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Zusammenfassung

Die vorliegende Arbeit beschaftigt sich mit der Analyse von B Lichtfeldern. Als Licht-
feld bezeichnen wir in diesem Zusammenhang eine Serie vagitdlen 2D Bilder einer
Szene die auf einem planaren regularen Gitter von Kameragitionen aufgenommen
werden. Essenziell ist dabei die Aufnahme einer Szene miteieler Kamerapositionen
konstanten Abstandes zueinander. Dadurch werden die von em Punkt der Szene
ausgehenden Lichtstrahlen als Funktion der Kamerapositicabgetastet. Dadurch ergibt
sich die bereits erwahnte Vierdimensionaliat der Daten d, im Gegensatz zu einem
klassischen Bild, zusatzlich zur Ortsinformation eine Rhtungsinformation der Lichtin-
tensitat abgebildet wird.

Lichtfelder sind ein relativ neues Forschungsfeld far diBildverarbeitung, deren moderner
Ursprung eher in der Computergra k zu suchen ist. Dort wurdersie verwendet, um
die aufwendige Modellierung der 3D Geometrie zu umgehen untttels Interpolation
der Blickwinkel auch ohne Informationen uber die Geometei einen interaktiven 3D
Eindruck zu erzielen. Die vorliegende Arbeit hat die umgekeie Intention und mechte
aufgenommene Lichtfelder dazu verwenden um die Geometrierd&zene zu rekonstru-
ieren. Der Grund ist, dass Lichtfelder im Vergleich zu exigrenden Verfahren der 3D
Rekonstruktion einen viel reicheren Informationsgehaltdsitzen. Durch die regulare
Abtastung des Lichtfeldes werden neben Information wber di Geometrie ebenfalls
Materialeigenschaften abgebildet. Oberachen, deren suelle Erscheinung sich unter
Anderung des Betrachtungswinkels nicht konstant verhaltjshren bei bekannten passiven
Rekonstruktionsverfahren zu gro en Problemen. Das Verhian solcher Oberachen
unter Blickwinkelanderung wird in Lichtfeldern allerdings abgetastet und somit unmit-
telbar analysierbar.

Der wissenschaftliche Beitrag dieser Arbeit besteht aus #ehiedenen Teilbeitragen.
Es wird ein neues Verfahren vorgestellt, das aus den Rohdateiner Lichtfeldkamera
(Plenopik Kamera 2.0) ohne explizite pixelweise Vorbereshing der Tiefeninformation
eine 4D Lichtfeldreprasentation erzeugt. Diese spezielReprasentation, auchLumigraph
genannt, ermeglicht den Zugang ziEpipolarebenengenannten 2D-Unterraumen dieser
Datenstruktur. Es wird ein Verfahren vorgestellt das aus aer Analyse dieselEpipo-
larebeneneine robuste Tiefenschatzung unter der AnnahmeambertscherOberachen
ermeglicht. Darauf aufbauend wird eine Erweiterung dieseVerfahrens auf kompliziertere
Materialien, zum Beispiel spiegelnder oder teiltranspaneer Oberachen, entwickelt.
Als Anwendungsbeispiele far die inherent vorhandene Tiefariormation in Lichtfeldern
werden bekannte Verfahren wie Superresolution oder Objskigmentierung auf Licht-
felder erweitert und mit Ergebnissen auf Einzelbildern vegtichen. Au erdem ist im
Laufe dieser Arbeit eine gro e Benchmark Datenbank, bestehe aus simulierten und
realen Lichtfeldern entstanden, mit Hilfe derer die hier vayestellten Verfahren getestet
werden, und die zukanftiger Forschung auf diesem Feld alseXgleichsbasis dienen soll.






Summary

This work is about the analysis of 4D light elds. In the contet of this work a light
eld is a series of 2D digital images of a scene captured on aphr regular grid of
camera positions. It is essential that the scene is captureder several camera positions
having constant distances to each other. This results in amsgling of light rays emitted
by a single scene point as a function of the camera positiom ¢ontrast to traditional
images { measuring the light intensity in the spatial domair{ this approach addition-
ally captures directional information leading to the four édmensionality mentioned above.

For image processing, light elds are a relatively new resesh area. In computer graphics,
they were used to avoid the work-intensive modeling of 3D geetry by instead using
view interpolation to achieve interactive 3D experiencesithiout explicit geometry. The
intention of this work is vice versa, namely using light eld to reconstruct geometry of
a captured scene. The reason is that light elds provide muaticher information content
compared to existing approaches of 3D reconstruction. Due the regular and dense
sampling of the scene, aside from geometry, material profies are also imaged. Surfaces
whose visual appearance change when changing the line ohsitpuses problems for
known approaches of passive 3D reconstruction. Light eldsstead sample this change
in appearance and thus make analysis possible.

This thesis covers di erent contributions. We propose a newpproach to convert raw
data from a light eld camera (plenoptic camera 2.0) to a 4D neresentation without
a pre-computation of pixel-wise depth. This special represtation { also calledthe
Lumigraph { enables an access to epipolar planes which are sub-spadeth® 4D data
structure. An approach is proposed analyzing these epipolplane images to achieve a
robust depth estimation onLambertian surfaces. Based on this, an extension is presented
also handling re ective and transparent surfaces. As exangs for the usefulness of this
inherently available depth information we show improvemes to well known techniques
like super-resolution and object segmentation when extemdj them to light elds.
Additionally a benchmark database was established over tinduring the research for
this thesis. We will test the proposed approaches using thitatabase and hope that it
helps to drive future research in this eld.
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The body of the air is full of an in nite number of radiant pyramids caused by the objects
located in it. These pyramids intersect and interweave without interfering with each
other during the independent passage throughout the air in which they are infused.

Leonardo da Vinci (1452-1519)






| say that if the front of a building {or any open piazza or eld{ which is illuminated by

the sun has a dwelling opposite to it, and if, in the front which does not face that sun,
you make a small round hole, all the illuminated objects will project their images through
that hole and be visible inside the dwelling on the opposite wall which may be made white;
and there, in fact, they will be upside down, and if you make similar openings in several
places in the same wall you will have the same result from each. Hence the images
of the illuminated objects are all everywhere on this wall and all in each minutest part of it.

Leonardo da Vinci (1452-1519)






1 Introduction

1.1 Motivation

Depth imaging has been a highly active research area for ddea. Considering the vast
number of application areas, this is not very surprising. Tése range from industrial
inspection to robotics, from automotive to surveillance {® name only a few that are
long established. However, in the last years, new areas ofargst have emerge to drive
the developments in that eld. Recent advances in the mobiland gaming industry
o er more and more depth range data and the upcoming era of 3Dripting and rapid
prototyping is currently opening a new eld of interests in ® reconstruction. This great
demand of depth imaging resulted in a wealth of techniques @mlevices. One of the
rst established is the so calledstereo imagingor triangulation. Inspired by the visual
system of mammals, two cameras can be placed next to each otlooking in the same
direction. The resulting images can be used to determine tishift between objects in
the corresponding images which is related to the distance thle object to the image
planes. Stereo imaging is one of the most well developed apgches considering the
number of existing setups and algorithms. The reason for thsuccess is the simplicity
of the system and that the algorithms are relatively straigtiorward, at least for the
basic approaches.

AN

Figure 1. Stereo camera setup. An object atP = ( X;Y;Z) is mapped onto two camera sensors.

In the left camera at x' and in the right camera at x". The camera sensor centers have a distande
from each other { also called baseline. For objects far away from the camarlens, the parameterf is
equivalent to the focal length.

As depicted in gure[]], a stereo setup consists of two camerasadistanceb. A point
P is then projected onto di erent pixel positions on the imagelane. The di erence of
the relative projections ofP isx" x' known asparallax or disparity d. The disparity is
inversely proportional to the distanceZ of the object (slee equation|1) [45].

X+b0 x b f
— r |: 2 2 —
d=x" x =f Z Z b—Z ()
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The statistical uncertainty can be derived usingsaussian error propagation

ZZ

2= oF

d 2
In equation[Z one can see that the uncertainty Z of the measured depth increases with
the square of the distanc&? [45].

Algorithmically { due to the vast number of methods handling tre stereo problem { we
will only discuss a very basic approach as an example. A welldwmn method consists of
3 computation steps|[83]152]:

1. compute matching costs of intensities, I, at disparity d using for example one of
the following cost functions.Sum of Absolute Di erences(SSD), Sum of Squared
Di erences (SAD), Normalized Cross Correlation(NCC).

X
SAD(x;y;d) = ihey) Ly dj
x3/<2W
SSD(xy;d)=  (h(xy) Li(xy d)? 3)
Xy 2W

wyaw OGY) 1Oy d)
o - p Yy 2W [
NCCOayid) =7 xyzw IEOGY) (0 yow 1206y d))

2. for each disparity assumption, sum matching costs over gugare window.

3. select optimal disparity as the minimal aggregation cogAGC) at each pixel.

dopt(X;y) = argmin AGC(x;y;d) where AGC is SAD;SSD or NCC  (4)

From equation[3, it is quite obvious that to match corresponences, the presence of
texture variance is obligatory. If no high frequency textues are available, other tri-
angulation techniques have been developed which use actiight sources to replace
the missing texture. Those can be implemented as a series wipg patterns matching
the pattern deformation or as a projection of random patters onto the objects, to
give only two examples. Disadvantages of the active methodse that they do not
work under arbitrary lighting conditions or on re ective materials. However, the main
problem of all triangulation based algorithms is the fact tat the underlying principle is a
correspondence search. This means that the same featuresegiions in all corresponding
images need to be found to determine the relative shift betee them. However, the
basic prerequisite for this is, that the appearance or the lav of those regions stays the
same from both viewpoints. This so-calletlambertian assumption, namely that the
observed color of a 3D point is independent of the point of wg is the main problem of
correspondence search because most materials do not beHieethis.
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Another technique to measure the depth of a scene T$me-of-Flight (ToF) imaging.
ToF is an active range estimation method based on measuriniget time a light pulse
requires to travel from the emitter to the object and back to he camera. A quite old
and famous 1D realization is theLIDAR (Light Detection And Ranging) [87], often
used in the eld of self-driving cars.

The important equation for a ToF system is

— 22.
- E! (5)

where is the travel time, z the distance of an object to the camera and the speed of
light. The cameras consist of four main components, an illumation unit, an optic, a
sensor and a complex electronic read out unit. The illuminetn unit often consists of
LEDs or laser diodes emitting in the near infrared spectrumThere are two possible
operation modes. Either the LEDs emit light pulses or a contuous wave modulation.
In the second case, instead of traveling time a phase shiftreasured.

Figure 2: A simpli ed sketch of a Time-of-Flight camera. A signal is emitted by the illumination
unit, re ected by an object and measured on the sensor element able tmeasure time dependent on

the incoming intensities. The signal is then processed by the sl-out unit to estimate the distance
of the re ected signals measured at each pixel.

Time-of-Flight camerascan measure distances between a few centimeter and a few doze
meters. For periodically modulated light sources, there & natural limitation of the
maximum measurable range due to an ambiguity of periodic sigls with a phase shift of

=2k k 2N: (6)
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the maximum range that can be measured then depends on thedquency of the light

source
C

dmax = 2—: (7)

These ranges can be extended i.e. by using combined measwneis of multiple modula-
tion frequencies(Bg. ToF camerasusing pulsed illumination have similar problems. The
depth range limitation is not driven by a non ambiguity of thesignal as in equatiorj 6
but by the integration time necessary to wait for back-projeted light pulses.

The sensors inToF camerasare much more complicated than in a standard digital
camera. Every pixel must be able to measure the light travelmhe separately. Thus
the pixels are huge (around 106h ) compared to the pixels of aCCD sensorwhich are
around 10m . This leads to one of the main disadvantages of this type ofiige camera,
quite poor resolution. Currently they achieve sensor resaions of around 200 200
pixels. Another disadvantage is that the distance measuremteonly works on materials
able to re ect the light frequency of the illumination unit. Also multiple re ections in
the scene as well as mutual interferences between di erefbFs are known problems.
The accuracy of the depth measurement theoretically doestraepend on the distance
of the objects, but in practice it does. Due to the fact that jht intensity | drops o
with 1=22, the signal to noise ratio increases for objects with incrsimg distance to the
sensor, which of course a ects the accuracy.

A third important technique to estimate depth ranges is the @ calledInterferometry.
This is a method based on measuring the interference of a mefece beam and the beam
re ected by an object. The principle is sketched in guré B. Asource emits light which
rst goes through an aperture and a collimator lens to creata planar and coherent
wavefront. A beam splitter separates the wavefront into a nasuring and a reference
beam. The reference beam is re ected by a mirror back to the am splitter where
it is reunited with the measuring beam backscattered by thebgect surface. If both
path lengths from the reference and the measuring beam arestBame, by constructive
interference, the reunited beam causes a maximum intensiygnal in the CCD camera
measuring it. By moving the reference or the object arm, a swaing of the surface
can be achieved. The accuracy of measurement is in the randeh® wavelength used,
which means in the scale on nanometers. A price for this preign is that much e ort is
necessary to stabilize the system. Mechanical and thermaktlurbances are critical. It
is also very hard to apply this technology to measure biggebjects, thus interferometry
is widely used in scienti ¢ and industrial environments to neasure small objects very
precisely, but it is not a very exible range estimation techique.

Aside from the depth imaging techniques discussed up to nolight eld photographyis
developing as a new technology for high quality passive rangstimation. A light eld
is a dense and regular sampling of a scene. This enables a mesment of spatial and
direction dependent intensities instead of only spatiallyneasured intensities. In fact,
this is a quite old idea which goes back to the early 20th cenyy and Gabriel Lippmann
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Figure 3: Sketch of anInterferometer setup. A light source emits light trough a pinhole and a
collimator lens to guarantee planar and coherent wavefronts. The light rgs then are separated by

a beam splitter into a measuring and a reference beam reunited agaimithe beam splitter before
captured by a CCD camera. Same path length of measuring and reference beam causes constructive
interference which can be used to measure the object surface edion.

who rst thought of this idea named it Integral Photography[61]. His method of light
eld capture was more or less ignored for 100 years before tgeirediscovered about
10 years ago. First people researching computer graphicsdiscovered light elds as a
possible solution to skip the 3D geometry modeling stage bysitead using a collection
of images to interpolate intermediate views of a scene retid) in an interactive 3D
experience. In fact, this statement is simpli ed because #re are various techniques
established in Image-based renderin@d, 24, 141, 54, 58, 65, 185, [86, (89 which can be
classi ed as techniques based on rendering without geomgtwith implicit geometry
and with explicit geometry. However, the main goal is usuallhe generation of novel
views from existing images of a scene with or without geomgtpresent. Reviews of this
techniques can be found in Kand [48] and Shuin[88].

In the computer vision communitypeople are more interested in sampling a light eld
of a scene to explicitly reconstruction the geometry. Waysotcapture light elds are
diverse, but the principle is always to achieve a dense sanmgl of the cones of light
rays emitted by each point on the surface of a captured objeciVe will see in this work
that a dense and regular sampling of a scene, what we call ahligeld, allows more
that just a reconstruction of geometry. Due to the mentionedampling constraints, also
material properties of the captured objects are mapped ontbe sensor(s). This becomes
clear when realizing that material properties can be desbed using theBidirectional
Re ectance Distribution Function (BRDF). The BRDF is a function describing the
measured intensity of an opaque surface depending on theandng and outgoing light
rays and the normal vector of the surface. The fundamental ssmption of algorithms
based on triangulation is that the observed scene point beles Lambertian, which is
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equivalent to a constantBRDF. In other words, the color of an observed object point
does not depend on the observation direction. In reality nahany existing materials
ful Il this assumption. A lot of research has been done in tharea of stereo vision to
design algorithms more robust against such glossiness d@scAlthough most objects
in natural scenes can be seen aambertian, the problems increase the higher resolved
or the nearer to the camera objects are. Especially for tasks$ high quality 3D object
reconstruction, playing a role for example in industrial iepection, non-Lambertian
e ects gain in importance and need to be handled. To gain rolstness, stereo setups can
be extended to multiple cameras, providing more views of tleame object point and
thus to more possible correspondence. But due to the fact thall such algorithms still
are based on searching for corresponding features in di atemages, this only comes
with more and more complexity of the algorithms and increasg computation time.
All these methods try to combat a lack of, or an ambiguity, in iformation with ever
improving error handling. If instead a light eld camera sarples a subset of the light
rays emitted by an object, it actually performs a sparse sanipg of the BRDF. This
makes reconstruction of the geometry and also of tiBRDF possible. Methods analyzing
light elds thus inherently should be more robust againsnon-Lambertian e ects, be-
cause information about the material is really measured ambt only causing ambiguities.

The goal of this thesis is an analysis of light elds from theomputer visionpoint of
view. We use a speci ¢ parametrization throughout the ente work, called a 4D light
eld or Lumigraph, which is a well suited representation, for example, givingccess
to e ects caused by theBRDF. The main contributions are methods to analyze 4D
light elds primarily aimed at geometry reconstruction of djects underLambertian and
non-Lambertian assumptions.

The work presented in this thesis was funded birobert Bosch GmbH Stuttgart.
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1.2 Outline

Section 2] We give an overview over light elds in the context of image prcessing. In
contrast to computer graphics, where light elds were deveped to avoid the necessity
of geometry, we are interested in acquiring them to reconsitt geometry as a primary
goal. Due to that, we rst introduce the most general de nition of light elds before
discussing the parametrization and data representation wese in this work. After that,
we recap di erent methods of real world light eld acquisiton as well as simulation
using computer graphics.

Section 8] After an introduction of epipolar plane images and their bents for the
analysis of light elds as well as a discussion of the problenof Focused Plenoptic Cam-
eras, we present an algorithm to compute a real 4D represetiten from Plenoptic 2.0
Camera raw data without a pre-computation of an explicit piel-wise depth estimation.
This section is based on the publication Generating EPI representations of 4D Light
elds with a single lens focused plenoptic caméer§l04].

Section 4] This section discusses the 4D light eld data used in this wkr We
introduce our benchmark data set consisting of simulated dnreal world light eld
data providing ground truth depth at least for the center viev. The corresponding
publication is "Datasets and Benchmarks for Densely Sampled 4D Light Fi€ldd0Y, a
joint work with Bastian Goldcke and Stephan Meister.

Section $] In this section, we discuss geometry reconstruction usinght elds, in par-
ticular epipolar plane images. Compared to methods based oorrespondence search, we
propose an orientation analysis on epipolar plane images ialh can be implemented via
fast and robust Itering approaches. The section splits ird two parts, single orientation
and double orientation estimation. The range estimation uisg single orientation analysis
is based on the Lambertian assumption that the color of a soemoint is independent
of the viewpoint. This part is based on the publications Globally consistent depth
labeling of 4D light elds' [[10(d and "Variational Light Field Analysis for Disparity
Estimation and Super-Resolutioh [[10J. In general the Lambertian assumption is not a
valid description for real world objects. If materials shova shininess or, even worse, act
as a mirror, this has an e ect on the structure of the epipolaplane images. How this
e ect looks and how to analyze these more complex epipolaraples we discuss in the
second part of this section, the double orientation analysi This part is based on the
publication " Reconstructing Re ective and Transparent Surfaces from Epipolar Plane
Images' [[104. Along with the local analysis of the epipolar planes we digss variational
frameworks to improve the results and to guarantee global msistency. The theoreti-
cal part of this optimization techniques as well as fasCUDA [71] implementations of
the developed algorithms, gathered in theocolib [37], are the work of Bastian Goldlscke.

25



Section 6] With the readily available range information light elds are providing,
further scene analysis can be done. We develop two framewsitkased on light eld
processing. First we discuss a super-resolution framewosdilored to light elds. The
corresponding publications are Spatial and angular variational super-resolution of 4D
light elds"” [[10]] and "Variational Light Field Analysis for Disparity Estimation and
Super-Resolutiori [[L0J. A second project is object segmentation in light elds. He,
we will see that light elds are highly suitable for segment#on tasks. Problems of
classi ers acting on single image domains can be overcomelduy labeling rays consistent
over the entire light eld much better results compared to sigle pixel labeling can be
achieved. The publication corresponding to this part isGlobally Consistent Multi-Label
Assignment on the Ray Space of 4D Light Fieltdg10€. The publication is a joint
work with Bastian Goldlscke and Christoph Straehle, wherBy also here the theoretical
background as well as fast implementations on the GPU of thenational methods are
the work of Dr. Goldlscke.

1.3 Contribution

The following is a list of what the author believes to be the n@l contributions of this
thesis:

a novel algorithm to convert raw data ofPlenoptic 2.0 Camerasnto the Lumigraph
representation without pre-computing a pixel-wise distate measure.

a benchmark database consisting of real-world and simulatelD light elds
providing ground truth depth and partly ground truth object labels.

a new approach for range estimation using orientation anais in light elds

an extension of the single orientation analysis to double ientation patterns for
reconstructing re ections and transparencies.

an evaluation of applications of the orientation analysisugh as super-resolution
of light elds and ray-space segmentation.
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2 Light Fields

2.1 The Plenoptic Function

One of the fundamental papers introducing the concept of Iy elds is " The Plenoptic
Function and Elements of Early Visiont from Adelson and Bergen[2]. They ask the
guestion what the actual information about the world is whib is contained in the light
lling the space an observer is looking at. Starting from ths question they develop a
theory of the plenoptic function

Figure 4. A widely spread visualization of the plenoptic function. We cite the original caption of
the gure: " The plenoptic function describes the information available to an okesver at any point
in space and time. Shown here are two schematic eyes-which one shoodohsider to have punctuate
pupils-gathering pencils of light rays. A real observer cannot see thigght rays coming from behind,
but the plenoptic function does include these ray$(Adelson and Bergen [2])

If we capture a gray value image of a scene { using a pinhole cana{ we select a
cone shaped bundle of rays at a speci c position in spatg and accumulate their
intensities on the sensor of our camera. Thus we measure ateirsity distribution
P(; )orP(x;y), depending on the type of coordinate system we use. Takinke lights
wavelength into account we can add another dimensioR (x;y; ). If in a next step we
measure the whole spacé 2 R? instantaneously we gain three dimensions more, and
when also including the timet, we end up with a seven dimensional function describing
the entire information about the light lling the space overtime

POGY: iV Wi Vo t): 8)
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There might be even more dimensions if we consider the polation states of the light
rays, but we neglect this here and concentrate in the follong on the plenoptic function

in equation[8. In general, this function de nition seems a biabstract, but in fact,
every imaging device samples sparse subsets of this funetiadConsidering this, the
concept of aplenoptic function can serve as a general framework to think about possible
imaging modalities. Another example, besides the standardnmole camera which can
be described a® (x;y), this work is about a sampling of theplenoptic function of type
P(x;y; Vx: V) [107].

2.2 The Lumigraph Parametrization

In the previous sectior] 2.1, we discussed thptenoptic function as describing the en-
tire information on the light lling the space around an object. Due to the fact that
all imaging technigues are sparse samples of this generaidtion, in this section we
introduce the sparse sampling or parametrization this workoncentrates on.

If we assume a sampling of thplenoptic functionusing a gray value camera, we can rst
neglect the wavelength dependency in equatiof|8. Furthermore this work is about
static scene reconstruction, so we are not interested in agal ow estimation or any
other time dependent properties of the scene and thus can cahout the dimension
t as well. Another reduction in dimensionality can be achieveiflwe assume that the
intensity of a light ray does not depend on the actual positio on the ray, which is
equivalent to the assumption that we parametrize the light eld on a surface outside
of the convex hull of the scene (compare gure 5 left).

Several ways to represent light elds have been proposed. ldewe adopt the light eld
parametrization from early works in motion analysis from Badés et al. [L€] and the work
about light eld sampling from Gortler et al. [4]]. The idea of a convex hull to reduce
the plenoptic function has also been used by BentoAd(] and similar ideas can be found
in Ashton [5], where the movement of the camera is restricted to a sphealcsurface for
an illumination analysis.

One way to look at a 4D light eld is to consider it as a collecon of pinhole views from
several view points parallel to a common image plane (see m5). The 2D plane
contains the focal points of the views, which we parametrizgy the coordinates §;1),
and the image plane is parametrized by the coordinatesx;y). A 4D light eld or
Lumigraph [41] then is a map

L: I R; (X y;s;t) 78 L(X;y;s;b): 9)

It can be viewed as an assignment of an intensity value to they passing through
(x;y)2 and (s;t)2 .
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(a) Opaque surface only assumption (b) Two plane parametrization

Figure 5: (a) Dimensionality reduction of the plenoptic function through parameterizing the light
eld on a surface by assuming that the intensity of light rays does n ot change in the free space
between object surfaces and the imaging device. In other words, thetensity of the rays from the
object at P which are occluded by the object atP®is not of interest. (b) Each light ray can be
parametrized by the intersection point with two planes. Each cameralocation (s ;t ) in the 2D
plane yields a di erent pinhole view of the scene. Together with t he second intersectionX ;y ) at
the image plane we can parametrize a light eld as a four dimensional subgacelL (x;y;s;t) of the
plenoptic function (see equatiorﬂa).

2.3 Epipolar Plane Images

For the problem of estimating the 3D structure of a sampled soe, we consider the
structure of the light eld, in particular on 2D slices through the eld. We x a horizontal
line of constanty in the image plane and a constant camera coordinate, and restrict
the light eld to an ( x;s)-slice . , respectively to an §;t)-slice . s . The resulting
map is called an epipolar plane image (EPI). This idea goesdiato Bolles et al. [16].

Syt oy IR
(x;8) 7' Sy + (X;8) := L(X;y ;s;t):
Let us consider the geometry of this map (compare gure$ 5 afffj. Apoint P = (X;Y;Z)

within the epipolar plane corresponding to the slice projés to a point in  depending
on the chosen camera center in . If we varys, the coordinatex changes according to

(10)

f
X= = S; 11
> (11)
wheref is the distance between the parallel planes. Note that to ohitathis formula x
has to be corrected by the translation s to account for the di erent local coordinate
systems of the views. Interestingly, a point in 3D space istbk projected onto a line
in y .t , where the slope of the line is related to its depth. This mearthat the intensity
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Figure 6: The left side depicts a collection of images sampling a 3D scene. Themages are cap-
tured on planar 2D grid with constant baselines. This is what is called the Lumigraph parametriza-
tion (section 2.2). By xing an angular dimension (visualized via a red box) we extract a 3D sub-
space of theLumigraph. If we imagine this image sequence as a volume (x,y,s) and cut out a séic
along the s-axis, which is equivalent to xing another spatial dimenson (visualized via a green line),
the result is an epipolar plane image. In this subspace a point in the wdd is mapped onto a line
whose slope corresponds to the distance of the point to the camera.

of the light eld should not change along such a line, providethat the objects in the

scene ard.ambertian. Thus, computing depth is essentially equivalent to compirig

the slope of level lines in the epipolar plane images. Of caar this is a well-known
fact, which has already been used for depth reconstruction previous works 16, 27).
In sections 5.1 and 5.2, we describe and evaluate novel arioes on how to obtain
slope estimates fot.ambertian and for non Lambertian assumptions.

Figure 7: Sketch of a linear camera array. Cameras are lined up with constant baselesb. This
leads to a linear mapping of a 3D point onto the sensors. The slope of thedmes depends on the
distance Z of P to the image plane.
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2.4 Acquisition Of Light Fields
2.4.1 The Plenoptic Camera (1.0)

The early beginnings of light eld imaging orPlenoptic Camerasare strongly connected
to Ives (1903) #4] and Lippmann (1908) f1]. Lippmann realized that classical pho-
tography, like drawings, only shows one part of the whole armtreamed of an imaging
device able to render { the full variety o ered by the direct observation of objects

One of his drawings from 1908, depicted in gure 8, already\gs some insight in todays
realization of Plenoptic Cameras

Figure 8: Early drawing of Lippmans so-called integral camera (1908) [61]

The modern approaches of building?lenoptic Camerasare mainly in uenced by the
works of Adelson et al. 3] and Ng et al. [7(]. Due to the fact that the principles in
detail are well described in those publications and that tlsiwork does not deal with
data of early versions oPlenoptic Cameras we will here only give a short overview of
the basic concepts of the realization and the algorithmic @éndering images from the
sensor raw data following Ng et al. [70].

2.4.1.1 Optical Design.  The Plenoptic Camera 1.0is based on a usual camera
with a digital sensor, a main optics and an aperture. The di eence from a normal
camera is a micro-lens array placed on the focal plane of theaim lens exactly at a
distancefy a from the sensor. (see gure 9). This means the micro-lensdgetnselves
are focused at in nity. In contrast with a usual camera whichintegrates the focused
light of the main lens on a single sensor element { the micrerses split the incoming
light cone by the direction of the rays mapping them onto theensor area below the
corresponding micro-lens.

This means that one has direct access to the intensity of aligray L(x ;y ;s ;t ) of
the light eld by choosing the micro-image of the micro-lenst (x ;y ) { encoding the
spatial position{ and a pixel of the corresponding micro-imge 6 ;t ) { encoding the
direction. It should be noted that the size of each micro-lenis coupled to theaperture
or f-number of the main optics. If the micro-lenses are too small compatréo the main
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Figure 9: Left: One dimensional sketch of a Plenoptic Camera 1.0 setup. Light rays erted by

the object are focused by the main lens (ML). The microlens array (MLA) is placed at the image
plane (IP) of the main lens and thus separates the rays by their direion, mapping them onto the
sensor.Right: lllustrates the rendering of a single view point, here the centewiew, by collecting
the center pixels of each micro imagen; .

aperture the micro-images overlap each other or { the otheray around { it is a waste
of sensor area if the micro-lenses are too big. Due to the fdabat light passing the
main aperture also has to pass a micro-lens before gettingeigrated on a squared pixel,
what actually happens is that the camera measures small 4Dx&s of the light eld
entering the camera instead of single rays.

2.4.1.2 Rendering Views From Raw Data. Rendering a projective view from
sensor raw data is quite simple as depicted in gure 9.

1. Determining a speci c projective view means determining aetative position ps -
within the micro-images, for example the center positiopcenter -

2. De ne an output imagels 1+ asM N matrix where M;N 2 N are the number
of micro-lenses in vertical and horizontal directions.

3. Assigning the pixel &;y) in 15 1 the intensity of the pixel ps .; in the micro-image
corresponding to the micro-lensy., .

Changing the relative positionps 1 for rendering means changing the virtual aperture
which results in an projective view from a slightly di erentviewpoint. An integration

of images from neighboring viewpoints is used to create a diepf eld and enables
computationally refocusing by varying the relative positbns of these neighbored images.
"In quantized form, this corresponds to shifting and adding the sub-aperture images ...
Ng et. al [70].

In fact the description above neglects a very important cdiration step necessary

beforehand. Rendering views from the camera raw data is orilyat easy if the data are
recti ed and distorted to satisfy the conditions necessaryor a successful rendering. A
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detailed description of a possible calibration process isitoof the scope of this work but
can be found in Dansereau et al. [28].

2.4.2 The Focused Plenoptic Camera (2.0)

Besides thePlenoptic Camera(see section 2.4.1), another optical setup for a compact
light eld camera has recently been developed, theocused Plenoptic Cameraoften also
called the Plenoptic Camera 2.0[62, 64, 73. The main disadvantage of thePlenoptic
Camera 1.0is the poor spatial resolution of the rendered views, whicks iqual to the
number of micro-lenses. By changing the optical setup a li& bit one can increase the
spatial resolution dramatically.

2.4.2.1 Optical Design.  The main di erence in the optical setup between the
Plenoptic Camera 1.0and 2.0 is the relative position of the micro-lens array. The
micro-lenses are no longer placed at the principal plane dfe main lens and focused
to in nity, but are now focused onto the image plane of the mai lens. The result is
that each micro-lens then acts as a single pinhole camerapdking” at a small part
of the virtual image inside the camera. This small part is the imaged with a high
spatial resolution onto the sensor as long as the imaged segoint is in the valid region
between the principal plane of the main lens and the image sam. Scene features
behind the principal plane cannot be resolved. The e ect ishiat scene points { that
are not in focus of the main lens but within this valid region {are imaged multiple
times over several neighboring micro-lenses, thus encaglithe angular information over
several micro-images(see also gure 11 and Lumsdaine et[8] or Perwass 73]). This
makes it possible to encode angular information and presertigh resolution at the
same time. But this comes with a price. First, light eld encothg is complicated and,
second, due to the multiple imaging of scene features, renelé images from this camera
have also a much lower resolution than the inherent sensorsgdution promises.

2.4.2.2 Rendering Views From Raw Data. The rendering process requires a
one time scene independent calibration, which extracts fail micro-lens images (micro-
images) the position as well as their diametedy,_ . In this work, we use a commercially
available camera72], which has a micro-lens array where the lenses are arranged
hexagonal pattern.

Due to this lens layout, we also use a hexagonal shape for th&er-images and address
them with coordinates (;j ) on the sensor plane. We de ne an image patch; as a
micro-image or a subset of it. Projective views are renderday tiling these patches
together [33, 63].

The center of a micro-imagei(j ), determined in the coordinate system given by the
initial camera calibration process, is denoted by; . The corresponding patch images
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Figure 10: Left: One-dimensional sketch of aPlenoptic Camera 2.0setup. Light rays emitted

by the object are focused by the main lens (ML) onto the image plane (IP) The micro-lens array
(MLA) is placed so that the micro-lenses are focused onto the image planef the main lens, mapping
fractions of the virtual image onto the sensor. Green rays are coming fronan object in focus of the
main lens (FP), blue rays of an object away from the principal plane of he main lens.

Right: Illustrates the resulting micro-images of an object in and out of focus.

are de ned as! j (;®), where denotes the size of the micro-image patdh; ( ;®) in
pixels andeis the o set on the sensor plane of the micro-image patch cemtfrom €; .
We dene ! (;®) as anm n matrix, which is zero except for the positions of the

pixels of the corresponding micro-image patch ( ;®):

O0 T O1

Ly (;8)= B b ;0 5 (12)

m n is the rendered image resolution and;( ) is the index of a speci ¢c image patch,
imaged from microlensi(j ) (see gure 11). A projective view (;®) of a scene is then
rendered as:
Xy X
(0= i (5®)
i=1 j=1 13
2Nj1< duL (13)

. dML
82 N?j0 k ok —— =
: 2 2
where (Ny; Ny) is the number of micro-lenses on the sensor ¥ and y-directions. The
choice of the parameters and o directly controls the image plane and point of view of

the rendered view.
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(a) Micro images (b) Plenoptic 2.0 Camera raw data example

Figure 11: (a) Micro-images and their centersg; are indicated as well as the resulting image
patchesfy and their border pixels b(p; ). (b) Raw data from a Plenoptic Camera 2.0[73]. All possi-
ble optical e ects are visible here. The green box in the upper lé¢fcorner shows the transition from
a region in the scene behind the principal plane of the camera main lento a region exactly on the
focal plane so that the imaged fragments perfectly t together. The redboxes show magni ed re-
gions of the scene between the principal plane of the main lens and thessor so that scene features
are imaged multiple times over several neighbored micro images. The asant of multiple feature
occurrence depends on the distance to the image plane.

2.4.2.3 Refocusing. Itis obvious that rendering a projective view here is a bit me
complex than it is for the Plenoptic Camera 1.0 where one can simply extract single
pixels from the raw data (see section 2.4.1). The reason isetlli erent sampling of the
light eld in the devices. While a micro-lens in aPlenoptic Camera 1.0is focused at
in nity and thus decomposes the light rays emitted by a 3D pait into their directions,
a micro-lens of aFocused Plenoptic Cameracts as a single pinhole camera looking at a
small subset of the virtual image of the scene. This leads tauch higher resolution but
spreads the directional information over multiple microfnages. This causes so-called
plenoptic artifacts during rendering. The choice of the patch size de nes a specic
image or virtual depth plane in the 3D scene. Neighbored patehp; with a size delta
t perfectly together for all imaged scene features from theorresponding virtual depth
plane. Patches whose content is a imaged region not lying dmg virtual depth plane,
either lack information or the multiple occurrence of sceneatures is still present. These
are the mentionedplenoptic artifacts which occur for a xed patch size all over the
rendered image, except for the speci c virtual depth planecObmpare gure 12, or as
another example, Lumsdaine et al.64] Fig. 11). Due to the fact that the multiple
occurrence of image features over the micro-images dependstlte distance to the
camera, image planes nearer to the camera need to be rendesgith smaller patch sizes
and thus show a loss in resolution. Full resolution is only psent at the image plane
of maximum , which is the principal plane of the main lens. A possibilitto handle
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Figure 12: Top: Rendering di erent image planes and views illustrated on the basis othe 1D
sketch depicted in gure 10. On the left side the e ect of di erent patch sizes is depicted, on the
right the e ect of changing the o set & Bottom: lllustrates on the left a micro-image patch as well
as the e ect of di erent values of and o sets & On the right the reason for plenoptic artifacts is
visualized.

the plenoptic artifacts is described in Lumsdaine et al2p]. They call it blending and
achieve with this technique much more realistic looking re€using results. Another
approach can be found in Georgiev et al3f]. We will propose our approach in this
work in section 3.

2.4.2.4 Generating All-In-Focus Views An important aspect of the Focused
Plenoptic Camerasis that beside the opportunity of computationally refocusig, one
could also be interested in rendering images with the larggsossible depth of eld. This
means removing theplenoptic artifacts or in other words, eliminating all duplicated
scene features captured by the individual micro-lenses.

The common thread of this work is an analysis of light elds bsed on the analysis of
epipolar plane images (see section 2.3). We will see in thédaing sections how to
create and analyze them in detail. In this context it is onlymportant to know that
from a Focused Plenoptic Camerawe need to render all possible All-In-Focus Views to
get access to them. Therefore we will recap in this sectionnse related work to render
those full depth of eld views and will discuss a new approadn section 3.

We will now quickly discuss two approaches treating this isg. The rstis from Perwass
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et al. [73. It is mainly based on triangulation to obtain a pixel-wisedepth map over

the micro-images (an overview of existing triangulation gbrithms can be found in
Scharstein and Szeliskig3]). For this, the correlation or sum-of-absolute di erence

(SAD) is computed over micro-image pairs. This of course walonly where a local
contrast is present. The computed virtual depth per pixel ae gives a hypothesis
for a projection cone de ning the occurrence of the same imadeature in neighboring
micro-images. By integrating all connected pixels over tlse cones, a nal image without
multiple occurrence of scene features can be rendered. Atgusimilar approach using
multi-view stereois described in Bishop et al. [15].

Another approach is from Georgiev et al.33]. They de ne a sub window patch of a
micro-image { similar to those depicted in gure 11 { and compte the cross correlation
of this patch along the x-axis of the left and right neighbor@ micro-images as well as
along the y-axis of the top and bottom neighbored micro-imag. This results in a shift
from one micro-image to the other. Knowing this shift and theehosen window size of
the initial patch used for searching, an optimal patch sizeof this micro-image can be
computed. By tiling all patches with optimal patch size togther, a full depth-of- eld
view can be rendered.

2.43 Gantry

One of the most simple and inexpensive opportunities to samepa light eld is a gantry
(see gure 13 left). This is a precise xy-axis stepper motorrigdging a normal camera
along a regular 2D grid. The bene ts besides the simplicityra that baselines down to
a millimeter are realizable and no color or optics correctioover several cameras are
necessary. A disadvantage is that only static scenes undéatg lighting conditions can
be captured, and the mobility is restricted.

2.4.4 Camera Arrays

Due to the fact that the analysis in this work deals with epiptar plane images, the
output of camera arrays is the most convenient data structe: They o er a fast and
direct access to the 4DLumigraph (compare section 2.2) and the EPIs (section 2.3).
Additionally camera arrays are also suitable for capturing yhamic scenes. Another
bene t is that a camera array not necessarily limits the spaal resolution asPlenoptic
Cameras(sections 2.4.1 and 2.4.2) do. The main disadvantages aratltihey are costly
due to the amount of cameras but also due to the hardware nesasy for synchronization
and data access. Additionally they also need a more compliedt calibration process.
Besides the external and internal calibration it is also imgrtant to apply a color and
noise calibration due to the di erent sensor behavior of ingidual cameras.
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Figure 13: (a) Depicts our precisegantry xy-axis stepper motor. Indicated are the x and y axis
through the red arrows as well as the camera platform. Many thanks to theRobert Bosch GmbH
for loaning this device. (b) Depicts on the left a prototype of a 6 6 array camera. Many thanks to
Harlyn Baker for providing this image. Right side shows a camera array fom Stanford [97].

2.4.5 Simulation

In this work, we often make use of simulated light elds. Theyo er, besides an in-
expensive data generation, an easy access to interestinggerties like ground truth
for the geometry or the objects themselves, the material pperties, as well as the
opportunity to simulate the sensor's noise behavior. This akes simulation a great
tool for algorithm development and for evaluation. We use # open source software
Blender [77]. Blender o ers an API accessible viaPython [98]. This allows a scripting
of all objects in the 3D environment. We simulate the light dds by scripting the
blender camera to sample the 3D scene on a regular 2D grid. $hs exactly the
data format of a gantry (section 2.4.3) or a camera array (section 2.4.4) device. It
should be noted her that with the rendered_umigraph (compare section 2.2) and the
ground truth depth provided through Blender, a simulation of Plenoptic Camera 1.0
(section 2.4.1) data is also quite easy to achieve. Simulati of a Focused Plenoptic
Camera(section 2.4.2) is not so trivial, and needs a more complexsilation of the optics.

Together with light elds captured using agantry mentioned in section 2.4.3 we o er a

benchmark database for light eld analysis consisting of & world and simulated 4D
light elds (see section 4 and gures 18 and 19).
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3 Lumigraph Representation from Plenoptic Cam-
era Images

In the following sections of this work, we will see that havigp access to the epipolar
plane images (see section 2.3) of a light eld can be very vahie for the analysis of
a captured scene. But, if our light eld is sampled with aPlenoptic Camera 2.0(see

section 2.4.2), this access is not trivial.

Basically, the generation of d.umigraph representation from a sampled 4D Light Field is
simple { at least using camera arrayslj0§ (see also sections 2.3, 2.4.3 and 2.4.4) { where
the projective transformations of the views of the individal cameras only have to be
recti ed and uni ed into one epipolar coordinate system reqiring a precise calibration
of all cameras.

Due to the optical properties of the micro-lenses { with themage plane of the main lens
de ning the epipolar coordinate system { these projectiveransformations are, in the
case offocused Plenoptic Cameraseduced to simple translations§3] of the patches
b; within each micro-image, given by an o sete (see section 2.4.2). Hence, one simply
has to rearrange the viewpoint-dependent rendered view®ifn plenoptic raw data into
the 4D EPI representation (see equation 9).

However, the necessarily small depth of eld of the micro-lses causes other problems.
For most algorithms, the EPI structure can only be e ectivey evaluated in areas with
high-frequency textures - which of course is only possiblerfparts of a scene which are
in focus.

Another problem are di erent focal lengths of the micro-lenss the camera vendor uses
to increase the depth of eld 3. One last, but also most important problem is, that
Focused Plenoptic Camerasu er from imaging artifacts in out-of-focus areas. Hence,
in order to generate EPIs which can be used to analyze the amstiscene at once, we
have to generate the EPIs from all-in-focus (i.e. full deptiof- eld) views for each focal
length separately.

3.1 Rendering All In Focus Views Without Pixel-wise Depth

We already discussed some existing methods addressing theit of rendering all-in-focus
views in section 2.4.2. Now we discuss our contribution based the publication [104].

To generateplenoptic artifact free Lumigraph (section 2.2, equation 9) from raw data of a

Focused Plenoptic Camerawe need images of all available viewpoints withoyilenoptic
artifacts and thus we need to render all full depth-of- eld images fronthe raw data.
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The primary objective in analyzing light elds is to reconstuct the inherently available
depth information since further computations can bene t fom available range data.
Here we want to make use of the epipolar plane images (sectia)20 reconstruct
the scene geometry (section 5.1). Thus the generation oL.amigraph from plenoptic
raw data is achicken-and-egg-problerhecause we already need the depth to render the
all-in-focus views (section 2.4.2) and generate artifaatele epipolar plane images.

The computation of full depth-of- eld images from a seriesfoviews with di erent image
planes usually requires depth information of the given scen[l5], [73] and [13] applied
a depth estimation based on cross-correlation. The main dbaantage of this approach
is that one would have to solve a major problem, namely the d#pestimation for
non-Lambertian scenes, in order to generate the EPI representation, which intended
to be used to solve the problem in the rst place - as already maoned a classical
chicken-and-egg-problemrlo overcome this dilemma, we propose an alternative apprda
We actually do not need to determine the depths explicitly - lawe need are the correct
patch sizes ,, to ensure a continuous view texturing withoutplenoptic artifacts

We propose to nd the best ., via a local minimization of the gradient magnitude
at the patch bordersh(p; ) (see gure 11, section 2.4.2) over all possible focal image
m- Since the e ective patch resolution changes with,,,, we have to apply a low-pass
Itering to ensure a fair comparison. In practice, this is alsieved by downscaling each
patch to the smallest size i, , using bilinear interpolation. We denote the band-pass

Itered focal images by . Assuming a set of patch sizeS= [ o;:::; m;:::; m], we
render a set of border images using &aplacian lter (see gure 14):
~ 2 e 2 ... 2 2 @ + @ . (14)

= rcogninrt oinrtmoor “aex’ @y

From , we determine the gradients for each hexagon patch byniegrating along its
bordersh(p; ), considering only gradient directions orthogonal to thedges of the patch
(see gure 14). The norm of the gradients orthogonal to the lyder of each micro-image
patch pp; and each image planén is computed as
I
(m;ij)= Ay I mds: (15)
b(pjj )

Here, 1, denotes the normal vector of each hexagon border(compare gure 11).
Furthermore, we de ne the lens speci c image plane mapli;j ] as a minimum of |,
for each micro-lens imageiy )

z(i;j) = argmin [ m;i;j]: (16)
m
The image plane maz (i;j ) has a resolution of Ny; Ny) (number of micro-lenses) and

encodes the patch size valug; for each microimagei(j ). Using z(i;j ), we render
full depth of eld views (z). This approach works nicely for all textured regions of
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a scene. Evaluating the standard deviation of for eachi(j) can serve to further
improve z (i;] ): micro-images without (or with very little) texture are characterized by
a small standard deviation in . We use a threshold to replacehe a ected z (i;j ) with
the maximum patch size nax. This is a valid approach, since the patch size (i.e. the
focal length) does not matter for untextured regions. Additnally, we apply a gentle
median Iter to remove outliers fromz(i;j ).

Figure 14: Left: Part of a raw data image from a Focused Plenoptic Cameraand a zoomed part

of it. Right: Three examples of the border image set (see eq. 14) and the gradient magnitel set
(equation. 15) with di erent patch sizes are depicted. The example in the center shows the correct
focal length.

3.2 Merging Views from Di erent Lens Types

The full depth-of- eld views for each lens type have the samengular distribution (if the
same o setsg, have been used), but are translated relative to each other. &\heglect
that these translations are not completely independent ohe depth of the scene. Due
to the very small o set (baseline), theses e ects are in therder of sub-pixel fractions.
The results shown in gures 6, 7 and 8 are merged by determimgjrthe relative shifts T,
via normalized cross-correlation and averaging over theewis with the same o set.

1%
merged (Z; &) = 3 Th n(z;e) Ta2N N (17)
n=1

Due to the fact that each lens type has an individual focal lagth, the sharpness of the
results can be improved by a weighted averaging depending the optimal focal range
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of each lens type and the information from the focal mapdi; | |

x3 x3
merged (Z;8) = n(2)Th n(z;9), n 2 R and n=1: (18)

n=1 n=1

3.3 The EPI Generation Pipeline

1. View rendering: Rendering of all possible full depth-of- eld images ;9 for
di erent view points of the scene using the focal plane map(i;j ) of optimal
patch sizes and the patch o set vectore

2. View merging: Merging of the corresponding views of di erent lens types. fiis
step is only necessary for cameras with several micro-legpés, such as the camera
used in our experiments [72].

3. View stacking: After the merging process, a single set of rendered views rensa
These have to be arranged in a 4D volume according to their weangles resulting
in the EPI structure L(X;y;s;t) (section 2.2, equation 9).

3.4 Results

For the experimental evaluation, we use a commercially alable Focused Plenoptic
Camera(the R11 by the camera manufactureRaytrix GmbH [72]). The camera captures
raw images with a resolution of 10 Mega-pixels and is equigpwith an array of roughly
11000 micro-lenses. The e ective micro-image diameter i8 pixels. The array holds
three types of lenses with di erent focal lengths, nested ia 3 65 57 hexagon layout,
which leads to an e ective maximum resolution of 1495 1311 pixels for rendered
projective views at the focal length of the main lens. Due tdhis setup with di erent
micro-lens types, we compute the full depth of eld view forach lens type independently
and then apply a merging algorithm.

A qualitative evaluation is shown in gure 15. We compare theesults of our proposed
algorithm with the output of commercial software from the canera vendor, which
computes the full depth of eld projective views via an exptit depth estimation based
on stereo matching on the camera raw dat&?]. We present the raw output of both
methods. It should be noted, that the results of the depth eshates are not directly
comparable - the emphasis of our qualitative evaluation bein the full depth of scene
reconstruction.
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focal plane estimation reconstructed Lumigraph

Figure 15: Estimation of the focal length. The left side shows a typically deng image plane map
z[i;j ] (see equation 16), computed with our algorithm. On the right, the centerviews of the recon-
structed all-in-focus Lumigraph as well as exemplary extracted epipolar plane images are depicted.
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our approach camera vendor

range estimation

rendered all-in-focus view

Figure 16: Top row: Focal plane reconstruction vs. thestereo-baseddepth reconstruction of the
camera vendor [2]. Bottom row: the all-in-focus rendering of: (left) The proposed method and
(right) the stereo-based method of the camera vendor.
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4 Data Sets - The 4D Light Field Archive

The driving force for successful algorithm development ihé¢ availability of suitable
benchmark datasets with ground truth data in order to compag results and initiate
competition. Light eld datasets and, in particular, the type of light elds used in this
work { namely dense sampled 4umigraphs (see section 2.2) { are not yet widely
deployed. There are a few but none of the existing ful Il all bour needs and thus we
decided to establish a new benchmark database.

The current public light eld databases we are aware of are thfollowing.

Stanford Light Field Archive

http://lightfield.stanford.edu/Ifs.html

The Stanford Archives provide more than 20 light elds sampl® using a camera
array [109, a gantry and a light eld microscope 60], but none of the datasets
includes ground truth disparities.

UCSD/MERL Light Field Repository
http://vision.ucsd.edu/datasets/Ifarchive/lfs.shtml

This light eld repository [47] o ers video as well as static light elds, but there
is also no ground truth depth available, and the light elds a sampled in a
one-dimensional domain of view points only.

Synthetic Light Field Archive

http://web.media.mit.edu/ ~gordonw/SyntheticLightFields/index.php

The synthetic light eld archive [66] provides many interesting arti cial light
elds including some nice challenges like transparencias;clusions and re ections.
Unfortunately, there is also no ground truth depth data ava#ble for benchmarking.

Middlebury Stereo Datasets

http://vision.middlebury.edu/stereo/data/

The Middlebury Stereo Dataset 43, 82, 83, 84] includes a single 4D light eld
which provides ground truth data for the center view, as welis some additional 3D
light elds including depth information for two out of sevenviews. The main issue
with the Middlebury light elds are that they are designed wih stereo matching
in mind, thus the baselines are quite large and not represetitve for compact light
eld cameras and unsuitable for direct epipolar plane imaganalysis.

While there is a lot of variety and the data is of high quality, ve observe that all of the
available light eld databases either lack ground truth diparity information or exhibit
large camera baselines and disparities, which is not repeesative for compact light
eld cameras like i.e. Plenoptic Cameras Furthermore, we believe that a large part of
what distinguishes light elds from standard multi-view images is the ability to treat
the view point space as a continuous domain. There is also agiag interest in light
eld segmentation [31, 50, 92, 104, so it would be highly useful to have ground truth
segmentation data available to compare light eld labelingsgchemes. The above data
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sets lack this information as well.

To alleviate the above shortcomings, we present a new bendark database which
consists at the moment of 13 high quality densely sampled tig elds. The database
0 ers seven computer graphics generated data sets providimomplete ground truth
disparity for all views. Four of these data sets also come \Wwigground truth segmentation
information and pre-computed local labeling cost functiamto compare global light eld
labeling schemes. Furthermore, there are six real world @dasets captured using a single
Nikon D800 camera mounted on gantry. Using this device, we sampled objects which
were pre-scanned with a structured light scanner to providground truth ranges for the
center view. An interesting special data set contains a traparent surface with ground
truth disparity for both the surface as well as the object behd it - we believe it is the
rst real-world data set of this kind with ground truth depth available.

4.1 The Light Field Archive

Our light eld archive ( www.lightfield-analysis.net ) is split into two main cate-
gories,Blender and Gantry. The Blender category consists of seven scenes rendered
using the open source softwarBlender [77] and our own light eld plug-in, see gure 18
for an overview of the data sets. Th&antry category provides six real-world light elds
captured with a commercially available standard camera maoted on agantry device,
see gure 19. More information about all the data sets can betind in the overview in
gure 17.

Each data set is split into di erent les in the HDF5-format [95], exactly which of these
are present depends on the available information. Common &bl data sets is a main le
called If.h5 , which contains the light eld itself and the range data. In te following,
we will explain its content as well as that of the di erent addtional les, which can be
speci c to the category.

4.1.1 The Main File

The main le If.h5 for each scene consists of the actual light eld image data agll as
the ground truth depth, see gure 17. Each light eld is 4D, anl sampled on a regular
grid. All images have the same size, and views are spaced egizohtly in horizontal
and vertical directions, respectively. The general propees of the light eld can be
accessed in the following attributes:
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dataset name | category resolution GTD GTL
buddha Blender 768x768x3 full yes
horses Blender 576x1024x3  full yes
papillon Blender 768x768x3 full yes
stillLife Blender 768x768x3 full yes
buddha2 Blender  768x768x3 full no
medieval Blender  720x1024x3  full no
monasRoom Blender 768x768x3 full no
couple Gantry 898x898x3 cv no
cube Gantry 898x898x3 cv no
maria Gantry 926x926x3 cv no
pyramide Gantry 898x898x3 cv no
statue Gantry 898x898x3 cv no
transparency Gantry 926x926x3  2xcv no

Figure 17: Overview of the datasets in the benchmarkdataset name : The name of the dataset.
category : Blender (rendered synthetic dataset) or Gantry (real-world dataset sampled using a
single moving camera).resolution : spatial resolution of the views, all light elds consist of 9x9
views. GTD : indicates completeness of ground truth depth data, either cv (only enter view) or full
(all views). A special case is the transparency dataset, which contamground truth depth for both
background and transparent surface.GTL : indicates if object segmentation data is available.

HDF5 attribute description

yRes height of the images in pixel

XRes width of the images in pixel

VRes # of images in vertical direction
hRes # of images horizontal direction
channels light eld is rgb (3) or grayscale (1)
vSampling rel. camera position grid vertical
hSampling rel. camera position grid horizontal

The actual data is contained in two HDF5 data sets:

HDF5 dataset | size
LF VResx hResx xResx yResx channels
GT_DEPTH VResx hResx xResx yRes

These store the separate images in RGB or gray-scale (rang@35), as well as the
associated depth maps, respectively.
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Conversion between depth and disparity. To compare disparity results to the
ground truth depth, the latter has to rst be converted to digparity. Given a depth Z,
the disparity or slope of the epipolar linesl in pixels per grid unit is

d= — X; (29)

whereB is the baseline or distance between two camerdsthe focal length in pixel and

x the shift between two neighboring images relative to an aripary recti cation plane
(in case of light elds generated with Blender, this is the sne origin). The parameters
in equation 19 are given by the following attributes in the mia HDF le:

attribute description
B | dH distance between to cameras
f focalLength| focal length
X | shift shift between neighboring images

The following sections describe di erences and convent®m@bout the depth scale for
the two current categories.

4.1.2 Blender Category

The computer graphics generated scenes consist without egtion of ground truth
depth over the entire light eld. This information is given as orthogonal distance of
the 3D point to the image plane of the camera, measured Blender units [BE]. The
Blender main les have an additional attribute camDistancewhich is the base distance
of the camera to the origin of the 3D scene, and used for the eension to disparity values.

Conversion between Blender depth units and disparity. The above HDF5
camera attributes in the main le for conversion fromBlender depth units to disparity
are calculated fromBlender parameters via

dH = b xRes;
f
focalLength = 1= 2 tan % ;

shift = L :
2 Zo tan - b

(20)

where Z, is the distance between theéBlender camera and the scene origin inBE],
fov is the eld of view in units radian and b the distance between two cameras iBE ].
Since all light elds are rendered or captured on a regular eglistant grid, it is su cient
to use only the horizontal distance between two cameras to de the baseline.
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4.1.3 Segmentation Ground Truth

Some light elds have segmentation ground truth data availale, see gure 17, and o er
ve additional HDF5 les:

labels.h5 :

This le contains the HDF5 dataset GT _LABELS which is the segmentation
ground truth for all views of the light eld and the HDF5 dataset SCRIBBLES
which are user scribbles on a single view.

edge_weights.h5 :

Contains anHDF5 data set calledEDGE_WEIGHTS which are probabilities for
edges 1049 for all views. These are not only useful for segmentationubany
algorithm which might require edge information, and can hplwith comparability
since all of these can use the same reference edge weights.

feature _single _view _probabilities.h5

The HDF5 data setProbabilities contains the prediction of a random forest classi er
trained on a single view of the light eld without using any fature requiring light
eld information [106].

feature _depth _probabilities.h5

The HDF5 data setProbabilities contains the prediction of a random forest classi er
trained on a single view of the light eld using estimated disarity [100 as an
additional feature [106].

feature _gt _depth _probabilities.h5

The HDF5 data set Probabilities contains the prediction of a random forest
classi er trained on a single view of the light eld using grand truth disparity as
an additional feature [106].

4.1.4 Gantry category

In the Gantry category, each scene always provides a single méih5 le, which
contains an additionalHDF5 data set GT _DEPTH MASK. This is a binary mask in-
dicating valid regions in the ground truthGT _DEPTH. Invalid regions in the ground
truth disparity have mainly two causes. First, there might beobjects in the scene for
which no 3D data is available, and second, there are parts dfe mesh not covered by
the structured light scan and thus having unknown geometrySee section 4.2.2 for details.

A special case is the light eldtransparency which has two depth channels for a trans-
parent surface and an object behind it, respectively. Theiare, there also exist two
mask HDF5 data sets, see gure 20. We believe this is the rst benchmaright eld
for multi-channel disparity estimation.
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Here, theHDF5 data sets are named:

GT_DEPTH_FOREGROUND,
GT_DEPTH_BACKGROUND,
GT_DEPTH_FOREGROUND_MASK,
GT_DEPTH_BACKGROUND -MASK.

4.2 Generation of the light elds

The process of light eld sampling is very similar for both sgthetic as well as real world
scenes. The camera is moved on an equidistant grid parallelits own sensor plane and
an image is taken at each grid position. Although not strictlynecessary, an odd number
of grid positions is used for each movement direction as tleethen exists a well-de ned
center view which makes the processing simpler. An epipolacti cation on all images
is performed to align individual views to the center one. Theource for the internal and
external camera matrices needed for this recti cation demels on the capturing system
used.

4.2.1 Blender category

For the synthetic scenes, the camera can be moved using ascfor the Blender engine.
As camera parameters can be set arbitrarily and the sensor antbvement plane coincide
perfectly, no explicit camera calibration is necessary. $tead, the values required for
recti cation can be derived directly from the internal Blender settings.

4.2.2 Gantry category

For real-world light elds, a Nikon D800 digital camera is mounted on a stepper-motor
driven gantry manufactured byPhysical Instruments A picture of the setup can be seen
in gure 13. Accuracy and repositioning error of thegantry is well in the micrometer
range. The capturing time for a complete light eld dependsmthe number of images,
about 15 seconds are required per image. As a consequencs, dlesquisition method is
limited to static scenes. The internal camera matrix must bestimated beforehand by
capturing images of a calibration pattern and invoking the @mera calibration algorithms
of the OpenCV library [17], (see next section for details). Experiments have shownah
the positioning accuracy of thegantry actually surpasses the pattern based external
calibration as long as the di erences between the sensor antbvement planes are kept
minimal.

Ground Truth for the Gantry Light Fields. This section is the work of Stephan
Meister [68. Ground truth for the real world scenes was generated usirggandard
pose estimation techniques. First, we acquired 3D polygon siees for an object in
the scene using @reuckmann SmartscanHE structured light scannerThe meshes
contain between 2.5 and 8 Million faces with a stated accunaof down to 50 micron.
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The object-to-camera pose was estimated by hand-picking 2D-3D feature points
from the light eld center view and the 3D mesh, and then caldating the external
camera matrix using an iterative Levenberg-Marquardtapproach from the OpenCV
library [17]. This method is used for both the internal and external cdbration. An
example set of correspondence points for the scgn@amidecan be observed in gure 21.

The re-projection error for all scenes was typically:d 0:1 pixels. The depth is then
de ned as the distance between the sensor plane and the mesinface visible in each
pixel. The depth projections are computed by importing the msh and measured camera
parameters into Blender and performing a depth rendering psisAt depth discontinu-
ities (edges) or due to the fact that the meshes' point dengitis higher than the lateral
resolution of the camera, one pixel can contain multiple dépcues. In the former case,
the pixel was masked out as an invalid edge pixel and, in thetar case, the depth of
the polygon with the biggest area inside the pixel was select. The error is generally
negligible as the geometry of the objects is su ciently smab at these scales. Smaller
regions where the mesh contained holes were also masked out aot considered for
the nal evaluations.

For an accuracy estimation of the acquired ground truth, we grform a simple error
propagation on the projected point coordinates. Given an iarnal camera matrix C
and an external matrix R, a 3D point P = (X;Y;Z; 1) is projected onto the sensor pixel

(u v) according to
01 Oxl
v Y
@A = CR % §:
1 Z
1

For simplicity, we assume that the camera and object coordate systems coincide, save
for an o set t, along the optical axis. Given focal lengtlf, principal point ¢, and
re-projection error u, this yields for a pixel on thev = 0 scan-line

t,=2 fxX :
u ¢
resulting in a depth error t, of
fyX
t, @ - X u:

T @u' (G uy

Calculations for pixels outside of the center-scan line aperformed analogously. The
error estimate above depends on the distance of the pixelrinahe camera's principal

point. As the observed objects are rigid, we assume that thestiance error t, between

camera and object corresponds to the minimum observed, among the selected 2D-3D
correspondences. For all gantry scenes, this value is in trenge of Inm so we assume
this to be the approximate accuracy of our ground truth.
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buddha papillon stillLife horses

depth ground truth + segmentation ground truth

buddha2 mona medieval

depth ground truth

Figure 18: Data sets in the category Blender. Top: Light elds with segmentation information
available. From left to right: buddha papillon, stillLife , horses First row shows center view, second
depth ground truth and third label ground truth. Bottom: Light elds wit hout segmentation infor-
mation. From left to right: buddha2 monasRoom medieval First row shows center view, the second
the depth ground truth.
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center view gt depth gt validity

couple

cube

maria

pyramide

statue

Figure 19: Data sets in the category Gantry. From left to right: center view, depth channel, mask
which indicates regions with valid depth information. The ordering of the data sets is the same as in
gure 17.
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center view ground truth gt mask

Figure 20: Data set transparency. Left: center view, middle top: depth of the background, middle
bottom: depth of the foreground, right top: background mask for valid depth ground truth pixel,
right bottom: foreground mask for valid depth ground truth pixel.

Figure 21: Selected 2D correspondences for pose estimation for the
pyramide dataset. In theory, four points are su cient to estimate the
six degrees of freedom of an external camera calibration matrix, but
more points increase the accuracy in case of outliers.
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5 Orientation Analysis in Light Fields

5.1 Single Orientation Analysis

A main benet of light elds compared to traditional images a stereo pairs is the
expansion of the disparity space to a continuous space. ThHiescomes apparent when
considering epipolar plane images (section 2.3), which che viewed as 2D slices of
constant angular and spatial direction through the_umigraph (section 2.2). Due to a
dense sampling in angular direction, corresponding pixedge projected onto lines in
EPIs, which can be detected more robustly and faster than paicorrespondences.

EPIs were introduced to the analysis of scene geometry by Bxd et al. [L6]. They detect
edges, peaks and troughs with a subsequent line tting in thEPI to reconstruct 3D
structure. Later, Baker used zero crossings of tHeaplacian [6, 7]. Another approach is
presented by Criminisi R7], who use an iterative extraction procedure for collectiaof
EPI-lines of the same depth, which they call an EPI-tube. Lies belonging to the same
tube are detected via shearing the EPI and analyzing photansistency in the vertical
direction. They also propose a procedure to remove speculagtilights from already
extracted EPI-tubes.

There are also two less heuristic methods which work in an egg minimization frame-

work. In Matousek et al. B7], a cost function is formulated to minimize a weighted
path length between points in the rst and the last row of an ER, preferring constant

intensity in a small neighborhood of each EPI-line. Howevetheir method only works

in the absence of occlusions.

Berent et al. [L1] deal with the simultaneous segmentation of EPI-tubes by aegion
competition method using active contours, imposing geonret properties to enforce
correct occlusion ordering.

In contrast to the above works, we propose a local gradient &&d orientation analysis of
the EPIs and additionally can perform a labeling for all poits in the EPI simultaneously
by using a state-of-the-art continuous convex energy minigation framework. We
enforce globally consistent visibility across views by regting the spatial layout of the
labeled regions.

Compared to methods of Bolleslfg] and Criminisi [27] which extract EPI information
sequentially, this is independent of the order of extractoand does not su er from an
associated propagation of errors. While a simultaneous eattion is also performed by
Berent et al. [11], they perform local minimization only and require good itialization,
as opposed to our convex relaxation approach. Furthermorthey use a level set ap-
proach, which makes it expensive and cumbersome to deal wéltarge number of regions.

In this section we propose a range estimation approach using@ light eld parametrized
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asLumigraph (see section 2.2 and equation 9). The basic idea is as folloWge rst com-
pute local slope estimates on epipolar plane images for thea di erent slice directions
(x;s)-slice ., (y;t)-slice , s (section 2.3) using the structure tensor (section 5.1.1).
This gives two local disparity estimates for each pixel in ea view. These can be merged
into a single disparity map in di erent ways: just locally cloosing the estimate with
the higher reliability, optionally smoothing the result (which is very fast), or solving
a global optimization problem (which is slow). In the expements, we will show that,
fortunately, the fast approach leads to estimates which argightly more accurate. The
content in this section is published in Wanner et al.]0q, [103 whereby the theory as
well as fast GPU implementations 37] of the optimization techniques are the work of
Bastian Goldlacke

5.1.1 The Structure Tensor

A common technique to estimate orientations is the struct@ tensor introduced by Bi-
gun et al. [L2]. Derivations below follow the chapter "The Structure Tener" in Jahne [45].

If we assume a unit vectom 2 RP as the preferred local orientation of the gray value
changes of a functiorg: ! R, RP, the following must be satis ed:

rg'n ®=jr gi’cog(* (r g;n)): (21)

This will become a maximum ifr g is parallel ton or if r g is anti-parallel to n and
zero ifr g is orthogonal ton. Thus we need to maximize the following expression in a
local environment

Z

wix x9 rg(x9Tn *d°x® (22)

wherew is a window function determining size and shape of the avemgegion around
x. Equation (22) can be reformulated to

nJn! maximum (23)
Z
J= wkx x9(r gxdr g(x9")d°x* (24)
which results in a symmetricD D tensor
Z 1
Jog(X) = w(x x9 @) @) dP x© (25)
1

@3 @g

An Eigenvalue decomposition ofl, in case ofD = 2, gives two Eigenvalues 1, .
Without limiting the generality, we assume that ; > ,. Due to the orthogonality of
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condition | rank | meaning
1= =0 0 const. local environment
1>0 ,=0 1 | ideal local orientation
1>0;, ,>0| 2 | isotropic environment

Table 1: The table shows the meaning of di erent Eigenvalue condi-
tions of the structure tensor for 2D images

the Eigenvectorsvy,v it is obvious that v, is parallel ton and v, is anti-parallel to n.
The relationship between the Eigenvalues give a quality meare of the local orientation

pattern. Jahne [45] de nes the coherence, which varies between zero for isotropic
structures and one for ideal orientations:

p
2 2
S CE R e Y Y (26)

C
Ji1+ Jo 1+ 2

Implementation. In general the computation of the structure tensor consistef
four steps. An initial (Gaussian smoothing to reduce noise and high frequencies, the
gradient computation, the computation of the structure teisor components, and a nal
(Gaussian smoothing of these components. A widely used approach tongpute the
gradients is the so-calledsobeloperator [75].

0 1 0 1
10 1 1 2 1
SS=@ 0 2A;5,=@0 0 O0A: (27)
10 1 1 2 1
Another approach to compute the gradients is th&charr-operator [81].
0 1 0 1
3 0 3 3 10 3
Sc=@10 0 10A;5,=@0 0 O0A: (28)
3 0 3 3 10 3

Scharr optimized the lIter coe cients to guarantee an optimal rotational symmetry,
leading to much better orientation estimations compared tthe Sobeloperator. In this
work we use a variant of the structure tensor combining the itial smoothing step
and the gradient computation using aGaussian derivative Iter as implemented in
the VIGRA Computer Vision Library [49. We discuss the reason for this choice in
section 5.1.2.2 and gure 23.

The de nition of Gaussian lter is as follows

@ 1 xi+x3
@gx@gy 2 2e e (29)
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whereasn = ny + ny is the order of derivative and > 0 the standard deviation of the
Gaussian. The kernel radiusk is computed through

1
r«k =3 + =n: (30)
2
The result is rounded to the next higher integer. The Kernelize ¢ then is
Kk =2rg +1: (31)
The gradient of an imagel is de ned as

1=(8:0380= gl It (32)

The algorithm to compute the structure TensorJ. on an gray-scale imagé is then as
follows:

1. compute the gradientsS,. ;S,.

2. compute the structure tensor components

C':‘;O(S'x; S’x; ) G:O(Sx; Sy; )

J. (= 33
D% Gl(s s0) Giolsy S, (53)
5.1.2 Disparities On Epipolar Plane Images
5.1.2.1 Local Disparity Estimation We rst consider how we can estimate the

local direction of a line at a point §; s) in an epipolar plane imageS, . (see section 2.3),
wherey andt are xed. The case of vertical slices is analogous. The godiltbis step
is to compute a local disparity estimated, .; (x;s) for each point of the slice domain, as
well as a reliability estimatery . (x;s) 2 [0; 1] (eq. 38), which is the coherence of the
structure tensor (eq. 26) and gives a measure of how relialthe local disparity estimate
is. Both local estimates will be used in subsequent sectiotts obtain a consistent
disparity map in a global optimization framework.

In order to obtain the local disparity estimate, we need to ¢snate the direction of lines
on the slice. This is done using the structure tensar (see eq. 33) of the epipolar plane
imageS =S,  ,

\]xx ny

J. (S)= (34)
‘JXy Jyy
The direction of the local level lines can then be computedaviBigun et al. [12]
2 g 3
sin(} arctan ==«
vy S Jyy  Ixx !
cos( arctan 25)
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(a) optimal structure tensor parameters (b) grid search on dataset buddha

Figure 22: Using grid search, we nd the ideal structure tensor parameters overa range of both
angular and spatial resolutions (a). Blue colored data points show the optnal outer scale, red
points the optimal inner scale. The thick streaks are added only for vigal orientation. In (b) an
example of a single grid search is depicted. Colour-coded is the amounf pixels with a relative
error to the ground truth of less than 1%, which is the target value to be ogimized for in (a).

from which we derive the local depth estimate via

S
Z= f—: 36
. (36)
Frequently, a more convenient unit is the disparity
f X 1 J J
d = —=——=tan =arctan X" 37
rtTz s 2 20y ’ (37)

which describes the pixel shift of a scene point when movingtiveen the views. We
will usually use disparity instead of depth in the remaindepof this work. According
to equation 26 as the natural reliability measure we use theberence of the structure
tensor q

Gy In)*+433 (38)

ry + = :

7 (Jo * Jyy)
Using the local disparity estimatesd, : ;dy .s and reliability estimatesry . , rx s for
all the EPIs in horizontal and vertical directions, respectely, one can now proceed to
directly compute disparity maps in a global optimization famework, which is explained
in section 5.1.3.2. However, it is possible to rst enforce g@bal visibility constraints
separately on each of the EPIs, which we explain in sectionl=2.3.
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5.1.2.2 Limits of the Local Orientation Estimation In the following, we will
perform a detailed evaluation of the orientation analysisybapplying the structure tensor
on synthetically generated epipolar planes. These EPIs amtialized with random
stripe patterns of parallel lines. Random in this context m&ns that we vary the stripe
thickness and the assigned gray-scale to simulate the sttue of real epipolar plane
images. Below we list the parameters to control the generakéP| appearance in our
experiments.

h: height or number of pixels in y direction representing theumber of cameras.

d: the pixel shift or slope of the epipolar lines, equivalentotthe disparity in real
light elds. The EPIs are initialized with a disparity of zeros which can be changed
by applying a ne transformations with sub-pixel accuracy smulating a refocusing
or change in depth.

n. the noise level. We add random Gaussian noise with a standadeviation of
n[pX] to the images.

Wmax . Maximum width of the epipolar lines, whereby width means th number of
pixels of a line in the x-direction having assigned the sameténsity value. This
simulates low- or non-textured regions in the image domain.

c. the color variance. Epipolar lines have a random intensityalue of 128 .
simulating low contrasts.

The general procedure of the experiments is:

1.

generate an EPI with a random stripe pattern with respect to he parameters
described above.

evaluate orientation on the EPI generated in step 1.

. extract the estimated disparity from the center rowh=2 (neglecting 10% of the

pixels at the left and right borders to avoid border artifact) and calculate the
mean over the remaining pixels.

. change the disparityd of the EPI by applying sub-pixel shifts on each row of the

epipolar plane image

. compute the disparity deviation d between the evaluatedd,, and the ground

truth disparity d: d =d d.

. repeat steps 2 to 4 over the desired parameter range evaluhia the experiment.

. repeat steps 1 to 5 a number of N times and return the mean digjity deviation

to achieve statistically reliable results over N randomly @nerated orientation
patterns. A value of N = 200 showed to be suitable to stabilize the results. This
step is included in all of our experiments without explicity being mentioned every
time.
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Our goal with these experiments is to show the ideal behaviand theoretical abilities
of the orientation estimation on synthetic epipolar planemages. The results do not
allow to draw conclusions about the behavior on real epipalalanes, they do not cover
e ects like continuously changing disparity related to norplanar objects, occlusions or
non-Lambertian e ects. However they give an insight into the raw orientatiorestimation
ability of the structure tensor and its behavior under certan conditions.

Comparison of gradient lters. The rst experiment motivates our choice to
compute the gradients of the structure tensor using th&aussianderivatives lter in
equation 29. We compute the structure tensor in three di enat variants, using the Sobetl
operator (eq. 27), theScharr-operator (eq. 28) and theGaussianderivative operator
(eg. 29) and compare their behavior on synthetic EPIs. We uspipolar planes with
h=15px, , =0and .=128. On the one hand, we are interested in the orientation
estimation accuracy of all variants, but also in the robustess against untextured regions
in the EPIs. As a reminder, we obtain an EPI when xing a row/coimn index in
the image domain and stack them over a collection of imagesdiferent viewpoints.
This means the texture of the objects along this rows/colunsis mapped into the
epipolar space as lines whose slope corresponds to the distaof the object to the
camera (compare section 2.3). As a result, the thickness of apipolar line depends
on the intensity variance of texture mapped onto the epipoftaspace. We simulate this
in our experiment by generating random EPIs with epipolar ties of random widths
with a maximum width of wyax. To evaluate the accuracy in orientation estimation we
compute the structure tensor on an EPI with a xedwpax Over an orientation range
fromd=[ 1;1] by applying a ne transformations to the EPI to create the di erent
slopes with sub-pixel accuracy. The accuracy is then commat as mentioned in step 3
of the general procedure above as the mean over all orientats. We evaluate this mean
error over the whole orientation range for values oo =[2;19] and plot the result in
gure 23 (a) with the mean orientation estimation error overthe maximum epipolar
line width. The result is that the Scharr-operator leads to more accurate orientation
estimations but due to the extensible kernel size, the ovdraerformance of theGaussian
derivative Iter is more robust against increasing epipolaline widths or, in other words,
against the presence of decreasing frequencies in the EPIs.

Optimal structure tensor scales. In the next experiment we use epipolar planes
with h = 15pX, Wmax =4, o =0, d=[ 1;1] and . = 128. We vary the disparity
d from 1px to 1px in 0:1px steps and compute for each disparity the orientation on
a parameter grid of the inner scale and outer scale of the structure tensor. We
varied from 0:4 to 0:9 in steps of 001 and from 0:6 to 25 in 0:01 steps as well.
The result is depicted in gure 23. Outer and inner scale beka nearly constant. The
stronger variations in the outer scale signal are primarilgue to a lesser sensitivity of
the outer scale in a wider range { thus some randomness in theaet position of the
absolute minimum occurs (compare also gure 25). The sliglhdentation at disparity
zero for both signals can be explained by the fact that orieation estimation works
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perfect for vertical lines. Due to this experiment we de nen later experiments an
inner scale =0:75 and an outer scale = 1:0 as optimal scales for this epipolar plane
con guration.
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Figure 23: a) Comparison of gradient Iters. On synthetic epipolar pane images we evalate the
structure tensor using three di erent approaches to compute the gadients (Sobel,Scharr,Gaussian
derivative). We create synthetic EPIs with random epipolar lines of maximum widths wq,, , Where
width means the number of pixels of a line in x direction having asgned the same intensity value.
We vary wnax , drawn on the x-axis, and compute for eachwnax the orientations over a slope range
d = [ 1;1]. The average of the estimation errors for each gradient lter is drawn onthe y-axis.
We see that the Scharr-Operator has the best orientation estimation abilities, but with increasing
untextured regions the Gaussian derivative lter shows a better averall performance due to the fact
that its kernel size is not restricted to 3 3. b) Here, we evaluate the optimal scale parameter of
the structure tensor. In this experiment we generate syntheticEPIs and compute for each slope in
the range ofd = [ 1, 1] the inner and outer scale using a grid search and plot the resultingcale
parameter with the lowest estimation error for each slope. They behag more or less constant over
the range of slopes, the slight indentation at disparities 0 and 1 can be explained by the fact that
orientation estimation works ideal for vertical and horizontal lines evenwith small kernel sizes.

Inner and outer scale limits. Using the optimal scale parameter of the structure
tensor from our second experiment, we will now look what happs when we x one scale
and vary the other to see the operative range of the correspting second parameter.
Again we use epipolar planes witlh = 15pX, Wnax =4, n=0,d=[ 1;1]and .=128.
Results are depicted in gures 24 and 25. The rst show resudtfor a constant varying

, the second is the opposite. We observe that the inner scalehas much narrower
tolerances than

Minimal number of cameras. In the next experiment we change the parametdr
of an epipolar plane which is equivalent to the number of cames or sampling steps used
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Figure 24: Inner Gaussiankernel variation when xing the outer scale to 1:0. Left side shows a
3D view of the disparity deviation d d,, on the z axis computed over the disparityd and the inner
scale . The right side is the left plot viewed from above. It is obvious that the region of minimal
disparity deviation o [0:7;0:8] is quite narrow.

to acquire the light eld. The other parameters arewn.x =4, , =0, d=[ 1.5;1.5]
and .= 128. Result are depicted in gure 26 and show that a number of cameras
seems optimal for the method. This can be explained with emali usion caused by
border e ects. To calculate the structure tensor we need topply three convolutions. If
we use the minimal kernel size of 3 3 each convolution di uses an error { caused by
the image borders { one pixel towards the center row. This addup to 2 3+1 =7 pixel

if we want a center row pixel which is una ected by border erns. In this experiment
we adapted the kernel sizes for structure tensor evaluatida use the EPI heighth in an
optimal fashion to see if bigger kernel size leads to more ambre increasing estimation
results. But we see in gure 26 that the estimation accuracylsove h = 11px does not
increase anymore. Therefore, we propose that at least 7 caagare necessary and
more than 11 super uous. These statement is only fully valid one is only interested
in an optimal estimation for the center view of a light eld, which is equivalent in this
experiments to only taking the center row into account. If aroptimal depth estimation
for more than the center view is desired, an increasing numbef cameras can be useful.

In uence of noise on accuracy and coherence. A 1D plot for h = 7px, inner and
outer kernels of =0:75and =1:0is depicted in gure 27. The left side shows the
evaluation on a noise-free EPI and the right side an EPI with aoise level , = 11. The
plots show the coherence and the disparity deviation with st standard deviation. We
observe that the orientation analysis seems to work perfégtfor disparities 1 and O
and is worse for disparities 0.5. However, the overall accuracy is in the range@L px.
The error increases quickly if the slope of the EPI lines gobgyond 45. This is quite
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Figure 25: Outer Gaussiankernel variation when xing the inner scale to 0:75. Left side shows a
3D view of the disparity deviation d dp on the z axis computed over the disparityd and the outer

scale . The right side is the left plot viewed from above. It is obvious that the region corresponding
to a minimal disparity deviation o [0:5; 1:3] is much wider than for the inner scale.

clear when realizing that the incline of a line on epipolar phes is caused by horizontal
shifts of the image rows instead of a rotation. This of courdeads to a disruption of the
line above 45. Adding noise (gure 27 right) leads to an increasing uncertaty but not
to be a ecting the overall accuracy that much.

Noise and contrast variation. In two more experiments, depicted in gure 28, we
further check the sensitivity to noise and to contrast chargs. The results are that the
structure tensor is quite robust against decreasing consa Also, noise up to a certain
amount does not a ect the overall accuracy that much but incgases the uncertainty of
the estimation leading to noisy results.
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Figure 26: Variation of the EPI height or the number of cameras. We varied the disparty d of an
epipolar plane image from -1.5 to 1.5 as well ab from 4px up to 14px. The z-axis is the deviation
of the measured disparity from the ground truth disparity d d.,. The measured disparity dn,

is calculated using the method described in section 5.1.2.1 wherglithe kernel size and standard
deviation of the outer Gaussiankernel was adapted to the actual heighth for each EPI to make
use of the increasing EPI line length. As a result we see thatpk seems to be the rst EPI height
covering the entire range of 1px with acceptable accuracy. We also see that abovhe = 11px the
accuracy does not further increase.

Figure 27: Comparison of orientation analysis on noise free and noisy epipolar plane imagekeft
side shows an EPI of heighth = 9 px. The smoothing parameters are inner scale = 0:75 and outer
scale of =1:0. Same parameters on the right side but with an additive Gaussian noise of, = 31.
Plotted are the disparity deviation d d; with standard deviation and the coherence or reliability
r. It is obvious that noise does not a ect the mean accuracy that much but the certainty is a ected
through a much lower coherence.
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Figure 28: Top: Variation of the image contrast. We generate random EPI lines with random
integer intensities (128  ,128 + ) where . 2 [1;128]. We varied the color contrast ¢ and the
disparity to compute the disparity deviation d dy. The results of the orientation estimation are
contrast independent up to very little contrasts. Only at the lowest contrast of 2px do we see
signi cant outliers. Bottom: Noise variation. We see an evaluation of the digarity deviation under
increasing additive Gaussian noise , 2 [0; 31].
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5.1.2.3 Consistent Disparity Labeling The computation of the local disparity
estimates using the structure tensor only takes into accouttie immediate local structure
of the light eld. In truth, the disparity values within a sli ce need to satisfy global
visibility constraints across all cameras for the labelingp be consistent. In particular, a
line which is labeled with a certain depth cannot be interruged by a transition to a label

corresponding to a greater depth, since this would violatecolusion ordering, gure 29.
In the conference paperl0Q, a joint work of Dr Goldlacke and the author, we have

(a) label relations (b) disparity estimation

Figure 29: (a) Global labeling constraints on an EPI: if depth ; is less than ; and corresponds
to direction nj, then the transition from ; to ; is only allowed in a direction orthogonal to n; to
not violate occluding order. (b) With the consistent labeling schane one can enforce global visibility
constraints in order to improve the depth estimates for each epipolaplane image.

shown that by using a variational labeling framework basednoordering constraints p3,

one can obtain globally consistent estimates for each sliadich take into account all

views simultaneously. While this is a computationally very>gensive procedure, it yields
convincing results, see gure 29. In particular, consistérabeling greatly improves

robustness to non-Lambertian surfaces, since they typitalead only to a small subset
of outliers along an EPI-line. However, at the moment this isrdy a proof of concept,
since it is far too slow to be usable in any practical applicains. For this reason, we do
not pursue this method further in this work, and instead evailate only the interactive

technique, using results from the local structure tensor ogputation directly.

5.1.3 Disparities On Individual Views

After obtaining EPI disparity estimatesd, ; and dy s from the horizontal and verti-
cal slices, respectively, we integrate those estimatesona consistent single disparity
mapu: ! R for each view § ;t ). This is the objective of the following section.

5.1.3.1 Fast Denoising Scheme  Obviously, the fastest way to obtain a sensible
disparity map for the view is to just point-wise choose the dparity estimate with the
higher reliability ry .s or ry . , respectively. We can see that it is still quite noisy,
furthermore, edges are not yet localized very well, sinceroputing the structure tensor
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(a) Accuracy depending on angular resolution (b) Mean error depending on disparity for
dataset buddha

Figure 30: Analysis of the error behaviour from two di erent points of view. In a), we plot the
percentage of pixels which deviate from the ground truth (gt) by less han a given threshold over
the angular resolution. Very high accuracy (i.e. more than 50% of pixels deaate by less than 0.1%)
requires an angular resolution of the light eld of at least 9 9 views. In b), we show the relative
deviation from ground truth over the disparity value in pixels per angular step. Results were plotted
for local depth estimations calculated from the original (clean) light eld, local depth estimated
from the same light eld with additional Poisson noise (noisy) as well as the same result after TVL?
denoising, respectively. While the ideal operational range of the algoriim are disparities within 1
pixel per angular step, denoising signi cantly increases overall aatracy outside of this range.

entails an initial smoothing of the input data. For this reasn, a fast method to obtain
quality disparity maps is to employ a TVL! smoothing scheme, where we encourage
discontinuities ofu to lie on edges of the original input image by weighting the &al
smoothness with a measure of the edge strength. We use

axy) =1 rsi (XY); (39)

wherers . is the coherence measure for the structure tensor of the viéwage, de ned
similarly as in (38). Higher coherence means a stronger image edge, which thuseases
the probability of a depth discontinuity.

We then minimize the weighted TVL! smoothing energy
Z
o1 .
E(u= gjbuj+ —ju fjdxy); (40)

wheref is the noisy disparity estimate and > 0 a suitable smoothing parameter. The
minimization is implemented in the open-source librargocolib [37] by Dr. Goldlacke
and performs in real-time.
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5.1.3.2 Global Optimization Scheme From a modeling perspective, a more so-
phisticated way to integrate the vertical and horizontal ste estimates is to employ a
globally optimal labeling scheme in the domain , where we nmimize a functional of
the form Z

E(uy=  gjDuj+ (u;xy)d(x;y): (41)

In the data term, we want to encourage the solution to be clode either d, s ordy  ,
while suppressing impulse noise. Also, the two estimatelg s and d, ; shall be
weighted according to their reliabilityry s andry . . We achieve this by setting

(U;x;y) =min(ry x (s )ju  dyx (X8)j;
rx s (Yst)ju  de s (y;t))):

We compute globally optimal solutions to the functional(41) using the technique of
functional lifting described in [74], which is also implemented ircocolib [37]. While
being more sophisticated modeling-wise, the global appbarequires minutes per view
instead of being real-time, and a discretization of the digpity range into labels, which
might even lead to a loss instead of gain in accuracy.

(42)

5.1.4 Performance Analysis for Interactive Labeling

In this section, we perform detailed experiments with the lal disparity estimation
algorithm to analyze both quality and speed of this method. fie aim is to investigate
how well our disparity estimation paradigm performs when th focus lies on interactive
applications, as well as nd out more about the requirementsegarding light eld
sampling and the necessary parameters.

Optimal Parameter Selection. In a rst experiment, we establish guidelines to
select optimal inner and outer scale parameters of the strtuce tensor. As a quality
measurement, we use the percentage of depth values belowlatree error

= ju(x;y)  r(x;y)j=r(xy) (43)

whereu is the depth map for the view andr the corresponding ground truth. Optimal
parameters are then found with a simple grid search strategywhere we test a number of
di erent parameter combinations. Results are depicted ingure 22, and determine the
optimal parameter for each light eld resolution and data se Following evaluations are
all done with these optimal parameters. In general, it can beoted that an inner scale
parameter of 008 is always reasonable, while the outer scale should be @rarger
with larger spatial and angular resolution to increase the evall sampling area. Here, it
could be noted that applying median Itering to the results wll reduce the outer-scale
parameter behavior in gure 22 which causes a better edge pegving in the results but
this is of course linked with higher computational cost. Hereve did the experiments
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Figure 31: Results of disparity estimation on the datasets Buddha (top), Mona (center) and Cone-
head (bottom). (a) shows ground truth data, (b) the local structure tensor disparity estimate de-
scribed in section 5.1.2.1 and (c) the result after TVL! denoising according to section 5.1.3. In (d)
and (e), one can observe the amount and distribution of error, where greefabels mark pixels devi-
ating by less than the given threshold from ground truth, red labels pkels which deviate by more.
Most of the larger errors are concentrated around image edges.

without any post-processing to show the raw ability of the lcal method.

Minimum Sampling Density. In a second step, we investigate what sampling den-
sity we need for an optimal performance of the algorithm ondght elds instead of
synthetically created EPIs (compare section 5.1.2.2 and uge 26). To achieve this, we
evaluated three simulated light elds over the full angulamresolution range with the
optimal parameter selection found in gure 22. The resultsra illustrated in gure 30,
and show that for very high accuracy, i.e. less than: D% deviation from ground truth,
we require about nine views in each angular direction of theght eld.

Moreover, the performance degrades drastically when thesgarities become larger than
around 1 pixels, which makes sense from a sampling perspective sitite derivatives
in the structure tensor are computed on a 3 3 stencil. Together with the characteristics
of the camera system used (baseline, focal length, resodu), this places constraints
on the depth range where we can obtain estimates with our mettl. For the Raytrix
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Plenoptic Camera we use in the later experiments, for exangplit turns out that we can
reconstruct scenes which are roughly contained within a cakshaped volume, whose
size and distance is determined by the main lens we choose.

Noisy Input. Another interesting fact is observable on the right hand sidef gure 30,
where we test the robustness against noise (compare alsorg27). Within a disparity
range of 1, the algorithm is very robust, while the results quickly dgrade for larger
disparity values when impulse noise is added to the input inges. However, when we
apply TV-L?! denoising, which requires insigni cant extra computatioal cost, we can
see that the deviation from ground truth is on average redudebelow the error resulting
from a noise-free input. Unfortunately, denoising always owes at a price: since it
naturally incurs some averaging, while accuracy is globglincreased, some sub-pixel
details can be lost. In gure 31 we observe the distributionfahe errors, and can see
that almost all large-scale error is concentrated around géh discontinuities.

Disparity Range Limitation. The histogram plot on the right in gure 30 depicts
the e ect of rapidly increasing orientation estimation erors if the disparities exceed
a range of 1. The reason is that the slope of an epipolar line depends dnifts in
the image domain relative to the center view (see gure 32). e pixels of an epipolar
line with a slope> | 1 are torn apart and thus cannot be matched as a line anymore
using convolution operations. Reconstructing scenes witlisparity ranges above 2 pixels

Figure 32: Visualization of a refocusing operation on the EPI domain. The left image sktches an
EPI with a red and a blue epipolar line initially having slopes of m; = 3 and my, = 1 respectively.
By shifting the rows of the EPI opposing with respect to the centa view the slope of each line
changes like depicted in the middle and right image.

makes an iterative processing necessary. One simply repsetite following steps over the
entire disparity range:

refocus the light eld.
compute orientations.
store valid disparities between 1.

add total pixel shift to the disparities.

Merging the corresponding results from each iteration stegan be done for example by
choosing the disparity with the highest coherence (see e®)3
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5.1.5 Comparison to Multi-View Stereo

We compute a simple local stereo matching cost for a singleewi as follows. Let
V = f(sy;t1); 5 (sn;tn)g be the set of N view points with corresponding images
I1;:0 I, with (s¢;te) being the location of the current viewl. for which the cost
function is being computed. We then choose a set of 64 dispar labels within an
appropriate range. For our test we choose equidistant latselvithin the ground truth
range for optimal results. The local cost a/ (X;!) for label | 2 at location x 2 I,
computed onall neighboring views is then given by
X
av (X 1) = min(; Kln(X + Ivp)  1(x)K); (44)

(Sn ,tn)2V

wherev, = (s, Sqth t¢) is the view point displacement and > 0 is a cap on
the error to suppress outliers. To test the in uence of the nmber of views, we also
compute a cost function on acrosshair of view points along thes- and t-axis from the

view (S¢; tc), which is given by

X
cH(X; 1) = Kln(x + Ivp)  Te(X)k: (45)
(snitn)2V
Sn=Sc Or th=1¢

In e ect, this cost function thus uses exactly the same numbeof views as required
for the local structure tensor of the center view. The resudtof these two purely local
methods can be found undeST _AV _L for all views, andST _CH _L for all views or
just a crosshair, respectively.

Results of both multi-view data terms are denoised with a siple TV-L2 scheme,
algorithms ST _AV _S and ST _CH _S. Finally, they were also integrated into a global
energy functional 7 7

E(uy=  (xu(x))dx+  jDuj (46)

for a labeling functionu: !  on the image domain , which is solved to global
optimality using the method in [74]. The global optimization results can be found under
algorithms ST _AV _G and ST _CH _G. We compare to our approach. First, we start
with the purely local method EPI _L, which estimates orientation using the Eigensystem
analysis of the structure tensor discussed in section 5.1.Phe second methodEPI _S,
just performs a TV-L? denoising of this result, whileEPI _G employs the globally
optimal labeling scheme of section 5.1.3.2. Finally, the nteid EPI _C performs a
constrained denoising on each epipolar plane image, whiakés into account occlusion
ordering constraints [39]. All results are depicted in gure33.

5.1.6 Experiments and Discussion

The table in gure 33 and the gures 34, 35 show detailed visliand quantitative
disparity estimation results on our benchmark datasets. Afgithm parameters for
all methods were tuned for an optimal structural similarity(SSIM) measure. Strong
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arguments why this measure should be preferred to the MSE ageven in [99], but we
also have computed a variety of other quantities for compaon (however, the detailed
results vary when parameters are optimized for di erent quaities).

First, one can observe that our local estimate always is moreaurate than any of the
multi-view stereo data terms, while using all of the views ges slightly better results
for multi-view than using only the crosshair. Second, our sellts after applying the
TV-L?! denoising scheme (which takes altogether less than two seds for all views)
are more accurate than all other results, even those obtaohevith global optimization
schemes (which takes minutes per view). A likely reason whyroresults do not become
better with global optimization is that the latter requires a quantization in to a discrete
set of disparity labels, which of course leads to an accuralmss. Notably, after either
smoothing or global optimization, both multi-view stereo dta terms achieve the same
accuracy, see gure 33 - it does not matter that the crosshattata term makes use of
less views, likely since information is propagated acrodset view in the second step.
This also justi es our use of only two epipolar plane image®if the local estimate.

Our method also is the fastest, achieving near-interactiyeerformance for computing
disparity maps for all of the views simultaneously. Note thaby construction, the
disparity maps for all views are always computed simultanasly. Performance could
further be increased by restricting the computation on eackPI to a small stripe if only
the result of a speci c view is required.

Obviously { when analyzing epipolar plane images { our appeezh does not use the full
4D light eld information around a ray to obtain the local estmates - we just work on
two di erent 2D cuts through this space. The main reason is géormance, in order
to be able to achieve close to interactive speeds, which iscessary for most practical
applications, the amount of data which is used locally mustékept to a minimum.
Moreover, in experiments with a multi-view stereo methodt iturns out that using all of
the views for the local estimate, as opposed to only the viewsthe two epipolar plane
images, does not lead to overall more accurate estimates. \Iéhit is true that the local
data term becomes slightly better, the result after optimiation is the same. A likely
reason is that the optimization or smoothing step propagatabe information across the
view.
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Orientation Analysis

light eld EPIL | EPI.S| EPI.C | EPI.G
buddha 0.81 | 0.57 | 0.55 0.62
buddha2 1.22 | 0.87 | 0.87 0.89
horses 3.60 | 2.12 2.21 2.67
medieval 1.69 | 1.15 | 1.10 1.24
monasRoom|| 1.15 | 0.90 | 0.82 0.93
papillon 3.95 | 226 | 252 2.48
stillLife 3.94 | 3.06 | 2.61 3.37
couple 0.40 | 0.18 | 0.16 0.19
cube 1.27 | 0.85 | 0.82 0.87
maria 0.19 | 0.10 | 0.10 0.11
pyramide 0.56 | 0.38 | 0.38 0.39
statue 0.88 | 0.33 | 0.29 0.35
average 164 | 1.07 1.04 1.18

Multi-View Stereo

light eld STAVL | STAVS|STAV G |STCHL | STCHS|STCHG
buddha 1.20 0.78 0.90 1.01 0.67 0.80
buddha2 2.26 1.05 0.68 3.08 1.31 0.75
horses 5.29 1.85 1.00 6.14 2.12 1.06
medieval 7.22 0.91 0.76 12.14 1.08 0.79
monasRoom 2.25 1.05 0.79 2.28 1.02 0.81
papillon 4.84 2.92 3.65 4.85 2.57 3.10
stillLife 5.08 4.23 4.04 4.48 3.36 3.22
couple 0.60 0.24 0.30 1.10 0.24 0.30
cube 1.28 0.51 0.56 2.25 0.51 0.55
maria 0.34 0.11 0.11 0.51 0.11 0.11
pyramide 0.72 0.42 0.42 1.30 0.43 0.42
statue 1.56 0.21 0.21 3.39 0.29 0.21
average 2.72 1.19 1.12 3.54 1.14 1.01

Figure 33: Detailed evaluation of all disparity estimation algorithms described in section 5.1.5
on all of the data sets in our benchmark. The values in the tables show th mean squared error in
pixels times 100, i.e. a value of \0.81" means that the mean squared error in gels is \0.0081".
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Figure 34. Comparison of the orientation analysis and multi-view stereo (see sein 5.1.5) using
the synthetic data of the benchmark database (see section 4). First ta columns depict the local
estimated disparity using the structure tensor (EPI_L) described in section 5.1.2.1 and the results
after applying a TV-denoising (EPI_S). Third and fourth columns depict results from the multi-view
stereo algorithm (ST_AV _L) described in section 5.1.5 and a TV-denoised version (SRV _S) as well.
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Figure 35: Comparison of the orientation analysis and multi-view stereo (see sein 5.1.5) using
the real world data of the benchmark database (see section 4). First twoaumns depict the local
estimated disparity using the structure tensor (EPI_L) described in section 5.1.2.1 and the results
after applying a TV-denoising (EPI_S). Third and fourth columns depict results from the multi-view
stereo algorithm (ST_AV _L) described in section 5.1.5 and a TV-denoised version (SRV _S) as well.
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5.2 Double Orientation Analysis

While there has been progress in the eld of non-Lambertian censtruction under
controlled lighting conditions B, 29, 40, 79, it remains quite hard to generalize the
standard matching models to more general re ectance funotis if only a set of images
under unknown illumination is available. Previous attemps employ a rank constraint
on the radiance tensor46 to derive a discrepancy measure for non-Lambertian scenes
While this improves upon the standard Lambertian matching mdels and allows to
reconstruct surface re ection parameters, the results #tisomewhat lack in robustness.

An interesting alternative approach is Helmholtz stereopsiBom Zickler et al. [117,
which makes use of the symmetry of re ectance or Helmholtz rigcocity principle in
order to eliminate the view dependency of specular re ectig in restricted imaging
setups. By alternating light source and camera at two di eret locations, one can
obtain a stereo pair where specularities are exactly idenél and thus classical matching
techniques can be employed for non-Lambertian scenes. Qtheorks try to remove
re ection data from images using prior assumptions or usenput [55, 56].

The works which are most closely related to ours are Sinha dt 6] and Tsin et al. [90].
They also separate a re ecting surface from the re ection ian epipolar volume data
structure. At their heart, these works still rely on classial correspondence matching,
since they optimize for two overlaid matching models in a nesl plane sweep algorithm
using graph cuts or semi-global matching, respectively.

In contrast, in our proposed method we do not try to optimizedr correspondence.
Instead, we build upon early ideas in camera motion analydi$6] and investigate direc-
tional patterns in epipolar space. In our case, re ectionsra transparencies manifest
as overlaid structures, which we investigate with higher der structure tensors 1] as a

consequent generalization of section 5.1.

As a result, we obtain a direct continuous method which reques no discretization into
depth labels, and which is highly parallelizable and quiteakt: a center view disparity
map for both layers can be obtained in less than two seconds &oreasonably sized light
eld, which is around a hundred times faster than even the shtest run-times reported
in [90]. The content in this section is published in Wanner et al.103, whereby the
theory of the optimization techniques as well as fast CUDAY[l] implementations of the
algorithms published incocolib [37] are the work of Dr. Bastian Goldiacke.

5.2.1 EPI Structure for Lambertian Surfaces

Before discussing the mapping of re ections into the epipa space let us quickly recap
the model for single orientation, which is equivalent to theassumption of Lambertian
material properties.
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P=(X)Y,2)

(a) Light eld parametrization (b) Mirror plane geometry

Figure 36: (a) Each camera location §;t) in the view point plane vyields a di erent pinhole view
of the scene. The two thick dashed black lines are orthogonal to both plare and their intersection
with the plane marks the origins of the ( x;y)-coordinate systems for the views §;;t) and (sg;t),
respectively. (b) Geometry of re ection on a planar mirror. All cameras view the re ections of a
scene pointp at a planar mirror M as the image of a virtual point p° which lies behind the mirror
plane. We assume the intensity measured by the sensor has two conritions, an intensity or color
c(m) { the contribution of the re ector m { and a color c(p) { the contribution of the mirrored
object p.

Let P 2 R® be a scene point. It is easy to show that the projection & on each epipolar
plane image is a straight line with slopezf—, whereZ is the depth of P, i.e. distance
of P to the plane , and f the focal length, i.e. distance between the planes and

(compare sections 2.2, 2.3 and gure 36 a). The quantityfz— (equation 11) is called
the disparity of P. In particular, the above means that ifP is a point on an opaque
Lambertian surface, then for all points on the epipolar plamimage where the poinP
is visible, the light eld L (equation 9) must have the same constant intensity. This
is the reason for the single pattern of solid lines which we @bserve in the epipolar
plane images of a Lambertian scene. In section 5.1, this wietlown observation was
the foundation for a novel approach to depth estimation, with leveraged the structure
tensors of the epipolar plane images in order to estimate thecal orientation and thus
the disparity of the observed point visible in the correspating ray. While in conjunction
with visibility constraints this leads to a certain robustress against specular re ections,
the image formation model implicitly underlying this methal is still the Lambertian
one, thus the method cannot deal correctly with re ecting stiaces. Furthermore, it is
not possible to infer information for both the surface And a pssible re ection. The
following sections will propose a more general model to redyethis.

5.2.2 EPI Structure for Planar Re ectors

We now introduce an idealized appearance model for the epigoplane images in the
presence of a planar mirror - a translucent surface is an obus specialization where
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a real object takes the place of the virtual one behind the mior. It is kept simple in
order to arrive at a computationally tractable model, but wewill see that it captures
the characteristics of re ective and translucent surfaceeasonably well to be able to
cope with real-world data. A similar appearance model was atessfully employed indQ].

Let M  R3 be the surface of a planar mirror. We x coordinatesy( ;t ) and consider
the corresponding epipolar plane imagey . . The idea of the appearance model is
to de ne the observed color for a ray at locationX; s) which intersects the mirror at
m 2 M. Our simpli ed assumption is that the observed color is a liear combination
of two contributions. The rst is the base colorc(m) of the mirror, which describes
the appearance of the mirror without the presence of any reation. The second is the
colorc(p) of the re ection, wherepis the rst scene point where the re ected ray intersects
the scene geometry, see Figure 36(a). We do not consider higbaler re ections, and
assume the surface gb to be Lambertian. We also assume the re ectivity > 0 is a
constant independent of viewing direction and location. Té epipolar plane image itself
will then be a linear combination

Ly = L§";t + L;//;t (47)

of a pattern L', from the mirror surface itself as well as a pattery , from the
virtual scene behind the mirror. In each point X; s) as above, both constituent patterns
have a dominant direction corresponding to the disparitiesf m and p. The next section

shows how to extract these two dominant directions.

M \%
Ly*,t* * Ly*,t*

Figure 37: lllustration of overlayed signals L)', , Ly , andLy

5.2.3 Analysis of Multiorientation Patterns

We brie y summarize the theory for the analysis of superimpesl patterns described in
Aach et al. [1]. A regionR ofanimage f : ! R has orientationv 2 R? if and
only if

f(x)=f(x+ v) 8x;x+ VvV2R: (48)

Analysis shows that the orientationv is given by the Eigenvector corresponding to the
smaller Eigenvalue of the structure tensorlp] of f . However, the model fails if the

79



Figure 38: Exemplary epipolar plane images showing double orienta-
tion patterns from re ections.

imagef is a superposition of two oriented images, = f, + f,, wheref; has orientation
u and f, has orientationv. In this case, the two orientationsu;v need to satisfy the
conditions

u'rf,=0andv'r f,=0 (49)

individually on R. Analogous to the single orientation case, the two orientains in
a regionR can be found by performing an Eigensystem analysis of the sad order
structure tensor, see Aach et al. [1],

2 3
4 Fa Tafxy Ty
T = Moty 2 fyfy2dxy); (50)
Focfyy  fuyfyy !

where is a (usually Gaussian) weighting kernel oRR which essentially determines the
size of the sampling window. Sinc& is symmetric, we can compute Eigenvalues and
Eigenvectors in a straight-forward manner using the explicformulas in [91]. Analogous
to the Eigenvalue decomposition of the 2D structure tensothe Eigenvectora 2 R3
corresponding to the smallest Eigenvalue df, the so-called MOP vector, encodes the
orientations. Indeed, the two disparities are equal to the igenvalues ,; ofthe2 2
matrix

= A=

1 0 ’

from which one can compute the orientations =[ . 1]' andv =[ 1.

(51)

5.2.4 Merging into Single Disparity Maps

From the steps sketched above, we obtain three di erent dispity estimates for both
the horizontal as well as vertical epipolar images: one frothe single orientation model,
and two from the double orientation model. It is clear that the closer estimate in the
double orientation model will always correspond to the prilary surface, regardless of
whether it is a mirror or translucent object. Unfortunately, we do not know yet of a
reliable mathematical measure which tells us whether the twayer model is valid or
not. We therefore impose a simple heuristic: if at a given pdi the disparity values
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Center view Single channel Mirror channel Re ection channe |

b
o
I
1
o
I
o
o
1l
Point-wise result Result after TV- L2 denoising
Re ection Single orientation Double orientation Single orientation Double orientation
coe cient mirror re ection mirror re ection mirror re ection mirror re ection
=0:1 0.0034 0.7409 0.0078 0.1191 0.0025 0.7392 0.0036 0.09924
=0:3 0.0236 0.5994 0.0061 0.0349 0.0086 0.6273 0.0032 0.02371
=0:5 0.0869 0.3735 0.0066 0.0236 0.0252 0.5111 0.0036 0.01377
=0:7 0.1807 0.1547 0.0101 0.0239 0.1434 0.1821 0.0060 0.01053
=0:9 0.2579 0.0365 0.0389 0.0473 0.2557 0.0312 0.0249 0.00980

Figure 39: In uence of re ectivity on accuracy. The table shows mean squared dsparity error in
pixels of the single and double orientation model for both the mirror plare as well as the re ection.
While the single orientation model shifts from reconstruction of mirror to re ection with growing

re ectivity , the double orientation model can still reconstruct both when even ahuman observer
has di culties separating them. The images show the point-wise resilts.

of horizontal and vertical EPIs agree up to a small error for @ith the primary and
secondary orientation, we ag the double orientation modeds valid, and choose its
contribution in the disparity maps. Otherwise, we choose #hestimate from the single
orientation model.

5.2.5 Results

We compare our method primarily to the single orientation maod (Wanner et al. [10Q
and section 5.1) based on the rst order structure tensor, wth is similar in spirit and an
initial step in our algorithm in any case. However, it is cleathat any multi-view stereo
method will have similar problems as the single orientatiomethod if the underlying
model is also the Lambertian world.
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Center view Single orientation Proposed double orientatio n model
(mirror channel) (re ection channel) (detected mask)

Figure 40: In the absence of a structured background, the re ecting surface camf course only
reliably be detected where a re ection of a foreground object is vidile. The blue region indicates
where the double orientation model returns valid results.

5.2.5.1 Synthetic Data Sets Figure 39 shows reconstruction accuracy on a syn-
thetic light eld with varying amounts of re ectivity . The scene was ray-traced
in a way which exactly ts the image formation model. As expe&d, the disparity
reconstructed with the single orientation model is close tthe disparity of the mirror
surface if is small, and close to the disparity of the re ection if is large. In between,
the result is a mixture between the two, depending on whosexteire is stronger. In
contrast, the double orientation model can reliably recomsict both re ection as well as
mirror surface for the full range of re ectivities , even when it is already di cult for a
human to still observe both. While the point-wise results aralready very accurate, they
are still quite noisy and can be greatly improved by adding ansall amount of TV-L?
denoising P(.. We deliberately do not employ more sophisticated globalptimization
in this step to showcase only the raw output from the model and/hat is possible at
interactive performance levels. For all of the light elds Bown, at image resolutions
upwards of 512 512 with 9 9 views, the point-wise disparity computation for the
whole center view takes less than 1.5 seconds on an nVidia GTB06GPU.

5.2.5.2 Real-World Data Sets In Figures 41, 40, and 42, we show reconstruction
results for light elds recorded with our gantry, see Figure @(b). Each one has 9 9
views at resolutions between:6 and 1 mega-pixels. For both re ective and transparent
surfaces, a reconstruction of a single disparity based oneth.ambertian assumption
produces major artifacts and is unusable in the region of treurface. In contrast, the
proposed method always produces a very reliable estimate the primary surface, as
well as a reasonably accurate one for the re ected or transtt@d objects, respectively.
For the results in the gures, we employed a global optimizédn scheme 74, 104 to
reach maximum possible quality, which takes about 3 minutgser disparity map. The
same scheme and parameters were used for both methods andlath sets. To show
what is possible in near real-time, we also provide the raw pmb-wise results in the
additional material.

The results show that certain apparent limitations of the mdel are not practically
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Center view Single orientation Double orientation model
(front layer) (back layer)

Figure 41: Reconstructing a transparent surface The single orientation model cannot distinguish
the two signals from the dirty glass surface and the objects behind it.In contrast, multi-orientation
analysis correctly separates both layers.

relevant. In particular, re ectivity is certainly not constant everywhere due to
in uences of e.g. the Fresnel term, but since all estimateseastrictly local and the
angular range small, the variations do not seem to impact th@al result by much. A
stronger limitation, however, is the planarity of the re eding or transparent surface.
We predict that it can be considerably weakened, since the mmaassumption of the
existence of an object \behind" the primary surface (whichsi of course only virtual
in case of a mirror) also holds for more general geometries. viwer, exploring this
direction is left for future work.
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Center view Single orientation Double orientation model
(mirror disparity) (re ection disparity)

Figure 42: Reconstructing a mirror. Like multi-view stereo algorithms, the single orientation model
cannot distinguish the two signals from mirror plane and re ection and reconstructs erroneous dis-
parity for the mirror plane. In contrast, the proposed double orientation analysis correctly separates
the data for the mirror plane from the re ection. The re ection channe | is masked out where the
double orientation model does not return valid results as speci ed m section 5.2.4, and the results
for this channel have been increased in brightness and contrast for lter visibility (raw results and
many more data sets can be observed in the additional material).
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6 Inverse Problems on Ray Space

In this section, we discuss some applications showing thahen using light elds and their
inherently available depth information, much better resuk can be achieved compared to
classical approaches. The rst application is an adaptationf super-resolution techniques
to light elds which additionally is { as a side e ect { a proof for the high accuracy of
the orientation analysis because a necessary condition the proposed super-resolution
algorithm are depth maps of sub-pixel accuracy.

Another application is object segmentation where we will sebat by adapting classical
methods to light elds we can improve segmentation accuraggompared to segmentation
using single images.

6.1 Spatial and Viewpoint Superresolution

Here, we propose a variational model for the synthesis of supesolved novel views.
The theoretical background of the variational methods useih this section is the work
of Dr. Bastian Goldlicke. Fast GPU implementations of the gorithms can be found
in his open source librarycocolib [37]. The content is already published in Wanner et
al. [101] and Wanner et al. [103].

Since the model is continuous, we will be able to derive Euleagrange equations which
correctly take into account foreshortening e ects of the \@ws caused by variations in
the scene geometry. This makes the model essentially parderdree. The framework
is in the spirit of [38], which computes super-resolved textures for a 3D model ffino
multiple views, and shares the same favorable properties. Mever, it has substantial
di erences, since we do not require a complete 3D geometrycomstruction and costly
computation of a texture atlas. Instead, we only make use oigparity maps on the
input images, and model the super-resolved novel view ditlyc

The following mathematical framework is formulated for viers with arbitrary projections.
However, an implementation in this generality would be quiteli cult to achieve. We
therefore specialize to the scenario of a 4D light eld in theubsequent section, and
leave a generalization of the implementation for future wér

For the remainder of the section, assume we have images ;! R of a scene available,
which are obtained by projections ; : R3 ! i. Each pixel of each image stores the
integrated intensities from a collection of rays from the &me. This sub-sampling process
is modeled by a blur kerneb for functions on ;, and essentially characterizes the point
spread function for the corresponding sensor element. Itrcéde measured for a specic
imaging system §]. In general, the kernel may depend on the view and even on the
speci ¢ location in the images. We omit the dependency hererfsimplicity of notation.

The goal is to synthesize aview : ! R of the light eld from a novel view point,
represented by a camera projection : R®! | where is the image plane of the
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novel view. The basic idea of super-resolution is to de ne ahpsical model for how the
sub-sampled images; can be explained using high-resolution information ia, and then
solve the resulting system of equations far. This inverse problem is ill-posed, and is thus
reformulated as an energy minimization problem with a suitale prior or regularizer onu.

W

Figure 43: Transfer map ; from an input image plane ; to the image plane of the novel view
point. The scene surface can be inferred from the depth map on ;. Note that not all points

X 2 are visible in due to occlusion, which is described by the binay maskm; on ; . Above,
m; (x) = 1 while m;(x% = 0.

6.1.1 Image Formation and Model Energy

In order to formulate the transfer of information fromu to v; correctly, we require
geometry information fL9. Thus, we assume we know (previously estimated) depth
maps d; (see section 5) for the input views. A pointx 2 ; is then in one-to-one
correspondence with a poin®P which lies on the scene surface  R3. The color of the
scene point can be recovered fromvia u  (P), provided that x is not occluded by
other scene points, see gure 43.

The process explained above induces a backwards warp map ;!  which tells
us where to look on for the color of a point, as well as a binarypcclusion mask
m; : ; !'f 0;1g which takes the value 1 if and only if a point in ; is also visible in .
Both maps only depend on the scene surface geometry as seemfy;, i.e. the depth
map d;. The di erent terms and mappings appearing above and in theoflowing are
visualized for an example light eld in gure 44.

Having computed the warp map, one can formulate a model of howe values ofv; within

the mask can be computed, given a high-resolution image Using the down-sampling
kernel, we obtainv; = b (u ;) on the subset of ; wherem; = 1, which consists
of all points in v; which are also visible inu. Since this equality will not be satis ed
exactly due to noise or inaccuracies in the depth map, we iestd propose to minimize
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the energy

z x o2
E(u= % jbuj+ = mb (u ) wv)dx: (52)
i=1 F i {Z — }
=1 E fata (U

which is the MAP [30] (maximum a posteriori estimation) estimate under the assaption

o

Figure 44: lllustration of the terms in the super-resolution energy. The gure shows the ground
truth depth map for a single input view and the resulting mappings for forward- and backward
warps as well as the visibility maskm;. White pixels in the mask denote points in ; which are
visible in as well.

of Gaussian noise with standard deviation on the input images. It resembles a classical
super-resolution model§], which is made slightly more complex by the inclusion of the
warp maps and masks.

In the energy, formulated in equation 52, the total variatio acts as a regularizer or
objective prior onu. Its main tasks are to eliminate outliers and enforce a reasable
in-painting of regions for which no information is availal®, i.e. regions which are not
visible in any of the input views. It could be replaced by a mer sophisticated prior for
natural images, however, the total variation T8 leads to a convex model which can be
very e ciently minimized. Furthermore, the regularization weight , which is the only
free parameter of the model, is usually set very low in ordeotnhot destroy any details
in the reconstruction. We have it at 00001 in all experiments, which makes the exact
choice of regularizer not very signi cant.
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6.1.2 Functional Derivative

The functional derivative for the inverse problem above isequired in order to nd
solutions. It is well-known in principle, but one needs to tike into account complications
caused by the di erent domains of the integrals. Note that; is one-to-one when
restricted to the visible regionV; := fm; = 1g, thus we can compute an inverséorward
warp map ; :=( ijv) ! which we can use to transform the data term integral back to
the domain , see gure 44. We obtain for the derivative of a sigle term of the sum in
equation 52 _

dEgaa(u) = jdetD ij mib (b (u ) wv) & (53)

The determinant is introduced by the variable substitutionof the integral during the
transformation. A more detailed derivation for a structurdly equivalent case can be
found in [38].

The term jdetD ;j in equation 53 introduces a point-wise weight for the contoution of
each image to the gradient descent. However, depends on the depth map on , which
needs to be inferred and is not readily available. Furtherme, for e ciency it needs
to be pre-computed, and storage would require another highsolution oating point
matrix per view. Memory is a bottleneck in our method, and we eed to avoid this.
For this reason, it is much more e cient to transform the weidit to ; and multiply it
with m; to create a single weighted mask. Note that

jdetD ;j= detD ., * =jdetD jj ' : (54)
Thus, we obtain a simpli ed expression for the functional dévative,
dEgau(W)= My b (b (U ) w) (55)

with m; := m;jdet(D ;)j *. An example weighted mask is visualized in gure 44. In
total, only the weighted maskm; needs to be pre-computed and stored for each view.
In the scenario we present in the next section, the warp mapslMbe simple and can be
computed on the y from just the disparity map.
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6.1.3 Specialization to 4D Light Fields

The model introduced until now is hard to implement e ciently in fully general form.

Thus we focus on the setting of a 4D light eld, where we can maka number of signi cant

simpli cations. The main reason is that the warp maps betweaethe views are given by
parallel translations in the direction of the view point chage. The amount of translation

is proportional to the disparity of a pixel, which is in one-b-one correspondence with
the depth, as explained in sections 2.2, 5.1.2. How the dispgrmaps are obtained

does not matter, but in this work, naturally, they will be conputed using the technique

described in section 5.

6.1.4 View Synthesis in the Light Field Plane

The warp maps required for view synthesis become particubarsimple when the target
image plane lies in the common image plane of the light eld, and resembles
the corresponding light eld projection through a focal pait c2 . In this case, ; is
simply given by a translation proportional to the disparity

i(x) = x+ di(x)(c c); (56)
see gure 45. Thus, one can compute the weight in equation 586 be
jdetD ij *=jl+rd (c q)j " (57)

There are a few observations to make about this weight. Dispty gradients which
are not aligned with the view translation c¢c= ¢ ¢ do not in uence it, which makes
sense since it does not change the angle under which the patslviewed. Disparity
gradients which are aligned with c and tend to in nity lead to a zero weight, which
also makes sense since they lead to a large distortion of thetgh in the input view and
thus unreliable information.

A very interesting result is the location of maximum weight.The weights become larger
when c¢ r d; approaches 1. An interpretation can be found in gure 45. If ¢ r d
gets closer to 1, then more information from ; is being condensed onto , which
means that it becomes more reliable and should be assignedrenaveight. The extreme
case is a line segment with a disparity gradient such thatc r di = 1, which is
projected onto a single point in . In this situation, the weight becomes singular. This
does not pose a problem: From a theoretical point of view, theet of singular points is a
null set according to the theorem of Sardg(], and thus not seen by the integral. From
a practical point of view, all singular points lead to occlusn and the maskm; is zero
anyway. Note that formula 57 is non-intuitive, but the corret one to use when geometry
is taken into account. We have not seen anything similar begnused in previous work.
Instead, weighting factors for view synthesis are often ingged according to measures
based on distance to the interpolated rays or matching simaility scores, which are
certainly working, but also somewhat heuristic strategieg5, 51, 59, 76].
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Figure 45: The slope of the solid blue line depends on the disparity gradient intie viewv;. If
c r di = 1, then the line is projected onto a single point in the novel viewu.

6.1.5 Results

For the optimization of the (convex) energy in equation 52, e/transform the gradient
to the space of the target view via equation 55, discretizend employ the fast iterative
shrinkage and thresholding algorithm (FISTA) found in [9].

In order to demonstrate the validity and robustness of our gbrithm, we perform
extensive tests on our synthetic light elds, where we havergund truth available, as
well as on real-world data sets from a plenoptic camera. As a-pyoduct, this establishes
again that disparity maps obtained by our proposed method isection 5 have subpixel
accuracy, since this is a necessary requirement for supeselution to work.

View Interpolation and Superresolution In a rst set of experiments, we show
the quality of view interpolation and super-resolution, bth with ground truth as well as
estimated disparity. In table 47, we synthesize the centeliaw of a light eld with our
algorithm using the remaining views as input, and compare éresult to the actual view.
For the down-sampling kerneb, we use a simple box lter of size equal to the down-
sampling factor, so that it ts exactly on a pixel of the input views. We compute results
both with ground truth disparities to show the maximum theoetical performance of the
algorithm, as well as for the usual real-world case that digpity needs to be estimated.
This estimation is performed using the local method desceld in section 5.1.2.1, so
requires less than ve seconds for all of the views. Synthesig a single super-resolved
view requires about 15 seconds on an nVidia GTX 580 GPU.

In order to test the quality of super-resolution, we computé¢he 3 3 super-resolved
center view and compare with ground truth. For reference, walso compare the result
of bilinear interpolation (IP) as well as TV-zooming 0] of the center view synthesized
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Figure 46: Comparison of the di erent up-sampling schemes on the light eld of a resolution chart.
Input resolution is 512 512, which is 4 up-sampled. From left to right: original low resolution input,
bilinear up-sampling, TV zooming [20], our result, the original 1024 1024 center view for comparison.
All images shown are closeups.

in the rst experiment. While the reconstruction with ground truth disparities is very
precise, we can see that in the case of estimated disparity, tresult strongly improves
with larger angular resolution due to better disparity estinates (compare gure 30).
Super-resolution is superior to both competing methods. Thalso emphasizes the sub-
pixel accuracy of the disparity maps, since without accuratmatching, super-resolution
would not be possible. Figures 48 and 46 show closeup comparigmages of the input
light elds and up-sampled novel views obtained with di erat strategies. At this zoom
level, it is possible to observe increased sharpness andailstin the super-resolved
results. Figure 46 indicates that the proposed scheme alsmduces the least amount of
artifacts.

Figures 51 and 50 show the results of the same set of experinsefadr two real-world
scenes captured with the Raytrix plenoptic camera. The pleptic camera data was
transformed to the standard representation as an array of 99 views using the method
in section 3. Since no ground truth for the scene is availabléhe input views were
down-sampled to lower resolution before performing supegsolution and compared
against the original view. We can see that the proposed algghm allows to accurately
reconstruct both sub-pixel disparity as well as a high-qudy super-resolved intermediate
view.
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Conehead Buddha Mona

Views | Ix1 X3 TV IP | 1x1 X3 TV IP | 1Ix1 X3 TV IP

5 5 |31.6 29.3 27.4 26/332.2 28.9 27.5 26/30.1 28.3 27.4 26/4
9 9 |31.6 294 275 26/32.2 29.1 27.5 26/30.0 28.3 27.4 26.’{9
17 17| 31.2 30.4 27.3 26.(B1.8 30.2 28.8 27.80.2 28.9 27.8 26,5
5 5 |31.1 29.3 27.1 25/88.0 28.9 25.8 24,26.4 28.3 25.7 23\8
9 9 |314 294 27.6 26,B0.7 29.1 28.9 27, 28.9 28.3 26.8 25.2@
17 17| 31.5 30.9 25.9 24.381.4 29.5 27.9 26.89.5 28.3 27.1 25,8

Figure 47: Reconstruction error for the data sets obtained with a ray-tracer. The table shows the

PSNR of the center view without super-resolution, at super-resoluion magni cation 3 3, and for
bilinear interpolation (IP) and TV-Zooming (TV) [ 20]to 3 3 resolution as a comparison. The set
of experiments is run with both ground truth (GT) and estimated disp arities (ED). The estimation
error for the disparity map can be found in gure 30. Input image resolution is 384 384.

Disparity Re nement As we have seen in gure 49, the disparity estimate is more
accurate when the angular sampling of the light eld is more ehse. An idea is there-
fore to increase angular resolution and improve the dispéariestimate by synthesizing
intermediate views.

We rst synthesize novel views to increase angular resolotn by a factor of 2 and 4.
Figure 49 shows resulting epipolar plane images, which can been to be of high
quality with accurate occlusion boundaries. Nevertheless,is highly interesting that
the quality of the disparity map increases signi cantly wha recomputed with the
super-resolved light eld, gure 49. This is a striking resit, since one would expect
that the intermediate views re ect the error in the original disparity maps. However,
they actually provide more accuracy than a single disparitynap, since they represent a
consensus of all input views. Unfortunately, due to the highoenputational cost, this is
not a really viable strategy in practice.
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Figure 48: Closeups of the up-sampling results for the light elds generated wth a ray tracer.
From left to right: low-resolution center view (not used for reconstruction), high resolution center
view obtained by bilinear interpolation of a low-resolution reconstruction from 24 other views, TV-
Zooming [20], super-resolved reconstruction. The super-resolved resulhews increased sharpness
and details.

Figure 49: Left: Up-sampling of epipolar plane images (EPIs). From Top to bottom the ve layers
of an epipolar plane image of the input data set with 5 5 views, the super resolved 77 and the super
resolved 17 17 views are depicted. We generate intermediate views using our ntedd to achieve
angular super-resolution. One can observe the high quality and accurateczlusion boundaries of
the resulting view interpolation. Right: Indeed, they are accurate enough such that using the up-
sampled EPIs leads to a further improvement in depth estimation acuracy. Here the mean square
errors for all angular resolutions as well as the color coded error distribiion of the depth error
before and after super-resolution are shown.
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Figure 50: Super-resolution view synthesis using light elds from a plenopic camera. Scenes were
recorded with a Raytrix camera at a resolution of 962 628 and super-resolved by a factor of 3 3.
The light eld contains 9 9 views. From left to right: low-resolution center view (not used for
reconstruction), high resolution center view obtained by bilinear interpolation of a low-resolution
reconstruction from 24 other views, TV-Zooming P0], super-resolved reconstruction. One can nd
additional detail, for example the diagonal stripes in the Euro note, which were not visible before.

Figure 51: Reconstruction error for light elds captured with the Raytrix ple noptic camera. The
table shows PSNR for the reconstructed input view at original resoluton as well as 3 3 super-
resolution and 3 3 interpolation (IP) and TV-Zooming (TV) [20] for comparison.
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6.2 Rayspace Segmentation

Here we present the rst variational framework for multi-label segmentation on the ray
space of 4D light elds. For traditional segmentation of sigle images, features need
to be extracted from the 2D projection of a three-dimensioh&cene. The associated
loss of geometry information can cause severe problems, égample if di erent objects
have a very similar visual appearance. In this section, we®@h that using a light eld
instead of an image not only enables to train classi ers whiccan overcome many of
these problems, but also provides an optimal data structur®r label optimization by
implicitly providing scene geometry information. Thus it 8 possible to consistently
optimize label assignment over all views simultaneously.

Recent developments in light eld acquisition systemslf, 64, 69, 72| strengthen the pre-
diction that we might soon enter an age of light eld photograhy [57]. Since compared
to a single image, light elds increase the content capturedf a scene by directional
information, they require an adaptation of established atgrithms in image processing
and computer vision as well as the development of completeigvel techniques. Here, we
develop methods for training classi ers on features of a hg eld, and for consistently
optimizing label assignments to rays in a global variationdramework. The ray space
of the light eld is considered four-dimensional, parameized by the two points of
intersection of a ray with two parallel planes, so that the ght eld can be considered as
a collection of planar views, see gures 6 and 5.

Due to this planar sampling, 3D points are projected onto lireein cross-sections of the
light eld called epipolar-plane images (section 2.3). Inacent works, it was shown that
robust disparity reconstruction is possible by analyzingiis line structure [11, 16, 27, 104
(see also section 5). In contrast to traditional stereo maling, no correspondence search
is required, and oating-point precision disparity data ca be reconstructed at a very
small cost.

From the point of view of segmentation, this means that in ligt elds, we have access to
more than the color of a pixel and information about the neigboring image texture. Ad-
ditionally, we can assume that disparity is readily availale as a feature. Disparity turns
out to be highly e ective for increasing the prediction quaty of a classi er. As long as
the inter-class variety of imaged objects is high and the irdrclass variation is low, state
of the art classi ers can easily discriminate di erent objets. However, separating for ex-
ample background and foreground leafs (example in gure 5ppses a more di cult task.

In general, there is no easy way to alleviate issues like thising only single images.
However, for a classi er which also has geometry based featgravailable, similar looking
objects are readily distinguishable if their geometric féares are separable.

In the following, we will show that light elds are ideally suted for image segmentation.
One reason is that geometry is an inherent characteristic aflight eld, and thus we
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Input user scribbles single view labeling ray space labeling

Figure 52: Multi-label segmentation with light eld features and disparity-con sistent regularization
across ray space leads to results which are superior to single-vieahbeling.

can use disparity as a very helpful additional feature. Whil¢his has already been
realized in related work on e.g. multi-view co-segmentatigf50] or segmentation with
depth or motion cues, which are in many aspects similar to giarity [31, 92], light
elds also provide an ideal structure for a variational frarework which readily allows
consistent labelling across all views, and thus increasésetaccuracy of label assignments
dramatically.

6.2.1 Regularization on Ray Space

In segmentation problems, when one wants to label rays acdorg to e.g. the visible
object class, the unknown function on ray space ultimatelyerects a property of scene
points. In consequence, all the rays which view the same segint have to be assigned
the same function value. Equivalent to this is to demand thathe function must be
consistent with the structure on the epipolar plane imagedn particular, except at depth
discontinuities, the value of such a function is not allowetb change in the direction of
the epipolar lines, which are induced by the disparity eld.

The above considerations give rise to a regularizér (U ) for vector-valued functionsU :
R! R" on ray space. It can be written as the sum of contributions fahe regularizers
on all epipolar plane images as well as all the views,

J (U)= Js(U)+ gyt(u)"' J «(U)
with Jys(U) = J (Uy s ) d(x ;s);
Z

Jp(U)=" J (Uy ) dly;t);
Z

andJq(U) = Jy(Usy ) d(s;t);

(58)

where the anisotropic regularizers act on 2D epipolar plane images, and are de ned
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such that they encourage smoothing in the direction of the gmlar lines. This way, they

enforce consistency of the functiokl with the epipolar plane image structure. For a
detailed de nition, we refer to our related work B9. The spatial regularizerJy encodes
the label transition costs, as we will explore in more detaih the next section. Finally,

the constants > 0 and > O are user-de ned and adjust the amount of regularization
on the separate views and epipolar plane images, respediive

6.2.2 Optimal Label Assignment on Ray Space

In this section, we introduce a new variational labeling frmework on ray spaces. Its
design is based on the representation of labels with indicatfunctions 22, 53, 111],
which leads to a convex optimization problem. We can use the eient optimization
framework presented in39] to obtain a globally optimal solution to the convex problem
however, as usual we need to project back to indicator funotis and only end up within
a (usually small) posterior bound of the optimum.

The Variational Multi-Label Problem. Let be the (discrete) set of labels, then
to each label 2 we assign a binary functionu : R!f 0;1g which takes the value 1
if and only if a ray is assigned the label. Since the assignment must be unique, the set
of indicator functions must satisfy the simplex constraint

u =1: (59)

Arbitrary spatially varying label cost functions ¢ can be de ned, which penalize the
assignment of to aray R 2 R with the costc (R) 0.

Let U be the vector of all indicator functions. To regularizeJ , we choose] de ned
in equation 58. This implies that the labelling is encouragkto be consistent with the
epipolar plane structure of the light eld to be labelled. The spatial regularizerd, needs
to enforce the label transition costs. For the remainder ohts work, we choose a simple
weighted Potts penalizer [110]
1X £
Wv(Us )= 5 9j(Du )s ¢ j d(x;y); (60)
2

where g is a spatially varying transition cost. Since the total varation of a binary
function equals the length of the interface between the zesmd one level set due to the
co-area formula [32], the factor 42 leads to the desired penalization.

While we use the weighted Potts model in this work, the overaffamework is by no
means limited to it. Rather, we can use any of the more sophisated regularizers
proposed in the literature P2, 53], for example truncated linear penalization, Euclidean
label distances, Huber TV or the Mumford-Shah regularizer. Aoverview as well as
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further specializations tailored to vector-valued labelgaces can be found in [94].

The space of binary functions over which one needs to optimizs not convex, since
convex combinations of binary functions are usually not bary. We resort to a convex
relaxation, which with the above conventions can now be wtg&n as

( X Z )

argmin J (U)+ cu dxvy;s;t) ; (61)
u2C 2 R

whereCis the convex set of functiondJ = (u :R! [0;1]) » which satisfy the simplex
constraint equation 59. After optimization, the solution ofequation 61 needs to be
projected back onto the space of binary functions. This mearthat we usually do not
achieve the global optimum of equation 61, but can only comfaia posterior bound for
how far we are from the optimal solution. An exception is the twdabel case, where we
indeed achieve global optimality via thresholding, sincene anisotropic total variation
also satis es a co-area formula [111].

Optimization. Note that according to equation 58, the full regularized which

is de ned on 4D ray space decomposes into a sum of 2D regulari&on the epipolar
plane images and individual views, respectively. While sahg a single saddle point
problem for the full regularizer would require too much meny, it is feasible to iter-
atively compute independent descent steps for the data teramd regularizer components.

The overall algorithm is detailed in B9]. Aside from the data term, the main di erence
here is the simplex constraint set for the primal variabl&J . We enforce it with Lagrange
multipliers in the proximity operators of the regularizer omponents, which can be easily
integrated into the primal-dual algorithm [21]. An overview of the algorithm adapted to
problem in equation 61 can be found in gure 53.

On our system equipped with an nVidia GTX 580 GPU, optimizatiortakes about 1.5
seconds per label in and per million rays inR, i.e. about 5 minutes for our rendered
data sets if the result for all views is desired. If only the milt for one single view
(i.e. the center one) is required, computation can be restted to view points located
in a cross with that speci c view at the center. The result wil usually be very close
to the optimization over the complete ray space. While this copromise forfeits some
information in the data it leads to signi cant speeds ups, foour rendered data sets to
about 30 seconds.

6.2.3 Local Class Probabilities

We calculate the unary potentialsc in equation 61 from the negative log-likelihoods of
the local class probabilities,

c(R)= logp jv(R); (62)
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To solve the multi-label problem in equation 61 on ray space, we initiake the
unknown vector-valued function U such that the indicator function for the optimal
point-wise label is set to one, and zero otherwise. Then we iterate

data term descent: U U c forall 2 ,
EPI regularizer descent:
Uy s prox ;3 (Ux s ) forall (x ;s);

Uy t prox ; (Uy ) forall (y ;t);

spatial regularizer descent:

Us ¢ prox ; ,(Us¢ ) forall (s ;t):

The proximation operators prox; compute subgradient descent steps for the respective
2D regularizer, and enforce the simplex constraint in equation 59 fotJ. The possible
step size depends on the data term scale, in our experiments = 0:1 lead to reliable
convergence within about 20 iterations.

Figure 53: Algorithm for the general multi-label problem in equa-
tion 61.

so that by solving equation 61, we obtain the maximum a-pogteri (MAP) solution [ 30|
for the label assignment. The local class probabilitigs jv(R) 2 [0;1] for the la-
bel , conditioned on a local feature vectonv(R) 2 RIFI for each rayR 2 R, are
obtained by training a classi er on a user-provided partialabelling of the center view.
As features, we use a combination of color, Laplace operatdrthe view, intensity
standard deviation in a neighbourhood, Eigenvalues of the Blgan and the disparity
computed on several scales. While our framework allows theeusf arbitrary classi ers,
we specialize in this thesis to &andom Forest[18]. These are becoming increasingly
popular in image processing due to their wide applicability26] and the robustness
with regard to their hyper-parameters. Random Forests makease ofbaggingto reduce
variance and avoid over- tting. A decision forest is built fom a numbern of trees,
which are each trained from a random subset of the availableaining samples. In
addition to bagging, extra randomness is injected into therées by testing only a subset
of m < jFj di erent features for their optimal split in each split node The above in-
ternal random forest parameters were xedtan = = jFj andn = 71 in our experiments.

Each individual tree is now built by partitioning the set of training samples recursively
into smaller subsets, until the subsets become either clgssre or smaller than a given
minimal split node size. The partitioning of the samples ischieved by performing
a line search over all possible splits along a number of dient feature axes for the
optimal Gini-impurity of the resulting partitions, and repeating this process fothe

child partitions recursively. In each node, the chosen faat and the split value of that
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Classi er

Features used IMG | IMG-D | IMG-GT
RGB value X X X
Intensity standard deviation X X X

(in local neighbourhood)
Eigenvalues of Hessian X X X
Laplace operator X
Estimated disparity X
Ground truth disparity X

Figure 54: Combination of features used for the experiments in this
paper. The individual scales of the features were determined via a grid
search to nd optimal parameters for each dataset individually.

feature are stored. After building a single tree, the class stribution of the samples
in each leaf node is stored and used at prediction time to oltathe conditional class
probability of samples that arrive at that particular leaf node. The leaf node with which
a prediction-sample is associated is determined by compagithe nodes' split value for
the split feature with the feature vector entry of a sample. Bpending on whether the
sample value is smaller (larger) than the node value, the saie is passed to the left
(right) child of the split node, until a leaf node is reached.

Finally, the ensemble of decision tree classi ers is used talculate the local class
probability of unlabeled pixels by averaging their votes.n our experiments, we achieved
total run-times for training and prediction between one and minutes, depending on
the size of the light eld and the number of labels. However, wdid not yet parallelize

the local predictions, which is easily possible and would k& computation much more
e cient.

6.2.4 Experiments

In this section, we present the results of our multi-label ggnentation framework on a
variety of di erent data sets. To explore the full potential of our approach, we use com-
puter graphics generated light elds rendered with the opesource software Blender7/],
which provides complete ground truth for depth values and kels. In addition, we show
that the approach yields very good results on real world databtained with a plenoptic
camera and a gantry, respectively. A subset of the views ingtreal-world data sets were
manually labeled in order to provide ground truth to quantif the results.

There are two main bene ts of labeling in light elds. First, we demonstrate the
usefulness of disparity as an additional feature for traing a classi er, and second, we
show the improvements from the consistent variational muHiabel optimization on ray
space.
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Figure 55: Depth estimated using the method in section 5 and spatial regularizeweight computed
according to equation 63 for the light eld view shown in gure 52.

Disparity as a Feature. The rst step of the proposed segmentation framework does
not di er from single image segmentation using a random fosé The user selects an

arbitrary view from the light eld, adds scribbles for the dierent labels, and chooses

suitable features as well as the scales on which the featust®uld be calculated. The

classi er is then trained on this single view and, in a secorgtep, used to compute local

class probabilities for all views of the entire light eld.

In advance, we have tested variations of common features fateractive image segmen-
tation on our data sets to nd a suitable combination of featwes which yields good
results on single images. The optimal training parametersere determined using a grid
search over the minimum split node size as well as the featuwwzembinations and their
scales for each data set individually. The number of di erdrscales we used for each
feature was xed to four. This way, we can guarantee optimalesults of the random
forest classi er for all data sets and feature combinationsvhich ensures a meaningful
assessment of the e ects of our new ray space features.

Throughout the remainder of this section, we use the three drent sets of features
detailed in gure 54. The classi erIMG uses only classical single-view features, while
IMG-D and IMG-GT employ in addition estimated and ground truth disparity, respec-
tively, the latter of course only if available. Estimated dsparity maps were obtained
using our method in section 5 and are overall of very good qitgl see gure 55. The
achieved accuracy and the boundary recall for purely pointise classi cation using the
three classi ers above are listed in the table in gure 56. Saple segmentations for
our data sets can be viewed in gure 58. It is obvious that theehtures extracted from
the light eld improve the quality of a local classi er signicantly for di cult problem
instances.
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Classi er

IMG IMG-D IMG-GT
Data set acc br acc br acc br
synthetic data sets
Buddha 935 6.4 | 967 39.6 | 986 43.1
Garden 95.1 548 | 96.7 51.1 | 969 533
Papillon 1 98.6 593 | 983 574 | 99.0 789
Papillon 2 90.8 16.7 | 965 33.1 | 99.1 73.0
Horses 1 93.2 134 | 943 349 | 98.3 487
Horses 2 946 159 | 953 36.8 | 985 50.9
StillLife 1 98.6 36.3 | 98.7 41.2 | 989 453
StillLife 2 97.8 254 | 983 36.1 | 985 39.1
real-world data sets
UCSD [113] 958 89 | 97.0 112
Plenoptic 1 [72] 93.7 35 | 945 44
Plenoptic 2 [72] 91.0 6.6 | 961 85

Figure 56: Comparison of local labeling accuracy (acc) and boundary recallbr) for all datasets.
The table shows percentages of correctly labeled pixels and boundaryixels, respectively, for point-
wise optimal results of the three classi ers trained on the featuresdetailed in gure 54. Disparity for
IMG-D is estimated using the method described in section 5.1.2.1. und truth disparity is used
for IMG-GT to determine the maximum possible quality of the proposed method. It is obvious that
in scenes likeBuddha, Papillon 2, Horses 2 or StillLife 2, where the user tries to separate objects
with similiar or even identical appearance, the rayspace based featerleads to a large benet in the
segmentation results.

Global Optimization. In the second set of experiments, we employ our ray space
optimization framework on the results from the local clasgr. The unary potentials

in (61) are initialized with the log-probabilities (62) from the local class probabilities,
while the spatial regularization weightg is set to

g=max 0;1 jrlj, H () jr ], ; (63)

wherel denotes the respective single view imagkl, the Harris corner detector 2],
and the disparity eld. This way, we combine the response from ttee di erent types
of edge detectors. Experiments showed that the sum of the twdberent edge signals
for the gray value imagel leads to more robust boundary weights. For all of the data
sets, training classi ers with light eld features and optmizing over ray space leads
to signi cantly improved results compared to single view miti-labeling (see gures 57
and 58). The e ectiveness of light eld segmentation is rexaed in particular on data
sets which have highly ambiguous texture and color betweetasses. In the light eld
Buddha for example, it becomes possible to segment a column from ackground wall
having the same texture. In the scen®@apillon 2, we demonstrate that it is possible
to separate foreground from background leaves. Similariyp StillLife 2 we are able to
correctly segment foreground from background raspberrieshe data setHorses 2also
represents a typical case for problems only solvable usirfietproposed approach. Here,
we perform a labeling of identical objects in the scene with drent label classes.
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Figure 58: Segmentation results for a number of ray-traced and real-world light dds. GT stands
for ground truth, SV for single view andRS for ray space. The numbers in squared brackets refer to
the corresponding gures. The rst two columns on the left show the center view with user scribbles
and ground truth labels. The two middle columns compare classi er reslts for the local single view
and light eld features denoted on top. Since the focus of this paper isegmentation rather than
depth reconstruction, here we show results for ground truth depthwhere available to compare to the
optimal possible results from light eld data. Finally, the two rightm ost columns compare the nal
results after single view and ray space optimization, respectivelyln particular for di cult cases, the
proposed method is signi cantly superior.
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7 Conclusion

In this work novel methods for the analysis of 4D light elds s presented. We showed
that a speci ¢ parametrization, the so-called_.umigraph, is well suited for an orientation
based analysis. Thea.umigraph can be described as a dense collection of pinhole views
captured on a planar regular grid of camera positions. Thisaoses a linear mapping
of 3D points onto lines in the so-called epipolar plane imagieWe discussed di erent
devices and techniques to capture light elds as well as theogt necessary to represent
the resulting raw data as aLumigraph or as epipolar plane images respectively.

In chapter 3, we saw that raw data from d@&ocused Plenoptic Cameraloes not provide an
immediate access to epipolar plane images. A method was pospd to render all possible
all-in-focus views from the raw data, which is the desiredlumigraph parametrization.
To avoid a pixel-wise depth estimation within the micro-les images, we minimized the
gradients at neighboring micro-image patches to render vis without plenoptic artifacts.

In chapter 4 we discussed the acquisition techniques relevdor this work in detail. To
generate light elds of best quality we used a high-end consier camera in combination
with a precise xy-stepper motor. This so-calledantry is ideal to capture very dense
light elds down to baselines of Inm. The disadvantage is that only static scenes can
be captured. Together with light elds generated using comyer graphics, providing
full ground truth data, a benchmark database containing ovea dozen simulated and
real world light elds was published during this work (vww.lightfield-analysis.net ).

In chapter 5, we proposed fast and robust methods, based on amentation analysis of
epipolar plane images, to compute depth range data. The slagorientation analysis
introduced makes use of the structure tensor to analyze epipr plane images. The
structure tensor analyzes rst order derivatives to locajl estimate structure and ori-
entation in an image. If the appearance of a 3D point does noegdend on the view
point, it is mapped onto a line in an epipolar plane image. Hower, this approach is
restricted to the Lambertian assumption. If re ections or transparencies are present,
overlayed line patterns arise in the epipolar space the stture tensor cannot handle.
An extension to multi-orientation patterns, making use of a igher order structure
tensor, was proposed. We showed that this multi-orientatio analysis leads to much
more robust depth estimation where re ections or semi-tragparent materials are present.

In Chapter 6, we discussed two applications of the orientath based depth estimation.
We proposed an angular and spatial super-resolution algthnn based on an energy
minimization framework as well as a framework for optimal lael assignment on ray
space for object segmentation. Both methods show the potaidtof light elds for image
processing and computer vision tasks. The super-resolutiramework can be seen as a
proof for the high quality of the depth maps computed using th orientation analysis,
since this method needs disparity estimations of sub-pixatcuracy to work properly. In
the case of object segmentation the bene ts are quite obvisuDue to the inherently
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available depth information within light elds, object detection is getting much more
robust when applied on light elds. We used a standard "randm-forest" classi er in
this work to predict object labels. Compared to prediction®n 2D images we were able
to distinguish objects of di erent classes but similar apperance.

8 Outlook

Possible extensions of the work presented could be the fallng:

The proposed orientation analysis in this work is still sepated in single orientation
and double orientation models and in particular the doubleregentation model needs
the outcome of the single orientation to interpret the restihg channels. However, this
needs to be uni ed in a more problem speci ¢c manner. The singlorientation model is
already included in the second order structure tensor and aare advanced evaluation
of all tensor channels at once would lead to more robust retul

The orientation analysis as described in this work handle®light elds as separated
horizontal and vertical 3D light elds merging the outcomem a nal step by pixel-wise
choosing the disparity more reliable as the nal result. Frm a computational e ciency
point of view this makes sense, since an evaluation of the 4@td as a whole is quite
expensive, but on the other hand the method described in thigork does not make use
of all available information.

Next steps planned for future research are an evaluation ofdldepth estimation accuracy
on real scenes and extensions of the orientation analysislight elds varying over time.
Further developments in both are planned, investigatingdht elds of dynamic scenes
as well as light elds of static scenes under varying illumation conditions.
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