
 

2.2 SAMs as component of nanoscience and nanotechnology 
 

          Molecular self assembly is the spontaneous arrangement of molecules under defined 

conditions. In nature the self assembly mechanism is widely spread. Protein folding to tertiary 

structures, the DNA double strand formation or the formation of a virus are just a few 

examples.81 Nuzzo and Allara (in 1983) were among the first who reported the spontaneous 

self assembly of alkanethiols on surfaces.82 Many self assembled systems have been 

investigated over the years, but monolayers of 

alkanethiols on gold are probably the most 

studied.83 Most of these studies deal with the 

formation of the alkanethiol monolayer on 

ultrasmooth thin gold surfaces (Figure 2.1).84-86  

The most commonly used organo-thiol contains 

three different parts, a terminal functional 

group or tail group, a spacer and a ligand or 

head group. For SAM preparation the substrate 

is simply immersed into a dilute (approx. 1mM) 

solution of the adsorbate at room 

 

Figure 2.1  Alkanethiol (AT) supported on a 
gold surface 
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temperature.87  The formation of SAMs relies on a strong specific interaction between the 

head group and the substrate. The main driving force of this accumulation is the formation of 

the gold-sulfur bond with a binding energy of about 44 kcal/ mol.88  Within a few seconds to 

minutes after the immersion in the solution an undefined monolayer is formed. If this process 

proceeds, a van der Waals forces between spacers of the molecules in our case single alkane 

thiols cause the aggregation of the molecules and a crystalline monolayer is formed (Figure 

2.2).88  

 

The spacing between the alkanethiol chains is reported to be 4.97Å for Au(111) substrates, 

what is nearly three times the van der Waals diameter of a sulfur atom (1.85 Å).83,89 During the 

process of ordering dust molecules are displaced and defects in the packing density are 

reduced.90  The terminal functional group determines the resulting surface properties of the 

organic monolayers. Fourier transform infrared spectroscopy (FTIR) studies revealed that the 

alkyl chains are tilted about 30° to 35° from the surface normal to maximize their van der 

Waals interactions.91 Electron diffraction, low energy and scanning tunneling microscopy 

studies showed that the thiol bonding on Au(111) is generally based on a (√3 × √3) R30° over 

layer structure where the sulfur atoms are positioned in the 3-fold hollow of the gold lattice 

(Figure 2.3).20,88 It has to be noted that the thiol molecules are bound equally to the Au lattice 

sites but with some variation in the molecular orientation.92-93  

 

 

Figure 2.2  self assembled monolayer (SAM) formation process in the lab. 

 

 

Figure 2.3  a) SAM monolayer anchored to the Au(111) substrate via a sulfur–gold  bond, b) Surface 
structure of undecanethiol SAM on Au(111).(after ref 88)  
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Camillone et al. Observed a c(4 × 2) super lattice structure and proposed a model to explain 

this observation.94 In the model, alkanethiol molecules are arranged in a (√3 × √3) R30° 

structure where all sulfur head groups are bound to identical hollow sites of the Au substrate 

but with alternating twist angles. Not only gold can serve as a substrate for the formation of 

SAMs, but also Ag can be utilized.95 Unfortunately, compared to Au(111) less is known about 

the self assembly of thiols on Ag(111). Although the substrates show similarities in the 

symmetry or lattice spacing, alkane thiol films formed on Ag(111) display differences such as a 

different packing density of the sulfur atoms. In this case the over layer structure was found to 

be (√7 × √7) R10.9°.89,96 Although the range of the reported tilt angle ranges from 0° to 14°,95  it 

may be concluded that on a Ag(111) substrate the thiols are practically standing upright on the 

surface.97 Since surface properties are generally considered to be controlled by the outmost 5Å 

to 10Å of a film,98 SAMs are used as well suited model surfaces to study interfacial phenomena 

due to the ability of fine controlling the surface properties.83 In the following section one of the 

most popular protein-resistant SAM will be discussed in particular. 

2.2.1 Protein-resistant SAMs 
 

           In diagnostic tests and biosensors based on specific recognition of antigen/antibody 

pairs, suppression of nonspecific protein adsorption is crucial for achieving sufficient bioassay 

selectivity and sensitivity. Elimination of protein adsorption requires a system where repulsive 

interactions between proteins and the surface overcome the attractive ones. Due to the 

diversity of the interactions between proteins and surfaces, a preferred strategy for blocking 

the adsorption of proteins is to self-assembly of oligo(ethylene glycol) -terminated alkanethiols 

(OEG-AT) on the gold surface. The monolayer shields the surface, introducing a high activation 

barrier for the proteins to adsorb. A dense film of OEG-AT on a gold surface can be formed by 

immersing a gold-coated wafer for 24h in ethanolic solution of the OEG in a concentration 

regime of several millimole per liter (Figure 2.4).  

 

 
These OEG-AT monolayers form a dense “non-fouling” brush that confers protein resistance to 

the gold surface, and are arguably the best non-fouling systems that are currently available.99-

100 Furthermore, the protein resistance ability of OEG-AT monolayers on gold significantly 

increase with higher length of OEG chain (3 or 7 EG units).41 In the next section, a closer look 

will be given on the tailoring the surface properties by one of the popular means i.e. mixing 

different molecules containing different tail groups in a SAM.  

 

Figure 2.4  Self-assembly process of OEG-AT molecules on gold. 
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2.2.2 Mixed SAMs 
 

           As discussed in the previous section, Self-assembled monolayers (SAMs) provide a 

convenient, flexible, and simple system to tailor the interfacial properties of metals, metal 

oxides, and semiconductors. An additional flexibility appears if molecules containing different 

tail groups are mixed together in a SAM. Mixed SAMs are monolayers containing at least two 

different molecules. There are several different popular approaches to prepare mixed SAMs, 

such as coadsorption from a solution containing different thiols or the use of asymmetric 

sulfides or disulfides.  When using coadsorption for preparation of mixed SAMs the ratio of 

molecules in the monolayer can be influenced by the mole fraction of the respective molecules 

in solution.101 However, this method is not very reliable since certain molecules adsorb more 

readily than others, as they form more stable structures. Also, it is reported that sometimes 

phase segregation is occurring with this method, i.e. molecules of one sort aggregate in one 

area instead of forming a homogeneous mixture with the other molecules.102  This last 

problem can be avoided by using asymmetric disulfides for the assembly of mixed SAMs. These 

molecules presumably split in two parts and form thiolate-gold-bonds when adsorbed, just like 

thiols. Using this method also generates a higher probability of getting mixed SAMs with a 1:1 

ratio, although this is not guaranteed, since adsorption is reversible and consequently, the 

thermodynamically more stable SAMs form.33 Another disadvantage of disulfides is their low 

solubility. Preparing mixed SAMs with sulfides as another approach is very limited due to the 

weak bonding interactions with the gold surface (sulfides remain intact and no thiolate is 

formed). However, monolayers with 1:1 ratios are easily obtained.103 

             Judging from the available ways to prepare mixed SAMs, it is obvious that other 

methods are required to produce mixed SAMs with custom-made compositions and certain 

structures, e.g. gradient-like structures or even patterns. Such surface modifications are 

achieved by the use of lithography or printing tools. Mixed SAMs with custom-made 

composition can then be fabricated by dipping pre-patterned (using printing tools, lithography 

or other techniques) pure monolayer surfaces into a solution of a different molecule. An 

alternative approach to prepare mixed SAMs is irradiation promoted exchange reaction 

(IPER).37 The key idea of the approach is tuning the extent of the exchange reaction between 

the primary SAM covering the substrate and a potential molecular substituent by electron 

irradiation, which allows fabrication of binary mixed SAMs of variable composition depending 

on the selection of doses. The physics behind this method is the creation of irradiation-induced 

chemical and structural defects in the primary SAM, which promote the exchange reaction.38 

In this current work, IPER approach was employed for the fabrication of mixed SAMs. In the 

following section a general discussion about modification of surface structure by employing 

lithographic methods will be given.  

2.3   Patterning strategies 
 

In last few decades, one important challenge in modern science and technology is to generate 

small structures. There are many methods that might be employed to make new types of small 

structures or by downsizing existing structures. Therefore modern lithography techniques are 

a vital candidate to modify structures of surfaces. The structuring of surfaces can be 
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accomplished by diverse methods. Table 2.1 gives an overview over most important ways of 

structuring surfaces. Most of these techniques listed are applicable for patterning self-

assembled monolayers. 

                Table 2.1:  Overview of different lithography methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       SAMs are used as irradiation sensitive films (so-called resists), since they change their 

chemistry upon irradiation. If the irradiated area of the resist is easily removable from the 

substrate through etching or the use of solvents, then, it is a positive resist. Vice versa, if the 

irradiated area is not removable or less removable, then, it is a negative resist. Different types 

of optical lithography with UV light111 and X-ray lithography exist119 but these methods usually 

require a huge technical effort. The advantage is that these are fast methods by which high 

resolutions and good aspect ratios can be achieved. 

          A higher resolution can only be achieved by using dip-pen lithography,120 

nanographting116 or scanning tunneling microscopy (STM) lithography.118 However, these 

methods are much slower and not applicable to structure large areas. Other printing or 

stamping techniques which utilize self-assembly processes are inkjet printing,108 nanoimprint 

lithography106 and microcontact printing.104 For the latter, a conformal contact between the 

stamp and the surface of the substrate is essential to transfer the ‘ink’ to the surface. By 

backfilling the non-patterned areas with a different alkanethiol, binary-component SAMs are 

formed. This printing has the advantage of simplicity and convenience. Once a stamp is 

available, multiple copies of the pattern can be produced and it is, with this method, possible 

to structure larger areas.121 However, the roughness and the dimensions of the elastomeric 

stamps limit the resolution of the resulting patterns.122 Also, the mechanism of the patterning 

has an influence since after the transfer the alkanethiols can spread from the contact region of 

Method Resolution Area 

Microcontact printing (μCP) 104-105 100nm >1 cm² 

Nanoimprint lithography (NIL) 106-107 10nm > 1 cm² 

Inkjet printing (IP) 108 30µm > 1 cm² 

Magnetolithography (ML) 109-110 10nm > 1 cm² 

UV lithography111 50 nm > 1 cm² 

Lithography with electrons, ions 1 -10 nm  > 1 cm² 

Electron beam lithography (EBL) 112-113 

Focused ion beam lithography (FIB) 114 

AFM/STM-based lithography 115 1nm nm² − cm² 

Dip-pen lithography116 

Nanographting117 

STM lithography118 
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the stamp into noncontact areas, like ink spreads on a piece of paper.123 Higher efficiency can 

be achieved by linking so-called bottom up techniques like self-assembly with top down 

techniques like e-beam lithography.  

2.3.1 E-Beam chemical lithography  
 

        E-beam lithography is one of the most powerful techniques for patterning down to 

nanometer scale. There are two different methods available to structure surfaces via e-beam, 

viz, proximity printing and direct writing with a focused e-beam. Proximity printing is a parallel 

technique; the large surface areas are accessible by a broad e-beam which irradiates the 

substrate covered by a mask with a constant irradiation dose. Here the resolution is limited to 

~ 100nm due to the accuracy of the used masks. The later method, that is, direct writing is a 

serial mode technique, where, a better resolution down to a few nm is possible. The drawback 

is that this serial mode is limited in speed.124 The important parameter for both methods is the 

choice of the right electron energy. Figure 2.5 shows the ‘universal’ curve for the penetration 

depth of electrons in some metals which depends on the electron energy.125  

 

 
The lowest penetration depth of ~ 50nm could be observed in the range of 50 eV to 100 eV 

independent of the material of the substrate. Elastic and inelastic scattering processes lead to 

a generation of secondary electrons which are scattered in all directions (proximity effect). 

This leads to a broadening of the primarily irradiated area. Hence the higher the energy of the 

electrons is, the higher the penetration depth is and thereby the lateral scattering. On the 

other hand beams of higher electron energies are better focusable since the electrons interact 

less with each other leading to a smaller spot size.  

           In this thesis, chemical lithographic with E-beam was used to prepare patterns on 

chemical template. This process was first described by Eck et al. for the generation of amino 

groups on aromatic self-assembled monolayers by low energy electron beams.126 They 

 

Figure 2.5  Penetration depth of electrons in dependence of primary electron energy and the irradiated 
material. (after ref 125) 
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described that terminal nitro functional groups in 4’-nitro-1,1’-biphenyl-4-thiol SAMs can be 

converted into amino groups by a proper electron dose. Basically, the interaction of low 

energy electrons (50eV-3KeV) with SAMs leads to various effects. Aliphatic and aromatic SAMs 

can be used for this procedure and both can either act as a positive or negative resist. 

(Secondary) electrons with energies between 10 eV and several keV cleave C-H and C-C bonds 

in the organic monolayer. This predominantly causes cross-linking reactions between the 

aromatic moieties in aromatic SAMs, resulting in selective deposition or etching in the regions 

that were not irradiated, analogous to using a negative resist in conventional lithography.127  In 

contrary, in aliphatic SAMs dose-dependent fragmentation and desorption are the 

predominant phenomenon, which make them useful as positive resist material for EBL128. 

Irradiation of thiolated SAMs results in degradation of the monolayer, forming various 

fragments, unsaturated bonds, and sulfides.129 Aromatic and aliphatic SAMs show different 

behaviour to electron beam exposer. Aromatic SAMs remain mostly intact under electron 

irradiation only chemical modification of tail groups occur,126 whereas for aliphatic SAMs, 

irradiation results mostly in fragmentation and disordering of the surface molecules.43  
 

2.4 Surface initiated polymerization  
 

        The surface functionalization with polymer brushes can be performed according to two 

strategies, the grafting to and grafting from techniques. In the grafting to approach, end-

functionalised polymer chains are chemically or physically attached to the surface. In grafted 

from coatings, polymer brushes are grown from surface-bound polymerization initiators. This 

method, also called surface-initiated polymerization (SIP), has the advantage of a better 

control over the type of grafted polymers, the surface-grafting density and the chain-length. 

The resulting materials display a large array of characteristic features. Being very robust and 

solvent-stable, polymer brushes have various potential applications. Grafted from 

nanoparticles, they have been used for controlling colloidal stability and particle self-assembly, 

while polymer brushes on planar surfaces have the ability to produce stimulus-responsive films 

with application in sensing 130 and nanoactuation131. Furthermore, they can also be used for 

lubrication and antibacterial and protein-resistant132 coatings. 

         In the vast majority of SIP133 studies,  controlled or living radical polymerization134 (CLRP) 

has been used to grow well-defined polymer brushes. As mentioned above, this technique 

requires surface bromide/chloride groups as initiators.  

2.4.1 Controlled / living radical polymerization  
 

          A living polymerization is defined by two requirements. Firstly, it can proceed if a second 

charge of monomer is added after the first charge has been consumed, with no new chains 

being formed. Second, propagation proceeds in the absence (or suppression) of irreversible 

chain transfer or chain termination, i.e. the growing chain end will only undergo reaction with 

monomer. As a result living polymerization allows excellent control over polymer chain length, 

architecture and composition. It allows the synthesis of well-defined block copolymers and to 

deliberately choose the end group of the chain, so that various types of polymer architectures 

can be obtained by living polymerization.135 In the last two decades several CLRP processes 

have been published, with the most famous being nitroxide-mediated polymerisation,136 
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reversible addition-fragmentation chain transfer polymerization (RAFT)134 and atom transfer 

radical polymerization 137-138 (ATRP). In this thesis, the prepared various patterns on the 

DDT/Au template were extended to the Z-direction by SI-ATRP method.  

2.4.2 Atom transfer radical polymerization  
 

           Atom Transfer Radical Polymerization (ATRP) is the most widely employed technique for 

the formation of polymer brushes via SIP. ATRP is compatible with a variety of functionalised 

monomers, and the living/ controlled character of the ATRP process yields polymers with a low 

polydispersity (MW/Mn), that are end functionalised and so can be used as macroinitiators for 

the formation of di- and triblock copolymers. Equally important, surface-initiated ATRP is 

experimentally more accessible than for example, the living anionic and cationic 

polymerizations, which require rigorously, dry conditions. The controlled nature of ATRP is due 

to the reversible activation–deactivation reaction between the growing polymer chain and a 

copper–ligand species. The polymer brush formed by using SI-ATRP combines the advantages 

of SAMs, namely their high surface density and ease of formation, with those of polymers —

thicker and more robust films with versatile architecture and chemistry. SI-ATRP is one 

example of the grafting from strategy in preparing polymer brushes on surfaces. ATRP belongs 

to the class of living polymerization and has proved to be one of the methods for precision 

polymer synthesis. Since the initiation is faster than or at least comparable to the propagation 

rate, the obtained polymers have a narrow molecular weight distribution (MWD). Hence, a 

polymer film generated on a surface by ATRP will have an almost equal overall thickness. ATRP 

can be carried out under mild reaction conditions and allows a wide range of functional groups 

to be present in the monomer, solvent, or initiator, and thus can be applied to a broad 

spectrum of polymeric systems.  

         In general, a wide range of monomers can be polymerised by ATRP including (substituted) 

styrenes, (meth)acrylates, (meth)acrylamides, vinylpyridines and acrylonitrile. It can be carried 

out in various solvents, such as benzene, toluene, anisole, ethyl acetate, ethylene carbonate, 

acetone, dimethyl formamide (DMF), alcohol, water and supercritical carbon dioxide. The 

initiators are typically chlorides or bromides. They can be either small molecules or 

functionalised polymers. In the latter case they are called macroinitiators. 

        The reaction is initiated by the hemolytic cleavage of the carbon-halogen bond in the 

organic halide via one electron oxidation of the metal center (MnXnLm) to form an initiating 

radical species (R●). The R● reacts with the unsaturated species (monomer) to generate a 

radical species [R-CH2-C(R1)(R2)●]. This radical intermediate attacks the next monomer 

successively and generates a polymer chain (Fig. 2.6).139  The key factors in preventing a high 

polydispersity index are the low concentration of the radical intermediates and their fast but 

reversible transformation into a dormant species before undergoing successive addition to 

monomers. 
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         ATR-polymerization on a surface is realized by the immobilization of the initiator 

molecules onto a surface, followed by polymerization of the desired monomer solely from the 

surface with help of a transition-metal catalyst (Fig. 2.7).  

          Matyjaszewski and co-workers described controlled polymerizations without added free 

initiator;140 instead a CuII ligand complex was added to act as a deactivator. The addition of 

these complexes to the polymerization solution increased the initial CuII concentration to the 

same end as the addition of free initiator. Evidence of a controlled reaction was gained from a 

linear increase in ellipsometric thickness with time; identical yet separate experiments to form 

polymer in solution gave a graph showing a linear relationship between Mn and brush 

thickness.  

 

 

Figure 2.6  Mechanism of ATRP by Kamigaito et al. ( after ref 139) 

 

 

Figure 2.7  Scheme of surface initiated atom transfer radical polymerization (SI-ATRP) on gold. 
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        However, calculations of anticipated brush height for extended chains from polymer in 

solution showed that tethered polymer has a height of approximately one sixth of that 

calculated. Slower growth of the surface bound polymer due to geometric constraints resulting 

from high surface density of the chains could account for this observation. Alternatively, 

termination reactions from the dense initiator monolayer could play a role. Termination 

reactions throughout the polymerization would result in the loss of the terminal bromine atom 

from the chain thus preventing the re-initiation of the polymer brush to form block copolymer 

brushes. The introduction of surface-initiated polymerizations in aqueous media resulting in  

controlled polymer brush growth at room temperature, even for water insoluble polymers 

such as PMMA and PGMA. Surface polymerization at lower temperatures has several 

advantages; firstly these polymerizations are compatible with substrates that are sensitive to 

elevated temperatures, for example, thiol SAMs on gold. Water accelerated ATRP was shown 

to be able to grow very thick polymer films in short reaction times. Huang et al. used surface 

initiated ATRP from SAMs on Au to grow 700 nm thick PHEMA films in just 12 hours.141 Room 

temperature ATRP was utilised by Bruening and coworkers to grow cross-linked films of 

ethylene glycol dimethacrylate (EGDMA).142 These brushes have pendant methacrylate groups 

which lead to cross-linked polymer films that have better mechanical and chemical stability 

than linear polymer brush analogues. 

2.4.3 Surface initiated enzymatic polymerization 
 

          Surface-initiated enzymatic polymerization (SIEP) of deoxyribonucleic acids (DNA) 

exploits the ability of a template independent polymerase.72-73 The key component of this 

strategy is the enzyme i.e. terminal deoxynucleotidyl transferase (TdT), which catalyzes the 

stepwise addition of deoxynucleotide (dNTP) to the 3’-OH termini of single-stranded DNA 

(ssDNA) chains, following the reaction stoichiometry shown in Figure 2.8.  TdT requires an 

exposed 3’-OH presented by single stranded (ss) oligonucleotide that can be as short as 3 

nucleotides, and TdT can extend this primer to create long (up to kilobases) polynucleotides 

with high monodispersity but with a strong preference for dATP and dTTP. TdT was discovered 

in 1960 when it was isolated from the calf thymus gland as a unique deoxynucleotide-

polymerizing enzyme.143   

          Bollum et al. have investigated the nature of the TdT reaction and kinetics by looking at 

initiators and substrate properties, buffer 

conditions, the effect of divalent metal ions, 

pH, and inhibitors on DNA polymerization by 

TdT.144 The unique characteristic of TdT is that, 

it is a template independent DNA polymerase 

that catalyzes an irreversible reaction with 

pyrophosphate as the side product. Based on 

the study by Bollum et al., the TdT reaction 

requires a primer initiator with a minimum of 

three phosphate groups and three deoxy 

residues, it incorporates a wide range of dNTPs and it requires metal cofactors. The 

characterization of TdT using homopolymer tailing (<50 bases) revealed that TdT acts more 

efficiently on protruding ends compared to recessive or blunt ends.145 

 

Figure 2.8  TdT reaction stoichiometry, where the 
length of the extended chain is determined by the 
ratio of monomer to initiator concentration. The 
TdT reaction is a linear condensation 

polymerization reaction. 
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3.  Characterization methods 

 

         In this chapter the analytical techniques are described, which were used in the framework 

of this research project to characterize various surface properties of the prepared homo-

geneous monolayers, mixed films and polymer brush patterns on the Au surfaces. 
 

3.1 X-ray photoelectron spectroscopy  
         

          X-ray photoelectron spectroscopy (XPS), also called electron spectroscopy for chemical 

analysis (ESCA) is the most widely used surface characterization method. It exploits the photo 

electric effect to analyze the chemical composition of surfaces. Einstein’s explanation of this 

effect was honored in 1921 with the Nobel Prize in Physics. In XPS, the sample is irradiated 

with low-energy (~1.5 keV) X-rays, in order to provoke the photoelectric effect. Irradiated 

atoms emit photoelectrons after direct transfer of energy from the photon to the core-level 

electrons. The energy spectrum of the emitted photoelectrons is determined by means of a 

high-resolution electron spectrometer. The amount of photoelectrons emitted depends on the 

concentration of the emitting atom in the sample. The analysis is conducted in an ultrahigh 

vacuum (UHV) chamber typically at p <10-8 bar. XPS is very surface-sensitive and only the 

topmost layer of only a few nanometers is measured. What makes the XPS particular interest 

is the fact that the energy of the photoelectrons additionally depends on the chemical 

environment. This leads to a chemical shift depending on the oxidation state, hybridization or 

inductively acting substituents on the atom.  

3.1.1 Basics 

         When a photon imposes on an atom, one out of three events can take place (Figure 

3.1).146 The photon can pass through without interaction, it can be scattered by an atomic   

 

 

Figure 3.1  Energy level diagram of the photoelectron spectroscopy (XPS), a) excitation of 
a photoelectron by an X-ray photon; b) relaxation by fluorescence; c) relaxation by 
emission of an Auger electron; EF Fermi energy; EVAC vacuum energy; hvX, ΔEx energy of 
the photoelectron or of the fluorescence photon. ( After ref 146) 

 

a) b) c) 
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orbital electron leading to partial energy loss or it can interact with an atomic orbital electron 

with total transfer of the photon energy to the electron, leading to electron emission from the 

atom. The second possibility is referred to as Compton scattering and can be important in 

high-energy processes. The third process describes the photoemission process, which is the 

basis of XPS. 

        Each element has a characteristic threshold level at which electrons can be ejected from 

an atom. The frequency of excitation, thus, has to be equal or greater than this value. If the 

energy of the excitation photon is too low, no photoemission will be observed. However, if the 

threshold frequency is exceeded, the number of electrons emitted will be proportional to the 

intensity of the incoming photo flux and to the density and cross section of the respective 

element. The kinetic energy of the emitted electrons is linearly proportional to the frequency 

of the exciting photons. This photoemission process from excitation to emission is extremely 

rapid (10-16 s). 

              When a surface is irradiated by X- rays, the core level electrons of surface atoms 

absorb the X-ray photon energy, hν. If the binding energy overcome (hv > EB), electrons are 

emitted from the surface with a defined kinetic energy Ekin. 

                 Einstein’s described the process by the following equation,147 

EB = hν - Ekin  - Φ                                                             (3.1) 

           Where EB is the binding energy of the electron in the atom, hν is the energy of the X-ray 

source (known value) and Ekin is the kinetic energy of the emitted electron (measured in the 

XPS). Φ is the work function of the instrument.  Their kinetic energy is characteristic of the 

chemical element from which it was emitted.  Therefore both Ekin   and Φ are measured to 

determine the EB.  Consequently, the binding energy which is usually expressed in electron 

volts (1 eV = 1.6 x 10-19 joules) is easily determined and Φ is the minimum energy required to 

eject an electron from the highest occupied level in vacuum.  
 

3.1.2 Construction of apparatus 
 

           A schematic diagram of an X-ray photoelectron spectrometer is shown in figure 3.2.  XPS 

measurements must be performed under vacuum because photoelectrons must be able to 

transfer from the sample to the detector without colliding with any gas phase molecules. To 

avoid contamination of the sample vacuums of 10-9 - 10-10 bar, depending on the reactivity of 

the surface, is necessary. Basically, an XPS spectrometer consists of three elements: the X-ray 

source, the energy analyzer and the detector. As discussed in the last section, that the kinetic 

energy of the photoelectron depends on the wavelength of X-rays, so it is important to use x-

ray radiation at low energy defined as the line width. Most commonly Mg and Al are used as 

anode material, which have emission K alpha line at 1253.6 eV with a FWHM of 0.7 eV and at 

1486.6 eV with a FWHM of 0.85 eV respectively (table 3.1). Using a monochromator allows the 

half-width of < 0.3 eV lower, but it will narrow the energy spread of X-rays striking the sample 

and reduce intensity of the X-rays. Therefore, it is usually omitted in standard spectrometers  
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on the monochromator equipped with efficient collection lens, energy analyzer and multi-

channel detector system. 
 

Table 3.1  General properties of Mg Kα and Al Kα X-ray radiation source146   
 

X-ray source Energy (eV) Width (eV) 

Mg Kα 1253.6 0.70 

Al Kα 1486.6 0.85 
 

          The most important component in XPS is the energy analyzer, the kinetic energy of 

photoelectrons emitted from the sample is determined. Electrostatic hemisphere analyzer is 

most commonly used consisting of two concentric metal hemispheres with the inner and outer 

radius r1 and r2. A potential of ΔV is placed across the hemispheres such that the outer 

hemisphere is negetive and inner hemisphere is positive with respect to the potential applied 

at the center line,  

                                                                                   
     

 
                                                        (3.2) 

         The center line potential is known as pass energy. Most measurements are done with 

constant pass energy. This will maintain a constant absolute resolution, ΔE, for all photoelec-

tron peaks. Typically 5-25eV pass energies are used for high resolution spectra, while 100-200 

eV pass energies are used to acquire survey scans.  

           The detector counts the number of electrons reaching it per unit of time through the 

energy analyzer. The XPS spectrum is produced by varying the voltages on the lenses and the 

analyzer so that the trajectories of electrons ejected from the sample at different energies are 

brought to a focus at the analyzer exit slit.  A channeltron type electron multiplier behind the 

exit slit of the analyzer amplifiers individual electrons by 105-106, and each such pulse is 

transferred to an external conventional pulse counting electronics and into a computer. The 

 

Figure 3.2  Schematic of an XPS instrument 
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computer also controls the lens and analyzer voltages. A plot of electron pulses counted 

against analyzer voltage yields the photoelectron spectrum.  

3.1.3 Surface sensitivity analysis 
 

           Excited electrons in X-ray PE can travel only short distances through solids before losing 

energy due to collisions with atoms. Only photoelectrons ejected from atoms close-by the 

surface escape unscattered and appear in the XPS peaks. Electrons originating from deeper 

regimes have correspondingly reduced chances of escaping unscattered and mostly end up in 

the background at lower KE after the XPS peak, as shown in figure 3.3a.  

 

 

Thus, the peaks originate mostly from atoms near the surface, the background mostly from the 

deeper regime of the sample. This is the reason for the surface sensitivity of XPS. 

          The inelastic mean free path length (e), which determines quantitatively exactly how 

surface sensitive the measurement is, depends on the kinetic energy (KE) of the emitted 

electron and the material through which it travels. Empirical relationships between KE and e 

are plotted in Figure 3.3b for a variety of elements. 

 

3.1.4 Determination of the stoichiometric composition 
 

            There are two available models system for the evaluation of stoichiometric composition 

of SAMs. The stoichiometric ratio of a layer A and an underlying layer B is then calculated from 

the measured intensities according to equation. 
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Figure 3.3 a) Schematic of inelastic electron scattering occurred as a photoelectron tries to 

escape from the solid, starting at different depths. b) Mean free path lengths e as a 
function of the kinetic energy of the emitted electrons. (After ref 147) 
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            For analysis of disordered, undefined or unknown systems the statistical model is used, 

which assume a homogeneous distribution of two elements A and B in the substrate.                                                                                                                     

                                                           
  

  
 

  

  
 
  

  
 
  

  
                                             (3.4) 

3.1.5 Determination of layer thickness of thin film 

           The photoemission signal can be attenuated with the upper over layer, and its intensity 

is directly related to the attenuation length of the photoelectron as explain146 in Figure 3.4.The 

layer thickness of films can be evaluated by the attenuation of the Au4f signal according to 

Lambert- Beer’s law (Figure 3.4a), 

                                     ( )         ( 
 

 
)                                                                  (3.5) 

                                                     

For θ =O the film thickness equal to the 

mean free path. As gold reference, the 

intensity of the Au4f signal of a gold. The 

thickness of the upper overlayer can also 

be calculated by a slight modification of 

Beer’s law as explain in figure 3.4b. 

 

 

N A,B Stoichiometric factors 

I A,B Signal intensity 

σA,B Element specific cross section for the emission of a photoelectron 

λ A,B Attenuation length  [Å] of a photoelectron at a given energy EA, EB  

d A Film thickness of a component A [Å]  

X: Mean free path 

λ A,B: Attenuation length of a 

photoelectron  [Å] 

Io: Entrance signal intensity 

I(d): Signal intensity after attenuation  

Ɵ: Angle of exit with respect to the 

surface normal 

d: Layer thickness of the substance 

 

Figure 3.4 a) For electrons transmitted through a sample, 
Beer‘s law of molecular absorption explains the total 
intensity loss for electrons that lose no energy in 
traversing the sample. b) For electron emission from a 
thick sample, modifications of Beer‘s law can explain the 
photoemission intensity from an overlayer or from the 
substrate covered by an overlayer. (After ref 146) 
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3.2 Near edge X-ray absorption fine structure spectroscopy  
 

          Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy is a surface 

characterization technique by evaluation of unoccupied electronic states. NEXAFS is also called 

X-Ray Absorption Near Edge Structure, XANES. Now a days, the term NEXAFS is typically used 

for soft x ray absorption spectra and XANES for hard x-ray spectra. NEXAFS refers to the details 

of how x-rays are absorbed by an atom at energies near the core-level binding energies of that 

atom. Specifically, NEXAFS is the modulation of an atom’s x-ray absorption probability due to 

the chemical and physical state of the atom. NEXAFS spectra are especially sensitive to the 

formal oxidation state, coordination chemistry, and the distances, coordination number and 

species of the atoms immediately surrounding the selected element. Because of this 

dependence, NEXAFS provides a practical and relatively simple way to determine the chemical 

state and local atomic structure for a selected atomic species. 

3.2.1 Principles 
 

           NEXAFS refers to the absorption fine structure close to an absorption edge about the 

first 30 eV above the actual edge. This region usually shows the largest variations in the X-ray 

absorption coefficient and is often dominated by intense narrow resonances. In NEXAFS, the X-

ray photon energy is scanned over a core-level absorption edge, and the absorbed X-ray 

intensity is measured by probing the excitation of the core electron to unoccupied states.148 

This method requires a tunable monochromatic light source with smooth characteristics in the 

energy regions of interest, as well as high intensity and energy resolution, Synchrotron 

radiation sources are therefore well suited for NEXAFS spectroscopy.  

 

           This technique relies on a two-step process. In the first step the photon excites a core 

electron to the unoccupied state, hence creating a core hole, and in the second step the 

 

Figure 3.5 Schematic diagram of photoexcitation and recombination processes. The photon generated core 
hole is filled by an electron from a higher shell either radiatively by emission of a photon, or non-radiatively 
by emission of an Auger electron. 
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recombination process of the core hole takes place. There are many possible channels for the 

core hole recombination process (Figure 3.5); viz, the radiative type, producing the emission of 

photons (fluorescence), or the non-radiative type (Auger-like transitions), producing the 

emission of electrons, which can be collected from the surface with suitable detector.149 In our 

experiment, the latter type was measured. There are two kinds of the Auger-like transitions in 

this case: participator decay in which the excited electron participates in the core-hole decay 

process and spectator decay in which the excited electron remains in the normally unoccupied 

level and two valence electrons are removed. The number of generated Auger electrons is 

directly proportional to X-ray absorption cross section.148 

          Several techniques can be chosen to detect the absorption. The most common method is 

an electron yield measurement which measures the emitted electrons that are created by the 

absorbed X-ray. There are several ways to perform electron yield measurements: Total 

electron yield (TEY), Partial electron yield (PEY) or Auger electron yield (AEY). In the TEY 

method, all Auger electrons and photoelectrons are measured. This results in a high signal rate 

but a very small signal-to-noise ratio. In the PEY method, by placing a retarding voltage in front 

of the electron detector, a fraction of Auger electrons are measured. Because of the flexibility 

in choosing the retarding voltage, one can avoid the interference from the low kinetic energy 

electron, increasing signal-to noise ratio. In the third method, the AEY method, Auger electrons 

are measured by setting the energy analyzer at a specific Auger transition energy. This method 

offers the largest signal-to-noise ratio of all electron-yield techniques, but the smallest signal 

rate. Another technique to measure the X-ray absorption spectra is a transmission 

measurement. This can be done by measuring the current to the sample after photons are 

transmitted through it. This technique requires a thin sample while the electron yield 

technique can be used for conventional samples. In this work, the PEY method was employed. 

3.2.2 Angular dependence of NEXAFS resonance intensity 
          

            The second important property of NEXAFS spectra is that, the interaction of the X-ray 

radiation has a spatial anisotropy with the MOs of the sample that is, the cross section 

depends on the angle and direction of the transition dipole moment (TDM) of excitation (more 

precisely the symmetry of the unoccupied MOs and the orientation of the SAMs with respect 

to the surface normal). In gas phase the intensities of the fine structure obtained by linearly 

polarized X-ray radiation are independent of incident angle, since the orbitals are evenly 

distributed in all directions in space. This leads to an angle-dependent intensity distribution of 

the fine structure and the possibility to determine an orientation of the molecule relative to 

the surface. The correlation between the spatial position of an aromatic π* system and the 

orientation of the incident X-ray is shown in Figure 3.6. 

           The system can be considered as a combination of three coordinates system, where the 

substrate plane represents the main coordinate. With respect to the z-axis, on the one hand, 

the coordinate system of the molecule, consisting of the molecular axis and the transition 

dipole moments (TDMs), and on the other hand, the coordinate system of the incident X-ray 

radiation consisting of the direction of propagation c and the field vectors E, and B. 
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When monolayers are in parallel to π* orbitals (and thus their TDMs) and σ* MOs 

perpendicular to the substrate plane, or have an inclination corresponding to the tilt angle, 

mathematically, the relationship, taking into account that the molecular axis is defined only in 

terms of the tilt angle     and assume any position in the XY-plane with the same probability 

for π*-systems represented by the following equation,148  

 (    )    [     
        

       (           
  )]  (    

 

 
)  (       )          (3.6) 

 Where, A is a constant, P is the polarization factor of the synchrotron light, and    is the tilt 

angle of the molecular orbital. For X-ray, the polarization factor, P is in the range 0 ≤ P ≤ 1 and 

the experiments were conducted at 0.91. If P and θ are known, the intensity obtained from the 

measurement, the average tilt angle α of the TDM of the molecules on the surface can be 

determined. 

 

3.3 Spectral ellipsometry 
           

                   Spectroscopic ellipsometry is an optical method to determine the film thickness and 

refractive index of transparent thin films. The key feature is the measurement of changes in 

the polarization state of light upon light reflection on a sample (or light transition by a sample) 

(Figure 3.7).150 The scheme of 

Ellipsometric setup is explain in 

Figure 3.8. This change is 

represented as the amplitude ratio 

Ψ and the phase difference Δ. The 

measured response depends on 

optical properties and thickness of 

individual materials. Thus, 

 

Figure 3.6 Relationship between the tilt angle ƟT, the angle of incidence α of the X-ray 
radiation and intensity of the interaction. TDM are the transition dipole moments with respect 
to a molecular orbital, E is the electric component of the linearly polarized X-ray radiation with 
the direction of propagation c. 

 

 

Figure 3.7  Ellipsometry working principle. The linear polarized 
light is reflected by the sample and gets elliptically polarized. 
Image inspired by ref 150.  
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ellipsometry is primarily used to determine film thickness and optical constants.151 

         Light can be described as an electromagnetic wave and its electric field is always 

orthogonal to the propagation direction. Therefore, a wave traveling along the z-direction can 

be described by its x- and y- components. When 

the light has completely random orientation and 

phase, it is considered to be unpolarized. When 

two orthogonal light waves are in-phase, the 

resulting light will be linearly polarized152 (Figure 

3.9a). The relative amplitudes determine the 

resulting orientation. If the orthogonal waves 

are 90° out-of-phase and equal in amplitude, the 

resultant light is circularly polarized (Figure 

3.9b). The most common polarization is 

‘elliptical’, one that combines orthogonal waves 

of arbitrary amplitude and phase150 (Figure 3.9c). 

This is where ellipsometry gets its name. The 

next question to be answered is what happens 

with polarized light moving through matter. 

Therefore a reflection plane has to be defined 

and the polarization of light is defined in terms 

of the spatial orientation of the electric field 

component E, which can be parallel (p-wave or transverse magnetic) or perpendicularly (s-

wave or transverse electric) to the plane of incidence.  

         Any intermediate orientation between s and p waves can be described by a linear 

combination of the base vectors Ep and Es. After reflection and interaction with the substrate, 

the phase of the s- and p-polarized part is shifted 

so that it gets elliptically polarized.153  The 

change in polarization can be expressed by the 

ratio of the reflection coefficient ρ, which can be 

described by the fundamental equation of 

ellipsometry.150 

 

            (
  

  
)          ( )                   (3.7)                  

      where tan(Ψ) is the amplitude ratio upon 

reflection and Δ denotes the phase shift 

between the s- and p-polarized wave. In general 

the measured values of Ψ and Δ cannot be 

converted directly into the optical constants of 

the sample. A regression analysis has to be 

performed, at which a layer model has to be 

established considering the optical constants 

and thickness parameters of all individual layers 

 

Figure 3.8  Scheme of ellipsometry setup. The 
source emits light which is linear polarized. 
After reflection from the sample the light is 
elliptically polarized. The light polarization 
direction is sorted by the rotating analyser and 
its intensity by the detector. The PC can collect 
the circular dependent intensity and calculate 
the layer thickness using models. 

 

 

Figure 3.9 Orthogonal waves combined to demo-
nstrate polarization: a) linear, b)circular and c) 
elliptical [after ref 152]. 
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of the sample. By using an iterative procedure unknown optical constants and/or thickness 

parameters are varied and Ψ and Δ values are calculated using the Fresnel equation.154  

                          
               

               
    

               

               
                                           (3.8) 

         The calculated Ψ and Δ values which match the experimental data best provide the 

optical constants from which e.g. the film thickness can be modeled. It is possible to determine 

film thicknesses down to the nanometer regime but in the case of multilayers each layer has to 

be modeled individually. For different wavelengths the optical constants of a material vary and 

have to be described at all wavelengths probed with the ellipsometer. A table of optical 

constants can be used to predict the material’s response at each wavelength, but it is not 

convenient to adjust unknown optical constants on a wavelength-by-wavelength basis. It is 

more advantageous to use all wavelengths simultaneously. A dispersion relationship often 

solves this problem by describing the optical constant shape versus wavelength. The 

adjustable parameters of the dispersion relationship allow the overall optical constant shape 

to match the experimental results. Compared to fitting individual n and k values at every 

wavelength, this greatly reduces the number of unknown ‘free’ parameters. For transparent 

materials (k = 0), the refractive index is often described using the Cauchy relationship.155  
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          where A, B and C are adjusted to match the refractive index of the material. One of the 

remarkable features of ellipsometry is the high precision of the measurement and high 

thickness sensitivity (0.1 Å). 

3.4 Scanning electron microscopy  
 

           Scanning electron microscopy (SEM) is a widely used technique of major significance 

throughout the scientific and technological communities.156  This microscope can achieves 

large magnifications by scanning the sample with a focused electron beam instead of light in a 

raster scan pattern. The electrons of the beam interact with the electrons in the sample and 

the intensity of reflected and secondary electrons produced by the incident beam can be 

detected and analyzed. Detection limitations, e.g. the spatial resolution d of microscopic 

techniques, are closely linked to the wavelength λ of the incident beam via the lens specific 

numerical aperture NA, 

       
 

     
                                   (3.10) 

         

 This, in turn, is determined by the opening angle α of the lens and the refractive index of the 

medium n,157  

                                                                                                                                              (3.11) 
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             Taking advantage of the de Broglie relation, 

                                                           
 

 
  √     ⁄                                           (3.12) 

          where λ is the electron wavelength, h Planck’s constant, p the electron momentum, Ee 

the electron energy and me the electron mass, electrons are used instead of photons, 

achieving shorter wavelengths and thereby better resolutions.158 If, for example, electrons are 

accelerated with 100 eV, a wavelength of 0.122nm is achieved, which is far below the 

wavelength of visible light applied in light microscopy. Although the use of electrons 

theoretically has no limitations with respect to the resolution, the spherical aberration of the 

lenses limits it. The key components of all SEM instrument include an electron source (‘gun’), 

electronic lenses, a measurement chamber and a detector for all signals of interest (Figure 

3.10). A beam of electrons is produced by the electron gun, a cathode emitting electrons which  

 

are accelerated towards the anode.159 The emission can be excited either thermally 

(thermodynamic emission) or by applying high voltage (field emission). In conventional 

electron guns, the cathode, usually consisting of tungsten (W) or lanthanum hexaboride (LaB6), 

is heated until a stream of electrons is produced. The disadvantages of this system are the 

short lifetime of the filament and the high emission energy distribution.156   The electron beam 

 

Figure 3.10  Scheme of an SEM microscope (after ref 159]). 
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follows a vertical path through the microscope, which is kept under vacuum. The beam travels 

through electromagnetic fields and lenses, which focus the beam down toward the sample and 

correct symmetric defects of the beam with respect to the optical axis. When primary 

electrons hit the surface of an object, interaction through elastic and inelastic scattering takes 

place. Secondary electrons (SE) and back-scattered electrons (BSE) with different energies are 

created, which are collected by various detectors. The penetration depth of the primary 

electrons depends on their energy, on the thickness and on the nature of the material.  

          Different detector designs are available to collect BSE or SE which generate different 

contrasts due to their interaction depth with the material. The inlens detector is ring-shaped 

and situated above the sample in the column and detects secondary electrons that are emitted 

back into the column. With this detector it is possible do achieve high-resolution images (in the 

nm range) at small acceleration voltages of the beam due to the low working distance. This 

makes it possible to achieve images faster and more gentle than with other detectors. Since SE 

generally is low energy electrons, they only emerge from the outermost layer of the sample 

and carry information about the material contrast with them due to the different material-

dependent attenuation lengths.  Another type of SE-detector is the SE2 detector which is able 

to achieve a topographic contrast and a high spatial resolution. Although the name is 

misleading, this detector detects not only SE but also few BSE. In contrast to the inlens 

detector the picture information here originates from deeper penetration depths. The 

electrons are accelerated towards the detector, are collected by a positively biased collector 

grid and create a number of electrical impulses. The SE2 detector is mounted at the sideways 

above the sample with a tilt angle of 45° and provides a very naturally, 3D image.  BSE are 

electrons which are scattered elastically on atomic cores down to 10nm under the sample 

surface. The BSE detector usually is a 4-quadrant-semiconductor and since it is situated in the 

measurement chamber, it is important to work with a high accelerating voltage (min. 5 keV) 

for obtaining good signal intensity. Dependent on the circuit of the semiconductor crystals 

different topographic contrasts can be achieved, whereas deep areas seem to be darker. The 

property that heavy elements reflect the electrons more than lighter ones is used to draw 

conclusions from the chemical nature of the surface.  

         There are some limitations of Scanning electron microscopy. The samples have to be 

viewed in a vacuum (10−5 torr to 10−6 torr), as the air molecules would scatter the electrons. A 

second point is that for conventional SEM imaging the sample has to be electrically conductive, 

at least at the surface, and electrically grounded to prevent the accumulation of electrostatic 

charge at the surface. Therefore nonconductive substrates tend to charge when they are 

imaged by the electron beam, and especially in the secondary electron imaging mode, this 

causes scanning defaults and other image artifacts. They are therefore usually coated with an 

ultrathin coating of electrically conductive material like graphite or gold. 
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3.5 Atomic force microscopy  
 

        Scanning probe microscopy (SPM) was developed in 1981 at IBM, Zurich by Binnig and 

Rohrer with the invention of the scanning tunnelling microscope (STM).160-161 These earned 

them Nobel Prize in Physics in 1986. The two most common forms of SPM are scanning 

tunneling microscopy (STM) and atomic force microscopy (AFM). The scanning tunnelling 

microscope is (in general) restricted to conducting materials. The surfaces of insulators, 

structures in liquids and biological samples can be imaged nondestructively with high 

resolution by the atomic force microscope (AFM) (also often scanning force microscope, SFM), 

which was developed in 1986 by Binnig, Quate and Gerber.162 

 

3.5.1 Basic principles 
 

            AFM is the most commonly used tool to obtain 3D images of structured surfaces in the 

range of a few micrometer to single nanometers with a very high resolution. This technique 

exploits the fact that a tunnelling current through a potential barrier of the width d is 

proportional to e−d (provided a constant and final height of the potential barrier). A sharp tip at 

the end of a cantilever is scanned over the substrate, which detects ultrasmall forces (less than 

1 nN) present between the tip and the surface.163 The topography of the substrate causes 

deflections of the cantilever and goes along with changing interactions between the tip and 

the surface, such as van der waals or electrostatic forces. A visible laser beam is reflected from 

the backside of the cantilever to a detector, also called position sensitive device (PSD), so that 

very small deflections of the substrate can be observed (Figure 3.11).158 The obtained line 

deflection can be combined together to topographic images of the substrate. 

3.5.2 Imaging modes 
 

             There are three different operation modes in AFM, namely the contact, noncontact and 

tapping mode.164 In the contact or static mode the tip is brought into direct physical contact 

 

Figure 3.11 Scheme of an AFM microscope (after ref 158). The tip is attached to a cantilever, 
and is scanned over a surface. The cantilever deflection due to tip-surface interactions is 
monitored by a photodiode sensitive to laser light reflected at the tip backside. 
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with the sample.165 The topographical information is detected and transferred to a 

piezoceramic element which adjusts the cantilever in a way that the force acting on the 

surface stays constant. This is called ‘feedback loop’.163 As the tip scans across the surface, 

varying topographic features cause deflections of the cantilever, which are measured and 

visualized as image information. The disadvantage of this mode is that the constant force can 

deform soft biological samples or material can be wiped away or smeared over of the surface. 

To avoid these effects, the non-contact or dynamic mode can be used. In this mode the 

cantilever oscillates above the sample at its resonance frequency. When the tip gets closer to 

the surface, very weak van der Waals attractive forces change the oscillation amplitude of the 

tip. These changes can be detected and used to generate an image.164  In this mode the tip-

substrate interactions are very small and the lateral resolution is lower than in other operation 

modes. However, the greatest drawback is that it can only be used on dry samples. A small 

water layer disturbs the detachment of the tip from the sample because of the small oscillating 

amplitude.166 In the tapping mode, the cantilever is driven to oscillate up and down near its 

resonance frequency.167  When the tip gets closer to the surface, van der Waals forces, dipole-

dipole interactions, electrostatic forces, etc. interact with the cantilever and with this change 

the amplitude and the phase of the oscillation. Mostly, this change in the amplitude is used to 

regulate the signal during the scan process. This means piezoceramics are used to control the 

height of the cantilever to keep the amplitude constant. Due to the fact that shear forces are 

eliminated and vertical forces are reduced significantly, this mode is advantageous to 

investigate sensitive materials (e.g. biological surfaces) or unstable surface features (e.g. small 

particles).168 

3.6 Contact angle goniometry 
 

             Contact angle goniometry is a technique to 

determine the wettability of solid surfaces by 

liquids.169 It is very sensitive to the molecular 

structure of the underlying substrate and the 

contact angle (CA), Ɵ can vary from 0° to 114° 

dependent on the surface chemistry of the 

substrate.170 It is defined as the angle between the 

tangent to the solid-liquid interface and the 

tangent to the liquid-gas interface (Figure 3.12).171 

A small contact angle displays a high wettability 

and therefore a strong interaction of the liquid 

with the solid. There are different models 

describing the CA closest to reality, also called 

apparent CA. More than 200 years ago, Young described the forces acting on a liquid droplet 

spreading on an ideal surface.172  

 

 

 

 

Figure 3.12  Schematic description of the 
contact angle.  
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The Young CA ƟY 

                                                        
       

   
,                                                                                 (3.13) 

          where ϒsl, ϒsg and ϒlg are the solid-liquid, solid-gas and liquid-gas interfacial tensions 

respectively, describes the physico-chemical nature of the wetting system. However, equation 

3.13 is a clear oversimplification of the real situation, since it is only valid for atomically 

smooth and chemically homogeneous surfaces which do not change their characteristics due 

to interactions with the liquid.  On real surfaces that are rough or contaminated, the local CA 

varies from place to place on the surface. This means that the adhesion energy varies locally 

and the liquid has to overcome local energy barriers in order to wet the surface. One 

consequence of these barriers is the CA hysteresis.173 The extent of wetting, and therefore the 

observed CA, depends on whether the liquid is advancing or receding on the surface. The value 

of Ɵ classifies whether a substrate is hydrophilic (Ɵ < 90°) or hydrophobic (Ɵ > 90°). Extremes 

of both categories are the superhydrophobic and superhydrophilic surfaces. The latter one is 

particularly interesting as it characterizes surfaces that are nearly completely non-wettable (Ɵ 

> 150°) (Figure 3.13a).174 Not only the chemical composition influences the contact angle, but 

also Surface structure has an impact on the wetting behavior and two different regimes can be 

described. In the Wenzel regime the liquid wets the surface, but the measured CA differs from 

the ‘true’ one.  

The Wenzel CA,   , 

                                                 cos ƟW = r cos ƟY,                                                                              (3.14)  

is determined by the surface roughness ratio r, which is defined as the ratio between actual 

and projected surface area (r = 1 for smooth surfaces, r > 1 for rough surfaces) and the Young  

 

 
 

contact angle    of a flat surface from the same material. Equation 3.14 predicts that in this 

wettability regime the hydrophobicity is enhanced by roughness (  >  ) when    is larger 

than 90°. On the other hand, hydrophilicity is increased by roughness when    is smaller than 

90°.173  

 

Figure 3.13  Scheme of the Wenzel (a) and the Cassie-Baxter (b) principle. In the 
Wenzel model the surface roughness contributes to the contact angle. In the Cassie-
Baxter model the droplet does not fully wet the substrate due to surface roughness. 
(inspired by  171). 
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When the surface is made of small pillars, which cannot be filled by the liquid and thus stay 

filled with air, the wettability enters the Cassie-Baxter regime175 (Figure 3.13b) and can be 

described by 

                                             cos ƟC = ϕ(cos ƟY + 1) − 1.                                                                (3.15)  

            Here the Cassie CA ƟC is dependent on the surface contact fractions ϕ of the liquid 

droplet and the surface characteristic contact angle ƟY. However, since the pores are filled 

with air, which is hydrophobic, the CA always increases, relative to the behavior seen on a flat 

substrate with identical chemical composition. Hence, it has to be considered that surface 

morphology can have an effect on the wettability of the substrate. 
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4. Fabrication of ssDNA/oligo(ethylene glycol) 
monolayers and complex nanostructures by irradiation 
promoted exchange reaction 

The macromolecular structure of DNA, its ability to hybridize, the diversity of unnatural 

nucleotides with unique functional groups that are available to perform chemistry on it and 

enzymes that are available to manipulate its sequence, structure and topology provide rich 

opportunities for its use in clinical diagnostics, biosensors, gene therapy and drug delivery.176-

178 Some of these applications rely on the immobilization of single-stranded (ssDNA) onto a 

solid support, which is subsequently used for binding and detection of its complementary 

ssDNA target or for the recognition of DNA binding proteins. 57,76 A commonly used method for 

immobilization of ssDNA is to functionalize it with a terminal reactive group that is selective for 

a surface of interest.57,76 The hybridization activity of supported ssDNA depends on the packing 

density and molecular organization which can be tuned by mixing ssDNA with other diluent 

molecules that present the same reactive group.57,179-180 For gold, the diluent molecules of 

choice are short-chain alkanethiols (ATs) 57,181-184 or thiolated oligo(ethylene glycol)s (OEG-ATs). 
46,185-189 OEG-ATs are especially attractive for applications wherein the DNA comes into contact 

with complex biological fluids because of their ability to resist the adsorption of proteins. 

Strategies to prepare such mixed films include co-deposition,46,185,189 backfilling, 190  and post-

deposition by substitution.188 In an alternative approach, ssDNA can be covalently conjugated 

to a terminal reactive functional group presented by the monolayer. OEG-ATs are also 

frequently used to provide a protein-repelling background to ssDNA patterns. These patterns 

are usually prepared by one of the standard techniques such as microcontact printing, UV 

lithography, or drop casting by a syringe or microarrayer.73,190  The preparation of the OEG-ATs 

background typically occurs by backfilling after deposition of the ssDNA on the surface. 

 

In this chapter a new and potentially universal approach to prepare both mixed 

ssDNA/OEG-AT films in a broad range of compositions and based on this mixing ssDNA/OEG-AT 

patterns of arbitrary form are described. The approach relies on irradiation promoted 

exchange reaction (IPER) and electron beam lithography (EBL).  Generally, IPER enables to 

control the extent and rate of the molecular exchange between the primary monolayer and a 

potential substituent by electron irradiation of the monolayer with a suitable dose.45 The 

strength of the approach is demonstrated by combining it with surface-initiated enzymatic 

polymerization (SIEP) and sculpturing complex DNA nanostructures. A primary monolayer of a 

OEG-AT compound, HO(CH2CH2O)3(CH2)11SH (termed EG3) and thiolated homo-

oligonucleotide, 5´-SH-(CH2)6-d(A)25-3´ (termed A25SH) were taken as test systems for the 

experiments. 

 

ssDNA compounds Description 

A25SH thiol-C6-5’-AAAAAAAAAAAAAAAAAAAAAAAAA-3' 

A25 5'-AAAAAAAAAAAAAAAAAAAAAAAAA-3' 

T25 5'-TTTTTTTTTTTTTTTTTTTTTTTTT-3' 
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4.1 Preparation and characterization procedures 
4.1.1 Preparation of mixed A25SH/EG3 films and patterns by IPER-EBL 

 

A detail description of EG3 and A25SH SAMs preparation can be found in chapter 10. 

The EG3 films were either homogeneously irradiated (IPER; mixed A25SH/EG3 films and 

homogeneous poly(A) brushes) or patterned by 

a focused electron beam (IPER-EBL; A25SH/EG3 

and poly(A) nanostructures). Homogeneous 

irradiation was performed with 10 eV electrons 

provided by a flood gun, and the doses were 

estimated by multiplication of the exposure 

time with the current density (~22 μA/cm2). EBL 

was performed by a LEO 1530 scanning 

electron microscope with a Raith Elphy Plus 

Pattern Generator System. The e-beam energy 

was chosen at 1 keV. Exchange reactions were 

carried out by immersion of irradiated EG3 

films in a 3 µM solution of A25SH in 1 M CaCl2-

TE buffer (1 M CaCl2, 10 mM Tris-HCl, 1 mM 

EDTA, pH 7.0) for 3 h at a temperature of 37°C. 

After immersion, the samples were carefully 

rinsed with Millipore-grade water, sonicated for 

60 s followed by rinsing with water for 60 s to 

remove loosely bound ssDNA species. Finally, 

they were blown dry in an Argon stream. Non-

irradiated EG3 films were immersed in A25SH 

as well, to check so called zero dose exchange 

reaction.185 The possibility of exchange with 

A25 was checked, under the same conditions as 

in the case of A25SH. Further, the adsorption of 

A25 on the bare Au substrate was monitored, 

under the same conditions as in the case of the 

EG3 functionalized substrates. 
 

 

4.1.2 Hybridization experiments 

 

Hybridization experiments were 

performed in accordance with literature 

protocols.57,76 Briefly, one component A25SH 

and mixed A25SH/EG3 films intended for 

hybridization were placed in a 3 μM solution of 

T25 in 1 M TE-NaCl buffer for 8 h under static 

conditions. Afterwards, the samples were then rinsed with the buffer for 1 min to remove 

excess and weakly bound ssDNA strands, followed by rinsing with 1 mL of Milli-Q water 

(resistivity > 18.2 MΩ cm) and dried with stream of argon. 
 

 

 
 

Figure 4.1 a) Schematic illustration of the 
approach. Irradiation-induced defects in the 
primary OEG-AT matrix promote an exchange 
reaction with the ssDNA substituents. Irradiation 
can be performed homogeneously, resulting in 
mixed ssDNA/OEG-AT monolayers of controlled 
composition (a), or by EBL, resulting in patterned 
ssDNA/OEG-AT features imbedded in biologically 
inert matrix (c); b) chemical formula of monolayer 
components; c) AFM image of a representative 
A25SH/EG3 pattern prepared by IPER-EBL together 
with the height profile along the line shown in the 
image (5 s; 18 x 30 µm²). 

 

C)
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4.1.3 Fabrication of ssDNA brushes 
 

A detail description of growth of polymer brushes on mixed A25SH/EG3 templates and 

A25SH/EG3 patterns can be found in chapter 10. Substrates bearing A25SH and A25SH/EG3 

films as well as A25SH/EG3 patterns were exposed to SIEP reaction which comprises of 0.1 

U/µl TdT, 100 μM dATP and 0.1% Tween 20 in 1x TdT buffer (100mM potassium cacodylate, 1 

mM CoCl2, and 0.2 mM DTT, pH 7.2) for 1 h at 37°C.  The samples were then rinsed in 1x PBS 

buffer with 0.1% Tween 20, followed by rinsing with Milli-Q water (resistivity > 18.2 MΩ cm) 

and dried with stream of nitrogen. 
 

4.2  Results and discussion 
 

The procedure is illustrated in Figure 4.1a. A primary monolayer of a test OEG-AT 

compound, EG3 (show protein-resistance59,191) was irradiated with electrons homogeneously 

or in the EBL fashion resulting in preferential damage of the OEG chain and cleavage of 

thiolate-gold bonds.39,59 Next, the film was incubated in a solution of a thiolated homo-

oligonucleotide, A25SH for the exchange reaction promoted by the above defects. EBL was 

used to visually demonstrate the efficiency of IPER in substituting A25SH in an EG3 matrix. 

AFM and optical microscopy clearly shows the formation of a nanoscale A25SH pattern against 

a bio repulsive background of the EG3 that spells DNA (Figure 4.1c).  ssDNA stems protrude 

clearly (by 4-5 nm) over the EG3 matrix forming their own name. 

Laboratory XPS was used to monitor the outcomes of IPER and hybridization 

experiments. The measurements were performed using Mg Kα X-ray source and a LHS 11 

analyser. One component and mixed monolayers were additionally characterized by high-

resolution XPS (HRXPS) at the MAX lab, Sweden. Homogeneous poly(A) brushes were 

characterized by synchrotron-based XPS at BESSY II in Berlin, Germany. One component and 

mixed monolayers were additionally characterized by NEXAFS spectroscopy at the MAX-lab 

synchrotron radiation facility. Homogeneous poly(A) brushes were characterized by NEXAFS 

spectroscopy at BESSY II. A detail description and used experimental parameter can be found 

in chapter 10.  
 

4.2.1 Characterization of the A25SH/EG3 films: XPS 

 

The proportion of the A25SH component in the mixed A25SH/OEG monolayer can be 

precisely controlled by selection of the irradiation dose. As shown in Figure 4.2a, N1s 

photoemission (PE) spectra of the one-component A25SH monolayer and mixed A25SH/EG3 

films prepared by IPER exhibit characteristic two-peak signature of adenine at 399.3 and 401.1 

eV55,76 and the intensity of this signal increases with increasing irradiation dose, demonstrating 

the respective increase of the A25SH component in the film (Figure 4.3). Significantly, no 

exchange occurs without irradiation as seen by the lack of the characteristic adenine signal for  
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the control, non-irradiated sample 

(0 mC/cm2) in Figure 4.2a. The 

thiolate anchoring of A25SH to gold 

in the mixed monolayers was 

proven by another control 

experiment where an irradiated 

EG3 film was exposed to non-

thiolated homo-oligonucleotide 

(A25) as the substituent in IPER. No 

adenine signal was detected from 

this sample (second spectrum from 

the top in Figure 4.2a). At the same 

time, in accordance with literature 

data,55 A25 is capable to bind 

directly on Au (the top spectrum in 

Figure 4.2a), but this does not occur 

when the gold is passivated and 

obscured by EG3 film (even after 

the irradiation) because of the large 

steric requirement to bind A25 to 

gold as compared to a gold-thiolate 

bond.55 However, even in the case 

of thiolated ssDNA, its cross-section 

(~154 Å2;) is significantly larger than that of the OEG-AT species (~21.4 Å2), which suggests that 

every exchange event within the IPER framework involves several SAM constituents. The most 

probable scenario is that the damaged OEG-AT species, which are only  few in the given dose 

range, serve as initiator sites for the exchange reaction, 

which, driven thermodynamically, is initially mediated by 

the alkanethiol tail (no IPER for A25) and later involves 

partial squeezing or expelling of the neighbouring OEG-AT 

species. 

   

4.2.2 Characterization of the A25SH/EG3 films: 

NEXAFS spectroscopy 
 

Further evidence for the formation of high-quality 

A25SH/EG3 monolayers is provided by NEXAFS 

spectroscopy. As shown in Figure 4.2b, N K-edge spectra of 

the mixed films exhibit characteristic π* resonances of 

adenine at ~399.4 and ~401.3 eV,76,192 mimicking the 

spectrum of the one-component A25SH monolayer. The C K-edge NEXAFS spectra of the mixed 

films can be reproduced as linear combinations of the spectra of the both constituents, viz. 

EG3 and A25SH (Figure 4.4), which shows that their electronic structures are not affected by 

the mixing. The spectra of the mixed EG3/A25SH films represent linear combinations of the 

 

Figure 4.2  a) from bottom to the top: N 1s PE spectra of the 
reference A25SH monolayer, mixed EG3/A25SH films prepared 
by IPER at different doses, non-irradiated (0 mC/cm²) EG3 
monolayer exposed to A25SH, irradiated (1 mC/cm²) EG3 
monolayer exposed to A25, and Au substrate exposed to A25. 
The proportions of A25SH in the reference and mixed films are 
given at the respective curves. b) N K-edge NEXAFS spectra (55°) 
of the reference A25SH monolayer and mixed EG3/A25SH film 
prepared by IPER (1 mC/cm2) along with the respective 
difference (90°-20°) spectra. 
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Figure 4.3  A25SH content in the 
mixed EG3/A25SH films prepared by 
IPER as a function of irradiation dose. 
The content increases progressively, 
in an almost linear fashion, with the 
dose 
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spectra of the both constituents, 

viz. EG3 and A25SH. The relative 

weights of the respective 

contributions vary in accordance 

with the expected film 

composition. Furthermore, the 

N K-edge NEXAFS spectra of the 

mixed films exhibit noticeable 

linear dichroism, similar to the 

spectra of the one-component 

A25SH monolayer, as 

manifested by the differences 

between the spectra acquired at 

the normal (90°) and grazing 

(20°) incidence angles of X-rays 

in Figure 4.2b. The negative 

peaks at the positions of the π* 

resonances of adenine indicate a 

parallel-to-the-substrate 

orientation of the 

nucleobases,76,148 corresponding 

to an upright orientation of the 

DNA strands both in the one-

component A25SH monolayer and most importantly, in the mixed A25/EG3 films prepared by 

IPER. 

 

4.2.3  Hybridization ability of mixed A25SH/EG3 films 

The mixed A25SH/EG3 films generated by IPER were tested for hybridization by 

exposing them to their complementary d(T)25 strand, that is abbreviated as T25. This exposure  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4  a) C K-edge NEXAFS spectra (55°) of the reference A25SH 
(top) and EG3 (bottom) monolayers as well as mixed EG3/A25SH 
films prepared by IPER with the doses given at the spectra. b) fits of 
the spectra of the mixed films (black) by a linear combination of the 
spectra of the individual components (red). The relative weights of 
the A25SH and EG3 spectra are 50% and 50% at 0.5 mC/cm² and 80% 
and 20% at 1 mC/cm² 
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Figure 4.5  N 1s PE spectra of the reference A25SH monolayer (a; bottom curve) and 
mixed EG3/A25SH film fabricated by IPER with a dose of 0.5 mC/cm

2
 (b; bottom curve) 

along with the spectra of the same films after the hybridization with T25. The spectra are 
decomposed into individual contributions which are shaded green and dark red for 
adenine and thymine, respectively. Note that the spectra in the bottom traces were used 
as references for the decomposition of the spectra in the top traces.  
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resulted in the appearance of the characteristic emission of thymine (T) at ~401.0 eV in the N 

1s PE spectra55,76 as shown in Figure 4.5b. The degree of hybridization was estimated at ~45.5% 

for the A25SH/EG3 monolayers prepared by IPER with a dose of 0.5 mC/cm2. The efficiency of 

hybridization for this monolayer is much higher than that of the one-component A25SH film 

(~22%) (Figure 4.5a). This behaviour can be attributed to the lower packing density of the 

ssDNA strands in the mixed films, which improves the steric access and diminish electrostatic 

repulsion.  
 

4.2.4 Characterization of ssDNA Brush  
 

The above results demonstrate that mixed A25SH/EG3 monolayers of desirable 

composition can by successfully fabricated by IPER as far as irradiation is performed 

homogeneously and the dose is controlled. Then IPER was 

adapted in combination with EBL to fabricate complex 

nanopatterns of A25SH embedded in a protein-resistant 

EG3 matrix (Figure 4.1c). Using these patterns as the 

template, these were grown in the z-dimension into 3D 

DNA nanostructures by using the 3’-ends of the surface-

bound ssDNA (A25SH in this case) as initiation sites for 

SIEP of DNA by an enzyme, terminal deoxynucleotidyl 

transferase (TdT).72-73 This step exploits the ability of TdT 

to sequentially add mononucleotides (Adenine (A) in this 

case) to the 3´-end of a ssDNA,144 and the polymerization 

of DNA, which can be tuned from a few to several 

thousand bases.74  It was found that the density of ssDNA 

controls the feature height that is observed in the z-

direction; for patterned regions with a high density of the initiator strands, the growing chains 

form a DNA brush with significant height, while a low density of initiator resulted in chains that 

are not confined, forming a structure with lower height.37 For constant reactant concentration 

and time during SIEP, the height of the DNA brush should be proportional to the amount of 

A25SH in the mixed A25SH/EG3 films, as is indeed the case (Figure 4.6). The height increases 

progressively with the irradiation dose, following the content of A25SH in the mixed 

EG3/A25SH films. The identity and contamination-free character of the poly(A) brush is 

manifested by the characteristic P 2p emission of ssDNA at 134.1 eV,56 characteristic π* 

resonances of adenine in the N K-edge NEXAFS spectra (Figures 4.7 and 4.8). No brush-related 

features or signals from phosphorus containing contamination were observed for the one-

component EG3 film (top spectrum, Figure 4.7), even after its exposure to A25SH solution 

(without preliminary irradiation, i.e. at 0 mC/cm²; top but one spectrum). No exchange occurs 

without irradiation (Figure 4.2a) so that the A25SH species, serving as initiators for the poly(A) 

brush growth, are not available. In addition, the EG3 substrate is contamination-free, which is 

presumably related to its protein-repelling properties.  

The spectra of the brushes grown on the A25SH and EG3/A25SH substrates exhibit the 

characteristic π* resonances of adenine at 399.4 and 401.3 eV (Figure 4.8).56,192 The intensity 

of the signal does not change for the thick brushes and is somewhat smaller for thinner 

brushes for which the saturation of the partial electron yield (PEY) signal is not achieved. Not  

 

Figure 4.6  The ellipsometric height 
of homogeneous poly(A) brushes 
grown on EG3/A25SH substrates 
prepared by IPER as a function of 
irradiation dose.  
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that the characteristic attenuation length of the PEY signal is longer than that of 

photoemission signal of the comparable kinetic energy,193 so that the complete saturation of 

the former signal does not occurs for the thinner films and the changes in the brush thickness 

can be partly monitored. No brush related features or signals from nitrogen containing 

contamination were observed for the one-component EG3 film (top spectrum Figure 4.8), even 

after its exposure to A25SH solution (without preliminary irradiation, i.e. at 0 mC/cm²; top but 

one spectrum). No exchange occurs without irradiation so that the A25SH species, serving as 

initiators for the poly(A) brush growth, are not available. In addition, the EG3 substrate is 

contamination-free, which is presumably related to its protein-repelling properties. 

4.2.5 ssDNA patterns on EG3 templates  
 

The new approach enable nanofabrication of DNA nanostructures of arbitrary shape in 

an EG3 matrix by EBL-IPER followed by SIEP, as shown in Figure 4.9 -4.13, where several 

representative examples of poly(A) nanostructures are presented. Importantly, the ability to 

introduce gradients in the surface concentration of the A25SH by IPER allows the formation of 

nanostructures with a structural complexity that is not possible by other nanofabrication 

methodologies. The “DNA” letters, wedges, and cone-like columns in Figures 4.9a, 4.9b and 

4.9c were designed and fabricated as gradient-like brushes; the respective height profiles  

  

 

Figure 4.7 P 2p XPS spectra of 
homogeneous poly(A) brushes grown 
on the A25SH (bottom), EG3 (top), and 
EG3/A25SH substrates prepared by 
IPER with a dose written at the 
respective curves. The spectra of the 
brushes grown on the A25SH and 
EG3/A25SH substrates exhibit the 
characteristic P 2p emission of ssDNA 
at 134.1 eV. 

Figure 4.8  N K-edge NEXAFS spectra of 
homogeneous poly(A) brushes grown 
on the A25SH (bottom), EG3 (top), and 
EG3/A25SH templates prepared by 
IPER with a dose written at the 
respective curves.  
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Figure 4.9  AFM images (3D view) of representative 
poly(A) brush patterns grown by SIEP on the EG3/A25SH 
templates prepared by IPER-EBL and the height profiles 
(for a and d) along the lines of the respective colour 
shown in the images. a) contrary running gradient-like 
“DNA” letters; b) wedges with widths of 2, 1, 0.5, and 0.25 
µm; c) cone columns (this shape was intentionally 
sculptured by gradient-like template); d) a microscale 
“amphitheatre”. The size of the images is 36 x 63, 20 x 30, 
27 x 30, and 34 x 35 µm² for a, b, c, and d, respectively. It 
took 22, 5, 54, and 14 s, respectively, to write these 
patterns. 

Figure 4.10 AFM images of a representative poly(A) 
brush patterns grown on the EG3/A25SH templates 
prepared by IPER-EBL. The brush represents an 
assembly of contrary running gradient-like “DNA” 
letters. Comparison of the 3D (a) and top (b) view. It 
is the same brush which is presented in Figure 4a. 
The size of the images is 36 x 63 µm². 
 

 

  
 

Figure 4.11. AFM images of poly(A) brush patterns in form 
of gradient-like wedges grown on the EG3/A25SH templates 
prepared by IPER-EBL (at the top). The width of the wedges 
(in µm) is “written” on their left side while the dose range 
(from-to; in mC/cm²) is “written” on their right side. These 
are 3D images presented in almost normal view geometry 
to make the numbers visible. 3D character of the wedges 
can be better seen in Figure 4.9b which presents the same 
pattern as in (a) but the view angle is different. The size of 
the images is 22 x 52 µm² 

Figure 4.12  AFM images (3D view) of several 
representative poly(A) brush patterns grown on 
the EG3/A25SH templates prepared by IPER-EBL 
(at the top) together with the height profiles (at 
the bottom) along the dashed lines shown in the 
images. a) triangle “knifes”; b) columns with 
engineered top face; c) cone-like columns - the 
same brush which is presented in Figure 4.9c; d) 
columns with helix-like engineered top face 
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(Figure 4.9a) agree well with the ellipsometric height of the homogeneous brush in Figure 4.6. 

The “amphitheatre” in Figure 4.9d is an example of an even more complex nanostructure. The 

maximum height of the brush patterns was ~150 nm (Figure 4.9c), which can be precisely 

controlled by two orthogonal experimental parameters: (1) the density of the A25SH moieties 

that is itself controlled by the irradiation dose in IPER, and whose 3´ ends serve as initiation 

sites for (2) SIEP, the experimental conditions of which, viz. nucleotide concentration, enzyme 

to nucleotide ratio and reaction time, control the chain length of each DNA strand.  

 

 

              This process is somewhat analogous to photographic development in that the 

“negative” written by EBL in the EG3 matrix is “developed” by exchange with A25SH, and the 

fabricated A25SH pattern is then “amplified” by SIEP, becoming poly(A) 3D nanostructures 

embedded in EG3 “background”. Note that brush structures exhibit a slight expansion as 

compared to the template pattern, which becomes essential for the nm range, putting certain 

limitations on the lateral size and height of these structures.73,194 As for the template patterns, 

features down to 30-50 nm can be easily fabricated (Figure 4.14). 

 

4.3 Conclusions 
A universal two-step procedure to fabricate mixed ssDNA/OEG-AT monolayers and 

patterns on gold substrates is presented here. The procedure is based on IPER and relies on 

commercially available compounds – making it easily accessible to researchers – and is highly 

flexible in terms of the composition of the mixed monolayers as well as the size and shape of 

the ssDNA patterns that can be formed on the OEG-AT background. The approach is not 

limited to the compounds used herein but can be presumably implemented with almost any 

combination of a protein-repelling OEG-AT SAM and thiolated ssDNA. The strength of the 

approach is demonstrated by its combination with TdT-catalyzed SIEP that allows amplifying 

 
 

 

Figure 4.13 Large-scale, optical images of two 
representative poly(A) brush patterns grown on the 
EG3/A25SH templates prepared by IPER-EBL. (a) triangle 
“knifes” and (b) columns with engineered top face. The AFM 
images of these patterns are presented in Figures 4.12a and 
4.12b, respectively. 

Figure 4.14  AFM image of the EG3/A25SH pattern 
prepared by IPER-EBL (1 mC/cm²). The width of 
the lines (in nm) is “written” on their left side. The 
size of the images is 40 x 37 µm². 
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ssDNA/OEG-AT patterns in the z-direction. This combination provides a new methodology to 

sculpt complex 3D DNA nanostructures on solid supports. 
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5.  Irradiation promoted exchange reactions with 
disulfide substituents  

 

        In the previous chapter, a new approach was described to prepare homogeneously mixed 

ssDNA/OEG-ATs monolayer of desired composition by IPER. Within this approach, the mixing 

of OEG-ATs and thiolated ssDNA occurs through exchange reaction between the OEG-AT 

monolayer assembled on a gold substrate and ssDNA species in solution.53 This approach relies 

on the specific affinity of thiolated ssDNA to gold, provided by the thiol anchor group. 

However, thiolated ssDNA are not the only precursors for the formation of ssDNA monolayers 

on coinage metal substrates. Alternatively, and even more frequently, asymmetric and 

symmetric disulfides are used for this purpose.54-57 In this context it was important to test the 

possibility to perform IPER with disulfide ssDNA precursors, which should broaden significantly 

the application range of IPER.  
 

Before these experiments, as a reference study, the possibility to perform IPER with a disulfide 

substituent was tested. As a test systems for the primary SAMs and molecular substituents, 

the films of non-substituted ATs on gold and symmetric dialkyldisulfides substituted with –

COOH and bromoisobutyrate (BIB) groups, respectively were used. The results are compared 

to the well-studied reference system of the same primary matrix and –COOH substituted AT as 

substituent.38 The effect of electron irradiation and duration of exchange reaction were 

monitored in detail, which gave information of both kinetics of the substitution reaction and 

composition of the resulting mixed films. The usefulness of the approach is demonstrated by 

the fabrication of complex chemical templates for the growth of polymer micro- and 

nanobrushes. These templates were prepared by IPER-EBL using a disulfide molecule bearing 

an initiator for surface initiated polymerization (SIP) as substituent. 

5.1 Preparation and characterization procedures 
5.1.1  Preparation of monolayers on Au 

A detail description of SAMs preparation can be found in chapter 10. The used  

molecules are schematically shown in figure 5.1. The primary Dodecanethiol (DDT) SAMs 

(matrix) and single-component monolayers prepared from 

the 11-mercaptoundecanoic acid (MUDA), 11,11′-

dithiobis-undecanoic acid (DTUDA), and 11,11′-

Dithiobis[1-(2-bromo-2-methylpropionyloxy)undecane] 

(DTBUD) precursors (references) were formed by 

immersion of gold coated substrates into 1 mmol 

ethanolic solutions of the respective molecules at room 

temperature. After immersion, the samples were carefully 

rinsed with pure ethanol, and blown dry with argon. No 

evidence for impurities or oxidative degradation products 

was found. Note that the DTUDA and DTBUD precursors 

were assumed to split into two COOH-AT or two BIB-AT 

species, respectively, upon the adsorption, following the 

substrate-mediated cleavage of the disulfide bond. The 

 

Figure 5.1 The target molecules of 
the present study. DDT, a 
nonsubstituted alkanethiol, served as 
the primary matrix; MUDA, DTUDA, 
and DTBUD were used as 
substituents, to fabricate the mixed 
SAMs and chemical templates. 
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same was true for the case of IPER. 
  

5.1.2  Irradiation promoted exchange reaction and EBL 
 

DDT SAMs were homogeneously irradiated with 10 eV electrons which are especially 

effective for a gentle modification of SAMs and AT SAMs, in particular.195-196 The doses were 

estimated by multiplication of the exposure time with the current density (~15 A/cm2). For 

the fabrication of complex chemical templates, the DDT SAMs were patterned by a LEO 1530 

scanning electron microscope (Zeiss, Germany) with a Raith Elphy Plus pattern generator 

system. A detail description of IPER and EBL can be found in chapter 10. The exchange 

reactions were performed by immersion of the pristine, homogeneously irradiated,  or pre-

patterned DDT SAMs into 1 mmol solution of MUDA, DTUDA, or DTBUD in ethanol either for a 

fixed (2 h) or variable time (0 - 2 h) at room temperature. After immersion, the samples were 

carefully rinsed with pure ethanol and blown dry with argon.  

5.1.3  Fabrication of polymer brushes by SI-ATRP  
 

A detail description of growth of polymer brushes on monolayers is given in chapter 

10. Single component SAMs formed from the DTBUD precursor as well as chemical patterns 

formed with DTBUD as substituent were used as templates for Surface initiated polymerization 

(SIP). BIB tail groups of BIB-ATs served as initiators for this process. Three different polymer 

brushes were prepared, viz. bushes of poly(N-isopropylacrylamide) (pNIPAAM), poly(2-

hydroxyethyl methacrylate)  (pHEMA), and  poly(ethylene glycol dimethacrylate) (pEGDMA) by 

Surface initiated Atom transfer radical polymerization (SI-ATRP). 

 

 

 
Figure 5.2  Schematic of the experimental procedure. In the first step, the primary DDT SAMs were either 
homogeneously irradiated by electrons or patterned by EBL. In the second step, irradiated and pre-patterned 
SAMs were subjected to the exchange reaction with MUDA (1) DTUDA (2), or DTBUD (3). Further, DDT/BIB-AT 
SAMs and chemical patterns were used as templates for SIP (3a).  
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5.2 Results and discussion 
The general experimental procedure is schematically illustrated in Figure 5.2. In the 

first step, the primary DDT SAMs were either homogeneously irradiated by electrons or 

patterned by EBL. In the second step, irradiated and pre-patterned SAMs were subjected to 

the exchange reaction with DTUDA, MUDA, or DTBUD. The SAMs formed with DTUDA as 

substituent were used to monitor the outcome and kinetics of IPER in the case of disulfide, 

while the DDT/MUDA monolayers served as reference. SAMs and chemical patterns formed 

with DTBUD as substituent were used as templates for SIP to demonstrate the possibilities of 

IPER in the case of disulfide. 

The homogeneous single-component and mixed films were characterized by contact 

angle goniometry. The kinetics of SIP was monitored by spectral ellipsometry using the 

polymer brushes grown on the homogeneous DDT/COOH-AT templates. The fabricated 

Nanostructured Brushes were characterized by atomic force microscopy (AFM).  

5.2.1  Outcome and kinetics of IPER 

DDT/DTUBA represents an ideal system to monitor outcome and kinetics of IPER since 

the monitoring can performed by such a relatively simple and straightforward technique as 

contact angle (CA) goniometry. The strongly hydrophobic character of the -CH3 tail groups in 

the DDT SAMs as well as strongly hydrophilic character of the –COOH tail groups in the DTUBA 

monolayers result in the distinctly different values of the contact angles of water in these 

films. Usually, -CH3 and –COOH terminated aliphatic SAMs show advancing water contact 

angles (θadv) of ~112° and ~10-15°, respectively.38,45,197-199 Mixed SAMs, comprised of the above 

constituents, exhibit some intermediate values of θadv depending on their composition. The 

fractions of the –CH3 and –COOH terminated constituents can then be derived from the 

contact angle data using the Cassie equation, cos = f1cos1 + f2cos2, where  is the contact 

angle of the mixed film, f1 and f2 are the fractions of the components 1 and 2 in this film, and 

1 and 2 are the contact angles of water for the homogeneous surfaces of these components. 
197 The large difference between the θadv values for –CH3 and –COOH terminated SAMs makes 

the use of the Cassie equation in the given case especially favorable. Advancing water contact 

angles for the mixed SAMs prepared on the basis of the primary DDT/Au monolayers which 

were either irradiated or consecutively irradiated and exposed to the DTUDA or MUDA 

solution for 2 h for the exchange purpose are presented in Figure 5.3a as functions of 

irradiation dose. Since the promoting effect of electron irradiation could be expected up to a 

dose of ~1 mC/cm2 in the case of 10 eV electrons,38,45 the dose range up to a slightly higher 

value (1.5 mC/cm2) was selected. IPER with MUDA served as direct reference to the case of 

DTUDA since the only difference between these two systems is their thiol or disulfide 

character. The contact angles for the single-component monolayers formed from DDT, DTUDA 

and MUDA serving as references to the respective mixed SAMs were estimated at 110°, 35° 

and 20° respectively. These values are close to the expected ones. The difference between the 

θadv values for the SAMs formed from DTUDA and MUDA is not that large and can be 

tentatively explained by the sensitivity of the preparation procedure in the case of –COOH 

termination of the precursor to its subtle parameters.200  
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               In the case of irradiation only, adv decreased 

continuously with increasing dose following a partial 

damage of the terminal –CH3 groups at the SAM-ambient 

interface and appearance of further defects in the 

monolayer.128,201 Both this behavior and absolute values of 

the observed changes agree well with previous 

observations for non-substituted AT SAMs on Au.38,45,202-203 

However, a much larger change of adv was achieved by the 

combination of irradiation and subsequent exchange 

reaction both in the case of MUDA (as reported)38,45 and 

most importantly in the case of DTUBA, which suggests that 

IPER with a disulfide substituent is possible. Indeed, the 

behavior observed in Figure 5.3a can only be explained by 

extensive replacement of the DDT species in the primary 

SAMs by the MUDA or DTUBA molecules, continuously 

promoted by the irradiation, which results in the formation 

of a mixed SAM with a heterogeneous –CH3/–COOH 

surface. The small extent of the exchange reaction for the 

pristine DDT SAMs (i.e. without irradiation) indicates a high 

quality and a dense molecular packing of these films.20 

              The higher adv values for DTUBA as compared to 

MUDA mean that the extent of the exchange is smaller in 

the former case, resulting in a smaller fraction of the –

COOH terminated ATs in the mixed SAMs. This behavior is 

understandable since the imbedding of the larger DTUBA 

species, having probably a complex conformation, into the 

defective DDT matrix is certainly more difficult than the 

analogous process for the MUDA moieties. Using the Cassie 

equation, relative contents of the –COOH terminated ATs in 

the mixed films prepared with DTUDA or MUDA as 

substituents were calculated. According to these curves, 

which are presented in Figure 5.3b, this content in the case 

of DTUDA is smaller than that in the case of MUDA at all 

doses. Both curves exhibit a levelling off behavior at a dose 1-1.5 mC/cm2, with ultimate values 

of ~59% and ~75% in the case of DTUDA and MUDA, respectively. Even though the former 

value is lower than the latter one, it is still high enough to provide a broad dynamical range 

both for the fabrication of mixed SAMs and chemical lithography on the basis of IPER with a 

disulfide as substituent. The above experiments regarding the outcome of IPER were 

complemented by the measurements of the kinetics of this process. To this end, primary DDT 

SAMs were irradiated with a fixed dose of 1 mC/cm2 and subjected to IPER with either DTUDA 

or MUDA (reference) as substituents for a variable time. The values of adv for the resulting 

mixed SAMs are presented in Figure 5.4a as functions of the exchange time, while the 

respective relative contents of the –COOH terminated ATs in the in the mixed films prepared 

with DTUDA or MUDA as substituents, calculated using the Cassie equation, are shown in 
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Figure 5.3  (a)  Advancing contact 
angles of water for the mixed 
DDT/COOH-AT SAMs prepared on 
the basis of the primary DDT/Au 
monolayers which were either 
irradiated (diamonds) or 
consecutively irradiated and exposed 
to the DTUDA (squares) or MUDA 
(triangles) solution for 2 h for the 
exchange purpose. (b) Relative 
contents of the -COOH terminated 
ATs in the mixed films prepared with 
DTUDA (squares) or MUDA 
(triangles) as substituents. The 
contents were calculated from the 
contact angle data in panel a using 
the Cassie equation. Both advancing 
contact angles in panel a and the 
relative contents in panel b are 
presented as functions of irradiation 
dose. The solid lines in panels a and b 
are exponential fits to the 
experimental data. The curve for 
DDT/Au in panel a is just a guide for 
the eyes. 
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Figure 5.4b. The curves in Figure 5.4b can be fitted well by 

first order exponentional functions,   f = f∞ [1- exp(-kt)], 

where,  f and f∞  are the current and saturation values of 

the COOH-AT content, respectively. This behaviour 

suggests a pseudo first order kinetics for the exchange 

reaction for both DTUDA and MUDA. The reaction rates 

for both substituents are similar; viz. 6.1 x10-4 s-1 for 

DTUDA and 6.6 x10-4 s-1 for MUDA. At the same time, the 

saturation value for the COOH-AT content for the case of 

DTUDA is noticeably lower than that for MUDA, as can be 

expected in view of the size and conformation differences. 

Note that two COOH-AT moieties in the mixed films 

prepared with DTUDA as substituent correspond to only 

one exchanged DTUDA molecule which splits into two –

COOH substituted ATs upon the adsorption. Note also that 

the saturation values for the COOH-AT content are almost 

achieved at a reaction time of 2 h for both DTUDA and 

MUDA cases, which was the reason for selecting this time 

for the experiments related to the outcome of IPER 

(Figures 5.3a and 5.3b).  

The exchange reaction occurs stochastically but is 

driven thermodynamically. As to the kinetics of this 

reaction, it should be presumably the second order 

process, since the reaction involves two participants, viz. 

the substituents in the solution and the irradiation-

induced defects in the matrix SAM. The fact is that, the 

first-order kinetics was observed with respect to the 

irradiation dose suggests, as can be expected, that one of 

the reactants, viz. substituents in the solution, is present 

in large excess as compared to the other. The difference between the thiols and disulfides is 

then presumably the exact character of the irradiation-induced defects and related probability 

of the molecular reorganization necessary for the imbedding of the disulfide moiety into the 

primary matrix. Respectively, the amount of the irradiation-induced defects which promote 

the exchange reaction in the case of disulfide substituents is smaller than that in the case of 

thiols. This is exactly what was found in the experiments. Whereas the rate-constants are 

similar in both cases, the extents of the reaction under the saturation conditions are different 

(Figure 5.4b) assuming the different amounts of the crucial reactant, i.e. irradiation-induced 

defects promoting the exchange reaction. 

5.2.2  IPER with a disulfide bearing an initiator for SIP 

The results presented in Section 5.2.1, suggest that IPER with a disulfide as substituent 

is possible. Along with this principal result, the feasibility and usefulness of the approach, 

applying it to the fabrication of protein brush patterns was demonstrated. To this end, a 

disulfide molecule bearing an initiator for SIP as substituent was selected, viz. DTBUD (Figure 

5.1). Note that the molecules bearing such an initiator - BIB group - are frequently used for 
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Figure 5.4  (a) Advancing contact 
angles of water for the mixed 
DDT/COOH-AT SAMs prepared on 
the basis of the primary DDT/Au 
monolayers which were 
consecutively irradiated (1 mC/cm²) 
and exposed to the DTUDA (squares) 
or MUDA (triangles) solution for the 
exchange purpose as functions of the 
exposure time. (b) Relative contents 
of the -COOH terminated ATs in the 
mixed films prepared with DTUDA or 
MUDA as substituents as functions of 
the exposure time. The contents 
were calculated from the contact 
angle data in panel a using the Cassie 
equation. The solid lines in panels a 
and b are exponential fits to the 
experimental data. 
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SIP,134,138,141,204-210 both as thiols 138,204,206,208-209and 

disulfides.141,205,207 In most cases, these molecules were 

custom-synthesized but, since recently, they are also available 

commercially in the form of disulfides. Such a disulfide was 

used in the experiments. 

Advancing contact angles of water for the mixed DDT/BIB-AT 

SAMs prepared on the basis of the primary DDT/Au 

monolayers which were either irradiated (diamonds) or 

consecutively irradiated and exposed to the DTBUD (circles) 

solution for 2 h for the exchange purpose are presented in 

Figure 5.5a as functions of irradiation dose. Relative content of 

the BIB terminated moieties in the mixed films prepared with 

DTBUD as substituent is presented in Figure 5.5b as a function 

of irradiation dose. These values were calculated from the 

contact angle data in panel a using the Cassie equation. Note 

that the advanced contact angle of water for the single 

component SAM prepared from the DTBUD precursor was 

estimated at 65°. The difference to the analogous value for 

DDT/Au (110°) is not that large as in the case of MUDA, 

resulting in a lower accuracy of the relative content values in 

Figure 5.5b. In addition, due to the bulk character of the BIB 

tail group, the respective DDT/BIB-AT mixed SAMs will be 

quite rough on the molecular scale, which can affect the adv 

values to some extent. Therefore, the relative content of the 

BIB-ATs presented in Figure 5.5b can be considered as a 

coarse estimate only. According the figure, this content can be 

varied continuously from 10 to 72% by a dose variation from 0 

to 1 mC/cm2. Significantly, the saturation behaviour is not 

observed yet at 1 mC/cm2, which means than even higher 

contents of the BIB-ATs are possible at higher doses. 

           The above experiments on the outcome of IPER were 

complemented by the measurements of the kinetics of this process, similar to the case of 

DTUDA (Figure 5.4). To this end, the primary DDT SAMs were irradiated with a fixed dose of 1 

mC/cm2 and subjected to IPER with DTBUD as substituent for a variable time. The values of adv 

for the resulting mixed SAMs are presented in Figure 5.6a as a function of the exchange time, 

while the respective relative content of BIB-ATs in the mixed SAMs are presented in Figure 

5.6b. The content values were calculated using the Cassie equation. The curve in Figure 5.6b 

can be fitted well by the same first order exponentional function as in the case of DTUDA or 

MUDA (see previous section), suggesting a first order kinetics for the exchange reaction of 

DTBUD. The reaction rate was estimated at 9.4 x10-4 s-1 which is even faster than in the case of 

DTUDA. Accordingly, the saturation value for the content of BIB-ATs in the mixed SAMs is 

almost achieved at a reaction time of 1 h, so that 2h selected by us for the experiments related 

to the outcome of IPER (Figure 5.5) were a reasonable choice. The content at saturation 

(~70%) is somewhat higher than that in the case DTUDA (59%, see previous section), which can 

 

Figure 5.5  (a)  Advancing contact 
angles of water for the mixed 
DDT/BIB-AT SAMs prepared on the 
basis of the primary DDT/Au 
monolayers which were either 
irradiated (diamonds) or 
consecutively irradiated and exposed 
to the DTBUD (circles) solution for 2 
h for the exchange purpose. (b) 
Relative content of the BIB 
terminated ATs in the mixed films 
prepared with DTBUD as substituent. 
The contents were calculated from 
the contact angle data in panel a 
using the Cassie equation. Both 
advancing contact angles in panel a 
and the relative contents in panel b 
are presented as functions of 
irradiation dose. The solid lines in 
panels a and b are exponential fits to 
the experimental data. The curve for 
DDT/Au in panel a is just a guide for 
the eyes. 
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be tentatively explained by the dependence of the 

outcome and kinetics of IPER on the exact molecular 

composition of the substituent. In addition, the value for 

DTBUD can be somewhat overestimated because of the 

limited accuracy of the evaluation procedure in the given 

case.  

          Previous two sections demonstrate clearly the 

possibility of IPER with disulfides as substituents. It is 

generally assumed that disulfides do not dissociate 

spontaneously in solution but only upon the direct 

interaction with the substrate, which results in the 

cleavage of the disulfide bond and adsorption of both 

chain parts as thiolates.20,211 The respective process can 

occur easily in the case of the SAM formation, when the 

substrate can be freely accessed by the disulfide 

moieties. However, such a direct access is not possible in 

the case of IPER, in which the substrate can only be 

accessed by the molecular exchange. The major 

hindrance is then the larger size of the disulfide moiety as 

compared to the constituents of the primary, matrix 

SAM. This means that the exchange reaction should 

involve the expelling of at least two of these constituents. 

One possibility then is the molecular domains of several 

damaged SAM constituents which can be simultaneously 

exchanged for a larger species. However, assuming the 

low irradiation doses used in the IPER experiments, one 

would rather expect the damage of the individual 

molecules which will then be stochastically distributed in 

the pristine matrix,38 even though the formation of small amount of two-adjacent-molecules 

defects cannot be completely excluded. In addition, IPER has also been performed with the 

thiolated single-stranded DNA species as substituents.53 The diameter of these species is by a 

factor of 7-8 larger than the area taken by a constituent of the matrix SAM, and it is not 

realistic to assume that the clusters of 7-8 damaged molecules can be formed by irradiation. 

Thus, it will be more obvious to assume that the damaged molecules in the matrix SAM serve 

as initiator sites for the exchange reaction which probably involves partial squeezing or 

expelling of the neighbouring species.   

5.2.3  SIP on IPER-generated chemicals templates 
 

The data presented in the previous section suggest that a high fraction of the BIB 

terminated ATs can be incorporated into the DDT matrix by IPER with DTBUD as substituent. 

This process can be performed not only homogeneously but also in a lithographic way - by the 

combination of IPER with EBL. This should enable the preparation of complex chemical 

patterns which can serve as templates for the growth of polymer brushes by SIP starting from 

the initiator groups of the imbedded BIB-AT species. The main advantage of IPER-EBL as 

 

Figure 5.6 (a) Advancing contact 
angle of water for the mixed 
DDT/BIB-AT SAMs prepared on the 
basis of the primary DDT/Au 
monolayers which were 
consecutively irradiated (1 mC/cm²) 
and exposed to the DTBUD (circles) 
solution for the exchange purpose as 
a function of the exposure time. (b) 
Relative content of the BIB 
terminated ATs in the mixed films 
prepared with DTBUD as substituent 
as a function of the exposure time. 
The contents were calculated from 
the contact angle data in panel a 
using the Cassie equation. The solid 
lines in panels a and b are 
exponential fits to the experimental 
data. 
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compared to other methods used for the preparation of 

polymer brush patterns204,206-208 is the possibility to tune 

precisely the density of the initiator groups over the 

template.49,53-55 This can be easily achieved by the 

selection of a proper irradiation dose which defines the 

local fraction of the BIB-AT species imbedded into the 

DDT matrix.  

As test polymers for SIP, pNIPAAM, pHEMA, and 

pEGDMA were used. pNIPAAM has significant potential 

in technology and biomedical applications.207 Because 

of the variety of useful properties, it is probably one of 

the most frequently used polymers for SIP and in this 

regard, a suitable reference system.204,206-208 pHEMA has 

also good potential for biomedical applications; an 

additional advantage of this polymer is the possibility of 

its functionalization with a variety of chemical 

species.141 Similarly, pEGDMA is also of interest in 

biological and biomedical context; its special feature, 

useful for some applications, is a high degree of cross-

linking. 

Before performing lithographic experiments, 

the formation of homogeneous polymer brushes on the 

single components BIB-AT monolayers formed upon the 

adsorption of DTBUD on gold were tested. The respective data are presented in Figure 5.7 

where the ellipsometric thicknesses of the pNIPAAM, pHEMA, and pEGDMA brushes are 

depicted as functions of the reaction time. Both the kinetics of the brush formation and the 

ultimate thickness values agree well with the literature data. In particular, the curves for 

pNIPAAM and pHEMA can be fit well by exponential functions suggesting, in agreement with 

literature data,141,207 a pseudo first order kinetics for the surface-initiated atom-transfer radical 

polymerization in both cases; the derived values of the rate constant are 0.58 and 0.48 h-1, 

respectively. The maximal thickness of the pNIPAAM brush (~430 nm) is higher than the 

reported values of 200-300 nm,206-207,212 while that of the pHEMA brush (~210 nm) is similar to 

the values reported for the given reaction time.141 The experimental points for the pEGDMA 

brush can be fit well by a linear function, also in accordance with literature data.205 The growth 

of this brush occurred much slowly as compared to the pNIPAAM and pHEMA cases, which 

agrees with the literature data as well.205  The only difference was slightly lower (by ~25%) 

values of the brush thickness, which was presumably related to subtle differences of the 

preparation procedures. 

The above kinetic data were obtained after the optimization of the preparation 

procedures under the specific conditions of our laboratory. An important information from 

these experiments was the necessary duration of SIP for each of the selected polymers. This 

parameter was set to 7, 3, and 40 h for the preparation of pNIPAAM, pHEMA, and pEGDMA 

brush patterns, respectively. AFM images of representative pNIPAAM, pHEMA, and pEGDMA 

brush patterns grown by SIP on the DDT/BIB-AT templates prepared by IPER-EBL with DTBUD 

 

Figure 5.7 Ellipsometric thicknesses of 
the homogeneous pNIPAAM, pHEMA, 
and pEGDMA brushes as functions of 
the reaction time. The brushes were 
grown on the homogeneous BIB-AT 
templates by SIP. The solid lines in the 
top and middle panels are exponential 
fits to the experimental data. The solid 
line in the bottom panel is a linear fit to 
the experimental data. 
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as substituent are presented in Figures 5.8, 5.9, and 5.10, respectively, along with the height 

profiles along the lines of the respective colour shown in the images. All the patterns were 

initially prewritten by EBL in the primary DDT templates and then “developed” by the 

exchange reaction with DTBUD. Upon the development step, each local dose was transformed  

in the respective density of the BIB-AT moieties. This density, in its turn, was transformed in 

the local height of the polymer brush, resulting in formation of complex gradient-like pattern 

as shown in Figures 5.8-5.10. The gradient character is especially obvious in the wedge 

patterns in Figures 5.8b and 5.8c where a continuous increase of the brush height with 

increasing dose is observed. As known from the previous SIP experiments,39,44,53,194 a higher 

grafting density leads to a higher polymer brush because of the straightening of the polymer 

chains within the feature. The maximum heights of the brush patterns agree well with the 

values from the kinetic experiments (Figure 5.7) in the case of pNIPAAM and pHEMA (Figures 

5.8 and 5.9). The situation is, however, different in the case of pEGDMA. The maximum height 

of the brush pattern in Figure 5.10 (~20 nm) is much smaller than the height of the 

homogeneous brush for the same duration of SIP (~100 nm). So it was also assumed that, in 

view of the very rough background of the pEGDMA brush pattern (Figure 10a), that the growth 

of this brush occurred not only on the areas containing the BIB moieties but also on the areas 

comprised of DDT only (–CH3 termination). The reason for such a limited selectivity is unclear; 

  

 

Figure 5.8  AFM images (3D view) of representative 
pNIPAAM brush patterns grown by SIP (7 h) on the 
DDT/BIB-AT templates prepared by IPER-EBL with DTBUD 
as substituent as well as height profiles along the lines of 
the respective colour shown in the images. (a) a nanorose; 
(b,c) wedges with widths of 2, 1, 0.5, and 0.25 µm; the 
dose along the wedges was varied from 0 to 1 mC/cm² (b) 
and from 0 to 3 mC/cm² (c). The lateral size of the images 
in panels a, b, and c can be derived from the respective 
height profiles in panels d, e, and f, respectively. The 3D 
structures in all patterns were intentionally sculptured by 
the gradient-like templates. 

Figure 5.9 AFM images (3D view) of representative 
pHEMA brush patterns grown by SIP (3 h) on the 
DDT/BIB-AT templates prepared by IPER-EBL with 
DTBUD as substituent as well as height profiles 
along the lines shown in the images. (a,c) 
nanoroses; (b,f) cone columns. The lateral size of 
the images in panels a and b can be derived from 
the respective height profiles in panels d and e, 
respectively. The size of the images in panels c and f 
is 69x65 and 35x33 µm², respectively. The 3D 
structures in all patterns were intentionally 
sculptured by the gradient-like templates. 
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the fabrication of well-defined pEGDMA brush patterns might require a further optimization or 

even significant modification of the SIP procedure in this particular case. 

           As for the pNIPAAM and pHEMA 

brush patterns, they exhibit height 

saturation at high irradiation doses, which 

is especially obvious in the wedge 

patterns in Figures 5.8b and 5.8c. This 

effect can be monitored in detail looking 

at the respective height profiles in Figures 

5.8e and 5.8f and explained by the onset 

of irradiation-induced cross-linking.38,45 

Such a cross-linking, appearing at 

irradiation doses above 1-1.5 mC/cm2 for 

10 eV electrons, hinders IPER, which is the 

reason for the saturation of this process 

at higher doses as shown in Figures 5.3b 

and 5.5b. In the wedges presented in Figure 5.8b, which were written with a dose variation 

from 0 to 1 mC/cm2, the saturation occurs at a ~2/3 of the wedge length (Figure 5.8e) 

corresponding to a dose of ~0.5-0.7 mC/cm2. In the case of the wedges in Figure 5.8c, which 

were written with a dose variation from 0 to 3 mC/cm2, the saturation takes place at an even 

lower dose (Figure 5.8f). The difference to the value of 1-1.5 mC/cm2 for 10 eV electrons is 

related to the higher efficiency of the 1 keV electrons used for EBL (a factor of 2-2.5).194  

Another prominent effect observed in the wedge patterns is a decrease in the 

maximum height of the wedge stripes with decreasing width. Such a behavior has been 

observed previously for polymer brushes on different templates and was explained by the 

widening of the fabricated features due to the spreading of the side chains.43,194,213 This 

imposes some limitations on the lateral size of these features. Nevertheless, extended sub-

micrometer and nanometer-scale structures of sufficient height can be prepared even within 

these limitations. 

5.3  Conclusions 
Using a model system of a non-substituted alkanethiolate SAM on gold as primary 

matrix and –COOH substituted dialkyldisulfide as substituent, it was demonstrated that IPER 

can be performed with disulfide substituents in the same manner as in the case of thiols. The 

kinetics of the exchange reaction was found to be similar in both cases but the extent of this 

reaction, i.e. the ultimate portion of the substituent moieties in the resulting mixed SAMs, 

occurred to be smaller for disulfides.  The feasibility and practical usefulness of the approach 

were demonstrated by the experiments with another disulfide substituent - a molecule 

bearing the BIB tail group which can serve as an initiator for SIP. Using this substituent and 

combining IPER with EBL, a variety of complex polymer brush patterns were prepared by SIP.  

 

Figure 5.10 a) AFM image (3D view) of a representative 
pEGDMA brush pattern grown by SIP (40 h) on the 
DDT/BIB-AT template prepared by IPER-EBL with 
DTBUD as substituent as well as b) a height profile along 
the line in the image. The lateral size of the image can 
be derived from the height profile. The 3D structure in 
the pattern was intentionally sculptured by the 
gradient-like template. 
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 6. Fabrication of ssDNA/oligo(ethylene glycol) 
monolayers by promoted exchange reaction with 
disulfide substituents 

 

In the previous chapter, It was described that disulfides are suitable for IPER, even 

though less efficient than thiols, by the experiments with COOH-substituted dialkyl disulfide 

serving as substituents for non-substituted AT SAM.87 

In this context, the experimental results on the fabrication of ssDNA/OEG-AT 

monolayers from the ssDNA-based disulfide precursors, serving as substituents for the OEG-AT 

matrix exposed to electrons within the framework of the IPER approach is presented here. As a 

test ssDNA moiety a well-defined adenine-based homo-oligonucleotide (25-mer), arranging it 

as a thiolate (reference),53 asymmetric disulfide, and symmetric disulfide were chosen. Along 

with the application of the above precursors in the framework of the IPER approach, a 

comparative characterization of the ssDNA monolayers fabricated on their basis within the 

standard immersion procedure was performed.20 On one hand, these monolayers served as 

references for the ssDNA/OEG-AT films prepared by IPER. On the other hand, they are of 

interest on their own, providing information on the efficiency of a particular precursor. 

6.1 Preparation and characterization procedures 
6.1.1 Preparation of disulfide DNA films on Au 

The ssDNA monolayers were prepared in accordance with literature protocols.12,13 as 

The used  molecules are schematically shown in Figure 6.1. Briefly, Au substrates were 

immersed in 3 µM solution of A25SH, 

A25SSOH, or A25SSA25 in 1 M CaCl2-TE 

buffer (1 M CaCl2, 10 mM Tris-HCl, 1 mM 

EDTA, pH 7.0) for 40 h at a temparatute of 

37°C. Afterward, the samples were rinsed 

with Millipore-grade water, sonicated with 

water for 60 s followed by rinsing with water 

for 0.5 min to remove loosely bound A25SH 

species. Finally, the samples were blown dry 

with Ar.78 

6.1.2 IPER with symmetric and asymmetric disulfides DNA precursors 
 

As first step of the IPER procedure, the primary EG3S films were homogeneously 

irradiated with 10 eV electrons provided by a flood gun. The doses were estimated by 

multiplication of the exposure time with the current density (~15 μA/cm2). The electron gun 

was mounted at a distance of ~15 cm from the sample to ensure uniform illumination. 

Subsequent exchange reactions were carried out by immersion of the irradiated EG3S films in 

 

Figure 6.1. The precursor molecules of the present 
study, along with their abbreviations and schematic 
representation of the repeating units 
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a 3 μM solution of A25SH, A25SSOH, or A25SSA25 in 1 M CaCl2-TE buffer for 3 h at a 

temperature of 37°C. After immersion, the samples were carefully rinsed with Millipore-grade 

water, sonicated for 60 s followed by rinsing with water for 60 s to remove loosely bound 

species. Finally, they were blown dry in an argon stream. Note that the duration of the 

exchange reaction was optimized for A25SH53 and kept the same for A25SSOH and A25SSA25 

to make possible direct comparison. 

6.2 Results and Discussion 
The general experimental procedure is schematically illustrated in Figure 6.2. A25S and 

EG3S/A25S monolayers were characterized by laboratory and synchrotron-based X-ray 

photoelectron spectroscopy (XPS) and angle-resolved near-edge X-ray absorption fine 

structure (NEXAFS) spectroscopy. Laboratory XPS was used to determine the packing density of 

the A25S monolayers and to monitor outcomes of the IPER procedure in the case of the 

EG3S/A25S films. 

6.2.1 A25S films 
 

The packing densities of the 

A25SH monolayers prepared at the 

identical conditions from the thiolated 

and disulfide precursors differ 

significantly. The respective values are 

presented in Figure 6.3, corresponding to 

molecular areas of ~190, ~150, and ~120 

Å2 for the A25SSA25, A25SH, and 

A25SSOH precursors, respectively. The 

densities58 were obtained following the 

approach described in ref 58  and, in each 

case, represent an average over several 

samples prepared within different 

measurement series. The values are 

reasonable and well comparable to the 

previous results, being among the highest 

packing densities reported60,71 so far for ssDNA monolayers on gold.53,58 

The lowest packing density was observed for the symmetric disulfide precursor, which 

is well understandable in view of the sterical hindrance associated with the presence of two 

bulky chain parts stochastically orientated with respect to one another. It is then difficult to 

achieve a direct contact of the disulfide moiety with the substrate upon adsorption, which is a 

prerequisite for the cleavage of the disulfide bond with the subsequent release of two A25S 

species bound to the substrate over the thiolated anchors. Otherwise, the binding to the 

substrate will be weak and A25SSA25 will desorb. The above restrictions exist from the very 

beginning of the assembly process, becoming even more severe in its course, since the 

assembled A25S species will provide additional hindrance for the bulky A25SSA25 species to 

make a proper contact with the substrate.  

 

 
Figure 6.2  Schematic of the experimental procedure. In 
the first step, the primary EG3S SAM was 
homogeneously irradiated by electrons. In the second 
step, irradiated SAM was subjected to the exchange 
reaction with A25SSA25. The approach is also analogous 
for A25SSOH and A25SH (reference). 
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Surprisingly, the highest packing 

density is not observed for the thiol (A25SH) 

but for asymmetric disulfide (A25SSOH) 

precursor. Obviously, the comparably small 

MH moieties do not represent any 

additional sterical hindrance for the proper 

assembly of the A25S species on the 

substrate starting from the A25SSOH 

precursor. It is, however, difficult to say why 

the asymmetric disulfide is even more 

efficient than thiol in the given case. The 

MH moieties adsorbed along with the A25S 

species after the cleavage of the disulfide 

bonds do not take much space in view of 

their comparably small cross section (~21.4 

Å2). Probably, these species assist the 

adsorption of the subsequent A25SSOH moieties, resulting in a denser molecular packing as 

compared to the A25SH case. Alternatively, the presence of the coadsorbed MH moieties can 

prevent the direct contact of the adenine bases of the A25S species with the substrate, which 

can result in an increase of the molecular 

area. It is well known that adenine has a 

particular affinity to gold,55,214 which is of 

course weaker than the thiolate bond, but 

probably strong enough to promote an 

additional anchor point over the direct 

base-substrate bond. 

               In spite of the differences in the 

packing density, the A25S films prepared 

from the different precursors are identical 

in terms of the chemical composition, 

apart from the presence of the 

comparably small MH moieties in the 

A25SSOH derived films. Indeed the 

characteristic XP and NEXAFS spectra of 

the A25SH, A25SSOH, and A25SSA25 

derived A25S monolayers in Figures 6.4 

and 6.5 are almost identical, apart from 

some intensity differences related mostly 

to the slight deviations in the positioning 

of the individual samples during the 

measurements at the synchrotron 

radiation facility. The packing density 

differences between the A25SSOH and 

A25SH derived monolayers are hardly seen 

in the spectra, because of the saturation 

 
Figure 6.3 Packing density of the A25S monolayers 
prepared from the A25SSA25, A25SH, and A25SSOH 
precursors.  
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Figure 6.4  P 2p (a), C 1s (b), N 1s (c), and O 1s (d) XP 
spectra of the A25S monolayers prepared from the 
A25SSA25, A25SH, and A25SSOH precursors; the spectra 
are marked respectively. The C 1s, N 1s and O 1s spectra 
are decomposed into individual emissions (solid gray 
lines).  
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of the photoemission (XPS) and PEY (NEXAFS) signals from these relatively thick films.193,215 The 

lower packing density of the A25SSA25 derived films is exhibited in some of the spectra as 

lower intensity of the characteristic features. 

 

A detailed description and assignments of the individual emissions in the XP spectra 

and absorption resonances in the NEXAFS spectra of the A25S monolayers can be found 

elsewhere. 53,55-56,58,79,216-218 It is noted that the spectra in Figures 6.4 and 6.5 exhibits all 

expected characteristic emissions and 

resonances of adenine-based homo-

oligonucleotides, with no additional 

features observed. In particular, the P 2p 

and O 1s XP spectra (Figures 6.4a and 

6.4d) as well as O K edge NEXAFS spectra 

(Figure 6.5b) are exclusively 

representative of the A25 backbone since 

the adenine nucleobase does not contain 

oxygen and phosphorus (Figure 6.1). The N 

1s XP spectra (Figure 6.4c) and N K-edge 

NEXAFS spectra (Figure 6.5c) are 

exclusively representative of adenine, 

exhibiting the characteristic emissions at 

binding energies of ~399.5 and ~401.2 eV 

(with a larger spectral weight for the 

former peak) and π*-like adsorption 

resonances at photon energies of ~399.4 

eV (1) and ~401.3 eV (2).56,192 The C 1s XP 

spectra (Figure 6.4a) and C K-edge NEXAFS 

spectra (Figure 6.5a) are representative of 

both the adenine nucleobase and A25 

backbone. The intensity relations between 

the individual emissions or resonances 

within a particular XP or NEXAFS spectrum 

are typical of adenine based homo-

oligonucleotides. This underlines a high 

quality and contamination-free character 

of the fabricated A25S monolayers.  

Based on the linear dichroism effects in X-ray absorption (chapter 10), the 

orientational order in the A25S monolayers were studied. A convenient way to get a 

qualitative impression of these effects is drawing of so called difference spectra, viz. the 

difference between the spectra acquired at normal (90°) and grazing (20°) incidence of X-rays. 

Such spectra are presented in Figure 6.5d for the N K-edge. These spectra exhibit pronounced 

peaks at the positions of the absorption resonances 1 and 2, which suggests a certain 

orientational order in the A25S monolayers. Since the resonances 1 and 2 have the π* 

character and their transition dipole moments (TDMs) are orientated perpendicular to the 

 
Figure 6.5  C (a), N (b), and O (c) K-edge NEXAFS spectra 
of the A25S monolayers prepared from the A25SSA25, 
A25SH, and A25SSOH precursors; the spectra are marked 
respectively. The spectra were acquired at an X-ray 
incidence angle of 55°. (b) Difference between the N K-
edge spectra collected at normal (90°) and grazing (20°) 
angles of X-ray incidence for the above samples. The 
characteristic absorption resonances and the respective 
difference peaks are marked by numbers. The vertical 
scale of panel (d) is scaled up by a factor of 3.5 as 
compared to that of panel (c). 
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nucleobases and, consequently, parallel to the A25 strands, the negative sign of the difference 

peaks implies that the strands are predominantly oriented upright to the substrate surface. 

The extent of this orientation is however limited since the amplitude of the difference peaks is 

small as compared to the intensity of the respective resonances in the 55° spectra (consider 

the difference in the vertical scales in Figures 6.5c and 6.5d). The respective intensity 

modulation amplitude,54,56 i.e. the change of the normalized intensity of the resonances 1 and 

2 at going from grazing to normal incidence is in a range of 0.82-0.84 for all A25S monolayers, 

with the larger value corresponding to the case of the A25SSA25 precursor. Also the average 

tilt angle of the A25 strands in the A25S monolayers, determined within the standard 

formalism,148 modified slightly for the case of ssDNA monolayers,54,56,216 is about 32-33°, with 

the larger value corresponding to the A25SSA25 case. Thus, the orientational order is slightly 

better in the A25S monolayers prepared from the A25SH and A25SSOH precursors as 

compared to the film fabricated from the A25SSA25 compound, which correlates to some 

extent with their packing densities (see above). Note, however, that the degree of the 

orientational order is rather low in all studied studied films, which is typical of this kind of 

systems, including the values of the intensity modulation amplitude and average tilt angle.54,216 

There is presumably a certain distribution of different orientations for the individual strands, 

including irregular bends in the backbone, along with rotation of individual nucleobases 

relative to the backbone, occurring to some extent as well. 

6.2.2 Outcome of IPER 
 

The above A25S films served as references to determine the compositions of the mixed 

EG3S/A25S monolayers prepared by IPER with the A25SH, A25SSOH, or A25SSA25 

substituents. This composition was monitored using the N 1s and P 2p XP spectra, following 

the established procedure.53 These 

spectra are shown in Figures 6.6 and 

6.7 for the A25SSOH and A25SSA25 

case, respectively; the analogous 

data for the A25SH substituent can 

be found elsewhere.53 As seen in the 

figures 6.6 and 6.7, the spectra of 

the EG3S films subjected to IPER 

with either A25SSOH or A25SSA25 

substituents exhibit the 

characteristic emissions of the 

adenine-based homo-

oligonucleotides (Figure 6.4), which 

means that IPER occurs with ssDNA-

substituted disulfides in a similar 

way as with the thiols. As 

mentioned above, the disulfide 

bond is cleaved upon the 

adsorption, resulting in either A25S 

and MH species (A25SSOH) or two 

 
Figure 6.6 N 1s (a) and P 2p (b) XP spectra of the EG3S/A25S 
monolayers prepared by IPER with A25SSOH as substituent. The 
spectra of the A25S film prepared from the same precursor are 
given at the bottom of each panel as references. The irradiation 
doses (IPER) and portions of the A25S species in the films, 
normalized to the value for the A25S monolayer (100%), are 
given at the respective spectra.  
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A25S moieties mixed with the 

residual EG3S molecules. 

Significantly, the exchange reaction 

does not occur without irradiation, 

which has been previously 

demonstrated for ssDNA-

substituted thiols53 and shown now 

for the A25SSA25 case (top curves 

in Figure 6.7). This has important 

implications for IPER based 

lithography, assuring the absence of 

the ssDNA species beyond 

predefined spots treated with 

electron beam.53,216 

        

             Comparing the intensities of 

the characteristic emissions in the N 

1s XP spectra of the EG3S/A25S 

films with the analogous values for 

the respective, reference A25S monolayers (bottom spectra in Figures 6.6a and 6.7a), the 

relative extent of the A25S species in these films could be estimated. The respective data are 

presented in Figure 6.8. According to these data, A25SSOH substituent behaves similar to the 

A25SH one, whereas A25SSA25 is noticeably less efficient. Interesting is a particular low 

efficiency of IPER at low doses in the latter case, which is presumably explained by especially 

hard sterical demands associated with the adsorption of A25SSA25. This process involves 

presumably exchange of more molecules that in the case of A25SH or A25SSOH, so that a 

certain extent of damage, associated with a 

comparably high dose, is required to make it 

efficient. 

              As seen in Figure 6.8, the mixed 

EG3S/A25S films with a portion of the A25S 

moieties of 65- 70% can be prepared by IPER 

with both thiol and disulfide substituents at 

sufficiently high doses (1.0-1.2 mC/cm2). 

However, this portion in each particular case 

(A25SH, A25SSOH or A25SSA25) is related to the 

packing density of the A25S species in the 

respective reference A25S film (section 6.2.1). 

The latter parameter depends, however, on the 

precursor and is distinctly different in the A25SH, 

A25SSOH, and A25SSA25 cases (Figure 6.3). To 

be able to compare the compositions of the 

EG3S/A25S films for the different substituents, a 

general normalization is necessary. As such, the 

 
Figure 6.7  N 1s (a) and P 2p (b) XP spectra of the EG3S/A25S 
monolayers prepared by IPER with A25SSA25 as substituent. The 
spectra of the A25S film prepared from the same precursor are 
given at the bottom of each panel as references. The irradiation 
doses (IPER) and portions of the A25S species in the films, 
normalized to the value for the A25S monolayer (100%), are 
given at the respective spectra.  
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Figure 6.8 Portions of the A25S species in the 
EG3S/A25S films prepared by IPER with 
A25SSOH (square), A25SH (up triangle), and 
A25SSA25 (down triangle) as substituents as 
functions of irradiation dose. The values were 
derived from the N 1s XP spectra (Figures 6.6 
and 6.7 and ref 53)  ; the intensities of the N 1s 
signal were normalized to the N 1s intensities for 
the respective A25S films.  
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packing density of the A25S film prepared from the A25SSOH precursor was selected, since this 

was the highest packing density achieved with the different precursors in this study.  

The generally normalized portions of the A25S species in the mixed EG3S/A25S films 

prepared by IPER with the A25SH, A25SSOH and A25SSA25 substituents are presented in 

Figure 6.9a as functions of the irradiation dose. The absolute packing densities of these species 

can then be easily calculated on the basis of the 

reference density for the film prepared from the 

A25SSOH precursor (Figure 6.3). Similar to Figure 6.8, 

the curves for the A25SH and A25SSOH substituents are 

very close to one another, whereas that for A25SSA25 is 

distinctly different. This behaviour supports above 

statement that the presence of the short chain MH 

segment does not affect the efficiency of the promoted 

exchange reaction to a noticeable extent, while the MH 

moieties releasing after the substrate-induced cleavage 

of the disulfide bond become a part of the resulting 

EG3S/A25S films. Since they are comparably small, they 

hardly affect the molecular organization in the films. In 

contrast, the exchange reaction with the A25SSA25 

substituents is much less efficient as compared to the 

A25SH and A25SSOH counterparts, especially at low 

doses, at which the difference between the curves is 

especially pronounced. Due to bulky character of the 

A25SSA25 species, the above exchange reaction should 

involve more molecules in the primary EG3S than in the 

A25SH or A25SSOH case. It is therefore only efficient 

after an accumulation of a certain extent of damage by 

many EG3S molecules, which occurs starting from a 

comparably high dose of 0.6 mC/cm2 (Figure 6.9a). 

Above this dose, the slope of the portion vs. dose curve 

for A25SSA25 is similar to the A25SH and A25SSOH 

ones, even though the resulting contents of the A25S 

species in the mixed EG3S/A25S films are considerably lower. 

            Along with the XPS measurements, the efficiency of IPER could be monitored by the 

ellipsometry. The relevant parameter is then the difference between the thickness of the 

mixed EG3S/A25S film and that of the primary EG3S template. This difference is proportional 

to the portion of the A25S species in the mixed films. The respective results are presented in 

Figure 6.9b. The curves in this figure mimic those in Figure 6.9a, exhibiting similar behaviour in 

the case of A25SH and A25SSOH and a distinctly different behavior in the case of A25SSA25. 

Also the shapes of the corresponding curves in Figures 6.9a and 6.9b are very similar. The 

above findings are an additional proofs for the conclusions made on the basis of Figure 6.9a. 

 
Figure 6.9 a) Portions of the A25S species 
in the EG3S/A25S films prepared by IPER 
with A25SSOH (square), A25SH (up 
triangle), and A25SSA25 (down triangle) as 
substituent as functions of irradiation 
dose.  The values were derived from the N 
1s XP spectra (Figures 6.6 and 6.7 and ref 
53); the intensities of the N 1s signal were 
normalized to highest packing density of  
A25S films. (b) Difference between the 
thicknesses of the EG3S/A25S and EG3S 
monolayers. The dashed curves are guides 
for the eyes. 
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6.3 Conclusions 

The ability of disulfides ssDNA precursors to serve as substituents in IPER, resulting in 

mixed OEG-AT/ssDNA monolayers was tested. As representative disulfide, A25SSOH and 

A25SSA25 were found to be suitable for IPER. The efficiency of A25SSOH as substituent 

occurred to be similar to that of A25SH. The highest quality was achieved in the case of the 

A25SH and A25SSOH precursors, with the latter film exhibiting the highest packing density but 

slightly lower degree of the orientational order. In contrast, the A25SSA25 derived monolayers 

exhibited comparably low packing density and orientational order which was explained by the 

bulky character and conformational flexibility of A25SSA25. The portion of the A25S species in 

the resulting EG3S/A25S monolayers exhibited an almost linear dependence on the irradiation 

dose, with ultimate values of 55-65% at doses of 1.0-1.2 mC/cm2. In contrast, A25SSA25 

showed two somewhat different regimes. At higher doses, the portion of the A25S species 

showed a similar increase with increasing dose as in the A25SH and A25SSOH case, but the 

absolute values were somewhat lower, achieving ~40% at a dose of 1.2 mC/cm2. Similar, to the 

case of the reference films, the particular behavior of A25SSA25 was associated with its bulky 

character and conformational flexibility. This required involvement of a large amount of the 

EG3S molecules in the exchange process, which is only possible at high irradiation dose, 

necessary to produce sufficient damage to the primary EG3S monolayer. 
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7. Fabrication of ssDNA/Oligo(ethylene glycol) 
monolayers and patterns by exchange reaction promoted 
by ultraviolet light irradiation 

 

In the previous chapters, it was clearly demonstrated that thiolated and disulfide 

ssDNA molecules can be embedded into bio repulsive background (OEG-AT) by electron 

irradiation promoted exchange reaction, resulting in the formation of mixed film. If irradiation 

is performed homogeneously, mixed ssDNA/OEG-ATs film of desired composition can be 

prepared. If irradiation is carried out in lithographic fashion, ssDNA/OEG-ATs spots of desired 

composition and shape can be “written” in the biorepulsive ssDNA/OEG-ATs matrix, allowing 

the precise control of the packing density of ssDNA within each individual spot.53,216 

In spite of all above advantages, the use of the IPER approach is not always easy, since 

it requires high vacuum and, in the case of advanced patterning, relies on complex 

experimental setups such as scanning electron microscopes (SEM) with pattern generator 

systems.39,53,59-60 In contrast, the use of this approach in combination with ultraviolet (UV) 

lithography does not require such complex equipment and can be performed under ambient 

conditions.41,61  

In view of the above arguments, the experimental results on the fabrication of 

ssDNA/OEG-ATs monolayers and patterns by UV light promoted exchange reaction (UVPER) 

approach are presented here. The UV irradiation was performed at two different wavelengths, 

viz. 254 and 365 nm. UV light with a wavelengths of ~254 nm is most frequently used for SAM 

patterning, requiring, however, quite expensive UV laser sources and UV compatible optics in 

the case of high resolution patterning.64,68-69 UV light with a wavelengths of ~365 nm or even 

higher (up to 390 nm) is also suitable for SAM patterning41,61 and can be potentially combined 

with well-developed standard optics as well as with commercial patterning strategies such as 

maskless lithography.70-71 

7.1 Preparation and characterization procedures 
7.1.1 Preparation of mixed A25SH/EG3 films by UVPER 

 

A detail description of EG3, A25SH and 

mixed film preparation can be found in chapter 

10. The relevant molecules are schematically 

are shown in figure 7.1. Mixed A25SH/EG3 films 

were prepared by irradiation of EG3 films by UV 

light with a wavelength of either 254 or 365 nm.  

Exchange reactions were carried out by 

immersion of the irradiated EG3 films in a 3 µM 

solution of A25SH in 1 M CaCl2-TE buffer for 3 h 

at a temperature of 37°C. After immersion, the 

samples were carefully rinsed with Millipore-

grade water, sonicated for 60 s followed by 

 

Figure 7.1 The target molecules of the present study, 
along with their abbreviations 
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rinsing with water for 60 s to remove loosely bound ssDNA species. Finally, the samples were 

blown dry in an argon stream. As a negative control, non-irradiated EG3 films were immersed 

in A25SH as well, to check for so called zero dose exchange reaction.41  
 

7.1.2 Fabrication of ssDNA nanostructures by UVPER 
 

Along with the preparation of the mixed A25SH/EG3 monolayers, representative 

A25SH/EG3 patterns were fabricated by proximity printing lithography. For this purpose, EG3 

films were irradiated by UV light (254 nm) through a mask (Science Services. T601-Cu) with a 

dose 3 J/cm2 and subsequently subjected to the exchange reaction with A25SH under the 

same conditions as in the case of the homogeneous irradiation. To visualize the fabricated 

A25SH/EG3 patterns, it was used as templates for surface-initiated enzymatic polymerization 

(SIEP) to grow single-strand adenine deoxynucleotide (poly(A)) brushes. 
 

7.1.3 Fabrication of ssDNA brushes 
 

A detail description of growth of polymer brushes can be found in chapter 10. In 

addition, possibility to adjust the height of poly(A) brushes by selection of the parameters of 

the SIEP  was tested. For this purpose, enzyme concentration and the duration of the SIEP 

reaction were varied (table 7.1)  

 

7.2 Results and Discussion 
The general experimental procedure to prepare mixed A25SH/EG3 SAMs and patterns 

is schematically illustrated in Figure 7.2. In the first step, the primary EG3 SAMs were either 

homogeneously irradiated by UV light with a certain wavelength (254 or 365 nm) or patterned 

in proximity printing geometry. In the second step, irradiated or pre-patterned SAMs were 

subjected to the exchange reaction with A25SH.  

One-component EG3 and A25SH SAMs as well as mixed A25SH/EG3 monolayers 

prepared by UVPER were characterized by laboratory and synchrotron-based XPS and angle-

resolved NEXAFS spectroscopy. The poly(A) brush patterns were imaged with atomic force 

 
Figure 7.2. Schematic of the experimental procedure. In the first step, the primary, biorepulsive EG3 
SAMs were either homogeneously irradiated or patterned by UV light. In the second step, irradiated 
and pre-patterned SAMs were subjected to the exchange reaction with A25SH, resulting in the 
formation of mixed EG3/A25SH SAMs and patterns.  
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microscopy (AFM) and scanning electron microscopy (SEM). The thickness of the fabricated 

brushes was measured by ellipsometry.  

7.2.1 Extent of UVPER 
 

The extent of the UVPER reaction, i.e. the composition of the resulting, mixed 

A25SH/EG3 monolayers could be monitored by the specific N 1s XP spectra, using the one-

component A25SH SAM as the reference; similar procedure has been successfully applied 

before.53 The respective spectra are shown in Figures 7.3a and 7.3b for the case of 254 and 365 

nm UV light, respectively. The spectrum of the one-component A25SH SAM exhibits an 

asymmetric broad peak which is characteristic of the adenine nucleobase and correlates well 

with the published data for the adenine-based ssDNA films.53,55-56,72,74,79 In accordance with 

literature data,53,55-56,72,74,79 this peak can be decomposed into two emissions at ~399.5 and 

~401.2 eV, with a larger spectral weight for the former peak. The same adenine specific peak is 

also observed in the spectra of the EG3 monolayers subjected to UVPER suggesting an 

efficient, UV-light promoted exchange reaction. Significantly, no signature of this peak is 

observed in the case of the negative control, which is the non-irradiated EG3 film subjected to 

the exchange reaction with A25SH (top spectrum in Figure 7.3b). Thus, the exchange reaction 

does not occur without an exposure to UV light, which is of primary importance for the UVPER 

based lithography, ensuring an ultimate contrast of the ssDNA content between the UV light 

exposed and non-exposed areas.  

 

 
Figure 7.3  N 1s XP spectra of the reference A25SH monolayer and mixed 
EG3/A25SH films prepared by UVPER with a wavelength of either 254 nm (a) 
or 365 nm (b). The spectra are tentatively decomposed in two emissions. 
Irradiation doses and portions of A25SH in the films are given at the respective 
curves. The spectrum of the non-irradiated (0 J/cm²) EG3 monolayer exposed 
to A25SH is shown as well in (b).  
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                  As seen in Figure 7.3, the 

intensity of the adenine specific peak in 

the spectra of the mixed A25SH/EG3 films 

increases with increasing UV dose. This is 

exactly what one can expect in view of the 

progressing damage of the EG3 film upon 

its exposure to UV light. Another 

important observation is much higher UV 

doses required for the efficient exchange 

reaction for the 365 nm light as compared 

to 254 nm. This behaviour agrees well 

with the previous observations related to 

the imbedding of protein receptors into the OEG-AT matrix by UVPER with different 

wavelengths.41,61 Both the cross-sections of the major UV-induced processes in the OEG-AT 

monolayers and the outcome of UVPER showed strong dependence on the wavelength, with 

the lower cross-sections and, consequently, lower efficiency of UVPER at a longer 

wavelength.41,61  

Referring the intensity of the characteristic adenine signal to that for the one-

component A25SH film, A25SH content in the mixed A25SH/EG3 monolayers could be derived. 

The respective parameter is presented in Figures 7.4a and 7.4b as a function of UV dose for 

wavelengths of 254 and 365 nm, respectively. As seen in these figures, the fraction of A25SH in 

the mixed A25SH/EG3 films prepared by UVPER increases almost linearly with increasing UV 

dose both in the 254 and 365 nm case, achieving almost 90% at high doses. This behaviour is 

similar to that in the case of the analogous IPER procedure performed with the same test 

compounds, but the ultimate fraction of A25SH is lower in the later case, achieving ~72%.53 

The higher efficiency of UVPER as compared to IPER is presumably related to the 

photooxidation of the thiolate headgroups, which is especially favourable for the exchange 

reaction, and to the partial cross-linking of the damaged OEF-AT species in the case of electron 

irradiation.39,219 Similar relation between the outcomes of UVPER and IPER was also observed 

when non-substituted AT SAMs served as the primary matrix for these procedures.38,67 

However, the most important conclusion from the curves in Figure 7.4 is the possibility to 

adjust precisely the content of ssDNA in the mixed OEG-AT/ssDNA films by UVPER. This can be 

done more efficiently at a wavelength of 254 nm, but can also be realized at a longer 

wavelength, offering new possibilities for UVPER based lithography. Note that, presumably, 

the mixed OEG-AT/ ssDNA films represent a stochastical mixture of the both components since 

a long-range lateral order is rather unlikely in view of the large differences between these 

components and the complex character of the OEG-AT species. Even for single component 

ssDNA monolayers, there are no reports on long range lateral order, to the best of knowledge.  

7.2.2 Characterization of the A25SH/EG3 films: XPS  
 

Along with the evaluation of the UVPER extent, spectroscopic characterization of the 

resulting, mixed A25SH/EG3 SAMs was performed. The respective XP spectra are presented in 

Figure 7.5, along with the spectra of the single component EG3 and A25SH monolayers serving 

as references.  

 
Figure 7.4 A25SH content in the mixed EG3/A25SH films 
prepared by UVPER with a wavelength of either 254 nm 
(a) or 365 nm (b) as a function of UV dose. The dashed 
lines are guides for the eyes. 
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The C 1s spectrum of the EG3 film in Figure 7.5b exhibits two characteristic emissions 

at 284.4 and 286.15 eV assigned to the alkyl and OEG segments, respectively.59 The O 1s 

spectrum of this monolayer in Figure 7.5d exhibits only one characteristic emission at 532.5 eV 

assigned to the OEG segment of the OEG-AT species.52 No features are observed in the P 2p 

(Figure 7.5a) and N 1s (Figure 7.5c) spectra, in accordance with the molecular composition of 

EG3 (Figure 7.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The XP spectra of the A25SH monolayer are characteristic of adenine-based homo-

oligonucleotides and agree well with the literature data for such systems.56,216 The P 2p 

spectrum in Figure 7.5a exhibits a single, slightly asymmetric peak at ~134.1 eV that can be 

assigned to the phosphorus atom in the phosphate group of the ssDNA backbone.56,58,217 Due 

to the small spin-orbit splitting (~0.84 eV),220 the individual P 2p3/2 and P 2p1/2 components of 

the P 2p doublet cannot be resolved. The C 1s spectrum in Figure 7.5b contains contributions 

from the carbon atoms in the adenine nucleobase and ssDNA backbone.79,216,218 It has a 

 
Figure 7.5  P 2p (a), C 1s (b), N 1s (c), and O 1s (d) XP spectra of 
the one component A25SH (bottom) and EG3 (top) SAMs as well 
as mixed EG3/A25SH monolayers prepared by UVPER with a 
wavelength of 365 nm (open circles). Irradiation doses are given 
at the respective spectra. The C 1s, N 1s and O 1s spectra are 
decomposed into individual emissions (solid gray lines) by a 
fitting procedure. The fitted spectral envelopes are drawn by 
solid black lines.  
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characteristic spectral envelope and can be tentatively decomposed into three emissions at 

285.1, ~286.7, and ~287.9 eV.79,216,218 The N 1s spectrum in Figure 7.5c was described above; 

the observed asymmetric peak, consisting of two emissions, is exclusively assigned to the 

nitrogen atoms in the adenine nucleobase.53,55-56,79 Finally, the O 1s spectrum in Figure 7.5d 

exhibits two overlapping emissions at 531.6 and 533.4 eV, typical of ssDNA58,216-218 and 

characteristic of the sugar and phosphate group in the ssDNA backbone.216,218 Note that a XP 

signal from the thiolate headgroup could not be recorded because of its strong attenuation by 

the densely packed ssDNA matrix wherein the quite long A25SH molecules form an oriented 

monolayer.56,221-222 This signal could however be clearly observed for the ssDNA SAMs 

comprised of the shorter molecules.56 

                The XP spectra of the A25SH/EG3 monolayers in Figure 7.5 mimic the respective 

spectra of the one-component A25SH SAMs. This is especially obvious in the P 2p (Figure 7.5a) 

and N 1s (Figure 7.5c) cases since EG3 does not contain the respective elements. In contrast, 

the C 1s (Figure 7.5b) and O 1s (Figure 7.5d) spectra should represent a superposition of the 

EG3 and A25SH ones. However, A25SH contains noticeably more carbon and oxygen atoms 

than EG3 (Figure 7.1), so that the contribution of A25SH prevails. The effect of the EG3 

contribution can only be tentatively traced in the C 1s spectra of the mixed films (Figure 7.5b), 

revealing itself as an intensity redistribution within the spectral envelope. This redistribution is, 

as expected, progressive, following the decrease in the A25SH content with decreasing UV 

dose. Note that the decrease in the A25SH content can also be traced in the P 2p (Figure 7.5a) 

and N 1s (Figure 7.5c) spectra. It is, however, less obvious in the O 1s spectra (Figure 7.5d), 

because of the saturation of the photoelectron signal at the given, quite low kinetic energy of 

the photoelectrons; this saturation is mediated by the self-attenuation of the photoelectron 

signal.215 Similar self-attenuation occurred of course in the case of the P 2p, C 1s, and N 1s 

spectra as well, but was less pronounced because the kinetic energies of the respective 

photoelectrons were somewhat higher.  

7.2.3 Characterization of the A25SH/EG3 films: NEXAFS spectroscopy 
 

Complementary information about the mixed A25SH/EG3 films was obtained by 

NEXAFS spectroscopy. This technique samples the electronic structure of the unoccupied 

molecular orbitals and, in this regard, is especially sensitive to the chemical composition of the 

samples.148 In addition, NEXAFS spectra acquired in the partial electron yield (PEY) acquisition 

mode are much less affected by the self-attenuation of the electron signal than the analogous 

XP spectra, since the PEY signal is comprised not only of the elastic Auger electrons but from 

the inelastic secondary electrons as well.148 

C K-edge NEXAFS spectra of the one-component EG3 and A25SH monolayers as well as 

mixed A25SH/EG3 films prepared by UVPER (365 nm) are presented in Figure 7.6a. These 

spectra were acquired at so-called “magic angle” of X-ray incidence (55°) and are therefore 

exclusively representative of the electronic structure of the samples, without admixture of any 

effects related to molecular orientation.148 The spectra of the one-component films exhibit the 

spectral envelopes and absorption resonances characteristic of the EG3 or A25SH species. In 

particular, the spectrum of the EG3 monolayer shows the characteristic resonances at ~287.5 

eV (1) and ~289.5 eV (2) assigned to the Ridberg-like states associated with the C─H orbitals of 

the alkyl and OEG segments, respectively.223 The spectrum of the A25SH SAM is dominated by 
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two sharp, π*-like absorption resonances at ~286.6 eV (3) and ~287.3 eV (4) characteristic of 

the adenine nucleobase.56,224 The spectra of the mixed A25SH/EG3 monolayers represent a 

superposition of the EG3 and A25SH spectra with the relative weights depending on the UV 

dose. This is additionally demonstrated in Figure 7.6b where the spectra of the mixed films are 

compared to the best fits by a linear combination of the spectra of the individual components 

(i.e. EG3 and A25SH). The fits fully reproduce the resonance pattern and spectral shape of the 

experimental spectra, which suggests that all (or almost all) EG3 molecules damaged by UV 

were exchanged by the A25SH species, because the spectra of the damaged OEG-based 

moieties differ significantly from those of the pristine ones,225 making a good fit impossible. 

Another implication of the successful fitting is a lack of disturbance of the A25SH species upon 

their imbedding into the EG3 matrix. A disturbance would certainly result in a change of the 

electronic structure, with the respective 

change of the NEXAFS spectrum, making a 

good fit by the principle components 

impossible. 

The relative weights of the A25SH 

and EG3 contributions in the fitting spectra 

of the mixed films vary in accordance with 

the expected film composition. Indeed, the 

relative weights of the A25SH and EG3 

spectra in the spectra of the mixed films are, 

respectively, 55% and 45% at 45 J/cm2 and 

85% and 15% at 62 J/cm2. These 

compositions correlate well with the data 

presented in Figure 7.4b, which underlines 

the reliability of both evaluation procedures, 

based on either the normalization of the N 

1s XP spectra (Figure 7.4b) or on the 

decomposition of the C K-edge NEXAFS 

spectra (Figures 7.6b and 7.6c). 

             In addition to the C K-edge data, 

NEXAFS spectra at the N K-edge were 

acquired. N K-edge spectra (55°) of the one-

component A25SH and EG3 monolayers as 

well as mixed A25SH/EG3 films prepared by UVPER (365 nm) are presented in Figure 7.7a. The 

spectrum of the EG3 film does not exhibit any features, in accordance with the chemical 

composition of this compound. The spectrum of the A25SH monolayer is dominated by the 

prominent, π*-like absorption resonances at ~399.4 eV (1) and ~401.3 eV (2) associated with 

the N1sLUMO and N1s  LUMO+2 electron transitions involving the nitrogen atoms in the 

adenine nucleobases.56,224  These resonances exhibit characteristic intensity relation, with the 

former feature being significantly stronger. The spectra of the mixed A25SH/EG3 films mimic 

that of the A25SH monolayer exhibiting the same pattern of the absorption resonances. This is 

additional evidence that the electronic structure of the A25SH moieties was not disturbed 

 
Figure 7.6 (a) C K-edge NEXAFS spectra (55°) of the 
one component  A25SH (top) and EG3 (bottom) 
monolayers as well as mixed EG3/A25SH films 
prepared by UVPER with a wavelength of 365 nm. 
Irradiation doses are given at the respective spectra. 
(b,c) fits of the spectra of the mixed films (black) by 
a linear combination of the spectra of the individual 
components (red). The relative weights of the A25SH 
and EG3 spectra are, respectively, 55% and 45% at 
45 J/cm² and 85% and 15% at 62 J/cm². The 
characteristic absorption resonances are marked by 
numbers. 
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upon their imbedding into the EG3 

matrix. Also, the spectral weight of 

A25SH decreases with decreased UV 

dose in accordance with the 

expectations and all the above data. 

 

In addition to the information on 

chemical composition, NEXAFS 

spectroscopy provides insights into 

molecular order and orientation in 

molecular assemblies by monitoring 

linear dichroism effects in X-ray 

absorption. A convenient way to 

monitor these effects is to calculate the 

difference between the spectra acquired 

at normal (90°) and grazing (20°) 

incidence of X-rays. Such N K-edge 

difference spectra of the one-

component A25SH monolayer and 

mixed A25SH/EG3 films prepared by UVPER (365 nm) are presented in Figure 7.7b. The 

difference spectrum of the A25SH monolayer exhibit pronounced peaks at the positions of the 

absorption resonances 1 and 2, which highlights a dependence of the resonance intensity on 

the angle of X-ray incidence characteristic of predominant molecular orientation in the film. 

Considering that the resonances 1 and 2 have the π* character, the respective transition dipole 

moments (TDMs) are orientated perpendicular to the nucleobases (i.e., parallel to the ssDNA 

backbone). In view of this orientation, the sign of the difference peaks implies that the adenine 

bases in the A25SH monolayers are predominantly oriented parallel to the substrate surface, 

suggesting that the ssDNA strands are predominantly aligned upright, which agrees well with 

the literature data.53,216 The pronounced, negative difference peaks at the position of the 

absorption resonances 1 and 2 are also observed for the mixed A25SH/EG3 monolayers, 

suggesting that the ssDNA strands in these films are also predominantly aligned upright. The 

smaller amplitudes of these peaks as compared to the case of the A25SH SAM does not mean a 

worse orientational order, since the amplitude should be related to the height of the 

respective resonances in the 55° spectra, which decreases in intensity with decreasing UV 

dose. So-called intensity modulation amplitude, that is, the change of the normalized intensity 

of the resonances 1 and 2 at going from grazing to normal incidence is ~0.82 for both one 

component A25SH monolayer and mixed EG3/A25SH films addressed in Figure 7.7. In 

agreement with these values, evaluation of the NEXAFS data using the standard formalism,148 

modified slightly for the case of ssDNA monolayers,54,56,216 results in similar average tilt angles 

of the ssDNA strands in the one-component A25SH monolayer and mixed EG3/A25SH films. 

Indeed, these angles are ~32° for the single-component A25SH films and ~31° and ~32° for the 

mixed EG3/A25SH monolayers prepared at UV doses of 45 and 62 J/cm2, respectively (with an 

accuracy of ±3°). Note that, most likely, these values do not reflect the real tilt of the A25 

strands but rather a degree of the orientational order in the monolayer. The individual A25 

 
Figure 7.7 (a) N K-edge NEXAFS spectra of the one-
component  A25SH (top) and EG3 (bottom) monolayers 
as well as mixed EG3/A25SH films prepared by UVPER 
with a wavelength of 365 nm. The spectra were acquired 
at an X-ray incidence angle of 55° (magic angle). (b) 
Difference between the N K-edge spectra collected at 
normal (90°) and grazing (20°) angles of X-ray incidence 
for the above samples. Irradiation doses are given at the 
respective spectra. The characteristic absorption 
resonances and the respective difference peaks are 
marked by numbers 
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segments exhibit presumably a somewhat random distribution of different orientations,54 

along with some flexibility in orientation of individual nucleobases for each segment due to 

rotation relative to the backbone and from irregular bends in the backbone. 

7.2.4 UVPER based patterning 
 

UVPER can not only be used to prepare well-defined, mixed A25SH/EG3 monolayers of 

desired composition but, in combination with lithographic tools, be applied for the fabrication 

of the A25SH arrays and patterns, with the density of the A25SH species within the predefined 

spots being precisely controlled. As a representative example, a simple array of the square-like 

A25SH spots imbedded into the EG3 background by combining UVPER (254 nm; 3 J/cm2) with 

proximity printing lithography (Section 7.4.2). To visualize this array we used it as template to 

grow a poly(A) brush pattern by SIEP.72-73 The reaction was mediated by TdT, with the 3´-ends 

of the surface-bound A25SH serving as initiation sites for the polymerization.72-73  AFM and 

SEM images of the resulting poly(A) brush pattern are shown in Figures 7.8a and 7.8b, 

respectively, along with the corresponding height profiles. The height of the brush pattern is 

~40 nm as seen in Figure 7.8a. Note that the image and height profile are somewhat smeared 

in the AFM case because of the rather high scan speed to measure such a large area. In this 

regard, the SEM image, given as 3D view 

and the respective height profile are 

better representative of the brush 

quality. In any case, the images 

presented in Figure 7.8 show that UVPER 

can be successfully combined with 

lithography resulting in the fabrication of 

ssDNA arrays and patterns imbedded in 

the biorepulsive OEG-AT matrix. Note 

that the pattern presented in Figure 7.8 

is of course primitive and only serves to 

demonstrate the principle applicability of 

the approach. However, significantly 

more complex and highly resolved 

patterns can be prepared if UVPER is 

combined with more sophisticated 

approaches for UV patterning such as scanning near-field photolithography,62 including the 

parallel scanning mode,69 or interferometric lithography.64 So far the above lithographic tools 

utilized UV light with a wavelength of ~254 nm. Presumably, even more flexibility can result 

from the use of UV light with longer wavelengths, which allows one to use less expansive 

optics and commercial patterning setups. In particular, variation of the ssDNA density within 

the predefined spots, possible in the case of UVPER, will results in the preparation of complex, 

gradient like ssDNA patterns which, if necessary, can be extended in the z-direction by 

SIEP.53,216 

 

 

 
Figure 7.8  AFM (a) and SEM (b) images of a 
representative poly(A) brush pattern grown by SIEP on 
the A25SH/EG3 template prepared by UVPER, along with 
the respective height profiles. The SEM image is 
converted into 3D representation.  
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7.2.5 Characterization of ssDNA brushes 
 

Note also that the ssDNA brushes and brush patterns grown by SIEP on the 

ssDNA/OEG-AT templates prepared by UVPER are of interest on their own. In particular, their 

height can be precisely adjusted in a broad range by the variation of the parameters of the 

SIEP procedure as shown in Table 7.1 where representative data for several poly(A) brushes 

grown on the single-component A25SH templates are presented (see literature).216  

 
 

Table 7.1 Height of the poly(A) brushes grown on the one-component A25SH templates by 

SIEP at different enzyme concentrations and reaction time. 

 

Enzyme concentration (U) Reaction time (hours) Brush height (nm) 

0.1 2 22 ±2 

0.15 2 34 ±2 

0.2 2 45 ±2 

0.1 2 28 ±2 

0.1 3 46 ±2 

0.1 4 66 ±2 

 

These brushes were found to be almost identical to those of A25SH initiator, with no 

unambiguous traces of contamination as e.g. evidenced by the N 1s XP spectra and “magic 

angle” N K-edge NEXAFS spectra of 

several representative brushes of 

different thicknesses presented in Figure 

7.9. Both XP and NEXAFS spectra are 

almost identical to those of the A25SH 

films in Figures 7.5c and 7.7a and show 

only slight, statistically driven variation 

upon the change in the brush height. 

Finally, it is worth to mention that apart 

from the well-defined chemical integrity 

and contamination-free character, the 

ssDNA brushes are characterized by a 

high degree of orientational order, with 

an upright orientation of individual 

chains.216 

 

7.3 Conclusions 
 

From the above findings, it can be concluded that, mixed ssDNA/OEG-AT monolayers 

can be prepared by UVPER starting from well-defined biorepulsive matrix. The composition of 

the mixed monolayers can be precisely adjusted in almost entire composition range (up to 90% 

of ssDNA) by the selection of suitable UV dose. As shown by the example of UVPER at 

wavelengths of 254 and 365 nm, this procedure can be performed with UV light of different 

wavelengths, even though significant higher UV doses are required at longer wavelengths as 

 
Figure 7.9 N 1s XP spectra (a) and “magic angle” N K-edge 
NEXAFS spectra (b) of poly(A) brushes of different 
thicknesses grown on the A25SH templates. 
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compared to shorter ones. The ssDNA strands in the mixed A25SH/EG3 monolayers were 

found to be predominantly aligned upright, similar to the case of the one-component A25SH 

films. As was demonstrated by a representative example, UVPER procedure can be combined 

with lithography, resulting in the fabrication of the OEG-AT/ssDNA arrays and patterns 

imbedded in biorepulsive OEG-AT background. The fabricated OEG-AT/ssDNA patterns can be, 

if necessary, extended into the z-dimension by SIEP, which may result in sculpturing complex 

ssDNA brushes. 
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8.  Spectroscopic study of ssDNA brushes prepared on 
ssDNA templates  

 

           In the previous chapters, the ssDNA patterns were fabricated and in some case extended 

into the z-dimension by surface-initiated enzymatic polymerization (SIEP), result in 

nanostructured ssDNA brushes.53 These brush are also of interest on their own. In contrast to 

SIP of synthetic polymers, there has been little effort dedicated to the in situ synthesis of 

biopolymer brushes on surfaces. Biological polymers have a range of useful properties and 

many potential applications in an interfacial context, so that methods to grow these types of 

polymers directly at an interface are of great interest.  
 

          SIEP of DNA exploits the ability of a template independent polymerase, terminal 

deoxynucleotidyltransferase (TdT), to grow a polynucleotide chain from the exposed 3’-OH 

group of a short oligonucleotide primer. In contrast to the fabrication methodology and 

application of TdT for SIEP of ssDNA, which are fairly well developed, there is significantly less 

information about the internal structure of these DNA brushes. To this end, detailed 

spectroscopic characterization of ssDNA brushes that were polymerized by SIEP are presented 

in this chapter. To simplify the analysis of the experimental data, the brushes of a 

homopolymer of deoxynucleotide (deoxyadenosine triphosphate (dATP)) were synthesized. 

Note that the use of homo-oligomers is a popular approach to study complex ssDNA systems, 
53-55,57-58,75-76,78 as demonstrated in the previous chapters. 
 

         To investigate the chemical integrity, purity and possible internal alignment of model 

single-strand (ss) adenine deoxynucleotide (poly(A)) DNA brushes, a combination of 

synchrotron-based XPS and NEXAFS spectroscopy was used. Finally, to avoid any uncertainty 

related to the parameters of different experimental setups and to simplify the analysis of the 

experimental data, the powder films of adenine and SAMs of 5'-thiol-modified adenine homo-

oligonucleotides as reference samples with respect to the ssDNA brushes were measured.  
 

8.1 Preparation and characterization procedures 

8.1.1 Preparation of adenine powder film 
 

The adenine powder film, used as reference for the NEXAFS measurements, was 

pressed into a clean indium foil and thinned by a brush to suppress charging effects. This 

procedure, which is also used by other groups,226-227 has been optimized in lab on amino acids, 

peptides, and proteins, and it results in homogeneous and contamination-free films with no 

traces of indium in the spectra.192,224,228-230  It is superior to the drop casting procedure which is 

frequently used to prepare powder samples for spectroscopy measurements.227,231 The only 

disadvantage is a limited suppression of charging effects, which is good enough for the NEXAFS 

measurements but, regretfully, not sufficient for synchrotron-based XPS, even at a bending 

magnet beamline, such as used in the present study. Note that, the grains in the powdered 

films were oriented stochastically resulting in the lack of the orientational effects in the 

NEXAFS spectra. 
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8.1.2 Fabrication of ssDNA brushes on ssDNA templates  

A detail description A25SH SAMs preparation can be found in chapter 10. Mixed 

A25SH/EG3SH films were prepared by irradiation-promoted exchange reaction.45,53 Briefly, the 

primary EG3SH films were homogeneously irradiated by electrons (10 eV) and placed in a 3 µM 

solution of A25SH in 1 M CaCl2-TE buffer for 3 h at 37°C for the exchange reaction.  

 

As a negative control, single 

component EG3SH monolayers were 

prepared using a standard procedure,40 

i.e. by immersion of freshly prepared gold 

substrate into 1 mM solution of EG3SH in 

pure ethanol for 24 h at room 

temperature, with subsequent rinsing 

and drying. 

Poly(A) brushes were grown on 

homogeneous A25SH and mixed 

A25SH/EG3SH templates in accordance 

with literature protocols.53 Briefly, 

substrates bearing A25SH and A25SH/EG3SH films were applied to SIEP reaction which 

comprises of 0.1 U/µl TdT, 100 μM dATP and 0.1% Tween 20 in 1x TdT buffer (100 mM 

potassium cacodylate, 1 mM CoCl2, and 0.2 mM DTT, pH 7.2) for 1 h at 37°C. The samples were 

then rinsed in 1x PBS buffer with 0.1% Tween 20, followed by rinsing with water and dried with 

a stream of nitrogen. In some experiments,  in order to obtain thicker DNA brushes (>25 nm), 1 

mM dATP (higher monomer concentration) and higher enzyme concentration (up to 1.0 U/µl) 

were used in the SIEP reaction. 

 

8.1.3 Preparation of ssDNA patterns  
 

In addition to the spectroscopic studies, poly (A) brush patterns were grown on mixed 

A25SH/EG3SH templates prepared by electron beam lithography (EBL) in combination with 

IPER. The SIEP conditions were the same as for the homogeneous brushes.  

8.2 Results and discussion 

             The schematic of SIEP is shown in Figure 8.1, while Figure 8.2 presents the chemical 

structure of the “initiator” A25SH molecule that was assembled in a SAM-like fashion on gold 

substrate.  The dATP repeat unit in the 25-mer long initiator consists of the adenine base, 

sugar, and phosphate group; individual atoms of the adenine base are marked by numbers for 

convenience, and the entire repeat unit is marked by red square brackets. This unit is identical 

to those in the poly(A) brushes that are grown by SIEP.  

             One component and mixed monolayers, homogeneous poly(A) brushes, and poly(A) 

nanostructures were characterized by laboratory and synchrotron-based photoemission 

spectroscopy (XPS), NEXAFS spectroscopy, ellipsometry, AFM, and optical microscopy. 

Synchrotron-based XPS and angle-resolved NEXAFS spectroscopy measurements were carried  

 

Figure 8.1 Schematic of DNA brush formation through 
SIEP reaction. 
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out at the HE-SGM beamline (bending magnet) 

of the synchrotron storage ring BESSY II in 

Berlin, Germany.  

The spectra of the A25-SH films and 

poly(A) brushes were compared to the 

respective reference spectra of highly pure 

native polycrystalline powder films of adenine. 

These spectra are almost identical to those 

published previously.56,192 In case of thick films, 

the issue of the sampling depth of XPS and 

NEXAFS spectroscopy became quite essential. 

The sampling depth is usually defined as the depth from which 95% of the electrons are 

emitted. 193 It corresponds to 3λ where λ is the attenuation length of the photoelectrons at the 

given kinetic energy.215 Thus, at a photon energy of 580 eV, which used for the photoemission 

experiments, the sampling depths of the P 2p, C 1s, N 1s, and O 1s electrons were 4.5, 3.4, 2.7, 

and 2.1 nm, respectively (based on the literature λ values for densely packed molecular 

films).232 So, the photoemission spectra in the given study are mostly representative of the 

topmost part of the A25SH films and poly(A) brushes. At the same time, the lower parts of the 

films contributed as well in the spectra. In particular, the signal from the substrate (Au4f), even 

though strongly attenuated was found, for the brushes with a thickness of up to ~14 nm. 
 

The sampling depth of the NEXAFS spectroscopy in the PEY acquisition mode is larger 

than that of the Auger electrons which mediate the PEY signal. The reason is that the signal 

consists not only of the elastically scattered Auger electrons but from the inelastically 

scattered ones as well, within the energy loss range determined by the threshold voltage. For 

the C K-edge this gives a factor of 2 at a proper selection of the threshold voltage.193  Adapting 

this factor for the N K-edge and taking literature value for the attenuation length of the KLL 

Auger electrons of nitrogen,232 a sampling depth of ~8.5 nm for the N K-edge NEXAFS spectra 

was found. This is larger than the sampling depth of the photoemission but still in the same 

range. Thus, for thick poly(A) brushes, also the NEXAFS spectra are mostly representative for 

their topmost part of the brush. However, since the brushes grew continuously with the 

successive parts mimicking the previous parts (presumably), it could be assumed that the 

spectra representative of the topmost part of the brushes are also representative of them as a 

whole.  

8.2.1 Characterization of ssDNA brush by XPS 

A25SH and poly(A) moieties consist of carbon, nitrogen, phosphorus, and oxygen 

atoms, all of which are, in principle amenable to quantification by XPS. A25SH also contains 

sulfur as a head group, necessary for the anchoring of the molecules to the substrate by the 

thiolate-gold bond.56,221-222,233 However, the S atoms were not accessible to XPS because of the 

strong attenuation of their signal by the densely packed ssDNA matrix wherein the A25SH 

molecules form an oriented monolayer.56,221-222,233 Such an adsorption mode is assumed in the 

given case based on all the experimental data. In particular, the thickness of the A25SH film 

was estimated at 5-6 nm which corresponds well to monolayer coverage. The density of the  

 

Figure 8.2 Chemical structure of the A25-SH 
molecule, which includes the repeat unit 
deoxyadenine nucleoside triphosphate (dATP) 
showing the base, sugar and phosphate backbone 

 



8.   Spectroscopic study of ssDNA brushes prepared on ssDNA templates                                                 76 

 

  

A25SH monolayer was estimated at 6.5x10-13 molecules/cm2 following the literature 

approach.58  

C 1s, N 1s, P 2p, and O 1s XPS spectra of the A25SH monolayer and poly(A) brush of 

~25 nm thickness are shown in Figure 8.3; some of them have been tentatively decomposed 

into individual emissions based on the spectral shape and literature data for ssDNA films.55-

56,79,218 The spectra exhibit characteristic features of adenine-based homo-oligonucleotides.55-

56,79,218  

The absolute intensity of the spectral features in Figure 8.3 is similar for the A25SH 

monolayer and poly(A) brush even though the thicknesses of these films are considerably 

different. This is related to the strong self-attenuation of the photoelectron signals, resulting in 

their saturation, which is also observed 

for the A25SH monolayer. Thus, it is not 

the absolute intensity, but the 

individual emissions – their positions 

and fractional contributions to the 

overall spectrum – that are the relevant 

parameters that can be used for 

comparison of the A25SH monolayer 

and poly(A) brush. To this end, the 

spectra of the A25SH film and poly(A) 

brush are very similar, in terms of the 

relative spectral weights of the 

individual emissions, suggesting very 

similar chemical compositions in both 

cases and a lack of significant 

contamination in poly(A).  The C 1s XP 

spectra in Figure 8.3a contain 

contributions from carbon atoms in the 

adenine nucleobase and ssDNA 

backbone. The spectrum of the A25SH 

initiator on gold agrees well with most 

of the literature data79,218 (slightly 

different spectral shapes can be found 

for the C 1s range in other literature).56 

This spectrum as well as the spectrum 

of the poly(A) brush can be decomposed into three components. Their positions are very close 

for the A25SH film and poly(A) brush and are ~284.95, ~286.7, and ~287.9 eV. The exact 

assignments of these components, which will refer to as emissions 1, 2, and 3, respectively, are 

regretfully still elusive at the moment, in spite of some attempts to identify them.79,218 

Tentatively, emission 1 can be assigned to the aromatic carbon in the adenine nucleobase and 

sugar moiety; emission 2 has a strong contribution from carbon bound to nitrogen as well as 

from C─O bonds of the sugar groups; and emission 3 can be assigned to the sugar-phosphate 

bond. Note that the C 1s spectrum of the adenine nucleobase exhibits only emissions 1 and 2, 

with emission 2 having a slightly higher intensity as compared to 1.226-227 This suggests that the 

ssDNA backbone contributes more strongly into emissions 1 and 3 as compared to 2. In current 

 
Figure 8.3  C 1s (a), N 1s (b), P 2p (c), and O 1s (e) XPS 
spectra of the A25-SH SAM and poly(A) brush with a 
thickness of 25 nm (open circles). The C 1s, N 1s and O 1s 
spectra are decomposed into individual emissions (solid gray 
lines) by a fitting procedure. The fitted spectral envelopes 
are drawn by solid black lines. The derived individual 
emissions are marked by numbers (see text for details). 
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study, emission 2 in the poly(A) spectrum has a slightly higher relative weight as compared to 

the spectrum of the A25SH monolayer, which varied to some extent from sample to sample. 

This can be probably related to a partial capture of the unbound dATP species in the poly(A) 

matrix. 

The N 1s XP spectra in Figure 8.3b are representative of the nucleobases, exhibiting the 

spectral shape characteristic of the unique nitrogen composition of these moieties. The N 1s 

spectrum of the A25SH monolayers correlates well with the published data for the analogous 

films.53,55-56,79 The spectrum exhibits a characteristic asymmetric broad peak, which, in 

accordance with literature data,53,55-56,79 can be decomposed into two emissions at ~399.5 and 

~401.2 eV (referred to as emissions 1 and 2, respectively), with a larger spectral weight for the 

former peak. The assignments of both emissions are not straightforward (see the elsewhere79). 

Tentatively, emission 1 can be assigned to the conjugated nitrogen (─N=) while emission 2 can 

be assigned to non-conjugated and NH2 nitrogen. According to this assignment, the intensity 

ratio of emissions 1 and 2 should be 3:2. However, not this relation but a ~2:1 ratio is typically 

observed for adenine-based ssDNA,53,55-56,79 which is also the case in the present work, both for 

the A25SH monolayer and the poly(A) brush. This deviation is presumably related to possible 

protonation or deprotonation of the individual nitrogen atoms and related functional groups. 

Such effects are typical for biological macromolecules and their building blocks.234 

The spectrum of the poly(A) brush is very similar to the spectrum of the A25SH 

monolayer from which the polymer brush is grown by SIEP, both in terms of the positions and 

relative intensities of the individual components within the spectral umbrella. The only 

difference is a slightly lower relative intensity of emission 2, which can be related to the 

different extent of protonation/deprotonation effects in the brush as compared to the 

monolayer. 

The P 2p XP spectra in Figure 8.3c are representative of the phosphate groups in the 

ssDNA backbone (Figure 8.2). The spectra of both A25SH films and poly(A) brush exhibit a 

single, slightly asymmetric peak at ~134.1 eV that can be assigned to the phosphorus atom in 

the phosphate group of the ssDNA backbone.56,58 Due to the small spin-orbit splitting (ca. 0.84 

eV),220 the individual P 2p3/2 and P 2p1/2 components of the P 2p doublet cannot be resolved.  

The O 1s XP spectra in Figure 8.3d are also representative of the ssDNA backbone as 

adenine does not contain oxygen (Figure 8.2). The spectra of both A25SH films and poly(A) 

brush exhibit similar spectral shapes and can be decomposed into two peaks at ~531.4 and 

~533.3 eV (referred to as emissions 1 and 2, respectively), which, in the case of the A25SH 

SAM, agrees well with the literature data.58,217-218 Emission 1 can be assigned to the bridging 

oxygen atom in phosphate groups and the oxygen atom in sugar,218 while emission 2 can be 

associated with the non-bridging oxygen atoms in phosphate groups.218 

Note that the above photoemission spectra can also contain some contributions from 

water and proteins which can be trapped in the A25SH SAMs and poly(A) brushes. The 

contribution from the trapped water can presumably appear in the O 1s spectrum at ~534.2 

eV,235 which is at the high binding energy side of the observed emissions in Figure 8.3d. This 
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would result in asymmetry of emission 2, which is not the case. Therefore, the amount of the 

trapped water is presumably small both for the A25SH SAMs and poly(A) brushes.  

The presence of the trapped proteins will affect all studied spectra. Significantly, the 

envelops and the characteristics of the P 2p and O 1s spectra for the poly(A) brushes are very 

close to those for the A25SH SAMs where no proteins are trapped (Figures 8.3c and 8.3d). This 

suggests, even though tentatively, that the amount of the trapped proteins in the brushes is 

quite small. Further, the standard contribution of proteins in the N 1s spectra is an emission at 

~400.6 eV,59 which is located between emissions 1 and 2 in the spectra of the A25SH SAM and 

poly(A) brush in Figure 8.3b. The latter spectra can, however, be well fitted by just two peaks 

and do not exhibit the protein-specific signal. This confirms that the amount of the trapped 

proteins in the brushes is negligible. 

8.2.2 Characterization of ssDNA brush by NEXAFS spectroscopy 
 

NEXAFS spectroscopy provides complementary information on the chemical identity 

and composition of the samples. C, N, and O K-edge NEXAFS spectra of the powder adenine 

films, A25SH monolayer, and the poly(A) brush with a thickness of 25 nm are shown in Figure 

8.4. These spectra were acquired at the so-called magic angle of X-ray incidence (55°) to avoid 

any effects related to possible molecular orientation or alignment in the investigated samples. 

The spectra of the adenine powder and A25SH monolayer agree well with literature 

data.54,56,192,236 

 

 

 

 

 

 

 

 

 

The C K-edge spectra of the A25SH monolayer and poly(A) brush in Figure 8.4a have 

almost identical spectral shapes and exhibit the most prominent absorption resonances of the 

adenine base, viz. those corresponding to the C9LUMO+1 (2) and C1,3,5,7LUMO (3) 

transitions at 286.6 and 287.3 eV, respectively.192 The C9LUMO resonance (1) at 286.1 eV 

represents only a small shoulder of the main features192 and is not well resolved in the 

spectra. The most pronounced differences between the spectrum of the adenine base and 

those of the ssDNA monolayer and brush are: (i) a substantial step-like intensity increase at 

approx. 287-288 eV generated by the ssDNA backbone; (ii) a different pattern of the π* 

 
Figure 8.4  C (a), N (b), and O (c) K-edge NEXAFS spectra of adenine (powder film), 
A25-SH SAM, and poly(A) brush (25 nm) acquired at an X-ray incidence angle of 55° 
(magic angle). The most prominent resonances are marked by numbers (see text 
for details). 
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resonances at higher photon energies in the ssDNA spectra, stemming from the presence of 

the sugar and phosphate groups in the ssDNA backbone236 and (iii) the appearance of a weak 

resonance at 285.0 eV (4) in the monolayer and brush spectra, which, in the given case, is not 

perceptible in the spectrum of the adenine base in Figure 8.4a but was reported for this base 

in other literatures.236 This weak resonance can be tentatively associated with solid state 

effects or exact tautomeric state of adenine in the samples. Alternatively, it can be related to 

contamination. 

 

The N K-edge spectra of the A25SH film and poly(A) brush in Figure 8.4b have very 

similar spectral shapes and exhibit the most prominent absorption resonances of the adenine 

nucleobase, viz. those corresponding to the N2,4,6,8,10LUMO (1) and N2,4,6,8,10  

LUMO+2 (2) transitions at 399.4 and 401.3 eV, respectively. Similar to the C K-edge spectra, 

the spectral weight of the characteristic resonances of adenine decreases in the case of the 

A25SH film and poly(A) brush as compared to the spectrum of the adenine powdered film, 

which, in the case of the monolayer, is a typical behavior reported before by other 

authors.56,236 
 

The O K-edge spectra of the A25SH film and 

poly(A) brush in Figure 8.4c have almost identical spectral 

shapes and exhibit two distinct resonances at 532.3 eV 

(1) and 538.7 eV (2), which are related to the ssDNA 

backbone (phosphate and sugar) since the adenine 

nucleobase does not contain oxygen atoms. The spectral 

shape and the position of the dominant absorption 

maximum is similar to Na2HPO4,
236 which implies that the 

spectra of the monolayer and brush are dominated by 

contributions from phosphate groups. Note that the 

resonance 2, according to its complex spectral shape, 

probably consists of several individual components. 

In addition to information on the chemical 

composition, NEXAFS spectroscopy provides insights into 

molecular order and orientation in these systems by 

monitoring linear dichroism effects in X-ray absorption. 

The spectra of both the A25SH monolayer and poly(A) 

brush exhibit noticeable linear dichroism as can be seen 

from the difference between the N K-edge spectra 

collected at normal (90°) and grazing (20°) angles of X-ray 

incidence (Figure 8.5). This implies the presence of orientational order in both of these 

samples. The difference spectra show negative peaks at the positions of the absorption 

resonances 1 and 2 (Figure 8.4b) and positive peaks at the positions of the resonances 

occurring at higher photon energies. Considering that the resonances 1 and 2 have the π* 

character and those at higher photon energies have α* character, the respective transition 

dipole moments (TDMs) are orientated perpendicular to the nucleobases (i.e. parallel to the 

ssDNA backbone) and along their plane (i.e. parallel to the substrate surface), respectively. In 

view of this orientation, the signs of the difference peaks suggest that the adenine bases both 

 
Figure 8.5  Difference between the 
N K-edge spectra collected at 
normal (90°) and grazing (20°) 
angles of X-ray incidence for the 
A25-SH SAM (top curve) and poly(A) 
brush (25 nm; bottom curve). The 
difference peaks corresponding to 
the most prominent resonances are 
marked (see text and Figure 8.4b). 
The horizontal dashed lines 
correspond to zero. 
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in the A25SH film and poly(A) brush are preferably orientated parallel to the substrate surface, 

i.e. the ssDNA strands are predominantly aligned upright.  

Apart from the above qualitative considerations, a quantitative evaluation of the 

NEXAFS data was performed in accordance with the established procedures.54,56,148 

Accordingly, plotted in Figure 8.6 the dependence of the normalized intensity of the most 

prominent α*-like resonances at the N K-edge (1 and 2) on X-ray incidence angle for the A25SH 

film and poly(A) brush. The extent of the linear dichroism can then be tentatively estimated by  

intensity modulation amplitude (Aπ), i.e. the change of the normalized resonance intensity at 

going from grazing to normal incidence, which is 0.83 and 0.66 for the A25SH monolayer and 

poly(A) brush, respectively. Beyond this fingerprint estimate, the experimental dependences in 

Figure 6 were fitted by the theoretical curves for a vector-type orbital following the general 

formalism for the evaluation of NEXAFS data for molecular ensembles.148  Because of the 

symmetry considerations,148 the only fitting parameter was 

the average tilt angle (α) of the relevant molecular orbitals 

with respect to the surface normal. The resulting α values 

for the A25SH film and poly(A) brush are 32.5° and 29.5°, 

respectively. Note that these values are averaged over the 

entire ensemble of the ssDNA strands with the random 

azimuthal orientation of the individual bases and a definite 

distribution of their tilt angles. Note also that even though 

the absolute values of the average tilt angles have the usual 

accuracy of the NEXAFS experiment and data evaluation 

procedure, the difference between these angles has much 

higher accuracy and was reproduced many times in the 

experiments.  

The most interesting and unexpected finding is the 

pronounced upright alignment of the individual strands in 

the poly(A) brush, which is the only explanation for the 

observed preferable orientation of the bases, that are 

generally perpendicular to the ssDNA backbone, even 

though they possess some flexibility in orientation, due to rotation relative to the backbone 

and its bends. According to Figures 8.5 and 8.6 as well as to the derived tilt angles, this 

alignment is even greater than that in the A25SH monolayers. This is quite surprising in view of 

the previous observations that the orientational order in the ssDNA films worsens significantly 

with increasing length of the ssDNA strand.54 This was in particular observed for the 

monolayers of 5´-thiol-modified thymine homonucleotides on Au(111).54,78 This also follows 

from the comparison between the monolayers of short-chain56 and long-chain53 5´-thiol-

modified adenine homonucleotides. The poly(A) brushes behave opposite to this trend and 

exhibit relatively high orientational order, with preferable upright alignment of the individual 

strands. The most likely mechanism of this alignment is base stacking,54,58 i.e. interaction and 

subsequent correlation between individual bases in the process of SIEP and afterwards. This 

unexpected degree of orientational order in the poly(A) brush is a consequence of the high 

 
Figure 8.6  Dependence of the 
normalized intensity of the most 
pronounced absorption resonances 
(1 and 2; see Figure 8.4b) at the N K-
edge for the A25-SH SAM (open 
circles) and poly(A) brush (filled 
circles) on the X-ray incidence angle 
(with respect to the surface), along 
with the best theoretical fits (solid 
lines) according to the formalism of 
ref 149. The data presentation 
follows that of refs 54 and 56. 
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density and the length/number of bases 

of these brushes. In particular, the 

number of bases in poly(A) brushes 

obtained by SIEP are impossible to 

achieve by grafting of long ssDNA to 

surface, so that despite their large 

molecular weight, their orientation 

ordering is dominated by the high 

interfacial density of the ssDNA and their 

lack of dispersity.  

8.2.3 Brush thickness and density 
effects  
 

            Next the composition and 

orientation of the poly(A) brushes of 

different thickness was examined by 

measuring their characteristic N 1s XPS 

and N K-edge NEXAFS spectra, as the 

brush thickness is an important variable in 

controlling their structure and properties. 

These data are presented in Figure 8.7. 

The brush height was varied by either 

combining the A25SH initiators and 

EG3SH species in a mixed SAM to control 

the chain density179-180,187-190 or by 

increasing the concentration of the monomer input during SIEP reaction to increase the chain 

length. The mixing of A25SH and EG3SH was performed by IPER,39,45 following an established 

protocol.53  IPER was chosen instead of the more common method of making a mixed SAM by 

coadsorption of a mixture of the two thiols because IPER provides greater compositional 

control of the mixed A25SH/EG3SH monolayer than coadsorption, along with better 

reproducibility. These mixed monolayers enabled precise control of the density of SIEP 

initiation sites. A negative control monolayer of a pure EG3SH confirmed that no growth of the 

poly(A) brush occurs in the absence of the A25SH initiator (top curves) in Figure 8.7. 

       The N 1s XPS spectra and N K-edge NEXAFS spectra (55°) in Figure 8.7 exhibit only a slight, 

sample-dependent variation with varying thickness of the poly(A) brush, both in terms of the 

general spectral shape and positions and relative intensities of the individual emissions and 

absorption resonances. Due to the self-attenuation of the photoemission (XPS) and partial 

electron yield (NEXAFS spectroscopy) signals which occurred at almost saturation conditions, 

no noticeable intensity variation is observed with decreasing thickness of the poly(A) brush. A 

slight, continuous change is only perceptible in the NEXAFS spectra, as the effective 

attenuation length for the partial electron yield signal is larger than that for the elastic 

electrons (Section 8.1.2),193  so that the effect of the self-attenuation is less strong. 
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Figure 8.7 N 1s XPS spectra (left panel) and “magic 
angle” N K-edge NEXAFS spectra (right panel) of poly(A) 
brushes of different thicknesses as well as the analogous 
spectra of the EG3-SH SAMs on gold (top curves) 
subjected to SIEP at the same conditions as the A25-SH 
and A25-SH/EG3-SH initiator SAMs. The 23 nm brush was 
grown at the standard conditions (see Section 8.1.2) on a 
homogeneous A25-SH template. The 6 and 9 nm brushes 
were grown on mixed A25-SH/EG3-SH templates (lower 
density of the initiator) prepared by the exchange 
reaction as described in Section 8.1.2. The 55 nm brush 
was grown at a higher concentration of TdT (1.0 U/µl, 
which corresponds to the surplus situation) on a 
homogeneous A25-SH template. The NEXAFS spectra 
were acquired at an X-ray incidence angle of 55° (magic 
angle) to avoid effects related to molecular alignment.  
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Along with the “magic angle” NEXAFS spectra 

(Figure 8.7), the orientational order in the poly(A) brushes 

of different thickness was monitored. To this end, 90°-20° 

NEXAFS spectra of four different brushes are presented in 

Figure 8.8 in the same fashion as the analogous spectra in 

Figure 8.5. As seen in Figure 8.8, the character and extent 

of the linear dichroism do not noticeably change with 

variation of the thickness of the poly(A) brush, as long as 

the density of the A25SH initiator is high enough and both 

the length of the poly(A) chains and brush thickness are 

controlled by the concentration of the monomer or the 

enzyme. At the same time, a partial deterioration of the 

orientational order progressively occurs with decreasing 

density of the A25SH initiator as this, in particular, takes 

place upon its mixing with EG3SH. Whereas the length of 

the molecular chains – depending on the reaction 

conditions only – will be mostly unaffected by the 

initiator density, these chains get more space for coiling, 

resulting in decreasing thickness of the brush.  

Taken together, the above results imply that the 

poly(A) brushes show an extraordinary degree of 

orientational ordering as an intrinsic property, which is largely unaffected by their thickness as 

long as their density is high enough, which can be controlled by the density of the initiator sites 

in SIEP. This degree of orientational ordering is both remarkable and surprising.  

8.2.4 Characterization of Brush 

patterns 
 

Combining IPER with EBL, complex 

3-D DNA structures on solid supports can 

be sculptured, relying on the area-

selective and density-controlled 

imbedding of the A25SH moieties 

(initiator site for SIEP) into the inert 

EG3SH matrix and subsequent growth of 

the brush pattern by SIEP, with the 

initiator site density defining the brush 

height.53  Two examples of such structures 

are given in Figure 8.9 where AFM images 

of a column array and an assembly of 

contrary running gradient-like “DNA” 

letters formed from poly(A) by SIEP are 

presented. The height of the columns in 

Figure 8.9a is about 50 nm while the 

 
Figure 8.8  Difference between the 
“magic angle” N K-edge spectra 
collected at normal (90°) and grazing 
(20°) angles of X-ray incidence for 
several poly(A) brushes. The N 1s XPS 
and 55° N K-edge NEXAFS spectra of 
these brushes are shown in Figure 
8.7. The horizontal dashed lines 
correspond to zero. 
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Figure 8.9  AFM images (from-top 3D view) of 
representative poly(A) brush patterns grown by SIEP on 
the A25SH/EG3SH templates prepared by IPER-EBL, along 
with the respective height profiles (color-coded). (a) an 
array of circular and square columns; (b) an assembly of 
contrary running gradient-like “DNA” letters. The size of 
the images is 37 x 40 and 70 x 70 µm², respectively. 
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maximum height of the gradient pattern in Figure 8.9b is about 30 nm. The height of the latter 

brush pattern varies continuously along the letters, with the opposite directions of change for 

each two adjacent letters. Whereas the density of the A25SH initiator was set constant by 

IPER-EBL within the areas where the columns were grown by SIEP (Figure 8.9a), this density 

was varied in the gradient fashion within the areas were the “DNA” letters were grown by SIEP 

(Figure 8.9a). The A25SH density was then transformed into the certain height of the poly(A) 

brush, relying either on stretching or coiling of the growing molecular chains. As a result, 

gradient-like 3-D poly(A) pattern was sculptured. 

8.3 Conclusions 
 

The chemical integrity, purity, orientation, and ordering in the poly(A) brushes were 

probed by a combination of synchrotron-based XPS and angle-resolved NEXAFS spectroscopy 

at all relevant absorption edges. The recorded spectra of poly(A) brushes were found to be 

almost identical to those of the well-defined A25SH monolayers, with only slight differences 

related presumably to the specific extent of the protonation/deprotonation processes 

involving the nucleobases.  Along with the chemical integrity and contamination-free character 

of these films, the surface anchored poly(A) brushes were found to have a high degree of 

internal orientational order with preferable upright orientation of individual strands. This 

behavior was characteristic of all studied brushes, independent of their height in a thickness 

range of 10 – 55 nm and mostly unaffected by the parameters of SIEP in a reasonable range of 

their variation. A most likely mechanism of the preferable alignment is base stacking, i.e. 

interaction and subsequent correlation between individual bases in the process of SIEP and 

afterwards. 
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9. Summary and outlook 

 

 

           Controlled immobilization of biological molecules on surfaces and interfaces is one of 

the key challenges and technologically relevant issues in modern biology and medicine. The 

organization and hybridization of surface-bound DNA in particular is an important component 

in many established, new, and emerging medical, biological and related technologies.  

           This work describes a universal two-step procedure to 

fabricate mixed ssDNA/OEG-AT monolayers and complex 

ssDNA patterns in a biorepulsive background on gold 

substrates using exchange reaction promoted by electron or 

UV light irradiation treatment. 

            Accordingly, a primary monolayer of a test OEG-AT compound, HO(CH2CH2O)3(CH2)11SH 

(termed EG3) was irradiated with electrons either homogeneously or in the EBL fashion, 

resulting in preferential damage of the OEG segments and partial cleavage of the thiolate-gold 

bonds (discussed in Chapter 4). Subsequently, the film was incubated in a solution of a test 

thiolated homo-oligonucleotide, 5´-SH-(CH2)6-d(A)25-3´ (termed A25SH) for the exchange 

reaction promoted by the above defects. The resulted mixed ssDNA/EG3 films were 

characterized in detail by XPS and NEXAFS spectroscopy. It was found that the proportion of 

the A25SH component in the mixed A25SH/EG3 monolayer can be precisely controlled by 

selection of the irradiation dose. Significantly, no exchange occured without irradiation as 

realized by the lack of the characteristic adenine signal (N1s photoemission spectra) for the 

control, non-irradiated sample. Further evidence for the formation of high-quality A25SH/EG3 

monolayers were provided by the NEXAFS spectroscopy. The C K-edge NEXAFS spectra of the 

mixed films could be reproduced as linear combinations of the spectra of the both 

constituents, viz. EG3 and A25SH, which shows that their 

electronic structures are not affected by the mixing. The 

mixed A25SH/EG3 films generated by IPER were also tested 

for hybridization by exposing them to their complementary 

d(T)25 strand. The degree of hybridization was estimated at 

~45.5% for the A25SH/EG3 monolayers prepared by IPER 

with a dose of 0.5 mC/cm2. The efficiency of hybridization for 

this monolayer is much higher than that of the one-

component A25SH film (~22%). The above results 

demonstrate that mixed A25SH/EG3 monolayers of desirable 

composition can by successfully fabricated by IPER, provided 

that irradiation is performed homogeneously and the dose is controlled. Further the IPER 

approach was combined with electron beam lithography (EBL) to introduce ssDNA/OEG-AT 

patterns of desired composition and shape into the biorepulsive OEG-AT template. The 

strength of the approach was additionally demonstrated by its combination with TdT-catalyzed 

SIEP that could be amplified ssDNA/EG3 patterns in the z-direction. This combination provides 

a new methodology to sculpt complex 3D DNA nanostructures on solid supports.  
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            In addition to the thiolated ssDNA, asymmetric and symmetric disulfides are used 

frequently for the formation of ssDNA monolayers on coinage metal substrates. In this context, 

a question arised, whether disulfide ssDNA can serve as substituents to perform IPER with 

biorepulsive OEG-AT matrix. As an independent reference study, this possibility was initially 

tested by using a model system of a DDT SAM on gold as a primary matrix and –COOH 

substituted dialkyldisulfides as substituents (discussed in Chapter 5). It was found that IPER can 

be performed with disulfide substituents in the same manner as in the case of thiols. The 

kinetics of the exchange reaction was found to be similar in both cases but the extent of this 

reaction, i.e. the ultimate portion of the substituent moieties in the resulting mixed SAMs, was 

to be smaller for disulfides. This can be explained by the lower probability of the exchange 

reaction in the case of disulfide substituents, requiring probably a special character of the 

exchange-promoting defects and involving a rearrangement of the adjacent intact species. It 

was found that mixed SAMs comprised of DDT and –

COOH substituted dialkyldisulfide, hold upto 60% of 

substituents at 1mC/cm² dose. The new findings 

allowed the use of another commercially available 

disulfides molecule bearing the BIB tail group which can 

serve as an initiator for surface initiated polymerization 

(SIP). The respective chemical template was fabricated 

and several representative polymers, relevant for 

biomedical research and applications, were tested for 

SI-ATRP viz.  pNIPAAM,  pHEMA, and  pEGDMA.  In the 

case of pNIPAAM and pHEMA, a high level of control 

was achieved, allowing to sculpture gradient-like 3D structures of desired shape with a height 

up to 500 nm. In the case of pEGDMA, the selectivity of SIP was found to be poor; so that 

polymer brush grew over the entire template area so that brush patterns with a limited height 

only (up to 20 nm) were produced. 

           The results of the above experiments clearly showed that disulfides are suitable for IPER. 

So, there were no principle constrains why the disulfides ssDNA substituents would not be 

suitable for this procedure as well. In this context, monomolecular films based on the A25SH 

(reference), A25SSOH, and A25SSA25 precursors were prepared and studied in detail (as 

described in chapter 6). The results showed that all disulfides ssDNA substituents are suitable 

for mixed film preparation. The efficiency of A25SSOH as substituent was to be similar to that 

of A25SH. The portion of the A25S species in the resulting EG3S/A25S monolayers exhibited an 

almost linear dependence on the irradiation dose, with ultimate values of 55-65% at doses of 

1.0-1.2 mC/cm2. In contrast, A25SSA25 showed two somewhat different regimes. At low 

irradiation doses (below ~0.6 mC/cm2) this substituent exhibited very low efficiency in IPER, 

with a portion of the A25S species in the EG3S/A25S films of only ~6% at a dose of ~0.6 

mC/cm2. At higher doses, the portion of the A25S species showed a similar increase with 

increasing dose as in the A25SH and A25SSOH case, but the absolute values were somewhat 

lower, achieving ~40% at a dose of 1.2 mC/cm2. Similar, to the case of the reference films, the 

particular behavior of A25SSA25 was associated with its bulky character and conformational 

flexibility.  
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             As IPER is not always easy to perform under vacuum, the possibility for the preparation 

of mixed ssDNA /OEG-AT monolayers as well as related patterns with UV light promoted 

exchange reaction were tested (discussed in chapter 7). Using a model system of the EG3 

SAMs on gold as the primary film and A25SH as a representative ssDNA substituent, it was 

demonstrated that mixed ssDNA/OEG-AT monolayers can be prepared by UVPER starting from 

a well-defined biorepulsive matrix. The composition of the mixed monolayers could be 

precisely adjusted in almost entire composition range (up to 90% of ssDNA) by the selection of 

suitable UV dose. As shown by the example of UVPER at wavelengths of 254 and 365 nm, this 

procedure can be performed with UV light of different wavelengths, even though significant 

higher UV doses are required at longer wavelengths as compared to shorter ones. The 

extensive spectroscopic characterization of the mixed A25SH/EG3 monolayers prepared by 

UVPER showed that the A25SH molecules imbedded into the EG3 matrix maintained their 

identity and intact character. Their electronic structure was not perturbed by the interaction 

with the EG3 moieties, which suggests that their properties such as sensing elements with 

respect to the complementary ssDNA strand were not affected as well. The ssDNA strands in 

the mixed A25SH/EG3 monolayers were found to be predominantly aligned upright, similar to 

the case of the one-component A25SH films. It was also demonstrated that UVPER procedure 

can be combined with lithography, resulting in the fabrication 

of the ssDNA /OEG-AT arrays and patterns imbedded in 

biorepulsive OEG-AT background. The density of ssDNA 

moieties within the ssDNA /OEG-AT spots could be precisely 

adjusted. The fabricated ssDNA /OEG-AT patterns could be, if 

necessary, extended into the z-dimension by SIEP, which may 

results in sculpturing complex ssDNA brushes.  

          Finally, a detailed spectroscopic characterization of 

homogeneous ssDNA brushes of poly(A) grown by the TdT-

mediated SIEP on A25SH SAMs on gold was performed (as described in chapter 8). The 

chemical integrity, purity, orientation and ordering in the ssDNA brushes were probed by a 

combination of synchrotron-based XPS and angle-resolved NEXAFS spectroscopy at all relevant 

absorption edges. The recorded spectra of poly(A) brushes were found to be almost identical 

to those of the well-defined A25SH monolayers, with only slight differences related 

presumably to the specific extent of the protonation/deprotonation processes involving the 

nucleobases. No unambiguous traces of contamination were found, even though a slight 

contamination cannot be completely excluded. Aside from the chemical integrity and 

contamination-free character of these films, the surface anchored poly(A) brushes were found 

to have a high degree of internal orientational order with preferable upright orientation of 

individual strands. This behavior was characteristic of all studied brushes, independent of their 

height in a thickness range of 10 – 55 nm and mostly unaffected by the parameters of SIEP in a 

reasonable range of their variation. A most likely mechanism of the preferable alignment is 

base stacking, i.e. interaction and subsequent correlation between individual bases in the 

process of SIEP and afterwards.  
 

          Finally, few comments can be made, also in a sense of further investigations and 

extension of the developed approach. The described IPER-EBL procedure relies on 

commercially available compounds – making it easily accessible to researchers and is highly 
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flexible in terms of the composition of the mixed monolayers as well as the size and shape of 

the ssDNA patterns that can be formed on the OEG-AT background. The approach is not 

limited to the compounds used herein but can be presumably implemented with almost any 

combination of a protein-repelling OEG-AT SAM and thiolated ssDNA. Moreover, the possibility 

to perform UVPER at relatively long wavelength makes possible the use of reasonably priced 

lasers, non-expensive UV LED sources, dynamic mirror arrays as well as standard optical and 

diffractive components within the lithographic setups. Also, UV light of longer wavelengths is 

less harmful compared to that of shorter wavelengths 

simplifying the design of the respective experimental setups. 

Note that the UVPER procedure also relies on commercially 

available compounds and does not require vacuum, which 

simplifies its application in research and industrial labs. The 

tunable thickness, density and orientation of ssDNA brushes 

synthesized by SIEP makes it, a new and experimentally 

attractive model system for the biointerface science 

community to investigate the physico-chemical properties of 

DNA specifically at the solid-water interface. Furthermore, the ability of TdT enzyme to 

catalyze the in situ polymerization of long and monodisperse polydeoxynucleotides, which can 

be patterned and sculpted into spatially complex 3-D nanoscale structures, suggest that 

functionally sophisticated, anisotropic nanoscale interfacial architectures should be accessible 

by this methodology for different applications. Further the developed 25nm pattern of DNA by 

the IPER-EBL approach sheds new light towards the preparation of DNA based biosensors, 

biochips, and recognition of complementary DNA, protein from labs to industries. 
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10. Experimental part 

 

In this section all experimental details regarding different mixed SAMs preparation as 

well as various polymer brushes preparation techniques are discussed. Furthermore, an 

overview of the used lithographic procedure and analytical techniques will be given. 
 

10.1 Preparation of self-assembled monolayers on Au  

Self-assembled monolayers (SAMs) give access to surfaces with well-defined and 

tunable properties. The most frequently used strategies to obtain highly ordered SAMs are 

self-assemblies of alkanethiols (ATs) on gold. 
 

10.1.1  Substrates and chemicals 

Gold substrates were purchased from Georg Albert (PVD-Beschichtungen, Germany). 

In brief, the gold substrates, which were used for the SAM preparation, were fabricated by 

thermal evaporation of 100 nm of gold (99.99% purity) onto polished single-crystal silicon 

(100) wafers (Silicon Sense) that had been precoated with a 5 nm titanium adhesion layer. 

Such evaporated films are polycrystalline in nature with a grain size of 20-50 nm as observed 

by atomic force microscopy. They are considered to be standard substrates for thiol-derived 

SAMs. The grains predominantly exhibit a (111) orientation, which is, in particular, supported 

by the observation of the corresponding forward scattering maxima in the angular 

distributions of the Au 4f photoelectrons and by the characteristic binding energy (BE) shift of 

the Au 4f surface component. 222,237  

All chemicals for SAMs formation such as EG3 (HO(CH2CH2O)3(CH2)11SH), Dodecanethiol 

(DDT), 11-mercaptoundecanoic acid (MUDA), 11,11′-dithiobis-undecanoic acid (DTUDA), 

11,11′-Dithiobis[1-(2-bromo-2-methylpropionyloxy)undecane] (DTBUD) and ssDNA 

compounds, viz. A25SH, A25, and T25 were purchased from Sigma-Aldrich and used as 

received. TdT and adenine mononucleotide (dATP) were purchased from Promega (Madison, 

Wisconsin, USA) and used as received. All solvents as well as monomers and chemicals for the 

polymer growth were also purchased from Sigma-Aldrich Chemie GmbH, Germany. De-ionized 

and reverse osmosis purified water with a resistivity  >18.2 MΩ cm was used in all 

experiments. 

All glassware and tweezers used for samples preparation were intensely washed with 

ethanol before use and dried in oven. Au substrates were cleaned by a UV light emitting 

reactor (150W mercury vapor lamp, Heraeuse noblelight, Germany, model TQ150) for a 

minimum of 2.5 h shortly prior to monolayers preparation in order to remove organic 

adsorbates from the surface. After that, the samples were rinsed with ethanol and dried by 

nitrogen flow and then added to the respective thiol solution. (Figure 10.1)  After the given 

immersion time in dark at room temperature, the samples were removed from the thiols 

solution, rinsed with ethanol, treated in an ultrasonic bath for 1 min. Finally, the samples 

blown dry in flow of nitrogen. The samples were stored under pure nitrogen or in some case 

Argon atmosphere until used for the experiments.      
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10.1.2  Preparation of EG3 and A25SH monolayers 
 

The EG3 monolayers were formed by immersion of freshly prepared gold substrates 

into 1 mmol solution of EG3 in pure ethanol for 24 h at room temperature, following literature 

protocol.40 After immersion, the samples were carefully rinsed with the solvent, and blown dry 

with argon. The one component A25SH monolayers were prepared in accordance with 

literature protocols.57,76 Briefly, Au substrates were immersed in 3 µM A25SH solution in 1 M 

CaCl2-TE buffer (1 M CaCl2, 10 mM Tris-HCl, 1 mM EDTA, pH 7.0) for 40 h at a temparatute of 

37°C. Afterward, the samples were rinsed with Millipore-grade water, sonicated with water for 

60 s followed by rinsing with water for 0.5 min to remove loosely bound A25SH species. 

Finally, the samples were blown dry with Ar.78 The density of the one component A25SH 

monolayer was estimated at 6.5X10-13 molecules/cm2 following the approach described in 

literature.58 This gives a molecular area of ~154 Å2 which is considerably larger than the 

analogous value for AT-OEG SAMs (~21.4 Å2).52     

 

10.1.3  Preparation of DDT, MUDA, DTUDA, and DTBUD monolayers 
 

The primary DDT SAMs (matrix) and single-component monolayers prepared from the 

MUDA, DTUDA, and DTBUD precursors (references) were formed by immersion of Gold coated 

substrates into 1 mmol ethanolic solutions of the respective molecules at room temperature. 

After immersion, the samples were carefully rinsed with pure ethanol, and blown dry with 

argon. No evidence for impurities or oxidative degradation products was found. Note that the 

DTUDA and DTBUD precursors were assumed to split into two COOH-AT or two BIB-AT species, 

respectively, upon the adsorption, following the substrate-mediated cleavage of the disulfide 

bond. The same was true for the case of IPER. 

10.2 Preparation of two components monolayer on Au  

10.2.1 Preparation of A25SH/EG3 films by IPER 
 

To prepare mixed films, the primary EG3 SAMs were homogeneously irradiated with 

10 eV electrons provided by flood gun, which are especially effective for a gentle modification 

of SAMs and AT SAMs, in particular.195-196 The doses were estimated by multiplication of the 

exposure time with the current density (~15 A/cm2). The electron gun was mounted at a 

 

Figure 10.1  Scheme of SAM preparation protocol. First the substrate is cleaned by UV light, rinsed with 

ethanol and subsequent immersed in thiol solution for 24 h.  
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distance of ~15 cm from the sample to ensure uniform illumination. The base pressure in the 

chamber during the irradiation was 1x10-8 mbar.  

Exchange reactions were carried out by immersion of irradiated EG3 films in a 3 µM 

solution of A25SH in 1 M CaCl2-TE buffer for 3 h at a temperature of 37°C. After immersion, the 

samples were carefully rinsed with Millipore-grade water, sonicated for 60 s followed by 

rinsing with water for 60 s to remove loosely bound ssDNA species. Finally, they were blown 

dry in an Argon stream. 

10.2.2 Preparation of A25SH/EG3 films by UVPER 
 

Mixed EG3/A25SH films were prepared by irradiation of EG3 films by UV light with a 

wavelength of either 254 or 365 nm. The irradiation was performed homogeneously, under 

ambient conditions (but the ambient light was completely shadowed) using either a short 

wave (UV-C; 254 nm) Hg vapour lamp (Benda Konrad Laborgeräte) or a set of 365 nm LED 

sources (XSL-365-5E, Roithner Lasertechnik). The light intensity was measured using a UVX 

radiometer sensor (Ultraviolet products ltd.) specifically adjusted for the selected wavelengths. 

The intensity of the UV light at a distance of 1 cm (254 nm) or 2 cm (365 nm) away from the 

lamp was ~0.55 mW/cm2 for 254 nm and ~3.6 mW/cm2 for 365 nm irradiation. The irradiation 

doses were estimated by multiplication of the light intensity with the exposure time.  

 

Exchange reactions were carried out by immersion of the irradiated EG3 films in a 3 µM 

solution of A25SH in 1 M CaCl2-TE buffer for 3 h at a temperature of 37°C. After immersion, the 

 

Figure 10.2  Scheme of mixed ssDNA/OEG-AT SAM preparation by irradiation promoted exchange reaction.  

 

 

Figure 10.3  Scheme of mixed ssDNA/OEG-AT SAM preparation by UV light promoted exchange reaction. 
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samples were carefully rinsed with Millipore-grade water, sonicated for 60 s followed by 

rinsing with water for 60 s to remove loosely bound ssDNA species. Finally, the samples were 

blown dry in an argon stream.  

 

10.3 Fabrication of patterns on chemical templates  

10.3.1  Fabrication of nanostructures by EBL 
 

For the fabrication of structured chemical templates, the primary SAMs were 

patterned by focused electron beam using a LEO 1530 scanning electron microscope (Zeiss, 

Germany) with a Raith Elphy Plus pattern generator system. The electron-beam energy was 

chosen at 1 keV and the residual gas pressure was about 5×10-6 mbar. Then the patterned 

SAMs are subjected to exchange reaction with thiolated ssDNA molecules in solution. Finally 

the imbedded ssDNA molecules in OEG-AT served as an initiation site for surface-initiated 

enzymatic polymerization (SIEP). ssDNA brushes, poly (A) are grown on the pattern template. 

10.3.2  Fabrication of nanostructures by UVPER 
        

           Along with the preparation of the mixed A25SH/EG3 monolayers, representative 

A25SH/EG3 patterns were fabricated by proximity printing lithography. For this purpose, EG3S 

films were irradiated by UV light (254 nm) through a mask (Science Services. T601-Cu) with a 

dose 3 J/cm2 and subsequently subjected to the exchange reaction with A25SH under the 

same conditions as in the case of the homogeneous irradiation. To visualize the fabricated 

A25SH/EG3 patterns, these templates were used for SIEP to grow single-strand adenine 

deoxynucleotide (poly(A)) brushes. 

 

 

Figure 10.5   Scheme of ssDNA brush patterns preparation protocol by UVPER with proximity printing 
lithography. 

 

 

Figure 10.4  Scheme of ssDNA brush patterns  preparation protocol by IPER-EBL. 
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10.4 Fabrication of Polymer Brushes  
                Single component SAMs formed from the DTBUD precursor as well as chemical 

patterns formed with DTBUD as substituent were used as templates for SIP. BIB tail groups of 

BIB-ATs served as initiators for this process. Three different polymer brushes were prepared, 

viz. brushes of poly(N-isopropylacrylamide) (pNIPAAM), poly(2-hydroxyethyl methacrylate)  

(pHEMA), and  poly(ethylene glycol dimethacrylate) (pEGDMA).  

Poly(A), i.e. DNA brushes were also grown on mixed A25SH/EG3 templates and 

A25SH/EG3 patterns by surface-initiated enzymatic polymerization (SIEP) reaction. 

10.4.1 pNIPAAM brushes 
 

pNIPAAM brushes were prepared by surface-initiated atom transfer radical 

polymerization following a literature protocol,204 which was 

adapted to our laboratory. 2.1 g (18.56 mM) of the 

monomer (N-isopropylacrylamide; NIPAAM) was added to a 

degassed mixture (2 freeze pump cylces) of water and 

methanol (8:1 v/v, 9 ml) in a Schlenk flask. In the second 

flask, 2.5 mg (0.02 mM) copper(I) bromide and 18 µl (0.05 

mM) N, N, N’, N’’, N’’---pentamethyldiethylenetriamine were 

added to 1 ml of degassed (two freeze pump cycles) 

methanol under argon counterflow. The monomer solution 

was transferred from the first into second flask via a syringe and filtered with a Millipore Millex 

filter (0.45 µm). The reaction mixture was treated by a Vortex for 1 - 2 min. Finally, the SAM or 

SAM-based chemical patterns were introduced into the reaction solution, again under argon 

counterflow. The reaction flask was then covered with a rubber septum and kept at room 

temperature for polymerization. After desired polymerization time, the samples were taken 

from the flask, sonicated in Milli-Q water for 2 min, rinsed with methanol, and dried under 

argon flow. 

10.4.2 pHEMA brushes  
 

pHEMA brushes were prepared according to a 

literature protocol,205  which was adapted to our laboratory. 

4 ml Milli-Q water was degassed by two freeze pump thaw 

cycles before adding 4 ml freshly distilled monomer, 

 

Figure 10.6   Scheme of direct polymer brush preparation process from BIB-AT SAMs, serving as an initiation 
site for SIP-ATRP.  

 

 

Figure 10.8  Structural formula  
of HEMA. 

 

 

Figure 10.7  Structural formula of 
NIPAAM. 
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followed by the third freeze pump thaw cycle. 79 mg (0.55 mmol) of CuBr, 36 mg (0.16 mmol) 

of CuBr2 and 244 mg (1.56 mmol) of 2,2'-bipyridine (bpy) were added to the aqueous solution 

of the monomer. The mixture was treated by a Vortex until a homogeneous dark brown 

solution formed. The SAMs or SAM-based chemical patterns were introduced into the reaction 

solution under argon counterflow. The reaction flask was then covered with a rubber septum, 

sealed with parafilm, and kept at room temperature for polymerization. After polymerization 

(for times ranging from 1 - 5 h) the samples were removed from the vial, rinsed with Milli-Q 

water, sonicated in dichloromethane (DMF), and dried under a flow of argon. 

10.4.3 pEGDMA brushes 
 

pEGDMA brushes were prepared according to a literature protocol,205 which was 

adapted to our laboratory. 8 ml DMF was degassed through 

two freeze pump thaw cycles before adding 60 mg (0.6 

mmol) CuCl and 244 mg (1.56 mmol) bpy under argon 

atmosphere. The mixture was treated by a Vortex for 15 min 

to allow the salt to dissolve and to form a homogeneous 

dark brown solution. In a second vial, 2.5 ml Milli-Q water 

was degassed by using two freeze pump thaw cycles. 40 mg 

(0.18 mmol) CuBr2 was added and the aqueous solution transferred into the first flask by 

syringe. The polymerization mixture was degassed for a third time through a freeze pump 

thaw cycle before the SAMs or SAM-based chemical patterns samples were introduced under 

argon counterflow. The reaction flask was sealed with parafilm and kept at room temperature 

during polymerization. Afterwards, the samples were removed from the vial, rinsed with Milli-

Q water, sonicated in DMF for 20 min, rinsed with DMF, and dried under argon flow. 

10.4.4 ssDNA brushes  
 

Poly(A) brushes were grown on mixed A25SH/EG3 templates and A25SH/EG3 patterns 

in accordance with literature protocols.72-73 Briefly, substrates bearing A25SH and A25SH/EG3 

films as well as A25SH/EG3 patterns were 

exposed to SIEP reaction which comprises of 0.1 

U/µl TdT, 100 μM dATP and 0.1% Tween 20 in 1x 

TdT buffer (100mM potassium cacodylate, 1 mM 

CoCl2, and 0.2 mM DTT, pH 7.2) for 1 h at 37°C. 

Where in the terminal 3´-OH of the assembled 

A25SH moieties served as the initiation sites for 

SIEP of poly(A).53,72-74,216 The samples were then 

rinsed in 1x PBS buffer with 0.1% Tween 20, 

followed by rinsing with Milli-Q water (resistivity > 18.2 MΩ cm) and dried with stream of 

nitrogen. In some experiments, in order to obtain thicker DNA brushes (>25 nm), 1 mM dATP 

(higher monomer concentration) and higher enzyme concentration (up to 1.0 U/µl) were used 

in the SIEP reaction. 

 

 

Figure 10.10  Schematic of ssDNA brush 
formation through SIEP reaction. 

 

 
Figure 10.9  Structural formula of 
EGDMA. 
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10.5 Analytical techniques 

10.5.1  Spectral Ellipsometry 
 

               The thickness of homogeneous poly(A) brushes was monitored in air using an M-88® 

spectroscopic ellipsometer (J. A. Woollam Co., Inc., Lincoln, NE, USA). Samples were analyzed 

at fixed angles of 65°, 70° and 75°. A refractive index of 1.45 was assumed for all the brushes in 

the calculation of their thickness. The monolayer and brush thicknesses were fit into Cauchy 

model and calculated using the manufacturer’s software, WVASE32™. 

10.5.2  Contact angle goniometry 
 

The homogeneous single-component and mixed films were characterized by contact 

angle goniometry. Advancing contact angles of Millipore water were measured on freshly 

prepared samples with a Krüss goniometer Model G1. The measurements were performed 

under ambient conditions with the needle tip in contact with the drop. The drop volume was 

about 2 µl. At least three measurements at different locations on each sample were made. The 

averaged values are reported. Deviations from the average were less than 2°. 

10.5.3  AFM measurements  
 

AFM measurements were performed with a DI3100 microscope (Digital Instruments) 

equipped with a Nanoscope IIIa controller (Veeco instruments). The images were acquired in 

tapping mode in the repulsive force regime. In some case AFM imaging was performed with a 

Solver Next multifunctional Scanning Probe Microscope equipped with a SPM controller 

(BL900). The images were captured using standard tips in tapping mode under standard 

condition in repulsive force regime. The scanned data were analyzed by the local depth 

analysis option of the commercial AFM software by choosing the area containing the pattern. 

10.5.4 Scanning electron microscopy  
 

SEM images were obtained using a Leo 1530 Gemini SEM system (Zeiss, Germany) at 

an acceleration voltage of 1 kV. 2D SEM images were converted to 3D using commercial image 

processing software; the height of the 3D features was taken from the AFM data.   

10.5.5 Optical microscopy 
 

Optical microscopy measurements were performed with Olympus-TGH microscope, 

Japan in standard condition. 

 

10.5.6  X-ray photoelectron spectroscopy  
 

Laboratory- based  XP spectroscopy 

Laboratory based XP spectroscopy measurements were performed using a 

nonmonochromatic Mg Kα X-ray source (1253.6eV) and a LHS 11 analyzer ( Leybold-Heraeus 

GmbH, Germany). The spectra acquisition was carried out in normal emission geometry with 
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an energy resolution of ~0.9 eV. The X-ray source was operated at a power of 260 W and 

positioned ~2 cm away from the samples. All measurements were performed at a base 

pressure of less than 1.5 x10-8 mbar. In addition to the detail spectra shown in the thesis, other 

characteristic XPS signals occur, which appear as satellite peaks in the overview spectra. At the 

beginning of the each measurement, a survey spectrum was recorded to verify the signal 

positions, which are potentially shifted through charging of the sample and furthermore to 

detect possible impurities on the surface. Subsequently, a detailed spectrum was recorded for 

the quantification of each atomic species of interest. Start and end energy state the intervals in 

which measurements were performed for each elements and the step size determines the 

energy difference between two measuring points. The parameter given in table 10.1 were 

used for the measurements.  

 

                        Table 10.1  Parameters for recorded XP spectra 

Orbitals Start 

(eV) 

End 

(eV) 

Step 

(eV) 

Dwell 

(S) 

Pass 

Energy 

(eV) 

Scan 

No. 

WideScan 1095 -5 1.0 0.1  

 

 

100 

2 

Au4f 87 81 0.1 0.1 2 

C1s 293 280 0.1 0.1 5 

O1s 538 526 0.1 0.1 3 

S2p 172 158 0.06 0.20 40 

N1s 405 395 0.2 0.25 20 

P2p 138 128 0.2 0.25 20 

 

To achieve the best possible resolution of the spectra, dwell time is chosen according 

to the signal intensity, i.e. the weaker the signal the longer the dwell time. The dwell time 

depends on the probability of detecting an element which is given by its cross section and its 

position in the material. Numerical values of cross section 
238 and attenuation lengths 

232 are 

shown in table 10.2. 

 

           Table 10.2 Cross section, σ and attenuation lengths, λ for each elements 

 

 

 

 

 

 

 

 

Signal Au4f7/2 C1s O1s S2p N1S P2p 

σ (a.u.) 9.77 1.00 2.85 1.74 1.77 1.25 

λ  [Ǻ] 27.6 25.0 20.2 26.39 22.5 26.8 
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Synchrotron-based XP spectroscopy 

Synchrotron-based HRXPS measurements were carried out at two synchrotron storage 

rings, viz. BESSY II in Berlin, Germany and MAX-lab, Sweden. At the HE-SGM beamline  of BESSY 

II, the XPS spectra were measured using a Scienta R3000 spectrometer. The X-ray energy was 

set to 580 eV. The spectrum acquisition was carried out in normal emission geometry with an 

energy resolution of ~0.4 eV. At the D1011 beamline of MAX Lab, the spectra were collected 

by a Scienta analyzer in normal emission geometry. Linear polarized synchrotron light with a 

polarization factor of ~95% was used. The energy resolution was better than 100 meV. 

Some spectra were fitted by symmetric Voigt functions using either Shirley-type or 

linear background. The fits were performed self-consistently, in that, the same fit parameters 

were used for identical spectral regions across different samples. However, due to irradiation 

induced damaged of the films, a balance between these two counteracting effects of 

resolution and damage has to be chosen. The energy scale of the XPS spectra was referenced 

to the Au 4f7/2 peak at a binding energy (BE) of 84.0 eV.220 The obtained spectra fitted and 

analyzed qualitatively and quantitatively with XPSPEAK 4.1 softwere. All experiments were 

performed at room temperature and UHV conditions at a base pressure lower than 1X10-9 

mbar. The spectrum acquisition time was selected in such a way that no noticeable damage by 

the primary X-rays occurred during the experiments.129,239-240 Most of the measurements were 

repeated several times on different samples, with good reproducibility of results. 
 

10.5.7 NEXAFS spectroscopy  
 

Synchrotron-based angle-resolved NEXAFS spectroscopy measurements were carried 

out at two synchrotron storage ring, viz. BESSY II in Berlin, Germany and MAX-lab, Sweden. In 

detail, at the HE-SGM beamline (bending magnet)241 of Bessy II,  linear polarized synchrotron 

light with a polarization factor of ~0.91 was used. The energy resolution of the whole setup 

was estimated to be on the order of 0.3-0.4 eV, getting lower with the increasing photon 

energy. At the MAX lab, the measurements were carried out at the D1011 beamline (bending 

magnet), equipped with a SCIENTA SES200 electron energy analyzer and a partial electron 

(PEY) detector. Linear polarized synchrotron light with a polarization factor of ~95% was used. 

The energy resolution was ~0.1eV. 

The acquisition of the NEXAFS spectra was performed at the C, N, and O K-edges in the 

partial electron yield (PEY) mode with a retarding voltage of –150, –300, and –350 V, 

respectively. The most characteristic N K-edge spectra were used to monitor the orientational 

order in the films and brushes. For this purpose, the incidence angle of the synchrotron light 

was varied from 90° (normal incidence; E-vector in the surface plane) to 20° (grazing incidence; 

E-vector near the surface normal) in steps of 10-20° This approach is based on the dependence 

of the cross-section of the resonant photo excitation process on the orientation of the electric 

field vector of the synchrotron light with respect to the molecular orbital of interest (so-called 

linear dichroism in X-ray absorption).148 This effect results in a characteristic dependence of an 

adsorption resonance intensity on the incidence angle of X-rays as long as there is an 

orientational order in the probed system. The raw NEXAFS spectra were normalized to the 

incident photon flux by division through the spectrum of a clean, freshly sputtered gold 

sample. Furthermore, the spectra were reduced to the standard form by subtraction of a linear 
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pre-edge background and normalization to the unity edge jump (as determined by a nearly 

horizontal plateau 40-50 eV above the respective absorption edges). The energy scale was 

referenced to the most intense π* resonance of highly oriented pyrolytic graphite (HOPG) at 

285.38 eV.242 
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AFM Atomic force microscopy 
ATRP  Atom transfer radical polymerization 
AO  Atomic orbital  
AT  Alkanethiolate 
BIB  2-Bromoisobutyryl bromide 
BSE  Back-scattered electrons 
CA  Contact angle 
DDT  1-Dodecanethiol 
EBL Electron beam lithography 
EBCL  Electron beam chemical lithography 
EG  Ethylene glycol 
ESCA  Electron spectroscopy for chemical analysis 
FTIR  Fourier transform infrared spectroscopy 
HOMO  Highest Occupied Molecular Orbital  
HRXPS  High Resolution XPS  
IPER Irradiation promoted exchange reaction 
LUMO Lowest Unoccupied Molecular Orbital  
MQ  MilliQ R 
MO  Molecular   orbital  
NIPAAM  N-Isopropylacrylamide 
NEXAFS  Near Edge X-Ray Absorption Fine Structure  
OEG Oligo(ethylene glycol) 
PBS  Phosphate buffered saline 
PMDETA  N,N,N’,N”,N”-pentamethyldiethylenetriamine 
PNIPAAM  Poly(N-isopropylacrylamide) 
PDMS   Polydimethylsiloxane elastomer 
PE  Primary electron  
RT  Room temperature 
RAFT  Reversible addition fragmentation chain transfer 

rpm  Rotation per minute  
SAM  Self assembled monolayer 
SE  Secondary electrons 
SEM  Scanning electron microscopy 
SI-ATRP  Surface-initiated atom transfer radical polymerization 
SIP  Surface-initiated polymerization 
STM  Scanning tunneling microscopy 
TDM  Transition dipol moment 
TdT Terminal deoxynucleotidyl transferase 
UV  Ultraviolet 
μCP   Microcontact printing 
UHV  Ultra high vacuum  
XPS  X-ray photoelecton spectroscopy 
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