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Zusammenfassung

Die vorliegende Arbeit besch•aftigt sich mit der Analyse von 4D Lichtfeldern. Als Licht-
feld bezeichnen wir in diesem Zusammenhang eine Serie von digitalen 2D Bilder einer
Szene die auf einem planaren regul•aren Gitter von Kamerapositionen aufgenommen
werden. Essenziell ist dabei die Aufnahme einer Szene mittels vieler Kamerapositionen
konstanten Abstandes zueinander. Dadurch werden die von einem Punkt der Szene
ausgehenden Lichtstrahlen als Funktion der Kameraposition abgetastet. Dadurch ergibt
sich die bereits erw•ahnte Vierdimensionalit•at der Daten da, im Gegensatz zu einem
klassischen Bild, zus•atzlich zur Ortsinformation eine Richtungsinformation der Lichtin-
tensit•at abgebildet wird.

Lichtfelder sind ein relativ neues Forschungsfeld f•ur dieBildverarbeitung, deren moderner
Ursprung eher in der Computergra�k zu suchen ist. Dort wurdensie verwendet, um
die aufwendige Modellierung der 3D Geometrie zu umgehen undmittels Interpolation
der Blickwinkel auch ohne Informationen •uber die Geometrie einen interaktiven 3D
Eindruck zu erzielen. Die vorliegende Arbeit hat die umgekehrte Intention und m•ochte
aufgenommene Lichtfelder dazu verwenden um die Geometrie der Szene zu rekonstru-
ieren. Der Grund ist, dass Lichtfelder im Vergleich zu existierenden Verfahren der 3D
Rekonstruktion einen viel reicheren Informationsgehalt besitzen. Durch die regul•are
Abtastung des Lichtfeldes werden neben Information •uber die Geometrie ebenfalls
Materialeigenschaften abgebildet. Ober
•achen, deren visuelle Erscheinung sich unter
•Anderung des Betrachtungswinkels nicht konstant verh•alt,f•uhren bei bekannten passiven
Rekonstruktionsverfahren zu gro�en Problemen. Das Verhalten solcher Ober
•achen
unter Blickwinkel•anderung wird in Lichtfeldern allerdings abgetastet und somit unmit-
telbar analysierbar.

Der wissenschaftliche Beitrag dieser Arbeit besteht aus verschiedenen Teilbeitr•agen.
Es wird ein neues Verfahren vorgestellt, das aus den Rohdaten einer Lichtfeldkamera
(Plenopik Kamera 2.0) ohne explizite pixelweise Vorberechnung der Tiefeninformation
eine 4D Lichtfeldrepr•asentation erzeugt. Diese spezielle Repr•asentation, auchLumigraph
genannt, erm•oglicht den Zugang zuEpipolarebenengenannten 2D-Unterr•aumen dieser
Datenstruktur. Es wird ein Verfahren vorgestellt das aus einer Analyse dieserEpipo-
larebeneneine robuste Tiefensch•atzung unter der AnnahmeLambertscherOber
•achen
erm•oglicht. Darauf aufbauend wird eine Erweiterung dieses Verfahrens auf kompliziertere
Materialien, zum Beispiel spiegelnder oder teiltransparenter Ober
•achen, entwickelt.
Als Anwendungsbeispiele f•ur die inherent vorhandene Tiefeninformation in Lichtfeldern
werden bekannte Verfahren wie Superresolution oder Objektsegmentierung auf Licht-
felder erweitert und mit Ergebnissen auf Einzelbildern verglichen. Au�erdem ist im
Laufe dieser Arbeit eine gro�e Benchmark Datenbank, bestehend aus simulierten und
realen Lichtfeldern entstanden, mit Hilfe derer die hier vorgestellten Verfahren getestet
werden, und die zuk•unftiger Forschung auf diesem Feld als Vergleichsbasis dienen soll.
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Summary

This work is about the analysis of 4D light �elds. In the context of this work a light
�eld is a series of 2D digital images of a scene captured on a planar regular grid of
camera positions. It is essential that the scene is capturedover several camera positions
having constant distances to each other. This results in a sampling of light rays emitted
by a single scene point as a function of the camera position. In contrast to traditional
images { measuring the light intensity in the spatial domain{ this approach addition-
ally captures directional information leading to the four dimensionality mentioned above.

For image processing, light �elds are a relatively new research area. In computer graphics,
they were used to avoid the work-intensive modeling of 3D geometry by instead using
view interpolation to achieve interactive 3D experiences without explicit geometry. The
intention of this work is vice versa, namely using light �elds to reconstruct geometry of
a captured scene. The reason is that light �elds provide muchricher information content
compared to existing approaches of 3D reconstruction. Due to the regular and dense
sampling of the scene, aside from geometry, material properties are also imaged. Surfaces
whose visual appearance change when changing the line of sight causes problems for
known approaches of passive 3D reconstruction. Light �eldsinstead sample this change
in appearance and thus make analysis possible.

This thesis covers di�erent contributions. We propose a newapproach to convert raw
data from a light �eld camera (plenoptic camera 2.0) to a 4D representation without
a pre-computation of pixel-wise depth. This special representation { also called the
Lumigraph { enables an access to epipolar planes which are sub-spaces of the 4D data
structure. An approach is proposed analyzing these epipolarplane images to achieve a
robust depth estimation onLambertian surfaces. Based on this, an extension is presented
also handling re
ective and transparent surfaces. As examples for the usefulness of this
inherently available depth information we show improvements to well known techniques
like super-resolution and object segmentation when extending them to light �elds.
Additionally a benchmark database was established over timeduring the research for
this thesis. We will test the proposed approaches using thisdatabase and hope that it
helps to drive future research in this �eld.
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The body of the air is full of an in�nite number of radiant pyramids caused by the objects
located in it. These pyramids intersect and interweave without interfering with each
other during the independent passage throughout the air in which they are infused.

Leonardo da Vinci (1452-1519)





I say that if the front of a building {or any open piazza or �eld{ which is illuminated by
the sun has a dwelling opposite to it, and if, in the front which does not face that sun,
you make a small round hole, all the illuminated objects will project their images through
that hole and be visible inside the dwelling on the opposite wall which may be made white;
and there, in fact, they will be upside down, and if you make similar openings in several
places in the same wall you will have the same result from each. Hence the images
of the illuminated objects are all everywhere on this wall and all in each minutest part of it.

Leonardo da Vinci (1452-1519)





1 Introduction

1.1 Motivation

Depth imaging has been a highly active research area for decades. Considering the vast
number of application areas, this is not very surprising. These range from industrial
inspection to robotics, from automotive to surveillance { to name only a few that are
long established. However, in the last years, new areas of interest have emerge to drive
the developments in that �eld. Recent advances in the mobileand gaming industry
o�er more and more depth range data and the upcoming era of 3D printing and rapid
prototyping is currently opening a new �eld of interests in 3D reconstruction. This great
demand of depth imaging resulted in a wealth of techniques and devices. One of the
�rst established is the so calledstereo imagingor triangulation. Inspired by the visual
system of mammals, two cameras can be placed next to each other looking in the same
direction. The resulting images can be used to determine theshift between objects in
the corresponding images which is related to the distance ofthe object to the image
planes. Stereo imaging is one of the most well developed approaches considering the
number of existing setups and algorithms. The reason for this success is the simplicity
of the system and that the algorithms are relatively straightforward, at least for the
basic approaches.

f b

(X,Y,Z)

Z

rx

lx

P

^ 

Figure 1: Stereo camera setup. An object atP = ( X; Y; Z ) is mapped onto two camera sensors.
In the left camera at x l and in the right camera at x r . The camera sensor centers have a distanceb
from each other { also called baseline. For objects far away from the camera lens, the parameterf is
equivalent to the focal length.

As depicted in �gure 1, a stereo setup consists of two cameras at a distanceb. A point
P is then projected onto di�erent pixel positions on the imageplane. The di�erence of
the relative projections ofP is xr � x l known asparallax or disparity d. The disparity is
inversely proportional to the distanceZ of the object (see equation 1) [45].

d = xr � x l = f

 
X + b

2

Z
�

X � b
2

Z

!

= b
f
Z

(1)
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The statistical uncertainty can be derived usingGaussian error propagation

� Z =
Z 2

bf
� d (2)

In equation 2 one can see that the uncertainty �Z of the measured depth increases with
the square of the distanceZ 2 [45].

Algorithmically { due to the vast number of methods handling the stereo problem { we
will only discuss a very basic approach as an example. A well known method consists of
3 computation steps [83] [52]:

1. compute matching costs of intensitiesI r ,I l at disparity d using for example one of
the following cost functions.Sum of Absolute Di�erences(SSD), Sum of Squared
Di�erences (SAD), Normalized Cross Correlation(NCC).

SAD(x; y; d) =
X

x;y 2 W

jI l (x; y) � I r (x; y � d)j

SSD(x; y; d) =
X

x;y 2 W

(I l (x; y) � I r (x; y � d))2

NCC(x; y; d) =

P
x;y 2 W I l (x; y) � I r (x; y � d)

(
P

x;y 2 W I 2
l (x; y)) � (

P
x;y 2 W �I 2

r (x; y � d))

(3)

2. for each disparity assumption, sum matching costs over a square window.

3. select optimal disparity as the minimal aggregation cost(AGC) at each pixel.

dopt(x; y) = argmin AGC(x; y; d) where AGC is SAD; SSD or NCC (4)

From equation 3, it is quite obvious that to match correspondences, the presence of
texture variance is obligatory. If no high frequency textures are available, other tri-
angulation techniques have been developed which use activelight sources to replace
the missing texture. Those can be implemented as a series of stripe patterns matching
the pattern deformation or as a projection of random patterns onto the objects, to
give only two examples. Disadvantages of the active methodsare that they do not
work under arbitrary lighting conditions or on re
ective materials. However, the main
problem of all triangulation based algorithms is the fact that the underlying principle is a
correspondence search. This means that the same features orregions in all corresponding
images need to be found to determine the relative shift between them. However, the
basic prerequisite for this is, that the appearance or the color of those regions stays the
same from both viewpoints. This so-calledLambertian assumption, namely that the
observed color of a 3D point is independent of the point of view, is the main problem of
correspondence search because most materials do not behavelike this.
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Another technique to measure the depth of a scene isTime-of-Flight (ToF) imaging.
ToF is an active range estimation method based on measuring the time a light pulse
requires to travel from the emitter to the object and back to the camera. A quite old
and famous 1D realization is theLIDAR (Light Detection And Ranging) [87], often
used in the �eld of self-driving cars.

The important equation for a ToF system is

� =
2z
c

; (5)

where� is the travel time, z the distance of an object to the camera andc the speed of
light. The cameras consist of four main components, an illumination unit, an optic, a
sensor and a complex electronic read out unit. The illumination unit often consists of
LEDs or laser diodes emitting in the near infrared spectrum.There are two possible
operation modes. Either the LEDs emit light pulses or a continuous wave modulation.
In the second case, instead of traveling time a phase shift ismeasured.
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Figure 2: A simpli�ed sketch of a Time-of-Flight camera. A signal is emitted by the illumination
unit, re
ected by an object and measured on the sensor element able tomeasure time dependent on
the incoming intensities. The signal is then processed by the read-out unit to estimate the distance
of the re
ected signals measured at each pixel.

Time-of-Flight camerascan measure distances between a few centimeter and a few dozen
meters. For periodically modulated light sources, there isa natural limitation of the
maximum measurable range due to an ambiguity of periodic signals with a phase shift of

� � = 2�k; k 2 N: (6)
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the maximum range that can be measured then depends on the frequency� of the light
source

dmax =
c

2�
: (7)

These ranges can be extended i.e. by using combined measurements of multiple modula-
tion frequencies [36]. ToF camerasusing pulsed illumination have similar problems. The
depth range limitation is not driven by a non ambiguity of thesignal as in equation 6
but by the integration time necessary to wait for back-projected light pulses.

The sensors inToF camerasare much more complicated than in a standard digital
camera. Every pixel must be able to measure the light travel time separately. Thus
the pixels are huge (around 100�m ) compared to the pixels of aCCD sensorwhich are
around 10�m . This leads to one of the main disadvantages of this type of range camera,
quite poor resolution. Currently they achieve sensor resolutions of around 200� 200
pixels. Another disadvantage is that the distance measurement only works on materials
able to re
ect the light frequency of the illumination unit. Also multiple re
ections in
the scene as well as mutual interferences between di�erentToFs are known problems.
The accuracy of the depth measurement theoretically does not depend on the distance
of the objects, but in practice it does. Due to the fact that light intensity I drops o�
with 1=z2, the signal to noise ratio increases for objects with increasing distance to the
sensor, which of course a�ects the accuracy.

A third important technique to estimate depth ranges is the so calledInterferometry.
This is a method based on measuring the interference of a reference beam and the beam
re
ected by an object. The principle is sketched in �gure 3. Asource emits light which
�rst goes through an aperture and a collimator lens to createa planar and coherent
wavefront. A beam splitter separates the wavefront into a measuring and a reference
beam. The reference beam is re
ected by a mirror back to the beam splitter where
it is reunited with the measuring beam backscattered by the object surface. If both
path lengths from the reference and the measuring beam are the same, by constructive
interference, the reunited beam causes a maximum intensitysignal in the CCD camera
measuring it. By moving the reference or the object arm, a scanning of the surface
can be achieved. The accuracy of measurement is in the range of the wavelength used,
which means in the scale on nanometers. A price for this precision is that much e�ort is
necessary to stabilize the system. Mechanical and thermal disturbances are critical. It
is also very hard to apply this technology to measure bigger objects, thus interferometry
is widely used in scienti�c and industrial environments to measure small objects very
precisely, but it is not a very 
exible range estimation technique.

Aside from the depth imaging techniques discussed up to now,light �eld photographyis
developing as a new technology for high quality passive range estimation. A light �eld
is a dense and regular sampling of a scene. This enables a measurement of spatial and
direction dependent intensities instead of only spatiallymeasured intensities. In fact,
this is a quite old idea which goes back to the early 20th century, and Gabriel Lippmann
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movable objectCCD camera

mirror

beam splitter

lenses

light source

Figure 3: Sketch of anInterferometer setup. A light source emits light trough a pinhole and a
collimator lens to guarantee planar and coherent wavefronts. The light rays then are separated by
a beam splitter into a measuring and a reference beam reunited again in the beam splitter before
captured by a CCD camera. Same path length of measuring and reference beam causes constructive
interference which can be used to measure the object surface elevation.

who �rst thought of this idea named it Integral Photography[61]. His method of light
�eld capture was more or less ignored for 100 years before being rediscovered about
10 years ago. First people researching incomputer graphicsdiscovered light �elds as a
possible solution to skip the 3D geometry modeling stage by instead using a collection
of images to interpolate intermediate views of a scene resulting in an interactive 3D
experience. In fact, this statement is simpli�ed because there are various techniques
established in Image-based rendering [23, 24, 41, 54, 58, 65, 85, 86, 89] which can be
classi�ed as techniques based on rendering without geometry, with implicit geometry
and with explicit geometry. However, the main goal is usuallythe generation of novel
views from existing images of a scene with or without geometry present. Reviews of this
techniques can be found in Kang [48] and Shum [88].

In the computer vision communitypeople are more interested in sampling a light �eld
of a scene to explicitly reconstruction the geometry. Ways to capture light �elds are
diverse, but the principle is always to achieve a dense sampling of the cones of light
rays emitted by each point on the surface of a captured object. We will see in this work
that a dense and regular sampling of a scene, what we call a light �eld, allows more
that just a reconstruction of geometry. Due to the mentionedsampling constraints, also
material properties of the captured objects are mapped ontothe sensor(s). This becomes
clear when realizing that material properties can be described using theBidirectional
Re
ectance Distribution Function (BRDF). The BRDF is a function describing the
measured intensity of an opaque surface depending on the incoming and outgoing light
rays and the normal vector of the surface. The fundamental assumption of algorithms
based on triangulation is that the observed scene point behavesLambertian, which is
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equivalent to a constantBRDF. In other words, the color of an observed object point
does not depend on the observation direction. In reality notmany existing materials
ful�ll this assumption. A lot of research has been done in thearea of stereo vision to
design algorithms more robust against such glossiness e�ects. Although most objects
in natural scenes can be seen asLambertian, the problems increase the higher resolved
or the nearer to the camera objects are. Especially for tasksof high quality 3D object
reconstruction, playing a role for example in industrial inspection, non-Lambertian
e�ects gain in importance and need to be handled. To gain robustness, stereo setups can
be extended to multiple cameras, providing more views of thesame object point and
thus to more possible correspondence. But due to the fact that all such algorithms still
are based on searching for corresponding features in di�erent images, this only comes
with more and more complexity of the algorithms and increasing computation time.
All these methods try to combat a lack of, or an ambiguity, in information with ever
improving error handling. If instead a light �eld camera samples a subset of the light
rays emitted by an object, it actually performs a sparse sampling of the BRDF. This
makes reconstruction of the geometry and also of theBRDF possible. Methods analyzing
light �elds thus inherently should be more robust againstnon-Lambertian e�ects, be-
cause information about the material is really measured andnot only causing ambiguities.

The goal of this thesis is an analysis of light �elds from thecomputer visionpoint of
view. We use a speci�c parametrization throughout the entire work, called a 4D light
�eld or Lumigraph, which is a well suited representation, for example, givingaccess
to e�ects caused by theBRDF. The main contributions are methods to analyze 4D
light �elds primarily aimed at geometry reconstruction of objects underLambertian and
non-Lambertian assumptions.

The work presented in this thesis was funded byRobert Bosch GmbH, Stuttgart.
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1.2 Outline

Section 2: We give an overview over light �elds in the context of image processing. In
contrast to computer graphics, where light �elds were developed to avoid the necessity
of geometry, we are interested in acquiring them to reconstruct geometry as a primary
goal. Due to that, we �rst introduce the most general de�nition of light �elds before
discussing the parametrization and data representation weuse in this work. After that,
we recap di�erent methods of real world light �eld acquisition as well as simulation
using computer graphics.

Section 3: After an introduction of epipolar plane images and their bene�ts for the
analysis of light �elds as well as a discussion of the problems of Focused Plenoptic Cam-
eras, we present an algorithm to compute a real 4D representation from Plenoptic 2.0
Camera raw data without a pre-computation of an explicit pixel-wise depth estimation.
This section is based on the publication "Generating EPI representations of 4D Light
�elds with a single lens focused plenoptic camera" [104].

Section 4: This section discusses the 4D light �eld data used in this work. We
introduce our benchmark data set consisting of simulated and real world light �eld
data providing ground truth depth at least for the center view. The corresponding
publication is "Datasets and Benchmarks for Densely Sampled 4D Light Fields" [105], a
joint work with Bastian Goldl•ucke and Stephan Meister.

Section 5: In this section, we discuss geometry reconstruction using light �elds, in par-
ticular epipolar plane images. Compared to methods based oncorrespondence search, we
propose an orientation analysis on epipolar plane images which can be implemented via
fast and robust �ltering approaches. The section splits into two parts, single orientation
and double orientation estimation. The range estimation using single orientation analysis
is based on the Lambertian assumption that the color of a scene point is independent
of the viewpoint. This part is based on the publications "Globally consistent depth
labeling of 4D light �elds" [100] and "Variational Light Field Analysis for Disparity
Estimation and Super-Resolution" [103]. In general the Lambertian assumption is not a
valid description for real world objects. If materials showa shininess or, even worse, act
as a mirror, this has an e�ect on the structure of the epipolarplane images. How this
e�ect looks and how to analyze these more complex epipolar planes we discuss in the
second part of this section, the double orientation analysis. This part is based on the
publication "Reconstructing Re
ective and Transparent Surfaces from Epipolar Plane
Images" [102]. Along with the local analysis of the epipolar planes we discuss variational
frameworks to improve the results and to guarantee global consistency. The theoreti-
cal part of this optimization techniques as well as fastCUDA [71] implementations of
the developed algorithms, gathered in thecocolib [37], are the work of Bastian Goldl•ucke.
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Section 6: With the readily available range information light �elds are providing,
further scene analysis can be done. We develop two frameworks based on light �eld
processing. First we discuss a super-resolution framework tailored to light �elds. The
corresponding publications are "Spatial and angular variational super-resolution of 4D
light �elds " [101] and "Variational Light Field Analysis for Disparity Estimation and
Super-Resolution" [103]. A second project is object segmentation in light �elds. Here,
we will see that light �elds are highly suitable for segmentation tasks. Problems of
classi�ers acting on single image domains can be overcome and by labeling rays consistent
over the entire light �eld much better results compared to single pixel labeling can be
achieved. The publication corresponding to this part is "Globally Consistent Multi-Label
Assignment on the Ray Space of 4D Light Fields" [106]. The publication is a joint
work with Bastian Goldl•ucke and Christoph Straehle, whereby also here the theoretical
background as well as fast implementations on the GPU of the variational methods are
the work of Dr. Goldl•ucke.

1.3 Contribution

The following is a list of what the author believes to be the novel contributions of this
thesis:

� a novel algorithm to convert raw data ofPlenoptic 2.0 Camerasinto the Lumigraph
representation without pre-computing a pixel-wise distance measure.

� a benchmark database consisting of real-world and simulated 4D light �elds
providing ground truth depth and partly ground truth object labels.

� a new approach for range estimation using orientation analysis in light �elds

� an extension of the single orientation analysis to double orientation patterns for
reconstructing re
ections and transparencies.

� an evaluation of applications of the orientation analysis such as super-resolution
of light �elds and ray-space segmentation.
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2 Light Fields

2.1 The Plenoptic Function

One of the fundamental papers introducing the concept of light �elds is " The Plenoptic
Function and Elements of Early Vision" from Adelson and Bergen [2]. They ask the
question what the actual information about the world is which is contained in the light
�lling the space an observer is looking at. Starting from this question they develop a
theory of the plenoptic function.

Figure 4: A widely spread visualization of the plenoptic function. We cite the original caption of
the �gure: " The plenoptic function describes the information available to an observer at any point
in space and time. Shown here are two schematic eyes-which one shouldconsider to have punctuate
pupils-gathering pencils of light rays. A real observer cannot see thelight rays coming from behind,
but the plenoptic function does include these rays." (Adelson and Bergen [2])

.

If we capture a gray value image of a scene { using a pinhole camera{ we select a
cone shaped bundle of rays at a speci�c position in spaceV0 and accumulate their
intensities on the sensor of our camera. Thus we measure an intensity distribution
P(�; � ) or P(x; y), depending on the type of coordinate system we use. Taking the lights
wavelength� into account we can add another dimensionP(x; y; � ). If in a next step we
measure the whole spaceV 2 R3 instantaneously we gain three dimensions more, and
when also including the timet, we end up with a seven dimensional function describing
the entire information about the light �lling the space over time

P(x; y; �; V x ; Vy; Vz; t): (8)
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There might be even more dimensions if we consider the polarization states of the light
rays, but we neglect this here and concentrate in the following on theplenoptic function
in equation 8. In general, this function de�nition seems a bit abstract, but in fact,
every imaging device samples sparse subsets of this function. Considering this, the
concept of aplenoptic functioncan serve as a general framework to think about possible
imaging modalities. Another example, besides the standard pinhole camera which can
be described asP(x; y), this work is about a sampling of theplenoptic function of type
P(x; y; Vx ; Vy) [107].

2.2 The Lumigraph Parametrization

In the previous section 2.1, we discussed theplenoptic function as describing the en-
tire information on the light �lling the space around an object. Due to the fact that
all imaging techniques are sparse samples of this general function, in this section we
introduce the sparse sampling or parametrization this workconcentrates on.

If we assume a sampling of theplenoptic functionusing a gray value camera, we can �rst
neglect the wavelength� dependency in equation 8. Furthermore this work is about
static scene reconstruction, so we are not interested in optical 
ow estimation or any
other time dependent properties of the scene and thus can cancel out the dimension
t as well. Another reduction in dimensionality can be achievedif we assume that the
intensity of a light ray does not depend on the actual position on the ray, which is
equivalent to the assumption that we parametrize the light �eld on a surface � outside
of the convex hull of the scene (compare �gure 5 left).

Several ways to represent light �elds have been proposed. Here, we adopt the light �eld
parametrization from early works in motion analysis from Bolles et al. [16] and the work
about light �eld sampling from Gortler et al. [41]. The idea of a convex hull to reduce
the plenoptic function has also been used by Benton [10] and similar ideas can be found
in Ashton [5], where the movement of the camera is restricted to a spherical surface for
an illumination analysis.

One way to look at a 4D light �eld is to consider it as a collection of pinhole views from
several view points parallel to a common image plane (see �gure 5). The 2D plane �
contains the focal points of the views, which we parametrizeby the coordinates (s; t),
and the image plane 
 is parametrized by the coordinates (x; y). A 4D light �eld or
Lumigraph [41] then is a map

L : 
 � � ! R; (x; y; s; t) 7! L(x; y; s; t): (9)

It can be viewed as an assignment of an intensity value to the ray passing through
(x; y) 2 
 and ( s; t) 2 �.
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(a) Opaque surface only assumption (b) Two plane parametrization

Figure 5: (a) Dimensionality reduction of the plenoptic function through parameterizing the light
�eld on a surface � by assuming that the intensity of light rays does n ot change in the free space
between object surfaces and the imaging device. In other words, the intensity of the rays from the
object at P which are occluded by the object atP0 is not of interest. (b) Each light ray can be
parametrized by the intersection point with two planes. Each cameralocation (s� ; t � ) in the 2D
plane � yields a di�erent pinhole view of the scene. Together with t he second intersection (x � ; y� ) at
the image plane 
 we can parametrize a light �eld as a four dimensional subspaceL(x; y; s; t ) of the
plenoptic function (see equation 9).

2.3 Epipolar Plane Images

For the problem of estimating the 3D structure of a sampled scene, we consider the
structure of the light �eld, in particular on 2D slices through the �eld. We �x a horizontal
line of constanty� in the image plane and a constant camera coordinatet � , and restrict
the light �eld to an ( x; s)-slice � y � ;t � , respectively to an (y; t)-slice � x � s� . The resulting
map is called an epipolar plane image (EPI). This idea goes back to Bolles et al. [16].

Sy � ;t � : � y � ;t � ! R;

(x; s) 7! Sy � ;t � (x; s) := L(x; y � ; s; t� ):
(10)

Let us consider the geometry of this map (compare �gures 5 and6). A point P = ( X; Y; Z )
within the epipolar plane corresponding to the slice projects to a point in 
 depending
on the chosen camera center in �. If we varys, the coordinatex changes according to

� x =
f
Z

� s; (11)

wheref is the distance between the parallel planes. Note that to obtain this formula � x
has to be corrected by the translation �s to account for the di�erent local coordinate
systems of the views. Interestingly, a point in 3D space is thus projected onto a line
in � y � ;t � , where the slope of the line is related to its depth. This means that the intensity
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Figure 6: The left side depicts a collection of images sampling a 3D scene. The images are cap-
tured on planar 2D grid with constant baselines. This is what is called the Lumigraph parametriza-
tion (section 2.2). By �xing an angular dimension (visualized via a red box) we extract a 3D sub-
space of theLumigraph. If we imagine this image sequence as a volume (x,y,s) and cut out a slice
along the s-axis, which is equivalent to �xing another spatial dimension (visualized via a green line),
the result is an epipolar plane image. In this subspace a point in the world is mapped onto a line
whose slope corresponds to the distance of the point to the camera.

of the light �eld should not change along such a line, provided that the objects in the
scene areLambertian. Thus, computing depth is essentially equivalent to computing
the slope of level lines in the epipolar plane images. Of course, this is a well-known
fact, which has already been used for depth reconstruction in previous works [16, 27].
In sections 5.1 and 5.2, we describe and evaluate novel approaches on how to obtain
slope estimates forLambertian and for non Lambertian assumptions.

Figure 7: Sketch of a linear camera array. Cameras are lined up with constant baselines b. This
leads to a linear mapping of a 3D point onto the sensors. The slope of theselines depends on the
distance Z of P to the image plane.
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2.4 Acquisition Of Light Fields

2.4.1 The Plenoptic Camera (1.0)

The early beginnings of light �eld imaging orPlenoptic Camerasare strongly connected
to Ives (1903) [44] and Lippmann (1908) [61]. Lippmann realized that classical pho-
tography, like drawings, only shows one part of the whole anddreamed of an imaging
device able to render { "the full variety o�ered by the direct observation of objects".
One of his drawings from 1908, depicted in �gure 8, already gives some insight in todays
realization of Plenoptic Cameras.

Figure 8: Early drawing of Lippmans so-called integral camera (1908) [61]

The modern approaches of buildingPlenoptic Camerasare mainly in
uenced by the
works of Adelson et al. [3] and Ng et al. [70]. Due to the fact that the principles in
detail are well described in those publications and that this work does not deal with
data of early versions ofPlenoptic Cameras, we will here only give a short overview of
the basic concepts of the realization and the algorithmic ofrendering images from the
sensor raw data following Ng et al. [70].

2.4.1.1 Optical Design. The Plenoptic Camera 1.0is based on a usual camera
with a digital sensor, a main optics and an aperture. The di�erence from a normal
camera is a micro-lens array placed on the focal plane of the main lens exactly at a
distancef MLA from the sensor. (see �gure 9). This means the micro-lenses themselves
are focused at in�nity. In contrast with a usual camera whichintegrates the focused
light of the main lens on a single sensor element { the micro-lenses split the incoming
light cone by the direction of the rays mapping them onto the sensor area below the
corresponding micro-lens.

This means that one has direct access to the intensity of a light ray L(x � ; y� ; s� ; t � ) of
the light �eld by choosing the micro-image of the micro-lensat (x � ; y� ) { encoding the
spatial position{ and a pixel of the corresponding micro-image (s� ; t � ) { encoding the
direction. It should be noted that the size of each micro-lens is coupled to theaperture
or f-number of the main optics. If the micro-lenses are too small compared to the main
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Figure 9: Left: One dimensional sketch of a Plenoptic Camera 1.0 setup. Light rays emitted by
the object are focused by the main lens (ML). The microlens array (MLA) is placed at the image
plane (IP) of the main lens and thus separates the rays by their direction, mapping them onto the
sensor.Right: Illustrates the rendering of a single view point, here the centerview, by collecting
the center pixels of each micro imagemi .

aperture the micro-images overlap each other or { the other way around { it is a waste
of sensor area if the micro-lenses are too big. Due to the factthat light passing the
main aperture also has to pass a micro-lens before getting integrated on a squared pixel,
what actually happens is that the camera measures small 4D boxes of the light �eld
entering the camera instead of single rays.

2.4.1.2 Rendering Views From Raw Data. Rendering a projective view from
sensor raw data is quite simple as depicted in �gure 9.

1. Determining a speci�c projective view means determining a relative position ps� ;t �

within the micro-images, for example the center positionpcenter .

2. De�ne an output image I s� ;t � as M � N matrix where M; N 2 N are the number
of micro-lenses in vertical and horizontal directions.

3. Assigning the pixel (x; y) in I s� ;t � the intensity of the pixel ps� ;t � in the micro-image
corresponding to the micro-lensqx;y .

Changing the relative positionps� ;t � for rendering means changing the virtual aperture
which results in an projective view from a slightly di�erentviewpoint. An integration
of images from neighboring viewpoints is used to create a depth of �eld and enables
computationally refocusing by varying the relative positions of these neighbored images.
" In quantized form, this corresponds to shifting and adding the sub-aperture images ..."
Ng et. al [70].

In fact the description above neglects a very important calibration step necessary
beforehand. Rendering views from the camera raw data is onlythat easy if the data are
recti�ed and distorted to satisfy the conditions necessaryfor a successful rendering. A
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detailed description of a possible calibration process is out of the scope of this work but
can be found in Dansereau et al. [28].

2.4.2 The Focused Plenoptic Camera (2.0)

Besides thePlenoptic Camera(see section 2.4.1), another optical setup for a compact
light �eld camera has recently been developed, theFocused Plenoptic Camera, often also
called thePlenoptic Camera 2.0[62, 64, 73]. The main disadvantage of thePlenoptic
Camera 1.0is the poor spatial resolution of the rendered views, which is equal to the
number of micro-lenses. By changing the optical setup a little bit one can increase the
spatial resolution dramatically.

2.4.2.1 Optical Design. The main di�erence in the optical setup between the
Plenoptic Camera 1.0and 2.0 is the relative position of the micro-lens array. The
micro-lenses are no longer placed at the principal plane of the main lens and focused
to in�nity, but are now focused onto the image plane of the main lens. The result is
that each micro-lens then acts as a single pinhole camera, "looking" at a small part
of the virtual image inside the camera. This small part is then imaged with a high
spatial resolution onto the sensor as long as the imaged scene point is in the valid region
between the principal plane of the main lens and the image sensor. Scene features
behind the principal plane cannot be resolved. The e�ect is that scene points { that
are not in focus of the main lens but within this valid region {are imaged multiple
times over several neighboring micro-lenses, thus encoding the angular information over
several micro-images(see also �gure 11 and Lumsdaine et al.[62] or Perwass [73]). This
makes it possible to encode angular information and preserve high resolution at the
same time. But this comes with a price. First, light �eld encoding is complicated and,
second, due to the multiple imaging of scene features, rendered images from this camera
have also a much lower resolution than the inherent sensor resolution promises.

2.4.2.2 Rendering Views From Raw Data. The rendering process requires a
one time scene independent calibration, which extracts forall micro-lens images (micro-
images) the position as well as their diameterdML . In this work, we use a commercially
available camera [72], which has a micro-lens array where the lenses are arrangedin a
hexagonal pattern.

Due to this lens layout, we also use a hexagonal shape for the micro-images and address
them with coordinates (i; j ) on the sensor plane. We de�ne an image patchbpij as a
micro-image or a subset of it. Projective views are renderedby tiling these patches
together [33, 63].

The center of a micro-image (i; j ), determined in the coordinate system given by the
initial camera calibration process, is denoted by~cij . The corresponding patch images
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Figure 10: Left: One-dimensional sketch of aPlenoptic Camera 2.0setup. Light rays emitted
by the object are focused by the main lens (ML) onto the image plane (IP). The micro-lens array
(MLA) is placed so that the micro-lenses are focused onto the image planeof the main lens, mapping
fractions of the virtual image onto the sensor. Green rays are coming froman object in focus of the
main lens (FP), blue rays of an object away from the principal plane of the main lens.
Right: Illustrates the resulting micro-images of an object in and out of focus.

are de�ned as! ij (�; ~o), where � denotes the size of the micro-image patchbpij (�; ~o) in
pixels and~o is the o�set on the sensor plane of the micro-image patch center from ~cij .
We de�ne ! ij (�; ~o) as an m � n matrix, which is zero except for the positions of the
pixels of the corresponding micro-image patchbpij (�; ~o):

! ij (�; ~o) =

0

B
B
B
B
B
B
@

0 : : : 0
. . .

... bpij

�
�; ~0

� ...
. . .

0 : : : 0
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C
C
C
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A

(12)

m � n is the rendered image resolution and (i; j ) is the index of a speci�c image patch,
imaged from microlens (i; j ) (see �gure 11). A projective view 
 (�; ~o) of a scene is then
rendered as:


 ( �; ~o) =
N yX

i =1

N xX

j =1

! ij (�; ~o)

� 2N j 1 < � � dML

~o2 N2 j 0 �k ~ok�
dML

2
�

�
2

;

(13)

where (Nx ; Ny) is the number of micro-lenses on the sensor inx- and y-directions. The
choice of the parameters� and ~o directly controls the image plane and point of view of
the rendered view.
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(a) Micro images (b) Plenoptic 2.0 Camera raw data example

Figure 11: (a) Micro-images and their centers~cij are indicated as well as the resulting image
patches bpij and their border pixels b(bpij ). (b) Raw data from a Plenoptic Camera 2.0[73]. All possi-
ble optical e�ects are visible here. The green box in the upper left corner shows the transition from
a region in the scene behind the principal plane of the camera main lens to a region exactly on the
focal plane so that the imaged fragments perfectly �t together. The redboxes show magni�ed re-
gions of the scene between the principal plane of the main lens and the sensor so that scene features
are imaged multiple times over several neighbored micro images. The amount of multiple feature
occurrence depends on the distance to the image plane.

2.4.2.3 Refocusing. It is obvious that rendering a projective view here is a bit more
complex than it is for the Plenoptic Camera 1.0, where one can simply extract single
pixels from the raw data (see section 2.4.1). The reason is the di�erent sampling of the
light �eld in the devices. While a micro-lens in aPlenoptic Camera 1.0is focused at
in�nity and thus decomposes the light rays emitted by a 3D point into their directions,
a micro-lens of aFocused Plenoptic Cameraacts as a single pinhole camera looking at a
small subset of the virtual image of the scene. This leads to amuch higher resolution but
spreads the directional information over multiple micro-images. This causes so-called
plenoptic artifacts during rendering. The choice of the patch size� de�nes a speci�c
image or virtual depth plane in the 3D scene. Neighbored patches bpij with a sizedelta
�t perfectly together for all imaged scene features from thecorresponding virtual depth
plane. Patches whose content is a imaged region not lying on this virtual depth plane,
either lack information or the multiple occurrence of scenefeatures is still present. These
are the mentionedplenoptic artifacts which occur for a �xed patch size� all over the
rendered image, except for the speci�c virtual depth plane (compare �gure 12, or as
another example, Lumsdaine et al. [64] Fig. 11). Due to the fact that the multiple
occurrence of image features over the micro-images depends on the distance to the
camera, image planes nearer to the camera need to be renderedwith smaller patch sizes
� and thus show a loss in resolution. Full resolution is only present at the image plane
of maximum � , which is the principal plane of the main lens. A possibilityto handle
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Figure 12: Top: Rendering di�erent image planes and views illustrated on the basis ofthe 1D
sketch depicted in �gure 10. On the left side the e�ect of di�erent patch sizes� is depicted, on the
right the e�ect of changing the o�set ~o. Bottom: Illustrates on the left a micro-image patch as well
as the e�ect of di�erent values of � and o�sets ~o. On the right the reason for plenoptic artifacts is
visualized.

the plenoptic artifacts is described in Lumsdaine et al. [25]. They call it blending and
achieve with this technique much more realistic looking refocusing results. Another
approach can be found in Georgiev et al. [34]. We will propose our approach in this
work in section 3.

2.4.2.4 Generating All-In-Focus Views An important aspect of the Focused
Plenoptic Camerasis that beside the opportunity of computationally refocusing, one
could also be interested in rendering images with the largest possible depth of �eld. This
means removing theplenoptic artifacts or in other words, eliminating all duplicated
scene features captured by the individual micro-lenses.

The common thread of this work is an analysis of light �elds based on the analysis of
epipolar plane images (see section 2.3). We will see in the following sections how to
create and analyze them in detail. In this context it is only important to know that
from a Focused Plenoptic Camera, we need to render all possible All-In-Focus Views to
get access to them. Therefore we will recap in this section some related work to render
those full depth of �eld views and will discuss a new approachin section 3.

We will now quickly discuss two approaches treating this issue. The �rst is from Perwass
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et al. [73]. It is mainly based on triangulation to obtain a pixel-wisedepth map over
the micro-images (an overview of existing triangulation algorithms can be found in
Scharstein and Szeliski [83]). For this, the correlation or sum-of-absolute di�erences
(SAD) is computed over micro-image pairs. This of course works only where a local
contrast is present. The computed virtual depth per pixel value gives a hypothesis
for a projection cone de�ning the occurrence of the same image feature in neighboring
micro-images. By integrating all connected pixels over those cones, a �nal image without
multiple occurrence of scene features can be rendered. A quite similar approach using
multi-view stereois described in Bishop et al. [15].

Another approach is from Georgiev et al. [33]. They de�ne a sub window patch of a
micro-image { similar to those depicted in �gure 11 { and compute the cross correlation
of this patch along the x-axis of the left and right neighbored micro-images as well as
along the y-axis of the top and bottom neighbored micro-images. This results in a shift
from one micro-image to the other. Knowing this shift and thechosen window size of
the initial patch used for searching, an optimal patch size for this micro-image can be
computed. By tiling all patches with optimal patch size together, a full depth-of-�eld
view can be rendered.

2.4.3 Gantry

One of the most simple and inexpensive opportunities to sample a light �eld is a gantry
(see �gure 13 left). This is a precise xy-axis stepper motor driving a normal camera
along a regular 2D grid. The bene�ts besides the simplicity are that baselines down to
a millimeter are realizable and no color or optics correction over several cameras are
necessary. A disadvantage is that only static scenes under static lighting conditions can
be captured, and the mobility is restricted.

2.4.4 Camera Arrays

Due to the fact that the analysis in this work deals with epipolar plane images, the
output of camera arrays is the most convenient data structure. They o�er a fast and
direct access to the 4DLumigraph (compare section 2.2) and the EPIs (section 2.3).
Additionally camera arrays are also suitable for capturing dynamic scenes. Another
bene�t is that a camera array not necessarily limits the spacial resolution asPlenoptic
Cameras(sections 2.4.1 and 2.4.2) do. The main disadvantages are that they are costly
due to the amount of cameras but also due to the hardware necessary for synchronization
and data access. Additionally they also need a more complicated calibration process.
Besides the external and internal calibration it is also important to apply a color and
noise calibration due to the di�erent sensor behavior of individual cameras.
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Figure 13: (a) Depicts our precisegantry xy-axis stepper motor. Indicated are the x and y axis
through the red arrows as well as the camera platform. Many thanks to theRobert Bosch GmbH
for loaning this device. (b) Depicts on the left a prototype of a 6� 6 array camera. Many thanks to
Harlyn Baker for providing this image. Right side shows a camera array from Stanford [97].

2.4.5 Simulation

In this work, we often make use of simulated light �elds. Theyo�er, besides an in-
expensive data generation, an easy access to interesting properties like ground truth
for the geometry or the objects themselves, the material properties, as well as the
opportunity to simulate the sensor's noise behavior. This makes simulation a great
tool for algorithm development and for evaluation. We use the open source software
Blender [77]. Blender o�ers an API accessible viaPython [98]. This allows a scripting
of all objects in the 3D environment. We simulate the light �elds by scripting the
blender camera to sample the 3D scene on a regular 2D grid. This is exactly the
data format of a gantry (section 2.4.3) or a camera array (section 2.4.4) device. It
should be noted her that with the renderedLumigraph (compare section 2.2) and the
ground truth depth provided through Blender, a simulation of Plenoptic Camera 1.0
(section 2.4.1) data is also quite easy to achieve. Simulation of a Focused Plenoptic
Camera(section 2.4.2) is not so trivial, and needs a more complex simulation of the optics.

Together with light �elds captured using a gantry mentioned in section 2.4.3 we o�er a
benchmark database for light �eld analysis consisting of real world and simulated 4D
light �elds (see section 4 and �gures 18 and 19).
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3 Lumigraph Representation from Plenoptic Cam-
era Images

In the following sections of this work, we will see that having access to the epipolar
plane images (see section 2.3) of a light �eld can be very valuable for the analysis of
a captured scene. But, if our light �eld is sampled with aPlenoptic Camera 2.0(see
section 2.4.2), this access is not trivial.

Basically, the generation of aLumigraph representation from a sampled 4D Light Field is
simple { at least using camera arrays [108] (see also sections 2.3, 2.4.3 and 2.4.4) { where
the projective transformations of the views of the individual cameras only have to be
recti�ed and uni�ed into one epipolar coordinate system requiring a precise calibration
of all cameras.

Due to the optical properties of the micro-lenses { with the image plane of the main lens
de�ning the epipolar coordinate system { these projective transformations are, in the
case ofFocused Plenoptic Cameras, reduced to simple translations [63] of the patches
bpij within each micro-image, given by an o�set~o (see section 2.4.2). Hence, one simply
has to rearrange the viewpoint-dependent rendered views from plenoptic raw data into
the 4D EPI representation (see equation 9).

However, the necessarily small depth of �eld of the micro-lenses causes other problems.
For most algorithms, the EPI structure can only be e�ectively evaluated in areas with
high-frequency textures - which of course is only possible for parts of a scene which are
in focus.

Another problem are di�erent focal lengths of the micro-lenses the camera vendor uses
to increase the depth of �eld [73]. One last, but also most important problem is, that
Focused Plenoptic Camerassu�er from imaging artifacts in out-of-focus areas. Hence,
in order to generate EPIs which can be used to analyze the entire scene at once, we
have to generate the EPIs from all-in-focus (i.e. full depth-of-�eld) views for each focal
length separately.

3.1 Rendering All In Focus Views Without Pixel-wise Depth

We already discussed some existing methods addressing the topic of rendering all-in-focus
views in section 2.4.2. Now we discuss our contribution basedon the publication [104].

To generateplenoptic artifact freeLumigraph (section 2.2, equation 9) from raw data of a
Focused Plenoptic Camera, we need images of all available viewpoints withoutplenoptic
artifacts and thus we need to render all full depth-of-�eld images fromthe raw data.
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The primary objective in analyzing light �elds is to reconstruct the inherently available
depth information since further computations can bene�t from available range data.
Here we want to make use of the epipolar plane images (section 2.3) to reconstruct
the scene geometry (section 5.1). Thus the generation of aLumigraph from plenoptic
raw data is achicken-and-egg-problembecause we already need the depth to render the
all-in-focus views (section 2.4.2) and generate artifact free epipolar plane images.

The computation of full depth-of-�eld images from a series of views with di�erent image
planes usually requires depth information of the given scene: [15], [73] and [13] applied
a depth estimation based on cross-correlation. The main disadvantage of this approach
is that one would have to solve a major problem, namely the depth estimation for
non-Lambertian scenes, in order to generate the EPI representation, which is intended
to be used to solve the problem in the �rst place - as already mentioned a classical
chicken-and-egg-problem. To overcome this dilemma, we propose an alternative approach.
We actually do not need to determine the depths explicitly - all we need are the correct
patch sizes� m to ensure a continuous view texturing withoutplenoptic artifacts.

We propose to �nd the best � m via a local minimization of the gradient magnitude
at the patch bordersb(bpij ) (see �gure 11, section 2.4.2) over all possible focal images

 m . Since the e�ective patch resolution changes with� m , we have to apply a low-pass
�ltering to ensure a fair comparison. In practice, this is achieved by downscaling each
patch to the smallest size� min , using bilinear interpolation. We denote the band-pass
�ltered focal images by �
 m . Assuming a set of patch sizes~� = [� 0; : : : ; � m ; : : : ; � M ], we
render a set � of border images using aLaplacian �lter (see �gure 14):

~� =
�
r 2 �
 0; : : : ; r 2 �
 m ; : : : ; r 2 �
 M

�
; r 2 =

@2

@x2
+

@2

@y2
: (14)

From �, we determine the gradients for each hexagon patch by integrating along its
bordersb(bpij ), considering only gradient directions orthogonal to the edges of the patch
(see �gure 14). The norm of the gradients orthogonal to the border of each micro-image
patch bpij and each image planem is computed as

� ( m; i; j ) =
I

b(pij )
~nb � r � mds: (15)

Here, ~nb denotes the normal vector of each hexagon borderb (compare �gure 11).
Furthermore, we de�ne the lens speci�c image plane mapz [i; j ] as a minimum of � m

for each micro-lens image (i; j )

z (i; j ) = argmin
m

� [ m; i; j ] : (16)

The image plane mapz (i; j ) has a resolution of (Ny; Nx ) (number of micro-lenses) and
encodes the patch size value� ij for each microimage (i; j ). Using z (i; j ), we render
full depth of �eld views 
 (z). This approach works nicely for all textured regions of
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a scene. Evaluating the standard deviation of � for each (i; j ) can serve to further
improve z (i; j ): micro-images without (or with very little) texture are characterized by
a small standard deviation in �. We use a threshold to replacethe a�ected z (i; j ) with
the maximum patch size� max . This is a valid approach, since the patch size (i.e. the
focal length) does not matter for untextured regions. Additionally, we apply a gentle
median �lter to remove outliers from z (i; j ).

Figure 14: Left: Part of a raw data image from a Focused Plenoptic Cameraand a zoomed part
of it. Right: Three examples of the border image set (see eq. 14) and the gradient magnitude set
(equation. 15) with di�erent patch sizes � are depicted. The example in the center shows the correct
focal length.

3.2 Merging Views from Di�erent Lens Types

The full depth-of-�eld views for each lens type have the sameangular distribution (if the
same o�sets~oq have been used), but are translated relative to each other. We neglect
that these translations are not completely independent of the depth of the scene. Due
to the very small o�set (baseline), theses e�ects are in the order of sub-pixel fractions.
The results shown in �gures 6, 7 and 8 are merged by determining the relative shiftsTn

via normalized cross-correlation and averaging over the views with the same o�set.


 merged (z;~oq) =
1
3

3X

n=1

Tn 
 n (z;~oq) Tn 2 N � N (17)

Due to the fact that each lens type has an individual focal length, the sharpness of the
results can be improved by a weighted averaging depending onthe optimal focal range
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of each lens type and the information from the focal mapsz[i; j ]


 merged (z;~oq) =
3X

n=1

� n (z) Tn 
 n (z;~oq) , � n 2 R and
3X

n=1

� n = 1: (18)

3.3 The EPI Generation Pipeline

1. View rendering: Rendering of all possible full depth-of-�eld images 
(z;~o) for
di�erent view points of the scene using the focal plane mapz (i; j ) of optimal
patch sizes and the patch o�set vector~o.

2. View merging: Merging of the corresponding views of di�erent lens types. This
step is only necessary for cameras with several micro-lens types, such as the camera
used in our experiments [72].

3. View stacking: After the merging process, a single set of rendered views remains.
These have to be arranged in a 4D volume according to their view angles resulting
in the EPI structure L(x; y; s; t) (section 2.2, equation 9).

3.4 Results

For the experimental evaluation, we use a commercially available Focused Plenoptic
Camera(the R11 by the camera manufacturerRaytrix GmbH [72]). The camera captures
raw images with a resolution of 10 Mega-pixels and is equipped with an array of roughly
11000 micro-lenses. The e�ective micro-image diameter is 23 pixels. The array holds
three types of lenses with di�erent focal lengths, nested ina 3� 65� 57 hexagon layout,
which leads to an e�ective maximum resolution of 1495� 1311 pixels for rendered
projective views at the focal length of the main lens. Due to this setup with di�erent
micro-lens types, we compute the full depth of �eld view for each lens type independently
and then apply a merging algorithm.

A qualitative evaluation is shown in �gure 15. We compare theresults of our proposed
algorithm with the output of commercial software from the camera vendor, which
computes the full depth of �eld projective views via an explicit depth estimation based
on stereo matching on the camera raw data [72]. We present the raw output of both
methods. It should be noted, that the results of the depth estimates are not directly
comparable - the emphasis of our qualitative evaluation lies in the full depth of scene
reconstruction.

42



focal plane estimation reconstructed Lumigraph

Figure 15: Estimation of the focal length. The left side shows a typically dense image plane map
z [i; j ] (see equation 16), computed with our algorithm. On the right, the centerviews of the recon-
structed all-in-focus Lumigraph as well as exemplary extracted epipolar plane images are depicted.
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Figure 16: Top row: Focal plane reconstruction vs. thestereo-baseddepth reconstruction of the
camera vendor [72]. Bottom row: the all-in-focus rendering of: (left) The proposed method and
(right) the stereo-based method of the camera vendor.
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4 Data Sets - The 4D Light Field Archive

The driving force for successful algorithm development is the availability of suitable
benchmark datasets with ground truth data in order to compare results and initiate
competition. Light �eld datasets and, in particular, the type of light �elds used in this
work { namely dense sampled 4DLumigraphs (see section 2.2) { are not yet widely
deployed. There are a few but none of the existing ful�ll all of our needs and thus we
decided to establish a new benchmark database.

The current public light �eld databases we are aware of are the following.

� Stanford Light Field Archive
http://lightfield.stanford.edu/lfs.html
The Stanford Archives provide more than 20 light �elds sampled using a camera
array [109], a gantry and a light �eld microscope [60], but none of the datasets
includes ground truth disparities.

� UCSD/MERL Light Field Repository
http://vision.ucsd.edu/datasets/lfarchive/lfs.shtml
This light �eld repository [ 47] o�ers video as well as static light �elds, but there
is also no ground truth depth available, and the light �elds are sampled in a
one-dimensional domain of view points only.

� Synthetic Light Field Archive
http://web.media.mit.edu/ ~gordonw/SyntheticLightFields/index.php
The synthetic light �eld archive [66] provides many interesting arti�cial light
�elds including some nice challenges like transparencies,occlusions and re
ections.
Unfortunately, there is also no ground truth depth data available for benchmarking.

� Middlebury Stereo Datasets
http://vision.middlebury.edu/stereo/data/
The Middlebury Stereo Dataset [43, 82, 83, 84] includes a single 4D light �eld
which provides ground truth data for the center view, as wellas some additional 3D
light �elds including depth information for two out of sevenviews. The main issue
with the Middlebury light �elds are that they are designed with stereo matching
in mind, thus the baselines are quite large and not representative for compact light
�eld cameras and unsuitable for direct epipolar plane imageanalysis.

While there is a lot of variety and the data is of high quality, we observe that all of the
available light �eld databases either lack ground truth disparity information or exhibit
large camera baselines and disparities, which is not representative for compact light
�eld cameras like i.e. Plenoptic Cameras. Furthermore, we believe that a large part of
what distinguishes light �elds from standard multi-view images is the ability to treat
the view point space as a continuous domain. There is also emerging interest in light
�eld segmentation [31, 50, 92, 106], so it would be highly useful to have ground truth
segmentation data available to compare light �eld labelingschemes. The above data
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sets lack this information as well.

To alleviate the above shortcomings, we present a new benchmark database which
consists at the moment of 13 high quality densely sampled light �elds. The database
o�ers seven computer graphics generated data sets providing complete ground truth
disparity for all views. Four of these data sets also come with ground truth segmentation
information and pre-computed local labeling cost functions to compare global light �eld
labeling schemes. Furthermore, there are six real world data sets captured using a single
Nikon D800 camera mounted on agantry. Using this device, we sampled objects which
were pre-scanned with a structured light scanner to provideground truth ranges for the
center view. An interesting special data set contains a transparent surface with ground
truth disparity for both the surface as well as the object behind it - we believe it is the
�rst real-world data set of this kind with ground truth depth available.

4.1 The Light Field Archive

Our light �eld archive ( www.lightfield-analysis.net ) is split into two main cate-
gories,Blender and Gantry. The Blender category consists of seven scenes rendered
using the open source softwareBlender [77] and our own light �eld plug-in, see �gure 18
for an overview of the data sets. TheGantry category provides six real-world light �elds
captured with a commercially available standard camera mounted on agantry device,
see �gure 19. More information about all the data sets can be found in the overview in
�gure 17.

Each data set is split into di�erent �les in the HDF5-format [95], exactly which of these
are present depends on the available information. Common toall data sets is a main �le
called lf.h5 , which contains the light �eld itself and the range data. In the following,
we will explain its content as well as that of the di�erent additional �les, which can be
speci�c to the category.

4.1.1 The Main File

The main �le lf.h5 for each scene consists of the actual light �eld image data aswell as
the ground truth depth, see �gure 17. Each light �eld is 4D, and sampled on a regular
grid. All images have the same size, and views are spaced equidistantly in horizontal
and vertical directions, respectively. The general properties of the light �eld can be
accessed in the following attributes:
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dataset name category resolution GTD GTL
buddha Blender 768x768x3 full yes
horses Blender 576x1024x3 full yes
papillon Blender 768x768x3 full yes
stillLife Blender 768x768x3 full yes
buddha2 Blender 768x768x3 full no
medieval Blender 720x1024x3 full no
monasRoom Blender 768x768x3 full no
couple Gantry 898x898x3 cv no
cube Gantry 898x898x3 cv no
maria Gantry 926x926x3 cv no
pyramide Gantry 898x898x3 cv no
statue Gantry 898x898x3 cv no
transparency Gantry 926x926x3 2xcv no

Figure 17: Overview of the datasets in the benchmark.dataset name : The name of the dataset.
category : Blender (rendered synthetic dataset) orGantry (real-world dataset sampled using a
single moving camera).resolution : spatial resolution of the views, all light �elds consist of 9x9
views. GTD : indicates completeness of ground truth depth data, either cv (only center view) or full
(all views). A special case is the transparency dataset, which contains ground truth depth for both
background and transparent surface.GTL : indicates if object segmentation data is available.

HDF5 attribute description
yRes height of the images in pixel
xRes width of the images in pixel
vRes # of images in vertical direction
hRes # of images horizontal direction
channels light �eld is rgb (3) or grayscale (1)
vSampling rel. camera position grid vertical
hSampling rel. camera position grid horizontal

The actual data is contained in two HDF5 data sets:

HDF5 dataset size
LF vResx hResx xResx yResx channels
GT DEPTH vResx hResx xResx yRes

These store the separate images in RGB or gray-scale (range 0-255), as well as the
associated depth maps, respectively.
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Conversion between depth and disparity. To compare disparity results to the
ground truth depth, the latter has to �rst be converted to disparity. Given a depth Z ,
the disparity or slope of the epipolar linesd in pixels per grid unit is

d =
B � f

Z
� � x; (19)

whereB is the baseline or distance between two cameras,f the focal length in pixel and
� x the shift between two neighboring images relative to an arbitrary recti�cation plane
(in case of light �elds generated with Blender, this is the scene origin). The parameters
in equation 19 are given by the following attributes in the main HDF �le:

attribute description
B dH distance between to cameras
f focalLength focal length
� x shift shift between neighboring images

The following sections describe di�erences and conventions about the depth scale for
the two current categories.

4.1.2 Blender Category

The computer graphics generated scenes consist without exception of ground truth
depth over the entire light �eld. This information is given as orthogonal distance of
the 3D point to the image plane of the camera, measured inBlender units [BE ]. The
Blender main �les have an additional attribute camDistancewhich is the base distance
of the camera to the origin of the 3D scene, and used for the conversion to disparity values.

Conversion between Blender depth units and disparity. The above HDF5
camera attributes in the main �le for conversion fromBlender depth units to disparity
are calculated fromBlender parameters via

dH = b� xRes;

focalLength = 1=
�

2 � tan
�

fov
2

��
;

shif t =
1

�
2 � Z0 � tan

� fov
2

��
� b

;

(20)

where Z0 is the distance between theBlender camera and the scene origin in [BE ],
fov is the �eld of view in units radian and b the distance between two cameras in [BE ].
Since all light �elds are rendered or captured on a regular equidistant grid, it is su�cient
to use only the horizontal distance between two cameras to de�ne the baseline.
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4.1.3 Segmentation Ground Truth

Some light �elds have segmentation ground truth data available, see �gure 17, and o�er
�ve additional HDF5 �les:

� labels.h5 :
This �le contains the HDF5 dataset GT LABELS which is the segmentation
ground truth for all views of the light �eld and the HDF5 dataset SCRIBBLES
which are user scribbles on a single view.

� edge weights.h5 :
Contains anHDF5 data set calledEDGE WEIGHTS which are probabilities for
edges [106] for all views. These are not only useful for segmentation, but any
algorithm which might require edge information, and can help with comparability
since all of these can use the same reference edge weights.

� feature single view probabilities.h5 :
The HDF5 data setProbabilitiescontains the prediction of a random forest classi�er
trained on a single view of the light �eld without using any feature requiring light
�eld information [106].

� feature depth probabilities.h5 :
The HDF5 data setProbabilities contains the prediction of a random forest classi�er
trained on a single view of the light �eld using estimated disparity [100] as an
additional feature [106].

� feature gt depth probabilities.h5 :
The HDF5 data set Probabilities contains the prediction of a random forest
classi�er trained on a single view of the light �eld using ground truth disparity as
an additional feature [106].

4.1.4 Gantry category

In the Gantry category, each scene always provides a single mainlf.h5 �le, which
contains an additionalHDF5 data set GT DEPTH MASK. This is a binary mask in-
dicating valid regions in the ground truth GT DEPTH. Invalid regions in the ground
truth disparity have mainly two causes. First, there might beobjects in the scene for
which no 3D data is available, and second, there are parts of the mesh not covered by
the structured light scan and thus having unknown geometry.See section 4.2.2 for details.

A special case is the light �eldtransparency, which has two depth channels for a trans-
parent surface and an object behind it, respectively. Therefore, there also exist two
mask HDF5 data sets, see �gure 20. We believe this is the �rst benchmarklight �eld
for multi-channel disparity estimation.
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Here, theHDF5 data sets are named:

� GT DEPTH FOREGROUND,
� GT DEPTH BACKGROUND,
� GT DEPTH FOREGROUND MASK,
� GT DEPTH BACKGROUND MASK.

4.2 Generation of the light �elds

The process of light �eld sampling is very similar for both synthetic as well as real world
scenes. The camera is moved on an equidistant grid parallel to its own sensor plane and
an image is taken at each grid position. Although not strictlynecessary, an odd number
of grid positions is used for each movement direction as there then exists a well-de�ned
center view which makes the processing simpler. An epipolar recti�cation on all images
is performed to align individual views to the center one. Thesource for the internal and
external camera matrices needed for this recti�cation depends on the capturing system
used.

4.2.1 Blender category

For the synthetic scenes, the camera can be moved using a script for the Blender engine.
As camera parameters can be set arbitrarily and the sensor andmovement plane coincide
perfectly, no explicit camera calibration is necessary. Instead, the values required for
recti�cation can be derived directly from the internal Blender settings.

4.2.2 Gantry category

For real-world light �elds, a Nikon D800 digital camera is mounted on a stepper-motor
driven gantry manufactured byPhysical Instruments. A picture of the setup can be seen
in �gure 13. Accuracy and repositioning error of thegantry is well in the micrometer
range. The capturing time for a complete light �eld depends on the number of images,
about 15 seconds are required per image. As a consequence, this acquisition method is
limited to static scenes. The internal camera matrix must beestimated beforehand by
capturing images of a calibration pattern and invoking the camera calibration algorithms
of the OpenCV library [17], (see next section for details). Experiments have shown that
the positioning accuracy of thegantry actually surpasses the pattern based external
calibration as long as the di�erences between the sensor andmovement planes are kept
minimal.

Ground Truth for the Gantry Light Fields. This section is the work of Stephan
Meister [68]. Ground truth for the real world scenes was generated usingstandard
pose estimation techniques. First, we acquired 3D polygon meshes for an object in
the scene using aBreuckmann SmartscanHE structured light scanner. The meshes
contain between 2.5 and 8 Million faces with a stated accuracy of down to 50 micron.
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The object-to-camera pose was estimated by hand-picking 2D-to-3D feature points
from the light �eld center view and the 3D mesh, and then calculating the external
camera matrix using an iterativeLevenberg-Marquardtapproach from theOpenCV
library [17]. This method is used for both the internal and external calibration. An
example set of correspondence points for the scenepyramidecan be observed in �gure 21.

The re-projection error for all scenes was typically 0:5 � 0:1 pixels. The depth is then
de�ned as the distance between the sensor plane and the mesh surface visible in each
pixel. The depth projections are computed by importing the mesh and measured camera
parameters into Blender and performing a depth rendering pass. At depth discontinu-
ities (edges) or due to the fact that the meshes' point density is higher than the lateral
resolution of the camera, one pixel can contain multiple depth cues. In the former case,
the pixel was masked out as an invalid edge pixel and, in the latter case, the depth of
the polygon with the biggest area inside the pixel was selected. The error is generally
negligible as the geometry of the objects is su�ciently smooth at these scales. Smaller
regions where the mesh contained holes were also masked out and not considered for
the �nal evaluations.

For an accuracy estimation of the acquired ground truth, we perform a simple error
propagation on the projected point coordinates. Given an internal camera matrix C
and an external matrix R, a 3D point ~P = (X; Y; Z; 1) is projected onto the sensor pixel
(u v) according to

0

@
u
v
1

1

A = C R

0

B
B
@

X
Y
Z
1

1

C
C
A :

For simplicity, we assume that the camera and object coordinate systems coincide, save
for an o�set tz along the optical axis. Given focal lengthf x , principal point cx and
re-projection error � u, this yields for a pixel on thev = 0 scan-line

tz = Z �
f xX

u � cx
;

resulting in a depth error � tz of

� tz =
@tz
@u

� u =
f xX

(cx � u)2
� u:

Calculations for pixels outside of the center-scan line areperformed analogously. The
error estimate above depends on the distance of the pixel from the camera's principal
point. As the observed objects are rigid, we assume that the distance error � tz between
camera and object corresponds to the minimum observed �tz among the selected 2D-3D
correspondences. For all gantry scenes, this value is in therange of 1mm so we assume
this to be the approximate accuracy of our ground truth.
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Figure 18: Data sets in the category Blender. Top: Light �elds with segmentation information
available. From left to right: buddha, papillon, stillLife , horses. First row shows center view, second
depth ground truth and third label ground truth. Bottom: Light �elds wit hout segmentation infor-
mation. From left to right: buddha2, monasRoom, medieval. First row shows center view, the second
the depth ground truth.
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Figure 19: Data sets in the category Gantry. From left to right: center view, depth channel, mask
which indicates regions with valid depth information. The ordering of the data sets is the same as in
�gure 17.
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center view ground truth gt mask

Figure 20: Data set transparency. Left: center view, middle top: depth of the background, middle
bottom: depth of the foreground, right top: background mask for valid depth ground truth pixel,
right bottom: foreground mask for valid depth ground truth pixel.

Figure 21: Selected 2D correspondences for pose estimation for the
pyramide dataset. In theory, four points are su�cient to estimate the
six degrees of freedom of an external camera calibration matrix, but
more points increase the accuracy in case of outliers.
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5 Orientation Analysis in Light Fields

5.1 Single Orientation Analysis

A main bene�t of light �elds compared to traditional images or stereo pairs is the
expansion of the disparity space to a continuous space. Thisbecomes apparent when
considering epipolar plane images (section 2.3), which canbe viewed as 2D slices of
constant angular and spatial direction through theLumigraph (section 2.2). Due to a
dense sampling in angular direction, corresponding pixelsare projected onto lines in
EPIs, which can be detected more robustly and faster than point correspondences.

EPIs were introduced to the analysis of scene geometry by Bolles et al. [16]. They detect
edges, peaks and troughs with a subsequent line �tting in theEPI to reconstruct 3D
structure. Later, Baker used zero crossings of theLaplacian [6, 7]. Another approach is
presented by Criminisi [27], who use an iterative extraction procedure for collections of
EPI-lines of the same depth, which they call an EPI-tube. Lines belonging to the same
tube are detected via shearing the EPI and analyzing photo-consistency in the vertical
direction. They also propose a procedure to remove specular highlights from already
extracted EPI-tubes.

There are also two less heuristic methods which work in an energy minimization frame-
work. In Matousek et al. [67], a cost function is formulated to minimize a weighted
path length between points in the �rst and the last row of an EPI, preferring constant
intensity in a small neighborhood of each EPI-line. However,their method only works
in the absence of occlusions.

Berent et al. [11] deal with the simultaneous segmentation of EPI-tubes by a region
competition method using active contours, imposing geometric properties to enforce
correct occlusion ordering.

In contrast to the above works, we propose a local gradient based orientation analysis of
the EPIs and additionally can perform a labeling for all points in the EPI simultaneously
by using a state-of-the-art continuous convex energy minimization framework. We
enforce globally consistent visibility across views by restricting the spatial layout of the
labeled regions.

Compared to methods of Bolles [16] and Criminisi [27] which extract EPI information
sequentially, this is independent of the order of extraction and does not su�er from an
associated propagation of errors. While a simultaneous extraction is also performed by
Berent et al. [11], they perform local minimization only and require good initialization,
as opposed to our convex relaxation approach. Furthermore,they use a level set ap-
proach, which makes it expensive and cumbersome to deal witha large number of regions.

In this section we propose a range estimation approach using a4D light �eld parametrized
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asLumigraph (see section 2.2 and equation 9). The basic idea is as follows. We �rst com-
pute local slope estimates on epipolar plane images for the two di�erent slice directions
(x; s)-slice � y � ;t � , (y; t)-slice � x � s� (section 2.3) using the structure tensor (section 5.1.1).
This gives two local disparity estimates for each pixel in each view. These can be merged
into a single disparity map in di�erent ways: just locally choosing the estimate with
the higher reliability, optionally smoothing the result (which is very fast), or solving
a global optimization problem (which is slow). In the experiments, we will show that,
fortunately, the fast approach leads to estimates which areslightly more accurate. The
content in this section is published in Wanner et al. [100], [103] whereby the theory as
well as fast GPU implementations [37] of the optimization techniques are the work of
Bastian Goldl•ucke

5.1.1 The Structure Tensor

A common technique to estimate orientations is the structure tensor introduced by Bi-
gun et al. [12]. Derivations below follow the chapter "The Structure Tensor" in J•ahne [45].

If we assume a unit vectorn 2 RD as the preferred local orientation of the gray value
changes of a functiong : 
 ! R, 
 � RD , the following must be satis�ed:

�
r gT n

� 2
= jr gj2cos2 (^ (r g;n)) : (21)

This will become a maximum ifr g is parallel to n or if r g is anti-parallel to n and
zero if r g is orthogonal ton. Thus we need to maximize the following expression in a
local environment

Z
w(x � x0)

�
r g(x0)T n

� 2
dD x0; (22)

wherew is a window function determining size and shape of the average region around
x. Equation (22) can be reformulated to

nJn ! maximum (23)

J =
Z

w(x � x0)(r g(x0)r g(x0)T )dD x0: (24)

which results in a symmetricD � D tensor

Jpq(x) =
Z 1

�1
w(x � x0)

�
@g(x0)

@x0p

@g(x0)
@x0q

�
dD x0: (25)

An Eigenvalue decomposition ofJ, in case ofD = 2, gives two Eigenvalues� 1,� 2.
Without limiting the generality, we assume that � 1 > � 2. Due to the orthogonality of
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condition rank meaning
� 1 = � 2 = 0 0 const. local environment
� 1 > 0; � 2 = 0 1 ideal local orientation
� 1 > 0; � 2 > 0 2 isotropic environment

Table 1: The table shows the meaning of di�erent Eigenvalue condi-
tions of the structure tensor for 2D images

the Eigenvectorsv1,v2 it is obvious that v1 is parallel to n and v2 is anti-parallel to n.

The relationship between the Eigenvalues give a quality measure of the local orientation
pattern. J•ahne [45] de�nes the coherencec, which varies between zero for isotropic
structures and one for ideal orientations:

c =

p
(J11 � J22)2 + 4J 2

12

J11 + J22
=

� 1 � � 2

� 1 + � 2
; c 2 [0; 1] (26)

Implementation. In general the computation of the structure tensor consistsof
four steps. An initial (Gaussian) smoothing to reduce noise and high frequencies, the
gradient computation, the computation of the structure tensor components, and a �nal
(Gaussian) smoothing of these components. A widely used approach to compute the
gradients is the so-calledSobel-operator [75].

Sx =

0

@
1 0 � 1
2 0 � 2
1 0 � 1

1

A ; Sy =

0

@
1 2 1
0 0 0

� 1 � 2 � 1

1

A : (27)

Another approach to compute the gradients is theScharr-operator [81].

Sx =

0

@
3 0 � 3
10 0 � 10
3 0 � 3

1

A ; Sy =

0

@
3 10 3
0 0 0

� 3 � 10 � 3

1

A : (28)

Scharr optimized the �lter coe�cients to guarantee an optimal rotational symmetry,
leading to much better orientation estimations compared tothe Sobel-operator. In this
work we use a variant of the structure tensor combining the initial smoothing step
and the gradient computation using aGaussian derivative �lter as implemented in
the VIGRA Computer Vision Library [49]. We discuss the reason for this choice in
section 5.1.2.2 and �gure 23.

The de�nition of Gaussian�lter is as follows

G�;n (x) =
@n

@xnx
1 @xny

2

1
2�� 2

e�
x 2

1+ x 2
2

2� 2 (29)

57



whereasn = nx + ny is the order of derivative and� > 0 the standard deviation of the
Gaussian. The kernel radiusrK is computed through

rK = 3� +
1
2

n: (30)

The result is rounded to the next higher integer. The Kernel size � K then is

� K = 2rK + 1: (31)

The gradient of an imageI is de�ned as

r I = ( Sx;� ; Sy;� ) =
�

G�; 1(I )jnx = 1
G�; 1(I )jny = 1

�
: (32)

The algorithm to compute the structure TensorJ�;� on an gray-scale imageI is then as
follows:

1. compute the gradientsSx;� ; Sy;�

2. compute the structure tensor components

J�;� (I ) =
�

G�; 0(Sx;� Sx;� ) G�; 0(Sx;� Sy;� )
G�; 0(Sy;� Sx;� ) G�; 0(Sy;� Sy;� )

�
(33)

5.1.2 Disparities On Epipolar Plane Images

5.1.2.1 Local Disparity Estimation We �rst consider how we can estimate the
local direction of a line at a point (x; s) in an epipolar plane imageSy � ;t � (see section 2.3),
wherey� and t � are �xed. The case of vertical slices is analogous. The goal of this step
is to compute a local disparity estimatedy � ;t � (x; s) for each point of the slice domain, as
well as a reliability estimater y � ;t � (x; s) 2 [0; 1] (eq. 38), which is the coherence of the
structure tensor (eq. 26) and gives a measure of how reliablethe local disparity estimate
is. Both local estimates will be used in subsequent sectionsto obtain a consistent
disparity map in a global optimization framework.

In order to obtain the local disparity estimate, we need to estimate the direction of lines
on the slice. This is done using the structure tensorJ (see eq. 33) of the epipolar plane
imageS = Sy � ;t � ,

J�;� (S) =
�
Jxx Jxy

Jxy Jyy

�
: (34)

The direction of the local level lines can then be computed via Bigun et al. [12]

ny � ;t � =
�
� x
� s

�
=

2

4
sin(1

2 arctan
�

Jyy � Jxx

2Jxy

�
)

cos(12 arctan
�

Jyy � Jxx

2Jxy

�
)

3

5 ; (35)
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(a) optimal structure tensor parameters (b) grid search on dataset buddha

Figure 22: Using grid search, we �nd the ideal structure tensor parameters overa range of both
angular and spatial resolutions (a). Blue colored data points show the optimal outer scale, red
points the optimal inner scale. The thick streaks are added only for visual orientation. In (b) an
example of a single grid search is depicted. Colour-coded is the amountof pixels with a relative
error to the ground truth of less than 1%, which is the target value to be optimized for in (a).

from which we derive the local depth estimate via

Z = � f
� s
� x

: (36)

Frequently, a more convenient unit is the disparity

dy � ;t � =
f
Z

=
� x
� s

= tan
�

1
2

arctan
�

Jyy � Jxx

2Jxy

��
; (37)

which describes the pixel shift of a scene point when moving between the views. We
will usually use disparity instead of depth in the remainderof this work. According
to equation 26 as the natural reliability measure we use the coherence of the structure
tensor

r y � ;t � :=

q
(Jyy � Jxx )2 + 4J 2

xy

(Jxx + Jyy)
: (38)

Using the local disparity estimatesdy � ;t � ; dx � ;s� and reliability estimates r y � ;t � , r x � ;s� for
all the EPIs in horizontal and vertical directions, respectively, one can now proceed to
directly compute disparity maps in a global optimization framework, which is explained
in section 5.1.3.2. However, it is possible to �rst enforce global visibility constraints
separately on each of the EPIs, which we explain in section 5.1.2.3.
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5.1.2.2 Limits of the Local Orientation Estimation In the following, we will
perform a detailed evaluation of the orientation analysis by applying the structure tensor
on synthetically generated epipolar planes. These EPIs areinitialized with random
stripe patterns of parallel lines. Random in this context means that we vary the stripe
thickness and the assigned gray-scale to simulate the structure of real epipolar plane
images. Below we list the parameters to control the generated EPI appearance in our
experiments.

� h: height or number of pixels in y direction representing the number of cameras.

� d: the pixel shift or slope of the epipolar lines, equivalent to the disparity in real
light �elds. The EPIs are initialized with a disparity of zeros which can be changed
by applying a�ne transformations with sub-pixel accuracy simulating a refocusing
or change in depth.

� � n : the noise level. We add random Gaussian noise with a standard deviation of
� n [px] to the images.

� wmax : maximum width of the epipolar lines, whereby width means the number of
pixels of a line in the x-direction having assigned the same intensity value. This
simulates low- or non-textured regions in the image domain.

� � c: the color variance. Epipolar lines have a random intensityvalue of 128� � c

simulating low contrasts.

The general procedure of the experiments is:

1. generate an EPI with a random stripe pattern with respect to the parameters
described above.

2. evaluate orientation on the EPI generated in step 1.

3. extract the estimated disparity from the center rowh=2 (neglecting 10% of the
pixels at the left and right borders to avoid border artifacts) and calculate the
mean over the remaining pixels.

4. change the disparityd of the EPI by applying sub-pixel shifts on each row of the
epipolar plane image

5. compute the disparity deviation �d between the evaluateddm and the ground
truth disparity d: �d = d � dm .

6. repeat steps 2 to 4 over the desired parameter range evaluated in the experiment.

7. repeat steps 1 to 5 a number of N times and return the mean disparity deviation
to achieve statistically reliable results over N randomly generated orientation
patterns. A value ofN = 200 showed to be suitable to stabilize the results. This
step is included in all of our experiments without explicitly being mentioned every
time.
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Our goal with these experiments is to show the ideal behaviorand theoretical abilities
of the orientation estimation on synthetic epipolar plane images. The results do not
allow to draw conclusions about the behavior on real epipolar planes, they do not cover
e�ects like continuously changing disparity related to nonplanar objects, occlusions or
non-Lambertiane�ects. However they give an insight into the raw orientationestimation
ability of the structure tensor and its behavior under certain conditions.

Comparison of gradient �lters. The �rst experiment motivates our choice to
compute the gradients of the structure tensor using theGaussianderivatives �lter in
equation 29. We compute the structure tensor in three di�erent variants, using theSobel-
operator (eq. 27), theScharr-operator (eq. 28) and theGaussianderivative operator
(eq. 29) and compare their behavior on synthetic EPIs. We useepipolar planes with
h = 15px, � n = 0 and � c = 128. On the one hand, we are interested in the orientation
estimation accuracy of all variants, but also in the robustness against untextured regions
in the EPIs. As a reminder, we obtain an EPI when �xing a row/column index in
the image domain and stack them over a collection of images ofdi�erent viewpoints.
This means the texture of the objects along this rows/columns is mapped into the
epipolar space as lines whose slope corresponds to the distance of the object to the
camera (compare section 2.3). As a result, the thickness of anepipolar line depends
on the intensity variance of texture mapped onto the epipolar space. We simulate this
in our experiment by generating random EPIs with epipolar lines of random widths
with a maximum width of wmax . To evaluate the accuracy in orientation estimation we
compute the structure tensor on an EPI with a �xedwmax over an orientation range
from d = [ � 1; 1] by applying a�ne transformations to the EPI to create the di�erent
slopes with sub-pixel accuracy. The accuracy is then computed as mentioned in step 3
of the general procedure above as the mean over all orientations. We evaluate this mean
error over the whole orientation range for values ofwmax = [2; 19] and plot the result in
�gure 23 (a) with the mean orientation estimation error overthe maximum epipolar
line width. The result is that the Scharr-operator leads to more accurate orientation
estimations but due to the extensible kernel size, the overall performance of theGaussian
derivative �lter is more robust against increasing epipolar line widths or, in other words,
against the presence of decreasing frequencies in the EPIs.

Optimal structure tensor scales. In the next experiment we use epipolar planes
with h = 15px, wmax = 4, � n = 0, d = [ � 1; 1] and � c = 128. We vary the disparity
d from � 1px to 1px in 0:1px steps and compute for each disparity the orientation on
a parameter grid of the inner scale� and outer scale� of the structure tensor. We
varied � from 0:4 to 0:9 in steps of 0:01 and � from 0:6 to 2:5 in 0:01 steps as well.
The result is depicted in �gure 23. Outer and inner scale behave nearly constant. The
stronger variations in the outer scale signal are primarilydue to a lesser sensitivity of
the outer scale in a wider range { thus some randomness in the exact position of the
absolute minimum occurs (compare also �gure 25). The slightindentation at disparity
zero for both signals can be explained by the fact that orientation estimation works
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perfect for vertical lines. Due to this experiment we de�ne in later experiments an
inner scale� = 0:75 and an outer scale� = 1:0 as optimal scales for this epipolar plane
con�guration.

�����������������	�
���������
�����
�������������������������	�
�����	�������������	�����������������������	���������������
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Figure 23: a) Comparison of gradient �lters. On synthetic epipolar pane images we evaluate the
structure tensor using three di�erent approaches to compute the gradients (Sobel,Scharr,Gaussian
derivative). We create synthetic EPIs with random epipolar lines of maximum widths wmax , where
width means the number of pixels of a line in x direction having assigned the same intensity value.
We vary wmax , drawn on the x-axis, and compute for eachwmax the orientations over a slope range
d = [ � 1; 1]. The average of the estimation errors for each gradient �lter is drawn onthe y-axis.
We see that theScharr-Operator has the best orientation estimation abilities, but with increasing
untextured regions the Gaussian derivative �lter shows a better overall performance due to the fact
that its kernel size is not restricted to 3 � 3. b) Here, we evaluate the optimal scale parameter of
the structure tensor. In this experiment we generate syntheticEPIs and compute for each slope in
the range ofd = [ � 1; 1] the inner and outer scale using a grid search and plot the resulting scale
parameter with the lowest estimation error for each slope. They behave more or less constant over
the range of slopes, the slight indentation at disparities 0 and� 1 can be explained by the fact that
orientation estimation works ideal for vertical and horizontal lines evenwith small kernel sizes.

Inner and outer scale limits. Using the optimal scale parameter of the structure
tensor from our second experiment, we will now look what happens when we �x one scale
and vary the other to see the operative range of the corresponding second parameter.
Again we use epipolar planes withh = 15px, wmax = 4, � n = 0, d = [ � 1; 1] and � c = 128.
Results are depicted in �gures 24 and 25. The �rst show results for a constant� varying
� , the second is the opposite. We observe that the inner scale� has much narrower
tolerances than� .

Minimal number of cameras. In the next experiment we change the parameterh
of an epipolar plane which is equivalent to the number of cameras or sampling steps used
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Figure 24: Inner Gaussiankernel variation when �xing the outer scale � to 1:0. Left side shows a
3D view of the disparity deviation d � dm on the z axis computed over the disparityd and the inner
scale� . The right side is the left plot viewed from above. It is obvious that the region of minimal
disparity deviation � opt � [0:7; 0:8] is quite narrow.

to acquire the light �eld. The other parameters arewmax = 4, � n = 0, d = [ � 1:5; 1:5]
and � c = 128. Result are depicted in �gure 26 and show that a number of7 cameras
seems optimal for the method. This can be explained with error di�usion caused by
border e�ects. To calculate the structure tensor we need to apply three convolutions. If
we use the minimal kernel size of 3� 3 each convolution di�uses an error { caused by
the image borders { one pixel towards the center row. This adds up to 2� 3 + 1 = 7 pixel
if we want a center row pixel which is una�ected by border errors. In this experiment
we adapted the kernel sizes for structure tensor evaluationto use the EPI heighth in an
optimal fashion to see if bigger kernel size leads to more andmore increasing estimation
results. But we see in �gure 26 that the estimation accuracy above h = 11px does not
increase anymore. Therefore, we propose that at least 7 cameras are necessary and
more than 11 super
uous. These statement is only fully validif one is only interested
in an optimal estimation for the center view of a light �eld, which is equivalent in this
experiments to only taking the center row into account. If anoptimal depth estimation
for more than the center view is desired, an increasing number of cameras can be useful.

In
uence of noise on accuracy and coherence. A 1D plot for h = 7px, inner and
outer kernels of� = 0:75 and� = 1:0 is depicted in �gure 27. The left side shows the
evaluation on a noise-free EPI and the right side an EPI with anoise level� n = 11. The
plots show the coherence and the disparity deviation with its standard deviation. We
observe that the orientation analysis seems to work perfectly for disparities � 1 and 0
and is worse for disparities� 0:5. However, the overall accuracy is in the range 0:01 px.
The error increases quickly if the slope of the EPI lines goesbeyond 45� . This is quite
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Figure 25: Outer Gaussiankernel variation when �xing the inner scale � to 0:75. Left side shows a
3D view of the disparity deviation d � dm on the z axis computed over the disparityd and the outer
scale� . The right side is the left plot viewed from above. It is obvious that the region corresponding
to a minimal disparity deviation � opt � [0:5; 1:3] is much wider than for the inner scale.

clear when realizing that the incline of a line on epipolar planes is caused by horizontal
shifts of the image rows instead of a rotation. This of courseleads to a disruption of the
line above 45� . Adding noise (�gure 27 right) leads to an increasing uncertainty but not
to be a�ecting the overall accuracy that much.

Noise and contrast variation. In two more experiments, depicted in �gure 28, we
further check the sensitivity to noise and to contrast changes. The results are that the
structure tensor is quite robust against decreasing contrast. Also, noise up to a certain
amount does not a�ect the overall accuracy that much but increases the uncertainty of
the estimation leading to noisy results.
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Figure 26: Variation of the EPI height or the number of cameras. We varied the disparity d of an
epipolar plane image from -1.5 to 1.5 as well ash from 4px up to 14px. The z-axis is the deviation
of the measured disparity from the ground truth disparity d � dm . The measured disparitydm

is calculated using the method described in section 5.1.2.1 whereby the kernel size and standard
deviation of the outer Gaussiankernel was adapted to the actual heighth for each EPI to make
use of the increasing EPI line length. As a result we see that 7px seems to be the �rst EPI height
covering the entire range of� 1px with acceptable accuracy. We also see that aboveh = 11px the
accuracy does not further increase.

Figure 27: Comparison of orientation analysis on noise free and noisy epipolar plane images. Left
side shows an EPI of heighth = 9px. The smoothing parameters are inner scale� = 0 :75 and outer
scale of� = 1 :0. Same parameters on the right side but with an additive Gaussian noise of� n = 31.
Plotted are the disparity deviation d � dm with standard deviation and the coherence or reliability
r . It is obvious that noise does not a�ect the mean accuracy that much but the certainty is a�ected
through a much lower coherence.
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Figure 28: Top: Variation of the image contrast. We generate random EPI lines with random
integer intensities (128� � c,128 + � c) where � c 2 [1; 128]. We varied the color contrast� c and the
disparity to compute the disparity deviation d � dm . The results of the orientation estimation are
contrast independent up to very little contrasts. Only at the lowest contrast of � 2px do we see
signi�cant outliers. Bottom: Noise variation. We see an evaluation of the disparity deviation under
increasing additive Gaussian noise� n 2 [0; 31].
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5.1.2.3 Consistent Disparity Labeling The computation of the local disparity
estimates using the structure tensor only takes into accountthe immediate local structure
of the light �eld. In truth, the disparity values within a sli ce need to satisfy global
visibility constraints across all cameras for the labelingto be consistent. In particular, a
line which is labeled with a certain depth cannot be interrupted by a transition to a label
corresponding to a greater depth, since this would violate occlusion ordering, �gure 29.
In the conference paper [100], a joint work of Dr Goldl•ucke and the author, we have

(a) label relations (b) disparity estimation

Figure 29: (a) Global labeling constraints on an EPI: if depth � i is less than� j and corresponds
to direction n i , then the transition from � i to � j is only allowed in a direction orthogonal to n i to
not violate occluding order. (b) With the consistent labeling scheme one can enforce global visibility
constraints in order to improve the depth estimates for each epipolarplane image.

shown that by using a variational labeling framework based on ordering constraints [93],
one can obtain globally consistent estimates for each slicewhich take into account all
views simultaneously. While this is a computationally very expensive procedure, it yields
convincing results, see �gure 29. In particular, consistent labeling greatly improves
robustness to non-Lambertian surfaces, since they typically lead only to a small subset
of outliers along an EPI-line. However, at the moment this is only a proof of concept,
since it is far too slow to be usable in any practical applications. For this reason, we do
not pursue this method further in this work, and instead evaluate only the interactive
technique, using results from the local structure tensor computation directly.

5.1.3 Disparities On Individual Views

After obtaining EPI disparity estimates dy � ;t � and dx � ;s� from the horizontal and verti-
cal slices, respectively, we integrate those estimates into a consistent single disparity
map u : 
 ! R for each view (s� ; t � ). This is the objective of the following section.

5.1.3.1 Fast Denoising Scheme Obviously, the fastest way to obtain a sensible
disparity map for the view is to just point-wise choose the disparity estimate with the
higher reliability r x � ;s� or r y � ;t � , respectively. We can see that it is still quite noisy,
furthermore, edges are not yet localized very well, since computing the structure tensor
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(a) Accuracy depending on angular resolution (b) Mean error depending on disparity for
dataset buddha

Figure 30: Analysis of the error behaviour from two di�erent points of view. In a), we plot the
percentage of pixels which deviate from the ground truth (gt) by less than a given threshold over
the angular resolution. Very high accuracy (i.e. more than 50% of pixels deviate by less than 0.1%)
requires an angular resolution of the light �eld of at least 9 � 9 views. In b), we show the relative
deviation from ground truth over the disparity value in pixels per angular step. Results were plotted
for local depth estimations calculated from the original (clean) light �e ld, local depth estimated
from the same light �eld with additional Poisson noise (noisy) as well as the same result after TV-L 1

denoising, respectively. While the ideal operational range of the algorithm are disparities within � 1
pixel per angular step, denoising signi�cantly increases overall accuracy outside of this range.

entails an initial smoothing of the input data. For this reason, a fast method to obtain
quality disparity maps is to employ a TV-L1 smoothing scheme, where we encourage
discontinuities of u to lie on edges of the original input image by weighting the local
smoothness with a measure of the edge strength. We use

g(x; y) = 1 � r s� ;t � (x; y); (39)

wherer s� ;t � is the coherence measure for the structure tensor of the viewimage, de�ned
similarly as in (38). Higher coherence means a stronger image edge, which thus increases
the probability of a depth discontinuity.

We then minimize the weighted TV-L1 smoothing energy

E(u) =
Z



gjDuj +

1
2�

ju � f j d(x; y); (40)

wheref is the noisy disparity estimate and� > 0 a suitable smoothing parameter. The
minimization is implemented in the open-source librarycocolib [37] by Dr. Goldl•ucke
and performs in real-time.
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5.1.3.2 Global Optimization Scheme From a modeling perspective, a more so-
phisticated way to integrate the vertical and horizontal slice estimates is to employ a
globally optimal labeling scheme in the domain 
, where we minimize a functional of
the form

E(u) =
Z



gjDuj + � (u; x; y) d(x; y): (41)

In the data term, we want to encourage the solution to be closeto either dx � ;s� or dy � ;t � ,
while suppressing impulse noise. Also, the two estimatesdx � ;s� and dy � ;t � shall be
weighted according to their reliability r x � ;s� and r y � ;t � . We achieve this by setting

� (u; x; y) := min( r y � ;t � (x; s� ) ju � dy � ;t � (x; s� )j ;

r x � ;s� (y; t� ) ju � dx � ;s� (y; t� )j):
(42)

We compute globally optimal solutions to the functional(41) using the technique of
functional lifting described in [74], which is also implemented incocolib [37]. While
being more sophisticated modeling-wise, the global approach requires minutes per view
instead of being real-time, and a discretization of the disparity range into labels, which
might even lead to a loss instead of gain in accuracy.

5.1.4 Performance Analysis for Interactive Labeling

In this section, we perform detailed experiments with the local disparity estimation
algorithm to analyze both quality and speed of this method. The aim is to investigate
how well our disparity estimation paradigm performs when the focus lies on interactive
applications, as well as �nd out more about the requirementsregarding light �eld
sampling and the necessary parameters.

Optimal Parameter Selection. In a �rst experiment, we establish guidelines to
select optimal inner and outer scale parameters of the structure tensor. As a quality
measurement, we use the percentage of depth values below a relative error

� = ju(x; y) � r (x; y)j=r(x; y) (43)

whereu is the depth map for the view andr the corresponding ground truth. Optimal
parameters are then found with a simple grid search strategy, where we test a number of
di�erent parameter combinations. Results are depicted in �gure 22, and determine the
optimal parameter for each light �eld resolution and data set. Following evaluations are
all done with these optimal parameters. In general, it can be noted that an inner scale
parameter of 0:08 is always reasonable, while the outer scale should be chosen larger
with larger spatial and angular resolution to increase the overall sampling area. Here, it
could be noted that applying median �ltering to the results will reduce the outer-scale
parameter behavior in �gure 22 which causes a better edge preserving in the results but
this is of course linked with higher computational cost. Herewe did the experiments
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Figure 31: Results of disparity estimation on the datasets Buddha (top), Mona (center) and Cone-
head (bottom). (a) shows ground truth data, (b) the local structure ten sor disparity estimate de-
scribed in section 5.1.2.1 and (c) the result after TV-L 1 denoising according to section 5.1.3. In (d)
and (e), one can observe the amount and distribution of error, where greenlabels mark pixels devi-
ating by less than the given threshold from ground truth, red labels pixels which deviate by more.
Most of the larger errors are concentrated around image edges.

without any post-processing to show the raw ability of the local method.

Minimum Sampling Density. In a second step, we investigate what sampling den-
sity we need for an optimal performance of the algorithm on light �elds instead of
synthetically created EPIs (compare section 5.1.2.2 and �gure 26). To achieve this, we
evaluated three simulated light �elds over the full angularresolution range with the
optimal parameter selection found in �gure 22. The results are illustrated in �gure 30,
and show that for very high accuracy, i.e. less than 0:1% deviation from ground truth,
we require about nine views in each angular direction of the light �eld.

Moreover, the performance degrades drastically when the disparities become larger than
around � 1 pixels, which makes sense from a sampling perspective since the derivatives
in the structure tensor are computed on a 3� 3 stencil. Together with the characteristics
of the camera system used (baseline, focal length, resolution), this places constraints
on the depth range where we can obtain estimates with our method. For the Raytrix
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Plenoptic Camera we use in the later experiments, for example, it turns out that we can
reconstruct scenes which are roughly contained within a cube-shaped volume, whose
size and distance is determined by the main lens we choose.

Noisy Input. Another interesting fact is observable on the right hand sideof �gure 30,
where we test the robustness against noise (compare also �gure 27). Within a disparity
range of� 1, the algorithm is very robust, while the results quickly degrade for larger
disparity values when impulse noise is added to the input images. However, when we
apply TV-L1 denoising, which requires insigni�cant extra computational cost, we can
see that the deviation from ground truth is on average reduced below the error resulting
from a noise-free input. Unfortunately, denoising always comes at a price: since it
naturally incurs some averaging, while accuracy is globally increased, some sub-pixel
details can be lost. In �gure 31 we observe the distribution of the errors, and can see
that almost all large-scale error is concentrated around depth discontinuities.

Disparity Range Limitation. The histogram plot on the right in �gure 30 depicts
the e�ect of rapidly increasing orientation estimation errors if the disparities exceed
a range of� 1. The reason is that the slope of an epipolar line depends on shifts in
the image domain relative to the center view (see �gure 32). The pixels of an epipolar
line with a slope> j � 1j are torn apart and thus cannot be matched as a line anymore
using convolution operations. Reconstructing scenes withdisparity ranges above 2 pixels

Figure 32: Visualization of a refocusing operation on the EPI domain. The left image sketches an
EPI with a red and a blue epipolar line initially having slopes of mr = 3 and mb = 1 respectively.
By shifting the rows of the EPI opposing with respect to the center view the slope of each line
changes like depicted in the middle and right image.

makes an iterative processing necessary. One simply repeats the following steps over the
entire disparity range:

� refocus the light �eld.

� compute orientations.

� store valid disparities between� 1.

� add total pixel shift to the disparities.

Merging the corresponding results from each iteration stepcan be done for example by
choosing the disparity with the highest coherence (see eq. 38).
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5.1.5 Comparison to Multi-View Stereo

We compute a simple local stereo matching cost for a single view as follows. Let
V = f (s1; t1); :::; (sN ; tN )g be the set ofN view points with corresponding images
I 1; :::; I N , with ( sc; tc) being the location of the current viewI c for which the cost
function is being computed. We then choose a set � of 64 disparity labels within an
appropriate range. For our test we choose equidistant labels within the ground truth
range for optimal results. The local cost� AV (x; l ) for label l 2 � at location x 2 I c

computed onall neighboring views is then given by

� AV (x; l ) :=
X

(sn ;t n )2 V

min(�; kI n (x + lvn ) � I c(x)k); (44)

where vn := ( sn � sc; tn � tc) is the view point displacement and� > 0 is a cap on
the error to suppress outliers. To test the in
uence of the number of views, we also
compute a cost function on acrosshair of view points along thes- and t-axis from the
view (sc; tc), which is given by

� CH (x; l ) :=
X

( sn ;t n ) 2 V
sn = sc or tn = tc

kI n (x + lvn ) � I c(x)k : (45)

In e�ect, this cost function thus uses exactly the same number of views as required
for the local structure tensor of the center view. The results of these two purely local
methods can be found underST AV L for all views, andST CH L for all views or
just a crosshair, respectively.
Results of both multi-view data terms are denoised with a simple TV-L2 scheme,
algorithms ST AV S and ST CH S. Finally, they were also integrated into a global
energy functional

E(u) =
Z



� (x; u(x)) dx + �

Z



jDuj (46)

for a labeling function u : 
 ! � on the image domain 
, which is solved to global
optimality using the method in [74]. The global optimization results can be found under
algorithms ST AV G and ST CH G. We compare to our approach. First, we start
with the purely local methodEPI L , which estimates orientation using the Eigensystem
analysis of the structure tensor discussed in section 5.1.2. The second method,EPI S,
just performs a TV-L2 denoising of this result, whileEPI G employs the globally
optimal labeling scheme of section 5.1.3.2. Finally, the method EPI C performs a
constrained denoising on each epipolar plane image, which takes into account occlusion
ordering constraints [39]. All results are depicted in �gure33.

5.1.6 Experiments and Discussion

The table in �gure 33 and the �gures 34, 35 show detailed visual and quantitative
disparity estimation results on our benchmark datasets. Algorithm parameters for
all methods were tuned for an optimal structural similarity(SSIM) measure. Strong
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arguments why this measure should be preferred to the MSE aregiven in [99], but we
also have computed a variety of other quantities for comparison (however, the detailed
results vary when parameters are optimized for di�erent quantities).

First, one can observe that our local estimate always is more accurate than any of the
multi-view stereo data terms, while using all of the views gives slightly better results
for multi-view than using only the crosshair. Second, our results after applying the
TV- L1 denoising scheme (which takes altogether less than two seconds for all views)
are more accurate than all other results, even those obtained with global optimization
schemes (which takes minutes per view). A likely reason why our results do not become
better with global optimization is that the latter requires a quantization in to a discrete
set of disparity labels, which of course leads to an accuracyloss. Notably, after either
smoothing or global optimization, both multi-view stereo data terms achieve the same
accuracy, see �gure 33 - it does not matter that the crosshairdata term makes use of
less views, likely since information is propagated across the view in the second step.
This also justi�es our use of only two epipolar plane images for the local estimate.

Our method also is the fastest, achieving near-interactiveperformance for computing
disparity maps for all of the views simultaneously. Note thatby construction, the
disparity maps for all views are always computed simultaneously. Performance could
further be increased by restricting the computation on eachEPI to a small stripe if only
the result of a speci�c view is required.

Obviously { when analyzing epipolar plane images { our approach does not use the full
4D light �eld information around a ray to obtain the local estimates - we just work on
two di�erent 2D cuts through this space. The main reason is performance, in order
to be able to achieve close to interactive speeds, which is necessary for most practical
applications, the amount of data which is used locally must be kept to a minimum.
Moreover, in experiments with a multi-view stereo method, it turns out that using all of
the views for the local estimate, as opposed to only the viewsin the two epipolar plane
images, does not lead to overall more accurate estimates. While it is true that the local
data term becomes slightly better, the result after optimization is the same. A likely
reason is that the optimization or smoothing step propagatesthe information across the
view.
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Orientation Analysis

light�eld EPI L EPI S EPI C EPI G
buddha 0.81 0.57 0.55 0.62
buddha2 1.22 0.87 0.87 0.89
horses 3.60 2.12 2.21 2.67
medieval 1.69 1.15 1.10 1.24
monasRoom 1.15 0.90 0.82 0.93
papillon 3.95 2.26 2.52 2.48
stillLife 3.94 3.06 2.61 3.37
couple 0.40 0.18 0.16 0.19
cube 1.27 0.85 0.82 0.87
maria 0.19 0.10 0.10 0.11
pyramide 0.56 0.38 0.38 0.39
statue 0.88 0.33 0.29 0.35
average 1.64 1.07 1.04 1.18

Multi-View Stereo

light�eld ST AV L ST AV S ST AV G ST CH L ST CH S ST CH G
buddha 1.20 0.78 0.90 1.01 0.67 0.80
buddha2 2.26 1.05 0.68 3.08 1.31 0.75
horses 5.29 1.85 1.00 6.14 2.12 1.06
medieval 7.22 0.91 0.76 12.14 1.08 0.79
monasRoom 2.25 1.05 0.79 2.28 1.02 0.81
papillon 4.84 2.92 3.65 4.85 2.57 3.10
stillLife 5.08 4.23 4.04 4.48 3.36 3.22
couple 0.60 0.24 0.30 1.10 0.24 0.30
cube 1.28 0.51 0.56 2.25 0.51 0.55
maria 0.34 0.11 0.11 0.51 0.11 0.11
pyramide 0.72 0.42 0.42 1.30 0.43 0.42
statue 1.56 0.21 0.21 3.39 0.29 0.21
average 2.72 1.19 1.12 3.54 1.14 1.01

Figure 33: Detailed evaluation of all disparity estimation algorithms described in section 5.1.5
on all of the data sets in our benchmark. The values in the tables show the mean squared error in
pixels times 100, i.e. a value of \0.81" means that the mean squared error in pixels is \0.0081".
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Figure 34: Comparison of the orientation analysis and multi-view stereo (see section 5.1.5) using
the synthetic data of the benchmark database (see section 4). First two columns depict the local
estimated disparity using the structure tensor (EPI L) described in section 5.1.2.1 and the results
after applying a TV-denoising (EPI S). Third and fourth columns depict results from the multi-view
stereo algorithm (ST AV L) described in section 5.1.5 and a TV-denoised version (STAV S) as well.
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Figure 35: Comparison of the orientation analysis and multi-view stereo (see section 5.1.5) using
the real world data of the benchmark database (see section 4). First two columns depict the local
estimated disparity using the structure tensor (EPI L) described in section 5.1.2.1 and the results
after applying a TV-denoising (EPI S). Third and fourth columns depict results from the multi-view
stereo algorithm (ST AV L) described in section 5.1.5 and a TV-denoised version (STAV S) as well.
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5.2 Double Orientation Analysis

While there has been progress in the �eld of non-Lambertian reconstruction under
controlled lighting conditions [4, 29, 40, 79], it remains quite hard to generalize the
standard matching models to more general re
ectance functions if only a set of images
under unknown illumination is available. Previous attempts employ a rank constraint
on the radiance tensor [46] to derive a discrepancy measure for non-Lambertian scenes.
While this improves upon the standard Lambertian matching models and allows to
reconstruct surface re
ection parameters, the results still somewhat lack in robustness.

An interesting alternative approach is Helmholtz stereopsisfrom Zickler et al. [112],
which makes use of the symmetry of re
ectance or Helmholtz reciprocity principle in
order to eliminate the view dependency of specular re
ections in restricted imaging
setups. By alternating light source and camera at two di�erent locations, one can
obtain a stereo pair where specularities are exactly identical and thus classical matching
techniques can be employed for non-Lambertian scenes. Other works try to remove
re
ection data from images using prior assumptions or user input [55, 56].

The works which are most closely related to ours are Sinha et al. [96] and Tsin et al. [90].
They also separate a re
ecting surface from the re
ection inan epipolar volume data
structure. At their heart, these works still rely on classical correspondence matching,
since they optimize for two overlaid matching models in a nested plane sweep algorithm
using graph cuts or semi-global matching, respectively.

In contrast, in our proposed method we do not try to optimize for correspondence.
Instead, we build upon early ideas in camera motion analysis[16] and investigate direc-
tional patterns in epipolar space. In our case, re
ections and transparencies manifest
as overlaid structures, which we investigate with higher order structure tensors [1] as a
consequent generalization of section 5.1.

As a result, we obtain a direct continuous method which requires no discretization into
depth labels, and which is highly parallelizable and quite fast: a center view disparity
map for both layers can be obtained in less than two seconds for a reasonably sized light
�eld, which is around a hundred times faster than even the shortest run-times reported
in [90]. The content in this section is published in Wanner et al. [102], whereby the
theory of the optimization techniques as well as fast CUDA [71] implementations of the
algorithms published incocolib [37] are the work of Dr. Bastian Goldl•ucke.

5.2.1 EPI Structure for Lambertian Surfaces

Before discussing the mapping of re
ections into the epipolar space let us quickly recap
the model for single orientation, which is equivalent to theassumption of Lambertian
material properties.
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(a) Light �eld parametrization (b) Mirror plane geometry

Figure 36: (a) Each camera location (s; t) in the view point plane � yields a di�erent pinhole view
of the scene. The two thick dashed black lines are orthogonal to both planes, and their intersection
with the plane 
 marks the origins of the ( x; y)-coordinate systems for the views (s1; t) and (s2; t),
respectively. (b) Geometry of re
ection on a planar mirror. All cameras view the re
ections of a
scene pointp at a planar mirror M as the image of a virtual point p0 which lies behind the mirror
plane. We assume the intensity measured by the sensor has two contributions, an intensity or color
c(m) { the contribution of the re
ector m { and a color c(p) { the contribution of the mirrored
object p.

Let P 2 R3 be a scene point. It is easy to show that the projection ofP on each epipolar
plane image is a straight line with slopef

Z , whereZ is the depth of P, i.e. distance
of P to the plane �, and f the focal length, i.e. distance between the planes � and

 (compare sections 2.2, 2.3 and �gure 36 a). The quantityf

Z (equation 11) is called
the disparity of P. In particular, the above means that ifP is a point on an opaque
Lambertian surface, then for all points on the epipolar plane image where the pointP
is visible, the light �eld L (equation 9) must have the same constant intensity. This
is the reason for the single pattern of solid lines which we can observe in the epipolar
plane images of a Lambertian scene. In section 5.1, this well-known observation was
the foundation for a novel approach to depth estimation, which leveraged the structure
tensors of the epipolar plane images in order to estimate thelocal orientation and thus
the disparity of the observed point visible in the corresponding ray. While in conjunction
with visibility constraints this leads to a certain robustness against specular re
ections,
the image formation model implicitly underlying this method is still the Lambertian
one, thus the method cannot deal correctly with re
ecting surfaces. Furthermore, it is
not possible to infer information for both the surface And a possible re
ection. The
following sections will propose a more general model to remedy this.

5.2.2 EPI Structure for Planar Re
ectors

We now introduce an idealized appearance model for the epipolar plane images in the
presence of a planar mirror - a translucent surface is an obvious specialization where
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a real object takes the place of the virtual one behind the mirror. It is kept simple in
order to arrive at a computationally tractable model, but wewill see that it captures
the characteristics of re
ective and translucent surfacesreasonably well to be able to
cope with real-world data. A similar appearance model was successfully employed in [90].

Let M � R3 be the surface of a planar mirror. We �x coordinates (y� ; t � ) and consider
the corresponding epipolar plane imageL y � ;t � . The idea of the appearance model is
to de�ne the observed color for a ray at location (x; s) which intersects the mirror at
m 2 M . Our simpli�ed assumption is that the observed color is a linear combination
of two contributions. The �rst is the base colorc(m) of the mirror, which describes
the appearance of the mirror without the presence of any re
ection. The second is the
colorc(p) of the re
ection, wherep is the �rst scene point where the re
ected ray intersects
the scene geometry, see Figure 36(a). We do not consider higher order re
ections, and
assume the surface atp to be Lambertian. We also assume the re
ectivity� > 0 is a
constant independent of viewing direction and location. The epipolar plane image itself
will then be a linear combination

L y � ;t � = LM
y � ;t � + �L V

y � ;t � (47)

of a pattern LM
y � ;t � from the mirror surface itself as well as a patternLV

y � ;t � from the
virtual scene behind the mirror. In each point (x; s) as above, both constituent patterns
have a dominant direction corresponding to the disparitiesof m and p. The next section
shows how to extract these two dominant directions.

LM
y* t*,

�� LV
y* t*,

LM
y* t*, LM

y* t*,
�� LV

y* t*,
= +

Figure 37: Illustration of overlayed signals L M
y � ;t � , L V

y � ;t � and L y � ;t �

5.2.3 Analysis of Multiorientation Patterns

We brie
y summarize the theory for the analysis of superimposed patterns described in
Aach et al. [1]. A region R � 
 of an image f : 
 ! R has orientationv 2 R2 if and
only if

f (x) = f (x + � v) 8 x; x + � v 2 R: (48)

Analysis shows that the orientationv is given by the Eigenvector corresponding to the
smaller Eigenvalue of the structure tensor [12] of f . However, the model fails if the
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Figure 38: Exemplary epipolar plane images showing double orienta-
tion patterns from re
ections.

imagef is a superposition of two oriented images,f = f 1 + f 2, wheref 1 has orientation
u and f 2 has orientationv. In this case, the two orientationsu; v need to satisfy the
conditions

uT r f 1 = 0 and vT r f 2 = 0 (49)

individually on R. Analogous to the single orientation case, the two orientations in
a regionR can be found by performing an Eigensystem analysis of the second order
structure tensor, see Aach et al. [1],

T =
Z

R
�

2

4
f 2

xx f xx f xy f xx f yy

f xx f xy f 2
xy f xy f yy

f xx f yy f xy f yy f 2
yy

3

5 d(x; y); (50)

where� is a (usually Gaussian) weighting kernel onR which essentially determines the
size of the sampling window. SinceT is symmetric, we can compute Eigenvalues and
Eigenvectors in a straight-forward manner using the explicit formulas in [91]. Analogous
to the Eigenvalue decomposition of the 2D structure tensor,the Eigenvectora 2 R3

corresponding to the smallest Eigenvalue ofT , the so-called MOP vector, encodes the
orientations. Indeed, the two disparities are equal to the Eigenvalues� + ; � � of the 2� 2
matrix �

a2=a1 � a3=a1

1 0

�
; (51)

from which one can compute the orientationsu = [ � + 1]T and v = [ � � 1]T .

5.2.4 Merging into Single Disparity Maps

From the steps sketched above, we obtain three di�erent disparity estimates for both
the horizontal as well as vertical epipolar images: one fromthe single orientation model,
and two from the double orientation model. It is clear that the closer estimate in the
double orientation model will always correspond to the primary surface, regardless of
whether it is a mirror or translucent object. Unfortunately, we do not know yet of a
reliable mathematical measure which tells us whether the two-layer model is valid or
not. We therefore impose a simple heuristic: if at a given point, the disparity values
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Center view Single channel Mirror channel Re
ection channe l
�

=
0

:1
�

=
0

:5
�

=
0

:9

Point-wise result Result after TV- L 2 denoising
Re
ection Single orientation Double orientation Single orientation Double orientation
coe�cient mirror re
ection mirror re
ection mirror re
ection mirror re
ection

� = 0 :1 0.0034 0.7409 0.0078 0.1191 0.0025 0.7392 0.0036 0.09924

� = 0 :3 0.0236 0.5994 0.0061 0.0349 0.0086 0.6273 0.0032 0.02371

� = 0 :5 0.0869 0.3735 0.0066 0.0236 0.0252 0.5111 0.0036 0.01377

� = 0 :7 0.1807 0.1547 0.0101 0.0239 0.1434 0.1821 0.0060 0.01053

� = 0 :9 0.2579 0.0365 0.0389 0.0473 0.2557 0.0312 0.0249 0.00980

Figure 39: In
uence of re
ectivity on accuracy. The table shows mean squared disparity error in
pixels of the single and double orientation model for both the mirror plane as well as the re
ection.
While the single orientation model shifts from reconstruction of mirror to re
ection with growing
re
ectivity � , the double orientation model can still reconstruct both when even ahuman observer
has di�culties separating them. The images show the point-wise results.

of horizontal and vertical EPIs agree up to a small error for both the primary and
secondary orientation, we 
ag the double orientation modelas valid, and choose its
contribution in the disparity maps. Otherwise, we choose the estimate from the single
orientation model.

5.2.5 Results

We compare our method primarily to the single orientation method (Wanner et al. [100]
and section 5.1) based on the �rst order structure tensor, which is similar in spirit and an
initial step in our algorithm in any case. However, it is clearthat any multi-view stereo
method will have similar problems as the single orientationmethod if the underlying
model is also the Lambertian world.
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Center view Single orientation Proposed double orientatio n model
(mirror channel) (re
ection channel) (detected mask)

Figure 40: In the absence of a structured background, the re
ecting surface canof course only
reliably be detected where a re
ection of a foreground object is visible. The blue region indicates
where the double orientation model returns valid results.

5.2.5.1 Synthetic Data Sets Figure 39 shows reconstruction accuracy on a syn-
thetic light �eld with varying amounts of re
ectivity � . The scene was ray-traced
in a way which exactly �ts the image formation model. As expected, the disparity
reconstructed with the single orientation model is close tothe disparity of the mirror
surface if � is small, and close to the disparity of the re
ection if� is large. In between,
the result is a mixture between the two, depending on whose texture is stronger. In
contrast, the double orientation model can reliably reconstruct both re
ection as well as
mirror surface for the full range of re
ectivities� , even when it is already di�cult for a
human to still observe both. While the point-wise results arealready very accurate, they
are still quite noisy and can be greatly improved by adding a small amount of TV-L2

denoising [20]. We deliberately do not employ more sophisticated global optimization
in this step to showcase only the raw output from the model andwhat is possible at
interactive performance levels. For all of the light �elds shown, at image resolutions
upwards of 512� 512 with 9� 9 views, the point-wise disparity computation for the
whole center view takes less than 1.5 seconds on an nVidia GTX 680 GPU.

5.2.5.2 Real-World Data Sets In Figures 41, 40, and 42, we show reconstruction
results for light �elds recorded with our gantry, see Figure 36(b). Each one has 9� 9
views at resolutions between 0:5 and 1 mega-pixels. For both re
ective and transparent
surfaces, a reconstruction of a single disparity based on the Lambertian assumption
produces major artifacts and is unusable in the region of thesurface. In contrast, the
proposed method always produces a very reliable estimate for the primary surface, as
well as a reasonably accurate one for the re
ected or transmitted objects, respectively.
For the results in the �gures, we employed a global optimization scheme [74, 100] to
reach maximum possible quality, which takes about 3 minutesper disparity map. The
same scheme and parameters were used for both methods and alldata sets. To show
what is possible in near real-time, we also provide the raw point-wise results in the
additional material.
The results show that certain apparent limitations of the model are not practically
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Center view Single orientation Double orientation model
(front layer) (back layer)

Figure 41: Reconstructing a transparent surface. The single orientation model cannot distinguish
the two signals from the dirty glass surface and the objects behind it.In contrast, multi-orientation
analysis correctly separates both layers.

relevant. In particular, re
ectivity � is certainly not constant everywhere due to
in
uences of e.g. the Fresnel term, but since all estimates are strictly local and the
angular range small, the variations do not seem to impact the�nal result by much. A
stronger limitation, however, is the planarity of the re
ecting or transparent surface.
We predict that it can be considerably weakened, since the main assumption of the
existence of an object \behind" the primary surface (which is of course only virtual
in case of a mirror) also holds for more general geometries. However, exploring this
direction is left for future work.
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Center view Single orientation Double orientation model
(mirror disparity) (re
ection disparity)

Figure 42: Reconstructing a mirror . Like multi-view stereo algorithms, the single orientation model
cannot distinguish the two signals from mirror plane and re
ection and reconstructs erroneous dis-
parity for the mirror plane. In contrast, the proposed double orientation analysis correctly separates
the data for the mirror plane from the re
ection. The re
ection channe l is masked out where the
double orientation model does not return valid results as speci�ed in section 5.2.4, and the results
for this channel have been increased in brightness and contrast for better visibility (raw results and
many more data sets can be observed in the additional material).
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6 Inverse Problems on Ray Space

In this section, we discuss some applications showing that when using light �elds and their
inherently available depth information, much better results can be achieved compared to
classical approaches. The �rst application is an adaptationof super-resolution techniques
to light �elds which additionally is { as a side e�ect { a proof for the high accuracy of
the orientation analysis because a necessary condition forthe proposed super-resolution
algorithm are depth maps of sub-pixel accuracy.
Another application is object segmentation where we will seethat by adapting classical
methods to light �elds we can improve segmentation accuracycompared to segmentation
using single images.

6.1 Spatial and Viewpoint Superresolution

Here, we propose a variational model for the synthesis of super-resolved novel views.
The theoretical background of the variational methods usedin this section is the work
of Dr. Bastian Goldl•ucke. Fast GPU implementations of the algorithms can be found
in his open source librarycocolib [37]. The content is already published in Wanner et
al. [101] and Wanner et al. [103].

Since the model is continuous, we will be able to derive Euler-Lagrange equations which
correctly take into account foreshortening e�ects of the views caused by variations in
the scene geometry. This makes the model essentially parameter-free. The framework
is in the spirit of [38], which computes super-resolved textures for a 3D model from
multiple views, and shares the same favorable properties. However, it has substantial
di�erences, since we do not require a complete 3D geometry reconstruction and costly
computation of a texture atlas. Instead, we only make use of disparity maps on the
input images, and model the super-resolved novel view directly.

The following mathematical framework is formulated for views with arbitrary projections.
However, an implementation in this generality would be quitedi�cult to achieve. We
therefore specialize to the scenario of a 4D light �eld in thesubsequent section, and
leave a generalization of the implementation for future work.

For the remainder of the section, assume we have imagesvi : 
 i ! R of a scene available,
which are obtained by projections� i : R3 ! 
 i . Each pixel of each image stores the
integrated intensities from a collection of rays from the scene. This sub-sampling process
is modeled by a blur kernelb for functions on 
 i , and essentially characterizes the point
spread function for the corresponding sensor element. It can be measured for a speci�c
imaging system [8]. In general, the kernel may depend on the view and even on the
speci�c location in the images. We omit the dependency here for simplicity of notation.

The goal is to synthesize a viewu : � ! R of the light �eld from a novel view point,
represented by a camera projection� : R3 ! �, where � is the image plane of the
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novel view. The basic idea of super-resolution is to de�ne a physical model for how the
sub-sampled imagesvi can be explained using high-resolution information inu, and then
solve the resulting system of equations foru. This inverse problem is ill-posed, and is thus
reformulated as an energy minimization problem with a suitable prior or regularizer onu.
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Figure 43: Transfer map � i from an input image plane 
 i to the image plane � of the novel view
point. The scene surface � can be inferred from the depth map on 
 i . Note that not all points
x 2 
 i are visible in � due to occlusion, which is described by the binary mask mi on 
 i . Above,
mi (x) = 1 while mi (x0) = 0.

6.1.1 Image Formation and Model Energy

In order to formulate the transfer of information from u to vi correctly, we require
geometry information [19]. Thus, we assume we know (previously estimated) depth
maps di (see section 5) for the input views. A pointx 2 
 i is then in one-to-one
correspondence with a pointP which lies on the scene surface �� R3. The color of the
scene point can be recovered fromu via u � � (P), provided that x is not occluded by
other scene points, see �gure 43.

The process explained above induces a backwards warp map� i : 
 i ! � which tells
us where to look on � for the color of a point, as well as a binaryocclusion mask
mi : 
 i ! f 0; 1g which takes the value 1 if and only if a point in 
i is also visible in �.
Both maps only depend on the scene surface geometry as seen from vi , i.e. the depth
map di . The di�erent terms and mappings appearing above and in the following are
visualized for an example light �eld in �gure 44.

Having computed the warp map, one can formulate a model of how the values ofvi within
the mask can be computed, given a high-resolution imageu. Using the down-sampling
kernel, we obtainvi = b� (u � � i ) on the subset of 
 i where mi = 1, which consists
of all points in vi which are also visible inu. Since this equality will not be satis�ed
exactly due to noise or inaccuracies in the depth map, we instead propose to minimize
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the energy

E(u) = � 2
Z

�
jDuj +

nX

i =1

1
2

Z


 i

mi (b� (u � � i ) � vi )2 dx
| {z }

=: E i
data (u)

: (52)

which is the MAP [30] (maximum a posteriori estimation) estimate under the assumption
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Figure 44: Illustration of the terms in the super-resolution energy. The �gure shows the ground
truth depth map for a single input view and the resulting mappings for forward- and backward
warps as well as the visibility maskmi . White pixels in the mask denote points in 
 i which are
visible in � as well.

of Gaussian noise with standard deviation� on the input images. It resembles a classical
super-resolution model [8], which is made slightly more complex by the inclusion of the
warp maps and masks.

In the energy, formulated in equation 52, the total variation acts as a regularizer or
objective prior on u. Its main tasks are to eliminate outliers and enforce a reasonable
in-painting of regions for which no information is available, i.e. regions which are not
visible in any of the input views. It could be replaced by a more sophisticated prior for
natural images, however, the total variation [78] leads to a convex model which can be
very e�ciently minimized. Furthermore, the regularization weight � , which is the only
free parameter of the model, is usually set very low in order to not destroy any details
in the reconstruction. We have it at 0:0001 in all experiments, which makes the exact
choice of regularizer not very signi�cant.
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6.1.2 Functional Derivative

The functional derivative for the inverse problem above is required in order to �nd
solutions. It is well-known in principle, but one needs to take into account complications
caused by the di�erent domains of the integrals. Note that� i is one-to-one when
restricted to the visible regionVi := f mi = 1g, thus we can compute an inverseforward
warp map � i := ( � i jVi )

� 1, which we can use to transform the data term integral back to
the domain �, see �gure 44. We obtain for the derivative of a single term of the sum in
equation 52

dE i
data (u) = jdetD� i j

�
mi

�b� (b� (u � � i ) � vi )
�

� � i : (53)

The determinant is introduced by the variable substitutionof the integral during the
transformation. A more detailed derivation for a structurally equivalent case can be
found in [38].

The term jdetD� i j in equation 53 introduces a point-wise weight for the contribution of
each image to the gradient descent. However,� i depends on the depth map on �, which
needs to be inferred and is not readily available. Furthermore, for e�ciency it needs
to be pre-computed, and storage would require another high-resolution 
oating point
matrix per view. Memory is a bottleneck in our method, and we need to avoid this.
For this reason, it is much more e�cient to transform the weight to 
 i and multiply it
with mi to create a single weighted mask. Note that

jdetD� i j =
�
�detD� � 1

i

�
� = jdetD� i j

� 1 � � i : (54)

Thus, we obtain a simpli�ed expression for the functional derivative,

dE i
data (u) =

�
~mi

�b� (b� (u � � i ) � vi )
�

� � i (55)

with ~mi := mi jdet(D� i )j
� 1. An example weighted mask is visualized in �gure 44. In

total, only the weighted mask ~mi needs to be pre-computed and stored for each view.
In the scenario we present in the next section, the warp maps will be simple and can be
computed on the 
y from just the disparity map.
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6.1.3 Specialization to 4D Light Fields

The model introduced until now is hard to implement e�ciently in fully general form.
Thus we focus on the setting of a 4D light �eld, where we can make a number of signi�cant
simpli�cations. The main reason is that the warp maps between the views are given by
parallel translations in the direction of the view point change. The amount of translation
is proportional to the disparity of a pixel, which is in one-to-one correspondence with
the depth, as explained in sections 2.2, 5.1.2. How the disparity maps are obtained
does not matter, but in this work, naturally, they will be computed using the technique
described in section 5.

6.1.4 View Synthesis in the Light Field Plane

The warp maps required for view synthesis become particularly simple when the target
image plane � lies in the common image plane 
 of the light �eld, and � resembles
the corresponding light �eld projection through a focal point c 2 �. In this case, � i is
simply given by a translation proportional to the disparity,

� i (x) = x + di (x)(c � ci ); (56)

see �gure 45. Thus, one can compute the weight in equation 55 to be

jdetD� i j
� 1 = j1 + r di � (c � ci )j

� 1 (57)

There are a few observations to make about this weight. Disparity gradients which
are not aligned with the view translation � c = c � ci do not in
uence it, which makes
sense since it does not change the angle under which the patchis viewed. Disparity
gradients which are aligned with �c and tend to in�nity lead to a zero weight, which
also makes sense since they lead to a large distortion of the patch in the input view and
thus unreliable information.

A very interesting result is the location of maximum weight.The weights become larger
when � c � r di approaches� 1. An interpretation can be found in �gure 45. If � c � r di

gets closer to� 1, then more information from 
 i is being condensed onto �, which
means that it becomes more reliable and should be assigned more weight. The extreme
case is a line segment with a disparity gradient such that �c � r di = � 1, which is
projected onto a single point in �. In this situation, the weight becomes singular. This
does not pose a problem: From a theoretical point of view, theset of singular points is a
null set according to the theorem of Sard [80], and thus not seen by the integral. From
a practical point of view, all singular points lead to occlusion and the maskmi is zero
anyway. Note that formula 57 is non-intuitive, but the correct one to use when geometry
is taken into account. We have not seen anything similar being used in previous work.
Instead, weighting factors for view synthesis are often imposed according to measures
based on distance to the interpolated rays or matching similarity scores, which are
certainly working, but also somewhat heuristic strategies[35, 51, 59, 76].
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Figure 45: The slope of the solid blue line depends on the disparity gradient in the view vi . If
� c � r di = � 1, then the line is projected onto a single point in the novel viewu.

6.1.5 Results

For the optimization of the (convex) energy in equation 52, we transform the gradient
to the space of the target view via equation 55, discretize, and employ the fast iterative
shrinkage and thresholding algorithm (FISTA) found in [9].

In order to demonstrate the validity and robustness of our algorithm, we perform
extensive tests on our synthetic light �elds, where we have ground truth available, as
well as on real-world data sets from a plenoptic camera. As a by-product, this establishes
again that disparity maps obtained by our proposed method insection 5 have subpixel
accuracy, since this is a necessary requirement for super-resolution to work.

View Interpolation and Superresolution In a �rst set of experiments, we show
the quality of view interpolation and super-resolution, both with ground truth as well as
estimated disparity. In table 47, we synthesize the center view of a light �eld with our
algorithm using the remaining views as input, and compare the result to the actual view.
For the down-sampling kernelb, we use a simple box �lter of size equal to the down-
sampling factor, so that it �ts exactly on a pixel of the input views. We compute results
both with ground truth disparities to show the maximum theoretical performance of the
algorithm, as well as for the usual real-world case that disparity needs to be estimated.
This estimation is performed using the local method described in section 5.1.2.1, so
requires less than �ve seconds for all of the views. Synthesizing a single super-resolved
view requires about 15 seconds on an nVidia GTX 580 GPU.
In order to test the quality of super-resolution, we computethe 3 � 3 super-resolved
center view and compare with ground truth. For reference, wealso compare the result
of bilinear interpolation (IP) as well as TV-zooming [20] of the center view synthesized
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Figure 46: Comparison of the di�erent up-sampling schemes on the light �eld of a resolution chart.
Input resolution is 512� 512, which is 4� up-sampled. From left to right: original low resolution input,
bilinear up-sampling, TV zooming [20], our result, the original 1024� 1024 center view for comparison.
All images shown are closeups.

in the �rst experiment. While the reconstruction with ground truth disparities is very
precise, we can see that in the case of estimated disparity, theresult strongly improves
with larger angular resolution due to better disparity estimates (compare �gure 30).
Super-resolution is superior to both competing methods. This also emphasizes the sub-
pixel accuracy of the disparity maps, since without accurate matching, super-resolution
would not be possible. Figures 48 and 46 show closeup comparison images of the input
light �elds and up-sampled novel views obtained with di�erent strategies. At this zoom
level, it is possible to observe increased sharpness and details in the super-resolved
results. Figure 46 indicates that the proposed scheme also produces the least amount of
artifacts.

Figures 51 and 50 show the results of the same set of experiments for two real-world
scenes captured with the Raytrix plenoptic camera. The plenoptic camera data was
transformed to the standard representation as an array of 9� 9 views using the method
in section 3. Since no ground truth for the scene is available, the input views were
down-sampled to lower resolution before performing super-resolution and compared
against the original view. We can see that the proposed algorithm allows to accurately
reconstruct both sub-pixel disparity as well as a high-quality super-resolved intermediate
view.

91



Conehead Buddha Mona
Views 1x1 3x3 TV IP 1x1 3x3 TV IP 1x1 3x3 TV IP
5 � 5 31.6 29.3 27.4 26.532.2 28.9 27.5 26.530.1 28.3 27.4 26.4

G
T9 � 9 31.6 29.4 27.5 26.532.2 29.1 27.5 26.530.0 28.3 27.4 26.3

17� 17 31.2 30.4 27.3 26.031.8 30.2 28.8 27.230.2 28.9 27.8 26.5
5 � 5 31.1 29.3 27.1 25.828.0 28.9 25.8 24.326.4 28.3 25.7 23.8

E
D9 � 9 31.4 29.4 27.6 26.230.7 29.1 28.9 27.728.9 28.3 26.8 25.1

17� 17 31.5 30.9 25.9 24.331.4 29.5 27.9 26.829.5 28.3 27.1 25.8

Figure 47: Reconstruction error for the data sets obtained with a ray-tracer. The table shows the
PSNR of the center view without super-resolution, at super-resolution magni�cation 3 � 3, and for
bilinear interpolation (IP) and TV-Zooming (TV) [ 20] to 3 � 3 resolution as a comparison. The set
of experiments is run with both ground truth (GT) and estimated disp arities (ED). The estimation
error for the disparity map can be found in �gure 30. Input image resolution is 384� 384.

Disparity Re�nement As we have seen in �gure 49, the disparity estimate is more
accurate when the angular sampling of the light �eld is more dense. An idea is there-
fore to increase angular resolution and improve the disparity estimate by synthesizing
intermediate views.

We �rst synthesize novel views to increase angular resolution by a factor of 2 and 4.
Figure 49 shows resulting epipolar plane images, which can beseen to be of high
quality with accurate occlusion boundaries. Nevertheless,it is highly interesting that
the quality of the disparity map increases signi�cantly when recomputed with the
super-resolved light �eld, �gure 49. This is a striking result, since one would expect
that the intermediate views re
ect the error in the original disparity maps. However,
they actually provide more accuracy than a single disparitymap, since they represent a
consensus of all input views. Unfortunately, due to the high computational cost, this is
not a really viable strategy in practice.
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Figure 48: Closeups of the up-sampling results for the light �elds generated with a ray tracer.
From left to right: low-resolution center view (not used for reconstruction), high resolution center
view obtained by bilinear interpolation of a low-resolution reconstruction from 24 other views, TV-
Zooming [20], super-resolved reconstruction. The super-resolved result shows increased sharpness
and details.
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Figure 49: Left: Up-sampling of epipolar plane images (EPIs). From Top to bottom the �ve layers
of an epipolar plane image of the input data set with 5� 5 views, the super resolved 7� 7 and the super
resolved 17� 17 views are depicted. We generate intermediate views using our method to achieve
angular super-resolution. One can observe the high quality and accurate occlusion boundaries of
the resulting view interpolation. Right: Indeed, they are accurate enough such that using the up-
sampled EPIs leads to a further improvement in depth estimation accuracy. Here the mean square
errors for all angular resolutions as well as the color coded error distribution of the depth error
before and after super-resolution are shown.
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Figure 50: Super-resolution view synthesis using light �elds from a plenoptic camera. Scenes were
recorded with a Raytrix camera at a resolution of 962� 628 and super-resolved by a factor of 3� 3.
The light �eld contains 9 � 9 views. From left to right: low-resolution center view (not used for
reconstruction), high resolution center view obtained by bilinear interpolation of a low-resolution
reconstruction from 24 other views, TV-Zooming [20], super-resolved reconstruction. One can �nd
additional detail, for example the diagonal stripes in the Euro note, which were not visible before.

Figure 51: Reconstruction error for light �elds captured with the Raytrix ple noptic camera. The
table shows PSNR for the reconstructed input view at original resolution as well as 3� 3 super-
resolution and 3� 3 interpolation (IP) and TV-Zooming (TV) [20] for comparison.
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6.2 Rayspace Segmentation

Here we present the �rst variational framework for multi-label segmentation on the ray
space of 4D light �elds. For traditional segmentation of single images, features need
to be extracted from the 2D projection of a three-dimensional scene. The associated
loss of geometry information can cause severe problems, forexample if di�erent objects
have a very similar visual appearance. In this section, we show that using a light �eld
instead of an image not only enables to train classi�ers which can overcome many of
these problems, but also provides an optimal data structurefor label optimization by
implicitly providing scene geometry information. Thus it is possible to consistently
optimize label assignment over all views simultaneously.

Recent developments in light �eld acquisition systems [14, 64, 69, 72] strengthen the pre-
diction that we might soon enter an age of light �eld photography [57]. Since compared
to a single image, light �elds increase the content capturedof a scene by directional
information, they require an adaptation of established algorithms in image processing
and computer vision as well as the development of completelynovel techniques. Here, we
develop methods for training classi�ers on features of a light �eld, and for consistently
optimizing label assignments to rays in a global variational framework. The ray space
of the light �eld is considered four-dimensional, parametrized by the two points of
intersection of a ray with two parallel planes, so that the light �eld can be considered as
a collection of planar views, see �gures 6 and 5.

Due to this planar sampling, 3D points are projected onto lines in cross-sections of the
light �eld called epipolar-plane images (section 2.3). In recent works, it was shown that
robust disparity reconstruction is possible by analyzing this line structure [11, 16, 27, 100]
(see also section 5). In contrast to traditional stereo matching, no correspondence search
is required, and 
oating-point precision disparity data can be reconstructed at a very
small cost.

From the point of view of segmentation, this means that in light �elds, we have access to
more than the color of a pixel and information about the neighboring image texture. Ad-
ditionally, we can assume that disparity is readily available as a feature. Disparity turns
out to be highly e�ective for increasing the prediction quality of a classi�er. As long as
the inter-class variety of imaged objects is high and the intra-class variation is low, state
of the art classi�ers can easily discriminate di�erent objects. However, separating for ex-
ample background and foreground leafs (example in �gure 52)poses a more di�cult task.

In general, there is no easy way to alleviate issues like thisusing only single images.
However, for a classi�er which also has geometry based features available, similar looking
objects are readily distinguishable if their geometric features are separable.

In the following, we will show that light �elds are ideally suited for image segmentation.
One reason is that geometry is an inherent characteristic ofa light �eld, and thus we
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Input user scribbles single view labeling ray space labeling

Figure 52: Multi-label segmentation with light �eld features and disparity-con sistent regularization
across ray space leads to results which are superior to single-view labeling.

can use disparity as a very helpful additional feature. Whilethis has already been
realized in related work on e.g. multi-view co-segmentation [50] or segmentation with
depth or motion cues, which are in many aspects similar to disparity [31, 92], light
�elds also provide an ideal structure for a variational framework which readily allows
consistent labelling across all views, and thus increases the accuracy of label assignments
dramatically.

6.2.1 Regularization on Ray Space

In segmentation problems, when one wants to label rays according to e.g. the visible
object class, the unknown function on ray space ultimately re
ects a property of scene
points. In consequence, all the rays which view the same scene point have to be assigned
the same function value. Equivalent to this is to demand thatthe function must be
consistent with the structure on the epipolar plane images.In particular, except at depth
discontinuities, the value of such a function is not allowedto change in the direction of
the epipolar lines, which are induced by the disparity �eld.

The above considerations give rise to a regularizerJ�� (U ) for vector-valued functionsU :
R ! Rn on ray space. It can be written as the sum of contributions forthe regularizers
on all epipolar plane images as well as all the views,

J�� (U ) = �J xs (U ) + �J yt (U ) + �J st (U )

with Jxs (U ) =
Z

J� (Ux � ;s� ) d(x � ; s� );

Jyt (U ) =
Z

J� (Uy � ;t � ) d(y� ; t � );

and Jst (U ) =
Z

JV (Us� ;t � ) d(s� ; t � );

(58)

where the anisotropic regularizersJ� act on 2D epipolar plane images, and are de�ned
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such that they encourage smoothing in the direction of the epipolar lines. This way, they
enforce consistency of the functionU with the epipolar plane image structure. For a
detailed de�nition, we refer to our related work [39]. The spatial regularizerJV encodes
the label transition costs, as we will explore in more detailin the next section. Finally,
the constants� > 0 and � > 0 are user-de�ned and adjust the amount of regularization
on the separate views and epipolar plane images, respectively.

6.2.2 Optimal Label Assignment on Ray Space

In this section, we introduce a new variational labeling framework on ray spaces. Its
design is based on the representation of labels with indicator functions [22, 53, 111],
which leads to a convex optimization problem. We can use the e�cient optimization
framework presented in [39] to obtain a globally optimal solution to the convex problem,
however, as usual we need to project back to indicator functions and only end up within
a (usually small) posterior bound of the optimum.

The Variational Multi-Label Problem. Let � be the (discrete) set of labels, then
to each label
 2 � we assign a binary function u
 : R ! f 0; 1g which takes the value 1
if and only if a ray is assigned the label
 . Since the assignment must be unique, the set
of indicator functions must satisfy the simplex constraint

X


 2 �

u
 = 1: (59)

Arbitrary spatially varying label cost functions c
 can be de�ned, which penalize the
assignment of
 to a ray R 2 R with the cost c
 (R) � 0.

Let U be the vector of all indicator functions. To regularizeU , we chooseJ�� de�ned
in equation 58. This implies that the labelling is encouraged to be consistent with the
epipolar plane structure of the light �eld to be labelled. The spatial regularizerJV needs
to enforce the label transition costs. For the remainder of this work, we choose a simple
weighted Potts penalizer [110]

JV (Us� ;t � ) :=
1
2

X


 2 �

Z



gj(Du 
 )s� t � j d(x; y); (60)

where g is a spatially varying transition cost. Since the total variation of a binary
function equals the length of the interface between the zeroand one level set due to the
co-area formula [32], the factor 1=2 leads to the desired penalization.

While we use the weighted Potts model in this work, the overallframework is by no
means limited to it. Rather, we can use any of the more sophisticated regularizers
proposed in the literature [22, 53], for example truncated linear penalization, Euclidean
label distances, Huber TV or the Mumford-Shah regularizer. Anoverview as well as
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further specializations tailored to vector-valued label spaces can be found in [94].

The space of binary functions over which one needs to optimize is not convex, since
convex combinations of binary functions are usually not binary. We resort to a convex
relaxation, which with the above conventions can now be written as

argmin
U 2C

(

J�� (U ) +
X


 2 �

Z

R
c
 u
 d(x; y; s; t)

)

; (61)

whereC is the convex set of functionsU = ( u
 : R ! [0; 1])
 2 � which satisfy the simplex
constraint equation 59. After optimization, the solution ofequation 61 needs to be
projected back onto the space of binary functions. This means that we usually do not
achieve the global optimum of equation 61, but can only compute a posterior bound for
how far we are from the optimal solution. An exception is the two-label case, where we
indeed achieve global optimality via thresholding, since the anisotropic total variation
also satis�es a co-area formula [111].

Optimization. Note that according to equation 58, the full regularizerJ�� which
is de�ned on 4D ray space decomposes into a sum of 2D regularizers on the epipolar
plane images and individual views, respectively. While solving a single saddle point
problem for the full regularizer would require too much memory, it is feasible to iter-
atively compute independent descent steps for the data termand regularizer components.

The overall algorithm is detailed in [39]. Aside from the data term, the main di�erence
here is the simplex constraint set for the primal variableU . We enforce it with Lagrange
multipliers in the proximity operators of the regularizer components, which can be easily
integrated into the primal-dual algorithm [21]. An overview of the algorithm adapted to
problem in equation 61 can be found in �gure 53.

On our system equipped with an nVidia GTX 580 GPU, optimizationtakes about 1.5
seconds per label in � and per million rays inR, i.e. about 5 minutes for our rendered
data sets if the result for all views is desired. If only the result for one single view
(i.e. the center one) is required, computation can be restricted to view points located
in a cross with that speci�c view at the center. The result will usually be very close
to the optimization over the complete ray space. While this compromise forfeits some
information in the data it leads to signi�cant speeds ups, for our rendered data sets to
about 30 seconds.

6.2.3 Local Class Probabilities

We calculate the unary potentialsc
 in equation 61 from the negative log-likelihoods of
the local class probabilities,

c
 (R) = � logp
�

 jv (R)

�
; (62)
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To solve the multi-label problem in equation 61 on ray space, we initialize the
unknown vector-valued function U such that the indicator function for the optimal
point-wise label is set to one, and zero otherwise. Then we iterate

� data term descent: U�  U� � � c � for all � 2 �,

� EPI regularizer descent:

Ux � s�  prox� �J �
(Ux � s� ) for all ( x � ; s� );

Uy � t �  prox� �J �
(Uy � t � ) for all ( y� ; t � );

� spatial regularizer descent:

Us� t �  prox� �J V
(Us� t � ) for all ( s� ; t � ):

The proximation operators proxJ compute subgradient descent steps for the respective
2D regularizer, and enforce the simplex constraint in equation 59 forU . The possible
step size� depends on the data term scale, in our experiments� = 0 :1 lead to reliable
convergence within about 20 iterations.

Figure 53: Algorithm for the general multi-label problem in equa-
tion 61.

so that by solving equation 61, we obtain the maximum a-posteriori (MAP) solution [ 30]
for the label assignment. The local class probabilitiesp

�

 jv (R)

�
2 [0; 1] for the la-

bel 
 , conditioned on a local feature vectorv(R) 2 RjF j for each ray R 2 R , are
obtained by training a classi�er on a user-provided partiallabelling of the center view.
As features, we use a combination of color, Laplace operator of the view, intensity
standard deviation in a neighbourhood, Eigenvalues of the Hessian and the disparity
computed on several scales. While our framework allows the use of arbitrary classi�ers,
we specialize in this thesis to aRandom Forest[18]. These are becoming increasingly
popular in image processing due to their wide applicability[26] and the robustness
with regard to their hyper-parameters. Random Forests makeuse ofbaggingto reduce
variance and avoid over-�tting. A decision forest is built from a number n of trees,
which are each trained from a random subset of the available training samples. In
addition to bagging, extra randomness is injected into the trees by testing only a subset
of m < jF j di�erent features for their optimal split in each split node. The above in-
ternal random forest parameters were �xed tom =

p
jF j and n = 71 in our experiments.

Each individual tree is now built by partitioning the set of training samples recursively
into smaller subsets, until the subsets become either class-pure or smaller than a given
minimal split node size. The partitioning of the samples is achieved by performing
a line search over all possible splits along a number of di�erent feature axes for the
optimal Gini-impurity of the resulting partitions, and repeating this process forthe
child partitions recursively. In each node, the chosen feature and the split value of that
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Classi�er
Features used IMG IMG-D IMG-GT

RGB value X X X
Intensity standard deviation X X X

(in local neighbourhood)
Eigenvalues of Hessian X X X
Laplace operator X
Estimated disparity X
Ground truth disparity X

Figure 54: Combination of features used for the experiments in this
paper. The individual scales of the features were determined via a grid
search to �nd optimal parameters for each dataset individually.

feature are stored. After building a single tree, the class distribution of the samples
in each leaf node is stored and used at prediction time to obtain the conditional class
probability of samples that arrive at that particular leaf node. The leaf node with which
a prediction-sample is associated is determined by comparing the nodes' split value for
the split feature with the feature vector entry of a sample. Depending on whether the
sample value is smaller (larger) than the node value, the sample is passed to the left
(right) child of the split node, until a leaf node is reached.

Finally, the ensemble of decision tree classi�ers is used to calculate the local class
probability of unlabeled pixels by averaging their votes. In our experiments, we achieved
total run-times for training and prediction between one and5 minutes, depending on
the size of the light �eld and the number of labels. However, wedid not yet parallelize
the local predictions, which is easily possible and would make computation much more
e�cient.

6.2.4 Experiments

In this section, we present the results of our multi-label segmentation framework on a
variety of di�erent data sets. To explore the full potential of our approach, we use com-
puter graphics generated light �elds rendered with the opensource software Blender [77],
which provides complete ground truth for depth values and labels. In addition, we show
that the approach yields very good results on real world dataobtained with a plenoptic
camera and a gantry, respectively. A subset of the views in the real-world data sets were
manually labeled in order to provide ground truth to quantify the results.

There are two main bene�ts of labeling in light �elds. First, we demonstrate the
usefulness of disparity as an additional feature for training a classi�er, and second, we
show the improvements from the consistent variational multi-label optimization on ray
space.
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Figure 55: Depth estimated using the method in section 5 and spatial regularizer weight computed
according to equation 63 for the light �eld view shown in �gure 52.

Disparity as a Feature. The �rst step of the proposed segmentation framework does
not di�er from single image segmentation using a random forest. The user selects an
arbitrary view from the light �eld, adds scribbles for the di�erent labels, and chooses
suitable features as well as the scales on which the featuresshould be calculated. The
classi�er is then trained on this single view and, in a secondstep, used to compute local
class probabilities for all views of the entire light �eld.

In advance, we have tested variations of common features forinteractive image segmen-
tation on our data sets to �nd a suitable combination of features which yields good
results on single images. The optimal training parameters were determined using a grid
search over the minimum split node size as well as the featurecombinations and their
scales for each data set individually. The number of di�erent scales we used for each
feature was �xed to four. This way, we can guarantee optimal results of the random
forest classi�er for all data sets and feature combinations, which ensures a meaningful
assessment of the e�ects of our new ray space features.

Throughout the remainder of this section, we use the three di�erent sets of features
detailed in �gure 54. The classi�er IMG uses only classical single-view features, while
IMG-D and IMG-GT employ in addition estimated and ground truth disparity, respec-
tively, the latter of course only if available. Estimated disparity maps were obtained
using our method in section 5 and are overall of very good quality, see �gure 55. The
achieved accuracy and the boundary recall for purely point-wise classi�cation using the
three classi�ers above are listed in the table in �gure 56. Sample segmentations for
our data sets can be viewed in �gure 58. It is obvious that the features extracted from
the light �eld improve the quality of a local classi�er signi�cantly for di�cult problem
instances.
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Classi�er
IMG IMG-D IMG-GT

Data set acc br acc br acc br

synthetic data sets

Buddha 93.5 6.4 96.7 39.6 98.6 43.1

Garden 95.1 54.8 96.7 51.1 96.9 53.3

Papillon 1 98.6 59.3 98.3 57.4 99.0 78.9
Papillon 2 90.8 16.7 96.5 33.1 99.1 73.0

Horses 1 93.2 13.4 94.3 34.9 98.3 48.7
Horses 2 94.6 15.9 95.3 36.8 98.5 50.9

StillLife 1 98.6 36.3 98.7 41.2 98.9 45.3
StillLife 2 97.8 25.4 98.3 36.1 98.5 39.1

real-world data sets

UCSD [113] 95.8 8.9 97.0 11.2 - -

Plenoptic 1 [72] 93.7 3.5 94.5 4.4 - -
Plenoptic 2 [72] 91.0 6.6 96.1 8.5 - -

Figure 56: Comparison of local labeling accuracy (acc) and boundary recall(br) for all datasets.
The table shows percentages of correctly labeled pixels and boundary pixels, respectively, for point-
wise optimal results of the three classi�ers trained on the featuresdetailed in �gure 54. Disparity for
IMG-D is estimated using the method described in section 5.1.2.1. Ground truth disparity is used
for IMG-GT to determine the maximum possible quality of the proposed method. It is obvious that
in scenes likeBuddha, Papillon 2, Horses 2 or StillLife 2 , where the user tries to separate objects
with similiar or even identical appearance, the rayspace based feature leads to a large bene�t in the
segmentation results.

Global Optimization. In the second set of experiments, we employ our ray space
optimization framework on the results from the local classi�er. The unary potentials
in (61) are initialized with the log-probabilities (62) from the local class probabilities,
while the spatial regularization weightg is set to

g = max
�

0; 1 �
�
jr I j2 � H (I )

�
jr � j2

	
; (63)

where I denotes the respective single view image,H the Harris corner detector [42],
and � the disparity �eld. This way, we combine the response from three di�erent types
of edge detectors. Experiments showed that the sum of the twodi�erent edge signals
for the gray value imageI leads to more robust boundary weights. For all of the data
sets, training classi�ers with light �eld features and optimizing over ray space leads
to signi�cantly improved results compared to single view multi-labeling (see �gures 57
and 58). The e�ectiveness of light �eld segmentation is revealed in particular on data
sets which have highly ambiguous texture and color between classes. In the light �eld
Buddha, for example, it becomes possible to segment a column from a background wall
having the same texture. In the scenePapillon 2, we demonstrate that it is possible
to separate foreground from background leaves. Similarly,in StillLife 2 we are able to
correctly segment foreground from background raspberries. The data setHorses 2also
represents a typical case for problems only solvable using the proposed approach. Here,
we perform a labeling of identical objects in the scene with di�erent label classes.
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User scribbles GT labels SV classi�er RS classi�er SV optimu m RS optimum

Ray-traced data IMG [56] IMG+GT [56] SV+IMG [57] RS+IMG+GT
[57]
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Figure 58: Segmentation results for a number of ray-traced and real-world light �elds. GT stands
for ground truth, SV for single view andRS for ray space. The numbers in squared brackets refer to
the corresponding �gures. The �rst two columns on the left show the center view with user scribbles
and ground truth labels. The two middle columns compare classi�er results for the local single view
and light �eld features denoted on top. Since the focus of this paper issegmentation rather than
depth reconstruction, here we show results for ground truth depthwhere available to compare to the
optimal possible results from light �eld data. Finally, the two rightm ost columns compare the �nal
results after single view and ray space optimization, respectively. In particular for di�cult cases, the
proposed method is signi�cantly superior.
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7 Conclusion

In this work novel methods for the analysis of 4D light �elds was presented. We showed
that a speci�c parametrization, the so-calledLumigraph, is well suited for an orientation
based analysis. TheLumigraph can be described as a dense collection of pinhole views
captured on a planar regular grid of camera positions. This causes a linear mapping
of 3D points onto lines in the so-called epipolar plane images. We discussed di�erent
devices and techniques to capture light �elds as well as the e�ort necessary to represent
the resulting raw data as aLumigraph or as epipolar plane images respectively.

In chapter 3, we saw that raw data from aFocused Plenoptic Cameradoes not provide an
immediate access to epipolar plane images. A method was proposed to render all possible
all-in-focus views from the raw data, which is the desiredLumigraph parametrization.
To avoid a pixel-wise depth estimation within the micro-lens images, we minimized the
gradients at neighboring micro-image patches to render views without plenoptic artifacts.

In chapter 4 we discussed the acquisition techniques relevant for this work in detail. To
generate light �elds of best quality we used a high-end consumer camera in combination
with a precise xy-stepper motor. This so-calledgantry is ideal to capture very dense
light �elds down to baselines of 1mm. The disadvantage is that only static scenes can
be captured. Together with light �elds generated using computer graphics, providing
full ground truth data, a benchmark database containing over a dozen simulated and
real world light �elds was published during this work (www.lightfield-analysis.net ).

In chapter 5, we proposed fast and robust methods, based on anorientation analysis of
epipolar plane images, to compute depth range data. The single orientation analysis
introduced makes use of the structure tensor to analyze epipolar plane images. The
structure tensor analyzes �rst order derivatives to locally estimate structure and ori-
entation in an image. If the appearance of a 3D point does not depend on the view
point, it is mapped onto a line in an epipolar plane image. However, this approach is
restricted to the Lambertian assumption. If re
ections or transparencies are present,
overlayed line patterns arise in the epipolar space the structure tensor cannot handle.
An extension to multi-orientation patterns, making use of a higher order structure
tensor, was proposed. We showed that this multi-orientation analysis leads to much
more robust depth estimation where re
ections or semi-transparent materials are present.

In Chapter 6, we discussed two applications of the orientation based depth estimation.
We proposed an angular and spatial super-resolution algorithm based on an energy
minimization framework as well as a framework for optimal label assignment on ray
space for object segmentation. Both methods show the potential of light �elds for image
processing and computer vision tasks. The super-resolution framework can be seen as a
proof for the high quality of the depth maps computed using the orientation analysis,
since this method needs disparity estimations of sub-pixelaccuracy to work properly. In
the case of object segmentation the bene�ts are quite obvious. Due to the inherently
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available depth information within light �elds, object detection is getting much more
robust when applied on light �elds. We used a standard "random-forest" classi�er in
this work to predict object labels. Compared to predictionson 2D images we were able
to distinguish objects of di�erent classes but similar appearance.

8 Outlook

Possible extensions of the work presented could be the following:

The proposed orientation analysis in this work is still separated in single orientation
and double orientation models and in particular the double orientation model needs
the outcome of the single orientation to interpret the resulting channels. However, this
needs to be uni�ed in a more problem speci�c manner. The single orientation model is
already included in the second order structure tensor and a more advanced evaluation
of all tensor channels at once would lead to more robust results.

The orientation analysis as described in this work handles 4D light �elds as separated
horizontal and vertical 3D light �elds merging the outcome in a �nal step by pixel-wise
choosing the disparity more reliable as the �nal result. From a computational e�ciency
point of view this makes sense, since an evaluation of the 4D data as a whole is quite
expensive, but on the other hand the method described in thiswork does not make use
of all available information.

Next steps planned for future research are an evaluation of the depth estimation accuracy
on real scenes and extensions of the orientation analysis tolight �elds varying over time.
Further developments in both are planned, investigating light �elds of dynamic scenes
as well as light �elds of static scenes under varying illumination conditions.
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